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Abstract

This thesis investigates the nuclear equation of state (EOS) using interactions among neutrons
and protons based on chiral effective field theory (EFT). While nuclear matter is well studied
microscopically at zero temperature for pure neutron matter and symmetric nuclear matter (with
equal amounts of neutrons and protons), the general case is less explored. We present many-body
calculations of the EOS for arbitrary temperatures and arbitrary neutron-proton asymmetries.

We first give a general overview of nuclear interactions and then introduce many-body per-
turbation theory (MBPT) as the method used in this thesis to determine the EOS, e.g., the
pressure as function of the energy density, temperature, and proton fraction, from chiral two-
and three-nucleon interactions up to next-to-next-to-next-to-leading order. Furthermore, we in-
troduce Gaussian processes as a tool to interpolate calculated EOS data points and to determine
thermodynamic derivatives.

As a starting point we calculate the EOS of neutron matter at finite temperatures with a
particular focus on understanding thermal effects. The impact of nuclear interactions is studied
systematically by considering different chiral two- and three-nucleon interactions. We then gen-
eralize these results to arbitrary proton fraction. For astrophysical applications the composition
and pressure in beta equilibrium is determined based on the full asymmetry dependence of the
EOS. Moreover, we explore the speed of sound and symmetry energy at finite temperature. For
all results, theoretical uncertainty estimates based on the EFT expansion are provided.

Three further applications of these new calculations are presented. We determine the liquid-gas
phase transition of symmetric nuclear matter and provide the critical temperature and density
together with the phase diagram. Second, the phase coexistence at low proton concentrations
is investigated at zero temperature with a focus on the possibility of proton drip. Finally, we
explore the impact of muons on the composition in beta equilibrium and provide results for the
speed of sound together with EFT and MBPT uncertainty estimates.
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Zusammenfassung

Diese Thesis untersucht die nukleare Zustandsgleichung (EOS), wobei die Wechselwirkungen
zwischen Neutronen und Protonen auf chiraler effektiver Feldtheorie (EFT) basieren. Ob-
wohl Kernmaterie bei verschwindender Temperature und für reine Neutronenmaterie oder sym-
metrische Materie (mit gleicher Menge von Neutronen und Protonen) mikroskopisch gut unter-
sucht wurde, ist der allgemeine Fall weniger erforscht. Wir zeigen Vielteilchenrechnungen der
EOS für beliebige Temperaturen und beliebige Neutron-Proton-Asymmetrien.

Zuerst geben wir einen Überblick über die nuklearen Wechselwirkungen und führen dann Viel-
teilchenströrungstheorie (MBPT) als die Methode ein, die zur bestimmung der EOS, z.B. Druck
als Funktion der Energiedichte, Temperature und Protonanteil, in dieser Thesis auf Basis von
chiralen Zwei- und Dreikernwechselwirkungen bei next-to-next-to-next-to-leading order verwen-
det wird. Weiterhin stellen wir Gauß-Prozesse vor, die zum interpolieren von berechneten EOS
Datenpunkten und zum bestimmen von thermodynamischen Ableitungen verwendet werden kön-
nen.

Als erstes berechnen wir die EOS von Neutronenmaterie bei endlichen Temperaturen mit
dem Schwepunkt thermische Effekte zu verstehen. Der Einfluss der Kernwechselwirkungen wird
durch verwenden verschiedener chiraler Zwei- und Dreikernwechselwirkungen systematisch unter-
sucht. Diese Ergebnisse werden dann für beliebige Protonenanteile verallgemeinert. Für astro-
physikalische Anwendungen wird die Zusammensetzungen und der Druck im Beta-Gleichgewicht,
basierend auf der vollen Asymmetrieabhängigkeit der EOS, bestimmt. Weiterhin erforschen wir
die Schallgeschwindigkeit und Symmetrieenergie bei endlichen Temperaturen. Für alle Ergeb-
nisse werden theoretische Ferhlerabschätzungen, basierend auf der EFT Entwicklung, angegeben.

Drei weitere Anwendungen dieser neuen Berechnungen werden vorgestellt. Wir bestimmen den
Flüssigkeits-Gas Phasenübergang von symmetrischer Materie und geben die kritische Temperatur
und kritische Dichte zusammen mit dem Phasendiagram an. Zweitens, untersuchen wir das
Phasengleichgewicht bei niedrigen Protonanteilen bei verschwindender Temperatur, wobei ein
Schwepunkt darauf liegt, ob Protondrip möglich ist. Schließlich untersuchen wir den Einfluss
von Muonen auf die Zusammensetzung im Beta-Gleichgewicht und geben Ergebnisse für die
Schallgeschwindigkeit zusammen mit EFT und MBPT Fehlerabschätzungen an.
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1 Introduction

1.1 Nuclear equation of state

Parts of this chapter have already been published in Ref. [1]. The nuclear equation of state
(EOS) plays a central role for the physics of nuclei and dense matter in neutron stars, supernovae,
and mergers [2–6]. The EOS governs the properties of matter through the relation of different
thermodynamic state variables, e.g. pressure as function of energy density, temperature, and
composition [7, 8]. For densities around nuclear saturation density n0 = 0.16 fm−3, the nuclear
EOS investigated in this thesis, considers an idealized system that has neutrons and protons as
degree of freedom in the thermodynamic limit. In particular there are no surface effects and no
Coulomb interactions and thus no bound nuclei considered.

When working at fixed temperature, neutron density, and proton density the relevant thermo-
dynamic potential is the Helmholtz free energy per particle (or volume)

F

A
(T, nn, np) , (1.1)

where T is the temperature, nn the neutron density, and np the proton density. Often it is more
convenient to parameterize the EOS in terms of the total (baryonic) density n = nn + np and
the proton fraction x = np/n. Therefore, we use

F

A
(x, T, n) , (1.2)

for the rest of this thesis. Other thermodynamic quantities can easily be derived from there, e.g.,
[7]

P = n2 ∂

∂n

F

A
, (1.3)

S

A
= − ∂

∂T

F

A
, (1.4)

E

A
=

F

A
+ T

S

A
, (1.5)

µi =
F

A
+ n

∂

∂n

F

A
+ (δi,p − x)

∂

∂x

F

A
, (1.6)

where P is the pressure, S/A the entropy per particle, E/A the internal energy per particle, and
µi the chemical potential of neutrons (i = n) and protons (i = p). Figure 1.1 shows an overview
of the EOS at T = 0 as a function of density and for various proton fractions. Note that at T = 0,
the free energy and internal energy are identical, i.e., F/A(x, T = 0, n) = E/A(x, T = 0, n), see
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Eq. (1.5).
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Figure 1.1: Overview of the T = 0 energy per particle as a functions of density. Different colors
show different proton fractions from neutron matter x = 0 to symmetric nuclear
matter x = 0.5. The lines are taken from the EOS based on chiral two- and three-
nucleon interactions presented in Chapter 6.

Because of the approximate isospin symmetry of nuclear interactions, the EOS is often ex-
panded in terms of the asymmetry parameter β = (nn−np)/(nn+np) = 1−2x around a system
with equally many neutrons and protons x = 0.5 [9]:

F (T, x, n) = a0(T, n) + a2(T, n)(1− 2x)2 + a4(T, n)(1− 2x)4 + . . . , (1.7)

where the coefficient functions ai(T, n) describe the asymmetry dependence. The expansion is
typically truncated beyond the quadratic term (see e.g. Ref. [9]), such that the free energy can
be written as

F (T, x, n) = FSNM(T, n) + Fsym(T, n)(1− 2x)2 , (1.8)

Fsym(T, n) = FPNM(T, n)− FSNM(T, n) , (1.9)

in terms of two special cases, pure neutron matter FPNM(T, n) with x = 0 and symmetric nuclear
matter FSNM(T, n) with x = 0.5. Here Fsym(T, n) is the so called (free) symmetry energy. An
analysis of the expansion and higher order contributions based on microscopic calculations can
be found in Refs. [10, 11].

In this thesis we determine the EOS starting from nuclear interactions that are derived from
chiral effective field theory as introduced in Chapter 2. From the Hamiltonian we calculate the
EOS by using a perturbative expansion of the grand-canonical potential, see Chapter 3. The
special case of pure neutron matter is considered in Chapter 5 and the general case for arbitrary
proton fraction, without employing the approximation of Eq. (1.8), in Chapter 6.
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1.2 Constraints on the nuclear EOS

1.2 Constraints on the nuclear EOS

Various experimental and theoretical constraints exist for the nuclear EOS. Here we only highlight
two examples, further details can be found in, e.g., Refs. [12–14]. To characterize the zero-
temperature nuclear EOS, it can be expanded around the empirical saturation density n0 =

0.16 fm−3 in terms of n̄ = (n− n0)/(3n0) and in the asymmetry parameter β = 1− 2x

E

A
(n, x) = B +

1

2
Kn̄2 +

(︃
Sv + Ln̄+

1

2
Ksymn̄2

)︃
(1− 2x)2 + . . . , (1.10)

where B is the binding energy, K the incompressibility, Sv the symmetry energy at saturation
density, L the slope parameter, and Ksym the symmetry incompressibility [12, 15]. These param-
eters can be constrained experimentally and theoretically, see, e.g., Refs. [12, 15] for an overview.
Figure 1.2 shows compilations of constraints on Sv and L from various experiments together with
theoretical predictions. The microscopic calculations indicated by the regions H, G, and GP-B
are consistent with experimental constraints.

Figure 1.2: Various constraints on the slope parameter L and symmetry energy at saturation
density Sv together with theoretical predictions (H, G, GP-B). Figure is taken from
Ref. [16] (see also Ref. [2]). ©2020 by American Physical Society.
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Figure 1.3: Phase coexistence boundaries of symmetric nuclear matter determined in Ref. [17].
Different lines show different interactions, points mark the critical tempera-
ture and density. The white box shows the empirically determined criti-
cal point. Figure taken from C. Drischler, J. W. Holt, and C. Wellenhofer
Ref. [5] (https://doi.org/10.1146/annurev-nucl-102419-041903) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/), modified. ©2021 by Annual Re-
views.

Furthermore some constraints exist at finite temperatures for the nuclear EOS. For symmetric
nuclear matter the EOS has a phase transition with a critical point (temperature and density)
that can be determined experimentally. Figure 1.3 shows the calculated phase diagram from
Ref. [17] based on different chiral interactions in comparison to the empirically determined critical
point. The liquid-gas phase transition of symmetric nuclear matter is investigated in Chapter 7
of this thesis.

1.3 Neutron stars

For an introduction about neutron stars and relation to nuclear physics see, e.g., Refs. [6, 15, 18,
19]. We only give a short summary of topics that are important for this thesis. Figure 1.4 shows
a schematic cross section of a neutron star. The following summary of the composition of neutron
star matter is based on Refs. [18, 19]. At low densities the crust of the neutron star is given by
bound nuclei and electrons. When the density is increased towards the center of the star, nuclei
get more neutron rich and at some density neutrons start to drip out of bound nuclei (neutron
drip). They form a gas that coexists with the bound nuclei. There is also the possibility that
at some higher density protons start to drip out of bound nuclei as well (proton drip), such that
matter is composed of bound nuclei, free neutrons and free protons. The possibility of neutron
and proton drip will be investigated in this thesis in Chapter 8. At even higher densities nuclei
dissolve, and matter is a uniform gas consisting of free neutrons, free protons, electrons, and
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1.3 Neutron stars

muons in beta equilibrium. Uniform matter in beta equilibrium (e.g., around ∼ 5% protons at
nuclear saturation density) will be explored in this thesis in Chapter 6 and 9.

Figure 1.4: Schematic cross section of a neutron star from the outer crust (lowest density) to the
core (highest density). Figure is taken from Ref. [19]. ©1995 by Annual Reviews.

The EOS for matter in beta equilibrium uniquely determines the relationship between mass
and radius of a neutron star in equilibrium. The Tolman-Oppenheimer-Volkoff (TOV) equation
[20, 21]

dP (r)

dr
= −(ϵ(r) + P (r))(M(r) + 4πr3P (r)

r(r − 2M(r))
, (1.11)

dM(r)

dr
= 4πr2ϵ(r) , (1.12)

can be solved to obtain the mass as function of radius M(R). Here P (r) is the pressure and M(r)

the enclosed gravitational mass as a function of the current radius. Following, e.g., Ref. [15],
starting from the center r = 0 with a central pressure P (0) = Pc and mass M(0) = 0, the
equations can be integrated to larger radii until the pressure at the boundary of the star vanishes.
The neutron star radius R is then given by P (R) = 0 and the gravitational mass by M =

4π
∫︁ R
0 drr2ϵ(r). By changing the central pressure a mass radius curve can be obtained.

A crucial input to solve the TOV equations is the high-density EOS, e.g., pressure as a function
of energy density. Microscopic calculations of the EOS based on nuclear interactions are only
reliable up to about n ≲ 2n0 [5]. However, knowledge of the EOS up to higher densities is
necessary for a solution of the TOV equations, e.g., up to nmax = 8.3n0 in Ref. [22].

The strategy employed by Ref. [22] is to combine the nuclear EOS based on microscopic matter
calculations with a high-density extension. The left part of Fig. 1.5 shows this construction for the
pressure as a function of energy density. Matter calculations from chiral EFT at nuclear densities
are shown as the dark blue band on the left together with a piecewise polytrope extension to
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Figure 1.5: Pressure as function of energy density (left) and resulting neutron star mass-radius
relation constraints (right). See text for details. Figure is taken from Ref. [22].
©2013 by The American Astronomical Society.

higher densities (see Ref. [22] for details). The high-density extension is constrained by causality
(speed of sound is smaller than speed of light) and the ability to reproduce the most massive
neutron star observation, e.g., Mmax ∼ 2M⊙ where M⊙ is the mass of our sun [22]. The resulting
constraints on the mass-radius relation, as determined from the TOV equations, are shown in the
right plot of Fig. 1.5. Three representative EOS and the resulting mass-radius relations are shown
as colored lines (see Ref. [22] for details). These calculations can be combined with measurements
of neutron star observables to further constrain the EOS and neutron star properties, see, e.g.,
Refs. [22–33] for calculations where chiral EFT has been used to determine the nuclear EOS.

1.4 Core-collapse supernova explosions and neutron star mergers

The solution of the hydrodynamic equations in astrophysical simulations, e.g., for core-collapse
supernovae or neutron star mergers, requires the high-density EOS as a crucial input [12, 34]. In
contrast to the determination of the mass-radius relation in the previous section, these simulations
require the EOS for finite temperatures and proton fractions.

Figure 1.6 shows the matter composition in spherical core-collapse supernova simulations of
Ref. [35]. From there it is evident, that temperatures up to about 100MeV and proton frac-
tions from about 0.1 to slightly above 0.5 are needed to evolve the simulations. The impact of
thermal interaction effects (e.g., the temperature dependence of the pressure) has been studied
recently by, e.g., Ref. [36] in core-collapse supernovae and in Ref. [37] for neutron star mergers.
Ref. [36] includes thermal interaction effects in the EOS by means of a density-dependent ef-
fective nucleon mass and explored the impact in spherically-symmetric core-collapse supernova
simulations. The contraction behavior of the proto-neutron star (PNS) and the shock propaga-
tion of these simulations are shown in Fig. 1.7. Different lines show different EOS with different
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1.4 Core-collapse supernova explosions and neutron star mergers

Figure 1.6: Matter distribution of a spherical-symmetric CCSN simulation from Ref. [35] for the
Lattimer-Swesty EOS (left) and Shen EOS (right). The colors of each bin encode the
mass and time weighted occurrence of the corresponding density and temperature,
see Ref. [35]. Figure is taken from Ref. [35]. ©2012 by The American Astronomical
Society.

thermal approximations. One can observe a strong impact of the EOS on the PNS contraction
and shock propagation. Thermal interaction effects in neutron matter are studied in Chapter 5
of this thesis.
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Figure 1.7: Proto-neutron star contraction (upper panel) and shock radius (lower panel) as a
function of time from the spherically-symmetric core-collapse supernova simulations
of Ref. [36]. Different lines correspond to different EOS employed in the simulations.
Figure is taken from Ref. [36]. ©2020 by American Physical Society.

1.5 Overview of this thesis

The structure of this thesis is shown in Fig. 1.8. In Chapter 2 we introduce the nuclear in-
teractions used in the thesis, they are the basis for constructing the Hamiltonians used in the
many-body calculations. Chapter 3 introduces many-body perturbation theory to determine
thermodynamic properties from the Hamiltonian. An expansion for the grand-canonical poten-
tial is presented and it is discussed how an expansion for the free energy can be derived from
there. Next in Chapter 4, Gaussian processes are introduced to interpolate EOS data points and
to determine thermodynamic derivatives from the free energy. In the rest of the thesis various
applications of this framework are presented. Chapter 5 presents calculations of neutron matter
at finite temperatures. These are generalized to asymmetric matter in Chapter 6. Chapter 7
shows an analysis of the liquid-gas phase transition of symmetric nuclear matter. In Chapter 8
we investigate phase coexistence at low proton concentration at zero temperature. Finally in
Chapter 9 we extend calculations of matter in beta equilibrium to include muons as a degree of
freedom.
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1.5 Overview of this thesis

Nuclear interaction (Chapter 2)
Chiral EFT: H = H0 + VNN + V3N

Grand-canonical potential (Chapter 3)
Ω(T, µn, µp) = − 1

β lnTr
(︁
e−β(H−µnNn−µpNp)

)︁

Approximation strategy (Chapter 3)
Many-body perturbation theory, MC integration

Gaussian process emulation (Chapter 4)
{F (xi, Tj , nk) + ∆ijk}ijk

GP−−−−−−−−→ F (x, T, n)

Equation of state (EOS) (Chapters 5, 6, 7, 8, 9)
F (x, T, n), P (x, T, n), . . .

Figure 1.8: Overview of this thesis.
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2 Nuclear interactions

As introduced in the previous section, neutrons and protons are important degrees of freedom
for astrophysical applications. Knowledge about the interactions of these particles is the starting
point for theoretical calculations of the EOS and related quantities.

From the standard model it is known that nucleons (neutrons and protons) are no fundamental
particles. They consist of three quarks (up-down-down for neutrons and up-up-down for protons)
and the interactions among nucleons is the residual strong interaction of the confined quarks.
However, a direct calculations of the EOS based on the quantum chromodynamics (QCD), the
theory describing the interaction among quaks, is infeasible, except at very high densities, see,
e.g., Refs. [38, 39].

Instead we here take a different approach. Our degrees of freedom will be nucleons (not quarks
and gluons) and the interaction among them is described by an effective field theory (EFT)
for QCD at low energies which in our case is chiral effective field theory [40–42]. It provides
an expansion of nuclear interactions at low energies with the ability to quantify uncertainties
of the expansion. One consequence of neglecting the internal structure of the nucleons is the
emergence of many-body interactions (that cannot be expressed as a sum of interactions between
two nucleons) [40–42]. The most important of those, three-nucleon interactions (known to be
important for observables of atomic nuclei and nuclear matter [3, 43, 44]), are included in the
calculations in this thesis.

2.1 Chiral effective field theory

The nucleonic interactions considered in this thesis are derived from chiral effective field theory
[40–42]. A detailed introduction can be found in Refs. [40–42]. We only give an overview about
topics that are important for this thesis. This section is based on Ref. [41].

The degrees of freedoms in chiral EFT are nucleons and pions. The interactions are given by
contact interactions (short range) and pion exchanges (long range). To deal with the infinite
number of interaction terms that arise, a scheme has to be chosen that orders them by their
importance. In chiral EFT this so called power counting orders the terms by powers of their
momentum dependence

Q =
p

Λb
, (2.1)

where p is a generic momentum and Λb is the breakdown scale of the EFT. This is shown in
Fig. 2.1. The interaction terms are shown as diagrams and are ordered by their momentum
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2 Nuclear interactions

Figure 2.1: Interaction terms arising from Chiral EFT ordered according the power counting
scheme by their momentum dependence p/Λb. Vertices show contact interactions
and dashed lines show pion exchanges. Note that the definition of Q in this figure is
different to Eq. (2.1). The figure is taken from Ref. [44] and was modified. ©2020
by Elsevier B.V.

dependence in different rows. Contact interactions are shown as vertices and pion exchanges are
depicted as dotted lines. Higher-body interactions are a natural result of the expansion. The
interactions are used to derive the general Hamiltonian

H = T + VNN + V3N + . . . , (2.2)

in operator form, where T is the kinetic energy, VNN (V3N ) are two(three)-nucleon interactions,
and the dots represent four- and higher-nucleon interactions that are neglected.

The leading order (LO) interaction VLO ∼ Q0 that contributes (first row of Fig. 2.1) is given
by [40, 41]

VLO = CS + CT σ1 · σ2 −
g2A
4F 2

π

σ1 · q σ2 · q
q2 +m2

π

τ1 · τ2 (2.3)

where CS and CT are momentum independent contact interactions and the last term is the one-
pion exchange interaction with the pion mass mπ, nuclear axial coupling constant gA, and pion
decay constant Fπ. Note that, e.g., the constant CS transformed to coordinate space, corresponds
to a delta interaction V (r′, r) ∼ δ(r′−r). σi and τi are the spin and isospin operators of particle
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2.1 Chiral effective field theory

i, i.e.,

σi =

⎛⎜⎝σx,i

σy,i

σz,i

⎞⎟⎠ and τi =

⎛⎜⎝τx,i

τy,i

τz,i

⎞⎟⎠ , (2.4)

and we use shorthands of the form σi · σj =
∑︁

α=x,y,z σα,iσα,j .

The next-to-leading order (NLO) is ∼ Q2 as shown in the second row of Fig. 2.1, next-to-next-
to-leading order (N2LO) interactions VN2LO ∼ Q3 are shown in the third row of Fig. 2.1. Their
expressions have been derived and in general the operator structure VNN (p′,p) = ⟨p′|VNN |p⟩
can be written as [40, 41]

VNN (p′,p) =VC(p
′,p) + τ1 · τ2WC(p

′,p) (2.5)

+ (VS(p
′,p) + τ1 · τ2WS(p

′,p))(σ1 · σ2) (2.6)

+ (VLS(p
′,p) + τ1 · τ2WLS(p

′,p))(−iS · (q × k)) (2.7)

+ (VT,1(p
′,p) + τ1 · τ2WT,1(p

′,p))(σ1 · q)(σ2 · q) (2.8)

+ (VT,2(p
′,p) + τ1 · τ2WT,2(p

′,p))(σ1 · k)(σ2 · k) (2.9)

+ (VσL(p
′,p) + τ1 · τ2WσL(p

′,p)) (σ1 · (q × k)) (σ2 · (q × k)) (2.10)

where all Vi and Wi are scalar functions of the relative momentum p = 1
2(k1 − k2) of incoming

particles with momenta ki and relative momentum p′ = 1
2(k

′
1 − k′

2) of outgoing particles with
momenta k′

i. Furthermore, the momentum transfer is given by q = p′ − p, and in the exchange
channel by k = p′ + p and the total spin by S = 1

2(σ1 + σ2). The various coefficient functions
Vi and Wi receive contributions of short-range contact interactions and pion exchanges from the
different orders NLO and N2LO. For details we refer to Refs. [40, 41].

At N2LO three-nucleon interactions start to contribute as shown in the second column of the
third row of Fig. 2.1. Their expressions have been derived in Ref. [45, 46] and are given by two
pion exchange (left diagram)

VC =
1

2

(︃
gA
2fπ

)︃2 ∑︂
i ̸=j ̸=k

(σi · qi)(σj · qj)
(q2i +m2

π)(q
2
j +m2

π)
Fαβ
ijk τ

α
i τ

β
j (2.11)

with

Fαβ
ijk = δαβ

(︃
−4c1m

2
π

f2
π

+
2c3
f2
π

qi · qj
)︃
+
∑︂
γ

c4
f2
π

ϵαβγτγkσk · (qi × qj) , (2.12)

pion exchange plus contact (middle diagram)

VD = − gA
8f2

π

cD
f2
πΛχ

∑︂
i ̸=j ̸=k

σj · qj
q2j +m2

π

(τi · τj)(σi · qj) , (2.13)
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and contact interaction (right diagram)

VE =
cE

2f4
πΛχ

∑︂
i ̸=j

(τi · τj) . (2.14)

Note that at N3LO also four-nucleon interactions start to contribute. Their size has been esti-
mated for neutron matter in the Hartree-Fock approximation in Ref. [47] to about E4N,HF (n0) ≈
−180 keV at nuclear saturation density n0 such that we neglect them.

Finally, we mention that in order to improve the convergence for many-body calculations,
chiral EFT interactions can be evolved to lower resolutions using the similarity renormalization
group (SRG), see, e.g. Refs [44, 48].

2.2 Partial-wave decomposition

In the previous section, the nuclear interaction was stated in operator form in the momentum
basis. For the calculations of the equation of state, operators evaluated in a basis are impor-
tant. The many-body expansion for the approximate evaluation of the EOS (see Chapter 3) is
formulated using single-particle matrix elements in the calculations of this thesis, i.e.,

⟨︁
k′
1σ

′
1τ

′
1,k

′
2σ

′
2τ

′
2

⃓⃓
VNN |k1σ1τ1,k2σ2τ2⟩ , (2.15)⟨︁

k′
1σ

′
1τ

′
1,k

′
2σ

′
2τ

′
2,k

′
3σ

′
3τ

′
3

⃓⃓
V3N |k1σ1τ1,k2σ2τ2,k3σ3τ3⟩ , (2.16)

where ki, σi, τi are momentum, spin projection, and isospin projection of incoming particle i

and primes denote outgoing particles.

Our strategy is to load precalculated matrix elements (evaluated in a basis) and use them for
our numerical calculations. Note, however, that the expression for V3N depends on 4 momenta
each with 3 dimensions (the matrix elements do not depend on center-of-mass momentum, see
e.g. Ref. [44]), which makes it impossible to store them due to memory constrains.

Instead, following, e.g., Ref. [44], we use precomputed matrix elements in a partial-wave basis
and reconstruct the single-particle basis when needed. Schematically the partial-wave basis for
three-nucleon interactions can be derived as follows (following, e.g., Ref. [44]). First the single
particle momenta ki in

|k1σ1τ1,k2σ2τ2,k3σ3τ3⟩ , (2.17)

are rewritten to (relative) Jacobi momenta p and q

|pq⟩ |σ1τ1, σ2τ2, σ3τ3⟩ . (2.18)

Note that the three-nucleon center of mass momenta is omitted as matrix elements do not depend
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2.2 Partial-wave decomposition

on it. Next the momenta p and q are expanded in spherical harmonics

|pL12mL12 , qL3mL3⟩
⃓⃓
(12

1
2)S12MS12

⟩︁ ⃓⃓
(12

1
2)T12MT12

⟩︁
|σ3τ3⟩ (2.19)

with new states that only depend on the absolute values of the momenta and new angular
momentum quantum numbers Li and projections mLi . Furthermore the single particle spins
and isospin of the first two particles are coupled to S12 = s1 + s2 with projection MS12 and
T12 = t1+ t2 with projection MT12 . Next L12 and S12 are coupled to a total angular momentum
J12 = L12+S12 and L3 is coupled to the spin of the third particle to a total angular momentum
J3 ⃓⃓

pq, (L12S12)J12mJ12 , (L3,
1
2)J3mJ3 , T12MT12 , τ3

⟩︁
(2.20)

with corresponding projections mJ12 and MT12 . Finally J12 is coupled to J3 to a total momentum
J , and T12 is coupled to the isospin of the third particle to a total isospin T such that the final
basis states are given by

⃓⃓
pq, [(L12S12)J12, (L3,

1
2)J3mJ3 ]JmJ , [T12,

1
2 ]TmT

⟩︁
. (2.21)

The matrix elements evaluated in this basis only depend on four absolute values of momenta. For
N grid points per momentum axis, the partial wave basis needs only N4 total grind points instead
of N12 for the single-particle basis. This reduction allows to store the partial-wave decomposed
matrix elements.

One major advantage of using partial-wave decomposed matrix elements is that the code is
universal and does not depend on the particular nuclear interaction that is used. Alternatively
Ref. [49] developed a framework that allows to evaluate the matrix elements, of some particular
interactions, in the single-particle basis on the fly from the operator expressions.

Starting from the matrix elements in partial waves, the single-particle basis can be constructed
using [44]

⟨k1σ1τ1,k2σ2τ2,k3σ3τ3|V3N

⃓⃓
k′
1σ

′
1τ

′
1,k

′
2σ

′
2τ

′
2k

′
3σ

′
3τ

′
3

⟩︁
=
∑︂
JT

∑︂
αα′

∑︂
MJMT

∑︂
MαMα′

× Y ∗
L′
12M

′
L12

(p̂′)Y ∗
L′
3M

′
L3

(q̂′)YL12ML12
(p̂)YL3ML3

(q̂)

× C
S12MS12
1
2
σ1

1
2
σ2

C
T12MT12
1
2
τ1

1
2
τ2

C
J12MJ12
L12ML12

S12MS12
C

J3MJ3

L3ML3
1
2
σ3
CJMJ
J12MJ12

J3MJ3
CTMT

T12MT12
1
2
τ3

× C
S′
12M

′
S12

1
2
σ′
1
1
2
σ′
2

C
T ′
12M

′
T12

1
2
τ ′1

1
2
τ ′2

C
J ′
12M

′
J12

L′
12M

′
L12

S′
12M

′
S12

C
J ′
3M

′
J3

L′
3M

′
L3

1
2
σ′
3

CJMJ

J ′
12MJ′

12
J ′
3M

′
J3

CTMT

T ′
12M

′
T12

1
2
τ ′3

× ⟨pqJTα|V3N

⃓⃓
p′q′JTα′⟩︁

for three-nucleon interactions where the collective label α = (J12S12L12T12J3L3) was used,
CJmJ
LmL,SmS

are Clebsch-Gordan coefficients and YLmL
(p̂) are spherical harmonics.

Note that the expressions are in principle sums that contain an infinite amount of terms. In
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2 Nuclear interactions

Figure 2.2: Memory needed to store the partial wave decomposed 3N matrix elements as a func-
tion of maximal total angular momentum Jmax (see text for details).

practical calculations they have to be truncated. Following Refs. [44, 50] we truncate the sums
for V3N by restricting the total angular momentum J ≤ Jmax and the angular momentum of
the two-nucleon system by J12 ≤ J12,max. Figure 2.2 shows the memory required to store the
partial wave matrix elements as a function of Jmax. An analysis of the partial-wave convergence
with respect to Jmax can be found in Ref. [50]. To improve the accuracy of our calculations, we
employ a momentum grid that is more dense below pmid = 2 fm−1, as higher momenta are less
important and restricted by the interaction cutoff, e.g., Λ = 500MeV.

In this thesis we use partial-wave decomposed matrix elements provided by Ref. [51].

2.3 Regularization

Finally the interactions have to be regulated. We use nonlocal regulator in momentum space
[44, 52]

⟨︁
p′⃓⃓V reg.

NN |p⟩ = f2(p
′)
⟨︁
p′⃓⃓VNN |p⟩ f2(p) (2.22)⟨︁

p′q′
⃓⃓
V reg.
3N |pq⟩ = f3(p

′, q′)
⟨︁
p′q′

⃓⃓
V3N |pq⟩ f3(p, q) (2.23)

with regulator functions

f2(p) = exp

(︃
−
(︃
p2

Λ2

)︃n)︃
(2.24)

f3(p, q) = exp

(︄
−

(︄
p2 + 3

4q
2

Λ2

)︄n)︄
(2.25)
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2.4 Uncertainty quantification

where the momenta for two-nucleon interactions are given above and Jacobi momenta are used
for three-nucleon interactions (see, e.g., Ref. [44]) for the calculations in this thesis. We use n = 4

for the regulator f3 (for choice in f2 see Ref. [52]).

2.4 Uncertainty quantification

The expansion of the nuclear Hamiltonian has to be truncated at a given order, e.g., N3LO
(∼ Q4). Consequently, observables that are calculated with the truncated Hamiltonian will also
be truncated. Given the systematic expansion of chiral EFT, these truncation errors can be
estimated by comparing calculations of observables at different orders in the expansion. This is
a crucial advantage compared to other interaction models.

The observable (e.g. free energy) has been calculated at different orders in the chiral expansion

X(0)(x), . . . , X(k)(x) (2.26)

where X(n)(x) has been calculated with interactions at order Qn and x is a shorthand for, e.g.,
proton fraction, temperature, and density (x, T, n). Following Ref. [53] we assuming that the
observable also has a expansion

X(k)(x) = Xref(x)

k∑︂
n=0

cn(x)Q
n(x) (2.27)

in powers of the EFT parameter Q = p/λb, and Xref(x) sets the scale such that the expansion
coefficients ci are dimensionless and have natural size (of order one). They can be extracted by
differences of different orders, e.g., for n > 0

cn(x) =
X(k)(x)−X(k−1)(x)

Xref(x)Qn(x)
. (2.28)

The truncation error is then given by [53]

∆X(k)(x) = Xref(x)

∞∑︂
n=k+1

cn(x)Q
n(x) , (2.29)

where the cn(x) for n > k are unknown.

The simplest estimate of the truncation error is than given by assuming that the next unknown
coefficient dominates the uncertainties [53]

∆X(k)(x) ≈ Xref(x)ck+1(x)Q
k+1(x) (2.30)

and estimating ck+1(x) using the known coefficients as

ck+1(x) ≈ max (|c0(x)|, . . . , |ck(x)|) . (2.31)
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2 Nuclear interactions

This uncertainty estimate can also be written as

∆X(k)(x) ≈ Q ·max
(︂
|X(k)(x)−X(k−1)(x)|,∆X(k−1)(x)

)︂
, (2.32)

for observables and is also given in Ref. [54]. In this thesis Eq. (2.32) is referred to as the EKM
prescription.

This estimation of the truncation error can be improved in two ways:

1. Instead of assuming that ∆X(k)(x) is dominated by the first term, more terms can be
included in Eq. (2.30).

2. A better estimate for the cn for n > k (2.31) can be use, e.g., in Ref [53] a posterior distri-
bution P (ck+1, ck+2, . . . |c0, c1, . . . , ck) at fixed x has been derived using Bayesian statics.

The recent uncertainty estimated of Ref. [55] treat the coefficients cn(x) as continuous functions
and construct a Gaussian Process (distribution of functions instead of points, see Chapter 4) to
describe them. They assume that all coefficients are distributed according to the same Gaussian
process where the mean function and kernel can be learned from known coefficients. This sum
in Eq. (2.29) can be evaluated analytically in this case without truncations. This new method
adds correlations between nearby points (e.g., in density). It has been applied to nuclear matter
in Refs. [16, 56]. Furthermore this allows for better propagation of uncertainties to derived
quantities (e.g., Ref. [56] use it to construct a distribution of saturation point and saturation
energy of symmetric nuclear matter).
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3 Many-body perturbation theory

In this thesis, many-body perturbation theory (MBPT) is used to (approximately) calculate the
thermodynamic properties of matter starting from the nuclear Hamiltonian. In Sec. 3.1, we
first provide an overview of finite-temperature MBPT. A detailed introduction can be found in
Refs. [57, 58], we only highlight the parts that are important for this thesis. In Sec. 3.2, we show
how an expansion for the free energy can be derived. In zero-temperature MBPT calculations it is
common to use a HF reference state (HF-MBPT), since this improves the many-body convergence
compared to MBPT around the noninteracting Fermi gas. The generalization of HF-MBPT to
finite temperatures is discuss in Sec. 3.3. Parts of this chapter have already been published
in Ref. [59] together with Corbinian Wellenhofer, who contributed to the formal developments.
Copyright of Ref. [59] ©2021 by American Physical Society.

3.1 Grand-canonical ensemble expansion

We determine the thermodynamic properties of nuclear matter starting from the grand-canonical
potential [7]

Ω(T, µn, µp) = − 1

β
lnZ (T, µn, µp) , (3.1)

where Z(T, µn, µp) = Tr
(︁
e−β(H−µnNn−µpNp)

)︁
is the partition function of the system, with T =

1/β the temperature, Ni the particle number of neutrons and protons, and µi the chemical
potentials of neutrons (i = n) and protons (i = p). Here and in the following we work in units
where ℏ = c = kb = 1. The Hamiltonians H considered in this work consist of the kinetic term
(H0) plus contributions from two- and three-nucleon interactions (see Sec. 5.1):

H = H0 + VNN + V3N . (3.2)

MBPT allows to choose a specific partitioning of the Hamiltonian which defines the reference
basis that is used for the perturbative expansion, see, e.g., Ref. [60]. The simplest choice consists
in expanding Ω(T, µn, µp) around the noninteracting system with Hamiltonian H0. However, a
more general reference system can be chosen, e.g. [60]

H = (H0 + U) + λ (VNN + V3N − U) , (3.3)

where the expansion is around the reference system with Hamiltonian H0+U and the interaction
part VNN + V3N − U is treated as a perturbation. Here in this thesis, the operator U is chosen
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3 Many-body perturbation theory

as a single-particle potential

U =
∑︂
α

Uαa
†
αaα , (3.4)

with creation and annihilation operators a†α and aα where we use collective labels α = (k, σ, τ)
for momentum k, spin projection σ = ±1/2, isospin projection τ = ±1/2 (neutron or proton)
and the shorthand notation

∑︁
α fα =

∑︁
στ

∫︁
d3k
(2π)3

f(k, σ, τ). The single-particle spectrum of the
reference system is then given by

εα =
k2

2mτ
+ Uα . (3.5)

The perturbation series of the grand-canonical potential is then obtained as (see, e.g. Refs. [57,
58])

Ω(T, µ) =

∞∑︂
l=0

λlΩl(T, µ) , (3.6)

where

Ω0(T, µ) = − 1

β

∑︂
α

ln
(︂
1 + e−β(εα−µ)

)︂
(3.7)

is the grand-canonical potential of the reference system. In the following sections the contribu-
tions from different orders λ will be discussed. The first- and second-order energy contributions
at finite temperature with arbitrary neutron-proton asymmetries have been evaluated based on
Refs. [57, 58] and have been checked against already derived results when possible.

3.1.1 Non-interacting contribution

The expression for the non-interaction contribution of the grand-canonical potential Eq. (3.7)
can be rewritten as

Ω0(T, µn, µp) = −4π g

β

∑︂
τ

∫︂ ∞

0

dk

(2π)3
k2 ln

(︂
1 + e−β(ϵ(k,τ)−µτ )

)︂
(3.8)

= −g
4π

3(2π)3

∑︂
τ

∫︂ ∞

0
dk k3ϵ′(k, τ)n(k, µ, τ) , (3.9)

where the spin degeneracy g = 2 and n(k, µ, τ) are Fermi-Dirac distributions. Note that in general
the evaluation of the single-particle energy ϵ depends on the one body potential Eq. (3.4), which
typically has to be evaluated self-consistently with the spectrum. Without the single-particle
potential, e.g. Uα = 0, the integrals can be rewritten to

Ω0,Uα=0 = − g

2
√
2

∑︂
τ

(︂mτ

π

)︂3/2
T 5/2F3/2(βµτ ) (3.10)
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3.1 Grand-canonical ensemble expansion

where we have used Fermi-Dirac integrals [7]

Fi(x) =
1

Γ(i+ 1)

∫︂ ∞

0
dt

ti

exp(t− x) + 1
. (3.11)

Using standard thermodynamic relations [7], density n, entropy S and pressure P can be derived
as

n0,Uα=0 =
g

2
√
2

∑︂
τ

(︂mτ

π

)︂3/2
T 3/2F1/2(βµτ ) , (3.12)

S0,Uα=0 =
g

2
√
2

∑︂
τ

(︂mτ

π

)︂3/2(︃5

2
T 3/2F3/2(βµτ )− µτT

1/2F1/2(βµτ )

)︃
, (3.13)

P0,Uα=0 = −Ω0,Uα=0 , (3.14)

where we have used the relation F ′
i (x) = Fi−1(x).

3.1.2 First-order energy contributions

The first-order contributions can be expressed using Hugenholtz diagrams as shown in Fig. 3.1
(see, e.g., Refs. [57, 58] for an introduction to the diagrammatic technique and, e.g., Refs. [44, 61]
for similar diagrams). Each circle vertex represents a two body interaction VNN , while squares
represent three nucleon interactions V3N . Solid lines that connect vertices, represent propagators.

Figure 3.1: First order (Hartree-Fock) Hugenholtz diagrams for two nucleon interactions (left)
and three nucleon interactions (right). Diagrams based on Refs. [44, 61].

Analytical expressions for the diagrams involving two- and three nucleon interactions can be
derived as (see, e.g., Refs. [57, 58, 62])

ΩNN
1 (T, µn, µp) =

1

2

∑︂
αβ

nαnβ ⟨αβ| A12VNN |αβ⟩ (3.15)

and

Ω3N
1 (T, µn, µp) =

1

6

∑︂
αβγ

nαnβnγ ⟨αβγ| A123V3N |αβγ⟩ , (3.16)
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3 Many-body perturbation theory

respectively, where A12 and A123 are two- and three-particle antisymmetrizers given by

ANN = 1− P12 (3.17)

A3N = 1− P12 − P13 − P23 + P13P23 + P12P23 (3.18)

with permutation operators Pij and the Fermi-Dirac distributions are given by

nα =
1

eβ(εα−µτ ) + 1
. (3.19)

Corresponding zero-temperature expressions can be found in, e.g., Ref. [61]. Equations (3.15) and
(3.16) matches the corresponding contribution to the ground-state energy in zero-temperature
MBPT, with the Fermi-Dirac distributions replaced by θ(kF − k). This correspondence is lost at
second order and beyond, where additional so-called anomalous contributions [57, 58, 63] appear
in finite-temperature MBPT.

Furthermore there is one additional contribution due to the single-particle potential U given
by

ΩU
1 (T, µn, µp) = −

∑︂
α

nαUα . (3.20)

3.1.3 Second-order energy contributions

The second-order contributions are represented diagramatically in Fig. 3.2. This results in the
following expression for the second-order two-nucleon contribution [57, 58, 62]

ΩNN
2 (T, µn, µp) = −1

8

∑︂
αβγδ

Pαβγδ |⟨αβ| A12VNN |γδ⟩|2 , (3.21)

with

Pαβγδ =
nαnβ(1− nγ)(1− nδ)− (1− nα)(1− nβ)nγnδ

εγ + εδ − εα − εβ
, (3.22)

for the phase space contribution and the energy denominator. This can be rewritten to

Pαβγδ =
1

8

(︄
4∏︂

i=1

sech

(︃
β

2
(ϵi − µ)

)︃)︄ sinh
(︂
β
2 (ϵγ + ϵδ − (ϵα + ϵβ))

)︂
ϵγ + ϵδ − (ϵα + ϵβ)

. (3.23)

Note that | sech(x)| ≤ 1 and that the part involving the energy denominator satisfies

lim
x→0

sinh(x)

x
= 1 , (3.24)

such that Pαβγδ is finite in the limit εγ + εδ − εα − εβ → 0 and can be integrated. See, e.g.,
Ref. [44] for corresponding zero-temperature expression.
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3.1 Grand-canonical ensemble expansion

Figure 3.2: Diagrammatic representation of the second order MBPT contributions. The individ-
ual diagrams and expressions will be called (from left to right and top to bottom):
NN, NN-anomalous, 3N-NN, NN-3N, 3N-3N, 3N-res. Note that 3N-NN and NN-3N
are equal. We include only one and include the other contribution by updating the
symmetry factor. Therefore, Eq. (3.26) has a prefactor 1/4 instead of 1/8. Further-
more there are more anomalous diagrams not shown that cancel when employing a HF
spectrum (including the NN-anomalous diagram). Diagrams based on Refs. [44, 61].

The anomalous diagram with only NN vertices is given by [57, 58, 62]

ΩNN
2,anomalous(T, µn, µp) = − 1

2T

∑︂
β

nβ (1− nβ)

(︄∑︂
α

nα ⟨αβ| A12VNN |αβ⟩

)︄2

. (3.25)

The other diagrams in Fig. 3.2 that involve three-nucleon interactions are given by

ΩNN-3N
2 (T, µn, µp) = −1

4

∑︂
αβγδϵ

Pαβγδ nϵ ⟨αβ| A12VNN |γδ⟩ ⟨γδϵ| A123V3N |αβϵ⟩ (3.26)

Ω3N-3N
2 (T, µn, µp) = −1

8

∑︂
αβγδϵϕ

Pαβγδ nϵnϕ ⟨αβϵ| A123V3N |γδϵ⟩ ⟨γδϕ| A123V3N |αβϕ⟩ (3.27)

Ω3N-res
2 (T, µn, µp) = − 1

72

∑︂
αβγδϵϕ

nαnβnγn̄δn̄ϵn̄ϕ − n̄αn̄βn̄γnδnϵnϕ

ϵδ + ϵϵ + ϵϕ − (ϵα + ϵβ + ϵγ)
(3.28)

× ⟨αβγ| A123V3N |δϵϕ⟩ ⟨δϵϕ| A123V3N |αβγ⟩ .

For corresponding expressions at zero temperature see e.g. Ref. [44]. Note that we have omitted
the expression of the 3N-NN diagram. It has the same contribution as the NN-3N diagrams and
we therefore include it in the symmetry factor in Eq. (3.26) (which now is 1/4 instead of 1/8).

Furthermore, there are diagrams at second order that involve the one-body potential. For the
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3 Many-body perturbation theory

diagrams with two nucleon interactions they are shown in Fig. 3.5 below and their analytical
expressions are given by

ΩNN-U
2 (T, µn, µp) =

1

2T

∑︂
β

nβ (1− nβ)

(︄∑︂
α

nα ⟨αβ| A12VNN |αβ⟩

)︄
Uβ , (3.29)

ΩU-NN
2 (T, µn, µp) =

1

2T

∑︂
α

nα (1− nα)Uα

⎛⎝∑︂
β

nβ ⟨αβ| A12VNN |αβ⟩

⎞⎠ , (3.30)

ΩU-U
2 (T, µn, µp) = − 1

2T

∑︂
β

nβ (1− nβ)U
2
β . (3.31)

The anomalous contributions given by Eq. (3.25) and Eqs. (3.29)–(3.31) are not needed in the
zero-temperature formalism [57, 58, 63].

3.1.4 Third-order energy contributions

The third order contributions that only involve two-nucleon interactions are shown in Fig. 3.3.

Figure 3.3: Third order diagrams involving two nucleon vertices. The diagrams are called (from
left to right): particle-hole (ph), hole-hole (hh), and particle-particle (pp). Diagrams
based on Refs. [44, 61].

Their analytical expressions have been derived in Ref. [60] for the finite-temperatures formalism

Ωph
3 =

1

3

∑︂
αβγδϵϕ

nαnβnγn̄δn̄ϵn̄ϕ F
αβ,δϵ
βγ,δϕ ⟨αβ| A12VNN |δϵ⟩ ⟨γϵ| A12VNN |αϕ⟩ ⟨δϕ| A12VNN |βγ⟩

(3.32)

Ωpp
3 =

1

24

∑︂
αβγδϵϕ

nαnβn̄γn̄δn̄ϵn̄ϕ F
αβ,γδ
αβ,ϵϕ ⟨αβ| A12VNN |γδ⟩ ⟨γδ| A12VNN |ϵϕ⟩ ⟨ϵϕ| A12VNN |αβ⟩

(3.33)

Ωhh
3 =

1

24

∑︂
αβγδϵϕ

nαnβnγnδn̄ϵn̄ϕ F
αβ,ϵϕ
γδ,ϵϕ ⟨αβ| A12VNN |ϵϕ⟩ ⟨ϵϕ| A12VNN |γδ⟩ ⟨γδ| A12VNN |αβ⟩

(3.34)

where we use the shorthand n̄i = 1−ni. The phase space contribution together with the energy
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3.1 Grand-canonical ensemble expansion

denominators is given by

F (D1, D2) =
1

D1D2
+

exp (−βD1)

D1(D1 −D2)
− exp (−βD2)

D2(D1 −D2)
, (3.35)

for the third order NN diagrams. Note, F is symmetric F (D1, D2) = F (D2, D1) and finite in
the limits D1 → 0, D2 → 0, D1 → D2 and D1 → D2 → 0, such that there are no poles in the
integration [60]. Finally for the diagram expressions we use the shorthand

Fαβ,δϵ
βγ,δϕ = F (ϵδ + ϵϵ − ϵα − ϵβ, ϵδ + ϵϕ − ϵβ − ϵγ) . (3.36)

Furthermore there are more diagrams involving three-nucleon interactions. Non-residual dia-
grams can be derived by replacing a NN vertex with a self-contracted 3N vertex, e.g.,

⟨αβ| A12VNN |δϵ⟩ −→
∑︂
ω

nω ⟨αβω| A123V3N |δϵω⟩ . (3.37)

For example for one three-nucleon vertex this results in

Ωph-3N-NN-NN
3 =

∑︂
αβγδϵϕ

nαnβnγn̄δn̄ϵn̄ϕ F
αβ,δϵ
βγ,δϕ

(︄∑︂
ω

nω ⟨αβω| A123V3N |δϵω⟩

)︄
(3.38)

× ⟨γϵ| A12VNN |αϕ⟩ ⟨δϕ| A12VNN |βγ⟩

Ωpp-3N-NN-NN
3 =

1

8

∑︂
αβγδϵϕ

nαnβn̄γn̄δn̄ϵn̄ϕ F
αβ,γδ
αβ,ϵϕ

(︄∑︂
ω

nω ⟨αβω| A123V3N |γδω⟩

)︄
(3.39)

× ⟨γδ| A12VNN |ϵϕ⟩ ⟨ϵϕ| A12VNN |αβ⟩

Ωhh-3N-3N-NN
3 =

1

8

∑︂
αβγδϵϕ

nαnβnγnδn̄ϵn̄ϕ F
αβ,ϵϕ
γδ,ϵϕ

(︄∑︂
ω

nω ⟨αβω| A123V3N |ϵϕω⟩

)︄
(3.40)

× ⟨ϵϕ| A12VNN |γδ⟩ ⟨γδ| A12VNN |αβ⟩

Other non-residual diagrams can be derived in a similar manner.

3.1.5 Diagrams included in our calculations

In our calculations we include the complete set of second-order contributions. In particular,
we include the residual 3N contribution at second order [49, 64]. At third order we include
all contributions that involve only NN interactions for our calculations of neutron matter in
Chapter 5. Regarding the nonresidual third-order terms with 3N interactions, we have checked
that their contribution in neutron matter is small compared to the corresponding diagrams
containing only NN interactions. This is consistent with the findings of Ref. [49]. There are
also residual 3N contributions at third order. Based on our results for the second-order residual
term we expect them to be small, but this needs to be confirmed by explicit calculations. A
more detailed study of the zero-temperature MBPT convergence including selected diagrams up
to fourth order can be found in Ref. [49]. The convergence behavior of the expansion at finite
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temperature is similar, with well-converged results for neutron matter being obtained at third
order (e.g., for the EMN 450 N3LO interaction, see Chapter 5, the truncation error at third order
is at the 100 keV level at n = 0.2 fm−3). For our calculations of asymmetric matter in Chapter 6
we furthermore include all non-residual 3N diagrams at 3rd order (that are obtained by replacing
NN vertices with a self-contracted 3N vertex using Eq. (3.37)).

3.2 Free energy expansion

Usually we are interested in properties of the EOS at a specific number densities nn and np. Thus,
the relevant thermodynamic potential is the free energy, which is obtained from Ω(T, µn, µp) in
terms of the Legendre transformation [7]

F (T, n) = Ω(T, µn, µp) + µn nn(T, µn, µp) + µp np(T, µp, µp) , (3.41)

where the number densities are given by

nn(T, µn, µp) = −∂Ω(T, µn, µp)

∂µn
, (3.42)

np(T, µn, µp) = −∂Ω(T, µn, µp)

∂µp
. (3.43)

The free energy determined from Eq. (3.41) and the perturbation series for Ω(T, µn, µp) up to a
given order will in general not reproduce the corresponding zero-temperature perturbation series
for the ground-state energy, see, e.g. Ref. [58]. This is because the zero-temperature formalism
uses the Fermi momentum kF,i (or chemical potential of the reference system) whereas grand-
canonical MBPT at finite temperature uses the exact chemical potential µi and has the additional
anomalous contributions [58]. It is possible to use the grand-canonical perturbation series also
at T = 0. However, to obtain a finite-temperature perturbation series that is consistent with the
zero-temperature formalism, we use the method of Kohn and Luttinger [63] that is extended to
a system that contains neutrons and protons as follows (for other finite-temperature calculations
that employ this method, see, e.g., Refs. [17, 62]). We formally expand the chemical potentials
as

µn =

∞∑︂
i=0

λnµ(i)
n , (3.44)

µp =
∞∑︂
i=0

λnµ(i)
p , (3.45)

where µ
(0)
τ are the chemical potentials of the reference system with formally the same density as
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3.2 Free energy expansion

the interacting system, i.e.,

nn(T, µ
0
n, µ

0
p) = −∂Ω0(T, µ

(0)
n ), µ

(0)
p

∂µ0
n

, (3.46)

np(T, µ
0
n, µ

0
p) = −∂Ω0(T, µ

(0)
n ), µ

(0)
p

∂µ0
p

. (3.47)

By inserting the expansion Eq. (3.45) into Eq. (3.41) and reexpanding Ω and n around µ
(0)
n and

µ
(0)
p we obtain

Ω (T, µn, µp) =

∞∑︂
n=0

∞∑︂
i=0

∞∑︂
j=0

λn (µn − µ
(0)
n )i

i!

(µp − µ
(0)
p )j

j!
Ω(i,j)
n (T ) , (3.48)

Ω(i,j)
n (T ) = ∂i

µn
∂j
µp

Ωn (T, µn, µp)

⃓⃓⃓⃓
µn=µ

(0)
n ,µp=µ

(0)
p

, (3.49)

for the grand-canonical potential. Individual densities of neutrons and protons can also be
expanded to

nn(T, µn, µp) = −∂µnΩ(µn, µp) =
∞∑︂
n=0

∞∑︂
i=0

∞∑︂
j=0

λn (µn − µ
(0)
n )i

i!

(µp − µ
(0)
p )j

j!
Ω(i+1,j)
n , (3.50)

np(T, µn, µp) = −∂µpΩ(µn, µp) =
∞∑︂
n=0

∞∑︂
i=0

∞∑︂
j=0

λn (µn − µ
(0)
n )i

i!

(µp − µ
(0)
p )j

j!
Ω(i,j+1)
n . (3.51)

By requiring that individual densities agree with densities of the reference system (with µ
(0)
n and

µ
(0)
p ), e.g. nn = n0

n = −Ω
(1,0)
0 and np = n0

p = −Ω
(0,1)
0 higher orders can be determined recursively

starting from reference potentials, e.g.

µ(1)
n =

Ω
(1,1)
0 Ω

(0,1)
1 − Ω

(0,2)
0 Ω

(1,0)
1

(Ω
(1,1)
0 )2 − Ω

(0,2)
0 Ω

(2,0)
0

(3.52)

µ(1)
p =

Ω
(1,1)
0 Ω

(1,0)
1 − Ω

(2,0)
0 Ω

(0,1)
1

(Ω
(1,1)
0 )2 − Ω

(0,2)
0 Ω

(2,0)
0

(3.53)

By inserting the expansion the free energy can be expressed as

F = Ω+ µnNn + µpNp (3.54)

=
(︂
Ω
(0,0)
0 − µ(0)

n Ω
(1,0)
0 − µ(0)

p Ω
(0,1)
0

)︂
(3.55)

+ λΩ
(0,0)
1

+ λ2
(︂
Ω
(0,0)
2 − F a

2

)︂
+ λ3

(︂
Ω
(0,0)
3 − F a

3

)︂
+O

(︁
λ4
)︁
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where the correction terms at second and third order (due to the expansion around the reference
system) are given by

F a
2 =

1

2
(µ(1)

n )2Ω
(2,0)
0 − µ(1)

n µ(1)
p Ω

(1,1)
0 − 1

2
(µ(1)

p )2Ω
(0,2)
0 , (3.56)

F a
3 = termes proportional to µ(1)

n or µ(1)
p . (3.57)

The leading part F0 = Ω
(0,0)
0 − µ

(0)
n Ω

(1,0)
0 − µ

(0)
p Ω

(0,1)
0 is the free energy of the reference system.

These expressions are obtained by fixing the higher-order contributions µ
(i)
τ in Eq. (3.45) such

that Eqs. (3.46) and (3.47) are maintained up to higher-order terms in the expansion of µτ about
µ
(0)
τ .
For one-component isotropic systems it has been shown that the additional terms given by

Eqs. (3.56), (3.57), etc., cancel the corresponding anomalous contributions in the T → 0 limit [63,
65]. That is,

Ω
(0)
l (T, µ(0)

n , µ(0)
p )− F a

l (T, µ
(0)
n , µ(0)

p )
T→0−−−→ E

(0)
l (kF,n, kF,p) , (3.58)

where E
(0)
l (kF,n, kF,p) is the contribution of order l in zero-temperature MBPT, with neutron

and proton Fermi momenta kF,n and kF,p.
Note, that the evaluation of Eq. (3.55) only depends on the reference chemical potentials µ

(0)
n

and µ
(0)
p (which are directly fixed by the densities nn and np by using Eqs. (3.46) and (3.47)),

but not on the exact chemical potentials µn and µp.

3.3 Self-consistent Hartree-Fock expansion

The calculations in this thesis are carried out using the generalization of HF-MBPT to finite
temperatures. Compared to calculations with a noninteracting reference system, using a HF
basis is expected to improve the convergence behavior of MBPT [49, 60, 66, 67]. The expression
for the HF potential reads [60, 61]

Uα =
∑︂
β

nβ ⟨αβ| A12VNN |αβ⟩+ 1

2

∑︂
βγ

nβnγ ⟨αβγ| A123V3N |αβγ⟩ . (3.59)

This matches the expression for the first-order self-energy correction (see, e.g., Ref. [58] for
the NN expression), as shown diagrammatically in Fig. 3.4. Note that while the evaluation of
the HF potential in the zero-temperature formalism is straightforward (the expressions directly
depend on the Fermi momenta and therefore on density), in the grand-canonical case it has to
be computed self-consistently by solving

εα(T, µn, µp) =
k2

2mα
+ Uα[T, µn, µp; εα(T, µn, µp)] (3.60)

at fixed T , µn, and µp as the Fermi-Dirac distributions nα depend on εα.
The chemical potential dependence of the potential Uα has to be fixed before the reexpansion
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3.3 Self-consistent Hartree-Fock expansion

Figure 3.4: Definition of the single-particle potential Uα (left side) as the self-consistent Hartree-
Fock self-energy. Solid dots (squares) represent VNN (V3N ) interactions.

Figure 3.5: Cancellation of anomalous NN contributions at second order in Hartree-Fock
MBPT at finite temperature. The diagrams correspond to Eqs. (3.25), (3.29),
(3.30), and (3.31) in that order.

is performed (or the µn and µp dependence of Uα would lead to unwanted derivatives). To archive
this, we substitute µn and µp by the reference chemical potentials µ

(0)
n and µ

(0)
p , i.e.

Uα(T, µn, µp) −→ Uα(T, µ
(0)
n , µ(0)

p ) , (3.61)

before performing the reexpansion, such that Uα does not depend on µn and µp anymore.
Apart from improving the convergence of MBPT, the self-consistent HF potential has also

the benefit that it removes all anomalous contributions associated with diagrams that have
single-vertex loops [60]. In particular, it removes the anomalous contributions as well as the
additional ones from the reexpansion about µ

(0)
τ at second order [62] and third order. For the

second-order anomalous contributions from two-body interactions, this cancellation is depicted
diagrammatically in Fig. 3.5. The cancellation occurs because with our choice of Uα, the four
diagrams of Fig. 3.5 give matching contributions up to an additional minus sign for the second
and third diagram. Furthermore, with our Uα it is µ

(1)
n = µ

(1)
p = 0, which implies that the

correction terms given by Eqs. (3.56) and (3.57) vanish, as they involve powers of µ(1)
n and µ

(1)
p .

Hence, with Uα given by the self-consistent HF self-energy (incorporated as described above),
the perturbation series for the free energy Eq. (3.55) simplifies to

F (T, µ(0)
n , µ(0)

p ) = F0 + λΩ
(0)
1 + λ2Ω

(0)
2,normal + λ3Ω

(0)
3,normal +O

(︁
λ4
)︁
, (3.62)

and the consistency with the zero-temperature formalism is evident (the subscript normal in-
dicates that no anomalous diagrams are present at this order). Note, however, that new types
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of anomalous contributions that are not canceled by the HF potential arise at fourth order and
beyond [60].

50



4 Gaussian process

This chapter introduces Gaussian processes as a tool to interpolate EOS data points. We first
give an overview of Gaussian processes, show how to include data points in the construction,
demonstrate how derivatives can be calculated, and finally show how hyperparameters are de-
termined.

4.1 Introduction

A Gaussian process (GP) is a collection of random variables

{f(x) : x ∈ I}, (4.1)

with a continuous label x ∈ I where e.g. I = R,R2 or R3, see, e.g., Refs. [68, 69]. The random
variables f(x) are characterized by a covariance function (or kernel) K(x, x′) and a mean value
µ(x) such that

µ(x) = E[f(x)] , (4.2)

K(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] , (4.3)

where E is the expectation value [68]. Furthermore for any finite amount of points from the index
set x1, . . . , xn ∈ I the joined probability distribution function of the random variables yi = f(xi)

is a multivariate normal distribution [68, 69]

P ({yi}i|{xi}i) =
1

(2π)n/2 det(Σ)1/2
exp

(︃
−1

2
(y − µ)Σ−1(y − µ)

)︃
(4.4)

where the components of Σ ∈ Rn×n and µ ∈ Rn are given by

Σij = K(xi, xj) , (4.5)

µi = µ(xi). (4.6)

The covariance function has to be chosen such that Σ is always a positive semi-definite matrix
[68]. A typical choice is the square-exponential kernel [68]

K(x1, x2) = σ2 exp

(︃
−(x1 − x2)

2

2l2

)︃
(4.7)

that is parameterized by a overall scale σ and a length scale l. These hyperparameters determine
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Figure 4.1: Samples drawn from Gaussian process (different colors) with mean µ = 0 and square-
exponential kernel for different length scales l = 0.25, 0.5, 1 (from left to right) and
σ = 1.

the behavior of the Gaussian process. See Ref. [68] for a detailed discussion about other kernel
choices.

Fig. 4.1 shows samples that are drawn from a GP with the square-exponential kernel for
different values of l. The samples look like continuous functions. However as the plot in Fig. 4.1
(and usually any practical calculations) only depends on a finite amount of points {xi}i, the
Gaussian process can be evaluated according to Eq. (4.4) by sampling from a multivariate normal
distribution.

Note that the variance of the GP for this kernel is given by

Var(x) = E[(f(x)− µ(x))2] = σ2 , (4.8)

such that for σ = 1 almost all samples fall into the 96% interval [−2, 2]. Furthermore the
covariance vanishes for two points x1 and x2 with |x1 − x2| ≫ l, e.g.

Cov(x1, x2) = E[(f(x1)− µ(x1))(f(x2)− µ(x2))]
|x−y|≫l

≈ 0 , (4.9)

such that points that are far apart (as measured by the length scale l) are uncorrelated. Finally
the samples are smooth functions, this is a result of the kernel that is also smooth [68].

4.2 Adding data points

The samples in Fig. 4.1 are random curves distributed around zero. To use them for interpolation,
they can be used as a prior distribution and Bayes theorem can applied to incorporate known
data points [68, 69]. Given data points {xi}i with known values {yi}i, we would like to find the
distribution function of the values {y∗i }i at positions {x∗i }i. Following Refs. [68, 69], training
data points can be added as follows: By definition of the GP, the joined distribution function of
{yi}i and {y∗i }i

P ({yi}i, {y∗i }i|{xi}i, {x∗i }i) (4.10)
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is given by Eq. (4.4) as a normal distribution, where the matrix Σ is given by

Σ =

(︄
A B

BT C

)︄
(4.11)

and the elements of the submatrices A, B, C, and D are given by

Aij = K(xi, xj) + δijσ
2 , (4.12)

Bij = K(xi, x
∗
j ) , (4.13)

Cij = K(x∗i , x
∗
j ) . (4.14)

where σ was added to account for normally distributed noise of the training data [68]. The
conditional distribution P ({y∗i }i|{xi}i, {yi}i, {x∗i }i) is also a normal distribution with updated
mean vector µ∗ and covariance matrix Σ∗ given by [68, 69]

µ∗ = BTA−1y , (4.15)

Σ∗ = C −BTA−1B . (4.16)

The conditional distribution of a Gaussian process is again a Gaussian process with updated
mean and covariance function [68, 69]. Note that for x∗ = x and σ = 0 this results in

µ∗ = y , (4.17)

Σ∗ = 0 , (4.18)

such that the GP interpolates all training data points by construction.

This is illustrated in Fig. 4.2 where the posterior distribution is shown for different values of
the length scale l together with the 1σ and 2σ uncertainty bands. Note that the mean (black)
line passed exactly through all data points and that the uncertainties vanish close to the training
points. Between data points, the GP is less constrained and the predicted uncertainty increases.
The size of the uncertainty is determined by how correlated nearby points are and can be chosen
by the kernel function (by changing the length scale and the overall scale in the radial basis
functions used here).

4.3 Calculating derivatives

The derivative (or in general any linear transformation) of a Gaussian process is again a Gaussian
process [68]. The joined distribution of a GP with its derivative can be constructed as [56](︄

f(x)

∂xf(x)

)︄
∼ GP

(︄(︄
m(x)

∂xm(x)

)︄
,

(︄
K(x, x) ∂x∗K(x, x∗)

∂xK(x∗, x) ∂x∂x∗K(x∗, x∗)

)︄)︄
(4.19)
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Figure 4.2: Samples drawn from a Gaussian process (upper panels) with known data points
(black dots). Different length scales l are shown in the panels from left to right.
Lower panels show the mean value together with the 1σ (dark gray) and 2σ (light
gray) uncertainty bands.

where the mean function and kernel are given by

µ =

(︄
m(x)

∂x∗m(x∗)

)︄
(4.20)

Σ =

(︄
K(x, x) ∂x∗K(x, x∗)

∂xK(x∗, x) ∂x∂x∗K(x∗, x∗)

)︄
(4.21)

and we have used the linearity of the expectation value, e.g.

E[(∂xf(x)− ∂xµ(x))(f(x
′)− µ(x′))] = ∂xE[(f(x)− µ(x))(f(x′)− µ(x′))] = ∂xK(x, x′) . (4.22)

To add data points, the same method as in Sec. 4.2 can be used. See Refs. [56, 68] for more
details.

4.4 Determining the hyperparameters

So far the resulting GP prediction depends on the value of the hyperparameters that are used.
Ideally they would be integrated out to obtain predictions that are independent of them [68, 69]

P (y∗|x∗, {xn}n, {yn}n) =
∫︂

P (y∗|x∗, {xn}n, {yn}n, θ)P (θ|{xn}n, {yn}n)dθ , (4.23)
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where P (θ|{xn}n, {yn}n) is the posterior distribution of the hyperparameters given the data
points. Note that the posterior distribution Eq. (4.23) does not need to be a Gaussian process
[69]. The integral can be approximated by using the maximum of the hyperparameter posterior
[68, 69]

P (y∗|x∗, {xn}n, {yn}n) ≈ P (y∗|x∗, {xn}n, {yn}n, θmax) (4.24)

where θmax is the maximum of the posterior distribution

P (θ|{xn}n, {yn}n) =
P ({yn}n|{xn}n, θ)P (θ)

P ({xn}n, {yn}n)
(4.25)

and P (θ) is the prior distribution of the hyperparameters θ. Assuming that the prior P (θ) is
uniform θmax can be obtained by maximizing the likelihood

P ({yn}n|{xn}n, θ) (4.26)

which is given by the Gaussian process.

4.5 Gaussian processes in this thesis

The calculations of the free energy per particle F (n, x, T )/A as a function of density n, proton
fraction x and temperature T is a computationally involved task. Evaluations of every point
(n, x, T ) involves the numerical calculation of several high dimensional integrals (see Chapter 3)
and therefore has to be limited to evaluation on a grid. GPs are used to interpolate the grid
points to a smooth free energy function and to calculate the partial derivatives (like pressure or
chemical potentials). They allow to incorporate the residual noise of the Monte Carlo integration
employed. Furthermore, by construction, they lead to second-order mixed partial derivative that
are commuting, despite the noise of the grid points.

GPs are used in Chapters 6, 7, 8, and 9.
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5 Neutron matter at finite temperature

In this Chapter we first explore the EOS of neutron matter at finite temperature which, compared
to symmetric nuclear matter or matter with finite asymmetries, is a simpler many-body system.
This Chapter has already been published in Ref. [59] together with Corbinian Wellenhofer. I have
performed all calculations presented here. Copyright of Ref. [59] ©2021 by American Physical
Society.

While nuclear matter at zero temperature has been investigated quite extensively based on
chiral EFT interactions [49, 61, 70–80], studies at finite temperature are less advanced. This is an
unsatisfying situation as, e.g., recent core-collapse supernova simulations have demonstrated the
importance of a proper treatment of finite-temperature effects in the EOS [36, 81]. In neutron
star merger simulations, thermal effects are sometimes approximated via a constant thermal
index (see, e.g., Ref. [82]). The availability of microscopic calculations over the full range of
relevant temperatures would make such approximations obsolete, at least up to densities where
nuclear interactions are applicable and reliable. For recent work that implements chiral EFT
constraints into EOS functionals, with a focus on thermal effects, see Ref. [83].

Nuclear matter at finite temperature has been studied with a range of many-body meth-
ods. In addition to calculations using the Brueckner-Hartree-Fock approach [84] and nominally
variational calculations [85], the finite-temperature EOS has been calculated using many-body
perturbation theory (MBPT) [11, 17, 62, 86, 87], and nonperturbatively using the self-consistent
Green’s function (SCGF) approach [73, 88–90] and lattice EFT [91].

In this Chapter, we take several steps towards improved finite-temperature MBPT calculations.
For an efficient evaluation of individual diagrams, we represent NN and 3N interactions in a single-
particle representation following the framework of Ref. [49] and employ Monte Carlo sampling
techniques to reliably compute the resulting high-dimensional MBPT phase space integrals in an
efficient way. We treat 3N interactions explicitly, without employing density-dependent two-body
approximations (see, e.g., Refs. [61, 92]). Moreover, we include NN and 3N interactions through
partial-wave decomposed matrix elements [44, 50], which enables MBPT calculations for general
nuclear forces. To provide systematic uncertainty estimates, we employ a large set of chiral NN
plus 3N interactions at different orders in the chiral expansion up to N3LO. We take into account
all contributions of NN interactions up to third-order in the MBPT expansion around the self-
consistent Hartree-Fock (HF) solution, which implicitly includes contributions from anomalous
diagrams at second and third order in MBPT. Finally, we provide a detailed analysis of thermal
interaction effects and to which extent they can be approximated by a density-dependent effective
mass and a thermal index, which is of interest for astrophysical applications.

We use the MBPT framework at finite temperature as discussed in Chapter 3. See Chapter 3
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in particular for the role of anomalous contributions and the simplifications when using a HF
partitioning of the Hamiltonian. In Sec. 5.1 we discuss the details of the calculational setup and
in Sec. 5.2 we present results for various thermodynamic quantities and their uncertainties based
on different nuclear interactions obtained from chiral EFT up to N3LO. Moreover, we study
the different contributions to thermal effects, and use the thermal index to extract the neutron
effective mass.

5.1 Calculational setup

In this Chapter we present a systematic study of the neutron matter EOS based on different
nuclear interactions obtained from chiral EFT. First, we employ the NN potentials of Entem,
Machleidt, and Nosyk (EMN) [52] with cutoffs Λ = 450MeV and Λ = 500MeV at orders N2LO
and N3LO. Three-nucleon interactions are included up to the same order in the chiral expansion
as two-nucleon interactions, using nonlocal regulators with the same cutoff Λ [49]. Note that the
N2LO 3N contributions from the mid- and short-range couplings cD and cE vanish in neutron
matter for nonlocal regulators [61], and hence our results are independent of the particular cD,
cE fits for all employed interactions in this work.1 To explore the cutoff dependence we show
the variation from Λ = 450MeV to Λ = 500MeV as a band with borders labeled “EMN N2LO”
or “EMN N3LO”, respectively. These interactions were studied in Ref. [49] up to fourth order in
the zero-temperature MBPT expansion, which provides a benchmark for our calculations.

Second, to improve the convergence of the MBPT calculations, we apply the similarity renor-
malization group (SRG) [48] to decouple low and high momenta via unitary transformations.
The resulting low-resolution interactions lead to less correlated wave functions and can lead
to a significantly improved convergence of many-body calculations [93]. (Note, however, that
unevolved EMN interactions are still sufficiently perturbative to be applicable for the neutron
matter calculations presented here.) In practical calculations the SRG flow cannot be computed
exactly but needs to be truncated, typically by discarding all induced operators beyond the
three-body level (see, e.g., Refs. [94–97]). The Hebeler+ interactions of Ref. [70] are derived by
evolving the N3LO NN potential of Ref. [98] to resolution scales λSRG, while the 3N interactions
at N2LO are determined at the corresponding resolution scale by fits to the 3H binding energy
and the 4He radius using the cutoff Λ3N . In Ref. [70], different NN+3N interactions were de-
rived, each characterized by λSRG/Λ3N. In this work we in particular employ the interactions
“1.8/2.0”, “2.8/2.0”, “2.0/2.5” and “2.0/2.0 (PWA)”, where for the last a different set of long-range
3N couplings has been used (see Ref. [70] for details). Finally, we also employ new interactions
from Ref. [44], where NN+3N interactions are consistently SRG evolved to scales λSRG using
the framework of Ref. [99]. For all interactions, we include NN partial waves up to total angular
momentum J12 ⩽ 8. Three-nucleon partial waves are included up to Jtot ⩽ 9/2 and J12 ⩽ 5

or 6 for SRG-evolved and EMN interactions, respectively. We have checked that these trunca-
tions give converged results below the 100-keV level. All nuclear interactions (including the SRG

1Note that three-body contributions proportional to c4 are absent as well in pure neutron matter for all regula-
tors [61].
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5.1 Calculational setup
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Figure 5.1: Self-consistent Hartree-Fock self-energy ΣHF (k) as a function of momentum k at tem-
peratures T = 0 (dashed) and T = 20MeV (solid lines) for different densities, ob-
tained from the consistently SRG-evolved NN+3N interaction with λSRG = 1.8 fm−1.

evolution) have been provided by Ref. [51] in partial-wave decomposed form (see Chapter 2).

To test the sensitivity to the SRG resolution scale λSRG, we show the variation from λSRG =

1.8 fm−1 to λSRG = 2.8 fm−1 as bands with borders labeled “NN SRG + 3N fit” for the Hebeler+
interactions (with Λ3N = 2.0 fm−1) and “NN SRG + 3N SRG” for the consistently evolved
interactions. The cutoff and SRG scale variations are only one source of uncertainty. Uncertainty
estimates based on the convergence of the EFT expansion are studied in Sec. 5.3 and are depicted
in Figs. 5.7 and 5.9 as bands without borders.

For all results in the following we employ a HF partitioning of the Hamiltonian. Therefore, we
first show the HF self-energy ΣHF(k) in Fig. 5.1 for different densities at T = 0 and T = 20MeV.
Here and in the following we use T = 10−3MeV to obtain zero-temperature results with our
finite-temperature code. We have checked that using even lower temperatures does not change
the results and verified that our T = 10−3MeV results can reproduce zero-temperature results
from Ref. [49] very well. The expression for the HF self-energy is given by Eq. (3.59). Note
that Fermi-Dirac distribution functions nβ depend on the self-energy, such that a self-consistent
solution is necessary, in contrast to zero-temperature calculations. We start with a free spectrum
and iterate Eq. (3.60) until convergence is reached. The self-consistent HF self-energy is more
conveniently obtained by working at fixed density; i.e., we perform the self-consistent iterations
of Eq. (3.60) while adjusting at each iteration step µ0 (resp. µ̃, see Sec. 3.3) to n according to
Eq. (3.47).

The results shown in Fig. 5.1 are for the “NN SRG + 3N SRG” interaction at λSRG = 1.8 fm−1.
We find that the self-energy is mainly attractive up to high momenta around k ≈ 6 fm−1.

59



5 Neutron matter at finite temperature

0 0.05 0.1 0.15 0.2

n [fm−3]

5

10

15

20

F
/
N

[M
e
V

]

T = 0

0 0.05 0.1 0.15 0.2

n [fm−3]

-30

-20

-10

0

10

F
/
N

[M
e
V

]

T = 20 MeV

NN SRG + 3N fit

NN SRG + 3N SRG

EMN N2LO

EMN N3LO

2.0/2.0 (PWA)

2.0/2.5

SCGF
2.0/2.0

Figure 5.2: Free energy per particle, F/N , as function of the density n at T = 0 (left) and
T = 20MeV (right panel) for different chiral interactions. Bands display varia-
tions of the SRG scale from λSRG = 1.8 fm−1 to λSRG = 2.8 fm−1 for both sets of
SRG-evolved interactions, while for the EMN interactions they display the cutoff
variations from Λ = 450MeV to Λ = 500MeV. Results for the interactions “2.0/2.5”
and “2.0/2.0 (PWA)” are shown as individual lines. See the text for more details
about the interactions. The insets display the density range from n = 0.175 fm−3 to
n = 0.2 fm−3.

Three-particle interactions yield repulsive net contributions for momenta k ≲ 5 fm−1 while the
temperature dependence of the results is remarkably small. At the highest density shown (n =

0.2 fm−3), the NN contribution to the self-energy is −69.1MeV while 3N contributions yield
33.7MeV for k = 0 and T = 0. For very high momenta (k ≳ 10 fm−1), the self-energy vanishes
due to the employed regulators for the NN and 3N interactions.

5.2 Free energy, pressure, and entropy

The free energy is calculated within MBPT using the formalism discussed in Chapter 3. We
include contributions from NN interactions up to third order, while we neglect 3rd order diagrams
involving 3N interactions. Momentum integrals in the individual diagrams are evaluated using
the Vegas integration algorithm from Ref. [100] where we take the implementation from Ref. [101]
(see also Ref. [49]).

In Fig. 5.2 we present results for the free energy per particle for T = 0 (left) and T = 20MeV

(right panel). The different bands (and lines) correspond to different interactions, and the bands
result from variations of the interaction cutoff scale and the SRG resolution scale (see legend
and the previous section for details). Lines at the borders of bands always represent results for
one of the Hamiltonians in that given set. Theoretical uncertainty estimates based on the EFT
expansion are provided in Sec. 5.3.

While our results at low densities are almost insensitive to the interactions considered, dif-
ferences emerge with increasing density. In particular, the size of the cutoff variation bands
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Figure 5.3: Pressure P as function of the density n at T = 0 (left) and T = 20MeV (right) for
different chiral interactions. For details on how the bands are constructed for the
different interactions see the caption of Fig. 5.2 and the text. The density derivative
P = n2∂n(F/N) has been calculated analytically by first fitting the results for the
interaction free energy Fint via Eq. (5.4) while treating the free gas contribution
analytically (see text for details).

increases, as expected. We note that the cutoff dependence of the EMN N3LO interactions is
larger than for N2LO in our calculation. This could be due to a slower MBPT convergence at
N3LO. Furthermore, we find that the SRG scale dependence of the “NN SRG + 3N fit” inter-
actions is comparable to the cutoff sensitivity of the EMN interactions, while the variation of
the results for the consistently evolved “NN SRG +3N SRG” interactions is much smaller, only
about 400 keV at n = 0.2 fm−3 for T = 0. This indicates that effects from neglected four- and
higher-body forces in the SRG evolution are very small for neutron matter in this resolution scale
regime (see also Ref. [44]), and that higher-order MBPT contributions are likely small.

We determine the pressure as the density derivative of the free energy, i.e.,

P = n2 ∂

∂n

F

N

⃓⃓⃓⃓
T

. (5.1)

At finite temperature the free energy per particle diverges logarithmically in the zero-density limit
(see, e.g., Ref. [17]). This is a result of the free Fermi gas contribution and is also present without
interactions. To evaluate Eq. (5.1) accurately, we separate the free Fermi gas contribution, which
is treated exactly, and differentiate numerically only the interaction free energy,

Fint(T, n) = FFG(T, n)− F (T, n) . (5.2)

(Note that for convenience we define the interaction free energy Fint as the negative of F −FFG.)
The pressure is then expressed as

P (T, n) = PFG(T, n)− n2 ∂

∂n

Fint(T, n)

N

⃓⃓⃓⃓
T

, (5.3)
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Figure 5.4: Free energy per particle, F/N (left), and entropy per particle, S/N (right), for T =
0, 8, 12, 16, and 20MeV as a function of density n. The free Fermi gas (FG) is shown
as a dotted line. Bands for the free energy are determined by taking the minimum
and maximum value of the bands shown in Fig. 5.2 and the same procedure is applied
for the entropy. Note that the divergence of the free energy per particle for vanishing
density originates from the free Fermi gas contribution.

where the pressure of the free gas PFG(T, n) can be evaluated using polylogarithms. To evaluate
the interaction contribution to the pressure, we employ a fit function and calculate the derivative
of the fit analytically. We use the function from Ref. [102],

Fint(T, n)

N
= a0(T ) +

4∑︂
i=1

ai(T )

(︃
n

n0

)︃ i+1
3

, (5.4)

with saturation density n0 = 0.16 fm−3 to set the scale. We also checked that the simpler function
Fint/N = a (n/n0)

α + b (n/n0)
β yields similar results, but with worse fit quality. The results for

the pressure are shown in Fig. 5.3. They demonstrate that the model dependence is increased
compared to the free energy, as expected for a quantity obtained through a derivative.

To obtain a better insight into the temperature dependence of the EOS, we show the free
energy per particle for T = 0, 8, 12, 16, and 20MeV as a function of density in the left panel
of Fig. 5.4. For comparison we also show the free energy of the free Fermi gas. Here, for each
temperature the respective band combines the individual bands from the different interaction
sets shown in Fig. 5.2. The width of the bands increases with increasing density in a comparable
way for all temperatures. This reflects the fact that the shift of F for different temperatures
is mainly caused by the free Fermi gas contribution; i.e., the temperature dependence of the
interaction contribution is small by comparison. The temperature dependence is investigated in
more detail in Sec. 5.4.

Finally, we calculate the entropy per particle, S/N = −∂TF/N |n, via

S(T, n) = SFG(T, n) +
∂

∂T
Fint(T, n)

⃓⃓⃓⃓
n

, (5.5)
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5.3 Chiral expansion

where again the free gas contribution is treated analytically and the interaction contribution
is evaluated by employing a fit function. The results are shown in the right panel of Fig. 5.4.
The entropy is dominated by the free gas contribution SFG, which is a direct consequence of
the weak temperature dependence of Fint (see also Fig. 5.8 and corresponding discussion). As a
consequence, the entropy also exhibits only a very weak sensitivity to the employed Hamiltonian.

5.3 Chiral expansion

Chiral EFT provides a formal expansion in powers of

Q =
p

Λb
, (5.6)

where p is the relevant momentum scale for the observable of interest and Λb the breakdown
scale of the EFT. To further investigate the interaction uncertainties, we first show in Fig. 5.5
the free energy per particle for different orders in the chiral EFT expansion (LO, NLO, N2LO, and
N3LO, corresponding to different orders Q0, Q2, Q3, and Q4 in the NN+3N interactions). The
narrow bands show the cutoff variation from Λ = 450MeV to Λ = 500MeV. The convergence of
the chiral expansion is evident in Fig. 5.5 as the relative contributions get consistently smaller
with increasing chiral order. The only exception is the N2LO contribution which is larger than
the NLO contribution at densities around n ≈ 0.2 fm−3. This is a result of 3N interactions,
which start to contribute at N2LO. These give a repulsive contribution which becomes sizable
for n ≳ 0.1 fm−3 (see the qualitative difference between the NLO and N2LO results shown in
Fig. 5.5).

The convergence of the chiral expansion at finite temperature is examined in Fig. 5.6 where
we plot the uncertainty bands for the interaction free energy Fint = FFG − F as a function of
density at the different chiral orders for T = 0 (left) and T = 20MeV (right). Obviously, the
convergence behavior is similar at T = 0 and at finite temperature. This again reflects the fact
that the dominant part of the temperature dependence corresponds to the free gas contribution.
For example, the shift Fint(T = 20MeV) − Fint(T = 0) is only about 1MeV at n = 0.2 fm−3,
while the shift of the free gas contribution is −13.8MeV (see also Fig. 5.8).

A crucial asset of the EFT expansion is the possibility to estimate errors associated with the
truncation of the expansion at a finite order. Following Refs. [53, 54] we estimate the uncertainty
of an observable X(p) in the following way:

∆X(j) = Q ·max
{︂⃓⃓
X(j) −X(j−1)

⃓⃓
,∆X(j−1)

}︂
, (5.7)

where X(j) denotes the observable calculated from interactions up to order NjLO. To apply
this prescription to the EOS of neutron matter at a specific density n, we follow Ref. [49] and
choose the breakdown scale in Eq. (5.6) equal to Λb = 500MeV and the momentum scale equal
to p =

√︁
3/5 kF, with kF = (3π2n)1/3 the zero-temperature Fermi momentum.

Note that for our uncertainty estimates we omit the leading-order (LO) error. The estimate
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Figure 5.5: Free energy per particle, F/N , for T = 0 as a function of density n for the EMN
interaction at different chiral orders (LO, NLO, N2LO, and N3LO). Bands display
the cutoff variation from Λ = 450MeV to Λ = 500MeV. The free Fermi gas (FG) is
shown as a dotted line.

∆XLO = Q2
⃓⃓
XLO

⃓⃓
is problematic in the present context in several ways. First, at nonzero

temperature there exists a finite density at which the free energy has a zero crossing, resulting
in vanishing errors. Second, at low densities the free energy per particle at finite temperature is
dominated by the free gas contribution, and clearly the corresponding enhancement of ∆XLO is
unwarranted. These two features could be amended by separating the noninteracting (free Fermi
gas) contribution, i.e., by using ∆XLO = Q2

⃓⃓
XLO −XFG

⃓⃓
instead. However, we regard it as a

clearer strategy to omit the LO error as well as the LO contribution at higher orders in Eq. (5.7).

Recently a new Bayesian framework for estimating correlated EFT truncation errors based
on Gaussian processes (GP-B) was introduced in Refs. [16, 56]. To provide an alternative error
estimate, we apply their publicly available code [103] using p = kF and Λb = 600MeV (see
Ref. [16]). A comparison of the prescription by Epelbaum, Krebs, and Meißner (EKM), Eq. (5.7),
to the GP-B estimate (68% credible interval) is shown in Fig. 5.7 for the free energy (left) and
pressure (right). The EKM prescription Eq. (5.7) provides slightly larger error estimates, but
overall both methods give very similar uncertainty bands.

5.4 Thermal interaction effects

Next, we explore thermal effects of the interaction contributions to the EOS. First, in Fig. 5.8
we examine the interaction free energy Fint = FFG − F as a function of temperature for different
densities. The results show that the temperature dependence of Fint is very small for all con-
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Figure 5.6: Interaction free energy per particle, Fint/N = FFG/N − F/N , for T = 0 (left) and
T = 20MeV (right) as a function of density n for the EMN interaction (see Fig. 5.5
for details and the definition of the bands).

sidered densities, as noted above. To characterize thermal interaction effects in more detail we
define the thermal part of a given thermodynamic quantity X(T, n) as the difference between
finite-temperature and zero-temperature value (see, e.g., Ref. [104]), i.e.,

Xth(T, n) = X(T, n)−X(T = 0, n) . (5.8)

From the thermal components of the pressure and internal energy density one obtains a very
useful quantity that characterizes thermal effects, the so-called thermal index Γth (see, e.g.,
Ref. [104]):

Γth(T, n) = 1 +
Pth(T, n)

Eth(T, n)
, (5.9)

where Eth = Eth/V is the thermal energy density. The free Fermi gas has ΓFG,th = 5/3 (see
Eq. (5.11)) independent of density and temperature. Any deviations of Γth(T, n) from 5/3 is
thus due to thermal interaction effects. The thermal index is often used to parametrize the
temperature dependence of nuclear EOS used in astrophysical simulations [82, 105], where a
constant Γth independent of T and n (e.g., Γth = 1− 2) is sometimes adopted.

Our results for the thermal energy (top), the thermal pressure (middle) and the thermal index
(bottom) at T = 20MeV are displayed in Fig. 5.9. For comparison, we also show as a black solid
line the thermal index obtained in Ref. [102] using the self-consistent Green‘s function (SCGF)
approach with the “2.0/2.0” interaction of Ref. [70]. Our MBPT calculations are consistent with
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Eq. (5.7) (bands) to the Bayesian error estimates based on Gaussian processes (GP-B)
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Shown are the free energy per particle, F/N (left), and pressure P (right) as a function
of density n for T = 0. Solid lines mark the boundaries of the 68% GP-B bands.

these nonperturbative SCGF results as the SCGF line is very similar to the NN SRG + 3N fit
band, which includes the same interaction.

Compared to the thermal pressure and the thermal index, the thermal energy exhibits a much
smaller interaction dependence. This can be understood in terms of the decomposition (at fixed
density)

Eth(T ) = (FFG(T )− FFG(T = 0)) (5.10)

− (Fint(T )− Fint(T = 0)) + T S(T ) .

Here, Fint(T ) − Fint(T = 0) is small (see Fig. 5.8), and the entropy S deviates only slightly
from its free Fermi gas value (see Fig. 5.4). Hence, the thermal energy Eth is dominated by the
free gas contribution. The thermal pressure and the thermal index, however, involve the density
derivative of Fint(T, n) and thus deviate more significantly from the corresponding Fermi gas
values and, as a consequence, have larger uncertainties. In particular, 3N interactions have a
crucial effect on their density dependence. The thermal pressure would increase with increasing
density if 3N interactions were not included, as found also in Ref. [102].

The temperature dependence of the thermal index Γth is shown in Fig. 5.10 for the EMN
N3LO interaction. Since the index is defined as Γth = 1 + Pth/Eth, the thermal index is very
sensitive to uncertainties in Pth and Eth at low temperatures (and low densities) where both
these quantities are small. Therefore, in addition to the cutoff-variation band we include in
Fig. 5.10 also an estimate of the numerical Monte Carlo integration errors for these quantities,
where we have chosen ∆Pth = 20 keV fm−3 and ∆Eth/N = 20 keV. As seen in Fig. 5.10, this
leads to sizable uncertainties for Γth at low temperatures. For T ≳ 10MeV the uncertainties are
better controlled and we see only a weak temperature dependence of the thermal index. This
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Figure 5.8: Interaction contribution to the free energy per particle, Fint/N = FFG/N − F/N ,
as a function of temperature T for different densities n =
0.01, 0.05, 0.1, 0.15, and 0.2 fm−3, obtained from the EMN N3LO NN+3N in-
teractions (the bands are the same as in Fig. 5.2). The temperature dependence for
the other interactions is similarly flat.

behavior is similar for all the other interactions considered.

5.5 Effective mass approximation

In the previous section we showed that the thermal index Γth(T, n) exhibits only a very weak
temperature dependence (see Fig. 5.10). Here, we now make use of this feature to construct an
approximate parametrization of thermal effects in terms of a density-dependent effective neutron
mass m∗

n(n). The thermal index Γ∗
th(n) of an ideal gas of fermions with density-dependent

effective mass m∗
n(n) can be expressed as (see, e.g., Ref. [104])

Γ∗
th(n) =

5

3
− n

m∗
n

∂m∗
n

∂n
. (5.11)

In Ref. [102] it was demonstrated that Γ∗
th determined via Eq. (5.11), with an effective mass

taken from microscopic calculations, agrees well with the thermal index determined by Γth =

1 + Pth/Eth. That means, by taking for Γ∗
th(n) our microscopic results for Γth(T, n) at T =

20MeV shown in Fig. 5.9, we can integrate Eq. (5.11) to obtain2 m∗
n(n). For this we use

m∗
n/mn(n = 0) = 1, Γth(n = 0) = 5/3, and interpolate linearly to our lowest-density result for

Γth at n = 0.01 fm−3.
2Note that uncertainties of Γth are enhanced at low densities (see Fig. 5.10 and discussion) so that m∗ obtained

by integrating Eq. (5.11) is an approximation.
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5 Neutron matter at finite temperature

The results for the neutron effective mass m∗
n(n) determined by this procedure are shown in

Fig. 5.11. The bands display cutoff or SRG scale variations (see caption of Fig. 5.2). We observe
that m∗

n(n) first decreases with increasing density, while at around n ≳ 0.1 fm−3 the effective
mass starts to increase again. This effect is related to the contribution of 3N interactions. Based
only on NN interactions, the resulting effective mass would decrease with density. A similar
qualitative behavior is also found in the SCGF calculations of Ref. [102].

From our results for the effective mass m∗
n(n) we can construct an approximate parametrization

of the temperature dependence of the EOS. For this, we again separate thermodynamic quantities
into cold and thermal parts, e.g., for the pressure

P (T, n) = P (T = 0, n) + Pth(T, n) . (5.12)

The thermal part Pth(T ) is now approximated by

Pth(T, n) ≈ Pm∗
FG,th(T, n) , (5.13)

where Pm∗
FG,th is the thermal pressure of an ideal gas of neutrons with density-dependent mass

m∗
n(n), i.e.,

Pm∗
FG,th(T, n) = n2 ∂

∂n

FFG,th(T, n,m
∗
n(n))

N
, (5.14)

where FFG,th(T, n,m
∗
n(n)) is the expression for the thermal free energy of the free neutron gas

with m substituted by m∗
n(n).

With the microscopic calculations at zero and finite temperature at hand, we now investigate
the quality of such an approximation. That is, we compare the results for the pressure P (T, n)

obtained using three different ways to calculate its thermal part Pth:

1. the full finite-temperature calculation for Pth(T, n),

2. the ideal gas approximation with bare neutron mass Pth(T, n) ≈ Pm
FG,th(T, n), and

3. the ideal gas approximation with density-dependent effective mass Pth(T, n) ≈ Pm∗
FG,th(T, n).

The results are shown in Fig. 5.12. The effective-mass approximation Pm∗
FG,th reproduces excel-

lently the full finite-temperature calculation Pth, whereas results based on the bare mass Pm
FG,th

deviate from the full finite-temperature calculation, with an increasing error as the density in-
creases. This demonstrates that Γth(T, n) ≈ Γ∗

th(n) and m∗
n(n) capture the finite-temperature

effects of the neutron matter EOS very well.
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(bottom) at T = 20MeV as a function of density n. Bands with borders are the
same as in Fig. 5.2, while bands without borders display EFT uncertainty estimates
from the EKM prescription Eq. (5.7). The free Fermi gas (FG) is shown as a dotted
line. For comparison the thermal index of the “2.0/2.0” interaction obtained from
self-consistent Green‘s function (SCGF) calculations from Ref. [102] is also shown
(black solid line). The “2.0/2.0” interaction is contained in the NN SRG + 3N fit
band. A similar analysis for Eth, Pth, and Γth has also been performed in Ref. [102].
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6 Asymmetric matter at finite temperature

In this Chapter, we calculate the EOS for arbitrary proton fractions and temperatures based on
chiral EFT interactions to high order. We then construct a Gaussian process emulator of the
free energy that enables nonparametric evaluations of the EOS and thermodynamic derivatives
for arbitrary nuclear conditions, including beta equilibrium, to provide direct results for neutron
star matter based on chiral EFT.

This Chapter has already been published in Ref. [1]. I performed all the calculations and
developed the Monte-Carlo code for MBPT to arbitrary proton fractions by generalizing the
code discussed in Chapter 5.

Our asymmetric nuclear matter calculations are based on many-body perturbation theory
(MBPT) around a self-consistent Hartree-Fock (HF) state. The details can be found in Chapter 3,
we only provide a summary here. The framework for evaluating MBPT diagrams using Monte
Carlo integration is based on previous works [49, 59]. We use the Vegas Monte Carlo integration
algorithm from Ref. [100] where we take the implementation from Ref. [101] to evaluate high-
dimensional phase space integrals. We start from the grand-canonical potential,

Ω(µn, µp, T ) = −T lnTr
(︂
e−(H−µnnnV−µpnpV )/T

)︂
, (6.1)

where T is the temperature, V the system volume, and µτ=n,p are the neutron and proton chem-
ical potentials with corresponding baryon densities nτ . The Hamiltonian H = H0 + VNN + V3N

contains a kinetic term together with nucleon-nucleon (NN) and three-nucleon (3N) interactions
constructed from chiral EFT up to next-to-next-to-next-to-leading order (N3LO). The MBPT
series at finite T is organized following Refs. [57, 58] with the same choice of reference system
as in Ref. [59]. We include all contributions from NN and 3N interactions up to second order,
and at third order all interaction vertices that are NN or 3N with one line closing on itself
(corresponding to the normal-ordered two-body approximation). This has been shown to be a
very good approximation at T = 0 [49] and for neutron matter at finite T [59]. For our main
results, we employ the NN interactions of Entem, Machleidt, and Nosyk (EMN) with cutoff
Λ = 450MeV [52] and 3N interactions fit to nuclear saturation at N2LO (cD = 2.25, cE = 0.07)
and N3LO (cD = 0, cE = −1.32) [49]. We include NN partial waves up to total angular momenta
J12 ⩽ 12, and 3N channels up to Jtot ⩽ 9/2 and J12 ⩽ 6 [44]. These truncations lead to un-
certainties that are small compared to the EFT uncertainties for the considered densities. The
interactions where provided by Ref. [51] in partial-wave decomposed form (see Chapter 2).

73



6 Asymmetric matter at finite temperature

0 0.05 0.1 0.15 0.2

n [fm−3]

−60

−40

−20

0

20

F
/
A

[M
e
V

]

x = 0

T = 0

T = 10 MeV

T = 20 MeV

0 0.05 0.1 0.15 0.2

n [fm−3]

x = 0.1

Virial

HF

MBPT(2)

0 0.05 0.1 0.15 0.2

n [fm−3]

x = 0.2

GP Emulator

Data points

0 0.05 0.1 0.15 0.2 0.25

n [fm−3]

x = 0.5

Figure 6.1: Free energy per particle F/A at N3LO (Λ = 450MeV) for different proton fractions
x = 0, 0.1, 0.2, and 0.5 (panels from left to right) and for temperatures T = 0, 10,
and 20MeV (blue, orange, and green) as a function of density n. Our MBPT results
are given by the dots, while the constructed GP emulator is shown with solid lines.
The bands display theoretical EFT uncertainty estimates according to Eq. (6.3). To
show the MBPT convergence, results at the HF level (dashed) and at second order
(dot-dashed) are given as well. At low densities n ⩽ 0.025 fm−3, we also compare
to the virial EOS [106, 107] (for T = 20MeV this corresponds to a neutron fugacity
zn ⩽ 0.45, 0.39, 0.34, 0.18 for x = 0, 0.1, 0.2, 0.5).

The free energy density F/V is determined by

F

V
(n, x, T ) =

Ω

V
(µn, µp, T ) + µnnn(µn, µp, T )

+ µpnp(µn, µp, T ) , (6.2)

where the neutron and proton densities are given by nτ = −∂µτΩ/V , the total density by
n = nn + np, and x = np/n is the proton fraction. To obtain the free energy, Eq. (6.2),
as a function of density, we invert the relation between densities and chemical potentials by
generalizing the method from Ref. [63] to multiple chemical potentials. In doing so, we formally
expand the chemical potentials around a reference system with the same density and proton
fraction as the interacting system. This re-expansion is necessary to obtain a perturbation series
that is consistent with the zero-temperature formalism, and effectively deals with the anomalous
diagrams at finite T [59, 60, 63].

As the evaluation of MBPT diagrams involves the computation of high-dimensional phase-
space integrals, the computation of the thermodynamic potential for a large number of densities,
temperatures and proton fractions is a complex task. Hence, for the evaluation of the free energy
per particle and its derivatives, we construct an emulator for F (n, x, T )/A using three dimensional
Gaussian process (GP) regression [68], see Chapter 4 for a introduction. Gaussian processes allow
us to interpolate the EOS in a way that does not spoil thermodynamic consistency (e.g., second-
order derivatives commute) and to handle residual noise from the Monte Carlo integration. We
use the Python library of Ref. [108] and employ the squared exponential kernel [68] with an
overall scale and three length scales as hyperparameters that are determined by maximizing the
likelihood. In constructing the GP, we assume that each diagram has ∆Ed = 5 keV noise from
the Monte Carlo integration and the total noise of every EOS point is calculated as

√︂∑︁
d∆E2

d
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6.1 Free energy and GP emulation

T n MBPT x = 0.3 x = 0.5
N2LO N3LO N2LO N3LO

0 0.1 HF −0.6 0.8 −3.1 −1.6
0 0.1 2 −8.7 −8.4 −12.4 −12.1
0 0.1 3 −8.9(5) −8.8(2) −12.9(4) −12.7(1)

0 0.16 HF 3.1 4.6 −0.1 1.4
0 0.16 2 −8.5 −8.3 −13.4 −13.1
0 0.16 3 −10.1(11) −9.9(5) −15.5(9) −15.1(4)

0 0.2 HF 7.9 9.1 4.5 5.5
0 0.2 2 −6.1 −6.1 −11.6 −11.5
0 0.2 3 −8.6(27) −8.7(13) −14.6(24) −14.7(10)

20 0.1 HF −23.4 −23.3 −26.3 −26.1
20 0.1 2 −33.6 −34.1 −37.7 −38.1
20 0.1 3 −33.3(9) −33.4(5) −37.6(8) −37.5(4)

20 0.16 HF −13.5 −13.7 −16.7 −17.1
20 0.16 2 −28.9 −29.9 −34.1 −35.1
20 0.16 3 −29.8(11) −29.0(6) −35.5(7) −34.3(7)

20 0.2 HF −6.4 −7.2 −9.7 −10.8
20 0.2 2 −25.7 −27.3 −31.5 −33.1
20 0.2 3 −27.7(17) −26.7(9) −34.2(11) −32.7(9)

Table 6.1: MBPT convergence of the free energy per particle F/A in MeV at N2LO and N3LO
for different proton fractions x, temperatures T in MeV, and densities n in fm−3. The
EFT uncertainties determined by Eq. (6.3) are given in parentheses for the third-order
MBPT results.

where the sum is over all diagrams. The resulting total noise is much smaller than interaction
uncertainties due to the chiral EFT expansion and is not visible in the plots. We treat the Fermi
gas (FG) contribution analytically and emulate the interaction energy per particle Fint/A =

F/A−FFG/A. The GP emulator can be performed in any set of variables. However, replacing n

by the Fermi momentum kF = (3π2n/2)1/3 was found to simplify the evaluation of derivatives.
Moreover, all input variables are normalized to [0, 1] to prevent numerical artifacts in the GP.

6.1 Free energy and GP emulation

In Fig. 6.1 we present results for F/A as a function of density for different proton fractions
and temperatures. We evaluate the MBPT diagrams on the non-uniform grid with values n =

0.001, 0.01, 0.02, . . . , 0.05, 0.06, 0.08, . . . , 0.32 fm−3, x = 0, 0.1, . . . , 0.7, and T = 0, 5, 10, 15, 20, 30MeV,
such that in regions where the free energy changes more rapidly, more EOS points are calcu-
lated. The EOS points are marked with dots in Fig. 6.1, while the results obtained from the GP
emulator are shown as solid lines. An excellent agreement is evident.

To further assess the quality of the emulator we employ the following strategy: for every data
point calculated, we construct a GP emulator without including that data point. The difference
of the GP prediction to the actual data point serves as a measure of the prediction quality. The
maximal (mean) error obtained by this procedure is 0.0656MeV (0.0096MeV) when restricted
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6 Asymmetric matter at finite temperature
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Figure 6.2: Same as Fig. 6.1 but for the pressure P at N3LO (Λ = 450MeV) from the GP
emulator and with EFT uncertainties.

to the data points shown in the plots (n ⩽ 0.25 fm−3, x ⩽ 0.5, and T ⩽ 20MeV). If necessary,
the quality of the emulator could even be improved by using an optimized kernel.

At low densities and finite T , we compare our results to the model-independent virial EOS [106,
107] in Fig. 6.1. Since we consider homogeneous matter, we do not include the contributions
from alpha particles in the virial EOS (i.e., we compare against Ref. [107] for nα = 0) For
n ⩽ 0.025 fm−3 and low fugacities, we find excellent agreement with our results. For higher
densities, the inclusion of higher virial coefficients and effects due to the effective nucleon mass
play an important role.

For estimates of the theoretical uncertainties for an observable X due to the truncated chiral
expansion we use the prescription of Ref. [54],

∆X(j) = Q ·max
(︂
|X(j) −X(j−1)|,∆X(j−1)

)︂
, (6.3)

where X(j) is the observable calculated at NjLO and the expansion parameter is Q = p/Λb,
where we take Λb = 500MeV for the EFT breakdown scale and p is a typical momentum for the
observable of interest. Following Ref. [49], we take p to be the root-mean-square momentum of
the Fermi gas p2 = ⟨k2⟩ = 3T (

∑︁
τ m

5/2
τ F3/2(µτ/T ))/(

∑︁
τ m

3/2
τ F1/2(µτ/T )), where the chemical

potentials µτ are determined from the density nτ = 2−1/2 (mτT/π)
3/2 F1/2(µτ/T ) and Fn(x) =

Γ(n + 1)−1
∫︁∞
0 dt tn(1 + exp(t− x))−1 are Fermi integrals (see Chapter 1). The resulting EFT

uncertainty bands at N3LO are shown for the third-order MBPT results in Fig. 6.1. In addition,
we show the first-order (HF) and second-order MBPT(2) results to assess the MBPT convergence
of the expansion. Table 6.1 gives numerical values at particular values of n, x, T to document
the MBPT and chiral convergence.

6.2 Pressure and thermal effects

The pressure P = n2∂n(F/A)|x,T = PFG+n2∂n(Fint/A)|x,T is shown in Fig. 6.2 for different pro-
ton fractions and temperatures, where the derivative of the interaction energy Fint/A is calculated
using the GP emulator. As expected, the pressure decreases with increasing proton fraction, and
for very neutron-rich conditions depends only weakly on the temperature for n ≳ n0. Inter-
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Figure 6.3: Thermal pressure Pth for neutron matter (blue) and symmetric matter (red) for T =
20MeV as a function of density. In addition to the N3LO results with Λ = 450MeV
(solid lines) we also show Λ = 500MeV (dot-dashed lines) as well as for the 2.0/2.0
(EM) interaction [70] (dashed lines). For the latter, we compare against the SCGF
results from Ref. [102] (dotted lines). The darker EFT uncertainty bands are N3LO,
while the lighter ones are for N2LO.

estingly, for symmetric matter we find that the pressure decreases with increasing temperature
for n ≳ 0.2 fm−3. This negative thermal expansion has also been observed in Ref. [17] for low-
momentum interactions. For neutron-rich matter, this behavior is seen in Fig. 6.2 starting at
higher densities.

To investigate this further, we show the thermal pressure Pth = P (T )−P (T = 0) in Fig. 6.3 for
neutron matter and symmetric matter for T = 20MeV. We find that the thermal pressure starts
to decrease at n ≈ 0.15 fm−3 and becomes negative around n ≈ 0.2 fm−3. For neutron matter
this finding is consistent with Ref. [59] and can be understood in terms of a neutron effective
mass m∗

n that increases at higher density due to repulsive 3N contributions [59, 102] [Pth ⩽ 0

requires ∂m∗
n/∂nn ⩾ 0, see Eqs. (39) and (41) in Ref. [59]]. Figure 6.3 shows that a decreasing

thermal pressure at higher densities is found at different orders (N2LO and N3LO), different
cutoffs (Λ = 450MeV and 500MeV), as well as for the 2.0/2.0 (EM) interaction [70], while the
size of the decrease has large theoretical uncertainties. For the 2.0/2.0 (EM) interaction, we
can also compare our MBPT against self-consistent Green’s function (SCGF) results [102] and
find good agreement (with the small differences likely due to the T = 0 extrapolation and the
normal-ordering approximation in Ref. [102]). Note that the cutoff dependence of the negative
thermal expansion might indicate that the maximal density accessible is limited based on the
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Figure 6.4: Upper panel: Proton fraction x in beta equilibrium at N3LO for different T as a func-
tion of density. For comparison, we show the virial EOS and the LS220 EOS [109].
Lower panel: Pressure P in beta equilibrium for T = 0 at N2LO and N3LO. We com-
pare against the EOS band from Hebeler et al. [22] based on chiral EFT interactions
up to 1.1n0 and a general piecewise polytrope extension to higher densities.

employed interactions.

6.3 Matter in beta equilibrium

Using the GP, we can access arbitrary proton fractions and derive other quantities through
thermodynamically consistent derivatives. We first use the GP to calculate the proton fraction
x of neutron star matter in beta equilibrium as a function of density for different temperatures.
For a given density and temperature, x is determined by the condition mn + µn = mp + µp +

me + µe (see, e.g., Ref. [22]), where the neutron and proton chemical potentials are given by
µτ = F/A+n∂n(F/A)+ (δτ,p − x) ∂x(F/A). The electron chemical potential is determined from
the density of an ultra-relativistic Fermi gas, ne = 2/π2T 3F2(µe/T ) with the Fermi integral F2

(see Eq. (3.7) with ϵ(p) = p) through charge neutrality np = ne. Our results using the GP
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6.3 Matter in beta equilibrium
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Figure 6.5: Speed of sound squared c2s for neutron matter (upper panel) and symmetry free energy
per particle Fsym/A (lower panel) at N3LO for different T as a function of density.
We show results based on different definitions for Fsym/A (second derivative around
symmetric matter and difference between neutron and symmetric matter).

emulator are shown in the upper panel of Fig. 6.4. We find very narrow EFT uncertainty bands
in this case, using again Eq. (6.3) with Q = Q(n, x = xN3LO

β-eq. (n, T ), T ). At small densities and
finite T , the proton fraction is dominated by the kinetic part and follows the virial EOS. At
higher densities, the density dependence of x is weaker, with proton fractions of 4− 8% for the
temperatures considered. Overall, we find a reasonable agreement with the Lattimer and Swesty
EOS LS220 [109] but our chiral EFT results exhibit a weaker density dependence.

The GP thus also enables a first nonparametric calculation of the neutron star EOS. In the
lower panel of Fig. 6.4 we show the pressure of matter in beta equilibrium P (n, xβ-eq., T = 0) at
N2LO and N3LO with EFT uncertainty estimates. The N3LO band is systematically smaller and
overlaps with the N2LO band over the full density range. Moreover, both bands behave naturally
towards higher densities and hence show no indication for a breakdown of the chiral expansion
up to n ≲ 0.25 fm−3. For comparison, we also show the EOS band from Hebeler et al. [22] based
on chiral EFT interactions up to 1.1n0 and a general piecewise polytrope extension to higher
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6 Asymmetric matter at finite temperature

densities constrained by causality and the observation of two-solar-mass neutron stars. This EOS
band results mainly from variations of the chiral 3N forces, so that the comparison is not direct.
Nevertheless, the overlap with the nonparametric N2LO and N3LO bands is remarkable. Up to
n0, the N3LO band prefers high pressures in the Hebeler et al. band [22] and at higher n, it
provides important new constraints.

6.4 Speed of sound and symmetry energy

Next, we study the speed of sound c2s = ∂P/∂ε|S,x = n
P+ε∂P/∂n|S,x with the internal energy

density ε = n(E/A + mn) (see, e.g. Ref. [104]). The derivative at constant entropy S and
constant proton fraction x is performed numerically based on P (n, x, T (n, x, S)). Our results
using the GP emulator are shown for neutron matter in the upper panel of Fig. 6.5. Given that
c2s is a second derivative, the EFT uncertainties are larger in this case. At T = 0, c2s increases
monotonously while the increase is weaker at finite T . As for the pressure, c2s decreases at higher
densities with increasing T .

As another GP application, we show the symmetry free energy per particle Fsym/A as a function
of density for different T in the the lower panel of Fig. (6.5). We compare two common definitions:
the second derivative around symmetric matter and the difference between neutron matter and
symmetric matter, where the difference probes the size of contributions beyond a quadratic x

dependence (see Chapter 1 for the asymmetry expansion). Since the numerical uncertainties
are enhanced in second derivatives due to residual noise from the Monte Carlo integration, we
calculate ∂2(F/A)/∂x2|x=1/2 by fitting a GP to each MBPT diagram individually. The difference
definition is more sensitive to thermal effects due to the nonquadratic contributions contained in
the kinetic part. For the second-derivative definition, we find that Fsym/A is narrowly predicted
at N3LO at a fixed saturation density n0, with Fsym(n0)/A ≈ 30MeV at T = 0, while the
uncertainty increases if one allows this reference density to vary [56]. Moreover, the T dependence
of the symmetry energy is mild at n0, with larger increases at lower and higher n.
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7 Liquid-gas phase transition in symmetric
nuclear matter

This chapter investigates the temperature dependence of symmetric nuclear matter (x = 0.5).
In this limit we will assume that neutron and protons are thermodynamic indistinguishable,
neglecting isospin breaking effects. The liquid-gas phase transition is studied and the phase
diagram is calculated. Finally we provide the critical temperature and critical density, which can
be extracted from experiments. The calculations are based on the Gaussian process emulator
discussed in Chapter 6 to evaluate the EOS for the EMN interaction with a cutoff of Λ =

450MeV where we include second order MBPT diagrams (MBPT(2)) only (see Chapter 6). The
nuclear liquid-gas transition has previously been studied based on chiral EFT interactions in,
e.g., Refs. [17, 88]. For a general introduction to the liquid-gas transition see, e.g., Refs. [7, 8].

7.1 Pressure
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Figure 7.1: Pressure of symmetric nuclear matter as function of the number density. Different line
show different temperatures T = 0, 5, 10, 15, 20 MeV. The dot-dashed line segments
show regions where the pressure derivative is negative. The filled circle shows the
critical point, see text.

Figure 7.1 shows the pressure of symmetric nuclear matter for different temperatures. For
larger temperatures, e.g., T = 20MeV, the pressure is a monotonically increasing function of
density, while at lower temperatures there are regions where the pressure decreases with in-
creasing density (shown by the dot-dashed lines and delimited by filled squares with ∂nP = 0).
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7 Liquid-gas phase transition in symmetric nuclear matter

Furthermore for some temperatures and densities the pressure is negative, e.g., for T = 0 the
pressure is negative for all densities up to nuclear saturation density.

The critical temperature Tc is the lowest temperature such that the pressure is still a monotonic
function of density, with the critical density nc defined as the saddle point of the pressure [8],
e.g.,

∂P

∂n

⃓⃓⃓⃓
nc,Tc

=
∂2P

∂n2

⃓⃓⃓⃓
nc,Tc

= 0 . (7.1)

The critical point is shown as a solid circle in Fig. 7.1. The region where the pressure is not
monotonically increasing with density ∂P/∂n < 0 (spinodal region) has a negative isothermal
compressibility κT = n−1∂n/∂P |T < 0 and is therefore unphysical (see Refs. [7, 8, 17] for details
and general stability relation κT ≥ 0). This Van-der-Waals like EOS is a result of enforcing a
single phase [8]. It is a sign that there are conditions, where the system is unstable to phase
separation into a mixture of gas and liquid (in analogy with the Van-der-Waals EOS) [8, 17].
Phase separation is possible in the unstable region T < Tc, for T ≥ Tc there will be a single
phase.

For the first-order liquid-gas phase transition in symmetric nuclear matter, our results give
the preliminary ranges for the critical temperature, density, and pressure, Tc = 15.9− 16.3MeV,
nc = 0.07 − 0.11 fm−3, and Pc = 0.30 − 0.40MeV fm−3, where the ranges are obtained by
considering the N3LO interaction at MBPT(3) and MBPT(2). A full analysis will be the topic
of future work.

7.2 Maxwell construction

The system is unstable to phase separation in the unphysical region, it will separate into phases
with different densities [8, 17]. The physical EOS can be recovered from Fig. 7.1 by applying a
Maxwell construction (equal-area rule in the P-V diagram) [7, 8, 17].

The phase transition will occur at constant T , constant P , and constant µ and the densities
of the two phases can be determined by using

P (T, ng) = P (T, nl) , (7.2)

µ(T, ng) = µ(T, nl) , (7.3)

where µ is the chemical potential, ng is the density of the gas phase, and nl the density of the
liquid phase, see e.g. Ref. [7].

This is shown in Fig. 7.2 for T = 10MeV. At low densities the system is in a pure gas phase. At
the first filled circle the system separates into two phases with densities nl and ng and the phase
transition occurs at constant P and µ. After the second filled circle there is a pure liquid phase.
In the liquid-gas phase it is energetically favorable to form droplets with density nl surrounded by
a gas with density ng. Note that the region with negative isothermal compressibility is enclosed
in the coexistence region and is removed after the construction.
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Figure 7.2: Pressure (upper panel) and chemical potential (lower panel) as function of number
density for T = 10MeV. The filled circles show the densities ng and nl with simul-
taneous equal pressure and chemical potentials. The region where the isothermal
compressibility is negative are enclosed by filled squares.
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7 Liquid-gas phase transition in symmetric nuclear matter
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Figure 7.3: Maxwell construction for the pressure (left) and chemical potential (right) as a func-
tion of number density for different temperatures (color). The dotted lines show the
quantities without the Maxwell construction.

For our calculations this construction is always possible for 0 < T < Tc. The physical pressure
and physical chemical potential are shown for different temperatures in Fig. 7.3. Note that there
is no pure gas phase at T = 0.
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Figure 7.4: Maxwell construction for the free energy as a function of number density for different
temperatures (colors). Filled circles show the densities ng and nl of equal pressure
and chemical potential. Dotted lines show the free energy without the Maxwell
construction.

Given the pressure P and the chemical potential µ of the physical system, the physical free
energy F can be constructed as

F

A
= µ− P/n (7.4)

84



7.3 Phase diagram

where n is the density. Pressure and chemical potential are held constant in the liquid-gas phase
ng ≤ n ≤ nl phase. The physical free energy is shown in Fig. 7.4. Note that the physical free
energy is lower than the energy of to the unphysical EOS (dashed lines).

7.3 Phase diagram

Fig. 7.5 shows the phase diagram of symmetric nuclear matter. The phase coexistence boundary
(binodal), as determined from the Maxwell construction, is shown as solid lines. In addition
we also show the spinodal line, which encloses the unphysical region with negative isothermal
compressibility, e.g. ∂P/∂n < 0. Note that the spinodal region (densities n and temperatures T
with ∂P (T, n)/∂n < 0) is contained in the binodal region. Phase coexistence is possible inside
of the binodal line. A extension of this study to low proton fractions at T = 0 with a focus on
the existence of proton drip is presented in Chapter 8.
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Figure 7.5: Phase diagram in density-temperature plane of symmetric nuclear matter. Binodal
(solid) and spinodal (dashed) are shown for different interaction orders N2LO (orange)
and N3LO (blue). Inside the binodal line a gas-liquid mixture coexists.
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8 Dilute proton solution

This chapter investigates the possibility of phase coexistence at low proton concentrations and
zero temperature as introduced in Chapter 1. For this investigation we follow Ref. [19]. Fur-
thermore we neglect finite-size effects (Coulomb interaction, surface effects) [19]. For a general
introduction to phase transitions see, e.g., Refs. [7, 8].

8.1 Chiral EFT calculations

Our investigations of dilute proton solutions in neutron-rich matter are based on our calculations
of the asymmetric matter EOS presented in Chapter 6. Here, we only give a short summary
of the method. Thermodynamic quantities are determined starting from a expansion of the
grand-canonical potential

Ω(µn, µp, T ) = −T lnTr
(︂
e−(H−µnnnV−µpnpV )/T

)︂
(8.1)

in many-body perturbation theory, where µn and µp are neutron and proton chemical potentials,
T is the temperature and V the volume. The Hamiltonian is given by H = T + VNN + V3N

with kinetic energy T , two-nucleon potential VNN and three-nucleon potential V3N . Two- and
three-nucleon interactions are constructed using chiral effective field theory at next-to-next-to-
next-to-leading order (N3LO) with a cutoff of Λ = 450MeV. Furthermore, interactions at N2LO
are used to test the sensitivity to the interaction.

The thermodynamic potential at fixed density of neutrons and protons, the Helmholtz free
energy, is given by

F

V
(n, x, T ) =

Ω

V
(µn, µp, T ) + µnnn(µn, µp, T )

+ µpnp(µn, µp, T ) (8.2)

where n is the total density and x the proton fraction. It is constructed by re-expanding around a
reference system with the same density (see Chapter 3 for the details). Pressure P = n2∂n(F/A)

and chemical potentials µτ = F/A+ n∂n(F/A) + (δτ,p − x) ∂x(F/A) for τ = n, p are determined
from free energy F/A by using a Gaussian process emulator (see Chapters 4 and 6 for details).
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8 Dilute proton solution

8.2 Results

In the following nuclear matter will refer to a system that has a non-zero proton concentration
(x > 0). The coexistence of neutron matter with nuclear matter (neutron drip) and nuclear
matter with nuclear matter (proton drip) can be determined by using pressure and chemical
potentials [7, 8, 19]. For neutron drip the conditions read

P (n(1)
n , 0) = P (n(2)

n , n(2)
p ) (8.3)

µn(n
(1)
n , 0) = µn(n

(2)
n , n(2)

p ) (8.4)

while for proton drip we have

P (n(1)
n , n(1)

p ) = P (n(2)
n , n(2)

p ) (8.5)

µn(n
(1)
n , n(1)

p ) = µn(n
(2)
n , n(2)

p ) (8.6)

µp(n
(1)
n , n(1)

p ) = µp(n
(2)
n , n(2)

p ) (8.7)

where n
(1)
τ are the densities in the system with fewer protons.

8.2.1 Binodal

The solutions to Eqs (8.3) - (8.7) are shown in Fig. 8.1. The densities for neutron drip n
(1)
n , n(2)

n ,
and n

(2)
p are shown as blue lines while the densities for proton drip (with additional n(1)

p > 0) are
shown in red when coexistence is possible. The lower panel shows the proton chemical potential
for the coexistence of neutron matter µp(µn, 0) with nuclear matter µp(µn, n

(2)
p ) (neutron drip).

For µn ≳ 14.47MeV the proton chemical potential in neutron matter smaller than in nuclear
matter

µp(µn, np = 0) < µp(µn, n
(2)
p ) , (8.8)

e.g. it is energetically favorable for protons to move from nuclear matter to neutron matter
(proton drip). In this region it is inconsistent to have coexistence of neutron matter with nuclear
matter. Proton drip is possible starting at µn ≈ 14.47MeV where the proton chemical potentials
are equal [in this case the solution for neutron drip is also a solution for proton drip Eqs. (8.5) -
(8.7)], while we also find coexistence for higher densities.

8.2.2 Phase diagram

The coexistence occurs along lines in the (nn, np) plane, e.g.

nn = n(1)
n (1− α) + n(2)

n α (8.9)

np = n(1)
p (1− α) + n(2)

p α (8.10)
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Figure 8.1: Upper panel: Coexistence of neutron matter with asymmetric matter (blue lines left
of the vertical dotted line) and coexistence of asymmetric matter with asymmetric
matter (red lines right side) as a function of the neutron chemical potential. Pro-
ton number densities are shown as solid lines and neutron densities are shown with
dashed lines. Lower panel: Proton chemical potential as a function of the neutron
chemical potential in neutron matter and asymmetric matter for coexistence of neu-
tron matter with asymmetric matter. The vertical dotted line shows the neutron
chemical potential where both proton chemical potentials have equal values.
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8 Dilute proton solution

Figure 8.2: Phase diagram as a function of the total number density and the proton fraction for
the N3LO interaction. In addition to the regions where neutron drip (blue) and proton
drip (red) is possible, also the spinodal line Eq. (8.11) (green) and the composition
of homogeneous matter in beta equilibrium are shown.

where α ∈ [0, 1] is the volume fraction (and n
(1)
p = 0 for neutron drip). The corresponding phase

diagram in the (x, n) plane is shown in Fig. 8.2. We find that neutron drip (blue region) is
possible for a large region in proton fraction and density. The vertical end of the neutron drip
region at x ≈ 0.37 is reached for µn = 0 with vanishing pressure P = 0 (self-bound system).
Furthermore we also find a small region with low proton concentration where proton drip is
possible (red).

We determine the composition in β-equilibrium for matter in the homogeneous phase by solving
mn+µn (x(n), n) = mp (x(n), n)+µp+me+µe (x(n), n) (see, e.g., Ref. [22]) where the electrons
are treated ultra relativistic, e.g. µe = (3π2ne)

1/3 [22], and we assume charge neutrality ne = np.
For high densities n ≳ 0.09 fm−3 matter in β-equilibrium is in its homogeneous phase, while it
reaches proton and neutron drip for lower densities.

In addition we also show the spinodal line (instability to density fluctuation) determined by
[22]

v0 =
∂µp

∂np
− (∂µp/∂nn)

2

(∂µn/∂nn)
= 0 (8.11)

in Fig. 8.2. Note that the instability region is contained in the neutron and proton drip region.

8.2.3 Robustness

Finally we want to investigate, how robust our findings for proton drip are. First, the results in
Fig. 8.2 are for the nuclear interaction at order N3LO. For the interaction at N2LO we also find
proton drip, and the proton fraction and density region where it is possible is shown in Fig. 8.3.
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8.2 Results

The proton drip regions for N2LO and N3LO are similar.

Furthermore, conditions when proton drip can occur are very neutron rich. It would be
desirable to vary properties of neutron matter and check how robust the finding for proton drip
are and what the impact of neutron matter is. We use the phenomenological parametrization
of the energy per particle ϵ(x, n) as a function of proton fraction x and total density n from
Ref. [22]

ϵ(x, n) = ϵkin(x, n)

− T0 [(2α− 4αL)x(1− x) + αL]

(︃
n

n0

)︃
− T0 [(2η − 4ηL)x(1− x) + ηL]

(︃
n

n0

)︃4/3

, (8.12)

where n0 = 0.16 fm−3, T0 = (3π2n0/2)/(2m) is the energy at the Fermi momentum, ϵkin is the
free gas contribution, and the nucleon-nucleon interaction is parameterized by constants α, η for
symmetric nuclear matter (SNM) and αL, ηL for pure neutron matter (PNM).

Following Ref. [22] the SNM parameters α and η are fixed by requiring nuclear saturation, e.g.
ϵ(1/2, n0) = −16MeV and P (1/2, n0) = 0 which results in

α =
3 (4T0 + 640/3)

5T0
, (8.13)

η =
3 (2T0 + 160)

5T0
, (8.14)

for the parameters. The PNM parameters αL and ηL are then fixed by the symmetry energy Sv

and its density derivative L [22]

Sv =
1

8

∂2ϵ(x, n)

∂x2

⃓⃓⃓⃓
x=1/2,n=n0

, (8.15)

L = n0
3

8

∂3ϵ(x, n)

∂n∂x2

⃓⃓⃓⃓
x=1/2,n=n0

, (8.16)

and are given by

αL =
6L− 24Sv + 3T0α+ 4T0

6T0
, (8.17)

ηL =
6L− 18Sv + 3T0η + 2T0

6T0
. (8.18)

By varying Sv and L we can change the properties of neutron rich matter. This is shown in
Fig. 8.3 where we use every combination of L = 20, 40, 60, 80MeV and Sv = 30, 33MeV to
determine the region where proton drip is possible. We find that proton drip is robust for these
variations.

To summarize, we find proton drip for calculations with chiral interactions at N3LO and N2LO
and in addition with the functional Eq. (8.12) for a wide range of nuclear matter parameters.
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Figure 8.3: Robustness of the density-proton-fraction region where proton drip is possible. In
addition to calculations at order N2LO (dash-dotted line), results of the functional
Eq. (8.12) for different L = 20, 40, 60, 80MeV (colors) and different symmetry energies
Sv = 30, 33MeV (solid and dashed) are shown.

Furthermore, general arguments based on the density dependence of the kinetic energy and a
generic potential suggest that proton drip is a general feature of the nuclear EOS [110].
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9 Matter in beta equilibrium with muons

This chapter provides a more detailed investigation of the equation of state of matter in beta
equilibrium. In contrast to Chapter 6, where only neutrons, protons, and electrons where included
as degrees of freedom, this chapter also includes muons. Furthermore the focus is on providing
input for astrophysical applications. Therefore, the speed of sound of matter in beta equilibrium
is calculated and a additional focus is on providing better uncertainty estimates that include the
MBPT uncertainties. The derivation of matter in beta equilibrium with muons follows Ref. [31]
(see also supplemental material).

9.1 Composition

Thermodynamic quantities will be parameterized in terms of the total density n, proton fraction
x, electron fraction xe, and muon fraction xµ defined as

n = nn + np , (9.1)

x =
np

n
, (9.2)

xe =
ne

n
, (9.3)

xµ =
nµ

n
. (9.4)

Note that compared to chapter 6, where charge neutrality requires x = xe, here electron fraction
and proton fractions are in general different because of the presence of muons.

To determine the composition x, xe, and xµ given n we require that processes that convert
neutrons into protons and electrons are in equilibrium

µn(x, n) = µp(x, n) + µe(ne) , (9.5)

that processes that convert muon into electrons are in equilibrium

µe(ne) = µµ(nµ) , (9.6)

and charge neutrality

np = ne + nµ . (9.7)

Given the proton density np one can solve Eqs. (9.6) and (9.7) to obtain ne and nµ and then
solve Eq. (9.5) for np given the total density n.

93



9 Matter in beta equilibrium with muons

Note that all chemical potentials include the rest mass, e.g., in the zero density limit we have
µi(ni = 0) = mi where mi is the rest mass of particle i = n, p, e, µ. Equation (9.6) can only
be solve when the electron chemical potential is larger than the muon rest mass. This is not
possible at small densities where consequently the system only consists of neutrons, protons and
electrons. We ignore Eq. (9.6) in this case and use nµ = 0.
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Figure 9.1: Composition of matter in beta equilibrium as a function of number density. The
dotted line shows the proton fraction without including muons (with xe = x, see
chapter 6). The other lines who the proton fraction (solid), electron fraction (dash
dotted), and the muon fraction (dashed).

Figure 9.1 show the composition of matter in beta-equilibrium including muons. The results
are based on the 3rd-order MBPT calculations from Chapter 6 for the EMN450 N3LO interaction.
Muons start to contribute for n ≳ 0.13 fm−3 where the electron chemical potential is larger than
the muon rest mass µe ≥ mµ. As a comparison the composition without muons shown as black
dotted line (where x = xe). The non-zero muon concentration is compensated by smaller amount
of electrons and a larger proton fraction.

9.2 Energy density and pressure

For astrophysical applications we are interested in the total energy density (including the rest
mass)

ϵ(n) = n

(︃
Enuc

A
(x, n) +mn

)︃
+ ϵe(ne) + ϵµ(nµ) , (9.8)
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9.3 Speed of sound

where Enuc/A is the energy per particle of nucleons, mn is the neutron rest mass, and ϵe(ne) and
ϵµ(nµ) are the energies per volume of electrons and muons given by [31]

ϵi(ni) =
m4

i

8π2

(︂
xr(2x

2
r + 1)

√︁
x2r + 1− ln

(︂
xr +

√︁
x2r + 1

)︂)︂
, (9.9)

xr = (3π2ni)
1/3/mi . (9.10)

Similarly, we define the total pressure as

P (n) = Pnuc(x, n) + Pe(ne) + Pµ(nµ) , (9.11)

with nucleon, electron, and muon contributions.
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Figure 9.2: Pressure in beta equilibrium as a functions of number density (left) and energy den-
sity (right). Different lines show the contribution of the individual particles to the
pressure: neutrons (n), protons (p), electrons (e), and muons (µ).

Figure 9.2 shows the total pressure as a function of number density and total pressure as
function of total energy density. Different lines show contributions of the different particles.
Lines with labels “n,p” and “n,p,e” do not include muons in the composition for all densities,
e.g. xµ = 0. The impact of electrons is generally small. Including muons reduces the pressure
contribution of electron, which is, however, compensated by non-zero muon contribution Pµ. In
total also the contribution of muons is small compared to the nucleons.

9.3 Speed of sound

The speed of sound c2s is defined as the derivative of the total pressure with respect to the
total energy density [104]. In Chapter 6, we only looked at neutron matter (at constant proton
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9 Matter in beta equilibrium with muons

fraction) such that the derivative simplifies to (see, e.g. Ref. [104])

c2s =
∂P

∂ε

⃓⃓⃓
x
=

∂P

∂n

⃓⃓⃓
x

∂n

∂ε

⃓⃓⃓
x
=

n

P + ε

∂P

∂n

⃓⃓⃓
x
. (9.12)

For matter in beta equilibrium we can not assume constant proton fraction but have to use

c2s =
∂P (xp,β(ϵ), xe,β(ϵ), xµ,β(ϵ), nβ(ϵ))

∂ϵ
, (9.13)

=
∑︂

i=p,e,µ

∂P

∂xi

⃓⃓⃓⃓
xp,β(ϵ),xe,β(ϵ),xµ,β(ϵ),nβ(ϵ)

∂xi,β(ϵ)

∂ϵ
+

∂P

∂n

⃓⃓⃓⃓
xp,β(ϵ),xe,β(ϵ),xµ,β(ϵ),nβ(ϵ)

∂nβ(ϵ)

∂ϵ
, (9.14)

which also contains derivatives with respect to the proton fraction xp, electron fraction xe, and
muon fraction xµ.
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Figure 9.3: Speed of sound in beta equilibrium as function of number density. Lines are the same
as in Fig. 9.2. In addition neutron matter is shown (dotted).

Fig. 9.3 shows the speed of sound squared determined from Eq. (9.14). Including the contri-
bution of muons has a minor impact on the speed of sound. As a comparison the speed of sound
of neutron matter of chapter 6 is shown in Fig. 9.3. The speed of sound in beta equilibrium de-
creases at some point resulting in a bump (maximum) around n ≈ 0.23 fm−3. This is in contrast
to the results found for neutron matter. Note, however, that the bump is a small effect compared
to the theoretical EFT and MBPT uncertainties, see Sec. 9.6.

9.4 Composition dependence

To test the sensitivity to composition x, xe, xµ in beta equilibrium we use P and ϵ from chiral
EFT and determine the composition using the LS220 EOS (see chapter 6). The comparison of
both approaches is shown in Fig. 9.4. Additionally a calculation that uses LS220 for P , ϵ and for
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9.5 Asymmetry dependence

the composition is shown as comparison. The impact of the composition is much smaller than
the impact of pressure and energy density on the speed of sound.
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Figure 9.4: Speed of sound in beta equilibrium as function of number density. Shown is the
full calculation with chiral EFT interactions (solid), a calculation where the speed
of sound is calculated using chiral EFT interactions and the composition in beta
equilibrium is taken from the LS220 EOS (dashed), and a calculations that uses the
LS220 EOS for the speed of sound and the composition (dash dotted).

9.5 Asymmetry dependence

To test the dependence on the asymmetry we can expand the x dependence of the EOS in the
asymmetry β = 1− 2x

E(x, n) = a0(n) + a2(n)(1− 2x)2 + a4(n)(1− 2x)4 + a6(n)(1− 2x)6 + . . . , (9.15)

where all odd terms vanish because we assume isospin symmetry. In a common approximations
only the first two terms a0 and a2 of the expansion are considered, see e.g. Ref. [9]. They can
be fixed by pure neutron matter (PNM) and symmetric nuclear matter (SNM) to obtain

E(x, n) = ESNM(n) + (EPNM(n)− ESNM(n))(1− 2x)2 , (9.16)

P (x, n) = PSNM(n) + (PPNM(n)− PSNM(n))(1− 2x)2 , (9.17)

µp(x, n)− µn(x, n) =
∂E

∂x
= −4(EPNM(n)− ESNM(n))(1− 2x) . (9.18)

In this approximation the EOS is quadratically interpolated between neutron matter and sym-
metric nuclear matter. Figure 9.5 shows a comparison of the full asymmetry dependence (labeled
“Ref”) and the quadratic interpolation (a2, a4).
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Figure 9.5: Energy per particle (left), pressure (middle), and energy per particle derivative
∂E/∂x as function of number density. Different colors mark different proton frac-
tions x = 0, 0.1, 0.2, 0.5. Different linestyles show different approximations of the
asymmetry dependence. The full calculations (Ref) is shown as solid lines. Including
asymmetry coefficients up to second order Eq. (9.16) (a0, a2) as dotted, additionally
treating the kinetic energy analytically Eq. (9.20) (a0, a2 kin) dash dotted. Finally
including coefficients up to fourth order Eq. (9.21) (a0, a2, a4) is shown as dashed
lines.

Note that the kinetic energy (see e.g. Ref. [22]) has the asymmetry expansion

EFG(x, n)

T0 (n/n0)
2/3

=
3

5
+

1

3
(1− 2x)2 +

1

81
(1− 2x)4 +

7

2187
(1− 2x)6 +

26

19683
(1− 2x)8 + . . . (9.19)

where n0 = 0.16 fm−3 is the saturation density and T0 =
(︁
3π2n0/2

)︁
/(2m) ≈ 36.84MeV. At

saturation density the fourth order coefficient is given by T0/81 ≈ 454.8 keV. Therefore it
might be advantageous to treat the free gas analytically and only quadratically interpolate the
interaction energy Eint = E − EFG, e.g.

E(x, n) = EFG(x, n) + ESNM, int(n) + (EPNM, int(n)− ESNM, int(n))(1− 2x)2 , (9.20)

to improve the approximation quality. The approximation with kinetic energy treated analyti-
cally is also shown in Fig. 9.5.

Furthermore higher order terms in the asymmetry expansion can be included to test the
convergence, e.g. up to forth order

E(x, n) = ESNM(n) + a2(n)(1− 2x)2 + a4(n)(1− 2x)4 , (9.21)

P (x, n) = PSNM(n) + n2a′2(n)(1− 2x)2 + n2a′4(n)(1− 2x)4 , (9.22)

µp(x, n)− µn(x, n) =
∂E

∂x
= −4a2(n)(1− 2x)− 8a4(n)(1− 2x)3 . (9.23)

where a2(n) and a4(n) have to be determined from the full calculations. They are fitted at fixed
density n to our GP emulator by using as least-square procedure.

The extracted coefficients are shown in Fig. 9.6. As a comparison also the asymmetry coeffi-
cients of the free gas Eq. (9.19) and the symmetry energy EPNM−ESNM are shown. One can see
that at higher densities a2 deviates from the symmetry energy and the fourth order coefficient
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9.5 Asymmetry dependence
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Figure 9.6: Second (solid) and fourth (dashed) asymmetry coefficient as a function of number
density. As a comparison, the contributions from the free gas Eq. (9.19) to a2 and
a4 are shown as dotted lines with the same colors. The symmetry energy (difference
of neutron matter to symmetric nuclear matter) is shown as the dash-dotted line.

a4 becomes sizeable.
The approximation where the fourth coefficient is included is also shown in Fig. 9.5. Notice

that while all approximations produce reasonable energies, the approximation quality of the
pressure is significantly worse for small non-zero proton fractions, e.g. x = 0.1, when a4 is not
included.

Figure 9.7 shows the impact of the second order approximation Eq. (9.16) (denoted by sin-
gle primes, e.g. EMN450′) together with the fourth order approximation Eq. (9.21) (denoted
with double primes, e.g. EMN450′′) on the composition of beta equilibrium and the pressure
and Fig. 9.8 shown the impact on the speed of sound. The speed of sound in the quadratic
approximation Eq. (9.16) is also included for a different cutoff Λ = 500MeV as a comparison
(EMN500′).

The speed of sound in beta equilibrium depends on ∂P/∂x (and therefore on a′2(n) and a′4(n))
and ∂P/∂n (and therefore even on a′2(n), a′4(n), a′′2(n), and a′′4(n)) and is more sensitive to
the asymmetry approximation. While the impact of different approximations in small on the
composition and pressure in beta equilibrium, it can be significant for the speed of sound. One
can see that with only including a2, the speed of sound does not have the bump at higher
densities. The bump of the full calculation can only be reproduced by including a4. Analytically
treating the free gas Eq. (9.20) (EMN450′ (+kin)) only has a small effect on the approximation
quality.
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9 Matter in beta equilibrium with muons
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Figure 9.7: Proton fraction and pressure in beta equilibrium as function of the number density.
Different linestyles show the full calculations EMN450 (solid) and different approx-
imations EMN450′ given by Eq. (9.16) (dashed), and EMN450′′ Eq. (9.21) (dash
dotted).
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Figure 9.8: Speed of sound in beta equilibrium as function of the number density. In addition
to the full calculation (solid) various approximations are shown (see text). Note that
the lines labeled “EMN450′” and “EMN450′ (+kin)” overlap. As a comparison also
calculations with a cutoff of Λ = 500MeV are shown.
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9.6 Theoretical uncertainty estimates

9.6 Theoretical uncertainty estimates

9.6.1 EFT uncertainty estimates

EFT uncertainties are estimates as in Chapter 6 based on the EKM prescription [54]

∆X(j) = Q ·max
(︂
|X(j) −X(j−1)|,∆X(j−1)

)︂
, (9.24)

∆XLO = 0 , (9.25)

where the momentum scale is determined by highest order composition

Q = Q
(︂
n, x = x

(j)
β-eq.(n)

)︂
. (9.26)
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Figure 9.9: Pressure in beta equilibrium as a function of number density. Bands show EFT
uncertainty estimates for different EFT orders (colors).

Figures 9.9 and 9.10 show EFT uncertainty estimates for the pressure and speed of sound in
beta equilibrium for different EFT orders. Note that the LO error estimates is chosen to be zero
(see chapter 5). The NLO uncertainties are underestimated, likely because of the missing LO
uncertainties. Furthermore the LO and NLO lines of the speed of sound cross at higher densities,
leading to further artifacts for this uncertainty with the EKM method.

The bump of the speed of sound is only visible for N3LO and not for lower EFT orders. Note
that at at n ≳ 0.125 fm−3 muons start to appear and cause the sudden change in c2s
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Figure 9.10: Speed of sound in beta equilibrium as a function of number density. Bands show
EFT uncertainty estimates for different EFT orders (colors).

9.6.2 Many-body convergence

The next plot shows the MBPT convergence of the total energy per particle and the total pressure
in beta equilibrium. The MBPT convergence of the pressure is slower then expected (significantly
slower than for the energy).
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Figure 9.11: Energy per particle (left) and pressure (right) in beta equilibrium as function of
number density. Different linestyles show MBPT(3) (solid), MBPT(2) (dashed),
and MBPT(1) (dotted).

The following plot shows the MBPT convergence of the speed of sound. The bump is only
visible for MBPT(3) and it seems that the MBPT uncertainty is larger than expected at high den-
sities (difference of MBPT(2) and MBPT(3) is larger then difference of MBPT(1) and MBPT(2)).
Also note that there are no muon for MBPT(1).
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Figure 9.12: Speed of sound in beta equilibrium as function of number density. Linestyles are
the same as in Fig. 9.11.

9.6.3 Combined EFT and MBPT errors

We estimate the MBPT uncertainties at order MBPT(3) by using the difference of MBPT(3)
and MBPT(2), e.g.

∆MBPTc
2
s(n) =

⃓⃓⃓
c2s,MBPT(3)(n)− c2s,MBPT(2)(n)

⃓⃓⃓
. (9.27)

This is a conservative estimate of the MBPT uncertainties, e.g. note that the difference of
MBPT(2) and MBPT(1) is much larger than the actual MBPT(3) contribution. The combined
uncertainty is determined by

∆totalc
2
s(n) = ∆EFTc

2
s(n) + ∆MBPTc

2
s(n) (9.28)

as the sum of the individual contributions. The resulting uncertainty estimates for the speed
of sound are shown in Fig. 9.13. Note, this is again a conservative uncertainty estimate. A
statistical treatment that includes MBPT and EFT uncertainties as independent error sources
would be desirable in the future.
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Figure 9.13: Speed of sound in beta equilibrium as function of number density. Error bars show
EFT uncertainty estimates (dark blue) and combined EFT and MBPT uncertainty
estimates (light blue).
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10 Summary and outlook

In this thesis, we studied the nuclear matter EOS at finite temperature and arbitrary proton
fraction based on nuclear interactions from chiral effective field theory using many-body per-
turbation theory and Gaussian processes. Parts of this chapter have already been published in
Refs. [1, 59]. Copyright of Ref. [59] ©2021 by American Physical Society.

We discussed the many-body formalism in Chapter 3 for a general partitioning of the Hamilto-
nian and the contribution of anomalous diagrams at finite temperature. The many-body expan-
sion simplifies when using a HF partitioning and we performed calculations in this scheme. In
contrast to previous MBPT studies, we included the full HF self-energy momentum dependence
and do not employ normal-ordering approximations for the 3N interactions. For the practi-
cal calculations we employed Monte Carlo integration techniques that allow to evaluate highly
dimensional integrals, involved in the MBPT contributions, very efficiently.

We then presented a systematic study of the thermodynamics of neutron matter based on a
range of chiral EFT interactions in Chapter 5. This included SRG evolved NN interactions at
N3LO with unevolved 3N interactions at N2LO as well as for the first time consistently SRG-
evolved interactions in nuclear matter calculations. In addition, we studied the EMN potentials
at N2LO and N3LO with consistent 3N interactions constraint by nuclear matter saturation.
Our results based on the consistently SRG-evolved interactions exhibit a remarkably small SRG
scale dependence in neutron matter over the full range of temperatures, which indicates that the
effects of induced higher-body forces are very small for these interactions and also that the many-
body calculation is well converged. In addition, we studied the theoretical uncertainties due to
the truncation of the chiral expansion using the EKM prescription and employing the recently
developed Bayesian framework based on Gaussian processes. Our results show that both methods
provide very similar error estimates in neutron matter. The temperature dependence of different
thermodynamic quantities was studied in detail. We found that the dominant contribution to
the temperature dependence originates from the Fermi gas contribution, and that the thermal
interaction part is well captured by using a density-dependent effective mass. This was shown by
studying the thermal index, which allows to diagnose in a simple way thermal interaction effects.

In Chapter 6 we then presented first microscopic calculations of the EOS at arbitrary proton
fractions and finite temperature based on the same chiral NN and 3N interactions to N3LO,
including uncertainty estimates from the many-body calculation and the chiral expansion. For
this an emulator of the interaction free energy per particle was constructed using Gaussian
processes. We demonstrated that this enables an efficient and accurate evaluation of the EOS
and thermodynamic derivatives for arbitrary values of n, x, and T , where we considered the
ranges n ⩽ 0.25 fm−3, x ⩽ 0.5, and T ⩽ 20MeV. The EFT uncertainties dominate over the
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10 Summary and outlook

MBPT uncertainties for these nuclear densities. We studied in detail the dependence of the
free energy and the pressure on proton fraction and temperature, and found that the pressure
at higher densities decreases with increasing temperature, thus exhibiting a negative thermal
expansion. The GP emulator allowed us to calculate the EOS in beta equilibrium directly
without parametrizations between neutron and symmetric matter. The resulting N3LO neutron
star EOS exhibited a systematic chiral EFT behavior over the full range (n ⩽ 0.25 fm−3) and
significantly improved the uncertainties over previous EOS bands, preferring larger values for
the pressure. Moreover, we presented first microscopic results for the speed of sound and the
symmetry energy at finite temperature.

We then studied the liquid-gas phase transition in symmetric nuclear matter (x = 0.5) in
Chapter 7. First preliminary results for the critical temperature and density were determined.
By using a Maxwell construction, the physical EOS (in particular pressure, chemical potential,
and free energy) could be reconstructed. Finally, we presented the phase diagram for chiral
interactions at N2LO and N3LO. In the future it would be desirable to determine EFT uncer-
tainties for the phase diagram, the critical density, and the critical temperature. This will require
statistical methods for the EFT uncertainties and will allow to determine distributions for those
quantities.

In Chapter 8 we investigated phase coexistence at low proton concentrations at T = 0. In
particular we explored the coexistence of neutron matter with nuclear matter (neutron drip)
and the possibility of coexistence of nuclear matter with nuclear matter (proton drip). We find
that proton drip is possible for all studied microscopic calculations based on chiral NN and 3N
interactions. Furthermore, variations of nuclear matter properties using a phenomenological EOS
functional and analytical considerations suggest that our findings of proton drip are robust. The
phase diagram as a function of density and proton fraction was presented.

As a last application we extended our calculations of matter in beta equilibrium to also include
muons as a degree of freedom in Chapter 9. We determined the pressure, energy density, and
speed of sound in beta equilibrium and found only a minor impact of muons. An analysis of
the asymmetry dependence was presented. Finally we provided theoretical EFT and MBPT
uncertainties for the speed of sound. These new speed of sound error bands can be used as a
basis to determine the neutron star EOS.

This thesis lays the foundation for microscopic studies of the thermodynamics of asymmetric
nuclear matter based on chiral NN and 3N interactions. It will be interesting to explore the
resulting EOSs in astrophysical simulations of core-collapse supernovae and neutron star mergers.
In particular, the thermal effects found are very different from phenomenological EOS tables and
we provided results for the asymmetry dependence at finite temperatures for the first time.
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