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Abstract. Designing the vibroacoustic properties of thin-walled structures is
of particularly high practical relevance in the design of vehicle structures. The
vibroacoustic properties of thin-walled structures, e.g., vehicle bodies, are usu-
ally designed using finite element models. Additional development effort, e.g.,
experimental tests, arises if the quality of the model predictions are limited due
to inherent model uncertainty. Model uncertainty of finite element models usually
occurs in the modeling process due to simplifications of the geometry or boundary
conditions. The latter highly affect the vibroacoustic properties of a thin-walled
structure. The stiffness of the boundary condition is often assumed to be infinite
or zero in the finite element model, which can lead to a discrepancy between the
measured and the calculated vibroacoustic behavior. This paper compares two
different boundary condition assumptions for the finite element (FE) model of a
simply supported rectangular plate in their capability to predict the vibroacoustic
behavior. The two different boundary conditions are of increasing complexity in
assuming the stiffness. In a first step, a probabilistic model parameter calibration
via Bayesian inference for the boundary conditions related parameters for the
two FE models is performed. For this purpose, a test stand for simply supported
rectangular plates is set up and the experimental data is obtained by measuring
the vibrations of the test specimen by means of scanning laser Doppler vibrom-
etry. In a second step, the model uncertainty of the two finite element models
is identified. For this purpose, the prediction error of the vibroacoustic behavior
is calculated. The prediction error describes the discrepancy between the experi-
mental and the numerical data. Based on the distribution of the prediction error,
which is determined from the results of the probabilistic model calibration, the
model uncertainty is assessed and the model, which most adequately predicts the
vibroacoustic behavior, is identified.
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1 Introduction

The design of the vibroacoustic behavior of technical structures is of particularly high
practical relevance especially in the design of vehicle structures [1]. In an early design
phase, finite element (FE) models of the vehicle structures are usually built up to predict
the vibroacoustic behavior, which is described in general by the natural frequencies
and the associated mode shapes of the structure [1]. If the FE model predictions are
limited due to inherent uncertainty, there may be additional development effort in a
later design phase because the model predictions do not correspond to the real behavior
of the developed structure [1]. Parameter uncertainty exists if the distributions of the
model parameters are unknown [2]. Further, model uncertainty occurs if the model
has been simplified, e.g., neglecting complexity of the technical structure by assuming
simplified geometries or boundary conditions [2]. Boundary conditions highly affect
the vibroacoustic behavior of a thin-walled structure, e.g., a rectangular plate [3]. In an
experimental model, ideal boundary conditions cannot be realized. There are different
ways to model the boundary conditions of the rectangular plate in the modeling process.
Consequently, competing models including model uncertainty are present and the model
that predicts the reality most adequately needs to be identified.

In this context, the first step is to calibrate model parameters of the competing mod-
els under consideration so that they can evolve their full prediction potential. Kennedy
et al. [4] define the calibration procedure as the matching of the model predictions to
observed data by identifying the unknown distributions of the model parameters. Thus,
model parameter calibration adjusts the model parameters to physical observations of
experimentally observed data. A deterministic model parameter calibration solves an
optimization problem, e.g., [5], to achieve a best fit for the unknown model parameters
based on a defined calibration criterion. Consequently, there is no information about the
model parameter uncertainty after the calibration procedure. One possible way to take
model parameter uncertainty into account during the calibration procedure is the appli-
cation of a probabilisticmodel parameter calibration bymeans of Bayesian inference [6].
Then, the unknownmodel parameters are defined as random variables and their distribu-
tions are determined using the information included in the observed data. In this context,
Goller et al. [6] conclude that a model never describes reality exactly. Therefore, there
are no true values of the model parameters and there is always a discrepancy between the
model predictions and the observed data, which is called the prediction error. Because of
this fact, the model uncertainty can be assessed by evaluating the remaining prediction
error after the calibration procedure [6].

This paper aims to assess two different FE models in their capability to predict the
vibroacoustic behavior, i.e. the first six natural angular frequencies and mode shapes, of
a simply supported rectangular plate, which is examined as an experimental model in a
test stand. The two FEmodels differ in their modeling of the simply supported boundary
conditions. A probabilistic model parameter calibration by means of Bayesian inference
is performed so that the model parameter uncertainty is reduced and the FE models
reach their maximum potential of predicting the vibroacoustic behavior observed in the
experimental model. The model uncertainty of the two FE models is assessed based on
the prediction error, which is a measure for the remaining model uncertainty after the
calibration procedure.
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This paper is organized as follows. In Sect. 2, the test stand, the test specimen and
the corresponding FE models are presented. In Sect. 3, a probabilistic model parameter
calibration by means of Bayesian inference is introduced. Section 4 shows the results
for the probabilistic model calibration for the two FE models and the model uncertainty
is assessed by the prediction error. The conclusions are given in Sect. 5.

2 Experimental and Finite Element Models

The data of the experimental model are obtained on a test stand of the research group
SAM called SAMple test stand (System reliability, Adaptive structures, and Machine
acoustics test stand for Primary Laboratory Experiments) [7]. The test stand, which is
located inside a semi-anechoic room, is shown in Fig. 1(a). Here, a surrounding truss
structure carries a scanning laser Doppler vibrometer (SLDV). The test specimen is an
aluminium rectangular plate and is screwed to the top of an acoustic box. A detailed
illustration of the test specimenwith plate length a and platewidth b is shown in Fig. 1(b).
The corresponding design parameters are listed in Table 1. The simply supported bound-
ary conditions are realized in the experimental model according to an approach of Robin
et al. [8]. Therefore, the edges of the rectangular plate are bonded to thin blades with a
certain blade thickness tbl. This blades are slotted and clamped between two brackets.
Thus, a defined blade length lbl is adjusted, as illustrated in Fig. 1(c).

(b)

(a)

scanning laser
Doppler vibrometer

truss structure

test specimen

acoustic box

plate
r = 0

t = ∞

plate
bonding

blade

bracket

bl

bl

(c) (d)

ℎ

Fig. 1. (a) SAMple test stand in the semi-anechoic room [7]; (b) illustration of the simply sup-
ported rectangular plate and the corresponding design parameters; (c) mechanism of the construc-
tion to achieve simply supported boundary conditions in the experimental model; (d) model M1
with ideal simply supported boundary condition;

The rectangular plate is excited by an automatic impact hammer with an integrated
sensor for force measurement. The vibration velocities are acquired in the time domain
by an SLDV measurement at defined measurement points on the surface of the test
specimen. The transfer functions are determined and an experimental modal analysis is
performed using a single degree-of-freedom (SDOF) analysis.

In this paper, the first six (Nm = 6) natural frequencies of the rectangular plate up to
300 Hz are considered which are significantly involved in the low frequency excitation
of the fluid inside of the acoustic box shown in Fig. 1(a). The vibrational behavior is
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Table 1: Nominal design parameters of the simply supported rectangular plate

Parameter Nomenclature Value Unit

Plate length
Plate width
Plate thickness

a
b
h

870.0
620.0
5.0

mm
mm
mm

Blade thickness
Blade length

tbl
lbl

0.5
25

mm
mm

measured at N0 = 402 points on the surface of the plate to ensure sufficient spatial
resolution. Thus, the natural angular frequencies ω

(e)
r and the complex mode shapes

vectors ψ(e)
r

with ψ(e)
r

∈ RN0 , r = 1, . . .Nm of the rectangular plate are obtained. Here,
the superscript (e) denotes the observed data of the experimental model. In order to
take into account variation due to assembly in the experimental data the test specimen
is reassembled and measured three times. This involves unfasten the bolts between the
blades and the brackets and lifting out the rectangular plate. Then, the rectangular plate
reassembled. Due to high assembly effort, a limited set (Ns = 3 ) of experimental data

D =
{
ω

(e)
1n . . . ω

(e)
Nmn

,ψ(e)
1n

. . . ψ(e)
Nmn

}Ns

n=1
, n = 1, . . . ,Ns is available for this paper.

In order to predict the vibroacoustic behavior of the experimental model, two com-
peting FE models M1 and M2 are set up in the software ANSYS (release 19.2). For
both models M1 and M2, the geometry of the rectanglar plate is discretized using a
structuted mesh with 8-node shell elements (Shell281) and an element size of approxi-
mately 4·103 m. This leads to a total number of 5353 FE nodes and to a sufficient spatial
resolution for vibroacoustic analysis. The models M1 and M2 differ in the modeling
of the simply supported boundary conditions. For model M1, the boundary conditions
of the simply supported rectangular plate are assumed by an ideal simply supporting
modeling approach [3]. The nodes at the edges of the plate are directly connected to the
ground. Consequently, the vertical stiffness kt is infinite and the rotational stiffness kr is
set to zero as shown in Fig. 1(d). For model M2, the boundary conditions of the simply
supported rectangular plate are modelled by linear spring elements (Combin14), whose
vertical stiffness kt and rotational stiffness kr can arbitrarily be defined. It is expected that
the measured vibroacoustic behavior can be better predicted using model M2 because
it includes a more detailed modeling approach of the boundary conditions and provides
two more parameter to be calibrated. Nevertheless, model M1 is easier to implement
and is used more often. An assessment of the model uncertainty should show which
model is best suited to predict the bavior of the experimental model. The natural angular
frequencies ω

(n)
r and the mode shapes ψ(n)

r
of both FE models M1 and M2 are obtained

by a numerical modal analysis using a Block-Lanczos algorithm. The superscript (n)
denotes the data of the numerical FE models. It is generally of interest to calibrate the
unknown model parameters, which cannot be measured directly. The plate length a,
plate width b and plate thickness h of the plate can be measured and, therefore assumed
to be well-known. Thus, for the modelM1, the parameters of modelM2, the parameters
Young’s modulus E, mass density ρ and two additional unknown model parameters the
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vertical stiffness kt and the rotational stiffness kr are considered in the calibration pro-
cedure. Table 2 summarizes the unknown model parameters for model M1 and model
M2.

Table 2. Unknown model parameters with lower and upper bounds

Parameter Model M1 Model M2

E U
([

6 · 109, 8 · 109
]
Nm−2

)
U

([
6 · 109, 9 · 109

]
Nm−2

)

ρ U
([

2.4 · 103, 2.9 · 103
]
kgm−3

)
U

([
2.4 · 103, 2.9 · 103

]
kgm−3

)

kt --- U
([

104, 107
]
Nm−1

)

kr --- U
([

0, 102
]
Nm

)

It is further assumed that no prior knowledge about the distribution of the unknown
model parameters is available. Consequently, the unknown model parameters are
assumed to be uniformly distributed (U ) between the lower and upper bounds, which
are given in Table 2. The respective lower and upper bounds of the model parameters are
best guesses so that the calibration is not restricted. A uniform distribution is a common
choice if no information about the model parameters is available [9].

The introduced experimental model and the FEmodels are embeddedwithin a proba-
bilistic model parameter calibration by means of Bayesian inference, which is described
in the following section. Within this framework, the unknown model parameters to be
calibrated are defined as random variables and are combined in the vector of unknown
parameters.

θ =
{

(E, ρ) for M1,

(E, ρ, kt, kr) forM2.
(1)

3 Probabilistic Parameter Calibration by Means of Bayesian
Inference

The aim of a probabilistic parameter calibration is the identification of the unknown
distributions of the model parameters. The Bayesian Theorem [9] describes the posterior
probability density as

p(θ|D,Mi) = c−1p(D|θ,Mi)p(θ|Mi). (2)

The prior probability density p(θ|Mi) quantifies the prior probability of a specific param-
eter set θ of Eq. (2) for a modelMi. The likelihood p(D|θ,Mi) quantifies the probability
that a specific model evaluation of the model Mi with the parameter set θ corresponds
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to the experimental model data D. The parameter c, the total probability or evidence,
is typically not computable with reasonable effort and is only normalizing the result
anyway [10]. To avoid this effort, methods for sampling Eq. (2) can be chosen. In this
paper, a Transitional Markov Chain Monte Carlo (TMCMC) algorithm by Ching et al.
[11] is used to solve Eq. (2). In the context of TMCMC, Eq. (2) is not solved directly,
but it is assumed that the posterior probability

pj ∝ p(D|θ,Mi)
qj p(θ|Mi) (3)

of a calculation step j = 0, . . . ,m is proportional to the product of the prior probabil-
ity p(θ|Mi) and the likelihood p(D|θ,M )qj .Thus, the problem is solved using m > 1
calculation steps. The power qj is defined as

qj ∈ [0, 1], q0 = 0 < q1 < . . . < qm = 1 (4)

and is used to control the transition of the prior distribution to the posterior distribution.
Thus, the samples are gradually moved from the prior (j = 0, q0 = 0) to the posterior
distribution (j = m, qm = 1). During each step, the parameter space is resampled with
a certain number of Ns points. The TMCMC terminates with the condition qm = 1.
The TMCMC overcomes the weaknesses of methods, which are working with Markov
Chain Monte Carlo (MCMC), e. g., the reduced statistical efficiency, the presence of the
burn-in period, and the inefficiency of the calibration procedure for a high number of
model parameters [12]. More detailed information can be found in [11, 12].
The likelihood p(D|θ,Mi) includes the discrepancy between the FE model outputs and
the experimental data, which is termed the prediction error [6, 13]. A formulation for
the likelihood p(D|θ,Mi) based on modal properties is proposed by Vanik et al. [14] and
is also adopted by Goller et al. [6]. It is assumed based on the principle of maximum
entropy that the prediction error follows a normal distribution [15]. Additionally to
modal properties the likelihood used for this contribution also contains the mass m of
the rectangular plate as a model output. The likelihood of the data set D for a model
parameter set θ and a model Mi

p(D|θ,Mi) = c1 exp

(
−1

2

Ns∑
n=1

Nm∑
r=1

(
ε−2
r e2

ω2
rn

+ δ−2
r e2ψ,rn

)
+ σ−2e2mass

)
(5)

is then composed using the prediction error of the natural angular frequencies

eω2
rn

= ω2(e)
rn − ω2(n)

r , (6)

the prediction error of the mode shapes

eψ,rn = 1 −
∣∣∣ψ(e)T

rn
ψ(n)
r

∣∣∣
2

ψ(n)T
r

ψ(n)
r

(7)

and the prediction error of the mass.

emass = m(e)

m(n)
− 1 (8)
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The factor c1 is described in detail in [14] and just normalizes the likelihood. The
prediction error variances of the natural angular frequencies ε2r and of the mode shapes
δ2r are estimated from the three observed data sets. Consequently, individual values of
ε2r and δ2r are used for the first six mode shapes. It is assumed that the prediction error
variance of the mass has a constant value of σ 2 = 10–2. The prediction error of the
mode shapes eψ,rn in Eq. (7) corresponds to the modal assurance criterion (MAC). In
vibroacoustics, the agreement of the numerically and experimentally obtained mode
shapes is usually assessed by the MAC [16]. The MAC describes the linear correlation
between the vector of the mode shapes of the experimental model ψ(e)

r
and those of the

numerical model ψ(n)
r

. In Eq. (7), the vector of the mode shapes for the experimental

ψ(e)
r

and for the numerical model ψ(n)
r

must have equal length and take into account
equal spatial coordinates. To match the number of points of the experimental model,
only the closest node of the FE mesh in relation to a measurement point is considered.
Thus, the vector of the mode shapes of the FEmodel is reduced from 5353 to 402 points.
The results of the probabilistic model parameter calibration are shown in the following
section.

4 Calibration Results and Assessment of the Model Uncertainty

A probabilistic model parameter calibration by means of TMCMC is performed for
both modelsM1 andM2, whereby a number of N = 1000 is used to cover the parameter
space. The computations are performed on a standard desktop PC with a single model
evaluation taking approximately 20 s. In this paper, only the results for the natural angular
frequencies are shown and discussed in detail since the results of the mode shapes lead to
similar conclusions. Nevertheless, the natural angular frequencies as wells as the mode
shapes are used to compute the likelihood following Eq. (5).

Figure 2 depicts the posterior distributions of the calibrated model parameters
Young’s modulus E (a) and mass density ρ (b) for model M1 as histogramms.

Fig. 2. Posterior distributions with the 95% interpercentile intervals (solid lines) of the calibrated
model parameters Young’s modulus E (a) and mass density ρ (b) for model M1. The limits of
the abscissae correspond to the lower and upper bounds of the prior distributions of the unknown
model parameters.
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As expected, the distributions of the model parameters E and ρ are narrowed down
by the information contained in the observed data set D. The lower and upper bounds of
the prior distributions are represented by the limits of the abscissa in Fig. 2. The relations
between the limits of the abscissae and the 95% interpercentile intervalls of the posterior
distributions show the reduction of model parameter uncertainty due to the probablistic
model calibration. The model parameter ranges are reduced by approximetly 82% for
the Young’s modulus E and 95% for the mass density ρ.

The effect of the probabilistic model parameter calibration procedure on the accu-
racy of the model prediction of the modelM1 is shown in Fig. 3. Here, the histograms of
the prior and posterior distributions of the first six (Nm = 6) natural angular frequencies
ω

(n)
r , the 95% interpercentile intervals of the posterior distribution as well as the corre-

sponding observed data D =
{
ω

(e)
1 . . . ω

(e)
Nmn

}N
n=1

, N = 3, are plotted. As expected, the

distributions of the posterior model predictions using calibrated model parameters are
narrowed down in comparison to the distribution of the prior model predictions using
non-calibrated model parameters. For the second to the sixth natural angular frequency
(b)–(f), the posterior model predictions are closely distributed around the observed data
values.

Fig. 3. Distributions of the first six natural angular frequencies of the simply supported rectangular
plate predicted with the model M1 using non-calibrated (prior) and calibrated (posterior) model
parameters. The 95% interpercentile intervals of the posterior distributions are plotted as solid
lines. The corresponding values of the observed data are plotted as stems.
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In the case of the first natural angular frequency ω1 (a), a deviation between the
observed data values and the posterior model predictions still remains, which can not
be further reduced by the calibration procedure. This leads to the fact, that the observed
data values are not part of the posterior distribution of the model predition of the first
natural angular frequency ω1.

Figure 4 depicts the posterior distributions of the calibrated model parameters
Young’s modulus E (a), mass density ρ (b), vertical stiffness kt (c), and rotational stiff-
ness kr (d) for model M2 as histogramms. The distributions of the model parameters
Young’s modulus E, mass density ρ and rotational stiffness kr are also narrowed down
by the information contained in the observed data sets D. The vertical stiffness kt is still
distributed over the entire range even after the calibration. The data D do not contain
the necessary information to extend the knowledge of the vertical stiffness kt due to the
calibration procedure. The lower and upper bounds of the prior distributions are repre-
sented by the limits of the abscissae in Fig. 4. The relations between the limits of the
abscissae and the 95% interpercentile intervalls of the posterior distributions visualize
the reduction of model parameter uncertainty for the model M2 due to the probablistic
model calibration. The model parameter ranges are reduced by approximetly 71% for
the Young’s modulus E, 94% for the mass density ρ and 84% for the rotational stiffness
kr.

Fig. 4. Posterior distributions with the 95% interpercentile intervals (solid lines) of the calibrated
model parameters Young’smodulusE (a), mass density ρ (b), vertical stiffness kt (c) and rotational
stiffness kr (d) for modelM2. The limits of the abscissae correspond to the lower and upper bounds
of the prior distributions of the unknown model parameters.
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For the vertical stiffness kt, a reduction of the model parameter ranges cannot be
achieved by the probabilistic model parameter calibration procedure.

The effect of the probabilisticmodel parameter calibration procedure on the accuracy
of the model prediction of the modelM2 is shown by Fig. 5. Here, the histograms of the
prior and posterior distributions of the first six (Nm = 6) natural angular frequenciesω

(n)
r ,

the 95% interpercentile intervals of the posterior distribution aswell as the corresponding

observed data D =
{
ω

(e)
1 . . . ω

(e)
Nmn

}N
n=1

, N = 3, are plotted. The distributions of the

posterior model predictions using the calibrated model parameters are narrowed down
in comparison to the distribution of the prior model predictions using non-calibrated
model parameters. For the first to the sixth natural angular frequency see Fig. 5(a)–(f),
the posterior model predictions are closely distributed around the observed data values.
Consequently, the observed data values are always part of the posterior distribution of the
model preditions of the first six natural angular frequenciesω

(n)
r . It can be concluded that

the preditction quality of the models M1 and M2 has improved due to the probabilistic
model parameter calibration procedure.

Table 3 summarizes the results of the calibrated model parameters for the modelsM1
and M2 by means of the 95% interpercentiles and the mean value of the distributions.

Table 3. Posterior uncertainty of the calibrated model parameters for the model M1 and M2

Model M1 Model M2

Parameter 95% interpercentile mean 95% interpercentile mean

min max min max

E in Nm−2 6.64 · 1010 7.00 · 1010 6.82 · 1010 6.27 · 1010 6.85 · 1010 6.56 · 1010
ρ in kgm−3 2.66 · 103 2.68 · 103 2.67 · 103 2.66 · 103 2.69 · 103 2.67 · 103
kt in Nm−1 --- --- --- 1.47 · 106 9.84 · 106 6.58 · 106
kr in Nm --- --- --- 1.94 18 9.3

Finally, the model uncertainty of the models M1 and M2 is assessed based on the
prediction error of the first six natural angular frequencies of the rectangluar plate. Goller
et al. [6] conclude in their contribution that the distribution of the prediction error after
the calibration procedure is a measure for the remaining model uncertainty, which can
not be further reduced by adjusting the model parameter.

In Fig. 6 the distributions of the prediction error of the natural angular frequencies eω2
r

averaged over all three observed data values are plotted for the first six natural angular
frequencies (Nm = 6) and for the modelsM1 andM2, respectively. The prediction error
eω2

r
is calculated using Eq. (6) and the model predictions are based on calibrated model

parameters. If the model predictions of the natural angular frequencies ω
(n)
r match the

observed data values on average, the prediction error eω2
r
is distributed around zero

and consequently, the averaged prediction error eω2
r

= 0. Table 4 shows the averaged
prediction errors eω2

r
of the first six natural angular frequencies for modelM1 and model

M2. The averaged prediction errors eω2
r
are plotted as stems in Fig. 6.
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Fig. 5. Distributions of the first six natural angular frequencies of the simply supported rectangular
plate predicted with the model M2 using non-calibrated (prior) and calibrated (posterior) model
parameters. The 95% interpercentile intervals of the posterior distributions are plotted as solid
lines. The corresponding values of the observed data are plotted as stems.

Table 4. Averaged prediction error eω2
r
in s−2 of the first six natural angular frequencies ω

(n)
r of

the simply supported rectangular plate for the modelsM1 and M2

e
ω2
1

e
ω2
2

e
ω2
3

e
ω2
4

e
ω2
5

e
ω2
6

M1 −1.017·104 0.828·104 0.307·104 2.401·104 2.355·104 5.952·104

M2 −0.205·104 0.554·104 1.835·104 −1.356·104 1.211·104 −1.427·104

It can be concluded that except for the third natural angular frequency ω
(n)
3 , the

modelM2 has a smaller averaged prediction errors eω2
r
than themodelM1. Consequently,

the model M2 leads to a better prediction of the vibroacoustic behavior of the simply
supported rectangluar plate for the first six natural angular frequencies. A possible option
to close the remaining shift of the prediction error is the definition and calibration of
a discrepancy function according to Kennedy and O’Hagan [4]. This can be done by a
Gaussian process as shown by Feldmann et al. [17].
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Fig. 6. Distributions of the prediction error eω2
r
after the calibration procedure for the first six

natural angular frequencies of the simply supported rectangular plate using modelM1 and model
M2 respectively. The averaged prediction errors eω2

r
are plotted as stems.

5 Conclusions

This paper presents the assessment of the model uncertainty in the prediction of the
vibroacoustic behavior of a simply supported rectangular plate. For this purpose, a prob-
abilisticmodel calibration viaBayesian inference is performed and themodel uncertainty
is assessed by the remaining prediction error after the calibration procedure. The test
specimen is a simply supported rectangular plate which is investigated at a test stand.
The rectangular plate is excited by an automatic impact hammer and the vibration veloc-
ities are obtained by a SLDV at specific measurement points on the surface of the plate.
The vibroacoustic behavior is described by the natural angular frequencies and the cor-
responding mode shapes of the simply supported rectangular plate. Consequently, the
vibroacoustic behavior of the experimental model is obtained by an experimental modal
analysis using the measured transfer functions. Two competing FE models for the pre-
diction of the vibroacoustic behavior of the simply supported rectangular plate are set up,
which differ in the modeling of the simply supported boundary conditions. Both models
are embedded in a probabilistic model calibration procedure via Bayesian inference.

The aim of the calibration is the reduction of the model parameter uncertainty by the
identification of the distribution of the unknown model parameters. The measurement
data used for the calibration are the results of the experimental modal analysis. The
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likelihood for the Bayesian inference consists of three parts, which consider the natural
angular frequencies, the corresponding mode shapes as well as the mass of the simply
supported rectangular plate. For both FEmodels, a significant reduction of the lower and
upper bounds of the unknown model parameters is achieved by means of probabilistic
model calibration. It is concluded that the model parameter uncertainty is reduced for
both models. For assessment of the model uncertainty involved in the FE models, the
remaining prediction error, which is a measure for the model uncertainty, is analyzed
after the calibration. It is shown that amore detailedmodeling of the boundary conditions
leads to better calibration results. For future work, the experimental data base has to be
extended for the calibration procedure in order to better take into account the scattering
of the vibroacoustic behavior occurring in reality due to the assembling process and to
validate the prediction of the vibroacoustic behavior against independent measurement
data.
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