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2. Referent: Prof. Dr. Francisco Torralbo

3. Referent: Prof. Dr. Guofang Wang

Tag der Einreichung: 08.07.2024

Tag der mündlichen Prüfung: 13.09.2024
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“Of course it is happening inside your head, Harry, but why on earth should that

mean that it is not real?”

– J. K. Rowling, Harry Potter and the Deathly Hallows
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Abstract

In the theory of closed minimal surfaces in the n-dimensional sphere S
n, geometric

and topological properties are closely intertwined. A classical question is whether

there exist (primarily embedded) examples of every topological type – an issue, that

particularly touches several other geometric variational problems. The current state

of the art provides a rich theory and long list of examples for closed minimal surfaces

in S
3. However, knowledge about representatives in the individual topological classes

and higher codimensions remains sparse. To this end, the main focus of this thesis

lies on a specific class of minimal surfaces in S
5, so-called bipolar surfaces, which

arise from minimally immersed surfaces in S
3.

On the one hand, we will topologically classify the bipolar minimal surfaces in-

duced by two families among the prominent closed minimal surfaces in S
3 that were

constructed by H. Blaine Lawson in 1970. In that context, a notable phenomenon is

that, regarding topology and embeddedness, bipolar surfaces can di↵er significantly

from the original surfaces in S
3.

On the other hand, we will consider bipolar surfaces as part of a more general

class of minimal surfaces in S
5. First, this leads to a deeper understanding of their

geometric data. Finally, this will in fact enable us to prove that, under certain

conditions, locally any immersed surface of the aforementioned class is congruent to

a bipolar surface.





Zusammenfassung

In der Theorie geschlossener Minimalflächen in der n-dimensionalen Sphäre S
n sind

geometrische und topologische Eigenschaften eng miteinander verwoben. Eine klas-

sische Fragestellung ist, ob es (in erster Linie eingebettete) Beispiele für jeden topo-

logischen Typ gibt – eine Frage, die insbesondere eine Vielzahl anderer geometrischer

Variationsprobleme tangiert. Der gegenwärtige Stand beinhaltet eine umfassende

Theorie und eine lange Liste von Beispielen für geschlossene Minimalflächen in S
3.

Das Wissen über Repräsentanten in den einzelnen topologischen Klassen und höheren

Kodimensionen bleibt jedoch spärlich. Daher liegt der Schwerpunkt dieser Arbeit auf

einer speziellen Klasse von Minimalflächen in S
5, den sogenannten bipolaren Flächen,

welche von Minimalflächen in S
3 induziert werden.

Zum einen werden wir jene bipolaren Minimalflächen topologisch klassifizieren,

die durch zwei Familien unter den weit bekannten, geschlossenen Minimalflächen

in S
3 erzeugt werden, die 1970 von H. Blaine Lawson konstruiert wurden. Ein be-

merkenswertes Phänomen in diesem Zusammenhang ist, dass sich bipolare Flächen in

Bezug auf Topologie und Eingebettetheit erheblich von den ursprünglichen Flächen

in S
3 unterscheiden können.

Andererseits werden wir bipolare Flächen als Teil einer allgemeineren Klasse von

Minimalflächen in S
5 betrachten. Dies führt zunächst zu einem tieferen Verständnis

ihrer geometrischen Daten. Zuguterletzt werden wir dadurch in der Lage sein, zu

beweisen, dass unter bestimmten Bedingungen lokal jede immersierte Fläche der oben

genannten Klasse kongruent zu einer bipolaren Fläche ist.





Introduction

Our Topic

Minimal surface theory is a classical yet dynamic field that intersects with vari-

ous areas of research. As critical points of the area functional, minimal surfaces

are locally area-minimizing and geometrically characterized by a globally vanishing

mean curvature vector. Generally, this condition on the curvature can be seen as

dictated by a nonlinear elliptic partial di↵erential equation. In this sense, minimal

surfaces constitute exceptional, two-dimensional immersed submanifolds of an ambi-

ent Riemannian manifold of dimension � 3. Of particular interest are the embedded

examples.

The exploration of minimal surfaces can o↵er profound insights into the geometric

properties of their ambient spaces. Especially compelling is the study of minimal

surfaces in manifolds of constant curvature, such as Euclidean space Rn, the sphere Sn

or hyperbolic space Hn. In this thesis, the primary focus lies on minimally immersed

surfaces in S
5.

Unlike Euclidean space R
n as an ambient manifold, the n-dimensional sphere S

n

allows for closed minimal surfaces. Consequently, there is significant interest in their

topological classification and its implications for their geometry. In this context,

wide-ranging results are known for S3, including an infinite list of examples, e.g.,

• the geodesic 2-sphere and the Cli↵ord torus as the earliest examples,

• Lawson’s three infinite families of minimal surfaces (1970, cf. [37]),

• the surfaces of Karcher, Pinkall and Sterling (1988, cf. [31]),
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• the surfaces of Kapouleas and Yang (2010, cf. [30]) and

• the two infinite families of Choe and Soret (2013, cf. [13]).

For a comprehensive survey, we refer to [7]. It must, however, be added that regarding

each topological class, the aforementioned list is sparse. Additionally, compared to

the findings for codimension 1, the settings of higher codimension are less explored.

Nonetheless, these settings are also worth exploring due to many open questions

about minimal surfaces in S
n that originate from various other classical geometric

variational problems. This omnipresence is consistently leveraged towards finding

corresponding answers.

In this regard, we start by providing an overview of key motivations.

Motivation: The Willmore Problem

First, we would like to mention the occurrence of minimal surfaces in S
n within the

search for minimizers of the Willmore functional.

The absence of closed minimal surfaces in R
n leads to the question about the

best shape a closed immersed surface f : ⌃ ! R
n with fixed topology can take in

the ambient space so that it is not “unnecessarily” curved. Concerning that issue,

a natural, conformally invariant functional to minimize is given by the Willmore

functional (also called Willmore energy)

W [f ] :=

Z

⌃

|Hf |2 dµf ,

where Hf denotes the mean curvature vector of an immersion f and µf its induced

density on ⌃. Note that W [f ] is also well-defined for immersions of non-orientable

2-manifolds. The Willmore functional is named after Thomas Willmore, who made

significant contributions to its analysis during the 1960s. Apart from the purely

geometric question above, it has several applications, for example in general relativity

(in the Hawking mass), elasticity theory or in cell biology (see for example [19, 20,

48, 50]).
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Willmore showed that round spheres, as the most symmetric surfaces, are the

only surfaces in R
3 attaining the minimal energy of 4⇡. By [35], the same holds for

higher codimension. However, little is known about minimizers for higher genera

(both orientable and non-orientable) due to the challenging nature of handling the

Willmore functional with variational methods, given its conformal invariance. Re-

garding potential candidates for minimizers, the relation to minimal surfaces in S
n

comes into play. Given the inverse stereographic projection P : Rn ! S
n \ {�en+1},

the Willmore energy of a closed, immersed surface f : ⌃! R
n satisfies

W [f ] =

Z

⌃

�
|HP�f |2 + 1

�
dµP�f , (1)

where HP�f denotes the mean curvature vector in S
n (see [71]). This implies that

minimal surfaces in S
n stereographically project onto Willmore surfaces in R

n, i.e.,

are critical for the functionalW . In this process, their area is mapped to the Willmore

energy of the stereographic projection.

The link to minimal surfaces in S
n was crucial for the work of Fernando Marques

and André Neves in [44] from 2014, where they showed that stereographic projections

of the Cli↵ord torus in S
3 (and conformal transformations thereof) have the minimal

Willmore energy of 2⇡2 among orientable surfaces of genus g � 1 in R
3. Thereby,

they particularly proved the Willmore conjecture from the 1960s. The interested

reader is referred to [45] for a comprehensive discussion.

Besides the sphere and the Cli↵ord torus, only one more setting is clarified:

Among surfaces f : RP 2 ! R
n, n � 4, we have W [f ] � 6⇡ by the result of

Peter Li and Shing-Tung Yau in [42], where equality holds only for the stereographic

projections of the Veronese embedding in S
4. Interestingly, as 6⇡ < 2⇡2, one might

be led to expect that the options of non-orientability and a higher codimension may

also promote low Willmore energies.

For higher genera, there exist at least well-founded conjectures about explicit

minimizers. On the one hand, it was conjectured by Rob Kusner (initially in [34])

that the stereographic projections of the Lawson surfaces ⇠g,1, which are minimally

embedded in S
3, are the minimizers for g � 2 in R

n. This is supported by numerical

simulations in [25]. On the other hand, Elena Mäder-Baumdicker and Jonas Hirsch
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conjectured the stereographic projections of the bipolar Lawson surface e⌧3,1, which

is minimally embedded in S
4, to be the unique minimizers among immersed Klein

bottles in R
n, n � 4. This expectation is motivated by their finding in [23] that

these are the unique minimizers in their conformal class.

Besides the explicit minimizers, there are various, non-explicit results. For in-

stance, the results in [67, 3, 66] lead to the fact that the infimum �n
g of the Willmore

energy for immersed, orientable surfaces of genus g � 2 in R
n is attained by a smooth

embedding, and �n
g < 8⇡. By [8, 23], the same holds regarding the infimum of the

Willmore energy among all immersed Klein bottles in R
n.

Another important aspect calling for higher codimension is an observation made

in conformal geometry. Within this framework, the Li-Yau inequality introduced in

[42] serves as a tool for estimating the Willmore energy and hence, by (1), also the

area of minimal surfaces in S
n. Explicitly, [42] shows that for an immersed surface

f : ⌃! R
n, we have

W [f ] � 4⇡ ·
��f�1

�
{x}
��� for all x 2 R

n (2)

and thus, W [f ] � 8⇡ for surfaces with self-intersections. Hence, such immersed

surfaces are excluded as useful competitor surfaces within the search for embedded

minimizers. Also note that embedded, non-orientable surfaces in R
n can only be

realized if n � 4. Consequently, the setting of codimension 1 is obstructive for a

search of embedded, non-orientable minimizers.

Motivation: Laplacian Eigenvalues

Closed minimal surfaces in S
n are moreover highly relevant in the geometric opti-

mization of Laplacian eigenvalues on closed, two-dimensional manifolds. We proceed

with a brief overview of this classical problem in spectral geometry.

Consider a closed, two-dimensional manifold ⌃ equipped with a Riemannian met-

ric g. In terms of local coordinates
�
x1, x2

�
on ⌃, the Laplace-Beltrami operator on
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(⌃, g) reads as

�gf = � 1p
|g|

2X

i,j=1

@i

⇣p
|g|gij@jf

⌘
, f 2 C1(⌃) ,

where we note that in the context of consideration, the sign is absorbed in the

definition of �g. The spectrum of �g discrete and non-negative (with the previous

convention). Its eigenvalues

0 = �0(⌃, g) < �1(⌃, g)  �2(⌃, g)  . . .  �i(⌃, g)  . . .

have finite multiplicities and tend to infinity. Under a scaling g 7! tg for t > 0, they

transform according to

�i(⌃, tg) =
�i(⌃, g)

t
.

The latter motivates to ask about Riemannian metrics on ⌃ attaining the supremum

of the the normalized i-th eigenvalue functional

⇤i(⌃, g) := �i(⌃, g) · area(⌃, g) ,

of the Laplace-Beltrami operator, which is invariant under scalings.

The search for such maximal metrics turned out to be quite di�cult: Only few

explicit maximal metrics have been found until now. As shown by Joseph Hersch

[22], the standard metric on S
2 ✓ R

2 is the only maximal metric for ⇤1

�
S

2, g
�
. In [42],

Peter Li and Shing-Tung Yau proved that the analog holds for the standard metric

on RP 2. For the torus T2, the only maximal metric, found by Nikolai Nadirashvili

in [55], is the flat, equilateral metric. Moreover, the unique maximal metric on the

Klein bottle K is given by the metric on the bipolar Lawson surface e⌧3,1, which is a

minimal surface in S
4. This result is attributed to the works of Dmitry Jakobsen,

Nikolai Nadirashvili and Iosif Polterovich in [26] together with the result of Ahmad

El Soufi, Hector Giacomini and Mustapha Jazar in [15].

A notable property of the functional ⇤i(⌃, g) is that the supremum is not ne-

cessarily attained by smooth metrics, in contrast to the Willmore functional. As
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shown in [56] and [64], the supremum of ⇤2

�
S

2, g
�
can be realized by a degenerated

surface, namely the union of two spheres, both equipped with the standard metric,

which share a single point. Moreover, it was recently shown [58] that for orientable

genus g = 2, ⇤1(⌃, g) is maximized by the Bolza surface that has six conical sin-

gularities. For further (implicit) results on the existence of maximal metrics under

certain conditions, we refer to [57], [63], and [65] for the orientable case, and to [46]

for the non-orientable case.

An important approach to maximal metrics has been the study of extremal points.

As ⇤i(⌃, g) is not di↵erentiable but only continuous, a Riemannian metric g is called

extremal if any analytic deformation gt of g with g0 = g satisfies

d

dt
⇤i(⌃, gt)

���
t=0�

· d

dt
⇤i(⌃, gt)

���
t=0+

 0 .

Regarding extremal metrics for ⇤1

�
T

2, g
�
and ⇤1(K, g), considerable progress was

made in the past years (for a comprehensive survey see [61]). For instance, the results

in [26, 15] led to the unique maximal metric for the Klein bottle being realized as

e⌧3,1. Moreover, the metric on the Cli↵ord torus was distinguished in [16] to be the

only extremal metric for ⇤1

�
T

2, g
�
besides the equilateral metric mentioned above.

Apart from that, many extremal metrics for higher, concretely specified eigenvalues

on T
2 and K were discovered by the metrics on the Lawson surfaces ⌧m,k and the

Otsuki tori O p
q
, both families of minimally immersed surfaces in S

3, and in addition

on their bipolar minimal surfaces in S
4 (see [32, 33, 36, 60, 62]).

Now, extremal metrics are closely associated with minimal surfaces in spheres

and the reasoning behind this connection is the following. According to Tsunero

Takahashi’s theorem in [68], an isometric immersion  : ⌃ ! R
n+1 is minimal in

S
n ✓ R

n+1 if and only if

�g = 2 ,

that is, the components of  are eigenfunctions of the Laplace-Beltrami operator with

eigenvalue 2 (note once again the sign convention used here). Together with the result

in [16], this implies that any minimal surface in a sphere induces an extremal metric
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for some ⇤i(⌃, g).

A prominent conjecture in this context is due to Shing-Tung Yau (see [73]) stating

that the smallest eigenvalue �1 for a closed, embbedded minimal surface in S
3 is 2

(or more generally, n for closed, embedded minimal hypersurfaces in S
n+1). This

conjecture is still open, but strongly supported by the result of Jaigyoung Choe and

Marc Soret in [12]. In this article, they prove that Yau’s conjecture is true for a

certain class of symmetric, closed, embbedded minimal surfaces in S
3 that includes

Lawson’s ⇠-family from [37] as well as the surfaces of Hermann Karcher, Ulrich

Pinkall and Ivan Sterling from [31].

Motivation: Minimal Surfaces in S
2 ⇥ S

2

Besides their appearance in the aforementioned problems, minimal surfaces in S
3

occur in the theory of minimal Lagrangian surfaces in S
2⇥S

2, inducing an important

class of examples.

Four-dimensional manifolds are particularly interesting in di↵erential geometry

due to their rich and complex structure, allowing for unique phenomena not present in

any other dimension (see for example [39] or [49]). The theory of minimal surfaces in

such ambient spaces is particularly well-understood for Einstein-Kähler surfaces (see

[9, 11, 17, 51, 70] among others) and is based on the interaction of immersed surfaces

with the given Kähler structure. In this context, the Einstein-Kähler surface S2 ⇥S
2

is, besides the complex projective plane CP 2, the only other compact Hermitian

symmetric space of complex dimension 2.

A comprehensive geometric characterization of Lagrangian minimal surfaces in

S
2⇥S

2, for which the pullback of the Kähler form vanishes equally, is presented in [11].

In this article, Ildefonso Castro and Francisco Urbano discuss the so-called Gauss

maps of minimal surfaces in S
3 as an important source of examples. They prove

that, under a certain condition, locally any minimal Lagrangian surface arises as the

Gauss map of a minimal surface in S
3. In addition, they characterize the images of

the Gauss map of geodesic two-spheres, the Cli↵ord torus and the Lawson surface

⌧3,1 in S
3 as the unique closed, minimal Lagrangian surfaces in S

2 ⇥ S
2 admitting

Hamiltonian stability. In [70], Francisco Torralbo and Francisco Urbano work in a
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comparable setting to geometrically characterize general minimal surfaces in S
2 ⇥ S

2

(not only the Lagrangian ones). Specifically, they provide a construction method for

minimal surfaces in S
2 ⇥ S

2 given a certain type of pair of conformally equivalent

minimal surfaces in S
3. The latter in particular generalizes the Gauss map. Similarly

as in [11], they demonstrate, under certain conditions, that locally any minimally

immersed surface in S
2⇥S

2 occurs in that way, i.e., comes from two minimal surfaces

in S
3.

Results of this Thesis

The present thesis comprises two main projects, which are summarized below.

Before we begin, note that the constructions and results of the first project, pre-

sented in Chapter 2, can be found in the preprint [54] (except for Section 2.3.4).

Furthermore, we remark that the second project, treated in Chapter 3, resulted

from a research stay in 2022 supported by the DAAD (within a grant among the

Forschungsstipendien für Doktorandinnen und Doktoranden, 2022 ) at the depart-

ment of mathematics (IMAG) of the University of Granada and was supervised by

Prof. Dr. Francisco Torralbo.

Chapter 1: Preliminaries

In Chapter 1 of this thesis, we provide the derivation of bipolar minimal surfaces

as in [37], including all the necessary preliminaries.

Encountering open questions about minimal surfaces in S
n, one strategy is to

construct new minimal surfaces from a given minimal immersion. Pioneering exam-

ples in that context came from H. Blaine Lawson in [37]: First, given an oriented,

minimally immersed surface

 : ⌃! S
3 ,

where ⌃ possibly arises as an oriented double cover of a non-orientable manifold, he

8



showed that its Gauss map

 ⇤ : ⌃! S
3 ,

that is, a smooth unit normal field tangent to S
3 ✓ R

4 (shifted to the origin),

also yields a minimally immersed surface in S
3, which generally may have isolated

singularities (i.e., rank
�
d ⇤� < 2 at isolated points). Lawson called this generalized

surface the polar variety of the surface immersed by  . Second, given the above pair

of minimal surfaces in S
3, he furthermore introduced a minimally immersed surface

in S
5 (viewed as an embedded submanifold of R6), the so-called bipolar surface

e : ⌃! S
5 , e :=  ^  ⇤ .

This definition is based on the identification R
6 ⇠= ⇤2

R
4, where ⇤2

R
4 is the 2-fold

exterior product of R4, the linear space of bivectors. Formally, the components of e 
are obtained from the anti-symmetric expressions

 i
�
 ⇤�j �  j

�
 ⇤�i , i, j 2 {1, 2, 3, 4}, i < j ,

in the components of  and  ⇤. Remarkably, the metric eg induced by e on ⌃, is

conformally equivalent to the metric g induced by  . More precisely,

eg = (2�K) g , (3)

where K denotes the Gaussian curvature of (⌃, g).

Chapter 2: Lawson’s Bipolar Minimal Surfaces in S
5

Bipolar minimal surfaces are still actively discussed in minimal surface theory (see

for example [6] or [52]). They have furthermore experienced a notable breakthrough

in the context of extremal metrics for Laplacian eigenvalues – which has also drawn

considerable attention to their potential for the Willmore problem. The first project

we present in Chapter 2 of this thesis, is located in that context.

In this project, we study the bipolar minimal surfaces arising from the families

9



of closed minimal surfaces in S
3 introduced by H. Blaine Lawson in 1970. In [37],

he presented a construction method for complete minimal surfaces in S
3 based on

the successive application of the Schwarz reflection principle to an initial, embedded

minimal disk f : ⌃ ! S
3. More precisely, this initial piece of surface is the unique

embedded Plateau solution for a boundary given by a certain type of geodesic polygon

� = f(@�) in S
3. In these terms, the resulting complete surface M� ✓ S

3 can be

written as

M� =
[

g2G

(g � f)(�) ,

where G ✓ SO(4) denotes the group generated by the geodesic reflections across the

arcs of �. By additionally applying the above method to explicit polygons, Lawson

constructed his well-known, infinite families of closed minimal surfaces (⇠m,k), (⌧m,k)

and (⌘m,k) in S
3. After geodesic 2-spheres and the Cli↵ord torus, these were the first

examples of closed minimal surfaces of higher genus. Specifically, they also provided

embedded examples for every orientable genus g � 2.

The initial motivation for our project was a notable phenomenon observed by

Hugues Lapointe in [36] for the bipolar Lawson surfaces e⌧m,k. He showed that various

properties of the bipolar surface can crucially di↵er from the original surface in S
3.

First, this concerns the topology: For example, it is known (Theorem 1.3.1 in [36])

that if mk ⌘ 3 mod 4, then ⌧m,k is a torus in S
3, but e⌧m,k is a Klein bottle in S

5.

In more detail, suppose that ⌧m,k is immersed by  : ⌃ ! S
3 on a smallest possible

closed domain ⌃ (here a torus) distinguished by covering the surface only one time.

Then, e : ⌃ ! S
5 is already well-defined on a closed quotient of ⌃ (here a Klein

bottle), which is occurs as the base of a suitable version of ⌃ as a covering space.

We note that in such a case the actual area of the bipolar surface is only half of

the area measured by the immersion e : ⌃ ! S
5. A further point of comparison

is the embeddedness: The example of the surface e⌧3,1, as detected by Jonas Hirsch

and Elena Mäder-Baumdicker in [23], demonstrates that the bipolar surface can be

embedded, even if the original surface was not.

The findings of Lapointe prompted the question whether there exist closed, mini-

mally immersed surfaces in S
5 which have higher genus and arise as bipolar surfaces.

10



Particular interest was directed to the possibility of non-orientable, embedded ex-

amples. With this in mind, we analyzed the other two families of bipolar Lawson

surfaces
�e⇠m,k

�
and

�
e⌘m,k

�
, regarding their topology, embeddedness and area. Note

that by the topology we refer to the topological class of a smallest possible closed

domain of the immersion e which is, perhaps, realized by a quotient covered by ⌃.

We remark that the results on the bipolar ⌧ -family heavily rely on the knowledge of

explicit parametrizations, whereas such parametrizations are not known for the ⇠-

and ⌘-family.

Our approach starts from defining an immersion of a bipolar surface in the special

case of an underlying Schwarz reflection process in S
3, as presented in Section 2.1.

To this end, we first translate Lawson’s construction procedure from [37] of a closed

minimal surface in S
3 into a corresponding immersion  : S ! S

3 on a specific

smallest possible closed domain S := G⇥�/ ⇠. In principle, this is done by gluing

the preimages {g} ⇥� of the minimal disks g � f for g 2 G. Then, in terms of the

group G (which is finite in the closed case), we can determine the topological class

of S. This characterization in particular allows to define a Gauss map  ⇤ : S ! S
3

in the case when S is orientable. If S is non-orientable, we define a Gauss map

 ⇤ : S ! S
3 on the orientable double cover S, which is similarly obtained as S itself.

Finally, given the maps  and  ⇤, we can define the bipolar immersion e =  ^ ⇤ on

S, or on S if required. Recalling the results of Lapointe, this immersion is perhaps

not yet defined on a smallest possible domain.

In Section 2.2, we use the above framework to take up the question about how

often a smallest possible domain for the bipolar surface is covered by S or S. Our

basic idea about such a scenario is that di↵erent G-copies of the initial piece of

surface in S
3 are mapped to the same pieces in the bipolar surface fM�. With this in

mind, we identify the following, exemplary condition for the occurrence of a double

cover. In that case, the behavior of the orientation can be tracked in terms of purely

algebraic properties of the group G, always leading to an orientable quotient. Note

that when S is orientable, we define the parity �(g) 2 Z2 of g 2 G as follows: If

11



g = ri1 � . . . � rik for i1, . . . , ik 2 {1, . . . N} and k 2 N,

�(g) :=

8
<

:
0

1
if k is

even

odd
.

Theorem 1.

(i) If S is orientable and �idR4 2 G with �(�idR4) = 0, then the action

h�idR4i ⇥ S ! S,
�
h, [(g, p)]

�
7! [(hg, p)]

leaves the bipolar immersion e : S ! S
5 invariant and induces a smooth cove-

ring map of degree 2 on S such that the corresponding quotient S/h�idR4i is

orientable. In particular, we have

area
⇣
fM�

⌘
 area(M�)� ⇡�(S) .

(ii) If S is non-orientable and �idR4 2 G, then the action

h�idR4i ⇥ S ! S,
�
h, [(s, g, p)]

�
7! [(s, hg, p)]

leaves the bipolar immersion e : S ! S
5 invariant and induces a smooth cove-

ring map of degree 2 on S such that the corresponding quotient S/h�idR4i is

orientable. In particular, we have

area
⇣
fM�

⌘
 2 area(M�)� 2⇡�(S) .

Concerning the surfaces ⇠m,k, ⌘m,k ✓ S
3, we find in Section 2.3 that the above

method is, in fact, applicable and already provides a full characterization of the

topology of the corresponding bipolar surfaces e⇠m,k, e⌘m,k ✓ S
5. To see the latter,

it turns out that analyzing certain vertex points of the initial piece of surface in

S
3 is su�cient here. More precisely, we find that at such vertex points, a higher

multiplicity in the bipolar surface only arises from their group copies in S
3 (and

particularly not from any interior points). Thereby, we finally show that in each

12



case we can choose a bipolar image point of multiplicity µ > 1 with µ transversally

intersecting tangent planes – ruling out any further covers. As a last step, we also

determine area bounds, based on the area formula

area
⇣
e 
⌘
= 2area( )� 2⇡�(⌃) ,

which is, for closed domains, an immediate consequence of (3) together with the

Gauss-Bonnet theorem. Then, lower bounds are derived from the detected covers

combined with the area estimates of Rob Kusner (cf. [34]) and upper bounds from

the computed multiplicities plugged into the Li-Yau inequality (2).

After briefly introducing the specific setup of Lawson’s construction method for

his families in Section 2.3.1, we finally arrive at our main theorems of the project

in Section 2.3.2 and Section 2.3.3. Note that, in these sections, we do not include

the bipolar surfaces of the Cli↵ord torus ⇠1,1 and the Klein bottle ⌘1,1 for technical

reasons. However, as mentioned above, these particular surfaces were already treated

in [36] as they coincide with ⌧1,1 and ⌧2,1. A description of the e⌧ -family from our

viewpoint is given in Section 2.3.4.

At first, we have the following characterization for the e⇠-family. Note that, for a

nicer presentation of formulas, we shifted the indices. Moreover, we remark that the

⇠-family in S
3 consists of orientable surfaces of Euler characteristic

�(⇠m�1,k�1) = 2
�
1� (m� 1)(k � 1)

�
.

Theorem 2. Let m, k 2 Z�2 such that m > 2 or k > 2. Then, the bipolar surface
e⇠m�1,k�1 ✓ S

5 is orientable. Moreover,

(i) if both m and k are even, we have

�
⇣
e⇠m�1,k�1

⌘
= 1� (m� 1)(k � 1) ,

2⇡max{m, k}  area
⇣
e⇠m�1,k�1

⌘
< 2⇡(mk + k �m) ;
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(ii) if m or k is odd, we have

�
⇣
e⇠m�1,k�1

⌘
= 2� 2(m� 1)(k � 1) ,

4⇡max{m, k}  area
⇣
e⇠m�1,k�1

⌘
< 4⇡(mk + k �m) .

Analogously, we prove the following theorem for the family (e⌘m,k). Note that the

surface ⌘m�1,k�1 ✓ S
3 is non-orientable and

�(⌘m�1,k�1) = 1� (m� 1)(k � 1)

when k is even. Otherwise, ⌘m�1,k�1 is orientable and

�(⌘m�1,k�1) = 2
�
1� (m� 1)(k � 1)

�
.

Theorem 3. Let m, k 2 Z�2 such that m > 2 or k > 2. Then, the bipolar surface

e⌘m�1,k�1 ✓ S
5 is orientable. Moreover,

(i) if both m and k are even, we have

�
⇣
e⌘m�1,k�1

⌘
= 1� (m� 1)(k � 1) ,

2⇡max{m, k}  area
⇣
e⌘m�1,k�1

⌘
< 2⇡(3mk � 3k �m) ;

(ii) if m or k is odd, we have

�
⇣
e⌘m�1,k�1

⌘
= 2
�
1� (m� 1)(k � 1)

�
,

4⇡max{m, k}  area
⇣
e⌘m�1,k�1

⌘
< 4⇡(3mk � 3k �m) .

Since, within the proofs of the above theorems, we furthermore detect transver-

sally intersecting tangent planes in both cases, we moreover find the following.

Corollary 4. Let m, k 2 Z�2 such that m > 2 or k > 2. Then, the bipolar surfaces
e⇠m�1,k�1 ✓ S

5 and e⌘m�1,k�1 ✓ S
5 are not embedded.
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In the light of our initial question about embedded, closed minimal surfaces of

higher genera in S
5, as competitor surfaces for the Willmore problem, the above

theorems suggest the need for alternative approaches. However, the mechanism de-

veloped for our analysis could be promising in future explorations of bipolar surfaces

of minimal surfaces in S
3 obtained from a reflection process (as for example given in

[13], [31] or, quite recently, [5]).

Chapter 3: Geometry of Bipolar Minimal Surfaces

In Chapter 3, we develop a framework which provides a more geometric perspective

on bipolar minimal surfaces. Inspiration for this came from the results of Castro and

Urbano on Gauss maps as Lagrangian minimal surfaces in S
2 ⇥ S

2 presented in [11].

For our purposes, we partly adapted their description to minimally immersed surfaces

in S
5 ✓ R

6 ⇠= ⇤2
R

4. This starts with Section 3.1, where we demonstrate how the

Hodge isomorphism, here seen as a linear map ⇤ : R6 ! R
6, allows for a certain

embedding of S2(1/
p

2)⇥ S
2(1/

p
2) ✓ S

5, namely,

M :=
�
p 2 S

5 : hp, ⇤pi = 0
 
.

In this sense, the two almost complex structures J+ = (J0, J0) and J� = (J0,�J0)

on S
2(1/

p
2)⇥S

2(1/
p

2) become available on M, where J0 denotes the standard almost

complex on S
2(1/

p
2).

In Section 3.2, we proceed with an investigation of the class of oriented, mi-

nimally immersed surfaces in S
5, whose image lies in M. For an immersed surface

� : ⌃ ! S
5 in that class, we have h�, ⇤�i = 0 at each point, implying that ⌘ := ⇤�

is a unit normal field along �. More generally, the corresponding normal bundle N⌃

of the immersed surface splits according to

N⌃ = N � R⌘ ,

where N is tangent to the submanifold M. On this base, we first find that the

considered class of minimal surfaces in S
5 coincides with the Lagrangian minimal

surfaces in M, with respect to J+ or to J�. In our framework, this reads as a
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compatibility of the tangent and normal bundle of the immersed surface, i.e., we

have

N � {0} = J+(T⌃) or N � {0} = J�(T⌃) . (4)

Under these circumstances, we will see that a powerful tool assigned to an immersion

�, which was also extensively studied in [11], is given by the function C, defined by

extending the local expression

C =
1

2
hJE1, ⇤E2i , J 2

�
J+, J�} ,

with respect to a positively oriented local orthonormal frame (E1, E2) on ⌃. More

precisely, we find that C seems to dictate the exterior geometry of the immersed

surface by entering the description of the second fundamental form of �.

Finally, in Section 3.3, we arrive at the link to bipolar minimal surfaces by

observing that the latter are in fact part of the class we inspected, where always

J = J� in (4). In this regard, a specification of the preceding findings yields a full

resolution of the fundamental geometric data of bipolar minimal surfaces. Compared

with Lawson’s initial discussion in [37], the theorem below additionally includes the

extrinsic data.

Theorem 5. Let e =  ^  ⇤ : ⌃! S
5 be the bipolar surface of an oriented, mini-

mally immersed surface  : ⌃! S
3 with induced metric g, Levi-Civita connection r

and shape operator A with respect to the unit normal field ⌫ associated to  ⇤. Then,

the fundamental data of e are given as follows:

(i) The induced metric reads as

eg =
2

1 + 2C
g .

(ii) The shape operator with respect to the normal field ⌘ = ⇤ e is given by

eA⌘ = (1 + 2C)R⇡
2
� A ,
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where R⇡
2
(p) denotes the rotation by ⇡

2 on Tp⌃.

(iii) Regarding the normal subbundle N = J�(T⌃), the components of a shape

operator eAJ�Z for Z 2 X(T⌃), are given by

D
eAJ�Z(X), Y

E
= �

�
rh�, ⌫i

�
(Z;X, Y ) for X, Y 2 X(⌃) .

In this context, furthermore notice that (4) allows to see the normal bundle of the

bipolar surface as the sum of the tangent and normal bundle of the corresponding

immersed surface in S
3.

Afterwards, we finally arrive at the main theorem of the section, which demon-

strates that locally, any immersed minimal surface in S
5, whose image lies in M, is

in fact congruent to a bipolar surface of a minimally immersed surface in S
3.

Theorem 6. Let ⌃ be an oriented, simply connected, two-dimensional manifold and

let � : ⌃ ! S
5 be a minimal immersion with h�, ⇤�i = 0. Moreover, suppose that

C(p) 6= �1
2 for all p 2 ⌃ or C(p) 6= 1

2 for all p 2 ⌃. Then, there exists a minimal

immersion  : ⌃! S
3 such that up to an isometry of S5

� = e .

This theorem resembles Theorem 4.4 in [11] but with a condition that is relaxed

compared to Castro and Urbano’s requirement of C(p)2 < 1
4 for all p 2 ⌃. More

precisely, while in [11] neither of �1
2 or 1

2 can be attained by C, in our version one

of them is allowed. Now, this relaxed version has the benefit that it holds for all

bipolar surfaces and is optimal since the values ±1
2 are typically attained by bipolar

surfaces and their images under the antipodal map on S
5.

Concerning the proof of the above theorem, we remark that our strategy is dif-

ferent from Castro and Urbano. Their approach is based on a specific holomorphic

quadratic di↵erential on ⌃ and finally uses the sinh-Gordon equation to show the

existence of a suitable immersion  : ⌃ ! S
3. Our method to access  starts from

defining geometric data (g, A) that satisfy the Gauss and Codazzi equations in S
3.

More precisely, the latter relies on proving certain partial di↵erential equations to be
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satisfied by C. By finally deducing that the fundamental data of e (which we know

from Theorem 5) and the given immersion � are the same, we arrive at the above

result.

We finish our studies with an interpretation of the aforementioned construction

method from [70] in Section 3.4. In particular, we will demonstrate that a suitable

pair of minimal surfaces in S
3 is given by two Lawson surfaces e⌧m,k and e⌧m̂,k̂ whenever

mk = m̂k̂.

Outline of the Thesis

We conclude this introductory part with a brief overview of the contents in this

thesis.

In Chapter 1, we present the derivation of bipolar minimal surfaces as intro-

duced in [37], including a preparation on isometric immersions, the minimal surface

equation in S
n and particularly S

3 and in addition exterior products of vector spaces.

Chapter 2 provides the characterization of the bipolar surfaces e⇠m,k and e⌘m,k

regarding their topological type and embeddedness, based on the construction of

corresponding immersions on a smallest possible domain. We also apply our methods

to the surfaces e⌧m,k and compare it with the original classification in [36].

In Chapter 3, we derive that bipolar surfaces belong to a class of minimal

surfaces in S
5, which lie in a specific embedding of S2(1/

p
2) ⇥ S

2(1/
p

2). On that

base, we specify their fundamental geometric data and prove that, under a certain

condition, locally any minimal surface in that particular class is congruent to a

bipolar surface.
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Chapter 1

Preliminaries

1.1 Basics on Isometric Immersions

In this section, we will examine the framework of isometrically immersed subma-

nifolds, with the aim of establishing the notation used in subsequent sections and

revisiting the classical results necessary for our discussion. For a more comprehensive

exploration of this theory, we refer the reader to [14], [38] and [41].

If not stated di↵erently, we always consider smooth manifolds without boundary

in this thesis. For a smooth manifold M , we denote the set of smooth vector fields

on M by X(M). Given a smooth vector bundle E ! M , we denote the set of smooth

sections of this bundle by �(E). If M is additionally equipped with a Riemannian

metric, we will conventionally use the induced bundle metric and connection on the

tensor bundles over M .

A di↵erentiable immersion  : M ! M of an m-dimensional manifold M into a

Riemannian manifold
�
M, h·, ·i

�
of dimension m + k, k � 1, induces a Riemannian

metric g :=  ⇤h·, ·i onM . In particular,  : (M, g) !
�
M, h·, ·i

�
becomes an isometric

immersion. Identifying M with its image under  , the tangent space to M at p 2 M

splits into

TpM = TpM �NpM ,

where NpM := (TpM)? is called the normal space at p. In this sense, any v 2 TpM
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has a unique decomposition v = vT + vN into its tangential and normal components,

smoothly depending on p. Note that, whenever required, we consider a local vector

field X 2 X(M) or a local section ⌫ 2 �(NM) by a corresponding extension to a

local, tangential or normal vector field on M .

Let now r be the Levi-Civita connection on TM , r be the Levi-Civita connec-

tion on TM and r? be the normal connection on NM . We denote the associated

curvatures by R, R and R?, respectively1. Moreover, let � the second fundamental

form of M and A⌫ the shape operator corresponding to ⌫ 2 �(NM), which is defined

by

hA⌫(X), Y i = h�(X, Y ), ⌫i for all X, Y 2 X(M) .

The following proposition provides the essential characterization of the covariant

derivative, the second fundamental form and the associated shape operators by their

appearance in the derivatives of tangential and normal vector fields in the ambient

space.

Proposition 1.1.1 (Gauss Formula and Weingarten Equation). An immersed sub-

manifold  : M ! M satisfies the Gauss formula, that is,

rXY = rXY + �(X, Y ) for all X, Y 2 X(M) . (1.1)

Furthermore, we have

rX⌫ = �A⌫(X) +r?
X⌫ for all X 2 X(M), ⌫ 2 �(NM) . (1.2)

In both equations above, the terms on the right-hand side precisely correspond to the

tangential and normal components. The tangential part of the second equation,

�
rX⌫

�T
= �A⌫(X) , (1.3)

is called the Weingarten equation.

1Note that for the curvature R on a Riemannian M with Riemannian connection r, we stick to
the convention R(X, Y )Z := rXrY Z �rY rXZ �r[X,Y ]Z for X, Y , Z 2 X(M).
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Moreover, the following equations capture the relation between the intrinsic and

extrinsic geometry of an immersed submanifold, i.e., the geometry of its tangent and

normal bundle. Regarding the proof, we refer to [14].

Proposition 1.1.2 (Fundamental Equations). Let  : M ! M be an immersed

submanifold, W , X, Y , Z 2 X(M) and ⌫, ⌘ 2 �(NM). Then, the following equations

hold:

(i) the Gauss equation, i.e.,

⌦
R(W,X)Y, Z

↵
=
⌦
R(W,X)Y, Z

↵
�
⌦
�(W,Z), �(X, Y )

↵
+
⌦
�(W,Y ), �(X,Z)

↵
,

(ii) the Codazzi equation, i.e.,

⌦
R(X, Y )Z, ⌫

↵
= rXh�(Y, Z), ⌫

↵
�rY h�(X,Z), ⌫

↵
,

(iii) the Ricci equation, i.e.,

⌦
R(X, Y )⌫, ⌘

↵
�
⌦
R?(X, Y )⌫, ⌘

↵
= �

⌦
[A⌫ , A⌘]X, Y

↵
,

where [A⌫ , A⌘] := A⌫ � A⌘ � A⌘ � A⌫.

Remark 1.1.3. (i) Proposition 1.1.1 and Proposition 1.1.2 can be further inter-

preted (see [69] or [14]). In terms of local parametrizations, the Gauss formula

and the Weingarten equation demonstrate that an immersion and a correspond-

ing local orthonormal frame N = (⌫1, . . . ⌫k) for N⌃ satisfy a system of partial

di↵erential equations, fixed by the components of tensors g and � (or the ope-

rators A⌫1 , . . . , A⌫k , respectively). Given initial values  (p), d p and N(p), a

solution of such system is unique. Moreover, in a homogeneous, isotropic space,

two solutions for the same pair (g, A) are always congruent.

(ii) For simply connected domains and ambient spaces of constant sectional cur-

vature, the Gauss, Codazzi and Ricci equations can be read as compatibility

conditions on g and �, required for the existence of a solution of the afore-

mentioned system. Note that for codimension k > 1, this implicit definition of
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an immersed surface initially requires the definition of an appropriate vector

bundle E ! M (with fibers of dimension k) equipped with a bundle metric

and compatible connection. If the fundamental equations are satisfied E, plays

the role of the normal bundle of the immersed submanifold.

(iii) In the above sense, along with the fundamental equations, the forms g and � are

locally consistent with a smooth immersion in the ambient space and fully en-

code its geometry. Therefore, we call the pair (g, �) (or locally, (g, A⌫1 , . . . , A⌫k))

fundamental data of an immersed surface.

Example 1.1.4. We specify the Gauss equation and the Codazzi equation for an

immersion  : ⌃! M of a two-dimensional manifold ⌃ into a Riemannian manifold

M of constant sectional curvature c. In this case, we have

⌦
R
�
W,X

�
Y , Z

↵
= c
⇣⌦

X, Y
↵⌦
W,Z

↵
�
⌦
X,Z

↵⌦
W,Y

↵⌘

for all W , X, Y , Z 2 X
�
M
�
.

Let now (E1, E2) be a local orthonormal frame on ⌃ and ⌫ 2 �(N⌃). Then, the
Gaussian curvature K of ⌃ reads as

K =
⌦
R(E1, E2)E2, E1

↵
.

Due to the symmetries of R and �, the Gauss equation reduces to

K = c+
⌦
�(E1, E1), �(E2, E2)

↵
�
���(E1, E2)

��2 . (1.4)

Moreover, given X, Y , Z 2 X(⌃) and ⌫ 2 �(N⌃), the Codazzi equation is

rXh�(Y, Z), ⌫
↵
�rY h�(X,Z), ⌫

↵
= 0
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or, more explicitly,

X
⇣⌦
�(Y, Z), ⌫

↵⌘
�
⌦
�
�
rXY, Z

�
, ⌫
↵
�
⌦
�
�
Y,rXZ

�
, ⌫
↵
�
⌦
�(Y, Z),r?

X⌫
↵

= Y
⇣
h�(X,Z), ⌫i

⌘
�
⌦
�
�
rY X,Z

�
, ⌫
↵
�
⌦
�
�
X, r̂Y Z

�
, ⌫
↵
�
⌦
�(X,Z),r?

Y ⌫
↵
.

(1.5)

Note that in codimension 1 (i.e., k = 1), a unit normal field ⌫ 2 �(N⌃) satisfies

0 = X
�
h⌫, ⌫i

�
=
⌦
r?

X⌫, ⌫
↵

and thus r?⌫ = 0. In this case, (1.5) simplifies to

X
⇣⌦
�(Y, Z), ⌫

↵⌘
�
⌦
�
�
rXY, Z

�
, ⌫
↵
�
⌦
�
�
Y,rXZ

�
, ⌫
↵

= Y
⇣
h�(X,Z), ⌫i

⌘
�
⌦
�
�
rY X,Z

�
, ⌫
↵
�
⌦
�
�
X, r̂Y Z

�
, ⌫
↵
.

(1.6)

We proceed with the definition of the following extrinsic, geometric invariant,

which from now on plays a major role in our considerations.

Definition 1.1.5 (Mean Curvature Vector). The mean curvature vector of an im-

mersed submanifold  : M ! M is defined by

H := trg(�) .

In terms of a local, orthonormal frame (E1, . . . , Em) on M , we have

H =
mX

i=1

�(Ei, Ei) .

The mean curvature vector provides valuable information about the geometric

characteristics of an immersed submanifold. For example, it is essential in minimal

surface theory (which we will address soon) and the evolution of submanifolds under

geometric flows (see for example [43]). Qualitatively, it can be understood as the
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C1-gradient of the volume functional (or, the area functional if m = 2)

vol( ) :=

Z

M

dµg .

More precisely, given a smooth variation of  , i.e., a smooth family  : (�1, 1)⇥M !
M of immersions such that  (0, ·) =  (and  (t, ·)|@M =  |@M for all t 2 (-1, 1) if

M is a manifold with boundary), then

d

dt
vol
�
 (t, ·)

�
�����
t=0

= �
Z

M

hH,Ei dµg ,

where E :=  ⇤@t

��
t=0

with the canonical vector field @t along (�1, 1) (see for example

[38]). This means deformations of the submanifold in the direction of H provide the

fastest decrease of the volume.

Now, critical points of the volume (or area) functional are particularly distin-

guished. According to the previous considerations, they are geometrically characte-

rized by a globally vanishing mean curvature vector.

Definition 1.1.6 (Minimal Submanifold). An immersed submanifold  : M ! M

is called minimal if H ⌘ 0.

On M , the property H ⌘ 0 is equivalent to an elliptic, in general non-linear system

of partial di↵erential equations, which depends on the ambient space M . For m = 2,

this is often referred to as the minimal surface equation.

Note that below, �g denotes the Laplace-Beltrami operator of (M, g), which in

terms of local coordinates
�
x1, x2) on ⌃ reads as

�gf =
1p
|g|

2X

i,j=1

@i

⇣p
|g|gij@jf

⌘
, f 2 C1(⌃) ,

using a sign convention di↵erent from the spectral geometric context in the intro-

duction.
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Proposition 1.1.7. For an immersed submanifold  : M ! R
n, we have

HR
n
= �g .

Thus, in Euclidean space R
n, an immersed submanifold  : M ! R

n is minimal if

and only if

�g = 0 . (1.7)

Proof. We denote the Euclidean connection by D and use that DXY = XY  for all

X, Y 2 X(M). Given a local orthonormal frame (E1, . . . , Em) on M , the assertion

follows as

HR
n
=

mX

i=1

(DEiEi)
N

=
mX

i=1

(DEiEi �rEiEi)

=
mX

i=1

�
EiEi � (rEiEi) 

�

= trg(rr )
= �g .

Now, the following proposition can be helpful to characterize minimality if the

ambient space is an embedded submanifold of Euclidean space R
n.

Lemma 1.1.8 (cf. [38]). Suppose that M ✓ R
n is an embedded submanifold equipped

with the induced metric. Furthermore, let  : M ! M ✓ R
n be an immersed sub-

manifold in M . Then, we have

HM = (�g )
T ,

where (·)T is the tangential projection onto TM .

Proof. This is a direct consequence of the fact that orthogonal projections commute.
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More precisely, using a local, orthonormal frame (E1, . . . , Em) on M and the Gauss

formula (1.1), we have

HM =
mX

i=1

�
rEiEi

�N
=

mX

i=1

⇣
(EiEi )

T
⌘N

=

 
mX

i=1

(EiEi )
N

!T
(1.7)
= (�g )

T .

At this stage, we are able to specify minimality in the n-dimensional, Euclidean

sphere S
n :=

�
x 2 R

n+1 : |x| = 1
 
.

Theorem 1.1.9. An immersed, m-dimensional submanifold  : M ! S
n ✓ R

n+1 is

minimal in S
n if and only if

�g = �m .

Proof. We have TxS
n ⇠= x? for all x 2 S

n. Consequently, by Lemma 1.1.8, the

immersion  : M ! S
n is minimal if and only if there exists some F 2 C1(M) such

that

�g = F .

Hence, using that | |2 ⌘ 1, we have

0 =
1

2
�g| |2 = h ,�g i+ |d |2 = F | |2 + |d |2 = F + |d |2 .

Therefore, given a local, orthonormal frame (E1, . . . , Em) on M , we have

F = �|d |2 = �
mX

i=1

��d (Ei)
��2 = �

mX

i=1

|Ei|2 = �m

and the assertion follows.

Now, in what follows, we are focusing on minimal surfaces, i.e., the case when

m = 2. A remarkable fact is that unlike Euclidean space R
n, the n-sphere S

n allows

for closed minimal surfaces. From this perspective, the minimal surface equation

in S
n reveals an interplay between geometry and topology. In the context of this
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classical topic, we will explore the attributes and specific examples of closed minimal

surfaces in S
n in this thesis. Note that due to the topological classification of closed,

two-dimensional manifolds by genus (or Euler characteristic) and orientability, it is

particularly interesting to examine existence and geometric properties of minimally

immersed surfaces within each topological class.

We finish this part of our preparations with specifying the Gauss equation in S
n

for minimally immersed surfaces.

Proposition 1.1.10. For a minimally immersed surface  : ⌃ ! S
n, the Gauss

equation is given by

K = 1� 1

2
|�|2 . (1.8)

In particular, we have K  1 for a minimal surface in S
n.

Proof. This follows directly from (1.4) with c = 1, using that minimality implies

�(E1, E1) = ��(E2, E2)

in terms of any local orthonormal frame (E1, E2) on ⌃.

1.2 Characteristics of Minimal Surfaces in S
3

At this point, we examine in more detail the minimal surface equation in S
3 and focus

on general conclusions regarding the geometric properties of solutions (for examples,

we direct to Chapter 2). Mainly, this section revisits the results in [37].

From now on, let  : ⌃ ! S
3 be an isometrically immersed surface as described

in the previous section. Additionally, we assume without loss of generality that ⌃

is orientable (in the sense that any non-orientable surface can be considered by its

orientable double cover). This setting always allows for an oriented, conformal atlas

of isothermal charts for g (see for example [1]). Therefore, our convention below is
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to consider local coordinates
�
x1, x2

�
on ⌃ such that the metric g is locally of the

form

g = � �R2

with a smooth conformal factor � or, in other words,

|@1 | = |@2 | =
p
� and h@1 , @2 i = 0 .

Since an oriented, conformal atlas is the same as a complex atlas, we also view ⌃

as a Riemann surface with a local complex coordinate z = x1 + ix2 and accordingly

define the local vector fields

@ :=
1

2
(@1 � i@2 ), @ :=

1

2
(@1 + i@2 ) ,

which satisfy

h@ , @ i = h@ , @ i = 0 and h@ , @ i = �

2
. (1.9)

Note that from this viewpoint, we call  : ⌃ ! S
3 a conformal immersion (and we

hide it if a statement does not require that perspective). In this setup, the Gaussian

curvature K of (⌃, g) is given by

K = �2

�
@@ log(�) . (1.10)

To describe the geometry of the immersed surface as in Section 1.1, we begin by

selecting a unit normal field.

Definition 1.2.1. Let ⌫ 2 �(N⌃) be the unit normal vector field along the con-

formally immersed surface  : ⌃ ! S
3 which is tangent to S

3 ✓ R
4 and satisfies

that
 
 ,

1p
�
@1 ,

1p
�
@2 , ⌫

!
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is a positively oriented, orthonormal basis of R4 at each point. In more explicit

terms, this means that we can write ⌫ in terms of the generalized cross product, i.e.,

⌫ =
1

�

4X

k=1

det

 
 , @1 , @2 , ek

!
ek ,

where ek denotes the k-th vector in the standard basis of R4.

As a next step, we specify the second fundamenal form � and the scalar-valued

second fundamental form � := h�, ⌫i of the conformally immersed surface  : ⌃! S
3.

We denote their components with respect to the chosen coordinates by �ij and �ij,

i, j 2 {1, 2}. To this end, first note that the Gauss formula (1.1) yields

@i@j + ��ij = r@i@j + �ij , (1.11)

where

r@i@j = (@i@j )
T =

1

�

2X

k=1

h@i@j , @k i@k .

Hence, we have

�ij = @i@j + ��ij � 1

�

2X

k=1

h@i@j , @k i@k 

and

�ij = h�ij, ⌫i
= h@i@j , ⌫i

=
1

�
det
�
 , @1 , @2 , @i@j 

�

=
2

i�
det
�
 , @ , @ , @i@j 

�
. (1.12)

We continue with the assumption that  : ⌃ ! S
3 is additionally minimal. Since
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locally

�g =
4

�
@@ ,

the minimal surface equation from Theorem 1.1.9 is given by

@@ = ��
2
 . (1.13)

Remark 1.2.2. As presented in Lemma 1.1 in [37], this shows that any conformal,

minimal immersion  : ⌃! S
3 is a real analytic mapping.

Furthermore, as �11 = ��22 by minimality and in particular

|�|2 = 1

�2

2X

i,j=1

|�ij|2 =
1

�2

2X

i,j=1

�2
ij =

2

�2

�
�2

11 + �2
12

�
,

we conclude from (1.8) that the Gauss equation is

�2(1�K) = �2
11 + �2

12 . (1.14)

Finally, note that in the considered setting the Weingarten equation (1.3) reads as

@1⌫ = ��11

�
@1 � �12

�
@2 ,

@2⌫ = ��12

�
@1 +

�11

�
@2 .

(1.15)

Now, as demonstrated by the following lemma, regarding ⌃ as a Riemann surface

not only o↵ers technical advantage but also allows for a deeper characterization of

minimal surfaces in S
3.

Proposition 1.2.3 (cf. [37], Lemma 1.2). If  : ⌃ ! S
3 is a conformal, minimal

immersion, then

' :=
1

2
(�11 � i�12) = �h@ , @⌫i

defines a holomorphic quadratic di↵erential '(z) dz2 on ⌃, the so-called Hopf di↵e-
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rential.

Proof. Due to the minimal surface equation (1.13) we have

@2
1 = 4@@ � @2

2 = �2� � @2
2 ,

and therefore

@2
1 � i@1@2 =

1

2

�
@2

1 � @2
2 � 2i@1@2 

�
� � = 2@2 � � .

Consequently,

' =
1

i�
det
⇣
 , @ , @ ,

�
@2

1 � i@1@2 
�⌘

=
2

i�
det
⇣
 , @ , @ , @2 

⌘
. (1.16)

Now, by a straightforward computation we obtain

⌦
@ , @ 

↵
=
�

2
(1.17)

and

⌦
@i , @j 

↵
=
⌦
@

i
 , @

j
 
↵
= 0 for all i, j with 1  i+ j  3 . (1.18)

Thereby, we compute

'2 = � 4

�2
det

0

BBB@

⌦
 , 

↵ ⌦
 , @ 

↵ ⌦
 , @ 

↵ ⌦
 , @2 

↵
⌦
@ , 

↵ ⌦
@ , @ 

↵ ⌦
@ , @ 

↵ ⌦
@ , @2 

↵
⌦
@ , 

↵ ⌦
@ , @ 

↵ ⌦
@ , @ 

↵ ⌦
@ , @2 

↵
⌦
@2 , 

↵ ⌦
@2 , @ 

↵ ⌦
@2 , @ 

↵ ⌦
@2 , @2 

↵

1

CCCA
=
⌦
@2 , @2 

↵
.

Employing the minimal surface equation (1.13) and (1.18), this yields

@
�
'2
�
= 2
⌦
@
�
@@ 

�
, @2 

↵

= �
⌦
@(� ), @2 

↵
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= �(@�)
⌦
 , @2 

↵
� �
⌦
@ , @2 

↵

= 0 ,

i.e., '2 is holomorphic and, by the continuity of ', so is '. In particular, '(z) dz2

defines a holomorphic quadratic di↵erential on ⌃.

Now, the Gauss equation immediately connects the Hopf di↵erential with the intrinsic

geometry of minimaly immersed surfaces in S
3.

Corollary 1.2.4 (cf. [37], Lemma 1.4). For a conformal, minimal immersion  : ⌃!
S

3 we have

|'|2 = �2

4
(1�K) . (1.19)

Hence, the points where K = 1 are precisely the isolated zeros of the Hopf di↵erential.

To continue, the existence of the Hopf di↵erential is particularly useful to charac-

terize closed minimally immersed surfaces in S
3. In contrast to holomorphic functions

on closed Riemann surfaces (which are necessarily constant due to the maximum prin-

ciple), holomorphic quadratic di↵erentials provide a rich structure to study global

properties. For an introduction to this theory, especially covering the detailed proofs

of the statements below, we refer to [27].

Proposition 1.2.5 (cf. [37], Proposition 1.5, and originally, [2]). Let  : ⌃! S
3 be

a minimal immersion of a two-dimensional, closed and oriented manifold ⌃ of genus

g.

(i) If g = 0, then the immersed surface is a geodesic 2-sphere in S
3.

(ii) If g = 1, then the conformal parametrization  can be chosen such that ' is

constant and non-vanishing.

(iii) If g > 1, there exist points such that K = 1.

Proof. Recall that we can view ⌃ as a Riemann surface. If genus g = 0 (i.e., ⌃

is homeomorphic to S
2), any holomorphic quadratic di↵erential, in particular the
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Hopf di↵erential, must vanish. In that case, (1.2.4) implies that K = 0 globally and

therefore assertion (i) follows. In the case that g � 1, any holomorphic quadratic

di↵erential on ⌃ has 4g � 4 zeros. Consequently, if g = 1 (i.e., ⌃ is topologically

a torus), the Hopf di↵erential must be a non-vanishing holomorphic quadratic dif-

ferential. So, by a change of complex coordinates it can be chosen to be constant.

Furthermore, if g > 1 and hence 4g� 4 > 0, (iii) is a direct consequence of Corollary

1.2.4.

Based on the fact that closed, two-dimensional manifolds are topologically clas-

sified by their genus and (non-)orientability, it is natural to ask about minimal im-

mersions for a fixed topological class. For orientable genus 0 surfaces, the preceding

proposition provides a clear answer, which also applies to the class of non-orientable

genus 1 surfaces.

Corollary 1.2.6. The real projective plane cannot be minimally immersed into S
3.

Proof. We consider the real projective plane by its orientable double cover, that is,

RP 2 = S
2/h�i with the orientation-reversing, fixed-point-free involution � : S2 !

S
2, x 7! �x. In this sense, a minimal immersion of RP 2 would correspond to a

minimal immersion  : S2 ! S
3 such that  � � =  . By Proposition 1.2.5 (i), this

would imply that the immersed surface  is a totally geodesic 2-sphere in S
3 and

therefore has a constant, global unit normal field N tangent to S
3 ✓ R

4. But given

a local orthonormal frame (E1, E2) at x 2 S
2, this yields

det
⇣
 (x), d |x

�
E1(x)

�
, d |x

�
E2(x)

�
, N
⌘

= det
⇣
 
�
�(x)

�
, d( � �)|x

�
E1(x)

�
, d( � �)|x

�
E2(x)

�
, N
⌘

= � det
⇣
 (x), d |x

�
E1(x)

�
, d |x

�
E2(x)

�
, N
⌘
,

where the first step uses that  =  � � and the second step that � is orientation-

reversing on S
2. Hence, we would obtain

det
⇣
 (x), d |x

�
E1(x)

�
, d |x

�
E2(x)

�
, N
⌘
= 0 ,

a contradiction.
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Remark 1.2.7. In fact, there exist examples of closed minimal surfaces in S
3 for

every other orientable and non-orientable topological classes. We will revisit this

topic with more depth in Chapter 2.

Now, in order to proceed, we require the following relations.

Lemma 1.2.8 (cf. [37], Remark 1.3). For a conformal, minimal immersion  : ⌃!
S

3, the vector field

� :=
1

2
(�11 � i�12) = '⌫

satisfies

� = �@

 
1

�
@ 

!
(1.20)

and

@� = �(1�K)�

2
@ . (1.21)

Proof. To begin, we use (1.16) and compute

� = '⌫

= � 4

�2
det

 
 , @ , @ , @2 

!
4X

i=1

det

 
 , @ , @ , ei

!
ei

= � 1

�2

4X

i=1

det

0

BBB@

1 0 0  i

0 0 � @ i

0 � 0 @ i

0 0 @� @2 i

1

CCCA
ei

= �1

�
(@�)@ + @2 

= �@

 
1

�
@ 

!
.
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Then, we use the minimal surface equation (1.13) and that, by (1.10),

K =
2

�3
(@�)

�
@�)� 2

�2
@@�

to find

@� = @@2 � @

 
1

�
(@�)(@ )

!

= �1

2
(@�) � �

2
@ +

1

�2

�
@�
�
(@�)(@ )� 1

�

�
@@�

�
(@ ) +

1

2
(@�) 

= �(1�K)�

2
@ .

We conclude this section with a key insight on the existence of minimal surfaces

in S
3. To that end, we denote by  ⇤ : ⌃! S

3 the Gauss map of  : ⌃! S
3 induced

by the unit normal field ⌫ (via a shift to the origin).

Proposition 1.2.9 (cf. [37], Proposition 10.1). Let  : ⌃ ! S
3 be a minimally

immersed, oriented surface with induced metric g and Gaussian curvature K. Then,

its Gauss map  ⇤ : ⌃ ! S
3 is a possibly singular, minimally immersed surface with

induced metric

g⇤ = (1�K)g , (1.22)

i.e., its singularities appear precisely at the isolated points where K = 1.

Definition 1.2.10 (Polar Variety of a Minimal Surface in S
3). Under the above

conditions,  ⇤(⌃) is called the polar variety of  (⌃).

Proof of Proposition 1.2.9. Using first the minimal surface equation (1.13) and then

(1.20), we have

@ ⇤ = @

 
2

i�

4X

i=1

det
⇣
 , @ , @ , ei

⌘
ei

!

=
2

i

4X

i=1

det

 
 , @

 
1

�
@ 

!
, @ , ei

!
ei
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=
2

i�

4X

i=1

det

 
 ,�, @ , ei

!
ei (1.23)

=
2'

i�

4X

i=1

det
⇣
 , ⇤, @ , ei

⌘
ei

=
'

i
p
�

 
4X

i=1

det
⇣
 , ⇤,

1p
�
@1 , ei

⌘
ei + i

4X

i=1

det

 
 , ⇤,

1p
�
@2 , ei

!
ei

!

=
'

i�
(@2 � i@1 )

= �2'

�
@ (1.24)

Thus, applying (1.19) in the first equation, we obtain

⌦
@ ⇤, @ ⇤↵ = 2

�
|'|2 = (1�K)�

2
,

⌦
@ ⇤, @ ⇤↵ =

⌦
@ ⇤, @ ⇤↵ = 0

(1.25)

Therefore, in analogy to (1.9), we find

g⇤ = (1�K)g

and hence, by Corollary 1.2.4,  ⇤ has singularities at the isolated points whereK = 1.

To show that  ⇤ is minimal, we use (1.23), (1.20) as well as (1.21) and compute

@@ ⇤ = @

 
2

i�

4X

i=1

det

 
 ,�, @ , ei

!
ei

!

=
2

i�

4X

i=1

det
⇣
 , @�, @ , ei

⌘
ei +

2

i

4X

i=1

det

 
 ,�, @

 
1

�
@ 

!
, ei

!
ei

= �(1�K)

i

4X

i=1

det
⇣
 , @ , @ , ei

⌘
ei +

2

i�

4X

i=1

det
⇣
 ,�,�, ei

⌘
ei

= �(1�K)�

2
 ⇤ . (1.26)

So, comparing to (1.13), the assertion follows.
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On this base, Corollary 1.2.4 and Proposition 1.2.5 directly provide the following.

Corollary 1.2.11 (cf. [37], p. 361). The Gauss map  ⇤ : ⌃ ! S
3 of an oriented,

minimally immersed surface  : ⌃ ! S
3 is non-singular if and only if ⌃ covers a

torus or a Klein bottle.

At last, we would like to capture the geometry of the polar variety from the

perspective of fundamental data as described in Remark 1.1.3. By the previous

theorem, we already know that the metrics g and g⇤ are related by the (almost)

conformal factor 1�K. Moreover, Definition 1.2.1 and (1.15) yield that ( ⇤)⇤ =  ,

away from the isolated singularities. Therefore, we consider the shape operator A⇤

of  ⇤ into direction of the unit normal field associated with  .

Proposition 1.2.12. Let  : ⌃ ! S
3 be a minimally immersed, oriented surface

with Gaussian curvature K and denote by S ✓ ⌃ the set of the isolated points

where K = 1. Then, the shape operator A⇤ of the minimally immersed surface

 ⇤ : ⌃ \ S ! S
3 is given by

A⇤ =
1

1�K
A . (1.27)

Proof. Let (E1, E2) be a local orthonormal frame on (⌃, g). Then, the Gauss formula

(1.1) for  reads as

EiEj + hEi, Eji = rEiEj + �(Ei, Ej) , i, j 2 {1, 2} ,

and the analogue holds for  ⇤ on ⌃ \ S. Together with their Weingarten equations

(1.3), this implies

(1�K)g
�
A⇤(Ei), Ej

�
= g⇤

�
A⇤(Ei), Ej

�

= h�⇤(Ei, Ej), i
= hEiEj 

⇤, i
= hEiEj , 

⇤i
= h�(Ei, Ej), i
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= g
�
A(Ei), Ej

�
for i, j 2 {1, 2}

and hence the assertion follows.

Corollary 1.2.13 ([37], cf. Proposition 10.1). Under the conditions of Proposition

1.2.12, the Gaussian curvature K⇤ of the minimally immersed surface  ⇤ : ⌃\S ! S
3

is given by

K⇤ = � K

1�K
. (1.28)

In particular,
��K⇤

�� tends to infinity as a point in S is approached.

Proof. Let (E1, E2) be a local orthonormal frame on (⌃, g). Then, setting

E⇤
i =

1p
1�K

Ei , i = 1, 2 ,

we obtain a local orthonormal frame
�
E⇤

1 , E
⇤
2

�
on
�
⌃ \ S, g⇤

�
. Let now �⇤ be the

second fundamental form of  ⇤ : ⌃ \S ! S
3. From Proposition 1.2.12 it follows that

���⇤��2
g⇤

=
��A⇤��

g⇤
=

2X

i=1

��A⇤�E⇤
i

���2
g⇤

=
1

(1�K)2

2X

i=1

|A(Ei)|2g =
1

(1�K)2
|�|2g .

Hence, the Gauss equation (1.8) for the considered surfaces yields

K⇤ = 1� 1

2

���⇤��2
g⇤

= 1� 1

2

1

(1�K)2
|�|2g = 1� 1

1�K
= � K

1�K
.

1.3 Exterior Products of Vector Spaces

Moving forward, we first need to cover the algebraic concept of exterior products

of vector spaces. In the brief overview below, we follow [1]. To maintain focus, we

will skip the detailed proofs (which are mostly straight-forward computations in the

setting of linear vector spaces). A more detailed characterization of exterior products

of vector spaces can be found in [18].
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In what follows, let F = R or F = C and V be a vector space over F of finite

dimension n.

Definition 1.3.1 (k-fold Exterior Product of V ). Set

⇤0V := F, ⇤1V := V .

For k 2 N0, the k-fold exterior product ⇤kV of V is the
�

n
k

�
-dimensional vector space

over F uniquely characterized by demanding the wedge product

⇤kV ⇥ ⇤mV ! ⇤k+mV , (v, w) 7! v ^ w

to be bilinear and

w ^ v = (�1)mk v ^ w for all v 2 ⇤kV, w 2 ⇤mV .

The elements of ⇤kV are called k-vectors (or also bivectors for k = 2).

From this definition, the following properties become evident.

Lemma 1.3.2. If (b1, . . . , bn) is a basis of V , then the k-vectors

bi1 ^ . . . ^ bik , i1, . . . ik 2 {1, . . . , n}, i1 < . . . < ik

form a basis of ⇤kV . The (i1, . . . ik)-th component of v1 ^ ...^ vk 2 ⇤kV with respect

to this basis is given by

�
v1 ^ ... ^ vk

�(i1,...,ik)
= det

⇣�
vil

m

�
1l,mk

⌘
.

For example if k = 2, we have

v ^ w =
X

i, j2{1,...,n}
i<j

�
viwj � vjwi

�
bi ^ bj 2 ⇤2V .

Lemma 1.3.3. If v1, . . . vk 2 V are linearly dependent, then v1 ^ . . . ^ vk = 0.
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Conversely, the wedge product of k linearly independent vectors in V determines a

subspace of dimension k in V or, in other words, a point in the Grassmann manifold

Gk(V ) of k-dimensional subspaces in V . In this sense, such type of k-vector is

distinguished.

Definition 1.3.4. If 0 6= v 2 ⇤kV and there exist v1, . . . , vk 2 V such that v =

v1 ^ . . . ^ vk, then v is called a simple k-vector.

Note that in general, k-vectors are linear combinations of simple k-vectors.

Lemma 1.3.5. Two simple k-vectors v, w 2 ⇤kV determine the same point in

Gk(V ) if and only if there exists � 2 F \ {0} such that v = �w .

Remark 1.3.6. If F = R, a simple k-vector more precisely determines an oriented,

k-dimensional subspace and therefore a point in the Grassmann manifold G+
k (V ) of

oriented, k-dimensional subspaces in V . In the light of the previous corollary, two

simple k-vectors determine the same oriented subspace if and only if they di↵er by

the multiplication with a positive scalar.

Now, in addition, suppose that V is equipped with a scalar product h·, ·i. This

naturally induces a scalar product on ⇤kV .

Definition 1.3.7. For v = v1 ^ . . . ^ vk, w = w1 ^ . . . ^ wk 2 ⇤kV \ {0} we set

hv, wi := det
⇣�

hvi, wji
�
1i,jk

⌘
.

Then, by bilinear extension to the whole space, h·, ·i defines a scalar product ⇤kV .

Lemma 1.3.8. For v1 ^ . . . ^ vk 2 ⇤kV we have

|v1 ^ ... ^ vm| = 1 , |v1| = ... = |vm| = 1 .

We finish this interlude with the following duality of exterior products that will be

essential later on in Chapter 3.
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Definition 1.3.9. Let v1 ^ . . . ^ vk 2 ⇤kV \ {0}. Then, we define ⇤(v1 ^ ... ^ vk) 2
⇤n�kV to be the unique vector such that

hw1 ^ . . . ^ wn�k, ⇤(v1 ^ . . . ^ vk)i = det(v1, . . . , vk, w1, . . . , wn�k)

for all w1, . . . , wn�k 2 V . By linear extension, this determines a linear isomorphism

⇤ : ⇤kV ! ⇤n�kV ,

called the Hodge isomorphism.

Proposition 1.3.10. With respect to the scalar products induced on ⇤kV and ⇤n�k,

the Hodge isomorphism is a linear isometry.

Corollary 1.3.11. Let v1, . . . , vn 2 V . Then, we have

(i) ⇤(v1 ^ ... ^ vn�1) =
Pn

i=1 det(v1, ..., vn�1, bi) bi for every orthonormal basis

(b1, ..., bn) of V ;

(ii) ⇤(v1 ^ ... ^ vn�1) 2 span(v1, ..., vn)?;

(iii) the family
�
v1, ..., vn�1, ⇤(v1 ^ ... ^ vn�1)

�
is positively oriented;

(iv) Given v1, ...., vn 2 V , then

⇤(v1 ^ ... ^ vn) = det(v1..., vn) .

1.4 Bipolar Minimal Surfaces in S
5

At this point, we are prepared to complete the preliminary part with the central

concept behind the main results of this thesis. More precisely, we will see that any

minimal surface in S
3 gives rise to a minimal surface in S

5 – its so-called bipolar

surface, introduced by H. Blaine Lawson in [37]. To that end, we view R
6 as the

linear space of bivectors ⇤2
R

4 = span
�
v ^ w : v, w 2 R

4
 
.
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Theorem 1.4.1 ([37], p.361). Let  : ⌃ ! S
3 be a minimally immersed, oriented

surface with induced metric g, Gaussian curvature K and Gauss map  ⇤ : ⌃ ! S
3.

Then,
e : ⌃! S

5 ✓ R
6 ⇠= ⇤2

R
4 , e (p) :=  (p) ^  ⇤(p)

is a non-singular, minimally immersed surface in S
5 with induced metric

eg = (2�K) g .

Definition 1.4.2 (Bipolar Surface of a Minimal Surface in S
3). Under the above

conditions, the immersed surface e : ⌃! S
5 is called the bipolar surface of  : ⌃!

S
3.

Proof of Theorem 1.4.1. We assume that  is a conformal immersion as in Section

1.2. Using the product rule for bilinear maps, we first have

@ e = @ ^  ⇤ +  ^ @ ⇤ , @ e = @ ^  ⇤ +  ^ @ ⇤ .

Then, by Definition 1.3.7 and the application of (1.15), (1.17), (1.18), we obtain

D
@ e , @ e 

E
=
⌦
@ ^  ⇤, @ ^  ⇤↵+

⌦
@ ^  ⇤, ^ @ ⇤↵

+
⌦
 ^ @ ⇤, @ ^  ⇤↵+

⌦
 ^ @ ⇤, ^ @ ⇤↵

= det

 ⌦
@ , @ 

↵ ⌦
@ , ⇤↵

⌦
 ⇤, @ 

↵ ⌦
 ⇤, ⇤↵

!
+ det

 
h@ , i

⌦
@ , @ ⇤↵

⌦
 ⇤, 

↵ ⌦
 ⇤, @ ⇤↵

!

+ det

 ⌦
 , @ 

↵ ⌦
 , ⇤↵

⌦
@ ⇤, @ 

↵ ⌦
@ ⇤, ⇤↵

!
+ det

 
h , i

⌦
 , @ ⇤↵

⌦
@ ⇤, 

↵ ⌦
@ ⇤, @ ⇤↵

!

=
(1�K)�

2
,

D
@ e , @ e 

E
=
⌦
@ ^  ⇤, @ ^  ⇤↵+ 2

⌦
@ ^  ⇤, ^ @ ⇤↵+

⌦
 ^ @ ⇤, ^ @ ⇤↵

= det

 
h@ , @ i

⌦
@ , ⇤↵

⌦
 ⇤, @ 

↵ ⌦
 ⇤, ⇤↵

!
+ 2 · det

 
h@ , i

⌦
@ , @ ⇤↵

⌦
 ⇤, 

↵ ⌦
 ⇤, @ ⇤↵

!
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+ det

 
h , i

⌦
 , @ ⇤↵

⌦
@ ⇤, 

↵ ⌦
@ ⇤, ⇤↵

!

= 0

and analogously

D
@ e , @ e 

E
= 0 .

Consequently, as K  1 by Proposition 1.1.10, e is a conformal, non-singular im-

mersion with conformal factor (2 � K)�. In particular, the metric eg induced by e 
satisfies

eg = (2�K)g .

It remains to show that e satisfies the minimal surface equation in S
5 (analogous to

(1.13)). To this end, first note that combining the Weingarten equations (1.15), the

Gauss equation (1.14) and the minimality of  yields

��@i ^ @i 
⇤��2 = det

 
h@i , @i i

⌦
@i , @i ⇤↵

⌦
@i , @i ⇤↵ ⌦

@i ⇤, @i ⇤↵
!

= �2
12 for i = 1, 2

and moreover

⌦
@1 ^ @1 

⇤, @2 ^ @2 
⇤↵ = det

 
h@1 , @2 i

⌦
@1 , @2 ⇤↵

⌦
@1 ⇤, @2 

↵ ⌦
@1 ⇤, @2 ⇤↵

!
= ��2

12 .

Hence, it follows that

��@1 ^ @1 
⇤ + @2 ^ @2 

⇤��2 =
��@1 ^ @1 

⇤��2 +
��@2 ^ @2 

⇤��2

+ 2
⌦
@1 ^ @1 

⇤, @2 ^ @2 
⇤↵

= 0 .
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In particular, we have

@ ^ @ ⇤ + @ ^ @ ⇤ =
1

2

�
@1 ^ @1 

⇤ + @2 ^ @2 
⇤� = 0 .

Together with the minimal surface equations for  (1.13) and  ⇤ (1.26), we finally

deduce that

@@ e = @@ ^  ⇤ + @ ^ @ ⇤ + @ ^ @ ⇤ +  ^ @@ ⇤ = �(2�K)�

2
e ,

that is, e is minimal in S
5.

Remark 1.4.3. (i) Note that

f ⇤ =  ⇤ ^
�
 ⇤�⇤ =  ⇤ ^  = � ^  ⇤ = � e .

So, up to an isometry of S5, a (non-singular) minimal surface in S
3 and its

polar variety lead to the same bipolar surface in S
5.

(ii) Using a basis of ⇤2
R

4, it can be easily shown that the Hodge isomorphism, seen

as ⇤ : R6 ! R
6, is an isometry of S5. Therefore, ⇤ e : ⌃ ! S

5 is a minimally

immersed surface in S
5 isometric to e : ⌃! S

5.

(iii) As shown in [37], the components of a bipolar minimal immersion correspond

to Jacobi fields of infinitesimal rotations of S
3. This perspective allows to

prove (see also [37]) that the image of a bipolar surface lies non-degenerately

in a geodesic sphere S
d�1 ✓ S

5, where d (with 3  d  6) is the dimension of

the vector space of so-called Killing-Jacobi fields on the corresponding minimal

surface in S
3, also called its Killing nullity. Explicit values of d are determined

in Theorem 10 in [24]. Thereby, it follows that d = 3 only for geodesic 2-

spheres in S
3 and d = 4 only for the Cli↵ord torus S

1(1/
p

2) ⇥ S
1(1/

p
2) ✓ S

3.

Additionally, d = 5 is only possible for Euler characteristic 0. In particular,

bipolar surfaces arising from minimal surfaces in S
3 of higher orientable genera

> 1 or non-orientable genera > 2 always lie non-degenerately in S
5.
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Chapter 2

Lawson’s Bipolar Minimal Surfaces

In this chapter, we study the bipolar surfaces of closed minimal surfaces in S
3 ob-

tained from H. Blaine Lawson’s construction method which was initially presented

in [37]. Our primary result is the topological classification of the bipolar Lawson

surfaces e⇠m,k and e⌘m,k, accompanied by upper and lower area bounds. In addition,

we show that these surfaces are not embedded for m � 2 or k � 2.

On the one hand, this result extends the findings for the bipolar surfaces e⌧m,k

of Hugues Lapointe in [36] to the other families of Lawson surfaces in S
3. On the

other hand, it serves as a first reaction to the question whether bipolar surfaces of

higher genera yield significant conclusions similar to those of the embedded Klein

bottle e⌧3,1 that appears in the context of several geometric variational problems. In

[23], e⌧3,1 was conjectured to be the unique minimizer of the Willmore energy among

Klein bottles in R
4. Before, the results of [26] and [15] showed that e⌧3,1 realizes the

unique maximal metric for the first eigenvalue of the Laplace-Beltrami operator on

Klein bottles. Furthermore, due to the result of [11], this surface can be understood

as the unique Hamiltonian stable Lagrangian minimal Klein bottle in S
2 ⇥ S

2 (for

this setup, we also refer to Chapter 3).

The constructions and results of this chapter can be found in the preprint [54].
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2.1 Immersions for Lawson-type Surfaces in S
3

In numerous ways, Lawson’s examples of closed minimal surfaces in S
3 from [37]

have played a pioneering role and remain a central topic in current research. Their

existence is rooted in the construction method outlined in Section 4 (and specifically

Theorem 1) of the same article. In this section, we present a reformulation of Law-

son’s method specifically aimed at enabling an analysis of the corresponding bipolar

surfaces later on. More precisely, we will define appropriate immersions of surfaces

in S
3 which are constructed in this way.

Lawson’s approach starts from an embedded, minimal disk in S
3 ✓ R

4, bounded

by a geodesic polygon of specific type, and extends it to a complete, non-singular

minimal surface by successive application of the Schwarz reflection principle. This

principle states that a minimal surface containing a straight line remains invariant

under the 180� rotation about that line. Similarly as in R
3, where this is derived

from the Schwarz reflection principle for harmonic functions, [37] also proves this

concept for minimal surfaces in S
3, using the minimal surface equation.

The key ingredient making the reflection process successful, is the considered

class of geodesic polygons in S
3. A polygon � in this class is defined by

(1) N vertices connected by geodesic arcs,

(2) interior angles of the form ⇡
ki

for positive integers ki � 2, i = 1, . . . , N ,

(3) and the property � ✓ @C(�), where

C(�) :=
\�

H : H is a closed hemisphere in S
3 such that � ✓ H

 

denotes the convex hull of � in S
3.

Considered as boundary values for the Plateau problem, such type of polygon in par-

ticular guarantees the existence of a unique, embedded, disk-like solution, providing

the initial piece of the surface, as shown by William Meeks and Shing-Tung Yau in

[47]. We remark that Lawson’s original formulation in [37] uses the Plateau solution

of Charles Morrey in [53].
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Note that a striking point of Lawson’s method is its ability to produce highly

symmetric surfaces, because, by construction, they remain invariant (as point sets)

under the group generated by the geodesic reflections across the boundary arcs of the

initial polygon. Furthermore, the algebraic properties of this group directly allow to

characterize the resulting surface. For example, a finite reflection group is a su�cient

criterion leading to a closed surface.

We start our work by considering the framework of a closed, non-singular minimal

surface M� obtained from Lawson’s construction method.

Definition 2.1.1 (Construction Data of a Lawson-type Surface). Let

• � ✓ S
3 be a geodesic polygon associated to M�, which meets the specific

requirements from above,

• f : � ! S
3 be the unique immersion of the initial piece of surface defined on

the closed unit disk �,

• �1, ..., �N ✓ S
3 be the great circles containing the boundary arcs of �,

• r1, ..., rN 2 SO(4) be the corresponding geodesic reflections (i.e., ri is the re-

flection across the plane in R
4 containing the great circle �i),

• G = hr�1 , ..., r�N i be their freely generated group, which is finite in the consi-

dered case.

Note that we can assume, without loss of generality, that the subgroup H ✓ G which

leaves � (and therewith f(�)) invariant as a point set is trivial. Otherwise, we could

simply descend to a smaller initial piece of surface. This assumption enters all the

constructions presented below.

Remark 2.1.2. In general, the same surface M� can result from di↵erent choices

of the geodesic polygon �, as illustrated by the example of the Cli↵ord torus, seen

as the Lawson surfaces ⇠1,1 = ⌧1,1 (cf. Section 2.3).
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Now, as deduced in [37], the successive reflection process yields1

M� =
[

g2G

(g � f)(�) .

Motivated by the above notation, our goal is to define M� as an immersed surface

 : S ! S
3, as concretely as possible. To compare with [37], this specification is not

necessary to derive the existence of M�. But given Lawson’s definition as presented

in Theorem 1.4.1, this seems to be the direct approach to address the corresponding

bipolar surface in later analyses.

In order to obtain a suitable domain S, the idea is to glue together the preimages

of the minimal disks g � f for g 2 G. More precisely, this means to introduce an

equivalence relation on the stack G⇥� of labelled disks {g}⇥� in accordance with

Lawson’s reflection process. Clearly, if two points (g, p), (h, q) 2 G⇥� are identified

in this way, we must have

(g � f)(p) = (h � f)(q) .

But to define the gluing relation, this condition is not su�cient since it is also satisfied

at points of self-intersection. To exclude the latter scenario, we have to put an

additional condition on the group elements g and h, which is based on the following

definition.

Definition 2.1.3. For each p 2 �, let Gp be the subgroup

Gp :=
D�

ri : f(p) 2 �i

 E
✓ G .

Regarding the group structure of Gp, it is clear that only the following three cases

can occur:

1In the general case where M� is complete but not necessarily closed, this directly demonstrates
that M� is closed if and only if the group G is finite.
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1. If p 2 ��, then

Gp = {idR4} .

2. If p 2 @� is not mapped onto a vertex of � by f , that is, f(p) 2 �i for only

one i 2 {1, ..., N}, then

Gp = {idR4 , ri} ⇠= Z2.

3. If p 2 @� is mapped onto a vertex of � by f , that is, f(p) 2 �i \ �i+1 for some

i 2 {1, ..., N} (with N + 1 ⌘ 1), then

Gp = hri, ri+1i ⇠= Dn

where n defines the interior angle ⇡
n of � at f(p) and Dn denotes the dihedral

group of order 2n. This isomorphy follows immediately from the fact that

ri+1 � ri is the rotation by 2⇡
n around the great circle through f(p) which is

orthogonal to both ri+1 and ri, and from the fact that each ri is self-inverse.

For the initial piece of surface f , the group Gp labels the di↵erent, neighbouring

pieces of surface at the point f(p), which yield an analytic, non-singular extension of

f in a neighbourhood of p (cf. [37], Lemmata 4.2 and 4.3). As a consequence, g ·Gp

encodes the neighbouring pieces of surface at the point (g � f)(p) for any g 2 G.

Thus, we conclude that two points (g, p), (h, q) 2 G⇥� that satisfy

(g � f)(p) = (h � f)(q)

belong to neighbouring pieces if and only if g�1·h 2 Gp. In other words, this condition

now ensures that we glue according to the local landscape provided by repeated

application of Schwarz reflections. Concluded, we have the following construction.

Construction 2.1.4. On G⇥�, we introduce the equivalence relation

(g, p) ⇠ (h, q) , (g � f)(p) = (h � f)(q) and g�1 · h 2 Gp
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and denote a corresponding equivalence class by
⇥
(g, p)

⇤
. Then, due to [37], the

quotient

S :=
�
G⇥�

�
/ ⇠

is a closed, two-dimensional manifold and

 : S ! S
3 ,  

�
[(g, p)]

�
:= (g � f)(p)

is a well-defined immersion of the closed minimal surface M�.

Remark 2.1.5. (i) Since we assumed that the subgroup of symmetries of � is

trivial (which is, as already mentioned, no loss of generality), S is in fact a

smallest possible domain to immerse M�. On page 345 in [37], Lawson refers

to such (possibly non-orientable) manifold by M⇤
�. To clarify, this means that

an immersion defined on such domain is one-to-one almost everywhere. In

other words, it is not possible to define a smooth covering map on S, which

leaves  (and thereby the induced metric of  ) invariant. In that case, the

immersion  would be well-defined on a quotient of S but still provide a full

description of M�. From the viewpoint of the classification of closed, two-

dimensional manifolds by genus and orientability, working with such smallest

possible domains is preferable. It is exactly what characterizes expressions like

“the surface XY is an immersed Klein bottle”. This kind of information is also

particularly relevant in further geometric variational problems, especially when

searching for extremal surfaces of specific topological types.

(ii) For the theory of covering manifolds, we direct, for example, to [40], Chapter

21. More specifically, we will use Theorem 21.13 of that reference, which is

a special version of the quotient manifold theorem, applicable to finite groups

regarded as discrete Lie groups.
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Suppose that G is a discrete Lie group acting smoothly, freely and

properly on a connected, smooth manifold M . Then, the orbit space

M/G is a topological manifold and has a unique smooth structure

such that the projection M ! M/G is a smooth, normal covering

map.

Note that normal covering maps provide the existence of a corresponding deck

transformation group, ensuring uniformity in the fibers. In addition, note that

an action G ⇥ M : (g, p) 7! g · p of a discrete Lie group G on M is smooth if

and only if p 7! g · p is smooth for all g 2 G. Moreover, if G acts smoothly

and freely, the action is proper if and only if the following conditions hold (cf.

Lemma 21.11 in [40]):

(1) For all p 2 M there exists a neighborhood V such that for all g 2 G,
g · V \ V = ; unless g = eG.

(2) If p and p0 2 M lie in di↵erent orbits, then there exist neighborhoods V

of p and V 0 of p0 such that for all g 2 G, (g · V ) \ V 0 = ;.

Now, by the preceding construction, we directly arrive at the following topological

information about the domain S.

Corollary 2.1.6 (cf. [37], Proposition 4.4). The Euler characteristic �(S) of S is

fully determined by the polygon �: We have

�(S) = |G| ·
 
1�

NX

i=1

ki � 1

2ki

!
, (2.1)

where ⇡
k1
., ..., ⇡

kN
, ki 2 Z�2, denote the interior angles of �.

Remark 2.1.7. Note that the relation between the Euler characterisic and the (ori-

entable or non-orientable) genus g of S is

�(S) =

8
<

:
2� 2g if S is orientable,

2� g if S is non-orientable.
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Proof of Corollary 2.1.6. Let Kf and K be the Gaussian curvatures of f and  ,

respectively. Then, the local version of the Gauss-Bonnet theorem yields

Z

�

Kf dµf = 2⇡ �
NX

i=1

 
⇡ � ⇡

ki

!
= 2⇡

 
1�

NX

i=1

ki � 1

2ki

!
.

Since
Z

S

K dµ = |G| ·
Z

�

Kf dµf ,

the global version of Gauss-Bonnet implies

2⇡�(S) =

Z

S

K dµ 

and therefore the assertion follows.

For a full topological classification of S, it remains to check whether S is orientable

or not. In this regard, we consider a Gauss map n : � ! S
3 associated to the

embedded piece of surface f . Under a Schwarz reflection across an arc of �, achieved

by an 180� rotation about the corresponding great circle, the initial normal n can

be extended by the same reflection as f but has to be combined with an additional

flip for a continuous extension. Then, for an extension of the surface associated

to a product of the generators r�1 , ..., r�N , this generalizes in the sense that each

generator contributes one flip. Consequently, S is non-orientable if and only if we

find a sequence of the generators that starts and ends at the initial piece f but returns

with the opposite normal �n. This situation would clearly imply the existence of a

non-trivial path along which the direction of a unit normal reverses (see Figure 2.1).

In other words, we can conclude the following.

Proposition 2.1.8. S is non-orientable if and only if the identity element eG =

idR4 2 G can be written as an odd number of the generators r1, ..., rN .

Conversely, if S is orientable, any expression of a group element g 2 G as a
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•
p

•
p

• p0

• p0

•
p00

G ⇥ �

Figure 2.1: Counting the number of flips of an initial unit normal while extending
the initial piece of surface by Schwarz reflections schematically induces a “chessboard
pattern” on S. In this sense, a closed path starting in {eG}⇥� and returning to a
field with the “wrong” color (assigned to an odd number of generators resulting in
the identity element in G) implies that S is non-orientable. In the example above,
this is indicated by the curve in the bottom containing the point p.

product of the generators either contains an even or an odd number of the latter.

So, the following quantity is well-defined.

Definition 2.1.9. Let S be orientable. Then, we define the parity �(g) of g 2 G as

follows: If g = ri1 � . . . � rik for i1, . . . , ik 2 {1, . . . N} and k 2 N,

�(g) :=

8
<

:
0

1
if k is

even

odd
.

Remark 2.1.10. Note that ri � ri = eG for i 2 {1, . . . , N} and hence �(eG) = 0. In

particular, � : G ! (Z2,+) is a group homomorphism.

Accordingly, the extension of an initial unit normal n writes as follows.

Construction 2.1.11. Let n : �! S
3 be a Gauss map of f . If S is orientable, then

 ⇤ : S ! S
3,  ⇤�[(g, p)]

�
:= (�1)�(g) · (g � n)(p)
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is a Gauss map of the immersion  : S ! S
3 from Construction 2.1.4.

Remark 2.1.12. If S is orientable, the choice of  ⇤ induces an orientation form on

S by the pullback of an orientation form ⌦ on S
3 ✓ R

4. We choose

!|x(v, w) := det
⇣
 (x), d |x(v), d |x(w), ⇤(x)

⌘
(2.2)

for x 2 S and v, w 2 TxS.

Now, the concept of bipolar surfaces, which is the primary interest of this chapter,

also exists for non-orientable domains in the sense that any non-orientable surface has

a unique, orientable double cover, characterized by a smooth, orientation-reversing,

fixed-point free involution. In the sense of Remark 2.1.5 (ii), this corresponds to a

suitable Z2-action. Hence, to make sense of a Gauss map when S is non-orientable,

we perform the transition to the orientable double cover of S , which can be, in a

straightforward manner, constructed in similar way as S itself.

Construction 2.1.13. Suppose that S is non-orientable. Let n : �! S
3 be a Gauß

map of f . On Z2 ⇥G⇥�, we define the equivalence relation

(s, g, p) ⇠dc (t, h, q) :, (g, p) ⇠ (h, q) and (�1)s · (g � n)(p) = (�1)t · (h � n)(q)

and denote a corresponding equivalence class by [(s, g, p)]. Then, the orientable

double cover of S is the two-dimensional manifold

S :=
�
Z2 ⇥G⇥�

�
/ ⇠dc

and the map

i : S ! S, i
�
[(s, g, p)]

�
:= [(�s, g, p)]

is the corresponding orientation-reversing, fixed-point-free involution satisfying that

S/hii = S. In this case, we describe the surface M� by the immersion

 : S ! S
3,  

�
[(s, g, p)]

�
:=  

�
[g, p]

�
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with Gauss map

 ⇤ : S ! S
3,  ⇤

�
[(s, g, p)]

�
:= (�1)s · (g � n)(p) .

Remark 2.1.14. (i) If S is orientable, then S, as defined above, would consist of

two components, each di↵eomorphic to S. But as mentioned in Remark 2.1.5,

for our purposes, we prefer S to be an orientable, smallest possible domain for

M� in that case.

(ii) The induced orientation form ! on S is defined analogously as in (2.2).

2.2 Topology of Lawson-type Bipolar Surfaces

In this section, we introduce a general indicator to identify certain topological cha-

racteristics and thereby area estimates of bipolar surfaces derived from Lawson-type,

closed minimal surfaces in S
3, as outlined in the previous section. (Not) surprisingly,

this appears as an algebraic condition on the group G generated by the respective

group of Schwarz reflections.

Recalling Remark 2.1.5, the notion of a smallest possible domain for an immersed

surface crucially depends on the symmetries of the immersion, not only on the topo-

logical type of some possible domain. Therefore, it is not a priori clear whether the

topological type of a closed minimal surface in S
3 transmits to its bipolar surface in

S
5. One possible scenario is, for example, that a smallest possible domain for  ad-

mits covering maps of a higher degree that leave e invariant. Another phenomenon

that can occur is that in the non-orientable case, where we define e on the orientable

double cover of a smallest possible domain of  , we really have to stick with that

orientable domain, i.e., loose symmetry in that case.

These types of topological di↵erences are particularly important for the compu-

tation of the actual area of bipolar surfaces, that is, the area of a corresponding im-

mersion on a smallest possible domain. More precisely, the following formula, which

is an immediate consequence of Theorem 1.4.1 combined with the Gauss-Bonnet the-

orem, must be handled with caution when discussing the actual area. Recall that
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the latter equals the Willmore energy of the stereographically projected surfaces in

R
5, making it specifically significant the context of the Willmore problem.

Proposition 2.2.1. Let  : ⌃ ! S
3 be a closed, oriented minimal surface and

e : ⌃! S
5 its bipolar surface. Then, we have

area
⇣
e 
⌘
= 2area( )� 2⇡�(⌃) . (2.3)

If a smallest possible domain of e is multiply covered by an orientable, smallest

possible domain of  , then the right-hand side of this formula has to be divided by

the covering degree. Furthermore, in the case that the smallest possible domain of

 is non-orientable, we have to start from twice the acutal area of  in the formula

above.

The question that arises is how to detect these situations. In this context, we

will now present a tool for the bipolar surfaces of closed minimal surfaces in S
3

constructed by Lawson’s method and therefore come back to the immersions from

the previous section. In that setup, the bipolar surface fM� ✓ S
5 of M� ✓ S

3 is

immersed by

e :=

8
<

:
 ^  ⇤ if S is orientable,

 ^  ⇤ if S is non-orientable.

perhaps not yet on a smallest possible domain. Based on the bilinearity of the wedge

product, we can identify an indicator for e being a double cover, provided that M�

exhibits antipodal symmetry.

Note that in the estimates below, we denote by area(M�) and area
⇣
fM�

⌘
the

actual area of the surfaces, obtained by the area in terms of an immersion defined

on a smallest possible domain.

Theorem 2.2.2.

(i) If S is orientable and �idR4 2 G with �(�idR4) = 0, then the action

h�idR4i ⇥ S ! S,
�
h, [(g, p)]

�
7! [(hg, p)]
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leaves the bipolar immersion e : S ! S
5 invariant and induces a smooth cove-

ring map of degree 2 on S such that the corresponding quotient S/h�idR4i is

orientable. In particular, we have

area
⇣
fM�

⌘
 area(M�)� ⇡�(S) .

(ii) If S is non-orientable and �idR4 2 G, then the action

h�idR4i ⇥ S ! S,
�
h, [(s, g, p)]

�
7! [(s, hg, p)]

leaves the bipolar immersion e : S ! S
5 invariant and induces a smooth cove-

ring map of degree 2 on S such that the corresponding quotient S/h�idR4i is

orientable. In particular, we have

area
⇣
fM�

⌘
 2 area(M�)� 2⇡�(S) .

Proof. We apply the quotient manifold theorem in the specific form of Theorem

21.13 from [40] (see also Remark 2.1.5 (ii)). As a finite group, G is a discrete (0-

dimensional) Lie group. In this case, anyG-action on a smooth manifoldM is smooth

if and only if M ! M, x 7! h · x is smooth for each h 2 G. For the considered

actions, this is clear by the definition of S and S, respectively, as  and  are local

embeddings and each h 2 G is smooth. Moreover, both actions are free and proper

(cf. Lemma 21.11 in [40]) since �idR4 is not contained Gp, for all p 2 �. This follows

from the specific cases of the group structure from Definition 2.1.3. Concluded, the

corresponding orbit space projections yield smooth covering maps of degree two for

both actions.

In addition, the bilinearity of the wedge product yields that e is in both cases

invariant under the respective action. The same holds, by the definition of the Gauss

maps  ⇤ and  ⇤, for the orientation forms ! and !, respectively, implying that the

quotient manifolds S/h� R4i and S/h� R4i are orientable.

At last, with the detected covering maps, the area estimates are a direct conse-

quence of the area formula (2.3).
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•
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•P-1

Figure 2.2: To develop his three families of closed minimal surfaces in S
3, Lawson

started from a tessellation by congruent, geodesic tetrahedra with edges defined by
the set of geodesics connecting two families of equidistant points located on two polar
great circles, with distances ⇡

m and ⇡
k . In stereographic projection, the graphic above

illustrates an exemplary excerpt.

2.3 Examples

In the context of the covering phenomenon described previously, this section treats

the bipolar surfaces obtained from the three Lawson families of closed minimal sur-

faces in S
3. The main insight is that the tool from Theorem 2.2.2 is actually su�cient

to determine the topological classes of the e⇠- and e⌘-surfaces and thereby area esti-

mates for these surfaces.

2.3.1 Construction of the Lawson Families in S
3

Besides the general formulation, Lawson presents in [37] an explicit framework to

apply his construction procedure for minimal surfaces in S
3. The basic setting is

described by positive integers m, k 2 Z�2 which specify a tessellation of S
3 by

congruent, geodesic tetrahedra2. More precisely, the corresponding 1-skeleton is

given by the set of great circles connecting equidistant points Q0, ..., Q2m�1 and

P0, ..., P2k�1 on two great circles �Q, �P ✓ S
3 that are orthogonal to each other.

2For a study of the application of the Schwarz reflection principle in that setting we direct the
interested reader to [72].
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On that kind of lattice, Lawson introduced three distinct types of explicit, geo-

desic 4-gons which serve as suitable candidates to bound the initial piece of a closed

minimal surface as discussed in Section 2.1. In this way, he arrived at the three

infinite families

(⇠m,k)m, k2Z�1
, (⌧m,k)m, k2Z�1

, (⌘m,k)m, k2Z�1

of closed minimal surfaces in S
3. Regarding Lawson’s labeling within these families,

note that we will often stick to the notation ⇠m�1,k�1 and ⌘m�1,k�1 for integersm, k �
2 as this refers to a distance ⇡

m between Qj and Qj+1 and ⇡
k between Pi and Pj+1 in

the respective construction data. This kind of shift is not necessary for the ⌧ -family.

Interestingly, the three families di↵er significantly regarding their topological

properties (recall Remark 2.1.5) and regarding embeddedness:

• The surfaces ⇠m,k provide embedded and thus orientable examples of genus

mk (cf. [37], Proposition 6.1). In particular, together with the totally geodesic

2-spheres, the existence of the ⇠-family demonstrates that among closed embed-

ded minimal surfaces in S
3, every orientable topolgogical class is represented.

• The surfaces ⌧m,k are a family of immersed tori and Klein bottles, where ⌧mk

is non-orientable if and only if 2|mk (cf. [37], Theorem 3).

• If k is even, the surfaces ⌘m,k are immersed, orientable surfaces with genus

mk (cf. [37], Remark 8.1). In turn, if k is odd, ⌘m,k is non-orientable and

has (non-orientable) genus mk + 1 (cf. [37], Theorem 4). Notably, except for

non-orientable genus 1, this yields a complete list of (immersed) examples for

the non-orientable topological classes (recall that by Corollary 1.2.6 minimal

immersions of the real projective plane are forbidden).

The Cli↵ord torus S1(1/
p

2) ⇥ S
1(1/

p
2) ✓ S

3 is realized by both ⇠1,1 and ⌧1,1. Within

the ⌧ -family, ⌧1,1 is the only embedded surface.

In order to analyze the corresponding families of bipolar surfaces in what follows,

we start by a specification of the respective construction data for each family in S
3
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(cf. Definition 2.1.1). To that end, we establish the following: For m, k 2 Z�2, let

Pi :=

0

BBB@

cos
�
i · ⇡k

�

sin
�
i · ⇡k

�

0

0

1

CCCA
for i 2 Z2k , Qj :=

0

BBB@

0

0

cos
�
j · ⇡m

�

sin
�
j · ⇡m

�

1

CCCA
for j 2 Z2m

represent the points from the tessellation of in [37], lying on the great circles

�P :=
�
x 2 S

3 : x3 = x4 = 0
 
, �Q :=

�
x 2 S

3 : x1 = x2 = 0
 
.

To determine G, note that the geodesic reflection r� across a great circle � in S
3 ✓ R

4

is the reflection at the 2-plane P� such that P� \ S
3 = �, explicitly,

r�(x) = x|| � 2x?

for all x = x|| + x? 2 S
3, where x|| 2 P� and x? 2 P?

� . In what follows, we denote

by rij the geodesic reflection across the great circle �ij through the points Pi and Qj

(represented by the corresponding matrix with respect to the standard basis in R
4).

We have

r00 =

 
J2 0

0 J2

!
, where J2 :=

 
1 0

0 �1

!
.

Furthermore, setting

R' :=

 
cos(') � sin(')

sin(') cos(')

!
for ' 2 R ,

as well as

R
(12)

' :=

 
R' 0

0 2

!
, R

(34)

' :=

 
2 0

0 R'

!
,
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a reflection rij reads as

rij = r00 ·R(12)
2⇡
k ·i ·R

(34)
2⇡
m ·j .

Finally, note that in each case we have to determine the subgroup H ✓ G of

symmetries of the polygon � (leaving it invariant as a set). If H is not trivial, we

will need an adjustment in order to apply the methods from Sections 2.1 and 2.2.

2.3.2 The e⇠-Family

We consider the Lawson surface ⇠m�1,k�1 for m, k 2 Z�2 and assume that m > 2

or k > 2. Note that, later on, we will address the Cli↵ord torus ⇠1,1 = ⌧1,1 in the

context of the ⌧ -family.

The geodesic polygon defining ⇠m�1,k�1 is given by the circuit

�⇠m�1,k�1
:= P0Q0P1Q1 ,

where the successive vertices are connected by shortest arcs. This polygon has two

interior angles ⇡
m and two interior angles ⇡

k , with all sides having a length ⇡
2 .

Looking at �⇠m�1,k�1
, the group generated by Schwarz reflections of the surface

⇠m�1,k�1 is a priori given by

G⇠m�1,k�1
= hr00, r01, r11, r10i .

Using that

r01 = r00 ·R(34)
2⇡
m

,

r11 = r00 ·R(12)
2⇡
k

·R(34)
2⇡
m

,

r10 = r00 ·R(12)
2⇡
k
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•

•

Q0
Q1

•
P1

Figure 2.3: In stereographic projection, this graphic illustrates the type of geodesic
polygon �⇠ ✓ S

3 used to construct a surface in the ⇠-family.

and conversely, since r00 is self-inverse,

R
(12)
2⇡
k

= r00 · r10

R
(34)
2⇡
m

= r00 · r01 ,
(2.4)

we find that

G⇠m�1,k�1
=
D
R

(12)
2⇡
k

,R(34)
2⇡
m

, r00

E
.

As the block matrices R(12)
2⇡
k

and R
(34)
2⇡
m

commute and in addition

J2 ·R' = R
�1
' · J2 for all ' 2 R , (2.5)

we can finally write

G⇠m�1,k�1
=

(⇣
R

(12)
2⇡
k

⌘↵
·
⇣
R

(34)
2⇡
m

⌘�
· r�00 : ↵ 2 Zk, � 2 Zm, � 2 Z2

)
(2.6)

and observe that

|G⇠m�1,k�1
| = 2mk .
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4 LYNN HELLER, SEBASTIAN HELLER, AND MARTIN TRAIZET

Figure 1. The Plateau solution of a geodesic 4-gon in the 3-sphere and the Lawson
surface of genus 2, stereographically projected to the Euclidean space. Images by Nicholas
Schmitt with xLab.

Figure 2. The Lawson surfaces of genus 4 and 5.

Remark 1. Since the surfaces �m,k and �k,m are isometric, the Lawson surfaces �k,k admit
an additional orientation preserving symmetry.

All Lawson surfaces admit additional symmetries which are not orientation preserving in space
or not orientation preserving on the surfaces. They are given by reflections across geodesics
contained in the surfaces (e.g., the polygonal boundary of the fundamental piece) or by
reflection across geodesic 2-spheres which intersect the surface orthogonally, e.g., symmetry
planes of the geodesic polygon.

1.2. Saddle Tower Surfaces.
Karcher [9] generalised Scherk’s singly periodic surface to surfaces with n = 2m + 2 Scherk
type ends and constant angle 2⇡

2m+2 between consecutive ends, see the figure in [9]. These
surfaces are called saddle tower surfaces and their Weierstrass data are given by

Figure 2.4: Stereographic projections of ⇠1,4 and ⇠1,5 (images from [21], produced
by Nicholas Schmitt with xLab)

Therefore, (2.1) yields

�(⇠m�1,k�1) = 2mk

 
1� 2

 
k � 1

2k
+

m� 1

2m

!!
= 2� 2(m� 1)(k � 1) . (2.7)

Furthermore, with the above considerations, the orientability of ⇠m�1,k�1 is evi-

dent by Proposition 2.1.8. Any odd number of the initial geodesic reflections carries

a factor r00. By comparing determinants, we see that the identity cannot be repre-

sented in such a way.

Concluded, Corollary 2.1.6 and Proposition 2.1.8 confirm the topological classifi-

cation of ⇠m�1,k�1 from [37].

Now, that ⇠m�1,k�1 is orientable, the parity � group elements is well-defined (cf.

Definition 2.1.9). For a general group element

g =
⇣
R

(12)
2⇡
k

⌘↵
·
⇣
R

(34)
2⇡
m

⌘�
· r�00 2 G⇠m�1,k�1

,

we have

�(g) = � , (2.8)
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since R
(12)
2⇡
k

and R
(34)
2⇡
m

are given by an even number of Schwarz reflections by the

representation (2.4).

Lemma 2.3.1. Let m, k 2 Z�2 and assume that m > 2 or k > 2. Then, the subgroup

H⇠m�1,k�1
✓ G⇠m�1,k�1

leaving the polygon �m�1,k�1 invariant is trivial, i.e.,

H⇠m�1,k�1
= { 4} .

Proof. To see this, consider for example the segment P0Q0P1 of �⇠m�1,k�1
which

determines the angle ⇡
k at Q0. For g 2 G⇠m�1,k�1

(denoted as above), this polygonal

arc is mapped onto

g(P0Q0P1) =

 ⇣
R

(12)
2⇡
k

⌘↵
·
⇣
R

(34)
2⇡
m

⌘�
· r�00

!
(P0Q0P1)

=

8
<

:
P2↵Q2�P2↵+1 if � = 0 ,

P2↵Q2�P2↵�1 if � = 1 .
(2.9)

Now, if g 2 H⇠m�1,k�1
, the prescribed angle yields that the candidates for the image

of P0Q0P1 under g are

P0Q0P1 , P1Q0P0 , P1Q1P0 , P0Q1P1 .

But combined with (2.9), this implies that we must have g = 4.

At this stage, the results from the preceding sections in this chapter lead to the

following conclusions about the bipolar surface e⇠m�1,k�1.

Theorem 2.3.2. Let m, k 2 Z�2 such that m > 2 or k > 2. Then, the bipolar

surface e⇠m�1,k�1 ✓ S
5 is orientable. Moreover,

(i) if both m and k are even, we have

�
⇣
e⇠m�1,k�1

⌘
= 1� (m� 1)(k � 1) ,
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2⇡max{m, k}  area
⇣
e⇠m�1,k�1

⌘
< 2⇡(mk + k �m) ;

(ii) if m or k is odd, we have

�
⇣
e⇠m�1,k�1

⌘
= 2� 2(m� 1)(k � 1) ,

4⇡max{m, k}  area
⇣
e⇠m�1,k�1

⌘
< 4⇡(mk + k �m) .

Proof. We use the notation from Construction 2.1.4 and Construction 2.1.11. In

addition, we define the points

P̂i :=

0

BBB@

� sin
�
i · ⇡k

�

cos
�
i · ⇡k

�

0

0

1

CCCA
for i 2 Z2k, Q̂j :=

0

BBB@

0

0

� sin
�
j · ⇡m

�

cos
�
j · ⇡m

�

1

CCCA
for j 2 Z2m .

Following the polygon �⇠m�1,k�1
as a monotonic curve, we determine that the initial

Gauß map n : �! S
3 can be chosen such that at the vertices of �⇠m�1,k�1

we have

n
�
f�1(P0)

�
= P̂0 , n

�
f�1(Q0)

�
= �Q̂0 ,

n
�
f�1(P1)

�
= �P̂1 , n

�
f�1(Q1)

�
= Q̂1 .

Note that connecting these vertices by shortest arcs defines the so-called polar poly-

gon �⇤
⇠m�1,k�1

of �⇠m�1,k�1
(cf. [37], Section 10), which can be understood to bound

the initial piece of the corresponding polar variety ⇠⇤m�1,k�1 from Proposition 1.2.9.

Now, as a first step, we determine the multiplicity of the point P0^ P̂0 = e1^e2 in

the image of the bipolar immersion e : S ! S
5. Let therefore p0 2 @� be the point

such that f(p0) = P0 = e1 and n(p0) = P̂0 = e2. We are looking for all
⇥
(g, p)

⇤
2 S

such that

e 
⇣⇥

(g, p)
⇤⌘

= e 
⇣⇥

(e, p0)
⇤⌘

.
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By definition of the map e =  ^  ⇤, these are all the points
⇥
(g, p)

⇤
2 S such that

(�1)�(g) · (g � f)(p) ^ (g � n)(p) = e1 ^ e2

or equivalently, by relabelling the group elements,

f(p) ^ n(p) = (�1)�(g) · g(e1) ^ g(e2) . (2.10)

Making use of (2.6) and (2.8), we observe that

g(e1) ^ g(e2) =

8
<

:
e1 ^ e2 if �(g) = 0 ,

�e1 ^ e2 if �(g) = 1 .

Hence, (2.10) reduces to

f(p) ^ n(p) = e1 ^ e2 . (2.11)

Clearly, (2.11) is satisfied by each point
⇥
(g, p0)

⇤
for arbitrary g 2 G⇠m�1,k�1

and, in

fact, these are already all solutions. Because, due to the properties of the wedge

product (cf. Section 1.3), given any solution
⇥
(g, p)

⇤
of (2.11), we must have

f(p) = cos(�) e1 + sin(�) e2 ,

n(p) = � sin(�) e1 + cos(�) e2

for some � 2 [0, 2⇡). Looking at the initial pieces of surface described by f and n,

which are both embedded in the convex hull of �⇠m�1,k�1
or �⇤

⇠m�1,k�1
, we find that

this is only satisfied for � = 0, that is, for p = p0. Accordingly, we can conclude that

e �1
�
P0 ^ P̂0

�
=
n⇥

(g, p0)
⇤
: g 2 G⇠m�1,k�1

o
.

Therefore, since

Gp0
⇠m�1,k�1

= hr00, r01i =
(⇣

R
(34)
2⇡
m

⌘�
· r�00 : � 2 Zm, � 2 Z2

)
(2.12)
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by Definition (2.1.3), the multiplicity of P0 ^ P̂0 is given by

µ e 
�
P0 ^ P̂0

�
=
���
n⇥

(g, p0)
⇤
: g 2 G⇠m�1,k�1

o��� =
|G⇠m�1,k�1

|��Gp0
⇠m�1,k�1

�� =
2mk

2m
= k .

Analogous steps lead to the conclusion that at the image point

Q0 ^
�
� Q̂0

�
= e 

⇣⇥
(e, q0)

⇤⌘

the multiplicity is

µ e 

⇣
Q0 ^

�
� Q̂0

�⌘
=
���
n⇥

(g, q0)
⇤
: g 2 G⇠m�1,k�1

o��� =
|G⇠m�1,k�1

|��Gq0
⇠m�1,k�1

�� =
2mk

2k
= m.

The question is whether these higher multiplicities result from a covering map on S

under which e is invariant. Clarification is obtained by considering the associated

tangent planes to the bipolar surface at P0^ P̂0 or Q0^
�
�Q̂0

�
, which would coincide

in that case.

Before we continue, note that since we assumed that �(⇠m�1,k�1) < 0, the polar

variety ⇠⇤m�1,k�1 has singular points precisely at the vertices of �⇠m�1,k�1
with interior

angles < ⇡
2 and all their G-copies ([37], p. 361). At such points, we have K = 1 and

thus the second term in

d e (v) = d (v) ^  ⇤ +  ^ d ⇤(v)

vanishes for all v 2 T⌃ as g⇤(v, v) = 0 (cf. (1.22)).

Now, suppose that m > 2 and denote by P (0)
p0 the tangent plane to the bipolar

surface at e 
�⇥
(e, p0)

⇤�
. Since  ⇤ has a singular point at

⇥
(e, p0)

⇤
and the tangent

plane to ⇠m�1,k�1 at  
�⇥
(e, p0)

⇤�
is spanned by e3 and e4, we find that

P (0)
p0 = span

�
e2 ^ e3, e2 ^ e4) .
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Consequently, recalling (2.12), the k tangent planes at e 
⇣h⇣⇣

R
(12)
2⇡
k

⌘↵
, p0

⌘i⌘
are

P (↵)
p0 := span

 ⇣
R

(12)
2⇡
k

⌘↵
(e2) ^

⇣
R

(12)
2⇡
k

⌘↵
(e3),

⇣
R

(12)
2⇡
k

⌘↵
(e2) ^

⇣
R

(12)
2⇡
k

⌘↵
(e4)

!

for ↵ 2 Zk ,

and a computation shows that P (↵)
p0 = P (0)

p0 if and only if ↵ = 0 or, when k is even,

↵ = k
2 . Analogously, if k > 2, the m tangent planes to the bipolar surface at

Q0 ^
�
� Q̂0

�
= f(q0) ^ n(q0) are given by

P (�)
q0 := span

 ⇣
R

(34)
2⇡
m

⌘�
(e1) ^

⇣
R

(34)
2⇡
m

⌘�
(e4),

⇣
R

(34)
2⇡
k

⌘�
(e2) ^

⇣
R

(34)
2⇡
m

⌘�
(e4)

!

for � 2 Zm ,

with P (�)
q0 = P (0)

q0 if and only if � = 0 or, when m is even, � = m
2 .

Whenever m or k is odd, this shows that the bipolar surface has µ transversally

intersecting tangent planes at some point of multiplicity µ > 1. Therefore, that S

must be a smallest possible domain of e and hence,

�
⇣
e⇠m�1,k�1

⌘
= �(S) = 2� 2(m� 1)(k � 1) ,

where the latter is implied by (2.7). If both m and k are even, we have

� 4 =
⇣
R

(12)
2⇡
k

⌘ k
2 ·
⇣
R

(34)
2⇡
m

⌘m
2 2 G⇠m�1,k�1

and in particular

�(� 4) = 0 .

In this light, the occurrence of the pairs of parallel tangent planes is due to the

covering map from Theorem 2.2.2 (i). Since m > 2 or k > 2, at least for one of

the considered image points from above, the planes corresponding to distinct pairs
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intersect transversally. So, also in this case, we deduce that S/h� 4i is a smallest

possible domain of e and we have

�
⇣
e⇠m�1,k�1

⌘
= �

�
S/h� 4i

�
=
�(S)

2
= 1� (m� 1)(k � 1) .

It remains to prove the area bounds. The lower bounds are obtained by the Li-

Yau inequality (cf. Theorem 6 in [42], combined with Proposition 1.2.3 from [35])

applied to the vertex points we studied above. If both m and k are even, these are

points of multiplicity m
2 and k

2 . Otherwise, the detected multiplicities are m and k.

Furthermore, together with the findings from above, the upper bounds on the area

are a direct result of the area formula (2.3) for e defined on the smallest possible S

(if m or k is odd) or S/h� 4i (if both m and k are even) and the area bounds for

the surface ⇠m�1,k�1 of Rob Kusner (cf. Proposition 3.2 in [34]), that is,

area(⇠m�1,k�1) < 4⇡k .

Finally, since we detected transversally intersecting tangent planes for the surface
e⇠m�1,k�1 in the preceding proof, the following conclusion is immediate.

Corollary 2.3.3. Let m, k 2 Z�2 such that m > 2 or k > 2. Then, the bipolar

surface e⇠m�1,k�1 ✓ S
5 is not embedded.

Remark 2.3.4. (i) The example of the surfaces e⇠m,k demonstrates that, contrary

to e⌧3,1 (compare Section 2.3.4), which is embedded but originates from a surface

in S
3 with self-intersections, the opposite scenario can also happen.

(ii) Recall that by Remark 1.4.3 (iii) the surfaces e⇠m,k (except for e⇠1,1, which is

again a Cli↵ord torus, as discussed in Remark 3.3.3 (ii)) lie non-degenerately

in S
5, i.e., they cannot be viewed as minimal surfaces in S

4.

We conclude this section with some reflections on potential future developments

that may be based on the preceding framework.

Remark 2.3.5. (i) Note that in [29], the symmetry groups of the ⇠-family in S
3

and corresponding subgroups were deeply studied. In particular, it was shown
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that any closed, embedded minimal surface in S
3 with the symmetries as a

Lawson surface ⇠m,k has the same genus mk and is congruent to ⇠m,k. As

a future perspective, it would be interesting to know whether this allows to

classify the bipolar surfaces e⇠m,k by their symmetry group.

(ii) In [28], the index and the nullity of the Lawson surfaces ⇠g,1 was determined.

According to [37] (Chapter 11), this seems closely related with the concept of

bipolar minimal immersions, whose components are the restrictions of Jacobi

fields of infinitesimal rotations in S
3 (see also Remark 1.4.3 (iii)). In that

context, it might be worth exploring how the aforementioned results can be

interpreted.

(iii) In [21], new area estimates for the surfaces ⇠1,g of genus g with g � 1 have

been specified. These could also be considered in the context of area estimates

for bipolar surfaces now.

2.3.3 The e⌘-Family

We proceed with the ⌘-family. Again, let m, k � 2 such that m > 2 or k > 2.

Hereby, we exclude the surface ⌘1,1 = ⌧2,1, which we will treat in the context of the

⌧ -family. The surface ⌘m�1,k�1 is based on the geodesic polygon

�⌘m�1,k�1
:= Q0P1Q1[P0](�Q1) ,

where the arc of length ⇡ connecting Q1 and �Q1 passes through the point P0. Note

that �⌘m�1,k�1
has interior angles ⇡

m , ⇡
k and two of ⇡

2 . Furthermore, it includes two

arcs of length ⇡
2 , one arc of length ⇡ and one of length (m�1)⇡

m . Its group generated

by the corresponding geodesic reflections is given by

G⌘m�1,k�1
= hr10, r11, r01, rQi , (2.13)

where rQ denotes the geodesic reflection at the great circle �Q. To study G⌘m�1,k�1

in more detail, we have to distinguish between the cases where k is even and where

k is odd.
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•P0

•

•

•

Q0
Q1

�Q1

•
P1

Figure 2.5: In stereographic projection, this graphic shows the type of geodesic
polygon �⌘ ✓ S

3 used to construct a surface in the ⌘-family.

At first, let k be even. Since

(r01 · r11)
k
2 =

⇣
R

(12)
2⇡
k

⌘ k
2
= rQ , (2.14)

rQ can be dropped as a generator. Moreover, this relation reads as

4 = (r11 · r01)
k
2 · rQ

and hence, by Proposition 2.1.8, shows that ⌘m�1,k�1 is non-orientable.

Now, analogous to the case of the ⇠-family, it follows that

G⌘m�1,k�1
=
⌦
R

(12)
2⇡
k

,R(34)
2⇡
m

, r00

↵

=
n⇣

R
(12)
2⇡
k

⌘↵
·
⇣
R

(34)
2⇡
m

⌘�
· r�00 : ↵ 2 Zk, � 2 Zm, � 2 Z2

o
. (2.15)

In particular, we have

|G⌘m�1,k�1
| = 2mk (for k even)
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and therefore, by (2.1),

�(⌘m�1,k�1) = 2mk

 
1� m� 1

2m
� k � 1

2k
� 1

2

!

= 1� (m� 1)(k � 1) (for k even) , (2.16)

as given in [37].

Let now k be odd. In this case, the generator rQ cannot be omitted, leading to

the conclusion that ⌘m�1,k�1 is orientable due to Proposition 2.1.8. By the fact that

rQ commutes with all the other generators from (2.13), we have

G⌘m�1,k�1
⇠= hrQi ⇥ hr10, r11, r01i ,

i.e.,

G⌘m�1,k�1
=

(
r�Q ·

⇣
R

(12)
2⇡
k

⌘↵
·
⇣
R

(34)
2⇡
m

⌘�
· r�00 : ↵ 2 Zk, � 2 Zm, �, � 2 Z2

)
. (2.17)

So here, we have

|G⌘m�1,k�1
| = 4mk (for k odd) , (2.18)

and (2.1) implies that

�(⌘m�1,k�1) = 4mk

 
1� m� 1

2m
� k � 1

2k
� 1

2

!

= 2� 2(m� 1)(k � 1) (for k odd) , (2.19)

as noted in [37]. Moreover, the parity �(g) of

g = r�Q ·
⇣
R

(12)
2⇡
k

⌘↵
·
⇣
R

(34)
2⇡
m

⌘�
· r�00 2 G⌘m�1,k�1

,
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is given by

�(g) = � + � . (2.20)

We move to the next point on our checklist.

Lemma 2.3.6. Let m, k 2 Z�2 and assume that m > 2 or k > 2. Then, the subgroup

H⌘m�1,k�1
✓ G⌘m�1,k�1

leaving the polygon �m�1,k�1 invariant is trivial, i.e.,

H⌘m�1,k�1
= { 4} .

Proof. In fact, regardless of the parities of m and k, we have that the subgroup of

O(4) which leaves

�⌘m�1,k�1
= Q0P1Q1[P0](�Q1)

invariant as a point set is trivial. To see this, one can first consider the possible

images under a symmetry of Q1[P0](�Q1), the only arc of length ⇡, and then images

of the piece Q0P1Q1 if m > 2, or images of P1Q1[P0](�Q1) if k > 2.

We finally arrive at the topological classification of the bipolar e⌘-family.

Theorem 2.3.7. Let m, k 2 Z�2 such that m > 2 or k > 2. Then, the bipolar

surface e⌘m�1,k�1 ✓ S
5 is orientable. Moreover,

(i) if both m and k are even, we have

�
⇣
e⌘m�1,k�1

⌘
= 1� (m� 1)(k � 1) ,

2⇡max{m, k}  area
⇣
e⌘m�1,k�1

⌘
< 2⇡(3mk � 3k �m) ;

(ii) if m or k is odd, we have

�
⇣
e⌘m�1,k�1

⌘
= 2
�
1� (m� 1)(k � 1)

�
,

4⇡max{m, k}  area
⇣
e⌘m�1,k�1

⌘
< 4⇡(3mk � 3k �m) .
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Remark 2.3.8. Note that the whole e⌘-family (including the bipolar surface of ⌘1,1 =

⌧2,1) is orientable. So, the (almost) complete list of closed, non-orientable minimal

surfaces from S
3 does not carry over to S

5.

Proof of Theorem 2.3.7. We proceed analogously to the proof of Theorem 2.3.2. The

initial Gauß map n : �! S
3 can be chosen such that

n
�
f�1(Q0)

�
= P̂1 , n

�
f�1(P1)

�
= �P̂1 ,

n
�
f�1(Q1)

�
= Q̂1 , n

�
f�1(�Q1)

�
= P̂0 ,

at the vertices of �⌘m�1,k�1
. Connected by shortest arcs, these values describe the

polar polygon �⇤
⌘m�1,k�1

of �⌘m�1,k�1
, where we note that the arc from P̂1 to �P̂1 runs

across �Q̂0.

If k is even, then ⌘m�1,k�1 is non-orientable and we use the notation from Con-

struction 2.1.13. In this setting, the multiplicity of an image point e 
⇣⇥

(0, e, p0)
⇤⌘

is

determined by the numbers of solutions
⇥
(s, g, p)

⇤
2 eS of

f(p) ^ n(p) = (�1)sg
�
f(p0)

�
^ g
�
n(p0)

�
. (2.21)

Now, if p0 2 @� is such that f(p0) = P1 or f(p0) = Q1, then the characterization of

the group from (2.15) implies that (2.21) is equivalent to

f(p0) ^ n(p0) = (�1)s+�f(p0) ^ n(p0) .

Consequently, we have

µ e 

 
e 
⇣⇥

(0, e, p0)
⇤⌘
!

=
1

2
·
2 · |G⌘m�1,k�1

|���Gp0
⌘m�1,k�1

���
,

i.e.,

µ e 

⇣
P1 ^

�
� P̂1

�⌘
= k , µ e 

⇣
Q1 ^Q1

⌘
= m.
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Considering the di↵erent tangent planes at these points of higher multiplicity and,

additionally, using Theorem 2.2.2 (ii) if m is even yields that smallest possible do-

mains of e are given by eS when m is odd, and by eS/h� 4i when m is even.

In turn, if k is odd, then ⌘m�1,k�1 is orientable and we are in the setting of

Construction 2.1.4 and Construction 2.1.11. Looking at the image point

P1 ^
�
� P̂1

�
= �e1 ^ e2

and using (2.17) as well as (2.20), it follows that S is a fundamental domain for e .
Thereby, in each of the above cases, the Euler characteristic of e⌘m�1,k�1 can be

computed by (2.16) and (2.19).

To finish the proof, the area bounds follow by the Li-Yau inequality, by the area

formula from (2.3) (considered on the orientable double cover S in each of the non-

orientable cases) and by Proposition 3.4 from [34], i.e.,

area(⌘m�1,k�1) < 2⇡(m� 1)k if k is even,

which we completed by

area(⌘m�1,k�1) < 4⇡(m� 1)k if k is odd.

The latter follows analogously as in [34], that is, by the bound for the initial minimal

disk, multiplied by the order of the group generated by Schwarz reflections (which is

twice the order of the former case due to (2.18)).

Ultimately, we arrive at the following.

Corollary 2.3.9. Let m, k 2 Z�2 such that m > 2 or k > 2. Then, the bipolar

surface e⌘m�1,k�1 ✓ S
5 is not embedded.

We finish here with some remarks on future applications of the mechanism applied

in the proofs of Theorem 2.3.2 and Theorem 2.3.7.

Remark 2.3.10. (i) Additional insights on topology and embeddedness of bipolar

minimal surfaces could be gained by studying the bipolar surfaces of other
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closed minimal surfaces in S
3 generated through reflection processes. It may

be necessary to refine the above approach for such considerations. Potential

candidates to start with include the surfaces of Karcher, Pinkall and Sterling

(cf. [31]), the surfaces of Choe and Soret (cf. [13]) or, more recently, the surfaces

of Bobenko, Heller and Schmitt (cf. [5]).

(ii) From Proposition 2.4 in [11], which can be understood in the context of Chapter

3, it follows that bipolar minimal immersions with a closed, orientable smallest

possible domain of genus > 1 must necessarily have self-intersections. As we

will address in the next section, note that the bipolar Lawson surface e⌧3,1

is an embedded Klein bottle. It remains open whether there are closed, non-

orientable bipolar minimal surfaces of higher genera and whether such examples

could be embedded.

In fact, as demonstrated by the above characterization the e⌘-family and the

characterization of the e⌧ -family in [36], not even non-orientable minimally im-

mersed surfaces in S
3 necessarily lead to non-orientable bipolar surfaces. In

this context, one could study the general characteristics that construction data

must possess to generate non-orientable bipolar surfaces.

2.3.4 The e⌧-Family

We now focus on Lawson’s ⌧ -family and consider a surface ⌧m,k, where m, k 2 Z�1.

Following Lawson’s construction procedure, this surface is obtained by the right-

angled geodesic polygon

�⌧m,k
:= P0P1Q0Q1

including one arc of length ⇡
m , one of length ⇡

k and two arcs of length ⇡
2 . For m = 1

or k = 1, the arc of length ⇡ between Q0 and Q1 or P0 and P1 lies on �Q or �P ,

respectively.

Note that, without loss of generality, we can assume that gcd(m, k) = 1. Other-

wise, congruent surfaces can be obtained using di↵erent pairs of m and k (a well-

known fact that can be seen from the parametrizations at the final part of this
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•

Q0
Q1

•
P1

Figure 2.6: In stereographic projection, this graphic illustrates the type of geodesic
polygon �⌧ for the construction of a surface in the ⌧ -family.

section). Except for ⌧1,1, which is the Cli↵ord torus S1(1/
p

2)⇥ S
1(1/

p
2) ✓ S

3, we can

additionally assume that m > k � 1 for the same reason.

Now, (2.1) directly leads to

�(⌧m,k) = 0 ,

so, depending on whether the surface is orientable or not, ⌧m,k is an immersed torus

or an immersed Klein bottle.

The group generated by the corresponding geodesic reflections is

G⌧m,k
= hrP , rQ, r00, r11i ,

where rP and rQ are the reflections at the great circles �P and �Q. For an appropriate

labeling of the group elements, similar to the ⇠- and ⌘-family, we have to distinguish

between the case where both m and k are odd and the case where m or k is even.

Before we start, recall that

r11 = r00 ·R(12)
2⇡
k

·R(34)
2⇡
m

,
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Figure 2.7: Stereographic projection of ⌧1,1, which is the Cli↵ord torus S1(1/
p

2) ⇥
S

1(1/
p

2) ✓ S
3 (produced with MATLAB)

and, due to (2.5),

r11 = R
(12)

� 2⇡
k

·R(34)

� 2⇡
m

· r00 = R�1
2 r00 , (2.22)

where we define

R2 := R
(12)
2⇡
k

·R(34)
2⇡
m

= r00 · r11 .

Now, at first, suppose that both m and k are odd. In this case,

⇣
R

(12)
2⇡
k

⌘n

6= rQ ,
⇣
R

(34)
2⇡
m

⌘n

6= rP for all n 2 Z .

Hence, as lcm(m, k) = mk, we derive that

G⌧m,k
⇠= hrP , rQi ⇥

�
Rn

2 · r�00 : n 2 Zmk, � 2 Z2

 
(2.23)

and in this sense label a group element g 2 G⌧m,k
by ↵, �, � 2 Z2 and n 2 Zmk such
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Figure 2.8: Examples of stereographically projected surfaces in the Lawson family
⌧m,k: The Klein bottle ⌧2,1 on the left and the torus ⌧3,1 on the right (produced with
MATLAB)

that

g = r↵P · r�Q ·Rn
2 · r�00 .

We observe that

|G⌧m,k
| = 8mk (for both m and k odd) .

Next, we determine the subgroup H⌧m,k
✓ G⌧m,k

which leaves the polygon �⌧m,k

invariant as a set.
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Lemma 2.3.11. Let m, k 2 Z�1 such that gcd(m, k) = 1. Moreover, suppose that

both m and k are odd. Then, we have

H⌧m,k
=
n

4, rP · rQ ·R
mk+1

2
2 · r00

o

if m > 1 or k > 1 and

H⌧1,1 =
n

4, rP · rQ, r00, rP · rQ · r00

o
.

Remark 2.3.12. As a map, the group element

rP · rQ ·R
mk+1

2
2 · r00 = R

(12)
⇡
k

·R(34)
⇡
m

· r00

corresponds to the geodesic reflection across the great circle through the points

P 1
2
:=

0

BBB@

cos
�
⇡
2k

�

sin
�
⇡
2k

�

0

0

1

CCCA
, Q 1

2
:=

0

BBB@

0

0

cos
�
⇡

2m

�

sin
�
⇡

2m

�

1

CCCA
.

Proof of Lemma 2.3.11. For the moment, suppose that m > 1 or k > 1. Then,

without loss of generality, we can assume that m > k � 1.

Due to the block diagonal form of elements in G⌧m,k
and the included arcs, g 2

H⌧m,k
if and only if g preserves the union of the arcs P0Q0 and P1Q1. Equivalently,

this can be stated as

either g(P0) = P0 , g(Q0) = Q0 , g(P1) = P1 , g(Q1) = Q1 (2.24)

or g(P0) = P1 , g(Q0) = Q1 , g(P1) = P0 , g(Q1) = Q0 . (2.25)

Now, suppose that g 2 H⌧m,k
. At first, we have

g(P0) =
�
r↵P · r�Q ·Rn

2 · r�00

�
(P0) = (�1)�P2n .
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Then, the above conditions demand that

either (�1)�P2n = P0 or (�1)�P2n = P1 .

The first case reads as

2n+ � · k ⌘ 0 mod 2k .

Since k is odd, we must have � = 0 and hence n 2 kZ. Moreover,

�
r↵P ·Rn

2 · r�00

�
(P1) = r�00(P1)

implies that � = 0. Otherwise, if

2n+ � · k ⌘ 1 mod 2k ,

it follows that � = 1 and n 2 k+1
2 Z. From

�
r↵P · r�Q ·Rn

2 · r�00

�
(P1) = �

�
Rn

2 · r�00

�
(P1)

we derive that � = 1. Until now, we know that g could be of the form

g = r↵P ·Rn1
2 for n1 2 kZ

or

g = r↵P · rQ ·Rn2
2 · r00 for n2 2 k+1

2 Z .

In order to determine ↵ and to restrict n1, n2 to values in Zmk, we consider the

conditions (2.24) and (2.25) for Q0 and Q1. At first, suppose that

g = r↵P ·Rn1
2 , n1 2 kZ .

Then,

g(Q0) =
�
r↵P ·Rn1

2n

�
(Q0) = Q0
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implies that ↵ = 0 and n1 2 Zmk and hence g = 4. Otherwise, if

g(Q0) =
�
r↵P ·Rn1

2

�
(Q0) = Q1 ,

we have ↵ = 1 and

n1 ⌘ 0 mod k ,

n1 ⌘
m+ 1

2
mod m.

However, as we assumed that m > 1, this would yield that

g(Q1) = Q2 6= Q0 .

So, instead, we check the possibility that

g = r↵P · rQ ·Rn2
2 , n2 2 k+1

2 Z .

In this case,

g(Q0) =
�
r↵P · rQ ·Rn2

2 · r00

�
(Q0) = Q0

yields ↵ = 0 and

n2 ⌘
k + 1

2
mod k ,

n2 ⌘ 0 mod m.

But since in addition

g(Q1) = Q�1 6= Q1 .
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this form is not allowed due to (2.24) and (2.25). Finally, checking

g(Q0) =
�
r↵P · rQ ·Rn2

2 · r00

�
(Q0) = Q1 ,

we obtain ↵ = 1 and

n2 ⌘
k + 1

2
mod k ,

n2 ⌘
m+ 1

2
mod m.

This also yields that g(Q1) = Q0. And therefore,

g = rP · rQ ·Rn
2 · r00 2 H⌧m,k

,

for n such that

n ⌘ k + 1

2
mod k ,

n ⌘ m+ 1

2
mod m,

which is only satisfied by n = mk+1
2 2 Zmk.

For the case of ⌧1,1, note that R2 = . Hence,

G⌧1,1
⇠= hrP , rQi ⇥ hr00i .

In this case, we directly apply each group element to �⌧1,1 = P0(�P0)(�Q0)Q0 and

check when (2.24) or (2.25) is satisfied, proving the assertion.

Now, by the above lemma, an analysis based on Section 2.1 and Section 2.2 is

only possible if we choose a smaller initial piece of surface to continue, for example

the one bounded by the geodesic polygon

�̂⌧m,k
= P0P 1

2
Q 1

2
Q0 .

Using analogous methods as above, we derive that the corresponding group generated
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by geodesic reflections is

Ĝ⌧m,k
⇠= hrP , rQi ⇥

�
R̂n

2r
�
00 : n 2 Z2mk, � 2 Z2

 
,

where we defined

R̂2 := R
(12)
⇡
k

R
(34)
⇡
m

.

In this sense, we label a group element g 2 Ĝ⌧m,k
by

g = r↵P · r�Q · R̂n
2 · r�00 for ↵, �, � 2 Z2 , n 2 Z2mk .

Then, as orientability is ensured similarly as for the previous families, the parity of

g 2 Ĝ⌧m,k
reads as

�(g) = (�1)↵+�+� . (2.26)

Before we continue, note that, purely as groups,

Ĝ⌧m,k
= G⌧m,k

.

Expressed heuristically, changing the initial piece of surface as above, the number of

group copies of the initial piece remains the same – but di↵erent pieces of the surface

M� are now uniquely described in terms of group elements.

At this stage, we are ready to draw the following conclusion. Note that the

topology and area of the surfaces e⌧m,k were completely specified in [36], within the

spectral geometric context of the normalized Laplacian eigenvalue functionals. So,

our intention is to compare the characterization resulting from our framework with

these results.

Theorem 2.3.13. Let both m, k 2 Z�1 be odd with m > k � 1 and gcd(m, k) = 1.
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Then, the area of the bipolar surface e⌧m,k satisfies

area
⇣
e⌧m,k

⌘
 4⇡mE

 p
m2 � k2

m

!
,

where

E() =

Z ⇡
2

0

q
1� 2 sin2(#) d#

denotes the complete elliptic integral of the second kind.

Proof. We have

� 4 = rP · rQ 2 Ĝ⌧m,k

implying that �(� 4) = 0. Therefore, Theorem 2.2.2 is applicable and yields that

the surface e⌧m,k is at least doubly covered by S which is a smallest possible domain

for ⌧m,k. Therefore, we can use the area formula (2.3) for e : S/h� 4i ! S
5. Since

S/h� 4i is not necessarily a smallest possible domain for e⌧m,k, we thereby only arrive

at an upper bound for the actual area. Concluded, this leads to

area
⇣
e⌧m,k

⌘
 area(⌧m,k).

Then, the assertion follows from the main theorem in [60], providing that the metric

induced by ⌧m,k is extremal for the j-th Laplacian eigenvalue functional ⇤j

�
T

2, g
�
=

�j

�
T

2, g
�
area

�
T

2, g
�
, where the order j is determined as

j = 2

$p
m2 + k2

2

%
+m+ k � 1 .

This result in particular includes the explicit value of ⇤j(⌧m,k). As �j = 2 for minimal

surfaces in S
n (cf. 1.1.9 and note the sign convention of the Laplacian in the theory
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of Laplacian eigenvalues), dividing ⇤j(⌧m,k) by 2 yields

area(⌧m,k) = 4⇡mE

 p
m2 � k2

m

!
(2.27)

and so the upper bound follows.

Remark 2.3.14. Note that a similar reasoning as in the proofs of Theorems 2.3.2

and 2.3.7 leading to smallest fundamental domains and a statement on embeddedness

is not a priori clear in the case of the e⌧ -family. This is due to the forms of the polygon

�⌧m,k
and the polar polygon

�⇤
⌧m,k

= Q̂0Q̂1

�
� P̂1

��
� P̂0

�
.

Here, it cannot simply be excluded that interior points or points within the edges

of group copies of the initial pieces of surface are not mapped to the same point as

for example P0 ^ Q̂0. In the case of the ⇠- and ⌘-family pairs of vertex points of the

surface in S
3 and its polar surface are distinguished by either lying on �P or �Q.

For the e⌧ -family, clarity is provided by [36]. In this paper, Hugues Lapointe

showed that also the e⌧ -family yield extremal metrics for the Laplacian eigenvalues.

Among other things, he demonstrated that

• for mk = 1 mod 4, e⌧m,k is a torus and

area
⇣
e⌧m,k

⌘
=

1

2
⇤2m�2

⇣
e⌧m,k

⌘
=

1

2
⇤2m+2

⇣
e⌧m,k

⌘
= 4⇡mE

 p
m2 � k2

m

!
,

• for mk = 3 mod 4, e⌧m,k is a Klein bottle and

area
⇣
e⌧m,k

⌘
=

1

2
⇤m�2

⇣
e⌧m,k

⌘
=

1

2
⇤m+2

⇣
e⌧m,k

⌘
= 2⇡mE

 p
m2 � k2

m

!
.

To compare with the e⇠ and the e⌘-family, this in particular implies that in the case

mk ⌘ 1 mod 4, the detected covering map due to � 4 2 G⌧m,k
is also su�cient to

86



arrive at a smallest possible domain for e⌧m,k. By Theorem 2.2.2 (i), this domain is

orientable, confirming the classification from [36] for that case.

The case mk ⌘ 3 mod 4 requires further methods concerning a topological clas-

sification and specification of the area. It contains the perhaps most prominent

example among the considered surfaces, the Klein bottle e⌧3,1, which plays a crucial

role in several classical geometric variational problems. First, it is the only critical

metric on a Klein bottle for the first Laplacian eigenvalue (cf. [15] and [26]). By

[23], it is furthermore conjectured to be, after stereographic projection, the unique

minimizer of the Willmore energy among Klein bottles in R
n, n � 4. Moreover, due

to [11], it can be seen as the only Hamiltonian stable, minimal Lagrangian Klein

bottle in S
2 ⇥ S

2. For e⌧3,1, the above estimate reads as

area
⇣
e⌧3,1

⌘
 12⇡E

 
2
p
2

3

!
.

In fact, Theorem 1.3.1 and Theorem 1.4.1 in [26] yield that actually

area
⇣
e⌧3,1

⌘
= 6⇡E

 
2
p
2

3

!
⇡ 6.682 ⇡ .

For a more detailed background on the additional findings from [36] when mk ⌘
3 mod 4 we refer to the end of this section.

We proceed with the case when m or k is even (and consequently, the other must

be odd as gcd(m, k) = 1). Here, the product mk is even, leading to

R
mk
2

2 = R
(12)

m⇡ ·R
(34)

k⇡ =

8
<

:
rP if m is even ,

rQ if k is even .

Due to (2.22), we specifically have that

(r00 · r11)
mk · rP = 4 if m is even ,

(r00 · r11)
mk · rQ = 4 if k is even ,
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confirming that ⌧m,k is non-orientable in these cases. Moreover, similarly as in the

preceding considerations, we thereby conclude that

G⌧m,k
⇠=

8
<

:
hrQi ⇥

�
Rn

2 · r�00 : n 2 Zmk, � 2 Z2

 
if m is even ,

hrP i ⇥
�
Rn

2 · r�00 : n 2 Zmk, � 2 Z2

 
if k is even .

Accordingly, we have

|G⌧m,k
| = 4mk (for m or k even) .

An analogous analysis as in the proof of Lemma 2.3.11 based on (2.24) and (2.25),

moreover yields the following for the subgroup H⌧m,k
that leaves �⌧m,k

invariant.

Lemma 2.3.15. Let m, k 2 Z�1 such that gcd(m, k) = 1. Moreover, suppose that

m or k is even. Then,

H⌧m,k
= { 4} .

Now, since

� 4 = rP · rQ =

8
<

:
rQ ·R

mk
2

2 if m is even ,

rP ·R
mk
2

2 if k is even ,

we can apply Theorem 2.2.2 (ii) and arrive at the following.

Theorem 2.3.16. Let both m, k 2 Z�1 with m > k � 1 and gcd(m, k) = 1. If m or

k is even, the surface e⌧m,k satisfies

area
⇣
e⌧m,k

⌘
 8⇡mE

 p
m2 � k2

m

!
.

Proof. Due to the covering map from Theorem 2.2.2 (ii), we use the area formula
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(2.3) on the orientable double cover S and derive

area
⇣
e⌧m,k

⌘
 2 area(⌧m,k) = 8⇡mE

 p
m2 � k2

m

!
.

from (2.27).

Remark 2.3.17. For the case that mk is even, [36] shows that e⌧m,k is a torus and

area
⇣
e⌧m,k

⌘
=

1

2
⇤4m�2

⇣
e⌧m,k

⌘
=

1

2
⇤4m+2

⇣
e⌧m,k

⌘
= 8⇡mE

 p
m2 � k2

m

!
,

So, we actually have equality above and hence, also here, the covering map from

Section 2.2 is su�cient to determine the topology of a bipolar surface.

For a comprehensive understanding of the ⌧ -family and e⌧ -family as in [36] and,

in general, the variety of results from spectral geometry mentioned above the crucial

point is that Lawson additionally provided explicit parametrizations for the surfaces

⌧m,k in [37], namely

 m,k : R
2 ! S

3 ✓ R
4,  m,k(x, y) :=

0

BBB@

cos(mx) cos(y)

sin(mx) cos(y)

cos(kx) sin(y)

sin(kx) sin(y)

1

CCCA
,

inducing the metric

gm,k(x, y) = fm,k(y) dx
2 + dy2 , (2.28)

fm,k(y) :=
1

2

⇣
k2 +m2 +

�
m2 � k2

�
cos(2y)

⌘
.

Note, that a Gauss map of  m,k is given by

 ⇤
m,k : R

2 ! S
3 ✓ R

4 ,
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 ⇤
m,k(x, y) :=

1p
m2 cos2(y) + k2 sin2(y)

0

BBB@

k sin(mx) sin(y)

�k cos(mx) sin(y)

�m sin(kx) cos(y)

m cos(kx) cos(y)

1

CCCA
.

Furthermore notice that viewing S
3 ✓ R

4 ⇠= C
2, the immersion can also be written

as

 m,k(x, y) =

 
eimx cos(y)

eikx sin(y)

!
=

 
1 0

0 eikx

! 
eimx 0

0 1

! 
cos(y)

sin(y)

!
.

From this notation, we can derive that the surfaces ⌧m,k are ruled surfaces, often

referred to as spherical helicoids (for a comprehensive study see [10]). They are

generated by rotating the geodesic y 7!
�
cos(y), sin(y)

�
around the axis s 7!

�
0, eis

�

while simultaneously translating along this curve. A full rotation is related to a

translation by 2⇡ · k
m , indicating that the key parameter3 to describe the immersed

surface ⌧m,k is the ratio k
m  1.

Now, based on the the above picture, Lawson collects the properties of the ⌧ -

family in Theorem 3 in [37]. The parametrization directly allows to justify the as-

sumption that m > k � 1 and gcd(m, k) = 1 by applying appropriate reparametriza-

tions or isometries of S5. Moreover, it can be easily shown that ⌧m,k ✓ S
3 is invariant

under the one-parameter group

Gm,k :=
�
R

(12)

mt ·R(34)

kt : t 2 R
 
✓ SO(4) .

In this picture, the topological classification follows furthermore from the symmetries

of the immersion  m,k. Smallest possible domains are obtained from the actions on

3In fact,  m,k can be reparametrized as  ̂ k
m

(x, y) :=
�
eix cos(y), ei

k
mx sin(y)

�
, generalizing to a

parametrization  ̂↵ for parameters ↵ > 0. Among the immersed surfaces  ̂↵ the closed ones are
only given for ↵ 2 Q. In Proposition 7.2 in [37], Lawson shows that any ruled minimal surface in
S
3 corresponds to an open subset of a surface  ̂↵.
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R
2 of the groups generated by the maps sending (x, y) to

(x+ ⇡,�y) and (x, y + 2⇡) if m is even (i.e., ⌧m,k is a Klein bottle) ,

(x+ ⇡, ⇡ � y) and (x, y + 2⇡) if k is even (i.e., ⌧m,k is a Klein bottle) ,

(x+ ⇡, y + ⇡) and (x, y + 2⇡) if m, k are odd (i.e., ⌧m,k is a torus) .

Now, in more detail, we come back to the work of Hugues Lapointe in [36]. In

Section 3 of that article, Lapointe computed parametrizations of the bipolar surfaces

by considering the parametrizations

e m,k =  m,k ^  ⇤
m,k : R

2 ! S
5 ✓ R

6 ,

or, more precisely, �m,k := A � e m,k for an orthogonal transformation A 2 O(6).

Explicitly, these read as �m,k : R2 ! S
5 ✓ R

6,

�m,k(x, y) :=
1

a(y)

0

BBBBBBBB@

(m� k) sin(2y)

(m+ k) sin(2y)�
(m� k) + (m+ k) cos(2y)

�
sin
�
(m� k)x

�
�
(m+ k) + (m� k) cos(2y)

�
sin
�
(m+ k)x

�
�
(m+ k) + (m� k) cos(2y)

�
sin
�
(m+ k)x

�
�
(m� k) + (m+ k) cos(2y)

�
sin
�
(m� k)x

�

1

CCCCCCCCA

, (2.29)

a(y) :=
p
8
q
m2 cos2(y) + k2 sin2(y)

with induced metric

egm,k(x, y) =

⇣
m2 �

�
m2 � k2

�
sin2(y)

⌘2

+m2k2

m2 �
�
m2 � k2

�
sin2(y)

 
dx2 +

dy2

m2 �
�
m2 � k2

�
sin2(y)

!
.

Note that for N := (m + k,m � k, 0, 0, 0, 0), we have h�m,k(x, y), Ni = 0 for all

(x, y) 2 R
2, implying that e⌧m,k lies in some S

4 ✓ S
5 (cf. Remark 1.4.3 (iii)).

For the above immersions �m,k(x, y), Lapointe determined smallest possible do-

mains by analyzing their symmetries, i.e., by looking at the periods and parity of
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each component.

Smallest possible domains result from the action of the groups generated by the

maps sending (x, y) 2 R
2 to

(x, y + ⇡) and (x+ 2⇡, y) if mk ⌘ 0 mod 2 (i.e., e⌧m,k is a torus) ,

(x+ ⇡, y) and (x, y + ⇡) if mk ⌘ 1 mod 4 (i.e., e⌧m,k is a torus) .

To get a cleaner picture for the remaining odd cases where mk ⌘ 3 mod 4, Lapointe

considered a reparametrization R
2 ! R

2 , (u, v) 7! (x(u), y(v)) with the property

that the induced metric of  m,k is conformal (corresponding to the transformation

H1 on page 15 in [36]). Looking at (2.28), this is obtained by setting

u := x , v =

Z
1p
f
dy

and computing (for example using Mathematica)

y(v) = am

✓
mv,

q
1� k2

m2

◆
,

where the latter denotes the Jacobi amplitude with elliptic modulus
q

1� k2

m2 .

First, note that thereby, the Lawson surface ⌧m,k is parametrized by

�m,k : R
2 ! S

3 ✓ C
2 , �m,k(u, v) =

�
eimucn(mv), eikusn(mv)

�
,

where cn and sn denote the Jacobi elliptic functions of the modulus
q
1� k2

m2 . The

metric h induced by �m,k is given by

hm,k(u, v) = �m,k(u, v) ·
�
du2 + dv2

�
, �m,k(u, v) := m2dn2(mv) .

Now, for the immersed surfaces �m,k, this reparametrization yields a symmetry ad-

ditional to the one given in the case mk ⌘ 1 mod 4, which is given by

H2(u, v) :=

✓
u+

⇡

2
,

2

m+ k
K

✓
m� k

m+ k

◆
� v

◆
,
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where

K() =

Z ⇡
2

0

d#p
1� 2 sin2(#)

denotes the complete elliptic integral of the second kind. Thereby, Lapointe concludes

that if mk ⌘ 3 mod 4, e⌧m,k is a Klein bottle (cf. Lemma 3.1.4 in [36]).

Remark 2.3.18. For future studies of bipolar surfaces, note that the ⌧ -family in

S
3 belongs to a broader class of minimal surfaces analyzed in [24]. In this article,

the surfaces ⌧m,k are referred to as Tm,k,0. Surfaces in the aforementioned class arise

from the study of closed geodesics on the orbit spaces S3/Gm,k and are obtained by

taking the preimage of these geodesics under the orbit space projection.

Furthermore, note that the ⌧ - family and e⌧3,1 appear among the family Ta,b,c of

closed minimal surfaces in S
5 from Theorem 15.1 in [61].
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Chapter 3

Geometry of Bipolar Minimal

Surfaces

Minimal surfaces in spheres are of significant interest, e.g., for the Willmore problem

or in spectral geometry. Yet, known examples are sparse, particularly in higher

codimensions. For this reason, one may ask:

“When is a minimal surface in S
5 the bipolar surface of a minimal surface in S

3?”

Towards an answer, the main result of this chapter reveals that, under certain con-

ditions, a local geometric correspondence for a specific class of minimal surfaces to

bipolar surfaces in S
5. The result itself as well as many tools on the way to prove

it were inspired by the work of Ildefonso Castro and Francisco Urbano in [11] about

minimal Lagrangian surfaces in S
2 ⇥ S

2, including the example of Gauss maps of

minimal surfaces in S
3 ✓ R

4. The latter, being closely related to bipolar minimal

surfaces in S
5, provide the link to our point of interest. Compared with the findings

of Castro and Urbano, our result holds under a relaxed condition, tailored to the

natural behavior of the considered class of surfaces. Furthermore, our proof expli-

citly handles the fundamental geometric data of the surfaces involved, which could

potentially enhance future understanding of further geometric aspects.
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3.1 Additional Structure on S
5

We begin with a more detailed exploration of further structure available on R
6 when

we consider the latter as the space of bivectors ⇤2
R

4 (for our notation, we refer

to Section 1.3). In this case, the Hodge isomorphism (cf. Definition 1.3.9) is an

endomorphism

⇤ : ⇤2
R

4 ! ⇤2
R

4 .

By Lemma 1.3.2, using an orthonormal basis (e1, e2, e3, e4) of R4 and setting

E±
1 :=

1p
2
(e1 ^ e2 ± e3 ^ e4) =

1p
2

�
e1 ^ e2 ± ⇤(e1 ^ e2)

�
,

E±
2 :=

1p
2
(e1 ^ e3 ⌥ e2 ^ e4) =

1p
2

�
e1 ^ e3 ± ⇤(e1 ^ e3)

�
,

E±
3 :=

1p
2
(e1 ^ e4 ± e2 ^ e3) =

1p
2

�
e1 ^ e4 ± ⇤(e1 ^ e4)

�

induces an orthonormal basis

⇣
E+

1 , E
+
2 , E

+
3 , E

�
1 , E

�
2 , E

�
3

⌘
(3.1)

of ⇤2
R

4 which satisfies

⇤E±
i = ±E±

i for i = 1, 2, 3 .

This shows that spectrally, the Hodge isomorphism decomposes ⇤2
R

4 into a direct

sum of two eigenspaces R3
+ and R

3
� of dimension 3, with eigenvalues +1 and �1. In

particular, ⇤ : ⇤2
R

4 ! ⇤2
R

4 is a symmetric isometry.

Now, identifying ⇤2
R

4 ⇠= R
6, any p 2 R

6 can be written as p = p+ + p� with

unique vectors p+ 2 R
3
+, p

� 2 R
3
�. If hp, ⇤pi = 0, then we have

0 =
⌦
p+ + p�, p+ � p�

↵
=
��p+
��2 �

��p�
��2

and we are precisely in the situation that
��p+
�� =

��p�
��. With this in mind, we consider
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in S
5 the subset

M :=
�
v 2 S

5 : hv, ⇤vi = 0
 

=
�
v 2 R

6 : |v| = 1 and hv, ⇤vi = 0
 

=
�
v 2 R

6 : v± 2 S
2
±(1/

p
2)
 

with S
2
±(1/

p
2) denoting the spheres of radius 1p

2
in the eigenspaces R3

±. From this, we

directly deduce that M is a submanifold of S5, corresponding to a specific embedding

of S2(1/
p

2)⇥ S
2(1/

p
2) into S

5. We have

TpM = span(p, ⇤p)? ✓ p? = TpS
5 at p 2 M . (3.2)

Remark 3.1.1. In fact, there are several ways to view the submanifold M. Based

on Definition 1.3.4 and Definition 1.3.9, it can be shown that M corresponds to the

set of simple bivectors of length 1. In the light of Remark 1.3.6, the latter can be

identified with the Grassmann manifold G+
2

�
R

4
�
. In conclusion, we have

S
2 (1/

p
2)⇥ S

2 (1/
p

2) ⇠= M ⇠=
�
v ^ w : v, w 2 R

4
 ⇠= G+

2

�
R

4
�
.

Furthermore, since any oriented, two-dimensional subspace of R4 fixes a geodesic in

S
3 (as an oriented curve), M can also be seen as the space of geodesics in S

3 (e.g.,

see [4]).

Now, the additional structure we want to consider on M is the following (for

more details see for example [11, 70, 59]).

Proposition 3.1.2. The standard almost complex structure on S
2(1/

p
2),

J0|x : TxS
2(1/

p
2) ! TxS

2(1/
p

2) , v 7!
p
2 · x⇥ v for x 2 S

2(1/
p

2) , (3.3)

where ⇥ denotes the cross product on R
3, gives rise to two almost complex structures

J+ := J0 � J0 , J� := J0 � (�J0) on M .
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For p 2 M,

J±��
p
: TpM ! TpM

are linear isometries with J±
��2
p
= �id, and therefore in particular bijective and skew-

symmetric. Moreover, we have ⇤ � J±
��
p
= J⌥

��
p
and ⇤ � J±

��
p
= J±

��
p
� ⇤.

To get an idea of J± acting on 2-vectors, we consider the following example.

Example 3.1.3. Since ⇤(e1 ^ e2) = e3 ^ e4, the tangent space to M at e1 ^ e2 2 M
is

Te1^e2M = span(e1 ^ e2, e3 ^ e4)
?

= span(e1 ^ e3, e1 ^ e4, e2 ^ e3, e2 ^ e4)

=
�
v ^ w 2 ⇤2

R
4 : v 2 span(e1, e2), w 2 span(e3, e4)

 
.

For v ^ w 2 Te1^e2M, we have

J±��
e1^e2

(v ^ w) =
p
2(e1 ^ e2)

+ ⇥ (v ^ w)+ ±
p
2(e1 ^ e2)

� ⇥ (v ^ w)�

= E+
1 ⇥ (v ^ w)+ ± E�

1 ⇥ (v ^ w)�

and therefore, by an evaluation on the basis vectors from above,

J+
��
e1^e2

(v ^ w) = v ^R⇤(w) ,

J���
e1^e2

(v ^ w) = R(v) ^ w ,
(3.4)

where R and R⇤ denote the rotation by ⇡
2 on the oriented subspaces span(e1, e2)

(associated to e1 ^ e2) and span(e3, e4) (associated to e3 ^ e4).

From now on, whenever we write J , it either refers to J+ or J�.

3.2 A Class of Minimal Surfaces in S
5

In the following, we are interested in the specific properties of the class of minimally

immersed surfaces in S
5 that lie in the submanifold M. According to our previous
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observations, an immersed surface � : ⌃ ! S
5 is part of this class if and only if

h�, ⇤�i = 0. The latter implies that the unit vector field

⌘ := ⇤�

is tangential to S
5 and normal to the surface since

0 = d(h�, ⇤�i)(v) = 2hd�(v), ⌘i for all v 2 Tp⌃ . (3.5)

Therefore, the normal bundle over ⌃ can be expressed as

N⌃ = N � R⌘ ,

where N � {0} is tangent to M.

Below, we always work in the setting of a minimally immersed surface � : ⌃! S
5

with h�, ⇤�i = 0. By ĝ and �̂ we denote its first and second fundamental form and

by Â⇠ its shape operator of a normal vector field ⇠ 2 �(N⌃). Furthermore, D, r̂ and

r̂? are the connections on R
6, T⌃ and N⌃, respectively. Note that we always work

with oriented surfaces for technical reasons. As already mentioned in Section 1.2, a

non-orientable manifold can always be considered by its orientable double cover.

The initial property we observe for this class is the significant role of the Hodge

isomorphism in describing the geometry.

Lemma 3.2.1. Let � : ⌃ ! S
5 be an oriented, minimally immersed surface such

that h�, ⇤�i = 0. Then, we have

⇤X = �Â⌘(X) + r̂?
X⌘ for all X 2 X(⌃) (3.6)

and thereby

hE1, ⇤E1i+ hE2, ⇤E2i = 0 (3.7)

for any local orthonormal frame (E1, E2) on ⌃.
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Proof. Let X, Y 2 X(⌃). The Gauss formula (1.1) reads as

DXY + hX, Y i� = r̂XY + �̂(X, Y ) (3.8)

and hence

h�̂(X, Y ), ⌘i = hDXY, ⌘i = X (hY, ⌘i)� hY,DX⌘i
(3.5)
= �hX, ⇤Y i . (3.9)

In particular, we find

(⇤X)T = �Â⌘(X) . (3.10)

Moreover,

(⇤X)N = (⇤X�)N = (X(⇤�))N = (DX⌘)
N = r?

X⌘ .

Finally, as (3.5) implies

h⇤X,�i = hX, ⇤�i = 0 , (3.11)

the first part of the assertion follows. Now, by definition, minimality in S
5 neces-

sitates that the trace of the second fundamental form �̂ vanishes. Specifically, this

applies to its component into the direction of ⌘. Therefore, the second part above is

an immediate consequence of (3.10).

Remarkably, this reveals a compatibility between the tangent and normal bundle

for the considered surfaces.

Proposition 3.2.2. If � : ⌃ ! S
5 is an oriented, minimaly immersed surface with

h�, ⇤�i = 0, then

N � {0} = J+(T⌃) or N � {0} = J�(T⌃) .
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Proof. Let (E1, E2) be a local orthonormal frame on ⌃. Due to (3.7), we have

��E+
1

��2 +
��E+

2

��2 =
��E�

1

��2 +
��E�

2

��2 .

In particular, this yields

2 =
��E1

��2 +
��E2

��2 =
��E+

1

��2 +
��E+

2

��2 +
��E�

1

��2 +
��E�

2

��2 = 2
⇣��E±

1

��2 +
��E±

2

��2
⌘

and hence

��E±
1

��2 +
��E±

2

��2 = 1 . (3.12)

Once again combined with the fact that |E1|2 = |E2|2 = 1, the latter shows that

��E+
1

�� =
��E�

2

�� ,
��E�

1

�� =
��E+

2

�� . (3.13)

Moreover, as
���±

�� ⌘ 1p
2
, we have

⌦
�±, E±

i

↵
= 0 for i = 1, 2 .

In sum, this implies

�� det
�
�+, E+

1 , E
+
2

��� = vol
�
�+, E+

1 , E
+
2

�

=
1p
2

��E+
1

����E+
2

�� sin
 
arccos

 ⌦
E+

1 , E
+
2

↵
��E+

1

����E+
2

��

!!

=
1p
2

��E+
1

����E+
2

��

vuut1�
⌦
E+

1 , E
+
2

↵2
��E+

1

��2��E+
2

��2

=
1p
2

q��E+
1

��2��E+
2

��2 �
⌦
E+

1 , E
+
2

↵2
.

Accordingly, using (3.13) and the fact that

⌦
E+

1 , E
+
2

↵
= �

⌦
E�

1 , E
�
2

↵
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by hE1, E2i = 0, we conclude that

det
�
�+, E+

1 , E
+
2

�
= ± det

�
��, E�

1 , E
�
2

�
.

Now, in the
”
�“-case, we have

hJ+E1, E2i =
p
2
⇣⌦
�+ ⇥ E+

1 , E
+
2

↵
+
⌦
�� ⇥ E�

1 , E
�
2

↵⌘

=
p
2
⇣
det
�
�+, E+

1 , E
+
2

�
+ det

�
��, E�

1 , E
�
2

�⌘

= 0 .

Analogously, the
”
+“-case implies

hJ�E1, E2i =
p
2
⇣
h�+ ⇥ E+

1 , E
+
2 i � h�� ⇥ E�

1 , E
�
2 i
⌘

=
p
2
⇣
det
�
�+, E+

1 , E
+
2

�
� det

�
��, E�

1 , E
�
2

� ⌘

= 0 .

In addition, we have

hJ±Ej, Eji = 0 for j 2 {1, 2} ,

which follows directly from the definition of the cross product. Along with the fact

that J±
��
p
are skew-symmetric, linear isomorphisms of TpM, we can finally infer that

N � {0} = J+(T⌃) or N � {0} = J�(T⌃) .

Remark 3.2.3. In other words, the above statement means that � is a minimal

Lagrangian immersion into the manifold M ⇠= S
2(1/

p
2) ⇥ S

2(1/
p

2) with respect to

J+ or J�. For a more detailed analysis from this viewpoint, we refer, for instance,

to [11], [59] or [70]. To establish a link to our framework, note that for an immersed

surface � : ⌃! M with induced metric ĝ, we have

0 = �̂h�, ⇤�i = 2
⌦
�̂�, ⇤�

↵
+ 2hd�, d(⇤�)i ,
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implying that

⌦
�̂�, ⇤�

↵
= �hd�, ⇤d�i = �

2X

i=1

hEi, ⇤Eii = �
⇣��E+

1

��2 +
��E+

2

��2 �
��E�

1

��2 �
��E�

2

��2
⌘

in terms of a local orthonormal frame on ⌃. Reversing the steps in the proof above,

we observe that

⌦
�̂�, ⇤�

↵
= 0

if and only if N � {0} = J(T⌃) for J 2
�
J�, J+

 
. In this case, since also |�| ⌘ 1,

we obtain

HM = �2� ,

similarly as in the proof of Theorem 1.1.9. In other words, the notions of minimal

Lagrangian surfaces in M and minimal surfaces in S
5, which lie in M, coincide.

Proceeding with geometric properties, we furthermore notice that the components

of the second fundamental form exhibit a high degree of symmetry.

Lemma 3.2.4. For an oriented, minimally immersed surface � : ⌃ ! S
5 with

h�, ⇤�i = 0,

h�̂(X, Y ), JZi and h�̂(X, Y ), ⇤Zi

are totally symmetric in X, Y and Z 2 X(⌃).

Proof. LetX, Y and Z 2 X(⌃). Combined with the Gauss formula (3.8), Proposition

3.2.2 yields ⌦
�̂(X, Y ), JZ

↵
= hDXY, JZi .

Furthermore,

DXJY = JDXY +
p
2
�
X+ ⇥ Y + �X� ⇥ Y �� .

Then, the relation between the cross product and the determinant on R
3 combined

with the fact that
⌦
�±,W±↵ = 0 for all W 2 X(⌃) (as

���±
�� ⌘ 1p

2
) yields the first
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symmetry. Therefrom, the second symmetry follows directly by a verification on a

local orthonormal frame, using Lemma 3.2.1 and the fact that �̂ is trace-free.

At this point, we introduce a quantity, which will ultimately prove to play a

crucial role in the characterization of the regarded class of minimal surfaces in S
5.

Proposition 3.2.5. Let � : ⌃ ! S
5 be an oriented, minimally immersed surface

with h�, ⇤�i = 0 and let J 2
�
J+, J� such that N = J(T⌃) (cf. Proposition

3.2.2). Moreover, let ! be the chosen orientation form on ⌃ and (E1, E2) be a local

orthonormal frame. Then, the local expression

C� :=
1

!(E1, E2)
· 1
2
hJE1, ⇤E2i

defines a smooth function C� : ⌃! R.

If the context is clear, we will simply denote C� as C.

Remark 3.2.6. For J = J+, the function C is deeply studied in [11], where it

essentially appears as the so-called Jacobian of �+, i.e., it satisfies
�
�+)⇤!0 = C!,

where !0 = hJ0 · , · i is the Kähler form on S
2 induced by J0.

Proof of Proposition 3.2.5. Obviously, the local expression is smooth. So, it remains

to prove that it does not depend on the choice of the local orthonormal frame. On

a common domain, consider two local orthonormal frames (E1, E2) and
�
E 0

1, E
0
2

�
on

⌃. We write

E 0
i =

⌦
E 0

i, E1

↵
E1 +

⌦
E 0

i, E2

↵
E2 for i = 1, 2 .

Furthermore, we use that J is skew-symmetric, ⇤ is symmetric and that

hJEi, ⇤Eii = 0 for i = 1, 2

due to the definition of J0 in terms of the cross product. Thereby, the assertion

follows as

1

!(E1, E2)
hJE1, ⇤E2i �

1

!
�
E 0

1, E
0
2

�
⌦
JE 0

1, ⇤E 0
2

↵
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=
1

!(E1, E2)

⇣
hJE1, ⇤E2i ⌥

⌦
E 0

1, E1

↵⌦
E 0

2, E2

↵
hJE1, ⇤E2i

⌥
⌦
E 0

1, E2

↵⌦
E 0

2, E1

↵
hJE2, ⇤E1i

⌘

=
1

!(E1, E2)

h
1⌥

⇣⌦
E 0

1, E1

↵⌦
E 0

2, E2

↵
�
⌦
E 0

2, E1

↵⌦
E 0

1, E2

↵⌘i
hJE1, ⇤E2i

=
1

!(E1, E2)
(1� 1)hJE1, ⇤E2i

= 0 ,

using that !
�
E 0

1, E
0
2

�
= ±!(E1, E2) and that the linear change from (E1, E2) to�

E 0
1, E

0
2

�
at each point has determinant ±1.

Remark 3.2.7. Due to the symmetry of ⇤ and the skew-symmetry of J , the function

C� is invariant under a change of the orientation on ⌃.

Example 3.2.8 (compare [11]). Suppose that � : ⌃! S
5 is a minimally immersed

surface with C� ⌘ 0. In terms of a positively oriented local orthonormal frame

(E1, E2), this means locally hJE1, ⇤E2i ⌘ 0. By tracing back through the proof of

Proposition 3.2.2 to (3.12), we can infer that this implies

��E+
1

��2 +
��E+

2

��2 =
��E�

1

��2 +
��E�

2

��2 = 1

at each point. As a consequence, we have

rank
�
d�+

�
= rank

�
d��� ⌘ 1 .

In other words, � describes the product of two spherical curves in S
2 ⇥ S

2. Hence,

the immersed surface must be congruent to an open subset of the Cli↵ord torus

T =
n
p = p+ + p� 2 S

5 :
��p±
�� = 1p

2
,
�
p±
�1

= 0
o
✓ S

5 .

This particularly shows that if we detect C� ⌘ 0 on an open subset of ⌃, then, by

analytic continuation for minimal surfaces, we find that C� ⌘ 0 on ⌃.

Now, since the Hodge isomorphism ⇤ and �idR6 are isometries of S5, they preserve
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minimality of immersed surfaces. Under these maps, the function C behaves as

follows.

Corollary 3.2.9. Let � : ⌃ ! S
5 be an oriented, minimally immersed surface with

h�, ⇤�i = 0 and N = J(T⌃). Then, we have

C⇤� = C� and C�� = �C� .

Proof. To treat both cases simultaneously, we write N = J±(T⌃) for the immersion

�. At first, given that

⇤J±��
�(p)

= J⌥��
�(p)

and J±��
⇤�(p)

= ⇤J±��
�(p)

for all p 2 ⌃ ,

we obtain

⌦
J⌥��

⇤�(p)
(⇤v), ⇤w

↵
=
⌦
J±��

�(p)
(v), w

↵
= 0 for all p 2 ⌃, v, w 2 Tp⌃ .

Thus, for the surface ⇤�, we have N = J⌥(T⌃) and C⇤� is defined accordingly.

Thereby, we have

2C⇤�(p) =
⌦
J⌥��

⇤�(p)
(⇤E1|p), ⇤(⇤E2|p)

↵

=
⌦
J⌥��

⇤�(p)
(E1|p), ⇤E2|p

↵

=
⌦
⇤ J±��

⇤�(p)
(E1|p), ⇤E2|p

↵

=
⌦
J±��

�(p)
(E1|p), ⇤E2|p

↵

= 2C�(p)

for p 2 ⌃ and a positively oriented, local orthonormal frame (E1, E2) around p.

Consequently, C� = C⇤�.

At second, we consider �idR6 . For both � and ��, we have N = J(T⌃). Hence,

2C��(p) =
⌦
J |��(p)(�E1|p), ⇤(�E2|p)

↵

= hJ |��(p)E1|p, ⇤E2|pi
= �hJ |�(p)E1|p, ⇤E2|pi
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= �2C�(p)

for all p 2 ⌃ and a positively oriented, local orthonormal frame (E1, E2) around p.

Accordingly, C�� = �C�.

To continue, now with the function C in place, we close the circle to Lemma

3.2.1.

Lemma 3.2.10. For an oriented, minimally immersed surface � : ⌃ ! S
5 with

h�, ⇤�i = 0, we have

(⇤X)N = �2C
�
J �R⇡

2

�
X for all X 2 X(⌃) , (3.14)

where R⇡
2
(p) denotes the rotation by ⇡

2 on Tp⌃ for all p 2 ⌃.

Proof. Let (E1, E2) be a positively oriented, local orthonormal frame on ⌃. Then,

Proposition 3.2.2 implies

(⇤E2)
N = h⇤E2, JE1iJE1 + h⇤E2, JE2iJE2 + h⇤E2, ⌘i⌘ .

Since

hE2, JE2

↵
= 0 , h⇤E2, ⌘i = hE2,�i = 0 ,

it follows that

(⇤E2)
N = h⇤E2, JE1iJE1 = 2CJE1

and analogously, as J is skew-symmetric,

(⇤E1)
N = �2CJE2 . (3.15)

This verifies the assertion for E1, E2 and consequently for all X 2 X(⌃).

Remark 3.2.11. When N = J(T⌃), we have

hJEi, Eji = 0 for i, j 2 {1, 2}
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for any local orthonormal frame (E1, E2) on ⌃. Therefore, the Lemma above yields

h⇤JEi, Eji = �2ChEi, R⇡
2
Eji for i, j 2 {1, 2} .

Unless C 6⌘ 0, the latter does clearly not vanish for i 6= j. In particular, we have

either N � {0} = J+(T⌃) or N � {0} = J�(T⌃)

if the surface is not congruent to an open subset of the torus T . In turn, up to

isometries of S5, open subsets of T are the only surfaces that simultaneously meet

both conditions.

We continue with several key insights based on the relation between C and the

fundamental data of the corresponding surface (recall Remark 1.1.3). At first, we

derive from the preceding Lemma that the possible values of C are limited.

Lemma 3.2.12. If � : ⌃! S
5 is an oriented, minimally immersed surface such that

h�, ⇤�i = 0, then

4C2 = 1� 1

2

��Â⌘

��2 .

In particular, we have C(⌃) ✓
⇥
�1

2 ,
1
2

⇤
.

Proof. Let (E1, E2) be a local orthonormal frame on T⌃. First, note that due to

(3.9) and (3.7), we have

��Â⌘

��2 =
2X

i=1

��Â⌘(Ei)
��2 =

2X

i,j=1

hEi, ⇤Eji2 = 2
�
hE1, ⇤E1i2 + hE1, ⇤E2i2

�
. (3.16)

Hence, (3.15) yields

4C2 =
⌦
(⇤E1)

N , (⇤E1)
N
↵

=
⌦
⇤ E1 + Â⌘E1, ⇤E1 + Â⌘E1

↵

= 1 + 2
⌦
Â⌘E1, ⇤E1

↵
+
��Â⌘E1

��2
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= 1 + 2
⇣⌦

Â⌘E1, E1

↵
hE1, ⇤E1i+

⌦
Â⌘E1, E2

↵
hE2, ⇤E1i

⌘

+
⇣⌦

Â⌘E1, E1

↵2
+
⌦
Â⌘E1, E2

↵2⌘

= 1 + 2
�
� hE1, ⇤E1i2 � hE2, ⇤E1i2

�
+
�
hE1, ⇤E1i2 + hE1, ⇤E2i2

�

= 1�
�
hE1, ⇤E1i2 + hE1, ⇤E2i2

�

= 1� 1

2

��Â⌘

��2 .

Furthermore, we arrive at the following relation of the components of the second

fundamental form into the direction of ⌘ and N .

Corollary 3.2.13. Let � : ⌃! S
5 be an oriented, minimally immersed surface such

that h�, ⇤�i = 0. Then, we have

r̂Z

⌦
�̂(X, Y ), ⌘

↵
= 6C

⌦
�̂(X, Y ),

�
J �R⇡

2

�
(Z)
↵

(3.17)

for all X, Y and Z 2 X(⌃).

Proof. Given X, Y and Z 2 X(⌃), we use (3.6), the Gauss formula (3.8), (3.9),

(3.11), Lemma 3.2.4 and finally (3.14) in order to compute

r̂Z

⌦
�̂(X, Y ), ⌘

↵

= Z
⇣⌦
�̂(X, Y ), ⌘

↵⌘
�
D
�̂
�
r̂ZX, Y

�
, ⌘
E

�
D
�̂
�
X, r̂ZY

�
, ⌘
E
�
D
�̂(X, Y ), r̂?

Z⌘
E

= �Z
�
hX, ⇤Y i

�
�
⌦
r̂ZX, ⇤Y

↵
�
⌦
r̂ZY, ⇤X

↵
�
⌦
�̂(X, Y ), ⇤Z

↵

= �
⌦�
DZX � r̂ZX

�
, ⇤Y

↵
�
⌦�
DZY � r̂ZY

�
, ⇤X

↵
�
⌦
�̂(X, Y ), ⇤Z

↵

= �
⌦
�̂(Z,X), ⇤Y

↵
�
⌦
�̂(Z, Y ), ⇤X

↵
�
⌦
�̂(X, Y ), ⇤Z

↵

= �3
⌦
�̂(X, Y ), ⇤Z

↵

= 6C
⌦
�̂(X, Y ),

�
J �R⇡

2

�
(Z)
↵
.

At this point, we can derive that the function C behaves according to the following

equations (also stated in [11]), thereby concluding this section.
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Lemma 3.2.14. If � : ⌃! S
5 with h�, ⇤�i = 0 is an oriented, minimally immersed

surface, then the function C satisfies

��r̂C
��2 =

�
1� 4C2

�✓
2C2 � 1

2
K̂

◆
(3.18)

and

�̂C = �2C
�
1 + 4C2 � 2K̂

�
. (3.19)

Proof. The strategy for this proof is to use the relation between C and
��Â⌘

��2 from

Lemma 3.2.12. With this in mind, we will begin in each case by deriving an equation

for
��Â⌘

��2. After having obtained the first order equation (3.18), we will finally use

it to prove (3.19). Note that, within the scope of this proof, we work with normal

geodesic coordinates
�
x1, x2

�
with respect to ĝ at an arbitrary point p 2 ⌃ (see for

example [40]). Moreover, we remark that all summation indices always run in {1, 2}.
Regarding the first equation, we start with some preliminary steps. Let i, j, k,

l 2 {1, 2}. By the definition of normal geodesic coordinates, we have

ĝij = �ij , ĝij = �ij at p (3.20)

and the Christo↵el symbols vanish, i.e.,

�̂k
ij = 0 at p . (3.21)

As a consequence, we also have

@kĝij = 0 , @kĝ
ij = 0 at p . (3.22)

In this setup, the i-th component of the gradient r̂f of a smooth function f on ⌃ is

given by

r̂if =
X

k

ĝik@kf
(3.20)
= @if at p
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and so

��r̂f
��2 =

X

k

(@kf)
2 at p .

Furthermore, we have

�
Â⌘

�j
i =

⇣
(⇤@i�)

T
⌘j

= ĝjkh⇤@i�, @k�i
(3.20)
= h@i�, ⇤@j�i at p

and therefore

��Â⌘

��2 =
X

i,j,k,l

ĝij ĝkl

�
Â⌘

�k
i

�
Â⌘

�l
j

=
X

i,j,k,l

gij ĝklh⇤@i�, @k�ih⇤@j�, @l�i

(3.20) =
X

i,j

h@i�, ⇤@j�i2

trĝ=0 = 2
�
h@1�, ⇤@1�i2 + h@1�, ⇤@2�i2

�
at p .

(3.23)

Additionally, due to (3.21), the Gauss formula (3.8) has the form

@i@j� = �̂ij � �ij� at p . (3.24)

At p, we thereby compute

���r̂
��Â⌘

��2
���
2

=
X

k

⇣
@k

��Â⌘

��2
⌘2

(3.23) =
X

k

 
X

i,j,m,n

@k

�
ĝimĝjnh@i�, ⇤@j�ih@m�, ⇤@n�i

�
!2

(3.22) =
X

k

 
X

i,j

@k

�
h@i�, ⇤@j�i2

�
!2

=
X

k

 
2
X

i,j

h@i�, ⇤@j�i@k

�
h@i�, ⇤@j�i

�
!2
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= 4
X

k

 
X

i,j

h@i�, ⇤@j�i
⇣
h@k@i�, ⇤@j�i+ h@k@j�, ⇤@i�i

⌘!2

(3.24), (3.11) = 4
X

k

 
X

i,j

h@i�, ⇤@j�i
⇣
�̂ki, ⇤@j�i+ h�̂kj, ⇤@i�i

⌘!2

Lemma 3.2.4 = 16
X

k

 
X

i,j

h@i�, ⇤@j�ih�̂ij, ⇤@k�i
!2

trĝ�̂=0 = 16
X

k

⇣
2
h
h@1�, ⇤@1�ih�̂11, ⇤@k�i+ h@1�, ⇤@2�ih�̂12, ⇤@k�i

i⌘2

= 64
X

k

⇣
h@1�, ⇤@1�ih�̂11, ⇤@k�i+ h@1�, ⇤@2�ih�̂12, ⇤@k�i

⌘2

= 64
⇣
h@1�, ⇤@1�ih�̂11, ⇤@1�i+ h@1�, ⇤@2�ih�̂12, ⇤@1�i

⌘2

+ 64
⇣
h@1�, ⇤@1�ih�̂11, ⇤@2�i+ h@1�, ⇤@2�ih�̂12, ⇤@2�i

⌘2

Lemma 3.2.4, trĝ�̂=0 = 64
⇣
h@1�, ⇤@1�ih�̂11, ⇤@1�i+ h@1�, ⇤@2�ih�̂11, ⇤@2�i

⌘2

+ 64
⇣
h@1�, ⇤@1�ih�̂11, ⇤@2�i � h@1�, ⇤@2�ih�̂11, ⇤@1�i

⌘2

(3.14) = 256C2
⇣
� h@1�, ⇤@1�ih�̂11, J@2�i+ h@1�, ⇤@2�ih�̂11, J@1�i

⌘2

+ 256C2
⇣
h@1�, ⇤@1�ih�̂11, J@1�i+ h@1�, ⇤@2�ih�̂11, J@2�i

⌘2

= 256C2
⇣
h@1�, ⇤@1�i2h�̂11, J@2�i2 + h@1�, ⇤@2�i2h�̂11, J@1�i2

+ h@1�, ⇤@1�i2h�̂11, J@1�i2 + h@1�, ⇤@2�i2h�̂11, J@2�i2
⌘

= 256C2
⇣
h@1�, ⇤@1�i2 + h@1�, ⇤@2�i2

⌘⇣
h�̂11, J@1�i2 + h�̂11, J@2�i2

⌘

(3.23) = 256C2

��Â⌘

��2

2

���̂N
��2

4

= 32C2
��Â⌘

��2���̂N ��2 , (3.25)
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where we also used that N = J(T⌃) by Proposition 3.2.2 and hence

���̂N ��2 =
X

i,j

���̂N
ij

��2

(3.20) =
X

i,j,k

h�̂ij, J@k�i2

Lemma 3.2.4, trĝ�̂=0 = 4

 
h�̂11, J@1�i2 + h�̂11, J@2�i2

!
at p . (3.26)

Now, by Lemma Lemma 3.2.12, we have

��Â⌘

��2 = 2
�
1� 4C2

�
. (3.27)

Since in addition the Gauss equation (1.8) reads as

1� K̂ =
1

2

���̂
��2 = 1

2

⇣��Â⌘

��2 +
���̂N ��2

⌘
,

it follows that

���̂N ��2 = 2
�
4C2 � K̂

�
. (3.28)

Therefore, starting from (3.25), Lemma 3.2.12 leads to

C2
��r̂C

��2 = 1

256

���r̂
��Â⌘

��2
���
2

=
1

8
C2
��Â⌘

��2���̂N ��2 = C2
�
1� 4C2

�
 
2C2 � 1

2
K̂

!
.

Eventually, the equation holds globally and, due to continuity, also modulo C2 on

the (closed) support supp(C). Obviously, the same is true on the complement of

supp(C). So, we can finally conclude that the function C satisfies

��r̂C
��2 =

�
1� 4C2

�
 
2C2 � 1

2
K̂

!
.

It remains to deduce the equation of second order. In this regard, we first collect
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some more identities that hold in the setting of normal geodesic coordinates at p 2 ⌃.
Again, let i, j, k, l 2 {1, 2}. First of all, (3.22) implies

@i�̂
l
jk =

1

2

�
@i@j ĝkl + @i@kĝjl � @i@lĝjk

�
at p . (3.29)

Moreover, it can be shown that the second order derivatives of the metric components

satisfy

@2
i ĝij = @2

i ĝ
ij = 0 , (3.30)

@i@j ĝkl = @k@lĝij , @i@j ĝ
kl = @k@lĝ

ij , (3.31)

@i@j ĝkl + @i@kĝjl + @i@lĝjk = @i@j ĝ
kl + @i@kĝ

jl + @i@lĝ
jk = 0 , (3.32)

@i@jg
kl = �@i@jgkl at p . (3.33)

Therefore, since [@i, @k] ⌘ 0 for coordinate vector fields,

R̂ijkl =
⌦
r̂ir̂j@k, @l

↵
�
⌦
r̂jr̂i@k, @l

↵

= @i�̂
l
jk � @j�̂

l
ik

(3.29) =
1

2
(@i@j ĝkl + @i@kĝjl � @i@lĝjk)�

1

2
(@j@iĝkl + @j@kĝil � @j@lĝik)

=
1

2
(@i@kĝjl � @i@lĝjk � @j@kĝil + @j@lĝik)

(3.31) = @i@kĝjl � @i@lĝjk at p .

In particular,

K̂ = R̂1221 = @1@2ĝ12 � @2
1g22

(3.32)
= @1@2ĝ12 � (�2@1@2ĝ12) = 3@1@2ĝ12 at p .

(3.34)

Now, to complete the preparations, the Laplace-Beltrami operator of a smooth func-
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tion f on ⌃ is

�̂f =
2X

j,k,l=1

ĝjk
�
@j@kf � �̂l

jk@lf
� (3.21)

=
2X

k=1

@2
kf at p . (3.35)

At this point, we compute at p (note again that all summation indices run in {1, 2})

�̂|Â⌘|2 =
X

r,k,l,m,n

@2
r

�
ĝklĝmnh@k�, ⇤@m�ih@l�, ⇤@n�i

�

=
X

r,k,l,m,n

@r

��
@rĝ

kl
�
ĝmnh@k�, ⇤@m�ih@l�, ⇤@n�i

�

+
X

r,k,l,m,n

@r

�
ĝkl (@rĝ

mn) h@k�, ⇤@m�ih@l�, ⇤@n�i
�

+
X

r,k,l,m,n

@r

�
ĝklĝmn@r (h@k�, ⇤@m�ih@l�, ⇤@n�i)

�

(3.22) =
X

r,k,l,m,n

�
@2

r ĝ
kl
�
ĝmnh@k�, ⇤@m�ih@l�, ⇤@n�i

+
X

r,k,l,m,n

ĝkl
�
@2

r ĝ
mn
�
h@k�, ⇤@m�ih@l�, ⇤@n�i

+
X

r,k,l,m,n

ĝklĝmn@2
r (h@k�, ⇤@m�ih@l�, ⇤@n�i)

=
X

r,k,l,m,n

�
@2

r ĝ
kl
�
ĝmnh@k�, ⇤@m�ih@l�, ⇤@n�i

+
X

r,k,l,m,n

ĝkl
�
@2

r ĝ
mn
�
h@k�, ⇤@m�ih@l�, ⇤@n�i

+
X

r,k,l,m,n

�kl�mn@2
r (h@k�, ⇤@m�ih@l�, ⇤@n�i)

= 2
X

r,k,l,m

�
@2

r ĝ
kl
�
h@k�, ⇤@m�ih@l�, ⇤@m�i

+
X

r,k,m

@2
r

⇣
h@k�, ⇤@m�i2

⌘
. (3.36)
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We consider the two terms in (3.36) separately. First, we have

2
X

r,k,l,m

�
@2

r ĝ
kl
�
h@k�, ⇤@m�ih@l�, ⇤@m�i

= 2
X

r,l,m

�
@2

r ĝ
1l
�
h@1�, ⇤@m�ih@l�, ⇤@m�i

+ 2
X

r,l,m

�
@2

r ĝ
2l
�
h@2�, ⇤@m�ih@l�, ⇤@m�i

(3.30) = 2
X

m

�
@2

2 ĝ
11
�
h@1�, ⇤@m�i2 + 2

X

m

�
@2

1 ĝ
22
�
h@2�, ⇤@m�i2

(3.31) = 2
�
@2

2 ĝ
11
� �

h@1�, ⇤@1�i2 + h@1�, ⇤@2�i2 + h@2�, ⇤@1�i2 + h@2�, ⇤@2�i2
�

trĝ�̂=0 = 4
�
@2

2 ĝ
11
� �

h⇤@1�, @1�i2 + h⇤@1�, @2�i2
�

= 2
�
@2

2 ĝ
11
�
|Â⌘|2

(3.33) = �2
�
@2

2 ĝ11

�
|Â⌘|2

(3.32) = 4 (@1@2ĝ12) |Â⌘|2

(3.34) =
4

3
K̂|Â⌘|2 . (3.37)

Second, we have

X

r,k,m

@2
r

⇣
h@k�, ⇤@m�i2

⌘

=
X

r,k,m

@r

⇣
2h@k�, ⇤@m�i (h@r@k�, ⇤@m�i+ h@r@m�, ⇤@k�i)

⌘

relabel = 4
X

r,k,m

@r (h@k�, ⇤@m�ih@r@k�, ⇤@m�i)

= 4
X

r,k,m

(@rh@k�, ⇤@m�i) h@r@k�, ⇤@m�i

+ 4
X

r,k,m

h@k�, ⇤@m�i (@rh@r@k�, ⇤@m�i)

= 4
X

r,k,m

⇣
h@r@k�, ⇤@m�i+ h@r@m�, ⇤@k�i

⌘
h@r@k�, ⇤@m�i
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+ 4
X

r,k,m

h@k�, ⇤@m�i
⇣⌦
@k@

2
r�, ⇤@m�

↵
+ h@r@k�, ⇤@r@m�i

⌘

= 4
X

r,k,m

h@r@k�, ⇤@m�i2

+ 4
X

r,k,m

h@r@m�, ⇤@k�ih@r@k�, ⇤@m�i

+ 4
X

r,k,m

h@k�, ⇤@m�i
⌦
@k@

2
r�, ⇤@m�

↵

+ 4
X

r,k,m

h@k�, ⇤@m�ih@r@k�, ⇤@r@m�i

(3.20) = 4
X

r,k,m

h@r@k�, ⇤@m�i2

+ 4
X

r,k,m

h@r@m�, ⇤@k�ih@r@k�, ⇤@m�i

+ 4
X

i,j,k,m

h@k�, ⇤@m�i
⌦
@k

�
ĝij@i@j�

�
, ⇤@m�

↵

+ 4
X

r,k,m

h@k�, ⇤@m�ih@r@k�, ⇤@r@m�i

(3.35) = 4
X

r,k,m

h@r@k�, ⇤@m�i2

+ 4
X

r,k,m

h@r@m�, ⇤@k�ih@r@k�, ⇤@m�i

+ 4
X

i,j,k,l,m

h@k�, ⇤@m�i
D
@k

⇣
�̂�+ ĝij�̂l

ij@l�
⌘
, ⇤@m�

E

+ 4
X

r,k,m

h@k�, ⇤@m�ih@r@k�, ⇤@r@m�i

Theorem 1.1.9 = 4
X

r,k,m

h@r@k�, ⇤@m�i2

+ 4
X

r,k,m

h@r@m�, ⇤@k�ih@r@k�, ⇤@m�i

� 8
X

k,m

h@k�, ⇤@m�i2
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+ 4
X

i,j,k,l,m

h@k�, ⇤@m�i
D
@k

⇣
ĝij�̂l

ij@l�
⌘
, ⇤@m�

E

+ 4
X

r,k,m

h@k�, ⇤@m�ih@r@k�, ⇤@r@m�i . (3.38)

Again, we treat the five terms in (3.38) separately. First, we have

4
X

r,k,m

h@r@k�, ⇤@m�i2

(3.24) = 4
X

r,k,m

⌦
�̂rk, ⇤@m�

↵2

trĝ�̂=0, Lemma 3.2.4 = 16
⇣
h�̂11, ⇤@1�i2 + h�̂11, ⇤@2�i2

⌘

(3.14) = 64C2
⇣
h�̂11, J@1�i2 + h�̂11, J@2�i2

⌘

(3.26) = 16C2
���̂N ��2 . (3.39)

The second term is

4
X

r,k,m

h@r@m�, ⇤@k�ih@r@k�, ⇤@m�i

= 8
X

r,k,m
k<m

h@r@m�, ⇤@k�ih@r@k�, ⇤@m�i+ 4
X

r,k

h@r@k�, ⇤@k�i2

= 8h@1@2�, ⇤@1�ih@1@1�, ⇤@2�i+ 8h@2@2�, ⇤@1�ih@2@1�, ⇤@2�i
+ 4h@1@1�, ⇤@1�i2 + 4h@2@1�, ⇤@1�i2

+ 4h@1@2�, ⇤@2�i2 + 4h@2@2�, ⇤@2�i2
(3.24), (3.11) = 8

⌦
�̂12, ⇤@1�

↵⌦
�̂11, ⇤@2�

↵
+ 8
⌦
�̂22, ⇤@1�

↵⌦
�̂12�, ⇤@2�

↵

+ 4
⌦
�̂11, ⇤@1�

↵2
+ 4
⌦
�̂12, ⇤@1�

↵2

+ 4
⌦
�̂12�, ⇤@2�

↵2
+ 4
⌦
�̂22, ⇤@2�

↵2

Lemma 3.2.4 = 16
⇣⌦
�̂11, ⇤@1�

↵2
+
⌦
�̂11, ⇤@2�

↵2⌘

(3.14) = 64C2
⇣⌦
�̂11, J@1�

↵2
+
⌦
�̂11, J@2�

↵2⌘

(3.26) = 16C2
���̂N ��2 . (3.40)
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For the third term, we have

�8
X

k,m

h@k�, ⇤@m�i2
(3.23)
= �8|Â⌘|2 (3.41)

Moreover, the fourth term is given by

4
X

i,j,k,l,m

h@k�, ⇤@m�ih@k

⇣
ĝij�̂l

ij@l�
⌘
, ⇤@m�i

(3.20), (3.22) = 4
X

j,k,l,m

⇣
@k�̂

l
jj

⌘
h@k�, ⇤@m�ih@l�, ⇤@m�i

trĝ�̂=0 = 4
X

j

⇣
@1�̂

1
jj + @2�̂

2
jj

⌘⇣
h@1�, ⇤@1�i2 + h@1�, ⇤@2�i2

⌘

(3.23) = 2|Â⌘|2
X

j

⇣
@1�̂

1
jj + @2�̂

2
jj

⌘

(3.29) = |Â⌘|2
X

j

⇣
2@1@j ĝ1j � @2

1 ĝjj + 2@2@j ĝ2j � @2
2 ĝjj

⌘

(3.30), (3.31) = |Â⌘|2
⇣
4@1@2ĝ12 � 2@2

1 ĝ22

⌘

(3.32) = |Â⌘|2
⇣
4@1@2ĝ12 � 2

�
� 2@1@2ĝ12

�⌘

= 8|Â⌘|2@1@2g12

(3.34) =
8

3
K̂|Â⌘|2 . (3.42)

Finally, for the fifth term, we have

4
X

r,k,m

h@k�, ⇤@m�ih@r@k�, ⇤@r@m�i

= 4
X

r,k

h⇤@k�, @k�ih@r@k�, ⇤@r@k�i+ 8
X

r,k,m
k<m

h⇤@k�, @m�ih@r@k�, ⇤@r@m�i

trĝ=0 = 4
X

r

h@1�, ⇤@1�ih@r@1�, ⇤@r@1�i � 4
X

r

h@1�, ⇤@1�ih@r@2�, ⇤@r@2�i

+ 8
X

r

h@1�, ⇤@2�ih@r@1�, ⇤@r@2�i
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= 4h@1�, ⇤@1�ih@2
1�, ⇤@2

1�i � 4h@1�, ⇤@1�ih@2
2�, ⇤@2

2�i
+ 8h@1�, ⇤@2�ih@2

1�, ⇤@1@2�i+ 8h@1�, ⇤@2�ih@2
2�, ⇤@1@2�i

(3.35) = 4h@1�, ⇤@1�ih@2
1�, ⇤@2

1�i � 4h@1�, ⇤@1�ih�̂�� @2
1�, ⇤�̂�� ⇤@2

1�i
+ 8h@1�, ⇤@2�ih@2

1�, ⇤@1@2�i+ 8h@1�, ⇤@2�ih�̂�� @2
1�, ⇤@1@2�i

Theorem 1.1.9 = 4h@1�, ⇤@1�ih@2
1�, ⇤@2

1�i
� 4h@1�, ⇤@1�ih2�+ @2

1�, 2⌘ + ⇤@2
1�i

+ 8h@1�, ⇤@2�ih@2
1�, ⇤@1@2�i

� 8h@1�, ⇤@2�ih2�+ @2
1�, ⇤@1@2�i

(3.24) = �16
⇣
h@1�, ⇤@1�ih�̂11, ⌘i+ h@1�, ⇤@2�ih�̂12, ⌘i

⌘

(3.9) = 16
�
h@1�, ⇤@1�i2 + h@1�, ⇤@2�i2

�

(3.23) = 8
��Â⌘

��2 . (3.43)

To conclude, taking the sum of (3.37) and (3.39) to (3.43), (3.36) yields

�̂
��Â⌘

��2 = 4K̂
��Â⌘

��2 + 32C2
���̂N ��2 .

Then, using Lemma 3.2.12, (3.18), (3.27) and (3.28), a straightforward computation

shows that

C�̂C = � 1

16
�̂
��Â⌘

��2 �
��r̂C

��2 = �2C2
�
1 + 4C2 � 2K̂

�
.

Similarly as in the first part of the proof, we can therefore conclude that the function

C satisfies

�̂C = �2C
�
1 + 4C2 � 2K̂

�
.

3.3 Fundamental Data of Bipolar Surfaces

Let  : ⌃ ! S
3 be a conformal minimal immersion as in Section 1.2. Then, the

corresponding bipolar surface e : ⌃ ! S
5 meets the prerequisites to be part of the
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class specified in the previous section: It is minimal by Theorem 1.4.1 and

D
e , ⇤ e 

E
= 0

since

⇤ e = ⇤
�
 ^  ⇤) =

1

�
@1 ^ @2 .

Considering bipolar surfaces as part of the class of surfaces from the previous section,

we now present a more detailed characterization.

Proposition 3.3.1. Let e : ⌃! S
5 be the bipolar surface of an oriented, minimally

immersed surface  : ⌃! S
3. Then, we have

N � {0} = J�(T⌃) .

Proof. As

d e = d ^  ⇤ +  ^ d ⇤ .

we conclude from (3.4) that

J�d e = �d ^  +  ⇤ ^ d ⇤ . (3.44)

Hence, using the Weingarten equation (1.15), it follows that

⌦
J�@i

e , @j
e 
↵
=
⌦
@i , @j 

⇤↵�
⌦
@i 

⇤, @j 
↵
= ��ji + �ij = 0 for i 2 {1, 2} .

Since at each point p 2 ⌃, J�
��
e (p)

is a linear automorphism of T e (p)M, this is proves

the assertion.

Remark 3.3.2. Instead of bipolar surfaces, [11] treats a closely related type of

surface, known as the Gauss map of  (not to be confused with the Gauss map in

S
3), defined by

⌃! G+
2

�
R

4), p 7! d |p(Tp⌃) .
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From the perspective within this chapter, the Gauss map is simply given by ⇤ e and

therefore congruent to the bipolar surface e .

Example 3.3.3. We consider the bipolar surfaces of the two simplest closed minimal

surfaces in S
3 from this perspective.

(i) For a geodesic 2-sphere in S
3, written as

S :=
n�

0, x
�
2 R

4 : x 2 S
2
o
✓ S

3

we can choose the constant unit normal n ⌘ �e1. Using the frame (3.1), we

compute for
�
0, x1, x2, x3

�
2 S

x ^ n = x1 e1 ^ e2 + x2 e1 ^ e3 + x3 e1 ^ e4 (3.45)

=
1p
2

⇣
x1
�
E+

1 + E�
1

�
+ x2

�
E+

2 + E�
2

�
+ x3

�
E+

3 + E�
3

�⌘
. (3.46)

Consequently, by (3.45), the bipolar surface eS of S is a geodesic 2-sphere in

S
5 and, due to (3.46), reads as

eS =

⇢
p+ + p� 2 M : p+ = p� =

xp
2
, x 2 S

2

�
✓ S

5 .

(ii) For the Cli↵ord torus

C := S
1(1/

p
2)⇥ S

1(1/
p

2) ✓ S
3 ,

the bipolar surface eC can be specified by the parametrization (2.29) with m =

k = 1. It follows immediately that eC is congruent to the Cli↵ord torus in S
5,

i.e., up to an isometry

eC = T .

To continue, we observe that for bipolar surfaces, the function C from the previous

section is entirely determined by the Gaussian curvature of the surface in S
3.
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Lemma 3.3.4. For the bipolar surface e : ⌃ ! S
5 of an oriented, minimally im-

mersed surface  : ⌃ ! S
3 with induced metric g and Gaussian curvature K, we

have

C =
1

2�K
� 1

2
. (3.47)

Proof. Again, we consider local isothermal coordinates for g and eg as in Section 1.2.

Then, we use the definition of C, (3.44), (1.15) and finally (1.14) in order to compute

C =
1

2(2�K)�

D
J�
⇣
@1
e 
⌘
, ⇤@2

e 
E

=
1

2(2�K)�

*
� @1 ^  � �11

�
 ⇤ ^ @1 � �12

�
 ⇤ ^ @2 ,

 ^ @1 � �12

�
@2 ^  ⇤ � �11

�
@1 ^  ⇤

+

=
1

2(2�K)

 
1� 1

�2

�
�2

11 + �2
12

�
!

=
K

2(2�K)

=
1

2�K
� 1

2
.

Remark 3.3.5. (i) Regarding the surfaces from Example 3.3.3, the above formula

directly yields that C
eS ⌘ 1

2 and C
eC ⌘ 0, where the latter is also clear by

Example 3.2.8.

(ii) From Remark 1.4.3 (i), recall that f ⇤ = � e . Using (1.28), we find

C
f ⇤

=
1

2�K⇤ � 1

2
=

1

2 + K
1�K

� 1

2
= �

 
1

2�K
� 1

2

!
= �C

e ,

which is consistent with Corollary 3.2.9.

Now, combining Proposition 1.2.5 and Lemma 3.2.12, we can draw the following
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conclusion about the image of C for bipolar surfaces.

Corollary 3.3.6. Suppose that  : ⌃ ! S
3 is an oriented, minimally immersed

surface with Gaussian curvature K. Then, for the corresponding bipolar surface
e : ⌃! S

5, we have

C(⌃) ✓
�
�1

2 ,
1
2

⇤

and C(p) = 1
2 only at the isolated points p 2 ⌃ where K(p) = 1.

In particular, if ⌃ is closed and has genus g > 1, the value C = 1
2 is always

attained.

Remark 3.3.7. Indeed, examples of closed minimal surfaces in S
3 exist for every

orientable genus g > 1 (cf. Section 2.3). So, recalling that C�� = �C� by Corollary

3.2.9, C reaching one of the boundary values �1
2 or 1

2 is a natural phenomenon for a

minimal surface � : ⌃! S
5 with h�, ⇤�i = 0.

The established framework now permits a complete and precise specification of

the fundamental data of a bipolar surface. In the light of Remark 1.1.3, these data

fully determine the intrinsic and extrinsic geometry of a bipolar surface.

Theorem 3.3.8. Let e =  ^  ⇤ : ⌃! S
5 be the bipolar surface of an oriented, mi-

nimally immersed surface  : ⌃! S
3 with induced metric g, Levi-Civita connection

r and shape operator A with respect to the unit normal field ⌫ associated to  ⇤.

Then, the fundamental data of e are given as follows:

(i) The induced metric reads as

eg =
2

1 + 2C
g . (3.48)

(ii) The shape operator with respect to the normal field ⌘ = ⇤ e is given by

eA⌘ = (1 + 2C)R⇡
2
� A , (3.49)

where R⇡
2
(p) denotes the rotation by ⇡

2 on Tp⌃.
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(iii) Regarding the normal subbundle N = J�(T⌃), the components of a shape

operator eAJ�Z for Z 2 X(T⌃), are given by

D
eAJ�Z(X), Y

E
= �

�
rh�, ⌫i

�
(Z;X, Y ) for X, Y 2 X(⌃) .

Remark 3.3.9. Note that as an abstract bundle over ⌃, the normal bundle of the

bipolar surface can be seen as the sum of the tangent and normal bundle of the

original surface in S
3. This is clear as J(T⌃) ⇠= T⌃ and by the fact that ⇤ e (p) linked

to an orthonormal basis of the orthogonal complement of  ⇤(p) in TpS
3 at each point

p 2 ⌃.

Proof of Theorem 3.3.8. At first, Theorem 1.4.1 together with (3.47) yields

eg = (2�K) g =
2

1 + 2C
g .

We verify the assertions regarding the shape operators by using local isothermal

coordinates, employing the notation established in Section 1.2.

From the Gauss formula (3.8) for e and the Weingarten equations (1.15) for  

we derive

eg
⇣
eA⌘(@i), @j

⌘
=
⌦
e�(@i, @j), ⌘

↵

=
⌦
@i@j

e , ⌘
↵

=
⌦�
@i@j ^  ⇤�+ @i ^ @j 

⇤

+ @j ^ @i 
⇤ +  ^

�
@i@j 

⇤�, 1
�
@1 ^ @2 

↵

=
1

�

⌦
@i ^ @j 

⇤ + @j ^ @i 
⇤, @1 ^ @2 

↵

=
1

�

⇣⌦
@i , @1 

↵⌦
@j 

⇤, @2 
↵
�
⌦
@i , @2 

↵⌦
@j 

⇤, @1 
↵⌘

+
1

�

⇣⌦
@j , @1 

↵⌦
@i 

⇤, @2 
↵
�
⌦
@j , @2 

↵⌦
@i 

⇤, @1 
↵⌘

= ��j2�i1 + �1j�i2 � �i2�1j + �1i�j2 .
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From this, it follows that

g
⇣
eA⌘(@1), @1

⌘
=

1

2�K
eg
⇣
eA⌘(@1), @1

⌘
= � 2�12

2�K
= � 2

2�K
g (A(@1), @2) ,

g
⇣
eA⌘(@1), @2

⌘
=

1

2�K
eg
⇣
eA⌘(@1), @2

⌘
=

2�11

2�K
=

2

2�K
g (A(@1), @1) ,

g
⇣
eA⌘(@2), @2

⌘
=

1

2�K
eg
⇣
eA⌘(@2), @2

⌘
=

2�12

2�K
=

2

2�K
g (A(@1), @2) ,

or, in short,

eA⌘ =
2

2�K
R⇡

2
� A (3.47)

= (1 + 2C)R⇡
2
� A .

It remains to compute the components of a shape operator eAJZ . To this end, first

note that

@2
1
e = @2

1 ^  ⇤ + 2 @1 ^ @1 
⇤ +  ^ @2

1 
⇤

and

J�
⇣
@k
e 
⌘
= �@k ^  +  ⇤@k 

⇤ .

Together with the Gauss formula and the Weingarten equations, we thereby find

D
e�(@1, @1), J

�
⇣
@k
e 
⌘E

= det

  ⌦
@2

1 , 
⇤↵ ⌦

@2
1 , @k ⇤↵

1 0

!!
� det

  
0 1⌦

@2
1 

⇤, @k 
↵ ⌦

@2
1 

⇤, 
↵
!!

= �
⌦
@2

1 , @k 
⇤↵+

⌦
@2

1 
⇤, @k 

↵

=
1

�

2X

l=1

⇣
�kl

⌦
@2

1 , @l 
↵
� �1lh@1@l , @k i

⌘
+
@1�

�
�1k � @1�1k (3.50)

for k 2 {1, 2}. Now, we moreover use that

⌦
@2

1 , @1 
↵
=

1

2
@1h@1 , @1 i =

1

2
@1� ,
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⌦
@2

1 , @2 
↵
= �

⌦
@2

2 , @2 
↵
= �1

2
@2h@2 , @2 i = �1

2
@2� ,

where the second equality is due to the minimal surface equation, written as

@2
1 + @2

2 = �2� .

Thus, after a straightforward computation, (3.50) more precisely reads as

D
e�(@1, @1), J

�
⇣
@1
e 
⌘E

=
1

�

�
(@1�)�11 � (@2�)�12

�
� @1�11 , (3.51)

D
e�(@1, @1), J

�
⇣
@2
e 
⌘E

=
1

�

�
(@2�)�11 + (@1�)�12

�
� @1�12 . (3.52)

Conversely, we now specify the components of r�. At first, note that with respect

to the chosen local isothermal coordinates the Christo↵el symbols of r are given by

�k
ij =

1

2�

⇣
(@i�)�

k
j + (@j�)�

k
i � (@k�)�ij

⌘
for i, j , k 2 {1, 2} .

Furthermore, we have r?
X⌫ ⌘ 0 for all X 2 X(⌃) in codimension 1. Therefore,

r(h�, ⌫i)(@1; @1, @1) = @1�11 � 2�(r@1@1, @1)

= @1�11 � 2�
�
�1

11@1 + �
2
11@2, @1)

= �1

�

�
(@1�)�11 � (@2�)�12

�
+ @1�11 , (3.53)

r(h�, ⌫i)(@1; @1, @2) = @1�12 � �(r@1@1, @2)� �(r@1@2, @1)

= @1�12 � �
�
�1

11@1 + �
2
11@2, @2

�
� �

�
�1

12@1 + �
2
12@2, @1

�

= �1

�

�
(@2�)�11 + (@1�)�12

�
+ @1�12 . (3.54)

Accordingly, comparing (3.53) and (3.54) with (3.51) and (3.52), we find

D
e�(@1, @1), J

�
⇣
@1
e 
⌘E

= �r@1h�(@1, @1), ⌫i ,
D
e�(@1, @1), J

�
⇣
@2
e 
⌘E

= �r@1h�(@1, @2), ⌫i .
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By Lemma 3.2.4 and the minimality of e the components on the left-hand side are

su�cient to determine e�N . The same is holds for the components of rh�, ⌫i on the

right-hand side due to the symmetry of � and the Codazzi equation in S
3 (cf. (1.6)).

From this we finally conclude that

eg
⇣
eAJZ(@i), @j

⌘
=
D
e�(@i, @j), JZ

E
= �

�
rh�, ⌫i

�
(Z; @i, @j)

for i, j 2 {1, 2} and Z 2 X(T⌃).

Finally, we are prepared for the main theorem in this chapter.

Theorem 3.3.10. Let ⌃ be an oriented, simply connected, two-dimensional manifold

and let � : ⌃ ! S
5 be a minimal immersion with h�, ⇤�i = 0. Moreover, suppose

that C(p) 6= �1
2 for all p 2 ⌃ or C(p) 6= 1

2 for all p 2 ⌃. Then, there exists a

minimal immersion  : ⌃! S
3 such that up to an isometry of S5

� = e .

Remark 3.3.11. (i) From Lemma 3.2.12 we already know that �1
2  C(p)  1

2

for all p 2 ⌃. So, the condition above demands that the domain is chosen such

that not both of the potential boundary values are attained. In the light of

Corollary 3.3.6, this criterion is non-exclusive regarding bipolar surfaces, for

which C never reaches the value �1
2 .

(ii) The above theorem can be translated to Theorem 4.4 in [11], where we relaxed

the condition �1
2 < C(p) < 1

2 for all p 2 ⌃. In the context of Corollary

3.3.6 and especially Remark 3.3.7, we can say that the result above provides a

completed picture.

Proof of Theorem 3.3.10. Our strategy is as follows: First, based on the fundamen-

tal data
�
ĝ, �̂
�
of �, we define fundamental data that satisfy the Gauss and the Co-

dazzi equation in S
3 and thereby guarantee the existence of an immersion  : ⌃! S

3.

Afterwards, checking that, conversely, the fundamental data of the bipolar surface e 
and � coincide, will finally prove the assertion.
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Before we start, note that in the following, we can assume that supp(C)c = ;. If
that was the case, we would have C ⌘ 0 and therefore congruence to T ⇠= eC on an

open subset (cf. Remarks 3.2.8 and 3.3.3 (ii)). By analytic continuation, this would

in particular extend to the whole domain ⌃.

Now first, possibly replacing � by ��, we can assume that C(p) 6= �1
2 for all

p 2 ⌃ (cf. Corollary 3.2.9). Define the pair (A, g) by

g :=
1 + 2C

2
ĝ , A := � 1

1 + 2C
R⇡

2
� Â⌘ , (3.55)

where R⇡
2
(p) denotes the rotation by ⇡

2 on Tp⌃. As
1+2C

2 is a smooth function without

zeroes under our assumption, g defines a Riemannian metric on ⌃. Furthermore, A

is well-defined since the function 1
1+2C is bounded. Notice that as C cannot attain

�1
2 , it is, by continuity, bounded away from that value.

Now, first, we verify that (g, A) satisfies the Gauss equation in S
3. To that end,

we start with the computation of the Gaussian curvature K+ of (⌃, g). Using that g

is conformal1 to ĝ and Lemma 3.2.14, we obtain

K =
2

1 + 2C

✓
K̂ � 1

2
�ĝ log

✓
1 + 2C

2

◆◆

=
2

1 + 2C

 
K̂ � 1

2

"
2

1 + 2C
�̂C �

✓
2

1 + 2C

◆2 ��r̂C
��2
ĝ

#!

(3.18), (3.19) =
2

1 + 2C

✓
K̂ � 1

2


2

1 + 2C

⇣
�2C

⇣
1 + 4C2 � 2K̂

⌘⌘

�
✓

2

1 + 2C

◆2 �
1� 4C2

�✓
2C2 � 1

2
K̂

◆#!

=
2

1 + 2C

✓
K̂ +

2C

1 + 2C

⇣
1 + 4C2 � 2K̂

⌘
+

2(1� 2C)

1 + 2C

✓
2C2 � 1

2
K̂

◆◆

=
2

(1 + 2C)2

⇣
K̂ + 2CK̂ + 2C + 8C3 � 4CK̂ + 4C2 � K̂ � 8C3 + 2CK̂

⌘

1For two conformally equivalent Riemannian metrics g and h = e2u g on a two-dimensional
manifold ⌃, the corresponding Gaussian curvatures are related by Kh = e�2u(Kg � �gu) (see for
example [41]).
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=
2

(1 + 2C)2
�
2C + 4C2

�

=
4C

1 + 2C
. (3.56)

By the definition of A and Lemma 3.2.12, we also have

1� 1

2
|A|2g = 1� 1

2

1

(1 + 2C)2
��Â⌘

��2
g

= 1� 1

2

1

(1 + 2C)2
��Â⌘

��2
ĝ

= 1� (1� 4C2)

(1 + 2C)2

= 1� (1 + 2C)(1� 2C)

(1 + 2C)2

=
4C

1 + 2C
.

In combination, we therefore obtain

K = 1� 1

2
|A|2g ,

i.e., the pair (g, A) satisfies the Gauss equation in S
3 (cf. (1.8)).

To continue, the goal is to derive that (g, A) also satisfies the Codazzi equation in

S
3. For that purpose, let X, Y and Z 2 X(⌃). By the Codazzi equation of � with

respect to the normal field ⌘ (cf. (1.5)), we have

X
⇣⌦
�̂(Y, Z), ⌘

↵⌘
�
⌦
�̂
�
r̂XY, Z

�
, ⌘
↵
�
⌦
�̂
�
Y, r̂XZ

�
, ⌘
↵
�
⌦
�̂(Y, Z), r̂?

X⌘
↵

= Y
⇣
h�̂(X,Z), ⌘i

⌘
�
⌦
�̂
�
r̂Y X,Z

�
, ⌘
↵
�
⌦
�̂
�
X, r̂Y Z

�
, ⌘
↵
�
⌦
�̂(X,Z), r̂?

Y ⌘
↵
.

By Lemma 3.2.4,
⌦
�̂(Y, Z), r̂?

X⌘
↵
is symmetric in X and Y . Hence, the equation

above reduces to

X
⇣⌦
�̂(Y, Z), ⌘

↵⌘
�
⌦
�̂
�
r̂XY, Z

�
, ⌘
↵
�
⌦
�̂
�
Y, r̂XZ

�
, ⌘
↵
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= Y
⇣
h�̂(X,Z), ⌘i

⌘
�
⌦
�̂
�
r̂Y X,Z

�
, ⌘
↵
�
⌦
�̂
�
X, r̂Y Z

�
, ⌘
↵
.

In terms of Â⌘, this means we have

X
⇣
ĝ
�
Â⌘Y, Z

�⌘
� ĝ
⇣
Â⌘

�
rXY

�
, Z
⌘
� ĝ
�
Â⌘Y, r̂XZ

�

= Y
⇣
ĝ
�
Â⌘X,Z

�⌘
� ĝ
⇣
Â⌘

�
r̂Y X

�
, Z
⌘
� ĝ
�
Â⌘X, r̂Y Z

�

Using the definition of g, A and that R⇡
2
is unitary, this implies

X
⇣
g
�
AY,R⇡

2
Z
�⌘

� g
�
A
�
r̂XY

�
, R⇡

2
Z
�
� g
⇣
AY,R⇡

2

�
r̂XZ

�⌘

= Y
⇣
g
�
AX,R⇡

2
Z
�⌘

� g
�
A
�
r̂Y X

�
, R⇡

2
Z
�
� g
⇣
AX,R⇡

2

�
r̂Y Z

�⌘

Since, moreover, r̂ commutes with R⇡
2
(as

�
⌃, ĝ

�
is a Kähler surface) and Z was

chosen arbitrarily (so we can replace R⇡
2
Z by Z), we have

X
�
g(AY,Z)

�
� g
⇣
A
�
r̂XY

�
, Z
⌘
� g
�
AY, r̂XZ

�

= Y
�
g(AX,Z)

�
� g
⇣
A
�
r̂Y X

�
, Z
⌘
� g
�
AX, r̂Y Z

�
.

Now, since ĝ and g are conformally equivalent, we have

r̂XY = rXY +X(f)Y + Y (f)X � g(X, Y )rf ,

where

f :=
1

2
log

✓
2

1 + 2C

◆
.

Therewith, after a straightforward canceling out of terms, we find

X
�
g(AY,Z)

�
� g
⇣
A
�
rXY

�
, Z
⌘
� g
�
AY,rXZ

�

�X(f)g
�
AY,Z

�
+ g(X,Z)g +

�
AY,rf

�

= Y
�
g(AX,Z)

�
� g
⇣
A
�
rY X

�
, Z
⌘
� g
�
AX,rY Z

�
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� Y (f)g
�
AX,Z

�
+ g(Y, Z)g

�
AX,rf

�
. (3.57)

For a further simplification, we first notice that

�X(f)g
�
AY,Z

�
+ g(X,Z)g

�
AY,rf

�

= �g
�
rf,X

�
g
�
AY,Z

�
+ g(X,Z)g

�
AY,rf

�

= det

  
g(X,Z) g

�
X,rf

�

g
�
AY,Z

�
g
�
AY,rf

�
!!

= g
⇣
X ^ (AY ),

�
rf
�
^ Z

⌘
, (3.58)

referring to Section 1.3. Using a local orthonormal frame (E1, E2) and the definition

of A, it can be seen quickly that E1 ^ (AE2) = E2 ^ (AE1), implying that X ^ (AY )

and hence (3.58) is symmetric in X and Y . Therefore, (3.57) simplifies to

X
�
g(AY,Z)

�
� g
⇣
A
�
rXY

�
, Z
⌘
� g
�
AY,rXZ

�

= Y
�
g(AX,Z)

�
� g
⇣
A
�
rY X

�
, Z
⌘
� g
�
AX,rY Z

�
,

that is, (g, A) satisfies the Codazzi equation in S
3 (cf. (1.6)). Consequently, there

exists a non-singular immersion  : ⌃! S
3 with fundamental data (g, A). Moreover,

the minimality of � implies that det
�
Â⌘

�
⌘ 0. By the definition, the analogue holds

for A and hence  is minimal.

Now, comparing with (3.48) and (3.49), we find that for the bipolar surface e ,

eg = ĝ , eA⌘ = Â⌘ .

Addionally, (3.47) and (3.56) yield that

C
e = C� = C .

Putting together this information with the relation from (3.17), for which the left-
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hand side is now the same for both e and �, we find that

C · eAJ�Z = C · ÂJZ

for all Z 2 X(⌃). By continuity, this holds modulo C on supp(C). Recalling our

assumption that supp(C)c = ; from the very beginning, we hence conclude that

eAJ�Z = ÂJZ

for all Z 2 X(⌃). Therefore, all the fundamental data of e and � coincide, showing

that � = e up to an isometry.

Referring back to Example 3.3.3 (i), we can immediately derive the following

result, which was also obtained in [11] using di↵erent methods.

Corollary 3.3.12. If � : S2 ! S
5 is a minimal surface with h�, ⇤�i = 0, then it is

congruent to the bipolar surface of a geodesic 2-sphere in S
3.

We finish this section with several remarks and future perspectives concerning

the previous theorem.

Remark 3.3.13. (i) It remains open in how far the requirement of a simply con-

nected domain in Theorem 3.3.10 can be generalized. To develop a comparable

description for closed surfaces, a potential approach would be to examine sym-

metric surfaces as for example discussed in Chapter 2.

(ii) In the proof of Theorem 3.3.10, regardless of the specific values taken by the

function C, both pairs

g± :=
1± 2C

2
ĝ , A± := � 1

1± 2C
R⇡

2
� Â⌘ , (3.59)

would have satisfied the Gauss and Codazzi equation in S
3, one of them exhibits

singular fundamental data. This phenomenon is related to the polar surface

in S
3 when comparing these singular data with (1.22) and (1.27). Thus, the

question arises whether in the requirements of Theorem 3.3.10 the condition
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on the values of C can be dropped, i.e., if a similar result is obtained by a pair

of singular minimal surfaces in S
3, where one has singularities in C�1

�
{1

2}
�
,

the other in C�1
�
{�1

2}
�
. Or, in other words, whether it is helpful to consider

singular minimal surfaces in S
3 to obtain a better picture of (non-singular)

minimal surfaces in S
5. In the context of the proof above, a first step towards

an answer could be to check if there are conditions for singular surfaces under

which the Gauss and Codazzi equation could be regarded as compatibility

equations.

3.4 Generalization of Bipolar Surfaces

We finish this chapter with related work that can be understood in the context of

the previous section and possibly provide future perspectives in the study of minimal

surfaces in S
5.

In [70], Francisco Torralbo and Francisco Urbano present a general study of mi-

nimal surfaces in S
2 ⇥ S

2, extending from a framework similar to that of [11]. From

the perspective of this chapter, their results provide information on minimal surfaces

in M. In the Lagrangian case, we have seen that these surfaces are also minimal in

S
5 (cf. Remark 3.2.3). In this context, one particular result stands out because it

has the potential to provide additional examples of such surfaces. Particularly, as a

special case, this construction includes bipolar surfaces (or, in the original formula-

tion, Gauss maps of minimal surfaces in S
3, as described in Remark 3.3.2). Within

our setup, these findings of Torralbo and Urbano read as follows.

Theorem 3.4.1 (cf. [70], Theorem 2). Let �,  : ⌃! S
3 be two oriented, minimally

immersed surfaces with conformally equivalent metrics g , g� and with the same Hopf

di↵erentials ⇥ = ⇥�. Then,

�{ ,�} : ⌃! M , �{ ,�} := e + + e��
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is an oriented minimal surface in M with induced metric

ĝ{ ,�} =
1

2

⇣
(2�K ) g + (2�K�) g�

⌘
.

Additionally, �{ ,�} satisfies

N = J+(T⌃) , K = K� ,

N = J�(T⌃) , (1�K )(1�K�) = 1 ,

where K and K� denote the Gaussian curvatures of � and  . In these situtations,

�{�, } is also minimal in S
5.

Remark 3.4.2. Recalling Proposition 1.2.3, the Hopf di↵erential of an oriented,

conformally parametrized minimal surface  : ⌃! S
3 is locally given by

'(z) dz2 = �
⌦
@ , @ ⇤↵ dz2 .

In particular, we can observe that  and  ⇤ share the same Hopf di↵erential so that

the above Theorem is applicable for � =  ⇤. In this case, (1.28) yields

ĝ{ , ⇤} =
1

2

⇣
(2�K ) g + (2�K ⇤) g ⇤

⌘

=
1

2

✓
(2�K ) +

✓
2 +

K 

1�K 

◆◆
g 

= (2�K ) g ,

which is consistent with Theorem 1.4.1. Furthermore, we always have

(1�K )(1�K ⇤) = (1�K )

✓
1 +

K 

1�K 

◆
= 1

and

K = K ⇤ , (2�K )K = 0 , K ⌘ 0 ,

as we would expect from Proposition 3.3.1 and Remark 3.2.11.
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Besides bipolar surfaces, we now present another example where the above theo-

rem can be applied, namely, within Lawson’s ⌧ -family in S
3 as described in Section

2.3.4.

We parametrize a Lawson surface ⌧m,k ✓ S
3 ✓ R

4 ⇠= C
2 for m, k 2 Z�1 and

gcd(m, k) = 1 by

�m,k : R
2 ! S

3 ✓ C
2 , �m,k(u, v) =

�
eimucn(mv), eikusn(mv)

�
,

with respect to the elliptic modulus
q
1� k2

m2 , as explained in Section 2.3.4. The

metric hm,k induced by �m,k is given by

hm,k(u, v) = �m,k(v) ·
�
du2 + dv2

�
, �m,k(v) := m2dn2(mv) .

In these terms, the Gauss map of �m,k reads as

�⇤
m,k : R

2 ! S
3 ✓ C

2 , �⇤
m,k(u, v) = q(v) ·

�
� ik eimusn(mv), im eikucn(mv)

�
,

q(v) :=
1p

m2cn2(mv) + k2sn2(mv)
.

We have

@u�m,k(u, v) =
�
im eimucn(mv), ik eikusn(mv)

�
,

@v�m,k(u, v) = m dn(mv)
�
� eimusn(mv), eikucn(mv)

�
,

�
@u�

⇤
m,k

�T
(u, v) = mk q(v) ·

�
eimusn(mv),�eikucn(mv)

�
,

�
@v�

⇤
m,k

�T
(u, v) = mq(v)dn(mv)

�
� ikeimucn(mv),�imeikusn(mv)

�
.

Therefore, writing z = u + iv, the Hopf di↵erential ⇥(z) = 'm,k(z) dz2 of �m,k (cf.

Proposition 1.2.3) is given by

'm,k(z) = �
⌦
@�m,k, @�

⇤
m,k

↵

= �1

4

⌦
@u�m,k � i@v�m,k, @u�

⇤
m,k � i@v�

⇤
m,k

↵
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=
i

4

⇣⌦
@v�m,k, @u�

⇤
m,k

↵
+
⌦
@u�m,k, @v�

⇤
m,k

↵⌘

=
i

2
m2k q(v) dn(mv)

=
i

2
mk ,

where in the last step, we used the well-known identities

cn2(mv) + sn2(mv) = 1 , dn2(mv) = 1�
✓
1� k2

m2

◆
sn2(mv)

implying that

mq(v) dn(mv) = 1 .

So, the following is immediate.

Proposition 3.4.3. Let m, k, m̂, k̂ 2 Z�1 and gcd(m, k) = gcd
�
m̂, k̂

�
= 1. Then,

the Hopf di↵erentials of the Lawson surfaces ⌧m,k and ⌧m̂,k̂ coincide if and only if

mk = m̂k̂ .

Due to the above proposition, Theorem 3.4.1 applies to the surfaces �m,k and

�m̂,k̂ if mk = m̂k̂. Non-trivial examples for such pairs (m, k) and
�
m̂, k̂

�
are always

obtained from a choice of three distinct prime numbers p1, p2 and p3, arranged into

products in di↵erent ways.

Concerning future work, a question that arises in the light of the previous sec-

tions is whether the surfaces constructed from such pairs satisfy the assumptions of

Theorem 3.4.1 to be minimal in S
5. In this context, note that the Gaussian curvature

of �m,k is given by

K�m,k
(u, v) = � 1

2�m,k(v)
@2

v log
�
�m,k(v)

�
=

�m2dn4(mv) + k2

dn2(mv)
,
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where we used that

sn0(t) = cn(t)dn(t) , cn0(t) = �sn(t)dn(t) , dn0(t) = �
✓
1� k2

m2

◆
sn(t)cn(t) .

Furthermore, an interesting point to study is whether these surfaces can be defined

on closed domains. Looking at the chosen parametrization, this could be realized

by detecting common periods of appropriate surfaces �m,k and �m̂,k̂. In this regard,

note that for the considered modulus, the Jacobi elliptic functions appearing in �m,k

and hm,k have symmetries

cn(t+ 2K) = �cn(t) , sn(t+ 2K) = �sn(t) , cn(t+ 2K) = dn(t)

and

cn(K � t) = �cn(K + t) , sn(K � t) = sn(K + t) , dn(K � t) = dn(K + t) ,

where

K = K

 r
1� k2

m2

!
=

Z ⇡
2

0

d#q
1�

�
1� k2

m2

�
sin2(#)

is the complete elliptic integral of the first kind. Hence, a potential challenge could be

to determine whether di↵erent elliptic integrals are rational multiples of each other.
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Conclusion

In this thesis, we have topologically classified the closed bipolar minimal surfaces�e⇠m,k

�
and

�
e⌘m,k

�
in S

5 for m > 2 or k > 2, induced by the two families (⇠m,k)

and (⌘m,k) of Lawson surfaces in S
3. More precisely, we found that all of them

are orientable and have self-intersections. Defining specific immersions for bipolar

surfaces arising from Lawson-type minimal surfaces in S
3, we developed a mechanism

to study such surfaces in terms of the algebraic properties of the symmetry group

from the reflection process in S
3. A future question is in how far this can be employed

in further characterizations of bipolar surfaces, as for example their classification by

symmetries or index computations.

Regarding the Willmore problem, the search for embedded, closed non-orientable

minimal surfaces in spheres, requiring a higher codimension, continues. A perspective

in that context is to apply our methods to other examples of closed minimal surfaces

in S
3 that result from a reflection process (cf. [31, 13, 5]). In addition, one could

analyse in our setting how closed minimal surfaces in S
3 need to behave in order to

produce a non-orientable bipolar minimal surface, as given by the example e⌧3,1.

Furthermore, we have examined bipolar surfaces within the broader class of mi-

nimal surfaces in S
5 that lie in an embedding of S2(1/

p
2)⇥ S

2(1/
p

2). This exploration

has not only deepened our understanding of their extrinsic geometric properties but

has also enabled us to demonstrate that, under certain conditions, locally any im-

mersed surface of the specified class is congruent to a bipolar surface. Future research

could further explore this class, particularly its distinction among minimal surfaces

in S
5. Additionally, appropriate examples from the construction in [70] could be

considered.
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faces from a complex analytic viewpoint. Springer Monographs in Mathematics.

Springer, Cham, 2021.

[2] Frederick J. Almgren, Jr. Some interior regularity theorems for minimal surfaces

and an extension of Bernstein’s theorem. Ann. of Math. (2), 84:277–292, 1966.

[3] Matthias Bauer and Ernst Kuwert. Existence of minimizing Willmore surfaces

of prescribed genus. Int. Math. Res. Not., 2003(10):553–576, 2003.

[4] Arthur L. Besse. Manifolds all of whose geodesics are closed, volume 93 of

Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and

Related Areas]. Springer-Verlag, Berlin-New York, 1978. With appendices by

David B. A. Epstein, Jean-Pierre Bourguignon, Lionel Bérard-Bergery, Marcel

Berger and Jerry L. Kazdan.

[5] Alexander I. Bobenko, Sebastian Heller, and Nicolas Schmitt. Minimal reflection

surfaces in S
3. Combinatorics of curvature lines and minimal surfaces based on

fundamental pentagons. arXiv:2406.12183 [math.DG], 2024.

[6] John Bolton and Luc Vrancken. Transforms for minimal surfaces in the 5-sphere.

Di↵erential Geom. Appl., 27(1):34–46, 2009.

[7] Simon Brendle. Minimal surfaces in S3: a survey of recent results. Bull. Math.

Sci., 3(1):133–171, 2013.

141



[8] Patrick Breuning, Jonas Hirsch, and Elena Mäder-Baumdicker. Existence of
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