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Entwicklung von schnellen Algorithmen für maschinelles
Lernen zur Kontrolle der Falschentdeckungsrate in großen

hochdimensionalen Daten

Kurzfassung

In dieser Dissertation werden Algorithmen für maschinelles Lernen zur Kontrolle der Fal-
schentdeckungsrate (FDR) für große hochdimensionale Daten entwickelt. Die Gewährleis-
tung der Reproduzierbarkeit von Entdeckungen, die auf hochdimensionalen Daten basieren,
ist für zahlreiche Anwendungen von zentraler Bedeutung. Die entwickelten Algorithmen
führen eine schnelle Variablenauswahl in großen hochdimensionalen Daten durch, in denen
die Anzahl der Variablen viel größer sein kann als die Anzahl der Stichproben. Dies beinhal-
tet groß angelegte Daten mit bis zu Millionen von Variablen, wie z. B. genomweite Assozia-
tionsstudien (GWAS). Theoretische FDR-Kontrollgarantien für endliche Stichproben, die
auf der Martingaltheorie beruhen, beweisen die Vertrauenswürdigkeit der entwickelten Me-
thoden. Die praktischenOpen-Source-R-Softwarepakete TRexSelector und tlars, die die vor-
geschlagenen Algorithmen implementieren, wurden im Comprehensive R Archive Network
(CRAN) veröffentlicht. Umfangreiche numerische Experimente und reale Probleme in der
Biomedizin- und Finanztechnik demonstrieren die Leistungsfähigkeit in anspruchsvollenAn-
wendungsfällen. Die erstendreiHauptteile dieserDissertationpräsentierendiemethodischen
und theoretischen Beiträge, während der vierte Hauptteil die praktischen Beiträge enthält.

Der erste Hauptteil (Kapitel 3) widmet sich dem Terminating-Random Experiments (T-
Rex) Selektor, einem neuen schnellen Variablenselektionsverfahren für hochdimensionale
Daten. Der T-Rex Selektor kontrolliert eine benutzerdefinierte Ziel-FDR und maximiert
gleichzeitig die Anzahl der ausgewählten Variablen. Dies wird durch die Fusionierung der
Lösungen mehrerer früh beendeter Zufallsexperimente erreicht. Die Experimente werden
mit einer Kombination aus den ursprünglichen Kandidaten-Variablen und mehreren
unabhängigen Sätzen von zufällig generierten Dummy-Variablen durchgeführt. Die FDR-
Kontrolleigenschaft wird mit Hilfe der Martingaltheorie für endliche Stichproben bewiesen.
Die Komplexität des T-Rex Selektors wächst linear mit der Anzahl der Kandidatenvariablen.
Darüber hinaus ist seine Berechnungszeit imVergleich zumodernsten Benchmark-Methoden
in großen Datensätzen um mehr als zwei Größenordnungen schneller. Daher skaliert der
T-Rex Selektor in einer angemessenen Rechenzeit auf Millionen von Kandidatenvariablen.
Ein wichtiger Anwendungsfall des T-Rex Selektors ist die Bestimmung reproduzierbarer
Assoziationen zwischen Phänotypen und Genotypen in GWAS, was für die personalisierte
Medizin und die Arzneimittelentdeckung unerlässlich ist.
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Der zweite Hauptteil (Kapitel 4) beschäftigt sich mit abhängigkeitssensitiven FDR-
Kontrollalgorithmen für große hochdimensionale Daten. Die hochdimensionalen Daten
in vielen Anwendungen der Biomedizin- und Finanztechnik enthalten oft hochkorrelierte
Kandidaten-Variablen (z. B. Genexpressionsdaten und Aktienrenditen). Für solche Anwen-
dungen wurde das abhängigkeitssensitive T-Rex (T-Rex+DA) Framework entwickelt. Es
erweitert das gewöhnliche T-Rex Framework um die Berücksichtigung von Abhängigkeits-
strukturen zwischen den Kandidaten-Variablen. Dies wird durch die Integration grafischer
Modelle in das T-Rex Framework erreicht. Hierdurch wird es möglich, die Abhängigkeits-
struktur zwischen den Variablen effektiv zu nutzen und Mechanismen zur Penalisierung von
Variablen zu entwickeln, die zu einer garantierten FDR-Kontrolle führen.

Im dritten Hauptteil (Kapitel 5) werden Algorithmen für die Auswahl gruppierter Variablen
mit gewährleisteter FDR-Kontrolle vorgeschlagen. Dieser Ansatz zur Bewältigung der Her-
ausforderungen, die sich aus dem Vorhandensein von Gruppen hochgradig abhängiger Va-
riablen in den Daten ergeben, unterscheidet sich von dem konservativeren Variablenbestra-
fungsansatz, der im zweiten Teil dieser Dissertation entwickelt wurde. Das heißt, anstatt die
wenigen wirklich aktiven Variablen unter den Gruppen hochkorrelierter Variablen zu finden,
besteht das Ziel darin, alle Gruppen hochkorrelierter Variablen auszuwählen, die mindestens
eine wirklich aktive Variable enthalten. In der Genomforschung, insbesondere bei GWAS,
sind Variablenselektionsverfahren für gruppierte Variablen von großer Bedeutung, da man
nicht an der Identifizierung einiger weniger Einzelnukleotid-Polymorphismen (SNPs), die
mit einer gewissen Krankheit assoziiert sind, interessiert ist, sondern an den gesamten Grup-
pen korrelierter SNPs, die auf relevante Stellen im Genom hinweisen.

Der vierte Hauptteil dieser Dissertation (Kapitel 6 und 7) demonstriert die Anwendung der
entwickelten Methoden auf praktische Probleme sowohl in der Biomedizintechnik als auch
in der Finanztechnik. Zu den biomedizinischen Anwendungen gehören (i) eine halb-reale
GWAS, (ii) ein Datensatz des Humanen Immundefizienz-Virus Typ 1 (HIV-1) mit zugehöri-
genMessungen der Arzneimittelresistenz und (iii) ein Brustkrebs-Datensatz mit zugehörigen
Überlebenszeiten der Patienten. Zu den finanztechnischen Anwendungen gehören (i) die
genaue Nachverfolgung des S&P 500-Index unter Verwendung eines vierteljährlich aktuali-
sierten und neu ausbalancierten Nachverfolgungsportfolios, das aus wenigen Aktien besteht,
und (ii) eine Faktoranalyse der S&P 500-Aktienrenditen. Die gemeinsame Herausforderung
aller betrachteten Anwendungen liegt in der Detektion der wenigen aktiven Variablen (d. h.
SNPs, Mutationen, Gene, Aktien) unter vielen nicht aktiven Variablen in u. a. großen hoch-
dimensionalen Datensätzen.

Zusammenfassend werden in dieser Dissertation neue schnelle und skalierbare Algorithmen
des maschinellen Lernens mit nachweisbaren FDR-Kontrollgarantien für die Variablenselek-
tion in großen hochdimensionalen Daten entwickelt und analysiert. Die entwickelten Algo-
rithmen undOpen-Source-Softwarepakete haben reproduzierbare Entdeckungen in verschie-
denen Anwendungen ermöglicht, die von der Biomedizin- bis zur Finanztechnik reichen.
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Development of Fast Machine Learning Algorithms for False
Discovery Rate Control in Large-Scale High-Dimensional Data

Abstract

This dissertation develops false discovery rate (FDR) controllingmachine learning algorithms
for large-scale high-dimensional data. Ensuring the reproducibility of discoveries based on
high-dimensional data is pivotal in numerous applications. The developed algorithms per-
form fast variable selection tasks in large-scale high-dimensional settings where the number
of variables may be much larger than the number of samples. This includes large-scale data
with up tomillions of variables such as genome-wide association studies (GWAS). Theoretical
finite sample FDR-control guarantees based onmartingale theory have been established prov-
ing the trustworthiness of the developedmethods. The practical open-sourceR software pack-
ages TRexSelector and tlars, which implement the proposed algorithms, have been published
on the Comprehensive R Archive Network (CRAN). Extensive numerical experiments and
real-world problems in biomedical and financial engineering demonstrate the performance in
challenging use-cases. The first three main parts of this dissertation present the methodologi-
cal and theoretical contributions, while the fourth main part contains the practical contribu-
tions.

The firstmain part (Chapter 3) is dedicated to theTerminating-RandomExperiments (T-Rex)
selector, a new fast variable selection framework for high-dimensional data. The proposed
T-Rex selector controls a user-defined target FDR while maximizing the number of selected
variables. This is achieved by fusing the solutions of multiple early terminated random ex-
periments. The experiments are conducted on a combination of the candidate variables and
multiple independent sets of randomly generated dummy variables. A finite sample proof of
the FDR control property is provided using martingale theory. The computational complex-
ity of the T-Rex selector grows linearly with the number of candidate variables. Furthermore,
its computation time ismore than twoorders ofmagnitude faster compared to state-of-the-art
benchmark methods in large-scale data settings. Therefore, the T-Rex selector scales to mil-
lions of candidate variables in a reasonable computation time. An important use-case of the
T-Rex selector is determining reproducible associations between phenotypes and genotypes
in GWAS, which is imperative in personalized medicine and drug discovery.

The second main part (Chapter 4) concerns dependency-aware FDR-controlling algorithms
for large-scale high-dimensional data. Inmanybiomedical and financial applications, the high-
dimensional data sets often contain highly correlated candidate variables (e.g., gene expression
data and stock returns). For such applications, the dependency-aware T-Rex (T-Rex+DA)
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framework has been developed. It extends the ordinary T-Rex framework by accounting for
dependency structures among the candidate variables. This is achieved by integrating graphi-
cal models within the T-Rex framework, which allows to effectively harness the dependency
structure among variables and to develop variable penalization mechanisms that guarantee
FDR control.

In the third main part (Chapter 5), algorithms for joint grouped variable selection and FDR
control are proposed. This approach to tackling the challenges resulting from the presence of
groups of highly dependent variables in the data is different to the more conservative variable
penalization approach that has been developed in the second part of this dissertation. That
is, instead of finding the few true active variables among groups of highly correlated variables,
the goal is to select all groups of highly correlated variables that contain at least one true active
variable. In genomics research, especially for GWAS, grouped variable selection approaches
are highly relevant, since one is not interested in identifying a few single-nucleotide polymor-
phisms (SNPs) that are associated with a disease of interest but rather the entire groups of
correlated SNPs that point to relevant locations on the genome.

The fourth main part of this dissertation (Chapters 6 and 7) demonstrates the application of
the developedmethods to practical problems in biomedical engineering as well as financial en-
gineering. The biomedical applications include (i) a semi-real-world GWAS, (ii) a human im-
munodeficiency virus type 1 (HIV-1) data set with associated drug resistance measurements,
and (iii) a breast cancer data set with associated survival times of the patients. The financial
engineering applications include (i) accurately tracking the S&P 500 index using a quarterly
updated and rebalanced tracking portfolio that consists of few stocks and (ii) a factor analysis
of S&P 500 stock returns. The common challenge of all considered applications lies in detect-
ing the few true active variables (i.e., SNPs, mutations, genes, stocks) amongmany non-active
variables in, among other things, large-scale high-dimensional settings.

Summarizing, this dissertation develops and analyses new fast and scalable machine learn-
ing algorithms with provable FDR-control guarantees for variable selection tasks in large-
scale high-dimensional data. The developed algorithms and the associated open-source soft-
ware packages have enabled making reproducible discoveries in various real-world applica-
tions ranging from biomedical to financial engineering.
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To raise new questions, new possibilities, to regard old prob-
lems from a new angle, requires creative imagination and
marks real advance in science.

Albert Einstein

1
Introduction

In this introduction, Section 1.1 presents the motivation and goals of the dissertation. In Sec-
tion 1.2, a brief overview of the state-of-the-art in high-dimensional variable selection is pro-
vided. Section 1.3 summarizes the contributions and provides an overview of the dissertation.

1 . 1 Motivat ion and Goals

This dissertation addresses a fundamental problem in modern machine learning and signal
processing: the reproducible discovery of the few true active variables (e.g., signals, features)
among up to millions of candidate variables. More specifically, determining the set of repro-
ducible active signals or variables is a crucial task in, e.g., genomics research [Huf18; Sud+15;
Bun+19], financial engineering [HLZ15; BFP17; Pal24], detection [Chu+07; CZP20; CSY18],
antenna array processing [TEN14], distributed learning [DS12], robust estimation [Zou+12;
Zou+18;Mac+17;Mac+20; Yan+19], andmany other areas (for an overview, see [FL06]). Any
attempt to solve such variable selection problems usually leads to encountering the following
four major challenges:

1. High-dimensional nature of the data: The number of samples is usually much smaller
compared to the number of candidate variables, which leads to ill-posed problems and
under-determined systems of equations [BV11].
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2. High demand for computational resources: Storing and processing huge data sets (e.g.,
genomics data [Sud+15], gene expression data [TCW15]) using state-of-the-art meth-
ods [BC15; Can+18] is a challenging task, even for high-performance computers.

3. Requirement for statistical reproducibility guarantees: Without reproducibility guar-
antees, limited resources are wasted on costly follow-up studies in, e.g., biomedical re-
search [GC18], or false discoveries are published in, e.g., financial economics [HLZ15].

4. Highly dependent candidate variables: The presence of strong and application-specific
dependency structures such as groups of highly correlated candidate variables in, e.g.,
genomics [Bal06], gene expression [SDC03], and stock returns data (see Chapters 6
and 7) may lead to a breakdown of existing FDR-controlling methods.

The goal of this dissertation is to address these challenges by proposing fast machine learning
algorithms for high-dimensional data that allow for the selection of reproducible variables. In
this context, a reproducible variable or reproducible discovery is a variable that is not a false
positive. To enable reproducible discoveries, it is essential that (i) the proportion of false dis-
coveries among all selected variables is low, while (ii) the proportion of true discoveries among
all true active variables is high. The expected values of these quantities are referred to as the
false discovery rate (FDR) and the true positive rate (TPR), respectively. For example, without
FDR control, expensive functional genomics studies and biological laboratory experiments
are wasted on researching false positives [Cha+07; Vis+17; Huf18; GC18]. In addition, FDR
control helps to achieve the goal of reproducibility in many scientific fields that suffer from
false discoveries, such as biomedical research [Ioa05; 13; Bak16a; Mul21] and finance [HLZ15].
To account for the high-dimensional setting, where the number of variables exceeds the num-
ber of observations, it is imperative that the FDR control proofs rely on finite-sample (i.e.,
non-asymptotic) theory.

This dissertation contains the following major methodological, theoretical, and practical con-
tributions (see Section 1.3 for a more detailed outline of the contributions):

1. The development of the Terminating-Random Experiments (T-Rex) selector, a new
fast and flexible variable selection framework.

2. A theory for finite sample FDR control, which is rooted in martingale theory, and its
numerical verification through extensive simulation studies on the Lichtenberg high-
performance computer of the Technische Universität Darmstadt.
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3. A demonstration of the applicability and efficiency of the proposed methods in
biomedical applications (genome-wide association studies (GWAS), survival analysis
using gene expression data, human immunodeficiency virus type 1 (HIV-1) drug
resistance studies), and financial engineering (sparse financial index tracking, factor
analysis of the S&P 500 stock returns).

4. The release of two open-source R software packages with an efficient C++ backend on
the Comprehensive RArchiveNetwork (CRAN), which contain the implementations
of the proposed methods as well as demos and tutorials.

1 . 2 State of the Art

The fundamental task of selecting the subset of true active variables in high-dimensional data
has attracted the interest of many scientists. Although the underlying selection problem is
NP-hard [Nat95], various relaxations have been proposed to deal with the stringent condi-
tion of the best subset selection problem. The arguablymost adopted approaches are sparsity
inducing methods that solve least squares type optimization problems with a sparsity induc-
ing constraint. The sparsity level (i.e., the number of selected variables) usually depends on a
sparsity parameter that needs to be chosen by some type of parameter tuning or by applying
rules-of-thumb. Some of the most used methods are Lasso [Tib96], adaptive Lasso [Zou06],
and elastic net [ZHT06], which can be formulated as quadratic programs (QPs) and solved
using off-the-shelfQP-solvers. However, there existmore efficient andwidespread algorithms
such as theLARS algorithm [Efr+04] and the pathwise coordinate descent method [Fri+07]
to solve these QPs. The major drawback of sparsity inducing methods is that they require
tuning the sparsity parameter, which is often done using model selection approaches such as
cross-validation (CV) [Sto74; Sto77; All74], information criteria (e.g., Akaike information
criterion (AIC) [Hir73] and Bayesian information criterion (BIC) [Sch78]), and other ap-
proaches (see [HTF09] for an overview and discussion). Unfortunately, these approaches
do not control the FDR and in many cases may lead to differing models [Dzi+20] or select
too many false positives [Abr+06].

Alternatively to combining sparsity inducing methods with model selection approaches, the
umbrella termmultiple testing refers to the simultaneous testing ofmany hypotheses [Sha95].
Frequently used multiple testing methods, which control the conservative family-wise error
rate (FWER) (i.e., the probability ofmakingoneormore type I errors), arep-valuebasedmeth-
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ods such as the Bonferroni correction [Abd+07], theHolm-Bonferronimethod [Hol79], the
Hochberg method [Hoc88], and others (see [Sha95] for an overview and a discussion). How-
ever, the FWER-metric is a conservative metric that may lead to many missed discoveries in
variable selection tasks. This has lead to the development of the more liberal FDR-metric,
which usually allows formore discoveries while controlling a user-defined target FDR [BH95;
BY01].

Developing FDR-controlling methods for multiple testing in high-dimensional settings is
challenging. While there exist established FDR-controlling methods for low-dimensional
data, e.g., the Benjamini-Hochberg (BH ) method [BH95], the Benjamini-Yekutieli (BY )
method [BY01], and the fixed-X knockoff method [BC15], there exist not many and, espe-
cially, no computationally fast multivariate approaches for large-scale high-dimensional data.
One could resort to single hypothesis testing usingmarginal p-values. However, this approach
to hypothesis testing in high-dimensional settings raises many issues, which concern the
validity of marginal p-values in high-dimensional settings, the loss of power due to marginal
testing, and many others [Hog+08; Can+18]. Therefore, in recent years, the multivariate
model-X knockoff method [Can+18] and derandomized versions thereof [RWC21; RB24]
have been proposed for the high-dimensional setting. However, they are computationally
demanding. In fact, creating knockoff predictors that mimic the covariance structure of
the original predictors renders them infeasible for settings beyond a few thousand variables
(see Figure 3.1). Moreover, the original derandomized knockoffs approach controls the
conservative per family error rate (PFER) and the k-family-wise error rate (k-FWER)
but does not consider the less conservative FDR metric [RWC21]. Only the derandomized
approach based on e-values controls the FDR [RB24]. Nevertheless, the need for running the
model-X knockoff method multiple times renders both derandomized knockoffs approaches
practically infeasible for large-scale high-dimensional settings. Alternative FDR-controlling
approaches that rely on conditional randomization test (CRT ) p-values [Can+18] are
computationally significantly more demanding than the model-X knockoff methods, which
renders them infeasible in relatively small settings (see [Can+18] for a discussion).

In recent years, deep learning approaches for FDR control, such as DeepPink [Lu+18] and
SurvNet [SL21], have been proposed. However, the black box nature, the need for large
amounts of data to train deep neural networks, or strong assumptions on the feature distribu-
tion limit the applicability of existing approaches in real-world large-scale high-dimensional
applications where provable finite sample FDR control guarantees are required for trustwor-
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thy methods and reproducible discoveries. This is especially important, since cases have been
reported in which these methods did not control the FDR [SL21].

Other related lines of research on error-controlled high-dimensional variable selection are
centered around stability selection methods [MB10; SS13], data-splitting methods [Cox75;
WR09; MMB09; BC19], and post-selection inference [Loc+14; FST14; Lee+16; Tib+16].

1 . 3 Contr ibut ions and Overv iew

This dissertation addresses the need for fast, scalable, and tractable machine learning ap-
proaches with provable FDR control guarantees and demonstrable efficacy and efficiency in
real-world data biomedical and financial applications, as outlined in this section.

First, Chapter 2 establishes and links together the theoretical and methodological founda-
tions of this dissertation, which lie in high-dimensional statistical learning, FDR control, and
martingale theory.

In Chapter 3, the first main contribution of this dissertation, the Terminating-Random Ex-
periments (T-Rex) selector, a fast variable selection framework for high-dimensional data, is
presented. TheT-Rex selector controls a user-defined target FDRwhilemaximizing the num-
ber of selected variables. This is achieved by fusing the solutions of multiple early terminated
random experiments. The experiments are conducted on a combination of the candidate vari-
ables and multiple sets of randomly generated dummy variables. A finite sample proof of
the FDR control property is provided using martingale theory. The T-Rex selector outper-
forms state-of-the-art methods for FDR control in numerical experiments and on a simulated
genome-wide association study (GWAS), while its sequential computation time is more than
two orders of magnitude lower than that of the strongest benchmark methods. Addition-
ally, for screening large-scale genomics biobanks with tens of thousands of phenotypes (e.g.,
diseases, traits) and millions of single nucleotide polymorphisms (SNPs) for reproducible as-
sociations, the Screen-T-Rex selector, a fast FDR-controlling method based on the developed
T-Rex selector, is proposed. The computation time of the Screen-T-Rex selector is about an
order of magnitude lower than that of the ordinary T-Rex selector and it does not require
choosing a target FDR level but provides the user with an estimate of the achieved FDR.

Chapter 4 contains the second main contribution of this dissertation, i.e., it proposes a class
of dependency-aware FDR-controlling algorithms for large-scale high-dimensional data. In
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many biomedical and financial applications, the high-dimensional data sets are characterized
byhighly correlated candidate variables (e.g., gene expressiondata and stock returns). For such
applications, the dependency-aware T-Rex (T-Rex+DA) framework has been developed. It
extends the ordinary T-Rex framework by accounting for dependency structures among the
candidate variables. This is achieved by integrating hierarchical graphical models within the
T-Rex framework, which allows to effectively harness the dependency structure among vari-
ables and to develop variable penalization mechanisms that guarantee FDR control. Using
martingale theory, the FDR control property has been established for the proposed approach.
The T-Rex+DA framework has been further generalized by stating and proving a condition
that needs to be satisfied by both graphical and non-graphical dependency-capturing models.
This allows for specifying the framework for various application-specific dependency models.
In this dissertation, the T-Rex+DA framework has been specified for all dependency models
that are relevant for the considered applications in biomedical and financial engineering, i.e.,
disjoint groups of highly correlated variables, overlapping groups of highly correlated vari-
ables, and autoregressive dependencies.

Chapter 5, which presents the third main contribution, proposes theory and algorithms for
joint grouped variable selection and FDR control. This approach to tackling the challenges
arising from the presence of groups of highly dependent variables in the data is different from
the more conservative variable penalization approach that has been developed in Chapter 4.
That is, instead of finding the few true active variables among groups of highly correlated
variables, the goal is to select all groups of highly correlated variables that contain at least one
true active variable. In genomics research, especially for GWAS, grouped variable selection
approaches are highly relevant, since one is not interested in identifying a few SNPs that are
associated with a disease of interest but rather the entire groups of correlated SNPs that point
to relevant locations on the genome. Therefore, the T-Rex selector for grouped variable se-
lection (T-Rex+GVS), a version of the T-Rex selector that uses the elastic net (EN) as a base
selector to perform grouped variable election, is proposed. To further reduce the computa-
tion time and, thus, increase the scalability of the T-Rex+GVS selector, the EN base selector
has been replaced by the proposed informed elastic net (IEN), a new base selector that signifi-
cantly reduces the computation time while retaining the grouped variable selection property.
Leveraging the developed FDR-controlling grouped variable selection algorithms and the fact
that sparse principal component analysis (PCA) can be cast as a series of EN optimization
problems, an alternative formulation of sparse PCA driven by the FDR has been proposed.
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This formulation allows to use the T-Rex+GVS selector to automatically determine an FDR-
controlled support of the loading vectors. A major advantage of the resulting T-Rex PCA is
that compared to ordinary sparse PCA no sparsity parameter tuning is required.

Chapters 6 and 7, the fourth main part of this dissertation, contain the practical contribu-
tions. The considered applications lie in two different areas: Biomedical engineering (Chap-
ter 6) and financial engineering (Chapter 7). The biomedical applications include (i) a semi-
real-world GWAS, (ii) a human immunodeficiency virus type 1 (HIV-1) data set with associ-
ated drug resistance measurements, and (iii) a breast cancer data set with associated survival
times of the patients. The financial engineering applications include (i) accurately tracking
the S&P 500 index using a quarterly updated and rebalanced tracking portfolio that consists
of few stocks and (ii) a factor analysis of S&P 500 stock returns. The common challenge
of all considered applications lies in detecting the few true active variables (i.e., SNPs, mu-
tations, genes, stocks) among many non-active variables in, among other things, large-scale
high-dimensional settings that consist of up to tens of thousands of variables andmuch fewer
samples.

Finally, Chapter 8 concludes this dissertation and provides interesting open problems for
future theoretical and practical research and software development projects.
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Facts are the air of scientists. Without them you can never
fly.

Linus Pauling

2
Fundamentals

This chapter introduces the fundamentals of high-dimensional statistical learning, false dis-
covery rate (FDR) control, and martingale theory, which are essential throughout this disser-
tation. Section 2.1 describes the high-dimensional learning problem and introduces methods
that are often used to solve it. Section 2.2 provides the mathematical definitions of the FDR
and the true positive rate (TPR) and discusses classical aswell as recent FDR-controllingmeth-
ods. Section 2.3 introduces the fundamentals of martingale theory, which is the foundation
of many finite sample FDR control proofs.

2 . 1 High -Dimens ional Stat i st ical Learning

A supervised statistical learning problem is said to be high-dimensional if the number of vari-
ables p exceeds the number of samplesn [BV11]. One of themost prominent andwell-studied
problems in high-dimensional learning arises in the context of linear regression. It considers
the linear model

y = Xβ + ϵ, (2.1)

where X := [x1 x2 · · · xp] with xj := [x1j x2j · · · xnj]
⊤ ∈ Rn, j = 1, . . . , p, is the

fixed predictor matrix containing p predictors and n observations, y := [y1 y2 · · · yn]⊤ ∈
Rn is the response vector, β := [β1 β2 · · · βp]

⊤ ∈ Rp is the parameter vector, and ϵ :=
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[ϵ1 ϵ2 · · · ϵn]⊤ ∈ Rn, ϵ ∼ N (0, σ2I), with I being the identity matrix, is an additive
Gaussian noise vector with standard deviation σ. In the low-dimensional setting, where n ≤
p, and whenX is full rank, the unique closed-form solution of the linear regression problem

minimize
β

1

2
∥y −Xβ∥22, (2.2)

i.e., the minimization of the sum of squared residuals (SSR), is given by the ordinary least
squares (OLS) estimator

β̂ := (X⊤X)−1X⊤y. (2.3)

However, this solution cannot even be computed in the high-dimensional setting (p > n)
because the ranks ofX⊤ andX are not greater than n, i.e.,

rank(X⊤) = rank(X) ≤ min{n, p} = n (2.4)

and, therefore, the (p× p)-matrixX⊤X is rank deficient and not invertible, i.e.,

rank(X⊤X) = min{rank(X⊤), rank(X)} ≤ n < p. (2.5)

Furthermore, the least squares problem in the high-dimensional setting is ill-posed because
the optimization problem in (2.2) does not have a unique solution, as it does in the low-
dimensional setting, but instead has infinitely many solutions. Moreover, the least squares
optimization problem generally does not allow for sparse solutions, i.e., solutions with zero
entries in β̂. Therefore, it does not allow to recover the support of β when the true under-
lying model is sparse (i.e., zero entries in β). In the remainder of this dissertation, variables
whose associated coefficients in β are non-zero (zero) are referred to as actives or active vari-
ables (nulls or null variables). The number of actives is denoted by p1, while the number of
nulls is denoted by p0.

The aim in sparse high-dimensional statistical learning is to minimize the SSR subject to a
constraint on the support of β, i.e.,

minimize
β

1

2
∥y −Xβ∥22 subject to ∥β∥0 ≤ t, (2.6)

where ∥β∥0 := |{βj ∈ {1, . . . , p} : βj ̸= 0}|, with | · | denoting the cardinality operator,
is the ℓ0-“norm” of the coefficient vector β and t > 0 is a tuning parameter that controls the
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sparsity of the solution vector β̂. Note that the ℓ0-“norm” is not a norm in the mathematical
sense, but it has been used to denote the number of non-zero entries of a vector β. Unfor-
tunately, the ℓ0-“norm” is non-convex and, therefore, the optimization problem in (2.6) is a
non-convex optimization problem that cannot be easily solved using an off-the-shelf solver.
In fact, (2.6) is an NP-hard problem [Nat95].

In order to alleviate the above described shortcomings of ordinary linear regression and the
NP-hard optimization problem in (2.6), various regularized regression methods, which relax
the ℓ0-“norm” constraint in (2.6), have been proposed in the last few decades. The follow-
ing commonly used regularized high-dimensional regressionmethods are introduced and dis-
cussed in the upcoming sections: Lasso [Tib96], LARS [Efr+04], and elastic net [ZH05].
These methods will be relevant throughout this dissertation as building blocks of the pro-
posed FDR-controlling methods. Other closely related regularized regression methods are
the fusedLasso [Tib+05], groupLasso [YL06], adaptiveLasso [Zou06], and regularizedCox’s
proportional hazards model [Tib97; Sim+11]. For more details on high-dimensional variable
selection and regularized regressionmethods, the interested reader is referred to standard text-
books [HTF09; BV11; HTW15].

2 . 1 . 1 Lasso

The least absolute shrinkage and selection operator (Lasso) [Tib96] is often used to obtain a
sparse estimate β̂ of the true coefficient vectorβ in the high-dimensional setting. Itminimizes
the SSR subject to a budget constraint on the ℓ1-norm of β, i.e.,

minimize
β

1

2
∥y −Xβ∥22 subject to ∥β∥1 ≤ t, (2.7)

where t > 0 is the tuningparameter that controls the sparsity of β̂. That is, the non-convex ℓ0-
norm constraint in (2.6) is replaced by the convex ℓ1-norm constraint and, thus, (2.7) is a con-
vex quadratic program (QP). The Lasso in (2.7) yields sparse estimates of β, i.e., it performs
variable selection. Loosely speaking, the reason why theLasso promotes sparse estimates ofβ
is that the feasible set has “sharp” corners. This is illustrated in Figure 2.1a, where the dense
(i.e., non-sparse)OLS estimate appears to be shrunk towards a “sharp” corner of the feasible
set. For more details on the properties of the Lasso, the interested reader is referred to [BV11].
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β1

β2 β̂OLS

(a) Lasso

β1

β2 β̂OLS

(b) Ridge regression

β1

β2 β̂OLS

(c) Elastic net

Figure 2.1: Illustration of the (a) Lasso, (b) ridge regression, and (c) elastic net optimization problems for two
variables with associated coefficients β1 and β2: The OLS solution β̂OLS, which is obtained by minimizing the
sum of squared residuals (SSR) (contour lines of the SSR are indicated by the dashed lines around β̂OLS), is
shrinked towards the feasible sets (i.e., the areas in red) that are determined by the penalty terms of the three
regularized estimators. Loosely speaking, due to the “sharp corners” of their feasible sets, the Lasso and the
elastic net allow for sparse solutions, in which the estimate of β1 is exactly zero while ridge regression does not
allow for such sparse solutions.

The Lagrangian formulation of the constraintLasso optimization problem in (2.7) is given by

β̂(λ1) = argmin
β

1

2
∥y −Xβ∥22 + λ1∥β∥1, (2.8)

where λ1 > 0 is the tuning parameter that controls the sparsity of β̂. Note that there exists
a one-to-one relationship between t in the constraint formulation and λ1 in the Lagrangian
formulation of the Lasso. For both formulations of the Lasso, the choices of the sparsity tun-
ing parameters t and λ1 are crucial because they determine how many variables are included
in the final model.

2 . 1 . 2 Model Selection Methods

In the following, since there exists a one-to-one relationship between t and λ1, we introduce
existingmodel selection approaches for choosing the sparsity parameter only from theperspec-
tive ofλ1. Some of themost widely usedmodel selectionmethods areM -fold cross validation
(M -fold CV) [HTF09], the Akaike information criterion (AIC) [Aka98] and the Bayesian in-
formation criterion (BIC) [Sch78].
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InM -foldCV, thedata set is divided intoM disjoint sets of approximately the same size,where
M is usually set to 5 or 10. Each of these sets is used once for validation while the others are
merged and used as training data for the Lasso problem in (2.8). Thus, we need to solve M
Lasso problems given by

β̂−m(λ1) = argmin
β

1

2
∥y−m −X−mβ∥22 + λ1∥β∥1, m = 1, . . . ,M, (2.9)

where the subscript−m in y−m,X−m and β̂−m refers to the response and predictor matrix
without the data belonging to themth validation set and the corresponding estimator of the
parameter vector, respectively. Based on (2.9), the CV-error (CVE) curve can be computed by

CVE(λ1) :=
1

M

M∑
m=1

∥ym −Xmβ̂−m(λ1)∥22, (2.10)

where ym andXm are the response and predictor matrix containing only themth set of val-
idation data. The sparsity parameter λ1 is chosen by minimizing (2.10) with respect to λ1.
Generally, the obtained λ1-value leads to a model with too many active variables, which is
not desired in sparse regression. Therefore, the one-standard-error rule [HTF09], a rule of
thumb, is often used to select a sparser model. It replaces the value of λ1 that minimizes (2.10)
by a larger value that corresponds to the CVE-value that deviates by one standard error from
the minimum value of (2.10).

In contrast toM -fold CV, the AIC and BICminimize a different objective function that takes
into account the SSR and the model size. For the Lasso, the objective functions of both infor-
mation criteria are defined by

IC(λ1) :=
∥y −Xβ̂(λ1)∥22

nσ2
+

cn
n
· df(λ1), (2.11)

where σ2 is the noise variance in (2.1), which is usually estimated based on the largest model,
cn = 2 for the AIC, cn = ln(n) for the BIC and df(λ1) is the number of degrees of freedom
as a function of the sparsity parameter, which is equivalent to the number of selected vari-
ables [ZHT07]. The BIC usually selects a sparser model than the AIC. The reason for this
is that ln(n) > 2 for n ≥ 8, that is, the BIC penalizes larger models stronger than the AIC
when there are at least eight observations in the data set, which is usually the case.
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2 . 1 . 3 LARS Algorithm

Algorithm 1 LARS algorithm.
1. Input: X , y (X standardized, y centered).

2. Initialize the solution vector β̂0 = 0, the selected active set Â0 = ∅, the current
residual vector r̂ = y, the current correlation vector ĉ = [ĉ1 ĉ2 · · · ĉp]⊤ = X⊤r̂,
and the iteration number κ = 1.

3. While κ ≤ min{n, p} do:

3.1. Determine the predictor that is not contained in the selected active set Âκ−1 and
has the highest correlation with the current residual and add it to the selected
active set, i.e.,

Âκ = Âκ−1 ∪
{
argmax
j /∈Âκ−1

|ĉj|
}
. (2.12)

3.2. Compute the least squares direction vector

d =
(
X⊤

Âκ
XÂκ

)−1
X⊤

Âκ
r̂, (2.13)

whereXÂκ
contains only the predictors in Âκ.

3.3. Compute the exact step size γ that is required to reach the next change point
at which another variable has the same correlation with the current residual and,
therefore, enters the solution path as detailed in [Efr+04].

3.4. Update the solution vector, current residual vector, and current correlation vec-
tor:

β̂
(Aκ)

κ = β̂
(Âκ−1)

κ−1 + γd, (2.14)

r̂ = y −Xβ̂κ, (2.15)
ĉ = X⊤r̂. (2.16)

The superscript (Âκ) indicates that only the entries corresponding to the index
set Âκ are updated, while all other entries in β̂κ remain zero.

3.5. Set κ← κ+ 1.

4. Output: Âκ, β̂κ, κ = 1, . . . ,min{n, p}.

Since the Lasso optimization problem in (2.7) (or (2.8)) is a QP, it can be solved using an off-
the-shelf QP-solver. This approach is effective to compute the solution for a single value of
λ1, but it is not efficient to compute the entire solution path for all values of λ1. However,
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Xβ̂0 = [x1 x2] · β̂0 = 0 x1

x2 x2

ŷ = Xβ̂2 = Xβ̂OLS

Xβ̂1

Figure 2.2: Illustration of the LARS algorithm as in [Efr+04] for two predictorsx1 andx2: The correlations
with the current residual are represented as angles between the current residual vector and the predictors. In
the first iteration, x1 is selected because it has the smallest angle (“least angle”) with the current residual vector.
Its coefficient is increased along the least squares direction vector, which is simply the direction of x1 in the
first iteration. As soon as the angles of x1 and x2 with the current residual become equal, x2 is selected and
the coefficients of x1 and x2 are both moved along the least squares direction vector until the OLS solution is
reached.

the entire solution path is required to perform model selection as described in Section 2.1.2,
i.e., to determine theλ1-value thatminimizes CVE(λ1) in (2.10) or IC(λ1) in (2.11). A suitable
algorithm to efficiently compute the entire solution path of the Lasso is the least angle regres-
sion (LARS) algorithm [Efr+04]. As detailed in the simplified pseudo-code in Algorithm 1
and illustrated in Figure 2.2 for two predictors x1 and x2, the LARS algorithm is a forward
variable selection procedure that selects one variable in each iteration. It takes as inputs the
standardized predictor matrix X and the centered response vector y. That is, the means of
the predictors and the response are equal to zero and the variances of the predictors are equal
to one, i.e.,

1

n

n∑
i=1

xij = 0,
1

n

n∑
i=1

yi = 0,
1

n− 1

n∑
i=1

x2
ij = 1, j = 1, . . . , p. (2.17)

In each iteration, the variable with the highest correlation with the current residual is selected
and added to the active set. The solution vector β̂κ in the κth iteration of the algorithm is up-
dated by linearly moving the coefficients of all selected active variables along the least squares
direction vector up to the change point at which another variable has the same correlation
with the current residual and, therefore, enters the solution path. The LARS algorithm com-
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putes the exact step size along the least squares direction vector to arrive at the next change
point, which corresponds to decreasing λ1 in (2.9) to a certain value that allows for exactly
one more variable to enter the solution path. This procedure is continued until min{n, p}
variables have been selected.

In order to obtain the entire solution path for any value ofλ1, it suffices to compute and store
the selected active sets and the solution vectors (i.e., Âκ, β̂κ, κ = 1, . . . ,min{n, p}) at the
change points where a new variable enters the solution path. The reason for this is that the
solution path of the LARS algorithm is piecewise linear [OPT00a; OPT00b; Efr+04]. That
is, the solution vector between the λ1-values corresponding to any two consecutive solution
vectors β̂κ and β̂κ+1 lies on the line segment that connects β̂κ and β̂κ+1.

The name “least angle regression” is inspired by an appealing geometrical interpretation of the
LARS algorithm. The geometrical illustrationof theLARS algorithm inFigure 2.2 represents
correlations with the current residual as angles between the current residual vector and the
predictors. In this illustrating example, only twopredictors (i.e., p = 2) are considered. In the
first iteration, x1 is selected because it has the smallest angle (“least angle”) with the current
residual vector. Its coefficient is increased along the least squares direction vector, which is
simply the direction of x1 in the first iteration. As soon as the angles of x1 and x2 with the
current residual become equal,x2 is selected and the coefficients ofx1 andx2 are bothmoved
along the least squares direction vector until theOLS solution is reached.

In fact, the ordinary LARS algorithm in Algorithm 1 requires a slight modification to effi-
ciently solve the Lasso optimization problem in (2.8). The modification is that instead of
adding one variable at a time based on the highest correlation with the current residual, the
Lassomodification requires the removal of previously added variables when the associated co-
efficients change their sign [Efr+04]. However, removed variables can enter the solution path
again in later steps.

The computational complexity of theLARS algorithm isO(p2n) in low-dimensional settings
(i.e., p ≤ n), which is the same as that of OLS, andO(p3) in high-dimensional settings (i.e.,
p > n).

An alternative approach to obtain the solution path of theLasso is to apply the pathwise coor-
dinate descent method [Fri+07]. However, the proposed algorithms in this dissertation rely
on forward variable selection methods and the pathwise coordinate descent method is not
of that type. Therefore, we omit a detailed description of it and refer the interested reader
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to [Fri+07; HTF09].

2 . 1 .4 Elastic Net

The elastic net [ZH05] is a sparsity promoting variable selection and estimation method that
addresses some well-known drawbacks of the Lasso [ZH05]:

1. The Lasso cannot select more than min{n, p} variables as indicated in Step 3 of Algo-
rithm 1. This can be an issue in high-dimensional settings, where the number of true
active variables p1 is larger than the sample size n. In such scenarios, the Lasso is inca-
pable of selecting all true active variables.

2. In the presence of groups of highly correlated variables in the data, the variable selection
performance of the Lasso deteriorates. More specifically, instead of selecting entire ac-
tive groups of highly correlated variables and increasing their coefficients in a correlated
fashion, theLasso is generally not capable of capturing such dependency structures. In-
stead, the Lasso tends to produce solutions in which only a single variable of a highly
correlated group of variables is selected.

The elastic net alleviates these issues by combining the Lassowith ridge regression (also called
Tikhonov regularization) [HK70; TA77]. Ridge regression minimizes the SSR plus an ℓ2-
norm penalty on the coefficient vector, i.e.,

β̂(λ2) = argmin
β

1

2
∥y −Xβ∥22 +

λ2

2
∥β∥22, (2.18)

where λ2 > 0 is a tuning parameter. The closed form solution of (2.18) is given by

β̂(λ2) := (X⊤X + λ2I)
−1X⊤y, (2.19)

where I is a (p × p) identity matrix. Note that (2.19) is very similar to the OLS solution
in (2.3). The only difference is that a scaled identity matrix is added toX⊤X . However, this
seemingly minor difference gives rise to the following desirable properties and advantages of
ridge regression overOLS regression:

1. In contrast toOLS regression, ridge regression is feasible in high-dimensional settings.
The reason for this is thatX⊤X in (2.3) is rank-deficient in high-dimensional settings
and, therefore, it’s inverse does not exist, whileX⊤X + λ2I in (2.19) is not rank defi-
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cient thanks to the addition of λ2 to all diagonal elements ofX⊤X [HK70; TA77].

2. In contrast toOLS regression, ridge regression shrinks the coefficients towards zero and,
thereby, achieves a reduced variance that comes at the cost of only a slightly increased
bias of the ridge estimator. This desirable property leads to more stable coefficient es-
timates with lower variance and a better prediction accuracy, especially in the presence
of multicollinearity (i.e., correlated predictors).

However, as illustrated in Figure 2.1b, the feasible set of the ridge regression optimization
problem is a p-dimensional ball (i.e., 2-dimensional disc in Figure 2.1b) that has no “sharp”
corners. Therefore, ridge regression generally does not shrink any coefficient to exactly zero.
Thus, unlike the Lasso, ridge regression does not perform variable selection.

The elastic net combines the ℓ2-norm and the ℓ1-norm penalties ofLasso and ridge regression,
i.e.,

β̂(λ1, λ2) = argmin
β

1

2
∥y −Xβ∥22 +

λ2

2
∥β∥22 + λ1∥β∥1. (2.20)

Thereby, the elastic net combines the advantages and remedies the drawbacks of ridge regres-
sion and the Lasso. Figure 2.1c illustrates the elastic net optimization problem. It can be ob-
served that the shape of the feasible set of the elastic net is amixture of the feasible sets of ridge
regression and theLasso. The “round” edges of ridge regression and the “sharp” corners of the
Lasso are preserved, which leads to the following desirable properties of the elastic net [ZH05]:

1. In contrast to ridge regression, the elastic net performs variable selection by shrinking
many coefficients to exactly zero.

2. In contrast to the Lasso that cannot select more than min{n, p} variables, the elastic
net has the capability of selecting all p variables in high-dimensional settings.

3. In contrast to the Lasso, the elastic net is capable of selecting entire groups of highly
correlated variables and increasing/decreasing their coefficients in a correlated fashion
along the solution path.

The elastic net solution path can also be obtained using the LARS algorithm. This is
achieved by merging the SSR and the ℓ2-norm penalty term in the following reformulation
of (2.20) [ZH05]:

β̂(λ1, λ2) = argmin
β

1

2
∥y′ −X ′β∥22 + λ1∥β∥1. (2.21)
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The augmented predictor matrixX ′ ∈ R(n+p)×p and the augmented response vector y′ are
defined by

X ′ :=

(
X√

λ2Ip×p

)
, y′ :=

(
y

0p

)
, (2.22)

where Ip×p and 0p are the (p × p) identity matrix and the p-dimensional zero vector.
Since (2.21) is simply the Lasso problem in (2.8) with augmented data, the elastic net solution
path can be obtained by inputting the augmented dataX ′ and y′ into the LARS algorithm.

In [ZH05], it is suggested to choose the ridge penalty parameterλ2 and the sparsity parameter
λ1 by performing 10-fold CV as described in Section 2.1.2 but not only on λ1 but on a two-
dimensional grid of λ1 and λ2. More specifically, it is suggested to generate a small grid for
λ2 (e.g., 0, 0.01, 0.1, 1, 10, 100) and to perform 10-fold CV for every fixed value of λ2 and to
choose the λ1, λ2 combination that yields the minimum CVE on the two-dimensional grid.

2 . 2 False Discovery Rate Control

In this section, the terms false discovery rate (FDR) and true positive rate (TPR) are mathe-
matically defined. Then, existing and often used FDR-controlling variable selection methods
are introduced. For the low-dimensional settings (i.e., p ≤ n), there exist the Benjamini-
Hochberg (BH )method [BH95], theBenjamini-Yekutieli (BY )method [BY01], and thefixed-
X knockoff+ method [BC15], while the model-X knockoff+ method [Can+18] is applicable
in high-dimensional settings (i.e., p > n). Thesemethodswill be used as benchmarkmethods
throughout this dissertation.

2 . 2 . 1 FDR and TPR

The FDR and TPR are expressed mathematically as follows: Given the index set of the active
variablesA ⊆ {1, . . . , p}, where p is the number of candidate variables, and the index set of
the selected active variables Â ⊆ {1, . . . , p}, the FDR and the TPR are defined by

FDR := E
[
FDP

]
:= E

[
|Â\A|
1 ∨ |Â|

]
(2.23)

and

TPR := E
[
TPP

]
:= E

[
|A ∩ Â|
1 ∨ |A|

]
, (2.24)
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respectively, where E[·] is the expectation operator, | · | denotes the cardinality operator, and
the symbol ∨ stands for the maximum operator, i.e., a ∨ b = max{a, b}, a, b ∈ R. In
words, the FDR is the expected value of the false discoveryproportion (FDP), i.e., the expected
percentage of false discoveries among all discoveries and the TPR is the expected value of the
true positive proportion (TPP), i.e., the expected percentage of true discoveries among all
true active variables. Note that by definition the FDR and TPR are zero when |Â| = 0 and
|A| = 0, respectively.1

While the FDR and the TPR of an oracle variable selection procedure are 0% and 100%, re-
spectively, in practice, a tradeoff must be accomplished. In fact, existing FDR-controlling
methods allow the user to set a target FDR value α and then select variables such that the
FDR is controlled at the target level, i.e.,

FDR ≤ α, α ∈ [0, 1], (2.25)

while maximizing the number of selected variables and, thus, implicitly maximizing the TPR.

2 .2 . 2 The BH and the BY Method

The BH method [BH95] and the BY method [BY01] are often used FDR-controlling multi-
ple hypothesis testing methods for the low-dimensional setting. Both methods consider the
null hypotheses

Hj : βj = 0, j = 1, . . . , p, (2.26)

with associated p-values P1, . . . , Pp. A variable is considered to be selected if the correspond-
ing null hypothesis is rejected. More specifically, for all candidate variables p-values are com-
puted and sorted in an ascending order. Then, an estimate of the number of active variables
p̂1(α) is determined by finding the largest p-value that does not exceed a threshold depending
on the target FDR α by solving

p̂1(α) = max
{
m : Pm ≤

m

p · c(p)
· α
}
, (2.27)

1Throughout this dissertation, the original definition of the FDR in [BH95] is used. Other definitions of
the FDR, such as the positive FDR [Sto03], exist. The interested reader is referred to both papers for discussions
on different potential definitions of the FDR.
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where c(p) = 1 for the BH method and c(p) =
∑p

j=1 1/j ≈ ln(p) + γ for the BY method
with γ ≈ 0.577 being the Euler-Mascheroni constant. If no such p̂1(α) exists, then no hy-
pothesis is rejected, i.e., no variable is selected. Otherwise, the variables corresponding to the
p̂1(α) smallest p-values are selected. The BH method requires independent hypotheses or, at
least, a so-called positive regression dependency among the candidate variables to guarantee
FDR control at the target level. In contrast, the BY method provably controls the FDR at
the target level and does not require independent hypotheses or any assumptions regarding
the dependency among the hypotheses. However, the BY method is more conservative than
theBH method, i.e., it usually achieves a considerably lower TPR than theBH method at the
same target FDR level.

2 . 2 . 3 The Fixed-X and the Model-X Knockoff Methods

The fixed-X knockoff method [BC15] is a relatively new method for controlling the FDR in
sparse linear regression settings. Since it requires n ≥ 2p observations, it is not suitable for
high-dimensional settings. Themethod generates a knockoff matrix

◦
X consisting of p knock-

off variables and appends it to the original predictor matrix. The knockoff variables must be
designed to mimic the usually unknown covariance structure of X . Further, they must be
designed to be, conditional on the original variables, independent of the response. Designing
such knockoffs is difficult and especially computationally demanding. However, if the knock-
offs are designed correctly, they act as a control group andwhen a knockoff variable enters the
active set before its original counterpart it provides some evidence against this variable being
a true positive.

The predictor matrix X of, e.g., the Lasso optimization problem in (2.8) is then replaced by
[X

◦
X] and the λ1-values corresponding to the first entry points of the original and knockoff

variables are extracted from the solution path resulting in

Zj = sup{λ1 : β̂j ̸= 0 first time}, j = 1, . . . , p (2.28)

and
◦
Zj = sup{λ1 : β̂j+p ̸= 0 first time}, j = 1, . . . , p. (2.29)

The authors suggest to use the test statistics

Wj = (Zj ∨
◦
Zj) · sign(Zj −

◦
Zj), j = 1, . . . , p, (2.30)
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and to determine the threshold

τ = min
{
τ ′ ∈ W :

b+
∣∣{j : Wj ≤ −τ ′}

∣∣∣∣{j : Wj ≥ τ ′}
∣∣ ∨ 1

≤ α

}
, (2.31)

whereW = {|Wj| : j = 1, . . . , p}\{0}. Note that this is only one of the test statistics
that were proposed by the authors. In general, many other test statistics obeying a certain suf-
ficiency and anti-symmetry property are suitable for the knockoff method. In (2.31), b = 0

yields the knockoff method and b = 1 the more conservative (i.e., higher threshold τ ) knock-
off+ method. Finally, only those variables whose test statistics exceed the threshold are se-
lected, which gives us the selected active set

Â = {j : Wj ≥ τ}. (2.32)

The knockoff+method controls the FDR at the target levelα. The advantage of the knockoff
over the knockoff+ method is that it is less conservative. But the knockoff method does not
control the FDR.

Themodel-X knockoff method [Can+18] was proposed as an extension to the fixed-X knock-
off method for high-dimensional settings. It does not require any knowledge about the con-
ditional distribution of the response given the explanatory variables

Y |X1, . . . , Xp (2.33)

but needs to know the distribution of the covariates

(Xi1 · · · Xip), i = 1, . . . , n. (2.34)

Thedifference to thedeterministic designoffixed-X knockoffs is thatmodel-X knockoffs need
to be designed probabilistically by sequentially sampling each knockoff predictor

◦
xj, j = 1, . . . p, (2.35)

from the conditional distribution of

Xj|X−j for j = 1 andXj|X−j,
◦
X1:j−1 for j = 2, . . . , p, (2.36)
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whereX−j is the set of all explanatory variables except forXj and
◦
X1:j−1 := {

◦
X1, . . . ,

◦
Xj−1}

is the set of generated knockoffs. However, the authors state that determining a new condi-
tional distribution for each knockoff predictor and sampling from it turned out to be compli-
cated and computationally very expensive [Can+18]. The only case in whichmodel-X knock-
offs can be easily constructed by sampling from theGaussian distributionwith a certainmean
vector and covariance matrix is when the covariates follow the Gaussian distribution. For all
other distributions of the covariates, especially when p is large, the authors consider an ap-
proximate construction ofmodel-X knockoffs which yields the so-called second-ordermodel-
X knockoffs. Unfortunately, however, there is no proof that FDR control is achieved with
second-order model-X knockoffs. Moreover, for p > 500 the authors consider an approxi-
mate semidefinite program (asdp) instead of the original semidefinite program that needs to
be solved to construct second-order model-X knockoffs. This is the default choice in the R
package accompanying the fixed-X andmodel-X papers.2

2 . 3 Martingale Theory

Martingale theory [Wil91] is the backbone of the finite sample FDR control proofs in this dis-
sertation. It has also been used to prove the FDR control property of existing methods (see,
e.g., [STS04; BC15; Can+18]). Therefore, this section briefly revisits the fundamentals of mar-
tingale theory that are relevant for the FDR control proofs in this dissertation. For common
terms and concepts of probability theory, such as σ-algebra, probability space, measurable
function, random variable, almost sure (a.s.), the reader is referred to standard textbooks on
probability theory, e.g., [Wil91; Kle13].

First, the terms filtered probability space, adapted process, martingale, sub-martingale, super-
martingale, and stopping time are defined. Second, Doob’s optional stopping theorem is
introduced. Finally, the FDR control proof of the BH method from [STS04] is presented
to illustrate the usefulness of martingale theory. All (slightly modified) definitions and the-
orems in this section are taken from the standard textbook on martingale theory by David
Williams [Wil91].

2The R package containing the implementations of the fixed-X and the model-X methods is available at
https://CRAN.R-project.org/package=knockoff (last access: June 26, 2024).
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2 . 3 . 1 Definitions

For all subsequent definitions and the formulation of Doob’s optional stopping theorem, the
general probability space needs to be extended by adding an increasing collection of sub-σ-
algebras, which is called filtration.
Definition 1 (Filtered probability space). Let (Ω,F ,P) be a probability space with sample
space Ω, σ-algebra F , and probability measure P. The increasing collection of sub-σ-algebras
{F} := {Ft : t ≥ 0}, t ∈ {N;∞}, where

F0 ⊆ F1 ⊆ . . . ⊆ F (2.37)

is called a filtration and
(Ω,F , {F},P) (2.38)

is called a filtered probability space.

A discrete time stochastic process X = (Xt : t ≥ 0) can be defined on a filtered probabil-
ity space. If the random variables that constitute the stochastic process are measurable with
respect to the filtration, then the stochastic process is called adapted.
Definition 2 (Adapted stochastic process). A stochastic process X = (Xt : t ≥ 0) is called
adapted (to the filtration {F}) if for each t, Xt is Ft-measurable.

Definitions 1 and 2 can be intuitively understood as follows: The sub-σ-algebraFt belonging
to a filtration {F} contains all the information aboutω ∈ Ω up to time t (including t). Thus,
the valueXt(ω) of a stochastic processX = (Xt : t ≥ 0), which is adapted to the filtration
{F}, is known at time t.

With these definitions in place, martingales, sub-martingales, and super-martingales, which
are stochastic processes with a certain property, can be defined as follows:
Definition 3 (Martingale, sub-martingale, super-martingale). Let (Ω,F , {F},P) be a fil-
tered probability space. A stochastic process X = (Xt : t ≥ 0) that is adapted and satisfies
E[|Xt|] <∞ for all t ≥ 0 is called (relative to ({F},P)) a

(i) martingale if E[Xt|Ft−1] = Xt−1, a.s. (t ≥ 1),

(ii) sub-martingale if E[Xt|Ft−1] ≥ Xt−1, a.s. (t ≥ 1),

(iii) super-martingale if E[Xt|Ft−1] ≤ Xt−1, a.s. (t ≥ 1).
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Loosely speaking, martingales, super-martingales, and sub-martingales are stochastic
processes that, on average, remain at the same level, decrease, and increase over time,
respectively.

Martingales, super-martingales, and sub-martingales can be stopped by a stopping rule at a
certain point in time. Loosely speaking, if that stopping rule is a random variable and does
not use any future information (i.e., if at any time t the stopping rule isFt-measurable), then
it is called a stopping time.
Definition 4 (Stopping time). Let (Ω,F , {F},P) be a filtered probability space. A map
U : Ω→ {0, 1, 2, . . . ;∞} is called a stopping time if

{U ≤ t} := {ω : U(ω) ≤ t} ∈ Ft, ∀t ≤ ∞, (2.39)

or, equivalently,
{U = t} := {ω : U(ω) = t} ∈ Ft, ∀t ≤ ∞. (2.40)

Stopping times and stoppedmartingales are essential building blocks ofDoob’s optional stop-
ping theorem that is introduced in the next section.

2 . 3 . 2 Doob 's Optional Stopping Theorem

Doob’s optional stopping theorem is an essential result in martingale theory. It allows, under
certain conditions, to replace the expected value of a stoppedmartingale by the expected value
of that martingale at it’s starting point. For super-martingales, it allows to upper-bound and
for sub-martingales to lower-bound the expected values of the stopped stochastic processes
with the expected values at the starting points of these stochastic processes.
Theorem 1 (Optional stopping). Let U be a stopping time. Let the stochastic process X =

(Xt : t ≥ 0) be a super-martingale. Then, XU is integrable and

E[XU ] ≤ E[X0] (2.41)

in each of the following situations

(i) U is bounded (for some N ∈ N, U(ω) ≤ N , ∀ω ∈ Ω),

(ii) X is bounded (for some R ∈ R+, |Xt(ω)| ≤ R for every t and every ω),
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(iii) E[U ] <∞ and, for some R ∈ R+,

|Xt(ω)−Xt−1(ω)| ≤ R, ∀(t, ω). (2.42)

If any of the conditions (i) - (iii) holds and X is a martingale, then

E[XU ] = E[X0]. (2.43)

If any of the conditions (i) - (iii) holds and X is a sub-martingale, then

E[XU ] ≥ E[X0]. (2.44)

2 . 3 . 3 FDR Control Proof of the BH Method Using Doob's Op-
tional Stopping Theorem

Doob’s optional stopping theorem is essential for many finite sample FDR control proofs
(e.g., [STS04; BC15]). Although the FDR control proofs in this dissertation are different
from the existing proofs, the theorem will be used as a major element of our FDR control
proofs throughout this dissertation. In the following, the usage of the theorem is showcased
by sketching the FDR control proof of the BH method from [STS04]. For this purpose,
and as in Section 2.2.2, letP1, . . . , Pp be sorted p-values corresponding to the null hypotheses
H1, . . . , Hp, whereHj : βj = 0 and P1 ≤ P2 ≤ . . . ≤ Pp. Let v ∈ [0, 1] and let

V (v) := |{null j : Pj ≤ v}| (2.45)

and
R(v) := |{j : Pj ≤ v}| (2.46)

be the number of selected null variables (i.e., number of false positives) and the total number
of selected variables (i.e., number of rejected null hypotheses), respectively. Then, the FDP
and FDR of the BH method are specified as follows:

FDR(v) := E[FDP(v)] := E
[

V (v)

R(v) ∨ 1

]
. (2.47)
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The threshold v that corresponds to the decision rule of theBH method in (2.27) is a stopping
time that is given by

v := sup{ν ∈ [0, 1] : F̂DP(ν) ≤ α}, (2.48)

where
F̂DP(ν) :=

ν · p
R(ν) ∨ 1

. (2.49)

Noting that

R(Pm) = m and F̂DP(Pm) =
Pm · p
m ∨ 1

, (2.50)

it can be easily verified that the decision rule in (2.27) with c(p) = 1 is equivalent to rejecting
all null hypotheses for which Pj ≤ v holds.

With these preliminaries in place, the FDR control theorem of the BH method is stated and
the proof is sketched. Note that this is only a proof sketch that serves the purpose of showcas-
ing the usage ofDoob’s optional stopping theorem in the context of FDR control. Therefore,
we omit proving the intermediate result thatV (v)/v constitutes a backward-runningmartin-
galewith respect to v. A backward-runningmartingalewith respect to v is simply amartingale
that has its starting point at the largest value of v, i.e., v = 1. For ease of readability, we do not
distinguish between the argument v of V (v) and R(v) and the stopping time v and when-
ever it is not clear from the context whether we are referring to the stopped process or not, it
is stated explicitly.
Theorem 2 (BH method - FDR control). Let the p-values corresponding to the p0 true null
hypotheses be independent and identically distributed (i.i.d.), uniformly distributed on the
interval [0, 1], and independent of the non-null p-values. Let v be as defined in (2.48). Then,
the BH method controls the FDR exactly at (p0/p)α and conservatively at the level α ∈ [0, 1],
i.e.,

FDR(v) =
p0
p
· α ≤ α. (2.51)

Proof. The process R(v) that is stopped at v, as defined in (2.48), is upper semi-continuous
and, therefore, F̂DP(v) = α and, equivalently,R(v) = vp/α. After pluggingR(v) = vp/α

into (2.47) it remains to show that

FDR(v) =
α

p
· E
[
V (v)

v

]
(2.52)

is equal to (p0/p)α. Based on the assumptions on the null p-values stated in the theorem,
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it can be shown that V (v)/v constitutes a backward-running martingale with respect to v.
Moreover, V (v)/v that is stopped at v, as defined in (2.48), is bounded, i.e., V (v)/v ≤
R(v)/v = p/α. Thus, Doob’s optional stopping theorem is applicable and yields

E
[
V (v)

v

]
= E

[
V (1)

1

]
= p0. (2.53)

The last equation follows from the fact that V (v) follows a binomial distribution with p0

trials, success probability v, and expected valueE[V (v)] = p0v. Finally,

FDR(v) =
p0
p
· α ≤ α. (2.54)
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The real voyage of discovery consists not in seeking new
landscapes, but in having new eyes.

Marcel Proust

3
High-Dimensional False Discovery Rate

Control

In this chapter, the proposed framework for high-dimensional variable selection with
FDR control at the user-defined target level is presented. Section 3.1 presents the proposed
Terminating-Random Experiments (T-Rex) selector in a nutshell. Section 3.2 details the
general methodology of the T-Rex framework and Section 3.3 highlights its main ingredients.
Section 3.4 formulates the optimization problem that governs the optimal calibration process
of the T-Rex selector. In Section 3.5, the main theoretical results and calibration algorithms
are presented. In Section 3.6 the theoretical properties of the T-Rex selector are numerically
verified and its performance is compared against state-of-the-art benchmark methods via
numerical experiments. Section 3.7 introduces the Screen-T-Rex selector, an extension of
the T-Rex selector, which is designed to efficiently perform multiple reproducible GWAS by
screening through large-scale genomics biobanks and providing the user with self-estimated
achieved FDR levels. Section 3.8 summarizes this chapter.

The proposed methods are used in Chapter 6 to solve challenging real-world data problems
in biomedical engineering. Technical proofs, numerical verifications, additional simulations,
and other appendices are deferred to Appendix A.
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The main content of this chapter is based on the publications [MMPewa] and [MMP23a].
The implementations of the developed methods are included in the open source R software
packages (with C++ backend) TRexSelector [Mac+24c] and tlars [Mac+24b] on CRAN.

3 . 1 The T-Rex Selector in a Nutshell

TheT-Rex selector is a scalable framework that transforms forward variable selectionmethods
into FDR-controlling methods. This section briefly summarizes the key ideas, the main theo-
retical results, and the major advantages of the proposed T-Rex selector compared to existing
methods.

3 . 1 . 1 Key Ideas

Intuitively, the T-Rex selector builds upon three key ideas:

Key idea 1: “Random experiments with dummy variables”
Let L computer-generated dummy variables compete with the p candidate variables that are
contained in a given data set to be included by a forward selection method. For this, the for-
ward selection method is provided with a response vector y ∈ Rn, where n is the number
of samples, and an enlarged predictor matrix X̃ ∈ Rn×(p+L) that contains the p candidate
variables and L dummy variables.

Repeat this procedure K times, where each iteration consists of an independent random ex-
periment yielding a candidate set of included variables. Since the dummies act as flagged null
variables, one can loosely imagine this as placebo controlled trials. And the active variables
will have to succeed in sufficiently many placebo controlled trials.

Key idea 2: “Urn model”
Mathematically, the false positive variable selection process is modeled as an urnmodel. Since
the response neither depends on the null variables, nor on the dummy variables, the false pos-
itive forward variable selection process can be modeled as picking nulls and dummies one by
one without replacement from an urn containing the nulls and dummies until some number
of dummies (i.e., T ) are selected.

A variable is added to the final selected active set if its relative frequency over all random exper-
iments exceeds a certain voting level. This voting level is determined such that the cardinality
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of the selected active set is maximized, while a conservative estimator of the FDR remains
below the target FDR level.

Key idea 3: “Early termination”
The random experiments are terminated early, as soon as the target FDR is exceeded. Not
computing the full solution path provides a massive speedup for high-dimensional data. It is
possible because, particularly for sparse problems, at some point along the forward variable
selection process, the probability of selecting an active variable will be very low.

Summarizing, the T-Rex selector fuses the solutions of K early terminated random experi-
ments, in which original and computer-generated dummy variables compete to be selected
in a forward variable selection process. The T-Rex calibration algorithm automatically deter-
mines its parameters, i.e., (i) the number of generated dummiesL, (ii) the number of included
dummies before terminating the randomexperimentsT , and (iii) the voting level in the fusion
process, such that the FDR is controlled at the target level.

3 . 1 . 2 Main Theoretical Results

Our main theoretical results are summarized as follows:

1. Usingmartingale theory (see Section 2.3), weprovide a finite sample FDRcontrol proof
(Theorem 3) that applies to low- (p ≤ n) and high-dimensional (p > n) settings.

2. We prove that, for the T-Rex selector, the dummies can be sampled from any univari-
ate distribution with finite mean and finite non-zero variance (Theorem 4). This is a
fundamentally new result, and it does not hold for, e.g., knockoff methods (see Sec-
tion 2.2.3) that require mimicking the covariance structure of the predictors, which is
computationally expensive (see Figure 3.4).

3. We also prove that the proposed calibration algorithm is optimal in the sense that it
maximizes the number of selected variables while controlling the FDR at the target
level (Theorem 5).

3 . 1 . 3 Major Advantages Compared to Existing Methods

The major advantages compared to existing methods are:

1. The computation timeof theT-Rex selector ismultiple orders ofmagnitude lower com-
pared to that of the current benchmark method (see Figure 3.1). Its complexity stems
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Figure 3.1: The sequential computation time of theT-Rex selector is multiple orders of magnitude lower than
that of themodel-X knockoffmethod [Can+18]. Note that, e.g., for p = 5,000 variables the absolute sequential
computation time of the T-Rex selector for T = 10 included dummies is only 15 seconds as compared to
more than 5.5 hours for the model-X knockoff method. Moreover, the sequential computation time of the
T-Rex selector for 5,000,000 variables is comparable to that of the model-X knockoff method for only 5,000
variables. Note that both axes are scaled logarithmically. Setup: n = 300 (observations), p1 = 10 (true active
variables),L = p (generated dummies),K = 20 (random experiments), SNR = 1,MC = 955 (Monte Carlo
replications) for p ≤ 5,000 andMC = 100 for p > 5,000.

from the computation ofK terminated random experiments with expected complex-
ityO(np) (see Appendix A.4).

2. As inputs, theT-Rex selector requires only the data and the target FDR level. The tun-
ing of the sparsity parameter for Lasso-type methods [Tib96; Efr+04; ZH05; Zou06]
is no longer required when incorporating them into the T-Rex selector framework.

In summary the T-Rex selector is, to the best of our knowledge, the first multivariate
high-dimensional FDR-controlling method that scales to millions of variables in a reasonable
amount of computation time (see Figure 3.1), whichmakes it a suitable method for large-scale
GWAS, i.e., our major use-case.

3 . 2 Methodology

In this section, we will introduce the framework and the notation, which will be crucial for
understandingwhy theT-Rex selector efficiently controls the FDRat the target level. A simpli-
fied overview of theT-Rex selector framework is provided in Figure 3.2. The general method-
ology underpinning theT-Rex selector consists of several steps that are detailed in the follow-
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Figure 3.2: Simplified overview of the T-Rex selector framework: For each random experiment k ∈
{1, . . . ,K}, the T-Rex selector generates a dummy matrix

◦
Xk containing L dummies and appends it to X

to obtain the enlarged predictor matrix X̃k =
[
X

◦
Xk

]
. With X̃k and the response y as inputs, a forward

variable selection method is applied to obtain the candidate sets C1,L(T ), . . . , CK,L(T ), where T is iteratively
increased from one until F̂DP (i.e., an estimate of the proportion of false discoveries among all selected variables
that is determined by the calibration process) exceeds the target FDR level α ∈ [0, 1]. Finally, a fusion proce-
dure determines the selected active set ÂL(v

∗, T ∗) for which the calibration procedure provides the optimal
parameters v∗ and T ∗, such that the FDR is controlled at the target level α while maximizing the number of
selected variables.

ing:

Step 1: Generate K > 1 dummy matrices
◦
Xk, k = 1, . . . , K , each containing L ≥ 1

dummy predictors that are sampled from a standard normal distribution.

Step 2: Append each dummy matrix to the original predictor matrix X , resulting in the
enlarged predictor matrices

X̃k :=
[
X

◦
Xk

]
(3.1)

=
[
x1 · · · xp

◦
xk,1 · · ·

◦
xk,L

]
, k = 1, . . . , K, (3.2)

where ◦
xk,1, . . . ,

◦
xk,L are the dummies. Figure 3.3 illustrates the enlarged predictor

matrix, whereA andZ denote the index sets of the true active variables and the null
variables, respectively. Their respective cardinalities are denoted by p1 := |A| and
p0 := |Z|.

Step 3: Apply a forward variable selection procedure to
{
X̃k,y

}
, k = 1, . . . , K . For

each random experiment, terminate the forward selection process after T ≥ 1

dummy variables are included. This results in the candidate active sets Ck,L(T ),
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X̃k =
[
X

◦
Xk

]
=

A Z

X ∈ Rn×p
◦
Xk ∈ Rn×L

Figure 3.3: The enlarged predictor matrices X̃k, k = 1, . . . ,K , replace the original predictor matrix X
in each random experiment within the T-Rex selector framework. They contain the original and the dummy
predictors. The index set of the true active variables and the index set of the null variables are denoted byA and
Z , respectively. The number of active variables and the number of null variables are denoted by p1 := |A| and
p0 := |Z|, respectively.

k = 1, . . . , K . After terminating the forward selection process remove all dummies
from the candidate active sets.1

Step 4: Iteratively increase T and carry out Step 3 until F̂DP (i.e., a conservative estimate
of the proportion of false discoveries among all selected variables) exceeds the target
FDR levelα ∈ [0, 1]. The calibration process for determining F̂DP and the optimal
values v∗ and T ∗ such that the FDR is controlled at the target level α ∈ [0, 1]while
maximizing the number of selected variables is derived in Section 3.5.

Step 5: Fuse the candidate active sets to determine the estimate of the active set ÂL(v
∗, T ∗).

The fusion step is based on the relative occurrences ΦT,L(j), j = 1, . . . , p, of the
original variables. For a mathematically rigorous definition of ΦT,L(j), see Defini-
tion 5 in Section 3.4.

All variables whose relative occurrences at T = T ∗ exceed the voting level v∗ ∈
[0.5, 1) are selected and the estimator of the active set is defined by

ÂL(v
∗, T ∗) := {j : ΦT ∗,L(j) > v∗}. (3.3)

The details of how the calibration process determines T ∗ and v∗ such that, for any choice
of L, the T-Rex selector controls the FDR at the target level while maximizing the number

1Since we use the LARS method throughout this chapter, variables can only be included but not dropped
along the solution paths. Nevertheless, the T-Rex selector can also incorporate forward selection methods that
remove some previously included variables from the candidate set along the solution path (e.g., Lasso). For such
methods, the number of currently active dummies can decrease along the solution path. However, because the
solution paths are terminated after T dummies are included for the first time, there is no ambiguity regarding
the step in which the forward selection process ends.
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of selected variables are deferred to Section 3.5.3. Moreover, an extension to the calibration
process to jointly determine T ∗, v∗, and L is also proposed in Section 3.5.4. The number of
random experimentsK is not subject to optimization. However, choosingK ≥ 20 provides
excellent empirical results and we never observed notable improvements forK ≥ 100.2

3 . 3 Main Ingredients of the T-Rex Selector

The following example helps to develop an intuition for the three main ingredients of the
T-Rex selector, which are

1. sampling dummies from the univariate standard normal distribution (see Figure 3.4),
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Figure 3.4: Ingredient 1 - sampling dummies from the univariate standard normal distribution. The sequen-
tial computation time of generating one dummy matrix for the proposed T-Rex selector is multiple orders of
magnitude lower than the computation time of generating a knockoff matrix for themodel-X knockoff method,
which is a current benchmark. For example, for p = 5,000 and L = p, the T-Rex dummy generation process
requires less than a second as compared to more than five hours for themodel-X knockoff method. Even taking
into account that theT-Rex selector requires, e.g.,K = 20 of such dummymatrices, its sequential computation
time is still multiple orders ofmagnitude lower than that of themodel-X knockoffmethod. The jump in compu-
tation time for themodel-X knockoff method between p = 500 and p = 1,000 is due to the suggestion of the
authors to solve their proposed approximate semi-definite program (asdp) instead of their original semi-definite
program for p > 500 in order to reduce the computation time required to generatemodel-X knockoffs.3Note
that both axes are scaled logarithmically. Setup: n = 300,MC = 955.

2Instead of fixing the number of random experiments, it could be increased until the relative occurrences
ΦT,L(j), j = 1, . . . , p, converge. However, a significant reduction of computation time is achieved by exe-
cuting the independent random experiments in parallel on multicore computers or high-performance clusters.
Therefore, in practice, fixingK to a multiple of the number of available CPUs is preferable.
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2. early terminating the solution paths of the random experiments (see Figure 3.5), and
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(b)The pathwise coordinate descent algorithm from
the R package “glmnet” [FHT10] (used to com-
pute the Lasso on a λ-grid with 500 values) and the
Terminating-LARS (T-LARS) algorithm from the
R package “tlars” [Mac+24b]. Note that both axes
are scaled logarithmically. Setup: n = 300, p =
5,000, p1 = 5,L = p, SNR = 1,MC = 955.

Figure 3.5: Ingredient 2 - early terminating the solution paths of the random experiments. Figure (a) exempli-
fies that, on average, the number of selected active variables quickly increases towards the sparsity level p1 (i.e.,
the number of active variables) and already for three included dummies almost all active variables are selected on
average. However, the number of selected null variables also increases with increasing T . This example shows
that terminating the forward selection process after selecting a few dummies is a reasonable strategy to select
many active variables while keeping the number of selected null variables low. Therefore, the T-Rex selector
terminates the solution paths early such that the number of selected variables is maximized while the FDR is
controlled at the user-defined target level. Figure (b) illustrates that for p = 5,000 andL = p, when terminated
early, the Terminating-LARS (T-LARS) algorithm (a fundamental building block of theT-Rex selector) is sub-
stantially faster than fitting the entire Lasso solution path using the pathwise coordinate descent algorithm for
2p variables. The pathwise coordinate descent algorithm is the state-of-the-art solver for Lasso-type problems
and it is used by other FDR-controlling methods, such as the the fixed-X and model-X knockoff methods. Al-
though the T-Rex selector needs to run the T-LARS algorithm for, e.g., K = 20 random experiments within
theT-Rex selector, its sequential computation time is still comparable to that of a single run of “glmnet” in high-
dimensional settings where p is much larger than n. Moreover, the independent random experiments can be
run in parallel on multicore computers to achieve a substantial reduction in computation time. The “glmnet”
computation time is used as the reference computation time and its absolute value is given above the reference
line (format: hh:mm:ss). Note that after T = 150 dummies are included the computation time of theT-LARS
algorithmdoes not increase further because theT-LARS algorithm includes atmostmin{n, p+L} = n = 300
variables and with T = 150we can expect that, on average, also 150 null variables plus the 5 active variables are
included.

3See the default parameters in the R package implementing the fixed-X method and the model-X method,
which is available at https://CRAN.R-project.org/package=knockoff (last access: June 26, 2024).
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3. fusing the candidate sets based on their relative occurrences and a voting level v ∈
[0.5, 1) (see Figure 3.6).
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Figure 3.6: Ingredient 3 - fusing the candidate sets based on their relative occurrences and a voting level v ∈
[0.5, 1). Thenumber of selected active variables remains highwhen increasing the voting level, while thenumber
of selected null variables decreases faster with increasing v. Setup: n = 150, p = 300, p1 = 5, T = 3, L = p,
K = 20, SNR = 1,MC = 500.

In the example, we generate sparse high-dimensional data sets with n observations and p pre-
dictors and a response that is generated by the linear model in (2.1). Further, βj = 1 for
active variables and βj = 0 for null variables. The predictors are sampled from the standard
normal distribution. The standard deviation σ is chosen such that the signal-to-noise ratio
(SNR), which is given by Var[Xβ] / σ2, is equal to one.4 The specific values of n, p, p1 (i.e.,
the number of active variables), v, T , L,K , SNR, and MC (i.e., the number of Monte Carlo
realizations that the results are averaged over) are reported along with the discussion of the
results in Figures 3.4, 3.5, and 3.6.

3 . 4 Problem Statement

Now that the notation and general steps of the T-Rex selector have been introduced, we are
ready to formulate an optimization problem formalizing the task of selecting as many true
positives as possible while controlling the FDR at the target level. We start with some remarks
on notation followed by a mathematically rigorous definition of the relative occurrence of

4Note that, in this case, Var denotes the sample variance operator.
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a candidate variable, which is crucial for the fusion step of the T-Rex selector (i.e., Step 5 in
Section 3.2). Then, the definitions of the FDR and the TPR, which particularize the generic
definitions in (2.23) and (2.24) for the T-Rex selector, are provided. Finally, the main con-
strained optimization problem is formulated.

For better readability, the arguments T and L of the estimator of the active set are dropped,
i.e., Â(v) := ÂL(v, T ), except when referring specifically to the set in (3.3) for which the
values v∗ andT ∗ result from the calibration that will be discussed in Section 3.5. Note that the
term “included candidates” refers to the variables that were picked (and not dropped) along
the solution path of each random experiment while the term “selected variables” refers to the
variables whose relative occurrences exceed the voting level v ∈ [0.5, 1).
Definition 5 (Relative occurrence). Let K ∈ N+ \ {1} be the number of random exper-
iments, L ∈ N+ the number of dummies, and T ∈ {1, . . . , L} the number of included
dummies after which the forward variable selection process in each random experiment is ter-
minated. The relative occurrence of variable j ∈ {1, . . . , p} is defined by

ΦT,L(j) :=


1

K

K∑
k=1

1k(j, T, L), T ≥ 1

0, T = 0

, (3.4)

where 1k(j, T, L) is the indicator function for which

1k(j, T, L) =

1, j ∈ Ck,L(T )

0, otherwise
. (3.5)

Definition 6 (VT,L(v),ST,L(v) andRT,L(v)). The number of selected null variables VT,L(v),
the number of selected active variables ST,L(v), and the number of selected variables RT,L(v)

are defined, respectively, by

VT,L(v) :=
∣∣Â 0(v)

∣∣ := ∣∣{null j : ΦT,L(j) > v}
∣∣, (3.6)

ST,L(v) :=
∣∣Â 1(v)

∣∣ := ∣∣{active j : ΦT,L(j) > v}
∣∣, and (3.7)

RT,L(v) := VT,L(v) + ST,L(v) =
∣∣Â(v)∣∣. (3.8)

Note thatRT,L(v) is observable, whileVT,L(v) andST,L(v) are not, since the set of true active
variables is unknown.
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To state the optimization problem for the calibration of theT-Rex selector, the FDRandTPR
expressions in (2.23) and (2.24) are rewritten using Definition 6 as follows:
Definition 7 (FDP and FDR). The false discovery proportion (FDP) is defined by

FDP(v, T, L) :=
VT,L(v)

RT,L(v) ∨ 1
(3.9)

and the FDR is defined by

FDR(v, T, L) := E
[
FDP(v, T, L)

]
, (3.10)

where the expectation is taken with respect to the noise in (2.1).
Definition 8 (TPP and TPR). The true positive proportion (TPP) is defined by

TPP(v, T, L) :=
ST,L(v)

p1 ∨ 1
, (3.11)

where p1 denotes the unknown number of true active variables, and the TPR is defined by

TPR(v, T, L) := E
[
TPP(v, T, L)

]
, (3.12)

where the expectation is taken with respect to the noise in (2.1).
Remark 1. Note that ifRT,L(v) is equal to zero, then VT,L(v) is zero as well. In this case, the
denominator in the expression for the FDP is set to one and, thus, the FDP becomes zero. This
is a reasonable solution to the “0/0” case, because when no variables are selected there exist no
false discoveries. Similarly, when there exist no true active variables among the candidates, i.e.
p1 = ST,L(v) = 0, the TPP equals zero.

Amajor result of this work is to determine T ∗ and v∗, such that, for any fixedL ∈ N+, theT-
Rex selector maximizes TPR(v, T, L)while provably controlling FDR(v, T, L) at any given
target level α ∈ [0, 1]. In practice, this amounts to finding the solution of the optimization
problem

maximize
v,T

TPP(v, T, L) subject to F̂DP(v, T, L) ≤ α, (3.13)

which is equivalent to

maximize
v,T

ST,L(v) subject to F̂DP(v, T, L) ≤ α (3.14)
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because p1 is a constant. Note that F̂DP(v, T, L) is a conservative estimator of FDP(v, T, L),
i.e., it holds that FDR(v, T, L) = E

[
FDP(v, T, L)

]
≤ E

[
F̂DP(v, T, L)

]
= F̂DR(v, T, L).

The details of the conservative FDP estimator are discussed in Section 3.5. Since we cannot
observe ST,L(v), it is replaced byRT,L(v). This results in the final optimization problem:

maximize
v,T

RT,L(v) subject to F̂DP(v, T, L) ≤ α. (3.15)

In words: The T-Rex selector maximizes the number of selected variables while controlling a
conservative estimator of the FDP at the target level α.

In Section 3.5, it is shown that the T-Rex selector efficiently solves (3.15) and that any solution
of (3.15) is a feasible solution of (3.13) and (3.14).

3 . 5 Main Results

This section contains the main results about the proposed T-Rex selector, which concern:
FDR-control (Theorem 3), dummy generation (Theorem 4), and the optimal calibration al-
gorithm (Theorem 5). We use martingale theory (see Section 2.3) to prove the FDR control
property of theT-Rex selector. The developed FDRcontrol theory relies on standard assump-
tions that are extensively verified especially for GWAS, i.e., the main use-case of the proposed
methods (see Appendices A.5, A.6, andA.7). For a numerical evaluation of theT-Rex selector
on a simulated GWAS, see Section 6.1. Additionally, the computational complexity of the T-
Rex selector, which stems from the computation ofK terminated random experiments with
expected complexityO(np), is derived in Appendix A.4.

3 . 5 . 1 FDR Control

This section first defines the deflated relative occurrence, an FDP estimator, and the voting
level, which are the essential building blocks for the FDRcontrol theoremand its proof. Then,
an important martingale lemma is formulated, followed by the FDR control theorem and its
proof.
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3 . 5 . 1 . 1 Preliminary Definitions

In Definition 5, the relative occurrence ΦT,L(j) of the jth candidate variable has been intro-
duced. It can be decomposed into the changes in relative occurrence, i.e.,

ΦT,L(j) =
T∑
t=1

∆Φt,L(j), j = 1, . . . , p, (3.16)

where∆Φt,L(j) := Φt,L(j)−Φt−1,L(j) is the change in relative occurrence from step t−1 to
t for variable j.5 Since the active and the null variables are interspersed in the solution paths of
the random experiments, some null variables might appear earlier on the solution paths than
some active variables.6 Therefore, it is unavoidable that the ∆Φt,L(j)’s of the null variables
are inflated along the solution paths of the random experiments. Moreover, we observe inter-
spersion not only for active and null variables but also for dummies, which is expected since
dummies can be interpreted as flagged null variables.

The above considerationsmotivate the definition of the deflated relative occurrence to harness
the information about the fraction of included dummies in each step along the solution paths
in order to deflate the∆Φt,L(j)’s of the null variables and, thus, account for the interspersion
effect.
Definition 9 (Deflated relative occurrence). The deflated relative occurrence of variable j is
defined by

Φ′
T,L(j) :=

T∑
t=1

(
1−

p−
∑p

q=1 Φt,L(q)

L− (t− 1)

1∑
q∈Â(0.5) ∆Φt,L(q)

)
∆Φt,L(j), (3.17)

j = 1, . . . , p.

In words: The deflated relative occurrence is the sum over the deflated ∆Φt,L(j)’s from step
t = 1 until step t = T . As detailed and intuitively explained inAppendix A.2, the∆Φt,L(j)’s
are multiplied by a deflation factor that takes into account the ratio between the fraction of

5When using a forward selection method within the T-Rex selector framework that does not drop variables
along the solution path (e.g. LARS), all Φt,L(j)’s are non-decreasing in t and, therefore, ∆Φt,L(j) ≥ 0 for
all j. In contrast, when using forward selection methods that might drop variables along the solution path (e.g.
Lasso), theΦt,L(j)’smight decrease in t and, therefore, the∆Φt,L(j)’s canbe negative. Nevertheless, the relative
occurrenceΦT,L(j) is non-negative for all j and any forward selection method.

6Many researchers have observed that active and null variables are interspersed in solution paths obtained
from sparsity-inducing methods, such as the LARS algorithm or the Lasso [SBC17; BC15].
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selected dummies and the fraction of selected candidate variables in each step t ∈ {1, . . . , T}.

Using the deflated relative occurrences, the estimator of VT,L(v), i.e., the number of selected
null variables (see Definition 6), and the corresponding FDP estimator are defined as follows:
Definition 10 (FDP estimator). The estimator of VT,L(v) is defined by

V̂T,L(v) :=
∑

j∈Â(v)

(
1− Φ′

T,L(j)
)

(3.18)

and the corresponding estimator of FDP(v, T, L) is defined by

F̂DP(v, T, L) =
V̂T,L(v)

RT,L(v) ∨ 1
(3.19)

with
F̂DR(v, T, L) := E

[
F̂DP(v, T, L)

]
(3.20)

being its expected value.

Themain idea behind FDR control for theT-Rex selector is that controlling F̂DP(v, T, L) at
the target levelα ∈ [0, 1] guarantees that FDR(v, T, L) is controlled at the target level as well.
To achieve this, we define v ∈ [0.5, 1) as the voting level at which F̂DP(v, T, L) is controlled
at the target level.
Definition 11 (Voting level). Let T ∈ {1, . . . , L} and L ∈ N+ be fixed. Then, the voting
level is defined by

v := inf{ν ∈ [0.5, 1) : F̂DP(ν, T, L) ≤ α} (3.21)

with the convention that v = 1 if the infimum does not exist.
Remark 2. Note that v has to be at least 50% to ensure that all selected variables occur in
at least more than the majority of the candidate sets within the T-Rex selector. Further, the
convention of setting v = 1 if the infimum does not exist ensures that no variables are selected
when there exists no triple (T, L, v) that satisfies Equation (3.21).
Remark 3. Recall that the aim that is stated in the optimization problem in (3.15) is to select
as many variables as possible while controlling F̂DP(v, T, L) at the target level. For fixed T

and L, this is achieved by the smallest voting level that satisfies the constraint on F̂DP(v, T, L).
We can easily see that for any fixed T and L, the voting level in (3.21) solves the optimization
problem in (3.15). The reason is that for any two voting levels v1, v2 ∈ [0.5, 1) with v2 ≥ v1
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satisfying the F̂DP-constraint in (3.21), it holds that RT,L(v1) ≥ RT,L(v2).
Remark 4. If v, T , and L satisfy Equation (3.21), then the FDP from Definition 7 can be
upper-bounded using (3.19) as follows:

FDP(v, T, L) =
VT,L(v)

RT,L(v) ∨ 1
= F̂DP(v, T, L) · VT,L(v)

V̂T,L(v)
(3.22)

≤ α · VT,L(v)

V̂T,L(v)
≤ α · VT,L(v)

V̂ ′
T,L(v)

, (3.23)

where V̂ ′
T,L(v), which is supposed to be greater than zero, is defined by

V̂ ′
T,L(v) := V̂T,L(v)−

∑
j∈Â(v)

(
1− ΦT,L(j)

)
. (3.24)

This upper bound on the FDP will be particularly useful in proving that the T-Rex selector has
the FDR control property.
Remark 5. The voting level v in (3.21) can be interpreted as a stopping time with respect to
some still to be defined filtration within Lemma 1 in Section 3.5.1.2. See Definitions 1 and 4 in
Section 2.3.1 for details on stopping times and filtrations.

3 . 5 . 1 . 2 The FDR Control Theorem

Before the FDR control theorem is formulated, we introduce a lemma that contains the back-
boneof ourFDRcontrol theorem,which is rooted inmartingale theory (see Section 2.3). That
is, we state and prove that VT,L(v)/V̂

′
T,L(v) in (3.23) is a backward-running super-martingale

with respect to the voting level v and some still to be defined filtration. Thiswill be an essential
element of the FDR control proof because it allows to use Doob’s optional stopping theorem
(i.e., Theorem 1 in Section 2.3.2) to upper bound the expected value of VT,L(v)/V̂

′
T,L(v).

Lemma 1. Define V := {ΦT,L(j) : ΦT,L(j) > 0.5, j = 1, . . . , p} and

HT,L(v) :=
VT,L(v)

V̂ ′
T,L(v)

. (3.25)

Let Fv := σ
(
{RT,L(u)}u≥v, {VT,L(u)}u≥v, {V̂ ′

T,L(u)}u≥v

)
be a backward-filtration with

respect to v. Then, for all tuples (T, L) ∈ {1, . . . , L} × N+, {HT,L(v)}v∈V is a backward-

43



running super-martingale with respect to Fv . That is,

E
[
HT,L

(
v − ϵ∗T,L(v)

) ∣∣ Fv

]
≥ HT,L(v), (3.26)

where
ϵ∗T,L(v) := inf{ϵ ∈ (0, v) : RT,L(v − ϵ)−RT,L(v) = 1} (3.27)

with v ∈ [0.5, 1) and the convention that ϵ∗T,L(v) = 0 if the infimum does not exist.

Proof. The proof is deferred to Appendix A.1.

Theorem 3 (FDR control - T-Rex selector). Suppose that V̂ ′
T,L(v) > 0. Then, for all triples

(T, L, v) ∈ {1, . . . , L} × N+ × [0.5, 1) that satisfy Equation (3.21) and as K → ∞, the
T-Rex selector controls the FDR at any fixed target level α ∈ [0, 1], i.e.,

FDR(v, T, L) = E
[
FDP(v, T, L)

]
≤ α. (3.28)

Proof. With Lemma 1 and since the stopping time in (3.21) is adapted to the filtration, i.e., it
is Fv-measurable, and HT,L(v) is bounded, the optional stopping theorem (i.e., Theorem 1
in Section 2.3.2) can be applied to upper bound E

[
HT,L(v)

]
. This yields, asK →∞,

E
[
HT,L(v)

]
≤ E

[
HT,L(0.5)

]
=

1

V̂ ′
T,L(0.5)

· E
[
VT,L(0.5)

]
(3.29)

≤ 1

V̂ ′
T,L(0.5)

· T

L+ 1
· p0 (3.30)

=
1

T

L+ 1
· p0
· T

L+ 1
· p0 = 1. (3.31)

The first inequality is a consequence of the optional stopping theorem and Lemma 1 and the
equation in the first line follows from V̂ ′

T,L(0.5) being deterministic asK →∞. The second

line follows from E[NHG(p0 + L, p0, T )] = T · p0/(L + 1) and VT,L(v)
d

≤ NHG(p0 +

L, p0, T ), v ∈ [0.5, 1), i.e. VT,L(v) is stochastically dominated by the negative hypergeomet-
ric distribution (NHG) with p0 + L total elements, p0 success elements, and T failures after
which a random experiment is terminated (formore details, see AppendixA.5). The third line
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holds since

V̂ ′
T,L(0.5) =

T∑
t=1

p0 −
∑

q∈Z Φt,L(q)

L− (t− 1)
=

T∑
t=1

p0 − t
L+1
· p0

L− (t− 1)
(3.32)

=
p0

L+ 1
·

T∑
t=1

L− t+ 1

L− t+ 1
=

T

L+ 1
· p0, (3.33)

where the second equation follows from Lemma 4 in Appendix A.1. Finally, it follows that

FDR(v, T, L) = E
[
FDP(v, T, L)

]
≤ α · E

[
HT,L(v)

]
≤ α, (3.34)

i.e., FDR control at the target level α is achieved.

3 . 5 . 2 Dummy Generation

TheT-Rex selector is not the firstmethod to use dummies to performvariable selection. How-
ever, it utilizes dummies in a fundamentally different manner than existing variable selection
methods (e.g., [Mil84; Mil02; WBS07]), which do not guarantee FDR control. As shown
in Figure 3.2, the T-Rex selector generates L i.i.d. dummies for each random experiment by
sampling each element of the dummy vectors from the standard normal distribution, i.e.,

◦
xl = [

◦
x1,l · · ·

◦
xn,l]

⊤, where ◦
xi,l ∼ N (0, 1), (3.35)

i = 1, . . . , n, l = 1, . . . , L. This raises the question whether dummies can be sampled from
other distributions, as well, to serve as flagged null variables. From an asymptotic point of
view, i.e., n → ∞, and if some mild conditions are satisfied, the perhaps at first glance sur-
prising answer to this question is thatdummies can be sampled from any univariate probability
distribution with finite expectation and finite non-zero variance in order to serve as flagged null
variables within the T-Rex selector.

We will prove the above statement for any forward selection procedure that uses sample cor-
relations of the predictors with the response or with the current residuals in each forward
selection step to determine which variable is included next. Thus, the statement is true, e.g.,
for the LARS algorithm, Lasso, adaptive Lasso, and elastic net.

Recall that null variables and dummies are not related to the response. For null variables this
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holds by definition and for dummies this holds because dummies are generatedwithout using
any information about the response.7 Moreover, the sample correlations of the dummieswith
the response are random. Thus, the higher the number of generated dummies, the higher the
probability of including a dummy instead of a null or even a true active variable in the next
step of a random experiment. These considerations suggest that only the number of dummies
within the enlarged predictor matrices is relevant for the behavior of the forward selection
process in each random experiment. That is, for n → ∞, the distribution from which the
dummies are sampled has no influence on the distribution of the correlation variables

◦
Gl,m,k :=

n∑
i=1

γi,m,k ·
◦
Xi,l,k, (3.36)

l ∈ Dm,k, m ≥ 1, k = 1, . . . , K , where γi,m,k is the ith element of γm,k := y −Xβ̂m,k

(i.e., the residual vector in the mth forward selection step of the kth random experiment)
with β̂m,k and Dm,k being the estimator of the parameter vector and the index set of the
non-included dummies in themth forward selection step of the kth random experiment, re-
spectively.8 The random variable

◦
Xi,l,k represents the ith element of the lth dummy within

the kth random experiment. Therefore,
◦
Gl,m,k is simply a weighted sum of the i.i.d. random

variables
◦
X1,l,k, . . . ,

◦
Xn,l,k with fixed weights γ1,m,k, . . . , γn,m,k. With these preliminaries in

place, the dummy generation theorem is formulated as follows:
Theorem 4 (Dummy generation). Let

◦
Xi,l,k, i = 1, . . . , n, l ∈ Dm,k, m ≥ 1,

k = 1, . . . , K , be standardized i.i.d. dummy random variables (i.e., E
[ ◦
Xi,l,k

]
= 0 and

Var
[ ◦
Xi,l,k

]
= 1 for all i, l,m, k) following any probability distribution with finite expectation

and finite non-zero variance. Define

Dn,l,m,k :=
1

Γn,m,k

·
◦
Gl,m,k, (3.37)

where Γ2
n,m,k :=

∑n
i=1 γ

2
i,m,k with Γn,m,k > 0 for all n,m, k and with fixed γi,m,k ∈ R for

7Note that the knockoff generation processes of the fixed-X and the model-X knockoff method, i.e., the
benchmark methods, are fundamentally different from our approach that uses dummies. Although these meth-
ods also do not use any information about the response to generate the knockoffs, unlike the proposed T-Rex
selector, they must incorporate the covariance structure of the predictor matrix, which leads to a large computa-
tion time, especially for high dimensions (see Figures 3.1 and 3.4).

8Note thatγ1,k = y for all k, since β̂1,k = 0 for all k, i.e., the residual vector in the first step of the forward
selection process is simply the response vector y.

46



all i,m, k. Suppose that

lim
n→∞

γi,m,k

Γn,m,k

= 0, i = 1, . . . , n, (3.38)

for all m, k. Then, as n→∞,

Dn,l,m,k
d→ D, D ∼ N (0, 1), (3.39)

for all l,m, k.

Proof sketch. The Lindeberg-Feller central limit theorem is applicable because
◦
Xi,l,k, i =

1, . . . , n, l ∈ Dm,k, m ≥ 1, k = 1, . . . , K , are i.i.d. random variables and it holds that
E
[
Dn,l,m,k

]
= 0 and Var

[
Dn,l,m,k

]
= 1. Moreover, since

◦
Qi,l,m,k := γi,m,k ·

◦
Xi,l,k /Γn,m,k

satisfies the Lindeberg condition for all l,m, k, the theorem follows.

The details of the proof and illustrative examples with non-Gaussian dummies are deferred
to Appendix A.1 and Appendix A.9, respectively.
Remark 6. Note that sampling dummies from any univariate probability distribution with
finite expectation and finite non-zero variance to serve as flagged null variables is only reasonable
in combination with multiple random experiments as conducted by the proposed T-Rex selector.
We emphasize that Theorem 4 is not applicable to knockoff generation procedures of, e.g., fixed-X
and model-X knockoffs.

3 . 5 . 3 Optimal Calibration Algorithm

This section describes the proposed T-Rex calibration algorithm, which efficiently solves the
optimization problem in (3.15) and provides feasible solutions for (3.13) and (3.14). The pseu-
docode of the T-Rex calibration method is provided in Algorithm 2. To ensure clarity, we
provide the following comprehensive summary of the algorithm flow: First, the number of
dummiesL and the number of random experimentsK are set (usuallyL = p andK = 20).9

Then, setting v = 1 −∆v and starting at T = 1, the number of included dummies is itera-
tively increased until reaching the value of T for which the FDP estimate at a voting level of
v = 1−∆v exceeds the target level for the first time. In each iteration, before the target level

9As alreadymentioned in Section 3.2,K is not subject to optimization. In practice, choosingK = 20 already
provides excellent results (see Section 3.6) and only incremental improvements are achieved with larger values
ofK .
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Algorithm 2 T-Rex Calibration.
1. Input: α ∈ [0, 1],K , L,X , y.

2. Set T = 1,∆v =
1

K
, F̂DP(v = 1−∆v, T, L) = 0.

3. While F̂DP(v = 1−∆v, T, L) ≤ α and T ≤ L do:

3.1. For v = 0.5, 0.5 + ∆v, 0.5 + 2 ·∆v, . . . , 1−∆v do:

i. Compute F̂DP(v, T, L) as in (3.19).

ii. If F̂DP(v, T, L) ≤ α

Compute ÂL(v, T ) as in (3.3).

Else

Set ÂL(v, T ) = ∅.

3.2. Set T ← T + 1.

4. Solve

max
v′,T ′

∣∣ÂL(v
′, T ′)

∣∣
s.t. T ′ ∈ {1, . . . , T − 1}

v′ ∈ {0.5, 0.5 + ∆v, 0.5 + 2 ·∆v, . . . , 1−∆v}

and let (v∗, T ∗) be a solution.

5. Output: (v∗, T ∗) and ÂL(v
∗, T ∗).

is exceeded, ÂL(v, T ) is computed as in (3.3) on a grid for v, while for values of v for which
F̂DP(v, T, L) exceeds the target level ÂL(v, T ) is equal to the empty set. Picking the v′ and
T ′ that maximize the number of selected variables yields the final solution.10

The reason for exiting the “while”-loop in Step 3 of Algorithm 2 when the FDP estimate at a
voting level of 1−∆v exceeds the target level for the first time is based on twokey observations
from our still to be presented simulation results (see Figure 3.7):

10In case of multiple solutions, we recommend to choose the solution with the largest v because such a so-
lution provides the variables that were selected most frequently. Nevertheless, all solutions to the calibration
problem that are computed using Algorithm 2 provide FDR control while maximizing the number of selected
variables.
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1. For any fixed T and L the average value of F̂DP(v, T, L) decreases as v increases.

2. For any fixed v and L the average value of F̂DP(v, T, L) increases as T increases.
Remark 7. To foster the intuition behind these observations, we note that Equation (3.19) can
be written as follows:

F̂DP(v, T, L) =
V̂T,L(v)(

VT,L(v) + ST,L(v)
)
∨ 1

. (3.40)

Taking Definition 6, Definition 10, and the reformulation of Equation (3.19) into account, we
see that the observations suggest that we can expect the rather conservative estimate V̂T,L(v)

of VT,L(v) in the numerator to decrease faster than the total number of selected variables
VT,L(v) + ST,L(v) in the denominator when increasing the voting level v. This is something
that can be expected since, in general, assuming any variable selection method that on average
performs better than random selection, active variables are expected to have higher relative oc-
currences than null variables and, therefore, remain selected even for large values of the voting
level v. A similar reasoning can be applied to intuitively understand the monotonical increase
of F̂DP(v, T, L) with respect to T .

With these preliminaries in place, the optimal calibration theorem can be formulated:
Theorem 5 (Optimality of Algorithm 2). Let (v∗, T ∗) be a solution determined by Algo-
rithm 2 and suppose that, ceteris paribus, F̂DP(v, T, L) is monotonically decreasing in v and
monotonically increasing in T . Then, (v∗, T ∗) is an optimal solution of (3.15) and a feasible
solution of (3.13) and (3.14).

Proof sketch. Since the objective functions of the optimization problems in Step 4 of Algo-
rithm 2 and in (3.15) are equivalent, i.e.,

∣∣ÂL(v, T )
∣∣ = RT,L(v), it only needs to be shown

that the feasible set in Step 4 of the algorithm contains the feasible set of (3.15). Since the con-
ditions of the optimization problems in (3.13), (3.14), and (3.15) are equivalent, this also proves
that (v∗, T ∗) is a feasible solution of (3.13) and (3.14).

The details of the proof are deferred to Appendix A.1.

3 . 5 .4 Extension to the Calibration Algorithm

In Theorem 3, we have also established that the T-Rex selector controls the FDR at the target
level for any choice of the number of dummiesL. However, the choice ofL has an influence
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on how tightly the FDR is controlled at the target level (see Figure 3.7). Since controlling
the FDR more tightly usually increases the TPR (i.e., power), it is desirable to choose the
parameters of the T-Rex selector accordingly. We will see in the simulations in Section 3.6
that with increasing L, the FDR can be more tightly controlled at low target levels. In order
to harness the positive effects that come with larger values of L while limiting the increased
memory requirement for high values ofL, we propose an extended version of the calibration
algorithm that jointly determines v, T , andL such that the FDR is more tightly controlled at
the target FDR level while not running out ofmemory.11 Themajor difference toAlgorithm 2
is that the number of dummies L is iteratively increased until the estimate of the FDP falls
below the target FDR level α. The pseudocode of the extended T-Rex calibration algorithm
is provided in Algorithm 3.12

Note that the extension to Algorithm 2 lies in Step 2 and Step 3. Additionally, and in contrast
to Algorithm 2, the input to the algorithm is extended by a reference voting level ṽ ∈ [0.5, 1)

and the maximum values ofL and T , namelyLmax and Tmax. To ensure clarity, the algorithm
flow is briefly summarized as follows: First L and T are set to be L = p and T = 1. Then,
starting atL = p, the number of dummiesL is iteratively increased in steps of p until the esti-
mate of the FDP at the voting level ṽ falls below the target FDR levelα orL exceedsLmax. The
rest of the algorithm is as in Algorithm 2 except that the “while”-loop in Step 5 of Algorithm 3
is exited when T exceeds Tmax.

What remains to be discussed are the choices of the hyperparameters ṽ, Lmax, and Tmax.
Throughout this dissertation, we have set ṽ = 0.75, Lmax = 10p, and Tmax = ⌈n/2⌉, where
⌈n/2⌉ denotes the smallest integer that is equal to or larger than n/2. An explanation and a
discussion of these choices are deferred to Appendix A.3.

3 . 6 Numerical Exper iments

In this section, the performances of the proposed T-Rex selector and the benchmark meth-
ods are compared in a simulation study. As discussed in Section 2.2, the benchmark meth-

11The reader might raise the question whether also the computation time increases with increasingL. There
is no definite answer to this question. On the one hand, for very large values of L the computation time might
increase. On the other hand, with increasing L the solution paths of the experiments are terminated earlier
because the probability of selecting dummies grows with increasing L. Thus, increasing L might increase or
decrease the computation time depending on whether the first or the second effect dominates.

12TheRpackageTRexSelector [Mac+24c] contains the implementationof the extended calibration algorithm
in Algorithm 3.
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Algorithm 3 Extended T-Rex Calibration.
1. Input: α ∈ [0, 1],K ,X , y, ṽ, Lmax, Tmax.

2. Set L = p, T = 1.

3. While F̂DP(v = ṽ, T, L) > α and L ≤ Lmax do:

Set L← L+ p.

4. Set∆v =
1

K
, F̂DP(v = 1−∆v, T, L) = 0.

5. While F̂DP(v = 1−∆v, T, L) ≤ α and T ≤ Tmax do:

5.1. For v = 0.5, 0.5 + ∆v, 0.5 + 2 ·∆v, . . . , 1−∆v do:

i. Compute F̂DP(v, T, L) as in (3.19).

ii. If F̂DP(v, T, L) ≤ α

Compute ÂL(v, T ) as in (3.3).

Else

Set ÂL(v, T ) = ∅.

5.2. Set T ← T + 1.

6. Solve

max
v′,T ′

∣∣ÂL(v
′, T ′)

∣∣
s.t. T ′ ∈ {1, . . . , T − 1}

v′ ∈ {0.5, 0.5 + ∆v, 0.5 + 2 ·∆v, . . . , 1−∆v}

and let (v∗, T ∗) be a solution.

7. Output: (v∗, T ∗) and ÂL(v
∗, T ∗).

ods in low-dimensional settings (i.e., p ≤ n) are the well-known Benjamini-Hochberg (BH )
method, the Benjamini-Yekutieli (BY ) method, and the fixed-X knockoff methods, while the
model-X knockoff methods are the benchmarks in high-dimensional settings (i.e., p > n).
Knockoff methods come in two variations called “knockoff” and “knockoff+”. Only the
“knockoff+” version is an FDR-controlling method.
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3 .6 . 1 Setup

We generate a sparse high-dimensional setting13 with n observations, p predictors, and a re-
sponse given by the linear model in (2.1). Further, βj = 1 for p1 randomly selected j’s while
βj = 0 for the others. The predictors are (i) sampled independently from the standard nor-
mal distribution (Figures 3.7 and 3.8) and (ii) sampled from an autoregressive model of order
one with autocorrelation coefficient ρ = 0.5 (Figure 3.9). The standard deviation of the
noise σ is chosen such that the signal-to-noise ratio (SNR), which is given by Var[Xβ] / σ2,
is equal to the desired value. In Appendices A.9 and A.10, we show results for non-Gaussian
predictors and heavy-tailed noise settings. The specific values of the above described simula-
tion setting and the parameters of the T-Rex selector, i.e., the values of n, p, p1, SNR, K , L,
T , v, are specified in the figure captions. The results are averaged over MC = 955 Monte
Carlo replications.14

First, in order to assess the FDR control performance and the achieved power of the T-Rex
selector, respectively, the average FDP, F̂DP, and TPP are computed over a two-dimensional
grid for v and T for different values of L. Then, leaving all other parameters in this setup
fixed, we compare the performance of the proposed T-Rex selector in combination with the
proposed extended calibration algorithm in Algorithm 3 with the benchmark methods for
different values of p1 and the SNR at a target FDR level of 10%.

3 .6 . 2 Results

The reported average FDP, F̂DP, and TPP (all averaged over 955 Monte Carlo replications)
in Figures 3.7, 3.8, and 3.9 are estimates of the FDR, F̂DR, and TPR, respectively. For this
reason, the results are discussed in terms of the FDR, F̂DR, and TPR in the captions of the
figures, while the axes labels emphasize that the average FDP, F̂DP, and TPP are plotted.

The simulation results confirm that the proposed T-Rex selector possesses the FDR control
property. Moreover, the simulation results show that the T-Rex selector outperforms the
benchmark methods while its computation time is multiple orders of magnitude lower than

13Additional simulation results that allow for a performance comparison of the proposed T-Rex selector to
the BH method, the BY method, and the fixed-X knockoff methods in a low-dimensional setting are deferred
to Appendix A.8.

14The reason for running955MonteCarlo replications is that the simulationswere conducted on theLichten-
berg High-Performance Computer of the Technische Universität Darmstadt, which consists of multiple nodes
of 96 CPUs each. In order to run computationally efficient simulations, our computation jobs are designed to
request 2 nodes and run 5 cycles on each CPU while one CPU acts as the master, i.e., (2 · 96− 1) · 5 = 955.
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(a) Average FDP and F̂DP (L = p).
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(c) Average FDP and F̂DP (L = 3p).
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(e) Average FDP and F̂DP (L = 5p).
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Figure 3.7: The T-Rex selector controls the FDR for all values of v and T while achieving a high power, even
at low values of T . Note that the FDR control is tighter for large values of L.This observation led to the devel-
opment of Algorithm 3. Moreover, we observe that the conditions in Theorem 5 hold on average (i.e., ceteris
paribus, F̂DP(v, T, L) is monotonically decreasing in v and monotonically increasing in T ). Setup: n = 300,
p = 1,000, p1 = 10,K = 20, SNR = 1,MC = 955.
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Figure 3.8: General: The model-X knockoff method fails to control the FDR. Among the FDR-controlling
methods, the T-Rex selector outperforms themodel-X knockoff+ method in terms of power. Details: (a) The
T-Rex selector and themodel-X knockoff+method control the FDR at a target level of 10% for the whole range
of SNR values while the model-X knockoff method fails to control the FDR and performs poorly at low SNR
values. Setup: n = 300, p = 1,000, p1 = 10, Tmax = ⌈n/2⌉, Lmax = 10p, K = 20, MC = 955.
(b) As expected, the TPR (i.e., power) increases with respect to the SNR. It is remarkable that even though the
FDR of the T-Rex selector lies below that of the model-X knockoff+ method for SNR values larger than 0.6,
its power exceeds that of its strongest FDR-controlling competitor. The high power of the model-X knockoff
method cannot be interpreted as an advantage, because the method does not control the FDR. Setup: Same
as in Figure (a). (c) As in Figure (a), only the T-Rex selector and the model-X knockoff+ method control the
FDR at a target level of 10%, whereas the model-X knockoff method always exceeds the target level. Setup:
n = 300, p = 1,000, Tmax = ⌈n/2⌉, Lmax = 10p, K = 20, SNR = 1, MC = 955. (d) Among the
FDR-controlling methods, the T-Rex selector has by far the highest power for sparse settings. The power of
themodel-X knockoff method exceeds that of the FDR-controlling methods, but this cannot be interpreted as
an advantage of the method since it exceeds the target FDR level. Note that for an increasing number of active
variables the power drops for all methods since apparently the number of data points n = 300 does not suffice
in the simulated settings with a low sparsity level, i.e., settings with many active variables. Setup: Same as in
Figure (c).
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Figure 3.9: Average FDP and TPP in the case of dependent predictors: The T-Rex selector controls the
FDR, has the highest power among the FDR-controllingmethods, and reaches the almost highest possible TPR
level at an SNR of 2 while the model-X knockoff+ method requires an SNR of 5 to reach the same TPR level.
The model-X knockoff+ method also controls the FDR except for an SNR of 5, where it slightly exceeds the
target FDR, and themodel-X knockoff method does not control the FDR. The predictors were sampled from
an autoregressive model of order one (AR(1)) with Gaussian noise and an autocorrelation coefficient ρ = 0.5.
Setup: n = 300, p = 1,000, p1 = 10, Tmax = ⌈n/2⌉,Lmax = 10p,K = 20,MC = 955.

that of its competitors (see Figure 3.1). The detailed descriptions and discussions of the simula-
tion results are given in the captions of Figures 3.7, 3.8, and 3.9. Furthermore, Appendix A.10
discusses in more detail the robustness of the T-Rex selector in the presence of non-Gaussian
heavy-tailed noise.

3 . 7 The Screen -T -Rex Selector

Genomics biobanks are information treasure troves with thousands of phenotypes (e.g.,
diseases, traits) and millions of single nucleotide polymorphisms (SNPs). Conducting
reproducible GWAS for tens of thousands of phenotypes requires fast FDR-controlling
variable selection methods such as the proposed T-Rex selector. Figure 3.1 shows that the
proposed T-Rex selector is scalable to millions of variables in a reasonable computation
time, while the state-of-the-art benchmark method is practically infeasible in such large-scale
high-dimensional settings. Nevertheless, even the comparably low computation time of
the T-Rex selector for one phenotype might become a burden when conducting GWAS for
many phenotypes. Therefore, we propose the Screen-T-Rex selector, a fast version of the
T-Rex selector. The proposed FDR-controlling method is suitable for conducting large-scale
GWAS (with up to millions of SNPs) for tens of thousands of phenotypes. It does not ask
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the user to set a target FDR level, but provides the user with an estimate of the achieved
FDR. In the cases, where the user is not satisfied with the provided FDR estimate, the
original T-Rex selector should be used with the result of the Screen-T-Rex selector and the
desired target FDR as inputs. The proposed Screen-T-Rex selector has the following major
innovations/advantages:

1. It provably controls the FDR at the self-estimated level (see Theorems 6 and 7 in Sec-
tion 3.7.1).

2. It does not require the choice of any additional parameters (sparsity parameter, target
FDR level, etc.).

3. Its computation time is approximately one order of magnitude lower than that of the
originalT-Rex selector andmore than three orders ofmagnitude lower than that of the
model-X knockoff methods in our simulations (see Table 6.2 in Chapter 6).

4. If, for some phenotypes, the user is not satisfied with the estimated FDR level, then the
invested computation time to run the proposed Screen-T-Rex selector is not wasted
because its computations can be reused by the original T-Rex selector to control the
FDR at the desired target level.

In the following, the methodology and main theoretical FDR control results are presented
and numerically verified and benchmarked against state-of-the-art methods. In Chapter 6, a
simulated GWAS and a real-world HIV-1 drug resistance study demonstrate that the perfor-
mance of the Screen-T-Rex selector is superior, and its computation time is multiple orders of
magnitude lower compared to current benchmark knockoff methods.

3 .7 . 1 Methodology and Main Results

Two versions of the Screen-T-Rex selector are proposed, the corresponding FDR control the-
orems are presented, and an algorithm for screening genomics biobanks is formulated.

3 .7 . 1 . 1 Ordinary Screen-T-Rex Selector

While the original T-Rex selector determines v, T , and L such that the FDR is controlled at
the user-defined target level, the Screen-T-Rex selector fixes (v, T, L) = (0.5, 1, p). This is a
special case of the original T-Rex selector that
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1. is harnessed by the proposed Screen-T-Rex selector to determine an estimator of the
FDR and

2. requires a much lower computation time than the original T-Rex selector and other
benchmark methods (see Table 6.2 in Chapter 6).

The FDR estimator of the proposed ordinary Screen-T-Rex selector is given by

α̂ :=
1

R1,p(0.5) ∨ 1
, (3.41)

i.e., one divided by the number of selected variables. The intuition behind this estimator is
as follows: T = 1 dummy variable is allowed to enter the solution paths of the random ex-
periments before terminating the forward selection processes. So, in each random experiment
one out of p dummies is included. Therefore, we expect, on average, no more than one out
of at most p null variables to be included in each candidate set Ck,L(T ), and, consequently,
no more than one null variable among all selected variables. This idea is formalized in the
following FDR control result:
Theorem 6 (FDR control - ordinary Screen-T-Rex selector). Define α̂ := 1/(R1,p(0.5)∨1),
i.e., as in (3.41). Then,

FDR(0.5, 1, p) = E[FDP(0.5, 1, p)] ≤ α̂, (3.42)

i.e., the FDR is controlled at the estimated level α̂.

Proof. With Definition 7, we obtain

FDP(0.5, 1, p) =
V1,p(0.5)

R1,p(0.5) ∨ 1
= α̂ · V1,p(0.5). (3.43)

Let p = p1+p0, where p1 and p0 are the number of true active and null variables, respectively.
Taking the expectation of (3.43) yields

FDR(0.5, 1, p) = E[FDP(0.5, 1, p)] = α̂ · E
[
V1,p(0.5)

]
≤ α̂ · p0

p+ 1
≤ α̂, (3.44)

where the first inequality follows from V1,p(0.5) being stochastically dominated by the neg-
ative hypergeometric distribution NHG(p0 + p, p0, 1), whose expected value is given by
p0/(p+ 1) (see Appendix A.5).
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3 .7 . 1 . 2 Confidence-Based Screen-T-Rex Selector

The aboveproposedordinary Screen-T-Rex selector, aswell as the originalT-Rex selector, only
considers the relative occurrences of the candidate variables in the selected active sets Ck,L(T )
and disregards the original and dummy coefficient estimates, i.e.,

1. β̂j,k(T, L), j = 1, . . . , p, (i.e., coefficient estimate of the jth original variable in the
kth random experiment and

2. β̂◦
l,k(T, L), l = 1, . . . , L, (i.e., coefficient estimate of the lth dummy variable in the

kth random experiment.

However, since the dummy variables act as flagged null variables, the coefficients of the
dummies contain information about the distribution of the coefficients of the null variables.
Therefore, we propose to harness the coefficient estimates of the dummies to construct a
confidence interval

C(γ) := [c1(γ), c2(γ)], γ ∈ [0, 1], (3.45)

where c1(γ) and c2(γ) are the lower and upper bound, respectively, and γ is the confidence
level. The coefficient estimates of the null variables can also be expected to lie within the
same confidence interval. Therefore, instead of selecting variables based on their relative oc-
currences, we replace V1,p(0.5) andR1,p(0.5) in Definition 7 and Theorem 6 by

V
(C)
1,p (γ) :=

∣∣{null j : β̂j(1, p) /∈ C(γ)
}∣∣ and (3.46)

R
(C)
1,p (γ) :=

∣∣Â(C)
p (γ, 1)

∣∣ := ∣∣{j : β̂j(1, p) /∈ C(γ)
}∣∣, (3.47)

respectively, where β̂j(1, p) :=
1
K

∑K
k=1 β̂j,k(1, p). That is, only candidate variables whose

averaged (overK random experiments) coefficient estimates are not inside the confidence in-
tervalC(γ) are selected.

We propose to construct the confidence interval in (3.45) using the non-parametric bootstrap
with 1,000 resamples of the vector containing the K = 20 non-zero dummy coefficient es-
timates. Since, in all our simulations, the distribution of the bootstrapped standard errors
of the averaged non-zero dummy coefficient estimates followed the standard normal distri-
bution, we construct a normal bootstrap confidence interval (for details, see [ET94; DH97;
ZI04]). In the following theorem, we state how the most liberal confidence level γ can be
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determined such that the FDR is controlled at the estimated level by the confidence-based
Screen-T-Rex selector:
Theorem 7 (FDR control - confidence-based Screen-T-Rex selector). Define γ := inf

{
γ′ ∈

[0, 1] : R
(C)
1,p (γ

′) ≤ R1,p(0.5)
}
and α̂C := 1/(R

(C)
1,p (γ) ∨ 1). Suppose that V (C)

1,p (γ)
d

≤

V1,p(0.5), where
d

≤ denotes stochastic dominance. Then,

FDR(γ, T = 1, L = p) := E[FDP(γ, T = 1, L = p)] := E

[
V

(C)
1,p (γ)

R
(C)
1,p (γ) ∨ 1

]
≤ α̂C .

(3.48)

Proof. With Definition 7 and Equations (3.46) and (3.47), we obtain

FDR(γ, T = 1, L = p) = E[FDP(γ, T = 1, L = p)] = E

[
V

(C)
1,p (γ)

R
(C)
1,p (γ) ∨ 1

]
(3.49)

= α̂C · E
[
V

(C)
1,p (γ)

]
≤ α̂C · E

[
V1,p(0.5)

]
≤ α̂C , (3.50)

where the first inequality follows from V
(C)
1,p (γ)

d

≤ V1,p(0.5) and the second inequality is the
same as in the proof of Theorem 6.

3 .7 . 1 . 3 Screening Genomics Biobanks

The Screen-T-Rex selector is intended to be used for screening thousands of phenotypes in
large biobanks, while only using the original T-Rex selector in the cases where the estimated
FDR is not acceptable to the user. Here, the user sets the target FDR for the original T-Rex
selector and a lower and upper bound αl and αu, respectively, for the estimated FDRs by
both versions of the Screen-T-Rex selector. The lower bound is required to avoid solutions
at very low estimated FDRs, since these would yield a low power (i.e., TPR). Algorithm 4
summarizes the proposed work flow.

3 .7 . 2 Numerical Experiments

We simulate a high-dimensional data setting according to the linear model in (2.1) with
n = 300 samples and p = 1,000 predictors (i.e, candidate variables), and p1 = 10

true active variables. The noise variance σ2 is chosen such that the signal-to-noise-ratio
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Algorithm 4 Screening Genomics Biobanks.
1. Input: α, αl, and αu.

2. For each considered phenotype in the biobank do:

2.1. Run the Screen-T-Rex selector and obtain the estimated FDR levels α̂ and α̂C .

2.2. Determine the final set of selected variables Â as follows:

Â :=



Â(C)
p (γ, 1),

αl ≤ α̂C ≤ αu &
max{α̂C , α̂ · I(α̂ ≤ αu)} = α̂C

Âp(0.5, 1),
αl ≤ α̂ ≤ αu &
max{α̂C · I(α̂C ≤ αu), α̂} = α̂

∅, otherwise

, (3.51)

where I(a ≤ b), a, b ∈ R, is the indicator function that has the value one if
a ≤ b and zero otherwise. ∅ denotes the empty set. Convention: If α̂ = α̂C

and all conditions in the first two cases are satisfied, then Â := Â(C)
p (γ, 1).

2.3. If Â = ∅, run the T-Rex selector with target FDR α and determine

Â := ÂL(v
∗, T ∗). (3.52)

3. Output: Selected active set Â.

SNR := Var(Xβ)/Var(ϵ) takes on the values on the x-axes in Figure 3.10. Note that the
FDP and TPP in Figure 3.10 are averaged over 955 Monte Carlo replications, respectively,
and, therefore, are estimates of the FDR and TPR, respectively. A discussion of the results is
provided within the caption of Figure 3.10.

3 . 8 Summary

The T-Rex selector, a new fast FDR-controlling variable selection framework for high-
dimensional settings, has been proposed and benchmarked against existing methods in
numerical simulations. The T-Rex selector is, to the best of our knowledge, the first
multivariate high-dimensional FDR-controlling method that scales to millions of variables
in a reasonable amount of computation time. Since the T-Rex random experiments can
be computed in parallel, multicore computers allow for additional substantial savings in
computation time. These properties make theT-Rex selector a suitable method especially for
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Figure 3.10: Figures (a) and (b) display the results of the benchmark methods. We observe that the T-Rex
selector and the model-X knockoff+ method control the FDR at the target level of 10%, while the model-X
knockoff method fails to control the FDR. Figures (c) - (f) show that the proposed ordinary and the confidence-
based Screen-T-Rex selector both control the FDR at the self-estimated levels while achieving a reasonably high
TPR. The confidence-based version is capable of controlling the FDR at lower levels than the ordinary version
but, in turn, achieves a lower TPR.
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large-scale GWAS.

The Screen-T-Rex selector, a fast FDR-controlling variable selection method for screening
through large-scale genomics biobanks, has been proposed. Using the Screen-T-Rex selector
in combination with the original T-Rex selector, an efficient algorithm for conducting thou-
sands of large-scale GWAS has been proposed.

In Chapter 6, the proposed T-Rex and Screen-T-Rex selectors have been used to solve real-
world data applications in biomedical engineering.
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After climbing a great hill, one only finds that there are
many more hills to climb.

Nelson Mandela

4
Dependency-Aware High-Dimensional

False Discovery Rate Control

In this chapter, the proposed T-Rex framework in Chapter 3 is extended to account for
groups of highly dependent candidate variables. The developed dependency-aware T-Rex
(T-Rex+DA) selector allows to perform FDR-controlled high-dimensional variable selection
in the presence of various types of dependencies among the candidate variables. In these
highly correlated settings, which are characteristic for, e.g., genomics and stock returns data,
the state-of-the-art benchmark methods loose the FDR control property while the proposed
T-Rex+DA selector maintains FDR control.

Section 4.1motivates the proposedT-Rex+DA selector andprovides an overviewof themajor
contributions. In Section 4.2 the methodology, the main theoretical results, and the calibra-
tion algorithm of the proposed T-Rex+DA selector are presented. In Section 4.3, the theo-
retical results are numerically verified and the performance of theT-Rex+DA selector is com-
pared against state-of-the-art benchmark methods via numerical experiments. In Section 4.4,
the T-Rex+DA selector is adapted for advanced dependency models that are especially rele-
vant in financial index tracking. Section 4.5 summarizes this chapter.

In Chapters 6 and 7, the proposed methods have been used to solve challenging real-world
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data problems in biomedical and financial engineering. Technical proofs and additional sim-
ulations are deferred to Appendix B.

The content of this chapter is based on the publications [MMPewb], [MPMew],
and [MMP24]. The implementations of the developed methods are included in the
open source R software packages (with C++ backend) TRexSelector [Mac+24c] and
tlars [Mac+24b] on CRAN.

4 . 1 The T-Rex +DA Selector : Motivat ion and Major
Contribut ions

This section motivates the proposed T-Rex+DA selector through a gene expression survival
analysis use-case and provides an overview of the major contributions.

4 . 1 . 1 Motivation

An important use-case of this work consists in detecting the few genes that are truly associated
with the survival time of patients diagnosed with a certain type of cancer [TCW15; ŐLG21;
ABG08]. The expression levels of the detected genes are then classified into low- and high-
expressing genes, which allows cancer researchers to make statements such as: “The median
survival time of breast cancer patients with a high expression of gene A and a low expression
of gene B is 10 years higher than the survival time of patients with a low expression of gene
A and a high expression of gene B.” Such information is invaluable for the development of
new therapies and personalized medicine [KA17]. However, the development and clinical
trial of new drugs is costly and resources are limited. Therefore, it is crucial to select as many
as possible of the few reproducible genes that are truly associated with the survival time of
cancer patients while keeping the number of false discoveries (i.e., irrelevant genes) low. This
aim is in line with false discovery rate (FDR) controlling methods.

Unfortunately, however, both the model-X knockoff methods and the T-Rex methods fail
to control the FDR reliably in the presence of groups of highly dependent variables, which
are characteristic for, e.g., gene expression [SDC03], genomics [Bal06], and stock returns
data [MPMew].

In order to reduce the dependencies among the candidate variables, pruning approaches have
been used [Can+18; SSC19; MMPewa]. In general, pruning methods cluster highly depen-
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dent variables into groups, select a representative variable for each group, and run the FDR-
controlling method on the set of representatives. This approach is suitable for genome-wide
association studies (GWAS) based on large-scale high-dimensional genomics data from large
biobanks [Bun+19; Sud+15], where the goal is to detect the groups of highly correlated single
nucleotide polymorphisms (SNPs) that are associated with a disease of interest and not the
specific SNPs. However, pruning methods are not applicable in gene expression analysis and
other applications where it is crucial to detect specific genes or other variables.

4 . 1 . 2 Major Contributions

To address use-cases like the one discussed in Section 4.1.1, we propose a new FDR-controlling
and dependency-aware T-Rex (T-Rex+DA) framework that provably controls the FDR at
the user-specified target level. This is achieved and verified through the following theoretical
contributions, numerical validations, and real world experiments:

1. A dependency-capturing graphical model is incorporated into the T-Rex framework
and is used to capture and leverage the dependency structure among variables to de-
velop a variable penalization mechanism that allows for provable FDR control.

2. Using martingale theory (see Section 2.3), we prove that the proposed approach con-
trols the FDR (Theorem 9).

3. We beginwith hierarchical graphical models (i.e., binary trees) and then extend the pro-
posed framework by stating and proving a comprehensible condition that must be sat-
isfied for the design of graphical and non-graphical dependency-capturing models to
be eligible for being incorporated into the T-Rex framework (Theorem 10).

4. We develop a fully integrated optimal calibration algorithm that simultaneously deter-
mines the parameters of the incorporated graphicalmodel andof theT-Rex framework,
such that the FDR is controlled while maximizing the number of selected variables
(Theorem 11).

5. Numerical experiments and a real-world breast cancer survival analysis (see Chapter 6)
verify the theoretical results and demonstrate the practical usefulness of the proposed
framework.
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4 . 2 Methodology and Main Theoret ical Results

In this section, the proposed FDR-controlling T-Rex+DA framework for general depen-
dency structures is introduced. First, a dependency-capturing graph model is incorporated
into the T-Rex+DA framework. Second, we prove that the considered group design yields
FDR control. Third, we formulate a sufficient group design condition for graphical as
well as non-graphical models that can be used as a guiding principle for other application-
specific group designs. Finally, the optimal dependency-aware calibration algorithm for the
T-Rex+DA selector is presented.

4 .2 . 1 Preliminaries

Before the proposedT-Rex+DA selector is presented and inorder tounderstandwhy the ordi-
naryT-Rex selectormight loose the FDR control property in the presence of highly correlated
variables, we establish an interesting relationship between the pairwise relative occurrences of
two candidate variables and the correlation coefficient between them. For example, let the
Lasso in Section 2.1.1 be used to perform the forward variable selection in each random experi-
ment. Within theT-Rex framework and for the kth random experiment, the Lasso estimator
is defined by

β̂k(λk(T, L)) = argmin
βk

1

2

∥∥y − X̃kβk

∥∥2
2
+ λk(T, L) · ∥βk∥1, (4.1)

where λk(T, L) > 0 is the sparsity parameter that corresponds to the change point in the kth
random experiment after T dummies have been included. With these definitions in place, we
can formulate the following theorem:
Theorem 8 (Absolute difference of relative occurrences). Let ρj,j′ := x⊤

j xj′ ,
j, j ′ ∈ {1, . . . , p}, be the sample correlation coefficient of the standardized variables j

and j′. Suppose that β̂j,k, β̂j′,k ̸= 0. Then, for all tuples (T, L) ∈ {1, . . . , L} × N+ it holds
that ∣∣ΦT,L(j)− ΦT,L(j

′)
∣∣ ≤ Λ∥y∥2 ·

√
2(1− ρj,j′), (4.2)

where Λ := 1
K

∑K
k=1

1
λk(T,L)

.

Proof. The proof is deferred to Appendix B.1.2.
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4 .2 . 2 The Dependency-Aware T-Rex Selector

From Theorem 8, we know that the pairwise absolute differences between the relative occur-
rences are bounded and the differences are zerowhen the corresponding variables are perfectly
correlated. That is, even if only one of the variables from the pair of highly correlated variables
is a true active variable, both variables might be selected. This is the harmful behavior that
leads to the loss of the FDR control property in the presence of highly correlated variables.
Loosely speaking, if a candidate variable is highly correlated with another candidate variable
and has a similar relative occurrence, then even high relative occurrences are no evidence for
that variable being a true active one. Therefore, for such types of data, we propose to replace
the ordinary relative occurrences of the T-Rex selectorΦT,L(j) by the dependency-aware rel-
ative occurrencesΦDA

T,L(j, ρthr), j = 1, . . . , p, which are defined as follows:
Definition 12 (Dependency-aware relative occurrences). The dependency-aware relative oc-
currence of variable j ∈ {1, . . . , p} is defined by

ΦDA
T,L(j, ρthr) := ΨT,L(j, ρthr) · ΦT,L(j), (4.3)

where

ΨT,L(j, ρthr) :=


1

2 − min
j′∈Gr(j,ρthr)

{∣∣ΦT,L(j)− ΦT,L(j
′)
∣∣} , Gr(j, ρthr) ≠ ∅

1/2, Gr(j, ρthr) = ∅
, (4.4)

with ΨT,L(j, ρthr) ∈ [0.5, 1] being a penalty factor,

Gr(j, ρthr) ⊆ {1, . . . , p}\{j} (4.5)

denoting the generic definition of the group of variables that are associated with variable j, and
ρthr ∈ [0, 1] denoting a parameter that determines the size of the variable groups.

In words, the dependency-aware relative occurrence of variable j is designed to penalize the
ordinary relative occurrence of variable j according to its resemblance with the relative occur-
rences of its associated group of variables Gr(j, ρthr).

FromDefinition 12, we can infer that the selected active set of the proposedT-Rex+DA selec-
tor is a subset of the selected active set of the ordinary T-Rex selector in (3.3):
Corollary 1. Let ÂL(v, T ) := {j : ΦT,L(j) > v} and ÂL(v, ρthr, T ) := {j :
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ΦDA
T,L(j, ρthr) > v} be the selected active sets of the ordinary T-Rex selector and the

T-Rex+DA selector, respectively. Then, it holds that

ÂL(v, ρthr, T ) ⊆ ÂL(v, T ). (4.6)

Proof. Using the definition ofΦDA
T,L(j, ρthr) in (4.3), we obtain

ÂL(v, ρthr, T ) = {j : ΨT,L(j, ρthr) · ΦT,L(j) > v} (4.7)

⊆ {j : ΦT,L(j) > v} (4.8)

= ÂL(v, T ), (4.9)

where the second line follows fromΨT,L(j, ρthr) ≤ 1.

Loosely speaking, Corollary 1 indicates that the effect of replacingΦT,L(j) byΦDA
T,L(j, ρthr) is

that highly correlated variables, for which there is not sufficient evidence to decide if they are
active, are removed from the selected active set.

In order to particularize the T-Rex+DA selector for different dependency structures among
the candidate variables, only the generic definition of the variable groups Gr(j, ρthr) in (4.5)
has to be specified. Therefore, in the following, we present a rigorous methodology for the
design ofGr(j, ρthr) such that the FDR is provably controlled at the user-defined target levelα
while maximizing the number of selected variables and, thus, implicitly maximizing the TPR.

4 .2 . 3 Clustering Variables via Hierarchical Graphical Models

In the following, we specify Gr(j, ρthr), j = 1, . . . , p, using a hierarchical graphical model.
That is, the variables x1, . . . ,xp are clustered in a recursive fashion according to some mea-
sure of distance. The resulting binary tree or dendrogram is a structured graph that allows
for different distance cutoff values that partition the set of variables. Figure 4.1 depicts such
a dendrogram for p = 6 variables, where the height of the “⊓”-shaped connector of any two
clusters represents the distance of the two connected clusters. At the bottom of the dendro-
gram, all variables are considered as one-element clusters. Then, starting at the bottom, in
each iteration the two clusters with the smallest distance are connected until all variables are
clustered into a single cluster at the top. The obtained dendrogram can be evaluated at differ-
ent distances (i.e., values on the y-axis), resulting in different variable clusters. The p discrete
distances between two consecutive cutoff levels that invoke a change in the clusters, are de-
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noted by ∆ρthr,u, u = 1, . . . , p. For example, cutting off the dendrogram in Figure 4.1 at a
distance of

1− ρthr(uc = 2) := 1−
uc=2∑
u=1

∆ρthr,u (4.10)

= 1− (0.1 + 0.3) = 0.6, (4.11)

where uc ∈ {1, . . . , p} is the discrete cutoff level, yields three disjoint variable clusters:
{x1,x2}, {x3,x4,x5}, and {x6}.

With this generic description of hierarchical graphical models in place, we can specify the
generic definition of the variable groups in (4.5) in a recursive fashion:
Definition 13 (Hierarchical group design). The jth variable group following a hierarchical
graphical model (i.e., binary tree/dendrogram) is defined by

Gr(j, ρthr(uc)) :=
{
j′ ∈ {1, . . . , p}\{j} : (4.12)

distuc−1(j, j
′) ∈ [1− ρthr(uc), 1− ρthr(uc − 1)]

}
, (4.13)

where distuc−1(j, j
′) is a still to be specified measure of distance between the groups

Gr(j, ρthr(uc − 1)) and Gr(j′, ρthr(uc − 1)).

Note that in this recursive definition of the variable groups, we consider ρthr(uc) to be a vari-
able that can be optimized and, therefore, include it in Gr(j, ρthr(uc)) as a second argument.

Remark 8. The following three distance measures are frequently used in hierarchical graphical
models [MC12]:

1. Single linkage:

distuc(g, h) := min
g′ ∈ Gr(g, ρthr(uc))

h′ ∈ Gr(h, ρthr(uc))

1− |ρg′,h′ |, (4.14)
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Figure 4.1: Hierarchical graphical models: The dendrogram.

2. Complete linkage:

distuc(g, h) := max
g′ ∈ Gr(g, ρthr(uc))

h′ ∈ Gr(h, ρthr(uc))

1− |ρg′,h′ |, (4.15)

3. Average linkage:

distuc(g, h) :=

∑
g′ ∈

Gr(g, ρthr(uc))

∑
h′ ∈

Gr(h, ρthr(uc))

(
1− |ρg′,h′ |

)

|Gr(g, ρthr(uc))| · |Gr(h, ρthr(uc))|
. (4.16)

Remark 9. Note that, for all uc ∈ {1, . . . , p}, it holds that

Gr(j1, ρthr(uc)) ∩ Gr(j2, ρthr(uc)) = (4.17)
∅, ∄ j ∈ {1, . . . , p} : j1, j2 ∈ Gr(j, ρthr(uc))

Gr(j1, ρthr(uc)) ∪ Gr(j2, ρthr(uc)), otherwise
, (4.18)

i.e., any arbitrary pair of groups among the obtained p groups Gr(j, ρthr(uc)), j = 1, . . . , p,
are disjoint if and only if there exist no two variables j1 and j2 that belong to the same group and
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identical otherwise. Loosely speaking, due to the binary tree structure of hierarchical graphical
models, there exist no “overlapping” variable groups.

4 .2 .4 Preliminaries for the FDR Control Theorem

Based on the recursive definition of the variable groups in (4.12), we can formulate the FDR,
TPR, and the conservative FDP estimator F̂DP. For this purpose, let

VT,L(v, ρthr(uc)) :=
∣∣Â 0(v, ρthr(uc))

∣∣ (4.19)

:=
∣∣{null j : ΦDA

T,L(j, ρthr(uc)) > v}
∣∣, (4.20)

ST,L(v, ρthr(uc)) :=
∣∣Â 1(v, ρthr(uc))

∣∣ (4.21)

:=
∣∣{active j : ΦDA

T,L(j, ρthr(uc)) > v}
∣∣, (4.22)

RT,L(v, ρthr(uc)) :=
∣∣Â(v, ρthr(uc))

∣∣ (4.23)

:=
∣∣{j : ΦDA

T,L(j, ρthr(uc)) > v}
∣∣, (4.24)

be the number of selected null variables, the number of selected active variables, and the
total number of selected variables, respectively. Note that the expressions Â 0(v, ρthr(uc)),
Â 1(v, ρthr(uc)), and Â(v, ρthr(uc)) are shortcuts (i.e., L and T are dropped) of the expres-
sions Â 0

L(v, ρthr(uc), T ), Â 1
L(v, ρthr(uc), T ), and ÂL(v, ρthr(uc), T ), respectively.

Definition 14 (Dependency-aware FDP and FDR). The dependency-aware FDR is defined
as the expectation of the dependency-aware FDP, i.e.,

FDR(v, ρthr(uc), T, L) := E
[
FDP(v, ρthr(uc), T, L)

]
(4.25)

:= E
[

VT,L(v, ρthr(uc))

RT,L(v, ρthr(uc)) ∨ 1

]
. (4.26)

Definition 15 (Dependency-aware TPP and TPR). The dependency-aware TPR is defined
as the expectation of the dependency-aware TPP, i.e.,

TPR(v, ρthr(uc), T, L) := E
[
TPP(v, ρthr(uc), T, L)

]
(4.27)

:= E
[
ST,L(v, ρthr(uc))

p1 ∨ 1

]
. (4.28)

71



From Definition 14, we know that in order to design a dependency-aware and conservative
FDP estimator, we only need to design a dependency-aware estimator of the number
of selected null variables VT,L(v, ρthr(uc)), since the total number of selected variables
RT,L(v, ρthr(uc)) is observable. For this purpose, we plug the dependency-aware relative
occurrences from Definition 12 and the group design from Definition 13 into the ordinary
T-Rex estimator of VT,L(v) in Definition 10, which yields the dependency-aware estimator
of the number of selected null variables

V̂T,L(v, ρthr(uc)) :=
∑

j∈Â(v,ρthr(uc))

(
1− ΦDA

T,L(j, ρthr(uc))
)
+ V̂ ′

T,L(v, ρthr(uc)), (4.29)

where

V̂ ′
T,L(v, ρthr(uc)) :=

T∑
t=1

p−
p∑

q=1

ΦDA
t,L(q, ρthr(uc))

L− (t− 1)
·

∑
j∈Â(v,ρthr(uc))

∆ΦDA
t,L(j, ρthr(uc))∑

j∈Â(0.5,ρthr(uc))

∆ΦDA
t,L(j, ρthr(uc))

(4.30)

and∆ΦDA
t,L(j, ρthr) := ΦDA

t,L(j, ρthr)−ΦDA
t−1,L(j, ρthr) is the increase in the dependency-aware

relative occurrence from step t−1 to t. The expressions in (4.29) and (4.30) are derived along
the lines of the ordinary estimator of VT,L(v) in (3.18) within Definition 10 except that the
ordinary relative occurrences inDefinition 5 have been replaced by the proposed dependency-
aware relative occurrences in Definition 12.

Finally, analogous to Definition 10 that introduces the FDP estimator for the T-Rex selector,
the conservative dependency-aware estimator of the FDP is defined as follows:
Definition 16 (Dependency-aware FDP estimator). The dependency-aware FDP estimator
is defined by

F̂DP(v, ρthr(uc), T, L) :=
V̂T,L(v, ρthr(uc))

RT,L(v, ρthr(uc)) ∨ 1
. (4.31)

With all preliminary definitions in place, the overarching goal of this work, i.e., maximizing
the number of selected variables while controlling the FDR at the target levelα, is formulated
as follows:

maximize
v,ρthr(uc),T

RT,L(v, ρthr(uc)) subject to F̂DP(v, ρthr(uc), T, L) ≤ α. (4.32)
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In Section 4.2.5, we prove that satisfying the condition of the optimization problem in (4.32)
yields FDR control and in Section 4.2.7, we propose an efficient algorithm to solve (4.32) and
prove that it yields an optimal solution.

4 .2 . 5 Dependency-Aware FDR Control

In this section, using martingale theory (see Section 2.3), we state and prove that controlling
F̂DP(v, ρthr(uc), T, L) at the target level α (i.e., the condition in the optimization problem
in (4.32)) guarantees FDR control.
Theorem 9 (Dependency-aware FDR control). For all quadruples (T, L, ρthr(uc), v) ∈
{1, . . . , L} × N+ × [0, 1]× [0.5, 1) that satisfy the equation

v = inf
{
ν ∈ [0.5, 1) : F̂DP(ν, ρthr(uc), T, L) ≤ α

}
, (4.33)

and asK →∞, the T-Rex+DA selector with Gr(j, ρthr(uc)) from Definition 13 controls the
FDR at any fixed target level α ∈ [0, 1], i.e.,

FDR(v, ρthr(uc), T, L) ≤ α. (4.34)

Proof. The proof is deferred to Appendix B.1.3.

4 . 2 .6 General Group Design Principle

TheT-Rex+DA selector is not restricted to the considered binary tree graphs or dendrograms
but also applies for various other dependencymodels. In fact, a closer look at Lemmas 8 and 9
in Appendix B.1.7, which are essential for the proof of Theorem 9 (dependency-aware FDR
control), reveals that the following general design principle for the groups Gr(j, ρthr) can be
derived from Lemmas 8 and 9:
Theorem 10 (Group design principle). Consider the generic definition of the variable groups
in Definition 12, i.e., Gr(j, ρthr) ∈ {1, . . . , p}\{j}, j = 1, . . . , p, ρthr ∈ [0, 1]. If any ρ1,
ρ2 ∈ [0, 1], ρ2 > ρ1, satisfy

Gr(j, ρ2) ⊆ Gr(j, ρ1), j = 1, . . . , p, (4.35)

then the T-Rex+DA selector controls the FDR at the target level α ∈ [0, 1].

Proof. The proof is deferred to Appendix B.1.4.
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Figure 4.2: Illustration of the group design principle for dependency-aware FDR control in Theorem 10.

Loosely speaking, Theorem 10 states that the cardinalities of any variable group j must be
monotonically decreasing in ρthr and follow the subset structure illustrated in Figure 4.2.
Thus, any dependency model (e.g., graph models, time series models, equicorrelated models,
etc.) that follows the design principle inTheorem 10 can be incorporated into theT-Rex+DA
selector. This property makes the T-Rex+DA selector a versatile FDR-controlling method
that can cope with various dependency models. In conclusion, it is not necessary to redo the
FDR control proof for new group designs. Instead, one simply has to check whether that
group design follows the group design principle in Theorem 10.

4 .2 .7 Optimal Dependency-Aware T-Rex Calibration Algorithm

In this section, we propose an efficient calibration algorithm and prove that it yields an opti-
mal solution of (4.32). That is, it optimally calibrates the parameters v, ρthr(uc), and T of the
proposed T-Rex+DA selector, such that the FDR is controlled at the target level while max-
imizing the number of selected variables.The pseudocode of the proposed T-Rex+DA cali-
bration algorithm is given in Algorithm 5. An open source implementation of the proposed
calibration algorithm for the T-Rex+DA selector is available within the R package ‘TRexSe-
lector’ on CRAN [Mac+24c].

First, some hyperparameters, which are relevant for managing the tradeoff between achieving
a high TPR, the memory consumption, and computation time but have no influence on the
FDR control property of the proposed method, are set. Throughout this dissertation, the
hyperparameters are chosen as suggested and discussed in Section 3.5.4 and Appendix A.3 to
be ṽ = 0.75, ρ̃thr = ρthr(⌊0.75 · p⌉), Lmax = 10p, Tmax = ⌈n/2⌉, where ⌊·⌉ and ⌈·⌉ denote
rounding towards the nearest integer and the nearest higher integer, respectively. Moreover,
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Algorithm 5 Extended T-Rex+DA Calibration.
1. Input: α ∈ [0, 1],X , y,K , ṽ, ρ̃thr, Lmax, Tmax.

2. Set L = p, T = 1.

3. While F̂DP(v = ṽ, ρthr(uc) = ρ̃thr, T, L) > α and L ≤ Lmax do:

Set L← L+ p.

4. Set∆v=
1

K
, F̂DP(v = 1−∆v, ρthr(uc) = ρ̃thr, T, L) = 0.

5. While F̂DP(v = 1−∆v, ρthr(uc) = ρ̃thr, T, L) ≤ α and T ≤ Tmax do:

5.1. For v = 0.5, 0.5 + ∆v, 0.5 + 2 ·∆v, . . . , 1−∆v do:

5.1.1. For uc = 1, . . . , p do:

i. Compute F̂DP(v, ρthr(uc), T, L) as in Def. 16.

ii. If F̂DP(v, ρthr(uc), T, L) ≤ α

Compute ÂL(v, ρthr(uc), T ) as in (4.36).

Else

Set ÂL(v, ρthr(uc), T ) = ∅.

5.2. Set T ← T + 1.

6. Solve

max
v′,ρthr(u′

c),T
′

∣∣ÂL(v
′, ρthr(u

′
c), T

′)
∣∣

s.t. T ′ ∈ {1, . . . , T − 1}
u′

c ∈ {1, . . . , p}
v′ ∈ {0.5, 0.5 + ∆v, 0.5 + 2∆v, . . . , 1−∆v}

and let (v∗, ρthr(u
∗
c ), T

∗) be a solution.

7. Output: (v∗, ρthr(u
∗
c ), T

∗, L) and ÂL(v
∗, ρthr(u

∗
c ), T

∗).

it was shown for various applications and in extensive simulations that there are no improve-
ments forK > 20 random experiments [MMPewa; MMP22; MMP23a] and, therefore, we
setK = 20.

The algorithm proceeds as follows: It takes the user-defined target FDR, the original predic-
tor matrix X , and the response vector y as inputs. Then, it determines L via a loop that
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adds p dummies in each iteration until F̂DP(v = ṽ, ρthr(uc) = ρ̃thr, T = 1, L) falls below
the target FDR level α at a reference point (v, ρthr(uc), T ) = (ṽ, ρ̃thr, 1) or L reaches the
maximum allowed value Lmax. This guarantees that the FDR is controlled as tightly as possi-
ble at the target FDR level α while ensuring that the TPR is as high as possible. Supposing
that there exists no ρ̃′thr ̸= ρ̃thr that satisfies F̂DP(v = 1 − ∆v, ρthr(uc) = ρ̃′thr, T, L) <

F̂DP(v = 1−∆v, ρthr(uc) = ρ̃thr, T, L), the algorithm proceeds by increasing the number
of includeddummiesT at a reference point (v, ρthr(uc)) = (1−∆v, ρ̃thr), where∆v = 1/K ,
until F̂DP(v = 1 −∆v, ρthr(uc) = ρ̃thr, T, L) exceeds the target level α or reaches the max-
imum allowed number of included dummies Tmax. Fixing the optimized parameters L, T
and the corresponding FDR-controlled variable sets, the algorithm then determines the op-
timal values of v and ρthr(uc) that maximize the number of selected variables by solving the
optimization problem in (6). Finally, the obtained solution (v∗, ρthr(u

∗
c ), T

∗, L) yields the
FDR-controlled set of selected variables

ÂL(v
∗, ρthr(u

∗
c ), T

∗) =
{
j : ΦDA

T ∗,L(j, ρthr(u
∗
c )) > v∗

}
. (4.36)

In the following, we state and prove that Algorithm 5 yields an optimal solution of (4.32).
Theorem 11 (Optimal Dependency-Aware Calibration). Suppose that L, as obtained by Al-
gorithm 5, is fixed and that, ceteris paribus, F̂DP(v, ρthr(uc), T, L) is monotonically decreasing
in v and monotonically increasing in T . Then, any triple (v∗, ρthr(u

∗
c ), T

∗) of a quadruple
(v∗, ρthr(u

∗
c ), T

∗, L), as obtained by Algorithm 5, is an optimal solution of (4.32).

Proof. The proof is deferred to Appendix B.1.5.

4 . 3 Numer ical Exper iments

In this section, we verify the FDR control property of the proposed T-Rex+DA selector via
numerical experiments and compare its performance against three state-of-the-art methods
for high-dimensional data, i.e., model-X knockoff [Can+18], model-X knockoff+ [Can+18],
and the proposed T-Rex selector from Chapter 3.

4 . 3 . 1 Setup

We consider a high-dimensional setting with p = 500 variables and n = 150 samples and
generate the predictor matrix X from a zero mean multivariate Gaussian distribution with
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Figure 4.3: Only the proposedT-Rex+DA selector with a binary tree groupmodel (T-Rex+DA+BT ) reliably
controls the FDR in all settings while achieving a reasonably high TPR. In Figure (c), we see that with increasing
correlations among the variables in a group, the benchmark methods exhibit an alarming increase in FDR.
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(c) ρ = 0.8
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(e) ρ = 0.9
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(f ) ρ = 0.9

Figure 4.4: The proposed T-Rex+DA selector reliably controls the FDR in all settings while achieving a rea-
sonably high TPR in harsh high correlation settings. We observe that with increasing correlations among the
variables in a group, the benchmark methods do not control the FDR for almost any choice of target FDR.

78



an M block diagonal correlation matrix, where each block is a Q × Q toeplitz correlation
matrix, i.e.,

Σ =


Σ1 0 . . . 0

0
. . .

...
... ΣM 0

0 . . . 0 0

 , Σm =



1 ρ ρ2 · · · ρQ−1

ρ 1 ρ · · · ρQ−2

ρ2 ρ 1 · · · ρQ−3

...
...

...
. . .

...

ρQ−1 ρQ−2 ρQ−3 . . . 1


. (4.37)

That is, each block mimics a dependency structure that is often present in biomedical data
(e.g., gene expression [SDC03] and genomics data [Bal06]) and may lead to the breakdown
of the FDR control property of existing methods. The response vector y is generated from
the linear model y = Xβ + ϵ, where β = [β1 · · · βp]

⊤ ∈ Rp is the sparse true coefficient
vector and ϵ ∼ N (0, σ2I) is an additive noise vector with variance σ2 and identity matrix I .
The variance σ2 is set such that the signal-to-noise ratio SNR = Var[Xβ]/σ2 has the desired
value. In the base setting, we set the parameters as follows: SNR = 2, ρ = 0.7, Q = 5,
M = 5, α = 0.2. The coefficient vector β is generated such that the mth block consists of
one true active variable with coefficient value one, while the remaining variables are nulls with
coefficient value zero. In the numerical experiments, all parameters except for one parameter
of the base setting are varied. That is, ceteris paribus, SNR, ρ, group sizeQ, number of groups
M , and target FDR α are varied.

4 . 3 . 2 Results

The results in Figures 4.3 and 4.4 are averaged over 955 Monte Carlo replications.1 For the
performance comparison, we consider the averaged FDP and TPP (in %) which are estimates
of the FDR and TPR. We observe that only the proposed T-Rex+DA selector with a binary
tree group model (T-Rex+DA+BT ) reliably controls the FDR over all values of SNR, ρ, Q,
M , and α, while the benchmarks lose the FDR control property, especially in the practically
important case where groups of highly correlated variables are present in the data. It is re-
markable that the frequently usedmodel-X knockoff method exceeds the target FDR level in
all scenarios by far. Note that achieving a higher TPRwithout controlling the FDR is undesir-
able, since it leads to reporting false discoveries, which need to be avoided in order to alleviate

1Theunevennumber ofMonteCarlo replicationswas chosen to run the simulations efficiently and inparallel
on the Lichtenberg High-Performance Computer of the Technische Universität Darmstadt.
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the unfortunately still ongoing reproducibility crisis in many scientific fields [Bak16b].

The results of two additional simulation setups, where

1. the p-dimensional samples of the predictor matrix (i.e., rows ofX) are sampled from
a zero-meanmultivariate heavy-tailed Student-t distribution with covariancematrixΣ
and 3 degrees of freedom,

2. the noise vector ϵ is sampled from a heavy-tailed Student-t distribution with 3 degrees
of freedom,

are deferred to Appendix B.2. These additional simulations verify the theoretical results and
show that only the proposed T-Rex+DA selector reliably controls the FDR in these heavy-
tailed settings.

4 . 4 The T-Rex+DA Selector for Sparse F inancial
Index Tracking

In Section 4.2.3, theT-Rex+DA framework has been adapted for non-overlapping groups of
highly correlated candidate variables. However, there exist applications in areas such as finan-
cial engineering that exhibit variable dependency structures that cannot be modeled as non-
overlapping groups of variables. In particular, in financial index tracking overlapping groups
of highly correlated stocks need to be taken into account to determine an FDR-controlled
sparse tracking portfolio. To address this issue, we have expanded theT-Rex+DA framework
to accommodate overlapping groups of highly correlated variables.

More specifically, we propose a new FDR-controlling index tracking method by

1. extending the T-Rex+DA framework to account for strongly overlapping groups of
highly correlated variables using a nearest neighbors penalization mechanism,

2. proving that it controls the FDR at the investor-specified target level, and

3. demonstrating its unique capability of accurately tracking the S&P 500 index over the
last 20 years based on a sparse, FDR-controlled, and quarterly updated portfolio (see
Chapter 7).

Moreover, we propose another extension of the T-Rex+DA framework that accounts for au-
toregressive dependencies among candidate variables. InChapter 7, its capability of accurately
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tracking the S&P 500 index at a very low target FDR level is demonstrated.

While this work highlights an application in finance, the method more generally applies to
any setting where the variables exhibit an overlapping groups dependency structure.

4 .4 . 1 Adaptation for Overlapping Groups of Highly Correlated
Variables

The binary tree design of the groupsGr(j, ρthr) for theT-Rex+DA+BT selector that has been
introduced in Definition 13 does not allow for arbitrary overlapping groups of highly corre-
lated variables, which are characteristic for stock returns data. Therefore, in this section, we
propose a new design for the variable groups Gr(j, ρthr), j = 1, . . . p, which incorporates
a nearest neighbors (NN) penalization mechanism into the dependency-aware T-Rex frame-
work. We then prove that the proposed approach controls the FDRat the user-specified target
level.

4 .4 . 1 . 1 Group Design

For the proposed NN group design, each variable j is assigned a variable group that contains
variables whose correlations with variable j exceed a threshold ρthr ∈ [0, 1], i.e.,

Gr(j, ρthr) :=
{
j′ ∈ {1, . . . , p}\

{
j
}
: (4.38)

| corr(xj,xj′)| ≥ ρthr
}
. (4.39)

Clearly, in contrast to the group design of the T-Rex+DA+BT selector in Definition 13, this
group design allows for overlapping groups of highly correlated variables. The challenge now
is to jointly determine ρthr in (4.39) and the other parameters of the dependency-awareT-Rex
selector (i.e., v, T , and L) such that the proposed NN group design yields FDR-controlled
solutions

ÂL(v, ρthr, T ) := {j : ΦNN
T,L(j, ρthr) > v}, (4.40)

where
ΦNN

T,L(j, ρthr) := ΨNN
T,L(j, ρthr) · ΦT,L(j) (4.41)

is the dependency-aware relative occurrence of the jth variable using the proposedNN group
design in (4.39).
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4 .4 . 1 . 2 FDR Control

The distinction of the penalty functions ΨT,L and ΨNN
T,L in (4.4) and (4.41) stems from their

underlying group designs. The underlying group design ofΨT,L only allows for disjoint vari-
able groups. In contrast, the proposed NN group design in (4.39) extends the scope of the
T-Rex+DA selector by allowing for overlapping groups of highly correlated variables, which
are characteristic for applications such as the considered financial index tracking.

In order to prove that the proposed NN group design controls the FDR, we first define the
conservative FDP estimator2

F̂DP(v, ρthr, T, L) :=
V̂T,L(v, ρthr)

max
{
1, RT,L(v, ρthr)

} , (4.42)

where RT,L(v, ρthr) := |ÂL(v, ρthr, T )| is the number of selected variables. Second, let
Â(v, ρthr) := ÂL(v, ρthr, T ) and∆ΦNN

t,L(j, ρthr) := ΦNN
t,L(j, ρthr)−ΦNN

t−1,L(j, ρthr). Then, the
proposed estimator of the unknown number of selected null variables VT,L(v, ρthr) in (4.42)
is defined by

V̂T,L(v, ρthr) :=
∑

j∈Â(v,ρthr)

(
1− ΦNN

T,L(j, ρthr)
)

(4.43)

+
T∑
t=1

p−
∑p

q=1 Φ
NN
t,L(q, ρthr)

L− (t− 1)
·

∑
j∈Â(v,ρthr)

∆ΦNN
t,L(j, ρthr)∑

j∈Â(0.5,ρthr)

∆ΦNN
t,L(j, ρthr)︸ ︷︷ ︸

=:V̂ ′
T,L(v,ρthr)

, (4.44)

which is similar to the estimator that was defined in (4.29) with the innovation that the ordi-
nary relative occurrences are replaced by the proposed relative occurrences in (4.41).

With all necessary definitions in place, we now state and prove that any quadruple
(v, ρthr, T, L) ∈ [0.5, 1) × [0, 1] × {1, . . . , L} × N+, for which the conservative FDP
estimator in (4.42) does not exceed the user-specified target level α ∈ [0, 1], yields FDR
control. To simultaneously maximize the number of selected variables (to obtain highest
possible TPR while controlling FDR), we choose the lowest possible voting threshold v that

2Conservative is meant in the sense that E[FDP] ≤ E[F̂DP].
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maintains FDR control, i.e.,

v := inf{ν ∈ [0.5, 1) : F̂DP(ν, ρthr, T, L) ≤ α}. (4.45)

Theorem 12 (FDR control). Let Gr(j, ρthr) be as defined in (4.39) and K → ∞. Sup-
pose that V̂ ′

T,L(v, ρthr) > 0. Then, for any quadruple (v, ρthr, T, L) ∈ [0.5, 1) × [0, 1] ×
{1, . . . , L}×N+ that satisfies Equation (4.45), it holds that FDR(v, ρthr, T, L) ≤ α, i.e., the
FDR is controlled at the user-specified target level α ∈ [0, 1].

Proof. The proof is deferred to Appendix B.1.6.

4 .4 .2 Adaptation for Autoregressive Variable Dependency Mod-
els

The proposedT-Rex+DA+NN selector fromSection 4.4.1 is able to control the FDR even in
the presence of overlapping groups of highly correlated variables. However, opting for group
dependency models often demands investors to accept a relatively high target FDR level (e.g.,
30%) for a sufficiently diversified tracking portfolio, while lower target levels (e.g., 1%) typi-
cally result in an empty portfolio. Tolerating high target FDR levels leads to more irrelevant
stocks in the tracking portfolio and consequently to higher transaction costs.

To reinstate the FDR control property amid highly dependent stocks while achieving high
selection power at low target FDR levels, this section presents the following methodological
and experimental contributions:

1. Proposed: Integrating autoregressive dependency models into the T-Rex+DA frame-
work to account for dependencies among stocks.

2. Theoretical analysis and numerical experiments showing that the proposed method-
ology controls the FDR at the user-specified target level, whereas the ordinary T-Rex
selector loses the FDR control property in the presence of strong autoregressive depen-
dencies among variables.

3. A real-world S&P 500 index tracking use-case demonstrating that the simple and yet
accurate autoregressive dependency models allow to effectively leverage the dependen-
cies among stocks, which yields well diversified tracking portfolios at low target FDR
levels (see Chapter 7).
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4 .4 .2 . 1 Group Design

In order to control the FDR in the presence of autoregressive dependency structures among
candidate variables, wemathematicallymodel and account for such dependencies by adapting
the formulation of the variable groups Gr(j, ρthr), j = 1, . . . , p. We focus on first-order
autoregressive (AR(1)) dependencies, since this simple first order model suffices to properly
model the dependencies among stocks for the purpose of FDR-controlled index tracking (see
Section 7.1.3.2).

First, let X1, . . . , Xp be standardized (i.e., E[Xj] = 0 and Var[Xj] = 1, j = 1, . . . , p)
random variables associated with the predictors x1, . . . ,xp. Then, a weak-sense stationary
AR(1) process is characterized by

Xj = ρXj−1 + Ej, |ρ| < 1, (4.46)

where the white noise process Ej is characterized by E[Ej] = 0 and Var[Ej] = σ2
E . The

autocorrelation function of the AR(1) process in (4.46) is given by

r(κ) = ρκ, (4.47)

where κ ∈ {−p + 1, . . . , p − 1} is the lag of the autocorrelation function. That is, the
correlation between variables is exponentially decaying in κ.

Leveraging this property, we introduce a sliding window function that maps each candidate
variable j to a group of neighboring variables, such that the pairwise correlations between
variable j and its associated group of variables do not fall below a threshold ρthr ∈ [0, 1).
That is, |r(κ)| ≤ ρthr, which yields κ ≥ log(ρthr)/ log(|ρ|).
Definition 17 (Sliding window). Let ρ̂ be the maximum likelihood estimator of ρ in (4.46)
and (4.47) averaged over all n samples and ρthr ∈ [0, 1) the autocorrelation threshold. Define
|̂κ| := ⌈log(ρthr)/ log(|ρ̂|)⌉. Then, the jth variable group Gr(j, ρthr) is specified by

Gr(j, ρthr) := SW(j, ρthr), (4.48)

where the sliding window function is defined by

SW(j, ρthr) :=
{
max

{
1, j − |̂κ|

}
, . . . ,min

{
p, j + |̂κ|

}}∖{
j
}
. (4.49)
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With this definition in place, the original relative occurrences of the T-Rex selector ΦT,L(j)

are replaced by the dependency-aware relative occurrences for the autoregressive model
ΦAR

T,L(j, ρthr), which yields the proposed dependency-aware T-Rex selector for autoregressive
dependency models (T-Rex+DA+AR1).
Definition 18 (Autoregressive dependency-aware relative occurrences). Let Gr(j, ρthr) :=

SW(j, ρthr) and ΦT,L(j) be the ordinary relative occurrence in (3.4). Then, the jth
dependency-aware relative occurrence for the autoregressive dependency model is given by

ΦAR
T,L(j, ρthr) := ΨAR

T,L(j, ρthr) · ΦT,L(j), (4.50)

where the penalty factor is defined by

ΨAR
T,L(j, ρthr) :=

1

2 − min
j′∈SW(j,ρthr)

{∣∣ΦT,L(j)− ΦT,L(j
′)
∣∣} . (4.51)

4 .4 .2 . 2 Theoretical Analysis

From Definition 18, it is clear that the jth dependency-aware relative occurrence arises from
the penalization of the corresponding ordinary relative occurrence according to its similarity
with all other ordinary relative occurrences within its associated variable group SW(j, ρthr).

In the following, we state and prove for the Lasso forward selector [Tib96; Efr+04] within
theT-Rex+DA framework that the dependency-aware relative occurrence of any variable j is
related to its largest sample correlation coefficientwith respect to the proposed slidingwindow
group design in Definition 17. For this purpose, let

β̂k := [β̂1,k · · · β̂p,k]
⊤ (4.52)

:= argmin
βk

1

2

∥∥y − X̃kβk

∥∥2
2
+ λk(T, L) · ∥βk∥1 (4.53)

be the Lasso estimator in the kth random experiment and let λk(T, L) > 0 be the sparsity
parameter, as in (4.1).
Theorem 13. Define Λ := 1

K

∑K
k=1

1
λk(T,L)

and ρj,j′ := x⊤
j xj′ . Then, for any j, j ′ ∈

{1, . . . , p}, that satisfy β̂j,k, β̂j′,k ̸= 0, it holds that

ΦAR
T,L(j, ρthr)≤

[
2− Λ∥y∥2

√
2
(
1− max

j′∈SW(j,ρthr)
{ρj,j′}

) ]−1

ΦT,L(j). (4.54)
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Proof. Considering the “absolute difference of relative occurrences” theorem (i.e., Theo-
rem 8), which states that

∣∣ΦT,L(j)− ΦT,L(j
′)
∣∣ ≤ Λ∥y∥2

√
2(1− ρj,j′), (4.55)

we obtain

ΦAR
T,L(j, ρthr) =

[
2− min

j′∈SW(j,ρthr)

{∣∣ΦT,L(j)− ΦT,L(j
′)
∣∣} ]−1

ΦT,L(j) (4.56)

≤
[
2− Λ∥y∥2 min

j′∈SW(j,ρthr)

{√
2
(
1− ρj,j′

)} ]−1

ΦT,L(j) (4.57)

=

[
2− Λ∥y∥2

√
2
(
1− max

j′∈SW(j,ρthr)
{ρj,j′}

) ]−1

ΦT,L(j), (4.58)

where the inequality in the second line follows from (4.55).

Remark 10. Note that ρj,j′ considers the sample correlations. The expected value of ρj,j′ is
equal to ρ from (4.46) for all j, j ′. That is, in the idealized case we have

ΦAR
T,L(j, ρthr) ≤

[
2− Λ∥y∥2 ·

√
2
(
1− ρ

) ]−1

· ΦT,L(j), (4.59)

which reveals that in the perfectly correlated case ρ→ 1, where candidate variables cannot be
distinguished into true active and null variables anymore,ΦAR

T,L(j, ρthr) = 0.5ΦT,L(j, ρthr) ≤
0.5, j = 1, . . . , p. Thus, in accordance with (3.3), no variable is selected. In Section 4.4.2.3
(see Figure 4.5b), this is verified numerically for reasonably high values of ρ.

4 .4 .2 . 3 Numerical Experiments

In the following, the proposed T-Rex+DA+AR1 selector for the autoregressive dependency
model is compared against the original T-Rex selector from Chapter 3, the model-X knock-
off method [Can+18], and the model-X knockoff+ method [Can+18]. The sparse and high-
dimensional simulation setting consists of p = 500 candidate variables andn = 300 samples.
The predictors are sampled according to theAR(1)model in (4.46)withGaussianwhite noise
with σE = 1 and the response is generated according to the the linear model y = Xβ + ϵ.
Here, X = [x1 · · ·xp] ∈ Rn×p is the predictor matrix, y ∈ Rn the response, β ∈ Rp the
coefficient vector and ϵ ∼ N (0, σ2I) the Gaussian noise vector with standard deviation σ

and identity matrix I . The standard deviation σ is chosen such that the signal-to-noise ratio
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Figure 4.5: The numerical experiments verify that the proposed T-Rex+DA+AR1 selector for the autoregres-
sive dependency model controls the FDR for all autocorrelation values ρ, while the originalT-Rex selector loses
its FDR control property for ρ > 0.5. Themodel-X knockoff method does not control the FDR. Among the
two methods that control the FDR over the whole range of ρ, the proposed T-Rex+DA+AR1 selector has the
highest power despite the conservative value of ρthr = 0.02.

(SNR) is one, i.e., SNR = Var(Xβ)/Var(ϵ) = 1. Only p1 = 10 randomly selected entries
of the coefficient vector β are set to one and the remaining ones are set to zero, i.e., 10 out of
500 variables are true active variables. The target FDR is set to 10%. The FDP andTPP in Fig-
ure 4.5 are averaged over 955Monte Carlo replications. The numerical experiments confirm
empirically that the proposed T-Rex+DA+AR1 selector controls the FDR. Furthermore, it
has a higher TPR compared to themodel-X+ knockoff method, which also controls the FDR
in this example.

4 . 5 Summary

The dependency-aware T-Rex (T-Rex+DA) selector has been proposed. In contrast to exist-
ing methods, it reliably controls the FDR in the presence of groups of highly correlated vari-
ables in the data. TheT-Rex+DA selector was specified for dependency structures that can be
modeled as groups of non-overlapping variables (i.e.,T-Rex+DA+BT selector). A real world
TCGA breast cancer survival analysis is provided in Chapter 6. It shows that the proposed
method selects genes that have been previously identified to be related to breast cancer. Thus,
theT-Rex+DA selector is a promising tool formaking reproducible discoveries in biomedical
applications. Moreover, the derived group design principle allows to easily adapt the method
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to various application-specific dependency-structures, which opens the door to many other
fields that require large-scale high-dimensional variable selection with FDR-control guaran-
tees.

The T-Rex+DA+NN selector has been proposed. It is an extension of the T-Rex+DA
framework that accounts for overlapping groups of highly correlated variables. The proposed
method provably controls the FDRand has been successfully applied in tracking the S&P 500
index over the last 20 years with higher accuracy and fewer stocks compared to state-of-the-art
methods (see Chapter 7). Therefore, it is a promising approach for index tracking as well as
other applications where overlapping groups of highly correlated variables exist.

TheT-Rex+DA+AR1 selector has been proposed. It is another extension of theT-Rex+DA
selector that accounts for autoregressive dependency models. It ensures reproducibility of
discoveries through FDR-controlled high-dimensional variable selection in the presence of
autoregressive dependency structures among the candidate variables. In FDR-controlled
sparse financial index tracking, the T-Rex+DA+AR1 selector has outperformed the T-
Rex+DA+NN selector at low target FDR levels. That is, the T-Rex+DA+AR1 selector has
been capable of selecting the relevant stocks, while theT-Rex+DA+NN selector has suffered
from missed detections at low target FDR levels.
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A great idea solves multiple problems at the same time.
Shigeru Miyamoto

5
Joint Grouped Variable Selection and False

Discovery Rate Control

This chapter tackles the challenge posed by the presence of groups of highly correlated can-
didate variables in the data from a different perspective and with a different aim than the
proposed T-Rex+DA selector in Chapter 4. Wile the approach of the more conservative T-
Rex+DA selector is to detect the few individual true active variables among highly dependent
candidate variables, the aim of this chapter is to select entire groups of highly correlated vari-
ables that contain at least one true active variable. This is especially useful in biomedical appli-
cations likeGWAS,where it is not necessary to select individual SNPs but rather entire groups
of highly correlated SNPs that point to a few locations on the genome.

In Section 5.1, the proposedT-Rex selector for grouped variable selection (T-Rex+GVS) selec-
tor is presented. Section 5.2 presents the proposed informed elastic net (IEN) base selector,
which has been developed to replace the elastic net (EN) base selector within theT-Rex+GVS
selector. The advantage of the IEN over the EN base selector is that it reduces the overall
computation time of the T-Rex+GVS selector while maintaining its grouped variable selec-
tion (GVS) property. In Section 5.3, the T-Rex+GVS selector is leveraged to perform FDR-
controlled sparse principal component analysis (PCA). The proposed T-Rex PCA method
yields FDR-controlled and, therefore, interpretable loading vectors andprincipal components
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(PCs).

In Chapters 6 and 7, the proposed methods have been used to solve challenging real-world
data problems in biomedical and financial engineering. The technical proofs of the theoretical
results are deferred to Appendix C.

The main content of this chapter is based on the publications [MMP22], [MMP23b]
and [Mac+24a]. The implementations of the developed methods are included in the
open source R software packages (with C++ backend) TRexSelector [Mac+24c] and
tlars [Mac+24b] on CRAN.

5 . 1 The T-Rex+GVS Selector

This section motivates the proposed T-Rex+GVS selector, provides an overview of the major
contributions, and presents the grouped variable selection property and the dummy genera-
tion algorithm of the T-Rex+GVS selector.

5 . 1 . 1 Motivation

High-dimensional variable selection is a challenging task, especially when groups of highly
correlated variables are present in the data. However, in applications such as genome-wide
association studies (GWAS), it is not necessary to detect the few individual single nucleotide
polymorphisms (SNPs) that are associated with a phenotype of interest among highly corre-
lated candidate SNPs. Instead, it is sufficient to detect entire groups of highly correlated SNPs
that point to a few associated locations on the genome. The reason for this is that groups of
nearby and, therefore, highly correlated SNPs occur throughout the genome due to a phe-
nomenon called linkage disequilibrium [Rei+01]. This less stringent requirement allows to
develop more liberal FDR-controlling methods that have a higher TPR at the cost of not de-
termining the individual true active variables but rather the true active groups of variables, i.e.,
groups that contain at least one true active variable.

5 . 1 . 2 Major Contributions

Real-world problems, such as the one described in Section 5.1.1, are addressed by adapting the
forward variable selection procedure and the dummy generation process within the T-Rex
framework for grouped variable selection. The proposedT-Rex+GVS selector has fourmajor
innovations that distinguish it from the original T-Rex selector:
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1. It replaces the originally used variable selection method (LARS or Lasso) by the elastic
net (see Section 2.1), which renders it suitable for performing grouped variable selection.

2. This replacement requires a major adjustment of the dummy generation process. A
new dummy generation process that mimics the group correlation structure of X is
proposed. This necessary adjustment fosters the generation of groups of highly corre-
lated dummies that allow for a fair competition of original variables and dummies to be
included along the forward variable selection process within each random experiment.

3. We prove that the T-Rex+GVS selector possesses the desirable grouped variable selec-
tion property (Theorem 14).

4. Through a simulated high-dimensional genome-wide association study (GWAS), it is
demonstrated that the proposed T-Rex+GVS selector significantly increases the TPR,
while controlling the FDR at the target level (see Chapter 6).

5 . 1 . 3 Grouped Variable Selection

The elastic net in (2.20) requires choosing the tuning parametersλ1 andλ2, whereλ1, λ2 > 0

are theweights of the sparsity inducing ℓ1-normpenalty (Lasso) and the grouped selection fos-
tering ℓ2-norm penalty (ridge regression), respectively. Since we are interested in performing
grouped variable selection, we require a sufficiently large value of λ2, such that the grouping
effect is sufficiently strong. However, since the strength of the grouping effect is not very sen-
sitive to the choice of λ2, we choose λ2 by performing 10-fold cross validated ridge regression
(see Section 2.1.2) and fix the obtained λ2-value. With a fixed λ2, the elastic net optimization
problem can be reformulated as aLasso optimization problem (see Section 2.1.4) and, therefore,
it can be solved by the LARS algorithm. Thus, the elastic net with fixed λ2 can be integrated
into the original T-Rex framework, which removes the necessity of choosing λ1 because the
random experiments are automatically terminated by the T-Rex selector, as discussed in Sec-
tion 3.2.

In the following, we will prove for the special case, where the variables within a group are per-
fectly correlated, that the desirable grouped variable selection property of the elastic net carries
over to the proposed T-Rex+GVS selector. Considering this idealized case is common in the-
ory, since it reveals whether a method is generally capable of performing grouped variable
selection [ZH05]. First, for each standardized variablem ∈ {1, . . . , p}, we define a group of
perfectly correlated variables Gm that contains variablem. Then, we show that if any variable
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contained in Gm is selected (not selected) by the T-Rex+GVS selector, then the entire group
is selected (not selected).
Theorem 14 (Grouped variable selection). Define ρg,m := x⊤

g xm and

Gm :=
{
g ∈ {1, . . . , p} : |ρg,m| = 1

}
,m = 1, . . . , p. (5.1)

The following two statements hold for all triples (v, T, L) ∈ [0.5, 1)× {1, . . . , L} × N+:

(i) Suppose that j ∈ Gm and j ∈ ÂL(v, T ). Then, it holds that Gm ⊆ ÂL(v, T ).

(ii) Suppose that j ∈ Gm and j /∈ ÂL(v, T ). Then, it holds that Gm ∩ ÂL(v, T ) = ∅,
where ∅ denotes the empty set.

Proof. The proof is deferred to the Appendix C.1.

5 . 1 .4 Dummy Generation

The goal of the proposed dummy generation algorithm is to generate dummy matrices
◦
Xk,

k = 1, . . . , K , that mimic the group correlation structure that is present withinX .

First, in order to cluster the variables into groups of highly correlated variables with low cor-
relations between variables from different clusters, we apply single-linkage hierarchical clus-
tering [MC12] to the predictors in X , where the sample correlation is used as the similarity
measure. Then, the obtained dendrogram is cut at the lowest level where the sample correla-
tions of any two predictors from different clusters are not higher than the threshold value
ρthr = 1/3. The value of ρthr is determined empirically, such that the resulting clusters
capture the characteristic group correlation structure of SNPs. Such a clustering approach
was proposed to be used as an SNP clustering method in, e.g., the supplementary material
of [SSC19]. As specified in the extended calibration algorithm (i.e., Algorithm 3) that deter-
mines the value of L (i.e., the number of dummies), L is a multiple of the number of predic-
tors p. Thus, L/p sub-dummy matrices that mimic the group correlation structure ofX are
generated and appended together to obtain the final dummy matrices

◦
Xk, k = 1, . . . , K .

The annotated pseudocode of the proposed T-Rex+GVS dummy generation process for the
generation of the kth dummy matrix

◦
Xk is given in Algorithm 6.
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Algorithm 6 T-Rex+GVS dummies
1. Input: X , ρthr, L.

2. Apply single-linkage hierarchical clustering [MC12] to the predictors inX and cut the
resulting dendrogram at the lowest level where the sample correlations of any two pre-
dictors from different clusters are not higher than ρthr.
Result: Z clusters with associated disjoint variable index sets J1, . . . ,JZ ⊆
{1, . . . , p}, where

⋃Z
z=1 Jz = {1, . . . , p}.

3. Forw = 1, . . . , wmax, wherewmax :=
L

p
, do:

3.1. For z = 1, . . . , Z do:

i. Compute the sub-cluster covariance matrix

Σz =
1

n− 1
X⊤

Jz
XJz , (5.2)

whereXJz is the sub-matrix ofX that contains the predictors correspond-
ing toJz .

ii. Compute the sub-dummy matrix

◦
Xz,w =


◦
x
′⊤
z,w,1
...

◦
x
′⊤
z,w,n

 ,
◦
x
′
z,w,i ∼ N

(
0,Σz

)
, (5.3)

where ◦
x
′⊤
z,w,i is the ith row of

◦
Xz,w.

4. Output: kth dummy matrix

◦
Xk =

[ ◦
X1,1 · · ·

◦
XZ,1 · · ·

◦
X1,wmax · · ·

◦
XZ,wmax

]
. (5.4)

5 . 2 The Informed Elast ic Net for Grouped Vari -
able Select ion and FDR Control

This sectionmotivates the proposed informed elastic net (IEN) and its incorporation into the
T-Rex+GVS selector as a fast base selector, provides an overview of the major contributions,
presents the methodology and theoretical analysis of the proposed method, and assesses the
performance via numerical simulations. A simulated GWAS using the proposed method is
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presented in Chapter 6.

5 . 2 . 1 Motivation

The proposed T-Rex+GVS selector in Section 5.1 uses the elastic net (EN) as a base selector
to perform grouped variable selection. Although it significantly increases the TPR in sim-
ulated GWAS compared to the original T-Rex selector (see Chapter 6), its comparably high
computational cost limits scalability.

The reason for the high computational cost of the EN base selector compared to the ordi-
nary LARS algorithm in Section 2.1.3 is that solving it in a forward selection manner using
the LARS algorithm requires to augment the input data to the LARS algorithm as detailed
in (2.22). More specifically, p rows of dimension p have to be added to the predictormatrixX
and the response vector has to be augmented accordingly by adding zeros. That is, the (n×p)-
dimensional predictor matrixX and then-dimensional response vectory are replaced by the
((n + p) × p)-dimensional augmented predictor matrix X ′ and the (n + p)-dimensional
augmented response vector y′. Furthermore, when using the EN as a base selector within
the T-Rex framework, we also need to account for L dummies within the enlarged predictor
matrices in (3.2). That is, p becomes p+ L.

In conclusion, the required augmentation of the data leads to a high computational cost that
does not allow the EN base selector to scale to large-scale high-dimensional problems such as
GWAS. Therefore, we propose the IEN, which has a reduced computational cost compared
to the EN while maintaining a sufficiently strong and provable grouped variable selection
property. This is achieved by formulating a new penalty term that incorporates information
about the group correlation structure among the candidate variables to reduce the size of the
augmented predictor matrix and the response vector.

5 . 2 . 2 The T-Rex+GVS Selector with the Informed Elastic Net:
Overview of Major Contributions

To alleviate the drawbacks of the EN base selector, we propose the IEN, a new base selector
for the T-Rex+GVS method that significantly reduces computation time while retaining the
grouped variable selection property. We prove that the proposed IEN

1. can be formulated as a Lasso-type optimization problem (Theorem 15) and, therefore,
can be solved efficiently in a forward-selectionmanner, as required by theT-Rex frame-
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work, using the LARS algorithm (Algorithm 1) and

2. exhibits a grouping effect (Theorem 16) that is similar to that of the elastic net.

Additionally, we validate empirically that the proposed IEN, as suggested by Theorems 15
and 16,

1. produces solution paths that are similar to the ones of the EN (see Figure 5.1),

2. significantly reduces the computation time compared to the EN when incorporated
into the T-Rex framework as the base selector (see Figure 5.2), and

3. has the same TPR as the T-Rex+GVS selector using the EN while achieving a much
lower FDR in a simulated GWAS (see Chapter 6).

5 . 2 . 3 Methodology and Theoretical Analysis

While theEN achieves its grouping effect by penalizing∥β∥22, this sectionpresents a newGVS
method that incorporates the information of how the variables are grouped into its penalty
term. We show that the proposed IEN can be formulated as a Lasso-type optimization prob-
lem (Theorem 15), so that it can be incorporated into the T-Rex framework. We also analyze
the grouping effect (Theorem 16) and show that the IEN boils down to the EN when every
variable is considered to be its own group (Corollary 2).

In particular, the proposed IEN uses single-linkage hierarchical clustering [MC12] with
the pairwise correlations of the original variables as a distance measure to cluster variables
into groups of highly correlated variables, which are present in genomics data due to a
phenomenon called linkage disequilibrium [Rei+01]. The obtained dendrogram from the
hierarchical clustering can be cut at different levels to obtain M disjoint groups of variables
G1, . . . ,GM , where M ≤ p. To represent the mth, m = 1, . . . ,M , group mathematically,
we define the binary support vector 1m = [1m,1 · · · 1m,p]

⊤ ∈ {0, 1}p that has one entries
for variables in the mth group and zero entries otherwise. The corresponding group size is
pm :=

∑p
j=1 1m,j . With these definitions in place, we define the proposed IEN.

Definition 19 (Informed elastic net (IEN)). Let λ1, λ2 > 0 and let pm, m = 1, . . . ,M ,
and 1m ∈ {0, 1}p be the known group size and the binary support vector of the mth group,
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respectively. Then, the Lagrangian of the informed elastic net (IEN) is defined by

LIEN(β) := ∥y −Xβ∥22 + λ1∥β∥1 + λ2

M∑
m=1

(1⊤
mβ)

2

pm
(5.5)

and the solution of the IEN is defined by

β̂ := argmin
β

LIEN(β). (5.6)

The following theorem shows that the proposed IEN can be cast as aLasso-type optimization
problemand, therefore, canbe solved efficiently and in a forward selection fashion, as required
by the T-Rex framework, using the LARS algorithm:1

Theorem 15 (Lasso-type optimization problem). Let X , y, and λ1, λ2 > 0 be given and
let 0M be the M -dimensional vector of zeros. Define

X ′ :=
√

λ2 ·


X/
√
λ2

1⊤
1 /
√
p1

...

1⊤
M/
√
pM

 , y′ :=

[
y

0M

]
. (5.7)

Then, the IEN can be formulated as a Lasso-type optimization problem, i.e.,

LIEN(β) = ∥y′ −X ′β∥22 + λ1∥β∥1. (5.8)

Proof. Deferred to Appendix C.2.

Remark 11. Note that, in contrast to the EN, the IEN data augmentation presented in
Theorem 15 requires appending only M additional rows to the original predictor matrix X ,
while solving the elastic net in a forward selection manner requires appending p rows toX (for
details, see Section 2.1.4). Since the number of variable groups M , especially in genomics data,
is much smaller than the number of variables p (i.e.,M ≪ p), the IEN exhibits a significantly
reduced computation time when p is very large.

The next theorem shows that the proposed informed elastic net exhibits a grouping effect, i.e.,

1Note that the proposed IEN is fundamentally different from the group Lasso approach in [YL06], since the
solution path of the group Lasso is not piecewise linear and, therefore, computationally much more expensive.
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the difference of the averaged coefficients of any two variable groups is shrinked towards zero
according to the maximum correlation between two variables from different groups:
Theorem 16 (IEN grouping effect). Define ρj,j′ := x⊤

j xj′ , where xj and xj′ are standard-
ized predictors. Suppose that β̂jβ̂j′ > 0 and, without loss of generality, j ∈ G1 and j′ ∈ G2.
Then, it holds that

1

∥y∥2

∣∣∣∣∣ 1p1 ∑
g∈G1

β̂g −
1

p2

∑
g∈G2

β̂g

∣∣∣∣∣ (5.9)

=
1

∥y∥2

∣∣∣∣1⊤
1 β̂

p1
− 1⊤

2 β̂

p2

∣∣∣∣ ≤ 1

λ2

√
2

(
1− max

j∈G1,j′∈G2

{ρj,j′}
)
. (5.10)

Proof. Deferred to Appendix C.3.

Corollary 2. The grouping effect of the proposed IEN is identical to that of the EN, when
every variable is considered to be a group.

Proof. When every variable is considered to be a group, we haveM = p, p1 = . . . = pp = 1,
and the third summand in (5.5) boils down to λ2

∑p
m=1 β

2
m = λ2∥β∥22 and, thus, (2.20)

and (5.6) are equivalent.

Remark 12. Note that, as desired, the difference of the averaged coefficients of any two variable
groups is exactly zero if two variables from different groups are perfectly correlated.

5 . 2 .4 Numerical Experiments

In this section, we evaluate the grouping effect of the EN and the proposed IEN and their
relative computation times when incorporated into the T-Rex framework.

5 . 2 .4 . 1 Grouping Effect and Solution Path

To compare the solution paths of the elastic net and the proposed informed elastic net, we
first generate a setting with p = 100 and 6 active standard normal variables that are split
into two independent groups of highly correlated variables G1 and G2 (i.e., any pair of the
three variables in one group has a correlation of 0.75). The remaining 94 null variables are
sampled independently from the standard normal distribution. The coefficient vector β =

[β1 · · · βp]
⊤ of the variables is chosen as follows: βj = 1 for j ∈ G1, βj = −1 for j ∈

G2 and βj = 0 otherwise. The response variable y is generated from the linear regression
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model y = Xβ + ϵ, where ϵ ∼ N (0, σ2I) is the noise vector. In order to make the
grouping effect and the distinction between nulls and active variables visually noticeable, we
generated n = 150 samples and set the noise variance σ2 such that the signal-to-noise-ratio
SNR := Var(Xβ)/Var(ϵ) = 3. To obtain the binary support vectors that are required for
the data augmentation presented in Theorem 15, we use single-linkage hierarchical clustering
with the pairwise correlations between variables as distance measures and cut the resulting
dendrogram at the maximum height that satisfies the conservative condition that there exist
no two variables from different clusters with a correlation higher than 0.2.

In Figure 5.1, it can be observed that the EN and the IEN both exhibit the grouping effect
in the sense that the coefficients of the two groups of highly correlated active variables are
increased in a correlated fashion. We also observe that the grouping effect of the proposed
IEN is slightlyweaker than that of theEN.However, sinceweuse the IEN as thebase selector
within theT-Rex framework, which terminates the solution paths of all random experiments
early, we are primarily interested in the early steps, where a sufficient grouping is observed for
both methods, as illustrated in the boxed regions of Figure 5.1.

5 . 2 .4 . 2 Relative Computation Time

We compare the relative computation times of one random experiment of

1. the original T-Rex selector with the LARS algorithm as the base selector,

2. the T-Rex+GVS selector with the EN base selector, and

3. the T-Rex+GVS selector with the IEN as the base selector

in a setting that is as described in Section 5.2.4.1, except that we fix the number of samples to
n = 50, set the correlation cutoff of the dendrogram to 0.5 and increase p from 100 to 5,000.
The computation times are averaged over 50 Monte Carlo replications. In Figure 5.2, we see
that with a growing number of variables p, the relative computation time of the T-Rex+GVS
selector with the proposed IEN as the base selector decreases significantly. In particular, the
savings in computation time start tomanifest in larger settings with p ≥ 500 variables, where
the EN always needs to augment X with p (i.e., number of variables) rows, while the IEN
only requires augmentingX withM (i.e., number of groups) rows, whereM ≪ p.
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Figure 5.1: Solution paths of the (a) EN [ZH05] and (b) the proposed IEN.

5 . 3 Sparse PCA with FDR-Controlled Variable Se -
lect ion

This section introduces the proposed FDR-controlled PCA methods. First, the general con-
cept of sparse PCA is introduced, the proposedparadigm shift towards FDR-controlled sparse
PCA ismotivated, and anoverviewof themajor contributions is provided. Then, themethod-
ology of the proposedT-Rex PCAmethods is presented and verified throughnumerical exper-
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Figure 5.2: Relative computation times of one random experiment with L = p and T = 1 of the T-Rex,
T-Rex+GVS (EN), and the proposed T-Rex+GVS (IEN).

iments. A real-world data factor analysis of themajor stocks of the S&P 500 index is presented
in Chapter 7.

5 . 3 . 1 Introduction to Sparse PCA

Principal component analysis (PCA) aims at mapping large dimensional data to a linear
subspace of lower dimension. For this purpose, let us consider consider n samples of
p-dimensional observations stored (row-wise) in the matrixX ∈ Rn×p. Additionally, let the
ordered singular value decomposition (SVD) ofX be given by

X
SVD
= UDV⊤, (5.11)

whereV = [v1 · · · vp] ∈ Rp×p contains the p loading vectors. Then, the rank-M (M < p)
ordinary principal component analysis (PCA) is commonly used to reduce the data dimension
by projecting the data on itsM leading principal components (PCs)

ZM := [z1 · · · zM ] := XVM := X[v1 · · · vM ]. (5.12)

The column vectorzm = Xvm,m ∈ {1, . . . ,M}, is called themth PC,while the associated
vector vm is referred to as the mth loading vector [Jol03; JC16]. Note that the PCs are thus
created fromweighted linear combinations of all variables inX , which can be problematic in
terms of interpretation.
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Sparse PCA aims at alleviating the aforementioned drawback of ordinary PCA by imposing
some level of sparsity on the loading vectors, i.e., incorporating variable selection in theprocess
of linear dimension reduction [ZHT06; ZX18; US08; Bre+23; Ben+16]. This is generally
achieved by casting and solving a trade-off optimization problem of the form

minimize
VM∈Rp×M

f(X,VM) + λh(VM)

subject to V⊤
MVM = IM ,

(5.13)

where f(X,VM) is a data fitting term, h(VM) is a sparsity promoting penalty, and λ ∈ R+

is the corresponding regularization parameter. Such a generic formulation has motivated
numerous developments in terms of problem design and optimization methods (see, e.g.,
[Hu+15; Bre+21; WT08] and references therein). A seminal formulation of sparse PCA ties
the problem of penalizedmaximization of the explained variance (with relaxed orthogonality
constraint) to a series ofM elastic net variable selection problems [ZHT06].

5 . 3 . 2 Motivation for FDR-Controlled Sparse PCA

By imposing loading vectors to be sparse, sparse PCA performs the double duty of dimension
reduction and variable selection. Nevertheless, sparse PCA methods are often assessed and
compared using performance metrics such as the explained variance (EV) of a PC, which is
a measure of the variation in the data that is captured by that PC. However, a high EV is
not necessarily synonymous with relevant information and these methods are prone to select
irrelevant variables. More specifically, sparse PCA algorithms as formulated in (5.13) trade-off
the explained variance and the sparsity level and, therefore, suffer from two major issues:

1. Maximizing the explained variance does not inherently yield themostmeaningful projec-
tion for exploratorydata analysis: highlynoisy variableswill tend tobe selected, although
not being necessarily informative.

2. Lowering the sparsity to achieve a higher explained variance does not guarantee that, in
turn, more meaningful variables have been selected.

These observations motivate controlling sparse PCA variable selection processes with a crite-
rion that ensures that the number false discoveries (i.e., irrelevant variables) used to create a
sparse PC is low. Thus, to overcome these issues, we propose an alternative formulation of
sparse PCA driven by the FDR. We then leverage the T-Rex+GVS selector to automatically
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determine an FDR-controlled support of the loading vectors. A major advantage of the re-
sulting T-Rex PCA is that no sparsity parameter tuning is required.

5 . 3 . 3 The T-Rex PCA Method: Overview of Major Contributions

This work proposes an alternative approach for sparse PCA, where the selection of variables
for the loading vectors is driven by the FDR. Although there exist many FDR-controlling
methods (e.g., [BH95; BY01; STS04; BC15; Can+18]), only the T-Rex framework provides
the possibility of solving the elastic net based sparse PCA optimization problem in [ZHT06]
in an FDR-controlled manner. Thus, our proposed T-Rex PCA approach

1. harnesses the elastic net based sparse PCA formulation of [ZHT06]

2. and solves it by leveraging the T-Rex+GVS selector, which yields

3. FDR-controlled solutions while maximizing the number of selected (informative) vari-
ables and implicitly maximizing the explained (non-null) variance.

5 . 3 .4 Methodology

In the following, the proposed T-Rex PCA approach is explained and a comprehensive defi-
nition of the percentage of explained variance (PEV) for sparse PCA methods is presented.

5 . 3 .4 . 1 T-Rex PCA Algorithm

We propose to leverage the T-Rex selector to obtain FDR-controlled solutions of the formu-
lation of sparse PCA as a collection of theM elastic net problems [ZHT06], i.e.,{

minimize
βj∈Rp

∥∥zm −Xβj

∥∥2
2
+ λ1

∥∥βj

∥∥
1
+ λ2

∥∥βj

∥∥2
2

}M

m=1

(5.14)

where λ1, λ2 > 0 are tuning parameters and zm is the plug-in estimate of the mth PC (i.e.,
the ordinary PC zm = Xvm). The parameter λ1 controls the sparsity level, while the ridge
parameter λ2 determines the strength of the variable grouping effect [ZH05].

Our goal is to obtain FDR-controlled solutions of (5.14) (i.e., {β̂m}Mm=1) that provide a basis
of (sparse) loading vectors for the dimension reduction. For this purpose, the ordinary PCs
zm,m = 1, . . . ,M , serve as supervising response vectors within theT-Rex selector (i.e., y =
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zm in Figure 3.2) and we incorporate the elastic net as the forward variable selector into theT-
Rex framework. This is achieved by reformulating the elastic net as a Lasso-type problem and
solving it using the Terminating-LARS (T-LARS) forward selection algorithm (for details,
see Section 5.1 and [Mac+24b]). This approach yields the sparse andFDR-controlled supports
of theM loading vectors, i.e.,

ÂL∗
m
(v∗m, T

∗
m), m = 1, . . . ,M. (5.15)

To convert the supports into loading vectors, we leverage the fact that the loading vectors can
be linked to the ridge regression estimator [ZHT06]. That, in combination with the selected
active set Âm := ÂL∗

m
(v∗m, T

∗
m) as obtained by the T-Rex selector, yields

v̂m =
β̂m,Ridge

∥β̂m,Ridge∥2
, m = 1, . . . ,M, (5.16)

Algorithm 7 T-Rex PCA.
1. Input: α,K ,M ,X , y.

2. Compute the SVD of X , i.e., X = UDV⊤ and determine the ordinary PC matrix
Z = [z1, . . . , zM ] = UD that contains the firstM ≤ min{n, p} ordinary PCs.

3. Form = 1, . . . ,M do:

3.1. Run the T-Rex selector with

a. the target FDR level α,

b. the extended predictor matrices X̃m,k :=
[
X

◦
Xm,k

]
, k = 1, . . . , K , and

c. themth PC zm as the common response for all X̃m,k, k = 1, . . . , K .

3.2. Obtain the FDR-controlled support of themth loading vector ÂL∗
m
(v∗m, T

∗
m).

3.3. Compute themth loading vector v̂m = β̂m,Ridge/∥β̂m,Ridge∥2.

3.4. Compute themth PC ẑm = XÂm
v̂m.

4. Output:
4.1. T-Rex supports ÂL∗

m
(v∗m, T

∗
m),m = 1, . . . ,M , and

4.2. T-Rex PC matrix Ẑ = [ẑ1 · · · ẑM ].
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where
β̂m,Ridge := argmin

β

∥zm −XÂm
β||22 + λ2∥β∥22 (5.17)

andXÂm
contains only the predictors corresponding to Âm. The T-Rex PCs are then given

by ẑm = XÂm
v̂m,m = 1, . . . ,M .

Note that v̂m is independentofλ2 because of the scalingwith the ℓ2-normof β̂m,Ridge [ZHT06]
and, therefore, we simply setλ2 = 10−6. Amajor advantage of theT-Rex selector framework
is that when incorporating the elastic net into it, the choice of λ1 becomes obsolete, since the
random experiments are terminated after T ∗ dummies have entered the solution paths such
that the FDR is controlled at the user-defined target level α, which corresponds to choosing
λ1 for each random experiment such that an FDR-controlled selected active set ÂL∗

m
(v∗m, T

∗
m)

is obtained. This is especially important, since sparse PCA relies on hand-selecting the sparsity
parameter specifically for every problem [ZHT06]. The pseudocode of the proposed T-Rex
PCA is given in Algorithm 7.

The obtained FDR-controlled selected active sets can also be used to threshold the loading
vectors of the ordinary PCA. Thus, in addition to theT-Rex PCA, we also propose theT-Rex
Thresholded PCA, which is obtained by thresholding each loading vector vm such that only
the |ÂL∗

m
(v∗m, T

∗
m)| strongest loadings remain active (i.e., non-zero). The thresholded loading

vector is then rescaled by its ℓ2-norm to ensure that ∥v̂m∥2 = 1.

5 . 3 .4 . 2 Percentage of Explained Variance

The explained variance (EV) in ordinary PCA is defined by tr(Ẑ⊤Ẑ), where tr(·) is the trace-
operator. Since we are interested in the variance that corresponds to signal and not pure null
(i.e., non-signal) components, we define the percentage of explained variance (PEV) as fol-
lows:
Definition 20. Let V̂ = V̂A + V̂AC ∈ Rp×M , where V̂A is the estimated loading matrix
whose entries are set to zero except for the positions containing true active loadings and V̂AC is
the estimated loading matrix whose true active loadings are set to zero. Then, Ẑ = XV̂ =

XV̂A +XV̂AC =: ẐA + ẐAC and the signal EV, mixed EV, and null EV are defined by

EV := tr(Ẑ⊤Ẑ) = tr(Ẑ⊤
AẐA)︸ ︷︷ ︸

Signal EV

+2 tr(Ẑ⊤
AẐAC )︸ ︷︷ ︸

Mixed EV

+ tr(Ẑ⊤
AC ẐAC )︸ ︷︷ ︸
Null EV

, (5.18)
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and the PEV is defined by

PEV :=
EV

Signal EV+Mixed EV . (5.19)

Our goal is to explain the signal andmixedEVwith fewPCs and sparse loadings to allow for in-
terpretability of the obtained PCs. Non-sparse PCAmethods ormethods that do not provide
accurate estimates of V̂ are prone to have a high null EV and, therefore, capture variance that
merely corresponds to null (i.e., non-active) variables/loadings. In that case, the PEV in Def-
inition 20 exceeds 100%, which indicates an inferior performance of the respective method.
Moreover, since the orthogonality constraint in (5.13) is dropped for sparse PCAmethods, we
replace the EV inDefinition 20 by the adjusted EV that accounts for the lack of orthogonality
of the loading vectors as suggested in [ZHT06]. The adjusted EV is defined by

EVadj :=
M∑

m=1

r2m,m, (5.20)

where rm,m is the mth diagonal element of the upper triangular matrix R from the QR-
decomposition of Ẑ (i.e., Ẑ = QR).

5 . 3 . 5 Numerical Experiments

We consider a high-dimensional data matrix X ∈ Rn×p with n = 50 samples, p = 100

variables, and centered columns that follows the sparseM -factor model

X = ZV⊤ +E = [z1 · · · zM ][v1 · · · vM ]T + [ϵ1 · · · ϵp] (5.21)

=


z1,1 · · · z1,M

z2,1 · · · z2,M
...

...

zn,1 · · · zn,M



v1,1 · · · vp,1

v1,2 · · · vp,2
...

...

v1,M · · · vp,M

+


ϵ1,1 · · · ϵ1,p

ϵ2,1 · · · ϵ2,p
...

...

ϵn,1 · · · ϵn,p

 (5.22)

where z1, . . . , zM are Gaussian factors (i.e., zi,m ∼ N (0, σ2
m)), v1, . . . , vM are the corre-

sponding sparse loading vectors of the factors (i.e., vj,m ∈ [0, 1]), and ϵ1, . . . , ϵp areGaussian
noise vectors (i.e., ϵi,j ∼ N (0, σ2)). We generate M = 3 factors with standard deviations
(σ1, σ2, σ3) = (5, 3, 1). For each of the three factors, p1 true active loadings are randomly

105



selected among only the first 30 out of p = 100 variables to simulate the more challenging
case of overlapping loadings among the three factors. The values of p1 are varied over a range
from 1 to 30. The values of the randomly selected loadings are set to 0.9 (i.e., vj,m = 0.9).
The noise variance σ2 is chosen such that the signal-to-noise ratio (SNR) is controlled over a
range from−10 dB to+10 dB. The SNR is defined by

SNR := 10 log10

(
Var
[
vec
(
ZV⊤)]

Var
[
vec
(
E
)] ), (5.23)

where Var(a) and vec(A) denote the sample variance of a vector a and the vectorization
operator that stacks the columns of a matrixA on top of each other, respectively. Finally, we
set all simulation parameters that are not varied as follows: SNR = 0 dB, α = 10% (target
FDR level),K = 20 (number ofT-Rex random experiments), p1 = 5 (number of true active
loadings) in Figure 5.3, and p1 = 10 in Figure 5.4. The following three benchmark methods
are considered:

1. Ordinary (non-sparse) PCA.

2. The oracle thresholded PCA solution, which is obtained by thresholding each loading
vector vm such that only the p1 strongest loadings remain active (i.e., non-zero). The
thresholded loading vector is then rescaled by its ℓ2-norm to ensure that ∥v̂m∥2 = 1.

3. The oracle sparse PCA (oracle SPCA) solution of (5.14), which is obtained by choosing
the sparsity parameter λ1 for each plug-in PC zm such that only p1 loadings remain
active.

Note that we are considering the best-case performances of the benchmark methods. In prac-
tice, however, only the proposedT-Rex PCAmethods are feasible without choosing any spar-
sity parameter.

The results are averaged over 200 Monte Carlo replications. A discussion is provided in the
captions of Figures 5.3 and 5.4.

5 . 4 Summary

TheT-Rex+GVS selector for FDR-controlled grouped variable selection in high-dimensional
settings has been proposed and its FDR control property has been empirically verified in the
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Figure 5.3: For the first PC, the proposed T-Rex PCA methods empirically control the FDR at a level of 10%
while achieving an optimalTPRof100%even at lowSNRs. Only the infeasible oracle thresholdedPCAachieves
the same TPR at an FDR of almost zero. Except for high SNRs, the oracle SPCA is dominated by all other
methods.

presence of groups of highly correlated variables. In order to reduce the computation time of
the T-Rex+GVS selector that uses the elastic net (EN) as a base selector, the informed elastic
net (IEN) has been developed. Incorporating the proposed IEN as a base selector into the
T-Rex+GVS framework yields a significant reduction in computation time. The proposed
methods outperformed existing state-of-the-art benchmarkmethods in terms of theTPR (i.e.,
power) on a high-dimensional simulated GWAS (see Chapter 6).

The T-Rex+GVS selector has been leveraged to develop an FDR-controlling method for
sparse PCA. The proposed T-Rex PCA and T-Rex Thresholded PCA methods perform the
double duty of dimension reduction and variable selection while controlling the FDR of the
sparse loading vectors. They do not require any tuning of sparsity parameters and are capable
of explaining the signal variance in the data with few PCs, which allows for meaningful
interpretations of the PCs. The proposed methods have shown a promising performance in
simulated data. Moreover, they have proven to be useful for revealing the interdependencies
among stocks in a factor analysis of the 500 index (see Chapter 7).
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Figure 5.4: Cumulative percentage of explained variance (PEV): (a) - (c) As desired, the proposed T-Rex PCA
and T-Rex Thresholded PCA require only very few PCs to explain the signal and mixed variance while not ex-
plaining any additional variance that is purely associated with null loadings. The oracle SPCA is outperformed
by all other methods and the ordinary PCA explains all the variance in the data, including the variance that is
merely associated with null loadings. (d) The cumulative PEV is not very sensitive with respect to the choice of
the target FDR level for the T-Rex PCA, which allows the user to set almost any (preferably low) target FDR
and still achieve a high cumulative PEV.
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He who seeks for methods without having a definite prob-
lem in mind seeks in the most part in vain.

David Hilbert

Every scientist dreams of doing something that can help
the world.

Tu Youyou 6
Applications in Biomedical Engineering

This chapter presents advanced biomedical applications that have been addressed using the
proposed T-Rex methods from Chapters 3, 4, and 5. In Section 6.1, the results of a simu-
lated genome-wide association study (GWAS) are presented. In Section 6.2, a real-world data
human immunodeficiency virus type-1 (HIV-1) drug resistance analysis is conducted. Sec-
tion 6.3 presents the results of a real-world data breast cancer survival analysis.

The main content of this chapter is based on the publications [MMPewa], [MMP22],
[MMP23b], [MMP23a], and [MMPewb]. The results have been produced using the
developed open source R software packages TRexSelector [Mac+24c] and tlars [Mac+24b].

6 . 1 S imulated Genome -Wide Associat ion Study

The proposed T-Rex methods and the state-of-the-art benchmark methods are used to con-
duct a high-dimensional simulated case-control GWAS. The size of the GWAS was chosen,
such that it was still practically feasible to compute the computationally intensive benchmark
methods. The general goal is to detect the single nucleotide polymorphisms (SNPs) that are
associatedwith a disease of interest (i.e., active variables), while keeping the number of selected
SNPs that are not associated with that disease (i.e., null variables) low.
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6 . 1 . 1 GWAS in a Nutshell

The general goal of a genome-wide association study (GWAS) is to discover reproducible as-
sociations between single nucleotide polymorphisms (SNPs), which are base-pair variations
at specific positions on the genome, and a phenotype (e.g., trait, disease) of interest [Uff+21].
An important resource for genomics data is the UK biobank [Sud+15]. It contains genome
sequences for roughly 500,000 participants with about 800,000 genotyped SNPs and about
120,000,000 imputed SNPs and thousands of phenotypes. A systematic collection of asso-
ciations that have been discovered through GWAS can be found in the curated GWAS cata-
log [Bun+19].

The discoveries made in GWAS can be promising candidates for further experiments and
the study of potentially functional associations, which require time and cost intensive
follow-up investigations [GC18]. Hence, it is of utmost importance to keep the number
of false discoveries low while discovering as many true associations as possible. This can
be achieved by using FDR-controlling methods. While classical FDR-controlling methods
based on marginal p-values have been used, multivariate FDR-controlling methods such as
the proposed T-Rex methods or the model-X knockoff methods usually have a higher TPR
and other advantages [Can+18].

In order to conduct an FDR-controlled GWAS, the following data is required:

1. A predictor matrix X = [x1 · · · xp] that contains p SNPs x1, . . . ,xp as columns,
where xj = [x1j · · · xnj]

⊤ contains n observations of the jth SNP. That is, the ith
row ofX contains the measurements of all SNPs for the ith subject.

2. A response vector y = [y1 · · · yn]⊤ that contains the phenotypes of all n subjects.
These can bemeasurements of the disease progression or, in a simple case-control study,
the value “1” for cases and the value “0” for controls.

3. The target FDR level α ∈ [0, 1].

In the following, we present the results of a relatively small FDR-controlled simulatedGWAS
to showcase the performance of the proposed and the benchmark methods.

6 . 1 . 2 Setup and Problem Statement

The genotypes of 700 cases and 300 controls are simulated based on haplotypes from phase 3
of the International HapMap project [The10] using the software HAPGEN2 [SMD11]. The
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software takes into account biological characteristics of genomics principles to simulate realis-
tic genotypes (i.e., predictormatrixX)with knownground truth. We simulated10 randomly
selected disease loci on the first 20,000 SNPs of chromosome 15 (contains 42,351 SNPs in to-
tal) with randomly selected risk alleles (either 0 or 1 with P(“0”) = P(“1”) = 0.5) and with
the heterozygote risks and the homozygote risks being sampled from the uniform distribu-
tion on the intervals [1.5, 2] and [2.5, 3], respectively. Since we are conducting a case-control
study, the control and case phenotypes are 0 and 1, respectively. Note that the SNPs and the
phenotype represent the candidate variables and the response, respectively, while the disease
loci represent the indices of the active variables. Thus, we have p1 = 10 active variables and
p0 = 19,990 null variables. The number of observations is n = 1,000 (700 cases and 300

controls).

The genotypematrix, i.e., thematrixX containing the SNPs as columns consists of groups of
highly correlated SNPs. This is due to a phenomenon called linkage disequilibrium [Rei+01].
Figure 6.1 visualizes the correlation matrix of the first 150 SNPs in X . We can observe the
dependency structure among the predictors/SNPs that form groups of highly correlated vari-
ables.

Although the general goal of a GWAS is to detect associations between SNPs and phenotypes,
the overarching goal of such studies is not to find specific SNPs/variables that are associated
with a phenotype of interest but rather to find the groups of highly correlated SNPs/variables
that point to the broader locations on the genome that are associated with the disease of in-
terest. Therefore, in genomics research, it is a standard procedure to apply a preprocessing
method called SNP pruning before applying any variable selectionmethod (see, e.g., [SSC19]).
The main idea behind SNP pruning is to cluster the SNPs into groups of highly correlated
SNPs using a dendrogram and to select one representative from each group of highly corre-
lated SNPs. After this procedure has been carried out, we are leftwith an SNPmatrixwhose di-
mension is reduced and that exhibits only weak dependencies among the representative SNPs.

For the simulatedGWAS,we generated 100 data sets satisfying the above specifications ofn, p,
p1, p0, etc. According to the authors,HAPGEN2uses the timeof the current day in seconds to
set the seed of the random number generator, and, therefore multiple simulations should not
be started very close in time to avoid identical results. Therefore we have generated the data
sets sequentially and since generating a single data set took roughly six minutes, a sufficient
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Figure 6.1: The heatmap visualizes the correlation matrix of the first 150 SNPs that were generated using the
software HAPGEN2 [SMD11].

time period between the starts of consecutive simulations was allowed.1 The reported results
in Section 6.1.4 have been averaged over these 100 data sets.

6 . 1 . 3 Preprocessing

The preprocessing is carried out as suggested in [SSC19] and on the accompanying website.2

That is, SNPs with a minor allele frequency or call rate lower than 1% and 95%, respectively,
are removed. Additionally, SNPs that violate the Hardy-Weinberg disequilibrium with a cut-
off of 10−6 are removed. Since proximate SNPs are highly correlated, the remaining SNPs
are clustered using SNP pruning that ensures that there exist no absolute sample correlations
above 0.75 between any two SNPs belonging to different clusters. The resulting average num-
ber of clusters is 8211 while the minimum and maximum numbers of clusters are 8120 and

1The data sets were generated on a compute node of the Lichtenberg High-Performance Computer of the
Technische Universität Darmstadt that consists of two “Intel® Xeon® Platinum 9242 Processors” with 96 cores
and 384 GB RAM (DDR4-2933) in total.

2URL: https://web.stanford.edu/group/candes/knockoffs/tutorials/gwas_tutorial.
html (last access: June 26, 2024).
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8326, respectively. Each cluster is represented by the strongest cluster representative which is
selected by computing the marginal p-values using the Cochran-Armitage test based on 20%

of the data and picking the SNP with the smallest p-value. The marginal p-values that will
be plugged into the BH method and the BY method are also computed using the Cochran-
Armitage test but with the full data set.

6 . 1 .4 Results

The reported results inTables 6.1 and 6.2 have been averaged over 100 data that have been gen-
erated as described in Section 6.1.2 andpreprocessed as described in Section 6.1.3. Additionally,
Figure 6.2 shows how the FDP andTPP vary around themean using box plots. TheT-Rex se-
lector demonstrates its applicability to GWAS, as it is the only FDR-controlling method with
a positive TPR, and its sequential computation time is about 4 minutes (vs. more than 12

hours for the knockoff methods). A detailed discussion of the results is given in the captions
of Table 6.1 and Figure 6.2.

Note that the results of the Screen-T-Rexmethods are reported in a separate table (Table 6.2).
The reason for this is that the computations were conducted several months apart, and due to
the energy crisis in Europe, the CPUs of the LichtenbergHigh-Performance Computer of the
Technische Universität Darmstadt were operating at a reduced clock frequency. The tables
are therefore based on two different reference computation times. Thus, only the relative but
not the absolute computation times are representative.

Due to the comparatively high computation times of the T-Rex+GVS methods, a smaller
GWAS is considered for these methods. That is, we generate 100 data sets that each contain
500 cases, 200 controls, the first 1,000 SNPs on Chromosome 15, and 10 true active SNPs.
Everything else is as described in Sections 6.1.2 and 6.1.3, except for the SNP pruning. That is,
in contrast to the preprocessing in Section 6.1.3, we do not carry out SNP pruning to reduce
the dimension of the data but keep all SNPs. Since the ultimate goal of a GWAS is to detect
disease positions on the genome and not specific SNPs, it is reasonable to consider groups of
highly correlated SNPs as active if they contain a disease SNP (see, e.g., [Can+18; SSC19]). In
this regard, a group of highly correlated SNPs is defined as a collection of SNPs of which no
SNP has a correlation higher than ρthr = 1/3 with an SNP from another collection. The
choice of ρthr is based on the same reasoning as in Algorithm 6.

Figure 6.3 presents the box plots of the false discovery proportion (FDP) and the true positive
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Table 6.1: The proposed T-Rex selector is the only method whose average FDP lies below the target FDR
level of 10% while achieving a non-zero power. The only competitor that provably possesses the FDR control
property, namely the model-X knockoff+ method, has an average FDP of 0% but also an average TPP of 0%,
i.e., it has no power. Themodel-X knockoff method exceeds the target FDR level. The computationally cheap
procedure of plugging themarginal p-values into theBH method or theBY method, which has been a standard
procedure in GWAS, fails in this high-dimensional setting. The sequential computation time of the proposed
T-Rex selector in combination with the extended calibration algorithm in Algorithm 3 is roughly 4 minutes as
compared tomore than 12.5 hours for themodel-X methods. That is, theT-Rex selector is 183 times faster than
its strongest competitors. Note that this is only a comparison of the sequential computation times. Since the
random experiments of the proposed T-Rex selector are independent and, therefore, can be run in parallel on
multicore computers, an additional substantial speedup can be achieved.

Methods FDR
con-
trol?

Average
FDP
(in%)

Average
TPP
(in%)

Average sequential
computation time

(hh:mm:ss)

Average relative
sequential

computation time

T-Rex 3 6.45 38.50 00:04:05 1

model-X+ 3 0.00 0.00 12:32:47 183.71

model-X 7 13.07 41.40 12:32:47 183.71

BY 7 94.00 0.00 00:00:00 0.00

BH 7 99.00 0.00 00:00:00 0.00

0.1

0.0
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0.4

0.6

0.8
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BH BY model−X model−X+ T−Rex
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P
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(a) FDP box plots.
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Median 
Mean 

(b) TPP box plots.

Figure 6.2: The proposed T-Rex selector is the only method that has an average FDP below the target FDR
level and that has a non-zero power. Note that the FDP can be different across the realizations and even for
FDR-controlling methods it is not necessarily below the target level for every realization. We use box plots to
visualize the distribution of the results and give the reader a sense of how the FDP and TPP (i.e., power) vary
around the mean.
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Table 6.2: For all methods, the average achieved FDP is lower than the average estimated/target FDR, i.e., all
methods control the FDR. The sequential computation time (of both versions) of the proposed Screen-T-Rex
selector is more than three orders of magnitude lower than that of themodel-X knockoff+ method. Nearly one
order of magnitude is gained compared to the original T-Rex selector. Applying Algorithm 4 with α = 10%,
αl = 5%, and αu = 20%, yields an average FDP and TPP of 15.96% and 47.2%, respectively, without
requiring Step 2.3. of Algorithm 4.

Methods FDR
con-
trol?

Av.
FDP
(in%)

Av. esti-
mated/target
FDR (in%)

Av.
TPP
(in%)

Av. sequential
comp. time
(hh:mm:ss)

Av. relative
sequential
comp. time

Proposed:
1. Screen-T-Rex
(ordinary)

3 15.96 18.57 47.2 00:00:44 1

2. Screen-T-Rex
(conf.-based)

3 10.16 12.5 31.7 00:00:45 1.02

Benchmarks:
3. T-Rex 3 6.45 10 38.5 00:06:39 8.88

4. model-X+ 3 0 10 0 20:00:38 1601.39
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Target FDR 
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Methods
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P

Figure 6.3: The proposed T-Rex+GVS methods have the highest TPR values (i.e., average TPP), while their
FDR values (i.e., average FDP) stay below the target level of 20%.

proportion (TPP), and themeans of the FDP, which are estimates of the FDR, since the FDR
is defined as the expectation of the FDP. First, we observe that all methods control the FDR.
ThemedianTPPof thebenchmarkmodel-X knockoffmethod is zero. TheT-Rex+GVS (EN)
selector shows a significant improvement in TPP compared to the originalT-Rex selector. As
desired, the significant increase in TPP is also achieved by the proposed T-Rex+GVS (IEN)
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selector, while the FDP is much lower compared to that of the T-Rex+GVS (EN) selector.
Thus, in this GWAS use-case, the proposed T-Rex+GVS (IEN) selector dominates the T-
Rex+GVS (EN) selector, while exhibiting amuch lower computation time, especially in large-
scale high-dimensional settings (see Figure 5.2 in Chapter 5).

6 . 2 HIV -1 Drug Res i stance Analys i s

In order to also compare the proposed T-Rex selector and Screen-T-Rex selector from
Chapter 3 against FDR-controlling methods for the low-dimensional setting, we consider a
low-dimensional benchmark HIV-1 data set that was described and analyzed in [Rhe+05;
Rhe+06] and served as a benchmark data set in [BC15]. It can be downloaded from a
Stanford University database.3 As benchmark methods for the low-dimensional setting, we
consider the BH method and the BY method (see Section 2.2.2).

6 . 2 . 1 Problem Statement and Setup

Many antiretroviral drugs are used in HIV-1 infection therapies. However, mutations may
decrease the susceptibility to some drugs and, thus, lead to an increased drug resistance of the
virus. Therefore, it is desired to detect mutations associated with resistance against existing
drugs to determine which drugs to use for treatingHIV-1 and to develop new drugs to which
mutated HIV-1 viruses are highly susceptible.

The same setup as in [BC15] is used. That is, the same preprocessing steps are applied and
the same benchmark mutation positions from treatment-selected mutation (TSM) lists in
[Rhe+05] are considered. Each drug’s response variable contains measurements of drug re-
sistance, while the predictor matrix contains binary data that only distinguishes between the
existence or non-existence of the jth mutation, j = 1, . . . , p, in the ith observation, i =

1, . . . , n.

6 . 2 . 2 Results

The performance of the proposed Screen-T-Rex selector and the benchmark methods in de-
tecting the mutations that are associated with HIV-1 drug resistance for several protease in-
hibitor (PI)-type drugs is assessed. An overview of the dimensions of the data sets correspond-

3URL: https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/ (last
access: June 26, 2024).
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Table 6.3: Results for the HIV-1 PI-type drugs.

Drug n p Target
FDR

Est. FDR
(ordinary)

Est. FDR
(conf.-based)

Amprenavir (APV) 767 201 3% 3.57% 3.70%
Atazanavir (ATV) 328 147 3% 4.76% 0.00%
Indinavir (IDV) 825 206 3% 3.33% 3.33%
Lopinavir (LPV) 515 184 3% 3.85% 0.00%
Nelfinavir (NFV) 842 207 3% 3.70% 0.00%
Ritonavir (RTV) 793 205 3% 3.33% 2.86%
Saquinavir (SQV) 824 206 3% 3.45% 0.00%

Screen-T-Rex
(conf.-based)

Screen-T-Rex
(ordinary)

T-Rex

model-X+

BH

BY

APV

0 15 30

# in TSM
# not in TSM

ATV

0 15 30

IDV

0 15 30

LPV

0 15 30

NFV

0 15 30

RTV

0 15 30

SQV

0 15 30

Figure 6.4: Number of selected mutations that are reported (green) and not reported (orange) in TSM lists for
HIV-1 PI-type drugs.

ing to the PI-type drugs, the fixed target FDR level for the benchmark methods, and the esti-
mated FDR levels by the proposed ordinary and confidence-based Screen-T-Rex selectors are
provided in Table 6.3.

The proposed algorithm for screening biobanks (i.e., Algorithm 4 in Section 3.7.1.3) is applied
with a fixed target FDR for theT-Rex selector ofα = 3%, and FDRbounds for the Screen-T-
Rex selector of αl = 2% (lower bound), and αu = 4% (upper bound). Thus, whenever the
self-estimated FDR of the Screen-T-Rex selector does not lie between the user-specified lower
and upper bounds, the result of the T-Rex selector is favored.

Table 6.3 shows that the result of theT-Rex selector is only favored forATV.ForAPVand IDV,
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the results of the confidence-based Screen-T-Rex selector are favored. For the remaining drugs,
the results of the ordinary Screen-T-Rex selector are favored. Figure 6.4 shows the number of
selected mutations that have been previously reported (green) and not reported (orange) in
TSM lists for HIV-1 PI-type drugs. The T-Rex methods dominate the benchmark methods
in terms of the number of selected mutations reported in TSM lists. Moreover, especially the
fast ordinary Screen-T-Rex selector selects in all cases almost as many mutations as the T-Rex
selector.

Summarizing, the results indicate that it is reasonable to follow the strategy of the proposed
screening biobanks algorithm (i.e., Algorithm 4 in Section 3.7.1.3). That is, it is computa-
tionally beneficial to use the fast Screen-T-Rex selector to screen through large biobanks and
only invoke theT-Rex selector whenever the self-estimated FDR of the Screen-T-Rex selector
is not acceptable.In this example, the results of the Screen-T-Rex selector are acceptable for
most drugs

6 . 3 Breast Cancer Surv ival Analys i s

Identifying the few genes that affect the survival time of cancer patients is an important task
in the development of new therapies and personalized medicine [KA17]. In this section, we
consider gene expression and survival time data from the open source resource The Cancer
Genome Atlas (TCGA) [TCW15; Col+16]. In order to detect the genes that are truly associ-
ated with the survival time of breast cancer patients, we conduct an FDR-controlled breast
cancer survival analysis.

6 . 3 . 1 TCGA Breast Cancer Data

The gene expression levels are derived from theRNA-sequencing (RNA-seq) count data. The
raw RNA-seq count data matrix X ∈ Rn×p contains n = 1,095 samples (i.e., breast can-
cer patients) and p = 19,962 protein coding genes. After two standard preprocessing steps,
which are removing all genes with extremely low expression levels (i.e., where the sum of the
RNA-seq counts is less than 10) and performing a standard variance stabilizing transforma-
tion on the count data using the DESeq2 software [LHA14], p = 19,405 candidate genes are
left. The response vector y ∈ Rn contains the log-transformed survival times of the patients.
After removing missing and uninformative entries (i.e., entries with a survival time of zero
days) from y, n = 1,072 samples are left. During the study, the event (i.e., death) occurred
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Figure 6.5: Number of selected genes in the TCGA breast cancer survival analysis study.

for only 149 patients, while 923 patients were either still alive after the end of the study or
dropped out of the study. That is, the survival times of 923 patients are right censored. This
is dealt with by treating these entries in y as missing data and imputing them using the well-
known Buckley-James estimator [BJ79].

6 . 3 . 2 Methods and Results

As motivated in Chapter 4, the most suitable method for this application is the T-
Rex+DA+BT selector. The considered benchmark methods are the Cox proportional
hazards Lasso and elastic net [Sim+11], which are specifically designed for censored survival
data, and the ordinaryT-Rex selector from Chapter 3. The elastic net Coxmodel requires the
tuning of two parameters, i.e., a sparsity parameter λ and a mixture parameter γ ∈ [0, 1] that
balances a convex combination of the ℓ1- and ℓ2-norm regularization terms. Here, γ = 1 sets
the ℓ2 regularization term to zero and yields the Lasso solution. As suggested in [Sim+11],
we evaluate a range of values for γ and, for each fixed γ, we perform 10-fold cross-validation
to choose λ. We consider, as suggested by the authors, the λ-value that achieves the maxi-
mum C-index and the λ-value that deviates by one standard error (1se criterion) from the
maximum C-index to obtain a sparser solution. Due to the high computational complexity
of the model-X knockoff method (see Figure 3.1), it is practically infeasible in this large-scale
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high-dimensional setting. Therefore, we cannot consider it in this survival analysis.

Figure 6.5 shows the number of selected genes for different target FDR levels (in %) and dif-
ferent values of γ. First, we observe that the ordinaryT-Rexmethod selectedmore genes than
the T-Rex+DA+BT selector. In accordance with Corollary 1, all genes that were selected by
theT-Rex+DA+BT selectorwere also selected by themore liberal ordinaryT-Rex selector. In
contrast, the regularized Cox methods did not provide consistent results for many values of
γ because many genes that were selected by the more conservative 1se criterion do not appear
in the selected set of the more liberal maximum C-index criterion. Moreover, it seems that
many choices of γ lead to a very high number of selected genes, which raises some suspicion
with respect to reproducibility because only 149 non-censored data points are usually not suf-
ficient to reliably detect thousands of genes. By contrast, all three genes that were selected by
the proposed method at a target FDR level of 20% (i.e., ‘ITM2A’, ‘SCGB2A1’, ‘RYR2’) have
been previously identified to be related to breast cancer [Zho+19; Lac06; Xu+21].
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Opportunity is missed by most people because it is dressed
in overalls and looks like work.

Thomas Edison

7
Applications in Financial Engineering

In this chapter, the proposed FDR-controlling T-Rex methods from Chapters 3, 4, and 5 are
used to solve two real-world data problems in financial engineering. In Section 7.1, a sparse,
FDR-controlled, and quarterly updated portfolio is constructed and used to accurately track
the S&P 500 index. In Section 7.2, a factor analysis of the most influential stocks in the S&P
500 index is conducted and used to reveal the interdependencies among stocks based on the
idiosyncratic component.

The main content of this chapter is based on the publications [MPMew], [MMP24],
and [Mac+24a]. The results have been produced using the developed open source R software
packages TRexSelector [Mac+24c] and tlars [Mac+24b].

7 . 1 FDR-Controlled Sparse Index Tracking

In the following, the sparse index tracking problem is described and the stock returns data
model is introduced. Then, the proposed FDR-controlling index tracking algorithm is for-
mulated. Finally, the real-world S&P 500 index tracking setups and results are presented and
discussed.
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7 . 1 . 1 Problem Statement and Stock Returns Data Model

Financial index tracking is a fundamental task for the design of asset portfolios that are used to
create exchange traded funds (ETFs) and hedging strategies of mutual funds [Pal24; BFP17;
Pri07]. Prevalent index tracking approaches replicate an entire index (e.g., SPDR S&P 500
ETF) by creating and regularly updating a full tracking portfolio. However, this leads to high
transaction costs because it requires the regular purchase and disposition of all assets in an
index. Therefore, sparse index tracking methods, which use a small fraction of the stocks
that constitute an index, have been proposed [JV02; MO07; Sco+13; XLX16; BFP17]. The
common disadvantage of existing sparse approaches is that they require the investor to choose
the size of the tracking portfolio or the value of a sparsity tuning parameter. Since there exist
no optimal strategies for the choice of these parameters, the authors of the aforementioned
approaches resort to experimental choices or rules-of-thumb that often lead to sub-optimal
tracking portfolios.

In this work, we use the proposed FDR-controlling T-Rex methods to automatically deter-
mine the size and composition of a sparse index tracking portfolio. In the index tracking con-
text, the FDR is the expected fraction of irrelevant stocks (i.e., stocks that are irrelevant for
tracking an index) among all selected stocks. The target FDR between 0 and 100% expresses
the level of the investor’s willingness to sacrifice a small amount of transaction costs (arising
from the inclusion of a few irrelevant stocks into the tracking portfolio) in order to obtain a
diversified and yet small tracking portfolio.

As suggested in [BFP17; Pal24], we model the stocks returns as a linear regression model

y = Xw + ϵ, (7.1)

where w = [w1 · · ·wp]
⊤ ∈ Rp is the asset weight vector and ϵ = [ϵ1 · · · ϵn]⊤ ∈ Rn is an

additive noise vector. Here, y = [y1 · · · yn]⊤ ∈ Rn is the daily index returns vector, i.e.,

yi =
indexi− indexi−1

indexi−1

, i = 1, . . . , n, (7.2)

where indexi is the closing price of the index on day i and index0 is the closing price at the
first day of the considered period. Analogously, X = [x1 · · ·xp] ∈ Rn×p is the matrix
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containing the daily returns of the stocks xj = [x1,j · · · xn,j]
⊤ ∈ Rn, i.e.,

xi,j =
pricei,j − pricei−1,j

pricei−1,j

, i = 1, . . . , n, (7.3)

where pricei,j is the closing price of the jth stock on day i and price0,j is the closing price on
the first day of the period.

The general goal of sparse index tracking is to determine a sparse estimator of the asset weight
vector w that tracks the index y sufficiently well using few relevant assets while obeying the
following two rules [BFP17]:

1. Shorting stocks is not allowed, i.e.,wj ≥ 0, j = 1, . . . , p.

2. The available budget has to be invested, i.e., ∥w∥1 = 1.

Note that the “no-shorting” constraint is technically a non-negativity constraint that can be
sparsity inducing [Mei13]. Therefore, some additional stocksmight be dropped in this second
step.

7 . 1 . 2 Algorithm: FDR-Controlled Index Tracking

The proposed algorithm regularly updates the FDR-controlled tracking portfolio in a rolling-
window fashion, as suggested in [BFP17], while satisfying the “no-shorting” and budget con-
straint in every training period m ∈ {1, . . . ,M}. Therefore, we first run the dependency-
aware T-Rex selector with the target FDR α ∈ [0, 1], the stock returns matrices of the train-
ing periods Xm, m = 1, . . . ,M , and the corresponding index returns vectors ym, m =

1, . . . ,M , as inputs, and with either

1. the nearest neighbors group design in (4.39) or

2. the autoregressive group design in (4.48).

Then, we solve the constrained quadratic problem

minimize
wm

∥ym −Xm,Â(m) ·wm∥22 + λ2∥wm∥22 subject to wm ≥ 0 (7.4)

∥wm∥1 = 1. (7.5)

Here, Xm,Â(m) contains only the daily returns of the selected subset of stocks in Â(m) and
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Algorithm 8 FDR-controlled index tracking.
1. Input: α ∈ [0, 1],Xm, ym,m = 1, . . . ,M .

2. Form = 1, . . . ,M do:

2.1. ComputeGr(j, ρthr), j = 1, . . . , p, as defined

2.1.1. for the T-Rex+DA+NN selector in (4.39) for all ρthr ∈
{0, 0.01, 0.02, . . . , 1} or

2.1.2. for the T-Rex+DA+AR1 selector in (4.48).

2.2. Run theT-Rex+DA selector in Algorithm 5withGr(j, ρthr) from Step 2.1 to ob-
tain an optimal solution (v∗, ρ∗thr, T ∗, L) and the corresponding FDR-controlled
set of selected stocks Â(m) := Â(m)

L (v∗, ρ∗thr, T
∗).

2.3. Solve the quadratic optimization problem in (7.5).

3. Output: Portfolio weight vectors for each quarter, i.e., ŵ1, . . . , ŵM .

the ℓ2-penalty term λ2∥wm∥22 with λ2 = 10−9 is only added to ensure a unique solution
when the number of selected stocks exceeds the number of trading days in a training period.
Note that for the autoregressive group design in (4.48), the ordering of the stocks matters.
Therefore, the stocks in Xm are sorted using single-linkage hierarchical clustering [MC12]
with pairwise sample correlations as a similarity measure.1 This ensures that highly correlated
stocks are placed next to each other before fitting anAR(1)model as described in Section 4.4.2.
Figure 7.1 shows the returns of the sorted stocks on three different trading days. Algorithm 8
summarizes the proposed index tracking method.

7 . 1 . 3 Real-World S&P 500 Index Tracking

First, the proposed T-Rex+DA+NN selector from Section 4.4.1 is used to perform sparse
FDR-controlled index tracking and its performance is compared against the benchmarkmeth-
ods. Then, the proposed T-Rex+DA+AR1 selector from Section 4.4.2 is used to track the
index at a much lower target FDR level of 1%.

The T-Rex+DA+NN selector and the T-Rex+DA+AR1 selector both perform FDR-
controlled stock selection for index tracking. The difference between them is that they use
different dependency models to capture and leverage the dependency structure among the

1Other variants of hierarchical clustering, such as complete linkage and average linkage [MC12], have pro-
duced comparable results.
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Figure 7.1: Exemplary daily returns of the sorted 438 stocks.

stocks. The T-Rex+DA+NN selector uses a nearest neighbors group correlation model,
while theT-Rex+DA+AR1 selector uses a first order autoregressive stock dependencymodel.
In the following sections, the index tracking performances of both methods are compared
and discussed.

7 . 1 . 3 . 1 T-Rex+DA+NN Selector: Setup and Results

We consider the S&P500 index in the20 year period from01/01/2003−29/09/2023, which
gives us5,220 tradingdays (i.e., samples) in total. These are divided intoM = 86 training and
86 testing periods, where the first period can only be used for training and the last period only
for testing. Using the same rolling window approach as in [BFP17], the portfolio is updated
quarterly, i.e., all training and testing periods consist of n = 60 trading days. After removing
all stocks that contain missing values, p = 390 candidate stocks are left. In summary, the
response vector of themth training period ym ∈ R60×1,m = 1, . . . , 86, contains the daily
index returns, and the corresponding predictor matrix Xm ∈ R60×390, m = 1, . . . , 86,
contains the daily stock returns as columns.
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As FDR-controlling benchmark methods, we consider the ordinary T-Rex selector from
Chapter 3 and the model-X knockoff+ method [Can+18] for the variable selection step
in Algorithm 8. We also consider the non-FDR-controlling state-of-the-art sparse index
trackingmethodALAIT - ETE [BFP17] that solves aLasso-type optimization problemwith
the same no-shorting and budget constraints using a majorization minimization approach.
The target FDR α is set to 30% and the sparsity tuning parameter for ALAIT - ETE to
λ = 10−7, as suggested in [BFP17; BP19].
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Figure 7.2: The proposed T-Rex+DA+NN selector closely follows the S&P 500 index using the fewest num-
ber of stocks in almost all quarters.

Table 7.1: The proposed T-Rex+DA+NN selector achieves a lower average (over all quarters) mean squared
wealth tracking error (MSTE) using a smaller portfolio. Another major advantage is that the proposed method
only requires choosing an interpretable target FDR level α (in %), while the benchmark method relies on the
uninterpretable tuning parameter λ (×10−7).

ALAIT - ETE T-Rex+DA+NN
Param. λ # stocks MSTE Param. α # stocks MSTE

16.67 12.72 0.96 20% 9.62 0.91

6.67 18.73 0.76 25% 13.67 0.03

3.33 24.23 1.32 30% 19.72 0.22

As suggested in [BFP17], the tracking performance is measured by the more comprehensible
wealth. That is, we do not consider the absolute value of the index but set the value of the

126



index at the start of the tracking period to one and the wealth represents how an investors
wealth has changed with respect to the reference. Note that index tracking does not aim at
achieving the highest possible wealth but at an accurate tracking of the wealth corresponding
to the index.

The results in Figure 7.2 andTable 7.1 show that the proposed dependency-awareT-Rex selec-
torwith the nearest neighbors penalizationmechanism (T-Rex+DA+NN ) has the best index
tracking performance, while requiring the smallest number of stocks in almost all quarters.

7 . 1 . 3 . 2 T-Rex+DA+AR1 Selector: Setup and Results

We consider the period01/01/2010−30/01/2024, which amounts to3540 tradingdays (i.e.,
samples). These are divided into 58 training and 58 testing periods, where the first period can
only be used for training and the last period can only be used for testing. As in Section 7.1.3.1,
the portfolio is updated quarterly in a rolling window fashion and, thus, each period consists
of 60 trading days. The response vector of the mth training period ym ∈ R60×1, m =

1, . . . , 58, contains the daily index returns. After removing all stocks that contain missing
values, 438 candidate stocks are left. The predictor matrix Xm ∈ R60×438, m = 1, . . . , 58,
contains the daily returns of the stocks as column vectors.

The results in Figure 7.3 and Table 7.2 show that the proposed T-Rex+DA+AR1 selector
has the best index tracking performance and the lowest mean squared wealth tracking error
(MSTE) while requiring only few stocks at a low target FDR of 1%. In comparison, the T-
Rex+DA+NN selector performswell at higher target FDR levels (see Figure 7.2 andTable 7.1)
but at very low target FDR levels, it becomes too conservative and, therefore, selects too few
stocks, while the more liberal T-Rex+DA+AR1 selector selects sufficiently many stocks to
accurately track the S&P 500 index. In conclusion, theT-Rex+DA+AR1 selector is favorable
in scenarios where the investor can only tolerate a very small fraction of irrelevant stocks in the
tracking portfolio.

7 . 2 Factor Analys i s of S&P 500 Stock Returns

Understanding the interdependencies among stocks in an index such as the S&P 500 index
is crucial for the analysis of portfolios. However, computing a simple sample correlation ma-
trix does not allow to assess the fine interdependencies among stocks. The reason is that all
stocks in the S&P 500 index are part of the same market and, therefore, are obscured by
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(b) MSTE

0

10

20

30

40

50

60

70

80

90

100

A
p

r
2

0
1

0

D
e

c
2

0
1

0

S
e

p
2

0
1

1

M
a
y

2
0

1
2

F
e

b
2

0
1

3

O
c
t

2
0

1
3

J
u

l
2

0
1

4

A
p

r
2

0
1

5

D
e

c
2

0
1

5

S
e

p
2

0
1

6

M
a
y

2
0

1
7

F
e

b
2

0
1

8

O
c
t

2
0

1
8

J
u

l
2

0
1

9

A
p

r
2

0
2

0

D
e

c
2

0
2

0

S
e

p
2

0
2

1

M
a
y

2
0

2
2

F
e

b
2

0
2

3

N
o
v

2
0

2
3

#
 S

e
le

c
te

d
 s

to
c
k
s

Proposed: T−Rex+DA+AR1 
T−Rex+DA+NN 
model−X+ 
ALAIT − ETE 

(c) Number of selected stocks

Figure 7.3: The proposed T-Rex+DA+AR1 selector shows (a) the best wealth tracking performance and (b)
the lowest mean squared wealth tracking error (MSTE) in all quarters while (c) requiring only few stocks at a
target FDR of 1% and ρthr = 0.07. Themodel-X knockoff+ method does not select any stocks and, therefore,
does not track the index. ALAIT-ETE and T-Rex+DA+NN have highMSTEs in most quarters. The vertical
grey lines indicate the days of the quarterly updates of the portfolio. For visual clarity, the high MSTE of the
model-X knockoff+ method and the number of selected stocks byALAIT-ETE in January, 2015 (i.e., 437), are
omitted in Figures (b) and (c), respectively.

Table 7.2: MSTE and number of selected stocks averaged over all testing periods.

Methods Av. MSTE Av. # selected stocks

T-Rex+DA+AR1 0.0067 17.98

T-Rex+DA+NN 0.8774 2.88

model-X+ 2.2806 0.00

ALAIT-ETE 0.7538 44.41
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(b) Ordinary PCA
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(c) T-Rex PCA
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(d) T-Rex Thresh. PCA

Figure 7.4: Correlationmatrices of the 28most influential stocks (according to their index weights) in the S&P
500 index.

strong statistical market factors [RM11; AL10]. Therefore, our goal in this application is to
use the proposed T-Rex PCA and T-Rex Thresholded PCA from Section 5.3 to determine
the strongest common factors, remove them from the data (which leaves us with the idiosyn-
cratic component), and, thereby, reveal the fine interdependencies among the stocks. That
is, we compute X̂ = Ẑ′V̂′⊤, where Ẑ′ and V̂′ are copies of the estimated PC matrix Ẑ and
the estimated loading matrix V̂, respectively, except that the first three columns (i.e., the first
three PCs) are removed, which is motivated by the Fama–French three-factor model for stock
returns [FF92]. For this purpose, we consider the returns of the stocks that constitute the
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S&P 500 index in the three month period from 01/10/2022 to 31/12/2022. The stock re-
turns matrix X = [x1 · · ·xp] ∈ Rn×p contains n daily returns of p stocks, as defined in
Section 7.1.1.

Figure 7.4 presents the correlation matrices of the 28most influential stocks (i.e., stocks with
index weight larger than 0.6%) in the S&P 500 index. In order to visually distinguish groups
of highly associated stocks, the correlation matrices are reordered using complete linkage hi-
erarchical clustering. Even after reordering, the correlation matrix that corresponds to no re-
movedPCs barely reveals any groups of stocks. The ordinary PCA removes toomuch variance
and, therefore, does not allow to distinguish groups of highly correlated stocks. In contrast,
after removing the first three PCs, the proposedmethods (i.e.,T-Rex PCA andT-RexThresh-
olded PCA at a target FDR level of 10%) reveal that there exist meaningful groups of highly
correlated stocks that are not explained by the three leading PCs but by the idiosyncratic com-
ponent. Since the oracle SPCA, which has been considered as a benchmark method in the
numerical experiments in Section 5.3.5, is infeasible in this real world example, it is omitted.
The results indicate meaningful relationships among stocks from different industries. How-
ever, a detailed interpretation of the results from a portfolio design perspective goes beyond
the scope of this dissertation.
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It is not knowledge, but the act of learning, not possession
but the act of getting there, which grants the greatest enjoy-
ment.

Carl Friedrich Gauss

The important thing is not to stop questioning. Curiosity
has its own reason for existing.

Albert Einstein 8
Conclusion

This chapter concludes the dissertation with a summary of the contributions in Section 8.1
and an overview of limitations and open challenges for future research in Section 8.2.

8 . 1 Summary

The first main contribution of this dissertation (see Chapter 3) is the development and anal-
ysis of the T-Rex selector, a new fast FDR-controlling variable selection framework for high-
dimensional data [MMPewa]. The T-Rex selector is, to the best of our knowledge, the first
multivariate high-dimensional FDR-controlling method that scales to millions of variables
in a reasonable amount of computation time. Since the T-Rex random experiments can be
computed in parallel, multicore computers allow for additional substantial savings in compu-
tation time. These properties make the T-Rex selector a suitable method especially for large-
scale GWAS. For cases where thousands of GWAS need to be conducted efficiently in order to
screen through all the phenotypes of a large-scale biobank such as the UK biobank [Sud+15],
the Screen-T-Rex selector has been developed [MMP23a]. It is a fast FDR-controlling vari-
able selection method that does not ask the user to set a target FDR level, but provides the
user with an estimate of the achieved FDR. In the few cases, where the user might not be sat-
isfied with the provided FDR estimate, the originalT-Rex selector can be used with the result
of the Screen-T-Rex selector as a warm start and the desired target FDR as an input.
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The second main contribution of this dissertation (see Chapter 4) is the development and
analysis of the dependency-awareT-Rex (T-Rex+DA) selector [MMPewb]. TheT-Rex+DA
selector is an extension of the T-Rex selector that provides FDR control in situations where
existing methods including the T-Rex selector break down. In particular, it performs high-
dimensional FDR-controlled variable selection in the presence of strong dependencies at the
cost of a reduced power compared to the T-Rex selector. It enables the solution of various
problems such as high-dimensional survival analysis [MMPewb] and sparse financial index
tracking [MPMew; MMP24], where strong dependencies among the variables (e.g., gene ex-
pression levels, stock returns) exist and common SNP pruning or other preprocessing tech-
niques are not applicable.

The third main contribution of this dissertation (see Chapter 5) is the development and
analysis of algorithms for FDR-controlled joint grouped variable selection and FDR control.
The proposed T-Rex+GVS selector uses the elastic net (EN) as a base forward selector
within the T-Rex framework and modifies the dummy generation procedure, which leads
to a significant TPR increase in grouped variable selection tasks compared to the ordinary
T-Rex selector and other benchmark methods [MMP22]. Moreover, the informed elastic
net (IEN), a fast grouped variable selection method for high-dimensional settings, has been
proposed [MMP23b]. Replacing the EN base forward selector with the proposed IEN has
lead to a significantly reduced computation time in large-scale high-dimensional settings and
a better performance in a simulated GWAS compared to the EN -based T-Rex+GVS selector.
Leveraging the formulation of sparse PCA as a series of grouped variable selection tasks, the
developedT-Rex+GVS selector has been used to develop two newmethods: T-Rex PCA and
T-RexThresholded PCA [Mac+24a]. Thesemethods perform the double duty of dimension
reduction and variable selection while controlling the FDR of the sparse loading vectors.
In contrast to existing methods, they do not require the tuning of any sparsity parameters
and are capable of explaining the signal variance in the data with few PCs, which allows for
meaningful interpretations of the obtained sparse PCs. The proposed FDR-controlled PCA
methods have shown a promising performance in simulated data and have proven to be
useful for revealing the interdependencies among stocks from the S&P 500 index.

The fourth main contribution of this dissertation (see Chapters 6 and 7) is the usage of
the developed FDR-controlling methods to solve challenging real-world data problems in
biomedical and financial engineering. The biomedical engineering applications include a
high-dimensional GWAS, an HIV-1 drug resistance association study, and a sparse breast
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cancer survival analysis study. The financial engineering applications include the design of
a quarterly updated and rebalanced FDR-controlled tracking portfolio that allows for accu-
rately tracking the S&P 500 index over decades and a factor analysis of S&P 500 stock returns.
In all of these applications, the developed T-Rex methods have shown a remarkably accurate
variable selection and FDR control performance compared to the state-of-the-art benchmark
methods. Moreover, for large-scale data applications like the GWAS, the computation time
has been multiple orders of magnitude lower compared to the benchmark methods.

The fifth main contribution of this dissertation is the development of the actively maintained
open-source R software packages tlars [Mac+24b] and TRexSelector [Mac+24c] that have
been published on CRAN. These software packages ensure the reproducibility of the pre-
sented results and facilitate the resource-friendly usability of the proposed T-Rex methods
through an efficient C++ backend. Much work has gone into the creation, testing, improve-
ment, and maintenance of these software packages. While none of this is documented in the
dissertation, a testimony to the impact of this work is the already high number of downloads.
Figure 8.1 shows the accumulated monthly downloads until the date of submission.

Beyond the presented contributions, the proposed T-Rex framework and its extensions have

0

2000

4000

6000

8000

10000

Ju
n 

20
22

Ju
l 2

02
2

Aug
 2

02
2

Sep
 2

02
2

O
ct
 2

02
2

N
ov

 2
02

2

D
ec

 2
02

2

Ja
n 

20
23

Fe
b 

20
23

M
ar

 2
02

3

Apr
 2

02
3

M
ay

 2
02

3

Ju
n 

20
23

Ju
l 2

02
3

Aug
 2

02
3

Sep
 2

02
3

O
ct
 2

02
3

N
ov

 2
02

3

D
ec

 2
02

3

Ja
n 

20
24

Fe
b 

20
24

M
ar

 2
02

4

Apr
 2

02
4

M
ay

 2
02

4

Ju
n 

20
24

Ju
l 2

02
4

Date

A
c
c
u
m

u
la

te
d
 D

o
w

n
lo

a
d
s

R packages

tlars

TRexSelector

Figure 8.1: The plot shows the accumulated monthly downloads of the developed open source R software
packagesTRexSelector [Mac+24c] and tlars [Mac+24b]. The tlars packagewas released about onemonthbefore
the TRexSelector package. Both packages have been downloaded more than 11,000 times since their initial
release.
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already proven to be useful and versatile tools for the efficient computation in big data appli-
cations [SMM23] and the estimation of Gaussian graphical models [KMM24].

8 . 2 L imitat ions and Open Challenges for Future
Research

Since the development of the T-Rex selector in Chapter 3, several limitations have been ad-
dressed by extending the framework to handle various dependency structures among candi-
date variables in Chapter 4, grouped variable selection in Chapter 5, and Gaussian graphical
models [KMM24]. However, beyond these advancements, many extensions are still possible,
and some limitations remain. The following non-exhaustive list presents open challenges for
future research, highlights limitations of the developed T-Rex methods, and proposes poten-
tial remedies:

1. FDR-controlled GWAS catalog of reproducible discoveries: The aim of this fu-
ture research challenge is to conduct FDR-controlledmultivariate reproducibility stud-
ies with highTPRusing theT-Rex selector on large-scale genotype and phenotype data
from theUKBiobank [Sud+15] in order to reproduce the reported results in theGWAS
catalog [Bun+19]. The aim is to confirm past discoveries, discover new genetic associa-
tions, and flag potentially false reported genetic associations. The envisioned output of
this project is a curated catalog of reproducible genetic associations that helps scientists
to focus their efforts in revealing the causal mechanisms behind the genetic associations
on the most promising and reproducible genetic associations.

2. Power analysis of the T-Rex selector: In this dissertation, the TPR (i.e., power) of
theproposedT-Rex selector has been compared empirically to thebenchmarkmethods.
In this comparison, theT-Rex selector has shown a higher TPR in almost all numerical
experiments. In order to confirm this empirical observation theoretically, a theoretical
analysis of theTPR is required. In recent years, similar power analyses havebeen carried
out for knockoff methods [WBC17; WJ20; Wei+23].

3. Simultaneous TPR control and FDR minimization: FDR control considers
the maximization of the number of selected variables under the condition that a
user-defined target FDR level is not exceeded. However, in applications such as
emergency response person localization [Sch+24] missed detections might be more
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severe than false detections, since a missed detection means failing to rescue a person
in a crisis situation (e.g., fire, flood, etc.). That is, it is more important to achieve a high
user-defined TPR while keeping the FDR as low as possible. Therefore, this challenge
for future research considers solving the problem of minimizing the FDR under the
condition that the TPR equals or exceeds the user-defined target level. This future
challenge requires the development of a TPR estimator which is difficult because any
TPR estimator will depend on the unobservable number of true active variables. Note
that this challenge is related to the second challenge, since both are focused on the
analysis and estimation of the TPR.

4. Dummy-free T-Rex selector: A bottleneck of the T-Rex selector has been its high
random-access memory (RAM) usage to store the dummies. This problem has been
alleviated by using sophisticated memory mapping technologies that allow for an effi-
cient usage of the solid-state drive (SSD) to virtually extend the available RAM on a
computer. This has made the T-Rex selector scalable to millions of variables on a stan-
dard laptop [SMM23]. Nevertheless, an entirely dummy-free T-Rex selector would
allow for an even further scalability of the framework to potentially billions of vari-
ables and, thus, allow for FDR-controlled multivariate association testing using whole
genome sequencing data which recently became available in theUKbiobank [Sud+15].
The challenge of this future research project is to determine a vector of dummy impor-
tance measures for each forward selection step of all random experiments within the
T-Rex selector and to track the changing distribution of the dummy importance vec-
tor along the forward selection paths. This would allow to determine valid dummy
importance measures that can be compared against the observed variable importance
measures of the candidate variables to terminate the random experiments after the op-
timal number of dummies, as determined by the T-Rex calibration algorithm (see Sec-
tions 3.5.3 and 3.5.4), has entered the solution paths.

5. Complex T-Rex selector: In many applications that require reliable variable selec-
tion tools, the data is complex valued. Some existing complex valued variable selection
applications that would greatly benefit from FDR control can be found in many dif-
ferent areas such as direction-of-arrival (DOA) estimation [SPP18], radar-based local-
ization [Sch+24], and dynamic mode decomposition [Gra+20]. Thus, the goal of this
work is to extend the proposed FDR-controlling T-Rex selector to allow for complex-
valued input data. The first challenge of this project lies in effectively leveraging the
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existing complex LARS [Gra+20] to adapt the base selector of the T-Rex framework,
i.e., the proposed early-terminating T-LARS algorithm (see Section 3.3), to the com-
plex number domain. Then, the dummy generation and the fusion of the candidate
sets need to be adapted to the complex number domain in order to obtain the complex
T-Rex selector.

6. FDR-controlled estimation of graphs: Graphical models are widespread and useful
tools for modeling the conditional statistical relationships among variables. An exem-
plary applicationwith high-dimensional data is given by the investigation of the genetic
architecture of the human plasma metabolome [Sur+22]. Other important applica-
tions exist in biology and healthcare, climate science, and psychology [Bes+21; Iqb+16;
Zer+14; Nor+21; Bhu+19]. The challenge is to estimate the often sparse underlying
structures of such graphs while keeping the number of false edges low. This allows to
not only use the estimated graphical model in follow-up tasks but also enhances the in-
terpretability of the estimated sparse graphical model. A first successful attempt in this
direction uses the Screen-T-Rex selector to provably control the FDR of the selected
edges at a self-estimated level [KMM24]. However, the challenge of adapting the FDR
estimator of the ordinaryT-Rex selector to the graph estimation task still persists. Solv-
ing this problem will enable the user to control the FDR at the desired level and not
only at the self-estimated level of the Screen-T-Rex selector, which might be too high
in some low-SNR cases.

7. FDR control as a tool to meet the European Union (EU) ethics guidelines for
trustworthy artificial intelligence (AI): The EU has developed and published a set
of requirements that any type of AI needs to meet in order to be considered trustwor-
thy [CDT19]. One of these key requirements is that an AI system needs to be tech-
nically robust, which is further specified as being reproducible, accurate, and reliable.
These are key principles behind the design of the proposed T-Rex framework. It re-
liably (i.e., provably) controls the FDR in variable selection tasks to obtain an accu-
rate set of reproducible discoveries from large-scale high-dimensional data. Thanks
to the flexibility of the T-Rex selector, any type of heuristic or black box AI forward
selection algorithm can be incorporated into the T-Rex framework and will automati-
cally be equipped with the FDR control property, which helps satisfying the EU ethics
guidelines for trustworthy AI. Thus, the goal of this project is to investigate whether
and which existing AI variable selection algorithms can be modified into forward selec-
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tion algorithms and to incorporate these into the T-Rex framework to allow for repro-
ducible discoveries that meet the EU guidelines for trustworthy AI.
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A
Appendix to Chapter 3

This appendix to Chapter 3 is organized as follows: Appendix A.1 presents some technical
corollaries and lemmas, and the detailed proofs of Lemma 1, Theorems 4, 5, and Corollary 3.
Appendix A.2 provides an intuitive explanation of the deflated relative occurrence fromDefi-
nition 9. AppendixA.3 discusses the hyperparameter choices for the extended calibration algo-
rithm inAlgorithm3. InAppendixA.4, the computational complexity of theT-Rex selector is
derived. AppendicesA.5 andA.6, respectively, discuss andnumerically verify the assumptions
used by the state-of-the-art benchmark methods and the proposed approach. Appendix A.7
verifies the assumptions on HAPGEN2 genomics data. In Appendix A.8, additional simu-
lation results for a low-dimensional setting are presented and discussed. Appendix A.9 illus-
trates Theorem 4. Appendix A.10 discusses the robustness of the T-Rex selector in the pres-
ence of non-Gaussian noise.

A. 1 Proofs

In this appendix, we introduce and prove some technical corollaries and lemmas. Then, the
detailed proofs of Lemma 1, Theorem 4 (Dummy generation), Corollary 3, and Theorem 5
(Optimality of Algorithm 2) are presented. The results follow from standard assumptions in
FDRcontrol theory (for details andnumerical verifications, seeAppendicesA.5,A.6, andA.7).
Table A.1 provides an overview of frequently used expressions.
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Table A.1: Overview of frequently used expressions.

Expression Meaning

K ∈ N+\{1} Number of random experiments.
L ∈ N+ Number of dummies.
T ∈ {1, . . . , L} Number of included dummies after which the forward

variable selection process in each random experiment is
terminated.

T ∗ Optimal value of T as determined by the calibration
process.

v ∈ [0.5, 1) Voting level.
v∗ Optimal value of v as determined by the calibration

process.
α ∈ [0, 1] Target FDR level.
Z :=

{
null j : j ∈

{1, . . . , p}
} Index set of null variables.

A :=
{
active j : j ∈

{1, . . . , p}
} Index set of active variables.

p0 := |Z| Number of null variables.
p1 := |A| Number of (true) active variables.
p = p0 + p1 Total number of variables.
n Number of data points.
Â(v) := ÂL(v, T ) Estimator of the active set, i.e., index set of the selected

variables.
Â 0(v) := {null j :
ΦT,L(j) > v}

Index set of the selected null variables.

Â 1(v) := {active j :
ΦT,L(j) > v}

Index set of the selected active variables.

Ck,L(T ) Candidate set of the kth random experiment, i.e., index set
of the included variables in the kth random experiment.

A. 1 . 1 Preliminaries : Technical Corollaries and Lemmas

Corollary 3. Let Zm,k and Dm,k be the index sets of the non-included null and dummy
variables in themth LARS1 forward selection step of the kth random experiment, respectively.

1Note that Corollary 3 and subsequent results apply to all forward selection methods that select one (and
do not drop any) variable in each forward selection step based on the maximum absolute sample correlations
between the predictors and the response or the current residual. Thus, the results hold for the LARS algo-
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Then, for all j ∈ Zm,k ∪ Dm,k, the probability of including Xj in the mth step of the kth
random experiment (RE) is equal, i.e., for all j ∈ Zm,k ∪ Dm,k it holds that

P(“Xj included inmth step of kth RE” | j ∈ Zm,k ∪ Dm,k) =
1

|Zm,k ∪ Dm,k|
. (A.1)

Proof. For ease of readability, the proof is deferred to Appendix A.1.4.

Corollary 4. The numbers of included null variables at step t of all random experiments are
i.i.d. random variables following the negative hypergeometric distribution, i.e., as n→∞,∑

j∈Z

1k(j, t, L) ∼ NHG(p0 + L, p0, t), (A.2)

t = 1, . . . , T , k = 1, . . . , K , where Z is the index set of the null variables.

Proof. Let t be the number of included dummies after which a random experiment is ter-
minated. There exists a LARS step m at which t dummies are included. From Corollary 3,
we know that the probability of including a null variable and the probability of including a
dummy variable are equal in each step of any random experiment. Therefore, it follows from
Corollary 3 that the number of included null variables in any random experiment can be de-
scribed by a process that randomly picks null and dummy variables one at a time, without
replacement, and with equal probability from Zm,k ∪ Dm,k until the process is terminated
after t dummies are included. Since the included active variables in that process do not count
towards the number of included null variables, the total number of variables in the process is
p0 instead of p. The described process exactly follows the definition of the negative hypergeo-
metric distribution, i.e., NHG(p0+L, p0, t)with p0+L total elements, p0 success elements,
and t failures after which a random experiment is terminated.

As a consequence of A-I and A-II (see Appendix A.5), the number of selected null variables
(i.e., VT,L(v)) conditioned on the number of null variables exceeding the minimum voting
level of 50% (i.e., VT,L(0.5)) is binomially distributed withP

(
ΦT,L(j0) > v

)
being the selec-

tion probability of variable j0 ∈ Â 0(0.5). Thus, we obtain the following hierarchical model:

rithm [Efr+04] and approximately hold for theLasso [Tib96], adaptiveLasso [Zou06], elastic net [ZH05], and
many other related methods.
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Corollary 5. The number of selected null variables VT,L(v) follows the hierarchical model

VT,L(v)
∣∣ VT,L(0.5) (A.3)

∼ Binomial
(
VT,L(0.5), P

(
ΦT,L(j0) > v

))
, (A.4)

VT,L(0.5)
d

≤ NHG(p0 + L, p0, T ), (A.5)

where P
(
ΦT,L(j0) > v

)
> 0 for all j0 ∈ Â 0(0.5) and for any v ∈ [0.5, 1).

Lemma 2. Let v be any real number in [0.5, 1) andK →∞. Then, for any j0 ∈ Â 0(0.5),
the following equation is satisfied:

E
[
VT,L(v)

]
= P

(
ΦT,L(j0) > v

)
· E
[
VT,L(0.5)

]
. (A.6)

Proof. Using the tower property of the expectation, we can rewrite the expectation ofVT,L(v)

as follows:

E
[
VT,L(v)

]
= E

[
E
[
VT,L(v)

∣∣ VT,L(0.5)
]]

(A.7)

= E
[
VT,L(0.5) · P

(
ΦT,L(j0) > v

)]
(A.8)

= P
(
ΦT,L(j0) > v

)
· E
[
VT,L(0.5)

]
. (A.9)

The second equation follows from

VT,L(v)
∣∣ VT,L(0.5) (A.10)

∼ Binomial
(
VT,L(0.5), P

(
ΦT,L(j0) > v

))
(A.11)

inCorollary 5 and the third equationholds becauseΦT,L(j0), j0 ∈ Â 0(0.5), are i.i.d. random
variables and, therefore, the selection probabilityP

(
ΦT,L(j0) > v

)
for any fixed v is the same

constant for all j0.

Lemma 3. Let v be any real number in [0.5, 1) and K →∞. Define

V̂ ′
T,L(v) := V̂T,L(v)−

∑
j∈Â(v)

(
1− ΦT,L(j)

)
. (A.12)
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Then, for any j0 ∈ Â 0(0.5), the following equation is satisfied:

E
[
V̂ ′
T,L(v)

]
= P

(
ΦT,L(j0) > v

)
· V̂ ′

T,L(0.5). (A.13)

Proof. Taking the expectation of V̂ ′
T,L(v) yields

E
[
V̂ ′
T,L(v)

]
(A.14)

= E

[
T∑
t=1

p−
∑p

q=1 Φt,L(q)

L− (t− 1)
·
∑

j∈Â(v) ∆Φt,L(j)∑
q∈Â(0.5) ∆Φt,L(q)

]
(A.15)

=
T∑
t=1

p0 −
∑

q∈Z Φt,L(q)

L− (t− 1)
(A.16)

· E

[ ∑
j∈Â 0(v) ∆Φt,L(j)∑
q∈Â 0(0.5) ∆Φt,L(q)

]
, (A.17)

where the first and the second equation follow from Definitions 9, 10, and A-III (see Ap-
pendix A.5), respectively. Note that

∑
q∈Z Φt,L(q) = 1

K

∑K
k=1

∑
q∈Z 1k(q, t, L) is the av-

erage number of included null variables when stopping after t dummies have been included.
SinceK →∞, the law of large numbers allows replacing the average by its expectation. That
is,
∑

q∈Z Φt,L(q) = E
[∑

q∈Z 1k(q, t, L)
]
. Therefore,

∑
q∈Z Φt,L(q) is deterministic and

can be written outside the expectation.

Using the tower property, we can rewrite the expectation in (A.17) as follows:

E

[ ∑
j∈Â 0(v) ∆Φt,L(j)∑
q∈Â 0(0.5) ∆Φt,L(q)

]
(A.18)

= E

[
E

[ ∑
j∈Â 0(v) ∆Φt,L(j)∑
q∈Â 0(0.5) ∆Φt,L(q)

∣∣∣∣∣ ∣∣Â 0(v)
∣∣, ∣∣Â 0(0)

∣∣]] (A.19)

= E

[ ∣∣Â 0(v)
∣∣∣∣Â 0(0.5)
∣∣
]

(A.20)

The last equation follows from∆Φt,L(j0), j0 ∈ Â 0(0.5), being i.i.d. random variables and
the well known fact that E[QM /QN ] = M /N , whereQB =

∑B
b=1 Zb with Z1, . . . , ZB ,

B ∈ {M,N}, being non-zero i.i.d. random variables andM ≤ N .
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Noting that |Â 0(v)| = VT,L(v) and applying the tower property again, we can rewrite the
expectation in (A.20) as follows:

E

[ ∣∣Â 0(v)
∣∣∣∣Â 0(0.5)
∣∣
]

(A.21)

= E

[
VT,L(v)

VT,L(0.5)

]
(A.22)

= E

[
E

[
VT,L(v)

VT,L(0.5)

∣∣∣∣∣ VT,L(0.5)

]]
(A.23)

= E

[
1

VT,L(0.5)
· E
[
VT,L(v)

∣∣ VT,L(0.5)
]]

(A.24)

= E

[
1

VT,L(0.5)
· VT,L(0.5) · P

(
ΦT,L(j0) > v

)]
(A.25)

= P
(
ΦT,L(j0) > v

)
. (A.26)

The last three equations follow from the same arguments as in the proof of Lemma 2. Thus,

E
[
V̂ ′
T,L(v)

]
= P

(
ΦT,L(j0) > v

)
·

T∑
t=1

p0 −
∑

q∈Z Φt,L(q)

L− (t− 1)
(A.27)

= P
(
ΦT,L(j0) > v

)
· V̂ ′

T,L(0.5). (A.28)

Lemma 4. Let K →∞. Then,

E

[∑
q∈Z

Φt,L(q)

]
=

t

L+ 1
· p0. (A.29)

Proof. Using Definition 5, we obtain

∑
q∈Z

Φt,L(q) =
1

K

K∑
k=1

∑
q∈Z

1k(q, t, L). (A.30)
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Then, taking the expectation and noting that∑
q∈Z

1k(q, t, L) ∼ NHG(p0 + L, p0, t), k = 1, . . . , K, (A.31)

i.e., the number of included null variables in the K random experiments are i.i.d. random
variables following the negative hypergeometric distribution as stated in Corollary 4, yields

E

[∑
q∈Z

Φt,L(q)

]
=

1

K

K∑
k=1

E

[∑
q∈Z

1k(q, t, L)

]
(A.32)

=
1

K
·K · t

L+ 1
· p0 (A.33)

=
t

L+ 1
· p0. (A.34)

Lemma 5. Let v be any real number in [0.5, 1). Define

ϵ∗T,L(v) := inf{ϵ ∈ (0, v) : RT,L(v − ϵ)−RT,L(v) = 1} (A.35)

with the convention that ϵ∗T,L(v) = 0 if the infimum does not exist. Suppose that VT,L

(
v −

ϵ∗T,L(v)
)
= VT,L(v)+1,E

[
VT,L(v)

]
> 0, andE

[
V̂ ′
T,L(v)

]
> 0. Then, for all j0 ∈ Â 0(0.5)

it holds that

(i) E
[
VT,L

(
v − ϵ∗T,L(v)

) ∣∣ VT,L(v)
]

(A.36)

= VT,L(v) ·
P
(
ΦT,L(j0) > v − ϵ∗T,L(v)

)
P
(
ΦT,L(j0) > v

) (A.37)

and

(ii) E
[
V̂ ′
T,L

(
v − ϵ∗T,L(v)

) ∣∣ V̂ ′
T,L(v)

]
(A.38)

= V̂ ′
T,L(v) ·

P
(
ΦT,L(j0) > v − ϵ∗T,L(v)

)
P
(
ΦT,L(j0) > v

) . (A.39)

Proof. (i) Let δ ≥ 1 be a constant that satisfies the equationVT,L

(
v−ϵ∗T,L(v)

)
= δ ·VT,L(v).
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Then,

E
[
VT,L

(
v − ϵ∗T,L(v)

) ∣∣ VT,L(v)
]
= E

[
δ · VT,L(v)

∣∣ VT,L(v)
]

(A.40)

= δ · VT,L(v). (A.41)

We rewrite δ · VT,L(v) as follows:

δ · VT,L(v) = VT,L(v) ·
δ · E

[
VT,L(v)

]
E
[
VT,L(v)

] (A.42)

= VT,L(v) ·
E
[
VT,L(v − ϵ∗T,L(v))

]
E
[
VT,L(v)

] (A.43)

= VT,L(v) ·
P
(
ΦT,L(j0) > v − ϵ∗T,L(v)

)
P
(
ΦT,L(j0) > v

) . (A.44)

The last line follows from Lemma 2. Comparing δ · VT,L(v) and the last line, we see that

δ = P
(
ΦT,L(j0) > v − ϵ∗T,L(v)

)
/P
(
ΦT,L(j0) > v

)
(A.45)

and the first part of the lemma follows.

(ii) The proof is analogous to the proof of (i). The only difference is that Lemma 3
instead of Lemma 2 needs to be used for rewriting the expression δ · V̂ ′

T,L(v).

A . 1 . 2 Proof of Lemma 1 (Martingale)

Proof. If there exists a variable with an index, say, j∗ that is not selected at the voting level v
but at the level v − ϵ∗T,L(v) and it is a null variable, then we have

VT,L(v − ϵ∗T,L(v)) = VT,L(v) + 1. (A.46)

However, if j∗ is an active variable or if the infimum in (A.35) does not exist, that is, no addi-
tional variable is selected at the voting level v − ϵ∗T,L(v) when compared to the level v, then
we obtain

VT,L(v − ϵ∗T,L(v)) = VT,L(v). (A.47)
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Summarizing both results, we have

VT,L(v − ϵ∗T,L(v)) =


VT,L(v) + 1, j∗ ∈ Z

VT,L(v),
j∗ ∈ A

or ϵ∗T,L(v) = 0

. (A.48)

Thus, using the definition ofHT,L(v)within Lemma 1, we obtain

E
[
HT,L

(
v − ϵ∗T,L(v)

) ∣∣ Fv

]
(A.49)

= E

[
VT,L

(
v − ϵ∗T,L(v)

)
V̂ ′
T,L

(
v − ϵ∗T,L(v)

) ∣∣∣∣∣ VT,L(v), V̂
′
T,L(v)

]
(A.50)

=



E

[
VT,L(v) + 1

V̂ ′
T,L

(
v − ϵ∗T,L(v)

) ∣∣∣∣∣ VT,L(v), V̂
′
T,L(v)

]
, j∗ ∈ Z

E

[
VT,L(v)

V̂ ′
T,L(v)

∣∣∣∣∣ VT,L(v), V̂
′
T,L(v)

]
,

j∗ ∈ A

or ϵ∗T,L(v) = 0

(A.51)

=



E

[
1

V̂ ′
T,L

(
v − ϵ∗T,L(v)

) ∣∣∣∣∣ VT,L(v), V̂
′
T,L(v)

]
(
VT,L(v) + 1

)−1 , j∗ ∈ Z

VT,L(v)

V̂ ′
T,L(v)

,
j∗ ∈ A

or ϵ∗T,L(v) = 0

. (A.52)

Using Lemma 5, we can rewrite the denominator within the first case of Equation (A.52) as
follows:

VT,L(v) + 1 (A.53)

= E
[
VT,L

(
v − ϵ∗T,L(v)

) ∣∣ VT,L(v)
]

(A.54)
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= VT,L(v) ·
P
(
ΦT,L(j0) > v − ϵ∗T,L(v)

)
P
(
ΦT,L(j0) > v

) . (A.55)

Next, we rewrite the numerator within the first case of Equation (A.52) as follows:

E

[
1

V̂ ′
T,L

(
v − ϵ∗T,L(v)

) ∣∣∣∣∣ VT,L(v), V̂
′
T,L(v)

]
(A.56)

≥ 1

E
[
V̂ ′
T,L

(
v − ϵ∗T,L(v)

) ∣∣ VT,L(v), V̂ ′
T,L(v)

] (A.57)

=
1

E
[
V̂ ′
T,L

(
v − ϵ∗T,L(v)

) ∣∣ V̂ ′
T,L(v)

] (A.58)

=

(
V̂ ′
T,L(v) ·

P
(
ΦT,L(j0) > v − ϵ∗T,L(v)

)
P
(
ΦT,L(j0) > v

) )−1

(A.59)

The first inequality follows from Jensen’s inequality. The first equation holds because
V̂ ′
T,L

(
v − ϵ∗T,L(v)

)
and VT,L(v) are conditionally independent given V̂ ′

T,L(v) and the last
line follows from Lemma 5. Plugging (A.55) and (A.59) into (A.52) yields

E
[
HT,L

(
v − ϵ∗T,L(v)

) ∣∣ Fv

]
≥ HT,L(v), (A.60)

i.e., {HT,L(v)}v∈V , with V = {ΦT,L(j) : j = 1, . . . , p}, is a backward-running super-
martingale with respect to the filtrationFv.

A . 1 . 3 Proof of Theorem 4 (Dummy generation)

Proof. Since

E
[
Dn,l,m,k

]
=

1

Γn,m,k

·
n∑

i=1

γi,m,k · E
[ ◦
Xi,l,k

]
= 0 (A.61)

and

Var
[
Dn,l,m,k

]
=

1

Γ2
n,m,k

·
n∑

i=1

γ2
i,m,k · Var

[ ◦
Xi,l,k

]
= 1, (A.62)
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the Lindeberg-Feller central limit theorem can be used to prove that Dn,l,m,k
d→ D, D ∼

N (0, 1). In order to do this, we define

◦
Qi,l,m,k :=

γi,m,k ·
◦
Xi,l,k

Γn,m,k

, (A.63)

and check whether it satisfies the Lindeberg condition, i.e., whether for every τ > 0

lim
n→∞

n∑
i=1

E
[ ◦
Q2

i,l,m,k · I
(∣∣ ◦
Qi,l,m,k

∣∣ > τ
)]

= 0 (A.64)

holds. Rewriting the Lindeberg condition using the definition of
◦
Qi,l,m,k yields

lim
n→∞

n∑
i=1

(
γi,m,k

Γn,m,k

)2

E
[

◦
X2

i,l,k · I
(∣∣ ◦

Xi,l,k

∣∣ > τΓn,m,k

|γi,m,k|

)]
= 0, (A.65)

where I(·) denotes the indicator function, i.e., I(A > B) is equal to one ifA > B and equal
to zero ifA ≤ B. Since

lim
n→∞

max
1≤i≤n

(
γi,m,k

Γn,m,k

)2

= 0 (A.66)

and
lim
n→∞

min
1≤i≤n

(
Γn,m,k

|γi,m,k|

)
→∞, (A.67)

the Lindeberg condition is satisfied and the theorem follows.

Remark 13. Loosely speaking, Theorem 4 states that regardless of the distribution from which
the dummies are sampled, the dummy correlation variables follow the standard normal distri-
bution as n → ∞. That is, the distribution of the dummies has no influence on the resulting
distribution of the dummy correlation variables. Since the realizations of the dummy correla-
tion variables determine which dummies are included along the LARS solution path, we can
conclude that the decisions of which variable enters next along the solution path is independent
of the distribution of the dummies. Thus, the dummies can be sampled from any univariate
probability distribution with finite expectation and finite non-zero variance to serve as flagged
null variables within the T-Rex selector.
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A.1 .4 Proof of Corollary 3

Proof. Similarly to Theorem 4, we consider the predictorsxj = [x1,j, . . . , xn,j] as n i.i.d. re-
alizations ofXj , which can also be considered as one realization from each of the i.i.d. random
variablesX1,j, . . . , Xn,j . Replacing

(i)
◦
Xi,l,k, i ∈ {1, . . . , n}, l ∈ Dm,k, k ∈ {1, . . . , K},

in Theorem 4 with

(ii) Xi,j , i ∈ {1, . . . , n}, j ∈ Zm,k,

and using A-I (see Appendix A.5), the conditions in Theorem 4 are satisfied. Thus, it follows
that, as n→∞,

Dn,j,m,k
d→ D, D ∼ N (0, 1), (A.68)

i.e., the null correlation variables {Gj,m,k : j ∈ Zm,k} are identically distributed.2 Since the
non-included null random variables {Xj : j ∈ Zm,k} are independent of the true active
variables and mutually independent, the null correlation variables are also independently dis-
tributed. Thus, in combination with Theorem 4, the null and dummy correlation variables
{Gj,m,k : j ∈ Zm,k ∪ Dm,k} are i.i.d.

We define
g∗(j) := argmax

g∈(Zm,k∪Dm,k)\{j}

{
|Gg,m,k|

}
, (A.69)

i.e., the largest absolute correlation with the current residual among all non-included nulls
and dummies (except for variable j) in themth LARS step. Since in each stepm, the LARS
algorithm includes the variable with the largest absolute correlation with the current residual,
we have

P(“Xj included inmth step of kth RE” | j ∈ Zm,k ∪ Dm,k) (A.70)

= P
(
|Gj,m,k| ≥ |Gg∗(j),m,k|

∣∣ j ∈ Zm,k ∪ Dm,k

)
. (A.71)

2Note that, as in Theorem 4, the constant factor Γn,m,k inDn,j,m,k = (1/Γn,m,k)Gj,m,k is equal for all
j ∈ Zm,k and does not affect the distribution ofGj,m,k.
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Summing up the probabilities in (A.71) over all j′ ∈ Zm,k ∪ Dm,k yields

1 =
∑

j′∈Zm,k∪Dm,k

P
(
|Gj′,m,k| ≥ |Gg∗(j′),m,k|

∣∣ j′ ∈ Zm,k ∪ Dm,k

)
(A.72)

= |Zm,k ∪ Dm,k| · P
(
|Gj,m,k| ≥ |Gg∗(j),m,k|

∣∣ j ∈ Zm,k ∪ Dm,k

)
(A.73)

for all j ∈ Zm,k ∪Dm,k. The second line follows from the fact that theGj,m,k’s are exchange-
able because they are i.i.d. Exchangeability is meant in the sense that

P
(
|Gj1,m,k| ≥ |Gg∗(j1),m,k|

∣∣ j1 ∈ Zm,k ∪ Dm,k

)
(A.74)

= P
(
|Gj2,m,k| ≥ |Gg∗(j2),m,k|

∣∣ j2 ∈ Zm,k ∪ Dm,k

)
(A.75)

for all j1, j2 ∈ Zm,k ∪ Dm,k.

Combining (A.71) and (A.73), we obtain

P(“Xj included inmth step of kth RE” | j ∈ Zm,k ∪ Dm,k) =
1

|Zm,k ∪ Dm,k|
(A.76)

for all j ∈ Zm,k ∪ Dm,k.

A . 1 . 5 Proof of Theorem 5 (Optimality of Algorithm 2)

Proof. First, note that for all triples (v, T, L) that satisfy F̂DP(v, T, L) ≤ α, the objective
functions in Step 4 of Algorithm 2 and in the optimization problem in (3.15) are equivalent,
i.e.,

∣∣ÂL(v, T )
∣∣ = RT,L(v). Thus, in order to prove that (v∗, T ∗) is an optimal solution

of (3.15), it must be shown that the set of feasible tuples obtained by the algorithm contains
the feasible set of (3.15). This also proves that (v∗, T ∗) is a feasible solution of (3.13) and (3.14)
because the conditions of the optimization problems in (3.13), (3.14), and (3.15) are equivalent.

Since, ceteris paribus, F̂DP(v, T, L) is monotonically decreasing in v and monotonically in-
creasing in T , the minimum of F̂DP(v, T, L) is attained at v = 1 − ∆v, ∆v = 1/K , for
any T = Tfin that satisfies the inequalities F̂DP(v = 1 − ∆v, T = Tfin, L) ≤ α and
F̂DP(v = 1 −∆v, T = Tfin + 1, L) > α. All in all, and since v = 1 −∆v asymptotically
(K → ∞) coincides with the supremum of the interval [0.5, 1), the feasible set of (3.15) can
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be rewritten as follows:{
(v, T ) : F̂DP(v, T, L) ≤ α} (A.77)

=
{
(v, T ) : v ∈ [0.5, 1−∆v], T ∈ {1, . . . , Tfin}, (A.78)

F̂DP(v, T, L) ≤ α
}
. (A.79)

Note that the v-grid in Algorithm 2 is adapted to the number of random experimentsK and,
therefore, all values of the objective function (i.e., |ÂL(v, T )|) that can be attained by off-grid
solutions can also be attained by at least one on-grid solution. Therefore, we can replace the
right side of Equation (A.79) by{

(v, T ) : v ∈ {0.5, 0.5 + ∆v, 0.5 + 2 ·∆v, . . . , 1−∆v}, (A.80)

T ∈ {1, . . . , Tfin}, F̂DP(v, T, L) ≤ α
}
. (A.81)

The “while”-loop in Step 3 ofAlgorithm2 is terminatedwhenT = Tfin+1. Thus, the feasible
set of the optimization problem in Step 4 of Algorithm 2 can be written as follows:{

(v, T ) : v ∈ {0.5, 0.5 + ∆v, 0.5 + 2 ·∆v, . . . , 1−∆v}, (A.82)

T ∈ {1, . . . , Tfin}, F̂DP(v, T, L) ≤ α
}
. (A.83)

Since (A.81) is equal to (A.83), the theorem follows.
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A.2 The Deflated Relat ive Occurrence

In order to provide an intuitive explanation of the deflated relative occurrence, we rewrite the
expression as follows:

Φ′
T,L(j) =

T∑
t=1


1−

1

L− (t− 1)∑
q∈Â(0.5)

∆Φt,L(q)

p−
p∑

q=1

Φt,L(q)


∆Φt,L(j) (A.84)

=
T∑
t=1



1−

(i)︷ ︸︸ ︷
t− (t− 1)

L− (t− 1)

1

K

K∑
k=1

( ∑
q∈Â(0.5)

1k(q, t, L)−
∑

q∈Â(0.5)

1k(q, t− 1, L)

)

p− 1

K

K∑
k=1

p∑
q=1

1k(q, t, L)︸ ︷︷ ︸
(ii)



∆Φt,L(j).

(A.85)

The last equation follows by rewriting the expression in the denominator within the first
expression using Definition 5. In the last expression, each element of the sum consists of
∆Φt,L(j) multiplied with what we call the deflation factor. That factor is computed by sub-
tracting from one the fraction of

(i) the number of included dummies at step t, which is always one, divided by the number
of non-included dummies up until step t− 1 and

(ii) the average number of included candidates at step t divided by the average number of
non-included candidates up until step t.
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That is, the larger (smaller) the fraction of included candidates at step t compared to the frac-
tion of included dummies at step t, the more (less) weight is given to the change in relative
occurrence in that step. Loosely speaking, if the number of non-included null variables and
dummies is equal in step t−1 of thekth randomexperiment, then allowing onemore dummy
to enter the solution path leads, on average, to the inclusion of one more null variable. Thus,
if going from step t − 1 to t leads to the inclusion of many variables, then still only one null
variable is expected to be among them and, therefore, the deflation factor for that step is close
to one.
Remark 14. The reader might wonder whether the deflation factors affect not only the inflated
∆Φt,L(j)’s of the null variables but also those of the active variables. In the following, we shall
give an intuitive explanation of why the deflation factors have only a negligible effect on the
∆Φt,L(j)’s of the active variables: Since usually most active variables enter the solution paths
early, i.e., at low values of t and because they are accompanied by very few null variables,
the deflation factor is close to one. For this reason, the ∆Φt,L(j)’s of the active variables are
relatively unaffected. With increasing values of t, the ∆Φt,L(j)’s of the active variables are
close to zero, because for active variables the increases in relative occurrence are usually high for
low values of t and, consequently, low (or even zero) at higher values of t. Summarizing, the
deflation factors have little or no effect on the∆Φt,L(j)’s of the active variables because for low
values of t they are close to one and for large values of t the ∆Φt,L(j)’s of the active variables
are close to zero or zero.

A. 3 Hyperparameter Choices for the Extended
Cal ibrat ion Algorithm

In this appendix, wediscuss the choices of the reference voting level ṽ and themaximumvalues
of L and T , namely Lmax and Tmax for the extended calibration algorithm in Algorithm 3:

1. ṽ = 0.75: The choice of ṽ is a compromise between the 50% and 100% voting levels.
Setting ṽ = 0.5 would require low values of L to push F̂DP(v = ṽ, T, L) below
the target FDR level while setting ṽ = 1 would require very high values of L. Thus,
ṽ = 0.75 is a compromise between tight FDR control and memory consumption.
Note that the FDR control property holds for any choice of ṽ ∈ [0.5, 1).

2. Lmax = 10p: In order to allow for sufficiently large values of L such that tight FDR
control is possible while not running out of memory, setting Lmax = 10p has proven
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to be a practical choice. Note that the FDR control property in Theorem 3 holds for
any choice ofL. However, we can achieve tighter FDR control with larger values ofL.

3. Tmax = ⌈n/2⌉: As discussed for the T-LARS algorithm in the caption of Figure 3.5,
the LARS algorithm includes at most min{n, p} variables and in high-dimensional
settings (p > n), the maximum number of included variables in each random exper-
iment is n. Since for L = p we expect roughly as many null variables as dummies in
very sparse settings, choosing Tmax = ⌈n/2⌉ ensures that the LARS algorithm could
potentially run until (almost) the end of the solution path. In contrast, for L = 10p

we expect 10 times as many dummies as null variables in very sparse settings. Thus, for
L = pwe allow the solution paths to potentially run until the end, although thismight
only happen in rare cases, while forL = 2p, . . . , 10pwe restrict the run length. This is
a compromise between a higher computation time and a higher TPR (i.e., power) that
are both associated with larger values of Tmax.

A.4 Computational Complex ity

The computational complexities of sampling dummies from the univariate standard normal
distribution and fusing the candidate sets are negligible compared to the computational com-
plexity of the utilized forward selectionmethod. Therefore, it is sufficient to analyze the com-
putational complexities of the early terminated forward selection processes. We restrict the
following analysis to theLARS algorithm [Efr+04], which also applies to theLasso [Tib96].3

Theκth step of theLARS algorithmhas the complexityO
(
(p−κ) ·n+κ2

)
, where the terms

(p − κ) · n and κ2 account for the complexity of determining the variable with the highest
absolute correlation with the current residual (i.e., the next to be included variable) and the
so-called equiangular direction vector, respectively. Replacing p by p + L, since the original
predictor matrix is replaced by the enlarged predictor matrix, and summing up the complex-
ities of all steps until termination yields the computational complexity of the T-Rex selector.
First, we define the run lengths as the cardinalities of the respective candidate sets, i.e.,

κT,L(k) :=
∣∣Ck,L(T )∣∣, k = 1, . . . , K, (A.86)

3Since the Lasso solution path can be computed by a slightly modified LARS algorithm, the Lasso and the
LARS algorithm have the same computational complexity.
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and assume L ≥ p. Then, the sum over all steps until the termination of the kth random
experiment is given by

κT,L(k)∑
κ=1

(
(p+ L− κ) · n+ κ2

)
(A.87)

= n · κT,L(k) · (p+ L)− n ·
κT,L(k)∑
κ=1

κ+

κT,L(k)∑
κ=1

κ2 (A.88)

≤ n · κT,L(k) · (p+ L) +
(
κT,L(k)

)3 (A.89)

≤ 2 · n · κT,L(k) · (p+ L). (A.90)

We can write L = ⌈η · p⌉, η > 0, and the expected run length can be upper bounded as
follows:

E
[
κT,L(k)

]
≤ p1 + T + E

[
Ψ
]
= p1 + T +

T

L+ 1
· p0 ≤ p1 + 2T, (A.91)

where the first equation follows fromΨ ∼ NHG(p0 + L, p0, T ) and the second inequality
holds because L ≥ p. So, the expected computational complexity of one random experi-
ment of the proposed T-Rex selector isO(np). Although the theoretical FDR control result
requires K → ∞, as stated in Section 3.2, choosing K ≥ 20 provides excellent empirical
results and we did not observe any notable improvements for K ≥ 100. Therefore, with
fixed K (e.g., K = 20), the overall expected computational complexity of the T-Rex selec-
tor is O(np). The computational complexity of the original (i.e., non-terminated) LARS
algorithm in high-dimensional settings is O(p3). Thus, on average the high computational
complexity of the LARS algorithm does not carry over to the T-Rex selector because within
the T-Rex selector the solution paths of the random experiments are early terminated. More-
over, the computational complexity of the T-Rex selector is the same as that of the pathwise
coordinate descent algorithm [FHT10].

A. 5 General Assumpt ions

It is important to note that existing theory for FDR control in high-dimensional settings, i.e.,
themodel-X knockoff methods [Can+18], relies on an accurate estimation of the covariance
matrix of the predictors, which is known to not be possible, in general, when p≫ n (see, e.g.,
Figure 7 in [Can+18]). Further, the knockoff generation algorithm in [Can+18] is practically
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infeasible due to its exponential complexity in p and the authors resort to second-ordermodel-
X knockoffs for which no FDR control proof exists. In contrast, the T-Rex selector does not
rely on an accurate estimate of a high-dimensional covariance matrix and does not resort to
an approximation of its theory to obtain a feasible algorithm.

Instead, to establish the FDR control theory for the T-Rex selector, we will introduce two
general and mild assumptions that are thoroughly verified in relevant use-cases and especially
for non-Gaussian simulated genomics data using the software HAPGEN2 [SMD11] (see Ap-
pendices A.6 and A.7).

Knockoff methods [BC15], as well as many popular FDR-controlling methods (i.e., [BH95;
STS04; GBS09]) assume that the null p-values are i.i.d. and uniformly distributed between
0 and 1. In particular, to prove the FDR control property of the knockoff methods in [BC15;
Can+18], the authors assume that the null p-values

1. are i.i.d.,

2. are independent of the p-values corresponding to the true active variables, and

3. stochastically dominate a randomvariable following theuniformdistributionwith sup-
port between 0 and 1.

Since we do not use p-values, we make a different assumption and explain how our weaker
assumption is implied by the aforementioned standard assumptions.
A-I. Let A and Z be the index sets of the true active and the null variables, respectively, and
let the candidate variablesX1, . . . , Xp be standardized (i.e., E[Xj] = 0 and Var[Xj] = 1 for
all j ∈ {1, . . . , p}) and follow probability distributions with finite mean and finite non-zero
variance. Then,

(i) Xj is independent of {Xg : g ∈ A} for all j ∈ Z , i.e., the null variables are indepen-
dent of the true active variables,

(ii) {Xj : j ∈ Z} is a set of independent random variables, i.e., the nulls are mutually
independent.

Remark 15. Points 1 and 2 of the above standard assumption in FDR control theory state
that the null p-values are i.i.d. and independent of the p-values corresponding to the true
active variables. This can also be stated in terms of test statistics. That is, the test statistics
corresponding to the null variables are i.i.d. and independent of the test statistics corresponding
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to the true active variables. Null p-values are defined by

Pj = 1− F0(Tj), (A.92)

where Pj and Tj are the null p-value and the null test statistic, respectively, corresponding to
the jth null variable and F0(·) is the distribution of the null test statistics [SS99]. From this
definition of p-values, it is obvious that this assumption can be stated equivalently either in
terms of p-values or test statistics, which is frequently done [BH95; BY01; STS04; BC15]. As
stated in [BC15] (p. 2075), especially in the case where the test statistics stem from the regression
coefficient estimates β̂ =

[
β̂1 · · · β̂p

]⊤ ∼ N (β, σ2(X⊤X)−1
)
, the coefficient estimates

(and the test statistics) are mutually independent if and only if X⊤X is a diagonal matrix
(i.e., orthogonal design). This implies that the null test statistics are mutually independent and
independent of the test statistics corresponding to the true active variables if and only if the
null variables are mutually independent and independent of the true active variables. Note
that this is what we are stating in our A-I. Thus, the standard assumption in FDR control
theory implies A-I and, since this implication does not require Point 3 of the above standard
assumption in FDR control theory, A-I is weaker.

For a numerical verification of A-I in relevant use-cases and especially for non-Gaussian simu-
lated genomics data using the software HAPGEN2 [SMD11], see Appendices A.6 and A.7.
Remark 16. In the genomics literature, it is well-known that SNPs (i.e., variables) form groups
of highly correlated SNPs. The biological phenomenon that leads to such dependency structures
is called linkage disequilibrium [Rei+01]. It is common in genomics research to use pruning
methods to group SNPs and to keep only one representative SNP from each group and, thus,
drastically reduce the dependencies among the SNPs before applying any variable selection
procedure (see, e.g., [SSC19] and references therein). Therefore, SNP pruning is a valid method
to satisfy A-I in practice. When choosing the amount of pruning (i.e., the number of groups
that the SNPs are grouped into) one must consider the trade-off between

1. the reduction of dependencies among SNPs (by creating few SNP groups) and

2. the increase of the resolution of the to be detected regions on the genome (by creating
many SNP groups).

For details on how this trade-off is commonly tuned for GWAS, see Section 6.1.3.

As shown in Figure 3.2, the estimator of the active set Â(v) results from fusing the candidate
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sets C1,L(T ), . . . , CK,L(T ) based on a voting level that is applied to the relative occurrences
of the candidate variables. Therefore, the number of selected null variables VT,L(v) is related
to the distribution of the number of included null variables in the terminal step t = T . We
state this relationship as an assumption:
A-II. For any v ∈ [0.5, 1), the number of selected null variables is stochastically dominated by
a random variable following the negative hypergeometric distribution with parameters specified
in Corollary 3, i.e.,

VT,L(v)
d

≤ NHG(p0 + L, p0, T ). (A.93)

For a numerical verification of A-II in relevant use-cases and especially for non-Gaussian sim-
ulated genomics data using the software HAPGEN2 [SMD11], see Appendices A.6 and A.7.

The expression for V̂ ′
T,L(v) from Remark 4 can be rewritten as follows:

V̂ ′
T,L(v) (A.94)

=
T∑
t=1

p−
∑p

q=1 Φt,L(q)

L− (t− 1)
·
∑

j∈Â(v) ∆Φt,L(j)∑
q∈Â(0.5) ∆Φt,L(q)

(A.95)

=
T∑
t=1

p0 −
∑

q∈Z Φt,L(q) + p1 −
∑

q∈A Φt,L(q)

L− (t− 1)
(A.96)

·
∑

j∈Â 0(v) ∆Φt,L(j) +
∑

j∈Â 1(v) ∆Φt,L(j)∑
q∈Â 0(0.5) ∆Φt,L(q) +

∑
q∈Â 1(0.5) ∆Φt,L(q)

(A.97)

≈
T∑
t=1

p0 −
∑

q∈Z Φt,L(q)

L− (t− 1)
·
∑

j∈Â 0(v) ∆Φt,L(j)∑
q∈Â 0(0.5) ∆Φt,L(q)

(A.98)

The marked terms consider only the relative occurrences of the active variables. Recall that,
assuming that the variable selection method is better than random selection, almost all active
variables are selected early, i.e., terminating theT-Rex selector after a small number of T dum-
mies have been included allows to select almost all active variables (see Figure 3.5a). Thus, the
relative occurrences of the active variables are approximately one for a sufficient number of
included dummies. In consequence, and since ∆Φt,L = Φt,L − Φt−1,L, t ∈ {1, . . . , T},
the∆Φt,L’s of the active variables are approximately zero for a sufficiently large t and T . This
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motivates the assumption that the marked terms can be neglected.
A-III. For sufficiently large T ∈ {1, . . . , L} it holds that

V̂ ′
T,L(v) =

T∑
t=1

p0 −
∑

q∈Z Φt,L(q)

L− (t− 1)
·
∑

j∈Â 0(v) ∆Φt,L(j)∑
q∈Â 0(0.5) ∆Φt,L(q)

. (A.99)

See Appendices A.6 and A.7 for extensive numerical verifications of A-III.

A.6 Exemplary Numerical Ver i f icat ion of A-I, A -I I,
and A-I I I

In this section, A-I, A-II, and A-III from Appendix A.5 are verified. The general setup for
the exemplary numerical verification of all assumptions is as described in Section 3.6.1. The
specific values of the generic high-dimensional simulation setting in Section 3.6.1 and the pa-
rameters of the proposed T-Rex selector and the proposed extended calibration algorithm in
Algorithm 3, i.e., the values ofn, p, p1, v,T ,L,K , and SNRare specified in the figure captions.
All results are averaged overMC = 500Monte Carlo realizations. An additional verification
for our use-case of GWAS is provided in Appendix A.7.

A.6 . 1 Exemplary Numerical Verification of A-I

Figure A.1a shows the histogram of the number of included null variables for T = 20 and
for 500Monte Carlo replications consisting ofK = 20 candidate sets each while Figure A.1b
shows the correspondingQ-Qplot. The histogram closely approximates the probabilitymass
function (PMF) of the negative hypergeometric distribution with the parameters specified in
Corollary 4. Moreover, the points in the Q-Q plot closely approximate the ideal line. Thus,
Figure A.1 provides an exemplary numerical verification of Corollary 4 and, therewith, an
implicit exemplary verification of A-I.

A .6 .2 Exemplary Numerical Verification of A-II

Figure A.2 shows the empirical cumulative distribution function (CDF) of VT,L(v) for T =

20 and different values of the voting level v and theCDFof the negative hypergeometric distri-
bution. The empirical CDFs are based on 500Monte Carlo replications. Already for a small
number of random experiments, i.e.,K = 20, the CDF of the negative hypergeometric distri-
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(a)Histogram and theoretical distribution for t =
T = 20. Note that the histogram is based onK =
20 randomexperiments for each of the 500Monte
Carlo realizations.

(b) Q-Q plot corresponding to Figure (a).

Figure A.1: Exemplary numerical verification of Corollary 4 and A-I: The histogram of the number of
includednull variables in Figure (a) approximates the theoretical probabilitymass function (PMF).The expected
value of a random variable following the negative hypergeometric distribution with the parameters specified in
the last sentence of this caption is given by T · p0 / (L + 1) = 20 · 290 / (300 + 1) ≈ 19.27, which fits the
mean of the histogram. TheQ-Q plot in Figure (b) confirms that the number of included null variables follows
the negative hypergeometric distribution. Setup: n = 150, p = 300, p1 = 5, T = 20, L = p, K = 20,
SNR = 1,MC = 500.

bution with its parameters being as specified in A-II lies below the empirical CDFs of VT,L(v)

for all v ≥ 0.5 at almost all values of VT,L(v). For values of VT,L(v) between 6 and 12, we
observe that the CDF of the negative hypergeometric distribution lies slightly above the em-
pirical CDF for v = 0.5. All in all, we conclude that a random variable following the negative
hypergeometric distribution stochastically dominates VT,L(v) at almost all values and for all
v ≥ 0.5, which exemplarily verifies A-II.

A .6 . 3 Exemplary Numerical Verification of A-I I I

An exemplary numerical verification of A-III is given in Figure A.3, where we see that approx-
imations and true values are almost identical for different choices of v and T .
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Figure A.2: Exemplary numerical verification of A-II: For v ≥ 0.5, a random variable following the neg-
ative hypergeometric distribution stochastically dominates the random variable VT,L(v) (i.e., the number of
selected null variables) at almost all values of VT,L(v). Setup: n = 150, p = 300, p1 = 5, T = 20, L = p,
K = 20, SNR = 1,MC = 500.

A.7 Ver i f icat ion of A-I, A -I I, and A-I I I on HAPGEN2
Genomics Data

Figures A.4, A.5, andA.6 show that for the genomics data analyzed in Section 6.1 andwith the
preprocessing (i.e., SNP pruning, etc.) described above, A-I, A-II, and A-III are surprisingly
well satisfied. For our verifications here, we have only made one necessary minor adjustment
to the preprocessing described in the previous section. The reason is that for each of the 100
data sets, that have been generated using HAPGEN2 [SMD11], the SNP pruning procedure
outputs pruned SNP sets with slightly different sizes. For the verification of the assumptions,
it is necessary to have a constant number of SNPs. Therefore, we have removed very few
randomly selected SNPs from all sets in order tomatch the size of the smallest SNP set, which
contains 8,120 out of originally 20,000 SNPs after the preprocessing.

A.8 Addit ional S imulat ion Results

For the sake of completeness, we present additional simulation results for the classical low-
dimensional setting, i.e., p ≤ n. The data is generated as described in Section 3.6.1. The
specific values of the generic simulation setting in Section 3.6.1 and the parameters of the pro-
posed T-Rex selector and the proposed extended calibration algorithm in Algorithm 3, i.e.,
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Figure A.3: Exemplary numerical verification of A-III: In Figures (a) and (b), we see that the approxima-
tions and the true values are almost identical for different values of v and T . The corresponding box plots in
Figures (c) and (d) show that also the distributions of approximations and true values are very similar. Setup:
n = 150, p = 300, p1 = 5,L = p,K = 20, SNR = 1,MC = 500.
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(b) Q-Q plot corresponding to Figure (a).

Figure A.4: Exemplary numerical verification of Corollary 4 and A-I for HAPGEN2 genomics data:
The histogram of the number of included null variables in Figure (a) approximates the theoretical probabil-
ity mass function (PMF). The expected value of a random variable following the negative hypergeometric dis-
tribution with the parameters specified in the last sentence of this caption is given by T · p0 / (L + 1) =
3 · 8,110 / (8,120 + 1) ≈ 2.996, which fits the mean of the histogram. The Q-Q plot in Figure (b) con-
firms that the number of included null variables follows the negative hypergeometric distribution. Setup after
preprocessing: n = 1,000, p = 8,120, p1 = 10, T = 3,L = p,K = 20.

the values of n, p, p1, Tmax, Lmax, K , and SNR are specified in the captions of Figure A.7.
All results are averaged over 955Monte Carlo realizations. The simulations were conducted
using the R packages TRexSelector [Mac+24c] and tlars [Mac+24b].

Summarizing in brief, the proposedT-Rex selector controls the FDRat the target level of 10%
while, in terms of power, outperforming the fixed-X knockoffmethod, the fixed-X knockoff+
method, and the BY method and showing a comparable performance to the BH method.
A detailed discussion of the simulation results is given in the captions of Figure A.7 and its
subfigures.

A.9 Illustrat ion of Theorem 4 (Dummy Generat ion)

Theorem 4 is an asymptotic result that, loosely speaking, tells us that the FDR control prop-
erty of the T-Rex selector remains intact regardless of the distribution that the dummies are
sampled from. In order to exemplify the somehow surprising results of Theorem 4, we have
conducted simulations to show that the FDR control property of the T-Rex selector remains
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Figure A.5: Exemplary numerical verification of A-II for HAPGEN2 genomics data: For v ≥ 0.5, a
random variable following the negative hypergeometric distribution stochastically dominates the random vari-
able VT,L(v) (i.e., the number of selected null variables) at all values of VT,L(v). Setup after preprocessing:
n = 1,000, p = 8,120, p1 = 10, T = 3,L = p,K = 20.

intact for dummies sampled from the standard normal, uniform, t-, and Gumbel distribu-
tion, while the original predictors are sampled from the standard normal distribution. In
Figure A.8, we see that the results remain almost unchanged regardless of the choice of the
dummy distribution.

In order to also verify that the FDR control property holds for different distributions (with
finite mean and finite non-zero variance) of the original predictors, we have conducted sim-
ulations in which the dummies are sampled from a standard normal distribution, while the
original predictors are sampled from non-Gaussian heavy-tailed (i.e., Student’s t(3), t(2.1),
and t(2.01)) and skewed (i.e., Gumbel(0, 1)) distributions. Figure A.9 shows that, regardless
of themismatch between the distribution of the original variables and the dummies, the FDR
control property holds for all these different distributions.

A. 10 Robustness of The T-Rex Selector

In this appendix, we investigate the robustness of the proposedT-Rex selector in the presence
of non-Gaussian noise. We have conducted simulations with heavy-tailed noise following the
t-distribution with three degrees of freedom. Figure A.10 shows that the proposed method
performs well, even in the presence of heavy-tailed noise and, most importantly, maintains its
FDR control property.
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Figure A.6: Exemplary numerical verification of A-III for HAPGEN2 genomics data: In Figures (a) and
(b), we see that the approximations and the true values are almost identical for different values of v and T . The
corresponding box plots in Figures (c) and (d) show that also the distributions of approximations and true values
are very similar. Setup after preprocessing: n = 1,000, p = 8,120, p1 = 10,L = p,K = 20.
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(a) Setup: n = 300, p = 100, p1 = 10, Tmax =
⌈n/2⌉,Lmax = 10p,K = 20,MC = 955.
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(b) Setup: Same as in Figure (a).
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(c) Setup: n = 300, p = 100, Tmax = ⌈n/2⌉,
Lmax = 10p,K = 20, SNR = 1,MC = 955.
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(d) Setup: Same as in Figure (c).

Figure A.7: General: The fixed-X knockoff method fails to control the FDR. In terms of power, the proposed
T-Rex selector outperforms the fixed-X knockoff method, the fixed-X knockoff+ method, and the BY method
and shows a comparable performance to theBH method. Details: (a)Allmethods except for the fixed-X knock-
off method control the FDR at a target level of 10% for the whole range of SNR values. The fixed-X knockoff
method fails to control the FDR and performs poorly at low SNR values. (b)As expected, the TPR (i.e., power)
increases with respect to the SNR. It is remarkable that the TPP (i.e., power) of the proposed T-Rex selector is
comparable to that of the BH method, although the FDR of the T-Rex selector is less than half of the achieved
FDRof theBH method (see Figure (a)). The high power of the fixed-X knockoffmethod cannot be interpreted
as an advantage because the method does not control the FDR. (c) The proposed T-Rex selector, the fixed-X
knockoff+method, and theBY method control the FDR at a target level of 10%, while theBH method exceeds
the target level for some low values of p1 and the curve of the fixed-X knockoff method never falls below the
target level. (d) Among the methods that control the FDR for all considered values of p1, the proposed T-Rex
selector has the highest power. It is remarkable that the TPP (i.e., power) of the proposedT-Rex selector is com-
parable to that of the BH method, although the FDR of the T-Rex selector is approximately only half of the
achieved FDR of the BH method (see Figure (c)).
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(a) Gaussian dummies.
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(b) Gaussian dummies.
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(c) Gaussian dummies.
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(d) Gaussian dummies.
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(e) Uniform dummies.
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(f ) Uniform dummies.
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(g) Uniform dummies.
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(h) Uniform dummies.
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(i) Student t dummies.
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(j) Student t dummies.

0

10

20

30

40

50

1 510 20 30 40 50 75 100
p1

F
D

P

Target FDR 

model-X 

model-X+ 

Proposed: T-Rex 

0

10

20

30

40

50

1 510 20 30 40 50 75 100
p1

F
D

P

Target FDR 

model-X 

model-X+ 

Proposed: T-Rex 

Target FDR 

model-X 

model-X+ 

Proposed: T-Rex 

(k) Student t dummies.
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(l) Student t dummies.
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(m) Gumbel dummies.
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(n) Gumbel dummies.
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(o) Gumbel dummies.
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(p) Gumbel dummies.

Figure A.8: Illustration of Theorem 4 (Dummy generation): The average FDP and TPP of the T-Rex
selector remain almost unchanged regardless of the distribution that the dummies are sampled from: (a) - (d)
standard normal distribution, (e) - (h) uniform distribution with support between 0 and 100, (i) - (l) Student’s
t-distribution with 3 degrees of freedom, (m) - (p) Gumbel distribution with its location and scale being 0 and
1, respectively. Setup: n = 300, p = 1,000, p1 = 10, Tmax = ⌈n/2⌉, Lmax = 10p, K = 20, SNR = 1,
MC = 955.
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(a) t(3) distributedX .
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(b) t(3) distributedX .
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(c) t(2.1) distributedX .
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(d) t(2.1) distributedX .
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(e) t(2.01) distributedX .
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(f ) t(2.01) distributedX .
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(g) Gumbel(0, 1) distributedX .

0

10

20

30

40

50

60

70

80

90

100

0.00.4 1.0 2.0 5.0

SNR

T
P

P

model-X 

model-X+ 

Proposed: T-Rex 
0

10

20

30

40

50

60

70

80

90

100

0.00.4 1.0 2.0 5.0

SNR

T
P

P

model-X 

model-X+ 

Proposed: T-Rex 

model-X 

model-X+ 

Proposed: T-Rex 

(h) Gumbel(0, 1) distributedX .

FigureA.9: Average FDP andTPP in the case of non-Gaussian predictors inX : TheFDR is controlledby
the T-Rex selector and the model-X knockoff+ method while the model-X knockoff method does not control
the FDR. The predictors in X were sampled from (a) - (f) the Student’s t distribution with 3, 2.1, and 2.01
degrees of freedom (i.e., t(3), t(2.1), and t(2.01)) and (g) - (h) the Gumbel distribution with location and scale
being zero and one (i.e., Gumbel(0, 1)), respectively. The response was generated according to the linear model
in (2.1). Setup: n = 300, p = 1,000, p1 = 10, Tmax = ⌈n/2⌉,Lmax = 10p,K = 20,MC = 955.
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(c)
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(d)

Figure A.10: Average FDP andTPP in the case of non-Gaussian noise: The results are similar to the results
of the Gaussian noise case in Figure 3.10. That is, all considered methods appear to be robust against deviations
from the Gaussian noise assumption for the case of heavy-tailed (t-distributed) noise. The predictors inX were
sampled from a univariate standard normal distribution and the response was generated according to the linear
model in (2.1) with the noise vector ϵ being sampled from the t-distribution with 3 degrees of freedom. Setup:
n = 300, p = 1,000, p1 = 10, Tmax = ⌈n/2⌉,Lmax = 10p,K = 20, SNR = 1,MC = 955.
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B
Appendix to Chapter 4

This appendix to Chapter 4 is organized as follows: Appendix B.1 contains some preliminar-
ies for Theorem 8, the proofs of Theorems 8, 9, 10, 11, and 12, and some technical lemmas.
Appendix B.2 presents additional simulation results for settings with heavy-tailed data.

B . 1 Proofs and Technical Lemmas

First, some preliminary results for the proof of Theorem 8 are stated. Then, the proofs of
Theorems 8, 9, 10, 11, and 12 are presented. Finally, some technical lemmas, which are used
to prove the finite sample FDR control property of the T-Rex+DA selector, are stated and
proved.

B . 1 . 1 Preliminaries for Theorem 8

Lemma 6. Let ρj,j′ := x⊤
j xj′ , j, j ′ ∈ {1, . . . , p}, be the sample correlation coefficient of

the standardized variables j and j′, r̂k := y − X̃kβ̂k, and sign
(
β̂j,k

)
, sign

(
β̂j′,k

)
be the

signs of the jth and j′th Lasso coefficient estimates of the kth random experiment, respectively.

171



Suppose that β̂j,k, β̂j′,k ̸= 0. Then, it holds that

∣∣∣∣∣∣ sign (β̂j,k

)∣∣− ∣∣ sign (β̂j′,k

)∣∣∣∣∣∣ ≤ ∥r̂k∥2
√

2
(
1− ρj,j′

)
λk(T, L)

. (B.1)

Proof. TheLasso optimization problem is solved by the coefficient vectorβk = β̂k that min-
imizes the function

L
(
βk, λk(T, L)

)
:=

1

2
∥y − X̃kβk∥22 + λk(T, L)∥βk∥1. (B.2)

Taking the first derivative of (B.2) and setting it equal to zero yields

∂L
(
βk, λk(T, L)

)
∂βk

∣∣∣∣∣
βk=β̂k

= −X̃
⊤
k r̂k + λk(T, L)

∂∥β̂k∥1
∂β̂k

!
= 0, (B.3)

which is a system of equations whose jth and j′th equation are given by

−x⊤
j r̂k + λk(T, L) · sign

(
β̂j,k

)
= 0, (B.4)

−x⊤
j′ r̂k + λk(T, L) · sign

(
β̂j′,k

)
= 0. (B.5)

Subtracting Equation (B.5) fromEquation (B.4) and rearranging the resulting equation yields

sign
(
β̂j,k

)
− sign

(
β̂j′,k

)
=

1

λk(T, L)

(
xj − xj′

)⊤
r̂k. (B.6)

Now, we can rewrite the left-hand side of (B.1) as follows:∣∣∣∣∣∣ sign (β̂j,k

)∣∣− ∣∣ sign (β̂j′,k

)∣∣∣∣∣∣ (B.7)

≤
∣∣∣ sign (β̂j,k

)
− sign

(
β̂j′,k

)∣∣∣∣ (B.8)

=
1

λk(T, L)

∣∣∣(xj − xj′
)⊤

r̂k

∣∣∣ (B.9)

≤ 1

λk(T, L)
∥xj − xj′∥2 · ∥r̂k∥2 (B.10)
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=
∥r̂k∥2

√
2
(
1− ρj,j′

)
λk(T, L)

. (B.11)

The inequality in the second line follows from the reverse triangle inequality, the equation in
the third line follows from (B.6), the inequality in the fourth line follows from the Cauchy-
Schwartz inequality, and the equation in the last line is a consequence of

∥xj − xj′∥22 = (xj − xj′)
⊤(xj − xj′) (B.12)

= ∥xj∥22 + ∥xj′∥22 − 2x⊤
j xj′ (B.13)

= 2(1− ρj,j′), (B.14)

where the last line follows from the fact that the variables are standardized.

B . 1 . 2 Proof of Theorem 8

Proof. Note that for any β̂j,k ̸= 0, the indicator function in (3.4) can be written as follows:

1k(j, T, L) =
∣∣ sign (β̂j,k

)∣∣, j = 1, . . . , p. (B.15)

Thus, we can rewrite the left-hand side of the inequality in Theorem 8 as follows:∣∣ΦT,L(j)− ΦT,L(j
′)
∣∣

∥y∥2
(B.16)

=
1

∥y∥2 ·K

∣∣∣∣∣
K∑
k=1

(
1k(j, T, L)− 1k(j

′, T, L)
)∣∣∣∣∣ (B.17)

≤ 1

∥y∥2 ·K

K∑
k=1

∣∣∣1k(j, T, L)− 1k(j
′, T, L)

∣∣∣ (B.18)

=
1

∥y∥2 ·K

K∑
k=1

∣∣∣∣∣∣ sign (β̂j,k

)∣∣− ∣∣ sign (β̂j′,k

)∣∣∣∣∣∣ (B.19)

≤
√

2(1− ρj,j′) ·
1

K

K∑
k=1

1

λk(T, L)
· ∥r̂k∥2
∥y∥2

(B.20)

≤
√

2(1− ρj,j′) · Λ, (B.21)
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where Λ = 1
K

∑K
k=1

1
λk(T,L)

. The equation in the second line follows from the definition of
the relative occurrences in (3.4), the inequality in the third line is a consequence of the triangle
inequality, the equation in the fourth line follows from (B.15), and the inequality in the fifth
line follows from Lemma 6. The inequality in the last line holds since β̂k is by definition the
minimizer of (B.2) and, therefore,

L
(
βk = β̂k, λk(T, L)

)
≤ L

(
βk = 0, λk(T, L)

)
(B.22)

and, equivalently,
1

2
∥r̂k∥22 + λk(T, L)∥β̂k∥1 ≤

1

2
∥y∥22, (B.23)

which yields ∥r̂k∥2 ≤ ∥y∥2. Finally, we obtain

∣∣ΦT,L(j)− ΦT,L(j
′)
∣∣ ≤ Λ∥y∥2 ·

√
2(1− ρj,j′). (B.24)

B . 1 . 3 Proof of Theorem 9

Proof. Rewriting the expression for the FDP in Definition 14, we obtain

FDP(v, ρthr(uc), T, L) =
VT,L(v, ρthr(uc))

RT,L(v, ρthr(uc)) ∨ 1
(B.25)

=
V̂T,L(v, ρthr(uc))

RT,L(v, ρthr(uc)) ∨ 1
· VT,L(v, ρthr(uc))

V̂T,L(v, ρthr(uc))
(B.26)

≤ α · VT,L(v, ρthr(uc))

V̂T,L(v, ρthr(uc))
(B.27)

≤ α · VT,L(v, ρthr(uc))

V̂ ′
T,L(v, ρthr(uc))

(B.28)

=: α ·HT,L(v, ρthr(uc)), (B.29)

where the inequality in the third line follows from the condition in (4.33) that all considered
quadruples (T, L, ρthr(uc), v)must satisfy. Taking the expectation of the FDP, we obtain

FDR(v, ρthr(uc), T, L) ≤ α · E
[
HT,L(v, ρthr(uc))

]
(B.30)
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and, thus, it remains to prove that E[HT,L(v, ρthr(uc))] ≤ 1. Since (4.33) is a stopping time
that is adapted to the filtrationFv in Lemma 7 (i.e., v isFv-measurable) andHT,L(v, ρthr(uc))

is bounded, we can apply Doob’s optional stopping theorem (i.e., Theorem 1 in Section 2.3.2)
to obtain an upper bound for E[HT,L(v, ρthr(uc))], i.e.,

E
[
HT,L(v, ρthr(uc))

]
≤ E

[
HT,L(0.5, ρthr(uc))

]
. (B.31)

Defining

Ψ+
t,L(j,ρthr(uc)) (B.32)

:=



1

2 − min
j′∈

Gr(j,ρthr(uc))

{∣∣ΦT,L(j)− ΦT,L(j
′)
∣∣} , Gr(j, ρthr(uc))

̸= ∅

1,
Gr(j, ρthr(uc))

= ∅

(B.33)

≥



1

2 − min
j′∈

Gr(j,ρthr(uc))

{∣∣ΦT,L(j)− ΦT,L(j
′)
∣∣} , Gr(j, ρthr(uc))

̸= ∅

1/2,
Gr(j, ρthr(uc))

= ∅

, (B.34)

= Ψt,L(j, ρthr(uc)), (B.35)

(t, L) ∈ {1, . . . , T} × N+,HT,L(0.5, ρthr(uc)) can be upper bounded as follows:

HT,L(0.5, ρthr(uc)) =
VT,L(0.5, ρthr(uc))

V̂ ′
T,L(0.5, ρthr(uc))

(B.36)

≤
V +
T,L(0.5, ρthr(uc))

V̂ ′+
T,L(0.5, ρthr(uc))

(B.37)

=: H+
T,L(0.5, ρthr(uc)). (B.38)

The inequality in the second line follows from

(i) V +
T,L(v, ρthr(uc)) :=

∣∣{null j : Ψ+
T,L(j, ρthr(uc)) · ΦT,L(j) > v}

∣∣ (B.39)
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≥
∣∣{null j : ΨT,L(j, ρthr(uc)) · ΦT,L(j) > v}

∣∣ (B.40)

= VT,L(v, ρthr(uc)), (B.41)

(ii) V̂ ′+
T,L(0.5, ρthr(uc)) :=

T∑
t=1

p−
p∑

q=1

Ψ+
t,L(q, ρthr(uc)) · Φt,L(q)

L− (t− 1)
(B.42)

≤
T∑
t=1

p−
p∑

q=1

Ψt,L(q, ρthr(uc)) · Φt,L(q)

L− (t− 1)
(B.43)

= V̂ ′
T,L(0.5, ρthr(uc)). (B.44)

Next, we show thatH+
T,L(0.5, ρthr(uc)) is monotonically increasing in ρthr(uc), i.e.,

H+
T,L(0.5, ρthr(uc + 1)) =

V +
T,L(0.5, ρthr(uc + 1))

V̂ ′+
T,L(0.5, ρthr(uc + 1))

(B.45)

≥
V +
T,L(0.5, ρthr(uc))

V̂ ′+
T,L(0.5, ρthr(uc))

(B.46)

= H+
T,L(0.5, ρthr(uc)), (B.47)

where the inequality in the second line follows from Lemmas 8 and 9. Combining these pre-
liminaries and noting thatΨ+

t,L(j, ρthr(uc)) = 1 yields

VT,L(0.5) :=
∣∣{null j : ΦT,L(j) > 0.5}

∣∣, (B.48)

V̂ ′
T,L(0.5) :=

T∑
t=1

p−
p∑

q=1

Φt,L(q)

L− (t− 1)
(B.49)

HT,L(0.5) :=
VT,L(0.5)

V̂ ′
T,L(0.5)

(B.50)

i.e., the ordinary counterparts of the dependency-aware expressions V +
T,L(0.5, ρthr(uc)),
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V ′+
T,L(0.5, ρthr(uc)), andH+

T,L(0.5, ρthr(uc)), respectively, we finally obtain

E
[
HT,L(v, ρthr(uc))

]
≤ E

[
HT,L(0.5, ρthr(uc))

]
(B.51)

≤ E
[
H+

T,L(0.5, ρthr(uc))
]

(B.52)

≤ E
[
H+

T,L(0.5, ρthr(p))
]

(B.53)

= E
[
H+

T,L(0.5, 1)
]

(B.54)

= E
[
HT,L(0.5)

]
(B.55)

≤ 1, (B.56)

where the first inequality is the same as in (B.31), the second and third inequalities follow
from (B.38) and (B.47), respectively, and the equation in the fourth line follows from (4.11)
(i.e., ρthr(p) =

∑p
u=1 ∆ρthr,u = 1). The equation in the fifth line is a consequence of the

following: For ρthr(p) = 1, we have Gr(j, 1) = ∅ for all j ∈ {1, . . . , p}, and, therefore,
it holds that Ψ+

t,L(j, 1) = 1 for all j ∈ {1, . . . , p}. Thus, H+
T,L(0.5, 1) boils down to its

ordinary counterpartHT,L(0.5) in (B.50), i.e.,H+
T,L(0.5, 1) = HT,L(0.5). Finally, the proof

of Inequality (B.56) is omitted because it is exactly as in the proof of Theorem 3 (FDR control
- T-Rex selector).

B . 1 .4 Proof of Theorem 10

Proof. The FDR control property in Theorem 9 holds if Lemmas 8 and 9 hold. Lemmas 8
and 9 hold for any definition of Gr(j, ρthr) that satisfies the group design principle in Theo-
rem 10.

B . 1 . 5 Proof of Theorem 11

Proof. From Equation (4.24), it follows that for all quadruples (v, ρthr(uc), T, L) that satisfy
F̂DP(v, ρthr(uc), T, L) ≤ α, the objective functions in Step 6 of Algorithm 5 and in the
optimization problem in (4.32) are equal, i.e., |ÂL(v

′, ρthr(u
′
c), T

′)| = RT ′,L(v
′, ρthr(u

′
c)).

Therefore, and since all attainable values of uc are considered in Step 6 of Algorithm 5, it
suffices to show that for fixed ρthr(uc) and L, the set of feasible tuples (v, T ) of (4.32) is a
subset of or equal to the set of feasible tuples obtained by Algorithm 5. Since, ceteris paribus,
F̂DP(v, ρthr(uc), T, L) is monotonically decreasing in v and monotonically increasing in T ,
for T = Tfin, F̂DP(v, ρthr(uc), T, L) attains its minimum value at (v, T ) = (1 −∆v, Tfin),
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where Tfin ∈ {1, . . . , L} is implicitly defined through the inequalities

F̂DP(1−∆v, ρthr(uc), Tfin, L) ≤ α (B.57)

and
F̂DP(1−∆v, ρthr(uc), Tfin + 1, L) > α. (B.58)

Thus, the feasible set of the optimization problem in (4.32) is given by{
(v,T ) : F̂DP(v, ρthr(uc), T, L) ≤ α} (B.59)

= {(v, T ) : v ∈ [0.5, 1−∆v], (B.60)

T ∈ {1, . . . , Tfin}, (B.61)

F̂DP(v, ρthr(uc), T, L) ≤ α
}
. (B.62)

Since∆v = 1/K , the upper endpoint of the interval [0.5, 1−∆v] asymptotically (i.e.,K →
∞) coincides with the supremum of the interval [0.5, 1). That is, the set in (B.62) contains
all feasible solutions of (4.32). However, since the v-grid in Algorithm 5 is, as in Algorithms 2
and 3, adapted toK , all values ofRT,L(v, ρthr(uc)) that are attained by off-grid solutions can
also be attained by on-grid solutions. Thus, instead of (B.62) only the following fully discrete
feasible set of (4.32) needs to be considered:{

(v, T ) : v ∈ {0.5, 0.5 + ∆v, 0.5 + 2∆v, . . . , 1−∆v}, (B.63)

T ∈ {1, . . . , Tfin}, (B.64)

F̂DP(v, ρthr(uc), T, L) ≤ α
}
. (B.65)

Since the “while”-loop in Step 5 of Algorithm 5 is terminated when T = Tfin +1, the feasible
set of the optimization problem in Step 6 of Algorithm 5 is given by{

(v, T ) : v ∈ {0.5, 0.5 + ∆v, 0.5 + 2∆v, . . . , 1−∆v}, (B.66)

T ∈ {1, . . . , Tfin} (B.67)

F̂DP(v, ρthr(uc), T, L) ≤ α
}
, (B.68)

which is equal to (B.65).
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B. 1 .6 Proof of Theorem 12

Proof. An upper bound on the FDR is given by

FDP(v, ρthr, T, L) =
VT,L(v, ρthr)

max
{
1, RT,L(v, ρthr)

} (B.69)

= F̂DP(v, ρthr, T, L) ·
VT,L(v, ρthr)

V̂T,L(v, ρthr)
(B.70)

≤ α · VT,L(v, ρthr)

V̂T,L(v, ρthr)
, (B.71)

≤ α · VT,L(v, ρthr)

V̂ ′
T,L(v, ρthr)

, (B.72)

where the second, third, and fourth line follow from (4.42), (4.45), and (4.43), respectively.
Taking the expected value yields

FDR(v, ρthr, T, L) ≤ α · E
[
VT,L(v, ρthr)

V̂ ′
T,L(v, ρthr)

]
. (B.73)

It remains to prove that E[VT,L(v, ρthr)/V̂
′
T,L(v, ρthr)] ≤ 1. Along the lines of the proof

of Lemma 7, it can be shown that VT,L(v, ρthr)/V̂
′
T,L(v, ρthr) is a backward-running super-

martingale with respect to the filtration

Fv := σ({RT,L(v, ρthr)}u≥v, {VT,L(v, ρthr)}u≥v, {V̂ ′
T,L(v, ρthr)}u≥v). (B.74)

Therefore, and since v in (4.45) isFv-measurable and VT,L(v, ρthr)/V̂
′
T,L(v, ρthr) is bounded,

an upper bound on

E
[
VT,L(v, ρthr)

V̂ ′
T,L(v, ρthr)

]
(B.75)

can be derived using Doob’s optional stopping theorem (i.e., Theorem 1 in Section 2.3.2).
First, using the definition of VT,L(v) in Definition 6 and defining V̂ ′

T,L(0.5) :=∑T
t=1

p−
∑p

q=1 Φt,L(q)

L−(t−1)
, we obtain

E
[
VT,L(v, ρthr)

V̂ ′
T,L(v, ρthr)

]
≤ E

[
VT,L(0.5, ρthr)

V̂ ′
T,L(0.5, ρthr)

]
(B.76)
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≤ E
[
VT,L(0.5)

V̂ ′
T,L(0.5)

]
(B.77)

≤ 1. (B.78)

Inequality (B.76) follows fromDoob’s optional stopping theorem. Inequality (B.77) follows
from the following two inequalities:

(i) VT,L(0.5, ρthr) =
∣∣{null j : ΦNN

T,L(j, ρthr) > 0.5}
∣∣ (B.79)

≤
∣∣{null j : ΦT,L(j) > 0.5}

∣∣ = VT,L(0.5), (B.80)

(ii) V̂ ′
T,L(0.5, ρthr) =

T∑
t=1

p−
∑p

q=1 Φ
NN
t,L(q, ρthr)

L− (t− 1)
(B.81)

≥
T∑
t=1

p−
∑p

q=1 Φt,L(q)

L− (t− 1)
= V̂ ′

T,L(0.5). (B.82)

where the inequalities in (i) and (ii) both follow from Equation (4.41) and the fact that
ΨNN

T,L(j, ρthr) ≤ 1. Finally, inequality (B.78) has already been proven to holdwithin the proof
of Theorem 3 (FDR control -T-Rex selector) and, thus, it holds that FDR(v, ρthr, T, L) ≤ α.

B . 1 . 7 Technical Lemmas

Lemma 7. Define V := {ΦDA
T,L(j, ρthr(uc)) ≥ 0.5, j = 1, . . . , p}\{1}. Let

Fv := σ
({

RT,L(u, ρthr(uc))
}
u≥v

,
{
VT,L(u, ρthr(uc))

}
u≥v

,
{
V̂ ′
T,L(u, ρthr(uc))

}
u≥v

)
(B.83)

be a backward-filtration with respect to v. Then, for all triples (T, L, ρthr(uc)) ∈ {1, . . . , L}×
N+ × [0, 1], {HT,L(v, ρthr(uc))}v∈V is a backward-running super-martingale with respect to
Fv . That is,

E
[
HT,L(v − ϵ∗T,L(v, ρthr(uc))) | Fv

]
≥ HT,L(v, ρthr(uc)), (B.84)
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where v ∈ [0.5, 1) and

ϵ∗T,L(v, ρthr(uc)) := inf
{
ϵ ∈ (0, v) : RT,L(v − ϵ, ρthr(uc))−RT,L(v, ρthr(uc)) = 1

}
(B.85)

with the convention that ϵ∗T,L(v, ρthr(uc)) = 0 if the infimum does not exist.

Proof. The proof of Lemma 7 follows along the lines of the proof of Lemma 1 and by replac-
ing Φt,L(j), VT,L(v), and RT,L(v) by their dependency-aware extensions ΦDA

t,L(j, ρthr(uc)),
VT,L(v, ρthr(uc)), andRT,L(v, ρthr(uc)), respectively.

Lemma 8. Let V +
T,L(v, ρthr(uc)) be as in (B.39). For all triples (T, L, v) ∈ {1, . . . , L} ×

N+ × [0.5, 1), V +
T,L(v, ρthr(uc)) is monotonically increasing in ρthr(uc), i.e., for any uc ∈

{1, . . . , p− 1}, it holds that

V +
T,L(v, ρthr(uc + 1)) ≥ V +

T,L(v, ρthr(uc)). (B.86)

Proof. Using the definition of V +
T,L(v, ρthr(uc)) in (B.39), we obtain

V +
T,L(v, ρthr(uc + 1)) (B.87)

=
∣∣{null j : Ψ+

T,L(j, ρthr(uc + 1)) · ΦT,L(j) > v
}∣∣ (B.88)

≥
∣∣{null j : Ψ+

T,L(j, ρthr(uc)) · ΦT,L(j) > v
}∣∣ (B.89)

= V +
T,L(v, ρthr(uc)). (B.90)

The inequality in the third line follows from

Ψ+
T,L(j, ρthr(uc + 1)) ≥ Ψ+

T,L(j, ρthr(uc)), (B.91)

which is a consequence of the following two cases:

(i) Gr(j, ρthr(uc)) = ∅ : (B.92)

Ψ+
T,L(j, ρthr(uc + 1)) = 1 = Ψ+

T,L(j, ρthr(uc)), (B.93)

(ii) Gr(j, ρthr(uc)) ̸= ∅ : (B.94)

Ψ+
T,L(j, ρthr(uc + 1)) (B.95)
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=

[
2− min

j′∈Gr(j,ρthr(uc+1))

{∣∣Φt,L(j)− Φt,L(j
′)
∣∣}]−1

(B.96)

≥
[
2− min

j′∈Gr(j,ρthr(uc))

{∣∣Φt,L(j)− Φt,L(j
′)
∣∣}]−1

(B.97)

= Ψ+
T,L(j, ρthr(uc)). (B.98)

In (ii), the inequality in the third line follows from the fact that, for any uc ∈ {1, . . . , p− 1},
it holds that

Gr(j, ρthr(uc + 1)) ⊆ Gr(j, ρthr(uc)), j = 1, . . . , p, (B.99)

and, therefore,

min
j′∈Gr(j,ρthr(uc+1))

{∣∣Φt,L(j)− Φt,L(j
′)
∣∣} (B.100)

≥ min
j′∈Gr(j,ρthr(uc))

{∣∣Φt,L(j)− Φt,L(j
′)
∣∣}. (B.101)

Lemma 9. Let V̂ ′+
T,L(0.5, ρthr(uc)) be as in (B.42). For all tuples (T, L) ∈ {1, . . . , L}×N+,

V̂ ′+
T,L(0.5, ρthr(uc)) is monotonically decreasing in ρthr(uc), i.e., for any uc ∈ {1, . . . , p− 1},

it holds that
V̂ ′+
T,L(0.5, ρthr(uc + 1)) ≤ V̂ ′+

T,L(0.5, ρthr(uc)). (B.102)

Proof. Using the definition of V̂ ′+
T,L(0.5, ρthr(uc)) in (B.42), we obtain

V̂ ′+
T,L(0.5, ρthr(uc + 1)) (B.103)

=
T∑
t=1

p−
∑p

q=1 Ψ
+
t,L(q, ρthr(uc + 1)) · Φt,L(q)

L− (t− 1)
(B.104)

≤
T∑
t=1

p−
∑p

q=1 Ψ
+
t,L(q, ρthr(uc)) · Φt,L(q)

L− (t− 1)
(B.105)

= V̂ ′+
T,L(0.5, ρthr(uc)), (B.106)
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where the inequality in the third line follows from

Ψ+
t,L(q, ρthr(uc + 1)) ≥ Ψ+

t,L(q, ρthr(uc)), (B.107)

which was shown to hold within the proof of Lemma 8.

B . 2 Addit ional S imulat ions

In this appendix, we consider two additional heavy-tailed simulation settings to complement
the numerical experiments presented in Section 4.3. These settings differ from the simulation
setting in Section 4.3 as follows:

1. Heavy-tailed predictor matrixX : The p-dimensional samples of the predictor matrix
(i.e., rows ofX) are sampled from a zero-meanmultivariate heavy-tailed Student-t dis-
tribution with covariance matrixΣ (with ρ = 0.8) and 3 degrees of freedom,

2. Heavy-tailed noise vector ϵ: The noise vector ϵ is sampled from a heavy-tailed Student-
t distribution with 3 degrees of freedom.

The additional simulation results in Figures B.1, B.2, B.3, and B.4 verify the theoretical results
in Section 4.2 and show that only the proposedT-Rex+DA selector reliably controls the FDR
in these heavy-tailed settings.
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Figure B.1: Heavy-tailed predictor matrixX .
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(h)

Figure B.2: Heavy-tailed noise vector ϵ.
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(b)

Figure B.3: Heavy-tailed predictor matrixX .
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Figure B.4: Heavy-tailed noise vector ϵ.
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C
Appendix to Chapter 5

This appendix to Chapter 5 contains the proofs of Theorem 14 (Appendix C.1), Theorem 15
(Appendix C.2), and Theorem 16 (Appendix C.3).

C. 1 Proof of Theorem 14

Proof. First, note that, without loss of generality, Gm in (5.1) can be reduced to Gm =
{
g ∈

{1, . . . , p} : ρg,m = 1
}
,m = 1, . . . , p, since xg or xm can be replaced by −xg or −xm,

respectively. The variable selection process in all K random experiments is not affected by
such a replacement, because only the sign of the associated coefficient estimate is flipped.

Second, note that the relative occurrences within the selected active set in (3.3) are defined by

ΦT,L(j) :=


1

K

K∑
k=1

1k(j, T, L), T ≥ 1

0, T = 0

, (C.1)

where the indicator function in the first case is given by

1k(j, T, L) =

1, j ∈ Ck,L(T )

0, otherwise
, (C.2)
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i.e., it is one if the jth variable is included in the candidate set of the kth random experiment
and zero otherwise (see Definition 5).

Third, note that Lemma 2 (a) in [ZH05] states that for any strictly convex penalty function
f(β) in

β̂ = argmin
β

∥∥y −Xβ
∥∥2
2
+ λf(β), (C.3)

it holds that if xg = xm, then β̂g = β̂m, g,m ∈ {1, . . . , p}, for all λ > 0. Since the elastic
net penalty in (2.20) is a strictly convex function of β, we conclude that ρg,m = 1 implies
β̂g = β̂m, g,m ∈ {1, . . . , p}, for all λ > 0. From β̂g,k = β̂m,k for all λ > 0, where β̂g,k and
β̂m,k are the coefficient estimates of variables xg and xm corresponding to the kth random
experiment, it follows that

1k(g, T, L) = 1k(m,T, L) (C.4)

for all k ∈ {1, . . . , K} and all tuples (T, L) ∈ {1, . . . , L} × N+. Consequently, ρj,m = 1

implies ΦT,L(j) = ΦT,L(m) for all j ∈ Gm. Thus, for all triples (v, T, L) ∈ [0.5, 1) ×
{1, . . . , L} × N+ and for all j,m ∈ {1, . . . , p}, the following two statements hold:

(a1) If ρj,m = 1 andΦT,L(j) > v, thenΦT,L(m) > v.

(b1) If ρj,m = 1 andΦT,L(j) ≤ v, thenΦT,L(m) ≤ v.

Using the definition of ÂL(v, T ) in (3.3), Statements (a1) and (b1) can be translated into the
following equivalent statements that hold for all triples (v, T, L) ∈ [0.5, 1)×{1, . . . , L}×
N+ and for all j,m ∈ {1, . . . , p}:

(a2) If j ∈ Gm and j ∈ ÂL(v, T ), thenGm ⊆ ÂL(v, T ).

(b2) If j ∈ Gm and j /∈ ÂL(v, T ), thenGm ∩ ÂL(v, T ) = ∅.

Statements (a2) and (b2) are equivalent to Statements (i) and (ii) in the theorem.

C. 2 Proof of Theorem 1 5

Proof. First, we rewrite (5.8) as follows:

LIEN =
(
y′⊤y′ − 2β⊤X ′⊤y′ + β⊤X ′⊤X ′β

)
+ λ1∥β∥1. (C.5)
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Second, note thatX ′⊤X ′ = X⊤X+λ2

∑M
m=1

1m1⊤
m

pm
. Then, plugging (5.7) into (C.5) yields

LIEN =

[
y⊤y − 2β⊤X⊤y (C.6)

+ β⊤
(
X⊤X + λ2

M∑
m=1

1m1
⊤
m

pm

)
β

]
+ λ1∥β∥1 (C.7)

= y⊤y − 2β⊤X⊤y + β⊤X⊤Xβ (C.8)

+ λ2

M∑
m=1

β⊤1m1
⊤
mβ

pm
+ λ1∥β∥1 (C.9)

= ∥y −Xβ∥22 + λ1∥β∥1 + λ2

M∑
m=1

(1⊤
mβ)

2

pm
. (C.10)

C. 3 Proof of Theorem 16

Proof. Define r̂ := y −Xβ̂. Taking the first derivative of (5.5) and setting it equal to zero,
we obtain

∂LIEN(β)

∂β

∣∣∣∣
β=β̂

(C.11)

= −2X⊤r̂ + λ1
∂∥β∥1
∂β

∣∣∣∣
β=β̂

+ 2λ2

M∑
m=1

1m1
⊤
mβ̂

pm

!
= 0. (C.12)

The jth and j′th equation of the system of equations in (C.12) are:

− 2x⊤
j r̂ + λ1 sign(β̂j) + 2λ2

1⊤
1 β̂

p1
= 0, (C.13)

− 2x⊤
j′ r̂ + λ1 sign(β̂j′) + 2λ2

1⊤
2 β̂

p2
= 0. (C.14)

Subtracting (C.14) from (C.13) and noting that sign(β̂j) = sign(β̂j′):

2(x⊤
j′ − x⊤

j )r̂ + 2λ2

(
1⊤
1 β̂

p1
− 1⊤

2 β̂

p2

)
= 0. (C.15)
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Using (C.15), we obtain

1

∥y∥2

∣∣∣∣1⊤
1 β̂

p1
− 1⊤

2 β̂

p2

∣∣∣∣ = 1

λ2∥y∥2
∣∣(x⊤

j − x⊤
j′)r̂
∣∣ (C.16)

≤ 1

λ2

∥xj − xj′∥2
∥r̂∥2
∥y∥2

=
1

λ2

√
2(1− ρj,j′)

∥r̂∥2
∥y∥2

(C.17)

≤ 1

λ2

√
2(1− ρj,j′), (C.18)

where the inequality and the equation in the second line follow from the Cauchy-Schwarz
inequality and from ∥xj − xj′∥2 =

√
∥xj∥22 + ∥xj′∥22 − 2x⊤

j xj′ =
√
1 + 1− 2ρj,j′ ,

respectively. The last line follows from the fact that β̂ is the minimizer of (5.5) and, therefore,
L(β̂) ≤ L(0) ⇔ ∥r̂∥22 + λ1∥β̂∥1 + λ2

∑M
m=1

(1⊤
mβ̂)2

pm
≤ ∥y∥22 ⇒ ∥r̂∥2 ≤ ∥y∥2. Since

the inequality in (C.18) holds for all j ∈ G1 and j′ ∈ G2, the smallest upper bound is given
by the largest ρj,j′ , i.e.,

1

∥y∥2

∣∣∣∣1⊤
1 β̂

p1
− 1⊤

2 β̂

p2

∣∣∣∣ ≤ 1

λ2

√
2

(
1− max

j∈G1,j′∈G2

{ρj,j′}
)
. (C.19)

190



List of Acronyms & Abbreviations

a.s. Almost sure
AI Artificial intelligence
AIC Akaike information criterion
asdp Approximate semidefinite program

BH Benjamini-Hochberg
BIC Bayesian information criterion
BY Benjamini-Yekutieli

CDF Cumulative distribution function
CPU Central processing unit
CRAN Comprehensive R Archive Network
CRT Conditional randomization test
CV Cross-validation
CVE Cross-validation error

dB Decibel
DOA Direction-of-arrival

EN Elastic net
ETF Exchange traded fund
EU European Union
EV Explained variance

FDP False discovery proportion
FDR False discovery rate
FWER Family-wise error rate

GWAS Genome-wide association study

HIV-1 Human immunodeficiency virus type 1

i.i.d. Independent and identically distributed
IC Information criterion
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IEN Informed elastic net

LARS Least angle regression
Lasso Least absolute shrinkage and selection operator

MSTE Mean squared wealth tracking error

NHG Negative hypergeometric distribution
NN Nearest neighbors
NP Non-deterministic polynomial time

OLS Ordinary least squares

PC Principal component
PCA Principal component analysis
PEV Percentage of explained variance
PFER Per family error rate
PI Protease inhibitor
PMF Probability mass function

Q-Q Quantile-quantile
QP Quadratic program

RAM Random-access memory
RNA Ribonucleic acid
RNA-seq RNA-sequencing

S&P 500 Standard & Poor’s 500
Screen-T-Rex Screening-T-Rex
SNP Single nucleotide polymorphism
SNR Signal-to-noise ratio
SPCA Sparse PCA
SSD Solid-state drive
SSR Sum of squared residuals
SVD Singular value decomposition

T-LARS Terminating-LARS
T-Rex Terminating-random experiments
T-Rex+DA Dependency-aware T-Rex
T-Rex+DA+AR1 T-Rex+DA for autoregressive dependency models
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T-Rex+DA+BT T-Rex+DA for binary tree dependency models
T-Rex+DA+NN T-Rex+DA for nearest neighbors dependency mod-

els
T-Rex+GVS Grouped variable selection T-Rex
TCGA The Cancer Genome Atlas
TPP True positive proportion
TPR True positive rate
TSM Treatment-selected mutation
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List of Operators & Symbols

The following list contains the most frequently used mathematical operators and symbols in
this dissertation. All other expressions are defined on first use.

Operators

|a| Absolute value of a scalar a
|A| Cardinality of a setA
∥a∥1 ℓ1-norm of a vector a
∥a∥2 ℓ2-norm of a vector a
E[A] Expected value of a random variableA
Var[A] Variance of a random variableA
a⊤ Transpose of a vector a
A⊤ Transpose of a matrixA
rank(A) Rank of a matrixA
tr(A) Trace of a matrixA
A ∩ B Intersection of the setsA and B
A ∪ B Union of the setsA and B
a ∨ b Maximum of two scalars a and b
sign(a) Sign of a scalar a⋃Z

z=1Az Union of the setsA1,A2, . . . ,AZ

max
v,T

f(v, T ) s.t. g(v, T ) ≤ α Optimization problem that returns the maximum value of
the function f(v, T ) with respect to the parameters v and T
and subject to the constraint g(v, T ) ≤ α

argmin
β

h(β) Argument of the minimum of the function h(β)

Symbols

n Number of data points
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p0 Number of null variables
p1 Number of true active variables
p Total number of variables
y Response vector
X Original predictor matrix
◦
Xk Dummy predictor matrix of the kth random experiment of

the T-Rex selector
X̃k Enlarged predictor matrix of the kth random experiment of

theT-Rex selector (contains original predictors anddummies)
xj jth original predictor
◦
xk,l lth dummy predictor within the kth random experiment of

the T-Rex selector
β Coefficient vector
w Asset weight vector
ϵ Noise vector
a ∈ N a is an element of the natural numbers
a ∈ Z a is an integer
a ∈ R a is a real valued scalar
a ∈ Rn a is a real valued n-dimensional vector
A ∈ Rn×p A is a real valued (n× p)-dimensional matrix
λ1 Sparsity tuning parameter of the Lasso and the elastic net
λ2 Ridge tuning parameter of the elastic net
N (µ,Σ) Multivariate normal distribution with mean vectorµ and co-

variance matrixΣ
N (µ, σ2) Univariate normal distribution with mean µ and variance σ2

∅ Empty set
K Number of random experiments
L Number of dummies
T Number of included dummies after which the forward vari-

able selection process in each random experiment is termi-
nated

T ∗ Optimal value of T as determined by the calibration process
of the T-Rex selector

v Voting level
v∗ Optimal value of v as determined by the calibration process

of the T-Rex selector
α Target FDR level
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α̂ FDR estimator
1k(j, T, L) Indicator function of the kth random experiment of the T-

Rex selector
NHG(p0 + L, p0, T ) Negative hypergeometric distribution with p0 + L total ele-

ments, p0 success elements, and T failures

A
d

≤ B Random variable A is stochastically dominated by random
variableB

Z Index set of null variables
A Index set of active variables
ÂL(v, T ) Estimator of the active set, i.e., index set of the selected vari-

ables
Â(v) Short hand for ÂL(v, T )

Â 0(v) Index set of the selected null variables
Â 1(v) Index set of the selected active variables
Ck,L(T ) Candidate set of the kth random experiment, i.e., index set of

the included variables in the kth random experiment
VT,L(v) Number of selected null variables
V̂T,L(v) Estimator of VT,L(v)

ST,L(v) Number of selected true active variables
RT,L(v) Total number of selected variables
ΦT,L(j) Relative occurrence of variable j
∆Φt,L(j) Change in relative occurrence from step t−1 to t for variable j
Φ′

T,L(j) Deflated relative occurrence of variable j
Gr(j, ρthr) Group of variables that are associated with variable j
SW(j, ρthr) Sliding window function
ΨT,L(j, ρthr) Dependency-aware penalty function with hierarchical graph-

ical model group design
ΨNN

T,L(j, ρthr) Dependency-aware penalty function with nearest neighbors
group design

ΨAR
T,L(j, ρthr) Dependency-aware penalty function with autoregressive

group design
ΦDA

T,L(j, ρthr) Dependency-aware relative occurrences with hierarchical
graphical model group design

ΦNN
T,L(j, ρthr) Dependency-aware relative occurrences with nearest neigh-

bors group design
ΦAR

T,L(j, ρthr) Dependency-aware relative occurrences with autoregressive
group design
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