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Veröffentlicht unter CC BY-SA 4.0 International (https://creativecommons.org/licenses/)
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Kurzfassung

Diese Dissertation befasst sich mit dem Entwurf und der Analyse von approximati-

onsbasierten Methoden für nichtkonvexe und nichtglatte Optimierungsprobleme. Die

Hauptidee dieser Methoden besteht darin, ein schwieriges Optimierungsproblem zu

lösen, indem es in eine Reihe von einfacheren Ersatz- bzw. approximativen Proble-

men umgewandelt wird. In den beiden weit verbreiteten Optimierungsrahmenwerken,

nämlich dem Majorization-Minimization (MM) Rahmenwerk und dem sukzessiven kon-

vexen Approximation (SCA) Rahmenwerk, wird die approximative Funktion so gestal-

tet, dass sie eine globale obere Schranke, genannt Majorisierer, der ursprünglichen

Zielfunktion bzw. konvex ist. Allgemein gesprochen gibt es zwei Anforderungen an die

approximative Funktion, nämlich die Nähe zur ursprünglichen Zielfunktion und die ge-

ringe Rechenkomplexität der Minimierung der approximativen Funktion. Insbesondere

konzentrieren wir uns auf Techniken, die verwendet werden können, um ein paralleli-

sierbares approximatives Problem zu konstruieren, um moderne Multicore-Computing-

Plattformen zu nutzen.

Der erste Teil dieser Arbeit zielt darauf ab, einen effizienten parallelisierbaren algorith-

mischen Rahmen basierend auf Approximationstechniken für eine breite Klasse von

nichtkonvexen und nichtglatten Optimierungsproblemen zu entwickeln. Das klassische

Konvergenzergebnis von MM basiert auf der Konsistenz der Richtungsableitungen in

allen Richtungen zwischen der ursprünglichen Zielfunktion und ihrem Majorisierer an

dem Punkt, an dem der Majorisierer konstruiert wird. Diese Anforderung beschränkt

den am nichtdifferenzierbaren Punkt der ursprünglichen Funktion konstruierten Ma-

jorisierer darauf, ebenfalls nicht glatt zu sein, was seine Fähigkeit zur Vereinfachung

nichtglatter Probleme einschränkt, da die Minimierung der majorisierenden Funktion,

wenn sie auf nicht glatt beschränkt ist, weiterhin schwierig sein kann. Daher lockern

wir in dieser Arbeit die Konsistenz der Ableitung im Majorisierungsschritt, sodass ein

glatter Majorisierer, der leicht minimiert werden kann, für eine breite Klasse von nicht-

glatten Problemen zugelassen wird. Als Ergebnis dieser Lockerung der Ableitungskon-

sistenz führt die glättende Majorisierung zur Konvergenz zu einer stationären Lösung

in einem entspannteren Sinne als das klassische MM. Darüber hinaus ermöglicht uns

die Glätte der majorisierenden Funktion im Gegensatz zur exakten Minimierung der

möglicherweise nichtkonvexen majorisierenden Funktion die Anwendung der Idee von

SCA sowie verfügbarer separierbarer Approximationstechniken, um einen approxima-

tiven Minimierer der majorisierenden Funktion effizient zu erhalten. Daher entwickeln

wir einen parallelisierbaren inexakten MM-Rahmen, genannt Smoothing SCA, indem

wir die glättende Majorisierungstechnik und die Idee der sukzessiven konvexen Appro-

ximation kombinieren. In diesem Rahmen wird die Konstruktion des approximativen
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Problems bei jeder Iteration in zwei Schritte unterteilt, nämlich die glättende Majorisie-

rung und die konvexe Approximation, sodass die beiden Anforderungen an die approxi-

mative Funktion getrennt behandelt werden können. Darüber hinaus können sowohl das

exakte als auch das inexakte MM mit glättender Majorisierung blockkoordinatenweise

implementiert werden, um potenzielle separierbare Strukturen der Einschränkungen

im Optimierungsproblem auszunutzen. Das Konvergenzverhalten der vorgeschlagenen

Rahmenwerke wird entsprechend analysiert.

Im zweiten Teil dieser Arbeit wird das von uns hauptsächlich propagierte Rahmenwerk,

das glättende SCA-Rahmenwerk, verwendet, um das Phasenrückgewinnungsproblem

mit Wörterbuchlernen anzugehen. Zwei effiziente Parallelalgorithmen werden entwi-

ckelt, indem das glättende SCA auf zwei komplementäre nichtkonvexe und nichtglatte

Formulierungen angewendet wird, die beide auf einem Kriterium der kleinsten Qua-

drate basieren. Die Rechenkomplexitäten der vorgeschlagenen Algorithmen werden

theoretisch analysiert und sowohl ihre Fehlerleistung als auch ihre Rechenzeit wer-

den durch umfangreiche Simulationen im Kontext der blinden Kanalschätzung aus

Subband-Amplitudenmessungen in einem Mehrantennen-Zugriffsnetzwerk im Vergleich

zu den modernsten Methoden bewertet.
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Abstract

This dissertation is concerned with the design and analysis of approximation-based

methods for nonconvex nonsmooth optimization problems. The main idea behind those

methods is to solve a difficult optimization problem by converting it into a sequence of

simpler surrogate/approximate problems. In the two widely-used optimization frame-

works, namely, the majorization-minimization (MM) framework and the successive

convex approximation (SCA) framework, the approximate function is designed to be

a global upper bound, called majorizer, of the original objective function and convex,

respectively. Generally speaking, there are two desiderata of the approximate function,

i.e., the tightness to the original objective function and the low computational complex-

ity of minimizing the approximate function. In particular, we focus on techniques that

can be used to construct a parallelizable approximate problem so as to take advantage

of modern multicore computing platforms.

The first part of this thesis aims to develop an efficient parallelizable algorithmic frame-

work based on approximation techniques for a broad class of nonconvex nonsmooth op-

timization problems. The classic convergence result of MM is established on the consis-

tency of directional derivatives in all directions between the original objective function

and its majorizer at the point where the majorizer is constructed. This requirement

restricts the majorizer constructed at a nondifferentiable point of the original function

to be also nonsmooth, which hinders its capability of simplifying nonsmooth problems

since the minimization of the majorizing function, if restricted to be nonsmooth, may

still be difficult. Therefore, in this thesis, we relax the derivative consistency in the

majorization step so that a smooth majorizer that can be easily minimized is permitted

for a wide class of nonsmooth problems. As a result of this relaxation of derivative con-

sistency, the smoothing majorization leads to the convergence to a stationary solution

in a more relaxed sense than the classic MM. Furthermore, in contrast to minimizing

the possibly nonconvex majorizing function exactly, the smoothness of the majorizing

function allows us to employ the idea of SCA, along with available separable approx-

imation techniques, to obtain an approximate minimizer of the majorizing function

efficiently. Thus, we develop a parallelizable inexact MM framework, termed smooth-

ing SCA, by combining the smoothing majorization technique and the idea of successive

convex approximation. In this framework, the construction of the approximate prob-

lem at each iteration is divided into two steps, namely, the smoothing majorization

and the convex approximation, so that the two desiderata of the approximate function

can be treated separately. In addition, both the exact and inexact MM with smoothing

majorization can be implemented block-coordinatewise to exploit potential separable
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structures of the constraints in the optimization problem. The convergence behaviors

of the proposed frameworks are analyzed accordingly.

In the second part of this thesis, as our mainly promoted framework, the smoothing

SCA framework is employed to address the phase retrieval with dictionary learning

problem. Two efficient parallel algorithms are developed by applying the smoothing

SCA to two complementary nonconvex nonsmooth formulations, respectively, which

are both based on a least-squares criterion. The computational complexities of the

proposed algorithms are theoretically analyzed and both their error performance and

computational time are evaluated by extensive simulations in the context of blind

channel estimation from subband magnitude measurements in multi-antenna random

access network, in comparison to the state-of-the-art methods.
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Chapter 1

Introduction

Consider a general constrained minimization problem:

min
x∈X

f(x) (1.1)

with the feasible set X ∈ Rn and the objective function f : Rn → R.

Assumption 1.1. We make the following blanket assumptions throughout the thesis

unless otherwise noted:

1) X ⊆ Rn is closed, convex, and nonempty;

2) f is continuous and coercive on X .

The above assumptions are quite standard and are fulfilled by a wide range of practical

problems. In particular, the continuity and coercivity of f ensures the existence of

optimal solutions even if the feasible set X is not bounded [Ber16, Prop. A.8].

In this dissertation, we aim to develop an efficient parallelizable algorithmic framework

for a broad class of nonconvex and nonsmooth optimization problems. Many practi-

cal applications in signal processing, communications, and machine learning result in

nonconvex and nonsmooth optimization problems that can not be solved analytically

but by an iterative procedure. Most of the effective iterative methods are developed

based on approximation techniques, where the basic idea is to solve a difficult prob-

lem by converting it into a sequence of simpler surrogate/approximate problems. The

existing approximation-based methods differ from each other mainly on the construc-

tion of the approximate problems. Generally speaking, there are two desiderata of the

approximate function, namely, the tightness to the original objective function and the

low computational complexity of minimizing the approximate function. In particular,

we focus on the techniques that can be used to construct a parallelizable approximate

problem so as to take advantage of modern multicore computing platforms.

One popular approximation-based algorithmic framework is the majorization-

minimization (MM) framework [Lan16, SBP17, Ngu17, LWLZ21], where the approxi-

mate function is designed to be a global upper bound of the objective function and

tangent to it at the current iterate, referred to as a majorizer of the original objective
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function, so that the minimizer of the approximate function also provides a decrease

of the original objective function. This procedure is simple but attractive since it gen-

erates a solution sequence that monotonically decreases the original objective function

and, thus, provides the convergence to a stationary solution of the original problem

under some derivative consistency assumption [RHL13, LWLZ21]. A comprehensive

list of available majorization techniques can be found in the survey paper [SBP17] and

the book [Lan16], which are mostly derived from the properties of convex functions.

Many other algorithms can be viewed as special cases of MM generated with differ-

ent majorization techniques, such as the well-known expectation-minimization (EM),

proximal algorithms, concave-convex procedures (CCCP), and so on [SBP17].

Despite the attractive properties of MM, in practice, it may not be easy to construct

a global upper bound for the objective function unless it possesses a certain convex-

ity/concavity structure. An alternative approach that has also been widely used is the

successive convex approximation (SCA) framework [YP17, SFL17a, SS18], where the

approximate function is not required to be a global upper bound of the original ob-

jective function but a convex function. By relaxing the global bounding requirement,

we can easily construct an approximate problem that can be solved at a lower com-

putational cost, even in a parallel or distributed manner. In fact, this framework has

been used to develop parallel and distributed algorithms for a wide range of practical

applications that involve large-scale networked systems, e.g., information processing

over networks, communication networks, sensor networks, data-based networks, and

machine learning [SFL+17b, SS18] However, the general convergence of SCA is only

established for smooth functions or the class of structured nonsmooth functions where

the nonsmooth component is convex.

The classic convergence result of MM is established on the directional differentiability

of the objective function and the consistency of directional derivatives in all direc-

tions between the original objective function and its majorizer at the point where the

majorizer is constructed. This requirement restricts the majorizer constructed at a

nondifferentiable point of the original function to be also nonsmooth, which hinders its

capability of simplifying nonsmooth problems since the minimization of the majorizing

function, if restricted to be nonsmooth, may still be difficult. Therefore, in this thesis,

we relax the derivative consistency in the majorization step so that a smooth majorizer

that can be easily minimized is permitted for a wide class of nonsmooth problems. As

a result of this relaxation of derivative consistency, the smoothing majorization leads

to the convergence to a stationary solution in a more relaxed sense than the classic

MM.

Furthermore, in contrast to minimizing the possibly nonconvex majorizing function



1.1 Original Contributions 3

exactly, the smoothness of the majorizing function allows us to employ the idea of

SCA, along with available separable approximation techniques, to efficiently obtain an

approximate minimizer of the majorizing function that still provides a decrease of the

original objective function. Thus, we develop a parallelizable inexact MM framework by

combining the smoothing majorization technique and the idea of convex approximation.

In this framework, the construction of the approximate problem at each iteration is

divided into two steps, namely, the smoothing majorization and the convex approxima-

tion, so that the two desiderata of the approximate function can be treated separately.

Specifically, the smoothing majorization step aims to design a smooth majorizer that

is as tight to the original function as possible, regardless of the complexity. Then,

in the convex approximation step, we further develop a convex approximate function

that can be easily minimized, for the smooth majorizer. In particular, the separable

approximation techniques can be employed to develop an approximate problem that

can be decomposed and solved in parallel.

1.1 Original Contributions

This dissertation concentrates on the design and analysis of parallelizable

approximation-based methods for nonconvex nonsmooth optimization problems. The

original contributions in this thesis are extensions of the work

[LTY+22] T. Liu, A. M. Tillmann, Y. Yang, Y. C. Eldar, and M. Pesavento, “Extended

successive convex approximation for phase retrieval with dictionary learning,”

IEEE Transactions on Signal Processing, vol. 70, pp. 6300–6315, 2022.

and consist of the following two parts.

In the first part of this thesis, i.e., Chapter 4, as a generalization of the algorithms that

we developed in [LTY+22], we propose an efficient parallelizable algorithmic framework

for a broad class of nonconvex nonsmooth optimization problems, by combining the

smoothing majorization technique and the idea of SCA. As aforementioned, we study

the smoothing majorization technique, which relaxes the derivative consistency in the

majorization step so that a smooth majorizer that can be easily minimized is permit-

ted for a wide class of nonsmooth problems. Specifically, as a generalization of the

majorization technique that we employed in [LTY+22], we consider the situation that

the majorizing function preserves only a subgradient of the original objective function.
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We first describe the exact MM framework with such smoothing majorization, abbre-

viated as smoothing MM, and analyze its convergence behavior. In general, compared

to the classic MM, the smoothing MM sacrifices the tightness of the convergence set

with respect to the local minima in order to construct an approximate problem that

can be easily addressed. In contrast to minimizing the possibly nonconvex majorizing

function exactly, the smoothness of the majorizing function allows us to employ the

idea of SCA, along with the available separable convex approximation techniques, to

obtain an approximate minimizer of the majorizing function efficiently. This motivated

our idea in [LTY+22] of combining the smoothing majorization and the separable con-

vex approximation techniques to address the phase retrieval with dictionary learning

problem. We generalize the algorithms in [LTY+22] to the aforementioned class of

smoothing majorization techniques to develop a parallelizable inexact MM framework,

named smoothing SCA, and provide a unified convergence analysis. Finally, similar to

the classic MM and SCA frameworks, the smoothing MM and SCA can also be imple-

mented block-coordinatewise to exploit potential separable structures of the constraints

in the optimization problem, and the convergence behavior is studied accordingly.

The main content of the second part, comprising Chapter 5, has been published

in [LTY+22]. As our mainly promoted framework, the smoothing SCA framework

is employed to address the phase retrieval with dictionary learning problem. Phase

retrieval focuses on reconstructing unknown signals from the magnitude measurements

of linear combinations. When combined with dictionary learning, phase retrieval also

incorporates the prior knowledge that the signal can be sparsely represented using an

unknown dictionary. Two efficient parallel algorithms are developed by applying the

smoothing SCA to two complementary nonconvex nonsmooth formulations, respec-

tively, which are both based on a least-squares (LS) criterion. The first algorithm is

termed compact-SCAphase and is preferable in the case of moderately diverse mixture

models with a low number of mixing components. It adopts a compact formulation

that avoids auxiliary variables. The proposed algorithm is highly scalable and has

reduced parameter tuning costs. The second algorithm, referred to as SCAphase, uses

auxiliary variables and is favorable in the case of highly diverse mixture models. It also

renders simple incorporation of additional side constraints. The performance of both

methods is evaluated when applied to blind channel estimation from subband mag-

nitude measurements in a multi-antenna random access network. Simulation results

show the efficiency of the proposed techniques compared to state-of-the-art methods.

To summarize, the main contributions of this thesis are as follows:

On the optimization theoretical aspect:
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• Analyzing the convergence behavior of the MM framework with smoothing ma-

jorization where the derivative consistency is relaxed so that a smooth majorizer

that is designed to have a simple minimization is permitted for a wide class of

nonconvex nonsmooth problems.

• Proposing a parallelizable inexact MM framework by combining the smooth ma-

jorization technique and the idea of successive convex approximation. Its conver-

gence behavior is also analyzed.

• Presenting the block-coordinatewise extensions of both the exact and inexact

MM with smoothing majorization and analyzing their convergence behaviors ac-

cordingly.

On the application aspect:

• Proposing two efficient parallel algorithms for the phase retrieval with dictionary

learning problem by applying the smoothing SCA framework to two complemen-

tary formulations, respectively.

• Refining the search range for suitable values of the sparsity parameter for both

algorithms

• Proposing an efficient procedure based on rational approximation for solving

the ℓ2-norm constrained LS subproblems to reduce the overall computational

complexity of compact-SCAphase.

• Analyzing theoretically the computational complexities of the proposed algo-

rithms in comparison to the state-of-the-art method.

• Conducting extensive simulations in the context of blind channel estimation in a

multi-antenna random access network in view of parameter selection, estimation

quality, convergence speed, computational time, and robustness to initialization.

Lastly, we clarify the contribution of each author in the paper [LTY+22] as follows.

A. Tillmann initiated the idea of applying the SCA framework to the phase retrieval

with dictionary learning problem. T. Liu developed and implemented the algorithms,

established their convergence, performed the numerical simulations, and wrote the

manuscript. All co-authors provided useful comments on the development of the al-

gorithms, the revision of the manuscript, and the responses to the reviewers. The

interesting discussions with the reviewers of [LTY+22] guided us to the theory of

subdifferentiation, which helped us with the convergence analysis of the algorithms

in [LTY+22] and that of the general framework that we present in this thesis.
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1.2 Thesis Structure

In Chapter 2, some basic concepts and facts in the theory of subdifferentiation and

convex analysis that are relevant to the discussions in the following chapters are intro-

duced.

Chapter 3 provides a short review of the related existing optimization frameworks,

including the majorization-minimization (MM) framework, the successive convex ap-

proximation (SCA) framework, and their block-coordinatewise extensions.

Chapter 4 contains the main theoretical contributions of this thesis. In Section 4.1,

the MM framework with smoothing majorization that relaxes the derivative consis-

tency is described and its convergence behavior is studied. Then, in Section 4.2, a

parallelizable inexact MM framework is developed by combining the smoothing ma-

jorization technique and the idea of successive convex approximation. Finally, the

block-coordinatewise extensions of both the exact and inexact MM with smoothing

majorization, as well as their convergence analyses, are presented in Section 4.3.

In Chapter 5, the smoothing SCA framework developed in the previous chapter is

employed to derive two efficient parallel algorithms for the phase retrieval with dic-

tionary learning problem. The computational complexities of the proposed algorithms

are theoretically analyzed and both their error performance and computational time

are evaluated by extensive simulations in the context of blind channel estimation from

subband magnitude measurements in multi-antenna random access network, in com-

parison to the state-of-the-art methods.

The conclusions, together with some open problems and future research directions, are

detailed in Chapter 6.

1.3 Publications

This dissertation is based on the following publications.

Internationally Refereed Journal Article

• T. Liu, A. M. Tillmann, Y. Yang, Y. C. Eldar, and M. Pesavento, “Extended

successive convex approximation for phase retrieval with dictionary learning,”

IEEE Transactions on Signal Processing, vol. 70, pp. 6300–6315, 2022.
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Book Section

• K. Ardah, M. Haardt, T. Liu, F. Matter, M. Pesavento, and M. E. Pfetsch, “Re-

covery under side constraints,” in Compressed sensing in information processing,

G. Kutyniok, H. Rauhut, and R. J. Kunsch, Eds., Cham: Springer International

Publishing, 2022, pp. 213–246.

Internationally Refereed Conference Paper

• T. Liu, A. M. Tillmann, Y. Yang, Y. C. Eldar, and M. Pesavento, “A parallel

algorithm for phase retrieval with dictionary learning,” in Proceedings of Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun.

2021.

The other publications produced during the period of doctoral candidacy are listed as

follows.

Preprints

• T. Liu, S. P. Deram, K. Ardah, M. Haardt, M. E. Pfetsch, and M. Pe-

savento, “Gridless Parameter Estimation in Partly Calibrated Rectangular Ar-

rays.” submitted to the IEEE Transactions on Signal Processing, 2024. URL:

http://arxiv.org/abs/2406.16041.

• T. Liu, F. Matter, A. Sorg, M. E. Pfetsch, M. Haardt, and M. Pesavento, “Joint

sparse estimation with cardinality constraint via mixed-integer semidefinite pro-

gramming.” submitted to the IEEE Transactions on Signal Processing, 2023.

URL: http://arxiv.org/abs/2311.03501.

Internationally Refereed Conference Papers

• T. Liu and M. Pesavento, “Blind Phase-Offset Estimation in Sparse Partly Cal-

ibrated Arrays,” in Proceedings of IEEE Sensor Array and Multichannel Signal

Processing Workshop (SAM), Jul. 2024. selected for the best student paper

contest.

http://arxiv.org/abs/2406.16041
http://arxiv.org/abs/2311.03501
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• T. Liu, S. P. Deram, K. Ardah, M. Haardt, M. E. Pfetsch, and M. Pesavento,

“Gridless parameter estimation in partly calibrated rectangular arrays,” in Pro-

ceedings of IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), Apr. 2024.

• T. Liu, F. Matter, A. Sorg, M. E. Pfetsch, M. Haardt, and M. Pesavento, “Joint

sparse estimation with cardinality constraint via mixed-integer semidefinite pro-

gramming,” in Proceedings of IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), Dec. 2023.

• Y. Zhang, T. Liu, and M. Pesavento, “Direction-of-arrival estimation for corre-

lated sources and low sample size,” in Proceedings of European Signal Processing

Conference (EUSIPCO), Sep. 2023.

• X. Wang, T. Liu, M. Trinh-Hoang, and M. Pesavento, “GPU-accelerated paral-

lel optimization for sparse regularization,” in Proceedings of Sensor Array and

Multichannel Signal Processing Workshop (SAM), Jun. 2020.

• T. Liu, M. T. Hoang, Y. Yang, and M. Pesavento, “A block coordinate de-

scent algorithm for sparse Gaussian graphical model inference with laplacian

constraints,” in Proceedings of IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), Dec. 2019.

• T. Liu, M. T. Hoang, Y. Yang, and M. Pesavento, “A parallel optimization

approach on the infinity norm minimization problem,” in Proceedings of European

Signal Processing Conference (EUSIPCO), Sep. 2019. selected for the best

student paper contest.
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Chapter 2

Preliminaries

This chapter provides an introduction to some basic concepts and facts relevant to the

following discussions in the thesis. We begin with several notions of stationarity, includ-

ing, most importantly, the generalized notions of stationarity for nonconvex nonsmooth

optimization problems, in Section 2.1. For simplicity of presentation, the stationarity

is first discussed for functions with real arguments. In the end, some concepts in com-

plex differentiation are presented in Section 2.3, with which the introduced notions

of stationarity can be readily extended to problems with complex variables as those

studied in Chapter 5. Additionally, Section 2.2 includes several generalized concepts

of convexity that are involved in the analyses in the rest of the thesis.

2.1 Notions of Stationarity

This section begins with a short review of the classic concept of stationarity for smooth

optimization problems, which is established on the derivatives by Fermat’s rule as a

necessary condition for local optimality. We first present some useful concepts.

Definition 2.1 (Directional derivative). The one-sided directional derivative of a func-

tion f : Rn → R at a point x ∈ Rn in a direction d ∈ Rn is defined as

f ′
d(x) = lim

t↓0

f(x+ td)− f(x)
t

, (2.1)

provided that the limit exists, where t ↓ 0 means that t approaches 0 from above.

Definition 2.2 (Directional differentiability). A function f : Rn → R is said to be

directionally differentiable at x ∈ Rn if the directional derivative f ′
d(x) of f at x exists

in any direction d ∈ Rn. The function f is said to be directionally differentiable if it

is directionally differentiable at every x ∈ Rn.

Definition 2.3 (Gradient). The directional derivative of f : Rn → R at x ∈ Rn along

the ith coordinate, i.e., f ′
ei
(x) with ei being the ith standard basis vector (all component

are 0 except for the ith component which is 1), is called the ith partial derivative of

f at x and it is denoted by ∂f
∂xi

, where xi denote the ith component of the vector x.

Provided that all these partial derivatives exist, the gradient of f at x is defined as the

vector

∇f(x) =


∂f
∂x1
...
∂f
∂xn

 ∈ Rn. (2.2)
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Definition 2.4 (Hessian). The Hessian of f : Rn → R at x ∈ Rn, denoted by ∇2f(x),

is an n× n matrix whose (i, j)th entry being

[
∇2f(x)

]
i,j

=
∂2f(x)

∂xi∂xj
. (2.3)

In words, the Hessian contains all the second-order partial derivatives of the function.

Note that the Hessian matrix is symmetric since ∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

.

For analyzing the differential behavior of f only with respect to part of the coordinates,

say x′ = [xi1 , . . . , xik ]
T ∈ Rk with k ≤ n, we define ∇x′f(x) =

[
∂f
∂xi1

, . . . , ∂f
∂xik

]T
∈

Rk as the partial gradient of f in the coordinates x′ at the point x ∈ Rn, and the

partial Hessian ∇2
x′f(x) ∈ Rk×k as the principal submatrix of ∇2f(x) involving the

coordinates x′.

Definition 2.5 (Gateaux differentiability). A function f : Rn → R is called (Gateaux)

differentiable at x ∈ Rn if and only if the gradient ∇f(x) exists and satisfies

(∇f(x))T d = f ′
d(x) ∀d ∈ Rn. (2.4)

Definition 2.6 (Convex function). A function f : Rn → R is said to be convex on the

set X ⊆ Rn if X is convex and

f (αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ∀x,y ∈ X , ∀α ∈ [0, 1]. (2.5)

The function f is said to be strictly convex on X if the above inequality is satisfied with

strict inequality for all x,y ∈ X with x ̸= y, and all α ∈ (0, 1). We say that f is

locally (strictly) convex at x ∈ Rn if there exists some ε > 0 such that f is (strictly)

convex on the ε-neighborhood B(x, ε) ∩ X of x.

A function f is said to be concave if −f is convex. Here are some facts about convex

functions:

• The convex functions are always directionally differentiable [Roc70, Thm. 23.1].

• Provided that f is differentiable, f is convex on a convex set X if and only if

f(y) ≥ f(x) + (∇f(x))T (y − x) ∀y ∈ X . (2.6)

This means that the first-order Taylor approximation is a global lower bound for

a differentiable convex function.



2.1 Notions of Stationarity 11

• Provided that f is twice differentiable, i.e., its Hessian exits everywhere, f is

convex on a convex set X if and only if its Hessian is positive semidefinite:

∇2f(x) ⪰ 0 ∀x ∈ X . (2.7)

For differentiable functions, the concept of stationarity is introduced by Fermat’s rule

as a necessary condition for local minima.

Definition 2.7 (Stationarity for unconstrained minimization). Assume that the func-

tion f : Rn → R is differentiable. A point x ∈ Rn is said to be a stationary point of f

if it satisfies

∇f(x) = 0. (2.8)

By Fermat’s rule, the equation (2.8) is a necessary condition for x being a local min-

imum point of f . In fact, a stationary point x is either a local minimum, a local

maximum, or a saddle point. Now consider an unconstrained minimization problem

where the function f is to be minimized on a subset X ⊆ Rn. The condition (2.8) is

not necessarily satisfied when f attains a local minimum at the boundary of X . Hence,
the concept of stationarity is generalized as follows to further include potential local

minimum points at the boundary of the feasible set [HL01].

Definition 2.8 (Stationarity for constrained minimization). Assume that the function

f : Rn → R is differentiable. A point x ∈ Rn is said to be a stationary point of the

problem of minimizing f over the set X ⊆ Rn if it satisfies

f ′
d(x) ≥ 0 ∀d with x+ d ∈ X . (2.9)

It is easy to show that a local minimum point x fulfills the stationarity condition (2.9)

by the fact that any difference quotient at a local minimum point is nonnegative, i.e.,

f(x+ εd)− f(x)
ε

≥ 0 for any ε > 0 and d ∈ Rn such that x+ εd ∈ X . (2.10)

For an interior point x ∈ int (X ), the inequality in (2.9) needs to be satisfied in

all directions d ∈ Rn and, hence, the condition (2.9) becomes equivalent to (2.8).

Moreover, the concept of stationarity in Definition 2.8 can directly be extended to the

functions that are nondifferentiable but only directionally differentiable.

When f is not stationary at x, then there exists a descent direction of f at x defined

as follows.
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Definition 2.9 (Descent direction). The vector d ∈ Rn is said to be a descent direction

of the function f : Rn → R at x if

f ′
d(x) < 0. (2.11)

When (2.11) is satisfied at x, a decrease of f can be obtained by updating the variable

x along the descent direction d. The reason is that, by the definition of the limit, there

exists a small δ > 0 such that

f(x+ εd)− f(x)
ε

< 0 ∀ ε ∈ (0, δ), (2.12)

since the limit of the difference quotient, i.e., f ′
d(x), is negative. However, the converse

is not always true. That is, f(y) < f(x) for an arbitrary function f does not necessarily

imply that y − x is a descent direction of f at x.

Finally, we remark that, in the general case, the stationarity is only a necessary con-

dition for the local optimality. In the special case where the optimization problem is

convex, the stationarity also implies the global optimality [BV04].

In the following, an introduction to the theory of subdifferentiation for convex and,

more generally, nonconvex nonsmooth functions is provided. In particular, the so-called

subdifferential is proposed as a generalization of the gradient for extending the station-

arity concept to nonsmooth functions. In contrast to smooth optimization, where the

definition of stationarity is standard, there are numerous definitions of subdifferen-

tial proposed for establishing the stationarity concept in nonsmooth optimization, and

each of them possesses attractive properties for a different class of nonconvex nons-

mooth functions. Then, only a few of the existing definitions of subdifferential and

their corresponding stationarity concepts that are relevant to the later discussions in

this thesis will be presented. We refer interested readers to the survey paper [LSM20]

(and the references therein) for a comprehensive comparison of different definitions of

subdifferential and the corresponding generalized stationarity concepts.

2.1.1 Convex Nonsmooth Functions

We begin with a review of the theory of subdifferentiation for convex nonsmooth func-

tions. Inspired by the fact in (2.6) that, if the function f is convex and differentiable

at x, the gradient ∇f(x) provides an affine minorant of f at x, the notion of sub-

differential is introduced in the nonsmooth case as a reasonable generalization of the

gradient.
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Definition 2.10 (Convex subdifferential). For an extended-real-valued convex function

f : Rn → R ∪ {+∞}, the set

∂f(x) =
{
s ∈ Rn | f(y) ≥ f(x) + sT(y − x) for all y

}
(2.13)

is called the subdifferential of f at x ∈ Rn. A vector s ∈ ∂f(x) is called a subgradient

of f at x.

For studying the variation of f only with respect to part of the coordinates, say x′ =

[xi1 , . . . , xik ]
T ∈ Rk with k ≤ n, let ∂x′f(x) ⊆ Rk denote the subdifferential of f

with respect to the coordinates x′ at the point x ∈ Rn. The above definition is given

for extended-valued functions as later we will consider the functions that take infinite

values such as the indicator function. The subdifferential is a closed convex set. The

following properties of the convex subdifferential are useful.

• Differentiable function: If f is differentiable at x, then its gradient at x is the

unique subgradient at x, i.e., ∂f(x) = {∇f(x)} [HL01, Ch. D, Corollary 2.1.4].

• Sum rule: Note that the nonnegative combination preserves the convexity of

functions. For two convex functions f1, f2 : Rn → R ∪ {+∞} and α1, α2 ≥ 0, we

have [HL01, Ch. D, Thm. 4.1.1]

∂(α1f1 + α2f2)(x) = α1∂f1(x) + α2∂f2(x). (2.14)

In particular, later we will consider the sum of two functions.

• Indicator: Define the indicator function IX : Rn → R ∪ {+∞} of a set X ⊆ Rn

as

IX (x) =

{
0, x ∈ X ,
+∞, elsewhere.

(2.15)

The indicator function IX is convex if and only if the set X is convex. When X is

convex, the subdifferential of the indicator function can be constructed by (2.13)

as

∂IX (x) =
{
s ∈ Rn | sT(y − x) ≤ 0 for all y ∈ X

}
(2.16)

if x ∈ X and ∂IX (x) = ∅ otherwise. The set on the right-hand side in (2.16) is

known as the normal cone to X at x, which we denote by NX (x). The normal

cone NX (x) contains all points that do not make an acute angle with any line

segment in X with x as an endpoint. At an interior point x ∈ int (X ), the normal

cone reduces to NX (x) = {0}.
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• Fermat’s rule: With the concept of subdifferential, Fermat’s rule can be gen-

eralized to nondifferentiable functions as

0 ∈ ∂f(x) (2.17)

holds at a local minimum point x of f . This can be used to define the notion of

stationarity for convex nonsmooth functions.

To present a unified notion of stationarity for general convex minimization problems,

including constrained and unconstrained problems, we introduce the following refor-

mulation of constrained problems. The constrained minimization problem (1.1) can be

rewritten as the following unconstrained minimization of an extended-valued function:

min
x∈Rn

f(x) + IX (x). (2.18)

In other words, we enforce the objective function value to be +∞ outside the feasible set

X . In the case where the constrained problem (1.1) is convex, i.e., where f is a convex

function and X is a convex set, the problem (2.18) is an unconstrained minimization

of a convex function, whose stationary points are determined by the condition

0 ∈ ∂(f + IX )(x) = ∂f(x) + ∂IX (x) = ∂f(x) +NX (x). (2.19)

The first equality in (2.19) comes from the sum rule of subdifferential. In summary,

the concept of stationarity for convex nonsmooth optimization problems is given as

follows.

Definition 2.11 (Stationarity for convex nonsmooth problems). Consider the con-

strained minimization problem (1.1) where f is a convex function and X is a convex

set. A point x ∈ X is said to be a stationary point of the problem (1.1) if it satisfies

0 ∈ ∂f(x) +NX (x). (2.20)

Similar to the smooth case, at an interior point of X , the condition (2.20) reduces to

Fermat’s rule (2.17) for unconstrained minimization. Since the problem is convex, the

notion of stationarity in Definition 2.11 also implies global optimality.

It is not difficult to see that the construction (2.13) of the subdifferential does not pro-

vide much useful information when the function is no longer convex. For instance, the

subdifferential does not always coincide with the gradient for nonconvex differentiable

functions. As a consequence, a local maximum of a nonconvex differentiable function

will be identified as a stationary point according to the standard stationarity (2.8) in
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the smooth case, whereas the construction (2.13) of the subdifferential at this point

is empty. Therefore, in the following, we further present two generalized definitions

of subdifferential that extend some desired properties and calculus rules of the gradi-

ent and the convex subdifferential to some important classes of nonconvex nonsmooth

functions.

2.1.2 Nonconvex Nonsmooth Functions

As mentioned earlier, convex functions are known to be directionally differentiable.

Hence, when we move beyond convex functions, one direction to explore is the class

of directionally differentiable functions. In particular, in the convex case, it can be

shown that the subdifferential ∂f(x) defined in (2.13) can be equivalently constructed

as follows by using the directional derivatives.

Definition 2.12 (Generalized subdifferential based on directional derivatives). Assume

that the function f : Rn → R ∪ {+∞} admits directional derivatives, which may be

infinite, at x ∈ Rn. Then the set

∂f(x) =
{
s ∈ Rn | sTd ≤ f ′

d(x) for all d ∈ Rn
}

(2.21)

is considered as a generalized subdifferential of f at x. Its elements are referred to as

generalized subgradients.

For convex functions, the generalized concept of subdifferential (2.21) coincides with

the convex subdifferential (2.13), i.e., ∂f(x) = ∂f(x) [HL01, Thm. 1.2.2]. Moreover,

unlike the convex subdifferential (2.13), the generalized concept of subdifferential (2.21)

is always consistent with the gradient if it exists, i.e., ∂f(x) = {∇f(x)}, regardless of
whether f is convex or not.

The directional derivative f ′
d(x) is positively homogeneous in d, i.e., f ′

γd(x) = γf ′
d(x)

for any d ∈ Rn and γ > 0. When f ′
d(x) is convex in d, which does not require the

convexity of f , some attractive calculus of the convex subdifferential, such as the sum

rule in (2.14) with equality, still holds for the generalized subdifferential ∂f(x). If

f ′
(·)(x) is also proper and closed, then it corresponds to the support function of the

generalized subdifferential, i.e.,

f ′
d(x) = sup

s∈∂f(x)
sTd. (2.22)
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Another motivation of the generalized concept of subdifferential in (2.21) is that, with

this subdifferential, the concept of stationarity can be generalized as follows to the

minimization of nonconvex nonsmooth but directionally differentiable functions over a

convex set.

Definition 2.13 (Directional stationarity). Consider the constrained minimization

problem (1.1) where f is directionally differentiable and X is a convex set. A point

x ∈ X is said to be a stationary point of the problem (1.1) if it satisfies

0 ∈ ∂f(x) +NX (x). (2.23)

It is easy to see that the condition (2.23) is equivalent to the condition (2.9), which

has been proven to be a necessary condition for f attaining a local minimum over X
at x even without the convexity of f . The stationarity defined in Definition 2.13 is

then referred to as directional stationarity (d-stationarity) to be distinguished from the

other generalized notions of stationarity that will be introduced later.

Next, we move beyond directionally differentiable functions and introduce another gen-

eralization of subdifferential, known as the Clarke subdifferential, that can be used to

study the variation of a very general class of nonconvex and nonsmooth functions. We

start to present the definition of Clarke subdifferential with the class of locally Lipschitz

functions, which later will be extended to any functions. The class of locally Lipschitz

functions, defined as follows, captures a broad diversity of nonconvex functions [Cla75]

and includes the class of convex functions as a special case [Roc70, Thm. 10.4].

Definition 2.14 (Global and local Lipschitz continuity). A function f : X → R is

said to satisfy a Lipschitz condition on a subset X ′ ⊆ X if there exists a constant L > 0

such that

|f(x1)− f(x2)| ≤ L∥x1 − x2∥2 ∀x1,x2 ∈ X ′. (2.24)

1) f is said to be Lipschitz continuous (or simply Lipschitz) if it satisfies a Lipschitz

condition with some L > 0 on X .

2) f is said to be Lipschitz near a point x ∈ X if there exists some ε > 0 such that

f restricted to the ε-neighborhood B(x, ε) ∩ X of x is Lipschitz.

3) f is said to be locally Lipschitz if f is Lipschitz near every x ∈ X .

A locally Lipschtiz function may be neither differentiable nor directionally differentiable

even though its difference quotient is bounded. However, the boundedness of difference

quotients ensures that the following generalized directional derivative, which we refer

to as Clarke directional derivative, exists everywhere.
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Definition 2.15 (Clarke directional derivative). [Cla90] The Clarke directional

derivative of a function f : Rn → R at a point x ∈ Rn in a direction d ∈ Rn is

defined as

f ◦
d(x) = lim sup

x′→x, t↓0

f(x′ + td)− f(x′)

t
, (2.25)

where the upper limit exists if f is Lipschitz near x.

Unlike the classic directional derivative (2.1), the Clarke directional derivative (2.25)

captures the variation of the function f in the neighborhood of x, not just along a ray

emanating from x. For locally Lipschitz functions, the Clarke directional derivative

f ◦
d(x) is a finite convex and positively homogeneous function of the direction d for any

x. Thus, inspired by the generalization of subdifferential in (2.21), the following gener-

alized concept of subdifferential is introduced in [Cla90] for the analysis of nonconvex

and nonsmooth functions.

Definition 2.16 (Clarke subdifferential). The Clarke subdifferential of a locally Lip-

schitz function f : Rn → R at x ∈ Rn is defined as the nonempty convex compact set

whose support function is f ◦
d(x), i.e.,

∂Cf(x) =
{
s ∈ Rn | sTd ≤ f ◦

d(x) for all d ∈ Rn
}
. (2.26)

Its elements are referred to as Clarke subgradients.

Also, the Clarke subdifferential ∂Cf(x) defined above is equivalent to the convex hull

of the sets of limits of the gradient of any sequence that converges to x [Cla90, Sec.

2.5], i.e.,

∂Cf(x) = co {s ∈ Rn | ∃xi → x,∇f(xi)→ s} . (2.27)

The above two constructions of Clarke subdifferential cannot be applied to extended-

valued functions, such as the indicator function, which are apparently not locally Lips-

chitz. To resolve this issue, an extended definition of Clarke subdifferential is presented

in [Cla90] for any function taking values in R ∪ {+∞}, locally Lipschitz or not, which

is consistent with Definition 2.16 for locally Lipschitz case. As the discussions in the

following chapters are limited to constrained optimization problems with locally Lips-

chitz objective functions, the extended definition for non-Lipschitz functions is omitted

and the reader is referred to [Cla90, Def. 2.4.10] for the precise definition. In fact, con-

struction (2.26) of the Clark subdifferential is also valid in the case where the Clarke

directional derivatives exist but take values in R ∪ {+∞}.

By definition, the Clarke directional derivative f ◦
d(x) is generally an upper bound on

the difference quotient in the neighborhood of x. In particular, we have

f ′
d(x) ≤ f ◦

d(x), (2.28)
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when the directional derivative f ′
d(x) exists. This leads to the following relation be-

tween the two generalized subdifferentials ∂f in (2.21) and ∂Cf in (2.26):

∂f(x) ⊆ ∂Cf(x), (2.29)

and the two generalized subdifferentials become equivalent when the equality holds

in (2.28). As we will see later, the Clarke subdifferential retains many of the use-

ful properties of the classic convex subdifferential in (2.13) when the equality holds

in (2.28). We first introduce the following concept.

Definition 2.17 (Subdifferentially regular function). [Cla90, Definition 2.3.4] A lo-

cally Lipschitz function f : Rn → R is subdifferentially regular (or simply regular) at

x ∈ Rn if, for every direction d ∈ Rn, the ordinary directional derivative exists and

coincides with the Clarke directional derivative, i.e.,

f ′
d(x) = f ◦

d(x) ∀d ∈ Rn. (2.30)

The function f is said to be regular if it is regular at every x ∈ Rn.

Although the above concept of regularity is described for locally Lipschitz functions,

it can be extended to non-Lipschitz functions in a similar fashion as the Clarke subd-

ifferential (see [Cla90, Def. 2.4.10]). Some classes of regular functions are listed in the

following.

Proposition 2.1 (Some classes of regular functions). [Cla90, Proposition 2.3.6] Let

the function f be locally Lipschitz near x.

1) If f is strictly differentiable at x, then f is regular at x.

2) If f is locally convex at x, then f is regular at x.

Now we are ready to introduce the following properties of the Clarke subdifferential.

• Smooth function: If f is smooth, i.e., continuously differentiable, at x, then

∂Cf(x) = {∇f(x)} (2.31)

In fact, the equality (2.31) holds, i.e., ∂Cf(x) is a singleton, if and only if f

is strictly differentiable at x [Cla90, Prop. 2.2.4]. If f is differentiable, but

not necessarily strictly differentiable, at x, then ∇f(x) ∈ ∂Cf(x) [Cla90, Prop.
2.2.2].
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• Convex function: It is easy to verify that convex functions are locally Lipschitz

and regular. In this case, the Clarke subdifferential coincides with the classic

convex subdifferential as ∂Cf(x) = ∂f(x) = ∂f(x).

• Scaling rule: For any scalar α ∈ R, we have

∂C(αf)(x) = α∂Cf(x). (2.32)

In particular, when f is concave, i.e., −f is convex, we have

∂Cf(x) = −∂C(−f)(x) = −∂(−f)(x). (2.33)

• Sum rule: In the general case, we only have the following weaker version of sum

rule:

∂C(f1 + f2)(x) ⊆ ∂Cf1(x) + ∂Cf2(x). (2.34)

Nevertheless, the sum rule holds with equality if f1 and f2 are regular at x.

• Indicator: Similar to the convex subdifferential, the Clarke subdifferential

∂CIX (x) of the indicator function corresponds to a generalized normal cone, which

we refer to as Clarke normal cone and denote by NC
X (x), at x ∈ X for any set

X , not necessarily convex. Similarly, we have NC
X (x) = {0} at an interior point

x ∈ int (X ). When X is convex, the Clarke normal cone coincides with the con-

vex normal cone, i.e., NC
X (x) = NX (x). The reader is referred to [Cla90] for the

details of the generalized concept of the normal cone.

• Fermat’s rule: With this generalized concept of subdifferential, Fermat’s rule

can be extended to general nonconvex and nonsmooth functions as follows [Cla90,

Prop. 2.3.2]. If f attains a local minimum at x, then

0 ∈ ∂Cf(x). (2.35)

Like the usual concept of stationarity in the smooth case, the condition (2.35) is a

necessary condition for the local optimality but not sufficient unless f is convex.

Applying Fermat’s rule to the reformulation in (2.18), we obtain the following necessary

condition for x being a local minimizer of a nonconvex and nonsmooth function f over

the set X :
0 ∈ ∂C(f + IX )(x). (2.36)

Moreover, the following is also satisfied at x:

0 ∈ ∂Cf(x) + ∂CIX (x) = ∂Cf(x) +NC
X (x), (2.37)
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since, by the sum rule of the Clarke subdifferential, we have

∂C(f + IX )(x) ⊆ ∂Cf(x) + ∂CIX (x). (2.38)

The two conditions (2.36) and (2.37) are generally not equivalent since the sum rule

does not hold with equality. Both conditions are often used to define a generalized

notion of stationarity for nonconvex nonsmooth problems [LSM20,PRA17]. Although

the condition (2.36) is tighter than (2.37), it is usually difficult to calculate the Clarke

subdifferential of the non-Lipschitz function f + IX in practical applications even if

the feasible set X is restricted to be convex. Therefore, in this thesis, we adopt the

following generalized stationarity based on the condition (2.37).

Definition 2.18 (Clarke stationarity). A point x ∈ X is said to be a Clarke stationary

(C-stationary) point of the constrained minimization problem (1.1) if it satisfies

0 ∈ ∂Cf(x) +NC
X (x). (2.39)

As the discussions in the following chapters are limited to the constrained minimization

over a convex set, more specifically, a closed and convex set, we will simplify the Clarke

normal cone NC
X to the convex normal cone NX .

Consider the minimization over a convex feasible set. Due to the inclusion property

in (2.29), if x is a d-stationary point of the problem (1.1), then it is also a C-stationary

point of (1.1). That is, we have the following implication:

d-stationarity =⇒ C-stationarity. (2.40)

This means that, compared to the d-stationarity, the C-stationarity may include more

stationary points that are not local minima. The Clarke subdifferential sacrifices the

tightness of stationarity in order to obtain useful properties and calculus rules, similar

to that of the gradient and the convex subdifferential, for a wide class of nonconvex

and nonsmooth functions. In Figure 2.1, we give two examples to show the implication

in (2.40) at nondifferentiable points as well as the fact that the reverse implication does

not always hold.

2.1.3 Coordinatewise Stationarity

Consider a subclass of the constrained optimization problem (1.1) where the feasible

set X = X1 × · · · × XK is a Cartesian product of lower dimensional closed convex sets

Xk ⊆ Rnk . In this case, the problem can be rewritten as

min
{xk}Kk=1

f(x1, . . . ,xK)

s.t. xk ∈ Xk, k = 1, . . . , K,
(2.41)
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0.5

0

f1(x) = max{−x, x− 1}

(a)

0

f2(x) =

{
x2 if x ≤ 0

−x if x > 0

(b)

Figure 2.1. Examples univariate functions for showing the relation (2.40) between
the two generalized subdifferentials. (a) For f1 : R → R, we have ∂f1(0) = ∅ and
∂Cf1(0) = [−1, 1]. It implies that x = 0, which is a local maximum, is C-stationary
but not d-stationary. The local minimum x = 0.5 is the unique d-stationary point,
which is also C-stationary since ∂Cf(0.5) = ∂f(0.5) = [−1, 1]. (b) For f2 : R→ R, we
have ∂f2(0) = ∅ and ∂Cf2(0) = [−1, 0]. It follows that x = 0, which is neither a local
minimum nor a local maximum, is C-stationary but not d-stationary.

where the optimization variable x in (1.1) is partitioned accordingly as x =

(x1, . . . ,xK) with each xk ∈ Rnk and n1 + · · · + nK = n. A simple idea to break

the problem (2.41) into a sequence of simpler problems by exploiting this separable

structure of the constraints is alternately minimizing the objective function f with

respect to each block variable xk while the other blocks are fixed, which is known as

the block coordinate descent (BCD) method and will be introduced in Section 3.3.

However, since each block xk is updated separately, it in general only achieves a coor-

dinatewise minimum or a coordinatewise stationary point defined as follows.

Definition 2.19 (Coordinatewise minimum). A point x ∈ X is a coordinatewise min-

imum solution of the problem (2.41) if

f(x+ d) ≥ f(x) ∀d = (0, . . . ,0,dk,0, . . . ,0) with xk + dk ∈ Xk,
∀ k = 1, . . . , K. (2.42)

Moreover, x is said to be a coordinatewise local minimum point of the function f if

there exists some ε > 0 such that x is a coordinatewise minimum point of f on the

ε-neighborhood B(x, ε) ∩ X of x.

Similar to the concept of stationarity, the coordinatewise stationarity is introduced

below as a necessary condition for the coordinatewise local minimum.

Definition 2.20 (Coordinatewise stationarity). A point x ∈ X is said to be a coordi-

natewise stationary point of the problem (2.41) if it satisfies

0 ∈ ∂xk
f(x) +NXk

(xk) ∀ k = 1, . . . , K. (2.43)
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Similarly, x is said to be a coordinatewise d-stationary point and a coordinatewise C-

stationary point if (2.43) is satisfied with the generalized subdifferentials ∂xk
f in (2.21)

and ∂Cxk
f in (2.26), respectively.

In other words, a coordinatewise stationary point is a point where f is stationary with

respect to each block of variables, respectively, which is a weaker form of stationarity.

A stationary point is apparently always a coordinatewise stationary point, but the

converse does not necessarily hold. The following concept is introduced to describe the

class of functions for which coordinatewise stationarity also implies joint stationarity.

Definition 2.21 (Coordinatewise regularity). The function f is said to be coordinate-

wise regular at a coordinatewise stationary (resp., in a generalized sense) point x if x

is also a stationary (resp., in a generalized sense) point of f .

It is easy to justify that the following class of functions is coordinatewise regular ev-

erywhere [DFKS15,SS18]:

f(x) = u(x) +
K∑
k=1

vk(xk), (2.44)

where u is continuously differentiable but each vk is not necessarily smooth. That is,

the nonsmooth component of f is also separable across the block variables. Note that

this case certainly does not include all situations where the coordinatewise regularity

holds.

2.2 Notions of Convexity

In this section, we briefly introduce several generalized notions of convexity that are

involved in the analyses in the following chapters. For simplicity, some of the concepts

below are only described for differentiable functions, which can certainly be extended

to some classes of nondifferentiable functions.

Definition 2.22 (Quasiconvex function). A function f : Rn → R is said to be quasi-

convex on the set X ⊆ Rn if X is convex and

f (αx+ (1− α)y) ≤ max (f(x), f(y)) ∀x,y ∈ X , ∀α ∈ [0, 1]. (2.45)

The function f is said to be strictly quasiconvex on X if the above inequality is satisfied

with strict inequality for all x,y ∈ X with x ̸= y, and all α ∈ (0, 1).
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This implies that, if f(y) ≤ f(x), then the function value on the line segment from x

to y is bounded from above by f(x), i.e.,

f(y) ≤ f(x) =⇒ f (αx+ (1− α)y) ≤ f(x) ∀α ∈ [0, 1],∀x,y ∈ X . (2.46)

Definition 2.23 (Pseudoconvex function). [Man94, Sec. 9.3] A function f : Rn → R
is said to be pseudoconvex on the set X ⊆ Rn if

(∇f(x))T (y − x) ≥ 0 =⇒ f(y) ≥ f(x) ∀x,y ∈ X . (2.47)

This implies that any stationary point, defined according to (2.9), of a pseudoconvex

function f on the set X is a global minimizer of f over X [Man94, Thm. 9.3.3].

Moreover, the pseudoconvex function can be equivalently defined by the implication:

f(y) < f(x) =⇒ (∇f(x))T (y − x) < 0 ∀x,y ∈ X . (2.48)

That is, f(y) < f(x) implies that y − x is a descent direction of f [Man94, Thm.

9.3.5].

Definition 2.24 (Strongly convex function). [BV04, Sec. 9.1.2] A function f : Rn →
R is said to be strongly convex on the set X ⊆ Rn with parameter m > 0 if X is convex

and

f(y) ≥ f(x) + (∇f(x))T (y − x) +
m

2
∥y − x∥22 ∀x,y ∈ X , ∀α ∈ [0, 1]. (2.49)

Similar to the property (2.7) of convex functions, if f is twice differentiable, the strong

convexity condition (2.49) implies that

∇2f(x)−mI ⪰ 0. (2.50)

The relationship among different degrees of the generalized concepts of convexity is

summarized in Fig. 2.2 where the arrow indicates the direction of the implication.

2.3 Complex Differentiation

In this section, we present some concepts and facts in complex differentiation, including

the gradient, since we will deal with complex variables in the problem studied in Chap-

ter 5. In particular, we focus on the real-valued functions with complex arguments.
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strong convexity

convexity

pseudoconvexity

quasiconvexity

strict convexity

strict quasiconvexity

Figure 2.2. Relationship among different degrees of convexity [YP17].

First, recall that the first-order Taylor expansion of a function f(x) : Rn → R at

xo ∈ Rn is given with the gradient as

f(xo) + (∇f(x))T (x− xo). (2.51)

Now consider a real-valued function f(z) defined on the complex domain C. By ex-

pressing the complex argument z in terms of its real and imaginary parts as

z = x+ jy with x, y ∈ R, (2.52)

the function f can be regarded as a real-valued function defined on R2, i.e., f(x, y),

which has the following first-order Taylor expansion at the point zo = xo + jyo:

f(xo, yo) +
∂f(xo, yo)

∂x
(x− xo) + ∂f(xo, yo)

∂y
(y − yo). (2.53)

In other words, a real-valued function with complex arguments can always be rewritten

as a function with real arguments of a double size, and then, its variation and station-

arity can be studied in the expanded real variable space. However, in the following, we

introduce a more compact definition of the gradient directly in the complex variable

space based on the Wirtinger derivatives. The first-order Taylor expansion in (2.53)

can be equivalently expressed with the complex argument z and its conjugate z as

f(zo) +
∂f(zo)

∂z
(z − zo) + ∂f(zo)

∂z
(z − zo) , (2.54)

where ∂
∂z

and ∂
∂z

are the Wirtinger partial derivative operators [Wir27, Say14] for a
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complex variable defined as 
∂
∂z

= 1
2

(
∂
∂x
− j ∂

∂y

)
,

∂
∂z

= 1
2

(
∂
∂x

+ j ∂
∂y

)
.

(2.55)

Observe that, as f takes real values, we have

∂f(z)

∂z
=

(
∂f(z)

∂z

)
.

Thus, the first-order Taylor expansion in (2.54) can be simplified to

f(zo) + ℜ
(
2

(
∂f

∂z

)
(z − zo)

)
.

Similarly, for a real-valued function f(z) defined on a complex vector space Cn, the

first-order Taylor expansion at zo ∈ Cn can be written in a compact form as

f(zo) +
n∑
i=1

{
∂f(zo)

∂zi
(zi − zoi ) +

∂f(zo)

∂zi
(zi − zoi )

}

= f(zo) + ℜ
(
2

(
∂f(zo)

∂z

)H

(z − zo)

)
, (2.56)

where 
∂
∂z

=
[
∂
∂z1
, . . . , ∂

∂zn

]T
,

∂
∂z

=
[
∂
∂z1
, . . . , ∂

∂zn

]T
.

(2.57)

Therefore, instead of taking all partial derivatives
(
∂f(z)
∂z

, ∂f(z)
∂z

)
∈ C2n, we define the

gradient of f at z as

∇f(z) = 2
∂f(z)

∂z
∈ Cn, (2.58)

based on the compact expression (2.56) of the first-order Taylor expansion. Moreover,

with the above definition of the gradient, the first-order Taylor expansion at zo can be

expressed in a unified compact form

f(zo) + ℜ
(
(∇f(zo))H (z − zo)

)
, (2.59)

irrespectively the variable z taking values in Rn or Cn. In consequence, the theory of

subdifferentiation, as well as the concepts of stationarity established on it, presented in

Section 2.1 can be readily extended to real-valued functions with complex arguments

with the definition of gradient in (2.58) and the expression (2.59) of the first-order

Taylor expansion.
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Chapter 3

Prior Work on Optimization Frameworks

In this chapter, we provide a short review of several related existing algorithmic frame-

works for optimization, including the majorization-minimization (MM) framework in

Section 3.1, the successive convex approximation (SCA) framework in Section 3.2, and

their block-coordinatewise extensions in Section 3.3. Those algorithms, as well as the

algorithmic frameworks proposed later in Chapter 4, can be classified as approximation-

based methods in the sense that they attempt to solve a difficult optimization problem

by converting it into a sequence of simpler surrogate/approximate problems. The main

difference among them lies in the construction of the approximate problems. Gener-

ally speaking, there are two main desiderata of the approximate function, namely, the

tightness to the original objective function and the low computational complexity of

minimizing the approximate function.

3.1 Majorization-Minimization

In the majorization-minimization (MM) algorithmic framework, also known as the suc-

cessive upper-bound minimization (SUM) algorithm [RHL13], the approximate func-

tion is designed to be a global upper bound of the objective function and tangent to it

at the current point so that the minimizer of the approximate function also provides a

decrease of the original objective function.

Consider the general constrained optimization problem in (1.1). Let x(t) be the ap-

proximate solution at the tth iteration. In each iteration we first construct a surrogate

function f̂
(
x;x(t)

)
: X → R that majorizes the original objective function f at the

current point x(t) according to the following definition.

Definition 3.1 (Majorization). The function f̂
(
x;x(t)

)
is said to be a majorizer of

the function f(x) at the point x(t) if it satisfies the following two conditions:

(Tangent condition) f̂
(
x(t);x(t)

)
= f

(
x(t)
)
, (3.1)

(Domination condition) f̂
(
x;x(t)

)
≥ f(x) for all x ∈ X . (3.2)

In other words, the graph of the majorizing function f̂
(
x;x(t)

)
lies above the graph of

the original function f and is tangent to it at the point x = x(t). Then the variable x
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is updated by minimizing the majorizing function

x(t+1) ∈ argmin
x∈X

f̂
(
x;x(t)

)
. (3.3)

The procedure of MM is visualized in Figure 3.1.

x

f(x)

f̂
(
x;x(t)

)

f̂
(
x;x(t+1)

)

x(t)x(t+1)x(t+2)

f
(
x(t+1)

)
≤ f

(
x(t)
)

Figure 3.1. General principle of the MM algorithm [SBP17].

Due to the tangent and domination conditions, a decrease of the original function f is

obtained through the minimization of the majorizing function.

Proposition 3.1 (Nonincreasing monotone sequence of objective values by the MM

algorithm). If f̂(·; ·) is a majorization of the objective function f by Definition 3.1 and(
x(t)
)
t∈N is a solution sequence generated by the MM algorithm according to (3.3), then

the sequence of objective function values is monotonically nonincreasing, i.e.,

f
(
x(t+1)

)
≤ f̂

(
x(t+1);x(t)

)
≤ f̂

(
x(t);x(t)

)
= f

(
x(t)
)
. (3.4)

Thus, the sequence
(
x(t)
)
t∈N monotonically decreases the original function f and iter-

atively approaches a minimum point of f .

Consider the general case where f is not necessarily smooth but directionally differ-

entiable everywhere in X . It is proven in [RHL13] that the MM algorithm converges

to a stationary point of the original problem (1.1) under the following assumptions,

including the majorization conditions in Definition 3.1.
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Assumption 3.1. Let the approximate function f̂(·; ·) satisfy the following assump-

tions:

1) f̂(x;y) is continuous in (x,y) for all x,y ∈ X ;

2) Tangency: f̂(y;y) = f(y) for all y ∈ X ;

3) Upper bound: f̂(x;y) ≥ f(y) for all x,y ∈ X ;

4) Derivative consistency: f̂ ′
d(x;y)

∣∣
x=y

= f ′
d(y) for all d with y + d ∈ X .

Note that the derivative consistency condition in Assumption 3.1 equivalently requires

that the majorizing function f̂(x;y) preserves the whole generalized subdifferential

defined in (2.21) of the original function f at the tangent point y, i.e., ∂f(y), when

∂f(y) is not empty. Then the following convergence statement is established in [RHL13]

for the MM algorithm.

Theorem 3.1 (Convergence of the MM algorithm). Provided that Assumption 3.1 is

satisfied, every limit point of the solution sequence generated by the MM algorithm is

a d-stationary point, defined in (2.23), of the problem (1.1).

Remark 3.1. The property stated in Theorem 3.1 is usually considered in the litera-

ture as the asymptotic convergence of an iterative algorithm. However, Theorem 3.1

only implies that, if the solution sequence
(
x(t)
)
t∈N is convergent, it must converge to

a stationary point of the problem (1.1). Theorem 3.1 does not say anything about the

convergence of the solution sequence
(
x(t)
)
t∈N, which requires that all its subsequences

converge to the same unique limit point. Similarly, for the other optimization frame-

works presented in this thesis, we analyze their asymptotic convergence only in terms

of the stationarity of limit points of the generated solution sequence. Nevertheless, as

we consider only the case where the problem (1.1) attains the minimum, which im-

plies that f is bounded below, we have the following trivial convergence of the objective

function in the strict sense. If an algorithm generates a monotonically nonincreasing

sequence of objective values, like Proposition 3.1, then, by the monotone convergence

theorem [Ber16, Prop. A.3], this sequence of objective values converges to its mini-

mum. Moreover, the continuity and coercivity of f in Assumption 1.1 ensure that any

sublevel set of f is compact, which further implies that the whole solution sequence(
x(t)
)
t∈N is in a compact set since it monotonically decreases f . Then, according to the

Bolzano–Weierstrass theorem [MN07, Ch.4, Thm. 7], the solution sequence
(
x(t)
)
t∈N

always admits a limit point. The Corollary 1 in [RHL13] claims a convergence of the

MM framework stronger than Theorem 3.1, under an additional assumption that x
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is initialized in a compact sublevel set of f , which also implies that the whole solu-

tion sequence
(
x(t)
)
t∈N is in a compact set. Specifically, it claims that the distance

from the generated solution sequence to the set of the d-stationary points of the prob-

lem (1.1) asymptotically converges to zero.1 However, the above corollary in [RHL13]

is not correct because the proof does not account for the fact that, according to the

Bolzano–Weierstrass theorem, the compactness of a sequence only ensures the existence

of a convergent subsequence, i.e., the existence of a limit point, not the convergence of

the whole sequence.

In the special case where both the original function f(x) and the majorizing function

f̂(x;y) are differentiable in x and the feasible set X = Rn, the derivative consistency

condition 4) in Assumption 3.1 is enforced by the majorization conditions, which can

be shown as follows. The majorization conditions 2) and 3) imply that

f̂(y + εd;y)− f̂(y;y)
ε

≥ f(y + εd)− f(y)
ε

for any direction d and ε > 0. Taking limits for ε→ 0 produces

f̂ ′
d(x;y)

∣∣
x=y
≥ f ′

d(y) ∀d. (3.5)

Since both f(x) and f̂(x;y) are differentiable in x, we have

dT∇xf̂(y;y) ≥ dT∇xf(y). (3.6)

The inequality (3.5) naturally also holds for the opposite direction −d, which leads to

the result

−dT∇xf̂(y;y) ≥ −dT∇xf(y). (3.7)

Then, combining (3.6) and (3.7), we can conclude that the derivative consistency con-

dition 4) in Assumption 3.1 is satisfied as

dT∇xf̂(y;y) = dT∇xf(y) ∀d. (3.8)

Moreover, the result in (3.8) also implies the consistency of gradient between the

original function f(x) and the majorizing function f̂(x;y) at the point y, i.e.,

∇xf̂(y;y) = ∇xf(y), for all y.

Remark 3.2 (Inexact MM). Strictly speaking, the exact minimization of the majorizing

function is not required in order to obtain a nonincreasing sequence of objective function

values since (3.4) depends only on decreasing the majorizing function, not minimizing

it. Instead of minimizing exactly f̂
(
x;x(t)

)
, one can find a point x(t+1) that satisfies

f̂
(
x(t+1);x(t)

)
≤ f̂

(
x(t);x(t)

)
. This extension is referred to as the generalized MM

algorithm [DLR77,MK07] or the inexact MM algorithm [BP18].

1This property still does not imply the convergence of the solution sequence unless the problem (1.1)
has a unique d-stationary point.
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In fact, the monotonic descent property (3.4) requires neither the exact minimization

of the majorization nor the derivative consistency between the majorization and the

original objective function. Those conditions are required to ensure that the solution

sequence stops at, or asymptotically approaches, a stationary point of the original

problem. However, as we will see in the next chapter, those requirements can be

relaxed in order to construct an approximate problem that can be more efficiently

solved.

The survey paper [LWLZ21] provides a unified treatment of the convergence of MM

algorithms in different scenarios, including results for diverse classes of nonconvex

nonsmooth problems and nonasymptotic analysis. A comprehensive overview of MM

algorithms can be found in the book [Lan16] and the survey papers [SBP17,Ngu17],

together with various techniques for constructing a majorizing function that have been

considered in the literature. In fact, many other algorithms can be viewed as spe-

cial cases of MM generated with different majorization techniques, such as the well-

known expectation-minimization (EM), proximal algorithms, concave-convex proce-

dures (CCCP), and so on [SBP17]. Most of the majorization techniques are derived

from the properties of convex functions and we introduce below one of them that is

involved in the discussions in the rest of this thesis.

Consider the class of functions f that can be decomposed as

f(x) = f0(x) + fccv(x), (3.9)

where fccv is a differentiable concave function. Recall the inequality in (2.6) that a

convex function is minorized by its supporting hyperplane. Thus, a majorization of

f in (3.9) at a point y can be obtained by linearizing the concave component fccv as

follows:

f(x) ≤ f0(x) + fccv(y) + (∇fccv(y))T (x− y). (3.10)

As a special case, if f0 is convex, the minimization of f in (3.9) becomes an instance

of DC (Difference of Convex functions) program [LTPD18, LTPD23].In this case, the

resulting majorizing function in (3.10) is also convex and the MM algorithms generated

by this majorization technique are called concave-convex procedures (CCCP) [YR03,

QD11,LB16]. Furthermore, the supporting hyperplane inequality also implies that, if

there exists a differentiable convex function fcvx(x) that preserves the function value

and the gradient of the concave function fccv(x) at y, then fcvx is also a majorization

of fccv at y as

fccv(x) ≤ fccv(y) + (∇fccv(y))T (x− y) ≤ fcvx(x). (3.11)
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Thus, the function f in (3.9) can be majorized by

f(x) ≤ f0(x) + fcvx(x). (3.12)

In some scenarios, especially when f0 is nonconvex, a convex upper bound for the

concave component fccv is preferred to a tighter linear one, since it can be used to

generate a convex overall majorizing function, whose minimizer can be obtained at

a lower computational cost. Of course, depending on the specific structure of the

concave function, there may also exists a concave majorization, which is tighter than

the linear one. Note that both the majorization techniques in (3.10) and (3.12) satisfy

the derivative consistency condition in Assumption 3.1 because of the differentiability

of fccv.

3.2 Successive Convex Approximation

In practice, it may not be easy to construct a global upper bound for the objective func-

tion unless it possesses certain convexity/concavity structure. An alternative approach

is the successive convex approximation (SCA) framework [YP17,SFL17a,SS18], where

the approximate function is not required to be a global upper bound of the original

objective function but a convex function. By relaxing the global bounding requirement,

we can construct an approximate problem that can be solved at a lower computational

cost, even in a parallel or distributed manner.

We first consider the case where the objective function f is smooth. At the tth iteration,

we first solve the following approximate problem:

x̂(t) ∈ argmin
x∈X

f̂
(
x;x(t)

)
, (3.13)

where f̂
(
x;x(t)

)
is a convex approximation of f at the point x(t). More generally, only

a weaker form of convexity, namely, pseudoconvexity defined in Section 2.2, is required

on the approximate function f̂ for the convergence of the algorithm. The solution x̂(t)

does not always decrease the original function f . However, under the conditions in

Assumption 3.2, the vector x̂(t) − x(t) indicates a descent direction of f , i.e.,(
∇xf(x

(t))
)T (

x̂(t) − x(t)
)
< 0. (3.14)

Then the variable x is updated along the descent direction as

x(t+1) = x(t) + γ(t)
(
x̂(t) − x(t)

)
(3.15)
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with a suitable step size γ(t) ∈ (0, 1]. The next iterate x(t+1) obtained by (3.15) is

located on the line segment between x(t) and x̂(t) and, hence, is ensured to belong

to the feasible set X due to the convexity of X . The following approaches are often

employed to determine the step size γ(t) [SFL17a,RHL13,YP17].

1. Constant step size: The step size γ(t) is fixed at all iterations.

2. Diminishing step size: The step size γ(t) is chosen so that

lim
t→∞

γ(t) = 0 and
∞∑
t=0

γ(t) =∞.

3. Line search: The line search approach finds a step size γ(t) that ensures a

sufficient decrease of the original function f . Hence, similar to the MM algorithm,

a nonincreasing sequence of objective function values is obtained in this approach,

i.e.,

f
(
x(t+1)

)
≤ f

(
x(t)
)
. (3.16)

In the following, we briefly introduce two widely used line search methods, namely

the exact line search and the successive line search (also known as back-

tracking line search). In the exact line search, the step size γ(t) is chosen such

that the original function f is minimized along the descent direction x̂(t) − x(t).

That is, γ(t) is the optimal solution of the following optimization problem:

γ(t) ∈ argmin
γ∈[0,1]

f
(
x(t) + γ(x̂(t) − x(t))

)
. (3.17)

If the optimal solution of problem (3.17) can not be computed efficiently, the

successive line search can alternatively be employed, which successively decreases

the step size until a required amount of decrease on the original function f is

achieved. A commonly used stopping criterion for the successive line search is the

Armijo rule. In the Armijo rule, we successively try step sizes γ ∈ {β0, β1, . . .},
i.e., a geometric sequence with a constant decrease rate 0 < β < 1, until we

find the smallest k ∈ N such that x(t) + γ(x̂(t) − x(t)) with γ = βk satisfies the

following sufficient decrease condition:

f
(
x(t) + γ(x̂(t) − x(t))

)
− f

(
x(t)
)
≤ γσδ

with δ =
(
∇xf(x

(t))
)T (

x̂(t) − x(t)
)
, (3.18)

where 0 < σ < 1 and δ represents the directional derivative of f in the descent

direction x̂(t) − x(t). In other words, the step size is obtained by solving the

following optimization problem:

γ(t) = argmax
γ

γ s.t. γ ∈ {βk | k ∈ N} and (3.18). (3.19)
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Common choices for the parameters are β = 0.5 and σ = 0.001.

In this thesis we focus on the line search approach. In this case, i.e., when the descent

property (3.16) holds, the convergence of the SCA algorithm is demonstrated in [YP17]

under the following regularity conditions. The solution set of the approximate prob-

lem (3.13), which is a set-valued map of the point x(t), is denoted by

M
(
x(t)
)
=

{
argmin

x∈X
f̂
(
x;x(t)

)}
. (3.20)

Assumption 3.2. We make the following assumptions:

1) f is continuously differentiable on X ;

2) f̂(x;y) is continuously differentiable in x ∈ X for any given y ∈ X and contin-

uous in y ∈ X for any given x ∈ X ;

3) Gradient consistency: ∇xf̂(y;y) = ∇xf(y) for all y ∈ X ;

4) f̂(x;y) is pseudoconvex in x ∈ X for any given y ∈ X ;

5) The map M
(
x(t)
)
is nonempty for t ∈ N;

6) Given any convergent subsequence
(
x(t)
)
t∈T with T ⊆ N, the sequence

(
x̂(t)
)
t∈T

is bounded.

In particular, the gradient consistency ensures that any fixed point y ∈ M(y) is a

stationary point of the original problem. If a fixed point is not achieved in a finite

number of iterations, with the conditions 5 and 6, the asymptotic convergence of the

SCA framework is established in the following theorem [YP17].

Theorem 3.2 (Convergence of the SCA algorithm). Suppose that Assumption 3.2

is satisfied and that the line search approach is employed. Then every limit point

of the solution sequence generated by the SCA algorithm is a stationary point of the

problem (1.1).

As for a fixed or diminishing step size, the convergence of the SCA algorithm is es-

tablished with additional assumptions including that the original function f is Lips-

chitz differentiable and that the approximate function f̂(x;y) is strongly convex in x.

See [SFL17a] for the details of the additional regularity conditions and the proof of

convergence in this case. Furthermore, if the convex approximation f̂(x;x(t)) is also

designed to be a majorization of f at x(t), then the algorithm can also be viewed as

an instance of the MM algorithm. In this case, the constant step size γ(t) = 1 can be

employed as it already ensures the descent property (3.16), and the convergence of the

algorithm is justified under the MM framework.
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3.2.1 Extension to Structured Nonsmooth Problems

The procedure and convergence result of the SCA algorithm described above are es-

tablished under the smoothness condition on the objective function. However, all the

preceding results can be easily generalized to the following class of structured nons-

mooth problems [YP17, SFL17a]. Consider the following modification of the smooth

problem in (1.1):

min
x∈X

f(x) + g(x), (3.21)

where the additional regularization term g is convex but possibly nondifferentiable.

Typical examples for g are ∥·∥1 and ∥·∥2. In particular, the problem (3.21) can be

rewritten as an instance of problem (1.1) with the help of an auxiliary variable as

follows:
min

x∈Rn, y∈R
f(x) + y

s.t. x ∈ X , g(x) ≤ y.
(3.22)

The objective function in (3.22) is smooth and the feasible set C = {(x, y) ∈ Rn+1 |
x ∈ X , g(x) ≤ y} is closed and convex due to the convexity of g. Thus, the preceding

algorithmic procedure and convergence result can be readily applied to the reformulated

problem (3.22). In particular, the approximate problem around (x(t), y(t)) at the tth

iteration is (
x̂(t), ŷ(t)

)
= argmin

x∈Rn,y∈R
f̂
(
x;x(t)

)
+ y s.t. x ∈ X , g(x) ≤ y, (3.23)

where only the smooth function f(x) needs to be replaced by its approximation

f̂(x;x(t)) constructed to satisfy Assumption 3.2 except for the pseudoconvexity condi-

tion 4). Instead, to ensure that Assumption 3.2 is also satisfied for the overall objective

function of the approximate problem (3.23), most importantly, to ensure the pseudo-

convexity of the overall objective function, we make the following stricter assumption

on the approximate function f̂ :

Assumption 3.3. f̂(x;y) is convex in x ∈ X for any given y ∈ X .

The convexity of the approximate function f̂
(
x;x(t)

)
ensures that the whole objective

function f̂
(
x;x(t)

)
+ y in (3.23) is convex and, hence, pseudoconvex in (x, y). More-

over, the gradient consistency between the original and the approximate function at(
x(t), y(t)

)
can be easily verified as follows

∇x

(
f̂
(
x(t);x(t)

)
+ y(t)

)
= ∇x

(
f
(
x(t)
)
+ y(t)

)
,

∇y

(
f̂
(
x(t);x(t)

)
+ y(t)

)
= ∇y

(
f
(
x(t)
)
+ y(t)

)
= 1.
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Therefore, the overall approximate function f̂
(
x;x(t)

)
+y also satisfies Assumption 3.2.

The approximate problem (3.23) can be rewritten as

x̂(t) ∈ argmin
x∈X

f̂
(
x;x(t)

)
+ g(x), (3.24)

and the solution for the auxiliary variable ŷ(t) = g
(
x̂(t)
)
as y needs to be minimized.

Again, only the smooth component f is replaced by a convex approximation, whereas

the convex regularization term g remains unaltered. Then the variables x and y are

updated along the descent direction by

x(t+1) = x(t) + γ(t)
(
x̂(t) − x(t)

)
, (3.25a)

y(t+1) = y(t) + γ(t)
(
ŷ(t) − y(t)

)
. (3.25b)

Note that the fact that y(t) ≥ g
(
x(t)
)
and ŷ(t) = g

(
x̂(t)
)
ensures that y(t+1) ≥ g

(
x(t+1)

)
,

due to the Jensen’s inequality of the convex function g [BV04]. On the other hand, a

lower value of f(x) + y can always be achieved by further reducing y(t+1) to g
(
x(t+1)

)
.

That is, we can replace the update rule (3.25b) by the enhanced rule

y(t+1) = g
(
x(t+1)

)
∀ t ∈ N (3.26)

without destroying the monotonic decrease of the objective function value provided by

the line search method. Consequently, as shown in the above procedure, the auxiliary

variable y does not need to be calculated explicitly in the SCA algorithm for the class

of nonsmooth problem in (3.21).

Furthermore, a modified line search method is developed in [YP17] for the nonsmooth

problem (3.21) based on the equivalent reformulation in (3.22) to find a suitable step

size γ(t) for the variable updating at a lower computational cost. The modifications

on the exact line search and the successive line search, respectively, are presented as

follows.

1. Exact line search: The exact line search carried out over the original nondif-

ferentiable objective function in (3.21) is given by

γ(t) ∈ argmin
γ∈[0,1]

f
(
x(t) + γ(x̂(t) − x(t))

)
+ g

(
x(t) + γ(x̂(t) − x(t))

)
, (3.27)

which is computationally demanding since g is nondifferentiable. To reduce the

computational complexity, we can instead apply the exact line search to the

reformulated smooth objective function in (3.22), which leads to the following

optimization problem:

γ(t) ∈ argmin
γ∈[0,1]

f
(
x(t) + γ(x̂(t) − x(t))

)
+
(
y(t) + γ(ŷ(t) − y(t))

)
. (3.28)
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Removing the auxiliary variable y according to the update rule in (3.25b), we

obtain

γ(t) ∈ argmin
γ∈[0,1]

f
(
x(t) + γ(x̂(t) − x(t))

)
+ γ

(
g
(
x̂(t)
)
− g

(
x(t)
))
, (3.29)

where the constant g
(
x(t)
)
is omitted. This is equivalent to replacing g, as a

function of γ, in (3.27) by the following linear majorization on the interval [0, 1]:

g
(
x(t)
)
+ γ

(
g
(
x̂(t)
)
− g

(
x(t)
))
, (3.30)

which is constructed based on the Jensen’s inequality of convex functions [BV04].

Hence, the step size γ(t) obtained by (3.29) also ensures a decrease of the original

objective function in (3.21) according to the principle of the MM algorithm.

2. Successive line search (Armijo rule): Similarly, we can apply the successive

line search to the smoothed objective function in (3.29) to achieve a decrease

of the original objective function at a lower computational cost. Specifically,

the step size γ is successively reduced until the following stopping criterion is

satisfied:

f
(
x(t) + γ(x̂(t) − x(t))

)
− f

(
x(t)
)
+ γ

(
g
(
x̂(t)
)
− g

(
x(t)
))
≤ γσδ

with δ =
(
∇xf(x

(t))
)T (

x̂(t) − x(t)
)
+ g

(
x̂(t)
)
− g

(
x(t)
)
. (3.31)

Another variant of the Armijo rule for the class of nondifferentiable prob-

lem in (3.21) is also often used, which directly evaluates the decrease of the

original objective function, instead of the smoothed majorization, to avoid

the poor approximation of the linear majorization in (3.30) in some scenar-

ios [HSDR14, YT11, TY09]. Define h(x) = f(x) + g(x). The step size γ is

successively reduced until the following stopping criterion is satisfied:

h
(
x(t) + γ(x̂(t) − x(t))

)
− h

(
x(t)
)
≤ γσδ

with δ =
(
∇xf(x

(t))
)T (

x̂(t) − x(t)
)
+ g

(
x̂(t)
)
− g

(
x(t)
)
, (3.32)

where the original objective function h is evaluated and only the required suffi-

cient decrement is calculated according to the smoothed majorization in (3.29)

3.2.2 Separable Convex Approximation

The SCA framework includes many other algorithms as special cases when different

approximate functions are employed. In this thesis, we are interested in separable ap-

proximation techniques since, in many applications, the constraints are separable such



38 Chapter 3: Prior Work on Optimization Frameworks

that the optimization variables can be decomposed into several independent blocks,

as shown in (2.41). This block structure can often be exploited for designing low-

complexity algorithms that can be implemented in a parallel or distributed manner,

e.g., on modern multi-core DSPs, GPUs and FPGAs as well as in cloud computing

networks.

Let us consider a modified version of the minimization problem in (2.41) with an

additional convex nonsmooth regularization term g(x) that is also separable across the

blocks of variables. Consider the following class of problems:

min
{xk}Kk=1

f(x1, . . . ,xK) +
K∑
k=1

gk(xk)︸ ︷︷ ︸
g(x)

s.t. xk ∈ Xk, k = 1, . . . , K,

(3.33)

where f is smooth but possibly nonconvex, each gk(xk) is convex in the corresponding

block variable xk but not necessarily smooth, and the feasible set has a Cartesian

product structure with Xk being closed and convex for all k = 1, . . . , K. As discussed

in the previous subsection, the regularization term g will remain unchanged due to its

convexity, and only the smooth component f is approximated by a convex function.

To take advantage of the separable structure of the constraints, we can employ the

following type of approximation:

f̂
(
x;x(t)

)
=

K∑
k=1

f̂k
(
xk;x

(t)
)
, (3.34)

where each component f̂k is a coordinatewise convex approximation of f that satisfies

the gradient consistency at x(t) along the coordinates of xk, i.e., ∇xk
f̂k

(
x
(t)
k ;x(t)

)
=

∇xk
f
(
x(t)
)
. It is not difficult to verify that the overall approximation f̂(x;x(t)) is

convex in x and preserves the gradient of f at x(t) due to the separability of the

gradient. The advantage of this type of approximation is that the resulting approximate

problem (3.24) can be decomposed into the following K subproblems:

x̂k ∈
{
argmin
xk∈Xk

f̂k
(
xk;x

(t)
)
+ gk(xk)

}
∀ k = 1, . . . , K. (3.35)

Each subproblem in (3.35) exclusively depends on a single block variable and, hence,

can be solved independently. The separability of the approximate problem makes this

algorithm suitable for implementation on modern parallel or distributed architectures.

In the following, we briefly introduce several techniques for constructing a separable

convex approximation in the form (3.34).
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• Nonlinear Jacobi algorithm: Consider that the function f has a blockwise

convexity structure. That is, f is convex in each block variable xk separately,

but not jointly. In this case, the nonlinear Jacobi algorithm [YP17, SFS+14,

BT15] can be used to construct a separable convex approximation. The convex

approximation of f with respect to each block variable xk is simply chosen to be

f̂k
(
xk;x

(t)
)
= f

(
xk,x

(t)
−k

)
, (3.36)

where all the other block variables except xk, contained by x−k =

(x1, . . . ,xk−1,xk+1, . . . ,xK), are fixed at their value at the current iterate. In

other words, the overall approximation f̂ in (3.34) captures the variation of f

along the coordinates of each block variable xk, respectively, when the other

blocks are fixed.

• Quadratic approximation: For a general function f , the quadratic approxima-

tion can be employed, which corresponds to the Newton-type methods [Ber16].

The general expression for a quadratic approximation of f along the coordinates

of the block xk is given by

f̂k
(
xk;x

(t)
)
= f

(
x(t)
)
+
(
∇xk

f
(
x(t)
))T (

xk − x
(t)
k

)
+

1

2

(
xk − x

(t)
k

)T
Hk

(
x
(t)
k

)(
xk − x

(t)
k

)
. (3.37)

The Hessian Hk

(
x(t)
)
∈ Rnk×nk of the quadratic approximation f̂k, which pos-

sibly depends on x(t), is designed to be an approximation of the partial Hessian

∇2
xk
f(x(t)) of the original function f at x(t) restricted to the coordinates of xk,

if existent. Note that, although the convexity of f̂k only requires the positive

semidefiniteness of Hk

(
x(t)
)
, Hk

(
x(t)
)
is usually designed to be positive defi-

nite to avoid that f̂k is unbounded from below. The reason is that the function

f̂k restricted to the line defined by an eigenvector of Hk(x
(t)) associated with a

zero-eigenvalue becomes linear. If f is partially strictly convex in the block xk,

i.e., ∇2
xk
f(x(t)) ≻ 0, one may simply choose Hk(x

(t)) = ∇2
xk
f(x(t)), and (3.37)

becomes the second-order Taylor expansion of f at x(t) restricted to xk.

Moreover, the quadratic approximation can be used to construct a convex approx-

imation that also majorizes the original function by choosing Hk

(
x(t)
)
= M , if

exists, such that M − ∇2
xk
f(x(t)) ⪰ 0 for all xk ∈ Xk. In particular, when the

partial gradient ∇xk
f(x) is not necessarily differentiable but Lipschitz continu-

ous with a constant Lk > 0, a convex quadratic majorizer can be obtained by

choosing Hk(x
(t)) = LkIk.

Another popular subclass of quadratic approximation is

f̂k
(
xk;x

(t)
)
= f

(
x(t)
)
+
(
∇xk

f
(
x(t)
))T (

xk − x
(t)
k

)
+

1

2τk

∥∥∥xk − x
(t)
k

∥∥∥2
2
, (3.38)
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i.e., with Hk

(
x(t)
)
= 1

τk
Ik and τk > 0, which is the idea of the proximal gradi-

ent method [PB14,BT15]. The proximal-type approximation economizes on the

computational complexity compared to the Taylor expansion, due to the diago-

nal structure of the Hessian. The parameter τk is often interpreted as a step size

in the proximal gradient method. The reason is that, the minimization of only

f̂k admits the solution x
(t)
k − τk∇xk

f
(
x(t)
)
, which is equivalent to an gradient

descent update with a step size τk.

Without increasing the computational complexity of the approximate problem,

one may generalize the Hessian in (3.38) to an arbitrary positive diagonal matrix

so that part of the information of the second-order variations of the original

function f can be preserved in the quadratic approximation. As an example, we

retain the diagonal structure of Hk

(
x(t)
)
but choose the diagonal entries to be

[
Hk

(
x(t)
)]
i
= max

{
∂2f(x(t))

∂x2k,i
, ε

}
for i = 1, . . . , nk, (3.39)

where xk,i is the ith element of the block xk and ε is some positive value to ensure

the positive definiteness of Hk

(
x(t)
)
.

The above approximation techniques can certainly be used in a hybrid manner. For

example, one may choose the Jacobi-type approximation for the blocks in which the

original function f is partially convex and use the quadratic approximation for the

other blocks. Also, a simple proximal term 1
2τk
∥xk − x

(t)
k ∥22 may be added to the

Jacobi-type approximation (3.36) so that the approximate problem admits a unique

solution, if required. More convex approximation techniques can be found in [YP17,

YPLO20,SFL17a,SS18].

3.3 Block Coordinate Descent and Inexact Block

Coordinate Descent

3.3.1 Block Coordinate Descent

Consider the previously introduced class of optimization problems in (2.41) with sepa-

rable constraints. Another class of method that exploits the separable structure of the

constraints is the block coordinate descent (BCD) method [Ber16,BT15,OR70], which

appears in the literature under other different names such as the nonlinear Gauss-Seidel
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method [BT15] and the alternating minimization method. The BCD method is one of

the first variable decomposition methods for solving the above problem. In contrast

to the nonlinear Jacobi algorithm in (3.36), where the partial minimizations with re-

spect to the different block variables xk are performed simultaneously, the nonlinear

Gauss-Seidel algorithm minimizes the objective function with respect to each block

variable successively in a predetermined or adaptive order. Specifically, at the tth iter-

ation of the algorithm, the selected block variable, say xk, is updated by its nonlinear

best-response

x
(t+1)
k = argmin

xk∈Xk

f
(
xk,x

(t)
−k

)
, (3.40)

whereas the rest of the variables are fixed to their values of the preceding iteration,

i.e.,

x
(t+1)
i = x

(t)
i ∀ i ̸= k. (3.41)

Since the block variables are updated sequentially, the newest value of the other block

variables is always used in the update (3.40) of each block variable, which sometimes

leads to faster convergence than the parallel-update counterpart – the Jacobi algorithm.

Also because of its simple implementation, the BCD method has been employed in

various applications such as image denoising and reconstruction [CZ97], dynamic pro-

gramming [HS75, LK70, ZW89], and power allocation in wireless communication sys-

tems [SRLH11]. Especially for convex problems, the partial minimization in (3.40) can

usually be solved at a much lower computational cost than the original problem (2.41),

and sometimes even admits a closed-form solution. However, when f is nonconvex,

it often becomes difficult to solve the per block subproblem (3.40) exactly. Moreover,

convergence of the BCD method typically requires that f is (pseudo)convex or that the

partial minimization in (3.40) has a unique solution. A summary of the convergence

results of the BCD methods in various scenarios is provided in [Tse01]. Otherwise, a

classic example of Powell [Pow73] shows that, due to the lack of convexity, the solution

sequence generated by the BCD method does not approach any of the stationary points

of the problem.

Similar to the MM and SCA frameworks described in the previous sections, the con-

vergence of BCD also relies on the monotonic decrement of the objective function.

This, as mentioned in Remark 3.2, does not strictly require the exact solution of the

subproblem (3.40). Therefore, to overcome the aforementioned drawbacks of the BCD

method, especially for nonconvex problems, one may instead minimize a well-structured

approximation of the objective function with respect to a block variable at each iter-

ation, which is referred to as the inexact BCD method. In the following subsections,

we briefly introduce two inexact BCD methods, i.e., the extensions of the MM and

SCA frameworks, respectively, in a BCD manner, where the approximate functions
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are designed to be global upper bounds of the original objective function and convex,

respectively.

As a trivial generalization of the preceding BCD procedure, one may update more than

one block variable by minimizing the objective function or its approximation jointly

with respect to multiple selected block variables. Moreover, the blocks can be chosen

according to a fixed, random, or adaptive order. Let I(t) ⊆ {1, . . . , K} denote the set

of indices of the block variables selected to be updated at iteration t. We list below

some of the block selection rules are commonly used in the literature [HRLP16,RHL13,

YPLO20]:

1. Deterministic rules:

• Cyclic rule: The block variables are updated in a fixed cyclic order, e.g.,

I(t) = { mod (t,K) + 1}.
• Essentially cyclic rule: There exists a given period T ≥ 1 during which

each block is updated at least once, i.e.,

T⋃
i=1

I(t+i) = {1, . . . , K} ∀ t ∈ N. (3.42)

The cyclic rule is a special case of the essentially cyclic rule with T = K.

2. Randomized rule: At each iteration t, each block is independently and ran-

domly chosen according to some nonzero probability, i.e.,

Pr
(
k ∈ I(t)

)
= p

(t)
k ∀ k = 1, . . . , K (3.43)

with
∑K

k=1 p
(t)
k = 1 and p

(t)
k ≥ pmin > 0. The selections are independent from that

made at the previous iterations. Some examples of selection distributions can be

found in [DFKS15].

3. Greedy rules: Choose the block that may lead to a fast convergence, e.g.,

the block with the largest gradient (Gauss-Southwell rule) or the block that

gives the largest improvement on the objective function value (maximum block

improvement rule). More recent greedy rules are proposed in [NSL+15,NLS22].

For the simplicity of presentation, we will describe the following inexact BCD methods

with a single block variable updated at each iteration unless otherwise noted.

Finally, we recall the standard property of a limit point of any convergent coordinate-

wise scheme, including both exact and inexact BCD methods, that has been mentioned
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in Section 2.1. Since the optimization variables are coordinatewise updated, only a co-

ordinatewise stationary point is asymptotically achieved, unless the objective function

is coordinatewise regular.

3.3.2 Block Successive Upper-Bound Minimization

The block successive upper-bound minimization (BSUM) framework is an extension of

the MM framework in a BCD manner, which successively updates each block variable

by minimizing a coordinatewise global upper bound of the original objective function.

Consider the optimization problem (2.41) with the separable constraints. At the tth

iteration, let xk be the block variable selected to be updated at the tth iteration,

whereas the other block variables are fixed to their values at the current iterate x(t).

We first construct an approximate function f̂k(xk;x
(t)) that is a majorization of f

at x(t) in the coordinates of xk. Then the selected block variable xk is updated by

minimizing the majorizing function

x
(t+1)
k ∈ argmin

xk∈Xk

f̂k
(
xk;x

(t)
)
, (3.44)

which also ensures a decrease of the original objective function. Specifically, we make

the following assumptions on the coordinatewise approximate functions.

Assumption 3.4. We make the following assumptions for all k = 1, . . . , K:

1) f̂k(xk;y) is continuous in (xk,y) for all xk ∈ Xk and y ∈ X ;

2) Tangency: f̂k(yk;y) = f(y) for all y ∈ X ;

3) Upper bound: f̂k(xk;y) ≥ f(xk,y−k) for all xk ∈ Xk and y ∈ X ;

4) Derivative consistency:
(
f̂k

)′
d
(xk;y)

∣∣
xk=yk

= f ′
d(y)

for all d = (0, . . . ,0,dk,0, . . . ,0) with yk + dk ∈ Xk;

5) f̂k(xk;y) is quasiconvex in xk ∈ Xk for any given y ∈ X ;

6) The subproblem (3.44) has a unique solution for any x(t) ∈ X .

The MM algorithm can be viewed as a single-block version of BSUM. Nevertheless,

compared to Assumption 3.1 for the MM algorithm, the convergence of the BSUM

algorithm additionally requires the quasiconvexity of the coordinatewise approximate

functions and the uniqueness of the solution of each subproblem, which is similar to the
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convergence conditions on the subproblem (3.40) of the exact BCD method [Tse01].

As an advantage of the inexact BCD method over the exact BCD method, we can

properly construct an approximate function to satisfy the aforementioned conditions

when the original objective function does not. Then, the convergence of the BSUM

algorithm under Assumption 3.4 is proven in [RHL13] for deterministic update rules,

which can be stated as follows.

Theorem 3.3 (Convergence of the BSUM algorithm). [RHL13, Thm. 2] Provided that

Assumption 3.4 is satisfied, then every limit point z of the solution sequence generated

by the BSUM algorithm is a coordinate d-stationary point of the problem (2.41). In

addition, if f is coordinatewise regular at z, then z is a d-stationary point of (2.41).

3.3.3 Block Successive Convex Approximation

As a coordinatewise extension of the SCA framework, the block successive convex

approximation (BSCA) framework successively updates each block variable by mini-

mizing a convex approximation of the original objective function in the corresponding

coordinates.

We first consider the case where the objective function f in (2.41) is smooth. At the

tth iteration, provided that the block variable xk is chosen to be updated, we first solve

the following approximate problem:

x̂
(t)
k ∈ argmin

xk∈Xk

f̂k
(
xk;x

(t)
)
, (3.45)

where f̂k
(
xk;x

(t)
)
is a convex approximation of f at the current iterate x(t) in the

coordinates of xk. Under the conditions in Assumption 3.5, the vector x̂
(t)
k − x

(t)
k

indicates a descent direction of f in the chosen coordinates. Then the blocks of x are

updated according to the following rule:

x
(t+1)
i =

{
x
(t)
k + γ(t)

(
x̂
(t)
k − x

(t)
k

)
if i = k,

x
(t)
i otherwise,

(3.46)

where γ(t) ∈ (0, 1] is the step size for the updating along the chosen coordinates. Similar

to the SCA algorithm, a suitable step size γ(t) that ensures a sufficient decrease of the

original objective function can be obtained by exact or successive line search described

in Section 3.2, along the descent direction in the chosen coordinates.

We denote the solution set of the approximate problem (3.45), which is a set-valued

map of the point x(t), by

Mk(x
(t)) =

{
argmin
xk∈Xk

f̂k(xk;x)

}
. (3.47)
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The convergence of the BSCA algorithm is proven in [YPLO20] under the following

assumptions when the step size is obtained by a line search method.

Assumption 3.5. We make the following assumptions for all k = 1, . . . , K:

1) f is continuously differentiable on X ;

2) f̂k(xk;y) is continuously differentiable in xk ∈ Xk for any given y ∈ X and

continuous in y ∈ X for any given xk ∈ Xk;

3) Gradient consistency: ∇xk
f̂k(yk;y) = ∇xk

f(y) for all y ∈ X ;

4) f̂(xk;y) is strictly convex in xk ∈ Xk for any given y ∈ X ;

5) The map Mk

(
x(t)
)
is nonempty for t ∈ N.

Note that, compared to the single-block version – the SCA framework, the convergence

of BSCA requires a stricter degree of convexity on the approximate functions. The

differentiable functions are shown to be coordinatewise regular at all feasible points

x ∈ X [Tse01]. Therefore, under Assumption 3.5, the convergence to stationary points

can be established for the BSCA algorithm. Moreover, the convergence of the BSCA

algorithm is investigated in [YPLO20] for both the deterministic and the randomized

update and the result is stated in the following theorem.

Theorem 3.4 (Convergence of the BSCA algorithm). [YPLO20, Thm. 1] Suppose

that Assumption 3.5 is satisfied and that the line search approach is employed. Then ev-

ery limit point of the solution sequence generated by the BSCA algorithm is a stationary

point of the problem (2.41) (with probability 1 for the randomized update).

Similarly to the SCA framework, the above procedure and convergence result of the

BSCA algorithm can readily be applied to the following class of separable nonsmooth

problems:

min
{xk}Kk=1

f(x1, . . . ,xK) +
K∑
k=1

gk(xk)

s.t. xk ∈ Xk, k = 1, . . . , K,

(3.48)

where f is smooth and the additional regularization terms gk are convex but possibly

nondifferentiable, since the problem (3.48) can be rewritten in the form of (2.41) as

follows:

min
{xk∈Rnk , yk∈R}Kk=1

f(x1, . . . ,xK) +
K∑
k=1

yk

s.t. xk ∈ Xk, gk(xk) ≤ yk, k = 1, . . . , K,

(3.49)
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with a smooth objective function. Then, an approximate function of the nonsmooth

objective function in (3.48) in the coordinates of a block variable xk is obtained by

constructing a coordinatewise approximation for the smooth component f according

to Assumption 3.5 and retaining the convex regularization term gk unchanged. We

refer the reader to [YPLO20] for the details of the customization of the BSCA algo-

rithm for the class of nonsmooth problems in (3.48). Additionally, since the nonsmooth

component of the objective function in (3.48) is separable across the blocks, the ob-

jective function is coordinatewise regular at all feasible points x ∈ X [Tse01]. Hence,

the convergence to a stationary point of the problem (3.48) is provided by the BSCA

algorithm.

The updating rule (3.46) in the procedure of the BSCA algorithm described above re-

quires the exact solution x̂
(t)
k of the coordinatewise approximate problem (3.45), which

is available when x̂
(t)
k admits a closed-form expression. However, in practice, it is not

always possible to construct an approximate problem that admits a closed-form so-

lution. In this case, an iterative algorithm is required for solving the approximate

problem (3.45), and this provides only an approximate solution of (3.45) as most iter-

ative algorithms only show asymptotic convergence. Moreover, it is generally difficult

to evaluate the accuracy of an approximate solution obtained by an iterative algorithm

with respect to the exact solution x̂
(t)
k , especially if the approximate function f̂k is non-

convex. This hinders the convergence analysis of the BSCA algorithm. To overcome

this issue, the authors in [YPLO20] further develop a so-called inexact BSCA algorithm,

which finds an approximate solution of the coordinatewise approximate problem (3.45)

by running another standard SCA algorithm for a finite number of iterations. We

refer the reader to [YPLO20] for the details of the inexact BSCA algorithm and the

additional convergence analysis.
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Chapter 4

Proposed Frameworks based on Smoothing
Majorization

The derivative consistency condition in Assumption 3.1 of the classic MM framework

in Section 3.1 requires the directional differentiability of the objective function and

the consistency of directional derivatives in all directions between the original objec-

tive function and its majorizer at the point where the majorizer is constructed. This

condition restricts the majorizer constructed at a nondifferentiable point of the orig-

inal function to be also nonsmooth. Recall that the principle of the MM framework

is to convert a difficult optimization problem into a sequence of simpler approximate

problems via majorization. Hence, this restriction hinders its capability of simplifying

nonsmooth problems since the minimization of the majorizing function, if restricted to

be nonsmooth, may still be difficult.

Therefore, in this chapter, we relax the derivative consistency in the majorization step

so that a smooth majorizer that can be easily minimized is permitted for a wide class

of nonsmooth problems. Specifically, as a generalization of the majorization technique

that we employed in [LTY+22], we consider the situation that the majorizing function

preserves only a subgradient of the original objective function. The MM framework

with such smoothing majorization, abbreviated as smoothing MM, is detailed in Sec-

tion 4.1, together with its convergence analysis. As a result of this relaxation of deriva-

tive consistency, the smoothing MM converges to a stationary point in a more relaxed

sense than the classic MM. In other words, compared to the classic MM, the smoothing

MM sacrifices the tightness of the convergence set with respect to the local minima in

order to construct an approximate problem that can be easily addressed. In some sce-

narios, the exact minimization of the smooth majorizing function may still be difficult,

especially if it is nonconvex. Meanwhile, the smoothness of the majorizing function

allows us to employ the idea of SCA in Section 3.2 to obtain an approximate minimizer

of the majorizing function efficiently. This motivated our idea in [LTY+22] of combin-

ing the smoothing majorization and the separable convex approximation techniques

to address the phase retrieval with dictionary learning problem. In Section 4.2, we

generalize the algorithms in [LTY+22] to develop an inexact MM framework, named

smoothing SCA, and provide a unified convergence analysis. Finally, similar to the

classic MM and SCA frameworks, the smoothing MM and SCA can also be imple-

mented in a BCD manner to exploit potential separable structures of the constraints

in the optimization problem. The block-coordinatewise versions of the smoothing MM

and SCA, as well as their convergence analyses, are presented in Section 4.3.
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4.1 Smoothing Majorization-Minimization

Consider the general constrained optimization problem (1.1) where the objective func-

tion f is nonconvex and nonsmooth, and the feasible set X is convex. In this section,

we relax the requirement on the majorizing function in the classic MM framework so

that a smooth approximate problem that can be easily addressed is permitted for nons-

mooth problems. Specifically, we consider the following assumptions on the majorizing

function f̂ at each iteration.

Assumption 4.1 (Smoothing majorization). Let the approximate function f̂(·; ·) sat-
isfy the following:

1) f̂(x;y) is continuously differentiable in x ∈ X for any given y ∈ X and contin-

uous in y ∈ X for any given x ∈ X ;

2) Tangency: f̂(y;y) = f(y) for all y ∈ X ;

3) Upper bound: f̂(x;y) ≥ f(y) for all x,y ∈ X ;

4) Subgradient consistency: ∇xf̂(y;y) ∈ ∂Cf(y) for all y ∈ X .

Compared to Assumption 3.1 of the classic MM algorithm, the above assumption en-

forces the majorizing function f̂(x;y) to be smooth even when f is nondifferentiable

at y, which is impossible if the derivative consistency condition 4) in Assumption 3.1

needs to be satisfied. To this end, a relaxed subgradient consistency condition is in-

corporated in Assumption 4.1, which only requires that the gradient ∇xf̂(y;y) of the

smooth majorizing function is a C-subgradient of the original function f at y. Note

that, unlike the derivative consistency condition in Assumption 3.1, this subgradient

consistency does not require the directional differentiability of the original function.

However, the following property of the directional derivatives can be observed when

both the original and majorizing functions are directionally differentiable.

Proposition 4.1. Let the function f̂(x;y) be a majorization of the function f(x) at

the point y ∈ X according to Definition 3.1. If both f(x) and f̂(x;y) are directionally

differentiable at y, then we have

f̂ ′
d(x;y)

∣∣
x=y
≥ f ′

d(y) ∀d with y + d ∈ X . (4.1)

Proof. The majorization conditions in Definition 3.1 imply that

f̂(y + εd;y)− f̂(y;y)
ε

≥ f(y + εd)− f(y)
ε

(4.2)
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for any direction d and ε > 0 with y+ εd ∈ X . Then the property in (4.1) is obtained

by taking limits for ε→ 0.

Hence, compared to Assumption 3.1, which enforces the directional derivatives of the

majorizing function to be consistent with that of the original function, Assumption 4.1

relaxes the directional derivatives of the smooth majorizing function to be in the fol-

lowing interval:

f ′
d(y) ≤ f̂ ′

d(x;y)
∣∣
x=y

=
(
∇xf̂(y;y)

)T
d ≤ f ◦

d(y) ∀y ∈ X ,d with y + d ∈ X , (4.3)

which comes from Proposition 4.1 and the Definition 2.16 of the Clarke subdifferential.

Remark 4.1. Suppose that the original function f is directionally differentiable. Then,

the subgradient consistency condition 4) in Assumption 4.1 is automatically satisfied for

all interior points y ∈ int (X ) if all the other conditions in Assumption 4.1 are satisfied.

The proof is as follows. For an interior point y ∈ int (X ), the bounding property in (4.1)

holds for all directions d ∈ Rn. Due to the smoothness of the majorization, this implies

that

−
(
∇xf̂(y;y)

)T
d = −f̂ ′

d(x;y)
∣∣
x=y
≤ −f ′

d(y) ≤ f ◦
d(y) ∀d ∈ Rn, (4.4)

where the last inequality comes from the definition of Clarke directional derivative

in (2.25). By the definition of Clarke subdifferential in (2.26), we conclude from (4.4)

that the subgradient consistency is satisfied for any interior point y ∈ int (X ), i.e.,

∇xf̂(y;y) ∈ ∂Cf(y).

To ensure the existence of a smooth majorizer that satisfies Assumption 4.1, some

additional assumptions on the original objective function are required. As an example,

for an interior point y ∈ int (X ), the bounding property in (4.3) holds for all directions

d ∈ Rn, which implies that the original function f must satisfy

f ′
−d(y) ≤ −

(
∇xf̂(y;y)

)T
d ≤ −f ′

d(y) (4.5)

by considering both directions d and −d. More generally, the following property is

observed when a smooth majorizer satisfying Assumption 4.1 exists.

Proposition 4.2 (Existence of smooth majorizer). Let the function f̂(x;y) be a ma-

jorizer of a locally Lipschitz function f(x) at a point y ∈ int (X ) that satisfies Assump-

tion 4.1. If f is nondifferentiable at y then f is not regular at y.

Proof. Assume that the gradient ∇xf(y) does not exist. Provided that f is regular at

y according to Definition 2.17, then the Clarke subdifferential ∂Cf(y) coincides with



50 Chapter 4: Proposed Frameworks based on Smoothing Majorization

the classic convex subdifferential at y and the C-directional derivative f ◦
d(y) coincides

with the ordinary directional derivative f ′
d(y) for any direction d. In this case, the

bounding property in (4.3) reduces to the consistency of the directional derivatives

between the original and majorizing functions as(
∇xf̂(y;y)

)T
d = f ′

d(y) ∀d ∈ Rn, (4.6)

which implies that the gradient of f exists at y and ∇xf(y) = ∇xf̂(y;y). This

contradicts the assumption that the gradient ∇xf(y) does not exist. Therefore, f is

not regular at y.

Proposition 4.2 suggests that it is impossible to construct a smooth majorizing function

for f at an interior point of X where f is nondifferentiable and regular. Hence, to ensure

the existence of a smooth majorizer at any point on X , we further make the following

assumption on the objective function f .

Assumption 4.2. Let the objective function f satisfy the following:

1) f is locally Lipschitz on X ;

2) f is not regular at any point y ∈ int (X ) where f is nondifferentiable.

In Figure 4.1, we present an example function to illustrate the differences between the

majorizing function constructed in the classic MM and that in the proposed smoothing

MM, as well as the conditions for the existence of a smooth majorizer at a nondifferen-

tiable point derived above. The univariate function f(x) = min{−x+1
2
,max{−x−1

2
,−x}}

in Figure 4.1 is smooth everywhere else except for the two points x = −1 and x = 1. In

particular, f is locally concave at x = −1 and locally convex at x = 1, and the Clarke

subdifferentials at both points are equal and given by ∂Cf(−1) = ∂Cf(1) =
[
−1,−1

2

]
.

For instance, we construct quadratic upper bounds for f since f is piecewise linear. As

f is not regular at x = −1, we can construct a smooth majorizer f̂(x;−1) = 1
2
x2+ 1

2
for

f at x = −1 that satisfies the relaxed subgradient consistency, which preserves only the

directional derivative of f in the positive direction but not that in the negative direction.

On the contrary, f is regular at x = 1 and, hence, there exists no smooth majorizer. At

this point, we give an example majorizer f̂(x; 1) = max
{

1
2
(x− 2)2 − 3

2
, 1
2
(x− 3

2
)2 − 9

8

}
that satisfies the strict derivative consistency in the classic MM. It demonstrates that

the majorizer is also nondifferentiable at this nondifferentiable point of the original

function when it is required to preserve the directional derivatives of the original func-

tion in all directions.
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−1 1

f̂(x; 1) = max
{

1
2 (x− 2)2 − 3

2 ,
1
2 (x− 3

2 )
2 − 9

8

}

f̂(x;−1) = 1
2x

2 + 1
2

f(x) = min{−x+1
2
,max{−x−1

2
,−x}}

Figure 4.1. Comparison between the strict derivative consistency in the classic MM
and the relaxed subgradient consistency in the smoothing MM. A smooth majorizer
for f exists at x = −1 but not at x = 1.

4.1.1 Convergence Analysis

Now we can establish the convergence of the MM algorithm with smoothing majoriza-

tion as follows based on the generalized concepts of stationarity introduced in Sec-

tion 2.1.

Theorem 4.1. Provided that Assumptions 4.1 and 4.2 are satisfied, every limit point

of the solution sequence generated by the MM algorithm is a C-stationary point of the

problem (1.1).

Proof. Recall Proposition 3.1 that a nonincreasing sequence of objective function values

is obtained through the minimization of the majorizing function, i.e.,

f
(
x(0)

)
≥ f

(
x(1)

)
≥ f

(
x(2)

)
≥ · · · . (4.7)

Assume that there exists a subsequence
(
x(tj)

)
j∈N converging to a limit point z ∈ X ,

i.e., limj→∞ x(tj) = z. Then,

f̂
(
x(tj+1);x(tj+1)

)
= f

(
x(tj+1)

)
≤ f

(
x(tj+1)

)
(4.8)

≤ f̂
(
x(tj+1);x(tj)

)
≤ f̂

(
x;x(tj)

)
∀x ∈ X . (4.9)

Taking limits for j →∞ produces

f̂ (z; z) ≤ f̂ (x; z) ∀x ∈ X . (4.10)
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The limit point z is a global minimizer of the approximate function f̂ (x; z) and, hence,

satisfies the C-stationarity condition in Definition 2.18, i.e.,

0 ∈ ∂C f̂(z; z) +NX (z), (4.11)

where ∂C f̂(z; z) =
{
∇xf̂(z; z)

}
by the smoothness assumption 1) in Assumption 4.1.

The subgradient consistency condition in Assumption 4.1 implies that

∂C f̂(z; z) +NX (z) ⊆ ∂Cf(z) +NX (z). (4.12)

Combining (4.11) and (4.12), we obtain

0 ∈ ∂Cf(z) +NX (z), (4.13)

which implies that the limit point z is a C-stationary point of the original problem (1.1).

We remark that, as shown by (4.12), if z is a C-stationary point of the smooth majoriz-

ing function f̂(x; z) on X , then it is also a C-stationary point of the original function

f on X . However, the converse is not always true unless the Clarke subdifferential

∂Cf(z) is a singleton, i.e., ∂Cf(z) contains only one element. In the general case,

assume that z is a C-stationary point of f and that ∂Cf(z) is not a singleton. Then

it is only guaranteed that there exists a subgradient s ∈ ∂Cf(z) such that the ma-

jorization f̂(x; z) is also C-stationary at z if ∇xf̂(z; z) = s. In other words, whether

a C-stationary point z of the original function f is also a C-stationary point of the ma-

jorization f̂(x; z) depends on the choice of the subgradient in ∂Cf(z) for constructing

f̂(x; z). In particular, the following property is observed.

Proposition 4.3 (Stationary points that are not local minima). Let the function

f̂(x;y) be a majorizer of a locally Lipschitz function f(x) at an interior point

y ∈ int (X ) that satisfies Assumption 4.1. Suppose that f̂(x;y) is stationary at y

and that f is nondifferentiable at y. Then there exists a descent direction d of f at y,

i.e., f ′
d(y) < 0. In other words, y is a C-stationary point, but not a d-stationary point

and, hence, not a local minimum point, of f .

Proof. Since the differentiable function f̂(x;y) is stationary at y ∈ int (X ), we have

∇xf̂(y;y) = 0. (4.14)

Then Proposition 4.1 suggests that

f ′
d(y) ≤ f̂ ′

d(x;y)
∣∣
x=y

=
(
∇xf̂(y;y)

)T
d = 0 ∀d ∈ Rn. (4.15)
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Assume that f has no descent direction at y, i.e., f ′
d(y) = 0 for all d ∈ Rn. This

implies that f is differentiable at y and that ∇xf(y) = 0, which contradicts with

the assumption that f is nondifferentiable at y. Therefore, there exists at least one

direction d at y such that f ′
d(y) < 0.

As mentioned in Section 2.1, the stationarity based on the Clarke subdifferential may

contain stationary points that are not local minima. Proposition 4.3 reveals a subset

of stationary points that are not local minima and also provides a strategy for avoiding

them. Recall that we define the set-valued map

M
(
x(t)
)
=

{
argmin

x∈X
f̂
(
x;x(t)

)}
. (4.16)

Assume that the MM algorithm has achieved a fixed point z in the interior of the

feasible set X , i.e., z ∈ int (X ) and z ∈M(z). As a global minimizer of the majorizing

function f̂(x; z), z is a stationary point of f̂(x; z), and hence, a C-stationary point of

the original function f . By Proposition 4.3, if f is nondifferentiable at z, then f does

not attain a local minimum at z and, instead, it admits at least one descent direction.

Thus, to avoid terminating the algorithm at z, a descent update for the variable x can

be obtained by the following procedure. Note that, since f is nondifferentiable at z, the

Clarke subdifferential ∂Cf(z) is not a singleton [Cla90, Prop. 2.2.4]. If the zero vector

is not the only subgradient in ∂Cf(z) that produces a smooth majorizer of f at z, then,

a descent update from z can be easily obtained by constructing another majorizer at

z with a nonzero subgradient in ∂Cf(z). However, according to (4.3), all subgradients

s in ∂Cf(z) that can generate a smooth majorizing function satisfying Assumption 4.1

are given by the solution set of the following system of linear inequalities

f ′
d(z) ≤ sTd ≤ f ◦

d(z) ∀d ∈ Rn, (4.17)

which may be unique. If the zero vector is the unique subgradient in ∂Cf(z) that

produces a smooth majorizer of f at z, one can still find a descent direct of f at z by

random search and then a decrease of f can be obtained by performing a line search

method described in Section 3.2 on f along the obtained descent direction. As a special

case, s = 0 is the unique solution of (4.17) if there exists a set of n linear independent

directions d1, . . . ,dn ∈ Rn with

f ′
di
(z) = f ′

−di
(z) = 0 ∀ i = 1, . . . , n. (4.18)

Define the matrixD = [d1, . . . ,dn], which has full rank. By considering both directions

di and −di for i = 1, . . . , n, the condition (4.18) leads to the system of linear equations

DTs = 0 with the unique solution s = 0, as part of the system of linear inequalities

in (4.17). Nevertheless, under Assumption 4.2, it is difficult to find an example function
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that satisfies (4.18) at a nondifferentiable interior point. For the future work, it is of

interest to investigate whether this case is excluded by Assumption 4.2. Moreover,

we remark that, in a practical application, it can often be directly observed whether

there exist multiple subgradients that can produce a smooth majorizing function at a

nondifferentiable point without the verification of additional conditions such as (4.18).

In Figure 4.2, we illustrate the type of nondifferentiable stationary points in Propo-

sition 4.3 and the procedure described above with the univariate function f2 in Fig-

ure 2.1(b), which satisfies Assumption 4.2. At the nondifferentiable point x = 0, the

Clarke subdifferential of f2 is given by ∂Cf2(0) = [−1, 0], which is not a singleton. As-

sume that x(t) = 0. Since 0 ∈ ∂Cf2(0), f2 is C-stationary at x(t) and we may construct

a smooth majorizer of f2 at x(t) that is also stationary at x(t), e.g., f̂2(x;x
(t)) = 2x2.

However, x = 0 is not a local minimum of f2. For the simple example function f2,

the Clarke subdifferential can be evaluated analytically and, therefore, we can directly

avoid choosing a smooth majorizer at x = 0 that preserves the subgradient 0, which is

usually impossible in practical applications. In practical applications, Proposition 4.3

is used to identify this type of C-stationary points that are not local minima. Then,

since ∂Cf(0) is not a singleton, instead of terminating the algorithm at x = 0, at the

next iteration, we can construct another smooth majorizer of f2 at x = 0 that preserves

a nonzero subgradient of f2, e.g., f̂2(x;x
(t+1)) = 2(x − 1

4
)2 − 1

8
, which can provide a

decrease of f2.

x(t+1) = x(t) = 0

f̂2(x;x
(t+1)) = 2(x− 1

4 )
2 − 1

8

f̂2(x;x
(t)) = 2x2

f2(x) =

{
x2 if x ≤ 0

−x if x > 0

Figure 4.2. Example function for illustrating Proposition 4.3 and the motivated
termination condition in Algorithm 1. For f2 : R→ R, we have ∂Cf2(0) = [−1, 0] and
any subgradient in ∂Cf2(0) can be used to construct a smooth majorizer of f2 at x = 0.

The proposed MM framework with smoothing majorization for the problem (1.1) is

outlined in Algorithm 1, including the termination condition described above.
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Algorithm 1: The MM Algorithm with Smoothing Majorization for Solving
Problem (1.1)

1 Initialize x(0) ∈ X and t← 0 ;
2 repeat

3 Construct a smooth majorizer f̂
(
x;x(t)

)
of f at x(t) ;

4 Let x(t+1) ∈ argmin
x∈X

f̂
(
x;x(t)

)
;

5 t← t+ 1;

6 until converged and (x(t) /∈ int (X ) or ∇xf
(
x(t)
)
exists);

7 return x(t)

A weaker result similar to Proposition 4.3 is presented in [LWLZ21, Prop. 11]. It is

stated that, for an unconstrained minimization problem, if the majorization is restricted

to be differentiable, then every limit point z of the MM algorithm is critical for the

original objective function f in the sense that

0 ∈ ∂F (−f)(z), (4.19)

where ∂F (−f)(z) is the Fréchet subdifferential [LSM20,Kru03,MNY06,Mor06] of−f at

z and coincides with the subdifferential (2.21) constructed with the directional deriva-

tives for locally Lipschitz functions [Kru03, Prop. 1.38]. Similarly to the stationarity

based on the other generalized definitions of subdifferential introduced in Section 2.1,

(4.19) is only a necessary condition for f attaining a local maximum at z. In contrast,

in Proposition 4.3, we further conclude the existence of a descent direction at z in the

case where f is nondifferentiable at z.

Remark 4.2 (Comparison to the classic MM framework). The classic MM framework

introduced in Section 3.1 requires the consistency of the directional derivatives between

the original objective function (possibly nonsmooth) and its majorizer in all directions

at the current iterate, and provides the convergence to a d-stationary point of the prob-

lem. In contrast, the proposed MM algorithm with smoothing majorization sacrifices the

tightness of the convergence set with respect to the local minima in order to construct

a surrogate problem that can be easily addressed. In practical applications, the differ-

entiable points of the objective function are usually also strictly differentiable, where

the C-stationarity is equivalent to the d-stationarity. On the other hand, the nondiffer-

entiable points of the objective function in the interior of the feasible set are excluded

from the local minima according to Proposition 4.3. Therefore, this relaxation of the

convergence set caused by the smoothing majorization is rather harmless. Whereas the

traditional MM framework is broadly applicable to problems with directionally differen-

tiable objective functions, the smoothing majorization technique is limited to functions

meeting the criteria outlined in Assumption 4.1.
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4.1.2 Smoothing Majorization Techniques for Nonsmooth
Functions

In the following, we present two majorization techniques that can be used to con-

struct a smooth majorizing function satisfying the subgradient consistency condition

in Assumption 4.1 for nonsmooth functions.

Let us consider generally the class of functions f that can be decomposed as

f(x) = u(x) + v(x) (4.20)

where both u and v are locally Lipschitz, u is smooth but not necessarily convex, and

v is nonsmooth. Due to the smoothness of u, we only need to find a smooth majorizer

for the nonsmooth component v. More specifically, the following property holds.

Proposition 4.4. Let v̂(x;y) be a smooth majorizing function of v in (4.20) at the

point y that satisfies Assumption 4.1. Then the function f̂(x;y) = u(x) + v̂(x;y) is

a smooth majorizing function of the function f in (4.20) at y that satisfies Assump-

tion 4.1.

Proof. As the other conditions in Assumption 4.1 can be easily verified for the function

f̂(x;y), in the following, we only demonstrate the subgradient consistency between f

and f̂ at y. By the definition in (2.25), the Clarke subdifferential of f at the point x

in the direction d is given by

f ◦
d(x) = lim sup

x′→x, ε↓0

{
u(x′ + εd)− u(x′)

ε
+
v(x′ + εd)− v(x′)

ε

}
≤ lim sup

x′→x, ε↓0

u(x′ + εd)− u(x′)

ε︸ ︷︷ ︸
u◦d(x)

+ lim sup
x′→x, ε↓0

v(x′ + εd)− v(x′)

ε︸ ︷︷ ︸
v◦d(x)

, (4.21)

where the last inequality, i.e., the sum rule (2.34) of the Clarke subdifferential, comes

from the subadditivity of the limit superior and it holds with equality if one of the

difference quotients converges [LLN22, Ex. 2.5.3 and 2.5.4]. The function u is continu-

ously differentiable and, hence, strictly differentiable, which implies that the following

limit exists

lim
x′→x, ε↓0

u(x′ + εd)− u(x′)

ε
= u′d(x) ∀d ∈ Rn.

Consequently, we have

u◦d = lim sup
x′→x, ε↓0

u(x′ + εd)− u(x′)

ε
= lim

x′→x, ε↓0

u(x′ + εd)− u(x′)

ε
= u′d(x),
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and the equality holds in (4.21), i.e.,

f ◦
d(x) = u′d(x) + v◦d(x) ∀d ∈ Rn.

By the definition of the Clarke subdifferential in (2.26), this further implies that

∂Cf(x) = ∂Cu(x) + ∂Cv(x) = {∇xu(x)}+ ∂Cv(x),

where the last inequality comes from the strict differentiability of u. Since v̂(x;y)

preserves a subgradient of v at y, i.e., ∇xv̂(y;y) ∈ ∂Cv(y), we have

∇xf̂(y;y) = ∇xu(y) +∇xv̂(y;y) ∈ ∂Cu(y) + ∂Cv(y) = ∂Cf(y).

Thus, we can conclude that f̂(x;y) = u(x) + v̂(x;y) is a smooth majorizing function

of f at y satisfying Assumption 4.1.

We show below some smooth majorizing functions for the nonsmooth function v derived

based on different structures assumed on v, respectively.

1. Linear Majorization with Subgradient: As a generalization of the gradient,

a subgradient defined in (2.13) of a convex function generates a supporting hyper-

plane that minorizes the function. Therefore, when the nonsmooth component v

in (4.20) is concave, it possesses the following linear majorization at a point y:

v̂(x;y) = v(y) + sT(x− y) ≥ v(x) (4.22)

with

s ∈ −∂(−v)(y) = ∂Cv(y), (4.23)

where the last inequality comes from (2.33).

Recall that the sum rule (2.34) of the Clarke subdifferential holds with equality

for concave functions as they are subdifferentially regular. Thus, if the nonsmooth

function v can be written as a sum of multiple concave functions, i.e.,

v(x) =
I∑
i=1

vi(x) (4.24)

with each vi being concave but not necessarily smooth, then a subgradient of

v can be obtained easily from the subgradients of each vi. Specifically, since

∂Cv(x) =
∑I

i=1 ∂
Cvi(x), we have

si ∈ ∂Cvi(x) ∀ i = 1, . . . , I =⇒
I∑
i=1

si ∈ ∂Cv(x).
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In other words, each vi can be linearized independently for the construction of

the majorization in (4.22).

Furthermore, similar to the differentiable concave case discussed in Section 3.1,

any smooth convex function that preserves the function value and a subgradient

of v at y also majorizes the nonsmooth concave function v, which is preferred if

a low-complexity approximate problem is demanded. Depending on the specific

structure of v, it may be possible to construct even a smooth concave majoriza-

tion, which is certainly tighter than the linearization with the same subgradient.

2. Pointwise Minimum: Suppose that the component v in (4.20) can be expressed

as the pointwise minimum of a finite collection of smooth functions {vi}Ii=1, i.e.,

v(x) = min
i=1,...,I

vi(x), (4.25)

with I <∞. Note that, the above structure alone does not ensure the smoothness

of v. For any point y, let I(y) denote the set of indices i for which vi(y) = v(y),

i.e., the indices at which the minimum defining v is attained. Based on this

pointwise minimum structure, a natural smooth majorizer for v at y is

v̂(x;y) = vk(x) ≥ v(x) with k ∈ I(y). (4.26)

In other words, a smooth majorizer is constructed by replacing v by one compo-

nent vk in (4.25) that achieves the pointwise minimum at the current point y.

The relation in (4.25) is equivalent to −v(x) = maxi=1,...,I −vi(x) and the follow-

ing property holds for the Clarke subdifferential of a pointwise maximum [Cla90,

Prop. 2.3.12]:

∂C(−v)(x) = co
{
∂C(−vi)(x) | i ∈ I(x)

}
, (4.27)

where co{·} denotes the convex hull. Recall that ∂C(−v)(x) = −∂Cv(x) and we

have ∂Cvi(x) = {∇xvi(x)} for i = 1, . . . , I due to their smoothness. It follows

that any majorizing function v̂(x;y) constructed by (4.26) retains a subgradient

of v at y, i.e.,

∇xvk(y) ∈ ∂Cv(y) ∀ k ∈ I(y). (4.28)

The majorization in (4.26) can be readily extended to the functions that can be

expressed as pointwise minima of an infinite collection of smooth functions, i.e.,

I =∞. More generally, we assume that the nonsmooth function v can be written

as the following pointwise minimum:

v(x) = min
θ∈Θ

vθ(x), (4.29)
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where vθ is a family of functions on Rn parameterized by θ ∈ Θ ⊆ Rm and vθ

is smooth in x for any given θ ∈ Θ. Define the set Θ⋆(y) =

{
argmin

θ∈Θ
vθ(y)

}
.

Similar to (4.26), v possess the following smooth majorizer at y:

v̂(x;y) = vθ⋆(x) ≥ v(x) with θ⋆ ∈ Θ⋆(y). (4.30)

Some properties similar to (4.27) can be derived under some mild assumptions

on the functions vθ and the parameter space Θ (see [Cla90, Sec. 2.8]). Thus,

following the same line of analysis as in the previous finite case, we can justify

the subgradient consistency between v and the above majorizing function, which

is, therefore, omitted.

In the following, we demonstrate a simple application where the preceding smoothing

majorization techniques can be applied. The phase retrieval problem, which will be

studied deeply in Chapter 5, aims at recovering unknown signal x ∈ CN from phaseless,

possibly noise-corrupted, measurements of linear mixtures yi ≈ |aH
i x|, i = 1, . . . ,M .

Let us consider the oversampled case, i.e.,M ≥ N . Define y = [y1, . . . , yM ]T ∈ RM
+ and

A = [a1, . . . ,aM ]H ∈ CM×N . The recovery problem can be formulated as the following

nonlinear least-squares (LS) problem:

min
x∈Cn

1

2
∥y − |Ax|∥22︸ ︷︷ ︸

f(x)

, (4.31)

where the operation |·| is applied elementwise. The objective function f can be ex-

panded as

f(x) =
1

2
∥y∥22 +

1

2
∥Ax∥22︸ ︷︷ ︸

u(x)

−yT|Ax|︸ ︷︷ ︸
v(x)

, (4.32)

where u is smooth and v is almost smooth everywhere except for the points x where

Ax contains zero entries. For majorizing v, we note that

|x| = |x · ejθ| ≥ ℜ(x · ejθ) for any x ∈ C and θ ∈ [0, 2π), (4.33)

and that equality holds for θ = − arg(x). Thus, due to the nonnegativity of y, v is

majorized at x(t) by the following smooth function

v̂(x;x(t)) = −yTℜ
(
Ax⊙ e−j arg(Ax(t))

)
= −ℜ

((
y(t)
)H

Ax
)
, (4.34)

with

y(t) = y ⊙ ej arg(Ax(t)),
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where the operations e(·) and arg(·) are applied elementwise, and one may set arg
(
aH
i x
)

to be an arbitrary value in [0, 2π) if aH
i x = 0. It follows that f is majorized at x(t) by

a linear LS objective

f̂
(
x;x(t)

)
= u(x) + v̂(x;x(t)) =

1

2

∥∥y(t) −Ax
∥∥2
2
. (4.35)

The above majorizing function has a minimizer

x(t+1) =
(
AHA

)−1
AHy(t),

which corresponds to the well-known Gerchberg-Saxton algorithm [GS72].

The majorization in (4.34) can in fact be regarded as an instance of both the majoriza-

tion techniques in (4.22) and (4.30). On the one hand, the cross term v in (4.32) can

be written as

v(x) = −yT|Ax| =
M∑
i=1

−yi|aH
i x|︸ ︷︷ ︸

vi(x)

, (4.36)

where each vi is concave and is smooth everywhere else except for the points x with

aH
i x = 0. According to the construction (2.27) of the Clarke subdifferential, the

gradient or subdifferential of vi is given by{
∇xvi(x) = −yiej arg(a

H
i x)ai if aH

i x ̸= 0,

∂Cvi(x) = co
{
yie

jθai | θ ∈ [0, 2π)
}

if aH
i x = 0.

(4.37)

Thus, the majorization in (4.34) is a linearization of the concave nonsmooth function

v with a subgradient, which corresponds to the majorization technique in (4.22).

On the other hand, the nonsmooth function v in (4.32) can be viewed as the following

pointwise minimum:

v(x) = min
θ∈[0,2π)M

−ℜ
((

y ⊙ ejθ
)H

Ax
)

︸ ︷︷ ︸
vθ(x)

, (4.38)

and the minimum solution at x = x(t) is θ⋆ = arg
(
Ax(t)

)
. Therefore, the majoriza-

tion in (4.34) is also an instance of the majorization technique in (4.30) for pointwise

minima.

4.1.3 Nonsmooth Regularization

In this subsection, we extend the proposed MM framework with smoothing majoriza-

tion to address the following composite optimization problem:

min
x∈X

f(x) + g(x), (4.39)
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Algorithm 2: The MM Algorithm with Smoothing Majorization for Solving
Problem (4.39)

1 Initialize x(0) ∈ X and t← 0 ;
2 repeat

3 Construct a smooth majorizer f̂
(
x;x(t)

)
of f at x(t) that satisfies

Assumption 4.1 ;

4 Let x(t+1) ∈ argmin
x∈X

f̂
(
x;x(t)

)
+ g(x) ;

5 t← t+ 1;

6 until converged and (x(t) /∈ int (X ) or ∇xf
(
x(t)
)
exists);

7 return x(t)

where the nondifferentiable nonconvex function f satisfies Assumption 4.2 and g is a

convex but not necessarily differentiable (possibly separable) regularization term such

as ∥·∥1. Due to the convexity of g, there may exist interior points in X where the overall

objective function f + g is locally convex, hence, regular, and nondifferentiable. That

is, the overall objective function f + g is not guaranteed to satisfy Assumption 4.2.

Therefore, instead of constructing a smooth majorizing function for the overall objec-

tive function f + g, we only replace f with a smooth majorizer and leave g unaltered.

Specifically, the approximation of the problem (4.39) at the tth iteration is

x(t+1) ∈ argmin
x∈X

f̂
(
x;x(t)

)
+ g(x), (4.40)

where f̂
(
x;x(t)

)
is a smooth majorizer of f at the current iterate x(t) that satisfies

Assumption 4.1. With this modification, the proposed MM algorithm with smoothing

majorization for the composite problem (4.39) is then outlined in Algorithm 2.

Next, to analyze the convergence behavior of the modified MM algorithm, we employ

the same reformulation technique as in (3.22) to equivalently reformulate the prob-

lem (4.39) as an instance of problem (1.1) as follows

min
x∈Rn, y∈R

f(x) + y

s.t. x ∈ X , g(x) ≤ y,
(4.41)

with the help of an auxiliary variable y. It is easy to verify that the overall objective

function f(x) + y satisfies Assumption 4.2 if f satisfies Assumption 4.2, and that the

feasible set

C = {(x, y) ∈ Rn+1 | x ∈ X , g(x) ≤ y} (4.42)

is closed and convex. Similarly, the approximate problem (4.40) can be rewritten as(
x(t+1), y(t+1)

)
= argmin

x∈Rn, y∈R
f̂
(
x;x(t)

)
+ y

s.t. x ∈ X , g(x) ≤ y,
(4.43)
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and the solution of the auxiliary variable is y(t+1) = g
(
x(t+1)

)
. As can be easily verified,

the overall approximate function f̂
(
x;x(t)

)
+y satisfies Assumption 4.1 when f̂

(
x;x(t)

)
is a smooth majorizing function of f satisfying Assumption 4.1. In particular, the

subgradient consistency of f̂
(
x;x(t)

)
+ y at

(
x(t), y(t)

)
can be illustrated as follows

∇(x,y)

(
f̂
(
x(t);x(t)

)
+ y(t)

)
=
(
∇xf̂

(
x(t);x(t)

)
, 1
)

∈ ∂C(x,y)
(
f
(
x(t)
)
+ y(t)

)
= ∂Cf

(
x(t)
)
× {1}, (4.44)

when ∇xf̂
(
x(t);x(t)

)
∈ ∂Cf

(
x(t)
)
. Consequently, Algorithm 2 can be viewed as ap-

plying Algorithm 1 on the reformulated problem (4.41), whose convergence is then

justified by Theorem 4.1. That is, every limit point (x⋆, y⋆), where y⋆ = g (x⋆), of the

solution sequence generated by Algorithm 2 is a C-stationary point of the reformulated

problem (4.41) in the sense that

0 ∈ ∂C(x,y) (f(x⋆) + y⋆) +NC(x
⋆, y⋆). (4.45)

The set C in (4.42) corresponds to the epigraph of the function g + IX , whose normal

cone is given by [Cla90, Corollary of Thm. 2.4.9]

NC(x
⋆, y⋆) = ∂C (g + IX ) (x⋆)× {−1}.

Recall that the sum rule (2.34) of the Clarke subdifferential holds with equality for

convex functions as they are subdifferentially regular. It follows from the convexity of

the function g and the set X that

NC(x
⋆, y⋆) =

(
∂Cg (x⋆) + ∂IX (x⋆)

)
× {−1} =

(
∂Cg (x⋆) +NX (x⋆)

)
× {−1}. (4.46)

Combining (4.44) and (4.46), we can equivalently express the C-stationarity condi-

tion (4.45) of the reformulated problem (4.41) as

0 ∈ ∂Cf (x⋆) + ∂Cg (x⋆) +NX (x⋆) . (4.47)

In the general case, due to the weak sum rule (2.34) of the Clarke subdifferential,

the limit point x⋆ that satisfies (4.47) as a C-stationary point of the reformulated

problem (4.41) may not be a C-stationary point of the original problem (4.39), which

needs to satisfy

0 ∈ ∂C (f + g) (x⋆) +NX (x⋆) . (4.48)

Furthermore, Proposition 4.3 can also be applied to the reformulated problem (4.39) to

identify a subset of stationary points that are not local minima. Similar to Algorithm 1,

an additional termination condition based on Proposition 4.3 is then incorporated in

Algorithm 2 to exclude those stationary points.
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4.2 Smoothing Successive Convex Approximation

In the previous section, to reduce the computational complexity of the approximate

problem, we employ a relaxed subgradient consistency condition so that a smooth

majorizer can be constructed for nonsmooth problems. However, in some scenarios,

it is still difficult to minimize the smooth majorizing function exactly, e.g., due to

its nonconvexity. On the other hand, as mentioned in Remark 3.2, the monotonic

descent property of the objective function value, which is the key to convergence,

depends only on decreasing the majorizing function, not minimizing it. The smoothness

of the majorizing function allows us to employ the idea of SCA in Section 3.2 to

obtain an approximate minimizer of the majorizing function efficiently. Therefore, in

this section, to further reduce the computational complexity, we develop an inexact

MM framework, termed the smoothing SCA framework, by combining the smoothing

majorization technique and the idea of convex approximation.

Specifically, at the tth iteration, we further construct a convex approximation f̃
(
x;x(t)

)
of the smooth majorizing function f̂

(
x;x(t)

)
at the current iterate x(t) that satisfies

the following assumptions.

Assumption 4.3 (Convex approximation). Let the approximate function f̃(·; ·) satisfy
the following:

1) f̃(x;y) are continuously differentiable in x ∈ X for any given y ∈ X and con-

tinuous in y ∈ X for any given x ∈ X ;

2) Gradient consistency: ∇xf̃(y;y) = ∇xf̂(y;y) for all y ∈ X ;

3) f̃(x;y) is pseudoconvex in x ∈ X for any given y ∈ X .

Then the following approximate problem is solved

x̃(t) ∈ argmin
x∈X

f̃
(
x;x(t)

)
. (4.49)

The solution x̃(t) may reduce neither the majorizing function f̂
(
x;x(t)

)
nor the original

function f since f̃
(
x;x(t)

)
is not necessarily a global upper bound of f̂ or f . However,

as discussed for the SCA framework, Assumption 4.3 ensures that the difference x̃(t)−
x(t) indicates a descent direction of the majorizing function f̂

(
x;x(t)

)
. Hence, the

variable x can be updated along the descent direction as

x(t+1) = x(t) + γ(t)
(
x̃(t) − x(t)

)
(4.50)



64 Chapter 4: Proposed Frameworks based on Smoothing Majorization

Algorithm 3: The SCA Algorithm Extended by Smoothing Majorization for
Solving Problem (1.1)

1 Initialize x(0) ∈ X and t← 0 ;
2 repeat

3 Construct a smooth majorizer f̂
(
x;x(t)

)
of f at x(t) ;

4 Construct a pseudoconvex approximation f̃
(
x;x(t)

)
of f̂

(
x;x(t)

)
at x(t) ;

5 Let x̃(t) ∈ argmin
x∈X

f̃
(
x;x(t)

)
;

6 Compute the step size γ(t) by the exact line search (4.51) or the successive
line search (4.52) ;

7 Let x(t+1) = x(t) + γ(t)
(
x̃(t) − x(t)

)
;

8 t← t+ 1;

9 until converged and (x(t) /∈ int (X ) or ∇xf
(
x(t)
)
exists);

10 return x(t)

with a suitable step size γ(t) ∈ (0, 1] since the feasible set X is convex.

In this thesis, we focus on the line search approach introduced in Section 3.2 for choosing

a step size γ(t). Specifically, we perform a line search method on the majorizing function

f̂
(
x;x(t)

)
, due to its smoothness, to find a step size γ(t) that provides a sufficient

decrease of the majorizing function f̂ as well as the original function f . The exact line

search in (3.17) and the successive line search with Armijo rule in (3.19) are customized

for the majorizing function f̂
(
x;x(t)

)
as follows. In the exact line search, the step size

γ(t) is chosen to minimize the majorizing function f̂ along the descent direction, i.e.,

γ(t) ∈ argmin
γ∈[0,1]

f̂
(
x(t) + γ(x̃(t) − x(t));x(t)

)
. (4.51)

On the other hand, the Armijo rule can be used when the optimization problem (4.51)

can not be solved efficiently. In the Armijo rule, the step size is successively decreased

at a geometric rate until a condition on the sufficient decrease of f̂ is fulfilled, which

is expressed as the following optimization problem:

γ(t) = argmax
γ

γ

s.t. γ ∈ {βk | k ∈ N},
f̂
(
x(t) + γ(x̃(t) − x(t));x(t)

)
− f̂

(
x(t);x(t)

)
≤ γσδ

(4.52)

with the directional derivative δ =
(
∇xf̂(x

(t))
)T (

x̃(t) − x(t)
)
and 0 < β, σ < 1.

The proposed smoothing SCA framework for solving the problem (1.1) is then outlined

in Algorithm 3, which can be viewed as an inexact MM. In summary, compared to

the exact MM framework with smoothing majorization discussed in Section 4.1, in the
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framework introduced in this section, the construction of the approximate problem is

divided into two steps, namely, the smoothing majorization and the convex approxi-

mation, so that the two desiderata of the approximate function, i.e., the tightness to

the original function and the low complexity of minimizing the approximate function,

can be treated separately. Specifically, the smoothing majorization step aims to de-

sign a smooth majorizer that is as tight to the original function as possible, regardless

of the complexity. For instance, one may choose a tighter concave majorizer for a

concave function, rather than its tightest convex majorizer, i.e., a supporting hyper-

plane, as presented in (4.22). Then, in the convex approximation step, we further

develop a convex approximate function that can be easily minimized, for the smooth

majorizer. In particular, the separable approximation techniques in Section 3.2.2 can

be employed to exploit potential separable structures of the constraints, so as to develop

an approximate problem that can be decomposed and solved in parallel. Moreover, as

demonstrated in the quadratic approximation technique in Section 3.2.2, without the

global upper bound constraint, it provides the flexibility in designing an approximate

function that preserves more local behavior, e.g., second-order partial derivatives, of

the majorizing function and, hence, also the original function.

4.2.1 Convergence Analysis

Next, we study the convergence behavior of the proposed smoothing SCA algorithm.

To this end, we first present the following property. The solution set of the approximate

problem (4.49), which is a set-valued map of the point x(t), is denoted by

M̃
(
x(t)
)
=

{
argmin

x∈X
f̃
(
x;x(t)

)}
. (4.53)

Proposition 4.5 (Stationary point and descent direction). Suppose that Assump-

tions 4.1, 4.2, and 4.3 are satisfied. Then the following two facts hold.

1) Every fixed point y of the smoothing SCA algorithm, i.e., y ∈ M̃(y), is a C-

stationary point of the problem (1.1);

2) If y is not a fixed point of the smoothing SCA algorithm, then the vector ỹ − y

for any ỹ ∈ M̃(y) is a descent direction of f(x) in the problem (1.1), i.e.,

f ′
ỹ−y(y) < 0 ∀ ỹ ∈ M̃(y). (4.54)

Proof. 1) Suppose that y is a fixed point of the smoothing SCA algorithm, i.e.,

y ∈ M̃(y). Then, by the definition in (4.53), y is a global optimal solution of the
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approximate problem (4)) and, hence, satisfies the C-stationarity condition in Defini-

tion 2.18, i.e.,

0 ∈ ∂C f̃(y;y) +NX (y). (4.55)

Due to the smoothness of both the majorization f̂ and the approximation f̃ , and the

subgradient consistency in Assumptions4.1 and 4.3, we have

∂C f̃(y;y) +NX (y) = ∂C f̂(y;y) +NX (y) ⊆ ∂Cf(y) +NX (y) (4.56)

with ∂C f̃(y;y) =
{
∇xf̂(y;y)

}
and ∂C f̂(y;y) =

{
∇xf̂(y;y)

}
for any y ∈ X . Com-

bining (4.55) and (4.56), we obtain

0 ∈ ∂Cf(y) +NX (y), (4.57)

which implies that the fixed point y of the smoothing SCA algorithm is a C-stationary

point of the original problem (1.1).

2) Consider a point y that is not a fixed point of the smoothing SCA algorithm, i.e.,

y /∈ M̃(y). Define a point ỹ ∈ M̃(y), which, by the definition in (4.53), is a global

minimizer of the approximate function f̃(x;y) on X . Since y /∈ M̃(y), we have

f̃(ỹ;y) < f̃(y;y). (4.58)

Then the pseudoconvexity of f̃(x;y) in x ∈ X implies that the vector ỹ − y ̸= 0

indicates a descent direction of f̃ in x, i.e.,

f̃ ′
ỹ−y(x;y)

∣∣
x=y
≤ 0. (4.59)

Combining this with the subgradient consistency in Assumptions 4.1 and 4.3 and

Proposition 4.1, we obtain

f ′
ỹ−y(y) ≤ f̂ ′

ỹ−y(x;y)
∣∣
x=y

= f̃ ′
ỹ−y(x;y)

∣∣
x=y

< 0. (4.60)

Proposition 4.5 implies that the smoothing SCA algorithm can successively decrease

the objective function value by line search until a fixed point is achieved, which is

ensured to be a C-stationary point of the original problem (1.1).

Similar to the SCA framework introduced in Section 3.2, the following mild assumptions

are also required to establish the convergence of the smoothing SCA algorithm.

Assumption 4.4. We make the following assumptions:
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1) The map M̃
(
x(t)
)
is nonempty for t ∈ N;

2) Given any convergent subsequence
(
x(t)
)
t∈T with T ⊆ N, the sequence

(
x̃(t)
)
t∈T

is bounded.

Then the convergence of the smoothing SCA algorithm is stated in the following the-

orem.

Theorem 4.2 (Convergence of the smoothing SCA algorithm). Suppose that Assump-

tions 4.1, 4.2, 4.3, and 4.4 are satisfied and that the line search approach is em-

ployed. Then every limit point of the solution sequence generated by Algorithm 3 is

a C-stationary point of the problem (1.1).

Proof. If a fixed point of the smoothing SCA algorithm is achieved in a finite number of

iterations, then the fact 1) in Proposition 4.5 implies that the solution sequence
(
x(t)
)
t

has converged to a C-stationary point of the original problem (1.1). Otherwise, by

following the same procedures as in [YP17], we show that the limit of any convergent

subsequence of the iterates x(t) generated by the smoothing SCA algorithm is a C-

stationary point of the original problem based on the fact 2) in Proposition 4.5.

The fact 2) in Proposition 4.5 implies that the sequence of objective function values(
f(x(t))

)
t∈N is monotonically nonincreasing. Assumption 1.1 ensures that the function

f is bounded below on X . Then, by the monotone convergence theorem [Ber16, Prop.

A.3], the sequence
(
f(x(t))

)
t∈N converges to a local minimum of f in X . Thus, for any

two convergent subsequences (x(t))t∈T1 and (x(t))t∈T2 with T1, T2 ⊆ N, it holds that

lim
t→∞

f(x(t)) = lim
t∈T1,t→∞

f(x(t)) = lim
t∈T2,t→∞

f(x(t)). (4.61)

Since f(x) is a continuous function, it follows that

f

(
lim

t∈T1, t→∞
x(t)

)
= f

(
lim

t∈T2, t→∞
x(t)

)
. (4.62)

Now consider a convergent subsequence
(
x(t)
)
t∈T ⊆N with limit point z ∈ X , i.e.,

limt∈T , t→∞ x(t) = z. Under the assumptions that f̃(x;y) is continuous in both x and y,

and that
(
x̃(t)
)
t∈T is bounded, it follows from the maximum theorem [Ber97, Sec. VI.3]

that there exists a convergent subsequence
(
x̃(t)
)
t∈Ts⊆T with limit point z̃ ∈ M̃(z).

Moreover, since both f̂(x;y) and ∇xf̂(x;y) are continuous in x ∈ X for any given

y ∈ X , applying the maximum theorem on the line search problem implies that there

exists a subsequence
(
x(t+1)

)
t∈Ts′⊆Ts

that converges to z′ defined as z′ = z+ γ(z̃− z),
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where γ is the step size obtained by either the exact or successive line search on the

majorizing function f̂(s; z) at z in the direction z̃ − z. If z is not a C-stationary

point of f , which, by (4.56), is neither a stationary point of the approximate function

f̃(x; z), i.e., z /∈ M̃(z), then the fact 2) in Proposition 4.5 implies that f(z′) < f(z),

which contradicts (4.62). Therefore, any limit point of the solution sequence
(
x(t)
)
t∈N

generated by the smoothing SCA algorithm is a C-stationary point of the original

problem (1.1).

As justified by (4.56), the point y is a stationary point of the smooth majorizing func-

tion f̂ (x;y) if and only if it is a stationary point of the convex approximation f̃(x;y)

because of the gradient consistency between f̂(x;y) and f̃(x;y) at the point y where

the approximations are performed. Therefore, Proposition 4.3 can be readily extended

to the convex approximation f̃ . That is, if a point y ∈ int (X ) is a stationary point

of the convex approximation f̃(x;y) and the original function f is nondifferentiable at

y, then y is a C-stationary point of f , but not a local minimum point, since a descent

direction of f exists at y. This property leads to an additional termination condition

that is included in the smoothing SCA Algorithm 3. When a fixed point z is achieved

on the interior of the feasible set int (X ) and f is nondifferentiable at z, then, instead

of terminating, the algorithm proceeds by constructing another majorizing function

with a nonzero subgradient in ∂Cf(z).

4.2.2 Nonsmooth Regularization

Similar to the proposed MM algorithm with smoothing majorization, the smoothing

SCA Algorithm 3 can be easily extended to address the problem (4.39), where the

objective function contains an additional convex nonsmooth regularization term and,

hence, may not be majorized by a smooth function.

At the tth iteration, the function f is majorized at the iterate x(t) by a smooth function

f̂
(
x;x(t)

)
and then approximated by a pseudoconvex function f̃

(
x;x(t)

)
, where both

functions satisfy Assumptions 4.1 and 4.3, respectively, whereas the regularization g

remains unchanged. This leads to the following approximate problem:

x̃(t) ∈ argmin
x∈X

f̃
(
x;x(t)

)
+ g(x). (4.63)

The difference x̃(t) −x(t) provides a descent direction of the majorization f̂
(
x;x(t)

)
+

g(x), as well as the original objective function f + g. Then a decrease of the original
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objective function f + g in (4.39) is achieved by updating the optimization variable

along the descent direction

x(t+1) = x(t) + γ(t)
(
x̃(t) − x(t)

)
(4.64)

with a step size γ(t) ∈ (0, 1] obtained by performing line search on the majorizing

function. In particular, to further reduce the computational cost of line search, we

employ the modified exact and successive line search methods introduced in Sec-

tion 3.2, where the convex regularization g restricted to the descent direction, i.e.,

g
(
x(t) + γ

(
x̃(t) − x(t)

))
, is replaced by its linear majorization at x(t): g

(
x(t)
)
+

γ
(
g
(
x̃(t) − g

(
x(t)
)))

. The exact line search in (3.27) customized for the majorizing

function is expressed as the following optimization problem:

γ(t) ∈ argmin
γ∈[0,1]

f̂
(
x(t) + γ(x̃(t) − x(t));x(t)

)
+ γ

(
g
(
x̃(t)
)
− g

(
x(t)
))
. (4.65)

On the other hand, in the Armijo rule, the step size is successively decreased at a

geometric rate until the required sufficient decrease of function value is achieved, which

is expressed as the following optimization problem:

γ(t) = argmax
γ

γ

s.t. γ ∈ {βk | k ∈ N} and sufficient decrease constraint.
(4.66)

Either of the two sufficient decrease constraints given in (3.31) and (3.32), respectively,

can be used, which are given as follows for the majorizing function f̂(x;x(t)) + g(x):

f̂
(
x(t) + γ(x̃(t) − x(t));x(t)

)
− f̂

(
x(t);x(t)

)
+ γ

(
g
(
x̃(t)
)
− g

(
x(t)
))
≤ γσδ (4.67)

and

f̂
(
x(t) + γ(x̃(t) − x(t));x(t)

)
− f̂

(
x(t);x(t)

)
+ g

(
x(t) + γ

(
x̃(t) − x(t)

))
− g

(
x(t)
)
≤ γσδ (4.68)

with δ =
(
∇xf̂(x

(t))
)T (

x̃(t) − x(t)
)
+ g

(
x̃(t)
)
− g

(
x(t)
)
and 0 < β, σ < 1. With

the above modifications, the proposed smoothing SCA algorithm for the regularized

problem (4.39) is then outlined in Algorithm 4.

Similar to the proposed exact MM algorithm with smoothing majorization, the conver-

gence of the proposed smoothing SCA Algorithm 4 for the regularized problem (4.39)

can be established based on the equivalent reformulation in (4.41) with an auxil-

iary variable. Moreover, by the same reformulation technique, the approximate prob-

lem (4.63) is rewritten as(
x̃(t), ỹ(t)

)
= argmin

x∈Rn, y∈R
f̃
(
x;x(t)

)
+ y

s.t. x ∈ X , g(x) ≤ y,
(4.69)
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Algorithm 4: The SCA Algorithm Extended by Smoothing Majorization for
Solving Problem (4.39)

1 Initialize x(0) ∈ X and t← 0 ;
2 repeat

3 Construct a smooth majorizer f̂
(
x;x(t)

)
of f at x(t) ;

4 Construct a pseudoconvex approximation f̃
(
x;x(t)

)
of f̂

(
x;x(t)

)
at x(t);

5 Let x̃(t) ∈ argmin
x∈X

f̃
(
x;x(t)

)
+ g(x) ;

6 Compute the step size γ(t) by the exact line search (4.65) or the successive
line search (4.66) ;

7 Let x(t+1) = x(t) + γ(t)
(
x̃(t) − x(t)

)
;

8 t← t+ 1;

9 until converged and (x(t) /∈ int (X ) or ∇xf
(
x(t)
)
exists);

10 return x(t)

and, as can be easily verified, the solution for the auxiliary variable is ỹ(t) = g
(
x̃(t)
)
.

This is equivalent to performing a smoothing majorization and then a convex ap-

proximation that satisfies Assumptions 4.1 and 4.3, respectively, on the reformulated

problem (4.39). However, different from directly performing Algorithm 3 on the refor-

mulated problem (4.41), which only updates the auxiliary variable along the descent

direction as y(t+1) = y(t) + γ(t)
(
ỹ(t) − y(t)

)
, Algorithm 4 implicitly minimizes the prob-

lem (4.41) with respect to y with x fixed at x(t+1) after line search by incorporating

the update y(t+1) = g
(
x(t+1)

)
. This modification, as discussed in Section 3.2, does

not destroy the property that the generated solution sequence monotonically decreases

the original objective function. Therefore, the convergence of Algorithm 4 can still be

justified by Proposition 4.5 and Theorem 4.2 based on the equivalent reformulation

in (4.41). That is, every limit point x⋆ of the solution sequence generated by the pro-

posed smoothing SCA Algorithm 4 for the regularized problem (4.39) is a C-stationary

point of the equivalently reformulated problem (4.41), which satisfies (4.47). Likewise,

Proposition 4.3 can be readily extended to Algorithm 4 and used to exclude a subset

of stationary points that are not local minima of the original problem (4.39), which

results in the additional termination condition incorporated in Algorithm 4.

4.2.3 Connection to Other SCA Algorithms

A similar extension of the SCA framework is introduced in [YPCO18] to address the

following composite problem:

min
x∈X

u(x) + g+(x)− g−(x)︸ ︷︷ ︸
g(x)

, (4.70)
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where u is smooth but not necessarily convex, and both g+ and g− are convex but

possibly nonsmooth. That is, the nonsmooth regularization g is nonconvex but has a

DC structure. Similar to our smoothing SCA framework, the SCA algorithm proposed

in [YPCO18] consists of the three steps, i.e., the smoothing majorization, the convex

approximation, and the line search performed on the majorizing function. Specifically,

the nonsmooth concave component −g− is majorized, according to the linearization

majorization technique presented in (4.22), by a supporting hyperplane that preserves

a subgradient at the current iterate, whereas the nonsmooth convex component g+,

as well as the smooth component u, remain unchanged. It can be immediately con-

cluded that the algorithm in [YPCO18] is a special case of the smoothing SCA frame-

work developed in this section. In other words, in this section, we generalize the idea

of [YPCO18] to other types of smoothing majorization techniques, including the exam-

ples presented in Section 4.1.2, so as to establish an algorithmic framework for a wide

class of nonconvex nonsmooth optimization problems. Moreover, we provide a unified

convergence analysis for this generalized algorithmic framework.

4.3 Block-Coordinatewise Versions

Similar to the classic MM and SCA frameworks, the smoothing MM and smoothing

SCA algorithms proposed in the previous sections can be implemented in a BCD man-

ner to exploit the potential separable structure of the constraints in the optimization

problem, which, together with their convergence analyses in the case where a deter-

ministic block selection rule is used, are presented in this section.

4.3.1 BSUM Framework with Smoothing Majorization

In this subsection, we derive a block-coordinatewise extension of the MM framework

with smoothing majorization proposed in Section 4.1 or, equivalently, a smoothing ver-

sion of the BSUM framework in Section (3.3.2) that successively updates part of the

variables by minimizing a global upper bound along the chosen coordinates. Similar to

the joint-update case, the smoothing BSUM sacrifices the tightness of the derivative

consistency between the coordinatewise upper bound and the original objective func-

tion with the benefit that the upper bound is ensured to be smooth and, hence, can

be easily minimized.

Consider the previously introduced class of optimization problems in (2.41) with sep-

arable constraints. Let us first assume that the objective function f is nonconvex and
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nonsmooth but fulfills Assumption 4.2 so that there always exists a smooth majorizing

function of f at any point in the feasible set. Similar to the joint-update case, later

we will extend the algorithm to address the problem containing an additional convex

nonsmooth regularization where the whole objective function can not be directly ma-

jorized by a smooth function. We present the smoothing BSUM in the general case

where multiple block variables can be selected at each iteration. Specifically, at the

tth iteration, let I(t) ⊆ {1, . . . , K} be the set of indices of the block variables selected

to be updated at iteration t and xI(t) = (xk)k∈I(t) be the collection of the selected

block variables. We first construct a smooth approximate function f̂I(t)

(
xI(t) ;x(t)

)
that majorizes the original objective function f at the current x(t) in the selected co-

ordinates I(t). Then the selected block variables xI(t) is updated by minimizing the

coordinatewise majorizing function, i.e.,

xI(t) ∈
{
argmin

xI(t)

f̂I(t)

(
xI(t) ;x(t)

)
s.t.xi ∈ Xi,∀ i ∈ I(t)

}
, (4.71)

which ensures a decrease of the original objective function along the chosen coordinates.

The rest of the block variables then retain their values at the current iterate, i.e.,

x
(t+1)
i = x

(t)
i for all i /∈ I(t). The complete description of the proposed BSUM algorithm

with smoothing majorization for solving problem (2.41) is given in Algorithm 5. In

particular, the MM Algorithm 1 with smoothing majorization proposed in Section 4.1

can be regarded as a special instance of Algorithm 5 where all blocks are jointly updated

at each iteration, i.e., with I(t) = {1, . . . , K}, or, equivalently, a single-block version of

Algorithm 5, i.e., with K = 1.

Remark 4.3. In the case where more than one block variable is to be updated, i.e.,∣∣I(t)∣∣ > 1, the approximate function f̂I(t)

(
xI(t) ;x(t)

)
is required to be a global upper

bound of f when all the chosen block variables xI(t) can be jointly varied. As a counter

example, the following separable approximation∑
i∈I(t)

f̂i
(
xi;x

(t)
)
, (4.72)

where each component f̂i
(
xi;x

(t)
)
is a majorization of f restricted to one selected

block variable xi, usually has an advantage of reduced computational complexity as

it can be minimized independently and in parallel with respect to each block variable.

Nonetheless, the approximation (4.72) is not guaranteed to be a joint majorization of

f along all the chosen coordinates and, hence, it cannot be used.

As presented in Section 3.3, different rules can be used for the block selection in a

coordinatewise scheme. Nevertheless, we establish in the following the convergence of



4.3 Block-Coordinatewise Versions 73

Algorithm 5: The BSUM Algorithm with Smoothing Majorization for Solv-
ing Problem (2.41)

1 Initialize x(0) ∈ X and t← 0 ;
2 repeat
3 Pick index set I(t);
4 Construct a smooth majorizer f̂I(t)

(
xI(t) ;x(t)

)
of f at x(t) in the selected

coordinates I(t) ;
5 Let

xI(t) ∈
{
argmin

xI(t)

f̂I(t)

(
xI(t) ;x(t)

)
s.t.xi ∈ Xi,∀ i ∈ I(t)

}
;

6 Let x
(t+1)
i = x

(t)
i for all i /∈ I(t) ;

7 t← t+ 1;

8 until converged and
∧K
i=1

(
x
(t)
i /∈ int (Xi) or∇xi

f
(
x(t)
)
exits

)
;

9 return x(t)

the modified BSUM framework with smoothing majorization only in the case where

the blocks are updated in a fixed order. For simplicity of presentation, we consider that

a single block variable, say xk, is updated at each iteration. Similar to the joint-update

counterpart, the following assumptions are required on each coordinatewise majorizing

function f̂k.

Assumption 4.5 (Smoothing majorization). Let the coordinatewise approximate func-

tions f̂k(·; ·) satisfy the following assumptions for k = 1, . . . , K:

1) f̂k(xk;y) is continuously differentiable in xk ∈ Xk for any given y ∈ X and

continuous in y ∈ X for any given xk ∈ Xk;

2) Tangency: f̂k(yk;y) = f(y) for all y ∈ X ;

3) Upper bound: f̂k(xk;y) ≥ f(y) for all xk ∈ Xk and y ∈ X ;

4) Subgradient consistency: ∇xk
f̂k(yk;y) ∈ ∂Cxk

f(y) for all y ∈ X .

The following additional assumptions that have been included in Assumption 3.4 for

the classic BSUM framework are also required for establishing the convergence of the

coordinatewise variant of MM.

Assumption 4.6. We make the following assumptions for all k = 1, . . . , K:

1) f̂k(xk;y) is quasiconvex in xk ∈ Xk for any given y ∈ X ;
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2) The subproblem (4.71) has a unique solution for any x(t) ∈ X .

Then the following theorem establishes the convergence of the modified BSUM algo-

rithm with smoothing majorization.

Theorem 4.3 (Convergence of the BSUM algorithm with smoothing majorization).

Suppose that a deterministic block selection rule is used. Provided that Assumptions 4.2,

4.5 and 4.6 are satisfied, then every limit point z of the solution sequence generated by

Algorithm 5 is a coordinate C-stationary point of the problem (2.41). In addition, if f

is coordinatewise regular at z, then z is a C-stationary point of (2.41).

Proof. Theorem 4.3 can be proved by following a similar line of argument as that

in [Ber16, Sec. 3.7] for the exact BCD method. Without loss of generality, we prove

the convergence of Algorithm 5 in a case where the block variables are updated in

the cyclic order from the first to the Kth block since the following argument can be

readily extended to an arbitrary deterministic block selection rule. First, the sequence

of objective function values
(
f(x(t))

)
t∈N is monotonically nonincreasing due to the

minimization of the majorizing function, i.e.,

f
(
x(0)

)
≥ f

(
x(1)

)
≥ f

(
x(2)

)
≥ · · · .

Let z be a limit point of the solution sequence
(
x(t)
)
t∈N. By the monotone convergence

theorem, we have

lim
t→∞

f
(
x(t)
)
= f(z). (4.73)

As the number of blocks is finite, each block variable is updated infinitely often in the

solution sequence. Hence, without loss of generality, we can assume that there exists

a convergent subsequence
(
x(tj)

)
j∈N with the limit point z where the Kth block is

updated, i.e., for all j ∈ N,x
(tj)
K = argmin

xK∈XK

f̂K
(
xK ;x

(tj−1)
)

x
(tj)
i = x

(tj−1)
i ∀ i = 1, . . . , K − 1.

Then, the first block is updated in the next iteration, i.e.,

x
(tj+1)
1 = argmin

x1∈X1

f̂1
(
x1;x

(tj)
)
.

Consequently, we have

f̂1

(
x
(tj+1)
1 ;x(tj+1)

)
= f

(
x(tj+1)

)
≤ f

(
x(tj+1)

)
≤ f̂1

(
x(tj+1);x(tj)

)
≤ f̂1

(
x1;x

(tj)
)
∀x1 ∈ X1.
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Taking limits for j →∞ leads to

f̂1(z1; z) ≤ f̂1(x1; z) ∀x1 ∈ X1, (4.74)

which suggests that z1 is the global minimizer of the majorizing function f̂1(x1; z) on

X1. Hence, z1 satisfies the C-stationarity condition (2.39), i.e.,

0 ∈ ∂Cx1
f̂1 (z1; z) +NX1(z1), (4.75)

where ∂Cx1
f̂1(z1; z) =

{
∇x1 f̂1(z1; z)

}
due to the smoothness of f̂1. The subgradient

consistency condition in Assumption 4.5 implies that

∂Cx1
f̂1(z1; z) +NX1(z1) ⊆ ∂Cx1

f(z) +NX1(z1). (4.76)

Combining (4.75) and (4.76), we obtain

0 ∈ ∂Cx1
f(z) +NX1(z1), (4.77)

which implies that f is C-stationary at z along the coordinates of the first block x1.

The next objective is to show that the subsequence
(
x(tj+1)

)
j∈N also converges to the

same limit point z, so that, by repeating the preceding argument on the subproblem

x
(tj+2)
2 = argmin

x2∈X2

f̂2
(
x2;x

(tj+1)
)
,

we will have

0 ∈ ∂Cx2
f(z2; z) +NX2(z2). (4.78)

Moreover, by repeating the above procedure, we can successively obtain

0 ∈ ∂Cxk
f(zk; z) +NXk

(zk) ∀ k = 1, . . . , K, (4.79)

which justifies that the limit point z is a coordinatewise C-stationary point of the

original problem (2.41).

Now we show that the sequence
(
x(tj+1)

)
t∈N also converges to z or, equivalently,

x
(tj+1)
1 → z1 since x(tj+1) differs from x(tj) only on the first block. To this end, we

assume the contrary or, equivalently, the difference x
(tj+1)
1 −x

(tj)
1 does not converge to

zero. Define

α(tj) =
∥∥∥x(tj+1)

1 − x
(tj)
1

∥∥∥
2
,

and the normalized difference

s
(tj)
1 =

x
(tj+1)
1 − x

(tj)
1

α(tj)
.
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By possibly restricting to a subsequence of (tj), there exists an ᾰ > 0 and a j̆ ∈ N such

that

α(tj) ≥ ᾰ ∀ j ≥ j̆.

Thus, for any given ϵ ∈ [0, 1], we have 0 ≤ ϵᾰ ≤ α(tj), this implies that the vector

x
(tj)
1 + ϵᾰs

(tj)
1 lies on the line segment from x

(tj)
1 to x

(tj)
1 + α(tj)s(tj) = x(tj+1). Due to

the majorization Assumption 4.5, we have

f
(
x(tj+1)

)
= f̂1

(
x
(tj+1)
1 ;x(tj)

)
≤ f̂1

(
x
(tj)
1 + ϵᾰs

(tj)
1 ;x(tj)

)
(4.80a)

≤ f̂1

(
x
(tj)
1 ;x(tj)

)
= f

(
x(tj)

)
∀ ϵ ∈ [0, 1], (4.80b)

where (4.80a) comes from the minimization of the majorizing function and (4.80b)

from the quasiconvexity of the majorizing function. As ∥s(tj)1 ∥ = 1, the sequence(
s
(tj)
1

)
belongs to a compact set and, hence, has a limit point s⋆. The convergence of

the objective function value shown in (4.73) ensure that both subsequences
(
f(x(tj))

)
and

(
f(x(tj+1))

)
converge to f(z) as j → ∞. We further restrict to a subsequence of(

s
(tj)
1

)
that converges to s⋆1 and take the limits of (4.80) for j → ∞, which leads to

the following bounding property:

f(z) ≤ f̂1 (z1 + ϵᾰs⋆1; z) ≤ f̂1(z1; z) ≤ f(z) ∀ ϵ ∈ [0, 1], (4.81)

or, equivalently,

f(z) = f̂1(z1; z) = f̂1 (z1 + ϵᾰs⋆1; z) ∀ ϵ ∈ [0, 1]. (4.82)

This contradicts the assumption that the majorizing function is uniquely minimized

with respect to the selected coordinates at each iteration if ᾰs⋆1 ̸= 0. Hence, the

subsequence
(
x(tj+1)

)
t∈N must converge to z, which, as aforementioned, can be used to

justify that f is C-stationary at z along the coordinates of the second block x2.

By repeating the preceding procedure, we can easily prove that the original objec-

tive function f is C-stationary at z along each block of coordinates, respectively, and

conclude that z is a coordinatewise C-stationary point of the original problem (2.41).

When the original objective function f is coordinatewise regular at z, the coordinate-

wise C-stationarity of f at z also implies the joint C-stationarity of f at z.

In addition, Proposition 4.3 can be coordinatewise applied to the problem (2.41) to

identify a subset of coordinatewise C-stationary points of (2.41) that are not coordi-

natewise local minima. Suppose that the coordinatewise smooth majorizer f̂k(xk;y) is

stationary at y ∈ X with yk ∈ int (Xk), which implies that the original objective func-

tion f is C-stationary along the coordinates of xk. By Proposition 4.3, if the partial
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gradient ∇xk
f(y) does not exist, then f does not achieve a local minimum at y along

the coordinates of xk as a strict descent direction of f along the coordinates of xk exists

at y. This property motivates the additional termination condition in Algorithm 5 to

exclude those coordinatewise C-stationary points.

Similar to the joint-update counterpart – the smooth MM Algorithm 1, the above

procedure and convergence result can be readily extended to the following subclass of

the composite problem in (4.39):

min
{xk}Kk=1

f(x1, . . . ,xK) +
K∑
k=1

gk(xk)︸ ︷︷ ︸
g(x)

s.t. xk ∈ Xk, k = 1, . . . , K,

(4.83)

where both the convex nonsmooth regularization g and the constraints are separable

across the blocks of variables. Each component gk(xk) of the regularization term is

convex in the corresponding coordinates, but not necessarily smooth. The nonconvex

nonsmooth function f satisfies Assumption 4.2. However, as explained in Section 4.1,

due to the additional convex nonsmooth regularization g, Assumption 4.2 may not

hold for the overall objective function of (4.83), which hinders the application of Al-

gorithm 5. Moreover, as the regularization g is also separable across the blocks of

variables, we can leave g unchanged and construct a smooth majorizer only for f along

the chosen coordinates. That is, the following modified approximate problem is solved

at the tth iteration:

x
(t+1)

I(t) ∈

argmin
xI(t)

f̂I(t)

(
xI(t) ;x(t)

)
+
∑
i∈I(t)

gi(xi) s.t.xi ∈ Xi,∀ i ∈ I(t)
 , (4.84)

where f̂I(t)

(
xI(t) ;x(t)

)
is designed to be a smooth majorizer of f at x(t) along the

chosen coordinates of xI(t) . The complete description of this extension of the smooth

BSUM algorithm to address the regularized problem (4.83) is given in Algorithm 6

The convergence of the modified smooth BSUM Algorithm 6 can be justified by fol-

lowing the same line of analysis as in Section 4.1. Specifically, Algorithm 6 can be

demonstrated to be equivalent to performing the smooth BSUM Algorithm 5 on the

following equivalent reformulation of (4.83):

min
{xk∈Rnk , yk∈R}Kk=1

f(x1, . . . ,xK) +
K∑
k=1

yk

s.t. xk ∈ Xk, gk(xk) ≤ yk, k = 1, . . . , K.

(4.85)
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Algorithm 6: The BSUM Algorithm with Smoothing Majorization for Solv-
ing Problem (4.83)

1 Initialize x(0) ∈ X and t← 0 ;
2 repeat
3 Pick index set I(t);
4 Construct a smooth majorizer f̂I(t)

(
xI(t) ;x(t)

)
of f at x(t) in the selected

coordinates I(t) ;
5 Let

x
(t+1)

I(t) ∈

argmin
xI(t)

f̂I(t)

(
xI(t) ;x(t)

)
+
∑
i∈I(t)

gi(xi) s.t.xi ∈ Xi,∀ i ∈ I(t)
 ;

6 Let x
(t+1)
i = x

(t)
i for all i /∈ I(t) ;

7 t← t+ 1;

8 until converged and
∧K
i=1

(
x
(t)
i /∈ int (Xi) or∇xi

f
(
x(t)
)
exits

)
;

9 return x(t)

Thus, by Theorem 4.3, every limit point z of the solution sequence generated by

Algorithm 6 is a coordinatewise C-stationary point of the reformulation (4.85) that

satisfies

0 ∈ ∂Cxk
f(z) + ∂Cxk

g(z) +NXk
(zk) ∀ k = 1, . . . , K. (4.86)

Moreover, the problem (4.85) is coordinatewise regular if f is coordinatewise regular.

If this is true, then z becomes a joint C-stationary point of (4.85) that satisfies

0 ∈ ∂Cf(z) + ∂Cg(z) +NX (z). (4.87)

4.3.2 BSCA Framework with Smoothing Majorization

Similar to the single-block version – the smoothing SCA algorithm in Section 4.2, the

idea of convex approximation can be employed to efficiently obtain an approximate

minimizer of the coordinatewise smooth majorizing function f̂I(t) (xI(t) ;x) when the

exact minimization of f̂I(t) (xI(t) ;x) is still difficult. Thus, in the following, we present

a block-coordinatewise version of the smoothing SCA framework, referred to as the

smoothing BSCA framework.

At the tth iteration, instead of minimizing the smooth majorizing function

f̂I(t) (xI(t) ;x) exactly, we further construct a convex approximation f̃I(t) (xI(t) ;x) of

f̂I(t) (xI(t) ;x) at the current iterate x(t) that can be easily minimized. Moreover, when
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multiple block variables are selected, i.e.,
∣∣I(t)∣∣ > 1, unlike the majorization, the con-

vex approximation can be designed to be separable across the blocks to better take

advantage of the separable structure of the constraints. Specifically, we employ the

following type of approximation:

f̃I(t)

(
xI(t) ;x(t)

)
=
∑
i∈I(t)

f̃i
(
xi;x

(t)
)
, (4.88)

where f̃i
(
xi;x

(t)
)

is a convex approximation of the smooth majorizing function

f̂I(t) (xI(t) ;x) along the coordinates of each chosen block xi. Then the approximate

problem at iteration t is given by

x̃I(t) ∈
{
argmin

xI(t)

f̃I(t)

(
xI(t) ;x(t)

)
s.t.xi ∈ Xi,∀ i ∈ I(t)

}
, (4.89)

which apparently can be decomposed into the following subproblems:

x̃i ∈
{
argmin
xi∈Xi

f̃i
(
xi;x

(t)
)}

∀ i ∈ I(t). (4.90)

Each subproblem in (4.90) exclusively depends on a single block variable and, hence,

can be solved independently and in parallel. The difference x̃
(t)

I(t) − x
(t)

I(t) indicates

a descent direction of the smooth majorizing function due to the convexity of the

approximate function. The variable x is then updated according to the following rule:

x
(t+1)
i =

{
x
(t)
i + γ(t)

(
x̃
(t)
i − x

(t)
i

)
∀ i ∈ I(t),

x
(t)
i otherwise,

(4.91)

That is, only the selected block variables are updated along the descent direction given

by the solutions of the convex approximations with a suitable step size γ(t) ∈ (0, 1],

whereas the other block variables retain their values at the current iterate.

As aforementioned, we focus on the line search approach introduced in Section 3.2

for choosing a step size γ(t), including the exact and the successive line search. Sim-

ilar to the joint-update counterpart in Section 4.2, we perform a line search method

on the coordinatewise majorizing function f̂I(t)

(
xI(t) ;x(t)

)
due to its smoothness and

majorization property, which ensures that the step size γ(t) also provides a sufficient

decrease of the original function f along the considered coordinates of xI(t) . Specif-

ically, the exact line search in (3.17) and the successive line search with Armijo rule

in (3.19) are customized for the coordinatewise majorizing function f̂I(t)

(
xI(t) ;x(t)

)
as

follows. In the exact line search, the step size γ(t) is chosen to minimize f̂I(t)

(
xI(t) ;x(t)

)
along the descent direction x̃

(t)

I(t) − x
(t)

I(t) , i.e.,

γ(t) ∈ argmin
γ∈[0,1]

f̂I(t)

(
x
(t)

I(t) + γ
(
x̃
(t)

I(t) − x
(t)

I(t)

)
;x(t)

)
. (4.92)
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Algorithm 7: The BSCA Algorithm Extended by Smoothing Majorization
for Solving Problem (2.41)

1 Initialize x(0) ∈ X and t← 0 ;
2 repeat
3 Pick index set I(t);
4 Construct a smooth majorizer f̂I(t)

(
xI(t) ;x(t)

)
of f at x(t) in the selected

coordinates I(t) ;
5 Construct coordinatewise convex approximations f̃i

(
xi;x

(t)
)
of

f̂I(t)

(
xI(t) ;x(t)

)
at x(t) along the coordinates of each selected block xi,

respectively, for all i ∈ I(t);
6 Let

x̃i ∈
{
argmin
xi∈Xi

f̃i
(
xi;x

(t)
)}

∀ i ∈ I(t);

7 Compute the step size γ(t) by the exact line search (4.92) or the successive
line search (4.93);

8 Let x
(t+1)
i = x

(t)
i + γ(t)

(
x̃
(t)
i − x

(t)
i

)
for all i ∈ I(t) ;

9 Let x
(t+1)
i = x

(t)
i for all i /∈ I(t) ;

10 t← t+ 1;

11 until converged and
∧K
i=1

(
x
(t)
i /∈ int (Xi) or∇xi

f
(
x(t)
)
exits

)
;

12 return x(t)

As an alternative, the Armjio rule can be used when the optimization problem (4.92)

cannot be solved efficiently. In the Armijo rule, the step size is successively decreased

at a geometric rate until a condition on the sufficient decrease of f̂I(t) is fulfilled, which

is expressed as the following optimization problem:

γ(t) = argmax
γ

γ

s.t. γ ∈
{
βk | k ∈ N

}
,

f̂I(t)

(
x
(t)

I(t) + γ
(
x̃
(t)

I(t) − x
(t)

I(t)

)
;x(t)

)
− f̂I(t)

(
x
(t)

I(t) ;x
(t)
)
≤ γσδ

(4.93)

with the directional derivative δ =
∑

i∈I(t)

(
∇xi

f̂I(t)

(
x
(t)

I(t)

))T (
x̃
(t)
i − x

(t)
i

)
and 0 <

β, σ < 1. The proposed smoothing BSCA framework for solving the problem (2.41)

with separable constraints is then outlined in Algorithm 7.

In the following, we demonstrate the convergence of the proposed BSCA framework

extended by smoothing majorization in the case where the blocks are updated in a fixed

order. For simplicity of presentation, we consider that only a single block variable, say

xk, is updated at each iteration. First, the following assumptions are made on each
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approximate function f̃k
(
xk;x

(t)
)
so that it is a convex approximation of the corre-

sponding coordinatewise smooth majorizer f̂k(xk;x
(t)) along the chosen coordinates.

Assumption 4.7 (Convex approximation). Let the coordinatewise approximate func-

tions f̃k(·; ·) satisfy the following assumptions for k = 1, . . . , K:

1) f̃k(xk;y) are continuously differentiable in xk ∈ Xk for any given y ∈ X and

continuous in y ∈ X for any given xk ∈ Xk;

2) Gradient consistency: ∇xk
f̃(yk;y) = ∇xk

f̂(yk;y) for all y ∈ X ;

3) f̃k(xk;y) is strictly convex in xk ∈ Xk for any given y ∈ X .

Note that, different from the joint-update counterpart, each coordinatewise approxi-

mation f̃k(xk;y) is required to be strictly convex, instead of pseudoconvex. Moreover,

as in the classic BSCA framework, the following mild assumption is also required.

Assumption 4.8. The map

M̃k

(
x(t)
)
=

{
argmin
xk∈Xk

f̃k
(
xk;x

(t)
)}

is nonempty for t ∈ N.

Then the following theorem establishes the convergence of the proposed smoothing

BSCA algorithm.

Theorem 4.4 (Convergence of the smoothing BSCA algorithm). Suppose that the

line search approach is employed and that the block variables are updated in a fixed

order. Provided that Assumptions 4.2, 4.5, 4.7, and 4.8 are satisfied, then every limit

point z of the solution sequence generated by Algorithm 7 is a stationary point of the

problem (2.41). In addition, if f is coordinatewise regular at z, then z is a C-stationary

point of (2.41).

Proof. The proof is similar to that in [RHL13,YPLO20] for the classic BSCA frame-

work. Without loss of generality, we prove the convergence of Algorithm 5 in a case

where the block variables are updated in the cyclic order from the first to the Kth

block since the following argument can be readily extended to an arbitrary determin-

istic block selection rule.
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Let z be a limit point of the solution sequence
(
x(t)
)
t∈N. The monotonically nonin-

creasing property of the sequence of objective function values
(
f(x(t))

)
t∈N ensures its

convergence, i.e.,

lim
t→∞

f
(
x(t)
)
= f(z).

Assume that the block kt is selected to be updated at the tth iteration. Since the

step size is obtained by performing the Armijo rule on the smooth majorizing function

f̂kt
(
xkt ;x

(t)
)
, we have

f
(
x(t+1)

)
− f

(
x(t)
)
≤ f̂kt

(
x
(t+1)
kt

;x(t)
)
− f̂kt

(
x
(t)
kt
;x(t)

)
≤ σγ(t)

(
∇xkt

f̂kt

(
x
(t)
kt
;x(t)

))T
d
(t)
kt
≤ 0,

where d
(t)
kt

= x̃
(t)
kt
− x

(t)
kt

denotes the descent direction at the tth iteration. The conver-

gence of the objective function value implies that

lim
t→∞

γ(t)
(
∇xkt

f̂kt

(
x
(t)
kt
;x(t)

))T
d
(t)
kt

= 0. (4.94)

Without loss of generality, we can assume that there exists a convergent subsequence(
x(tj)

)
j∈N with the limit point z where the Kth block is updated. Then the first block

is to be updated in the next iteration, i.e.,

x̃
(tj+1)
1 ∈ argmin

x1∈X1

f̃1
(
x1;x

(tj)
)
.

We claim that, by further restricting to a subsequence if necessary, the descent direction

d
(tj)
1 converges to zero as j →∞, i.e.,

lim
j→∞

d
(tj)
1 = 0. (4.95)

We show this by contradiction. We assume the contrary that there exists an α ∈ (0, 1)

and a j̆ ∈ N such that ∥∥∥d(tj)
1

∥∥∥
2
≥ α ∀ j ≥ j̆. (4.96)

Define the normalized descent direction

p
(tj)
1 =

d
(tj)
1∥∥∥d(tj)
1

∥∥∥
2

.

It follows from (4.94) that

lim
j→∞

γ(tj)
∥∥∥d(tj)

1

∥∥∥
2

(
∇x1 f̂

(
x
(tj)
1 ;x(tj)

))T
p
(tj)
1 = 0, (4.97)

This implies that either of the following two cases is true and we demonstrate the

contradiction that none of the two cases can be true.
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Case A: The first case implied by (4.97) is that
(
∇x1 f̂1

(
x
(tj)
1 ;x(tj)

))T
p
(tj)
1 → 0 along

a subsequence of (tj). As ∥p(tj)
1 ∥2 = 1, the sequence

(
p
(tj)
1

)
belongs to a compact set

and, hence, has a limit point p⋆1. By taking the limit of the directional derivative(
∇x1 f̂1

(
x
(tj)
1 ;x(tj)

))T
p
(tj)
1 along a convergent subsequence, we obtain

(
∇x1 f̂1(z1; z)

)T
p⋆1 = 0.

the strict convexity of the approximate function f̃1(x1; z) in x1 implies that

f̃1(z1 + αp⋆1; z) > f̃1(z1; z) + α
(
∇x1 f̃1 (z1; z)

)T
p⋆1 ≥ f̃1(z1; z), (4.98)

where the last inequality comes from the subgradient consistency condition in Assump-

tion 4.7. On the other hand, since x
(tj)
1 + αp

(tj)
1 lies on the line segment from x

(tj)
1 to

the minimizer x̃
(tj)
1 of the approximate function f̃1, the convexity of f̃1 also implies that

f̃1

(
x
(tj)
1 + αp

(tj)
1

)
≤ f̃1

(
x
(tj)
1 ;x(tj)

)
. (4.99)

Taking limits for j →∞ leads to

f̃1 (z1 + αp⋆1; z) ≤ f̃1 (z1; z) . (4.100)

This contradicts (4.98) and, hence, Case A cannot be true.

Case B: The second case implied by (4.97) is that γ(tj)∥d(tj)
1 ∥2 → 0 along a subsequence

of (tj). Let us restrict to that subsequence. Due to the hypothesis (4.96), we have

lim
j→∞

γ(tj) = 0,

which further implies that there exists a j̆′ ∈ N such that, for all j ≥ j̆′,

f̂1

(
x
(tj)
1 +

γ(tj)

β
d
(tj)
1 ;x(tj)

)
− f̂1

(
x
(tj)
1 ;x(tj)

)
> σ

γ(tj)

β

(
∇x1 f̂1

(
x
(tj)
1 ;x(tj)

))T
d
(tj)
1 .

Rearranging the terms, we obtain

f̂1

(
x
(tj)
1 + γ(tj)

β
∥d(tj)

1 ∥2p(t−j)
1 ;x(tj)

)
− f̂1

(
x
(tj)
1 ;x(tj)

)
γ(tj)

β
∥d(tj)

1 ∥2
>

σ
(
∇x1 f̂1

(
x
(tj)
1 ;x(tj)

))T
p
(tj)
1 ∀ j ≥ j̆′.

Letting j →∞ along the subsequence such that p
(tj)
1 → p⋆1, we have(

∇x1 f̂1 (z1; z)
)T

p⋆1 ≥ σ
(
∇x1 f̂1 (z1; z)

)T
p⋆1,



84 Chapter 4: Proposed Frameworks based on Smoothing Majorization

which implies that
(
∇x1 f̂1 (z1; z)

)T
p⋆1 ≥ 0 since 0 < σ < 1. Consequently, following

the same line of argument as in the previous case, we can justify that both (4.98)

and (4.99) hold, which is a contradiction. Thus, we can conclude that the hypothe-

sis (4.96) cannot be true and, on the contrary, the condition (4.95) must hold. In other

words, the approximate solution x̃
(tj)
1 converges to the same limit point z1 as x

(tj)
1 in

some subsequence.

On the other hand, x̃
(tj)
1 is the minimizer of the approximate function f̃1

(
x1;x

(tj)
)
,

i.e.,

f̃1

(
x̃
(tj)
1 ;x(tj)

)
≤ f̃1

(
x1;x

(tj)
)
∀x1 ∈ X1.

Taking limits in the aforementioned convergent subsequence leads to

f̃1(z1; z) ≤ f̃1(x1; z) ∀x1 ∈ X1.

This implies that z1 is a global minimizer of the approximate function f̃1(x1; z) on X1

and, hence, satisfies the C-stationarity condition (2.39), i.e.,

0 ∈ ∂Cx1
f̃1(z1; z) +NX1(z1). (4.101)

From the subgradient consistency conditions in Assumption 4.5 and 4.7, we have

∂Cx1
f̃1(z1; z) +NX1(z1) = ∂Cx1

f̂(z1; z) +NX1(z1) ⊆ ∂Cx1
f(z) +NX1(z1), (4.102)

where ∂Cx1
f̃1(z1; z) =

{
∇x1 f̃1(z1; z)

}
and ∂Cx1

f̂1(z1; z) =
{
∇x1 f̂1(z1; z)

}
due to the

smoothness. Combining (4.101) and (4.102), we obtain

0 ∈ ∂Cx1
f(z) +NX1(z1), (4.103)

which implies that f is C-stationary at z along the coordinates of the first block x1.

Furthermore, since x̃
(tj)
1 converges to z1 as j → ∞, the next iterate x(tj+1), where

the first block is updated toward x̃
(tj)
1 , also converges to z, i.e., limj→∞ x(tj+1) = z.

Therefore, by repeating the preceding argument on the subproblem at the next iteration

x̃
(tj+1)
2 = argmin

x2∈X2

f̃2
(
x2;x

(tj+1)
)
,

we will have

0 ∈ ∂Cx2
f(z) +NX2(z2), (4.104)

and limj→∞ x(tj+2) = z. Moreover, we can continue to obtain

0 ∈ ∂Cxk
f(z) +NXk

(zk) ∀ k = 1, . . . , K, (4.105)
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which justifies that the limit point z is a coordinatewise C-stationary point of the

original problem (2.41). When the original objective function f is coordinatewise

regular at z, the coordinatewise C-stationarity of f at z also implies the joint C-

stationarity.

Furthermore, Proposition 4.3 can be coordinatewise applied to each convex approx-

imation f̃k
(
xk;x

(t)
)
to identify a subset of coordinatewise C-stationary point of the

original problem (2.41) that are not local minima. This leads to the additional termi-

nation condition incorporated in Algorithm 7.

Similar to the proposed smooth BSUM framework in Section 4.3.1, Algorithm 7 can be

further extended to address the composite problem in (4.83) where the objective func-

tion contains an additional nonconvex nonsmooth regularization term that is separable

across the blocks of variables. That is done by performing Algorithm 7 on the equiva-

lent reformulation (4.85) of the problem (4.83). It leads to the following approximate

problem at the tth iteration:

x̃I(t) ∈

argmin
xI(t)

f̃I(t)

(
xI(t) ;x(t)

)
+
∑
i∈I(t)

gi(xi) s.t.xi ∈ Xi,∀ i ∈ I(t)
 . (4.106)

That is, only a coordinatewise convex approximation for the component f is con-

structed and the separable regularization g remains unchanged. The approximate

problem (4.106) can be decomposed into the subproblems

x̃i ∈
{
argmin
xi∈Xi

f̃i
(
xi;x

(t)
)
+ gi(xi)

}
∀ i ∈ I(t), (4.107)

and solved in parallel. Then the chosen block variables are updated along the descent

direction according to the rule in (4.91) with a suitable step size γ(t) obtained by

performing line search on the corresponding majorizing function in (4.84). Recall

that the modified exact line search (3.27) and the successive line search with Armijo

rule (3.31) and (3.32) should be used due to the presence of regularization. The exact

line search in (3.27) customized for the majorizing function in (4.84) is expressed as

the following optimization problem:

γ(t) ∈ argmin
γ∈[0,1]

f̂I(t)

(
x
(t)

I(t) + γ
(
x̃
(t)

I(t) − x
(t)

I(t)

)
;x(t)

)
+ γ

∑
i∈I(t)

(
gi

(
x̃
(t)
i

)
− gi

(
x
(t)
i

))
.

(4.108)
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Alternatively, in the Armijo rule, the step size is successively decreased at a geomet-

ric rate until the required sufficient decrease of function value is achieved, which is

expressed as the following optimization problem:

γ(t) = argmax
γ

γ

s.t. γ ∈ {βk | k ∈ N} and sufficient decrease constraint.
(4.109)

Either of the two sufficient decrease constraints given in (3.31) and (3.32), respectively,

can be used, which are written as follows for the majorizing function in (4.84):

f̂I(t)

(
x
(t)

I(t) + γ
(
x̃
(t)

I(t) − x
(t)

I(t)

)
;x(t)

)
− f̂I(t)

(
x
(t)

I(t) ;x
(t)
)

+ γ
∑
i∈I(t)

(
gi

(
x̃
(t)
i

)
− gi

(
x
(t)
i

))
≤ γσδ (4.110)

and

f̂I(t)

(
x
(t)

I(t) + γ
(
x̃
(t)

I(t) − x
(t)

I(t)

)
;x(t)

)
− f̂I(t)

(
x
(t)

I(t) ;x
(t)
)

+
∑
i∈I(t)

gi

(
x
(t)
i + γ

(
x̃
(t)
i − x

(t)
i

))
− gi

(
x
(t)
i

)
≤ γσδ (4.111)

with δ =
∑

i∈I(t)

(
∇xi

f̂I(t)

(
x
(t)

I(t)

))T (
x̃
(t)
i − x

(t)
i

)
+gi

(
x̃
(t)
i

)
−gi

(
x
(t)
i

)
and 0 < β, σ <

1. With the above modifications, the proposed smoothing BSCA algorithm for the reg-

ularized problem (4.83) is then outlined in Algorithm 8. The convergence results of

the proposed smoothing BSCA Algorithm 7 can be readily extended to Algorithm 8 by

following the same line of analysis as in Section 4.3.1 based on the reformulation (4.85).

The derivation is, therefore, not repeated. Every limit point of the solution sequence

generated by Algorithm 8 is a coordinatewise C-stationary point of the reformula-

tion (4.85) that satisfies the condition (4.86) and it is a C-stationary point satisfying

the condition (4.87) if, additionally, f is coordinatewise regular.



Algorithm 8: The BSCA Algorithm Extended by Smoothing Majorization
for Solving Problem (4.83)

1 Initialize x(0) ∈ X and t← 0 ;
2 repeat
3 Pick index set I(t);
4 Construct a smooth majorizer f̂I(t)

(
xI(t) ;x(t)

)
of f at x(t) in the selected

coordinates I(t) ;
5 Construct coordinatewise convex approximations f̃i

(
xi;x

(t)
)
of

f̂I(t)

(
xI(t) ;x(t)

)
at x(t) along the coordinates of each selected block xi,

respectively, for all i ∈ I(t);
6 Let

x̃i ∈
{
argmin
xi∈Xi

f̃i
(
xi;x

(t)
)
+ gi(xi)

}
∀ i ∈ I(t);

7 Compute the step size γ(t) by the exact line search (4.108) or the successive
line search (4.109);

8 Let x
(t+1)
i = x

(t)
i + γ(t)

(
x̃
(t)
i − x

(t)
i

)
for all i ∈ I(t) ;

9 Let x
(t+1)
i = x

(t)
i for all i /∈ I(t) ;

10 t← t+ 1;

11 until converged and
∧K
i=1

(
x
(t)
i /∈ int (Xi) or∇xi

f
(
x(t)
)
exits

)
;

12 return x(t)
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Chapter 5

Phase Retrieval with Dictionary Learning

Phase retrieval aims at recovering unknown signals from magnitude measurements of

linear mixtures. In this chapter, we consider the phase retrieval with dictionary learn-

ing problem, which, apart from the measurements, includes other prior information

that the signal admits a sparse representation over an unknown dictionary. The task

is to jointly estimate the dictionary and the sparse representation from magnitude-

only measurements. To this end, we study two complementary formulations and de-

velop efficient parallel algorithms based on the SCA framework extended by smoothing

majorization that is described in Section 4.2. The first algorithm is termed compact-

SCAphase and is preferable in the case of moderately diverse mixture models with a low

number of mixing components. It adopts a compact formulation that avoids auxiliary

variables. The proposed algorithm is highly scalable and has reduced parameter tuning

costs. The second algorithm, referred to as SCAphase, uses auxiliary variables and is

favorable in the case of highly diverse mixture models. It also renders simple incorpo-

ration of additional side constraints. The performance of both methods is evaluated

when applied to blind channel estimation from subband magnitude measurements in

a multi-antenna random access network. Simulation results show the efficiency of the

proposed techniques compared to state-of-the-art methods.

The key contributions presented in this chapter originate from [LTY+22]. This chapter

is organized as follows. The phase retrieval and phase retrieval with dictionary learning

are revised in Section 5.1. In Section 5.2, we introduce the signal model and provide two

different mathematical formulations with and without auxiliary variables, respectively,

for the phase retrieval with dictionary learning problem. The proposed algorithms for

both formulations are described in Section 5.3 and 5.4, respectively. In Section 5.5, we

analyze the computational complexity of the proposed algorithms in comparison to the

state-of-the-art method SC-PRIME [QP17]. Simulation results on synthetic data are

presented and discussed in Section 5.6, while Section 5.7 summarizes this chapter.

5.1 Motivation

Phase retrieval refers to the problem of recovering unknown signals from the (squared)

magnitude of linear measurements corrupted by additive noise. It has received consid-

erable attention in various applications such as diffraction imaging [CLS15a,SEC+15],
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astronomy [Fie82,FD87], and X-ray crystallography [Mil90,Har93], where the measure-

ments of intensities are much easier to obtain than that of the complex magnitudes and

phases. In some other applications, including non-coherent direction-of-arrival estima-

tion [KHE14], phase information may be available but imprecise, e.g., due imperfect

phase synchronization and phase noise.

In recent years, numerous phase retrieval approaches have been developed, which can

be principally classified as nonconvex and convex ones. In the nonconvex optimization

methods, the recovery problem is formulated as a nonconvex least-squares (LS) prob-

lem. Stationary points of the nonconvex formulation can then be obtained by classic

continuous optimization algorithms such as alternating projections [GS72,Fie82], gradi-

ent descent [CLS15b,WGE18,CCFM19], and alternating direction method of multipli-

ers (ADMM) [WYLM12,LSJL17]. A popular class of convex optimization approaches

employs semidefinite relaxation [CSV13,CESV15,WM15,JEH16], which lifts the prob-

lem to a higher dimension and is, hence, computationally prohibitive for large-scale

problems. Recently, some non-lifting convex optimization approaches have been devel-

oped based on solving a basis pursuit problem in the dual domain, including Phase-

Max [GS18] and PhaseEqual [WFDL20]. A comprehensive review of recent advances

in phase retrieval from a numerical perspective is presented in [FS20].

On the other hand, additional prior information on the unknown signal, such as spar-

sity, can be used to improve the uniqueness and stability of the reconstruction [EHM16].

Most of the aforementioned phase retrieval approaches have been adapted to re-

covering signals that are sparse either in the standard basis or in a known dictio-

nary [SBE14, ESM+14, QP17, WZG+18, PBES18, SAH18, YPEO19, WFDL20]. The

GESPAR algorithm is based on the damped Gauss-Newton method [SBE14]. MM al-

gorithms are devised in [QP17]. In [WZG+18], the Truncated Amplitude Flow (TAF)

method is extended to recovering sparse signals. The STELA algorithm proposed

in [YPEO19] is based on SCA and can be parallelized.

Phase retrieval was generalized in [TEM16] to jointly learning an unknown dictionary

and a sparse representation. To tackle the joint estimation problem, the authors pro-

pose a regularized nonconvex LS formulation with squared magnitude measurements

and develop an alternating minimization algorithm termed DOLPHIn. In [QP17], the

authors apply a similar regularized LS formulation to magnitude measurements and

solve it by an algorithm that is based on BSUM, named SC-PRIME. There, it is shown

by both theoretical justification and numerical results that the reconstruction from

magnitude measurement outperforms that from intensity measurements. However, the

use of auxiliary variables in both aforementioned methods depresses the scalability and,

more notably, increases the number of hyperparameters that require tuning. Moreover,
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neither of the two methods can take full benefit of modern parallel hardware architec-

tures. In addition, SC-PRIME often suffers from slow convergence due to the loose

approximation associated with the BSUM algorithm.

As shown in Section 3.2.2, the idea of SCA enables the construction of approximate

problems that can be parallelized. Therefore, in this chapter, we employ the smoothing

SCA framework in Section 4.2 to address the phase retrieval with dictionary learning

problem given the magnitude measurements, which is formulated as a nonsmooth and

nonconvex LS problem. Two efficient parallel algorithms are proposed by applying the

smoothing SCA framework to two complementary formulations, respectively. Specifi-

cally, we first study a compact formulation that avoids the auxiliary variables, and the

proposed algorithm based on the smoothing SCA is termed compact-SCAphase. Then

another algorithm based on the smoothing SCA framework is developed for the conven-

tional formulation with auxiliary variables, which is referred to as SCAphase (smooth-

ing Successive Convex Approximation for phase retrieval with dictionary learning).

The performance of the proposed algorithms is evaluated when applied to blind sparse

channel estimation from subband magnitude measurements in a multi-antenna random

access network. Simulation results on synthetic data show the fast convergence of the

proposed algorithms compared to the state-of-the-art method SC-PRIME [QP17]. In

the case with less diverse linear mixing models, compact-SCAphase is more competi-

tive than SCAphase in terms of both computational complexity and parameter tuning

cost. However, for highly diverse linear measurement operators, the computational

complexity of compact-SCAphase dramatically grows, compared to SCAphase.

To summarize, the main contributions included in this chapter are:

• Proposing two efficient parallel algorithms for the phase retrieval with dictionary

learning problem by applying the smoothing SCA framework to two complemen-

tary formulations, respectively.

• Refining the search range for suitable values of the sparsity parameter for both

algorithms

• Proposing an efficient procedure based on rational approximation for solving

the ℓ2-norm constrained LS subproblems to reduce the overall computational

complexity of compact-SCAphase.

• Analyzing theoretically the computational complexities of the proposed algo-

rithms in comparison to the state-of-the-art method.
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• Conducting extensive simulations in the context of blind channel estimation in a

multi-antenna random access network in view of parameter selection, estimation

quality, convergence speed, computational time, and robustness to initialization.

Notations: In this chapter, the soft-thresholding operator is denoted by

Sλ(x) = max{0, |x| − λ} · ej arg(x). (5.1)

5.2 Problem Formulation

We consider the following nonlinear system. For an input signal X ∈ KN×I , K ∈
{R,C}, the following noise-corrupted magnitude-only measurements are observed:

Y = |F(X)|+N , (5.2)

where F : CN×I → CM1×M2 is a linear operator, N is a noise matrix, and the absolute

value operation |·| is applied elementwise. The negative entries of Y caused by noise

will be set to 0. A general linear mixing operator F(X) can be written as

F(X) =
K∑
k=1

AkXBk, (5.3)

where Ak ∈ CM1×N and Bk ∈ CI×M2 , k = 1, . . . , K, perform the row and column

mixing, respectively, and the number of distinct mixing components K is termed as

the diversity of the mixing operator F in this thesis. Note that the linear operator F
in (5.3) can be written equivalently in a vectorized form

vec
(
F(X)

)
= F · vec(X) with F =

K∑
k=1

BT
k ⊗Ak, (5.4)

which we will also use in this thesis. Moreover, each column xi of X is assumed to

admit a sparse representation over an unknown dictionary D ∈ KN×P , i.e., xi = Dzi

with a sparse code vector zi ∈ KP . Let Z = [z1, . . . ,zI ] summarize the code vectors.

Our objective is to jointly learn the dictionary D and the sparse codes Z so as to

minimize the (LS) reconstruction error.

To this end, we solve the following compact formulation for the phase retrieval with

dictionary learning (cPRDL) problem:

cPRDL: min
D∈D,Z

1

2
∥Y − |F(DZ)|∥2F + λ∥Z∥1,1. (5.5)
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The first term evaluates the data fidelity by the LS criterion, which is nonsmooth and

nonconvex due to the absolute value operation and the bilinear term DZ. The second

term promotes sparsity in Z with a regularization parameter λ ≥ 0. To avoid scaling

ambiguities in the bilinear term DZ, we restrict D to be in the convex set

D = {D ∈ KN×P | ∥dp∥2 ≤ 1 ∀p = 1, . . . , P}.

Each column dp is called an atom and the dictionary size must be below the number

of columns in X, i.e., P < I. Otherwise, each column xi can be trivially represented

by a 1-sparse vector zi with an atom xi/∥xi∥2.

An alternative formulation for phase retrieval with dictionary learning (PRDL), which

we will also consider, is constructed as follows with an auxiliary variable X:

PRDL: min
X,D∈D,Z

1

2
∥Y − |F(X)|∥2F +

µ

2
∥X −DZ∥2F + ρ∥Z∥1,1. (5.6)

The additional second term measures how well the signal X can be approximated by

the sparse representation DZ. Two regularization parameters µ ≥ 0 and ρ ≥ 0 are

used to balance the data fidelity, the approximation quality, and the code sparsity.

The formulation (5.6) was first proposed in [TEM16], however, with the intensity mea-

surements

Ỹ = |F(X)|2 +N ,

which results in another smooth data fidelity term 1
4
∥Ỹ − |F(X)|2∥2F. In [QP17], the

authors have shown that, for the intensity measurements Ỹ , it is also beneficial, in the

high SNR regime, to use formulation (5.6) with the modulus information
√
Ỹ , where

√· is applied elementwise, due to the reduced noise level in
√
Ỹ . Thus, we consider

the magnitude measurement model (5.2).

In [QP17], the state-of-the-art SC-PRIME algorithm is devised for the conventional for-

mulation (5.6) based on BSUM. (In fact, SC-PRIME belongs to the smoothing BSUM

framework that we established in Section 4.3.1 since it fulfills only the relaxed subgra-

dient consistency, not the stricter derivative consistency required by the classic BSUM

framework.) However, as BSUM strictly requires the approximate function to be a

global upper bound, SC-PRIME lacks the flexibility to take full advantage of mod-

ern parallel hardware architectures. Also, the conservative majorization in SC-PRIME

often results in slow convergence. Therefore, we develop the compact-SCAphase and

SCAphase algorithms for the compact formulation (5.5) and conventional formula-

tion (5.6), respectively, based on the smoothing SCA framework developed in Sec-

tion 4.2. Both proposed algorithms can be easily parallelized, e.g., on modern multi-

core DSPs, GPUs and FPGAs as well as in cloud computing networks.
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The two proposed algorithms are advantageous in different scenarios. The conventional

formulation (5.6) is not suitable for large-scale problems due to the introduction of aux-

iliary variables. Also, the complexity of tuning two regularization parameters µ and ρ

in (5.6) is significantly higher than that of tuning one parameter. However, compared

to SCAphase, the computational complexity of compact-SCAphase grows dramatically

with the increase of diversity of the designed linear measurement operator F . More-

over, the conventional formulation (5.6) admits simple incorporation of additional prior

information on X such as nonnegativity in radio astronomic imaging [Fie82,FD87] and

X-ray crystallography [Mil90,Har93].

As demonstrated by the smoothing BSCA framework in Section 4.3.2, the proposed

compact-SCAphase and SCAphase algorithms can certainly be implemented in a BCD

manner so that the per-iteration complexity can be customized according to the com-

putational and memory capacity of the hardware. Nevertheless, since we investigate

by the simulations only the performance of the algorithms in the case where all vari-

ables are jointly updated in each iteration, in the following sections, we describe the

proposed compact-SCAphase and SCAphase algorithms in a joint-update version. The

derivations are based on the model with complex-valued variables, which can be readily

extended to the real-valued case. The cPRDL and PRDL problems are not guaran-

teed to be coordinatewise regular everywhere due to the nonsmoothness. Hence, a

block-coordinatewise implementation of the proposed algorithms may only converge to

a coordinatwise stationary point as analyzed in Section 4.3.2.

5.3 Proposed Algorithm for Formulation cPRDL

In this section, we apply the smoothing SCA framework proposed in Section 4.2 on

the compact formulation (5.5) to derive an efficient iterative algorithm that finds a

stationary point of (5.5) via a sequence of separable approximate problems. We denote

the objective function in (5.5) by h(D,Z) = f(D,Z) + g(Z) with

f(D,Z) =
1

2
∥Y − |F(DZ)|∥2F and g(Z) = λ∥Z∥1,1. (5.7)

The problem is challenging since the regularization g is nonsmooth and, more notably,

f is nonsmooth and nonconvex. To overcome this difficulty, in each iteration, we first

majorize f by a smooth function, which is then minimized approximately by solving a

separable convex approximate problem. In particular, we obtain a descent direction of

the majorizing function by minimizing exactly its convex approximation. The variable

can then be updated along this descent direction with a suitable step size, which can
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be efficiently obtained by exact line search. Consequently, a decrease of the original

objective function h is also ensured.

Once a stationary point (D⋆,Z⋆) of the cPRDL problem in (5.5) has been obtained

by the compact-SCAphase algorithm, we optionally perform a debiasing step similar

to that in [FNW07] to further improve the estimation quality, which solves an instance

of the cPRDL problem with λ = 0 and a restriction that the entries zp,i having zero

values in Z⋆ are fixed at zero.

5.3.1 Smooth Majorization

We first derive a smooth majorizing function for f in (5.7) by the same majorization

technique performed on the simple phase retrieval problem in Section 4.1.2. Let S =

(D,Z) denote the collection of all variables, and let S(t) = (D(t),Z(t)) be the current

point at iteration t. The function f can be expanded as

f(S) =
1

2
(∥Y ∥2F + ∥F(DZ)∥2F)− tr(Y T|F(DZ)|)︸ ︷︷ ︸

v(S)

,

where the cross term v(S) is nonsmooth due to the absolute value operation. As Y

contains nonnegative entries, the nonsmooth cross term v(S) can be written as the

following pointwise minimum:

v(S) = min
Θ∈[0,2π)M1×M2

−ℜ
(
tr
((

Y ⊙ ejΘ
)HF(DZ)

))
, (5.8)

and the minimum solution at S = S(t) is Θ̆ = arg
(
F
(
D(t)Z(t)

))
, where e(·) and arg(·)

are applied elementwise. Thus, defining

Y (t) = Y ⊙ ej arg(F(D(t)Z(t))),

we can construct the following smooth majorizing function for f at S(t):

f̂(S;S(t)) =
1

2

(
∥Y ∥2F + ∥F(DZ)∥2F

)
−ℜ

(
tr
((

Y (t)
)HF(DZ)

))
=

1

2

∥∥Y (t) −F(DZ)
∥∥2
F
, (5.9)

which, as proved in Section 4.1.2, satisfies Assumption 4.1, in particular, the following

subgradient consistency at S(t):

∇f̂
(
S(t);S(t)

)
∈ ∂Cf

(
S(t)

)
. (5.10)
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The smooth majorizing function f̂ has the partial gradients{
∇Df̂(S;S

(t)) = F∗(F(DZ)− Y (t)
)
·ZH,

∇Z f̂(S;S
(t)) = DH · F∗(F(DZ)− Y (t)

)
,

(5.11)

where F∗(·) is the adjoint of the linear operator F . However, f̂ is nonconvex due to

the bilinear map DZ. Then function ĥ(S;S(t)) = f̂(S;S(t)) + g(Z) is a majorizing

function of the objective function h at S(t).

5.3.2 Separable Convex Approximation

As described in Section 4.2, instead of minimizing the majorizing function f̂ exactly,

we can employ the idea of SCA to obtain an approximate minimizer at a significantly

lower computational cost, due to the smoothness of f̂ . In particular, the approxima-

tion techniques introduced in Section 3.2.2 are used to construct a separable convex

approximation of f̂ that can be minimized in parallel.

As the regularization g is convex and separable, we leave g unaltered and only design a

separable convex approximation for f̂ at the current point S(t). As f̂ is partially convex

in D and Z, respectively, we adopt the Jacobi-type approximation (3.36), where the

approximate function is the sum of several components. In each component, only

part of the variables are varied while the rest are fixed to their current values. Let

f̃D(D;S(t)) and f̃Z(Z;S(t)) be the approximate functions of f̂(S;S(t)) over D and Z,

respectively. They are devised as

f̃D(D;S(t)) =
P∑
p=1

f̂
(
dp,D

(t)
−p,Z

(t);S(t)
)
,

f̃Z(Z;S(t)) =
I∑
i=1

P∑
p=1

f̂
(
zp,i,D

(t),Z
(t)
−(p,i);S

(t)
)
,

(5.12)

where D−p ∈ CN×(P−1) is obtained by removing dp from D and Z−(p,i) the collection

of all entries of Z except zp,i. Then the convex approximation of ĥ(S;S(t)) is

h̃(S;S(t)) = f̃D(D;S(t)) + f̃Z(Z;S(t)) + λ∥Z∥1,1

and the approximate problem reads

(D̃(t), Z̃(t)) = argmin
D∈D,Z

h̃(S;S(t)). (5.13)

The columns of D and all the entries of Z are separable in the objective function

of (5.13) and the constraint set D is a Cartesian product of compact convex sets, each
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of which involves one column dp. Consequently, problem (5.13) can be decomposed

into P + (P × I) subproblems. Each subproblem exclusively depends on a column dp

or a single variable zp,i and, hence, can be solved in parallel.

Define ∆D = D̃(t) −D(t) and ∆Z = Z̃(t) − Z(t). According to Proposition 4.5, the

difference (∆D,∆Z) is a descent direction of the majorizing function ĥ(S;S(t)) in the

domain of (5.5). Thus, the following simultaneous update rule can be applied:

D(t+1) = D(t) + γ(t)∆D and Z(t+1) = Z(t) + γ(t)∆Z, (5.14)

where γ(t) ∈ (0, 1] is the step size. When (D̃(t), Z̃(t)) = (D(t),Z(t)), a stationary point,

in fact, a global minimizer, of h̃(S;S(t)) is achieved, which is also stationary for the

majorizing problem and the original problem (5.5) in the Clarke sense according to

Theorem 4.2.

In the following, we describe the efficient solution approaches for the subproblems

decomposed from (5.13).

Descent direction for D

The P independent subproblems decomposed from problem (5.13) involving D can be

written as

min
dp

f̂
(
dp,D

(t)
−p,Z

(t);S(t)
)

s.t.
1

2

(
∥dp∥22 − 1

)
≤ 0. (5.15)

Each subproblem in (5.15) is an ℓ2-norm constrained LS, which has no closed-form

solution. However, as Slater’s condition is satisfied for (5.15), strong duality holds

and, hence, the primal and dual optimal solutions can be obtained by solving the

Karush-Kuhn-Tucker (KKT) optimality system [BV04, Sec. 5.5.3]. By vectorization,

we express f̂(dp,D
(t)
−p,Z

(t);S(t)) as

f̂
(
dp,D

(t)
−p,Z

(t);S(t)
)
=

1

2

∥∥vec (Y (t)
p

)
−Hpdp

∥∥2
2
, (5.16)

where Y
(t)
p = Y (t)−F

(
D

(t)
−pZ

(t)
−p

)
with Z−p ∈ C(P−1)×I obtained by removing the pth

row of Z, and Hp = F ·
(
z
(t)
p: ⊗ IN

)
with F in (5.4). Then the Lagrangian associated

with (5.15) is

L(dp, νp) =
1

2
∥vec(Y (t)

p )−Hpdp∥2F +
νp
2
(∥dp∥22 − 1), (5.17)

where νp ≥ 0 is a Lagrangian multiplier. Let d̃
(t)
p and ν̃

(t)
p be a pair of primal and

dual optimal solutions, and let Hp = UΣV H be the compact singular value de-

composition (SVD) of Hp and σ1 ≥ · · · ≥ σr > 0 the nonzero singular values with
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r = rank(Hp), U ∈ CM1M2×r, Σ ∈ Cr×r, and V ∈ CN×r. The solution d̃
(t)
p of

problem (5.15) holds

d̃(t)
p = V

(
ΣHΣ+ ν̃(t)p Ir

)†
ΣHUH vec(Y (t)

p ) (5.18)

by solving the KKT system. Define the rational function

ψp(νp) =
r∑
i=1

|ci,p|2
(σ2

i + νp)2
with cp = ΣHUH vec(Y (t)

p ). (5.19)

The dual optimal point ν̃
(t)
p required in (5.18) is determined by{

ν̃
(t)
p = 0, if ψp(0) ≤ 1,

ν̃
(t)
p ∈ {νp > 0 | ψp(νp) = 1}, otherwise.

(5.20)

In the case where ψp(0) > 1, ν̃
(t)
p is the unique solution of

ψp(νp) = 1 for νp ∈ (0,+∞), (5.21)

which has no closed-form expression, except for the case where all singular values σi are

identical. In the general case, to solve (5.21), we develop an efficient iterative algorithm

based on successive rational approximation (cf. [BNS78, Li93]), which is outlined in

Algorithm 10 and will be described in Section 5.3.4. The intermediate derivations of

the primal and dual solutions in (5.18)-(5.20) from the KKT system are included in

Appendix A.1.1.

For the particular case with the linear operator F in (5.47) that is investigated in

the simulations, the SVD of Hp can be calculated analytically given the SVD of A.

Hence, the complexity is significantly reduced compared to the general case where an

iterative algorithm, e.g., QR algorithm [GVL13], is needed to obtain the SVD of Hp for

every column dp in each iteration. Then the proposed SCA algorithm for the cPRDL

problem in (5.5) is competitive with that for the PRDL problem in (5.6) in terms of

complexity. Details on the simplified solution approach for F in (5.47) can be found

in Appendix A.1.2.

Descent direction for Z

The subproblem decomposed from (5.13) involving each entry zp,i is a univariate

LASSO [Tib96] in Lagrangian form, which admits a closed-form solution

z̃
(t)
p,i =

1∥∥∥Fid(t)
p

∥∥∥2
2

Sλ
(∥∥Fid(t)

p

∥∥2
2
z
(t)
p,i −∇zp,i f̂(S

(t);S(t))
)

(5.22)
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Algorithm 9: compact-SCAphase

Input: Y ∈ RM1×M2
+ , λ ≥ 0, tolerance ε > 0

1 Initialize D(0) ∈ D and Z(0) randomly, t← 0;
2 repeat
3 for p = 1, . . . , P do in parallel

4 Hp ← F ·
(
z
(t)
p: ⊗ IN

)
;

5 Compute the compact SVD of Hp;

6 Compute dual optimal value ν̃
(t)
p using (5.20);

7 Compute d̃
(t)
p according to (5.18);

8 end
9 for p = 1, . . . , P, i = 1, . . . , I do in parallel

10 Compute z̃
(t)
p,i according to (5.22);

11 end

12 Compute step size γ(t) by exact line search (5.24);
13 Update the variables using (5.14) and t← t+ 1;

14 until stopping criterion (5.32) achieved and ( D(t) /∈ int (D) or
∇f(D(t),Z(t)) exists);

15 return D(t),Z(t)

with the soft thresholding operator Sλ defined in (5.1). Matrix Fi in (5.22) is the ith

block of F in the partition

F =
[
F1 · · · FI

]
with Fi ∈ CM1M2×N for i = 1, . . . , I. (5.23)

5.3.3 Step Size Computation

As introduced in Section 4.2, a suitable step size γ(t) for the update in (5.14) that en-

sures a sufficient decrease of the original objective function can be efficiently obtained

by performing the exact or successive line search methods on the the majorizing func-

tion. In particular, considering that the problem (5.5) contains a convex nonsmooth

regularization g, the modified exact line search in (4.65), where the convex nonsmooth

regularization g restricted to the descent direction is replaced by its linear majorization

at the current iterate, is employed. The exact line search (4.65) customized for the

majorizing function f̂ in (5.9) can be expressed as

γ(t) = argmin
γ∈[0,1]

{
f̂
(
D(t) + γ∆D,Z(t) + γ∆Z;S(t)

)
+ γ
(
g(Z̃(t))− g(Z(t))

)}
,

= argmin
γ∈[0,1]

{
1

4
w4γ

4 +
1

3
w3γ

3 +
1

2
w2γ

2 + w1γ

}
, (5.24)
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where

w4 = 2∥M2∥2F,
w3 = 3ℜ

(
tr
(
MH

2 M1

))
,

w2 = 2ℜ
(
tr
(
MH

2 M0

))
+ ∥M1∥2F,

w1 = ℜ
(
tr
(
MH

1 M0

))
+ λ

(
∥Z̃(t)∥1 − ∥Z(t)∥1

)
,

and

M2 = F(∆D∆Z),

M1 = F(∆DZ(t) +D(t)∆Z),

M0 = F(D(t)Z(t))− Y (t).

Problem (5.24) corresponds to minimizing a fourth-order polynomial on the interval

[0, 1] and can be solved by computing its stationary points, i.e., the real roots of its

derivative, a cubic polynomial, in [0, 1]. The analytical expressions of all three roots of

a third-order polynomial in the complex domain are given by the following well-known

cubic formula:

γ̂k = −
1

3w4

(
w3 + ξkC +

Σ0

ξkC

)
for k = 0, 1, 2, (5.25)

where

Σ0 = w2
3 − 3w4w2,

Σ1 = 2w3
3 − 9w4w3w2 + 27w2

4w1,

C =
3

√
Σ1 +

√
Σ2

1 − 4Σ3
0

2
,

ξ =
−1 + j

√
3

2
.

Among them, only an even number of roots can be non-real. Specifically, if Σ2
1 −

4Σ3
0 ≥ 0, there is only one real root or three identical real roots, which corresponds to

γ̂0. Then the step size γ(t) is the projection of γ̂0 onto [0, 1], i.e., γ(t) = P[0,1](γ̂0) =

min {max {γ̂, 0} , 1}. Otherwise, if Σ2
1− 4Σ3

0 < 0, all three roots are real. Let C denote

the set of real roots in the interval [0, 1], i.e., C = {γ̂k | 0 ≤ γ̂k ≤ 1, k = 0, 1, 2}. Then
the solution γ(t) of the line search problem (5.24) lies in the set C∪{1}. If set C contains
more than one element, which implies that the line search function is not unimodal in

[0, 1], then the evaluation of the objective function of problem (5.24) at the points in

C ∪ {1} is required to obtain the step size γ(t).

As demonstrated by the smoothing BSCA framework in Section 4.3.2, this proposed

algorithm can alternatively be implemented in a BCD manner. Compared to the
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joint-update case, when only one block variable, D or Z, is selected to be updated

at iteration t, the line search problem (5.24) reduces to a convex quadratic program,

which has a closed-form solution

γ(t) = P[0,1] (−w1/w2) .

The line search (5.24) always finds a nonzero step size γ(t) since (∆D,∆Z) is a descent

direction of ĥ, until a stationary point of h is attained. With the step size γ(t) obtained

by the line search (5.24), the update (5.14) then ensures a monotonic decrease of the

original objective function h in (5.5).

Finally, the proposed compact-SCAphase algorithm for solving the cPRDL problem

in (5.5) is outlined in Algorithm 9.

5.3.4 Rational Approximation

Borrowing the idea in [BNS78, Li93], we develop a successive rational approximation

algorithm, outlined in Algorithm 10, for efficiently solving the rational equation (5.21),

which yields the dual optimal solution of (5.15). We omit the column index p in the

derivations below as we discuss only one column.

Let ν(l) be the approximate solution at iteration l. As ψ(ν) has all negative poles, it

decreases monotonically in [0,+∞). Hence, we interpolate ψ(ν) at ν(l) by a simple

rational function

F (ν;α, β) =
α

(β − ν)2 , (5.26)

where parameters α and β are chosen such that F (ν(l);α, β) =

ψ(ν(l)) and F ′(ν(l);α, β) = ψ′(ν(l)). It is easily verified that

α =
4
(
ψ(ν(l))

)3(
ψ′(ν(l))

)2 and β = ν(l) +
2ψ(ν(l))

ψ′(ν(l))
. (5.27)

Algorithm 10: Rational Approximation for Solving (5.21).

Input: Rational function ψ(ν), tolerance η > 0
1 Initialize ν(0) ← 0, l← 0;
2 repeat

3 ν(l+1) = ν(l) + 2ψ(ν(l))

ψ′(ν(l))

(
1−

√
ψ(ν(l))

)
;

4 l← l + 1;

5 until ψ(ν(l)) ≤ 1 + η;

6 return ν(l)
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Then the unique solution of F (ν;α, β) = 1 in (0,+∞) is chosen as the next iterate

ν(l+1). Omitting intermediate calculations, we can express the update rule at the lth

iteration as

ν(l+1) = ν(l) +
2ψ(ν(l))

ψ′(ν(l))

(
1−

√
ψ(ν(l))

)
. (5.28)

Define δi = −σ2
i , i = 1, . . . , r, which are the poles of ψ with δ1 ≤ . . . ≤ δr < 0. Ignor-

ing the trivial case where all poles δi are identical, we derive the following bounding

property.

Theorem 5.1. F (ν;α, β) < ψ(ν) for all ν > δr and ν ̸= ν(l).

Proof: See Appendix A.2.

Thus, if ψ(ν(l)) > 1, i.e., ν(l) is below the solution ν̃ of equation ψ(ν) = 1, then the

solution of F (ν;α, β) = 1 falls between ν(l) and ν̃, i.e., ν(l) < ν(l+1) < ν̃. Hence, using

the proposed rational approximation, we monotonically approach ν̃ from an initial

point ν(0) < ν̃. Moreover, as we solve the rational equation in the case where ψ(0) > 1,

ν can be simply initialized as ν(0) = 0.

Like Newton’s method, Algorithm 10 can be shown to have an asymptotically quadratic

convergence. However, whereas Newton’s method successively interpolates ψ by its

tangent, Algorithm 10 interpolates ψ by a rational function, which, as demonstrated in

Figure 5.1, leads to faster convergence due to the convexity of the rational functions in

the considered interval. In the simulations, Algorithm 10 usually attains an accuracy

of 10−9 within 4 iterations.

1

ν(l) ν̃ν(l+1)

××

◦

linear

F (ν)

φ(ν)

Figure 5.1. Linear approximation (Newton’s method) vs. rational approximation

5.3.5 Stopping Criterion

As demonstrated in Section (4.2.2), the version of the smoothing SCA for a regularized

problem (4.39) asymptotically converges to a C-stationary point of an equivalent refor-



5.3 Proposed Algorithm for Formulation cPRDL 103

mulation (4.41) of the regularized problem where the convex nonsmooth regularization

is moved to the constraints, and the stationarity condition for the convergent point

is mathematically expressed in (4.47). Customizing the stationarity condition (4.47)

for the cPRDL problem in (5.5), we claim that the compact-SCAphase Algorithm 9

converges to a stationary point S⋆ = (D⋆,Z⋆) that satisfies

0 ∈ ∂C(D,Z)f(S
⋆) +

(
{0} × ∂CZg(Z⋆)

)︸ ︷︷ ︸
∂C
(D,Z)

g(Z⋆)

+(ND(D
⋆)× {0})︸ ︷︷ ︸

∂C
(D,Z)

ID(D⋆)

. (5.29)

Ideally, Algorithm 9 can be terminated when S(t) fulfills the above stationarity con-

dition, which, however, cannot be easily verified due to the nonconvexity and nons-

moothness of f . On the other hand, the subgradient consistency (5.10) at S(t) implies

that, if S(t) is stationary for the majorizing function according to the condition (5.29)

with f replaced by f̂ , i.e.,

0 ∈
{
∇f̂

(
S;S(t)

)}
+
(
{0} × ∂CZg(Z)

)
+ (ND(D)× {0}) , (5.30)

then it also satisfies the stationary condition (5.29) for the original problem (5.5). The

condition (5.30) can be easily evaluated. In particular, omitting the trivial intermediate

calculations of the Clarke subdifferential ∂CZg and the normal cone ND, we can further

express the condition (5.30) as follows: for all p = 1, . . . , P and i = 1, . . . , I,

∇dp f̂(S;S
(t)) =

{
0 if ∥dp∥2 < 1,

−
∥∥∥∇dp f̂(S;S

(t))
∥∥∥
2
dp if ∥dp∥2 = 1,

(5.31a)

and

{
∇zp,i f̂(S;S

(t)) = −λej arg(zp,i) if zp,i ̸= 0,∣∣∣∇zp,i f̂(S;S
(t))
∣∣∣ ≤ λ if zp,i = 0.

(5.31b)

Thus, we define the minimum-norm subgradient ∇Sĥ as the element of the sum of the

Clarke subdifferentials on the right-hand side in the condition (5.30) with the minimum

Frobenius norm [LTYP19]. Its components at the point S are given as follows: for all

p = 1, . . . , P and i = 1, . . . , I,

∇S
dp
ĥ(S;S(t)) =


∇dp f̂(S;S

(t)) if ∥dp∥2 < 1,

∇dp f̂(S;S
(t))−

min

{
0,ℜ
(
dH
p∇dp f̂(S;S(t))

)}
∥∇dp f̂(S;S(t))∥

2

dp if ∥dp∥2 = 1,

∇S
zp,i
ĥ(S;S(t)) =

{
∇zp,i f̂(S;S

(t)) + λej arg(zp,i) if zp,i ̸= 0,

max
{
0,
∣∣∣∇zp,i f̂(S;S

(t))
∣∣∣− λ} if zp,i = 0.

The minimum-norm subgradient ∇Sĥ(S;S(t)) vanishes at S(t) if and only if S(t) ful-

fills the stationarity condition (5.31). This leads to a termination criterion that the
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minimum-norm subgradient must be small, i.e., given a tolerance ε > 0,
∥∥∥∇S

Dĥ(S
(t);S(t))

∥∥∥
F
≤M1M2 ·

√
NP · ε,∥∥∥∇S

Z ĥ(S
(t);S(t))

∥∥∥
F
≤M1M2 ·

√
PI · ε,

(5.32)

where the sizes of measurements and variables are considered.

Recall that the stationary points of the problem (5.5) satisfying (5.29) include not

only local minima but also local maxima and saddle points of (5.5). As mentioned

in Section 4.2, a subset of stationary points that are not local minima can be easily

identified by Proposition 4.3. Moreover, this motivates the additional stopping criterion

in the smoothing SCA framework described in Algorithm 4 for a general regularized

problem so as to exclude the subset of stationary points that are not local minima. This

stopping criterion is also customized for the problem (5.5) and included in Algorithm 9.

5.3.6 Debiasing

Having obtained a stationary point (D⋆,Z⋆) of problem (5.5) using Algorithm 9, one

may optionally perform a debiasing step, which minimizes only the data fidelity term f

with the restriction that the components zp,i having zero values in Z⋆ are fixed at

zero [FNW07]. It can be solved by Algorithm 9 with a slight modification. That is,

each subproblem that involves an entry zp,i that can take nonzero values reduces to an

unconstrained univariate convex quadratic program, which has the closed-form solution

z̃
(t)
pi = z

(t)
p,i −

∇zp,i f̂
(
S;S(t)

)∥∥∥Fid(t)
p

∥∥∥2
2

.

Also, the point (D⋆,Z⋆) can be chosen as the initial point.

Essentially, the regularized problem (5.5) is used to select the relevant elements of

matrix Z, whereas the debiasing step chooses the optimal values for those entries

according to only the data fitting term f . However, we remark that debiasing is not

always beneficial because it may also undo the desirable noise suppression introduced

by the shrinkage [Don95].

5.4 Proposed Algorithm for Formulation PRDL

With the increase of the diversity of the linear measurement operator F , the per-

iteration complexity of compact-SCAphase dramatically grows due to the computation
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of partial Hessians and SVDs of Hp for p = 1, . . . , P . Therefore, in this section, we

propose the SCAphase algorithm for the conventional formulation (5.6) similarly based

on the smoothing SCA framework in Section 4.2.

Let h(X,D,Z) = f(X,D,Z) + g(Z) denote the objective function in (5.6) with

f(X,D,Z) =
1

2
∥Y − |F(X)|∥2F +

µ

2
∥X −DZ∥2F and g(Z) = ρ∥Z∥1,1. (5.33)

The first component f is nonconvex and nonsmooth, and the sparsity regularization g

is convex but nonsmooth. In each iteration, we first find a descent direction by solving

a separable convex approximate problem that is constructed based on a smoothing

majorization for f . Then all variables are jointly updated along the descent direction

by exact line search, which ensures a decrease of the original function h. An optional

debiasing step, similar to that in Section 5.3, can be applied to the PRDL problem

after a stationary point is obtained, to further improve the accuracy.

5.4.1 Smooth Majorization and Separable Convex Approxi-
mation

Similarly, let S = (X,D,Z) be the collection of all variables. At iteration t, by the

same majorization technique as in Section 5.3.1, we can derive a smooth majorizing

function

f̂(S;S(t)) =
1

2

∥∥Y (t) −F(X)
∥∥2
F
+
µ

2
∥X −DZ∥2F (5.34)

for f at the current point S(t) = (X(t),D(t),Z(t)) that satisfies Assumption 4.1, where

Y (t) = Y ⊙ ej arg(F(X(t))). It has the partial gradients

∇X f̂(S;S
(t)) = F∗(F(X)− Y (t)) + µ(X −DZ),

∇Df̂(S;S
(t)) = µ(DZ −X)ZH,

∇Z f̂(S;S
(t)) = µDH(DZ −X).

(5.35)

Note that f̂ is nonconvex due to the bilinear map DZ. Then ĥ(S;S(t)) = f̂(S;S(t))+

g(Z) is a majorization of h at S(t).

We then minimize a separable convex approximation of the majorizing function ĥ as

the exact minimization of ĥ requires an iterative algorithm and, therefore, is compu-

tationally expensive. The following Jacobi-type approximation for ĥ is employed:

h̃(S;S(t)) = f̃X(X;S(t)) + f̃D(D;S(t)) + f̃Z(Z;S(t)) + ρ∥Z∥1,1,
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where f̃X(X;S(t)), f̃D(D;S(t)) and f̃Z(Z;S(t)) denote the approximate functions of

f̂ over three block variables, respectively. The approximate functions f̃D and f̃Z are

constructed in the same way as (5.12) in Section 5.3. To limit the complexity of

minimizing h̃, we perform the Jacobi-type approximation on each entry of X, which

leads to the approximation

f̃X(X;S(t)) =
I∑
i=1

N∑
n=1

f̂
(
xn,i,X

(t)
−(n,i),D

(t),Z(t);S(t)
)
,

where X−(n,i) is the collection of all entries of X except xn,i. The approximate problem

at the tth iteration then reads(
X̃(t), D̃(t), Z̃(t)

)
= argmin

X,D∈D,Z
h̃(S;S(t)). (5.36)

Likewise, problem (5.36) can be decomposed into independent subproblems, each of

which exclusively depends on a column dp or a single variable xn,i or zp,i and can be

solved in parallel.

Define ∆X = X̃(t)−D(t), ∆D = D̃(t)−D(t), and ∆Z = Z̃(t)−Z(t). Then the following

simultaneous update rule along the descent direction (∆X,∆D,∆Z) of ĥ(S;S(t)) is

applied:
X(t+1) = X(t) + γ(t)∆X,

D(t+1) = D(t) + γ(t)∆D,

Z(t+1) = Z(t) + γ(t)∆Z,

(5.37)

with γ(t) ∈ (0, 1] being the step size. When (X̃(t), D̃(t), Z̃(t)) = (X(t),D(t),Z(t)), the

algorithm has converged to a stationary point of the convex approximation h̃(S;S(t)),

which is also stationary for the majorization and the original problem (5.5) in the

Clarke sense according to Theorem 4.2.

In the following, the closed-form solutions for the subproblems decomposed from (5.36)

are derived.

Descent Direction for X

First, since f̂ is quadratic with respect to X, each subproblem involving an entry xn,i

is a univariate quadratic program and has a closed-form solution

x̃
(t)
n,i = x

(t)
n,i −

∇xn,i
f̂(S(t);S(t))

∥fn+(i−1)N∥22 + µ
(5.38)

with fn+(i−1)N being the (n+ (i− 1)N)th column of F in (5.4).
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Descent Direction for D

Next, the P independent subproblems decomposed from (5.36) that involve D are

d̃(t)
p = argmin

dp

1

2

∥∥∥X(t) −D
(t)
−pZ

(t)
−p − dpz

(t)
p:

T
∥∥∥2
F

s.t. ∥dp∥2 ≤ 1, (5.39)

which can again be solved via the KKT optimality system. Unlike (5.15), prob-

lem (5.39) has a simple closed-form solution

d̃(t)
p =

d̂p

max
{
1,
∥∥∥d̂p∥∥∥

2

} with d̂p = d(t)
p −

∇dp f̂(S
(t);S(t))

µ
∥∥∥z(t)

p:

∥∥∥2
2

. (5.40)

Descent Direction for Z

Then each subproblem involving an entry zp,i is the Lagrangian form of a univariate

LASSO problem and has a closed-form solution [Don95]

z̃
(t)
p,i =

1∥∥∥d(t)
p

∥∥∥2
2

S ρ
µ

(∥∥d(t)
p

∥∥2
2
z
(t)
p,i −

1

µ
∇zp,i f̂(S

(t);S(t))

)
(5.41)

with the soft thresholding operator S ρ
µ
defined in (5.1).

5.4.2 Step Size Computation

Similarly to Section 5.3.3, to efficiently find a step size γ(t) for the update in (5.37)

that ensures a decrease of the original function in (5.6), we perform the modified exact

line search method (4.65) on the majorizing function, which is customized for the

majorizing function f̂ in (5.34) as

γ(t) = argmin
γ∈[0,1]

{
f̂
(
X(t) + γ∆X,D(t) + γ∆D,Z(t) + γ∆Z;S(t)

)
+ γ
(
g(Z̃(t))− g(Z(t))

)}
. (5.42)

Problem (5.42) is also a minimization of fourth-order polynomial and can be solved an-

alytically by following the same procedure as in Section 5.3.3, i.e., rooting its derivative,

which is a cubic polynomial; we omit the straightforward details.

Finally, the proposed SCAphase algorithm for solving the PRDL problem in (5.6) is

outlined in Algorithm 11.
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Algorithm 11: SCAphase

Input: Y ∈ RM1×M2
+ , µ ≥ 0, λ ≥ 0, tolerance ε > 0

1 Initialize X(0) and D(0) ∈ D randomly, Z(0) ← (D(0))†X(0), t← 0;
2 repeat
3 for n = 1, . . . , N, i = 1, . . . , I do in parallel

4 Compute x̃
(t)
n,i according to (5.38);

5 end
6 for p = 1, . . . , P do in parallel

7 Compute d̃
(t)
p according to (5.40);

8 end
9 for p = 1, . . . , P, i = 1, . . . , I do in parallel

10 Compute z̃
(t)
p,i according to (5.41);

11 end

12 Compute step size γ(t) by exact line search (5.42);
13 Update the variables using (5.37) and t← t+ 1;

14 until stopping criterion (5.46) achieved and ( D(t) /∈ int (D) or
∇f(X(t),D(t),Z(t)) exists);

15 return X(t),D(t),Z(t)

5.4.3 Stopping Criterion

Customizing the stationarity condition (4.47) for the PRDL problem in (5.6), we claim

that the SCAphase Algorithm 11 asymptotically converges to a stationary point S⋆ =

(X⋆,D⋆,Z⋆) of (5.6) that satisfies

0 ∈ ∂CS f(S⋆) + ∂CS g(Z
⋆) + ∂CS ID(D⋆), (5.43)

which, however, cannot be easily verified. Similar to the compact-SCAphase algorithm,

we can evaluate the optimality of the current solution S(t) by the stationarity of the

majorizing function, i.e., the condition (5.43) with f replaced by f̂ :

0 ∈
{
∇S f̂

(
S;S(t)

)}
+ ∂CS g(Z) + ∂CS ID(D), (5.44)

since is a necessary condition for (5.43) because of the subgradient consistency be-

tween the majorizing and original functions, i.e., ∇f̂
(
S(t);S(t)

)
∈ ∂Cf

(
S(t)

)
. Thus,

analogously to Section 5.3.5, the minimum-norm subgradient ∇Sĥ is introduced based

on the stationarity condition (5.44) of the majorizing function to evaluate the qual-

ity of the current solution. Omitting the trivial calculations of the involved Clarke
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subdifferentials, we can further express the condition (5.44) as follows:

∇X f̂(S;S
(t)) = 0, (5.45a)

∇dp f̂(S;S
(t)) =

{
0 if ∥dp∥2 < 1,

−
∥∥∥∇dp f̂(S;S

(t))
∥∥∥
2
dp if ∥dp∥2 = 1,

(5.45b)

and

{
∇zp,i f̂(S;S

(t)) = −ρej arg(zp,i) if zp,i ̸= 0,∣∣∣∇zp,i f̂(S;S
(t))
∣∣∣ ≤ ρ if zp,i = 0.

(5.45c)

for all p = 1, . . . , P and i = 1, . . . , I. Then the components of the minimum-norm

subgradient with respect to matrices Z and D are defined in the same way as in

Section 5.3.5, whereas the component ∇S
X ĥ of the minimum-norm subgradient with

respect to X is simply defined as the gradient ∇X f̂ . The algorithm is terminated

when the minimum-norm subgradient is sufficiently small, i.e., with a given tolerance

ε > 0, 
∥∇S

Dĥ(S
(t);S(t))∥F ≤M1M2 ·

√
NP · ε,

∥∇S
Z ĥ(S

(t);S(t))∥F ≤M1M2 ·
√
PI · ε,

∥∇S
X ĥ(S

(t);S(t))∥F ≤M1M2 ·
√
NI · ε.

(5.46)

Likewise, the additional stopping criterion in the smoothing SCA framework described

in Algorithm 4 is customized for the problem (5.6) and included in Algorithm 11, in

order to exclude a subset of stationary points of (5.6) that are not local minima.

5.4.4 Comparison with SC-PRIME

The proposed SCAphase algorithm and the state-of-the-art SC-PRIME [QP17] adopt

the same formulation, i.e., the PRDL problem in (5.6), and the same successive ma-

jorization technique (5.34) that preserves only a subgradient of the original function

f , which differs from the stricter derivative consistency in Assumption 3.4 required

by the classic BSUM at nonsmooth points of f . In [QP17], the authors address the

convergence of SC-PRIME under the BSUM framework. This convergence analysis

is incomplete since the aforementioned fact that the derivative consistency required

by BSUM is not always satisfied is ignored. Nevertheless, SC-PRIME can be viewed

as an instance of the generalized BSUM framework with smoothing majorization that

we proposed in Section 4.3.1. Hence, the convergence there justifies that SC-PRIME

converges to a coordinatewise stationary point of (5.6) corresponding to the same gen-

eralized concept of stationarity as SCAphase, i.e., C-stationarity, instead of the stricter

d-stationarity in the classic BSUM framework. Then there are two main differences

between SC-PRIME and the proposed SCAphase algorithm.
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First, SC-PRIME updates the variables in a BCD manner, i.e., minimizes the majoriz-

ing function ĥ alternatively with respect to each block variable X, Z, and each column

of D, instead of using parallel updates. Since the problem (5.6) is not guaranteed to be

coordinatewise regular everywhere, SC-PRIME may converge only to a coordinatewise

stationary point of (5.6), but in the same generalized sense as in (5.43).

Next, to avoid the expensive exact minimization of ĥ, SC-PRIME minimizes a different

separable convex approximation for each block variable from SCAphase. Instead of

using the Jacobi-type approximation, SC-PRIME further majorizes the LS objective f̂

by replacing the partial Hessian with respect to a block variable by the identity matrix

scaled by an upper bound of its eigenvalues. The separability of this majorization

leads to a minimizer in closed form and a decrease of the original objective function

h is ensured without a step size search. Nevertheless, since the Hessian is typically

ill-conditioned, this majorization tends to be conservative, which may result in slow

convergence. In contrast, the Jacobi-type approximation f̃ equivalently preserves all

diagonal entries of the Hessian but is not necessarily a majorant of the original function

f . Thus, discarding the global upper bound constraint provides more flexibility in

designing an approximation that yields faster convergence to a good stationary point.

This advantage is demonstrated numerically in Section 5.6.

5.5 Complexity Analysis

Table 5.1. Computational complexity of dominant operations in each iteration

computation
of gradient

computation of partial Hessians

computation
of polynomial
coefficients
in line search
function

compact-
SCAphase

c(F) + 4NPI

general case:

4M1M2NPI +O(M1M2N
2P );

special case with F in (5.47):

2M1NP + 2M2PI

2c(F)+6NPI

SCAphase c(F) + 4NPI 2NP + 2PI c(F) + 6NPI
SC-PRIME 2c(F)+6NPI – –
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In this section, we present a theoretic comparison of the complexity of the pro-

posed algorithms, compact-SCAphase and SCAphase, and the state-of-the-art SC-

PRIME [QP17].

As presented in Table 5.1, for each algorithm, we count the number of flops [GVL13]

required by the dominant operations, such as matrix-matrix multiplication, in each

iteration, which reflects the per-iteration complexity in the worst case where the flops

are executed in sequence. The per-iteration complexity of the proposed algorithms

is dominated by three components: the computation of the gradient and the partial

Hessians of the smooth majorization f̂ , which are required for solving the convex sub-

problems, and the computation of the polynomial coefficients of the line search function

in the step size computation. In the simulations, the rational approximation algorithm

employed by compact-SCAphase for solving the subproblems requires 3 or 4 iterations

to achieve a precision of 10−9. Therefore, the complexity of the rational approxima-

tion is comparable to that of computing a closed-form solution as in SCAphase and

SC-PRIME, which is negligible compared to the other operations. In Table 5.1, c(F)
stands for the complexity of the linear operator F or, equivalently, that of its adjoint

F∗, which depends on the structure of F and the specific implementation. In principle,

c(F) admits the bounds 2NI ·max{M1,M2} ≤ c(F) ≤ 2M1M2NI.

Compared to SCAphase, in the general case, compact-SCAphase has a per-iteration

complexity of higher order due to the computation of partial Hessians and SVD of

matrix Hp in (5.16). However, in the special case with the linear operator F in (5.47),

such as Cases 1 and 2 in the simulations, the complexity of computation of partial

Hessians in compact-SCAphase dramatically decreases and the SVD of Hp can be

analytically calculated given the SVD of A. Then compact-SCAphase and SCAphase

have comparable per-iteration complexity. On the other hand, as shown in Figure 5.3,

compared to SCAphase, compact-SCAphase typically uses half the number of iterations

to achieve a stationary point due to the reduction of variables, which makes compact-

SCAphase more competitive than SCAphase in the case with F in (5.47).

Next, we compare the complexity of SCAphase and SC-PRIME. The line search is not

required in SC-PRIME as it employs the BCD update. In the specific implementation

of SC-PRIME used in the simulations, constant rough upper bounds for the eigenvalues

of the partial Hessians are used to construct the surrogate subproblems and, hence,

only the gradient of f̂ is needed. However, compared to SC-PRIME, the additional line

search in SCAphase does not cause a significant increase in the overall per-iteration

complexity as several intermediate variables in the computation of the gradient can be

updated recursively. For example, as F is a linear operator, F(X(t)) required in (5.35)
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is updated recursively by

F(X(t+1)) = F(X(t)) + γ(t)F(∆X),

where F(∆X) was previously calculated in the computation of the coefficients of the

line search function. Thus, SCAphase and SC-PRIME also have similar per-iteration

complexity, especially in the case with a highly diverse linear operator F , where the

per-iteration complexity is dominated by the complexity of F . On the other hand,

with the additional line search, SCAphase exhibits faster convergence in terms of the

number of iterations.

Finally, we remark that, in contrast to the BCD update in SC-PRIME, the compu-

tation of solutions of subproblems in compact-SCAphase and SCAphase can be fully

parallelized with suitable hardware architectures.

5.6 Simulation Results

In this section, we compare the performance of the two proposed algorithms and the

state-of-the-art SC-PRIME [QP17] on synthetic data in the context of blind channel

estimation in a multi-antenna random access network. All experiments were conducted

on a Linux machine assigned with two 2.3 GHz cores and 7 GB RAM running MATLAB

R2021b. Although, theoretically, all the subproblems in each iteration in the proposed

algorithms can be solved in parallel, for simplicity, the subproblems involving different

block variables (i.e., X, D, or Z) are solved sequentially, whereas the computation

of solutions for subproblems involving the same block variable is parallelized by using

vectorization in MATLAB.

5.6.1 Simulation Setup

We consider a multi-antenna random access network with magnitude-only measure-

ments in Figure 5.2. The base station is equipped with N antennas and P single-

antenna users with unknown spatial signatures {dp ∈ CN}Pp=1 sporadically access the

channel in I time-slots. In time-slot i user p transmits an unknown information symbol

zp,i ̸= 0 with probability L/P and zp,i = 0 with probability (P − L)/P , where L de-

fines the expected sparsity level of the transmitted symbol vectors zi = [z1,i, . . . , zP,i]
T,

i = 1, . . . , I. With D = [d1, . . . ,dP ], the received symbol vector xi = [x1,i, . . . , xN,i]
T

at the antennas is given by xi = Dzi, which cannot be directly observed due to heavy
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{x1,i}Ii=1

{x2,i}Ii=1

{xN,i}Ii=1

User 1{z1,i}Ii=1

User 2{z2,i}Ii=1

User P{zP,i}Ii=1

D

d1

d2

d
P

Analog mixing network (RF) Sparse random access

{xi}Ii=1

spatial
mixing

A1 ∈ CM1×N

temporal
mixing

B1 ∈ CI×M2

AK ∈ CM1×NBK ∈ CI×M2

+| · |Y

Figure 5.2. Multi-antenna Random Access Network.

phase errors caused by the imperfect phase synchronization and the phase noise of

the local oscillators in the down-converters and analog-to-digital converters [ALJ19].

Hence, before down-converted and sampled, the received signals are first processed by

an analog mixing network at radio frequency composed of analog phase shifters and

analog filters. Then the objective is to jointly learn the spatial signature matrix D and

the sparse transmitted symbol vectors zi from spatially and temporally filtered sub-

band magnitude measurements, which can be expressed by the model in (5.2), whereas

the heavily corrupted phase measurements are discarded. Furthermore, the subband

measurements can be acquired at a reduced sampling rate according to the bandwidth

of the respective subband filters. Compared to communication schemes where the chan-

nel estimation and symbol detection are performed sequentially, the presented blind

scheme avoids the signaling overhead, i.e., the transmission of pilots for the periodic

channel estimation, for time-varying channels. In this application, as shown in Fig-

ure 5.2, the linear operator F in (5.3) is interpreted as K independent receiver chains

of linear spatial mixing networks {Ak ∈ CM1×N}Kk=1 and temporal mixing networks

{Bk ∈ CI×M2}Kk=1. Note that the order of the spatial and temporal mixing is inter-

changeable for each chain. In our simulations, the spatial mixing networks {Ak}Kk=1

are generated from a standard complex Gaussian distribution, and the following three

particular cases of the linear operator F of different levels of diversity are investigated:

• Case 1: Time-invariant spatial mixing and no temporal mixing. In this

case, F is interpreted by a single chain of mixing networks, i.e., K = 1. For

simplicity, we omit the subscript on the mixing networks, and F reduces to

F(X) = AXB. (5.47)

Moreover, the temporal mixing is set to be B = I.
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• Case 2: Time-invariant spatial mixing and STFT temporal mixing. In

this case, F can also be expressed by the model (5.47), whereas the temporal

mixing B is designed to be the short-time Fourier transform (STFT) [JEH16],

which can be implemented by analog subband filters.

• Case 3: Time-variant spatial mixing and no temporal mixing. In this

case, F is expressed by the model (5.3) with K = I, and the kth temporal mixing

is set to be Bk = [0, . . . ,0, ek,0, . . . ,0] with ek being a standard basis vector,

which simply selects the kth snapshot. Also, Ak is the spatial mixing network

designed for the kth snapshot.

The basic simulation setup is as follows. In each time-slot i, L randomly selected el-

ements of the true transmitted sparse signal ztrue
i are set to be nonzero. The nonzero

elements of matrix Ztrue, all elements of spatial mixing matrices {Ak}Kk=1 and the true

spatial signature Dtrue are drawn from an i.i.d. standard complex Gaussian distribu-

tion. In particular, the i.i.d. zero-mean Gaussian distribution of Dtrue corresponds to a

rich scattering environment. The magnitude measurements Y are generated according

to (5.2) with additive white Gaussian noise. The number of Monte-Carlo runs is 50.

From the solutions D and Z obtained by compact-SCAphase, the variable X is con-

structed as X = DZ for the performance evaluation. Note that the analog mixing

network architecture in Figure 5.2 is also applicable in other applications of the phase

retrieval with dictionary learning problem such as diffraction imaging, where various

optical masks and filters can be used to increase the diversity of the intensity mea-

surements with the objective to improve the signal recovery. In this application, the

signal X is the parameter of interest, and the dictionary D and the sparse code matrix

Z are considered as nuisance parameters. In contrast, in the considered application

of multi-antenna network, our main target is to estimate the spatial signature matrix

D and transmitted signals Z. Hence, only the estimation qualities of D and Z are

presented in the following simulations. However, the solution X is still required in the

disambiguation step, which is described below.

In both formulations (5.5) and (5.6), the variables can only be recovered up to three

trivial ambiguities. Specifically, any combination of the following three trivial opera-

tions conserves the magnitude measurements and the sparsity pattern of Z: 1) global

phase shift: (X,Z) → (Xejϕ,Zejϕ), 2) scaling: (dp, zp:) → (αpdp, α
−1
p zp:) with any

constant scalar αp ∈ C and αp ̸= 0, 3) permutation: (D,Z) → (DP T,PZ) with any

permutation matrix P ∈ RP×P . Also, if no temporal mixing is applied, the signal in

each time slot is measured independently and, hence, the global phase ambiguity holds
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columnwise, i.e., (xi, zi) → (xie
jϕi , zie

jϕi). In the practical application of communica-

tion in the network described in Figure 5.2, the influence of the global phase shift and

scaling ambiguities can be removed by using differential encoding. The permutation

ambiguity is only an issue in the evaluation of the estimation quality since the users

always need to identified on higher network layers.

A disambiguation step is required to measure the estimation quality of the solutions.

Let Xtrue = DtrueZtrue be the true received signals. To resolve the global phase

ambiguity, the solution X is corrected by the global phase shift

ϕ⋆ = argmin
ϕ∈[0,2π)

∥∥Xejϕ −Xtrue
∥∥2
F
= arg

(
tr
(
XHXtrue

))
(5.48)

in the case of temporal mixing, and the phase correction is applied columnwise with

ϕ⋆i = argmin
ϕi∈[0,2π)

∥∥xiejϕi − xtrue
i

∥∥2
2
= arg

(
xH
i x

true
i

)
(5.49)

for i = 1, . . . , I, in the case without temporal mixing. For the permutation ambiguity

on D and Z, a heuristic method is used to find the permutation that best matches

the ground-truth with respect to the normalized cross correlation between columns

in D and Dtrue. After permutation, the estimation quality of D is evaluated by the

minimum normalized squared error (MNSE) defined as

MNSE(D) = min
{αp∈C}Pp=1

∑P
p=1∥αpdp − dtrue

p ∥22
∥Dtrue∥2F

, (5.50)

where the optimal solutions are α⋆p = d†
pd

true
p = dH

p d
true
p , as ∥dp∥2 = 1, for p = 1, . . . , P .

As for Z, after permutation, we first perform the same global phase shift ejϕ
⋆
on Z or

ejϕ
⋆
i on each column zi and then the MNSE of Z is analogously calculated as

MNSE(Z) = min
{βp∈C}Pp=1

∑P
p=1∥βpzp: − ztrue

p: ∥22
∥Ztrue∥2F

, (5.51)

where the optimal solutions are β⋆p = z†
p:z

true
p: =

zH
p:z

true
p:

∥zp:∥22
for p = 1, . . . , P . Moreover, the

accuracy of the support of the estimated Z is evaluated by the metric F-measure. In

particular, three classic metrics, namely, Precision, Recall, and F-measure, are typically

used to evaluate the estimation quality in set retrieval [MRS08, Sec. 8.3]. Specifically,

Precision is the fraction of retrieved nonzeros that are relevant, i.e., included in the

ground-truth, and Recall is the fraction of relevant nonzeros that are retrieved. They

are calculated as

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN

(5.52)
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with the notions in the following contingency table:

Relevant Nonrelevant
Retrieved true positives (TP) false positives (FP)

Not retrieved false negatives (FN) true negatives (TN)

Then the F-measure is the harmonic mean of Precision and Recall, which measures

the overall accuracy of the estimated sparsity pattern. Only to avoid the influence of

numerical errors, the support of the estimated Z is determined by a threshold of 10−6.

5.6.2 Hyperparameter Choices

Sparsity parameter of the cPRDL problem in (5.5)

The solution for Z in problem (5.5) tends to 0 as λ → ∞ and there exists an upper

bound λmax such that, for λ ≥ λmax, any point with Z = 0 is stationary for prob-

lem (5.5) [KKL+07]. With knowledge of λmax, the problem of searching for a suitable

sparsity regularization parameter λ for an instance is significantly reduced, since any

λ ≥ λmax is ineffective.

From the stationarity conditions (5.31), an upper bound

λmax = ∥Y ∥F · max
i=1,...,I

{σmax(Fi)} (5.53)

can be derived, where σmax(·) denotes the largest singular value. For λ ≥ λmax, any

point (D,0) with D ∈ D is stationary for the original problem (5.5). Moreover, it is

easy to verify that all points (D,0) with D ∈ D are equally optimal for problem (5.5).

For the three investigated cases of the linear operator F , λmax can be further decreased.

In Cases 1 and 2, where the spatial mixing is time-invariant, λmax can be decreased to

λmax = σmax(A) · max
i=1,...,I

{
M2∑
m=1

|bi,m| · ∥ym∥2
}
. (5.54)

In Case 3, λmax can be decreased to

λmax = max
i=1,...,I

{σmax(Ai) · ∥yi∥2} . (5.55)

The intermediate derivations of the upper bounds λmax in (5.53)-(5.55) can be found

in Appendix A.3.
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Regularization parameters of the PRDL problem in (5.6)

Problem (5.6) has two regularization parameters µ and ρ. Similar to λ in (5.5), ρ

adjusts the sparsity level of matrix Z, whereas µ controls the trade-off between the

data fidelity and the approximation quality of the sparse representation.

Similarly, for the sparsity parameter ρ in (5.6), there exists an upper bound ρmax such

that, for any ρ ≥ ρmax, problem (5.6) always admits a stationary point with Z = 0.

From the stationarity conditions (5.45)-(5.45a), we obtain an upper bound

ρmax =
µ · σmax(F ) · ∥Y ∥F

σ2
min(F ) + µ

. (5.56)

σmin(·) denotes the smallest singular value, which may be zero. Furthermore, in Cases 1

and 3, where no temporal mixing is applied, each snapshot xi is observed independently

and, hence, the upper bound ρmax can be decreased to

ρmax = max
i=1,...,I

{
µ · σmax(Ai) · ∥yi∥2

σ2
min(Ai) + µ

}
. (5.57)

Note that Case 1 can be viewed as a special case of Case 3 where Ai = A for all

snapshots. The derivations of the upper bounds ρmax in (5.56)-(5.57) are provided in

Appendix A.4.

Next, to analyze the effect of parameter µ, we write the gradient ∇X f̂ as

∇vec(X)f̂(X,D,Z;S(t)) =
(
F HF + µINI

)
vec(X)

−
(
F H vec(Y (t)) + µ vec(DZ)

)
(5.58)

with the vectorized form in (5.4). Then the stationarity condition (5.45a) can be

rewritten as

vec(X) =
(
F HF + µINI

)−1
F H vec(Y (t)) +

(
1

µ
F HF + INI

)−1

vec(DZ). (5.59)

As shown in (5.59), µ offers some control over how much the value of vec(X) at a

stationary point of ĥ is influenced by the data fitting solution F † vec(Y (t)) and the

sparse representation vec(DZ). Also, the trade-off depends on both µ and F HF .

Thus, we propose to set µ to be proportional to σ2
min,nz(F ), where σmin,nz(·) denotes

the smallest nonzero singular value. However, a suitable ratio has to be found by

experiments.

Given training data, for which the ground-truth is available, one can quickly learn the

suitable values of the regularization parameters by grid search with the upper bound
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λmax (ρmax) derived above, which is how we choose the regularization parameters in our

simulations. Alternatively, the algorithm unrolling technique [MLE21] can be used to

unrolls the iterative algorithm procedure into a deep network and then suitable values of

the regularization parameters can be more efficiently learned by state-of-the-art deep

learning methods from the given training data. Also, advanced approaches such as

Expectation-Maximization-based methods [TDB21] may be applied for simultaneous

estimation of hyperparameters, which is the subject of future research.

5.6.3 Computational Experiments

In the following, we evaluate the complexity and estimation accuracy of the proposed

algorithms under various parameter setups, in comparison to SC-PRIME. The num-

ber of receive antennas is set to N = 64. The algorithms are terminated when the

minimum-norm subgradient has achieved the tolerance ε = 10−5 or after a maximum

number of 2000 iterations. A following debiasing step is performed with the same ter-

mination condition. By default, the SNR is 15 dB, the spatial over-sampling rate is

M1/N = 4, and I = 16N time slots are taken.

5.6.3.1 Case 1 – Time-invariant spatial mixing and no temporal mixing

We first consider the case without temporal mixing. The regularization parameters

are set as follows: µ = σ2
min,nz(F ) = σ2

min,nz(A) for both SCAphase and SC-PRIME,

λ = 0.7516λmax with λmax in (5.54) for compact-SCAphase, and ρ = 0.7516ρmax with

ρmax in (5.57) for SCAphase. Although SC-PRIME adopts the same formulation,

i.e., problem (5.6), as SCAphase, it typically requires a larger sparsity parameter ρ

for achieving a good solution, due to the loose majorization on the data fitting term

employed in the surrogate subproblems. Thus, for SC-PRIME, ρ is set to be 0.7515ρmax

and 0.7514ρmax in the cases with P = N/2 and P = N , respectively.

Varying sparsity level: In the first simulation, as depicted in Figures 5.3 and 5.4, the

performance of the algorithms is evaluated for various choices of {P,L/P}. The number

of users P is varied in {N/2, N}, and the density of active users in each time-slot, i.e.,

L/P , is limited to be {0.025, 0.05, 0.1, 0.2, 0.4}. As both problems (5.5) and (5.6) are

nonconvex, multiple random initializations are used to increase the chance of finding

the global optimal solution. Specifically, for each Monte-Carlo trial, 10 initializations

are performed, and the best reconstructed signal, determined by the lowest objective

function value, is retained and further improved by a debiasing step. The estimation
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error performance of the algorithms is compared in Figure 5.3, and the complexity in

Figure 5.4. In particular, both the total number of iterations and computational time,

including that of the debiasing step, are reported. The robustness of the algorithms to

initialization is investigated afterward in Figure 5.5.

From Figure 5.3, it can be observed that sparse channel access, i.e., a small value of

L/P , is required for all algorithms to achieve good recovery performance. However,

in the extremely sparse case, the received signals Xtrue = DtrueZtrue contain only few

linear combinations of columns of spatial signatureDtrue, which results in a degradation

of estimation qualities. Furthermore, as shown in Figure 5.4, for all choices of {P,L/P},
SC-PRIME does not converge within 2000 iterations. The solution obtained by SC-

PRIME within 2000 iterations can be improved by using a larger sparsity parameter

ρ than that in SCAphase, as in the parameter setup of this simulation. However, in

Figure 5.3, SC-PRIME still exhibits the poorest accuracy performance for most choices

of {P,L/P}, compared to the other algorithms.

When P = N/2, all algorithms show good recovery performance, whereas compact-

SCAphase and SCAphase exhibit faster convergence. Moreover, compared to

SCAphase, compact-SCAphase uses half the number of iterations to attain a stationary

point. However, the reduction of computation time achieved by compact-SCAphase

is not as significant as the reduced number of iterations because, as discussed in Sec-

tion 5.5, compact-SCAphase has the highest per-iteration complexity. In contrast,

when the number of users is comparable to that of the antennas, i.e., P = N , only

compact-SCAphase achieves the given tolerance within 2000 iterations. This is in-

tuitive as in the regime of P ≥ N , and with sparse channel access, the information

of the users’ channels contained in the measurements is insufficient. To resolve this

challenge, a higher spatial oversampling rate is required. Nevertheless, compared to

SC-PRIME, compact-SCAphase and SCAphase show a significant improvement in esti-

mation accuracy. Then, compared to SCAphase, compact-SCAphase further improves

the estimation quality of Z due to fast convergence.

Varying number of initializations: In the second simulation, we investigate the ro-

bustness of the algorithms to initialization. The performance behavior of the algorithms

with the number of random initializations varied from 1 to 50 is presented in Figure 5.5.

The number of users P and density are set to be {N/2, N} and {0.05, 0.1}, respectively.
In Figure 5.5, for most choices of {P,L/P}, all algorithms show similar robustness to

initialization as the estimation quality achieved by each algorithm remains constant for

the number of random initializations exceeding 10, and compact-SCAphase possesses

the lowest estimation errors. In the cases with P = N , SC-PRIME shows a significant

degradation in the estimation quality compared to the proposed algorithms, which, as
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demonstrated in Figure 5.4, results from the fact that SC-PRIME generally does not

converge within the limit of 2000 iterations. Additionally, if only the spatial signature

D needs to be recovered, then 5 initializations are sufficient for all algorithms to attain

a good estimation accuracy. Particularly, when P = N/2, compact-SCAphase achieves

a good stationary point for D even with a single initialization.

5.6.3.2 Case 2 – Time-invariant spatial mixing and STFT temporal mixing

Next, a temporal mixing network that performs the same STFT independently on

each output channel of the spatial mixing network is introduced (see [JEH16] for more

details of the STFT measurement model). For the STFT, we use an I-point DFT,

a rectangular window of length I/2, and a hop size of I/4. The above parameter

setup results in a temporal oversampling rate of 5. Similar to the previous simulation,

in Figure 5.6, the estimation accuracy of the algorithms is evaluated as a function

of the number of initializations. We set P = N/2 and density L/P = {0.05, 0.1}.
The regularization parameters are chosen to be λ = 0.7525λmax, µ = σ2

min,nz(F ) =

σ2
min,nz(A)σ2

min,nz(B), and ρ = 0.7528ρmax and ρ = 0.7523ρmax for SCAphase and SC-

PRIME, respectively, with ρmax in (5.56).

Comparing the results in Figure 5.5 and 5.6, we observe that, given a sufficient number

of initializations, the estimation qualities are significantly improved in the case with

STFT temporal mixing due to the increase of the overall sampling rate. However, all

algorithms become less robust to initialization as compared to Case 1. In particular,

compact-SCAphase and SCAphase require 20 initializations to attain a good stationary

point, whereas SC-PRIME cannot achieve the same estimation accuracy as the other

algorithms even with 50 initializations since, as we discussed, SC-PRIME does not

converge within 2000 iterations.

5.6.3.3 Case 3 – Time-variant spatial mixing and no temporal mixing

As discussed in Section 5.5, compared to the other two algorithms, compact-SCAphase

has a per-iteration complexity of a higher order in the general case with a linear mea-

surement operator F in (5.3) with multiple chains of mixing networks. Therefore, in

the case of time-variant spatial mixing, we only compare SCAphase with SC-PRIME,

as the running time of compact-SCAphase is unaffordable. As depicted in Figures 5.7

and 5.8, respectively, the accuracy and complexity of the algorithms are evaluated for



5.7 Summary 121

various choices of {P,L/P}. All parameters are the same as in Figure 5.3, except that

the spatial mixing Ai for each snapshot is generated independently.

What stands out in Figure 5.7 is that the use of time-variant spatial mixing overcomes

the challenge of lack of diversity in the extremely sparse case observed in Figure 5.3. On

the other hand, the convergence rates of the two algorithms measured by the number of

iterations in Figure 5.8 are similar to that in Figure 5.4. However, due to the increased

complexity of the linear operator F , the two algorithms possess similar per-iteration

complexity. Hence, compared to SC-PRIME, SCAphase exhibits a significantly im-

proved convergence rate in terms of both the number of iterations and computational

time, when P = N/2.

Finally, we summarize the performance of the three considered cases. Comparing the

two cases without temporal mixing, i.e., Cases 1 and 3, we observe that the use of time-

variant spatial mixing in Case 3 overcomes the challenge of lack of diversity observed

in Case 1 in the extremely sparse case and results in a better estimation quality. On

the other hand, in the case without temporal mixing, the signal in each time slot

is measured independently and, hence, from the magnitude-only measurements, the

signals can only be recovered up to a global phase ambiguity for each time slot. Thus,

the temporal mixing, which is applied in Case 2, is introduced to further recover the

relative phase between the signals in different time slots.

5.7 Summary

In this chapter, we employ the smoothing SCA framework in Section 4.2 to address

the phase retrieval with dictionary learning problem. Two efficient parallel algorithms

are proposed by applying the smoothing SCA to two complementary formulations,

respectively. The first algorithm, termed compact-SCAphase, employs a compact ℓ1-

regularized nonconvex LS formulation, which avoids the auxiliary variables required in

state-of-the-art methods such as SC-PRIME and DOLPHIn. The second algorithm,

denoted by SCAphase, solves the conventional formulation as in SC-PRIME. An ef-

ficient procedure based on rational approximation is devised for solving the ℓ2-norm

constrained LS subproblems under the SCA framework. For both algorithms, we re-

fined the search range for suitable values of the sparsity parameter. Simulation results

on synthetic data in the context of blind channel estimation in a multi-antenna ran-

dom access network demonstrate the fast convergence of SCAphase compared to SC-

PRIME. Moreover, compact-SCAphase is more competitive than SCAphase in terms of

both computational complexity and parameter tuning cost in the case with less diverse
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linear measurement operators. Nevertheless, SCAphase also has several advantages

over compact-SCAphase. Compared to SCAphase, the computational complexity of

compact-SCAphase dramatically grows with the increase of diversity of the designed

linear measurement operator. Also, SCAphase can easily include potential side con-

straints on the signal of interest that are expected to restrict the ambiguities in the esti-

mation. For instance, in X-ray crystallography, the unknown signal represents the elec-

tron density in the crystal, which is certainly nonnegative and bounded [Mil90,Har93].
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Figure 5.3. Estimation quality vs. density L/P using compact-SCAphase (solid),
SCAphase (dashed), and SC-PRIME (dotted) in Case 1 with N = 64,M1 = 4N, I =
16N .
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Figure 5.7. Estimation quality vs. density L/P using SCAphase (dashed) and SC-
PRIME (dotted) in Case 3 with N = 64, M1 = 4N, I = 16N .
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Figure 5.8. Computational complexity vs. density L/P using SCAphase (dashed) and
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Chapter 6

Conclusions and Outlook

This dissertation concentrates on the design and analysis of approximation-based meth-

ods for nonconvex nonsmooth optimization problems. The main idea behind those

methods is to solve a difficult optimization problem by converting it into a sequence

of simpler surrogate/approximate problems. The existing approximation-based meth-

ods differ mainly in the construction of the approximate problems. Specifically, in the

two related existing optimization frameworks, namely, the majorization-minimization

(MM) framework and the successive convex approximation (SCA) framework, the ap-

proximate function is designed to be a global upper bound, called majorizer, of the

original objective function and a convex function, respectively. Generally speaking,

there are two desiderata of the approximate function, namely, the tightness to the

original objective function and the low computational complexity of minimizing the

approximate function. In particular, we focus on constructing an approximate prob-

lem that can be solved in a parallel or distributed manner so as to take advantage of

modern multicore computing platforms.

In the first part of this thesis, we develop an efficient parallelizable approximation-

based algorithmic framework for a broad class of nonconvex nonsmooth optimization

problems. The classic MM framework requires the directional differentiability of the ob-

jective function and the consistency of directional derivatives in all directions between

the original objective function and its majorizer at the point where the majorizer is

constructed. This condition restricts the majorizer constructed at a nondifferentiable

point of the original function to be also nonsmooth, which hinders its capability of

simplifying nonsmooth problems since the minimization of the majorizing function, if

restricted to be nonsmooth, may still be difficult. Therefore, in Chapter 4, we relax

the derivative consistency in the majorization step so that a smooth majorizer that can

be easily minimized is permitted for a wide class of nonsmooth problems. Specifically,

as a generalization of the majorization technique that we employed in [LTY+22], we

consider the situation that the majorizing function preserves only a subgradient of the

original objective function. The MM framework with such smoothing majorization,

abbreviated as smoothing MM, is detailed in Section 4.1, together with its convergence

analysis. As a result of this relaxation of derivative consistency, the smoothing MM

converges to a stationary point in a more relaxed sense than the classic MM. In other

words, compared to the classic MM, the smoothing MM sacrifices the tightness of the

convergence set with respect to the local minima in order to construct an approxi-

mate problem that can be easily addressed. In some scenarios, the exact minimization
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of the smooth majorizing function may still be difficult, especially if it is nonconvex.

Meanwhile, the smoothness of the majorizing function allows us to employ the idea of

SCA, along with the available separable convex approximation techniques, to obtain

an approximate minimizer of the majorizing function efficiently. This motivated our

idea in [LTY+22] of combining the smoothing majorization and the separable convex

approximation techniques to address the phase retrieval with dictionary learning prob-

lem. In Section 4.2, we generalize the algorithms in [LTY+22] to the aforementioned

class of smooth majorization techniques to develop an inexact MM framework, named

smoothing SCA, and provide a unified convergence analysis. Finally, similar to the

classic MM and SCA frameworks, the smoothing MM and SCA can also be imple-

mented in a BCD manner to exploit potential separable structures of the constraints

in the optimization problem. The block-coordinatewise versions of the smoothing MM

and SCA, as well as their convergence analyses, are presented in Section 4.3.

In the second part of this thesis, i.e., Chapter 5, as our mainly promoted framework,

the smoothing SCA framework is employed to address the phase retrieval with dictio-

nary learning problem. Whereas phase retrieval aims at recovering unknown signals

from magnitude measurements of linear mixtures, the phase retrieval with dictionary

learning problem includes other prior information that the signal admits a sparse repre-

sentation over an unknown dictionary. The task is to jointly estimate the dictionary and

the sparse representation from magnitude-only measurements. Two efficient parallel

algorithms are developed by applying the smoothing SCA to two complementary non-

convex nonsmooth formulations, respectively, which are both based on a least-squares

(LS) criterion. The first algorithm, termed compact-SCAphase, employs a compact

ℓ1-regularized nonconvex least-squares (LS) formulation, which avoids the auxiliary

variables required in state-of-the-art methods such as SC-PRIME [QP17] and DOL-

PHIn [TEM16]. The second algorithm, denoted by SCAphase, solves the conventional

formulation as in SC-PRIME. An efficient procedure based on rational approximation

is devised for solving the ℓ2-norm constrained LS subproblems under the SCA frame-

work. For both algorithms, we refined the search range for suitable values of the sparsity

parameter. Simulation results on synthetic data in the context of blind channel esti-

mation in a multi-antenna random access network demonstrate the fast convergence of

SCAphase compared to SC-PRIME. Moreover, compact-SCAphase is more competitive

than SCAphase in terms of both computational complexity and parameter tuning cost

in the case with less diverse linear measurement operators. Nevertheless, SCAphase

also has several advantages over compact-SCAphase. Compared to SCAphase, the

computational complexity of compact-SCAphase dramatically grows with the increase

of diversity of the designed linear measurement operator. Also, SCAphase can easily

include potential side constraints on the signal of interest.
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Possible extensions of this work and open problems are listed below.

On the optimization framework aspect:

• In Section 4.3, the convergences of the block-coordinatewise versions of our de-

veloped frameworks, i.e., the smoothing BSUM and the smoothing BSCA, are

only demonstrated in the case where the block variables are updated in a fixed-

order. In practice, using other types of block selection rules, such as a greedy

rule with an appropriate selection criterion, can lead to significantly faster con-

vergence for a BCD-type method. However, the convergences of the proposed

block-coordinatewise frameworks with such block selection rules require further

investigation.

• The parallelizability of the proposed smoothing SCA framework, as well as its

block-coordinatewise version, relies on separable structures of the constraints. It

is still unclear how we can generalize the smoothing SCA framework to prob-

lems where the variables are coupled in the constraints. A common approach for

problems with coupling constraints is the primal-dual method that alternately

minimizes the Lagrangian in the primal space and updates the Lagrangian mul-

tipliers in the dual space. As can be easily seen, this approach results in double-

loop algorithms that are typically slow.

On the application aspect:

• Several questions that have been answered for the classic phase retrieval remain

open for phase retrieval with dictionary learning. First, further work needs to be

done to establish the theoretical conditions for a guaranteed unique recovery (up

to trivial ambiguities) of the dictionary and/or the sparse codes.

• Performance bounds, such as the Cramér-Rao bound, have been derived for the

classic phase retrieval in diverse scenarios to assess the achievable estimation

performance. However, further investigations are required to derive the corre-

sponding Cramér-Rao bound for the phase retrieval with dictionary learning in

the case where the parameters, i.e., the dictionary and the sparse codes, are

identifiable.

• The simulation results in Section 5.6 show that multiple random initializations

are required for attaining (near-)global minima of our nonconvex formulations.

Hence, it is of great interest to develop a more sophisticated initialization strategy

that can help avoid poor stationary points.



132 Chapter 6: Conclusions and Outlook

• As regularization-based methods, the choice of the regularization parameters has

a strong influence on the performance of the proposed methods. The SCA frame-

work has been studied in the literature as a basis for deep unrolling [LVS23].

Thus, as mentioned in Section 5.6, in the case where training data are available,

it is of interest to unroll the proposed algorithms into deep networks so that

suitable values of the regularization parameters can be more efficiently learned

by state-of-the-art deep learning methods.
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Chapter A

Appendix

A.1 Solution Approach for Subproblem (5.15)

A.1.1 Solution Approach for a General Linear Operator F

In the following, we derive the solution approach for the subproblem (5.15) that in-

volves vector dp by solving the KKT optimality system, since the strong duality holds

for (5.15). We first consider a general linear operator F and then the particular struc-

ture of F in (5.47) is exploited to further reduce the complexity of computing the

solution for dp in this special case.

The gradient of L(dp, νp) in (5.17) with respect to dp is

∇dpL(dp, νp) =
(
HH

p Hp + νpIN
)
dp −HH

p vec(Y (t)
p ).

Then the primal and dual optimal solutions must satisfy the following KKT system:

∇dpL(dp, νp) = 0, (stationarity) (A.1a)

∥dp∥22 ≤ 1, νp ≥ 0, (primal and dual feasibility) (A.1b)

νp(∥dp∥22 − 1) = 0. (complementary slackness) (A.1c)

For notational simplicity, we omit the iteration index t and let d̃p and ν̃p denote any

pair of primal and dual optimal solutions in the derivations below. Two mutually

exclusive possibilities arise due to (A.1b): a) ν̃p = 0, or b) ν̃p > 0.

Given dual variable νp = 0, the solution d
(νp=0)
p of (A.1a) corresponds to a solution of

problem (5.15) when the ℓ2-norm constraint is ignored. It is expressed as follows:

d(νp=0)
p = (HH

p Hp)
†HH

p vec(Y (t)
p ). (A.2)

If Hp has full column rank, i.e., rank(Hp) = N , d
(νp=0)
p is the unique solution of (A.1a).

Otherwise, d
(νp=0)
p is the solution with minimum ℓ2-norm. In both cases above, if

∥d(νp=0)∥2 ≤ 1, then all conditions in (A.1) are fulfilled and, consequently, ν̃p = 0 and

d̃p = d
(νp=0)
p is a pair of optimal solutions.

However, if d(νp=0) does not satisfy the primal constraint, then ν̃p > 0 must hold. Let

Hp = UΣV H be the compact SVD of Hp and σ1 ≥ . . . ≥ σr > 0 be the nonzero
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singular values with r = rank(Hp), U ∈ CM1M2×r, Σ ∈ Dr
+, V ∈ CN×r. Then, for

νp > 0, the stationarity condition (A.1a) can be rewritten as

dp = V (ΣHΣ+ νpIN)
−1ΣHUH vec(Y (t)

p ). (A.3)

Thus, the squared ℓ2-norm of dp that satisfies condition (A.3) is a function of νp, which

we define as ψp(νp) = ∥dp∥22. Defining

cp = ΣHUH vec(Y (t)
p ), (A.4)

function ψp(νp) can be explicitly written as a rational function:

ψp(νp) =
r∑
i=1

|ci,p|2
(σ2

i + νp)2
, for νp > 0, (A.5)

where ci,p is the ith element of vector cp. Although (A.5) is derived for νp > 0, the

expression also holds for νp = 0, i.e., ψp(0) = ∥d(ν̃p=0)
p ∥22, which is assumed to be

above one in the present case b). Then, due to (A.1c), ν̃p coincides with the unique

solution of ψp(νp) = 1 in (0,+∞). Consequently, the optimal solution d̃p is obtained

by substituting ν̃p into (A.3).

In conclusion, for p = 1, . . . , P , the dual optimal points ν̃p are determined indepen-

dently by the following rule:{
ν̃p = 0, if ψp(0) ≤ 1,

ν̃p ∈ {νp > 0 | ψp(νp) = 1}, otherwise.

Then, combining (A.2) and (A.3) and exploiting the SVD of matrix Hp to further

reduce the complexity, we express the optimal solution d̃p to problem (5.15) as

d̃p = V (ΣHΣ+ ν̃pIr)
†cp.

A.1.2 Simplified Solution Approach for F in (5.47)

For the linear operator F in (5.47), the matrix F in the vectorized form is

F = BT ⊗A, (A.6)

and then, we have

Hp =
(
BT ⊗A

)
·
(
z(t)
p: ⊗ IN

)
=
(
BTz(t)

p:

)
⊗A.
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Let A = UAΣAV
H
A and BTz

(t)
p: = UBΣBV

H
B be the compact SVDs of A and BTz

(t)
p: ,

respectively. The compact SVD of Hp can be analytically calculated as [GVL13]:

Hp = (UB ⊗UA)︸ ︷︷ ︸
U

(ΣB ⊗ΣA)︸ ︷︷ ︸
Σ

(VB ⊗ VA)
H︸ ︷︷ ︸

V H

.

As a column vector, BTz
(t)
p: has VB = 1 and only one nonzero singular value

∥∥∥BTz
(t)
p:

∥∥∥
2
.

Thus, we have

UΣ = (UBΣB)⊗ (UAΣA) =
(
BTz(t)

p:

)
⊗ (UAΣA),

and the nonzero singular values of Hp are given by∥∥BTz(t)
p:

∥∥
2
· σAi for i = 1, . . . , r,

where {σAi }ri=1 are the nonzero singular values of A and r = rank(Hp) = rank(A).

Consequently, vector cp in (5.19) can be written as

cp =
(
BTz(t)

p:

)H ⊗ (UAΣA)
H · vec

(
Y (t)
p

)
= ΣH

AU
H
AY

(t)
p BHz̄(t)

p: .

Finally, after having obtained the dual optimal solution ν̃p by the same procedure as

described in the general case, we can also compute the optimal solution d̃p using simply

the SVD of A:

d̃p = VA
(
ΣH
AΣA + ν̃pIr

)†
cp,

and avoids the evaluation of the SVD of Hp that is required in the general case.

A.2 Proof of Theorem 5.1

The original rational function ψ(ν) in (5.19) and its derivative ψ′(ν) can be rewritten

as

ψ(ν) =
r∑
i=1

|ci|2
(δi − ν)2

and ψ′(ν) =
r∑
i=1

2|ci|2
(δi − ν)3

with the poles δ1 ≤ · · · ≤ δr < 0. We ignore the trivial case where all poles δi are

identical. Define ζ(ν) = F (ν;α, β) − ψ(ν) with the approximate function F defined

in (5.26). It is sufficient to show that ζ(ν) < 0 for all ν > δr and ν ̸= ν(l). To this end,

define

ξ(ν) = ζ(ν)(β − ν)2
r∏
i=1

(δi − ν)2.

Then ξ is a polynomial of degree 2r with real coefficients:

ξ(ν) = α

r∏
i=1

(δi − ν)2 − (β − ν)2
r∑
i=1

|ci|2
r∏

j=1, j ̸=i

(δj − ν)2. (A.7)
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δ1 δ2 ν(l)

βδ3 δ4

ψ

F

Figure A.1. Original and approximate rational functions, r = 4.

The product rule for differentiation determines that ξ(ν(l)) = 0 and its derivative

ξ′(ν(l)) = 0 since ζ(ν(l)) = 0 and its derivative ζ ′(ν(l)) = 0. Hence, ν(l) is a double root

of ξ, and we can extract the factor (ν − ν(l))2 and rewrite (A.7) as

ξ(ν) =

(
α−

r∑
i=1

|ci|2
)(

ν − ν(l)
)2 r−1∏

i=1

(ν2 − 2aiν + bi)

with appropriately chosen coefficients ai, bi ∈ R.

We claim that ν(l) is the only real double root of ξ in (δr,+∞). To see this, observe

from (5.27) that the pole of F

β =
2

ψ′(ν(l))

r∑
i=1

δi|ci|2
(δi − ν(l))3

∈ (δ1, δr).

The roots of ζ are also the roots of ξ. The following result can be intuitively observed

from Fig. A.1. Each interval (δi, δi+1) with δi ̸= δi+1 contains either two real roots of ζ

or the real part of a pair of complex conjugate roots. In contrast, if δi = δi+1 for some

i = 1, . . . , r − 1, it can be trivially identified from (A.7) that δi is a double root of ξ.

Hence, the real parts of the remaining 2r− 2 roots of ξ fall in the interval [δ1, δr]. The

claim is established; it can be proved more formally by factorizing (A.7).

This argument shows that sign(ξ(ν)) remains constant in [δr, ν
(l))∪ (ν(l),+∞). There-

fore, it follows from (A.7) that, for all ν > δr and ν ̸= ν(l),

sign(ζ(ν)) = sign(ξ(ν)) = sign(ξ(δr)) = sign

(
−(β − δr)2

r−1∏
i=1

(δi − δr)2
)

= −1.

This implies that F (ν;α, β) < ψ(ν) for all ν > δr and ν ̸= ν(l). □
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A.3 Derivation of Upper Bound λmax

We derive the upper bound λmax for the sparsity parameter λ in (5.5) using the sta-

tionarity conditions (5.31) with the gradients in (5.11). Condition (5.31a) is trivial

for Z = 0 as ∇Df̂(D,0;S(t)) = 0 for any D. Then, adopting the vectorized form

in (5.4) for F and the partition in (5.23), we can write the gradient ∇zp,i f̂ at Z = 0

as ∇zp,i f̂(D,0;S(t)) = −dH
pF

H
i vec(Y (t)). It follows that∣∣∣∇zp,i f̂(D,0;S(t))

∣∣∣ = ∣∣dH
pF

H
i vec(Y (t))

∣∣
≤∥dp∥2

∥∥F H
i vec(Y (t))

∥∥
2

(A.8a)

≤
∥∥F H

i vec(Y (t))
∥∥
2

(A.8b)

≤∥Fi∥2∥Y ∥F, (A.8c)

where (A.8a) comes from the Cauchy–Schwartz inequality, (A.8b) from the constraint of

problem (5.5), and (A.8c) from the definition of the operator norm. The matrix ℓ2-norm

∥Fi∥2 is equal to the largest singular value of Fi, denoted by σmax(Fi). Inequality (A.8)

holds for any solution with Z = 0. Consequently, comparing (A.8) with (5.31b) yields

the following result. Define

λmax = ∥Y ∥F · max
i=1,...,I

{σmax(Fi)}.

For λ ≥ λmax, any point (D,0) with D ∈ D satisfies the conditions (5.31) and,

therefore, is stationary for ĥ in the domain of problem (5.5). Note that λmax above

does not depend on the point S(t) where the majorization is made. Hence, (D,0) is

stationary for ĥ taken at any point, including (D,0). This implies that, for λ ≥ λmax,

any point (D,0) is stationary for the original problem (5.5). Also, it is easy to verify

that all points (D,0) with D ∈ D are equally optimal for both ĥ and h.

In addition, λmax can be further decreased in the investigated cases 1 and 2 in Sec-

tion 5.6, where the linear operator F is given by (5.47). In this case, we have, for

i = 1, . . . , I,

Fi = bi: ⊗A and F H
i vec(Y (t)) = AHY (t)b̄i:. (A.9)

Then, directly substituting Fi in (A.9) into (A.8c), we obtain∣∣∣∇zp,i f̂(D,0;S(t))
∣∣∣ ≤ ∥A∥2∥bi:∥2∥Y ∥F. (A.10)

On the other hand, exploiting the structure of Fi in (A.9), we can further derive the

following inequality from (A.8b):∣∣∣∇zp,i f̂(D,0;S(t))
∣∣∣ ≤ ∥∥AHY (t)b̄i:

∥∥
2
≤∥A∥2∥Y (t)b̄i:∥2

= ∥A∥2 ·
∥∥∥∥∥
M2∑
m=1

b̄i,my
(t)
m

∥∥∥∥∥
2

≤∥A∥2 ·
M2∑
m=1

|bi,m| · ∥ym∥2. (A.11)
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It is shown by Cauchy–Schwartz inequality that (A.11) is a tighter bound for ∇zp,i f̂

than (A.10). Consequently, in the case with F(X) = AXB, the upper bound λmax

can be decreased to

λmax = σmax(A) · max
i=1,...,I

{
M2∑
m=1

|bi,m| · ∥ym∥2

}
.

Furthermore, in Case 3 in Section 5.6, where spatial mixing is time-variant and tem-

poral mixing is not applied, we have

Fi = ei ⊗Ai

from the vectorized form in (A.16). Therefore, following the same procedure as

in (A.11), we obtain the following bound for ∇zp,i f̂ tighter than (A.8c):

|∇zp,i f̂(D,0)| ≤ ∥Ai∥2∥yi∥2.

Consequently, in Case 3, λmax can be refined to

λmax = max
i=1,...,I

{σmax(Ai) · ∥yi∥2} .

A.4 Derivation of Upper Bound ρmax

We derive the upper bound ρmax for the sparsity parameter ρ in (5.6) using the sta-

tionarity conditions (5.45) with the gradients in (5.35). Condition (5.45b) is trivial for

Z = 0 as, for any X and D, ∇Df̂(X,D,0;S(t)) = 0. As for (5.45c), we have

|∇zp,i f̂(X,D,0;S(t))| = µ|dH
pxi| ≤ µ∥dp∥2∥xi∥2 ≤ µ∥xi∥2. (A.12)

Meanwhile, an upper bound for ∥xi∥2 can be derived from the vectorized form (5.59)

of condition (5.45a), which reduces to

vec(X) =
(
F HF + µINI

)−1
F H vec(Y (t)), (A.13)

for Z = 0. It leads to the following upper bound for ∥xi∥2:

∥xi∥2 ≤ ∥X∥F ≤
∥∥(F HF + µINI)

−1
∥∥
2
∥F ∥2∥Y ∥F. (A.14)

As an oversampling operator F is considered, i.e., M1M2 ≥ NI, we have∥∥(F HF + µINI)
−1
∥∥
2
=
(
σ2
min(F ) + µ

)−1
.
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Consequently, combining (A.12) and (A.14) yields the following result. Define

ρmax =
µ · σmax(F ) · ∥Y ∥F

σ2
min(F ) + µ

. (A.15)

For ρ ≥ ρmax, there always exists a feasible point (X,D,0) that satisfies the station-

arity conditions (5.45), and is, therefore, stationary for the majorizing function ĥ. As

ρmax does not depend on the point S(t) where the majorization is made, following the

same line of arguments as in Appendix A.3, we further conclude that, for any ρ ≥ ρmax,

the original problem (5.6) admits a stationary point with Z = 0.

In the investigated cases 1 and 3 in Section 5.6, where temporal mixing is not applied,

the linear operator F and the corresponding matrix F can be expressed as

F(X) =
I∑
i=1

AiXBi and F =
I∑
i=1

BT
i ⊗Ai, (A.16)

where Bi = [0, . . . ,0, ei,0, . . . ,0] selects the i-th snapshot xi and Ai is the spatial

mixing designed for xi. In Case 1, where the spatial mixing is time-invariant, all

matrices Ai are set to be the same value A. Substituting F in (A.16) into (A.15), we

obtain

ρmax =
µ ·maxi=1,...,I{σmax(Ai)}
mini=1,...,I{σ2

min(Ai)}+ µ
· ∥Y ∥F.

However, the upper bound ρmax can be further decreased considering that each snapshot

xi is observed independently when temporal mixing is not applied. Using the matrix

F in (A.16), we can reformulate the stationary condition (A.13) as

xi = (AH
i Ai + µIN)

−1AH
i y

(t)
i for i = 1, . . . , I.

This results in a tighter bound of ∥xi∥2 than (A.14):

∥xi∥2 ≤ ∥(AH
i Ai + µIN)

−1∥2∥Ai∥2∥y(t)
i ∥2.

Thus, in Cases 1 and 3, the upper bound ρmax is refined to

ρmax = max
i=1,...,I

{
µ · σmax(Ai) · ∥yi∥2

σ2
min(Ai) + µ

}
.
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List of Acronyms

BCD Block Coordinate Descent

BSCA Block Successive Convex Approximation

BSUM Block Successive Upper-bound Minimization

CCCP ConCave-Convex Procedures

DC Difference of Convex

i.i.d independent and identically distributed

LS Least-Squares

MM Majorization-Minimization

MNSE Minimum Normalized Squared Error

MSE Mean Squared Error

RMSE Root-Mean-Square Error

resp. respectively

SCA Successive Convex Approximation

SCAphase smoothing Successive Convex Approximation for phase retrieval

with dictionary learning

SNR Signal-to-Noise Ratio

SUM Successive Upper-bound Minimization

SVD Singular Value Decomposition

w.l.o.g without loss of generality

w.r.t. with respect to
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List of Symbols

General symbols

a,A Scalar

a Vector

A Matrix

ai,j The (i, j)th entry of matrix A; the ith entry of vector aj

aj The jth column of matrix A

aT
i: The ith row of matrix A

e Euler’s number

j Imaginary unit

max Maximum, maximize

min Minimum, minimize

s.t. Subject to

lim limit

sup supremum

lim sup limit superior

arg(·) Argument of a complex number

O(·) Big O notation

F∗ Adjoint of the linear operator F
IX Indicator function of the set X
∧ Logical conjunction

Special sets

N {0, 1, 2, . . .}
R Set of real numbers

Rm,Rm×n Set of real m× 1 vectors (m× n matrices)

RM
+ Nonnegative orthant of Rm

C Set of complex numbers

Cm,Cm×n Set of complex m× 1 vectors (M × n matrices)

Dm Set of m×m diagonal matrices

Dm
+ Set of m×m nonnegative diagonal matrices

B(c, r) Open ball of radius r centered at c, i.e., {x ∈ Rn | ∥x− c∥2 ≤ r}

Special matrices and vectors

0 All-zero vector or matrix of appropriate dimension

1 All-one vector or matrix of appropriate dimension

em The m-th column of an identity matrix

I Identity matrix of of appropriate dimension

IM Identity matrix of dimension M ×M



144 List of Symbols

Operations on sets

co Convex hull

Operations on matrices and vectors

ℜ(·) Real part

ℑ(·) Imaginary part

Diag (·) Diagonal matrix whose elements are specified by the arguments

PX (·) Orthogonal projection onto the set X
rank (·) Rank of the matrix argument

tr(·) Trace of the matrix argument

vec (·) Vectorization operator

X ≻ 0 X is positive definite

X ⪰ 0 X is positive semidefinite

σmax(·) The largest singular value

σmin(·) The smallest singular value

σmin,nz(·) The smallest nonzero singular value

(·)T Transpose operator

(·) Conjugate operator

(·)† Moore-Penrose pseudo-inverse operator

(·)−1 Inverse operator

(·)H Hermitian operator (conjugate transpose)

⊗ Kronecker product

⊙ Hadamard product, i.e., elementwise product

[·]i,j The (i, j)th entry of the matrix argument

|·| Elementwise absolute value

∥·∥p ℓp-norm of the vector or matrix argument

∥·∥p,q ℓp,q-norm of the matrix argument

∥·∥F Frobenius norm of the matrix argument

Differentiation

∂f

∂x
First-order partial derivative of the function f w.r.t. x ∈ R;
Wirtinger derivative of the function f w.r.t. x ∈ C

∂f

∂x
Wirtinger derivative of the function f w.r.t. x

∂2f

∂x2
Second-order partial derivative of the function f w.r.t. x

∇f Gradient of the function f
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∇xf Partial gradient of the function f w.r.t. x

∇2f Hessian matrix of the function f

∇2
xf Partial Hessian matrix of the function f w.r.t. x, i.e.,

the principal submatrix of ∇f corresponding to x

f ′
d(·) The directional derivative of f in the direction d

f ◦
d(·) The Clarke directional derivative of f in the direction d

∂f Convex subdifferential of the function f

∂f Generalized subdifferential of f defined by directional derivatives

∂Cf Clarke generalized subdifferential of the function f

NX (·) The convex normal cone of to the set X
NC

X (·) The Clarke normal cone of to the set X
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