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Abstract

Silica is used in a wide range of applications from catalysis to construction to microelec-
tronics. The related silicon monoxide is promising for applications as an anode material
in lithium batteries. Although these materials have been extensively studied for more
than a century, there are still many open questions. For example, the high-pressure
transformations of silica are not fully understood. Moreover, in the case of silicon monox-
ide, there is not even an atomistic structure model that captures the complexity of the
structure.

In this work, we use atomistic modelling to investigate these problems. For this
purpose, we developed several machine learning interatomic potentials (MLIP). First,
we developed a Gaussian approximation potential (GAP) model based on a database
with focus on bulk silica. Later, we switched to the atomic cluster expansion (ACE)
framework. The final ACE potential is fitted to a more comprehensive training database
labeled with energies and forces from strongly constrained and appropriately normed
(SCAN) exchange-correlation density functional theory (DFT) data. The database covers
a wide range of structures, including amorphous and crystalline silica, silica surfaces,
high-pressure silica, and silicon-silica interfaces. Several approaches were used to build
the database including ‘batch’ learning and active learning. Moreover, we present an
active learning technique that extracts DFT feasible small-scale images from large-
scale simulations (Chapter 3). The MLIPs are extensively tested in reproducing the
thermodynamics of the systems and show excellent behavior, outperforming existing
classical models. Nevertheless, to generate realistic amorphous structures of silica, we
rely on a ‘hybrid’ protocol using a combination of our MLIP and a classical interatomic
potential (Chapter 4).

We apply the ACE potential to two cases. First, we study the high-pressure be-
havior of amorphous silica and quartz under shock (Chapter 5). We find that there
is an intermediate structure between the amorphous state and the crystalline sta-
ble state of stishovite. This phase is based on the defective nickel arsenide (d-NiAs)
structure. The structure has a disordered silicon sublattice and an ordered hexagonal
close-packed (HCP) oxygen sublattice. While the oxygen lattice appears to form fast
on the molecular dynamics (MD) time scales, the ordering of the silicon and hence
the formation of stishovite takes significantly longer. Moreover, we found that a direct
transition between quartz and rosiaite-structured silica is also possible, which seems to
require certain strain boundary conditions.

Second, we generate structural models of silicon monoxide using melt-quench sim-
ulations (Chapter 6). These models show the same nanoscale segregation of silicon
and silica as observed in experiment. Moreover, the energetics, grain sizes and X-ray
structure factors of these models are in excellent agreement with the experiment. Using
20 ns annealing simulations, we are able to partially crystallize these structures and
generate structural models with crystalline silicon in an amorphous silica matrix.
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Zusammenfassung

Siliziumoxide sind ein äußerst relevantes Forschungsgebiet. Siliziumdioxid wird bei-
spielsweise in einem breiten Spektrum von Anwendungen eingesetzt, von der Katalyse
über die Bauindustrie bis hin zur Mikroelektronik. Das verwandte Siliziummonoxid ist
vielversprechend für Anwendungen als Anodenmaterial in Lithiumbatterien. Obwohl
diese Materialien seit mehr als einem Jahrhundert eingehend untersucht werden, gibt
es noch viele offene Forschungsfragen. So sind beispielsweise die Hochdruckphasen-
übergänge von Siliziumdioxid noch nicht vollständig verstanden. Für Siliziummonoxid
gibt es bis heute noch kein atomistisches Strukturmodell, das die Komplexität dieser
Struktur erfasst.

In dieser Arbeit wurden atomistische Simulationen benutzt, um mehrere Probleme
in diesem System zu analysieren. Zu diesem Zweck wurden mehrere interatomare
Potentiale auf maschinellen Lernen („machine-learning interatomic potentials“, MLIP)
basierend entwickelt, mit einem ersten Modell basierend auf den Gaußschen Näherungs-
potentialen („Gaussian approximation potentials“, GAP) und einem finalen Modell basie-
rend auf der atomaren Clusterexpansion („atomic cluster expansion“, ACE). Das finale
ACE Potential wurde auf eine Trainingsdatenbank gefittet, die mit Energien und Kräf-
ten aus stark eingeschränkten und angemessen normierten („strongly constrained and
appropriately normed“, SCAN) Austauschkorrelationsdaten der Dichtefunktionaltheorie
(DFT) berechnet wurden. Die Datenbank deckt ein breites Spektrum an Strukturen
ab, darunter amorphes und kristallines Siliziumdioxid, Siliziumdioxid-Oberflächen,
Hochdruck-Siliziumdioxid und Grenzflächen zwischen Siliziumdioxid und Silizium. Für
den Aufbau der Datenbank wurden verschiedene Ansätze wie „Batch“-Lernen, aktives
Lernen und unser eigenes aktives Lernverfahren verwendet, das DFT-fähige kleine
Strukturen aus großen Simulationen extrahiert (Kapitel 3). Die MLIPs zeigen eine
ausgezeichnete Genauigkeit in der Beschreibung der Thermodynamik des Systems und
übertreffen existierende klassische interatomare Potentiale. Um realistische amorphe
Strukturen von Siliziumdioxid zu erzeugen, war es jedoch nötig ein „hybrides“ Ver-
fahren zu benutzen, das eine Kombination aus unserem MLIP und einem klassischen
interatomaren Modell beinhaltet (Kapitel 4).

Das ACE Potential wurde auf zwei Fälle angewendet. Zunächst wurde das Hoch-
druckverhalten von amorphem Siliziumdioxid und Quarz unter Schock untersucht
(Kapitel 5). Es wurde festgestellt, dass sich als Zwischenzustand zwischen dem amor-
phen Zustand und dem kristallinen stabilen Stishovit eine weitere Phase mit der
defekten Nickelarsenidstruktur (d-NiAs) bildet. Diese Struktur hat ein ungeordnetes
Silizium-Untergitter und ein geordnetes hexagonal dicht gepacktes (HCP) Sauerstoff-
Untergitter. Während sich das Sauerstoffgitter auf der Zeitskala der Molekulardynamik
(MD) schnell zu bilden scheint, dauert die Ordnung des Siliziums und damit die Bil-
dung von Stishovit wesentlich länger. Darüber hinaus wurde festgestellt, dass auch ein
direkter Übergang zwischen Quarz und Siliziumdioxid in der Rosiait Struktur möglich
ist, für den bestimmte Dehnungsrandbedingungen erforderlich zu sein scheinen.

Als zweite Anwendung wurden Strukturmodelle von Siliziummonoxid mit Hilfe von
Schmelzabschrecksimulationen erstellt (Kapitel 6). Diese Modelle zeigen die gleiche
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Entmischung von Silizium und Siliziumdioxid auf der Nanoskala wie sie im Experiment
beobachtet wird. Darüber hinaus stimmen Energetik, Korngrößen und Röntgenstruk-
turfaktoren dieser Modelle sehr gut mit den Experimenten überein. Durch Glühsimu-
lationen mit einer Dauer von 20 ns wurden diese Strukturen teilweise kristallisiert
und es konnten Strukturmodelle mit kristallinem Silizium innerhalb einer amorphen
Siliziumdioxidmatrix konnten erstellt werden.
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1Introduction

Silica (SiO2) is one of the most common compounds on Earth, making up almost two-
thirds of the upper continental crust.1 Due to its high availability and therefore also low
cost, it was a natural choice for mankind to use this material in as many applications
as possible. In addition to its abundance, silica has the advantage of being structurally
diverse, occurring in several crystalline phases and in an amorphous form with a
wide range of properties.2 Silica in the form of quartz sand and amorphous silica
is used in significant amounts in the construction industry for concrete and window
glass.3 Porous amorphous silica with low density, so-called silica aerogel, can be used
for thermal insulation, due to its extremely low thermal conductivity.4 Besides these
structural applications, there are also applications in catalysis and electronics. Silica-
based zeolites are porous crystallites with a high specific surface area. Often they contain
additional aluminum, however, there exist also zeolites made up purely of silica.5

Zeolites are widely used in petrochemical industry, where they are utilized for cracking
of heavy petroleum distillates.6,7 Another possible application of zeolites is for example
desalination.8 Quartz, the most common form of silica, is a piezoelectric material,9 and
is therefore used as an oscillator in quartz crystal clocks10 and in microelectronics.11

Also in semiconductor industry silica plays a crucial role. The most important type of
transistor is the metal oxide semiconductor field effect transistor (MOSFET), which
is commonly made up of a silica layer on the semiconducting silicon.12 This is one
application, where next to the pure silica also the interface to silicon is of importance.

As previously mentioned, the atomic-level structure of silica can be extremely diverse.
One way to show the structural diversity and the large interest into a material is to
have a look into available structure databases. The Materials Project database contains
321 different structures for the composition of SiO2 compared to significantly fewer
entries for similar compounds such as TiO2 (44 entries), GeO2 (9 entries), and Al2O3 (89
entries).13 Figure 1.1 illustrates a structural map14–16 of all SiO2 structures included
in the Materials Project. Each structure in the plot is represented by a point, colored
according to its volume per atom. Similar structures are located close together, while
different structures are further apart. On the lower right side of the plot, there are
many very low density structures. Moving to the left, the silica networks become denser,
reaching the other extreme on the lower left with very high-density structures. Of course,
if a structure does appear in the Materials project database, it does not mean, that it
can be synthesized. However, the large number of available structures indicates already
the great interest in this material.

1



2 Chapter 1. Introduction

Figure 1.1: Structural wealth of silica. Overview of all stoichiometric SiO2 structures included
in the Materials Project database. Each data point corresponds to a structure and is color coded
with the corresponding volume per atom. The coordinates of the points are based on a 2D
uniform manifold approximation and projection for dimension reduction (UMAP) embedding15

of the average smooth overlap of atomic positions (SOAP) vectors of the structures.14 The right
side contains mainly porous structures with low densities, while moving to the left the density
increases.

The most important polymorph of silica is α-quartz. α-quartz is the stable structure
at ambient conditions and transforms to β-quartz at a temperature of 846 K.2 The
stability range of α-quartz and β-quartz is shown in Figure 1.2. The difference between
the two structures is small, as shown in Figure 1.3. Both polymorphs are built from
SiO4 tetrahedra, which in the case of β-quartz are arranged in temperature-stabilized
high symmetry positions. At lower temperatures, these tetrahedra are slightly rotated,
resulting in the lower symmetry structure of α-quartz.19

At even higher temperatures of 1140 K β-tridymite and at temperatures of 1743 K
β-cristobalite becomes the stable phase (see also Figure 1.2).2 Both structures are also
based on SiO4 tetrahedra. In the case of β-tridymite, the silicon atoms are arranged
in a hexagonal diamond structure with the Si-Si bonds replaced by Si-O-Si bonds. The
structure of β-cristobalite can be similarly derived from cubic diamond. However, the
high-symmetry form of β-cristobalite is only a time average of the real positions of the
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Figure 1.2: Phase diagram of silica. Calculated phase diagram of silica based on experimental
thermodynamic data. The transition lines are taken from Swamy et al.17

oxygen atoms, which follow rotational vibrations around this ideal position.19,20 A simi-
lar behavior was also suggested for β-tridymite.21 At ambient pressure, β-cristobalite
is the highest temperature phase of silica and melts at a temperature of 2000 K.2

During cooling, both β-tridymite and β-cristobalite do not transform back to α-quartz,
but transform into metastable low temperature structures. These phases are shown in
Figure 1.3. In the case of β-cristobalite, α-cristobalite appears at temperatures below
500-550 K.22 The structure of α-cristobalite arises from the freezing of the rotational
vibrations of the connecting oxygen atoms.19 In the case of tridymite, several crystalline
phases appear during cooling. In general, the symmetry of the structure decreases
with decreasing temperature. After cooling below 700-750 K, β-tridymite transforms
into another hexagonal structure with slightly lower symmetry (LHP-tridymite).18,23,24

This phase transition is accompanied by a slight displacement of the oxygen atoms
(see Figure 1.3). At a temperature of about 620 K, hexagonal tridymite transforms into
orthogonal OC-tridymite,18,23 which is associated with a change in the a-b lattice param-
eters. This is followed by a transition around 513 K to an incommensurate OS-tridymite
phase, which is not shown in Figure 1.3 due to missing data.24 At temperatures below
423 K, the OP-tridymite phase becomes stable, another orthogonal phase with space
group P212121.24 At lower temperatures, tridymite becomes monoclinic with space
group Cc. This structure, called MC-tridymite, becomes stable below 370-380 K.18,23,24

Finally, the MX-1-tridymite phase is found at temperatures below 340 K.18,25

Not only at high temperatures, also at high pressures there exists substantial poly-
morphism for silica. This can be seen in Figure 1.2 and 1.3. Both coesite and stishovite,
which are two of these high-pressure polymorphs, have been synthesised26,27 in labora-
tories before being found in nature, both in Meteor Crater, Arizona.28,29 Coesite becomes
more stable than quartz at a pressure of ≈3 GPa and a temperature of 1000 ◦C,30

while stishovite becomes stable at pressures above ≈8.5 GPa (T=1000 ◦C).31 Coesite



Figure 1.3: Important polymorphs of silica. Overview of a number of polymorphs of silica. The
ground state structure at ambient conditions, α-quartz, is transforming at higher temperatures
into β-quartz. At even higher temperature quartz is converting to β-tridymite, which transforms
at higher temperatures to β-cristobalite. Both polymorphs do not convert to quartz during
cooling, but into corresponding metastable lower temperature phases. Tridymite transforms with
decreasing temperature into a number of lower temperature phases with decreasing symmetry.18

β-cristobalite transforms to α-cristobalite. At higher pressures quartz transforms to coesite and
coesite transforms to stishovite.
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is still built from densely packed SiO4 tetrahedra, while stishovite is built from SiO6
octahedra. Silica undergoes further phase transitions at very high pressures. Stishovite
transforms to CaCl2-structured silica32,33 at a pressure of 64 to 65 GPa (T=1000 ◦C).34

This structure deviates only slightly from stishovite. While stishovite is tetragonal with
a = b lattice parameters, the CaCl2 phase is orthorhombic with a ̸= b. At even higher
pressures of ≈110 GPa and the same temperature, seifertite becomes the stable phase.35

While stishovite, CaCl2-type silica and seifertite are polymorphs, in which silicon is
sixfold coordinated, at pressures above 268 GPa and temperatures of 1800 K, pyrite-type
silica with a coordination number of 6+2 is stable.36 Further structural details of the
high-pressure phases and also of a number of metastable high-pressure phases will be
discussed in Section 1.1.

Besides the crystalline phase, silica also has an amorphous phase. While the struc-
ture of the crystalline phases is relatively easy to assess, the structure of the amorphous
silica phase has long been discussed. Already in the 1930s, Zachariasen published their
random network theory, according to which amorphous silica is built from randomly
connected SiO4 tetrahedra.37 After the first experimental evidence and simple models,38

it took more than 30 years to develop realistic structural models.39 These models were
built from SiO4 tetrahedra made of wires and polystyrene spheres or tetrapods, and
radial distribution functions could be determined by extensive interatomic distance
measurements within the models.39–41 The resulting radial distribution functions were
in excellent agreement with experiment, providing even more evidence for the random
network model. In later years, improved and larger models were created using reverse
Monte Carlo techniques42 and molecular dynamics simulations.43–45 Nevertheless,
there are still unknown aspects about the structure of amorphous silica. The structure
factor of amorphous silica shows a distinct first sharp diffraction peak (FSDP). Its
origin has been discussed extensively in the literature and is generally considered to be
influenced by some medium-range order.46,47 Various theories have been proposed for its
exact origin, ranging from quasi-Bragg planes48 to interstitial voids47 and boundaries
between cages.49,50 However, the exact reason for the occurrence of the FSDP is still
unclear. Silica glass is of high interest not only at ambient conditions, but has also
been studied at elevated pressures. For example, compression experiments allowed the
synthesis of the world’s densest silica glass at ambient conditions.51 Other experiments
have compressed amorphous silica to pressures above 100 GPa and found that silicon
with coordination numbers above six already appears at these pressures.52,53 This is
surprising in the sense that all crystalline polymorphs being stable at these pressures
contain only sixfold-fold coordinated silicon. This highly coordinated silicon has often
been explained by a similarity to pyrite-type silica, which contains 6+2-fold coordinated
silicon.54

The polymorphism in silica is crucial for understanding its behavior. In the following,
we will look at two problem settings in the SiOx system, which are still not completely
understood. First, we will look at the dynamic transformation behavior of quartz under
high pressures. Second, we will incorporate additionally the interface to silicon and
have a look at the complex structure of silicon monoxide. Based on these problems, we
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will assess possible solutions using atomistic simulations with classical and machine-
learning interatomic potentials.

1.1 Quartz under pressure

Quartz shows unique planar deformation features under shock55 and can therefore be
used for identifying impact events on Earth. Most notably, these features have been
identified in quartz samples from Cretaceous-Tertiary boundary clays at many places
in the world.56 This gave further evidence of a giant impact event, which resulted in
the distribution of huge amounts of mass in the atmosphere.56,57 The following global
winter led to a mass extinction and presumably the end of the dinosaurs.57,58 Despite
the importance of these planar deformation features, their formation mechanism is still
discussed controversially.59,60 While direct amorphization of quartz has been observed
in several shock and diamond anvil cell experiments,55,61–63 a transformation in a
metastable crystalline phase with subsequent amorphisation60,64 could also explain the
formation of planar deformation features.

Indeed, several high-pressure crystalline phases have been observed in experiments
or predicted by molecular dynamics simulations. For example, the quartz II structure
appears at pressures of 21 GPa,66,67 and might be identical to a C2 phase, which has
been described in several theoretical works.68–70 At higher pressures of 45 GPa, a P21/c
phase has been observed, experimentally.71 This is one of several thermodynamically
favorable high-pressure phases based on a HCP oxygen sublattice, which are shown in
Figure 1.4.72 While the oxygen atoms are arranged similarly in these structures, the
silicon octahedra are distributed in various ways. In case of stishovite, the silicon atoms
are arranged along straight lines. In seifertite, they follow a 2×2 zigzag pattern, and
in the case of P21/c-type silica, a 3×2 pattern. Next to the P21/c phase, Teter et al.72

also proposed SnO2 and NaTiF4-structured silica with a 4×4 and 3×3 pattern to be
thermodynamically competitive, but we have not found any experiments, which observed
these phases. Additionally, besides these phases considered by Teter et al., another phase
also based on a HCP oxygen sublattice packing has recently been proposed by theoretical
investigations73 and later observed in several dynamic compression experiments of
quartz.60,74 In this rosiaite-structured silica, silicon atoms are arranged in graphene-like
layers. Furthermore, there is a diffusionless transformation mechanism directly from
quartz,73 making it a possible intermediate state for the amorphization of quartz. There
is one further structure, which we would like to discuss in detail. The most general
type of structure with an oxygen HCP lattice is the defective nickel arsenide (d-NiAs)
structure. In this structure, the silicon atoms are distributed with a probability of 50% in
all octahedral voids (see Figure 1.4). Therefore, the oxygen sublattice is clearly ordered,
while the silicon sublattice does not have any long-range order. This structure was
first observed already in 1978 in diamond anvil cell experiments of amorphous silica
under additional laser heating.75 In later years, the phase was observed several other
times, starting from amorphous as well as quartz samples.64,76,77 Most remarkably,
Tracy et al.78 were able to observe the d-NiAs phase in in situ X-ray diffraction (XRD)
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measurements of quartz under shock, making it another possible intermediate phase for
the amorphization of quartz. Interestingly, this result deviates from very similar shock
experiments by the same group for vitreous silica. There the formation of stishovite was
observed. Finally, several other phases have been observed in compression experiments
and simulations of quartz. Tse et al.79 observed in molecular dynamics (MD) simulations
of quartz using the van Beest, Kramer, van Santen (BKS)80 potential amorphization
and subsequent recrystallization at about 80 GPa within a monoclinic structure with the
I2/a space group, structurally related to seifertite. Ab initio modelling and experimental
results of hydrostatically compressed quartz by Hu et al.81 show the transformation to
a P2/c phase of silica under hydrostatic compression conditions around 25 GPa. This
phase contains only sixfold-coordinated silicon. A phase containing fivefold-coordinated
silicon with the space group P3221 was found by Badro et al.82 using non-hydrostatic
MD simulations with the BKS potential. Another phase containing fivefold-coordinated
silicon and sixfold-coordinated silicon has been found by ab initio studies of quartz
hydrostatically compressed to pressures of 30-40 GPa.83

Figure 1.4: High-pressure polymorphs of silica. Various high-pressure structures of silica,
which are all based on a hexagonal close-packed (HCP) oxygen sublattice. The blue atoms
indicate oxygen atoms, whilst the red and orange atoms correspond to silicon atoms in different
layers. The gray lines indicate the unit cells of the structures. The structural differences are
caused by a different ordering of the silicon atoms. In stishovite, the silicon atoms are aligned
along lines. In the case of SnO2-, NaTiF4- and P21/c-type silica and seifertite the silicon is
arranged in different zigzag patterns. In rosiaite-structured silica the silicon atoms are arranged
in graphene-like layers. Finally, in the case of d-NiAs-type silica, the silicon atoms are randomly
distributed over the octahedral voids with an occupation probability of 0.5. The figure is adapted
from Ref. 65.
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As presented in the previous part, the understanding of high pressure silica and its
phase transformations is still incomplete.

1.2 Silicon monoxide

Besides SiO2, there also exists another oxide of silicon: silicon monoxide (SiO). SiO has
a stable gas phase at high temperatures, which is well characterized.84 However, the
structure of this amorphous solid phase has been a mystery for a long time, despite its
use in many applications such as a dielectric in capacitors,85 radiative cooling coatings,86

and protective layers on mirrors.87 Recently, it has also attracted considerable attention
as a possible anode material for lithium-ion batteries.88–90 After its first synthesis in the
19th century,91 various structural models have been discussed. These are illustrated in
Figure 1.5. The first model, commonly called the random mixture model, assumes that
solid silicon monoxide does not exist. Instead, it decomposes into a mixture of silicon and
silica.92,93 In contrast, the second model, called the random bonding model, assumes
that silicon is four-fold coordinated and randomly bonded to other silicon and oxygen
atoms.94 Therefore, it would result in a homogenous amorphous material built from
SiO4, SiO3Si1, SiO2Si2, SiO1Si3 and SiSi4 tetrahedra. Already in 1907 there has been
evidence for the random bonding model by heat of combustion measurements.95 Further
studies performed X-ray and electron diffraction experiments to determine the radial
distribution function. However, these experiments provide evidence for both the random
mixture model92,96,97 and the random bonding model.98,99

Later on, it has been found that the truth is somewhere in between. By complement-
ing X-ray and electron diffraction with neutron diffraction, high-resolution transmission
electron microscopy, Si K-edge energy-loss near-edge structure data, X-ray photoelectron
spectroscopy and magnetic resonance measurements, it was found that silicon monoxide

Figure 1.5: Structural models of silicon monoxide. The random mixture structural model
of silicon monoxide assumes that it is based on a mixture of silicon and silica. In contrast, in
the random bonding model, the structure is homogenous and built from SiOxSi4−x tetrahedra.
The nanoscopic random mixture is also a model based on the decomposition of silicon and silica,
however, with nanoscopic grains and a significant interface proportion.
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Figure 1.6: Overview of computational methods. The upper panel shows a number of
methods to calculate energies, forces and stresses of a system. These methods have different
accuracies and computational costs. The output of these methods can be used in molecular
dynamics, molecular statics or Monte Carlo simulations, but we used only the first two in this
work.

is indeed a mixture of silicon and silica.100–102 However, the silicon grains have sizes
of only 3-4 nm, inducing an extremely large interface proportion of 20 to 25%,101 in
which silicon is arranged similarly to the case of the random bonding model. Due to the
complex structure, computational studies of the interface at the atomistic level have
been scarce. Hirata et al.102 generated, in their extensive and predominantly experi-
mental study, small structural models for heterogeneous silicon monoxide with far less
than 1000 atoms using classical potentials and reverse Monte Carlo techniques. Other
studies have primarily focussed on the lithiation behavior of silicon monoxide.103–105

However, these studies are ab initio-based and therefore have an upper limit in system
size and consequently do not allow for an adequate description of the heterogeneity and
interfacial structure of silicon monoxide.

1.3 Atomistic modelling of Si-O compounds

Investigating, understanding and modelling of silicon monoxide and pure silica requires
accurate descriptions of the atomic interactions between silicon and oxygen. An overview
of the various methods for calculating these interactions and the methods that use these
interaction models is shown in Figure 1.6. Density functional theory (DFT) promises the
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Figure 1.7: Timeline of potentials for the SiOx system. The potentials shown are colored
according to which physical contributions are included in the potential energy term. These
include bond order terms, charge terms, terms which allow the fluctuation of the charges,
polarization terms and three-body terms. In some cases like for the ReaxFF by van Duin et
al.120 or the potential by Lee et al.135 other terms are included, which are not covered by this
classification. We do not claim this list to be exhaustive.

highest accuracy, but is usually limited to systems with few thousand electrons. Details
of this method are given in Section 2.9. In contrast, classical interatomic potentials (CIP)
are much faster to compute, allowing system sizes of millions of atoms and simulation
times of nanoseconds and above.141 An overview of CIPs for silica is given in this
section. Moreover, details of all CIPs used in this work can be found in Subsection 2.8.1.
An intermediate method between DFT and CIPs are machine learning interatomic
potentials (MLIP), which are trained on DFT data and promise the accuracy of DFT
while being much more cost-efficient. Although MLIPs are generally more expensive
than CIPs, they allow simulation times of nanoseconds and system sizes of millions
of atoms. In this section, we give a brief overview of the concepts of MLIPs and their
application to silica. A more detailed description can be found in Subsection 2.8.2.
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The energies and forces from the above-mentioned methods can be used for MD,
molecular statics (MS), and Monte Carlo simulations. MD simulations are used to study
the time evolution of a system at finite temperature by integrating the equations of
motion. Details are given in Section 2.1. MS calculations are used to find the energetic
minimum of a structure by changing the positions of atoms and/or the lattice parameters.
These calculations are performed at zero K. Finally, there are Monte Carlo simulations,
which use random operations such as moving and swapping atoms to sample the
configuration space.142

Over the last 40 years a large number of interatomic potentials have been developed
for the SiOx system (see Figure 1.7). A detailed overview of all CIPs used in this work
can be found in Subsection 2.8.1. In the following, we will give an overview of different
directions in the development of SiOx potentials. In general, they share the following
approach to calculate the total energy of the system,

E tot =
∑

i
Vi, (1.1)

where the total energy of the system is divided into individual atomic contributions.
Apart from MLIPs, where usually no explicit short-range term is included, the atomic
energies are calculated by the following approach,

Vi = 1
2

∑
j, j ̸=i

V SR
i j (r i j)+Additional terms, (1.2)

where V SR
i j (r i j), is a short range potential such as the Morse or Buckingham term

describing the general attraction and repulsion of the atoms, which depends only on the
interatomic distance r i j. In the case of silica, a very commonly used additional term is
the Coulomb term given by,80,106–108,123,132,143

V Coulomb
i = 1

2

∑
j, j ̸=i

qi q j

4πϵ0r i j
, (1.3)

where qi and q j are the charges of the corresponding atoms and ϵ0 is the vacuum
permittivity. Two of the most commonly used silica potentials include only these two
terms: The BKS potential80 and the Tsuneyuki, Tsukada, Aoki and Matsui (TTAM)
potential.106 Although these forms are extremely simple, they are still widely used
in MD simulations.144 Moreover, they have been reparameterized several times e.g.
for silica nanoclusters107 and amorphous silica.108 All potentials shown in Figure 1.7
that contain such a charge term are colored accordingly. To further improve the de-
scription of the system, additional physically motivated terms have been included in
other models. One example is the inclusion of variable charges, e.g. by charge equilibra-
tion113–116,120,134,135,145 or simpler charge transfer functions.112,122 This also has the
advantage that the potentials are able to describe silica, silicon and their mixtures simul-
taneously. In contrast, fixed charge models have to be used in stoichiometric mixtures
to fulfill charge neutrality. Other approaches to include more physics are for example
three-body terms,43,45,109,118–121,131,146 bond order terms114–117,134 or polarization terms
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Figure 1.8: General concept of MLIPs. A machine-learning potential is based on a database
built from ab initio data. The Cartesian positions are converted into a descriptor vector. This
descriptor vector is used as input for a regression machine-learning algorithm. Inspired from
Ref. 154.

in various forms.43,45,111,120,124,131,147 There are also few potentials that do not contain
any charges, but only short range terms. This is the case for the Watanabe et al.118,119

and Munetoh et al.117 potentials.
Many of the above-mentioned CIPs have been developed to describe certain struc-

tural phases. Therefore, they perform very well for these parts of configurational space
but fail in other cases. For example, the BKS potential fails to describe the phase diagram
of SiO2, by predicting stishovite to be more stable than α-quartz at zero pressure.148 In
contrast, the more complex Tangney-Scandolo model111 is performing worse than the
BKS for the equation of state of stishovite.149 However, a good description of the high-
pressure phases, such as stishovite, is essential for accurate analysis of phase transition
under pressure. Additionally, all fixed-charged models are restricted to stoichiometric
SiO2 and are unable to describe general SiOx systems. This is due to the requirement
of charge neutral simulation cells. Only interatomic potentials that include no charges
at all or flexible charges can be used for any mixture of SiOx. The Munetoh potential,
which is in principle capable of simulating these systems, performs not very well for pure
crystalline silica, because it is unable to accurately describe the phase transformations
of quartz and the equation of state of stishovite.150 A flexible charge potential, namely
the Charge-Optimized Many-Body potential for Si-O114 is also able to describe mixed
systems. However, also this advanced and computationally expensive potential is not
able to describe the α-β-quartz transition accurately.151 Similarly, the complex ReaxFF
model for silica120 does not work well for high-pressure silica.151 Moreover, many of
the CIPs shown in Figure 1.7 are not implemented within established MD codes, like
LAMMPS152 and GROMACS,153 and can therefore not easily be used by researchers.

Figure 1.7 already indicates that the development of interatomic potentials has
moved away from physically based models in recent years. MLIPs were introduced
by Behler and Parinello in 2007155 and have become widely used since then. These
potentials allow a higher transferability to a wide range of configurational space. If
trained with complete and consistent training data, they allow achieving higher accura-
cies in these parts of configurational space. The general concept of MLIPs is depicted
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Figure 1.9: Performance–cost trade-off of various MLIP approaches. Exemplary accuracy
versus computing time plot of the ACE,156 MTP,157 and GAP.158 The tests have been performed
for a pure silica database.

in Figure 1.8 and a more detailed overview is given in Subsection 2.8.2. MLIPs are
generally based on their training database, which is usually built from DFT data. They
can only learn the physical interactions from this database, therefore a comprehensive
training database is very important for a general MLIP.154 The Cartesian coordinates
from the database cannot be used directly as input for the machine-learning algorithm.
This is because the input to the machine learning (ML) algorithm has to be rotation-
ally, translationally and permutationally invariant. Moreover, a fixed number of input
numbers is usually required. Therefore, the environment of atoms is converted into
descriptor vectors, which are then fed into the ML algorithm.154 An advantage of many
MLIPs over CIPs is that they often provide some method of uncertainty quantification.
This allows to assess whether the potential can be used reliably in a certain range of
configurational space and can also be used to extend the database by active learning
(see Subsection 2.8.2).

The choice of descriptor vector and ML-method strongly influences the final accuracy
and performance of the potential. This is illustrated in Figure 1.9 for three different
approaches (atomic cluster expansion (ACE),156 moment tensor potentials (MTP)157

and Gaussian approximation potential (GAP)158) that combine different descriptors and
ML methods. While all approaches achieve similar accuracy, they have computational
time differences of several orders of magnitude. A detailed review of general MLIP
approaches can be found in Subsection 2.8.2, where we also present several MLIP
classes used in this work in detail.
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In the recent years, several MLIPs have been developed for silica. In 2019, Novikov
and Shapeev developed an MTP157 for α-quartz.128 The dataset contained only α-quartz
structures that were rattled, deformed, and in some cases contained vacancies. The
main goal of their study was not to develop a comprehensive potential for silica. Instead,
they compared two fitting approaches. First, they fitted a pure MTP, and second, they
combined a MTP with a charge equilibration term.145 They found that increasing
the number of parameters increased the accuracy of the MTP, but adding the charge
equilibration term did not. However, since the database contained only α-quartz, this
assumption may not hold for a more complex database covering the full complexity of
the silica system.

Later, in 2020, Balyakin et al.126 published a neural network potential (NNP) for
liquid silica trained with the DeePMD package.159 The database was generated using ab
initio MD data from different MD procedures. The resulting potential was validated by
comparing the radial and bond angle distribution functions, the velocity autocorrelation
function, and the vibrational density of states with ab initio results. However, no
crystalline data was included in the training, and although the potential works well for
glassy states, training data for these structures are missing.

In 2022, shortly after the publication of our GAP potential for silica,137 Erlebach et
al.127 published a comprehensive machine-learning interatomic potential based on the
SchNet architecture.160 The main purpose of this potential was to identify energetically
competitive hypothetical zeolite structures. Although zeolites were their primary focus,
the database also included denser silica polymorphs, surface models, and amorphous
silica. They iteratively refined their database through active learning to allow for the
potential to describe melting processes and amorphization of zeolites. Another important
difference between this study and others is that they used strongly constrained and
appropriately normed (SCAN) exchange-correlation data as training data rather than
computational less demanding generalized gradient approximation (GGA) data. The
potential was tested on a number of properties, e.g. energetic stability of zeolites and
vibrational properties of amorphous silica and α-cristobalite, showing good agreement
with experiment and the ab initio reference. Moreover, the potential was used to calculate
defect formation energies and to simulate the amorphization behavior of compressed
zeolites. Finally, the potential was used to re-optimize an existing zeolite database to
find energetically competitive silica polymorphs.

While previous studies focused on ambient pressure phases, Qi et al.133 and
Kobayashi et al.140 were interested in the properties of densified glasses up to pressures
around 10 GPa. Both studies fitted machine-learning interatomic potentials, the first
using the DeePMD package, the second using the n2p2 code.161,162 Both papers trained
their potentials on data from ab initio MD simulations. Moreover, both have investigated
the density as a function of pressure. However, while Qi et al. focused on the vibrational
properties, Kobayashi et al. investigated structural features such as the structure factor
and ring distributions.

More recently, another MLIP has been published with a focus on the amorphous and
liquid phases.125 Their training data was also generated from ab initio MD simulations.
They also added additional data for highly compressed amorphous cells to allow the
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potential to learn the repulsion between atoms correctly. They used the n2p2 code for
fitting.161,162 They systematically investigated vibrational properties such as vibrational
density of states and structural properties like ring statistics, radial distribution func-
tions and structure factors. In particular, they compressed silica glass up to pressures
of 14 GPa. Notably, they also tested the transferability of the potential to crystalline
polymorphs of silica. Although the training database did not contain explicit data for
these structures, the potential still achieved reasonable results.

While the MLIPs mentioned so far have focused on stoichiometric silica, two recent
preprints have worked on more general systems.129,136 Zongo et al.129 fitted a MTP for
silica, silicon and oxygen. They included data for vacancies, interstitials, stacking faults,
deformed crystals, amorphous and liquid structures and also included oxygen molecules
in the training data. Finally, they applied the potential to a number of benchmark cases,
structural properties of amorphous silicon and amorphous silica, vacancy diffusion
paths in silicon, and heat capacity calculations. However, although the potential seems
to work well for cases of pure SiO2, Si, or O, the authors do not show whether other
off-stoichiometric mixtures can also be described. Since off-stoichiometric mixtures are
not included in the database, interfaces between silicon and silica may not be well
described. In contrast, Cvitkovich et al.136 followed a different approach, fitting a GAP
to model the oxidation of silicon. Their training database includes Si dimers, O dimers,
but also bulk phases of silicon and silica and oxidized surfaces of silicon. Using their
potential, they are able to simulate the oxidation process of silicon in simulations with
nearly 1 ns simulation time.
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1.4 Research questions

Based on this literature review of the Si-O system as well as the available methods, we
want to raise the following research questions:

How can we construct a training database for the Si-O system? Several
options exist for the construction of training databases. These include for example
manual construction of input data and active learning. An additional challenge in the
system is the inclusion of Si-SiO2 interfaces and the wide range of the configurational
space, which is of interest for potential users.

Is it possible to train a machine-learning interatomic potential capable of
describing the full Si-O system? Incorporating the wide range of silica polymorphs,
silicon and interfaces between both, might be a challenge for the transferability of
MLIPs. It is not clear, whether these potentials are flexible enough to describe all parts
of configurational space with the same accuracy.

Can the thermodynamic behavior of silica be sufficiently described by such
a potential? For thermodynamic descriptions of the system highly accurate energies
and forces are necessary. Moreover, also the underlying DFT data needs to be in very
close agreement with experiment. The high-pressure as well as the high-temperature
phase diagram is extremely complex, and it might be that its reproduction is not possible.

How does the structure of silicon monoxide look like on the atomic scale?
Atomic structure models of silicon monoxide are not available in literature. Even if an
interatomic potential is available for the system, it might not be clear what is a good
simulation protocol to generate silicon monoxide structures.

How does quartz and amorphous silica transform under shock, and why
have different phases been observed in experiment? In shock and compression
experiments of quartz and amorphous silica, various phase transformations have been
observed. However, it is still unclear under which conditions, which phases might appear.
A machine-learning interatomic potential could give new insights into these phase
transitions and provide therefore a better understanding of the different experimental
conditions.
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In this chapter, we will give a brief overview of the methods used in this work. We
will start with the basics of molecular dynamics (MD) and possible applications to
shock simulations. Then, we will introduce possible ways to calculate free energies from
the finite displacement method and thermodynamic integration. This is followed by
an introduction of the solid-state nudge elastic band (SS-NEB) method, and possible
structural analysis methods for MD simulations. Finally, we are ending with methods
to calculate energies and forces in atomistic simulations, in particular, classical inter-
atomic potentials (CIP), machine learning interatomic potentials (MLIP) and density
functional theory (DFT). Generally, detailed information about DFT calculations and
MD simulations can be found in several textbooks.141,142,163,164

2.1 Molecular dynamics

MD simulations are widely used in this work. They are useful for analyzing phase
transitions (see Chapter 5 and 6) and to generate structural models of amorphous
materials (see Chapter 4 and 6). In MD simulations, atoms are treated as mathematical
mass points obeying the classical equations of motions. These equations of motions are
given in a NVE ensemble by,141

mi ¨⃗r i = f⃗ i, for i = 1, ..., N, (2.1)

where mi is the mass of atom i, N is the number of atoms, f i is the force acting on
atom i, while ¨⃗r i is the second derivative of the position or the acceleration of that atom.
Since this equation can only be solved for two particle systems analytically, numerical
integration is necessary in practice. For a practical meaning of the equation accurate
forces are necessary. In principle these forces can be obtained from DFT calculations (see
Section 2.9), however, these calculations are extremely expensive. A more efficient way
to calculate forces are classical interatomic potentials, which scale with O (N) in case
of short-range potentials and will be described for silica in detail in Subsection 2.8.1.
However, as mentioned in Section 1.3 these often lack the required accuracy. A more
accurate way promising DFT accuracy with O (N) scaling are MLIPs, which we will
describe in detail in Subsection 2.8.2.

In cases of other ensembles like the NVT or NPT ensemble, Equation 2.1 is modified,
and additional terms are added to modify the temperature and change the box size to

17
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achieve appropriated pressures. This is done using frictional terms. In the Nosé-Hoover
thermostat method165,166 the equations of motion are given by,141

mi ¨⃗r i = f⃗ i −γmi ˙⃗r i, for i = 1, ..., N, (2.2)

with141

γ̇= 1
M̃

(
T −Ttarget

)
, where M̃ = 3kB

N
M, (2.3)

where γ can be interpreted as friction constant, which is accelerating and decelerat-
ing particles systematically to heat and cool the system from the current temperature T
to the target temperature Ttarget. M is in this case the mass of a fictitious particle added
to the system and kB is the Boltzmann constant.

An example for equations of motion, which also consider the change of the box
size can be found in Section 2.3. LAMMPS uses equations of motion from Ref. 167 and
corresponding integration schemes from Ref. 168. Due to their complexity it would be
beyond the scope of this work to examine them in detail. In our LAMMPS simulations
we used a numeric time integration step of 1 fs, a temperature damping constant of
0.1 ps for NVT and NPT simulations and a pressure damping constant of 1 ps for NPT
simulations.

2.2 Melt-quench simulations

Melt-quench simulations are commonly used in this thesis. In general, the idea of melt-
quench simulations is to anneal a solid enough that it melts, and a liquid is obtained
within the MD simulation. This liquid is then cooled to room temperature to generate an
amorphous structure model. The general protocol used in this thesis unless otherwise
noted, is as follows:

• NVT simulation for 10 ps at 6000 K (Randomization)

• NPT simulation for 100 ps at 4000 K and 0 GPa (Equilibration of the liquid)

• Cooling from 4000 K to 300 K at constant pressure of 0 GPa with a given quench
rate (Quench to room temperature)

• NPT simulation for 10 ps at 300 K and 0 GPa (Equilibration at room temperature)

2.3 Shock simulations

Shock simulations give insights into the behavior of materials under extreme conditions.
We use shock simulations in Chapter 5 to find additional details of the phase transfor-
mation behavior of amorphous silica and quartz under extreme pressure. In this work,
we use the constant-stress Hugoniostat method to perform shock simulations.169 The
basis of this method are the Hugoniot relations, which describe the conservation of mass,
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momentum and energy under shock. In the one dimensional case of shock along the
z-direction, these are given by169

mass conservation, ρ0us = ρ(us −up), (2.4a)

momentum conservation, Pzz = P0 +ρ0usup, (2.4b)

energy conservation, EH = E0 +0.5(Pzz +P0)(V0 −V ). (2.4c)

Here, ρ = 1/V is the density of the shocked state, us is the velocity of the shock wave,
up is the velocity of the particles, P is the shock pressure, E is the specific internal
energy and V is the specific volume of the shocked state. Correspondingly, P0, ρ0, E0 and
V0 are the same properties, but in the unshocked state.169 These Hugoniot equations
can be easily derived according to Figure 2.1. The first equation of mass conservation is
based on the assumption that the mass at the time t0 and t1 needs to be equal, which
results in the equation,170

ρls(t0)A+ρ0lu(t0)A = ρls(t1)A+ρ0lu(t1)A, (2.5)

where A is the cross-section of the material and ls and lu are the lengths of the
shocked and the unshocked state. This equation can be easily transformed to Equa-
tion 2.4a. In case of momentum conservation different pressures in the shocked and
unshocked state induce a force on the material. This results in the following momentum
conservation equation,170

ρls(t1)up A−ρls(t)up A = (P −P0)A · (t1 − t0). (2.6)

Similarly, this equation can be transformed to Equation 2.4b while making use of
Equation 2.4a. Finally, energy conservation can be expressed by considering the internal
and the kinetic energy and the work applied to the material,170

Etot(t0)= ρ0lu(t0)E0 A+ρls(t0)EA+0.5ρls(t0)u2
p A (2.7a)

Etot(t1)= ρ0lu(t1)E0 A+ρls(t1)EA+0.5ρls(t1)u2
p A (2.7b)

Etot(t1)−Etot(t0)= P Aup(t1 − t0), (2.7c)

where E tot(t) is the total energy of the material at time t. As before, based on these
equations and taking into account Equation 2.4a and 2.4b, 2.4c can be derived. More
details about the derivation can be found in Ref. 170. More information about shocks
can be found also in a number of textbooks, for example in Ref. 171.

Ravelo et al.169 introduced equations of motions that constrain the system to fulfill
the energy condition (see Equation 2.4c) of the Hugoniot relations. For this they are using
modified isobaric-isothermal equations of motions by Melchionna et al.,172 which are
based on those by Hoover.173 Based on earlier works,174 they introduce two additional
variables, the heat flow variable ζ and the strain rate variable ηα.169 Here, and in the
following α indicates the vector component. The equations of motion read as follows,169
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Figure 2.1: Shock process within a material. A material block under shock at two different
times t0 and t1. P is the shock pressure, while P0 is the pressure of the unshocked part of the
material. ls is the length of the shocked part and lu is the length of the unshocked part. Both
parameters are time-dependent due to the propagation of the shock. us is the velocity of the
shock wave and up is the velocity of the particles in the shocked part of the material. ρ, ρ0 and
E and E0 are the specific volumes and internal energies in the shocked and unshocked part of
the material. The illustration is based on Fig. A1.1 from Ref. 170.

ṙαi = pαi

mi
+νpηαrαi, (2.8a)

ṗαi = Fαi − (νpηα+νHζ)pαi, (2.8b)

L̇α = νpηαLα, (2.8c)

ζ̇= νH

B0V0
[E−EH(t)]−βHζ, (2.8d)

η̇α = νp

B0
[σαα−Pαα]−βpηα. (2.8e)
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As in Section 2.1, rαi gives the coordinate, pαi is the momentum and Fαi is the
force acting on atom i. νp and νH are coupling parameters and βH and βp are damping
parameters. Lα is the length of the box in α direction, B0 is the bulk modulus, V0 is
the volume in the unshocked state and Pαα is the unshocked stress state. σαα is the
internal stress tensor during the simulation. In the one dimensional case the Hugoniot
energy is given by Equation 2.4c with,169

EH(t)= E0 + 1
2

[σzz(t)+P0][V0 −V (t)], (2.9)

where both the pressure σzz(t) and the volume V (t) are time-dependent.
Within LAMMPS the Hugoniostat method is implemented as fix nphug, which imple-

ments the algorithm within a derivation of their standard NPT class. In our simulations
we specified temperature and pressure damping constants of 20 ps as in earlier shock
simulations of silica.175

2.4 Free energy calculations

Determining the stability of certain phases under given conditions is a typical task in
atomistic modelling. For these calculations there are different methods available with
various advantages and shortcomings. We used the following methods, to determine
several phase diagrams of silica in Chapter 4. The thermodynamic stability of a phase
at a certain pressure p and temperature T is determined by its Gibbs free energy,

G(p,T)=U + pV −TS, (2.10)

with the inner energy U , the volume V and the entropy S. To determine the stability
of phases using an interatomic potential the Gibbs energy of a phase needs to be
calculated. For simplicity often the case at 0 K is considered in which the Gibbs energy
reduces to the enthalpy H,

H =U + pV , (2.11)

which can be easily extracted from energy-volume curves, e.g. by a Birch-Murnaghan
fit. The Birch-Murnaghan equation of state gives a relation for the inner energy U at
0 K by,176,177

U(V ,T = 0)= E(V )= E0 + 9V0B0

16

(
V0

V

)2
3 −1

3

B′
0 +

(
V0

V

)2
3 −1

26−4
(

V0

V

)2
3

,

(2.12)
where E is the potential energy. Additionally, a relation between the pressure as

function of the volume is given by,176,177

p(V )= 3B0

2

(
V0

V

)7
3 −

(
V0
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4

(B′
0 −4)

(
V0

V

)2
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, (2.13)
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with the equilibrium volume V0, the bulk modulus B0 and the derivative of the bulk
modulus B′

0. This first energy equation is fitted to energy-volume curves, and then both
equations are inserted into Equation 2.11. This gives an enthalpy H as a function of
volume, which can then be rearranged to an enthalpy as a function of pressure using
the pressure-volume relation from Equation 2.13. For energy-volume curve calculations,
we performed hydrostatic energy minimization at multiple pressures (interatomic poten-
tials) or at fixed volumes (DFT). This approach works well to approximate the stability
of a given phase over a wide range of pressures. However, to include temperature effects
it is essential to calculate the vibrational entropy. To obtain this entropy term, we have
used two methods in this work, which we will assess below.

2.4.1 Finite displacement phonon calculations

The finite displacement or frozen phonon approach is used in Chapter 4 to calculate
phonon dispersion curves and low temperature phase diagrams. In the harmonic ap-
proximation, the potential energy of a crystal is expanded by,178

V =Φ0 + 1
2

∑
lκα,l′k′α′

Φlκα,l′k′α′ulkaul′k′α′ , (2.14)

where Φlκα,l′k′α′ are the second-order forces constants and ulka is the displacement
of atom k in unit cell l in the Cartesian direction α from its equilibrium position. These
forces constants can be used to define the dynamical matrix Dkα,k′α′(q⃗) at the wave
vector q⃗ by,178

Dkα,k′α′(q⃗)= 1
N
p

mkmk′

∑
ll′
Φlκα,l′k′α′ eiq⃗(R⃗0

l′k′−R⃗0
lk), (2.15)

where mk is the atomic mass of atom k, N is a normalization factor and R⃗0
lk is the

equilibrium position of atom k in unit cell l. This dynamical matrix is used to solve the
eigenvalue problem,178

D(q⃗)= T(q⃗)Ω2(q⃗)T†(q⃗), (2.16)

where T(q⃗) is a matrix containing the eigenvectors of D(q⃗) and Ω2(q⃗) is a diagonal
matrix containing the squared phonon eigenfrequencies ω2

q⃗ν with band index ν. To
perform a phonon calculation, first the force constant matrix is calculated, and then
the dynamical matrix can be determined from it. The force constant matrix is usually
determined using the supercell approach. A supercell of the crystal structure is created
and in this supercell atoms are systematically displaced. The displacement of atoms
induces forces, which are calculated using DFT or interatomic potentials. The following
system of linear equations can be solved to determine the force constant matrix,178

− f lkα = ∑
l′k′α′

Φlκα,l′k′α′ul′k′α′ , (2.17)
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where f lkα is the force acting on atom k in the unit cell l in the direction α. After
calculating the eigenvalues of the dynamical matrix, the phonon eigenfrequencies can
be used to determine the vibrational entropy of the system. The vibrational entropy in
the harmonic approximation is given by,178

Sha = 1
2T

∑
q⃗v

ħωq⃗v coth(ħωq⃗v/2kBT)−kB
∑
q⃗v

ln(2sinh(ħωq⃗v/2kBT)). (2.18)

One simple way to include at least the contribution of anharmonic lattice expansion is
the quasi-harmonic approximation. In this approximation, the energy and the harmonic
vibrational entropy is calculated over a range of volumes. Then, the Gibbs free-energy
can be calculated by the following equation,178

G(T, p)= min
V

[E(V )−TSha(V ,T)+ pV ], (2.19)

where Vc is the volume of the unit cell. To minimize this function, equations of
state such as the Birch-Murnaghan equation (see Equation 2.12 and 2.13) are fitted to
multiple points from harmonic calculations. These fits allow the equilibrium volume
and energy to be calculated at different temperatures and pressures. In addition, the
stability of different phases at given pressures and temperatures can be determined. This
allows the prediction of temperature-pressure phase diagrams. All these calculations
are implemented in the phonopy code178,179 used in this work. However, although the
quasi-harmonic approximation gives a Gibbs free energy, which allows the calculation
of phase diagrams, it still does not take into account the real anharmonic behavior
of the interaction of atoms. This becomes a problem at high temperatures, when the
anharmonic part of the atomic interactions cannot be neglected. Another case where
the harmonic approximation fails are temperature-stabilized structures, such as β-
quartz or β-cristobalite. In these structures the atoms are on average in high symmetry
positions due to oscillations at high temperatures. However, these average positions
are not stable at 0 K. Although the forces of the atoms at these positions are zero, they
are not positioned at a minimum but at a saddle point. This leads to the appearance
of imaginary phonon frequencies in the eigenvalue problem and makes an accurate
determination of the free energies impossible. An alternative method to overcome this
problem is described below.

2.4.2 Thermodynamic integration

Thermodynamic integration allows the accurate determination of the Gibbs free energy
of complex crystals with anharmonic contributions. However, it is much more expensive
than the finite displacement method. Large MD simulations with more than 1000 atoms
on time scales of more than 10 ps seconds are required, which makes the method not
well suited for calculations with DFT. We used the Frenkel-Ladd method180 in Chapter 4
to calculate a comprehensive phase diagram of silica. For our calculations, we used the
code calphy.181 The thermodynamic integration method consists of two parts. First,
a reference free energy must be calculated. Second, from this reference calculation,



24 Chapter 2. Methods

an integration is performed to obtain the temperature or pressure dependence of the
simulation.

To obtain the reference energy we define two Hamiltonians Hi and H f . The Hamil-
tonian Hi is the initial Hamiltonian of a system where the free energy can be calculated
analytically. In contrast, H f is the final Hamiltonian with an unknown free energy. To
determine the difference in free energy between the two states the Hamiltonian’s are
combined, and a time integration is performed switching from one Hamiltonian to the
other. The combined Hamiltonian is given by,181

H(λ(t))= [1−λ(t)]Hi +λ(t)H f , (2.20)

with λ(ti) = 0 and λ(t f )=1. To calculate the difference in the Gibbs free energy, the
work done during the switching process needs to be calculated by,181

W s =
∫ t f

ti

dλ
dt

[
∂H(λ)
∂λ

+ ∂P(λ)V
∂λ

]
dt. (2.21)

The difference in the Gibbs energy between the initial system and final system is
given by,

∆Gref =
1
2

(W s
i→ f −W s

f→i). (2.22)

The reason for averaging forward and backward integration is that dissipation
energy is lost during the process of switching the Hamiltonian. However, if the switching
time is long enough, it has been shown that the dissipation energy is the same in forward
and backward switching and can cancel out.182 An important part of this algorithm is
the reference Hamiltonian. It should be somehow related to the system of interest and
an analytical expression for the free energy should be available. In calphy two models
are available. For solids, a system of N non-interacting harmonic oscillators is used,
which has the following Hamiltonian,181

HHO =
N∑

i=1

 p⃗2
i

2mi
+ 1

2
miω

2
i (∆r⃗ i)2

, (2.23)

with the momentum p⃗i, the mass mi, the frequency ωi =
√

ki

mi
with spring con-

stant ki and the displacement from the equilibrium position ∆r i of atom i. In the
one-elemental case this is equivalent to an Einstein crystal, since all oscillators have
the same frequency. From this the free energy can be derived to be,181,183

FHO(N,V ,T)= 1
2

∑
i
ħωi +3kbT

∑
i

ln(1−exp(−ħωk/kbT))≈ 3kBT
∑

i
ln

( ħωi

kBT

)
. (2.24)

The latter part is the high temperature approximation, which has been used in
calphy. For the liquid reference, calphy uses the Uhlenbeck-Ford model184,185, which
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is an extension of the ideal gas model. Within the Uhlenbeck-Ford model the interaction
is described by a purely repulsive pair potential. The Hamiltonian of this model is given
by,181,185

HUF =
N∑

i=1

p⃗2
i

2mi
−

N∑
i< j

pkBT ln
[
1−exp

(
−

( r i j

σ

))]
, (2.25)

with the length scale σ and the distance between two particles r i j. p ≤ 0 is a scaling
factor controlling the amplitude of the interaction. From this the free energy of the
Uhlenbeck-Ford model can be determined,181,185

FUF = Fig +F (ex)
UF , (2.26a)

F (ex)
UF (x,T)= kBT

∞∑
n=1

B̃n+1(p)
n

xn, (2.26b)

where Fig is the free energy of the ideal gas and F (ex)
UF is Uhlenbeck-Ford excess free

energy with x = (πσ2)3/2ρ. Here, ρ is the number density and B̃n+1(p) is a reduced virial
coefficient. Based on these models, a reference energy can be calculated for liquids and
solids. From these reference energies the dependence of the free energy on temperature
and pressure needs to be determined. This can be done by standard thermodynamic
integration, but for efficiency reasons this is done by an approach called reversible
scaling. It has been shown that to determine the free energy dependence on temperature,
the potential energy can instead be scaled by a factor λ while keeping the temperature
fixed.186 Based on this, the Gibbs free energy at a pressure P and temperature T f can
be calculated from,181,185

G(N,P,T f )=G(N,P,Ti)− 3
2

kBT f N ln
T f

Ti
+ T f

Ti

∫ λ f

1
〈U〉+ dP(λ)

dλ
〈V 〉dλ, (2.27)

where Ti is the temperature of the initial reference free energy state and 〈U〉 is the
average inner energy. λ f is the maximum scaling factor of the potential energy.

2.4.3 Phase diagram calculations

In this work we calculated phase diagrams in two different ways. First, using the finite
displacement method for α-quartz, coesite, and stishovite within the quasi-harmonic
approximation. Here we determined the pressure-low temperature phase diagram
up to a pressure of 9 GPa. Within phonopy we used the default settings for these
calculations. Secondly, we used the thermodynamic integration method to determine the
high temperature phase diagram of silica up to a pressure of 4 GPa. Since the calculation
of this phase diagram is more challenging compared to the other variant, we give some
more details here.

In our phase diagram calculations with calphy we used 50,000 equilibration time
steps before switching from one Hamiltonian to the other. This was followed by 800,000
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switching steps to switch from the Hamiltonian to the Einstein crystal Hamiltonian.
For the thermodynamic integration with reversible scaling we used 300 time steps/K.
Instead of automatic determination of the spring constants in the Einstein model, we
fixed these to 2 eV Å−2 for oxygen and 4 eV/Å−2 for silicon. To achieve convergence with
system size, we used cell sizes of about 15,000 atoms.

Integration was typically performed between 600 K and 2600-3,000 K, depending
on the stability of the polymorph. This is illustrated in Figure 2.2. Since cristobalite is
only stable at high temperatures, we performed the integration only for temperatures
above 1500 K to slightly above the melting point. Similarly, for higher accuracy, we split
the integration interval of tridymite into a part above 1500 K and a part below 1500 K.
As an example, the Gibbs free energies of these structures at a pressure of 0 GPa are
shown in Figure 2.2a. We also show the free energies for α- and β-quartz, which present
an additional challenge. Both structures dynamically transform into each other at a
certain temperature. This happens even on MD timescales. Therefore, the transition
between the two phases cannot be determined by thermodynamic integration, but was
instead determined from simple MD simulations. The exemplary approach is shown in
Figure 2.3. We performed MD simulations under NPT conditions for 100 ps at the same
pressure but at different temperatures, with both α-quartz and β-quartz as input. The
densities of these simulations for a pressure of 0 GPa are shown in Figure 2.3a-b. It is
evident that there is a transition at a temperature of 850 K. To determine the transition
temperature we fitted this curves by the following function,

ρ(T)≈


a · x2 +b · x+ c x < T1

0.5 ·cos
(

x−T1

T2 −T1
π

)
+0.5 T1 < x < T2

d · x+ e x > T2

, (2.28)

with fitting parameters a, b, c, d, e, T1 and T2. To determine the pressure depen-
dence of the transition temperature, the whole procedure was repeated for several
pressures. From this Figure 2.3c was obtained. This shows the transition line between
α- and β-quartz, which is also the corresponding line used in the phase diagram.

Since inaccuracies occur, when performing thermodynamic integration across a
phase boundary, we have integrated the energy for α-quartz only to 50 K below the
transition line and for β-quartz only from a temperature of 50 K above the transition
line. To obtain a phase diagram from the free energies calculated by thermodynamic
integration, we performed integration over a wide pressure range. This is shown in
Figure 2.2b for α-quartz. From these curves we performed Gibbs free energy fits as a
function of pressure at 1 K intervals (See Figure 2.2c). We used third-order polynomials
for these fits.138

2.5 Solid-state nudge elastic band method

Possible transition paths and transition barriers are essential to understand many
phase transitions. In the following, we present the SS-NEB method, which can be used



Figure 2.2: Free energy calculations for a phase diagram. (a) We show the Gibbs free
energy at different temperatures for several polymorphs. For each polymorph, the temperature
was determined over different intervals. Details are given in the text. (b) For α-quartz, thermo-
dynamic integration was performed over temperature, repetitively at different pressures. The
results for the Gibbs-free energy are shown in this plot. (c) Approximation of the free energy by
polynomial fits to data points of α-quartz at the same temperature but different pressures. These
fits are finally used to determine the phase diagram. Reproduced from Ref. 138. Original figure
published under the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
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Figure 2.3: α/β-quartz transition from MD simulations. (a-b) Results of a series of MD
simulations performed under NPT conditions at a pressure of 0 GPa and different temperatures.
Shown are the densities after equilibration based on the α-quartz or β-quartz input structure and
corresponding fit curves. Both figures show the same data, but in a different x-range. (c) From
the plot in (a) and (b) different pressure transition temperatures have been determined, shown
here as points. The phase transition line is obtained by fitting to these points. Reproduced from
Ref. 138. Original figure published under the CC-BY 4.0 license (https://creativecommons.
org/licenses/by/4.0/).

to investigate phase transformations under pressure and is used in this work in Chap-
ter 5. The SS-NEB method187 is a method for determining transition barriers between
two phases with different cell sizes. Unlike the standard nudged elastic band (NEB)
method,188 it is not limited to transitions with constant cell sizes. The idea of the NEB
method is that a certain number of images are connected by springs. The first image is
the initial state and the last image is the final state. Initially, the intermediate images
can be linearly interpolated between the two states. However, the transition states and
the transition barrier are then determined by minimizing the forces of the images using
the following forces,187

FNEB
i =FS∥

i +F∇⊥
i . (2.29)

Here F∇
i is the gradient of the interatomic potential, i.e. the actual force acting on

the atom. The symbol ⊥ indicates, that only the gradient of the interatomic potential
perpendicular to the transition path is considered. FS

i is the spring force based on
the difference in coordinates between the image and the two neighboring images. In
contrast to the force induced by the potential, here only the contribution parallel to the
transition path plays a role, which is indicated by the symbol ∥. In case of the standard

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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NEB, the force vector contains only the forces acting on the atoms, but not the stress
contribution. However, SS-NEB extends the force vector by stress components to allow
box changes within the calculation. The enthalpy in these states cannot be calculated by
Equation 2.11 because the deformation is not necessarily hydrostatic. In contrast, the
general enthalpy for the non-hydrostatic case is calculated by,189,190

∆H =∆E+Ωσext ·ϵ, (2.30)

where ∆E is the energy difference between the image and the reference state, ϵ is
the strain tensor of the image relative to the reference state, and the volume of the
reference supercell is given by Ω. σext is the external pressure applied to the system.

We used the FD-NEB code190,191 to perform the SS-NEB calculations, which is largely
identical to the tsase code.187,189,192 For our calculations, we used Cauchy stresses and
a weight factor of 100 to reduce the influence of the stresses on the force vector. We
also constrained the initial and final cells to have the same a-b vectors, so that only c
direction box changes were allowed.

2.6 X-ray diffraction patterns and structure factors

In experiments, it is difficult to obtain bulk structural data directly. Instead, diffraction
techniques are commonly used to gain insights into the atomic structure in an indirect
way. While this is usually straight forward for crystalline materials, it is more difficult
for amorphous materials. Extracting corresponding spectra from MD simulations is a
useful tool to support the validity of simulations and to gain a better understanding of
experimental observations.

2.6.1 X-ray diffraction patterns

X-ray diffraction (XRD) intensities in Chapter 5 are calculated using the Debye for-
mula,193

I(q)=∑
i, j

f i(q) · f j(q) · sin(q · r i j)
q · r i j

, (2.31)

with the scattering vector q, the atomic scattering factor fa(q) and the distance r i j
between atom i and j. q can be calculated by,

q = 4πsin(Θ/λ), (2.32)

where λ is the wavelength and Θ is the diffraction angle. The calculation of Equa-
tion 2.31 is in practice a computationally expensive task, especially for large systems in
which all interatomic distances must be calculated. One method to reduce the computa-
tional and memory requirements is binning, where essentially the radial distribution
function is computed and inserted into Equation 2.31 with corresponding weights for
each distance. We used the fast and parallelized implementation of ovito to calculate
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radial distribution functions.194 A problem with the binning could be the creation of
false Bragg peaks,195 but due to the dense binning this was not an issue in our case. In
all distance calculations we did not consider periodic boundaries.

2.6.2 Structure factors

The total scattering method can be used to experimentally determine the structure
factor of a sample. As explained below, the Fourier transform of the structure factor
corresponds to the pair distribution function (PDF). However, to obtain reliable PDFs,
measurements up to high scattering vectors q are required.196 Even then, in case of
multicomponent systems, obtaining partial PDFs is quite difficult requiring for example
isotopic substitution,196 but it has been done for silica.197. In MD simulations, on the
other hand, partial PDFs are readily available. From these, the structure factors can
be calculated easily, as it was done in Section 4.3 and Section 6.2, using the following
equations. In a multi-component system, the structure factors can be expressed by,196

S(q)=∑
i

∑
j

S′
i j(q), (2.33)

where S′
i j is the partial structure factor origin from the distribution of i and j atom

pairs. In case of Faber-Ziman structure factors the partial structure factors are given
by,196,198

S′
i j(q)= ci c j f i(q) f j(q)

(
∑

i ci f i(q))
Sαβ(q), (2.34)

where f i depends on q and is again the atomic form factor, while ci is the concentra-
tion of species i. Si j is given by,196

Si j(q)= 1+ 1
q

∫ ∞

0
G i j(r)sin(qr)dr, (2.35)

with the distance r and the reduced partial PDF G i j(r), which is given by,196

G i j(r)= 4πrρ0(g i j(r)−1), (2.36)

where ρ0 is the number density and g i j(r) is the partial PDF. The integral in
Equation 2.35 cannot be integrated up to infinity since it is limited by the box size.
This leads to certain finite size errors. For X-ray structure factor calculations we used
different atomic form factors over the time of the work. The q dependence of the atomic
form factors have been approximated by data taken from Ref. 199 (Table 6.1.1.4). PDFs
have been calculated using ovito.194

2.7 Structure identification

The structure identification algorithm is described in detail in Ref. 200. This was a
joint work with Daniel Utt, who took care of the implementation of the code and the
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development of the idea. The generation of training data for silica as well as the training
and testing of the specific model was done by myself.

In the following we will present a structure identification algorithm, which can be
used to differentiate between a wide range of silica structures. This algorithm was used
in Chapter 5 to identify various high-pressure phases. Structure identification algo-
rithms for simple crystal structures such as hexagonal close-packed (HCP), face-centered
cubic (FCC), or body-centered cubic (BCC) have been available for some time. For exam-
ple, polyhedral template matching (PTM)201 and common neighbor analysis (CNA)202

are widely used. However, for more complex structures, the availability of structure
identification algorithms is very limited. To overcome this problem, we introduce an
machine learning (ML)-based classification approach in the spirit of earlier ML-based
structure identification methods.203–206 The concept of the ML classifier is illustrated
in Figure 2.4. As input to the classifier, we use point clouds of atoms centered around
the atom of interest. In this particular case, we used the 64 nearest neighbors. The
coordinates of these atoms are fed into a Dynamic Graph-Convolutional Neural Network
(DG-CNN).207 This DG-CNN then returns a score for each structure type, which was
part of the training set. Based on these scores, the structure with the maximum score is
selected as the prediction.200

Here, we will give some brief details about the training process. More details can
be found in the corresponding publication.200 We have selected 25 different structure
types for the training. These include 23 crystal structures as well as the amorphous
phase and the liquid phase. The 23 crystal structures include the following low pres-
sure phases: α-quartz,208 β-quartz, α-cristobalite,209 β-cristobalite, α-moganite,210

β-moganite, monoclinic tridymite211 and higher temperature tridymite. The higher
temperature polymorphs automatically appear from the lower temperature polymorphs
in the MD simulation. We also used the following high pressure phases for training:
P3221,82 C2,68 d-NiAs-type,75 I2/a,212 NaTiF4-type,72 P21/c,72 P32,83 Pnc2,213 SnO2-
type,72 rosiaite-type,60 coesite,214 stishovite,215 seifertite216 and pyrite-type.36 The
CaCl2-structured silica automatically appears at high pressures, when stishovite is
compressed. The general procedure for generating training data for the DG-CNN was
to perform MD simulations from low temperatures to above the melting point. All
structures below the melting point are then assigned to a particular crystal structure.
In the case of solid-solid phase transitions, the phase transition point is identified to
correctly label the training data. Structures above the melting point are labeled as melt.
Additional amorphous structures are generated by melt-quench simulations. The whole
procedure is repeated depending on the stability range of the polymorph at different
pressures.200

A drawback of this algorithm is that it can only identify structures that are in the
training database. Structures not covered in the training database obtain a random
score and are identified as any of the structure types in the database. Currently, there
is no easy way to get the uncertainty of the prediction. Therefore, we decided to use
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Figure 2.4: Machine-learning based structure identification for silica. For the structure
identification first the environment of a central atom (blue) is extracted. We always consider a
constant number of 64 next neighbors. Although we show the information about the chemical
species in this figure, we do not consider the chemical species as input for the ML algorithm at
the moment. Only the coordinates are fed into a ML based classification algorithm. In our case
we use the DG-CNN algorithm.207 This gives for each structure type, which was in the training
dataset a score. The structure with the maximum score is then chosen to be the predicted
structure.

a large number of structures in the hope that all structures that might appear in our
simulations would be covered by this training procedure.

2.8 Interatomic potentials

As mentioned in Section 2.1 and 2.3 forces are essential for MD simulations. These
forces can be derived from the derivative of the interatomic potentials with respect to
the positions:

f⃗ i =−∂V
∂⃗r i

. (2.37)

As indicate in Section 1.3 many classical interatomic potentials have been proposed
for silica in the past. The interatomic potentials, which have been used, in this work,
are introduced in detail in Subsection 2.8.1. The theoretical background of MLIPs types
used in this work are then presented in Subsection 2.8.2.
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2.8.1 Classical interatomic potentials

BKS and CHIK potentials

As mentioned in Section 1.3 the van Beest, Kramer, van Santen (BKS)80 model is one of
the most successful interatomic potentials for silica. A modified version of this potential
is the Carré, Horbach, Ispas, Kob (CHIK) potential.108 This potential is given by,

Vi j =
qi q j

4πϵ0r i j
+ A i j exp

(−Bi jr i j
)− Ci j

r6
i j

+ D i j

r24
i j

, (2.38)

where A i j, Bi j, Ci j and D i j are fitting parameters, r i j is the distance between atom
i and atom j and qi is the corresponding atomic charge. In contrast to the BKS the
CHIK potential contains the additional D i j/r24

i j term, which prevents the potential to
become attractive at very short distances.

Since at high temperatures the attractive behaviour of the BKS potential is indeed
an issue, we used for high-temperature simulations a modified BKS model, which goes
over in a harmonic term at short distances.217,218 In case of the BKS potential, we used
a cutoff of 15 Å and in case of the CHIK potential a cutoff of 10 Å for the crystalline
phase and 6.5 Å and for liquid and amorphous phases. Both potentials have been used
in Chapter 4.

Vashishta-type potentials

Both, the Vashishta potential from 199043 and the Broughton potential from 1997,109

have a very similar form. We used both potentials in Chapter 4. In these models, the
total potential energy of the system is given by,43

Vtotal =
∑

1≤i< j≤N
V2(r i j)+

∑
1≤i≤ j≤k≤N

V3(r i j, r jk, r ik), (2.39)

where V2(r i j) are the two-body interactions and V3(r i j, r jk, r ik) are three-body inter-
actions. Two-body interactions are composed of,43

V2(r i j)=
Hi j

rηi j
i j︸︷︷︸

repulsion

+ qi q j

r i j︸ ︷︷ ︸
Coulomb

−
1/2

(
αi q2

j +α j q2
i

)
r4

i j
exp−r i j/r4s︸ ︷︷ ︸

charge-dipole

, (2.40)

where Hi j, and ηi j are parameters, which determine the repulsion of two atoms,
and αi is the polarizability of atom i. r4s is a parameter determining the decay of the
dipole-ion interactions. The three-body interactions are given by,43

V3(r i j, r jk, r ik)= B jik f (r i j, r ik)p(Θ jik,Θ jik), (2.41)

where B jik is a parameter, f (r i j, r ik) is a function, which includes energy terms from
bond stretching, and p(Θ jik,Θ jik) is a function, which includes energy terms from bond
bending. Θ jik is a parameter and Θ jik is the angle between the bonds between atom i
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and j and i and k. Parameters for these functions can be found in the corresponding
publications.43

Munetoh potential

The Munetoh potential117 is an interatomic potential characterizing the Si-O interaction
in form of a Tersoff interaction model.219,220 The pair interaction energy between two
atoms i and j in this model is given by,117

Vi j = fc(r i j)
(
fR(r i j)+bi j fA(r i j)

)
, (2.42)

where fc(r i j) is a cutoff function, fR(r i j) is a repulsive pair function and fA(r i j) is an
attractive pair function. These functions are given by,117

fR(r i j)= A i j exp(−λi jr i j) (2.43a)

fA(r i j)= Bi j exp(−µi jr i j), (2.43b)

with parameters A i j, Bi j, λi j and µi j. bi j is the bond order parameter given by,117

bi j = χi j(1+βni
i ζ

ni
i j )−1/2ni (2.44a)

ζi j =
∑

k ̸=i, j
fc(r ik)ωik g(θi jk) (2.44b)

g(Θi jk)= 1+ c2
i /d2

i − c2
i /(d2

i + (hi − cos(Θi jk)2)), (2.44c)

with parameters βi, ωik, χi j, ni, ci, di and hi. This interaction model does not
contain charges, unlike the BKS and Vashishta style potential in the earlier sections.
The exact parameterizations can be found in Ref. 117. Since the Munetoh potential can
be used for SiO2 as well as for mixed Si–O systems, we used it in Chapter 4 and 6.

Charged-optimized many-body potentials

To model mixed system of silicon and silica, we used a second generation Charge-
optimized many-body (COMB) potential for Si-SiO2 in Chapter 6.114 This poten-
tial is based on a number of earlier developed potentials,115,116 combining a charge-
equilibration procedure with a Tersoff potential. The total energy in the COMB formal-
ism is given by,114

V =∑
i

[
V S

i + 1
2

∑
j ̸=i

Vi j(r i j, qi, q j)+V BB
i

]
, (2.45)

where V S
i and V BB

i are self-interaction and bond-bending energies of atom i. Vi j is
the interaction potential between two atoms and is given by,

Vi j(r i j, qi, q j)=V R
i j (r i j)+V A

i j (r i j, qi, q j)+V I
i j(r i j, qi, q j), (2.46)
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where V R
i j (r i j) is the repulsive term, V A

i j (r i j, qi, q j) is the attractive term and
V L

i j (r i j, qi, q j) is the long-range Coulomb term. These terms are given by the follow-
ing equations,146

V R
i j (r i j)= fSi j A i j exp(−λi jr i j), (2.47a)

V A
i j (r i j, qi, q j)=− fSi j bi jBi j exp(−αi jr i j), (2.47b)

V I
i j(r i j, qi, q j)= Ji j(r i j)qi q j, (2.47c)

where the repulsive term V R
i j (r i j) and the bond order term bi j are in principle

identical to the terms in the pure Tersoff formulation (See Equation 2.43a and 2.44a).
In contrast, to the Tersoff formulation the parameter Bi j depends on the atomic charges
and is given by,146

Bi j =
√

BSi BS j with BSi = Bi exp(αiD i)
[
aBi −

∣∣bBi (qi −QOi )
∣∣nBi

]
, (2.48)

where the latter part is describing, whether the charge of atom i is in a meaningful
range. bBi is normalizing the charge differences to the mean charge QOo . This mean
charge is given by,146

Q0i =
(
QUi +QL i

)
/2, (2.49)

where QUi and QL i are the upper and lower charge bounds. Also, aBi depends on
these two values. In contrast, to the earlier models based on charges like the BKS and
the CHIK model, the COMB from 2010 model does not assume to have point charges,
but instead replace them with Coulomb integrals over the Slater 1s orbitals given by
the charge coupling factor,114

Ji j(r i j)=
∫

d3r i

∫
d3r j

ρ i(r i, qi)ρ j(r j, q j)
r i j

(2.50a)

ρ i(r i, qi)= qi
ξ3

i

π
exp(−2ξi|r i j − r i|), (2.50b)

with ξi determines, how fast the electron density is decaying. The self energy V S
i

describes how likely charges are located at a certain atom,114

V S
i (qi)= χi qi + Ji q2

i +Kqq3
i +L i q4

i +V lattice
i , (2.51)

with fitting coefficients χi, Ji, K i and L i and a penalty term V lattice
i , which includes

the ionic contributions of the lattice. Finally, the bond bending term V BB
i has a very

similar form to the bond bending term in the Vashishta potential. The charges in the
system are determined using a charge-equilibration145 approach based on an effective
Lagrangian.116,221
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2.8.2 Machine learning interatomic potentials

Literature review

In the following we will first give a literature review of MLIPs in general, and then
we will describe several approaches in detail. MLIPs are a new class of interatomic
potentials, which were introduced by Behler and Parrinello in 2007.155 MLIPs are based
on three essential components:154

1. The training database. This database contains structural files of atomic con-
figurations. Each structure is labelled with one energy and forces for each atom,
normally calculated by DFT.

2. The atomic descriptor. The descriptor is a fingerprint for the individual atomic
environments and makes it possible to feed structural information into the ma-
chine learning algorithm. In general, the descriptor needs to be permutational,
rotational and translational invariant.

3. The regression algorithm. This part is the machine-learning part, in which the
machine-learning regression algorithm is trained to the energies and forces in the
database with the fingerprints as input.

Finally, after training the MLIP can be used for fast energy and forces evaluations
by calculating the atomic descriptors and feeding them into the machine-learning
algorithm.

Training databases have been generated in the past by various approaches. These
are an essential part of each MLIP since they contain all information that the algorithm
is trained on. In reverse, this means that the potential cannot be better than the data it
was trained on. The quality of the training data is made up of two decisions:

1. How to calculate energies and forces?

2. Which structures are fed into my training set?

As already mentioned, for the evaluations of energies and forces DFT is commonly
employed.154 Most DFT calculations for machine-learning use standard generalized
gradient approximation (GGA) exchange-correlation functionals like the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional222–224 or the local density approxi-
mation (LDA).225,226 In case of molecules, higher order methods like coupled-cluster
methods have also been employed.227 However, these methods are mostly too expensive
to be used for solids.228 In the case of silica, an issue arises from the fact that the
standard exchange-correlation functionals are known to fail to describe the energetic
order of the polymorphs in silica, correctly.229 Therefore, for this system, additional care
must be taken to select a proper exchange-correlation functional.

After the decision has been made on how to calculate energies and forces, the
structural data for the training database needs to be generated. There are several
options for this. The first and simplest approach is the manual construction of structures.
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This can start with databases such as the Materials Project database or the Inorganic
Crystal Structure Database,13,230 where a wealth of crystal structures are available.
After extracting the crystal structure, a large amount of possible distortions of the lattice
parameters and the atomic positions are generated randomly.158 Additionally, defects
like dislocations and surfaces can be constructed manually and added to the database.223

Other ways to generate training data include the use of random structure search or
ab initio MD snapshots.225,231 For liquid and amorphous structures, the generation
of training data is more complicated compared to crystalline structures. Exemplary
structures cannot be downloaded directly from a database. Instead, the structures are
often generated iteratively. Initially, amorphous and liquid structures are generated by
ab initio MD. This data is then used to fit a first potential. Subsequently, the potential is
used to perform much cheaper MD simulations, from which snapshots are extracted to
perform DFT calculations again and add the corresponding structures to the database.
Afterwards, the potential is refitted, and the whole process is repeated.155,232,233 The
issue, which comes with this procedure, is that also structures, which are similar to
those already in the database, are calculated in an expensive DFT calculation.

To overcome this issue, uncertainty estimates or indicators are essential. These
approaches enable the calculation of the degree of uncertainty of a machine-learning
interatomic potential for a specific structure or environment. When this degree of un-
certainty exceeds a certain threshold, the structure is calculated within DFT, added to
the database, and the potential is refitted. This process is called active learning and
the key element of this approach is the uncertainty estimate. The first work performing
simulations like this with MLIPs was performed by Artrith and Behler, which used
the query-by-committee approach.234 In this approach several neural network poten-
tials (NNP) are trained on the same training data, but are, for example, initialized with
different random seeds. When several fits give a close result for the same structure,
it can be assumed that this structure is sufficiently covered in the training database.
However, in the case of deviating results, this structural space is not covered well
enough, and therefore the structure needs to be added to the database. Other machine-
learning algorithms, such as, Gaussian process regression, can make use of Bayesian
error estimates to approximate the uncertainty without the need to fit several mod-
els.235,236 Linear machine-learning methods, which are used, for example, in moment
tensor potentials (MTP) or atomic cluster expansion (ACE) potentials, frequently use the
D-optimality criterion.237–240 This is a geometric criterion based on the vectors formed
by the basis functions. N basis function vectors with the length N are arranged in a
symmetric matrix in such a way that the determinant of the matrix is maximized. De-
pending on the implementation, these basis function vectors are atom specific237,240 or
structure specific.238,239 Therefore, the N basis function vectors correspond to N atoms
or structures. The extrapolation behavior of another structure can then be calculated by
evaluating whether the determinant of the N ×N matrix is increasing by replacing one
vector with the basis function vector of the new cell. More details can be found later in
this section. To further increase the speed of active learning simulations, approaches
like ’hyperactive learning’ have been introduced, which drive the MD simulations into
direction of higher uncertainty.241
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All the mentioned active learning methods have one restriction. They can only be
used for cells that are small enough to be calculated within DFT calculations. However,
sometimes a potential works well within a small-scale simulation but may fail in
simulations with millions of atoms. In these cases, it would be extremely beneficial
if one could obtain ab initio forces of the atoms, which have environments unknown
to the potential. One very simple approach would be to just cut out the atoms with
their surrounding regions and put them into a smaller DFT-feasible box. However, this
produces highly unreasonable interfaces at the boundaries of the box or surfaces if an
additional vacuum layer is added. One approach to circumvent this issue was proposed
by Hodapp and Shapeev.242 They constructed symmetrized periodic cells from extracted
dislocation structures. However, this approach works only for crystalline systems. Other
approaches also extract structures from large-scale simulations and feed them into
small-sized boxes. While the atoms around the atom of interest are kept fixed, the atoms
at the boundary are minimized with respect to their uncertainty.237,243

Besides the database, the choice of the machine-learning algorithm and the descrip-
tor is essential for a good MLIP. We already mentioned some approaches but will have a
more extensive look at these approaches now. The first type of MLIP called NNPs was
already proposed by Behler and Parrinello in 2007.155 These potentials take different
types of 2- and 3-body descriptors, commonly named as Behler-Parrinello symmetry
functions, as input for a neural network.155,244 Based on these symmetry functions
and similar ones, several frameworks for NNPs have been developed.159,162,245 In 2010
Bartók et al. introduced the Gaussian approximation potential (GAP), which is not
based on neural network techniques but instead on Gaussian process regression.158,246

These potentials mainly use the smooth overlap of atomic positions (SOAP) descriptor.14

In the following years, several other potentials have been developed. This starts from
the spectral neighbor analysis potential,247 goes over to MTPs157 and the ACE poten-
tials.156 In contrast to GAP and NNP, which use highly non-linear machine-learning
techniques, these techniques use a diverse descriptor in combination with a not so flexi-
ble linear or slightly non-linear machine-learning approach.248–252 Specifically, these
linear approaches demonstrate high accuracy in benchmark studies coupled with high
computational efficiency.249,253

The mentioned approaches are up to this point all short range and do not include
long-range contributions. However, for electrostatics and van-der-Waals interactions
incorporating long-range interaction might be necessary to allow a full description of the
system. Van-der-Waals interactions have been included by defining an overlay potential
of a long-range V ∼ 1/r6 term in combination with a standard machine-learning poten-
tial.16,254 For charges, different models have been developed in the past. One simple
approach is to use fixed charge models, similar to the van-der-Waals interactions.255

However, as mentioned earlier, this limits the applicability to stoichiometric mixtures.
Artrith et al. overcame this issue by using a machine-learning model to predict the
atomic charges based on the local environment.256 Even more advanced approaches
predict the electronic affinity based on the local environment instead of the atomic
charges and subsequently perform a global-charge equilibration.257
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Machine-learning potentials in this work

In the following, we will present several MLIP approaches, which have been used in
this work. We used three different types of MLIPs. We started using GAP, which use
Kernel regression as ML method158 and mainly the SOAP14 vector as descriptor. The
second MLIP type, which we used are the MTPs. These potentials use Moment tensors
as descriptor and a linear regression method in case of one-component systems157 and
non-linear regression in case of multi-component systems.252 Similarly, the last type
of potentials, the ACE potentials use the ACE as descriptor combined with linear or
non-linear regression.156 In the next section, we will discuss these potential types more
in detail. In general and as already mentioned in Section 1.3, all these potential types
we discuss here are based on the assumption that the total energy Vtot is composed of
atomic energies Vi,

Vtot =
N∑
i

Vi, (2.52)

with N atoms. Also, all models discussed here are purely short-ranged. That means,
that the descriptor of each atom is only considering the atoms within a given cutoff.

Gaussian approximation potentials

GAPs were introduced in 2010 and are one of the most common MLIP type nowadays.158

One reason for the widespread use of this potential type is the LAMMPS interface combined
with the QUantum mechanics and Interatomic Potentials (QUIP) code (https://github.
com/libAtoms/QUIP).258,259 This code was also used in this work to fit GAPs. In GAP
the atomic energy of an atom i is calculated by,14

Vi (⃗x)=
M∑

m=1
αmK (⃗x, x⃗m), (2.53)

where M is the number of sparse points in the Gaussian process regression approach,
αk are the fitting coefficients and the vector x⃗ contains the coordinates of the atoms
around the central atom, while x⃗m contains the coordinates of the atoms around the
reference atom. K (⃗x, x⃗m) is the kernel function, which gives a similarity between both
environments. This value lays between 0 for no similarity and 1 for complete agreement.
Following from this, GAP can be explained as approach that takes the atomic environ-
ment of your atom of interest (⃗x) and compares it to all the environments in the training
set (⃗xm). To reduces computational cost, not all environments in the training dataset are
used. Otherwise, the cost of GAP would increase with the size of the training dataset.
Instead, only the M most representative points are used.

The most important part of GAP are the kernels. Different kernels have been used
in the past, most relevant the SOAP and the 2-body kernel. The 2-body kernel is given
by,246

https://github.com/libAtoms/QUIP
https://github.com/libAtoms/QUIP
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K(r i j, rm)= exp

(
−|r i j − rm|2

2Θ2

)
, (2.54)

where Θ is a hyperparameter and rm are commonly M equally distributed distances
on a grid. In the cases of the two-body kernel, the sum over each bond needs to be
considered additionally to the sum over each atom.246 The issue with the pure two-body
descriptor is that it is obviously only a rough approximation. For a proper description of
the system incorporating many-body descriptions is necessary. One example for this, is
the SOAP kernel. The idea of SOAP is to start from a similarity between two atomic
environments given by,14

S(ρ,ρ′)=
∫
ρ(⃗r)ρ′(⃗r)dr⃗, (2.55)

which is the overlap integral over two atomic densities,

ρ(⃗r)=∑
i

exp(−α|⃗r− r⃗ i|2), (2.56)

where each atom has a density distribution of a Gaussian with a width given by α,
which is another hyperparameter. This similarity is not rotationally invariant, yet, and
cannot be used as a kernel therefore. To make a rotationally invariant kernel from it,
we define,14

k(ρ,ρ′)=
∫

|S(ρ, R̂ρ′)|ndR̂, (2.57)

which is an integral over all possible rotations. By normalization, we receive the
SOAP kernel,14

KSOAP(ρ,ρ′)=
(

k(ρ,ρ′)√
k(ρ,ρ)k(ρ′,ρ′)

)ζ
, (2.58)

with another hyperparameter ζ, which can be used to increase the sensitivity of
the SOAP kernel. This integral seems to be computational quite expensive. However,
by expressing the Gaussians as spherical harmonics it can be expressed in a compu-
tationally very efficient way, which results in the dot product of two so called SOAP
vectors, where each of the vectors describes one atomic environment. Although GAPs
are well established in the field, they come with some shortcomings. The first shortcom-
ing of GAP is the speed. Over the years after the development of SOAP several other
approaches have been developed, which provide a better trade-off between speed and
accuracy.249,253 Therefore, switching to other approaches can allow larger simulations
over longer time-scales. The second issue is the issue of completeness. Naively, one
would expect from the derivation of the SOAP vector, that this vector is complete in the
sense that two different environments cannot have the same SOAP vector. However, it
has been shown that SOAP is like several other descriptors not complete.260 However,
there exist complete descriptors, e.g. the ACE261 and the moment tensors,157 which are
described in the next sections.
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Moment tensor potentials

MTPs have been introduced several years after GAP. A good review of MTPs can be
found in Ref. 262, which was also the basis for this summary. In contrast to GAP they do
not use kernels, but instead a linear regression method to approximate the energy,157

Vi(n⃗i)=
∑
α

ξαBα(n⃗i), (2.59)

where ξ are the linear fitting coefficients and Bα are basis functions depending on
the local environment n⃗i of atom i. In case of multicomponent systems current MTP
approaches include additional non-linear components.238,252 The basis functions of MTP
are based on moment tensors given by,262

Mµ,ν(n⃗i)=
∑

j

radial basis︷ ︸︸ ︷
fµ(|r i j, zi, z j)

angular basis︷ ︸︸ ︷
r⃗ i j ⊗ . . .⊗ r⃗ i j︸ ︷︷ ︸

ν times

, (2.60)

where ⊗ is the outer tensor product and the radial basis is expanded in the following
form,262

fµ(|r i j|, zi, z j)=
NQ∑
β

c(β)
µ,zi ,z jQ

(β)(|r i j|), (2.61)

with Q(β)(|r i j|) given by,262

Q(β)(|r i j|)=
{
φ(β)(|r i j|)(Rcut −|r i j|)2 if |r i j| < Rcut

0 if |r i j| ≥ Rcut,
(2.62)

and φ(β)(|r i j|) commonly being Chebyshev polynomials and Rcut being the cutoff
radius. NQ is the number of radial basis functions and is a hyperparameter, which
should be tuned for each system. Depending on the value of µ the moment tensors
are scalars, vectors, matrices or even higher order tensors. Thus, they cannot be used
directly as basis functions Bα. Instead, the basis functions are defined as contractions of
these tensors. To define how many moment tensors are incorporated in a MTP a level of
tensor is defined by,262

levMµ,ν = 2+4µ+ν. (2.63)

When two or more moment tensors are combined by contraction to a basis function,
the level of all tensors add up. Finally, a MTP with level levmax includes all possible
basis functions under the conditions of levBα ≤ levmax. levmax is next to NQ the second
hyperparameter, which determines the accuracy of a MTP. A higher levmax comes along
with higher flexibility and normally a higher accuracy, however, at the same time also
higher computational costs.

Next to the efficient evaluation of energies and forces,253 MTPs have another big
advantage. They have an easy-to-use active learning approach implemented based on
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the D-optimality criterion.239 This active learning allows to calculate an extrapolation
grade γ during MD simulations. If this extrapolation value exceeds 1 the potential is
extrapolating, which means that the current configurations are not covered within the
training dataset. There is a certain range, where the extrapolation is still reliable until
the potential becomes unstable at some point. This allows an easy estimation during
MD simulations, whether the potential needs to be retrained with more data or whether
it is reliable. Moreover, it is an efficient technique to sample more training data. To
define the extrapolation grade, first per structure basis functions bα(cfg) are defined,157

Vtot =
∑

i
Vi(n⃗i)=

∑
i

M∑
α

ξαBα(n⃗i)=
M∑
α

ξα
∑

i
Bα(n⃗i)︸ ︷︷ ︸

bα(cfg)

. (2.64)

Based on these basis functions a M×K matrix can be constructed with the number
of basis functions M and the number of structures in the training database K ,262

B =

b1(cfg1) · · · bm(cfg1)
...

. . .
...

b1(cfgK ) · · · bm(cfgK ).

 (2.65)

This matrix B is modified to be quadratic by retaining only the M configurations
from the training set that yield the highest determinant of the corresponding quadratic
M ×M matrix A. The inverse of A, A−1 can be used to evaluate, whether some other
configuration for example from a MD simulation is extrapolating. In the case of extrapo-
lation, inserting the vector of basis functions of this structure into the matrix A would
increase the determinant. Correspondingly, the extrapolation value γ can be computed
by,262

γ(cfgnew)=max1≤ j≤M |c j| (2.66)

with the components c j given by,262

(c1 . . . cM)= (b1 . . .bM)A−1. (2.67)

While this active learning scheme uses efficient basis functions per structure, re-
cently, also the option of defining an extrapolation grade per atom has been imple-
mented.240 However, this approach was not used in this work. For fitting of MTPs we
used the MLIP code (https://gitlab.com/ashapeev/mlip-2).262

Atomic cluster expansion

In 2019 Drautz introduced the ACE.156 ACE origins from the spin cluster expansion263

and the lattice cluster expansion.264 The approach of the ACE is similar to MTPs,
however, instead of moment tensors, ACE uses spherical harmonics as angular basis
functions. Again the energy is expanded linearly by,156,248

https://gitlab.com/ashapeev/mlip-2
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Vi =
∑
v

cvBiv, (2.68)

where Biv are the basis functions and cv are fitting coefficients. To define the basis
functions similar to SOAP a neighborhood density,156

ρ i (⃗r)=∑
j
δ(⃗r− r⃗ ji), (2.69)

is defined. In contrast to SOAP not Gaussian’s but δ-functions are used. From this
density and an one-particle basis φv the atomic base can be defined by,156

A iv = 〈ρ i|φv〉 =
∑

j
φv(r⃗ i j) with (2.70a)

φv (⃗r)=
p

4πRnl(|⃗r|)Y m
l

(
r⃗
|⃗r|

)
, (2.70b)

where v = (nlm), Rnl are radial basis functions, which can be for example Chebyshev
polynomials or Bessel functions and Y m

l are spherical harmonics.156 To receive permu-
tational invariance and the so called ’A-basis’, products of these atomic basis functions
are required,248

Av =
K∏

t=1
Avt , v= (v1, . . . ,vK ), (2.71)

where (K +1) is the body order of the basis function. This basis is still not rotational
invariant. Similarly, as for GAP (see Equation 2.57) an integral over all possible rotation
is used to obtain the final basis functions,248

Bv =
∫ K∏

t=1
Avt

(
R̂r⃗ i j

)
dR̂ =∑

v′
Cvv′ Av′ , (2.72)

where Cvv′ are the Clebsch-Gordan coupling coefficients.248 One issue of this linear
ACE expansion from Equation 2.68 is that is very slowly converging with the num-
ber of basis functions. Drautz suggested therefore the use of a non-linear version of
ACE.156 The most common version of non-linear ACE is inspired by the Finnis-Sinclair
formalism,237,265

Vi =ϕ(1)
i +

√
ϕ2

i , (2.73)

where ϕ(k)
i is defined as linear expansion as in Equation 2.68,237

ϕ(k)
i =∑

v
c(k)

v Biv. (2.74)

In general, non-linear ACE can have arbitrary forms,

Vi = F(φ(1)
i ,φ(2)

i , . . . ,φ(P)
i ). (2.75)
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Figure 2.5: Structures in the database with their corresponding energies and volumes.
Overview of the energy of all structures in the final SiO database from Chapter 3.

In this work we fitted ACE potentials using the pacemaker code (https://
pacemaker.readthedocs.io).237,249,266

2.9 Density functional theory

Energies and forces for training the MLIPs are provided by DFT data. In the following we
will give a brief overview on how DFT works and give details about our DFT calculations.
The construction of the database is explained in Chapter 3. Nevertheless, we show an
overview of the DFT energies provided for the database in Figure 2.5. The database is
built from more than 10,000 DFT calculations. How these DFT calculations work and
what are possible limitations of the resulting energies and forces is explained in the
following.

The general time-independent Schrödinger equation is given by,164

Ĥψ= Eψ, (2.76)

where ψ is the many-electron wave function and E are the eigenvalues of this wave
function. In case of the Born-Oppenheimer approximation267 the electrons and the
nuclei can be treated separately. This leads to a Hamiltonian given by,164

Ĥ = ħ2

2me

N∑
i=1

∇2
i︸ ︷︷ ︸

kinetic energy

−e2
P∑

I=1

N∑
i=1

ZI

|RI − r i|︸ ︷︷ ︸
electron-core interaction

+ e2

2

N∑
i=1

N∑
j ̸=i

1∣∣r i − r j
∣∣︸ ︷︷ ︸

electron-electron interaction

, (2.77)

https://pacemaker.readthedocs.io
https://pacemaker.readthedocs.io
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where ħ is the reduced Planck constant, me is the electron mass, e is the elementary
charge, RI are the coordinates of the nuclei and r i are the electron coordinates. The
basis of DFT are the two Hohenberg-Kohn-theorems:268

• First Theorem: “For any system of interacting particles in an external potential
Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by the
ground state particle density n0(r).” (p.122, Ref. 163)

• Second Theorem “A universal functional for the energy E[n] in terms of the density
n(r) can be defined, valid for any external potential Vext(r). For any particular
Vext(r), the exact ground state energy of the system is the global minimum value
of this functional, and the density n(r) that minimizes the functional is the exact
ground state density n0(r).” (p.122, Ref. 163)

Unfortunately, this universal functional of the electron density is unknown. To get a
proper approximation of this functional the energy contributions from Equation 2.77
have been rewritten by Kohn-Sham in the form of this functional,164,269

EKS[n]= T[n]+
∫

n(⃗r)Vext (⃗r)dr⃗+ 1
2

∫ ∫
n(⃗r)n(⃗r′)
|⃗r− r⃗′| dr⃗dr⃗′+EXC[n], (2.78)

where T[n] is the kinetic energy of a system of non-interacting electrons and EXC
is the exchange-correlation energy. The kinetic energy of the non-interacting electron
system is given by,164

T[n]=− ħ2

me

N/2∑
i=1

〈φi|∇2|φi〉, (2.79)

where φi are orbitals of non-interacting particles, which add up to the electron
density by,164

n(⃗r)= 2
N/2∑

i
|φi (⃗r)|2. (2.80)

Of course, this kinetic energy is only an approximation since the true kinetic energy
would be one of interacting particles. However, the missing correlation terms should be
caught by the exchange-correlation functional. There are different models for approxi-
mating the exchange-correlation energy. The simplest case is the LDA, which is based
on a homogenous electron gas. In this approximation it is assumed that the exchange-
correlation energy just depends on the local electron density. The exchange part of the
functional can be calculated exactly. Moreover, for the correlation part accurate fits to
quantum Monte Carlo results are available.164,270,271 In addition to the LDA functional,
there are also GGA functionals. These include next to the density, also gradient terms
of the electron density. Most notably, the PBE functional is a GGA functional.272 Mod-
ified version of this functional have been published, e.g. PBEsol, which provides an
improved description of lattice parameters compare to PBE.273 By employing higher
order derivatives or using the kinetic energy density meta-GGAs include additional
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semi-local information.164 A very successfully and only recently published meta-GGA
is the strongly constrained and appropriately normed (SCAN) exchange-correlation
functional.274 This functional satisfies the 17 known constraints that a meta-GGA can
fulfill and has shown to be a significant improved in the description of formation energies
compared to PBE.275

In our calculations, we used the Vienna Ab initio simulation package (VASP)276,277

with the projector augmented-wave method,278,279 an energy cutoff of 900 eV and a
k-spacing of 0.23 Å−1. Moreover, we used the SCAN exchange-correlation functional274

for all calculations.

2.10 Workflows

In this work, we use a comprehensive amount of data analysis and data processing
scripts, which have been partially mentioned already. The most common packages used
in these workflows are the ase280, numpy,281 scipy282 and matplotlib package.283

Moreover, in several cases we used the pymatgen284 package and also the ovito194

python interface was extensively used. Visualization was in general performed using
ovito.

2.11 Research data

Research data created during this work was published in the zenodo285,286 and
tudatalib287 repositories.



3Training data generation and
potential fitting

This chapter is based on the following two publications:

Erhard, L.C., Rohrer, J., Albe, K., Deringer, V. A machine-learned interatomic potential
for silica and its relation to empirical models. npj Computational Materials 8, 90 (2022).
https://doi.org/10.1038/s41524-022-00768-w,137

and

Erhard, L.C., Rohrer, J., Albe, K., Deringer, V. Modelling atomic and nanoscale structure
in the silicon–oxygen system through active machine learning. Nature Communications
15, 1927 (2024). https://doi.org/10.1038/s41467-024-45840-9.138

In both publications all calculations have been performed by myself. Parts of the work for
Ref. 137 have been performed during the time of my master thesis.

The training database is the core element of all machine learning interatomic potentials
(MLIP). Everything the MLIP can do is based on this training database. At the same time,
the training database limits the capabilities of the MLIP. Any part of configurational
space that is not covered by the training database may not be reliably reproduced by
the MLIP. During the time of this dissertation, we published two MLIPs for silica. First,
we presented a Gaussian approximation potential (GAP) that was made only for pure
bulk SiO2. Later, we switched to moment tensor potentials (MTP) and atomic cluster
expansion (ACE) potentials for performance reasons. The second database we released
was an extension of the first, including high-pressure silica structures, silica surfaces,
and silicon-silica interfaces. In the following, we will describe the database generation
and the potential fitting in detail for both cases.

3.1 Training database generation for bulk SiO2

Figure 3.1 illustrates the process of generating the training database. We start with
some initial structures, in particular crystalline structures, dimers, amorphous and
liquid structures taken from melt–quench simulations using a classical interatomic

47
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potential.109 These structures are evaluated by density functional theory (DFT) single-
point calculations and then used to fit an initial GAP. This GAP is used in melt-quench
simulations to generate new amorphous and liquid structures which are added to the
training database. For these structures again DFT forces and energies are evaluated
and the GAP is refitted. This process is repeated iteratively and referred to as ’batch’
learning since all these structures are added to the database without further filtering.

Constructing a database comes, however, with some challenges. One challenge is
choosing an appropriate exchange-correlation functional. Initially, we used the PBEsol
functional, but later we recalculated the whole database with the strongly constrained
and appropriately normed (SCAN) exchange-correlation functional. The SCAN func-
tional provides significantly better agreement with the experimental standard en-
thalpies of formation than the PBEsol and other functionals, such as the Perdew-
Burke-Ernzerhof (PBE) functional and the local density approximation (LDA) functional.
However, it is also computationally more demanding.

Another problem is the choice of structures to be added to the database. In general,
unfavorable structures must be added to the training database. This prevents the
potential from later entering this region of configurational space. However, if there
are structures with very high energies and forces they can also make the fit of the
low-energy parts much worse. In the fitting process the algorithm tries to accurately
reproduce the forces and energies of these high energy structures. Since the algorithm
has limited flexibility, fitting high forces/energies will degrade the description of the
much more important low energy state. Of course, in some limits these cases can be
handled by proper weighting and regularization during the fitting process. These weight
factors are later given for ACE and GAP. Nevertheless, we have excluded all structures
with force components above 40 eV/Å during our training process.

3.1.1 Crystalline structures

The crystalline structures added to the training database are: α-quartz,208 co-
esite,214 stishovite,215 chabazite,288 moganite,210 α-cristobalite,209 low temperature
tridymite,289 β-cristobalite,290 β-quartz,291 β-tridymite,21 tridymite in the C2221

292

and in the P212121
293 modification. Each of these structures has been isotropically

deformed 30 times with uniformly distributed strains between ±5 % and 70 times with
randomly distributed strains of ±2.5% on the diagonal components and ±5% on the
angular components. For the low-temperature stable structures, the latter random
strain procedure was used to generate another 100 structures per structure type. In all
these structures, the atoms were randomly displaced using the ase.rattle()280 func-
tion, which displaces the atoms from their original positions. We also created training
structures for silicon in the diamond structure using the same procedure. The main
inspiration here was not to be able to describe silicon accurately, but to improve the
description of silicon-silicon repulsion and many-body interactions.
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Figure 3.1: Iterative training database extension. An initial database was generated from
rattled and deformed crystal structures, dimers and snapshots from melt-quench molecular
dynamics (MD) simulations with a classical interatomic potential (blue). These reference config-
urations are then evaluated using single-point DFT calculations followed by a GAP fit to the
database (orange). The GAP potential is then used to again perform melt–quench simulations
(green). From these simulations shown on the left, selected snapshots (A, B and C) were added to
the training database. After being added, they were evaluated by DFT single-point calculations
and the potential was refitted. This procedure is repeated, iteratively. The bottom left shows
how the quality of the amorphous structure models from the MD increases over the iterations.
The melt-quench simulations were performed with different cooling rates and different input
structures (see text for details). Reproduced from Ref. 137. Original figure published under the
CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

3.1.2 Dimers and clusters

We have added Si–Si, O–O and Si–O dimers to the database to improve the description
of the repulsive behavior at small distances. We included dimers with bond lengths from
5 Å to the lowest distance, where the force is below 40 eV/Å with steps of 0.05 Å. Later,
during the iterative melt-quench simulations, we observed clustering of oxygen with up
to 5 atoms within the simulations. To avoid this behavior, we added scaled versions of
these clusters to the database. The scaling was necessary to avoid too large forces in the
training database. We assume that we did not observe similar behavior for silicon, since
silicon diamond structures were part of the database.

https://creativecommons.org/licenses/by/4.0/
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3.1.3 Melt-quench simulations and iterative fitting

The general melt-quench procedure is shown in Figure 3.1. Since the detailed protocol
changes over several iterations, we show the differences between the iterations in Ta-
ble 3.1. In each iteration three structures were extracted from the MD trajectories. These
correspond to the snapshots taken at points A, B and C (see Figure 3.1). The general
melt-quench protocol is also outlined in Section 2.2. However, it has been modified in
several ways. Differences to the general protocol are that the liquid equilibration time is
reduced to 10 ps. Also, in several cases the liquid, quench and room temperature parts
are not simulated in an NVT ensemble, but the NPT ensemble. Finally, the temperature
of the liquid equilibration part of the MD was adjusted as a function of pressure (NPT)
or density (NVT). For a pressure of 0 GPa (NPT) or a density of 2 g/cm3 (NVT) a tem-
perature of 3000 K was used, while for 10 GPa or a density of 3 g/cm3 a temperature of
4000 K was used. In between, the temperature was scaled linearly with pressure (NPT)
or density (NVT).

The first batch of amorphous and liquid structures were created using the inter-
atomic potential by Broughton et al.109 Here, we used random input structures and
quench rates between 1010 and 1012 K/s. The first three iterations with GAP started
from β-cristobalite input structures. We used this structure because the potential did
not have too many reference data points for liquid and amorphous structures at this
point. However, it was at least familiar with the crystalline β-cristobalite structure. In
addition, the NVT ensemble simplified the training by removing the additional degree
of freedom of the box change leading to more stable simulations. After these three
iterations, we added oxygen clusters to the training set (see also Subsection 3.1.2). These
oxygen clusters prevented the occurrence of unphysical clustered oxygen within the
melt-quench simulations.

We then performed additional melt-quench simulations, but with random input
structures. To make the dataset more consistent, we removed the melt-quench structures
generated in the first iteration. Moreover, the entire database was recalculated using the
SCAN exchange-correlation functional. To account for structural differences between
PBEsol and SCAN, we performed another melt-quench iteration. To improve the quality
of the models we reduced the quench rate for this final iteration.

3.2 Fitting of the Gaussian approximation potential

The parameters used to fit the GAP are given in Table 3.2. The δ value determines the
weight of the corresponding parts of the potential, e.g. the 2-body interactions are the
most important and have a weight 10 times higher than the many-body interactions.
The Θ value determines the width of the Gaussians in the 2-body part of the potential.
Details on the many-body parameters can be found in Section 2.8.2. In total, we use 4060
sparse points for the whole database. However, they were not automatically distributed
across the database, but we assigned a certain number of sparse points to each type of
configuration. Liquid structures are the structures taken from point A in Figure 3.1,
mid-quench structures from point B and liquid structures from point C. For each of these
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Table 3.1: Melt-quench iterations. Iterations during the iterative fitting with details regarding
the melt-quench simulations. Taken from Ref. 137.

Iteration Potential Start Randomization Ensemble Structures Quench rate (Ks−1)
1 Broughton Random True NVT/NPT 300 1010–1012

2 GAP β-cristobalite False NVT 150 1015

3 GAP β-cristobalite False NVT 129 1015

4 GAP β-cristobalite False NVT 300 1015

Add oxygen clusters
5 GAP Random True NVT 300 1015

Remove structures from first iteration
Recalculate database with SCAN

6 GAP Random True NVT 60 1013

structure types in the database, we assign 1000 sparse points. In addition, we assign
1000 sparse points to the crystalline structures and 60 sparse points to the dimers and
clusters. This generally results in a large weight on the amorphous and liquid structures,
which also have a large chemical diversity.

An additional parameter in the GAP fitting is the regularization. The regularization
allows certain deviations from the energies and forces in the fit without adding a large
penalty to the loss function. This accounts for the uncertainty in the DFT forces and
energies and enables a smoother fit. In addition, the regularization allows for some
weighting of different structure, with tighter regularization parameters implying higher
weights. For crystalline structures we used values of 0.005 eV/atom for the energy and
0.05 eV/Å for the forces. For the other structures we used values of 0.01 eV/atom and 0.3
eV/Å. This results in a more accurate reproduction of the crystalline phases. For more
details on the general regularization we refer to Ref. 246.

3.3 Training database for the Si–O system

GAP is relatively slow compared to other MLIP approaches.253 Therefore, we tried to use
MTPs, which promise much faster evaluation times. Moreover, they have an easy-to-use
active learning technique implemented (see Section 2.8.2). While we switched to this
potential type, we also started to significantly extend our database. This process is
illustrated in Figure 3.2a. Here, we focused on high-pressure silica, silica surfaces and
mixed structures of silicon and silica. For a first extension we used small-scale MD
simulations with active learning. Later, we used large-scale simulations in combination
with amorphous matrix embedding, a new method to extract small-scale periodic cells
from large-scale simulations. The training of the high-pressure silica, surfaces, and
interfaces was performed in separate tracks, which did not exchange data between each
other. Finally, all data were merged to fit an ACE potential. It should be noted, that
we added some additional data also for other configurations and defects, like vacancies.
Details are given below. An overview of the entire database is given in Table 3.4.
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Table 3.2: GAP parameters. GAP 2-body and smooth overlap of atomic positions (SOAP) fitting
parameters. A detailed description of individual parameters can be found in Section 2.8.2. Taken
from Ref. 137.

2-body SOAP
O–O Si–Si Si–O

δ (eV) 4.0 4.0 4.0 0.4
Θ 1.25 2.0 2.0
rcut (Å) 5.0 5.0 5.0 5.0
r∆ (Å) 1.0
σat (Å) 0.5
nmax 12
lmax 4
ζ 4
Sparsification Uniform CUR
Nsparse(amorphous) 1000
Nsparse(mid-quench) 1000
Nsparse(liquid) 1000
Nsparse(crystalline) 1000
Nsparse(cluster) 60
Nsparse(total) 15 15 15 4060

3.3.1 Manually prepared data

Crystalline silica and silicon

In addition to the crystalline unit cells added in Subsection 3.1.1, we have also added
supercells in this part. The scheme of deformation and displacement of atoms is the
same as in Subsection 3.1.1. We have added supercells of α-quartz, β-quartz, moganite,
coesite, stishovite, chabazite, α-cristobalite, β-cristobalite, low temperature tridymite,
β-tridymite, and tridymite in the C2221 and P212121 modifications. In addition, we
have added hexagonal close-packed (HCP) and face-centered cubic (FCC) structures
of silicon under high compression to improve the reliability of the potential at short
distances.

High-pressure silica

We used the same procedure as above for unit cells and 2×2×2 supercells of pyrite and
seifertite.

Silica surfaces

The surfaces added to our database are given in Table 3.3. 30 structural models of
each of these surface orientations were added to the database. We used different rattle
amplitudes for these structures, 10 times 0.01 Å, 10 times 0.05 Å and 10 times 0.1 Å.
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Figure 3.2: Extending the database for surfaces, high-pressure structures and inter-
faces (a) Shows the protocol we used to extend our database. We started with the GAP database
(see Section 3.1) and merged it with the recalculated GAP-18 database for silicon.294 From there,
our training process was divided into three tracks. The first track considered high–pressure
(“High-p”) silica, the second track considered silica surfaces and the third track considered mixed
Si–Ox systems of varying composition. In the first step (gray), manually generated high-pressure
crystal structures and silica surfaces are added to their respective tracks. In the second step
(orange), small-scale active learning is performed. This includes MD simulations of the corre-
sponding compositions and environments, using an uncertainty indicator in each MD step to find
unknown configurations (see Section 2.8.2). The third step (red) follows a similar approach to
the second step. However, this time we perform large-cell MD simulations instead of small-cell
MD simulations with cell sizes feasible for DFT calculations. From these large-scale simulations
we extract small-scale cells using the approach shown in (b). We define an uncertainty for each
atom (indicated by the red color bar) and then extract a small-cell box surrounding an atom with
an uncertainty above a threshold. This extracted fragment has very unfavorable boundaries.
However, by keeping the immediate environment of the atom of interest fixed and melting
everything else, these boundaries can be energetically drastically improved. Finally, we obtain a
structure with an unchanged local environment around the atom of interest embedded in an
amorphous matrix. Reproduced from Ref. 138. Original figure published under the CC-BY 4.0
license (https://creativecommons.org/licenses/by/4.0/).

10 further structural models have been created by modifying surface terminations and
rattling with 0.01 Å average displacement. Finally, the amorphous surface models were
created using amorphous bulk structures generated by melt-quench simulations. These
models were cut to create a surface.

https://creativecommons.org/licenses/by/4.0/
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Table 3.3: Surface structures with various orientations. Surface orientations of structures,
which are included in the database. Taken from Ref. 138.

Polymorph Surfaces
α-quartz (001), (110), (100), (210)
α-cristobalite (001), (100), (110)
low temperature tridymite (100), (001)
β-tridymite (001), (110), (100), (210)
β-cristobalite (100), (110), (111)
moganite (100), (010), (001)

Silica vacancies

Vacancies are easily generated by deleting atoms from α-quartz and amorphous silica
structures. To keep charge neutrality, we only removed a stoichiometric number of atoms.
This means that always one silicon cation and two oxygen anions have been removed.

Crystalline-amorphous interfaces between Si-SiO2

We connected two crystalline bulk supercells of silicon and silica within one cell. In this
cell we melted one side, while keeping the other side fixed. Interdiffusion was prevented
by a repulsive wall between the silicon and the silica side.

Clusters

We performed iterative MD simulations similar to Subsection 3.1.3, starting with [SiO]2
clusters and performing MD simulations with increasing temperature. In the second
iteration, larger [SiO]3 clusters were used, and one more dimer was added in each
iteration. During the MD simulations the temperature was increased from 100 to
2000 K. The process was proceeded up to a system size of [SiO]32 and in each iteration
we performed five MD simulations, from where we extracted five snapshots.

3.3.2 Small-scale active learning

An extrapolation threshold of 1.5 and a stopping threshold of 3.0 were used in our
simulations (see Section 2.8.2). We started with a series of parallel MD simulations. In
each of these MD simulations, we evaluated the extrapolation grade in each time step.
If the extrapolation grade exceeded the extrapolation threshold, this configuration was
written to a database. At the point where the simulation reached the stopping threshold,
the simulation was stopped. All extrapolated files are collected and subjected to a maxvol
selection along with the current database. The most extrapolative files are recalculated
with DFT and added to the database. Then the potential is reapplied, and the whole
procedure starts again from the beginning. At some point, all parallel simulations ran
to the end without printing any unknown structures. Then the active learning cycle is
converged, and the database for that part of configurational space is completed.
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Quenching of SiO2 and SiOx

For melt-quench simulations we used the protocol explained in Section 2.2. Input of
these simulations have been different crystalline unit and supercells in the case of SiO2.
In the case of SiOx we used stacked cells of silica and silicon polymorphs, where the
composition could be adjusted by the combination of these cells.

High-pressure silica

Similarly, as before we used the protocol from Section 2.2 and varied the pressure
between 0-200 GPa. Moreover, after convergences of these calculations, we performed
compression simulations at random temperatures between 0 and 1000 K with a starting
pressure of 0 GPa going to 200 GPa. Here, we used amorphous structures as input.

SiO2 surfaces

The manually created surface structures from Subsection 3.3.1 are used as input for
MD simulations. These simulations start from a temperature of 50 K and heat up to
3000 K. Afterwards they are cooled to 50 K again.

3.3.3 Large-scale active learning and amorphous matrix embedding

Amorphous matrix embedding

The idea of amorphous matrix embedding is shown in Figure 3.2b. We start with a
large-scale simulation for which we need an atom specific uncertainty. Using MTPs,
where this atom-specific uncertainty was not initially implemented, we used a committee
error, which is the deviation between several MTPs trained on the same training data.
The per-atom uncertainty is then given by

uα =
√ ∑

i∈x,y,z
σ( f (1..N)

α,i )2, (3.1)

where σ is the standard deviation, f 1...N
α,i is the i-th component of the force, which is

acting on atom α and is calculated by the N committee members.
Based on this, we go one step further in Figure 3.2b. We can now identify atoms

with a large uncertainty (typically above 1-2 eV/Å). These atoms of interest and their
environments are then cut and added into smaller boxes that are DFT feasible. The size
of these boxes is 13 Å plus a margin of 1 Å to prevent atoms from getting too close at the
boundary. Now we keep the atom inside the cutoff radius of our interatomic potential (5
Å) fixed and anneal all atoms outside the cutoff radius up to a temperature of 2000 K to
6000 K. This allows significant rearrangement of atoms at the boundary while keeping
the atoms inside the cutoff fixed and thus the immediate environment of the atom of
interest identical. The final structure has boundaries with much less badly-coordinated
atoms and can be used for DFT calculations.
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In order to improve the usability of the algorithm, we added several other constraints
to the procedure. Similar to the small-scale active learning approach, where there is an
upper threshold at which the simulation stops, we also introduce an upper threshold
of 5 eV/Å. This prevents too many unfavorable and too unfavorable structures from
being added to the database. Furthermore, since local environments can remain very
similar over several time steps, we introduce an additional criterion based on the SOAP
vector calculated by DScribe.295 We only added structures to the database that have
similarities (see Equation 2.58) below 0.9-0.95 compared to the other added structures.

In the case of surfaces, the extraction of a cell is not as trivial as for bulk structures.
First, we need to define the surface normal vector of the surface at the atom of interest i,

ni ≈
∑

j
(xi −x j) if distance(i, j)< cutoff, (3.2)

where the position of atom j is given by x j. The extracted atoms are rotated so
that the normal vector is arranged in z-direction. To mimic the surface, the vacuum
on both sides of the cell was extended by 5 Å in z-direction. If structures were not
periodically connected in the x- and y-direction, additional vacuum layers were added in
these directions.

Quenching of SiO2 and SiOx

The same protocols with larger supercells as in the case of the small-scale active learning
have been used.

Silica surfaces

We used the standard quenching protocol from Section 2.2, however, the part under
constant external pressure was replaced by a systematic straining procedure to larger
volumes. This straining to larger volumes causes the generation of porous and therefore
amorphous surfaces in the structures.

Vacancies

Structures of amorphous silica and quartz, both containing around 65,000 atoms, are
heated from room temperature to 3000 K and back to room temperature. Each of these
structures contained 150 randomly distributed vacancies, e.g. 50 silicon vacancies and
100 oxygen vacancies.

High-pressure silica

As for the small-scale active learning we compressed structures up to 200 GPa at random
temperatures between 0 and 1000 K. Structures sizes of 65,000 atoms have been used.
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Clusters

10,000 SiO molecules have been placed within a box. The box size was chosen that it
corresponds to a density of 0.011 g/cm3. Afterwards the structure was compressed at a
temperature of 1,400 K up to a density of ≈ 2 g/cm3.

Table 3.4: Overview over the final database composition with detailed breakdown in
different structure types. The SiO2-GAP part are the structures created within Section 3.1.
The Si-GAP structures are taken from Ref. 294. Structures, which have been collected by
active learning are indicated and the corresponding active learning approach is given (see also
discussion in the text). The final fitting weights for the ACE potential is are also shown (see also
Section 3.4). Taken from Ref. 138.

Configuration type Composition Reference Active learning Structures Atoms Weights
crystalline SiO2 SiO2 GAP + this work — 2,620 281,820 100
amorphous SiO2 SiO2 GAP — 313 60,096 1
half-quenched SiO2 SiO2 GAP — 311 59,712 1
liquid SiO2 SiO2 GAP — 313 60,096 1
crystalline (main) Si Si GAP — 1,257 38,680 100
amorphous Si Si GAP — 159 29,632 1
liquid Si Si GAP — 76 5,312 1
surfaces Si Si GAP — 214 22,066 1
defects Si Si GAP — 423 74,548 1
various (e.g. high energy crystal) Si Si GAP + this work — 505 2,556 1
quenched SiO2 this work small-scale 385 19,008 1
quenched SiO2 this work large-scale 417 53,208 1
vacancies SiO2 this work — 278 56,520 1
vacancies SiO2 this work large-scale 780 121,836 1
high-pressure crystals SiO2 this work — 400 19,080 1
high-pressure amorphous SiO2 this work small-scale 166 31,872 1
high-pressure amorphous SiO2 this work large-scale 407 120,246 1
surfaces SiO2 this work — 603 48,477 1
surfaces SiO2 this work small-scale 28 1872 1
surfaces SiO2 this work large-scale 167 8466 1
crystalline-amorphous interfaces Si+SiO2 this work — 457 31036 1
quenched Si+SiO2 this work small-scale 457 31036 1
quenched Si+SiO2 this work large-scale 430 71821 1
clusters (dimers, larger SiO clusters) various SiO2 GAP + this work —/large-scale 611 24,900 1

3.4 Fitting of the ACE potential

Fitting a MTP to the final structurally rich database was difficult due to the insufficient
accuracy achieved by this approach (see Table 3.4). However, we found that the ACE
formalism allows for more flexibility than the MTPs. By introducing systematic nonlin-
earities, we can dramatically increase the ability to fit such a complex database. While
the linear ACE is given by Equation 2.74, the Finnis-Sinclair ACE is given by,

Vi =φ(1)
i +

√
φ(2)

i . (3.3)

However, we have extended this nonlinearity to the following form,

Vi =φ(1)
i +

√
φ(2)

i +∑
j

(
φ

( j)
i

) f j
, (3.4)
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Table 3.5: Comparison of the GAP model with various ACE models. Energy (∆E) and force
(∆F) root mean square error (RMSE) are given in the columns for the GAP model (see Section 3.2)
and three different ACE models (see text for details). The units are given in meV/atom and
eV/Å for energies and forces. Amorphous structures are indicated by ‘a’ and the Carré, Horbach,
Ispas, Kob (CHIK),108 GAP and ACE structures are generated by melt-quench MD with their
corresponding potentials. Taken from Ref. 138.

SiO2-GAP Si–O ACE models
Linear F–S Complex
(N = 1) (N = 2) (N = 8)

∆E ∆F ∆E ∆F ∆E ∆F ∆E ∆F
SiO2 crystals 1.0 0.08 0.8 0.07 1.1 0.06 0.9 0.05
a-SiO2 (CHIK-MD) 3.7 0.19 4.1 0.27 5.1 0.27 2.2 0.19
a-SiO2 (GAP-MD) 1.1 0.10 10.3 0.13 9.8 0.12 4.6 0.10
a-SiO2 (ACE-MD) 4.0 0.17 8.0 0.28 7.4 0.26 3.2 0.18
a-SiO2 surfaces 14.9 0.18 21.4 0.21 18.0 0.18 4.7 0.16
a-Sia > 1,600 > 3.2 115.8 0.38 53.9 0.34 51.5 0.26
a-SiOx

a > 4,200 > 3.5 37.8 0.71 35.0 0.64 38.0 0.43
high-p a-SiO2

a 122.7 0.87 15.1 0.48 5.6 0.36 4.6 0.24
aStructural models generated using ACE-MD.

where f j ∈ {1/8,1/4,3/8,3/4,7/8,2}. Thus, in contrast to one embedding in the case of
the linear ACE and two embeddings in the case of the Finnis-Sinclair type ACE, we used
a total of eight embeddings. We refer to this ACE as the ’complex’ ACE. An overview
of the errors for a number of test sets is shown in Table 3.5. We used a total of 600
basis functions for each of the embeddings. In general, only the complex ACE achieves
the same errors as the GAP, for cases where the GAP has training data covering that
configurational space. However, the linear and Finnis-Sinclair ACE often perform worse
than the complex ACE and GAP. Only for parts of configurational space that were not
part of the training database do all ACE potentials outperform the GAP. Interestingly,
there is one exception, since the GAP was not trained on surfaces, but still outperforms
the linear and Finnis-Sinclair ACE.

Moreover, the similar or higher accuracy of the complex ACE comes with an addi-
tional advantage in execution time. As shown in Table 3.6, it is only slightly slower than
the linear and Finnis-Sinclair ACE. At the same time, it is more than 100 times faster
than the GAP. This is particularly remarkable since it can be used in an even larger
part of configurational space.

To achieve high accuracy for the important crystalline structures, we set the weight
for these structures higher compared to the others (see Table 3.4).

3.5 Summary

We developed a database for a GAP potential for amorphous and crystalline silica.
Building on this we extended the database by active learning to high-pressure silica,
silica surfaces, and interfaces between silicon and silica. For active learning, we first
used standard small-cell approaches and later introduced amorphous matrix embedding,
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Table 3.6: Speed comparison of ACE and GAP. The timings obtained here, have been
determined for cells of 192 atoms over 100 time steps.

GAP ACE
(Ref. 137) (This work)

Linear F–S Complex
(N = 1) (N = 2) (N = 8)

Timing (µs/(time step · atom)) 11,037 61 62 70
Speed-up to GAP 1 181 178 158

which allows small cells to be extracted from large-scale simulations. This approach
was used in large-scale active learning simulations. Finally, we fitted an ’complex’ ACE
potential, which is able to describe the complex structure space of the database, while
restoring still the same accuracy as the GAP for crystalline and amorphous silica.
Moreover, the newly developed ACE potential is more than 100 times faster than the
former GAP and should therefore be preferred. All structure databases labeled with DFT
energies and forces and the corresponding potential files can be found in the zenodo
repository.285,286





4Thermodynamics and
structural aspects of silica

This chapter is based on the following two publications:

Erhard, L.C., Rohrer, J., Albe, K., Deringer, V. A machine-learned interatomic potential
for silica and its relation to empirical models. npj Computational Materials 8, 90 (2022).
https://doi.org/10.1038/s41524-022-00768-w,137

and

Erhard, L.C., Rohrer, J., Albe, K., Deringer, V. Modelling atomic and nanoscale structure
in the silicon–oxygen system through active machine learning. Nature Communications
15, 1927 (2024). https://doi.org/10.1038/s41467-024-45840-9.138

In both publications all calculations have been performed by myself. Parts of the work for
Ref. 137 has been performed during the time of my master thesis.

The goal of this chapter is to analyze whether machine learning interatomic potentials
(MLIP) are able to capture the thermodynamics of the polymorphs of crystalline silica
and the energetics and structural aspects of amorphous silica. We will start with energy-
volume curves, which allow to compare the stability of the phases. From there we will
have a look at the phonon density of states, that allows to calculate the vibrational free
energies. This finally leads to a phase diagram calculated using the quasi-harmonic
approximation with frozen phonons (see also Subsection 2.4.1). Here, we also make a
comparison with already existing classical interatomic potentials. To include anharmonic
vibrations, we perform further high temperature phase diagram calculations using
thermodynamic integration (see also Subsection 2.4.2). Note that in this chapter we
focus on the phase stability below 10 GPa. For very high pressure calculations, please
refer to Chapter 5. Finally, we have looked into the energetics of amorphous structures
and their structure factor for structure models generated by different interatomic
potentials.

Most of the simulations in this part were performed with the Gaussian approxima-
tion potential (GAP). For the thermodynamic integration we used the atomic cluster
expansion (ACE) potential for performance reasons.
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4.1 Elastic properties and energy–volume curves of silica
polymorphs

Accurate reproduction of the elastic properties of a material is an essential feature
of interatomic potentials. In Figure 4.1a we show energy–volume curves of several
silica polymorphs calculated with DFT using the SCAN exchange-correlation functional.
Moreover, we show the GAP result for comparison. The GAP agrees very well with the
DFT results. This is indeed a first indication that MLIPs are able to reproduce the
structural richness and corresponding phase transitions between different silica phases.

Corresponding to the good agreement between the DFT and GAP energy–volume
curves, the bulk moduli and equilibrium volumes are also reproduced well. These are
shown in Table 4.1. Besides the fit with the DFT, the agreement with the experiment
is even more crucial. However, the abilities of the MLIP are limited here because it
is fitted to DFT data. Therefore, the choice of the exchange-correlation functional is
essential, and the match between the results of the exchange-correlation functional and
the experiment is of great importance. Indeed, SCAN seems to be a good choice with

Figure 4.1: Energy–volume curves and elastic constants. (a) Strongly constrained and
appropriately normed (SCAN)-density functional theory (DFT) (colored symbols) and GAP (solid
lines) energy–volume curves for different silica polymorphs. In the case of low temperature
tridymite, only the GAP stability region is shown, which is reduced compared to the DFT stability
region. (b) Errors (root mean square error (RMSE) and mean absolute percentage error (MAPE))
of the predicted elastic constants of several interatomic potentials compared to experimental
values.296–299 Two potentials, the Vashishta and Broughton potentials, predict that the stishovite
structure is unstable, and therefore no elastic constants could be determined. The color coding
from yellow to red indicates the size of the error. Very large percentage errors (>100%) are
caused by large deviations from small absolute values. Reproduced from Ref. 137. Original figure
published under the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
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Table 4.1: Bulk moduli and ground–state volumes. The ground–state (T=0 K) volumes (V ) of
the corresponding polymorphs and additionally the bulk moduli (K) are shown for the GAP and
DFT.a If there was experimental data available this is shown additionally. Taken from Ref. 137.

K (GPa) V (Å3/SiO2)
Expt. SCAN GAP Expt. SCAN GAP

α-quartz 37.7300 39.7 36.6 37.8301 37.4 37.2
coesite 94.0302 106.8 106.4 33.9214 34.1 34.1
stishovite 295.0302 300.1 307.5 22.9215 23.3 23.3
chabazite — 42.3 50.8 64.9288 65.4 65.7
α-cristobalite 16.4297 15.5 13.5 42.8209 42.3 42.5
moganite 32.2303 26.8 25.2 38.1210 37.4 37.5
low-tridymite — 19.0 18.7 44.0289 43.8 44.0
aValues have been determined using a Birch–Murnaghan fit for hydrostatically deformed
cells (see Section 2.4).

respect to the bulk moduli, as can be seen in Table 4.1. Moreover, the ground–state
volumes are in even better agreement with the experiment than the bulk moduli.

Even more challenging is the reproduction of experimental elastic constants. As
with the bulk moduli, the MLIP is limited by the training data, and since the DFT
elastic constants are rarely in perfect agreement with the corresponding experimental
values, the MLIP faces additional challenges. Figure 4.1b shows the errors of several
interatomic potentials in calculating the elastic constants for several silica polymorphs.
It can be seen that the Vashishta and the Munetoh potentials, both, do not perform well
here. The Broughton potential shows reasonably well predictions for α-quartz, coesite,
and α-cristobalite, but fails to describe stishovite as a stable phase. Finally, the Carré,
Horbach, Ispas, Kob (CHIK) and van Beest, Kramer, van Santen (BKS) potentials do
fairly well for all phases. However, the GAP performs best for almost all phase. In
this sense it is surprising since classical interatomic potentials (CIP) are often fitted
to elastic constants. Because GAP is only fitted to DFT data, it supports the quality of
the underlying SCAN data. Even for structures with comparatively high RMSEs, GAP
provides a reasonably accurate description, since the corresponding MAPEs are low.
This is due to the high absolute values of the elastic constants of stishovite and supports
the combination of MAPE and RMSE in the analysis of such properties.

4.2 Phonon spectrum of α-quartz

Accurate forces are critical for reproducing vibrational properties such as phonon spectra
and temperature-dependent phase diagrams. Figure 4.2 shows the phonon dispersion of
α-quartz calculated using the GAP and the Broughton, Munetoh, Vashishta, CHIK and
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BKS potentials. All potentials are in good qualitative agreement with the experiment.
However, for the Broughton and Vashishta potentials it appears that the phonon dis-
persion is scaled by a constant factor. In the case of the Munetoh potential the overall
agreement is good, but at the K point the acoustic modes almost overlap, in contrast to
the experimental measurement. For the BKS potential, the higher modes are shifted to
higher frequencies compared to the experiment. Among the CIPs, the CHIK potential
has the best agreement with experiment. However, the agreement of the GAP is even
better, with only a small deviation in the high frequency phonon branch at the Γ point.

4.2.1 Phase diagrams of silica

Based on the phonon density of states the vibrational entropy can be determined (see
Subsection 2.4.1). Using this thermal vibrational entropy, the temperature dependence
of the phase stabilities can be calculated. These phase stabilities can be used to construct
the phase transition lines in a phase diagram. We used the quasi-harmonic approxima-
tion to obtain an additional pressure dependence of the stability fields. The resulting
phase diagram for a number of structures is shown in Figure 4.3. We have analyzed the
phase stability for α-quartz, coesite and stishovite using the GAP and the Broughton,
Munetoh, Vashishta, CHIK and BKS potentials.

The first observation is that only the GAP and the Munetoh potential are able to
predict the phase stability field of all three polymorphs in qualitative good agreement
with experiment. Also, despite these and the Broughton potential, all other potentials
do not predict α-quartz to be the stable phase at ambient conditions. In the case of
the Vashishta potential, only coesite is stable over the entire stability range. A similar
behavior is shown for the CHIK potential, where stishovite starts to become stable only
at pressure of 8 GPa. For the BKS potential the situation is even worse, since stishovite
is stable over almost the entire pressure range and coesite becomes the stable phase only
at low pressures and high temperatures. In fact, the phase diagram of the BKS potential
has been analyzed in previous studies and shows that coesite and α-quartz become stable
only at negative pressures.148 Compared to the other potentials, the Munetoh potential
performs much better here. Indeed, the coesite–stishovite boundary is well described,
and only the α-quartz–coesite boundary is a bit off. However, the GAP again shows an
excellent quantitative description of the phase transition, which again supports the
quality of the underlying DFT data. We note that other exchange-correlation functionals
such as the local density approximation (LDA) significantly underestimate the transition
pressure.229

One problem with the phase diagram in Figure 4.3 is that the temperature range
shown is limited because the quasi-harmonic approximation is only valid at low temper-
atures. At the same time, it cannot be used to determine the stability of temperature-
stabilizes structures such as β-quartz, β-tridymite, or β-cristobalite. In these structures,
atoms are not placed in minimum energy positions, which leads to imaginary phonon
modes in the harmonic calculations. To overcome these limitations, we used thermody-
namic integration (see Subsection 2.4.2) to calculate a high temperature phase diagram.
This phase diagram is shown in Figure 4.4. Details of the calculations can be found in
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Figure 4.2: Phonon spectra of α-quartz. The Γ→ M → K → Γ phonon dispersion of α-quartz
computed by (a) GAP, (b) the Broughton potential, (c) the Munetoh potential, (d) the Vashishta
potential, (e) the CHIK potential and (f) the BKS potential. The black background lines are
corresponding experimental data.304 Reproduced from Ref. 137. Original figure published under
the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

Subsection 2.4.3. The ACE potential was used for the calculations because calculations
with the GAP would not have been feasible with the desired accuracy. The qualitative
agreement between the ACE prediction and the experiment is impressive. In particular,
the boundaries between α-quartz, β-quartz and coesite are well reproduced. Larger
deviations occur in the stability fields of β-cristobalite and tridymite. Compared to exper-
imental observations, these fields are much larger and the melting point is significantly
overestimated.

https://creativecommons.org/licenses/by/4.0/
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Figure 4.3: Low-temperature phase diagram of silica. Phase diagrams calculated for α-
quartz, coesite and stishovite using the quasi-harmonic approximation. We used the (a) GAP
and the (b) Broughton, (c) Munetoh, (d) Vashishta, (e) CHIK, and (f) BKS potentials. The
experimental transition lines are indicated by the red30 and blue31 lines, respectively. Since the
quasi-harmonic approximation is only valid for lower temperatures, we only show results up
to 1,000 K. Reproduced from Ref. 137. Original figure published under the CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

To study these deviations in detail, we slightly modified the phase diagram. We re-
duced the stability of cristobalite and tridymite by adding a penalty term of 5 meV/atom
to their Gibbs free energy. The resulting phase diagram is shown in Figure 4.5a. It can
be seen that the new phase diagram is already much closer to the experimental phase
diagram than before. This indicates that the SCAN exchange-correlation functional
tends to overestimate the stability of both phases. The error of the MLIP compared to
the DFT is about 1 meV/atom, which is too small to explain these deviations.

We note that the phase diagram is quite error sensitive. Especially in the case of
tridymite and cristobalite small deviations of 0.1 meV/atom can lead to deviations of the
transition temperatures of more than 100 K. The error of the thermodynamic integration
as well as the error of the machine-learning potential fit compared to the DFT data are
higher or similar to this value of 0.1 meV/atom. This indicates a high uncertainty for
this phase transition line. In contrast, the transition lines between quartz, the melt

https://creativecommons.org/licenses/by/4.0/
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Figure 4.4: High temperature phase diagram of silica. (a) Calculated phase diagram from
experimental data of silica taken from literature.17 (b) The phase diagram of silica determined
using thermodynamic integration with the ACE potential. Reproduced from Ref. 138. Original
figure published under the CC-BY 4.0 license (https://creativecommons.org/licenses/by/
4.0/).

and coesite are slightly less sensitive (see Figure 4.5d-f), but still have a not negligible
uncertainty.

4.3 Amorphous silica by melt-quench simulations

In this part, we will go beyond the crystalline phases and have a look at the description
of the amorphous phase. We have generated amorphous structure models with different
interatomic potentials and compared their structure factor with experiment. The general
melt-quench protocol is given in Section 2.2. The resulting X-ray structure factors are
shown in Figure 4.6a and Figure 4.6b. Although all structure factors of the models
reproduce the general form of the experimental structure factor, there are significant
deviations in the details. The Munetoh potential generally gives the worst agreement
with the experimental structure factor. The first sharp diffraction peak (FSDP) is
significantly underestimated, and the second peak is also not well reproduced. The

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Figure 4.5: Phase diagram sensitivity. Modified phase diagrams using energy penalties on
different phases. (a) Phase diagram assuming that cristobalite and tridymite are both less
favorable (red) compared with the unmodified phase diagram (black) and the experimental17

one (blue). (b)-(f) Phase diagrams for different destabilized phases (red) compared to the original
phase diagram. Note the lower energy penalty for cristobalite and tridymite compared to the
other phases. Reproduced from Ref. 138. Original figure published under the CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
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Table 4.2: Excess energies of amorphous silica. Models have been generated by various
interatomic potentials. The excess energy is defined by ∆E = Eamo −Eα-quartz as mean and
standard deviation of five simulations. The amorphous energy Eamo given by single-point
energies (by SCAN, GAP or CHIK) of the quenched and relaxed state using the respective
models. In case of the re-relaxed energies, the models have been additionally relaxed using GAP
or the CHIK potential.

∆E (meV/SiO2)
single-point evaluation re-relaxed

SCAN GAP CHIK GAP CHIK
Munetoh quench 1,334 ± 79 1,314 ± 74 1,376 ± 30 657 ± 25 678 ± 30
Vashishta quench 310 ± 97 302 ± 82 423 ± 32 248 ± 65 315 ± 32
BKS quench 361 ± 19 364 ± 18 385 ± 15 256 ± 16 315 ± 15
CHIK quench 311 ± 20 317 ± 14 321 ± 16 226 ± 12 (321 ± 16)a

GAP quench 235 ± 15 234 ± 16 515 ± 15 (234 ± 16)a 399 ± 15
a Relaxations have been performed using the same potential as before, therefore, the ’single-point’ and ’re-relaxed’
values are identical.

Vashishta potential and the BKS potential both give a significantly better description of
the structure factor than the Munetoh potential. The FSDP as well as the general shape
is better described. Although the height of the FSDP is in much better agreement with
experiment, the position of the peak is slightly shifted to higher q-values. In general,
the CHIK potential gives the best agreement with experiment. The structure factor
is in almost perfect agreement, and the height and position of the FSDP are also in
good agreement. In contrast, the GAP structure factor agrees well with the experiment
for the second peak and higher q values, but underestimates the height of the FSDP
significantly like the Munetoh potential.

Another important feature describing the quality of amorphous models is the defect
density. Figure 4.6c shows the number of coordination defects in the corresponding
structures. While the structure generated by the Munetoh potential has an extremely
high number of wrongly coordinated atoms, the GAP generated structures have almost
no defects. Similarly, the CHIK structures contain only a few wrongly coordinated atoms.
For different types of potentials we also observe different types of defects. The GAP
structures contain mainly wrongly coordinated silicon atoms and the CHIK structures
mainly wrongly coordinated oxygen atoms.

In addition to these structural factors, the energetics are essential in judging the
quality of amorphous structures. DFT, CHIK and GAP single–point energies for small-
scale structures generated by different potentials are shown in Table 4.2. First, we
see that the agreement between DFT and GAP in predicting the energies is excellent
even for the high energy structures. Second, the structures generated by the Munetoh
potential are in general energetically completely off compared to the other structures.
Immediately after the quenching process and the first relaxation, the GAP generated
structures are energetically most favorable. However, after the re-relaxation of the
CHIK-generated structures, within the error bars, they are even slightly more favorable
than the structures directly generated by the GAP.
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Considering the low-defect density, the excellent structure factor and low energy of
the CHIK-generated structures, this opens up a new way to produce realistic amorphous
silica structure models. By combining low quench rate CHIK molecular dynamics (MD)
simulation with subsequent GAP equilibration, a realistic structure with a structure
factor close to the experiment and accurate energetics and bond distances can be
generated. This is shown in Figure 4.6d, where the structure factor of a CHIK-only
melt-quench simulation and a ‘hybrid’ simulation are shown. Both simulations capture
the structure factor of silica quite well. After equilibration of the slow-quenched CHIK
model with the GAP, the FSDP decreases slightly in height, but the minimum between
the first and second peaks is better reproduced. The energy of the resulting models
is shown in Figure 4.6e. Depending on the quench rate of the initial CHIK quench, a
significant gain in energy can be achieved, especially compared to the energy values in
Table 4.2. Moreover, energy values close to experimentally determined values between
77 and 130 meV/SiO2 can be reached.306–308

Although we are now able to generate realistic amorphous structure models for
silica, the result is not completely satisfactory. It is still not clear why the GAP does
not give a structure with a reasonable structure factor in melt-quench simulations,
while more primitive CIPs achieve better results. One possible reason could be the
lack of long-range interactions. CHIK as well as BKS and the Vashishta potential
include long-range interactions and are all able to give higher FSDPs in the generated
structures. In the literature, the origin of the FSDP peak is discussed to be caused by
intermediate range ordering of SiO4 tetrahedra.197,309 However, in the case of other
related materials such as titania310 and hafnia,311 a better match between the MLIP
generated structure factor and the experiment was possible. However, unlike silica,
both materials are not typically glass forming. While silica has a critical cooling rate
of ≈ 10−3 K/s,312 amorphous hafnia313 and amorphous titania are commonly produced
by deposition from the gas phase or in the case of titania also by sol-gel synthesis.314

These methods correspond to significantly higher quench rates and are therefore orders
of magnitude closer to the quench rates achievable by simulations. A similar behavior is
found in the case of metallic glasses like Cu-Zr, where also much higher experimental
quench rates are necessary, and the corresponding structure factors from a MLIP
matches the experimental reference well.315 Finally, we have no compelling evidence
that the differences in quench rates or the lack of long-range interactions are causing
the difference in the height of the FSDP. Here, further research is needed.

4.4 Summary

In this chapter, we have demonstrated the ability of MLIPs to reproduce the ther-
modynamic properties of silica. We showed that the accuracy of the MLIP strongly
depends on the exchange-correlation functional used for the training data. However,
if the MLIP provides accurate energies and forces, as SCAN does for silica, highly
accurate bulk moduli and phonon spectra can be calculated. Moreover, the agreement
of calculated phase diagrams with experiments is also superior to CIPs. We show that
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we can calculate both low-temperature phase diagrams using the quasi-harmonic ap-
proximation and high-temperature phase diagrams using thermodynamic integration
in good agreement with experiment. Moreover, we discuss the uncertainties of these
phase diagrams and explain that already small differences in the energies provided by
the exchange-correlation functional can lead to significantly shifted phase transition
temperatures and pressures. Finally, we have investigated the ability of the GAP model
to describe amorphous phases. The energetic agreement for many structural models
with the SCAN reference is excellent. However, structural models generated within
melt-quench simulations significantly underestimate the height of the FSDP. To over-
come this issue and to generate realistic amorphous structure models, we introduced a
hybrid approach combining the GAP with the CHIK potential. This allows to generate
low energy structures with close-to-experiment structure factors.



5Silica under high-pressure
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Utt substantially contributed to the work. Specifically, he implemented the DG-CNN
structure identification model and trained the models for the simple crystal structures.
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identification algorithm for SiO2 and the analysis of the SiO2 shock simulation.
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In this section, we will examine the behavior of silica under high pressure. We will
start with the stable crystalline phases over a wide range of pressures and how well
these phases are described by the atomic cluster expansion (ACE) potential. Later, we
will apply the potential to several phase transformation simulations. We investigate
the shock behavior of amorphous silica and α-quartz within molecular dynamics (MD)
simulations. Moreover, we try to understand the formation of rosiaite-structured silica
in dynamic compression experiments.

5.1 Transition pressures of high-pressure phases

As mentioned in Section 1.1 silica undergoes several phase transitions with increasing
pressure and has a number of metastable phases at high pressures. While α-quartz and
the higher pressure phase coesite both contain fourfold coordinated silicon, higher pres-
sure phases contain sixfold coordinated silicon. Furthermore, most of the enthalpically
competitive high-pressure polymorphs are based on a hexagonal close-packed (HCP)
oxygen sublattice.316 These structures are illustrated in Figure 1.4. For an accurate
description of the high-pressure transition of silica, an accurate reproduction of the
energetics of these phases is essential.

To analyze this, Figure 5.1a shows the energy-volume curves of several silica poly-
morphs. Note that not all of these polymorphs were explicitly included in the training
database. In particular, the rosiaite-type,60 SnO2-type,72 NaTiF4-type,72 P21/c-type72

and d-NiAs-type silica were not part of the database. Although these phases are not
included in the database, the density functional theory (DFT) energy–volume curves are
reproduced with nearly the same accuracy as the phase included in the training dataset.
In the case of d-NiAs-structured silica, no DFT reference values are shown. In the d-NiAs
structure, oxygen is arranged in a HCP sublattice, while silicon is randomly distributed
in the octahedral voids. To achieve system sizes capable of properly describing this
stochastic distribution, more than 1000 atoms are required. Therefore, DFT cannot be
used to determine the energy-volume curves of this structure. We have generated 10 of
these structures with different random distributions of silicon in the octahedral voids.
In fact, the overall behavior of all these structures is very similar. The ACE results are
shown only for compression, since under tension the structure is extremely unstable
and amorphizes. Therefore, it can be expected to be unstable under ambient conditions.

Figure 5.1b shows the enthalpy as a function of pressure. From these values, the
stable phase at 0 K can be determined (see Section 2.4). Between 2.5 and 3.0 GPa
α-quartz transforms to coesite, which is slightly higher than extrapolated experimental
results from high temperatures suggest.30 At higher pressures of 5.5 to 6 GPa, coesite
transforms to stishovite, which is in good agreement with corresponding experiments.31

Stishovite is stable over a wide range of pressures and transforms to CaCl2-type silica.
Both phases are structurally similar, with the main difference being a distortion in the
a and b lattice parameters. In the case of stishovite, both parameters are identical, but
in the case of CaCl2, both are different. Since this shift is a thermal effect, we cannot
determine the phase transition using the enthalpy, but instead rely on MD simulations.
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Figure 5.1: Energy volume curves and enthalpies of high-pressure polymorphs.
(a) Energy-volume curves of various stable and metastable high-pressure silica polymorphs
calculated with ACE (lines) and with DFT (points). In case of the d-NiAs structure we show
due to the system size (3000 atoms) only the ACE results. (b) Enthalpy difference referenced to
stishovite in dependence of the pressure. Color coding is identical to (a). (c) Difference between
the a and b lattice parameters of stishovite/CaCl2-structured silica at 300 K at different pres-
sures as extracted from ACE MD simulations. In case of the tetragonal stishovite both lattice
parameters are identical, while there is a difference in case of the orthorhombic CaCl2 structure.
The figure is a combination of figures from Ref. 138 and 65 with additional data in case of the
enthalpy. (c) is inspired from Ref. 137, however, was recomputed using the ACE model.

The phase transition between the two phases is shown in Figure 5.1c. We show the
difference between the average lattice parameters a and b of an initial stishovite
supercell after equilibration at 300 K as a function of pressure. It can be clearly seen that
around a pressure of 70 GPa there is a transition from stishovite to a CaCl2-like structure.
Experimentally, this transition is measured to occur at lower pressures, around 50 to
60 GPa.34,317 According to the enthalpy plot, stishovite transforms to seifertite at
pressures of ≈110 GPa, which is in good agreement with experimental observations for
the transition between CaCl2 and seifertite at 120 GPa and 2400 K, considering the
temperature difference.35 At pressures of ≈246 GPa, the ACE predicts that pyrite-type
silica becomes the stable phase. Experimental results found this transition at a pressure
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of ≈260 GPa, but at 1800 K.36 Most remarkably, all metastable phases are correctly
predicted to be metastable over a wide range of pressures. This points to the quality of
the potential, which appears to be reliable over a wide range of pressures and phases,
as well as the underlying DFT data, which give transition pressures that are generally
in good agreement with the experimental observations.

5.2 Compression of amorphous silica at room temperature

In addition to the accurate description of high-pressure crystalline phases, an accurate
description of the amorphous phase at high pressures is also an important property
of machine learning interatomic potentials (MLIP) for silica. Figure 5.2 shows the
performance of the ACE potential in a compression simulation of amorphous silica
up to 175 GPa. Figure 5.2a depicts the coordination number of silicon during this
simulation. For reference, we also show the results of ab initio MD simulations318 and
experimental measurements.52,53 Especially at lower pressures, the agreement between
the ACE simulation and all references is impressive. However, while up to 50 GPa ACE
seems to be in good agreement with at least one experiment, at higher pressures it
underestimates the coordination number of silicon compared to experiment. In contrast,
at high pressures the ab initio simulations are in good agreement with our results.
These results also underestimate the coordination number of silicon. At a pressure of
175 GPa, the average coordination number of our simulation is about 6, while in the
experiment it is about 7. Since this is an average coordination number, it does not mean
that there are no atoms that are sevenfold-coordinated. As can be seen in Figure 5.2b,
there is indeed a significant amount of silicon atoms that are sevenfold-coordinated. The
discrepancies may be explained by the different time scales. While our MD simulations
simulate a time of about 1 ns, the experimental time scales are more than 10 orders of
magnitude longer. This could also explain, the deviation of the ab initio reference from
the experiment.

Finally, as mentioned in Chapter 1, it may be somewhat surprising that silicon can be
sevenfold-coordinated in amorphous silica at pressures as low as 175 GPa. In Figure 5.2c
we show some exemplary coordination polyhedra of sevenfold-coordinated silicon taken
from the snapshots of our simulations. The pressure ranges in which these polyhedra
occur are pressure ranges in which all stable silica polymorphs contain only sixfold-
coordinated silicon. At higher pressures, however, pyrite becomes stable, containing
silicon atoms with 6+2 coordination, with similarities to the sevenfold-coordinated
silica.54

5.3 Shock compression of α-quartz and vitreous silica

As discussed in Section 1.1 the study of shocks is essential for understanding the
formation of amorphous lamellae in naturally shocked quartz. Experimentally, there are
two ways to approach these natural meteorites shocks. Recent in situ shock experiments
were able to identify phases formed during the ≈100 ns after the shock. The total



Figure 5.2: Compression of amorphous silica at room temperature. (a) Average coordina-
tion number (CN) of silicon within silica at different pressures. The violin plot indicates the dis-
tribution of the coordination number. Reference data from experiments (‘Exp. 1’52, ‘Exp. 2’53) and
ab initio MD318 is additionally shown. (b) Silicon coordination polyhedra with certain coordina-
tion numbers shown for several snapshots of the simulation. (c) Selected coordination polyhedra
of sevenfold-coordinated silicon. The simulation has been performed by increasing the pressure
iteratively. First over 2.5 ps the pressure was increased by 1 GPa, followed by an equilibration of
2.5 ps. This was repeated up to a pressure of 175 GPa. Reproduced from Ref. 138. Original figure
published under the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
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shock state, however, does not last much longer.64,78 In contrast, meteorite shocks
last from microseconds to seconds, depending on their size.319 Because of these time
differences, other experimental approaches have been developed using rapid compression
in diamond anvil cells, but these are four orders of magnitude slower than natural
meteorite impacts.60 The timescales of MD simulations can reach the timescales of
shock experiments, allowing a direct comparison between the two methods. Moreover,
MD simulations allow direct observation of kinetic processes at the atomistic level. In
this section, we will compare the shock behavior of quartz and amorphous silica and
analyze similarities and differences. We will use the Hugoniostat method described
in Section 2.3. Afterwards in the subsequent section, we investigate the differences
between the results of our shock simulations and the results of the dynamic diamond
anvil cell experiments.

Figure 5.3 shows the time evolution of amorphous silica under a shock at a pressure
of 50 GPa. We analyzed the shock simulation using two methods. The first method is a
newly developed machine-learning based structure identification scheme for silica (see
Section 2.7). This scheme classifies each atom based on its 64 nearest neighbors. The
corresponding per atom classifications are shown in Figure 5.3a for certain snapshots
and the phase fraction over time is shown in Figure 5.3b. It can be seen that almost
the whole structure is identified as amorphous in the beginning, before the shock starts.
After a few picoseconds the structure starts to partially melt. However, after 250 ps the
proportion of crystalline phases increases strongly. Most remarkably, several crystallites
with the d-NiAs structure appear. This structure is based on HCP oxygen sublattice
with silicon randomly distributed in the octahedral voids (see Figure 1.4). Additional
support for this structure is provided by the PTM results shown in Figure 5.3c-d. Even
at this stage of the shock, most of the oxygen sublattice is crystallized within a HCP
lattice. After a maximum at about 300 ps, the proportion of the d-NiAs phase is already
decreasing. Instead, SnO2-, NaTiF4 and P21/c-type silica and even more stishovite
appear more frequently. All these phases share the HCP oxygen sublattice, but show
different arrangements of silicon atoms (see Figure 1.4). Besides the spread of these
phases, the amount of amorphous phase and melt continues to decrease. Finally, after
2.5 ns, stishovite dominates with a still growing phase fraction of about 60%.

These results are in good agreement with thermodynamics expectations, since
stishovite is the stable phase under these conditions. Moreover, in situ shock experiments
have observed stishovite under shock of amorphous silica under these conditions.78

However, the kinetic process of this stishovite formation was unclear. We can now clearly
observe that stishovite does not crystallize directly from the amorphous phase. Instead,
an intermediate crystalline phase, the d-NiAs with the same HCP oxygen sublattice,
crystallizes first from the amorphous phase. This corresponds to a rapid ordering of the
oxygen atoms. Only after that the silicon atoms are ordered, which allows the occurrence
of SnO2-, NaTiF4 and P21/c-type domains all with slightly different silicon ordering.
Finally, due to energetics stishovite becomes the dominant phase. We note here that
the PTM alone would not be able to differentiate between these phases. Instead, the
detailed DG-CNN structure identification enabled these extremely revealing results.



Figure 5.3: Shock simulation of amorphous silica. Hydrostatic shock simulation of vitreous
silica at a pressure of 56 GPa over a time of 2.5 ns. (a) Dynamic Graph-Convolutional Neural
Network (DG-CNN) (see Section 2.7) structure identification applied to snapshots from the
shock simulation. Different phases are colored accordingly. (b) Phase fractions of the different
phases during the shock simulations. Colors are the same as in (a). (c) Polyhedral template
matching (PTM) results on the oxygen sublattice for the same simulation and corresponding
phase fractions in (d). Reproduced from Ref. 200. Original figure published under the CC-BY 4.0
license (https://creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/


Figure 5.4: Shock simulation of quartz. Uniaxial shock simulation of quartz at pressure
of 56 GPa over a time of 60 ns. (a) Phase fraction of various phase as identified using the
DG-CNN structure identification (see Section 2.7). (b) Snapshots at various time steps showing
the occurrence and distribution of selected phases in the structure based on a DG-CNN classifi-
cation. (c) Final snapshot after 60 ns showing only the oxygen sublattice with PTM structure
identification. Reproduced from Ref. 65.
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In an in situ shock experiment of α-quartz at similar pressures, the d-NiAs phase
was observed instead of stishovite. To investigate this behavior and to see where the
differences come from, we performed additional shock simulations for α-quartz. The
result is shown in Figure 5.4. In contrast to the shock simulation of amorphous silica,
the time scales in this case are significantly longer. Instead of 2.5 ns, we simulated
60 ns. The phase fractions predicted by the DG-CNN are shown in Figure 5.4a. Already
100 ps after the start of the shock, most of the structure is amorphized and only traces
of α-quartz remain in the structure. At the same time, a small crystallite has already
appeared within the amorphous matrix, which can be classified as d-NiAs structured
silica. This can be seen in Figure 5.4b. The seed grows slowly over time, at least on MD
time-scales, and in contrast to the fast growth during the shock of amorphous silica. It
takes about 46 ns for the structure to be almost completely crystallized. At this time
the d-NiAs phase clearly dominates with a phase fraction of about 70%. With longer
simulation times this phase fraction decreases again. This is accompanied by an increase
in the SnO2-, NaTiF4 and P21/c-type silica and seifertite domains, while the increase
in the stishovite fraction is much smaller. As before, the PTM identifies the oxygen
sublattice as mostly HCP after 60 ns (see Figure 5.4c).

Although the DG-CNN structure identification is good for identifying the structure
at the atomic level, an even better proof of agreement with experiment is the comparison
of measured XRD pattern with calculated XRD pattern. This comparison is shown in
Figure 5.5. The agreement between the experimental XRD pattern from Tracy et al.64

and that of our simulation cell after 60 ns is impressive. Although the experimental
spectrum is quite noisy, the characteristic peaks are well reproduced by the simulated
spectrum. Moreover, in addition to the sharp peaks that also appear in the theoretical
spectrum of the d-NiAs phase, a broad peak at a 2Θ value of 12◦ appears in both patterns.
The origin of this peak was not entirely clear, but two possible options were discussed by
Tracy et al.64 The first option was that it was caused by a superposition of the crystalline
phase with an amorphous phase. The corresponding broad peak would originate from
the first sharp diffraction peak (FSDP) of the amorphous phase. This option can be
excluded by our simulations, since the entire structure is clearly crystallized. The other
possible assumption they made was that local short-range ordering of the silicon atoms
within the d-NiAs structure leads to this broad peak. This is clearly supported by our
data. First, the DG-CNN structure identification clearly shows that there are a certain
number of SnO2-, NaTiF4 and P21/c-type silica and seifertite domains that do not have
random ordering of the silicon atoms. Instead, the silicon atoms in these domains must
have a localized short range order. Second, the decomposition of the XRD spectrum in
Figure 5.5 clearly shows that the first broad peak is caused only by Si-Si contributions,
which clearly supports the assumption of localized ordering.

The combination of both shock simulations, the vitreous silica simulation and the
quartz simulation, demonstrates the importance of the d-NiAs structure. The results
clearly show that this phase occurs as an intermediate state in the crystallization process
to stishovite and other metastable phases. The differences in the results between the
two simulations are probably due to the different temperatures over the simulation
time. These temperature profiles are shown in Figure 5.6. Note that the temperatures



Figure 5.5: X-ray diffraction (XRD) pattern of shocked quartz. (a) XRD pattern of quartz
from experiment at 56 GPa pressure64 compared to the pattern of the final snapshots (after
60 ns) of the MD shock simulations with theoretical pattern of several crystalline high-pressure
polymorphs. The wavelength distribution is assumed to be identical to the distribution in
experiment.64 (b) Contributions of different distances, e.g. Si-Si, O-O and Si-O, to the total XRD
pattern of the shocked structure. Reproduced from Ref. 65.
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Figure 5.6: Temperature during shock simulations. The temperature as a function of the
time during both shock simulations shown in Figure 5.3 and Figure 5.4.

change dynamically during the shock and are given by the Hugoniot relations (see
Section 2.3). In the case of amorphous silica, the temperature rises extremely fast
to values higher than 4000 K, which allows for fast kinetics. In contrast, we observe
much lower temperatures for α-quartz. Only after the end of the crystallization the
temperature rises to values slightly below 3000 K, which is still lower compared to the
case of amorphous silica. This suggests that the shock of amorphous silica can be seen as
an accelerated version of the shock of α-quartz. Correspondingly, after longer simulation
times in the case of α-quartz, one would expect further ordering of the silicon atoms,
eventually ending in a phase fraction of 100% stishovite.

5.4 The occurrence of rosiaite-type silica

While the shock simulations are in excellent agreement with the experiment, we did
not observe rosiaite-structured silica as in the dynamic diamond anvil cell experiments
on quartz.60,74 One reason for this may be the significantly longer time scales of these
experiments and that rosiaite-type silica may take longer to crystallize from the amor-
phous phase. At the same time, these experiments were performed at room temperature
and pressures only up to 30 GPa. Based on the energetics in Figure 5.1a crystallization
via the amorphous phase and the d-NiAs phase as intermediate states seems unreal-
istic. Instead, one would expect rather the direct formation of stishovite within this
process. Correspondingly, we observed almost no rosiaite-structured silica in our shock
simulations. Recently, Tsuchidya et al. proposed a diffusionless mechanism of direct



Figure 5.7: Formation of rosiaite-structured silica from quartz. (a) Deformation of quartz
according to two strains ϵ⊥ perpendicular to the c-direction and ϵ∥ parallel to the c-direction.
After the deformation of the quartz cell, the structure undergoes a thermal treatment to allow
relaxation of the positions. The final structure is structurally analyzed. (b) Results of the DG-
CNN structure identification on the final deformed and relaxed structures based on different
supercell sizes in dependence of the strain state. The stability regions of α-quartz and rosiaite-
structured silica are shown. In the other regions mainly amorphous silica has been dominating,
despite some exceptions for other crystalline structures. (c) Transitions paths from solid-state
nudge elastic band (SS-NEB) calculations from quartz to rosiaite-structured silica. The initial
state is quartz strained by a perpendicular strain ϵ⊥ of 0.1 and relaxed in c-direction according
to an external pressure of 15 GPa (orange) or 30 GPa (gray). From this state the transition
to rosiaite-structured silica is performed, assuming a fixed cell size in a-b-direction, but with
allowed relaxation within c-direction. The transparent background line arise from many possible
transformation ways from α-quartz to rosiaite-structured silica, e.g. one oxygen atom can move
to several oxygen positions in rosiaite-structured silica. Only the lowest energy path is drawn
as bold. Final rosiaite structures with corresponding final oxygen and silicon positions are
taken from (b) at a strain of ϵ∥=0.27. (d) Same transition as in (c), however, this time under a
perpendicular strain ϵ⊥ of zero. Here, rosiaite-structured silica becomes only more stable than
α-quartz under pressures of roughly 40 GPa. In the transition path there are several lower
enthalpy configurations appearing, which are disordered.



5.4. The occurrence of rosiaite-type silica 85

transformation of α-quartz to rosiaite-structured silica.73 They performed DFT calcula-
tions in which they deformed α-quartz by applying high strains to the cell and observed
a transformation to rosiaite-structured silica. Based on these calculations, we will now
investigate the conditions under which this direct and diffusionless transformation
occurs.

Figure 5.7a shows the approach we used to explore the possible transformation of
α-quartz. We systematically deformed α-quartz over a wide range of different strains
parallel and perpendicular to the c-axis. After deformation, we applied a thermal
treatment and performed energy minimization with respect to atomic positions. Finally,
on the deformed and minimized cells, we used our DG-CNN structure identification to
identify the corresponding crystal structures.

The average result for a wide range of α-quartz supercells is shown in Figure 5.7b.
It can be clearly seen that rosiaite-structured silica appears over a wide range of strains
applied to quartz. We note that even for 8×8×8 supercells, the resulting rosiaite-type
structures are often so free of defects that symmetry analysis by spglib320 can identify
them as belonging to the appropriate P31m space group. It is clear from the results
that rosiaite occurs only in cases where the strain state is not purely uniaxial, but also
includes strain components perpendicular to the main strain direction. At the same
time, a purely isostatic strain state, e.g. equal strain in all directions, would also not
lead to the appearance of rosiaite-structured silica.

Figure 5.7c shows the barrier between α-quartz and rosiaite-structured silica as
determined by SS-NEB calculations. First, the α-quartz is strained to a certain perpen-
dicular strain ϵ⊥=0.1. The lattice constant in the c-direction is determined by structural
relaxation under the given pressure of 15 GPa (gray) or 30 GPa (orange). The final
rosiaite states are taken from the phase transformation calculations from Figure 5.7b
(ϵ∥=0.27) and are strained to the same lattice size in a-b direction as α-quartz. The
lattice parameter in the c-direction is determined identically as for α-quartz. Therefore,
during the SS-NEB, calculation only the c-axis is changed, while the a- and b-axes are
fixed. Since atoms within α-quartz can move to different equivalent positions within
the rosiaite-structured silica, there are many possible paths. The lowest energy path
is shown in bold, while the other paths are shown in a light transparent color. In both
cases, at 15 GPa and 30 GPa, there is a clearly defined barrier. In the case of 15 GPa, the
height of the barrier is higher than 150 meV/atom, and in the case of 30 GPa pressure
in c-direction, it decreases to roughly 50 meV/atom.

Additionally, Figure 5.7d shows the transition path between α-quartz and rosiaite-
structured silica, but under strain ϵ⊥=0.0. Under these conditions, rosiaite-type silica
becomes energetically more favorable at pressures of about 40 GPa. The energy gain
of the transformation is also significantly lower. Moreover, it can be seen that several
intermediate images have a lower enthalpy compared to both α-quartz and rosiaite-
structured silica. After relaxing these images, we obtain disordered structures. This
implies that the system prefers to amorphize under these conditions and that direct
transformation into the rosiaite structure is not possible.

How does this relate to the shock experiments and the dynamic diamond anvil cell
compression experiments? In fact, through discussion with experimentalists, we have
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found that during diamond anvil cell compression experiments, not only strain in the
main compression direction can be observed, but also a strain of about 10% perpendicular
to this compression direction, induced by the matrix material surrounding the sample.
This is in excellent agreement with our observations in Figure 5.7b. At the same time
the enthalpy barriers calculated for the transition from α-quartz to rosiaite-type silica
can be realistically overcome within the experimental timescales. In contrast, in our
shock simulations as well as in the shock experiments, there is probably no strain
component perpendicular to the loading direction. Therefore, quartz seems to amorphize
rather than directly transform into rosiaite-type silica, which is also in good agreement
with our observations in the shock simulations. In the case of natural shocks, things
get more complicated. On the one hand, the times are shorter than in the compression
experiments. Therefore, it is not clear whether they are sufficient to overcome the
barrier between α-quartz and rosiaite. However, it may be possible, especially if stresses
are slightly higher than 30 GPa. In addition to the required timescales, the boundary
conditions must also match. Since these depend on the exact composition of the rocks and
their environment, they are likely to be highly dependent on the specific characteristic
of each individual impact and are difficult to predict. All in all, it seems from the
mentioned results that the formation of amorphous lamellae can be induced by a
number of processes, depending on the specific conditions of the impact:

• Direct amorphization

• Amorphization with subsequent crystallization and reamorphization after the
shock

• Direct transition to another crystalline structure and reamorphization after the
shock

From the shock and the SS-NEB simulations we can conclude that direct amorphiza-
tion of quartz is possible. Moreover, recrystallization can be observed, although it may
not occur depending on the temperature and pressure conditions. Also, depending on
the stress and strain boundary conditions, direct transitions to rosiaite-type silica may
occur. In summary, all of these processes appear to be realistic and could also occur in
nature.

5.5 Summary

In this chapter, we have shown the capabilities of the ACE potential in performing high
pressure simulations of silica. First, we showed that the potential is able to reproduce
the experimental thermodynamics of the systems, focusing on the phase stabilities.
Here, the potential showed excellent qualitative agreement and in many cases close to
quantitative agreement. Based on these positive aspects, we started to analyze the shock
behavior of amorphous silica and α-quartz. We found that amorphous silica transforms
to stishovite with an intermediate d-NiAs-like phase under shocks of 50 GPa. In this
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d-NiAs-phase, oxygen is arranged in a HCP sublattice, as in the case of stishovite.
However, silicon atoms are randomly arranged in octahedral voids. Over the time of the
shock simulation, this silicon ordered, eventually leading to the structure of stishovite.
In the case of shocked quartz, the d-NiAs structure was also observed. However, due
to the lower temperatures in this simulation, no final transformation to stishovite
could be identified even after a simulation time of 60 ns. Only a local ordering of the
silicon atoms was found, which does not correspond to a long-range order. All these
results are in excellent agreement with experimental observations and deepen the
understanding of them. Finally, we also tried to understand the formation of rosiaite-
type silica observed in dynamic diamond anvil cell compression experiments. We found
that this phase can only be created under certain boundary conditions, which require not
only strain along the c-direction in α-quartz, but also strain perpendicular to it. From
these results we found that there are essentially three scenarios for the formation of
amorphous lamellae in quartz in natural impacts. Direct amorphization, amorphization
with subsequent crystallization and reamorphization after the shock state has vanished,
or direct transformation of quartz into another crystalline phase such as rosiaite-type
silica with subsequent amorphization after the shock state has disappeared. Based on
our results, all three outcomes seem to be possible and depend on the exact boundary
conditions such as stress, strain, shock duration and temperature.





6Modelling of silicon monoxide

This chapter is based on the following publication:

Erhard, L.C., Rohrer, J., Albe, K., Deringer, V. Modelling atomic and nanoscale structure
in the silicon–oxygen system through active machine learning. Nature Communications
15, 1927 (2024). https://doi.org/10.1038/s41467-024-45840-9.138

All calculations in this work have been performed by myself.

In this chapter, we study the structural properties of silicon monoxide using the
atomic cluster expansion (ACE) potential. First, we analyze the ability of the ACE
potential to describe interfaces between silicon and silica, which is essential for a proper
description of silicon monoxide. We then perform melt-quench simulations with the ACE
potential to generate structural models of silicon monoxide. These models are compared
with models from available classical potentials, such as the Munetoh117 potential and
the Charge-optimized many-body (COMB)114 potential. Finally, we investigate the
possibility of generating structural models of SiO with crystalline silicon instead of
amorphous silicon. We observe the crystallization process at the atomistic scale and
evaluate under which conditions this crystallization is energetically favorable.

6.1 Interfaces between silicon and silica

An accurate description of the interface energy between silicon and silica is an essential
feature of an interatomic potential for the Si–O system. Figure 6.1 shows the interface
energies between silicon and silica for different interfaces. We show results for small
scale crystalline-amorphous and amorphous-amorphous models that are accessible by
density functional theory (DFT) calculations. First, we compute interface energies by
single-point evaluations of the energy for unrelaxed interface structures, which were
simply added together manually. In general DFT and ACE results are in good agreement,
but the ACE systematically underestimates the interface energy. Nevertheless, the hier-
archy of interfaces is well reproduced regardless of the type of interface. The interfaces
structures were then relaxed using the ACE. Since DFT relaxation would have been too
expensive, we used single-point evaluations on these relaxed structures to evaluate the
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Figure 6.1: Interface energies between different types of silicon and silica. Interface
models between amorphous silica and amorphous silicon (a-SiO2–a-Si), amorphous silica and
silicon diamond (a-SiO2–c-Si) and quartz and amorphous silicon (c-SiO2–a-Si) with corresponding
interface energies calculated by ACE and DFT for the ACE-relaxed (red) and unrelaxed (blue)
structures. Reproduced from Ref. 138. Original figure published under the CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

corresponding DFT interface energies. The first observation is that both, the ACE and
the DFT interface energies, are significantly lower, showing the capability of the ACE
to find a reasonable relaxed interface. Moreover, the ACE and DFT interface energies
of the relaxed interfaces are in good agreement, with a slight underestimation of the
energies by the ACE. However, in contrast to the unrelaxed interface structures, the
underestimation of the interface energies is smaller here. Also, some discrepancies can
be explained by the fact that the DFT energies are not determined from a DFT-relaxed
structure, which would correspond to at least a slightly lower energy.

Finally, it can be concluded here that the ACE potential slightly underestimates
the interface energy between silicon and silica, especially for unrelaxed high-energy
interfaces. Nevertheless, the ACE potential gives a good qualitative description of the
interface energies. Moreover, for the important low-energy interfaces the quantitative
description is surprisingly good. This makes the ACE a promising model for an accurate
description of silicon monoxide.

6.2 Structural models of silicon monoxide from
melt-quench simulations

Figure 6.2a shows atomistic models of silicon monoxide generated by melt-quench
simulations (see Section 2.2). All structures show a clear segregation between silicon
and silica. As the quench-rate decreases, the grain size increases, and the interface area
decreases. The structures prepared with the intermediate quench rate have grain sizes

https://creativecommons.org/licenses/by/4.0/
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in good agreement with the experimentally observed grain sizes of 3-4 nm.101 The X-ray
structure factor of the structure quenched with a quench rate of 5×1012 K/s is shown
in Figure 6.2b and compared with the experimental structure factor. The agreement
between the two structure factors is almost perfect. Moreover, the first sharp diffraction
peak (FSDP) has almost the same height in both cases. This is particularly surprising,
since the FSDP is significantly underestimated for pure silica (see Section 4.3). However,
in contrast to silica, silicon monoxide is produced by deposition of SiO from the gas
phase.322 This corresponds to significantly higher quench rates, which may be similar
to the quench rates in our simulations. The structure factors of the other structural
models are shown in Figure 6.3. All the structure factors of the models generated by
the ACE potential show good agreement, while the model generated by a quench rate of
5×1012 K/s is probably the best match. For consistency, we also looked at the results for
two classical interatomic potentials for Si–O. The Munetoh potential and the COMB
potential. The structure factor of a structure generated with the Munetoh is shown in
Figure 6.3c. Compared to the experimental structure factor, the result is totally off. In
fact, the corresponding structure also shows no reasonable segregation between silicon
and silica. In the case of the COMB potential, we observed pore formation during our
melt-quench protocol, which induced a strong volume increase. Therefore, we simply
re-equilibrated our best matching ACE structure with this potential. The resulting
structure factor is shown in Figure 6.3f and is significantly worse than for the ACE. This
indicates that the structure is strongly changed by the equilibration.

Figure 6.2c shows the ratio between the volume of the silicon grains and the interface
area between the silicon and silica regions. In the case of a spherical inclusion, this could
be directly translated into a grain diameter of d = 6·VSi,grains/Ainterface. This corresponds
to grain diameters of 24 to 54 Å in the different structures, again in good agreement
with the observed grain size and the experimental grain sizes of 3-4 nm.101 Finally, we
investigate the energetics of the relaxed structural models from Figure 6.2a. The results
are shown in Figure 6.2d. The energetics of the structures quenched with 5×1012 K/s
and 2×1012 K/s are close to the experimental measured enthalpy of formation.321 The
structures quenched with 2×1012 K/s and 1×1012 K/s have even lower energies than the
experimentally measured value. This is in good agreement with the slightly larger grain
sizes of the 1×1012 K/s quenched structure and the correspondingly lower interface
area. However, it may be surprising that a melt-quench structure is energetically
more stable than an experimental structure. Again, this can be explained by the fact
that experimentally the material is deposited from the gas phase, inducing a not well
equilibrated structure with high formation energy.

6.3 Partially crystallized silicon in silicon monoxide

Experimentally, it has been observed that pure amorphous silicon monoxide partially
crystallizes when annealed above 850◦C.323 However, this crystallization is confined to
the silicon grains, while the silica remains amorphous. To create partially crystallized
structures, we used the silicon monoxide structures from Section 6.2 and performed
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Figure 6.3: Structure factors of silicon monoxide models. Structure factors S(q) as a
function of the wave vector q for several structural models and compared to experimental
measurements (black).102 (a-b,d-e) Structure factors of the models from Figure 6.2a generated
at different quench rates with the ACE potential. (c) Structure factor of a model generated
with the Munetoh potential using a quench rate of 5× 1012 K/s. (f) Structure factor of the
ACE structure quenched at 5×1012 K/s and equilibrated with the COMB potential for SiO.
Reproduced from Ref. 138. Original figure published under the CC-BY 4.0 license (https:
//creativecommons.org/licenses/by/4.0/).

a thermal treatment on these structures, as shown in Figure 6.4a. In this thermal
treatment, we cooled the structure over 20 ns from 1400 K to 1200 K. During this
simulation, the silicon within the silicon grains partially crystallizes as determined by
PTM. The resulting difference is shown in Figure 6.4b, where the silica regions of the
matrix are hidden. There are significant differences in the final crystallinity between
the different structures from Section 6.2, as shown in Figure 6.4c-f and the bottom panel
of Figure 6.4a. While the structures with large silicon grains tend to have a higher
proportion of crystalline silicon, the structures with smaller silicon grains show almost
no crystallization. This is also supported by the structure factors of the corresponding
structures. Figure 6.4g shows the structure factors of the two structures with small
silicon grains. There are no sharp peaks in the structure factors for these structures
that would indicate crystallinity. In contrast, Figure 6.4h shows the structure factors of
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Figure 6.4: Crystalline silicon in silicon monoxide. (a) Quench simulation of silicon monoxide
models from 1,400 K to 1200 K over 20 ns. The input structures are the final structures from
Figure 6.2. The bottom panel shows the fraction of crystalline silicon referenced to the total
number of silicon atoms in the silicon grains for different input structures. (b) Silicon monoxide
structure (1012 K s−1) before and after thermal treatment, showing only silicon atoms with less
than two oxygen neighbors (2 Å cutoff). The atoms are colored according to their structure as
identified by polyhedral template matching (PTM) with a root mean square deviation cutoff of
0.1. (c-f) Silicon monoxide structures from Figure 6.2 after their thermal treatment with the
same color coding and atoms shown in (b). (g-h) X-ray structure factors S(q) of the models in (c-f)
compared to the experimental structure factor of silicon monoxide.102 (i) Energy of formation as
in Figure 6.2d comparing the structures before and after thermal treatment. (j) Energy difference
of an amorphous and a crystalline spherical silicon inclusion in an amorphous silica matrix as a
function of inclusion radius. A negative value indicates that crystalline silicon is more stable than
amorphous silicon. Several interface energies from Figure 6.6 are used as input for the different
functions to illustrate the uncertainty of the model. Reproduced from Ref. 138. Original figure
published under the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

the silicon monoxide structures with larger silicon grains. Sharp peaks can be seen in
these structure factors, clearly indicating partial crystallization of the structure.

Figure 6.5 visualizes the crystallization process of silicon within silicon monoxide.
We show only those silicon atoms that are identified as crystalline by a PTM analysis. At
1400 K there are no crystalline atoms in the structure, as expected at the temperature. At
1310 K the first crystalline seed appears, which then grows with decreasing temperature.
After a further temperature drop to 1306 K, a second seed appears. Both seeds continue
to grow until they percolate the entire silicon network within the silica matrix. While
the silicon rearranges during the simulation, the silica matrix remains unchanged.

The energy of formation of the structures before and after annealing is shown
in Figure 6.4i. Indeed, at least for these specific structures, there seems to be no
relationship between the energy gain and the degree of crystallinity after thermal
treatment. This seems surprising at first, but can be explained by several points. In
particular, the rapidly quenched structure can gain additional energy by rearrangement
of silicon atoms during the now much slower quench. This can reduce the interface
energy between silicon and silica as well as the internal energy of the silicon. At the
same time, for the structure with a high degree of crystallinity, they pay an additional
penalty due to the increase in the interface energy between crystalline silicon and
amorphous silica compared to the interface between amorphous silicon and amorphous
silica.

Figure 6.6 shows the interface energies for various types of manually constructed
interfaces, as well as for the interfaces in the silicon monoxide structures. The interface
energy between crystalline silicon and amorphous silica is the least favorable. This
is not surprising, since within crystalline silicon the atoms are constrained in their
arrangement at the interface. However, the internal energy of crystalline silicon is
lower than in the amorphous state. Since silicon in its amorphous state can better
adapt to the interface, the corresponding amorphous silicon–amorphous silica interface

https://creativecommons.org/licenses/by/4.0/
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Figure 6.5: Crystallization process of silicon in silicon monoxide. Crystallization process
from Figure 6.4a is shown in detail. Only silicon atoms identified as being in the cubic diamond
structure (blue) or hexagonal diamond structure (orange) are shown. Structure identification
is performed using PTM with a root mean square deviation of 0.1. (a) The structure is fully
amorphous or liquid. (b) A first small silicon seed appears. (c) The first seed has grown while
a second seed has appeared. (d-f) The crystalline silicon network continues to grow until it
percolates the entire structure. Reproduced from Ref. 138. Original figure published under the
CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

has a lower interface energy. Another interface energy that is important during the
crystallization process is the amorphous silicon–crystalline silicon interface energy. This
interface energy is the lowest of these three types and its importance arises from its
role during seed formation and growth. When the seed is formed within the amorphous
silicon, a crystalline silicon–amorphous silicon interface is introduced in addition to the
crystalline silicon–amorphous silica interface.

All the mentioned interface energies were determined from manually induced in-
terfaces. However, these models do not account for proper interface relaxation since we
only performed energetic minimization and a short low-temperature molecular dynam-
ics (MD) simulation to adjust atomic positions. An example of better relaxed interfaces
are the silicon monoxide models from Section 6.2. We can also calculate interface ener-
gies for these structures by using amorphous references created with equivalent quench

https://creativecommons.org/licenses/by/4.0/


Figure 6.6: Interface models of silicon and silica. (a) Amorphous silicon inclusion in a
silica matrix. (b) Amorphous silicon in a crystalline silicon matrix. (c) Crystalline silicon in
amorphous silica. (d) Interface energies calculated from the models in (a-c) with amorphous
structures generated at different quench rates. The interface models were manually constructed
by slicing the crystalline and amorphous structures. Interface relaxation was performed by first,
energetic optimization, second a thermal treatment by heating from 10 K to 300 K in 50 ps,
holding for another 50 ps and cooling to 10 K for 50 ps, followed by a final energetic optimization.
Interface energies for the silicon monoxide structures from Figure 6.2 are calculated using the
corresponding interface areas and reference energies from amorphous structures quenched at
the same quench rate. Reproduced from Ref. 138. Original figure published under the CC-BY
4.0 license (https://creativecommons.org/licenses/by/4.0/).
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rates. These are also shown in Figure 6.6d. The corresponding interface energies are
significantly lower compared to those from manually constructed amorphous silicon–
amorphous silica interfaces. This can be explained by the better interface relaxation,
but also by the fact that atoms can arrange themselves in such a way that only favorable
interface arrangements occur.

One way to analyze the conditions under which silicon crystallizes in silicon monox-
ide is to make the following thermodynamic assessment. The energy differences between
the crystalline state and the non-crystalline state are given by,

∆E = 4πr2(
γc-Si–a-SiO2 −γa-Si–a-SiO2

)− 4πr3(Ea-Si −Ec-Si)
3Vatom

. (6.1)

For this equation, we assume that we have a spherical silicon inclusion with radius
r in a silica matrix. Moreover, we only check whether it is more stable for the whole
inclusion to be amorphous or crystalline and do not check for partially crystalline cases.
γc-Si–a-SiO2 is the interface energy between crystalline silicon and amorphous silica and
γa-Si–a-SiO2 is the interface energy between amorphous silicon and amorphous silica. Ea-Si
is the energy of amorphous silicon, Ec-Si is the energy of crystalline silicon, and Vatom
is the volume per atom. If we use the interface energies of the manually constructed
interfaces from Figure 6.6 to calculate the energy differences, we obtain the curves
shown in Figure 6.4j. Each curve corresponds to the interface energies from one quench
rate. Although the interface energies are only rough approximations, we can see that
the results agree quite well with our observations. For a radius below 9 Å crystallization
is not favorable. However, for larger grains crystallization becomes favorable. This is
exactly the same behavior as observed in our MD simulations, although the threshold is
not exactly the same.

6.4 Summary

In this section, we first validated the ACE model for silicon and silica and showed
that the DFT interface energies are well reproduced. We then performed melt-quench
simulations for structures with the composition SiO. The resulting structural models
show impressive agreement with experimental measurements of silicon monoxide. Grain
size, X-ray structure factor and energetics are in excellent agreement with experimental
measurements. We emphasize that these are the first realistic structural models of sili-
con monoxide on the scale of more than 100,000 atoms, and thus the first models capable
of capturing the corresponding nanostructure. Finally, we annealed these structures to
produce models with partially crystallized silicon. We observed that the silicon grains
require a minimum size to observe crystallization and proposed a model to describe this
behavior based on simple interface energies. Moreover, our MD simulations provided
detailed insights into the crystallization process.



7Summary

In this work, we have developed two machine learning interatomic potentials (MLIP)
for the Si–O system and applied them to several problems. We started by creating a
database for silica containing crystalline and amorphous structures as well as some
clusters. The amorphous structures were generated using iterative ’batch’ learning with
a Gaussian approximation potential (GAP). Later, we changed the MLIP approach from
GAP to moment tensor potentials (MTP) and atomic cluster expansion (ACE) potentials
and subsequently extended the database. In particular, for the extension we used small-
scale active learning approaches as they are currently implemented for MTPs, but also
introduced a new large-scale active learning method. In this method we extract small-
scale density functional theory (DFT) feasible cells from large-scale simulations using
amorphous matrix embedding. We have used this approach to expand the database with
additional data for high-pressure silica, silica surfaces, and most notably silicon-silica
mixtures. The final potential is a non-linear ACE potential, which provides an excellent
trade-off between accuracy and speed. We have applied the potential to the following
cases.

7.1 Thermodynamic and structural aspects of silica

In this part, we have tested the ability of the MLIP to reproduce experimental properties
of silica mainly related to thermodynamics of crystalline phases, but also to structural
aspects of silica glass. In this respect, the MLIP is limited by two factors. The accuracy
in reproducing the underlying DFT data and the accuracy of the exchange-correlation
functional used for the training data. We show over a wide range of properties rang-
ing from elastic constants, bulk moduli to phonon dispersion, that the potential is in
excellent agreement with experiment and has higher accuracies than available classical
interatomic potentials. However, the quality of the underlying strongly constrained and
appropriately normed (SCAN) exchange-correlation functional is fully revealed in the
calculation of the phase diagram. We have calculated the phase diagram of silica using
two different methods, the quasi-harmonic approximation with frozen phonons and
thermodynamic integration. In both cases the MLIPs show excellent qualitative and
often even quantitative agreement. This is in strong contrast to the available classical
interatomic potentials, which often fail to predict the correct stability fields. Although
the phase diagram calculated by thermodynamic integration allows insights into phase
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transitions even at high temperatures, it has certain limitations. These are the accuracy
of the underlying DFT data as well as the influence of small errors (<1 meV) on the
phase transition lines.

Besides the thermodynamics, we also investigated the ability of the MLIP to generate
realistic atomic models of amorphous silica. We found that the MLIP significantly
underestimated the first sharp diffraction peak (FSDP) of the X-ray structure factors. In
contrast, this behavior was not observed for some classical interatomic potentials (CIP)
such as the Carré, Horbach, Ispas, Kob (CHIK) potential. To overcome this issue and to
obtain an accurate description of the energetics of the system, which are well described
by the MLIP, we introduced a ‘hybrid’ approach. This approach uses first a slow CHIK
quench followed by an equilibration with the MLIP, yielding amorphous structures in
excellent agreement with the experiment.

7.2 High-pressure silica

For high pressure silica, we have started by validating the ACE potential for several
stable and metastable high pressure phases. The potential reproduces the DFT results
for these phases extremely well, even for phases that are not part of the training
database. Moreover, the phase transition pressures for high pressure transitions agree
well with experimental measurements. We then applied the ACE potential to shock
simulations of amorphous silica and quartz. By using a new machine-learning based
structure identification model, we are able to obtain detailed insights into the processes
during shock. We are able to observe that amorphous silica transforms to stishovite
within the shock simulations. However, instead of a direct transformation to stishovite,
an intermediate phase with the defective nickel arsenide (d-NiAs) structure is observed.
This phase has the same hexagonal close-packed (HCP) oxygen sublattice as stishovite,
but silicon atoms are randomly distributed in octahedral voids. Additionally, we observed
the same d-NiAs structure in shock simulations of quartz, but no formation of stishovite.
Both results are in excellent agreement with experimental observations and provide
new insights into the crystallization process of silica under high pressure, e.g. by an
initial ordering of the oxygen atoms followed by an ordering of the silicon atoms if
the time scales are sufficient. Finally, we tried to understand the formation of rosiaite-
structured silica observed in dynamic diamond anvil cell compression experiments. We
found that this phase can only occur if quartz is not only compressed along the z-axis,
but if additional strain perpendicular to the compression direction is applied. If this
strain is not applied, quartz prefers to amorphize.

7.3 Silicon monoxide

The interface between silicon and silica is essential for understanding the structural
properties of silicon monoxide. Therefore, we first investigated the ability of the ACE
potential to describe interface energies. We found good agreement between the DFT
and ACE interface energies. We then performed melt-quench simulations with different
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quench-rates to generate structural models of silicon monoxide. These models are
in excellent agreement with experimental observations in terms of grain size, X-ray
structure factor, and energetics. By modifying the quench rate, structural properties
can be tuned. Moreover, we show that the ACE behaves much better than available
CIPs, which fail for this task. Using the generated structural models, we performed
annealing simulations to crystallize the silicon within the silicon monoxide structures.
Indeed, for the models with larger silicon grain sizes this approach works successfully
and significant crystallites can be seen. However, for the models with too small silicon
grains no or almost no crystallization is observed. To understand this behavior we used
a thermodynamically based model. Based on interface energies, we evaluated under
which grain sizes it is favorable for the silicon to crystallize and under which conditions
it prefers to remain in the amorphous state and found that a grain radius of more than
9 Å seems to be necessary for crystallization.





8Outlook

Although this thesis provided significant achievements in understanding the complex
structure of silicon monoxide and the shock behavior of silica under pressure, there are
still unsolved questions. In the following we will discuss some of these and possible
future work.

8.1 More accurate machine-learning potentials

All our current machine learning interatomic potentials (MLIP) are short-ranged only.
However, since silica is an ionic system, long-range interactions may be necessary for an
even more accurate description. This could solve the issue of the low height of the first
sharp diffraction peak (FSDP) in the structure factor (see Section 4.3). In the case of pure
MLIPs, equivariant message-passing graph neural networks have become increasingly
popular in recent years.324,325 These potentials incorporate semi-local information into
the energy computation by representing the atoms as a graph network and allowing
messages to pass over larger distances. However, even these potentials have a cutoff
that limits the interaction range.

Other approaches include the explicit treatment of charges such as the 3rd genera-
tion and 4th generation neural network potentials (NNP) by Behler and coworkers.234,257

The advantage of these models is that they can actually describe the differences in charge
states of silicon within pure silicon and silica. Moreover, there are now graph neural
networks that directly incorporate charge.326 Using these approaches with the cur-
rent database could further increase the accuracy of the potential compared to the
corresponding density functional theory (DFT) data and allow even better quantitative
results.

Finally, another option would be to improve the quality of the underlying training
data. Currently, the strongly constrained and appropriately normed (SCAN) exchange-
correlation functional is probably an excellent choice for silica. However, it is only an
approximation of the exact potential energy surface. In the future, it may be possible
to generate a more accurate database using machine-learned exchange-correlation
functionals.327
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8.2 High-pressure simulations

Shock simulations of quartz and amorphous silica have provided significant insight into
the behavior of silica at high pressures. However, there are other polymorphs of silica
that are of interest under compression. Cristobalite shows a very interesting behavior,
as it undergoes several phase transitions to cristobalite II,328 cristobalite X-I,329,330

and seifertite.329,331 Other experiments even suggested that seifertite appears at a
pressure of 11 GPa,332 well below its stability pressure suggesting that there is a direct
transition path. Molecular dynamics (MD) simulations of this compression could be
extremely helpful in understanding possible transitions. Finally, they could further help
to understand why seifertite has been observed in meteorites that are thought to have
experienced shock pressures lower than those required for seifertite formation.332–336

For a better understanding of the Earth’s interior the MLIP could also be extended
to include other elements. For example, both iron and magnesium may be relevant,
and first interatomic potentials for these systems (e.g. Fe–Si–O337 and Mg–Si–O338 )
have been developed. Nevertheless, a further extension for a complete description of the
system to including impurities and defects could be highly interesting.

8.3 Silicon monoxide

In this work, we presented for the first time atomic scale models of silicon monoxide that
take into account the nanostructure of this material. We found that by using different
quench rates, we can generate different nanostructures with different grain sizes. It
would be very interesting to reproduce this experimentally by using different deposition
rates and temperature gradients. If this were the case, it would be a first step towards
tuning the properties of silicon monoxide.

Building on this, since silicon monoxide is a promising material for battery applica-
tions, extending the potential to describe lithium is a promising step. Understanding
the behavior of lithium, such as the diffusion, in silicon monoxide could further advance
the use of this material in batteries. Moreover, by combining simulation studies and
experiments, it may be possible to tune the grain size for optimal use in batteries.
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[69] R. Martoňák, D. Donadio, A. R. Oganov, and M. Parrinello, Crystal structure transformations in SiO2
from classical and ab initio metadynamics, Nature Materials 5, 623–626 (2006).

[70] C. Campañá, M. H. Müser, J. S. Tse, D. Herzbach, and P. Schöffel, Irreversibility of the pressure-
induced phase transition of quartz and the relation between three hypothetical post-quartz phases,
Physical Review B 70, 224101 (2004).

[71] J. Haines, J. M. Léger, F. Gorelli, and M. Hanfland, Crystalline Post-Quartz Phase in Silica at High
Pressure, Physical Review Letters 87, 155503 (2001).

[72] D. M. Teter, R. J. Hemley, G. Kresse, and J. Hafner, High Pressure Polymorphism in Silica, Physical
Review Letters 80, 2145–2148 (1998).

[73] T. Tsuchiya and S. Nakagawa, A new high-pressure structure of SiO2 directly converted from α-quartz
under nonhydrostatic compression, Journal of Physics: Condensed Matter 34, 304003 (2022).

[74] C. Otzen, H.-P. Liermann, and F. Langenhorst, A New Mechanism for Stishovite Formation During
Rapid Compression of Quartz and Implications for Asteroid Impacts, Journal of Geophysical
Research: Planets 129, e2023JE008126 (2024).

[75] L.-G. Liu, W. A. Bassett, and J. Sharry, New high-pressure modifications of GeO2 and SiO2, Journal
of Geophysical Research: Solid Earth 83, 2301–2305 (1978).

[76] T. Sekine, M. Akaishi, and N. Setaka, Fe2N-type SiO2 from shocked quartz, Geochimica et Cos-
mochimica Acta 51, 379–381 (1987).

[77] V. P. Prakapenka, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, High pressure induced
phase transformation of SiO2 and GeO2: Difference and similarity, Journal of Physics and
Chemistry of Solids 65, 1537–1545 (2004).

[78] S. J. Tracy, S. J. Turneaure, and T. S. Duffy, In situ X-Ray Diffraction of Shock-Compressed Fused
Silica, Physical Review Letters 120, 135702 (2018).

[79] J. S. Tse, D. D. Klug, and Y. Le Page, Novel high pressure phase of silica, Physical Review Letters 69,
3647–3649 (1992).

[80] B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Force fields for silicas and aluminophosphates
based on ab initio calculations, Phys. Rev. Lett. 64, 1955–1958 (1990).

[81] Q. Y. Hu, J.-F. Shu, W. G. Yang, C. Park, M. W. Chen, T. Fujita, H.-K. Mao, and H. W. Sheng, Stability
limits and transformation pathways of α -quartz under high pressure, Physical Review B 95,
104112 (2017).

[82] J. Badro, D. M. Teter, R. T. Downs, P. Gillet, R. J. Hemley, and J.-L. Barrat, Theoretical study of a
five-coordinated silica polymorph, Physical Review B 56, 5797–5806 (1997).

[83] R. M. Wentzcovitch, C. Da Silva, J. R. Chelikowsky, and N. Binggeli, A New Phase and Pressure
Induced Amorphization in Silica, Physical Review Letters 80, 2149–2152 (1998).

[84] H. Schnöckel and R. Köppe, Reactions with Matrix-Isolated SiO Molecules, Silicon Chemistry, John
Wiley & Sons, Ltd, 2003, pp. 20–32.

http://dx.doi.org/10.1080/08957959608201422
http://dx.doi.org/10.1080/08957959608201422
http://dx.doi.org/10.1103/PhysRevB.73.094304
http://dx.doi.org/10.1103/PhysRevB.73.094304
http://dx.doi.org/10.1038/nmat1696
http://dx.doi.org/10.1038/nmat1696
http://dx.doi.org/10.1103/PhysRevB.70.224101
http://dx.doi.org/10.1103/PhysRevB.70.224101
http://dx.doi.org/10.1103/PhysRevLett.87.155503
http://dx.doi.org/10.1103/PhysRevLett.87.155503
http://dx.doi.org/10.1103/PhysRevLett.80.2145
http://dx.doi.org/10.1088/1361-648X/ac6f3a
http://dx.doi.org/10.1088/1361-648X/ac6f3a
http://dx.doi.org/10.1029/2023JE008126
http://dx.doi.org/10.1029/2023JE008126
http://dx.doi.org/10.1029/JB083iB05p02301
http://dx.doi.org/10.1016/0016-7037(87)90250-X
http://dx.doi.org/10.1016/j.jpcs.2003.12.019
http://dx.doi.org/10.1016/j.jpcs.2003.12.019
http://dx.doi.org/10.1103/PhysRevLett.120.135702
http://dx.doi.org/10.1103/PhysRevLett.120.135702
http://dx.doi.org/10.1103/PhysRevLett.69.3647
http://dx.doi.org/10.1103/PhysRevLett.64.1955
http://dx.doi.org/10.1103/PhysRevLett.64.1955
http://dx.doi.org/10.1103/PhysRevB.95.104112
http://dx.doi.org/10.1103/PhysRevB.95.104112
http://dx.doi.org/10.1103/PhysRevB.56.5797
http://dx.doi.org/10.1103/PhysRevB.56.5797
http://dx.doi.org/10.1103/PhysRevLett.80.2149
http://dx.doi.org/10.1103/PhysRevLett.80.2149
http://dx.doi.org/10.1002/9783527610761.ch2


112 Bibliography

[85] D. Poat, Properties of pulse-deposited thin-film silicon monoxide capacitors, Thin Solid Films 4,
123–136 (1969).

[86] C. G. Granqvist and A. Hjortsberg, Surfaces for radiative cooling: Silicon monoxide films on alu-
minum, Applied Physics Letters 36, 139–141 (1980).

[87] G. Hass, Preparation, Structure, and Applications of Thin Films of Silicon Monoxide and Titanium
Dioxide, Journal of the American Ceramic Society 33, 353–360 (1950).

[88] Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, and L. Mai, Silicon oxides: A promising
family of anode materials for lithium-ion batteries, Chemical Society Reviews 48, 285–309 (2019).

[89] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie, and O. Yamamoto, SiOx-based anodes for
secondary lithium batteries, Solid State Ionics 152–153, 125–129 (2002).

[90] L. Zhang, J. Deng, L. Liu, W. Si, S. Oswald, L. Xi, M. Kundu, G. Ma, T. Gemming, S. Baunack, F. Ding,
C. Yan, and O. G. Schmidt, Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as
Stable Anodes for Lithium Ion Batteries, Advanced Materials 26, 4527–4532 (2014).

[91] C. F. Mabery, The composition of certain products from the Cowles electrical furnace, Journal of the
Franklin Institute 122, 271–274 (1886).

[92] G. W. Brady, A Study of Amorphous SiO, The Journal of Physical Chemistry 63, 1119–1120 (1959).

[93] R. J. Temkin, An analysis of the radial distribution function of SiOx, Journal of Non-Crystalline
Solids 17, 215–230 (1975).

[94] H. R. Philipp, Optical and bonding model for non-crystalline SiOx and SiOxNy materials, Journal of
Non-Crystalline Solids 8–10, 627–632 (1972).

[95] H. N. Potter, Silicon Monoxide, Transcript Electrochemical Society 12, 191–214 (1907).

[96] S. C. H. Lin and M. Joshi, Structure of Silicon Monoxide, Journal of The Electrochemical Society 116,
1740 (1969).

[97] M. V. Coleman and D. J. D. Thomas, The Structure of Silicon Oxide Films, physica status solidi (b)
22, 593–602 (1967).

[98] R. Engelke, Th. Roy, H.-G. Neumann, and K. Hübner, Chemical bond and related properties of SiO2,
Physica Status Solidi (a) 65, 271–280 (1981).

[99] J. A. Yasaitis and R. Kaplow, Structure of Amorphous Silicon Monoxide, Journal of Applied Physics
43, 995–1000 (1972).

[100] A. Hohl, T. Wieder, P. van Aken, T. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer,
and H. Fuess, An interface clusters mixture model for the structure of amorphous silicon monoxide
(SiO), Journal of Non-Crystalline Solids 320, 255–280 (2003).

[101] K. Schulmeister and W. Mader, TEM investigation on the structure of amorphous silicon monoxide,
Journal of Non-Crystalline Solids 320, 143–150 (2003).

[102] A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y. Tan, T. Fujita, and M. Chen, Atomic-scale
disproportionation in amorphous silicon monoxide, Nature Communications 7, 11591 (2016).

[103] S. C. Jung, H.-J. Kim, J.-H. Kim, and Y.-K. Han, Atomic-Level Understanding toward a High-Capacity
and High-Power Silicon Oxide (SiO) Material, The Journal of Physical Chemistry C 120, 886–892
(2016).

http://dx.doi.org/10.1016/0040-6090(69)90043-1
http://dx.doi.org/10.1063/1.91406
http://dx.doi.org/10.1063/1.91406
http://dx.doi.org/10.1111/j.1151-2916.1950.tb14151.x
http://dx.doi.org/10.1111/j.1151-2916.1950.tb14151.x
http://dx.doi.org/10.1039/C8CS00441B
http://dx.doi.org/10.1039/C8CS00441B
http://dx.doi.org/10.1016/S0167-2738(02)00362-4
http://dx.doi.org/10.1016/S0167-2738(02)00362-4
http://dx.doi.org/10.1002/adma.201401194
http://dx.doi.org/10.1002/adma.201401194
http://dx.doi.org/10.1016/0016-0032(86)90013-X
http://dx.doi.org/10.1021/j150577a020
http://dx.doi.org/10.1016/0022-3093(75)90052-6
http://dx.doi.org/10.1016/0022-3093(72)90202-5
http://dx.doi.org/10.1149/1.2411690
http://dx.doi.org/10.1002/pssb.19670220231
http://dx.doi.org/10.1002/pssa.2210650132
http://dx.doi.org/10.1063/1.1661320
http://dx.doi.org/10.1016/S0022-3093(03)00031-0
http://dx.doi.org/10.1016/S0022-3093(03)00031-0
http://dx.doi.org/10.1016/S0022-3093(03)00029-2
http://dx.doi.org/10.1038/ncomms11591
http://dx.doi.org/10.1038/ncomms11591
http://dx.doi.org/10.1021/acs.jpcc.5b10589
http://dx.doi.org/10.1021/acs.jpcc.5b10589


Bibliography 113

[104] J. Moon, Tailoring the oxygen content in lithiated silicon oxide for lithium-ion batteries, International
Journal of Energy Research 45, 7315–7325 (2021).

[105] C.-Y. Chou and G. S. Hwang, Lithiation Behavior of Silicon-Rich Oxide (SiO1/3 ): A First-Principles
Study, Chemistry of Materials 25, 3435–3440 (2013).

[106] S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, First-Principles Interatomic Potential of Silica
Applied to Molecular Dynamics, Phys. Rev. Lett. 61, 869–872 (1988).

[107] E. Flikkema and S. Bromley, A new interatomic potential for nanoscale silica, Chemical Physics
Letters 378, 622–629 (2003).

[108] A. Carré, J. Horbach, S. Ispas, and W. Kob, New fitting scheme to obtain effective potential from
Car-Parrinello molecular-dynamics simulations: Application to silica, EPL (Europhysics Letters)
82, 17001 (2008).

[109] J. Q. Broughton, C. A. Meli, P. Vashishta, and R. K. Kalia, Direct atomistic simulation of quartz
crystal oscillators: Bulk properties and nanoscale devices, Phys. Rev. B 56, 611–618 (1997).

[110] K. de Boer, A. Jansen, and R. van Santen, Ab initio approach to the development of interatomic
potentials for the shell model of silica polymorphs, Chemical Physics Letters 223, 46–53 (1994).

[111] P. Tangney and S. Scandolo, An ab initio parametrized interatomic force field for silica, The Journal
of Chemical Physics 117, 8898–8904 (2002).

[112] L. Huang and J. Kieffer, Molecular dynamics study of cristobalite silica using a charge transfer
three-body potential: Phase transformation and structural disorder, The Journal of Chemical
Physics 118, 1487–1498 (2003).

[113] E. Demiralp, T. Çağin, and W. A. Goddard, Morse Stretch Potential Charge Equilibrium Force Field
for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass, Phys.
Rev. Lett. 82, 1708–1711 (1999).

[114] T.-R. Shan, B. D. Devine, J. M. Hawkins, A. Asthagiri, S. R. Phillpot, and S. B. Sinnott, Second-
generation charge-optimized many-body potential for Si/SiO2 and amorphous silica, Physical
Review B 82, 235302 (2010).

[115] A. Yasukawa, Using An Extended Tersoff Interatomic Potential to Analyze The Static-Fatigue Strength
of SiO2 under Atmospheric Influence, JSME international journal. Ser. A, Mechanics and
material engineering 39, 313–320 (1996).

[116] J. Yu, S. B. Sinnott, and S. R. Phillpot, Charge optimized many-body potential for the Si/SiO2 system,
Physical Review B 75, 085311 (2007).

[117] S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani, Interatomic potential for Si–O systems using
Tersoff parameterization, Computational Materials Science 39, 334–339 (2007).

[118] T. Watanabe, D. Yamasaki, K. Tatsumura, and I. Ohdomari, Improved interatomic potential for
stressed Si, O mixed systems, Applied Surface Science 234, 207–213 (2004).

[119] T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino, and I. Ohdomari, Novel Interatomic Potential
Energy Function for Si, O Mixed Systems, Japanese Journal of Applied Physics 38, L366–L369
(1999).

[120] A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A. Goddard, ReaxFFSiO
Reactive Force Field for Silicon and Silicon Oxide Systems, The Journal of Physical Chemistry A
107, 3803–3811 (2003).

http://dx.doi.org/10.1002/er.6314
http://dx.doi.org/10.1021/cm401303n
http://dx.doi.org/10.1021/cm401303n
http://dx.doi.org/10.1103/PhysRevLett.61.869
http://dx.doi.org/10.1103/PhysRevLett.61.869
http://dx.doi.org/10.1016/j.cplett.2003.07.017
http://dx.doi.org/10.1209/0295-5075/82/17001
http://dx.doi.org/10.1209/0295-5075/82/17001
http://dx.doi.org/10.1103/PhysRevB.56.611
http://dx.doi.org/10.1103/PhysRevB.56.611
http://dx.doi.org/10.1016/0009-2614(94)00406-4
http://dx.doi.org/10.1016/0009-2614(94)00406-4
http://dx.doi.org/10.1063/1.1513312
http://dx.doi.org/10.1063/1.1529684
http://dx.doi.org/10.1063/1.1529684
http://dx.doi.org/10.1103/PhysRevLett.82.1708
http://dx.doi.org/10.1103/PhysRevLett.82.1708
http://dx.doi.org/10.1103/PhysRevB.82.235302
http://dx.doi.org/10.1103/PhysRevB.82.235302
http://dx.doi.org/10.1299/jsmea1993.39.3_313
http://dx.doi.org/10.1299/jsmea1993.39.3_313
http://dx.doi.org/10.1103/PhysRevB.75.085311
http://dx.doi.org/10.1016/j.commatsci.2006.06.010
http://dx.doi.org/10.1016/j.commatsci.2006.06.010
http://dx.doi.org/10.1016/j.apsusc.2004.05.035
http://dx.doi.org/10.1016/j.apsusc.2004.05.035
http://dx.doi.org/10.1143/JJAP.38.L366
http://dx.doi.org/10.1143/JJAP.38.L366
http://dx.doi.org/10.1021/jp0276303
http://dx.doi.org/10.1021/jp0276303


114 Bibliography

[121] B. P. Feuston and S. H. Garofalini, Empirical three-body potential for vitreous silica, The Journal of
Chemical Physics 89, 5818–5824 (1988).

[122] Z. Jiang and R. A. Brown, Modelling oxygen defects in silicon crystals using an empirical interatomic
potential, Chemical Engineering Science 49, 2991–3000 (1994).

[123] A. Pedone, G. Malavasi, M. C. Menziani, A. N. Cormack, and U. Segre, A New Self-Consistent
Empirical Interatomic Potential Model for Oxides, Silicates, and Silica-Based Glasses, J. Phys.
Chem. B 110, 11780–11795 (2006).

[124] J. R. Kermode, S. Cereda, P. Tangney, and A. De Vita, A first principles based polarizable O(N)
interatomic force field for bulk silica, The Journal of Chemical Physics 133, 094102 (2010).

[125] S. Trillot, J. Lam, S. Ispas, A. K. A. Kandy, M. E. Tuckerman, N. Tarrat, and M. Benoit, Elaboration
of a neural-network interatomic potential for silica glass and melt, Computational Materials
Science 236, 112848 (2024).

[126] I. A. Balyakin, S. V. Rempel, R. E. Ryltsev, and A. A. Rempel, Deep machine learning interatomic
potential for liquid silica, Physical Review E 102, 052125 (2020).

[127] A. Erlebach, P. Nachtigall, and L. Grajciar, Accurate large-scale simulations of siliceous zeolites by
neural network potentials, npj Computational Materials 8, 1–12 (2022).

[128] I. S. Novikov and A. V. Shapeev, Improving accuracy of interatomic potentials: More physics or more
data? A case study of silica, Materials Today Communications 18, 74–80 (2019).

[129] K. Zongo, H. Sun, C. Ouellet-Plamondon, and L. K. Béland, A unified moment tensor potential for
silicon, oxygen, and silica, arXiv:2311.15170 (2023).

[130] S. Sundararaman, L. Huang, S. Ispas, and W. Kob, New optimization scheme to obtain interaction
potentials for oxide glasses, The Journal of Chemical Physics 148, 194504 (2018).

[131] M. J. Sanders, M. Leslie, and C. R. A. Catlow, Interatomic potentials for SiO2, Journal of the Chemical
Society, Chemical Communications, 1271–1273 (1984).

[132] H. Liu, Y. Li, Z. Fu, K. Li, and M. Bauchy, Exploring the landscape of Buckingham potentials for
silica by machine learning: Soft vs hard interatomic forcefields, The Journal of Chemical Physics
152, 051101 (2020).

[133] Y. Qi, X. Guo, H. Wang, S. Zhang, M. Li, P. Zhou, and D. Guo, Reversible densification and cooperative
atomic movement induced “compaction” in vitreous silica: A new sight from deep neural network
interatomic potentials, Journal of Materials Science 58, 9515–9532 (2023).

[134] S. Takamoto, T. Kumagai, T. Yamasaki, T. Ohno, C. Kaneta, A. Hatano, and S. Izumi, Charge-transfer
interatomic potential for investigation of the thermal-oxidation growth process of silicon, Journal
of Applied Physics 120, 165109 (2016).

[135] E. Lee, K.-R. Lee, M. I. Baskes, and B.-J. Lee, A modified embedded-atom method interatomic
potential for ionic systems: 2NNMEAM+Qeq, Physical Review B 93, 144110 (2016).

[136] L. Cvitkovich, F. Fehringer, C. Wilhelmer, D. Milardovich, D. Waldhör, and T. Grasser, Machine
Learning Force Field for Thermal Oxidation of Silicon, arXiv:2405.13635 (2024).

[137] L. C. Erhard, J. Rohrer, K. Albe, and V. L. Deringer, A machine-learned interatomic potential for
silica and its relation to empirical models, npj Computational Materials 8, 1–12 (2022).

http://dx.doi.org/10.1063/1.455531
http://dx.doi.org/10.1016/0009-2509(94)E0116-8
http://dx.doi.org/10.1016/0009-2509(94)E0116-8
http://dx.doi.org/10.1021/jp0611018
http://dx.doi.org/10.1021/jp0611018
http://dx.doi.org/10.1063/1.3475565
http://dx.doi.org/10.1063/1.3475565
http://dx.doi.org/10.1016/j.commatsci.2024.112848
http://dx.doi.org/10.1016/j.commatsci.2024.112848
http://dx.doi.org/10.1103/PhysRevE.102.052125
http://dx.doi.org/10.1103/PhysRevE.102.052125
http://dx.doi.org/10.1038/s41524-022-00865-w
http://dx.doi.org/10.1038/s41524-022-00865-w
http://dx.doi.org/10.1016/j.mtcomm.2018.11.008
http://dx.doi.org/10.1016/j.mtcomm.2018.11.008
http://dx.doi.org/10.48550/arXiv.2311.15170
http://dx.doi.org/10.48550/arXiv.2311.15170
http://dx.doi.org/10.1063/1.5023707
http://dx.doi.org/10.1063/1.5023707
http://dx.doi.org/10.1039/C39840001271
http://dx.doi.org/10.1063/1.5136041
http://dx.doi.org/10.1063/1.5136041
http://dx.doi.org/10.1007/s10853-023-08599-w
http://dx.doi.org/10.1007/s10853-023-08599-w
http://dx.doi.org/10.1007/s10853-023-08599-w
http://dx.doi.org/10.1063/1.4965863
http://dx.doi.org/10.1063/1.4965863
http://dx.doi.org/10.1103/PhysRevB.93.144110
http://dx.doi.org/10.1103/PhysRevB.93.144110
http://dx.doi.org/10.1038/s41524-022-00768-w
http://dx.doi.org/10.1038/s41524-022-00768-w


Bibliography 115

[138] L. C. Erhard, J. Rohrer, K. Albe, and V. L. Deringer, Modelling atomic and nanoscale structure in
the silicon–oxygen system through active machine learning, Nature Communications 15, 1927
(2024).

[139] A. Koneru, H. Chan, S. Manna, T. D. Loeffler, D. Dhabal, A. A. Bertolazzo, V. Molinero, and S. K. R. S.
Sankaranarayanan, Multi-reward reinforcement learning based development of inter-atomic
potential models for silica, npj Computational Materials 9, 1–13 (2023).

[140] K. Kobayashi, M. Okumura, H. Nakamura, M. Itakura, M. Machida, S. Urata, and K. Suzuya,
Machine learning molecular dynamics reveals the structural origin of the first sharp diffraction
peak in high-density silica glasses, Scientific Reports 13, 18721 (2023).

[141] E. B. Tadmor and R. E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques,
Cambridge University Press, November 2011.

[142] D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms to applications,
Elsevier, 2023.

[143] S. Sundararaman, L. Huang, S. Ispas, and W. Kob, New interaction potentials for alkali and alkaline-
earth aluminosilicate glasses, The Journal of Chemical Physics 150, 154505 (2019).

[144] Y. Jia, H. Zhang, M. K. Shukla, S. Larson, S. Nouranian, A. M. Rajendran, and S. Jiang, Mechanical
behavior of alpha quartz with void defects under tension: A molecular dynamics study using
different interatomic potentials, Modelling and Simulation in Materials Science and Engineering
32, 025005 (2024).

[145] A. K. Rappe and W. A. Goddard, Charge equilibration for molecular dynamics simulations, J. Phys.
Chem. 95, 3358–3363 (1991).

[146] T.-R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot, Charge-optimized many-body
potential for the hafnium/hafnium oxide system, Physical Review B 81, 125328 (2010).

[147] K. de Boer, A. P. J. Jansen, R. A. van Santen, G. W. Watson, and S. C. Parker, Free-energy calculations
of thermodynamic, vibrational, elastic, and structural properties of \ensuremath{\alpha}-quartz
at variable pressures and temperatures, Physical Review B 54, 826–835 (1996).

[148] I. Saika-Voivod, F. Sciortino, T. Grande, and P. H. Poole, Phase diagram of silica from computer
simulation, Physical Review E 70, 061507 (2004).

[149] D. Herzbach, K. Binder, and M. H. Müser, Comparison of model potentials for molecular-dynamics
simulations of silica, The Journal of Chemical Physics 123, 124711 (2005).

[150] B. J. Cowen and M. S. El-Genk, On force fields for molecular dynamics simulations of crystalline
silica, Computational Materials Science 107, 88–101 (2015).

[151] B. J. Cowen and M. S. El-Genk, Bond-order reactive force fields for molecular dynamics simulations
of crystalline silica, Computational Materials Science 111, 269–276 (2016).

[152] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in ’t
Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott,
and S. J. Plimpton, LAMMPS - a flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales, Computer Physics Communications 271, 108171 (2022).

[153] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl, GROMACS:
High performance molecular simulations through multi-level parallelism from laptops to super-
computers, SoftwareX 1–2, 19–25 (2015).

http://dx.doi.org/10.1038/s41467-024-45840-9
http://dx.doi.org/10.1038/s41467-024-45840-9
http://dx.doi.org/10.1038/s41524-023-01074-9
http://dx.doi.org/10.1038/s41524-023-01074-9
http://dx.doi.org/10.1038/s41598-023-44732-0
http://dx.doi.org/10.1038/s41598-023-44732-0
http://dx.doi.org/10.1063/1.5079663
http://dx.doi.org/10.1063/1.5079663
http://dx.doi.org/10.1088/1361-651X/ad1cd0
http://dx.doi.org/10.1088/1361-651X/ad1cd0
http://dx.doi.org/10.1088/1361-651X/ad1cd0
http://dx.doi.org/10.1021/j100161a070
http://dx.doi.org/10.1103/PhysRevB.81.125328
http://dx.doi.org/10.1103/PhysRevB.81.125328
http://dx.doi.org/10.1103/PhysRevB.54.826
http://dx.doi.org/10.1103/PhysRevB.54.826
http://dx.doi.org/10.1103/PhysRevB.54.826
http://dx.doi.org/10.1103/PhysRevE.70.061507
http://dx.doi.org/10.1103/PhysRevE.70.061507
http://dx.doi.org/10.1063/1.2038747
http://dx.doi.org/10.1063/1.2038747
http://dx.doi.org/10.1016/j.commatsci.2015.05.018
http://dx.doi.org/10.1016/j.commatsci.2015.05.018
http://dx.doi.org/10.1016/j.commatsci.2015.09.042
http://dx.doi.org/10.1016/j.commatsci.2015.09.042
http://dx.doi.org/10.1016/j.cpc.2021.108171
http://dx.doi.org/10.1016/j.cpc.2021.108171
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1016/j.softx.2015.06.001


116 Bibliography

[154] V. L. Deringer, M. A. Caro, and G. Csányi, Machine Learning Interatomic Potentials as Emerging
Tools for Materials Science, Adv. Mater. 31, 1902765 (2019).

[155] J. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces, Phys. Rev. Lett. 98, 146401 (2007).

[156] R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Physical
Review B 99, 014104 (2019).

[157] A. V. Shapeev, Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials,
Multiscale Model. Simul. 14, 1153–1173 (2016).

[158] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Gaussian Approximation Potentials: The
Accuracy of Quantum Mechanics, without the Electrons, Phys. Rev. Lett. 104, 136403 (2010).

[159] H. Wang, L. Zhang, J. Han, and W. E, DeePMD-kit: A deep learning package for many-body potential
energy representation and molecular dynamics, Computer Physics Communications 228, 178–184
(2018).

[160] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller, SchNet – A deep
learning architecture for molecules and materials, The Journal of Chemical Physics 148, 241722
(2018).

[161] A. Singraber, T. Morawietz, J. Behler, and C. Dellago, Parallel Multistream Training of High-
Dimensional Neural Network Potentials, Journal of Chemical Theory and Computation 15,
3075–3092 (2019).

[162] A. Singraber, J. Behler, and C. Dellago, Library-Based LAMMPS Implementation of High-
Dimensional Neural Network Potentials, Journal of Chemical Theory and Computation 15,
1827–1840 (2019).

[163] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University
Press, Cambridge, 2004.

[164] J. Kohanoff, Electronic Structure Calculations for Solids and Molecules: Theory and Computational
Methods, Cambridge University Press, Cambridge, 2006.

[165] S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics
52, 255–268 (1984).

[166] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31, 1695–
1697 (1985).

[167] W. Shinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics
simulation under constant stress, Physical Review B 69, 134103 (2004).

[168] M. E. Tuckerman, J. Alejandre, R. López-Rendón, A. L. Jochim, and G. J. Martyna, A Liouville-
operator derived measure-preserving integrator for molecular dynamics simulations in the
isothermal–isobaric ensemble, Journal of Physics A: Mathematical and General 39, 5629 (2006).

[169] R. Ravelo, B. L. Holian, T. C. Germann, and P. S. Lomdahl, Constant-stress Hugoniostat method for
following the dynamical evolution of shocked matter, Physical Review B 70, 014103 (2004).

[170] H. J. Melosh, Impact cratering : A geologic process, New York : Oxford University Press ; Oxford :
Clarendon Press (1989).

[171] J. W. Forbes, Shock Wave Compression of Condensed Matter: A Primer, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

http://dx.doi.org/10.1002/adma.201902765
http://dx.doi.org/10.1002/adma.201902765
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevB.99.014104
http://dx.doi.org/10.1137/15M1054183
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1016/j.cpc.2018.03.016
http://dx.doi.org/10.1016/j.cpc.2018.03.016
http://dx.doi.org/10.1063/1.5019779
http://dx.doi.org/10.1063/1.5019779
http://dx.doi.org/10.1021/acs.jctc.8b01092
http://dx.doi.org/10.1021/acs.jctc.8b01092
http://dx.doi.org/10.1021/acs.jctc.8b00770
http://dx.doi.org/10.1021/acs.jctc.8b00770
http://dx.doi.org/10.1080/00268978400101201
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://dx.doi.org/10.1103/PhysRevB.69.134103
http://dx.doi.org/10.1103/PhysRevB.69.134103
http://dx.doi.org/10.1088/0305-4470/39/19/S18
http://dx.doi.org/10.1088/0305-4470/39/19/S18
http://dx.doi.org/10.1088/0305-4470/39/19/S18
http://dx.doi.org/10.1103/PhysRevB.70.014103
http://dx.doi.org/10.1103/PhysRevB.70.014103


Bibliography 117

[172] S. Melchionna, G. Ciccotti, and B. Lee Holian, Hoover NPT dynamics for systems varying in shape
and size, Molecular Physics 78, 533–544 (1993).

[173] W. G. Hoover, Constant-pressure equations of motion, Physical Review A 34, 2499–2500 (1986).

[174] J.-B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P. S. Lomdahl, T. C. Germann, and B. L. Holian,
Uniaxial Hugoniostat: A method for atomistic simulations of shocked materials, Physical Review
E 63, 016121 (2000).

[175] J. M. D. Lane, J. P. Koski, K. A. Jones, and T. J. Vogler, Effect of initial temperature on compaction
and strength of porous silica under shock compression, Physical Review B 106, 094102 (2022).

[176] F. Birch, Finite Elastic Strain of Cubic Crystals, Physical Review 71, 809–824 (1947).

[177] T. Katsura and Y. Tange, A Simple Derivation of the Birch–Murnaghan Equations of State (EOSs)
and Comparison with EOSs Derived from Other Definitions of Finite Strain, Minerals 9, 745
(2019).

[178] A. Togo, First-principles Phonon Calculations with Phonopy and Phono3py, Journal of the Physical
Society of Japan 92, 012001 (2023).

[179] A. Togo, L. Chaput, T. Tadano, and I. Tanaka, Implementation strategies in phonopy and phono3py,
Journal of Physics: Condensed Matter 35, 353001 (2023).

[180] D. Frenkel and A. J. C. Ladd, New Monte Carlo method to compute the free energy of arbitrary solids.
Application to the fcc and hcp phases of hard spheres, The Journal of Chemical Physics 81,
3188–3193 (1984).

[181] S. Menon, Y. Lysogorskiy, J. Rogal, and R. Drautz, Automated free-energy calculation from atomistic
simulations, Physical Review Materials 5, 103801 (2021).

[182] M. de Koning, Optimizing the driving function for nonequilibrium free-energy calculations in the
linear regime: A variational approach, The Journal of Chemical Physics 122, 104106 (2005).

[183] D. Wallace, Thermodynamics of Crystals, Dover Books on Physics, Dover Publications, 1998.

[184] G. W. Ford and G. E. Uhlenbeck, The theory of linear graphs with application to the theory of the
virial development of the properties of gases, Studies in statistical mechanics 1 (1962).

[185] R. Paula Leite, R. Freitas, R. Azevedo, and M. de Koning, The Uhlenbeck-Ford model: Exact virial
coefficients and application as a reference system in fluid-phase free-energy calculations, The
Journal of Chemical Physics 145, 194101 (2016).

[186] M. de Koning, A. Antonelli, and S. Yip, Optimized Free-Energy Evaluation Using a Single Reversible-
Scaling Simulation, Physical Review Letters 83, 3973–3977 (1999).

[187] D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson, and G. Henkelman, A generalized solid-state
nudged elastic band method, The Journal of Chemical Physics 136, 074103 (2012).

[188] H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged elastic band method for finding minimum
energy paths of transitions, Classical and Quantum Dynamics in Condensed Phase Simulations
(LERICI, Villa Marigola), WORLD SCIENTIFIC, June 1998, pp. 385–404.

[189] P. Xiao, J.-G. Cheng, J.-S. Zhou, J. B. Goodenough, and G. Henkelman, Mechanism of the CaIrO3
post-perovskite phase transition under pressure, Physical Review B 88, 144102 (2013).

[190] A. Ghasemi, P. Xiao, and W. Gao, Nudged elastic band method for solid-solid transition under finite
deformation, The Journal of Chemical Physics 151, 054110 (2019).

http://dx.doi.org/10.1080/00268979300100371
http://dx.doi.org/10.1080/00268979300100371
http://dx.doi.org/10.1103/PhysRevA.34.2499
http://dx.doi.org/10.1103/PhysRevE.63.016121
http://dx.doi.org/10.1103/PhysRevB.106.094102
http://dx.doi.org/10.1103/PhysRevB.106.094102
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.3390/min9120745
http://dx.doi.org/10.3390/min9120745
http://dx.doi.org/10.7566/JPSJ.92.012001
http://dx.doi.org/10.1088/1361-648X/acd831
http://dx.doi.org/10.1063/1.448024
http://dx.doi.org/10.1063/1.448024
http://dx.doi.org/10.1103/PhysRevMaterials.5.103801
http://dx.doi.org/10.1103/PhysRevMaterials.5.103801
http://dx.doi.org/10.1063/1.1860556
http://dx.doi.org/10.1063/1.1860556
http://dx.doi.org/10.1063/1.4967775
http://dx.doi.org/10.1063/1.4967775
http://dx.doi.org/10.1103/PhysRevLett.83.3973
http://dx.doi.org/10.1103/PhysRevLett.83.3973
http://dx.doi.org/10.1063/1.3684549
http://dx.doi.org/10.1063/1.3684549
http://dx.doi.org/10.1142/9789812839664_0016
http://dx.doi.org/10.1142/9789812839664_0016
http://dx.doi.org/10.1103/PhysRevB.88.144102
http://dx.doi.org/10.1103/PhysRevB.88.144102
http://dx.doi.org/10.1063/1.5113716
http://dx.doi.org/10.1063/1.5113716


118 Bibliography

[191] W. Gao, https: // github. com/ Gao-Group/ FD-NEB , 2023.

[192] R. Terrell, S. Chill, P. Xiao, J. Duncan, S. Stauffer, R. Bandy, and J. Janssen, https: // theory. cm.
utexas. edu/ tsase/ .

[193] P. Debye, Zerstreuung von Röntgenstrahlen, Annalen der Physik 351, 809–823 (1915).

[194] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visual-
ization Tool, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).

[195] A. Leonardi and D. L. Bish, High-performance powder diffraction pattern simulation for large-scale
atomistic models via full-precision pair distribution function computation, Journal of Applied
Crystallography 49, 1593–1608 (2016).

[196] T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials,
Newnes, December 2012.

[197] Q. Mei, C. J. Benmore, S. Sen, R. Sharma, and J. L. Yarger, Intermediate range order in vitreous
silica from a partial structure factor analysis, Physical Review B 78, 144204 (2008).

[198] T. E. Faber and J. M. Ziman, A theory of the electrical properties of liquid metals, The Philosophical
Magazine: A Journal of Theoretical Experimental and Applied Physics 11, 153–173 (1965).

[199] P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O’Keefe, and B. T. M. Willis, Intensity of diffracted
intensities, International Tables for Crystallography Volume C: Mathematical, Physical and
Chemical Tables (E. Prince, ed.), Springer Netherlands, Dordrecht, 2004, pp. 554–595.

[200] L. C. Erhard, D. Utt, A. J. Klomp, and K. Albe, Crystal structure identification with 3D convolutional
neural networks with application to high-pressure phase transitions in SiO2, Modelling and
Simulation in Materials Science and Engineering 32, 065029 (2024).

[201] P. M. Larsen, S. Schmidt, and J. Schiøtz, Robust structural identification via polyhedral template
matching, Modelling and Simulation in Materials Science and Engineering 24, 055007 (2016).

[202] J. Dana. Honeycutt and H. C. Andersen, Molecular dynamics study of melting and freezing of small
Lennard-Jones clusters, The Journal of Physical Chemistry 91, 4950–4963 (1987).

[203] A. Ziletti, D. Kumar, M. Scheffler, and L. M. Ghiringhelli, Insightful classification of crystal structures
using deep learning, Nature Communications 9, 2775 (2018).

[204] A. Leitherer, A. Ziletti, and L. M. Ghiringhelli, Robust recognition and exploratory analysis of crystal
structures via Bayesian deep learning, Nature Communications 12, 6234 (2021).

[205] H. W. Chung, R. Freitas, G. Cheon, and E. J. Reed, Data-centric framework for crystal structure
identification in atomistic simulations using machine learning, Physical Review Materials 6,
043801 (2022).

[206] R. S. DeFever, C. Targonski, S. W. Hall, M. C. Smith, and S. Sarupria, A generalized deep learning
approach for local structure identification in molecular simulations, Chemical Science 10, 7503–
7515 (2019).

[207] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, Dynamic Graph CNN for
Learning on Point Clouds, ACM Transactions on Graphics 38, 146:1–146:12 (2019).

[208] H. d’Amour, W. Denner, and H. Schulz, Structure determination of α-quartz up to 68 x 108 Pa, Acta
Crystallographica Section B: Structural Crystallography and Crystal Chemistry 35, 550–555
(1979).

https://github.com/Gao-Group/FD-NEB
https://theory.cm.utexas.edu/tsase/
https://theory.cm.utexas.edu/tsase/
http://dx.doi.org/10.1002/andp.19153510606
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1107/S1600576716011729
http://dx.doi.org/10.1107/S1600576716011729
http://dx.doi.org/10.1103/PhysRevB.78.144204
http://dx.doi.org/10.1103/PhysRevB.78.144204
http://dx.doi.org/10.1080/14786436508211931
http://dx.doi.org/10.1107/97809553602060000600
http://dx.doi.org/10.1107/97809553602060000600
http://dx.doi.org/10.1088/1361-651X/ad64f3
http://dx.doi.org/10.1088/1361-651X/ad64f3
http://dx.doi.org/10.1088/0965-0393/24/5/055007
http://dx.doi.org/10.1088/0965-0393/24/5/055007
http://dx.doi.org/10.1021/j100303a014
http://dx.doi.org/10.1021/j100303a014
http://dx.doi.org/10.1038/s41467-018-05169-6
http://dx.doi.org/10.1038/s41467-018-05169-6
http://dx.doi.org/10.1038/s41467-021-26511-5
http://dx.doi.org/10.1038/s41467-021-26511-5
http://dx.doi.org/10.1103/PhysRevMaterials.6.043801
http://dx.doi.org/10.1103/PhysRevMaterials.6.043801
http://dx.doi.org/10.1039/C9SC02097G
http://dx.doi.org/10.1039/C9SC02097G
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1107/S056774087900412X


Bibliography 119

[209] R. T. Downs and D. C. Palmer, The pressure behavior of α cristobalite, American Mineralogist 79,
9–14 (1994).

[210] G. Miehe and H. Graetsch, Crystal structure of moganite: A new structure type for silica, European
Journal of Mineralogy 4, 693–706 (1992).

[211] H. Graetsch and I. Topalovic-Dierdorf, 29Si MAS NMR spectrum and superstructure of modulated
tridymite L3-To(MX-1), European Journal of Mineralogy 8, 103–114 (1996).

[212] J. S. Tse, D. D. Klug, and Y. Le Page, High-pressure densification of amorphous silica, Physical
Review B 46, 5933–5938 (1992).

[213] I. M. Svishchev, P. G. Kusalik, and V. V. Murashov, Orthorhombic quartzlike polymorph of silica: A
molecular-dynamics simulation study, Physical Review B 55, 721–725 (1997).

[214] A. Kirfel and G. Will, Ending the “P21/a coesite„ discussion, Zeitschrift für Kristallographie -
Crystalline Materials 167, 287–292 (1984).

[215] N. R. Keskar and J. R. Chelikowsky, Structural properties of nine silica polymorphs, Phys. Rev. B 46,
1–13 (1992).

[216] L. Zhang, D. Popov, Y. Meng, J. Wang, C. Ji, B. Li, and H.-k. Mao, In-situ crystal structure determina-
tion of seifertite SiO2 at 129 GPa: Studying a minor phase near Earth’s core–mantle boundary,
American Mineralogist 101, 231–234 (2016).

[217] K. Vollmayr, W. Kob, and K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation
study, Physical Review B 54, 15808–15827 (1996).

[218] Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, Nanosecond homogeneous nucleation and crystal growth
in shock-compressed SiO2, Nature Materials 15, 60–65 (2016).

[219] J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Phys. Rev. B
38, 9902–9905 (1988).

[220] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical
Review B 39, 5566–5568 (1989).

[221] S. W. Rick, S. J. Stuart, and B. J. Berne, Dynamical fluctuating charge force fields: Application to
liquid water, The Journal of Chemical Physics 101, 6141–6156 (1994).

[222] G. Nikoulis, J. Byggmästar, J. Kioseoglou, K. Nordlund, and F. Djurabekova, Machine-learning
interatomic potential for W–Mo alloys, Journal of Physics: Condensed Matter 33, 315403 (2021).

[223] W. J. Szlachta, A. P. Bartók, and G. Csányi, Accuracy and transferability of Gaussian approximation
potential models for tungsten, Physical Review B 90, 104108 (2014).

[224] L. Tang, Z. J. Yang, T. Q. Wen, K. M. Ho, M. J. Kramer, and C. Z. Wang, Development of interatomic
potential for Al–Tb alloys using a deep neural network learning method, Physical Chemistry
Chemical Physics 22, 18467–18479 (2020).

[225] V. L. Deringer and G. Csányi, Machine learning based interatomic potential for amorphous carbon,
Physical Review B 95, 094203 (2017).

[226] N. Jakse, J. Sandberg, L. F. Granz, A. Saliou, P. Jarry, E. Devijver, T. Voigtmann, J. Horbach, and
A. Meyer, Machine learning interatomic potentials for aluminium: Application to solidification
phenomena, Journal of Physics: Condensed Matter 35, 035402 (2022).

http://dx.doi.org/10.1127/ejm/4/4/0693
http://dx.doi.org/10.1127/ejm/8/1/0103
http://dx.doi.org/10.1127/ejm/8/1/0103
http://dx.doi.org/10.1103/PhysRevB.46.5933
http://dx.doi.org/10.1103/PhysRevB.55.721
http://dx.doi.org/10.1103/PhysRevB.55.721
http://dx.doi.org/10.1524/zkri.1984.167.14.287
http://dx.doi.org/10.1103/PhysRevB.46.1
http://dx.doi.org/10.2138/am-2016-5525
http://dx.doi.org/10.2138/am-2016-5525
http://dx.doi.org/10.1103/PhysRevB.54.15808
http://dx.doi.org/10.1103/PhysRevB.54.15808
http://dx.doi.org/10.1038/nmat4447
http://dx.doi.org/10.1038/nmat4447
http://dx.doi.org/10.1103/PhysRevB.38.9902
http://dx.doi.org/10.1103/PhysRevB.39.5566
http://dx.doi.org/10.1063/1.468398
http://dx.doi.org/10.1063/1.468398
http://dx.doi.org/10.1088/1361-648X/ac03d1
http://dx.doi.org/10.1088/1361-648X/ac03d1
http://dx.doi.org/10.1103/PhysRevB.90.104108
http://dx.doi.org/10.1103/PhysRevB.90.104108
http://dx.doi.org/10.1039/D0CP01689F
http://dx.doi.org/10.1039/D0CP01689F
http://dx.doi.org/10.1103/PhysRevB.95.094203
http://dx.doi.org/10.1088/1361-648X/ac9d7d
http://dx.doi.org/10.1088/1361-648X/ac9d7d


120 Bibliography

[227] T. A. Young, T. Johnston-Wood, H. Zhang, and F. Duarte, Reaction dynamics of Diels–Alder reactions
from machine learned potentials, Physical Chemistry Chemical Physics 24, 20820–20827 (2022).

[228] I. Y. Zhang and A. Grüneis, Coupled Cluster Theory in Materials Science, Frontiers in Materials 6
(2019).

[229] T. Demuth, Y. Jeanvoine, J. Hafner, and J. G. Ángyán, Polymorphism in silica studied in the local
density and generalized-gradient approximations, J. Phys.: Condens. Matter 11, 3833–3874
(1999).

[230] D. Zagorac, H. Müller, S. Ruehl, J. Zagorac, and S. Rehme, Recent developments in the Inorganic
Crystal Structure Database: Theoretical crystal structure data and related features, Journal of
Applied Crystallography 52, 918–925 (2019).

[231] V. L. Deringer, D. M. Proserpio, G. Csányi, and C. J. Pickard, Data-driven learning and prediction of
inorganic crystal structures, Faraday Discussions 211, 45–59 (2018).

[232] H. Eshet, R. Z. Khaliullin, T. D. Kühne, J. Behler, and M. Parrinello, Ab initio quality neural-network
potential for sodium, Physical Review B 81, 184107 (2010).

[233] G. C. Sosso, G. Miceli, S. Caravati, J. Behler, and M. Bernasconi, Neural network interatomic potential
for the phase change material GeTe, Physical Review B 85, 174103 (2012).

[234] N. Artrith and J. Behler, High-dimensional neural network potentials for metal surfaces: A prototype
study for copper, Physical Review B 85, 045439 (2012).

[235] J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M. Kolpak, and B. Kozinsky, On-the-fly
active learning of interpretable Bayesian force fields for atomistic rare events, npj Computational
Materials 6, 1–11 (2020).

[236] R. Jinnouchi, F. Karsai, and G. Kresse, On-the-fly machine learning force field generation: Application
to melting points, Physical Review B 100, 014105 (2019).

[237] Y. Lysogorskiy, A. Bochkarev, M. Mrovec, and R. Drautz, Active learning strategies for atomic cluster
expansion models, Physical Review Materials 7, 043801 (2023).

[238] K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, Machine learning of molecular properties: Locality
and active learning, The Journal of Chemical Physics 148, 241727 (2018).

[239] E. V. Podryabinkin and A. V. Shapeev, Active learning of linearly parametrized interatomic potentials,
Computational Materials Science 140, 171–180 (2017).

[240] E. Podryabinkin, K. Garifullin, A. Shapeev, and I. Novikov, MLIP-3: Active learning on atomic
environments with moment tensor potentials, The Journal of Chemical Physics 159, 084112
(2023).

[241] C. van der Oord, M. Sachs, D. P. Kovács, C. Ortner, and G. Csányi, Hyperactive learning for data-
driven interatomic potentials, npj Computational Materials 9, 1–14 (2023).

[242] M. Hodapp and A. Shapeev, In operando active learning of interatomic interaction during large-scale
simulations, Machine Learning: Science and Technology 1, 045005 (2020).

[243] L. Kong, J. Li, L. Sun, H. Yang, H. Hao, C. Chen, N. Artrith, J. A. G. Torres, Z. Lu, and Y. Zhou,
Overcoming the Size Limit of First Principles Molecular Dynamics Simulations with an In-
Distribution Substructure Embedding Active Learner, arXiv:2311.08177 (2023).

[244] J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network
potentials, The Journal of Chemical Physics 134, 074106 (2011).

http://dx.doi.org/10.1039/D2CP02978B
http://dx.doi.org/10.1039/D2CP02978B
http://dx.doi.org/10.3389/fmats.2019.00123
http://dx.doi.org/10.1088/0953-8984/11/19/306
http://dx.doi.org/10.1088/0953-8984/11/19/306
http://dx.doi.org/10.1107/S160057671900997X
http://dx.doi.org/10.1107/S160057671900997X
http://dx.doi.org/10.1039/C8FD00034D
http://dx.doi.org/10.1039/C8FD00034D
http://dx.doi.org/10.1103/PhysRevB.81.184107
http://dx.doi.org/10.1103/PhysRevB.81.184107
http://dx.doi.org/10.1103/PhysRevB.85.174103
http://dx.doi.org/10.1103/PhysRevB.85.174103
http://dx.doi.org/10.1103/PhysRevB.85.045439
http://dx.doi.org/10.1103/PhysRevB.85.045439
http://dx.doi.org/10.1038/s41524-020-0283-z
http://dx.doi.org/10.1038/s41524-020-0283-z
http://dx.doi.org/10.1103/PhysRevB.100.014105
http://dx.doi.org/10.1103/PhysRevB.100.014105
http://dx.doi.org/10.1103/PhysRevMaterials.7.043801
http://dx.doi.org/10.1103/PhysRevMaterials.7.043801
http://dx.doi.org/10.1063/1.5005095
http://dx.doi.org/10.1063/1.5005095
http://dx.doi.org/10.1016/j.commatsci.2017.08.031
http://dx.doi.org/10.1063/5.0155887
http://dx.doi.org/10.1063/5.0155887
http://dx.doi.org/10.1038/s41524-023-01104-6
http://dx.doi.org/10.1038/s41524-023-01104-6
http://dx.doi.org/10.1088/2632-2153/aba373
http://dx.doi.org/10.1088/2632-2153/aba373
http://dx.doi.org/10.48550/arXiv.2311.08177
http://dx.doi.org/10.48550/arXiv.2311.08177
http://dx.doi.org/10.1063/1.3553717
http://dx.doi.org/10.1063/1.3553717


Bibliography 121

[245] N. Artrith and A. Urban, An implementation of artificial neural-network potentials for atomistic
materials simulations: Performance for TiO2, Computational Materials Science 114, 135–150
(2016).

[246] V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, and G. Csányi, Gaussian
Process Regression for Materials and Molecules, Chemical Reviews 121, 10073–10141 (2021).

[247] A. Thompson, L. Swiler, C. Trott, S. Foiles, and G. Tucker, Spectral neighbor analysis method for
automated generation of quantum-accurate interatomic potentials, Journal of Computational
Physics 285, 316–330 (2015).

[248] D. P. Kovács, C. van der Oord, J. Kucera, A. E. A. Allen, D. J. Cole, C. Ortner, and G. Csányi,
Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE, Journal of
Chemical Theory and Computation 17, 7696–7711 (2021).

[249] Y. Lysogorskiy, C. van der Oord, A. Bochkarev, S. Menon, M. Rinaldi, T. Hammerschmidt, M. Mrovec,
A. Thompson, G. Csányi, C. Ortner, and R. Drautz, Performant implementation of the atomic
cluster expansion (PACE) and application to copper and silicon, npj Computational Materials 7,
1–12 (2021).

[250] M. A. Wood and A. P. Thompson, Extending the accuracy of the SNAP interatomic potential form,
The Journal of Chemical Physics 148, 241721 (2018).

[251] A. Lomaka and T. Tamm, Linearization of moment tensor potentials for multicomponent systems
with a preliminary assessment for short-range interaction energy in water dimer and trimer, The
Journal of Chemical Physics 152, 164115 (2020).

[252] K. Gubaev, E. V. Podryabinkin, G. L. Hart, and A. V. Shapeev, Accelerating high-throughput searches
for new alloys with active learning of interatomic potentials, Computational Materials Science
156, 148–156 (2019).

[253] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. V. Shapeev, A. P. Thompson,
M. A. Wood, and S. P. Ong, Performance and Cost Assessment of Machine Learning Interatomic
Potentials, J. Phys. Chem. A 124, 731–745 (2020).

[254] P. Rowe, V. L. Deringer, P. Gasparotto, G. Csányi, and A. Michaelides, An accurate and transferable
machine learning potential for carbon, The Journal of Chemical Physics 153, 034702 (2020).

[255] Z. Deng, C. Chen, X.-G. Li, and S. P. Ong, An electrostatic spectral neighbor analysis potential for
lithium nitride, npj Computational Materials 5, 1–8 (2019).

[256] N. Artrith, T. Morawietz, and J. Behler, High-dimensional neural-network potentials for multicompo-
nent systems: Applications to zinc oxide, Physical Review B 83, 153101 (2011).

[257] T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, A fourth-generation high-dimensional neu-
ral network potential with accurate electrostatics including non-local charge transfer, Nature
Communications 12, 398 (2021).

[258] G. Csányi, S. Winfield, J. Kermode, M. C. Payne, A. Comisso, A. De Vita, and N. Bernstein, Expressive
programming for computational physics in Fortran 950+, Newsletter of the Computational
Physics Group, 1–24 (2007).

[259] J. R. Kermode, F90wrap: An automated tool for constructing deep Python interfaces to modern
Fortran codes, Journal of Physics: Condensed Matter 32, 305901 (2020).

[260] S. N. Pozdnyakov, M. J. Willatt, A. P. Bartók, C. Ortner, G. Csányi, and M. Ceriotti, Incompleteness
of Atomic Structure Representations, Physical Review Letters 125, 166001 (2020).

http://dx.doi.org/10.1016/j.commatsci.2015.11.047
http://dx.doi.org/10.1016/j.commatsci.2015.11.047
http://dx.doi.org/10.1021/acs.chemrev.1c00022
http://dx.doi.org/10.1021/acs.chemrev.1c00022
http://dx.doi.org/10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1021/acs.jctc.1c00647
http://dx.doi.org/10.1038/s41524-021-00559-9
http://dx.doi.org/10.1038/s41524-021-00559-9
http://dx.doi.org/10.1063/1.5017641
http://dx.doi.org/10.1063/5.0007473
http://dx.doi.org/10.1063/5.0007473
http://dx.doi.org/10.1016/j.commatsci.2018.09.031
http://dx.doi.org/10.1016/j.commatsci.2018.09.031
http://dx.doi.org/10.1021/acs.jpca.9b08723
http://dx.doi.org/10.1021/acs.jpca.9b08723
http://dx.doi.org/10.1063/5.0005084
http://dx.doi.org/10.1063/5.0005084
http://dx.doi.org/10.1038/s41524-019-0212-1
http://dx.doi.org/10.1038/s41524-019-0212-1
http://dx.doi.org/10.1103/PhysRevB.83.153101
http://dx.doi.org/10.1103/PhysRevB.83.153101
http://dx.doi.org/10.1038/s41467-020-20427-2
http://dx.doi.org/10.1038/s41467-020-20427-2
http://dx.doi.org/10.1088/1361-648X/ab82d2
http://dx.doi.org/10.1088/1361-648X/ab82d2
http://dx.doi.org/10.1103/PhysRevLett.125.166001
http://dx.doi.org/10.1103/PhysRevLett.125.166001


122 Bibliography

[261] G. Dusson, M. Bachmayr, G. Csányi, R. Drautz, S. Etter, C. van der Oord, and C. Ortner, Atomic
cluster expansion: Completeness, efficiency and stability, Journal of Computational Physics 454,
110946 (2022).

[262] I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, The MLIP package: Moment tensor
potentials with MPI and active learning, Machine Learning: Science and Technology 2, 025002
(2021).

[263] R. Drautz and M. Fähnle, Spin-cluster expansion: Parametrization of the general adiabatic magnetic
energy surface with ab initio accuracy, Physical Review B 69, 104404 (2004).

[264] J. M. Sanchez, F. Ducastelle, and D. Gratias, Generalized cluster description of multicomponent
systems, Physica A: Statistical Mechanics and its Applications 128, 334–350 (1984).

[265] M. W. Finnis and J. E. Sinclair, A simple empirical N-body potential for transition metals, Philosophi-
cal Magazine A 50, 45–55 (1984).

[266] A. Bochkarev, Y. Lysogorskiy, S. Menon, M. Qamar, M. Mrovec, and R. Drautz, Efficient parametriza-
tion of the atomic cluster expansion, Physical Review Materials 6, 013804 (2022).

[267] M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik 389, 457–484
(1927).

[268] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864–B871 (1964).

[269] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects,
Phys. Rev. 140, A1133–A1138 (1965).

[270] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation
energy, Phys. Rev. B 45, 13244–13249 (1992).

[271] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for
many-electron systems, Physical Review B 23, 5048–5079 (1981).

[272] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys.
Rev. Lett. 77, 3865–3868 (1996).

[273] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou,
and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,
Phys. Rev. Lett. 100, 136406 (2008).

[274] J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly Constrained and Appropriately Normed Semilocal
Density Functional, Physical Review Letters 115, 036402 (2015).

[275] E. B. Isaacs and C. Wolverton, Performance of the strongly constrained and appropriately normed
density functional for solid-state materials, Physical Review Materials 2, 063801 (2018).

[276] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semicon-
ductors using a plane-wave basis set, Computational Materials Science 6, 15–50 (1996).

[277] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using
a plane-wave basis set, Physical Review B 54, 11169–11186 (1996).

[278] P. E. Blöchl, Projector augmented-wave method, Physical Review B 50, 17953–17979 (1994).

[279] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method,
Physical Review B 59, 1758–1775 (1999).

http://dx.doi.org/10.1016/j.jcp.2022.110946
http://dx.doi.org/10.1016/j.jcp.2022.110946
http://dx.doi.org/10.1088/2632-2153/abc9fe
http://dx.doi.org/10.1088/2632-2153/abc9fe
http://dx.doi.org/10.1103/PhysRevB.69.104404
http://dx.doi.org/10.1103/PhysRevB.69.104404
http://dx.doi.org/10.1016/0378-4371(84)90096-7
http://dx.doi.org/10.1016/0378-4371(84)90096-7
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1103/PhysRevMaterials.6.013804
http://dx.doi.org/10.1103/PhysRevMaterials.6.013804
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.115.036402
http://dx.doi.org/10.1103/PhysRevLett.115.036402
http://dx.doi.org/10.1103/PhysRevMaterials.2.063801
http://dx.doi.org/10.1103/PhysRevMaterials.2.063801
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758


Bibliography 123

[280] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis, M. N.
Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R.
Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson,
T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S.
Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, The atomic simulation
environment—a Python library for working with atoms, J. Phys.: Condens. Matter 29, 273002
(2017).

[281] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, Array programming with NumPy,
Nature 585, 357–362 (2020).

[282] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
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