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Abstract

Secure multi-party computation (MPC) is a cryptographic protocol that allows multiple
parties to collaboratively compute a public function using their private inputs, ensuring
the confidentiality of these inputs while revealing only the final output. This technology is
crucial in a variety of fields, including privacy preserving machine learning (PPML) and the
emerging field of federated learning (FL). However, the current approaches for MPC incur
significant communication and computational overhead, leading to increased communication
and runtime costs in comparison to non-private counterparts.

This thesis explores the feasibility and potential improvements of MPC for real-world applica-
tions, focusing on two critical aspects:

1) This work demonstrates how MPC provides feasible privacy-preserving solutions in practical
applications.

2) It identifies new methods that significantly improve the computational and communication
efficiency of MPC.

Practical Privacy-Preserving Services Many machine learning (ML) services depend on
training data that contains sensitive information from various sources. MPC in PPML allows
multiple parties to collaboratively work on their shared data without revealing their individual
inputs to each other.

Building on existing practical privacy-preserving services, our research explores the efficiency
of such services by focusing on clustering—an important unsupervised ML technique for
grouping data. Our comprehensive review and analysis of 59 studies dedicated to privacy-
preserving clustering reveal information leakage in the majority of these studies (49 out
of 59). We implement and evaluate four efficient and fully private protocols: Cheon et
al. (SAC’19), Mohassel et al. (PETS’20), Meng et al. (CCSW’21), and Bozdemir et al.
(ASIACCS’21), with each protocol enhancing the privacy of a different clustering algorithm.
Additionally, we conduct benchmarks of these protocols to evaluate their clustering quality,
communication efficiency, and computational overhead, thus providing a detailed comparison
of their effectiveness.

Expanding upon our exploration of privacy-preserving clustering, our research extends to FL,
a distributed ML method that inherently protects data privacy by allowing clients to jointly
train a global model through an aggregator without exposing their training data. FL not only
improves privacy but also benefits from the computational power and data of potentially
millions of clients concurrently. However, FL is vulnerable to poisoning attacks from malicious
clients introducing false data, and to inference attacks by malicious aggregator(s) who can
deduce information about clients’ data from their models. To address these issues, our
research involves a critical analysis and identification of vulnerabilities in the only existing
solution (Liu et al., IEEE TIFS’21) that addresses both poisoning attacks and inference
attacks simultaneously, leading to the introduction of FLAME. FLAME is designed to protect
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against both poisoning and inference attacks. Through our extensive evaluations across
various ML applications and datasets, FLAME effectively prevents poisoning attacks without
compromising the accuracy of the model. Moreover, we develop, implement, and benchmark
specialized two-party computation (2PC) protocols within FLAME, ensuring the privacy of
client training data and protection against inference attacks on their models.

This part of the thesis is based on the following three publications:

[HMSY21] A. HEGDE, H. MÖLLERING, T. SCHNEIDER, H. YALAME. “SoK: Efficient Privacy-Preserving
Clustering”. In: Proceedings on Privacy Enhancing Technologies (PETs) 2021.4 (2021).
Online: https:/ / ia . cr / 2021 / 809. Code: https:/ / encrypto . de / code / SoK _

ppClustering, pp. 225–248. CORE Rank A. Appendix A.

[NRC+22] T. D. NGUYEN, P. RIEGER, H. CHEN, H. YALAME, H. MÖLLERING, H. FEREIDOONI, S. MAR-
CHAL, M. MIETTINEN, A. MIRHOSEINI, S. ZEITOUNI, F. KOUSHANFAR, A.-R. SADEGHI,
T. SCHNEIDER. “FLAME: Taming Backdoors in Federated Learning”. In: USENIX
Security Symposium (USENIX Security). Online: https://ia.cr/2021/025. USENIX
Association, 2022, pp. 1415–1432. CORE Rank A*. Appendix B.

[SSY23] T. SCHNEIDER, A. SURESH, H. YALAME. “Comments on “Privacy-Enhanced Federated
Learning Against Poisoning Adversaries””. In: IEEE Transactions on Information
Forensics and Security (TIFS) 18 (2023), pp. 1407–1409. CORE Rank A. Appendix C.

MPC Protocols & Optimizations Generic MPC protocols efficiently evaluate Boolean or
arithmetic circuits using two main approaches: 1) low-latency, utilizing the garbled circuit
(GC) protocol for constant-round solutions, and 2) high-throughput, employing the Goldreich-
Micali-Wigderson (GMW) protocol to minimize communication and improve parallelization.
A notable feature of these protocols is their division into two phases: an input-independent
setup phase that allows for pre-computing expensive cryptographic primitives such as oblivious
transfer (OT), resulting in an extremely fast online phase once inputs are available.

The challenge with GC-based protocols lies in the computational overhead of cryptographic
operations, like advanced encryption standard (AES), during the online phase. For instance,
the most efficient scheme today requires computing 9 fixed-key AES operations for each
AND gate (Rosulek and Roy, CRYPTO’21). While GMW-based protocols avoid cryptographic
operations in the online phase, they are impeded by the communication rounds needed,
which depend on the depth of the circuit being evaluated.

To improve the efficiency of GC-based protocols, we explore the use of vector AES (VAES), a
recent innovation by Intel that enables the parallel computation of multiple AES operations.
Our aim is to utilize these cutting-edge hardware capabilities to optimize GC-based protocols
for practical applications.

For the GMW-based protocols, we aim to achieve practical efficiency through function-
dependent pre-processing, which yields substantial improvements by using knowledge of the
underlying function to be evaluated. This approach is particularly beneficial in contexts like
machine learning as a service (MLaaS), where a single function is repeatedly evaluated with
different inputs. Our developments, ABY2.0 and FLUTE, improve the online communication
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efficiency of the GMW protocol in a two-party setting. We also design efficient protocols
for the secure evaluation of multi-input AND gates and look-up tables (LUTs), alongside
novel constructions based on LUTs to enhance private function evaluation (PFE) efficiency.
Moreover, we automatically generate circuits optimized for these protocols.

Another area of our research addresses the common MPC assumption of symmetric trust,
which assumes that all parties are either semi-honest or malicious. However, this assumption
may not align with the asymmetric nature of trust found in real-world scenarios, shaped
by reputation, power dynamics, and incentives. To accommodate this, we extend our 2PC
framework from ABY2.0 to an honest-majority three-party computation (3PC) setting, de-
signed to handle scenarios where only one party is malicious while the other parties remain
semi-honest. This extension considers cases where the malicious party acts as a helper in
ABY2.0 or serves as the evaluating party in the 3PC setting.

This part of the thesis is based on the following five publications:

[MSY21] J.-P. MÜNCH, T. SCHNEIDER, H. YALAME. “VASA: Vector AES Instructions for Security
Applications”. In: Annual Computer Security Applications Conference (ACSAC). Online:
https://ia.cr/2021/1493. Code: https://encrypto.de/code/VASA. ACM, 2021,
pp. 131–145. CORE Rank A. Appendix D.

[PSSY21] A. PATRA, T. SCHNEIDER, A. SURESH, H. YALAME. “ABY2.0: Improved Mixed-Protocol
Secure Two-Party Computation”. In: USENIX Security Symposium (USENIX Security).
Online: https://ia.cr/2020/1225. USENIX Association, 2021, pp. 2165–2182.
CORE Rank A*. Appendix E.

[BHS+23] A. BRÜGGEMANN, R. HUNDT, T. SCHNEIDER, A. SURESH, H. YALAME. “FLUTE: Fast and
Secure Lookup Table Evaluations”. In: IEEE Symposium on Security and Privacy (IEEE
S&P). Online: https://ia.cr/2023/499. Code: https://encrypto.de/code/FLUTE.
IEEE, 2023, pp. 515–533. CORE Rank A*. Appendix F.

[DGS+23] Y. DISSER, D. GÜNTHER, T. SCHNEIDER, M. STILLGER, A. WIGANDT, H. YALAME. “Breaking
the Size Barrier: Universal Circuits meet Lookup Tables”. In: International Conference
on the Theory and Application of Cryptology and Information Security (ASIACRYPT).
Vol. 14438. LNCS. Online: https://ia.cr/2021/809. Code: https://encrypto.de/
code/LUC. Springer, 2023, pp. 3–37. CORE Rank A. Appendix G.

[BSS+24] A. BRÜGGEMANN, O. SCHICK, T. SCHNEIDER, A. SURESH, H. YALAME. “Don’t Eject the
Impostor: Fast Three-Party Computation with A Known Cheater.” In: IEEE Symposium
on Security and Privacy (IEEE S&P). Online: https://ia.cr/2023/1744. Code:
https://encrypto.de/code/MOTION-FD. IEEE, 2024. CORE Rank A*. Appendix H.

This thesis is dedicated to advancing the practical application of MPC in real-world scenarios.
It focuses on optimizing low-level building blocks and developing efficient privacy-preserving
solutions that are specifically designed for practical use cases.
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Zusammenfassung

Sichere Mehrparteienberechnung (im Englischen secure multi-party computation, MPC) ist
ein kryptografisches Protokoll, das es mehreren Parteien ermöglicht, gemeinsam eine öf-
fentliche Funktion unter Verwendung ihrer privaten Eingaben zu berechnen und dabei die
Vertraulichkeit dieser Eingaben zu gewährleisten, während nur das Endergebnis offengelegt
wird. Diese Technologie ist in einer Reihe von Bereichen von entscheidender Bedeutung,
einschließlich des datenschutzfreundlichen maschinellen Lernens (im Englischen privacy
preserving machine learning, PPML) und des aufkommenden Bereichs des föderierten Lernens
(im Englischen federated learning, FL). Die derzeitigen Ansätze für MPC erfordern jedoch
einen erheblichen Kommunikations- und Rechenaufwand, was zu erhöhten Kommunikations-
und Laufzeitkosten im Vergleich zu nicht-privaten Gegenstücken führt.

In dieser Arbeit werden die Machbarkeit und das Verbesserungspotenzial von MPC für reale
Anwendungen untersucht, wobei der Schwerpunkt auf zwei kritischen Aspekten liegt:

1) Diese Arbeit zeigt, wie MPC in praktischen Anwendungen praktikable Lösungen zur Wahrung
der Privatsphäre bietet.

2) Sie zeigt neue Methoden auf, die die Rechen- und Kommunikationseffizienz der MPC deutlich
verbessern.

Praktische Dienste zum Schutz der Privatsphäre Viele Dienste des maschinellen Lernens
(ML) sind auf Trainingsdaten angewiesen, die sensible Informationen aus verschiedenen
Quellen enthalten. MPC im PPML ermöglicht es mehreren Parteien, gemeinsam an ihren
gemeinsamen Daten zu arbeiten, ohne ihre individuellen Eingaben einander preiszugeben

Basierend auf bestehenden praktischen Diensten zur Wahrung der Privatsphäre untersucht
unsere Forschung die Effizienz solcher Dienste, indem sie sich auf das Clustering konzentriert
– eine wichtige unüberwachte ML-Technik zur Gruppierung von Daten. Unsere umfassende
Überprüfung und Analyse von 59 Arbeiten, die sich dem datenschutzbewahrenden Clustering
widmen, zeigen Informationslecks in der Mehrheit dieser Arbeiten auf (49 von 59). Wir
implementieren und bewerten vier effiziente und vollständig private Protokolle: Cheon et al.
(SAC’19), Mohassel et al. (PETS’20), Meng et al. (CCSW’21) und Bozdemir et al. (ASIAC-
CS’21), wobei jedes Protokoll die Privatsphäre bei einem anderen Clustering-Algorithmus
verbessert. Zusätzlich führen wir Benchmarks dieser Protokolle durch, um ihre Clustering-
Qualität, Kommunikationseffizienz und Rechenüberlast zu bewerten und so einen detaillierten
Vergleich ihrer Wirksamkeit zu bieten.

Aufbauend auf unserer Untersuchung des datenschutzbewahrenden Clusterings, erweitert
sich unsere Forschung auf FL, eine verteilte ML-Methode, die den Datenschutz inhärent
gewährleistet. Kunden können durch einen Aggregator ein globales Modell trainieren, ohne
ihre Trainingsdaten offenzulegen. FL verbessert nicht nur die Privatsphäre, sondern profitiert
auch von der Rechenleistung und den Daten potenziell Millionen von Kunden gleichzeitig.
Jedoch ist FL anfällig für Poisoning-Angriffe durch bösartige Kunden, die falsche Daten
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einführen, und für Inference-Angriffe durch bösartige Aggregatoren, die Informationen aus
den Modellen der Kunden ableiten können. Um diese Probleme anzugehen, beinhaltet unsere
Forschung eine kritische Analyse und Identifizierung von Schwachstellen in der einzigen
bestehenden Lösung (Liu et al., IEEE TIFS’21), die sowohl Vergiftungsangriffe als auch
Inferenzangriffe gleichzeitig behandelt, was zur Einführung von FLAME führt. FLAME ist
darauf ausgelegt, sowohl gegen Poisoning- als auch Inference-Angriffe zu schützen. Durch
unsere umfangreichen Bewertungen über verschiedene ML-Anwendungen und Datensätze
hinweg verhindert FLAME effektiv Poisoning-Angriffe, ohne die Genauigkeit des Modells zu
beeinträchtigen. Darüber hinaus entwickeln, implementieren und bewerten wir spezialisierte
Protokolle zur Zwei-Parteien-Berechnung (im Englischen secure two-party computation, 2PC),
die die Privatsphäre der Trainingsdaten der Kunden und den Schutz gegen Inference-Angriffe
auf deren Modelle gewährleisten.

Dieser Teil der Arbeit basiert auf den folgenden drei Veröffentlichungen:

[HMSY21] A. HEGDE, H. MÖLLERING, T. SCHNEIDER, H. YALAME. “SoK: Efficient Privacy-Preserving
Clustering”. In: Proceedings on Privacy Enhancing Technologies (PETs) 2021.4 (2021).
Online: https:/ / ia . cr / 2021 / 809. Code: https:/ / encrypto . de / code / SoK _

ppClustering, S. 225–248. CORE Rank A. Appendix A.

[SSY23] T. SCHNEIDER, A. SURESH, H. YALAME. “Comments on “Privacy-Enhanced Federated
Learning Against Poisoning Adversaries””. In: IEEE Transactions on Information
Forensics and Security (TIFS) 18 (2023), S. 1407–1409. CORE Rank A. Appendix C.

[NRC+22] T. D. NGUYEN, P. RIEGER, H. CHEN, H. YALAME, H. MÖLLERING, H. FEREIDOONI, S. MAR-
CHAL, M. MIETTINEN, A. MIRHOSEINI, S. ZEITOUNI, F. KOUSHANFAR, A.-R. SADEGHI,
T. SCHNEIDER. “FLAME: Taming Backdoors in Federated Learning”. In: USENIX
Security Symposium (USENIX Security). Online: https://ia.cr/2021/025. USENIX
Association, 2022, S. 1415–1432. CORE Rank A*. Appendix B.

MPC-Protokolle & Optimierungen Generische MPC-Protokolle bewerten Boolesche oder
arithmetische Schaltkreise unter Verwendung von zwei Hauptansätzen: 1) geringe Latenz,
die das Garbled-Circuit-Protokoll (GC) für Lösungen mit konstanter Runde nutzt, und 2)
hoher Durchsatz, der das Goldreich-Micali-Wigderson-Protokoll (GMW) verwendet, um die
Kommunikation zu minimieren und die Parallelisierung zu verbessern. Ein wichtiges Merkmal
dieser Protokolle ist ihre Aufteilung in zwei Phasen: eine eingabeunabhängige Setup-Phase,
die das Vorrechnen von aufwendigen kryptografischen Primitiven wie dem oblivious transfer
(OT) ermöglicht, gefolgt von einer extrem schnellen Online-Phase, sobald die Eingaben
verfügbar sind.

Die Herausforderung bei auf GC basierenden Protokollen liegt im Rechenaufwand kryptografi-
scher Operationen, wie dem Advanced Encryption Standard (AES), während der Online-Phase.
Beispielsweise erfordert das effizienteste heutige Schema die Berechnung von 9 festgelegten
AES-Operationen für jedes AND-Gatter (Rosulek und Roy, CRYPTO’21). Während GMW-
basierte Protokolle kryptografische Operationen in der Online-Phase vermeiden, werden
sie durch die benötigten Kommunikationsrunden, die von der Tiefe des zu bewertenden
Schaltkreises abhängen.
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Um die Effizienz von auf GC basierenden Protokollen zu verbessern, erforschen wir die
Verwendung von Vector AES (VAES), einer jüngsten Innovation von Intel, die die paralle-
le Berechnung mehrerer AES-Operationen ermöglicht. Unser Ziel ist es, diese modernen
Hardware-Fähigkeiten zu nutzen, um GC-basierte Protokolle für praktische Anwendungen zu
optimieren.

Bei den auf GMW basierenden Protokollen zielen wir darauf ab, praktische Effizienz durch
funktionsspezifische Vorverarbeitung zu erreichen, die erhebliche Verbesserungen erbrachte,
indem das Wissen über die zu bewertende Funktion genutzt wurde. Dieser Ansatz ist besonders
vorteilhaft in Kontexten wie maschinellem Lernen als Dienstleistung (im Englischen machine
learning as a service, MLaaS), wo eine einzelne Funktion wiederholt mit verschiedenen
Eingaben bewertet wird. Unsere Entwicklungen, ABY2.0 und FLUTE, haben die Online-
Kommunikationseffizienz des GMW-Protokolls in einer 2PC deutlich verbessert. Wir haben
auch effiziente Protokolle für die sichere Bewertung von Multi-Input-AND-Gattern und Lookup-
Tabellen (LUT) entworfen, zusammen mit neuen Konstruktionen basierend auf LUTs, um
die Effizienz der privaten Funktionsbewertung (im Englischen private function evaluation,
PFE) zu erhöhen. Darüber hinaus haben wir automatisch Schaltkreise generiert, die für diese
Protokolle optimiert sind.

Ein weiterer Bereich unserer Forschung befasst sich mit der gängigen Annahme symmetri-
schen Vertrauens bei MPC, die davon ausgeht, dass alle Parteien entweder halb-ehrlich sind
oder zu bösartigem Verhalten fähig sind. Diese Annahme entspricht jedoch möglicherweise
nicht der asymmetrischen Natur des Vertrauens, wie sie in realen Szenarien vorkommt, die
durch Reputation, Machtverhältnisse und Anreize geprägt sind. Um dies zu berücksichtigen,
erweitern wir unser 2PC-Framework von ABY2.0 zu einer Drei-Parteien-Berechnung (im Eng-
lischen three-party computation, 3PC) mit ehrlicher Mehrheit, das für Szenarien konzipiert
ist, in denen nur eine Partei bösartig ist und die anderen Parteien halb-ehrlich sind. Diese
Erweiterung berücksichtigt Fälle, in denen die bösartige Partei als Helfer in ABY2.0 agiert
oder als auswertende Partei im 3PC-Szenarien dient.

Dieser Teil der Arbeit basiert auf den folgenden fünf Veröffentlichungen:

[MSY21] J.-P. MÜNCH, T. SCHNEIDER, H. YALAME. “VASA: Vector AES Instructions for Security
Applications”. In: Annual Computer Security Applications Conference (ACSAC). Online:
https://ia.cr/2021/1493. Code: https://encrypto.de/code/VASA. ACM, 2021,
S. 131–145. CORE Rank A. Appendix D.

[PSSY21] A. PATRA, T. SCHNEIDER, A. SURESH, H. YALAME. “ABY2.0: Improved Mixed-Protocol
Secure Two-Party Computation”. In: USENIX Security Symposium (USENIX Security).
Online: https://ia.cr/2020/1225. USENIX Association, 2021, S. 2165–2182.
CORE Rank A*. Appendix E.

[BHS+23] A. BRÜGGEMANN, R. HUNDT, T. SCHNEIDER, A. SURESH, H. YALAME. “FLUTE: Fast and
Secure Lookup Table Evaluations”. In: IEEE Symposium on Security and Privacy (IEEE
S&P). Online: https://ia.cr/2023/499. Code: https://encrypto.de/code/FLUTE.
IEEE, 2023, S. 515–533. CORE Rank A*. Appendix F.

VIII

https://ia.cr/2021/1493
https://encrypto.de/code/VASA
https://ia.cr/2020/1225
https://ia.cr/2023/499
https://encrypto.de/code/FLUTE


[DGS+23] Y. DISSER, D. GÜNTHER, T. SCHNEIDER, M. STILLGER, A. WIGANDT, H. YALAME. “Breaking
the Size Barrier: Universal Circuits meet Lookup Tables”. In: International Conference
on the Theory and Application of Cryptology and Information Security (ASIACRYPT).
Bd. 14438. LNCS. Online: https://ia.cr/2021/809. Code: https://encrypto.de/
code/LUC. Springer, 2023, S. 3–37. CORE Rank A. Appendix G.

[BSS+24] A. BRÜGGEMANN, O. SCHICK, T. SCHNEIDER, A. SURESH, H. YALAME. “Don’t Eject the
Impostor: Fast Three-Party Computation with A Known Cheater.” In: IEEE Symposium
on Security and Privacy (IEEE S&P). Online: https://ia.cr/2023/1744. Code:
https://encrypto.de/code/MOTION-FD. IEEE, 2024. CORE Rank A*. Appendix H.

Diese Dissertation widmet sich der Förderung der praktischen Anwendung von MPC in realen
Szenarien. Sie konzentriert sich auf die Optimierung von grundlegenden Bausteinen und
die Entwicklung effizienter datenschutzbewahrender Lösungen, die speziell für praktische
Anwendungsfälle konzipiert sind.
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protocols, which were essential for ensuring secure aggregation and effective clipping. Phillip

X



Rieger took the lead on the entire implementation process and subsequent benchmarking
efforts, while Helen Möllering led the protocol design for the HDBSCAN approximation and
provided guidance on implementation aspects. I provided expert guidance on the aspects
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on backdoor and inference attacks. Beyond the technical design and implementation, I
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Shaza Zeitouni, Farinaz Koushanfar, Ahmad Reza Sadeghi, Helen Möllering, and Thomas
Schneider.

The work presented in [MSY21] was derived from Jean-Pierre Münch’s Master’s thesis, which
I co-supervised alongside Thomas Schneider. My role in this project involved conducting
a thorough review of various MPC frameworks to identify opportunities for enhancement
through the integration of new vector AES (VAES). Jean-Pierre Münch focused primarily on
the incorporation of VAES into the MPC frameworks, a process for which I offered detailed
advice on how to effectively apply VAES across different frameworks. I was involved in setting
up the benchmarking process to evaluate our improvement.

The initiative for the work detailed in [PSSY21a] was ignited by my original idea to utilize
multi-input AND gates within 2PC. Following this concept, I developed new circuit designs
for a range of important primitives, including parallel prefix adder (PPA), bit extraction,
comparison, and equality test, all employing multi-input AND gates to improve efficiency.
Moreover, I created a depth-optimized version of the AES circuit. In addition to these technical
contributions, I analyzed the communication and round complexity for our newly established
circuits over different ℓ-bit ring sizes, providing a detailed evaluation of the improvements our
work introduced. This work was done in collaboration with Arpita Patra, Thomas Schneider,
and Ajith Suresh.

Motivated by the innovative use of multi-input AND gates, I introduced the approach for
evaluating LUTs as elaborated in [BHS+23]. My contribution was the development of a
novel method for LUT evaluation characterized by its unique communication efficiency: the
setup phase communication is independent of the number of LUT outputs, while the online
phase communication remains unaffected by the number of LUT inputs. I utilized hardware
synthesis tools to create optimized LUT circuit designs. This work was carried out with
Andreas Brüggemann, Robin Hundt, Thomas Schneider, and Ajith Suresh.

In [DGS+23], I introduced the idea of evaluating universal circuits (UCs) by employing LUT-
based MPC protocols. My analysis focused on the application of our innovative LUT-based
PFE constructions in cutting-edge areas, such as intellectual property (IP) protection. To
demonstrate the practicality of these concepts, I used IP libraries available in the Synopsys
Design Compiler, a leading commercial ASIC synthesis tool, to generate LUT-based circuit
netlists capable of executing complex tasks, including floating-point operations, by developing
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new technology libraries designed to create more optimized LUT-based circuits compared to
those found in the literature. In collaboration with our student assistant, Joachim Schmidt, I
also carried out extensive benchmarking to evaluate the performance of our newly developed
constructions. This work was conducted with Yann Disser, Daniel Günther, Thomas Schneider,
Maximilian Stillger, and Arthur Wigandt.

The foundational concept behind the work presented in [BSS+24] originated from a pro-
ductive dialogue between Ajith Suresh and myself. I examined the current body of research
concerning MPC in asymmetric trust model. Furthermore, I was responsible for setting up our
implementation and, with the valuable support of our student assistant, Maximilian Stillger,
conducted comprehensive benchmarking activities. These efforts were aimed at comparing
our contributions with recent advancements in asymmetric MPC settings and highlighting the
innovations of our approach. This work was done in collaboration with Andreas Brüggemann,
Oliver Schick, Thomas Schneider, and Ajith Suresh.
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1 Introduction

In the rapidly evolving digital era, the ability to collect and analyze data is crucial for
advancements across various areas, including healthcare, business development, and smart
cities. This process, however, presents the significant challenge of increasing privacy risks
associated with large-scale data collection. With the growing sensitivity around privacy
concerns, particularly regarding sensitive information like financial and health records, the
necessity to safeguard both personal and business interests becomes critical. This need is
further highlighted by stringent legal regulations such as the EU’s General Data Protection
Regulation (GDPR) and the California Consumer Privacy Act (CCPA), which require strict
compliance standards for data protection and impose significant penalties for violations.
Consequently, the main challenge we face is the development and implementation of systems
capable of protecting sensitive user data while also allowing businesses and consumers to
benefit from data access and utilization.

Machine learning (ML) plays a crucial role in this landscape, serving as an essential tool
to handle vast datasets. Advances in ML technology not only enhance business operations
internally but also enable companies to provide these advanced ML capabilities to external
clients as a service, known as machine learning as a service (MLaaS). Consider, for example,
a scenario where a MLaaS service provider, such as Google or Amazon, provides applications
like credit scoring 1 or fraud detection 2 to online stores. These applications, built on pre-
trained ML models, enable online stores to make decisions, such as whether to approve or
reject invoice-based orders.

This process requires the sharing of customer data by the online store and the sharing of ML
models by the MLaaS service provider. While the goal is to solve a specific ML challenge, it
presents a significant dilemma: the unwillingness of both parties to share their own data.
The online store may have concerns about revealing its clients’ identities to the MLaaS service
provider, reflecting broader concerns over data privacy. Simultaneously, the service provider
wants to protect its ML models, considering them as critical intellectual property (IP) that
supports its market position. This careful balancing of safeguarding both data privacy and
model confidentiality highlights the challenges faced in deploying MLaaS solutions.

To address both the previously mentioned issue and the challenges associated with processing
distributed data, privacy-enhancing technologies (PETs) can be used. These technologies
enable the sharing of data while preserving its privacy, facilitating secure computation

1https://cloud.google.com/customers/credit-ok
2https://aws.amazon.com/fraud-detector/
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1 Introduction

over the data. While several PETs are explored in the literature, four have proven to offer
particularly efficient solutions: secure multi-party computation (MPC), fully homomorphic
encryption (FHE), zero knowledge (ZK), and differential privacy (DP).

In this thesis, we focus on privacy-preserving protocols using MPC. MPC enables a group
of parties to securely compute a joint function on their private data. It ensures that only
the final results are revealed, preventing disclosure of any data beyond what can be derived
from the output. We focus on MPC because it offers several practical advantages: FHE
enables computations on encrypted data but is computationally intensive due to the complex
cryptographic operations involved. ZK is used for verifying correctness without revealing
data but is limited to specific proofs. DP differs from MPC as it guarantees the privacy of the
output, whereas MPC focuses on the privacy of the computation process.

Use Cases of MPC MPC is used in a variety of real-world applications, including financial
services [ASA22], private clustering [HMSY21c; KMSY21], privacy preserving machine
learning (PPML) [CCPS19; BCD+20; PS20], and federated learning (FL) [BIK+17; NRC+22;
MSS+23; BMP+24].

The development of MPC over the last four decades has been significant. In the 1990s, it
was mainly considered an interesting theoretical concept. By the time my doctoral studies
started, early versions capable of handling small-scale tasks with MPC were already in place.
Now, there is a wide range of open-source MPC tools available, drawing interest from large
companies such as Meta3, Bosch4, and Microsoft5, as well as smaller companies like Cosmian6

and Galois7. These organizations are exploring MPC for practical applications. A notable
recent effort is the creation of the MPC alliance8, a collaboration of industry leaders with
solid academic foundations, who recognize MPC as an important technological tool in their
work.

Our Contributions In this thesis, we begin by evaluating the performance of existing MPC
protocols. Our work involves optimizing and implementing these protocols, demonstrating
how they can be combined, and illustrating their effectiveness in various applications, in-
cluding multiple clustering algorithms (cf. Sect. 2.1.1) and FL (cf. Sect. 2.1.2). We further
improve MPC efficiency by incorporating recent advancements in hardware acceleration
techniques like Intel’s vector AES (VAES) (cf. Sect. 3.1.1), function-dependent preprocessing
(cf. Sect. 3.1.2), and utilizing asymmetric trust settings (cf. Sect. 3.1.4). We develop a new se-
ries of hybrid protocols for two-party computation (2PC) and three-party computation (3PC)
that significantly improve the efficiency of the input-dependent online phase over state-of-
the-art work. Additionally, we make significant progress in private function evaluation (PFE)
and successfully implement these advancements (cf. Sect. 3.1.3).

3https://github.com/facebookresearch/fbpcf
4https://github.com/carbynestack/carbynestack
5https://github.com/mpc-msri/EzPC
6https://github.com/Cosmian/CipherCompute
7https://github.com/GaloisInc/swanky
8https://www.mpcalliance.org/
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Open Access All eight research papers included in this thesis are available as open access
via the Cryptology ePrint Archive9. Additionally, we provide five open-source demonstrators
and prototype implementations for [HMSY21c; MSY21; BHS+23; DGS+23; BSS+24]. These
implementations are based on our research findings, enabling other researchers to fairly
compare their work with ours, build upon our results, and use our developments to further
improve the practicality of MPC.

Additional Contributions Although not included in this thesis due to their focus on engi-
neering efforts, there are two noteworthy contributions from our research:

An important highlight is our collaboration with Intel Labs and the development of the
MP2ML framework [BCD+20]. This collaboration results in the ability to transform high-level
neural network inference code into efficient privacy-protecting protocols. By making this
framework open source and widely available, we demonstrate our commitment to practical
implementations of PETs.

Another significant achievement of our research emerges from our collaboration within
the Private AI Collaborative Research Institute10, involving VMWare Research, Aptos Labs,
Technology Innovation Institute, and DFINITY Foundation. We develop a method to use quan-
tization to minimize client-server communication in secure FL [BMP+24]. This innovation is
recognized with the Runner-Up Distinguished Paper Award at the 2nd IEEE Conference on
Secure and Trustworthy Machine Learning (SaTML’24).

9https://eprint.iacr.org/
10https://www.private-ai.org/
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2 Practical Privacy-Preserving Services

Machine learning (ML) technologies are increasingly being integrated across various fields,
such as autonomous driving [CLH+23], medical diagnosis [LHR23], and natural language
processing [LYF+23], where they play a crucial role in analyzing and interpreting vast datasets.
In addition to these applications, leading technology companies, including Apple, Facebook,
Google, and Microsoft, have gathered large data collections to utilize for commercial analysis
and profit [GSCM07]. However, growing privacy concerns among data owners have begun
to present significant challenges to the traditional methods of data collection. These privacy
issues highlight the need for innovative approaches to train ML models, thereby establishing
a basis for privacy preserving machine learning (PPML) [MZ17; MR18; RRK+20a; HMSY21c;
PSSY21a]. Although existing PPML techniques, which utilize secure multi-party computation
(MPC) [Lin20] and/or homomorphic encryption (HE) [AAUC18], offer promising solutions,
they often come with substantial communication and computational overheads.

In response to the growing demand for methods that are both cost-effective and capable of
preserving privacy, Google has developed federated learning (FL) [KMY+16]. FL enables users
to train models directly on their devices. Following this local training phase, a central server
aggregates these individual updates to refine the global model, using techniques such as
FedAvg [MMR+17]. A key benefit of FL is that it keeps user data on the device itself, thereby
enhancing user trust by ensuring data privacy. This method has quickly become popular
across both academic [HLS+20] and industrial research communities [BEG+19], leading to
the implementation of numerous real-world applications such as video analytics1.

However, FL faces its own set of challenges, especially concerning vulnerabilities to privacy
inference and poisoning attacks from malicious actors within the system. Privacy inference
attacks, which may be conducted by a compromised model aggregator, seek to extract sensitive
information from the model updates or gradients shared by users [MSCS19; NSH19]. On
the other hand, poisoning attacks occur when corrupt users send manipulated models to the
central aggregator with the intention of disrupting the training process. This disruption can
take the form of either a decrease in overall model accuracy or the insertion of a backdoor
that triggers altered predictions under specific conditions [FCJG20; SHKR22a]. Addressing
both types of attacks simultaneously is very challenging: strategies to mitigate poisoning
attacks often involve analyzing each user’s updates individually, while measures against
privacy inference attacks focus on safeguarding the privacy of aggregated models, thereby
eliminating the possibility of inspecting individual updates.

1https://developer.nvidia.com/blog/federated-learning-clara/

4
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After reviewing the current state of research, it becomes clear that there is a notable gap in
evaluating how practical existing methods for privacy-preserving ML and FL truly are. This
concern mainly centers around the computational demands of these approaches and their
efficacy in protecting data privacy. This observation leads us to a critical question:

How feasible are secure computation techniques in providing privacy within ML and FL
settings?

This chapter outlines our contributions to address the research question by utilizing effi-
cient two-party computation (2PC) frameworks. These frameworks aim to mitigate privacy
concerns within ML and FL areas and evaluate the practicality of using 2PC in these fields.
Specifically, in the realm of ML, we concentrate on clustering—an unsupervised learning
method that organizes data into separate groups.

In the first part of this chapter (cf. Sect. 2.1.1), we systematically analyze 59 papers focusing
on privacy-preserving clustering to evaluate their practical applicability [HMSY21c]. Our
analysis finds that only 10 of these works provide full privacy protection, ensuring no in-
formation is leaked beyond the intended output. Additionally, we select, implement, and
benchmark the four most advanced and efficient protocols in fully privacy-preserving cluster-
ing [CKP19; MRT20; BCE+21; MPOT21], analyzing them based on communication overhead
and computational efficiency. This review enables us to identify and discuss their potential
shortcomings for deployment in real-world scenarios.

In the second part of this chapter (cf. Sect. 2.1.2), we explore the privacy solution proposed
by the only work [LLX+21] that addresses both privacy inference and poisoning attacks in
FL. We analyze and thoroughly review this work in [SSY23], which informs our subsequent
development of FLAME [NRC+22]. FLAME [NRC+22] employs 2PC to tackle both privacy
inference and poisoning attacks concurrently. We conduct a detailed evaluation of FLAME,
testing its resistance against various poisoning attacks across multiple datasets and application
scenarios. Our testing verifies that FLAME effectively mitigates the impact of poisoning while
preserving model accuracy. Additionally, we demonstrate that FLAME can achieve practical
run-time performance.

2.1 Our Contributions

2.1.1 First Systematization of Knowledge for Privacy-Preserving Clustering

Clustering, an unsupervised ML technique, organizes a dataset into separate groups. It
is widely used for various purposes, such as market division based on customer prefer-
ences [CCGR97] and categorizing images of unhealthy organs in medical imaging [MS99].
These uses often involve handling sensitive data, such as proprietary business details or
confidential medical records. Our research concentrates on situations involving multiple
parties, such as businesses or healthcare institutions, that lack mutual trust to share their
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data about clients or patients. Despite this mistrust, there is a mutual interest in clustering
their aggregated data to achieve better insights and more accurate results, as a larger dataset
typically improves clustering effectiveness. Over the years, 59 papers have contributed to the
field of privacy-preserving clustering by using secure computation techniques. This section
presents the first systematic review and empirical evaluation of these contributions, analyzing
them from both theoretical perspectives and practical implementations, as detailed in the
following publication available in Appendix A.

[HMSY21] A. HEGDE, H. MÖLLERING, T. SCHNEIDER, H. YALAME. “SoK: Efficient Privacy-
Preserving Clustering”. In: Proceedings on Privacy Enhancing Technologies
(PETs) 2021.4 (2021). Online: https://ia.cr/2021/809. Code: https://
encrypto.de/code/SoK_ppClustering, pp. 225–248. CORE Rank A. Ap-
pendix A.

Evaluating Privacy-Preserving Clustering Protocols In our analysis, we systematically
review and evaluate the various techniques and protocols developed for privacy-preserving
clustering. We examine the strengths and limitations of these approaches with respect to
several critical aspects: i) the underlying plaintext clustering algorithm, ii) the security
model, iii) the specific scenarios for which the protocols were designed, iv) the types of data
distributions handled, v) the secure computation techniques utilized, vi) the levels of privacy,
and vii) efficiency achieved. A comprehensive comparison table (cf. [Table. 3] in Appendix A)
summarizes our review of all 59 works focused on privacy-preserving clustering. From this
in-depth review, we identify the following main criteria for selecting privacy-preserving
clustering protocols:

1. Privacy: A protocol dedicated to privacy-preserving clustering achieves full privacy
protection if it reveals no information beyond what can be derived from the protocol’s
output.

2. Efficiency: We consider a privacy-preserving clustering approach efficient if it can handle
increasing workload efficiently. This includes how well the protocol scales in terms of
communication and computational time relative to the dataset’s size N , the number of
clusters K , and the dimensionality d of the input data.

Lesson Learned Through our comprehensive analysis, we identify only ten protocols that
meet stringent privacy standards without any information leakage. Within this select group,
just four protocols are determined to provide efficient solutions (cf. Table. 1 in Appendix A).
Among these, the MPC-based DBSCAN [BCE+21] was already implemented. We implement
the other three protocols: HE-based Mean-shift [CKP19], MPC-based K-means [MRT20],
and hybrid HE-MPC-based hierarchical clustering [MPOT21]. We then benchmark all four
protocols, conducting a detailed comparison of their asymptotic runtime, communication,
and the number of rounds required, presenting these findings in Table 5 in Appendix A. From
an asymptotic perspective, the MPC-based K-means [MRT20] protocol is found to be the most
efficient in terms of communication and runtime. According to our benchmarks, [MRT20] is
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the most suitable choice for clustering large multi-dimensional datasets. Conversely, [CKP19]
is preferable for scenarios where a single data owner with limited resources assigns clustering
tasks to a more capable server across a network characterized by high latency and low
bandwidth. For clustering smaller datasets, [BCE+21] appears to be the optimal choice,
performing well on a variety of dataset types and also achieving low runtimes.

Impact We identify and theoretically and experimentally evaluate the most promising
protocols for privacy-preserving clustering, clarifying their strengths and limitations. Ad-
ditionally, our work highlights the research challenges that need to be tackled to make
privacy-preserving clustering not just a theoretical concept but also a practical tool for real-
world applications. We make all our implementations openly available under the MIT license
at https://encrypto.de/code/SoK_ppClustering. Furthermore, our research was pre-
sented as a contributed talk at the Privacy in Machine Learning Workshop at the Conference
on Neural Information Processing Systems (NeurIPS’21) [HMSY21a] and at the Privacy
Preserving Machine Learning Workshop at the ACM Computer and Communications Security
Conference (CCS’21) [HMSY21b].

2.1.2 First Privacy-Preserving and Robust Federated Learning

In this section of the thesis, we address both privacy inference and poisoning attacks in FL.
Detailed information can be found in the following publications listed in Appendix B and
Appendix C.

[NRC+22] T. D. NGUYEN, P. RIEGER, H. CHEN, H. YALAME, H. MÖLLERING, H. FEREI-
DOONI, S. MARCHAL, M. MIETTINEN, A. MIRHOSEINI, S. ZEITOUNI, F. KOUSHAN-
FAR, A.-R. SADEGHI, T. SCHNEIDER. “FLAME: Taming Backdoors in Feder-
ated Learning”. In: USENIX Security Symposium (USENIX Security). Online:
https://ia.cr/2021/025. USENIX Association, 2022, pp. 1415–1432. CORE
Rank A*. Appendix B.

[SSY23] T. SCHNEIDER, A. SURESH, H. YALAME. “Comments on “Privacy-Enhanced
Federated Learning Against Poisoning Adversaries””. In: IEEE Transactions
on Information Forensics and Security (TIFS) 18 (2023), pp. 1407–1409. CORE
Rank A. Appendix C.

The work by Liu et al. [LLX+21] introduced a privacy-enhanced federated learning (PEFL)
system designed to detect both poisoning and inference attacks within FL. PEFL is the first to
address these types of attacks in FL using encrypted data, relying on HE. In our analysis, we
carefully review the PEFL framework and identify a number of privacy issues. Specifically,
we observe that key protocols within PEFL inadvertently reveal significant information about
the user’s data gradients to one of the computing servers, thus compromising privacy (see
Sect. II in Appendix C for details).

Upon reviewing the shortcomings of PEFL, it is evident that there is no existing solution
capable of effectively tackling the two main challenges in FL—poisoning and inference

7
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attacks—simultaneously. As a result, we introduce the first FL framework that not only resists
sophisticated poisoning attacks but also significantly enhances protection against inference
attacks on the training data.

Privacy-preserving and Robust FL system We propose FLAME [NRC+22] to counteract
poisoning attacks by employing a strategy that combines clustering with data clipping, further
enhanced by the addition of differentially private noise. This approach effectively neutralizes
poisoning efforts. To address inference attacks, FLAME incorporates 2PC, which restricts
access to individual model updates, thereby preventing inference attacks by ensuring that
two semi-honest aggregators cannot access sensitive local model information. The core
components of FLAME, including distance calculation, clustering, data clipping, and model
aggregation (detailed in Algorithm 1 in Appendix B), are all executed within a 2PC frame-
work using ABY [DSZ15] to maintain client data privacy. To achieve this, we co-design all
components of FLAME as efficient 2PC protocols. This requires representing all functions
that need to be computed with 2PC as Boolean circuits (including generating those circuits
using conventional logic synthesis tools) and using efficient combinations of the three 2PC
protocols: Yao’s garbled circuit (GC), arithmetic Goldreich-Micali-Wigderson (A-GMW), and
boolean Goldreich-Micali-Wigderson (B-GMW) [DSZ15].

We generate a novel (previously not existing) circuit for square root computation needed for
determining cosine and L2-norm distances (cf. Algorithm 1 in Appendix B) using the Synopsys
Design Compiler [10], a conventional logic synthesis tool. We carefully implement the circuit
using the Verilog hardware description language (HDL) and compile it with the Synopsys
Design Compiler in a highly efficient manner. We customize the flow of the commercial
hardware logic synthesis tools to generate circuits optimized for GC, specifically using the
Free-XOR optimization technique [KS08b] similar to [SHS+15]. We develop a technology
library to guide the mapping of the logic to the circuit without defining specific manufacturing
rules.

Efficiency We conduct a thorough evaluation of FLAME’s efficiency and effectiveness across
a variety of datasets, including word prediction, image classification, and IoT intrusion
detection, as detailed in Section 7 in Appendix B. Our results demonstrate that FLAME
effectively counters all known poisoning attacks while having a minimal impact on the
accuracy of the aggregated model. Furthermore, we find that FLAME is practical for real-
world applications. For instance, training a neural network with 2.7 million parameters and
50 clients on the CIFAR-10 dataset requires less than 13 minutes. Even when training the
largest model we consider (Reddit) with 20 million parameters and involving 100 clients
in each training iteration, the total runtime is 22, 081 seconds (approximately 6 hours) per
iteration with FLAME. Moreover, our experiments indicate that the communication overhead
introduced by FLAME is manageable, showing only a threefold increase compared to the
non-private FLAME.

Impact FL has been a groundbreaking development in the realm of large-scale distributed
ML over the last decade, significantly influencing both academic research and industrial
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applications. In our research, we introduce the first comprehensive solution, FLAME, de-
signed to tackle the challenges of poisoning and privacy attacks in FL within a single unified
framework, enabling private and robust distributed ML. By addressing both privacy and
robustness concerns simultaneously, FLAME represents one of the initial steps towards wider
deployment of FL in real-world applications. This advancement may inspire more clients
to engage in FL, contributing to a richer pool of training data and improving the overall
effectiveness and reliability of ML models developed under the FL paradigm.

Moreover, building on our attack [SSY23], a recent study [WZL24] has exposed privacy
weaknesses in the work developed after FLAME [ZWM+22], leading to a lightweight and
secure FL framework. This revelation highlights the essential lesson from our analysis: for
solutions to be effective and private, researchers must provide provably secure solutions.

2.2 Related Work

In this section, we review the existing work in the fields of PPML (cf. Sect. 2.2.1) and
FL (cf. Sect. 2.2.2), highlighting the major developments in these areas. Additionally, we
present our contributions, demonstrating how our research builds upon and advances the
current understanding of PPML and FL.

2.2.1 PPML

PPML is an active research field, with a strong emphasis on applying cryptographic techniques
for privacy in supervised and deep learning models [LJLA17; MZ17; HTGW18; JVC18;
BCD+20; KRC+20; MLS+20; RRK+20b; NC23]. As the availability of training data, often
unlabeled, continues to grow, the relevance of privacy measures in unsupervised learning,
such as clustering, has also grown.

In the domain of privacy-preserving clustering, a considerable amount of research has focused
on the K-means algorithm. These studies primarily differ in the cryptographic methods
they use. A group of these studies leverage HE, such as [JKM05; DT13; LBY14; SM17;
JA18; YT19; WLW+20]. However, these approaches often exhibit slow performance due
to the heavy cryptographic operations involved. Alternatively, other research adopts MPC
strategies, offering more efficient computation [JW05; PGJ12; MRT20], though they require
more communication compared to HE methods. Notably, various privacy-preserving K-means
methods [VC03; JW05; JKM05; SMO07; GC16; YT19; WLW+20] leak intermediate values
like the centroids, thereby not providing appropriate privacy protection. Considering both
privacy and efficiency, the MPC-based approach proposed by Mohassel et al. [MRT20] is the
most advanced and practical solution available.

A limited number of studies have explored privacy-preserving hierarchical clustering by
utilizing HE and MPC [̇IKS+07; JPWU10; DT13; SM17; MPOT21]. Apart from Meng et al.’s
work [MPOT21], these studies often do not include a formal security proof [̇IKS+07; JPWU10;
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DT13] or lack a detailed complexity analysis, implementation, and benchmarks [SM17].
Moreover, the approaches in [JPWU10; DT13] face challenges with scalability, as their
performance degrades exponentially with the increase in the number of participants.

In the realm of privacy-preserving density-based clustering, Cheon et al. [CKP19] introduced
an outsourcing protocol for the Mean-shift algorithm that uses HE. Bozdemir et al. [BCE+21]
developed an efficient, fully privacy-preserving protocol for the DBSCAN clustering algorithm,
another density-based method. There have also been works to achieve privacy in DBSCAN
clustering through the use of random blinding techniques, HE, or the involvement of par-
tially trusted third parties [AE06; XHL+07; LXLH13; RBK17]. Nonetheless, these methods
encounter various drawbacks: some protocols tend to leak information [KR07; RBK17],
others require that each participant has access to certain plaintext data for input into the
clustering process, making them unsuitable for outsourcing applications [KR07; XHL+07;
JXJ+08; AGM+13; LXLH13; AG17]. Additionally, some approaches face scalability issues due
to the dependence on heavy cryptographic operations and the need for intensive interaction
among the parties involved [KR07; LXLH13; AG17].

To navigate the rapidly expanding field of research on PPML, various surveys have been
conducted. Haralampieva et al. [HRP20] provided a comprehensive review of frameworks
specifically for private image classification. Tanuwidjaja et al. [TCBK20] compiled a summary
of work on privacy-preserving deep learning, covering both the challenges of implementing
these methods and potential attacks on private deep learning systems. Ng and Chow [NC23]
conducted an analysis of 53 papers on privacy-preserving neural networks from 2016 to
2022, focusing on approaches based on HE and MPC. All previous surveys concentrated on
privacy-preserving supervised learning, where a training dataset with labeled samples (i.e.,
known input-output pairs) trains a model for future data record classification. Contrastingly,
our research [HMSY21c] explores clustering, a widely used unsupervised ML technique.
Clustering detects unknown patterns in unlabeled data, eliminating the need for a traditional
"training" phase for a model.

Our Work In Sect. 2.1.1, we analyze the four most recent studies in privacy-preserving
clustering that show no privacy leakage. Specifically, we look into the research by Mohassel
et al. [MRT20] on privacy-preserving K-means, Meng et al. [MPOT21] on privacy-preserving
hierarchical clustering, Bozdemir et al. [BCE+21] on privacy-preserving DBSCAN, and Cheon
et al. [CKP19] on privacy-preserving Mean-shift. Our analysis involves comparing their
benefits and drawbacks, along with in-depth experimental benchmarks to evaluate their
performance and efficiency.

2.2.2 FL

Inference Attacks In FL, clients contribute to a collective learning process by sharing locally
trained model updates with a central party. This process, while collaborative, introduces a risk
of data leakage, as these shared local models could potentially reveal sensitive information.
Even a semi-honest central server might infer confidential information from the private
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training data by analyzing these local updates [NSH19; LWB+21; BDS+23]. To mitigate such
inference attacks, secure aggregation methods have been developed, characterized by their
handling of a large number of clients and drop-out tolerance. Secure aggregation protocols
ensure that the central server only receives aggregated model updates, thus preventing the
analysis of individual updates that could lead to inference attacks [BIK+17; CB17; BBG+20;
FMM+21; CCKS22]. In this direction, our publication [FMM+21] (which is not part of this
thesis) conducts a comparative analysis of several secure aggregation protocols, focusing on
their efficiency and feasibility for real-world applications. More detailed comparisons among
secure aggregation schemes for FL can be found in [MÖBC23].

Poisoning Attacks FL is vulnerable to manipulations by malicious clients [BBG19; BVH+20;
FCJG20; SH21; RNMS22; ZPS+22]. These poisoning attacks can be classified into untargeted
and targeted types. Untargeted attacks focus on reducing the global model’s performance for
a large number of test inputs, yielding a final global model with a high error rate [BBG19;
FCJG20; SH21]. Targeted attacks, also known as backdoor attacks [BVH+20], activate
attacker-defined triggers that cause a victim model to do targeted misclassifications, which
can then be activated in the inference phase [BVH+20; RNMS22; ZPS+22]. Remarkably, the
model’s accuracy on inputs without the trigger remains unaffected.

Poisoning Defenses In FL, the simple approach of averaging parameters [MMR+17] from
various clients’ updates is vulnerable to outliers, which can significantly compromise the
model’s accuracy. To address this issue, Byzantine-robust defenses have been developed
to improve the robustness of FL against potential attacks. One such defense is the Krum
algorithm [BMGS17], which selects a single local update for the global model. This update
is chosen because it has the closest similarity to the majority of other updates, based on
the assumption that the majority of clients are honest. Specifically, it picks the update that
is closest to the n−m− 2 other updates, where n is the total number of clients, and m is
the estimated number of malicious clients. Extending this concept, Multi-Krum [BMGS17]
allows for the selection of multiple updates rather than just one. Another approach, known
as Median [YCRB18], involves coordinate-wise aggregation. This method selects the median
value for each parameter across all updates, which naturally mitigates the impact of outliers
and thus enhances the robustness of the aggregation process. To further improve the detection
of malicious updates, some strategies use an auxiliary dataset, or rootset, at the aggregator.
This dataset is used to evaluate the performance of updates on a known baseline, assisting
in identifying potentially harmful gradients [LXC+19; CFLG21; SH21]. FLTrust [CFLG21]
uses this concept by comparing each received update to a baseline update calculated from
the auxiliary dataset, using the ReLU-clipped cosine-similarity to assess similarity. Similarly,
RSA [LXC+19] uses an ℓ1-norm-based regularization for comparison, focusing on the deviation
from the baseline update as a sign of reliability. FLDetector [ZCJG22] detects malicious
clients by checking their model updates’ consistency based on historical model updates.
See [SHKR22b] for a comprehensive overview of different robust aggregations.

Our Work The poisoning defenses discussed so far are not compatible with secure ag-
gregation protocols in a straightforward manner or lead to an intolerable overhead. In
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Sect. 2.1.2 [NRC+22], we propose FLAME, that simultaneously considers both threats. Con-
cretely, FLAME uses density-based clustering to remove updates with significantly different
cosine distances (i.e., different directions) combined with clipping. Tab. 2.1 summarizes
the key differences of FLAME from previous works. Briefly, in FLAME, FL clients use secret-
sharing to securely outsource training local models to distributed servers based on MPC,
thereby preserving model privacy. The clients can then leave, making FLAME robust against
real-world issues such as drop-outs and requiring no interaction between clients.

Solution
Representative

Work(s)
Technique

Model
Privacy

Poisoning
Resilience

Distributed
Servers

No Client
Interaction

Dropout
Handling

Plain Aggregation [MMR+17] – ✗ ✗ ✗ ✓ ✓

Secure Aggregation
[BIK+17] Masking ✓ ✗ ✗ ✗ ✓

[CB17] MPC ✓ ✗ ✓ ✓ ✓

[FMM+21] MPC ✓ ✗ ✓ ✓ ✓

Robust Aggregation
[CFLG21] – ✗ ✓ ✗ ✓ ✓

[LXC+19] – ✗ ✓ ✗ ✓ ✓

[SH21] – ✗ ✓ ✗ ✓ ✓

FLAME (cf. Sect. 2.1.2) [NRC+22] MPC ✓ ✓ ✓ ✓ ✓

Table 2.1: High-level comparison of FLAME [NRC+22] and previous works. Since the body of litera-
ture is vast, comparison is made against only a representative subset for each category.

Follow-up Works Following the introduction of FLAME [NRC+22], a series of stud-
ies [DCL+21; HLX+21; MMM+22; DWL+23] have delved into MPC-based secure FL schemes.
These approaches aimed to achieve a dual goal: preserving data privacy while enhancing
the system’s defense against Byzantine threats, thus securing data and preventing malicious
entities from influencing model aggregation. Within our SAFEFL framework [GMS+23]
(not part of this thesis), we conduct a thorough evaluation of these recent schemes within
the FL domain, revealing that FLAME surpasses others in accuracy, as detailed in Table 3
of [GMS+23]. Furthermore, SAFEFL is designed to promote the development of future
methodologies that are not only efficient but also robust against both privacy inference and
poisoning attacks. Building upon SAFEFL, we introduce WW-FL [MSS+23] (not part of this
thesis), a unified framework developed to support private and robust distributed ML at scale.
WW-FL is based on a novel abstraction that also captures existing regular and hierarchical FL
architectures in a hybrid manner.

The most recent of our contributions is ScionFL [BMP+24] (not part of this thesis), which
represents a significant advancement by combining three essential aspects: (1) communication
efficiency through quantization, (2) data privacy via secure aggregation, and (3) robustness
through an advanced poisoning defense mechanism. This novel poisoning defense in ScionFL
follows the approach initiated by FLAME in using density-based clustering, clipping, and
noise addition, with significant variations, which we emphasize in the following:

1. Magnitude Boundary. FLAME’s clipping is done with respect to the median Euclidean
distance of the local updates to the previous global model. However, especially with non-iid
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data and in early training phases, each training iteration may exhibit significant differences
even for consecutive iterations. Hence, using the recent average norm (assuming the majority
of updates is benign) as in [BMP+24] intuitively gives a better estimation for a benign
magnitude in the current training state.
2. Filtering. FLAME compares cosine similarity in a pair-wise fashion among individual
updates, i.e., it computes n·(n−1)

2 cosine distances per iteration, where n represents the
number of clients participating in the FL process. In contrast, [BMP+24] does n. While
[BMP+24] sorts local updates based on cosine similarity, FLAME uses secure clustering with
low cubic complexity [BCE+21]. FLAME only accepts updates assigned to the largest cluster,
which can lead to an exclusion of benign updates and thus significantly slowing down the
training by removing valuable benign contributions. In contrast, [BMP+24] removes only
a fixed number of updates, thereby enabling an efficient trade-off that reduces the attack’s
effect to a tolerable level (even if a few malicious contributions are not filtered out) with a
low false positive rate.
3. Differential privacy (DP): After the clipping, FLAME aggregates the updates and adds noise
in the cleartext to create a differentially private new global model. We do not consider DP
in [BMP+24].
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This chapter explores the optimization of secure multi-party computation (MPC) protocols
in terms of both computation and communication. The literature on MPC distinguishes
between two main types of corruption scenarios: i) semi-honest, where the corrupt parties are
expected to follow the protocol steps, and ii) malicious, where corrupt parties may deviate
from the protocol in various ways. MPC protocols are broadly classified into i) low-latency
(e.g., [MRZ15; GRW18; RR21]) and ii) high-throughput (e.g. [ABF+17; CCPS19; RS20])
protocols. Low-latency protocols employ garbled circuit (GC) [Yao86; BMR90; KS08b; ZRE15;
RR21], achieving constant-round solutions through symmetric cryptographic operations in
the online phase. Conversely, the latter uses secret sharing (SS)-based solutions, which do
not require cryptographic operations during the online phase.

Focusing on low-latency protocols, the introduction of the half-gates garbling scheme by Zahur,
Rosulek, and Evans in [ZRE15], along with their proposal of a matching lower bound of 2κ
bits for the cost of garbling an AND gate within their linear garbling model, marked significant
progress in GC-based protocols. Subsequently, Rosulek and Roy [RR21] moved beyond this
lower bound by introducing a technique known as slicing and dicing. Their approach led to a
more efficient garbling scheme. Specifically, they demonstrated that in their scheme, XOR
gates are free [KS08b], while AND gates require only 1.5κ+ 5 bits. However, these schemes
impose considerable computational overheads: for the half-gates method [ZRE15], each
AND gate requires four symmetric cryptographic operations for the garbler and two for the
evaluator. In contrast, the "slicing and dicing" technique [RR21] requires six cryptographic
operations for garbling and three for evaluation per AND gate.

Despite their efficiency in terms of communication, high-throughput protocols require a
number of communication rounds that is linear with the multiplicative depth of the circuit. In
seeking practical solutions, several works [DPSZ12; KSS13] have explored a model involving
an input-independent setup phase. During this phase, parties generate a lot of correlated
randomness (e.g., Beaver multiplication triples [Bea91]), which is then used in the online
phase to make the computation of parties’ inputs more efficient. Despite considerable efforts
to optimize the setup phase [KOS16; KPR18; RST+22], improving the online phase has
remained largely unexplored since 2013 [SZ13].

This chapter focuses on improving both GC-based and SS-based MPC protocols. For GC-based
protocols, we use recent advancements in hardware technologies to reduce computation
complexity. On the other hand, for SS-based protocols, we develop a new set of protocols to
lower the number of rounds needed and to achieve more efficient high-throughput solutions.
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3.1 Our Contributions

3.1.1 Reducing Computation Overhead of GC-based Protocols

In Yao’s protocol [Yao86], the garbler (one of the two parties) generates a GC that corresponds
to a Boolean circuit by encrypting the truth table of each gate. The evaluator (the other
party) then decrypts (evaluates) the circuit received from the garbler. The cryptographic
protocol known as oblivious transfer (OT) [IKNP03] is used for transferring the necessary
keys corresponding to the evaluator’s inputs. The most efficient solution for GCs combines
free-XOR [KS08b] and half-gates [ZRE15] (at the time of this contribution [MSY21])/three-
halve-gates [RR21] (first implemented in 2022 [HKST22]). This optimization means that
transferring 2/1.5 ciphertexts is required for each AND gate, while XOR gates, which require
only XOR operations, do not require any communication, essentially making them free. Addi-
tionally, fixed-key advanced encryption standard (AES) operations are required to evaluate
AND gates [BHKR13; GKWY20].

The addition of the AES instruction set (AES-NI) extension into the x86 instruction set
architecture has significantly improved the performance and efficiency of AES operations.
This development allows for AES-128 to be computed at about 1.3 cycles per byte on a single
processor core. Intel has further pushed the boundaries in this field by introducing vector
AES (VAES) instructions [DGK19], which are part of the Ice Lake microarchitecture. These
VAES instructions enable the parallel processing of several AES rounds across various data
blocks, each using unique round keys.

In this section of the thesis, we explore how using VAES can make GC-based MPC more
efficient, as detailed in the following publication available in Appendix D.

[MSY21] J.-P. MÜNCH, T. SCHNEIDER, H. YALAME. “VASA: Vector AES Instructions for
Security Applications”. In: Annual Computer Security Applications Conference
(ACSAC). Online: https://ia.cr/2021/1493. Code: https://encrypto.
de/code/VASA. ACM, 2021, pp. 131–145. CORE Rank A. Appendix D.

We focus on using VAES to improve the computation overhead within GC-based protocols and
their respective applications. Initially, VAES was mainly used to solve specific design issues
in computer architecture, particularly for Pseudo-Random Functions (PRFs) and Pseudo-
Random Generators (PRGs) [DG19], where the sequence of AES operations is fixed ahead
of time. We expand its use to the design and implementation of protocols, like those in GC,
where the sequence of AES operations can change and is not known in advance. To get the
most benefit from the hardware, it is important to group together enough AES tasks in each
batch of operations.

Batch Identification Our approach groups enough tasks together in batches for the com-
puter processor to minimize the delay caused by individual tasks and maximize the processor’s
throughput. We develop methods to create these batches, even when dealing with complex
task sequences that don’t follow a straightforward path, using a technique called dynamic
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batching. This technique involves deferring some tasks and tracking additional details about
them. The core idea behind dynamic batching is to delay the execution of operations until
they are needed and to process all pending operations in a batch when one is referenced as
an input dependency. We refine this approach by introducing detailed tracking methods for
more complicated scenarios, such as managing two distinct types of AES-related tasks and
employing techniques like early evaluation (cf. Section 4.1 in Appendix D).

Batch Computation We then adjust our strategy to identify and organize independent tasks
early on by layering them and directly leveraging single instruction multiple data (SIMD)
capabilities for better performance. Once we organize these tasks into batches, our next
step is to compute the AES operations. This involves tackling the work on two levels: at a
lower level, we give the compiler as many opportunities for optimization as possible while
maintaining high-level code simplicity. At a higher level, we adopt a memory-oriented
approach to simplify our code, reducing dependence on specific hardware. This technique
addresses code duplication concerns and uses platform-independent instructions. To achieve
this, we implement our own versions of AES operations instead of relying on existing libraries.
This choice is driven by the need to reduce the extra time it takes to call these external
libraries and the flexibility to fine-tune our code, for instance, to generate certain inputs right
where they are needed (cf. Section 4.2 in Appendix D).

Application We implement our techniques in various frameworks, focusing on different
areas of secure computation. This includes the ABY framework [DSZ15] designed for semi-
honest two-party computation (2PC), the EMP-AGMPC [WRK17c] framework for malicious
MPC, and Microsoft’s CrypTFlow2 [RRK+20a] framework for privacy preserving machine
learning (PPML).

Among these, both ABY and EMP-AGMPC benefit significantly from our approach of grouping
tasks into dynamic batches. Specifically, ABY is improved with more efficient garbling
techniques [GLNP15; ZRE15; GKW+20] and takes advantage of SIMD capabilities to better
organize these batches. On the other hand, EMP-AGMPC focuses on using memory in a more
abstract way to streamline its processes.

Efficiency After integrating our improvements into these frameworks, we evaluate the
performance enhancements. Initially, by organizing tasks into batches without needing extra
hardware, the ABY framework’s runtime increases by up to 230%. Then, by applying the VAES
technology, we see additional improvements in performance across nearly all the frameworks.
For ABY, this means an extra 25− 100% increase in efficiency; for EMP-AGMPC, up to a 30%
increase; and for Cryptflow2, an overall 6− 20% improvement in performance. We make
our modified versions of these frameworks available for everyone to use and to serve as a
reference point for future developments at https://encrypto.de/code/VASA.
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Impact We focus on improving three major frameworks: the ABY framework [DSZ15] used
for semi-honest 2PC; the EMP-AGMPC framework [WRK17c] designed for malicious MPC;
and Microsoft’s PPML framework CrypTFlow2 [RRK+20a]. By integrating VAES technology
into their implementations, without modifying the foundational protocols themselves— we
improve their efficiency and usability.

After publishing our results online, we received insightful feedback and historical context
from Shay Gueron, the original designer of VAES at Intel. His input added valuable depth to
our work, highlighting the practical significance of our application of VAES in MPC settings.
This exchange emphasizes the impact of our research in bringing real-world improvements
to MPC frameworks.

3.1.2 Improving Efficiency of SS-based Protocols

In 2PC secure against semi-honest adversaries, the potential for improving the online phase
of SS-based protocols had not been explored in depth for over ten years [SZ13]. This part of
the thesis makes a significant contribution in leveraging this potential, highlighted by two
key publications listed in Appendix E and Appendix F:

[PSSY21] A. PATRA, T. SCHNEIDER, A. SURESH, H. YALAME. “ABY2.0: Improved Mixed-
Protocol Secure Two-Party Computation”. In: USENIX Security Symposium
(USENIX Security). Online: https://ia.cr/2020/1225. USENIX Association,
2021, pp. 2165–2182. CORE Rank A*. Appendix E.

[BHS+23] A. BRÜGGEMANN, R. HUNDT, T. SCHNEIDER, A. SURESH, H. YALAME. “FLUTE:
Fast and Secure Lookup Table Evaluations”. In: IEEE Symposium on Security
and Privacy (IEEE S&P). Online: https://ia.cr/2023/499. Code: https://
encrypto.de/code/FLUTE. IEEE, 2023, pp. 515–533. CORE Rank A*.
Appendix F.

First, we introduce ABY2.0 [PSSY21a], a high-performance framework designed for 2PC.
We primarily concentrate on improving the efficiency of the online phase in ABY2.0 over
state-of-the-art work [DSZ15]. Additionally, we expand our methods to support multi-input
multiplication gates without increasing the online communication compared to state-of-the-
art solution [DSZ15], meaning that the communication needed does not depend on the
number of inputs. We develop several essential building blocks to improve online phase
efficiency, including scalar product, comparison, equality check, and the AES S-box. The key
contributions of our work can be summed up as follows:

2PC and Mixed Protocol Conversions We propose an optimized 2PC protocol that requires
only the transmission of two ring elements for each multiplication operation in the online
phase. This is 2× better than the state-of-the-art [DSZ15], which required four ring elements
for the same operation. Additionally, our protocol handles multiplication gates with multiple
inputs (N -input) with the same minimal online cost of two elements and just a single round
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of interaction. This efficiency is particularly notable when compared to the state-of-the-
art approach [ON20], which required a communication of two ring elements per input,
amounting to a total of 2N elements for N -input gates. Furthermore, we introduce a series
of conversions that improve upon existing techniques [DSZ15]. Our solution decreases the
number of rounds needed for most conversions from two to just one.

Building Blocks We develop depth-optimized circuits and constructions designed to improve
efficiency for several fundamental building blocks: i) scalar product, ii) comparison, iii)
equality testing, and iv) AES S-box. Our main achievements include:

– Depth-Optimized Circuits: parallel prefix adders (PPAs) provide a depth-optimized
way to add two binary numbers of ℓ-bits. The most effective PPAs achieve a depth of
log2(ℓ) [BL01]. We develop a PPA that uses combinations of two, three, and four input
AND gates to further optimize depth. Specifically, for a 64-bit ring, our design achieves
a depth that is 2× more efficient compared to existing designs [MR18].

– Scalar product: Our protocol features online communication that is independent of the
vector dimension n, representing a notable advancement in 2PC efficiency. Specifically,
our method only needs to exchange two ring elements as opposed to 4n elements
in [DSZ15].

– Comparison: Our new protocol improves the online communication of [ON20] by a
factor of 6× and reduces the number of online rounds from 4 to 3 for 64-bit length.

– Equality testing: Our new protocol for checking the equality of two l-bit values, im-
proves the online rounds of [PSTY19] from log2(l) to log4(l). By incorporating our
improved equality check into the state-of-the-art circuit-based private set intersection
protocol [PSTY19], we achieve approximately a 2.35× decrease in online communica-
tion.

– AES S-box: By applying our protocol for 3-input AND gates to the construction of
AES S-box, we reduce the online rounds from 4 [BP12], down to 3. This increases
the efficiency of AES rounds by a factor of 1.33×. On a high level, we start with the
three-layer construction of [BP12; BMP13], and focus on improving the middle layer
by replacing some of the 2-input AND gates with 3-input AND gates.

In our subsequent work, we introduce FLUTE [BHS+23], a protocol designed for efficiently
evaluating look-up tables (LUTs). This protocol adopts the same secret sharing as our
ABY2.0 protocol [PSSY21a]. We successfully improve the online phase in terms of both
communication and rounds, without increasing the total communication compared to the
current state-of-the-art SS-based LUT protocol of [DKS+17]. The following is our main
highlight:
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A Novel LUT Evaluation We examine the evaluation of LUTs, which previous stud-
ies [IKM+13; DKS+17] have approached from two angles. Some focused on protocols
like OTTT [IKM+13] and its refinement OP-LUT [DKS+17], which reduced the online commu-
nication but require a large amount of total communication. Others, like SP-LUT [DKS+17],
minimized total communication but required more online communication. We offer the
best of both worlds with our protocol, achieving low online communication similar to
OP-LUT while maintaining total communication at levels comparable to SP-LUT. Instead of
viewing LUTs merely as tables mapping a number of inputs to outputs, we propose seeing
them as a generalized notion of inner products over a Boolean domain (see Section 3.2.1
of Appendix F [BHS+23]). With FLUTE, the setup communication is not affected by the
number of LUT outputs, and the online communication is independent of the number of LUT
inputs.

LUT Circuit Generation We generate the circuits for FLUTE [BHS+23] using a hardware
synthesis toolchain similar to the one in [DKS+17]. To do so, we use Yosys [WGK13] and the
ABC tool [Ber]. Yosys [WGK13] serves as the open-source framework for front-end processing
of our Verilog hardware description language (HDL), mapping it into a network of low-level
logic operations in an intermediate format. The ABC tool [Ber] then structures this network
into Directed Acyclic Graphs (DAGs) and maps it into LUTs in a depth-optimized fashion. For
generating LUTs of more complex functionalities, such as floating point operations, we use the
hardware intellectual property (IP) libraries in the Synopsys Design Compiler (DC) [10].

Efficiency To validate the effectiveness of ABY2.0 [PSSY21a] and FLUTE [BHS+23], we
conduct implementations and evaluations against their most direct competitors. In the case
of ABY2.0, we apply it to both the training and inference phases of logistic regression and
neural networks (NNs) within networks of bandwidths 25Gbps (local area network (LAN))
and 75Mbps (wide area network (WAN)). For logistic regression training, compared to
SecureML [MZ17], our online runtime improvements ranged from 4.4× to 6.1× for LAN
and from 1.5× to 1.95× for WAN. Inference for logistic regression sees online runtime
improvements over SecureML by factors of 5.5× for LAN and 1.6× for WAN. NN training over
SecureML [MZ17] shows improvements between 2.7× to 3.46× for LAN and 2.4× to 2.8×
for WAN. For NN inference, we achieve an improvement in online runtime over SecureML by
3.26× for LAN and 2.37× for WAN.

With FLUTE, we showcase its capability and practicality through the evaluation of various
circuits, including those for floating point operations. Compared to the state-of-the-art
SS-based LUT evaluation [DKS+17] and the SP-LUT method, FLUTE improves the online
communication by over 100× for floating point operations, while only increasing the overall
communication by less than 4% on average. Moreover, FLUTE achieves a 3× improvement in
online communication compared to the best previous LUT evaluation methods that focused
on optimizing the online phase, namely OTTT [IKM+13] and OP-LUT [DKS+17].
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Impact After publishing our ABY2.0 [PSSY21a], it received more than 230 citations from the
research community to date and encourages more work in the field of privacy-preserving tech-
nologies. Notably, ABY2.0 was adopted by the India Urban Data Exchange (IUDX [BTM23])
for practical and scalable MPC solutions. Furthermore, SP-LUT from [DKS+17] has been
applied in several key studies, such as [RRK+20a] for secure inference comparisons, [RBS+22]
for mathematical functions on floating-point numbers, and [RRG+21] for functions on fixed-
point numbers. The researchers in [RRG+21] specifically pointed out the crucial role of LUTs
in improving their protocol’s efficiency. Notably, FLUTE [BHS+23] can serve as an effective
alternative to SP-LUT in these applications.

In addition, we highlighted ABY2.0 in various venues, including a contributed talk at the
Privacy in Machine Learning Workshop (PriML) at NeurIPS’21 [PSSY21c], the Privacy Pre-
serving Machine Learning (PPML) in Practice Workshop at ACM CCS’21 [PSSY21d], and the
PPML workshop at the IACR CRYPTO’21 Conference [PSSY21b].

We make FLUTE available as an open-source project, coded in Rust because of its excellent
performance, memory safety, and ease of safe parallel processing. This release includes the
Boolean 2PC from ABY2.0 and the semi-honest silent OT extension from [BCG+19a], now in
Rust for the first time. The code, under the MIT License, is accessible at https://encrypto.
de/code/FLUTE. Rust’s robust safety measures are particularly important for developing
secure protocols that are reliable in practical applications.

3.1.3 Improving PFE Protocols

MPC protocols enable the effective implementation of private function evaluation (PFE),
which involves evaluating a private function on private data through the use of a publicly
known universal circuit (UC). A UC is a Boolean circuit with a size of Θ(n log n) [Val76],
designed to simulate any Boolean function up to a given size n. The concept of UCs was
first introduced by Valiant [Val76], who proposed the initial two UC designs with asymptotic
sizes of ∼ 5n log n and ∼ 4.75n log n. The most efficient design to date, developed by Liu et
al. [LYZ+21], achieves a more efficient size of ∼ 3n log n.

Previously, all the developed UCs were designed to simulate Boolean gates that have two
inputs and one output. In this part of our thesis, we expand the capabilities of UCs to also
include the simulation of circuits made up of LUTs that have δ inputs and σ outputs. Details
of this approach are presented in our following publication that can be found in Appendix G.

[DGS+23] Y. DISSER, D. GÜNTHER, T. SCHNEIDER, M. STILLGER, A. WIGANDT, H. YALAME.
“Breaking the Size Barrier: Universal Circuits meet Lookup Tables”. In:
International Conference on the Theory and Application of Cryptology and In-
formation Security (ASIACRYPT). Vol. 14438. LNCS. Online: https://ia.
cr/2021/809. Code: https://encrypto.de/code/LUC. Springer, 2023,
pp. 3–37. CORE Rank A. Appendix G.
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UC for evaluating LUTs with δ inputs andσ outputs We develop two approaches for PFE,
termed LUT-based UC (LUC) and Varying UC (VUC). The first construction is called LUT-based
UC (LUC) and has asymptotic size 1.5δσn logσn. While this construction can be used to
fully hide a function, it unfortunately has the LUT’s input dimension δ as prefactor for UC
sizes. Many functions can be most efficiently represented as multi-input LUTs of various input
dimensions, e.g., AES SBoxes can naturally be implemented with 8-input LUTs. However,
mathematical operations like additions and multiplications consist of full adders and thus
benefit from using 3-input LUTs. Combining a circuit that uses AES and arithmetic operations
and evaluating it with the LUC construction brings a massive overhead as all 3-input LUTs
need to be extended into an 8-input LUT, i.e., the potential of many 8-input LUTs is not fully
used, but its expensive prefactor is omnipresent. On the other hand, if all operations are
shown as 3-input LUTs, we need many more LUTs for AES operations compared to using
8-input LUTs.

For this reason, we propose a second construction called Varying UC (VUC) that has an

asymptotic size of ∼ 1.5(σn+∆) log(σn+∆), where ∆ is defined as
∑︁n

i=1
L in

i −2
2 , with L in

i
representing the number of inputs for the i-th LUT in the circuit. Here, the actual size of
the VUC constructions depends on the used LUTs’s dimensions. However, this construction
leaks the number of inputs of each individual LUT and thus leaks more information than
the LUC construction. Deciding whether to use LUC or VUC involves balancing the need for
performance with the requirement for function privacy. Examples of VUC’s application are
detailed in Section 5.2 in Appendix G [DGS+23].

Synthesis and UC Compiler Previous studies on UC-based PFE [Val76; KS08a; KS16;
GKS17; ZYZL19; AGKS20a; LYZ+21] typically approached the task of minimizing the input
circuit (to create a small number of 2-input gates) and the task of constructing a smaller UC
as two distinct steps. Our research demonstrates that by utilizing LUTs with multiple inputs
and outputs, we can merge these steps into one streamlined process, leading to a reduction
in overall circuit size.

Fig. 3.1 illustrates our compiler pipeline, as detailed in Subsection 6.2 of Appendix G [DGS+23].
In our circuit synthesis flow, similar to LUT generation for FLUTE [BHS+23] (cf. para-
graph 3.1.2), we use the hardware synthesis tools Yosys [WGK13] and ABC [Ber].

We first convert high-level design elements into a more manageable intermediate form using
Yosys [WGK13]. This intermediate representation is then formatted into the Berkeley Logic
Interchange Format (BLIF) [Mis92], ensuring compatibility with both Yosys and ABC tools.
Once we import the circuit into ABC, we apply a series of optimizations and transform the
circuit into a form that can be represented by LUTs with δ inputs, using the FPGA technology
mapping process if [CD16]. The circuit data is then saved in the Bench file format [Ber].
Subsequently, our UC compiler processes this data to produce the final UC file along with the
programming bits required for it.

The last stage involves adapting the circuit for use with the ABY framework [DSZ15], thereby
enabling the execution of the circuit within this framework. We choose ABY instead of our
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ABY2.0 and FLUTE because all previous PFE implementations [KS16; GKS17; AGKS20a] are
based on the ABY framework.

We optimize the process of LUT-based circuit generation by integrating LUTs that share some
inputs and have several outputs. However, standard synthesis tools are not set up to directly
create LUTs with multiple outputs. To overcome this limitation, we develop a post-processing
step. This step takes the circuits with single-output LUTs, which are initially generated by
the synthesis tool, and transforms them into circuits with multi-output LUTs.

Verilog

Yosys [WGK13] & ABC [Ber]

LUT circuit

UC Compiler

UC

ABY circuit [DSZ15]

ABY framework [DSZ15]

Figure 3.1: High-level overview of the compiler pipeline in our work [DGS+23].

Efficiency We evaluate three fundamental components often used in PFE applications:
the full adder (FA), comparator (CMP), and multiplexer (MUX). We compare the circuit
sizes using our newly developed LUC construction against conventional UC designs. Our
results indicate that the LUC construction significantly reduces circuit size, leading to UC size
reductions of 1.67× for FA, 2.67× for CMP, and 2× for MUX.

Moreover, we evaluate the performance of both our LUC and VUC constructions with different
LUT sizes and compare these to the latest UC construction by Liu et al. [LYZ+21]. Our LUC
construction achieves up to 2.18× smaller circuit sizes compared to Liu et al.’s approach. We
also examine the runtime and communication requirements of our LUC construction using a
network with 10 Gbit/s bandwidth and a 1 ms round-trip time. Our methods result in a faster
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total runtime for sample circuits by 1.14− 2× and reduce the communication overhead by
1.12−2.25×. Notably, our VUC construction, which differs from LUC by revealing the number
of inputs (fan-in) for each LUT, demonstrates up to 2.90× smaller circuit sizes than Liu et
al.’s UC, with total runtime improvements ranging from 1.1− 2.85× and communication
enhancements between 1.06 − 2.96×. For a comprehensive efficiency analysis, refer to
Tables 5 and 6 in Appendix G.

Impact We provide the first implementation of today’s most efficient UC construc-
tion [LYZ+21]. The source code is available under the MIT license at https://encrypto.
de/code/LUC. Additionally, we introduce two new constructions, LUC and VUC, along with
their implementations.

In today’s digital landscape, maintaining the confidentiality of processes handling private
data is essential for both economic and security reasons. A prominent example is hardware IP
protection. Circuit designs are critical assets for companies, containing significant intellectual
property. Manufacturers producing these designs can potentially access and learn proprietary
details, leading to IP theft and unauthorized cloning, resulting in substantial financial losses
and a diminished competitive edge. Hardware logic locking [BGH+22] has emerged as a
potential solution for hardware IP protection. This technique embeds a locking mechanism
within the hardware to prevent unauthorized use. However, current methods of logic locking
are not fully secure, as attackers can bypass or reverse-engineer these protections, compro-
mising the security of the designs [SPJ19]. PFE offers a technical solution that protects both
data and functions, suitable for applications like hardware IP protection. Our LUC and VUC
constructions provide a more secure way of protecting IP.

3.1.4 Improving MPC Efficiency Leveraging Cheater’s Identity

In MPC, the usual assumption is that all parties might be equally susceptible to either semi-
honest or malicious corruption. Yet, the idea of asymmetric trust, where trust levels can vary
among the participants, likely provides a more realistic perspective for many practical appli-
cations. Within the realm of PPML, recent works like MUSE [LMSP21] and SIMC [CGOS22]
have drawn attention to a specific scenario called client-malicious. This scenario involves
a malicious client interacting with a semi-honest server to perform machine learning (ML)
inference tasks.

In this part of the thesis, we present the first protocols that extend the client-malicious setting
to scenarios with an honest majority in three-party computation (3PC). This adaptation is
crucial because it opens the door to developing more efficient protocols. We develop two
versions of the protocol, each tailored to handle specific types of potential corruption, with
more details provided in the following publication listed in Appendix H.
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[BSS+24] A. BRÜGGEMANN, O. SCHICK, T. SCHNEIDER, A. SURESH, H. YALAME. “Don’t
Eject the Impostor: Fast Three-Party Computation with A Known Cheater.”
In: IEEE Symposium on Security and Privacy (IEEE S&P). Online: https://ia.
cr/2023/1744. Code: https://encrypto.de/code/MOTION-FD. IEEE, 2024.
CORE Rank A*. Appendix H.

Asymmetric Trust Scenario In situations where two parties are involved and one party
is guaranteed not to act maliciously, we face an asymmetric trust model. This condition can
reduce the costs associated with 2PC compared to scenarios where either party might be
corrupt. Such an asymmetric trust model was considered in the MUSE [LMSP21], within
the realm of PPML. The efficiency gains observed in MUSE sparked interest in this specific
model, leading to the development of the faster SIMC [CGOS22]. In our research, we revisit
techniques used in 3PC under the honest majority assumption, aiming to explore potential
improvements when the identity of the potentially corrupt party is known in advance. We
introduce two protocols tailored to two distinct corruption scenarios, with further details
provided in the subsequent paragraphs. Fig. 3.2 depicts the two settings considered in this
work and the settings in MUSE [LMSP21] and ABY2.0 [PSSY21a].

3PC with a Malicious Evaluator (cf. §5 in Appendix H) We introduce SOCIUM and build
upon the client-malicious MUSE [LMSP21] by adapting it to a three-party context. This
adaptation is based on the malicious 3PC protocol SWIFT [KPPS21], with a unique addition
to MUSE [LMSP21]: we involve a third party to serve as a helper. Unlike the protocols in
MUSE [LMSP21] and SIMC [CGOS22] that operate over fields, our protocols are designed
to work over rings. This decision is made to better align with the functionalities of modern
CPU architectures, thus promising improved performance. Our primary goal is to explore the
potential benefits of this setup:

Is it possible for an additional semi-honest helper to reduce the costs of a two-party scenario,
specifically when dealing with a malicious client and a semi-honest server?

Our investigations confirm that including a semi-honest helper significantly improves effi-
ciency. Specifically, SOCIUM, with this additional semi-honest helper, achieves communication
improvements for ML inference ranging from 14− 60× compared to SIMC [CGOS22], all
without using resource-intensive homomorphic encryption (HE).

3PC with a Malicious Helper (cf. §4 in Appendix H) In this part of our work, we introduce
AUXILIATOR to investigate scenarios where an additional helper is assumed to behave ma-
liciously. This approach improves our ABY2.0 [PSSY21a] work from Sect. 3.1.2 by adding
a malicious third party. Drawing upon the semi-honest 3PC protocol ASTRA [CCPS19], we
maintain equivalent efficiency in the online phase while exploring the consequences of this
setup. Our central question is:

Can including an additional helper, assumed to be malicious, reduce the costs in a semi-
honest two-party protocol?
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Server

Client

MUSE [LMSP21]

Server

Client

ABY2.0 [PSSY21a]

Server

Client

Helper

SOCIUM [BSS+24, §5]

Server

Client

Helper

AUXILIATOR [BSS+24, §4]

Figure 3.2: Comparison of the semi-honest 2PC setting in ABY2.0 [PSSY21a] and the client-
malicious 2PC setting in MUSE [LMSP21] against our 3PC settings with either a
malicious client or a malicious helper. Black circles represent semi-honest parties,
while red circles represent malicious parties.

Our findings confirm that AUXILIATOR not only addresses this question affirmatively but
also significantly enhances the efficiency of our semi-honest 2PC setups by integrating a
malicious helper. Specifically, by extending ABY2.0 with a malicious third party, AUXILIATOR

demonstrates a remarkable improvement in setup communication, achieving 2− 3 orders of
magnitude better efficiency for ML inference.

Efficiency We compare the performance of SOCIUM for ML inference against SIMC [CGOS22]
within a client-malicious context as detailed in §6.3 of Appendix H. Our evaluations are
carried out in both the LAN setting with 10Gbit/s bandwidth and 1ms round trip time (RTT),
and the WAN setting with 100Mbit/s bandwidth and 100ms RTT. SOCIUM outperforms
SIMC, being 1.07-2.31× faster in LAN and 1.56-1.62× faster in WAN scenarios. Additionally,
we evaluate AUXILIATOR’s performance by comparing it with the semi-honest 2PC protocol
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ABY2.0 [PSSY21a] as detailed in §6.2 of Appendix H. This comparison underlines the benefits
of adding a non-colluding helper, even if untrusted, as AUXILIATOR significantly outperforms
ABY2.0 in terms of communication overhead, achieving at least two orders of magnitude
improvement. SOCIUM has up to 8.57× better performance than the malicious secure SWIFT
protocol. AUXILIATOR has similar communication as the semi-honest ASTRA protocol.

Impact We provide the first open-source implementations of ASTRA [CCPS19], SWIFT
[KPPS21], and our new protocols AUXILIATOR and SOCIUM. Our implementation is based on
the MOTION [BDST22] framework and is accessible at https://encrypto.de/code/MOTION-
FD. This is notably the first time function-dependent preprocessing has been integrated into an
MPC framework. Our implementation is particularly tailored for real-world PPML scenarios.
It supports varying trust levels among participants and allows for flexible computation-
communication trade-offs. This adaptation enhances efficiency, leading to lower monetary
costs and improved throughput. Furthermore, our approaches are applicable to a wide range
of real-world applications, including private data analytics and consensus mechanisms in
blockchain technology.

3.2 Related Work

In this section, we conduct a thorough review of key developments and enhancements in
five domains within this chapter: GC improvements (cf. Sect. 3.2.1), SS-based protocol
improvements ( cf. Sect. 3.2.2), UC-based (PFE) protocols (cf. Sect. 3.2.3), circuit generation
(cf. Sect. 3.2.4), and protocols for symmetrical and asymmetrical trust settings (cf. Sect. 3.2.5).
This section positions our contributions within the existing body of work and highlights how
our research addresses existing challenges. We refer the reader to [Lin20; CP22] for a
comprehensive analysis of related work on MPC.

3.2.1 GC Improvements

Protocol-Level Previous research has mainly focused on improving GC protocols by finding
ways to reduce communication requirements and minimize the use of computationally heavy
operations [NPS99; KS08b; ZRE15; WRK17a; RR21; ACHY23; Hea24]. There has also been
a trend towards automating the conversion of high-level programming languages into GC
circuits, often achieved by adapting advanced hardware logic synthesis tools to make circuit
creation for GC easier [DDK+15; SHS+15; RJHK19]. In line with these efforts, we develop
LLVM-Circ [HST+21] (not part of this thesis), a new compilation tool designed to automate
circuit generation for GC. By integrating with the LLVM compiler infrastructure, LLVM-Circ
efficiently translates high-level code into optimized GCs.
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Implementation-Level At the implementation level, significant work has been directed
towards improving the performance of specific operations within GCs, particularly focusing
on refining the processes of garbling and evaluating individual gates [BHKR13; GLNP15].
Efforts to parallelize the evaluation of GCs have adopted both coarse- and fine-grained
approaches [HEKM11; HMSG13; BBL+14; BK15]. Coarse-grained strategies [BBL+14; BK15]
typically use multiple threads to process distinct parts of the same GC, sometimes favoring
parallel processing capabilities over the efficiency of communication. This includes, for
instance, bypassing the free-XOR optimization [KS08b] to utilize specialized hardware such
as GPUs or Intel Quick Assist Technology [HMSG13]. Fine-grained approaches [BBL+14;
BK15], similar to our approach (cf. Sect. 3.1.1 [MSY21]), have predominantly focused on
using a layering technique to allocate tasks among different threads, aiming to fully utilize
the parallel processing power available in today’s CPUs. There has also been exploration
into separating the garbling from the evaluation roles within GC computation, either by
dividing the circuits [BK15] or by synchronizing these tasks with garbling and evaluation
operations [HEKM11], which are methodologies distinct from ours. Furthermore, studies
have explored leveraging field-programmable gate array (FPGA) technology to accelerate GC
procedures [JKSS10a; JKSS10b; HRGK18; HK19], aiming to exploit the capabilities of these
devices to accelerate GC operations.

Our Work In our research (cf. Sect. 3.1.1 [MSY21]), we distinguish our work by focusing
not on protocol-level enhancements, but rather on advancing the actual implementations
and frameworks that use these protocols [DSZ15; WRK17c; RRK+20a].

3.2.2 SS-based Protocols Improvements

Two-Input Multiplication The works in [DPSZ12; KSS13] introduced efficient SS-based
methods for dishonest majority MPC over fields. This approach was later adapted for op-
erations over rings in [CDE+18b]. The core of SS-based methods is the creation of Beaver
multiplication triples [Kil88; Bea91] during the initial setup phase, which are then used
to efficiently process two-input multiplication gates in the subsequent online phase. These
works initiated a rich line of research on increasingly efficient MPC protocols in the pre-
processing model, e.g., [DSZ15; DKS+17; PS20; RRG+21; RBS+22; KPPS23]. For 2PC, the
state-of-the-art [DSZ15] required two public reconstructions between the participants for
each multiplication gate during the online phase. In ABY2.0 [PSSY21a] (Sect. 3.1.2), we
reduce this to just one public reconstruction per gate. [BNO19] also achieved this reduction
to a single reconstruction in the online phase through function-dependent preprocessing.
However, this adjustment introduced the need for extra communication—specifically, the
exchange of four ring elements—during the preprocessing phase.

Multi-Input Multiplication. The study in [ON20] increased the number of inputs for mul-
tiplication, moving from just two inputs to any number of inputs, by extending the use of
Beaver triples. This extension reduced the number of rounds needed during the online phase.
However, [ON20] resulted in online communication that scales with the number of inputs
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(fan-in) of the multiplication gates. In contrast, in ABY2.0 [PSSY21a], we keep the online
communication at just 2 ring elements, regardless of the multiplication gate’s fan-in.

Mixed-Protocol Conversions. Mixed 2PC protocols leverage the strengths of both GC-
based and SS-based approaches, making them highly effective for various privacy-preserving
applications. The first framework combining these approaches was TASTY [HKS+10], which
integrated GC with HE. Following this, ABY [DSZ15] introduced a more efficient framework
tailored for the semi-honest setting, which utilized the best features of arithmetic sharing,
Boolean sharing, and GC. Subsequently, the ABY framework was expanded to include
scenarios with three and four parties, assuming an honest majority, as demonstrated by [MR18;
RS20]. In the multi-party setting, MOTION [BDST22] and Manticore [CDG+23] introduced
semi-honest protocols that support arithmetic sharing, Boolean sharing, BMR [BLO16], and
conversions between any two representations.

LUTs In the GC-based setting, Fairplay [MNPS04] implemented Yao’s GC protocols to
evaluate gates with up to 3-input gates. The TASTY framework [HKS+10] implemented
multi-input garbled gates including garbled-row reduction [PSSW09]. [PAP22] proposed an
MPC protocol that works on circuits with multi-input/multi-output gates instead of working
on circuits with 2-input gates. Recently, [HKN24] proposed garbled circuits with multi-
input/multi-output gates.

The idea of using LUTs in SS-based protocols was first introduced by [IKM+13]. Their
method, known as OTTT, represented an entire circuit with a single LUT, which resulted
in suboptimal performance for complex circuits. This LUTs approach was further explored
by [DZ16] for evaluating AES S-boxes with malicious security. The combination of OTTT with
a preprocessing step was proposed by [DZ16] and later adapted by [DKS+17] for semi-honest
security. [DKS+17] also introduced two versions of LUT protocols as alternatives to OTTT:
OP-LUT, which focused on optimizing online communication, and SP-LUT, which reduced the
total communication. TinyTable [DNNR17] presented a method for using LUTs with security
against malicious parties. However, [DKS+17] found that TinyTable had similar performance
issues as OTTT due to its setup process. Extending this idea, [KOR+17] adapted TinyTable
for multi-party settings using secret-sharing techniques.

Our Work For a multiplication gate with N inputs, our ABY2.0 approach [PSSY21a] results
in a constant overhead of only 2 ring elements and requires a single round of interaction. This
represents a significant improvement compared to the method in [ON20], which demands
the exchange of 2N ring elements. When considering the complexity in terms of rounds, the
straightforward strategy of multiplying N elements two at a time leads to log2(N) rounds
needed for the online phase. This method, in terms of overall communication, requires 4(N−1)
ring elements for [DSZ15] and 2(N − 1) ring elements for [BNO19]. Our improvements over
these previous works are detailed in Tab. 3.1.

To evaluate a LUT with δ inputs and σ outputs, FLUTE [BHS+23] (Sect. 3.1.2) requires
a setup communication of (|MT| + 4) · (2δ − δ − 1) bits and an online communication of
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Table 3.1: Comparison of ABY2.0 [PSSY21a] and existing works for 2PC protocols for computing 2,
3, and 4-input multiplication gates. Best values for the online phase are marked in bold.

Protocol Ref.
Setup Online

Comm [bits] Comm [bits] Rounds

MULT

[DSZ15] 2ℓ(κ+ ℓ) 4ℓ 1
[BNO19] 2ℓ(κ+ ℓ) 2ℓ 1
[ON20] 2ℓ(κ+ ℓ) 4ℓ 1

ABY2.0 [PSSY21a] 2ℓ(κ+ ℓ) 2ℓ 1

MULT3

[DSZ15] 4ℓ(κ+ ℓ) 8ℓ 2
[BNO19] 4ℓ(κ+ ℓ) 4ℓ 2
[ON20] 8ℓ(κ+ ℓ) 6ℓ 1

ABY2.0 [PSSY21a] 8ℓ(κ+ ℓ) 2ℓ 1

MULT4

[DSZ15] 6ℓ(κ+ ℓ) 12ℓ 2
[BNO19] 6ℓ(κ+ ℓ) 6ℓ 2
[ON20] 22ℓ(κ+ ℓ) 8ℓ 1

ABY2.0 [PSSY21a] 22ℓ(κ+ ℓ) 2ℓ 1

2σ bits. In comparison, the OTTT method [IKM+13; DZ16] involved (|MT|+ 4) · (δ − 1) ·
2δσ bits of communication during the setup phase and 2δ bits during the online phase.
Here, |MT| represents the cost for generating a Boolean multiplication triple. The OP-LUT

strategy [DKS+17] had a setup communication of |
�2δ

1

�

-OT1
2δσ
| − δ bits and 2δ bits for the

online phase. Meanwhile, the SP-LUT method [DKS+17] involved setup communication of

|
�2δ

1

�

-rOT1
σ| bits and online communication of δ+ 2δσ bits. Here, |

�n
1

�

-OT1
l | denotes the cost

for one OT with n messages and l-bit inputs, and |
�n

1

�

-rOT1
l | denotes the cost for the same but

with a random OT.

Fig. 3.3 provides a visual comparison of FLUTE against prior works, focusing on setup and
online communication costs. As shown, FLUTE achieves online communication efficiency
on par with OP-LUT [DKS+17] and OTTT [IKM+13; DZ16], while maintaining total commu-
nication efficiency comparable to SP-LUT [DKS+17], which was recognized for its minimal
overall communication costs. Additionally, Fig. 3.3 illustrates how the efficiency of previous
methods shifts when their traditional OT extension schemes in the style of IKNP [IKNP03],
are substituted with the latest advancements in silent OT extension techniques [BCG+19b].

3.2.3 UC-based PFE Protocols

The most adaptable and current method in PFE involved the use of UCs [Val76; KS08a;
KS16; GKS17; ZYZL19; AGKS20a; LYZ+21], with a complexity of Θ(n log n) [Val76], where
n represents the size of the private function being simulated. Initially, Valiant [Val76] pro-
posed two efficient UC structures: one with a 2-way and another with a 4-way recursive
design, measuring approximately ∼ 5n log n and ∼ 4.75n log n in size, respectively. Cook
and Hover [CH85] developed a UC optimized for depth, capable of emulating Boolean cir-
cuits of size n and depth d, with a size of 𝒪(n3d/n) and a depth of 𝒪(d). Kolesnikov and
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Figure 3.3: Comparison of setup and online communication (in bits) for previous LUT pro-
tocols and FLUTE, focusing on LUT with 3 inputs and 1 output. The ∗ symbol
denotes modified LUT protocols incorporating silent OT [BCG+19a].

Schneider [KS08a] were the first to provide a practical UC implementation, though it had a
non-optimal asymptotic size of 𝒪(n log2 n).

The primary aim in this field has been to minimize the overall size of the UC and its prefactor.
Research by Günther et al. [GKS17] modularized Valiant’s construction, implemented the
more efficient 4-way split construction, and provided a generic edge-embedding algorithm for
k-way split constructions. They also showed that the 3-way split construction within Valiant’s
framework is less efficient than the 2-way split construction. Alhassan et al. [AGKS20b]
proposed and implemented a scalable hybrid UC construction that combines Valiant’s 2-way
and 4-way split constructions with Zhao et al.’s improvements [ZYZL19], which brought
Valiant’s 4-way split design down to approximately ∼ 4.5n log n. More recently, Liu et
al. [LYZ+21] further refined Valiant’s approaches, particularly the 2-way split design, reducing
its size to around ∼ 3n log n. They also demonstrated that a k = 2-way split is the most
efficient for their updated UC construction, closely approaching their theoretical lower bound
of ∼ 2.95n log n.

Our Work We are the first to implement the design by Liu et al. [LYZ+21], which forms the
foundation for our UC constructions. Prior to our work, all advancements in the field were
centered around UCs designed for Boolean circuits that have 2-input and 1-output gates. In
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our research, we expanded upon the UC framework established by Liu et al. [LYZ+21] to
support LUTs.

3.2.4 Boolean Circuit Synthesis

Compilers that translate high-level code to binary circuits offer a higher level of abstraction
when running MPC in the binary domain. Works in this area include Fairplay [MNPS04],
Fairplay-MP [BNP08], CBMC-GC [FHK+14], ObliVM [LWN+15], PCF [KMSB13], and
HyCC [BDK+18]. Another approach is the deployment of existing hardware synthesis
tools that take code in a HDL as input. Examples of that include TinyGarble [SHS+15],
TinyGMW [DDK+15], SynCirc [PSSY22], and FLUENT [GSSY24]. As demonstrated
in [DKS+17], this approach can be extended to LUTs by utilizing and re-purposing LUT-based
synthesis tools [WGK13; Ber].

There is a range of specialized commercial FPGA synthesis tools available, including the Intel
HLS Compiler1, Microchip SmartHLS2, and AMD Xilinx Vivado3. These tools are designed to
create LUT-based circuits that are optimized for the specific characteristics of their respective
devices, such as the size and number of LUTs that are physically available on the FPGA.

Our work We successfully generate LUTs with up to 8 inputs, a task that exceeds the
capabilities of most standard commercial synthesis tools. The Berkeley Logic Synthesis and
Verification tool, ABC [Ber], excels by enabling the mapping of circuits to LUTs with a variable
number of inputs, using a technology known as priority cuts [Cho07]. ABC is unique in its
experimental implementation of various mapping and optimization techniques, including
strategies for optimal-delay mapping using directed acyclic graphs (DAGs). What makes ABC
particularly suited to our project is its flexibility in allowing users to set the maximum number
of LUT inputs, independent of the specific constraints of any FPGA design. Reflecting the
findings in [DKS+17], we limit the LUT inputs to 8. To construct our LUT-based circuits, we
use the Yosys-ABC synthesis tool [WGK13; Ber], alongside the Synopsis Design Compiler [10]
for the LUT-Mapping process.

Further Application of LUT Synthesis Building on our synthesis pipeline and the use
of LUTs in MPC [BHS+23] and PFE [DGS+23], we expand our research to include the
application of LUT-based circuits in addressing cache side-channel attacks [MSS+24] (not
part of this thesis). Specifically, we find that circuits hardened using LUTs are not only
more efficient performance-wise but also maintain the same level of protection against cache
side-channel attacks as those hardened with Boolean circuits. To achieve this, we develop
HyCaMi, a framework that combines LUT synthesis with detailed analysis of side-channel
vulnerabilities.

1https:/ / www . intel . com / content / www / us / en / software / programmable / quartus - prime / hls -
compiler.html

2https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/
smarthls-compiler

3https://www.xilinx.com/products/design-tools/vivado.html
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3.2.5 Protocols for symmetrical and asymmetrical trust settings

In recent research [GRW18; BCPS20], the concept of function-dependent preprocessing has
been identified as a method to simplify the complexity of the online phase, thereby ensuring
optimal performance when actual inputs are provided. Function-dependent preprocessing
has proven particularly useful in situations like machine learning as a service (MLaaS), where
the same computational processes are executed repeatedly. This repetition allows for the
effective batching of preprocessing tasks across several uses of the protocol.

However, the typical assumptions of semi-honest or malicious parties assume a uniform level
of trust across all participants, an assumption that often does not align with the varied trust
levels present among participants in many practical scenarios. Particularly in the field of
PPML, there is a growing interest in adapting to what is referred to as a fixed-corruption model.
In this model, the potential for parties to be corrupted is predetermined and known, diverging
from the assumption that any party could potentially act maliciously [MR18; PS20; KPPS21].
Protocols designed for semi-honest participants may not provide adequate security in such
contexts [LMSP21], while those designed for malicious security model incur unnecessary
performance costs.

While it is common practice to allow the adversary to arbitrarily corrupt any subset of the
parties while still respecting the underlying corruption threshold, constrained settings where
only a certain subset of parties are allowed to behave maliciously can allow for simpler and
more efficient protocols. A well-known example of this is Yao’s two-party GC [Yao86]. While
the original work is secure only against semi-honest corruption, several works [WRK17b;
WRK17c; YWZ20] have enhanced the security against malicious corruption by incorporating
additional verification mechanisms. Protecting against a malicious garbler, in particular, incurs
significant additional computational and communication costs (cf. [Lin20] for an overview of
different techniques). However, it is well-known that the original scheme is inherently secure
against a malicious evaluator when using oblivious transfer secure against a malicious receiver.
Thus, an asymmetric corruption scenario for two parties in which one party is guaranteed not
to act maliciously can lower MPC costs as compared to schemes that allow either party to be
corrupted. Such an asymmetric trust model was considered in MUSE [LMSP21] in the context
of PPML, named client-malicious setting, where a semi-honest server and a malicious client
perform MPC operations to conduct ML inference. The efficiency improvements realized
in MUSE have prompted further development in this area, leading to the creation of more
efficient protocols like SIMC [CGOS22] and its successor, SIMC2.0 [XHZ+23]. In parallel
to these developments, the recent three-party model pMPL [SWW+22] examined scenarios
where one party was considered inherently more trustworthy than the others.

Our work In [BSS+24] (Sect. 3.1.4), we revisit the three-party secure computation tech-
niques in the honest majority setting (3PC) and investigate the potential advancements that
could be made if the corrupt party’s identity is known. We provide two protocols that address
two different corruption scenarios. Our protocols are designed using the input-independent
preprocessing paradigm to ensure a very efficient online phase. Our approach utilizes a
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mixed-protocol [KPRS22] approach combined with function-dependent preprocessing [BNO19;
BCPS20], in line with ASTRA [CCPS19] and SWIFT [KPPS21].

Tab. 3.2 compares the communication costs for performing a multiplication operation in
our protocols with those in other relevant 3PC protocols. Maliciously secure 3PC proto-
cols over rings typically use one of two approaches: Distributed Zero-Knowledge Proofs
(DZKP) [BBC+19] and triple sacrificing [CDE+18a]. The DZKP approach achieves sublinear
communication complexity at the expense of increased computational complexity, while
the triple sacrificing approach maintains low computational complexity but requires higher
communication overhead. Tab. 3.2 shows both variants for the malicious case.

Table 3.2: Comparison of communication cost per multiplication for our protocols proposed
in [BSS+24] and related 3PC protocols over the ring Z2ℓ . σ denotes the statistical
security parameter.

Verification
Method

Security Corruption Protocol
Communication
Setup Online

– Semi-honest
any Araki et al.[AFL+16] 0 3ℓ
any ASTRA [CCPS19] ℓ 2ℓ

Distributed
Zero

Knowledge
malicious

any Boyle et al.[BGIN19] 0 3ℓ
any SWIFT [KPPS21] 3ℓ 3ℓ

evaluator SOCIUM [BSS+24, §5] 2ℓ 3ℓ
helper AUXILIATOR [BSS+24, §4] 1ℓ 2ℓ

Tripe
Sacrifice
Method

malicious

any ABY3 [MR18] 12ℓ 9ℓ
any SWIFT [KPPS21] 9(ℓ+σ) 3ℓ

evaluator SOCIUM [BSS+24, §5] 5(ℓ+σ) 3ℓ
helper AUXILIATOR [BSS+24, §4] 4(ℓ+σ) 2ℓ
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In the final chapter, we summarize the key findings of this thesis in Sect. 4.1 and outline
potential avenues for future research in Sect. 4.2.

4.1 Summary

This thesis makes significant contributions to the study of practical MPC protocols for real-
world applications, focusing on the design and improvement of these protocols.

We conduct a thorough review and analysis of 59 papers in privacy-preserving clustering
(cf. Sect. 2.1.1), revealing that only 10 out of 59 papers offer full privacy for real-world
applications. Following this, we benchmark and compare four efficient protocols that securely
implement four clustering algorithms [CKP19; MRT20; BCE+21; MPOT21]. Our comparison
focuses on clustering quality, communication, and runtime to evaluate their suitability for
real-world applications.

As another important step toward making secure multi-party computation (MPC) more
practical in real-world applications, we take a close look at PEFL [LLX+21] and identify
multiple privacy issues (cf. Sect. 2.1.2). We then thoroughly analyze poisoning attacks and
introduce FLAME (cf. Sect. 2.1.2), the first federated learning (FL) defense that protects
both privacy and security in a general adversarial setting. Our detailed evaluation across
various machine learning (ML) applications and datasets shows that FLAME effectively
counters poisoning attacks without compromising the accuracy of the main task on clean data.
Moreover, we design, implement, and benchmark efficient two-party computation (2PC)
protocols for FLAME to ensure the privacy of clients’ training data and to prevent inference
attacks on client updates.

We show how to improve the efficiency of garbled circuit (GC)-based MPC protocols by
using vector AES (VAES) technology (cf. Sect. 3.1.1). We apply this technology to various
MPC frameworks such as ABY [DSZ15], EMP-AGMPC [WRK17c], and Microsoft’s CrypT-
Flow2 [RRK+20a] for privacy preserving machine learning (PPML). Our evaluation shows
that the use of VAES significantly improves performance in these frameworks.

To improve the performance of secret sharing (SS)-based MPC protocols, we introduce ABY2.0
(cf. Sect. 3.1.2) and FLUTE (cf. Sect. 3.1.2). In ABY2.0, we develop a new 2PC protocol that
securely evaluates circuits over a ring, including those with N -input multiplication gates
where online communication is improved from 4N in [DSZ15] to just 2 and is independent
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of the fan-in. Our new sharing methods allow for conversions between mixed protocols,
improving upon the existing state-of-the-art work ABY [DSZ15] in terms of both rounds and
online communication. Furthermore, we design a set of efficient primitives for real-world
applications, significantly outperforming previous works. Building on the sharing methods
of ABY2.0, we also introduce FLUTE, a secure protocol for look-up table (LUT) evaluation,
offering improved online communication and overall communication.

In Sect. 3.1.3, we broaden the use of universal circuits (UCs) to simulate circuits consisting
of LUTs, with the goal of improving the performance of private function evaluation (PFE)
protocols. Our new construction significantly reduces the size of the UC, achieving up to
a 2.18× reduction for common functions (e.g., full adder, comparator, and multiplexer)
compared to the best previous construction [LYZ+21]. Moreover, we generate efficient LUT-
based circuits by using and modifying the hardware circuit synthesis tools Yosys, ABC, and
Synopsis Design Compiler specifically for LUT mapping.

To bridge the gap between fully semi-honest and fully malicious scenarios in real-world
applications, we introduce two novel protocols, AUXILIATOR and SOCIUM (cf. Sect. 3.1.4).
These protocols are designed for practical application, allowing for various levels of trust
among participants and offering flexible ways to balance the trade-off between computation
and communication overheads. We show how the involvement of a malicious helper can
improve the efficiency of semi-honest 2PC, and similarly, how a semi-honest helper can aid
in 2PC when dealing with a malicious party.

4.2 Future Work

Finally, we give some ideas for future work.

4.2.1 Advancing Privacy in Real-World Applications

Practical Privacy-Preserving Clustering For real-world applications, it is essential that
privacy-preserving clustering protocols are efficient in both runtime and communication,
utilize memory efficiently, depend on parameters that are mostly independent of the input
data, and are capable of clustering data from any distribution with high accuracy. Unfortu-
nately, none of the state-of-the-art approaches satisfy all these requirements simultaneously.
Furthermore, there’s a clear need to evaluate the quality of clustering results obtained in a
privacy-preserving manner. In future work, these issues can be addressed comprehensively,
with a special emphasis on using newly optimized MPC protocols to offer efficient solutions
for practical privacy-preserving clustering.
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Fully-Private ML Inference PPML inference solutions vary in their privacy guarantees.
While these solutions generally protect the data used for inference, they might reveal informa-
tion about the ML model, which can be undesirable in practical applications. Homomorphic
encryption (HE)-based methods secure the model completely, but this comes at the expense
of increased computation overhead. Conversely, MPC-based techniques may disclose the
structure or functional form of the ML model, though they have the advantage of the least
computation overhead. Hybrid HE-MPC solutions, like MP2ML [BCD+20], leak specific
aspects such as the type and dimension of each activation function. In future work, the use
of PFE-based methods can be investigated to completely protect ML models for ML infer-
ence solutions, such as [SS08], particularly by applying optimized PFE protocols that utilize
LUT-based circuits.

Privacy Vulnerabilities in FL Recent studies [WGF+22; BDS+23] have highlighted sig-
nificant concerns regarding privacy vulnerabilities in FL, particularly when using secure
aggregation (SA) with a single aggregator. These concerns reveal the effectiveness of privacy
attacks, even when SA techniques are used across a large number of clients, demonstrating
that such methods are inadequate for practical applications. The limitations of standard FL,
as well as FL with SA, become evident in real-world scenarios, especially when the legal
intricacies of sharing sensitive data across jurisdictions are considered. In our current re-
search [MSS+23], we tackle these issues by developing a distributed aggregator framework.
This framework, based on our improved MPC techniques, aims to securely and efficiently
distribute aggregation tasks among multiple servers. Our objective is to ensure privacy, even
in situations where some servers might collude, influenced by our previous works [FMM+21;
GMS+23].

Data Extraction Attacks in FL Recent research indicates that unrestricted access to the
aggregated model in FL can lead to the extraction of traces from the original training data due
to inadequate privacy protections for the global model [PFA22]. Initially, FL was designed to
enhance user engagement and improve model accuracy, rather than focusing on the model’s
privacy. Yet, as FL becomes crucial across various industries, such as healthcare, the need
for privacy protections becomes clear. Consider the scenario where a group of five hospitals
collaborates to train a model using data from their hospitals to discover treatments for a
specific disease. While offering payment to hospitals for their data, the group would prioritize
safeguarding the confidentiality of the resulting model due to its sensitivity, investment
significance, and associated legal risks. The lack of proper privacy for the global model could
allow a malicious participant to misuse or commercialize the model, undermining the joint
efforts. The possibility of extracting data from the model underscores the urgent need for
improved privacy measures. In our future work, we intend to merge our optimized MPC
protocols with FL to ensure the global model’s privacy and address the issue of data extraction
in real-world FL applications.
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4.2.2 More Efficient MPC Protocols and Primitives

Beyond PPML with Enhanced 2PC Protocols With the emergence of many real-world ap-
plications, such as privacy-preserving auctions [NPS99], private text classification [PZM+24],
and private graph analytics [AFO+21], that use 2PC protocols, the idea of expanding the use
of our advanced 2PC protocols to a wider range of applications is an interesting direction.
Initially, our protocols are designed specifically for PPML applications. However, the potential
for their use in other areas is significant and deserves further exploration. In our future work,
we plan to conduct a comprehensive survey of potential applications and adapt our enhanced
protocols to suit these diverse use cases.

Expanding to Additional Scenarios ABY2.0 and FLUTE are originally designed for the
semi-honest security model and tailored for two-party scenarios. Extending them to handle
malicious security, where adversaries can arbitrarily deviate from the protocol, and adapting
them for broader multi-party settings presents valuable research directions. In our future
work, we plan to adapt both ABY2.0 and FLUTE for use in malicious and multi-party scenarios
by integrating a MAC (Message Authentication Code) checking technique to ensure security
against malicious behavior. Specifically, we will employ a MAC checking procedure, similar
to the one used in [CDE+18a]. By incorporating this MAC checking mechanism, we aim
to strengthen the security of ABY2.0 and FLUTE against malicious adversaries, while also
expanding their applicability to multi-party settings.

Improving Efficiency in PPML with FLUTE and LUTNet Combination Binary neural net-
works (BNNs) are a promising approach for improving the performance of PPML [RSC+19].
LUTNet [WDCC20] introduced a LUT-based neural network design, resulting in a significantly
reduced logic size compared to the most advanced BNNs. Our future efforts will focus on
using FLUTE for LUTNet to develop a more effective PPML solution. This strategy seeks to
combine the compact architecture of LUTNet with FLUTE, aiming to improve efficiency in
PPML.

Developing an Enhanced Compiler/Toolchain for FLUTE In our efforts to generate opti-
mized circuits, we utilize conventional hardware synthesis tools instead of custom solutions.
For our future work, we plan to develop a specialized compiler/toolchain to produce LUT
circuits specifically optimized for FLUTE. This includes developing improved heuristics for
LUT generation. This work seeks to refine the circuit generation process, enhancing the
efficiency and effectiveness of FLUTE.

New Protocols for Asymmetric Security Models We focus on scenarios with asymmetric
trust levels where only one party (out of three) is suspected of being malicious. Moving
forward, we plan to extend our investigation to situations where two out of the three servers
might exhibit malicious behavior. Moreover, we aim to broaden our research to include
new methods and approaches applicable to a wider array of real-world applications. This
expansion will extend beyond the current application in ML inference to include areas such
as graph neural networks and decision trees.

37



Bibliography

[10] “Synopsys Inc. Design compiler”. http://www.synopsys.com/Tools/Implementation/
RTLSynthesis/DesignCompiler. 2010.

[AAUC18] A. ACAR, H. AKSU, A. S. ULUAGAC, M. CONTI. “A Survey on Homomorphic Encryption
Schemes: Theory and Implementation”. In: ACM Computing Surveys 51.4 (2018),
79:1–79:35.

[ABF+17] T. ARAKI, A. BARAK, J. FURUKAWA, T. LICHTER, Y. LINDELL, A. NOF, K. OHARA, A. WATZ-
MAN, O. WEINSTEIN. “Optimized Honest-Majority MPC for Malicious Adversaries -
Breaking the 1 Billion-Gate Per Second Barrier”. In: IEEE Symposium on Security
and Privacy (IEEE S&P). IEEE, 2017, pp. 843–862.

[ACHY23] T. ASHUR, E. COHEN, C. HAZAY, A. YANAI. “A New Framework for Garbled Circuits”.
In: ACNS. 2023.

[AE06] A. AMIRBEKYAN, V. ESTIVILL-CASTRO. “Privacy Preserving DBSCAN for Vertically
Partitioned Data”. In: Intelligence and Security Informatics. Vol. 3975. LNCS. Springer,
2006, pp. 141–153.

[AFL+16] T. ARAKI, J. FURUKAWA, Y. LINDELL, A. NOF, K. OHARA. “High-Throughput Semi-
Honest Secure Three-Party Computation with an Honest Majority”. In: Computer
and Communications Security (CCS). ACM, 2016, pp. 805–817.

[AFO+21] T. ARAKI, J. FURUKAWA, K. OHARA, B. PINKAS, H. ROSEMARIN, H. TSUCHIDA. “Secure
Graph Analysis at Scale”. In: Computer and Communications Security (CCS). ACM,
2021, pp. 610–629.

[AG17] I. V. ANIKIN, R. M. GAZIMOV. “Privacy Preserving DBSCAN Clustering Algorithm
for Vertically Partitioned Data in Distributed Systems”. In: International Siberian
Conference on Control and Communications. IEEE, 2017, pp. 1–4.

[AGKS20a] M. Y. ALHASSAN, D. GÜNTHER, Á. KISS, T. SCHNEIDER. “Efficient and Scalable
Universal Circuits”. In: Journal of Cryptology (JoC) 33.3 (2020), pp. 1216–1271.

[AGKS20b] M. Y. ALHASSAN, D. GÜNTHER, Á. KISS, T. SCHNEIDER. “Efficient and Scalable
Universal Circuits”. In: Journal of Cryptology (JoC) 33.3 (2020), pp. 1216–1271.

[AGM+13] O. ARBELAITZ, I. GURRUTXAGA, J. MUGUERZA, J. M. PÉREZ, I. PERONA. “An Extensive
Comparative Study of Cluster Validity Indices”. In: Pattern Recognition 46.1 (2013),
pp. 243–256.

[ASA22] S. ATAPOOR, N. P. SMART, Y. T. ALAOUI. “Private Liquidity Matching Using MPC”. In:
Cryptographers’ Track at the RSA Conference (CT-RSA). Vol. 13161. LNCS. Springer,
2022, pp. 96–119.

[BBC+19] D. BONEH, E. BOYLE, H. CORRIGAN-GIBBS, N. GILBOA, Y. ISHAI. “Zero-Knowledge
Proofs on Secret-Shared Data via Fully Linear PCPs”. In: CRYPTO. 2019.

38

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler


Bibliography

[BBG+20] J. H. BELL, K. A. BONAWITZ, A. GASCÓN, T. LEPOINT, M. RAYKOVA. “Secure Single-
Server Aggregation with (Poly)Logarithmic Overhead”. In: Computer and Commu-
nications Security (CCS). ACM, 2020, pp. 1253–1269.

[BBG19] G. BARUCH, M. BARUCH, Y. GOLDBERG. “A Little Is Enough: Circumventing Defenses
For Distributed Learning”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2019, pp. 8632–8642.

[BBL+14] M. BARNI, M. BERNASCHI, R. LAZZERETTI, T. PIGNATA, A. SABELLICO. “Parallel Im-
plementation of GC-Based MPC Protocols in the Semi-Honest Setting”. In: Data
Privacy Management and Autonomous Spontaneous Security. 2014.

[BCD+20] F. BOEMER, R. CAMMAROTA, D. DEMMLER, T. SCHNEIDER, H. YALAME. “MP2ML: A
Mixed-Protocol Machine Learning Framework for Private Inference”. In: Interna-
tional Conference on Availability, Reliability and Security (ARES). Online: https://ia.
cr/2020/721. Code: https://github.com/IntelAI/he-transformer. ACM, 2020,
14:1–14:10. CORE Rank B.

[BCE+21] B. BOZDEMIR, S. CANARD, O. ERMIS, H. MÖLLERING, M. ÖNEN, T. SCHNEIDER. “Privacy-
Preserving Density-based Clustering”. In: Asia Conference on Computer and Commu-
nications Security (ASIACCS). ACM, 2021, pp. 658–671.

[BCG+19a] E. BOYLE, G. COUTEAU, N. GILBOA, Y. ISHAI, L. KOHL, P. RINDAL, P. SCHOLL. “Efficient
Two-Round OT Extension and Silent Non-Interactive Secure Computation”. In:
Computer and Communications Security (CCS). ACM, 2019, pp. 291–308.

[BCG+19b] E. BOYLE, G. COUTEAU, N. GILBOA, Y. ISHAI, L. KOHL, P. SCHOLL. “Efficient Pseudo-
random Correlation Generators: Silent OT Extension and More”. In: Advances in
Cryptology (CRYPTO). Vol. 11694. LNCS. Springer, 2019, pp. 489–518.

[BCPS20] M. BYALI, H. CHAUDHARI, A. PATRA, A. SURESH. “FLASH: Fast and Robust Framework
for Privacy-preserving Machine Learning”. In: Proc. Priv. Enhancing Technol. (PETS)
2020.2 (2020), pp. 459–480.

[BDK+18] N. BÜSCHER, D. DEMMLER, S. KATZENBEISSER, D. KRETZMER, T. SCHNEIDER. “HyCC:
Compilation of Hybrid Protocols for Practical Secure Computation”. In: Computer
andCommunications Security (CCS). ACM, 2018, pp. 847–861.

[BDS+23] F. BOENISCH, A. DZIEDZIC, R. SCHUSTER, A. S. SHAMSABADI, I. SHUMAILOV, N. PAPER-
NOT. “When the Curious Abandon Honesty: Federated Learning Is Not Private”.
In: IEEE European Symposium on Security and Privacy (IEEE EuroS&P). IEEE, 2023,
pp. 175–199.

[BDST22] L. BRAUN, D. DEMMLER, T. SCHNEIDER, O. TKACHENKO. “MOTION - A Framework for
Mixed-Protocol Multi-Party Computation”. In: ACM Transactions on Privacy and
Security (TOPS) 25.2 (2022), 8:1–8:35.

[Bea91] D. BEAVER. “Efficient Multiparty Protocols Using Circuit Randomization”. In:
Advances in Cryptology (CRYPTO). Vol. 576. LNCS. Springer, 1991, pp. 420–432.

[BEG+19] K. A. BONAWITZ, H. EICHNER, W. GRIESKAMP, D. HUBA, A. INGERMAN, V. IVANOV,
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[̇IKS+07] A. İNAN, S. V. KAYA, Y. SAYGIN, E. SAVAŞ, A. A. HINTOĞLU, A. LEVI. “Privacy Preserving
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Abstract: Clustering is a popular unsupervised machine
learning technique that groups similar input elements
into clusters. It is used in many areas ranging from busi-
ness analysis to health care. In many of these applica-
tions, sensitive information is clustered that should not
be leaked. Moreover, nowadays it is often required to
combine data from multiple sources to increase the qual-
ity of the analysis as well as to outsource complex com-
putation to powerful cloud servers. This calls for efficient
privacy-preserving clustering. In this work, we systemat-
ically analyze the state-of-the-art in privacy-preserving
clustering. We implement and benchmark today’s four
most efficient fully private clustering protocols by Cheon
et al. (SAC’19), Meng et al. (ArXiv’19), Mohassel et
al. (PETS’20), and Bozdemir et al. (ASIACCS’21) with
respect to communication, computation, and clustering
quality. We compare them, assess their limitations for
a practical use in real-world applications, and conclude
with open challenges.
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1 Introduction
In today’s world, machine learning (ML) algorithms are
widely used to categorize and classify large amounts of
data. Applications range from spam filtering over fraud
detection, stock market analysis to health diagnostic [1–
4]. Moreover, many large IT companies, including Mi-
crosoft, Facebook, Google, and Apple, collect massive
amounts of data to perform analyses for their commer-
cial benefit [5]. Clustering is a popular unsupervised
learning technique and plays a crucial role in data pro-
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cessing and analysis. It divides a set of given input data
into subgroups of elements with similar properties.

Cluster analysis is being utilized in various fields
with extremely sensitive data such as medical imag-
ing [4] and market research [6], to name a few. More-
over, data protection regulations such as the General
Data Protection Regulation (GDPR) in the EU and
the Health Insurance Portability and Accountability Act
(HIPAA) in the US prohibit companies from sharing
sensitive user information. Nevertheless, combining data
from different sources, e.g., different hospitals, broadens
the database and offers more meaningful, credible, and
high-quality clustering results. Additionally, it is often
needed to outsource the expensive clustering of large
amounts of data to powerful cloud servers. These re-
quirements emphasize the need for privacy-preserving
clustering to preserve the privacy of data.

Consequently, a series of efforts have been made
to protect the privacy of sensitive input data in clus-
tering through two paradigms for secure computation
that can also be combined. The first paradigm lever-
ages homomorphic encryption (HE) [7–9]. HE allows
to directly compute functions on encrypted data. The
second paradigm uses secure multi-party computation
(MPC) [10, 11]. MPC allows mutually distrusting par-
ties to collaboratively compute a joint function over
their respective private data. However, these works only
cover a few clustering algorithms so far: K-means, K-
medoid, Mean-shift, Gaussian Mixture Models Cluster-
ing (GMM), Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN), hierarchical clustering
(HC), Affinity Propagation, and Mean-shift. Moreover,
we found that only ten works (cf. Tab. 1) provide full
privacy protection according to the ideal functionality
for privacy-preserving clustering, i.e., they leak nothing
beyond the output (cf. §3.1).

Even revealing little and at the first glance minor
information during the clustering can have severe conse-
quences for the data privacy of individuals. For example,
when using clustering for the segmentation of medical
images [4] between two hospitals, revealing the cluster
sizes and assignments in each clustering iteration leaks
information about how many patients with similar char-
acteristics are input by the other party even before the
clustering stabilizes and a final result is reached. Unin-
tended common characteristics between patients might
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Algorithm Paper PETs Scenario Data Output Efficiency

K-means [12, CCS’07] HE+ASS 2PC a final centroids 7†

[13, CIC’15] HE Outsourcing, 2 Servers h final centroids 7†

[14, SAC’18] HE Outsourcing, 1 Server − final centroids 7?

[15, CLOUD’18] HE Outsourcing, 2 Servers − cluster sizes 7†

MPC-KMeans [11, PETS’20] GC Outsourcing, 2 Servers or 2PC h final centroids 3

Mean-shift HE-Meanshift [9, SAC’19] HE Outsourcing, 1 Server − final centroids 3

Affinity Propagation [16, SECRYPT’21] ASS Outsourcing or MPC a final clusters 7‡

DBSCAN [17, S&P’13] GC 2PC h cluster labels, centroids/size possible 7¶

ppDBSCAN [18, ASIACCS’21] GC+ASS Outsourcing, 2 Servers or 2PC a cluster labels, centroids/size possible 3

Hierachical Clustering PCA/OPT [19, ArXiv’19] HE+GC 2PC h final dendogram 3

† Computationally expensive due to use of Paillier’s HE and no parallelization.
? Costly computation due to use of bit-wise encryption. MPC-KMeans [11] outperforms this scheme by 5000× for 400 data records.
‡ [18] is 194× faster than this scheme for 400 data records.
¶ [18] is 5× faster than this scheme for a dataset size of 500 data records.
Table 1. Fully privacy-preserving clustering protocols (cf. §3.1). HE is homomorphic encryption [7], ASS is arithmetic secret shar-
ing [20], and GC is garbled circuits [21]. v indicates vertically partitioned data, i.e., the data owners hold the values for a subset of
parameters from all data records. h indicates horizontally partitioned data, where the data owners hold complete data records with all
parameters, a is arbitrarily partitioned data, and “ − ” indicates the scheme has only one data owner. Schemes that were implemented
and benchmarked in §4 are highlighted in gray.

be leaked even though they are only temporarily as-
signed to one cluster (due to these characteristics which
would not have been revealed in the final result). An
even more severe privacy breach is demonstrated in [22]
where leaking the results of comparison of distances be-
tween data records and a threshold can enable to ac-
curately approximate the original data record held by
another party. With this, complete patient records could
be extracted when clustering medical data. To summa-
rize, it is difficult to concretely determine the effects
of leaking intermediate information in advance for all
possible constellations. Hence, privacy research should
focus on designing efficient private clustering protocols
that do not leak anything beyond what can be inferred
from the output, i.e., provide full privacy.
Related Work. Privacy-preserving machine learning
(PPML) is a hot topic in recent privacy research [23–26].
To provide a better overview over the exploding research
field, several surveys have been done. Haralampieva et
al. [27] survey existing frameworks in the context of pri-
vate image classification. An overview about frameworks
for private neural network inference is given in [28]. Pro-
tocols used for private machine learning training are
investigated in [29]. Similarily, Tanuwidjaja et al. [30]
summarize existing works on privacy-preserving deep
learning and issues when using these schemes as well as
possible attacks on private deep learning. Kiss et al. [31]
systematically review the state-of-the-art approaches to
private decision tree evaluation.

All previous surveys focus on privacy-preserving su-
pervised learning where a training dataset with labelled
samples (i.e., known input-output pairs) is used to train
a model that can later be used to classify new data

records. In contrast, our survey focuses on clustering, a
popular unsupervised machine learning (ML) technique,
which detects unknown patterns in unlabelled data so
no “training” of a model is needed. In our work, we sys-
tematically survey and evaluate the state-of-the-art in
private clustering using secure computation techniques.

An orthogonal line of research uses differential pri-
vacy (DP) to protect privacy-preserving machine learn-
ing (PPML), including clustering [32–37], against infor-
mation leakage. Abadi et al. [38] and Shokri et al. [39]
provide comprehensive surveys on differentially private
deep learning. Generally, the noise added to achieve DP
reduces utility whereas secure computation has higher
complexity. Hence, DP-based and secure computation-
based protocols are not directly comparable and we
leave a survey on DP-based clustering for future work.
Our Contributions and Outline. After presenting
the preliminaries of privacy-preserving clustering in §2,
our Systematization of Knowledge (SoK) paper provides
the following core contributions:
− The first comprehensive review and analysis of exist-
ing techniques and protocols used for privacy-preserving
clustering with respect to security models, privacy limi-
tations, efficiency, and further aspects. We also provide
guidelines on how to choose an appropriate privacy-
preserving clustering scheme for a specific applica-
tion (§3).
− An empirical evaluation of the four most efficient and
fully private clustering schemes [9, 11, 18, 19], cf. Tab. 1,
on a range of criteria, including clustering quality, se-
curity and privacy, and runtime/communication over-
head (§4). Based on these insights, we provide an analy-
sis of the practicality of the four protocols for real-world



SoK: Efficient Privacy-preserving Clustering 227

applications based on our results from the benchmark-
ing (§5).
− An implementation of the clustering protocol of [9]
and [19] in C++17. Implementations of the remaining
two protocols that we also evaluate [11, 18] are publicly
available. Our code is available at https://encrypto.de/
code/SoK_ppClustering.

2 Preliminaries

2.1 Clustering

Clustering is a well-known unsupervised machine learn-
ing (ML) technique, i.e., it deals with detecting un-
known patterns in unlabeled data. Concretely, it groups
similar input records (internal homogeneity) in clusters
while records belonging to different clusters should be
maximally different (external separation) [40–42].

Clustering consists of four components: feature se-
lection/normalization, a proximity measure to deter-
mine similarity/dissimilarity, the clustering algorithm,
and the output assessment [41, 42]. However, most prior
works on privacy-preserving clustering mainly focus on
a specific clustering algorithm. For example, the proxim-
ity measure is typically chosen to enable efficient com-
putation using cryptographic techniques [14, 19]. Fur-
thermore, mostly continuous values are considered while
clustering can generally be applied to any kind of vari-
able (i.e., also discrete or nominal values) [42].

Clustering algorithms can be split in two classes:
hard and soft (fuzzy) clustering. In hard clustering, each
input data record is assigned to exactly one cluster. In
soft clustering, data records can be assigned to several
clusters with a certain probability. All works on privacy-
preserving clustering that we investigated in this work
except from [43] have only tackled hard clustering.

Properties of Good Clustering. Records are as-
signed to the same cluster given they are similar. How-
ever, (dis)similarity heavily depends on the chosen prox-
imity measure. Additionally, clustering algorithms were
designed having specific problems in mind such that
they exhibit biases that affect their performance when
the assumed conditions are not fulfilled. Therefore, ac-
cording to Xu and Wunsch [41], no clustering algorithm
is universally superior and a good clustering algorithm
should be able to cope with: 1) arbitrarily shaped clus-
ters, 2) large datasets, 3) updates with new records
without having to cluster old records again, 4) numeri-
cal (i.e., discrete and continuous) and nominal variables,

(a) (b) (c) (d) (e) (f) (g) (h)

1) Cluster Shapes − − ◦ + + − − −
2) Large Datasets ◦ − − − − − + ◦
3) Update Input Data + − − ◦ + + + +
4) Nominal Variables − + + − + + − −
5) Outliers − + ◦ − + ◦ + ◦
6) Input Order + + + + ◦ + − +
7) Storage + − − + + − + +
8) # Parameters − ◦ − ◦ ◦ − ◦ −
Full privacy 3 3 3 3 3 7 7 7

Table 2. Comparison of clustering algorithms with respect to
the aspects explained in §2.1: (a) K-means, (b) Affinity Prop-
agation, (c) Single/Complete Linkage HC, (d) Mean-shift, (e)
DBSCAN, (f) K-medoid, (g) BIRCH, and (h) GMM. + denotes
that the clustering algorithm performs well with respect to the
indicated aspect, ◦ denotes an average performance, and − in-
dicates that it has some weaknesses. 3 indicates that a fully
privacy-preserving clustering protocol is available and 7 that it
is not available yet.

and 5) outliers. Furthermore, it should: 6) be insensitive
to the order of input records, 7) provide acceptable stor-
age requirements, and 8) minimize the number of input
parameters. Finally, it should also be able to handle 9)
high-dimensional data records.

Clustering Algorithms

In the context of privacy-preserving cluster-
ing, four different types of clustering have been
studied so far: partitioning-based [8, 11, 14, 16],
distribution-based [44, 45], density-based [18, 46, 47],
and hierarchical clustering [19, 48–50]. In the following,
we summarize these four clustering types and com-
pare the respective algorithms w.r.t. the properties
listed before in §2.1. Due to space limitations, we only
provide the details of this evaluation for the three al-
gorithms [51–53] for which fully private protocols were
proposed (cf. §3.2) and that we benchmark in §4. De-
tails of the other algorithms are given in Appx. A.
Partitioning-based Clustering. Partitioning-based clus-
tering splits the input into K non-overlapping clusters.
Typically, an initial random partition is iteratively im-
proved given an objective function [54].

A well-known example is K-means [51]. It has a com-
putational complexity of O(NKt) and a space complex-
ity of O(N) [40] for dataset size N , K clusters, and t

clustering iterations. Furthermore, K-means can only
cluster convexly-shaped clusters, cannot to appropri-
ately handle outliers, and requires to pre-determine the
number of clusters K [40]. If the initial partitioning,
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i.e., the centroid initialization, is done at random, K-
means is not deterministic. It may converge to a local
optimum [55]. The input order does not affect the clus-
tering result. As the centroids are determined by averag-
ing, K-means is not suitable for nominal variables [56].
New data records typically require only a few additional
clustering iterations because they normally do not sig-
nificantly change the result. Other partitioning-based
clustering algorithms that were investigated in the con-
text of privacy-preserving clustering are the closely re-
lated K-medoids [57], Kernel K-means [58], Possibilistic
C-means [43], as well as Affinity Propagation [16].
Hierarchical Clustering. Hierarchical Clustering (HC)
algorithms can be classified into agglomerative and divi-
sive approaches. In agglomerative algorithms, each data
record forms an own cluster in the beginning and the
clusters are then iteratively merged together based on
their proximity. Divisive algorithms follow the oppo-
site approach and start with all elements in one cluster
which is then iteratively split up [52, p. 71-72]. HC al-
gorithms output a binary tree/dendrogram1 where each
leaf represents a record and nodes indicate a merge of
two similar clusters into one. The root combines all
records into a single cluster [40].

As divisive HC exhibits an immense overhead for ex-
amining the optimal splits (2N−1 − 1 possibilities [40],
where N is the dataset size), mostly agglomerative al-
gorithms have been observed in practice. Traditionally,
three merging methods were used: (1) single, (2) com-
plete, and (3) average linkage. Single linkage merges
the two clusters with the closest two elements, com-
plete linkage merges the two clusters whose maximally
distant pair of elements are closest among all pairs of
clusters, and average linkage merges the two clusters
that have the smallest average of all pairwise distances
of their elements [52, p. 76-77] [59].

Naive HC has computation complexity O(N3) and
space complexity O(N2) [42]. Some HC-based algo-
rithms (e.g., single linkage) cannot detect some clus-
ter shapes. They do not incorporate a notion of noise,
but are relatively insensentive to outliers. HC requires
to pre-determine the number of clusters K that are ob-
tained by cutting the tree at the respective level [40]. HC
needs a restructuring of the tree if new data records are
added after the first clustering. Nevertheless, HC can
handle any type of variable and the input order does
not affect the result.

1 A dendogram is a graph representing a tree structure.

Density-based Clustering. These algorithms use a
density-based neighborhood notion such that input
records that lay together in a dense area form a clus-
ter. Examples are Mean-shift [53] and DBSCAN [60].
Mean-shift has time complexity O(N2t), where N is the
dataset size and t is the number of iterations, which
makes it inefficient for large datasets. It can handle
any cluster shape and flexibly determine the number
of clusters K based on the input data. Additionally, the
input order does not affect the results. However, the
value of the bandwidth h in the Kernel Density Esti-
mator (KDE) used in Mean-shift can significantly af-
fect its performance. A too large h merges distinct clus-
ters while a too small h splits one cluster into multiple
smaller groups. The performance also deteriorates for
high dimensional data due to the “curse of dimension-
ality” in the KDE. Similarly, noisy features can hamper
the performance [61]. Mean-shift does not incorporate a
notion of noise. An update with new records can change
the KDE and the local maximas, thus requiring a re-
run of the entire algorithm. However, in practice, the
new points can be assigned to the cluster containing
the nearest mode if the change in the KDE is not sig-
nificant.

Density-Based Spatial Clustering of Applications
with Noise (DBSCAN [62]) specifically recognizes noisy
elements and marks them as outliers. It detects arbitrar-
ily shaped clusters and flexibly determines the number
of clusters in a dataset based on two input parameters,
namely the minimal cluster size and the maximal dis-
tance between two clusters. Especially the second pa-
rameter can be difficult to determine and DBSCAN can-
not correctly handle clusters with significantly different
densities [63]. Generally, if appropriate distance mea-
sures are chosen, any type of parameter can be clustered.
Moreover, the input order does only affect the clustering
result in exceptional cases where border elements lay in
the range of more than one cluster. If additional data
records shall be clustered after a first clustering was fin-
ished, their neighbors have to be determined to assess if
they can be added to previously created clusters. Oth-
erwise, they may create a new cluster with other out-
liers, but no completely new clustering is needed. Naive
DBSCAN needs O(N) memory and has computation
complexity O(N2) [62, 63].
Distribution-based Clustering. Distribution-based clus-
tering algorithms assume that clusters are drawn from
an unknown mixture of distributions and aim at ap-
proximating the original distributions (i.e., the type and
parameters) as well as the number of different distri-
butions (i.e., the number of clusters) [41, 42]. A well-
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known example for distribution-based clustering algo-
rithms are Gaussian Mixture Models (GMM) using the
Expectation-Maximization (EM) algorithm [64].
Comparison of Clustering Algorithms. Modifica-
tions proposed for the clustering algorithms to fix some
weaknesses of the original often introduce other prob-
lems. Therefore, it is difficult to evaluate them with re-
spect to the general requirements for clustering algo-
rithms (cf. §2.1).

In Tab. 2, we compare the eight baseline clustering
algorithms for which privacy-preserving protocols have
been proposed with respect to the properties of good
clustering algorithms listed in §2.1. We did not include
the effect of property 9), i.e., high dimensionality, be-
cause it is often not directly linked to the clustering
algorithm. Instead, a large number of variables often
requires using feature reduction techniques.

2.2 Cryptographic Building Blocks

In the following, we summarize secure computation
techniques and respective security models.
Secure Computation. There are two main paradigms
for secure computation: Homomorphic encryption (HE)
and multi-party computation (MPC). HE [7, 65, 66]
enables operations on a set of ciphertexts such that
the resulting ciphertext contains the result of a func-
tion on the corresponding plaintexts. MPC allows two
or more mutually distrusting parties to jointly com-
pute a function on their private inputs. Two well-known
generic approaches for MPC are based on garbled cir-
cuits (GC) [21] and secret-sharing (SS) [20, 67]. As
an example for a SS-based technique, the GMW pro-
tocol [20] represents a function as Boolean/Arithmetic
circuit and the values are secret-shared using XOR or
Arithmetic secret sharing (ASS). Another type of SS is
Shamir’s secret sharing (SSS) [67].
Security Models. Two main security models have
been considered in privacy-preserving clustering: In the
semi-honest/passive security model, the adversary [68]
is assumed to honestly follow the protocol, but tries to
learn additional information about the private inputs
of other parties. Though this model is weaker than the
malicious model, that even protects against deviations
from the protocol specification, it facilitates practically-
efficient applications especially for privacy-preserving
machine learning (PPML) [69]. Full threshold security
means that up to N−1 parties can collude without jeop-
ardising privacy while honest majority security requires
the majority of the parties to not collude.

3 Privacy-preserving Clustering
In this section, we first define privacy-preserving clus-
tering. Then, we categorize and analyse the exist-
ing privacy-preserving clustering protocols to conclude
which protocols offer good efficiency with strong privacy
guarantees. Afterwards, we discuss possible applications
and provide indications on how to choose appropriate
privacy-preserving clustering schemes for these.

3.1 Functionality and Requirements

In an ideal world with a trusted third party (TTP),
all involved parties send their input data to the TTP.
The TTP then performs the clustering and returns the
output to the parties. The output can vary depending on
the application requirements and clustering algorithm.
For example, the output can be the cluster centroids or
it can be the cluster label for each data record.

We identified the following requirements for privacy-
preserving clustering:
Privacy. According to the ideal functionality a privacy-
preserving clustering protocol must not leak information
other than what can be derived from the output of the
protocol to be considered as fully privacy-preserving.
Importantly, this includes that all operations must be
obliviously realized and all intermediate results must be
kept private.
Efficiency. A privacy-preserving clustering scheme must
be efficient in terms of communication and runtime.
This means that it must scale well with respect to the
dataset size N , the number of clusters K, and the di-
mensionality d of the input records.
Clustering Quality: A privacy-preserving clustering
scheme must offer a good clustering quality of the re-
sults independent of a dataset’s properties. Specifically,
the requirements of good clustering listed in §2.1 should
be fulfilled.
Flexibility. A privacy-preserving clustering scheme
should ideally be flexibly usable for outsourcing [70] and
multi-party computation. In an outsourcing scenario,
one or multiple data owners outsource their data and
the computation to untrusted non-colluding parties [70].
Here, the data owners can even be malicious (cf. §2.2).
In multi-party computation, several parties interactively
compute the clustering on their joint dataset.
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3.2 Existing Private Clustering Protocols

In this subsection, we categorize the existing works on
privacy-preserving clustering with respect to the un-
derlying plaintext clustering algorithm, security model,
scenarios for which protocols where designed, data dis-
tributions, used secure computation techniques as well
as privacy and efficiency (cf. §3.1). We discuss the
strengths and weaknesses of these schemes with respect
to these criteria. Tab. 3 contains on overview of all
59 works on privacy-preserving clustering with secure
computation techniques that we are currently aware of.
It indicates the respective security model, used secure
computation techniques, common types of leakages of
intermediate values, the type of output, which and how
many parties are involved in the protocol, the data par-
tition, and other issues.
Plaintext Clustering Algorithms. Eight clustering
algorithms have been investigated in the context of
privacy-preserving clustering: K-means (including the
two variants Kernel K-means [58] and Possibilistic C-
means [43]), K-medoids [57, 71], GMM [44, 45], Mean-
shift [9], DBSCAN [22, 46, 47, 72–76], baseline agglom-
erative HC (e.g., single linkage or complete linkage) [19,
48–50, 77, 78], BIRCH [79, 80], and Affinity Propaga-
tion [16, 81]. The vast majority of works focuses on the
simple K-means algorithm [8, 11–15, 82–106], which en-
ables an efficient parallelization of computation through
packing with homomorphic encryption [8, 88, 95] or
amortization through batched oblivious transfers [11].
However, as discussed in §2.1, K-means can be used
only for very specific applications where the number
of clusters is known in advance and the clusters are
convexly shaped. We gave an overview of the strengths
and weaknesses of these plaintext clustering algorithms
in Tab. 2. Generally, the choice of the plaintext clus-
tering algorithm heavily affects the quality of the clus-
tering result. Some works on privacy-preserving cluster-
ing exactly reproduce the original algorithms and hence
achieve the same accuracy, e.g., [19, 44, 45, 82]. Oth-
ers deviate from the original algorithms such as when
updating the centroids in K-means due to, e.g., normal-
ization/quantization/specific encodings of the plaintext
space [8, 9, 14, 22, 88, 95], adaptations of the original
algorithm [14], or approximations [14, 43] which either
enhance efficiency or are needed because of the under-
lying secure computation techniques.
Security Models. All works except for [16, 96, 105]
consider only the semi-honest security model (cf. §2.2).
A few even do not explicitly define their security
model [43, 48, 57, 58, 71, 100, 108]. The semi-honest

security model assumes that the adversary correctly fol-
lows the protocol while trying to gain additional infor-
mation. However, this strong assumption is not always
realistic. Concretely, the use of protocols that are se-
cure against semi-honest adversaries is only acceptable
in specific applications where the participants already
generally trust each other but are legally not allowed to
share data, e.g., hospitals conducting medical analysis
or central banks for financial analytics on country-level.
We discuss the requirements and implications of appli-
cations on the choice of a privacy-preserving clustering
scheme in more detail in §3.3.
Scenarios. Generally, privacy-preserving clustering
protocols have been designed for two scenarios: Firstly,
multi-party computation (MPC, [16, 44–46, 50, 57, 71,
72, 74–76, 82, 85, 87, 89, 91, 94, 96, 99–101, 103]) with
the special case of two-party computation (2PC, [11–
13, 19, 22, 48, 49, 73, 74, 77–80, 83, 84, 86, 93]), where
two or more data owners jointly perform a secure com-
putation protocol ideally such that nothing beyond the
output is leaked to each other (cf. §3.1). Some of these
protocols [50, 75, 76, 88, 95, 100, 103] also involve one
or more additional (semi-trusted) entities, e.g., repre-
sented by servers, that assist in the computation. In
contrast, other protocols were designed for the out-
sourcing scenario where one or more data owners out-
source computation (and storage) to external parties
who ideally perform the clustering for them without
learning anything about the input data [8, 9, 14, 15,
43, 47, 58, 90, 92, 97, 98, 102, 104–106, 108]. As out-
sourcing aims at using external resources, data owners
should not be involved in the execution of the proto-
col and can go offline, but this is often not fulfilled, e.g.,
in [43, 47, 97, 98, 104, 105, 108]. Some MPC/2PC proto-
cols can also be used for an outsourcing scenario where
the data owners secret share their data among multi-
ple non-colluding parties who then perform the cluster-
ing [8, 11, 105]. However, whether a 2PC/MPC cluster-
ing protocol is usable for outsourcing heavily depends
on its design. This is hindered if data owners are actively
involved by computing on plaintext input data, e.g.,
[22, 44–46, 48, 49, 72–75, 82, 88], or a data owner needs
to perform intermediate decryptions, e.g., [86, 91, 95].
Data Partition. The data to be clustered in a pri-
vate manner can be partitioned in three ways when pro-
vided by multiple parties. It is horizontally partitioned
when each data owner holds complete (but different)
data records [9, 13, 44, 45, 47, 49, 50, 73, 75, 77, 78, 84–
86, 91, 92, 94–96, 98, 99, 101–103, 105, 106, 108]. The
data is vertically partitioned when data owners hold mu-
tually different parameters of the same data records [44,
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Algorithm Scheme Privacy Security PETs L1 L2 L3 L4 O1 O2 O3 Interactivity (Scenario) Data Other issues

K-means

[82, KDD’03] 7 HE+blinding (7)1 7 7 7 7 3 7 all data owners (≥ 3) v

[83, KDD’05] 7 HE+ASS+GC 3 3 7 7 3 3 7 2PC a wrong division
[84, ESORICS’05] 7 HE or OPE 7 3 3 7 7 3 7 2PC h

[12, CCS’07] 3 HE+ASS 3 3 3 7 7 3 7 2PC a

[85, SECRYPT’07] 7 blinding 7 3 7 7 3 3 7 all data owners v/h
[86, AINAW’07] 7 HE+ASS+OPE 3 7 7 7 3 3 7 2PC h

[87, PAIS’08] 7 ASS 3 3 7 7 3 3 7 all data owners (≥ 4) v

[88, WIFS’09] 7 HE 7 3 7 3 3 7 7 data owners + 1 server h

[89, KAIS’10] 7 HE+ASS 3 3 7 7 3 7 7 all data owners h

[90, PAISI’10] 7 SS 3 7 7 7 3 3 7 Outsourcing ≥ 3 servers a

[91, ISPA’10] 7 HE 3 3 7 7 7 3 7 all data owners v/h
[92, WIFS’11] 7 HE+GC 3 7 3 3 3 7 7 Outsourcing, 3 servers h

[93, ISI’11] 7 HE+ASS (7)1 7 7 7 3 7 7 2PC v

[94, TM’12] 7 SSS 7 7 3 7 7 3 7 all data owners h distance calculation unclear
[95, JIS’13] 7 HE 7 3 3 7 3 7 7 data owners + 2 servers h

[96, ICDCIT’13] 7 SSS+ZKP 7 7 3 7 7 3 7 all data owners h

[97, ASIACCS’14] 7 HE 7 7 7 7 3 3 7 outsourcing, 1 data owner + 1 server − insecure HE [107]
[98, MSN’15] 7 HE 7 7 7 3 7 7 7 outsourcing, data owners + 1 server h insecure HE [107]
[99, IJNS’15] 7 HE 7 7 7 7 7 3 7 all data owners h

[13, CIC’15] 3 HE 3 3 3 7 7 3 7 Outsourcing, 2 servers h

[100, ICACCI’16] 7 N/A SS 7 7 7 7 3 7 7 arbitrary number of servers a

[101, ISPA’16] 7 blinding 7 7 7 3 7 3 7 all data owners (≥ 3) h

[102, SecComm’17] 7 HE 3 7 7 3 7 3 7 outsourcing, ≥ 4 servers h

[103, TII’17] 7 HE 7 7 7 7 7 7 7 data owners + 1 server h

[14, SAC’18] 3 HE 3 3 3 3 7 3 7 Outsourcing, 1 server −
[15, CLOUD’18] 3 HE 3 3 3 7 7 3 7 Outsourcing, 2 servers − distance calculation unclear
[108, CCPE’19] 7 N/A HE 7 7 7 7 7 3 7 Outsourcing, 2 data owners + 1 server h insecure HE [107]
[104, TCC’19] 7 HE 3 7 7 3 3 7 7 Outsourcing, 1 data owner +≥ 1server(s) −
[105, Inf. Sci.’20] 7 ( )2 HE+GC 7 7 7 7 7 3 7 Outsourcing, 2 data owners + 1 server h

[106, SCN’20] 7 HE+SKC 3 7 7 3 7 3 7 Outsourcing, 3 servers h

[11, PETS’20] 3 GC 3 3 3 7 7 3 7 2PC/Outsourcing h

[8, TKDE’20] 7 HE 3 73 3 7 7 3 7 Outsourcing, 2 servers a

Kernel K-means [58, KAIS’16] 7 N/A PKC 3 7 7 7 3 7 7 Outsourcing, 1 server − security model
Possibilistic C-means [43, TBD’17] 7 N/A HE 7 7 7 7 3 3 7 Outsourcing, 1 data owner + 1 server −

K-medoids [57, SMC’07] 7 N/A HE+blinding 3 7 7 3 7 7 7 all data owners v exhaustive search
[71, CCSEIT’12] 7 N/A HE+blinding 3 7 7 3 7 7 7 all data owners v exhaustive search

GMM [45, KAIS’05] 7 blinding 3 3 7 7 3 7 7 all data owners h

[44, DCAI’19] 7 ASS 3 3 7 7 3 7 7 all data owners (> 2) v/h
Affinity Propagation [81, INCoS’12] 7 HE + blinding 3 3 7 3 3 7 7 all data owners v

[16, SECRYPT’21] 3 / ASS+GC 3 3 3 3 3 7 7 all data owners/Outsourcing a

Mean-shift [9, SAC’19] 3 HE 3 3 3 3 3 7 7 Outsourcing, 1 server −

DBSCAN

[72, ISI’06] 7 blinding 3 3 7 3 7 7 7 all data owners v lack of complete protocol
[73, ADMA’07] 7 HE+blinding 3 7 7 3 3 7 7 2PC v/h
[74, IJSIA’07] 7 PKC+blinding 3 3 7 3 3 7 7 all data owners v

[75, ITME’08] 7 HE+blinding 3 7 7 3 3 7 7 data owners + 1 server h

[22, TDP’13] 7 HE+blinding 3 7 7 3 3 7 7 2PC a

[17, S&P’12] 3 / 5 GC 3 3 3 3 3 3 7 2PC h

[46, SIBCON’17] 7 HE+PKC 3 3 7 3 3 7 7 all data owners v cluster expansion missing
[47, PRDC’17] 7 HE 3 7 7 3 7 7 7 outsourcing, all data owners + 1 server h

[76, AI’18] 7 HE 3 7 7 3 3 7 7 data owners + 1 server a uses absolute distance
[18, ASIACCS’21] 3 ASS+GC 3 3 3 3 3 (3)4 7 2PC/Outsourcing a

HC

[77, SDM’06] 7 HE+ASS+GC 3 3 7 3 7 3 7 2PC h

[50, TKDE’07] 7 blinding or SKC 3 3 7 3 3 7 7 data owners + 1 server h SKC not semantically secure
[49, TDP’10] 7 HE+GC 3 3 7 3 3 3 7 2PC h

[48, ISI’14] 7 N/A HE 3 7 7 3 3 3 7 2PC v

[78, ISCC’17] 7 HE 3 3 7 3 7 7 3 2PC v/h
[19, ArXiv’19] 3 HE & GC 3 3 3 3 7 3 3 2PC h

BIRCH [79, SDM’06] 7 HE+ASS 3 3 7 3 7 7 7 2PC v

[80, ADMA’07] 7 HE+ASS 3 3 7 3 7 7 7 2PC a

1 Of the parameters hold by the respective data owner.
2 Assuming max. 1 party deviates from the protocol.
3 Leaks partial information about cluster sizes.
4 Not implemented, but possible.
5 Can be used with any security model of GCs.

Table 3. History overview of privacy-preserving clustering using secure computation techniques. Privacy indicates if fully privacy pro-
tection according to the ideal functionality for privacy-preserving clustering (§3.1) is provided (7: leakage; 3: no leakage). is the
semi-honest security model, is the malicious security model, N/A indicates that no security model was defined. HE is homomorphic
encryption, ASS additive secret sharing, SSS Shamir’s secret sharing, GC garbled circuits, OPE oblivious polynomial evaluation, PKC
public-key cryptography, SKC symmetric-key cryptography, ZKP zero-knowledge proof, blinding is the use of random values for blind-
ing, and other types of secret sharing are summarized by SS. v indicates that the data that shall be clustered is vertically distributed,
i.e., the data owners hold the values for a subset of parameters from all data records. h indicates horizontally partitioned data where
the data owners hold complete data records with all parameters, and a is arbitrary data partitioning. L1 leaks intermediate centroids,
L2 intermediate cluster sizes, L3 other intermediate values (e.g., intermediate cluster assignments or distance comparison results), and
L4 the number of clustering iterations. O1 outputs the final cluster labels/assignments, O2 outputs the final centroids, and O3 outputs
the final dendogram/tree structure. The schemes with the best privacy guarantees are marked in bold (we do not consider the num-
ber of clustering iterations as a severe leakage as it can be easily avoided, cf. §3.2). The efficient and fully private schemes that we
implemented and benchmarked in §4 are highlighted in gray.
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46, 48, 57, 71–74, 78, 79, 82, 85, 87–89, 91, 93]. An ar-
bitrary partitioning is a mix of both vertical and hori-
zontal data splitting [8, 12, 22, 76, 80, 83, 90, 100]. A
realistic data partition depends on the specific applica-
tion. We discuss this matter in more detail in §3.3.
Used Secure Computation Techniques. Existing
privacy-preserving clustering protocols use two main
cryptographic techniques. First, there is a range of
works that use homomorphic encryption (HE), e.g., [8,
14, 48, 76, 78, 84, 97, 104], but most of them tend to
be relatively slow due to the expensive cryptographic
operations. Another research direction uses multi-party
computation (MPC) techniques like Yao’s Garbled Cir-
cuits [21], blinding with random numbers, and secret
sharing to achieve better efficiency [11, 16, 18, 44, 45, 72,
83, 94]. These schemes tend to have better runtimes, but
higher communication than using HE. However, some
MPC techniques [10] also have to rely on non-collusion
assumptions between (a subset of) the computing par-
ties which can make them more difficult to deploy in
real-world applications. Other protocols use a mix of
these techniques aiming at combining the strengths of
both approaches [12, 19, 46, 77, 79, 103].
Privacy. As discussed in §1, information leakage can
cause severe privacy infringement. Ideally, no informa-
tion beyond what can be extracted from the final output
should be derivable (cf. §3.1). However, most of the pro-
posed privacy-preserving clustering schemes leak inter-
mediate values like the intermediate centroids [43, 84,
85, 88, 94, 97, 98, 100, 105, 108], cluster assignments [43,
57, 58, 71, 83, 86, 87, 89–91, 97, 98, 100, 102–106, 108],
and/or cluster sizes [8, 57, 71] in each clustering itera-
tion of K-means or K-medoids, thus, failing to provide
full privacy protection. Similarly, both private GMM
schemes [44, 45] leak the intermediate covariance ma-
trices, means, and probability values for each Gaussian
distribution. Many schemes originating from a round-
based clustering algorithm such as K-means or GMM
leak the number of clustering iterations until conver-
gence, e.g., [12, 13, 15, 43–45, 82, 83, 94, 100]. However,
this issue can be avoided by clustering for a fixed num-
ber of iterations independent of the input which must
be large enough to reach a good clustering result. How-
ever, this results in a longer runtime as more iterations
are done than normally with a convergence check. Also
most DBSCAN-based and HC-based schemes leak infor-
mation, e.g., distances between data records [46, 50], the
comparison results of distances [48, 72, 75, 79, 80], clus-
ter assignments [22, 46, 47, 49, 73, 75, 76, 79, 80], cluster
sizes [22, 47, 73, 75, 76], or may even leak concrete in-
put records for specific data constellations [73, 77] to

at least one of the involved parties (independent of the
party’s data ownership). All in all, we only identified ten
clustering protocols shown in Tab. 1 that provide fully
privacy guarantees (maximally leaking the number of
clustering iterations): [9, 11–19].
Efficiency. As stated before, homomorphic encryption-
based protocols such as [14, 48, 76, 78, 84, 97, 104] tend
to be computationally expensive and, thus, slower than
MPC-based schemes, e.g., [11, 18, 44, 45, 72, 94], which
require more communication. Due to space limitations,
we will focus here on the ten protocols that provide
full privacy (cf. §3.1) and compare them in terms of
efficiency. Kim and Chang [15] observe an about 2.85×
runtime improvement compared to [13] thanks to a more
efficient secure comparison. They as well as Bunn and
Ostrovsky [12] use the Paillier encryption scheme with-
out any parallelization making it expensive and slow
compared to the other more optimised protocols which
use, for example, packing or batching of operations [11].
The K-means protocol by Mohassel et al. [11] was exper-
imentally compared to [14] and [18]. It outperforms the
K-means protocol by Jäschke et al. [14] by five orders
of magnitude on a dataset with 400 elements thanks to
an efficient batching and the usage of GC instead of
HE. It is also 19× faster on the same dataset than the
private DBSCAN protocol of Bozdemir et al. [18], but
DBSCAN often achieves significantly better clustering
quality [18]. [18] runs about 13 minutes for clustering
500 elements while Zahur and Evans [17] report more
than 550 minutes for their private DBSCAN protocol
with 480 records. [18] is also 194× faster than the fully-
private affinity propagation protocol by Keller et al. [16]
thanks to the use of optimized combinations of GC and
ASS. No direct comparison between [9, 11, 19] was done
so far.
Choice for Benchmarks. To summarize, the MPC-
based protocol of Mohassel et al. [11] is the most ad-
vanced private K-means scheme w.r.t. privacy and effi-
ciency. Meng et al. [19] and Cheon et al. [9] provide the
only schemes that offer fully private single and complete
linkage HC/Mean-shift. Bozdemir et al. [18] propose the
most efficient fully privacy-preserving DBSCAN proto-
col. In §4, we focus on these four works by comparing
their computation and communication efficiency, secu-
rity and privacy, and clustering quality.

3.3 Private Clustering Applications

Privacy-preserving clustering can be generally used for
two main purposes: to protect sensitive data when out-
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sourcing the computation and storage and/or when mul-
tiple data owners provide input data to the clustering.
For each of these scenarios, we discuss a few example
applications in the following to give a guideline on how
to choose appropriate private clustering protocols.
Example Applications. Multiple data owners who
jointly cluster their combined data is an instance of
multi-party computation (MPC). In the financial mar-
ket, clustering is used to automatically detect correla-
tions between securities’ stock prices in pair trading,
i.e., for investment strategies that leverage discrepan-
cies between typically correlated securities [109, 110].
Additionally, it is used for outlier detection to identify
credit card, insurance, or tax frauds and insider trad-
ing [3, 111]. In this context, it is typically necessary to
cluster data from several sources like competing (invest-
ment) banks or insurance companies to detect suspicious
behavior [112]. Thereby, the different entities might hold
information about the same customer, i.e., they have
vertically partitioned data. Furthermore, clustering can
be used by companies for enhancing marketing mea-
sures, e.g., by market segmentation or personalization of
recommendation systems [113, 114]. A larger database
increases the quality and reliability of the result but
business secrets and customer data must be protected.
In such scenarios, a horizontal data partitioning where
the companies provide data from different customers is
more plausible. Additionally, clustering is also used in
medical research and diagnosis [115, 116]. In this con-
text, using data from several sources, e.g., several hos-
pitals, reduces potential bias caused by demographics,
ethnicities, or cultures.
MPC. For the aforementioned applications, the parties
can always safely trust themselves. Thus, full thresh-
old security (i.e., security against up to N − 1 col-
lusions, cf. §2.2) as provided by some MPC tech-
niques [117, 118] would be an interesting option. Un-
fortunately, only Keller et al. [16] and schemes based
on a threshold secret sharing (like SSS (cf. §2.2)) with
the respective threshold can offer this. Additionally,
again only Keller et al. [16] provide full privacy guaran-
tees against malicious adversaries (cf. §2.2). However,
if the other partners involved are generally trusted but
strictly regulated by data protection laws like HIPAA
or GDPR, hindering them from directly sharing data,
a 2PC- or MPC-based clustering protocol with hon-
est majority and secure against semi-honest adversaries,
e.g., [9, 11, 19], might be sufficient and provides signif-
icantly better efficiency than MPC techniques that are
secure against full threshold semi-honest or malicious
adversaries [119].

Outsourcing. While running “generic” MPC protocols
is the most straightforward approach to securely clus-
ter on the joint database of data owners, it suffers from
high computation and communication costs and might
be practically infeasible for a large number of data own-
ers as MPC protocols often scale quadratically in the
number of parties. A more efficient alternative can be
to outsource the evaluation.2 Thereby, the data owners
(e.g., competing companies conducting market analy-
ses) might prefer to not rely on a non-collusion assump-
tion needed for MPC-based protocols such as [11] where
multiple providers must be found and trusted not to col-
lude. Hence, in such a situation an HE-based outsourc-
ing scheme like [9, 14] might be advantageous. Addition-
ally, in an outsourcing scenario, no data owner should
be required to be online or actively involved in the com-
putation. This can only be achieved by some proto-
cols: [11, 13–16, 18, 19, 37, 43, 58, 90, 92, 100, 102, 106].
Privacy vs. Efficiency. Furthermore, there exists a
trade-off between data leakage and efficiency. Schemes
that can leak complete data records (e.g., [73, 74])
should not be used. When generally trusted parties like
hospitals are involved, leaking less critical information
like the number of iterations (cf. §3.2) might be accept-
able to reduce runtime. However, as pointed out in §1,
it is not always possible to fully understand and antic-
ipate the effects of leaking intermediate results. Gener-
ally, MPC-based protocols are considered to be faster
but require more communication than HE-based proto-
cols. We will give more insight on the efficiency of the
four most efficient fully private clustering schemes in §4.
Algorithm Characteristics. Finally, another impor-
tant aspect for choosing the right private clustering
scheme are the input parameters. For instance, K-
means, K-medoid, GMM, and HC require the number of
clusters as input. This is not an issue when the number
of clusters is fixed by the application, e.g., if the goal
is to split bank customers’ behavior into benign and
suspicious. However, a more fine-grained analysis might
be needed when different types of malicious behavior
can occur that significantly differ from each other (e.g.,
credit card, tax, or insurance fraud), but it is unclear in
advance how many untypical behaviors can occur. Clus-
tering might even be used to detect and differentiate
these outliers in the first place. In such a case, a proto-
col that originates from affinitey propogation, DBSCAN
or Mean-shift should be chosen as they will flexibly de-
tect the number of clusters. Furthermore, some algo-

2 A single data owner might of course also outsource clustering.
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rithms like K-means and GMM can only detect clusters
of convex shapes, while DBSCAN can detect arbitrar-
ily shaped clusters [41]. If new data arrives regularly, it
might be beneficial to avoid recomputing the complete
clustering by using K-means-, K-medoid-, DBSCAN-, or
GMM-based protocols (e.g., [8, 11, 43, 44, 46]). Then,
different private clustering schemes give different out-
puts, e.g., centroids [8, 11] or dendograms [19]. For ex-
ample, a medical analysis detecting typical character-
istics for a specific disease should output centroids as
they represent these characteristics. Additionally, cen-
troids also allow to assign new data to the created clus-
ters later on which is not possible with only the cluster
labels.

To conclude, the following aspects need to be ex-
amined when deciding upon a private clustering pro-
tocol: scenario (MPC vs. outsourcing), security/privacy
requirements, trust level among the data owners, data
distribution and splitting, and the plaintext clustering
algorithm’s characteristics (e.g., required input param-
eters that can be anticipated in advance). Based on this
information, our extensive summary in Tab. 3 can help
to choose an appropriate protocol.

4 Evaluation
In this section, we compare the clustering quality (§4.1),
security and privacy (§4.2), and efficiency (§4.3) of
the four most efficient fully private clustering proto-
cols [9, 11, 18, 19] identified in §3.2. Details about these
protocols are provided in Appx. B.
Software Details. We implemented all four proto-
cols in C++17 and instantiate all cryptographic building
blocks with a security level of 128 bits. We instantiate
all algorithms with optimal parameters to assess their
performance assuming perfect conditions. All our imple-
mentations are single threaded for a fair comparison of
the efficiency of protocols.
MPC-KMeans [11]. In the remainder of this work, we
call the private K-means protocol by Mohassel et al. [11]
MPC-KMeans. We use the publicly available implemen-
tation3 from the authors of [11] with default parameter
values. Specifically, the statistical security parameter is
λ = 40, the computational security parameter κ = 128,
and the bitlength ` = 32.

3 https://github.com/osu-crypto/secure-kmean-clustering

HE-Meanshift [9].We call the private Mean-shift pro-
tocol by Cheon et al. [9] HE-Meanshift. The implemen-
tation uses the HEAAN library [120] with the same pa-
rameters as [9] providing 128-bit security. Specifically,
the degree of the polynomial modulus of the plaintext
ring Nc is set to 217 and the ciphertext modulus qL is
set to 21480. Thus, the number of plaintext slots in each
ciphertext is 216. Unless explicitly stated, we set the de-
gree parameter for the kernel Γ = 6, the MinIdx degree
parameter t = 5, and the Inv iteration parameter ζ = 5.
PCA/OPT [19]. We call the baseline private HC pro-
tocol by Meng et al. [19] PCA (complete linkage) and
its extension OPT (single linkage). The implementation
uses the ABY framework [10] for Yao’s garbled circuits
and the libpaillier library [121] for Paillier with identi-
cal parameters as [19]. Specifically, the symmetric-key
security parameter is κ = 128 bits and the size of the
RSA modulus in Paillier encryption is κpub = 2048 bits.
The statistical security parameter is λ = 40.
ppDBSCAN [18]. We call the privacy-preserving DB-
SCAN protocol by Bozdemir et al. [18] ppDBSCAN. We
use the publicly available C++ implementation4 pro-
vided by the authors which is based on the ABY frame-
work [10]. The computational security parameter is set
to κ = 128 bits and the bitlength ` = 32 bits. The pa-
rameter maxIterations was set to 4 as also done in [18].

4.1 Clustering Quality

In this section, we evaluate the clustering quality of the
four fully private clustering protocols.
Datasets. We use nine datasets from the well-known
FCPS [122] and Graves [123] collections designed for
benchmarking clustering algorithms. They also include
the ground truth separation [124]. In Tab. 4, we sum-
marize four of these datasets for which we present the
results of the quality evaluation. The results of our eval-
uation on the remaining 5 datasets are given in Appx. D.
Metrics for Clustering Quality. We measure the
quality of the clustering result using clustering qual-
ity indices. As no single index is superior [125], we
use four well-known indices: Adjusted Rand Index
(ARI) [126], Adjusted Mutual Information (AMI) [127],
Silhouette Index (SI) [128], and Calinski-Harabasz In-
dex (CHI) [129]. SI and CHI measure the output clus-
ters’ separation and compactness while ARI and AMI

4 https://encrypto.de/code/ppDBSCAN
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Dataset N d K Property

Hepta 212 3 7 Well-defined clusters
Lsun 400 2 3 Different shapes
Chainlink 1000 3 2 Non-linearly separable clusters
Dense 200 2 2 Different cluster variances

Table 4. Datasets used for evaluating clustering quality, where N
is the dataset size, d is the dimension of the data records, and K
is the number of clusters.
compare the output clusters to the known ground truth
to evaluate the clustering quality [125].

The results for the algorithms with random initial-
ization, MPC-KMeans and HE-Meanshift are averaged
over 10 runs. The iterative algorithms MPC-KMeans,
HE-Meanshift, KMeans++, and Mean-shift are run for
20 iterations. The number of clustersK for the K-Means
and HC protocols, i.e., MPC-KMeans and PCA/OPT,
is set to the number of clusters in the ground truth.
HE-Meanshift modifies the Mean-shift algorithm to run
the mean-shift process on a small and random subset
of datapoints, called dusts, to improve efficiency. The
number of dusts is set to the largest power of 2 greater
than or equal to the number of clusters, to ensure effi-
ciency while maintaining the quality of the clustering.
Original vs. Private Algorithm. We also compare
the differences in clustering quality between the pri-
vate clustering protocols and the original plaintext al-
gorithms to evaluate the error arising by using privacy
preserving techniques. PCA, OPT and ppDBSCAN are
identical to plaintext HC with complete and single link-
age and DBSCAN respectively which is why we do not
include the results for their plaintext implementations
here. The underlying computations in MPC-KMeans
are identical to the standard K-means protocol except
for differences in the initialization of the centroids. We
evaluate this effect using the plaintext KMeans++ [130]
algorithm (a variant of K-Means with an improved clus-
ter initialization where the centroids are initialized with
data records far apart from each other). HE-Meanshift,
in contrast, introduces several modifications to the stan-
dard Mean-shift algorithm [53] to make the computa-
tion HE friendly, e.g., using a polynomial kernel and
adopting dust-sampling for efficient mode-seeking. We
compare the clustering quality of HE-Meanshift to a
plaintext implementation of Mean-shift to evaluate the
combined effect of the changes.

Fig. 1 summarises the results of our evaluation of
the clustering quality with the four quality indices.
Hepta Dataset. All algorithms achieve a relatively
good clustering quality. PCA, OPT and ppDBSCAN
output exactly the ground truth and achieve the best
scores on the four indices. MPC-KMeans has a slightly

worse clustering quality than the HC algorithms. HE-
Meanshift achieves significantly lower scores and its high
standard deviation in comparison to KMeans++ and
Mean-shift indicates that the initialization of dusts has
a significant impact on the clustering quality.
Lsun Dataset. OPT and ppDBSCAN output exactly
the ground truth and, thus, achieve the maximal scores
for the ARI and AMI. While the output of PCA sig-
nificantly differs from the ground truth, it is notewor-
thy that it achieves similar scores as OPT and ppDB-
SCAN on the SI and CHI that measure internal clus-
ter properties, i.e., separation and compactness. HE-
Meanshift again shows large standard deviations due
to the random initialization. The poor clustering qual-
ity achieved by MPC-KMeans and KMeans++ on the
ARI and AMI is due to the non-convexly shaped clus-
ters in the ground truth where K-means does not work
well. The best scores achieved by HE-Meanshift are sig-
nificantly higher than their plaintext counterparts, pos-
sibly due to favourable (random) initialization for the
non-convexly shaped clusters in some of the runs.
Chainlink Dataset. OPT and ppDBSCAN have the
same output as the groundtruth and achieve the high-
est ARI and AMI scores though the presence of non-
linearly separable clusters in the dataset leads to lower
SI and CHI scores. The remaining algorithms perform
poorly. A poor clustering quality of MPC-KMeans and
KMeans++ is expected since K-Means does not work
well on non-linearly separable clusters.
Dense Dataset.MPC-KMeans, HE-Meanshift, ppDB-
SCAN, KMeans++, and Mean-shift achieve good scores
on all indices while the HC protocols, i.e., PCA and
OPT, have significantly lower scores in comparison. In-
tuitively, the poor clustering quality of HC-based proto-
cols can be attributed to the large variance in one of the
clusters of the Dense dataset. This can cause incorrect
merging of clusters since clusters are merged based on
their proximity, which can be large when the variance
of the cluster is high.
Conclusion. ppDBSCAN consistently achieves the
highest scores and is able handle different shapes, non-
linear clusters, and high cluster variance well. PCA and
OPT achieve a relatively good clustering quality on
three out of four datasets, but they (completely) fail on
the Dense dataset. The K-Means and Mean-shift pro-
tocols have comparable clustering quality that heavily
varies between different datasets. The K-means-based
protocols can only cluster very specific datasets that
do not contain non-convexly shaped and non linearly-
separable clusters.
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HE-Meanshift tends to have large standard devia-
tions which indicate a strong dependency on dust ini-
tialization. However, the highest score achieved by HE-
Meanshift is comparable to that of plaintext Mean-shift
which indicates that the modifications introduced for its
HE-friendly computation do not decrease accuracy. In
contrast, MPC-KMeans has a small standard deviation
and achieves a similar clustering quality to KMeans++,
which shows that the randomness used for centroid ini-
tialization has a smaller impact on final output.

4.2 Security & Privacy

In this section, we discuss the security and privacy of
the four clustering protocols.
Security Model w.r.t Scenario. All four works are
in the static semi-honest security model i.e., the adver-
sary can corrupt some of the parties at the onset of
the computation and correctly follows the protocol de-
scription, but attempts to learn information about the
private inputs of the honest parties.

MPC-KMeans, PCA/OPT, and ppDBSCAN con-
sider the outsourced two-party computation setting
where multiple data owners secret share their input
among two non-colluding servers to privately cluster
the dataset. In contrast, in HE-Meanshift, a single data
owner outsources its computation to a single server.

Informally, a protocol is said to be secure if anything
that can be computed by a party participating in the
protocol can also be derived from the input and output
of this party. This is formalized by using a simulator
which generates a view that is indistinguishable from a
real protocol execution given the party’s input and out-
put [132]. MPC-KMeans [11] and PCA/OPT [19] pro-
vide such a formal proof of security.

The security of HE-Meanshift [9] follows directly
from the security of the used CKKS encryption scheme
since only the input and final output are sent. We note
that the recent attack on the CKKS scheme by Li and
Micciancio [133] does not affect the security of HE-
Meanshift, as discussed by Cheon et al. [134]. Specif-
ically, the attack requires access to a decryption oracle
which is not available to the server in the outsourced
single-server computation setting.

Similarly, the security of ppDBSCAN [18] follows
directly from the security of the employed secure two-
party computation techniques, specifically GC and ASS
(cf. §2.2), as no intermediate values are opened and the
conversions are provably secure [10].

Leakage from Outputs. Provable security of the pro-
tocols ensures that the computation does not leak any-
thing more than what is revealed in an ideal world where
a trusted third party obtains the inputs, computes the
clustering functionality and returns the output. How-
ever, the information leaked from the clustering output
is not captured in the security definition and we discuss
this in the following.

HE-Meanshift outputs the cluster labels for every
record in the dataset. However, this is not a privacy
concern since the protocol is intended to be used in the
outsourced single-server computation setting where the
entire dataset is known to the client.

MPC-KMeans and ppDBSCAN can be adapted to
output either the cluster centroids or cluster labels.
MPC-KMeans also outputs the number of iterations for
the clustering to converge which is related to the dis-
tribution of the underlying dataset. We have already
discussed how to avoid this leakage in §3.2.

The PCA/OPT algorithms output a point-agnostic
dendrogram in addition to the cluster centroids. The
point-agnostic dendrogram is intended to be a privacy-
preserving variant of the dendrogram output by a plain-
text HC algorithm since the latter provides the com-
plete merging history which leaks information in a set-
ting with multiple data owners. The point-agnostic den-
drogram is computed by first applying a random and
private permutation on the input records to fuzz the
merging history and by retaining the metadata of only
sufficiently large clusters. Intuitively, this allows obtain-
ing useful metadata akin to the plaintext computation
while still preserving privacy. However, it is unclear how
to formalize/measure the information leakage from the
protocol output.

4.3 Efficiency

Asymptotic Analysis. First, we compare the asymp-
totic runtime, communication, and round complexity of
the four investigated private clustering protocols and
depict the results in Tab. 5. Asymptotically, MPC-
KMeans is the most efficient with respect to commu-
nication and runtime in terms of dataset size N , input
records’ dimension d and number of clusters K.
Hardware Details. All experiments are run on two
machines (one for each party) each equipped with a 2.8
GHz Intel Core i9-7960X processor running Linux, 32
vCPUs and 128 GB RAM. We consider two network
settings. The LAN setting has bandwidth 1 Gbps and
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(a) Adjusted Rand Index (ARI)

(b) Adjusted Mutual Information (AMI)

(c) Silhouette Index (SI)

(d) Calinski-Harabasz Index (CHI)

Fig. 1. Clustering quality evaluation of the fully-private clustering protocols MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19],
and ppDBSCAN [18] evaluated on datasets Hepta (red), Lsun (blue), Chainling (purple), and Dense (green). As comparison to the
plaintext clustering algorithms (shaded bars), we also include KMeans++ and Mean-shift from Python Scikit-learn [131]. Each subfigure
(a-d) corresponds to a different clustering quality index: ARI, AMI, SI, and CHI (cf. §4.1) and larger values indicate better clustering
quality. The values are averaged over 10 runs and the error bar shows the standard deviation.
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Protocol Runtime Communication Rounds

MPC-KMeans [11] Θ(NK(d+ `)t) Θ
(
NK(d`2 + `κ)t

)
Θ(dlogKet)

HE-Meanshift [9] Θ
(
(NKdd

2t)/(Nc log d)
)

Θ(NdKdκ) 2
PCA [19] Θ(N3λ) Θ(N3λκ) Θ(N2)
OPT [19] Θ(N2(λ+ d)) Θ(N2(λκ+ κpub)) Θ(N2)

ppDBSCAN [18] Θ(N2(N + d)) Θ(N2`κ) O(N3)

Table 5. Asymptotic runtime, communication, and round complexity of the private clustering protocols MPC-KMeans [11], HE-
Meanshift [9], PCA/OPT [19], and ppDBSCAN [18]. N is the dataset size, d is the dimension, ` is the bitlength of the data records,
K is the number of clusters, Kd is the number of dusts used in HE-Meanshift, κ = 128 is the computational security parameter,
λ = 40 is the statistical security parameter, Nc is the number of plaintext slots in CKKS, κpub = 2048 is the size of the RSA modulus
in Paillier encryption [65].

RTT 1 ms while the WAN setting has bandwidth 100
Mbps and RTT 100 ms.
Benchmarks. We evaluate the efficiency of the four
privacy-preserving clustering protocols and their scala-
bility to large datasets, datasets with many clusters, and
multi-dimensional data. We generate synthetic datasets
with N ∈ {50, 100, 150, 200, 250} data points of dimen-
sion d ∈ {2, 8} and bitlength ` = 32, and number of
clusters K ∈ {2, 5}. We run the protocols on all possible
combinations of the above described parameters. The it-
erative protocols MPC-KMeans and HE-Meanshift are
run for 5 iterations to reach a comparable clustering
quality and enabling a fair comparison of their efficiency.

To analyze the scalability of the protocols to
large multi-dimensional datasets, we generate a syn-
thetic collection of large datasets with parameters
N ∈ {213, 214, 215, 216}, d ∈ {1, 2, 4, 8, 16} and K ∈
{2, 5, 10, 15, 20}. The memory consumption of MPC-
KMeans was too large (greater than 128 GB) to bench-
mark on datasets where N · d > 219. Similarly, the
memory consumption of PCA/OPT [19] and ppDB-
SCAN [18] was too large even for the smallest dataset
with N = 213, d = 1, and K = 2 due to the usage of
the memory intensive ABY framework [10]. We thus ex-
clude these protocols from our benchmarks on the large
datasets. Fig. 4 in Appx. C presents the memory con-
sumption of our implementations of the protocols for a
small and large dataset.
Communication. We plot the communication costs in
the bottom rows of Fig. 2 (small datasets) and Fig. 5 in
Appx. C (large datasets).

The communication cost for HE-Meanshift is iden-
tical across different small datasets (Fig. 2) because
the entire dataset can be encrypted in one ciphertext.
This inefficient packing of the dataset leads to HE-
Meanshift’s communication being 2× higher than that
of MPC-KMeans on average for small datasets. How-

ever, for large datasets (Fig. 5), HE-Meanshift’s com-
munication cost is up to 11.5× lower than that of MPC-
KMeans on average due to optimal packing. The com-
munication cost of PCA is 6× higher than that of ppDB-
SCAN on average while the communication of ppDB-
SCAN is 2× higher than that of OPT on average.
While the communication cost increases linearly in the
input records’ dimension d for HE-Meanshift, d does
not have a significant effect on the communication of
MPC-KMeans since the communication during the as-
signment of input records to clusters is independent of
d. This phase has the highest communication complex-
ity and dominates the overall communication cost. In
Fig. 5(f) HE-Meanshift’s communication for K = 10
and K = 15 is identical as both use the same number
of dusts Kd = 16 and hence send the same number of
ciphertexts. The communication costs of PCA/OPT are
independent of the input records’ dimension d while the
communication costs of PCA/OPT and ppDBSCAN are
independent of the number of clusters K.
Runtimes. We plot the LAN runtimes in the top row
of Fig. 2 (small datasets) and Fig. 5 in Appx. C (large
datases), and the WAN runtimes for small datasets in
Fig. 3 in Appx. C, all averaged over 10 runs.

MPC-KMeans has the lowest runtime and is up to
700× faster than HE-Meanshift on small datasets and
9.5× faster than HE-Meanshift on large datasets over
LAN. Thus, HE-Meanshift scales well to large, multi-
dimensional datasets due to lower communication costs,
but is not suitable for small datasets. As expected, the
runtime of MPC-KMeans in Fig. 5(b) is marginally af-
fected by increasing the dimension of the input records
d since its assignment of the input records (which is the
bottleneck of the protocol) to the clusters is independent
of d. On the other hand, the runtime of HE-Meanshift is
linear in d since it directly affects the number of cipher-
texts and the efficiency of the bootstrapping operation.
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Fig. 2. LAN runtimes in seconds (top row) and communication in MiB (bottom row) of the fully-private clustering protocols
MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19], and ppDBSCAN [18] for varying dataset size N , input records’ dimension d,
number of clusters K, and bitlength ` = 32. In (a) and (d) d = 8 and K = 10, in (b) and (e) N = 200 and K = 10, and in (c) and
(f) N = 200 and d = 8.

ppDBSCAN’s average runtime is 14× higher over LAN
and 2.5× higher over WAN than that of MPC-KMeans.
However, since ppDBSCAN’s runtime is independent of
the number of clusters, this gap in runtime diminishes
with the increase in number of clusters. OPT and PCA
have similar runtimes wich are 15× higher than that of
ppDBSCAN on average over LAN, even though OPT
has less communication. Moreover, OPT has the high-
est runtime on average over WAN. One possible rea-
son for this might be higher concrete computation costs
for OPT which is not captured by the asymptotic com-
plexity but highlighted due to benchmarking on small
datasets.

5 Real-world Application and
Open Challenges

In this section, we discuss the challenges that need to be
solved to make privacy-preserving clustering practical
for real-world applications.

Parameters. In a privacy-preserving setting, it is typi-
cally impossible to perform a preliminary analysis of the
data since it is distributed among multiple data owners
and not available to a single party. However, to set pa-
rameters like the number of clustersK for K-Means (i.e.,
in MPC-KMeans [11]) and HC (i.e., in PCA/OPT [19]),
the distance parameter ε for ppDBSCAN [18], or the
number of dusts for HE-Meanshift [9], insights about
the dataset are often needed to achieve high clustering
quality. We also observed in our experimental evaluation
that the degree of the kernel and the value of the MinIdx
parameter in HE-Meanshift has significant impact on
the clustering quality by amplifying the distances be-
tween data records. In specific cases, some parameters
like the number of clusters K can be given by the ap-
plication (cf. §3.3). But this is not the case for less in-
tuitive parameters like the initial distribution specifica-
tions of GMM or the neighborhood radius in DBSCAN.
Only ppDBSCAN [18], out of the four protocols that
we benchmarked, can determine these parameters when
they are not fixed by the application and inputs are
provided by more than one party.
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Secure Clustering Quality Evaluation. The issue of
dataset-dependent parameters is amplified by the lack of
secure clustering quality evaluation techniques. Specif-
ically, plaintext clustering algorithms are often simply
run several times with a range of different parameter
values and the best output is selected based on the
score of a clustering quality index. This is not possi-
ble in privacy-preserving clustering. Firstly, as in plain-
text clustering, no ground truth is known, so metrics
like ARI or AMI that compare to the ground truth can-
not be used. Secondly, as the private clustering result is
typically split among the data owners or only consists
of the centroids, the clusters’ compactness and the sep-
aration between different clusters cannot be measured
without additional secure computation. Thus, also in-
ternal indices like SI and CHI cannot be used easily.
The inherent overhead of secure computation makes it
expensive to perform multiple runs with different pa-
rameter values.
Clustering Quality and Efficiency. Clustering al-
gorithms that make minimal assumptions about the
shape of clusters and are robust to outliers are espe-
cially important in the case of privacy-preserving clus-
tering, because it is impossible to analyze the dataset
or remove noisy records before clustering. None of the
privacy-preserving clustering protocols we consider in-
vestigate soft clustering (cf. §2.1) and only ppDBSCAN
has the notion of noise. The K-means-based protocols,
i.e., MPC-KMeans, are very sensitive to outliers. Ad-
ditionally, as shown by our quality evaluation in §4.1
and as discussed in §2.1, K-means only succeeds on
clustering convexly shaped clusters which is not the
case for all datasets. HE-Meanshift’s clustering qual-
ity also strongly fluctuates depending on the dataset’s
properties (cf. §4.1). This is especially problematic for
privacy-preserving clustering where the dataset distri-
bution is often not known in advance. In contrast, hi-
erarchical clustering like PCA/OPT is less sensitive to
noise and more flexible with respect to the data distribu-
tion, i.e., the cluster shapes. However, as shown in §4.3,
PCA/OPT cannot be run on large datasets while MPC-
KMeans and HE-Meanshift scale significantly better
to large datasets. Our evaluation shows that ppDB-
SCAN performs well on different types of datasets while
also having lower runtimes than other protocols (except
MPC-KMeans).
Recommendations. Among the protocols we evalu-
ate, MPC-KMeans seems to be the most efficient alter-
native when clustering large multi-dimensional datasets.
HE-Meanshift might be a better choice when a single
resource-constrained data-owner outsources clustering

to a more powerful server over a high-latency and low-
bandwidth network. For smaller datasets, ppDBSCAN
seems to be the best option which performs well on a
variety of dataset types and also achieves low runtimes.
However, choosing the input parameter ε that deter-
mines the maximum distance between two data records
to be considered as neighbors requires domain expertise
and partial information about the dataset. This can be
avoided by using MPC-KMeans which only requires set-
ting the more intuitive number of clusters K which in
some cases is also given by the application (cf. §3.3).
Open Challenges. To summarize, for practical appli-
cation, privacy-preserving clustering protocols must be
(1) efficient in terms of runtime and communication,
(2) memory efficient, (3) only have parameters that are
mostly independent of the input data, (4) insensitive
to noise, and (5) flexible to cluster data of any dis-
tribution with high quality. Unfortunately, none of the
state-of-the-art works can fulfill all these requirements
simultaneously. Additionally, there is the need for a se-
cure clustering quality evaluation to assess the quality
of a clustering result run in a privacy-preserving man-
ner. Finally, privacy-research has not tackled privacy-
preserving soft clustering.

6 Conclusion
In this work, we systematically surveyed and ana-
lyzed the state-of-the-art in privacy-preserving cluster-
ing. We benchmarked and compared four efficient pro-
tocols [9, 11, 18, 19] that securely realize four different
clustering algorithms, with respect to clustering quality,
communication, and runtime to investigate their practi-
cality for real-world applications. Finally, we discussed
open challenges to make privacy-preserving clustering
practical.
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A Discussion of Strengths and
Weaknesses of Additional
Clustering Algorithms

Affinity Propagation. Affinity Propagation [135] is a de-
terministic partitioning-based clustering algorithm that has a
computational complexity of O(N2t) and space complexity of
O(N2), where N is the dataset size and t the number of cluster-
ing iterations [136]. It flexibly determines the required number of
clusters based on the input data such that outliers that do not fit
into any cluster form a a cluster on their own [135]. The cluster-
ing result is independent of the input order of the data records,
as Affinity Propagation always iterates through the complete
dataset in each iteration. Affinity Propagation requires the in-
put of a preference value for each input record that indicates its
likelihood to be chosen as exemplar (similar to a centroid in K-
means) of a cluster. If the preference values are not well chosen, it
can lead to suboptimal clustering results [137]. If all records are
equally likely the preference values are set to the same value for
all records, e.g., the median or minimum of the distances [135].
The respective distance measure can be freely chosen, thus, also
any variable type could be clustered [138]. On the downside,
Affinity Propagation can only detect spherical clusters [139] and
a re-clustering is needed if new data records are added to the
input dataset after it has already been clustered, as this changes
the responsibility and availability matrices.
BIRCH. Balanced Iterative Reducing and Clustering using Hi-
erarchies (BIRCH) is a divisive HC algorithm [140]. Its compu-
tation and space complexity is linear in the dataset size [40].
Generally, BIRCH is relatively insensitive to noisy elements as
it allows to remove elements in sparse regions [40, 140]. Because
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each input record is processed incrementally and inserted into
the subtree representing the assigned closest cluster, BIRCH can
handle new data records well, but is affected by the input or-
der [40, 140]. Moreover, it can only detect convexly shaped clus-
ters with records with metric attributes [40, 140]. Additionally,
BIRCH requires to input a threshold for the maximal cluster size
and the branching factor of the tree. If the number of cluster K
is not given, all sub-clusters in the tree are returned.
GMM. Gaussian Mixture Models (GMM) Clustering is
a distribution-based clustering algorithm that uses the
Expectation-Maximization (EM) algorithm [64, 141]. GMM has
a computational complexity of O(NKd3t), where N is the
dataset size, K is the number of cluster, d is the data dimension,
and t the number of clustering iterations and its space complex-
ity is also linear in N [142–144]. The assumption of a Gaussian
distribution of cluster elements restricts the type of the variables
to real numbers. GMM fails when clusters have specific constel-
lations, e.g., when one cluster is surrounded by another one, or
if the clusters are not convexly shaped. It takes the number of
clusters K as input and is relatively sensitive to the selection of
the initial parameters of the cluster distributions [41]. Although
GMM does not explicitly acknowledge the notion of noise, its
result is relatively insensitive to outliers [40, 54], but Keller et
al. [16] demonstrate that outliers can still cause significant mis-
classifcations and incorrect merges between different clusters.
As it process the whole data set in each iteration, GMM is not
affected by the input order. A few new data records can be clus-
tered by GMM with only a few additional iterations.

B Summaries of Fully-Private
Clustering Protocols

MPC-KMeans [11].Mohassel et al. [11] propose a secure two-
party K-means (cf. §2.1) protocol in the semi-honest security
model using the ABY framework [10] for secure two-party com-
putation. We call this protocol MPC-KMeans in the following.
MPC-KMeans can also be used in an outsourcing scenario [70]
where multiple data owners outsource the clustering to two non-
colluding servers. The authors also propose a multi-party variant
where parties first locally run the plaintext K-means on their lo-
cal datasets and then proceed to securely compute the joint clus-
tering result based on the previously determined local centroids
of all parties.

In the two-party protocol, each data owner runs the plain-
text K-means algorithm on its local datasets to compute K

2 local
clusters. The centroids of these clusters are then secret-shared
and used to initialize the centroids for the clustering over the
combined dataset.

MPC-KMeans’ building blocks are optimized for two com-
putational settings: the amortized setting where the same func-
tion is evaluated multiple times on different inputs and the adap-
tive setting where the inputs to multiple evaluations of the func-
tion depend on the output of previous evaluations. Intuitively,
the updates of the centroids are non-adaptive in one cluster-
ing iteration but adaptive across several iterations. Therefore,
the authors introduce efficient protocols for secure multiplica-
tion and the calculation of the squared Euclidean distance in

the adaptive amortized setting. They also propose an efficient
protocol for computing the index of the minimum element in a
list of t values using a recursive tree evaluation of a customized
Garbled Circuit. This increases the number of rounds by dlog te,
but it reduces the communication costs by a factor of 2. MPC-
KMeans terminates when the difference between new and old
centroids is less than a predefined threshold.

The authors use the squared Euclidean distance. They also
benchmark the Manhattan distance ( max

i∈[1,d]
|xi − yi|, where d is

the dimension) and Chessboard distance (
∑d

i=1 |xi − yi|), but
show that computing squared Euclidean distance in the adap-
tive amortized setting is faster than the other two distances. The
computation is done on fixed point numbers using the truncation
method of [69] where each party locally truncates its share with
an error of at most one bit in the least significant bit of the frac-
tional part. The authors show that truncation has a negligible
impact on the accuracy of clustering.
HE-Meanshift [9]. Cheon et al. [9] propose a HE-friendly
variant of the Mean-shift clustering algorithm (cf. §2.1) in the
semi-honest security model using the fully homomorphic encryp-
tion (FHE) scheme CKKS [66, 145]. We call this protocol HE-
Meanshift in the following. The protocol is designed for the out-
sourced computation setting where a single, possibly resource-
constrained, data owner securely outsources the computation to
a server.

CKKS computes on real numbers, but it supports only ad-
dition and multiplication. Thus, HE-Meanshift replaces the non-
polynomial operations in Mean-shift by polynomial operations.
The gradient ascent algorithm used in Mean-shift for mode-
seeking requires computing the derivative of the kernel. The
authors of [9] propose the HE-friendly polynomial kernel Ghe
shown in Eq. 1. Given the degree parameter Γ ∈ N, the deriva-
tive of Ghe can be computed with a constant multiplicative fac-
tor using Γ + 1 multiplications and 2 subtraction operations.

Ghe(x, y) = (1− ‖x− y‖2)2Γ+1
. (1)

HE-Meanshift uses a fixed bandwidth parameter h = 1 in
the kernel density estimator (KDE) used to compute the den-
sity function in Mean-shift. h is a smoothing parameter for the
density function and it is the only parameter for the classical
Mean-shift algorithm. Although h is fixed in HE-Meanshift, the
Γ parameter still offers some flexibility by amplifying the dis-
tance between the data points.

Due to the computation overhead of FHE, the authors
adopt a random sampling strategy called dust sampling which
involves sampling Kd points called dusts from the dataset to re-
duce the O(N2) complexity of the original Mean-shift algorithm.
HE-Meanshift then performs the mode-seeking on the dusts in-
stead on all points in the dataset. Recall that modes are points
corresponding to local maxima in the KDE and represent ar-
eas of high density. In Mean-shift, each point is mapped to the
cluster containing the closest mode and the number of clusters
is equal to the number of distinct modes. Thus, HE-Meanshift
can use a relatively low value for Kd that is at least equal to the
number of clusters K to compute all clusters in the dataset. This
not only improves the efficiency of the mode-seeking but also re-
duces the costs for bootstrapping, which is now proportional to
Kd. However, setting Kd requires prior information about the
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number of clusters in the dataset in contrast to the plaintext
Mean-shift where only a value for h is needed.

After a predefined number of iterations, each point in the
input dataset is assigned a cluster label based on the final value
of the dusts. Since two or more sampled dusts might converge
to the same mode and hence the same cluster, HE-Meanshift
uses a secure PointLabeling algorithm to robustly assign records
to clusters. The Inv and MaxIdx protocols of [146] are used for
division and comparison.

HE-Meanshift does not require communication except from
sending and receiving the data to/from the untrusted processing
party. It is usable for a single data owner outsourcing the clus-
tering. However, the protocol is not usable for most outsourcing
scenarios where multiple data owners cluster their joint data
since the encrypted output can be decrypted only by a single
data owner.
PCA/OPT [19]. Meng et al. [19] introduce two-party privacy-
preserving hierarchical clustering (HC) protocols with single and
complete linkage (cf. §2.1) in the semi-honest security model
using additively homomorphic encryption [65] and Yao’s Gar-
bled Circuits [21]. In contrast to the protocols discussed be-
fore in §3, they do not return the resulting clusters/its indices,
but a dendrogram (cf. §2.1) indicating the clustering’s merging
history and metadata containing statistical information about
each merge like the new cluster’s size and a representative el-
ement/centroid. To limit information leakage through this re-
turned metadata, the protocols output only metadata of suffi-
ciently large merges or of the final clusters.

In the baseline protocol, called PCA, the two parties cal-
culate the pairwise squared Euclidean distances between the
clusters using the additively homomorphic property of Paillier
encryption [65]. Then, both parties get access to the plaintext
values of the distance matrix blinded with random values such
that they can collaboratively cluster the input elements and up-
date the merging dendrogram leveraging two GC-protocols that
determine the minimum/maximum distance.

The authors introduce an extension of PCA called OPT
that reduces HC’s computation complexity of O(N3), whereN is
the dataset size, with single linkage by leveraging the symmetry
of the minimum distance. This accelerates the search for the
next pair of clusters that have to be merged by a factor of N .

PCA can also be extended to the outsourcing scenario [70]
where an arbitrary number of data owners secret share their in-
put data among two non-colluding servers that run the privacy-
preserving clustering. However, an extension to more than two
servers is not straightforward due to the usage of GCs.
ppDBSCAN [18]. Bozdemir et al. [18] propose a privacy-
preserving DBSCAN [60] protocol in the semi-honest security
setting using the ABY framework [10]. We call this protocol
ppDBSCAN in the following. ppDBSCAN can either be used
as secure two-party computation protocol or in an outsourcing
scenario with two computing parties, e.g., servers, and an arbi-
trary number of data owners. The authors point out that the
post-processing can be adapted to provide an arbitrary output,
e.g., cluster labels, cluster sizes, etc. By assessing the needed
recursive depth of the neighborhood exploration ppDBSCAN’s
complexity can be reduced to a low cubic complexity (from nor-
mal cubic complexity). All computations are done on integers.

Initially, the data owners arithmetically share their input
records among the two non-colluding parties (which are poten-

tially represented by themselves). Then, the pair-wise squared
Euclidean distances are computed between all data records in
Arithmetic Sharing [20] to assess which elements have suffi-
ciently many neighbors (i.e., lie in a dense area) to form a clus-
ter. The results are stored as binary values to enhance the the
efficiency of the clustering process mostly done with GC [21].
Additionally, the distance computation and the cluster expan-
sion is also parallelized with SIMD operations.

C Additional Benchmarking
Results

Fig. 3 summarizes the WAN runtimes of the fully private cluster-
ing protocols on small datasets. Fig. 4 depicts the memory con-
sumption of the fully private clustering protocols for a small and
large dataset. Fig. 5 summarizes the runtime of HE-Meanshift
and MPC-KMeans on large datasets over LAN network.
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Fig. 3. WAN runtime in seconds of the private clustering pro-
tocols MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19],
and ppDBSCAN [18] for varying dataset size N , K=2 clusters,
dimension d = 8, and bitlength ` = 32.

Fig. 4. Memory consumption in GB of the privacy-preserving
clustering protocols ppDBSCAN [18], PCA/OPT [19], HE-
Meanshift [9], and MPC-KMeans [11] for a small (N = 200, d =
8,K = 10) and large (N = 65536, d = 4,K = 20) dataset.
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D Additional Clustering Quality
Evaluation

We compare the clustering quality on nine widely used datasets:
Hepta (Tab. 6), Lsun (Tab. 7), Target (Tab. 8), Wingnut
(Tab. 9), Tetra (Tab. 10), Chainlink (Tab. 11), and EngyTime
(Tab. 12) from [122]; and Dense (Tab. 13) and ZigZag Noisy
(Tab. 14) from [123]. Each dataset has different characteristics
such as different cluster shapes or different densities.

Algorithm ARI AMI SI CHI

Ground Truth - - 0.883 519.937
MPC-KMeans 0.869 0.946 0.754 292.539
KMeans++ 1.0 1.0 0.883 519.937
HE-Meanshift 0.667 0.834 0.603 156.518
Mean-shift 1.0 1.0 0.883 519.937
ppDBSCAN 1.0 1.0 0.609 384.439
OPT 1.0 1.0 0.883 519.937
PCA 1.0 1.0 0.883 519.937

Table 6. Hepta

Algorithm ARI AMI SI CHI

Ground Truth - - 0.609 384.439
MPC-KMeans 0.405 0.524 0.653 485.003
KMeans++ 0.405 0.524 0.653 485.003
HE-Meanshift 0.434 0.537 0.234 220.118
Mean-shift 0.366 0.445 0.589 293.479
ppDBSCAN 1.0 1.0 0.609 384.439
OPT 1.0 1.0 0.609 384.439
PCA 0.405 0.529 0.641 458.157

Table 7. Lsun

Algorithm ARI AMI SI CHI

Ground Truth 1 - - 0.260 27.869
Ground Truth 2 - - 0.249 0.494
MPC-KMeans 0.534 0.615 0.678 709.651
KMeans++ 0.611 0.639 0.742 738.291
HE-Meanshift 0.215 0.311 0.383 101.586
Mean-shift 0.626 0.645 0.766 590.057
ppDBSCAN 1.0 1.0 0.249 0.494
OPT 1.0 1.0 0.249 0.494
PCA 0.207 0.377 0.506 90.502

Table 8. Dataset Target

Algorithm ARI AMI SI CHI

Ground Truth - - 0.630 1061.016
MPC-KMeans 0.417 0.326 0.567 805.066
KMeans++ 0.425 0.334 0.570 815.492
HE-Meanshift 0.475 0.451 0.373 611.832
Mean-shift 0.638 0.538 0.621 1027.873
ppDBSCAN 1.0 1.0 0.630 1061.016
OPT 1.0 1.0 0.630 1061.016
PCA 1.0 1.0 0.630 1061.016

Table 9. Dataset Wingnut

Algorithm ARI AMI SI CHI

Ground Truth - - 0.726 418.391
MPC-KMeans 0.961 0.975 0.689 390.920
KMeans++ 1.0 1.0 0.726 418.391
HE-Meanshift 0.518 0.587 0.124 109.916
Mean-shift 1.0 1.0 0.726 418.391
ppDBSCAN 0.94 0.94 0.694 391.819
OPT 0.000 0.000 -0.436 1.472
PCA 0.987 0.982 0.718 409.221

Table 10. Dataset Tetra

Algorithm ARI AMI SI CHI

Ground Truth - - 0.179 250.865
MPC-KMeans 0.088 0.065 0.525 718.934
KMeans++ 0.087 0.064 0.525 718.788
HE-Meanshift 0.132 0.160 0.262 353.929
Mean-shift 0.223 0.272 0.405 574.488
ppDBSCAN 1.0 1.0 0.179 250.865
OPT 1.0 1.0 0.179 250.865
PCA 0.313 0.388 0.463 575.488

Table 11. Chainlink

Algorithm ARI AMI SI CHI

Ground Truth 1 - - 0.557 2921.700
Ground Truth 2 - - 0.577 3075.082
MPC-KMeans 0.844 0.783 0.578 3158.931
KMeans++ 0.843 0.783 0.578 3158.931
HE-Meanshift 0.801 0.720 0.198 1681.223
Mean-shift 0.833 0.769 0.578 3176.809
ppDBSCAN 0.612 0.493 -0.416 115.717
OPT 0.000 0.000 0.479 8.044
PCA 0.042 0.150 0.472 1318.72

Table 12. Dataset EngyTime

Algorithm ARI AMI SI CHI

Ground Truth - - 0.740 433.656
MPC-KMeans 0.756 0.713 0.790 497.182
KMeans++ 0.768 0.723 0.790 499.284
HE-Meanshift 0.838 0.779 0.540 277.155
Mean-shift 0.784 0.725 0.699 309.728
ppDBSCAN 0.935 0.904 0.762 503.083
OPT 0.000 0.019 0.490 15.626
PCA 0.257 0.348 0.631 231.817

Table 13. Dense

Algorithm ARI AMI SI CHI

Ground Truth 1 - - -0.050 30.858
Ground Truth 2 - - 0.500 317.869
MPC-KMeans 0.497 0.636 0.489 321.627
KMeans++ 0.519 0.655 0.540 362.227
HE-Meanshift 0.498 0.648 0.538 368.285
Mean-shift 0.542 0.699 0.510 351.971
ppDBSCAN 1.0 1.0 -0.050 30.858
OPT 1.0 1.0 -0.040 30.858
PCA 0.521 0.672 0.504 371.251

Table 14. Dataset ZigZag Noisy
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Fig. 5. LAN runtimes in seconds (top row) and communication in MiB (bottom row) of the fully-private clustering protocols
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Abstract

Federated Learning (FL) is a collaborative machine learning
approach allowing participants to jointly train a model with-
out having to share their private, potentially sensitive local
datasets with others. Despite its benefits, FL is vulnerable to
so-called backdoor attacks, in which an adversary injects ma-
nipulated model updates into the federated model aggregation
process so that the resulting model will provide targeted false
predictions for specific adversary-chosen inputs. Proposed
defenses against backdoor attacks based on detecting and
filtering out malicious model updates consider only very spe-
cific and limited attacker models, whereas defenses based on
differential privacy-inspired noise injection significantly dete-
riorate the benign performance of the aggregated model. To
address these deficiencies, we introduce FLAME, a defense
framework that estimates the sufficient amount of noise to be
injected to ensure the elimination of backdoors. To minimize
the required amount of noise, FLAME uses a model cluster-
ing and weight clipping approach. This ensures that FLAME
can maintain the benign performance of the aggregated model
while effectively eliminating adversarial backdoors. Our eval-
uation of FLAME on several datasets stemming from appli-
cation areas including image classification, word prediction,
and IoT intrusion detection demonstrates that FLAME re-
moves backdoors effectively with a negligible impact on the
benign performance of the models.

1 Introduction
Federated learning (FL) is an emerging collaborative machine
learning trend with many applications, such as next word
prediction for mobile keyboards [39], medical imaging [49],
and intrusion detection for IoT [44] to name a few. In FL,
clients locally train models based on local training data and
then provide these model updates to a central aggregator who
combines them into a global model. The global model is then
propagated back to the clients for the next training iteration.

⇤Emails: {ducthien.nguyen, ahmad.sadeghi}@trust.tu-darmstadt.de

FL promises efficiency and scalability as the training is
distributed among many clients and executed in parallel.
In particular, FL improves privacy by enabling clients to
keep their training data locally [38]. Despite its benefits,
FL has been shown to be vulnerable to so-called poisoning
attacks where the adversary manipulates the local models
of a subset of clients participating in the federation so that
the malicious updates get aggregated into the global model.
Untargeted poisoning attacks merely aim at deteriorating
the performance of the global model and can be defeated by
validating the performance of uploaded models [12]. In this
paper, we therefore focus on the more challenging problem
of backdoor attacks [7, 45, 57, 59], i.e., targeted poisoning
attacks in which the adversary seeks to stealthily manipulate
the resulting global model in a way that attacker-controlled
inputs result in incorrect predictions chosen by the adversary.
Deficiencies of existing defenses. Existing defenses against
backdoor attacks can be roughly divided into two cate-
gories: The first one comprises anomaly detection-based ap-
proaches [4,9,22,51] for identifying and removing potentially
poisoned model updates. However, these solutions are effec-
tive only under very specific adversary models, as they make
detailed assumptions about the attack strategy of the adversary
and/or the underlying distribution of the benign or adversarial
datasets. If these very specific assumptions do not hold, the
defenses may fail. The second category is inspired by differen-
tial privacy (DP) techniques [7,56], where individual weights1

of model updates are clipped to a maximum threshold and
random noise is added to the weights for diluting/reducing
the impact of potentially poisoned model updates on the ag-
gregated global model. In contrast to the first category, DP
techniques [7,56] are applicable in a generic adversary model
without specific assumptions about adversarial behavior and
data distributions and are effective in eliminating the impact
of malicious model updates. However, straightforward ap-
plication of DP approaches severely deteriorates the benign

1Parameters of neural network models typically consist of ’weights’ and
’biases’. For the purposes of this paper, however, these parameters can be
treated identically and we will refer to them as ’weights’ for brevity.
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performance of the aggregated model because the amount of
noise required to ensure effective elimination of backdoors
also results in significant modifications of individual weights
of benign model updates [7, 57].

In this paper, we develop a resilient defense against back-
doors by combining the benefits of both defense types without
suffering from the limitations (narrow attacker model, assump-
tions about data distributions) and drawbacks (loss of benign
performance) of existing approaches. To this end, we intro-
duce an approach in which detection of anomalous model
updates and tuned clipping of weights are combined to mini-
mize the amount of noise needed for backdoor removal of the
aggregated model while preserving its benign performance.
Our Goals and Contributions. We present FLAME, a re-
silient aggregation framework for FL that eliminates the im-
pact of backdoor attacks while maintaining the benign per-
formance of the aggregated model. This is achieved by three
modules: DP-based noising of model updates to remove back-
door contributions, automated model clustering approach to
identify and eliminate potentially poisoned model updates,
and model weight clipping before aggregation to limit the
impact of malicious model updates on the aggregation result.
The last two modules can significantly reduce the amount of
random noise required by DP noising for backdoor elimina-
tion. In particular, our contributions are as follows:

• We present FLAME, a defense framework against back-
door attacks in FL that is capable of eliminating back-
doors without impacting the benign performance of the
aggregated model. Contrary to earlier backdoor defenses,
FLAME is applicable in a generic adversary model, i.e.,
it does not rely on strong assumptions about the attack
strategy of the adversary, nor about the underlying data
distributions of benign and adversarial datasets (§4.1).

• We show that the amount of required Gaussian noise
can be radically reduced by: a) applying our clustering
approach to remove potentially malicious model updates
and b) clipping the weights of local models at a proper
level to constrain the impact of individual (especially
malicious) models on the aggregated model. (§4.3)

• We provide a noise boundary proof for the amount of
Gaussian noise required by noise injection (inspired by
DP) to eliminate backdoor contributions (§5).

• We extensively evaluate our defense framework on real-
world datasets from three very different application areas.
We show that FLAME reduces the amount of required
noise so that the benign performance of the aggregated
model does not degrade significantly, providing a crucial
advantage over state-of-the-art defenses using straight-
forward injection of DP-based noise (§7).

As an orthogonal aspect, we also consider how the privacy of
model updates against an honest-but-curious aggregator can
be preserved and develop a secure multi-party computation

approach that can preserve the privacy of individual model
updates while realizing our backdoor defense approach (§8).

2 Background and Problem Setting
2.1 Federated Learning
Federated Learning [38, 50] is a concept for distributed ma-
chine learning that links n clients and an aggregator to col-
laboratively build a global model G. In a training iteration
t 2 {1, . . . ,T}, each client i 2 {1, . . . ,n} locally trains a local
model Wi with p parameters (indicating both weights and
biases) w1

i , . . . ,w
p
i based on the previous global model Gt�1

using its local data Di and sends it to the aggregator which
aggregates the received models Wi into the global model Gt .

Several aggregation mechanisms have been proposed re-
cently: 1) Federated Averaging (FedAvg) [38], 2) Krum [9],
3) Adaptive Federated Averaging [42], and 4) Trimmed mean
or median [60]. Although we evaluate FLAME’s effective-
ness on several aggregation mechanisms in §7.1, we generally
focus on FedAvg in this work as it is commonly applied
in FL [21, 28, 39, 44, 47, 50, 54] and related work on back-
door attacks [7, 22, 51, 57, 59]. In FedAvg, the global model
is updated by averaging the weighted models as follows:
Gt = Sn

i=1
si⇥Wi/s, where si = kDik,s = Sn

i=1si. However, in
practice, a malicious client might provide falsified informa-
tion about its dataset size (i.e., a large number) to amplify
the relative weight of its updates [57]. Previous works often
employed equal weights (si = 1/n) for the contributions of all
clients [7, 51, 59]. We adopt this approach in this paper, i.e.,
we set Gt = Sn

i=1
Wi/n. Further, other state-of-the-art aggrega-

tion rules, e.g., Krum [9], Adaptive Federated Averaging [42],
and Trimmed mean or median [60] also do not consider the
sizes of local training datasets by design.

2.2 Backdoor Attacks on Federated Learning
In backdoor attacks, the adversary A manipulates the local
models Wi of k compromised clients to obtain poisoned mod-
els W 0i that are then aggregated into the global model Gt and
thus affect its properties. In particular, A wants the poisoned
model G0t to behave normally on all inputs except for spe-
cific attacker-chosen inputs x 2 IA (where IA denotes the
so-called trigger set) for which attacker-chosen (incorrect)
predictions should be output. Figure 1 shows common tech-
niques used in FL backdoor attacks, including 1) data poison-
ing, e.g., [45,51,59], where A manipulates training datasets of
models, and 2) model poisoning, e.g., [7, 57] where A manip-
ulates the training process or the trained models themselves.
Next, we will briefly discuss these attack techniques.
Data Poisoning. In this attack, A adds manipulated data
DA to the training datasets of compromised clients i by flip-
ping data labels, e.g., by changing the labels of a street sign
database so that pictures showing a 30 km/h speed limit
are labeled as 80 km/h [51], or, by adding triggers into data
samples (e.g., a specific pixel pattern added to images [59])
in combination with label flipping. We denote the fraction
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Figure 1: An overview of backdoor attacks.

of injected poisoned data DA
i in the overall poisoned train-

ing dataset D0i of client i as Poisoned Data Rate (PDR), i.e.,
PDRi = |DA

i |/|D0i|.
Model Poisoning. This attack technique requires that A can
fully control a number of clients. A poisons the training
datasets of these clients and manipulates how they execute
the training process by modifying parameters and scaling
the resulting model update to maximize the attack impact
while evading the aggregator’s anomaly detector [7, 57]. This
is done by (1) scaling up the weights of malicious model
updates to maximize attack impact (e.g., model-replacement
attack [7], or, projected gradient descent (PGD) attack with
model replacement [57]), or, scaling down model updates to
make them harder to detect (e.g., train-and-scale [7] ) and
(2) constraining the training process itself to minimize the
deviation of malicious models from benign models to evade
anomaly detection (e.g., constrain-and-scale attack [7]).

2.3 Adversary Goals and Capabilities
The goals of the adversary are two-fold:

Impact: The adversary A aims to manipulate the global
model G so that the modified model G0 provides incorrect pre-
dictions f (G0,x) = c0 6= f (G,x) for any inputs x 2 IA , where
IA is the so-called trigger set consisting of specific attacker-
chosen inputs and c0 denotes the incorrect prediction chosen
by the adversary.

Stealthiness: To make the poisoned model G0 hard to detect
by aggregator A, it should closely mimic the behavior of G
on all other inputs not in IA , i.e.:

f (G0,x) =

⇢
c0 6= f (G,x) 8x 2 IA

f (G,x) 8x /2 IA
(1)

Additionally, to make poisoned models as indistinguishable
as possible from benign models, the distance (e.g., euclidean)
between a poisoned model W 0 and a benign model W must be
smaller than a threshold h denoting the distinction capability
of the anomaly detector of aggregator A, i.e., dist(W,W 0) < h.
The adversary can estimate this distance by comparing the
local malicious model to the global model or to a local model
trained on benign data.

Adversarial Capabilities. In this paper, we make no spe-
cific assumptions about the adversary’s behavior. We assume

that the adversary A has full control over k < n
2 clients and

their training data, processes, and parameters [7, 59]. We de-
note the fraction of compromised clients as Poisoned Model
Rate PMR = k

n . Furthermore, A has full knowledge of the
aggregator’s operations, including potentially applied back-
door defenses. However, A has no control over any processes
executed at the aggregator nor over the honest clients.

2.4 Preliminaries
HDBSCAN [11] is a density-based clustering algorithm
that uses the distance of data points in n-dimensional space
to group data points that are located near each other together
into a cluster. Hereby the number of clusters is determined
dynamically. Data points that do not fit to any cluster are
considered outliers. However, while HDBSCAN’s predeces-
sor DBSCAN [19] uses a predefined maximal distance to
determine whether two points belong to the same cluster,
HDBSCAN determines this maximal distance for each clus-
ter independently, based on the density of points. Thus, in
HDBSCAN, neither the maximal distance nor the total num-
ber of clusters need to be predefined.
Differential Privacy (DP). DP is a privacy technique that
aims to ensure that the outputs do not reveal individual data
records of participants. DP is formally defined as follows:

Definition 1 ((e,d)-differential privacy). A randomized al-
gorithm M is (e,d)-differentially private if for any datasets
D1 and D2 that differ on a single element, and any subset of
outputs S 2 Range(M ), the following inequality holds:

Pr[M (D1) 2 S ] ee ·Pr[M (D2) 2 S ]+d.

Here, e denotes the privacy bound and d denotes the proba-
bility of breaking this bound [18]. Smaller values of e and
d indicate stronger privacy. A commonly used approach to
enforce differential privacy is adding random Gaussian noise
N(0,s2) to the output of the algorithm [3, 18].

3 Problem Setting and Objectives
Backdoor Characterization. Following common practice
in FL-related papers (e.g., [7, 12, 22]), we represent Neural
Networks (NNs) using their weight vectors, in which the
extraction of weights is done identically for all models by
flattening/serializing the weight/bias matrices in a predeter-
mined order. Figure 2 shows an abstract two-dimensional
representation of the weight vectors of local models com-
pared to the global model Gt�1 of the preceding aggregation
round. Each model Wi can be characterized with two factors:
direction (angle) and magnitude (length) of its weight vector
(w1,w2, . . . ,wp). The angle between two updates Wi and Wj
can be measured, e.g., by using the cosine distance metric ci j
as defined in (2) while their magnitude difference is measured
by the L2-norm ei j as defined in (3).
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Benign and backdoored local models are shown in blue and
red colors and are labeled with Wi or W 0i , respectively. Note
that the benign models are typically not identical due to the
potentially partially non-iid nature of their training data.

The impact of the adversarial goal (injection of a backdoor)
causes a deviation in the model parameters that manifests
itself as a difference in the direction and/or magnitude of the
backdoored model’s weight vector in comparison to benign
models, e.g., the deviations among local models and to the
global model Gt�1 of the previous aggregation round. Since
the adversary has full control over the training process of
compromised clients, he can fully control these distances, e.g.,
by changing the direction (in the case of W 01) or magnitude
(in the case of W 02) of the backdoored models’ weight vectors.

Figure 2 also shows three kinds of backdoored models re-
sulting from different types of backdoor attacks. The first type
W 01 has a similar weight vector, but a large angular deviation
from the majority of local models and the global model. This
is because such models are trained to obtain high accuracy
on the backdoor task, which can be achieved by using a large
poisoned data rate (PDR) or a large number of local training
epochs (cf. Distributed Backdoor Attack (DBA) [59]). The
second backdoor type W 02 has a small angular deviation but
a large magnitude to amplify the impact of the attack. Such
models can be crafted by the adversary by scaling up the
model weights to boost its effect on the global model (cf.
Model-replacement attack in [7]). The third backdoor type
W 03 has a similar weight vector as benign models, the angular
difference and the magnitude are not substantially different
compared to benign models and, thus less distinguishable
from benign models. Such stealthy backdoored models can
be crafted by the adversary by carefully constraining the train-
ing process or scaling down the poisoned model’s weights (cf.
Constrain-and-scale attack [7] or FLIoT attack [45]).
Defense Objectives. A generic defense that can effectively
mitigate backdoor attacks in the FL setting needs to fulfill
the following objectives: (i) Effectiveness: To prevent the
adversary from achieving its attack goals, the impact of back-
doored model updates must be eliminated so that the aggre-
gated global model does not demonstrate backdoor behavior.
(ii) Performance: Benign performance of the global model

must be preserved to maintain its utility. (iii) Independence
from data distributions and attack strategies: The defense
method must be applicable to generic adversary models, i.e.,
it must not require prior knowledge about the backdoor attack
method, or make assumptions about specific data distributions
of local clients, e.g., whether the data are iid or non-iid.

4 FLAME Overview and Design
We present the high-level idea of FLAME and the associated
design challenges to fulfill the objectives identified in §3.

4.1 High-level Idea
Motivation. Earlier works (e.g., Sun et al. [56]) use differen-
tial privacy-inspired noising of the aggregated model for elim-
inating backdoors. They determine the sufficient amount of
noise to be used empirically. In the FL setting this is, however,
challenging, as one cannot in general assume the aggregator to
have access to training data, in particular to poisoned datasets.
What is therefore needed is a generic method for determining
how much noise is sufficient to remove backdoors effectively.
On the other hand, the more noise is injected into the model,
the more its benign performance will be impacted.
FLAME Overview. FLAME estimates the noise level re-
quired for backdoor removal in the FL setting without exten-
sive empirical evaluation and having access to training data
(this noise bound is formally proven in §5). In addition, to
effectively limit the amount of required noise, FLAME uses a
novel clustering-based approach to identify and remove adver-
sarial model updates with high impact and applies a dynamic
weight-clipping approach to limit the impact of models that
the adversary has scaled up to boost their performance. As
discussed in §3, one cannot guarantee that all backdoored
models can be detected since the adversary can fully control
both the angular and magnitude deviation to make the models
arbitrarily hard to detect. Our clustering approach therefore
aims to remove models with high attack impact (having larger
angular deviation) rather than all malicious models. Fig. 3
illustrates the high-level idea of FLAME consisting of the
above three components: filtering, clipping, and noising. We
emphasize, however, that each of these components needs
to be applied with great care, since, a naïve combination of
noising with clustering and clipping leads to poor results as
it easily fails to mitigate the backdoor and/or deteriorates the
benign performance of the model, as we show in §C. We de-
tail the design of each component and its use in the FLAME
defense approach in §4.3.

4.2 Design Challenges
To realize the high-level idea presented above, we need to
solve the following technical challenges.
C1- Filtering out backdoored models with large angular
deviations in dynamic scenarios. As discussed in §3, the
weight vector of a well-trained backdoored model, W 0, has a
higher angular difference in comparison to weight vectors of
benign models W . FLAME deploys a clustering approach to
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Figure 3: High-level idea of FLAME defense.

identify such poisoned models and remove them from FL ag-
gregation (detailed in §4.3.1). The effect of clustering-based
filtering is shown in Fig. 3a where model W 01 is removed from
the aggregated model as it does not align with the directions
of benign models. In contrast to existing clustering-based de-
fenses, we need an approach that can also work in a dynamic
attack setting, i.e., the number of injected backdoors is un-
known and may vary between training rounds. To this end, we
make a key observation: clustering approaches using a fixed
number of clusters ncluster for identifying malicious models
are inherently vulnerable to attacks with varying numbers of
backdoors2 nbackdoor. This is because the adversary can likely
cause at least one backdoor model to be clustered together
with benign models due to the pigeonhole principle by simul-
taneously injecting nbackdoor � ncluster backdoors. We seek
to solve this challenge by employing a clustering solution
that dynamically determines the clusters for model updates,
thereby allowing it to adapt to dynamic attacks.
C2-Limiting the impact of scaled-up backdoors. To limit
the impact of backdoored models that the adversary artificially
scales up to boost the attack (e.g., W 02 in Fig. 2), the weight
vectors of models with high magnitudes can be clipped [56].
The effect of clipping is shown in Fig. 3a where the weight
vectors of all models with a magnitude beyond the clipping
bound S (in particular, backdoored model W 02) are clipped to
S by scaling down the weight vectors. The resulting clipped
weight vectors are shown on the left side of Fig. 3b. The
challenge here is how to select a proper clipping bound with-
out empirically evaluating its impact on the training datasets
(which are not available in the FL setting). If the applied clip-
ping bound is too large, an adversary can boost its model W 0

by scaling its weights up to the clipping bound, thereby maxi-
mizing the backdoor impact on the aggregated global model
G. However, if the applied clipping bound is too small, a large
fraction of benign model updates W will be clipped, thereby
leading to performance deterioration of the aggregated global

2We consider two backdoors to be independent if they use different
triggers.

model G on the main task. We tackle this challenge in §4.3.2,
where we show how to select a clipping bound that can not
be influenced by the adversary and that effectively limits the
impact of scaled-up backdoored models.
C3-Selecting suitable noise level for backdoor elimination.
As mentioned in §4.1, FLAME uses model noising that ap-
plies Gaussian noise with noise level s to mitigate the ad-
versarial impact of backdoored models (e.g., W 03 in Fig. 2).
Similar to the clipping bound, however, also here the noise
level s must be carefully selected, as it has a direct impact on
the effectiveness of the defense and the model’s benign per-
formance. If it is too low, the aggregated model might retain
backdoor behavior after model noising, rendering the defense
ineffective, while excessive noise will degrade the utility of
the aggregated model. To address this challenge, we develop
an approach for reliably estimating a sufficient but minimal
bound for the applied noise in §5.

4.3 FLAME Design
As discussed in §4.1, our defense consists of three main com-
ponents: filtering, clipping, and noising. Figure 4 shows these
components and the workflow of FLAME during training
round t. Algorithm 1 outlines the procedure of FLAME. In
the rest of this section, we detail the design of these compo-
nents to resolve the challenges in §4.2.
Algorithm 1 FLAME

1: Input: n, G0, T . n is the number of clients, G0 is the initial
global model, T is the number of training iterations

2: Output: G⇤T . G⇤T is the updated global model after T iterations
3: for each training iteration t in [1,T ] do
4: for each client i in [1,n] do
5: Wi CLIENTUPDATE(G⇤t�1) . The aggregator

sends G⇤t�1 to Client i who trains G⇤t�1 using its data Di locally
to achieve local modal Wi and sends Wi back to the aggregator.

6: (c11, . . . ,cnn) COSINEDISTANCE(W1, . . . ,Wn) .
8i, j 2 (1, . . . ,n), ci j is the cosine distance between Wi and Wj

7: (b1, . . . ,bL) CLUSTERING(c11, . . . ,cnn) . L is the
number of admitted models, bl is the index of the lth model

8: (e1, . . . ,en)  EUCLIDEANDIS-
TANCES(G⇤t�1,(W1, . . . ,Wn)) . ei is the Euclidean distance
between G⇤t�1 and Wi

9: St  MEDIAN(e1, . . . ,en) . St is the adaptive clipping
bound at round t

10: for each client l in [1,L] do
11: W c

bl
 Gt�1 +(Wbl �Gt�1) · MIN(1,g) . Where g

(= St/ebl ) is the clipping parameter, W c
bl

is the admitted model
after clipped by the adaptive clipping bound St

12: Gt  ÂL
l=1 W c

bl
/L . Aggregating, Gt is the plain global

model before adding noise

13: s l ·St where l = 1
e ·

q
2ln 1.25

d . Adaptive noising level

14: G⇤t  Gt +N(0,s2) . Adaptive noising

4.3.1 Dynamic Model Filtering
The Model Filtering component of FLAME utilizes a dy-
namic clustering technique based on HDBSCAN [11] that
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Figure 4: Illustration of FLAME’s workflow in round t.
identifies poisoned models with high angular deviations
from the majority of updates (e.g., W 01 in Fig. 3a). Existing
clustering-based defenses [9, 51] identify potentially mali-
cious model updates by clustering them into two groups where
the smaller group is always considered malicious and thus
removed. However, if no malicious models are present in the
aggregation, this approach may lead to many models being
incorrectly removed and thus a reduced accuracy of the ag-
gregated model. These approaches also do not protect against
attacks in which adversary A simultaneously injects multi-
ple backdoors by using different groups of clients to inject
different backdoors. If the number of clusters is fixed, there
is the risk that poisoned and benign models end up in the
same cluster, in particular, if models with different backdoors
differ significantly. Consequently, existing model clustering
methods do not adequately address challenge C1 (§4.2). Fig. 5
shows the behavior of different clustering methods on a set of
model updates’ weight vectors. Fig. 5a shows the ground truth
of an attack scenario where A uses two groups of clients: one
group is used to inject a backdoor, whereas the other group
provides random models with the goal of fooling clustering-
based defenses. Fig. 5b shows how in this setting, K-means
(as used in Auror [51]) fails to successfully separate benign
and poisoned models as all poisoned models end up in the
same cluster with the benign models.

To overcome the limitations of existing defenses, we de-
sign our clustering solution and ensure that: (i) it is able to
handle dynamic attack scenarios where multiple backdoors
are injected simultaneously, and (ii) it minimizes false posi-
tives of poisoned model identification. In contrast to existing
approaches that try to place poisoned models into one cluster,
our approach considers each poisoned model individually as
an outlier, so that it can gracefully handle multiple simultane-
ous backdoors and thus address challenge C1.

FLAME uses pairwise cosine distances to measure the
angular differences between all model updates and applies the
HDBSCAN clustering algorithm [11]. The advantage here is
that cosine distances are not affected even if the adversary
scales up model updates to boost their impact as this does not
change the angle between the updates’ weight vectors. Since
the HDBSCAN algorithm clusters the models based on their
density of the cosine distance distribution and dynamically
determines the required number of clusters, we leverage it for

Benign

BackdooredRandom

(a) Ground truth

Accepted

Rejected

(b) K-means

Cluster A

Cluster BCluster C

(c) HDBSCAN

Accepted

Rejected (Outliers)

(d) FLAME
Figure 5: Comparison of clustering quality for (a) ground truth, (b)
using K-means with 2 clusters as in Auror [51], (c) straightforward
applied HDBSCAN and (d) our approach as in FLAME.

our dynamic clustering approach. We describe HDBSCAN
and how we apply it in detail in §E. In particular, HDBSCAN
labels models as outliers if they do not fit into any cluster.
This allows FLAME to effectively handle multiple poisoned
models with different backdoors by labeling them as outliers.
To realize this, we set the minimum cluster size to be at least
50% of the clients, i.e., n

2 + 1, so that the resulting cluster
will contain the majority of updates (which we assume to
be benign, cf. §2.3). All remaining (potentially poisoned)
models are marked as outliers. This behavior is depicted in
Fig. 5d where all the models from Clusters B and C from
Fig. 5c are considered as outliers. Hence, to the best of our
knowledge, our approach is the first FL backdoor defense that
is able to gracefully handle also dynamic attacks in which the
number of injected backdoors may vary. The clustering step
is shown in lines 6-7 of Alg. 1 where L models are retained
after clustering.

4.3.2 Adaptive Clipping and Noising
As discussed in §4.2 (challenges C2 and C3), determining
a proper clipping bound and noise level for model weight
clipping and noising is not straightforward. We present our
new approach for selecting an effective clipping bound and
reliably estimating a sufficient noise level that can effectively
eliminate backdoors while preserving the performance of the
main task. Furthermore, our defense approach is resilient to
adversaries that dynamically adapt their attacks.
Adaptive Clipping. Fig. 6 shows the variation of the average
L2-norms of model updates of benign clients in three differ-
ent datasets (cf. §6) over subsequent training rounds. We can
observe that the L2-norms of benign model updates become
smaller in later training rounds. To effectively remove back-
doors while minimizing the impact on benign updates, the
clipping bound S needs to be dynamically adapted to this
decreasing trend of the L2-norm. Recall that clipping is per-
formed after clustering by scaling down model weights so that
the L2-norm of the scaled model becomes smaller or equal
to the clipping threshold. We describe how FLAME deter-
mines a proper scaling factor for each model update Wi in
tth training round as follows: Given the index set (b1, . . .bL)
of the models admitted by the clustering method (line 7 of
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Figure 6: L2-norms of model updates depending on the num-
ber of training rounds for different datasets.
Alg. 1), the aggregator first computes the clipping bound
St as the median of the L2-norms of all n model updates:
St = MEDIAN(e1, . . . ,en). It should be noted that for deter-
mining the clipping bound, the rejected models are also con-
sidered to ensure that even if benign models were filtered,
the computed median St is still determined based on benign
values. However, after determining the clipping bound, only
the admitted models W1, . . . ,WL are considered for later pro-
cessing. The scaling factor for the lth admitted model is com-
puted as g = St

ebl
where ebl is the L2-norm of the model up-

date Wbl . Clipping scales down model updates as follows:
W c

bl
= Gt�1 +(Wbl �Gt�1) · MIN(1,g) (detailed in line 8-11

of Alg. 1) where the multiplication is computed coordinate-
wise. It is worth noting that weighting contributions (i.e.,
adjusting scaling factor) based on client data sizes is insecure.
As we point out in §2.1, the reported dataset sizes by clients
cannot be trusted, i.e., the adversary can lie about their dataset
sizes to maximize attack impact [57]. Hence, we follow com-
mon practice in literature and weight the contributions of all
clients equally regardless of their dataset size [7,9,12,59]. By
using the median as the clipping bound St , we ensure that St is
always in the range of the L2-norms between benign models
and the global model since we assume that more than 50% of
clients are benign (cf. §2.3). We evaluate the effectiveness of
the clipping approach in §B.2.

Adaptive Noising. It has been shown that by adding noise
to a model’s weights, the impact of outlier samples can be
effectively mitigated [17]. Noise can also be added to poi-
soned samples (special cases of outliers) used in backdoor
injection. The more noise is added to the model during the
training process, the less responsive the model will be to the
poisoned samples. Thus, increasing model robustness against
backdoors. Eliminating backdoors utilizing noise addition
is conceptually the same in a centralized or federated set-
ting (e.g., [7, 17]): In both cases, noise is added to the model
weights to smooth out the effect of poisoned data (cf. Eq. 5).
The challenge is to determine as small a noise level as possible
to eliminate backdoors and at the same time not deteriorate
the benign performance of the model. As we discuss in detail
in §5.1, the amount of noise is determined by estimating the
sensitivity based on the differences (distances) among local
models, which can be done without access to training data.
We then add Gaussian noise to the global model Gt to yield
a noised global model G⇤t as follows: G⇤t = Gt + N(0,s2),
see Lines 13-14 of Alg. 1 for more details. This ensures

that backdoor contributions are effectively eliminated from
the aggregated model. In particular, we show in §5.1 how
the noise-based backdoor elimination technique can be trans-
ferred from a centralized to a federated setting by analysing
the relationship between aggregated Gaussian noise applied to
the global model and individual noising of each local model.

5 Security Analysis

5.1 Noise Boundary Proof of FLAME
In this section, we provide a proof to corroborate that
FLAME can neutralize backdoors in the FL setting by apply-
ing strategical noising with bound analysis on the noise level.
We first formulate the noise boundary guarantee of FLAME
in Theorem 1. Subsequently, we explain related parameters
and prove how the noise level bound for s can be estimated.
This is done by generalizing theoretical results from previous
works [17,18] to the FL setting. Then, we show how the filter-
ing and clipping component of FLAME helps to effectively
reduce the noise level bound in Theorem 2. We provide a
formal proof for linear models and extend the proof to DNNs
using empirical evaluation. This is because providing formal
proof for DP-based backdoor security for DNN models is still
an open research problem even for centralized settings.

Theorem 1. A (e,d)-differentially private model with param-
eters G and clipping bound St is backdoor-free if random
Gaussian noise is added to the model parameters yielding a
noised version G⇤ of the model: G⇤  G + N(0,s2

G) where
the noise scale sG is determined by the clipping bound St and

a noise level factor l: sG l ·St and l = 1
e ·

q
2ln 1.25

d .

We explore the key observation that an ML model with a
sufficient level of differential privacy is backdoor-free. With
this new definition of backdoor-free models in the DP domain,
the main challenge to defeat backdoors in the FL setting is
to decide a proper noise scale for the global model without
knowledge of the training datasets. Furthermore, we need
to minimize the amount of noise added to the global model
to preserve its performance on the main task. None of the
prior DP-based FL backdoor defense techniques provide a
solution to the noise determination problem [56]. For the first
time, FLAME presents an approach to estimate the proper
noise scale that ensures the global model is backdoor-free.
The noise boundary proof in Theorem 1 consists of two steps:
Step 1 (S1). By introducing the data hiding property of DP
(Def. 1) and its implication as the theoretical guarantee for
backdoor-free models. We also discuss function sensitivity
(Def. 2) which is an important factor for selection of the DP
parameters (e,d).
Step 2 (S2). We show how FLAME generalizes backdoor
elimination from centralized setting to federated setting with
theoretical analysis of the noise boundary (Eq. 5 and 6).
FLAME is the first FL defense against backdoors that pro-
vides noise level proof with bounded backdoor effectiveness.
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(S1) DP foundations and re-interpretation as Backdoor-
free. As discussed in §2.4, by definition, DP makes the differ-
ence between data points indistinguishable. FLAME lever-
ages this property of DP for backdoor elimination. In par-
ticular, we can consider D1 and D2 in Def. 1 as the benign
and backdoored dataset. The inequality of DP suggests that
algorithm M has a high probability of producing the same
outputs on the benign and the poisoned dataset, meaning that
the backdoor is eliminated. The noise level s is determined
based on the DP parameters (e,d) and the sensitivity of the
function f defined below:

Definition 2 (Sensitivity). Given the function f : D ! Rd

where D is the data domain and d is the dimension of the
function output, the sensitivity of the function f is defined as:

D = max
D1, D2 2 D

|| f (D1)� f (D2)||2, (4)

where D1 and D2 differs on a single element ||D1�D2||1 = 1.

As shown in Lemma 1 [18], this definition can be extended
to datasets differing by more than one element, i.e., can be
generalized to the DP in the multiple-point-difference setting.
(S2) Generalizing backdoor resilience from centralized to
federated setting (FLAME). In the centralized setting, the
defender has access to the model to be protected, the benign
dataset, and the outlier (backdoored) samples. As such, he
can estimate the sensitivity D for (e,d)-DP. When applying

Gaussian noise with the noise scale s = D
e

q
2ln 1.25

d , the de-
fender can enforce a lower bound on the prediction loss of the
model on the backdoored samples for backdoor elimination
[28]. However, this robustness rationale cannot be directly
transferred from the centralized setting to the FL setting since
the defender in the federated scenario (i.e., aggregator) only
has access to received model updates, but not the datasets to
estimate the sensitivity D for the global model.

FLAME extends DP-based noising for backdoor elimina-
tion to the federated setting based on the following observa-
tion: if one can ensure that all aggregated models are benign
(i.e., backdoor-free), then it is obvious that the aggregated
global model will also be backdoor-free. This intuition can
be formally proven if the FL aggregation rule is Byzantine-
tolerant. To ensure that any backdoor potentially present in
the model is eliminated and the aggregated model is benign,
a sufficient DP noise level is added to individual local mod-
els. However, since the local models are independent, adding
noise to each local model is mathematically equivalent to
the case where aggregated noise is added to the global model.
This is conceptually equivalent to the conventional centralized
setting, for which it has been formally shown that DP noise
can eliminate backdoors [17]. In the following, we therefore
show that adding DP noise to local models is equivalent to
adding ‘aggregated’ DP noise to the global model.

We write the standard deviation of noise for the local mod-
els in the form si ai·ei

e ·
q

2ln 1.25
d where ai = Di

ei
, Di and ei

is the sensitivity and the L2 norm of the model Wi, respectively.
Mathematically, the FL system with FLAME has:

G⇤ =
1
n

Sn
i=1W ⇤i =

1
n
[ Sn

i=1 Wi +N(0,s2
i )]

=
1
n

S2
i=1Wi +

1
n

Sn
i=1N(0,s2

i )

=
1
n

S2
i=1Wi +N(0,

1
n

Sn
i=1s2

i )

= G+N(0,s2
G)

(5)

in which W ⇤i are local models and G⇤ the global model after
adding noise N(0,s2

i ). Equation 5 represents the fact that
adding DP noise to each local model (i.e., Wi +N(0,s2

i )) is
equivalent to adding an ‘aggregated’ DP noise on the global
model (i.e., G+N(0,s2

G)). More specifically, this equivalent
Gaussian noise on the global model is the sum of Gaus-
sian noise applied on each local model with a scaling factor
NG = 1

n Sn
i=1Ni. Here, NG and Ni are random variables with

distribution N(0,s2
G) and N(0,s2

i ), respectively. As such, we
can compute the equivalent noise scale for the global model:

s2
G =

1
n2 Sn

i=1s2
i = (

1
e

r
2ln

1.25
d

)2 · 1
n2 Sn

i=1D2
i

= (
1
e

r
2ln

1.25
d

)2 · 1
n2 Sn

i=1a2
i e2

i . (6)

Equation 6 describes the relation between the DP noise added
on FLAME’s global model and the DP noise added on each
local model. This noise scale relation in Eq. 6 together with
the transformation in Eq. 5 enable FLAME to provide guaran-
teed security for the global model against backdoors, thereby
addressing Challenge C3 .

In Alg. 1, we use the median of Euclidean distances ei as the
upper bound St to clip the admitted local models (line 9-11).
We hypothesize that the sensitivity of a model Wi is positively
correlated with its weight magnitude |Wi| (see Theorem 2
for details). In the case of linear models, the sensitivity D
has a linear relation with the model weight |�!w | (see Eq. 8).
Therefore, we use the following approximation:

1
n2 Sn

i=1a2
i e2

i =
1
n2 Sn

i=1D2
i ⇡ S2

t ,

where St is the weight clipping bound. Having substituted the
above approximation into Eq. 6, we can compute the noise
scale of DP that FLAME deploys on the global model NG:

sG ⇡
St

e

r
2ln

1.25
d

(7)

This concludes the proof of Theorem 1.
FLAME’s adaptive noising step applies the Gaussian noise
with the noise scale computed in Eq. 7 on the global model
for backdoor elimination as shown in Alg. 1, line 13-14. Note
that FLAME’s noising scheme is adaptive since the clipping
bound St is obtained dynamically in each tth epoch.

Next, we present Theorem 2 and justify how FLAME de-
sign reduces the derived noise level with step 3 (S3) below.
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(S3) Clustering and clipping components in FLAME help
to reduce the DP noise boundary. Recall that FLAME pro-
tects the FL system against backdoor attacks using three steps:
clustering, clipping, and adding DP noise. The overall work-
flow of FLAME is shown in Fig. 4. If multiple backdoors
exist in the FL system, the first two steps (clustering and clip-
ping) can remove a subset of backdoors as shown in Fig. 3a.
Note that the remaining backdoors are ‘closer’ to the benign
model updates in terms of both magnitude and direction. This
gives us the intuition that removing the remaining backdoors
by adding DP noise becomes easier (i.e., the noise scale sG
is smaller) after the first two steps of FLAME.

We can see from Theorem 1 that the Gaussian noise scale s
required for backdoor resilience increases with the sensitivity
of each local model Di. We describe two characteristics of the
model parameter W , i.e., direction and magnitude in §4. We
discuss how these two factors impact the sensitivity of the
model defined in Eq. 4 below.
Theorem 2. Backdoor models with large angular deviation
from benign ones, or with large parameter magnitudes have
high sensitivity values D.

Proving DP-based backdoor security for DNN models is
still an open problem, even in the centralized setting. We,
therefore, adopt a common approach in literature (e.g., [17])
by providing theoretical proof for linear models and validating
it for DNNs empirically.

Proof : for a linear model f where the function output is
determined by the inner product of model weight vector �!w
and the data vector �!x , we have

f (w; x) =�!w ·�!x = |w| · |x| · cosq, (8)
where q =<�!w ,�!x > is the angle between two vectors. In this
case, it is straightforward to see that if the backdoor attack
changes the parameter magnitude |w| or the direction q of
the model f , the resulting poisoned model f 0 has a large
sensitivity value based on the definition in Eq. 4.

This analysis suggests that backdoor models with large an-
gular deviations or with large weight magnitudes have a high
sensitivity value D. Recall that FLAME deploys dynamic
clustering (§4.3.1) to remove poisoned models with large
cosine distances, and employs adaptive clipping (§4.3.2) to
remove poisoned models with large magnitudes. Therefore,
the sensitivity of the remaining backdoor models is lower
compared to the one before applying these two steps. As a re-
sult, FLAME can use a small Gaussian noise to eliminate the
remaining backdoors after applying clustering and clipping,
which is beneficial for preserving the main task accuracy.

We empirically show how the noise scale for backdoor
elimination changes after applying each step of FLAME. Par-
ticularly, we measure the smallest Gaussian noise scale s
required to defeat all backdoors (i.e., BA = 0%) in three set-
tings: i) No defense components applied (which is equivalent
to the previous DP-based defense [7, 18]); ii) After applying
dynamic clustering; iii) After applying both dynamic cluster-
ing and adaptive clipping (which is the setting of FLAME).

Table 1: Effect of clustering and clipping in FLAME on
minimal Gaussian noise level s for backdoor elimination in
the NIDS scenario, in terms of Backdoor Accuracy (BA) and
Main Task Accuracy (MA).

s
Only

Noising
After

Clustering
After Clustering

& Clipping
BA MA BA MA BA MA

0.01 100.0% 100.0% 0.0% 80.5% 0.0% 100.0%
0.08 3.5% 66.7% 0.0% 66.7% 0.0% 100.0%
0.10 0.0% 54.2% 0.0% 66.1% 0.0% 87.6%

We conduct this comparison experiment on the IoT-Traffic
dataset (cf. §6). For each communication round, 100 clients
are selected where k = 40 are adversaries. We remove the
backdoor by adding Gaussian noise N(0,s2) to the aggre-
gated model. Table 1 summarizes the evaluation results in the
above three settings. We can observe from the comparison
results that the noise scale required to eliminate backdoors de-
creases after individual deployment of clustering and clipping.
This corroborates the correctness of Theorem 2.

5.2 Attack and Data Distribution Assumption
In FLAME, we do not make specific assumptions about
the attack and data distribution compared to the existing
clustering-based defenses. Let X = (X1, . . . ,Xb) be a set of dis-
tributions of benign models (W1, . . . ,Wn�k) where b n� k.
The deviation in X is caused by the diversity of the data. Let
X 0 = (X 01, . . . ,X

0
a) be a set of distributions of poisoned mod-

els (W 01, . . . ,W
0
k) where a k. The deviation in X 0 is caused

by the diversity of the benign data and backdoors (e.g., poi-
soned data or model crafting). Existing works assume that
X 0i ⇡X 0j (8i, j : 1 i, j a) (see e.g., [22] or X 0 6= X [9,51]).
However, this assumption does not hold in many situations
because (i) there can be one or multiple attackers injecting
multiple backdoors [7], or (ii) the adversary can inject one
or several random (honeypot) models having a distribution
X 0r that is significantly different from X [ (X 0 \X 0r), and (iii)
the adversary can control how much the backdoored mod-
els deviate from benign ones as discussed in §3. Therefore,
approaches that purely divide models into two groups, e.g.,
K-means [51] will incorrectly classify models having distri-
bution X 0r into the malicious group and all remaining models
(having distributions drawn from (X [ (X 0 \X 0r)) into the be-
nign group. As a result, all backdoored models having dis-
tributions drawn from (X 0 \ X 0r) are classified as benign, as
demonstrated in Fig. 5b. In contrast, FLAME does not rely
on such specific assumptions (the adversary can arbitrarily
choose X 0). If the distribution X 0i of a poisoned model is simi-
lar to benign distributions in X , FLAME will falsely classify
X 0i as being. But if the distribution X 0j of a poisoned model is
different from the distributions in X , FLAME will identify X 0j
as an outlier and classify the associated model as malicious.
To identify deviating and thus potentially malicious models,
FLAME leverages the HDBSCAN algorithm to identify re-
gions of high density in the model space. Any models that are
not located in the dense regions will be categorized as out-
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liers, as shown in Fig. 5d. As discussed in §3, FLAME aims
to remove models with distributions X 0j that have a higher
attack impact compared to models with distribution X 0i . It is
worth noting, however, that the impact of such remaining back-
doored models will be eliminated by the noising component
as shown in §5.1
Striking a balance between accuracy and security: Clus-
tering and DP-based approaches affect model accuracy as
discussed in §4.2 (Challenges C2 and C3). In particular, an ap-
proach that aims to maximize the number of filtered malicious
models may lead to many false positives, i.e., many benign
models being filtered out. Moreover, applying a very low clip-
ping bound or a very high level of injected noise will degrade
model accuracy. To address these problems, FLAME is con-
figured so that the clustering component removes only models
with high attack impact rather than all malicious models, i.e.,
it aims to remove the first backdoor type W 01 as shown in
Fig. 3. In addition, FLAME carefully estimates the clipping
bound and noise level to ensure backdoor elimination while
preserving model performance. As discussed in §4.3.2, the
L2-norms of model updates depend on the number of training
rounds, dataset types, and type of backdoors. Consequently,
the clipping threshold and noise level should be adapted to
L2-norms. We therefore apply the median of the L2-norms of
model updates as the clipping bound St (cf. Lines 9-11 of Alg.
1). This ensures that St is always computed between a benign
local model and the global model since we assume that more
than 50% of clients are benign (cf. §2.3). Further, estimating
noise level based on St (cf. Lines 13-14 of Alg. 1) also pro-
vides a noise boundary that ensures that the global model is
resilient against backdoors as discussed in §5.1. Moreover,
our comparison of potential values for St presented in §B.2
and §B.3 shows that the chosen clipping bound and noise
level provide the best balance between accuracy and security,
i.e., FLAME eliminates backdoor while retaining the global
model’s performance on the main task.

6 Experimental Setup
We conduct all the experiments using the PyTorch deep learn-
ing framework [2] and use the source code provided by Bag-
dasaryan et al. [7], Xie et al. [59] and Wang et al. [57] to
implement the attacks. We reimplemented existing defenses
to compare them with FLAME.
Datasets and Learning Configurations. Following recent
research on poisoning attacks on FL, we evaluate FLAME
in three typical application scenarios: word prediction [35,
38–40], image classification [13, 49, 50], and an IoT intrusion
detection [44,47,48,54] as summarized in Tab. 2. Verification
of the effectiveness of FLAME against state-of-the-art attacks
in comparison to existing defenses (cf. Tab. 3 and Tab. 4) are
conducted on these three datasets in the mentioned application
scenarios. Experiments for evaluating specific performance
aspects of FLAME are performed on the IoT dataset as it
represents a very diverse and real-world setting with clear

Table 2: Datasets used in our evaluations.
Application Datasets #Records Model #params
WP Reddit 20.6M LSTM ⇠20M
NIDS IoT-Traffic 65.6M GRU ⇠507k

IC
CIFAR-10 60k ResNet-18 Light ⇠2.7M
MNIST 70k CNN ⇠431k
Tiny-ImageNet 120k ResNet-18 ⇠11M

security implications.
Evaluation Metrics. We consider a set of metrics for evalu-
ating the effectiveness of backdoor attack and defense tech-
niques as follows: BA - Backdoor Accuracy indicates the
accuracy of the model in the backdoor task, i.e., it is the frac-
tion of the trigger set for which the model provides the wrong
outputs as chosen by the adversary. The adversary aims to
maximize BA, while an effective defense prevents the adver-
sary from increasing it. MA - Main Task Accuracy indicates
the accuracy of a model in its main (benign) task. It denotes
the fraction of benign inputs for which the system provides
correct predictions. The adversary aims at minimizing the
effect on MA to reduce the chance of being detected. The
defense system should not negatively impact MA. TPR - True
Positive Rate indicates how well the defense identifies poi-
soned models, i.e., the ratio of the number of models correctly
classified as poisoned (True Positives - TP) to the total num-
ber of models being classified as poisoned: TPR = T P

T P+FP ,
where FP is False Positives indicating the number of benign
clients that are wrongly classified as malicious. TNR - True
Negative Rate indicates the ratio of the number of models
correctly classified as benign (True Negatives - TN) to the
total number of benign models: TNR = T N

T N+FN , where FN is
False Negatives indicating the number of malicious clients
that are wrongly classified as benign.

7 Experimental Results
In this section, we evaluate FLAME against backdoor attacks
in the literature (§7.1) and demonstrate that our defense mech-
anism is resilient to adaptive attacks (§7.2). In addition, we
show the effectiveness of each of FLAME’s components in
§B and FLAME overhead in §D. Finally, we evaluate the
impact of the number of clients (§7.3) as well as the degree
of non-IID data (§7.4).

7.1 Preventing Backdoor Attacks
Effectiveness of FLAME. We evaluate FLAME against
the state-of-the-art backdoor attacks called constrain-and-
scale [7], DBA [59], PGD and Edge-Case [57] and an untar-
geted poisoning attack [20] (cf. §F) using the same attack
settings as in the original works with multiple datasets. The
results are shown in Tab. 3. FLAME completely mitigates the
constrain-and-scale attack (BA = 0%) for all datasets. More-
over, our defense does not affect the Main Task Accuracy
(MA) of the system as MA reduces by less than 0.4% in all
experiments. The DBA attack as well as the Edge-Case at-
tack [57] are also successfully mitigated (BA = 3.2%/4.0%).
Further, FLAME is also effective against PGD attacks (BA =
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Table 3: Effectiveness of FLAME against state-of-the-art
attacks for the respective dataset, in terms of Backdoor Accu-
racy (BA) and Main Task Accuracy (MA). All metric values
are reported as percentages.

Dataset No Defense FLAME
Attack BA MA BA MA

Constrain-and-scale [7] Reddit 100 22.6 0 22.3
CIFAR-10 81.9 89.8 0 91.9
IoT-Traffic 100.0 100.0 0 99.8

DBA [59] CIFAR-10 93.8 57.4 3.2 76.2
Edge-Case [57] CIFAR-10 42.8 84.3 4.0 79.3
PGD [57] CIFAR-10 56.1 68.8 0.5 65.1
Untargeted Poisoning [20] CIFAR-10 - 46.72 - 91.31

Table 4: Effectiveness of FLAME in comparison to state-of-
the-art defenses for the constrain-and-scale attack on three
datasets, in terms of Backdoor Accuracy (BA) and Main Task
Accuracy (MA). All values are percentages.

Defenses Reddit CIFAR-10 IoT-Traffic
BA MA BA MA BA MA

Benign Setting - 22.7 - 92.2 - 100.0
No defense 100.0 22.6 81.9 89.8 100.0 100.0
Krum [9] 100.0 9.6 100.0 56.7 100.0 84.0
FoolsGold [22] 0.0 22.5 100.0 52.3 100.0 99.2
Auror [51] 100.0 22.5 100.0 26.1 100.0 96.6
AFA [42] 100.0 22.4 0.0 91.7 100.0 87.4
DP [18] 14.0 18.9 0.0 78.9 14.8 82.3
Median [60] 0.0 22.0 0.0 50.1 0.0 87.7
FLAME 0.0 22.3 0.0 91.9 0.0 99.8

0.5 %). It should be noted that suggesting words is a quite
challenging task, causing the MA even without attack to be
only 22.7%, aligned with previous work [7].

We extend our evaluation to various backdoors on three
datasets. For NIDS, we evaluate 13 different backdoors (Mirai
malware attacks) and 24 device types (78 IoT devices). The
results show that FLAME is able to mitigate all backdoor
attacks completely while achieving a high MA=99.8%. We
evaluate 5 different word backdoors for WP, and 90 differ-
ent image backdoors for IC, which change the output of a
whole class to another class. In all cases, FLAME success-
fully mitigates the attack while still preserving the MA.
Comparison to existing defenses. We compare FLAME
to existing defenses: Krum [9], FoolsGold [22], Auror [51],
Adaptive Federated Averaging (AFA) [42], Median [60] and a
generalized differential privacy (DP) approach [7, 40]. Tab. 4
shows that FLAME is effective for all 3 datasets, while pre-
vious works either fail to mitigate backdoors or reduce the
main task accuracy. Krum, FoolsGold, Auror, and AFA do not
effectively remove poisoned models and BA often remains
at 100%. Also, some defenses make the attack even more
successful than without defense. Since they remove many
benign updates (cf. §B) but fail to remove a sufficient number
of poisoned updates, these defenses increase the PMR and,
therefore, also the impact of the attack. Some defenses, e.g.,
Krum [9], Auror [51] or AFA [42] are not able to handle
non-iid data scenarios like Reddit. In contrast, FoolsGold is
only effective on the Reddit dataset (TPR = 100%) because
it works well on highly non-independent and identically dis-

tributed (non-IID) data (cf. §9). Similarly, AFA only mitigates
backdoors on the CIFAR-10 dataset since the data are highly
IID (each client is assigned a random set of images) such that
the benign models share similar distances to the global model
(cf. §9). Additionally, the model’s MA is negatively impacted.
The DP-based defense is effective, but it significantly reduces
MA. For example, it performs best on the CIFAR-10 dataset
with BA = 0, but MA decreases to 78.9% while FLAME in-
creases MA to 91.9% which is close to the benign setting (no
attacks), where MA = 92.2%.
Effectiveness of FLAME’s Components. Further, we have
also conducted an extensive evaluation of the effectiveness of
each of FLAME’s components. Due to space limitations, we
would like to refer to §B for the details.

7.2 Resilience to Adaptive Attacks
Given sufficient knowledge about FLAME, an adversary may
seek to use adaptive attacks to bypass the defense components.
In this section, we analyze such attack scenarios and strategies
including changing the injection strategy, model alignment,
and model obfuscation.
Changing the Injection Strategy. The adversary A may at-
tempt to inject several backdoors simultaneously to execute
different attacks on the system in parallel or to circumvent the
clustering defense (cf. §2.2). FLAME is also effective against
such attacks (cf. Fig. 5). To further investigate the resilience of
FLAME against such attacks, we conduct two experiments:
1) assigning different backdoors to malicious clients and 2)
letting each malicious client inject several backdoors. To
ensure that each backdoor is injected by a sufficient number
of clients, we increased the PMR for this experiment. We
conducted these experiments with n = 100 clients of which
k = 40 are malicious on the IoT-Traffic dataset with each type
of Mirai attack representing a backdoor. First, we evaluate
FLAME for 0,1,2, 4, and 8 backdoors, meaning that the num-
ber of malicious clients for each backdoor is 0,40,20,10, and
5. Our experimental results show that our approach is effec-
tive in mitigating the attacks as BA = 0%±0.0% in all cases,
with TPR = 95.2%±0.0%, and TNR = 100.0%±0.0%. For
the second experiment, 4 backdoors are injected by each of
the 40 malicious clients. Also, in this case, the results show
that FLAME can completely mitigate the backdoors.
Model Alignment. Using the same attack parameter values,
i.e., PDR (cf. §2.2), for all malicious clients can result in high
distances between benign and poisoned models. Those high
distances can be illustrated as a gap between poisoned and be-
nign models, s.t. the clustering can separate them. Therefore,
a sophisticated adversary can generate models that bridge the
gap between them such that they are merged to the same clus-
ter in our clustering. We evaluate this attack on the IoT-Traffic
dataset for k = 80 malicious clients and n = 200 clients in
total. To remove the gap, each malicious client is assigned a
random amount of malicious data, i.e., a random PDR ranging
from 5% to 20%. As Tab. 5 shows, when we apply model
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Table 5: Resilience to model alignment attacks in terms of
Backdoor Accuracy (BA), Main Task Accuracy (MA), True
Positive Rate (TPR), True Negative Rate (TNR) in percent.

BA MA TPR TNR
Model Filtering 100.0 91.98 0.0 33.04
FLAME 0.0 100.0 5.68 33.33

filtering only, our clustering component cannot identify the
malicious clients well (TPR = 0%), resulting in BA = 100%.
However, when we apply FLAME, although TPR remains
low (5.68%) FLAME still mitigates the attack successfully
(BA reduces from 100% to 0%). This can be explained by the
fact that when the adversary A tunes malicious updates to be
close to the benign ones, the attack’s impact is reduced and
consequently averaged out by our noising component.
Model Obfuscation. A can add noise to the poisoned models
to make them difficult to detect. However, our evaluation
of such an attack on the IoT-Traffic dataset shows that this
strategy is not effective. We evaluate different noise levels to
determine a suitable standard deviation for the noise. Thereby,
we observe that a noise level of 0.034 causes the models’
cosine distances in clustering to change without significantly
impacting BA. However, FLAME can still efficiently defend
this attack: BA remains at 0% and MA at 100%.

7.3 Effect of Number of Clients
Impact of Number of Malicious Clients. We assume that
the number of benign clients is more than half of all clients
(cf. §2.2) and our clustering is only expected to be successful
when PMR = k

n < 50% (cf. §4.3.1). We evaluate FLAME for
different PMR values. Figure 7 shows how BA, TPR, and TNR
change in the IC, NIDS, and WP applications for PMR values
from 25% to 60%. It shows that FLAME is only effective
if PMR < 50% so that only benign clients are admitted to
the model aggregation (TNR = 100%) and thus BA = 0%.
However, if PMR > 50%, FLAME fails to mitigate the attack
because the majority of poisoned models will be included
resulting in low TNR. Interestingly, FLAME accepted all
models for PMR = 50% (TPR = 0% and TNR = 100%). For
the IC application, since the IC data are non-IID, poisoned
models are not similar. Therefore, some poisoned models
were excluded from the cluster resulting in a high TPR even
for PMRs higher than 50%. However, the majority of poisoned
models were selected resulting in the drop in the TNR.

Varying number of clients in different training rounds.
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Figure 7: Impact of the poisoned model rate PMR = k

n on the
evaluation metrics. PMR is the fraction of malicious clients k
per total clients n.
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(a) Image Classification
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(b) Network Intrusion Detection
Figure 8: Impact of the number of clients on FLAME

In general, FLAME is a round-independent defense, i.e., it
does not use information from previous rounds such as which
clients were excluded in which rounds. Therefore, FLAME
will not be affected if the number of clients or number of
malicious clients varies as long as the majority of clients
remain benign. To demonstrate this, we simulate realistic sce-
narios in which clients can join and drop out dynamically.
We conducted an experiment where during each round, the
total number of available clients is randomly selected. As the
result, the number of malicious clients will also be random.
In this experiment, we used a population of 100 clients in

total, out of which 25 are malicious. In each round, a ran-
dom number (from 60 to 90) of clients are selected, so that
the fraction of malicious clients (PMR) varies in each round.
Figure 8 shows the experimental results. One can see that
the proportion of malicious clients (PMR) does not affect the
effectiveness of FLAME, i.e., the backdoor is completely re-
moved (BA = 0%) in every round. Since all poisoned models
are detected, their negative effect on the aggregated model
is removed. Therefore, the MA with FLAME is better than
the one without defense, and is almost always 100 % aligned
with the results in Tab. 4.

7.4 Impact of the Degree of non-IID Data
Since clustering is based on measuring differences between
benign and malicious updates, the distribution of data among
clients might affect our defense. We conduct two experiments
for both Constrain-and-scale and Edge-Case PGD on the
CIFAR-10 dataset. For Reddit and IoT datasets, changing the
degree of non-IID data is not meaningful since the data have a
natural distribution as every client obtains data from different
Reddit users or traffic chunks from different IoT devices.
Following previous works [20,57], we vary the degree of non-
IID data DegnIIDby changing the fraction of images belonging
to a specific class assigned to clients. In particular, we divide
the clients into 10 groups corresponding to the 10 classes of
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Figure 9: Impact of degree of non-IID data on FLAME for
constrain-and-scale using the DegnIID and for the Edge-Case
PGD attack using the a parameter of the Dirichlet distribution.
CIFAR-10. The clients of each group are assigned a fixed
fraction of DegnIIDof the images from its designated image
class, while the rest of the images will be assigned to it at
random. Consequently, the data distribution is random, i.e.,
completely IID if DegnIID = 0% (all images are randomly
assigned) and completely non-IID if DegnIID = 100% (a client
only gets images from its designated class).

Figure 9a shows the evaluation results for the constrain-
and-scale attacks. Although FLAME does not detect the poi-
soned models for very non-IID scenarios, it still mitigates the
attack as the BA remains 0% for all values of DegnIID. For low
DegnIID, FLAME effectively identifies the poisoned models
(T NR = 100%) and the MA remains on almost the same level
as without defense. As shown in Fig. 9b, FLAME also miti-
gates the Edge-Case PGD attack effectively for all a values of
the Dirichlet distribution and the MA also stays on the same
level as without defense. However, since not all poisoned
models are detected, a higher s is determined dynamically
to mitigate the constrain-and-scale backdoor, resulting in a
slightly reduced MA for DegnIID � 0.7 (MA is 91.9% for
DegnIID = 0.6, and is reduced to 91.0% for DegnIID = 1.0).
Note that Fig. 9 shows the evaluation results in a training
round t where the global model Gt is close to convergence [7],
thus even though the TNR decreases with a large value of
DegnIID, the drop of MA with FLAME is not substantial.

8 Privacy-preserving Federated Learning
A number of attacks on FL have been proposed that aim to
infer from parameters of a model the presence of a specific
training sample in the training dataset (membership inference
attacks) [41, 46, 52], properties of training samples (property
inference attacks) [23,41], try to assess the proportion of sam-
ples of a specific class in the data (distribution estimation
attacks) [58]. Inference attacks by the aggregator As are sig-
nificantly stronger, as As has access to the local models [43]
and can also link gained information to a specific user, while
the global model anonymizes the individual contributions.
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Figure 10: Overview of private FLAME in round t using
Secure-Two-Party Computation (STPC).
Therefore, enhanced privacy protection for FL is needed that
prohibits access to the local model updates.
Adversary Model (privacy). In this adversary type, As at-
tempts to infer sensitive information about clients’ data Di
from their model updates Wi [23, 41, 46, 52] by maximizing
the information fi = INFER(Wi) that As gains about the data
Di of client i by inferring from its corresponding model Wi.
Deficiencies of existing defenses. Generally, there are two ap-
proaches to protect the privacy of clients’ data: differential pri-
vacy (DP; [18]) and cryptographic techniques such as homo-
morphic encryption [24] or multi-party computation [14]. DP
is a statistical approach that can be efficiently implemented,
but it can only offer high privacy protection at the cost of
a significant loss in accuracy due to the noise added to the
models [6, 61]. In contrast, cryptographic techniques provide
strong privacy guarantees as well as high accuracy at the cost
of reduced efficiency.
Private FLAME. To securely implement FLAME using
STPC, we use an optimized combination of three promi-
nent STPC techniques as implemented with state-of-the-art
optimizations in the ABY framework [14]. Fig. 10 shows
an overview of private FLAME. It involves n clients and
two non-colluding servers, called aggregator A and external
server B. Each client i 2 {1, ...,n} splits the parameters of its
local update Wi into two Arithmetic shares hXiAi and hXiBi ,
such that Wi = hXiAi + hXiBi , and sends hXiAi to A and hXiBi
to B. A and B then privately compute the new global model
via STPC. We co-design the distance calculation, clustering,
adaptive clipping, and aggregation of FLAME (cf. Alg. 1)
of FLAME as efficient STPC protocols.To further improve
performance, we approximate HDBSCAN with the simpler
DBSCAN [10] to avoid the construction of the minimal span-
ning tree in HDBSCAN as it is very expensive to realize with
STPC. See §G for more details on private FLAME evaluation
of its accuracy and performance.

9 Related Work
In general, existing backdoor defenses can roughly be divided
into two main categories. The first one aims to distinguish
malicious updates and benign updates by 1) clustering model
updates [9,15,22,29,33,34,51], 2) changing aggregation rules
[25, 60], and 3) using root dataset [4]. The second category is
based on differential privacy techniques [7, 56]. Next, we will
discuss these points in detail.
Clustering model updates. Several backdoor defenses, such
as Krum [9], AFA [42], and Auror [51], aim at separat-
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ing benign and malicious model updates. However, they
only work under specific assumptions about the underly-
ing data distributions, e.g., Auror and Krum assume that
data of benign clients are iid. In contrast, FoolsGold and
AFA [42] assume that benign data are non-iid. In addition,
FoolsGold assumes that manipulated data are iid. As a re-
sult, these defenses are only effective under specific circum-
stances (cf. §7.1) and cannot handle the simultaneous in-
jection of multiple backdoors (cf. §4.3.1). Moreover, such
defenses cannot detect stealthy attacks, e.g., where the ad-
versary constrains their poisoned updates within benign up-
date distribution such as Constrain-and-scale attacks [7]. In
contrast, FLAME does not make any assumption about the
data distribution, clipping, and noising components can also
mitigate stealthy attacks, and FLAME can defend against
injection of multiple backdoors (cf. §4.3.1).
Changing aggregation rules. Instead of using FedAvg [38],
Yin et al. [60] and Guerraoui et al. [25] propose using the
median parameters from all local models as the global model
parameters, i.e., Gt = MEDIAN(Wt

1 , . . . ,W
t
n). However, the

adversary can bypass it by injecting stealthy models like W 03
(cf. Fig. 2), in which the parameters of poisoned model will
be selected to be incorporated into the global model. Further,
our evaluation in §7.1 shows that Median also reduces the
performance of the model significantly.
Using root data. Although FLTrust [12] can defend against
byzantine clients (with arbitrary behavior) and detect poison-
ing attacks including backdoors, it requires the aggregator to
have access to a benign root dataset. Baffle [4] utilizes clients
using their own data to evaluate the performance of the ag-
gregated model to detect backdoors. However, this approach
has two limitations, e.g., (i) the backdoor triggers are only
known to the attacker, i.e., one cannot ensure that the benign
clients would have such trigger data to activate the backdoor,
and (ii) Baffle does not work in a non-IID data scenario with
a small number of clients as clients cannot distinguish deficits
in model performance due to the backdoor from lack of data.
Differential Privacy-based approaches. Clipping and nois-
ing are known techniques to achieve differential privacy
(DP) [18]. However, directly applying these techniques to
defend against backdoor attacks is not effective because
they significantly decrease the Main Task Accuracy (§7.1)
[7]. FLAME tackles this by i) identifying and filtering out
potential poisoned models that have a high attack impact
(cf. §4.3.1), and ii) eliminating the residual poison with an
appropriate adaptive clipping bound and noise level, such that
the Main Task Accuracy is retained (cf. §4.3.2).

10 Conclusion
In this paper, we introduce FLAME, a resilient aggregation
framework for FL that eliminates the impact of backdoor at-
tacks while maintaining the performance of the aggregated
model on the main task. We propose a method to approximate
the amount of noise that needs to be injected into the global

model to neutralize backdoors. Furthermore, in combination
with our dynamic clustering and adaptive clipping, FLAME
can significantly reduce the noise scale for backdoor removal
and thus preserve the benign performance of the global model.
In addition, we design, implement, and benchmark efficient se-
cure two-party computation protocols for FLAME to ensure
the privacy of clients’ training data and to impede inference
attacks on client updates.
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A Datasets and Learning Configurations
Word Prediction (WP). We use the Reddit dataset of Novem-
ber 2017 [1] with the same settings as state-of-the-art works
[7, 38, 40] for comparability. In particular, each user in the
dataset with at least 150 posts and not more than 500 posts is
considered as a client. This results in 80 000 clients’ datasets
with sizes between 298 and 32 660 words.

The model consists of two LSTM layers and a linear output
layer [7, 38]. To be comparable to the attack setting in [7],
we evaluate FLAME on five different backdoors, each with
a different trigger sentence corresponding to a chosen output.
Image Classification (IC). For image classification, we use
mainly the CIFAR-10 dataset [31], a standard benchmark
dataset for image classification, in particular for FL [38] and
backdoor attacks [7, 8, 42]. It consists of 60 000 images of
10 different classes. The adversary aims at changing the pre-
dicted label of one class of images to another class of images.
We use a lightweight version of the ResNet18 model [26] with
4 convolutional layers with max-pooling and batch normaliza-
tion [7]. The experimental setup consists of 100 clients and
uses a PMR of 20%. In addition to the CIFAR-10 dataset, we
also evaluate FLAME’s effectiveness on two further datasets
for image classification. The MNIST dataset consists of 70 000
handwritten digits [32]. The learning task is to classify images
to identify digits. The adversary poisons the model by misla-
beling labels of digit images before using it for training [51].
We use a convolutional neural network (CNN) with 431000
parameters. The Tiny-ImageNet 3 consists of 200 classes and
each class has 500 training images, 50 validation images, and
50 test images. We used ResNet18 [26] model.
Network Intrusion Detection System (NIDS). We test
backdoor attacks on IoT anomaly-based intrusion detec-
tion systems that often represent critical security applica-
tions [5, 16, 27, 30, 44, 45, 55]. Here, the adversary aims at
causing incorrect classification of anomalous traffic patterns,
e.g., generated by IoT malware, as benign patterns. Based
on the FL anomaly detection system DÏoT [44], we use
three datasets called DIoT-Benign, DIoT-Attack, and UNSW-
Benign [44,53] from real-world home and office deployments
(four homes and two offices located in Germany and Aus-
tralia). DIoT-Attack contains the traffic of 5 anomalously
behaving IoT devices, infected by the Mirai malware [44].
Moreover, we collected a fourth IoT dataset containing com-
munication data from 24 typical IoT devices (including IP
cameras and power plugs) in three different smart home set-
tings and an office setting. Following [44], we extracted

3https://tiny-imagenet.herokuapp.com
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Table 6: Effectiveness of the clustering component, in terms
of True Positive Rate (TPR) and True Negative Rate (TNR), of
FLAME in comparison to existing defenses for the constrain-
and-scale attack on three datasets. All values are in percentage
and the best results of the defenses are marked in bold.

Defenses Reddit CIFAR-10 IoT-Traffic
TPR TNR TPR TNR TPR TNR

Krum 9.1 0.0 8.2 0.0 24.2 0.0
FoolsGold 100.0 100.0 0.0 90.0 32.7 84.4
Auror 0.0 90.0 0.0 90.0 0.0 70.2
AFA 0.0 88.9 100.0 100.0 4.5 69.2
FLAME 22.2 100.0 23.8 86.2 59.5 100.0
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Figure 11: Effectiveness of FLAME’s clipping bound in
terms of Backdoor Accuracy (BA) and Main Task Accuracy
(MA). S is the clipping bound and med the L2-norm median.
device-type-specific datasets capturing the devices’ commu-
nication behavior. We simulate the FL setup by splitting
each device type’s dataset among several clients (from 20
to 200). Each client has a training dataset corresponding to
three hours of traffic measurements containing samples of
roughly 2 000-3 000 communication packets. The learning
model consists of 2 GRU layers and a fully connected layer.

B Effectiveness of FLAME’s Components
B.1 Effectiveness of the Clustering Component
We show the results for the clustering component in Tab. 6.
As shown there, our filtering achieves TNR = 100% for the
Reddit and IoT-Traffic datasets, i.e., FLAME only selects
benign models in this attack setting. Recall that the goal of
clustering is to filter out the poisoned models with high attack
impact, i.e., not necessarily all poisoned models (cf. §4.1).
This allows FLAME to defend backdoor attacks effectively,
even if not all poisoned models are filtered. For example,
although for the CIFAR-10 dataset in Tab. 6 the TNR is not
100 % (86.2%), the attack is still mitigated by the noising
component, such that the BA is 0 % (cf. Tab. 4).

B.2 Effectiveness of Clipping
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Figure 12: Impact of different noise level factors on the Back-
door Accuracy (BA) and Main Task Accuracy (MA).
Fig. 11 demonstrates the effectiveness of FLAME’s dynamic
clipping where S is the median of L2-norms compared to a
static clipping bound [7] and different choices for a dynamic
clipping boundary (i.e., median, half of median, median mul-
tiplied by 1.5). The experiments are conducted for the IoT-
Traffic dataset, which is non-iid. Fig. 11a and Fig. 11b show
that a small static bound S = 0.5 is effective to mitigate the
attack (BA = 0%), but MA drops to 0% rendering the model
useless. Moreover, a higher static bound like S = 10 is ineffec-
tive as BA = 100% if the Poisoned Data Rate (PDR) � 35%.
In contrast, FLAME’s dynamic clipping threshold performs
significantly better as BA consistently remains at 0% while
MA remains high (cf. Fig. 11c and Fig. 11d).

B.3 Effectiveness of Adding Noise
Fig. 12 shows the impact of adding noise to the intermediate
global models with respect to different noise level factors l to
determine the standard deviation of the noise s dynamically
based on the median L2-norm of the updates St as s = lSt .
As it can be seen, increasing l reduces the BA, but it also
negatively impacts the performance of the model in the main
task (MA). Therefore, the noise level must be dynamically
tuned and combined with the other defense components to
optimize the overall success of the defense. The noise level

factor is determined by l = 1
e

q
2ln 1.25

d for (e,d)-DP. We use
standard DP parameters and set e = 3705 for IC, e = 395 for
the NIDS and e = 4191 for the NLP scenario. Accordingly,
l = 0.001 for IC and NLP, and l = 0.01 for the NIDS sce-
nario. The DP budget is dependent on the considered dataset
scenario. It is determined based on the median of the dataset
sizes of the clients and the size of the model used. It can thus
be empirically determined by the aggregator. Analogous to
determining the clipping boundary S (cf. 4.3.2), using the
median ensures that the used dataset size is within the range
of benign values.

C Naïve Combination
Furthermore, we test a naïve combination of the defense com-
ponents by stacking clipping and adding noise (using a fixed
clipping bound of 1.0 and a standard deviation of 0.01 as
in [7]) on top of a clustering component using K-means. How-
ever, this naïve approach still allows a BA of 51.9% and a MA
of 60.24%, compared to a BA of 0.0% and a MA of 89.87%
of FLAME in the same scenario for the CIFAR-10 dataset.
Based on our evaluations in §7.1, it becomes apparent that
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FLAME’s dynamic nature goes beyond previously proposed
defenses that consist of static baseline ideas, which FLAME
significantly optimizes, extends, and automates to offer a com-
prehensive dynamic and private defense against sophisticated
backdoor attacks.

D Overhead of FLAME
We evaluated FLAME for 6 different device types from the
IoT dataset. In this experiment, only benign clients partici-
pated and the model was randomly initialized. The highest
observed overhead was 4 additional rounds. In average, 1.67
additional training rounds were needed to achieve at least 99%
of the MA that was achieved without applying the defense,
i.e., FLAME does not prevent the model from converging.

E HDBSCAN
HDBSCAN [11] is a density-based clustering technique that
classifies data samples in different clusters without prede-
fined the maximum distance and the number of clusters. In
the following, we describe HDBSCAN in detail, following
the implementation of McInnes et al. [36, 37]. However,
we focus on the behavior of HDBSCAN for the parame-
ters that FLAME uses, i.e., when min_cluster_size=N/2 +
1 and min_samples=1, e.g., because of the choice for
min_cluster_size we skip parts that deal with multiple
clusters. HDBSCAN first uses the given distances to build a
minimal spanning tree (MST), where the vertices represent
the individual data points and the edges are weighted by the
distances between the respective points. Then it uses the MST
to build a binary tree where the leaf nodes represent the ver-
tices of the MST and the non-leaf nodes represent the edges of
the MST. For this, first, all vertices are considered as separate
trees (of size 1). For this, first, all vertices are considered as
separate trees (of size 1) and then, starting from the edge with
the lowest weight, iteratively the trees are merged by creating
a non-leaf-node for each edge of the MST and set the (previ-
ously not connected) subtrees containing the endpoints of the
edge as children for the new node (represented by calling the
function make_binary_tree. In the next step, HDBSCAN
collects all nodes of the binary tree as candidates, that cover
at least N/2 +1 data points. Since only non-leaf nodes fulfill
the requirement of covering at least N/2 +1 data points, each
cluster candidate is based on a node, representing an edge in
the MST. It uses the weight of the edge and the number of
covered points to calculate a so-called stability value. Then
HDBSCAN uses the stability value to determine the cluster
candidate with the most homogeneous density and returns this
candidate as majority cluster. Finally, it assigns the cluster
label to all data points inside this cluster and labels all points
outside of this cluster as noise.

F Effectiveness of FLAME against untargeted
poisoning attacks

Another attack type related to backdooring is untargeted poi-
soning [8, 9, 20]. Unlike backdoor attacks that aim to incorpo-
rate specific backdoor functionalities, untargeted poisoning
aims at rendering the model unusable. The adversary uses
crafted local models with low Main Task Accuracy to dam-
age the global model G. Fang at el. [20] propose such an
attack bypassing state-of-the-art defenses. Although we do
not focus on untargeted poisoning, our approach intuitively
defends it since, in principle, this attack also trade-offs attack
impact against stealthiness. To evaluate the effectiveness of
FLAME against this attack, we test the Krum-based attack
proposed by [20] on FLAME. Since [20]’s evaluation uses
image datasets, we evaluate FLAME’s resilience against it
with CIFAR-10. The evaluation results show that although
the attack significantly damages the model by reducing MA
from 92.16% to 46.72%, FLAME can successfully defend
against it and MA remains at 91.31%.

G Performance of Private FLAME
For our implementation, we use the STPC framework
ABY [14] which implements the three sharing types, includ-
ing state-of-the-art optimizations and flexible conversions and
the open-source privacy-preserving DBSCAN by Bozdemir
et al. [10]. All STPC results are averaged over 10 experiments
and run on two separate servers with Intel Core i9-7960X
CPUs with 2.8 GHz and 128 GB RAM connected over a 10
Gbit/s LAN with 0.2 ms RTT.
Approximating HDBSCAN by DBSCAN. We measure the
effect of approximating HDBSCAN by DBSCAN including
the binary search for the neighborhood parameter e. The
results show that our approximation has a negligible loss
of accuracy. For some applications, the approximation even
performs slightly better than the standard FLAME, e.g., for
CIFAR-10, private FLAME correctly filters all poisoned mod-
els, while standard FLAME accepts a small number (TNR =
86.2%), which is still sufficient to achieve BA = 0.0%.
Runtime of Private FLAME. We evaluate the runtime in
seconds per training iteration of the cosine distance, Euclidean
distance + clipping + model aggregation, and clustering steps
of Alg. 1 in standard (without STPC) and in private FLAME
(with STPC). The results show that private FLAME causes a
significant overhead on the runtime by a factor of up to three
orders of magnitude compared to the standard (non-private)
FLAME. However, even if we consider the largest model
(Reddit) with K = 100 clients, we have a total server-side
runtime of 22 081.65 seconds (⇡ 6 hours) for a training itera-
tion with STPC. Such runtime overhead would be acceptable
to maintain privacy, especially since mobile phones, which
would be a typical type of clients in FL [38], are not always
available and connected so that there will be delays in syn-
chronizing clients’ model updates in FL. These delays can
then also be used to run STPC. Furthermore, achieving prov-
able privacy by using STPC may even motivate more clients
to contribute to FL in the first place and provide more data.
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Comments on “Privacy-Enhanced Federated Learning
Against Poisoning Adversaries”

Thomas Schneider , Ajith Suresh , and Hossein Yalame

Abstract— Liu et al. (2021) recently proposed a privacy-
enhanced framework named PEFL to efficiently detect poisoning
behaviours in Federated Learning (FL) using homomorphic
encryption. In this article, we show that PEFL does not preserve
privacy. In particular, we illustrate that PEFL reveals the entire
gradient vector of all users in clear to one of the participating
entities, thereby violating privacy. Furthermore, we clearly show
that an immediate fix for this issue is still insufficient to achieve
privacy by pointing out multiple flaws in the proposed system.

Index Terms— Federated learning (FL), homomorphic encryp-
tion, poisoning and inference attacks, data privacy.

I. INTRODUCTION

Federated Learning (FL) is a new distributed machine
learning approach that allows multiple entities to jointly train a
model without sharing their private and sensitive local datasets
with others. In FL, clients locally train models using their
local training data, then send model updates to a central
aggregator, which merges them into a global model. FL is
used in a variety of applications such as word prediction for
mobile keyboards in GBoard [1] and medical imaging [2].
Despite its benefits, FL has been shown to be susceptible
to model poisoning [3] and inference attacks [4]. In model
poisoning attacks, an adversary injects poisoned model updates
by corrupting a subset of clients, with which the adversary can
compromise the user’s data privacy as well as the FL model’s
integrity [5], [6]. The recent work of Liu et al. [7] proposed a
privacy-enhanced framework called PEFL to detect poisoning
behaviors in FL. PEFL aims to prevent malicious users from
inferring memberships by uploading malicious gradients and
semi-honest servers from invading users’ privacy. Furthermore,
PEFL claims to be the first effort to detect poisoning behaviors
in FL while using ciphertext and uses homomorphic encryp-
tion (HE) as the underlying technology.

In this article, we have a closer look at the PEFL system
of [7] and identify multiple privacy vulnerabilities. In partic-
ular, we show that each of the three main protocols in PEFL –
SecMed, SecPear, and SecAgg, reveals significant information
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about the user’s gradients to one of the computing servers
thereby compromising privacy. Furthermore, we demonstrate
that combining information from the protocols enables a
computation server to learn the gradient vectors of all users
in clear, thereby breaking the PEFL system.

II. LIU ET AL.’S PROTOCOLS ARE NOT PRIVATE

In this section, we revisit the Privacy Enhanced Federated
Learning (PEFL) system in [7], but with our notations for
clarity. We begin with an overview of PEFL’s four entities:

• Key Generation Center (KGC): Trusted entity managing
public and private keys (pk, sk) for HE.

• Data Owners (Ux ): Each data owner Ux , for x ∈ [m],
locally trains the local model on their data and computes
the gradient vector g⃗x = {g1

x , . . . , gn
x }. Here, m denotes

the total number of users in the system and n denotes the
dimension of the gradient vector.

• Service Provider (SP): SP receives all gradients submitted
by data owners and aggregates them (usually by averag-
ing) to produce an optimized global model.

• Cloud Platform (CP): CP assists SP in the computations
and operates on a pay-per-use basis.

The threat model assumes that SP and CP are both semi-
honest, whereas data owners can be maliciously corrupt. Fur-
thermore, the four entities mentioned above are non-colluding.

We now examine the PEFL system in-depth, focusing on the
amount of information visible to each entity. More specifically,
we are interested in how much information the cloud platform
(CP) learns from the protocol execution.

A. Calculation of Gradients

The protocol begins with each user Ux training the model
locally and obtaining the corresponding gradient vector g⃗x =

{g1
x , . . . , gn

x }. User Ux then encrypts and sends the gradient
vector to SP using CP’s public key pkc. As shown in (1), the
gradient vectors corresponding to all users can be viewed as
a matrix G⃗m×n.

G⃗m×n =




c1 c2 · · · ci · · · cn−1 cn

U1 g1
1 g2

1 gi
1 gn−1

1 gn
1

U2 g1
2 g2

2 gi
2 gn−1

2 gn
2

Um g1
m g2

m gi
m gn−1

m gn
m




. (1)
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B. Median Computation Using SecMed

The SP and CP use the SecMed algorithm (cf.
Figure 4 in [7]) to compute the median value for each of
the n coordinates. SP sends gi

j + ri to CP for each user U j
corresponding to a coordinate ci , where ri denotes a random
pad sampled by SP for each coordinate ci (but the same for all
users). The CP decrypts and computes the medians based on
these padded values. The CP then encrypts the medians before
sending them to the SP. Finally, the SP removes the pad ri
to achieve the desired results g⃗y by utilizing the underlying
encryption scheme’s homomorphic property.

1) Leakage: The view of CP while executing SecMed is
consolidated in the matrix V⃗SecMed:

V⃗SecMed =




c1 ci cn

U1 g1
1 + r1 · · · gi

1 + ri · · · gn
1 + rn

Um g1
m + r1 · · · gi

m + ri · · · gn
m + rn


. (2)

We observe that for each coordinate ci , CP learns a “shifted”
distribution of gradients in clear across all users. This is clearly
a violation of privacy [5], [6] because it leaks a lot more
information to CP and thus does not meet the design goal
of ‘Privacy’ claimed in [7]. The main source of the leakage is
that SP uses same random pad ri for all users with respect
to a coordinate ci . While the aforementioned leakage could
be prevented by using different random pads across users,
we emphasize that the use of the same pad is unavoidable for
the SecMed algorithm to remain correct. In detail, the median
of gi

j values is calculated by first computing the median of
gi

j + ri , then removing ri from the result. This requires that
the same ri value be associated with each gi

j value, or the
computation’s correctness will be violated.

C. Computing Pearson Correlation Coefficient Using SecPear

Once the coordinate-wise medians are computed, the next
step in PEFL is to calculate the Pearson correlation coefficient
ρx,y between the coordinate-wise medians g⃗y and the gradient
of the user Ux . This is achieved via the SecPear protocol (cf.
Figure 5 in [7]) where SP communicates g⃗x · px and g⃗y · py
to CP. The view of CP in SecPear with respect to G⃗m×n is
V⃗SecPear:

V⃗SecPear =




c1 ci cn

U1 g1
1 · p1 · · · gi

1 · p1 · · · gn
1 · p1

Um g1
m · pm · · · gi

m · pm · · · gn
m · pm


. (3)

1) Leakage: Similar to the problem with SecMed above,
here CP learns the correlation between each coordinate in the
gradient vector g⃗x . SP uses the same random pad px for all
coordinates, which causes leakage. However, using different
pads for the coordinates does not address the issue since the
use of the same pad is required for the SecPear algorithm to
remain correct (cf. Proposition 1 in [7]). More elaborately, for
dx = g⃗x · px and dy = g⃗y · py , computation of ρx,y involves

computing the covariance Cov(dx , dy) and the standard devi-
ations σ(dx ) and σ(dy). As shown in Proposition 1 in [7], the
correctness of ρx,y relies on the following observations:

Cov(dx , dy) = px py · Cov(g⃗x , g⃗y),

σ (dx ) = px · σ(g⃗x ) , σ (dy) = py · σ(g⃗y).

If different pads are used for the coordinates, the above
relations do not hold, and hence ρdx ,dy =

Cov(dx ,dy)

σ (dx )σ (dy)
̸= ρx,y .

D. Aggregating the Gradients Using SecAgg

SecAgg, the final stage in PEFL, aggregates the gradients
after scaling them with a factor based on the Pearson cor-
relation coefficient calculated in SecPear. SP communicates
g⃗x + sx to CP for this purpose, as shown in V⃗SecAgg:

V⃗SecAgg =




c1 ci cn

U1 g1
1 + s1 · · · gi

1 + s1 · · · gn
1 + s1

· ·

Um g1
m + sm gi

m + sm gn
m + sm


. (4)

1) Leakage: Again, similar to SecMed, V⃗SecAgg reveals
a “shifted” distribution of each user’s gradient values across
all the coordinates to CP. When combining information from
V⃗SecPear (3) and V⃗SecAgg (4), a more significant leakage
occurs. Consider the gradient at coordinates i, j for user Ux .
From V⃗SecPear, CP learns a1 = gi

x · px and a2 = g j
x · px =

(gi
x · δ

i j
x ) · px where δ

i j
x = g j

x /gi
x . Similarly, CP learns

b1 = gi
x + sx and b2 = g j

x + sx = (gi
x + 1x

i j ) + sx from

V⃗SecAgg, where 1x
i j = g j

x − gi
x . Given that CP can compute

both δ
i j
x and 1x

i j in clear, CP learns gi
x and g j

x by solving the
equations. For instance, a2 = (gi

x + 1x
i j ) · px = a1 + 1x

i j · px
reveals px . Using this method, CP learns the entire gradient
matrix G⃗m×n, thereby breaching the PEFL system’s privacy.

E. Practical and Probabilistic Attacks

Another practical attack on PEFL would be to allow CP to
register as an honest user Um+1 in the PEFL system and sub-
mit its gradients. This action does not violate the semi-honest
assumption of CP in the PEFL threat model and may represent
scenarios in which CP has some side channel information
about some user gradients. Knowing g⃗m+1, CP learns ri for
all i ∈ [n] and hence the gradient matrix G⃗m×n given in (1) in
clear from (2) and thereby breaking the privacy of the entire
PEFL system.

Considering the matrices V⃗SecMed and V⃗SecPear together,
we note that it is sufficient for CP to be aware of just
one gradient, say gi

x , to compromise the system’s privacy.
In particular, gi

x will allow CP to learn the random pad ri
corresponding to the i-th coordinate ci in V⃗SecMed, revealing
the gradients of all users at that coordinate. Similarly, knowing
gi

x allows CP to learn the random pad px corresponding to
user Ux in V⃗SecPear and reveals the gradient vector g⃗x to
CP in clear. CP will now learn the entire gradient matrix
G⃗m×n by combining the information from V⃗SecMed and
V⃗SecPear.
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Finally, we note that CP can launch probabilistic attacks
by looking for similar values in the matrices V⃗SecMed and
V⃗SecPear and attempting to correlate the random pads. This
is possible in PEFL because CP is aware of the correlation
between different rows of V⃗SecMed as well as columns of
V⃗SecPear.
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ABSTRACT
Due to standardization, AES is today’s most widely used block
cipher. Its security is well-studied and hardware acceleration is
available on a variety of platforms. Following the success of the
Intel AES New Instructions (AES-NI), support for Vectorized AES
(VAES) has been added in 2018 and already shown to be useful to
accelerate many implementations of AES-based algorithms where
the order of AES evaluations is fixed a priori.

In our work, we focus on using VAES to accelerate the computa-
tion in secure multi-party computation protocols and applications.
For some MPC building blocks, such as OT extension, the AES oper-
ations are independent and known a priori and hence can be easily
parallelized, similar to the original paper on VAES by Drucker et
al. (ITNG’19). We evaluate the performance impact of using VAES
in the AES-CTR implementations used in Microsoft CrypTFlow2,
and the EMP-OT library which we accelerate by up to 24%.

The more complex case that we study for the first time in our
paper are dependent AES calls that are not fixed yet in advance
and hence cannot be parallelized manually. This is the case for
garbling schemes. To get optimal efficiency from the hardware,
enough independent calls need to be combined for each batch of
AES executions. We identify such batches using a deferred execu-
tion technique paired with early execution to reduce non-locality
issues and more static techniques using circuit depth and explicit
gate independence. We present a performance and a modularity-
focused technique to compute the AES operations efficiently while
also immediately using the results and preparing the inputs. Us-
ing these techniques, we achieve a performance improvement via
VAES of up to 244% for the ABY framework and of up to 28% for
the EMP-AGMPC framework. By implementing several garbling
schemes from the literature using VAES acceleration, we obtain a
171% better performance for ABY.
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privacy preserving machine learning, secure multi-party computa-
tion, VAES.
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1 INTRODUCTION
The primitive of choice for encryption and similar tasks is AES. It
is used for communication encryption [71, 83], disk storage encryp-
tion [21, 34], and database encryption [72] among other applica-
tions. To improve the performance and resource utilization of this
important primitive, the AES-NI extension to the x86 instruction set
was introduced [5, 56] with common implementations computing
AES-128 with ∼ 1.3 cycles/byte on one core [2].
History of VAES. Further improving on this, Intel has developed
support for vector AES (VAES) instructions [33] and shipped it
starting with their Ice Lake microarchitecture [35]. These VAES
instructions compute a single round of AES on different blocks,
using multiple different round keys [33, 56]. The original paper
of [33] already discussed the importance of batching data to the
vector AES-NI instructions and microarchitectural properties of
these instructions. The authors demonstrated how to apply VAES to
several modes of operations of block ciphers such as AES-CTR, AES-
CBC, AES-GCM, and AES-GCM-SIV with up to 4× performance
improvements. This increased throughput of AES in standardmodes
of operation can yield direct performance improvements for ap-
plications such as storage encryption, disk encryption, database
encryption, or secure channels (TLS) [21, 34, 72, 83, 86] and VAES
is already included in the popular OpenSSL library [89]. Subse-
quently, Drucker and Gueron showed how to use VAES to accelerate
Pseudo-Random Functions (PRFs) and Pseudo-Random Generators
(PRGs) [30]. Multiple NIST Post Quantum Cryptography Project
candidates use Deterministic Random Bit Generators (DRBGs) for
which the implementation of Drucker and Siri achieves up to 4×
performance improvement using VAES [29]. The contribution of
this VAES-accelerated DRBG was evaluated for the post-quantum
secure multivariate-polynomial signature scheme Rainbow [26]
in [31], and for the key encapsulation mechanism BIKE [6] in [32].
OurMotivation.What is common to all these applications of VAES
studied before is that the algorithm is fixed beforehand, and hence
the parallelization can be done manually. For maximum throughput
with VAES, the main challenge is to batch enough independent AES
calls together for the AES hardware units to be constantly busy and
not idle when processing blocks.

However, finding a good batching becomes much more challeng-
ing when the algorithm and hence sequence of AES operations is
not fixed in advance. Some AES operations can depend on the out-
put of others but some do not and many small memory-abstracted
library invocations are expensive. This batching problem and its
solutions are not unique to AES on x86-64 using VAES (which is
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Table 1: Summary of our performance improvements. New Batched AES-NI indicates whether the implementation received
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Table 1: Summary of our performance improvements. New Batched AES-NI indicates whether the implementation received
an additional batching AES-NI implementation. VAES indicates whether the performance improvement includes VAES.

Framework New Batched AES-NI VAES Max. Total Improv.
ABY (Ref) [13, 25, 97] ✓ ✓ 244%
ABY (Custom) [25, 40, 41, 97] ✗ ✓ 171%
EMP-OT [90] ✗ ✓ 30%
EMP-AGMPC [90, 92] ✓ ✓ 24%
CrypTFlow2 [82] ✗ ✓ 52%

our focus). It can be generalized to all non-trivial implementations
of cryptographic primitives which includes pipelined AES imple-
mentations on ARM [7], bitsliced AES implementations [17, 63]
as well as more unusual techniques like instance-vectorized hash
functions. A natural area where such complex dependencies oc-
cur is Secure Multi-party Computation (MPC), especially garbled
circuits [10, 40, 67, 85, 95, 97], which is why we use them for as-
sessing the performance impact for VAES. More concretely, with
garbled circuits, typically binary circuits using primarily AND and
XOR gates are evaluated with XOR gates only requiring XOR oper-
ations [67], whereas AND gates do require AES operations to be
and sending ciphertexts. These garbled circuits can then be used
for high performance secure two-party computation, interactive
zero-knowledge proofs of arbitrary statements [44, 60, 97], and
other applications.

MPC allows to securely compute a public function on private
input data provided by multiple parties and hence is an interactive
way for computing under encryption. Since several years, a multi-
tude of companies, including Alibaba, Bosch, NTT, and Unbound
among many others in the MPC Alliance [4], are working on MPC
technology. We study the ABY framework [25] for passively secure
two-party computation and the EMP-AGMPC [90, 92] framework
for actively secure multi-party computation. As we are manually
changing the implementation of these schemes without changing
the protocols, we substantially increase the deployability of these
frameworks and dependent works as well as providing guidance to
how similar effects can be achieved for similar frameworks.

Privacy-preserving machine-learning (PPML) is a popular ap-
plication of MPC. Here, general machine-learning techniques are
run on private data while also protecting the model parameters.
The private output is the inference or training result [39]. PPML
has become a hot topic in recent years and gained the attention of
major software, service and hardware vendors, e.g., Facebook [66],
Google [16], Intel [15], and Microsoft [82], all of whom are working
on increasing its practicality. Applications of PPML include private
healthcare-based inference, e.g., to predict illnesses [22, 69, 84], pri-
vate healthcare model training to acquire models without having
to reveal patient data [1], and private clustering to partition data
according with common features [73]. In particular, in this work,
we discuss private ML inference in the state-of-the-art framework
Microsoft CrypTFlow2 [82] where one party holds a pre-trained
model and the other a data item to be classified and then the proto-
col allows classification using the model without the two parties
revealing their private inputs. We improve CrypTFlow2 [82] using
VAES. As our focus lies on manual implementation improvements,

we substantially increase such PPML applications’ deployability
without sacrificing compatibility or security.
Our Contributions. Our main contributions are as follows:

• We expand the focus of VAES from microarchitectural issues
where the order of AES operations is fixed a priori, to proto-
col and implementation design where the sequence of AES
operations is not known in advance. For this, we introduce
automatic batch identification and computation techniques
for efficient use of AES in complex security applications.

• We report the first performance measurements for VAES
in the area of Multi-Party Computation (MPC) and show
performance improvements for the MPC frameworks ABY,
EMP-OT and EMP-AGMPC, as well as the PPML framework
CrypTFlow2. Our improvements are summarized in Table 1.

• We provide our implementations for re-use by others and
as guidance for future implementation efforts at https://
encrypto.de/code/VASA.

Outline. The rest of this paper is organized as follows: We start
with providing the necessary background on the investigated types
of MPC and the hardware acceleration of AES in x86 processors
(§ 2). Next, we provide context to our work with related work (§ 3).
Following that, we describe our computational framework for ef-
ficient batch identification and computation and how we applied
it (§ 4). Next, we evaluate and discuss the performance of the ap-
plications (§ 5). Finally, we conclude and provide possible future
research directions (§ 6).

2 BACKGROUND
In this section, we provide a brief background on secure multi-party
computation and how AES is computed using AES-NI and VAES
on x86-based processors.

2.1 AES Computation
There are two instruction set extensions on x86 for providing func-
tionality relating to the computation of AES: the AES new instruc-
tions (AES-NI) and the vector AES instructions (VAES) [5, 33, 56].
For the encryption direction, the key instructions from these ex-
tensions are AESENC and AESENCLAST which compute a single AES
round and the last AES round, respectively. The difference between
AES-NI and VAES is the instructions’ width and how many blocks
and round keys they work with: AES-NI is restricted to one and
VAES also allows two or four. Thus, one can compute AES-128 by
chaining an XOR operation with nine AESENC and one AESENCLAST
using a pre-expanded key. The key expansion itself can also take

our focus). It can be generalized to all non-trivial implementations
of cryptographic primitives which includes pipelined AES imple-
mentations on ARM [7], bitsliced AES implementations [17, 63]
as well as more unusual techniques like instance-vectorized hash
functions. A natural area where such complex dependencies oc-
cur is Secure Multi-party Computation (MPC), especially garbled
circuits [10, 40, 67, 85, 95, 97], which is why we use them for as-
sessing the performance impact for VAES. More concretely, with
garbled circuits, typically binary circuits using primarily AND and
XOR gates are evaluated with XOR gates only requiring XOR oper-
ations [67], whereas AND gates do require AES operations to be
and sending ciphertexts. These garbled circuits can then be used
for high performance secure two-party computation, interactive
zero-knowledge proofs of arbitrary statements [44, 60, 97], and
other applications.

MPC allows to securely compute a public function on private
input data provided by multiple parties and hence is an interactive
way for computing under encryption. Since several years, a multi-
tude of companies, including Alibaba, Bosch, NTT, and Unbound
among many others in the MPC Alliance [4], are working on MPC
technology. We study the ABY framework [25] for passively secure
two-party computation and the EMP-AGMPC [90, 92] framework
for actively secure multi-party computation. As we are manually
changing the implementation of these schemes without changing
the protocols, we substantially increase the deployability of these
frameworks and dependent works as well as providing guidance to
how similar effects can be achieved for similar frameworks.

Privacy-preserving machine-learning (PPML) is a popular ap-
plication of MPC. Here, general machine-learning techniques are
run on private data while also protecting the model parameters.
The private output is the inference or training result [39]. PPML
has become a hot topic in recent years and gained the attention of
major software, service and hardware vendors, e.g., Facebook [66],
Google [16], Intel [15], and Microsoft [82], all of whom are working
on increasing its practicality. Applications of PPML include private
healthcare-based inference, e.g., to predict illnesses [22, 69, 84], pri-
vate healthcare model training to acquire models without having
to reveal patient data [1], and private clustering to partition data
according with common features [73]. In particular, in this work,
we discuss private ML inference in the state-of-the-art framework
Microsoft CrypTFlow2 [82] where one party holds a pre-trained
model and the other a data item to be classified and then the proto-
col allows classification using the model without the two parties
revealing their private inputs. We improve CrypTFlow2 [82] using
VAES. As our focus lies on manual implementation improvements,

we substantially increase such PPML applications’ deployability
without sacrificing compatibility or security.
Our Contributions. Our main contributions are as follows:

• We expand the focus of VAES from microarchitectural issues
where the order of AES operations is fixed a priori, to proto-
col and implementation design where the sequence of AES
operations is not known in advance. For this, we introduce
automatic batch identification and computation techniques
for efficient use of AES in complex security applications.

• We report the first performance measurements for VAES
in the area of Multi-Party Computation (MPC) and show
performance improvements for the MPC frameworks ABY,
EMP-OT and EMP-AGMPC, as well as the PPML framework
CrypTFlow2. Our improvements are summarized in Table 1.

• We provide our implementations for re-use by others and
as guidance for future implementation efforts at https://
encrypto.de/code/VASA.

Outline. The rest of this paper is organized as follows: We start
with providing the necessary background on the investigated types
of MPC and the hardware acceleration of AES in x86 processors
(§ 2). Next, we provide context to our work with related work (§ 3).
Following that, we describe our computational framework for ef-
ficient batch identification and computation and how we applied
it (§ 4). Next, we evaluate and discuss the performance of the ap-
plications (§ 5). Finally, we conclude and provide possible future
research directions (§ 6).

2 BACKGROUND
In this section, we provide a brief background on secure multi-party
computation and how AES is computed using AES-NI and VAES
on x86-based processors.

2.1 AES Computation
There are two instruction set extensions on x86 for providing func-
tionality relating to the computation of AES: the AES new instruc-
tions (AES-NI) and the vector AES instructions (VAES) [5, 33, 56].
For the encryption direction, the key instructions from these ex-
tensions are AESENC and AESENCLAST which compute a single AES
round and the last AES round, respectively. The difference between
AES-NI and VAES is the instructions’ width and how many blocks
and round keys they work with: AES-NI is restricted to one and
VAES also allows two or four. Thus, one can compute AES-128 by
chaining an XOR operation with nine AESENC and one AESENCLAST
using a pre-expanded key. The key expansion itself can also take
advantage of the AESENCLAST instruction and is most efficiently
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done using the technique of Gueron et al. [40]. As most modern
x86 processors providing the AES extensions are pipelined, the data
dependency between the AES instructions can lead to pipeline stalls
if not filled otherwise. This is the reason why multiple independent
AES calls are batched together, allowing interleaved execution of
the instructions, i.e., starting execution of the second round of all
batched AES calls before starting execution of the third round of
any one of them.

This leads to optimal, minimal sizes for batches of AES calls
which depend on the microarchitecture involved as they need to
hide the latency of the instructions using the throughput and the
width of the instructions. A summary of these performance char-
acteristics using the data of [38] for modern x86 processor archi-
tectures is provided in Table 2. The performance characteristics of
128-bit AES instructions have remained the same for all successors
of AMD’s Zen architecture so far. Also the performance character-
istics of the AESENC and AESENCLAST instructions are identical.

Table 2: AES-NI and VAES instruction latencies, through-
put [38], and resulting minimal batch size for optimal effi-
ciency. Width 128 bits corresponds to AES-NI and other val-
ues are VAES. Cycles per instruction is abbreviated as “cy-
c/instr”.
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Architecture Width Latency Throughput Minimal
[bits] [cycles] [cyc/instr] Batch Size

Intel Haswell 128 7 1 7
Intel Skylake 128 4 1 4
Intel IceLake 128 3 0.5 6

256 3 0.5 12
512 3 1 12

AMD Zen 128 4 0.5 8
AMD Zen3 256 4 0.5 16

2.2 Secure Multi-Party Computation
The goal of secure multi-party computation (MPC) is to compute
arbitrary functions among multiple parties on private inputs only
known to one party each [12, 14, 78, 94, 95]. Most relevant for this
work are protocols for oblivious transfer (OT), garbled circuits (GC),
and privacy-preserving machine-learning (PPML).

Oblivious Transfer (OT). In oblivious transfer, one party (the
receiver) inputs a choice bit and the other (the sender) supplies
two messages. The receiver then learns only the message cor-
responding to the choice bit. The computation of OT protocols
typically uses a small number of invocations of a public-key-based
OT protocol [23, 74] to extend to a larger number of OTs using
symmetric cryptography [8, 9, 57]. The primary bottleneck of
these OT extension protocols are the communication time, the
computation of a bit matrix transposition, and the computation
of encryption operations using AES [8]. Common variants of the
above OT functionality which allow to decrease communication
are random OT (R-OT) where the sender gets two random strings
and the receiver gets one of them depending on the choice bit, and

correlated OT (C-OT) where the sender can input a correlation
that the returned strings have to satisfy. Additionally, there has
been a line of research looking to further minimize the com-
munication needed for C-OT using a learning parity with noise
(LPN) assumption [18, 19, 93]. These pseudo-random correlation
generators (PCGs), like FERRET [93], reduce communication at
the expense of computation, and increased complexity where
a large matrix-vector product with randomized entries is computed.

Garbled Circuits (GC). Secure computation of general functions
is typically performed using a circuit-oriented representation of
that function. Garbled circuits (GCs) are one approach for this,
originally proposed for two parties [95] and later generalized
multiple parties [12]. In GC, the key invariant is that each wire’s
value is represented by two random keys which represent the
zero and one bits. The garbling party knows both wire keys and
the evaluating party only ever learns one key for each wire. For
each gate a garbled table is generated forming the garbled circuit,
to allow translation of a given pair of gate-input-wire keys to
the output wire key corresponding to the correct output bit. The
evaluator obtains the keys corresponding to the circuit input wires
via OT. Early constructions [12, 75, 95] used garbled tables that
could effectively be generated in parallel due to a lack of data
dependencies. However, more modern schemes like free-XOR [67],
HalfGates [97], or PRF-based garbling [40] require a topologically
ordered processing of gates in exchange for requiring only two
ciphertexts instead of three per AND gate, and XOR gates require
no communication in free-XOR [67] or one ciphertext in PRF-
garbling [40]. As these schemes require at least four applications of
a cryptographic function on some counter or gate identifier as well
as the gate input keys to generate the tables, most implementations
use AES with a fixed key [13, 42] though instantiations with
variable keys were also proposed in [40, 41]. Yao’s garbled circuits
protocol described above initially provides security against passive
adversaries [70] and there have been extensions in research to
security against active adversaries [51, 76, 77, 91, 92] that can
arbitrarily deviate from the protocol specification. The latest of
these schemes [91, 92] uses the free-XOR optimization [67] and
parties jointly compute authenticated versions of the garbled
tables so that a malicious garbler does not know the actual tables
nor can tamper with them while a malicious evaluator only sees
random-looking ciphertexts.

AES vs. LowMC. With free-XOR [67] and the S-box of [17], a
Boolean circuit for AES consists of 5 210 AND gates [47]. Starting
with LowMC [3], several dedicated MPC-friendly block ciphers
have been designed that minimize the number of AND gates (or
also multiplicative depth) over AES [3, 27, 28, 61]. Due to their
smaller and/or shallower circuits, such MPC-friendly block ciphers
improve the function that is evaluated via MPC, e.g., to privately
evaluate a block cipher, called Oblivious Pseudo-Random Function
(OPRF) [81], which has several applications like private set intersec-
tion for unbalanced set sizes in private contact discovery [62, 65].
However, the MPC protocols themselves are still implemented with
AES (e.g., garbling schemes, OT extension, or PRFs). The reason for
that is the superb performance of hardware acceleration of AES in
today’s CPUs which are highly optimized ASICs that require only
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protocol described above initially provides security against passive
adversaries [70] and there have been extensions in research to
security against active adversaries [51, 76, 77, 91, 92] that can
arbitrarily deviate from the protocol specification. The latest of
these schemes [91, 92] uses the free-XOR optimization [67] and
parties jointly compute authenticated versions of the garbled
tables so that a malicious garbler does not know the actual tables
nor can tamper with them while a malicious evaluator only sees
random-looking ciphertexts.

AES vs. LowMC. With free-XOR [67] and the S-box of [17], a
Boolean circuit for AES consists of 5 210 AND gates [47]. Starting
with LowMC [3], several dedicated MPC-friendly block ciphers
have been designed that minimize the number of AND gates (or
also multiplicative depth) over AES [3, 27, 28, 61]. Due to their
smaller and/or shallower circuits, such MPC-friendly block ciphers
improve the function that is evaluated via MPC, e.g., to privately
evaluate a block cipher, called Oblivious Pseudo-Random Function
(OPRF) [81], which has several applications like private set intersec-
tion for unbalanced set sizes in private contact discovery [62, 65].
However, the MPC protocols themselves are still implemented with
AES (e.g., garbling schemes, OT extension, or PRFs). The reason for
that is the superb performance of hardware acceleration of AES in
today’s CPUs which are highly optimized ASICs that require only
∼ 1.3 cycles/byte on one core using AES-NI [2]. In our paper, we
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show how the efficiency of such implementations of MPC protocols
can be further improved by using VAES.

Privacy-Preserving Machine-Learning (PPML). The goal of
PPML is to apply machine-learning techniques while preserving
the privacy of the data and models [37, 39, 45, 64]. While this
application can include training and inference [39], we focus
on inference, in particular on inference for neural networks as
done in Microsoft CrypTFlow2 [82]. This involves computing the
linear and non-linear stages using optimized protocols for the
client’s private data input and the server’s private model input,
only yielding the result to the client. We note that the practicality
of PPML has improved drastically over time to the point where
now accurate, full-sized neural network inference is possible
in a privacy-preserving setting even on moderately powerful
hardware [82].

3 RELATEDWORK
In this section, we discuss how our work relates to previous work.
In particular, we discuss the relation to previous protocol-level and
implementation-level improvements.

3.1 Protocol-Level Improvements
One primary direction for research in the past has been to improve
the protocols themselves, e.g., by reducing the amount of communi-
cation or the number of invocations to computationally expensive
primitives [10, 43, 67, 75, 85, 91, 97]. In addition, some works handle
the circuit generation for MPC protocols from specifications in a
high-level language by using industry-grade hardware synthesis
tools and tweaking them for logic synthesis [24, 46, 79, 87]. Our
work is largely orthogonal to these approaches as we focus on im-
proving the implementations and the frameworks used for them.
However, there are advances in protocol design which significantly
complicate efficient implementation, e.g., the requirement for gates
in circuits to be processed in topological order [40, 67, 97]. There
have been prior works that modified the protocol and increased
communication to allow for more efficient computation [55], but
we do not follow their approach and maintain protocol compati-
bility. This focus on implementation improvements for relatively
low-level building blocks allows protocol compatible performance
improvements for the discussed protocols and those building on
top of it. Such works include Cerebro [98], TinyGarble2 [52], and
CrypTFlow2 [82] all of which build on EMP [90] and can thus profit
from our improvements of EMP.

3.2 Implementation-Level Improvements
Another major direction has been improving the implementation
of the protocols. This has seen four sub-directions: Improving the
performance of individual operations, improving the parallelization
of the implementation, improving the memory behavior, and using
dedicated hardware to accelerate computationally expensive steps.

Operations. In OT extension, bit matrix transposition is one of the
most computationally expensive operations [8]. Previous optimiza-
tions of this operation have been using an asymptotically optimal

transposition algorithm [36], or 128-bit vector registers [90]. We
improve on the latter through the use of wider AVX512 vector
registers instead. Beyond this, OT extension has been a major
application of fixed-key AES [13] on which we improve through
the use of VAES instead of AES-NI for the implementation. Fur-
thermore, there have been efforts to increase the performance of
individual operations in GC, e.g., improving the implementation
performance of the individual garbling and evaluation operations
for individual gates [13, 40]. We improve upon these prior works
by considering multiple gates of the same type at once. A natural
question is, whether a library like OpenSSL can be used for
implementing AES operations. This is an appropriate solution if
only large batches of AES calls occur and these are well-supported
by OpenSSL. However, this would not allow the use of VAES which
is currently not used by OpenSSL, and it would bring significant
overhead for smaller batches due to thememory abstraction needed.

Parallelization. Previous work to parallelize the evaluation
of garbled circuits has seen coarse- and fine-grained ap-
proaches [11, 20, 50, 55]. Coarse-grained approaches [11, 20]
are typically used to have multiple threads compute different
parts of the same garbled circuit and are largely orthogonal to our
in-thread optimizations of the computation strategy. Alternatively,
they may have traded communication, e.g., not using free-XOR,
for added parallelism to exploiting using dedicated hardware like
graphics processing units or Intel Quick Assist Technology [55].
The more fine-grained approaches [11, 20] have primarily focused
on using a layering technique, as we also discuss, however, intend-
ing to outsource the work to different threads instead of exploit the
high instruction-level parallelism that modern processors provide.
Additionally, previous work has suggested splitting the garbling
and the evaluating roles with a suitable sub-division of circuits [20]
or overlapping the computation with the garbling and evaluation
operations [50], both of which are orthogonal to what we do.

Memory Behavior. A smaller line of previous research has
explored the limitation of memory use for GC [48, 52, 68, 87, 96].
Their motivation for this was two-fold in allowing the computation
of large circuits not fitting into most memory configurations and
improving locality for caches through smaller code and data. We
note that the techniques to only partially load circuits into memory
are orthogonal to ours, requiring at most invoking early execution
occasionally. We also consider cache locality important. However,
our focus is more on the actual computation and the first-level
cache as opposed to keeping the data in a cache at all.

Hardware-Acceleration. There has been a line of research using
field-programmable gate-arrays (FPGAs) to accelerate garbled cir-
cuit operations [53, 54, 58, 59, 88]. Our work is independent of and
alternative to the main contributions of these prior works. However,
the scheduling discussed for FASE [53] is similar for hardware to
what we do for identifying batches, though their techniques are
focused on the specific dedicated hardware architecture they build,
making it unsuitable for our software-oriented approach.
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4 OUR FRAMEWORK
The first step in our manually implemented techniques to apply
VAES is the identification of batches of independent AES calls for
small-scale batch processing (§ 4.1). The second step is to process
the AES operations (§ 4.2). Finally, we show how we used these
techniques with the ABY [25], EMP-OT [90], CrypTFlow2 [82], and
EMP-AGMPC [90, 92] frameworks (§ 4.3).

4.1 Batch Identification
For identifying batches, we use two approaches: dynamic batching
and static batching. Dynamic batching primarily uses runtime infor-
mation for minimally invasive batching. Static batching provides
reusable batching information from preprocessing but requires
more substantial changes to the code.

4.1.1 Dynamic Batching. The core idea behind dynamic batching
is to defer execution of operations until they are actually needed
and to compute all pending operations when one is needed. In
processing circuits, the application of this works by modifying the
main processing loop iterating over all gates and adding AES-based
AND gates to a queue and processing all queued AND gates as a
batch once any one of them is referenced as an input dependency.
An example of when the processing is invoked is provided in Fig. 1.
Implementing this technique requires potentially a few hours of
manual effort to identify the core processing loop, to implement
the deferred execution identification, and to identify relevant
modifications and extensions which we briefly discuss next.

Correctness Extensions. The basic technique works well if there
is one type of non-free gates requiring AES operations. However,
some schemes have AND and XOR operations requiring AES
operations using a shared gate index counter to uniquely produce
values per-gate. For these, new design space choices manifest,
in particular, whether it is possible and desirable to separate the
domains of the counters or to track the gate identifiers as well
and not just the minimal information for computing the gate.
Additionally, one can imagine that it is possible to not maintain
separate queues for the different gate types but rather join them
into a shared one which complicates the gate processing at the
potential of gained performance through more AES calls being
potentially batched together to reach minimum optimal batch
size even in complex circuits. Furthermore, we note that dynamic
batching can be combined with the approach of having a variable
number of cryptographic gates associated with an administrative
gate, in which case it is beneficial to track the number of actual
gate tasks associated with each administrative gate and keep a
global count to allow the batch processing algorithm to choose
appropriate sub-batches. Both of these extensions each require a
few hours of effort for the architectural changes.

Optimizations. The basic batching techniques have further op-
timizations. First, the use of this batching can inadvertently lead
to significant gaps in time between visiting and enqueuing a gate
and processing it, meaning it might be pushed out of registers or
lower-level caches. To avoid such unloads, one should consider
to regularly empty the queue by processing the stored tasks even
if more tasks could still be added without violating correctness.

This holds especially true if any given processed sub-batch only
processes a small number of gates, e.g., b = 4, and the queue has
reached a size that is a multiple of b. Additionally, one can con-
sider to only partially process the stored tasks in the queue using
a multiple of the preferred processing width to potentially allow
more gates to be directly enqueued without triggering processing
at an undesirable length. When the basic technique encounters an
AND gate referencing a queued AND gate, it will always trigger
the computation of all queued AND gates. Another optimization in
this scenario is to check whether the referenced AND gate is early
enough in the queue which is guaranteed to have been processed
once the processing reaches the current AND gate and then en-
queueing the current AND gate without triggering processing. The
implementation effort for these optimizations potentially requires
a few hours of effort on top of the basic queue implementation.

4.1.2 Static Batching. A different approach than the dynamic tech-
nique is to preprocess the circuit to gain more holistic information
on batching opportunities. These techniques can be paired with
dynamic batching techniques for further improved efficiency. The
three techniques we discuss are layering (identifying layers of
dependencies), SIMD (grouping multiple guaranteed independent
gates into one administrative one), and a more generic smart
arrangement.

Layering. Layering techniques assign a gate to howmany non-free
gates lie between it and the original input. Non-free gates on
equal layers are then necessarily independent and each layer can
be seen as a batch of AES calls to be computed. An example of
associated layers is provided in the right graph of Fig. 1. Layering
can be done in addition to dynamic batching which can potentially
identify independent tasks across layers, e.g., if the first gate of
the second layer references the first gate of the first layer and
early evaluation or peephole optimizations allow such batches.
The effort to add layering support to an implementation varies
significantly with the architecture and can range from a few hours
for adding, computing and using the attribute to significantly more
if a more complex processing strategy than a sequential loop is used.

SIMD. Single-instruction multiple-data (SIMD) gates are explicitly
specified administrative gates that represent the same gate being
applied to multiple input wires in parallel. They present natural
opportunities for batches and even allow batching techniques in
more complex gate scheduling scenarios where other techniques
are not applicable. The cost to this is either the identification of
such SIMD tasks or the need for the execution of a circuit several
time as a batch as well as the need for explicit program-level
representation. Similarly to layering, the implementation cost for
SIMD gates varies with the architecture and can quickly take a
dozen or more hours. As all gate processing methods need to be
SIMD-aware, gates must be extracted and collected and SIMD gates
must be specified or detected in a given circuit description.

Smart Arrangement. This technique is more general and provides
heuristics for circuit generators and manually optimized building
blocks of gates. For example, circuit generators should output cir-
cuits that allow circuit-internal SIMD gate operations and prefer
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Figure 1: A simple 1-bit adder with different manually chosen gate orderings as an illustrative example for the freedom of
topological ordering. Solid black arrows denote data dependencies, red dashed arrows denote one possible sub-optimal order-
ing in the left graph and green dotted arrows show a preferable ordering in the right graph. The “Eval” marks denote places
where dynamic batching with free XORs would trigger processing of the queued fresh AND gates. All unfilled nodes are on
the first layer in the right figure and all light-blue-filled nodes are on the second layer. A layer is defined to be the set of all
nodes with the same amount of non-free (AND) gates between them and the input on the critical path.

larger layers over smaller layers. An example of such improved gate
arrangement is provided from the left to the right graph in Fig. 1.
Additionally, locality has to be considered when generating circuits,
i.e., usage of wires must stay close to where they are generated as
not to push the wire values out of caches, while maintaining enough
distance to allow batching on current and more instruction-level
parallel future architectures.

4.2 Batch Computation
After one has identified a batch of independent AES calls, they
need to be computed. For this, we have used two techniques:
register-oriented computation, which focuses on performance and
simplicity to the compiler, and memory-oriented computation,
which focuses on modularity.

4.2.1 Register-Oriented Computation. Our primary technique for
processing batches describes the task computations as low-level
as possible without resorting to assembly. By using vector regis-
ter types and constant-sized loops we give the compiler as many
opportunities for optimization as possible while still allowing the
conciseness of high-level code. Concretely, we have identified five
steps executed continuously in a loop for all tasks.

1) Fill the appropriate lanes of the vector values with the task-
specific data, both non-vector computable and loaded data, e.g., the
lane 0 (the lowest 128 bit of the value) of all three virtual registers
are assigned to gate 0, whereas lane 1 of all three is assigned to
gate 1 and hold the input wire keys and a processed garbled table
value. 2) Perform vectorizable operations on the input data, e.g.,
deriving computed inputs from loaded inputs with a global offset. 3)
Perform the AES operations on the prepared inputs and keys with a

sufficiently large batch size. 4) Execute vectorizable post-processing
on the results and potentially other input values, e.g., XORing pairs
of AES outputs as required by the scheme. 5) Do the remaining
post-processing and scatter the data back to memory, e.g., handle
operations that cannot be vectorized and where data needs to be
extracted from the vectors first. Then, write the values back to the
memory location where they are expected.

The cost of such a low-level approach is, of course, that not just
the AES code needs to be re-written to satisfy the types of each used
architecture and extension but also the immediately surrounding
code leading to significant code duplication. An example imple-
mentation for HalfGate’s [97] AND evaluation with fixed keys [13]
and VAES is given in Listing 1 in Appendix A. Depending on the
familiarity of the developer with the available platform instructions,
their invocation, and the availability of validation methods, this
register-oriented technique can be implemented within a few hours
per optimized functionality.

4.2.2 Memory-Oriented Computation. Our memory-oriented
technique addresses the code duplication concerns of the register-
oriented one but can result in less performance. In particular, it only
requires that a core primitive for this technique, e.g., electronic
codebook mode, is implemented in an architecture-specific way.
This core primitive is then used with a memory abstraction wher-
ever needed while ensuring a sufficiently large number of AES calls
for every invocation. The main loop for this only consists of three
steps: 1) perform the data loading and preprocessing, 2) let the
optimized library perform the operations, and 3) read the results
using the memory abstraction and post-processing and store them.
The pre-processing and post-processing steps for this approach can

Figure 1: A simple 1-bit adder with different manually chosen gate orderings as an illustrative example for the freedom of
topological ordering. Solid black arrows denote data dependencies, red dashed arrows denote one possible sub-optimal order-
ing in the left graph and green dotted arrows show a preferable ordering in the right graph. The “Eval” marks denote places
where dynamic batching with free XORs would trigger processing of the queued fresh AND gates. All unfilled nodes are on
the first layer in the right figure and all light-blue-filled nodes are on the second layer. A layer is defined to be the set of all
nodes with the same amount of non-free (AND) gates between them and the input on the critical path.

larger layers over smaller layers. An example of such improved gate
arrangement is provided from the left to the right graph in Fig. 1.
Additionally, locality has to be considered when generating circuits,
i.e., usage of wires must stay close to where they are generated as
not to push the wire values out of caches, while maintaining enough
distance to allow batching on current and more instruction-level
parallel future architectures.

4.2 Batch Computation
After one has identified a batch of independent AES calls, they
need to be computed. For this, we have used two techniques:
register-oriented computation, which focuses on performance and
simplicity to the compiler, and memory-oriented computation,
which focuses on modularity.

4.2.1 Register-Oriented Computation. Our primary technique for
processing batches describes the task computations as low-level
as possible without resorting to assembly. By using vector regis-
ter types and constant-sized loops we give the compiler as many
opportunities for optimization as possible while still allowing the
conciseness of high-level code. Concretely, we have identified five
steps executed continuously in a loop for all tasks.

1) Fill the appropriate lanes of the vector values with the task-
specific data, both non-vector computable and loaded data, e.g., the
lane 0 (the lowest 128 bit of the value) of all three virtual registers
are assigned to gate 0, whereas lane 1 of all three is assigned to
gate 1 and hold the input wire keys and a processed garbled table
value. 2) Perform vectorizable operations on the input data, e.g.,
deriving computed inputs from loaded inputs with a global offset. 3)
Perform the AES operations on the prepared inputs and keys with a

sufficiently large batch size. 4) Execute vectorizable post-processing
on the results and potentially other input values, e.g., XORing pairs
of AES outputs as required by the scheme. 5) Do the remaining
post-processing and scatter the data back to memory, e.g., handle
operations that cannot be vectorized and where data needs to be
extracted from the vectors first. Then, write the values back to the
memory location where they are expected.

The cost of such a low-level approach is, of course, that not
just the AES code needs to be re-written to satisfy the types of
each used architecture and extension but also the immediately
surrounding code leading to significant code duplication. An
example implementation for HalfGate’s [97] AND evaluation
with fixed keys [13] and VAES is given in Listing 1 in Appen-
dix A. Depending on the familiarity of the developer with the
available platform instructions, their invocation, and the avail-
ability of validation methods, this register-oriented technique
can be implemented within a few hours per optimized functionality.

4.2.2 Memory-Oriented Computation. Our memory-oriented
technique addresses the code duplication concerns of the register-
oriented one but can result in less performance. In particular, it only
requires that a core primitive for this technique, e.g., electronic
codebook mode, is implemented in an architecture-specific way.
This core primitive is then used with a memory abstraction wher-
ever needed while ensuring a sufficiently large number of AES calls
for every invocation. The main loop for this only consists of three
steps: 1) perform the data loading and preprocessing, 2) let the
optimized library perform the operations, and 3) read the results
using the memory abstraction and post-processing and store them.
The pre-processing and post-processing steps for this approach can
use platform-independent instructions lowering code duplication
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Table 3: Overview of improved frameworks, used batch identification methods, and batch computation strategies used.

Batch Identification (§ 4.1)
Framework (§ 4.3) Dynamic (§ 4.1.1) Static (§ 4.1.2) Computation (§ 4.2)
ABY [25] (§ 4.3.1) Non-Free-XOR + SIMD SIMD Register-Oriented (§ 4.2.1)

EMP-OT [90] (§ 4.3.2) — — Memory-Oriented (§ 4.2.2)
EMP-AGMPC [90, 92] (§ 4.3.3) Regular-Early-Execution — Memory-Oriented (§ 4.2.2)

CrypTFlow2 [82] (§ 4.3.4) — — Memory-Oriented (§ 4.2.2)

use platform-independent instructions lowering code duplication
for handling a batch of gates at a time. However, this technique has
performance overhead if implemented this way as implementing
counter-mode can be significantly slower than with a dedicated
implementation as the compiler might generate general-purpose
64-bit store instructions and adds from the abstract code. In con-
trast, a direct use of 64-bit vector additions might be significantly
faster. An example implementation for EMP-AG2PC’s [90, 91]
AND evaluation with fixed keys [13] and VAES is given in Listing 2
in Appendix A. As this technique favors engineering efficiency
over runtime efficiency, the required effort for its implementation
is generally a few hours if a pre-existing implementation can be
adapted and some form of batch identification has already been
implemented.

4.3 Frameworks
To measure the performance impact of batching, VAES, and the
above techniques we have applied them to the MPC frameworks
and libraries ABY [25], EMP-OT [90], and EMP-AGMPC [90], and
the PPML framework Microsoft CrypTFlow2 [82]. We will now
briefly discuss our changes to each framework and library and
provide an overview in Table 3.

4.3.1 ABY. We chose to use ABY [25] as it is a flexible, optimized
framework for mixed-protocol secure two-party computation. For
our modifications, we targeted the GC subcomponent of ABYwhich
uses HalfGates garbling [97] with a fixed AES key [13] and invokes
OpenSSL individually for every single AES operation used. We
changed this fixed-key AES garbling, which we call “PRP” based on
the public random permutation assumption used, to use a register-
oriented computation. We furthermore added to ABY support for
two more instantiations of the encryption functions in the Half-
Gates [97] garbling scheme: CIRC [97] is based on a circular security
assumption and uses the wire keys as AES keys. MI [41] provides
better multi-instance security and uses the wire key as the data
input and the gate index as the AES key starting from a random
offset. We note that these three schemes “PRP” / “CIRC” / “MI” need
0 / 4 / 2 computations of the AES key schedule to garble an AND
gate respectively. Garbled circuit evaluation requires 0 / 2 / 2 key
schedules per AND gate respectively. Neither the evaluation nor the
garbling of XOR gates requires communication or AES operations
with HalfGates.

Furthermore, we added an implementation of the PRF-based
garbling scheme of Gueron et al. [40] which is secure in the
standard model. It uses 8 AES operations with 4 keys for garbling

an AND gate, 2 uniquely keyed operations for evaluating an
AND, 3 uniquely keyed AES operations for XOR garbling, and 1-2
uniquely keyed AES operations for XOR evaluation. We identify
batches using dynamic batching with support for SIMD gates
and with support for two queues with shared indices for the
PRF-based scheme. For all these four schemes, we implemented
two register-oriented backends each for the batch processing: one
using AES-NI and 128-bit operations, and another one using VAES
and AVX512.

4.3.2 EMP-OT. We chose EMP-OT [90] because it is a state-
of-the-art implementation for oblivious transfer and it is the
underlying OT library for the two frameworks in § 4.3.3 and § 4.3.4
and other recent works [52]. We modified the main OT protocol
implementations [8, 9, 57] by replacing the AES-NI based ECB and
pseudo-random generator (PRG) implementations in the referenced
EMP-Tool library [90] with VAES and widened the batch size from
8 to 16. Additionally, we widened the bit matrix transposition
algorithm to use 512-bit AVX512 operations instead of 128-bit SSE
operations. Finally, we changed the LPN-based FERRET OT [93]
implementation to use VAES instead of AES-NI for selecting the
matrix-vector multiplication entries.

4.3.3 EMP-AGMPC. The EMP-AGMPC [90, 92] framework pro-
vides a low-communication actively secure garbling scheme. For
the implementation, we used a memory-oriented computation
strategy mirroring the modular design of the EMP toolkit that
strongly encourages modularity. We used basic dynamic batching
with early execution for the online and preprocessing phases’
circuit processing. In the corresponding EMP-OT library [90]
which implements the actively secure OT extension of [9], we
instantiate the PRG using VAES.

4.3.4 CrypTFlow2. Microsoft CrypTFlow2 [82] is a state-of-the-
art framework for general PPML neural network inference. The
implementation uses a sub-part of EMP-OT [90] for OT operations.
We extended the modular implementation of CrypTFlow2 with
VAES-based implementations for: 1) the 128-bit and 256-bit PRGs,
2) the AES-NI based ECB, and 3) the circular-secure correlation
robust function in the garbling scheme of Gueron et al. [40].

5 EVALUATION
This section presents the benchmarking platform and the perfor-
mance results we achieved for the frameworks from § 4.3.
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5.1 Evaluation Platform
For all measurements, we use an Apple Macbook Pro with an
Intel Core i7-1068NG7, 2x16GB of dual rank Samsung LPDDR4-
3733 RAM (K4UCE3Q4AA-MGCL). It runs Arch Linux using the Linux
5.9.13.arch1-1 kernel along with GCC 10.2.0 and Clang 11.0.0 which
were used for compiling the code. For comparative AES-NI mea-
surements we use the same machine.

5.2 ABY
For ABY (cf. § 4.3.1), we ran the benchmarks with both parties
locally using a single sample per triple of circuit, scheme and
implementation backend (reference, AES-NI, and VAES). For each
measurement, the garbling times are taken from the logs of the
party running the garbling operation and the data-input-dependent
online time from the other party running the evaluation which
are executed after each other in ABY. This is done to capture
the pure computation time for garbling and evaluation. For the
evaluation, we use circuits of AES (with 65× parallel SIMD), SHA-1
(with 512-bit input and 63× parallel SIMD), and for circuit-based
private set intersection (PSI) the sort-compare-shuffle (SCS) circuit
(1024 elements of 32-bits) [49], and circuit phasing (1024 elements
per side of 32-bit, 3 hash functions, ε = 1.2, stash of size 1) [80].
For the summary in Table 4, we computed the geometric mean
over the performance results of the four above circuits. The
detailed measurements are given in Table 8 in Appendix B. The
binaries were produced by GCC. We note a range of performance
improvements from the use of batched execution of 67 - 161%
and an additional 17 - 171% from the use of VAES. In particular,
we observe better performance improvements from VAES for
garbling schemes needing more cryptographic operations per
gate, e.g., circularly secure computation (CIRC) benefits more than
public-random permutation based computation (PRP) (cf. § 4.3.1).

Discussion. We make two key observations for the ABY bench-
marks in Table 4: First, using batch sizes larger than one increases
the throughput, as can be seen from the runtime decrease of the
baseline reference (by 80-130%). Second, the use of VAES does in-
crease performance further, more so in scenarios where more AES
operations are done per gate, i.e., with the schemes not using fixed
AES keys with HalfGates [13, 97]. Additionally, an investigation
using a profiler showed a high miss-speculation rate for the AES-
NI code using regular "if" branches with the condition depending
on an unpredictable label bit. Therefore, the use of masking facili-
tated by AVX512 is a secondary factor contributing to performance
as it does not invoke speculative execution miss-predicting the
branch with 50% probability. Finally, we note the odd behavior that
multi-instance secure computation (MI) is significantly slower than
circular-secure computation (CIRC) for AES-NI during the evalua-
tion even though they should be tied given that they perform similar
AES operations. Concerning the impact of VAES beyond improv-
ing speculative execution behavior, we see performance increases
of 27% (garbling) and 36% (evaluation) for fixed-key AES because
the AES processing makes up only a somewhat small amount of
processing time. The HalfGates variable-keyed schemes see a 47%
(MI garbling), 43% (CIRC evaluation), and 57% (CIRC garbling) per-
formance increase. PRF-based garbling schemes see the largest

increase with 51% (garbling) and 75% (evaluation) due to a large
amount of AES operations necessary, given that each AND gate
garbling requires 8 AES operations, each AND evaluation 2, each
XOR garbling 3, and each XOR evaluation at least 1.

5.3 EMP-OT
For oblivious transfers, we evaluated EMP-OT [90] (cf. § 4.3.2). We
ran it single-threaded with 100 million OT operations computed on
localhost. For the one-time base OT operations, that use public-key
crypto, the default number of OT operations was used, and times
were excluded from the throughput results. As base OT protocols,
we use the protocol of Naor and Pinkas [74] for passive security
assumptions and SimplestOT [23] for active security, except for
FERRET OT [93] which uses its own base OT protocol. The library
uses fixed-key AES for its PRG [13], the optimized version of [8] of
the protocol by Ishai et al. [57] for passive security, and the variant
by Asharov et al. [9] for active security.

In addition, we also measured the performance of FERRET-
OT [93] as it is a protocol with very little communication after the
initial base OTs. EMP-OT was compiled with Clang. The results are
shown in Table 5. We note the range of performance improvements
of 14.8 - 30.1% from the use of VAES. We also observe that the
performance increase is particularly high for random OTs (R-OTs)
which can be attributed to a lower amount of system interaction
due to the reduced amount of communication for R-OTs.

Table 4: Geometric means of the run-times in milliseconds
of ABY [25] for the evaluation of AES, SHA-1, SCS-PSI,
and Phasing-PSI with the detailed parameters as described
in § 5.2. “Ref” indicates the reference ABY implementation,
AES-NI and VAES indicate batched implementations. Gar-
bling scheme names are as introduced in § 4.3. Improv%
shows the performance improvement of VAES over AES-NI.
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Garbling Scheme
Operation Impl. PRP MI CIRC PRF

Ref [25] 110.6 — — —
AES-NI 47.1 61.0 72.1 197.4
VAES 37.0 41.3 46.0 130.3Garbling

Improv% 27.2% 47.5% 56.7% 51.5%

Ref [25] 56.5 — — —
AES-NI 31.1 59.8 41.3 103.3
VAES 22.9 29.4 28.9 59.0Evaluation

Improv% 36.1% 103.5% 43.0% 75.0%

Discussion. From the OT performance data in Table 5, we see that
AVX512 and VAES notably improve performance, by 20 - 30% for
the EMP libraries’ traditional OT implementation, which use VAES
for the PRG and AVX512 for bit transposition. Additionally, we
observe mild performance improvements of 16.6% for the FERRET
protocols, mainly using AES to generate the random matrices in
the core matrix-vector multiplication.

Discussion. From the OT performance data in Table 5, we see that
AVX512 and VAES notably improve performance, by 20 - 30% for
the EMP libraries’ traditional OT implementation, which use VAES
for the PRG and AVX512 for bit transposition. Additionally, we
observe mild performance improvements of 16.6% for the FERRET
protocols, mainly using AES to generate the random matrices in
the core matrix-vector multiplication.
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Table 5: Run-times in seconds of 10 million OTs for EMP-OT [90] before "Ref" and after implementation of VAES support.
The functionalities are general OT (OT), Correlated OT (C-OT), and Random OT (R-OT). Improv% shows the performance
improvement of VAES over AES-NI. Higher throughput is better.
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Table 5: Run-times in seconds of 10 million OTs for EMP-OT [90] before "Ref" and after implementation of VAES support.
The functionalities are general OT (OT), Correlated OT (C-OT), and Random OT (R-OT). Improv% shows the performance
improvement of VAES over AES-NI. Higher throughput is better.

OT Functionality
Security Library Impl OT C-OT R-OT

EMP-OT IKNP [8, 57] Ref [8, 57, 90] 0.35 0.20 0.33
VAES 0.28 0.16 0.25

Improv% 20.0% 20.0% 24.2%
EMP-OT FERRET [93] Ref [90, 93] 1.33 1.14 1.32

VAES 1.13 0.99 1.09

Passive

Improv% 15.0% 10.4% 17.4%

EMP-OT ALSZ [9] Ref [9, 90] 0.39 0.24 0.38
VAES 0.32 0.19 0.29

Improv% 17.9% 20.8% 23.7%
EMP-OT FERRET [93] Ref [90, 93] 1.38 1.2 1.37

VAES 1.21 1.04 1.16
Improv% 12.3% 13.3% 15.3%

+ Random Choice Ref [90, 93] — 0.94 —
VAES — 0.80 —

Active

Improv% — 14.8% —

Table 6: Run-times in milliseconds for the evaluation of various parts of SHA256 in EMP-AGMPC [90, 92] (§ 5.4). The compu-
tation backend (“Comp. Backend”) indicates the implementation strategy used. The evaluated parts are the one-time setup,
the function-independent preprocessing, the function-dependent preprocessing, and the input-dependent online phase. The
values in parenthesis show the performance improvement in percent over the reference. Lower run-times are better.

Operation
Comp. Backend Setup Function-Independent Function-Dependent Online
Ref [90, 92] 45.0 564.5 247.0 7.0
VAES 45.9 (−2.1%) 580.7 (−2.8%) 250.6 (−1.4%) 6.7 (5.0%)
Batched + VAES 45.4 (−0.9%) 453.0 (24.6%) 250.7 (−1.5%) 7.0 (0.7%)

Table 7: Geometric mean of run-times in seconds for CrypTFlow2 [82] inference (§ 5.5) using the SqueezeNetImgNet,
SqueezeNetCIFAR, ResNet50, and DenseNet121 networks. Ring32-OT denotes the 32-bit ring-based implementation using OT.
"Ref" indicates the reference implementation using AES-NI and VAES indicates our version using VAES. Improv% shows the
performance improvement of VAES over AES-NI. Lower run-times are better.

Sub-Operation
Type Impl Convolution Truncation ReLU MatrixMultiplication BatchNormalization MaxPool Total

Ref [82] 96.5 30.7 9.6 94.0 15.6 3.7 126.8
VAES 97.0 21.0 6.8 94.5 13.5 2.5 119.1Ring32-OT

Improv% −0.5% 46.5% 40.4% −0.5% 15.9% 47.1% 6.5%

5.4 EMP-AGMPC
For EMP-AGMPC [90, 92] (cf. § 4.3.3), we ran SHA256with three par-
ties on localhost with binaries compiled with Clang. The runs were
performed 11 times and then averaged. After the initial measure-
ments, we decided to benchmark with batching applied and while
using only a VAES-enabled library implementation of AES-ECB, the

PRG, and the OT functionalities. The resulting performance num-
bers are shown in Table 6. In this table, the computation backend
indicates the implementation strategy used, with the numbers in
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Here, VAES allow to improve performance by up to 28%. The
most substantial performance improvement is in the function-
independent pre-processing phase. During that phase, the code
uses additional garbling and evaluation techniques to prepare for
the following phases based on the number of gates of the MPC
function to be computed.

Discussion. The AGMPC performance data (in Table 6) shows sub-
stantial performance differences. The performance increase from
VAES in the online phase stems from the OT used with the ex-
tra batching moving values out of registers again due to the gap
between successive accesses. The most notable improvement is
the 25% performance increase through batching in the function-
independent preprocessing phase combined with VAES. This is be-
cause the garbling operations used in that phase benefit sufficiently
from the batching, and there are not too many XORs sparsing out
the AND gates and their memory.

5.5 CrypTFlow2
As CrypTFlow2 [82] (cf. § 4.3.4) uses EMP-OT internally, it is a
natural target to investigate how the internal improvements ben-
efit the overall performance of a more end-to-end application. As
benchmarks we run inference for the SqueezeCIFAR, ResNet50,
DenseNet121, and SqueezeNetImgNet networks. Each of these net-
works has its dedicated driver executable as usual for this appli-
cation, was compiled using GCC and run via localhost with both
parties on the same machine, to focus on the computational. The
default settings used did utilize multiple load-intensive threads for
both the client and the server, but had no noticeable impact on
performance consistency.

A summary of the results using the geometric mean is given in
Table 7 and the details are shown in Table 9 in Appendix B. Times
below 1 second were omitted from the table.

Discussion. Table 7 shows that the VAES-based speed-up for the
OT-based Ring32 implementation is 6.5% in total. The non-linear
layers have particularly contributed to this improvement, with both
the ReLU and MaxPool layers improving by over 40%. In particular,
we observe no performance changes for the linear convolution and
matrix multiplication steps for the Ring32 implementation. This is
because these are primarily bound by the speed of the operating
system interaction. We can also conceive that the performance
improvement for the Ring32 implementation does stem from the
relatively short focus on VAES during the operations.

6 CONCLUSION AND FUTUREWORK
In this work, we have shown how AES-NI and VAES can be used
to speed up MPC protocols and applications, in particular for the
case where operations are not known a priori.
Summary. We started with discussing how dynamic batching
and its extensions and optimizations use deferred execution to
provide better batches of AES calls to the hardware units. Next,
we have discussed how more explicit measures in the code like
SIMD gates and layering find batches of tasks with more invasive
code modifications. Furthermore, we have discussed how to
compute the batched calls using abstract pre- and post-processing

and platform-specific AES computation in our memory-oriented
computation strategy. Our alternative register-oriented strategy
accepted code duplication for a low-level register value oriented
code description that the compiler and the processor can execute
well more easily. Following that, we applied these techniques
to ABY [13, 25, 97], EMP-OT [90], EMP-AGMPC [90, 92], and
Microsoft CrypTFlow2 [82]. For ABY we implemented additional
garbled circuit variants [40, 41, 97] for comparison. We then
evaluated the performance impact of the use of VAES and batching
techniques. In ABY, these batching techniques have significantly
increased performance without changing the hardware require-
ments. The use of VAES has yielded further significant performance
improvements in ABY, EMP-OT, Microsoft CrypTFlow2, and some
parts of EMP-AGMPC.

FutureWork.Our research can be extended in multiple directions.

Improved Modelization. The techniques presented in § 4.1 and
§ 4.2 could be further improved. A more theoretical modelization
and a more detailed analysis of the interaction with cache effects
could yield valuable insights for future implementations.

Merging Register- and Memory-oriented Computation. Our
computation techniques from § 4.2 require to make a manual
choice between low code duplication, high performance, and
clarity to the compiler. Further research could find techniques to
automatically achieve low code duplication, high performance
and clarity. For this, techniques from programming language and
compiler research might be useful.

Further Applications in MPC. VAES and the other AVX512 exten-
sions can be used to improve performance in further applications
in MPC such as the most recent garbling schemes [10, 43, 85] that
reduce communication (which is the main bottleneck in MPC) at
the cost of more computation.

AVAILABILITY
The open source code of our changed VAES implementations is
freely available under the permissive Apache license at https://
encrypto.de/code/VASA.
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A EXAMPLE CODE FOR OUR
IMPLEMENTATION

We present example code for the register-oriented batch computa-
tion strategy from § 4.2.1 in Listing 1 and for the memory-oriented
one from § 4.2.2 in Listing 2.

Listing 1: Register-oriented implementation of HalfGates’s
evaluation [13, 97] using fixed-key VAES and AVX512F.

1 void h a l f g a t e s _ e v a l _ v a e s ( uint8_t ∗ expanded_key , Gate ∗
ga t e s , uint8_t ∗ t a b l e s , size_t num_gates , uint64_t
t a b l eCoun t e r ) {

2 constexpr size_t width = 8 ;
3 constexpr size_t num_regs = ( width + 3 ) / 4 ;
4 constexpr size_t u s ed_ l an e s = s t d : : min ( size_t ( 4 ) , width ) ;
5 constexpr size_t o f f s e t = u s ed_ l an e s ∗ 2 ;
6 // do the leftovers with another call with width ==1
7 __m512i ONE = _mm512_set_epi64 ( 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ) ;
8 __m512i FULL_OFFSET = _mm512_set_epi64 ( 0 , o f f s e t , 0 ,

o f f s e t , 0 , o f f s e t , 0 , o f f s e t ) ;
9 __m512i coun t e r = _mm512_set_epi64 ( 0 , ( t a b l eCoun t e r + 3 )

∗ 2 , 0 , ( t a b l eCoun t e r + 2 ) ∗ 2 , 0 , ( t a b l eCoun t e r +
1 ) ∗ 2 , 0 , ( t a b l eCoun t e r + 0 ) ∗ 2 ) ;

10 __m512i keys [ 1 1 ] ;
11 // omitted loading round keys with

_mm512_broadcasti32x4_epi32
12 for ( size_t p = 0 ; p < num_gates ; p += width ) {
13 __m512i l e f t D a t a [ num_regs ] , r i g h tDa t a [ num_regs ] ,

l e f t K e y s [ num_regs ] , r i gh tKey s [ num_regs ] , f i n a lMask
[ num_regs ] ;

14 __m128i ∗ t a r g e tGa t eKey [ width ] ;
15 for ( size_t w = 0 ; w < num_regs ; ++w) {
16 for ( size_t l = 0 ; l < u s ed_ l an e s ; ++ l ) {
17 // Gate fetching
18 Gate ∗ cu r r en tGa t e = g a t e s [ p + w ∗ u s ed_ l an e s + l ] ;
19 // match the left* operations with right* ones
20 Gate ∗ l e f t P a r e n t I d = cur r en tGa t e −> l e f t P a r e n t ;
21 uint8_t ∗ l e f t P a r e n t K e y = l e f t P a r e n t −>eva lKey ;
22 __m128i l e f t P a r e n t K e y L o c a l = _mm_loadu_si128 ( (

__m128i ∗ ) ( l e f t P a r e n t K e y ) ) ;
23 l e f t K e y s [w] = _mm512_ inse r t i 32x4 ( l e f t K e y s [w] ,

l e f t P a r e n tK e yLo c a l , l ) ;
24 t a r g e tGa t eKey [ u s ed_ l an e s ∗ w + l ] = cu r r en tGa t e −>

eva lKey ;
25 uint8_t l p b i t = l e f t P a r e n t K e y [ 1 5 ] & 0 x01 ;
26 uint8_t l p b i t 1 1 = ( l p b i t << 1 ) | l p b i t ;
27 uint8_t r p b i t = r i gh t P a r en tKey [ 1 5 ] & 0 x01 ;
28 uint8_t r p b i t 1 1 = ( r p b i t << 1 ) | r p b i t ;
29 __m128i f i n a lMa skLo c a l = _mm_maskz_loadu_epi64 (

l p b i t 1 1 , ( __m128i ∗ ) t a b l e s ) ;
30 t a b l e s += 1 6 ;
31 __m128i r i g h t T a b l e = _mm_loadu_si128 ( ( __m128i ∗ ) (

t a b l e s ) ) ;
32 const __m128i r igh tMaskUpdate = _mm_xor_si128 (

r i g h tT ab l e , l e f t P a r e n t K e y L o c a l ) ;
33 f i n a lMa skLo c a l = _mm_mask_xor_epi64 ( f i n a lMaskLoca l ,

r p b i t 1 1 , f i n a lMaskLoca l , r igh tMaskUpdate ) ;
34 t a b l e s += 1 6 ;
35 f i n a lMask [w] = _mm512_ inse r t i 32x4 ( f i n a lMask [w] ,

f i n a lMaskLoca l , l ) ;
36 }
37 // Vector processing
38 l e f t D a t a [w] = coun t e r ;
39 r i g h tDa t a [w] = _mm512_add_epi64 ( counter , ONE) ;
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40 coun t e r = _mm512_add_epi64 ( counter , FULL_OFFSET ) ;
41 // match the left* operations with right* ones
42 // use a combiner , e.g., left shift + XOR
43 l e f t D a t a [w] = mix_keys ( l e f t K e y s [w] , l e f t D a t a [w] ) ;
44 l e f t K e y s [w] = l e f t D a t a [w] ;
45 l e f t D a t a [w]= _mm512_xor_si512 ( l e f t D a t a [w] , keys [ 0 ] ) ;
46 }
47 for ( size_t r = 1 ; r < 1 0 ; ++ r ) {
48 for ( size_t w = 0 ; w < num_regs ; ++w) {
49 l e f t D a t a [w] = _mm512_aesenc_epi128 ( l e f t D a t a [w] ,

keys [ r ] ) ;
50 r i g h tDa t a [w] = _mm512_aesenc_epi128 ( r i g h tDa t a [w] ,

keys [ r ] ) ;
51 }
52 }
53 for ( size_t w = 0 ; w < num_regs ; ++w) {
54 // match the left* operations with right* ones
55 l e f t D a t a [w] = _mm512_ae senc l a s t _ep i 128 ( l e f t D a t a [w] ,

keys [ 1 0 ] ) ;
56 l e f t D a t a [w] = _mm512_xor_si512 ( l e f t D a t a [w] , l e f t K e y s [

w] ) ;
57 // Vector HalfGates post -processing
58 l e f t D a t a [w] = _mm512_xor_si512 ( l e f t D a t a [w] , r i g h tDa t a

[w] ) ;
59 l e f t D a t a [w] = _mm512_xor_si512 ( l e f t D a t a [w] , f i n a lMask

[w] ) ;
60 for ( size_t l = 0 ; l < u s ed_ l an e s ; ++ l ) {
61 // scattering
62 __m128i e x t r a c t e d = _mm512_ex t rac i 32x4_ep i32 (

l e f t D a t a [w] , l ) ;
63 _mm_storeu_s i128 ( ( __m128i ∗ ) ( t a r g e tGa t eKey [

u s ed_ l an e s ∗ w + l ] ) , e x t r a c t e d ) ;
64 }
65 }
66 }
67 }

Listing 2: Memory-oriented implementation of the batched
AND evaluation for actively secure garbled circuits [90, 91].

1 // ONLINE_BATCH_SIZE is an upper bound
2 void EvaluateANDGates ( uint8_t ∗ mask_input , int i n d i c e s [

ONLINE_BATCH_SIZE ] , size_t num_gates , int& ands ) {
3 int mask_ ind i c e s [ONLINE_BATCH_SIZE ] ;
4 b l o ck l e f t s [ONLINE_BATCH_SIZE ] , r i g h t s [ONLINE_BATCH_SIZE ] ;
5 b l o ck H[ONLINE_BATCH_SIZE ] [ 2 ] ;
6 for ( size_t i i = 0 ; i i < num_gates ; ++ i i ) {
7 // preprocessing
8 int i = i n d i c e s [ i i ] ;
9 int i ndex = 2 ∗ mask_input [ c f −>g a t e s [4 ∗ i ] ] +

mask_input [ c f −>g a t e s [4 ∗ i + 1 ] ] ;
10 mask_ ind i c e s [ i i ] = index ;
11 l e f t s [ i i ] = l a b e l s [ e x e c_ t ime s ] [ c f −>g a t e s [4 ∗ i ] ] ;
12 r i g h t s [ i i ] = l a b e l s [ e x e c_ t ime s ] [ c f −>g a t e s [4 ∗ i + 1 ] ] ;
13 }
14 // AES processing
15 Hash (H, l e f t s , r i g h t s , i n d i c e s , mask_ ind i ces , num_gates ) ;
16 for ( size_t i i = 0 ; i i < num_gates ; ++ i i ) {
17 // postprocessing
18 int i = i n d i c e s [ i i ] ;
19 int i ndex = 2 ∗ mask_input [ c f −>g a t e s [4 ∗ i ] ] +

mask_input [ c f −>g a t e s [4 ∗ i + 1 ] ] ;
20 GT[ exe c_ t ime s ] [ ands ] [ index ] [ 0 ] = GT[ exe c_ t ime s ] [ ands ] [

index ] [ 0 ] ^ H[ i i ] [ 0 ] ;
21 GT[ exe c_ t ime s ] [ ands ] [ index ] [ 1 ] = GT[ exe c_ t ime s ] [ ands ] [

index ] [ 1 ] ^ H[ i i ] [ 1 ] ;
22 b l o ck t t t = GTK[ exe c_ t ime s ] [ ands ] [ index ] ^ fp re −>De l t a ;
23 t t t = t t t & MASK ;
24 GTK[ exe c_ t ime s ] [ ands ] [ index ] = GTK[ exe c_ t ime s ] [ ands ] [

index ] & MASK ;
25 GT[ exe c_ t ime s ] [ ands ] [ index ] [ 0 ] = GT[ exe c_ t ime s ] [ ands ] [

index ] [ 0 ] & MASK ;
26 if ( cmpBlock (&GT[ exe c_ t ime s ] [ ands ] [ index ] [ 0 ] , &GTK[

exe c_ t ime s ] [ ands ] [ index ] , 1 ) )
27 mask_input [ c f −>g a t e s [4 ∗ i + 2 ] ] = false ;
28 else if ( cmpBlock (&GT[ exe c_ t ime s ] [ ands ] [ index ] [ 0 ] , &t t t

, 1 ) )

29 mask_input [ c f −>g a t e s [4 ∗ i + 2 ] ] = true ;
30 else
31 cou t << ands << "no match GT!" << end l ;
32 mask_input [ c f −>g a t e s [4 ∗ i + 2 ] ] = l o g i c _ x o r ( mask_input

[ c f −>g a t e s [4 ∗ i + 2 ] ] , getLSB (GTM[ exe c_ t ime s ] [
ands ] [ index ] ) ) ;

33 l a b e l s [ e x e c_ t ime s ] [ c f −>g a t e s [4 ∗ i + 2 ] ] = GT[
exe c_ t ime s ] [ ands ] [ index ] [ 1 ] ^ GTM[ exe c_ t ime s ] [ ands
] [ index ] ;

34 ands ++ ;
35 }

B DETAILED MEASUREMENTS
We present the detailed performance measurements for ABY (cf.
§ 5.2) in Table 8 from which the summary in Table 4 was computed.
Additionally, we present the detailed performance measurements
for CrypTFlow2 (cf. § 5.5) in Table 9 from which the summary in
Table 7 was computed.
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Table 8: Run-times in milliseconds of ABY [25] for the evaluation of AES, SHA-1, SCS-PSI, and Phasing-PSI with the detailed
parameters as described in § 5.2. “Ref” indicates the reference ABY implementation, AES-NI indicates the batched one using
AES-NI and VAES the one using VAES. Improv% shows the performance improvement of VAES over AES-NI based PRGs and
ECB implementations. Garbling scheme names are as introduced in § 4.3. Lower run-times are better.
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Table 8: Run-times in milliseconds of ABY [25] for the evaluation of AES, SHA-1, SCS-PSI, and Phasing-PSI with the detailed
parameters as described in § 5.2. “Ref” indicates the reference ABY implementation, AES-NI indicates the batched one using
AES-NI and VAES the one using VAES. Improv% shows the performance improvement of VAES over AES-NI based PRGs and
ECB implementations. Garbling scheme names are as introduced in § 4.3. Lower run-times are better.

Garbling Scheme
Operation Circuit PRP MI CIRC PRF

AES Ref [25] 47.3 — — —
AES-NI 20.5 27.6 31.3 98.5
VAES 16.6 19.0 20.8 66.2

Improv% 23.4% 45.4% 50.4% 48.6%
SHA1 Ref [25] 236.7 — — —

AES-NI 95.4 118.6 145.7 576.2
VAES 69.8 79.3 87.9 378.3

Improv% 36.6% 49.6% 65.8% 52.3%
SCS-PSI Ref [25] 153.0 — — —

AES-NI 75.3 98.9 112.3 288.1
VAES 63.9 74.2 79.7 192.7

Improv% 17.8% 33.3% 40.9% 49.5%
PSI-Phasing Ref [25] 87.3 — — —

AES-NI 33.4 42.6 52.7 92.9
VAES 25.3 26.1 30.7 59.6

Garbling

Improv% 31.8% 63.2% 71.6% 55.8%

AES Ref [25] 23.0 — — —
AES-NI 12.5 23.1 15.6 47.9
VAES 8.6 11.7 10.2 25.1

Improv% 45.0% 97.1% 53.4% 91.1%
SHA1 Ref [25] 108.8 — — —

AES-NI 56.0 139.7 80.9 261.7
VAES 38.2 51.5 52.3 151.3

Improv% 46.5% 171.5% 54.7% 73.0%
SCS-PSI Ref [25] 76.2 — — —

AES-NI 41.9 92.5 57.3 135.7
VAES 33.1 43.5 41.9 78.0

Improv% 26.5% 112.7% 36.8% 74.1%
PSI-Phasing Ref [25] 53.2 — — —

AES-NI 31.9 42.7 40.1 66.9
VAES 25.0 28.4 31.1 41.0

Evaluation

Improv% 27.5% 50.5% 28.7% 62.9%

144



VASA: Vector AES Instructions for Security Applications ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 9: Run-times in seconds for CrypTFlow2 [82] (§ 5.5) inference using the SqueezeNetImgNet (SqzImg), SqueezeNetCI-
FAR (SqzCIFAR), ResNet50, and DenseNet121 networks. Ring32-OT denotes the 32-bit ring-based implementation using OT.
Ref indicates the reference implementation (using AES-NI) and VAES indicates the version using VAES. Improv% shows the
performance improvement of VAES over AES-NI. Lower run-times are better.
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Table 9: Run-times in seconds for CrypTFlow2 [82] (§ 5.5) inference using the SqueezeNetImgNet (SqzImg), SqueezeNetCI-
FAR (SqzCIFAR), ResNet50, and DenseNet121 networks. Ring32-OT denotes the 32-bit ring-based implementation using OT.
Ref indicates the reference implementation (using AES-NI) and VAES indicates the version using VAES. Improv% shows the
performance improvement of VAES over AES-NI. Lower run-times are better.

Sub-Operation
Type Network Impl Convolution Truncation ReLU MatMul BatchNormalization MaxPool Total

SqzImg Ref [82] 28.1 — 4.0 27.2 — 4.7 39.0
VAES 28.0 — 2.9 26.9 — 3.1 35.6

Improv% 0.6% — 36.7% 0.9% — 53.0% 9.6%
SqzCIFAR Ref [82] 28.0 — 4.0 27.0 — 4.4 38.5

VAES 28.2 — 2.9 27.2 — 3.2 35.8
Improv% −0.8% — 38.9% −0.9% — 37.1% 7.5%

ResNet Ref [82] 439.7 30.8 18.7 436.1 12.7 3.2 513.3
VAES 448.2 20.9 12.7 444.5 11.2 2.1 503.1

Improv% −1.9% 47.5% 46.5% −1.9% 13.2% 52.1% 2.0%
DenseNet Ref [82] 250.1 30.6 28.6 244.3 19.2 2.7 335.6

VAES 250.0 21.1 20.5 243.9 16.2 1.9 313.8

Ring32-OT

Improv% 0.1% 45.5% 39.5% 0.2% 18.6% 46.6% 6.9%
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Abstract
Secure Multi-party Computation (MPC) allows a set of
mutually distrusting parties to jointly evaluate a function on
their private inputs while maintaining input privacy. In this
work, we improve semi-honest secure two-party computation
(2PC) over rings, with a focus on the efficiency of the online
phase.

We propose an efficient mixed-protocol framework,
outperforming the state-of-the-art 2PC framework of
ABY. Moreover, we extend our techniques to multi-
input multiplication gates without inflating the online
communication, i.e., it remains independent of the fan-in.
Along the way, we construct efficient protocols for several
primitives such as scalar product, matrix multiplication,
comparison, maxpool, and equality testing. The online
communication of our scalar product is two ring elements
irrespective of the vector dimension, which is a feature
achieved for the first time in the 2PC literature.

The practicality of our new set of protocols is showcased
with four applications: i) AES S-box, ii) Circuit-based Private
Set Intersection, iii) Biometric Matching, and iv) Privacy-
preserving Machine Learning (PPML). Most notably, for
PPML, we implement and benchmark training and inference
of Logistic Regression and Neural Networks over LAN and
WAN networks. For training, we improve online runtime (both
for LAN and WAN) over SecureML (Mohassel et al., IEEE
S&P’17) in the range 1.5⇥–6.1⇥, while for inference, the
improvements are in the range of 2.5⇥–754.3⇥.

1 Introduction

Secure Multi-Party Computation (MPC) [13, 45, 98] allows n
mutually distrusting parties to jointly compute a function on
their private inputs. The computation guarantees i) privacy–
no set of t corrupt parties can learn more information than
the output, and ii) correctness– corrupt parties cannot force
others to accept a wrong output. Due to its immense potential,
MPC can be used for solving real-life applications such as

privacy-preserving auctions [77] and remote diagnostics [23],
secure genome analysis [14, 96], and recently in the domain
of privacy-preserving machine learning (PPML) [16,27, 30,
31, 52, 57, 67, 75, 84, 91, 101].

MPC protocols can be broadly classified into low-latency
[28, 46, 74, 81, 97] and high-throughput [4, 27, 30, 31, 67, 84]
categories. The low-latency protocols are built using Yao’s
garbled circuits (GC) [10, 66, 97–99] and result in constant-
round solutions. Secret-sharing (SS) based solutions have
been used for high-throughput protocols, but require a number
of communication rounds linear in the multiplicative depth
of the circuit. However, less communication than GC-based
protocols facilitates several instances of SS-based protocols
to be executed in parallel, leading to high throughput. The
characteristics of the categories mentioned above put forth the
need for a mixed-protocol framework [31,39,73,75,92], where
the protocol is split into blocks and each block is executed in
one of the following three worlds: i) Arithmetic, ii) Boolean,
and iii) Yao. While the arithmetic world performs operations
on `-bit rings (or fields), both boolean and Yao world perform
operations on bits. Also, arithmetic and boolean worlds
operate using an SS-based approach while the Yao world
uses a GC-based approach.

To achieve practical runtimes, several works [12, 26, 27,
30, 31, 38, 61, 67, 91] considered the paradigm of having an
input-independent setup phase where the parties generate
a lot of correlated randomness (e.g., Beaver multiplication
triples [8]) which are then used in the input-dependent online
phase to enable a very fast computation on the parties’
inputs. Moreover, the benchmarking results of [94] and the
works of [17, 34, 35, 37, 39] have showcased the efficiency
improvements of protocols compared to rings over their field
counterparts. The 32/64-bit computations done in standard
CPUs, emulating ring operations, allow for very simple and
efficient implementations.

In this work, we focus on the specific problem of secure
two-party computation (2PC) [38, 39] with mixed protocols
over rings. Our aim is to minimize the online communication
and rounds keeping high throughput as our end-goal.
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1.1 Our Contributions

We propose an efficient mixed-protocol framework for secure
2PC over an `-bit ring. Our protocols are secure against a
semi-honest adversary and use an input-independent setup.
We build several building blocks with the focus on online
efficiency. Our contributions can be summed up as follows:

2PC (§3). We propose an efficient 2PC protocol over `-bit
rings, requiring a communication of just 2 ring elements per
multiplication in the online phase. Our construction relies
on Beaver’s circuit randomization technique [8] (§3.1.1),
but uses a different perspective of the technique. Moreover,
our protocol helps in realising efficient primitives as will be
shown in §5. We believe that our new perspective can bring
several further optimizations where Beaver’s randomization
technique is currently being used.

Protocol Ref.
Setup Online

Comm [bits] Comm [bits] Rounds

MULT
y = ab

[39] 2`(k+ `) 4` 1
[12] 2`(k+ `) 222`̀̀ 1
[78] 2`(k+ `) 4` 1

ABY2.0 2`(k+ `) 222`̀̀ 1

MULT3
y = abc

[39] 4`(k+ `) 8` 2
[12] 4`(k+ `) 4` 2
[78] 8`(k+ `) 6` 1

ABY2.0 8`(k+ `) 222`̀̀ 1

MULT4
y = abcd

[39] 6`(k+ `) 12` 2
[12] 6`(k+ `) 6` 2
[78] 22`(k+ `) 8` 1

ABY2.0 22`(k+ `) 222`̀̀ 1

Table 1: Comparison of ABY2.0 and existing works for 2PC
protocols. Best values for the online phase are marked in bold.

Tab. 1 shows our improvement over previous works. For 2-
input multiplication, we achieve the same complexity as [12],
but using a completely different approach. Moreover, for an N-
input multiplication gate, our solution has a constant cost of 2
ring elements and one round of interaction. This is a massive
improvement over [78], where they require communication of
2N ring elements. Round complexity wise, the naive method
of multiplying N elements by taking two at a time requires
log2(N) online rounds and overall communication of 4(N�1)
ring elements for [39] and 2(N �1) for [12].

Mixed Protocol Conversions (§4). The mixed world
conversions, that enable easy transition between
Arithmetic (A), Boolean (B) and Yao (Y) sharing, are
now celebrated in the literature [3, 26, 57, 75, 91] due to
their potential in building practically-efficient protocols.
We propose a new set of conversions that outperform the
state-of-the-art conversions of ABY [39] in the online phase.
Our solution reduces the number of online rounds of ABY
from 2 to 1 for most of the conversions. We achieve this
because, in contrast to ABY, we forgo OTs in the online
phase of our conversions.

Tab. 2 provides the concrete costs for the mixed protocol
conversions. The conversion from sharing type S to sharing
type D is denoted as S2D, where S,D 2 {A,B,Y}. For the
setup phase, we use correlated OTs (cOT) [5] which incur a
communication of `+k bits per cOT on `-bit strings, where
k is the computational security parameter. It is evident from
Tab. 2 that for all except the Y2B conversion, our conversions
outperform ABYs’ in the online phase.

Conv. Ref.
Setup Online

Comm [bits] Comm [bits] Rounds

Y2B
ABY [39] 0 0 0

ABY2.0 ` ` 1

B2Y
ABY [39] 2`k `k+ ` 2

ABY2.0 2`k `̀̀kkk 1

A2Y
ABY [39] 4`k 2`k+ ` 2

ABY2.0 4`k `̀̀kkk 1

Y2A
ABY [39] 2`k (`2 +3`)/2 2

ABY2.0 3`k+2` `̀̀ 1

A2B
ABY [39] 4`k 2`k+ ` 2

ABY2.0 4`k+ ` `̀̀kkk+++ `̀̀ 2

B2A
ABY [39] `k (`2 + `)/2 2

ABY2.0 `k+ `2 222`̀̀ 1

Table 2: Comparison of ABY2.0 and ABY for the conversions. The
values are reported for `-bit values. Best values for the online phase
are marked in bold.

Building Blocks (§5). We propose efficient constructions
for widely-used building blocks that include Scalar
Product, Depth-Optimized Circuits, Matrix Multiplication,
Comparison, Non-linear Activation functions, and Maxpool.
The highlights include:
– Scalar Product (§5.1): Our new protocol incurs an online
communication that is independent of the vector dimension
n. This feature is achieved for the first time in the 2PC
literature. Concretely, we require communication of just 2
ring elements as opposed to 4n elements of [39]. Since scalar
product forms an essential building block for most of the
widely used ML algorithms [27, 30, 31, 56, 73, 75, 91] such
as Linear Regression, Logistic Regression, and Clustering,
our solution substantially improves the performance of their
secure 2PC implementations by several orders of magnitude.
– Matrix Multiplication (§5.2): Matrix multiplication is
the fundamental building block in most ML algorithms.
For instance, the linear layer in a Neural Network (NN)
as well as the convolution operation in a Convolutional
Neural Network [95] can be viewed as an instance of matrix
multiplication. We extend the 2PC multiplication protocol
to support vector operations and provide an efficient matrix
multiplication protocol.
– Depth Optimized Circuits (§5.3): The Parallel Prefix Adder
(PPA) [7, 47] used in the recent PPML literature [73] incurs a
multiplicative depth of log2(`) since it uses two-input AND
gates only. We propose round efficient PPA constructions
using a combination of two, three, and four input AND gates.
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For a 64-bit ring, our solution has 2⇥ fewer rounds and also
less online communication compared to the PPA used in [73].
– Comparison (§5.4): Our new protocol for checking less
than relation improves the online communication of the
comparison protocol of [78] by 6⇥ and reduces the number
of online rounds from 4 to 3.
– Maximum of three elements (§5.7): Our new protocol
improves the online communication of [78] by 14⇥ while
reducing the online rounds from 5 to 4.
– Equality Test (§5.10): Our new protocol for checking the
equality of two `-bit values, improves the online rounds of
[87] from log2(`) to log4(`).

Applications (§6). The practicality of our constructions are
showcased in these four popular applications:
– AES S-box (§6.2): Using our protocol for 3-input
multiplication, we obtain an S-box with an AND-depth
of 3 instead of 4 before. This improves the online round
complexity of AES by factor 1.33⇥.
– Circuit-based PSI (§6.3): Using our efficient equality
testing protocol, we improve the online communication of
the state-of-the-art circuit-based PSI [87] by 2.35⇥ and the
online round complexity by 1.3⇥.
– Biometric Matching (§6.4): We propose a round-optimized
as well as a communication-optimized solution for computing
the minimum Euclidean distance, which forms the core
for biometric matching. For the round-optimized variant,
we improve over ABY [39] by 2.2⇥ in communication
and 1.6⇥ in rounds in the online phase. Similarly, for the
communication-optimized variant, we improve over [78] by
20.8⇥ in communication and 1.3⇥ in rounds.
– Privacy-Preserving Machine Learning (§6.5): Here we
implement the training and inference of Logistic Regression
and Neural Networks in a LAN and a WAN setting and
benchmarked over datasets with various feature sizes.

Algorithm Ref.
LAN WAN

TP (x104) Improvem. TP (x104) Improvem.

Logistic
Regression

[75] 1,344.4 333111...555⇥⇥⇥ 4.0 999...999⇥⇥⇥ABY2.0 42,372.4 39.9

Neural
Networks

[75] 43.0 716.0⇥ 0.1 710.7⇥ABY2.0 30,797.0 92.39

Table 3: Comparison of the online throughput (TP) of ABY2.0 and
SecureML [75] for inference on the MNIST [70] dataset.

For training, we obtain online runtime improvements over
SecureML [75] in the range 2.7⇥–6.1⇥ for LAN and 1.5⇥–
2.8⇥ for WAN. For inference, we used throughput as one
metric to capture the effect of runtime and communication
utilization in a single shot. Our improvement for inference
ranges from 7.9⇥–754.3⇥ for LAN, while it ranges from
2.5⇥–753.2⇥ for WAN. Tab. 3 provides the concrete details
for inference over the MNIST [70] dataset.

1.2 Related Work
Here, we provide a concise summary of related work. More
details on the preliminaries are given in §A.
Secret Sharing (SS). The works of [38,61] proposed efficient
SS-based solutions for the dishonest majority setting over
fields, which was then extended to the ring setting in [33].
The solution involves the generation of Beaver multiplication
triples [8] in the setup phase and evaluation of the circuit
(multiplication gates) in the online phase using the generated
triples. For the 2PC case, the aforementioned approach
requires two public reconstructions among the parties per
multiplication gate in the online phase. In contrast, we
require only one public reconstruction among the parties.
Later, works like [59, 60, 79] focused on improving the
setup cost using techniques like Oblivious Transfer (OT) and
Homomorphic Encryption (HE). [12] improved the number
of public reconstructions required in the online phase from
two to one using a function-dependent preprocessing, but
requires additional communication of four ring elements in
the preprocessing phase.
Multi-Input Multiplication. In the boolean setting, [40]
extended two-input AND gates to the general N-input
case using lookup tables. Recently, [78] extended the
multiplication from two-input to arbitrary input using Beaver
triple extension with a focus on minimizing the online rounds.
However, the online communication of [78] scale with the
fan-in of the multiplication gates as opposed to ours, where
we achieve an online communication of 2 ring elements.
Mixed-Protocol Conversions. Mixed 2PC protocols that
combine GC-based and SS-based approaches benefit from
their respective advantages and were used in many privacy-
preserving applications such as face recognition [49],
fingerprint recognition [24], biometric matching [39], and
machine learning [57, 73, 75, 91]. The first mixed-protocol
framework for MPC was TASTY [49, 65], which combined
garbled circuits with homomorphic encryption. ABY [39]
then proposed an efficient framework in the semi-honest
model combining state-of-the-art 2PC approaches based on
Arithmetic sharing, Boolean sharing, and GCs. The work
of [92] shows conversions between MPC based on arithmetic
secret sharing and garbled circuits with malicious security.
Later, the ABY framework was extended to the three and four
party honest-majority setting by [31,73]. HyCC [26] provides
a compiler to automatically partition a function (specified in
ANSI C) into sub-functions such that each sub-function is
evaluated with either Arithmetic sharing, Boolean sharing or
Garbled Circuits (GC).

2 Preliminaries

Here, we describe our security model and the parameters and
notations used. More details along with a brief overview of
the state-of-the-art 2PC protocols are given in §A.
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Semi-honest Security Model. In this work, we consider
a semi-honest (aka passive) adversary [32, 53, 100], who
is “honest-but-curious”. The adversary is guaranteed to
follow the protocol steps but will try to learn additional
information from the messages that he has seen during
the protocol execution. Though not the strongest model,
this model forms the first step towards achieving protocols
with stronger security guarantees [6, 29, 68, 71]. Also,
the setting facilitates practically-efficient protocols with
higher performance especially for PPML applications [30,
75, 91]. In practical scenarios where the computation is
outsourced to a set of servers, the reputation of the servers
forces them to behave semi-honestly. Moreover, in many
application scenarios, semi-honest behaviour can be enforced
by attestation using tools like Intel SGX or ARM TrustZone.
We refer the reader to [44] for details on the model.
Parameters and Notation. In our framework, we have two
parties P = {P0,P1} who are connected by a bidirectional
synchronous channel (eg. instantiated via TLS over TCP/IP).
Our protocols are designed to work over an `-bit ring denoted
by Z2` . k denotes the computational security parameter. In
our implementation, we use ` = 64 and k = 128.

For two vectors ~a,~b of length n, the scalar dot product is
denoted by~a�~b = Ân

j=1 a jb j. Here a j and b j denote the jth

elements of vectors~a and~b respectively. For a bit u 2 {0,1},
u denotes the complement value 1�u. For two matrices A,B,
matrix multiplication is denoted by A �B. Table 4 depicts
notation that we use throughout the paper.

P0,P1 Parties performing secure computation
Z2` Ring of size ` bits; ` = 64 in this work

k Symmetric security parameter; k = 128 in this work
a j j-th element of vector~a

~a�~b Scalar dot product between two vectors~a and~b
A�B Multiplication of two matrices A and B

[v]i [·]-sharing of v 2 Z2` held by Pi s.t. v = [v]0 +[v]1
hvii = ([dv]i ,Dv) h·i-sharing of v 2 Z2` held by Pi s.t. v = Dv � [dv]1 � [dv]0

t 2 {A,B,Y} Type of sharing: Arithmetic, Boolean, or Yao
xs = s2t(xt) Sharing conversion from source s to target t

OT Oblivious Transfer
HE Homomorphic Encryption

cOTn
` n instances of Correlated OT on `-bit strings

MSB/LSB Most / Least Significant Bit
FPA Fixed-point Arithmetic
SED Squared Euclidean Distance

Table 4: Notations used throughout this paper.

Our protocols are cast into an input-independent setup
phase and an input-dependent online phase. To enable
parties to non-interactively sample a random value, parties
perform a one-time key-setup that establishes random keys
among them for a pseudo-random function (PRF) which can
be instantiated, for instance, using AES in counter mode.
Towards this, each party Pi for i 2 {0,1} samples a random
key Ki 2R {0,1}k and sends it to the other party. The shared
key is now defined as K = K0 +K1.

For applications such as machine learning where the
inputs are decimal numbers, we use the Fixed-Point
Arithmetic (FPA) representation [27, 30, 31, 73, 75] to embed

the value in the underlying ring. Decimal value is treated
as an `-bit integer in signed 2’s complement representation.
The most significant bit (MSB) represents the sign while the
least significant x bits represent the fractional part. For our
implementation, we use ` = 64 and x = 13.

3 2PC in Arithmetic, Boolean & Yao World

The contribution of this section is our new 2PC over ring
Z2` . This construction gives us a new 2PC in the arithmetic
world and in the Boolean world. The latter is easily derived
by having ` = 1. The 2PC in Yao’s world is borrowed from
ABY [39]. Below, we start with our new 2PC over Z2` .
We describe the secret-sharing semantics, the sharing and
reconstruction protocols, and the multiplication protocols
(both for setup and online phase) with various fan-ins. Our
final 2PC for any functionality represented over an arithmetic
circuit over Z2` can be obtained by running the following
steps in sequence: (a) sharing all the inputs via the sharing
protocols, (b) gate by gate evaluation (using linearity of our
secret sharing and the multiplication protocols) and (c) output
reconstruction via the reconstruction protocol.

3.1 2PC in Arithmetic World
We provide the details for our 2PC scheme here. Before
going into the details, we present a high-level overview of our
scheme and a side-by-side comparison with the well-known
Beaver’s circuit randomization technique [8]. Our protocol,
inspired by the 3PC protocol of ASTRA [30], achieves a
communication similar to [12]. The highlight of our protocol
is its effectiveness towards efficient realisations for multiple
input multiplication gates and dot product operations as will
be explained in §3.1.4 and §5.1 later.

3.1.1 High-level Overview of Our 2PC over Ring

Consider two parties P0,P1 with values a,b additively shared
among them who want to compute a multiplication gate with
output c = a ·b.

Beaver’s Technique [8] on Gate Inputs (cf. left of Fig. 1).
In 2PC, there has been a lot of works [38, 39, 57, 61, 91] that
use Beaver’s [8] circuit randomization technique to compute
the product a · b. In this technique (cf. left side of Fig. 1),
the inputs of the multiplication gate are randomized first
and the corresponding correlated randomness is generated
independently (preferably in a setup phase). In detail, parties
interactively generate an additive sharing of the multiplication
triple (da,db,dab) with dab = dadb during the setup phase
before the actual inputs are known. Now, we can write

a ·b = ((a+da)�da)((b+db)�db)

= (a+da)(b+db)� (a+da)db � (b+db)da +dab.
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Let Da = (a + da) and Db = (b + db) be the randomized
versions of the input values of a multiplication gate. Then,
during the online phase, parties locally compute an additive
sharing of Da using additive shares of a and da. Similarly,
an additive sharing of Db is computed. This is followed by
the parties mutually exchanging the shares of Da and Db to
enable public reconstruction of Da and Db. Then using the
above equation, parties can locally compute a sharing of a ·b.
Note that this method requires communicating 4 elements per
multiplication (2 elements per reconstruction). We observe
that the communication is required for enabling parties to
obtain the value of Da and Db in clear.

ci = i ·DaDb � Da[db]i � Db[da]i � [dadb]i ; i 2 {0,1}

Pi : (ai, [da]i),(bi, [db]i), [dadb]i

[Dc]i : ci +[dc]i

Beaver’s [8]: On Gate Inputs ABY2.0 : On Gate Output

a b

c

MULT

P0 P1

[Da]0, [Db]0

[Da]1, [Db]1

[Da]i : ai +[da]i

[Db]i : bi +[db]i

Pi : (Da, [da]i),(Db, [db]i), [dadb]i

[Dc]1

[Dc]0
P1P0

Figure 1: High level overview of Beaver’s [8] and ABY2.0

Our Technique on Gate Outputs (cf. right of Fig. 1). With
this insight, we modify the sharing semantics so that the
parties are ensured to have the D value as a part of their
share, corresponding to every wire value (including the inputs
of a multiplication gate). As a result, the reconstructions of
Da and Db are no longer required. This may give the wrong
impression that no communication is required for evaluating
a multiplication gate. It is true that now the parties can locally
evaluate the additive sharing of c = a · b. But in order to
proceed further, a sharing for c according to the new sharing
semantics needs to be generated. This requires both parties
to obtain Dc in clear. Hence, the parties locally compute an
additive sharing of Dc using the shares of c computed earlier
and mutually exchange their shares to reconstruct Dc.

Our technique, in summary, shifts the need of
reconstruction (which alone causes communication
for a multiplication gate) from per input wire to the output
wire alone for a multiplication gate. For a traditional 2-input
multiplication gate, we reduce the number of reconstructions
(each involves sending 2 elements) from 2 to 1. As a result,
we improve communication by a factor of 2⇥. The impact is
much higher for an N-input multiplication gate (cf. §3.1.4)
and a scalar product of two N-dimensional vectors (cf. §5.1).
For scalar product, Beaver’s circuit re-randomization required
2N reconstructions, whereas our techniques need a single one,
offering a gain of 2N⇥. Our constructions can be generalized
to the n-party scenario (which is out of scope for this work)
and bring a significant pay-off, as the cost per reconstruction
depends linearly on the number of parties.

3.1.2 Sharing Semantics

[·]-sharing. A value v 2 Z2` is said to be [·]-shared among P ,
if party Pi for i 2 {0,1} holds [v]i such that v = [v]0 +[v]1.

h·i-sharing. A value v 2Z2` is said to be h·i-shared among P ,
if there exist values dv,Dv 2 Z2` such that i) dv is [·]-shared
among P0,P1, ii) Dv = v + dv, and iii) Dv is known to both
P0,P1 in clear. We denote the shares of individual parties as
hvii = ([dv]i ,Dv) for i 2 {0,1}.

We use dv1...vn to represent the product dv1dv2 · · ·dvn .
Similarly, Dv1...vn represents Dv1Dv2 · · ·Dvn .

3.1.3 Protocols

Sharing Protocol. Protocol SHARE enables party Pi for i 2
{0,1} to generate a h·i-sharing of its input value v. During
the setup, Pi samples random [dv]i while the parties together
sample [dv]1�i so that Pi will get to know dv = [dv]0 +[dv]1 in
clear. During the online phase, Pi computes Dv = v+dv and
sends it to P1�i.

Reconstruction Protocol. To reconstruct value v given hvi,
protocol REC proceeds as follows: parties mutually exchange
their missing [·]-share of dv and locally compute v = Dv �
[dv]0 � [dv]1.

Linear Operations. Our sharing scheme is linear in the
sense that given hai,hbi and public constants c1,c2, parties
can locally compute hyi = c1 · hai + c2 · hbi. For this, Pi
for i 2 {0,1} locally sets Dy = c1 · Da + c2 · Db and [dy]i =
c1 · [da]i + c2 · [db]i.

Setup:
• Pi for i 2 {0,1} samples random [dy]i 2R Z2` .
• Parties execute setupMULT([da] , [db]) to generate [dab].

Online:
• Pi for i 2 {0,1} locally computes and sends to P1�i
[Dy]i = i ·Dab �Da [db]i �Db [da]i +[dab]i +[dy]i.
• Pi for i 2 {0,1} locally sets Dy = [Dy]0 +[Dy]1.

Protocol MULT(hai,hbi)

Figure 2: Multiplication Protocol

Multiplication Protocol. Given the h·i-sharing of a,b, the
goal of protocol MULT (cf. Fig. 2) is to generate hyi where
y = ab. For correctness to hold, we will need

Dy = y+dy = ab+dy = (Da �da)(Db �db)+dy

= DaDb �Dadb �Dbda +dadb +dy.

Since the d-values are not available in clear to any of P0,P1,
they cannot compute the value Dy on their own. But if we
enable the parties obtain a [·]-sharing of dab = dadb, then
each of them can compute a [·]-sharing of Dy which they
can mutually exchange to obtain Dy in clear. So the problem
of multiplication reduces to generating [dab] given [da] and
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[db]. We use protocol setupMULT to accomplish this task, the
details of which is provided later in this subsection. We note
that Turbospeedz [12] achieves same online cost as that of
ours, but with a more expensive preprocessing. We provide
more details in §A.3.

To summarize, during the setup phase, parties first locally
sample the [·]-shares for dy. In parallel, parties execute
the setupMULT protocol on [da] and [db] to obtain [dab].
During the online phase, the parties locally compute [Dy]
and subsequently reconstruct Dy.

We now provide the details for instantiating setupMULT
using two of the well-known primitives: i) Oblivious
Transfer (OT) as used in [39, 59] and ii) Homomorphic
Encryption (HE) as used in [38,49,90]. These two approaches
have been rallied against each other in terms of practical
efficiency in the past and fair competition is still going on. In
our work, we make only black-box access to these primitives,
and hence an improvement in any of them will have a direct
impact on the efficiency of the setup phase of our protocols.

Note that dab = ([da]0 +[da]1)([db]0 +[db]1) = [da]0 [db]0 +
[da]0 [db]1 +[da]1 [db]0 +[da]1 [db]1. Here Pi for i 2 {0,1} can
locally compute [da]i [db]i and hence the problem reduces to
computing [da]0 [db]1 and [da]1 [db]0.

OT based setupMULT. In our OT-based approach, we
use Correlated OTs (cOT) [5] where the sender inputs a
correlation function f (·) to cOT and obtains (m0,m1), where
m0 is a random element and m1 = f (m0). We use cOTn

` to
represent n parallel instances of 1-out-of-2 Correlated OTs on
` bit input strings.

To compute [([da]0 [db]1)], the parties execute cOT`
` with

P0 being the sender and P1 being the receiver. For the j-
th instance of cOT where j 2 {0, . . . ,`� 1}, P0 inputs the
correlation f j(x) = x+2 j [da]0 and obtains (m j,0 = r j,m j,1 =
r j + 2 j [da]0). P1 inputs choice bit b j as the j-th bit of [db]1
and obtains m j,b j as output. Now the [·]-shares are defined as
[([da]0 [db]1)]0 = Â`�1

j=0(�r j) and [([da]0 [db]1)]1 = Â`�1
j=0 m j,b j .

Computation of [([da]1 [db]0)] proceeds similarly with the role
of the parties reversed.

HE-based setupMULT. In a HE based solution, P0, using
his public key pk0, encrypts its messages [da]0 , [db]0 in
independent ciphertexts and sends the ciphertexts to P1.
In parallel, P1 computes the ciphertexts corresponding to
[da]1 , [db]1 and a random element r 2R Z2` using pk0. Upon
receiving the ciphertexts from P0, P1 computes the ciphertext
corresponding to v = [da]0 [db]1 + [da]1 [db]0 � r using the
homomorphic property of the underlying HE. P1 then sends
encryption of v to P0 who then decrypts it using his secret key
sk0. Note that (v, r) forms an additive sharing of the desired
value: [da]0 [db]1 +[da]1 [db]0 = v+ r.

A more detailed description for instantiating setupMULT
using OT and HE is provided in the full version [83].

3.1.4 Multi-Input Multiplication Gates

3-Input Multiplication Gate. We show how to compute
a 3-input multiplication gate (MULT3 ) with three inputs
a,b, c with each input being h·i-shared. Similar to 2-input
multiplication, we can write

Dy = abc+dy = (Da �da)(Db �db)(Dc �dc)+dy

= Dabc �Dabdc �Dbcda �Dacdb +Dadbc +Dbdac

+Dcdab �dabc +dy.

Here we need to generate the [·]-sharing of four terms,
namely dab,dbc,dac and dabc which is done by protocol
setupMULT3. The protocol can be instantiated using either
OT or HE in a similar fashion to that of setupMULT and the
details are provided in the full version [83].

Multi-Input Multiplication Gate. We can extend our
method to handle a 4-input multiplication (MULT4) gate
and in the most general case, an N-input multiplication gate
(MULTN) for any positive constant N, without inflating the
online communication which remains just 2 ring elements
independent of the fan-in of the gate. In contrast, the previous
solution [78] requires an online communication of 2N ring
elements for an N-input multiplication gate. Note that our
improved online communication comes at the cost of an
expensive setup and hence to maintain balance, we use N 2
{3,4} in our applications. We provide more details of [78]
along with a comparison to our protocol in §A.3.

A more detailed description of MULT3, MULT4 and
MULTN is given in the full version [83].

3.2 2PC in Boolean World

All the protocols mentioned above work over a Boolean ring
(Z21 ) as well. This can be achieved by replacing additions (or
subtractions) with XORs and multiplications with ANDs.

Negation Protocol. Given the B-sharing of a bit u as huiB =
([du] ,Du), the goal of a NOT protocol is to generate the
boolean sharing of u. This can be done locally by setting
Du = 1�Du and [du] = [du].

3.3 2PC in Yao World

For the Yao world, we follow the sharing semantics introduced
by ABY [39]. For a wire u with value v 2 {0,1}, party P0
acts as the garbler with the zero-key on the wire (K0

u) being
its share, while P1 acts as the evaluator with the actual key
(Kv

u) as its share. More formally, hvi0 = K0
u and hvi1 = Kv

u.
We use the free-XOR technique [66] in the garbling

scheme, which enables the XOR gates to be evaluated without
any communication. Here, the one-key for a wire is defined
as a fixed offset from the zero-key as K1

u = K0
u �R with the

least significant bit (LSB) of value R being set to 1 to enable
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point-and-permute [10]. The value R is chosen by P0 and is
fixed across all the wires in the circuit.

To generate a h·i-sharing of a bit v, protocol SHARE(Pi,v)
proceeds as follows: P0 chooses a random zero-key K0

u 2R
{0,1}k and sets K1

u = K0
u � R, where k denotes the

computational security parameter. If Pi = P0, P0 sends Kv
u

to P1. For the case when Pi = P1, parties engage in a cOT1
k

with P0 being the sender and P1 being the receiver. Here
P0 inputs the correlation function fR(x) = x�R and obtains
(K0

u,K
1
u = K0

u�R) while P1 inputs v as choice bit and receives
Kv

u as the output.
To generate a h·i-sharing of an `-bit value v, parties execute

the SHARE() protocol on each of its bits (v[ j] for j 2 {0,`�
1}) in parallel. For a value v 2 Z2` , we abuse the notation
slightly and use hvi to denote the h·i-sharing corresponding
to each bit of v. We refer readers to ABY [39] for a formal
description of the two-party Yao world and the operations.

4 Mixed Protocol Conversions

In this section, we show techniques to convert the shared
values among the three protocols, namely– Arithmetic,
Boolean, and Yao. We use the superscripts {A,B,Y} to
distinguish the sharing and the respective protocols in the
Arithmetic, Boolean, and Yao world respectively.

4.1 Standard Conversions
Here we detail the conversions amongst the three protocols.
While most of the conversions of ABY [39] demand the
execution of OT in the online phase, our protocols invoke
OT in the setup phase only. This makes the online phase of
the conversions– (a) free of any cryptographic operations and
(b) run for just 1 round as opposed to 2 rounds for OT in ABY
(cf. Tab. 2), except the Arithmetic to Boolean conversion.

Y2BY2BY2B. Given the h·iY-sharing of a bit u 2 {0,1}, the goal is
to generate its equivalent Boolean sharing. As observed in
ABY, since the last bit of the zero and one key are distinct,
XORing the LSB of K0

u and Ku
u results in the underlying bit u.

Hence, each Pi for i 2 {0,1} Boolean-shares the LSB of their
respective shares huiY

i followed by locally XORing the shares
to obtain the desired result. We note that P0 can perform
SHAREB(P0,LSB(K0

u)) already in the setup phase.

B2YB2YB2Y. To convert huiB to its equivalent h·iY-sharing, Pi for
i 2 {0,1} first locally sets ui = (1� i) ·Du� [du]i. It is easy to
verify that u = u0�u1. This is followed by party Pi generating
huiiY by executing the SHAREY(Pi,ui) protocol as described
in §3.3. Given hu0iY,hu1iY, the parties can locally compute
huiY = hu0iY �hu1iY using the free-XOR technique [66]. In
our solution, we observe that parties can generate hu1iY in the
setup phase, with u1 available in the setup phase itself. This
observation allows us to shift the OT run to the setup phase,
as opposed to ABY [39].

A2YA2YA2Y. The conversion from hviA to its equivalent h·iY-sharing
proceeds similar to that of the B2Y conversion. Party Pi for
i2 {0,1} locally sets vi = (1� i) ·Dv� [dv]i so that v = v0 +v1.
During the setup phase, P0 garbles a two-input adder circuit
which computes y = x0 + x1, given the inputs x0,x1 2 Z2` .
The garbled circuit is then sent to P1. In parallel, parties
execute SHAREY(P1,v1) to generate hv1iY. During the online
phase, parties execute SHAREY(P0,v0) to generate hv0iY.
This is followed by P1 locally evaluating the garbled adder
circuit to generate hviY which is our desired result. The adder
circuit consists of ` AND gates [20]. Using the half-gates
technique [99], this has setup communication of 2`k bits.

Y2AY2AY2A. To convert hviY to hviA, parties proceed similarly to
ABY [39] as follows: During the setup phase, P0 samples
a random value r 2R Z2` and executes SHAREY(P0,r) and
SHAREA(P0,r) to generate hriY and hriA respectively. In
parallel, P0 garbles an Adder circuit and sends the garbled
circuit along with the decoding information to P1. During
the online phase, P1 evaluates the garbled circuit with inputs
hviY and hriY to generate hv + riY. Using the decoding
information, P1 obtains the value (v + r) in clear followed
by executing SHAREA(P1,v+r) to generate hv+riA. Parties
then locally compute hviA = hv+ riA �hriA.

A2BA2BA2B. To convert an arithmetic share hviA to its equivalent
Boolean share, parties use a Boolean Adder circuit similar
to that of the A2Y conversion. Here, party Pi for i 2 {0,1}
locally sets vi = (1 � i) · Dv � [dv]i followed by executing
SHAREB(Pi,vi) to generate hviiB. Parties then evaluate
the circuit using the 2PC protocol as described in §3. As
mentioned in ABY [39] and ABY3 [73], the adder circuit
can either be instantiated in its size-optimized [20] or depth-
optimized variant (Parallel-prefix Adder [69]) and both these
methods result in a non-constant (dependent on `) number of
rounds. A constant-round solution is to use Y2B(A2Y(hviA)).

Bit2ABit2ABit2A. Here the goal is to generate the arithmetic sharing of a
bit v 2 {0,1}, given its Boolean sharing hviB. Let va denote
the value of bit v when viewed over an `-bit ring. Then for
v = v0 �v1, we can write va = va

0 +va
1 �2va

0v
a
1. We make use

of this observation in the rest of the paper several times. Note
that va = (Dv �dv)

a = Da
v +da

v �2Da
vda

v.
During the setup phase, parties interactively generate the [·]

sharing of value da
v. During the online phase, Pi for i 2 {0,1}

locally computes [va]i = i ·Da
v +(1�2Da

v) · [da
v]i and executes

SHAREA(Pi, [v
a]i) to generate h[va]iiA. This is followed by

parties locally computing hvaiA = h[va]0iA + h[va]1iA.
Now we describe how to generate [da

v] in the setup phase,
given the [·]-sharing of bit dv. Since dv = [dv]0 � [dv]1, we
can write da

v = [da
v]0 +[da

v]1 �2([da
v]0 [da

v]1). The parties first
execute cOT1

` with P0 as sender and P1 as receiver. P0 inputs
the correlation f j(x) = x + [dv]

a
0 and obtains (s0 = r,s1 =

r+[dv]
a
0). P1 inputs the choice bit as [dv]1 and obtains s[dv]1

=
r +[dv]1 · [dv]

a
0 as the output. P0 locally sets [([dv]

a
0 [dv]

a
1)]0 =
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�r while P1 sets [([dv]
a
0 [dv]

a
1)]0 = s[dv]1

. Party Pi for i 2 {0,1}
locally sets the [·]-share of [da

v] as [da
v]i = (1� i) · [dv]

a
0 + i ·

[dv]
a
1 �2 [([dv]

a
0 [dv]

a
1)]i.

B2AB2AB2A. To convert a value v 2 Z2` from its h·iB-sharing to its
equivalent arithmetic sharing hviA, one simple solution is
to follow steps similar to the Y2A conversion. Here, parties
evaluate a Boolean subtraction circuit with hviB and hriB as
the inputs, where r denotes a random value chosen by P0. In
addition, P0 executes SHAREA(P0,r) to generate hriA as well.
After the evaluation, the value (v� r) is reconstructed to P1,
who further generates hv� riA. Parties then locally compute
hviA = hv+ riA �hriA.

As the above solution results in a non-constant round
protocol in the online phase, we propose a novel round
efficient variant which makes use of the Bit2A protocol.
Our protocol was inspired from [31] that proposed a similar
solution for the four party honest majority case. Here we make
use of the fact that v = Â`�1

j=0 2 j ·v[ j] where v[ j] denotes the jth

bit of v. Since the parties possess hv[ j]iB for each j 2 [0,`),
they execute Bit2A conversion on hv[ j]iB to generate its
arithmetic equivalent hv[ j]iA. This results in a communication
corresponding to ` instances of Bit2A conversions.

We observe that the online cost can be brought down
to just 2 ring elements using the following approach.
For each bit v[ j], parties locally compute the [·]-sharing
corresponding to (v[ j])a as mentioned in Bit2A. Now, instead
of generating the h·iA-share corresponding to each bit, Pi
for i 2 {0,1} locally computes [v]i = Â`�1

j=0 2 j · [(v[ j])a]i and
executes SHAREA(Pi, [v]i) to generate h[v]iiA. Both parties
then locally compute hviA = h[v0]iA + h[v1]iA. It is easy to
verify that v = [v]0 +[v]1.

4.2 Special Conversions
For the three special conversions described below, the inputs
are either Boolean shares or a mix of Boolean and arithmetic
shares. The goal is to compute the equivalent arithmetic
sharing of the product of the inputs. These conversions use
the techniques of the Bit2A protocol (§4.1).

a) Protocol PQ(hpiB,hqiB) : hpiBhqiB ! hpqiA

Prep:
⇥
da
p

⇤
,
⇥
da
q

⇤
,
⇥
da
pda

q

⇤

(pq)a = (Da
p +(1�2Da

p)da
p)(Da

q +(1�2Da
q)da

q)

b) Protocol PV(hpiB,hviA) : hpiBhviA ! hpviA

Prep:
⇥
da
p

⇤
,
⇥
da
pdv

⇤

(pv)a = (Da
p +(1�2Da

p)da
p)(Dv �dv)

c) Protocol PQV(hpiB,hqiB,hviA) : hpiBhqiBhviA ! hpqviA

Prep:
⇥
da
p

⇤
,
⇥
da
q

⇤
,
⇥
da
pda

q

⇤
,
⇥
da
pdv

⇤
,
⇥
da
qdv

⇤
,
⇥
da
pda

qdv

⇤

(pqv)a = (Da
p +(1�2Da

p)da
p)(Da

q +(1�2Da
q)da

q)(Dv �dv)

During the online phase, parties locally generate a [·]-
sharing of the value to be computed followed by executing the

SHAREA protocol on it to generate its equivalent arithmetic
sharing. Then, parties locally add the resulting arithmetic
shares to obtain the final result. The difference lies in the setup
required for each of the conversions. The expression provided
above shows the desired result in terms of corresponding D
and d values and the data (labelled as Prep) to be prepared in
the setup phase.

As observed in the Bit2A protocol, the online phase of all
these conversions consists of both parties executing arithmetic
sharing of a single element resulting in one round with a
communication of just 2 ring elements. We provide a detailed
description of the conversions in the full version [83].

5 Building Blocks for Applications

In this section, we provide details for our building blocks that
form the core of the applications that we explore in §6. We
provide the formal details and communication cost analysis
in the full version [83].

5.1 Scalar Product

Given the arithmetic sharing of n-element vectors~a,~b, the
goal is to generate hyiA where y =~a�~b = Ân

j=1 aibi. One
trivial way is to invoke the multiplication protocol from §3.1.3
corresponding to each of the n underlying multiplications.
This would result in online communication linear in the vector
size n. We now show how to make the online communication
independent of the vector size.

The parties first execute the preprocessing corresponding to
each of the n multiplications in parallel. Here we observe that
there is no need to sample the shares of

⇥
dy j

⇤
corresponding

to each of the underlying multiplications. Instead, the parties
locally sample the shares of [dy]. During the online phase,
parties first locally compute the [·]-sharing of value Dy j where
y j denotes a jb j. Pi for i 2 {0,1} now locally computes
[Dy]i = Ân

j=1
⇥
Dy j

⇤
i
. This is followed by the parties mutually

exchanging [Dy]-shares to reconstruct Dy.
Compared with the state-of-the-art 2PC solutions in

ABY [39] which require communication of 4n elements in the
online phase, our protocol requires an online communication
of just 2 ring elements.

5.2 Matrix Multiplication

Here we provide the details for extending our 2PC
multiplication (§3.1.3) to the matrix setting. We abuse the
notation slightly and use ‘+’ for addition of matrices and ‘�’
for subtraction. Also, we follow the h·i-sharing semantics for
matrices as well. For Xm⇥n, we have DX = X+[dX]0 +[dX]1.
Here DX, [dX]0 and [dX]1 are matrices with dimension m⇥n
and xi, j denote the [i : j]-th entry of X.

Given Ap⇥q,Bq⇥r, protocol MATMULT proceeds as
follows: During the setup phase, for i 2 [p], j 2 [q],k 2
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[r], parties execute setupMULT(
⇥
dai, j

⇤
,
h
db j,k

i
) to generate

h
dai, jb j,k

i
. This results in a [·]-sharing of gAB = dA �dB among

P0,P1. During the online phase, parties locally compute a [·]-
sharing of DC using the following relation:

DC = C+dC = A�B+dC = (DA �dA)� (DB �dB)+dC

= DA �DB �DA �dB �dA �DB + gAB +dC.

Finally, parties mutually exchange [DC] and obtain DC
completing the protocol. Our protocol improved the online
communication from O(pqr) to O(pr) ring elements,
eliminating the dependency on dimension q.

5.3 Depth-Optimized Circuits
Parallel-prefix Adders (PPA) offer a depth-optimized solution
to the binary addition between two `-bit binary numbers. The
best-known PPAs have log2(`) depth [47]. Using ideas from
[7,47], we design a PPA using two, three, and four input AND
gates combined and obtain depth-optimized PPAs. For a 64-
bit ring, we achieve a 2⇥ improvement in depth over existing
designs along with a reduction in online communication.

Circuit ` #AND2 #AND3 #AND4 Depth

Adder 8 15 (24) 6 1 2 (3)
BitExt 8 7 (14) 4 1 2 (3)

Adder 64 216 (384) 184 179 3 (6)
BitExt 64 41 (126) 27 47 3 (6)

Table 5: Depth-optimized Circuits for `-bit rings. Previous circuits
from ABY3 [73] are given in brackets.

As shown in [73], the PPA circuit can be optimized to
obtain just the most significant bit (MSB), which we denote
as Bit Extraction (BitExt) circuits. The efficiency gain in our
PPA construction extends to BitExt circuits as well. Tab. 5
provides a summary of the results.

5.4 Comparison
As pointed out in [30, 73], checking x < y in the Fixed-Point
Arithmetic (FPA) representation is equivalent to checking the
sign of v = x� y, which is stored in the MSB position of v.

The corresponding protocol LT begins with parties locally
computing hvi = hxi � hyi. Let v = a + b where a =
� [dv]0 and b = Dv � [dv]1. P0,P1 execute SHAREB on a,b
respectively to generate its equivalent boolean sharing. The
parties then use the Bit Extraction (BitExt, §5.3) circuit to
compute MSB(v) in the boolean sharing format.

5.5 Truncation
In Fixed-Point Arithmetic (FPA), repeated multiplications
result in an overflow with the fractional part doubling up in
size after each multiplication. The naive solution of choosing
a large enough ring to avoid the overflow is impractical for ML

algorithms where the number of sequential multiplications
is large. To tackle this, truncation [31, 73, 75] is used where
the result of the multiplication is brought back to the FPA
representation by chopping off the last x bits.

Below we explain how to perform truncation without
affecting the communication cost for the multiplication. Our
protocol is inspired by SecureML [75] and works as follows:
During the online phase of multiplication, the parties first
locally compute [y] directly instead of [Dy]. This is possible
since [y] = [Dy]� [dy]. Now each party locally truncates [y] to
obtain the truncated value denoted by [yt ]. This is followed
by parties executing the SHAREA protocol on [yt ] to generate
its arithmetic sharing. Finally, the parties locally compute
hytiA = h[yt ]0iA + h[yt ]1iA. The correctness of the method
follows trivially from SecureML.

5.6 MAX2 / MIN2

The MAX2 protocol is used to compute the maximum
among two values a,b in a secure manner given haiA

and hbiA. For this, the parties execute the LT protocol
from §5.4 on haiA,hbiA to obtain huiB = ha < biB. Note
that MAX2(a,b) = u · (b�a)+a. Hence, parties can use the
PV protocol from §4.2 to compute the desired result. The
MIN2 protocol proceeds similarly except that MIN2(a,b) =
u · (a�b)+b.

5.7 MAX3 / MIN3

Given the arithmetic sharing haiA,hbiA,hciA, the goal of the
MAX3 protocol is to find the maximum value among the
three. For this, we optimize the solution proposed by [78]
which results in an improvement of 24.5⇥ in terms of the
communication and 1.3⇥ in rounds in the online phase. The
parties first securely compare the pairs (a,b),(a,c) and (b,c)
using the LT protocol from §5.4 and obtain hu1iB,hu2iB and
hu3iB respectively. Here u1 = 1 if a < b and 0 otherwise. u2
and u3 are defined likewise . Now the maximum among the
three, denoted by y, can be written as y = u1 ·u2 ·a+u1 ·u3 ·
b+u2 ·u3 · c.

Given hu1iB,hu2iB,hu3iB and haiA,hbiA,hciA, the parties
can use the PQV protocol from §4.2 to obtain each term in the
expression for y and can locally add them to obtain the desired
result. As an optimization, we can combine the online phase
corresponding to all three executions of the PQV protocol
into one. This reduces the online communication from six to
two ring elements.

The protocol for MIN3, which computes the minimum
among the three values can be obtained by slightly modifying
the protocol for MAX3. The difference lies in the expression
for computing the minimum which will now be y = u1 ·u2 ·
a+u1 ·u3 ·b+u2 ·u3 · c.

We observe that the protocol described above can be
modified slightly to compute the index of the maximum
(or minimum) among a set of three values. We use
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ArgMax/ArgMin to denote such a protocol and the details
are given in the full version [83].

5.8 Non-linear Activation Functions
We show how to compute two of the most widely used non-
linear activation functions for PPML: ReLU and Sigmoid.
ReLU function, defined as ReLU(v) = max(0,v), can be
written as ReLU(v) = uv, where u = 1 if v < 0 and 0
otherwise. To compute this, parties first execute the LT
protocol from §5.4 on v to obtain huiB followed by executing
the PV protocol from §4.2 on huiB and hviA to obtain
the desired result. For Sigmoid, we use the MPC-friendly
version [30, 73, 75] defined as Sig(v) = u1u2(v+ 1/2)+u2,
where u1 = 1 if v+1/2 < 0 and u2 = 1 if v�1/2 < 0.

5.9 Maxpool and Minpool
Given the arithmetic sharing of an n-element vector ~x =
(x1, . . . ,xn) of values with x j 2 Z2` for j 2 {1, . . . ,n}, the
goal of the Maxpool protocol is to compute the arithmetic
sharing of the maximum value among the n values.

For this, parties arrange the n values into an N-ary tree
(tournament) composed of MAXN blocks with depth logN(n)
and evaluate in a top-down fashion [64]. In the recent work
of [78], a maxpool using MAX3 was proposed where three
values are compared at a time. In this work, we use our
optimized MAX3 protocol from §5.7 as the building block
for computing Maxpool. The improvement in rounds as well
as communication of our MAX3 protocol over [78] directly
translates to this case as well. We provide an empirical
comparison for the Maxpool protocol in §6.1. Using MIN3
instead of MAX3 will directly provide a solution for Minpool,
where the goal is to find the minimum among the values.

5.10 Equality Testing
Given haiA,hbiA, the goal of the Equality Testing (EQ)

protocol is to check whether a
?
= b or not. An equivalent

formulation of the problem [18, 78] is to check if all the
bits of a� b are 0 or not. This simple primitive is crucial
in building efficient protocol for applications like Circuit-
based Private Set Intersection [85, 87, 88] (cf. §6.3), the Table
Lookup Protocol from [40], and Data Mining [18].

We begin with the observation that if x = y, then using
our sharing semantics we can write Dx � [dx]0 � [dx]1 =
Dy � [dy]0 � [dy]1. Assuming v0 = (Dx � [dx]0)� (Dy � [dy]0)
and v1 = [dx]1 � [dy]1, the problem now reduces to checking

whether v0
?
= v1 or not. Note that the value vi can be locally

computed by party Pi for i 2 {0,1}.
Protocol EQ proceeds as follows: Pi for i 2 {0,1} locally

computes vi and executes SHAREB to generate hviiB. The
parties then compute hviB = NOT(hv0iB �hv1iB). Note that
checking v0 = v1 is the same as checking whether all the
bits of v are 1 or not. For this, the parties use AND4 gates

and a tree structure, where 4 bits are taken at a time and the
AND of them is computed in one go. This approach improves
the round complexity by a factor of 2 over the traditional
approach using AND2 gates. In concrete terms for a 64 bit
ring, our solution improves over the protocol of [18] by 2⇥
in online rounds and by 2.4⇥ in online communication.

6 Applications and Benchmarks

All secure two-party applications using Boolean sharing (B)
or Arithmetic sharing (A) directly benefit from our
improvement in the online phase of our protocols. In this
section, we give four applications with further improvements:
i) AES which benefits from AND3 gates (§6.2), ii) Circuit-
based Private Set Intersection (PSI) which benefits from
our improved Equality Tests (§6.3), ii) Biometric Matching
which benefits from our new dimension-independent Scalar
Product and Minpool protocols (§6.4), and iv) Privacy-
Preserving Machine Learning (PPML), specifically training
and inference of Logistic Regression and Neural Networks
which benefit from many of our improved protocol building
blocks (§6.5). Since Maxpool/Minpool is an essential building
block for several applications like K-means clustering [25],
face-recognition [93], and fingerprint-matching [15, 43], we
provide a separate analysis for Maxpool in §6.1.

To showcase the practicality of our constructions, we have
implemented our protocols and compare them with their
closest competitors. We implemented our protocols using
the ENCRYPTO library [41] in C++17 over a 64-bit ring.
Each experiment is run 15 times and the average values are
reported. The benchmarking is performed over a LAN of
25Gbps bandwidth and a WAN of 75Mbps bandwidth. Over
the LAN, we use two machines, each equipped with a 3.5
GHz Intel (R) Xeon (R) Gold 6144 CPU and 64 GB of RAM.
The WAN was instantiated using n1-standard-8 instances
of Google Cloud1 with machines located in East Australia
(P0) and South East Asia (P1). Over the WAN, machines are
equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors
supporting hyper-threading, with 8 vCPUs, and 30 GB of
RAM. The average round-trip time (rtt), which was taken as
the time for communicating 128 KB of data, turned out to be
0.056 ms for LAN and 60.19 ms for WAN.

6.1 Maxpool
Here we provide an empirical analysis of our Maxpool
protocol from §5.9 and compare it with its competitors. We
consider vectors with dimensions n 2 {1024,65536}. We
have evaluated both round-optimized and communication-
optimized variants of the Maxpool protocol. In the round-
optimized variant proposed by SecureML [75], a garbled
circuit is used to evaluate the maximum among n elements.
This method requires converting Arithmetic shares to Yao
shares and back, which can be tackled using A2Y and Y2A

1https://cloud.google.com
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conversions. In the communication-optimized variant, we use
the tree-based approach where either two or three elements
are compared at a time as described in §5.9.

Ref. Type
n = 1,024 n = 65,536

Comm [KB] Rounds Comm [KB] Rounds

[75] GC 2,056 4 131,584 4
ABY2.0 GC 1,024 2 65,536 2

[78] MAX2 258 50 16,512 80
ABY2.0 MAX2 53 40 3,408 64

[78] MAX3 492 35 31,679 55
ABY2.0 MAX3 63 28 4,080 44

Table 6: Online communication and rounds of Maxpool protocols.
Best results in bold. n is the number of input elements.

Based on the building block used to instantiate Maxpool,
the analysis can be divided into three cases – i) Case I: where
the garbled circuit is used, ii) Case II: only MAX2 is used, and
iii) Case III: a mix of MAX3 and MAX2 are used. For Case I,
we compare with SecureML [75], while ours is compared with
[78] for the rest. Table 6 summarizes the cost for the online
phase of the Maxpool protocol. It is evident from the table
that our protocols outperform [75,78] in both communication
and rounds for the online phase in all three cases.

For Case I, our round-optimized variant has a 2⇥
improvement over SecureML [75] in both online
communication and rounds. This is due to our efficient A2Y
and Y2A conversions. For Case II, we improve upon [78] by
a factor of 6.2⇥ in online communication and 1.3⇥ in rounds.
Similarly, for Case III, the respective improvements over [78]
are 9.6⇥ and 1.3⇥. For cases II&III, while the improvement
in online rounds is due to our efficient comparison protocol,
improvement in communication is primarily contributed by
our PQV protocol from §4.2. We also note that [78] improved
the online rounds by 1.4⇥ by switching from MAX2 to
MAX3 as the building block for Maxpool at the expense of
1.9⇥ higher online communication. In contrast, our solution
improves the online rounds by 1.4⇥ with a minimal overhead
of 1.2⇥ in online communication.

For the round-optimized variant, our protocol incurs an
additional communication of just 2KB over SecureML in the
setup phase. For the communication-optimized variant, we
improve upon [78] for both MAX2 and MAX3 in terms of
communication in the setup phase. This improvement results
from our improved comparison protocol.

6.2 Improved S-box for AES

In a privacy-preserving AES [51, 86], the goal is to enable P0
to encrypt her message x using a key k held P1. The privacy
guarantee is that P0 gets the corresponding ciphertext while
leaking nothing else. This has several applications in PSI [48,
58] and encrypted databases [2, 22]. Since the MixColumns
and AddRoundKey operations can be evaluated using only
free XOR gates [51], the focus was shifted to building efficient

protocols for evaluating S-boxes as its core block. While [21]
gives a depth-optimized S-box of 34 AND gates with an AND-
Depth of 4, [19] gives a size-optimized solution with 32 AND
gates and AND-Depth 6.

We give a new construction for the AES S-box that results
in an effective AND-Depth of only 3. On a high level, we
start with the three-layer construction of [19,21] and optimize
the middle layer (inversion layer) by replacing some of the
AND2 gates with AND3 gates. This optimization is crucial
since AES-128, AES-192 and AES-256 have 10, 12, and 14
sequential calls to layers of S-boxes resulting in a respective
saving of 10, 12, and 14 rounds of interaction over [21]. We
provide the empirical analysis in Table 7 and defer a detailed
description to the full version [83].

Cipher Ref. #AND
Setup Online

Comm [KB] Comm [KB] Rounds

AES
128

[21] 5,440 88.98 2.66 40
[19] 5,120 83.75 2.50 60

ABY2.0 5,440 98.13 1.33 30

Table 7: Communication and rounds for Secure evaluation of AES.
Best results in bold.

In the setup phase, we used 4-OT1
1 for AND2 gates and

8-OT1
4 for AND3 gates. With the optimization of [40] applied,

one instance of 4-OT1
1 requires communication of 134 bits

while 8-OT1
4 takes 253 bits. Our protocol outperforms [21]

and [19] in terms of both online communication and rounds.

6.3 Circuit-Based PSI
Circuit-based PSI [50] allows us to efficiently compute
variants of the Private Set Intersection (PSI) functionality by
securely evaluating a Boolean circuit. Today’s most efficient
protocols in this area [85, 87–89] do this by using hashing
techniques and then evaluating a Boolean circuit that checks
for equality among several bit strings using secure 2PC.

In fact, for today’s most efficient circuit-based PSI
protocol of [87], the majority of the computation, as well as
communication, is spent on this two-party Equality Checking
protocol. To be precise, 96% of the overall communication
(cf. [87, Tab. 3]) and 34% � 63% of the overall runtime
(cf. [87, Tab. 5]) is spent on Equality Checking. Plugging in
our efficient Equality Checking protocol from §5.10 into the
PSI protocol of [87] results in a direct improvement of ⇡ 1.3⇥
in runtime and ⇡ 2.4⇥ in communication in the online phase.

6.4 Biometric (Minimum Euclidean Distance)
Given a database owner with m biometric samples (~s1, . . . , ~sm)
and a party with its biometric sample~c, the goal of privacy-
preserving biometric matching is to find out the “minimum
distance" of ~c from the database. This method is used for
various traits of biometrics such as face-recognition [42, 49]
and fingerprint-matching [15, 51]. Some of these works use
the Squared Euclidean Distance (SED) as the metric to
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compute the distance between two vectors. For two n-element
vectors ~a,~b, SED is defined as SED(~a,~b) = Ân

j=1(a j �b j)
2.

Note that for~y =~a�~b, SED(~a,~b) =~y�~y.
In our framework, P0 is the database owner while P1 is

the party with the sample to be checked. For finding the
nearest sample securely, the parties first generate an arithmetic
sharing of both the database samples and the query according
to our sharing semantics. Given h~s jiA for j 2 {1, . . . ,m} and
h~ciA, the parties locally compute h~x jiA = h~s jiA �h~ciA. This
is followed by running the dot product protocol from §5.1 on
each h~x jiA with itself to generate hy jiA = h~x j �~x jiA. Note
that the vector h~yiA = {hy1iA, . . . ,hymiA} represents the SED
of the query with each of the database samples. To find
the minimum among the elements of~y given the arithmetic
sharing of its elements, the parties can use either of the two
methods described below.

In the first method, P0 generates a garbled circuit that
can compute the minimum among m inputs and sends this
circuit to P1. The parties then execute the A2Y conversion
on each hy jiA for j 2 {1, . . . ,m} to generate hy jiY. P1
evaluates the circuit to obtain the desired result in h·iY-
sharing. This method will result in a constant round solution,
but the communication will be large. Another option is
to use our Minpool protocol from §5.9 which results in
a communication-efficient solution, but will require a non-
constant number of rounds.

Ref. Type
m = 1,024 m = 4,096 m = 16,384

Rounds
Comm
[KB] Rounds

Comm
[KB] Rounds

Comm
[KB]

[39] A+Y 5 2,312 5 9,248 5 36,992
ABY2.0 A+Y 3 1,040 3 4,160 3 16,640

[78] A+B 36 748 41 3,003 46 12,014
ABY2.0 A+B 29 51 33 205 37 818

Table 8: Online rounds and communication of Minimum Euclidean
Distance. Best results in bold. m is the number of biometric samples.

An empirical analysis for the online phase of the two
aforementioned variants is given in Tab. 8. We consider
databases with m 2 {1,024,4,096,16,384} samples. Each
biometric sample has a dimension of n = 8.

For the round-optimized variant, we improve upon
ABY [39] by 2.2⇥ in communication and and by 1.6⇥ in
rounds in the online phase. Similarly, for the communication-
optimized variant, our improvements over [78] are 14.7⇥
in communication and 1.3⇥ in rounds. The overhead in the
setup cost for our protocol over ABY [39] and [78] is similar
to that of Maxpool (§6.1) since Minpool forms the majority
of the computation for Biometric Matching.

6.5 Privacy-Preserving Machine Learning
(PPML)

In the domain of PPML [30, 31, 73, 75], we show that
Logistic Regression and Neural Networks can be substantially
improved with our building blocks. While we chose the above

applications, our building blocks are sufficient to perform
training and inference of Linear Regression and Convolutional
Neural Networks [31] as well as inference of Support Vector
Machines [30] and Binarized Neural Networks [27].

The training phase for the aforementioned algorithms
consists of two stages: (i) a forward propagation phase, where
the model computes the output given the input; and (ii) a
backward propagation phase, where the model parameters are
adjusted according to the difference in the computed output
and the actual one. The inference phase can be viewed as
one pass of the forward propagation alone. In our work, we
use the technique of Batching [73, 75], where the entire set
of samples is divided into batches of size B and a combined
update function is applied to the weight vectors.

For the training phase, we follow [31, 73] and benchmark
the number of iterations per minute (#it/min) over both
LAN and WAN. The values are reported over batch sizes
of {128,256,512} and with feature sizes n 2 {100,900}.
For the inference, we report the online runtime as well
as the throughput (TP) for the aforementioned feature
sizes. Runtime shows the impact of rounds on the overall
performance, while TP denotes the numbers of queries the
framework can process in a minute and allows to analyse the
impact of communication.

Logistic Regression. In Logistic Regression, one iteration
comprises of updation of the weight vector ~w using the
gradient descent algorithm (GD) as follows:

~w = ~w� a
B

XT
i � (Sig(Xi �~w)�Yi) .

Here a denotes the learning rate and Xi denotes a subset of
batch size B, randomly selected from the entire dataset in the
i-th iteration.

Batch
Size Ref.

LAN (#it/min) WAN (#it/min)

n = 100 n = 900 n = 100 n = 900

128 [75] 29,112 27,273 108 104
ABY2.0 176,471 149,626 162 162

256 [75] 25,829 24,058 107 97
ABY2.0 163,043 117,188 162 162

512 [75] 23,292 22,247 104 83
ABY2.0 110,906 98,847 162 162

Table 9: Comparison of the online throughput of ABY2.0 and
SecureML [75] for Logistic Regression Training. Best results are in
bold and larger is better. n is the number of features.

For the case of training, the data owner possesses the
matrices X,Y and the initial weights (~w) are all set to 0.
During the forward propagation, Xi �~w is first computed
followed by applying the sigmoid (Sig) function on it. During
the backward propagation, the weight vector is updated
according to the equation above. The update function requires
computation of a series of matrix multiplications, which can
be achieved using our dot product protocol from §5.1. The
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operations of subtraction as well as multiplication by a public
constant can be performed locally.

Tab. 9 gives our benchmarks for Logistic Regression
training. Over SecureML [75], we have improvements in
the range 4.4⇥-6.1⇥ for LAN and in the range 1.5⇥-2.0⇥
for WAN. The improvement stems from our round efficient
comparison protocol from §5.4 that forms the building block
for the activation function ReLU as well as our scalar product
protocol from §5.1 that has a communication independent of
the size of the vector. Note that over WAN, the throughput
of our protocol remains unchanged across feature sizes as
well as batch sizes. This discrepancy is due to the effect of
communication on the rtt. In detail, the rtt is in the order of
microseconds for LAN and scales with the communication
size, whereas rtt in the WAN is in the order of milliseconds
and does not scale with communication up to a threshold,
within which all our protocols operate.

Parameter Ref.
LAN WAN

n = 100 n = 900 n = 100 n = 900

Runtime
(ms)

[75] 1.60 1.69 496.08 504.96
ABY2.0 0.29 0.29 308.16 308.16

Throughput
(Queries/min)

[75] 5,342.61 1,193.01 16.08 3.58
ABY2.0 42,372.41 42,371.11 39.88 39.88

Table 10: Comparison of the online runtime and throughput of
ABY2.0 and SecureML [75] for Logistic Regression Inference. Best
results in bold. n is the number of features.

Tab. 10 gives our benchmarks for Logistic Regression
inference. We improve the online runtime over
SecureML [75] by 5.5⇥ for LAN and 1.6⇥ for WAN,
and the online throughput by 7.9⇥-35.5⇥ in LAN and
2.5⇥-11.1⇥ in WAN.

Neural Networks (NN). Neural Networks are stronger than
regression algorithms since they can learn more complex
relationships between high dimensional input and output data.

Batch
Size Ref.

LAN (#it/min) WAN (#it/min)

n = 100 n = 900 n = 100 n = 900

128 [75] 3,593 3,559 17 17
ABY2.0 12,448 12,343 42 42

256 [75] 3,578 3,521 17 17
ABY2.0 9,259 9,156 42 42

512 [75] 3,330 3,323 15 15
ABY2.0 9,177 9,146 42 42

Table 11: Comparison of the online throughput of ABY2.0 and
SecureML [75] for NN Training. Best results in bold and larger is
better. n is the number of features.

In our work, we follow previous works [30, 73, 75] and
consider a Neural Network with two hidden layers, each
having 128 nodes followed by an output layer of 10 nodes.
We use ReLU as the activation function over the nodes.
Moreover, for training we use the MPC-friendly variant
of the softmax function [75] which is defined as f (vi) =

ReLU(vi)/Âm
j=1 ReLU(v j). The division is performed using

a garbled circuit.
Tab.11 gives our benchmarks for NN Training. Over

SecureML [75], we have improvements in the range
2.7⇥-3.46⇥ for LAN and 2.4⇥-2.8⇥ for WAN. Here the
improvement is further boosted with our implementation of
the softmax function that requires 2 online rounds as opposed
to 4 rounds in SecureML.

Parameter Ref.
LAN WAN

n = 100 n = 900 n = 100 n = 900

Runtime
(ms)

[75] 8.68 8.77 1,759.92 1,759.95
ABY2.0 2.66 2.66 744.12 744.12

TP
(queries/min)

[75] 62.02 40.89 0.19 0.12
ABY2.0 30,796.99 30,795.17 92.39 91.57

Table 12: Comparison of the online runtime and throughput of
ABY2.0 and SecureML [75] for NN Inference. Best results in bold.
n is the number of features.

Tab. 12 gives our benchmarks for NN Inference. Here we
improve the online runtime of SecureML [75] by a factor
of 3.3⇥ in LAN and 2.4⇥ in WAN. Regarding the online
throughput, we observe huge improvements in the range
496⇥–754⇥ for both LAN and WAN. This improvement is
primarily due to our efficient dot product protocol from §5.1
which has a dimension-independent online communication.
Setup Costs for PPML. We incur a minimal overhead of just
1.6% over SecureML [75] in terms of communication in the
setup phase for Logistic Regression, while the overhead is
0.7% for the case of Neural Networks. The overhead results
from the expensive communication required by our activation
functions (Sigmoid and ReLU) over the garbled circuit-based
solutions of SecureML [75].
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A Preliminaries

A.1 Oblivious Transfer (OT)
In a 1-out-of-n Oblivious Transfer [54, 76] (OT) over `-
bit messages, the sender S inputs n messages (x1, . . . ,xn)
each of length ` bits, while the receiver R inputs the choice

c 2 {1, . . . ,n}. R receives xc as output while S receives ? as
output. The privacy guarantee is that S learns nothing about
c, while R learns nothing about the inputs of S other than xc.
We use n-OTm

` to denote m instances of 1-out-of-n OT on `
bit inputs.

OT is a fundamental building block for MPC [62]
and requires expensive public-key cryptography [54]. The
technique of OT Extension [5, 55, 63, 82] allows us to
generate many OTs from a small number (equal to the security
parameter) of base OTs at the expense of symmetric-key
operations alone. This reduces the cost of OT mainly to
highly efficient symmetric-key primitives. Concretely, the OT
Extension implementation of [5] generates around 1 million
2-OT1

` per second with passive security. An orthogonal line
of work considered pre-computation of OT [9], where all
the cryptographic operations can be shifted to a setup phase,
independent of the function to be evaluated. This technique
enables a very efficient online phase for protocols that use
OT. In the semi-honest setting, the state-of-the-art solution for
OT extension [5] has communication k+2` bits per OT for
2-OT1

` where k denotes the computational security parameter.
A correlated OT (cOT) [5] is a variant of the traditional OT

where the sender’s input messages are correlated. In a cOT,
the sender inputs a correlation function f () and obtains the
message pair (x0 2R {0,1}`,x1 = f (x0)) as the output. The
receiver, on the other hand, inputs her choice c and obtains
xc as output. We use cOTm

` to denote m instances of 1-out-
of-2 correlated OT on ` bit inputs. In the semi-honest setting,
cOT1

` has communication k+ ` bits [5].

A.2 Secure 2PC

Homomorphic Encryption (HE). The homomorphic
property allows us to compute a ciphertext from a set of
ciphertexts such that the plaintext underlying the former is a
function of the underlying plaintexts of the latter. Towards this,
one party called client generates a key-pair (pk,sk) for the
HE scheme and sends pk to the other party called server. To
perform a secure computation operation, the client encrypts its
data using pk and sends this to the server. Now the server can
locally compute the ciphertext corresponding to the operation
and return the encrypted result to the client. The client can
now decrypt the received ciphertext using her private key
sk. An additively HE allows us to generate the ciphertext
corresponding to the sum of the underlying plaintexts by
doing operations on the ciphertexts. Prominent examples of
additively HE schemes are Paillier [80], DGK [36] and RLWE-
AHE [90]. On the other hand, fully homomorphic encryption
schemes allow arbitrary computations under encryption but
are less efficient. See [1] for a more detailed description.
Garbled Circuits (GC). In the two-party setting, Yao’s
garbled circuit protocol [72, 98] provides a constant-round
solution. This method is particularly useful in high-latency
networks like the Internet. Here, one party called garbler
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generates the garbled circuit (GC) corresponding to the
function to be evaluated. On a high level, garbling the circuit
consists of associating two keys per wire corresponding
to the bit values of {0,1} and preparing garbled tables
corresponding to each gate in the circuit. The garbler then
sends the GC to the other party called evaluator. The
evaluator, upon obliviously obtaining the keys corresponding
to the inputs via OT, evaluates the GC and obtains the output.

Today’s most efficient solution for garbled circuits is the
combination of point-and-permute [10], free-XOR [66], fixed-
key AES [11], and half-gates [99]. With these optimizations,
each AND gate requires communication 2k bits in the
setup phase, and XOR gates have no communication. GC-
based protocols perform in the online phase symmetric-key
operations for each AND gate and need substantial memory
to store the garbled tables. To avoid storing the garbled tables,
their generation and transfer can be pipelined [49,51], but this
shifts all the setup communication to the online phase.
Secret Sharing (SS). In the SS-based protocols, two parties
compute a function in a secret-shared manner. Here, for
every wire with value v, party Pi for i 2 {0,1} holds an
additive sharing of the value denoted by [v]i such that v =
[v]0 + [v]1 (mod 2`). All the linear gates can be evaluated
non-interactively. To securely evaluate a multiplication gate,
parties use Beaver’s [8] circuit randomization technique
where the additive sharing of a random arithmetic triple
is generated in the setup phase (cf. §3.1.1). The shares of
the triple are then used in the online phase to compute the
shares of the product. This requires communication of 4
ring elements per multiplication gate in the online phase.
Later, [12] reduced online communication to 2 ring elements
using a function-dependent preprocessing.

In this line of work, the GMW protocol [45] takes a
function represented as Boolean circuit (i.e., ` = 1) and the
values are secret-shared using XOR-based secret sharing.
To pre-compute a multiplication triple (c1 � c2) = (a1 �
a2)^ (b1 �b2), the solution of [5] which uses 1-out-of-2 OT,
requires 2k bits of communication. As shown in [40], this
cost can be improved by factor 1.2⇥ by using the 1-out-of-N
OT extension of [63].

A.3 Comparison with Turbospeedz [12] and
[78]

Comparison with Turbospeedz [12]. For the 2-input
multiplication, Turbospeedz [12] presented a protocol
that reduces the online communication of SPDZ-style
protocols from 4 to 2 ring elements using a function-
dependent preprocessing. Turbospeedz first executes a SPDZ-
like preprocessing where random multiplication triples
are generated. These triples are then associated to the
multiplication gates using additional values that they call
“external values" (cf. [12], §3.2). On the contrary, we
obtain the preprocessing data directly and hence save

communication of 4 ring elements as well as storage of 5
ring elements when compared with Turbospeedz. Tab. 13
provides the communication and storage required for the 2-
input multiplication protocol of ABY [39], Turbospeedz [12]
and ABY2.0.

Phase Parameter ABY [39] Turbospeedz [12] ABY2.0

Setup Storage 3` 9` 4`

Communication |Triple| |Triple|+4` |Triple|

Online Storage 5` 5` 3`

Communication 4` 2` 2`

Total Storage 8` 14` 7`

Communication |Triple|+4` |Triple|+6` |Triple|+2`

Table 13: Comparison of ABY2.0 with ABY [39] and
Turbospeedz [12] in terms of storage and communication for a
single multiplication. All values are given in bits. |Triple| denotes
the communication required to generate a multiplication triple. Best
values for the online phase are marked in bold.

For the multi-input multiplication (fan-in of N), the tree-
based method (multiplying N elements by taking two at
a time) requires log2(N) rounds for both ABY [39] and
Turbospeedz [12], while it requires communication of 4(N �
1) ring elements for ABY [39] and 2(N � 1) elements for
Turbospeedz [12] in the online phase.

Comparison with [78]. Recently, [78] proposed round-
efficient solutions for multi-input multiplication using a
preprocessing for which the communication cost grows
exponentially with the fan-in of the multiplication gate.
However, for an N-input multiplication, [78] requires an
online communication of 2N � 2 ring elements. On the
contrary, ABY2.0 requires only an online communication
of 2 ring elements and the preprocessing cost remains same
as that of [78]. Note that since the preprocessing cost grows
exponentially with the number of inputs to the multiplication
gate, [78] considered only up to 5-input multiplication gates
in their work. In our work, we use three and four input
multiplication gates.

MULT when input parties are the computing parties: For
the case of a two-input multiplication gate, [78] considered
a special case where the input parties are the computing
parties (cf. [78], §3.4). For this case, [78] proposed a protocol
for which the online communication is 2 ring elements.
For the same setting, we observe that our solution results
in a protocol with zero online communication. To see
this, recall the online phase of our multiplication protocol
MULT(hai,hbi) (Fig. 2). The modified protocol is as follows:
During the online phase, party Pi for i 2 {0,1} locally
computes [ab]i = i · Dab � Da [db]i � Db [da]i + [dab]i. Now
to generate h·i-shares corresponding to y = ab, the parties
locally set [dy]i = � [ab]i and Dy = 0. It is easy to see that
y = Dy � [dy]0 � [dc]1 = 0� ([ab]0 +[ab]1) = ab.
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Abstract. A Universal Circuit (UC) is a Boolean circuit of
size Θ(n log n) that can simulate any Boolean function up to a certain
size n. Valiant (STOC’76) provided the first two UC constructions of
asymptotic sizes ∼ 5n log n and ∼ 4.75n log n, and today’s most efficient
construction of Liu et al. (CRYPTO’21) has size ∼ 3n log n. Evaluating
a public UC with a secure Multi-Party Computation (MPC) protocol
allows efficient Private Function Evaluation (PFE), where a private func-
tion is evaluated on private data.

Previously, most UC constructions have only been developed for cir-
cuits consisting of 2-input gates. In this work, we generalize UCs to
simulate circuits consisting of (ρ → ω)-Lookup Tables (LUTs) that map
ρ input bits to ω output bits. Our LUT-based UC (LUC) construction
has an asymptotic size of 1.5ρωn log ωn and improves the size of the UC
over the best previous UC construction of Liu et al. (CRYPTO’21) by
factors 1.12×–2.18× for common functions. Our results show that the
greatest size improvement is achieved for ρ = 3 inputs, and it decreases
for ρ > 3.

Furthermore, we introduce Varying Universal Circuits (VUCs), which
reduce circuit size at the expense of leaking the number of inputs ρ and
outputs ω of each LUT. Our benchmarks demonstrate that VUCs can
improve over the size of the LUC construction by a factor of up to 1.45×.

Keywords: universal circuit · private function evaluation ·
multi-party computation

1 Introduction

A Universal Circuit (UC) U is a Boolean circuit that can simulate any Boolean
circuit C consisting of ni inputs, ng gates, and no outputs. The UC U takes, in
addition to the function’s input x, a set of programming bits pC defining the
circuit C that U simulates, i.e., the UC computes U(x, pC) = C(x).

Valiant [51] proposed the first two UC constructions known as 2-way and
4-way split UCs with asymptotically optimal size Θ(n log n) and depth O(n),
where n = ni + ng + no is the size of the simulated circuit C. Kolesnikov and

c⃝ International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14438, pp. 3–37, 2023.
https://doi.org/10.1007/978-981-99-8721-4_1
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Schneider [34] gave the first practical implementation of a UC of non-optimal
asymptotic size O(n log2 n). A line of work [7,22,31,36,57] followed with the
common goal to minimize the size of Valiant’s UC construction. Recently, Liu
et al. [37] provided today’s most efficient UC construction of size ∼ 3n log n.

All of these works designed UCs to simulate Boolean gates with 2 inputs and
1 output. However, Valiant’s UC construction can be generalized to simulate cir-
cuits with (ρ → 1)-LUT, namely Lookup-Tables with ρ inputs x1, . . . , xρ and one
output y and can compute arbitrary functionalities f as y = f(x1, . . . , xρ) [48].

In this work, we propose LUT-based UCs (LUC) that evaluate circuits com-
posed of (ρ → ω)-LUTs having ω output bits y1, . . . , yω and are programmed to
compute yi = f i(x1, . . . , xρ) for 1 ≤ i ≤ ω and an arbitrary functionality f i. In
addition, we introduce Varying UCs (VUCs) that can simulate circuits consist-
ing of (ρ → ω)-LUTs with varying numbers of inputs ρ and outputs ω, thereby
leaking the number of in- and outputs of each LUT. VUCs have various applica-
tions (summarized in Sect. 1.1) like logic locking [55], which enables the designer
to provide the foundry of a chip with a “locked” version of the original circuit.
Once the locked circuit on the chip is fabricated, authorized users can regain
access to the original functionality by using a secret key.

On top of our new UC constructions, we provide implementations of our
constructions and analyze the size optimization of simulating LUT-based circuits
with LUCs and VUCs compared to using traditional Boolean circuit-based UCs.

1.1 Applications of (Varying) Universal Circuits

The most prominent application for UCs is Private Function Evaluation
(PFE) [6], which can be seen as a generalization of Secure Multi-Party Com-
putation (MPC) [20,54]. In MPC, a set of k parties P1, . . . ,Pk jointly compute
a publicly known circuit C on their respective private inputs x1, . . . , xk and
obtain nothing but the result C(x1, . . . , xk). In PFE, the circuit C that shall be
computed is private information as well, i.e., party P1 with circuit input C and
parties P2≤i≤k with data inputs x2, . . . , xk run a protocol that yields nothing
but C(x2, . . . , xk) and parties P2≤i≤k do not learn any information about the
circuit C.

PFE can be implemented via MPC by means of UCs as follows: The par-
ties P1, . . . ,Pk run an MPC protocol that evaluates the universal circuit U
as public circuit on the secret inputs pC of party P1 and x2, . . . , xk of par-
ties P2, . . . ,Pk, resulting in U(pC , x2, ..., xk) = C(x2, ..., xk). In summary, PFE
based on UCs is a very generic approach. It can simply be plugged into arbitrary
MPC frameworks without any modification to the underlying MPC protocol,
resulting in the same security level (semi-honest, covert, or malicious) as the
underlying MPC framework. In addition, PFE is completely compatible with
the features included in MPC like secure outsourcing [27] and non-interactive
computation [36]. PFE is applicable for situations where customers aim to use
a service from companies who want to hide how they perform the computation
and do not learn the customer’s data.1

1 UC-based PFE, unlike PFE based on Fully Homomorphic Encryption (FHE) [19,32],
relies primarily on symmetric encryption and involves far less computation.
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As a trade-off between privacy and efficiency, a variant of PFE called Semi-
Private Function Evaluation (SPFE) was proposed [21,43]. Unlike PFE,
SPFE does not hide the entire function, but leaks the topology of certain sub-
functions. SPFE can be applied in PFE scenarios where specific function compo-
nents are known publicly. This approach is particularly useful in cases where cer-
tain function details have already been disclosed, often for promotional purposes.
An example of this is car insurance companies offering discounts to experienced
drivers.

Beyond (S)PFE, UCs have many applications like hiding policy circuits in
attribute-based encryption [8,18], multi-hop homomorphic encryption [19], verifi-
able computation [16], program obfuscation [58], and hardware logic locking [40].

In this work, we introduce Varying Private Function Evaluation (VPFE)
whose privacy-guarantee lies in between PFE and SPFE. Similar to PFE, our Vary-
ing UCs (VUCs) for VPFE hide the topology and functionality of the LUTs in
the circuit, but leak their number of in- and outputs. This has applications in
logic obfuscation techniques called logic locking, as demonstrated in prior studies
such as LUT-Lock [26] and eFPGA [11]. These techniques proposed using LUTs
to achieve secure logic locking on Application-Specific Integrated Circuit (ASIC)
designs by removing critical elements and mapping them to custom LUTs. As
shown in [11, Fig. 3], the adversary can only determine the number of inputs and
outputs of a LUT, while the LUT’s configuration bits are hidden, which is exactly
our setting for VPFE using VUCs. Without this knowledge, there is no adversarial
information leakage [11, Tab. 5]. Therefore, our VUCs can be used for secure logic
locking while additionally hiding the topology of the circuit.

1.2 Outline and Our Contributions

So far, UC-based PFE research considered synthesis of the input circuit (to
generate a small number of 2-input gates) and construction of the UC (to min-
imize its size) as independent tasks. In our work, we show that using multi-
input/output LUTs these two tasks can be combined to yield a better size. After
giving the preliminaries in Sect. 2 and summarizing the two UC constructions of
Valiant [51] (Sect. 3.2) and Liu et al. [37] (Sect. 3.3), we contribute the following:

LUT-based UC (LUC) Construction (Sect. 4). Valiant’s UC construction
can be generalized to support the evaluation of (ρ → 1)-LUT-based circuits
by merging for the ρ inputs ρ instances of its basic building block called edge-
universal graph [48, App. A]. This leads to a total size of ∼ 1.5ρn log n using
Liu et al.’s [37] UC construction. In our work, we extend this into a novel UC
construction to simulate for the first time functions composed of (ρ → ω)-LUTs
with ρ inputs and ω outputs. Our construction is general, can be applied to all
UC constructions based on Valiant’s framework [51] and improvements by Liu
et al. [37], and fits into the definition of UCs (cf. Definition 1 on page 6).

Size Improvements of LUCs for Basic Primitives (Sect. 4.3). Table 1
shows the history of improvements in UC sizes. Taking (V)PFE as our greatest
motivation for improving UC sizes, we study three basic building blocks that
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Table 1. Asymptotic sizes of various UC constructions and improvements over pre-
vious works. Previous UCs were for 2-input gates, whereas our LUC construction is
generalized to ρ-input LUTs.

Universal Circuit Asymptotic Size Improvement over previous work Fanin

Valiant’s 2-way [51] 5n log n - 2

Valiant’s 4-way [51] 4.75n log n 1.05× 2

Zhao et al.’s 4-way [57] 4.5n log n 1.06× 2

Liu et al.’s 2-way [37] 3n log n 1.5× 2

Our LUC 1.5ρn log n 1.12 − 2.18× ρ

can be used to construct more complex functionalities for common PFE appli-
cations: We compare the asymptotic circuit sizes when evaluating our new LUC
construction with UCs for equivalent binary gates (cf. Table 2) and achieve size
improvements of factor 1.67× for full adders, 2.67× for comparisons, and 2× for
multiplexers.

Varying UC (VUC) Construction (Sect. 5). In several applications (cf.
Sect. 1.1, Sect. 5.2) only the programming of the LUTs needs to be hidden, but
not their dimensions, i.e., we can leak their number of in- and outputs. For
this, we introduce Varying Universal Circuits (VUC) which are circuits that can
simulate other LUT-based circuits while hiding their topology and the LUT pro-
grammings, but leak the LUTs’ number of in- and outputs. We give the first VUC
construction that eliminates the leading ρ factor of our LUC construction (cf.
Table 1), while still maintaining its general design, i.e., we can transform all UC
constructions to our new VUC construction.

Implementation (Sect. 6.1). We provide the first implementation of today’s
most efficient UC construction of Liu et al. [37] which is of independent interest
and our LUC and VUC constructions.2 Moreover, we integrate these three UC
implementations into the MPC framework ABY [13] for PFE. To create LUT-
based circuits, we used the hardware circuit synthesis tool Yosys-ABC [10,53]
and Synopsis Design Compiler [5] for LUT-Mapping. We optimize LUT-based
PFE by combining LUTs with overlapping inputs and multiple outputs. However,
hardware synthesis tools do not by default support mapping to multiple output
LUTs. To address this, we post-process the single-output LUT circuits produced
by the synthesis tool to convert them to multi-output LUT circuits.

Evaluation (Sect. 6.3). We experimentally evaluate our LUC and VUC con-
structions for various LUT sizes, and compare them with the previous best con-
struction of Liu et al. [37]. The asymptotic UC sizes and improvements over
previous works are given in Table 4 for LUC and in Table 6 for VUC. Our new
LUC constructions outperform the state-of-the-art UC [37] in terms of circuit
sizes by up to 2.18×.

2 Our code is published under the MIT license at: https://encrypto.de/code/LUC.
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1.3 Related Work

Universal Circuits (UCs). Valiant [51] defined universal circuits, showed that
they have a lower bound of size Ω(n log n), and proposed two asymptotically
size-optimal constructions using a 2-way or a 4-way recursive structure of sizes
∼ 5n log n and ∼ 4.75n log n, respectively. Hence, relevant research challenges
left are reducing the prefactor and the concrete UC sizes. Valiant’s constructions
can be generalized to simulate circuits composed of (ρ → 1)-LUTs as shown by
Sadeghi and Schneider [48, App. A] which is summarized in Sect. 4.1.

A modular UC construction of non-optimal size ∼ 1.5n log2 n + 2.5n log n
was proposed and implemented by Kolesnikov and Schneider [34]. Their con-
struction beats Valiant’s construction for small circuits thanks to small prefac-
tors. Motivated to provide more efficient PFE, Kiss and Schneider [31] imple-
mented Valiant’s 2-way split construction and proposed a more efficient hybrid
construction combining the 2-way split construction with the modular construc-
tion of [34]. Lipmaa et al. [36] generalized Valiant’s construction to a k-way split
construction and proved that the optimal value for k is 3.147, i.e., k ∈ {3, 4}
when k is an integer. Günther et al. [22] modularized Valiant’s construction,
implemented the more efficient 4-way split construction, gave a generic edge-
embedding algorithm for k-way split constructions, and showed that the 3-way
split construction with Valiant’s framework is less efficient than the 2-way split
construction. Zhao et al. [57] improved Valiant’s 4-way split construction to size
∼ 4.5n log n, which is today’s most efficient asymptotic size for UCs in Valiant’s
framework. Alhassan et al. [7] proposed and implemented a scalable hybrid UC
construction combining Valiant’s 2-way and 4-way split constructions with Zhao
et al.’s improvements [57]. Most recently, Liu et al. [37] reduced redundancies
in Valiant’s framework and provided today’s most efficient UC construction of
size ∼ 3n log n based on Valiant’s 2-way split construction, showed that k = 2-
way split is the most efficient in their new UC framework, and already almost
reached their computed lower bound of ∼ 2.95n log n. We provide the first imple-
mentation of their construction and use it as a basis for our UC constructions
for LUT-based circuits.

Private Function Evaluation (PFE). Katz and Malka [30] designed a
constant-round two-party PFE protocol with linear communication complex-
ity based on homomorphic public-key encryption. Holz et al. [24] optimized
and implemented the protocol of [30], demonstrating its superiority over the
hybrid UC implementation of Alhassan et al. [7] already for circuits with a few
thousand gates. Liu et al. [38] provide a constant-round actively secure two-
party PFE protocol with linear complexity. However, all these protocols are
not generic and hence not directly compatible with arbitrary MPC frameworks,
which makes them less flexible. For instance, these protocols cannot easily be
extended to multiple parties. Ji et al. [25] demonstrated the evaluation of pri-
vate RAM programs using four servers, building the first PFE of non-Boolean
and non-arithmetic functions. In fact, recent PFE applications relied on so-
called Semi-Private Function Evaluation (SPFE) where not necessarily the whole
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function needs to be hidden from the other parties, but selected parts of the
function can be leaked. The first SPFE construction and implementation was
proposed by Paus et al. [43] who provided several building blocks that can be
programmed with one function out of a class of functions (e.g., ADD/SUB whose
circuits have the same topology). Recently, Günther et al. [21] built an SPFE
framework that allows to split the function into public and private components,
embed the private components into UCs, and merge them into one Boolean
circuit that is evaluated via MPC. They demonstrated their framework on com-
puting car insurance tariffs and observed that some information of the function
is public, e.g., that experienced drivers usually get discounts.

MPC on LUTs. In the area of secure multi-party computation (MPC),
prior work noticed that 2-input/1-output gates can be extended into multi-
input/multi-output gates to reduce the circuit evaluation overhead [14,23,39,41,
45]. In Yao’s Garbled Circuit (GC) setting, Fairplay [39] implemented MPC pro-
tocols to evaluate gates with up to 3-input gates. The TASTY framework [23]
implemented ρ-input garbled gates using the garbled row reduction optimiza-
tion [44]. Recently, [45] proposed an MPC protocol that works on circuits with
multi-input/multi-output gates instead of working on circuits with 2-input gates.
Another line of work in the secret-sharing setting aims to optimize the rounds
and communication of the online phase without using Yao’s GC protocol: [14]
extended 2-input AND gates to the general N-input case using LUTs. Recently,
ABY2.0 [41] extended AND gates from the 2-input to the multi-input setting
with a constant online communication complexity at the cost of exponential
offline communication in the number of inputs. In addition, Syncirc [42] handles
the circuit generation with multi-input gates by using industry-grade hardware
synthesis tools [10,53].

2 Preliminaries

We refer to the size of a circuit n as the sum of its number of inputs ni, gates ng,
and outputs no: n = ni + ng + no.

Definition 1 (Universal Circuit [7,51]). A Universal Circuit U for ni inputs,
ng gates, and no outputs is a Boolean circuit that can be programmed to com-
pute any Boolean circuit C with ni inputs, ng gates, and no outputs by defining
programming bits pC such that U(x, pC) = C(x) for any input x ∈ {0, 1}ni .

2.1 Graph Theory

Let G = (V,E) be a directed graph and v ∈ V . The indegree (resp. outdegree)
of v which is the number of incoming (resp. outgoing) edges is denoted by deg+(v)
(resp. deg−(v)). G has fanin (resp. fanout) ρ if deg+(v) ≤ ρ (resp. deg−(v) ≤ ρ)
for all v ∈ V . We denote by Γρ(n) all directed acyclic graphs with at most n
nodes and fanin/fanout ρ for ρ, n ∈ N. For U ⊂ V , G[U ] := {U, {e = (u, v) ∈
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E : u, v ∈ U}} denotes the subgraph induced by U . We omit the index G in the
above definitions if G is clear from the context.

Let G = (V,E) ∈ Γρ(n). A topological order for G is a map ηG : V →
{1, ..., |V |} such that ∀(u, v) ∈ E : ηG(u) < ηG(v).

We represent Boolean circuits as directed acyclic graph G ∈ Γρ(n) for
some ρ > 1. However, almost all previous works [22,31,36,37,51,57] restricted
the circuits, that are simulated via UCs, to fanin/fanout ρ = 2. The reason for
this restriction can be found in the structure of universal circuits according to
Valiant’s [51] and Liu et al.’s [37] constructions. On a high level, a universal
circuit (UC) for simulating circuits C ∈ Γρ(n) is composed of ρ so-called Edge-
Universal Graphs (EUGs) each of size O(n log n), i.e., the total size of the UC
grows linearly with the maximum fanin/fanout ρ of the gates in the simulated
circuit C.

Definition 2 (Edge-Embedding [7,36,37,51]). Let G = (V,E) and G′ =
(P,E′) be directed graphs with P ⊂ V and G′ acyclic. An edge-embedding from
G′ into G is a map ψ : E′ → PG, where PG denotes the set of all paths in G,
with the following properties:

– ψ(e′) is a u-v-path (in G) for all e′ = (u, v) ∈ E′,
– ψ(e′) and ψ(ẽ′) are edge-disjoint paths for all e′, ẽ′ ∈ E′ with e′ ̸= ẽ′.

Definition 3 (Edge-Universal Graph [7,36,37,51]). A directed graph G =
(V,E), denoted as Uρ(n) with ordered pole set P := {p1, ..., pn} ⊂ V is called an
Edge-Universal Graph for Γρ(n) if:

– G is acyclic,
– Every acyclic G′ = (P,E′) ∈ Γρ(n) that is order-preserving, i.e., ∀e =

(pi, pj) ∈ E′ ⇒ i < j, can be edge-embedded into G.

On a high level, the graph G′ = (P,E′) in Definitions 2 and 3 represents a
Boolean function that is embedded into the graph G = (V,E), which represents
the UC, where P ⊂ V is the pole set of size |P | = n, which represents the inputs,
gates, and outputs of the function represented in G′. As an EUG requires that
every G′ ∈ Γρ(n) can be edge-embedded into G, the UC built by the EUG can
compute any function represented by a graph in the set Γρ(n).

EUGs for Γ2(n) graphs were constructed by merging two EUGs for Γ1(n)
graphs (cf. Definition 4 and Fig. 1) [7,22,31,36,37,51,57]. Thus, research focused
on minimizing the size of general EUGs for Γ1(n) graphs as these can
be merged to EUGs for arbitrary Γρ(n) graphs by merging ρ instances of
Γ1(n) EUGs (cf. Corollary 1).

Definition 4 (Merging of EUG). Let G = (V,E) and Ḡ = (V̄ , Ē) be two
EUG for Γρ(n) and Γρ̄(n) with the same pole order and V ∩ V̄ = P . Then

Ĝ = (V ∪ V̄ , E ∪ Ē) is called the merging of G and Ḡ with pole set P .

Proposition 1. The merging of a Γρ(n) and a Γρ̄(n) EUG is a Γρ+ρ̄(n) EUG.

We prove Proposition 1 in Appendix A of the full version [15].
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Corollary 1 ([51, Corollary 2.2]). An EUG for Γρ(n) can be constructed by
merging ρ EUGs for Γ1(n).

Proof. Let G = (V,E) be a Γ1(n) EUG with pole set P . Create ρ−1 copies of G
with the same pole set and merge these graphs successively. Correctness follows
directly by applying Proposition 1 ρ times. ⊓⊔

We call the UCs that are constructed according to Corollary 1 LUT-based UCs
(LUCs) and this construction was first mentioned in [48, App. A]. In Sect. 5, we
introduce our so-called Varying UC (VUC) construction that is constructed by
two instances of Γ1(n) EUGs but still allows to edge-embed graphs with arbitrary
fanin ρ.

p1

p2

p3

p4

(a) Γ2(4) graph

p1

p2

p3

p4

(b) U1(4)

p1

p2

p3

p4

(c) U1(4)

p1

p2

p3

p4

(d) merged U2(4)

p1

p2

X

p3

Y

p4

X

Y

(e) UC

Fig. 1. (a) shows the Γ2(4) graph with already partitioned edge sets E1 and E2, (b)
and (c) show the EUGs in which the edge sets E1 resp. E2 are embedded, (d) shows
the merged EUG with all edges embedded, (e) shows the resulting UC, where p1 is an
input, and p2, p3, p4 are translated to universal gates.

2.2 Building Universal Circuits from Edge-Universal Graphs

Boolean Circuits. A Boolean circuit is a directed acyclic graph whose nodes
are Boolean inputs, (binary) gates, and outputs, with directed edges represent-
ing the wires. A Boolean gate is a function z : {0, 1}k → {0, 1} for k ∈ N.
However, we can always divide a k-input gate into O(2k) binary gates using
Shannon’s expansion theorem [49]. Unfortunately, we cannot avoid an exponen-
tial blow-up of the number of gates by this transformation [52, Theorem 2.1].
The two most prominent minimization methods for Boolean circuits are due to
Karnaugh [29] and Quine-McCluskey [46]. As already mentioned, the UC con-
structions by Valiant [51] and Liu et al. [37] are designed to embed Γρ(n) graphs,
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thus we possibly need to reduce the outdegree of the gates to ρ by using so-called
copy gates which just copy their inputs [51, Corollary 3.1].3

From Edge-Universal Graphs to Universal Circuits. The translation from
an EUG G = (V,E) into a UC is depicted in Fig. 1 and works as follows. First,
the nodes of circuit C to be embedded in G are considered as the poles P ⊂ V
of the EUG. A pole p ∈ P is translated into an input or output wire, if p
corresponds to an input or output in C, or into a so-called Universal Gate,
if p corresponds to a gate in C. Universal gates take k inputs (k = 2 in the
previous works [7,37,51]), 2k programming bits, compute one output, and can be
programmed to simulate any k input Boolean gate by specifying the truth table
with the programming bits. We can implement universal gates with a binary
tree of 2k − 1 multiplexers (Y-switches) spanned over the 2k programming bits,
where the correct programming bit specified by the k inputs is forwarded to the
output (more details in [7,37]).4

x0

x1x0

p = 0

x1

x1x0

p = 1

(a) Y-switch

x1x0

x1x0

p = 0

x0x1

x1x0

p = 1

(b) X-switch

Fig. 2. Switching blocks with programming bit p (from [34]).

The remaining nodes in the set V \ P are for connecting the routes between
the poles. A node v ∈ V \ P is translated as follows:

– if v has two incoming edges and one outgoing edge, it is translated into a
multiplexer/Y-switch (cf. Fig. 2a). A multiplexer has two inputs x0 and x1

and a programming bit p and outputs one bit, namely xp. It is implemented
with 1 AND gate and 2 XOR gates [34].

– if v has two incoming edges and two outgoing edges, it is translated into an X-
switch (cf. Fig. 2b). An X-switch has two inputs x0 and x1, one programming
bit p and outputs two bits, namely (xp, x1−p). It is implemented with 1 AND
gate and 3 XOR gates [34].

3 Note that a Universal Circuit can also compute circuits with less than the specified
number of inputs, gates, and outputs by using dummy values with no functionality.

4 In Yao’s garbled circuit protocol [54], the UC’s universal gates can be implemented
as garbled tables when the function holder takes over the garbling part.
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– if v has one incoming wire, it is replaced by a single wire that connects all of
the outgoing edges.

The programming bits of the nodes are derived from the edge-embedding.

3 UC Constructions

In this section, we summarize the general guidelines for constructing edge-
universal graphs (Sect. 3.1), present the original idea of Valiant [51] (Sect. 3.2),
and describe the state-of-the-art construction of Liu et al. [37] (Sect. 3.3).

3.1 General EUG Constructions

The strategy for building UCs via EUGs is to construct Γ1(n) EUGs of small-
est size, merging ρ instances of these (cf. Corollary 1) to construct a Γρ(n)
EUG (ρ = 2 for binary gates), and translating this EUG into a UC. Valiant [51]
proposed the first two designs for Γ1(n) EUGs, today known as 2-way and 4-
way constructions, having asymptotic sizes of ∼ 2.5n log n and ∼ 2.375n log n.
Recently, Liu et al. [37] extended Valiant’s framework, simplified the construc-
tion, and achieved an EUG based on the 2-way approach of asymptotically
optimal size of ∼ 1.5n log n, which almost reaches their computed lower bound
of ∼ 1.475n log n. The concrete construction principle of both frameworks is the
same.

Let us assume we aim to construct a Γ1(n) EUG G = (V,E) for a circuit
of size n with a k-way construction and pole set P ⊂ V . First, we put k dis-
tinguished poles from the set P into a block called superpole that has k inputs
and k outputs. Within this superpole, we can route edge-disjointly between its
inputs and poles, and between its poles and outputs. In total, we have ⌈n/k⌉
superpoles built by the poles set P . The k inputs and outputs of each superpole
then can be used as poles for k instances of a Γ1(⌈n/k⌉ − 1) nested EUG, which
on a high level allows to find edge-disjoint paths between the superpoles of G.5

More formally, a superpole shall be able to edge-embed any so-called aug-
mented k-way block (similar to an augmented DAG in [37]). An augmented k-
way block is a map that defines the routes between the inputs and poles of the
superpole, and between poles and other poles and outputs.

Definition 5 (Augmented k-way Block). An augmented k-way block G =
(V,E) for pole set P , superpole inputs I, and superpole outputs O is a directed
graph such that

– V = P ∪ I ∪ O, P ∩ I = P ∩ O = ∅ and |I| = |O| = k,
– G[P ] := (P,EP ) has fanin/fanout 1,
– E = EP ∪ Eio with Eio satisfying

5 We distinguish between EUGs and nested EUGs as the recursively constructed
nested EUGs differ from its first EUG in Liu et al.’s construction [37].



Breaking the Size Barrier: Universal Circuits Meet Lookup Tables 13

• (Soundness) Every e ∈ Eio satisfies either e = (in, p) or e = (p, out) for
p ∈ P, in ∈ I, out ∈ O,

• (Completeness) For every source (resp. sink) p ∈ P , there exists at most
one in ∈ I (resp. out ∈ O) such that (in, p) ∈ Eio (resp. (p, out) ∈ Eio).

The set of all augmented k-way blocks for P, I,O is denoted by Bk(P, I,O).

Definition 6 (k-way Superpole). A k-way superpole SP (k) is a tuple
SP (k) = (G = (V,E), P,P, I,O) with pole set P ⊂ V , with following condi-
tions:

– P = P ∪ I ∪ O with |I| = |O| = k and P ∩ I = P ∩ O = ∅,
– G can edge-embed every G′ ∈ Bk(P, I,O).

We denote the input recursion points I of a k-way superpole as {in1, in2,
..., ink} and the output recursion points O as {out1, out2, ..., outk}. These nodes
serve as the inputs and outputs to the superpole and will be the poles of the next
recursion, i.e., of the next nested EUG. We neither require the sets I and O to
be disjoint nor that the recursion points of different superpoles must be disjoint.
In fact, Valiant [51] merges the output recursion points of the i-th superpole
with the input recursion points of the (i+1)-th superpole. On a high level, a

Algorithm 1: Valiant(P, k)

Input :Poles P := {p1, ..., pn}, split parameter k
Output :Γ1(n) EUG G = (V, E), pole set P , sub-graphs G∗, G1, ..., Gk

1 V ← ∅, E ← ∅, G∗ ← ∅
2 O0 ← create k dummy nodes
3 for i ← 1 to ⌈n

k
⌉ do

4 Pi ← {pk(i−1)+1, ..., pki}
// Use Oi−1 as input recursion points to this superpole (cf. Fig.

3b)

5 SP (k)i = (Gi = (Vi, Ei), Pi, Pi, Ii, Oi) ← Createsuperpole(Pi, Oi−1, k);
G∗ ← G∗ ∪ {Gi}

6 V ← V ∪ Vi, E ← E ∪ Ei

7 for i ← 1 to k do
8 if n ≤ k then
9 Gi ← (∅, ..., ∅) // Recursion base

10 else
// Take the i-th output recursion point of each superpole (but

the last) as the poles for the next sub EUG

11 P i ← {O1[i], O2[i], ..., O⌈ n
k

⌉−1[i]}
12 (Gi = (V i, Ei), ...) ← Valiant(P i, k)

13 V ← V ∪ V i, E ← E ∪ Ei

14 return G = (V, E), P, G∗, G1, ..., Gk
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superpole in a nested EUG U1, i.e., an EUG that is derived as a recursion from
a larger EUG U , has k entry points to an input of k distinguished superpoles
in U as well as k exit points from an output of k distinguished superpoles.

3.2 Valiant’s EUG Construction [51]

Definition 7 (Valiant EUG). A Valiant EUG G = (V,E) with pole set
P ⊂ V and sub-graphs G∗, G1, ..., Gk is created by Algorithm1 ( Valiant). We
also use the notation Valiantk(n) for a Valiant EUG with n poles and split
parameter k.

Valiant’s k-way EUG construction is built recursively as depicted in Fig. 3a.
A Γ1(n) EUG is a chain of ⌈n/k⌉ superpoles SP (k)1 = (G1 = (V1, E1), P1,
P1, I1, O1), . . . , SP (k)⌈n/k⌉ = (G⌈n/k⌉ = (V⌈n/k⌉, E⌈n/k⌉), P⌈n/k⌉,
P⌈n/k⌉, I⌈n/k⌉, O⌈n/k⌉) (lines 3–6 in Algorithm1). Createsuperpole(P,O, k)
creates a superpole with poles P , input recursion points O, and split parameter k,
e.g., Valiant’s k = 2-way superpole SP (2) (Fig. 3b). The sets O1, . . . ,O⌈n/k−1⌉,
each of size k, then recursively build the poles of the nested EUGs in the next
recursion step (lines 7–13 in Algorithm 1), i.e., we build k nested EUGs G1 =
(V 1, E1), . . . , Gk = (V k, Ek) with pole sets P 1, . . . , P k, where Gi ∈ Γ1(⌈n/k⌉−1)
and P i = (O1[i], . . . ,O⌈n/k−1⌉[i]). Note that Ii := Oi−1 for all 1 < i ≤ ⌈n/k⌉ as
the k outputs of Gi ∈ SP (k)i are pairwise merged with the respective k inputs
of Gi+1 ∈ SP (k)i+1. The creation of the first output recursion points O0 is
a technical trick, and not needed because these nodes will never be used, but
it simplifies the definition of the algorithm by avoiding a case distinction. An

SP (2)1

SP (2)2

SP (2)⌈ n
k ⌉

. ..

EUG1(⌈n
k ⌉ − 1)

. ..
EUG1(⌈n

k ⌉ − 1)

. ..

(a) Valiant’s EUG1(n) construction.

pi

pi+1

out1 out2

in1 in2

(b) Valiant’s SP (2) con-
struction.

Fig. 3. (a) shows Valiant’s 2-way split construction of EUG1(n) using two instances
of EUG1(⌈n

k
⌉ − 1). (b) shows the corresponding superpole SP (2) construction for the

EUG.
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advantage of this recursive method is that we can also recursively reduce the
edge-embedding problem to finding paths between poles of the nested EUGs.
Assuming we can easily edge-embed paths from inputs to poles and from poles
to outputs within the superpoles, we can reduce finding a path from a pole
located in SP (k)i to a pole in SP (k)j to the problem of finding a path from
Oi[x] to Oj−1[x] for i, j ∈ [⌈n/k⌉], i < j, where x is the index of the target
output of the superpoles’ internal edge-embedding for the concrete poles. Exist-
ing UC implementations [7,22] split the edge-embedding into two sub-tasks: (a)
the superpole edge-embedding that takes care that the paths within a superpole
are defined in a correct manner, and (b) the recursion-point edge-embedding
which chooses the correct paths at the recursion points. We define the following
theorem and refer to [7,37] for its proof:

Theorem 1. Let G = (V,E) be a Valiant EUG with pole set P ⊂ V of size
|P | = n and sub-graphs G∗, G1, ..., Gk. Then G is an EUG for Γ1(n).

3.3 Liu et al.’s EUG Construction [37]

Definition 8 (Liu+ EUG). A Liu+ EUG G = (V,E) with pole set P ⊂ V
and sub-graphs G∗, G1, . . . , Gk is created by Algorithm2 ( Liu+). We also use the
notation Liu+

k (n) for a Liu+ EUG with n poles and split parameter k.

We refer to Appendix B of the full version [15] for a complete description
of the construction of Liu et al. [37] including Algorithm 2. In the subsequent
sections of this work, we leverage the following theorem and refer to [37] for its
proof:

Theorem 2 cf. [37, Theorem 4]). Let G = (V,E) be a Liu+ EUG with pole
set P ⊂ V of size |P | = n and sub-graphs G∗, G1, ..., Gk. Then G is an EUG for
Γ1(n) with size bounded by

|SP (k)| − k

k log2(k)
n log2(n) + O(n).

4 Evaluating LUTs with UCs

In this section, we extend the UC constructions from Sect. 3 to be able to sim-
ulate (ρ → ω)-LUT-based circuits. In Sect. 4.1, we first review the construction
of [34,51] to evaluate (ρ → 1)-LUT-based circuits, i.e., circuits that consist of
LUTs with ρ inputs and one output. Then, in Sect. 4.2, we extend this to our
LUT-based UCs (LUCs) that allows the UC to simulate (ρ → ω)-LUT-based
circuits. Finally, in Sect. 4.3, we analyze the most important building blocks for
PFE applications, describe how to implement them with LUTs, and show their
theoretical improvement over evaluating the same building blocks with Boolean
circuits.
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4.1 UCs for LUTs with Multiple Inputs [48,51]

Valiant [51] proposed a method to integrate LUTs with more than two inputs
into UCs and its size has been computed in [48].

We can get a UC with n copies of (ρ → 1)-LUT from a Γρ(n) EUG that is
merged by ρ instances of Γ1(n) EUGs according to Corollary 1. Each pole of U
that is not an input or an output can then be implemented as a LUT with ρ
inputs.

Corollary 2. An EUG for Γρ(n) for ρ ∈ N≥2 can be constructed with size at
most 1.5ρn log2(n) + O(n).

Proof. Construct ρ instances of Liu+
2 (n) and merge them. By Corollary 1, this

yields an EUG for Γρ(n) with size bounded by 1.5ρn log2(n) + O(n). ⊓⊔

4.2 UCs for LUTs with Multiple In- and Outputs

In order to support (ρ → ω)-LUTs with ω > 1 outputs in UCs, we propose a gen-
eral solution that is compatible with the original UC constructions of Valiant [51]
and Liu et al. [37]. The high level idea is as follows: For every (ρ → ω)-LUT that
is represented by pole vi, we add ω − 1 so-called auxiliary poles to the EUG and
the real pole vi forwards its inputs directly to these auxiliary poles. The real
pole and its auxiliary poles each compute and output one of the LUT’s output.
Concretely, the first pole takes the ρ inputs of the LUT using any of the above
UC constructions and computes the first output of the LUT. The remaining
poles copy the ρ inputs of the first poles by direct connections and compute the
remaining outputs of the LUT, resulting in a chain of ω poles.

We define the class of Γρ,ω(n) graphs that is used to map n (ρ → ω)-LUTs
to a graph G ∈ Γρ,ω(n). As the poles of the EUG are the nodes of G, we need
to add for each additional output of the i-th LUT (denoted as pole vi,1 in G) in
total ω − 1 additional poles (denoted as vi,2, . . . , vi,ω). These added poles vi,j>1

use the inputs from pole vi,1 and thus, they all have in-degree 0 (cf. condition 3
in Definition 9). We define Γρ,ω(n) as follows:

Definition 9 (Γρ,ω(n)). Let G = (V,E) be a directed acyclic graph with topolog-
ically ordered V := {v1,1, . . . , v1,ω, v2,1, . . . , v2,ω, . . . , vn,1, . . . , vn,ω} and ρ,ω ∈ N.
Then G ∈ Γρ,ω(n) if:

– |V | ≤ nω,
– |{vi,j ∈ V }| ≤ ω ∀i ∈ [n],
– deg+(vi,1) ≤ ρ ∧ deg+(vi,2) = · · · = deg+(vi,ω) = 0,
– deg−(vi,j) ≤ ρ ∀i ∈ [n] ∀j ∈ [ω].

To easily build an EUG with only marginal modifications, we show that
Γρ,ω(n) is also a Γρ(nω) graph:

Proposition 2. Let G ∈ Γρ,ω(n). Then G ∈ Γρ(nω).
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Algorithm 2: Liu+(P, k)

Input :Poles P := {p1, ..., pn}, split parameter k
Output :Γ1(n) EUG G = (V, E), pole set P , sub-graphs G∗, G1, ..., Gk

1 V ← ∅, E ← ∅, G∗ ← ∅
2 for i ← 1 to ⌈n

k
⌉ do

3 Pi ← {pk(i−1)+1, ..., pki}
4 SP (k)i = (Gi = (Vi, Ei), Pi, Pi, Ii, Oi) ← Createsuperpole(Pi, k)
5 G∗ ← G∗ ∪ {Gi}
6 V ← V ∪ Vi, E ← E ∪ Ei

7 for i ← 1 to k do
8 if n ≤ k then
9 Gi ← (∅, ..., ∅) // Recursion base

10 else
// Take the i-th output recursion point of each superpole as

the poles for the next sub EUG

11 P i ← {O1[i], O2[i], ..., O⌈ n
k

⌉−1[i], O⌈ n
k

⌉[i]}
12 (Gi = (V i, Ei), ...) ← Liu+(P i, k)

13 V ← V ∪ V i, E ← E ∪ Ei

14 foreach (u, v) ∈ E do
15 if u ∈ s and v is recursion point for some superpole s ∈ G∗ then
16 Gx ← the EUG in which v is a pole
17 E ← E \ {(u, v)}
18 w ← Γ −

Gx(v)
19 E ← E \ {(v, w)}
20 E ← E ∪ {(u, w)}
21 else if u is recursion point for some superpole s ∈ G∗ and v ∈ s then
22 Gx ← the EUG in which u is a pole
23 E ← E \ {(u, v)}
24 w ← Γ+

Gx(u)
25 E ← E \ {(w, u)}
26 E ← E ∪ {(w, v)}

27 remove all recursion points from V

28 return G = (V, E), P, G∗, G1, . . . , Gk

Proof. Let G = (V,E) ∈ Γρ,ω(n). Obviously, it holds that |V | ≤ nω (condition 1
in Definition 9). Further, for all v ∈ V it holds that deg+(v) ≤ ρ and deg−(vi,j) ≤
ρ from conditions 3 and 4 in Definition 9. Thus, G ∈ Γρ(nω). ⊓⊔

Now, we can build EUGs for multi-input and multi-output LUTs.

Corollary 3. Let ρ,ω ∈ N. Then there exists a EUG for Γρ,ω(n) with size
bounded by

1.5ρnω log2(nω) + O(nω).
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Proof. Step 1: Create a Γρ(nω) EUG U = (V U , EU ) with a topologically ordered
pole set P ⊂ V U that has the form (..., vi−1,ω, vi,1, ..., vi,ω, vi+1,1, ...) for all i ∈ [n],
i.e., the original pole vi,1 directly preceding the auxiliary poles vi,j for 1 < j ≤ ω:
We do this by creating a Liu+ EUG U with pole set P and split parameter
k = 2. Then we merge ρ instances of it. By Theorem 2 with |SP (2)| = 5 [37] and
Corollary 1, this yields a Γρ(nω) EUG of size at most 1.5ρnω log2(nω) +O(nω).

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū :
Let vi,j be an auxiliary pole of vi,1 for i ∈ [n], 1 < j ≤ ω. Remove all of its
incoming edges and replace each of them with an edge connecting the original
pole vi,1 with the auxiliary pole vi,j , i.e., remove (w, vi,j) ∈ EU for w ∈ V U and
replace it by (vi,1, vi,j). This yields ρ edges (vi,1, vi,j) per auxiliary pole vi,j (one
for each EUG instance). Thus, EU becomes a multi set. The graph that results
from modifying U in the just described way is denoted by Ū and its pole set is
denoted by P .

Step 3: Embed any graph G = (P,E) ∈ Γρ,ω(n) into Ū : To show that Ū is a
EUG for Γρ,ω(n), we need to define an edge-embedding ψ from G into Ū . Thanks
to Proposition 2, it holds that G ∈ Γρ(nω). Note that the “relative topological
order” is maintained, i.e., ηG(vi) < ηG(vi+1) for i ∈ [n]. However, although Ū
has nω poles, it is not an EUG for all Γρ(nω) graphs as all poles vi,j>1 are
directly connected to pole vi,1 via the edge (vi,1, vi,j>1) for i ∈ [n], j ∈ [ω]. Thus,

(3 → 1)-LUTi

(3 → 1)-LUTi+1

. . .

. . .
. . . . . .

. . . . . .

(a) Two (3 → 1)-LUTs in our LUC.

(3 → 2)-LUTi,1

(3 → 2)-LUTi,2

. . .

. . .
. . . . . .

. . . . . .

(b) One (3 → 2)-LUT in our LUC.

Fig. 4. Embedding of (3 → 1)-LUTs (a) and (3 → 2)-LUTs (b) in a single superpole of
our LUC construction. The blue line in (b) indicates that the inputs of the first LUT
part are forwarded to the second LUT part. Each of the LUT parts in (b) generate one
output with the same inputs, thus building together a (3 → 2)-LUT. The red edge is
optional and can be removed as only one input in the superpole is needed.
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we cannot find edge-disjoint paths from any pole vk<i,l to vi,j>1 for k ∈ [n],
l ∈ [ω], as these would all use an ingoing edge of pole vi,1. So, we need to show
that all nodes vi,j>1 ∈ G have indegree 0 to ensure that no edge-disjoint path
needs to end up at pole vi,j>1 ∈ Ū . This, however, is fulfilled due to condition
3 of Definition 9, i.e., there exists no edge e = (vk<i,l, vi,j>1) ∈ G for which
an embedding ψ(e) needs to be defined (the same argument holds for edges
e = (vi,l<j , vi,j) ∈ G).

So far, we showed that G only contains edges e = (vk<i,l, vi,1) ∈ G, which are
the only ones to edge-embed into Ū . However, as we just added additional edges
to poles vi,1 and no outgoing edges from any poles in Ū have been removed, we
can get the edge-embedding ψ directly from Corollary 2. ⊓⊔

In Fig. 4, we present our LUC construction for the embedding of both (3 →
1)-LUTs and (3 → 2)-LUTs within a single superpole. Specifically, in Fig. 4a, a
superpole consists of two (3 → 1)-LUTs, each having three individual inputs and
one output. In contrast, in Fig. 4b, a (3 → 2)-LUT requires two poles, limiting the
embedding capacity to a single (3 → 2)-LUT within one superpole. We achieve
this by implementing each pole as a (3 → 1)-LUT in our LUC construction,
effectively combining them to form a (3 → 2)-LUT. The second part of the
LUT shares the same inputs as the first part (indicated by the blue edge in
Fig. 4b), eliminating the need for an additional node between the two poles. The
two outputs of the (3 → 2)-LUT are forwarded to the lower node and can then
propagate to the nested EUGs through this node. As an optimization, we can
remove one incoming edge from the superpole (indicated by the red edge in
Fig. 4b) since only one outer input is utilized.

4.3 Improvement

In this section, we show improvements of our LUC for several basic building
blocks like full adder (FA), comparator (CMP), and multiplexer (MUX). As
summarized in Table 2, our basic building blocks are smaller than the previous
constructions [7,22,31,37] in UC size by factor ≈ 1.67×–2.67×. Note that we
compute improvement factors based only on the prefactor. The actual enhance-
ments will be greater as also the logarithmic term is improved. This UC size
reduction is achieved by merging 2-input gates into larger multi-input LUTs.

Full Adder (FA): The optimized implementation of a FA uses four 2-input XOR
gates and one 2-input AND gate (cf. [33, Fig. 2]). We can implement a FA using
only one (3 → 2)-LUT, resulting in an improvement by ≈ 1.67× in LUC size (cf.
Table 2). The embedding of a (3 → 2)-LUT in our LUC is depicted in Fig. 4b.

Comparator (CMP): The 1-bit comparator consists of three 2-input XOR gates
and one 2-input AND gate (cf. [33, Fig. 6]). Our improved LUT-based instan-
tiating for CMP uses only one (3 → 1)-LUT, resulting in an improvement of
≈ 2.67× in LUC size (cf. Table 2). The embedding of a (3 → 1)-LUT in our
LUC is depicted in Fig. 4a.
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Multiplexer (MUX): The MUX block can be instantiated with two 2-input XOR
gates and one 2-input AND gate (cf. [35, Fig. 2]). In our approach, MUX can be
instantiated with only one (3 → 1)-LUT, resulting in an improvement of ≈ 2×
in the LUC size (cf. Table 2). The embedding of a (3 → 1)-LUT in our LUC is
depicted in Fig. 4a.

Complex Building Blocks. We now present several motivating examples that
benefit from improvements of our basic building blocks.

Addition and Subtraction. An l-bit addition is composed of a chain of l Full
Adders (FA) (cf. [33, Fig. 1]. An l-bit subtraction is defined as x − y = x + y + 1
and can be constructed similarly to an addition circuit using l FAs (cf. [33,
Fig. 3]. Using our FA construction, the LUC size of the addition and subtraction
is improved by ≈ 1.67×.

Table 2. LUC sizes for basic building blocks which can be used to construct more
complex functionalities. b denotes the frequency of occurrence of the specific building
blocks within the circuit.

Building

Block (BB)
Boolean Circuit LUT-based Circuit

Improvement
# Gates Asympt. UC Size LUT type Asympt. LUC Size

4 XOR
FA

1 AND
15b log2 5b + O(b) (3 → 2)-LUT 9b log2 b + O(b) 1.67×

3 XOR
CMP

1 AND
12b log2 4b + O(b) (3 → 1)-LUT 4.5b log2 b + O(b) 2.67×

2 XOR
MUX

1 AND
9b log2 3b + O(b) (3 → 1)-LUT 4.5b log2 b + O(b) 2×

Multiplication. Multiplication of two l-bit numbers can be composed of l2 of 2-
input AND gates ((2 → 1)-LUT) and (l −1) l-bit adders [33]. Using the efficient
implementation for LUT-based adders, the LUC size of the multiplication circuit
is improved by ≈ 1.67×.

Multiplexer. An l-bit multiplexer circuit can be composed of l parallel MUX
blocks (cf. [35, Fig. 9]) to select one of the l-bit inputs. So, using our LUT-based
MUX has ≈ 2× improvement for an l-bit multiplexer.
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Comparison. An l-bit comparison circuit can be composed of a chain of l CMP
blocks (cf. [33, Fig. 5]). Thus, our CMP construction improves the LUC size of the
comparison circuit by ≈ 2.67×. A minimum circuit which selects the minimum
value of a list of m l-bit values is composed of l-bit comparison and multiplexer
circuits (cf. [33, Fig. 8]) and hence is improved by ≈ 2.3×.

5 Our Varying UC (VUC) Construction

In many applications, sub-functionalities are naturally implemented by LUTs
with higher dimension, e.g., Sboxes in AES. In this case, we aim to put sin-
gle LUTs with a higher dimension (e.g., ρ = 8) into the UC. Using our LUC
construction for this concrete example, we would need to compose the UC of 8
instances of Γ1(n) EUGs, even if we only need the full (8 → 1)-LUT few times
in the whole circuit.6 Thus, our aim is to find a way to use single LUTs with
input dimension of ρ > 3 without a massive influence on the total circuit size.

In this section, we present our Varying UC (VUC) construction, which devi-
ates from the conventional universal circuits (UCs) that have been widely stud-
ied [7,22,31,34,36,37,51]. Traditionally, UCs have been designed to conceal both
the topology and the gate functionality of the simulated function, and have relied
on the use of fixed computational units, namely universal 2-input gates or, like in
our work, (ρ → ω)-LUTs with a globally fixed number of inputs ρ and outputs ω.
A VUC, however, allows for the use of different programmable computational
units, thereby leaking information about the types of units used. In particular,
we focus on VUCs built using (ρ → ω)-LUTs with varying numbers of inputs
and outputs, thereby revealing the dimensions of the individual LUTs.

Definition 10 (Varying Universal Circuit (VUC)). A Varying Universal
Circuit V for ni inputs, the ordered list of ng gates G = (G1, . . . ,Gng

) of varying
input and output dimensions, and no outputs is a Boolean circuit that can be
programmed to compute any Boolean circuit C with ni inputs, no outputs, and
ng gates that can be topologically ordered into G by defining a set of programming
bits pC such that V(x, pC) = C(x) for all possible input values x ∈ {0, 1}ni .

In Sect. 5.2, we discuss several applications of VUCs as well as their leakage.

5.1 The VUC Construction

First, we show how to build our VUC for evaluating different (ρ → 1)-LUTs
with varying input dimensions ρ. Later in this section, we show how to extend
this construction to evaluate any (ρ → ω)-LUTs with varying input and output
dimensions ρ and ω. In our VUC construction, we keep building our UC from
only two instances of a Γ1(n) EUG, independent of the LUT sizes. This reduces
the overhead of our LUT-based UC construction that merges ρ instances of the

6 An alternative would be to decompose the larger LUTs into multiple smaller ones
using Shannon expansion [49].
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large Γ1(n) EUG for (ρ → 1)-LUT. We do this by adding auxiliary poles u to
the EUG whose task is to collect up to two inputs and forward these inputs
via direct edges to a real pole v to push the indegree of v to ρ. Definition 11
defines ΓP+,P−(n) graphs, which classify the graphs that can be edge-embedded
into our VUC construction, namely, the vectors P+ and P− specify the maximum
indegree and outdegree of each LUT in our circuit that we aim to evaluate with
the UC. Our VUC design additionally allows the evaluation of functions that
only use a single type of ρ input LUTs by setting P+ = 1ρ,7 i.e., each LUT in
the circuit can have at most ρ inputs and the resulting VUC implements each
universal gate as a (ρ → 1)-LUT. In this case, the VUC is a real LUT-based
UC (LUC) and can be used for PFE. In the case for VPFE, the universal gates
of the UC have different implementations and therefore leak the specific input
sizes of all LUTs.

Definition 11 (ΓP+,P−(n)). Let G = (V,E) be a directed acyclic graph with
topologically ordered V := {v1, ..., vn} and P+,P− ∈ Nn. Then G ∈ ΓP+,P−(n)
if:

– |V | ≤ n,
– deg+(vi) ≤ P+

i ∧ deg−(vi) ≤ P−
i ∀i ∈ [n].

If P+/− = 1ρ for some ρ ∈ N, we write ρ instead of 1ρ.

In this sense, Corollary 2 yields a Γρ,ρ(n) EUG. In the following, we describe
our VUC construction. An example of the whole EUG creation and the embed-
ding process is depicted in Fig. 5. The explicit creation of the used auxiliary
graph is given by Algorithm3.

The key observation for our VUC construction is that, when merging two
instances of Γ1(n) EUGs, each of the n poles (excluding inputs and outputs)
can take two inputs, and can, but not necessarily need to, compute one output.
We can use this observation to merge poles in order to collect ρ > 2 inputs for
our LUT. For example, looking at Fig. 5, a (5 → 1)-LUT consists of the three
poles p6, p7, and p8, where pole p6 (resp. p7) just collects two (resp. one) inputs,
but does not compute any output. Instead, the ingoing edges are forwarded to
pole p8 (dashed lines) and the outgoing edges (dotted gray lines) are removed.
Pole p8 now has, in addition to its two regular ingoing edges, three additional
ingoing edges that come directly from poles p6 and p7. On a high level, we can
merge ⌈ρ/2⌉ poles into one (ρ → 1)-LUT, while the first ⌈ρ/2⌉ − 1 so-called
auxiliary poles each collect up to two inputs for the LUT which are then directly
forwarded to the last pole, which takes the last two inputs of the LUT and
computes the output.

7 1 denotes the vector where each entry is 1.
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More formally, we begin by constructing an auxiliary graph Ḡ. For each
pole p that has ρ > 2 incoming edges, we create an auxiliary pole for each two
additional inputs, i.e., ⌈ρ/2− 1⌉ auxiliary poles. Then, we replace all except two
edges from pole p by edges to the auxiliary poles. The purpose of the auxiliary
poles is to forward their inputs to the original multi-input pole. The resulting

v1 v2 v3 v5v4

v6

(a) Original graph

v1 v2 v3 v5v4

v6 u6,1 u6,2

(b) Corresponding auxiliary graph
p1

p2

p3

p4

p5

p6

p7

p8

(c) Edge-embedding of the original graph. First, the edges from the auxiliary graph are
embedded. Then, dotted gray edges are removed from the EUG, while dashed edges
are added to the EUG, resp. to the edge-embedding. The result is an edge-embedding
for the original graph. Now we can replace the ingoing edges to p6 by directed edges to
the multi-input pole p8. The auxiliary pole p7 becomes a Y-Switch that only forwards
the orange wire.

Fig. 5. Our varying UC construction for ρ = 5 inputs.
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Algorithm 3: AuxiliaryGraph(G)

Input :G = (V, E) ∈ ΓP+,2(n)

Output : Ḡ = (V̄ , Ē) ∈ Γ2(n + ∆) with ∆ =
n∑

i=0

max{⌈P+
i −2

2
⌉, 0}

1 Ḡ = (V̄ , Ē) ← (V, ∅)
2 foreach vi ∈ V do
3 j ← 0
4 foreach e = (w, vi) ∈ E do
5 if j ≥ 2 then
6 if j ≡ 0 (mod 2) then
7 V̄ ← V̄ ∪ {u

i, j
2
}

8 Ē ← Ē ∪ {(w, u
i,⌈ j

2
⌉)}

9 else
10 Ē ← Ē ∪ {e}
11 j ← j + 1

EUG U then guarantees that there can be a path from any pole with lower order
to the corresponding auxiliary poles.

If there is a multi-input gate with an odd number of inputs ρ, then there
will be one auxiliary pole in Ḡ with only one input. In this case, we can share
this auxiliary pole for two poles if both have an odd number of inputs (which is
always the case in the special case of PFE). This concrete auxiliary pole is then
later translated into an X-switching block so that the inputs can be forwarded
to the correct LUT.

Theorem 3. Let P+ ∈ Nn. Then there exists an EUG for ΓP+,2(n) with size
bounded by

3(n + ∆) log2(n + ∆) + O(n + ∆),

where ∆ :=
n∑

i=1

max{⌈P+
i −2

2 ⌉, 0}.

Proof. Step 1: Create a Γ2(n + ∆) EUG U = (V U , EU ) with a topologically
ordered pole set P that has the form (..., vi−1, ui,1, ..., u

i,⌈ P
+
i

−2

2 ⌉
, vi, ...) for all

i ∈ [n], i.e., the auxiliary poles ui,j for j ∈ [⌈P+
i −2

2 ⌉] are directly preceding the
original pole vi: We do this by creating a Liu+ EUG U with pole set P and split
parameter 2. Then we merge two instances of it. By Theorem2 and Corollary 1,
this yields a Γ2(n + ∆) EUG of size at most 3(n + ∆) log2(n + ∆) + O(n + ∆).

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū :

Let ui,j be an auxiliary pole of vi for i ∈ [n], j ∈ [⌈P+
i −2

2 ⌉]. Remove all of its
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outgoing edges and replace each of them with an edge connecting the auxiliary
pole to the original multi-input pole, i.e., remove each (ui,j , w) ∈ EU for w ∈ V U

and replace it by (ui,j , vi). This yields two edges (ui,j , vi) per auxiliary pole ui,j .
Thus, EU becomes a multi set. If P+

i is odd and j = 1, add only one of these
edges instead of two (otherwise, vi would have too many ingoing edges). The
graph that results from modifying U in the just described way is denoted by Ū .

Step 3: Embed any graph G = (P,E) ∈ ΓP+,2(n) into Ū : For this, we construct
a Γ2(n+∆) graph using auxiliary poles for nodes with indegree higher than 2 by
setting Ḡ = (V̄ , Ē) = auxiliaryGraph(G) ∈ Γ2(n+∆) (Algorithm 3). Note that
the “relative topological order” is maintained, i.e., ηḠ(vi) < ηḠ(vi+1) ∀i ∈ [n].
Edge-embedding Ḡ into Ū yields ψ : Ē → PŪ . To show that Ū is a ΓP+,2(n)
EUG, we need to define an edge-embedding ψ̄ from G into Ū : Note that for
edges e = (vi, vl) ∈ G \ Ḡ, i.e., edges whose endpoints are not auxiliary poles,
ψ already yields edge-disjoint vi-vl-paths and we can set ψ̄(e) = ψ(e) for those
edges.

Now consider edges e = (vi, vl) ∈ G ∩ Ḡ, i.e., the endpoints of those
edges are transformed into an auxiliary pole in Ḡ. For each e, there is exactly

one ē = (vi, ul,j) ∈ Ḡ for j ∈ [⌈deg+(vl)−2
2 ⌉] (line 8 in Algorithm3). Now set

ψ̄(e) = ψ(ē) + (ul,j , vl) for one of the possibly two edges (ul,j , vl) that were
added to Ū before. Obviously, this yields a vi-vl-path. Since there are at most
two edges connecting to an auxiliary pole, we can choose a unique last edge for
each path. Because the paths in the image of ψ were already edge-disjoint, also
the paths in the image of ψ̄ are edge-disjoint. Thus, ψ̄ is an edge-embedding of
G into Ū . ⊓⊔

Theorem 3 gives us an EUG that can be used to build VUCs for (ρ → 1)-LUTs
with varying parameter ρ and can thus be used for VPFE. Next, we consider
VUCs for a fixed constant ρ which yields classical PFE.

Corollary 4. Let P+ = 1ρ ∈ Nn for ρ > 2. Then there exists a EUG for
ΓP+,2(n) with size bounded by

3⌈ρ

2
n⌉ log2(⌈

ρ

2
n⌉) + O(⌈ρ

2
n⌉).

Proof. We follow the proof of Theorem 3 and highlight the differences.

Step 1: Create a Γ2(⌈ρ
2n⌉) EUG U with topologically ordered pole set P that

has the form (..., vi−1, ui,1, ..., ui,⌈ ρ−2
2 ⌉, vi, ui+1,1, ..., ui+1,⌊ ρ−2

2 ⌋, vi+1, ...) as

described in step 1 in the proof of Theorem3.

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū as
described in step 2 in the proof of Theorem3 with one difference: If ρ is odd, we
share one auxiliary pole ui,1 for two consecutive original poles vi and vi+1, i.e.,
we add the two edges (ui,1, vi) and (ui,1, vi+1).

Step 3: Edge-embed G into Ū as described in step 3 in the proof of Theorem3
with one difference: If ρ is odd, the auxiliary graph Ḡ = (V̄ , Ē) shares one
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auxiliary pole ui,1 for two consecutive original poles vi and vi+1, i.e., ui+1,1 is
removed from V̄ and the edge (w, ui+1,1) is replaced by the edge (w, ui,1). As ui,1

and ui+1,1 both have indegree 1, ui,1 now has indegree 2. ⊓⊔

Multi-output Support for VUCs. An auxiliary graph that represents
multi-output LUTs is a ΓP+,P−,Ω−(n) graph as defined in Definition 12, i.e.,
ΓP+,P−,Ω−(n) classifies the graphs that can be edge-embedded into our UC con-
struction. Here, P+ is a vector of size n that specifies the indegree of each node in
the auxiliary graph and thus represents the maximum number of inputs of each
LUT in the UC. P− is a constant that specifies the maximum outdegree of each
node in the auxiliary graph/of each LUT in our circuit that we aim to evaluate
with the UC. Similarly, Ω− describes the number of distinguished outputs of the
LUTs, i.e., P− specifies the number of copies we have for each output of a LUT
in our circuit, while Ω− sets the number of outputs for each LUT.

As later, when embedding G into the EUG, each output of a LUT represents
a separate value, i.e., we need to put each output into an individual pole. As
the poles of the EUG are the nodes of the auxiliary graph, we need to add for
each additional output of the i-th LUT in total Ω−

i − 1 additional poles. In
Definition 12, we denote the outputs of the i-th LUT with vi,1, . . . , vi,Ω−

i
.

Definition 12 (ΓP+,P−,Ω−(n)). Let G = (V,E) be a directed acyclic graph with
topologically ordered V := {v1,1, . . . , v1,Ω−

1
, v2,1, . . . , v2,Ω−

2
, . . . , vn,1, . . . , vn,Ω−

n
}

and P+,P−,Ω− ∈ Nn. Then G ∈ ΓP+,P−,Ω−(n) if:

– |V | ≤
n∑

i=1

Ω−
i ,

– |{vi,j ∈ V }| ≤ Ω−
i ∀i ∈ [n],

– deg+(vi,1) ≤ P+
i ∧ deg+(vi,2) = · · · = deg+(vi,Ω−

i
) = 0,

– deg−(vi,j) ≤ P−
i ∀i ∈ [n] ∀j ∈ [Ω−

i ].

To easily build an EUG with only marginal modifications, we show that a
ΓP+,P−,Ω− is also a ΓP+,P− graph:

Proposition 3. Let G ∈ ΓP+,P−,Ω−(n). Then G ∈ ΓP+,P−(n + ∆), where ∆ :=
n∑

i=1

Ω−
i − 1.

Proof. Let G = (V,E) ∈ ΓP+,P−,Ω−(n). It holds that |V | ≤
n∑

i=1

Ω−
i = n + ∆

where ∆ =
n∑

i=1

Ω−
i − 1 (condition 1 in Definition 12). Further, for all v ∈ V

it holds that deg+(v) ≤ P+
i and deg−(vi,j) ≤ P−

i from conditions 3 and 4 in
Definition 12. ⊓⊔

We can build VUCs using Corollary 5 and UCs with constant ρ and ω using
Corollary 6, whose prove directly follows from Corollarys 4 and 5.
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Corollary 5. Let P+,Ω− ∈ Nn. Then there exists a EUG for ΓP+,2,Ω−(n) with
size bounded by

3(n + ∆) log2(n + ∆) + O(n + ∆),

where ∆ :=
n∑

i=1

(max{⌈P+
i −2

2 ⌉, 0} + Ω−
i − 1).

Proof. Let G = (P,E) ∈ ΓP+,2,Ω−(n) be the graph to be embedded in an EUG
with P = {v1,1, . . . , v1,Ω−

1
, v2,1, . . . , v2,Ω−

2
, . . . , vn,1, . . . , vn,Ω−

n
}. We

can transform G into a ΓP+,2(n + ∆′) graph where ∆′ :=
n∑

i=1

Ω−
i − 1 . Using

Theorem 3, we get an EUG for ΓP+,2(n + ∆′) that is bounded by

3(n + ∆′ + ∆′′) log2(n + ∆′ + ∆′′) + O(n + ∆′ + ∆′′),

where ∆′′ :=
n∑

i=1

max{⌈P+
i −2

2 ⌉, 0} and setting ∆ := ∆′ + ∆′′ yields an EUG of

the given size.
We need to add some more edges to the resulting EUG Ū = (V Ū , EŪ ) with

pole set P ⊂ V Ū , namely the inputs of the first pole associated with the LUT
need to be forwarded to all remaining output poles of the same LUT as follows:

∀i ∈ [n] : ∀vi,1 ∈ P : ∀(u, vi,1) ∈ EŪ : ∀vi,j ∈ P, j > 1 : EŪ = EŪ ∪
(u, vi,j). ⊓⊔

Corollary 6. Let P+ = ρ ∈ Nn for ρ > 2 and Ω− = 1ω ∈ Nn for ω > 1. Then
there exists an EUG for ΓP+,2,Ω−(n) with size bounded by

3(⌈(ρ

2
+ ω − 1)n⌉) log2(⌈(

ρ

2
+ ω − 1)n⌉) + O(⌈(ρ

2
+ ω − 1)n⌉).

5.2 Applications of Varying UCs (VUCs)

If we use a VUC instead of a UC in MPC-based PFE, we get Varying Private
Function Evaluation (VPFE). VPFE allows a set of k parties P1, . . . ,Pk, to
jointly compute a circuit C held by P1 on private data x2, . . . , xk held by Pi≥2

to obtain nothing but C(x2, . . . , xk), and Pi≥2 learn nothing about C but the
dimensions of all its LUTs. Thus, VPFE does not leak the whole topology of
sub-circuits like SPFE (cf. Sect. 1.1), but leaks more information than PFE.

We can reduce the leakage by randomly changing the sequence of LUTs
according to the topological order of the simulated circuit. In this way, building
blocks (e.g., full adders) do not occur as a whole block of consecutive LUTs of
the same dimension in the VUC. The function would be mapped to different
sequences of dimensions and thus we would remove fingerprints of certain func-
tions. So, even multiple building blocks of different circuit layers can be mixed
in a sequence. This technique, however, still allows to exclude certain functions
when they cannot be mapped to the given sequence of dimensions.
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Some applications, such as logic locking (cf. [11, Fig. 3] and Sect. 1.1) do not
require full privacy of the evaluated function and allow for the leakage of the
sequence of dimensions of the used LUTs. However, in general PFE applications,
even knowledge of the LUT sizes may reveal too much information about the
protected function. Our analysis (cf. Sect. 4.3) and our benchmarks (cf. Sect. 6.3)
demonstrate that many functionalities can be reduced to 3-input LUTs. Conse-
quently, we benefit from using LUCs with 3-input LUTs in most cases. This
observation is not surprising, as most arithmetic operations can be reduced to
full adders (3-input LUTs), and only a small number of sub-functionalities bene-
fit from using LUTs with more than 3 inputs. However, when adding only one of
these larger LUTs, the overall size of the LUC would be significantly increased, as
a complete EUG graph would need to be added to the circuit for each additional
input of all LUTs, even if the higher dimension is used only once. Therefore,
VUCs are well-suited for embedding circuits with a limited number of various
LUT combinations, such as (3 → 1)-LUT and (8 → 8)-LUT, resulting in sig-
nificant size improvements. By implementing simple functionalities with (3 →
1)-LUTs and allowing complex functionalities with (8 → 8)-LUTs, a wide range
of possible functions can be achieved without compromising critical information
(which can always be implemented using a single LUT type). The (8 → 8)-LUTs
offer a vast set of 256 combinations, enabling the implementation of a large
and diverse collection of functionalities. Despite the inclusion of these additional
combinations, the resulting leakage remains limited.

There are many PFE applications that benefit from such a setting, including
credit checking [17], user-specific tariff calculations [21], and medical diagno-
sis [9]. All these applications rely on sub-functionalities such as classifiers. A
classifier utilizes a mapping table to look up a class based on input data, and
then outputs the determined class. To illustrate, a car insurance tariff calculator
may use a classifier to establish a basic price based on the type of car a poten-
tial customer drives. Multi-input LUTs, such as (8 → 8)-LUTs, can efficiently
implement these classifiers as they provide exactly such a table lookup. By incor-
porating individually tailored multi-input LUTs in a VUC, we can benefit from
overall size improvements over the LUC construction, while still maintaining the
internal implementation of the classifier, including the computation performed
to obtain the address of the lookup whose topology is hidden.

6 Implementation and Evaluation

We implement our proposed UC constructions using the MPC framework
ABY [13] to provide a fair comparison to previous PFE works on UCs [7,22,31].
MPC frameworks supporting multi-input garbled circuits [39] reduce the com-
munication of evaluating a single ρ input LUT to 2ρ − 1 ciphertexts. In ABY,
we implement ρ input LUTs as a multiplexer tree consisting of 2ρ − 1 2-input
AND gates, requiring 2(2ρ − 1) ciphertexts using half-gates [56]. This could be
further reduced to 1.5(2ρ − 1) ciphertexts using three-halves garbling [47].
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We benchmark our LUC construction (cf. Sect. 4) and compare it with the
most recent UC of Liu et al. [37] that simulates circuits with binary gates. More-
over, we evaluate our VUC construction (cf. Sect. 5) to show the improvement
over Liu et al.’s UC [37] and our LUC construction. All results in this section use
the EUG construction by Liu et al. [37] to construct the underlying Γ1 EUGs.
We discuss the LUT generation in Sect. 6.1, details about our UC compilation
in Sect. 6.2, and experimental results in Sect. 6.3.

6.1 LUT Generation

Hardware synthesis is a crucial process in electronic design automation that
involves converting an abstract function description into a functionally equivalent
logic implementation. This transformation is achieved through the utilization of
various optimization and technology mapping algorithms. These algorithms have
been extensively researched and developed over the course of many years. The
resulting circuit implementation is typically dependent on the target hardware
platform and the manufacturing technology employed. The two most common
target hardware platforms are Application Specific Integrated Circuits (ASICs)
and Field Programmable Gate Arrays (FPGAs).

This work specifically focuses on exploiting multi-input LUTs, which are
fundamental components of FPGAs (which consist of logic cells containing pro-
grammable LUTs) and their corresponding synthesis tools. Although ASIC syn-
thesis tools can also map to multi-input gates, this process is laborious, imprac-
tical, and necessitates the creation of large libraries to accommodate all possible
LUTs for each input size. Thus, we chose FPGA synthesis tools. The market
offers commercial FPGA synthesis tools like Intel Quartus Prime [1], VTR [2],
XST [4], and Vivado Synthesis tools by Xilinx [3]. However, these tools synthesize
LUT-based circuits tailored to the specific features of their respective devices.
For instance, most current FPGA devices support a maximum of 6-input LUTs.
In our work, we aim to generate circuits with up to 8-input LUTs, which, to the
best of our knowledge, is not supported by mainstream commercial tools.

In this work, similar to [12,14], we leverage the mapping capabilities of the
open-source tools Yosys [53] and ABC [10]. Yosys allows us to transform the
circuit descriptions into a network of low-level logic operations represented in
an intermediate format. Subsequently, ABC [10] organizes this network into a
Directed Acyclic Graph (DAG) and maps it to a depth-optimized circuit com-
posed of LUTs. It is worth noting that ABC [10] does not inherently support
mapping to multi-output LUTs. To overcome this limitation, we perform post-
processing on the single-output LUT circuits generated by ABC [10] and convert
them into multi-output LUT circuits. Additionally, we use integrated Intellec-
tual Property (IP) libraries within the commercial ASIC synthesis tool Synopsys
Design Compiler (DC) [5], to generate circuit netlists for more complex function-
alities such as floating-point operations. These circuits are initially created as
Boolean netlists by Synopsys DC [5], and we subsequently remap them to LUT-
based representations using the Yosys-ABC toolchain [10,53].
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6.2 UC Compilation

Let C denote the circuit to be embedded and ρ the maximum fan-in of the
circuit.

1. Parsing the circuit: The circuit is input in the Secure Hardware Definition
Language (SHDL) [39] and parsed into the internal graph representation. We
reduce the fan-out of the graph to the allowed fan-in ρ for LUCs (cf. Sect. 4)
and 2 for VUCs (cf. Sect. 5) by using copy gates. For VUCs, the auxiliary graph
(cf. Theorem 3) is generated. Here, we denote the auxiliary graph by G and the
former graph with possibly reduced fan-out by Ḡ.

2. Splitting G into Γ1 graphs and creating Γ1 EUGs: Using the LUC
construction yields ρ Γ1 graphs. For each Γ1 graph, we create a Γ1 EUG. Possible
EUGs are Valiant’s EUG [51] and the 2-way split EUG of Liu et al. [37]. If we
use the VUC construction, we get two Γ1 graphs.

3. Edge-embedding the Γ1 graphs and merging them: Each Γ1 graph is
edge-embedded into the corresponding Γ1 EUG. This edge-embedding is coded
directly into the control bits of the X- and Y-Switches of the EUG. The con-
crete algorithm uses a slightly modified version of the edge-embedding algorithm
in [22]. Then, the Γ1 EUGs are merged into a Γρ EUG (LUC) or into a Γ2 EUG
(VUC).

4. Basic optimizations and correctness checking: We remove edges con-
necting to an input pole as they will never be used and replace copy gates with
wires. Then we remove isolated nodes or change X- to Y-Switching nodes if one
edge was removed before. We check the correctness of the edge-embedding by
checking for each edge (u, v) in G, if there is a path leading from u to v.

5. Setting the gates of the EUG: In the VUC construction, we replace the
auxiliary poles with wires connecting directly to the actual pole or a Y-Switch
if only one input is forwarded. Analogously to step 4, we check the correctness
of the edge-embedding to Ḡ. For each node in G, we set the programming bits
of the corresponding EUG pole. We determine the order of inputs and then set
the programming bits accordingly. This also involves padding the programming
bits if the gate has more inputs. Note that these additional inputs are likely to
occur since each Universal Gate outputs ρ (in LUC construction) or 2 (in VUC
construction) wires, independent of whether they are used in G or not. We pad
the programming bits such that additional and undesired inputs are ignored.

6. Transforming the EUG into an ABY compatible UC: As a final step,
we topologically order the EUG and output it in the UC format compatible
with ABY [13]. Then, each node, along with its incoming and outgoing wires, is
written into a circuit file. At the same time, the programming bits are written
into a separate programming bits file.
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6.3 Experimental Results

Setup. Like previous works [22,31,37], we benchmark a set of real-world cir-
cuits from [50]. In addition, we consider other useful functions like Karatsuba
multiplication [28], Manhattan and Euclidean distance [14], and floating-point
operations [14]. For each functionality, we give the sizes of the resulting circuit,
as well as communication and runtime complexity when the UC is evaluated
with an MPC protocol. In order to show the improvement of our work, we use
two identical machines with a LAN connection of 10 Gbit/s bandwidth and
a round-trip time of 1 ms. Each machine is equipped with an Intel Core i9-
7960X@2.8 GHz with 128GB DDR4 RAM. All measurements are averaged over
10 executions.

Table 3. Number of AND and XOR gates per building block in our UCs.

Building block AND gates XOR gates

X-switching block [35] 1 3

Y-switching block [35] 1 2

Universal Gate with k ≥ 2 inputs 2k − 1 2k+1 − 2

LUC Improvement. As we have Universal Gates of different sizes, we cannot
just count the number of nodes in the EUG to compare the implementations. As
underlying MPC protocol for UC-based PFE we use Yao’s protocol [56] using free
XORs [35], so XOR gates can be evaluated without communication. Therefore,
we count the number of non-free AND gates to instantiate the building blocks
of the UC (cf. Table 3). We experimentally compared our implementations with
the best existing UC-based PFE construction of Liu et al. [37]. We provide our
results for our LUT-based UC constructions in Table 4. In our circuit generation,
we vary possible choices for (ρ → ω)-LUTs and select the ones with highest
improvement. We can see from Table 4 that our LUT-based UC construction is
always smaller than that of [37] by 1.12 − 2.18×.

For a comparison of the improvements in PFE, we securely evaluate our
generated UCs with the GMW-based SP-LUT protocol [14] and Yao’s GC pro-
tocol [56]. In Table 5, we show the runtime and communication of our LUT-based
UC construction (LUC) compared to the most recent UC construction of Liu et
al. [37] as baseline using Yao [56] and GMW [20]. Our new UC construction is
the fastest implementation: Compared to the baseline using Yao [56], the total
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Table 4. Comparison of the sizes of our LUT-based UC construction (LUC, cf. Sect. 4)
and the best previous UC construction of Liu et al. [37] as baseline (in number of
AND gates) measured with our implementations. The smallest size is marked in bold
and always achieved by our UCs. The sizes for our UC is the best combinations for (ρ
→ ω)-LUT for ρ ∈ {2, ..., 8} inputs and ω ∈ {1, . . . , 8} outputs for the benchmarked
circuit.

Circuit
Circuit size (# AND gates)

Improvement (×) LUT sizes (ρ → ω)
UC of [37] Our LUC

AES 1,779,105 1,779,105 1.00 2 → 1

DES 1,269,537 1,130,037 1.12 3 → 1

MD5 3,293,262 1,724,221 1.91 3 → 1

SHA-1 4,872,501 2,559,602 1.90 3 → 1

SHA-256 10,652,234 5,351,972 1.99 3 → 1

Add 32 6,926 3,907 1.77 3 → 2

Add 64 17,006 8,963 1.90 3 → 2

Comp 32 2,519 1,278 1.97 3 → 1

Mult 32x32 347,274 177,081 1.96 3 → 3

Karatsuba 32x32 286,933 156,888 1.83 3 → 3

MD256 327,203 150,046 2.18 3 → 2

ED64 1,852,419 947,679 1.95 3 → 3

FP-Add 32 113,620 90,964 1.25 3 → 1

FP-Mul 32 293,125 247,859 1.18 3 → 1

FP-Exp2 32 2,008,269 1,548,079 1.30 3 → 1

FP-Div 32 372,101 236,300 1.57 3 → 1

FP-Sqrt 32 176,176 118,873 1.48 3 → 1

FP-Comp 32 6,387 5,628 1.13 4 → 4

FP-Log 32 1,936,813 1,499,538 1.29 3 → 1

runtime for our sample circuits is faster by a factor of 1.14−2×. The communica-
tion improvements over the baseline using Yao [56] are 1.12−2.25×. The runtime
of Yao’s protocol is 3.83 − 11.5× faster than that of the LUT-based protocols
which can be explained by the constant round complexity of Yao’s protocol. The
SP-LUT protocol [14] always has the lowest communication, achieving factor
1.19 − 2.44× less communication than Yao’s protocol. In Table 5, it is evident
that the baseline employing Yao [56] exhibits superior runtime performance and
lower total communication overhead than the baseline employing the GMW pro-
tocol [20].
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Table 5. Runtime and communication for our LUT-based UC construction (cf. Sect. 4)
compared to the state-of-the-art UC of [37] when evaluated with ABY [13]. We include
the LAN evaluation time (in seconds) and the total communication (in Megabytes)
between the parties in LUT-based [14], Yao sharing [56], as well as in GMW sharing [20].
The best values are marked in bold.

UC construction UC of [37] Our LUT-based UC (LUC)

MPC protocol Yao [56] GMW [20] Yao [56] SP-LUT [14]

Circuit Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB)

AES 1.811 80.315 142.193 96.845 1.811 80.315 13.187 28.427

DES 1.282 57.271 101.645 68.071 1.124 50.570 9.233 24.311

MD5 3.471 148.348 238.847 168.991 1.832 76.638 26.642 46.013

SHA1 5.184 220.065 343.344 246.708 2.756 113.859 27.268 58.641

SHA-256 11.571 481.412 722.650 528.122 5.878 238.364 54.082 123.045

Add 32 0.018 0.314 1.139 0.594 0.009 0.177 0.224 0.148

Add 64 0.026 0.770 2.323 1.230 0.017 0.404 0.452 0.319

Comp 32 0.008 0.117 0.265 0.203 0.004 0.062 0.139 0.055

Mult 32x32 0.350 15.626 31.497 19.650 0.212 7.300 4.144 4.531

Karatsuba 32x32 0.292 12.901 27.214 16.597 0.191 6.469 3.685 4.020,1

MD256 0.337 14.801 29.037 18.326 0.193 6.592 4.234 4.544

ED64 1.924 83.552 142.147 97.558 1.046 39.704 17.524 24.572

FP-Add 32 0.164 5.105 11.780 6.859 0.139 4.003 2.903 2.426

FP-Mul 32 0.350 13.178 28.215 16.988 0.308 10.949 6.217 4.579

FP-Exp2 32 2.292 90.555 155.881 106.023 1.612 68.651 21.531 38.330

FP-Div 32 0.458 16.743 33.686 21.024 0.296 10.443 5.918 6.528

FP-Sqrt 32 0.223 7.915 18.910 10.433 0.168 5.237 3.417 3.442

FP-Comp 32 0.014 0.290 1.066 0.553 0.012 0.235 0.226 0.118

FP-Log 32 2.083 87.330 151.423 102.369 1.600 66.510 20.198 36.287

VUC Improvement. Table 6 shows that our VUC construction which – other
than LUC – leaks the fanin of the individual LUTs is up to 2.90× smaller than
Liu et al.’s UC [37] when evaluated with Yao’s protocol [56], the total runtime for
our sample circuits is faster by 1.1 − 2.85× and the communication is improved
by 1.06 − 2.96×. This shows that significant speedups can be achieved when
giving up some function privacy.

Note that during the process of compiling our VUC construction, our tool con-
ducts an initial verification to determine whether the LUC construction results
in a better size than VUC, and, if so, proceeds to compile a LUC. Nonetheless,
in the majority of cases, VUC yields a better size by a factor of up to 1.45×.
The superiority of VUC over LUC is strongly influenced by the circuit design.
Specifically, if the circuit can primarily be constructed using Look-Up Tables
(LUTs) with identical input dimensions, the overall size is better than VUC.
However, if the circuit can be effectively constructed using LUTs with differing
input dimensions, VUC performs better.
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Table 6. Sizes, runtime, and communication for our VUC construction (cf. Sect. 5). We
include LAN evaluation times (in seconds) and total communications (in Megabytes)
between the parties in LUT-based [14] as well as in Yao sharing [56]. We show the
size improvement of VUC over the UC of [37] and LUC construction (cf. Sect. 4) in
the last two columns. Note that VUCs reveal the LUTs’ dimensions, showcasing the
enhancements obtained by sacrificing some circuit privacy.

Circuit Size
Yao [56] SP-LUT [14] Size Improv.(×)

VUC/UC of [37]
Size Improv.(×)

VUC/LUC
Time Comm. Time Comm.

AES 1,584,047 1.724 71.753 142.221 2.607 1.13 1.13

DES 960,854 0.98 43.441 93.79 1.66 1.32 1.17

MD5 1,191,566 1.22 52.89 23.01 42.77 2.76 1.45

SHA-1 2,559,602 2.76 113.86 27.27 58.64 1.90 1.00

SHA-256 4,591,982 4.91 201.98 52.22 108.43 2.32 1.17

Add 32 3,907 0.01 0.18 0.23 0.15 1.77 1.00

Add 64 8,963 0.02 0.40 0.45 0.32 1.90 1.00

Comp 32 1,188 0.01 0.05 0.04 0.04 2.12 1.08

Mult 32x32 130,053 0.14 5.51 1.42 4.06 2.67 1.36

Karatsuba 32x32 112,829 0.12 5.01 1.41 3.41 2.54 1.40

MD256 112,829 0.13 5.01 1.37 4.09 2.90 1.33

ED64 947,679 1.05 39.70 17.52 24.58 1.95 1.00

FP-Add 32 90,964 0.14 4.00 2.90 2.43 1.25 1.00

FP-Mul 32 185,968 0.18 8.11 2.04 3.65 1.58 1.33

FP-Exp2 32 1,265,869 1.34 55.72 19.38 25.16 1.59 1.22

FP-Div 32 181,904 0.18 7.89 1.91 5.27 2.05 1.30

FP-Sqrt 32 89,311 0.10 3.84 1.07 2.70 1.97 1.33

FP-Comp 32 5,269 0.01 0.22 0.11 0.093 1.21 1.07

FP-Log 32 1,230,530 1.31 54.16 16.17 24.69 1.57 1.22
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7. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and Scalable Uni-

versal Circuits. JoC (2020)
8. Attrapadung, N.: Fully Secure and Succinct Attribute Based Encryption for Cir-

cuits from Multi-linear Maps. Cryptology ePrint Archive, Report 2014/772 (2016)
9. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.:

Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 26

10. Berkeley Logic Synthesis and Verification Group: ABC: A system for sequential
synthesis and verification. http://www.eecs.berkeley.edu/alanmi/abc/

11. Bhandari, J., et al.: Not All Fabrics Are Created Equal: Exploring eFPGA Param-
eters For IP Redaction. CoRR: abs/2111.04222 (2021)
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