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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Simulation und Formoptimierung von elek-
tromechanischen Energiewandlern unter Unsicherheit. Genauer wird eine Asyn-
chronmaschine betrachtet, deren elektromagnetischen Felder durch die magneto-
quasistatische Approximation der Maxwell Gleichungen beschrieben werden kann,
welche mit Netzwerkgleichungen für den Käfigläufer und für den anregenden
Dreiphasenstrom gekoppelt werden. Komplettiert wird das Zustandssystem durch
eine Bewegungsgleichung, welche durch das elektromagnetische Drehmoment an-
geregt wird. Dies führt auf ein System von partiell differential-algebraischen Gle-
ichungen.
Zur numerischen Lösung der Zustandsgleichung wird ein Finite Elemente Ansatz

mit einem Zeitschrittverfahren verwendet.
Wir betrachten Unsicherheiten in Material und Geometrie der Maschine und ver-

wenden einenWorst-Case-Ansatz, um diesen Unsicherheiten zu begegnen. Dies führt
auf ein zweistufiges Optimierungsproblem. Da diese Probleme numerisch schwierig
zu lösen sind, verwenden wir Approximationen bis zur zweiten Ordnung als Er-
satzmodell. Insbesondere verwenden wir Taylormodelle in Kombination mit einer
adaptiven Strategie zur Verbesserung der Approximationsgüte und ableitungsfreie
Interpolationsmodelle, die ebenfalls iterativ verbessert werden können.
Die Diskretisierung von partiellen Differentialgleichungen führt auf Systeme mit

vielen Freiheitsgraden. Zusätzlich erhöht die Betrachtung von Unsicherheiten in der
Optimierung den Berechnungsaufwand. Um unsere Berechnungen zu beschleunigen,
verwenden wir Techniken zur Modellreduktion.

This work deals with the simulation and shape optimization of electromechanical
energy converters under uncertainty. More precisely, an asynchronous machine is
considered, whose electromagnetic fields can be described by the magnetoquasistatic
approximation of Maxwell’s equations, which are coupled with network equations
for the rotor cage and for the exciting three-phase current. The state system is

vii



completed by an equation of motion which is excited by the torque. This leads to a
system of partial differential algebraic equations.
A finite element approach with a time-stepping method is used to numerically

solve the equation numerically.
We consider uncertainties in the material and geometry of the machine and use

a worst-case approach to address these uncertainties. This leads to a bi-level struc-
tured optimization problem. Since these problems are difficult to solve numerically,
we use approximations up to second order as surrogate models. In particular, we
use Taylor models in combination with an adaptive strategy to improve the approx-
imation quality and derivative-free interpolation models that can also be improved
iteratively.
Both the problem formulation and the consideration of uncertainty in the opti-

mization lead to a high computational cost. To speed up our computations, we
apply model dimension reduction techniques.
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CHA PTER 1

Introduction

1.1 Motivation

Nowadays, electric motors can be found in many areas. For example, they are in-
stalled in everyday appliances such as kitchen appliances, vacuum cleaners or hair
dryers and tools such as drills or electric saws. They are also used in means of
transport: trains are often equipped with electric motors and increasingly cars and
bicycles. In order to design the right motor for each product, prototypes have to
be developed and tested. The production of classical physical prototypes is time-,
money- and resource-intensive. With increasing computing power, the development
of physical prototypes is shifting towards digital prototypes. With the help of these
digital prototypes, not only the design can be developed, but, through the math-
ematical description of the underlying physical properties, often including partial
differential equations, the simulations and optimizations can be performed on the
computer. Multi-physical phenomena can be simulated, different objectives can be
investigated and thus products can be developed for a customer individually.

1.2 Related Work

As the mathematical description of an induction machine involves many physical
laws, one can find existence and uniqueness results which neglect different effects:
In Langer et al. [4] a proof of the existence for the 3D eddy current equation

with a nonlinear relation between the magnetic field and the magnetic induction
in the conducting domain and a linear relation in the non-conducting region using
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Chapter 1. Introduction

a Schur complement can be found. Nicaise and Tröltzsch [63] examine the same
equation with a linear material relation but coupled with an equation accounting
for magnetic induction in a given region where they transform the equations into
an integro-differential system and prove existence and uniqueness using a theorem
by Showalter on degenerate parabolic equations. In a recent paper [23] by Chill
et al. the well-posedness of the regularity of solutions to the same system as in
[63] but with non-linear material behavior and weaker conditions on the domain is
investigated, where gradient systems on Hilbert spaces and ε-gradients are used in
the analysis. An investigation of the magnetoquasistatic approximation of Maxwell’s
equations involving rotation of the inner domain in 2D with linear material can be
found in [20]. Optimization with partial differential equations is an active field of
research [47, 80].
The spatial discretization method used in this thesis is the finite element method,

see [24, 16]. However, recently many authors make us of isogeometric analysis [48],
which uses non-rational B-splines to describe the geometry, which has the advantage,
that the airgap, which is a circle, can be represented precisely [58, 14].
Model order reduction for affinely parametrized equations or domains as it is

used in this thesis is well studied. In [72] Rozza et al. examine the reduced basis
approximation and a posteriori error estimation for affinely parametrized elliptic
partial differential equations. Grepl and Patera [43] use the same reduced basis
approach, deducing a posteriori error bounds for parabolic equations. The reduced
basis approach uses a greedy selection procedure of solution snapshots to generate
a reduced order model. Another widely used approach to construct a reduced order
model is the proper orthogonal decomposition (POD) method, where the solution
snapshots are used to compute basis vectors which minimize the squared distance
between the snapshots and their projection onto the low dimension space spanned
by the basis vectors. A good survey on POD can be found in [82]. POD was applied
for example in the simulation and optimization of permanent magnet synchronous
machines, see [56, 15] and in several other engineering applications [13, 44, 55].
If the underlying equation involves nonlinearities, POD is not efficient, since the
nonlinearities have to be evaluated in full dimension. To overcome this ineffeciency
Chaturantabut and Sorensen [21, 22] proposed the discrete empirical interpolation
method (DEIM). Its idea is to approximate the image of the nonlinearity by a linear
subspace and then use this linear subspace to interpolate the full nonlinearity by
the evaluation of a subset of its components. Drmac and Saibaba [38] examined
the selection procedure of the components to evaluate by a strong rank revealing
QR decomposition to lower the DEIM error bound. Applications of DEIM can be
found in [55] for the simulation of lithium ion batteries and in [50] for the numerical
solution of nonlinear magneto-quasistatic equations.
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1.3. Outline of the thesis

There are different approaches to dealing with uncertainties. In this thesis, we
follow the worst-case minimization approach. In this approach, the constraint func-
tions must be satisfied, regardless of the realization of the uncertain variables. The
first works where the robust counterpart for parameterized optimization problems
with a linear objective function and convex feasible set were introduced and in-
vestigated are by Ben-Tal and Nemirovski [7, 8]. In these papers the term robust
optimization is used and coined due to the investigation of the robust counterpart.
Dealing with nonlinear functions, Diehl, Bock and Kostina [37] examined the use
of linearization in the uncertain parameter, which has to lie inside a ball, described
by a scaled Hölder norm. This approach has the benefit that the worst-case can
be computed analytically. Sichau and Ulbrich [78] investigated a nonlinear PDE
constrained problem, where the objective and constraint functions are replaced by
quadratic approximations and the state equation by a linear approximation. This
leads to quadratic inner problems, which cannot be solved analytically, but the opti-
mality conditions are known and added as constraints to the optimization problem,
which results in a mathematical program with complementarity constraints. In the
recent works of Lass and Ulbrich [56] and Kolvenbach, Lass and Ulbrich [52] also the
curvature of the state equation is taken into account and an algorithm to iteratively
move the expansion point of the Taylor model to improve its approximation of the
worst-case is presented. Kolvenbach [51] and Kolvenbach, Lass and Ulbrich [52] also
examine second order models but do not add the optimality conditions to the opti-
mization problem, but rewrite it with so called reduced worst-case functions, which
evaluate the worst-case. These worst-case functions are non-smooth which has to
be taken into account in their analysis and the solution of the robust optimization
problems.
Another approach to bi-level optimization where no derivative information is

needed is examined by Conn and Vicente in [28]. They use a quadratic interpo-
lation model as a surrogate model. The interpolation model uses less interpolation
points than needed to uniquely define it, by requiring that it has minimal curvature,
a technique described by Powell [67] which lowers the amout of possibly expensive
function evaluations.

1.3 Outline of the thesis

In this work, we study the simulation and shape optimization of electrical machines.
More precisely, we consider asynchronous machines, which are also called induction
machines. In contrast to permanent magnet synchronous machines, these machines
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Chapter 1. Introduction

do not have magnets in the rotor and thus, in the first place, no magnetic field in
the rotor. Instead, they have a so-called rotor cage (also called squirrel cage), which
contains short-circuited conductive bars. Due to the position of three windings in
the stator and the use of a three-phase current, a rotating magnetic field is formed
when the currents are applied to the windings. As the rotating field moves across
the short-circuited bars, a voltage and a current is induced in the rotor bars, which
in turn generates a magnetic field by magnetic induction, which is then pulled along
by the external rotating magnetic field. If the rotor rotates at the same speed as
the external rotating magnetic field, the rotor bars no longer experience a changing
magnetic field and the currents induced in the rotor bars become smaller and the
rotor rotates slower. Since the rotor must therefore always rotate slower than the
externally rotating magnetic field, the motor is called asynchronous machine.
In Chapter 3 the physical basics for the description of the behavior of the asyn-

chronous machine are laid and a proof for the existence of a solution of the derived
state equation is given.
In the fourth chapter, methods are described with which the simulation and shape

optimization of an asynchronous machine can be carried out on the computer. The
chapter begins with the description of the discretization in space by the finite element
method using a domain decomposition method, where the domain is subdivided into
rotor and stator, which are then coupled by interpolation. In our optimization, we
want to optimize the width and height of the rotor bars. To perform the transfor-
mation of the domain for different designs, we use an affine parametrization, which
allows us to compute quantities, such as stiffness and mass matrix on a reference
domain and then use a parameter dependent coefficient to assemble the quantities
for a specific design. As some of the material properties of the motor depend on the
magnitude of the underlying magnetic flux density, we describe how we treat the
nonlinearity. At the end of the chapter, we describe the time stepping scheme we
are using and how we compute adjoint state and sensitivities, which are used in the
optimization to calculate descent directions.
Since the discretization of partial differential-algebraic equations leads to a system

with many degrees of freedom, methods for model order reduction are discussed in
the fifth chapter. We focus on the proper orthogonal decomposition method (POD)
and how we use it in the simulation and optimization of the asynchronous machine.
Since the POD method is not efficient in the presence of nonlinearities, we describe
the use of the discrete empirical interpolation method for the simulation of the
induction machine to shorten the simulation time.
There are many approaches to treat uncertainties in mathematical models. For

example, uncertainties can be treated stochastically by their expected value and
or variance, assuming knowledge of the underlying probability distribution of the
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1.3. Outline of the thesis

uncertainty. In other approaches, the probability distribution itself is part of the un-
certainty. In this thesis, we use so-called worst-case optimization, which is described
in the sixth chapter. In worst-case optimization, we assume, that the uncertainty lies
inside a known ellipsoidal set. The objective is then to minimize the worst possible
case under the requirement that the constraint functions are also fulfilled in their
worst possible case. This is the most conservative way of dealing with uncertainty.
However, in some application it is necessary that an engine is still rotating in the
worst case and not only in the expected value.
In the seventh chapter, the optimization problem we are solving numerically is

introduced, which states the minimization of the Joule losses in the rotor bars under
the constraint, that a given torque is preserved and the results of the application of
the methods described in the previous chapters are presented.
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CHA PTER 2

Mathematical Background

Definition 2.1. A measurable function f : Ω → R, for Ω ⊂ Rn open, is called
locally integrable if for all K ⊂ Ω compact,∫

K

|f(x)|dx <∞.

The set of locally integrable functions on Ω is a vector space denoted by L1
loc(Ω).

With L1
loc(Ω) we denote the equivalence classes we obtain, when we identify two

function f, g ∈ L1
loc(Ω), if f = g almost everywhere.

Definition 2.2. Let Ω ⊂ Rn be an open subset and f ∈ L1
loc(Ω) a locally integrable

function. If there exists a function g ∈ L1
loc(Ω) for which∫

Ω

gφdx = (−1)|α|
∫

Ω

fDαφdx,

holds for all φ ∈ C∞c (Ω), we call Dαf := g the α-th weak partial derivative of f .

In the definition C∞c (Ω) is the set of infinitely differentiable functions with com-
pact support in Ω and the multi-index α = (α1, . . . , αN ) ∈ (N ∪ {0})N should be
understood in the way that

|α| :=
n∑
i=1

αi, D
αf :=

∂αf

∂α1
x1 · · · ∂αnxn

.

Definition 2.3. For an open and bounded domain Ω ⊂ Rn we say that it has
Ck,β-boundary, where k ∈ N and β ∈ [0, 1], if for all x ∈ ∂Ω there exists r > 0,

7



Chapter 2. Mathematical Background

l ∈ {1, . . . , n}, σ ∈ {−1,+1}, and a function γ ∈ Ck,β(Rn−1), such that

Ω ∩B(c, r) = {y ∈ B(x, r) : σyl < γ(y1, . . . , yl−1, yl+1, . . . , yn)}.

Here, B(x, r) denotes the open ball with midpoint x and radius r. For the special
case k = 0 and β = 1, we also say the domain has Lipschitz-boundary.

In the definition we have the space

Ck,β(Ω̄) :=

{
f ∈ Ck(Ω̄) : sup

{
|Dαf(x)−Dαf(y)|

‖x− y‖β : x, y ∈ Ω̄, x 6= y

}
<∞ for |α| = k

}
.

Definition 2.4. We call the set of functions f ∈ Lp(Ω) on open sets Ω ⊂ Rn Sobolev
space Wm,p(Ω) if the weak derivative exists up to order m

Wm,p := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω),∀|α| ≤ m}.

Equipped with norms

‖f‖Wm,p(Ω) :=

 ∑
|α|≤m

‖Dαf‖pLp(Ω)

1/p

for 1 ≤ p <∞ and

‖f‖Wm,∞(Ω) := max
|α|≤m

‖Dαf‖L∞(Ω),

the Sobolev spaces define Banach spaces.

For the case p = 2 the Sobolev spaces are Hilbert spaces and we denote Hm(Ω) :=

Wm,2(Ω) and the inner product is defined as

(f, g)Hm(Ω) :=
∑
|α|≤m

(Dαf,Dαg)L2(Ω).

Theorem 2.5 (Trace operator).
Let Ω ⊂ Rn open and bounded with Lipschitz-boundary and 1 ≤ p ≤ ∞. Then there
exists exactly one linear bounded operator

S : W 1,p(Ω)→ Lp(Ω) (trace operator)

such that
Su = u|∂Ω for u ∈W 1,p ∩ C0(Ω).

8



Proof. See for example [1].

Lemma 2.6 (Hölder’s inequality).
Let p, p′ ∈ [1,∞] with 1

p + 1
p′ = 1. For f ∈ Lp(Ω) and g ∈ Lp

′
(Ω), we have

fg ∈ L1(Ω) and
‖fg‖L1(Ω) ≤ ‖f‖Lp‖g‖Lp′ .

Proof. See for example [1].

Theorem 2.7 (Young’s inequality).
If a ≥ 0 and b ≥ 0 are nonnegative real numbers and if p > 1 and q > 1 with
1
p + 1

q = 1, then

ab ≤ ap

p
+
bq

q
.

Equality holds if and only if ap = bq.

Definition 2.8. The space L(X,R) of continuous and linear functionals on a
normed space X is called the dual space of X and denoted by X∗. We use the
notation 〈v, u〉X∗,X = v(u) for v ∈ X∗ and u ∈ X.

The spaceX∗ endowed with the norm ‖v‖X∗ = sup‖u‖X=1 |〈v, u〉X∗,X | is a Banach
space, see [47].

Definition 2.9. Let H1 and H2 be Hilbert spaces and T ∈ L(H1, H2). Then the
adjoint operator of T in a Hilbert space sense is denoted by T ∗ and defined by

(T (x), y)H2
= (x, T ∗(y))H1

∀x ∈ H1, y ∈ H2.

Theorem 2.10 (Variation of constants).
Let the ordinary differential equation (ODE)

u′(t) = au(t) + b(t), t ∈ I := [t0, t0 + T ],

with a ∈ R and the continuous function b : I → R. The solution to the ODE has
the form (given the initial condition u(t0) = u0)

u(t) = ea(t−t0)u0 +

∫ t

t0

ea(t−τ)b(τ) dτ.

Proof. See for example [68].

Theorem 2.11 (Picard/Lindelöf).

9



Chapter 2. Mathematical Background

Let X be a Banach space and let Q ⊆ R×X for given t0 ∈ R and p0 ∈ X, a, b > 0

be defined as

Q := {(t, y) ∈ R×X : |t− t0| ≤ a, ‖y − p0‖X ≤ b}.

Let the function f : Q → X be continuous in Q and Lipschitz-continuous wrt. to
the second variable. Then there exists a unique continuous solution of

x′(t) = f(t, x(t)),

x(t0) = p0,

in the intervall [t0 − c, t0 + c] with c := min(a, b
max(t,y)∈Q ‖f(t,y)‖X ).

Proof. See for example [73].

Theorem 2.12 (Implicit function theorem).
Let X,Y and Z be Banach spaces. Let the mapping f : X × Y → Z be continuously
Fréchet differentiable. If (x0, y0) ∈ X × Y, f(x0, y0) = 0, and y 7→ Df(x0, y0)(0, y)

is a Banach space isomorphism from Y onto Z, then there exist neighbourhoods
U of x0 and V of y0 and a Fréchet differentiable function g : U → V such that
f(x, g(x)) = 0 and f(x, y) = 0 if and only if y = g(x), for all (x, y) ∈ U × V .

Theorem 2.13 (Elliptic regularity).
Assume U ⊂ Rn is a bounded, open set. Let the differential operator

Lu = −
n∑

i,j=1

(aij(x)uxi)xj +

n∑
i=1

bi(x)uxi + c(x)u

be given. Assume

aij ∈ C1(U), bi, c ∈ L∞(U) (i, j = 1, . . . , n)

and
f ∈ L2(U).

Suppose furthermore that u ∈ H1(U) is a weak solution of the elliptic PDE

Lu = f in U.

Then
u ∈ H2

loc(U)

10



and for each open subset V ⊂ U with V ⊂ U compact, we have the estimate

‖u‖H2(V ) ≤ C(‖f‖L2(U) + ‖u‖L2(U)),

the constant C depending only on V , U , and the coefficients of L.

Proof. See for example [41, 76]

Theorem 2.14 (Singular value decomposition).
Let M ∈ Rn×m be a matrix with rank r. The singular value decomposition of M is
a factorization

M = UΣV T ,

where U is an m ×m orthogonal matrix with columns u1, . . . , um, Σ is an m × n
rectangular diagonal matrix with non-negative real number on the diagonal, V is an
n × n orthogonal matrix with columns v1, . . . , vn. The diagonal entries σi = Σii of
Σ are uniquely determined by M are known as the singular values of M . The SVD
always exists, but is not unique. The singular value decomposition can be written as
M =

∑r
i=1 σiuiv

T
i .

Definition 2.15 (Locally Lipschitz continuity).
A function f : Rn → R is called locally Lipschitz continuous, if for every bounded
subset B of Rn there exists a constant K > 0 such that

|f(x1)− f(x2)| ≤ K‖x1 − x2‖

for all points x1 and x2 in B.
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CHA PTER 3

Physical problem

In this chapter, we describe the model we are using to simulate the behavior of an
asynchronous machine. Starting with the description of the electromagnetic fields,
via network equations to the equation of motion, torque and boundary conditions. In
contrast to a permanent magnet synchronous machine, the asynchronous machine,
which is also called induction machine, does not require magnets in the rotor, but a
so called squirrel cage which is a short-circuited bar network and will be described
in detail in this chapter.

3.1 Maxwell’s Equation

The set of Maxwell’s is the given by:

∇ · ~B = 0 Gauss’s law for magnetism

∇ · ~D = ρ Gauss’s law

∇× ~H =
∂ ~D

∂t
+ ~J Ampère’s law

∇× ~E = −∂
~B

∂t
Faraday’s law of induction

(3.1)

In 1864 Maxwell was the first to write down all the equations which are known today
as Maxwell’s equations. In his paper [57], however, there were 20 equations, because
they were not written down in vector notation. Maxwell added the displacement
currents to Faraday’s Law. In 1891, Oliver Heaviside published a paper in which
Maxwell’s equations were written in vector notation, i.e. essentially in the form we

13



Chapter 3. Physical problem

know today. These equations describe the interaction between eletric and magnetic
fields via the involved quantities:

~B the magnetic flux density,
~D the displacement field,

ρ the density of free electric charges,
~H the magnetic field strength,
~J the current density,
~E the electric field strength.

(3.2)

All quantities depend on space and time and the ones with a vector-arrow on top
are three-dimensional vector fields, meaning ρ is the only scalar quantity. These
quantities follow the material relations

~D = ε ~E,

~B = µ ~H,

~J = σ ~E,

(3.3)

with the electric permittivity ε, the magnetic permeability µ, which is related to the
magnetic reluctivity ν by µ−1 = ν and the electric conductivity σ. In general, these
materials can be complicated, since in anisotropic material they behave differently
in different directions, for some materials, they depend on the magnitutde of the
underlying fields and therefore are nonlinear functions, in some materials hysteresis
effects occur and further, they might depend on temperature.
In this work, we assume, that the materials we are using are simply constant

scalars for different materials. But in our numerics we will examine nonlinear ma-
terial behavior in the reluctivity ν.

3.1.1 Nonlinear Material Properties

In ferromagnetic magnetic material, the relation between the magnetic field strength
~H and the magnetic flux density ~B depends on the magnitude of the underlying field

~H = ν(| ~B|) ~B.

14



3.1. Maxwell’s Equation

The relation can be modelled by a B-H-curve

f : R+
0 → R+

0 : | ~H| 7→ | ~B| = f(|H|)

which we assume satisfies the following properties:

Assumption 3.1 ([42], Assumption 1). Let f : R+
0 → R+

0 be a B −H-curve. Then
the following holds:

1. f is continuously differentiable on R+
0 ,

2. f(0) = 0,
3. f ′(s) ≥ µ0 for all s ≥ 0,
4. lim

s→∞
f ′(s) = µ0.

Here µ0 is the magnetic permeability in vacuum. The reluctivity ν is related to
f via

ν(s) =
f−1(s)

s
.

If f fulfills Assumption (3.1), then there exists a νl > 0 and it holds

νl ≤ ν(s) ≤ ν0,

where ν0 = 1
µ0

is the magnetic relcuctivity of vacuum, see [66].

3.1.2 Magnetoquasistatics

Maxwell’s equations describe general electromagnetic phenomena. When consid-
ering special applications, some of the quantities in (3.2) may be negligibly small
compared to the other quantities, so that not all quantities and equations need to
be considered to describe a behavior accurately enough. Depending on which equa-
tions are neglected, the resulting systems have different behaviors. For example, in a
permanent magnet synchronous machine (PMSM) the magnetic field in the rotor is
already given by the magnets and does not have to be built up by induced currents
first, i.e. eddy currents can be neglected in the model of a PMSM and it is suffi-
cient to consider the so-called magnetostatic approximation of Maxwell’s equations,
which leads to an elliptic equation, while the full set of Maxwell’s equations leads
to hyperbolic PDEs.
In applications with slowly varying electromagnetic fields and where the electric
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energy is low, compared to time dependent power losses and magnetic energy, i.e.∣∣∣∣∣∂ ~D∂t
∣∣∣∣∣� ∣∣∣ ~J∣∣∣ ,

the displacements currents can be neglected [53]. In this case one ends up with the
magnetoquasistatic approximation of Maxwell’s equations

∇ · ~B = 0,

∇ · ~D = ρ,

∇× ~H = ~J,

∇× ~E = −∂
~B

∂t
.

(3.4)

To combine the equations into one, potentials can be introduced, which guarantee
the fulfillment of some of the equations. Introducing the magnetic vector potential
(MVP) ~A and choosing ~B = ∇× ~A leads to

~B = ∇× ~A ⇒ ∇ · ~B = 0

meaning that the divergence-free condition on the magnetic flux density ~B is auto-
matically fulfilled, since the divergence of a rotation always vanishes. Further we
can introduce the electric scalar potential q to obtain

~E = −∂
~A

∂t
−∇q ⇒ ∇× ~E = −∇× ∂ ~A

∂t
.

Using the material relations

ν ~B = ~H and ~J = σ ~E

one can combine the equations above and obtain the parabolic-elliptic partial dif-
ferential equation (PDE)

∇× (ν∇× ~A) + σ
∂ ~A

∂t
= −σ∇q. (3.5)

This is a degenerate parabolic equation, since in materials where the conductivity σ
is zero, the time derivative vanishes and one has an elliptic equation in this region.
This model is also known as eddy current model, as the varying magnetic field

term σ ∂
~A
∂t is responsible for the induction of eddy currents in regions with nonzero

conductivity σ. The current density ~J = σ ~E = −σ(∂
~A
∂t − ∇q) is split into eddy
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current density and source current density.

3.2 Reduction from 3D to 2D

We call the domain of the machine V3D which is a subset of R3. If we assume that
the material and the geometry of the machine is invariant in the z-direction and
that the currents ~J also only flow in z-direction, then we can derive a 2D model on
the cross-section of the machine, see [66]. We denote the cross-section by Ω ⊂ R2.

~J(x, y, z, t) =

 0

0

Jz(x, y, t)

 and ~H(x, y, z, t) =

Hx(x, y, t)

Hy(x, y, t)

0


By the material law ~B = ν ~H we also have

~B(x, y, z, t) = Bx(x, y, t)~ex +By(x, y, t)~ey.

Since we have chosen ~B = ∇× ~A, we get

∇× ~B = ν

∂yBz − ∂zBy∂zBx − ∂xBz
∂xBy − ∂yBx

 =

 0

0

Jz

 = ~J

For the curl-curl-part we get (since the material is isotropic)

∇× (ν∇× ~A) =

 ∂zν∂xAz
∂zν∂yAz

−∂xν∂xAz − ∂yν∂yAz

 =

 0

0

−∇ · (ν∇Az)


such that we can write the equation (3.5) in 2D planar case as

σ
∂Az
∂t
−∇ · (ν∇Az) = Js,z = −σ∂zq. (3.6)

Note, that the Columb gauche ∇ · ~A = 0, which is used to guarantee a unique
solution ~A to the eddy current model in 3D is fulfilled since Az does not depend on
z.
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3.3 Domain decomposition and boundary conditions

We will use a domain decomposition in the continuous model and in the discrete
model of the machine to account for the rotation of the inner part. We split the
whole domain Ω̄ = Ω̄1∪ Ω̄2 into the rotor domain Ω1 and the stator domain Ω2. We
then get an equation for the rotor and for the stator

σi
∂Az,i
∂t
−∇ · (νi∇Az,i) = Js,z,i in Ωi, i = 1, 2.

In order to couple the two equations, we supply them with two coupling conditions,
which depend on the rotation θ(t) of the rotor.

Az,1(r−θ(t)x, t)−Az,2(x, t) = 0 Γ×]0, T [,

ν1(r−θ(t)x)
∂Az,1
∂n

(r−θ(t)x, t)− ν2(x)
∂Az,2
∂n

(x, t) = 0 Γ×]0, T [.

Where Γ := Ω̄1 ∩ Ω̄2 is called airgap or interface. In the conditions

rθ(t) :=

(
cos(θ(t)) − sin(θ(t))

sin(θ(t)) cos(θ(t))

)
(3.7)

describes a counterclockwise rotation (we assume that Ω is a disk with center 0).
r−θ(t) then describes a clockwise rotation. The first condition imposes the continuity
of the magnetic vector potential and the second one, the continuity of the tangential
component of the magnetic field strength. In the derivatives ∂

∂n = n · ∇ the normal
direction is with respect to the unit normal vector pointing from rotor to stator.
Since the material in the airgap is air, we have ν1(x) = ν2(y) = νair for all x, y ∈ Γ.
On the outer boundary, we have homogeneous Dirchlet boundary conditions

Az,1|Ω̄1\{Ω1∪Γ} = 0,

Az,2|Ω̄2\{Ω2∪Γ} = 0.

3.4 Network in Rotor

In the rotor of an induction machine a short-circuited rotor bat network, which
is known as squirrel cage, is located. The bars of the squirrel cage are made out
of conductive material for example copper or aluminium and the bars are short-
circuited by rings at the front and the back of the machine, such that when the bars
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experience a varying magnetic field a current is induced, which can be explained by
Faraday’s law. We want to describe the circuit of the squirrel cage by the modified
nodal analysis and couple it with the eddy current model (3.6), since in the 2D eddy
current model only the cross-section of the machine and the rotor bars is modelled
and the short-circuited bar network is not described.

3.4.1 Modified Nodal Analysis

To describe the connected electric circuit in the rotor bar, we use the Modified Nodal
Analysis (MNA) [79]. Its idea is to describe the circuit with a directed graph. In this
graph with b edges (or branches) and n nodes, we assign a potential ϕj , j = 1, . . . , n

to each node and a current ij , j = 1, . . . , b to every branch. Each branch represents
an electric element, for example a resistance R or an inductance L, which describe
the physical relation between the currents and voltages along the edges. One can
define an incidence matrix A ∈ {−1, 0, 1}n×b for the graph, which has the following
structure

akj =


1 if the branch j leaves the node k,

−1 if the branch j enters the node k,

0 else.

Removing the last row of the incidence matrix gives the reduced incidence matrix.
Since every row corresponds to one node, the removed node is defined as the mass
(or reference) node with a potential of 0 and then the values of the other nodes
are defined as voltages with respect to the mass node. We can use the (reduced)
incidence matrix A to describe Kirchhoff’s circuit laws, i.e. Kirchhoff’s current law
and Kirchhoff’s voltage law.
Kirchhoff’s current law states, that all currents flowing in to and out of a given

node have to sum up to 0, which implies

Ai = 0,

when using the incidence matrix.
Kirchhoff’s voltage law states, that the sum of the potentials in a loop is zero.

Let ϕ = (ϕ1, . . . , ϕn)T be the vector of nodal potentials. If node i and node j
are connected through branch k (pointing from node k to node j) then the branch
voltage is given by

vk = ϕk − ϕj .
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For the vector v = (v1, . . . , vb)
T of branch voltages one has

v = ATϕ,

such that Kirchhoff’s voltage law is fulfilled. As seen in Figure (3.1), in the rotor
bar network, we have two different elements on the branches: resistances and FE-
coupling. The behavior of the branches with underlying resistance can simply be
described by Ohm’s law. Selecting the rows of AT which correspond to resistance
branches denoted by ATR, we can write

ATRϕ = RiR ⇔ R−1ATRϕ = GATRϕ = iR,

where R is a diagonal resistance matrix containing the resistances of the branches
and G = R−1 a conductance matrix. The branches with the underlying FE model
also have a resistive term and an additional term which depends on the magnetic
vector potential and which takes into account that the varying magnetic field induces
currents in the FE branches. These additional terms are stated in the next section.

Figure 3.1. Graph of the rotor bar network. For every bar there are three nodes and
four branches: two branches for the resistance of the outer rings (red), one branch for the
resistance of the rotor bar outside of the FE model (blue) and one FE branch (green).

20



3.5. Coupling of electric circuits and electromagnetic fields

3.5 Coupling of electric circuits and electromagnetic
fields

To couple the electric circuit equations for the rotor bars and the circuit for the
windings in the stator with the electromagnetic field equations we use winding func-
tions, specifically solid and stranded conductor models [75, 32, 5]. The next two
sections follow [75].

3.5.1 Solid conductors

Solid conductor models model, as the name suggests, solid conductors, e.g. con-
ductors made of one piece of metal. As we are in the 2D plane, they are simply
functions with support in the cross-section of the rotor bars, which are divided by
the length of the machine `z in z-direction to account for the fact, that we are only
considering the cross-section of the machine. We denote the solid conductor models
with ~ξ.

~ξ(x, y, z) :=
1Ωsol(x, y)

lz
~ez, 1Ωsol(x, y) =

{
1 if (x, y) ∈ Ωsol,

0 else.

We will denote the z-component of ~ξ simply as ξ. A voltage drop u in the solid
conductor is then applied as source current density −σ∇q = σ~ξu ⇔ −σ∂zq = σξu

in the right hand side of equation (3.6). The complete current density in the bars
includes the eddy current density and is given by

~J = σ(~ξu− ∂t ~A) = ~Js + ~Je.

To compute the currents irb in the rotor bars one can integrate ~J over the electrodes
or equivalently, integrate ~ξ · ~J over the whole 3D domain V3D
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irb =

∫
V3D

~ξ · ~J dx

=

∫
Ωsol

∫ `z

0

1

`z
Jz dz dx

=

∫
Ωsol

Jz dx

=

∫
Ωsol

σ

(
1

`z
u− ∂tAz

)
dx

=

∫
Ωsol

σ

`z
dxu−

∫
Ωsol

σ∂tAz dx.

The DC conductance G, which is inverse to the resistance, is defined by

Gξ :=

∫
V3D

σξξ dx =

∫
Ωsol

σ

`z
dx.

This leads to the two equations

σ∂tAz +∇ · ν∇Az = −σ∇q = σξu, on Ω1

irb = Gξu−
∫

Ω

σ`zξ∂tAz dx.

To incorporate the rotor bar network in the form of the MNA described in the
previous section, we use nodal potentials ϕ and the voltage drop is given by u =

ATϕ. For each of the 40 rotor bars, we have a solid conductor model, called ξq,
q = 1, . . . , 40, which has its support on the domain of the rotor bar. The reduced
incidence matrix has dimension 119×160, since for each rotor bar, we have 4 branches
and 3 nodes, where one node is chosen as mass node and removed. When ordering
the incidence matrix, such that the first 40 columns correspond to the FE branches,
we set up the matrix G as

G := diag(Gξ1 , . . . , Gξ40
, Gbarext1 , . . . , Gbarext40

, Gringext1 , . . . , Gringext80
)},

where Gbarexti ∈ R is the DC conductance for the rotor bar branch i outside of the
FE model and Gringexti ∈ R is the DC conductance for the end ring branch i, see
Figure (3.1). We can then write

σ

40∑
q=1

ξqA
T
q,:ϕ = σξTa A

Tϕ
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where ξa = (ξ1, . . . , ξ40,0)T . Further inserting leads to

irb = GATϕ−
∫

Ω

σ`zξa∂tAz dx.

Now multiplying this equation with the incidence matrix A, we incorporate Kirch-
hoff’s current law

0 = Airb = AGATϕ−A
∫

Ω

σξa∂tAz dx

So we end up with the equations in the rotor

σ∂tAz +∇ · ν∇Az = σξTa A
Tϕ, on Ω1

0 = AGATϕ−A
∫

Ω

σ`zξa∂tAz dx.

Figure 3.2. Support of the 40 solid conductor models on the domain.
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3.5.2 Stranded conductors

Figure 3.3. Support of the three stranded conductor models on the domain.

To model the windings in the stator, we use a stranded conductor models χ. In
2D these stranded conductor models homogeneously distribute a current quantity
i(t) to an area Ωstr, such that χ(x, y)i(t) is a current density. By denoting the
measure of the support of χ with |Ωstr| we have

~χ(x, y, z) :=
Nt1Ωstr(x, y)

|Ωstr|
~ez.

As with the solid conductor models, we call the z-component of ~χ simply χ. As they
model windings, they need to fulfil, that the integral of the absolute value of the
winding function over any intersecting plane is equal to the number of turns Nt of
the winding. Since the electric field ~E induces another voltage

∫
Ω
χEz dx and using

~E = −d ~A
dt [23], we can describe the voltage drop q for the stranded conductor as

d

dt

∫
Ω

`zχAz dx =
d

dt

∫
V3D

~χ · ~A dV +Ri = q.
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Here we have an induced voltage drop and a resistive voltage drop, where the resis-
tance R is given by

R =

∫
V3D

~χ · ~χ
τγ

dV

=

∫
Ωstr

∫ `z

0

N2
t

τγ|Ωstr|2
dz dx

=

∫
Ωstr

`z
N2
t

τγ|Ωstr|2
dx

= `z
N2
t

τγ|Ωstr|
,

where τ is the conductivity of the wire material and γ ∈]0, 1] accounts for the
fact, that only a portion of the stranded conductor support is made of conductive
material.
As the induction machine is supplied by a three-phase current, we have 3 winding

functions χn, n = 1, 2, 3, i.e. one for each phase of the three-phase current. We
denote in the following a three-phase current with ist(t) : R 7→ R3. Since the cross-
section of a coil is represented with only one winding function, there are regions of
the support with a negative as well as a with a positive sign. As we want to account
for inductances of the end-windings, which are not captured in our 2D model, we
insert an additional end-winding inductance term L, see [34, 2].
We incorporate the windings functions into the eddy current model (3.6) via the

source current density Js,z. Since the conductance σ is 0 in the stator domain, we
have with χa := (χ1, χ2, χ3)T

∇ · ν∇Az = χTa ist, on Ω2,

qn = Rnin + Ln
din
dt

+

∫
Ωstr,n

`zχ∂tAz dx, n = 1, 2, 3.
(3.8)

3.6 Equation of motion

To model the rotation of the machine, we use the equation of motion

I
d2θ(t)

dt2
+ β

dθ(t)

dt
= −Mload +Mem(Az(x, t), θ(t)).

Here, θ(t) is the angular position of the rotor, dθ(t)
dt the angular velocity and d2θ(t)

dt2

the angular acceleration. I is the moment of inertia of the rotor, Mload is the load

25



Chapter 3. Physical problem

characteristic of the mechanical drive train and β is the torsional friction coefficient.
The termMem is the electromagnetic torque, which depends on the magnetic vector
potential Az and the angle θ(t). In the next section we describe how the torque is
calculated.

3.6.1 Torque computation

To compute the torque of the machine, we are using a formula which is derived and
presented for example in [39]. The torque is a function depending on the magnetic
vector potential in rotor Az,1 domain and stator domain Az,2 and the rotation angle
θ

Mem(Az, θ) = lz

∫
Γ

n · (ν2∇Az,2)n⊥ · ∇Az,1(r−θx) dS.

Here lz is the length of the machine in z-direction, n is the unit normal vector on
the interface pointing from rotor to stator and n⊥ is the vector tangential to the
interface pointing counterclockwise. Note that since we have chosen ~B = ∇× ~A and

~A =

 0

0

Az

. We have

Hθ = n⊥ · ~H = n⊥ · ν ~B

= n⊥ · ν∇× ~A = n⊥ · ν

 ∂yAz
−∂xAz

0


= −n · ν∇Az.

If n =

n1

n2

0

, then n⊥ =

−n2

n1

0

 and therefore

Bn = n · ~B = −n⊥ · ∇Az.
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3.7 Right hand side

The right hand side which excites the whole system is given by the voltages applied
to the 3 stator windings (3.8), which are connected in series.

q1(t) = V̂ cos (2πft) ,

q2(t) = V̂ cos
(

2πft− 2
π

3

)
,

q3(t) = V̂ cos
(

2πft+ 2
π

3

)
.

Here V̂ is the amplitude (or peak value) of the voltages and the machine is operated
at f = 50Hz.

3.8 Existence result for the state equation

From now on, we will denote the z-component of the magnetic vector potential as
u := Az. The system, which we call strong state equation, to describe the induction
machine is given by
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σ(x)
∂u1

∂t
(x, t)−∇ · (ν1(x)∇u1(x, t))− σ(x)ξTa (x)ATϕ(t) = 0 Ω1×]0, T [

−∇ · (ν2(x)∇u2(x, t))− χTa (x)ist(t) = 0 Ω2×]0, T [

u1(r−θ(t)x, t)− u2(x, t) = 0 Γ×]0, T [

ν1(r−θ(t)x)
∂u1

∂n
(r−θ(t)x, t)− ν2(x)

∂u2

∂n
(x, t) = 0 Γ×]0, T [

−A
(∫

Ω1

σ(x)
∂u1

∂t
(x, t)ξa(x)`z dx

)T
+AGATϕ(t) = 0∫

Ωstr,n

∂u2

∂t
(x, t)`zχn dx+Rst,nist,n(t) + Ln

dist,n
dt

(t) = qn(t) n = 1, 2, 3

dθ

dt
(t)− θ̇(t) = 0

I
dθ̇

dt
(t)−Mem(u, θ) +Mload + βθ̇(t) = 0

σu1(x, 0) = 0 Ω1∫
Ωstr,n

u2(x, 0)`zχn dx = 0 n = 1, 2, 3

u1(x, t) = 0 ∂Ω1\Γ×]0, T [

u2(x, t) = 0 ∂Ω2\Γ×]0, T [

i(0) = 0

θ(0) = 0

θ̇(0) = 0
(3.9)

The quantities which we call state variables and obtain from solving the state equa-
tion are

u1 = magnetic vector potential in the rotor,

u2 = magnetic vector potential in the stator,

ϕ = nodal potentials of the rotor bar circuit,

ist = currents of the three-phase current,

Mem = electromagnetic torque,

θ = angle of rotation,

θ̇ = angular speed of rotation.
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We denote y = (u1, u2, ϕ, ist,Mem, θ, θ̇)
T . Other quantities involved in the state

equation are

qn = exciting voltages of the stator coils,

ξa = vector of winding functions for rotor bars with added zero entries,

χa = vector of winding function for stator coils,

A = reduced incidence matrix of rotor circuit,

G = conductance marix of rotor circuit,

Rst,n = resistance of stator coil,

Ln = end-winding inductance of stator coil,

I = moment of inertia of the rotor,

Mload = external torque,

β = friction coefficient.

3.8.1 Existence

To the author’s knowledge, there is no proof of existence in the literature for the
entire state system above (3.9). But there are existence results for subsets of the
equations in 2D and 3D. For example for the existence for the 3D equation mag-
netoquasistatic approximation of Maxwell’s equations, which is coupled with an
equation accounting for the magnetic induction is shown in [63], based on a the-
orem by Showalter on degenerate parabolic equations [77], here linear material is
assumed. The same problem with nonlinear material properties is examined in [23],
where gradient systems on Hilbert spaces and ε-gradients are used in the analysis.
For the 2D domain, the magnetoquasistatic approximation of Maxwell’s equations
for domains which have a rotating subdomain is investigated in [20].
We will show here existence of the magnetoquastatic approximation of Maxwell’s

equation in 2D with linear material, which is coupled with circuit equations for the
rotor bar network, coupled with an ordinary differential equation to account for the
(self) inductance of the stator coils and coupled with the equation of motion. In the
following we will proof the theorem below:

Theorem 3.2. Let ν ∈ C1(Ω̄) and Assumption 3.5 hold, then the system 3.9 ad-
mits a weak solution (u, ϕ, ist,Mem(u, θ), θ) ∈W 1,∞(0, T ;L2(C))∩H1(0, T ;H1(Ω1∪
Ω2)) ∩ L2(0, T ;H2(Ω1 ∪ Ω2))× L∞(0, T )×H1(0, T ;R3)× L2(0, T )×H2(0, T ).

We borrow the notation from [20]. We will show the existence of a weak solution

29



Chapter 3. Physical problem

for problem (3.9) for a fixed rotation by choosing a θ(t) ∈ H2(R) and then inves-
tigate the state eqation given the rotation θ(t) neglecting the equation of motion.
Afterwards we show, that the mapping from a rotation θ(t) to θ̃(t), which is evalu-
ated by solving the field/circuit coupled system with the given rotation θ(t) for the
magnetic vector potential u and the solving the equation of motion with the torque
in right hand side computed with u for θ̃(t) has a fixed point. Note that all the data
(σ, ν, χT q) is piecewise constant in space and therefore not continuous in space, but
smooth in time and lies in C∞(0, t;L∞(Ω)).
The whole domain Ω is composed of the subdomains Ω1 and Ω2

Ω1 = {x ∈ R2 : rinner < ‖x‖2 < rag}, Ω2 = {x ∈ R2 : rag < ‖x‖2 < router}.

The support of σ is contained in Ω1 and is denoted by C, the insulating part is
denoted by I = Ω\C. Γ = Ω̄1 ∩ Ω̄2 is the interface which is called airgap. Note that
Γ = {x ∈ R2 : ‖x‖2 = rag} is a circle and all the involved boundaries are Lipschitz
boundaries. For any t ∈ R we have two rotation operators

R(t) : H1(Ω1)→ H1(Ω1) and R(t) : H1(Ω1)×H1(Ω2)→ H1(Ω1)×H1(Ω2),

with
R(t)(u1)(x) := u1(rtx), R(t)(u1, u2)(x) := (R(t)(u1)(x), u2(x)).

Where rtx rotates x counterclockwise around the angle θ(t) as in (3.7), where we
simply write rt instead of rθ(t). We define

H1(Ω) := {u = (u1, u2) ∈ H1(Ω1)×H1(Ω2) : u1|∂Ω1\Γ = 0, u2|∂Ω2\Γ = 0}

and
U t := {u = (u1, u2) ∈ H1(Ω) : u1(r−tx) = u2(x) x ∈ Γ}.

For fixed t the space U t is isomorphic to H1
0 (Ω) through the rotation operator R(−t)

and is therefore a Hilbert space with the norm

‖u‖2? := ‖u1‖2H1(Ω1) + ‖u2‖2H1(Ω2).

We define the space of trial functions to be

L2(0, T ;U t) := {u = (u1, u2) ∈ L2(0, T ;H1(Ω)) : u1(r−tx) = u2(x) f.a.a. x ∈ Γ, t ∈]0, T [}.

Note L2(0, T ;U t) is a closed subspace of L2(0, T ;H1(Ω)) and is isomorphic to
L2(0, T ;H1

0 (Ω)) through R(−t), see [20]. For the spatial test functions we choose:

V := {v ∈ L2(0, T ;U t) | ∃u ∈ H1
0 (Ω) : v ≡ R(t)(u) for a.a. x ∈ Ω, t ∈]0, T [}.
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3.8. Existence result for the state equation

The functions v ∈ V correspond to a unique function u ∈ H1
0 (Ω) which evolves in

time through R(t).
In the following we will write χ for χa and ξ for ξa.
When we inspect the equation for the currents in the stator windings∫

Ω2

∂tu2(x, t)χ(x) dx+Rstist(t) + L
dist(t)

dt
= q(t),

we can write it as

dist(t)

dt
= −L−1Rstist(t) + L−1q(t)− L−1

∫
Ω2

∂tu2(x, t)χ(x) dx. (3.10)

We assume that the inductances and resistances are equal for all three windings,
such that the matrices L and Rst are given by L = lI and Rst = rI for positive
scalar inductance l and scalar resistance r and I being the identity matrix. The
solution ist(t) is a vector of size 3 and q(t) ∈ C∞(R,R3) are the exciting voltages
for the three-phase currents depending on time.
By using ODE theory (variation of constant) we can give a closed form of the

solution of (3.10)

ist = e−
r
l (t−t0)i0 +

∫ t

t0

e−
r
l (t−τ) 1

l

(
−
∫

Ω2

∂tu2(x, τ)χdx+ q

)
dτ

where i0 is the inital value of ist and which is equivalent to

ist = e−
r
l (t−t0)i0 −

∫ t

t0

e−
r
l (t−τ) 1

l

∫
Ω2

∂tu2(x, τ)χdxdτ +

∫ t

t0

e−
r
l (t−τ) 1

l
q dτ.

Note that it suffices that
∫

Ω2
∂tu2(x, t)χdx ∈ L1([0, T ],R3) for ist(t) ∈

C0([0, T ],R3), see for example [70]. We will now use integration by parts in the
second summand to get rid of the time derivative. To do this, we need the involved
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functions to be continuous in time. We will show later that this is the case.∫ t

t0

e−
r
l (t−τ) 1

l

∫
Ω2

∂tu2(x, τ)χdx dτ

=

∫ t

t0

e−
r
l (t−τ) 1

l
∂t

∫
Ω2

u2(x, τ)χdx dτ

=

[
e−

r
l (t−τ) 1

l

∫
Ω2

u2(x, τ)χdx

]t
t0

−
∫ t

t0

r

l
e−

r
l (t−τ) 1

l

∫
Ω2

u2(x, τ)χdxdτ

=
1

l

∫
Ω2

u2(x, t)χdx− e− rl (t−t0) 1

l

∫
Ω2

u2(x, t0)χdx

−
∫ t

t0

r

l
e−

r
l (t−τ) 1

l

∫
Ω2

u2(x, τ)χdxdτ

(3.11)

We will now plug these findings into the equation for the field in the stator and get
the following right hand side

Js(x, t) = χT (x)ist(t)

= − χT (x)
1

l

∫
Ω2

u2(x̃, t)χ(x̃) dx̃

+ χT (x)e−
r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u2(x̃, t0)χ(x̃) dx̃

)
+ χT (x)

∫ t

t0

r

l
e−

r
l (t−τ) 1

l

∫
Ω2

u2(x̃, τ)χ(x̃) dx̃ dτ

+ χT (x)

∫ t

t0

e−
r
l (t−τ) 1

l
q dτ.

We then get the following equation for the stator Ω2

−∇ · (ν2(x)∇u2)(x, t) + χT
1

l

∫
Ω2

u2(x̃, t)χdx̃

= χT e−
r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u2(x̃, t0)χdx̃

)
+ χT

∫ t

t0

r

l
e−

r
l (t−τ) 1

l

∫
Ω2

u2(x̃, τ)χdx̃dτ

+ χT
∫ t

t0

e−
r
l (t−τ) 1

l
q dτ.
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3.8. Existence result for the state equation

We will later use a fixed point argument to establish existence for the equation with
the right hand side depending on the solution. We replace the function u2 in the
second summand on the right hand side by a given function z2 ∈ L2(0, T ;L2(Ω2)).
For the rotor we solve the equation for the circuit potentials

−A
(∫

Ω1

σ(x)
∂u1

∂t
(x, t)ξa(x)`z dx

)T
+AGATϕ(t) = 0

for the potentials of the rotor bar network

ϕ(t) =
(
AGAT

)−1
A

(∫
Ω1

σ(x)
∂u1

∂t
(x, t)ξ(x)`z dx

)
.

We can plug this into the equation for the rotor Ω1 and end up with

σ(x)
∂u1

∂t
(x, t)−∇ · (ν1(x)∇u1)(x, t)

= σ(x)ξT (x)AT
(
AGAT

)−1
A

(∫
Ω1

σ(x̃)
∂u1

∂t
(x̃, t)ξ(x̃)`z dx̃

)
.

For shorter notation we define B := AT
(
AGAT

)−1
A. Note that since B is sym-

metric and positive definite one can compute a Cholesky factorization B = EET .
The equation for the stator Ω1 now reads

σ(x)
∂u1

∂t
(x, t)− σ(x)ξT (x)B

∫
Ω1

σ(x̃)
∂u1

∂t
(x̃, t)ξ(x̃)`z dx̃

−∇ · (ν1(x)∇u1)(x, t) = 0.

(3.12)

Definition 3.3 (Strong formulation). The strong formulation for which we seek a
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Chapter 3. Physical problem

solution is given by

σ(x)
∂u1

∂t
(x, t)− σ(x)ξT (x)B

∫
Ω1

σ(x̃)
∂u1

∂t
(x̃, t)ξ(x̃)`z dx̃

−∇ · (ν1(x)∇u1)(x, t) = 0, Ω1×]0, T [,

−∇ · (ν2(x)∇u2)(x, t) + χT (x)
1

l

∫
Ω2

u2(x̃, t)χ(x̃) dx̃

= χT (x)e−
r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u2(x̃, t0)χ(x̃) dx̃

)
+ χT (x)

∫ t

t0

r

l
e−

r
l (t−τ) 1

l

∫
Ω2

u2(x̃, τ)χ(x̃) dx̃ dτ

+ χT (x)

∫ t

t0

e−
r
l (t−τ) 1

l
q dτ, Ω2×]0, T [,

u1(r−tx, t) = u2(x, t), x ∈ Γ×]0, T [,

ν1(r−tx)∂nu1(r−tx, t) = ν2(x)∂nu2(x, t), x ∈ Γ×]0, T [,

σui(·, 0) = σu0, Ωi,∫
Ω2

χjui(·, 0) dx =

∫
Ω2

χju0 dx, j = 1, . . . , 3,

ui(·, t) = 0 (∂Ω1 ∪ ∂Ω2)\Γ×]0, T [.
(3.13)

Multiplying the equations for rotor and stator with a test function v(x, t) ∈ V,
summing them up and using integration by parts in the following terms

−
∫

Ω1

∇ · (ν1∇u1(t)) v1(t) dx−
∫

Ω2

∇ · (ν2∇u2(t)) v2(t) dx

leads to

2∑
i=1

∫
Ωi

νi∇ui(t) · ∇vi(t) dx−
∫

Γ

ν1
∂u1

∂n
(t)v1(t) dΓ +

∫
Γ

ν2
∂u2

∂n
(t)v2(t) dΓ.

Where n is the unit normal vector on Γ pointing from Ω1 to Ω2. Testfunctions
v(x, t) ∈ V correspond to functions ṽ ∈ H1

0 (Ω) which are rotated on the rotor part,
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3.8. Existence result for the state equation

i.e. v2(x, t) = ṽ2(x) and v1(x, t) = ṽ1(rtx). Therefore we have

−
∫

Γ

ν1
∂u1

∂n
(t)v1(t) dΓ +

∫
Γ

ν2
∂u2

∂n
(t)v2(t) dΓ

= −
∫

Γ

ν1
∂u1

∂n
(t)ṽ1(rtx) dΓ +

∫
Γ

ν2
∂u2

∂n
(t)v2(t) dΓ

= −
∫

Γ

ν1(r−tx)
∂u1(r−tx, t)

∂n
ṽ1 dΓ +

∫
Γ

ν2
∂u2

∂n
(t)v2(t) dΓ

= −
∫

Γ

ν1(r−tx)
∂u1(r−tx, t)

∂n
ṽ2 dΓ +

∫
Γ

ν2
∂u2

∂n
(t)v2(t) dΓ

= −
∫

Γ

ν1(r−tx)
∂u1(r−tx, t)

∂n
v2(t) dΓ +

∫
Γ

ν2
∂u2

∂n
(t)v2(t) dΓ

=

∫
Γ

(
ν2
∂u2

∂n
(t)− ν1(r−tx)

∂u1(r−tx, t)

∂n

)
v2(t) dΓ

which vanishes by the second coupling condition. Note that ν1(x) = ν2(x) = νair
for x ∈ Γ.

Definition 3.4 (Weak form). We arrive at the weak form which has to hold ∀v ∈ V
and a.a. t ∈]t0, s[. We change the notation here from ]0, T [ to ]t0, s[, since we
will obtain a solution only for a short time horizon and then iteratively extend the
solution to the whole time interval, using initial values for t0 > 0.(

σ
∂u1(t)

∂t
, v1(t)

)
Ω1

−
(
ET

∫
Ω

σv1(t)ξ dx,ET
∫

Ω

σ
∂u1(t)

∂t
ξ dx

)
2

+

∫
Ω1

ν1∇u1(t) · ∇v1(t) dx+

∫
Ω2

ν2∇u2(t) · ∇v2(t) dx

+

(
1√
l

∫
Ω2

u2(t)χdx,
1√
l

∫
Ω2

v2(t)χdx

)
2

=
(
χT , v2(t)

)
Ω2

(∫ t

t0

1

l
e−

r
l (t−τ)

(
r

l

∫
Ω2

u2(x, τ)χdx+ q(τ)

)
dτ

+ e−
r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u0
2χdx

))
(3.14)

The initial data is given by σu1(x, t0) = σu0
1 and

∫
Ω2
χu2(x, t0) dx =

∫
Ω2
χu0

2 dx and
the boundary data is encoded in the spaces.
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Chapter 3. Physical problem

We define the two bilinear forms:

m : U t × U t → R, m(u, v) := (σu1, v1)Ω1
−
∫

Ω1

σv1ξ
T dxB

∫
Ω1

σu1ξ dx,

a : U t × U t → R, a(u, v) :=

2∑
i=1

∫
Ωi

νi∇ui · ∇vi dx+
1

l

∫
Ω2

v2χ
T dx

∫
Ω2

u2χdx.

Theorem. The bilinear form a is continuous and coercive on U t.

Proof. For all u ∈ U t, we have

a(u, u) =

2∑
i=1

∫
Ωi

νi∇ui · ∇ui dx+
1

l

∫
Ω2

u2χ
T dx

∫
Ω2

u2χdx

≥ min
x∈Ω

ν

2∑
i=1

‖∇ui‖2L2(Ωi)
+

∥∥∥∥ 1√
l

∫
Ω2

u2χdx

∥∥∥∥2

2

≥ C
2∑
i=1

‖∇ui‖2L2(Ωi)

≥ C
2∑
i=1

‖ui‖2H1(Ωi)

= C‖u‖2∗

The last inequality is a generalized Poincaré inequality, which holds, since for
u = (u1, u2) ∈ U t both ui have zero outer boundary value (and the boundary is
smooth, nonempty and has a positive Hausdorff measure).
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3.8. Existence result for the state equation

For u, v ∈ U t, we have

|a(u, v)| =

∣∣∣∣∣
2∑
i=1

∫
Ωi

νi∇ui · ∇vi dx+
1

l

∫
Ω2

v2χ
T dx

∫
Ω2

u2χdx

∣∣∣∣∣
≤ ‖ν‖L∞(Ω)

2∑
i=1

‖∇ui‖L2(Ωi)‖∇vi‖L2(Ωi)

+
1

l
‖χ‖2L2(Ω2)‖u2‖L2(Ω2)‖v2‖L2(Ω2)

≤ ‖ν‖L∞(Ω)

2∑
i=1

‖ui‖H1(Ωi)‖vi‖H1(Ωi)

+
1

l
‖χ‖2L2(Ω2)

(
‖u2‖H1(Ω2)‖v2‖H1(Ω2) + ‖u1‖H1(Ω1)‖v1‖H1(Ω1)

)
=

(
‖ν‖L∞(Ω) +

1

l
‖χ‖2L2(Ω2)

) 2∑
i=1

‖ui‖H1(Ωi)‖vi‖H1(Ωi)

≤ C
(
‖u1‖2H1(Ω1) + ‖u2‖2H1(Ω2)

)1/2 (
‖v1‖2H1(Ω1) + ‖v2‖2H1(Ω2)

)1/2

= C‖u‖∗‖v‖∗

The bilinear form m cannot be coercive on U t since it does not capture the
behavior of a function outside of C, while the norm of U t does, but we make the
following assumption:

Assumption 3.5. We assume that the parameters of the machine are such that the
following form is coercive on L2(C):

m(u, v) = (σu, v)Ω −
∫

Ω1

σvξT dxAT (AGAT )−1A

∫
Ω1

σuξ dx,

meaning, there is a C > 0, such that

m(u, u) ≥ C‖u‖2L2(C) for all u ∈ L2(C).

G is the diagonal DC conductance matrix, which has
∫

Ω1
σξiξi`z dx, i = 1, . . . , 40

on its first 40 diagonal elements followed by 40 entries for the resistance of the bars
outside of the FE model and 2 · 40 entries for the resistance of the parts of the outer
ring of the squirrel cage, see (3.5.1).
Note: In our concrete examples we will consider later, this assumption is fulfilled.
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Chapter 3. Physical problem

It is difficult to give conditions when the assumption holds, since even when the
matrix G has easy structure, the multiplication by A and AT and the following
inversion makes the matrix dense with elements being polynomials of the dimension
of AAT .
We define

F : U t × L2(0, s;L2(Ω2))× [t0, s]→ R,

F (v, z, t) :=
(
χT , v2

)
Ω2

(∫ t

t0

1

l
e−

r
l (t−τ)

(
r

l

∫
Ω2

z(x, τ)χdx+ q

)
dτ

+ e−
r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u0
2χdx

))

and now are able to write equation (3.14) as

m(∂tu(t), v(t)) + a(u(t), v(t)) = F (v(t), z2, t),∀v ∈ V. (3.15)

We further define

Fi(z, t) :=

(∫ t

t0

1

l
e−

r
l (t−τ)

(
r

l

∫
Ω2

z(x, τ)χdx+ q

)
dτ

+ e−
r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u0
2χdx

))
.

Definition 3.6. A function u ∈ L2(0, T ;U t) ∩ L∞(0, T ;L2(C)) is called weak so-
lution to (3.9) if it satisfies the weak form (3.14) for all v ∈ V and for almost all
t ∈ [0, T ] and the initial conditions are fulfilled.

3.8.2 A-priori estimates

To get estimates for the solution, we plug in u as a test function. Note, that by(
σ
∂u

∂t
(t), u(t)

)
Ω

=
1

2

d

dt
‖
√
σu(t)‖2L2(C)

and (
ET

∫
Ω

σu(t)ξ dx,ET
∫

Ω

σ
∂u

∂t
(t)ξ dx

)
2

=
1

2

d

dt
‖ET

∫
Ω

σu(t)ξ dx‖22,
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3.8. Existence result for the state equation

we have m(∂tu(t), u(t)) = 1
2

d
dtm(u(t), u(t)), such that we have∫ s

t0

m(∂tu(t), u(t)) dt =

∫ s

t0

1

2

d

dt
m(u(t), u(t)) dt

=
1

2
m(u(s), u(s))− 1

2
m(u(t0), u(t0))

≥ C1‖u(s)‖2L2(C) − C2‖u(t0)‖L2(C),

(3.16)

where 2C1 is the coercivity and 2C2 the continuity constant of m. We can use the
coercivity of a to obtain∫ s

t0

a(u(t), u(t)) dt ≥ C
∫ s

t0

‖u(t)‖2∗ dt. (3.17)

In the following we will write for a function f : X → R3

‖f‖L2(Ω) =

√∫
Ω

f2
1 + f2

2 + f2
3 dx.

For the estimate of the right hand side, we have

|F (u(t), z2, t)| =

∣∣∣∣∣ (χT , u2(t)
)

Ω2

(∫ t

t0

1

l
e−

r
l (t−τ)

(
r

l

∫
Ω2

z2(x, τ)χdx+ q

)
dτ

+ e−
r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u0
2χdx

))∣∣∣∣∣
≤ ‖χ‖L2(Ω2)‖u2(t)‖L2(Ω2)

(∥∥∥∥1

l
e−

r
l (t−τ)

∥∥∥∥
L2(t0,t)

(∥∥∥r
l
χ
∥∥∥
L2(Ω2)

‖z2‖L2(t0,t;L2(Ω2))

+ ‖q‖L2(t0,t)

)
+
∣∣∣e− rl (t−t0)

∣∣∣ (‖i0‖+
1

l

∥∥∥∥∥
∫

Ω2

χu0
2

∥∥∥∥∥)
)
.

(3.18)
With Hölder’s inequality we obtain∥∥∥∥1

l
e−

r
l (t−τ)

∥∥∥∥
L2(t0,t)

≤

√∫ t

t0

1 dt ess supτ∈[t0,t]

1

l
e−

r
l (t−τ) =

√
t− t0
l

.
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We integrate (3.18) over [t0, s] and estimate the four summands in the right hand
side of (3.18) with C > 0 we obtain for the first summand

C

∫ s

t0

‖u2(t)‖L2(Ω2)

√
t− t0‖z2‖L2(t0,t;L2(Ω2)) dt

≤ C
√
s− t0‖z2‖L2(t0,s;L2(Ω2))

∫ s

t0

‖u2(t)‖L2(Ω2) dt

≤ C(s− t0)‖z2‖L2(t0,s;L2(Ω2))‖u2‖L2(t0,s;L2(Ω2))

≤ ε‖u2‖2L2(t0,s;L2(Ω2)) +
C2(s− t0)2

4ε
‖z2‖2L2(t0,s;L2(Ω2)).

(3.19)

Where we have used two times Hölder’s inequality and Young’s inequality with
ε > 0. We can estimate the second summand exactly like the first (the C’s are not
the same)

C

∫ s

t0

‖u2(t)‖L2(Ω2)

√
t− t0‖q‖L2(t0,t) dt

≤ ε‖u2‖2L2(t0,s;L2(Ω2)) +
C2(s− t0)2

4ε
‖q‖2L2(t0,s)

.

For the third summand we get

C‖i0‖
∫ s

t0

‖u2(t)‖L2(Ω2)

∣∣∣e− rl (t−t0)
∣∣∣ dt

≤ C
∣∣∣e− rl (t0−t0)

∣∣∣ ‖i0‖ ∫ s

t0

‖u2(t)‖L2(Ω2) dt

≤ C‖i0‖
√
s− t0‖u2‖L2(t0,s;L2(Ω2))

≤ ε‖u2‖2L2(t0,s;L2(Ω2)) +
C2(s− t0)

4ε
‖i0‖2.

Estimating the fourth summand leads to

C

∥∥∥∥∫
Ω2

χu0
2 dx

∥∥∥∥∫ s

t0

‖u2(t)‖L2(Ω2)

∣∣∣e− rl (t−t0)
∣∣∣ dt

≤ ε‖u2‖2L2(t0,s;L2(Ω2)) +
C2(s− t0)

ε

∥∥∥∥∫
Ω2

χu0
2 dx

∥∥∥∥2

.

We can further estimate

ε‖u2‖2L2(0,s;L2(Ω2)) ≤ εC‖u‖
2
L2(0,s;Ut) (3.20)

and absorp it into the left hand side by choosing ε small enough.
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3.8. Existence result for the state equation

In total we get the estimate

‖u‖2L∞(t0,s;L2(C)) + ‖u‖2L2(t0,s;Ut)

≤ C(s)
(
‖u0‖2L2(C) + ‖q‖2L2(0,s) + ‖z2‖2L2(0,s;L2(Ω2))

+ ‖i0‖2 +

∥∥∥∥∫
Ω2

χu0
2 dx

∥∥∥∥2 )
.

(3.21)

Here C(s) > 0 is a positive constant depending on s.
To estimate the time derivative we observe

|m(∂tu(t), v(t))| = | − a(u(t), v(t)) + F (v(t), z2, t)|
≤ C‖u(t)‖∗‖v(t)‖∗ + C1‖χ‖L2(Ω2)‖v(t)‖∗‖Fi(z2, t)‖2.

(3.22)

Hence
‖m(∂tu, ·)‖L2(t0,s;U∗t ) ≤ C

(
‖u‖L2(t0,s;Ut) + ‖Fi(z2, ·)‖L2(t0,s)

)
,

where U∗t is the dual space of U t. Therefore

‖m(∂tu, ·)‖L2(t0,s;U∗t ) ≤ C(s)
(
‖u0‖2L2(C) + ‖q‖2L2(0,s) + ‖z2‖2L2(0,s;L2(Ω2))

+ ‖i0‖2 +

∥∥∥∥∫
Ω2

χu0
2 dx

∥∥∥∥2 ) (3.23)

using the previous estimates.
Let K ⊂⊂ C be arbitrary with Lipschitz boundary. We show that

∂tu ∈ L2(t0, s;H
1(K)∗).

Since dist(∂K, ∂C) ≥ δ > 0, we find a bounded extension operator

E : H1(K)→ H1
0 (C).

We know that
‖u‖L2(t0,s;H1(K)) ≤ C‖u‖L2(t0,s;Ut).

We use for arbitrary w ∈ L2(t0, s;H
1(K)) the test function

v(t) = Ew(t)

in (3.22). Since v ∈ L2(t0, s;U t) with

‖v‖L2(t0,s;Ut) = ‖v‖L2(t0,s;H1
0 (C)),
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we see that∫ s

t0

|m(∂tu,w)|dt ≤
∫ s

t0

|m(∂tu, v)|dt

≤ C‖Ew‖L2(t0,s;H1(K)(‖u‖L2(t0,s;Ut) + ‖Fi‖L2(t0,s))

≤ C‖E‖L(H1(K),H1
0 (C))‖w‖L2(t0,s;H1(K)(‖u‖L2(t0,s;Ut) + ‖Fi‖L2(t0,s)).

Now consider L2(K) with scalar product m(·, ·) and the Gelfand triple

H1(K) ↪→ L2(K) ↪→ H1(K)∗.

Then we have ∂tu ∈ L2(t0, s;H
1(K)∗), u ∈ L2(t0, s;H

1(K)) and thus u ∈
C([t0, s];L

2(K)).

3.8.3 Galerkin approximation

Since we have a parabolic equation in the conducting region C and an elliptic equa-
tion in I, we need to consider this in the finite dimensional approximation. We
start with the two spaces H1

0 (Ω) and H1
0 (I). As both of these spaces are separable

Hilbert spaces, we can find nested finite dimensional subsets

VN ⊂ VN+1 ⊂ H1
0 (I),

⋃
N≥1

Vn dense in H1
0 (I),

WN ⊂WN+1 ⊂ H1
0 (Ω),

⋃
N≥1

WN dense in H1
0 (Ω).

The functions in VN are extended to Ω by 0 and we choose a basis for WN , such
that if for an element w ∈ WN it holds suppw ⊆ I, then it also has to hold
w ∈ span(VN ). We can choose both of these basis to be L2 orthonormal and H1

orthogonal by the choice of the normalized eigenfunctions of the Laplace operator
(−∆u = λu, see [41]). Fixing N ∈ N we can use the Gram-Schmidt process to
generate a set VN ∪ W̃N ⊂ H1

0 (Ω) which suffices span(WN ) = span(VN ∪ W̃N ) and
(vN , w̃N )L2(Ω) = 0 for all vN ∈ VN and w̃N ∈ W̃N , i.e. vectors in VN and W̃N are
L2(Ω) orthogonal. Vectors wN ∈WN which lie in the span of VN are being removed
such that the vectors in W̃N are linearly independent.

We can then use the rotation operator on the finite dimensional space R(t)(VN ∪
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W̃N ) to get a basis for U tN . A function uN : [t0, s]→ U tN can then be written as

uN (t) =

N∑
i=1

φj(t)zj(t) with zj(t) ∈ U tN .

Inserting the finite-dimensional approximation uN (t) into (3.15) and testing with
the basis functions of U tN we consider for almost all t ∈ [t0, s]

m(∂tuN (t), zj(t)) + a(uN (t), zj(t)) = F (zj(t), z2, t),∀zj ∈ U tN . (3.24)

For the time derivative we have

∂tuN (x, t) =

N∑
i=1

φ′j(t)zj(x, t) +

N∑
i=1

φj(t)∂tzj(x, t).

Since a function zj(t) ∈ U tN corresponds to a function z̃j ∈ VN ∪W̃N which is rotated
by R(t), we have zj(x, t) = z̃j(rtx) for x ∈ Ω1 and ∂tzj(x, t) = (r′tx)T∇zj(x, t).
Equation (3.24) can equivalently be written in matrix form(

0 0

0 MW (t)

)
d

dt

(
φv(t)

φw(t)

)
+

(
0 0

0 M̃W (t)

)(
φv(t)

φw(t)

)
+

(
AV V (t) AVW (t)

AWV (t) AWW (t)

)(
φv(t)

φw(t)

)
=

(
Jv(t)

Jw(t)

)
.

(3.25)

The entries of M̃W (t) are given by m(∂tzj(t), zi(t)) = m((r′tx)T∇zj(t), zi(t)) with
zi(t), zj(t) ∈ R(t)(W̃N ). We choose a p(t) =

∑N
j= φj(t)vj(t) with vj(t) ∈ R(t)(VN )

and ‖p(t)‖∗ 6= 0. It holds that p(t) ∈ U tN ⊂ U t and we have by the coercivity of a
on U t for a.e. t ∈ [t0, s]

0 < C‖p(t)‖2∗ ≤ a(p(t), p(t)) = φ(t)AV V (t)φ(t)

since p(t) was chosen arbitrary, AV V (t) is symmetric positive definite and invertible
for a.a. t ∈ [t0, s]. In the same way we can use Assumption 3.5 to show the
invertibility of M(t). By the invertibility of AV V (t) we can get from the first line in
(3.25) φv(t) dependent on φw(t)

φv(t) = A−1
V V (t)(−AVW (t)φw(t) + Jv(t))

and plug it into the second line, which is then (sinceMW (t) is invertible) an ordinary
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differential equation for φw(t). We supply the ODE with initial values

φj(t0) = (u0
1, wj(t0))C , wj(t0) ∈ R(t0)(W̃N ), j = 1, . . . , N.

As the time dependence of the basis functions in U tN is due to the rotation θ(t)

which was assumed to be H2(R), we have that the involved matrices in (3.25)
depend continuously on t. Also the right hand side depends continuously on t,
since q ∈ C∞(R,R3) and

∫ t
t0
r
l e
− rl (t−τ) 1

l

∫
Ω2
z2(x, τ)χdxdt ∈ C0([t0, s];R3) due to

z2 ∈ L2(t0, s;L
2(Ω2)). The Theorem 2.11 of Picard-Lindelöf guarantees a solution

for the linear ODE.
Note that equation (3.24) has the same structure as (3.15) and we get the same

estimates for uN (t) (3.21) and the time derivative (3.23). Since the involved spaces
are Hilbert spaces and therefore reflexive and the approximation solution is bounded,
we can choose weakly convergent subsequences uNl and

∫ s
t0
m(∂tuNl , ·) dt, see [41],

such that

uNl ⇀ u in L2(t0, s;U t),
∫ s

t0

m(∂tuNl , ·) dt ⇀

∫ s

t0

m(∂tu, ·) dt in L2(t0, s;U∗t ).

We choose a function v(t) =
∑N
j=1 dj(t)zj(x, t), where dk(t) are smooth functions

and zj(t) ∈ U tN . We test equation (3.24) with v(t), integrate over [t0, s] and obtain
for Ñ ≥ N∫ s

t0

m(∂tuÑ (t), v(t)) dt+

∫ s

t0

a(uÑ (t), v(t)) dt =

∫ s

t0

F (v(t), z2, t) dt. (3.26)

We set Ñ = Ñl and pass to the the weak limit, since v ∈ L2(t0, s;U t), we have∫ s

t0

m(∂tu(t), v(t)) dt+

∫ s

t0

a(u(t), v(t)) dt =

∫ s

t0

F (v(t), z2, t) dt. (3.27)

As the dk(t) are chosen arbitrary

m(∂tu(t), z(t)) + a(u(t), z(t)) = F (z(t), z2, t) (3.28)

holds for almost every t ∈ (t0, s) for every z(t) ∈ U tN for all N ≥ 1. Since
⋃
N∈N U tN

is dense in U t, equation (3.28) holds for each z(t) ∈ U t.
To show that the initial condition σ(x)u1(x, t0) = σ(x)u0

1(x), x ∈ Ω is fulfilled in
the limit we test (3.27) with v ∈ C1(t0, s;U t) with v(s) = 0 and use integration by
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parts in the first summand to obtain∫ s

t0

−m(u(t), ∂tv(t)) dt+

∫ s

t0

a(u(t), v(t)) dt =

∫ s

t0

F (v(t), z2, t) dt+m(u(t0), v(t0)).

(3.29)
Similarly for (3.26) we obtain∫ s

t0

−m(uÑ (t), ∂tv(t)) dt+

∫ s

t0

a(uÑ (t), v(t)) dt

=

∫ s

t0

F (v(t), z2, t) dt+m(uÑ (t0), v(t0)).

(3.30)

We set Ñ = Ñl and pass to the weak limit∫ s

t0

−m(u(t), ∂tv(t)) dt+

∫ s

t0

a(u(t), v(t)) dt =

∫ s

t0

F (v(t), z2, t) dt+m(u0
1, v(t0)),

(3.31)
since uÑl(t0) → u0

1 in L2(C). Due to v(t0) being arbitrary, comparing (3.31) and
(3.29), we conclude u1(x, t0) = u0

1(x) for x ∈ C.
We have shown that for arbitrary z2 ∈ L2(t0, s;L

2(Ω2)) in the right hand side
F (v(t), z2, t) equation (3.15) has a solution u ∈ L∞(t0, s;L

2(C)) ∩ L2(t0, s;U t)) for
almost all t ∈ [t0, s] and all v(t) ∈ V. We will now use a fixed point argument
to prove that a solution exists for the right hand side F (v(t), u2, t). Let z2, z̃2 ∈
L2(t0, s;L

2(Ω2)) and u and ũ the corresponding solutions to equation (3.15) with
right hand side F (v(t), z2, t) and F (v(t), z̃2, t). We substract the equations for u and
ũ and since F (·, ·, ·) is linear in the second argument, we obtain in the right hand
side

F (v(t), z2, t)− F (v(t), z̃2, t)

= (χT , v2(t))Ω2

(∫ t

t0

r

l2
e−

r
l (t−τ)

∫
Ω2

χ (z2(x, τ)− z̃2(x, τ)) dx dτ

)
.

Since a and m are bilinear forms, we obtain on the left hand side

m(∂t(u(t)− ũ(t)), v(t)) + a(u(t)− ũ(t), v(t))

= (χT , v2(t))Ω2

(∫ t

t0

r

l2
e−

r
l (t−τ)

∫
Ω2

χ (z2(x, τ)− z̃2(x, τ)) dxdτ

)
.

(3.32)
Using v(t) = u(t)− ũ(t) as test function in (3.32), integrating from t0 to s and using
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the estimates (3.16), (3.17), (3.19) and (3.20) leads to

‖u− ũ‖L∞(t0,s;L2(C))∩L2(t0,s;Ut)) ≤ C(s− t0)‖z2 − z̃2‖L2(t0,s;L2(Ω)). (3.33)

By the continuous embedding

L∞(t0, s;L
2(C)) ∩ L2(t0, s;U t)) ↪→ L2(t0, s;L

2(Ω2)),

we can estimate the right hand side of (3.33) with a positive constant C̃

C(s− t0)‖z2 − z̃2‖L2(t0,s;L2(Ω)) ≤ C̃C(s− t0)‖z2 − z̃2‖L∞(t0,s;L2(C))∩L2(t0,s;Ut)),

to obtain in total

‖u− ũ‖L∞(t0,s;L2(C))∩L2(t0,s;Ut)) ≤ C̃C(s− t0)‖z2 − z̃2‖L∞(t0,s;L2(C))∩L2(t0,s;Ut)).

(3.34)
This shows that the solution map S : X → X, where X = L∞(0, t;L2(C)) ∩
L2(0, t;U t), which maps z2 ∈ X to the solution u ∈ X is a contraction for s1 := t <

1
CC̃

+ t0. Banach’s fixed-point theorem guarantees a solution of

m(∂tu(t), v(t)) + a(u(t), v(t)) = F (v(t), u2, t) (3.35)

for almost all t ∈ [t0, s1] and all v(t) ∈ V. We can then solve equation (3.35)
on [t0, s1] and iteratively extend the solution by using u1(x, s1), x ∈ C and∫

Ω2
χu2(x, s1) dx as initial value to solve (3.35) on the interval [s1, 2s1 − t0]. To

do this, we need to show that the solution is continuous in time in the rotor bars
and stator windings.

3.8.4 Improved regularity

Since we have used integration by parts in the beginning of the proof (3.11), we need
to prove ‖∂tu2‖L2(t0,s;L2(Ω2)) ≤ C, since then u2 has a continuous representative
in C(t0, s;L

2(Ω2)). To show, that the solution of our state equation is in fact
more regular, we will differentiate the state equation with respect to time and get
estimates in spaces with higher regularity. In order to show the improved regularity,
we need better regularity of the data. We need, that the initial data is bounded
in H2(C), such that we obtain initial values for the differentiated equation by the
original equation. We further need that the time derivative of the right hand side
is bounded in L2(t0, s;L

2(Ω2)). Due to the fixed point, we get a solution of our
equation only on a short time interval and iteratively have to extend the solution to
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larger time intervals. This means, we need to use our solution at given time points as
initial values to extend the solution, we thus also need that u(t) ∈ H2(C). To obtain
H2 results by applying elliptic regularity theory (see (2.13)), we assume ν ∈ C1(Ω).
We further need the time derivative ∂tu to be bounded in L2([t0, s];L

2(C)), since
for the application of Theorem 2.13 we need for almost all t ∈ [t0, s] bounds for the
right hand side of a(u(t), v(t)) = (f(t), v(t))Ω2 −m(∂tu(t), v(t)) of the form

|a(u(t), v(t))| = |(f(t), v(t))Ω2
−m(∂tu(t), v(t))|

≤ C(‖f(t)‖L2(Ω2) + ‖∂tu(t)‖L2(C))‖v(t)‖L2(Ω2).

We start by showing, that the derivative in time of the right hand side is bounded
in L2(t0, s;L

2(Ω2)). The right hand side is given by

f(x, t; q, z) = χT (x)

(∫ t

t0

1

l
e−

r
l (t−τ)

(
r

l

∫
Ω2

z2(x̃, τ)χ(x̃) dx̃+ q(τ)

)
dτ

+ e−
r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u0
2χ(x̃) dx̃

))

By inspecting for g ∈ L2([t0, t+ ε])

1

h

(∫ t+h

t0

e−t−h+τg(τ) dτ −
∫ t

t0

e−t+τg(τ) dτ

)

=
1

h

(∫ t+h

t0

e−t−h+τg(τ) dτ −
∫ t

t0

e−t−h+τg(τ) dτ

+

∫ t

t0

e−t−h+τg(τ) dτ −
∫ t

t0

e−t+τg(τ) dτ

)

=
1

h

(∫ t+h

t

e−t−h+τg(τ) dτ +

∫ t

t0

(
e−t−h+τ − e−t+τ

)
g(τ) dτ

)
a.e.−−−→
h→0

g(t) +

∫ t

t0

∂t
(
e−t+τ

)
g(τ) dτ
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we see, that the weak derivative in time of the right hand side is given by

∂tf(x, t; q, z) = χT (x)

(∫ t

t0

− r
l2
e−

r
l (t−τ)

(
r

l

∫
Ω2

z2(x̃, τ)χ(x̃) dx̃+ q(τ)

)
dτ

+
r

l

∫
Ω2

z2(x̃, t)χ(x̃) dx̃+ q(t)

− r

l
e−

r
l (t−t0)

(
i0 +

1

l

∫
Ω2

u0
2χ(x̃) dx̃

))

= − r

l
f(x, t; q, z) + χT (x)

(
r

l

∫
Ω2

z2(x̃, t)χ(x̃) dx̃+ q(t)

)
.

We know ‖f(x, t; q, z)‖2L2(t0,s;L2(Ω2)) ≤ C already. We can further estimate∫ s

t0

∫
Ω2

(χT q)2 dtdx

≤
∫ s

t0

∫
Ω2

‖χ‖22‖q‖22 dtdx

≤
∫

Ω2

‖χ‖22 dx

∫ s

t0

‖q‖22 dt

= C‖q‖2L2(t0,s)

and ∫ s

t0

∫
Ω2

(
χT (x)

r

l

∫
Ω2

z2(x̃, t)χ(x̃) dx̃

)2

dtdx

≤
∫ s

t0

∫
Ω2

∥∥∥r
l
χ
∥∥∥2

2

∥∥∥∥∫
Ω2

z2(x̃, t)χ(x̃) dx̃

∥∥∥∥2

2

dtdx

≤
∫

Ω2

‖χ‖22 dx

∫ s

t0

‖χ‖2L2(Ω2)‖z2‖2L2(Ω2) dt

≤ C‖z2‖2L2(t0,s;L2(Ω2)).

In total we get

‖∂tf(x, t; q, z)‖2L2(t0,s;L2(Ω2)) ≤ C(s)
(
‖q‖2L2(0,s)

+ ‖z2‖2L2(0,s;L2(Ω2))

+ ‖i0‖22 + ‖
∫

Ω2

χu0
2 dx‖22

)
.

Note that we can choose z2 = u2, since we already know that ‖u2‖L2(t0,s;L2Ω)) is
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bounded.
Introducing

U1(rtx, t) = u1(x, t), U2(x, t) = u2(x, t),

V1(rtx, t) = v1(x, t), V2(x, t) = v2(x, t),

U = U11Ω1
+ U21Ω2

,

V = V11Ω1
+ V21Ω2

.

We have
U1(t, x) = U2(t, x) and V1(t, x) = V2(t, x) for x ∈ Γ

and if u, v ∈ U t then U, V ∈ H1
0 (Ω). Moreover,

∂tu1(x, t) = ∂tU1(rtx, t) +∇U1(rtx, t)
T r′tx, ∇u1(t, x) = rTt ∇U1(t, rtx).

We define the bilinear form m with rotating data to be

mR(u, v; t) := (σ(r−tx)u, v)Ω1

−
∫

Ω1

σ(r−tx)vξ(r−tx)T dxAT (AGAT )−1A

∫
Ω1

σ(r−tx)uξ(r−tx) dx.

Hence, the weak formulation can be written as (we use that integration with respect
to rtx over Ω1 yields the same as integration with respect to x, since the rotation
rt has determinant 1) for almost all t ∈ [t0, s]

mR(∂tU1(t), V1; t) + (ν(r−tx)rTt ∇U1(t), rTt ∇V1)Ω1 +mR(∇U1(t)T r′tr−tx, V1; t) = 0,

(ν∇U2(t),∇V2)Ω2
+

1

l

∫
Ω2

χTU2(t) dx

∫
Ω2

χTV2 dx = (f(x, t; q, U2), V2)Ω2
.

Using that rt is orthogonal we can simplify to

mR(∂tU1(t), V1; t) + (ν(r−tx)∇U1(t),∇V1)Ω1 +mR(∇U1(t)T r′tr−tx, V1; t) = 0,

(ν∇U2(t),∇V2)Ω2
+

1

l

∫
Ω2

χTU2(t) dx

∫
Ω2

χTV2 dx = (f(x, t; q, U2), V2)Ω2
.

(3.36)

In an open neighborhood Ω′ of the annular domain S around the interface we have
σ = 0, χ = 0, f = 0 and ν is constant and thus (3.36) yields for almost all t ∈ [t0, s]

(ν∇U(t),∇V ) = 0 ∀V ∈ H1
0 (Ω′).
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Hence, elliptic regularity yields

‖U‖L2(t0,s;H2(S)) ≤ C‖f‖L2(t0,s;L2(Ω2)).

The same bounds hold for ‖u1‖L2(t0,s;H2(S∩Ω1)) and ‖u2‖L2(t0,s;H2(S∩Ω2)).
We derive now formally a weak formulation for the time derivative and study its

regularity. Differentiating
u1(r−tx, t) = u2(x, t)

yields
∂tu1(r−tx, t)−∇u1(r−tx, t)

T r′−tx = ∂tu2(x, t). (3.37)

By the H2 regularity on the interface, we know that

∇u1(r−tx, t)
T r′−tx ∈ L2(t0, s;H

1/2(Γ)).

Let w1 ∈ L2(t0, s;H
1(Ω1)) be an extension of ∇u1(r−tx, t)

T r′−tx ∈
L2(t0, s;H

1/2(Γ)). Now let ψ ∈ Cc(Ω′) with ψ ∈ [0, 1] and ψ|S ≡ 1 and set

w = ψw1.

Then w ∈ L2(t0, s;H
1(Ω1)) and vanishes on the support of σ. Now consider

u′ := (∂tu1 − w)1Ω1
+ ∂tu21Ω2

,

which by construction fulfills

u′1(r−tx, t) = u′2(x, t), x ∈ Γ.

Therefore, by differentiating (3.13) with respect to t and using the fact that the
jump in (3.37) is corrected in u′, we obtain the following weak formulation satisfied
by u′. For all v(t) ∈ V and almost all t ∈ [t0, s]

m(∂tu
′(t), v1(t))+a(∇u′(t),∇v1(t)) = −(ν∇w(t),∇v1(t))Ω1+(∂tf(x, t; q, u2), v2(t))Ω2 .

(3.38)
If the initial data is sufficiently smooth (the inital data for t0 is 0 and therefore

sufficiently smooth), we obtain initial data for u′ from the PDAE, i.e.

σ
∂u′

∂t
(x, t0)− σξTB

∫
Ω1

σ
∂u′

∂t
(x, t0)ξ`z dx = ∇ · (ν1∇u0), x ∈ C.

Since w ∈ L2(H1(Ω1)), the linear functional v1 7→ (ν∇w,∇v1)Ω1 can be represented
in L2(t0, s;U∗t ) and hence we obtain as above for u the usual regularity of weak
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3.8. Existence result for the state equation

solutions for u′. Since ∂tu1 = u′ + w, we recover the same regularity for ∂tu1.
Especially we have ‖∂tu1‖2L2(t0;s;L2(Ω1)) ≤ C and ‖∂tu2‖2L2(t0;s;L2(Ω2)) ≤ C. With an
Galerkin approximation the whole procedure can be justified rigorosly.
The regularity ‖∂tu2‖2L2(t0;s;L2(Ω2)) ≤ C combined with ‖u2‖2L2(t0;s;L2(Ω2)) ≤ C

implies that u2 has a continuous representative in C([t0, s];L
2(Ω2)), which we needed

in (3.11) to use integration by parts. The regularity ‖∂tu1‖2L2(t0;s;L2(Ω1)) ≤ C allows
us to use elliptic regularity theory and obtain u(t) ∈ H2(C) for almost all t ∈ [t0, s],
which we need to supply inital values for the differentiated equation.

Dependence on rotation

To make it clear, that the space U t depends on a rotation, we denote it here for dif-
ferent rotations θ and θ̃ as Uθ and U θ̃. The corresponding weak solutions to the field
and circuit coupled equations are given by u ∈ L2(0, T ;Uθ) and ũ ∈ L2(0, T ;U θ̃). We
define the difference δθ(t) := θ(t)− θ̃(t). We again choose continuous differentiable
ψ ≥ 0 with ψ ≡ 1 on S and ψ ≡ 0 on Ω\Ω′.
We use the test function for the equation for u

1Ω2
(u2(t)− ũ2(t)) + 1Ω1

(
(u1(t)− ũ1(t))(1− ψ) + ψ(u1(t)− ũ1(rδθ(t)x, t))

)
which lies in Uθ. On the domain Ω1 we obtain for the elliptic part∫

Ω1

ν1∇u1(t) · ∇
(
(u1(t)− ũ1(t))(1− ψ) + ψ(u1(t)− ũ1(rδθ(t)x, t))

)
dx

=

∫
Ω1

ν1∇u1(t) · ∇
(
u1(t)− ũ1(t) + ψ(ũ1(t)− ũ1(rδθ(t)x, t))

)
dx.

We use the test function for the equation for ũ

1Ω2
(ũ2(t)− u2(t)) + 1Ω1

(
(ũ1(t)− u1(t))(1− ψ) + ψ(ũ1(t)− u1(r−δθ(t)x, t))

)
on the domain Ω1 we obtain for the elliptic part∫

Ω1

ν1∇ũ1(t) · ∇
(
(ũ1(t)− u1(t))(1− ψ) + ψ(ũ1(t)− u1(r−δθ(t)x, t))

)
dx

=

∫
Ω1

ν1∇ũ1(t) · ∇
(
ũ1(t)− u1(t) + ψ(u1(t)− u1(r−δθ(t)x, t))

)
dx.
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Adding the equations for u and ũ leads to

m(∂t(u1(t)− ũ1(t), u1(t)− ũ1(t))) + a(u(t)− ũ(t), u(t)− ũ(t))

+

∫
Ω1

ν1∇u1(t) · ∇
(
ψ(ũ1(t)− ũ1(rδθ(t)x, t))

)
dx

+

∫
Ω1

ν1∇ũ1(t) · ∇
(
ψ(u1(t)− u1(r−δθ(t)x, t))

)
dx

=
(
χT , u(t)− ũ(t)

)
Ω2

∫ T

0

r

l2
e−

r
l (T−τ)

∫
Ω2

χ(u2(·, τ)− ũ2(·, τ)) dxdt.

(3.39)

We estimate the second and third line in (3.39) in the same way. We have∫
Ω1

ν1∇u1(t) · ∇
(
ψ(ũ1(t)− ũ1(rδθ(t)x, t))

)
dx

=

∫
Ω1

ν1∇u1(t) · ∇ψ
(
ũ1(t)− ũ1(rδθ(t)x, t)

)
dx

+

∫
Ω1

ν1∇u1(t) · ∇
(
ũ1(t)− ũ1(rδθ(t)x, t))

)
ψ dx.

The function J : H2(0, T )→ L2(0, T ;L2(Ω1)), θ 7→
(
ũ1(·, ·)− ũ1(rθ(·)·, ·)

)
is contin-

uous since ũ1 ∈ L2(0, T ;H1(Ω1)) and has the bounded derivative

θ 7→ −∇ũ1(rθ(·)·, ·)T r′θ(·)·,

therefore we have for almost all x

ũ1(x, t)− ũ1(rδθ(t)x, t) =

∫ δθ(t)

0

∇ũ1(rsx, t)
T r′sxds.

We can estimate

‖ũ1(·, t)− ũ1(rδθ(t)·, t)‖L2(Ω1) ≤
∫ δθ(t)

0

‖∇ũ1(rs·, t)T r′s · ‖L2(Ω1) ds

≤
∫ δθ(t)

0

‖∇ũ1(rs·, t)‖L2(Ω1)‖r′s · ‖L∞(Ω1) ds

≤ C
∫ δθ(t)

0

1 ds‖∇ũ1(·, t)‖L2(Ω1)

= Cδθ(t)‖∇ũ1(·, t)‖L2(Ω1).
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3.8. Existence result for the state equation

And further

‖ũ1(·, ·)− ũ1(rδθ(·)·, ·)‖2L2(0,T ;L2(Ω1)) ≤ ‖Cδθ(·)‖∇ũ1(·, ·)‖L2(Ω1)‖2L2(0,T )

≤ C(T )‖δθ‖2L∞(0,T ),

which leads to∫ T

0

∫
Ω1

ν1∇u1 · ∇ψ
(
ũ1 − ũ1(rδθ(·)x, ·)

)
dxdt ≤ C(T )‖δθ‖2L∞(0,T ).

The same argument holds for J2 : H2(0, T ) → L2(0, T ;L2(Ω1)), θ 7→
∇
(
ũ1(·, ·)− ũ1(rθ(·)·, ·)

)
since we have ũ1 ∈ L2(0, T ;H2(Ω1)). The derivative of

the mapping is given by

θ 7→ −
(
∇2ũ1(rθ(·)·, ·)r′θ(·)·

)T
rθ(·) · −∇ũ1(rθ(·)·, ·)T r′θ(·) · .

By using the estimate (3.34) we obtain in total for T small enough

‖u− ũ‖2L∞(0,T ;L2(C)) +

∫ T

0

‖u− ũ‖2∗ dt ≤ C(T )‖δθ‖2L∞(0,T ).

For the torque we have with c = lz · r · νair and the second coupling condition

Mem(u(t), θ(t)) = c

∫
Γ

n · ∇u2(t)n⊥ · ∇u1(r−θ(t)x, t) dS

= c

∫
Γ

n · ∇u1(r−θ(t)x, t)n
⊥ · ∇u1(r−θ(t)x, t) dS

= c

∫
Γ

nθ · ∇u1(t)n⊥θ · ∇u1(t) dS,

(3.40)

where nθ(t) := n(rθ(t)x) and n⊥θ(r) := n⊥(rθ(t)x). We can compute the torque by
evaluating the integral in (3.40) over spheres with radii from r−ε to r with ε > 0 and
then average with 1

ε . ε is chosen such that the sphere with radius r− ε is contained
in the physical airgap. This method is related to Arkkio’s method [2]. We have with
Γε := {x ∈ R2 : r − ε ≤ ‖x‖2 ≤ r}

Mem(u(t), θ(t)) = lzνair
1

ε

∫
Γε
‖x‖2nθ · ∇u1(t)n⊥θ · ∇u1 dx.

The difference of Mem(u(t), θ(t)) and Mem(ũ(t), θ̃(t)), where u and ũ have been
attained by solving the field circuit coupled problem with rotation θ and θ̃ can be
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estimated

lzνair
1

ε

∫
Γε
‖x‖2nθ(t) · ∇u1(t)n⊥θ(t) · ∇u1(t) dx

− lzνair
1

ε

∫
Γε
‖x‖2nθ̃(t) · ∇ũ1(t)n⊥

θ̃(t)
· ∇ũ1(t) dx

= lzνair
1

ε

∫
Γε
‖x‖2

(
nθ(t) · ∇u1(t)n⊥θ(t) · ∇u1(t)− nθ̃(t) · ∇ũ1(t)n⊥

θ̃(t)
· ∇ũ1(t)

)
dx

= lzνair
1

ε

∫
Γε
‖x‖2

((
nθ(t) − nθ̃(t)

)
· ∇u1(t)n⊥θ(t) · ∇u1(t)

+ nθ̃(t) · (∇u1(t)−∇ũ1(t))n⊥θ(t) · ∇u1(t)

+ nθ̃(t) · ∇ũ1(t)
(
n⊥θ(t) − n

⊥
θ̃(t)

)
· ∇u1(t)

+ nθ̃(t) · ∇ũ1(t)n⊥
θ̃(t)
· (∇u1(t)−∇ũ1(t))

)
dx

≤ C(t)|δθ(t)|

by the previous obtained bounds.
Since the right hand side of the equation of motion involves the spatial integral

of the gradient of a L2(0, T ;H2(Ω1)) function, the right hand side is in L2(0, T ),
therefore the solution of the second order ODE is in H2(0, T ) and therefore in
C1(0, T ) (with possible modifiction on a set with measure zero). We estimate the
solution of the equation of motion

Ix′′(t) + βx′(t) = Mem(u(t), θ(t))

with
x(0) = 0 and x′(0) = 0,

for t ∈ [0, T ]. Integrating one time yields∫ t

0

Ix′′(s) dx+

∫ t

0

βx′(s) dx = Ix′(t) + βx(t) =

∫ t

0

Mem(u(s), θ(s)) ds.

Integrating a second time yields∫ t

0

Ix′(s) dx+

∫ t

0

βx(s) dx = Ix(t) +

∫ t

0

βx(s) dx =

∫ t

0

∫ z

0

Mem(u(s), θ(s)) dsdz,

such that we have the integral equation

x(t) = −β
I

∫ t

0

x(s) dx+
1

I

∫ t

0

∫ z

0

Mem(u(s), θ(s)) dsdz.
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3.8. Existence result for the state equation

Taking the supremum of the absolute difference of the equation for x(·) and x̃(·) we
can estimate

β

I
sup
t∈[0,T ]

∫ t

0

|x(z)− x̃(z)|dz =
β

I

∫ T

0

|x(z)− x̃(z)|dz

≤ T β
I

sup
t∈[0,T ]

|x(t)− x̃(t)|

= T
β

I
‖x− x̃‖∞

and
1

I
sup
t∈[0,T ]

∫ t

0

∫ z

0

|Mem(u(s), θ(s))−Mem(ũ(s), θ̃(s))|dsdz

=
1

I

∫ T

0

∫ z

0

|Mem(u(s), θ(s))−Mem(ũ(s), θ̃(s))|dsdz

≤ T 1

I
sup
t∈[0,T ]

∫ t

0

|Mem(u(s), θ(s))−Mem(ũ(s), θ̃(s))|ds

≤ T 2 1

I
sup
t∈[0,T ]

|Mem(u(t), θ(t))−Mem(ũ(t), θ̃(t))|.

If T < β
I , one obtains with a positive constant C > 0 the bound

‖x− x̃‖∞ ≤ CT 2‖θ − θ̃‖∞,

i.e. for T being small enough the solution operator of the equation of motion is a
contraction. This concludes the proof.
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CHA PTER 4

Discretization

In this chapter, the discretized version of the model of the asynchronous machine
is described, which can be solved numerically. In the first section we consider the
discretization in space by the finite element method (FEM). It is described how we
treat the coupling conditions for different rotor positions and how we can compute
the torque. Even with linearized material, the equation of state is nonlinear due to
the torque calculation and the dependence on the rotor angle. In the second section,
we describe the time-stepping schemes for linear and nonlinear material properties.
The discretization is based on the weak form for all v ∈ {v ∈ H1(Ω1∪Ω2) : v(x) =

0 for x ∈ Ω̄\{Ω ∪ Γ}}

∫
Ω1

σ∂tuivi dx+

2∑
i=1

∫
Ωi

νi∇ui · ∇vi dx+

2∑
i=1

(−1)i
∫

Γ

νi∂nuivi dS

= (σξATϕ, v1)Ω1
+ (χT ist, v2)Ω2

i = 1, 2 (4.1)

u1(r−θ(t)x, t) = u2(x, t), x ∈ Γ (4.2)

ν1∂nu1(r−θ(t)x, t) = ν2∂nu2(x, t), x ∈ Γ (4.3)

−A
∫

Ω1

`zσ∂tu1ξ
T dx+AGATϕ = 0 (4.4)∫

Ω2

`z∂tu2χ
T dx+Rstist + L

d

dt
ist = q (4.5)

d

dt
θ = θ̇ (4.6)

I
d

dt
θ̇ + βθ̇ = Mem (4.7)

u(x, 0) = 0, x ∈ Ω (4.8)
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u(x, t) = 0, x ∈ Ω̄\{Ω ∪ Γ}
(4.9)

θ(0) = 0 (4.10)

θ̇(0) = 0 (4.11)

ist(0) = 0 (4.12)

4.1 Finite element discretization

The code for the simluation of the induction machine is adapted from a code of
Herbert De Gersem. The implemented asynchronous machine was first described by
De Weerdt in his PhD-thesis [35]. Due to the symmetry of the motor, it is sufficient
to consider only a quarter of the total cross-section of the motor and to introduce
antiperiodic boundary conditions at the emerging artificial boundaries. Since we are
now looking at a quarter, the number of rotor bars considered is reduced from 40

to 10. To discretize our problem in space, we are using the finite element method
[24, 16]. The state variable which depends on space is the magnetic vector potential,
which we call u := Az in this chapter. In order to apply the method, the stator
and rotor domain are separated in a way, that they are no longer touching, i.e. the
stator is pushed outwards, such that the airgap on rotor and stator do not overlap
and it holds Ω̄s ∩ Ω̄r = ∅. We then divide the region of the stator Ωs and the region
of the rotor Ωr into triangles T to get a polygonal approximation

Ωhs :=
⋃
T∈Ts

T ⊂ R2

and
Ωhr :=

⋃
T∈Tr

T ⊂ R2

where T is the collection the closed triangles T with the properties
• triangles in T with T ∩ T ′ 6= ∅ and T 6= T ′ either intersect in a shared vertex

or in an entire shared edge,
• it holds

max
T∈T

hT
ρT
≤ c

for some c > 0 and ρT is the radius of the incircle and hT the radius of the
circumscribed circle of an element T ∈ T ,
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• it holds
max
T∈T

hT ≤ cmin
T∈T

hT .

Since we are using interpolation as a coupling technique, we choose triangulations
for Ωhs and Ωhr , which have coinciding polygonal boundary on the interface in the
airgap on stator Γs and in the airgap on the rotor Γr and the nodes on the airgap
boundaries are equidistantly placed. Additionaly, we need, that there is a one to
one correspondence of the nodes on the sides of the artificial boundaries to apply
antiperiodic boundary conditions, see Figure 4.1. We choose a triangulation, which
matches with the material, meaning in every triangle, we have only one material
coefficient. We define the whole approximated domain to be

Ωh := Ωhs ∪ Ωhr .

In the FEM method, to approximate the PDE solution, one uses element-wise poly-
nomials which are globally continuous. We define the spaces of piecewise linear finite
elements on the stator and rotor as

Vhs =
{
vhs ∈ C(Ωhs ) : vhs

∣∣
T
∈ P1

2 (T ), T ∈ Ts
}

and
Vhr =

{
vhr ∈ C(Ωhr ) : vhr

∣∣
T
∈ P1

2 (T ), T ∈ Tr
}
.

Where the space of polynomials of degree less or equal to d with dimension n is
denoted by Pdn. We define the combined space to be

Vh := Vhs × Vhr . (4.13)

Note that this space is not coupled yet and the two functions can have different
function values on Γr and Γs. To define a basis of Vh we use the vertices of Ts and
Tr. We make distinct index sets for the nodes on the airgap, since they are involved
in the coupling. We denote

Nr ∪NΓr are all the nr nodes in Ωhr ,

Ns ∪NΓs are all the ns nodes in Ωhs ,

N := Nr ∪NΓr ∪Ns ∪NΓs .

(4.14)

The index set Nr contains all the nodes of the rotor domain Ωhr , which are not used
in the interface coupling, as these are contained in NΓr . We define the elementwise
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linear nodal basis functions Ñi as follows:

Ñi(xj) = δij , xj ∈ N , i, j = 1, . . . , ns + nr.

In each triangle 3 basis functions are non vanishing, they are given by

Ñi(x1, x2) =
ai + bix1 + cix2

2∆
, i = 1, 2, 3,

where ∆ is the area of the triangle T and the coefficients can be computed by

ai = xj1x
k
2 − xk1x

j
2,

bi = xj2 − xk2 ,

ci = xk1 − x
j
1.

Here (xi1, x
i
2), (xj1, x

j
2) and (xk1 , x

k
2) are the coordinates of the nodes of the triangle.

The formula for the coefficients is due to linear polynomial interpolation in the
triangle. Since the quantity u we want to solve for is the z component of the
magnetic vector potential ~A and we only consider the cross-section of the machine,
we scale the basis functions by the length of the machine `z and define Ni = Ñi

`z
.

Our discretized space is then given by

Vh = span{N1, . . . , Nns+nr} ⊂ H1(Ωhs ∪ Ωhr ).

We are approximating the magnetic vector potential via the ansatz

uh,sr,f (x, t) =

nr∑
i=1

uh,si (t)Ni(x) and uh,ss,f (x, t) =

ns+nr∑
i=nr+1

uh,si (t)Ni(x) (4.15)

and use Vh as the space of test functions in the weak form. Variables with h, s index
denote semi-discrete quantities which depend on time. Since the basis is finite, we
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test with the basis elements. In case of linear material we have

((Mh
1 ))ij =

∫
Ωhr

σ`zNiNj dx, i, j = 1, . . . , nr,

((Kh
1 ))ij =

∫
Ωhr

ν1`z∇Ni · ∇Nj dx, i, j = 1, . . . , nr,

((Kh
2 ))ij =

∫
Ωhs

ν2`z∇Ni · ∇Nj dx, i, j = nr + 1, . . . , ns + nr,

((Q̃h))ij =

∫
Ωhr

σ`zξjNi dx, i = 1, . . . , nr, j = 1, . . . , 10,

((Xh))im =

∫
Ωhs

`zχmNi dx, i = nr + 1, . . . , ns + nr,m = 1, . . . , 3,

((G̃))jj =

∫
Ωhs

`zσξjξj dx, j = 1, . . . , 10,

((Bh1 ))ij =

∫
Γh
ν`z∂nNiNj dS, i, j = 1, . . . , nr,

((Bh2 ))ij =

∫
Γh
ν`z∂nNiNj dS, i, j = nr + 1, . . . , ns + nr.

(4.16)
To assemble the full DC conductance matrix of the rotor bar circuit, we set up the
diagonal matrix Z ∈ R40×40 which contains the first 10 diagonal elements of G̃,
followed by the 10 DC conductances of the rotor bar parts outside of the FE model
and the last 20 diagonal elements are given by the DC conductances of the end ring
parts of the squirrel cage. We define

G := AZAT ,

where A ∈ R29×40 is the reduced incidence matrix. The matrix Qh ∈ Rnr×29 is
defined to be the matrix

Qh :=
(
Q̃h zeros(nr, 30)

)
AT .

Note that since the basis functions in rotor and stator have no common support,
we can simply combine the matrices for rotor and stator part and we can write for
example

Kh =

(
Kh

1 0

0 Kh
2

)
and Mh =

(
Mh

1 0

0 0

)
.
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In the following we will use a specific ordering of the nodes and their basis functions,
such that the coefficients in (4.15) have the order

uh,sN = (uh,sr , uh,sΓr , u
h,s
s , uh,sΓs )T .

The spatial discretized system without applied boundary conditions for the equa-
tions (4.1),(4.4) and (4.5) looks like

Mh
rr∂tu

h,s
r +Kh

rru
h,s
r +Kh

rΓru
h,s
Γr +Qhrϕ = 0

Kh
Γrru

h,s
r + (Kh

ΓrΓr −BhΓrΓr )u
h,s
Γr = 0

Kh
ssu

h,s
s +Kh

sΓsu
h,s
Γs +Xh

s i = 0

Kh
Γssu

h,s
s + (Kh

ΓsΓs +BhΓsΓs)u
h,s
Γs = 0

−(Qhr )T∂tu
h,s
r +Gϕ = 0

(Xh
s )T∂tu

h,s
s + L∂tist +Rstist = q,

(4.17)

Two subscripts at matrices denote, that the correpsonding rows and columns are
chosen. Defining

Kfull :=



Kh
rr Kh

rΓr 0 0 Qhr 0

Kh
Γrr Kh

ΓrΓr −BhΓrΓr 0 0 0 0

0 0 Kh
ss Kh

sΓs 0 Xh
s

0 0 Kh
Γss Kh

ΓsΓs +BhΓsΓs 0 0

0 0 0 0 G 0

0 0 0 0 0 Rst


,

Mfull :=



Mh
rr 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−(Qhr )T 0 0 0 0 0

0 0 (Xh
s )T 0 0 L


and bh,s(t) being a vector of the size of the columns of Kfull with the last three
entries being the right hand side q we can write (4.17) as

Mfull∂ty
h,s(t) +Kfully

h,s(t) = bh,s(t), (4.18)

where yh,s(t) = (uh,sr (t), uh,sΓr (t), uh,ss (t), uh,sΓs (t), ϕ(t), ist(t))
T . In the next section,

we describe the coupling we are using and how the boundary conditions are applied.
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4.2. Boundary and interface conditions

4.2 Boundary and interface conditions

Figure 4.1. Antiperiodic boundary conditions.

Since we simulate only a quarter of the machine, we have two additional artificial
edges that do not exist in the physical machine, in addition to natural ones. Using
the symmetry of the machine, the correct choice for boundary conditions on the
artificial boundaries are antiperiodic boundary conditions, which can be written as

u|AB = −u|CD,

see Figure (4.1). On the natural outer boundaries of the rotor and stator, we have
homogeneous dirichlet boundary conditions

u|BC = u|DA = 0.

To incorporate the boundary conditions into the discrete framework, we project
the matrices (4.16) onto the degrees of freedom (dof) which is a subset of all the
nodes. To do so, we choose one of the artificial boundaries as master and one as
slave and set up two projection matrices Pr ∈ R|Nr|×|Nr,dof | and Ps ∈ R|Ns|×|Ns,dof |.
These projection matrices do not act on the airgap nodes and Nr,dof is the subset
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Chapter 4. Discretization

of Nr containing the degrees of freedom contained in Nr, anlogous for the stator.
The projection matrix for the rotor (analogous for the stator) can be set up in the
following way: Starting with the unit matrix I ∈ R|Nr|×|Nr|, putting a −1 in the
column/row of every master/slave pair of the antiperiodic boundary condition, then
collecting the columns Nr,dof . The only matrix in (4.16) in which the integrals
involving the basis functions corresponding to nodes on the boundary do not vanish
is the stiffness matrix, we can project it onto the degrees of freedom by
PTr 0 0 0

0 I 0 0

0 0 PTs 0

0 0 0 I

Kh


Pr 0 0 0

0 I 0 0

0 0 Ps 0

0 0 0 I

 =


PTr K

h
rrPr 0 0 0

0 Kh
ΓrΓr 0 0

0 0 PTs K
h
ssPs 0

0 0 0 Kh
ΓsΓs

 ,

where Ps and Pt are the projection matrices for rotor and stator nodes. For all the
other matrices, we can simply choose the columns and rows of the dofs (in Matlab
syntax), for example

PTr M
h
rrPr = Mh

rr(Nr,dof ,Nr,dof ) and PTr Q
h
r = Qhr (Nr,dof , :).

Different methods for the coupling of the rotor and stator have been developed
[30], methods where the grid between rotor and stator has to match are, for example,
the locked step method [56], where only rotations with angles where the grid matches
can be computed. Another method is the moving band approach [36], in which a
tube is placed around the airgap and the grid is distorted within this tube during
a rotation. Since the grid cannot be distorted arbitrarily, when a certain rotation
angle is exceeded, the grid must jump, resulting in non-smooth behavior in the
simulation. Methods for coupling where the grid of rotor and stator do not have
to coincide are, for example, interpolation and so-called mortaring, which has been
intensively researched in recent years and is described in more detail in section 4.2.1.
To incorporate the interface conditions for different angles we use a smooth in-

terpolation. We will show that for some rotor positions this is equivalent to solving
a saddle point problem that results from a weak coupling between rotor and sta-
tor where functions which are bi-orthogonal to the hat on the interface are used as
testspace.
For the coupling of rotor and stator with interpolation, we construct a coupling

matrix depending on the angle. In our simulation, the full airgap is divided into
360 parts. As we are simulating only one quarter of the machine, we are left with
91 nodes on the stator and 91 nodes on the rotor. One node on the boundary of
the airgap is used in the anti-periodic boundary condition, leaving 90 nodes for
the coupling. For every occuring rotation angle θ(t) we compute a full jump n =⌊
θ(t)·360

2·π

⌋
on the mesh intervals and a fractional jump ε = θ(t)·360

2·π −
⌊
θ(t)·360

2·π

⌋
. When
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4.2. Boundary and interface conditions

using linear interpolation, one can then use the coupling matrix Rfull(θ) ∈ R360×360

(we drop here the dependence on t):

Rfull(θ)
∆
= Rfull

(
n =

⌊
θ · 360

2 · π

⌋
, ε =

θ · 360

2 · π
−
⌊
θ · 360

2 · π

⌋)

:=


0 1

. . . . . .
. . . 1

1 0


n

1− ε ε
. . . . . .

. . . ε

ε 1− ε


If ε = 0, then we have matching nodes and the interpolation is exact. Rfull(θ) then
reduces to 

0 1
. . . . . .

. . . 1

1 0


n

,

which is an orthonormal matrix which shifts elements of vectors (or rows of matrices)
n-times upwards. As we are simulating only a quarter of the machine and only 90

nodes are used in the coupling we define with I ∈ R90×90 being the unit marix

R(θ) :=
(
I 0

)
Rfull(θ)

(
I −I I −I

)T
(4.19)

to account for the antiperiodic behavior of the quarters. The coupling condition
(4.2) can then be written in discrete form

R(θ(t))uh,sΓs (t) = uh,sΓr (t).

Note that, in this case, the nodes on the interface part on rotor and stator need to
have the same ordering. In our case the nodes are indexed counterclockwise. Then
the coupling condition corresponds to a counterclockwise rotation of the rotor for a
positive θ. We take the nodal values of the stator airgap as degrees of freedom. The
degrees of freedom of the magnetic vector potential are

uh,sdof (t) = (uh,sr,dof (t), uh,sΓs (t), uh,ss,dof (t))T ,

and we define
yh,sdof (t) := (uh,sdof(t), ϕ(t), ist(t))

T ,

where ϕ(t) is the vector of nodal potentials in the rotor bar network. We use the
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projection

P(θ) :=



Pr 0 0 0 0

0 R(θ) 0 0 0

0 0 Ps 0 0

0 I 0 0 0

0 0 0 I 0

0 0 0 0 I


and Pu(θ) :=


Pr 0 0

0 R(θ) 0

0 0 Ps
0 I 0

 .

We have P(θ) ∈ R|Nr|+|NΓr |+|Ns|+|NΓs |+nϕ+ni×|Nr,dof |+|NΓs |+|Ns,dof |+nϕ+ni . nϕ is
the number of nodes in the rotor bar circuit, in our case 29 and ni is the number
of current phases, in our case 3. Pu(θ) is the projector for the magnetic vector
potential and has ndof := |Nr,dof |+ |NΓs |+ |Ns,dof | columns.
The coupled space which also satisfies the outer boundary conditions then reads

Vhθ :=

{(
nr∑
i=1

uhiN
i(x),

ns+nr∑
i=nr+1

uhiN
i(x)

)
∈ H1(Ωhr )×H1(Ωhs )

: uh = Pu(θ)uhdof , u
h
dof ∈ Rndof

}
.

(4.20)

Projecting the semi-discrete system (4.18) onto the degrees of freedom leads to

P(θ(t))TMfullP(θ(t))∂ty
h,s
dof (t) + P(θ(t))TKfullP(θ(t))yh,sdof (t) = P(θ(t))T bh,s(t).

Here, the projected stiffness part is given by

P(θ(t))TKfullP(θ(t)) =
PTr K

h
rrPr PTr K

h
rΓrR(θ(t)) 0 PTr Q

h
r 0

R(θ(t))TKh
ΓrrPr R(θ(t))TKh

ΓrΓrR(θ(t)) +Kh
ΓsΓs Kh

ΓssPs 0 0

0 PTs K
h
sΓs PTs K

h
ssPs 0 Xh

s Ps
0 0 0 G 0

0 0 0 0 Rst


(4.21)

The application of P(θ)T from the left projects the test functions from Vh into Vhθ
and the application of P(θ) from the right projects the solution into the coupled
space. Note that by the discrete second coupling condition we have

BhΓsΓsu
h,s
Γs (t) = R(θ(t))TBhΓrΓru

h,s
Γr (t)

⇔−R(θ(t))TBhΓrΓrR(θ(t))uh,sΓs (t) +BhΓsΓsu
h,s
Γs (t) = 0
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and the Neumann terms vanish.
As we apply the robust optimization framework described in chapter 6 to the

induction machine, we will see, that we need derivatives of the state equation, the
objective function and the constraint function up to third order with respect to
the state variables. Since θ is a state variable, we need derivatives of R(θ) up to
third order. As the matrix R(θ) is not differentiable with respect to θ using linear
interpolation, we use a smoothed version of R(θ) given by

R̃(θ) :=
(
I 0

)
R̃full(θ)

(
I −I I −I

)T
with

R̃full(n, ε) :=
0 1

. . . . . .
. . . 1

1 0


n

f(ε) f(1− ε)
. . . . . .

. . . f(1− ε)
f(1− ε) f(ε)

 ∈ R360×360.

(4.22)
Here f (see Figure 4.2) is a smooth approximation of the hat function on [−1, 1]

with the properties

• f(x) + f(1− x) = 1, x ∈ [0, 1],

• f(1/2) = 1/2,

• f(x) > 0, x ∈ [0, 1),

• limx→0 f(x) = limx→1 f(x) = 0,

i.e. we have a partition of unity and a convex combination in the interpolation.
R̃full(θ) is multiplied by an analytic skew factor to account for the skewing of the

rotor bars [31].
As we have seen in (3.6.1), the torque can be computed via

Mem(u, θ) = lz

∫
Γ

n · ν2∇u2n
⊥ · ∇u1(r−θx) dS (4.23)

An approach widely used recently to couple rotor and stator is mortaring. In the
mortaring approach, the quantity n · ν∇u in (4.23) is introduced as an additional
variable in the coupling, which simplifies the torque computation. In the next sub-
section we will compare mortaring and interpolation and describe how we compute
the torque with interpolation coupling.
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Figure 4.2. Smooth coupling functions.

4.2.1 Mortaring

Mortaring is a technique to couple decomposed domains with differing meshes
possibly leading to non-matching grids or different discretization schemes, see
[6, 69, 83, 3, 11, 17, 19]. The idea of mortaring is to relax the strong pointwise
continuity in matching conditions by imposing coupling in a weak sense, meaning,
enforcing orthogonality between the jump on the interface and a chosen trace space,
which can be seen as a Lagrange multiplier. There are two different approaches
for mortaring. We will shortly state two equivalent problems, to keep it simple, we
drop the time dependence of the problem and introduce the elliptic problem with
the same region Ω as in the previous section

−∇ · (νi∇ui) = ri, on Ωi, i = 1, 2,

u1(r−θx) = u2, for x ∈ Γ,

ν1∂nu1(r−θx) = ν2∂nu2, for x ∈ Γ,

ui = 0, for x ∈ ∂Ωi\Γ,
u|AB = u|CD.

(4.24)

We define
λ := ν∂nu2,
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4.2. Boundary and interface conditions

and require the first coupling condition to be fulfilled in a weak sense

b : H1(Ω1 ∪ Ω2)×H1/2(Γ)→ R,

b(u, µ) :=

∫
Γ

µ(u1(r−θx)− u2) dS = 0, for µ ∈ H1/2(Γ).

In the first approach in mortaring, problem (4.24) is transformed into its weak
form
Find (u1, u2, λ) ∈ H1

∂Ω1,0
(Ω1)×H1

∂Ω2,0
(Ω2)×H1/2(Γ), such that

2∑
i=1

∫
Ωi

νi∇ui · ∇vi dx+ b(v, λ) =

2∑
i=1

∫
Ωi

rivi dx, ∀vi ∈ H1
∂Ωi,0(Ωi),

b(u, µ) = 0, ∀µ ∈ H1/2(Γ).

(4.25)

Where H1
∂Ωi,0

is the space of H1(Ωi) functions having zero trace on ∂Ωi\Γ. This
approach is called the primal-dual approach, since the Lagrange multiplier λ is
involved. A necessary condition for the existence of a solution is the inf-sup-stability
of the bilinearform b, i.e. the existence of a positive β, such that

inf
λ∈H1/2(Γ)

sup
v∈V

b(v, λ)√
‖v1‖2H1(Ω1) + ‖v2‖2H1(Ω2)‖λ‖H1/2(Γ)

≥ β > 0,

where V := H1
∂Ω1,0

(Ω1)×H1
∂Ω2,0

(Ω2).
In the second approach, the coupling conditions are inserted into the space. In-

troducing the space

Ṽ := {(v1, v2) ∈ H1
∂Ω1,0(Ω1)×H1(Ω2)∂Ω2,0 : b(v, µ) = 0,∀µ ∈ H1/2(Γ)}.

We then want to find u ∈ Ṽ fulfilling

2∑
i=1

∫
Ωi

νi∇ui · ∇vi dx =

2∑
i=1

∫
Ωi

rivi dx, ∀v ∈ Ṽ .

This approach is called the primal approach. These two formulations are equivalent
[83].
We will now look at the discretization of (4.25). Let Λh be an nm-dimensional

subspace of H1/2(Γ) and a basis for Λh be given by {wi}nmi=1, we will associate the
dual basis to the rotor movement, such that we have λh(α) =

∑nm
i=1 w̃iwi(r cos(α−

θ, r sin(α − θ)), since λ is a quantity on stator side, here w̃i ∈ R and θ is the
rotor position. For the magnetic vector potential we use the discretization from the
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previous section (without time dependence). To evaluate the bilinear form b, we
compute two integrals. The first one over the interface and basis functions of the
stator, tested with the basis of Λh

((Rm,s(α)))ij = r

∫ 2π

0

Nj(r cos(θ), r sin(θ))wi(r cos(θ − α), r sin(θ − α))dθ,

where i = 1, . . . , nm and j ∈ NΓs and the second integral over the interface of the
rotor

((Rm,r))ij = r

∫ 2π

0

Nj(r cos(θ), r sin(θ))wi(r cos(θ), r sin(θ))dθ, (4.26)

where again i = 1, . . . , nm and j ∈ NΓr . We neglect here, that the discretized
interface is no circle but a polygonal chain. In the discrete setting, the coupling
condition (4.2.1) has to hold for all the basis function of the dual space

b(wi, (u
h
r,f , u

h
s,f )) = 0, ∀wi ∈ Λh ⇔ Rm,ruhΓr = Rm,s(θ)uhΓs .

Testing the right hand sides of (4.25)

((jr))i =

∫
Ωhr

r1N
i dx, i ∈ Nr,

((js))i =

∫
Ωhs

r2N
i dx, i ∈ Ns.

leads to the discrete saddle point problem
PTr K

h
rrPr PTr K

h
rΓr 0 0 0

Kh
ΓrrPr Kh

ΓrΓr 0 0 Rm,rT

0 0 PTs K
h
ssPs PTs K

h
sΓs 0

0 0 Kh
Γss Kh

ΓsΓs −Rm,s(θ)T
0 Rm,r 0 −Rm,s(θ) 0




uhr,dof
uhΓr
uhs,dof
uhΓs
w̃

 =


jr
0

js
0

0

 .

As we have chosen λ = ν∂nu2 we can write (4.23) as

Mem(λ, u, θ) = lz

∫
Γ

λn⊥ · ∇u1(r−θx) dS (4.27)

and with our chosen discretization

Mh
em(λh, uh, θ) = lz

∫
Γ

nc∑
i=1

w̃iwi

n∑
i=1

uhi n
⊥ · ∇N i dS = `zw̃

TSuhΓr (4.28)
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with

((S))ij := r

∫ 2π

0

win
⊥ · ∇N idθ.

In the next section we examine the connection between a special choice of the
Lagrange multiplier space and interpolation as a coupling technique which we will
use to compute the torque of the machine.

Mortaring with bi-orthogonal Lagrange Multipliers

For the choice of the test functions, i.e. the choice of the space of the Lagrange mul-
tiplier, there are many possibilities, for example one can simply take hat functions
which might already be used for the spatial discretization. Recently, the so-called
harmonic coupling has received a lot of attention, where the basis functions of the
test space consist of sine and cosine with different frequencies [33, 39, 40, 14]. As
the Lagrange multiplier is the tangential component of the magnetic field strength,
it can be approximated well with the use of oscillating basis functions and rota-
tions can efficiently be treated in the coupling matrix with the use of trigonometric
summation formulas, see [39].
We will describe here the use of spaces which basis functions are dual to the

piecewise linear hat functions on the interface, where the dual functions are assigned
to the mesh on the rotor interface [84]. We introduce the set of test functions

Λh = {wh : Γ 7→ R | wh(x) =

360∑
i=1

ciw
h
i (α), ci ∈ R}.

Where the basis functions are given by (see Figure 4.3)

wh1 (α) =


−1/2, for α ∈ [− 2π

360 ,−
2π

2·360 ) ∪ ( 2π
2·360 ,

2π
360 ],

3/2, for α ∈ [− 2π
2·360 ,

2π
2·360 ],

0, else.

wh2 , . . . , w
h
360 are given by rotating wh1 around i degrees, i = 1, . . . , 359. Dual means

here, that the integral over the airgap of the product between the spatial basis
function Ni for the magnetic vector potential and the basis functions of the dual
space vanishes for differing indices, i.e. (4.26) leads to

Rm,rij = δij ,

such that the coupling matrix is easy to compute. To fulfill this property, the basis
functions wi are scaled by h := 2π

360 · r, where r is the radius of the airgap. We look
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Figure 4.3. Hat function in blue and dual basis function in red.

again at the discretized saddle point problem
PTr K

h
rrPr PTr K

h
rΓr 0 0 0

Kh
ΓrrPr Kh

ΓrΓr 0 0 Rm,rT

0 0 PTs K
h
ssPs PTs K

h
sΓs 0

0 0 Kh
Γss Kh

ΓsΓs −Rm,s(θ)T
0 Rm,r 0 −Rm,s(θ) 0




uhr,dof
uhΓr
uhs,dof
uhΓs
w̃

 =


jr
0

js
0

0

 .

We can use the last row to eliminate uhΓr = Rm,r−1Rm,s(θ)uhΓs and obtain


PTr K

h
rrPr 0 PTr K

h
rΓrR

m,r−1Rm,s(θ) 0

Kh
ΓrrPr 0 Kh

ΓrΓrR
m,r−1Rm,s(θ) Rm,rT

0 PTs K
h
ssPs PTs K

h
sΓs 0

0 Kh
ΓssPs Kh

ΓsΓs −R(̃α)T



uhr,dof
uhs,dof
uhΓs
w̃

 =


jr
0

js
0

0

 .

Solving the second equation for

w̃ = −Rm,r−T (Kh
ΓrrPru

h
r,dof +Kh

ΓrΓrR
m,r−1Rm,s(θ)uhΓs) (4.29)

and plugging it into the fourth equation leads to PTr K
h
rrPr 0 PTr K

h
rΓrR

m,r−TRm,s(θ)

0 PTs K
h
ssPs PTs K

h
sΓs

Rm,s(θ)TRm,r−TKh
ΓrrPr Kh

ΓssPs Kh
ΓsΓs +Rm,s(θ)TR−TKh

ΓrΓrR
m,r−1Rm,s(θ))

 .

(4.30)
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By comparing (4.30) and (4.21), we see, whenever Rm,r−TRm,s(θ) coincides with
the interpolation matrix R̃(θ), mortaring and interpolation coincide, this is for ex-
ample the case, when the grid matches and both methods are exact. With the
bi-orthogonal multipliers, we always have Rm,r = I. Especially we can use uhΓs and
uhr,dof which were computed with coupling by interpolation and (4.29) to reconstruct
the coefficients for the dual basis functions wi to compute the torque via the matrix

((S))ij =

∫ 2π

0

wi
h
n⊥ · ∇N idθ =


− 1

2h , if i = j − 1,

0, if i = j,
1

2h , if i = j + 1.

Leading to

Mh
em(uh, θ) := `zr(w

h)TSR̃(θ)uhΓs

= −`zr(uhr,dof )TPTr K
T
ΓrrSR̃(θ)uhΓs − `zr(uhΓs)T R̃(θ)TKT

ΓrΓrSR̃(θ)uhΓs .
(4.31)

Note that when the moment of inertia and the friction coefficient in the equation
of motion (see 3.6) is given for the full rotor, we need the torque for the full rotor,
i.e. we have to compute S for the full airgap and extend uhΓs to the full interface
respecting the anti-periodicity of the quarters of the machine.
We do not use the dual mortar coupling in our optimization since the hat functions

on the interface are C0 and the dual test functions on the interface are not even
continuous. The integrals in the entries of Rm,s(θ) depend on the angle, which has
a smoothing effect with respect to the angle since this is a convolution. But as
the involved functions are to rough, Rm,s(θ) is only a C1 function of the angle. In
the robust optimization with a quadratic Taylor model we need C2 to compute the
quadratic model which then needs to be differentiated to obtain a descent direction.
We therefore use the smooth interpolation presented in the previous section and
compute the torque via (4.31).
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The whole system in semi-discrete form is given by

P(θ)TMfullP(θ)∂ty
h,s(t) + P(θ)TKfullP(θ)yh,s(t) = P(θ)T bh,s(t)

dθ(t)

dt
= θ̇(t)

I
dθ̇(t)

dt
+ βθ(t)2 = Mh

em(uh,s(t), θ(t))

i(0) = 0

θ̇(0) = 0

θ(0) = 0

uh,s(0) = 0

(4.32)

In the next section we will describe the setting for the parametrized shape opti-
mization of the induction machine and how we deal with the parameter dependent
domain in the discrete setting.

4.3 Parametrized models

Since we want to do robust shape optimization, we introduce parameters p ∈ P ⊂
Rnp into the state equation. In our optimization, we will assume that we can control
some of the parameters and some of them are uncertain. Our design parameters
are the width and height of the rotor bars and in the optimization with the linear
material, we assume that the width of the rotor bar slot openings is uncertain as
these can get distorted by the huge forces acting on them when the machine is started
up. To perform shape optimization, we make our rotor domain parameter dependent
Ωh(p) = Ωhr (p) ∪ Ωhs . We will use an affine parametrization of the domain, which
has the property, that the Jacobian of the transformation is piecewise constant.
This approach follows [72] and has been succesfully used in [51, 56, 15]. Choosing
a reference parameter p̂ we can define a reference domain Ω̂h := Ωh(p̂). We will
see, that this allows us to pre-calculate integrals on the reference domain which
are needed in the system matrices. We define L non overlapping rectangles Ω̂i in
our reference domain Ω̂h, such that the transformation only takes place in these
rectangles and the boundary of the rectangles is not affected by the transformation.
The domain not yet covered by rectangles is defined as Ω̂L+1, we then have

cl Ω̂h =

L+1⋃
i=1

cl Ω̂i, and Ωi ∩ Ωj = ∅, for i 6= j
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Figure 4.4. Triangular division around the rotor bars and the opening of the rotor bar
slots.

where cl Ω̂i is the closure of the open set Ω̂i. We now further subdivide the rectangles
into non overlapping triangles, see Figure 4.4,

Ω̂h =

L̃⋃
i=1

Ω̂i ∪ ΩL̃+1

where every triangular subdomain has only one material coefficient. Therefore σ
and ν are constant in the subdomains. On every subtriangle Ω̂k, k = 1, . . . , L̃, we
can define an affine linear mapping

Tk(x̂, p) : Ω̂k → Ωk(p)

x̂ 7→ Ck(p)x̂+ dk(p) =: x

which depends on the parameter p and the matrices Ck(p) ∈ R2×2 are invertible.
When triangles share an edge, then their transformations coincide in that shared
edge

x̂ ∈ cl Ω̂i ∩ cl Ω̂j ⇒ Ti(x̂, p) = Tj(x̂, p).

As the mappings Tk have four degrees of freedom in the matrix Ck(p) and two
degrees of freedom in the vector dk(p) they are described by the evaluation of their
three nodes in the reference domain onto their transformed positions.
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Using these transformations, we can rewrite∫
Ωh(p)

ν∇u · ∇v dx−
∫

Ω̂L̃+1

ν∇u · ∇v dx

=

∫
Ωh(p)

ν

(
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)
dx−

∫
Ω̂L̃+1

ν∇u · ∇v dx

=

L̃∑
k=1

∫
Ω̂k
ν

(
∂û

∂x1

∂v̂

∂x1
+

∂û

∂x2

∂v̂

∂x2

)
|detCk(p))| dx̂

=

L̃∑
k=1

∫
Ω̂k
ν

((
∂û

∂x̂1

∂x̂1

∂x1
+

∂û

∂x̂2

∂x̂2

∂x1

)(
∂v̂

∂x̂1

∂x̂1

∂x1
+

∂v̂

∂x̂2

∂x̂2

∂x1

)

+
∂û

∂x2

∂v̂

∂x2

)
|detCk(p))| dx̂

=

L̃∑
k=1

∫
Ω̂k
ν

((
∂û

∂x̂1
Ck(p)−1

1,1 +
∂û

∂x̂2
Ck(p)−1

2,1

)
(
∂v̂

∂x̂1
Ck(p)−1

1,1 +
∂v̂

∂x̂2
Ck(p)−1

2,1

)
+

∂û

∂x2

∂v̂

∂x2

)
|detCk(p))| dx̂

=

L̃∑
k=1

2∑
i,j

[
Ck(p)−1νkCk(p)−>)

]
ij
|detCk(p)|

∫
Ω̂k

∂û

∂x̂i

∂v̂

∂x̂j
dx̂

=

L̃∑
k=1

2∑
i,j

Θij
k (p)

∫
Ω̂k

∂û

∂x̂i

∂v̂

∂x̂j
dx̂.

The FE grid is chosen appropriate to the subdomains, which means that the inter-
section of the boundary of any subdomain Ω̂k with the closure of any FE triangle
is either empty, a vertex of the triangle or an edge of the triangle. This allows us
to assemble the stiffness matrix on the reference domain and to compute it for a
specific design by evaluating the sum

K(p) = KL̃+1 +

L̃∑
k=1

2∑
i,j

Θij
k (p)Ki,j,k, (4.33)

where KL̃+1 is the stiffness matrix for the domain ΩL̃+1
r . In regions that get

transformed, we do not only have to compute the integrals
∫

Ω̂h
∂x̂û∂x̂v̂ dx̂ and∫

Ω̂h
∂ŷû∂ŷ v̂ dx̂ but also the mixed integrals

∫
Ω̂h
∂x̂û∂ŷ v̂ dx̂ and

∫
Ω̂h
∂ŷû∂x̂v̂ dx̂. We

76



4.4. Nonlinear material

can do the same preassembling for the mass matrix∫
Ωh(p)

σuv dx−
∫

Ω̂L̃+1

σuv dx

=

L̃∑
k=1

|detCk(p)|σk
∫

Ω̂k
ûv̂ dx̂

=

L̃∑
k=1

Θm
k (p)

∫
Ω̂k
ûv̂ dx̂

Leading to

Mr(p) = M L̃+1
r +

L̃∑
k=1

Θm
k (p)Mk

r .

Also the matrix Qh and G (see (4.16)) can be precomputed on the reference domain.
Using these equations, it is easy to compute derivatives of the involved matrices
with respect to the design, since we only have to differentiate the scalar coefficient
functions Θ(p).

4.4 Nonlinear material

In this section we will describe how the stiffness matrix is assembled when we con-
sider nonlinear material as described in (3.1.1). In the following, let B = | ~B| and
H = | ~H|. To approximate the B-H-curve, one can use an extended Brauer model
[18, 45], which depends on three parameters k1, k2, k2 that can be adjusted to model
a particular type of steel. The relation between H and B is modelled by

Hbr(B) = (k1e
k2B

2

+ k3)B

until the slope reaches the reluctivity of vacuum ν0 at Bs, which is the case when
the material is saturated. Then ones uses a linear model

Hsat(B) = ν0(B −Bs) +Hs.

The reluctivity is then defined as

ν(x) =

{
k1e

k2x
2

+ k3, if x < Bs,
ν0(x−Bs)+Hs

x , if x ≥ Bs.
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Figure 4.5. Extended Brauer curve for k1 = 0.3774, k2 = 2.970, k3 = 388.33.

The extended Brauer model has a good approximation of the reluctivity for low
and high saturation, the drawback of the extended Brauer curve is, that it is not
three times continuously differentiable, which we need in the robust optimization
with quadratic Taylor polynomials. We therefore use a smoothened version in the
robust optimization.
To calculate ~B, we have ~B = ∇ × ~A, ~A = (0, 0, u)T and therefore ~B =

(∂yu,−∂xu, 0) which leads to
| ~B| = |∇u|.

In every triangle, 3 basis functions N i are different from zero, so to compute | ~B| in
a triangle, let the indices of its three nodes be in the index set Z. To account for
the parametrized domain, let the triangle be inside the subdomain Ω̂k and let the
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4.4. Nonlinear material

parameters p be given, then we have in that triangle

| ~B(t)| = |∇
∑
i∈Z

uh,si (t)N i(x)|

=

∣∣∣∣∣∑
i∈Z

uh,si (t)∇N i(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈Z

uh,si (t)(∇T−1
k (x; p))T ∇̂N̂ i(x̂)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈Z

uh,si (t))(∇T−1
k (x; p))T ∇̂

(
ai + bix̂+ ciŷ

2∆i

)∣∣∣∣∣
=

∣∣∣∣∣∑
i∈Z

uh,si (t)(C−Tk (p)

(
1

2∆i

(
bi
ci

))∣∣∣∣∣ ,
where ai, bi, ci are the parameters of the linear basis function N i on the reference
domain in the given triangle and ∆i its area. In the following we define the trans-
formation mapping in the parameter independent domain ΩL̃+1 to be given by
TL̃+1(x̂) = x̂. Note that not the whole domain has nonlinear material properties,
see Figure 4.6, so ν is precisely given by ν(x, |∇|) = 1Ωnonlin(x)νnonlin(x, |∇u|) +

1Ω\Ωnonlin(x)νlin(x).
The stiffness matrix is obtained by plugging in

L̃+1∑
k=1

∫
Ω̂k
ν(|C−Tk (p)∇̂û|2)

(
C−Tk (p)∇̂û

)
·
(
C−Tk (p)∇̂v̂

)
|detCk(p)|dx̂

the finite element approximation
∑ns+nr
i=1 uh,si (t)N i(x) for û and test with N i(x),

i = 1, . . . , ns + nr.
The function g : R2 → R2 given by

g(x) :=
(
f(|x|2)x

)
=

(
f(x2

1 + x2
2)x1

f(x2
1 + x2

2)x2

)
has for continuously differentiable f : R→ R the Jacobian

Jg(x) =

(
2f ′(x2

1 + x2
2)x2

1 + f(x2
1 + x2

2) 2f ′(x2
1 + x2

2)x1x2

2f ′(x2
1 + x2

2)x1x2 2f ′(x2
1 + x2

2)x2
2 + f(x2

1 + x2
2)

)
= f(|x|2)I + 2f ′(|x|2)xxT .

(4.34)

We can give a formula for the derivative of the stiffness matrix with respect to the
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Figure 4.6. Region with nonlinear material in yellow.

state u which we need in Newton’s method and adjoint and sensitivity computations.
Plugging C−1

k (p)∇̂û into (4.34) leads us to the derivative of the stiffness matrix
in direction s ∈ Vh

L̃+1∑
k=1

∫
Ω̂k

((
ν(|C−Tk (p)∇̂û|2)I + 2ν′(|C−Tk (p)∇̂û|2)

(
C−Tk (p)∇̂û

)(
C−Tk (p)∇̂û

)T)

(C−Tk ∇̂ŝ)

)T
(C−Tk ∇̂v̂)|detCk(p)|dx̂.

(4.35)
To compute the derivative, we first compute the material coefficients for every tri-
angle and then compute the integrals. In transformable regions Ω̂i with nonlinear
material properties we have to compute 4 · 4 = 16 integrals, in regions which have
nonlinear material but are not transformable, we have to calculate 4 integrals. For
region with linear material which are transformable we have 4 precomputed inte-
grals, which need to be scaled by the coefficient Θ(p) depending on the design, see
(4.33). Regions with linear material that are nontransformable require 2 precom-
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4.5. Time stepping scheme

puted integrals. For details, see (A.1). In the second derivative with respect to the
state, the integrals involving linear material vanish.

4.5 Time stepping scheme

To solve the semi-discrete problem (4.32) numerically, we are using a time stepping
scheme. To apply the scheme, we divide the interval [0, T ] into k ∈ N parts [ti−1, ti],
i = 1, . . . , k. We choose t0 = 0 and an equidistant timegrid ti = i∆t with ∆t = T/k

such that we have tk = T . We will use implicit time stepping schemes, since the
spatial discretized eddy current equation is a differential algebraic system, see [64].
A time stepping scheme can be written as the system of equations

C(y, p) =


C1(y0, y1, p)

C2(y1, y2, p)
...

Ck(yk−1, yk, p)

 = 0

where the blocks Ci represent one timestep and it holds that in timestep i we
need to have computed yi−1 (y0 is given as an initial value) and want to solve for
yi. The blocks depend on the state variables y = {y1, . . . , yk} and the control or
design p. The index i in the state yi means the evaluation at timepoint ti, i.e.
yi = y(ti) ∈ Rndof+nϕ+ni+3 with yi = (yh,idof ,T

i, θi, θ̇i)T = (uh,idof , ϕ
i, iist,T

i, θi, θ̇i)T .

4.5.1 Linear material

When using linear material, the magnetoquasistatic equation is linear, but the state
system is still nonlinear, since the torque and the interface coupling behave nonlin-
ear. We therefore use the following scheme which does not involve the solution of a
nonlinear system. We split the solving of our state system into three parts:

1. Equation of motion
2. Field/circuit equations
3. Torque computation
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To solve a block Ci(yi−1, yi, p) we start by computing θi and θ̇i by using the torque
from the previous point in time

I
θ̇i − θ̇i−1

∆t
= Ti−1 − β(θ̇i−1)2.

Here I is the moment of inertia of the rotor. We update θi by

θi − θi−1

∆t
= θ̇i.

With this computed θi we solve

P(θi)T (Kfull(p)+
1

∆t
Mfull(p))P(θi)yh,idof =

1

∆t
P(θi)TMfullP(θi)yh,i−1

dof +P(θi)T bh,i.

We assume here, that P(θi)T (Kfull(p) + 1
∆tMfull(p))P(θi) is regular. Then we use

the computed magnetic vector potential uh,idof to compute the torque via (4.31)

Ti = Mh
em(uh,idof , θ

i).

Therefore, in every time step we solve the system

Ci(yi, yi−1, p) =


I θ̇

i−θ̇i−1

∆t −M i−1
em − β(̇θi−1)2

θi−θi−1

∆t − θ̇i
1

∆tMfull(·, p)(yh,idof − y
h,i−1
dof ) +Kfull(θ

i, p)yh,idof − P(θi)T bh,i

Ti −Mh
em(uh,idof , θ

i)

 = 0,

with Kfull(θ, p) := P(θ)TKfull(p)P(θ) and Mfull(·, p) := P(·)TMfull(p)P(·). The ·
in P(·) indicates, that the angle has no influence.

4.5.2 Nonlinear material

In the simulation with nonlinear material we use the same time stepping scheme as
for the linear material, but in step 2 we have to solve the nonlinear system

P(θi)T (Kfull(u
h,i
dof , θ

i, p) +
1

∆
Mfull)P(θ)T yh,idof

=
1

∆
Mfull(·, p)yh,i−1

dof + P(θ)T bh,i.
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To compute a root of the following function

C̃inonlin(yh,idof ) := P(θi)T (Kfull(u
h,i
dof , θ

i, p) +
1

∆
Mfull)P(θ)T yh,idof

− 1

∆
Mfull(·, p)yh,i−1

dof − P(θ)T bh,i

we use Newton’s method, i.e. we solve in loop (for k = 1, . . . , k∗)

∇C̃inonlin(yh,i,kdof )d = −C̃inonlin(yh,i,kdof )

for d and set yh,i,k+1
dof = yh,i,kdof + d until |C̃inonlin(yh,i,kdof )| is sufficiently small. The

formula for the derivative of the stiffness matrix is given in (4.35). As the first
iterate for Newton’s method, we take the solution of the previous point in time.

4.6 Adjoint and Sensitivity

In our optimization, we use the adjoint and sensitivity approach to compute deriva-
tives, see (6.2). In these approaches we need the derivative of the discrete state
equation C(y, p) with respect to y and p. The derivative with respect to the state
variable is given by

Cy(y, p) =


C1

y1
(y0, y1, p) 0 0 0

C2
y1

(y1, y2, p) C2
y2

(y1, y2, p) 0 0

0 . . . . . . 0

0 0 Ckyk−1
(yk−1, yk, p) Ckyk(yk−1, yk, p)


The two types of blocks are given for linear material

Ciyi(yi, yi−1, p) =
0 0 0 I(∆t)−1

0 0 (∆t)−1 −1

(∆t)−1Mfull(·, p) +Kfull(θ
i, p) 0 ∂θKfull(θ

i, p)yh,idof 0

−∂yMem(uh,idof , θ
i) 1 0 −∂θMem(uh,idof , θ

i)

 (4.36)

83



Chapter 4. Discretization

and

Ciyi−1
(yi, yi−1, u) =


0 −1 0 −I(∆t)−1 − 2βθ̇i−1

0 0 −(∆t)−1 0

−(∆t)−1Mfull(·, p) 0 0 0

0 0 0 0

 .

The derivative of the block Kfull(θ, p) with respect to θ has the form

∂θKfull(θ, p) =


0 PTr K

h
rΓrR

′(θ) 0 0 0

R′(θ)TKh
ΓrrP

T
r R′(θ)TKh

ΓrΓrR(θ) +R(θ)TKh
ΓrΓrR

′(θ) 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 .

(4.37)

The discrete adjoint equation involves the derivative of the objective or constraint
function with respect to the state variable, i.e.

Cy(y, p)Tλh = −fy.

Exploiting the structure of Cy(y, p)T , we can solve for λh with the scheme

(CkyT )Tλh,k = −fyk
(Ck−1

yk−1
)Tλh,k−1 = −fyk−1

− (CTyk−1
)Tλh,k

...

(C1
y1

)Tλh,1 = −fy1 − (C2
y1

)Tλh,2.

In the optimization, we use the width and height of the rotor bars as design
parameters. Since the bars are in the interior of the rotor, the boundary of the rotor
and the full stator is not affected by varying the design parameters, which leads to
the derivative

∂p1(P(θ(t))TKfull(p)P(θ(t)) =


∂p1P

T
r K

h
rr(p)Pr 0 0 ∂p1P

T
r Q

h
r (p) 0

0 0 0 0

0 0 0 0 0

0 0 0 ∂p1
G(p) 0

0 0 0 0 0

,
(4.38)

such that the derivatives with respect to the design do not depend on the rotation
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angle. The derivative of a block is given by

∂p1
Ci(yi, yi−1, p)

=


0

0
1

∆tP(·)T∂p1Mfull(p)P(·)(yh,idof − y
h,i−1
dof ) + P(·)T∂p1Kfull(p)P(·)yh,idof
0

 .
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CHA PTER 5

Reduced Order Models

In our optimzation procedure, we have to solve our PDE various times. To obtain
accurate results, we need a sufficiently fine discretization which leads to a high
amount of degrees of freedom and therefore the system of equations we are dealing
with has a high dimension. As we have to solve our equation for different designs,
the hope is, that by changing the design, the solution trajectory does not change
too much and we can use a low dimensional space to compute solutions in. To do
this, we apply methods from the field of model order reduction.
We will use the Proper Orthogonal Decomposition Method (POD), which has been

successfully used in the context of the optimization and simulation of electrical
machines for example in [52, 56, 15] for synchronous machines. The method has also
been applied in other contexts [13, 44, 55, 62]. Another approach for the reduction
of dimension is for example the reduced basis method, see [46, 49].

5.1 Proper Orthogonal Decomposition

The idea of the proper orthogonal decomposition method (POD) is to approximate
a space spanned by so called snapshots {yi}mi=1 which lie inside a (real) separable
Hilbert spaceW, by an l-dimensional space V l, which is spanned by the orthonormal
basis vectors {ψi}li=1. In the following we will restrict ourselves here to the finite di-
mensional case whereW ⊂ Rn, but the method can be used in more generic settings,
see for example [74]. The basis is computed by solving the following optimization
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problem

min
{ψi}li=1

m∑
j=1

αj‖yj −
l∑
i=1

〈yj , ψi〉W ψi‖2W ,

s.t. 〈ψi, ψj〉W = δij for 1 ≤ i, j ≤ l,

(5.1)

where αj are nonnegative weights, which can be used to emphasize certain snapshots
yj more or less, which is useful, for example if a time stepping scheme with a non-
equidistant timegrid was used to generate the snapshots and

δij :=

{
1, if i = j,

0, otherwise.

is the Kronecker delta. The norm ‖ · ‖W = 〈·, ·〉1/2W of W is induced by its inner
product 〈ψi, ψj〉W = ψTi Wψj with a given matrix W ∈ Rn×n, which needs to be
symmetric and positive definite. Note that we can find an orthonormal basis V of
Rn with W = V DV T and D is a n-dimensional diagonal matrix. We can then use
the matrix D1/2 which has the elements

√
Dii as diagonal elements and define the

square root of W as W 1/2 = V D1/2V T . Note that

(W 1/2)2 = V D1/2V TV D1/2V T = V D1/2D1/2V T = V DV T = W

and that W 1/2 is symmetric positive definite aswell. As our time stepping scheme
has an equidistant grid, we will set the αi’s to 1 in the following.
Using the bilinearity and the homogenity of the inner product, one can reformulate

the objective funtion of (5.1) in the following way:

‖yj −
l∑
i=1

〈yj , ψi〉W ψi‖2W = 〈yj −
l∑
i=1

〈yj , ψi〉W ψi, yj −
l∑
i=1

〈yj , ψi〉W ψi〉W

= ‖yj‖2W − 2〈yj ,
l∑
i=1

〈yj , ψi〉W ψi〉W + 〈
l∑
i=1

〈yj , ψi〉W ψi,

l∑
k=1

〈yj , ψk〉W ψk〉W

= ‖yj‖2W − 2

l∑
i=1

〈yj , ψi〉2W +

l∑
i=1

l∑
k=1

〈yj , ψi〉W 〈yj , ψk〉W 〈ψi, ψk〉W

= ‖yj‖2W −
l∑
i=1

〈yj , ψi〉2W

where we have used, that the ψi are W-orthogonal. This shows that instead of
minimizing ‖yj −

∑l
i=1 〈yj , ψi〉W ψi‖2W one can maximize

∑l
i=1 〈yj , ψi〉

2
W . The La-
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grangian for the maximization problem

max
{ψi}li=1

m∑
j=1

l∑
i=1

〈yj , ψi〉2W , s.t. 〈ψi, ψj〉W = δij for 1 ≤ i, j ≤ l

can be written as

L(ψ1, . . . , ψl,Λ) =

m∑
j=1

l∑
i=1

〈yj , ψi〉2W +

l∑
i,j=1

λij(δij − 〈ψi, ψj〉W).

The first-order necessary optimality conditions for (5.1) are now given by requiring
that the partial derivatives of the Lagrangian L vanish, which is used to proof the
following Theorem.

Theorem 5.1 ([82], Theorem 1.3.2).
Let Y = [y1, . . . , ym] ∈ Rn×m be a given matrix with rank d ≤ min{m,n}, W a sym-
metric, positive definite matrix, Ȳ = W 1/2Y . Further, let Ȳ = Ψ̄ΣΦ̄T be the singu-
lar value decomposition of Ȳ , where Ψ̄ = [ψ̄1, . . . , ψ̄n] ∈ Rn×n, Φ̄ = [φ̄1, . . . , φ̄m] ∈
Rm×m are orthogonal matrices and the matrix Σ ∈ Rn×m has the form

Ψ̄T Ȳ Φ̄ =

(
D 0

0 0

)
= Σ ∈ Rn×n.

Then for any l ∈ {1, . . . , d} the solution to (5.1) is given by the vectors

ψi = W−1/2ψ̄i, i = 1, . . . , l.

Proof. See for example [82].

When given a set of snaptshots Y , we assume that at least one of the snapshots
is different from zero, such that the dimension of span{yi : i = 1, . . . ,m} is greater
or equal to 1. There are different ways to compute a POD basis. These different
approaches are favorable depending on the dimensions m and n. We can solve the
eigenvalue problem

Ȳ Ȳ T ψ̄i = λiψ̄i, 1 ≤ i ≤ l

and set ψi = W−1/2ψ̄i, i = 1, . . . , l. In this case, the eigenvalue problem which has
to be solved is of dimension n. Another way to compute a basis is to compute the
solution of

Ȳ T Ȳ φ̄i = λiφ̄i, 1 ≤ i ≤ l.

We can then use the knowledge of the svd Ȳ = ŪΣV̄ T and Ȳ T Ȳ = V̄ Σ2V̄ T to
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compute ψ̄i = Ȳ 1√
λi
φ̄i, i = 1, . . . , l, such that the basis vectors are given by

ψi = W−1/2ψ̄i = W−1/2Ȳ
1√
λi
φ̄i = Y

1√
λi
φ̄i, i = 1, . . . , l,

i.e. W 1/2 does not need to be computed. The eigenvalue problem which has to be
solved is of dimension m. The third approach to compute the POD basis uses the
singular value decomposition of Ȳ , i.e.

Ȳ = Ψ̄ΣΦ̄T .

Again, we set ψi = W−1/2ψ̄i, i = 1, . . . , l.
In the following we will set V =

(
ψ1 . . . ψl

)
. The projection of a vector y ∈ Rn

onto the POD space is given by

yl =

l∑
i=1

〈y, ψi〉Wψi =

l∑
i=1

yTWψiψi = V V TWy.

An important quantity for the computed reduced basis is the energy

ε(`) :=

∑`
i=1 λi∑n
i=1 λi

∈ [0, 1]

which sets the l largest eigenvalues into relation to all existing ones. A value ε(`)
of 1 implies, that we captured all the information that is stored in the span of the
snapshots within our reduced basis. Therefore in our numerics we will use lower
bounds for ε(`) close to one.
In our numerics, instead of using W 1/2, we use LT , where W = LLT and the

matrix Ŷ = LTY .

5.1.1 POD for induction machines

In this section we describe how we use the proper orthogonal decomposition method
introduced in the previous one in the simulation of an asynchronous machine. In the
numerical simulation and optimization of an induction machine, the state variable
with the largest dimension is the magnetic vector potential, which has the dimension
of the finite element state space (4.13). We therefore want to reduce this space.
Using POD for the induction machine, we have to make sure, that we are still able
to perform the interface coupling for different rotor positions.
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State variable

Since the different parts of the machine have different behavior, for example the sta-
tor being static, the rotor rotating, and the rotor bars having parabolic behavior, we
will compute individual reduced order models for different subregions. Specifically
we subdivide the domain into 13 parts (separated by commata): the stator without
the airgap, the rotor without the bars and without the airgap, the bars, the airgap.
We apply POD to the magnetic vector potential (MVP) solution on the subdomains
individually, i.e. we compute a basis for each of the rotor bars, for rest of the rotor
and the stator part. We leave the airgap at full resolution. We do this, since then we
are still able to compute the coupling of rotor and stator the same way as we are in
the unreduced model. Since the objective function in our optimization (see chapter
7) – the Joule losses in the rotor bars – depend on the magnetic vector potential in
the rotor bars and the torque function depends on the magnetic vector potential in
the airgap, with this approach we obtain good approximations of our quantities of
interest.
We define the following nodal index sets

Ns,dof ,Nr,dof−b,Nb1 , . . . ,Nb10 ,NΓs ,

where the union of the sets is the set of the indices of the FE nodes which are
degrees of freedom. Nr,dof−b is the subset of indices of Nr,dof where the indices of
the nodes located in the rotor bars are taken out. Nbi contains the indices of the
nodes contained in rotor bar i for i = 1, . . . , 10.
Since a magnetic vector potential snapshot restricted to a subdomain Ωsub ⊆ Ωh

with Ωsub ∩ ∂Ωh = ∅ lies in a finite dimensional subspace of H1(Ωsub), we use the
weighting matrix W = P(0)T (M1 +K1)P(0) ∈ Rndof×ndof by choosing the columns
and rows of the index sets Ns,dof ,Nr,dof−b,Nb1 , . . . ,Nb10

,NΓs . The matrices M1

and K1 are the mass and stiffness matrix computed for σ = ν = 1. We do not need
to pay attention to the angle θ in the projection, since the columns and rows which
are affected by changing θ are not used in any weighting, since the airgap is not
reduced. Using POD, we obtain 12 W-orthonormal basis

Ψs := {ψs1, . . . , ψsls},
Ψr−b := {ψr−b1 , . . . , ψr−blr−b

},

Ψb1 := {ψb11 , . . . , ψ
b1
lb1
},

...

Ψb10
:= {ψb10

1 , . . . , ψb10

lb10
},
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with their individual dimensions ls, lr, lb1 , . . . , lb10 . The dimension of the combined
ROM is

l = ls + lr + lb1 + · · ·+ lb10
.

Setting
Vs :=

(
ψs1 · · · ψsls

)
∈ R|Ns,dof |×ls ,

and equivalently for the other basis, we obtain

Vs, Vr−b, Vb1 , . . . , Vb10
.

We will combine Vr−b and Vb1 , . . . , Vb10 to Vr+b ∈ Rnr,dof×lr−b+lb1+...+lb10 by

Vr+b(Nr−b(i), j) = Vr−b(i, j), i = 1, . . . , |Nr−b|, j = 1, . . . , lr−b

and

Vr+b(Nb1(i), j + lr−b) = Vb1(i, j), i = 1, . . . , |Nb1 |, j = 1, . . . , lb1

Vr+b(Nb2(i), j + lr−b + lb1) = Vb2(i, j), i = 1, . . . , |Nb2 |, j = 1, . . . , lb2

...

Vr+b(Nb10(i), j + lr−b + lb1 + . . .+ lb9) = Vb10(i, j), i = 1, . . . , |Nb10 |, j = 1, . . . , lb10 .

and then collect the Nr,dof (nonzero) rows Vr−b, since the sets Nr−b,Nb1 , . . . ,Nb10

contain nodal indices and not dof indices we first obtain a matrix on rotor nodal
dimension of nr.
When we have computed the reduced basis for the individual parts, we can use

an Galerkin ansatz and project our state system onto this low dimensional space via
the matrix

V =


Vr+b 0 0 0 0

0 I 0 0 0

0 0 Vs 0 0

0 0 0 I 0

0 0 0 0 I

 ∈ Rndof+nϕ+ni×l+nsΓ+nϕ+ni

Again we define a projector for the MVP

Vu =

Vr+b 0 0

0 I 0

0 0 Vs

 ∈ Rndof×l+n
s
Γ .
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Setting
PV (θ) := P(θ)V and PVu (θ) := Pu(θ)Vu

we can define the POD space as

V lθ :=

{(
nr∑
i=1

uhiN
i(x),

ns+nr∑
i=nr+1

uhiN
i(x)

)
∈ H1(Ωhr )×H1(Ωhs )

: uh = PVu (θ)ul, ul ∈ Rl+n
s
Γ

}
.

(5.2)

We denote the POD approximation of the magnetic vector potential evaluated at
timepoint ti ul,i ∈ Rl+nsΓ . The field/circuit equations for timestep i on ROM level
are given by

1

∆t
PV (θi)TMfullPV (θi)(yl,i − yl,i−1) + PV (θi)TKfullPV (θi)yl,i − PV (θi)T bh,i,

where yl,i = (ul,i, ϕi, iist)
T . The projected Kfull matrix is given by

PV (θ)TKfullPV (θ) =
V Tr+bP

T
r K

h
rrPrVr+b V Tr+bP

T
r K

h
rΓrR(θ) 0 V Tr+bP

T
r Q

h
r 0

R(θ)TKh
ΓrrPrVr+b R(θ)TKh

ΓrΓrR(θ) +Kh
ΓsΓs Kh

ΓssPs 0 0

0 V Ts P
T
s K

h
sΓs V Ts P

T
s K

h
ssPsVs 0 Xh

s PsVs
0 0 0 G 0

0 0 0 Rst


(5.3)

We see that only 3 entries depend on the angle θ, where two are the same when
transposed such that we can precompute most of the matrices.
The torque in ROM is computed by

M l
em(ul, θ) = −`zr(ulb+r)TV Tr+bPTr KT

ΓrrSR̃(θ)uhΓs − `zr(uhΓs)T R̃(θ)TKT
ΓrΓrSR̃(θ)uhΓs

and the equation of motion is not affected by the reduction of the magnetic vector
potential.
To solve the state equation on the ROM level, the initial values need to be pro-

jected onto the ROM space
ul0 = V TWP(0)uh0 .

If we want to run an optimization and not just solve the state equation, we also
need to consider, that the derivatives need to be approixmated well in the reduced
space. Therefore in the optimization, we also compute POD approximation spaces
for the adjoint and sensitivity.
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Adjoint and Sensitivities

Since we are using the adjoint state and sensitivties in our robust optimization
(see 6.2) we reduce the adjoint and sensitivity space aswell. We make the same
distribution of the region as for the state variable and we use the same procedure
as for the state variable to compute bases for the adjoint state and the sensitivity,
such that we obtain the matrices

V λs , V
λ
r−b, V

λ
b1 , . . . , V

λ
b10
,

which contain the basis vectors for the reduced adjoint space and have column
dimension lλs , lλr−b, l

λ
b1
, . . . , lλb10

and

V yps , V
yp
r−b, V

yp
b1
, . . . , V

yp
b10
,

which contain the basis vectors for the sensitivities and have column dimension
l
yp
s , l

yp
r−b, l

yp
b1
, . . . , l

yp
b10

. We then use an orthogonalization procedure on the columns
of (

Vs, V
λ
s , V

yp
s

)
,(

Vr−b, V
λ
r−b, V

yp
r−b
)
,(

Vb1 , V
λ
b1
, V

yp
b1

)
,

...(
Vb10

, V λb10
, V

yp
b10

)
,

to obtain the combined basis (this means linear dependent vectors get removed
during orthogonalization)

V cs , V
c
r−b, V

c
b1 , . . . , V

c
b10
,

with dimension lcs ≤ ls + lλs + l
yp
s (analogous for the other basis), where we have

equality if the basis vectors for state, adjoint and sensitivity are linear independent.
We then use V cs , V cr−b, V

c
b1
, . . . , V cb10

as a basis for the state variable, adjoint state
and the sensitivity. In our numerics we use the orth function of Matlab, which
orthogonalizes a set of vectors with respect to the Euclidean inner product, therefore
we lose W orthogonality in the procedure, but the span of the orthogonalized basis
stays the same.
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5.2 Nonlinearities

When we are using nonlinear material, the stiffness matrix depends on the magnetic
vector potential. If we use the POD ansatz from the previous section we have the
term

PVu (θ)TKh(PVu (θ)ul,i)PVu (θ)ul,i

in the state equation. To evaluate the term, we need to project the POD dimensional
vector ul,i to finite element dimension, then evaluate the nonlinear material ν(|∇uhf |)
for every triangle, then solve the integrals to obtain the stiffness matrix in FEM
dimension and project the matrix back to the POD dimension. Hence, this is not
efficient. To overcome this inefficiency we use the Discrete Interpolation Method
(DEIM), see [22, 38]. Since the domain of the induction machine has subregions with
linear and nonlinear material, we can split the stiffness matrix into a linear (denoted
Klin) and a nonlinear (denotedKnonlin) part. As the airgap in the induction machine
is air, which does not depend on the state variable and the rotor and stator coupling
acts on the nodes in the airgap, only the linear part depends on the angle θ and we
have on the dof level

Pu(θ)TKh(Pu(θ)uhdof )Pu(θ) = Klin(θ) +Knonlin(uhdof ), (5.4)

where

Klin(θ) := Pu(θ)TKlinPu(θ) and Knonlin(uhdof ) := Pu(·)TK(Pu(·)uhdof )Pu(·)

here (·) denotes that the input has no influence.
We define (note ul = V Tu u

h
dof )

F (Vuu
l) := Knonlin(Vuu

l)Vuu
l,

such that
F : Rndof → Rndof .

The idea behind the method is to approximate the nonlinearity

F (x) ≈Wc(x), (5.5)

where the matrix W ∈ Rndof×ndeim contains linear independent columns, denoted
wi and c : Rndof → Rndeim . To obtain the matrixW one can use nonlinear snapshots
Fi = F (xi), i = 1, . . . , k and use the POD method to compute an orthonormal basis
which approximates the space spanned by the nonlinear snapshots. The Fi’s can
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be collected during the solve of the state equation on the FE level. The system
(5.5) is overdetermined, since we want to achieve a reduction of dimension with the
POD approach, hence ndeim < ndof . The idea to solve the overdetermined system
is to choose ndeim rows of W , such that Wndeim,: is invertible. We define a selection
operator PT ∈ Rndeim×ndof which selects chosen ndeim rows. Then the problem

PTF (x) = PTWc(x),

can be solved for c(x) by

c(x) = (PTW )−1PTF (x).

Inserting the computed c(x) into the ansatz

F (x) ≈W (PTW )−1PTF (x) =: F̃ (x),

we see, that since the selection operator PT chooses rows, by PTF (x) we just need
to compute ndeim rows of F (x). Note that at rows, which are selected by PT , the
approximation is exact

PT F̃ (x) = PTW (PTW )−1PTF (x) = PTF (x),

such that the values of non chosen rows are interpolated by the evaluation of the
chosen rows. As suggested in [22] the interpolation indices can be chosen by the
greedy Algorithm 5.1. As a first step, the algorithm picks the index of the first basis
vector with the largest absolute value. Then iteratively the next basis vectors are
interpolated with the current basis and the current interpolation set and the index
of the largest absolute value of the residual is picked as interpolation index (and the
basis vector is added to the current basis).

Algorithm 5.1 Greedy DEIM selection

Input: {wi}ndeimi=1 ⊂ Rndof linearly independent
Output: PT ∈ Rndeim×ndof
1: [∼, p1]← max{|w1|}
2: W ← [w1], P ← [ep1 ], p← [p1]
3: for i = 2 to ndeim do
4: Solve PTWc = PTwi for c ∈ Ri−1

5: r = wi −Wc
6: [∼, pi] = max{|r|}
7: W ← [W wi], P ← [P epi ], p← [p pi]

There are two errors introduced by approximating the nonlinear function with
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DEIM. The first one lies in the choice of the basis W and the second one lies in
the selection of the interpolation indices. In [22] the error is analyzed when using
Algorithm 5.1. The solution of

min
c(x)∈Rndeim

‖F (x)−Wc(x)‖22

is given by the solution of the normal equation

WTWc(x) = WTF (x),

which is equal to
c(x) = WTF (x),

if the basis W is orthonormal, i.e. WTW = I, such that F (x) ≈WWTF (x). Thus

‖(I −WWT )F (x)‖

is the error of the best 2-norm approximation. The total error is given by

‖F (x)− PT (PTW )−1F (x)‖ ≤ ‖(PTW )−1‖ · ‖(I −WWT )F (x)‖.

Choosing the interpolation indices with Algorithm 5.1 leads to

‖(PTW )−1‖ ≤
(1 +

√
2(ndof ))ndeim−1

|eTp1
w1|

= (1 +
√

2(ndof ))ndeim−1‖w1‖−1
∞ .

To improve the performance of DEIM, we use a reformulation of our nonlinearity

Knonlin(uhdof )uhdof = Knonlin(ū)ū+ dKnonlin(ū)(uhdof − ū) +R(uhdof ),

where dKnonlin(ū) is the derivative of Knonlin(ū)ū and ū ∈ Rndof is a prechosen
expansion point. In our simulation, we choose ū as the first unit eigenvector of
FFT , scaled by the average length

∑k
i=1 ‖Fi‖/k, where F contains the collected

nonlinear snapshots as columns Fi. We compute

R(uh,jdof ) = Knonlin(uh,jdof )uh,jdof −Knonlin(ū)ū− dKnonlin(ū)(uh,jdof − ū), j = 1, . . . , k

and use POD on the set {R(uh,jdof ) : j = 1, . . . , k} to construct W with orthonormal
columns. We define

Kū := (Knonlin(ū)− dKnonlin(ū))ū
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and
R̂(uh,jdof ) := W (PTW )−1PTR(uh,jdof ),

with PT being a row selector. The stiffness term (5.4) can then be approximated
on ROM level by

V TKlin(θ)V ul + V T R̂(PVu (θ)ul) + V TKū + V T dKnonlin(ū)PVu (θ)ul.

and the jacobian

V TKlin(θ)V + V T R̂′(PVu (θ)ul)PVu (θ) + V T dKnonlin(ū)PVu (θ),

where
R̂′(uhdof ) := W (PTW )−1PTR′(uhdof ) and

R′(uhdof ) = dKnonlin(uhdof )− dKnonlin(ū).
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CHA PTER 6

Robust Optimization

This chapter deals with the topic of robust optimization. In many real applications
there are parameters whose exact value is unknown or uncertain. For example, in
the production of an electric motor, only certain manufacturing tolerances can be
maintained, parts can be deformed under load during use, or materials do not behave
the same at different temperatures. There are different techniques to approach un-
certainty. One can choose a stochastic approach where one needs to have knowledge
about the underlying probability distribution and then optimize for example the
expecation value, the standard deviation or some risk measures [65, 54]. Recently
an approximation scheme to solve distributionally robust optimization problems for
NLPs [59] and PDE constrained optimization [60] was introduced, where in the un-
derlying problem one deals with uncertain probability distributions and wants to
minimize the worst-case of the expectation value. The focus in this thesis is on
robust optimization where the uncertainties are treated with a worst-case approach,
[9, 12, 78]. In this approach, we assume that the uncertainties lie in a bounded set,
called the uncertainty set, which we know. We then solve the uncertain optimiza-
tion problem in such a way that in the optimum we have the best possible (over
the optimization variable) worst-case (over the uncertainty). We require that the
constraints are satisfied for all parameters in the uncertainty set. The described
optimization problem is called the robust counterpart and will be introduced in this
chapter. The methods described in the following have been applied to synchronous
machines [56, 14, 52] and to the robust optimization of trusses [51, 52].
To describe the robust optimization method we are using, we introduce the fol-
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lowing optimization problem

min
y,µ

F 0(y, µ, p)

s.t. F i(y, µ, p) ≤ 0, for i ∈ I
e(y, µ, p) = 0.

(6.1)

This optimization problem involves an optimization or design variable µ ∈ U , a
state variable y ∈ Y and an uncertain parameter p ∈ P , where the parameter
space P ⊆ Rnp is finite-dimensional and Y and U are reflexive Banach spaces.
The objective function F 0 : Y × U × P → R is to be minimized. The mapping
e : Y × U × P → Z, where Z is a Banach space describes a physical behavior and
sets the design µ, the uncertainty p and the state y into relation. F i : Y ×U×P → R
with i ∈ I, where I ⊆ {1, 2, . . . , |I|}, denote the inequality constraint functions. We
assume that all involved functions F i for i ∈ {0}∪ I are continuously differentiable.
We assume, that the state equation e(y, µ, p) = 0 has a unique solution y ∈ Y

for every µ ∈ U and p ∈ P . This can be guaranteed for example by the implicit
function theorem, which would require that e(y, µ, p) is continuously differentiable,
that for every (µ, p) ∈ U × P there is a unique y ∈ Y with e(y, µ, p) = 0 and, that
the Jacobian ey(y, µ, p) is invertible in e(y, µ, p) = 0. Then there exists a mapping
y : U×P → Y with e(y(µ, p), µ, p) = 0 and we can then define the reduced functions
f i : U × P → R by

f i(µ, p) = F i(y(µ, p), µ, p).

This lets us formally eliminate the state variable y from the optimization problem
and we obtain the optimization problem in reduced form.

min
u
f0(µ, p) s.t. f i(µ, p) ≤ 0, i ∈ I.

We further assume, that the uncertain parameter p lies in a set U ⊆ P which is a
comptact set that can be described by

U = {p ∈ Rnp : ‖p− p̄‖B ≤ 1}, (6.2)

where B is a symmetric positive definite matrix with the Cholesky decomposition
B = LLT and

‖u‖2B = uTBu = uTLLTu = ‖LTu‖22, (6.3)

and p̄ ∈ Rnp is the so called nominal parameter. Note that the uncertainty set in
(6.2) is an ellipsoidal with the center p̄. We address the uncertainty by a robust
worst-case approach, which means, we need our constraints to be fulfilled for every
p ∈ U and we want to find the design µ which minimizes the worst-case (over U)
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of the objective function. We define the robust counterpart [9, 10] of the problem
(6.1) as

min
µ

max
p∈U

f0(µ, p)

s.t. f i(µ, p) ≤ 0, ∀p ∈ U for i ∈ I
(6.4)

which is equivalent to

min
µ

max
p∈U

f0(µ, p)

s.t. max
p∈U

f i(µ, p) ≤ 0, for i ∈ I (6.5)

This problem is of bi-level structure and therefore difficult to solve, since the f i

can be nonlinear and nonconvex and are therefore nontractable and it cannot be
guaranteed to find the global maximum. A way to takle the bi-level problems is to
use approximations of the involved functions f i for example by Taylor expansion or
interpolation models which can be solved to global optimality over the uncertainty
set.

6.1 Derivative based approximations

A way to approximate the objective and constraint functions is by Taylor polyno-
mials with respect to the uncertain parameter. As the error of the approximation
depends on the distance to the expansion point, smaller uncertainty sets lead to bet-
ter approximations. To compute the model, we need the underlying functions f i to
be sufficiently smooth. For the first order model, the maximum over the uncertain
set can be given explicitly and in the case of a quadratic model, the resulting inner
maximization problems are the well known trust region subproblem.

6.1.1 First Order

The linear Taylor expansion of a functions f i around the nominal parameter p̄ is
defined by

f il (µ, pi) := f i(µ, p̄) +∇pf i(µ, p̄) · (pi − p̄). (6.6)

Here · : P × P denotes the usual Euclidean inner product in Rnp . In the linear
approximation (6.6), only the second summand depends on the uncertain parameter
and has to be maximized over the uncertain set U . Introducing the deviation δ from
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the nominal parameter p̄, we can write

U = {p : ‖p− p̄‖B ≤ 1} = {p̄+ δ : ‖δ‖B ≤ 1}

which leads to the inner maximization problem in (6.5)

max
‖δi‖B≤1

f il (µ, δi) = max
‖δi‖B≤1

(f i(µ, p̄) +∇pf i(µ, p̄) · δi)

= f i(µ, p̄) + max
‖δi‖B≤1

∇pf i(µ, p̄) · δi.

The maximum can be characterized using the dual norm

max
‖δi‖B≤1

f il (µ, δi) = f i(µ, p̄) + ‖∇pf i(µ, p̄)‖B∗ .

This follows directly from the definition of the dual norm

‖z‖B∗ = max
‖y‖B≤1

|z · y|
‖y‖B

. (6.7)

In our case we have (6.3) and the dual norm is given by

‖z‖B∗ = ‖L−1z‖2,

which can be seen by using choosing x = LT y and applying the Cauchy Schwarz
inequality in (6.7). The linear approximation of the robust counterpart is given by

min
µ

f0(µ, p̄) + ‖∇pf0(µ, p̄)‖B∗

s.t. f i(µ, p̄) + ‖∇pf i(µ, p̄)‖B∗ ≤ 0, for i ∈ I.
(6.8)

Since the norm is non differentiable in 0, the objective and constraint functions are
nonsmooth. There are smooth reformulations involving slack variables, when the
norm to describe the uncertainty set is chosen as ‖LT · ‖1 or ‖LT · ‖∞, see [37, 78].
Since we are using the Euclidean norm, we will use an optimization solver which
can handle non smoothness and uses a technique similiar to gradient sampling, see
[29].

6.1.2 Second Order

If the f i’s are highly nonlinear, the first order expansion might lead to a bad ap-
proximation of the worst-case, which can result in a non robust solution, if the
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worst-case is underestimated, or in an infeasible problem, when the worst-case is
overestimated, such that the use of higher order models is suggested. We introduce
the quadratic approximation

f iq(µ, δi) := f i(µ, p̄) +∇pf i(µ, p̄) · δi +
1

2
(∇ppf i(µ, p̄)δi) · δi. (6.9)

The quadratic approximation of the robust counterpart is given by

min
µ

max
δ0∈U

f0(µ, p̄) +∇pf0(µ, p̄) · δ0 + 1
2 (∇ppf i(µ, p̄)δ0) · δ0

s.t. max
δi∈U

f i(µ, p̄) +∇pf i(µ, p̄) · δi + 1
2 (∇ppf i(µ, p̄)δi) · δi ≤ 0, for i ∈ I

(6.10)
The solution to the inner maximization problems in (6.10) cannot be written in a
closed form, but denoting

g̃i := L−1∇pf i(µ, p̄) and H̃i := L−1∇ppf i(µ, p̄)L−T ,

and choosing
δ̃i = LT δi, (6.11)

we can write the inner maximization problems as

max
‖δ̃i‖2≤1

g̃i · δ̃i +
1

2
(H̃iδ̃i) · δ̃i, (6.12)

where problems of these type are known as trust region subproblems (TRS). Note
that by the transformation (6.11), the maximum value does not change, but we
have to transform the solution δ̃i back to δi. (TRS) problems are well studied and
solutions can be characterized.

Theorem 6.1 (TRS solution, [56] Theorem 6.1).
Let H̃i be a symmetric matrix. Then the trust region problem (6.12) possesses at
least one global solution. Moreover, δ̃i is a global solution if and only if there exists
a Lagrange multiplier λi ∈ R such that

(−H̃i + λiI)δ̃i − g̃i = 0,

λi(‖δ̃i‖2 − 1) = 0,

‖δ̃i‖2 ≤ 1,

λi ≥ 0,

H̃i − λiI 4 0,

(6.13)
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where H̃i − λiI 4 0 denotes that the matrix H̃i − λiI is negative semidefinite and I
is the identity matrix.

Proof. See for example [26].

There are different ways of approaching the quadratic approximation (6.10) of the
robust counterpart. In [56] and [78] the optimality conditions (6.13) are added as
constraints to the problem (6.10) to obtain a mathematical programm with comple-
mentarity constraints MPCC. We will use a different approach involving non-smooth
objective and constraint functions, which was introduced in [52]. Defining the worst-
case functions

φi(µ) := max
δi∈U

f i(µ, p̄) +∇pf i(µ, p̄) · δi +
1

2
(∇ppf i(µ, p̄)δi) · δi,

we can write the quadratic approximation (6.10) of the robust counterpart as

min
µ

φ0(µ)

s.t. φi(µ) ≤ 0, for i ∈ I.
(6.14)

In the next section, we will present properties of the worst-case functions φi(µ).

6.1.3 Properties of worst-case functions

Functions involving max are in general not smooth, therefore the worst-case function
φi(µ) are in general not smooth. But under some condition they are regular in the
sense of Clarke. We introduce the notation of the directional derivative and the
generalized (or Clarke’s) directional derivative which was introduced by Clarke in
[25], since they are used in the subsequent Theorem 6.4. We start with the definition
of the directional derivative.

Definition 6.2 (Directional derivative). The directional derivative of f : X → R at
x ∈ X in direction v ∈ X is

f ′(x; v) = lim
t↘0

f(x+ tv)− f(x)

t
,

if the limit exists.

Accordingly we define the generalized directional derivative and the generalized
gradient.
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Definition 6.3. Let f : D ⊆ U → R be a locally Lipschitz-continuous function.
1. The generalized directional derivative of f at µ ∈ D in the direction v ∈ U is

defined as

f◦(µ; v) = lim sup
y→µ
t↘0

f(y + tv)− f(y)

t
,

where y + tv ∈ U and t > 0.
2. The generalized gradient or subdifferential of f at µ ∈ D, denoted by ∂f(µ),

is the multifunction ∂f : U ⇒ U

∂f(µ) = {g ∈ U : f◦(µ; v) ≥ 〈v, g〉 for all v ∈ U}.

An element g ∈ ∂f(µ) is called subgradient of f at µ.

Under the assumptions of the following theorem, the worst-case functions φi(µ)

are regular in the sense of Clarke.

Theorem 6.4 ([51] Theorem 2.25).
Consider the function φ(µ) = max‖p‖≤1 f(µ, p) with f : U × P → R. Suppose
1. f is locally Lipschitz continuous in (µ, p).
2. f◦µ(µ, p; v) = f ′µ(µ, p; v) for all v ∈ U .

Then, the following holds for the worst-case function φ:
1. φ is locally Lipschitz continuous.
2. φ is regular, i.e., φ′(µ; v) exists and φ′(µ; v) = φ◦(µ; v) for all v ∈ U .
3. The directional derivatives are

φ′(µ; v) = φ◦(µ; v) = max{〈g, v〉 : g ∈ ∂µf(µ, p), p ∈W (µ)},

where the set
W (µ) := {p ∈ U : φi(µ) = f(µ, p)},

contains the maximizers p ∈ U of the functions f(µ, p).
4. The subdifferential is given by

∂φ(µ) = conv{∂µf(µ, p) : p ∈W (µ)}.

When we assume that the objective and constraint functions are smooth enough,
then the first and second assumption of the theorem are fulfilled, since differen-
tiable functions are locally Lipschitz continuous and for differentiable functions the
generalized gradient coincides with the gradient.
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As we have seen in the theorem, if the set of maximizers W (µ) is a singleton,
then the worst-case functions are differentiable. Since in our case, the worst-case
functions are the trust region problems, we see in the next lemma when the solution
to the TRS is unique, i.e. the worst-case functions are differentiable.

Lemma 6.5 ([51] Lemma 3.13).
Let λi ≥ 0 be the unique Lagrange multiplier at global maximizers of problem (6.12).
Then one of the following two cases holds:

1. If λi is greater than the maximum eigenvalue of H̃i, there is a unique solution
given by

δ̃i = (−H̃i + λiI)−1g̃i.

2. Otherwise, λi is equal to the maximum eigenvalue of H̃i, and the solution set
is given by

W = {δ̃i = δ̃∗i + Y τ : τ ∈ Rm, δ̃Ti δ̃i ≤ 1, λi(δ̃
T
i δ̃i − 1) = 0},

where m is the dimension of the null space of H̃i − λiI, and Y is a n × m
matrix whose columns form an orthogonal basis of that null space. Let δ̃∗i =

(−H̃i + λiI)†g̃i be the least-norm solution of the stationarity equation, where
† denotes the Moore-Penrose pseudoinverse. Then one of the following two
cases holds:
a) The least-norm solution lies on the boundary, i.e., ‖δ̃∗i ‖ = 1. In this case,

the solution set W is a singleton with W = {δ̃∗i }.
b) The least-norm solution lies in the interior, i.e., ‖δ̃∗i ‖ < 1. If H̃i is

not negative semidefinite because of λi > 0 and λi is equal to the largest
eigenvalue of H̃i, the solution set is an (m− 1)-dimensional sphere, and
if H̃i is negative semidefinite due to λi = 0, the solution set is an m-
dimensional ball.

In the literature, the case where the solution to the TRS problem is non-unique
is known as the trust region hard case.

6.1.4 Shifting expansion point

If the approximated worst-case is not close to the nominal parameter, the approxi-
mated worst-case value might deviate from the true function value, which can lead
to infeasible problems or non-robust solutions. To improve the approximation of
the worst-case and the corresponding worst-case value, one has the freedom to shift
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the expansion point in the quadratic model. Since we want to shift the expansion
point, but keep the uncertainty set the same, we introduce a new parameter δe with
p̄+ δe ∈ U and expand the quadratic model in the point p̄+ δe

f ie(µ, p̄, δ
i
e, p) :=f i(µ, p̄+ δie) +∇pf i(µ, p̄+ δie) · (p− (p̄+ δie))

+
1

2
(∇ppf i(µ, p̄+ δie)(p− (p̄+ δie))) · (p− (p̄+ δie)),

where p ∈ U . By again, defining the deviation of the nominal parameter as δ, we
have p− (p̄+ δe) = p− p̄− δe = δ − δe and

f ie(µ, p̄, δ
i
e, δi) = f i(µ, p̄+ δie) +∇pf i(µ, p̄+ δie) · δi −∇pf i(µ, p̄+ δie) · δie

+
1

2
(∇ppf i(µ, p̄+ δie)δi) · δi +

1

2
(∇ppf i(µ, p̄+ δie)δ

i
e) · δie − (∇ppf i(µ, p̄+ δie)δ

i
e) · δi

Defining

ci(µ, p̄, δie) := f i(µ, p̄+ δie)−∇pf i(µ, p̄+ δie) · δie +
1

2
(∇ppf i(µ, p̄+ δie)δ

i
e) · δie,

gi(µ, p̄, δie) := ∇pf i(µ, p̄+ δie)− (∇ppf i(µ, p̄+ δie)δ
i
e),

we can write

f ie(µ, p̄, δ
i
e, δi) = ci(µ, p̄, δie) + gi(µ, p̄, δie) · δi +

1

2
(∇ppf i(µ, p̄+ δie)δi) · δi,

which is again a quadratic function in δi. We then obtain the quadratic approxima-
tion of the robust counterpart with shifted expansion point

min
µ

max
δ0∈U

f0
e (µ, p̄, δ0

e , δ0)

s.t. max
δi∈U

f ie(µ, p̄, δ
i
e, δi) ≤ 0, for i ∈ I. (6.15)

We incorporate the shifting of the expansion point into our optimization in the
following way: We start with the nominal parameter as expansion point for all the
f i. We then set up the quadratic model and compute the worst-case disturbance δ̄i.
We then compute f i(µ, p̄ + δ̄i) and compare it to f iq(µ, δ̄i) (which requires to solve
the state equation), if the difference exceeds a given threshold, we perform some
steps of a global convergent optimization algorithm for maxp∈U f

i(µ, p) to obtain p∗i
and use it as the new expansion point for f i. Note that this can be done for every
of the f i and when different expansion points for each of the involved functions are
used, we have to solve the state equation and the sensitivity equation for different
uncertain parameters to obtain y(µ, p∗i ) and yp(µ, p∗i ) which is quite expensive.
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6.2 Computation of Derivatives

In order to set up the model, one does need to compute derivatives of the reduced
functions f i which depend implicitly on the solution operator of the state equation.
For the first order derivative there are two approaches: the adjoint method und the
sensitivity method. In the adjoint method an additional linearized state equation
has to be solved backwards in time, where the right hand side involves the derivatives
of the F i(y, µ, p) with respect to the state variables. In the sensitivity approach a
linearized state equation has to be solved np times. In the following, subscripts will
denote partial derivatives, i.e. Fy(y, µ, p) = ∂yF (y, µ, p).

6.2.1 Adjoint approach

To construct the first and second order Taylor expansion, we need the first order
derivative of the reduced objective functions f i with respect to the uncertainty p.
To compute a descent direction in the optimization, we need a derivative of the term
f i(µ, p̄) with respect to the design µ in the robust and non-robust optimization. We
follow here [47]. Recall that the reduced functions are defined as (dropping here the
index i for readability)

f(µ, p) := F (y(µ, p), µ, p),

where y(µ, p̄) is the solution of the state equation for given design µ and nominal
uncertain parameter p̄. Derivatives of f(µ, p̄) with respect to µ in direction δu ∈ U
are given by〈
∂

∂µ
f(µ, p̄), δu

〉
U∗,U

= 〈Fy(y(µ, p̄), µ, p̄), yµ(µ, p̄)δu〉Y ∗,Y + 〈Fµ(y(µ, p̄), µ, p̄), δu〉U∗,U

=
〈
y∗µ(µ, p̄)Fy(y(µ, p̄), µ, p̄), δu

〉
U∗,U

+ 〈Fµ(y(µ, p̄), µ, p̄), δu〉U∗,U ,

where y∗µ(µ, p̄) is the adjoint mapping of yµ(u, p̄). This leads to the formula for the
derivative

∂

∂µ
f(µ, p̄) = y∗µ(µ, p̄)Fy(y(µ, p̄), µ, p̄) + Fµ(y(µ, p̄), µ, p̄), (6.16)

this involves the the derivative of the design-to-state mapping y, which depends on
the dimension U . To bypass the possibly expensive computation of yµ we use the
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following. We know
e(y(µ, p̄), µ, p̄) = 0

has the derivative with respect to the design

ey(y(µ, p̄), µ, p̄)yµ(µ, p̄) + eµ(y(µ, p̄), µ, p̄) = 0

and therefore, the sensitivity is given by

yµ(µ, p̄) = −ey(y(µ, p̄), µ, p̄)−1eµ(y(µ, p̄), µ, p̄) (6.17)

plugging this into (6.16)

∂

∂µ
f(µ, p̄) = −eµ(y(µ, p̄), µ, p̄)∗ey(y(µ, p̄), µ, p̄)−∗Fy(y(µ, p̄), µ, p̄) + Fµ(y(µ, p̄), µ, p̄)

setting λ(µ, p̄)

−ey(y(µ, p̄), µ, p̄)−∗Fy(y(µ, p̄), µ, p̄) = λ(µ, p̄)

which can be computed by solving

ey(y(µ, p̄), µ, p̄)∗λ(µ, p̄) = −Fy(y(µ, p̄), µ, p̄) (6.18)

we can use the so called adjoint state λ(µ, p̄) to compute the derivative by

∂

∂µ
f(µ, p̄) = eµ(y(µ, p̄), µ, p̄)∗λ(µ, p̄) + Fµ(y(µ, p̄), µ, p̄).

This approch circumvents computing the whole sensitivity operator yµ(µ, p̄), but
depends on the functions f i, such that we have to compute the adjoint state for the
objective and constraint functions. The computation of a derivative with respect to
the uncertain parameter p is analogous.

6.2.2 Sensitivity approach

When the sum of the number of objective and constraint functions exceeds the
dimension of the design (or uncertain) parameters, the sensitivity approach is more
efficient than the adjoint approach. One can compute the whole sensitivity yµ via
(6.17)

ey(y(µ, p̄), µ, p̄)yµ = −eµ(y(µ, p̄), µ, p̄)
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and use it to compute the derivatives of the involved functions

d

dµ
f(µ) = y∗µFy(y(µ, p̄), µ, p̄) + Fµ(y(µ, p̄), µ, p̄).

We will see, that for the efficient computation of second order derivatives, we will
need the sensitivity aswell as the adjoint state.

6.2.3 Second order derivatives

For the quadratic model, we need the second order derivative of f with respect
to the uncertain parameter. To present a formula, we will follow [47] and use the
Lagrangian.

Definition 6.6. We define the Lagrange function for an equality constrained opti-
mization problem of the form

min
y,µ

F (y, µ, p̄)

s.t. e(y, µ, p̄) = 0.

as L : Y × U × P × Z∗ → R with

L(y, µ, p, λ) = F (y, µ, p) + 〈λ, e(y, µ, p)〉Z∗,Z ,

where 〈z, v〉Z∗,Z denotes the dual pairing z(v).

With this definition, we can write the function f as

f(µ, p̄) = F (y(µ, p̄), µ, p̄) = L(y(µ, p̄), µ, p̄, λ)

since the second summand of the Lagrangian vanishes by the equality constraint
being fulfilled, i.e. e(y(µ, p̄), µ, p̄) being 0. Differentiating f in direction s1 ∈ P

leads to
〈fp(µ, p̄), s1〉P∗,P = 〈Ly(y(µ, p̄), µ, p̄, λ), yp(µ, p̄)s1〉Y ∗,Y

+ 〈Lp(y(µ, p̄), µ, p̄, λ), s1〉P∗,P .

Note that we did not use a specific λ here. As a next step, we differentiate again in
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direction s2 ∈ P and obtain

〈fpp(µ, p̄)s2, s1〉P∗,P = 〈Ly(y(µ, p̄), µ, p̄, λ), ypp(µ, p̄)(s1, s2)〉Y ∗,Y
+ 〈Lyy(y(µ, p̄), µ, p̄, λ)yp(µ, p̄)s2, yp(µ, p̄)s1〉Y ∗,Y
+ 〈Lyp(y(µ, p̄), µ, p̄, λ)s2, yp(µ, p̄)s1〉Y ∗,Y
+ 〈Lpy(y(µ, p̄), µ, p̄, λ)yp(µ, p̄)s2, s2〉P∗,P
+ 〈Lpp(y(µ, p̄), µ, p̄, λ)s2, s1〉P∗,P .

Since we do not want to compute the second order sensitivity ypp(µ, p̄) we choose
λ = λ(µ, p̄) such that Ly(y(µ, p̄), µ, p̄, λ(µ, p̄)) = 0 and arrive at

〈fpp(µ, p̄)s2, s1〉P∗,P = 〈Lyy(y(µ, p̄), µ, p̄, λ(µ, p̄))yp(µ, p̄)s2, yp(µ, p̄)s1〉Y ∗,Y
+ 〈Lyp(y(µ, p̄), µ, p̄, λ(µ, p̄))s2, yp(µ, p̄)s1〉Y ∗,Y
+ 〈Lpy(y(µ, p̄), µ, p̄, λ(µ, p̄))yp(µ, p̄)s2, s2〉P∗,P
+ 〈Lpp(y(µ, p̄), µ, p̄, λ(µ, p̄))s2, s1〉P∗,P .

Which means we get the formula for the second derivative

fpp(µ, p̄) = y∗p(µ, p̄)Lyy(y(µ, p̄), µ, p̄, λ(µ, p̄))yp(µ, p̄) + y∗p(µ, p̄)Lyp(y(µ, p̄), µ, p̄, λ(µ, p̄))

+ Lpy(y(µ, p̄), µ, p̄, λ(µ, p̄))yp(µ, p̄) + Lpp(y(µ, p̄), µ, p̄, λ(µ, p̄)).

This can be rewritten as

∂2

∂p2
f(µ, p̄) =

[
yp
idp

]∗ [
Lyy Lyp

Lpy Lpp

] [
yp
idp

]
where idp : P → P is the identity map of the uncertainty set P . Note that we have
computed λ(µ, p̄) such that Ly(y(µ, p̄), µ, p̄, λ) vanishes. Since

Ly(y(µ, p̄), µ, p̄, λ) = Fy(y(µ, p̄), µ, p̄) + e∗y(y(µ, p̄), µ, p̄)λ

this is exactly solving the adjoint equation (6.18).

6.2.4 Computing descent directions

We have already seen, how we can compute derivatives for f(µ, p̄). In the Taylor
expansion of first and second order, the first order derivative term ∇pf(µ, p̄) · δ has
to be differentiated with respect to the design variable µ. If we have computed the
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sensitivity with respect to the uncertain parameter yp(µ, p̄), we can write

∇pf(µ, p̄) · δ = Fp(y(µ, p̄), µ, p̄)δ + Fy(y(µ, p̄), µ, p̄)yp(µ, p̄)δ.

We define δy(µ, p̄) := yp(µ, p̄)δ . We follow Kolvenbach [52] and define

G(y, µ, δy; z1, z2) := Fy(y, µ, p̄)δy + Fp(y, µ, p̄)δ

+ 〈z1, e(y, µ, p̄)〉+ 〈z2, ey(y, µ, p̄)δy + ep(y, µ, p̄)δ〉
= 〈z1, e(y, µ, p̄)〉+ Ly(y, µ, p̄, z2)δy + Lp(y, µ, p̄, z2)δ.

Inserting y(µ, p̄) and δy = δy(µ, p̄) and the second line vanishes, since then the state
and sensitivity equation are fulfilled. The derivative with respect to the design µ is
then given by

dG(y(µ, p̄), µ, δy(µ, p̄); z1, z2)

dµ
= Gµ +Gyyµ +Gδyδyµ,

where the G′s on the right hand side and in the following are evaluated at
(y(µ, p̄), µ, δy(µ, p̄); z1, z2) and the F ′s are evaluated at (y(µ, p̄), µ, p̄). As we do
not want to compute the sensitivity yµ and the second order sensitivity δyµ =

∂µyp(µ, p̄)δ, we choose z1 and z2 such that Gy and Gδy vanish. By inspecting

Gδy(y(µ, p̄), µ, δy(µ, p̄); z1, z2) = Fy + 〈z2, ey(y(µ, p̄), µ, p̄)〉 !
= 0,

we can conclude, that z2(µ, p̄) = λ(µ, p̄). Further,

Gy = Fyyδy + Fpyδ + 〈z1, ey〉+ 〈z2, eyyδy + epyδ〉
!
= 0,

leads to
e∗yz1 = −Fyyδy − Fpyδ − 〈z2, eyyδy + epyδ〉

= −Lyyδy − Lpyδ,

since z2(µ, p̄) = λ(µ, p̄). We have

dG(y(µ, p̄), µ, δy(µ, p̄); z1(µ, p̄), z2(µ, p̄))

dµ

= Fyµδy + Fpµδ + 〈z1(µ, p̄), eµ〉+ 〈z2(µ, p̄), eyµδy + epµδ〉
= Lyµδy + Lpµδ + 〈z1(µ, p̄), eµ〉.

This means that we have to solve an additional adjoint equation for the computation
of the derivative with respect to the design of the first order terms in the linear and
quadratic Taylor expansion.
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The same procedure can be done to calculate a derivative of the second order
term. We define

H(y, µ, p, δy, λ; z3, z4, z5) := Lyy[δy, δy] + Lyp[δy, δ] + Lpy[δ, δy] + Lpp[δ, δ]

+ 〈z3, e〉+ 〈z4, eyδy + epδ〉+ 〈z5, Ly〉,

where the L′s depend on (y, µ, p, λ) and [·, ·] contains the two directions for the
second order derivatives.
Inserting y = y(µ, p̄), δy = δy(µ, p̄), λ = λ(µ, p̄) the second line vanishes. The

derivative of H(y(µ, p̄), µ, p̄, δy(µ, p̄), λ(µ, p̄); z1, z2, z3) with respect to µ is given by
Hyyµ + Hµ + Hδyδyµ + Hλλµ. We will again choose z3, z4, z5 such that we do not
have to compute yµ, δyµ and λµ. The evaluation of the L′s in the following is
(y(µ, p̄), µ, p̄, λ(µ, p̄)). The equation

Hδy(y(µ, p̄), µ, p̄, δy(µ, p̄), λ(µ, p̄); z3, z4, z5) = 2Lyy[δy, ·] + Lyp[·, δ] + Lpy[δ, ·]

+ 〈z4, ey〉
!
= 0,

leads to the adjoint equation

e∗yz4 = − 2Lyy[δy, ·]− Lyp[·, δ]− Lpy[δ, ·].

Note that z4(µ, p̄) = 2z1(µ, p̄), which we can reuse and do not need to compute
twice. The equation

Hλ = eyy[δy, δy] + eyp[δy, δ] + epy[δ, δy] + epp[δ, δ]

+ 〈z5, e
∗
y〉

!
= 0,

leads to the sensitivity equation

eyz5 = −eyy[δy, δy]− eyp[δy, δ]− epy[δ, δy]− epp[δ, δ].

And finally

Hy = Lyyy[δy, δy, ·] + Lypy[δy, δ, ·] + Lpyy[δ, δy, ·] + Lppy[δ, δ, ·]

+ 〈z3, ey〉+ 〈z4, eyyδy + epyδ〉+ 〈z5, Lyy〉
!
= 0,

leads to the adjoint equation

e∗yz3 = − Lyyy[δy, δy, ·]− Lypy[δy, δ, ·]− Lpyy[δ, δy, ·]− Lppy[δ, δ, ·]
− 〈z4, eyyδy + epyδ〉 − 〈z5, Lyy〉.
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After solving the two additional adjoint equations and the sensitivity equation, we
can compute the derivative of the Hessian with respect to the design via

dH

dµ
= Lyyµ[δy, δy, ·] + Lypµ[δy, δ, ·] + Lpyµ[δ, δy, ·] + Lppµ[δ, δ, ·]

+ 〈z1(µ, p̄), eµ〉+ 〈z2(µ, p̄), eyµδy + epµδ〉+ 〈z3(µ, p̄), Lyµ〉.

6.3 Interpolation based approximation

As we have seen in the previous section, to construct a quadratic Taylor model, we
have to compute a lot of derivatives, which can be quite cumbersome and cannot
be done if one only has access to a blackbox solver and no access to the code. A
way to obtain a quadratic model which does not require derivative computation
relies on polynomial interpolation. The model is then generated using only function
evaluations, see [67, 27, 71]. The objective and constraint functions in (6.5) are then
replaced by an interpolation model. Since we want the interpolation model to be
a good approximator of the inner maximization problem, the model is iteratively
improved by adjusting the set of interpolation points. In the following description,
we fix a specific design µ ∈ U and inspect the function g : Rnp → R where g(·) =

f(µ, ·).
We are interested in constructing a polynomial of degree d in dimension np (np is

the dimension of the set of uncertainties). We call the space of polynomials Pdnp of
degree less or equal to d. The dimension of the space is denoted by p1 = p + 1. For
a linear polynominal in Rnp we have p1 = np + 1 and for a quadratic polynomial it
is known, that p1 = 1

2 (np + 1)(np + 2).
Let φ = [φ0(x), . . . , φp(x)] be a basis of Pdnp , i.e. any polynomial m(x) in Pdnp

can be written as m(x) =
∑p
i=0 αiφi(x) with αi ∈ R. Since we want to construct

an interpolation polynomial, we require the polynominal to fullfil p1 interpolation
conditions, i.e.

m(yj) =

p∑
i=0

αiφi(y
j) = g(yj), j = 0, . . . , p, (6.19)

with an interpolation set Y = {y0, . . . , yp} with yi ∈ Rnp . The condititions (6.19)
can be rewritten in matrix form:

M(φ, Y )αφ = g(Y ), (6.20)
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6.3. Interpolation based approximation

with

M(φ, Y ) :=


φ0(y0) φ1(y0) · · · φp(y0)

φ0(y1) φ1(y1) · · · φp(y1)
...

...
...

...
φ0(yp) φ1(yp) · · · φp(yp)

 ,

αφ :=


α0

α1

...
αp

 and g(Y ) :=


g(y0)

g(y1)
...

g(yp)


Definition 6.7. The set Y = {y0, . . . , yp} is poised for polynomial interpolation in
Rnp if the corresponding matrix M(φ, Y ) is nonsingular for some basis φ in Pdnp
(the dimension of Pdnp is p1 = p + 1).

Lemma 6.8 ([27] Lemma 3.2).
Given a function g : Rnp → R and a poised set Y ∈ Rnp , the interpolating polynomial
m(x) exists and is unique.

Note when the interpolation set contains more than p1 points, then the system
(6.20) is overdetermined, i.e. a regression problem which can be treated with a least
squares approach.

Definition 6.9. The set Y = {y0, . . . , yq} with q > p is poised for polynomial
regression in Rnp if the corresponding matrix M(φ, Y ) has full column rank for
some basis φ in Pdnp (the dimension of Pdnp is p1 = p + 1).

Since in PDE optimization the objective and constraint functions may depend on
the solution of the PDE, the function evaluations are expensive and we therefore
want to use as few interpolation points as possible. As we want to use the inter-
polation model to solve the inner maximization problem in (6.5) and it is known,
that by using linear models and therefore exploiting no curvature information slows
down the convergence significantly [27], we use underdetermined quadratic interpo-
lation, i.e. constructing a quadratic model by using more interpolation points than
in linear interpolation and less than in quadratic interpolation. We then hope that
enough curvature of the underlying function is captured, such that we experience
an empirical superlinear rate of local convergence. Using fewer points in quadratic
interpolation than p1, lets say np+ 1 < p̃1 := p̃+ 1 < p+ 1 = p1 = 1

2 (np+ 2)(np+ 1)

leads to the system matrix
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M̃(φ, Ỹ ) =


φ0(y0) φ1(y0) · · · φp(y0)

φ0(y1) φ1(y1) · · · φp(y1)
...

...
...

...
φ0(yp̃) φ1(yp̃) · · · φp(yp̃)

 ∈ Rp̃1×p1 ,

i.e. given M̃(φ, Ỹ ) has column rank p̃1, solutions for arbitrary right hand side exist,
but are not unique. We denote models obtained from such an underdetermined
system quadratic underdetermined interpolation models.

Assumption 6.10. We assume, that Ỹ = {y0, . . . , yp} ⊂ Rnp is a set of sample
points poised in the linear interpolation sense (or in the linear regression sense if
p > np) contained in the ball B(y0; ∆(Ỹ )) of radius ∆ = ∆(Ỹ ). Further, we assume
that the function g is continuously differentiable on an open domain Ω containing
B(y0; ∆) and ∇g is Lipschitz continuous in Ω with constant ν > 0. Let

L̂ :=
1

∆
L =

1

∆

(
y1 − y0 · · · yp − y0

)T
and L̂† = (L̂T L̂)−1L̂T be its pseudoinverse.

Theorem 6.11 ([27] Theorem 5.4).
Let Assumption (6.10) hold. Then, for all points y in B(y0; ∆(Y )), we have that

• the error between the gradient of a quadratic underdetermined interpolation
model and the gradient of the function satisfies

‖∇g(y)−∇m(y)‖ ≤ 5
√
p

2
‖L̂†‖(ν + ‖H‖)∆,

• the error between a quadratic underdetermined interpolation model and the
function satisfies

‖g(y)−m(y)‖ ≤
5
√
p

2
‖L̂†‖(ν + ‖H‖)∆2 +

1

2
(ν + ‖H‖)∆2,

where H is the Hessian of the model.

As the error estimators in Theorem (6.11) suggests, we will use quadratic under-
determined interpolation models with minimal Frobenius norm of the Hessian, as
used in [67, 27, 71].
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6.3. Interpolation based approximation

We can write the interpolation conditions as

m(yi) = c+ gT yi +
1

2
(yi)THyi = g(yi), i = 0, . . . , p̃

where the degrees of freedom are given by c ∈ R, g ∈ Rnp , H ∈ Rnp×np and the
degrees of freedom correspond to the φα’s in (6.20).
In the following we will center the model m(x) around the interpolation point y0.

The optimization problem associated to the construction of a minimal Frobenius
norm model is given by

min
c,g,H

1

4
‖H‖2F

s.t. m(δj) = g(y0 + δj), j = 0, . . . , p̃

H = HT

(6.21)

where the model fulfillsm(0) = g(y0) and δj := yj−y0, j = 0, . . . , p̃. The Lagrangian
L : R× Rnp × Rnp×np × Rp̃1 → R for this problem is given by

L(c, g, H, λ) =
1

4
‖H‖2F −

p̃∑
j=0

λj(c+ gT δj +
1

2
δTj Hδj − g(y0 + δj))

=
1

4

np∑
i,j=1

H2
i,j −

p̃∑
j=0

λj(c+ gT δj +
1

2
δTj Hδj − g(y0 + δj)),

where the condition H = HT is omitted, since as we will see, it is fulfilled in the
solution. The KKT conditions for (6.21) are given by

∂cL =

p̃∑
j=0

λj = 0, (6.22)

∂gL =

p̃∑
j=0

λjδj = 0, (6.23)

∂HL =
1

2
H −

p̃∑
j=0

λj(
1

2
δjδ

T
j ) = 0, (6.24)

∂λjL = c+ gT δj +
1

2
δTj Hδj − g(y0 + δj) = 0, j = 0, . . . , p̃. (6.25)

By (6.24) we see, that H =
∑p̃
j=0 λj(δjδ

T
j ) and since (δjδ

T
j )T = δjδ

T
j it follows that

H is a weighted sum of symmetric matrices, i.e. H is symmetric. Plugging (6.24)
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into (6.25) leads to
Aλ+ ec+XT g = G,

where A ∈ Rp̃1×p̃1 with the components Ai,j = 1
2 (δTi δj)

2, e ∈ Rp̃1 is a column vector
of ones, X ∈ Rnp×p̃1 is a matrix whose j-th column is the j-th interpolation point
δj and G ∈ Rp̃1 is a column vector with the function evaluation g(y0 + δj) in the
j-th row. Together with (6.22) and (6.23) this leads to the systemA e XT

eT
0

X


λc
g

 =

G0
0

 , (6.26)

where the Hessian H can be calculated after solving the system (6.26) by (6.24).
In the robust optimization, the reduced functions are f : U × P → R to compute
a model in the variable p. Further the model can then be used to solve the inner
maximization problem in (6.5) by iteratively finding its maximum and then replacing
one of the interpolation points with the new point, see Algorithm (6.1). In Algorithm

Algorithm 6.1 Derivative free optimization

Input: Y = {y0, . . . , yp̃} ⊂ Rnp poised for quadratic underdetermined interpo-
lation, function f(µ, ·) : Rnp → R to maximize over the uncertainty set U ,
tolerance ε > 0, maximum number of improving steps k̃

Output: p∗ = argmax
p∈U

f(µ, p).

1: Use Y to compute initial minimal curvature model m(p) for f(µ, ·) by solving
(6.21).

2: Compute p∗ = argmax
p∈U

m(p).

3: for k = 1, 2, . . . , k̃ do
4: Set Y =

(
Y \{yi}

)
∪ {p∗}, i ∈ {1, . . . , p̃}.

5: Update model m(p) for new interpolation set Y .
6: Compute p∗ = argmax

p∈U
m(p).

7: Set fk = f(µ, p∗).
8: if k>1 then
9: if |fk − fk−1| ≤ ε then

10: Terminate.

(6.1), step 4, we need to pick a point in the interpolation set, which is replaced by
the point p∗ which maximizes the current model m(p). We follow [71] and use

i = argmax
j=0,...,p̃

|lj(y0 + p∗)| ·max
(
‖yj − p∗‖4

)
.
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6.4. Numerical aspects

Here lj(·) denotes for j = 0, . . . , p̃ the Lagrange polynomials which are the minimal
curvature models which are obtained by solving (6.26) forG being the 0 vector except
for the j-th component being 1, i.e. we have lj(y

i − y0) = δij for i, j = 0, . . . , p̃ (δij
is the Kronecker delta). It is known that maxp∈U maxj=0,...,p̃ |lj(p)| is a measure on
how well an interpolation set is poised for interpolating a function on U and smaller
values are favorable, see [27]. To compute a search direction for the design variable
in the optimization we construct a model for the design derivative. This can be
done by simply replacing the function evaluations contained in G in (6.26) by the
evaluation of the partial derivatives, i.e. fµ(µ, y0 + δj).

6.4 Numerical aspects

As we have seen in this chapter, in order to compute Taylor expansions and their
design derivatives, we need to assemble many derivatives. We will present here
some of the formulas for the derivatives of the discrete state equation. We have seen
in (4.6) that the derivative with respect to the state variable of the discrete state
equation has the structure (we now have the dependence on the design variable µ
and the uncertain parameter p)

Cy(y, µ, p) =
C1

y1
(y0, y1, µ, p) 0 0 0

C2
y1

(y1, y2, µ, p) C2
y2

(y1, y2, µ, p) 0 0

0 . . . . . . 0

0 0 Ckyk−1
(yk−1, yk, µ, p) Ckyk(yk−1, yk, µ, p)

 .

Remember yi = (yh,idof ,T
i, θi, θ̇i)T = (uh,idof , ϕ

i, iist,T
i, θi, θ̇i)T . We denote ny :=

(ndof + nϕ + ni + 3)k, where k is the number of timesteps. If we multiply
the matrix Cy(y, µ, p) with a direction dy ∈ Rny (we will use the same par-
tition for the direction as for the state variable, i.e. dyi has the components
(dyh,i, dTi, dθi, dθ̇i)T = (duh,i, dϕi, diist, dT

i, dθi, dθ̇i)T for i = 1, . . . , k, we obtain
the vector (we drop the inputs of the Ci for readability)

Cydy =


C1

y1
dy1

C2
y1
dy1 + C2

y2
dy2

...
Ckyk−1

dyk−1 + Ckykdyk,


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which we can multiply with the discrete adjoint λh from the left

(λh)TCydy = (λh,1)TC1
y1
dy1+(λh,2)T (C2

y1
dy1+C2

y2
dy2)+...+(λh,k)T (Ckyk−1

dyk−1+Ckykdyk).

Differentiating with respect to y leads to

((λh)TCydy)y =
((λh,1)TC1

y1
dy1 + (λh,2)T (C2

y1
dy1 + C2

y2
dy2))y1

((λh,2)T (C2
y1
dy1 + C2

y2
dy2) + (λh,3)T (C3

y2
dy2 + C3

y3
dy3))y2

...
((λh,k−1)T (Ck−1

yk−2
dyk−2 + Ck−1

yk−1
dyk−1) + (λh,k)T (Ckyk−1

dyk−1 + Ckykdyk))yk−1

(λh,k)T (Ckyk−1
dyk−1 + Ckykdyk))yk



T

,

in our state system the mixed derivatives

Ciyi,yi−1
and Ciyi−1,yi

vanish, such that we have

((λh)TCydy)y =


((λh,1)TC1

y1
dy1)y1

+ ((λh,2)TC2
y1
dy1)y1

((λh,2)TC2
y2
dy2))y2

+ ((λh,3)TC3
y2
dy2)y2

...
((λh,k−1)TCk−1

yk−1
dyk−1))yk−1

+ ((λh,k)TCkyk−1
dyk−1)yk−1

(λh,k)T (Ckykdyk)yk



T

.

The two blocks which are needed are given for linear material by

(Ciyi−1
dyi−1)yi−1 =


0 0 0 −2βdθ̇i−1

0 0 0 0

0 0 0 0

0 0 0 0


and

(Ciyidyi)yi =


0 0 0 0

0 0 0 0

a 0 b 0

c 0 d 0

 ,
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with

a := ∂θKfull(θ
i, µ, p)dθi,

b := (∂θ)
2Kfull(θ

i, µ, p)yidofdθi + ∂θKfull(θ
i, µ, p)dyh,i,

c :=
[
−(∂y)2Mem(uh,idof , θ

i)dyh,i − ∂θ∂uMem(uh,idof , θ
i)dθi, 0 ∈ R1×nϕ , 0 ∈ R1×ni

]
,

d := −∂y∂θMem(uh,idof , θ
i)duh,i − (∂θ)

2Mem(uh,idof , θ
i)dθi.
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CHA PTER 7

Optimization

In this chapter, the numerical results for the (robust) optimization and the model
order reduction of the induction machine are presented. In the first section, the
results for the optimization problem with linearized material are stated and in the
second one, the results for the model with the nonlinear material. In all of the
performed optimizations, the optimization parameters are the width and the height
of rotor bars. The transformations are performed as described in (4.3).

7.1 Linear material

In the optimization with the model of an induction machine with linearized material,
the material (for the material distribution see Figure 7.1) is given by

air cust curt I200
ν 7.9 · 1005 7.9 · 1005 7.9 · 1005 142.439
σ 0 0 43000000 0

Table 7.1. Material values in the linearized model.

As uncertainty, we use the width of the opening of the rotor bar slots as uncertain
and parametrize them by 20 variables. As the uncertainty set we have chosen
U = {p̄ + δ ∈ R20 : ‖δ‖2 ≤ 0.25} (see Figure 7.2). The division in triangles to
perform the transformations is shown in Figure 4.4. We have a total of 27333 nodes
in Ωh, 20023 in Ωhr and 7310 in Ωhs . The uneven distribution of nodes comes from
the division of the rotor into subdomains for shape optimization. The time step
is ∆t = 10−03. We perform the optimization for the steady state. We therefore
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Figure 7.1. Material distribution in the machine: white - air, yellow - I200, red - cust,
blue - curt.

computed 2000 timesteps with initial value 0 and then used the state yh,2000 as
initial value for the simulation in the optimization. We supplied box constraints
for the design µ ∈ {µ ∈ R2 : µ1 ∈ [1, 28], µ2 ∈ [5, 19]} (µ1 is the height and µ2

is the width). Whenever we have to solve the trust-region subproblem, we use a
safeguarded Newton algorithm, see [26, 61].
The nominal optimization problem we are solving is given in continuous form

min
y,µ

4

T − th

∫ T

th

10∑
i=1

∫
Ωbar,i(µ)

σ

(
1Ωbar,i(µ)(x)A>i,·ϕ(t)− du1(x, t)

dt

)2

dxdt

s.t. D(µ) ≤ 0,

T d ≤ 1

T − th

∫ T

th

Mem(u, θ) dt,

e(y, µ, p̄) = 0.
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7.1. Linear material

The objective function are the averaged (over a given time-horizon [th, T ]) Joule
losses in the rotor bars for the full machine (assuming symmetry), due to the squared
term in the integral being the voltages in the rotor bars, which are then multiplied
by the conductivity σ and Power = Current × V oltage. The constraint function
states that the averaged torque should be at least a given desired torque T d. And
D(µ) contains lower and upper bounds for the width and height of the rotor bars.
In the optimization we perform 500 timesteps and use the last 300 for averaging.
After discretization the optimization problem is given by

min
yh,µ

4

th

tk−th∑
i=tk

10∑
br=1

ebr(u
h,i
r,dof , u

h,i−1
r,dof , ϕi)

>Mh
br,br(µ, p)ebr(u

h,i
r,dof , u

h,i−1
r,dof , ϕi)

s.t. D(p) ≤ 0,

T d ≤ 1

th

tk−th∑
i=tk

Mh
em(uh,idof , θi),

eh(yh, µ, p̄) = 0.

In the objective functionMh
br,br(µ, p) is the mass matrix, where the rows and columns

of the nodes in rotor bar br are chosen and we have

ebr(u
h,i
r,dof , u

h,i−1
r,dof , ϕi) = 1brAbr,:ϕi −

uh,i−1
Nbr − u

h,i−1
Nbr

∆t
,

where 1br is a vector with row length of the number of nodes in rotor bar br and
Abr,: is the br-th row of the reduced incidence matrix.

Figure 7.2. Design variable µ = (mu1,mu2) and uncertainty p = (p1, p2, p3, p4, . . . , p20).
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7.1.1 Nominal optimization

In the nominal optimization, we solve the optimization problem without occuring
uncertainties. As desired torque, we want to maintain the average torque in the
initial configuration which is 246.12. The optimization is stopped when a first order
optimality of 10−04 is attained. For the optimization we use fmincon from Matlab
which uses a BFGS SQP method, see for example [81]. The results are shown in
Table 7.2, where the first column is the iteration counter, the second is the value of
the objective function, the third is the violation of the torque constraint, the fourth
is the design and the last column contains the first order optimality measure. As
we can see, we are able to reduce the initial Joule losses from 25.79 to 14.82 which
is a reduction of ≈ 42%. The optimization took 1.6307 · 1004s.

iteration f max(c,0) µ opt
0 25.790 0.00 (22.000, 12.000) 1.79
1 25.052 0.00 (22.055, 12.415) 1.63
2 18.823 0.00 (22.943, 16.648) 8.97 · 10−01

3 17.924 7.76 · 10−01 (23.154, 17.392) 7.99 · 10−01

4 17.553 0.00 (23.298, 17.870) 6.01 · 10−01

5 17.306 0.00 (23.397, 18.151) 4.93 · 10−01

6 16.390 4.19 · 10−01 (24.044, 18.996) 4.21 · 10−01

7 15.242 0.00 (27.119, 18.878) 3.74 · 10−01

8 15.074 0.00 (27.557, 18.874) 2.34 · 10−01

9 15.008 0.00 (27.752, 18.859) 1.38 · 10−01

10 15.027 0.00 (27.732, 18.840) 1.02 · 10−01

11 14.869 0.00 (27.941, 18.963) 2.22 · 10−02

12 14.864 0.00 (27.948, 18.968) 2.01 · 10−02

13 14.824 0.00 (28.000, 19.000) 9.68 · 10−04

14 14.824 0.00 (28.000, 19.000) 2.01 · 10−04

15 14.824 0.00 (28.000, 19.000) 4.03 · 10−06

Table 7.2. Nominal optimization results for 500 timesteps.

7.1.2 Nominal optimization with POD

We present here the results for the reduced order model. In Table 7.3 it is shown
how many modes are needed to capture a given energy ε of the snapshot space.
Since we compute a basis for the stator without the airgap, the rotor without the
airgap and without the rotor bars and a basis for each of the rotor bars, in the third
column the maximal amount of modes of the bases for the 10 rotor bars is shown.
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The amount of modes needed are the highest in the rotor part. This could be due to
the rotation compared to the static stator and due to the fact that the rotor domain
contains the most nodes.
In Table 7.4 we see how many modes are needed for the adjoint state for the

objective function (index f) and the constraint function (index c) to capture a
given energy ε. We see that we need more modes than for the state variable.
In Table 7.5 the running time of the state equation and the two adjoint equations

on ROM level is compared to the running time on the FE level. Solving the state
equation on FE level takes 149.86s, solving the adjoint for the objective 192.94s
and solving the adjoint for the constraint 185.63s. Note that the computation times
are for the basis which consists of the orthogonalized bases of the state, adjoint for
objective and adjoint for constraint, which are all computed for the energy given in
the first column. We see that even for energies close to 1, i.e. 1− 10−12 we can save
almost 50% of the computation time. In Figure 7.3 the error of the ROM solution
of the state variable is given, computed in the discrete Bochner norm

∆t

500∑
i=1

‖ul,i − uh,i‖H1(Ωhs∪Ωhr ).

The error does not decrease for the first three energies, since as we see in Table 7.3,
the same amount of basis variables is needed to obtain a basis with the given energy.
In Figure 7.4 the error of the adjoint variable is shown, computed in the discrete
Bochner norm.
In the optimization with the proper orthogonal decomposition method, whenever

the objective or the constraint function has to be evaluated for a new design, we
solve the state equation on POD level to obtain yl and then use an error indicator,
introduced in [43], which is based on the residual for the field/circuit equation. In
the first iteration of the optimization we set the tolerance for the error to Inf, and
after the first step, the tolerance is set to the maximum of the first order optimality
measure and 0.02. If the error is too high, we compute new snapshots for the state
equation and the two adjoint equations for the different parts of the domain and use
the snapshots to compute new bases. We then orthogonalize them to one individual
basis per subdomain. If the error is still to high, we check in which subdomain the
error is the hightest, and increase the energy of the underlying basis and compute
a new basis for the new energy. If the energy is then still not sufficiently low, we
increase all the energies. We use the same energy for the state and adjoint.
In Table 7.6 we see that we obtain the same optimal design for the optimization

with the reduced order model as without it. Since we start with an initial energy
of 10−12, the ROM has not to be updated unil the 11th iteration. Using the ROM,
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Figure 7.3. Error of the state variable in discrete Bochner norm for given energy ε.

Figure 7.4. Error of the adjoint state in discrete Bochner norm for given energy ε.

the optimization took 8.3586 · 1003s, which is a speedup of approximately factor 2

compared to the nominal optimization without the ROM.
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energy number of modes
ε ls lr−b maxi=1,...,10 lbi Σ

1− 10−03 3 3 2 26
1− 10−04 3 3 3 27
1− 10−05 3 3 3 27
1− 10−06 4 5 3 30
1− 10−07 6 9 4 39
1− 10−08 11 12 4 53
1− 10−09 15 18 6 70
1− 10−10 21 28 6 93
1− 10−11 32 37 8 119
1− 10−12 41 48 9 152
1− 10−13 52 59 10 158
1− 10−14 60 66 12 216

Table 7.3. Dimension of the reduced state for 500 timesteps and given energy ε.

energy number of modes
ε lλs,f lλr−b,f lλbi,f lλs,c lλr−b,c lλbi,c Σ

1− 10−03 7 9 4 6 4 4 89
1− 10−04 11 13 4 9 12 4 125
1− 10−05 16 20 5 15 15 5 156
1− 10−06 20 29 7 20 22 6 206
1− 10−07 29 39 7 29 29 7 248
1− 10−08 38 49 8 34 40 8 297
1− 10−09 50 65 10 52 50 9 375
1− 10−10 63 75 11 62 63 11 449
1− 10−11 71 89 13 68 79 12 529
1− 10−12 77 110 15 74 93 14 609
1− 10−13 84 125 17 79 106 16 690
1− 10−14 89 140 20 85 119 19 769

Table 7.4. Dimension of the reduced adjoint state for 500 timesteps for the objective f
and constraint c and given energy ε.

7.1.3 Robust optimization: Linear model

We perform the robust optimization with the linear Taylor expansion by using
Granso (see [29]) as a solver for non-convex and non-smooth optimization prob-
lems. The most time consuming part in the optimization is computing the full
sensitivity. We therefore use a factorization of the system matrix Ciyi (see (4.36))
in every timestep to efficiently solve the system for the 20 right hand sides, which
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energy running time in [s]
ε state adjoint f adjoint c ratio state ratio adj f ratio adj c

1− 10−03 14.70 36.49 35.75 0.0981 0.1891 0.1926
1− 10−04 16.19 38.72 38.14 0.1080 0.2007 0.2055
1− 10−05 17.91 40.75 40.12 0.1195 0.2112 0.2161
1− 10−06 21.35 45.40 44.68 0.1425 0.2353 0.2407
1− 10−07 25.18 51.30 50.49 0.1680 0.2659 0.2720
1− 10−08 30.18 57.51 56.06 0.2014 0.2981 0.3020
1− 10−09 38.29 68.08 67.09 0.2555 0.3529 0.3614
1− 10−10 51.08 88.38 87.23 0.3409 0.4581 0.4699
1− 10−11 61.01 97.68 96.41 0.4071 0.5063 0.5194
1− 10−12 79.54 124.67 120.67 0.5308 0.6462 0.6501
1− 10−13 124.46 171.72 171.11 0.8301 0.8900 0.9218
1− 10−14 152.58 207.04 211.18 1.0176 1.0730 1.1376

Table 7.5. Computation times for the reduced state and adjoint for 500 timesteps and
given energy ε compared to the solution on the FE level.

iteration f c µ opt
0 25.793 3.19 · 10−05 (22.000, 12.000) 1.79
1 25.053 0.00 (22.056, 12.416) 1.63
2 18.769 0.00 (22.939, 16.678) 9.02 · 10−01

3 17.899 7.46 · 10−01 (23.140, 17.412) 8.02 · 10−01

4 17.544 0.00 (23.267, 17.876) 6.01 · 10−01

5 17.300 0.00 (23.363, 18.156) 4.83 · 10−01

6 16.401 4.35 · 10−01 (23.993, 18.996) 4.16 · 10−01

7 15.309 0.00 (27.008, 18.877) 3.56 · 10−01

8 15.133 0.00 (27.502, 18.872) 3.36 · 10−01

9 15.068 0.00 (27.712, 18.854) 2.39 · 10−01

10 15.079 0.00 (27.712, 18.837) 1.04 · 10−01

11 14.931 0.00 (27.927, 18.960) 2.40 · 10−02

Calculate new Snapshots
12 14.868 0.00 (27.940, 18.967) 5.32 · 10−02

13 14.864 0.00 (27.949, 18.968) 2.00 · 10−02

14 14.832 0.00 (27.990, 18.994) 4.32 · 10−03

Calculate new Snapshots
15 14.824 0.00 (28.000, 19.000) 2.65 · 10−04

Calculate new Snapshots
16 14.824 0.00 (28.000, 19.000) 4.38 · 10−05

Table 7.6. Nominal optimization with ROM for 500 timesteps for linear material.
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contain the derivatives of the state equation with respect to the uncertain parame-
ters. The result of the optimization is shown in Table 7.7. Note that in the second
column, the approximated worst-case value of the objective function is stated, since
we minimize the worst-case. Also the third column states the approximated con-
straint violation in the approximated worst-case. We use the torque of the initial
design in the nominal uncertain parameter as desired torque. We can see in the
0th iteration in Table 7.7, that the initial design is not a feasible design, since the
constraint function is not fulfilled in the worst-case. Therefore the objective value
cannot be lowered as much as in the nominal optimization. In the optimal robust
design (14.63, 19.00) the Joule losses in the nominal parameter are 24.02 and the
torque constraint is at −0.44. The optimization took 3.6178 · 1005s. The true ob-
jective and constraint values in the approximated worst-cases in the optimal design
are at 24.2516 and 246.3038, which shows that the approximated worst-case values
are very accurate.

7.1.4 Robust optimization: Linear model with POD

Using the linear Taylor expansion in the robust optimization involves the sensitivity
of the state variable with respect to the uncertainty yp(µ, p̄), therefore in the opti-
mization with the ROM, we compute bases for the sensitivity and add them to the
orthogonalization procedure (together with the bases for state and adjoint state).
We keep the modes for the sensitivity fixed during the optimization: 20 modes for
each of the rotor bars and stator and 40 modes for the rotor part. On the FE
level the computation of the sensitivity takes 1582.03s. In Table 7.8 results for the
reduced order model involving the sensitivity are shown: in the second column the
number of basis variables is shown, where the basis consists of the orthogonalized
bases for the state variable, the two adjoint variables and the sensitivity. In the
third column, the computation time for the sensitivity using the ROM is stated and
we can see that computing the sensitivity on ROM level is even for high energies
as 1− 10−12 cheaper than on the FE level by a factor 3. In the fourth column the
ratio between the computation time for the sensitivity using the ROM and FE is
shown and in the last column the error in discrete Bochner norm of the sensitivity
is stated.
We have performed the same optimization with the linear Taylor expansion using

the reduced order model. The results are shown in Table 7.9. We started with an
initial energy of 1 − 10−12 for the ROM. In the optimization we had to calculate
new bases 2 times. After 52 iterations, the optimization terminated with almost the
same design as in the optimization without the reduced order model, since the step
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iteration fwc max(0, cwc) µ opt
0 26.032 2.04 · 10−01 (22.000, 12.000) 1.00
2 25.165 0.00 (22.189, 12.428) 1.94 · 10−01

4 24.881 0.00 (22.238, 12.574) 9.16 · 10−02

6 24.814 0.00 (22.241, 12.613) 4.78 · 10−02

8 24.784 0.00 (22.236, 12.633) 2.96 · 10−02

10 24.767 0.00 (22.229, 12.647) 2.17 · 10−02

12 24.755 0.00 (22.221, 12.657) 1.65 · 10−02

14 24.748 0.00 (22.212, 12.666) 1.33 · 10−02

16 24.742 0.00 (22.202, 12.675) 1.14 · 10−02

18 24.738 0.00 (22.191, 12.682) 1.04 · 10−02

20 24.735 0.00 (22.180, 12.690) 1.01 · 10−02

22 24.732 0.00 (22.167, 12.698) 1.03 · 10−02

24 24.730 0.00 (22.153, 12.706) 1.11 · 10−02

26 24.727 0.00 (22.135, 12.717) 1.31 · 10−02

28 24.725 0.00 (22.108, 12.732) 1.82 · 10−02

30 24.720 0.00 (22.058, 12.760) 4.00 · 10−02

32 24.704 0.00 (21.458, 13.083) 4.33 · 10−03

34 24.686 0.00 (20.763, 13.481) 4.24 · 10−01

36 24.630 0.00 (19.976, 13.991) 4.55 · 10−02

38 24.596 0.00 (19.365, 14.410) 1.75 · 10−01

40 24.556 0.00 (18.627, 14.954) 2.25 · 10−01

42 24.511 0.00 (17.412, 15.939) 4.72 · 10−01

44 24.464 5.01 · 10−03 (17.571, 15.845) 2.14 · 10−01

46 24.403 0.00 (16.562, 16.784) 6.80 · 10−02

48 24.364 7.98 · 10−04 (16.013, 17.353) 2.97 · 10−01

50 24.328 0.00 (15.148, 18.313) 2.57 · 10−01

52 24.246 0.00 (14.635, 19.000) 2.33 · 10−03

53 24.247 1.01 · 10−05 (14.632, 19.000) 1.43 · 10−05

Table 7.7. Robust optimization with linear Taylor approximation for 500 timesteps for
linear material.

tolerance was met. The optimization took 1.0880 · 1005s, which is an approximate
speedup of factor 3 in comparison to the optimization without the reduced order
model.

7.1.5 Robust optimization: Quadratic model

In this section the results using the quadratic Taylor model are presented. We again
used Granso for the optimization. In Table 7.10 we see, that in comparison to the

132



7.1. Linear material

energy Results for ROM involving the sensitivity
ε basis variables running time [s] ratio sens ‖ylp − yp‖

1− 10−03 375 86.77 0.0548 1.23 · 10−06

1− 10−04 412 98.09 0.0620 2.92 · 10−07

1− 10−05 443 107.06 0.0677 2.82 · 10−07

1− 10−06 496 134.01 0.0847 2.56 · 10−07

1− 10−07 547 146.95 0.0929 2.06 · 10−07

1− 10−08 597 174.41 0.1102 1.42 · 10−07

1− 10−09 674 209.81 0.1326 2.79 · 10−08

1− 10−10 744 243.27 0.1538 3.70 · 10−09

1− 10−11 831 364.33 0.2303 7.64 · 10−10

1− 10−12 934 502.61 0.3177 6.50 · 10−10

Table 7.8. Number of modes for basis consisting of orthognonalized basis of state, adjoint
and sensitivity for 500 timesteps and given energy ε, solution time of sensitivity equation
with given basis and the maximal error in the discrete Bochner norm over the sensitivities
with respect to the uncertain parameters maxi=1,...,20 ‖ylpi(µ, p̄)− ypi(µ, p̄)‖ is shown.

linear model, the approximated worst-case of the constraint function in the initial
design is higher. The optimization took less iterations than with the linear model
and terminated in a different design. In the optimal robust design (21.425, 12.894)

the Joule losses in the nominal parameter are 24.02 and the torque constraint is
at −0.44, leading to a higher torque, i.e. 246.56, than the desired torque. The
optimization took 2.8135 · 1005s. Evaluating the objective and constraint function
in the approximated worst-case in the optimal design returns Joule losses of 25.0361

and a torque of 246.3150. This shows that the approximated worst-case values are
accurate. The robust optimal design might differ from the robust optimal design
found with the linear Taylor model, since the model might have overestimated a
worst-case of the constraint function during the optimization, which might have
shrinked down the feasible region or, a different local maximizer was found and
tracked.
We have performed the same optimization with the quadratic Taylor expansion

using the reduced order model. The results are shown in Table 7.11. We started
with an initial energy of 1 − 10−12 for the ROM. In the optimization we had to
calculate a new basis only 1 time. After 14 iterations, the optimization terminated
with almost the same design as in the optimization without the reduced order model,
since the step tolerance was met. The optimization took 8.8338 · 1004s, which is an
approximate speedup of factor 3 in comparison to the optimization without the
reduced order model.
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iteration fwc max(0, cwc) µ opt
0 26.032 2.04 · 10−01 (22.000, 12.000) 1.00
2 25.166 0.00 (22.189, 12.428) 1.94 · 10−01

4 24.882 0.00 (22.238, 12.574) 9.16 · 10−02

6 24.814 0.00 (22.241, 12.613) 4.78 · 1002

8 24.784 0.00 (22.236, 12.633) 3.06 · 10−02

10 24.767 0.00 (22.229, 12.646) 2.17 · 10−02

12 24.756 0.00 (22.221, 12.657) 1.65 · 10−02

14 24.748 0.00 (22.212, 12.666) 1.33 · 10−02

16 24.742 0.00 (22.202, 12.674) 1.14 · 10−02

18 24.738 0.00 (22.191, 12.682) 1.04 · 10−02

20 24.735 0.00 (22.180, 12.690) 9.99 · 10−03

22 24.732 0.00 (22.168, 12.697) 1.02 · 10−02

24 24.730 0.00 (22.153, 12.706) 1.10 · 10−02

26 24.728 0.00 (22.136, 12.716) 1.29 · 10−02

28 24.725 0.00 (22.110, 12.730) 1.77 · 10−02

30 24.721 0.00 (22.065, 12.756) 3.54 · 10−02

32 24.705 0.00 (21.461, 13.080) 1.32 · 10−03

Calculate new Snapshots
34 24.699 0.00 (21.136, 13.262) 1.82 · 10−01

36 24.596 4.19 · 10−03 (19.861, 14.087) 2.75 · 10−01

38 24.583 0.00 (19.104, 14.596) 2.53 · 10−01

40 24.522 0.00 (18.201, 15.297) 8.74 · 10−03

42 24.485 0.00 (17.071, 16.248) 4.80 · 10−01

44 24.443 4.98 · 10−03 (17.285, 16.099) 2.09 · 10−01

46 24.423 0.00 (16.722, 16.613) 5.96 · 10−02

48 24.396 0.00 (15.928, 17.401) 5.14 · 10−01

50 24.356 0.00 (15.749, 17.621) 9.72 · 10−02

Calculate new Snapshots
52 24.240 4.98 · 10−03 (14.639, 19.000) 6.85 · 10−03

Table 7.9. Optimization using ROM and linear Taylor model for 500 timesteps for linear
material.

7.1.6 Robust optimization: Quadratic model shift expansion
point

In this section the results for the robust optimization with the quadratic Taylor ex-
pansion with the shifted expansion point are presented. The shifting was performed
if the approximated worst-case value had a relative difference of 0.03 to the true
function value at the predicted worst-case. In Table 7.12 we can see, that we never
had to change the expansion point for the objective function f , but had to shift the
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iteration fwc max(0, cwc) µ opt
0 26.033 3.87 · 10−01 (22.000, 12.000) 1.01
2 24.769 1.83 · 10−01 (22.428, 12.912) 1.17 · 10−01

4 25.030 8.30 · 10−03 (22.217, 12.522) 5.36 · 10−03

6 25.048 0.00 (22.193, 12.498) 3.13 · 10−03

8 25.043 0.00 (22.004, 12.593) 1.35 · 10−03

10 25.033 9.27 · 10−04 (21.651, 12.774) 7.11 · 10−02

12 25.034 5.71 · 10−04 (21.442, 12.887) 6.79 · 10−03

14 25.036 2.94 · 10−05 (21.380, 12.918) 1.71 · 10−02

16 25.036 0.00 (21.429, 12.892) 1.76 · 10−04

18 25.036 3.37 · 10−09 (21.426, 12.894) 1.23 · 10−04

20 25.036 0.00 (21.425, 12.894) 4.68 · 10−03

21 25.036 8.40 · 10−10 (21.425, 12.894) 3.77 · 10−07

Table 7.10. Robust optimization using the quadratic Taylor model for 500 timesteps for
linear material.

iteration fwc max(0, cwc) µ opt
0 26.033 3.77 · 10−01 (22.000, 12.000) 1.01
1 24.122 8.50 · 10−01 (22.428, 12.912) 3.73 · 10−01

2 24.769 1.84 · 10−01 (22.275, 12.624) 1.17 · 10−01

3 24.989 3.05 · 10−02 (22.217, 12.522) 2.99 · 10−02

4 25.031 8.35 · 10−03 (22.202, 12.504) 5.37 · 10−03

5 25.048 2.56 · 10−04 (22.193, 12.498) 2.91 · 10−03

6 25.048 0.00 (22.179, 12.505) 3.01 · 10−03

Calculate new Snapshots
7 25.045 0.00 (21.719, 12.737) 3.13 · 10−01

8 25.043 0.00 (21.851, 12.671) 6.48 · 10−03

9 25.042 2.42 · 10−06 (21.914, 12.640) 5.04 · 10−02

10 25.040 0.00 (21.775, 12.711) 3.38 · 10−02

11 25.038 0.00 (21.547, 12.829) 6.10 · 10−02

12 25.036 3.50 · 10−04 (21.591, 12.808) 1.05 · 10−01

14 25.036 7.79 · 10−05 (21.424, 12.895) 9.90 · 10−03

Table 7.11. Robust optimization using the quadratic Taylor model and ROM for 500
timesteps for linear material.

expansion point of the constraint function almost every second iteration. Note that
since the constraint function has values close to 0, small deviations lead to large
relative differences. To find a better expansion point, we used fmincon of Matlab to
find a local maximum of the constraint function and had the optimality tolerance
set to 10−03, as the starting point we used the previous expansion point (and in
the first iteration the nominal parameter p̄). The optimality tolerance for the outer
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optimization problem was set to 10−04. As we can see, we were able to lower the
worst-case more than in the optimization with the quadratic and linear model. In
the optimal design, the objective function evaluated in the approximated worst-case
is at 23.886, which is a relative deviation less than the required 3% from the approx-
imated worst-case value of 24.056. Since the expansion point was shifted before the
last iteration, the approximated worst-case value of the constraint function matches
its true worst-case value.

Figure 7.5. Comparison of the initial design (left) and the robust optimal design (right)
obtained with the quadratic Taylor model with the shifted expansion point.

7.1.7 Robust optimization: Quadratic interpolation model

The results of the optimization using the quadratic interpolation model are shown
in Table 7.13. We have limited the number of improving iterations to 3. We can
see, that the designs during the optimization are similiar to the ones obtained with
the quadratic Taylor model with the shifted expansion point. In the optimal design,
the approximated worst-case values are equal to the true objective and constraint
function values in the approximated worst-cases. Overall, the optimal design is
similiar to the one obtained from the robust optimization with the linear Taylor
model, and the one obtained with the quadratic Taylor model using the shifted
expansion point.

7.2 Nonlinear material

In this section, we present numerical results for the simulation and optimization
using nonlinear material. In the optimization, we use almost the same objective
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function as for the linear material

min
y,µ

4

T − th

∫ T

th

s(t)

10∑
i=1

∫
Ωbar,i(p)

σ

(
1Ωbar,i(p)(x)A>i,·ϕ(t)− da(x, t)

dt

)2

dxdt

s.t. D(p) ≤ 0,

T d ≤ 1

T − th

∫ T

th

s(t)`z

∫
Γ

ν1(x)∂nu1(x, t)∂θu2(xr−θ(t) , t) dS dt,

e(y, µ, p̄) = 0.

The difference is, that we use a smooth weighting function s(t), which puts more
weight to the values being close to the center of the time horizon and less weight to
the values being close to the boundary of the time horizon. This helps to lower the
influence of differing periods. We treat the value of the conductivity σ as uncertain,
which might be due to imperfect material or due to different temperatures of the
rotor bars. We choose U = {σ : |57500000 − σ| ≤ 14500000}. To model the
reluctivity for the material I200, we use a smoothed BH-curve (see Figure 7.6). The
smoothed BH-curve is three times continuously differentiable and it approaches the
reluctivity of vacuum for |B| → ∞, such that the behavior of saturated material
is approximated well. Again we choose the steady state as an initial value. In the
optimization we perform 200 timesteps and use 150 for averaging. As the desired
torque in the constraint we choose the (weighted) averaged torque in the initial
design, which is 121.98.

7.2.1 Nonlinear material: Nominal Optimization

The results for the nominal optimization with nonlinear material are shown in Table
7.14. We have used again fmincon from Matlab and stopped the optimization when
the first order optimality condition was lower than 10−04. The initial point is already
close to a local optimum, such that we are able to lower the weighted Joule losses
by around 14.7%.

7.2.2 Nonlinear material: Linear model

For the robust optimization we again use Granso as a solver for non-convex and
non-smooth optimization problems. The results of the robust optimization using

137



Chapter 7. Optimization

Figure 7.6. Smoothed BH-curve

the linear Taylor model and nonlinear material is shown in Table 7.7. In the second
column the approximated worst-case value of the objective function is stated. The
third column contains the approximated violation of the constraint function in the
approximated worst-case. As we use the torque of the initial design in the nominal
uncertain parameter as desired torque, we can see that the initial design is not
feasible and therefore a feasible point needs to be found until the objective can be
lowered, which results in only a small decrease of the Joule losses. Note that in the
nominal parameter, the Joule losses in the optimal design (21.475, 12.871) are at
11.2029 which is lower than the Joule losses in the nominal parameter in the initial
design and a decrease in the nominal parameter (when no uncertainties occur) is
given.

7.2.3 Nonlinear material: Quadratic Taylor model

The results for the optimization with the quadratic Taylor model are shown in Table
7.16. Here, the same problem as with the linear model occurs. The initial design is
infeasible and therefore the Joule losses can only be lowered by a small amount. In
the optimal design the Joule losses in the nominal parameter are at 10.8392, which
is lower compared to the optimization with the linear model.
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7.2.4 Nonlinear material: Quadratic Taylor model with shifted
expansion point

The results for the robust optimization using the Quadratic Taylor model with
shifted expansion point for the nonlinear material are shown in Table 7.17. The
tolerance for shifting the expansion point was set to a relative difference of 0.03

between the approximated worst-case and the true underlying function/constraint
value. We have set the initial worst-case disturbance of the objective function to the
left boundary of the uncertainty set, since the worst-case is attained there. Therefore
we never had to change the expansion point during the optimization. As we can
see, we had to shift the expansion point for the constraint function almost every
iteration, until the change in the design became small. The optimal design found
differs from the optimal design using the linear and quadratic Taylor model. We
were able to lower the objective function from 14.410 to 12.449, which is a reduction
of ≈ 13%. Note that these are not the Joule losses, but the averaged weighted
Joule losses. The optimal design is closer to the optimal design of the nominal
optimization compared to the designs obtained with the robust optimization using
the linear and quadratic Taylor model.
In the following we present here the numerical results for using DEIM for the

simulation of the machine. In Table 7.18 it is shown, how many basis variables
are needed to approximate the space spanned by the nonlinear snapshots for given
energy ε. We have solved the state equation (on FEM level) with the DEIM ap-
proximation and computed the error of the magnetic vector potential in the discrete
Bochner norm, which is shown in the last column. We can see, that for the energy
1− 10−03, the error is already below 10−06. Only in the simulation with the energy
of 1 − 10−03 we achieved a minor speedup in the solution of the state equation.
This is due to Newton’s method needing more iterations to converge and if a certain
number of basis variables is exceeded, the evaluation of the nonlinearity with DEIM
is equally expensive as evaluating the full nonlinearity. In Table 7.19 the results are
shown for keeping the dimension of the DEIM fixed (2 basis vectors for the rotor
bars, 3 for the stator and 4 for the rotor) and then use a POD basis for the mag-
netic vector potential, computed for the energy given in the first column, to solve
the state equation. The error is again computed in the discrete Bochner norm. For
low energies, the speedup in the simulation was up to 50% (from 13882.31s on FE
level to 6850.23s for ε = 1 − 10−03), but in some instances, Newton’s method had
trouble converging, such that the solution on the ROM took longer than on the FE
level, this also occured in the optimization, such that we did not use the reduced
order model in the optimization with the nonlinear material. Figure 7.7 shows the
first four POD eigenmodes of the magnetic vector potential in the stator.
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Figure 7.7. First four eigenmodes of the magnetic vector potential in the stator domain
for nonlinear material.

7.3 Conclusion of the numerical results

Dealing with highly nonlinear functions in the robust opimization as we do in our
case, we can see that the non-adaptive linear and quadratic Taylor models are not
well suited, since they cannot capture the behavior of the underlying functions good
enough. They can over- or under-estimate the worst-case which leads to non-optimal
or non-robust solutions. If it is known, that the underlying functions are linear or
quadratic, then these models are exact and using these models in combination with
reduced order models one can compute the optimal robust solutions in reasonable
time. We found that using reduced order models speeds up the optimzation by
factor 2-3. One can benefit the most out of an implementation, if one wants to
perform the optimization multiple times, e.g. for varying input data.
In our application, using the adaptive second order models leads to the best

results, meaning the lowest worst-case of the objective function. This is the case,
since these adaptive models iteratively improve the approximation of the worst-case
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value, which eliminates over- and under-estimation.
To use the quadratic Taylor model with the moving expansion point, derivatives

up to third order have to be implemented, which can be cumbersome. In contrast,
to perform the optimization with the quadratic interpolation model, we only have
to implement the derivative of objective and constraint functions with respect to
the design to perform the outer minimization. This design derivative computation
can also be bypassed by using an interpolation model for the outer optimization
aswell, which makes the robust optimization applicable for blackbox simulations.
The drawback of the interpolation model is that the number of state equation solv-
ings to setup the initial interpolation model depends on the degrees of freedom of
the uncertainty. To compute the initial model one can use parallel computation.
The optimization with the derivative-free interpolation model would therefore be a
good fit for industry companies with high computing power.
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iteration fwc max(0, cwc) µ opt
Shifting expansion point constraint

0 26.033 2.87 · 10−01 (22.000, 12.000) 1.01
Shifting expansion point constraint

1 24.125 6.56 · 10−01 (22.427, 12.910) 2.67 · 10−01

Shifting expansion point constraint
2 25.147 0.00 (22.183, 12.443) 2.26 · 10−01

Shifting expansion point constraint
3 24.370 3.66 · 10−01 (22.350, 12.814) 1.63 · 10−01

4 24.998 0.00 (22.195, 12.527) 1.77 · 10−01

5 24.735 6.70 · 10−03 (22.251, 12.655) 1.10 · 10−02

Shifting expansion point constraint
6 24.746 0.00 (22.235, 12.657) 1.06 · 10−02

7 24.734 3.20 · 10−03 (22.192, 12.685) 3.61 · 10−02

Shifting expansion point constraint
8 24.704 0.00 (21.725, 12.943) 7.64 · 10−02

9 24.684 0.00 (21.021, 13.337) 9.95 · 10−02

Shifting expansion point constraint
10 24.644 9.82 · 10−03 (21.334, 13.189) 2.88 · 10−01

11 24.621 0.00 (20.842, 13.479) 2.70 · 10−01

12 24.600 0.00 (19.743, 14.161) 8.25 · 10−01

Shifting expansion point constraint
13 24.576 0.00 (20.465, 13.729) 3.99 · 10−01

14 24.523 0.00 (19.776, 14.192) 2.35 · 10−02

Shifting expansion point constraint
15 24.466 0.00 (19.105, 14.682) 3.92 · 10−01

16 24.403 0.00 (18.432, 15.215) 4.76 · 10−01

Shifting expansion point constraint
17 24.341 0.00 (17.768, 15.782) 5.40 · 10−01

18 24.281 0.00 (17.153, 16.351) 5.65 · 10−01

Shifting expansion point constraint
19 24.228 0.00 (16.574, 16.925) 5.87 · 10−01

20 24.179 0.00 (16.044, 17.489) 5.83 · 10−01

Shifting expansion point constraint
21 24.136 0.00 (15.554, 18.044) 5.82 · 10−01

22 24.098 0.00 (15.105, 18.586) 5.24 · 10−01

Shifting expansion point constraint
23 24.065 1.23 · 10−02 (14.784, 19.000) 6.81 · 10−03

Shifting expansion point constraint
24 24.056 7.09 · 10−05 (14.790, 19.000) 6.23 · 10−05

Table 7.12. Robust optimization with quadratic Taylor model and shifting expansion
point for 500 timesteps for linear material.
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iteration fwc max(0, cwc) µ opt
0 26.276 2.83 · 10−01 (22.000, 12.000) 1.01
1 24.124 6.45 · 10−01 (22.427, 12.910) 2.63 · 10−01

2 25.135 0.00 (22.185, 12.449) 2.27 · 10−01

3 24.362 3.65 · 10−01 (22.351, 12.818) 1.63 · 10−01

4 24.991 0.00 (22.196, 12.531) 1.77 · 10−01

5 24.726 5.03 · 10−03 (22.252, 12.660) 1.10 · 10−02

6 24.731 0.00 (22.242, 12.662) 1.06 · 10−02

7 24.684 0.00 (21.526, 13.060) 1.17 · 10−02

8 24.674 0.00 (21.143, 13.275) 9.48 · 10−03

9 24.660 0.00 (20.691, 13.541) 3.92 · 10−01

10 24.505 3.00 · 10−03 (19.990, 14.067) 1.10 · 10−01

11 24.493 0.00 (18.664, 14.976) 7.06 · 10−01

12 24.392 3.92 · 10−02 (19.297, 14.600) 1.31
13 24.395 0.00 (18.520, 15.154) 2.91 · 10−01

14 24.339 0.00 (17.918, 15.661) 1.07 · 10−01

15 24.272 0.00 (17.348, 16.188) 4.39 · 10−01

16 24.222 0.00 (16.714, 16.797) 5.44 · 10−01

17 24.168 0.00 (16.222, 17.317) 4.83 · 10−01

18 24.128 0.00 (15.693, 17.901) 5.78 · 10−01

19 24.085 0.00 (15.245, 18.435) 5.19 · 10−01

20 24.050 0.00 (14.803, 18.990) 1.13 · 10−02

21 24.033 4.12 · 10−04 (14.807, 19.000) 3.50 · 10−04

22 24.034 0.00 (14.807, 19.000) 3.69 · 10−06

Table 7.13. Robust optimization with quadratic interpolation model for 500 timesteps
for linear material.

iteration f max(0,c) µ opt
0 11.43 0.00 (22.00, 12.00) 5.81 · 10−01

1 11.43 0.00 (21.97, 12.02) 2.68 · 10−02

2 11.42 0.00 (21.81, 12.12) 3.65 · 10−02

3 11.41 0.00 (21.16, 12.59) 1.76 · 10−01

4 11.38 0.00 (21.38, 12.50) 4.27 · 10−01

5 11.37 0.00 (20.49, 13.59) 3.13 · 10−01

6 10.96 0.00 (22.18, 13.01) 2.78 · 10−01

7 09.77 0.00 (28.00, 12.52) 2.15 · 10−01

8 09.74 0.00 (28.00, 12.85) 3.43 · 10−02

9 09.74 0.00 (28.00, 12.91) 3.53 · 10−03

10 09.74 0.00 (28.00, 12.90) 6.69 · 10−05

Table 7.14. Nominal optimization for 200 timesteps for nonlinear material.
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iteration fwc max(0, cwc) µ opt
0 13.539 2.53 · 10−01 (22.000, 12.000) 7.02 · 10−01

1 12.969 5.59 · 10−02 (22.293, 12.638) 4.71 · 10−02

2 13.032 2.36 · 10−02 (22.379, 12.475) 2.83 · 10−01

3 12.985 3.90 · 10−02 (22.442, 12.512) 9.52 · 10−02

4 12.984 3.63 · 10−02 (22.805, 12.294) 8.18 · 10−02

5 12.969 3.69 · 10−02 (22.652, 12.407) 2.31 · 10−01

6 12.937 4.52 · 10−02 (23.229, 12.129) 1.10 · 10−01

7 12.937 3.80 · 10−02 (23.012, 12.248) 3.79 · 10−01

8 12.924 3.94 · 10−02 (23.255, 12.134) 1.00 · 10−01

9 12.923 3.86 · 10−02 (23.255, 12.134) 1.77 · 10−01

10 12.923 3.77 · 10−02 (23.239, 12.144) 5.70 · 10−02

11 12.923 3.70 · 10−02 (23.217, 12.156) 3.26 · 10−02

12 12.926 3.64 · 10−02 (23.202, 12.159) 2.38 · 10−02

13 12.925 3.64 · 10−02 (23.199, 12.162) 1.95 · 10−02

14 12.933 3.50 · 10−02 (23.134, 12.185) 2.29 · 10−02

15 12.938 3.41 · 10−02 (23.089, 12.203) 1.37 · 10−01

16 12.987 2.76 · 10−02 (22.692, 12.355) 2.63 · 10−01

17 13.004 2.58 · 10−02 (22.573, 12.401) 9.63 · 10−03

18 13.022 2.41 · 10−02 (22.441, 12.452) 2.97 · 10−03

19 13.041 2.24 · 10−02 (22.441, 12.452) 2.51 · 10−03

20 13.061 2.04 · 10−02 (22.176, 12.556) 7.65 · 10−02

21 13.130 1.32 · 10−02 (21.741, 12.735) 3.75 · 10−01

22 13.141 5.34 · 10−03 (21.584, 12.831) 1.49 · 10−01

23 13.170 0.00 (21.584, 12.831) 5.97 · 10−02

24 13.165 1.18 · 10−04 (21.475, 12.871) 4.77 · 10−02

25 13.164 1.25 · 10−04 (21.480, 12.868) 4.92 · 10−03

26 13.164 3.87 · 10−05 (21.476, 12.870) 6.36 · 10−04

27 13.165 0.00 (21.474, 12.871) 1.91 · 10−03

28 13.164 1.88 · 10−05 (21.476, 12.870) 1.87 · 10−04

29 13.165 1.20 · 10−05 (21.476, 12.870) 1.88 · 10−04

30 13.165 5.05 · 10−06 (21.476, 12.870) 4.41 · 10−05

31 13.165 0.00 (21.475, 12.871) 6.74 · 10−05

Table 7.15. Robust optimization with linear Taylor approximation for 200 timesteps for
nonlinear material.
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iteration fwc max(0, cwc) µ opt
0 14.156 2.69 · 10−02 (22.000, 12.000) 5.62 · 10−01

1 12.990 9.10 · 10−02 (22.941, 14.041) 2.91 · 10−01

2 12.943 1.67 · 10−02 (22.932, 13.346) 4.33 · 10−01

3 12.712 4.70 · 10−02 (24.106, 12.866) 2.18 · 10−02

4 12.872 2.52 · 10−02 (23.326, 13.123) 6.69 · 10−02

5 13.017 7.58 · 10−03 (22.711, 13.338) 2.66 · 10−02

6 13.040 4.77 · 10−03 (22.590, 13.423) 7.47 · 10−03

7 13.083 0.00 (22.431, 13.483) 7.86 · 10−03

8 13.082 2.25 · 10−06 (22.429, 13.490) 2.27 · 10−04

9 13.082 1.98 · 10−06 (22.429, 13.491) 7.52 · 10−03

10 13.082 0.00 (22.429, 13.491) 1.79 · 10−04

11 13.082 1.65 · 10−09 (22.429, 13.491) 1.17 · 10−05

Table 7.16. Robust optimization with quadratic Taylor model for 200 timesteps for
nonlinear material.

iteration fwc max(0, cwc) µ opt
Shifting expansion point constraint

0 14.410 2.90 · 10−02 (22.000, 12.000) 5.49 · 10−01

Shifting expansion point constraint
1 13.138 0.00 (22.938, 13.985) 1.82 · 10−01

Shifting expansion point constraint
2 12.710 2.21 · 10−02 (24.764, 12.901) 1.09

Shifting expansion point constraint
3 12.372 2.87 · 10−02 (26.517, 13.081) 1.72

Shifting expansion point constraint
4 12.454 1.39 · 10−02 (25.442, 13.270) 5.28 · 10−01

Shifting expansion point constraint
5 12.398 6.71 · 10−03 (25.929, 13.555) 1.21 · 10−01

6 12.403 5.81 · 10−03 (25.985, 13.587) 4.44 · 10−02

7 12.416 4.23 · 10−03 (25.943, 13.620) 2.18 · 10−02

8 12.426 2.94 · 10−03 (25.916, 13.648) 6.44 · 10−05

9 12.446 7.63 · 10−04 (25.878, 13.696) 6.20 · 10−03

10 12.449 5.27 · 10−04 (25.874, 13.701) 3.60 · 10−05

Table 7.17. Robust optimization with quadratic Taylor model and shifted expansion
point for 200 timesteps for nonlinear material.
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energy number of modes error in norm
ε unonlinst unonlinrt unonlinb Σ ‖uhdeim − uh‖

1− 10−03 7 15 7 84 4.0409 · 10−07

1− 10−04 13 22 9 115 1.9011 · 10−08

1− 10−05 17 28 13 153 7.0053 · 10−09

1− 10−06 25 36 17 200 4.2081 · 10−09

1− 10−07 36 48 22 271 3.7863 · 10−09

1− 10−08 44 46 27 341 3.5506 · 10−09

1− 10−09 58 77 33 422 2.4296 · 10−09

1− 10−10 74 96 37 523 5.8002 · 10−10

Table 7.18. Dimension of the DEIM basis for 200 timesteps and resulting error and given
energy ε for the nonlinear basis.

energy number of modes error in norm
ε ast art ab Σ ‖uldeim − uh‖ ‖λldeim − λh‖

1− 10−03 2 3 2 25 2.0739 · 10−05 1.7640 · 10−04

1− 10−04 3 3 2 26 2.0323 · 10−05 1.4242 · 10−04

1− 10−05 3 5 2 28 1.6694 · 10−05 6.3805 · 10−05

1− 10−06 5 7 3 33 4.7458 · 10−05 6.2536 · 10−04

1− 10−07 9 10 4 43 9.3243 · 10−07 9.5459 · 10−06

1− 10−08 15 13 6 60 1.6571 · 10−06 7.1421 · 10−06

1− 10−09 17 14 7 75 2.5979 · 10−06 6.8764 · 10−06

1− 10−10 21 23 8 99 2.9915e · 10−06 5.9496 · 10−06

Table 7.19. Fixed DEIM basis for 200 timesteps and resulting error and given energy ε
for the basis.
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Conclusion

In this thesis we have investigated the robust shape optimization of an induction
machine using reduced order models. We have introduced the physical principles
that can be used to describe the behavior of an asynchronous machine and gave
a proof of the existence of a solution to the equations describing the fields of the
machine by the magnetoquasistatic approximation of Maxwell’s equations, which
are coupled with equations describing the rotor network and equations describing
the inductance effects of the stator windings. The set of equations is also coupled
with an equation of motion excited by the electromagnetic torque produced in the
airgap of the machine.
Having set the physical foundation for the simulation of an induction machine, we

have described how we use the finite element method to discretize the magnetic vec-
tor potential in space. We have described how the boundary conditions are applied
in the numerical simulation and seen different methods for the coupling of rotor and
stator when using a domain decomposition approach. Further we have introduced
the parametric shape optimization approach we are using and how we can utilize
the affine parametrization of our domain to pre-compute system matrices on a ref-
erence domain, which can then be summed up with weighted coefficients depending
on the design to obtain the system matrices for different parameters, which we need
to solve the state equation for different designs and uncertainties. Since in real-
istic models, in ferromagnetic regions the material coefficient depends nonlinearly
on the underlying magnetic flux density, we have seen how we can consider this in
the simulation and how we set up the needed nonlinear stiffness matrix. The time
stepping scheme we are using splits the solution of the state system into the solution
of the equation of motion, the field and circuit coupled equations and the torque
computation which leads to an efficient scheme that does not involve the solution of
a nonlinear system, when linearized material is considered. If nonlinear material is
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considered, the nonlinear field/circuit coupled equations are solved using Newton’s
method.
As the discretization of parabolic partial differential equations in space and time

leads to systems with a huge amount of degrees of freedom, we have described how
the proper orthogonal decomposition method can be used in the simulation and
optimization to reduce the degrees of freedom by approximating the state, adjoint
and sensitivity space. If nonlinear material is considered, we can make use of the
discrete empirical interpolation method to efficiently assemble the nonlinear terms.
Since we consider uncertainties in our optimization and treat them via a worst-case

approach, we have described approximation techniques for the worst-case of objec-
tive and constraint functions involving derivatives aswell as derivative free methods.
Finally we have used the described techniques to perform robust shape optimiza-

tion with reduced order models on an induction machine. Here the objective was
to minimize the averaged Joule losses in the rotor bars while preserving a given
averaged torque. We have considered geometric aswell as material uncertainties and
have seen, that respecting uncertainties in the optimization can make a significant
difference in the solution, compared to non-robust solutions.
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Derivation of Equations

A.1 Derivatives of nonlinear stiffness matrix

We will present here some of the formulas needed to compute the derivative of the
stiffness matrix, when the material depends on the underlying magnetic flux density.

Derivatives with respect to the state

We will assume here, that the whole domain has nonlinear material properties. (In
regions where this is not the case, the first order derivative of the stiffness matrix
with respect to the state is constant and the second order derivative vanishes.)
As we have seen in (4.35), the derivative of the stiffness matrix is given by
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)
f3

(
C−Tk (p)∇̂û
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where we have to compute the integrals
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∂̂y ŝ∂̂y v̂

+f3

(
C−Tk (p)∇̂û
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) (
C−1
k (p)

)
1,1

(
C−1
k (p)

)
2,2
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For the derivation of the second order derivative of the nonlinear stiffness matrix
with respect to the state variable we inspect the derivative((
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which is given by

a(x, s) = 2ν′
(
xTx

)
s1x1 + 4ν′′

(
xTx

)
x2

1 (x1s1 + x2s2) + 2ν′
(
xTx

)
(2x1s1 + x2s2)

= 4ν′′
(
xTx

)
x2

1

(
xT s

)
+ 2ν′

(
xTx

) (
2x1s1 + xT s

)
,

b(x, s) = 2ν′
(
xTx

)
s1x2 + 4ν′′

(
xTx

)
x1x2 (x1s1 + x2s2) + 2ν′

(
xTx

)
x1s2,

c(x, s) = 2ν′
(
xTx

)
s2x1 + 4ν′′

(
xTx

)
x1x2 (x1s1 + x2s2) + 2ν′

(
xTx

)
x2s1,

d(x, s) = 2ν′
(
xTx

)
s2x2 + 4ν′′

(
xTx

)
x2

2 (x1s1 + x2s2) + 2ν′
(
xTx

)
(x1s1 + 2x2s2) .

Defining duu(x, s) :=

(
a(x, s) b(x, s)

c(x, s) d(x, s)

)
, we get for the second order derivative of

the stiffness matrix with respect to the state variable in direction ŝ and ŝ2

L̃+1∑
k=1

2∑
i,j

∫
Ω̂k

(
duu

(
C−Tk (p)∇̂û, C−Tk ∇̂ŝ

)(
C−Tk ∇̂ŝ2

))T (
C−Tk ∇̂v̂

)
|detCk(p)|dx̂.

This equation has the same structe as (A.1) only the fi are replaced by (duu)i,j .
For the third order derivative of the stiffness matrix with respect to the state we

have to differentiate duu(x, s)s̃ with respect to x. We make the following definitions

h(x, s) = xT s, h2(x, s) = x1s2 + x2s1,

ε(x, s) = 4ν′′(xTx)h(x, s), δ(x) = 2ν′(xTx),

Zu(x, s, s̃) = x2
1s̃1 + x1x2s̃2, Zl(x, s, s̃) = x2

2s̃2 + x1x2x̃1,

Xu(x, s, s̃) = (h(x, s) + 2x1s1)s̃1 + h2(x, s)s̃2,

X l(x, s, s̃) = (h2(x, s) + 2x2s2)s̃2 + h(x, s)s̃.

Then duu(x, s)s̃ can be written as

duu(x, s)s̃ =

(
ε(x, s)Zu(x, s, s̃) + δ(x)Xu(x, s, s̃)

ε(x, s)Zl(x, s, s̃) + δ(x)X l(x, s, s̃)

)
and the derivative duuu(x, s, s̃) :− (∇xduu(x, s)s̃)

T is given by

duuu(x, s, s̃) =

(
(∇xε(x, s))TZu(x, s, s̃) + (∇δ(x))TXu(x, s, s̃)

(∇xε(x, s))TZl(x, s, s̃) + (∇δ(x))TX l(x, s, s̃)

)
+

(
ε(x, s)(∇xZu(x, s, s̃))T + δ(x)(∇xXu(x, s, s̃))T

ε(x, s)(∇xZl(x, s, s̃))T + δ(x)(∇xX l(x, s, s̃))T

)
.
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The third order derivative in direction ŝ3 is given by

L̃+1∑
k=1

∫
Ω̂k

(
duuu

(
C−Tk (p)∇̂û, C−Tk ∇̂ŝ, C

−T
k ∇̂ŝ2

)(
C−Tk ∇̂ŝ3

))T (
C−Tk ∇̂v̂

)
|detCk(p)|dx̂.

This equation again has the same structe as (A.1) only the fi are replaced by
(duuu)i,j .

Derivatives with respect to parameters

We will state here derivatives of the stiffness matrix with respect to the parameter
p. We define some needed terms and their derivatives

ak,i,j :=
[
C−1
k (p)C−Tk (p)

]
ij
|detCk(p)| ,

ak,i,jp1
=
[
C−1
k (p)C−Tk (p)

]
ij

∂

∂p1
|detCk(p)|

+

[
∂

∂p1
C−1
k (p)C−Tk (p) + C−1

k (p)
∂

∂p1
C−Tk (p)

]
ij

|detCk(p)|,

bk := ν(|C−Tk (p)∇̂û|2),

bkp1
= 2ν′(|C−Tk (p)∇̂û|2)

(
∂

∂p1
C−Tk (p)∇̂û

)T
C−Tk (p)∇̂û.

For the derivative of the stiffness matrix with respect to one parameter p1 of the
design, we have the following formula

L̃+1∑
k=1

2∑
i,j

(
ak,i,jp1

∫
Ω̂k

bk
∂u

∂x̂i

∂v

∂x̂j
dx̂+ ak,i,j

∫
Ω̂k

bkp1

∂u

∂x̂i

∂v

∂x̂j
dx̂

)
.

Here a and api are precomputed with symbolic values for the parameter. Meaning,
we have to compute 8 matrices. All the parts outside the transformable region
vanish since there d

dpCk = 0.
For the second order derivative with respect to parameters p1 and p2 we will again
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introduce some notation

akp1p2
=

[
∂

∂p2
C−1
k (p)C−Tk (p) + C−1

k (p)
∂

∂p2
C−Tk (p)

]
ij

∂

∂p1
|detCk(p)|

+
[
C−1
k (p)C−Tk (p)

]
ij

∂

∂p1∂p2
|detCk(p)|

+

[
∂

∂p1
C−1
k (p)C−Tk (p) + C−1

k (p)
∂

∂p1
C−Tk (p)

]
ij

∂

∂p2
|detCk(p)|

+
[
2

∂

∂p1∂p2
C−1
k (p)C−Tk (p) +

∂

∂p1
C−1
k (p)

∂

∂p2
C−Tk (p)

+
∂

∂p2
C−1
k (p)

∂

∂p1
C−Tk (p)

]
ij
|detCk(p)|,

bkp1p2
= 4ν′′(|C−Tk (p)∇̂û|2)

(
∂

∂p2
C−Tk (p)∇̂û

)T
C−Tk (p)∇̂û(

∂

∂p1
C−Tk (p)∇̂û

)T
C−Tk (p)∇̂û

+ 2ν′(|C−Tk (p)∇̂û|2)

((
∂

∂p1∂p2
C−Tk (p)∇̂û

)T
C−Tk (p)∇̂û

+

(
∂

∂p1
C−Tk (p)∇̂û

)T
∂

∂p2
C−Tk (p)∇̂û

)
.

We get for the second order derivative in direction p1 and p2

L̃+1∑
k=1

2∑
i,j

(
akp1p2

∫
Ω̂k

bk
∂u

∂x̂i

∂v

∂x̂j
dx̂+ akp1

∫
Ω̂k

bkp2

∂u

∂x̂i

∂v

∂x̂j
dx̂

+akp2

∫
Ω̂k

bkp1

∂u

∂x̂i

∂v

∂x̂j
dx̂+ ak

∫
Ω̂k

bkp1p2

∂u

∂x̂i

∂v

∂x̂j
dx̂

)
.

This requires to compute 16 integrals, where we can reuse some from the computa-
tion of the first derivative.
In the nonlinear material optimization, we use the conductivity as uncertainty

and the second derivative wrt. design is constant for different designs and the third
order derivative vanishes.
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