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Abstract

Distributed Stream Processing (DSP) systems have emerged as a pivotal
paradigm, enabling real-time data analysis using distributed cloud resources.
Major Internet companies like Amazon and Google, build on DSP systems
for their real-time data workloads. For instance, Amazon provides Apache

Flink as a service for implementing DSP workloads. Parallelism is often a
desired property of DSP workloads to meet the timeliness and scaling re-
quirements of current applications, necessitating the use of distributed and
multi-core cloud resources. However, cloud resources are heterogeneous in
nature, which makes understanding the performance of DSP workloads very
difficult, as it depends on highly varying resources, i.e., compute, storage,
and network. Therefore, (i) understanding the performance and (ii) predicting
it for distinct DSP workloads on such heterogeneous cloud environments
are both very challenging problems. This thesis solves these two fundamen-
tal research challenges by contributing methods for accurate performance
modeling of DSP workloads in heterogeneous cloud environments.

First, this thesis contributes to methods for performance understanding
by proposing PDSP-BENCH, a novel benchmarking system. It tackles three
primary challenges of existing work: lack of expressiveness in benchmark-
ing parallel DSP workloads, the need for heterogeneous hardware support,
and the need for integration of learned DSP models. Unlike existing systems,
PDSP-BENCH enables the evaluation of parallel DSP applications and work-
loads using both synthetic and real-world applications, offering an expres-
sive and scalable solution. Further, it facilitates the systematic training and
evaluation of learned DSP models on diverse streaming workloads, which is
crucial for optimizing performance. The extensive evaluation of PDSP-BENCH

demonstrates its benchmarking capabilities and highlights the impact of vary-
ing query complexities, hardware configurations, and workload parameters
on system performance. The key observations of our experiments show the
non-linearity and paradoxical effects of parallelism on performance.

Second, this thesis contributes to methods on performance prediction and
optimization by proposing ZEROTUNE, a novel learned cost model for DSP
workloads and an optimizer for parallelism tuning. It provides highly accu-
rate cost predictions while generalizing to (unseen) heterogeneous hardware
resources of the cloud. The generalizability of the model is based on transfer

learning, the same technique that is used in Large Language Models like Chat-
GPT. The main idea is to learn from so-called transferable features and par-

allel graph representation that together enable the model to generalize to un-
seen DSP workloads and hardware. Our extensive evaluation demonstrates
ZEROTUNE’s robustness and accuracy across workloads, various parallelism
degrees, unseen operator parameters, and training data efficiency. The eval-
uations show significant speed-ups with parallelism tuning compared to ex-
isting methods. Most notably, our approach has been adopted by Amazon

Redshift for query execution time prediction.
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Kurzfassung

Distributed-Stream-Processing (DSP) Systeme haben sich als zentrales Pa-
radigma herauskristallisiert, das die Echtzeit-Datenanalyse mit verteilten
Cloud-Ressourcen ermöglicht. Groûe Internetunternehmen wie Amazon und
Google bauen auf DSP-Systeme für ihre Echtzeitdaten-Workloads. So bie-
tet Amazon beispielsweise Apache Flink als Service für die Implementierung
von DSP-Workloads an. Parallelität ist oft ein gewünschtes Merkmal von DSP-
Workloads, um die Anforderungen an Aktualität und Skalierbarkeit heutiger
Anwendungen zu erfüllen, was den Einsatz verteilter und Multi-Core-Cloud-
Ressourcen erforderlich macht. Cloud-Ressourcen sind jedoch von Natur
aus heterogen, was das Verständnis der Leistung von DSP-Workloads sehr
erschwert, da sie von stark variierenden Ressourcen, d.h., Rechen-, Speicher-
und Netzwerkressourcen, abhängen. Daher sind sowohl (i) das Verständnis
der Leistung und (ii) die Vorhersage der Leistung für verschiedene DSP-
Workloads in solchen heterogenen Cloud-Umgebungen sehr anspruchsvolle
Probleme. Diese Arbeit löst diese beiden grundlegenden Forschungsheraus-
forderungen, indem sie Methoden für eine genaue Leistungsmodellierung
von DSP-Workloads in heterogenen Cloud-Umgebungen bereitstellt.

Erstens trägt diese Arbeit zu Methoden für das Verständnis der Leis-
tung bei, indem sie PDSP-BENCH vorschlägt, ein neuartiges Benchmarking-
System. Es nimmt drei primäre Herausforderungen bestehender Arbeiten
in Angriff: mangelnde Ausdruckskraft beim Benchmarking paralleler DSP-
Workloads, die Notwendigkeit heterogener Hardwareunterstützung und die
Notwendigkeit der Integration gelernter DSP-Modelle. Im Gegensatz zu be-
stehenden Systemen ermöglicht PDSP-BENCH die Evaluierung von par-
allelen DSP-Anwendungen und -Workloads sowohl mit synthetischen als
auch mit realen Anwendungen und ist eine ausdrucksstarke und skalierba-
re Lösung. Darüber hinaus erleichtert es das systematische Training und
die Evaluierung von gelernten DSP-Modellen auf verschiedenen Streaming-
Workloads, was für die Leistungsoptimierung entscheidend ist. Die umfas-
sende Evaluierung von PDSP-BENCH demonstriert seine Benchmarking-
Fähigkeiten und zeigt die Auswirkungen unterschiedlicher Abfragekomple-
xitäten, Hardware-Konfigurationen und Workload-Parameter auf die Sys-
temleistung. Die wichtigsten Beobachtungen unserer Experimente zeigen
die Nichtlinearität und die paradoxen Auswirkungen der Parallelität auf
die Leistung.

Zweitens leistet diese Arbeit einen Beitrag zu Methoden der Leistungsvor-
hersage und -optimierung, indem sie ZEROTUNE vorschlägt, ein neuartiges
Learned-Cost Modell für DSP-Workloads und einen Optimierer für die Paral-
lelitätsabstimmung. Es liefert hochpräzise Kostenvorhersagen und lässt sich
gleichzeitig auf (unbekannte) heterogene Hardware-Ressourcen in der Cloud
verallgemeinern. Die Verallgemeinerbarkeit des Modells basiert auf Transfer-

Lernen, der gleichen Technik, die in Large Language Models wie Chat-GPT
verwendet wird. Die Hauptidee besteht darin, von sogenannten übertragba-
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ren Merkmalen und einer parallelen Graphdarstellung zu lernen, die es dem
Modell ermöglichen, sich auf unbekannte DSP-Workloads und Hardware zu
verallgemeinern. Eine umfangreiche Evaluierung zeigt die Robustheit und Ge-
nauigkeit von ZEROTUNE bei verschiedenen Workloads, verschiedenen Par-
allelitätsgraden, unbekannten Operatorparametern und Trainingsdateneffi-
zienz. Die Auswertungen zeigen signifikante Geschwindigkeitssteigerungen
durch Parallelitätstuning im Vergleich zu bestehenden Methoden. Darüber
hinaus wurde unser Ansatz von Amazon Redshift für die Vorhersage der Ab-
frageausführungszeit übernommen.
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concepts and existing literature related to performance modeling in parallel
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ducted a thorough analysis to pinpoint the fundamental research gaps and
challenges that this work aims to address. I published identified research
gaps and the resulting challenges in designing such performance modeling
and parallelism tuning for DSP systems in [6].

Chapter 3, Performance Modeling and Parallelism Tuning, outlines a com-
mon DSP scenario that spans various application domains illustrating the
broad applicability and need of the proposed solution in this thesis. This
scenario description is followed by a comprehensive overview of the system
model and logical architecture of the proposed system for performance mod-
eling and parallelism tuning in DSP systems. These presented concepts and
overall performance modeling models and methods were discussed and devel-
oped with Prof. Binnig, Prof. Koldehode, and Dr. Luthra. These findings and
initial results were later published in [4, 5, 6]

1MAKI Multi Mechanism Adaptation for the Future Internet https://www.maki.

tu-darmstadt.de/ [Accessed in 25.04.2024].
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Additionally, I collaborated with Pegah Golchin and Chengbo Zhou to ex-
plore the practical application of my proposed models for accelerating per-
formance using machine learning methods and hardware accelerators. We
supervised lab [1] and Mater thesis [1], focusing on real-time in-network traf-
fic intrusion detection to enhance network security. I contributed by pro-
viding input on conceptual design and machine learning models, as well as
improving evaluation and applicability in real-world scenarios. The results of
this joint work were published in [8], earning the Best Paper Award at IEEE
for our contributions.

Furthermore, I investigated the direction of applying various optimization
mechanisms, e.g., placement and parallelism tuning, to achieve Quality of
Service (QoS) requirements while real-time data processing on resources
such as cloud, fog, and edge nodes. I collaborated with Dr.-Ing. Mikhail
Fomichev (Seemoo, TU Darmstadt), Dr.-Ing. Manisha Luthra (DFKI and TU
Darmstadt) and Dr. Maik Benndorf (University of Oslo). In this joint work,
I contributed by defining DSP processing scenario in the context of pre-
serving users’ privacy, followed by designing and conceptualizing to apply
various optimizations such as operator placement, operator parallelization
as well and privacy-preserving mechanisms (PPM) in DSP systems. Later,
this joint work was published in [7], where all the co-authors contributed
to the publication’s writing.

Chapter 4, building on my previous investigation and identified gaps [6,
4], I designed and developed PDSP-BENCH benchmarking system to facilitate
a systematic understanding of performance and resource configurations for

Parallel and Distributed Stream Processing. I contributed by investigating ex-
isting performance modeling methods and the framework required to build
such a system, followed by identifying the challenges of building a bench-
marking system that can facilitate understanding and analyzing performance
and generate a corpus of performance data for DSP system optimization. Fur-
thermore, I conceptualized the overall system design, which included mod-
eling performance metrics, adapting and implementing real-world and syn-
thetic applications, identifying workload- and resource-specific parameters,
and conducting preliminary evaluations to understand their influence on
performance across heterogeneous cloud resources and evaluation of well-
known DSP systems such as Apache Flink, Apache Storm, and Heron.

I extended the idea of a benchmarking system for DSP systems and exten-
sively evaluated the performance of various data flows for varying hardware
configurations and workload characteristics for different performance met-
rics such as end-to-end latency and resource utilization. Additionally, I inte-
grated the learned cost models into the benchmarking system to offer a fair
method to collect data for performance analysis. I also used the same data to
train machine learning models for performance prediction as well as DSP sys-
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tem optimization such as parallelism tuning and placement. Subsequently, I
have published the overall idea of PDSP-BENCH, a novel performance model-
ing using benchmarking system [2]. All the co-authors of the aforementioned
works [6, 5, 2] contributed to the written text of the manuscript.

Additionally, I explored how different industries use performance bench-
marking to demonstrate the real-world applicability of the solution. For this,
I collaborated with Miguel Rodriguez (Senior Program Manager, Deutsche
Telekom) to further investigate different IoT devices and their performance
with varying application scenarios, network and hardware configuration. I col-
laborated with extending the existing solution of IoT Solution Optimizer with
axxessio GmbH to include an additional module for benchmarking systems.
We published the overall system design, identified challenges, and initial eval-
uation results in [5], where all the authors contributed in writing the paper.
We presented our industry solution, which efficiently models and validates
the performance of proposed or deployed IoT products quickly.

Chapter 5 introduces ZEROTUNE, a novel performance prediction model
for DSP that determines initial parallelism degrees based on predicted perfor-
mance without query execution, significantly reducing the need for costly ad-
justments during the early stages of query execution. I conducted a thorough
literature review on the existing analytical and machine learning methods for
optimizations in DSP systems, such as parallelism, placement, or resource
provisioning based on workload and resource characteristics. Following this,
I developed a basic learning cost model and conducted a preliminary eval-
uation, which was essential to identifying the research gap and challenges
to designing a performance model that can accurately predict performance
and be generalizable across various workload and resource characteristics
that are not even part of the training data. These findings were detailed in
our publication [4, 3].

I also investigated various tools and frameworks necessary for implement-
ing such solutions, notably using Apache Flink for developing workload gen-
erators for generating diverse training and testing data sets and setting up
metal servers on CloudLab to simulate real-world DSP system deployments.
This exploration also covered the foundational concepts of Zero-shot learning,
including necessary features and their representations. Subsequently, I su-
pervised the M.Sc. thesis of Paul Stiegele [2] with Dr. Luthra and Prof. Boris.
Using transfer learning, he developed a proof of concept, focusing on model
accuracy against test data. In addition, Ph.D student Roman Heinrich (DFKI
Darmstadt) of Prof. Binnig and Dr. Luthra, who are working in the direction
of transfer learning for operator placement, also time-to-time shared his in-
sights about his work to improve the proof of concept further. Furthermore,
I continued to extend and conceptualize the idea of generalizability by reduc-
ing training time and data. I extended the proof of concept to compare in
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addition to comparison with different baselines and sophisticated machine
learning architectures. These contributions were later published in [1]. All
co-authors provided invaluable feedback and contributed significantly to the
refinement and review of the manuscript.

Chapter 6 presents a comprehensive evaluation of the proposed contri-
butions to assess the effectiveness and applicability of performance model-
ing approaches in real-world scenarios across diverse streaming workloads
and computational environments provided by cloud resources. Building on
the proof of concept from the master’s theses [2, 3], I extended the evalua-
tion framework to include further specialized workload and resource config-
urations designed to reflect the dynamic and heterogeneous nature of mod-
ern DSP operations, making it an essential tool for comparative analysis and
a deeper understanding of different modeling approaches. A significant focus
of my evaluation centers on ZEROTUNE, where I extensively evaluate and an-
alyze the accuracy with which performance models, particularly in terms of
predicting costs such as latency and throughput, can generalize and adapt
across varied DSP workloads with minimal training, including different query
types and data streams, and resource configurations.

Additionally, I have expanded the evaluation of PDSP-BENCH to systemat-
ically explore the performance of real-time and synthetic queries across var-
ious DSP applications, encompassing diverse workloads and heterogeneous
hardware setups. This also includes integrating machine learning models to
leverage the data generated for model training. The insights gained from these
comprehensive evaluations have been published [4, 3, 1, 2], which detail the
significant findings and contributions of our research. Prof. Koldehofe, Dr.
Luthra, and Prof. Binnig have provided valuable feedback on evaluation re-
sults to improve further and examine the performance models.

Finally, this thesis was written entirely by the author, and no content was
generated by AI. AI tools such as Grammarly and ChatGPT are only used for
grammar and spelling correction and improving inconsistency in sentence
structure.
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1
Introduction and Motivation

There has been a significant rise in modern data-driven applications across
various sectors, e.g., financial trading [203], social media and entertainment
trend monitoring [2], healthcare [247], traffic monitoring [81], and fraud de-
tection [160]. For instance, entertainment platforms like Netflix handle ap- Rise of

data-driven

applica-

tions...

prox. 1.3 TB data daily [33] to deliver seamless streaming experiences, while
social media platforms like Facebook [139] process 9 GB user data per sec-
ond to analyze user interactions in real-time and provide personalized con-
tent. One of the critical requirements for these data-driven applications is
timeliness, where real-time data processing and response are essential.

Distributed Stream Processing (DSP) systems have emerged as a critical
technology for the growing demands of these applications. For instance, Net- ...necessi-

tates use

of DSP

system...

flix uses Apache Flink [33] and Facebook uses Puma stream processing en-
gines [58]. To meet the real-time and high throughput requirements of these
applications, DSP systems offer a dataflow abstraction that chains the com-
pute units called operators in a so-called dataflow graph.

Current DSP systems often deploy dataflow graphs on cloud resources
to meet the performance requirements of these modern data-driven appli-
cations. This is because cloud platforms provide the necessary computa- ...on the

cloud.tional power and scalability to handle massive data volumes and complex
processing tasks. However, cloud resources are inherently heterogeneous,
which makes understanding the performance of DSP workloads very diffi-
cult. This is because the performance highly depends on the available re-
sources ± compute, storage, and network ± all being heterogeneous, making
the problem even harder. Moreover, the colocation of DSP workloads on the Hard to

assess DSP

in heteroge-

neous

environ-

ments

same hardware further complicates the understanding [267]. For instance,
Amazon EC22 provides different instances optimized to fit for different use
cases. There are instances that are optimized for computing (CPUs), mem-
ory (RAM), and storage (SSDs, disk space) separately. For instance, memory-
optimized instances (R7g instances) offer nodes ranging from memory sizes
of 8 − 512 GiB.

2Web service of Amazon provides a wide selection of cloud instances. https://aws.amazon.
com/ec2/instance-types/ [Accessed on 25.06.2024]
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2 Introduction and Motivation

To deal with the high workload requirements of current data-driven appli-
cations, DSP systems specify the operator parallelism in the graph specifi-
cation and provide data partitioning strategies to manage these parallelised
dataflows on the cloud. While such parallel dataflows have become an in-Parallelism

is a desired

property

but...

trinsic part of every DSP system, there is, however, no means of systematic
understanding of DSP performance under massively parallel dataflows as
most of the existing systems [20, 64, 250, 132] are tailored towards the un-
derstanding of sequential dataflows.

There exists benchmarking systems for DSP [238, 91, 42, 111] that lim-
itedly assess parallel dataflow applications. However, they are restricted to
homogeneous hardware. In the real world, applications like Netflix run on
1400+ nodes on 50+ distinct clusters with varied CPU cores [33] to deal with
their demands of massively parallel dataflow applications. Therefore, accu-...existing

systems are

limited in

perfor-

mance

modeling of

parallel

dataflows.

rate performance modeling for DSP is essential to solve these challenges and
ensure that applications can consistently meet their performance goals, e.g.,
timeliness. DSP systems can use accurate performance modeling to predict
how different configurations will perform, enabling informed decisions to de-
termine operator parallelism or operator placement, i.e., the deployment of
parallel operators on heterogeneous hardware.

However, predicting the performance of parallel dataflows on heteroge-
neous hardware is a very challenging problem. This is because the applica-
tion workload is very dynamic, and it changes with time. For instance, inPredicting

perfor-

mance of

parallel

dataflows

is even

harder

the Netflix example, movie requests vary depending on the time of the day,
with more requests in the evening after office hours while fewer requests
during the day. Moreover, the workloads are not known in advance, and
the prediction model must adapt to the kind of workload for which it does
performance prediction. Above all, executing the workload on heterogeneous
hardware and their unpredictable behavior in the cloud, as discussed before,
make the problem even more difficult [267, 139].

This thesis contributes to accurate performance modeling for distributed
stream processing in heterogeneous environments by proposing a bench-
marking system and zero-shot machine learning models. The results can be
used to perform mechanism transitions. Mechanism transitions is a concept
established in the research project Collaborative Research Centre ªMAKIº [15,
254, 88, 164, 196] where adaptations between mechanisms are performed to
meet the performance requirements of the underlying system. By leveraging
the results established in this thesis, effective transitions between parallelism
mechanisms of DSP system can be performed based on the predicted perfor-
mance of zero-shot cost models. In the following, we discuss the research
challenges and goals of this thesis.
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Figure 1: Overall system architecture showing the two research challenges solved
in this thesis on RC1: performance understanding and RC2: performance
prediction and optimization.

1.1 Research Challenges

The distributed and heterogeneous environments of stream processing im-
pose significant challenges for performance understanding and prediction
of DSP workloads, as discussed above. Based on this, we elaborate on these
two core research challenges (RC). Figure 1 positions the research challenges
in an overall architecture that we propose in this thesis comprising of DSP
applications, data stream connectors, DSP systems and cloud providers of-
fering heterogeneous resources.

RC1: Understanding the performance of parallel dataflows in heterogeneous

environments.

In the context of DSP systems, understanding the performance of DSP
workloads within heterogeneous environments presents a significant chal-
lenge. Firstly, heterogeneous cloud environments encompass a wide range
of hardware configurations, from high-performance to low-power resources,
each with varying CPU speeds, memory sizes, and I/O capabilities. Secondly, DSP on het-

erogeneous

environ-

ments is

hard to

assess...

network conditions such as latency and bandwidth can vary unpredictably,
affecting the efficiency of data transfer and synchronization between dis-
tributed operators. This diversity makes it difficult to generalize performance
metrics, as the behavior of DSP operations can differ significantly depending
on the underlying hardware. Moreover, the fluctuating availability of cloud
resources adds another layer of complexity. Additionally, DSP systems must ...under

varying

conditions.
handle a wide variety of data from different applications with unique QoS
requirements. Above all, parallel dataflows behave very differently than se-
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quential dataflows because both the number of parallel instances of operators
and data partitioning among them have a huge influence on the performance
of DSP systems. Moreover, incorrect provisioning of parallel operators results
in effects like backpressure (reduced data rate); therefore, finding a good
balance and optimal parallelism degrees for operators requires detailed per-
formance benchmarking. Together, these factors create a highly complex and
variable environment, making it difficult to explore potential configurations
and scenarios for performance modeling for parallel dataflows, necessitating
advanced, comprehensive solutions to ensure consistent and efficient DSP
system performance.

RC2: Performance prediction and optimization under dynamic workloads

and heterogeneous environments.

In the first challenge, we highlighted the importance of performance bench-
marking to find out optimal parallelism degrees for parallel dataflow appli-
cations. However, performance benchmarking is expensive; in fact, execut-Benchmark-

ing is

expensive...
ing DSP workloads on a testbed like CloudLab [76] requires several days or
even weeks to benchmark performance depending upon the number of re-
sources. The use of machine learning (ML) for performance prediction of DSP
systems is a viable option and existing work adjusts parallelism [213, 140,
201] or uses ML methods to provision parallel resources based on the pre-...to explore

all viable

configura-

tions.

dicted costs [112, 67, 54]. A key challenge, however, for such approaches
is their applicability for different DSP workloads and executing them on
heterogeneous environments. This is especially difficult because current ap-
proaches learn a model specific to a DSP workload. For instance, a modelExisting

models are

workload-

specific...

that learns the performance of queries specific to Netflix fails to generalize to
queries specific to Facebook. Existing ML models train specifically for each
workload (DSP data and query), which is clearly not a scalable solution. An-
other problem is that current ML models hardly take heterogeneous hard-
ware into account in their featurization [174, 131, 25]. Even when they do,...and lack

generaliza-

tion.
they suffer from similar generalization problems for unseen hardware [155,
249] like for unseen workloads, as explained above. Clearly, this is a problem
for DSP workload execution on heterogeneous cloud resources.

1.2 Research Goals and Contributions

We show that the research challenges found in the above section are solved
by the contributions of this thesis: (i) PDSP-BENCH: A benchmarking system
for parallel and distributed dataflow applications of DSP and (ii) ZEROTUNE:
A zero-shot cost model that predicts precise performance of parallel dataflow
applications even when they execute on heterogeneous hardware. Thus, the
main goal of this thesis is to provide methods for accurate performance mod-
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Figure 2: The proposed contributions in this thesis (1) PDSP-BENCH [7]: A bench-
marking platform for parallel and distributed dataflow applications of DSP
for RC1 and (2) ZEROTUNE [8]: a zero-shot cost model that predicts accu-
rate performance of parallel dataflow applications even when they execute
on heterogeneous hardware to tackle RC2.

eling as follows: (i) By benchmarking parallel dataflow applications of DSP
using our PDSP-BENCH system, and (ii) By accurate performance prediction
of parallel dataflow applications across heterogeneous hardware using our
generalizable cost model named ZEROTUNE. Thus, we divide into the follow-
ing two main research goals, one for each contribution.

Research Goal 1: Systematic performance benchmarking of parallel and dis-

tributed stream processing workloads in heterogeneous environments.

PDSP-
BENCH for

perfor-

mance

benchmark-

ing...

This research goal focuses on a systematic understanding of the performance
of parallel dataflows of DSP applications under heterogeneous cloud environ-
ments. For this, we propose PDSP-BENCH, the first benchmarking system
that enables the creation and evaluation of parallel dataflow graphs and
provides large corpora based on 23 synthetic and real-world applications
on heterogeneous testbeds of CloudLab resources. Using these applications
as workload structures for parallel dataflows, we generate several thousand
queries that we benchmark using PDSP-BENCH.

By facilitating the integration of this large variety of parallel dataflow work-
loads and support for the management of heterogeneous hardware resources
from Cloudlab [76], we provide the first benchmarking system for paral-
lel DSP systems. In addition to benchmarking, we also show ML models can ...with data-

generation

for ML.
be trained on the generated workloads using PDSP-BENCH, which allows a
fair comparison between the ML models by generating consistent training
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data. We evaluate PDSP-BENCH by using a widely used DSP system, Apache

Flink [52, 50] as a System Under Test (SUT) and demonstrate the impact of
varying parallelism complexities, hardware configurations and DSP workload
parameters on DSP system performance.

Research Goal 2: Generalizable and data-efficient learned performance mod-

els for DSP in heterogeneous environments.

ZEROTUNE

for accurate

perfor-

mance

prediction...

This research goal focuses on overcoming the challenge of accurate perfor-
mance prediction of distinct parallel dataflow applications on heterogeneous
hardware. For this, we propose ZEROTUNE, a novel zero-shot cost model that
gives precise predictions on the performance (e.g., latency and throughput)
of executing parallel dataflow graphs on heterogeneous hardware resources.
The zero-shot property of ZEROTUNE means that we prevent the need for con-
stant retraining of the model for every new parallel dataflow workload encoun-
tered for the inference or when new hardware becomes available in the cloud.

To this end, we propose a novel cost model that allows DSP to tune ini-
tial parallelism degrees without the need of executing any workloads on DSP
systems. The model is based on a graph neural network (GNN), and we care-...and gen-

eralization

for unseen

dataflow...

fully select transferable features that allow the model to generalize to unseen
parallel dataflow structures and hardware. For parallelism-related training
data, we propose a data-efficient training data collection strategy OptiSam-

ple. Unlike the random selection of parallelism, OptiSample determines the
right number of processing instances for each operator using analytical ap-
proaches [225, 83, 131] that allows high accuracy of the learned model in
fewer workloads and training time. An exhaustive evaluation confirms ZE-...with

parallelism

tuning.
ROTUNE’s robustness and accuracy of ZEROTUNE across a wide spectrum of
workloads, including seen and unseen scenarios, across varying degrees of
parallelism, and in the context of unseen operator parameters. Furthermore,
it highlights the model’s data efficiency during training and the significant
performance improvements achieved through its parallelism tuning strategy
compared to alternative methods.

Open Source Contributions

We have released the software artifacts related to our contributions PDSP-
BENCH and ZEROTUNE as open-source software under Apache License 2.0.

• https://github.com/pratyushagnihotri/PDSPBench: This repository con-
tains the source code of PDSP-BENCH for performance benchmark-
ing [7]. To this end, the repository includes step-by-step documentation

https://github.com/pratyushagnihotri/PDSPBench
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for cloud environment setup, initiating the benchmarking process, per-
formance monitoring, data generation, benchmarking prediction models,
and benchmark results.

• https://github.com/pratyushagnihotri/ZeroTune: This repository con-
tains the source code of ZEROTUNE zero-shot performance prediction
model with optimizer for initial parallelism tuning [8]. To this end, the
repository includes step-by-step documentation for distributed envi-
ronment setup, training data generation, training, and inference using
learned performance models, as well as an optimizer for initial paral-
lelism tuning.

1.3 Structure of the Thesis

Following this introduction and motivation for our research challenges, goals,
and contributions, Chapter 2 provides a conceptual background on paral-
lel and distributed stream processing and performance modeling methods,
which are essential to understand the core of the DSP system. Chapter 3 dis-
cusses the common scenario, system model, and an overview of the contribu-
tions. Chapter 4 presents performance benchmarking system PDSP-BENCH,
its components and the benchmarking workflow. Chapter 5 presents the zero-
shot cost model ZEROTUNE, including the feature selection, efficient data gen-
eration using training strategies, the training and inference process, and an
optimizer for parallelism tuning. Chapter 6 presents an extensive evaluation
of PDSP-BENCH and ZEROTUNE on different workloads, cloud hardware re-
sources, and their varying configurations as well as their comparison with
existing baselines to show performance benchmarking capability, prediction
accuracy, and generalization of proposed methods. Finally, Chapter 7 con-
cludes this thesis with a summary of our contributions and an outlook on
potential future directions.

https://github.com/pratyushagnihotri/ZeroTune




2
Fundamentals and State of the Art

In this chapter, we lay the groundwork by offering foundational insights into
the concepts and an overview of the state of the art to understand the con-
tributions discussed in this thesis. Our discussion commences with a deep
dive into the concept of parallel and distributed stream processing, the cor-
nerstone of our thesis, and its associated components will be thoroughly ex-
plained in Section 2.1. Following this, our focus shifts to performance mod-
eling of DSP, exploring the various methods available. We examine diverse
measurement approaches, including learned and non-learned methods, and
discuss how these methods can be effectively applied to performance mod-
eling and initial parallelism tuning in Section 2.2. Finally, we conclude this
chapter by presenting a comprehensive overview of existing research related
to DSP, specifically focusing on methods for performance modeling, paral-
lelism, and resource provisioning in Section 2.3.

2.1 Parallel and Distributed Stream Processing

The widespread adoption of digital devices and tools has led to a rapid growth
in the amount, diversity, and speed of data [4, 198, 47, 164]. This expan- Timeliness

is an

essential

factor for...

sion has led to the creation of vast pools of data across various applications,
spawning from various sources such as click analytics [171], health monitor-

ing [212], financial transactions [85], and so on. In the current digital land-
scape, timeliness and high workload processing have become critical factors
in these modern data-driven applications. For instance, emerging applica-
tions in smart cities, banking, retail, infrastructure monitoring, and Internet
of Things (IoT) require the rapid processing of continuous data streams to
ensure minimal latency and maximum throughput [234, 77]. The need for ...better

services in

many

real-world

applica-

tions.

robust, real-time data processing solutions has never been more pronounced
as industries strive to detect patterns, identify failures, and derive actionable
insights from these data streams.

The rapid growth of data and the need for timeliness for data processing has
precipitated the development and evolution of systems capable of processing
data in real-time, known as Distributed Stream Processing (DSP) systems [47,

9
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Figure 3: Evolution of DSP systems (adapted from [66, 51]).

185, 41, 207]. The evolution of DSP systems, depicted in Figure 3, reflects a
journey from managing dynamic data streams to embracing the complexities
of distributed, real-time processing across various architectures, including
cloud and edge computing [24, 51, 198, 66, 138]. Initially, Data Stream Man-
agement Systems (DSMSs) adapted traditional database management sys-
tems to accommodate unbounded data streams, offering SQL-like languages
for constructing long-running queries [145, 184, 47]. We are now witnessingFourth

generation

of DSP is

about...

the advent of a fourth generation of DSP systems, representing the forefront of
stream processing methods, emphasizing on user-defined operations, explore
parallel processing [173, 44, 4] and resource elasticity, and accelerate perfor-
mance using hardware-acceleration [43, 147] to meet the challenges of timeli-
ness in distributed stream processing in cloud computing environments [94].

DSP systems function as middleware [4, 198, 31, 47], processing data
from various data producers or sources and delivering the results to data

consumers or sinks. As illustrated in Figure 4, a DSP system can receive...parallel

processing

and

hardware

accelera-

tion.

data from diverse data producers such as user tweets, sensor data from au-
tonomous vehicles, gaming data, and financial transactions. The DSP system
then continuously processes this data in response to queries from data con-

sumers, such as banks or retail industries. It allocates the data across one or
more computing physical resources for processing and extracting meaningful
insights. For instance, it can analyze tweet data to gauge user behavior, detect

fraudulent transactions, or generate targeted advertising recommendations
based on gaming analysis. Ultimately, it delivers these insights to the data

consumers in response to queries. Given this foundation, Definition 2 [66,
198] explains a distributed stream processing system as used in this thesis.
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Figure 4: Overview of a DSP systems where an unbounded sequence of data streams

produced from various data producers are processed step by step in graphs

of operators based on query from data consumers, e.g., click stream analyt-
ics [33], financial banking [85]. After query processing, results are delivered
to consumers in the form of finding complex patterns and triggering actions
in real-time.

Definition 1. Distributed Stream Processing (DSP) Systems

DSP systems process continuous data streams across multiple comput-
ing resources or nodes in a network. This enables real-time data anal-
ysis by partitioning data streams and distributing workloads among
multiple nodes.

To better understand this definition, let us consider the example of process-
ing weather sensor data in a distributed manner, as presented in Figure 5.
A weather monitoring consumer aims to identify locations with temperatures DSP system

offers...exceeding 40 degrees. For this, a consumer constructs 0 a query to ana-
lyze the WeatherSensorStream. Figure 5 illustrates a typical processing of data
streams in a DSP system, where 0 represents an input query and 1 presents
a logical plan in the form of a Directed Acyclic Graph (DAG) that models the
data flow from data producers (SO) to consumers (SI ). In this DAG, vertices

symbolize operators, e.g., filter (ωσ), window aggregation (ωξ) that sequentially
process streams to transform events into more complex outcomes progres-
sively and edges denote the flow of data streams, processed by these oper-
ators. Moreover, the physical plan, or the assignment of physical resources, ...real-time

processing

of data.
demonstrates how operators are deployed on cloud resources to process data
streams while adhering to the QoS requirements specified by the consumers.
These QoS requirements are generally specified in the queries and are met
through the resource management strategies implemented within DSP sys-
tems.
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SELECT location, COUNT(*) FROM WeatherSensorStream [RANGE 1 HOUR] 
WHERE temperature > 40; 
GROUP BY location;
HAVING COUNT(*) > 100;

Input Query0

Logical Directed Acyclic Graph and Physical Resource Assignment

Physical Nodes

1

Data Stream

… 𝜔𝜎 𝜔𝜉 𝜔𝜎So SI

So : Data Producer, ConsumerSI
𝜔𝜎 𝜔𝜉 : Filter, Window Aggregate Operators, ,

Figure 5: Example of DSP of weather sensor data [4, 8].

Parallel Stream Processing (PSP)

DSP systems employ parallel stream processing (PSP) to achieve fast response
time even under high workloads, allowing entire or sub-parts streams to be
processed by multiple instances of an operator(s), which are placed either onPSP

enables

multiple

instances of

operators...

a single node or distributed across multiple nodes [198, 159, 66] on cloud
infrastructure. The concept of parallelism in streaming systems is often re-
ferred to as the parallelism degree, which specifies the number of operator
instances required for data stream processing.

Definition 2. Parallel Stream Processing (PSP)

Parallel stream processing refers to the method of analyzing and pro-
cessing data streams concurrently by multiple instances of operators
across single or multiple computing resources or processors.

In Figure 6, we show how parallelism degree is specified for each operator
of 0 input query in DSP systems Taking our previous example (cf. Figure 5),...to process

a high

amount of

data in

parallel.

multiple instances might utilize the location ID to filter data, which could then
be aggregated by several instances of a window aggregation function. 1 The
physical plan details how these operators and their instances are allocated
across the same or different nodes for processing on cloud resources. DSP
systems use the logical term parallelism degree to define the number of par-
allel instances of an operator required for data stream processing. It plays
a crucial role in how effectively a DSP system can process large volumes of
data in real-time. Different configurations of parallelism can lead to various
performance outcomes.

For instance, Netflix [33] uses a stream processing system to perform
live click streams analytics based on users’ interactions with video contentInaccurate

parallelism

may...
and insert real-time ads based on viewer demographics and content themes.
The DSP system is configured with a low parallelism degree, assuming the
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SELECT location, COUNT(*) FROM WeatherSensorStream [RANGE 1 HOUR] 
WHERE temperature > 40 WITH (PARALLELISM = 3); 
GROUP BY location WITH (PARALLELISM = 2); 
HAVING COUNT(*) > 100 WITH (PARALLELISM = 1);

Input Query0

Logical Directed Acyclic Graph and Physical Resource Assignment

Physical Nodes

𝜔𝜎1𝜔𝜎2 𝜔𝜉2𝜔𝜉1
So 𝜔𝜎3

P(𝜔𝜉) = 2P(𝜔𝜎) = 3 𝜔𝜎1 SI

P(𝜔𝜉) = 1

1

Data Stream

…

Figure 6: Example of PSP of weather sensor data where multiple instances of opera-
tors (filter, window aggregation), are distributed across cloud resources for
processing [4, 8].

workload will be relatively light. During major live events (e.g., sports finals,
live concerts), the viewer counts, and interaction rates surge unexpectedly.
With few operator instances handling the increased workload, the majority of
the computational resources of the system remain idle, i.e., under-utilization

of available cloud resources, resulting in the slow processing of viewer data
streams, and delayed ad insertions can cause potential revenue loss as ads
fail to target viewers in optimal times. The underutilization reflects wasted
computational capacity and missed opportunities for targeted advertising.
Similarly, the traffic volume or workload significantly decreases during off- ...result in

inferior per-

formance.
peak hours, such as late nights or early mornings. In such a scenario, despite
the low data volume, the high number of operator instances consumes exces-
sive computational power and memory, leading to high operational costs and
system strain. The over-utilization results in unnecessary energy consump-
tion and increased damage to hardware resources, escalating maintenance
and operational costs without any real benefit. To tackle such performance
deficiencies of DSP system, this thesis addresses the challenges associated
with accurate performance modeling to determine the initial optimizations,
e.g., parallelism degree as mentioned in Section 1.2 for parallel stream pro-
cessing in DSP systems.

Types of Parallel Stream Processing

In DSP systems, parallel processing of operators can be categorized into three
primary types (cf. Figure 7): (i) task, (ii) pipeline, and (iii) data parallelism [198,
159, 66]. These forms of parallelism represent different approaches to dis-
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So

𝜔𝜎𝜔𝜉 𝜔𝜎
Data Stream

… SI

(a) Task parallelism𝜔𝜎1𝜔𝜎2 𝜔𝜉2𝜔𝜉1
So 𝜔𝜎3

P(𝜔𝜉) = 2P(𝜔𝜎) = 3 𝜔𝜎1 SI

P(𝜔𝜉) = 1

Data Stream

…

(b) Data parallelism

So

𝜔𝜎 𝜔𝜉 𝜔𝜎
Data Stream

…

SI

(c) Pipeline parallelism

Figure 7: Example of different parallelism strategies in DSP systems. (a) Task paral-
lelism processes multiple operations on the same data stream in parallel;
(b) Data parallelism, where multiple instances of operators process entire
or sub-part of data streams; and (c) Pipeline parallelism, which processes
the data stream sequentially in stages where the successor operator receive
output from predecessor operator as input. Optionally, operators can also
receive a full data stream in addition to the output stream from previous
operators.

tributing the workload across operators and their instances processing on
multiple computing resources to enhance performance and efficiency.

This dissertation primarily explores the concept of data parallelism to val-
idate the proposed contributions, which defines the number of parallel in-Data

parallelism

is...
stances of the same operator that processes a sub-part of a data stream
(cf. Figure 7b). This approach is particularly effective for large-scale data pro-
cessing, where it can significantly improve throughput and reduce processing
time. However, the principles of developed methods can be adapted to task...multiple

instances of

same of

operators.

and pipeline parallelism with some fine-tuning. In Task parallelism, multiple
operators are processed concurrently or in a pipeline way on the same input
data stream (cf. Figure 7a), while pipeline parallelism organizes the process-
ing stages into a pipeline, with each stage running in parallel on different
data elements as they flow through the pipeline (cf. Figure 7c).
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2.2 Performance Modeling for Distributed Stream Processing

Performance modeling in the context of this thesis refers to the systematic ap-
proach of understanding, analyzing, and predicting the behavior and perfor-
mance of DSP systems under various conditions and configurations [79, 89].
The primary goal of performance modeling is to provide insights that enable
efficient design [79, 89, 197], optimization [209, 164, 207, 78], and manage-
ment [201] of DSP systems, ensuring they meet the stringent timeliness and
quality of service (QoS) requirements of real-time data-driven applications. In Perfor-

mance

benchmark-

ing...

the domain of performance modeling for DSP systems encompasses a range
of methods, broadly classified into: Non-learned [66, 198, 24, 159, 130, 53,
152, 135] and learned methods [164, 217, 263].

Non-learned or Non-machine learning (Non-ML) consists of analytical mod-

eling leverages mathematical constructs to describe system behavior using
performance for resource provisioning [67, 112], parallelism calculation and
adaption [158, 130, 173] applying monitoring approaches, heuristic or rule-

based methods, queuing and control theory. These methods offer precision ...to

understand

the perfor-

mance.

for well-understood scenarios albeit at the risk of oversimplification in com-
plex and dynamic distributed environments, leading to monitoring overhead,
inaccurate estimates, and often limited to specific optimizations. Benchmark-

ing methods offer a versatile platform for system behavior exploration by
simulating real-world scenarios for understanding the performance of DSP
systems [42, 111, 204, 27, 125]. It involves the execution of standardized
workloads (data streams and queries) and resource configurations to assess
system performance empirically under a set of pre-defined conditions [197,
79]. While benchmarking offers concrete data on system performance, trans-
lating these insights into actionable strategies requires careful consideration
of the benchmarks’ relevance to real-world operational scenarios. Existing
benchmarking systems lack in terms of expressiveness to tackle the mod-
ern demand of parallel and distributed stream processing (PDSP) such as
parallelism, distributed and heterogeneous environment, and support for in-
tegration of ML methods.

Conversely, Learned or machine learning (ML) models leverage historical
data to train predictive algorithms crucial for optimization and adaptive op- Learned

methods

for...
erations such as operator placement, parallelism tuning, and resource uti-
lization. However, the dynamic and heterogeneous nature of DSP systems
means that these models must continuously evolve, often necessitating ex-
tensive datasets for training to achieve prediction accuracy. Recently, the ...perfor-

mance

prediction

and opti-

mization.

adaption of ML-based approaches has significantly improved in DSP system.
We categorize these methods for PDSP into (i) online and (ii) offline methods.
Online methods [54, 200, 140, 201] are vital for real-time adaptation to chang-
ing data distributions and workloads, eliminating the need for offline retrain-
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ing. This adaptability is especially beneficial in environments with fluctuating
data characteristics, necessitating adaptive strategies for efficient process-
ing. Conversely, offline learning [4, 5, 8, 107, 244] methods for performance
modeling of DSP system involve training models on a pre-defined dataset be-
fore deploying them into the system. Unlike online learning methods, where
models learn and adapt incrementally as data arrives, offline learning pro-
cesses the entire dataset in a batch mode to build a model. This model is then
applied to the stream processing tasks without further modification during its
operational phase. Offline learning is beneficial for establishing strong foun-
dational models that can handle expected data patterns and distributions.

In this dissertation, our focus is on performance modeling in the form of
benchmarking and ML-based performance prediction of DSP workloads, used
for optimization decisions for parallel DSP systems like initial parallelism
tuning (cf. Section 1.2). In the following section, we present insight into ex-
isting benchmarking systems, and possible pitfalls and research gaps in Sec-
tion 2.2.1. We provide a brief overview of ML concepts, analyze both non-
learned and learned methods, and discuss potential drawbacks in existing
methods in Section 2.2.2, which leads to our research challenges.

2.2.1 Benchmarking Methods

Our investigation suggests that a comprehensive study of placing parallel
data flow graphs across heterogeneous resources could provide valuable in-
sights into the interactions between different operators and hardware configu-
rations. We categorize existing benchmarking systems [125, 27, 132] for DSP
into three groups: (i) DSP systems, (ii) TPC, and (iii) ML benchmarks.

Benchmarking Systems for DSP Systems. Despite numerous bench-
marks for database management systems, standardized and systematic
benchmarks specifically designed for stream processing architectures are
scarce. Our review of existing systems [123, 198, 159, 125, 151, 110,
134, 34, 35] reveals significant gaps, particularly in addressing the nu-
ances of DSP. The LRB [20] and similar efforts like the YSB [64, 65, 102]Benchmark-

ing systems

focus...
and BigDataBench [250], have expanded the scope of benchmarks but of-
ten remain focused on batch processing rather than real-time streaming.
Emerging micro-benchmarks such as HiBench [121], StreamBench [251],
RIoTBench [214] and OSPBench [238] bring advancements in streaming
benchmarks but still fall short in adequately testing scalability and handling
real-time streaming requirements. These benchmarks typically do not ad-...on

sequential

and batch

processing.

dress essential aspects of DSP systems like parallelism, hardware diversity,
and variable workloads comprehensively. Recent benchmarking systems
such as DSPBench [42] and SPBench [91] address some aspects of paral-
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lelism but do not provide a holistic view of parallel stream processing. They
often neglect critical elements such as the degree of parallelism and data
partitioning strategies and typically rely on homogeneous hardware setups,
which do not reflect real-world DSP environments [267].

TPC Benchmarks. TPC [189] has developed several benchmarks to eval-
uate various aspects of computing systems, primarily focusing on trans-
action processing systems (TPC-C, TPC-E) [61], data warehousing (TPC-H,
TPC-DS) [38], [178], and other specific domains like virtualization (TPCx-
V) [40], hyper-converged infrastructures (TPCx-HCI) [224], and big data
(TPCx-BB) [48]. Among these TPC benchmarks, TPCx-IoT [190] is the most TPC bench-

marks fall

short in...
relevant to DSP as it addresses scenarios involving continuous data ingestion
and real-time analytics, which are core to stream processing.

While the TPC benchmarks have contributed to standardizing the evalu-
ation of transactional and analytical processing systems, there remains a
distinct gap in benchmarking systems designed specifically for PDSP due to
fundamental differences in system architecture and operational goals. TPC
benchmarks provide extensive coverage of database and batch processing
scenarios, which are more oriented towards singular query execution on
static or slowly evolving data sets. These benchmarks fall short in addressing ...address-

ing

dynamic

changes.

the unique requirements of DSP systems, such as real-time data processing,
continuous ingestion, and immediate response to dynamic changes in data
streams. In addition, none of the existing TPC benchmarks are designed to
assess performance under these conditions; instead, they focus on batch or
transactional processing where data latency and continuous data flow are
less critical. They do not adequately test data streaming partitioning, which
requires parallelism for dynamically scaling systems in distributed environ-
ments.

ML Benchmarks. In the context of benchmarking of learned component
of DSP such as performance prediction, existing benchmarks like Deep-
Bench [28], MLPerf [195], Fathom [3], and CleanML [154] have laid signifi-
cant groundwork. These benchmarks are predominantly tailored to assess ML bench-

marks lack

in...
specific aspects of ML systems, from the underlying hardware’s computa-
tional abilities to the effectiveness of algorithms on static datasets.

While existing ML benchmarks [11, 34] are valuable in evaluating the capa-
bilities and performance of various systems, a significant gap exists in terms
of incorporating these findings into predictive performance models. For in- ...predictive

perfor-

mance

models.

stance, DeepBench and MLPerf primarily focus on predefined tasks for bench-
marking the raw performance of hardware and machine learning frameworks
but do not extend to predict future system performance based on evolving
workloads or system changes. They do not provide insights into system per-
formance under fluctuating workloads or infrastructure changes, nor do they
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Parallel and distributed stream processing

Non-learned methods Learned methods

Monitoring-based

Heuristic- or rule-based

Queueing theory

Control theory

Supervised

Unsupervised

Reinforcement
Benchmarking-based

Classification

Regression

Decision tree

Support vector

Linear regression

Random Forest

Multilayer perceptron

GNN

K-means

ANN

Q-learning

Markov decision process

Figure 8: Overview and categorization of methods proposed for various performance
and optimization tasks in DSP including resource provisioning, elasticity
as well as auto parallelization. The gray-shaded area indicates the direction
of our proposed performance modeling methods.

incorporate real-time data streams crucial for continuous decision-making
and predictive analytics in dynamic environments.

2.2.2 Performance Prediction Methods

The performance characteristics of individual resources in the cloud en-
vironment used in DSP systems are highly variable, necessitating a deep
understanding of each resource employed [122]. Traditionally, performance
evaluation models are either monitoring-based [191, 187, 207, 145] or ana-
lytically [130, 209, 53] tailored to meet the specific requirements of the ex-
ecuting hardware or resources. For example, models discussed in [163] are
crafted to gauge the effectiveness of different operator placement strategies
under ambiguous framework conditions. Therefore, there is a critical needNeed for

predictive

perfor-

mance

methods

for prediction models to predict performance and optimize the operator exe-
cution mechanisms. Our analysis of existing literature [72, 198, 66, 170, 172,
239, 180] distinguishes between (i) non-learned (Non-ML) and (ii) learned (ML)
approaches in performance modeling and resource provisioning for DSP.

Non-Learned Approaches

Modern DSP systems such as Apache Flink [52], Heron [144], Storm [124]
and Spark [205] incorporate optimization, e.g., parallelism degree, as a man-
ual knob to initially tune the parallelism, enabling initial optimization based
on specific workload requirements and desired performance levels. Despite
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the ease of tuning, manual methods are notoriously challenging to optimize
reliably, as it is highly sensitive to fluctuations in DSP workload characteris-
tics and has a high monitoring overhead.

In response to the challenges of manual tuning, significant research has
been focused on deploying online analytical methods to monitor system per- Existing

DSP

systems...
formance [191, 187] for parallelism and resource provisioning for scaling
decisions. For instance, various monitoring-based heuristic methods [131,
83, 260, 152, 1, 103] employ real-time metricsÐlike incoming and process-
ing rates, along with CPU usageÐto determine optimal parallelism degree.
Similarly, mathematical optimization methods [130, 209, 53] such as game ...are based

on manual

tuning.
theory [135] and queuing-theory [157, 174, 213], have been developed to re-
fine parallelism tuning processes. These methods aim to balance workload
distribution and resource utilization effectively.

Additionally, some researchers have explored analytical models for estimat-
ing necessary resources [112, 67] and adjusting parallelism [213, 140] ac-
cordingly. These models strive to automate the tuning process to some ex- Continuous

perfor-

mance...
tent, offering a semi-automatic approach to determining the most efficient
parallelism degree for given workloads. However, a critical limitation of these
Non- ML approaches is their dependency on query runtime observation data
for tuning decisions. This reliance renders them less effective for establish-
ing an optimal parallelism level at the outset of system deployment. Conse-
quently, these methods may lead to less than optimal initial configurations
and incur significant monitoring overhead as they iteratively adjust toward
ideal settings.

By investigating these non-ML strategies, we gain valuable insights into
their strengths and limitations in the context of DSP systems. This under- ...monitor-

ing

overhead.
standing lays the groundwork for exploring how ML-based approaches might
address some of these identified challenges, potentially offering more reliable
and efficient solutions for optimizations, such as placement or parallelism
tuning in dynamic and complex streaming environments.

Learned Approaches

Recently, there has been an interest in developing more learned or ML-
based approaches for optimal operator placement [107], parallelism tuning [5,
4, 8, 244] as well as resource provisioning and elasticity decisions [54, 217,
174, 201, 200, 108] in DSP systems [192, 99, 244]. We categorize these ap-
proaches into (i) online and (ii) offline methods to understand the concepts
related to ML, followed by existing research work that has been proposed to
solve optimization and performance modeling tasks.
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Offline methods for performance modeling involve training models on a
predefined dataset before deploying them into the system. Normally, super-

vised learning is well known for offline ML, where labeled historical data is
used to predict future outcomes. For instance, predicting the performanceML for...

of the system to make scaling decisions. The supervised methods are fur-
ther categorized into classification methods, categorizing data into predefined
classes and helpful in identifying types of transactions, user actions, etc. For
instance, DSP system for an online banking platform employs a classifica-
tion model to identify and flag potentially fraudulent transactions [86]. The...accurate

perfor-

mance

modeling.

model has been trained on historical data labeled as ªfraudulent" or ªlegiti-
mate" and can now classify incoming transaction events in real-time, thus
preventing fraud. On the other hand, regression methods play a crucial role
in predicting continuous values. This is particularly essential in estimating
metrics like end-to-end latency, CPU load, processing time, throughput, and
more, providing a comprehensive understanding of the system’s performance.
For instance, an e-commerce company uses regression models [82, 153] to
predict the server load (number of requests) during peak sales or significant
promotional events. For this, the regression model can use historical data of
traffic, sales volume, and server metrics to predict the expected load.

In this thesis, we are focusing on multi-regression problem using supervised

learning to develop methods for performance modeling. It involves predicting
multiple dependent variables or outcomes, such as the performance of query
execution (latency and throughput) using a set of independent input variables
such as workload (query and data) and resource configuration in the context
of PDSP. This type of regression is helpful to identify the correlation between
different input variables, e.g., influence of multiple parallel instances of op-
erators in the parallel data flow, and predict performance. For instance, the
predicted performance from ML-models can be used to determine parallelism
with minimum latency and maximum throughput to improve the overall per-
formance of DSP systems. Different methods can be applied to regression
tasks in supervised learning in the context of performance modeling for PDSP.

Linear regression [13, 175] models the relationship between a dependent
variable and one or more independent variables by fitting a linear equa-
tion to observed data. It is a popular method for regression problems, such
as predicting parallelism [101] or CPU usage [69] based on incoming data
rate. For example, if historical data shows an increase in CPU load withLinear

regression... rising data rates, a linear regression model can quantify and predict this
relationship. Linear regression for neural networks involves a single linear...for simple

regression

tasks.
layer that maps input features to a continuous target variable through lin-
ear combination, without hidden layers or non-linear activation functions.
This approach, while simple, allows for training using gradient descent and
backpropagation, effectively bridging traditional linear regression and neural
network paradigms.
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Decision Tree [219, 29] is a flowchart-like structure where each node repre-
sents a test on an attribute, each branch represents the outcomes, and leaf
nodes represent class labels (decision taken after computing all attributes).
For example, it can decide whether to scale resources up or down based on
system metrics like memory usage, CPU load, and latency, navigating these
metrics non-linearly to make a binary decision.

Random Forest [59, 45] is a ML method that creates multiple decision trees
during training to make predictions. For classification tasks, it uses the ma-
jority vote of the trees, and for regression tasks, it calculates the average
prediction of the trees. Random forests are less likely to overfit compared to
single decision trees. They offer more dependable predictions by averaging
the results from many trees[141]. For instance, random forest can be used to
predict the time it would take to process a batch of data streams.

Multilayer Perceptrons (MLPs) [120, 21] are a kind of artificial neural net-
work distinguished by their architecture, which comprises at least three lay-
ers of nodes: input layer, one or more hidden layers, and output layer. MLPs MLP can be

used...employ a supervised learning algorithm known as backpropagation for effec-
tive training to capture non-linear complexities and could detect subtle pat-
terns in historical data to make these predictions. For instance, MLPs can be
used to predict the performance of a DSP system based on various workload
and resource characteristics. ...for perfor-

mance

forecasting

in DSP.
Convolutional Neural Network (CNN) [14] are deep learning algorithms that

can take in an input image, assign importance (learnable weights and biases)
to various objects in the image, and differentiate one from the other. In the
context of DSP [104, 259], CNNs might be less common for performance mod-
eling as they are more suited for image processing. However, they could also
be used for real-time pattern recognition in streams of spatial or temporal
data, such as image or video sequences.

Deep Neural Networks (DNNs) [206, 172] are sophisticated artificial neu-
ral networks distinguished by having several hidden layers that lie between
the input and output layers. These networks are adept at modeling intricate DNNs

suffer...non-linear relationships. For instance, anomalies can be detected in a com-
plex multi-sensor environment where data streams from different sources are
combined to determine the system’s health or predict failures. In recent years,
there has been an increasing interest in developing more efficient and robust
algorithms using DNNs [194], which can be used for predicting the perfor-
mance (e.g., latency or throughput) at runtime of individual operators. These ...with gen-

eralization

of models.
models are developed to shift from manually or analytically designing perfor-
mance models to more prediction-based performance methods that can be
used for execution tasks such as operator placement or operator paralleliza-
tion at runtime. Existing approaches [136, 169, 223, 118, 116] propose the
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use of DNNs to develop performance evaluation models, enabling automated
learning for complex operations instead of manual creation or adaptation.

However, these approaches suffer from the general problems associated
with the use of DNNs. This concerns not only high training costs in learning
the models but also the robustness of the predictions of DNNs, an essential
property for dynamic and time-critical requirements of DSP applications. Ad-
ditionally, differentiable programming represents a recent advancement in
the field of ML. Unlike DNNs, which often rely on highly parameterized black-
box models, differentiable programming focuses on simpler white-box models
that leverage problem structure [249]. To address the limitations of DNNs, re-
cent research [25, 155, 249] has explored performance evaluation models
that can generalize robustly to new workloads, making them suitable for DSP
systems. For instance, differentiable programming [115] is used to specify the
general behavior of performance prediction even in previously unobserved
domains. Differentiable programming has been successfully used for learned
performance models for simple operators such as filters. However, it was an
open question and challenge how the generalization to different workloads
in DSP, such as complex operators and query plans, can be achieved, such
as a join. This thesis addresses that challenge.

Graph Neural Network (GNN) [239] are neural networks that directly oper-
ate on the graph structure, allowing them to take the relationships and struc-
tures within the data into account. For instance, in a DSP application likeGNNs can

enable gen-

eralization
network traffic management, where data streams represent different nodes
or operators and their interaction are edges, a GNN could predict the impact
of an operator’s performance on the overall system to optimize routing and
resource allocation. Addressing the challenges posed by DNNs and differen-
tial programming requires methods, especially in achieving model general-
ization. Existing research within the database systems [113, 114, 106] has
demonstrated the feasibility of models to generalize across various scenarios.
Nevertheless, this feasibility often comes at the cost of a substantial amount

of training data and enormous training effort and time. For example, estab-
lished models in this field necessitate training on datasets comprising over
200k queries and spanning 15 distinct databases to attain a level of generaliz-
ability across previously unseen databases [107, 6, 5, 114].

In contrast to databases, DSP systems are characterized by dynamic
workloads and the unpredictable nature of data stream characteristics. As
such, DSP systems face unique challenges in preparing for the variety of
potential workloads. The ability to support a diverse array of workloads while
simultaneously minimizing the effort required to train models on unseen data
has become paramount. Achieving this balance is crucial for ensuring the
reliable and predictable operation of parallel operators within DSP systems.
By reducing the training overhead and enhancing the model’s ability to adapt
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for new scenarios, can significantly improve the efficiency and adaptability
of DSP systems [87, 150], making them better equipped to handle real-time
data processing. In this context, GNN can play an essential role in address-
ing accuracy and generalizability in performance prediction for DSP systems
which can further used for determining optimal operator placement [107,
106] and parallelism [6, 8].

Online methods are vital for real-time adaptation to changing data distri-
butions and workloads, eliminating the need for offline retraining [54, 200,
140, 201, 72, 112, 244, 180]. This adaptability is especially beneficial in envi- Unsuper-

vised

models are

ideal...

ronments with fluctuating data characteristics, necessitating adaptive strate-
gies for efficient processing [95, 194, 254]. There are two online ML methods
that are commonly used for various optimization in DSP systems: Unsuper-

vised and Reinforcement.

Unsupervised learning focuses on discovering patterns without pre-labeled
data, making it ideal for understanding complex system behaviors [12], opti-
mizing configurations [84, 183], and identifying anomalies [243] within PDSP.
It is beneficial for tasks like operator placement, parallelism tuning, and
anomaly detection without explicit historical examples. For instance, unsu- ... for

scenarios

with no

labeled

data.

pervised learning [84, 183] is applied to collect performance and system met-
rics during query execution, such as including each operator’s throughput,
latency, and the volume of data exchanged with other operators to identify
group operators that should be placed close together to minimize data trans-
fer latency and maximize throughput in DSP systems.

Similarly, Reinforcement learning (RL) is widely utilized in DSP to enhance
decision-making through a trial-and-error method, where the system learns
by interacting with the environment and receiving rewards for favorable
outcomes. It proves particularly effective in dynamic and complex environ-
ments of DSP where optimal decisions can change over time [244]. For Reinforce-

ment

learning...
instance, Deep Q-Networks (DQN) or Proximal Policy Optimization (PPO) al-
gorithms [200, 117, 201, 117] are used to train the RL agent which learns the
best scaling policy by continuously interacting with the system simulation
or directly with the live system in a controlled manner. Additionally, some
studies [264, 200] in DSP have investigated stream partitioning to predict
and manage parallelism using RL models. Another significant methods [108,
54, 63, 62] involve enhancing DSP systems’ adaptability by dynamically
allocating or deallocating resources to match fluctuating workload. Recent ...ideal for

dynamic

adaptation.
advancements also show a growing trend toward automating parallelism ad-
justment [200, 201, 80]. Despite the performance gains achieved through ML,
these approaches often rely on black-box models, which can obscure the
reasoning behind specific decisions. Moreover, they tend to be trained on
workload-specific features, limiting their ability to generalize across different
workloads and various resource configurations.
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For all the above learned approaches, traditional ML techniques typically
operate under the assumption that the training and testing data come from
the same domain, sharing similar input feature spaces and data distribution
characteristics. This assumption holds in scenarios where a large corpus of
labeled data is readily available, ensuring the models are well-tuned to the
specific task within a narrow domain.

However, many real-world ML applications such as natural language pro-
cessing [199, 248], image classification [211] and DSP [269] are not ideal
to have all input scenario to be available often, acquiring sufficient training
data that is representative of the operational settings of the model can be ex-
pensive or practically infeasible. However, many real-world ML applications,
such as natural language processing [199, 248], image classification [211],
and DSP [269], often face the challenge of not having all input scenarios read-
ily available. Acquiring sufficient training data that accurately represents the
operational settings of the model can be expensive or practically infeasible.

Transfer Learning

Transfer learning [255, 186, 275] is a ML technique which allows ML models
to be trained on one task and transfer knowledge to infer on another task.
This technique allows extending beyond the conventional training paradigms.
It leverages existing data from related but distinct domains to enhance theTransfer

learning

can...
generalization capabilities of ML models. By doing so, transfer learning ad-
dresses the critical challenges posed by the limitations of data availability

and the expensive cost associated with data collection as well as iteratively

retraining in new workloads or domains. In essence, transfer learning allows...assist in

transferring

knowl-

edge...

for the performance optimization of a learner by transferring knowledge from
a related source domain to a target domain where data may be scarce or
lacking. For instance, the task of sentiment analysis in product reviews data
stream. If ample labeled data is available for the input data stream of dig-
ital movie reviews, traditional supervised or unsupervised ML models can
yield robust predictive models for this specific domain. However, when the
same model is applied to another target input data stream or book reviews,
the performance of these models might be degraded due to variations in
domain-specific or workload-specific data characteristics. Despite these dif-...ideal for

DSP appli-

cations.
ferences, the underlying structure of the dataÐtextual reviews expressing
opinionsÐremains consistent. Transfer learning can exploit these common
or similar attributes, enhancing the model’s ability to generalize from movie
to book review data streams by adapting the learned features and patterns
to the new domain.
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Therefore, this flexibility makes transfer learning particularly appealing in
the era of big data or stream processing, where models can learn from a
broader context than what is available in the target domain alone. The suc-
cess of transfer learning has been demonstrated across a wide array of ap-
plications, from text sentiment classification [199, 248, 245] to image clas-
sification [211, 274, 143, 74], users activity or trend recognition [105], and
multi-language text classification [273].

In the context of DSP, transfer learning can significantly enhance the per-
formance modeling and prediction tasks. As shown in this work, a perfor-
mance model can predict accurate costs (e.g., latency and throughput) and
generalize across workloads and resources that the model did not see during
training. Recent work in the database has adopted transfer learning for query
optimization and cardinality estimation [107, 114]. However, the adoption of
transfer learning in the field of DSP is new, and we are the first ones who
have proposed the performance model for DSP [8, 5, 6].

2.3 Summary

In this chapter, we introduced foundational concepts of DSP and reviewed
existing research to identify key research gaps (cf. Section 1.1) and to better
contextualize the contributions (cf. Section 1.2) that this thesis addresses.
Our exploration of the current benchmarking system for performance mod-
eling reveals significant research gaps- lack of expressiveness for parallel
dataflows and heterogeneous environments and incorporating learned or ML
models into DSP systems. Current research mainly focuses on performance
modeling of sequential dataflows with homogeneous resources, while mod-
ern DSP systems require parallel processing in heterogeneous environments.
Furthermore, existing DSP systems extensively rely on manual tuning and
continuous performance monitoring for optimization tasks such as operator
placement and parallelism. While performance modeling using ML methods
like DNNs require extensive data and high training efforts, struggling to gener-

alize for new workloads. Online learning methods, though effective, are black-
box, making interpretation difficult and requiring multiple adjustments for
optimal provisioning. This underscores the need for performance modeling
methods - (i) benchmarking system for DSP system to understand the corre-
lation among varying workloads (parallel dataflows and data streams), and
resource characteristics and (ii) ML-based performance prediction models
to provide accurate performance predictions and generalize to unseen work-
loads and resource configurations to reduce the need for iterative training
and determining efficient optimization, e.g., operator placement and paral-
lelization.





3
Scenario and Conceptual Architecture

This chapter outlines parallel and distributed stream processing (PDSP)
scenario and the overall architecture of performance modeling methods pro-
posed in this thesis. Section 3.1 presents the scenario employed throughout
this thesis and the underlying research challenges that are addressed. Sec-
tion 3.2 provides a comprehensive description of the architecture, incorporat-
ing formal definitions of the concepts that are fundamental to the contribu-
tions of this thesis. This structure sets the stage for detailed discussions on
performance modeling methods in subsequent sections.

3.1 Scenario Description

Distributed Stream Processing (DSP) systems have become pivotal in man-
aging large-scale, real-time data across cloud resources in various sectors.
By enabling parallel processing of streaming data, these systems provide im-
mediate benefits in decision-making and responsiveness, which are crucial
to the success of many industries. In this thesis, we have considered differ- DSP

applications

scenario
ent valuable application scenarios where real-time data analysis is crucial for
decision-making such as 1 click stream analytics, 2 social media analytics,
3 healthcare monitoring, 4 smart city and 5 financial sectors as presented
in Figure 9. We have considered different DSP applications and corresponding
real-world scenarios to show the applicability of our concepts and proposed
methods to tackle the identified challenges (cf. Section 1.1) of RC1: under-
standing the performance and RC2: performance prediction for optimization.
We briefly explain each application’s possible scenarios, underlying assump-
tions, and possible infrastructure used in the following.

1 Click Stream Analytics

DSP can be used to handle massive volumes of data generated from millions
of users streaming videos concurrently. The analytics derived from this data
are crucial for optimizing streaming quality and enhancing user experience.
By analyzing data points such as viewer preferences, buffering rates, and
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Netflix Click 
Stream Analytics

Social Media 
Analytics

…

Apache Kafka AWS Kinesis

…Apache Flink Apache Storm

…

CloudLab Amazon EC2 Google Cloud …

Smart city 
Applications

Healthcare
Monitoring

Flow of Data Stream Flow of Processing Response

Figure 9: PDSP applications scenarios in the cloud resources to process a massive
amount of streaming data: 1 Netflix click stream analytics for enhanc-
ing user experience and personalized content recommendation 2 Twitter

social media analytics for understanding user engagement and targeted
advertisement, 3 Healthcare monitoring to detect anomalies and poten-
tial health issues and immediate responses, 4 Smart city applications to
manage and optimize urban services such as controlling traffic lights and
reduce congestion, and 5 Financial fraud detection for anomalies and
fraud transaction pattern detection for financial trading.

viewing times, video streaming application providers such as Netflix [33] can
dynamically adjust video quality to match different internet speeds and de-
vice capabilities, ensuring seamless service delivery. Additionally, this data
informs content recommendation algorithms to tailor suggestions to individ-
ual user tastes and thus increase viewer engagement and satisfaction. ForClick

analytics

for viewer

interactions

instance, a prime example of stream processing in Netflix is the use of its
data pipeline for real-time analysis of viewer interactions. Netflix uses Flink
to process over 1.3TB of data in its daily tasks, helping to optimize streaming
quality by adjusting to bandwidth fluctuations and device capabilities. For
instance, during the onset of the COVID-19 pandemic, Netflix experienced
unprecedented spikes in viewer numbers (26 million new subscribers) [10]
as lockdowns were implemented worldwide. Their stream processing capabil-
ities allowed them to dynamically manage this surge and maintain smooth
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streaming experiences, even implementing bit rate reductions in Europe to
lessen the strain on internet service providers.

2 Social Media Analytics

Similarly, DSP can analyze social media click stream data in real-time. Big
giants for social media click stream producers such as Twitter (now known as

X) (100K tweets per minute) [73] or Facebook (9GB streams per second) [139]
rely on DSP for real-time analysis. For instance, it can involve understand-
ing how users interact with tweets, including clicks on links, retweets, likes,
and replies. Such analytics are vital for understanding user engagement and
the spread of information across the network. Processing these data streams,
such as various Tweets streams, can deliver more personalized content to
users, enhance ad targeting, and gain valuable insights into trending topics
and user behavior patterns. This real-time analysis improves user experience
and boosts advertising revenue through more effective campaign implemen-
tations. Consider the case of Twitter, whose real-time analytics engine [235, Personal-

ized

recommen-

dation

using DSP

124] processes massive volumes of tweets and interactions to track trends
and user engagement. During significant global events, such as elections or
large-scale protests, Twitter’s analytics are instrumental in identifying the
spread of information and misinformation, enabling them to promptly ad-
dress fake news or harmful content [271]. This not only maintains the plat-
form’s integrity but also enhances its usefulness as a real-time news and
social networking service, thereby significantly impacting the user experi-
ence and the platform’s advertising revenue. In this scenario, every user’s
device that streams video content, such as smartphones, tablets, and smart
TVs, generates data about the content being watched, its duration, play and
pause actions, and the quality of the stream.

3 Healthcare Monitoring

In the healthcare sector, DSP is employed to monitor patient data continu-
ously, including real-time analysis of data from medical devices such as heart
rate monitors, respiratory sensors, and wearable health trackers. Stream pro-
cessing enables healthcare providers to detect anomalies and potential health
issues as they occur, facilitating immediate medical response. For instance,
sudden changes in a patient’s heart rate can trigger instant alerts to medi-
cal staff, potentially saving lives through timely intervention [247, 212]. This Detect

anomalies

and health

issues

capability is particularly beneficial in remote patient monitoring, where im-
mediate responses to data can dictate health outcomes. For instance, stream
processing systems integrated with IoT devices could continuously monitor
oxygen levels and heart rates in COVID-19 patients, enabling immediate med-
ical intervention when anomalies are detected. This capability is vital in in-



30 Scenario and Conceptual Architecture

tensive care units where timely information could mean the difference in
life-threatening situations.

4 Smart City

Smart city applications where DSP are implemented intensively to manage
and optimize urban services [179, 233] such as traffic management through
real-time analysis of data from traffic cameras and sensors to control traf-
fic lights and reduce congestion [16]. Additionally, DSP can support pub-
lic safety by monitoring surveillance footage for unusual activities and trig-
gering alerts to law enforcement when necessary. Similarly, waste manage-
ment [177] is another area where data from sensors in waste bins can be an-
alyzed to optimize collection routes and schedules, thus improving efficiency
and reducing operational costs. For instance, traffic management systems inTraffic

monitoring

and control
cities like Singapore [137, 60], where real-time data from cameras and sen-
sors is used to manage traffic flow. During the pandemic, such systems were
adapted to monitor and control the movement of people to ensure that social
distancing norms were being followed in public spaces. Similarly, cities have
enhanced environmental monitoring to quickly detect and address pollution
hotspots, contributing to healthier urban environments.

5 Financial Fraud Detection

Financial fraud detection is a critical area where DSP plays a pivotal role, par-
ticularly as financial transactions continue to grow in volume and complexity
with the expansion of digital banking and e-commerce [168]. For instance, In-

front Financial Technology [85] handles approximately 24 billion events daily,
equating to about 300, 000 events per second, to promptly execute pattern
detection queries in financial trading. Similarly, PayPal [220] employs ma-Fraud

detection

using DSP
chine learning models that run on distributed systems to analyze transac-
tions across its platform. The system checks each transaction against the
account holder’s usual patterns and flags transactions that deviate signifi-
cantly. For instance, it looks at the transaction size, the device used, and
the transaction’s location. This analysis happens in real-time, leveraging the
power of distributed stream processing to maintain system performance even
as it scales to handle millions of transactions daily.

Summary of Scenarios

In the above application scenarios, the stream processing encompasses a
suite of analytics applications that deliver services based on real-time data
analysis, such as video streaming analytics, as shown in Figure 9. Each appli-
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cation harnesses data stream connectors such as Apache Kafka or AWS Kine-

sis to ingest voluminous data streams generated from diverse sources. These Bringing all

scenarios

together in

a holistic ar-

chitecture...

sources might include user preferences for Netflix video content, traffic flow
information from urban sensors, or transactional data from financial institu-
tions. In our analysis, we employ these data stream connectors to funnel pre-
existing data from these varied sources for stream processing tasks tailored
to each application domain. Moreover, specific queries corresponding to each
service are employed to process the incoming data streams. These queries
dictate the configuration of the operator flow graph, which is subsequently
deployed on the available cloud resources to process the data streams.

Furthermore, we consider cloud infrastructure, which plays an essen-
tial role, comprising a variety of hardware resources, including CPUs and
GPUs with diverse configurations tailored for stream processing as depicted
in Figure 9. Such infrastructure ranges from open-source testbeds like Cloud- ...proposed

in this

thesis.
Lab [76], which offers a controlled experimental environment, to industrial-
scale cloud services like Amazon EC2 [129], Google Cloud [252], renowned for
their robustness and scalability in handling stream processing tasks. Stream
processing systems like Apache Flink [52] and Apache Storm [124] can be
deployed on cloud resources to process and analyze data streams.

Within the diverse scenario of different applications, the parallel instances
of stream processing operators emerge as a strategic solution to manage high-
volume workloads, scaling decisions, and meet QoS requirements. However,
the diversity in these application requirements poses the significant chal-
lenge of parallelism tuningÐthe process of determining the optimal number
of parallel operator instances based on varying workload characteristics. Ef-
fective parallelism tuning is critical, as it directly impacts the ability of a DSP
system to process data streams efficiently and maintain the desired QoS
levels. For instance, a financial trading platform must process fluctuating
volumes of transactional data in real-time. During peak trading hours, the
workload (volume of data) can spike dramatically, necessitating rapid paral-
lelism level to maintain real-time processing capabilities without sacrificing
accuracy and QoS, i.e., ensure latency remains low without compromising
on throughput. The challenge lies in preemptively understanding how these
adjustments will affect performance before they are implemented, as any mis-
step could lead to costly downtime or erroneous transactions. Conversely, a Accurate

perfor-

mance

modeling is

essential...

healthcare monitoring system may require different parallelism settings to
process disparate data types, such as continuous heart rate monitoring ver-
sus sporadic alert notifications from medical sensors.

To effectively manage operator parallelism, it is crucial to precisely under-
stand the resulting performance before implementing any changes. However,
these challenges are further compounded by the unpredictable nature of DSP
workloads. Unlike databases, data stream characteristicsÐsuch as volume,
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velocity, and varietyÐcan change without prior indication, making it diffi-
cult to anticipate the system’s behavior under different conditions. As such,
an alteration in the degree of parallelism necessitates careful reconfiguring
of DSP queries, which may involve the expensive reallocation of resources
and division of operational states among the newly scaled set of operators in
cloud resources. To overcome these challenges, we introduce PDSP-BENCH,...as

provided by

this thesis.
a benchmarking tool that evaluates performance across varying workloads
and degrees of parallelism within DSP systems. Alongside, ZEROTUNE offers
a predictive performance cost model, estimating metrics such as latency and
throughput even for previously unseen workloads and resource configura-
tions. This predictive capability is critical for initial parallelism tuning, en-
suring a cost-effective approach to stream processing in cloud-based envi-
ronments tailored to the real-time demands of these applications.

3.2 Conceptual Architecture

In this section, we explain the overall architecture of the proposed perfor-
mance modeling and parallelism tuning methods in this thesis. Section 3.2.1
outlines a comprehensive system model, providing definitions relevant to the
contributions discussed throughout this thesis. Section 3.2.2 elaborates on
the overall architecture and the interactions between its components.

3.2.1 Performance and Parallelism Tuning Model

The proposed performance modeling methods support data sources or pro-
ducers (SO) such as IoT devices and applications that generate data streams
(D), as well as data consumers or sinks (SI ) that express interest in the pro-
duced events by formulating a set of DSP queries (Q). Each query (q ∈ Q)
comprises a set of operators (ω ∈ Ω) that can be represented as a directed
acyclic graph G = (SO ∪ Ω ∪ SI , D). Here SO, Ω, and SI are represented by
the set of vertices (v ∈ V ), and the edges (e ∈ E) in the graph (G) indicate
the flow of the data stream between operators. Data sources (SO) have no
upstream operators, and data sinks or consumers (SI ) have no downstream
operators. These operators can be deployed on a set of n ∈ N processing re-
sources R = {R1, ..., Rmaxr} based on the QoS requirements of data sinks (SI ).

In the following, we describe the system model of the proposed system that
enables conceptual understanding and analysis of the described transferable

features for data, query, parallelization, and resources, as well as facilitate
understanding of the cost metrics.
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Logical Directed Acyclic Graph and Physical Resource Assignment

Physical nodes
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Figure 10: Data and query model for logical directed acyclic graph and physical re-
source assignment of operator in DSP systems [9, 8].

Data and Query Model

Data Stream Model: The data stream (D) is an unbounded series of event
tuples ti ∈ D, where ti =< t1, t2, . . . >. Each tuple t = (τ , k, d) comprises three
elements: a logical timestamp τ that indicates when the event occurred, an
event key k that serves as a unique identifier for the event, and event data d

that represents the payload associated with the event. To process the event Query

process

data using

operators

tuples ti in a query q, they are bounded by window (w). The window w in a
stream D has two attributes window length (wl), and window slide (ws). In
the proposed methods, we focus on the count, time, and key-based windows
that differ in size based on count, time, and keys, respectively. Further, we
consider moving the window as (1) tumbling and (2) sliding window, which
are well-suited to a wide range of use cases, and well-supported by various
DSP systems [52, 144, 205].

Operator and Query Model: A data stream of tuples ti is processed using
a set of operators (Ω) as illustrated at the top of Figure 10 (in circles). These Query

consists of

multiple

operators

operators can be used to perform key operations on the data stream and
are critical for many use cases. The proposed methods (PDSP-BENCH and
ZEROTUNE) supports a set of widely used standard DSP operators: filter (ωσ),
join (ω⋊⋉), and aggregation operators (ωξ) such that Ω = {ωσ, ω⋊⋉, ωξ}. While we
limit the scope to these operators, our methods can be generally applied to
other operators by extending the transferable features based on our method-
ology. These operators can be parallelized to form their parallel query plans. Parallelism

for

processing

higher

workload

In Figure 11, we illustrate the logical parallel query plan for two-way join with
different parallelism degrees. In a distributed setting, these combinations and
configuration options offer a rich set of possible outcomes, which can be used
to collect a large set of training data for our learning model.
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Notations Meaning

SO, SI Set of data sources and data sinks

D Unbounded data stream

Ω Set of operators, ω ∈ Ω

DIn, DOut Incoming and outgoing data stream to/from operator

t event tuple, t = (τ, k, d)(timestamp, key, payload)

G Directed acyclic graph

Q Set of queries, q ∈ Q

W Set of windows, w ∈ W

h(t) Hash value of t

P Set of parallelism degrees, p ∈ P

ωins
i Number of parallel instances (ins) of operators ωi where ins ∈ {1, 2, ...,maxP }

R Set of physical resources, r ∈ R

ncore Number of available cores on physical node

maxP Maximum possible parallelization maxP = ncore

L, T Latency and throughput metrics

UCPU , Umem, Unw Resource utilization such as CPU, memory, network usage

Selω Selectivity of operators, ω ∈ Ω

Lω Processing latency of operators, ω ∈ Ω

Table 2: Terminologies and their meaning.

Logical Parallel Query Plans

𝜔⨝𝜔𝜎𝜔𝜎
SO
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Figure 11: Example of how logical parallel query plans are represented in the pro-
posed performance modeling methods for join and 2-way join queries.

Parallelization Model

As mentioned before, the proposed methods support data parallelization [198,
119] where multiple instances of an operator (ωi) are created, and data
streams are partitioned to those instances ωins

i , where ins ∈ {1, 2, . . . ,maxP }

refers to each parallel core of resource r that executes operators concurrently.
The parallel instances ωins

i could be placed either on the same or differentDifferent

paralleliza-

tion

schemes for

operators

physical resources (R) as shown in Figure 10. The maximum available par-
allelization (maxp) of all operators ω ∈ Ω will be restricted by the available
characteristics of the resource, i.e., the total number of CPU cores (ncore) of
all the physical resources (maxr), maxP ≤ ncore.
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Parallelization Schemes: The proposed methods support several parti-
tioning schemes [52, 50, 232] that determine how a data stream is partitioned
across the parallel instances of an operator ωins

i . For instance, the filter opera-
tor employs forward partitioning to forward data to the next operator instance
in the pipeline without any modification with the same number of operator
instances. If the data is unevenly distributed, then the filter operator uses
rebalance partitioning, a round-robin scheme to redistribute data across all
parallel instances of an operator evenly. Similarly, window aggregation and Partitioning

defines

data distri-

bution...

join use hash partitioning based on a specific key. In addition, the parallelism
of operators influences the partitioning scheme selection. For instance, when
both upstream and downstream operators have the same parallelism degree,
the forward scheme forwards the data stream to the downstream operator,
whereas rebalance distributes the datastream tuples in a round-robin fash-
ion to the downstream operator instances. Finally, the hashing scheme allo- ...between

operator

and its

instances.

cates tuples using a hash key when the downstream operator has a higher
degree of parallelism compared to the upstream operator. In the following, we
define the schemes formally.

Let ωi and ωj represent the upstream and downstream operators, respec-
tively, and P (ωi) and P (ωj) denote the parallelism degree of each operator ωi

and ωj, respectively. Let t be a tuple in the datastream D and h(t) be the hash
value of t based on a specific key. Then, the partitioning of the data stream
based on the operators and their parallelization will be as follows: Partitioning

depends on

operator

type
Definition 3. Forward Partitioning: Given a data stream D, set of par-
allelism degree P , if P (ωi) = P (ωj) then forward partitioning assigns
each tuple t in D to a single instance ωins

j in a sequential manner, such
that the ith tuple of t is assigned to the (i mod n)th instance of operator,
where n is the number of instances in P .

Filter uses

rebalance

strategyExample: Filter use forward partitioning where each parallel instance of
the upstream operator sends its data directly to the corresponding parallel
instance of the downstream operator based on their subtask indices. Thus,
in this strategy, no data shuffling or distribution is required.

Definition 4. Rebalance Partitioning: Given a data stream D and set of
parallelism degree P , if P (ωi) ̸= P (ωj), rebalance partitioning assigns
each tuple t in D to a single instance ωins

j such that the number of
elements assigned to each instance is approximately equal.

Example: Filter use rebalance partitioning [52, 50, 232] for non-congruent
parallelism degrees when the workload needs to be evenly distributed across
all parallel instances of the downstream operator, regardless of the key.
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Definition 5. Hash Partitioning: If P (ωi) < P (ωj), then the tuple t is
distributed based on the hash value of t as follows: t is hashed to a
specific value h(t), and then the tuple is sent to the parallel instance of
the downstream operator whose index is the remainder of h(t) divided
by P (ωj). When there is a key-based relationship between records, such
as grouping, joining, or aggregation operations, hash partitioning is ap-
plied.

Example: Window Aggregation. Given a data stream D, a set of parallel
degrees (P ), a key function k, and a window function w, hash partitioning
for window aggregation assigns tuples t in D to windows and then partitions
the windows across the parallel instances in P . The assignment of tuples
to windows is done by applying the window function w to each tuple t in
D, resulting in a set of windows w = {w1, w2, ..., wm}. Then, each window wi

is assigned to a single instance p ∈ P by computing h = hash(k(wi)) mod n,
where hash is a hash function that maps the key to a non-negative integer,
and n is the number of instances in P. The window wi is then assigned to
the instance Ph = Ph+1.Hash

partitioning

for window

operator
Example: Window Join. Given two data streams D1 and D2, a set of parallel

instances P , and key functions k1 and k2, hash partitioning for window join as-
signs tuples in D1 and D2 to windows and then partitions the windows across
the parallel instances in P . The assignment of tuples to windows is done sim-
ilarly to the window aggregation case by applying the window function w to
each tuple t in D1 and D2, resulting in sets of windows w = {w1, w2, ..., wm}

and w′ = {w′
1, w

′
2, ..., w

′
m}. Then, each window wi ∈ w and wj ∈ w′ is assigned

to a single instance in p ∈ P by computing h1 = hash(k1(wi)) mod n and
h2 = hash(k2(wj)) mod n, where hash is a hash function that maps the key to
a non-negative integer, and n is the number of instances in P . The windows
wi and wj are then assigned to the same instance if h1 = h2.

Resource Model

The resource model of the proposed methods encompasses a broad spectrum
of distributed and heterogeneous cloud, fog, and IoT/edge resources with
diverse configurations, as required by several DSP applications. At present,
the system focuses on CPU-based hardware, but our model can also capture
heterogeneous hardware architectures such as GPUs [139, 268, 242, 193,
30, 229, 37], FPGAs [202, 57, 176, 277], P4 switches [126, 276, 148, 93,
94, 92, 226], given support in DSP systems. The system assumes that IoTDifferent

resource

characteris-

tics

devices or applications at the edge layer will serve as data sources and pro-
duce one or multiple data streams. These data streams will be processed on
the available processing physical resources (R) in the fog or cloud layer by
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deploying parallel instances of operators, for which the proposed methods
predict parallelism degrees.

Metrics for Performance Model

The aim of the proposed methods is to depict parallelism degrees for operators
on physical resources such that the overall performance or cost3 of execution
on the given resources is minimal. We consider two main performance met-
rics widely discussed in DSP literature [221]: end-to-end latency and through-
put [133, 164, 42]. While we consider these two metrics for the parallelism
degrees prediction task, our model can be fine-tuned for other cost metrics by
replacing the final Multilayer Perceptron (MLP) decoder with another metric.

Definition 6. End-to-end latency (L): This metric quantifies the total
time taken from when the first data tuple is generated at the source
(So) to when the query result is output at the sink (Si). It comprises the
processing latency (Lproc(ω)) of each operator (ω ∈ Ω) in the processing
pipeline, the network latency (Lnw(ω)) incurred during data transmis-
sion from sources to sinks, and the latencies associated with data in-
put (Lin) and output (Lout) to external systems, such as IoT platforms.
We consider network latency (Lnw(ω)) into end-to-end latency as oper-
ators and their instances may be allocated on the same resource or
distributed across different resources. Formally, end-to-end latency [8]
is defined as: L = Lin +

∑

ω(Lproc(ω) + Lnw(ω)) + Lout.

Definition 7. Throughput (T ): This metric quantifies the rate at which
the DSP system processes data records, measured in the number
of records processed per unit of time [164]. In contrast to existing
work that measures throughput sustainably, i.e., without backpres-
sure [133]; we consider backpressure in our measurement to account
for where there is a need to increase the parallelism degrees.

Additional Metrics for Performance Model

Apart from end-to-end latency and throughput, the proposed methods ensure
the accurate performance modeling of other metrics such as selectivity and
processing latency of an operator to facilitate a nuanced understanding of
query execution performance. Moreover, resource utilization [42, 111] ± span-
ning CPU, memory and network metrics±is a critical aspect for parallel and

3Performance and cost are used interchangeably in this thesis.
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distributed stream processing, which can affect performance of DSP systems
for query execution. The proposed methods aim to collect and analyze re-Essential to

measure... source consumption metrics to examine DSP system’s behavior under vary-
ing parallelism with changing the workload configurations.

For instance, consider a DSP system handling real-time analytics for an
e-commerce platform during a flash sale event. Here, the selectivity met-
ric helps determine the efficiency of a filtering operator that sifts through
millions of transaction events to identify those related to the flash sale. If
the operator’s selectivity is low, it indicates that the system is processing
a high volume of irrelevant data, thus calling for query optimization. Simi-...perfor-

mance and

resource

usage.

larly, consider CPU usage peaks during the flash sale for resource utilization.
An unusually high CPU utilization may indicate that the system is either
under-provisioned or that the current query parallelism degree is not optimal,
leading to potential bottlenecks. Conversely, low CPU utilization might signal
over-provisioning, thus incurring unnecessary costs.

These performance measures are crucial for calibrating DSP systems to
achieve optimal resource efficiency while maintaining high performance. Cur-
rently, the proposed methods support these metrics for accurate performance
modeling, but they are not limited to these metrics and can be easily ex-
tended for additional examination or fine-tuned for performance predictions.
We briefly define these metrics in the following section.

Definition 8. Selectivity (Selω): Selectivity of an operator ω ∈ Ω is de-
fined as the ratio of the number of output tuples Dout to the number of
input tuple Din for ω:

Selop(ω) =
|Dout(ω)|

|Din(ω)|
. (1)

Definition 9. Processing Latency of Operators (Lproc): The Processing
Latency of an operator ω ∈ Ω is the time taken to process an input tuple,
defined as the difference between the tuple emission time and the tuple
reception time:

Lproc(ω) = Temit(ω)− Treceive(ω), (2)

where Temit(ω) and Treceive(ω) are the timestamps of emission and reception
of the tuple by operator ω, respectively.
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Definition 10. CPU Utilization (UCPU): It is defined as the ratio of time
the CPU is actively processing tasks related to the stream processing
application compared to the total observed time. For a given set of phys-
ical resources R and a set of parallelism degrees P for operators Ω in a
directed acyclic graph G, the CPU Utilization for a physical node r ∈ R

during query execution is defined as:

UCPU(r) =

(

∑

p∈P

∑

ω∈Ω Tactive(ωp, r)

Ttotal(r)

)

, (3)

where Tactive(ωp, r) is the time spent by operator instance ωp actively execut-
ing on resource r, and Ttotal(r) is the total time of observation for resource r.

Definition 11. Memory Utilization (Umem): Memory Utilization mea-
sures the proportion of total memory being used by the stream pro-
cessing application. For a physical node r ∈ R, the memory utilization
is defined as the ratio of the memory used by the operator instances to
the total available memory on r during query execution:

Umem(r) =

(
∑

ω∈ΩMused(ω, r)

Mtotal(r)

)

, (4)

where Mused(ω, r) is the memory used by operator ω on resource r, and
Mtotal(r) is the total memory available on r.

Definition 12. Network Utilization (Unw) For a physical node r ∈ R, the
network utilization is the ratio of the data transmitted by the operator
instances to/from r to the maximum network bandwidth capacity of r:

Unw(r) =

(
∑

ω∈ΩBtransmitted(ω, r)

Bmax(r)

)

, (5)

where Btransmitted(ω, r) is the data transmitted by operator ω to/from re-
source r, and Bmax(r) is the maximum bandwidth of r.

3.2.2 Architecture and Contributions Overview

In this section, we present a comprehensive overview and the overall con-
ceptual architecture of the proposed performance modeling methods in this
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Figure 12: Overall architecture of the proposed performance modeling and paral-
lelism tuning methods. (i) The system consists of different streaming

analytics applications which are producing data streams continuously.
(ii) Data stream connectors act as pipelines to forward these streams
to DSP system where data processing query is represented as DAG.
(iii) PDSP-BENCH is used to understand the actual performance of query
execution on cloud/data center resources with varying workloads and
generate performance data, i.e., query configurations and performance la-
bels to be used to train machine learning models. While (iv) ZEROTUNE is
used to predict performance without query execution and using predicted
performance to determine optimal parallelism degree (e.g., minimum la-
tency and maximum throughput) of each operator in DAG.

thesis, as shown in Figure 12. The foundational concept and preliminary
methods were initially introduced in Chapter 1; here, we further elaborate
on the refined architecture based on the proposed system model and briefly
outline the contributions.

1. We emphasize the necessity for systematic performance modeling to un-
derstand how various factorsÐsuch as parallel data flow patterns, DSP
system architecture, workload characteristics, and varying cloud re-
source configurationsÐinfluence PDSP performance. In this context,PDSP-

BENCH for

system-

atic...

we delve into methods and frameworks essential for comprehensively
capturing the complexities inherent in PDSP to address initial chal-
lenges. It provides detailed guidance for users to effectively define and
execute parallel data flows across diverse hardware resources. Addition-
ally, it facilitates the generation and corpus of valuable data to be used
for training performance prediction models using machine learning us-
ing metrics like end-to-end latency. We introduce PDSP-BENCH, a novel
benchmarking system designed specifically for performance modeling
of parallel and distributed stream processing across heterogeneous
hardware environments. It stands out by offering the most extensive
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collection of benchmarks tailored for parallel dataflows, including 14

real-world applications and 9 synthetic workloads. This suite not only ...under-

standing of

perfor-

mance and

benchmark-

ing.

covers standard stream processing but also incorporates user-defined
operators to ensure a comprehensive representation of DSP scenarios,
rigorously designed to assess the scalability of DSP systems on hetero-
geneous hardware. In addition, PDSP-BENCH features a user-friendly
web interface that supports automatic exploration of both real-world
and synthetic parallel query structures across varied workloads and
hardware configurations, providing a nuanced view of system hetero-
geneity, simplifies the testing as well as machine learning deployments
(cf. Chapter 4).

2. In the dynamic and heterogeneous environment of DSP systems with
varying workloads (queries and data streams) and resource configura-
tions make it impractical to execute all possible configurations to predict
performance and determine initial optimal parallelism for PDSP. Tradi- ZEROTUNE

for...tional methods typically rely on manual tuning or online adaptive meth-
ods to achieve optimal parallelism, aiming to meet desired QoS. However,
manual tuning results in varying configurations, often resulting in costly
operator migrations and state management. In addition, these methods
can lead to multiple oscillations in parallelism or require extensive data
collection and iterative retraining for each new application, which be-
comes impractical with unseen workloads or changing resource land-
scapes. To address these inefficiencies, we propose ZEROTUNE, a novel ...perfor-

mance

prediction

and...

performance or cost model that determines initial parallelism degrees
based on predicted performance with query execution for seen and un-
seen workload and resource characteristics, significantly reducing the
need for costly adjustments during the early stages of query execution.
ZEROTUNE is designed to forecast performance accurately and general- ...determin-

ing

parallelism.
ize effectively across diverse streaming workloads and resource config-
urations, enhancing the adaptability and operational efficiency of DSP
systems. It leverages a novel learning paradigm incorporating advances
in transfer learning, specifically, data-efficient zero-shot learning. This
innovative approach enables ZEROTUNE to adapt to varying DSP sys-
tem dynamics offline, making it applicable across a broad spectrum of
queries and configurations without the necessity for extensive retraining
(cf. Chapter 5).

3. Finally, the critical aspect is validating the proposed performance model
and parallelism tuning methods in a real-world parallel and distributed
stream processing environment. For this, we perform a comprehensive
evaluation to assess the efficacy and applicability of performance mod-
eling approaches within DSP systems. This evaluation is performed to Extensive

evaluation

in...
establish robust criteria and methods that measure our proposed meth-
ods’ performance, adaptability, and generalizability within the complex
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landscape of PDSP. The main aim is to ensure that the proposed mod-
els meet theoretical expectations and perform effectively in practical
scenarios across various streaming workloads and computational en-
vironments offered by cloud resources. For instance, we expand the...real-world

environ-

ment.
PDSP-BENCH system to include specialized workload and resource con-
figurations designed to reflect the dynamic and heterogeneous nature
of modern DSP operations, making it an essential tool for comparative
analysis and a deeper understanding of different modeling approaches.
Similarly, a significant part of our evaluation focuses on ZEROTUNE, ex-
plicitly examining how well performance models generalize and adapt
across varying DSP workloads (query and data streams) and resource
configurations (cf. Chapter 6).



4
PDSP-BENCH: Benchmarking of Distributed
Stream Processing

Recent advancements in distributed stream processing (DSP) have intro-
duced various DSP systems, such as Apache Flink [52] and Storm [236], for
analyzing data streams in real-time. These systems are essential for many DSP tackles

the need

of...
modern data-driven applications to handle immense data volumes. For ex-
ample, Netflix employs Apache Flink to handle more than 1.3 TB of data every
day, requiring numerous parallel operator instances to manage the high in-
flux and processing of data tuples [33]. For this, DSP systems offer a data

flow abstraction to specify operator parallelism in the query and provide
data partitioning strategies to manage data stream partitions. While such ...data-

driven

applica-

tions.

parallel data flows have become an intrinsic part of every DSP system, there
is no means of systematic understanding of the performance of DSP under
massively parallel dataflows (cf. RC1 in Section 1.1). To solve the first re-
search challenge on performance understanding, we present a novel solution
PDSP-BENCH for systematic understanding of performance for the parallel
and distributed stream processing (PDSP) in DSP systems.

Figure 13 illustrates the system architecture of PDSP-BENCH for perfor-
mance benchmarking and addressing the research challenges RC1 (cf. Sec- Diversity

and hetero-

geneity of

environ-

ment...

tion 1.1) to understand the performance of PDSP. At the top level, continuous
data streams are generated by various applications, such as click stream
analytics and health monitoring. These data streams are then channeled
through data stream connectors, which facilitate continuous data transfer
to stream processing systems. Within these systems, the data is processed
according to a defined operator graph, representing the queries executed on
cloud resources. However, the complexity and variability inherent in such ...is a big

challenge to

understand

perfor-

mance.

heterogeneous environments make it challenging to understand and evalu-
ate the performance systematically [56, 79, 151]. PDSP-BENCH aims to ad-
dress this issue, offering performance modeling and benchmark systems to
analyze and understand the performance of DSP systems for parallel and
distributed stream processing.

43
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Figure 13: Overview of the PDSP-BENCH architecture for performance benchmark-
ing of parallel and distributed stream processing (PDSP) in DSP systems
using various DSP workloads and resource configurations from various
applications.

4.1 Analysis of Performance Benchmarking Systems

Most of the existing benchmarking systems for DSP are tailored towards the
understanding of sequential dataflows [20, 64, 250, 132, 79, 197, 56]. ThoseExisting

benchmark-

ing systems

lack...

benchmarking parallel dataflows [238, 91, 42, 267] are restricted to a homo-
geneous environment for resource placement and offer limited capabilities in
terms of scaling workloads, e.g., event rate and query parameters like win-
dow length. We believe that a thorough analysis of parallel data flow graph
placement on heterogeneous resources will reveal interesting insights into the
behavior of distinct operators on various hardware resources and vice versa.
Another unique aspect of our work is the ability to scale workload generation ±
both data streams and queries ± by offering a benchmarking platform, which
in fact can also be used for machine learning of DSP workloads, becoming
increasingly important nowadays [107, 265]. In summary, we identify three
primary challenges for PDSP-BENCH by analyzing key existing benchmarking
systems for DSP workloads presented in Table 3.

C1: Lack of expressiveness. Most existing benchmarks [64, 20, 250, 121,
133] often overlook the importance of benchmarking parallel dataflow ap-
plications, thus focusing only on sequential dataflows with a limited set of
operators. For instance, StreamBench [162] overlooks essential operators,...support

for parallel

dataflows...
such as window functions, crucial for concurrent partitioning and efficient
resource utilization.
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Application SuiteBenchmark

System
C1: P/S C2: He/Ho D/C Infrastructure

C3: Learned

DPS Models Real-world Synthetic
Scalability

Linear Road [20] S Ho C
Single

machine
No 1 - No

YSB [64] S Ho C
Single

machine
No 1 - No

StreamBench [162] S Ho D VMs No - 7 Partially

RIoTBench [214] S Ho D VMs No 4 - No

OSPBench [238] S Ho D
Cloud

AWS EC2
No - 1 No

HiBench [121] S Ho D
Local

Cluster
No - 4 No

BigDataBench [250] S Ho D
Local

Cluster
No - 1 Partially

ESPBench [111] S Ho D VMs No 5 - No

SPBench [91] P Ho C VMs No 4 - Partially

DSPBench [42] P Ho D
Azure

Cloud Cluster
No 13 2 Partially

PDSP-BENCH S/P He/Ho C/D

CloudLab,

Geni Cluster,

On-premise

Yes 14 9 Fully

Table 3: Comparison of the existing benchmarking system for DSP with PDSP-
BENCH emphasizing the research challenges. Our work can effectively
benchmark both parallel data flow graphs and heterogeneous hardware
as well as can be used as a benchmarking system for training ML models
on DSP workloads. Abbreviations used are S: Sequential plans, P: Parallel
plans, He: Heterogeneous hardware, Ho: Homogeneous hardware, D: Dis-
tributed cluster, and C: Centralized or single machine.

C2: Shift to heterogeneity. The shift towards distributed and heteroge-
neous hardware requirements for benchmarking requires complex resource
management, i.e., the underlying system must manage parallel resource
mapping on varied hardware architectures, network links, and storage.
Although benchmarking systems exist that assess parallel dataflows, like ...focus on

homoge-

neous

environ-

ment...

DSPBench [42] and SPBench [91]. These benchmarks are restricted to homo-
geneous hardware, reducing their relevance as real-world workloads often
require heterogeneous environments [267]. For instance, Netflix runs on
1400+ nodes on 50+ distinct clusters with varied CPU cores [33] to deal with
their demands of massively parallel dataflow applications.

C3: Integrating learned DSP models. Most importantly, the rapid advance-
ment in DSP mechanisms using machine learning (ML) necessitates a scal-
able and resource-friendly benchmarking system, ensuring its long-term rele-
vance and utility in assessing future DSP with learned components. Recently, ...and no

integration

of ML.
ML has been successfully applied for cost-based optimizations in DSP to sup-
port heterogeneous placements [107, 106] and deciding parallelism strate-
gies [265, 8] and showed promising performance. This increasing surge of
development in learned DSP models calls for a benchmarking platform that
allows fair comparison among them by integrating the models and generat-
ing consistent training data for them. However, existing work do not provide
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a means to integrate ML models such that they can be compared in a ªfairº
way with consistent metrics (cf. Table 3, Learned DSP models).PDSP-

BENCH

tackles

these

challenges

To solve these challenges, we propose PDSP-BENCH [7], a novel bench-
marking system specifically designed to tackle the three primary challenges
faced by existing benchmarks: lack of expressiveness in benchmarking paral-
lel dataflows, the necessity for heterogeneous hardware support, and the in-
tegration of learned DSP models. Unlike existing benchmarks, PDSP-BENCH

enables the creation and evaluation of parallel query structures (PQP) across
a diverse range of operators and input data streams, which we divide into
synthetic and real-world workloads, thus offering an expressive and scalable
solution. We also provide mechanisms to configure and manage heteroge-...by

supporting

various DSP

workloads...

neous hardware resources by integrating resources from testbeds like Cloud-
Lab [76] with different configurations, which are essential for accurately re-
flecting real-world deployment scenarios. Furthermore, PDSP-BENCH facili-
tates the integration of learned DSP models, allowing for systematic training
and evaluation of these models on diverse streaming workloads. This integra-
tion is increasingly important given the surge of use of ML for optimizing DSP
performance [8, 106, 265]. The system’s ability to generate large corpora of...heteroge-

neous

configura-

tions...

streaming datasets ensures that the ML models are trained on data represen-
tative of actual streaming workloads (cf. Section 4.3). The results show the
importance of considering both parallelism and heterogeneity to achieve opti-
mal performance in real-time data processing applications (cf. Section 6.2)....cost

models for

benchmark-

ing.
4.2 Problem Formulation for Performance Benchmarking

In this section, we present an extension of the overall performance modeling
system specifically in the context of performance benchmarking described
in Chapter 3: Section 3.2.1. We discuss the performance benchmarking sce-
nario in Section 4.2.1 followed by benchmarking problem statement in Sec-
tion 4.2.2.

4.2.1 Performance Benchmarking Scenario

In this section, we describe the need for a performance benchmarking system
based on the possible real-world scenario of click stream analytics [82]. NetflixBenchmark-

ing Netflix

click

streams

uses a personalized recommendation system [33] for enhancing user engage-
ment by suggesting content based on personal viewing habits and preferences
as presented in Figure 14. This system depends heavily on the real-time pro-
cessing of vast amounts of data from millions of users, encompassing view-
ing history, search queries, and interactions. To manage this efficiently, Net-
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Figure 14: Netflix click stream analytics scenario demonstrates the use of par-
allel and distributed stream processing (PDSP) in DSP systems, such
as Apache Flink. These DSP systems process various workloads (data
streams and queries), on cloud cluster nodes with varying hardware con-
figurations, such as those provided by CloudLab. PDSP-BENCH bench-
marks the performance of DSP systems for these workloads and hardware
setups. It helps identify optimal configurations to fulfill QoS requirements
such as minimum latency and maximum throughput with efficient utiliza-
tion of resources. An example of click stream analysis is provided using a
query specified in the Listing 1.

flix necessitates a highly scalable and efficient DSP system such as Apache
Flink [52], Apache Storm [236], and Heron [144]. The challenge lies in pro- Finding DSP

that fits to

usecase
cessing such extensive data streams promptly to update recommendations
in real-time, underscoring the importance of a robust DSP system that can
handle peak loads without compromising the quality of service (QoS) [254]
requirements such as minimum latency and maximum throughput.

1 SELECT CustomerID, ContentID, COUNT(*) AS ViewCount, AVG(Rating) AS AvgRating

2 FROM UserInteractions

3 WHERE EventType IN ( ’Play ’, ’Pause ’, ’Rate ’)

4 AND TIMESTAMPDIFF(MINUTE, InteractionTime, NOW()) <= 60

5 GROUP BY CustomerID, ContentID;

Listing 1: Example query of click stream analytics, such as Netflix’s real-time
personalization and recommendations to track user interactions.

The performance benchmarking setup for evaluating Netflix’s DSP system
involves simulating varying workloads (data streams and queries) that reflect Different

workloads

from

different

users

actual user activity as shown in Listing 14. These streams include viewing
data, user interactions, and profile updates, which are crucial for generat-
ing accurate content recommendations. The system uses complex queries,

4For simplicity, we use SQL as a syntax for the query
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particularly the recommendation update query, to process these streams and
update user recommendations based on the latest interactions. The resourceFinding

resources

for

processing

is hard

configuration for this benchmarking spans across global data centers, em-
ploying low to high-processing instances of resources to handle the inten-
sive computational demands of machine learning algorithms that generate
these recommendations. Performance metrics, such as end-to-end latency,
throughput, and resource utilization, are central to the benchmarking pro-
cess. Latency measures the time taken from data ingestion to recommenda-
tion update, throughput assesses the volume of data processed per unit time,
and accuracy evaluates the relevance of recommendations provided to users.

PDSP-BENCH facilitates this process by setting up the necessary environ-
ment to mimic real-world operations, including the deployment of the DSP
system across varied cloud resource configurations to test different computa-
tional scenarios. A significant focus of the performance benchmarking is on
how the DSP system performs under various configurations and loads. PDSP-PDSP-

BENCH can

help

Netflix...

BENCH allows Netflix to experiment with different setups, such as varying
parallelism of operators to distribute and process data across varying com-
putational cloud resources in data centers. By doing this, it tries to find the
optimal configuration that minimizes latency, maximizes throughput, and
improves resource utilization. For instance, testing how the system performs...in bench-

marking

various

scenarios...

with new machine learning models or during unexpected surges in viewership
can help Netflix ensure that the recommendation system remains robust and
responsive even under challenging conditions.

This detailed benchmarking process provides critical insights that help Net-
flix systematically understand DSP system performance for parallel and dis-
tributed stream processing and make informed decisions about resource al-
location, system scaling, and potential optimizations. These decisions are es-...and

finding

optimal con-

figurations.

sential for maintaining a high-performing recommendation system that can
adapt to changing user behaviors and preferences, ensuring a personalized
viewing experience that keeps users engaged and satisfied with the service. By
rigorously testing different aspects of the DSP system, PDSP-BENCH plays a
pivotal role in helping Netflix continuously improve its service delivery and
operational efficiency.

4.2.2 Benchmarking Problem Statement

Consider Netflix’s personalized recommendation scenario where each oper-
ator ω ∈ Ω represents a part of the recommendation query, such as data
preprocessing, user preference prediction, or content filtering. The goal is
to optimize the recommendation system so that it can provide timely sug-
gestions during peak hours without overloading the server resources (CPU,
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memory, and network). The decision variables will be set by solving the opti-
mization problem to ensure that we have an optimal number of active opera-
tors Pω at every time step t, such that resource capacities are not exceeded,
and the performance requirements are satisfied, allowing the system to dy-
namically scale in response to workload changes, maintaining efficiency and
quality of service. The multi-objective nature of this problem requires balanc- How to

bench-

mark...
ing the various goals, which may sometimes be conflicting. Therefore, it may
be necessary to apply multi-objective optimization techniques or prioritize ob-
jectives according to business needs (e.g., prioritize latency over throughput
during new releases). ...diverse

workload...

Performance benchmarking in the context of DSP systems is the systematic
evaluation of performance and analyzing DSP system’s capabilities to process
continuous and unbounded data streams D across a variety of parameters,
including data streams (D), operator configurations (Ω), query parameters
(Q), and resources (R). The benchmarking process is aimed at identifying ...resource

configura-

tions...
the optimal configuration to optimize key performance indicators such as
end to end latency (L), throughput (T ), and resource utilization (U ) under
varying workloads and resource configurations. Each operator (ω ∈ Ω) has an
associated parallelism degree p ∈ P , which defines the number of instances
the operator is replicated across the system’s resources r ∈ R. ...to find

optimal con-

figuration...Performance benchmarking aims to understand different configuration and
corresponding cost factors such as latency, throughput and resource utiliza-
tion (cf. Definitions 6 to 12) . This understanding of the performance can be ...and to

minimize

the overall

cost.

beneficial to identify the configuration that optimizes overall cost for specific
scenario. For instance, benchmarking analysis can help to find an optimal
configuration that minimizes overall cost (C)- the maximum possible through-
put T and minimal possible end-to-end latency T while maintaining efficient
resource utilization U across CPU, memory, and network. These performance
metrics are crucial for maintaining the QoS and ensuring a responsive sys-
tem as shown below:

C = argmin
CL,CT ,CCPU,Cmem,Cnw

(f(CL, CT , CCPU, Cmem, Cnw)) (6)

f(CL, CT , CCPU, Cmem, Cnw) = w1 ·CL+w2 ·
1

CT

+w3 ·CCPU+w4 ·Cmem+w5 ·Cnw (7)

where w1, . . . , w5 are weights that represent the relative importance of each
metric.
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• Resource Constraints: It ensures that the resource utilization cost does
not exceed the available capacity for CPU, memory, and network band-
width.

∑

ω∈Ω

Cres(ω, t) ≤ Resmax ∀res ∈ {CPU,mem,nw}, ∀t (8)

• Parallelism Constraints: The parallelism degree of each operator must
align with the system’s ability to manage and distribute workload effec-
tively.

Pmin ≤ P (ω) ≤ Pmax ∀ω ∈ Ω (9)

• QoS Constraints: The DSP system must satisfy predefined QoS require-
ments, such as bounds on latency and minimum throughput for each
operator.

L(ω, t) ≤ Lmax, T (ω, t) ≥ Tmin ∀ω ∈ Ω, ∀t (10)

• Windowing Constraints: Window sizes for operators must fit within the
allowed ranges based on the nature of the queries.

Wmin ≤ W (ω) ≤ Wmax ∀ω ∈ Ω with windowing (11)

4.3 PDSP-BENCH Design

PDSP-BENCH offers a performance benchmarking system to close the re-
search gap RC1 (cf. Section 1.2) related to the systematic understanding
of DSP in a heterogeneous distributed environment. In the following section,
we provide overview of PDSP-BENCH system components.

4.3.1 Overview

The main goal of PDSP-BENCH is to enable benchmarking of DSP systems
considering heterogeneous environments for query deployment. As such,
PDSP-BENCH aims to enable the creation of large corpora of streaming
datasets across three dimensions: query, data and resource diversity. SuchLarge

corpora

of PDSP

data using

PDSP-
BENCH

large corpora of datasets can be used in training ML models for learning
optimizations of DSP such as cost of executing streaming queries and their
placement on heterogeneous hardware. We demonstrate this by training and
evaluating learned cost models using the dataset generated by PDSP-BENCH.
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Figure 15: PDSP-BENCH system overview.

While PDSP-BENCH supports both sequential and parallel query plans
(PQPs)5, we mainly focus on PQP to show our novel contributions to tackle
challenges. PDSP-BENCH has three main components: (1) workload genera-
tor, (2) controller and (3) web user interface (cf. Figure 15). System under
Test (SUT) represents the underlying Stream Processing System (SPS) like
Apache Flink or Storm that are being evaluated by PDSP-BENCH. We present
an overview of our solution (S#) towards the goal (cf. RG1 Section 1.2) and
show how we address the aforementioned challenges (C#) of existing work
using PDSP-BENCH components as follows.

C1: Lack of expressiveness. S1: To specify PQP with a wide range of op-
erators and input data streams, PDSP-BENCH provides a core component
known as workload generator as shown in Figure 15. The task of this com-
ponent is to enumerate various factors of the workload, including both data
and query elements. For instance, it generates meaningful PQP by varying the
parallelism degrees to be executed on the SUT, such as Flink. This approach
enables both query and data diversity. These inputs on the enumeration can Support

for PQP

workloads
be given by the user via the web user interface that is managed by the con-
troller as discussed later (cf. Section 4.5), but can also be configured directly
into PDSP-BENCH. A key issue we solve thereby is to generate PQP that are
both valid and representative of current streaming applications. Thus, PQP
must represent both standard streaming and user-defined operators that
we selected from open-source data stream processing datasets like DEBS
Grand Challenges [71]. We believe a combination of synthetic and real-world
workloads is necessary to properly assess SUT’s performance and generate

5By parallel query structures (PQP), we mean a given query structure with parallelism de-
grees that can generate multiple queries of this type of structure, e.g., linear PQP will generate
a plan with parallel instances of filter operators with random filter literals.
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datasets that are representative for ML in streaming platforms. We discuss
this component in Section 4.4.

C2: Shift to heterogeneity. S2: We provide interfaces to the users to configure
hardware resources that are used in turn to execute the generated PQP work-
load created by the former component. The controller and Web User Interface
(WUI) components alleviate this complexity of configuring different hardware
and hence enabling resource diversity for query execution and their deploy-
ment by automating it. We support the evaluation of heterogeneous CPU ar-Diverse and

heteroge-

neous

resources

chitectures, such as Intel and AMD, as well as distinct network, memory,
and storage parameters by integrating the CloudLab cluster [76]. Additionally,
other cloud providers can be easily integrated. Thus, the complex mechanism
of setting up machines and query deployment using hefty resource providers
like Kubernetes and Yarn in SUT is hidden using these components.

C3: Integrating learned DSP models. S3: The entire benchmarking system
design holistically guides the users to specify PQP and its properties as well
as their execution on different hardware resources that, in turn, can be used
to generate data to train and evaluate ML models. For instance, PQP exe-Cost models

benchmark-

ing
cution data can be used as features together with the performance metrics
as labels, such as end-to-end latency, on a given SUT to train a cost model

that predicts those metrics. Moreover, controller component allows integra-
tion of different ML models to support training on different sizes of Stream
Processing (SP) workloads. To evaluate models, we report metrics such as
accuracy (q-error) and training overhead (queries and time) as well as inves-
tigate trade-offs between them.

As a solution, we present the PDSP-BENCH workflow that shows how to
use PDSP-BENCH (cf. Figure 15) to generate streaming workloads that can be
used to train ML models and in turn also be used to predict the performance
of a PQP from PDSP-BENCH using the trained model. All the user inputs are
collected using the WUI (cf. Section 4.6) that are forwarded to the controller to
orchestrate the benchmarking process. It allows users to select from existing
applications in the suite (real-world or synthetic), but also provides a means
to create novel applications in the form of PQP. Moreover, we provide other
input parameters like parallelism enumeration strategies, workload and exe-
cution parameters such as event rate and query execution time (to limit the
query as they are long-running) explained in the next Section 4.5. We alsoSupport of

synthetic

and

real-world

applications

allow to store the generated workload in a database, e.g., MongoDB, that can
be used for training ML models. Thus, ML Manager in the controller uses the
ªsameº training data to train available ML models, e.g., a cost model can be
trained to predict the costs of a PQP. This integrated approach allows ªfairº
comparison between ML models using our reported metrics such as training
overhead. Thus, the reporting of benchmarks must also support training- and
inference-related metrics and not just performance metrics. During the exe-
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cution of PQP on the selected SUT, the performance as well as the training
metrics can be visualized in real-time on WUI.

We will focus on the workload generator component that is core to the
PDSP-BENCH system in the following Section 4.5.

4.3.2 Benchmarking Workflow

The PDSP-BENCH offers simplistic steps for benchmarking DSP under SUT
using web user interface (WUI), guiding users through different options to
provision and configure different hardware resources (cf. Table 7) following
by specifying DSP for SUT to be benchmarked. This initial setup phase is cru-
cial, as it determines the hardware configuration where the DSP will operate.
These configurations are conveyed to the PDSP-BENCH’s controller for or- Ease to use

chestrating the benchmarking process, leveraging the Automation Manager to
provision and prepare the selected hardware resources for SUT. This prepara-
tion includes the deployment of the DSP on the specified hardware, ensuring
the execution environment for the benchmarking tasks. Following the envi- Controller is

the

orchestrator
ronment setup, WUI offers users to choose from various applications, cor-
responding parallel query plans, and parallelism enumeration strategies, in-
cluding configuring execution and workload parameters such as event rates,
query execution time, and iterations. The Automation Manager orchestrates the
Workload Manager to fetch and execute the selected parallel query plans on the
SUT following triggering message brokers such as Apache Kafka [228] to cre-
ate input and output topics for streamlining the flow of data streams and
output data for chosen applications. WUI to take

user input

and show

results
Post-execution, PQP output is forwarded to the output topic for validation

and representation of results on WUI. Moreover, PQP and workload configu-
ration, corresponding performances, are sent for real-time performance visu-
alization and also stored in a database for comparative analysis of the perfor-
mance of multiple configurations and clusters. Furthermore, PDSP-BENCH

harnesses the machine learning mechanism to augment the benchmarking
process further. The PQP and corresponding data in the database can be Data

generation

and ML

integration

accessed by the ML Manager to generate training data representations and
labels followed by training and inference using available ML models, such as
DNNs and Random Forests (cf. Section 2.2.2). This holistic approach not only
simplifies the benchmarking process but can also be leveraged by machine
learning to optimize performance and improve benchmarking outcomes un-
der various scenarios.
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4.4 Workload Generator

An important research question we answer in this work is ªhow to sys-

tematically generate workloads (data and query) for a comprehensive suite

of dataflows to benchmark parallel and distributed streaming capabilities

of SUTº. The workload generator component plays a pivotal role in this ques-
tion, as it generates data streams and PQP derived using an enumerator
(Section 4.4.1) for our integrated synthetic and real-world applications aiding
to benchmark any given SUT (Section 4.4.2)6. While we generate workloadGenerate

suite of

parallel

data flows

by varying parameters related to data, query and resources given in Table 7,
e.g., event rates of upto 4 million events per second and parallelism degrees
upto 128, they are in practice limited by the amount of resources which
are available (e.g., the CloudLab cluster nodes m510, c630 and c6525_25g).
Thus, the scale of workloads that PDSP-BENCH can be much higher given
the availability of the high amount of resources. In the following, we focus
on how we diversify across these parameters.

4.4.1 Workload Enumerator

This component enables data and query diversity by orchestrating the gen-
eration and distribution of a variety of data streams and PQP as described
in the following.

Data stream: For synthetic applications, a common strategy to generate
synthetic data is to randomly select from a given valid data range to avoid
exhaustive enumeration of the given parameters, which is extremely time-
consuming and practically impossible to do within a reasonable timeframe. InReal-world

scenario for

producing...
fact, domain randomization [230] is a common technique used for synthetic
data generation to train ML models like deep neural networks such that it
learns from the features of interest. The rationale behind this method is to
have variability in the data so significant that the models trained on this data
could generalize to the real-world data with no additional training [231]. Thus,...diverse

data stream

from

various ap-

plications.

to address this, PDSP-BENCH includes a method for generating synthetic
data streams by randomly varying over (1) tuple width (# data items in a
single tuple of a data stream), (2) its data types (the data type per data item),
and (3) event rates (# event tuples produced per time unit) crucial both for
rigorously testing SUT’s capabilities and collecting meaningful training data
for ML models (cf. Table 7 for defined data ranges). While we generate data
using the defined range, these values are highly configurable in the PDSP-
BENCH. To enable data streams from real-world applications, we use Kafka

6Selected data: https://github.com/pratyushagnihotri/pdsp-bench_experiment_data

https://github.com/pratyushagnihotri/pdsp-bench_experiment_data
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Figure 16: Example of PQP for synthetic: 2-way join and real-world: ad analytics
application.

as a data producer that is connected via PDSP-BENCH to the SUT. We repeat

the data stream read from the source to mimic infinite data streams.

Query plans: For synthetic query plans, we offer an extensive range of PQP
from an array of query structures, including simple linear queries with one fil-
ter to complex configurations involving multi-way joins and multiple chained
filters. To give an example representation of such a 2-way join, see Figure 16
(left). Moreover, we randomly enumerate over multiple parameters of these
query structures, such as filter function (e.g., <, ≤), its data type (the fil-
ter value’s data type), window type (e.g., sliding, tumbling), window policy
(e.g., time, count), etc., to generate PQP that can be again used to evaluate
a given SUT and is representative of workloads required to train a ML model.
While we generate these query parameters randomly, an important question Extensive

range of

simple and

complex

PQP

arises: how do we balance query properties, e.g., selectivity? For instance, a
random selection of filter literals may result in data never passing the gener-
ated filter. To avoid this, we use selectivity estimation methods [8] to estimate
the selectivity of a given filter operator such that queries with only valid liter-
als are generated, where selωσ is not 0. For real-world query plans, we enable
users to choose from the given range of applications available in our bench-
mark suite but also use them as a basis PQP to generate more queries. For Benchmark-

ing about

standard

operators

and UDO

instance, consider the ad analytics application in Figure 16 (right), where
the users can choose to generate more query plans by adding a filter oper-
ator, choosing a different window count for the join, etc. This way, we allow
users to execute given applications but also generate PQP to evaluate SUT
capabilities for dynamics and uncertainty inherent to real-world applications.
Moreover, this flexibility allows the generation of representative PQP aligned
to the real world to train ML models. The full list of query applications is
described in Table 4 and explained in Section 4.4.2. Other data ranges to
configure query plans available in PDSP-BENCH can be seen in Table 7.

Parallelism enumerator: While random enumeration is meaningful as it
represents real-world data ranges for the parameters discussed so far, e.g.,
tuple widths for data streams and window length for operators in PQP, we
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note that random enumeration of parallelism degrees for operators is not the
same. The random selection of parallelism degrees in PQP will result in veryMeaningful

enumera-

tion of

paral-

lelism...

noisy queries or even invalid plans, e.g., selecting higher parallelism degrees
for downstream operators is less meaningful since there are anyways less tu-
ples that have to be processed as tuples move down in the data flow graph
(e.g., after filter operator). Moreover, a random selection of parallelism de-
grees, e.g., ωσ = 1, ω⋊⋉ = 10 in the 2-way join example query in Figure 16 leads
to a plan that is very bad in performance because it first limits processing
capabilities by selecting only one instance of filter and hence there is limited
use of 10 instances of join operators and highly wasteful of resources. While...using

different

strategies.
such bad plans might still be interesting for benchmarking SUT to cover cor-
ner cases, learning ML models with such bad plans is not meaningful as they
are not encountered in real-world. Thus, we employ different strategies for
parallelism degree enumeration in PDSP-BENCH that can be selected by the
user depending on the needs. For instance, we provide Rule-based strategy
that selects meaningful parallelism degrees for PQP derived based on litera-
ture [131] but also random enumeration as defined below.

Random selects a parallelism degree randomly within the given range, usually
up to a maximum number of cores available on physical resources, introduc-
ing variability for comprehensive performance assessment of SUT. Rule-basedBenchmark-

ing different

enumera-

tion

strategies

goes beyond randomness and selects parallelism based on workload char-
acteristics and physical resources. It considers factors such as event rates,
operator selectivity, and the number of cores, enabling a more targeted enu-
meration of parallelism for upstream and downstream operators. This ap-
proach seeks to optimize performance by aligning parallelism with the spe-
cific demands and capacities of the system [131]. Exhaustive aims to test
every unique combination of parallelism degrees, ensuring that each combi-
nation is tested. MinAvgMax cycles through generating queries with minimum,
average, and maximum numbers of parallelism degrees, systematically ex-
ploring the effects of varying parallelism degrees on system performance,
from least to most intensive use of resources. Increasing evaluates the im-
pact of incremental change in parallelism, starting at the minimum degree
and increasing stepwise to the maximum for each operator up the dataflow
graph. Parameter-based is designed for rapid testing, as it configures paral-
lelism based on user input.

4.4.2 Applications

We include a selection of applications in the PDSP-BENCH benchmarking
suite by analyzing previous research works in databases [64, 20] and stream
processing [42, 111, 132, 91]. The applications are chosen based on a set
of criteria that capture the diversity of streaming workloads, including data
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sources’ tuple width, the data items’ type, as well as the different operators
and their complexity, e.g., standard DSP and user-defined operators in data
flow graphs. To thoroughly assess PDSP in heterogeneous environments, we

Applications Area Description

Word Count (WC) [144]
Text

Processing

Processes a text stream, tokenizes sentences into words, and counts the

occurrences of each word in real-time using a key-based aggregation.

Machine Outlier (MO) [128]
Network

Monitoring

Detects network anomalies in machine usage data streams using the

BFPRT algorithm [262] to identify outliers based on statistical medians.

Linear Road (LR) [20]
Traffic

Management

Processes vehicle-generated location data through four queries: toll

notification, accident notification, daily expenditure, and total travel

time, to calculate charges or detect incidents.

Logs

Processing (LP) [218]

Web

Analytics

Processes HTTP Web Server log data to extract insights using two

queries: one counts visits within specified intervals, and the other

tallies status codes.

Google Cloud

Monitoring (GCM) [134]

Cloud

Infrastructure

Analyzes cloud computing data by calculating average CPU usage over

time, either grouped by job or category, with results processed through

sliding windows and specific grouping operators.

TPC-H (TPCH) [39] E-commerce

Processes a stream of order events to emit high-priority orders, utilizing

operators to structure, filter, and calculate the occurrence sums of order

priorities within specified time windows.

Bargain

Index (BI) [32]
Finance

Analyzes stock quotes streams to identify bargains by calculating the

price-to-volume ratio against a threshold using VWAP and Bargain

Index Calculators, emitting qualifying quotes.

Sentiment

Analysis (SA) [75]

Social

Network

Determines the emotional tone of tweets by assessing sentiment using

TwitterAnalyzer and SentimentClassifier operators, which apply Basic

or LingPipe classifiers to score and label the tweets.

Smart

Grid (SG) [70]

Sensor

Network

Analyzes smart home energy usage through two queries that calculate

global and local average loads using sliding window.

Click

Analytics (CA) [162]

Web

Analytics

Analyzes user interactions with online content through two queries:

grouping click events by Client ID for repeat and total visits per URL,

and identifying geographical origins using a Geo-IP database.

Spike

Detection (SD) [215]

Sensor

Network

Processes sensor data streams from a production plant to detect sudden

temperature spikes by calculating average temperatures over sliding

windows, and identify spikes exceeding 3% of the average.

Trending

Topics (TT) [171]

Social

Network

Processes stream of tweets using the TwitterParser and TopicExtractor

operators to identify trending topics on Twitter based on aggregated

popular topics based on predefined thresholds.

Traffic

Monitoring (TM) [156]

Sensor

Network

Processes streaming vehicle data using TrafficEventParser and

RoadMatcher operators to match vehicle locations to road segments then

calculates average speed per segment using the AverageSpeedCalculator.

Ad Analytics (AD) [181] Advertising

Processes real-time data on user engagement with digital ads by parsing

clicks and impressions, calculating their counts within time windows,

and computing the click-through rate (CTR) with a rolling CTR operator.

Synthetic Queries
Standard DSP

Queries

Assess standard streaming workloads by randomly generating diverse

data streams and query structures with increasing complexity. It supports

various data types and standard operators like filter, window aggregate,

window join, and groupby to evaluate streaming operators through

synthetic query structures, from simple linear to complex multi-join queries.

Table 4: Benchmarked parallel query structures based on synthetic and real-world
applications (based on [123, 42, 111, 91, 267]).

Facilitates

both

synthetic

and

real-world

applica-

tion...

classified these applications into real-world and synthetic categories. This ap-
proach ensures a detailed evaluation of the SUT capabilities, with a special
emphasis on its performance (latency and throughput) but also readiness for
future demands across various conditions from typical to peak usage scenar-
ios for ML integration.
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Figure 17: Examples of parallel query structures for synthetic applications are liner,
2-way joins, and 3-way joins. These structures are used to generate di-
verse parallel query plans (PQP) or parallel data flows. In addition, multi-
ple chained filters and joins are used to generate more complex parallel
query structures, such as 2-,3-, and 4-chained filters and 4-, 5-, and 6-
way joins.

The real-world applications reflect genuine data streams, such as social me-

dia feeds, financial transactions, and IoT sensor data, which are crucial for
mimicking actual system loads and behaviors for the benchmarking process
as presented in Table 4. For instance, DEBS 2014 Smart Grid data [214]
serves as a real-world benchmark, reflecting energy usage patterns from
smart plugs. On the other hand, synthetic applications also represent real-...for bench-

marking

and data

generation.

world scenarios by including standard DSP operators like filters, aggregates,
and joins, but the data streams are generated artificially, allowing to stress
test SUT under hypothetical future scenarios with high data volumes. This
dual approach ensures a balanced assessment of SUT’s performance, scala-
bility, and adaptability, preparing it for current and future data processing
challenges. We enlist all the (both synthetic and real-world) applications in-
cluded in PDSP-BENCH in Table 7 and briefly explain them in the rest of
the section. While we provide the applications described above (cf. Table 4),
PDSP-BENCH can be easily extended by integrating new queries from other
benchmarks like YSB [64] and Nexmark [237].

Synthetic Applications

The synthetic world application, with its primary purpose of evaluating dif-
ferent workloads, is specifically designed to handle varying data streams and
query structures. These components play a crucial role in generating diverseGenerate

data

stream...
parallel query plans or data flows, thereby increasing the complexity and vari-
ability of data distribution. In this application, the data tuples encapsulate
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various field values, labels, and a timestamp. These data tuples are classi-
fied into different data types, such as integers, doubles, and strings. Each
data type allows for specific operations, reflecting their distinct data charac-
teristics. For instance, strings can be operated with functions like startsWith,
while numeric types can use operations like less than or equal (leq).

To simulate realistic scenarios, the application is structured into nine syn-
thetic query models that range from simple to complex configurations such
as linear, two-way, and three-way joins followed by facilitating these struc-
tures to generate diverse parallel query plans or parallel data flows as pre-
sented in Figure 17. Additionally, multiple chained filters and joins are used ...different

data tuples

and types.
to grow the complexity of these parallel query structures, resulting in more
complex data distribution patterns and configurations ranging from 2-filter,
3-filter, and 4-filter setups to more intricate 4-join, 5-join, and 6-join. Each
model begins with a source and concludes with a sink, incorporating inter-
mediary operators like filters (ωσ), window aggregates (ωξ), and window joins

(ω⋊⋉). The presence and properties of these operators are randomly determined
during query generation, adding to the variability of the system. For instance, Consisting

filter,

window

join and

aggregation

operators

the simplest query possible under the linear structure might only involve a
source, a window aggregate, and a sink. Conversely, a more complex setup,
such as depicted in a three-way join scenario, could include up to eleven
operators, including various filters and joins.

The Filter operator provides various functions for different data types. For
strings, it includes startsWith, endsWith, endsNotWith, startsNotWith, and
contains. Similarly, for integers and doubles, it supports ̸=, <, >, =, ≤, and
≥. While the window-Aggregate operator only processes integers and doubles
with functions like sum, mean, max, and min. A practical example involves
executing a linear query sequence (Source -> Filter -> Window Aggregate ->
Filter -> Sink) with fixed parameters, except for varying the parallelism de-
gree of the involved filters and window aggregate operators. Here, the source
operator consistently remains set to a parallelism degree of 10. The use of Various

range of

operator

functions

the Key By transformation, akin to a Group By in traditional databases, is
crucial before a window aggregate to avoid limitations. Without Key By, data
would funnel to a single task instance, severely restricting parallelism capa-
bilities. For instance, a window aggregate calculation with Key By allows data
distribution based on tuple values, enhancing load distribution and enabling
grouped totals calculation. To further diversify query variations, the applica-
tion considered replacing Key By with a splitter component to distribute data
based on time or count. However, due to the deterministic nature required
by systems like Apache Flink, this idea faced implementation challenges. In-
stead, a timestamp-based Key By approach was adopted, ensuring data can
be deterministically split and processed across multiple windows and opera-
tors. This method also extends the range of key values by incorporating the
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Figure 18: Example of parallel query structures for ad-analytics and bargain-index
applications.

timestamp’s last digit, reducing data skew and enhancing the system’s ability
to handle larger parallelism degrees effectively.

Real-world Applications

PDSP-BENCH supports 14 real-world applications from different industry do-
mains. In the following sections, we describe the parallel query structure andApplica-

tions from

real-world

scenario

operator type of these applications followed by their DAG to show the data
distribution and data stream flow between these operators.

Ad Analytics (AD): The Ads Analytics application [181] analyzes streaming
data from user interactions with advertisements, aiming to derive actionable
insights about advertisement performance in real-time. Initially, the dataMultiple

data

streams for

ad injection

stream is split, directing it to two distinct processing streams. One stream
passes through the ClickParser operator, which isolates and categorizes data
points like clicks, views, and advertisement IDs, essentially transforming raw
data into click events. Concurrently, the ImpressionParser operator handles
the other stream, focusing on impressions from user interactions.

In Figure 18, each stream is processed by its respective counting opera-
torsÐ ClickCounter (ωC ) and ImpressionCounter (ωIm)Ðwhere data is accumu-
lated over specified time windows. A join operator then merges these streams
by synchronizing click and impression counts against their common query
and advertisement identifiers. The aggregated data flows into the RollingCTR

(ωCTR) operator, which employs a sliding window mechanism to calculate the
Click-Through Rate (CTR) by dividing the total clicks by total impressions
within the window. The processed data, encapsulating CTR metrics, is then
conveyed to the sink for further action or reporting.
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Figure 19: Example of parallel query structures of click analytics and Google cloud
monitoring applications.

Bargain Index (BI): The Bargain Index application [96, 17, 68, 32] has been
adapted from IBM InfoSphere Streams. It focuses on identifying stock quotes
representing potential bargains by analyzing transactions from financial mar-
kets. It is crucial for the finance industry as it automates the detection of bar- Stock

trades

analysis
gain opportunities in stock trading, enhancing decision-making processes by
providing timely insights into undervalued stocks.

In Figure 18, the application’s workflow ingests streams of both trades and
quotes, segregating them into two distinct paths for parallel analysis. In one
path, the Volume-Weighted Average Price (VWAP) (ωV ) operator calculates the
average price of trades for specific stock symbols based on the last 15 trades,
adjusting for volume. Concurrently, the BargainIndexer (ωBI ) operator ana-
lyzes the quotes stream and computes a bargain index by comparing the
price and volume of each quote against the most recently computed VWAP.
Only quotes with a bargain index exceeding a predefined threshold are for-
warded to the sink for further action.

Click Analytics (CA): The Click Analytics application [162] processes user
interaction data from a website, primarily analyzing logs in the Common Log
Format for real-time analysis of user behavior and geographic engagement
patterns, facilitating a deeper understanding of user interactions and site
engagement directly from web server logs. These logs need to be parsed to ex- Users

engagement

analysis
tract key data fields such as the timestamp, URL, and user IP address, which
may serve as a user identifier in the absence of other identifiers. In Figure 19,
RepeatVisit (ωRV ) operator groups events by URL and user ID, using these
as keys in an associative array to check for repeat visits by the same user to
the same URL. Concurrently, the VisitStats (ωV S) operator counts both total
and unique visits. Simultaneously, Geography operator (ωGF , ωGS) connects to
a GeoIP database to ascertain the geographic location of users based on their
IP addresses to extract city and country information from the location data
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and passes it on to the GeoStats operator. This operator maintains an asso-
ciative array that logs visit counts per country and city, updating its records
with each new event and emitting updated geographic statistics.

The application supports two queries. The first involves grouping click log
events by client ID within a specified time window and identifying repeat visits
by analyzing URL and client ID combinations. The results, including counts
of total and unique visits for each URL, are forwarded to the sink. In the sec-
ond query, the Geography operator determines the geographic origin of each
click using a Geo-IP database. It matches IP addresses from the events to lo-
cations and generates GeoStats objects for each geographical unit, complete
with detailed visit counts by city. This processed data stream then moves to
the sink operator, completing the analytics pipeline.

Google Cloud Monitoring (GCM): The Google Cloud Monitoring [134] appli-
cation processes and analyzes CPU usage patterns within a cloud comput-
ing environment to calculate average CPU usage over time, which can be
grouped by job or category based on user-selected queries. In Figure 19, theFinding

resource

usage
TaskEventParser (ωUP ) operator extracts essential information from the raw
data, structuring it into objects that include attributes such as timestamp,
job ID, task ID, machine ID, event type, user ID, category, priority, and re-
source usage metrics like CPU, RAM, and disk usage.

For the first query, the data stream is directed to a sliding window op-
erator that organizes events by category. Following this categorization, the
CPUUsagePerCategory (ωAC ) operator takes over, calculating total CPU usage,
the earliest timestamp in each window, and grouping these by category. This
allows for an aggregated view of CPU consumption across different categories.
In the second query, the stream from the TaskEventParser is routed to the
CPUPerJobCalculator (ωAJ ) operator. This operator applies a sliding window
to group events by job ID and computes the average CPU usage for each
job. This calculation provides insights into CPU demand per job, aiding in
resource allocation and performance monitoring.

Linear Road Benchmark (LRB): The Linear Road Benchmark [20] is designed
around a simulated tolling system on a motor vehicle expressway. In this
benchmark, as presented in Figure 20, vehicles generate periodic location
data as they travel along the road. This data stream forms the basis for fourSimulate

roads

tolling

system

distinct queries: toll notification, accident notification, daily expenditure, and
total travel time. Initially, VehicleEventParser (ωV E) operator transforms the
raw data into structured vehicle event objects. These objects include details
such as vehicle ID, road segment, speed, and event type. The first query,
the parsed data is sent to the TollNotification Mapper (ωTN ), which calcu-
lates tolls based on the number of vehicles and their average speed during
the specified period. The results are then forwarded to the sink operator fol-
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Figure 20: Example of parallel query structures of linear road benchmarking and
resource usage logs analyzer.

lowed by the second query, the AccidentDetection (ωAD) operator receives data
from the event parser and identifies accidents by detecting duplicate vehicle
positions within a defined time window, signaling potential collisions or traf-
fic disruptions. The third query involves calculating the daily expenditure
for each vehicle using DailyExpenditureCalculator (ωDE) operator to maintain
state information about vehicle events and corresponding expenditures. Fi-
nally, the fourth query calculates the total travel time for each vehicle using
the TravelTimeNotification (ωTT ) Mapper operator to analyze timestamps for
determining the total duration of travel for each vehicle and sends this in-
formation to the sink.

Log Analyzer (LA): The Log Processing application [142, 218] processes
streams of HTTP server logs formatted in Common Log Format to extract
meaningful real-time insights, crucial for understanding traffic patterns and
server request details on web servers. These logs include data fields such Web server

logs for

anomalies

detection

as the client’s IP address, timestamp, request verb, resource name, and sta-
tus code, as shown in Figure 20. Upon receipt, the logs are parsed to struc-
ture the necessary data, which is then directed simultaneously to three dis-
tinct operators. The VolumeCounter (ωV C ) operator tallies the number of visits,
counting each log entry as a single visit within a specified minute window.
The StatusCounter (ωSC ) operator maintains a tally of each HTTP status code
encountered, storing these counts in an associative array. Meanwhile, the
GeoFinder (ωGF ) operator with GeoStatus (ωGS) operator utilizes the client’s IP
address against an IP location database, such as MaxMind or GeoIP, to deter-
mine and emit the geographical locationÐcountry and cityÐof the user.

Additionally, the Logs Analyzer application, another stream processing
setup, extracts data from similar HTTP web server logs. It features two main
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Figure 21: Example of parallel query structures of machine outlier and sentiment
analysis.

operators: the StatusCounter and the VolumeCounter, which support two dis-
tinct queries. The first query uses the VolumeCounter to compute the number
of visits within a given time frame, making it a stateful operator that incre-
ments with each new log event. The second query leverages the StatusCounter

to aggregate counts of each status code during the same window.

Machine Outliers (MO): The Machine Outlier application [262, 128] pro-
cesses network computer usage data to identify anomalies particularly ef-
fective in detecting significant deviations in machine behavior from typical
patterns using the Blum-Floyd-Pratt-Rivest-Tarjan (BFPRT) algorithm, often
referred to as the median of medians algorithm as shown in Figure 21. TheOutlier

detection

from

machine

logs

MachineUsageParser (ωMP ) operator standardizes the raw input strings into a
structured format and assigns default values to any fields that may be miss-
ing. Following parsing, the data stream advances to the Window Operator,
which organizes the usage data into batches according to a predefined time
window. This temporal grouping is crucial for analyzing data within specific
intervals and ensuring the relevance of the anomaly detection process. Post-
windowing, the data is transferred to the BFPRTAlgorithm (ωOT ) operator to
determine the statistical medianÐor the kth elementÐwithin each windowed
batch. Anomalies are identified by measuring the deviation of data points
from this median value.

Sentiment Analysis (SA): The Sentiment Analysis application [75, 162, 42]
processes a continuous stream of tweets formatted in JSON containing fields
like tweet ID, timestamp, and text. It leverages a Natural Language Process-Users mood

analysis

from tweets
ing (NLP) technique to analyze the sentiment of textual content as illustrated
in Figure 21. Specifically, it counts the number of positive and negative words
within a sentence and uses their net difference to determine the overall sen-
timent polarity. Tweets are filtered out which are not in the default and
currently supported language. Extending support to other languages can be
achieved by loading the appropriate lists of positive and negative words.
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Figure 22: Example of parallel query structures of smart grid and spike detection.

Initially Classifier (ωTC ) operator removes stop wordsÐwords from tweets
that typically carry no significant sentiment value followed by counting the
positive and negative words within each tweet using TwitterAnalyzer (ωTA)
operator. Within the Twitter Analyzer, a Sentiment Classifier operator is em-
ployed, which can utilize either a Basic Classifier or a LingPipe Classifier.
The Basic Classifier assigns sentiment scores based on a predefined senti-
ment map, whereas the LingPipe Classifier uses a pre-trained model for more
nuanced sentiment scoring. Both classifiers label the tweets as negative, posi-
tive, or neutral and assign corresponding scores. Finally, the Twitter Analyzer
encapsulates these scored tweet objects and forwards them downstream to
the Sink, completing the sentiment analysis workflow.

Smart Grid (SG): The Smart Grid application [214, 70] is designed to monitor
energy consumption within a smart electricity grid as presented in Figure 22.
Its main objectives include load prediction and outlier detection, generating Load

detection

using grid

data

two key outcomes: identifying outliers per house and predicting house/plug
loads. Outliers are detected by comparing individual house plug medians
with the global median, with values surpassing the latter considered outliers.
Load prediction utilizes current average and median data to forecast future
loads. In this context, the application employs two queries 1 calculates the
global average load of houses using HouseLoadParser (ωHP ) operator to first
parse the input data stream into HouseEvent objects and grouping them using
house ID and is subjected to a sliding window deriving the average load per
house GlobalAverageLoad (ωGL). Similarly, 2 calculates the local average load
LocalAverageLoad (ωLL), factoring in attributes like house identifier, household
count, and plug number.

Spike Detection (SD): The Spike Detection application [215, 18] represents
the real-time monitoring streaming sensor data from production plant ma- Real-time

monitoring

from IoT

sensor data

chinery, specifically focusing on temperature measurements, crucial for iden-
tifying anomalies such as abrupt temperature increases, or spikes, that could
indicate potential issues with machine operations as presented in Figure 22.
Initially, the SensorParser (ωSP ) operator processes the incoming raw data
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Figure 23: Example of parallel query structures of TPC-H and traffic monitoring.

stream to extract vital information such as sensor ID, timestamp, and tem-
perature readings. This data is then structured into tuples, forming a well-
organized stream that flows into the AverageCalculator (ωAC ) operator based
on key-based sliding window aggregation to calculate the moving average
temperature within a predefined window period for each sensor ID. Following
this, the processed data advances to the SpikeDetector (ωSD) operator that
compares the current temperature against the calculated average to identify
temperature spike when the current reading exceeds more than 3% of the
average temperature. Only these spikes are passed downstream, filtering out
all non-spike events.

TPC-H (TPCH): The TPC Benchmark-H [39] is a decision support benchmark
that includes queries and database data with industry-wide relevance. It fea-
tures business-oriented ad-hoc queries and concurrent data modifications,
as shown in Figure 23. We selected one query from TPC-H benchmark that
processes data stream to emit high-priority orders. The 1 TPCHParser (ωTP )Transaction

analysis operator parses the data into a structured format, such key, customer name,
address, and order priority followed by 2 TPCHFilterCalculator (ωTF ) filter
operator to filter out orders with defined priority. This filtered data stream
is directed to the 3 PriorityMapper (ωTM ) operator, which creates tuples of
priority and occurrence then forwarded to the 4 PriorityCalculator (ωPC ) ag-
gregation operator to compute the sum of occurrences for each order priority
within a specified sliding time window.

Traffic Monitoring (TM): It processes events emitted by vehicles, such as vehi-
cle identifier, GPS coordinates, direction, speed, and timestamp [156, 97, 23]
as presented in Figure 23. The 1 TrafficEventParser (ωTP ) operator struc-GPS data

for traffic

congestion
tures the data into events. These events then pass to 2 RoadMatcher (ωRM )
operator which determines the road each vehicle is on by initializing with a
city’s bounding box, filtering events outside city limits, and using a shapefile
of city road followed by adding the road ID to the event and sends it to the 3
AverageSpeedCalculator (ωSP ) operator for computing the average speed over
sliding time windows for each road along with the number of vehicles.
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Figure 24: Example of parallel query structures of trending topic and word count.

Trending Topics (TT): The objective of trending topics application [216, 171]
is to analyze a continuous stream of tweets and determine the frequency of Tweets to

find

trending

topic

each topic within a limited window of events as presented in Figure 24. It
applies 1 TwitterParser to parse tweet streams into structured Tweet objects
containing essential information like ID, timestamp, and text content followed
by using 2 TopicExtractor (ωTE) to scan the tweet text to extract topics de-
noted such as ª @ º or ª # º symbols. 3 RollingCounter (ωRC ), a sliding win-
dow mechanism is then applied to aggregate topic counts over time intervals
which are exceeding a predefined popularity threshold 3 PopularityDetector

(ωTR) are considered trending topics.

Word Count (WC): The Word Count application [144] is a primary exam-
ple in DSP systems, commonly used to demonstrate real-time text process-
ing capabilities by dividing a continuous text stream into individual words
and counting their occurrences as presented in Figure 24. The application’s Text

analysisworkflow is managed through a series of connected operators: 1 Tokenizer

operator (ωTO) splits the incoming sentences into words, assigning a token,
typically the integer 1, to each word, thus transforming the data stream into
a series of tuples where each tuple consists of a word and the number 1 fol-
lowed by 2 WordCounter (ωWC ) operator receives the tokenized stream and
aggregates it by word, summing the tokens associated with each word to
calculate the total occurrences of each word.

4.5 PDSP-BENCH Controller

In the context of DSP, the heterogeneity and distributed nature of such sys-
tems pose significant challenges (C2) for benchmarking. The PDSP-BENCH’s Orches-

trates

seamless

benchmark-

ing

controller is designed to address these challenges by serving as a central man-
agement hub, orchestrating the benchmarking process across diverse DSP
configurations. It facilitates a seamless benchmarking experience by abstract-
ing the end-to-end complexities such as resource setup and DSP deployment
from the user. This separation ensures that the benchmarking process ac-
curately measures the SUT’s performance without extraneous overhead. The
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controller simplifies the benchmarking process through automation, relying
on user inputs through the web user interface (cf Section 4.6) to manage
distributed resources and collect results.

Automation Manager is responsible for initiating and coordinating the vari-
ous components of the benchmarking process. It automates and triggers the
execution of various tasks such as workload generation, deployment of paral-
lel query plans, and collection of benchmark results. It is based on the need
for a streamlined, error-free process that eliminates manual intervention and
ensures consistency across benchmark runs. For instance, ensuring thatBenchmark-

ing process

coordina-

tion

each node receives the correct workload and executes the appropriate part
of the query plan in a distributed DSP setup is critical for a fair assessment.
The Automation Manager coordinates these activities, reducing the complex-
ity of managing distributed systems.

Workload Manager manages the retrieval and distribution of workloads, in-
terfacing with both the Workload Enumerator and the message broker. It en-
sures that the correct data streams, whether synthetic or derived from real-
world applications, are fed into the SUT according to the specified parallel
query plans. This is crucial for emulating real-world conditions, where SUT
must handle varied dynamic and unpredictable data volumes. AccuratelyInterface to

workload

generation
simulating these conditions, PDSP-BENCH can assess how well a SUT scales
and manages resources under different parallel stream processing scenarios.
An example of its functionality can be observed in benchmarking of a DSP sys-
tem designed for IoT data processing. The Workload Manager would coordi-
nate the delivery of diverse data streams, simulating sensor data from various
IoT devices to assess the SUT’s throughput and data processing capabilities.

ML Manager. The inclusion of a ML Manager reflects the evolving nature
of DSP benchmarking, where traditional static analysis may not fully cap-
ture the dynamic behavior of these systems under various loads and condi-
tions (cf. C3 Section 4.1). The ML Manager relies on Workload Enumerator

to provide a diverse set of PQP and corresponding historical performance
data to train models to predict system performance under different condi-
tions or can be used to optimize the selection of test parameters such as par-
allel query plans. These predictive capabilities are relevant to future DSP forHandles ML

pipeline more intelligent testing and can significantly enhance the benchmarking pro-
cessing, where the benchmark suite can adapt to the observed performance
characteristics of the SUT. For instance, if ML models identify a particular
query plan as resource-intensive, subsequent tests can probe this scenario
to identify the most effective parallelism strategies for a given workload based
on learned patterns from previous tests. Thus, ML manager represents a
forward-thinking approach to benchmarking future DSP, enabling dynamic
adaptation to the evolving behaviors of DSP.
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Message Broker. Including a message broker within the PDSP-BENCH facil-
itates the efficient distribution of workloads to the SUT. It acts as an interme- Simulate

real-world

stream data
diary layer that facilitates the decoupling of data producers from consumers,
allowing the Workload Manager to publish data streams without direct cou-
pling to the SUT, enabling a more flexible and realistic dynamic test envi-
ronment. For instance, PDSP-BENCH uses Kafka as the message broker to
handle high-throughput and distribute a high volume of data streams across
distributed clusters, which is critical for the benchmarking of SUT.

4.6 Web User Interface

In the context of DSP benchmarking, the complexity of configuring various
parallel query plans and managing heterogeneous resources often poses sig-
nificant challenges to users with limited expertise in parallel processing or
benchmarking. To address this challenge led to developing a web user in-
terface (WUI) within PDSP-BENCH to simplify the benchmarking process. It Managing

users

input...
serves as a portal through which users can effortlessly deploy homogeneous
and heterogeneous clusters, configure DSP settings, select workloads and a
variety of parallel query plans derived from both real-world applications and
synthetic benchmarks. In addition, PDSP-BENCH’s WUI offers an intuitive
platform for configuring benchmarking parameters, such as parallelism de-
gree, event rates, and window sizes. These parameters are pivotal in assess-
ing the scalability and performance of DSP under varied workloads. By ab- ...for orches-

trating

benchmark-

ing process.

stracting the complexities of benchmark setup and parallel query execution,
the WUI enables users to focus on the core objective of benchmarkingÐthe
evaluation of DSP performance against defined metrics and scenarios.

The WUI also acts as a gateway, forwarding user-defined benchmark con-
figurations to the PDSP-BENCH’s controller, which orchestrates the initiation
of the benchmarking process (cf. Section 4.5). Performance metrics and query
outputs are subsequently published to a Kafka output topic, from where they
are directed to the results’ visualizer. This visualization component enables
real-time monitoring of key performance indicators such as end-to-end la-
tency and resource utilization, offering immediate insights into the DSP’ be-
havior under test conditions. Moreover, the controller archives every test con-
figuration and its resultant performance metrics in a database. This archival
facilitates historical analysis and comparisons, enriching the benchmarking
process with a temporal dimension. Through this, users can track perfor-
mance trends over time, compare the efficacy of different configurations, and
make informed decisions on optimizing DSP performance. Lastly, by encap-
sulating the benchmarking process within an intuitive web interface, PDSP-
BENCH significantly enhances the accessibility and utility of the system. Re-
searchers and professionals can focus on the core objective of benchmark-
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ing DSP capabilities, free from the encumbrances of complex setup proce-
dures and configurations. This streamlined approach not only facilitates a
more efficient evaluation of DSP across diverse scenarios but also promotes
a broader adoption of PDSP-BENCH in both academic and industry settings.

4.7 Summary

In this chapter, we propose the first contribution of this thesis PDSP-BENCH,
a novel performance benchmarking system to tackle the research challenge
(cf. RC1 Section 1.1) of systematic understanding of PDSP in DSP systems.
The critical analysis of existing benchmarking systems for DSP systems re-
veals significant gaps, particularly in handling parallel dataflows or PQP and
adapting to heterogeneous computing environments. Furthermore, integrat-
ing machine learning (ML) into DSP systems presents new opportunities and
challenges. While ML can enhance parallelism and resource allocation strate-
gies, existing benchmarks do not adequately support ML model testing and
comparison. They cannot often provide consistent metrics or generate diverse
data streams required for training ML models, which is crucial for their ap-
plication in dynamic streaming environments.

To solve these challenges, PDSP-BENCH, a comprehensive benchmarking
system is designed to address the complexity of benchmarking parallel and
distributed stream processing across heterogeneous environments. It offers
(i) the most extensive suite of benchmarks, including 14 real-world applica-
tions and 9 synthetic workloads, encompassing both standard stream pro-
cessing and user-defined operators. (ii) It is designed to rigorously test DSP
systems across various hardware configurations, thereby enhancing our
understanding of system behaviors under diverse operational conditions.
(iii) PDSP-BENCH also features an intuitive web interface that facilitates the
scaling of workload generation for both data streams and queries, enhanc-
ing the benchmark’s utility in machine learning applications within DSP
systems. This capability is critical as it allows researchers and developers
to simulate and analyze the performance impacts of different parallelism
strategies and hardware configurations. It provides invaluable insights that
drive the optimization of DSP. In Section 6.2, we present results from an
extensive evaluation that demonstrates the scalability and capabilities of
PDSP-BENCH to benchmark a well-known DSP Apache Flink using parallel
query structures, varying workload, and hardware configuration and high-
light observations from our experiments.



5
ZeroTune: Zero-Shot Cost Model for
Performance Prediction

Distributed Stream Processing (DSP) is an essential paradigm for real-time
data analysis, extensively used across various application domains. Leading Parallelism

is used in

DSP...
organizations like Alibaba in retail [153], King in online gaming [49], and
Netflix in video streaming [33] harness the power of DSP to handle core oper-
ational tasks. Alibaba, for instance, processes an average of 4 million trans-
actions per second, with demand sometimes peaking even higher. In this ...to process

higher

workload.
scenario, it requires processing enormous data volumes across numerous
parallel operator instances to ensure consistent performance and reliability.
The diverse and intense demands of such applications pose substantial chal-
lenges in parallelism tuning, as tuning the degree of parallelism is critical
because it must be aligned with the specific characteristics of the workload
and underlying resources. Incorrect provisioning in parallelism can lead to Incorrect

provision-

ing...
backpressureÐa condition where data input rates exceed the processing ca-
pacity of the systemÐleading to significant performance degradation and po-
tential system failures.

However, tuning the parallelism of DSP operators is not straightforward. It
requires a nuanced understanding of how configuration changes will affect
overall system performance, as any adjustment in parallelism often neces- ...due to

lack of

overall per-

formance.

sitates substantial changes to DSP query itself, including costly relocations
of operators and the splitting of their state to accommodate a new paral-
lelism degree. Therefore, it is crucial to use accurate predictive cost7 models
to provide reliable forecasts of key performance metrics, such as latency and
throughput, before any operational changes are applied. These models help Accurate

perfor-

mance

modeling is

the need of

PDSP

ensure that changes made to the system configuration improve performance
as intended without causing disruptions or unforeseen negative impacts.

To solve the second research challenge on performance prediction and
optimization, we are ZEROTUNE for accurate performance prediction for de-
termining optimal parallelism without query execution for parallel and dis-
tributed stream processing (PDSP). Figure 25 illustrates the system archi-
tecture of ZEROTUNE, focusing on accurate performance prediction and op-

7Performance and cost are used interchangeably in this thesis.
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Figure 25: Overview of ZEROTUNE architecture for performance prediction and deter-
mining initial parallelism tuning of parallel query structures for execution
via DSP systems across various resource configurations and under differ-
ent workload conditions stemming from a diverse range of applications.

timizing the initial parallelism degree of each operator. This architecture isCumber-

some

manual

parallelism

tuning

process

built on the foundational concepts, as introduced in the previous chapter
(cf. PDSP-BENCH Chapter 4), understanding and performance prediction of
parallel data flow in distributed and heterogeneous environments.

Traditional DSP systems often rely on manual tuning to determine the op-
timal parallelism, a process that proves particularly cumbersome within the
distributed and heterogeneous environments typical of DSP. This complexitySeveral

oscillations

before

optimal

parallelism

is due to the variation in workloads, including differences in query plans and
data streams, alongside the diverse array of resource configurations. Identify-
ing the optimal parallelism manually involves executing numerous configura-
tions to empirically determine the best configuration, a method that is both
time-consuming and inefficient.

Additionally, while heuristic and analytical methods exist [108, 83, 131,
174], these non-learned (cf. Section 2.2.2) approaches also typically re-
quire multiple adjustments, or oscillations, before settling on an optimal
parallelism. Learned or machine learning (ML) approaches [201, 264, 54],Costly

retraining

for every

new

workload

although potentially more adaptive, often suffer from similar limitations
(cf. Section 2.2.2), requiring several iterations to fine-tune the model and
typically being tailored to specific workloads without the ability to gener-
alize effectively across different scenarios without a high amount of data
and training time.

In contrast, ZEROTUNE is designed to overcome these challenges by pre-
dicting accurate performance, e.g., latency and throughput and using the
predicted cost to determine optimal initial parallelism degree. This approach
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leverages characteristics of the workload and resources to make informed
predictions about performance and determine parallelism without the need
to execute the query.

5.1 Analysis of Performance Prediction Methods

Designing an accurate cost model for operator parallelization remains a criti-
cal challenge (cf. RC2 Section 1.1). Many current learned-based solutions for
performance prediction and determining parallelism [108, 201, 264, 192, 99,
54, 217], employ online learning to dynamically predict parallelism degrees
by monitoring query performance in real-time. However, existing approaches
introduce several significant challenges for DSP systems in performance pre-
diction and determining parallelism:

C1: Incorrect Initial Provisioning: Although online learning may seem ad-
vantageous for scaling decisions within stream processing, it often leads to Cumber-

some

manual

parallelism

tuning

process

highly inaccurate initial provisioning for parallel operators. This necessitates
multiple adjustments before achieving a stable state, resulting in prolonged
convergence times [131]. Such iterative adjustments to achieve the desired
parallelism degree are impractical for real-time applications, like online gam-
ing, where they can cause significant delays.

C2: Non-transferable Features: Online learning models are typically trained
on context-specific features, referred to as non-transferable features. These ML models

are

workload

dependent

features may be effective within specific scenariosÐsuch as a temperature
filter literal of ª≤ 27 degreesº may be useful for specific data streams (e.g.,
weather reports) but fail to generalize across different contexts, like smoke
detection systems [201]. A more robust approach would involve learning from
context-independent features, such as the complexity of filters or the number
of attributes used, which can provide better generalization across various
streaming environments.

C3: High Training Effort: While some models achieve a degree of general-
ization, they require substantial training efforts, which is not feasible for
all applications. For example, established models within the database field Hard to

achieve

generaliza-

tion for DSP

need extensive training on over 200k queries and 15 different databases to
generalize effectively across unseen databases [114]. Unlike database sys-
tems, DSP workloads and data characteristics are often unpredictable, ne-
cessitating models that can handle a wide variety of workloads and effectively
reduce the training burden for managing unseen or new workload types.

In this chapter, we introduce ZEROTUNE, a model designed to initially con-
figure parallelism degrees based on accurate performance prediction of par-
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allel query plans. This approach helps to avoid costly trial-and-error ad-
justments from the start of query execution. Although ZEROTUNE can also
adapt parallelism degrees during runtime, our primary focus is demonstrat-
ing its capability to make well-informed initial configurations. ZEROTUNE em-
ploys a novel learning paradigm that leverages recent advancements in trans-
fer learning, particularly in data-efficient zero-shot learning [46, 222]. ThisZEROTUNE

for perfor-

mance

prediction

method enables ZEROTUNE to grasp the dynamics of a DSP system offline,
allowing it to apply learned insights across various DSP queries and applica-
tions without the need for costly retraining. The cornerstone of ZEROTUNE is
the use of transferable features attributes that maintain consistent semantic
significance across different workloads. For example, ZEROTUNE uses the fil-
ter operator ª≤º to learn about the cost implications (latency and throughput)
that are independent of specific data streams.

As mentioned before, the main objective of ZEROTUNE is to overcome chal-
lenges by achieving generalizability and precise cost prediction while min-
imizing the training dataset required for effective training. This approach
ensures that ZEROTUNE can provide reliable and efficient initial tuning for
parallelism, significantly reducing the operational overhead and enhancing
the performance of DSP systems.

We have developed a novel method for predicting costs for PQP using a GNN
architecture (cf. Section 2.2.2) for learning and encoding transferable fea-
tures. In this model, each node within the graph represents a crucial com-Transfer-

able

features...
ponent of the parallel DSP system, embodying transferable features such as
parallel operator instances, partitioned data streams, and their distribution
across various hardware resources. These nodes are characterized by dis-
tinctive attributes and their connections with other nodes in the system, en-
abling the model to decipher the intricate relationships and dependencies
within the PQP.

By utilizing this graph-based technique, the proposed model, ZEROTUNE,
achieves the capability to adjust to new, previously unseen parallel opera-
tors and hardware setups. This flexibility significantly broadens ZEROTUNE’s...and

graph repre-

sentation...
range of applications, enhancing its effectiveness in optimizing parallel query
executions across varied computational environments. Such adaptability en-
sures that ZEROTUNE remains applicable and effective, even as system con-
figurations and requirements evolve.

ZEROTUNE significantly outperforms models that utilize non-transferable
features by delivering highly accurate cost predictions, as demonstrated in...are the

keys for

prediction

accuracy

and gener-

alization.

Figure 26. Notably, for unseen query types, it surpasses existing learned cost
models by a factor of 1000, particularly those employing a flat vector represen-
tation, in favor of our advanced graph-based approach. Additionally, ZERO-
TUNE benefits from an innovative data-efficient training strategy, OptiSample,
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Figure 26: Comparison of ZEROTUNE with non-transferable cost prediction mod-
els [8]. ZEROTUNE excels in providing robust and generalized predictions
of latency costs for both seen and, notably, unseen parallel query plans.
This performance stands in stark contrast to other models that rely
on non-transferable features [90, 45, 13], which typically struggle with
generalization across different configurations.

which leverages analytical methods [83, 131] to explore parallelism degrees.
This approach enables ZEROTUNE to generalize from as few as 5k queries,
significantly reducing the need for the data compared to traditional models,
which require 4× more data to achieve similar results. These advancements
are further detailed in our subsequent evaluations.

5.2 ZEROTUNE Overview

The primary objective of ZEROTUNE is to predict the performance or costs,
such as latency and throughput, for executing parallel stream process-
ing queries on distributed and parallel hardware resources, specifically
for queries and configurations that have not been previously observed, re-
ferred to as unseen. Below, we outline our solution (S) to address these
challenges (C) effectively.

C1: Incorrect initial parallelism. To ensure accurate initial provisioning of
operator parallelism at the deployment stage, we utilize an offline supervised
model as described next.

S1: Figure 27 presents the overview of ZEROTUNE. It is initially trained us-
ing a diverse set of DSP workloads such as data streams, parallel query struc-
tures (PQP), and heterogeneous configurations of resources by identifying a
set of transferable features (refer C2). Once trained, ZEROTUNE is capable of Different

DSP

workloads

to train

ZEROTUNE

accurately predicting costs (latency and throughput) for unseen queries and
resource combinations. An optimizer subsequently utilizes these predictions
to determine the most cost-effective parallelism configuration. Unlike previ-
ous approaches, ZEROTUNE establishes optimal parallelism degrees from the
onset and is adaptable to unseen workloads.
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Figure 27: Overview of ZEROTUNE for performance or cost prediction applied to par-
allelism tuning [8]. We initially train ZEROTUNE (top figure) using trans-
ferable features from a variety of streaming workloads with varying par-
allelism levels. Once trained, the model is utilized during the inference

phase (bottom figure) to accurately predict the cost of unseen parallelism
query structures (PQP) without needing expensive retraining. The pre-
dicted cost from ZEROTUNE is used by an optimizer to determine paral-
lelism degrees of PQP that minimizes the overall execution cost.

C2: Generalizability. A crucial aspect of ZEROTUNE is its ability to general-
ize across diverse workloads involving parallel and concurrent operators on
various hardware setups. This is inspired by established practices in creat-
ing generalizable cost models for databases [113, 114, 6, 5]. Our approach
is two-fold: (1) employing a novel feature selection process that focuses on
transferable features, and (2) utilizing a generic graph representation to model
the query plan and learn from operational characteristics. The challenge isEncoded

transfer-

able

features...

to understand the dependencies associated with parallel resource allocation
and the nuances of applying this knowledge to unseen PQP on multicore
hardware.

S2: Transferable features. We focus on learning from attributes such as
the data-partitioning schemes of an operator and the CPU cores used by the
hardware resources. These features help ZEROTUNE understand the impact
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of load distribution on overall costs. Such transferable features describe the ...with

parallel

graph repre-

sentation...

operational aspects of query operators and their deployment on hardware, en-
abling the model to discern relationships and transfer knowledge from known
(seen) to unknown (unseen) scenarios.

S3: Parallel graph representation. Our second major contribution is the in-
novative use of parallel graph representation. This format naturally depicts
both operators and their interconnections, with ªnodesº representing oper-
ators endowed with transferable features and ªedgesº illustrating data flow
among them. This structure, represented as a DAG suitable for GNN appli- ...to enable

generaliza-

tion by

transferring

knowledge.

cations, includes operator-instance resource mapping as additional edges,
enhancing the model’s predictive accuracy. As data circulates through this
graph, a message-passing mechanism updates the hidden states of nodes,
culminating in a comprehensive state that informs the final cost estimation
regression. This robust graph-based method, combined with strategic feature
selection, ensures precise cost predictions for new PQP configurations dur-
ing the inference phase.

C3: Enormous training effort. Traditional models require training on a vast
array of queries. For instance, 200k, queries across as many as 15 differ-
ent databases [114] for achieving generalization for cardinality examination.
Gathering such a diverse set of data for stream processing presents signifi- Data-centric

approach...cant challenges due to the inherently dynamic nature of data streams, which
continuously evolve. Additionally, the scarcity of comprehensive benchmarks
for stream processing compounds the difficulty of assembling sufficient data
to train large models effectively.

S4: Data-efficient Training. Given the complexities of acquiring diverse train-
ing datasetsÐencompassing various data streams, parallel query plans (PQP),
and hardware configurationsÐit is often impractical and costly to undertake
such extensive data collection in the stream processing context. To address ...for

efficient

data

generation

and

training.

this, we introduce a hybrid training approach, OptiSample, that strategically
varies data streams, query parameters such as window size, and resource
configurations from basic to high-end setups. However, it restricts the ex-
ploration to specific parallelism degrees of PQP as suggested by existing re-
search [131, 83]. This method aims to cultivate a generalizable model that
requires less data and reduces training time, details of which are further
discussed in Section 5.5.

5.3 Zero-shot Cost Model

ZEROTUNE is designed to predict the costs associated with executing PQP
that have not been previously observed, i.e., unseen on specific combinations
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of resources. The approach leverages a set of transferable features to esti-
mate cost metrics effectively without direct observation of PQP deployment,
as detailed below, following the definitions of these metrics.

5.3.1 Metrics for Prediction Model

The objective of ZEROTUNE is to predict cost metrics that can be used to op-
timize parallelism degrees across physical resources, aiming to minimize the
total execution cost. The model primarily focuses on two critical cost met-Network

latency to

consider...
rics commonly used in streaming applications: end-to-end latency (cf. Def-
inition 6) and throughput (cf. Definition 7). These metrics have been long-
established by Stonebraker et al. [221] and remain relevant in contemporary
applications [133, 164, 42]. While these are the primary metrics, ZEROTUNE...delay

between

operator

instances.

is adaptable and can be calibrated to assess additional metrics such as re-
source utilization and availability [53], simply by adjusting the final Multi-
Layer Perceptron (MLP) node in the model.

5.3.2 Transferable Featurization

We explore the set of transferable features within the context of PQP cost pre-
diction. Transferable features are defined as attributes associated with theTransfer-

able

features of...
query, data stream, and hardware that, once learned, can be effectively uti-
lized to predict costs for scenarios involving unseen queries, data streams,
and hardware configurations. These features are crucial because they al-
low the predictive model to generalize across different operational contexts
without direct prior exposure. We categorize transferable features into three
primary groups to streamline their application in diverse scenarios. Each...query,

operator

and

resources.

category targets specific aspects of the streaming process and system archi-
tecture, enhancing the model’s ability to adapt its predictions to new envi-
ronments. The details and rationale behind selecting these features are listed
in Table 5 and thoroughly discussed in the subsequent sections.

Operator Parallelism-related Features

In our feature selection study, we focus on identifying and understanding
the features critical to cost prediction for PQP within DSP systems. Among
these features, the parallelism degree of operators stands out as a pivotal
factor that significantly impacts the execution costs. To explore the effects ofTransfer-

able feature

selection

study...

parallelism degree on key performance metricsÐnamely latency and through-
putÐwe carry out a detailed micro-benchmark, the results of which are pre-
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Node Category Feature Description

Logical

operator-

parallelism
Parallelism degree Parallel instances of the operator

operator-

parallelism
Partitioning strategy

Strategy for data distribution

(forward, rebalance, hashing)

operator-

parallelism
Grouping number Number of operators grouped together by DSP

data Tuple width in Input tuple width

data Tuple width out Output tuple width

data Tuple data type Data types in a single tuple

data Selectivity Average selectivity of all instances of a given operator

data Event rate Emitted event rate of the source

operator Operator type Type of operator

operator Filter function Comparison filter function, e.g., <,≤,≥

operator Filter literal class Filter literal datatype for comparison, e.g., int

operator Window type Shifting strategy (tumbling/sliding)

operator Window policy Windowing strategy (count/time)

operator Window length Size of the window

operator Sliding length Size of the sliding interval

operator Join key class Join key data type

operator Agg. class Aggregation data type

operator Agg. function Aggregation function, e.g., min, max, avg

operator Agg. key class Aggregation key data type

Physical

resource CPU cores Number of processing cores

resource CPU frequency CPU frequency on this instance

resource Node identifier Unique identifier of every instance

resource Total memory Available memory of the node

resource Network speed Network link speed between nodes

Table 5: Transferable features to derive costs of PQP categorized into logical and
physical node. A logical node consists of features related to operators, data
streams, and parallelism, while the physical node represents features re-
lated to resources and their characteristics [8].

sented in Figure 28. The experiment is conducted using Apache Flink on a
count-based tumbling window query. During this test, all variables except for ...to study

the impact

on cost.
the parallelism degree are held constant to isolate its impact. The setup is
designed to maximize cluster utilization while avoiding backpressure, even
as parallelism increases. Our observations show a clear trend: as the paral-
lelism degree increases, leading to a decrease in latency and an improvement
in throughput. This indicates that higher parallelism levels can efficiently Increasing

parallelism

degree...
distribute workload across the system, thus enhancing overall performance.
However, our analysis also uncovers a critical non-linearity in the relation-
ship between parallelism degree and performance metrics at higher levels of
parallelism. This non-linearity is particularly influenced by operator chaining, ...improves

cost.a feature we highlighted in our results. Operator chaining in DSP systems,
such as Flink, allows multiple independent operators sharing the same par-
allelism degree to be grouped and executed on a single computational unit
or physical node. This arrangement minimizes inter-process communication Operator

chaining...overhead and maximizes the utilization of available processing cores. The sig-
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Figure 28: Analyzing the influence of selected features on cost metrics during fea-
ture selection study [8]. For instance, impact of increasing parallelism de-
gree and operator chaining or grouping on cost metrics: latency (left) and
throughput (right) for a linear query. Notably, decrease in latency and
increase in throughput with increasing parallelism degree. Particularly
at higher parallelism levels, the strategic grouping of operatorsÐvisually
highlighted in blueÐdemonstrates a marked improvement in cost effi-
ciency. This grouping reduces inter-node communication and enhances
resource utilization, leading to significant enhancements in performance
metrics.

nificant reductions in latency and improvements in throughput observed due
to operator chaining underscore its importance. Consequently, our feature...accelerate

perfor-

mance...
selection for the cost prediction model considers not only the parallelism de-
gree of individual operators but also the grouping number, which reflects how
many operators are clustered together on nodes during query execution. This
dual consideration helps in creating a more accurate and robust prediction
model, effectively capturing the dynamics of parallel execution within DSP
systems.

Additionally, the cost implications of a parallel query plan are significantly
influenced by the partitioning schemes utilized by operators, which deter-
mine how workload is distributed across various parallel instances. The se-...by placing

operators

together

with the

same

parallelism.

lected partitioning strategy plays a crucial role in defining these cost dynam-
ics. In the proposed system ZEROTUNE, we incorporate several partitioning
approaches, including forward, rebalance, and hashing schemes [52]. Each
of these strategies offers distinct advantages for load distribution: forward

passes data to the next operator without alteration, rebalance distributes
data evenly across all operators, and hashing ensures that data with the
same key is processed by the same processor, optimizing load handling and
enhancing overall system efficiency as explained in Section 3.2.
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Operator-related Features

Beyond parallelism-centric features, other transferable attributes related to
data streams and operators are also critical due to their significant impact on Event rate

to learn

from...
the runtime costs of PQP. For instance, for window operators within a query
(as depicted in step 0⃝ in Figure 29), we consider factors such as the type
of window (tumbling versus sliding), the window policy (time-based or count-
based), and the dimensions of the window like window length and the sliding
interval for sliding windows. Similarly, for aggregation operators, essential ...different

rate of data

streams.
features include the aggregation function employed and the data type of the
aggregate. For filter operators, we examine the filter function, the data type
of the filter literal, and the average selectivity, which influences how much
data passes through the filter.

Additionally, understanding the performance impact of data stream-related
features is crucial in DSP systems where data characteristics are inherently No prior

knowledge

of...
dynamic and substantially different from those in traditional databases. In
contrast to databases, where data distributions are predetermined, DSP sys-
tems handle streaming data where prior knowledge of data characteristics is
limited. To effectively manage operator parallelism in such environments, it’s ...underly-

ing data

distribution

in DSP.

important to focus on generalized data stream attributes like the event rate

(data arrival rate) and tuple width (the size of data elements). These attributes
directly influence the processing demands placed on operators, thereby af-
fecting the required level of parallelism.

Another vital feature related to data streams is the selectivity of operators,
which describes the fraction of incoming data that satisfies certain conditions
within the filter operators. We consider the average selectivity of the parallel Selectivity

of

operators...
instances of each operator as selectivity can differ significantly due to diverse
deployments across physical nodes, impacting performance outcomes. For
example, in a scenario where a filter-aggregate query processes two distinct
data streams with identical input rates but differing data characteristics, the
selectivity feature becomes indispensable. Without incorporating selectivity ...to learn

computa-

tional

demands.

into the model, a cost prediction system might fail to accurately assess the
computational demands for the aggregate operation on each stream. This
consideration mirrors strategies employed in database management systems
(DBMS) to optimize query performance [114], which shows the importance of
context-sensitive cost modeling in dynamic data environments.

Resource-related Features

An integral component of cost estimation for PQP involves considering the Resource

features to

capture...
underlying parallel resources utilized for deployment. The characteristics of
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the computing hardware are pivotal for maximizing the efficiency of operator
parallelization and enhancing the performance during the physical execution
of queries. Recognizing and exploiting specific hardware attributes associ-
ated with parallelism allows for the optimization of DSP applications across
diverse hardware setups.

We focus on identifying and incorporating fixed hardware characteristics
that are crucial for parallelization. Notable among these are the number of...correla-

tion

between

resources...

processing cores and CPU speed, which serve as representative transferable

features for different types of hardware. These features are directly linked
to the achievable level of parallelism and, consequently, the overall cost in
terms of latency and throughput. For example, the number of available pro-
cessing cores within a physical node fundamentally influences the extent
of parallelism that can be realized for an operator. A higher count of pro-...and

mapping

with

operators.

cessing cores typically enables a greater degree of parallelism, which in turn
facilitates quicker computational times, reduced processing latency, and en-
hanced throughput.

In ZEROTUNE, we employ distributed physical nodes featuring varied hard-
ware configurations to execute and gather training data for parallel query
plans, allowing to systematically explore different degrees of parallelism and
their impact on performance metrics. Additionally, we encode the mappings
among logical operators, physical nodes, and the associations from logical
operators to physical nodes. This graphical representation helps delineate
the hardware characteristics and their effects on operator parallelization and
overall performance. Through this detailed approach, we aim to ascertain
the most effective strategies for parallelizing operators across a spectrum of
hardware configurations, thereby optimizing resource utilization and achiev-
ing superior performance outcomes.

5.4 Training and Optimization

In (Figures 29 to 32), we outline the model architecture of ZEROTUNE, de-ZEROTUNE

is trained

only once...
tailing the training and inference process, including our novel parallel graph
representation, and demonstrating how an optimizer leverages cost predic-
tions for effective parallelism tuning.

5.4.1 Training and Inference

The ZEROTUNE model is trained in an offline supervised manner, where the
queries are visually represented in a graph format. The graph representation
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SELECT location, COUNT(*) FROM SensorStream [RANGE 1 HOUR] 
WHERE temperature > 70 WITH (PARALLELISM = 3); 
GROUP BY location WITH (PARALLELISM = 2); 
HAVING COUNT(*) > 100 WITH (PARALLELISM = 1);

Input Query0

Logical Directed Acyclic Graph and Physical Resource Assignment

Physical nodes
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1

Data Stream

…

Figure 29: A detailed view of ZEROTUNE model architecture showing logical and phys-
ical execution plan of an arbitrary PQP. Step 0⃝ Logical plan represents
the flow of data stream between operators of PQP. Step 1⃝ ZEROTUNE

captures the physical execution plan i.e., the mapping of these operators
and its instances on diverse and distributed resources for PQP execution.
Different parallelism enumeration strategies can be applied to set paral-
lelism of operators and deployment on physical resources [8].

incorporates encoding of transferable features across both logical and physi-
cal nodes using GNN model (cf. steps 0⃝ and 1⃝ of Figure 29). In this model, ...using

encoded

transfer-

able

features.

each graph node is functionally akin to a multi-layer perceptron (MLP), em-
bedding the physical and logical nodes into the input and hidden layers sys-
tematically (as outlined in step 2⃝ of Figure 30). This structured embedding
underpins the foundational graph representation devised for the PQP.

The process of neural message passing initiates between the operator
nodes (illustrated with black edges), continues between physical nodes (or-
ange edges), and culminates with operator-resource mapping (green edges).
This sequence facilitates the aggregation of information at the sink, where
predictions are finalized (cf. step 3⃝ of Figure 31). For instance, in the pro-
vided figure, the hidden state of the node representing the first instance
of a filter operator (ω1

σ) is derived by inputting the feature vector x1 (which
includes transferable features from the data source) into MLP shared across
all upstream nodes (gray nodes).

The sequence of message passing integrates the input and output of the hid- Message

passing

includes

resources

nodes

den states along both the data flow and physical operator mapping as shown
in step 3⃝. This integration is crucial for the model to accurately learn the run-
time behaviors of each parallel operator instance across different hardware
resources and, conversely, to pinpoint precise costs associated with them. Af-
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Figure 30: Parallel graph encoding or representation of PQP within ZEROTUNE model
architecture. Step 2⃝ A detailed view shows transferable features asso-
ciated with workload (parallel data streams and PQP) and different re-
sources based on allocation of these operators in resources. In ZERO-
TUNE, parallel graph representation captures these intrinsic correlations
as graph representation with encoded transferable features of different
operators and resources as graph node types [8].

ter the message passing, the final node output (y1) provides predictions for
metrics such as latency or throughput during the inference phase (cf. step
4⃝ of Figure 32). This comprehensive training and inference mechanism en-
ables ZEROTUNE to effectively predict the costs of executing unseen PQP on
unobserved resource combinations, ensuring optimal parallelism configura-
tion from the outset.

5.4.2 Parallel Graph Encoding

A major challenge in parallel graph encoding or parallel graph representa-
tion is encoding the attribute space of PQP effectively within the graph, while
avoiding increased model complexity or degrading the performance of the cost
models. To address this, we evaluated two potential strategies for incorporat-Redundant

feature in-

formation...
ing the defined transferable features into our graph representation: (1) repre-
senting each operator instance and its features as an individual graph node,
or (2) encoding only distinct operators separately while grouping parallel op-
erator instances along with parallelism-related features into a single node.

Individual node encoding: The first approach (1) tends to introduce redun-...in

individual

node

encoding.

dancy by replicating similar or identical feature information across multiple
graph nodes, which corresponds to each parallel operator instance. This re-
dundancy not only inflates the graph size but also complicates the model
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Message Passing

x1:SO a1:𝜔𝜎1 a2:𝜔𝜉1 a3:𝜔𝜎1 y1:SI

Op to Op Op on NodeBetween Nodes3

a6: R5a5: R3a4:R2 a7: R7 a8: R8

Figure 31: Message passing among graph node for training within ZEROTUNE model
architecture. Step 3⃝ A detailed view on the message passing for training
where each operator’s feature vectors, along with its attributes, are en-
coded into a node-specific MLP to generate a hidden state. This hidden
state is then propagated through the graph in the specified order of the
query, ultimately reaching the sink [8].

unnecessarily, as each parallel operator instance might share extensive com-
monalities in feature sets. For instance, if we consider a scenario where the
maximum parallelism on a machine is maxP = 64, a linear query would gen-
erate 64 instances of a filter operator, each linked by 64 edges from a single
source (ωP

So = 1). This setup would further extend to 128 edges connecting
each filter to a window aggregation operator (ωP

ξ = 2), culminating in an over-
whelming 4096 edges for neural message passing. Such a model becomes
highly complex without offering substantial new information per operator
instance.

Aggregate operator encoding: In contrast, the second approach (2) simpli-
fies the graph structure by aggregating similar operator instances into a sin- Aggregated

encoding

to...
gle node enriched with averaged or collective attributes of those instances.
This method not only reduces the number of nodes and edges in the graph
but also focuses on the distinctiveness of each operator type without unnec-
essary duplication of node information. For example, when averaged across ...reduce

graph

complexity.
instances, attributes like selectivity provide a more manageable and equally
informative feature set for the model. A microbenchmark validating this strat-
egy demonstrated minimal variation in individual selectivities across different
partitioning schemes, supporting our aggregation choice.

Additionally, encoding transferable features of multiple instances into a sin-
gle graph node introduces the challenge of adequately representing resource Trained

models...mappings for each operator instance. Although we aggregate attributes like
selectivity, we meticulously maintain distinct edge information for each par-
allel operator instance (e.g., ωi

σ, here i=op. instance). This structure, detailed
in the depiction of operator-resource mapping in Figure 30 step 2⃝, allows ...for cost

prediction

of un-

seen PQP.

the model to accurately assess the cost implications associated with each re-
source and operator instance during inference. By adopting this method, we



86 ZeroTune: Zero-Shot Cost Model for Performance Prediction

Inference phase

Optimizer
Prediction

Latency: 2ms
Throughput: 500 ev/s 

Set of Parallelism 
Degrees

Restrictions, e.g., max 
parallelism degree

Output:

4

Trained Zero-Shot Cost Model

Multi-Layer Perceptrons (MLPs)

Hidden layers
In

p
u
t 

la
ye

r

…

x1

x2

x3

O
u
tp

u
t 

la
ye

r

…

y1

y2

…

y3…

a1

a2

…

a3

Unseen Feature Space

Data stream (D’), Parallel 
query plan (Q’), and 

Resource (R’)
…

Input:

Figure 32: Performance of cost prediction using ZEROTUNE during inference phase.
Step 4⃝ Final layer MLP provides the predicted cost for an arbitrary PQP.
The predicted cost is used by the optimizer to apply what-if costs condi-
tions to the PQP to determine the optimal set of parallelism degrees for
each operator leading to the minimal overall cost (cf. Equation (12)) [8].

optimize the model’s complexity while preserving its ability to reason effec-
tively about diverse resource allocations and their impact on execution costs.

5.4.3 Optimizer

The ZEROTUNE cost model is designed to work together with an optimizer,
enhancing the decision-making process to minimize the overall costs asso-
ciated with query execution, as illustrated in Figure 32. For ZEROTUNE toPredicted

cost used

by

optimizer...

effectively determine optimal parallelism degrees, it first needs to enumerate
potential PQP. However, given the NP-hard nature of this task, an exhaustive
enumeration of all possible plans is impractical. To circumvent this limita-
tion, we employ a pragmatic approach where a subset of PQP is randomly
selected, and their associated costs are predicted using the zero-shot model.
The optimizer then evaluates these plans to identify the configuration that
offers the minimal combined cost of latency and throughput. This process is...to

determine

parallelism

of

operators...

detailed in the subsequent sections, where we formalize the optimizer’s role
within a combinatorial optimization framework, focusing on achieving the
most cost-effective parallelism degrees. The primary objective of ZEROTUNE is
to ascertain a set of parallelism degrees Pi for each operator ωi ∈ Ω in PQP that
minimizes the inferred costs C of executing the query on a specified resource
set R. To facilitate this, we introduce a novel OptiSample strategy, elaborated
in Section 5.5, which guides the enumeration of feasible parallelism degrees.

We construct the objective function for the parallelism tuning problem by
integrating two pivotal cost metrics: latency (CL) and throughput (CT ). Both...that

minimizes

overall cost.
metrics are normalized within the range [0, 1], where 0 signifies optimal per-
formance and 1 represents the least desirable outcome. In this normalization
process, throughput is negated to align with the maximization goal, whereas



5.5 Data-efficient Training 87

latency is minimized directly. The relative significance of these metrics is
controlled by the weight factor wt, which balances the importance between
latency and throughput in the cost calculation:

C = argmin
CL,CT

[wt · CL + (1− wt) · CT ] (12)

s.t. for each operator ωi, the parallelism degree Pi must be a positive integer,
Pi ∈ Z and at least 1, Pi ≥ 1. Additionally, the maximum parallelism degree
Pmaxp is constrained by the aggregate number of processing cores ncore across
all designated resources R, ensuring that Pmaxp ≤ ncore.

5.5 Data-efficient Training

To ensure that the ZEROTUNE cost model effectively generalizes across diverse
unseen workloads and hardware configurations, we train it using a wide ar-
ray of workload characteristics and physical resource data. This approach Impossible

to capture

all possible

combina-

tions

addresses a critical concern: how to appropriately enumerate different PQP
and their resource assignments to guarantee comprehensive model train-
ing. Although prior research [114] suggests that random sampling across
a range of scenarios can aid generalization, merely randomizing parallelism
degrees could generate suboptimal and noisy query plans, potentially degrad-
ing model performance. For example, setting lower parallelism degrees for
upstream operators and higher for downstream ones within a query graph
can create backpressure, negatively impacting overall performance. Exhaustive

approach

results in

redundant

training

data

Furthermore, exhaustive enumeration for even a straightforward query
structure, such as a 2-way join, becomes infeasible given the extensive pos-
sible combinations. Such an exhaustive approach is not just impracticalÐit
often does not yield meaningful insights. Consider a scenario where N physi-
cal resources for placing a 2-way join with 9 operators at varying parallelism

degrees P = p1, . . . , pmaxP
could yield N · |p

|ω|
maxP

| combinations. With N = 1

and parallelism degrees ranging from 1 to 20, the total combinations would
soar to over 512 billion. This scale of enumeration is not only impractical but
also computationally prohibitive.

To overcome these obstacles, we introduce OptiSample, a hybrid data col-
lection method that balances exploratory diversity, covering a broad spec- Data-

efficient

hybrid

approach...

trum of parallel query workloads and resource configurations, and the analyt-
ical precision required to fine-tune parallelism degrees. This method enables
the generation of a manageable and representative subset of potential config-
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urations, reducing the computational overhead and increasing the feasibility
of training the model on practical scenarios.

OptiSample not only mitigates the challenges associated with vast enu-
meration but also ensures that the sampled configurations are indicative
of real-world scenarios, thus enhancing the model’s ability to generalize to
new, unseen conditions. This optimized approach is critical for extending...to collect

and explore

meaningful

data.

ZEROTUNE’s applicability and robustness, making it a versatile tool capable
of adapting to varied operational environments and supporting efficient re-
source utilization in DSP systems. While OptiSample provides a robust frame-
work for enumeration, ZEROTUNE’s architecture allows integration with other
data-efficient sampling techniques that could further refine and enhance the
model’s generalization capabilities across different streaming applications.

Random Enumeration (ZT-Random). A naive way of enumeration that is
adopted by existing learned methods [225], is a random enumeration. Ran-Noisy plans

due to

random

parallelism

assignment

dom enumeration strategy enumerates based on the number of nodes and
their processing capability, i.e., number of cores. For example, four nodes
with eight cores may result in enumerating parallelism from minimum one
to maximum number of nodes x number of cores. Random strategy is simpli-
fied, but like exhaustive strategy, randomly assigning parallelism degrees for
each operator can result in noisy PQP, which are not beneficial learned cost
models. For instance, a random strategy may set higher parallelism for down-
stream operators. However, setting higher parallelism for the downstream op-
erator may not be beneficial in all scenarios, e.g., join, as leading to backpres-
sure issues and significantly hinders query execution performance. Moreover,
randomly selecting parallelism degrees in a pattern such as low-high-low may
not provide meaningful insights for the model to learn about the performance.

OptiSample Training Strategy. The OptiSample strategy represents a
structured approach to determining the appropriate number of processing
instances, or parallelism degrees P , for each operator within the operator
graph G. This method stands in contrast to random sampling strategies,Limit the

exploration

of paral-

lelism...

offering a more systematic means of collecting realistic training data that
reflects actual system demands. To effectively implement this strategy, Opti-
Sample leverages key characteristics of both the workload (including queries
and data streams) and the physical resources involved.

Key parameters such as the input event rate (InER), operator selectivity
(sel), output rate (OutER), and the number of processing cores available (ncore)
are critical in determining the parallelism degrees for operators throughout
the operator graph, from upstream (ωi) to downstream (ωj) components. The...by

considering

workload

characteris-

tics.

guiding principle behind this approach is that higher input rates and higher
selectivity necessitate increased parallelism. This is because more significant
computational resources are required to process the incoming rate of events
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efficiently, thereby improving the system’s ability to manage backpressure
effectively.

This method draws inspiration from the operational logic of existing data-
parallel DSP systems [83, 131]. These systems employ scaling controllers that
adjust parallelism degrees based on similar parameters to maintain optimal
performance under varying loads. By incorporating such dynamic scaling Explore

around

estimate

paral-

lelism...

principles, the OptiSample strategy enhances the ability of ZEROTUNE to sim-
ulate and learn from realistic, varied workload scenarios, thereby refining the
cost model’s accuracy and applicability in real-world DSP applications. This
strategic enumeration of parallelism, grounded in actual system characteris-
tics and demands, ensures that the training data is not only comprehensive ...for

meaningful

data for

training.

but also highly representative of operational conditions.

Algorithm 1 : OptiSample Strategy for Training.

input : input source event rate InER(ωSo)
Operator graph comprising set of operators ω ∈ Ω

output : Parallelism degree P (ω)

1 for all ωi ∈ Ω do

2 if ωi is not ωSo then

3 ωj = ωi.downstream() ;
4 CurrentSelectivity(ωi) = EstSelectivity(ωi) Definitions 14 to 16;
5 OutER(ωi) = CurrentSelectivity(ωi) · InER(ωi) Definition 13;
6 InER(ωj) = OutER(ωi);

7 if ωi.upstream() is ωSo then

8 P (ωi) = EstParallelism(ωi, InER(ωSo)) Definition 17;

9 else

10 P (ωi) = EstParallelism(ωi, InER(ωi)) Definition 18;

11 else

12 InER(ωSo) = ComputeSourceER(ωSo)

In Algorithm 1, depicted in Lines 1±12, we detail the workings of the Opti-
Sample strategy, which strategically assigns parallelism degrees to operators
within DSP system in a methodical, bottom-up approach. This strategy be- Parallelism

degree

decreases...
gins by considering the input event rate, InER(ωSo), of the source operator
ωSo, and it progressively assigns parallelism degrees to all downstream oper-
ators, terminating its process at the data sink (SI ).

The source operator, ωSo, uniquely situated without any upstream depen-
dencies, serves as the starting point for parallelism assignment. The paral- ...with

decreasing

event rate...
lelism degree for ωSo is directly derived from the application-specified event
rate, and it sets the foundation for the computation of parallelism degrees
for all subsequent operators. Each operator ω ∈ Ω is then evaluated based
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on its estimated selectivity, as outlined in Lines 3-4 and referenced in Equa-
tions (14) to (16). Following the determination of selectivity, the algorithm es-
timates the output rate of each operator, which then becomes the input rate
for the next operator downstream, as noted in Line 5 and Line 6. This cascad-
ing computation ensures that each operator’s parallelism degree is informed
by the output demands placed on it by its predecessor, thereby maintaining
a balance between input load and processing capacity....for down-

stream

operators. Significantly, if the operator is the source operator (checked in Line 11),
its parallelism degree is directly tied to the original event rate, serving as a
baseline for the parallelism calculations of downstream operators, as seen in
Line 12 and Line 7. This systematic enumeration of parallelism degrees for
each operator ensures the determination and exploration of meaningful par-
allelism degrees around determined parallelism degrees across the operator
graph. In the following section, the formal definitions and equations below
further explain the parameters and processes of the OptiSample strategy.

Definition 13. Output rate of an arbitrary operator ω: The output rate,
denoted as OutER(ω), is calculated based on the input rate received ei-
ther from the upstream operator, OutER(ωi), or directly from the source,
InER(ωSo), in scenarios where ω is the first operator in the sequence.
This output rate calculation incorporates the selectivity of the operator
to accurately determine the volume of data processed. Specifically, for
a given upstream operator ωi and its downstream counterpart ωj, the
output rates are computed as follows:

OutER(ωi) = InER(ωi) · sel(ωi), where ωi = (ωσ, ω⋊⋉, ωξ), (13)

OutER(ωj) =







OutER(ωi) · sel(ωj) , if ωi = (ωσ, ω⋊⋉, ωξ)

InER(ωSo) · sel(ωj) , if ωi = ωSo.

Definition 14. Selectivity of filter operator ωσ: The selectivity of a filter
operator, denoted as sel(ωσ), is defined as the ratio of the number of
tuples that satisfy the filter condition to the total number of tuples in
the input data stream. Specifically, for the filter operator ωσ, selectiv-
ity is calculated by dividing the number of tuples |fωσ(DIn)| that pass
the filter criteria by the total number of tuples |DIn| in the input data
stream D.

This relationship is represented by the following equation:
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sel(ωσ) =
|fωσ

(DIn)|

|DIn|
, with 0 ≤ sel(ωσ) ≤ 1. (14)

Definition 15. Selectivity of the operator ω⋊⋉: The selectivity of a join op-
erator, denoted as sel(ω⋊⋉), is calculated based on the proportion of tu-
ples that successfully join from two input streams. Specifically, for the
join operator ω⋊⋉, this selectivity is determined by the ratio of the num-
ber of tuples resulting from the join operation between two windows
|WD1In ⋊⋉ WD2In |, to the total number of tuples possible in the Cartesian
product of the tuples in the input windows |WD1In | and |WD2In | from the
respective input data streams D1 and D2.

This relationship is captured in the following formal representation:

sel(ω⋊⋉) =
|WD1In

⋊⋉ WD2In
|

|WD1In
| × |WD2In

|
, with 0 ≤ sel(ω⋊⋉) ≤ 1. (15)

Definition 16. Selectivity of aggregation operator ωξ: The selectivity of
the window aggregate operator, denoted as sel(ωξ), is defined by the
ratio of distinct group-by tuples within a specified window of the input
stream to the total number of tuples within that window. Specifically,
for the window aggregate operator ωξ, this selectivity is calculated as
the fraction of unique group-by tuples in the window WDIn

relative to
the total count of tuples in the same window, |WDIn

|.

This quantifies the reduction in data volume affected by the aggregation
based on group-by attributes. This relationship can be formally expressed
as follows:

sel(ωξ) =
|group-by (WDIn

)|

|WDIn
|

, with 0 ≤ sel(ωξ) ≤ 1. (16)

Based on the estimated selectivities, input and output rates, we define how
we select parallelism degrees for training.

Definition 17. Parallelism degree of an arbitrary upstream operator ωi:
The parallelism P (ωi) of the upstream operator is calculated by applying
a scaling factor (sf ), which is established through empirical analysis
to identify conditions leading to backpressure in streaming operators.
This scaling factor is used to adjust the parallelism in proportion to the
input event rate InER(ωi) received by the upstream operator.
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P (ωi) = sf · InER(ωi) (17)

Definition 18. Parallelism degree of an arbitrary downstream operator

ωj after ωi: The parallelism P (ωj) of the downstream operator is calcu-
lated using a scaling factor, which adjusts according to the output rate
OutER(ωi) from the preceding upstream operator ωi.

This relationship is formalized in the equation below:

P (ωj) = sf · InER(ωj)

= sf ·OutER(ωi)

= sf · InER(ωi) · sel(ωi) (By Equation (13))

(18)

The constraints for equations Equation (17) and (18) ensure that the par-
allelism for each operator, both up and downstream (ωj , ωi), does not exceed
the predefined maximum parallelism maxP , which in turn is limited by the
number of processing cores (ncore) available on the physical resource, i.e.,
maxP ≤ ncore. Additionally, it is important to note that the parallelism de-
grees used in training data are based on estimated selectivities and output
rates rather than actual observed values. This approach is designed to bal-
ance exploration and exploitation in the training data, allowing the model
to learn from both efficient and less efficient PQP configurations when the
estimations deviate from actual performance.

5.6 Summary

This chapter introduces our second key contribution to this thesis, ZERO-
TUNE Ða novel performance prediction model, designed to predict accurate
performance for seen and unseen PQP, addressing the second research ques-
tion (refer to RC2 in Section 1.2). This method circumvents the costly trial-
and-error adjustments typically required at the onset of query execution. ZE-
ROTUNE offers a solution to the limitations of existing methods for parallelism
tuning and performance estimation, which typically rely on runtime perfor-
mance monitoring and require multiple adjustments to parallelism, or exist-
ing machine learning methods that necessitate iterative retraining for each
new dataset or substantial data collection to achieve generalization. ZERO-
TUNE employs a zero-shot cost model to predict accurate performance in
parallel and distributed stream processing systems and integrates an op-

timizer to fine-tune initial parallelism cost-effectively. It leverages transfer-

able features and a parallel graph representation to ensure generalizability
across unseen parallel query plans, diverse workloads, and resource con-
figurations. Additionally, ZEROTUNE incorporates OptiSample, data-efficient
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training strategy that controls the exploration of parallelism across various
conditions, thereby gathering meaningful data for training while minimizing
effort and enhancing generalization.

In Chapter 6, we present results from an extensive evaluation that demon-
strates the robustness and accuracy of ZEROTUNE across various scenarios,
including seen and unseen workloads, different parallelism degrees, and op-
erator parameters (cf. Section 6.3). We also highlight its data efficiency in
training and the performance improvements achieved through its parallelism
tuning approach compared to other methods [83, 90, 225].





6
Evaluation of Performance Modeling Methods

The final objective of this thesis is to assess how effectively the proposed
performance modeling methods perform in real-world scenarios. To achieve
this, we have conducted a comprehensive evaluation of the proposed meth-
ods, PDSP-BENCH (cf. Chapter 4) and ZEROTUNE (cf. Chapter 5). We provide Evaluation

in

real-world

scenario...

a detailed description of the evaluation setup in Section 6.1, including infor-
mation on the specific DSP system and real-world resources that we utilize
for performance benchmarking and forecasting, which are crucial for tuning
parallelism in DSP systems.

Additionally, we outline the evaluation objectives for PDSP-BENCH and ZE-
ROTUNE in Sections 6.2 and 6.3 respectively, specifying the goals we aim
to achieve through our evaluation of each method. Through our extensive
evaluation, we intend to explore the impact of various workloads (queries
and data streams) and hardware configurations on the performance of DSP
system under varying parallelism. We present these findings in Section 6.2,
discussing the results of benchmarking the PDSP-BENCH system. Following ...with dif-

ferent DSP

workloads

and

resources.

this, we extensively evaluate the accuracy and generalizability capability of
ZEROTUNE for performance predictions and the initial parallelism tuning on
seen and unseen workloads across varying parallelism degrees, and query pa-
rameters. Furthermore, we demonstrate the efficiency of our proposed data-
efficient training method compared to existing baselines [225, 83]. We also
highlight the efficiency of ZEROTUNE relative to non-transferable model archi-
tectures [90, 120, 59], and the significant speed-ups achieved with our paral-
lelism tuning approach compared to other methods [225, 83, 140] in Sec-
tion 6.3.

6.1 Evaluation Setup

This section presents the evaluation environment to assess the performance
modeling methods PDSP-BENCH and ZEROTUNE. In addition, we provide de-
tails on DSP system used for workload generation and research testbed used
for resource provisioning and deployment of DSP system. We further discuss

95
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Figure 33: Apache Flink architecture showing the distribution of services and com-
munication between job manager and task manager in a distributed envi-
ronment.

details on the evaluation parameters and performance metrics used for as-
sessing the capabilities of PDSP-BENCH and ZEROTUNE.

6.1.1 Distributed Environment Setup

In the following we first discuss the workload generation in our setup and
the cloud resources used for the evaluation.

Workload Generation and Resource Management

For our research, we employ Apache Flink version 1.16 [52], a widely-used
open-source distributed stream processing (DSP) system, to implement Plan

generator which generates various workloads and parallel query structures
(PQP) using different parallel enumeration strategies. Apache Flink is de-
veloped in Java, a choice supported by its extensive adoption to research
and industry, robust community support, and comprehensive documenta-
tion [82]. To tailor Apache Flink for our specific research needs, we alsoFlink for

PQP and

workload

generation

modify its source code to collect performance measures necessary for bench-
marking, training, and testing performance models. Although, our choice
of DSP is Apache Flink but the proposed performance modeling methods are
not limited to Apache Flink; can be exchanged by any DSP such as Apache
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Cluster

Type
Clusters Nodes CPU

RAM

(GB)

Disk

(GB)

Intel

Processor

Speed

(Ghz)
S/U

Ho m510 270 8 64 256 Xeon D 2.0 S

Ho c6420 72 32 384 1024 Skylake 2.6 U

He rs620 38 8-10 128-384 900 Xeon 2.2 S

He c8220x 4 20 256 4096 Ivy Bridge 2.2 U

He c8220 96 20 256 2048 Ivy Bridge 2.2 U

He dss7500 2 12 128 120 Haswell 2.4 U

He c6320 84 28 256 1024 Haswell 2.0 U

He c6525_25g 144 16 128 480 AMD EPYC 2.2 U

He rs6525 32 64 256 1600 AMD EPYC 2.8 U

Table 6: Cluster of resources (metal servers) utilized for evaluation on CloudLab
tested [76, 8, 7]. These resources are combined for performance benchmark-
ing and performance prediction process(data generation, model training (S),
and inference (S and U)).ªHoº and ªHeº denote homogeneous and heteroge-
neous resources, ªSº and ªUº indicate seen, and unseen dataset.

Storm [124]. Subsequently, we modify Apache Flink by injecting code to ex-
tract crucial data directly from its internal mechanisms. This data is then
processed by the Stream Monitor to simulate data streams from different ap-
plications, then organized and stored in a central MongoDB database situated
on a non-worker node. From there, the Plan Generator within Graph Builder

of Apache Flink can access the data for further processing.

Apache Flink’s architecture comprises three main components distributed
across various physical nodes to enhance scalability and efficiency as pre-
sented in Figure 33. The first component, the Plan Generator Flink, serves
as the client but is not part of the runtime environment of Apache Flink.
However, it plays a critical role in generating queries, transforming stream Plan

generator

for

workload

generation

graphs into job graphs, and forwarding them to the job manager. The job

manager, a second component, orchestrates the execution of these graphs by
converting them into execution graphs and managing resource allocation. It
controls task execution and handles scaling operations through interaction
with Kubernetes, a container orchestration system, managing Task Managers
or terminating unnecessary instances. The third core component, the Task

Managers, is responsible for actual data processing. These managers handle
multiple tasks, manage data caching, and direct the processed data to ap-
propriate destinations. Each node can operate several Task Managers, and
each manager may run multiple tasks within its allocated slots, sharing the
available resources efficiently.

For resource management, PDSP-BENCH and ZEROTUNE utilize Kuber-

netes to deploy a customized Apache Flink setup as a Docker [182] image.
This integration allows the Job manager to seamlessly initiate or terminate
Task Managers as needed. Furthermore, we leverage Apache Flink’s fairness
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policy and job distribution capabilities to ensure efficient resource allocation
and optimized performance during our evaluations. Combining these toolsKubernetes

for

managing

cloud

resources

and strategies allows us to thoroughly assess the efficiency and effectiveness
of the proposed performance modeling methods.

While Apache Flink can run on Kubernetes, Apache Hadoop YARN and in
standalone clusters, we choose Kubernetes [55] due to its enhanced scala-
bility, and growing adoption within the Flink community. Although Apache
Flink has historically been deployed more frequently on Yarn [240], primarily
due to mature ecosystem of YARN, Kubernetes offers several advantages. It
provides better scalability, more efficient resource allocation, and node man-
agement strategy, making it well-suited to meet the scalability and efficiency
demands of our research. These factors make Kubernetes the optimal choice
for resource management for our distributed stream processing workloads.

CloudLab for Resource Provisioning

All experiments are conducted using the Geni [98] and CloudLab research
testbed [76], which provide the necessary real-world scenario of distributed
cloud infrastructure with both homogeneous and heterogeneous bare metal
hardware to configure and deploy an Apache Flink [52] cluster. We selectCloudLab to

setup

distributed

environ-

ment

CloudLab testbed as it offers an open-source scientific infrastructure for re-
searchers. Also, it provides hard isolation from other users and evaluations so
that hundreds of experiments can be conducted in isolation without getting
affected by other experiments. In addition, it offers the possibility to deploy
different software stacks such as Apache Flink, Hadoop, Yarn, and Kuber-
netes to build our own distributed environment from the ground. The setup
enables us to perform experiments and evaluate the performance of ZERO-
TUNE for performance prediction as well as PDSP-BENCH for benchmarking
capabilities in real-world scenarios.

6.1.2 PDSP-BENCH Evaluation Parameters

We conduct evaluations for performance benchmarking using the PDSP-
BENCH on the CloudLab research testbed to utilize distributed infrastruc-
ture, equipped with homogeneous and heterogeneous hardware configura-
tions. This setup facilitates the deployment of a System Under Test (SUT) onBenchmark-

ing on a

wide

spectrum of

resources

CloudLab cluster as shown in Table 6, enabling comprehensive evaluations
across various workload and resource configurations as shown in Table 7.
For the evaluations, we opt for Apache Flink v1.16.1 [52] as SUT; how-
ever, the system allows for substitution with any DSP systems. In addition,
Apache Kafka is deployed on a separate CloudLab cluster node to manage
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Diversity Parameters Parameter Data Range

Query

Real-world

query structures

Word Count (WC), Machine Outlier (MO), Linear Road (LR),

Logs Processing (LP), Google Cloud Monitoring (GCM), TPC-H,

Bargain Index (BI), Sentiment Analysis (SA), Smart Grid (SG),

Click Analytics (CA), Spike Detection (SD), Trending Topic (TT),

Traffic Monitoring (TM), Ad Analytics (AD)

(cf. Table 4)

Synthetic

query structures

Linear, 2-chained filter, 3-chained filter, 4-chained filter,

2-way join, 3-way join, 4-way join, 5-way join, 6-way join

Parallelism

degree categories

1 ≤ XS < 8, 8 ≤ S < 16, 16 ≤ M < 32,

32 ≤ L < 64, 64 ≤ XL < 128, 128 ≤ XXL

Window duration (ms)
50, 100, 150, 200, 250, 325, 750, 1k, 1.5k, 2k, 2.5k,

3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k

Window length (tuples)
2, 3, 4, 5, 7, 10, 17, 25, 37, 50, 62, 75, 82, 100, 150,

200, 250, 300, 350, 400

Sliding length (ratio) [0.3, 0.4, 0.5, 0.6, 0.7] x Window length

Window types and policy type: sliding and tumbling, policy: count and time-based

Window aggr. functions min, max, avg, mean, sum

Join and filter data types string, integer, double

Filter functions
≤,≥, ̸=,=, <,>,

startsWith, endsWith, endsNotWith, startsNotWith

Data
Tuple width and data type [1 - 15] x [str., doubles, int]

Event rate (events/sec) 10, 100, 1k, 5k, 10k, 50k, 100k, 200k, 500k, 1mn

Partitioning strategy Strategy for data distribution (forward, rebalance, hashing)

Resource Cluster type Homogeneous: m510, Heterogeneous: c6320, c6525_25g

Table 7: PDSP-BENCH benchmark parameters for SUT (order by complexity) [7].

data flow, producing data at varying event rates through an input topic and
consuming the output from the SUT using an output topic. PDSP-BENCH

utilizes various range of evaluation parameters as mentioned in Table 7 for
benchmarking the performance of SUT for various data stream, PQP and
resources configurations.

Data Generation for Benchmarking

PDSP-BENCH generates different PQP for various query structures (≈ 30k PQPs)
including both synthetic (≈ 20k) and real-world (≈ 10k) applications. These PQP
from diverse query structures are executed in three cycles, each lasting three
minutes on clusters comprising ten nodes. Performance metrics are collected Benchmark

using

different

synthetic

and

real-world

applications

and stored locally in a MongoDB database to facilitate detailed analysis. The
highest event rate for evaluation is four million events per second; a scale is
chosen based on the presumption that higher event rates significantly benefit
from increased parallelism, although results for various rates are available.
Subsequently, the generated workload configuration and corresponding per-
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formance as labels are used by ZEROTUNE models for training and testing
the accuracy of the cost models.

PDSP-BENCH Controller and Web User Interface (WUI)

A controller of PDSP-BENCH is implemented in Django, along with a Web
User Interface (WUI) developed using Vue.js, to manage user inputs regarding
cluster setup, SUT deployment, and PQP execution, as outlined in system
overview of PDSP-BENCH (cf. Section 4.3.1). This interface ensures that usersWUI to ease

benchmark-

ing process
can easily configure and manage the benchmarking process, enhancing the
usability and accessibility of PDSP-BENCH.

6.1.3 ZEROTUNE Evaluation Parameters

To gather the training and testing benchmarks, we implement PQP and work-Seen data

for training load generator on top of Apache Flink, focusing on various parameters sum-
marized in Table 8. Our primary focus is on the training range using the
observed cluster nodes detailed in Table 6.

As mentioned earlier, all experiments are conducted using the CloudLab

research testbed [76] comprising infrastructure that allows configuring and
deploying an Apache Flink [52] cluster. The setup enables us to perform ex-
periments and evaluate the performance of ZEROTUNE effectively. Table 8Unseen

data for

testing
outlines the selected training and testing ranges to evaluate the ZEROTUNE

model, based on a dataset comprising 24k synthetic queries. These queries
are categorized into three types: linear, 2-way joins, and 3-way joins, with
each category containing 8k queries. The dataset is divided into training (80%),Seen and

unseen

data are

disjunct

testing (10%), and validation (10%) sets.

For the training strategy of ZEROTUNE, we employ OptiSample and com-
pared its performance with random sampling wherever explicitly specified
(cf. Section 5.5). Cluster management and task placement are handled using
Apache Flink’s task manager, with Kubernetes utilized for orchestration.

6.1.4 Performance Metrics

For performance benchmarking using PDSP-BENCH, we focus on end-to-end

latency (cf. Definition 6) for query execution of SUT, i.e., Apache Flink. We
benchmark SUT for other performance metrics as well, such as through-
put, resource utilization, etc. Due to the high amount of experiment data,
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Parameters Unit
Training Range Testing Range

(Seen) (Unseen)

Event rate ev/sec.
100, 200, 400, 500, 700,

1k, 2k, 3k, 5k, 10k, 20k,

50k, 100k, 250k, 500k, 1m

50, 75, 150, 300, 450, 600, 850,

1.5k, 4k, 7.5k, 15k, 35k, 175k,

375k, 750k, 1.5m, 2m, 3m, 4m

Tuple width

and data type
values [1 - 5] x [str., doubles, int] [6 - 15] x [str., double, int]

Window length tuples 5, 10, 25, 50, 75, 100
2, 3, 4, 7, 17, 37, 62, 82,

150, 200, 250, 300, 350, 400

Window duration ms 250, 500, 1k, 2k, 3k
50, 100, 150, 200, 325, 750, 1.5k,

2.5k, 4k, 5k, 6k, 7k, 8k, 9k, 10k

Sliding length ratio [0.3, 0.4, 0.5, 0.6, 0.7] x Window length

Cluster type - ms510, rs620
c6420, c8220x, c8220,

dss7500, c6320, rs625

Network link speed Gbps 1, 10

Number of workers - 2, 4, 6 3, 8, 10

Parallel query structures -
Linear, 2-way join,

3-way join

2-chained filters,

3-chained filters, 4-way join,

5-way join, 6-way join

Benchmark queries - -
Spike detection, Smart-grid

(local), Smart-grid (global)

Operator type - Source, Filter, Window-join, Window-Aggregation

Parallelism degree

categories
-

1 ≤ XS < 8, 8 ≤ S < 16, 16 ≤ M < 32,

32 ≤ L < 64, 64 ≤ XL < 128

Table 8: Training and testing ranges [8, 5, 6] for data generation and inference with
ZEROTUNE. The seen range evaluates overall model performance using a tra-
ditional training-test split, while the unseen range tests the generalizability
of the model. Extrapolation parameters are underlined, with the remaining
unseen parameters are used for interpolation.

we are presenting some of the selected metrics and corresponding observa-
tions. In Section 6.2, we present benchmarking results for end-to-end latency
and in Section A.1.4, we show resource usage (cf. Definition 10) benchmark
results for SUT. For performance benchmarking of the accuracy of learned
cost models, we use Q-error as described below for ZEROTUNE. We report the
mean of three runs of measuring median end-to-end latency (50th percentile)
in our evaluation for performance benchmarking. Q-error to

measure

prediction

accuracy
Furthermore, to measure the accuracy and generalization capabilities of

ZEROTUNE, we employ the Q-error metric q(c, c′), where q(c, c′) ≥ 1. The met-
ric, which is widely recognized in the field [149], quantifies the relative devi-
ation between the true cost c (in terms of latency and throughput) and the
predicted cost c′. The accuracy of the ZEROTUNE model is evaluated using Q-error

close to one

means high

accuracy

this Q-error metric for both latency and throughput, following the OptiSam-
ple training procedure. Our experimental results indicate that the q-error
values are predominantly close to 1, suggesting that the ZEROTUNE model
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provides accurate cost predictions and demonstrates strong generalizability
across different scenarios.

Finally, for evaluating the optimizer, we employ a weighted cost metric
(cf. Equation (12)) and calculate the mean speed-up. The mean speed-up is de-
termined as the fraction of improvement in latency or throughput compared
to baseline measurements. These metrics collectively highlight the effective-
ness and efficiency of the ZEROTUNE model in optimizing performance.

6.1.5 Baselines for Performance Comparison

For PDSP-BENCH, no baseline for comparison is required, but the capabilities
of the performance benchmarking are shown on DSP system, Apache Flink.

To show the prediction accuracy and generalization capability of ZERO-
TUNE, first, we compare ZEROTUNE to other non-transferable architectures,
flat vector representations from DBMS [114]. With this evaluation, we intend
to show the impact of model architectures on learning patterns. This base-Comparison

with

baselines

for...

line approach represents features like the number of different operator types,
their selectivity, and the degree of parallelism, which are included as a flat
vector. We train a linear model based on flat vector representation, drawing
inspiration from [90]. We implement the linear model using Linear Regres-
sion [20] and extend it to a deep neural network, creating a Flat Vector MLP
(Multilayer Perceptron) [21] that learns from the flat vector representation.
Additionally, we train a random forest model [45] using the same flat vec-
tor approach....prediction

accuracy

and gener-

alization.
Furthermore, we compare ZEROTUNE against a greedy approach [225] and

Dhalion [83], an optimizer that incorporates analytical derivation of paral-
lelism degrees. The comparisons are made in terms of mean speed-ups and
weighted sum metrics (cf. Equation (12)). These comparisons assist us in as-
sessing the relative performance and effectiveness of ZEROTUNE in determin-
ing initial parallelism and generalizing cost predictions for DSP systems.

6.2 Experiments on PDSP-BENCH

In this section, we present our evaluation for performance benchmarking uti-
lizing PDSP-BENCH. The evaluation of system involves extensive experimentsUnder-

standing

effect of

paral-

lelism...

that highlight its capabilities in benchmarking parallel stream processing.
By using Apache Flink as the SUT, the evaluation demonstrates the impact
of varying parallel query complexities, hardware configurations, and work-
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load parameters on system performance. The results show the importance
of considering both parallelism and heterogeneity to achieve optimal perfor-
mance in real-time data processing applications. Furthermore, we integrate
and train various learned cost models for streaming queries, demonstrating
their performance in terms of both model accuracy and training efficiency.
Considering the extensive range of workloads, including 14 synthetic and
9 real-world applications, along with the various parameters within PDSP-
BENCH as shown in Table 7, we have selected specific observations (O#) from
our evaluations.

Exp. 1: Impact of PQP complexity on performance. We examine how
increasing the complexity of parallel query structures (PQP) influences sys-
tem performance. Specifically, we examine the effects of different types of
operators as well as the degree of parallelism. By analyzing these factors,
we aim to understand how complex query structures impact overall perfor-
mance metrics.

Exp. 2: Impact of heterogeneous hardware on performance. We ex-
plore how the use of heterogeneous hardware resources affects the execution
of PQP. By comparing the performance of PQP across different hardware con-
figurations, we aim to identify the benefits and challenges associated with
deploying queries in heterogeneous systems. This analysis helps to under-
stand how variations in hardware resources can influence query processing
efficiency and execution times. ...hardware

diversity...

Exp. 3: Integration of ML models in PDSP-BENCH. We evaluate how dif-
ferent learned cost models perform on various PQP and how their prediction
accuracy varies depending on PQP complexity. ...on perfor-

mance

of PQP.

6.2.1 Workload Diversity

Exp. 1: Impact of PQP complexity. We benchmark Flink using the pre-
sented categories of PQP: a) synthetic PQP mainly comprising standard SPS
operators (cf. Figure 34 top) and b) real-world PQP comprising both stan-
dard SPS and user-defined operators (UDOs) (cf. Figure 34 bottom). We se- PQP with

varying

complexity
lect homogeneous resources of m510 cluster (with 10 nodes) to analyze only

parallelism degree diversity. Here, the complexity of a PQP correlates both
the composition of various operators and the parallelism degree applied to
execute them. For instance, linear PQP, which includes a single source, mul-
tiple filters, and a window aggregation without joins, represents a simpler
data flow. This simplicity typically leads to lower computational demands
and, consequently, lower end-to-end latency. However, the presence of dual
filters introduces computational requirements that can affect latency based
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(b) Real-world applications

Figure 34: Impact of parallelism degree on performance of PQP from synthetic (top)
and real-world applications (bottom) [7]. The comparative analysis reveals
distinct performance behaviors, illustrating both the beneficial aspects of
parallelism in improving end-to-end latency and the need for careful con-
sideration of queries and operators characteristics within PDSP environ-
ments. The results underscore a complex interplay between standard op-
erations and user-defined operators (UDOs), marked by both paradoxical

effects and non-linear performance trends in relation to the parallelism
degree. (Note: The bottom figure omits XS and XL; their performance mir-
rors S and L).

on the data volume and filter complexity. On the other hand, the complexity
significantly increases with multi-way joins, starting from 2-way joins. Each
join operation, requiring the correlation of data from multiple sources, adds
substantial computational and data management overhead, which requires
parallel processing while managing the increased latency implications effec-
tively. We present interesting observations of this analysis as follows.

O1- Increasing parallelism can speed-up multi-way join queries. We observe
an interesting trend in Figure 34 (top) when PQP transitioned from linear
query to more chained filters and joins. Initially, when we add more filters, the
latency remains almost consistent with increasing parallelism categories, i.e.,
XS to XXL, reflecting the minimum parallelism is sufficient to handle query
complexity. However, when we introduce join operators in PQP, it representsParallelism

assists in

improving

perfor-

mance

a tipping point where latency increases linearly. This reflects the inherent
complexity of coordinating and executing join operations across distributed
datasets. At the same time, the parallel instances assist in handling workload
and reducing latency with increasing complexity. A similar trend is also ob-
served for PQP from real-world applications in Figure 34 (bottom) where PQP
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consist of combinations of varying numbers and types of standard SP opera-
tors and UDOs. For instance, applications with more standard DSP operators
such as WC, LR showed a consistent performance while PQP with more com-
putation intensive UDOs such as SA, SG, SD has shown significant perfor-
mance improvement with increasing parallelism degrees. Thus, it highlights
that parallelism is particularly beneficial for PQP with data-intensive oper-
ators, significantly enhancing performance compared to PQP with complex
structures but less data-intensive operators.

O2- Increasing parallelism can speed-up queries, but not in all cases. While
increasing parallelism resulted in enhancing the performance by distribut-
ing the workload, for some PQP, there is a paradoxical effect on end-to-end
latency as PQP complexity increases. Beyond a certain threshold of paral-
lelism, i.e., 32 ≤ L < 64, particularly with multiple joins, the overhead of man-
aging parallel operationsÐsuch as data shuffling and synchronization can
outweigh the benefits, leading to increased latency. This scenario is compara- Not all PQP

get benefit

of

increasing

parallelism

ble to traffic flow in a city where, beyond a certain volume, adding more lanes
(parallel paths) can actually lead to more congestion due to bottlenecks at
merge points and intersections. Thus, performance improvements in multi-
way joins as parallelism increases from L to XL are small or negligible. In
contrast, the PQP from real-world applications starts showing the benefit
of parallelism on performance improvement in latency when the parallelism
degree becomes extremely high. For instance, in the parallelism category
32 ≤ L < 64, PQP from SG and SD show significant performance improvements.
In contrast, AD shows negligible performance gains even with parallelism
greater than 128, highlighting the complexity of the operators in the query.

O3- Queries with UDOs shows unpredictable performance. In our evaluation,
we also investigate the performance intricacies of standard SP operators com-
pared to UDOs within PDSP environment. Our findings reveal distinct scal-
ability and computational overhead that underline the relationship between
operator types and parallel processing efficiency. Standard SP operators ex-
hibit predictable scalability due to their well-defined semantics. For instance,
a flatMap operation in a WC application scales almost linearly with the in-
crease in parallelism, as it can be independently executed across different
partitions of the data without the need for complex state management or co-
ordination. On the other hand, UDOs, which allows for embedding of custom Operators

processing

logic can

affect

processing

time

logic into the data processing pipeline, introduces variability in performance
scalability, primarily due to the potential for complex state handling and the
need for coordination across different execution units. For instance, in the AD

application, the presence of multiple UDOs performing custom aggregation
and joining logic on a sliding window introduces a non-linear scaling behav-
ior. As parallelism increases, the overhead of managing state consistency and
communication between parallel instances leads to a sublinear performance
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increase, and in some cases, performance may even degrade due to the over-
head exceeding the computational benefits of parallelism.
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(a) Real-world application: impact on latency heterogeneous hardware
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Figure 35: Impact of heterogeneous hardware on performance for PDSP, with vary-
ing parallelism degree and resource processing capabilities on real-world
(top) and synthetic (bottom) applications [7]. The evaluation demonstrates
that parallel processing benefits from hardware diversity in enhancing
performance. However, achieving optimal performance requires a thor-
ough understanding of hardware characteristics and effective workload
distribution to avoid pitfalls such as the diversity dilemma.

O4- The non-linear effect of parallelism on latency: PDSP-BENCH provides
critical insight into the non-linear relationship between the parallelism de-
gree of PQP and performance. As the parallelism of standard SP operators in
a query increases, the performance does not always linearly improve since
not every PQP benefits equally from parallelism. This is evident from obser-Non-linear

effect of

parallelism

on perfor-

mance

vations O1 - O3, where performance is influenced by factors such as oper-
ator complexity and the paradox of parallelism. For instance, queries like
SA, SG, SD exhibit high latency in parallelism categories S and M , but start
showing improvements at level L, with significant performance gains when
parallelism exceeds 128.

6.2.2 Hardware Diversity

Exp. 2: Impact of heterogeneous hardware on performance. Next, we
evaluate the impact of homogeneous (m510) and heterogeneous hardware
(c6525_25g,c6320) clusters on performance for PDSP and execute PQP across
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clusters of 10 nodes each. Figure 35 (top) represents the mean end-to-end

latency of PQP with parallelism degree category as per number (#) of cores on
hardware of each cluster to analyze the performance of real-world applica-
tions. For instance, m510 cluster has hardware with 8 cores, so selected PQP
with S parallelism degree category. Similarly, PQP with parallelism degree Parallelism

relation

with

resources

heterogene-

ity

categories M and L as clusters c6525_25g and c6320 have hardwares with
16 and 28 cores, respectively. Figure 35 (bottom) shows the mean end-to-

end latency across different parallelism categories of PQP for three types of
clusters, specifically for synthetic applications.

O5- Powerful heterogeneous environment does not necessarily accelerate

queries. By evaluating PDSP across diverse hardware configurations, we en-
counter the diversity dilemma where the theoretical advantages of heteroge-
neous environments sometimes clash with practical performance outcomes
as shown in Figure 35 (top). We anticipate that the diversity in computational Processing

powers help

in

accelerating

perfor-

mance...

processing capabilities would universally accelerate the parallel processing
and enhance the performance. However, we notice that while applications
like SA, CA, and SD significantly benefit from the increasing processing power
of underlying hardware and can achieve an exponential decrease in latency.
On the other hand, AD struggles to improve the performance in heterogeneous
hardware configuration due to the complexity of UDOs coupled with the com-
munication overhead across different instances. This finding suggests that ...but not in

every

scenario.
the theoretical benefits of hardware diversity require careful orchestration of
workload distribution and resource management strategies to leverage het-
erogeneous environments effectively.

O6- Finding optimal parallelism for queries is non-trivial. We also evaluate
parallel processing capabilities of synthetic PQP on various hardware clus-
ters as presented in Figure 35 (bottom). We notice that there is no consistent
balancing point of parallelism for all workloads. Until this point, parallelism Hard to find

optimal par-

allelism...
might or might not yield further performance benefits or might even hinder it
due to increased communication and synchronization overhead between par-
allel instances. It might be even more challenging to find this point in a het-
erogeneous environment. For instance, as parallelism increases, we observe
varying performance across both homogeneous and heterogeneous clusters.
In the homogeneous cluster environment, we observe a trend where latency
generally increases with the parallelism category from XS to XL, after which
the latency decreases for XXL. We observe a similar behavior in heteroge-
neous clusters. The latency is highest until the parallelism category M and
decreases for larger parallelism categories (L,XL,XXL). This indicates that ...in hetero-

geneous

environ-

ment.

the heterogeneous cluster, which likely consists of nodes with different com-
putational capabilities, benefits more significantly from increased parallelism.
The initial higher latency at medium parallelism could be attributed to the im-
balance in workload distribution across the heterogeneous resources. As the
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parallelism degree grows, the system may better utilize the diverse computa-
tional resources, thus reducing the overall latency.

O7- Homogeneous or heterogeneous clusters: there is no clear choice for all

cases. PDSP-BENCH provides insight about notable performance enhance-Diversity

dilemma... ment with increasing parallelism and diverse hardware configurations as
shown in Figure 35 (top). Specifically, PQP from real-world applications bene-...adverse

effect on

perfor-

mance.

fit significantly from increasing parallelism and hardware processing capabil-
ity, leading to improved performance. Conversely, PQP from synthetic applica-
tions demonstrate better performance on homogeneous clusters than hetero-
geneous ones. This pattern can be attributed to the nature of synthetic PQP,
encompassing standard SP operators, which are more efficiently handled in
homogeneous clusters. Conversely, heterogeneous clusters, despite their po-
tential for high computational power, present challenges in achieving even
workload distribution, increased communication and synchronization over-
heads due to varying communication speeds across different hardware units.

6.2.3 Integration of ML Models

The ML Manager (cf. Section 4.3) of PDSP-BENCH offers benchmarking of per-
formance of various ML models tailored for parallel and distributed stream
processing environments. It uses data collected during benchmarking as la-
beled datasets for training and inference. In this evaluation, we focus onInfluence

of PQP

complexity...
assessing the effectiveness of different learned cost models in predicting the
performance of streaming queries, such as end-to-end latency.
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Figure 36: Comparison of performance prediction accuracy of various ML models:
Linear regression (LR) [90], Multi-layer perceptron (MLP) [120], Random
forest (RF) [59], Graph neural networks (GNN) [258, 8, 106] for vari-
ous PQP.

We integrate four distinct machine learning (ML) models architectures
into the ML Manager:(1) Linear regression (LR) [90]: traditionally used for its...on cost

models. simplicity and effectiveness in prediction tasks, (2) Multi-layer Perceptrons
(MLP) [120]: known for capturing nonlinear relationships in data, (3) Random
forest (RF) [59]: utilizes decision trees to improve prediction accuracy, and
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(4) Graph neural networks (GNN) [258, 8, 106]: applies graph structures to
model complex relationships in data. It encodes PQP as a DAG [8] within
GNN, allowing the model to treat different operators within PQP as nodes,
and the relationships between them as edges. These models are selected
based on their diverse approaches to model and handle the complexities of
stream processing queries.

The accuracy of these models is measured using Q-error q(c, c′) where q ≥ 1

metric (cf. Section 6.1.4). Here, q-error being close to 1 represents better pre-
diction accuracy. We also implement early stopping for each ML model to
prevent overfitting and ensure efficient training times. We implement early
stopping with a patience value of 100 epochs, meaning the training process
monitors the validation loss and halts if there is no improvement for 100 con-
secutive epochs. This method is uniformly applied across all models to main-
tain consistency. The training of these models is performed on m510 clusters.

O8- Graph representation assists in learning dynamic behavior of SPS. The
primary aim of benchmarking ML models is to evaluate how these diverse
cost models perform across various streaming queries. Figure 36 indicates GNN

efficiently

learn and

capture PQP

relations

that the GNN model consistently surpasses other models in predicting cost,
i.e., latency, even as query complexity increases. The high accuracy of GNN
can be attributed to its graph-based representation, which effectively captures
and leverages the intricate dependencies within query structures and the dy-
namic behaviors of stream processing systems. The graph-based represents
results in more accurate and reliable performance predictions compared to
other models. A similar observation is made for PQP related to real-world
applications, and thus we only present results on synthetic PQP.

6.3 Experiments on ZEROTUNE

In this section, we present the evaluation results of ZEROTUNE, focusing on
its ability to efficiently generalize across unseen workloads and resource con-
figurations, as well as its effectiveness in using cost estimates to optimize
parallelism degrees. The evaluation aims to validate the robustness, accu- Extensive

evaluation

to under-

stand...

racy, and efficiency of ZEROTUNE under various workloads and resource con-
figuration conditions. Here are the specific evaluation questions that we ad-
dress for ZEROTUNE:

• Exp. 1: Accuracy on Seen and Unseen Workloads. We assess the ac-
curacy of ZEROTUNE for both seen and unseen parallel query structures
(PQP) and benchmarks. It seeks to ascertain the prediction accuracy of
the model and its generalization across varying conditions.
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• Exp. 2: Generalization Performance on Fine-Grained Parallelism.

Following up on the previous evaluation, we further assess the perfor-
mance of ZEROTUNE across different ranges of parallelism degrees to
examine how the model maintains high accuracy as the degree of par-
allelism varies, highlighting its adaptability to diverse and increasing
parallelism....model

accuracy on

seen and

unseen

data...

• Exp. 3: Generalization across Unseen Parameters. We explore the
capability of ZEROTUNE to predict costs for parameters not encountered
during training, such as different tuple widths. We intend to test how
does the model apply learned insights to predict cost for completely new
and unseen workload characteristics.

• Exp. 4: Data-Efficient Training. We assess the training efficiency, i.e.,
number of queries and training time, taken by OptiSample. This exper-...general-

ization

capability...
iment is crucial for determining the practicality of deploying ZEROTUNE

in real-world scenarios where data and computational resources may be
limited.

• Exp. 5: Optimizer for Parallelism. We determine if ZEROTUNE, in con-
junction with its integrated optimizer, can effectively identify the optimal
set of initial parallelism degrees that minimize the overall cost of query
execution. It measures the efficacy of the optimizer in determining the
parallelism degree based on predicted cost....and

efficiency in

determining

parallelism.
• Exp. 6: Feature Ablation Study. The final experiment investigates how

selected transferable features influence the generalization capabilities of
ZEROTUNE. By selectively disabling certain features, the study aims to
highlight which attributes are most critical for the ability of the model
to generalize.

These experiments collectively aim to demonstrate the comprehensive capa-
bilities of ZEROTUNE, showcasing its potential to accurately predict and gen-
eralize performance for diverse workloads and heterogeneous resource con-
figurations in DSP systems.

6.3.1 Accuracy on Seen-Unseen Workload

Overall

model

comprises

linear, 2-

and 3-way

join queries

Exp. 1: Impact of seen-unseen workload. In our initial experiment, we as-
sess the prediction accuracy of the ZEROTUNE model on known or seen query
structures, as outlined in Table 8, before examining its ability to generalize
to novel query structures and benchmarks. Our evaluation focuses on the
accuracy of latency and throughput prediction, utilizing both median and
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Trained Model

ZEROTUNE-OptiSample

Query

Structure

Q-error (Latency) Q-error (Tpt)

Median 95th Median 95th

1⃝ Seen

workload

Linear 1.21 2.51 1.24 2.31

2-way-join 1.37 3.84 1.82 8.05

3-way-join 1.38 3.35 1.89 7.20

Overall 1.30 3.35 1.57 6.82

2⃝ Unseen

workload

2-filter-chained 1.22 2.15 1.40 3.50

3-filter-chained 1.24 2.55 1.57 3.96

4-filter-chained 1.24 2.90 1.64 5.31

4-way-join 1.34 2.92 1.92 6.55

5-way-join 1.56 3.6 2.93 16.82

6-way-join 1.95 6.8 6.19 36.29

3⃝ Unseen

benchmark

Spike Detection 1.29 2.40 2.73 5.99

Smart-grid (local) 1.33 1.50 2.30 4.44

Smart-grid (global) 1.44 1.60 1.52 2.40

Table 9: Median and 95th percentile q-errors for cost prediction across seen and un-
seen parallel query structures using synthetic data and public benchmarks.
ZEROTUNE model demonstrates efficient data utilization, providing highly
accurate cost predictions for both known and novel workloads [8, 6].

95th percentile q-errors as indicators of performance, where a q-error of 1.0

signifies an exact prediction.

During this phase, ZEROTUNE model is trained and evaluated using the
OptiSample training strategy, which is specifically designed to adjust paral-
lelism degrees. This approach is contrasted with different model architectures
employing flat vector representations as depicted in Figure 38.

These comparisons aim to identify which method more effectively enhances
model performance across both seen and unseen workloads. The series of
evaluations helps to evaluate the robustness of the ZEROTUNE model in
adapting to diverse operational scenarios.

Seen Workload. In Table 9: 1⃝, we analyze the PQP performance on query
structures, specifically linear, 2-way joins, and 3-way joins, within the seen
test set range, as outlined in Table 8. Additionally, we present the ªoverallº ac-
curacy across all query structures. The results demonstrate that ZEROTUNE High

accuracy

for

seen PQP

consistently delivers highly accurate cost predictions for both latency and
throughput, highlighting the effectiveness of the OptiSample training strat-
egy. The performance of ZEROTUNE surpasses all baseline model architec-
tures that use flat vector representations, which fail to capture the structural
flow of the query graph that ZEROTUNE leverages (cf. Figure 38).

For the remaining evaluations, unless specified otherwise, we focus on
the overall model trained on all query types. The approach provides a com-
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prehensive understanding of ZEROTUNE’s capabilities across diverse query
structures.

Unseen Workloads. A key goal of the proposed approach is to enable the
ZEROTUNE model to generalize to completely unseen parallel query structures
that are not included during the training phase. To evaluate the capability,
we evaluate the model on more complex parallel query structures than those
used during training. The increased complexity includes more intricate fil-
ter predicates and join operations, such as 2-4 chained filters and 4-6 way
joins, as detailed in Table 8. We generate 200 test queries per query type to
conduct the assessment.ZEROTUNE

shows high

accuracy

for

unseen PQP

The results in Table 9: 2⃝ indicate that ZEROTUNE maintains high accuracy
and adaptability in predicting costs, even for unseen parallel query struc-
tures. This is evidenced by both the median and 95th percentile q-errors,
demonstrating the model’s effectiveness in adapting to unseen streaming
workloads right out of the box. While ZEROTUNE performs exceptionally well
with simpler structures, such as filter chains, we observe an increasing trend
in q-errors as the complexity of the unseen parallel query structures grows.
This trend is particularly notable for throughput predictions, especially in sce-
narios involving 6-way joins and high degrees of parallelism, where through-
put increases dramatically. This highlights the challenges of maintaining pre-
diction accuracy as query complexity and parallelism scale up.

Unseen Queries from Public Benchmarks. In addition to evaluating syn-
thetic queries, we conduct further assessments to determine the accuracy
and generalization capabilities of the ZEROTUNE model using two public
streaming benchmark queries: spike detection and smart-grid [42, 181, 36].High

accuracy

for public

benchmark

data

The spike detection benchmark [36] processes a stream of sensor data to
detect spikes by comparing current values to the average values over the
previous 2 seconds. For the evaluation, we generate artificial sensor data to
simulate the benchmark conditions. The smart grid benchmark focuses on
predicting energy consumption loads to enable more efficient energy distri-
bution. Measurements are generated from smart plugs installed in private
households, and data is grouped by house. Two independent queries calcu-
late the average energy consumption at local and global levels. To maintain
reasonable throughput, we employ sliding windows with a 10 second dura-
tion and a 3 second sliding interval.

The results, shown in Table 9: 3⃝, indicate the accuracy of ZEROTUNE

models in predicting performance (latency and throughput) for these unseen
benchmarks. The findings demonstrate that ZEROTUNE estimates both la-
tency and throughput with high accuracy for unseen parallel query struc-
tures from public benchmarks. Overall, while both metrics are estimated ac-
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Figure 37: Few-shot learning with just 500 training queries for unseen 4-, 5-, and 6-
way joins enhances ZEROTUNE’s throughput prediction by nearly 6× for
6-way joins. The red line represents the perfect estimate [8].
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Figure 38: ZEROTUNE model provides robust and generalized cost predictions for
both seen (white) and unseen (grey) PQP, outperforming other model ar-
chitectures [8].

curately, latency predictions tend to be more precise than throughput predic-
tions. The trend is consistent across all models and can be attributed to the
nature of throughput, which is directly influenced by incoming data distribu-
tion. In contrast, latency is affected by indirect factors such as overall system
utilization and the varying durations required to fill count windows.

Few-shot Learning. To further improve q-errors for complex, unseen PQP,
we employ a machine learning technique known as few-shot learning. It in-
volves training the model with a small number of additional examples to re-
fine its predictions. Therefore, we train ZEROTUNE with an additional 500

examples of complex join structures. The results, illustrated in Figure 37,
confirm that the model remains robust by adapting to the dynamic charac-
teristics of DSP systems. Few-shot

learning

improves

accuracy

with few

queries

Comparison with Baselines. ZEROTUNE consistently outperforms base-
lines using flat vector representations, even when applies to unseen query
structures. The superior performance is attributed to the parallel graph-
encoding method, which effectively captures the complexities of query struc-
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Figure 39: Median q-error of cost prediction of PQP for varying parallelism for seen
query structures [8]. ZEROTUNE models trained using OptiSample show
accurate cost prediction for seen PQP with varying parallelism categories.

tures. This capability enables ZEROTUNE to excel even with novel query
configurations, as demonstrated in Figure 38.

6.3.2 Fine-grained Parallelism Analysis

Exp. 2: Impact of Parallelism. We further investigate the accuracy of ZERO-
TUNE across different degrees of parallelism, which is crucial for the optimizer
(refer to Exp. 6) when selecting the optimal degree. Parallelism is classifiedAccuracy of

model of

increasing

parallelism

into five categories: XS, S, M, L, and XL, each representing the average degree
of parallelism per operator in a query.

For instance, in the XL category, each operator in a query uses an aver-
age of 64 to 128 cores (cf. Table 8). We assess how ZEROTUNE generalizes
to both seen and unseen query types and public benchmarks within each
parallelism category.

The results illustrate robust generalization capabilities of ZEROTUNE across
all parallelism categories, maintaining high accuracy in its predictions for
both seen and unseen query structures and public benchmarks. The analy-
sis underscores the model’s versatility and effectiveness in optimizing perfor-
mance across varying degrees of parallelism.

Seen Workloads. In Figure 39, we present the accuracy of the ZEROTUNE

model for seen query types within our test range (cf. Table 9 1⃝). The ZE-
ROTUNE model consistently delivers highly accurate cost predictions across
different parallelism degrees for these familiar query types.Consistent

accuracy

for

seen PQP...
While the complexity of the PQP can slightly impact prediction accuracy,

the model performs overall exceptionally well. As parallelism and complex-
ity increase towards the XL category, there is a minor decrease in accuracy.
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Figure 40: Median q-error of cost prediction of PQP for unseen query benchmark [8].
ZEROTUNE shows high accuracy for performance prediction for unseen
benchmark PQP with different parallelism categories.

This reduction is due to the heightened computational overhead and data
dependencies associated with more complex PQP. ...with

increasing

parallelism.Despite this, the decline in accuracy is relatively small, demonstrating that
ZEROTUNE maintains reasonable performance even for complex queries with
high degrees of parallelism, highlighting the model’s robustness and effective-
ness in handling a variety of parallel query scenarios.

Unseen Benchmark. We extend our evaluations to analyze the accuracy
and generalization of the ZEROTUNE model for unseen benchmark queries
and to examine the impact of different parallelism categories. Our findings
indicate that the OptiSample strategy often selects lower parallelism degrees,
specifically XS and S categories, due to the simplicity and relatively low in-
coming event rates of the benchmarks, as illustrated in Figure 40. ZEROTUNE

able

transfer

knowl-

edge...

The results demonstrate that the ZEROTUNE model accurately predicts
costs across various parallelism categories, even in the context of benchmark
queries. While the model performs well overall, it exhibits slightly higher pre-
diction errors for throughput compared to latency. This discrepancy arises
because the data distribution in benchmark queries differs from that of the
synthetic queries, which aligns with the overall results (cf. Table 9 3⃝). ...to

unseen PQP

even of

higher

parallelism.

Despite these differences, fine-tuning the model can significantly enhance
ZEROTUNE’s performance for benchmark queries, which will be discussed in
subsequent sections. The fine-tuning can help mitigate the impact of varying
data distributions and further improve the accuracy of throughput predic-
tions.

Unseen Resources. We also assess the ability of ZEROTUNE to generalize
across unseen configurations of heterogeneous and homogeneous resources,
as well as the impact of different parallelism categories (cf. to type ªU" in Ta-
ble 6). In Figure 41, the median q-errors, ranging from 1.25 to 2.0, indicate
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Figure 41: Median q-error of cost prediction of PQP for unseen homogeneous and
heterogeneous resources [8]. ZEROTUNE shows high accuracy in perfor-
mance prediction for PQP with different parallelism categories on unseen
homogeneous and heterogeneous hardware configurations.

that the ZEROTUNE model consistently provides accurate cost predictions for
unseen hardware resources and their associated parallelism categories.Consistent

perfor-

mance

across...
The results, shown in Figure 41, reveal that ZEROTUNE maintains accuracy

even with unseen hardware setups. However, as with other scenarios, there is
a noticeable increase in q-errors with higher degrees of parallelism. This trend
can be attributed to complex factors such as load imbalance, the granularity
of parallelism, and resource contention that become more pronounced with
increased parallelism....diverse

hardware

resources. Despite these challenges, the relatively low q-errors demonstrate the
model’s robust capability to learn from a variety of hardware configura-
tions. The model effectively correlates these configurations with parallelism
degrees, thanks to the transferable features related to resources that ZERO-
TUNE has learned. The adaptability ensures that the model remains reliable
and accurate across diverse and unseen hardware environments.

Unseen Workload. In Figure 42, we evaluate the accuracy of ZEROTUNE for
unseen and complex PQP across different parallelism categories. The results
indicate that the ZEROTUNE model consistently delivers reasonably accurate
predictions across all parallelism categories, with only minor variations. ThisHigh

accuracy

for un-

seen PQP...

consistency indicates that ZEROTUNE effectively captures performance pat-
terns and generalizes them well to unseen or new query plans within the
given template structure.

However, we observe a slight decline in prediction accuracy, i.e., high q-
errors for more complex PQP in comparison to simple PQP, particularly in
throughput predictions for 5-way and 6-way joins, as indicated by the q-
error trends in Table 9 2⃝. Throughput predictions for these complex plans...even for

higher

parallelism.
were slightly less accurate, likely due to increased computational complexity
and data dependencies.
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Figure 42: Median q-error of cost prediction of PQP for unseen query structures [8].
ZEROTUNE shows high accuracy in performance prediction for un-
seen PQP with different parallelism categories. Notably, the accuracy
of ZEROTUNE decreases for highly complex unseen PQP with high par-
allelism categories. However, the model achieves accurate performance
predictions when trained using few-shot learning with an additional 500
queries.

To mitigate this issue and enhance model performance, we fine-tune the
model with an additional 500 queries. By employing a machine learning tech-
nique known as few-shot learning, as illustrated in Figure 42, we significantly
improve prediction accuracy for both median and tail errors compared to
zero-shot learning. The approach allows the model to adapt more effectively High extrap-

olation

results in

increased

q-error

to each parallelism category, ranging from XS to XL, in line with the overall
results presented in Figure 37.

The method proves particularly effective in enhancing ZEROTUNE’s ability
to handle complex query plans, thereby reducing the q-error and ensuring
more precise throughput and latency predictions across all tested parallelism
categories. This improvement demonstrates the robustness and adaptability Few-shot

leads to

improved

accuracy

of the ZEROTUNE model to unseen PQP. With a small amount of additional
data, ZEROTUNE can effectively manage diverse workloads with increasing
complexities of unseen query plans, ensuring higher accuracy and reliabil-
ity in its predictions.
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6.3.3 Generalization for Unseen Parameters

Exp. 3: Impact of unseen parameters. In this section, we evaluate the ZE-
ROTUNE model’s ability to generalize and predict costs across various work-
load parameters. To thoroughly evaluate this, we use both interpolation and
extrapolation within the ranges specified in Table 8.

Figures 43 to 47 highlights the impact related to query and its placement,
such as tuple width, event rate, window configurations, and the number of
available workers in a cluster. These parameters are chosen due to their sig-Evaluation

of unseen

parameters
nificant influence on parallelism degrees and associated costs. For instance,
the event rate is particularly relevant because of its effect on backpressure,
while window configurations are crucial due to the parallel processing of data
streams that involve different key-based windows.

The evaluation involves using a model trained on linear, 2-way, and 3-

way join query structures to test its predictive accuracy and generalizabil-
ity across both interpolation and extrapolation ranges. This approach helpsModel

learns from

parame-

ters...

determine how well the model can adapt to variations within and beyond
the training data.

To ensure a comprehensive evaluation of the model’s performance, we con-
duct experiments using at least 165 queries per tuple width for each query,
ensuring an equal distribution among linear, 2-way, and 3-way join queries
within the parallel query structure. By maintaining the balance, we could ef-...like back-

pressure

from event

rate.

fectively assess the ZEROTUNE model’s capability to accurately predict costs
under unseen conditions and varying degrees of parallelism.

By evaluating these parameters, we aim to understand how different factors
influence the model predictions and validate its capability to handle diverse
workload parameters, providing insights into its adaptability and accuracy
in real-world applications. The evaluation highlights the model’s robustness
and adaptability in predicting performance metrics accurately across a wide
range of configurations, ensuring its practical applicability.

Tuple Widths. To assess the accuracy of the ZEROTUNE model, we investi-
gate the impact of different unseen tuple widths (cf. Figure 10), particularly
in the context of higher degrees of parallelism. Specifically, we test the model
with tuple widths ranging from 2 to 15 and unseen range is from 6 to 15 (cf.
Tuple widths in Table 8).ZEROTUNE

evaluation

for unseen

tuple

widths

In Figure 43, the model demonstrates stable performance and effective gen-
eralization to unseen tuple widths (indicated in the grey area). This stability
suggests that the ZEROTUNE model has successfully learned the relation-
ships between tuple width and associated costs in parallel query structures.
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Figure 43: Median Q-errors for PQP cost prediction with varying tuple width (per
data type of src.) where white shows training range and grey shows un-
seen range. ZEROTUNE accurately generalizes, even with higher extrapo-
lation of tuple width [8].
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Figure 44: Median Q-errors for PQP cost prediction with varying event rates where
white shows the training range, grey shows the unseen range. ZEROTUNE

accurately generalizes, even with higher extrapolation of event rates [8].

As tuple width increases, the model continues to accurately predict costs, in-
dicating its robust understanding to larger tuple widths that can influence
computational demands and resource allocation. ZEROTUNE

generalizes

across

unseen

tuple

widths

The ability to generalize well across different tuple widths is crucial, as it
shows that the model can adapt to different unseen data payload sizes in
real-world applications. This adaptability ensures that ZEROTUNE can pro-
vide reliable cost predictions even when encountering tuple widths beyond
those seen during training. The consistent performance of the model across
both seen and unseen tuple widths highlights its capability to handle di-
verse data sources and optimize parallelism effectively. Overall, the results
indicate that ZEROTUNE is well-equipped to manage and predict costs in en-
vironments with varying tuple widths, leveraging its learned correlations to
maintain high accuracy and efficiency in cost estimation.

Event Rates. In Figure 44 (note a log scale on the x-axis), we evaluate
the ZEROTUNE model’s capability to interpolate and extrapolate event rates
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Figure 45: Median Q-errors for PQP cost prediction with varying window durations
where white shows the training range, grey shows the unseen range. ZE-
ROTUNE accurately generalizes, even with higher extrapolation of window
duration [8].

beyond the training range (cf. Table 8). The model demonstrates high accu-
racy in predicting costs across a wide spectrum of event rates, including both
low and high rates, within the training range (white area) and beyond the
training range (shaded area).High

accuracy

for varying

event rates
The proficiency of the model in handling higher event rates can be at-

tributed to its learned understanding of the processing limits of the DSP
system and the backpressure effects that occur when the hardware is oper-
ating at full capacity. By effectively recognizing these limits, ZEROTUNE can
accurately predict the costs associated with high event rates.

At very low event rates, however, there is a slight increase in q-error val-
ues. This is likely due to the model’s limited exposure to scenarios of low
utilization, where minimal data processing can lead to under-utilization of
resources. In such cases, the system’s behavior may differ significantly from
more typical higher utilization scenarios, posing a challenge for accurate cost
prediction.Lower event

show some

deviation Despite this, the overall performance of ZEROTUNE remains robust. The
model demonstrates excellent generalization capabilities for both seen and
unseen event rates, effectively predicting latency and throughput. This ro-
bustness is critical for adapting to various real-world scenarios where event
rates can fluctuate widely.

Window Durations (Time-based). Figure 45 (note a log scale on the x-
axis) illustrates the ZEROTUNE model’s capability to accurately predict costs
for PQP across a range of window durations (cf. Table 8). Initially, the modelAccurate

cost

prediction...
shows slightly higher median q-errors for smaller unseen windows. However,
as the window duration increases, the performance of the model improves,
ultimately converging to exhibit strong accuracy.
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Figure 46: Median Q-errors for PQP cost prediction with varying window length
where white shows the training range, grey shows the unseen range. ZE-
ROTUNE accurately generalizes, even with higher extrapolation of window
length [8].

The challenge with smaller windows arises because they lead to rapid data
processing and high data turnover, making it difficult for the model to cap-
ture the performance characteristics influenced by parallelism. This is par-
ticularly challenging when the model has not been exposed to such small
windows before, with the smallest seen window being 250 milliseconds. Rapid ...and

generaliza-

tion...
processing requires the model to quickly adapt to changing data patterns,
which can be complex without prior training on smaller windows.

Conversely, longer windows allow for more data accumulation before pro-
cessing, which helps the model to better understand system patterns and
thus achieve higher accuracy in cost estimation. This is because longer win-
dows provide a more stable environment, reducing the variability and al-
lowing the model to make more informed predictions. However, as window ...for small

and big

windows

durations.

durations extend towards the far end of the unseen range, there are slight
variations in accuracy. This could be attributed to the fewer training exam-
ples available for extremely long windows, which limits the model’s ability to
generalize as effectively.

Overall, the ZEROTUNE model generalizes particularly well for longer win-
dows, offering highly accurate predictions. For smaller windows, although
the initial predictions are less accurate, the model still provides reasonably
good predictions as it adjusts to the rapid processing demands. This demon-
strates the model’s robustness and flexibility in handling a wide range of
window durations, ensuring reliable performance across various data pro-
cessing scenarios.

Window Lengths (Count-based). Similar to window duration, window Window

length

influences

throughput

length also significantly affects the cost of PQP, with varying impacts on
throughput depending on whether the windows are time-based or count-

based.
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Figure 47: Median Q-errors for PQP cost prediction with varying amount of work-
ers. White indicates the training range, and grey indicates the unseen
range. ZEROTUNE demonstrates accurate generalization, even with higher
worker extrapolation [8].

In the case of time-based windows, throughput tends to remain constant,
as it is generally unaffected by the rate of incoming events. This stability
simplifies throughput prediction. On the other hand, count-based windows
have a throughput that is directly influenced by the input rate of the operator.
For example, a tumbling count-based window with a length of 10 will reduce
the outgoing event rate to 10% of the incoming event rate. This relationship
makes predicting throughput more challenging for unseen window sizes in
count-based scenarios.

As shown in Figure 46 (note the log scale on the x-axis), the ZEROTUNE

model demonstrates strong accuracy and generalization in predicting costs
for both seen and unseen window lengths. The model’s performance in this
regard highlights its ability to adapt to different window configurations. How-Overall high

accuracy

for varying

window

lengths

ever, there is a slight increase in q-error for throughput predictions when
dealing with extremely short or long unseen window lengths. This increase
is due to the inherent complexities associated with accurately forecasting
throughput for these extreme window sizes, as previously mentioned. Despite
this, the overall accuracy remains high, demonstrating the model’s robust ca-
pability to handle a wide range of window lengths effectively.

These findings underscore the importance of considering window length
as a critical parameter in PQP cost prediction. The ZEROTUNE model’s profi-
ciency in this area ensures that it can provide reliable predictions across di-
verse window configurations, thereby optimizing performance and resource
allocation in streaming data environments.Computa-

tion

resources

influence

possible

parallelism

Amount of Workers. The number of workers or nodes in a DSP system
significantly impacts the overall cost, as it directly determines the available
computational resources, the degree of parallelism, and the system’s capac-
ity to manage workloads. For instance, smaller clusters with fewer workers
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Figure 48: (a) Median Q-errors for models trained with different quantities of seen
(left) and unseen (middle) queries. (b) Training times necessary for ZE-
ROTUNE to reach efficiency using both random (ZT-Random) and Opti-
Sample-based data. The OptiSample-based strategy achieves equivalent
accuracy with half the data and training time [8, 6].

may experience limited parallelism due to the reduced number of available
computational units. Conversely, larger clusters can support a higher num-
ber of parallel tasks, thereby enhancing the system’s ability to process more
complex and extensive workloads.

In our evaluation, depicted in Figure 47, we demonstrate that the ZERO-
TUNE model consistently delivers accurate cost predictions across various
cluster sizes. This capability enables the model to effectively generate PQP
that scale with the increasing size of the cluster. As the number of workers
grows, the model adjusts the level of parallelism accordingly, ensuring effi-
cient resource utilization and optimized performance. Higher gen-

eralization

with

increasing

number of

workers

These results show the model’s robustness and flexibility in adapting to
different computational environments. By accurately predicting costs and
scaling parallelism based on cluster size, ZEROTUNE proves to be a reliable
tool for optimizing performance in dynamic and heterogeneous DSP systems.
This adaptability ensures that whether dealing with small-scale or large-scale
clusters, the system can maintain high efficiency and handle workloads ef-
fectively.

6.3.4 Data-efficient Training

Exp. 4: Impact of training strategy. In Figure 48a, we evaluate the accuracy
of our ZEROTUNE models by comparing two training strategies: the random Amount

of PQP

influence

accuracy

data approach (ZT-Random) and the OptiSample strategy, plotted against the
increasing number of queries (note the log scale on the x-axis). For both seen
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and unseen data, the OptiSample-based model shows rapid convergence,
achieving high accuracy with as few as 5, 000 queries. In contrast, the ran-
dom model requires over 18, 000 queries to reach a similar level of accuracy.
This demonstrates the superior data efficiency of the OptiSample strategy.

Further analysis in Figure 48b (note a linear scale on the x-axis) examines
the training time required as the number of queries increases. The OptiSam-
ple model achieves higher accuracy in roughly half the time, taking approx-
imately 4.6 hours, compared to the random model, which takes about 10.3

hours. This finding supports our hypothesis that the OptiSample strategyOptiSample

achieves

high

accuracy...

is more data-efficient, achieving equal or better accuracy with fewer queries
and significantly less training time.

These results address a critical bottleneck in training zero-shot models (cf.
C3: high training effort for generalization in Section 5.2), where the challenge
is to obtain high accuracy without extensive data or prolonged training peri-
ods. The OptiSample strategy’s ability to converge faster with fewer queries...with

fewer

queries and

half of the

training

time.

and reduced training time shows its effectiveness in optimizing the training
process. This efficiency not only accelerates model development but also en-
hances the practical applicability of the ZEROTUNE models in dynamic and
data-intensive environments.

Overall, the comparative analysis validates that the OptiSample strategy
significantly outperforms the random data approach, making it a valuable
method for training efficient and accurate zero-shot models.

6.3.5 Optimizer for Parallelism Tuning

Exp. 5: Impact of ZEROTUNE in parallelism determination. We evaluate
how ZEROTUNE performs in selecting optimal parallelism degrees together
with the optimizer, as detailed in Section 5.4.3. In Figure 49a, we present theZEROTUNE

tunes initial

paral-

lelism...

mean speed-ups for various query structures, including those that are previ-
ously unseen. The metric indicates the speed-up factor achieved by executing
queries using the parallelism degrees selected by the ZEROTUNE model, com-
pared to a greedy heuristic approach.

For this evaluation, we randomly selected 100 query types with different pa-
rameters, ensuring they remained deterministic. We then perform inference
for different parallelism degrees based on the enumeration strategies. The...faster

than

baselines...
results show that ZEROTUNE significantly outperforms the greedy heuristic
approaches [83, 225], achieving speed-ups of up to 12 times for simple linear
queries and approximately 3.04 times for unseen and more complex query
types, such as n-way joins.
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Figure 49: (a) Mean speed-up in latency and throughput achieved through paral-
lelism tuning by ZEROTUNE compared to greedy heuristic approaches [83,
225]. (b) Comparative performance of query types with parallelism de-
grees determined by ZEROTUNE versus Dhalion [83], showing weighted
average runtimes. ZEROTUNE outperforms Dhalion in both seen and un-
seen queries [8].

Additionally, we compared the performance of the proposed model with
Dhalion [83], a well-known traditional (non-learned) parallelism tuning al-
gorithm used in the Heron DSP system [144]. Dhalion is a state-of-the-art
auto-scaling controller widely accepted in both academia and industry, par-
ticularly at Twitter with their Heron system, making it a suitable benchmark
for comparison.

The promising results of ZEROTUNE, especially its superior performance
over non-transferable representations like flat-vector in previous experi-
ments, motivated us to compare it against these well-established auto-scalers.
The comparison highlighted the effectiveness of ZEROTUNE in optimizing par- ...like

Dhalion for

Heron DSP

system.

allelism degrees, demonstrating its potential to enhance query execution
performance significantly.

Overall, the ZEROTUNE model’s ability to select optimal parallelism degrees
leads to substantial speed-ups, proving its value in improving the efficiency
and performance of DSP systems. This makes ZEROTUNE a learned system
for real-time data processing applications, ensuring high performance even
with complex and unseen query structures.

The results depicted in Figure 49b, which show the weighted average cost
(cf. Equation (12)), reveal important insights into the performance of different
parallelism tuning strategies. While Dhalion performs relatively well for simi- ZEROTUNE

finds

optimal par-

allelism...

lar and straightforward query structuresÐaligning with its design focusÐits
effectiveness diminishes as the complexity of parallel queries increases.

In contrast, our ZEROTUNE model consistently identifies cost-effective par-
allelism degrees across a wide range of queries, including both familiar and
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Figure 50: Feature ablation analysis [8] using (1) only operator-specific features, (2)
only parallelism- and resource-related features, and (3) all combined fea-
tures for latency cost prediction.

novel structures. This robust performance is evident regardless of the query
complexity. Unlike Dhalion, which struggles with more complex PQP, ZERO-
TUNE maintains high efficiency and accuracy....using

predicted

cost... The superior performance of ZEROTUNE is attributable to its advanced
learning algorithms that enable it to generalize well from training data,
thereby effectively managing diverse and complex query environments. This
capability ensures that ZEROTUNE not only excels in optimal resource alloca-
tion for simple queries but also adapts seamlessly to handle the intricacies
of more complex parallel queries.

By consistently outperforming Dhalion’s traditional tuning algorithm, ZE-
ROTUNE shows its potential as a performance prediction model for optimizing...without

executing

query.
parallelism in DSP systems, leading to significant cost savings and perfor-
mance enhancements, making it valuable for dynamic and heterogeneous
data processing applications where query complexity can vary widely.

6.3.6 Ablation Study

Exp. 6: Impact of different transferable features. We conduct a feature
ablation study to identify and quantify the contribution of each transfer-
able feature to the model’s generalization performance. The analysis aimsEach

feature

plays a

vital role

to understand how different combinations of feature sets impact the predic-
tion accuracy of the zero-shot cost model for PQP. Figure 50 illustrates that
operator-specific features, such as average selectivity, enhance the model’s
comprehension of data processing tasks. However, these features alone do
not significantly boost the accuracy of predictions for PQP. While these fea-
tures provide valuable insights, they are insufficient by themselves to fully
capture the complexities of parallel query execution.
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In contrast, when we integrate operator-specific features with parallelism-

specific features, such as degrees of parallelism, the performance of the
model improves markedly. The combination allows the model to correlate Combined

features

improve the

accuracy

data processing characteristics with the efficiency of parallel execution and
resource utilization. By bridging these aspects, the model can more effectively
predict the costs associated with both seen and unseen PQP. The integra-
tion of parallelism-specific features enhances the model’s ability to generalize
across different query scenarios. This improved performance is evident in
the model’s ability to accurately predict costs, reflecting its efficiency in man-
aging diverse and complex data processing environments. The results of this
feature ablation study underscore the importance of a holistic feature set that
encompasses both data processing and parallel execution characteristics.

Overall, this analysis highlights the critical role that a well-rounded set of
features plays in enhancing the predictive accuracy and generalization ca-
pabilities of the ZEROTUNE model. By effectively leveraging a combination of
operator-specific and parallelism-specific features, the model demonstrates
robust performance in predicting costs for a wide range of PQP.

6.4 Summary

In this chapter, we present evaluation results to highlight the capabilities
of proposed performance modeling methods (i) the performance benchmark-
ing capabilities of PDSP-BENCH and (ii) accurate performance prediction and
generalization capabilities of ZEROTUNE to predict performance for parallel
and distributed stream processing.

Initially, we evaluate in real-world distributed stream processing setup,
which includes CloudLab testbed for distributed infrastructure and well-
known DSP system, i.e., Apache Flink as SUT for performance benchmarking
and workload generation under varying resource configurations and query
parameters. Subsequently, we provide a view of evaluation metrics for perfor-
mance benchmarking and measuring performance prediction accuracy and
introduce a possible baseline for comparison.

Later, we provide performance benchmarking results of PDSP-BENCH, ex-
plicitly focusing on end-to-end latency and the impact of workload and hard-
ware diversity on performance. Consequently, we present interesting obser-
vations such as non-linearity effect of parallelism and diversity dilemma of
heterogeneous hardware in enhancing performance.

Finally, we also provide performance prediction results of ZEROTUNE for
both end-to-end latency and throughput for seen-unseen workloads, across
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parallelism degrees, unseen operator parameters, and resource configura-
tions. Additionally, we show the generalization capability of ZEROTUNE and
efficiency of the data-efficient training method OptiSample compared to naive
approaches. Following up, we present the capability of optimizer in combina-
tion with ZEROTUNE to provide optimal initial parallelism degree based on
predicted performance and show speed-ups achieved with the parallelism
tuning approach in comparison to other approaches.
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Summary, Conclusion and Outlook

This thesis contributes methods and models that solve the research chal-
lenges RC1: understanding the performance and RC2This thesis contributes
methods and models that solve the research challenges RC1: understanding
the performance and RC2: accurate performance prediction for parallel and
distributed stream processing (PDSP). In the following, we summarize the
content of previous chapters followed by a brief revisit of the two key contri-
butions and obtained results in Section 7.1 Finally, we provide an outlook on
potential directions for future work in Section 7.2.

7.1 Summary of the Thesis

In Chapter 1, we discussed the increasing processing demands of mod-
ern data-driven applications, emphasizing the importance of timeliness and
throughput requirements. We remarked on the role of Distributed Stream Overall

summary of

thesis
Processing (DSP) systems in meeting these demands, particularly through
the use of heterogeneous cloud environments. We highlighted the necessity of
accurate performance modeling in DSP systems operating in heterogeneous
environments and outlined the challenges of developing such models. Specif-
ically, we identified two key challenges, RC1: understanding the performance
and RC2: performance prediction and optimization for DSP workloads in het-
erogeneous cloud environments. Based on our findings and analysis of the
state of the art, we defined two main research goals that we address in this
thesis: RG1 systematic performance benchmarking of PDSP workloads in a
heterogeneous environment and RG2 generalizable and data-efficient learned
performance models for DSP in a heterogeneous environment. In Chapter 2,
we provided essential background information on DSP and reviewed ex-
isting research on performance modeling for DSP systems. This chapter
identified the limitations and pitfalls in addressing the research challenges
mentioned in Chapter 1. In Chapter 3, we presented the overall architecture,
system model, and scenario for the accurate performance modeling problem.
Here, we presented the overall scenario and highlighted the importance of
accurate performance prediction for optimizing DSP systems, such as oper-
ator placement and parallelism. Additionally, we outlined the overall system

129
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Figure 51: Summary of all the contributions in a single architecture for PDSP. The
proposed contributions in this thesis (1) PDSP-BENCH [7]: A benchmark-
ing system for parallel and distributed dataflow of DSP applications for
RC1 and (2) ZEROTUNE [8]: a zero-shot cost model to predict accurate
performance of parallel dataflow applications even when they execute on
heterogeneous hardware to tackle RC2.

model that outlined the important assumptions and system entities for per-
formance benchmarking and prediction. We summarized the contributions
(cf. Figure 51) that covered the individual research goals and the results of
this thesis, as discussed in the following.

7.1.1 Contributions Revisited

In Chapter 4, we proposed a performance benchmarking system that enablesPDSP-
BENCH: a

novel

benchmark-

ing

system...

an enhanced understanding of the performance of executing PDSP work-
loads in a heterogeneous cloud environment. We discussed the limitations
of existing performance benchmarking work in addressing the requirements
for benchmarking PDSP workloads and identified three primary challenges
for our work: lack of expressiveness in benchmarking PDSP workloads, the
necessity for heterogeneous hardware support, and the need to benchmark
learned DSP models by their integration into the system. Thus, the PDSP-...for

parallel

dataflows...
BENCH system [7] successfully addressed the first research goal, i.e., perfor-
mance understanding of PDSP workloads in a heterogeneous cloud environ-
ment by offering the following contributions....in hetero-

geneous

cloud envi-

ronments.
(i) With PDSP-BENCH, we enabled the evaluation of parallel query struc-

tures (PQP) across a diverse range of DSP synthetic and real-world workloads
on heterogeneous cloud environment, thus offering both an expressive and
scalable solution (cf. Section 4.3).
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(ii) We provided methods to configure and manage heterogeneous hardware
resources by integrating resources from research testbeds like CloudLab [76]
for accurately reflecting real-world deployment scenarios (cf. Section 4.5).
(iii) We facilitated the integration of learned DSP models, allowing for system-
atic training and evaluation of these models on diverse streaming workloads,
which is essential given the surge of use of ML for optimizing DSP perfor-
mance [8], [106], [265].
(iv) Lastly, we enabled the generation of large corpora of streaming datasets
via PDSP-BENCH to ensure that the ML models are trained on representative
data of actual real-world streaming workloads.

In Chapter 5, we proposed performance prediction methods and models
for DSP mechanism optimization and enabling transition in the diverse and ZEROTUNE:

a novel per-

formance

prediction

model...

heterogeneous environments induced by DSP and cloud resources. Following
this, we provided the performance prediction scenario and reviewed existing
work to identify the challenges in performance prediction and optimization in
the context of the second research goal. We identified three main challenges
of existing work: lack of generalization in workload-driven learning methods,
high training effort for generalization, and inaccurate performance modeling,
leading to incorrect initial provisioning of parallel operators. We proposed ...for

parallel

dataflows.
ZEROTUNE, which successfully achieved the second research goal by solving
these challenges with the following contributions.

(i) We presented ZEROTUNE, a novel zero-shot cost model designed to pre-
dict execution costs of parallel DSP queries and thereby initially configuring
parallelism degrees while avoiding costly trial-and-error adjustments from
the start of the query execution.
We employed a novel learning paradigm called data-efficient zero-shot learn- ZEROTUNE

enables

generaliza-

tion...

ing [46, 222], enabling ZEROTUNE to grasp the dynamics of a DSP system
offline. It allowed the model to apply learned insights across various DSP
workloads in less training effort.
(ii) We achieved generalization in cost predictions using ZEROTUNE by offer-
ing novel transferable feature attributes (cf. Section 5.3) and parallel graph

representation for training the neural network (cf. Section 5.2).
(iii) We encoded the transferable features and parallel graph representation
in the GNN model architecture, which learned the query costs by message
passing algorithms (cf. Section 5.4).
(iv) We introduced OptiSample, a data-efficient training strategy that lever- ...across

unseen

hardware

and

workloads.

ages analytical methods to estimate and explore meaningful parallelism de-
grees, collecting meaningful data for training the GNN model.
(v) Lastly, we combined inference with an optimizer that uses predicted costs
from the ZEROTUNE model to provide an initially optimized set of parallelism
degrees for each operator without executing the query.
Finally, we performed an extensive evaluation of both contributions in Chap-
ter 6 to show the capabilities and applicability in real-world scenarios under
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varying workloads and resource configurations of the cloud environment, as
summarized in the next section.

7.1.2 Conclusions on Key Results

In Chapter 6, we evaluated our contributions to understand their capabilitiesPDSP-
BENCH

enables

benchmark-

ing parallel

dataflows...

for performance benchmarking of parallel dataflows and heterogeneous con-
figurations, data generation, performance prediction, and optimization, as
well as the generalization capabilities of the proposed model to both unseen
workloads and hardware of the cloud environment. In Section 6.2, we bench-
marked the performance of a well-known DSP system, Apache Flink, for di-
verse workloads and hardware to understand the influence of parallelism on
performance. We showed that PDSP-BENCH can benchmark performance for...and

reveals

insights on

non-linear

effects...

a broad spectrum of parameters as specified in Section 6.2: Table 7.

We identified 8 key observations (O1-O8) found based on our benchmark-
ing system PDSP-BENCH related to workload and hardware diversity on the
performance of a DSP system. The observations highlight the impact of in-
creasing parallelism on the performance, such as the non-linear effects on
the performance metrics such as latency of a parallel dataflow. Another key...and

diversity

dilemma of

hardware.

observation is the diversity dilemma of hardware, as there is no clear choice
of homogeneous or heterogeneous clusters for all parallel dataflows. Finally,
the analysis of the learned cost models revealed the observation that graph
representation assists in learning the performance of parallel dataflows in
a DSP system, on which we base our second contribution.

In the second evaluation in Section 6.3, we showed the prediction accu-
racy and generalization capability of ZEROTUNE, the zero-shot cost modelsZEROTUNE

enables per-

formance

prediction...

for performance prediction of parallel DSP queries. ZEROTUNE showed very
high prediction accuracies and generalization abilities of ZEROTUNE for dif-
ferent scenarios, including seen and unseen workloads, different parallelism
degrees, and unseen operator parameters (cf. Table 8). For some cases where...and

shows high

prediction

accuracies...

the prediction accuracy dropped due to high expectations of the model to
extrapolate much higher, e.g., for 6-way join workload, we showed that fine-
tuning the model with as little as 500 queries improved the accuracy by al-
most 6× and enabled precise predictions for significantly different workloads.
In the optimization performance, our experiments showed that ZEROTUNE

enabled on average a speed-up of about 5× in selecting optimal parallelism...with

speed-ups

of upto 5×

in

optimizing

parallelism

degrees.

degrees for operators of parallel dataflows compared to baseline approaches
and therefore significantly outperformed existing analytical baselines [83,
90, 225]. Furthermore, by training ZEROTUNE using our novel data-efficient
training strategy OptiSample, we significantly reduced the training effort by
4× for generalization.
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In summary, our contributions, PDSP-BENCH and ZEROTUNE, provide sig-
nificant advancements in the field of DSP systems. They offer robust bench-
marking and performance prediction methods, facilitating the optimization
of PDSP in heterogeneous environments. This work not only enhances the
understanding of parallel and DSP performance but also paves the way for
more efficient and adaptive DSP systems in the future.

7.2 Future Outlook

The results presented in this thesis provide the foundation for further re-
search in DSP. A notable achievement is that recently, our approach of per- Amazon

Redshift

adopted our

approach

formance prediction has been adopted by Amazon Redshift for query exe-
cution time prediction [258] and is being further developed. We provide an
overview of possible directions where the proposed methods can be applied
and extended to open problems.

Heterogeneous hardware architectures

PDSP-BENCH provides a platform for benchmarking the performance of com-
prehensive suites of applications, heterogeneous hardware configurations,
and DSP mechanisms, specifically focusing on parallel processing. It can be PDSP-

BENCH

supports

heteroge-

neous

configura-

tions

easily extended to support benchmarking of different DSP systems, such as
Storm [236] and Heron [144], as well as additional optimization mechanisms.
However, the platform is currently limited to CPU architectures, as current
DSP systems do not support other architectures like GPUs, FPGAs, etc. Thus,
a promising direction for further exploration is the inclusion of other architec-
tures such as GPUs, FPGAs, or even smart switches like P4 [139, 268, 270,
272, 257, 147, 43, 146, 31, 100].

This task is particularly challenging due to the lack of streaming systems
that enable the support of such different hardware architectures. For in-
stance, DSP system - NebulaStream [266] supports other architectures, but
it is limited to IoT-specific devices. Therefore, an open research question re-
mains: how to design a unified benchmarking system capable of perform-
ing comprehensive performance evaluations across various hardware archi-
tectures while including heterogeneous environments. For instance, each Next step to

support het-

erogeneous

architec-

tures like

GPUs

of these architectures has unique characteristics and performance metrics,
making standardization on performance across architectures difficult, and
it is even harder that they seamlessly work together in a distributed en-
vironment. This can result in research challenges like efficiently managing
resources across different hardware architectures to ensure optimal perfor-
mance, which includes dynamic resource allocation, load balancing, and
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scheduling. Notably, this requires developing benchmarks that scale across
various hardware configurations, from small IoT devices to large clusters of
GPUs, without losing accuracy or relevance.

Dynamic adaptation and online zero-shot learning

ZEROTUNE cost models offer significant advantages, such as data-efficient
methods for accurate cost predictions and generalization to unseen work-
loads and resource configurations. They can be adapted with minor modifi-ZEROTUNE

can be

fine-tuned

for other

metrics and

optimiza-

tion

cations, e.g., by fine-tuning to solve additional tasks, such as predicting ad-
ditional cost metrics, e.g., resource utilization or optimizing joint parallelism
and placement [253]. However, these models face challenges when dealing
with large search spaces and online learning for dynamic optimization like
parallelism adaptation [200, 4, 264] or re-scaling decisions [201, 54]. There-
fore, one of the open research directions is how to design and develop on-
line machine learning models for accurate optimization with generalization
in a dynamic and heterogeneous environment, such as on-the-fly parallelism
adaptation or resource re-scaling.Next step

can be

end-to-end

learning...
Unlike traditional approaches that navigate huge search spaces with

heuristics and find an optimum based on a zero-shot cost model, an on-
line zero-shot model would learn to navigate the search space itself, directly
arriving at a solution without needing additional optimization procedures.
For instance, integrating reinforcement learning (RL) [54, 201] with zero-shot
models like ZEROTUNE can enhance their ability to make dynamic adap-
tation decisions. An RL agent can learn optimal scaling and parallelism...for

dynamic

adaptation.
adjustments by interacting with the environment, continuously improving
its performance predictions based on real-time feedback. This approach can
help address the limitations of current models and provide a more robust
solution for dynamic adaptation in DSP systems.

Towards resource-efficient and Green-AI

In recent years, there has been a growing emphasis on the environmental im-
pact of large-scale data processing and machine learning (ML) systems [165,
256]. ML for DSP systems, which are fundamental to real-time data analyticsZEROTUNE

support

data-

efficient

learning

in various domains, consume significant computational resources, contribut-
ing to high energy usage and carbon footprints [109, 188, 19, 167, 166]. As
data volumes continue to grow, the demand for more resource-efficient and
environmentally friendly DSP solutions becomes increasingly critical. The mo-Next step

can be

resource-

efficiency

tivation for resource-efficient and Green-AI [208] in DSP lies in the need to
balance performance with sustainability, reducing the ecological footprint
of ML while maintaining high levels of efficiency and accuracy.
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ZEROTUNE has already made a contribution in this direction by proposing
data-efficient training and maintaining the same level of accuracy in compar-
ison to data-agnostic ML models. In the next step, one of the open research
questions can be: how to design both data- and resource-efficient methods to
reduce the energy footprint of training and inference phases in zero-shot mod- Green-AI is

essential...els used for DSP? Investigating lightweight models [26, 210, 161], pruning
techniques [246, 127, 261], and energy-efficient hardware accelerators [241,
227, 22] for model training and inference can contribute to sustainable pre-
diction models and methods. For instance, lightweight models, which are ...for

environment-

friendly AI

solutions.

designed to be smaller and more efficient, require less computational power
and memory. This directly translates to lower energy consumption during
both training and inference phases. Similarly, model pruning involves remov-
ing redundant or less important neurons and connections from the neural
network. This not only reduces the size of the model but also decreases the
energy required for computations.
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A
Appendix

A.1 Supplementary Material to Chapter 4

In the following, we provide a difference between parallel and sequential dis-
tributed stream processing in Section A.1.1 followed by an overview of PDSP-
BENCH components in Section A.1.2. Additionally, we present web user in-
terface (WUI) of PDSP-BENCH for performance benchmarking based on user
inputs in Section A.1.3. Finally, Section A.1.4 shows insights into the per-
formance evaluation of PDSP-BENCH for other performance metrics like re-
source utilization.

A.1.1 Parallel and Sequential Distributed Stream Processing

Parallel and sequential stream processing in the context of DSP systems high-
light how data is processed across distributed systems. In DSP systems, data
streams can be processed by single or multiple instances of operators which
are placed on a single machine or distributed across multiple cloud resources.
It is essential to understand the distinctions between parallel and sequential PDSP for

handling

higher

workload

distributed stream processing for designing DSP systems that efficiently han-
dle data at scale while meeting specific performance requirements of appli-
cations. For instance, in parallel distributed stream processing (PDSP), data
streams are partitioned and processed concurrently by multiple instances of
operators in DSP systems, leveraging the combined computational resources
to process large volumes of data simultaneously, aiming to improve through-
put and reduce latency. While, sequential distributed stream processing is a
traditional method involving each operator in an operator graph sequentially
processing data streams at a time, distributed across cloud resources. The Multiple

instances of

operator in

PDSP

fundamental difference between parallel and sequential distributed stream
processing is presented in Table 10 to clear the concept used in this dis-
sertation.
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Feature
Parallel Distributed

Stream Processing

Sequential Distributed

Stream Processing

Definition

Processes data streams

concurrently by multiple

instances of operators.

Processes data streams in

sequence of operators, one data

at a time, across nodes.

Scalability

High, with the ability to

add more nodes for

processing larger data volumes.

Moderate, scalability is

limited by the sequential

processing capacity of nodes.

Processing

Time

Reduced due to concurrent

processing across nodes.

Longer due to the sequential

processing of data elements.

Throughput
High, ideal for applications

requiring fast data processing.

Lower, suited for less

time-sensitive tasks.

Complexity

Higher, due to the need for

managing concurrency and data

partitioning.

Lower, with simpler data

flow management.

Use Cases

Suited for real-time analytics

and applications needing

quick processing.

Ideal for batch processing and

tasks where data sequence

is paramount.

Resource

Utilization

Efficient, leveraging full

computational power

across nodes.

Potentially less efficient,

with a risk of underutilization

of resources.

Query

Plan

Involves complex planning for

data partitioning and

task distribution.

Simpler query plans, with a

focus on the sequence of

operations across nodes.

Data Stream

Handles high-volume,

high-velocity data streams

efficiently.

Better suited for lower-volume,

less time-critical data streams.

Resource

Requires a robust network and

computational resources to

manage parallel tasks.

Can operate with less

demanding resource due to

sequential processing.

Table 10: Differences in parallel and sequential stream processing related to im-
portant features of DSP systems such as scalability, latency, throughput,
etc. [2].

A.1.2 Implementation Details of PDSP-BENCH

This section provides the process flow between components of PDSP-BENCH

for benchmarking, including resource provisioning using CloudLab, execut-
ing PQP for benchmarking, and collecting benchmarking data for further
training of learned cost models such as [1].

Resource provisioning and Cluster Deployment

Once the cloud infrastructure is set up in CloudLab, PDSP-BENCH needs
to provision resources on which System Under Test (SUT), i.e., DSP systems
need to be benchmarked for parallel and distributed stream processing. For
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WUI
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Task Manager (Node 2,…,Node N)
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Node N
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Figure 52: Resource provisioning and Apache Flink cluster setup on CloudLab clus-
ter nodes. 1⃝ User provides cluster setup parameters which are 2⃝ for-
warded to controller. 3⃝ these user’s setup parameters are stored in Mon-

goDB and SQLite databases. 4⃝ Controller’s automation manager initiates
the cluster deployment process where 5⃝ the Flink job manager is set on
Node 1 and the rest of the other nodes can be used as Task managers,
which are responsible for executing the tasks based on the query. Data
producer Kafka is to simulate data streams for various applications as
well as Prometheus and Grafana are used for monitoring. User inputs are
stored in MongoDB and SQLite databases [2].

this, users can provide details of CloudLab cluster nodes or VM machines
they want to set up DSP, e.g., hostname, and CloudLab account username.
These details can be provided via a web user interface (WUI) (cf. Section A.1.3) CloudLab

for setting

distributed

environ-

ment

of PDSP-BENCH as presented in Figure 52. The WUI sends this information
via an HTTP POST request to the Django backend, where the Infra module
saves the node8 details in an SQLite database.

With the cluster nodes addresses saved, the next step is setting up the SUT
like Apache Flink, monitoring tools such Grafana and Prometheus, and data
stream producing through Kafka to simulate real-time parallel and dis-
tributed environment for stream processing. These steps can be easily set Prometheus

and

Grafana for

perfor-

mance

monitoring

again through simple steps at WUI of PDSP-BENCH where user Create Clus-

ter in the WUI by providing cluster details such as the number of task slots
per task manager node and the number of task manager nodes for execut-
ing queries as presented in Figure. The WUI sends configuration details via
HTTP request to the controller Section 4.5 via backend API (application
programming interface).

The controller processes this configuration, updating the database and
setting Ansible variables accordingly. It then executes the cluster setup An-
sible playbook, which runs a series of Ansible tasks. Ansible communicates Cluster

setup using

controller
with the CloudLab nodes to create an Apache Flink distributed environment
where Apache Flink’s job manager, data producer - Kafka, and monitoring
tools - Grafana and Prometheus, are set up on one of the cluster nodes (by

8CloudLab clusters consist of multiple nodes. Nodes refer to a single physical machine
within a cluster.
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Figure 53: PQP execution on SUT followed by real-time and historical performance
analysis. 1⃝ User provides parameters for PQP from real-world and syn-
thetic applications. 2⃝ Automation manager collects these parameters and
3⃝ executes these queries on Flink clusters. 4⃝ Flink uses a job manager
to assign these tasks to different task managers to execute the query. 5⃝
Monitoring tools like Prometheus and Grafana report the real-time perfor-
mance to 6⃝ Metric collectors to store provided configuration and corre-
sponding performance in a database for historical analysis. 7⃝ Automation

manager fetches this information to visualize the real-time performance or
historical analysis for user [2].

default node 0), referred to as the master node. Other remaining nodes in the
clusters are set up for task managers. At this stage, the benchmarking sys-
tem is ready to execute PQP for different parallel query structures on Apache
Flink jobs to benchmark its performance under varying workloads and col-
lect performance benchmarking data for further analysis and training of the
learned cost models.

Benchmarking using PDSP-BENCH

After setting up the clusters for benchmarking, the next step involves ex-
ecuting a stream processing job to SUT such as Apache Flink. Figure 53
illustrates the communication flow for job submission and performance met-
ric collection. For this, users can use PQP from both real-world and synthetic
applications by providing various query and data stream-specific parameters
such as event rate, window size and slide, parallelism of each job operator,
the number of job iterations, and the duration for each run. These param-User-

defined

parameters

to set up

benchmark-

ing process

eters are forwarded to PDSP-BENCH controller via HTTP POST request to
trigger Automation manager to connect to the master node, submitting the job
to the Flink Job Manager with the user-defined parameters. After the job ex-
ecution completes, monitoring tools collect the performance metrics on the
master node and store the performance data from Prometheus to locally on
the master node or MongoDB and SQLite databases. This process ensures
that the stream processing job is executed with the specified configurations
and the performance metrics are accurately collected for analysis.
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Figure 54: Resource provisioning through GENI and CloudLab infrastructure [2].

Real-time Performance Analysis

Subsequently, PDSP-BENCH offers capabilities for real-time visualization of
currently executing PQP performance and comparison of previously executed
PQP performance as shown in Figure 53.

For real-time performance visualization, PDSP-BENCH uses the REST API
provided by Flink to obtain performance metrics. The controller processes,
structures, and cleans this data, then visualizes it using D3.js plots on
the WUI, providing frequently updated live graphs. Perfor-

mance

analysis

and visual-

ization

on WUI

The controller uses the performance analytics module to visualize histori-
cal performance metrics and compare data from recently completed jobs. This
module collects user input on jobs, operators, and metrics to be compared.
It fetches the related metrics from the Prometheus API, structures the data
based on comparison choices, and visualizes it on the WUI.

A.1.3 Navigating Web User Interface of PDSP-BENCH

This section delves into the visual representation of the WUI in PDSP-BENCH,
outlining the steps involved in the benchmarking process. After creating re-
source nodes on CloudLab and starting the PDSP-BENCH controller, users
should gather the hostnames of these nodes. With this information in hand, Create

distributed

cloud envi-

ronment

the next step is to access the PDSP-BENCH frontend, i.e., WUI, through a
web browser to configure and manage the benchmarking tasks as presented
in Figure 54.
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(a) Provide parameter for cluster

(b) Explore already created clusters

Figure 55: Configuring DSP system as SUT for performance benchmarking [2].

To begin, navigate to the Explore Node tab from the navigation bar on the
left of the WUI. This tab is designed to manage and interact with the nodes
from your CloudLab cluster. Here, users are required to input the hostnames
of all the nodes along with their CloudLab usernames. This step is essential
for the system to recognize and effectively manage the nodes.Set up

nodes for

SUT

deployment
By completing these tasks, users ensure that their nodes are properly con-

figured and ready for benchmarking. The WUI in PDSP-BENCH provides a
streamlined and user-friendly interface to facilitate the setup, making it eas-
ier to utilize the tool’s full capabilities for performance evaluation and anal-
ysis.

After adding the CloudLab nodes, users can proceed by navigating to the
Create Cluster tab from the navigation menu to create a cluster with the
necessary parameters, as shown in (cf. Figure 55a). Users can create multiple
clusters by dividing the number of CloudLab nodes from the previous cluster
configurations. Alternatively, users can explore already created clusters toCreate

cluster for

DSP
start benchmarking the SUT for various PQP scenarios, both synthetic and
real-world, as illustrated in Figure 55b.
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(a) Real-time performance visualization

(b) Performance analysis

Figure 56: Performance visualization of PQP from real-world and synthetic applica-
tions [2].

To do this, users should navigate to the Explore Cluster tab from the nav-
igation menu. In this tab, they can click on View More and then the Provide

Jobs tab to execute queries with various workloads and query parameters.
This step allows users to specify the parameters for the benchmarking tasks, User-

defined

parameters

to execute

query

including different event rates, parallelism degrees, execution times, and the
number of iterations. The user-friendly interface of the WUI ensures that users
can efficiently manage and monitor their benchmarking processes, facilitat-
ing a thorough evaluation of performance across different cluster configu-
rations.

To monitor the real-time performance of executing jobs, navigate to the
Explore Jobs tab from the navigation menu. Within this tab, you will find a Monitor and

visualiza-

tion of

perfor-

mance

list of currently running jobs. Click on the View More button next to each job
to visualize its real-time performance metrics, as illustrated in Figure 56a.
This feature allows you to track the ongoing performance and efficiency of
your stream processing tasks, providing immediate insights into operational
metrics.
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(a) Impact of low event rate on end-to-end latency of PQP
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(b) Impact of increasing event rate on end-to-end latency of PQP

Figure 57: Impact of parallelism degree on PQP performance from real-world appli-
cations. The analysis shows distinct performance behaviors for varying
event rate 100 (top) and 100k (bottom) [2, 4].

For analyzing and comparing historical performance metrics, navigate to
the Data Analytics tab from the navigation menu. This tab is designed to
facilitate a detailed comparison of performance data from jobs that have al-
ready been executed. As shown in Figure 56b, you can select various jobs,Generate

and

benchmark

data for ML

operators, and metrics to visualize and compare their historical performance.
This functionality is particularly useful for identifying trends, bottlenecks,
and performance variations over time.

A.1.4 Additional Insight on Performance Benchmarking

In this section, we discuss additional results of performance benchmarking
of SUT, i.e., Apache Flink. We provide our interesting observation on the
impact of performance PQP for different event rates and resource diversity.

Impact of Event Rate on Performance

We benchmark real-world applications for various workload and resource con-
figurations, including different event rates parallelism categories, and analyze
their impact on performance (cf. Table 7). In Section 6.2, we discuss the im-
pact of parallelism and workload diversity on performance, where we discuss
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(b) Impact of c6525_25 processing hardware on end-to-end latency of PQP

Figure 58: Impact of heterogeneous hardware on PQP performance from real-world
applications. The analysis shows distinct performance behaviors of event
rate for different hardware c6320 (top) and c6525_25g (bottom) [2, 4].

higher event rates resulting in backpressure, which can be handled by in-
creasing parallelism.

In Figure 57, we further provide our observation where the lower event
has zero or negligible effect on performance improvement when parallelism
is increased. For instance, in Figure 57a shows the performance for different Parallelism

is not

helpful for

low event

rate

parallelism categories when the event for different PQP is relatively low, i.e.,
100 events per second. In this scenario, we observe that the increasing paral-
lelism has resulted in minimal improvement in performance as this event rate
can be easily tackled with low parallelism for all the real-world applications.

When we further increase the event rate, i.e., 100k followed by increasing
the parallelism to improve the performance, then we observe distinct behavior
in performance as presented in Figure 57b. For instance, PQP with the less Higher

event rate

leads to

backpres-

sure

data-intensive task has the negligible effect of increasing parallelism such
as WC, MO, LR while PQP with the data-intensive task have degraded perfor-
mance for lower parallelism, i.e., S,M,L and the performance improves sig-
nificantly as the parallelism is more than 128, i.e., XXL such as AD, SA.

Impact of Heterogeneous Hardware on Event Rate

In Section 6.2, we discuss hardware diversity and its influences on perfor-
mance. We observe that higher processing capabilities do not always lead to
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improved performance, as it depends on various query and operator parame-
ters. Increasing processing capability or using heterogeneous configurations
can introduce additional overhead for state management and synchroniza-
tion, potentially degrading performance.

Figure 58 provides our observation for different heterogeneous hardware
configurations with higher processing capabilities. Figure 58a shows perfor-
mance for varying parallelism categories on hardware c6320 with 28 process-
ing cores, while Figure 58a shows performance on hardware c6525_25g with
16 cores for a minimal event rate, i.e., 100 event/sec. Neither increasingParallelism

handles

backpres-

sure...

parallelism nor enhancing processing capabilities consistently improves per-
formance, showing either slight or negligible improvements. Notably, similar
performance levels were achieved with lower processing hardware, such as
m510, using minimal parallelism categories (cf. Figure 57). Such performance...and

improves

perfor-

mance.

understanding is crucial, especially in distributed stream processing environ-
ments where cloud resources have diverse hardware configurations. Without
performance insights, resources may be under or over-utilized, resulting in
suboptimal performance.

Impact of Parallelism on Resource Utilization

We perform a performance analysis to understand the impact of end-to-end
latency and resource utilization (percentage of CPU usage) with different par-
allelism categories and diverse hardware configurations. Figure 59 presents
percentage CPU usage for varying hardware resources with different paral-
lelism categories. The primary aim of this evaluation is to understand how re-
source usage gets impacted by varying processing capabilities and increasing
parallelism categories. We present results for the event rate of 1M event/sec-Better

resource

utilization...
ond to put backpressure to utilize the benefits of parallelism efficiently.

The evaluation provides various exciting insights. First, it can be noticed
that with increasing parallelism categories, the percentage of CPU usage
increases as well because the increase in parallelism requires more cores
from the processing hardware to create multiple instances to process data-
intensive tasks for real-world applications. For instance, higher parallelism...for higher

event rate. resulted in improved performance, i.e., end-to-end latency (cf. Figure 35).
This is evident in Figure 59a that the higher parallelism resulted in more
utilization of CPU cores, which resulted in improved performance for PQP
from most of the real-world applications such as AD, SG, CA.

One key finding with practical implications is that increased processing ca-
pability and hardware diversity lead to increased CPU usage. This suggests
that as processing capabilities and hardware diversity increase, so does the
demand for CPU resources. However, it is important to note that not all ap-
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(a) CPU usage of m510 cluster for different PQP
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(c) CPU usage of c6320 cluster for different PQP

Figure 59: Resource utilization in terms of CPU usage in percentage for varying paral-
lelism degrees. It presents the impact of hardware processing capabilities
m510 (top), c6525_25g (middle) and c6320 (bottom) with increasing paral-
lelism degrees for event rate 1M event/sec [2, 4].

plications benefit from this increase in resources, as seen in Figures 59b
and 59c. For instance, less data-intensive real-world applications such as WC, Not all

applications

need high

processing

resources

SG, LR have shown consistent CPU usage across increasing parallelism cate-
gories and hardware diversity. This reiterates the main point of our analysis,
which is that the impact of parallelism and hardware diversity on CPU us-
age is not uniform across all applications. This could be due to the fact that
these queries are not data intensive and, therefore, have the same CPU usage
or minimal CPU usage as they are less data-intensive and may not require
over-utilization of resources in all possible scenarios.
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A.2 Supplementary Material to Chapter 5

In the following, Section A.2.1 provides the additional conceptual information
about transfer learning followed by additional insights into the performance
evaluation results using naive training strategy ZT-Random in Section A.2.2.
Additionally, we present the evaluation of different message-passing schemes
for the training model in Section A.2.3 followed by the distribution of training
data in Section A.2.5.

A.2.1 Zero-shot, One-shot and Few-shot Learning

Zero-shot, one-shot, and few-shot learning [1, 3] are transfer learning tech-
niques that allow machine learning models to recognize patterns, make pre-
dictions, or perform tasks with minimal exposure to labeled data. These tech-
niques are particularly useful when obtaining labeled data is costly or im-
practical.

Zero-Shot Learning (ZSL): It is a method where a model is trained to recog-
nize and handle classes it has never explicitly seen during training. It typically
relies on understanding some form of semantic relationship between classes
known during training and those not seen (e.g., through attributes or em-
beddings). Using zero-shot learning, the system could be trained to recognize
certain patterns based on their characteristics defined through metadata or
embeddings. Even if a specific type of patterns has never been encounteredTrain and

test data

are disjoint
during the training phase, the system could identify it based on learned se-
mantic characteristics common to other types of patterns. For instance, in
the context of ZEROTUNE, the model is trained on query of different patterns
given by its input data like data source types, operator types and its place-
ment. This way it learns the semantic relationship of the performance costs of
a query through these trained features so that it can derive cost correlations
even to unseen query characteristics during inference.

One-Shot Learning (OSL): It involves training a model in such a way that
it learns to recognize or categorize objects from seeing just one, or a few,
examples. It’s often used in classification tasks where only a single example
of each class is available to the model during training. In a one-shot learningModel sees

one or few

test data
scenario, a stream processing system could be set up to classify types of
system logs or error messages by seeing just one example of each type. This
capability is useful for rapidly evolving systems where new types of logs or
errors may frequently appear, and it is necessary to quickly categorize them
without waiting for large amounts of labeled data.
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Trained Model

ZEROTUNE-ZT-Random

Query

Structure

Q-error (Latency) Q-error (Tpt)

Median 95th Median 95th

1⃝ Seen

workload

Linear 1.25 2.61 1.28 2.99

2-way-join 1.36 3.34 1.57 5.68

3-way-join 1.34 3.17 1.71 5.97

Overall 1.29 3.09 1.47 5.10

2⃝ Unseen

workload

2-filter-chained 1.28 2.61 1.68 4.55

3-filter-chained 1.26 2.90 2.03 5.68

4-filter-chained 1.32 4.02 2.08 6.09

4-way-join 1.18 2.86 1.59 4.20

5-way-join 1.22 3.45 1.77 4.81

6-way-join 1.30 3.92 1.81 6.06

3⃝ Unseen

benchmark

Spike Detection 1.36 1.68 2.38 4.80

Smart-grid (local) 1.35 1.77 2.47 3.30

Smart-grid (global) 1.32 1.53 1.93 2.64

Table 11: ZEROTUNE models cost prediction accuracy (Median and 95th percentile)
for the naive training strategy, ZT-Random, across seen and unseen PQP
using synthetic data and public benchmarks. The models demonstrate
high accuracy in predicting costs for both seen and unseen workloads [1,
3].

Few-Shot Learning (FSL): Few-shot learning extends one-shot learning by
allowing the model to learn from a few examples rather than just one, re-
quiring significantly fewer data points than traditional machine learning but
more than one-shot learning. Following up on previous examples of stream-
ing applications where it needs to predict server failures. With few-shot learn-
ing, the model could learn to predict types of failures or performance issues Model sees

more than

one

example of

test data

based on only a few instances of each type. For instance, it might learn to
predict overloads or hardware malfunctions from just a few labeled examples,
facilitating more robust performance monitoring with minimal training data.

A.2.2 Additional Insight on Performance Prediction

In this section, we discuss additional results of performance prediction us-
ing ZEROTUNE for ZT-Random training strategy. We show the accuracy and
generalization capability ZEROTUNE for seen and unseen parallel query struc-
tures (PQP) as well as varying workload and resource configurations as we
showed for OptiSample in Section 6.3.

Accuracy on Seen-Unseen Workload

In this evaluation, we assess the performance of ZEROTUNE in predicting the
cost of seen query structures with a test set (normal train, validation and
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test set split) unknown to the model but within the (seen) range specified
in Table 11. We train and evaluate the ZEROTUNE models with the enumera-
tion strategies: OptiSample and ZT-Random for each performance metric and
three PQP: linear, 2-way join, and 3-way join. We presented the evaluations
on OptiSample in Chapter 6: Section 6.3 but not on ZT-Random, which we
present in this section. The evaluation focuses on the accuracy of prediction
of latency and throughput, using the median and 95th percentile q-error as
performance metrics, with 1.0 being a perfect estimate. In addition, we in-
cluded an ªoverallº query structure that incorporated data from all three PQP
to measure the overall model performance.

Seen Workloads: Table 11 1⃝ presents the accuracy of ZEROTUNE model in
predicting latency and throughput for the PQP specifically when ZEROTUNE is
trained with ZT-Random training strategy. Using ZT-Random training strate-Consistent

accurate

perfor-

mance for

seen data

gies, we observe consistent and accurate cost predictions for PQP. We notice
that the model performs better for simple linear queries when trained us-
ing the ZT-Random strategy. The variance in prediction accuracy may be
attributed to the fact that q-errors increase with the complexity of the query.
The random enumeration strategy encounters a greater variety of ªgoodº and
ªbadº query structures, leading to higher variance in q-errors. In general, ZE-
ROTUNE models for ZT-Random training strategy provide consistently accu-
rate cost predictions for PQP within the training range. In the next step, we
will assess the model’s performance for PQP outside the training range to
understand its generalization capabilities.

Unseen Workloads: An important objective of our study is to evaluate the
accuracy and generalization of the ZEROTUNE model in predicting the cost
of unseen PQP that are not encountered during the model’s training phase.
To achieve this, we increase the complexity of the existing query structures
(linear, 2-way join, and 3-way join) by incorporating additional filter and join
operators (e.g., 2-filter-chained, 4-way-join), as shown in Table 11 2⃝. Subse-Measuring

model

accuracy on

unseen

data

quently, we generate 200 queries for each template and conduct experiments
using ZT-Random strategies to evaluate the accuracy of the overall model in
predicting the cost for these unseen PQP.

ZT-Random strategy yields median latency values ranging from 1.18 to 1.32

for different query structures, with 95th percentile latency values ranging from
2.86 to 4.02. The median throughput values ranged from 1.59 to 2.08, with 95th

percentile throughput values ranging from 4.20 to 6.09. These results indi-Transfer

knowledge

from seen

to unseen

data

cate that the zero-shot model based on the ZT-Random strategy can make
relatively accurate predictions for the unseen query structures in terms of
latency and throughput and generalize to query structures outside the train-
ing range.
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The results in Table 11 2⃝ indicate that the model exhibits promising per-
formance in accurately predicting the cost for unseen PQP. While there are
some variations in the predicted accuracy, it is noteworthy that the model’s
accuracy is maintained with the increasing complexity of the unseen PQP.
The model demonstrates a level of generalization beyond the training range.
The increased complexity is characterized by a higher number of joins and fil- Accurate

predictions

for unseen

data

ters, often leading to significantly higher latency and lower throughput. This
introduces challenges in accurately predicting the cost due to limited expe-
rience with the combinations of parallelism degrees. Nonetheless, such ex-
ceptional variations in unseen PQP can be effectively addressed by utilizing
the few-shot model as shown in Figure 37 Overall, the results indicate that
the zero-shot model exhibits promise in accurately predicting the cost for
unseen PQP outside the training range.

Unseen Benchmarks: In addition to synthetic queries, we conduct fur-
ther evaluations to assess the accuracy and generalization of our ZEROTUNE

model using three existing benchmark queries: smart-grid, and spike detec-

tion. The results in Table 11 3⃝ illustrate that ZEROTUNE model demonstrates
reasonable accuracy in predicting costs for the benchmark queries. For ZT- Accurate

prediction

for

real-world

bench-

marks

Random strategy, we observe variations in latency and throughput across
different PQP. These results indicate that both models demonstrate reason-
able accuracy in predicting latencies for the benchmark queries.

Fine-grained Parallelism Analysis

Next, we drill down into the accuracy of ZEROTUNE models based on ZT-
Random enumeration strategy. To show the accuracy for different parallelism
degrees, we divide it into five categories: XS, S, M, L, and XL in a similar man-
ner as we evaluated OptiSample strategy (cf. Section 6.3.2), which state how
much the average parallelism degree is for a query per operator. The follow-
ing shows a fine-grained analysis of how ZEROTUNE generalizes for seen and
unseen query types and public benchmarks for each parallelism category.

Seen Workloads. In Figure 60, we illustrate the accuracy of the model for
seen query types, i.e., for the test set within the range (cf. Table 8). We ob-
serve that our ZEROTUNE model consistently performs well, providing highly
accurate cost predictions for different parallelism degrees enumerated based
on ZT-Random strategy for seen query types in line with the overall results
in Table 11 1⃝. From the results, we can observe additional insights into the Influence of

parallelism

on accuracy
performance characteristics of PQP, which are influenced by the impact of
the complexity of PQP and parallelism categories, as well as the trade-off
between latency and throughput. Firstly, an analysis of the influence of in-
creasing PQP complexity on accuracy reveals that more complex PQP gener-
ally exhibit marginally lower accuracy compared to simpler PQP. This can be
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Figure 60: ZEROTUNE models cost prediction accuracy (Median q-error) of PQP for
varying parallelism for seen query structures [1, 3].

attributed to the increased computational overhead and data dependencies
associated with complex query structures, making it more challenging for the
zero-shot model to predict the performance metrics accurately.

However, it is important to note that the decrease in accuracy is relatively
small, indicating that the zero-shot model exhibits reasonable performance
in predicting the cost for complex queries. Additionally, the influence of paral-
lelism categories on accuracy is evident. As the parallelism category increases
from XS to XL, we observe a general trend of a decrease in the accuracy of
the zero-shot model’s predictions for both latency and throughput. This sug-Learns for

varying

parallelism
gests that higher degrees of parallelism provide the ZEROTUNE model with
more information and patterns to learn from, resulting in more difficulty in
cost estimation. Moreover, it is worth noting that the decrease in accuracy
may not be linear, and there may be diminishing returns as the parallelism
category reaches its maximum value. Nevertheless, the differences in accu-High

accuracy

for seen

parallelism

racy between predictions of different parallelism degrees are relatively small,
indicating that the zero-shot model consistently captures the performance
characteristics of different queries.

Unseen Workload. Next, we assess the accuracy of ZT-Random strategy
for unseen PQP outside the training range for increasing parallelism cate-
gories. Figure 61 presents the results for increased complexity of PQP with
added chained filters and joins across different parallelism categories. Signifi-Transfer

knowledge

to unseen

parallelism

cantly, the ZEROTUNE model consistently demonstrates accurate predictions
across various parallelism categories, displaying only minor variations. This
indicates that the model successfully identifies performance patterns and
generalizes effectively to unseen query plans within this template structure.

However, accuracy slightly decreases for more complex PQP, highlighting
the potential challenges in accurately predicting performance metrics for in-
tricate query structures. For instance, for more complex PQP like 5-way and
6-way-join PQP, the ZEROTUNE model demonstrates a decrease in accuracy,
especially for throughput. This is in line with the overall results presented
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Figure 61: ZEROTUNE models cost prediction accuracy (Median q-error) of PQP for
unseen query structures [1, 3].

in Table 11 2⃝, which indicated high q-errors for throughput, in particular
for 5-way and 6-way joins. However, these variations in performance can eas-
ily be enhanced by few-shot learning as we perform for ZEROTUNE models
using OptiSample strategy.

Unseen Benchmark. We also extend our evaluations to assess the accu-
racy and generalization capabilities of the ZEROTUNE model employing the
ZT-Random strategy for previously unseen benchmark queries and examine
the impact of different parallelism categories. We further evaluate the ZE-
ROTUNE model using the ZT-Random strategy for unseen benchmark queries
and different parallelism categories. The ZT-Random strategy explores a wide Accurate

predictions

for unseen

parallelism

for bench-

marks

range of parallelism categories, from XS to XL, compared to the OptiSample
strategy by randomly sampling various workload and query parameters. Re-
sults in Figure 40 show that the model accurately predicts costs for different
parallelism categories for benchmark queries. However, similar to the Opti-
Sample strategy, prediction errors for throughput are slightly higher than
for latency due to differing data distributions between benchmarking and
synthetic queries (cf. Table 11 3⃝). Nevertheless, fine-tuning the model can
improve its performance in these cases.

Unseen Resources. In the subsequent step, we assess ZEROTUNE models Knowledge

transfer to

unseen

resources

based on ZT-Random strategy for their ability to generalize to unseen config-
urations of both heterogeneous and homogeneous resources, as well as the
impact of different parallelism categories (cf. to type ªUº in Chapter 6: Table 6).



178 Appendix

XS S M L XL
1.0

1.5

2.0

2.5

3.0
Spike Detection

XS S M L XL

Smart Grid Global

XS S M L XL

Smart Grid Local

M
ed

ia
n

Q
-E

rr
o

r

Parallelism Categories

Latency Throughput

Figure 62: ZEROTUNE models cost prediction accuracy (Median q-error) of PQP for
unseen query benchmark [1, 3].

XS S M L XL
1.0

1.2

1.4

1.6

1.8
Unseen Homogeneous

XS S M L XL

Unseen Heterogeneous

M
ed

ia
n

Q
-E

rr
o

r

Parallelism Categories

Latency Throughput

Figure 63: ZEROTUNE models cost prediction accuracy (Median q-error) of PQP for
unseen homogeneous and heterogeneous resources [1, 3].

In Figure 63, ZEROTUNE model consistently delivers accurate cost predictions
also for unseen hardware resources for ZT-Random strategy as well.

Generalization for Unseen Parameters

We also evaluate the ZEROTUNE model’s accuracy and generalization with
ZT-Random for predicting costs with different unseen workload parameters.
By interpolating and extrapolating within the range in Chapter 6: Table 8,Generaliza-

tion for

different

workload

characteris-

tics

we evaluate the performance on unseen parameters like tuple width, window
configurations, and available workers in a cluster, as shown in Figures 64
and 65. We use at least 165 queries per tuple width, including a mix of linear,
2-way join, and 3-way join query structures.

Tuple Widths. We show accuracy by extrapolating this parameter because
larger tuple widths might benefit from high parallelism degrees. We test onHigh

accurate

for PQP

with

different

tuple width

similar query structures with the extrapolation range of 6 − 15 tuple width.
We evaluate the models’ performance using at least 165 queries per tuple
width, ensuring an equal distribution between linear queries, 2-way join, and
3-way join queries in the PQP. In Figure 64a, we illustrate the performance
of ZEROTUNE model, where we see that the model is very accurate in its
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Figure 64: ZEROTUNE models cost prediction accuracy (Median q-error) for PQP with
unseen parameters, including (a) tuple widths, (b) event rate, and (c) num-
ber of workers. The white section indicates the seen, i.e., within the train-
ing range, while the grey section denotes the unseen range of these pa-
rameters. ZEROTUNE generalizes very accurately across all these unseen
parameters for ZT-Random strategy [1, 3].

performance prediction and generalizes very well for unseen tuple widths (a
grey area). This shows that the model could learn the correlations between
the tuple width and the costs of the PQP that generalize when the data stream
tuple width increases.

Event Rates. In this evaluation, we assess the capability of the ZEROTUNE

model to inter- and extrapolate event rates beyond the training range (cf Ta-
ble 8). The model demonstrates high accuracy in predicting costs for both Model

learns from

high event

rates, i.e.,

backpres-

sure

low and high event rates, even outside the training range. The model’s ability
to predict costs for significantly higher event rates is attributed to its under-
standing of the system’s processing limitations. The model has learned that
when the hardware reaches its capacity, resulting in backpressure and in-
creased costs, while Q-error values slightly increase for extremely low event
rates. Overall, ZEROTUNE shows good accuracy and generalization for pre-
dicting latency and throughput.

Amount of workers. The number of workers or nodes influences the per-
formance by affecting available computational resources and parallelism lev-
els. Smaller clusters may limit parallelism, while larger clusters support more
parallelism. We evaluate the ZEROTUNE’s accuracy and generalization for Generaliza-

tion for

varying

workers

seen and unseen number of workers for ZT-Random enumeration strategy.
The evaluation results in Figure 64c show that ZEROTUNE accurately pre-
dicts costs for different cluster sizes, enabling the generation of PQP with
increasing query complexity and parallelism as cluster sizes grow.

Window Durations (Time-based). The window duration significantly im-
pacts the cost of PQP by affecting data processing and aggregation of data
tuples when the windows are processed in a parallel manner. In this experi-
ment, we include inter- and extrapolation of window duration to demonstrate
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Figure 65: ZEROTUNE models cost prediction accuracy (Median q-error) of PQP for
unseen parameters - (a) window duration (time-based), and (b) window
length (count-based). The white area represents the training range, while
the grey area shows the unseen range of these parameters. ZEROTUNE

generalizes very accurately across all these unseen parameters also where
extrapolation ranges are higher [1, 3].

model generalization for both small and large window sizes. The results in Fig-
ure 65a (note log scale on the x-axis) show that ZEROTUNE accurately predicts
costs across various window durations, both seen and unseen training range.

For the shorter window durations, the model starts with a slightly higher
median q-error, particularly in the lower range, due to the rapid data process-
ing, making it harder to capture performance characteristics. The model’sBetter un-

derstanding

of higher

window

durations

performance improves as window duration increases, converging to higher ac-
curacy. The Longer window durations allow more time for data accumulation,
leading to better understanding and accuracy in latency and throughput pre-
dictions. The variations in accuracy are observed towards the extreme ends of
the unseen range, likely due to fewer training examples. Overall, ZEROTUNE

generalizes well, especially for longer window sizes, and provides reasonably
accurate predictions for shorter window sizes.

Window Lengths (Count-based). Much like the window duration, the win-
dow length also influences the cost of PQP. However, it is important to noteZEROTUNE

learns

differently

from count

and time

windows

that there is a difference between time-based and count-based windows in
terms of their impact on throughput. When using time-based windows, the
throughput is generally more constant and independent of the incoming
event rate of the operator. While throughput varies with the input rate for
count-based windows, predicting throughput for unseen window sizes is
more challenging for count-based windows.

Figure 65b shows the accuracy of cost prediction for seen and unseen win-
dow lengths. The ZEROTUNE model also shows good accuracy and general-
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Trained Model

ZEROTUNE

Query

Structure

Q-error (Latency)

Median 95th

1⃝ No message

pre-passing

Validation 1.3110 2.3953

Seen data 1.2886 2.3817

Unseen data 1.4566 10.407

Average 1.3520 5.0613

2⃝ To↔ Between ↔ On

Validation 1.2866 2.6562

Seen data 1.2753 2.9501

Unseen data 1.2768 3.0553

Average 1.2795 2.8872

3⃝ On↔ To ↔ Between

Validation 1.2589 2.4812

Seen data 1.2612 2.8484

Unseen data 1.2877 2.7615

Average 1.2692 2.6970

4⃝Between↔ On ↔ To

Validation 1.2477 3.9131

Seen data 1.2480 3.8972

Unseen data 1.2689 4.1620

Average 1.2548 3.9907

Table 12: ZEROTUNE models cost prediction accuracy (Median and 95th percentile)
across seen and unseen PQP using variations in order of message pass-
ing direction operator on resources, operator to operator, and between
resources [1].

ization in predicting costs for different window lengths. However, due to the
complexities mentioned earlier, there is a slight increase in q-error for ex-
tremely low and high unseen window lengths, particularly for throughput.

A.2.3 Impact of Message Passing on Prediction Accuracy

In the context of the performance prediction model for DSP system, the mes-
sage passing in Graph Neural Network (GNN) plays a critical role in highly ac-
curate performance prediction to learn from graph representations. For this, Message

passing

order

between

GNN nodes

we delve into evaluating different orders of message-passing strategies to be
utilized by ZEROTUNE models to optimize latency and throughput predictions
under varying workloads. We explore variations in message passing direc-
tionsÐoperator on resources, operator to operator, and between resources.
This evaluation aims to provide insights into the impact of these message-
passing orders on the q-error, a metric used to quantify the accuracy of pre-
dictions in terms of relative deviation from actual performance costs.

• No message pre-passing: This baseline configuration does not involve
any preliminary message passing between nodes. The results indicate a
higher Q-error, especially in unseen data, suggesting limited adaptabil-
ity to new or dynamic conditions without prior message context.
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• Message passing orders:Impact of

different

ordering on

model’s

accuracy

± To↔Between↔On: The message passing begins with operators on
resources, moves between resources, and concludes with operator-
to-operator communication. It shows a general improvement in q-
error across all data types compared to the baseline, indicating ef-
fective utilization of resource and operator interdependencies.

± On↔To↔Between: Altering the sequence to start and end with di-
rect operator interactions (On↔To) with resource-level communica-
tions in the middle (Between) yields better performance both in me-
dian and tail error for seen and unseen data scenarios, emphasizing
the importance of operator-focused communication in familiar con-
texts.

± Between↔On↔To: Interactions begin with between resources, fol-
lowed by the operator on resource, and concluding with operator to
operator, resulting in the best average q-error improvement across
all tests. This suggests that prioritizing resource-level interactions
can enhance model understanding of underlying infrastructure im-
pacts before refining predictions at the operator level.

These results underscore the significance of the order of message passing
in enhancing the predictive accuracy of GNN models within zero-shot learn-
ing frameworks for DSP systems. The order and focus of message passing not
only influence the model’s ability to generalize across unseen workloads but
also its effectiveness in handling parallelism and resource configuration vari-
ations. By tailoring message passing strategies to the specific characteristics
of DSP systems, models like ZEROTUNE can achieve lower q-errors, suggest-
ing more precise predictions of performance costs.Communi-

cation

between

resources

improves

accuracy

The results in Table 12, present the median and 95th percentile q-errors
for latency cost prediction across different query structuresÐboth seen and
unseen. These results underscore the potential of structured message pass-
ing in enhancing prediction accuracy. The seen data demonstrates how well
the model predicts latency in scenarios similar to those encountered dur-
ing training, followed by prediction accuracy on unseen data to assess the
model’s ability to generalize to new, previously not encountered scenarios.
At the same time, validation and average scores provide a comprehensive
overview of the model’s performance across all tested conditions. For results,
it is clear that On↔To↔Between shows notably balanced performance across
diverse seen and unseen workloads, which suggests that prioritizing inter-
resource communication potentially enhances the model’s ability to capture
and generalize the dynamics of distributed stream processing.
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Figure 66: Performance labels (latency and throughput) distribution in training data
for overall model with PQP of linear, 2-way and 3-way join PQP [1].

A.2.4 Distribution of Performance Labels in Training Data

For training the ZEROTUNE model to predict performance accurately, it is es-
sential that the model is exposed to a diverse array of workload distributions
along with corresponding performance metrics as labels. To facilitate this, Assessing

training

data quality
we employ a plan generator to create query plans characterized by differ-
ing data streams, query parameters, and resource configurations. We utilize
both ZT-Random and OptiSample enumeration strategies to explore paral-
lelism within these plans systematically. This approach allows us to com-
prehensively map the performance metricsÐspecifically latency and through-
putÐacross the spectrum of generated PQP.

The evaluation aims to assess the effectiveness of the plan generator in pro-
viding a broad range of PQP, each with potential variations in performance Effective-

ness of

model

improves

with...

outcomes, thereby enriching the learning landscape from which the ZERO-
TUNE model can derive insights. In Figure 66 presents the distribution of
performance metrics, latency, and throughput, comparing the outcomes gen-
erated by ZT-Random and OptiSample enumeration strategies across various
query plans. The results indicate that these strategies successfully produce
a diverse set of PQP, encompassing a wide range of workload and resource
characteristics. Crucially, this diversity includes a substantial frequency of ...variability

of data.different performance ranges, which is fundamental for an effective train-
ing and learning process in performance prediction models. This evaluation
highlights the capability of our enumeration strategies and plan generator to
create a rich dataset, ensuring that the ZEROTUNE model is well-equipped to
learn from varied scenarios and ultimately enhance its predictive accuracy
and generalizability.
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A.2.5 Demonstration of Performance Modeling

We provide a demonstration of our proposed performance modeling methods
PDSP-BENCH and ZEROTUNE. These YouTube videos show the integration of
both PDSP-BENCH and ZEROTUNE in one platform for performance bench-
marking and generating corpora of data for training ZEROTUNE models for
accurate performance prediction. The demo is divided into two parts: (i) first
part presents both solutions (ii) second part shows benchmarking processing
using PDSP-BENCH. For performance benchmarking of learned cost models,
the models are already trained for inference through PDSP-BENCH.

• Demo part 1: https://youtu.be/HLQ0moWbIwg.

• Demo part 2: https://youtu.be/gs_kTdpwdr4.

https://youtu.be/HLQ0moWbIwg
https://youtu.be/gs_kTdpwdr4
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