
Computer Science
Department

4/7/2021 gris_logo_bare.svg

file:///D:/dieter/Fellner/logos/DA/gris_logo_bare.svg 1/1

GRIS
Interactive Graphics
Systems Group

Massively Parallel Editing and
Post-Processing of
Unstructured Tetrahedral
Meshes for Virtual Prototyping
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von Daniel Ströter aus Frankfurt a. M.
Tag der Einreichung: 30.07.2024, Tag der Prüfung: 10.09.2024

1. Gutachten: Prof. Dr. techn. Dr.-Ing. eh. Dieter W. Fellner
2. Gutachten: Hon. Prof. Dr.-Ing. André Stork
3. Gutachten: Prof. Dr.-Ing. Marc Alexa
Darmstädter Dissertation D17

Massively Parallel Editing and Post-Processing of Unstructured Tetrahedral Meshes for Virtual Prototyping

Accepted doctoral thesis by Daniel Ströter

Date of submission: 30.07.2024
Date of thesis defense: 10.09.2024

Darmstädter Dissertation D17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-281109
URL: http://tuprints.ulb.tu-darmstadt.de/28110
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

http://tuprints.ulb.tu-darmstadt.de/28110
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version über-
einstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In die-
sem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs
mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der ange-
gebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 30.07.2024
D. Ströter

iii

Zusammenfassung

In der industriellen Produktentwicklung wird heutzutage häufig auf virtuelles Prototyping zurückgegriffen,
um Entwicklungszeit undMaterialkosten zu sparen. Obwohl virtuelles Prototyping durch computergestütztes
Design und computergestützter Simulation signifikante Einsparungen von Entwicklungszeit undMaterialkos-
ten ermöglicht, beinhaltet es mehrere aufwendige und komplexe Zwischenschritte. Üblicherweise optimieren
professionelle Teams während der Produktentwicklung einen Prototypen auf eine Vielzahl an Zielsetzungen
wie z. B. sparsamer Gebrauch von Ressourcen und Stabilität unter Einwirkung bestimmter physischer Belas-
tungen. Dies erfordert in der Regel ein mehrmaliges Durchführen von virtuellem Prototyping. Deswegen sind
Methoden für das Beschleunigen und das Verkürzen des Ablaufs von virtuellem Prototyping ein wichtiges
Forschungsziel.

Diese Dissertation beschäftigt sich mit massiv parallelen Algorithmen, welche die faszinierende gebündel-
te Rechenleistung von modernen Grafikkarten ausnutzen, um virtuelles Prototyping zu beschleunigen und
dessen Ablauf um einige aufwendige Zwischenschritte zu verkürzen. Das virtuelle Prototyping involviert
häufig die Erstellung, Optimierung und Anpassung hochauflösender volumetrischer Netze zum Zweck einer
numerischen Simulation, weswegen die vorliegende Dissertation ihren Fokus auf die effiziente Verarbeitung
volumetrischer Netze legt. Eine zur numerischen Simulation häufig eingesetzte Art von volumetrischen Net-
zen sind unstrukturierte Tetraedernetze, weil sie eine robuste Netzgenerierung bieten und die Geometrie
eines Tetraeders eine feine Diskretisierung zur Approximation einer Oberfläche ermöglicht. Aufgrund dieser
Vorteile konzentriert sich die vorliegende Dissertation auf unstrukturierte Tetraedernetze.

Für das virtuelle Prototyping gilt es allerdings eine Vielzahl an Kriterien für eine erfolgreiche sowie genaue
numerische Simulation zu beachten. Besonders maßgebliche Kriterien bestehen in der Auflösung des Netzes
und der Qualität der geometrischen Form der Tetraederelemente. Daher finden Optimierung sowie lokale
Neuvernetzung des Tetraedernetzes häufig Anwendung im virtuellem Prototyping. Um eine Beschleunigung
der entsprechenden Verfahren zu erwirken, beschäftigt sich die vorliegende Dissertation mit Strategien zur
massiven Parallelisierung grundlegender Operationen, welche Bestandteil von Verfahren zur Netzoptimie-
rung und lokaler Neuvernetzung sind. Darüber hinaus ist die Robustheit der parallelen Algorithmen ein
Forschungsschwerpunkt, weil Algorithmen nur dann erfolgreich in dem virtuellem Prototyping eingesetzt
werden können, wenn die resultierenden Netze die Kriterien der nachfolgenden numerischen Simulation
erfüllen.

Einer der zeit intensivsten Aufwendungen beim virtuellen Prototyping besteht darin, dass die Anpassung
eines Prototypentwurfes eine Änderung der mittels computergestütztem Designs erzeugten Freiformflächen
und eine erneute Diskretisierung in ein volumetrisches Netz erfordert. Folglich können virtuelle Prototyping-
Prozesse durch Methoden zur Vermeidung der wiederholten Anpassung der Freiformflächen des Prototyps
und der anschließenden Netzgenerierung erheblich verkürzt werden. Um die Möglichkeiten zur Verkürzung
virtueller Prototyping-Iterationen zu erweitern, werden in dieser Dissertation interaktive Methoden zur di-
rekten Bearbeitung der Tetraedernetze ohne direkte Anpassung der Freiformflächen untersucht. Die schnelle
Rechenleistung von massiv-parallelen Grafikkarten hat das Potenzial die Anpassung von hochauflösenden
Tetraedernetzen auf interaktive Weise zu realisieren.

Jeder Durchlauf eines virtuellen Prototyping-Prozesses benötigt eine Methode, um die Simulationser-
gebnisse visuell zu analysieren. Bei der visuellen Analyse wendet das Produktionsteam in der Regel Post-

v

Processing an, welches das Tetraedernetz und die zugehörigen Simulationsergebnisse visualisiert. Für das
Post-Processing volumetrischer Netze ist es oft entscheidend auch die inneren Strukturen des Volumens zu
visualisieren. Eine häufig angewendete Methode zur Visualisierung volumetrischer Netze ist das sogenannte
direkte Rendering von Volumen. Das direkte Rendering von hochauflösenden Netzen benötigt feingranulare
räumliche Datenstrukturen, welche den Raum fein aufteilen, damit die räumliche Suche nach Elementen des
Netzes effektiv beschleunigt wird. Dementsprechend kann eine räumliche Datenstruktur einen beträchtlichen
Anteil des auf einer Grafikkarte verfügbaren Speichers belegen. Daher wird in dieser Dissertation speicher-
effizientes Post-Processing von unstrukturierten Tetraedernetzen angestrebt.

Die vorliegende Dissertation beinhaltet eine Vielfalt an Methoden für schnelleres virtuelles Prototyping.
Sie präsentiert Verfahren zur Berechnung voneinander unabhängiger Teilnetze eines volumetrischen Netzes,
welche das konfliktfreie Ausführen von lokaler Neuvernetzung der Teilnetze auf Grafikkarten ermöglicht.
Des Weiteren beinhaltet die vorliegende Dissertation eine robuste sowie massiv parallele Methode zur Op-
timierung der Knotenpositionen basierend auf dem Verfahren des steilsten Abstiegs. Durch das Anwenden
dieser Methoden kann die Optimierung und die Neuvernetzung von unstrukturierten Tetraedernetzen um
ein bis zwei Größenordnungen beschleunigt werden. Um den Aufwand virtueller Prototyping-Prozesse zu
reduzieren, präsentiert die vorliegende Dissertation Methoden, welche es einem Nutzer auf Basis von se-
mantischen Flächengruppen oder Kontroll-Käfigen ermöglichen ein unstrukturiertes Tetraedernetz zu editie-
ren. Aufgrund von geschickter Ausnutzung massive paralleler Grafikkarten, kann ein interaktives Editieren
der Netze realisiert werden. Bei der Gestaltung dieser Methoden zur Netzeditierung wurden Maßnahmen
ergriffen, um eine Tetraedernetze zu erzeugen, welche die Kriterien von numerischen Simulationen erfül-
len. Darüber hinaus stellt die vorliegende Dissertation eine speicher-effiziente räumliche Datenstruktur vor,
welche es mittels parametrisierter Konstruktion dem Nutzer ermöglicht den Speicherverbrauch zu steuern.
Außerdem beschreibt die vorliegende Dissertation eine Methode zur Vereinfachung von unstrukturierten Te-
tradernetzen, welche die Anzahl der Tetraeder in einem Netz um drei Viertel reduzieren kann, ohne dass die
Wahrheitsgetreue des Post-Processings signifikant beeinträchtigt wird.

vi

Abstract

Today, many tasks in industrial product development rely on virtual prototyping to reduce development time
and resource costs. Although virtual prototyping provides significant simplification of product development
through the use of computer-aided design and computer-aided engineering, it remains a laborious and time
consuming process that involves a number of complex steps. Typically, product development teams optimize
their prototypes for many design goals, e.g., economical use of material and stability under forces, which
demands many iterations of virtual prototyping. Therefore, methods for the acceleration and shortening of
virtual prototyping processes are important technological advances.

This thesis presents massively parallel algorithms that exploit the impressive aggregated processing power
of present-day general purpose graphics processing units to accelerate and shorten virtual prototyping. As
virtual prototyping oftentimes involves the generation, optimization and adaptation of high-resolution vol-
umetric meshes for numerical simulation, this thesis focuses on efficient processing of volumetric meshes.
Unstructured tetrahedral meshes are a commonly used type of volumetric meshes, because they provide ro-
bust meshing and tetrahedra allow for good discretized approximation of surface features. Therefore, this
thesis narrows its scope to unstructured tetrahedral meshes.

In virtual prototyping, a number of properties of the tetrahedral mesh concerns the success of a numerical
simulation. Important properties are the resolution of the mesh and the shape quality of the tetrahedral
elements. Consequently, the optimization and re-meshing of tetrahedral meshes are common tasks in virtual
prototyping. This thesis investigates parallelization strategies for tetrahedral mesh editing operations that are
fundamental for mesh optimization and re-meshing. In addition, the robustness of the presented methods is
a research objective, because successful acceleration of virtual prototyping is only achieved, if the presented
methods function properly and produce meshes that are suitable for downstream numerical simulation.

One of the primary overheads in virtual prototyping is that new prototype designs demand new discretiza-
tion of boundary representations to a volumetric mesh. For this reason, virtual prototyping processes can be
significantly shortened by methods for avoiding the repeated modeling of the prototype’s boundary repre-
sentations and subsequent mesh generation. In order to extend the facilities of shorter virtual prototyping
iterations, this thesis explores user-interactive methods for directly editing the tetrahedral mesh without
adjusting the boundary representations in a computer-aided design environment. The fast run time per-
formance of massively parallel processing provides promising potential to achieve editing of high-resolution
meshes at interactive rates.

Every virtual prototyping process requires a method that allows the development team the visual analysis
of the simulation results. In the visual analysis step, the development team typically applies post-processing
to the mesh and its annotated simulation results. Since accurate numerical simulations might require high-
resolution meshes, the use of graphics processing units is common for post-processing. For post-processing
volumetric meshes, it is important to visualize the inner structures of the mesh to enable a complete analysis
of the prototype. A common method for post-processing volumetric meshes is direct volume rendering. The
direct volume rendering of high-resolution meshes requires comprehensive acceleration data structures for
fast spatial search of mesh elements, which can lead to large memory consumption. Therefore, this thesis
investigates memory-efficient post-processing of unstructured tetrahedral meshes for better management of
the available memory capacity.

vii

This thesis presents a multitude of contributions for faster virtual prototyping. It presents conflict detection
methods to determine dense sub-meshes for massively parallel edge/face flips and re-meshing. In addition,
this thesis contributes a robust massively parallel method to relocate mesh vertices for first-order optimization
methods. With the use of the presented methods, optimization and re-meshing of unstructured tetrahedral
meshes can be accelerated by one or two orders of magnitude. For shortening virtual prototyping, this
thesis presents user-interactive editing by user-selected face groups as well as deformation control to edit
unstructured tetrahedral meshes. Due to massively parallel processing, these methods enable interactive
mesh editing. The mesh editing includes measures for producing tetrahedral meshes of sufficient quality
for downstream numerical simulations. For post-processing of unstructured tetrahedral meshes, this thesis
presents a memory-efficient spatial data structure along with a method to coarsen meshes for direct volume
rendering. The spatial data structure enables control over memory consumption by a tuning parameter. The
coarsening can reduce high-resolution tetrahedral meshes to a quarter of the initial size while well-preserving
most visual features.

viii

Acknowledgment

Many people have supported me throughout this thesis project. Without the help of these people, I would
have had neither the opportunity nor the courage to write this thesis. Therefore, I dedicated this section to
these people to express how thankful I am for their support.

First of all, I want to thank my family members for their continuous encouragement. I am deeply grateful
to my mother Birgit for her advice as a retired math teacher and her sensitive as well as empathetic support.
Throughout my lifetime, she always believed in me and knew how to build me back up, whenever I faced
setbacks. When people doubted me because of my hearing condition, she always encouraged me to believe
in my abilities. She taught me to never give up, to be diligent in life, and that honesty is the best policy.
Cherishing these values has enabled me to develop my personality and to succeed in life. So, I am very
thankful for all my mother has done for me.

I am thankful to my father Berthold for his advice as a passionate mathematician and for always encour-
aging me to follow my curiosity. As a person with interest in science, he was always eager to discuss the
topics that I was concerned with. He always pointed out the importance of an accurate argumentation and
that it is worthwhile to give my best to achieve good results. He advocated for trying to obtain “intellectu-
ally complete” results, which is an adjective for well-thought-out and comprehensible results. Having high
work-ethics and the will to give it my all has enabled me to stay focused and motivated throughout my PhD
journey.

I am thankful to my elder sister Laura, as she is an inspiring role model to look up to and at the same
time an empathetic sister. When she has the time, she is always open for arranging a family meeting, where
the family comes together to exchange their latest experiences. Family is an important part in a human’s
lifetime. I am thankful that she is always very caring for the family.

Subsequent to my family, I want to thank several people that I have worked with at the Graphics Interactive
Systems Group (GRIS) and Fraunhofer IGD. I am thankful to Prof. D.W. Fellner for giving me the opportu-
nity to do scientific research and teaching students in computer graphics. He entrusted me with a lot of
responsibility, when he offered me the student supervision of his computer graphics courses. The teaching
experience has helped me to refine my didactic abilities and grow as a person. In addition, he granted me
a lot of freedom in my research, as he allowed me to follow my own ideas while always being available for
an enlightening discussion. Trying my best to provide good research results has enabled me to improve my
technical abilities as a computer scientist.

I am thankful to Prof. André Stork for his supervision of my thesis project. After three wonderful years of
work experience at the Interactive Engineering Technologies (IET) department of Fraunhofer IGD, he advised
to pursue my research goals at GRIS. As the head of IET, he enabled me to do collaborative research projects
with the much valued colleagues from IET. Throughout my research I felt not just like a collaborator with
the IET, but rather like a member of the IET-family. The continuous engagement with IET helped me to
deepen my knowledge in the fields of my study. The continuous and critical feedback of Prof. André Stork
has facilitated me to improve my abilities in scientific writing, critical thinking, and scientific research.

For his continuous advice, I am thankful to Dr. Daniel Weber. He always had an open door for a discussion
about which topics I should address in my research. His advice in scientific research and his knowledge about
the engineering industry helped me, when I was trying to navigate through the unbounded landscape of the

ix

research domain of geometry processing for virtual prototyping. I also want to thank Dr. Daniel Weber for
the continuation of the collaboration with IET after he took up the position as head of IET.

I am thankful to Dr. Johannes Mueller-Roemer for teaching me all the skills of scientific writing and
research. After the supervision of my Master’s thesis, he has never stopped his tireless feedback, which has
enabled me to refine my scientific writing style and my abilities to give a presentation. He was always open
for a discussion about my research topics and pinpointed at important technical details and related research
work.

Finally, I want to thank all of my colleagues at GRIS and IGD including the secretaries for being friendly,
funny, and trustworthy. Working with the above people has made my PhD journey an experience that I
enjoyed and now like to remember.

x

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Approach . 4
1.3. Research Questions . 4
1.4. Publications and Contributions . 5
1.5. Outline . 8

2. Preliminaries and Notation 9
2.1. Unstructured Triangulations . 9

2.1.1. Simplicial Meshes . 9
2.1.2. Delaunay Triangulation . 11
2.1.3. Harmonic Triangulation . 13

2.2. APIs, Algorithms and Data Structures for Massively Parallel Processing 15
2.2.1. Massively Parallel GPU Computation and CUDA . 15
2.2.2. Common Algorithms for GPU Programming . 16
2.2.3. TCSR Simplicial Mesh Data Structure . 19

2.3. Manipulating Geometry with Cage-based Deformation . 20
2.3.1. Matrix Notation for Cage-based Deformation . 21
2.3.2. Generalized Barycentric Coordinates . 21
2.3.3. Linear Blend Skinning . 23

2.4. Direct Volume Rendering of Unstructured Grids . 24

3. Related Work 27
3.1. The Two Scopes of Mesh Editing . 27
3.2. Mesh Optimization and Re-meshing of Unstructured Tetrahedral Meshes 28

3.2.1. From Laplacian Smoothing to Optimizing Element Quality Metrics 28
3.2.2. Distortion Energies for Mesh Optimization . 29
3.2.3. Edge Collapse in Tetrahedral Meshes . 30
3.2.4. Applications of Tetrahedral Mesh Coarsening . 30
3.2.5. Parallel Vertex Relocation . 31
3.2.6. Parallel Re-meshing . 31
3.2.7. Boundary Treatment in Mesh Optimization . 33

3.3. High-level Volumetric Mesh Editing . 33
3.3.1. Volumetric Mesh Editing on the Basis of Semantic Features 33
3.3.2. Volumetric Mesh Editing by Shape Deformation . 34

3.4. Interactive Mesh Deformation for Model Manipulation . 35
3.4.1. Free-form Deformation using Lattices . 35
3.4.2. Skeletal-based Deformation . 35
3.4.3. Linear Subspaces . 36
3.4.4. Radial-Basis-Function-based Deformation . 36

xi

3.5. Generation of Cages for Deformation Control . 36
3.5.1. Cage Quality . 37
3.5.2. Offset Surface Simplification Methods . 38
3.5.3. Voxelization-based Methods . 38
3.5.4. Template-based Methods . 39
3.5.5. Interactive Cage Generation Methods . 39
3.5.6. Embedding the Cage . 40

3.6. Construction of Cage Coordinates for Deformation Control . 41
3.6.1. Barycentric Coordinates with Explicit Formula . 41
3.6.2. Energy Minimization-based Barycentric Coordinates 44
3.6.3. Probability-based Coordinates . 46
3.6.4. Coordinates with Normal Control . 49

3.7. Isogeometric Analysis . 53
3.8. Spatial Datastructures for GPU-parallel Construction and Rendering 54

3.8.1. Linear Spatial Datastructures . 54
3.8.2. Massively Parallel Traversal . 55
3.8.3. Hardware Accelerated Spatial Data Structure . 55

3.9. Direct Volume Rendering of Unstructured Meshes . 56

4. Fast Harmonic Mesh Optimization 59
4.1. Harmonic Gradient . 60
4.2. Boundary Features Extraction for Gradient Descent . 62
4.3. Vertex Relocation . 63

4.3.1. Relocating Interior Vertices . 63
4.3.2. Directional Derivatives for Boundary Treatment . 66
4.3.3. Preserving the Boundary . 68
4.3.4. Approximate Boundary Preservation to Relocate Every Vertex 69

4.4. Parallel Harmonic Flipping . 71
4.5. Combined Vertex Relocation and Flipping . 74
4.6. Evaluation of Harmonic Mesh Optimization . 74

4.6.1. Implementation of the Original Harmonic Mesh Optimization Algorithm 75
4.6.2. Run Time Performance of Parallel Flipping . 75
4.6.3. Robustness . 75
4.6.4. Element Quality and Convergence . 76
4.6.5. Run Time Performance of Harmonic Mesh Optimization 78

4.7. Summary . 80

5. Massively Parallel Collapsing of Edges of Unstructured Tetrahedral Meshes 81
5.1. Collapsing Algorithm . 82

5.1.1. Algorithm Design . 82
5.1.2. Finding Admissible Edges for Collapsing . 84
5.1.3. Finding Independent Sub-Meshes . 84
5.1.4. Collapsing Edges . 85
5.1.5. Determinism of Conflict Detection . 86

5.2. Collapsing for Mesh Improvement . 86
5.3. A Method for Massively Parallel Mesh Adaptation using Error Estimation 87

xii

5.4. Evaluation . 89
5.4.1. Robustness . 90
5.4.2. Conflict Detection . 90
5.4.3. Run Time Performance . 92
5.4.4. Skipping Iterations that Collapse only Few Edges . 94
5.4.5. Mesh Quality Improvement of Harmonic Optimization with Collapsing 95

5.5. Summary . 97

6. User-guided Unstructured Tetrahedral Mesh Editing 99
6.1. Face Groups for Interactive Mesh Modification . 100

6.1.1. Assigning Face Groups using Annotation from CAD . 101
6.1.2. Extracting Face Groups from the Surface Geometry . 101
6.1.3. Finding Feature Edges between Face Groups . 103

6.2. Volumetric Mesh Editing Operations . 105
6.2.1. Volumetric Hole Filling . 105
6.2.2. Volumetric Mesh Erosion . 106

6.3. Evaluation of Tetrahedral Mesh Editing based on Face Groups 107
6.3.1. Evaluation of Face Group Detection . 108
6.3.2. Run Time Performance and Element Quality for Hole Closing 110
6.3.3. Run Time Performance and Element Quality for Erosion 113

6.4. Evaluating the Capabilities of Cage-based Deformation . 114
6.4.1. Comparing Cage Generation Methods . 115
6.4.2. Locality of Coordinate Types . 117
6.4.3. Cage Connectivity Support of Coordinate Types . 117
6.4.4. Shape Preservation of Coordinate Types . 118
6.4.5. Computational Cost for Coordinate Computation . 119
6.4.6. Element Quality of Deformed Tetrahedral Meshes using Cage-based Deformation . . . 120
6.4.7. Comparing Coordinate Types . 122

6.5. Summary . 123

7. Massively Parallel Post Processing of Unstructured Tetrahedral Meshes for Analysis 125
7.1. Octree Linear Bounding Volume Hierarchy . 126

7.1.1. Quantization of AABBs along the Morton Curve . 126
7.1.2. Data Structure Layout . 127
7.1.3. Construction . 128
7.1.4. Traversal . 131

7.2. Direct Volume Rendering using the OLBVH . 132
7.2.1. Empty Space Skipping . 133
7.2.2. Sample the Simulation Results along View Rays . 134

7.3. Coarsening Meshes for Direct Volume Rendering . 135
7.4. Evaluation of Post-Processing Performance . 136

7.4.1. Evaluation Meshes . 136
7.4.2. Performance of OLBVH Construction . 137
7.4.3. Performance of Sampling Throughput for DVR . 138
7.4.4. Profiling DVR Performance . 140
7.4.5. Performance of Coarsening for DVR . 143

xiii

7.5. Conservative Slicing . 145
7.5.1. Algorithm for Conservative Slicing using the OLBVH 145
7.5.2. Runtime Performance of Conservative Slicing . 146

7.6. Summary . 147

8. Conclusion and Future Work 149
8.1. Answering the Research Questions . 149
8.2. Key Conclusions . 151
8.3. Limitations . 153
8.4. Future Work . 154

8.4.1. Avenues for Faster Generation and Optimization of Unstructured Tetrahedral Meshes . 154
8.4.2. Avenues for Shorter Design Cycles in Virtual Prototyping 155
8.4.3. Avenues to Advance Rendering Performance . 156
8.4.4. Avenues for Massively Parallel Processing of Unstructured Hexahedral Meshes 156

References 157

Appendices 185

A. Glossary 187

B. Supervisory Activities 191
B.1. Lectures . 191
B.2. Practicals . 191
B.3. Seminars . 191
B.4. Bachelor’s Theses . 191
B.5. Master’s Theses . 191

C. Conference Presentations of Published Papers 192

xiv

1. Introduction

1.1. Motivation

Interactive design of geometry with computers is a widely-used technique in product development. Whenever
the idea of a product comes to mind, people can create a digital mock-up or to be more precise a virtual
prototype, in order to design and analyze the product virtually. Therefore, the use of a virtual prototype can
relieve people from the labor and material cost to construct a physical prototype for testing as well as design
purposes. The process of constructing and testing a virtual prototype that represents a real physical model
is called virtual prototyping (VP) [Wan02]. Today, the use of VP is ubiquitous in many industries.

Since VP is not only concerned with the model’s shape but also with an in-depth analysis of the intended
functions of the model, VP involves many consecutive tasks. As this thesis focuses on volumetric meshes,
fig. 1.1 provides an overview on the typical tasks of a VP process that involves volumetric meshing. For
visualizing and manipulating the shape of a prototype, it is sufficient to work on the boundary structures.
Therefore, the initial task of VP is to specify the shape of the prototype using computer-aided design (CAD).
Many CAD applications rely on boundary representations (B-Reps) such as non-uniform rational B-splines
(NURBS) [Far02]. Oftentimes, the B-Reps describe a continuous surface, in order to meet the potentially
high precision demands of modeling smooth or high-fidelity surface features. However, as surface meshes are
the data structure of choice for fast rendering using massively parallel graphics processing units (GPU)s, time
critical applications such as interactive visualizations rely on surface meshes. Therefore, the use of continuous
B-Reps in CAD typically imposes the overhead of discretizing continuous curves into surface meshes for
visualization [LB16; SF19].

Pre-process Simulation

Computer-aided design Volume meshing Visual analysis /
post-processing

Figure 1.1.: The VP cycle starts with CAD defining B-Reps. Pre-processing prepares a surface mesh for downstream
volumetric meshing. A meshing tool then generates a volumetric mesh for numerical simulation. Post-processing tools
allow for the exploration of simulation results. After exploration of the simulation results, the development team decides
whether the design should be changed or not. For every design change, the steps of the cycle repeat.

1

A crucial limitation of B-Reps and surface meshes is their restriction to the boundary of the model. As
the boundary cannot be used to describe physical properties such as elasticity or thermal conductivity in the
interior of the model, many analysis applications rely on a volumetric representation of the model. Numerical
methods such as the finite elementmethod (FEM) are frequently used to implement applications workingwith
a volumetric representation. A commonly applied method to obtain a volumetric representation is the Delau-
nay triangulation (see section 2.1.2). Although boundary conforming Delaunay mesh generation for models
with complex boundaries is a challenging problem, because some boundaries cannot be preserved without
the insertion of additional vertices, the geometry processing community has devised practical methods for
meshing these boundaries while only inserting few vertices [She02a; Dia+23]. As a result, unstructured
tetrahedral meshing for the FEM is nowadays well-established for stability reasons.

After the generation of an unstructured tetrahedral mesh, engineers can specify a multitude of simulation
scenarios to simulate the prototype. With the configuration of material properties such as Young’s modulus,
engineers can specify the material of a prototype and experiment with different materials. In addition, engi-
neers specify boundary conditions constraining where the state of the model remains fixed and which parts
of the model are associated with loads such as forces or heat inputs. Using the specification of a simulation
scenario, engineers can apply physically based simulation to numerically simulate the prototype under real
world circumstances. A common choice for numerical simulation is finite element analysis (FEA) using the
FEM. Quick FEA is possible using the massively-parallel algorithms and GPU-optimized data structures of
Weber et al. [Web+13; Web+15]. In order to obtain an accurate FEA, three properties of the unstructured
tetrahedral mesh are of major importance [Sch+18]:

• mesh resolution, i.e., the number of elements

• order of elements, i.e., polynomial degree of elements

• tetrahedral element shape quality

As increasing the number of tetrahedral elements in the mesh typically improves the accuracy of the nu-
merical solution of the partial differential equation (PDE), mesh resolution is an important property when
creating a mesh for numerical simulation. In addition, the use of a finer mesh resolution, enables the meshing
tool to better approximate continuous B-Reps, which reduces the discretization error. The order of tetrahe-
dral elements corresponds to the order of the polynomial basis functions that describes the geometry of the
elements [Jia+21]. Using higher-order elements improves the discretization accuracy but requires the use
of the higher-order FEM, which imposes significantly more computation time. The shape of a tetrahedral
element should be close to an equilateral element, because numerical simulation algorithms may provide
inaccurate results or even crash for ill-shaped tetrahedral elements [She02b]. Various shape quality metrics
have been proposed over the years [She02b; Rab+17; Ale19; Sor+23], which enable improvement of the
shape of tetrahedral elements by optimization of the quality metric. However, shape quality metrics are not
consistent with the Delaunay criterion, leading Delaunay triangulation algorithms to produce flat and ill-
shaped tetrahedra [Lo15]. For this reason, meshing tools perform an element shape optimization step after
mesh generation. While increasing mesh resolution or the order of elements are common tasks in present
days, avoiding ill-shaped elements in a mesh is a difficult task.

Subsequent to simulating the prototype with a suitable unstructured tetrahedral mesh, the engineers in-
spect the simulation results to evaluate if the current prototype is a viable design. For visualizing the results
of FEA, a post-processing tool allows for exploration of the simulation results. In order to allow for interactive
exploration in 3D, present-day post-processors such as ParaView [Aya15] rely on parallel processing. If users
are interested in data related to the surface only, e.g., displacement, visualizing the boundary of the model is
sufficient. However, visualization of the simulation results in the interior of the model requires visualization of
the inner structures. One of the common approaches for visualizing data associated with the inner structures

2

of a model is direct volume rendering (DVR) of the volumetric mesh. With the use of DVR, engineers can
interactively explore the simulation results by configuring the rendering to highlight the simulation results
of interest.

When engineers have investigated the simulation results using the post-processing tool of choice, they de-
cide whether the current design is viable or not. Oftentimes the design does not exhibit the desired properties
or other optimization goals such as economical use of material are not met sufficiently. Therefore, engineers
modify the prototype many times. Repeated iterations of the design cycle result in substantial development
times hindering the fast creation of product designs meeting customer demands. The issue of development
overheads of design cycles becomes even more significant, because design cycles occur more frequently and
involve an increasing number of iterations due to the trend towards more customized and individualized
products [Sto15]. An additional overhead for each design cycle is the conversion of model data between
individual tasks of the cycle. In order to reduce transitions in design cycles, the engineering industry has
invented methods to shorten design cycles. Popular examples are editing techniques for manipulating the
discrete mesh (see section 3.3) or isogeometric analysis for simulating on CAD geometries (see section 3.7).
Nevertheless, there still is a need for methods to reduce development times and shorten design cycles in
VP [Bis17; LAR20; Por+21; Li+21].

A major overhead in VP cycles is the meshing step, because the shape quality of the elements needs to be
sufficient for simulation. As the commonly used Delaunay mesh generation is not consistent with shape qual-
ity metrics [Lo15], this frequently requires optimization and re-meshing of the volumetric mesh (see dotted
arrow in fig. 1.1). Therefore, many methods aim at relieving the development team from looping back to
CAD, in order to save the development time required for repeated generation of simulation-suitable meshes
(see dashed arrow in fig. 1.1). In particular, methods that alter the unstructured mesh to accelerate VP cy-
cles, e.g., shape optimization, suffer from additional computational overheads due to repeated re-meshing
for avoiding insufficient element quality [OSW23]. Recently, Alexa [Ale19] proposed the harmonic triangu-
lation (see section 2.1.3) that is related to the Delaunay triangulation but is generated by minimization of
an element quality metric. Therefore, harmonic triangulation is an interesting alternative, as its use could
mitigate the element quality issues for numerical simulation applications.

In order to facilitate meshing in VP processes, many tools for optimizing and re-meshing unstructured
meshes are available [KS07; Iba+17; Arp+22]. However, the bulk of these tools still relies on predominantly
serial processing on the central processing unit (CPU). As the scale and complexity of engineering tasks are
ever increasing, the numerical calculation of PDEs has been a driving factor for high-performance computing
(HPC) [RGD22]. While HPC typically orchestrates many machines as nodes of a cluster for coarse-grained
parallelism, the fine-grained parallelism of present-day GPUs is highly effective in accelerating a comprehen-
sive set of tasks on a single machine [Ped23]. Since the performance benefit of using the GPU is suboptimal for
coarse-grained parallelism, apt parallelization strategies are required to achieve fine-grained parallelization
of re-meshing and mesh optimization. In the context of VP, several methods enable the exploitation of the
GPU to accelerate the generation of high-resolution Delaunay meshes [Els+24]. For faster re-meshing, cur-
rent mesh adaptation tools such as NASA’s refine [Par22] or Sandia National Laboratories’ Omega_h [Iba22]
adopt CUDA (see section 2.2) to boost on-node parallelism using the GPU. While the mesh data structure of
Mueller-Roemer et al. [MS18; Mue20] enables massively parallel processing of simplicial meshes for VP, the
apt usage of massively parallel hardware for robust mesh optimization and re-meshing methods remains as
an open problem [Pan22].

As numerical simulations are potentially executed on high-resolution volumetric meshes for accuracy rea-
sons, post-processing applications should be able to cope with high memory demands. Especially, GPU-based
rendering applications that visualize unstructured meshes are prone to occupy a large amount of mem-
ory [WMZ21]. This can lead to issues with large meshes as the available memory on a GPU is limited.
Therefore, there is a need for memory-efficient post-processing.

3

1.2. Approach

As an overall goal, this thesis aims at facilitating the usage of GPUs in VP to reduce development time. In
order to accelerate mesh optimization and re-meshing tasks, this thesis builds upon the mesh data structure
of Mueller-Roemer et al. [MS18; Mue20] to devise massively parallel algorithms that enable the use of the
GPU for changing the geometry and connectivity of volumetric meshes. Due to the ubiquity of unstructured
tetrahedral meshes, the focus lies on this type of volumetric mesh. Since the methods for the constrained
generation of unstructured tetrahedral meshes are well-established and involvemany steps that are inherently
serial, this thesis focuses on the methods to optimize and re-mesh unstructured tetrahedral meshes so that
they are suitable for numerical simulations. As the harmonic triangulation is a promising Delaunay-related
method to obtain good element shape quality, it is interesting to use this triangulation type for massively
parallel mesh optimization. The efficiency of massively parallel algorithms facilitates interactivemesh editing,
which enables short VP cycles without changing the geometry in CAD. Thus, this thesis also investigates the
use of massively parallel mesh optimization algorithms for mesh editing. These optimization algorithms can
improve mesh quality so that edited tetrahedral meshes can be used for numerical simulation. Fast simulation
feedback might be possible immediately after design changes through coupling quick mesh editing with
available methods for massively parallel FEA [Web+13; Web+15]. Which methods enable convenient mesh
editing is also an important question for improving development overheads in VP. Thus, this thesis explores
methods for interactively editing unstructured tetrahedral meshes. Since the investigation of simulation
results is indispensable for VP, this thesis is concerned with efficient post-processing. Due to the increased
memory demands of maintaining meshes on the GPU, memory efficient post-processing is also one of the
goals of this thesis.

1.3. Research Questions

Exploring the approach of this thesis is subject to investigating the following research questions (RQ)s:

• RQ1: How can the use of the GPU accelerate mesh optimization and re-meshing tasks for unstruc-
tured tetrahedral meshes?

Massively parallel processing is only efficient for performing many tasks of little work that can be exe-
cuted independently. The use of unstructured tetrahedral meshes for numerical simulation requires the
mesh to be valid and of good shape quality. Changing the connectivity of mesh elements in parallel can
lead to issues, if the connectivity of adjacent elements is changed simultaneously. Therefore, massively
parallel re-meshing needs to ensure a valid mesh by using sophisticated parallelization strategies that
prevent conflicting changes to element connectivity. In addition, good run time performance is not
guaranteed through the usage of the GPU, because the fastest GPU will provide slow run times, if the
convergence of an optimization or re-meshing algorithm is inadequate.

• RQ2: How can massively parallel optimization and re-meshing of unstructured tetrahedral meshes
robustly produce meshes of sufficient quality for numerical simulations?

The utility of meshing algorithms not only depends on run time performance but also on the reliability
of the algorithms to produce meshes that are suitable for downstream applications. Therefore, this
thesis not only investigates run time performance but also the robustness of the proposed algorithms.
While robustness usually refers to the ability of a meshing algorithm to produce valid results, the shape
quality of the tetrahedral elements is also of major importance for downstream numerical methods. For
this reason, the shape quality of the resulting meshes needs to be investigated as well.

4

• RQ3: How can massively parallel mesh processing be used for quick editing of unstructured tetra-
hedral meshes to accelerate VP cycles?
Methods to accelerate the VP cycle are needed and fast optimization and re-meshing of unstructured
tetrahedral meshes can be a good foundation for interactivemesh editing. In particular, the combination
with massively parallel FEA [Web+13; Web+15] seems attractive, because it admits fast feedback after
changes to the prototype. Of course, this question depends on RQ1 and RQ2, since efficiency of the
algorithm and quality of their results need to be sufficient for fast mesh editing coupled with numerical
simulation. In addition, this question depends on convenient methods to interact with the mesh so that
users are able to specify the mesh editing operations intuitively, because fast mesh editing is useless, if
its usability is inadequate.

• RQ4: How can the massively parallel post-processing of unstructured tetrahedral meshes be imple-
mented with efficient memory usage?
Reducing the memory occupation of post-processing volumetric meshes is an important and continual
issue for large meshes. As the approach outlined in section 1.2 proposes to perform not only the visual-
ization but also the re-meshing and optimization of unstructured meshes on the GPU, efficient memory
usage is even more desirable, because additional computations are performed that impose additional
memory allocations. As one of the most significant memory overheads for post-processing is the spa-
tial data structure [WMZ21], this thesis explores, if it is possible to obtain a spatial data structure for
memory efficient as well as massively parallel post-processing. This spatial data structure should be
practical for DVR and other post-processing applications. While a memory efficient spatial data struc-
ture for massively parallel post-processing is interesting, the compression of the mesh using massively
parallel re-meshing is also an interesting avenue that is explored in this thesis.

1.4. Publications and Contributions

While I investigated these research questions, I published the results of my scientific research in several papers
and presented the contributions of my work at several conferences. The following list provides an overview
on the contributions for each previously published paper in chronological order:

Paper Contributions

[Str+20] D. Ströter, J. S. Mueller-Roemer,
A. Stork, D. W. Fellner, “OLBVH: octree lin-
ear bounding volume hierarchy for volu-
metric meshes”. In: The Visual Computer
36.10-12 (July 2020). Honorable mention
from Fraunhofer IGD for best papers in
the category “Impact on Science”, Pre-
sented at Computer Graphics International
2020, pp. 2327–2340. doi: 10.1007/s0
0371-020-01886-6 (addressing RQ4)

This paper contributes a spatial data structure for unstruc-
tured volumetric meshes. As this data structure organizes
an octree in a compact offset-based linear data layout it is
denoted as octree linear bounding volume hierarchy (OL-
BVH). For fast run time performance, the OLBVH can be
constructed and traversed in massively parallel manner on
the GPU. In addition, the memory consumption of this spa-
tial data structure can be controlled by a tuning parame-
ter that governs tree depth. This enables control over the
memory consumption to fit the available memory of the
used GPU. For analysis purposes, this paper describes an
approach for interactive DVR using the novel data struc-
ture. As a result of marking boundary tree nodes, a method
for skipping empty space along view rays further improves
rendering performance.

5

https://doi.org/10.1007/s00371-020-01886-6
https://doi.org/10.1007/s00371-020-01886-6

[Str+21] D. Ströter, U. Krispel, J. Mueller-
Roemer, D. Fellner, “TEdit: A Distributed
Tetrahedral Mesh Editor with Immedi-
ate Simulation Feedback”. In: Proceed-
ings of the 11th International Conference
on Simulation and Modeling Methodologies,
Technologies and Applications. Presented
at SIMULTECH 2021. SciTePress 2013.
SCITEPRESS - Science and Technology Pub-
lications, 2021, pp. 271–277. doi: 10.522
0/0010544402710277 (addressing RQ3)

This paper contributes interactive editing operations for
customizing models using only unstructured tetrahedral
meshes. An application provides implementations of edit-
ing operations. For user interaction, the application relies
on a set of face groups that can be selected by the user to
specify editing operations. For faster VP, the application
triggers immediate simulation feedback to the user, when-
ever the user customizes the model. The proposed edit-
ing operations are hole closing and erosion. The hole clos-
ing operation enables to remove planar drill holes from a
model, e.g., to improve the stability of the model. The ero-
sion operation allows for the removal of model parts, e.g.,
to save material and production cost.

[Str+22] D. Ströter, J. Mueller-Roemer, D.
Weber, D. W. Fellner, “Fast harmonic tetra-
hedral mesh optimization”. In: The Visual
Computer (June 2022). Visual Computer
Best Paper Award at Computer Graphics
International 2022. doi: 10.1007/s003
71-022-02547-6 (addressing RQ1, RQ2,
and RQ3)

This paper contributes a fast algorithm for optimizing un-
structured tetrahedral meshes for numerical methods. This
algorithm builds upon the framework of harmonic triangu-
lation that provide efficient Delaunay-based optimization
and low element counts. This publication extends the har-
monic triangulation framework by a new way to compute
the energy gradient for individual mesh vertices and a ro-
bustly converging Gauss-Seidel iteration scheme. Further-
more, the optimization of vertex positions on the bound-
ary using directional derivatives is explored in depth. As
an additional contribution, a robustly converging method
to relocate vertices along a given linear mesh boundary is
proposed and evaluated. Furthermore, a method for mas-
sively parallel optimization-driven flipping is proposed that
performs locally most beneficial flips in terms of the to-be-
optimized energy functional.

[Str+23] D. Ströter, A. Halm, U. Krispel,
J. S. Mueller-Roemer, D. W. Fellner, “Inte-
grating GPU-Accelerated Tetrahedral Mesh
Editing and Simulation”. In: Simulation
and Modeling Methodologies, Technologies
and Applications. Ed. by Gerd Wagner,
Frank Werner, Tuncer Oren, and Floriano
De Rango. Springer International Publish-
ing, 2023, pp. 24–42. doi: 10.1007/97
8-3-031-23149-0_2 (addressing RQ1
and RQ3)

This paper is an extended version of the second pa-
per [Str+21] in the list. Performance evaluation of the edit-
ing operations from that paper illuminates their most signif-
icant performance overheads that can be reduced by paral-
lel processing. The extended paper incorporates some of
the massively parallel algorithms developed throughout my
research into the unstructured mesh editing operations to
boost run time performance. Moreover, the extended paper
presents a massively parallel method to extract the bound-
ary of an unstructured tetrahedral mesh and to generate a
mapping of surface mesh facets to tetrahedral mesh facets.
Furthermore, this paper addresses the maintenance of face
groups throughout model customization.

6

https://doi.org/10.5220/0010544402710277
https://doi.org/10.5220/0010544402710277
https://doi.org/10.1007/s00371-022-02547-6
https://doi.org/10.1007/s00371-022-02547-6
https://doi.org/10.1007/978-3-031-23149-0_2
https://doi.org/10.1007/978-3-031-23149-0_2

[SSF23] D. Ströter, A. Stork, D. W. Fell-
ner, “Massively Parallel Adaptive Collaps-
ing of Edges for Unstructured Tetrahedral
Meshes”. In: High-Performance Graphics
- Symposium Papers. Ed. by Jacco Bikker
and Christiaan Gribble. Presented at High-
Performance Graphics 2023. The Euro-
graphics Association, 2023. doi: 10.231
2/hpg.20231139 (addressing RQ1, RQ2,
RQ3, and RQ4)

This paper contributes a fast method to find non-
overlapping sub-meshes in a simplicial mesh. The set of
sub-meshes includes many small and compact sub-meshes,
which allows for for massively parallel re-meshing. As the
sub-mesh determination prioritizes sub-meshes by a pre-
determined functional, the method is configurable, which
provides applicability to many different re-meshing tasks.
An additional contribution is an algorithm for massively
parallel collapsing of edges. This algorithm first applies
the method to find non-overlapping sub-meshes and sub-
sequently collapses interior edges of the determined sub-
meshes. Due to the application of rules for boundary treat-
ment, this algorithm preserves the boundary of the unstruc-
tured mesh well.

[Bue+24] M. v. Buelow, D. Ströter, A. Rak,
D. W. Fellner, “A Visual Profiling System for
Direct Volume Rendering”. In: Eurograph-
ics 2024 - Short Papers. Ed. by Ruizhen Hu
and Panayiotis Charalambous. The Euro-
graphics Association, 2024. doi: 10.23
12/egs.20241030 (addressing RQ4)

This paper contributes a profiling system specifically for
DVR, which allows for visual analysis of recorded perfor-
mance data. The system enables to measure many perfor-
mance metrics such as cache hit rates or branching and in-
terpolates these metrics on a color scale for each pixel of
the DVR image. The application of this profiling system to
the OLBVH-based DVR enables an in-depth investigation of
the performance bottlenecks. As a result, the analysis al-
lows to devise approaches to improve the performance of
DVR. The development of the visual profiling system was
primarily the work of the corresponding author. I adjusted
my DVR application for the analysis with the profiling sys-
tem and collaborated in the configuration of the profiling
and analysis of the results.

[Str+24] D. Ströter, J. M. Thiery, K. Hor-
mann, J. Chen, Q. Chang, S. Besler, J. S.
Mueller‐Roemer, T. Boubekeur, A. Stork,
D. W. Fellner, “A Survey on Cage‐based De-
formation of 3D Models”. In: Computer
Graphics Forum 43.2 (May 2024). Pre-
sented at EUROGRAPHICS 2024. doi: 1
0.1111/cgf.15060 (addressing RQ3)

This survey paper reviews the state of the art of cage-based
deformation, which is an interactive technique to manip-
ulate geometry. In a systematic way, the survey identifies
the advantages and disadvantages of individual methods
for cage-based deformation. The survey organizes the avail-
able methods for generating cages and computing coordi-
nates for cage-based deformation control into categories
based on their commonalities. As a result, the survey as-
sists the reader in choosing suitable methods for the use
case in mind. Thus, readers can use this survey, in order
to build their own applications. In addition, the systematic
evaluation of the state of the art illuminates current short-
comings in the field of cage-based deformation. Thus, the
survey provides means to devise future avenues for research
to improve the capabilities of interactive manipulation of
geometry.

7

https://doi.org/10.2312/hpg.20231139
https://doi.org/10.2312/hpg.20231139
https://doi.org/10.2312/egs.20241030
https://doi.org/10.2312/egs.20241030
https://doi.org/10.1111/cgf.15060
https://doi.org/10.1111/cgf.15060

1.5. Outline

This thesis is structured into eight chapters so that each chapter relies on the chapters before. In this way,
readers can focus on the particular topics of interest, while cross references link the readers to the necessary
information to understand the text.

After this introductory chapter, chapter 2 briefly describes the preliminary concepts of this thesis. It defines
the notation that is consistently applied in this thesis, in order to prevent confusion due to unexpected usage
of notation. In addition, the descriptions in chapter 2 further elaborate important aspects of the core concepts
so that readers are able to gain a deep understanding of many design choices for the presented massively
parallel algorithms.

Chapter 3 highlights previous work on the issues addressed in this thesis. The purpose of this chapter
is twofold. First, the reader can obtain a comprehensive overview on the state of the art and obtain the
literature references that contain the information of interest. Second, the descriptions in chapter 3 clarify
the differences of the methods in this thesis to the methods presented by other authors, which should stress
the necessity of the methods proposed in this thesis.

As the first chapter presenting the proposed methods, chapter 4 describes a massively parallel algorithm for
harmonic optimization of unstructured tetrahedral meshes. This chapter presents optimization and parallel
re-meshing techniques that are amenable to the GPU. An evaluation critically investigates the run time perfor-
mance, robustness, convergence and resulting element quality. This chapter is based on the paper about fast
harmonic mesh optimization[Str+22] and the boundary extraction presented in the extended paper about
user-guided editing of unstructured tetrahedral meshes using face groups [Str+23].

Subsequently, chapter 5 extends the massively parallel re-meshing capabilities by edge collapse operations,
which enables coarsening of unstructured tetrahedral meshes. It describes how to adapt meshes to numerical
simulations exploiting the GPU. Again, a critical evaluation investigates the proposed algorithms. The content
of chapter 5 is primarily based on the methods presented in the paper about massively parallel collapsing
edges in an unstructured tetrahedral mesh [SSF23].

After introducing basic massively parallel optimization and re-meshing methods, this thesis proceeds with
chapter 6 that describes user-guided methods for editing unstructured tetrahedral meshes. Besides pre-
senting interactive mesh editing techniques, chapter 6 describes further extensions to the massively parallel
re-meshing methods specifically for interactive mesh editing. In addition, chapter 6 provides a comprehensive
evaluation of cage-based deformation for interactive mesh deformation, featuring advantages and disadvan-
tages of individual methods. The content is primarily based on the papers about editing tetrahedral meshes
with face groups [Str+21; Str+23], while the evaluation has been published in a survey [Str+24].

Since post-processing is also a central topic of this thesis, chapter 7 presents methods for memory efficient
andmassively parallel post-processing. It primarily shows algorithms for fast andmemory efficient DVR on the
basis of the spatial data structure presented in the thesis authors master thesis [Str19]. A critical evaluation
investigates run time performance and memory consumption. The methods in chapter 7 primarily are based
on [Str+20], while the evaluation includes the observations in [Bue+24].

Finally, chapter 8 draws the key conclusions of this thesis. In order to follow up on the central questions
of this thesis, chapter 8 provides concise replies to the RQs posed in section 1.3. An overview on significant
limitations of the proposed methods and possible avenues for future work close this thesis in a critical way.

8

2. Preliminaries and Notation

To facilitate clearness and understandability, this chapter presents the preliminary concepts and definitions
on notation. As this thesis focuses on the processing and modification of tetrahedral meshes for numerical
methods, section 2.1 provides an overview on unstructured triangulations. Processing meshes with GPUs
in a massively parallel manner typically relies on common application programming interfaces (API)s, data
structures and foundational algorithms that are explained in section 2.2. A quick and versatile approach for
user-interactive mesh deformation is presented in section 2.3. Since this thesis addresses DVR of unstruc-
tured tetrahedral meshes for post-processing, section 2.4 presents the foundations of volumetric rendering of
unstructured grids.

2.1. Unstructured Triangulations

Many tasks in computer graphics or engineering involve the use of unstructured meshing, because it is a ro-
bust, versatile and efficient way to discretize geometry. While structured meshes typically organize elements
in a uniform pattern, unstructured meshes are not restricted to a pre-determined structure and provide more
freedom to organize the connectivity of the mesh. One special case of unstructured simplicial meshes are
unstructured tetrahedral meshes. Section 2.1.1 presents the foundational concepts and notations on simpli-
cial meshes. The generation of unstructured simplicial meshes requires sophisticated schemes to efficiently
compute and alter the mesh in a robust manner. One well established approach to generate a simplicial
mesh is the Delaunay triangulation, which is outlined in section 2.1.2. A novel and interesting notion is the
harmonic triangulation that appears in section 2.1.3.

2.1.1. Simplicial Meshes

Simplicial meshes are used to discretize a domain Ω. A d-dimensional simplicial meshM = (V,T) consists of
a tuple of vertices V and simplices T. For convenience, the non-zero integersNV ∈ (N\{0}) andNT ∈ (N\{0})
hold the numbers of vertices |V| = NV and simplices |T| = NT, respectively. In order to model the typical
array structure of vertices contiguous in memory, the structure of V represents a uniquely ordered sequence
of vertices:

V = (v0, v1, . . . , vNV−1), where vi ∈ Rd, ∀i = 0, 1, . . . , NV − 1. (2.1)

For each vertex vi ∈ V, the index of vi refers to the position i of the vertex in V, e.g., the index of v1 is 1.
Thus, any vertex of the meshM is associated with a unique index. A k-simplex τ ∈ T is a tuple of k + 1 ≥ 1
vertex indices:

τ = (t0, t1, . . . , tk), where ti ∈ {j | 0 ≤ j ≤ NV − 1},∀i = 0, 1, . . . , k. (2.2)

For convenience, the dimension dim(τ) = k denotes the dimension of a k-simplex τ . Simplices are provided
with a local order of points, because the order is relevant for many quantities such as the face normals or the

9

Jacobian (see eq. (2.7)). The simplices T are also ordered contiguous in memory. To model the structure of
T according to the memory layout T is like V a uniquely ordered sequence:

T = (τ0, τ1, . . . , τNT−1). (2.3)

Thus, each simplex τi is associated with an index i. While all the simplices τ ∈ T are d-simplices, a k-
simplex σ of a lower dimension dim(σ) = k < d is called a face of τ , if each vertex of τ is also a vertex of σ.
Additionally, τ is a coface of σ. The relationship ≤ denotes the inclusion of σ in τ :

σ ≤ τ ⇐⇒ ∀t ∈ τ, t ∈ σ. (2.4)

t0

t1

t2

t3
τ = (t0, t1, t2, t3)

σ

σ = τ \ t3

For any k-simplex τ , the specific face σ of τ opposite to the vertex of index i may be
obtained with the set difference τ\i = σ. A visualization of the set difference operation
appears in the inset to the right. For a 3-simplex τ = (t0, t1, t2, t3) the face σ opposite
to t3 is shaded blue. Performing the set difference τ \ t3 provides σ = (t0, t1, t2). The
notation covers some convenience definitions for typical cases of simplices. If τ is of
dimension 3, it is a tetrahedron with volume vτ . If τ is of dimension 2, it is a triangle
with area aτ . If σ is of dimension k ≤ d−1 and a face of the d-simplex τ ∈ T, then the
vertices of σ define a normal nσ pointing outwards of τ . For instance, nτ\t3 denotes
the normal of σ in the inset pointing outwards of τ . As it is elaborate to provide set differences for normals
and areas of particular faces of τ , the notation provides convenience definitions for areas and normals. For
any simplex τ , the normals and areas can be identified as ni = nτ\ti and ai = aτ\ti .

Besides the topological relationships of simplicial complexes, the notation covers the important geometric
quantities of simplices. As matrix formulations are useful for expressing geometric quantities of simplices,
Xτ denotes the matrix arranging the vertices columnwise in the local order of the k-simplex τ :

Xτ = (vt0 , vt1 , . . . , vtk) ∈ Rd×(k+1). (2.5)

In order to express the vertex set of a d-simplex τ in relation to its first vertex, the notation provides the
matrix Md:

Md =

(︃
−1 −1 . . . −1
e1 e2 . . . ek

)︃
∈ R(d+1)×d, (2.6)

where ei denotes the ith canonical unit vector of dimension d. With the use of Xτ and Md, it is convenient to
calculate the Jacobian Jτ of a d-simplex τ :

Jτ = (vt1 − vt0 , . . . , vtd − vt0) = XτMd ∈ Rd×d. (2.7)

The evaluation of the Jacobian allows for calculation of the volume or area of a top-level simplex in T. If
M is a 3-dimensional simplicial mesh, then the volume of the tetrahedron τ ∈ T evaluates to det(Jτ)/6 = vτ .
IfM is 2-dimensional simplicial mesh, then the area of the triangle τ ∈ T evaluates to det(Jτ)/2 = aτ . For
all simplices τ ∈ T, the local order of vertices shall be arranged such that the determinant of the Jacobian is
positive. If for some k-simplex τ the evaluation of det(Jτ) is negative, τ is inverted. A special case occurs, if
the vertex positions of a k-simplex τ are linearly dependent. In this case, the Jacobian is not invertible and
its determinant vanishes. A k-simplex τ with det(Jτ) = 0 is degenerate.

Many numerical methods such as the FEM require the mesh to satisfy certain conditions. For this reason,
the characteristic “valid” denotes a mesh that satisfies a basic set of these conditions. A mesh is valid, if it
satisfies the following conditions:

1. For any two vertices vi, vj ∈ V with i ̸= j, it holds that vi ̸= vj .

10

2. All the simplices τ ∈ T satisfy dim(τ) = d.

3. All the simplices τ ∈ T satisfy det(Jτ) > 0.

4. For two distinct τ, τ ′ ∈ T, the intersection τ ∩ τ ′ = σ is either ∅ or a simplex with dim(σ) < d.

5. For a face σ ≤ τ with dim(σ) = d− 1 and dim(τ) = d, there is at most one τ ′ ∈ T such that τ ∩ τ ′ = σ.

For a numerical method to produce plausible results with a meshM, it is typically not sufficient forM to
be valid. The quality in terms of element shape is also crucial for numerical methods. As the requirements
on element quality depend on the numerical method of choice, this condition is not part of the explicit
specifications.

2.1.2. Delaunay Triangulation

For geometry processing, many applications construct a Delaunay triangulation. A Delaunay triangula-
tion is typically a simplicial mesh (cf. section 2.1.1), whose elements τ ∈ T respect the circumball crite-
rion [Che+13a]:

Circumball criterion. LetM be a d-dimensional simplicial mesh and σ a k-dimensional simplex for any k ≤ d.
Further, let σ be defined by k + 1 vertices in V. The simplex σ respects the circumball criterion iff. the open
circumball of σ contains none of the vertices in V.

Figure 2.1.: To the left: The two triangles respect the circumball criterion, because the green and blue circles only
intersect with the vertices of their corresponding simplices but do not contain any other vertex. Thus, the two triangles
are Delauany.
To the right: The two triangles violate the circumball criterion, because their circumcircles contain the vertex of their
respective opposite simplex. Thus the two triangles are not Delaunay.

If a simplex satisfies the circumball criterion, the simplex is Delaunay. A Delaunay simplex with a closed
circumball containing only the vertices of the simplex is strongly Delaunay. Figure 2.1 shows Delaunay and
non-Delaunay simplices. For constructing the Delaunay triangulation, it is mandatory to repair configurations
violating the circumball criterion such as shown on the right of fig. 2.1. A frequent operation of use to fix
non-Delaunay simplices is performing a bistellar flip. Figure 2.2 visualizes 2-3 and 3-2 bistellar flips that
are commonly applied for generating a Delaunay triangulation. Each bistellar flip retriangulates the convex
region of adjacent simplices. For every bistellar flip, an inverse flip operation exists, e.g., the 2-3 flip is the
inverse operation to the 3-2 flip and vice versa. Thus, bistellar flips enable choosing between two connectivity
configurations. For one of the two configurations, the simplices affected by the flip satisfy the circumball
criterion. While bistellar flips can certainly ensure the adherence to the circumball criterion for all triangles
of a two-dimensional simplicial mesh, it is still an open question, if bistellar flips can guarantee the circumball
criterion for all tetrahedra of a three-dimensional simplicial mesh [Che+13b].

11

2-3 flip

3-2 flip

Figure 2.2.: The use of a bistellar 2-3 or 3-2 flip retriangulates a convex region defined by five points. The 2-3 flip
replaces two tetrahedra with a shared face by three tetrahedra around an interior edge. The 3-2 flip replaces three
tetrahedra with a common interior edge by two tetrahedra with a shared interior face.

Since bistellar flips can at least locally ensure the circumball criterion, they are a useful tool in Delaunay
based meshing. In the following, the local view on simplicial meshes serves as a basis to define the Delaunay
triangulation. A (d− 1)-simplex σ of a valid meshM (cf. section 2.1.1) either is part of a single d-simplex τ
or is shared by two distinct d-simplices τ and τ ′. The face σ is locally Delaunay iff. the open circumball of σ
neither contains a vertex from τ nor, if σ ≤ τ ′, contains a vertex from the opposite τ ′. For instance, the edge
connecting the two triangles to the left of fig. 2.1 is locally Delaunay, while the edge on the right of fig. 2.1
is not. This locality is a useful criteria for checking a Delaunay triangulation, as it is part of the following
Delaunay lemma [Che+13a]:

Delaunay Lemma. The valid d-dimensional simplicial meshM is Delaunay iff. the following equivalent state-
ments are true:

1. Every d-simplex τ ∈ T is Delaunay (i.e. fulfills the circumball criterion).

2. Every (d− 1)-simplex σ with σ ≤ τ for any τ ∈ T is Delaunay.

3. Every (d− 1)-simplex σ with σ ≤ τ for any τ ∈ T is locally Delaunay.

As geometry processing is not only concerned with the properties of the bare simplices but also with the
conformance of a triangulation to a given model shape, this section also covers the definition of triangulations
respecting user specified surfaces. In the meshing domain, a common way to specify a discrete input surface
is the piecewise linear complex [Che+13c]:

Piecewise linear complex. Let P be a finite set of linear cells. P is a piecewise linear complex (PLC) iff. it
satisfies the following conditions:

1. All the vertices and edges in P belong to a simplicial complex.

2. The boundary of each linear cell ι ∈ P consists of the union of linear cells from P.

3. If two distinct ι, κ ∈ P intersect, the union of linear cells in P forms the intersection, where all the cells
forming the union are of lower dimension than at least one of ι or κ.

The definition of PLCs covers different input geometries such as triangular surface meshes or point clouds
and even allows for the existence of holes. In fact, a PLC in R3 can include triangles, which are not part of
any polyhedron of the PLC. The expression dangling triangle denotes these triangles not properly connected
on the face level. Meshing tools such as TetGen [Si20] receive as input a PLC, typically without dangling

12

triangles, and produce a Delaunay mesh respecting the PLC. A Delaunay triangulation respecting a given
PLC P is denoted as the constrained Delaunay triangulation of P. For the constrained Delaunay property,
the local view of simplices again serves as a basis for the definition of the triangulation. Thus, the following
definition of a constrained Delaunay triangulation in R3 relies on the constrained Delaunay definition for a
single simplex [Che+13d]:

Constrained Delaunay. For a given PLC P, the k-simplex σ with k ≤ d is constrained Delaunay, if the vertices
of σ are also in P, σ respects P, and the open circumball of σ contains no vertex from P, which is visible from
any point of the relative interior of σ.

Constrained Delaunay Lemma. Let P be a PLC without dangling triangles andM be a 3-dimensional simpli-
cial mesh. M is a constrained Delaunay triangulation respecting P iff. the following equivalent statements are
true:

1. Every tetrahedron τ ∈ T is constrained Delaunay.

2. Every facet σ with σ ≤ τ for any τ ∈ T not included in a polygon in P is constrained Delaunay.

3. Every facet σ with σ ≤ τ for any τ ∈ T not included in a polygon in P is locally Delaunay.

While the constrained Delaunay triangulation is a vital tool in geometry processing, it is important that
for some PLCs it is impossible to generate a constrained Delaunay triangulation without creating additional
vertices. A prominent example for such a PLC is Schönhardt’s polyhedron [Sch28], which can be obtained
by rotating one end of a triangular prism. As the argumentation of Schönhardt’s polyhedron generalizes to
prisms over n-gons with n ≥ 3 [Ram03], there are many polyhedra that do not admit a triangulation without
adding new vertices. In order to efficiently treat PLCs that do not directly admit a constrained Delaunay
triangulation, a common strategy is boundary recovery. The boundary is recovered by adding new vertices
to the PLC until each segment is strongly Delaunay and inserting facets of the PLC incrementally into the
Delaunay triangulation of the vertices in the PLC [She02a]. The remaining tetrahedra on the outside can
then be removed by propagating a marking from the outside, if the PLC is closed.

2.1.3. Harmonic Triangulation

Similar to the Delaunay triangulation, the harmonic triangulation is constructed with criteria that shall be
satisfied by the simplicial mesh. Alexa [Ale19] posed the notion of harmonic triangulation, which is related
to the Delaunay triangulation. While constructing the Delaunay triangulation involves adherence to the
Delaunay criterion, the construction of the harmonic triangulation means to solve a minimization problem.
For each element τ ∈ T an energy function can be evaluated for the minimization problem. The foundation
of the energy function E is Dirichlet energy. Dirichlet energy is typically defined over a function g mapping
from a continuous domain Ω:

E(g) =
1

2

∫︂
Ω
∥∇g(x)∥2dx, where g : Ω→ R. (2.8)

In order to formulate harmonic triangulations, Alexa [Ale19] uses a discretized formulation of Dirichlet
energy. As a valid d-dimensional triangulation approximates Ω with a set of simplices, the discretized formu-
lation is a sum of the function values fτ for each simplex τ ∈ T:

E(f) =
1

2

∑︂
τ∈T

vτ∥fTτMd(XτMd)
−1∥2 = 1

2

∑︂
τ∈T

fTτLτ fτ =
1

2
fTLTf, (2.9)

13

where Lτ and LT are the discrete Laplace-Beltrami operators of τ and T, respectively. The specific entries of
the matrix Lτ ∈ R(d+1)×(d+1) can be expressed as the common cotan weights:

(Lτ)ij =
1

d2vτ
aiajnT

i nj . (2.10)

As the trace of the Laplace-Beltrami operator tr(Lτ) is related to the harmonic index [BS07] used for charac-
terization of two-dimensional Delaunay triangulations, minimization aims at reducing the trace. The trace
is the sum of diagonal entries given by eq. (2.10):

tr(Lτ) =
1

d2

∑︁d
i=0 a

2
i

|vτ |
(2.11)

tr(LT) =
∑︂
τ∈T

tr(Lτ). (2.12)

As a result, the trace tr(Lτ) provides a scale dependent shape measure for a simplex τ . Alexa [Ale19] observed
that minimizing tr(Lτ) tends to produce equilateral simplices and leads to good shape quality. Dropping the
dimensional constant for tr(Lτ) (see eq. (2.11)) leads to the harmonic index η:

η(τ) =

∑︁d
i=0 a

2
i

|vτ |
. (2.13)

Since the aim for harmonic triangulations is to minimize tr(LT), it is reasonable to use η for operations
reducing the trace. One operation to reduce the trace is performing bistellar flips (cf. section 2.1.2). A
bistellar flip is a harmonic flip, if it reduces tr(LT). Due to the minimal roughness theorem for Delaunay
triangulations posed by Rippa [Rip90], every Delaunay edge flip in a two-dimensional simplicial mesh is also
a harmonic flip. Alexa [Ale19] explores the 3-2 and 2-3 flips for the interrelation of the circumball criterion
to harmonic flips and finds that

either the harmonic flip is also a Delaunay flip,

or the harmonic flip creates a local triangulation of two tetrahedra, where the Delaunay flip would
create a local triangulation of three tetrahedra.

Thus, the harmonic triangulation tends to consist of fewer elements than the Delaunay triangulation. This
is an interesting property for numerical methods, because each element costs computationally. In particular,
the relationship of the trace, i.e. the minimization function, to element shape is a beneficial property, because
ill-shaped elements are avoided so that numerical methods can successfully be applied on harmonic trian-
gulations. For the construction of the harmonic triangulation, Alexa [Ale19] finds that prioritizing harmonic
flips by their reduction of the trace leads to goods shape quality. Therefore, it is a good strategy to always
perform the harmonic flip, which is most beneficial for the reduction of the trace until no more harmonic flips
can be performed.

For the optimization of vertex positions, Alexa [Ale19] proposes a gradient descent scheme. Given a sim-
plex τ ∈ T, its gradient can be computed as:

∂ tr(Lτ)
∂Xτ

=
1

d!
(XτMd)

−TMT
d(tr(Lτ)I− 2Lτ). (2.14)

In order to perform gradient descent iterations, the gradient can be evaluated for each simplex, assembling
a vector of update directions for the vertices V of the mesh. As the mesh shall be valid after the gradient
descent step, a binary search along the direction of a steepest descent finds an inversion free step size λ for
vertex relocation. Brent’s method then determines an optimal step size for the minimization of tr(LT) within
the interval [0, λ].

14

2.2. APIs, Algorithms and Data Structures for Massively Parallel Processing

Over the years, massively parallel processors have gained substantially in their importance. Today, GPUs are
one of the most famous accelerators for various time-critical or compute intensive tasks. A popular choice to
program GPUs is NVIDIA’s CUDA API. Therefore, section 2.2.1 provides a concise introduction to GPU com-
putation and CUDA. As some primitive algorithms are well-established building blocks for more sophisticated
massively parallel algorithms, section 2.2.2 presents a collection of these foundational algorithms that is rel-
evant to this thesis. Processing unstructured meshes on a GPU should rely on a massively parallel method
to compute the connectivity of facets. For this reason, section 2.2.3 describes a mesh data structure for the
purpose of massively parallel processing.

2.2.1. Massively Parallel GPU Computation and CUDA

As one of the core goals of computer graphic applications is realistically visualizing complex 3D scenes in
real-time, a lot of processing power is required to render several images per second that display a scene
with geometrically detailed objects and realistic lighting. The more complex the geometric detail or the
lighting of a scene becomes the more processing power is required for real-time rendering, which imposes
a tradeoff between realism and interactivity. The intention to mitigate this tradeoff through increasing the
available processing power for rendering, is the driving factor in the invention and steadily improvement of
GPUs. Massively parallel GPUs are an apt accelerator for 3D rendering, because the shading of fragments
and colors of pixels can be computed performing many small independent calculations that map well to the
GPU architecture coupling many simple processors.

While GPUs initially served as a specific-function hardware to accelerate the 3D graphics pipeline, their
impressive aggregated processing power was much sought-after in other fields than rendering such as scien-
tific computing. For this reason, the chip industry evolved the GPU from specific-function hardware to the
general purpose graphics processing unit (GPGPU) that is programmable and nowadays a ubiquitous accel-
erator to be found in present-day computers. Like forecast by Nickolls and Dally [ND10] in 2010, the GPGPU
architecture is now remarkably widely used and one of the key workhorses for many compute-intensive fields
such as high-performance computing [RGD22] or deep learning [MV19].

High-level APIs for parallel computing such as OpenCL [Khr23] or CUDA [NVI23a] enable the convenient
control of GPGPUs and the implementation of massively parallel algorithms. The algorithms presented in
this thesis are prototypically implemented with CUDA due to its superior performance [Asa+21]. Whereas
this choice restricts the implementation to NVIDIA GPUs only, the algorithms do not require CUDA-specific
programming primitives but can be executed on most modern GPUs. Despite the convenience due to the
usage of an API, one needs to respect the memory locality for data management to design efficient massively
parallel algorithms. While all the high-level APIs for GPU programming provide similar models for the locality
of memory, the following outlines the methodology how CUDA organizes threads and memory in a hierarchy.

The well-known taxonomy by Flynn [Fly72] classifies GPUs as single instruction multiple data (SIMD)
processors. However, the CUDA API organizes processing in a single instruction multiple threads (SIMT)
programming model, where a thread is the lowest level of abstraction for performing computations as well
as writing to or loading from memory [NVI22b]. While in a SIMD model typically a single thread performs
calculations on multiple data using vector registers and processing units, in a SIMT model many threads
perform the same operations on arbitrary data. The CUDA API organizes threads in a grid of blocks, as can
be seen in fig. 2.3. The CUDA API successively assigns several of the N blocks of a grid to a streaming multi-
processor, which executes the threads of the assigned block. Each block consists of up to 32 warps. One warp
includes 32 parallel threads, which may follow divergent control flow paths though the best performance
is achieved, when all the threads perform the same instructions as frequently as possible. Thus, branching

15

grid

block 0

… block N−1
warp

… warp

shared memory

registers registers

thread 0 … thread 31

global memory

local
memory

local
memory

Figure 2.3.: The structure of memory access and thread execution in CUDA.

should be avoided in a GPU program. As a benefit of the SIMT model, each thread accesses its own registers
for fast data management. Within a warp, threads can exchange data very efficiently using warp-level syn-
chronization. In order to allow for data exchange within a block, each block includes shared memory that
can be accessed by the individual threads associated with the block.

The CPU can allocate and copy memory to global GPU memory to provide an interface from CPU to GPU
data. In addition, GPU global memory enables threads to exchange data between blocks and to store results
that can be loaded by the CPU, when execution is finished. If a GPU-program requires more memory than can
be maintained in the registers, each thread can allocate a small limited portion of global memory as its own
private local memory that can only be used by the associated thread. The local memory incurs slower access
performance but provides much more space than registers. In general, the access to registers and shared
memory is fast and can be performed in only a few cycles, whereas the access to global memory potentially
requires hundreds of cycles and is much slower. Therefore, a CUDA program should be designed so that its
memory is maintained on the storage locations with fast access to well exploit the processing power of a GPU.

2.2.2. Common Algorithms for GPU Programming

Achieving good exploitation of the processing power of GPUs not only depends on smart programming design
choices such as the careful consideration of the local proximity of data access or the avoidance of diverging
control flows, but also requires the implementation of suitable algorithms. As many problems in computer
science involve typical sub-problems such as sorting, some primitive massively-parallel algorithms are estab-
lished standard methods, today. One of the early attempts to formulate data parallel algorithms for SIMD

16

devices dates back to 1986, when Hillis and Steele [HS86] specified algorithms for solving common prob-
lems in a SIMD manner and concluded that these algorithms provide a broad applicability. While many
massively parallel algorithms for problems such as sorting saw continuous improvement over the years, other
algorithms are now well-established standards. Libraries such as Thrust [NVI23c] or Cub [NVI22a] provide
efficient implementations of the well-established algorithms. The implementations for the evaluations in this
thesis rely on Thrust. This section covers the massively-parallel algorithms for reduction, prefix scan, and
stream reduction, because they are frequently performed by the geometry processing algorithms contributed
by this thesis.

Reduction If an algorithm requires the computation of one value on an entire array of values, a reduction
scheme can be used to execute this computation is parallel. Hillis and Steele [HS86] describe a parallel
reduction scheme that is frequently used, today. Figure 2.4 shows an example of the reduction scheme for
computing the sum of an array of 16 entries x0, . . . , x15. Their scheme organizes the operator application to
the elements in a binary tree so that each level of the tree can be executed in a parallel pass. Every processor
performs computations on only few elements and writes the result to another array until one entry contains
the final result. In this way, the result for an array of N entries can be obtained in O(ldN) parallel passes.
There are various ways to structure the binary tree. In the example, the structure of the binary tree is such
that the final result is in the first entry x0.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1∑︁
i=0

xi x1
3∑︁

i=2

xi x3
5∑︁

i=4

xi x5
7∑︁

i=6

xi x7
9∑︁

i=8

xi x9
11∑︁

i=10

xi x11
13∑︁

i=12

xi x13
15∑︁

i=14

xi x15

3∑︁
i=0

xi x1
3∑︁

i=2

xi x3
7∑︁

i=4

xi x5
7∑︁

i=6

xi x7
11∑︁
i=8

xi x9
11∑︁

i=10

xi x11
15∑︁

i=12

xi x13
15∑︁

i=14

xi x15

7∑︁
i=0

xi x1
3∑︁

i=2

xi x3
7∑︁

i=4

xi x5
7∑︁

i=6

xi x7
15∑︁
i=8

xi x9
11∑︁

i=10

xi x11
15∑︁

i=12

xi x13
15∑︁

i=14

xi x15

15∑︁
i=0

xi x1
3∑︁

i=2

xi x3
7∑︁

i=4

xi x5
7∑︁

i=6

xi x7
11∑︁
i=8

xi x9
11∑︁

i=10

xi x11
15∑︁

i=12

xi x13
15∑︁

i=14

xi x15

Figure 2.4.: Reduction for computing the sum of an array of 16 elements.

Prefix scan A prefix scan applies an operator to all the preceding values of an array entry. If the prefix scan
additionally applies the operator to the array entry itself, then the prefix scan is inclusive. Otherwise, the
prefix scan is exclusive. Blelloch [Ble90] formulates an efficient parallel scheme of a prefix scan. Firstly, a
parallel reduction calculates the sum of values using the binary tree structure of Hillis and Steele [HS86].
Subsequently, the prefix sum is obtained by reverse traversal of the binary tree. This requires to keep all of
the intermediate results of the reduction. Figure 2.5 shows the parallel passes for the computation of the
prefix of an array of 16 entries x0, . . . , x15. The traversal starts at the root node and replaces its entry with
the identity element for the operator of choice. Throughout traversal, every left child receives the value of

17

its parent. Every right child receives the result of applying the operator to the value of the parent and the
left child. When traversal terminates, the resulting array contains the exclusive prefix scan of the input array.
If an inclusive prefix scan shall be computed, it suffices to left shift the obtained array and insert the total
sum into the last array entry. The efficiency of a CUDA implementation of the parallel prefix scan can be
significantly improved e.g. by following the advice of Harris et al. [HSO07].

0 x1
3∑︁

i=2

xi x3
7∑︁

i=4

xi x5
7∑︁

i=6

xi x7
11∑︁
i=8

xi x9
11∑︁

i=10

xi x11
15∑︁

i=12

xi x13
15∑︁

i=14

xi x15

0 x1
3∑︁

i=2

xi x3
7∑︁

i=4

xi x5
7∑︁

i=6

xi x7
7∑︁

i=0

xi x9
11∑︁

i=10

xi x11
15∑︁

i=12

xi x13
15∑︁

i=14

xi x15

+
∑︁7

i=0xi

0 x1
3∑︁

i=2

xi x3
3∑︁

i=0

xi x5
7∑︁

i=6

xi x7
7∑︁

i=0

xi x9
11∑︁

i=10

xi x11
11∑︁
i=0

xi x13
15∑︁

i=14

xi x15

+
∑︁3

i=0xi +
∑︁11

i=8xi

0 x1
1∑︁

i=0

xi x3
3∑︁

i=0

xi x5
5∑︁

i=0

xi x7
7∑︁

i=0

xi x9
9∑︁

i=0

xi x11
11∑︁
i=0

xi x13
13∑︁
i=0

xi x15

+
∑︁1

i=0xi +
∑︁5

i=4xi +
∑︁9

i=8xi +
∑︁13

i=12xi

0 x0
1∑︁

i=0

xi
2∑︁

i=0

xi
3∑︁

i=0

xi
4∑︁

i=0

xi
5∑︁

i=0

xi
6∑︁

i=0

xi
7∑︁

i=0

xi
8∑︁

i=0

xi
9∑︁

i=0

xi
10∑︁
i=0

xi
11∑︁
i=0

xi
12∑︁
i=0

xi
13∑︁
i=0

xi
14∑︁
i=0

xi

+x0 +x2 +x4 +x6 +x8 +x10 +x12 +x14

Figure 2.5.: Prefix scan for computing the exclusive prefix sum of an array of 16 entries using the binary tree of the
reduction from fig. 2.4.

Stream compaction A stream compaction shrinks an input array to all the entries that satisfy a prede-
termined predicate. This is useful, when an algorithm shall compact an arbitrarily large array to a sig-
nificantly smaller array. While some stream compaction approaches rely on binary search [Hor05], many
approaches [Hug+13; Bak+17] rely on a parallel prefix scan method. Algorithm 1 outlines the stream
compaction method that relies on an exclusive prefix sum and is used in this thesis. The evaluation of the
predicate can be performed in a parallel pass over array entries, saving the results in a predicate array. If
the predicate is true for the array entry i, the i-th entry of the predicate array contains a 1. Otherwise, the
i-th entry contains a 0. As this structure resembles a marking of elements, the predicate array is also called
marking array, in this thesis. An exclusive prefix sum on the marking array produces offset positions, which
enables to write the elements satisfying the predicate to a new array in an order preserving way. In order
to obtain the number of to-be-copied elements, the exclusive prefix sum method computes the total sum
e.g. by using an additional array entry at the end of the resulting array for the prefix sum. In this way, the
stream compaction can allocate an array of exactly the required size for compaction. A parallel pass then
writes all the marked entries of the input array to the offset positions in the compacted array. For copying
mesh elements such as triangles or tetrahedra, the offset positions can be used to re-index vertices so that
the resulting mesh holds a valid indexation, as presented by Wald [Wal21].

18

Algorithm 1 Algorithm for a massively parallel stream compaction
1: procedure streamCompaction(Array x, Predicate P)
2: N ← x.size()
3: MarkingArray m← allocate(N)
4: for i← 0, . . . , N − 1 do ▷ In parallel
5: if P(xi) then
6: mi ← 1
7: else
8: mi ← 0
9: end if

10: end for
11: offsets← allocate(N + 1)
12: offsets← exclusivePrefixSum(m, 0, N)
13: Array dest← allocate(offsetsN)
14: for i← 0, . . . , N − 1 do ▷ In parallel
15: if mi = 1 then
16: k ← offsetsi

17: destk ← xi

18: end if
19: end for
20: return dest
21: end procedure

2.2.3. TCSR Simplicial Mesh Data Structure

A geometry processing application using meshes typically relies on a data structure to maintain the mesh.
Since RQ2 aims at exploring the capabilities of massively-parallel processing for geometry processing applica-
tions, it is important to choose a data structure, which supports fine-grained parallelism. One key challenge
for the use of massively-parallel processors is efficient use of memory, because parallel computations of up to
millions of threads oftentimes involves a considerable amount of memory occupations allocating arrays for
inputs and results. Another key challenge is to provide a data layout for efficient access. Massively-parallel
threads can suffer from high memory bandwidths. Thus, the used data structure shall be optimized for
coalescing memory accesses is important to achieve high performance.

In order to adhere to the requirements of massively-parallel processing, the ternary compressed sparse
row (TCSR) mesh data structure by Mueller-Roemer et al. [MS18; Mue20] enables maintaining a simplicial
mesh (cf. section 2.1.1) in a suitable manner for massively-parallel processors such as GPUs. Henceforth,
this data structure is referred to as TCSR mesh. TCSR mesh facilitates massively-parallel mesh modeling
applications through the quick computation of connectivity relationships. The computation of simplicial
element connectivity relationships can be classified into two categories [MAS17]:

1. Top-down: Mapping every k-simplex τ to every (k − n)-dimensional face σ with σ ≤ τ and 0 < n < k.

2. Bottom-up: Mapping every (k−n)-dimensional face σ to every k-simplex τ with σ ≤ τ and 0 < n < k.

Top-down relationships can be computed with boundary operators ∂k, while bottom-up relationships are
computed with coboundary operators dk. If a boundary or coboundary operator computes indirect rela-
tionships with n > 1, the superscript of the operators ∂n−1

k and dn−1
k denotes the dimension of the faces.

Figure 2.6 shows an overview of the boundary and coboundary operators. For instance, ∂13 represents the
mapping of tetrahedra to their six edges. A matrix expresses the connectivity relationships, where row i
represents the k-simplex of index i and column j represents the (k − n)-face of index j. If the ijs entry of
the matrix is equal to 1, then the (k − n)-face of index j is part of the k-simplex of index i. A sign is used
to express the orientation of a face to a simplex. Thus, the possible values for an entry in the connectivity

19

matrix are in {−1, 0, 1}. As a result, the connectivity matrix is ternary. In order to manage memory effi-
ciently, both operator types (boundary and coboundary) organize the resulting connectivity relationships
in the compressed sparse row array layout, which only saves non-zero entries. Combined with the ternary
matrix representation, this leads to a ternary compressed sparse row layout.

0-simplex 1-simplex 2-simplex 3-simplex
∂3∂2∂1

d3d2d1

d13d12

d23

∂13∂12

∂23

Figure 2.6.: Boundary ∂nk and coboundary dnk operators. The solid lines represent operators which are always stored,
while the dashed lines represent operators that are computed and stored on demand.

As the to-be-allocated memory for boundary operators is predictable, e.g. each tetrahedron includes four
vertices, a boundary operator returns an array of face indices. However, the to-be-allocated memory for
coboundary operators is not a priori clear, e.g. one vertex can be part of 20, 21 or any other number of tetra-
hedra. For this reason, coboundary operators require to determine the number of non-zero entries for each
k-simplex before allocating a fittingly-sized array. While every coboundary operator can be retrieved by trans-
posing its corresponding boundary operator dk = ∂T

k [MAS17], the computation of some chained coboundary
operators can be accelerated by filling larger arrays with sorted tuples and subsequently removing the dupli-
cates [MS18]. The use of the Bin-BCSR* matrix data structure [Web+12; MS18] for coboundary operators
provides efficient memory management optimized for access coalescing of massively-parallel processors such
as GPUs.

Besides offering fast modeling, simulation applications benefit from massively-parallel assembly of the
stiffness matrix, which can be a considerable overhead for simulations [MS18]. This is a useful benefit for
providing fast simulation feedback (see RQ3), as it reduces the run time of simulation applications.

2.3. Manipulating Geometry with Cage-based Deformation

While the choice of efficient data structures and algorithms enables the fast processing of meshes, the user
needs a way to interactively model the geometry, i.e., the prototype. The modeling step typically is a part
of CAD. This section presents a quick and versatile approach to model meshes using an enclosing cage. The
shape of the geometry is bound to the cage. As deforming the cage triggers deformation of the geometry, this
approach is denoted as cage-based deformation.

20

Construct cage Bind cage to model Pose model
Figure 2.7.: Cage-based deformation workflow: First, designers construct a cage. Calculating coordinates for the
vertices of the model (see influence of the red vertex) binds the cage to the model. As a result, each cage vertex
influences a nearby part of the model and users can intuitively pose the model.

In general, the cage-based deformation workflow follows three steps (see fig. 2.7). First, the cage C for the
geometryM must be constructed, which can be a laborious task. To bind the cage C to the geometryM for
deformation control, cage-based deformation methods commonly use generalized barycentric coordinates.
Altering the positions of the cage vertices c relocates the vertices v of the geometryM, while its connectivity
remains unchanged.

2.3.1. Matrix Notation for Cage-based Deformation

As cage-based deformation uses linear affine mappings, this thesis introduces a common matrix notation for
the available methods. A cage C is a manifold surface mesh consisting of vertices ci ∈ R3, i = 1, . . . , NC
and polygons fi, i = 1, . . . , NF. The matrix C = (c1, . . . , cNC)

T ∈ RNC×3 includes all the vertices of C. The
polygonal faces fi ∈ N × . . . × N include integers of cage vertices into C, form the boundary of the cage
∂C ∋ fi and define the interior space of the cage Int C, where ∂C∩ Int C = ∅. If f is a triangle or quadrilateral
(quad), this thesis denotes it as t or q, respectively. The meshM is the to-be-deformed geometry. As cage-
based deformation can be applied to several mesh types, the notation should cover surface as well as volume
meshes. Thus, M consists of geometrical primitives P and vertices vi ∈ R3, i = 1, . . . , NV. The matrix
V = (v1, . . . , vNV)

T ∈ RNV×3 contains all the vertices ofM. The prime symbol indicates deformed vertices
v′. Deformations are limited to a certain domain Ω. Typically, it holds that Ω = C but some deformation
methods allow for extrapolation from the cage. A point in the domain is denoted as x ∈ Ω.

2.3.2. Generalized Barycentric Coordinates

Since Möbius [Möb27] first formulated barycentric coordinates, the concepts of barycentric coordinates and
interpolation have been widely used and extended. Applications of such generalized barycentric coordi-
nates (GBC) are manifold including color interpolation [Mey+02], Gouraud and Phong shading [HF06],
rendering of quadrilaterals [HT04], texture mapping [DMA02], texture synthesis [Tak+10], image warp-
ing [HF06; War+07; SHF13; MT23], image composition [Far+09], mesh parameterization [Flo97], shape
deformation [Jos+07; JSW05; LS08; Lip+07; WG10], deformation transfer [BWG09], gradient mesh sim-
plification [LJH13], generalized Bézier surfaces [LS07; LD89], surface design [SV18], and finite element
applications [AO06; MP07; SM06; TS08; WBG07]. While this thesis focuses on the essentials for cage-based

21

deformation, the reader is referred to the survey paper by Floater [Flo15] and the book by Hormann and
Sukumar [HS17] for an in-depth overview on GBC.

Early work on GBC focused on 2D and many constructions have been proposed over the last 50 years.
Wachspress coordinates [Wac75] are rational functions that can be expressed with a simple closed form
[Mey+02], but they are not well-defined for arbitrary simple polygons. Likewise, discrete harmonic coor-
dinates [PP93; Eck+95] are not well-defined on finite elements, while they are constructed by a piecewise
approximation of the Laplace equation. Floater [Flo03] construct mean value coordinates, which also have
a simple closed form and are well-defined for any concave polygon [HF06]. They are positive within the
kernel of star-shaped polygons, possess the Lagrange property, and are smooth everywhere in the plane,
except for polygon vertices at C0-continuities. Alternative closed-form GBC for concave polygons are metric
[MLD05; SM06],moving least squares [MS10], Poisson [LH13], cubic mean value [LJH13], andGordon–Wixom
[GW74; Bel06]. There even exists a whole family of coordinates that are well-defined for degenerate poly-
gons [YS19], but all these constructions can be negative inside the domain. Positive coordinates for arbitrary
concave polygons include positive mean value [Lip+07], positive Gordon–Wixom coordinates [MLS11], and
power coordinates [Bud+16], but they are not smooth. Blended barycentric coordinates [APH17] overcome this
issue, but they require on an embedding triangulation. Non-negative coordinates with at least C1-continuity
for arbitrary polygons include harmonic [Jos+07],maximum entropy [HS08],maximum likelihood [CDH23],
positive and smooth Gordon–Wixom [Wan+19], iterative [DCH20], and local barycentric coordinates [Zha+14;
TDZ19], but they do not exhibit a closed form and must be approximated with a numerical method.

Some of the 2D constructions can be extended to 3D, which is required for cage-based deformation in
3D, and this thesis reviews these constructions in detail in section 6.4.7. GBC provide a set of functions
λi : R3 → R, i = 1, . . . , NC to interpolate the interior of C. With the use of these functions, one can express
any point inside C as an affine sum of cage vertices:

NC∑︂
i=1

λi(v)ci = v, where
NC∑︂
i=1

λi(v) = 1.

Cage-based deformation capitalizes on these interpolation functions, in order to determine the vertex po-
sitions ofM, whenever the user deforms C. Thus, calculating the coefficients λi(vj), i = 1, . . . , NC for every
vertex vj , j = 1, . . . , NV ofM is an essential pre-processing step of cage-based deformation. This stage is
frequently denoted as bind time, because it binds the to-be-deformed model to C. After bind time, the vertex
positions ofM can be adjusted to the deformed cage:

NC∑︂
i=1

λi(vj)c′i = v′j . (2.15)

For brevity, λij denotes the coefficient λi(vj). Several properties govern the resulting deformation quality.
Non-negativity is an important property, because it guarantees that the deformed vertices are located inside
C′. In addition, the coefficients λij should vary smoothly, in order to provide shape preservation. On the
boundary of C, the functions λi should be linear over the polygons f . In summary, high-quality cage-based
deformation control is achieved, if the functions λi satisfy the following properties:

• Reproduction:
∑︁NC

i=1 λi(x)ci = x,∀x ∈ Ω

• Partition of unity:
∑︁NC

i=1 λi(x) = 1, ∀x ∈ Ω

• Non-negativity: λi(x) ≥ 0, ∀x ∈ Ω

• Smoothness: λi ∈ C∞, ∀i = 1, . . . , NC

22

• Linearity on ∂C: λi is linear on each cage polygon f

• Lagrange property: λi(cj) = δij , where δij is the Kronecker delta

• Locality: λi only influences regions nearby ci, i.e., λi(x) vanishes if x is far away from ci

After a set of GBC λij is determined, the user can pose the model by relocating the cage vertices, i.e.,
control handles. Let us suppose thatWij = λij so thatW ∈ RNC×NV . Then, posing the model follows a simple
deformation scheme:

V′ = WTC′. (2.16)

Most deformation approaches using cages only rely on eq. (2.16) to pose amodel in accordance to C. However,
if cages are combined with other control structures, other update schemes such as linear blend skinning are
used.

2.3.3. Linear Blend Skinning

The linear blend skinning (LBS) method is typically used for deformation using skeletal control structures.
In LBS, several transformations are applied at once as a “blend” to a point in space. Let us consider the
coefficients λij as interpolating weights. A set of N transformations is applied to a vertex vj as follows:

v′j =
N∑︂
i=1

λij(Livj + ti) =
N∑︂
i=1

λijTi

(︃
vj
1

)︃
, (2.17)

where Li and ti are the linear and translation parts of the transformation Ti, respectively.
As Jacobson [Jac14] pointed out, cage-based deformation using GBC is a special case of LBS, if transfor-

mations applied to cage vertices are restricted to translations. Through re-arranging, eq. (2.15) for adjusting
the model vertices to the deformed cage matches eq. (2.17):

v′j =
NC∑︂
i=1

λijc′i =
NC∑︂
i=1

λijc′i + λijci − λijci =
NC∑︂
i=1

vj + λij(c′i − ci)

=

NC∑︂
i=1

λij(Ivj + ti).

With the use of LBS, a convenient update scheme for cage-based deformation can be obtained. When the
coordinates λij are determined after bind time, the LBS matrix M ∈ RNV×4NC can be assembled:

M =

⎡⎢⎣ λ11(vT1 , 1) . . . λNC1(vT1 , 1)
...

λ1NV(vTNV
, 1) . . . λNCNV(vTNV

, 1)

⎤⎥⎦ .
Whenever the user deforms the cage C at pose time, it suffices to assemble the transformation matrix

T = ((I, t1)T, . . . , (I, tNC)
T)T ∈ R4NC×3. The model deformation using LBS can then be calculated as a simple

matrix product:
V′ = MT.

23

2.4. Direct Volume Rendering of Unstructured Grids

After a numerical method such as the FEM performed calculations on a volumetric mesh, users typically wish
to explore the results on the boundary as well as the inner structures of a volumetric mesh. DVR allows for
the visualization of the inner structures of a geometry. Today, many important visualization applications such
a computer tomography or post-processing in rapid prototyping rely on DVR.

The most commonly used approach for DVR is ray marching (see fig. 2.8) that was introduced by Drebin et
al. [DCH88] for structured voxel grids in 1988. Like in the well-known raytracing technique, the camera emits
rays through the scene to render a 2D image. The key aspect of ray marching to visualize inner structures is
tracing rays within the volume of an object. This allows the interpolation of scalar values that are discretely
defined inside the object. The ray marching technique performs sampling at discrete spatial points along
the view rays. For regular voxel grids, it is sufficient to sample the scalar field at all the voxels intersecting
a ray, whereas unstructured grids such as unstructured tetrahedral meshes (cf. section 2.1.1) require more
sophisticated algorithms and an acceleration structure to quickly confine the set of potentially intersecting
primitives.

Sampling rate

Camera
Image

Object

Figure 2.8.: In raymarching, the camera emits view rays
through the object. The scalar field is sampled at sam-
pling points (red) along the rays.

For unstructured grids, DVR places sampling points
along view rays at a certain sampling rate that is ei-
ther constant or adaptive to the scalar field. Typically,
an interpolation scheme such as barycentric interpo-
lation approximates a scalar value using the spatially
discrete scalar field. A transfer function t : R → R4

maps the interpolated scalar value to color (radience)
crgba = (r, g, b, α)T in red, green, blue and alpha (RGBA)
format. Through specification of the transfer function,
the user controls the visualization to highlight the scalar
values of interest [Lju+16]. After computation of the
transfer function, the resulting color value needs to be
adapted to the sampling rate, because the larger the step size along the ray the more material of the object is
pervaded resulting in a more opaque color. The adaption of the color value to the sampling rate is achieved
with the use of alpha correction [Eng+04]:

α̃ = 1− (1− α)
∆t

∆tmin ,

where∆t is the current sampling rate and∆tmin is the minimal sampling rate used for computing the transfer
function.

The application of alpha correction yields a corrected color value c̃rgba = (r, g, b, α̃)T for a single sampling
point on the ray. As DVR creates many sampling points for each ray, a scheme needs to merge the sampled
color values along each ray to one color value. A color compositing scheme is the typical choice for this
purpose. Typically, linear compositing based on the corrected alpha values is used [Kur11]:

c̃rgbaout = (1− α̃)c̃rgbain + α̃c̃rgbasample,

where c̃rgbain is the incoming color obtained from the previous samples along the ray and c̃rgbasample is the current
sample.

Typically, DVR emits one view ray per image pixel. The sampling rate governs the number of samples
for each ray. Computation of the pixel colors amounts to interpolating the scalar field for each sample and
compositing the corrected color values until the color becomes opaque or every sample has been processed.

24

Thus, the sampling rate substantially influences the rendering performance. For accurate rendering results,
users benefit from a sampling rate. However, as a high sampling rate leads to many samples per frame, it
leads to reduced run time performance. Thus, DVR imposes an inherent tradeoff between rendering quality
and run time performance. In order to provide an interactive visualization, the DVR should be accelerated
with present day GPUs. Since the computation of a color for a ray is independent from the other rays,
parallelization of DVR typically processes rays simultaneously.

25

3. Related Work

This chapter highlights prior work on unstructured volumetric meshes, which is related to VP. As the term
“mesh editing” is associated with many different geometry processing tasks, this chapter begins with a dis-
cussion of the scope of mesh editing in section 3.1. Optimizing and re-meshing a mesh for adaptation to
numerical simulation is an important field of related work that is discussed in section 3.2. Related work on
user-interactive editing operations of volumetric meshes appears in section 3.3. Interactive deformation of
geometry has received a lot of attention in the literature, which is briefly discussed in section 3.4. Section 3.5
provides an overview on the available methods to create a cage for deformation control. The cage coordinate
types for cage-based deformation are reviewed in section 3.6. A frequently discussed method to accelerate
VP processes that performs the FEM on B-Reps is reviewed in section 3.7. Massively parallel post-processing
applications for unstructured volumetric meshes require a spatial data structure for acceleration, wherefore
the related work reviewed in section 3.8 addresses this topic. The DVR of unstructured volumetric meshes
exhibits a long history in the literature that is presented in section 3.9.

3.1. The Two Scopes of Mesh Editing

Numerous mesh editing tools [Cig+08; Ble23; Pla23] enable user-interactive editing of surface meshes
offering operations such as smoothing, repairing self-intersections, re-orientation of faces or deformation.
Some tool provide more advanced modeling functionality such as the merging and subtraction of surface
meshes [SS10a]. User-interactive modeling of geometry involves the orchestration of many mesh editing
operations, because changing the shape of the meshM typically requires the relocation of vertices V and
re-meshing the triangulation T. Therefore, modeling the meshM relies on the application of fundamental
mesh editing operations such as gradient-based relocation of vertex positions, edge refinement, edge/face
flips or edge collapses. While these fundamental mesh editing operations are typically not controlled by the
user, these fundamental operations classify as mesh editing on a low-level of abstraction. Consequently, the
term “mesh editing” can be associated with different operations. Which operations a user associates with the
term “mesh editing” highly depends on the user’s perspective and prior work experience.

As the term “mesh editing” is quite general and therefore allows for many interpretations, this section
draws the scope of mesh editing in the light of previous work. Jiang et al. [Jia+22] draw a wide scope
defining editing of unstructured meshes as executing primitive operations that change the connectivity of a
mesh. Following this definition, even fundamental meshing operations such as flips, element refinement or
collapsing edges classify as mesh editing operations. Many important algorithms such as mesh generation,
mesh adaptation or mesh improvement apply these fundamental operations, in order to produce a mesh that
satisfies certain predetermined or user-specified criteria. VP frequently involves the application of these algo-
rithms in the volumetric meshing step of the cycle. In particular, the editing of volumetric meshes frequently
needs to apply re-meshing to ensure that the mesh still fulfills the requirements of numerical simulation.
However, in the light of user-guided customization of geometry, the term “mesh editing” is rather associated
with interactive editing of the mesh on a high level of abstraction, where the user does not care about the
implementation details of meshing. Interactive mesh editing systems typically enable users to apply mesh
editing operations locally in an intuitive way, e.g., using control structures (see section 3.4).

27

In view of the two different levels of abstraction, the following categories describe the two different scopes
of mesh editing:

Low-level mesh editing: The low-level scope of mesh editing is an algorithmic point of view. An algorithm
performs many primitive operations that change either the vertices V or elements T of the meshM
until certain criteria are fulfilled. These algorithms are the foundation of high-level mesh editing and
their direct application is rather a task for domain experts.

High-level mesh editing: The user selects certain local parts of the mesh that represent a semantic meaning
in the eye of the user. For this purpose, the user wishes a control structure or a convenient method to
select semantic parts of the mesh. The user then specifies an editing operation on the selected parts of
the mesh. The interaction with the mesh is on a high layer of abstraction and does not reveal the actual
low-level meshing operations to the user.

This thesis addresses both scopes of mesh editing and presents massively parallel algorithms for low-level
and high-level mesh editing. The low-level algorithms presented in this thesis focus on mesh optimization
(see chapter 4) and re-meshing (see chapter 5). The related work on these topics appears in section 3.2. This
thesis presents high-level volumetric mesh editing algorithms in chapter 6 and the related work in that field
appears in section 3.3.

3.2. Mesh Optimization and Re-meshing of Unstructured Tetrahedral Meshes

The literature comprises a long history in investigating the adaptation and optimization of unstructured tetra-
hedral meshes. The earliest optimization methods performed Laplacian smoothing along with re-meshing,
but were superseded by optimization of pre-determined element quality metrics. Section 3.2.1 briefly de-
scribes this development. Further research revealed the potential of distortion energy metrics, which are
described in section 3.2.2. The operations to improve the quality of a mesh can be categorized into two
different groups [KS07]:

1. Vertex Relocation: Vertices are relocated to improve element quality but the connectivity of the mesh
remains unaltered

2. Re-meshing: While the coordinates of the vertices remain unchanged, the connectivity of the mesh is
altered, in order to improve the quality

As this thesis contributes massively parallel algorithms for mesh optimization, sections 3.2.5 and 3.2.6
review vertex relocation and re-meshing, respectively. This thesis also addresses boundary treatment of mesh
optimization and highlights related work about boundary treatment in section 3.2.7.

3.2.1. From Laplacian Smoothing to Optimizing Element Quality Metrics

Many mesh optimization methods use computational efficient Laplacian smoothing, relocat-
ing a vertex in the direction of the arithmetic average of the adjacent vertices [FO97; SV03;
Nea+06; Sha+16; Xi+21]. However, Laplacian smoothing does not strictly guarantee to pro-
duce a high(er)-quality or even an inversion-free mesh. When the local vicinity of a vertex
forms a concave region, Laplacian smoothing can reposition the vertex outside of this region
(see inset), which leads to inversions and a tangled mesh. In addition, the gradient of the
Laplacian does not vanish in general, which complicates finding appropriate termination cri-
teria.

28

Because of the shortcomings of Laplacian smoothing, previous work devised many different differentiable
quality metrics for an element of a mesh [She02b]. The key benefit of these quality metrics is that their
gradient allows for optimization using the method of steepest descent. Through consecutive relocation in the
direction of steepest descent, i.e. the inverted gradient, a local optimum for the mesh quality can be found.
Typically, element quality metrics evaluate a term that includes the determinant of an element’s Jacobian in
the denominator. As the Jacobian of an element is related to its signed volume/area (cf. section 2.1.1), the
gradient of the element quality metric prevents the inversion of elements. Knupp [Knu00] confirms the use
of the Jacobian as a building block for quality metrics of a finite element. Today, the element quality metrics
based on the Jacobian of an element are typically used in the context of the FEM [Sor+23]. Therefore, many
mesh optimization methods rely on distortion energies using the Jacobian. The subsequent section 3.2.2
discusses these distortion energies.

3.2.2. Distortion Energies for Mesh Optimization

Besides mesh improvement, energies minimizing global distortion are typically used for parameterization
tasks such as surface fitting or re-meshing. Hormann and Greiner [HG00] introduce the most isometric
parameterizations (MIPS). Originally, MIPS is intended for mapping a triangulation of data points to a trian-
gulation in the plane. As this mapping can result in needle-like triangles of low shape quality, MIPS provides
an energy of distortion, which can be minimized. In order to obtain triangles of good shape, the MIPS energy
measures the distortion of a given triangle from a reference ideal triangle. Since the Jacobian can be used to
express the deviation of a given element to an ideal element [Knu00], the MIPS energy DMIPS is computed
using the Frobenius norm ∥ · ∥F of the Jacobian:

DMIPS(τ) = ∥Jτ∥F∥J−1
τ ∥F =

tr(JTτJτ)
det(Jτ)

.

The MIPS energy is invariant to translation, orthogonal transformation and scaling. In addition, MIPS strictly
penalizes elements of near-zero volume, i.e., infinitesimally small volume, because its denominator consists
of the determinant of the Jacobian.

For support of a broader set of geometry processing tasks, Fu et al. [FLG15] extend MIPS to the advanced
MIPS (AMIPS) conformal energy DAMIPS that effectively measures distortion in 2D and 3D:

DAMIPS(τ) =
tr(JTτJτ)

det(Jτ)2/d
, where d ∈ {2, 3}.

For vertex relocation, they perform non-linear Gauss-Seidel iterations simultaneously on sets of non-adjacent
vertices. However, non-linear optimization methods typically impose slow run times and do not scale well to
meshes with many elements. For this reason, Rabinovich et al. [Rab+17] present a local/global algorithm
that scales to large data sets through replacing the non-linear energy with a simple proxy energy. The local
step calculates weights mapping gradients to the distortion of elements using the proxy energy. With the
weighted gradients, a global system can be efficiently assembled and solved. For solving the global system,
an initial inversion-free step size is found using the method of Smith and Schaefer [SS15].

As demonstrated by Hu et al. [Hu+18; Hu+20], the conformal AMIPS energy is effective in improving
ill-shaped elements On the contrary, harmonic triangulations provide a local order of bistellar flips with a
relationship to Delaunay flips (cf. section 2.1.3). As flips are locally ordered by energy reduction, it is possible
to formulate a massively parallel algorithm performing locally most beneficial flips that quickly improves
element quality (see section 4.4). Additionally, this thesis focuses on Delaunay-based methods, as harmonic
flips are related to Delaunay flips. The goal of this thesis is to achieve scalability of Delaunay-based methods
by proper parallelization.

29

It is worth to discuss the differences and commonalities of DAMIPS and η in terms of evaluating element
shape quality. Both DAMIPS and η penalize degenerate elements, because for both energies det(J) appears
in the denominator [Knu00]. While for η the denominator scales linearly with det J, the denominator of
DAMIPS is a cubic root function of det(J), which means that large volumes minimize the energy DAMIPS less
but small volumes lead to more penelization. Thus, both energies avoid element inversion, i.e. sign flip in the
volume of an element, while DAMIPS approaches infinity faster due to stricter penelization of low volumes.
Both energies are undefined for det(J) = 0 and both energies are minimal for the equilateral tetrahedron. As
an important difference, the DAMIPS energy is scale invariant but the harmonic index η scales with det(J).

3.2.3. Edge Collapse in Tetrahedral Meshes

admissible inadmissible

Figure 3.1.: Collapsing is inadmissible if the set
intersection of the two one rings of edge vertices
includes simplices that do not contain the to-be-
collapsed edge.

Pioneering works about coarsening triangle meshes such as
the progressive meshes by Hoppe [Hop96] inspired many
publications about the coarsening of tetrahedral meshes.
Staadt and Gross [SG98] explore the use of edge collaps-
ing for progressive tetrahedralizations and present various
geometric checks necessary for preserving consistency. They
check the oriented volumes of simplices to prevent degenera-
cies and inverted elements. In addition, they check for in-
tersections when collapsing boundary edges to prevent self
intersections. Dey et al. [Dey+99] detail the preconditions
for collapsing edges under which they preserve the topolog-
ical type of simplicial complexes up to the third dimension.
They show that only collapse operations that satisfy the link
condition (see fig. 3.1) are admissible. As an alternative to
collapsing edges, Chopra and Meyer [CM02] replace one tetrahedron with one vertex to rapidly reduce the
count of tetrahedra. This approach is only efficient for interior tetrahedra, because avoiding intersections at
the boundary is computationally expensive. Kraus and Ertl [KE03] present a solution for collapsing boundary
edges in a non-convex tetrahedral mesh. To prevent self-intersections they first convexify the mesh computing
the convex hull and subsequently check for inversions, whenever a boundary edge of the non-convex mesh is
collapsed within the convex hull. As tetrahedral re-meshing involves a variety of operators, Loseille and Me-
nier [LM14] propose a cavity-based re-meshing operator that embeds collapsing, refinement and face/edge
swaps. While the work of Loseille and Menier [LM14] addresses coarse-grained parallelization, the conflict
detection in section 5.1.3 is for fine-grained parallelization.

3.2.4. Applications of Tetrahedral Mesh Coarsening

In order to reduce workloads for scientific visualization, Cignoni et al. [Cig+00] simplify volume data col-
lapsing edges. They involve an error evaluation of scalar data attached to the tetrahedra to obtain accu-
rate visualizations. Similarly, Natarajan and Edelsbrunner [NE04] reduce workloads for visualizing large
datasets that represent density functions. They use a modification of the quadric error measure of Garland
and Heckbert [GH97] to prioritize collapse operations so that the density function is preserved while improv-
ing element quality. Many optimization methods for tetrahedral meshes collapse edges, because it removes
low-quality elements [Mis+09]. Tetrahedral mesh generators such as Tetgen [Si20] supply mesh coarsening
to adhere to a specified sizing function. A sizing function enables users to govern the size of elements. As
each tetrahedral element imposes computational cost for simulations, Cutler et al. [CDM04] collapse edges
in a mesh to reduce the number of elements, while removing the most low-quality elements. In order to

30

control the accuracy of numerical methods, the adaptation of unstructured grids frequently performs coars-
ening besides refinement [Ala+06]. Over the years, many tools for mesh adaptation emerged [Com+09;
Par22; Iba22]. The unstructured grid adaptation working group presents a concise overview and qualitative
benchmark of many of these tools [Iba+17].

3.2.5. Parallel Vertex Relocation

Many publications address parallel vertex relocation for tetrahedral mesh optimization. For fast run time
performance, Freitag et al. [FJP99] relocate batches of non-adjacent vertices in parallel, while preventing
element inversions. Parallel strategies such as the graph coloring by Deveci et al. [Dev+16] quickly obtain a
high-quality partition of the vertices into independent sets.

Benítez et al. [Ben+18] present an algorithm for smoothing and untangling meshes in a distributed envi-
ronment using domain decomposition. While domain decomposition results in coarse parallelism, this thesis
focuses on fine-grained parallelism that can be used in single machines and does not require a distributed
system for fast run times. Zint and Grosso [ZG19] describe a GPU-parallel algorithm that searches for an op-
timal vertex position on a coarse grid of candidate positions within the vertex’ one-ring neighborhood. While
this allows for optimization of non-differentiable functions, the proposed optimization method relies on dif-
ferentiable functions, as they allow the use of first-order optimization methods that converge more quickly
than exhaustive search. Shontz et al. [SVH20] relocate vertices by solving a set of ordinary differential equa-
tions on a distributed system using domain partitioning. We focus on massively parallel algorithms that do
not require a distributed system. Xi et al. [Xi+21] perform adaptive Laplacian smoothing massively parallel
on the GPU using the method of Xiao et al. [Xia+19]. In order to prevent write conflicts, they perform a
composition of Jacobi iterations and Gauss-Seidel iterations, where active threads access updated values for
vertices processed by previous parallel passes and old values for still to be optimized vertices. While they fo-
cus on Laplacian smoothing, the proposed element quality optimization performs optimization-based vertex
relocation.

3.2.6. Parallel Re-meshing

In contrast to parallel vertex relocation, parallel local reconnection of vertices imposes the additional challenge
of preventing concurrent processing of overlapping regions. Nonetheless, vertex relocation and reconnection
should be used in concert [KS07] to achieve an effective optimization.

De Cougny and Shephard [DS99] present parallel refinement and coarsening for distributed environments.
The mesh is partitioned in domains and each processor performs adaptation on its assigned domain. Refine-
ment of edges is based on subdivision patterns. Faces of adjacent tetrahedra are triangulated equally to ensure
a valid mesh. Collapsing of edges is parallelized among mesh domains. Synchronization is only necessary at
the domain boundaries.

As distributed systems orchestrate many machines, sophisticated methods for parallel re-meshing on a
single machine emerged. DeCoro and Tatarchuk [DT07] decimate polygonal meshes on the GPU using the
geometry shader stage of the graphics pipeline. They perform prior vertex-clustering and use the rendering
pipeline to cull the triangles that become degenerate due to repositioning vertices. Instead of decimating
polygonal meshes using the rendering pipeline, the re-meshing method presented in chapter 5 focuses on
the coarsening of tetrahedral meshes. D’Amato and Vénere [DV13] present a CPU-GPU framework for par-
allel element shape optimization determining independent clusters around the worst quality elements. The
re-meshing method presented in chapter 5 repeatedly determines dense sub-meshes forming the cavity of an
edge. As these sub-meshes can be adjacent to each other while they are not overlapping, they admit efficient
parallelization favoring edges with lowest cost according to a specified cost function. Papageorgiou and Platis

31

[PP14] present a parallel algorithm for collapsing edges of triangular meshes using the GPU. While their work
is optimized for manifold surface meshes, this thesis focuses on unstructured tetrahedral meshes. Addition-
ally, their conflict detection requires determination and sorting of super-independent vertices, whereas this
thesis presents conflict detection that prioritizes by a cost function such as element quality. Loseille et al.
[LMA15] propose a parallel re-meshing algorithm using the cavity-based operator by Loseille and Menier
[LM14]. They achieve coarse-grained parallelism using domain decomposition to obtain a set of conflict-free
cavities, whereas this thesis focuses on fine-grained parallelism for GPUs.

In the further course of history, academics devised methods to produce more dense partitions of the mesh
to improve parallelism. Shang et al. [Sha+16] present a multi-threaded algorithm for parallel local recon-
nection, which maps re-meshing operations to feature points sorted along a space filling curve. They assume
geometrical separation of re-meshing operations so that regions rarely overlap, whereas the algorithms con-
tributed by this thesis do not rely on the assumption of geometrical separation but handle conflicts on the fly.
Ibanez and Shephard [IS16] schedule the application of cavity-based re-meshing on shared memory systems.
Their method finds independent cavities for parallel processing. Their determination of independent cavities
constructs a graph of adjacent mesh elements and calculates the worst qualities in the cavity. They perform
a conflict resolution by iteratively adding local maximas to the independent sets until no more local maxima
can be found or added. The conflict detection presented in section 5.1 does not require the construction of
conflict graphs. In addition, the conflict detection presented in section 5.1 finds independent sub-meshes
in two parallel passes, while the required iterations for the method of Ibanez and Shephard [IS16] is only
bounded by the longest path in the conflict graph. Drakopoulos et al. [DTC19] describe a parallel speculative
local re-meshing approach for HPC. They use atomic operations for synchronization in case of overlapping
regions. In contrast to established parallel local reconnection methods, the parallel re-meshing algorithms
of this thesis do not require a precomputed decomposition of the mesh or atomic operations but rely on the
local order of a priority function such as element quality.

The industry and academics invested a lot of effort into re-meshing using even more fine-grained sub-
meshes, which is more apt to re-meshing on modern accelerators such as GPUs. Chen et al. [CTO20] detail
the design of GPU-parallel Delaunay refinement. They show how to concurrently insert Steiner points with
high occupancy among GPU threads. Jiang et al. [Jia+22] present a high-level abstraction approach to
specify mesh editing algorithms using a framework that provides CPU-parallel implementations of low-level
mesh editing operations. Their approach schedules operations with a shared memory locking mechanism.
Conflicts are avoided by domain decomposition and locking mutexes on the two-ring neighborhood of edges.
The re-meshing algorithms of this thesis do not require locking mechanisms or domain decomposition, result-
ing in more compact sub-meshes. Moreover, Jiang et al. [Jia+22] present a parallel variant of constructing
harmonic triangulations (cf. section 2.1.3) that requires a large number of cores in a CPU, in order to out-
perform the sequential variant. As such CPUs are typically used in HPC-clusters, the usage of the GPU seems
attractive for parallelization on a single machine. In addition, their parallel harmonic triangulation algorithm
does not provide boundary preservation for optimizing vertex positions, while this thesis addresses boundary
preservation for gradient descent.

Recently, Gautron et al. [GKN23] present an algorithm for GPU-parallel edge collapsing for triangular sur-
face meshes. Their algorithm packs the cost and the index of an edge in an edge descriptor. They propagate
the minimal edge descriptor over the one ring of simplices for each of the two edge vertices. With the use
of atomic operations, they prevent conflicts that arise due to massively parallel execution. Their algorithm
is part of NVIDIA’s Micro-Mesh toolkit [NVI23b]. While their algorithm is designed for triangular meshes, it
extends to tetrahedral meshes.

32

3.2.7. Boundary Treatment in Mesh Optimization

Boundary treatment in tetrahedral mesh optimization is a sparsely discussed field. While some methods
rely on curved boundaries [Das+18], the optimization algorithm presented in chapter 4 only relies on the
boundary of the discrete mesh. Many methods either subdivide ill-shaped boundary elements [KS07] or
reproject boundary vertices back on the original surface [Ale19]. Subdivision of boundary elements increases
the element count, which is a drawback, as each element costs computationally. The drawbacks of boundary
reprojection is that it requires to find the closest point on the boundary and the reprojection step does not
respect energy minimization leading to reduced convergence.

Yin and Teodosiu [YT08] replace reprojection of boundary vertices with shape functions approximating the
surface based on the discrete mesh. They incorporate the shape functions as a penalty term into the to-be-
optimized function to enforce boundary conformance. Contrary to the optimization algorithms in chapter 4,
the penalization approach requires the choice of a suitable penalty number. Wicke et al. [Wic+10] address
optimization of the mesh boundary for dynamic domain re-meshing. They penalize relocation of boundary
vertices by augmenting the optimization function with a quadric error term. Although this allows for efficient
relocation of boundary vertices, element quality to surface distance is an apples-to-oranges comparison. Xu
et al. [Xu+09] propose harmonic guided optimization to further improve the quality of boundary elements
despite the usage of a quadric error term. They pre-compute a harmonic scalar field on a voxelized grid. As
the field is maximal at the boundary andminimal for themedial axis of themesh, it enables the computation of
weights tweaking the importance of boundary preservation and element quality. The optimization algorithm
in chapter 4 keeps boundary vertices on the surface without using a penalization term, and thereby without
the need of pre-computing additional weights.

As mesh optimization at the boundary oftentimes alters geometric features as well as the volume of the
geometry, Jiao [Jia06] presents feature detection by eigenvalue decomposition of the quadric metric tensor
and volume conservation by application of null space smoothing. In null space smoothing vertices move along
a certain subspace. Jiao [Jia06] employs null space smoothing and iteratively solves a nonlinear equation
system that pose the problem of minimal volume loss. While chapter 4 presents an approach for gradient-
descent along the surface instead of error-metric guided preservation, the feature detection of Jiao [Jia06]
is a part of the face group extraction presented in section 6.1.2.

3.3. High-level Volumetric Mesh Editing

Many authors addressed the high-level editing of volumetric meshes. Oftentimes, these authors have the
shortening of design iterations in mind. This section covers two different methods of interactive mesh editing.
The editing on the basis of user-selected semantic features is discussed in section 3.3.1. Deformation-based
approaches appear in section 3.3.2.

3.3.1. Volumetric Mesh Editing on the Basis of Semantic Features

Some authors have addressed the editing of meshes with the use of semantic features. This section presents
related work that resembles the editing approach described in section 6.2.

A related editing framework in the context of engineering was presented by Serna et al. [SSF10], who
propose an embodiment of the FEM mesh for modification. They propose a data structure that stores and
dynamically updates neighborhood information of elements so that modeling operations can be easily imple-
mented. While they present a data structure for mesh editing on the CPU, this thesis focuses on massively
parallel algorithms for mesh editing. Another tetrahedral mesh editing framework for FEA was presented
by Xian et al. [XGZ11]. Their framework decomposes the model into local surface features representing the

33

semantic meaning of particular components. Like the editing operations in section 6.2, their framework pre-
serves element quality throughout model modification. In contrast to their framework, our system performs
GPU-accelerated editing operations. Graphite [Inr24] allows users to modify tetrahedral meshes, e.g., filling
holes or deleting individual facets. Graphite provides an automatic hole detection that is controlled by a
user-specified number of maximum boundary loop vertices. While users work on individual mesh facets in
Graphite, this thesis focuses on high-level editing with face groups (see section 6.1) to accelerate VP.

Attene et al. [Att+08] present a hierarchical clustering algorithm for tetrahedral meshes to enable intuitive
selection in editing environments. The algorithm clusters single tetrahedra into approximately convex regions
using a concavity-based cost function. Based on these regions, Attene et al. [Att+08] detail user-guided edit-
ing operations that allow for mesh deformations, copying and pasting meshes, and removing mesh regions.
While Attene et al. [Att+08] focus on mesh segmentation and interaction, they do not couple mesh edit-
ing with simulation applications. Additionally, they do not address acceleration through massively-parallel
computing.

3.3.2. Volumetric Mesh Editing by Shape Deformation

Various approaches enable the deformation of unstructured tetrahedral meshes by user-specified shape de-
formation.

Stoll et al. [SATS07] present a method for interactive deformation of a tetrahedral mesh. For an input
high-resolution surface mesh, they first simplify the surface mesh and subsequently apply Delaunay meshing
(cf. section 2.1.2) to generate a coarse tetrahedral mesh. Similarly to cage-based deformation, they calculate
coefficients that allow to express the vertices of the coarse tetrahedral mesh as linear combinations of the input
surface mesh. As a result, the user can specify handles for interactive mesh deformation. After deformation,
they reconstruct the deformed version of the input mesh from the deformed tetrahedral mesh. While Stoll
et al. [SATS07] focus on the deformation of surface meshes and obtain only a coarse tetrahedralization of
the surface, this thesis focuses on editing unstructured tetrahedral meshes without coarsening their surfaces
altering the input shape.

In order to deform unstructured tetrahedral meshes for accelerating VP processes, many different mor-
phing methods [Sta+11; SMB13; Por+21] were presented. Typically, these morphing methods rely on a
parametrization of the geometric model of the prototype. By changing one parameter of the model, the
morphing method interpolates the mesh vertex positions between the model shapes corresponding to the
original and newly specified parameters. The mesh connectivity is typically only changed, when the element
quality falls below a specific threshold or an element inversion occurs. Therefore, morphing can benefit from
the massively parallel optimization algorithms presented in this thesis. In section 3.6 this thesis explores the
use of interactive and control handle-driven cage-based deformation for deforming unstructured tetrahedral
meshes, which in contrast to morphing does not depend on a parametrization of the model.

Frank [Fra06] addresses the visualization and modeling of unstructured tetrahedral meshes for geologi-
cal applications such as reservoir simulations. The modeling functionality covers boolean operations on the
basis of implicit iso-values, local mesh refinement, surface reconstruction and iso-value surface reconstruc-
tion. While Frank’s [Fra06] tetrahedral modeling framework relies on iso-value based implicit modeling, the
editing functionality presented in this thesis does not require iso-value data or surface interpolation. The
visualization functionality covers iso-value surface interpolation and multitexturing for the boolean opera-
tions. On the contrary, this thesis covers volume rendering of unstructured meshes in chapter 7, which is not
limited to the surface but enables exploration of inner structure. Moreover, this thesis comprises modeling
for unstructured meshes for VP applications and does not focus on geological modeling.

In order to shorten VP cycles, Xian et al. [XZG13] present cage-based deformation (cf. section 2.3) of
meshes for FEM using a mapping of semantic features to cage vertices. If the user intends to alter a semantic

34

feature, the user can select the corresponding cage vertices for relocation. In contrast to this thesis, Xian
et al. [XZG13] do not address massively parallel processing for cage-based deformation. In addition, they do
not focus on volumetric meshes specifically and do not address issues such as mesh quality.

3.4. Interactive Mesh Deformation for Model Manipulation

For interactive shape deformation, this thesis investigates the capabilities of cage-based deformation. Besides
cage-based deformation, other deformation methods using control points to manipulate geometry have been
presented. This section highlights these methods and their advantages as well as disadvantages compared
to cage-based deformation (see section 2.3).

3.4.1. Free-form Deformation using Lattices

One such method is free-form deformation [SP86]. The deformation domain Ω is defined by a volumetric
control mesh denoted as control volume, which enables geometry manipulation through relocating its control
points. Like in cage-based deformation, the vertices ofM are expressed as an affine sum of the control points.
The weights of the sum are defined by the location of the vertex in the parameter space of the lattice geometry.
Due to the expression of the vertices in the parameter space, the computation of the updated vertices is equal
to the evaluation of the lattice geometry at predefined parameter values. However, mapping a point in
Euclidean space to the parameter space requires a known mapping between the spaces [SP86; MJ96].

Various geometry representations have been shown to be suitable as control volumes, such as tensor prod-
uct trivariate Bernstein polynomials by Sederberg and Parry [SP86], trivariate B-Splines by Griessmair and
Purgathofer [GP89], and Catmull-Clark (CC) volumes by MacCracken and Joy [MJ96]. Depending on the
geometry representation, algebraic, numerical, or approximating methods may be best suited [SP86; MJ96]
to find the parameter values of each vertex. As the deformation is based on the re-evaluation of the control
volume, the mathematical properties of the deformation, such as continuity and locality, are defined by the
basis functions of the chosen geometry representation. Furthermore, the deformation domain may only in-
clude parts of the model. This allows for the definition of multiple control volumes on a model to achieve
local deformations using varying degrees of control [SP86].

Similar to cage-based methods, free-form deformation techniques use a mesh for deformation control,
which contains the to-be-deformed geometry. However, the control structure is inherently volumetric and
typically imposes additional restrictions on mesh connectivity, which complicates the construction of a viable
control volume. Cages are more simple to handle, as they are less restrictive.

3.4.2. Skeletal-based Deformation

While cages are good control structures for detailed shape manipulation, skeletal-based deformation intro-
duced by Magnenat-Thalmann et al. [MLT88] excel at expressing character motion. The user either generates
the skeleton manually or automatically [LW07; VF09]. In an intuitive way, the user configures the joints of
the skeleton to specify the character’s pose [CHP89]. Whenever the joint configuration changes, the surface
mesh, i.e., the character’s skin, is deformed accordingly. The coupled use of skeletons and cages allows for
motion expression with the skeleton, while details can be modeled with the cage [Cor+20].

Deformation of the skin can be efficiently implemented on a GPU for real-time interaction with the ap-
plication of LBS (see section 2.3.3), where transformations are associated with each joint. Although LBS is
frequently used due to its simplicity and efficiency, it can produce artifacts, e.g., candy wrapper artifacts,
which can be prevented by using an advanced skinning scheme such as dual quaternions [Kav+08]. Another
method to avoid these artifacts is the animation space by Merry et al. [MMG06], which is a larger family

35

of linear deformation methods with many benefits such as improved fitting to example poses and advanced
distance computations. As the computation of high-quality skinning weights can be expensive, Wang and
Solomon [WS21] recently presented quasi-harmonic weights for near real-time computation.

3.4.3. Linear Subspaces

As the generation and re-meshing of cages for deformation control is tedious, Wang et al. [Wan+15] efficiently
calculate linear subspaces in Ω allowing users to interactively define point and region handles without using
cages. A point handle is represented by a point in space, whereas a region handle is a manipulator object
with control vertices to deform a selected subdomain of Ω, where the undeformed parts of Ω are blended
smoothly [BK04]. Deformation by handle control uses a set of weights that allow for deformation using LBS
(see section 2.3.3). The weights are computed numerically by discretizing Ω with an embedding volumetric
mesh E .

For smooth deformation, computation of the weights minimizes a squared Laplacian energy. As the fairness
component of this energy contains 1 in its null space, minimization can be implemented efficiently by solving
a sparse linear systemwith a right-hand side for each handle. Due to the efficiency of weight calculation, users
are able to add or remove handles at interactive rates and deform the model applying handle translations and
rotations, albeit at the cost of negative weights and the need to generate E .

3.4.4. Radial-Basis-Function-based Deformation

In contrast to the mesh-based definition of the deformation space, the deformation space may be manipu-
lated by arbitrary, unconnected control points. Each control point is assigned a radial basis function, which
defines the influence of the control point by means of its distance to the vertices. The influence reduces with
increasing distance from the control point. This approach allows for accurate control over the deformation
locality and poses no restriction on the placement of the control points. The choice of the specific radial basis
function (RBF) determines the deformation behavior when manipulating a control point.

The specific coefficients of each RBF may be found automatically by solving a linear system [BSB07;
Por+21]. The deformation of the model is computed by the interpolation defined by the previously specified
RBFs. The interpolation computes multiple scalar fields, containing the coordinates of the deformed mesh.
Each scalar field interpolates a component of the deformed mesh [BSB07].

Due to the universal nature of the RBF interpolation, the same deformation may be applied to multiple
meshes and may extrapolate or interpolate [Por+21]. However, RBF-based techniques only offer point han-
dles for deformation control. Contrary to offering only point handles, cage-based deformation enables users
to define the local influence of handles based on the topology of the cage.

3.5. Generation of Cages for Deformation Control

While the shape deformation methods presented in the previous section 3.4 rely on interaction with point
handles, skeleton joints or lattices, cage-based deformation relies on an enclosing polygonal mesh, i.e., a
cage, for deformation control (cf. section 2.3). Enclosing meshes are needed for many different applica-
tions [MCA15]. This thesis focuses on cages for deformation control. As the polygonal mesh can adapt to
surface details, the advantage of cage-based deformation is its ability to intuitively express high-resolution
deformation relocating a part of the cage at once. For this reason, cage-based deformation is a versatile
approach. Today, cage-based deformation is used in various fields including character animation [Ju+08;
Cor+12; Kim+14], image deformation [Men+09], mesh modeling [TMB18; TB22], VP [AAN12; XZG13;

36

DJS16], 3D motion capture [SF11; TTB12], and recently even virtual environments [Sca+20; LLH22] and
neural networks [Yif+20; Pen+22; XH22].

As the focus of this thesis lies on VP, a systematic comparison in chapter 6 evaluates the capabilities of
cage-based deformation for VP. Before this detailed evaluation, this chapter presents the available methods
to generate a cage and the available coordinates to achieve deformation control. Although cage-based de-
formation is primarily used for artistic applications, it can provide useful method to modify prototypes in VP
processes. The easy-to-use deformation control can facilitate modification of meshes without using CAD, in
order to shorten VP cycles. Moreover, smooth deformation properties and anisotropic stretch provide means
for using cage-based deformation to modify organic or organic-like geometries, which are frequently used in
VP applications such as 3D printing or shape optimization. However, as isotropic deformations can be difficult
to guarantee with cage-based deformation, the use of cage-based deformation for modeling mechanical parts
is probably suboptimal.

Before users can benefit from easy-to-use cage-based deformation, they need to obtain a cage that is suit-
able for the intended deformation. Therefore, the literature exhibits manymethods to quickly generate a cage
for deformation control. Laube and Umlauf [LU16] present a survey on the early automatic cage generation
methods. The following provides a comprehensive discussion of generation methods to obtain cages for de-
formation control. First, section 3.5.1 gives an overview on the desirable properties of a cage for deformation
control. Like in the previously published survey [Str+24], a systematic review organizes the available cage
generation methods into four categories. Each category is discussed in a section. Section 3.5.2 discusses
offset surface simplification methods. Section 3.5.3 discusses voxelization-based methods. Section 3.5.4
discusses template-based methods. Section 3.5.5 discusses interactive methods. As some cage coordinate
types require an embedding tetrahedral mesh of the geometry and the cage (see section 3.6.2), section 3.5.6
comprises the process of creating a suitable embedding.

3.5.1. Cage Quality

Cages for interactive modeling should exhibit certain properties for convenient deformation control [Jac14].
Users wish to deform the model with only few control vertex relocations. Thus, the cage should include
reasonably few control vertices for the user to manage. At the same time, the cage should wrap the model
tightly with control vertices near the semantic parts of the model. A self-intersecting cage can lead to erro-
neous deformation results and should be avoided [SVJ15]. In addition, many coordinate types do not work
if the cage intersects the model. In summary, the properties of a high-quality cage are:

• Reasonably low number of control vertices

• No self-intersections

• No intersections with the model, i.e., the cage is conservative

• Wrap the model tightly

• Control vertices should be close to the to-be-deformed parts of the model

• The cage should provide symmetric structures, where the model exhibits symmetric features

As these properties only loosely define the requirements for a high-quality cage, the quality of the cage
needs to be evaluated in light of each use case. In order to allow for the comparison of cages, Xian et al.
[XLX15] present a quality metric for cages:

EC =

(︃
1−

NC

NV

)︃
S(C,T) e1−(vol C/ vol T),

37

where vol represents the volume of a mesh and S(·, ·) ∈ [0, 1] represents a shape similarity measure, such as
the similarity measure by Elad et al. [ETA02], which enables user-guided evaluation of shape similarity.

3.5.2. Offset Surface Simplification Methods

One of the early efforts to automatically generate an enclosing cage is the progressive hull generation by
Sander et al. [San+00]. Building upon the progressive meshes by Hoppe [Hop96], the hull is generated by
collapsing edges of the input mesh such that the coarser mesh includes every vertex of the input mesh. After
a sequence of edge collapses, a coarse cage is obtained from the input mesh.

Shen et al. [SOS04] create an implicit surface enclosing an input polygon soup using a constrained least-
squares formulation. They detail an iso-surface extraction method to ensure that all input points are enclosed
by the extracted iso-surface.

For deformation transfer, Ben-Chen et al. [BWG09] construct an offset surface for an input model with
repeated simplification until the number of cage faces is lower than a user-defined threshold. As the offset
surface is formed by relocating vertices along the normals of the previous offset surface, some models require
heterogeneous step sizes for computing offset positions to avoid artifacts.

To avoid self-intersections, Deng et al. [DLM11] decimate the input mesh, prioritizing edge collapses with
an error metric, and perform a clean-up step. They incorporate a fidelity function for shape preservation
and a function penalizing opposing face normals for triangle quality. Throughout decimation, they position
vertices along surface normals to ensure an enveloping cage. Self-intersections are detected and removed by
re-meshing the intersecting parts.

For editing meshes for VP purposes, Xian et al. [XZG13] present a cage generation method that maps
semantic feature lines and faces to cage vertices. Their initial step is to detect feature lines and semantic
relations using a detection approach such as iwires [Gal+09]. Subsequently, their cage generation method
performs point sampling on the resulting feature lines and faces. As the sampling points form the cage
vertices, a mapping of cage vertex to semantic line or face can be established during the sampling stage. A
reconstruction algorithm [She+08] creates a surface mesh from the sampling points. The relocation of the
sampling points towards a determined outward offset direction creates an enclosing cage.

Sacht et al. [SVJ15] generate nested cages in layers so that high-resolution cages tightly bound the model
and coarser cages wrap the finer cages. Each cage layer is the result of the previous finer layer after passes
of decimation, flow pushing the cage inside the previous layer and re-inflation until obtaining the bounding
condition. The cage layers offer a nested collection of viable cages for modeling.

3.5.3. Voxelization-based Methods

Xian et al. [XLG09] voxelize the oriented bounding box (OBB) of the model to obtain a cage. The use of
principal component analysis (PCA) quickly provides a tight OBB for the model [Dim+06]. After voxelization
of the OBB, they calculate the max-norm distances [Var+03] of mesh triangles to voxel centers to determine
the feature voxels intersecting the mesh surface. Extracting and triangulating the outer feature voxel faces
yields a cage bounding the model. A final smoothing step relocates the cage vertices towards the model and
achieves a smoothed tightly bounding cage.

To construct a coarse enclosing grid of highly detailed linear elastic deformable objects, Nesme et al.
[Nes+09] organize an initial fine hexahedral embedding into an octree structure, where each hexahedron
is associated with the local material properties of the model. The material properties of a parent voxel can
be deduced from its children [NF+06]. As a result, a coarse bounding cage enables the quick retrieval of
deformation properties at any desired level of the octree hierarchy.

38

As coarse cages are convenient for deformation control, Xian et al. [XLG11] automatically generate cages
by optimizing an OBB tree with a slicing rule and subsequent mesh improvement. First, a voxelization of
the model’s OBB is decomposed into the voxel types feature, inside and outside. The mesh vertices and
barycenters of inner voxels form a point set, whose PCA provides the root OBB of the tree. Recursively, each
OBB is split according to a termination criterion considering local shape variation and OBB edge lengths.
Each OBB split bisects the point set at its barycenter perpendicular to the longest edge and applies PCA to
the two new point sets. Finally, boolean union operations merge the OBBs and mesh improvement ensures a
high quality triangular cage.

For fast computation of coarse cages, Xian et al. [XLX15] present a voxelization-based region decomposition
with subsequent simplification. The method relies on a voxel grid of the model’s OBB. A scanline method
categorizes the voxels into inside, surface, and outside. The use of flood filling divides the inside voxels into
disconnected groups. Dilating the voxels of inner groups yields surface voxels that envelope the input model.
The surface voxels dilating the inner voxels constitute the broad model parts, while the other surface voxels
constitute the narrow parts. Determining the outside voxel faces of broad regions and the OBBs of narrow
regions yields a set of partial cages, which forms a single cage through successive application of boolean
operations. Finally, a simplification step merges co-planar voxel faces and collapses edges so that the cage
still envelops the model.

3.5.4. Template-based Methods

To enable the reuse of skinning behaviors across similar models, Ju et al. [Ju+08] construct cages from a
library of skinning templates. A skinning template is a specific skeleton configuration that can be applied
to characters with a similar joint structure. The system first selects a template matching the character and
subsequently constructs a cage fitting the character’s shape. For each bone or joint, a polygon represents the
cross section along the skeleton. Cage generation scales the cross section vertices radially from its bone or
joint so that the cage does not intersect the model. Users may interactively adjust cage vertices to achieve
a better cage embedding. To enable cage-based deformation, the system binds the cage to the skeleton to
enable cage deformation, whenever the user loads a new skinning template.

As retargeting muscles of a character requires surface deformation, Yang et al. [Yan+12] use cages for
muscle construction from skeletons. Joint by joint, their method generates a cage applying different rules for
the number of bones at a joint. For joints with two bones, cage generation constructs a cross section polygon
like Ju et al. [Ju+08]. For joints with one, three or four bones, ray casting finds positions for polygon vertices
at intersection points with the skin. To avoid self-intersections, their method shoots several rays to detect
overshooting. In addition, a spherical mapping of the cage to the unit sphere enables optimization of vertex
positions according to an energy that penalizes self-intersections.

3.5.5. Interactive Cage Generation Methods

As the automatic construction of cages oftentimes requires subsequent adjustments of the cage, many research
papers present methods, where prior user interaction affects the manner of cage construction.

Chen and Feng [CF14] construct cages adapted from skeletons for animated meshes. Users first sketch a
skeleton on a silhouette of the model. From the sketched skeleton, Chen and Feng [CF14] extract prominent
cross-sections [Sel+10] along the joints. The cage construction interpolates offsets of simplified cross-sections
and connects the vertices to adjacent offset cross-sections to construct partial cages. Finally, the partial cages
are stitched together into a single cage. Due to the use of the skeleton for cage construction, a sequence of
cages can be generated for an animated model.

As automatic cage computation can produce unintuitive results formodels with high topological complexity,

39

Le and Deng [LD17] propose an interactive cage generation method for designing cages. Their method
enables users to specify the semantic model parts with cut slide planes. These slides are transformed into
cross sections spanned by quadrilaterals, whose vertices are part of the cage. As the quadrilaterals should
be well aligned to the model and consistently oriented, an optimization step rectifies orientations in a least
squares manner. Subsequently, Delaunaymeshing followed by edge flips for surface smoothness improvement
produce a cage. The final step optimizes cage vertex positions using least squares fitting respecting a user-
specified offset. The method of Le and Deng [LD17] allows for quick interactive cage design, while it may
produce self-intersecting cages.

To enable quick, interactive generation of coarse cages, Calderon and Boubekeur [CB17] combine an initial
parallel voxelization step with subsequent mesh coarsening. After the user chooses a global voxel scale for
cage design, the user can interactively brush the regions of the cage that require a finer or coarser bound-
ing approximation. For cage construction, a voxelization forms a 3D rasterization of the input object using a
GPU-parallel conservative voxelization method [SS10b]. With the use of a 3D structuring element, a morpho-
logical closing of the voxels intersecting the object is obtained, performing morphological dilation followed
by erosion. From the resulting voxels, a quad-dominant mesh can be extracted that is further simplified using
constrained edge collapse operations, guaranteeing that the cage bounds the model with respect to the voxel
scale.

For semi-automatic generation using a skeleton, Casti et al. [Cas+19] guide cage construction by placing
bending points along the skeleton curve. A heuristic pre-calculates bending points based on abrupt changes in
the thickness of the surface ofM. IfM is a surface mesh, then volumetric meshing ofM allows for computing
a harmonic field that emanates radially from the skeleton. IfM is a volumetric mesh itself, then it can be
used straightforwardly for computing the harmonic field. After circular sampling of the field around the
bending points, their method extracts cross sections ofM orthogonal to the skeleton. Connecting polygons
representing the cross sections obtains an initial tight cage that is inflated to avoid intersections with the
model. While the method of Casti et al. [Cas+19] enables fast generation of high-quality symmetric cages,
it requires an input skeleton, a prior volumetric meshing step, and a sufficiently dense set of bending points.

3.5.6. Embedding the Cage

Many cage-based deformation methods (see section 3.6.2) not only depend on a polygonal cage C but also
a volumetric grid EC embedding the cage, because these methods solve partial differential equations to con-
struct a set of GBC. Due to its robustness, unstructured tetrahedral meshing is frequently used to generate
EC . Although fast and robust tetrahedral meshing algorithms are available [Che+13d; Hu+18; Hu+20], the
dependency on an embedding complicates the workflow, because the quality of the deformation is affected
by the properties of EC .

Generally, the more points EC includes, the better the accuracy of the resulting GBC becomes. Thus, a
finer resolution of EC improves deformation quality, whereas the run time performance of calculating the
GBC benefits from a coarse EC , because each element costs computationally. It can be difficult to estimate
an appropriate resolution for EC , if the intended deformations are unclear at bind time. An alternative to
increasing the resolution of EC is the use of higher-order elements, while current cage-based deformation
methods only use linear elements. In addition, the deformation quality also depends on the quality of the
tetrahedral elements [She02b] in EC . Constructing a constrained tetrahedral mesh without elements of low
shape quality is an ongoing research topic [Lo15]. Although scalable mesh improvement methods, e.g. the
one of Rabinovich et al. [Rab+17] or the GPU-parallel methods presented in chapter 4, are available, they do
not provide guarantees on the resulting element quality. To decouple deformation quality from element qual-
ity, one could use the technique of Schneider et al. [Sch+18] at the cost of decreased run time performance
and implementing a more complex construction of the finite element system.

40

In order to extract the deformed model from EC , two different methods can be used:

1. Insert the vertices V into EC as constrained points and extract them after deformation

2. Interpolate the weights of V from EC and pose the model with interpolated weights

As meshing tools such as TetGen [Si20] typically provide meshes with constrained points in consecutive
order, the first method is simple to implement. However, it complicates the meshing of EC , because insertion
of constrained points leads to additional mesh refinement to avoid elements of low shape quality. The second
method provides more convenient meshing and reusability of EC , as it can be used for any model enclosed
by the cage, given that the resolution of EC is fine enough, albeit at the cost of performing a point lookup
step that should be accelerated with a spatial data structure such as the OLBVH (see section 7.1) or using the
hardware accelerated data structure for RTX [Mor+22] (see section 3.8.3).

3.6. Construction of Cage Coordinates for Deformation Control

Since the previous section 3.5 presented the creation of cages for deformation control, this section discusses
themethods to compute cage coordinates for interactive deformation by cage control. While a detailed review
of the individual coordinate types can be found in the survey [Str+24], this thesis discusses the construction
of the coordinate types on a higher level of abstraction to highlight the advantages and disadvantages of
each construction. Again, a systematic categorization classifies the available methods into four categories.
Section 3.6.1 discusses barycentric coordinates with explicit formula. Section 3.6.2 discusses coordinates
constructed by energy minimization. Section 3.6.3 discusses probability-based coordinates. Section 3.6.4
discusses coordinates with additional deformation control by normals of cage faces.

3.6.1. Barycentric Coordinates with Explicit Formula

The simplest category of GBC are barycentric coordinates with explicit formula. The construction of these
coordinates requires the evaluation of closed form expressions for every to-be-deformed point x ∈ Ω to
obtain a corresponding set of GBC λi, i = 1, . . . , NC (cf. section 2.3). For cage-based deformation, several of
the available constructions are limited to convex cages [War96; Ju+05; War+07; JLW07]. Only mean value
coordinates support non-convex cages.

Mean Value Coordinates

project onto S
x x

Figure 3.2.: Projection of C onto the unit sphere S around x ∈ Ω provides support for non-convex cages.

Floater [Flo03] exploited the fact that the integral of outward unit normals of a sphere evaluates to zero
to construct 2D mean value coordinates (MVC). As every input cage can be projected onto the unit sphere,

41

this construction achieves support for non-convex cages. A 2D visualization of the projection of the cage onto
the unit sphere centered around x ∈ Ω appears in fig. 3.2.

mf

ej
ek

el

x

The unit sphere centered around the point x ∈ Ω provides a simple approach to
compute a set of weights λi so that the weighted sum of cage vertices reproduces
x. This generalizes to 3D, which admits the construction of MVC in 3D [FKR05;
JSW05]. After the projection of C onto the unit sphere S, the spherical triangular
faces f̂ are associated with outward pointing mean vectors mf , as can be seen in
the inset (taken from [Str+24]). These mean vectors represent the integration over
outward pointing face normals mf =

∫︁
f̂ (y − x)dy, where y ∈ f̂ . For a projected

triangular face f̂ = (ĉi, ĉj , ĉk), the vectors ei = ci − x/∥ci − x∥ span a cone that is a part of the unit sphere
S. As the mean vector mf lies in this cone, there must be weights µi, µj , µk ∈ R that express mf as a linear
combination:

mf = µiei + µjej + µkek. (3.1)

Using the mean vectors of every cage face f , one can express the integration over the unit sphere as a sum
of mean vectors: ∫︂

S
(y− x)dy =

∑︂
f∈∂C

ofmf = 0, (3.2)

where of ∈ {1, -1} is the orientation of f toward x. Since eq. (3.1) expresses a given mean vector with cage
vertices, it is possible to rewrite the sum of mean vectors integrating over the unit sphere. Thus, one can plug
eq. (3.1) into eq. (3.2) to obtain:

∑︂
f∈∂C

ofmf =
∑︂
f∈∂C

of (µiei + µjej + µkek) =
NC∑︂
i=1

∑︂
f∋i

ofµi

∥ci − x∥
(ci − x) = 0. (3.3)

For convenience, the weights wf
i express the factors in the sum wf

i = ofµi/∥ci−x∥. The total sum of weights
for a given point x ∈ Ω and a given cage C is represented by wC

x =
∑︁NC

i=1

∑︁
f∋iw

f
i . This admits to rewrite

eq. (3.3) so that a weighted sum of cage vertices reproduces the given point x ∈ Ω:

NC∑︂
i=1

∑︂
f∋i

wf
i (ci − x) = 0 ⇐⇒

NC∑︂
i=1

∑︂
f∋i

wf
i

wC
x
ci = x. (3.4)

As a result, the GBC λi(x) =
∑︁

f∋iw
f
i /w

C
x , i = 1, . . . , NC define MVC for a given cage C even for non-convex

cages. While this is a simple construction for cages of arbitrary shape, the GBC can be negative outside of the
convex region of C, i.e., the kernel of C. An additional downside is that the above construction of MVC only
applies to triangular cage faces.

Positive Mean Value Coordinates

In order to obtain positive GBC, Lipman et al. [Lip+07] present a modification of MVC that ensures the
positivity of the coordinates at an arbitrary point inside the cage. This modification is called positive mean
value coordinates (PMVC). The reason for negative MVC is that the orientation of cage faces of toward x ∈ Ω
can be negative. Lipman et al. [Lip+07] perform a visibility calculation of cage faces from x ∈ Ω. The
visibility calculations can be efficiently performed on GPUs.

42

x
ray+1

-1
+1

If one orders all the cage faces by intersection with a view ray emanating
from x ∈ Ω, then the orientation of of the faces alternates (see inset). Thus,
if one only considers the first visible face from x ∈ Ω it is guaranteed that
of = +1 and the resulting coordinates are positive. Therefore, Lipman et al.
[Lip+07] only use the first visible cage face to calculate PMVC. This approach
projects the unit sphere S onto C instead of projecting C onto S. However,
PMVC are an approximation, which is accurate and fast enough for real-time
shape deformation.

Spherical Mean Value Coordinates

As the original construction of MVC only supports triangular cages, Langer et al. [LBS06] present spher-
ical barycentric coordinates (SBC) that are another modification of MVC to support arbitrary planar cage
polygons. The construction of SBC exploits the fact that there is an infinite set of weights wi, which satisfies:

NC∑︂
i=1

∑︂
f∋i

wi(ci − x) =
∑︂
f∈∂C

ofmf = 0. (3.5)

With weights and corresponding mean vectors that satisfy eq. (3.5), one can apply
the same rearrangements as performed to obtain eq. (3.4), which provides a set of
GBC. Therefore, one needs to define mean vectors mfand appropriate weights for a
non-triangular face f to obtain GBC for cage-based deformation. After calculating
a mean vector mf for the non-triangular face f , the SBC construction projects the
point x onto the point x + mf , as can be seen in the inset (taken from [Str+24]).
This projected point defines a plane that is tangent to the unit sphere S. Subsequently,
the SBC construction projects the cage vertices in f onto this tangent plane, which
provides the projected cage vertices c′i. The projection can be expressed as scaling
the vectors from x to ci by a factor λfi so that c′i − x = λfi (ci − x). The projected cage vertices define a
planar polygon f ′ that lies in one plane with x +mf . The next step of the SBC construction is to calculate
2D MVC for x +mf =

∑︁
i∈f ω

f
i c′i. Using the projection factors λfi , one can express the mean vectors of the

non-triangular face: ∑︂
i∈f

ωf
i (c

′ − x) =
∑︂
i∈f

λfi ω
f
i (c− x) = mf .

As a result, the construction satisfies eq. (3.5) so that it yields valid GBC for non-triangular cage faces.
However, this only applies for planar cage faces and the coordinates can be negative.

Mean Value Coordinates for Tri-Quad Cages

The downside of SBC is that they are limited to planar polygons. The support of non-planar polygons can
significantly extend the freedom of the user at cage design as well as the space of user-defined deformation.

For computing valid GBC for non-planar cage quads, Thiery et al. [TMB18] present a method to construct
mean value coordinates for tri-quad cages (QMVC). Their construction computes GBC for cages with triangles
and quadrilaterals, i.e., tri-quad cages. The key strategy is the usage of bilinear quadrilaterals for interpo-
lating outward face normals on a non-planar quad. A quad q = (q0,q1,q2,q3) enables bilinear interpolation
using the bilinear coordinates {b0uv, b1uv, b2uv, b3uv} = {(1 − u)(1 − v), u(1 − v), uv, (1 − u)v} at parameters
(u, v) ∈ R2.

43

Bilinear quads provide a smooth geometry given by quv =
∑︁3

k=0 b
k
uvqk, as can be seen

in the inset to the right (taken from [Str+24]). Denoting the four non-normalized quad
corner normals as Nq

k, k = 0, 1, 2, 3 defined by Nq
k = (qk+1−qk)× (qk+3−qk) (all indices

modulo 4), the non-normalized normal vector Nq
uv at parameter (u, v) is given by

Nq
uv =

3∑︂
k=0

bkuvN
q
k.

As a result, the bilinear interpolation provides outward pointing normal vectors
for any parameter point (u, v) at the non-planar quad, as can be seen in the inset
to the left (taken from [Str+24]). The surface element corresponding to the (u, v)-
parameterization is given by dquv = ∥Nq

uv∥dudv and surface integrals over q can be
written as ∫︂

q
fdq =

∫︂ 1

0

∫︂ 1

0
f(quv)∥Nq

uv∥dudv.

Using the bilinear quad’s geometric model to integrate outward face normals, one can define the mean vector
mq =

∑︁3
i=0w

q
qi(qi − x) for the non-planar quad. This can be written in matrix form as mq = Aqwq, where

wq = (wq
q0 , w

q
q1 , w

q
q2 , w

q
q3)

T ∈ R4 are the four unknown non-normalized coordinates, and the j-th column of
Aq is provided by (qj − x). However, as Aq is not full-rank, the equation cannot be straightforwardly solved
to deduce QMVC. Consequently, Thiery et al. [TMB18] resorted to an approximate solution that efficiently
computes smooth, bilinearly interpolating, and valid coordinates. In order to compute QMVC, an adaptive
Riemann summation strategy relies on bilinear interpolation at several parameter points over the bilinear
quad. This thesis does not discuss the details of this approximation strategy, which provides geometrical
expressions for the construction of QMVC. For the exact details, the interested reader is referred to the
original paper [TMB18] or the open source implementation of CageModeler.

3.6.2. Energy Minimization-based Barycentric Coordinates

While the coordinate types in section 3.6.1 offer simple closed form expressions for constructing a valid set of
GBC, the resulting coordinates suffer from a variety of issues, e.g., negative coordinates and limited locality
of deformation control. Therefore, another approach has been devised, which ensures positive coordinates
and local influence. The energy minimization-based coordinates (EMC) provide a set of GBC by discretizing a
suitable PDE and minimizing the resulting energy function. The discretization also requires the generation of
a volumetric mesh for the interior of C (cf. section 3.5.6). High-quality coordinates are ensured by enforcing
additional constraints to the minimization problem.

Harmonic Coordinates

Joshi et al. [Jos+07] present a construction of non-negative GBC by numerically solving the Laplace equation
subject to suitable boundary conditions. The resulting harmonic coordinates (HC) pose an approximate
solution that is sufficient for cage-based deformation and provide the desired properties listed in section 2.3.2.
In order to numerically compute HC, let ξi : ∂C → R, i = 1, . . . , NC be the continuous functions subject to a
list of constraints:

• ξi is linear along the edges of C

• ξi is harmonic inside each cage face f

• ξi exhibits the Lagrange property ξi(cj) = δi,j for j = 1, . . . , NC

44

This definition implies that ξi vanishes over all faces that do not include ci, ξi varies linearly over cage
triangles, and ξi is bilinear over cage quads. In order to provide local influence near each cage vertex, Joshi
et al. [Jos+07] define HC λi as the solution to the Laplace equation:

∆λi(x) = 0, x ∈ Int C subject to the Dirichlet boundary condition λi(x) = ξi(x), x ∈ ∂C. (3.6)

Typical numerical methods for approximating the exact solution of the Laplacian PDE include finite dif-
ference methods [Jos+07], the FEM [Mar+08], the boundary element method [Rus07], and the method of
fundamental solutions [FK98]. However, only the use of the FEM guarantees the correct behavior over ∂C.

Bounded Biharmonic Weights

Modeling objects using either cages or skeletons can be tedious, because each control structure has its merits
and shortcomings. Thus, Jacobson et al. [Jac+11] present bounded biharmonic weights (BBW) to bind a
model to several cages, skeletons, and point handles. Strictly speaking, BBW are the result of minimizing
piecewise-linear functions wj , which do not provide coordinates for the domain Ω of the deformation. In
order to combine cages with other control structures, Jacobson et al. [Jac+11] exploit the fact that cage-based
deformation is a special case of LBS (see section 2.3.3). For a number N ≥ NC of handles, the computation
of BBW performs variational weight optimization minimizing Laplacian energy subject to a multitude of
constraints that enforce interpolation:

argmin
w1,...,wN

N∑︂
j=1

1

2

∫︂
Ω
∥∆wj∥2 dV

subject to wj(hk) = δjk,

∀f ∈ ∂C, wj is linear on f,

∀x ∈ Ω,

N∑︂
j=1

wj(x) = 1,

∀x ∈ Ω, wj(x) ∈ [0, 1], j = 1, . . . , N.

As shape preservation during deformation is an important property, the deformation should allow to pre-
serve a user-specified sub-region Π ⊂ Ω. For this reason, the BBW formulation admits the incorporation of a
rigidity mask represented by functions ρ : Π→ R+ and the addition of the following least squares term:

N∑︂
j=1

1

2

∫︂
Π
ρ∥∆wj∥2 dV.

Local Barycentric Coordinates

Since cage-based deformation expresses the geometry as an affine sum of cage vertices (cf. eq. (2.15)), the
relocation of a single control point can lead to a global change by propagation into the entire domain Ω,
which is not intended by the user. In order to overcome this limitation, Zhang et al. [Zha+14] present local
barycentric coordinates (LBC). For each interior point, LBC only include a small set of nearby cage vertices
for the affine combination, while the coordinates of distant cage vertices vanish, falling below ε ≈ 0.

The key strategy to compute LBC is to minimize total variation. Total variation energies offer two crucial
benefits for deformation control. First, total variation provides a metric for oscillation [CV01]. Second, the
total variation of a set equals the perimeter of the set [EG15]. Given a strict super level set L+

s (λi) = {λi <

45

s} = {x ∈ Ω | λi(x) > s} of an arbitrary but fixed s and a GBC function λi, the locality of λi increases if
the area/volume of L+

s (λi) decreases. With the use of total variation of λi, one can minimize the perimeter
P (L+

s (λi); Ω) to increase locality: ∫︂ +∞

−∞
P (L+

s (λi); Ω)ds =
∫︂
Ω
|∇λi |dV.

Minimizing the sum of total variations for all NC functions λi yields LBC for C. In order to control locality,
the penalty coefficients φ̂i adjust the locality of λi. As a result, solving the following variational convex
optimization problem subject to constraints enforcing the desired interpolation properties produces LBC:

argmin
λ1,...,λNC

NC∑︂
i=1

∫︂
Ω
φ̂i∥λi ∥dV

subject to
NC∑︂
i=1

λi(x)ci = x,
NC∑︂
i=1

λi(x) = 1, λi(x) ≥ 0,∀x ∈ Ω

λi(cj) = δij ,∀i, j ∈ {1, . . . , NC}
λi is linear on all f,∀i ∈ {1, . . . , NC}

The coefficients φ̂i penalize the gradient norm based on the geodesic distance gi(·) to the cage vertex ci and
a continuous function τ̂ : [0, 1]→ [0, 1]:

φ̂i = τ̂

(︄
gi(x)

argmax
y∈Ω

gi(y)

)︄
, with x ∈ Ω.

When choosing a monotonically increasing function for τ̂ , points more distant from ci receive larger penalty
coefficients, which leads to more local support. Analogously, the choice of a monotonically decreasing func-
tion for τ̂ reduces local support.

As the numerical computation of LBC suffers from low run time performance for high-resolution models,
Tao et al. [TDZ19] simplify the discretized formulation, incurring only negligible deviation from the original
discretization. This simplification primarily capitalizes on the removal of the non-negativity constraint to
reformulate the problem so that costly computations for solving global linear systems can be omitted. The
simplified formulation uses auxiliary variables to obtain a separable target function that can be minimized
with the alternating direction method of multiplier [Boy10]. The numerical computation is a complex scheme
of many steps, which is omitted in this thesis, while the details can be found in the survey [Str+24] and the
original paper [TDZ19].

3.6.3. Probability-based Coordinates

One major advantage of EMC is the guarantee of positive coordinates for non-convex cages, though these
constructions impose to solve a global non-linear optimization problem. Due to the lack of explicit closed-form
expressions, it is impossible to compute EMC locally for an arbitrary point x ∈ Ω. An approximation must
first be computed by discretizing and solving a PDE. An alternative construction of GBC to efficiently compute
non-negative coordinates relies on statistical concepts. In this construction, the GBC of x ∈ Ω represent the
probabilities of discrete random events that are associated with the cage vertices ci, and the construction
determines a probability distribution, such that the expected value of the random variable c = (c1, . . . , cNC)

is E[c] =
∑︁NC

i=1 λi(x)ci = x. This construction typically admits the computation of the GBC by solving an
optimization problem that is local in the sense that it determines λi(x), i = 1, . . . , NC of x ∈ Ω independently
of the coordinates λi(y), i = 1, . . . , NC of any other point y ̸= x.

46

Maximum Entropy Coordinates

Sukumar [Suk04] presents a construction for maximum entropy coordinates (MEC) that maximizes the Shan-
non entropy

Hx(λ) = −
NC∑︂
i=1

λi(x) logλi(x) subject to
NC∑︂
i=1

λi(x) = 1,

NC∑︂
i=1

λi(x)ci = x. (3.7)

While the resulting GBC are well-suited for convex cages, the Lagrange property is not satisfied at concave
cage vertices. For better support of non-convex cages, Hormann and Sukumar [HS08] use the Shannon–
Jaynes entropy instead of eq. (3.7):

Hx(λ) = −
NC∑︂
i=1

λi(x) log
λi(x)
mi(x)

. (3.8)

However, this construction requires the definition of prior functions mi : C → R as

mi(x) =
πi(x)∑︁NC
j=1 πj(x)

, πi(x) =
1∏︁

f∋i ρf (x)
, (3.9)

where the product in the denominator of πi ranges over all faces adjacent to ci. Provided that f ∈ ∂C is a
polygon with k vertices c1, . . . , ck, the function ρf : C → R is defined as

ρf (x) =
k∑︂

i=1

area(x, ci, ci+1)− area(c1, . . . , ck).

ρf (x) is positive and vanishes if and only if x ∈ f . Thus, the prior function mi in eq. (3.9) vanishes over ∂C,
except on the faces including ci, and provides the Lagrange property.

Maximizing Hx(λ) in eq. (3.8) under the constraints in eq. (3.7) is equivalent to first finding the unique
vector η ∈ R3 that minimizes the strictly convex function

F (η) = log
NC∑︂
i=1

Zi(η), Zi(η) = mi(x)e−ηT(ci−x),

which can be solved efficiently with a few iterations of Newton’s method and then computing the coordinates
as

λi(x) =
Zi(η)∑︁NC
j=1 Zj(η)

, i = 1, . . . , NC.

The resulting MEC provide all the desired properties listed in section 2.3.2, except for locality. However, since
the particular choice of prior functions in eq. (3.9) is not “geometry-aware”, the use of MEC can lead to badly
shaped coordinate functions and deformation artifacts.

Maximum Likelihood Coordinates

Another probability-based construction of GBC are the maximum likelihood coordinates (MLC) presented
by Chang et al. [CDH23]. Instead of maximizing Shannon entropy, they maximize the product of the GBC
λi, i = 1 . . . , NC. A key advantage of MLC over MEC is the support of non-convex cages without the need to
choose prior functions.

47

The first step to calculate MLC is to relocate the cage vertices by −x so that C is centered around x ∈ Ω.
Similar to constructing MVC the cage is projected onto the unit sphere (see fig. 3.3), which provides a simple
convex domain for coordinate construction. Thus, each cage vertex ci is projected to c̊i = (ci − x)/∥ci − x∥.
A few smoothing operations smooth the projected cage, which provides the cage Ĉ with vertices ĉi, i =
1, . . . , NC. In the first smoothing step, the construction computes the mean vectors mf for each spherical
face. In the subsequent smoothing step, the construction computes the sum of normalized mf around each
projected vertex c̊i to obtain:

ĉi = ti/∥ti∥, ti =
∑︂
f∋i

mf/∥mf∥.

project onto S smooth C̊
x x x

C C̊ Ĉ
Figure 3.3.: Projection of C onto the unit sphere S around x ∈ Ω and subsequent smoothing provides a simple scheme
to compute coordinates even for non-convex cages.

Since the mean vectors mf can be expressed as non-negative linear combinations of the cage vertices (cf.
eq. (3.1)), one can assemble a matrix of all the vertices in Ĉ with the input vertices ci:

Ĉ = M
(︁
C− exT)︁,

where e = (1, . . . , 1)T ∈ Rn is a vector of ones and M ∈ RNC×NC is a non-negative transformation matrix.
With the use of the transformation matrix M and the non-negative GBC λ̂ = (λ̂1, . . . , λ̂NC) of the origin

respecting the cage Ĉ, one can define the GBC λ = (λ1(x), . . . , λNC(x)) of x ∈ Ω for the original cage as:

λ =
λ̂M
λ̂Me

. (3.10)

Therefore, the problem to finding GBC for x ∈ Ω with respect to C is reduced to the problem of finding
GBC λ̂ = (λ̂1, . . . , λ̂NC) of the origin with respect to the spherical cage Ĉ. Chang et al. [CDH23] determine λ̂
by maximizing the function

ℓ(λ̂) = log
NC∏︂
i=1

λ̂i =

NC∑︂
i=1

log λ̂i subject to
NC∑︂
i=1

λ̂i = 1,

NC∑︂
i=1

λ̂iĉi = x.

This optimization problem can be efficiently solved with Lagrangian multipliers, which reduces the problem
to finding the minimum of the following function F depending on only d = 3 variables:

F (η) = −
NC∑︂
i=1

log
(︁
NC + ηT(ĉi − x)

)︁
.

48

A few iterations of Newton’s method efficiently determine the minimum η∗ ∈ R3. The GBC of the origin
with respect to Ĉ are then defined as

λ̂i =
1

NC + ηT(ĉi − x)
.

It remains to plug these non-negative coordinates into eq. (3.10) to obtain MLC that exhibit all the listed
properties in section 2.3.2. Chang et al. [CDH23] also detail how to obtain the derivatives of MLC at x ∈ Ω.
However, one robustness issue is that for x being close to ∂C the spherical cage Ĉ might not include the origin,
which leads the construction of MLC to produce improper GBC.

3.6.4. Coordinates with Normal Control

While many constructions for GBC with different advantages and disadvantages were proposed, cage-based
deformation with GBC always interpolates the model from the cage vertices alone. This interpolatory de-
formation tool is inherently limited by preserving the model shape and surface features only be means of
the positioning of cage vertices. However, better shape preservation can be achieved by not only considering
cage vertices but also the normals of cage faces, because the face normals control the deformation for the
geometry in between cage vertices. The resulting coordinates with normal control are derived from bound-
ary integral formulations of PDEs. Thus, they inherit simple pointwise evaluation coordinates with explicit
formulas (cf. section 3.6.1) but also offer the smoothness of EMC (cf. section 3.6.2) without the requirement
to discretize and numerically solve a linear system.

Green Coordinates

The Green coordinates (GC), formulated by Lipman et al. [LLC08] for triangular cages, differ from the use
of GBC λi, i = 1, . . . , NC, as GC consist of coordinates φi, i = 1, . . . , NC for cage vertices and coordinates
ψj , j = 1, . . . , NF for triangle normals (see fig. 3.4). Therefore, GC infer local shape rotations from pure cage
vertex translations.

φi, i = 1, . . . , NC ψj , j = 1, . . . , NF

Figure 3.4.: Instead of using GBC for cage vertices only, GC take into account coordinates φi and ψj for cage vertices
and face normals, respectively.

The derivation of GC is based on Green’s third identity, which expresses the interior of a volumetric domain
by diffusion from its boundary. This is what one wants to achieve in cage-based deformation, as the config-
uration of the cage C is supposed to define the shape wrapped by C. For a harmonic function u(y), y ∈ R3,
Green’s third identity provides a concise identity mapping:

u(y) =
∫︂
∂C
u(y)

∂1G(y, x)
∂ny

day −
∫︂
∂C
G(y, x)

∂u(y)
∂ny

day, (3.11)

49

where day is the area element on ∂C, ny is the normal at y on ∂C, and G(y, x) = −(4π∥y− x∥)-1 is the
fundamental solution of the Laplacian equation in d = 3.

Since the normals and function G can be determined, it remains to set boundary Dirichlet and Neumann
conditions for u to express the diffusion in eq. (3.11). The Dirichlet condition can be obtained by interpolating
from cage triangle vertices:

u(y) =
∑︂

i ∈ tΓt
i(y)c′i,

where Γt
i are predetermined basis functions. For the Neumann condition, Lipman et al. [LLC08] propose to

set a mapping that is a good approximation of a quasi conformal mapping. They map the input normal nt to
the deformed normal n′

t and multiply by a stretch factor σt, which accounts for the stretch of a triangle when
mapping t to t′:

∂u(y)
∂ny

= σtn′
t, ∀y ∈ t.

With the use of two edge vectors e1 ∈ R3 and e2 ∈ R3 from the triangle t, the stretch factor σt can be
computed as:

σt =

√︄
∥e′1∥

2∥e2∥2 + ∥e′2∥
2∥e1∥2 − 2(e1 · e2)(e′1 · e′2)

2∥e1 × e2∥2
. (3.12)

After setting the boundary conditions as above, the final deformation scheme can be written as:

x′ =
NC∑︂
i=1

φi(x)c′i +
NF∑︂
j=1

ψj(x)σtjn
′
tj ,

with coordinates φi and ψj:

φti(x) =
∫︂
t
Γt
i(y)

∂1G(y, x))
∂ny

day,

φi(x) =
∑︂
i∈t

φti(x),

ψj(x) = −
∫︂
tj

G(y, x)day.

Computing GC with the above Dirichlet and Neumann conditions empirically provides a 3D quasi con-
forming deformation. As a consequence to building upon boundary diffusion, the construction of GC only
works for non-self-intersecting cages. While the diffusion is limited to the the interior of the Ω, Lipman et al.
[LLC08] detail an algorithm to enable the extrapolation to points x /∈ Ω, which is not presented in this thesis
for brevity. Since Ben-Chen et al. [BWG09] noted that expressions for more efficient and accurate computa-
tion of GC are given by Urago [Ura00], along with their gradients and Hessians, it is recommended to use
the expressions in [Ura00] instead of the original scheme formulated by Lipman et al. [LLC08].

Green Coordinates for Tri-Quad Cages

As the above construction for GC is limited to triangular cages, Thiery and Boubekeur [TB22] propose a
construction of Green coordinates for tri-quad cages (QGC). Their construction relies on many key ideas for
QMVC including:

• the use of validity equations to derive coordinates with a reproduction of identity,

50

• the usage of bilinear quads for interpolation,

• numerical approximation with a Riemann summation for efficiency,

• solving for the null-space of the validity equations.

Since the key to the derivation of GC is the determination of suitable Dirichlet and Neumann conditions, one
needs to set appropriate boundary conditions for a non-planar quad q to achieve support for tri-quad cages.
If one maps a bilinearly interpolant from its rest state quv to its deformed state q′uv, it leads to non-constant
face normals. The stretch factors for quads σq(u, v) are longer computed using triangle edge vectors. As the
stretch factors for quads are computed with tangent vectors (∂uquv, ∂vquv, ∂uq′uv, ∂vq′uv) of the bilinear quad,
the resulting stretch factors are non-constantly varying over q. Further following the exact derivation for GC
with bilinear quads provides the following integrals for the Dirichlet and Neumann conditions:

Dirichlet: uqD(x) =
∫︂ 1

0

∫︂ 1

0
q′uv

(quv − x) · Nq
uv

4π∥quv − x∥3
dudv,

Neumann: uqN (x) =
∫︂ 1

0

∫︂ 1

0

σq(u, v)nq′
uv

4π∥quv − x∥
∥Nq

uv∥dudv.

Unfortunately, these integrals are technically difficult to solve with closed-form expressions. For this reason,
Thiery and Boubekeur [TB22] resort to a robust approximation strategy that uses an auxiliary stretch factor:

σaux
q (u, v) =

∥Nq′
uv∥

∥Nq
uv∥

.

Inserting the auxiliary stretch factor into the Neumann condition leads to a simpler form:

uqN (x) =
∫︂ 1

0

∫︂ 1

0

σq(u, v)nq′
uv

4π∥quv − x∥
σaux
q (u, v)

σaux
q (u, v)

∥Nq
uv∥dudv

=

∫︂ 1

0

∫︂ 1

0

Nq′
uv

4π∥quv − x∥
σq(u, v)

σaux
q (u, v)

dudv

=
3∑︂

k=0

∫︂ 1

0

∫︂ 1

0

bkuv
4π∥quv − x∥

σq(u, v)

σaux
q (u, v)

dudv Nq′

k

≃
3∑︂

k=0

ψk
q (x)σkqN

q′

k , (3.13)

with

ψk
q (x) =

∫︂ 1

0

∫︂ 1

0

bkuv
4π∥quv − x∥

dudv, (3.14)

appearing as the contribution of a quad vertex to the coordinates for quad normals and σkq as a stretch factor
approximating the ratio σq(u, v)/σaux

q (u, v) over the bilinear quad, importance-sampled by bkuv.
Discretizing the Dirichlet condition for the non-planar quad q, one obtains

uqD(x) =
∫︂ 1

0

∫︂ 1

0
q′uv

(quv − x) · Nq
uv

4π∥quv − x∥3
dudv =

3∑︂
k=0

φqqk(x)q
′
k

51

with
φqqk(x) =

∫︂ 1

0

∫︂ 1

0
bkuv

(quv − x) · Nq
uv

4π∥quv − x∥3
dudv (3.15)

appearing as the coordinate for a quad vertex.
Merging the original computation scheme of GCwith the approximate coordinates for bilinear quads results

in a deformation function for tri-quad cages:

x′ =
NC∑︂
i=1

φi(x)c′i +
∑︂
t∈T

ψt(x)σtn′
t +
∑︂
q∈Q

3∑︂
k=0

ψk
q (x)σkqN

q′

k .

Since Thiery and Boubekeur [TB22] compute the coordinates φqk and ψk
q approximately, they use an adap-

tive Riemann summation strategy on the triangles T of tesselated quads, which is similar to the one used to
obtain QMVC. Nonetheless, QGC are guaranteed to be valid, because they reproduce identity. Like for GC,
Thiery and Boubekeur [TB22] empirically observe a quasi conformal mapping for QGC. Through the usage of
non-planar quads for quasi conformal cage-based deformation, QGC provide good preservation of symmetric
features.

Somigliana Coordinates

In order to allow for better control of the volume compression or inflation in cage-based deformation, Chen
et al. [CDD23] present Somigliana coordinates (SC). These coordinates are derived from the Somigliana
identity [Som85], which is a generalization of Green’s third identity. As the Somigliana identity applies to
linear elasticity that is associated with the compressibility and the smoothness of deformation. Thus, the
derived SC allow for more variations in deformation control than GC. Due to the use of the linear elasticity
model, the cage C is associated with a volumetric homogeneous material that should tend to the state of
equilibrium. The state of equilibrium is obtained, if the material’s displacement field u satisfies the Navier-
Cauchy equation:

µ∆u+
µ

1− 2ν
∇ (∇·u) = b, (3.16)

where µ > 0 is the shear modulus, ν is the Poisson ratio, and b is the external body load. If no external
force is applied (b = 0), the displacement within the volumetric material is only determined by boundary
conditions. To set the boundary conditions, one needs to specify boundary displacement u and the traction τ .
The relationship of boundary displacement with the displacement of the body is expressed by the Somigliana
identity as follows:

u(x) =
∫︂
∂Ω

[︁
T (y, x)u(y) +K(y, x)τ (x)

]︁
day, ∀x ∈ Ω, (3.17)

where K represents the fundamental solutions of linear elasticity, i.e., Kelvinlet [Tho48], and T represents
the boundary traction. Chen et al. [CDD23] combine the expressions forK and T with extra terms for volume
control to increase the space of available deformations. The extend of these extra control terms is governed
by the Poisson ratio ν.

Since SC like GC rely on an identity mapping, the derivation of SC also uses the identity mapping to obtain
coordinates for cage vertices and face normals so that a reproduction of a given point x ∈ Ω is achieved. As
the identity mapping of displacement u(x) = x describes a state in equilibrium, which satisfies the Navier-
Cauchy eq. (3.16), the derivation of SC substitutes the identity mapping into the boundary integral of the
Somigliana identity (cf. eq. (3.17)). This yields a reproduction of the rest pose of x ∈ Ω:

x =

NC∑︂
i=1

Ti(x) ci +
NF∑︂
j=1

Kj(x)(cntj), (3.18)

52

where the constant c=2µ(1 + ν)/(1− 2ν) represents the magnitude of the boundary traction induced by
u(x) = x, and the matrices Ti, Kti provide SC defined for cage vertices and faces, respectively. The two
matrices Ti and Kti can be computed as boundary integrals:

Ti(x) =
∫︂
∂Ω
T (y, x)Γi(y)day,

Kti(x) =
∫︂
∂Ω
K(y, x)Πti(y)day,

where Γi represents the piecewise linear basis function for the cage vertex and Πti is piecewise constant
across the cage triangle ti. Unfortunately, the derivation of closed-form expressions for the above integrals
is technically difficult. For this reason, Chen et al. [CDD23] resort to a quadrature rule to compute SC.
The quadrature rule subdivides each triangle into three quads and subsequently applies Gauß-Legendre
quadratures on each of the three quads. Thus, the computation of SC can be massively-parallelized, enabling
exploitation of the computational power of GPUs.

The fact that SC are matrices instead of scalars is an interesting difference to the other coordinate types.
One important property of matrix-valued coordinates is that they are dependent of the scale and orientation
of C at rest state. Consequently, some large cage-based deformation with SC can potentially lead to unin-
tuitive volume inflation artifacts. Therefore, Chen et al. [CDD23] present a corotational formulation of SC
to achieve similarity invariance. For computing corotational SC, the rest cage is approximately aligned with
the deformed cage through application of a rotation to each cage face. The rotations of cage vertices can be
averaged from the face rotations. As a result of the alignment, the volume artifacts are effectively avoided.
The details for deriving and computing corotated SC can be found in the paper of Chen et al. [CDD23].

3.7. Isogeometric Analysis

Since the conversion of a CAD model to a discrete volumetric mesh can be laborious, Hughes et al. [HCB05]
introduced the isogeometric analysis (IGA) method to solve PDEs directly on a CAD model instead of per-
forming FEM on a volumetric mesh. Cottrell et al. [CHB09] have consulted experts in the numerical analysis
field to estimate the potential impact on the industry, which revealed that the creation of suitable meshes fre-
quently accounts for a significant portion of development times. The use of IGA provides several advantages:

• As production teams are able to execute the analysis of the prototype in the the CAD environment, the
use of IGA can save the conversion overhead of the prototype into a volumetric mesh for an FEA.

• If the CAD geometry provides an accurate representation of the prototype, the error due to numerical
discretization can be reduced with the use of IGA.

• A considerable set of smooth geometries can be representedwith few design parameters [Qia10; YHC13],
which facilitates quick optimization of prototype designs.

While these advantages encourage to use IGA for VP, some disadvantages complicate its use in common
VP processes. One of these disadvantages is that a geometry representation of connected CAD surfaces is not
suitable to specify properties, e.g., material or interior loads, for the interior volume of a prototype [LAR20].
For this reason, proper IGA demands a volumetric representation of the prototype such as trivariate NURBS,
in order to support numerical simulation of volumetric geometries. The conversion of a CAD geometry to
trivariate NURBS requires specialized algorithms [Al +16] and (similar to the generation of an unstruc-
tured tetrahedral mesh) cannot guarantee sufficient quality of elements for numerical simulation of complex
geometries.

53

Over the years, the IGA has evolved to support representations other than NURBS. For changing the shape
of a prototype immediately after IGA, Burkhart et al. [BHU10] present an approach for IGA on CC subdivision
solids coupled with user-guided modeling of the geometry. As CC subdivision solids offer a comprehensive
set of modeling operations, users are able to alter the geometry for design adjustments. The IGA approach of
Burkhart et al. [BHU10] only supports hexahedral elements, which can be restrictive for modeling sharp sur-
face features. For this reason, Altenhofen [Alt21] extend the approach of Burkhart et al. [BHU10] for better
numerical integration of irregular CC solid cells, which allows for more freedomwhen modeling the geometry
with CC subdivision solids. Nonetheless, the use of IGA for volumetric geometries oftentimes demands the
conversion of the CAD model into a special volumetric representation, which frequently is restrictive, prone
to issues for complex geometries, and involves the use of uncommon data structures.

Although the IGA has received a lot of attention over the years, many VP processes still rely on unstruc-
tured volumetric meshes. One major reason for this is the continuous progress of facilitating meshing tasks
with robust tools and frameworks (see, e.g., [Hu+18; Hu+20; Dia+23]), which motivates to stick to well-
established workflows that use a volumetric mesh. With the continuous improvement of the algorithms ex-
ploiting the available computational power (cf. section 3.2), complex meshing tasks can be significantly accel-
erated. In addition, a transition to IGA oftentimes requires restructuring of well-established workflows. Many
production teams avoid this overhead, as long as the well-established workflows do not impose unmanage-
able development times. This thesis focuses on unstructured tetrahedral meshes to support well-established
workflows.

3.8. Spatial Datastructures for GPU-parallel Construction and Rendering

Post-processing with the use of the GPU requires a suitable spatial data structure for interactive rendering.
Thus, this section reviews the history on spatial data structures for GPUs. Section 3.8.1 reviews publications
that address the massively parallel construction of linear data structures. As the efficient traversal of data
structures is also an important topic, section 3.8.2 highlights related work on spatial data structure traversal.
The recently introduced RTX technology for hardware accelerated ray tracing is discussed in section 3.8.3.

3.8.1. Linear Spatial Datastructures

An important issue of post-processing unstructured meshes is the fast construction of a spatial data structure
to accelerate post-processing. For massively parallel construction, linear spatial data structures arrange prim-
itives linearly in memory using space filling curves. The linear bounding volume hierarchy (LBVH) introduced
by Lauterbach et al. [Lau+09] forms the basis of many of the newer approaches.

x 0 1 2 3
y 00 01 10 11
0 00 0000 0001 0100 0101
1 01 0010 0011 0110 0111
2 10 1000 1001 1100 1101
3 11 1010 1011 1110 1111

Figure 3.5.: Morton codes for a 4× 4 grid.
The bits of the individual integer coordi-
nates are interleaved, leading to a space-
filling curve with a fractal Z-like shape.

The LBVH relies on Morton codes [Mor66] (see fig. 3.5) to ap-
proximately spatially sort discretized element centroids in parallel.
Split positions for the hierarchy are determined in parallel accord-
ing to differing bits of neighboring codes. While construction is
very fast, it results in many singleton nodes, i.e., nodes with only
one child, and nodes overlap significantly due to the approximate
nature of Morton order sorting. They also introduce a surface area
heuristic (SAH) hierarchy that ameliorates these issues, but signif-
icantly increases construction cost. In addition, SAH do not map
well to volumetric meshes.

A number of authors have since improved the LBVH construc-
tion performance. Pantaleoni and Luebke [PL10] introduced a two-
level hierarchical linear bounding volume hierarchy (HLBVH) Mor-

54

ton sorting method with better performance for dynamic meshes. This method was further improved by
Garanzha et al. [GPM11] who introduced a task-based approach to HLBVH construction that enables con-
struction in a single kernel call. Karras [Kar12] developed an approach that computes all hierarchy levels in
parallel leading to better scaling, while also generalizing to k-D trees and octrees. This approach was further
improved by Apetrei [Ape14] using atomic operations to avoid binary searches and improve construction
speed.

A potential alternative to the SAH are the extended Morton codes introduced by Vinkler et al. [VBH17].
Extended Morton codes encode the discretized bounding box size into an arbitrary number of bits of the code
while the number of bits per coordinate can be varied as well. However, the position of these bits must be
chosen carefully for good performance. Furthermore, high-quality volumetric meshes for simulation tend to
vary smoothly in element size (see, e.g., Alliez et al. [All+05]), reducing the potential benefit of extended
Morton codes.

For time-varying data, refitting, as used in an early CPU-based work by Wald et al. [Wal+07], is an inter-
esting alternative. However, the resulting BVHs are of lower quality and would loose the beneficial properties
of tightly fitting nodes. While Zellmann et al. [ZHL19] use the LBVH data structure for volumetric data,
they do so for volumetric data on a sparse regular grid, avoiding overlapping bounding volumes a priori.
General unstructured volumetric meshes require a different approach. In particular, octrees are beneficial
as volumetric data fills space more densely and octrees help avoid excessive hierarchy depth. For the use
case of surface reconstruction from point clouds, Zhou et al. [Zho+11] construct an octree using a bottom
up approach based on Morton order sorting. While large point clouds can be stored efficiently, the memory
overhead of the hierarchy itself is large and limits tree depth. Furthermore, hierarchy levels are allocated
separately, leading to increased allocation and synchronization overhead. Gu et al. [GJG18] introduce the
loose octree bounding volume hierarchy (LOBVH) and a binary tree variant loose octree linear bounding vol-
ume hierarchy based on the work of Karras [Kar12]. However, their LOBVH approach requires full allocation
of the finest octree level followed by a compaction step. This severely limits the maximum octree depth and
results in a large memory overhead.

3.8.2. Massively Parallel Traversal

Besides efficient construction, traversal requires special attention on the GPU as it is typically performed
recursively and the stack resides in local memory (cf. section 2.2.1), where the compute-to-bandwidth ratio
is large. Murguia et al. [Mur+13], García et al. [Gar+14], as well as Binder and Keller [BK16] use bit trails
for stackless traversal. Bit trails store the path through a tree as individual bits in an integer. However, these
approaches are designed for binary trees and incur additional memory overheads such as allocation of empty
nodes or hash maps. Vaidyanathan et al. [VWB19] recently introduced a short stack approach which avoids
these overheads and supports higher tree arities, albeit at the cost of requiring some stack space. The traversal
algorithm presented in section 7.1.4 relies on the short stack approach by Vaidyanathan et al. [VWB19].

3.8.3. Hardware Accelerated Spatial Data Structure

Since the advent of specialized RT cores in consumer NVIDIA GPUs for hardware-accelerated ray tracing
operations, the real-time capabilities for GPU-accelerated ray tracing significantly improved. RT cores can be
controlled with NVIDIA’s RTX platform (see, e.g., [Sti18; SFG20; NVI24b]).

For finding intersections of rays with the scene, the RTX platform provides a built-in hardware-accelerated
spatial data structure. As the RTX platform is designed for ray tracing of complex scenes, the spatial data
structure management is designed for maintaining many geometries in a scene. Typically, some geometries
of a scene exhibit fine-grained geometric details, while other parts of the scene only feature low-resolution

55

details or are even empty. Therefore, the RTX platform provides the bottom level acceleration structure
(BLAS) for the high-resolution geometries of the scene and the top level acceleration structure (TLAS) to
subdivide the scene into BLASes. While a BLAS constructs a high-quality structure for many primitives,
building a TLAS is substantially more economical in terms of run time and memory consumption [Sti18].

On the contrary to the RTX platform, this thesis focuses on post-processing of unstructured tetrahedral
meshes for analysis purposes, where typically only one geometry is inspected instead of a complete scene.
Due to its origin in ray tracing dynamic scenes, the RTX platform is rather focused on surface meshes instead
of volumetric meshes. In addition, the availability of RT cores is currently limited to only the newest GPUs
from a single vendor. Thus, chapter 7 presents a spatial data structure the OLBVH for memory-efficient DVR
of a single volumetric mesh. The OLBVH is not only focused on rendering and supports other use cases such
as re-meshing. In order to support arbitrary GPUs, the construction of the OLBVH does not depend on RT
cores. Furthermore, efficient hardware construction of spatial data structures is itself an open research topic
(see, e.g., Doyle et al. [DTM17] or Viitanen et al. [Vii+17; Vii+18]).

3.9. Direct Volume Rendering of Unstructured Meshes

Pioneering works in the GPU-based DVR of structured grids [KW03] such as voxel grids inspired many pub-
lications about the GPU-based DVR of unstructured grids [Sil+05] such as unstructured tetrahedral meshes.
Typically, the rendering of unstructured volumetric meshes imposes slower run time performance than the
rendering of structures volumetric grids because of the additional overhead of performing a spatial search for
finding the primitives of the mesh that intersect a specific ray. The majority of current DVR methods relies
on a spatial data structure to quickly reduce the set of potentially intersecting mesh elements [Mei+21].

As the aggregated processing power of GPUs is attractive for interactive DVR performance, many early
approaches [Wyl+02; KSE04; Mui+11] use programmable GPU shaders for ray casting. The performance of
these DVR approaches degrades with increasing the number of samples for each view ray, while more sam-
ples typically improve the quality of the resulting images (cf. section 2.4). Therefore, academics introduced
adaptive sampling methods [Kra+07] that adapt the sampling rate to the local variance of the sampled scalar
field, in order to reduce the number of samples for improved DVR performance. Due to the limited available
memory of each GPU shader and the restrictions of shader programming, later approaches [Max+08; OG14;
Lar+15] relied on APIs such as CUDA (cf. section 2.2.1) to exploit convenient and versatile programming
environments, which provides extendable DVR applications and good image quality.

With further increases in processing power of GPUs, people started to prefer the convenient and extend-
able API-based DVR applications over the restrictive GPU shader variants. Consequently, interactive DVR
approaches using CUDA were devised by people in the industry and academics. Wald et al. [Wal+19] trace
very short segments of rays to perform point location in tetrahedral meshes using the RTX acceleration struc-
ture (cf. section 3.8.3) for triangle meshes, in order to benefit from the capabilities of built-in hardware
acceleration capabilities of NVIDIA cards. This requires the conversion of tetrahedra into triangles. Due to
hardware acceleration, they achieve significant speedups compared to a pure general purpose computing
on graphics processing units approach, although their method performs an intersection test for a segment
of the ray instead of direct point location for each sampling point. Their approach also extends to bilinear
elements [Mor+22]. As substantial performance improvements can be achieved with adaptive sampling,
Morrical et al. [Mor+19] dynamically adapt the sampling rate to the local variance of the transfer function,
which significantly accelerates the approach ofWald et al. [Wal+19]. For determining the local variance, they
partition the input mesh into sub-regions and calculate the variance for each region. The non-overlapping
leaves of an additional KD-tree spatial data structure form the partitions of the mesh, which requires addi-
tional construction and memory overheads.

56

While interactive rendering performance coupled with convenient programmability is provided by present-
day GPU technologies, the memory capacity on a GPU is limited, which poses problems for rendering large
meshes or entire data sets. For this reason, recent work addresses the memory-efficient organization of
meshes and annotated data for interactive DVR. Wald et al. [WMZ21] present an encoding of the mesh and
the BVH for reducing the memory demands of DVR of unstructured meshes. This encoding represents the
input mesh as a set of sub-meshes. Partitioning a mesh into sub-meshes admits to represent each sub-mesh
with fewer indices and use fewer bytes per index. For further reduction of memory consumption, Şahistan et
al. [Şah+21] present a memory layout for vertex indices that includes an exclusive-or-sum field to calculate
vertex indices from other indices. With the use of this field, less indices need to be stored.

Besides compression of the mesh, the compression of the spatial data structure is an effective measurement
to reduce memory consumption. For tree compression, Morrical et al. [Mor+23] sort primitives along the
space-filling Hilbert curve to arrange clusters of spatially nearby primitives. The spatial data structure con-
struction can then generate a hierarchy of clusters instead of a hierarchy of individual primitives, which saves
memory. Since meshes for numerical simulation may exhibit a more fine-grained resolution at the features of
interest, there is a need for memory-efficient DVR of meshes generated by adaptive mesh refinement. As these
meshes may exhibit deep and highly-irregular hierarchies of grid cells at the fine-grained parts, Wald et al.
[Wal+21] combines several same-level grid cells into non-overlapping bricks. For each of these bricks, the
regions of mutual spatial influence for rendering are determined. An RTX acceleration structure is then built
for DVR. Similarly, Zellmann et al. [Zel+23] support cell-centric scalar value annotation for DVR of meshes
generated by adaptive mesh refinement. Their approach relies on a dual mesh for proper interpolation of
scalars. Inspired by brick-based approach of Wald et al. [Wal+21], they cluster the dual mesh into small
gridlets that combine several hexahedron grid cells. Organizing the hierarchy of refined cells into clusters of
gridlets instead of individual grid cells saves memory consumption.

In order to enable memory-efficient DVR of an unstructured tetrahedral mesh representing a virtual pro-
totype, section 7.1 presents a spatial data structure that provide sparse memory usage and control over the
hierarchy depth. For many meshes, the proposed spatial data structure consumes less memory than the RTX
acceleration structure (see section 7.4.2). The DVR with the proposed spatial data structure is sufficient for
interactivity for reasonably large meshes and keeps up well with state of the art methods. This proposed spa-
tial data structure does not depend on RTX hardware acceleration. Thus, the proposed spatial data structure
is more general and applicable to more use cases of volumetric rendering, because it does not require to con-
vert a tetrahedron into triangles. While the usage of RTX hardware acceleration provides superior rendering
performance, the proposed spatial data structure admits fast run time performance of ray marching on GPUs
without RTX (see section 7.4.3), which is majority of commodity GPUs.

57

4. Fast Harmonic Mesh Optimization

The following papers contain the core content of this chapter:

[Str+22] D. Ströter, J. Mueller-Roemer, D. Weber, D. W. Fellner, “Fast harmonic tetrahedral mesh optimiza-
tion”. In: The Visual Computer (June 2022). Visual Computer Best Paper Award at Computer Graph-
ics International 2022. doi: 10.1007/s00371-022-02547-6

[Str+23] D. Ströter, A. Halm, U. Krispel, J. S. Mueller-Roemer, D. W. Fellner, “Integrating GPU-Accelerated
Tetrahedral Mesh Editing and Simulation”. In: Simulation and Modeling Methodologies, Technologies
and Applications. Ed. by Gerd Wagner, Frank Werner, Tuncer Oren, and Floriano De Rango. Springer
International Publishing, 2023, pp. 24–42. doi: 10.1007/978-3-031-23149-0_2

As this thesis is concerned with editing unstructured tetrahedral meshes for VP processes, the element
quality of the meshes should be sufficient for numerical simulation. Therefore, the first topic this thesis ad-
dresses is element quality optimization. This chapter presents a massively parallel algorithm to optimize
the element quality of an unstructured tetrahedral mesh performing vertex relocation and re-meshing with
edge/face flips (see section 2.1.2). For this purpose, this chapter investigates RQ1 to find parallelization
strategies of foundational operations for mesh optimization, addressing the field of low-level mesh editing
(cf. section 3.1). Since the robustness of mesh optimization is important for VP processes, this chapter in-
vestigates RQ2 as well. Thus, the target of the proposed optimization should not only be good run time
performance but also to design the algorithms such that they produce valid meshes (cf. section 2.1.1) with
good element shape quality. Consequently, this chapter investigates not only parallelization strategies but
also attempts to contribute algorithms that provide robust and fast convergence to a mesh with good ele-
ment qualities. The intention behind this approach is to obtain robust and massively parallel algorithms for
meshing operations.

In orchestration, these operations can be used for optimization or other re-meshing applications in the VP
cycle. Therefore, this chapter is concerned with the investigation of RQ3. The foundation for the meshing
algorithms proposed in this chapter is the harmonic triangulation (cf. section 2.1.3), in order to provide a
contribution to Delaunay-based methods. The choice of harmonic triangulations for mesh optimization is
relevant because of the following properties:

• It provides an efficiently calculable energy for minimization

• This energy is a measure for element quality and differentiable

• It tends to provide low element counts saving computation time of numerical methods

• It is Delaunay-related opening the gate to Delaunay-based methods

• Its gradient can be computed using only face areas, normals and the Jacobian (see section 4.1)

To achieve efficient use of first-order optimization, this chapter first introduces an efficient scheme for
gradient computation in section 4.1. As mesh optimization requires boundary treatment (cf. section 3.2.7),
section 4.2 provides a method for massively parallel boundary extraction. Section 4.3 presents a method for

59

https://doi.org/10.1007/s00371-022-02547-6
https://doi.org/10.1007/978-3-031-23149-0_2

robust, massively parallel optimization of vertex positions. Section 4.4 presents a strategy to massively paral-
lelize harmonic flips. How to combine the relocation of vertices with harmonic flipping for good convergence
and run time performance is discussed in section 4.5. A critical evaluation of the proposed concepts appears
in section 4.6. Finally, section 4.7 briefly summarizes the key conclusions of this chapter.

4.1. Harmonic Gradient

As the goal in harmonic triangulations is energy minimization, the gradient of the energy is useful for first
order methods such as gradient descent. Alexa [Ale19] details the calculation of the gradient for one tetrahe-
dron (cf. eq. (2.14)). Harmonizing a mesh, i.e., minimizing Dirichlet energy, substantially benefits from the
use of gradient descent. The gradient of the trace used for mesh harmonization is denoted as the harmonic
gradient, henceforth. The sum of all the harmonic gradients of tetrahedra assembles the harmonic gradient
of the entire mesh:

∇ tr(LT) =
∑︂
τ∈T

∂ tr(Lτ)
∂XT

∈ RdNV , (4.1)

where ∂ tr(Lτ)/∂XT only contains a nonzero entry for vertices included by τ . Thus, ∂ tr(Lτ)/∂XT is a global
version of the local harmonic gradient ∂ tr(Lτ)/∂Xτ for a simplex τ . As the gradient of each vertex v ∈ V
depends on multiple tetrahedra, assembly of the global gradient performs several additions for every vertex,
which is part of more than one tetrahedron. Therefore, parallel assembly of the gradient over simplices τ ∈ T
requires to handle potential write conflicts to ensure deterministic and correct results. Another drawback of
using a global harmonic gradient for the entire mesh is that the global gradient becomes invalid, when only
one single vertex of the mesh changes or any re-meshing operation alters the mesh. Furthermore, gradient
descent methods typically exhibit better convergence, if performed locally. Relocating two adjacent vertices
at a time can mitigate convergence. For this reason, it is preferable to perform local gradient descent steps for
individual vertices. In order to avoid global assembly and enable calculation of the local gradient for a given
vertex, a formula for the gradient of the trace for a specific vertex provides means for local gradient descent
steps. A formula of the local harmonic gradient for a specific vertex ∂ tr(Lτ)/∂v can be extracted from the
gradient formula for a simplex in eq. (2.14). This results in the following gradient formula:

∂ tr(Lτ)
∂vti

=
ai

d!d3vτ

(︄(︃
2a2i
vτ
− η(τ)

)︃
ni +

2

vτ

d∑︂
j=0
j ̸=i

a2j (nT
i nj)nj

)︄
, where ti ∈ τ. (4.2)

Proof. Suppose the vertex v ∈ V has the index ti ∈ τ , where i ∈ {0, 1, . . . , d}. The harmonic gradient of v can
then be obtained by evaluating eq. (2.14) and taking the i-th entry of the resulting vector of gradients. The
idea is now to formulate an equation for ∂ tr(Lτ)/∂v by rewriting eq. (2.14) to only consider the vertex v of
index ti ∈ τ . For convenience, recalling eq. (2.14) provides the following:

∂ tr(Lτ)
∂Xτ

=
1

d!
(XτMd)

−TMT
d(tr(Lτ)I− 2Lτ).

From [Ale19] it is known that:

(XτMd)
−TMT

d =
−1
dvτ

(a0n0, . . . , adnd), (4.3)

(Lτ)ij =
aiaj

d2vτ
nT
i nj . (4.4)

60

Inserting eq. (4.3) and eq. (2.11) in eq. (2.14) results in:

∂ tr(Lτ)
∂Xτ

=
−1
d!dvτ

(a0n0, . . . , adnd)

(︄∑︁d
j=0 a

2
j

d2|vτ |
· I− 2Lτ

)︄
. (4.5)

The next step is to develop the matrix on the right side of the product. While the non-diagonal entries of the
matrix are given by eq. (4.4), the diagonal entries require the evaluation of the subtraction with the trace:(︄∑︁d

j=0 a
2
j

d2|vτ |
· I− 2Lτ

)︄
ii

=
1

d2

(︄∑︁d
j=0 a

2
j

|vτ |
−

2

vτ
a2i

)︄
, (4.6)(︄∑︁d

j=0 a
2
j

d2|vτ |
· I− 2Lτ

)︄
ij

= −2
aiaj

d2vτ
nT
i nj , where i ̸= j. (4.7)

As the goal is to obtain the gradient regarding v of index ti ∈ τ , the dot product of the left row vector and
the i-th column vector of the right matrix in eq. (4.5) is of interest now. Since the entries of the matrix are
given by eqs. (4.6) and (4.7), the dot product evaluates to:

∂ tr(Lτ)
∂vti

=
−1
d!dvτ

(︄
aini ·

1

d2

(︄∑︁d
j=0 a

2
j

|vτ |
−

2

vτ
a2i

)︄
+

d∑︂
j=0
j ̸=i

ajnj · (−2)
aiaj

d2vτ
nT
i nj

)︄
. (4.8)

As a result, eq. (4.8) provides a formula for the calculation of ∂ tr(Lτ)/∂v. Now, it still remains to simplify
eq. (4.8). Interestingly, the harmonic index η (see eq. (2.13)) is part of the equation:

∂ tr(Lτ)
∂vti

=
−1
d!dvτ

(︄
aini ·

1

d2

(︃
η(τ)−

2

vτ
a2i

)︃
+

d∑︂
j=0
j ̸=i

ajnj · (−2)
aiaj

d2vτ
nT
i nj

)︄
. (4.9)

The resulting equation can be further simplified by rearrangements:

∂ tr(Lτ)
∂vti

=
ai

d!d3vτ

(︄(︃
2a2i
vτ
− η(τ)

)︃
ni +

2

vτ

d∑︂
j=0
j ̸=i

a2j (nT
i nj)nj

)︄
.

After the rearrangements, the equation is the same as eq. (4.2).

Using the gradient from eq. (4.2), a thread can efficiently calculate the direction of steepest descent for any
vertex given its set of adjacent tetrahedra. This allows for optimization of vertex positions, calculating gradi-
ents on demand without the need of global gradient assembly. Furthermore, it is an interesting observation
that the gradient can be calculated as a linear combination of area weighted face normals. For efficiency, it is
beneficial that the gradient calculation requires only the determinant of the simplex as well as face normals
and determinants, while costly functions are not part of the formula. Another interesting aspect of eq. (4.2)
is that its linear form allows for geometric interpretation of the harmonic gradient, which is an interesting
avenue for future work, because it might reveal insights about the nature of harmonic triangulations.

61

4.2. Boundary Features Extraction for Gradient Descent

As re-meshing unstructured tetrahedral meshes and gradient descent of boundary vertices, requires access to
the boundary elements of the mesh, fast extraction of the triangular surface mesh is a necessity for fast run
time performance. Therefore, this thesis presents a massively parallel algorithm for quick extraction of the
triangular surface coupled with computation of surface features and mapping data from a tetahedral mesh
to its surface mesh and vice versa. The algorithm computes the data structure presented in listing 4.1:

struct {
int num_boundary_triangles;
int num_boundary_vertices;
float3 * boundary_vertices;
int3 * boundary_triangles;
uchar * vertex_markers;
int * tet_mesh_idx_to_boundary_idx;
int * boundary_idx_to_tet_mesh_idx;

} TetMeshBoundary;

Listing 4.1.: The data structure representing the boundary of an unstructured tetrahedral mesh. The listing is provided
in a C++ style syntax.

Face Ridge Corner

Figure 4.1.: Classification of vertices (red) into types to
optimize vertices on the boundary.

The data structure saves the numbers of boundary
vertices and triangles as well as the surface mesh it-
self as arrays of three contiguous floats and integer in-
dices per vertex and triangle, respectively. Each vertex
of the tetrahedral mesh is annotated with a flag to in-
dicate, if it is a boundary vertex or not. If the vertex is
a boundary vertex, the boundary data structure addi-
tionally encodes whether the vertex lies on a geomet-
rical face, ridge, or corner. Figure 4.1 visualizes these
three cases. This enables downstream element quality optimization algorithms to optimize boundary ver-
tices without changing the shape. For mapping purposes, the tet_mesh_idx_to_boundary_idx array
includes the boundary vertex index for each vertex index of the tetrahedral mesh. By construction, this array
only includes valid values for vertices that are boundary vertices, i.e., whose markers indicate a boundary ver-
tex. For each boundary vertex, the boundary_idx_to_tet_mesh_idx includes the corresponding index
in the tetrahedral mesh.

The proposed algorithm extracts the triangular boundary of the tetrahedral mesh using GPU-accelerated
sub-mesh extraction similar to the method presented by Wald [Wal21]. A key difference to Wald’s method is
that the proposed algorithm is able to map from the vertex of the extracted mesh to the corresponding vertex
in the original mesh. The first step is to detect the boundary triangles as well as boundary vertices. With the
use of the TCSR data structure for simplex meshes (cf. section 2.2.3), boundary extraction finds the triangles
of the tetrahedral mesh as well as the following two mappings in parallel on the GPU:

1. The mapping of any given triangle to the tetrahedra containing this triangle

2. The mapping of any given vertex to the triangles containing this vertex

In terms of mesh connectivity, a boundary triangle is connected to only one tetrahedron. Thus, the algo-
rithm initializes a pair of marker arrays to 0 for each triangle and vertex. The boundary extraction algorithm

62

checks the number of neighboring tetrahedra of each triangle in parallel. The check marks boundary tri-
angles and their vertices with the marker value 1. Subsequently, the algorithm performs a parallel prefix
scan on the marker array in order to obtain offset positions as well as num_boundary_triangles and
num_boundary_vertices. As the prefix sum over the boundary vertex markers can be used to map a
boundary vertex index to the index in the tetrahedral mesh, the algorithm keeps this prefix sum in the
tet_mesh_idx_to_boundary_idx array. Using the prefix offset positions, a stream compaction writes
boundary vertices to the boundary_vertices array and boundary triangles to the boundary_triangles.
Unlike Wald’s method [Wal21], the proposed algorithm does not require a permutation array to update the
indices, because the prefix positions are sufficient for a simple copy. After determining the boundary vertices,
the boundary extraction algorithm classifies them into one of the following three categories (see fig. 4.1):

• FACE: The boundary triangles surrounding the vertex are coplanar, forming a geometric face.

• RIDGE: The boundary triangles surrounding the vertex form a geometric edge.

• CORNER: The vertex is neither classified as FACE nor EDGE.

Classification of boundary vertices proceeds in parallel on the GPU. Optimization tools such as Stellar [KS08]
evaluate the scalar products of the normals and check if they differ by a given threshold. The eigenvalue de-
composition based method by Jiao [Jia06] achieves even more robust classification. The following describes
a classification based on the method in Stellar, while the classification based on the method of Jiao [Jia06]
is discussed in section 6.1.2.

The classification first retrieves the tetrahedral mesh index of the boundary vertex with the subsequently
calculated mapping. The algorithm classifies the boundary vertices based on the scalar products of the nor-
malized normals of surrounding boundary triangles. If two normals are co-linear, their scalar product evalu-
ates to 1. Feature classification relies on the threshold εF . For efficiency, the classification associates a group
of triangles with one normal. An initial group is associated with the normal of the first triangle in the list.
Subsequently, the classification iterates through the surface triangles of a boundary vertex. Whenever the
scalar product of a triangle’s normal and the normal of any group deviates from 1 by more than εF , a new
group is added. This new group is associated with the normal of the current triangle. For a face vertex,
the classification finds only one group of triangles. For a ridge vertex, the classification finds two groups. If
the classification finds more than two groups, the vertex is a corner vertex. This thesis consistently chooses
εF = 0.01.

In a final parallel pass over the vertices, the algorithm sets the boundary_idx_to_tet_mesh_idxmap-
ping. The algorithm only needs to check the boundary marking of the vertex and lookup the boundary vertex
index in the tet_mesh_idx_to_boundary_idx array in order to write the tetrahedral mesh vertex index
to the entry at the boundary vertex index position.

4.3. Vertex Relocation

Optimizing vertex positions is a crucial operation to improve element quality [KS07; Lo14a]. Therefore, this
section presents algorithms for robust and massively parallel vertex relocation using the harmonic gradient
from section 4.1.

4.3.1. Relocating Interior Vertices

An important action for improving element shape is relocating vertices minimizing tr(LT). This section de-
scribes vertex relocation using the harmonic energy in general, while the boundary treatment is discussed
in sections 4.3.2 to 4.3.4.

63

Asmesh optimization can be significantly accelerated through parallel processing, a parellelization strategy
shall allow for fast optimization using GPUs. Since individual optimization of vertex positions in Gauß-Seidel
iterations is more stable than simultaneous vertex relocation in Jacobi iteration order, the parallelization strat-
egy shall consider the connectivity of vertices so that simultaneous updates of adjacent vertices is avoided.
Consequently, a graph coloring method assigns a color to every mesh vertex respecting the condition that
adjacent vertices receive different colors. Figure 4.2 visualizes the simultaneous optimization of vertices
using graph coloring. A multitude of efficient massively-parallel graph coloring methods is available. Fre-
quently applied methods are for example Deveci’s graph coloring [Dev+16] or the graph coloring algorithm
of NVIDIA’s Cusparse library [NVI22c] implementing the Cohen-Castonguay algorithm [CC12; NCC15]. The
graph coloring of Cusparse is deterministic, while Deveci’s graph coloring [Dev+16] is usually faster but not
deterministic. In order to obtain independent sets, vertices of the input mesh are colored as a pre-process
and whenever mesh connectivity is altered. The set SC denotes the sets of vertices per color.

optimizing blue vertices optimizing green vertices

optimizing red vertices result

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

tr(Lt(v))

Figure 4.2.: Optimizing interior vertices with coloring. The figure shows the energy fields of tr(Lt(v)) for the to-be-
optimized vertices, the directions of steepest descent bounded by inversion-free intervals, and the minima (gray) along
the search lines.

64

Algorithm 2 presents an outline of the massively-parallel vertex relocation. For now, the boundary treat-
ment conditions T = B and T ∼= B are ignored, because this section only details the general procedure for
vertex relocation. The massively-parallel vertex relocation on the basis of graph coloring optimizes vertex
positions in batches of independent sets (lines 2 and 3). In order to achieve a robust vertex relocation, ele-
ment inversions, i.e. vτ < 0, shall be avoided. For this reason, a factor λ bounds the vertex relocation along
the direction of steepest descent. The upper bound λ is computed after determining the relocation direction
and is, thus, initialized to∞ (line 4). As it is important to consider every simplex that includes the relocated
vertex, the gradient calculation considers every simplex from the one-ring of simplices. For any vertex vi ∈ V
of index i, t(i) denotes the simplices in the one-ring of vi:

t(i) = {τ ∈ T | i ∈ τ}, where 0 ≤ i < NV. (4.10)

The notation t(·) shall indicate that the one-ring is also a sub-triangulation of T. Applying the sum rule, the
vertex position optimization calculates the harmonic gradient for the sub-triangulation t(·). For convenience,
the following definition denotes the harmonic gradient of the one-ring:

∇v tr(Lt(i)) =
∑︂

τ∈t(i)

∂ tr(Lτ)
∂v

, where v = Vi. (4.11)

The TCSR mesh data structure allows for massively-parallel precomputation of the connectivity relationships
of vertices to their one-rings by calculation of the corresponding coboundary operator, e.g., d23 (see sec-
tion 2.2.3). Thus, it can be used to obtain t(·) for all the vertices of the mesh. Iterating over the simplices in
t(·) and adding their gradients (together) determines the harmonic gradient of the one ring (line 8).

As gradient descent methods converge if the gradient approaches zero, the optimization checks if the gra-
dient norm is lower than a predetermined threshold εg to avoid unnecessary steps (line 14). After considering
the gradient norm for the termination check, the procedure inverts and normalizes the gradient to prepare
for a line search along the direction of steepest descent (line 15). The line search shall be robust preventing
element inversions. For this end, the intention is to determine a value for the upper bound λ such that the re-
location along the search direction is bounded to an interval without element inversions. Hence, the interval
[0, λ] is called inversion-free interval. The determination of the inversion-free interval performs root finding
like the method of Smith and Schaefer [SS15] for 2D triangles. The key idea is to start from an initial value
for λ and perform a binary search until no inversion within the one ring occurs.

v

λv

A visualization of the determination of the initial value for λ appears in the inset
to the right. As an inversion occurs, when a vertex v of a simplex τ passes the half
space defined by the opposing face τ \ v, an intersection test of the half space and
the search direction yields the maximal step size λv without an inversion. Finding the
minimal step size for all simplices in the one-ring provides λinit, which is an upper
bound for an inversion (line 16). This bound lies within the convex interior of the
one-ring, since the intersection test considers half spaces and is thereby not limited
to the boundary faces of t(i). If the one-ring forms a concave sub-triangulation, this
property is important, because inversions may occur for vertex positions inside t(i).
The next step is to ensure the absence of inversions for the interval [0, λ]. For this purpose, a binary search
is performed until every determinant of a simplex is larger than a predetermined threshold εv (lines 20 to
27). In order to avoid unnecessary iterations of binary search, the initial value for λ is scaled by a constant
µ ∈ [0, 1) beforehand (line 18). The implementation used for the experiments in this thesis was sufficiently
robust for choosing µ = .95 (see section 4.6.3).

Finally, a bracketingmethod chooses an optimal step sizeαwithin the inversion-free interval [0, λ] (line 29).
Like Alexa [Ale19], this thesis relies on the robust and quickly converging Brent’s method [Pre+02]. However,

65

this optimization algorithm optimizes vertex positions locally, while Alexa [Ale19] performs global gradient
descent steps.

4.3.2. Directional Derivatives for Boundary Treatment

As optimization of only interior vertices is not sufficient to achieve high-quality tetrahedral meshes, a mesh
optimization tool requires an approach to treat the boundary of a mesh. The relocation of boundary vertices
can deform the shape of the model, which potentially leads to a significant loss of boundary details. For
this reason, many mesh optimization methods either subdivide boundary elements with subsequent costly
backtracking or perform an apples-to-oranges comparison of surface distance to element quality improvement
(see section 3.2.7). In this thesis, the intention is to relocate vertices on the boundary in an efficient massively-
parallel manner and avoid reprojection of boundary vertices, because a reprojection step does not respect
convergence and potentially degrades element quality. In order to relocate vertices along the surface, while
at the same time respecting convergence, this thesis explores the use of directional derivatives for mesh

Algorithm 2 Parallel vertex relocation algorithm.
1: procedure relocateVertices(M=(T,V), SC)
2: for all c ∈ SC do ▷ Go through independent sets
3: for all i ∈ c do ▷ In parallel
4: v← Vi; λ←∞
5: if subject to ∂T=B ∧ v ∈ VC then
6: continue
7: end if
8: g← ∇v tr(Lt(i)) ▷ See eq. (4.11)
9: if subject to ∂T=B ∧ (v ∈ VF ∨ v ∈ VR) then

10: g←tangentSubSpaceDerivative(v, g)
11: else if subject to ∂T∼=B ∧ v ∈ ∂V then
12: g←findTangentDerivative(v, λ, g)
13: end if
14: if ∥g∥ < εg then continue end if
15: g← − g

∥g∥2
16: λinit ← min

τ∈t(i)
{t | t = intersect-ray-plane(g, v, τ \ v)}

17: λ← min(λinit, λ)
18: λ← λ · µ ▷ Prevent division by zero at upper bound
19: search← true
20: do
21: Vi ← v+ λg
22: search← is vτ < εv for any τ ∈ t(v)
23: if subject to ∂T∼=B then
24: search← is v still on boundary primitive?
25: end if
26: if search then λ← λ/2 endif
27: while search
28: Vi ← v
29: α← bracketing(v, g, [0, λ], tr(Lt(v))) ▷ Implementation uses [Pre+02]
30: Vi ← v+ αg
31: if subject to ∂T∼=B then
32: identifyBoundaryState(v)
33: end if
34: end for
35: end for
36: end procedure

66

optimization. With the directional derivative it is possible to optimize on a subspace of the domain Ω. As a
result, the directional derivative of a functional, e.g. harmonic energy (cf. section 2.1.3), can be computed
for tangent planes or lines of the mesh. Relocating the directional derivative along tangent planes or lines
allows for both full boundary preservation detailed in section 4.3.3 and approximate boundary preservation
detailed in section 4.3.4. The remainder of this section shows how directional derivatives can be calculated
for an optimization functional.

The boundary vertices of a mesh form the set ∂V ⊆ V. Let p be a tangent plane on the boundary of the
mesh with linearly independent unit vectors u1 and u2. It is sufficient to detail the calculation for tangent
planes, because for a tangent line one only needs to drop u2 and perform the analog steps. As the goal is
to relocate boundary vertices along a tangent subspace, it is further assumed that p includes the boundary
vertex:

p(t, s) = v+ t u1 + s u2, where v ∈ ∂V, nT
vu1=0, nT

vu2=0, t, s ∈ R. (4.12)

Relocating the vertex v along p replaces the current vertex with a new vertex. Let the function gv replace
a boundary vertex v ∈ ∂V with a given vertex v′ and calculate a functional, e.g. the trace from eq. (2.11),
for all incident tetrahedra:

gv(v′) =
∑︂

τ∈t(v)

tr(L(τ\v)∪v′). (4.13)

With the use of gv, the energy field on the tangent plane can be expressed as:

gv(p(t, s)), where t, s ∈ R. (4.14)

The energy field on the tangent plane typically exhibits local minima that can be found with optimization
methods such as gradient descent. Thus, adapting the gradient descent scheme to the directional derivative
on p, allows for minimizing on the tangent subspace. As the goal is to obtain a gradient for v ∈ ∂V on the
tangent plane p, it suffices to develop the gradient at t = 0 and s = 0. The gradient follows by the chain rule:

∇gv(p(0, 0)) = ∇p(0,0)gv(p(0, 0))∇p(0, 0) = ∇vgv(v)∇p(0, 0). (4.15)

The gradient on the tangent plane ∇p(0, 0) evaluates to (u1,u2)
T. Due to gv(v) simply replacing v with

itself, further simplification reveals a simple calculation scheme for the gradient:

∇gv(p(0, 0)) = ∇v tr(Lt(v))
(︃
u1

u2

)︃
=

(︃
t0
s0

)︃
∈ R2. (4.16)

The gradient on the plane can be transformed to R3, resulting in the directional derivative:

R3 ∋ ∇v|p tr(Lt(v)) = t0 u1 + s0 u2. (4.17)

In case of a tangent line, one can just drop u2. The use of directional derivatives provides several benefits for
mesh optimization:

1. Reprojection of vertices after gradient descent is not necessary. Thus, it becomes obsolete to find the
closest surface triangle, which can be computationally expensive.

2. Line search on a tangent subspace converges against a local minimum. No special convergence criteria
are necessary for the boundary.

3. Projection of relocated vertices to the closest surface triangle can produce inversions or projection of
vertices onto opposing faces. Line search avoids these issues by inversion-free intervals for gradient
descent along the boundary.

67

4.3.3. Preserving the Boundary

As many applications do not tolerate the loss of geometric detail, this section describes the use of directional
derivatives for full boundary preservation. Let B represent the input boundary and ∂T represent the current
boundary. Full boundary preservation leads to the following optimization problem:

minimize
M=(T,V)

tr(LT)

subject to ∂T = B ∧ ∀τ ∈ T, vτ > 0.
(4.18)

Relocating a boundary vertex deforms the boundary triangles, which surround the vertex. Thus, it is useful
to classify boundary vertices by the surface feature formed by the surrounding boundary triangles. This leads
to the following classification into three subsets VF ⊆ ∂V, VR ⊆ ∂V, and VC ⊆ ∂V:

1. v ∈ VF : The vertex v is a face vertex. All incident boundary triangles are co-planar. Therefore, there is
a unique tangent plane.

2. v ∈ VR: The vertex v is a ridge vertex. Exactly two sets of incident boundary triangles are co-planar.
Therefore, there is a unique tangent line.

3. v ∈ VC: The vertex v is a corner vertex. The incidient boundary triangles form more than two sets
of co-planar triangles. Therefore, there is no tangent plane or line. A corner vertex cannot be moved
without altering the boundary.

The above classification can be performed with the algorithm provided in section 4.2. For full bound-
ary preservation, one can apply homogeneous Neumann boundary conditions [Ale+20], while alternative
boundary conditions are an ongoing research topic [Ste+18]:

nT
v∇v tr(Lt(v)) = 0, where v ∈ ∂V.

If a boundary vertex v ∈ ∂V lies on a face of the model, i.e., v ∈ VF , relocating the vertex along the
geometrical face does not alter the shape of the model. It is safe to calculate the directional derivative on the
tangent plane and perform the vertex relocation algorithm from section 4.3.1 along the face. The inversion-
free intervals safeguard the vertex relocation from moving the vertex beyond the face, because it prevents
the vertex from crossing a geometric edge, which would impose an inversion. If a boundary vertex lies on
a geometric edge of the model, i.e., v ∈ VR, relocating the vertex along the tangent line also does not alter
the boundary. Again, inversion-free intervals safeguard the vertex relocation from moving the vertex beyond
the geometric edge, because crossing a geometric corner would impose an inversion. If a boundary vertex
represents a geometric corner, i.e., v ∈ VC , vertex relocation does not move this vertex to keep the boundary.
As a result, vertex relocation can move vertices in VF and VR along directional derivatives on tangent sub-
spaces without altering the boundary. Algorithm 3 details the calculation of directional derivatives on the
tangent subspaces. Algorithm 2 invokes this efficient derivative calculation if full boundary preservation, i.e.,
∂T = B, is the aim. Thereafter, vertex relocation performs the same steps as for interior vertices to reduce
branching.

68

Algorithm 3 Derivative on a tangent sub-space.
1: procedure tangentSubSpaceDerivative(v, g)
2: if v ∈ VF then
3: τb ← get_boundary_triangle(v)
4: (u1,u2)← tangent_plane(τb)
5: return (uT

1g)u1 + (uT
2g)u2

6: else ▷ Otherwise v ∈ VR
7: eb ← get_boundary_edge(v)
8: u1 ← tangent_line(eb)
9: return (uT

1g)u1

10: end if
11: end procedure

4.3.4. Approximate Boundary Preservation to Relocate Every Vertex

Since corner vertices cannot be moved with full boundary preservation but can be part of ill-shaped elements,
it is also interesting to explore the relocation of every boundary vertex. Thus, this section describes a method
to relocate every boundary vertex. In order to approximately preserve the surface, the method keeps bound-
ary vertices on the boundary. As a result, the approximation error is controlled by the input mesh surface,
which is assumed to be of high resolution such that the approximation error for curved surfaces is low enough.
At the same time, the method benefits from the convergence properties of directional derivatives. Prior to
the specification of the method for boundary treatment, the optimization problem is adjusted to approximate
boundary preservation:

minimize
M=(T,V)

tr(LT)

subject to ∂T ∼= B ∧ ∀τ ∈ T, vτ > 0,
(4.19)

where∼= represents an approximate congruence between the input boundary B and the current mesh bound-
ary ∂T.

The main idea of the approximate boundary preservation method is to relax the homogeneous Neumann
boundary conditions such that the gradient has to lie only on a single tangent plane (or line) p:

nT
p∇v|p tr(Lt(v)) = 0, where v ∈ ∂V

v− α∇v|p tr(Lt(v)) is on B, where α ∈ [0, λv].

This relaxation enables relocation of a vertex along a single boundary primitive granting deviations from
the input surface for better mesh quality. Since a vertex has to lie only on a single boundary primitive, there
are multiple possible tangent sub-spaces and thereby multiple relocation directions. Therefore, a shape qual-
ity optimization method needs to choose one relocation direction in a reasonable way such that convergence
is achieved. Algorithm 4 summarizes the procedure to choose a directional derivative along the boundary.
The possible relocation directions of a boundary vertex depend on the location of the vertex on the boundary.
Figure 4.3 visualizes how a boundary vertex is relocated along the input boundary depending on the bound-
ary primitive it lies on. Initially, every boundary vertex can be relocated along adjacent boundary triangles or
edges. After relocation this boundary vertex either lies on a boundary edge or triangle. If the vertex lies on
a boundary edge, it is either relocated along the one of the two adjacent boundary triangles or the current
boundary edge. If the vertex lies on a boundary triangle it is relocated along this triangle. Since the avail-
able choices for next relocation directions depends on the current location of a vertex on the boundary, the
optimization procedure keeps track of the current location checking for three boundary states:

1. On vertex: The vertex is coincident with a vertex of the input boundary B.

69

2. On edge: The vertex lies on a boundary edge but is not coincident with one of its end points.

3. On triangle: The vertex lies on a boundary triangle, while it is neither on an edge of the triangle nor
coincident with a vertex of the triangle.

Algorithm 4 Algorithm to find directional derivative for boundary vertex
1: procedure findTangentDerivative(v, λ, g)
2: gp ← 0 ▷ gp ∈ Rd

3: if v is on boundary vertex vb then
4: for boundary triangle τb containing vb do
5: (u1,u2)← tangent_plane(τb)
6: dp ← (uT

1g)u1 + (uT
2g)u2

7: if ray v− βdp intersects τb \ vb ∧ ∥gp∥2 < ∥dp∥2 then
8: gp ← dp

9: λ← β0 ▷ For β0 point along ray is on τb \ vb
10: Set v on τb
11: end if
12: end for
13: for boundary edge eb containing vb do
14: u1 ← tangent_line(eb)
15: dp ← (uT

1g)u1

16: if ray v− βdp intersects eb \ vb ∧ ∥gp∥2 < ∥dp∥2 then
17: Analogous to lines 8 and 9
18: Set v on eb
19: end if
20: end for
21: else if v is on boundary edge eb then
22: for boundary triangle τb adjacent to eb do
23: Analogous to lines 5 and 6
24: (v0, v1)← eb
25: if ray v− βdp intersects τb \ v0 or τb \ v1 then
26: if ∥gp∥2 < ∥dp∥2 then
27: Analogous to lines 8 - 10
28: end if
29: end if
30: end for
31: Check eb analogous to lines 14 - 19
32: else v is on boundary triangle τb
33: for boundary edge eb in τb do
34: Check eb analogous to lines 14 - 19
35: end for
36: end if
37: return gp

38: end procedure

On vertex On edge On triangle On triangle

Figure 4.3.: Initially, each vertex coincides with a vertex of the input boundary B. In this example, the directional
derivative on the boundary with the largest magnitude is along an edge. After relocating the vertex, the directional
derivative of a boundary triangle is chosen. Finally, optimization converges after relocating the vertex on the triangle.

70

Depending on the state of the to-be-optimized vertex, algorithm 4 accesses adjacent boundary primitives
to calculate directional derivatives. As the gradient magnitude is associated with the greatest impact on
the to-be-optimized functional, the method follows the rule of steepest descent and chooses the directional
derivative with the largest magnitude. After a descent direction is chosen, the state of the vertex is updated.
If the chosen descent direction is along a boundary triangle, algorithm 4 updates the state of the vertex to be
on this triangle. Likewise, if the chosen descent direction is along a boundary edge, algorithm 4 updates the
state of the vertex to be on this edge. The chosen descent direction is returned to the basic gradient descent
routine (see line 10 in algorithm 2). The optimization procedure then performs the same steps as for interior
vertices with only few adjustments. Thus, optimization of boundary vertices is executed simultaneous to
interior vertices and branching is reduced. As it is not allowed to relocate a boundary vertex away from the
input boundary B, the inversion-free interval is needs to be pruned so that the boundary vertex still lies on
B after a gradient descent step (see lines 23 - 25 in algorithm 2). Due to the adjustment of the inversion-
free interval, boundary vertices can be optimized by bracketing simultaneous to the interior vertices. After a
gradient descent step, a boundary vertex still lies on the same boundary primitive but its state may change.
Therefore, the vertex relocation procedure needs to identify the new boundary state of a boundary vertex,
whenever a gradient descent step is performed (see lines 31 - 33 in algorithm 2). Algorithm 5 summarizes
the identification of the boundary state. If a boundary vertex is relocated along a boundary triangle, the
relocated vertex may lie on a boundary edge or is coincident with a boundary vertex. This can be checked
by calculating the barycentric coordinates of the relocated vertex on its current boundary triangle. Likewise,
if a boundary vertex is relocated along a boundary edge, the relocated vertex may coincide with on of the
endpoints, which can be determined by calculating barycentric coordinates. After updating the state of a
boundary vertex, another gradient descent step can be performed.

Algorithm 5 Algorithm to identify the boundary state
1: procedure identifyBoundaryState(v)
2: if v is on a boundary triangle τb then
3: λ0, λ1, λ2 ← barycentrics(v, τb)
4: if λi ≈ 0 ∧ λj ≈ 0 ∧ j ̸= i then
5: Set v on corresponding edge
6: else if λi ≈ 0 then
7: Set v on corresponding vertex
8: end if
9: end if

10: if v is on a boundary edge eb then
11: λ0, λ1 ← barycentrics(v, eb)
12: if λi ≈ 0 then
13: Set v on corresponding vertex
14: end if
15: end if
16: end procedure

4.4. Parallel Harmonic Flipping

After gradient descent steps, the triangulation may not be harmonic anymore, because new admissible har-
monic flips (cf. section 2.1.3) can be performed due to relocation of vertex positions. In order to harmonize
a triangulation, i.e., ensure that a triangulation is harmonic, the optimization procedure performs harmonic
flips. While the harmonic flipping algorithm of Alexa [Ale19] performs flips sequentially in a queue, the
algorithm described in this section allows for massively parallel flipping without significantly different trian-
gulations compared to sequential flipping.

71

flip Performing flips in parallel requires conflict detection, because otherwise flipping
does not guarantee a valid mesh. The inset to the left shows an example on how si-
multaneous flipping can produce an invalid mesh for triangles in the plane. Suppose
one thread is assigned to each of the two orange triangles adjacent to the white trian-
gle. Concurrently, both threads perform a flip, which leads to an invalid triangulation.

flip

flip
≤
6.95

7.7

Figure 4.4.: The proposed algorithm
chooses the locally most beneficial flip to
obtain a valid triangulation.

Harmonic flips are ordered by their reduction of the trace tr(LT).
If two flips are in conflict with each other, the flip with a larger
reduction of tr(LT) is preferred over the flip with a smaller reduction
of tr(LT). This property is useful for parallel flipping, because it
provides a rule to decide for a flip, when several flips are in conflict.
Thus, the massively parallel flipping algorithm performs harmonic
flips, whose reduction of tr(LT) is greater than every harmonic flip
in the local vicinity. Henceforth, the flip with the largest reduction
of tr(LT) in the local vicinity is referred to as locally most beneficial.
Figure 4.4 provides a visualization on the preference of locally most
beneficial flips to prevent conflicts.

Algorithm 6 outlines a massively-parallel method to identify and perform locally most beneficial harmonic
flips. The algorithm encodes flips by the index i of the flipped mesh facet and an identifier id for the type
of the flip:

flip = (i,id) ∈ Z× {2-3-flip,3-2-flip, ∅} (4.20)

Initially, the algorithm performs a parallel pass over all τ ∈ T to identify the most beneficial flip for each
τ . Each τ can be flipped at either one of its six edges or one of its four faces. Hence, the method evaluates
feasibility checks and quality improvement regarding the harmonic index η of the potential flips in a prede-
termined order. Face or edge flips are only feasible on interior faces or edges, respectively. Each flip requires
its incident tetrahedra to form a convex sub-triangulation. Whenever a flip is feasible, algorithm 6 compares
its quality improvement to the currently most beneficial flip (see lines 5 - 14). As a result, the algorithm
determines the most beneficial harmonic flip for τ and record it in a previously allocated buffer. If there is no
harmonic flip for every τ ∈ T, the mesh is already harmonic and the flipping method terminates. Otherwise,
algorithm 6 proceeds with buffer allocations and another parallel pass over all τ ∈ T.

In order to prepare for building a new triangulation T′, the flipping method allocates an array of markers
indicating whether τ ∈ T is part of T′ or not and an array of integers for the number of newly added tetrahedra.
After buffer allocation, the method finds locally most beneficial flips in parallel to avoid conflicts. In a parallel
pass over tetrahedra, algorithm 6 accesses the recorded harmonic flip – if any – for every τ ∈ T. Using flip type
and facet index, it is possible to obtain the the tetrahedra incident to the flip by precomputing connectivity
relationships with the TCSR mesh data structure (cf. section 2.2.3). Before the flip can be performed, it is
mandatory to check for conflicting flips to ensure a valid mesh. No conflict occurs, if the flip is the most
beneficial flip for each incident tetrahedron. In this case, the flip is locally the most beneficial and is selected
to be performed. Consequently, the tetrahedron associated with the thread can be marked for removal. As
many threads are mapped to a locally most beneficial flip, the flipping method elects a coordinator thread to
perform the flip. If the index of τ is the lowest of the incident tetrahedra, the associated thread is declared as
the coordinator (see line 27 in algorithm 6). The coordinator thread records the number of tetrahedra added
by performing the flip in the previously allocated buffer (see line 31 in algorithm 6). Since only coordinator
threads write to the buffer for counting newly added tetrahedra, thread i is a coordinator thread if this buffer
holds a non-zero entry at position i.

An exclusive prefix sum over the integers counting newly added tetrahedra provides offset positions and
the total number of tetrahedra to be added. The marker values of the tetrahedra τ ∈ T in sum amount to the

72

Algorithm 6 Parallel flipping algorithm to optimizeM
1: procedure flipMesh(M = (T,V))
2: flips← ((-1, ∅), . . . , (-1, ∅)) ∈ (Z× {2-3-flip, 3-2-flip, ∅})|T|
3: for i = 0, . . . , |T| − 1 do ▷ Find flips in parallel
4: ηimpr ← 0; flip← (-1, -1); τ ← Ti

5: for all faces f in τ do ▷ In predetermined order
6: if 2-3-flip(f, τ) is feasible ∧ ηimpr < ηflip then
7: flipsi ← (index_of(f), 2-3-flip)
8: end if
9: end for

10: for all edges e in τ do ▷ In predetermined order
11: if 3-2-flip(e, τ) is feasible ∧ ηimpr < ηflip then
12: flipsi ← (index_of(e), 3-2-flip)
13: end if
14: end for
15: end for
16: if (-1, ∅) = flipsi for i = 0, . . . , |T| − 1 then
17: return false
18: end if
19: new_tets← (0, . . . , 0) ∈ Z|T|
20: tets_marked← (1, . . . , 1) ∈ {0, 1}|T|
21: for i = 0, . . . , |T| − 1 do ▷ Detect conflicts in parallel
22: (j, type)← flipsi; is_coordinator← true; agree← true
23: if j = -1 then continue end if
24: for all tetrahedron τ involved in flip(j, type) do
25: k ← index_of(τ); (jadj, typeadj)← flipsk

26: agree← agree ∧ type = typeadj ∧ j = jadj
27: is_coordinator← is_coordinator ∧ i ≤ k
28: end for
29: if agree then tets_markedi ← 0 end if
30: if agree ∧ is_coordinator then
31: new_tetsi ← if type = 2-3-flip then 3 else 2 end if
32: end if
33: end for
34: offsets← (0, . . . , 0) ∈ Z|T|+1

35: for i = 1, . . . , |T| : offsetsi ← offsetsi−1 + new_tetsi−1

36: Nremaining ←
∑︁|T|−1

i=0 tets_markedi

37: T′ ← allocate(Nremaining + offsets|T|)
38: copy_if_marked(src = T, dst = T′,tets_marked)
39: for i = 0, . . . , |T| − 1 do ▷ Perform flips in parallel
40: if new_tetsi ̸= 0 then
41: (j, type)← flipsi; offset← Nremaining + offsetsi

42: T′offset ← flip(j, type)
43: end if
44: end for
45: M← (T′,V)
46: return true
47: end procedure

73

number of remaining tetrahedra. Algorithm 6 allocates a new buffer for the resulting tetrahedra T′ and copies
the remaining tetrahedra through a stream compaction to T′. In a final parallel pass over the tetrahedra τ ∈ T,
the coordinator threads perform the flips and append the resulting tetrahedra to the remaining tetrahedra
using the offset positions.

4.5. Combined Vertex Relocation and Flipping

For fast convergence of energy reduction, the harmonic mesh optimization algorithm should combine har-
monic flips with vertex relocation. Thus, the algorithm performs several alternating passes of vertex reloca-
tion and harmonic flipping. It terminates if its effect on the mesh becomes insignificant. Gradient descent
converges if the gradient approaches zero. Therefore, the optimization terminates if ∇ tr(LT) is sufficiently
small. Thus, when ∥∇ tr(LT)∥ is smaller than some ϵc, gradient descent is not expected to cause significant
improvements. In addition, update rates can become negligible. To avoid this situation, the algorithm termi-
nates if the difference of the current to the prior gradient is smaller than ϵc. As tr(LT) is scale dependent, it
is reasonable to choose a relative ϵc. The implementation used in this thesis chooses ϵc based on a constant
ϵ governing the accuracy in finding a minimum:

ϵc ← max(ϵ, ϵ∥∇ tr(LT)∥) (4.21)

As some vertices converge more quickly than others, the algorithm does not further optimize a vertex with a
gradient norm smaller than εg. This thesis consistently uses ϵ=10−5=εg and ∥ · ∥22 as the norm.

Connectivity relationships and coloring need to be updated after flipping. Checking for flips is an unneces-
sary overhead if flips are unlikely to be found. Therefore, a heuristic reduces the number of checks. A counter
kf holds the number of iterations without flip checking and is initialized as kf = 1. Whenever flip checking
fails to find flips, the heuristic doubles kf . Analogously, if flip checking finds flips, kf is halved rounding up.
If the counter has reached a predetermined number 2N , the algorithm terminates, as additional harmonic
flips are unlikely to be found. This thesis uses N = 3. In summary, the optimization algorithm terminates at
iteration i, if one of the following conditions is met:

(C1) ∥(∇ tr(LT))i∥ < ϵc,

(C2) ∥(∇ tr(LT))i − (∇ tr(LT))i−1∥ < ϵc, or

(C3) kf = 2N .

4.6. Evaluation of Harmonic Mesh Optimization

This thesis presents several experiments to evaluate the benefits and limitations of the proposed harmonic
mesh optimization methods. All of the experiments were run on an evaluation machine equipped with
an Intel i9-11900K CPU and an NVIDIA RTX 3090 GPU. The implementations were compiled using Visual
Studio 2022 and CUDA. Before this section presents the evaluation experiments and results, it describes the
implementation of the original harmonic mesh optimization algorithm by Alexa [Ale19] in section 4.6.1.
The first evaluation experiment in section 4.6.2 investigates the run time improvement due to massively
parallel flipping. Subsequently, section 4.6.3 critically evaluates the robustness of the proposed optimization
method. Section 4.6.4 compares the convergence and resulting element qualities of the two algorithms.
Finally, section 4.6.5 investigates the run time benefits due to massively parallel processing.

74

4.6.1. Implementation of the Original Harmonic Mesh Optimization Algorithm

The implementation of the original algorithm to harmonize a triangulation depends on the computational ge-
ometry algorithms library (CGAL) [FT15] for robustness. Harmonic flipping first iterates over the tetrahedra
of the mesh checking for admissible flips. Whenever an admissible flip reduces tr(LT), the flipping algorithm
pushes the flip to a priority queue that orders flips by their reduction of the trace. Subsequently, the flipping
algorithm performs the flips in queued order. To obtain a valid triangulation a safety check ensures that a flip
has not been invalidated by a prior flip in local neighborhood. Invalidated flips are skipped by the flipping
algorithm. For vertex position optimization, the harmonization determines a global gradient for the entire
triangulation.

4.6.2. Run Time Performance of Parallel Flipping

The evaluation compares the proposed GPU parallel harmonic flipping algorithm performing locally most
beneficial flips to the sequential CPU algorithm performing flips in an ordered queue. Both algorithms per-
form flips on the input mesh, until no further harmonic flips can be found. The results appear in table 4.1.
While Alexa [Ale19] performed harmonic flips on Delaunay triangulations (cf. section 2.1.2) of point sets, the
evaluation performs flips on meshes generated with TetGen [Si20] a constrained Delaunay mesher, leading
to a lesser reduction of the number of tetrahedra. The evaluation details the exact numbers of tetrahedra in
the resulting triangulations, in order to show that postponing locally not most beneficial flips to later flipping
passes does not lead to significant differences in the resulting triangulation.

Table 4.1.: Comparison of the parallel harmonic flipping algorithm to sequential harmonic flipping. Faster run times
are provided in boldface.

Mesh Sequential flipping Proposed (GPU)
Name NT Time (sec) NT Time (sec) NT Speedup

Ghost 160799 0.398 154263 0.003 154263 133×

Die 232767 0.665 225689 0.003 225689 222×

Snowman 227567 0.638 217837 0.003 217837 213×

Barrel 463797 2.544 443838 0.010 443838 254×

Falcon 1072784 5.074 1034101 0.023 1034103 221×

Part 1099271 5.349 1057930 0.023 1057930 233×

Cube 1538635 9.859 1471163 0.039 1471162 253×

World 1786620 9.173 1725729 0.053 1725730 173×

Pot 4034608 25.130 3886310 0.121 3886309 208×

The experiments reveal substantial speedups of 133×–254×. As harmonic bistellar flips either coincide
with the Delaunay triangulation or reduce a triangulation of three tetrahedra to two tetrahedra, the parallel
flipping algorithm is a useful tool for mesh optimization and generation, quickly reducing the tetrahedron
count while in some sense preserving the Delaunay criterion. The experiments confirm that harmonic flipping
well preserves the percentage of locally Delaunay tetrahedra.

4.6.3. Robustness

In order to validate the practicability of the parallel optimization algorithms, the evaluation applied the pro-
posed algorithm in section 4.5 to the 10 k tetrahedral meshes generated by Hu et al. [Hu+20]. An automated
evaluation procedure investigates the optimized meshes. The algorithm did not produce any inversion due

75

to the choice of the inversion-free interval for each vertex v. After termination, each triangular face was
connected to one or two tetrahedra. In addition, the resulting meshes consistently exhibited alternating
face orientations for triangular faces adjacent to two tetrahedra. The Manhattan distance of distinct vertices
was larger than 10−10 for all except for two meshes meaning that the proposed optimization method does
not produce geometrically duplicated vertices. For the two meshes with geometrically close vertices, closer
investigation revealed smaller vertex distances already before optimization.

The evaluation includes the one-sided Hausdorff distance of the boundary vertices of the optimized mesh
to the input mesh surface, in order to validate that the vertex relocation algorithm on the boundary (cf. sec-
tion 4.3.4) keeps vertices on the boundary. Furthermore, the automated evaluation procedure divides the
Hausdorff distances by the average boundary edge length to put them in relation to the dimensions of the
model. For 99.95%of themeshes, the one-sided Hausdorff distance was below 10−3, which shows that bound-
ary vertices remain on the input surface considering round-off errors. In four out of the five remaining cases,
round-off errors on directional derivative calculation accumulate to a degree that the resulting deviation is
roughly 10−2. In only one case, a significant deviation of 0.19 can be observed. As the meshes generated by
Hu et al. [Hu+20] generally are of high quality and already optimized, the experiments regarding run time,
convergence and mesh quality use the unoptimized meshes in fig. 4.5.

4.6.4. Element Quality and Convergence

The evaluation includes investigation of element quality and convergence of both Alexa’s method [Ale19]
and the algorithm in section 4.5. In order to obtain deterministic results, this investigation uses the graph
coloring of the Cusparse library [NVI22c]. This thesis covers two methods of using directional derivatives
at the boundary. Using directional derivatives only for vertices in VF and VR provides surface preservation
(∂T=B). In addition, directional derivatives can be used to move vertices along the input surface (∂T∼=B) to
optimize all vertices at the cost of altering the model shape. The evaluation compares Alexa’s reprojection-
based method [Ale19] to both variants of boundary treatment.

Table 4.2.: Dihedral angles ϕ and energy states using Alexa’s [Ale19] and the proposed method (∂T=B) on meshes
with few corner vertices. Better results are provided in boldface.

Input Alexa’s [Ale19] Proposed method ∂T=B
Name ϕmin ϕ5% ηmax η95% η(T) ϕmin ϕ5% ηmax η95% η(T) ϕmin ϕ5% ηmax η95% η(T)

Snowman 0.1 27.46 1849.08 11.4 1.33e+06 3.7 33.4 44.68 7.69 1.14e+06 8.67 36.32 18.55 6.72 1.05e+06

Barrel 0.12 27.71 530.69 2.92 828788 9.26 36.62 4.94 2.03 671173 10.84 36.66 4.46 2 659666

Part 0.26 30.38 322.04 6.76 4.53e+06 7.3 38.57 11.8 4.95 3.88e+06 7.07 38.54 11 4.9 3.83e+06

Cube 0.08 29.12 134.4 0.52 495820 6.8 37.48 1.29 0.37 410171 10.72 38.48 0.8 0.35 400212

The boundary preserving method is most useful for input meshes with few corner vertices. Thus, the
boundary preserving method is a good choice to optimize the top four meshes shown in fig. 4.5. Table 4.2
provides the resulting element qualities. Although all of the input meshes include critical minimal dihedral
angles, bothmethods achieve to improve theminimal angle, while the proposedmethod achieves significantly
larger minimal angles with the exception of similar minimal angles for the Part. Likewise, the lower 5% of
dihedral angles is significantly larger with the exception of the Part. For relocating every boundary vertex of
the Part model, the proposed algorithm achieves a minimal dihedral angle of 8.12◦ and a lower 5-percentile
ϕ5% of 38.63◦, which is a better result than the reprojection-based method. Relocating every boundary vertex
does not result in significant differences for the other three meshes. The method in section 4.5 consistently
results in lower energy states for η regarding the maximum, 95-percentile and the sum over T.

For meshes with many corner vertices approximating curved surfaces, optimizing all boundary vertices

76

Test meshes with few corner vertices:

Snowman

Part

Barrel Cube

Test meshes with many corner vertices:

Block

FalconPot

Ghost

Figure 4.5.: Test meshes used in the evaluation.

Table 4.3.: Dihedral angles ϕ and energy states using Alexa [Ale19] and the proposed method (∂T∼= B) on meshes
with many corner vertices. Better results are provided in boldface.

Input Alexa’s [Ale19] Proposed method ∂T∼=B
Name ϕmin ϕ5% ηmax η95% η(T) ϕmin ϕ5% ηmax η95% η(T) ϕmin ϕ5% ηmax η95% η(T)

Block 4.65 27.22 82.37 20.31 960808 3.98 34.32 47.5 15.21 796930 9.84 34.2 32.77 15.42 770264

Ghost 0.03 25.36 9622.21 10.42 982795 1.72 29.93 83.42 8.36 840025 2.79 33.5 22.34 6.93 721325

Falcon 0.65 26.82 217.02 18.62 1.15e+07 2.53 32.87 76.35 14.45 1.01e+07 3.84 34.00 32.77 13.08 9.27e+06

Pot 4.14 28.79 40.06 10.12 2.51e+07 0.04 33.67 2252.44 8.36 2.29e+07 9.21 37.01 17.05 7.31 2.09e+07

is important, as boundary preserving optimization typically results in smaller minimal angles oftentimes
not even half as large. For this reason, the evaluation investigates resulting element qualities optimizing
corner vertices on the four meshes on the right side of fig. 4.5 and provides the results in table 4.3. While the
method from section 4.3.4 improves the minimal angles of all inputs, reprojection-based optimization impairs
the initial minimal angles on the Block and Pot meshes. As the reprojection step does not respect energy
minimization, a degradation of mesh quality may occur. Using directional derivatives along the boundary
respects energy minimization leading to lower energy states for η with the exception of the 95-percentile of
the Block mesh.

As it is important to preserve the shape of the model, the evaluation includes investigation of the impact on
the mesh surfaces and the convergence of the optimization methods on many different meshes. Figure 4.6
presents typical results. While reprojection of boundary vertices distorts sharp detail, directional derivatives
along boundary faces and edges can be used to preserve the mesh surface. Moreover, the reprojection step
mitigates convergence, because it does not respect energy minimization. On the contrary, gradient descent
of directional derivatives converges to a local minimum on the boundary, as can be seen in the monotonously
decreasing curve of the gradient norm for the Barrel. The mesh harmonic optimization algorithm described
in section 4.5 exhibits convergence for relocating every vertex along the boundary. The reprojection-based
optimization oftentimes terminates in a premature state. Since Alexa’s [Ale19] algorithm potentially chooses
small step sizes, reprojection to the closest point on the mesh surface oftentimes does not significantly change
vertex positions from the initial state leaving a lot of optimization potential. Directional derivatives along the
boundary respect energy minimization even when migrating to different boundary primitives. However, the
gradient norm does not reduce as monotonous as for exact boundary preservation, as gradient norms change,

77

when a vertex is associated with another boundary primitive. Convergence is achieved though, while the
input shape is approximately preserved. This is notable, as the use of directional derivatives enables robust
improvement of high-resolution meshes and keeps boundary vertices on the boundary while converging.

Alexa’s [Ale19] Proposed method ∂T=B

102

104

106

108

Iterations

∥∇ tr(LT)∥22 Proposed ∂T=B
Alexa’s [Ale19]

Alexa’s [Ale19] Proposed method ∂T∼=B

102

104

106

108

1010

1012

Iterations

∥∇ tr(LT)∥22 Proposed ∂T∼=B
Alexa’s [Ale19]

Figure 4.6.: Comparison of the proposed method (red) to Alexa’s [Ale19] reprojection based method (blue). To show
the effects of the gradient descent at the boundary, the evaluation visualizes resulting boundaries and plots the gradient
norm throughout optimization.

4.6.5. Run Time Performance of Harmonic Mesh Optimization

As one of the goals of this thesis is to provide quick processing of unstructured tetrahedral meshes (see RQ1),
the evaluation compares run times of Alexa’s [Ale19] and the proposed massively parallel algorithm for
full and approximate boundary preservation. Since the run time performance of vertex relocation (cf. sec-
tion 4.3.1) depends on the coloring strategy of use, the evaluation covers experiments with the deterministic
graph coloring method in Cusparse and the indeterministic graph coloring of [Dev+16]. In order to prevent
outliers [HB15] and to obtain representative measurements, the run time evaluation determines the median
run time of 20 executions. Figure 4.7 shows the run time comparisons for full and approximate boundary
preservation.

For full boundary preservation, the proposed harmonic mesh optimization algorithm achieves notable
speedups of 10.55× - 84×. For the smaller meshes, the graph coloring of Deveci et al. [Dev+16] leads to
up to 2× faster median run time performance compared to using the deterministic graph coloring of the
Cusparse library [NVI22c]. An important factor for the run time performance is the number of different
colors that are used for the graph coloring. The fewer colors are used the less parallel passes are performed

78

to relocate all the vertices of the mesh. As shown by Giebel [Gie22] in a student lab, the graph coloring of
Deveci et al. [Dev+16] typically requires less colors than the graph coloring of the Cusparse library [NVI22c].
Thus, the run time performance of vertex relocation benefits from more concurrency. However, the use of
fewer colors can lead to larger iteration counts, because the optimization of vertex positions does not benefit
as much from prior relocation of adjacent vertices performed for previous colors in the execution order. Con-
sequently, the run time performance can slightly degrade for larger meshes when using the graph coloring
of Deveci et al. [Dev+16]. Although the boundary reprojection prevents convergence, the original algorithm
still performs a considerable number of iterations until no harmonic flips can be found.

This evaluation does not show larger iteration counts for optimizing most of the more complex meshes with
vertex relocation along the boundary (cf. section 4.3.4). The reduced convergence of reprojecting vertices
on the boundary leads to lower iteration numbers of the original optimization algorithm. Additionally, the
method for optimizing vertices along the boundary imposes more branching than the full boundary preserva-
tion reducing the impact of massively parallel processing (cf. section 2.2.1) and leading to up to 40% slower
run times. Thus, the boundary approximating harmonic mesh optimization algorithm obtains lower but still
significant speedups of 3.77× - 60×. The evaluation of the approximate boundary preservation exhibits run
time behaviors for the two coloring variants from Cusparse [NVI22c] and Deveci et al. [Dev+16] that are
similar to the observations for exact boundary preservation.

Besides the use of the GPU, there are additional reasons for the substantial speedups. One important
reason is the use of proper gradient descent at the boundary. This frequently leads to lower iteration counts to
achieve convergence, which typically leads to better run time performance. The convergence of the proposed
optimizationmethod is further improved by the use of a Gauß-Seidel iteration order, because gradient descent

Sno
wm

an
(22

8k
tet
s)

Bar
rel

(46
3k

tet
s)

Par
t (1

M
tet
s)

Cu
be

(1.
5M

tet
s)

1

10

100

Ru
n
tim

e
(in

se
co

nd
s) Alexa’s [Ale19]

Proposed ∂T=B Cusparse [NVI22c]
Proposed ∂T=B Deveci et al. [Dev+16]

Blo
ck

(79
k t
ets

)

Gh
ost

(16
1k

tet
s)

Fal
con

(1.
1M

tet
s)

Pot
(4M

tet
s)

1

10

100

Ru
n
tim

e
(in

se
co

nd
s) Alexa’s [Ale19]

Proposed ∂T∼=B Cusparse [NVI22c]
Proposed ∂T∼=B Deveci et al. [Dev+16]

Figure 4.7.: Run times of Alexa’s algorithm [Ale19] compared to the proposed algorithm for full boundary preservation
(top) and approximate boundary preservation (bottom).

79

does no longer suffer from the issue that opposing gradients of adjacent vertices are conflicting. Another
reason for the improved performance is that the proposed method does not require a reprojection step. The
reprojection step needs to perform a spatial search for the closest boundary triangle that should be accelerated
by spatial data structure. The proposed scheme performs gradient descent on the boundary and does need
to construct a spatial data structure for the spatial search.

4.7. Summary

In summary, this chapter has presented a robust, massively parallel method for optimizing the quality of
unstructured tetrahedral meshes. This optimization method couples vertex relocation with re-meshing using
edge/face flips. The algorithm for massively parallel line searches in the interior of M as well as on the
boundary B proved successful in achieving good run time performance and preventing element inversion.
This chapter has presented a parallelization strategy for edge/face flips that has achieved a speedup of two
orders of magnitude in the evaluation. Applying the proposed algorithm to 10 k of unstructured tetrahedral
meshes has showed that it produces valid meshes. The evaluation has revealed substantial speedups of up to
84× for full boundary preservation and of up to 60× for approximate boundary preservation.

Besides proper parallelization and robustness for mesh optimization, this chapter has presented additional
contributions. This chapter extended the harmonic triangulation by presenting how to calculate the harmonic
gradient for a specific vertex of the tetrahedron τ using only face areas, face normals and the Jacobian
of τ . Thus, one can easily use the harmonic gradient for optimization in a Gauß-Seidel iteration manner.
Furthermore, this chapter has presented a method for performing gradient-descent iterations along a closed
triangle mesh with good convergence properties.

In view of RQ11, RQ22 and RQ33, this chapter has allowed for answering these questions for the optimiza-
tion of meshes. For answering RQ1, this chapter has led to two important findings:

• The parallelization of robust vertex relocation at both the interior and the boundary of themesh achieves
significant acceleration using the proposed algorithms.

• The parallelization of edge/face flips leads to substantial improvements of run time performance using
the proposed parallelization strategy.

For answering RQ2 this chapter has shown that the proposed massively parallel optimization algorithms
produce valid meshes on a large test set. Since mesh optimization and edge/face flips are an important part
in mesh generation for VP purposes, the findings in this chapter confirm for RQ3 that the meshing step can
benefit from the proposed algorithms. As edge/face flips are only a few among many re-meshing operations,
the subsequent chapter will investigate massively-parallel re-meshing in more detail.

1RQ1: How can the use of the GPU accelerate mesh optimization and re-meshing tasks for unstructured tetrahedral meshes?
2RQ2: How can massively parallel optimization and re-meshing of unstructured tetrahedral meshes robustly produce meshes of sufficient
quality for numerical simulations?

3RQ3: How can massively parallel mesh processing be used for quick editing of unstructured tetrahedral meshes to accelerate VP cycles?

80

5. Massively Parallel Collapsing of Edges of
Unstructured Tetrahedral Meshes

The following paper contains the core content of this chapter:

[SSF23] D. Ströter, A. Stork, D. W. Fellner, “Massively Parallel Adaptive Collapsing of Edges for Unstruc-
tured Tetrahedral Meshes”. In: High-Performance Graphics - Symposium Papers. Ed. by Jacco Bikker
and Christiaan Gribble. Presented at High-Performance Graphics 2023. The Eurographics Association,
2023. doi: 10.2312/hpg.20231139

In the preceding section, the use of massively parallel edge/face flips was enabled by proper conflict de-
tection. Since the parallelization of edge/face flips alone does not address the comprehensive set of available
re-meshing operators (cf. section 3.2.6), this chapter further investigates RQ1 and RQ2. In order to enable
massively parallel re-meshing for more operators, this chapter attempts to devise a conflict detection for more
general re-meshing of unstructured tetrahedral meshes. As it is one of the most challenging re-meshing op-
erators to massively parallelize (see section 3.2.6), this chapter focuses on edge collapsing in unstructured
tetrahedral meshes. A conflict detection for collapsing edges in unstructured tetrahedral meshes, should
provide the following properties:

• enclose each edge with a large enough sub-mesh so that re-meshing produces a valid inversion-free
mesh and can optimize, e.g., for mesh quality,

• at the same time, determine a dense set of conflict-free sub-meshes to enable good exploitation of the
massively parallel processing power of a GPU,

• prioritize collapsing operations with the most desirable impact on the mesh, e.g., lowest loss of geo-
metric detail or best element quality improvement.

A conflict detection that satisfies the above properties provides good means for massively parallel re-
meshing of unstructured tetrahedral meshes, because many meshing operators can be parallelized with a
conflict detection for collapsing edges [LM14]. Thus, attempting to establish such conflict detection would
allow for profound means to discuss RQ1 and RQ2.

In the context of VP processes, high-resolution tetrahedral meshes can lead to substantial workloads for
numerical simulation or post-processing applications. High-resolution meshes impose not only slow run time
performance but also substantial memory occupation. Unfortunately, some meshing tools can be difficult to
control for a target element size and it is generally difficult to predict how many elements are required to
achieve sufficient accuracy. In addition, it can be interesting to re-purpose an already existing unstructured
tetrahedral mesh to other applications that need a less fine-grained resolution for sufficiently accurate nu-
merical simulation. For instance, it can be beneficial to re-purpose a mesh for a linear elasticity simulation
for a fast heat simulation, while keeping the high-resolution geometric detail of the initial mesh. Therefore,
mesh coarsening is interesting for improving run time performance and memory demands, which is related
to RQ4. However, coarsening of unstructured tetrahedral meshes can be a compute intensive task. Espe-
cially for high-resolution meshes, the coarsening process can last several minutes or even hours [CDM04],

81

https://doi.org/10.2312/hpg.20231139

because the removal of elements is concerned with several optimization constraints such as element quality
and preservation of the boundary. Moreover, as the collapsing of edges is effective in eliminating low-quality
elements [Lo14a], fast mesh coarsening can quickly improve meshes in time-critical applications such as fluid
dynamics [Ala+06]. For better run time performance, the parallelization of mesh coarsening seems promis-
ing. Due to the sequential nature of optimization-driven re-meshing, the parallelization of mesh coarsening
remains a challenging problem, although the academic community has devised many parallelization strate-
gies for re-meshing operations (see section 3.2.6).

A massively parallel algorithm for collapsing edges appears in section 5.1. As mesh quality is important to
numerical methods, section 5.2 presents a method to collapse edges to improve the quality of an unstructured
tetrahedral mesh. Section 5.3 presents a tool that combines massively parallel re-meshing operators for mesh
adaption. The evaluation in section 5.4 investigates the run time performance and robustness of the collapsing
algorithm. Finally, section 5.5 summarizes the key conclusions of this chapter.

5.1. Collapsing Algorithm

This section presents an algorithm for massively parallel collapsing of edges. As this algorithm’s mode of
operation is supposed to be configurable, in order to support the many use cases of edge collapsing (see
section 3.2.4), section 5.1.1 presents the design choices taken for the algorithm. Subsequently, this section
successively details the individual steps of the algorithm, which is organized in three subsections.

Since collapsing edges requires to satisfy certain validity conditions (see, e.g., section 3.2.3), section 5.1.2
describes the process of ensuring the algorithm to perform only admissible edge collapse operations. Out
of the admissible edge collapse operations, the algorithm performs the steps in section 5.1.3 to determine
a dense set of non-overlapping sub-meshes for massively parallel re-meshing prioritized by a cost function.
Finally, each sub-mesh includes an interior edge and the algorithm builds a new mesh following the steps
described in section 5.1.4.

5.1.1. Algorithm Design

The design of the parallel edge collapsing method provides generic functions that can be specified to support
specific use cases. The collapsing method depends on an array of vertices (3 float numbers per vertex) and
an array of oriented tetrahedra (4 integers per tetrahedron). An outline of one collapsing iteration appears in
algorithm 7. A placement strategy P specifies the point to which the edge is collapsed. As many applications
enforce specific constraints for collapsing edges, a predicate Q protects edges from collapsing.

Face Ridge Corner

Figure 5.1.: Collapsing (arrows) face or ridge vertices
preserves the boundary, while collapsing corner vertices
leads to approximation errors.

Typically,Q protects the boundary of themesh. Many
edge collapsing methods for surface meshes rely on
quadric error metrics to approximately preserve the
shape [GH97; KG03; LZ08; Gha+20], whereas the ap-
plications using unstructured tetrahedral meshes typi-
cally require exact boundary preservation to obtain ac-
curate numerical simulations. Therefore, a set of rules
restricts the collapsing of boundary edges. For this
purpose, the massively parallel method in section 4.2
extracts the boundary and classifies vertices into face,
ridge and corner using surface normals of surrounding boundary triangles. Only boundary edges along geo-
metrical faces and ridges are collapsed (see fig. 5.1), while other features are protected. A face vertex can be
collapsed along the surrounding geometrical faces. A ridge vertex can be collapsed along its two ridge edges.

82

Empirical investigation revealed that repeated collapsing of ridge edges can distort the boundary, because
collapsing very small ridges can distort slightly curved surfaces over the course of many iterations. For this
reason, an additional rule prevents the collapsing of very small ridge edges. This rule allows the collapsing
of ridge edges, if its two adjacent triangle’s normals dot product differs at least εR from 1. This thesis consis-
tently uses εR = 0.1. Corner vertices cannot be collapsed without altering the boundary respecting εF and
εR. In addition, collapsing an interior edge connecting two distinct boundaries can cause surface artifacts.
For this reason, the collapsing algorithm detects boundary edges performing a parallel pass over triangles.
If a triangle lies on the boundary, its three edges can be marked as boundary edges. If an edge contains
boundary vertices but is not a boundary edge, the coarsening algorithm does not collapse this edge.

Algorithm 7 Edge collapsing iteration
1: procedure coarsenTetMesh(M, C, P, Q, εc, edgeMarking)
2: edgesMarked← allocate(M.numEdges())
3: edgesMarked.fill(0)
4: for i← 0, . . . ,M.numEdges()− 1 do ▷ In parallel
5: if edgeMarking[i] then
6: edgesMarked[i]← 1
7: end if
8: end for
9: B ← extractTetMeshBoundary(M)

10: costs← allocate(M.numEdges())
11: for i← 0, . . . ,M.numEdges()− 1 do ▷ In parallel
12: costs[i]← C(M.edges[i])
13: end for
14: collapseEdges(M, B, costs, P, Q, εc, edgesMarked)
15: end procedure

Each edge is associated with a cost. The cost to collapse an edge is specified by the cost function C that
is implemented in the system and can be parameterized to enable user specified inputs such as target edge
length. With the specification of the cost function, one can control how collapse operations are prioritized. For
each collapsing iteration, the algorithm evaluates the cost function in parallel over edges and saves the cost
values in an allocated buffer (see lines 11-13 in algorithm 7). The collapsing algorithm performs iterations
of parallel edge collapsing until no more collapse operations can be identified or the number of collapse
iterations is lower than a user-specified threshold εc. The threshold εc enables to prevent the overhead of
collapsing iterations, which change the mesh insignificantly due to performing a negligible number of edge
collapses.

As collapsing edges depends on the mesh connectivity, the collapsing algorithm relies on data structures
to lookup mesh connectivity. While the algorithm design is independent from the mesh data structure, it is
advised to use a data structure designed for tetrahedral meshes such as OpenVolumeMesh [KBK13] or TCSR
mesh (cf. section 2.2.3). This thesis uses TCSR mesh, because it is optimized for GPUs. Furthermore, the
collapsingmethodmarksmesh elements throughout the procedure. Themarking of an element is represented
by altering an entry in an array of marker values. The collapsing algorithm supports adaptive coarsening of
tetrahedral meshes, because it collapses only edges that are marked for potential removal. A marker value is
either 0 or 1. Specifically, the algorithm uses three arrays of marker values:

• edgesMarked: Indicates whether an edge is marked for collapsing “1” or unmarked “0”.

• verticesMarked: Indicates whether a vertex remains in the mesh “1” or is removed “0”.

• tetrahedraMarked: Indicates whether a tetrahedron remains in the mesh “1” or is removed “0”.

83

1.51.7 1.2

1.9 1.1

1.6
2.5

1.51.7

1.9

1.6
2.5

1.5

1.9

1.6
2.5

(a) (b) (c)

1.5
1.6

(d) (e)
Figure 5.2.: In (a), red edges with cost values are marked for potential collapsing. The geometrical and topological
checks unmark some edges in (b). In (c), conflict detection compares the cost of adjacent edges and prioritizes edges
with lower cost. As some simplices are still associated with several marked edges, the algortihm ensures that each
simplex is affected by only one collapsed edge in (d). Finally, both edges can be collapsed simultaneously (see (e)).

In addition, the vertAffectedByEdge array indicates whether a vertex belongs to a collapsed edge “edge
index” or not “-1”.

5.1.2. Finding Admissible Edges for Collapsing

In order to preserve the consistency of the input tetrahedral mesh, it is mandatory to check if a collapse
operation produces an invalid mesh. A parallel pass over edges filters for admissible edge collapse operations.
First of all, filtering checks if the edge is marked for potential collapsing. To preserve the topological type
of the mesh an edge collapse is only admissible, if it satisfies the link condition of Dey et al. [Dey+99].
If the link condition is satisfied, the algorithm tentatively performs the edge collapse using the specified
placement P. As the edge collapse operation should not produce inverted elements, the algorithm computes
the signed volume vτ of the resulting tetrahedra using the two one-rings of tetrahedra of the edge vertices.
For evaluating the volume of the resulting tetrahedra, the algorithm replaces the positions of the vertices
belonging to the collapsed edge with the position of the new vertex. If a tetrahedron contains both edge
vertices it can be skipped, because the collapse operation removes the tetrahedron. If the volume of any of
the resulting tetrahedra is lower than a threshold εv the edge collapse operation is not admissible, because it
creates inverted or degenerate tetrahedra. This thesis consistently uses εv = 2.×10−12 in the implementation.
After the topological and geometrical checks, the algorithm evaluates Q for the edge and refuses the edge
collapse operation in case Q is not satisfied. In this thesis, Q protects the boundary of the tetrahedral mesh
from being altered (cf. section 5.1.1). If all of the checks succeed, the edge remains to bemarked for collapsing
(see fig. 5.2 (b)). Otherwise, the algorithm unmarks the edge in the edgesMarked array.

5.1.3. Finding Independent Sub-Meshes

The collapsing algorithm detects and resolves conflicts in two parallel passes. Since prior checks potentially
unmark edges, the first pass over edges checks, if an edge is marked for potential collapsing. For an admissible
collapse operation, the method searches for conflicts. The first step of conflict detection is checking adjacent

84

edges. The conflict detection method uses the one-ring of adjacent edges for each of the two vertices of an
edge. If any of the adjacent edges is also marked for collapsing and incurs a lower cost, conflict detection
prioritizes the edge with the lower cost. In case of equal cost values, conflict detection prioritizes the edge
with the lower index. Due to parallel processing over edges, any thread that unmarks an edge does not need
to further check the adjacent edges, because this work is handled by other threads. If none of the adjacent
edges incurs a lower cost, the edge remains to be marked for collapsing. As a collapse operation replaces
an edge with a vertex, only one of the two edge vertices is removed. Tentatively, the algorithm sets the
entry in verticesMarked of the edge vertex with the larger index to 0. The other edge vertex remains
and its position is updated later, if the collapse operation is not rejected by the subsequent parallel pass. In
addition, conflict detection records the index of the collapsed edge for both vertices by writing the edge index
to vertAffectedByEdge at the position of the vertex indices. The recorded edge index entries cannot be
overwritten by any other thread, because each thread checks the adjacent edges before writing.

As only checking adjacent edges for conflicts is not enough to prevent invalid collapses (see fig. 5.2 (c)),
conflict detection performs a parallel pass over tetrahedra to detect the remaining conflicts. This parallel
pass uses the recorded collapse operations in vertAffectedByEdge from the previous parallel pass. For
each tetrahedron, conflict detection counts how many of the four tetrahedron vertices are marked for re-
moval. Whenever a vertex is marked, conflict detection obtains the index of the to-be-collapsed edge from
vertAffectedByEdge and writes it to a local stack. The local stack requires at most four entries. If only
one of the four vertices is associated with an edge collapse operation no further checks are required. Other-
wise, conflict detection potentially requires to resolve conflicts. In order to resolve conflicts, the method
iterates over the edge indices recorded in the local stack. If two edge indices in the stack are different, a
conflict is found. In this case, the algorithm resolves the conflict by evaluating the cost of both edges and
prioritizing the edge with the lower cost. If the two conflicting edges share the same cost value, conflict
detection prioritizes the edge with the lower index. The marking for the edge with the larger cost in the
edgesMarked array is set to 0 and the entries in the verticesMarked for the two edge vertices are set to
1, because these vertices remain in the mesh. After the second parallel pass all marked edges can be safely
collapsed without producing an invalid mesh (see fig. 5.2 (d) and (e)).

5.1.4. Collapsing Edges

After conflict detection determined a set of non-conflicting collapse operations, the collapsing algorithm
builds a new mesh with collapsed edges. As conflict detection already established a valid marking for the
verticesMarked array, a parallel exclusive prefix scan provides offset positions for vertices and the total
number of remaining vertices. Subtracting the number of remaining vertices from the number of input ver-
tices results in the total number of collapse operations. If this number is zero, i.e., no edge is collapsed,
or lower than a user-specified threshold εc, the algorithm terminates returning the input mesh. Otherwise,
the algorithm proceeds with building the resulting mesh with collapsed edges. Using the offset positions for
vertices, the remaining vertices are copied to a newly allocated buffer. The next step is to determine a valid
marking for the tetrahedraMarked array and collapse the marked edges. In a parallel pass over edges,
each thread with a to-be-collapsed edge iterates over the tetrahedra containing the edge and sets their en-
tries in the tetrahedraMarked array to 0. Subsequently, the thread compares the indices of the two edge
vertices, in order to determine the removed vertex with the lower index and the remaining vertex with the
larger index. The thread evaluates the placement strategy P to obtain the new coordinates for the remaining
vertex and writes the coordinates to the newly allocated buffer for the remaining vertices using the offset
positions. The offset position of the removed vertex is updated to the offset position of the remaining vertex,
in order to prepare for building a valid triangulation.

After collapsing the edges in parallel, an exclusive prefix scan over tetrahedraMarked obtains offset

85

positions and the number of remaining tetrahedra. The algorithm allocates an array for the tetrahedra of the
resulting mesh. A parallel pass over tetrahedra updates the vertex indices of each marked tetrahedron using
the offset positions for vertices. Each updated tetrahedron is copied to the array of remaining tetrahedra
using the offset positions for tetrahedra. Finally, the remaining tetrahedra and the array of vertices represent
the resulting mesh. Applications can then use the resulting mesh to select new edges for adaptive mesh
coarsening and re-evaluate the cost function.

5.1.5. Determinism of Conflict Detection

The determinism of an algorithm is an important property, because for some use cases it is coveted to obtain
reproducible results. Especially for debugging, the determinism of an algorithm is useful [Pan22], as it
enables to trace the control path of an algorithm for multiple executions. For improved run time performance,
the steps of the conflict detection in section 5.1.3 read from the same buffer of marking values as they write
to the final marking of edges to-be-collapsed. This enables to find more edges for parallel collapsing, because
the unmarking, i.e. rejection, of an edge for collapsing takes an immediate effect on the conflict detection.
However, since the execution order of threads is not deterministic, it might happen in one execution that one
edge is unmarked before checking an adjacent edge, while in another execution the adjacent edge is checked
for collapsing before the other edge is unmarked. Therefore, the proposed conflict detection is indeterminstic
when executed on massively parallel hardware.

In order to satisfy the potential demand for a conflict detection that finds an independent set of sub-meshes
deterministically, this section briefly describes a simple modification of the presented conflict detection to ob-
tain deterministic results. The key idea behind the modification is to introduce an additional, tentative buffer
edgesMarked_tmp for marking to-be-collapsed edges so that threads can perform checks based on one
buffer and write to the other. Thus, before checking adjacent edges (first parallel pass in section 5.1.3)
the modified algorithm establishes edgesMarked_tmp as a copy of edgesMarked. The checks of adja-
cent edges then use the marking from edgesMarked_tmp, while the unmarking of an edge is only written
to edgesMarked. After the parallel pass terminated, the modified algorithm prepares for the subsequent
parallel pass copying the results from edgesMarked again to edgesMarked_tmp. Analogous to the first
parallel pass, the second pass only reads marking values from edgesMarked_tmp and only writes marking
values to edgesMarked. In this way, the unmarking of an edge does not take an immediate effect during
the execution of one parallel pass. After the two parallel passes, the tentative buffer edgesMarked_tmp
can be safely deallocated. As a downside, the modified conflict detection will find fewer edges for collapsing
in some iterations, as unmarked edges are not immediately considered. This sometimes leads to up to 10%
more iterations of parallel collapsing of edges.

5.2. Collapsing for Mesh Improvement

Since the edge collapse operation allows for the removal of low-quality tetrahedra [Lo14a], it is interesting
to incorporate the massively parallel collapsing algorithm into the mesh optimization presented in chapter 4.
In addition, harmonic mesh optimization with coarsening can reduce the element count substantially more
compared to using harmonic flipping alone, while the optimization should not obtain a mesh of insufficient
resolution for numerical accuracy. For this reason, the collapsing should primarily remove low-quality tetra-
hedra below a certain quality threshold.

For element shape improvement, one can specify the cost function C and the placement strategy P so
that collapsing improves element quality. As the harmonic mesh optimization efficiently improves dihedral
angles, η serves as the cost function for collapsing. Like the mesh optimization algorithm in section 4.3.1,
the placement strategy P performs a line search finding the optimal position for the vertex replacing the

86

collapsed edge. The line search optimizes the sum of η interpolating between the two edge vertices. The
cost function C specifies the improvement in terms of η gained by the collapse operation, prioritizing larger
improvement over smaller. While the vertex relocation in section 4.3.1 uses Brent’s method [Pre+02], the
line search for an collapsed edge uses quadratic fit search (QFS) [KW19], because QFS involves less branches
than Brent’s method improving parallelism. The key strategy of QFS is to fit a quadratic function to three
points a, b and c along the search line, where a < b < c. Since η is typically a paraboloid function with one
minimum along the search line, QFS is a viable choice. As the line search interpolates between the two edge
vertices v0 and v1, the possible positions ℓ(x) along an edge can be expressed as:

ℓ(x) = (1− x) · v0 + x · v1, where x ∈ [0, 1]. (5.1)

In order to prevent numerical robustness issues near the edge vertices, the implementation of the placement
strategy consistently uses a = 0.1, b = 0.5, and c = 0.9 for the initial values. Empiric studies in this thesis have
shown that a minimum on ℓ(x) is often near the midpoint, which QFS finds in few iterations, because it uses
three bounds unlike Brent’s method. The minimum determined by QFS is a good starting point for further
gradient-based optimization with Brent’s method. If a collapse operation does not lead to an improvement
of η or produces inverted elements, it is inadmissible.

Like Cutler et al. [CDM04], the proposed algorithm couples edge collapse with other mesh improvement
operations. The implementation combines GPU-efficient vertex relocation (cf. section 4.3.1) and face/edge
swapping (cf. section 4.4) with collapsing edges. One improvement iteration relocates the vertices, finds ben-
eficial face/edge swaps and collapses edges of tetrahedra with a dihedral angle lower than a predetermined
threshold.

5.3. A Method for Massively Parallel Mesh Adaptation using Error Estimation

Since section 5.2 describes a way to combine mesh improvement (see chapter 4) with the collapsing al-
gorithm, it is interesting to extend this combination by refinement, in order to obtain a mesh adaptation
framework. The massively parallel tetrahedral subdivision refinement algorithm from the author’s master
thesis [Str19] is an apt choice for this framework, because it is highly efficient and adaptive. In a master
thesis under the authors supervision, Stegemann [Ste24] presents a mesh adaptation framework using har-
monic mesh optimization coupled with massively parallel coarsening and refinement. As the mesh resolution
can significantly impact the accuracy of the simulation results, the focus of Stegemann’s thesis [Ste24] lies
in the reduction of the error of a numerical simulation.

One useful auxiliary tool to estimate the error of a simulation are a-posteriori error approximators, which
perform calculations on the results of a numerical simulation to estimate the error [Lo14b]. Figure 5.3
visualizes an example for mesh adaptation based on a-posteriori error approximation. Stegemann [Ste24]
incorporates the a-posteriori error approximation technique to adapt the mesh for a specific upper bound
of the estimated error. The mesh adaptation method uses Kelly’s estimator [Kel+83] or the estimator of
Zienkiewicz and Zhu [ZZ87], because these are well established and their calculation schemes admit efficient,
massively parallel computation. With the use of these estimators, the error is associated with the elements
τ ∈ T. Thus, the a-posteriori error estimators are local, which enables to determine whether a certain element
should be adapted or not. The adaptation method computes the refinement index ρτ for each τ ∈ T:

ρτ = eτ/ea,

where eτ is the estimated error of the element τ and ea is the specified target error. As it is numerically
not feasible to obtain the target ρτ = 1 for each τ ∈ T, the determination criteria for mesh adaptation
includes safety bounds to prevent overrefinement. The method consistently refines elements with ρτ > αρ

87

and coarsens elements with ρτ < βρ, where αρ ∈ [1.2, 2.5] and βρ ∈ [0.45, 0.65]. It is important to consider
that the refinement of an element does not necessarily reduce ρτ . Therefore, a Laplacian smoothing step
ensures that the refinement index is well-distributed among the mesh, in order to prevent overrefinement,
e.g., at the the fixed boundaries of the mesh.

Figure 5.3.: Numerical simulation of the deformation of a bar using the FEM. The coarse mesh to the left leads to a
significantly deviating result compared to the fine mesh to the right.

Besides using the error estimation, users like to specify a sizing field ST(x) : Ω→ R+ for mesh adaptation.
The sizing field specifies the desired size of elements locally at any x ∈ Ω. There are various ways to specify
a sizing field. Users could use a continuous function or interpolate discrete data. One could also transfer the
estimated error to a sizing field [Arp+22]. In order to provide a practical interface for users, the method
also supports sizing fields in an analog manner to the refinement index.

In order to optimize the mesh for mesh quality and the estimated error, an extended harmonic mesh
optimization sets the function values of the discretized Dirichlet energy (cf. section 2.1.3) to the refinement
index. This enables the optimization to scale the volume of elements so that the estimated error is reduced.
For harmonic flipping, the evaluation of the harmonic index η uses the factor ρτ . For vertex relocation, the
computation of the gradient uses the product rule to calculate the gradient of the weighted Dirichlet energy:

∂ tr(ρτLτρτ)
∂x

= ρ2τ
∂ tr(Lτ)
∂x

+ 2ρτ tr(Lτ)
ρτ

∂x
.

While the left summand of the sum is already given by eq. (4.2), the left part of the equation requires the
evaluation of ∂ρτ/∂x. Since ρτ is defined on the tetrahedral elements but not on the vertices, Stegemann
[Ste24] resorts to replacing ∂ρτ/∂x with the longest edge of τ and assumes that the optimization of ρτ is
positively correlated with the longest edge length. It is worth noting that Alexa [Ale19] states that the deriva-
tive of the functional of the discretized Dirichlet energy is undefined on the sub-simplices of τ . Therefore,
the replacement of ∂ρτ/∂x is an apt choice to optimize the vertex positions for the estimated error. Stege-
mann’s thesis [Ste24] shows that the impact of weighting the Dirichlet energy with ρτ is significant for vertex
relocation but does not significantly change the results of harmonic flipping.

88

5.4. Evaluation

Atlas Crank: NV = 1.1M NE = 7.1M NT = 5.8M

Corner Bracket:
NV = 471k NE = 3M

NT = 2.4M

Die:
NV = 45k NE = 293k

NT = 233k

Figure 5.4.: Cross sections visualize the inner structures of the Atlas Crank, Corner Bracket and Die meshes. Labels
provide the numbers of vertices (NV), edges (NE) and tetrahedra (NT).

The evaluation in this section shows that the algorithm for massively parallel collapsing is robust and effi-
ciently exploits parallel processing power. Firstly, an automated evaluation procedure applies the algorithm to
a multitude of meshes in section 5.4.1 to validate its robustness and correctness. Subsequently, the evaluation
focuses on efficiency. Section 5.4.2 and section 5.4.3 investigate the performance of collapsing edges using
the Die [ZJ16] (file ID 128640), Corner Bracket [Uga22] and Atlas Crank [Has20] meshes (see fig. 5.4). For
performance investigations, the evaluation selects all the edges with a length lower than a predetermined
threshold for collapsing. The collapsing of edges terminates, when every edge exhibits a length larger than
the threshold or is inadmissible for collapsing. The cost function calculates edge lengths prioritizing smaller
edges. The following paragraphs briefly describe three competing algorithms, where sequential collapsing
and Gautron et al.’s [GKN23] method are implemented using the TCSRmesh data structure (cf. section 2.2.3)
as well:

Sequential collapsing Whenever an edge is admissible for collapsing, it is pushed to a priority queue that
prioritizes by edge length. After sequential checking of all the edges, the algorithm pops the topmost edge
from the queue until the queue is empty. For every edge, the sequential algorithm first checks if the collapse
has been invalidated by a prior collapse. If the collapse has not been invalidated, it is performed. After
collapsing the procedure sequentially builds the two arrays of tetrahedra and vertices that represent the
collapsed mesh.

Jiang et al.’s [Jia+22] framework The CPU-parallel framework of Jiang et al. [Jia+22] can be used to
coarsen tetrahedral meshes accelerated by Intel’s Threading Building Blocks. This implementation performs
the same admissibility checks as the proposed collapsing algorithm to filter for admissible collapses preserving
the boundary. Their scheduler is set up to prioritize smaller over larger edges and terminates, when no more
edge can be collapsed. As Jiang et al.’s [Jia+22] framework ships its own data structure, this implementation
does not use TCSR mesh.

Gautron et al.’s [GKN23] method This GPU-parallel method performs the steps described in section 5.1.2
and section 5.1.4 but uses a different conflict detection approach. Two parallel passes over the edges de-
termine a set of edges that can be collapsed in parallel. The first parallel pass initially checks if an edge

89

was marked as admissible for collapsing. For admissible edges, the parallel pass creates the descriptors of
each edge and propagates the descriptors using CUDA’s atomicMin. The propagation involves the one-ring
of tetrahedra for each of the two vertices of an edge. After edge descriptor propagation, another parallel
pass over edges once again checks the one-ring neighborhood of both edge vertices and marks the edge for
collapsing if each adjacent tetrahedron is associated with the edge descriptor of the edge.

Section 5.4.4 evaluates the performance impact of skipping collapse operations using εc. Section 5.4.5
evaluates the algorithm for mesh improvement presented in section 5.2. The evaluation machine is equipped
with an Intel i9-11900K CPU and an NVIDIA RTX 3090 GPU. The implementations of the collapsing variants
were compiled using Visual Studio 2022 and CUDA.

5.4.1. Robustness

In order to show that the proposed GPU-parallel collapsing method produces valid meshes, an automated
evaluation procedure applied the method to all the 10 k meshes generated by Hu et al. [Hu+20]. As a large
number of edges should be collapsed to evaluate the robustness of the algorithm, the evaluation procedure
uses the median edge length of each mesh as the threshold for collapsing.

Table 5.1.: Average run times for coarsening the 10 k meshes of Hu et al. [Hu+20] until convergence (εc = 0).
Method Run time (s)

Proposed 0.180
Gautron et al. [GKN23] 0.202

Jiang et al. [Jia+22] (16 threads) 0.368
CPU-sequential 1.500

The evaluation procedure performs several consistency checks on the resulting meshes. It includes topo-
logical checks. Each triangular face should be part of either one or two tetrahedra. In addition, if a triangular
face is shared by two tetrahedra, these tetrahedra include this face in alternating orientations. None of the
resulting meshes violates the topological checks. Besides the topological checks, the evaluation procedure
includes geometrical checks. The procedure checks for inverted tetrahedra. As duplicated vertices pose a
problem to many applications, the procedure also checks for duplicated vertices. In the evaluation proce-
dure, two vertices are duplicates, if their pairwise coordinates differ by less than 1. × 10−13 on every axis.
The method did not produce duplicated vertices or inverted elements on any of the input meshes. Table 5.1
shows the average run times for coarsening the 10 k meshes with the competing methods. However, the ma-
jority of meshes generated by Hu et al. [Hu+20] only includes few elements. Thus, the evaluation measures
run time performance on the larger meshes shown in fig. 5.4.

5.4.2. Conflict Detection

As conflict detection is an essential component of parallel re-meshing, the evaluation investigates the density
of the resulting sub-meshes compared to the state of the art method of Gautron et al.’s [GKN23]. See fig. 5.5
for a schematic comparison with Gautron et al.’s [GKN23] method. The proposed conflict detection method
(cf. section 5.1.3) benefits from the intermediate step unmarking adjacent edges with larger cost values. This
intermediate unmarking significantly reduces the potential conflicts for the second conflict detection step.
Thus, the second conflict detection step on the basis of tetrahedra finds a compact set of sub-meshes for
re-meshing. The resulting sub-meshes can be locally adjacent, because they are non-overlapping.

90

1.0 1.
1

1.2
1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0

1.1

1.1

1.2
1.2 1.2

1.21.2
1.0 1

<
1.
1

1.2

Initial setup Gautron et al. [GKN23] (1 collapse) Proposed method (2 collapses)

Figure 5.5.: Initially, three edges are marked (shaded red) for collapsing with cost values (red). Gautron et
al.’s [GKN23] method propagates the cost of 1.1 into the cavity of the edge with a cost of 1.2 finding only one col-
lapse operation. The proposed method unmarks the edge with cost 1.1 when checking adjacent edges and finds two
collapse operations.

Especially for tetrahedral meshes, the ability of the proposed conflict detection to find a more compact set
of sub-meshes results in more parallelism, as conflicts frequently occur in the inner structures of the mesh. In
order to show that the proposed conflict detection leads to more parallelism, fig. 5.6 plots the total number
of collapsed edges throughout collapsing edges smaller than the median edge length (εc = 0) on the Atlas
Crank and Corner Bracket meshes for all the three collapsing variants.

As can be seen in fig. 5.6, the proposed conflict detection results in significantly fewer collapsing iterations
compared to the atomic operation-based propagation of Gautron et al. [GKN23]. Due to the more compact

0 25 50 75 100 125 150 175

100,000

200,000

300,000

400,000

Iteration

To
ta
ln

um
be

ro
fc

ol
la
ps
es

Edge Collapses on Corner Bracket

0 25 50 75 100 125 150 175

100,000

200,000

300,000

400,000

500,000

600,000

Iteration

To
ta
ln

um
be

ro
fc

ol
la
ps
es

Edge Collapses on Atlas Crank

Gautron et al. [GKN23] CPU-sequential Proposed

Figure 5.6.: The plots present how the total number of collapses per iteration develops throughout collapsing edges
smaller than the median edge length.

91

set of conflict-free sub-meshes, more collapses can be performed in one single iteration. In fact, the plots
exhibit convergence after up to 59% fewer iterations compared to the conflict detection of Gautron et al.
[GKN23]. Thus, the proposed conflict detection enables efficient exploitation of parallel processing power.
As expected, the CPU sequential collapsing variant requires the fewest number of iterations for convergence,
because parallel conflict detection tends to reject too many edges for collapsing. Nonetheless, the proposed
massively parallel conflict detection achieves spatially dense sets of conflict-free sub-meshes. Compared to
the sequential variant, the proposed conflict detection results in up to 1.7× more iterations, which means
that only a small overhead of additional iterations is imposed by the decomposition into sub-meshes for paral-
lelization. In contrast, the method of Gautron et al. [GKN23] results in up to 4.2×more iterations compared
to sequential collapsing, which means that a substantial amount of additional iterations is imposed due to
finding conflict-free collapse operations. The subsequent section 5.4.3 shows that the massive parallelization
of the proposed method leads to superior run time performance than sequential collapsing and the method
of Gautron et al. [GKN23]. A commonality of all the three collapsing methods is that they perform the bulk
of the edge collapse operations in the initial iterations. Thus, after a certain number of iterations the mesh
does not change significantly any more, as only few edges are collapsed in each iteration.

Thus, all of the methods tend to spend a significant workload on performing collapsing iterations without
a significant effect on the mesh.

5.4.3. Run Time Performance

As the speedup depends on the number of simultaneously collapsed edges per iteration, the evaluation per-
forms measurements for different edge length thresholds, interpolating between the minimal edge length
and the median edge length. For each measurement, the evaluation procedure sets εc = 0 to collapse edges
until no more admissible collapses can be found. As the TCSR mesh data structure (cf. section 2.2.3) requires
rebuilding the connectivity relationships for every collapsing iteration, the evaluation includes overall run
time measurements including the rebuilding of connectivity relationships and collapsing run time measure-
ments that only involve the steps of collapsing edges (cf. section 5.1.2 to section 5.1.4) abstracting from the
data structure of use. Each of the evaluated methods performs the checks described in section 5.1.2 to filter
for edges admissible for collapsing. Additionally, measurements for massively parallel collapsing perform
20 repetitions and compute the median run time, because run times of parallel computations may exhibit a
multimodal distribution [HB15].

The evaluation measures run times on the meshes shown in fig. 5.4 representing different mesh sizes. Fig-
ure 5.7 plots measured run times for edge length thresholds between the minimal and median edge lengths.
The proposed massively parallel collapsing method outperforms the CPU-sequential variant by at least one
order of magnitude on each of the three meshes. As the Die mesh is the smallest mesh, the proposed method
achieves the lowest speedups for this mesh. The proposed collapsing method outperforms the framework of
Jiang et al. [Jia+22] by up to 18× for the smaller thresholds and by 2.5× for the median edge length. The
method of Gautron et al. [GKN23] exhibits only slightly slower run times than the proposed method, because
the Die mesh is coarser in the interior and most conflicts occur near the mesh boundary. More compelling
speedups can be found on the Corner Bracket and Atlas Crank meshes. For the Corner Bracket mesh, the
proposed method outperforms the CPU-sequential method by 33×, the framework of Jiang et al. [Jia+22]
by 7.4× and the method of Gautron et al. [GKN23] by 2.7×. In addition, the proposed method exhibits
better scaling behavior due to improved conflict detection. On the Atlas Crank mesh, the proposed method
outperforms CPU-sequential collapsing by 34×, the framework of Jiang et al. [Jia+22] by 4.4× and the GPU-
parallel method by Gautron et al. [GKN23] by 2.5×. The speedups for the Atlas Crank mesh are slightly lower
than for the Corner Bracket mesh, because the Atlas Crank mesh exhibits more thin and curved structures
than the Corner Bracket mesh. As a result, the proposed method is significantly faster than the state of the

92

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0.01

0.1

1

10

Edge length collapse threshold

Ru
n
tim

e
(in

se
co

nd
s)

Die

8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

1

10

100

Edge length collapse threshold

Ru
n
tim

e
(in

se
co

nd
s)

Corner Bracket

0.05 0.1 0.15 0.2 0.25 0.3

0.1

1

10

100

Edge length collapse threshold

Ru
n
tim

e
(in

se
co

nd
s)

Atlas Crank

CPU-sequential overall Gautron et al. [GKN23] overall Proposed overall
Jiang et al. [Jia+22] overall (16 threads) CPU-sequential collapsing Gautron et al. [GKN23] collapsing
Proposed collapsing

Figure 5.7.: The plots show run times for parallel edge collapsing. The Y-axis is scaled logarithmically.

93

art. An important commonality of the implementations of CPU-sequential collapsing, the method of Gautron
et al. [GKN23] and the proposed method is that the major bottleneck is the rebuilding of connectivity rela-
tionships. Thus, a data structure that can be dynamically updated on the GPU would result in significantly
improved performance enabling run times close to the run times for collapsing only in fig. 5.7.

5.4.4. Skipping Iterations that Collapse only Few Edges

Since many iterations collapse only a small number of edges (cf. section 5.4.2), the evaluation analyzes the
run time performance of the proposed collapsing algorithm for different choices of the threshold εc. In order
to aggressively coarsen the mesh and impose a considerable workload, the evaluation chooses the doubled
median edge length as the threshold for collapsing. It uses the Robot mesh [ZJ16] (file ID 255172) for this
evaluation, because it includes thin as well as large inner structures and flat as well as curved boundaries.

Original εc = 1000 εc = 700 εc = 100 εc = 0
– 0.745 seconds 0.981 seconds 1.613 seconds 2.201 seconds
– 33 iterations 44 iterations 91 iterations 138 iterations

NT = 503k NT = 258k NT = 190k NT = 115k NT = 109k
NE = 645k NE = 339k NE = 255k NE = 161k NE = 153k
NV = 101k NV = 55k NV = 42k NV = 28k NV = 27k

Figure 5.8.: Coarsening the Robot mesh with different values for εc results in different meshes and run times. The
figure provides run times and numbers of tetrahedra (NT), edges (NE) and vertices (NV) for the resulting meshes.

Table 5.2.: Run times and speedups (of the proposed method) for coarsening the Robot mesh [ZJ16] (file ID 255172)
until convergence (εc = 0).

Method Run time (s) Speedup

Proposed 2.201 –

Gautron et al. [GKN23] 6.072 2.76×

Jiang et al. [Jia+22] (16 threads) 11.964 5.44×

Jiang et al. [Jia+22] (8 threads) 14.296 6.50×

CPU-sequential 29.488 13.40×

For εc = 0, Table 5.2 shows run times and speedups of the proposed method compared to the other
methods. An overview on how the Robot mesh and the run time of the proposed method develops while
increasing εc appears in fig. 5.8. As can be seen, the run time significantly increases for choosing a low
number for εc. For the jump from εc = 700 to εc = 100, the run time of the proposed method almost doubles,
meaning that many iterations only collapse hundreds of edges. Taking a close look on the boundaries for
εc = 700 and εc = 100, it can be seen that these iterations primarily coarsen mesh regions with many short
edges connected to each other. Conflicts frequently occur in these regions limiting the impact of parallel

94

processing. Nonetheless, choosing εc = 100 eliminates only 75 k more tetrahedra than choosing εc = 700.
Thus, the impact on coarsening these local regions is not as substantial as coarsening the remainder of the
mesh. The proposed method achieves a fast run time of 981 milliseconds (below one second) for choosing
εc = 700, which provides means for immediate response times [New94]. The experiment validates that
skipping collapsing iterations performing few collapses comes at low cost, because the bulk of the decimation
happens in the initial iterations. For choosing εc = 1000, the proposed collapsing method achieve to halve the
number of tetrahedra. For εc = 700, the proposed method can substantially reduce the number of tetrahedra.

5.4.5. Mesh Quality Improvement of Harmonic Optimization with Collapsing

Since section 5.2 proposes to combine the massively parallel collapsing method with the element quality
optimization from chapter 4, the evaluation investigates the impact of this combination. While the resulting
optimization algorithm has been tested for many models, the evaluation discusses the results for two meshes
Die and Goyle, which are representative for the evaluation results. For each mesh, the optimization algo-
rithm collapsed tetrahedra with a dihedral angle lower than 13 ° until convergence (εc = 0). The Die mesh
shows the benefits of combining vertex relocation, flipping and collapsing. Since limitations occur for mod-
els with highly-complex boundary features, the evaluation includes the Goyle mesh to show the limitations
of the optimization method. The evaluation provides resulting mesh sizes, run times, and element quality
in terms of the minimal dihedral angle ϕmin and conformal AMIPS energy DAMIPS (cf. section 3.2.2). Each
measurement is repeated 20 times, in order to prevent outliers. If a method provides deterministic results,
the measurement calculates the median run time. If a method is indeterministic, the evaluation determines
the range of measured run times and element qualities. Figure 5.9 shows the results for both meshes.

For many meshes, the use of collapsing for mesh improvement is beneficial (see Die mesh in section 3.2.2).
Collapsing edges additional to flipping elements results in a lower number of elements in the optimized
mesh. While the harmonic mesh optimization significantly reduces the number of low-quality elements, the
additional use of collapsing eliminates more low-quality elements. The more simple the surface features
of the mesh are, the better is the benefit due to using collapsing. For meshes with a good portion of flat
surface features like the Die mesh, the collapsing of low-quality elements frequently results in not only fewer
low-quality elements but also better quality for the worst element. This is due to collapsing eliminates the
elements with the worst quality and subsequent optimization steps obtain better element quality for the
remaining elements. In some cases, collapsing even achieves to eliminate some low-quality elements at
complex boundary features that cannot be easily optimized by vertex relocation and flipping alone. Mostly,
the low-quality elements have an interior edge in these cases. The interior edge can then be collapsed so
that the resulting element quality can be improved by the optimization. The run time performance of the
element quality optimization frequently benefits from collapsing, if the number of low-quality elements in
the mesh is much lower than the overall number of elements in the mesh. Otherwise, many iterations of
parallel collapsing are necessary to eliminate all the low-quality elements. Due to the use of indeterministic
coloring for vertex relocation, the exact run time of the optimization algorithm is difficult to predict. As
different results for vertex relocation can lead to different choices of the collapsing algorithm, the use of edge
collapsing further increases the variety of different run time behaviors.

While the additional usage of collapsing is beneficial for manymeshes with flat surface features, the meshes
with many complex and rounded surface features oftentimes benefit only a little by the usage of the collaps-
ing method (see Goyle mesh in section 3.2.2). However, the combination of vertex relocation, flipping and
coallpsing typically removes more low-quality elements than using vertex relocation and flipping alone. If a
large portion of the elements in the mesh are of low shape quality, then collapsing edges for mesh improve-
ments does not improve the run time performance of the optimization, since many collapsing operations are
performed before termination. The use of collapsing for element quality optimization does not guarantee

95

Original Improved w\o collapsing Improved w\o collapsing Improved w\ collapsing
– Deterministic coloring Deveci coloring Deveci coloring

2269 low-quality tets 60 low-quality tets 62 - 78 low-quality tets 27 - 34 low-quality tets
– 808ms 264ms - 601ms 267ms - 513ms

NT = 233k NT = 226k NT = 226k NT = 221k
NV = 45k NV = 45k NV = 45k NV = 44k
ϕmin = 2.07 ϕmin = 7.59 ϕmin = 7.29-7.67 ϕmin = 7.87-9.38
DAMIPS

max = 28.51 DAMIPS
max = 20.14 DAMIPS

max = 19.55-19.97 DAMIPS
max = 14.77-18.36

20304 low-quality tets 1530 low-quality tets 1511 - 1612 low-quality tets 954 - 1180 low-quality tets
– 808ms 894ms - 2.087 s 4.453 s - 11.171 s

NT = 518k NT = 503k NT = 503k NT = 469k-471k
NV = 142k NV = 142k NV = 142k NV = 134k-135k
ϕmin = 0.50 ϕmin = 0.81 ϕmin = 0.99-1.77 ϕmin = 0.10-1.25

DAMIPS
max = 283.50 DAMIPS

max = 447.89 DAMIPS
max = 195.96-223.15 DAMIPS

max = 238.42-676.47

Figure 5.9.: Elements (red) with a dihedral angle φ lower than 13 ° before and after improvement. For the indeter-
ministic methods, the figures show the worst cases of remaining low-quality tetrahedra. Better element qualities are
provided in boldface.

to provide the target element quality, because not every edge can be collapsed (cf. section 3.2.3), i.e., not
every low-quality element can be eliminated. Furthermore, the optimization algorithm does not guarantee
to improve the worst quality element, as the optimization consistently minimizes the sum of the harmonic
indices and converges in a local minimum. Whenever an edge is collapsed, there is no guarantee that the
subsequent optimization steps find a local minimum, where the worst quality element of the resulting mesh is
better than before the collapsing. Therefore, it is in line with the expectations that element quality improve-
ment with collapsing does not improve the worst quality elements in some meshes with complex boundary
features. As high-resolution meshes with complex boundary features oftentimes require more iterations until
a mesh optimization method converges, it can be expected that a larger set of re-meshing operations can
impose reduced run time performance. It is possible to consistently improve element quality of complex
meshes with the use of a roll back mechanism for re-meshing operations and performing exhaustive search
until a sequence of re-meshing operations has reached a better global minimum [KS07]. This imposes the
cost of substantially reduced run time performance. Consequently, this thesis does not investigate roll back
of re-meshing operations for the quality improvement.

96

5.5. Summary

In summary, this chapter has introduced a robust, massively parallel and configurable method for collapsing
edges in an unstructured tetrahedral mesh. The core of this method is a massively parallel conflict detection
that determines densely packed sub-meshes for conflict-free re-meshing. This conflict detection satisfies all
of the desired properties. The resulting sub-meshes:

• are non-overlapping so that massively parallel re-meshing produces valid meshes,

• can be spatially dense or even adjacent so that onemassively parallel pass can performmany re-meshing
operators, and

• are constructed with respect to a cost function C so that re-meshing operations with the most desirable
impact on the mesh.

Evaluating the collapsing method on 10 k of unstructured tetrahedral meshes has shown the robustness
of the proposed method, since the resulting meshes were all valid. Massively parallel collapsing of edges
achieves a speedup of one order of magnitude over sequential collapsing. In addition, the evaluation reveals
that the proposed collapsing method is significantly faster than state of the art parallel collapsing methods.
The evaluation has shown that the main bottleneck is rebuilding the TCSR data structure, which suggests a
dynamic GPU data structure for unstructured tetrahedral meshes for future work.

Returning to RQ11 and RQ22, this chapter allows further argumentation. As many re-meshing operators
can be accelerated with the use of the proposed conflict detection, the goal of massively parallel re-meshing is
achieved for foundational re-meshing operators. The method described in this chapter allows for quickly re-
meshing unstructured tetrahedral meshes using the proposed algorithm, which is the acceleration of another
important VP task that is concerned with RQ1. Thus, this chapter establishes further arguments for a positive
answer to RQ1. However, the answer to RQ2 is not as simple. In the evaluation, the massively parallel
algorithms have produced valid meshes on a large test set. The success of the proposed algorithms depends
on the complexity of the mesh boundary. For complex boundaries, it is generally difficult to quickly optimize
the mesh with a small number of operators and without backtracking. The proposed massively parallel
algorithms inherit this issue (cf. section 5.4.5) and cannot guarantee good mesh quality, while they typically
produce sufficient mesh quality on meshes with moderately complex boundaries.

Since mesh adaptation is a typical re-meshing task in VP cycles, the successful use of the proposedmassively
parallel algorithms for adapting meshes, e.g., demonstrated in section 5.3, allows to argue in the light of RQ33
that mesh adaptation in VP cycles can benefit from the proposed algorithms. Respective RQ44 one can claim
that the coarsening of meshes reduces memory occupation for post-processing. Before this thesis evaluates
the abilities of the proposed coarsening method to achieve memory-efficient post-processing in chapter 7, the
discussion of RQ3 is extended to the customization of prototypes in chapter 6.

1RQ1: How can the use of the GPU accelerate mesh optimization and re-meshing tasks for unstructured tetrahedral meshes?
2RQ2: How can massively parallel optimization and re-meshing of unstructured tetrahedral meshes robustly produce meshes of sufficient
quality for numerical simulations?

3RQ3: How can massively parallel mesh processing be used for quick editing of unstructured tetrahedral meshes to accelerate VP cycles?
4RQ4: How can the massively parallel post-processing of unstructured tetrahedral meshes be implemented with efficient memory usage?

97

6. User-guided Unstructured Tetrahedral Mesh Editing

The following papers contain the core content of this chapter:

[Str+21] D. Ströter, U. Krispel, J. Mueller-Roemer, D. Fellner, “TEdit: A Distributed Tetrahedral Mesh Editor
with Immediate Simulation Feedback”. In: Proceedings of the 11th International Conference on Sim-
ulation and Modeling Methodologies, Technologies and Applications. Presented at SIMULTECH 2021.
SciTePress 2013. SCITEPRESS - Science and Technology Publications, 2021, pp. 271–277. doi: 10.5
220/0010544402710277

[Str+23] D. Ströter, A. Halm, U. Krispel, J. S. Mueller-Roemer, D. W. Fellner, “Integrating GPU-Accelerated
Tetrahedral Mesh Editing and Simulation”. In: Simulation and Modeling Methodologies, Technologies
and Applications. Ed. by Gerd Wagner, Frank Werner, Tuncer Oren, and Floriano De Rango. Springer
International Publishing, 2023, pp. 24–42. doi: 10.1007/978-3-031-23149-0_2

[Str+24] D. Ströter, J. M. Thiery, K. Hormann, J. Chen, Q. Chang, S. Besler, J. S. Mueller‐Roemer, T. Boubekeur,
A. Stork, D. W. Fellner, “A Survey on Cage‐based Deformation of 3D Models”. In: Computer Graphics
Forum 43.2 (May 2024). Presented at EUROGRAPHICS 2024. doi: 10.1111/cgf.15060

Subsequently to investigating low-level mesh editing (cf. section 3.1) in chapter 4 and chapter 5, this chap-
ter presents methods for user-interactive editing of unstructured tetrahedral meshes. While the previously
presented methods primarily addressed RQ1 and RQ2, i.e., the acceleration of optimization and re-meshing
in the VP cycle, this chapter attempts to introduce methods that shorten the VP cycle by changing the tetra-
hedral mesh of the prototype without loop back to CAD. Therefore, this chapter investigates RQ3 beyond the
acceleration of typical steps in the VP cycle in an attempt to establish high-level mesh editing of unstructured
tetrahedral meshes. In order to extensively investigate the potential of high-level mesh editing for VP cycles,
this chapter covers two of the well-established methods to interactively edit a mesh: feature-based editing
(cf. section 3.3.1) and deformation-based editing (cf. section 3.3.2).

Feature-based editing should be compatible with the semantic features defined on the B-Reps in CAD, be-
cause this allows for a smooth transition from CAD to high-level mesh editing. However, editing the shape of
the mesh invalidates this initial assignment of semantic features. Thus, a quick method to detect semantic
features based on the mesh surface should be helpful to establish feature-based mesh editing. Mesh editing
tools for professional VP purposes such as Autodesk’s Fusion offer the determination of face groups [Aut24]
to organize triangular surface faces of a mesh into semantic groups. However, the accurate determination
of these face groups can impose slow run time performance, especially on high-resolution models. There-
fore, this thesis attempts to introduce a massively parallel algorithms for fast run time performance of face
group detection in sections 6.1.2 and 6.1.3. Additionally, this chapter attempts to extend the mesh editing
based on face groups from surfaces to the editing of unstructured volumetric meshes for numerical simulation
purposes. This requires measurements for providing valid meshes with sufficient element quality for numer-
ical simulation. In order to establish proof of concept for feature-based editing of unstructured tetrahedral
meshes, this chapter attempts to formulate two editing operations: hole close and erosion. The hole close
operation enables the removal of co-planar holes in the mesh so that users can quickly customize models,
e.g., for manufacturing purposes, and immediately evaluate the impact on simulation scenarios. The erosion

99

https://doi.org/10.5220/0010544402710277
https://doi.org/10.5220/0010544402710277
https://doi.org/10.1007/978-3-031-23149-0_2
https://doi.org/10.1111/cgf.15060

operation enables the removal of thin user-selected model parts. As both of these operations should produce
meshes for FEA, the element qualities of the resulting meshes are an important part of the evaluation. Since
interactive editing is desirable, the use of the GPU to accelerate the mesh editing is also an interesting avenue
that is explored in this chapter.

For addressing the deformation-based editing of unstructured tetrahedral meshes, cage-based deformation
is an interesting candidate for unstructured tetrahedral mesh editing. Its deformation update scheme con-
sists of linear affine sums (cf. section 2.3), which is suitable for massively parallel GPUs. In addition, a lot of
advances in the past decade have significantly extended the facilities of cage-based deformation to provide
shape preserving and robust deformation [Str+24]. Moreover, the possibilities to quickly generate a good
cage for deformation control also improved in versatility and convenience. Although the cage-based deforma-
tion approach offers benefits over many well-established interactive deformation methods (cf. section 3.4),
this approach has rarely been applied for VP purposes. For this reason, an extensive investigation of the
possibilities of cage-based deformation in the field of 3D modeling can be helpful for finding out which meth-
ods can be applicable to shorten VP cycles with the cage-based editing of unstructured tetrahedral meshes.
Therefore, this chapter extensively evaluates the facilities of cage-based deformation of 3D models.

The evaluated methods have been implemented in three different tools:

• TEdit: This tools enables the modification of unstructured tetrahedral meshes based on face tags that
originate from CAD. After each modification a simulation feedback is triggered. For efficiency, a mas-
sively parallel FEM algorithm [Web+15] performs the numerical simulation.

• TetMeshInteract: This tool enables to quickly detect semantic features with a configurable detection
algorithm using the surface of the unstructured tetrahedral mesh.

• CageModeler: This toolset provides cage-based deformation using the relevant approaches. The
toolset is available at https://github.com/DanStroeter/CageModeler.

As interaction with the mesh typically relies on the boundary, section 6.1 presents the concept of face
groups that represent semantic features. Subsequently, section 6.2 presents editing operations on the basis
of these face-groups. A critical evaluation of these editing operations appears in section 6.3. To evaluate
the capabilities of different cage-based deformation approaches section 6.4 discusses and evaluates the ap-
proaches for cage-based deformation in the context of 3D models. Finally, section 6.5 summarizes the key
conclusions of this chapter.

6.1. Face Groups for Interactive Mesh Modification

Given an unstructured tetrahedral mesh, a face group represents a set of adjacent boundary faces for the
user to select with a single mouse click. For interactive mesh editing, face groups enable users to select parts
of the model with only few interactions. The selected face groups represent a semantic feature that the user
intends to modify. Editing operations are applied to the selected faces of the face groups. Figure 6.1 shows
the interaction with face groups in TEdit.

100

https://github.com/DanStroeter/CageModeler

Figure 6.1.:When the cursor hovers over a face group, a blue shaded region appears on the mesh to indicate a selectable
face group (left). A selected face group is colored green (right).

The concept of face groups generally applies to surface meshes, whereas unstructured tetrahedral meshes
include many interior faces. Consequently, an editing system needs to extract boundary faces from the input
mesh to construct face groups. Section 6.1.1 describes the extraction of faces associated with CAD surfaces.
For situations where these tags are unavailable, section 6.1.2 presents amassively parallel algorithm to extract
face groups from surface features in a parametrized manner.

6.1.1. Assigning Face Groups using Annotation from CAD

Virtual prototyping oftentimes starts in CAD, where several CAD faces typically constitute a continuous rep-
resentation of the model’s surface. For the extraction of face groups, it is practical to exploit that generating
volumetric meshes from CAD faces frequently follows a hierarchical scheme. Hierarchical mesh generation
from CAD surfaces can be (over-)simplified as follows:

1. Generate a surface mesh that forms an accurately enough representation of the model shape.

2. Tag surface polygons with the ids of CAD faces they originate from.

3. From the resulting surface mesh, generate a volumetric mesh with boundary faces tagged by the ids of
CAD faces.

One of the most frequently used mesh file formats used for maintaining and exchanging unstructured tetra-
hedral meshes is the MSH format [GR23]. The MSH format provides optional tag fields. Usually, the optional
tag field includes the identifier of the geometrical entity a mesh element belongs to. Hierarchical meshing
tools such as GMSH [GR09] enable to provide the generated mesh in MSH format tagging the boundary faces
with the CAD faces they belong to.

6.1.2. Extracting Face Groups from the Surface Geometry

If the data format of the mesh does not include face tags from CAD faces, the modeling application cannot
provide interactive editing with semantical face groups. In order to enable interactive editing in such a
situation, this thesis presents a method to quickly group boundary faces based on the surface geometry. As
this method extracts face groups from a boundary mesh, the term “face group extraction” denotes this method
in this thesis. The face group extraction is the result of a practical lab by González and Licheva [GL22] under
the supervision of the author of this PhD thesis.

The key idea of the face group detection is to analyze the surface curvature of a model and assign faces to
separate groups, if the curvature on the shared edge exceeds a user-specified ridge angle γr. As a result of the

101

user-guided parametrization, the user can generate the face groups, which are suitable for the user-intended
editing operations. For interactive run time performance, the face group detection performs calculations
in sequences of massively parallel passes over the surface mesh elements using the TCSR data structure
(cf. section 2.2.3). To ensure robustness, the face group extraction uses the robust singularity analysis of
the quadric metric tensor presented by Jiao [Jia06], which is amenable to massively parallel execution.
Nonetheless, the face group detection can be implemented with any method to analyze surface curvature,
though the method of choice should provide reasonable efficiency to provide interactivity.

The remainder of this section describes the overall method of the face group extraction. The fist step is to
classify boundary vertices into face, ridge and corner. For this purpose, one can either compare the normals
of surrounding boundary triangles as described in section 4.2 or classify the vertices using the quadric error
metric approach from Jiao [Jia06]. The implementation uses the method of Jiao [Jia06] as it enables clas-
sification based on user-defined angle thresholds, which allows for user-guided control of the resulting face
groups. The quadric metric tensor Av for a vertex v is assembled of weights and the normals of surrounding
surface triangles:

Av = N⊤
v WvNv, (6.1)

where Nv is composed of surrounding surface face normals and Wv is a diagonal matrix of weights for each
face. Let us suppose that Nv

t ∈ N denotes the number of surface faces surrounding v. The size of these
matrices can be expresses as Wv ∈ RNv

t×Nv
t , Nv ∈ RNv

t×3, and therefore Av ∈ R3×3. As the number of
available registers per thread is limited (cf. section 2.2.1), the implementation does not assemble Av using
eq. (6.1), but takes advantage of a rewritten form:

Av = n1 · w1 · n⊤
1 + n2 · w2 · n⊤

2 + . . .+ nNv
t
· wNv

t
· n⊤

Nv
t
,

wherewi and ni represent the weight and normal of the i-th face, respectively. This way, each thread allocates
a 3× 3 matrix and adds the respective normals multiplied by weights until Av is assembled.

As this thesis focuses on virtual prototyping, the calculation of weights follows the recommendation of
Jiao [Jia06] for applications in VP and sets wi to the angle at v to its i-th incident face. In order to classify
v, a singular value decomposition of Av is calculated [Jia06]. The implementation uses the Jacobi method
from the book of Press [Pre07], because Av is a real symmetric positive semi-definite matrix with real, non-
negative eigenvalues. The resulting Eigenvalues λ1, λ2 and λ3 and corresponding Eigenvectors e1, e2 and
e3 are ordered such that λ1 ≥ λ2 ≥ λ3. Subsequently, the classification of the vertices can be inferred from
ratios of Eigenvalues [Jia06]. This enables to classify vertices into the categories discussed in section 4.2:

• CORNER: It holds that λ3/λ1 ≥ χc or 360◦ −
∑︁Nv

t
i=1wi ≥ 90◦.

• RIDGE: It holds that λ2/λ1 ≥ χr or e⊤1 ni ≤ 0 for any i = 1, 2, . . . , Nv
t .

• FACE: None of the above conditions are satisfied.

The thresholds χc = 2 tan(γc/2)2 and χr = tan(γr/2)2 are calculated using the corner angle γc and the user-
specified ridge angle γr. As γc does not affect the classification into face groups, the face group extraction
constantly uses γc = 45◦. Conceptually, γc and γr are thresholds on the opening angle and the dihedral angle
of triangle normals, respectively. A small χr ≈ 0, i.e., γr ≈ 0◦, leads to virtually every vertex being classified
as a ridge vertex. Analogously, a large χr ≈ 1, i.e., γr ≈ 90◦, leads to virtually none of the vertices being
classified as ridge vertex. The face group extraction performs the vertex classification step in one massively
parallel pass over surface vertices. If the input is a tetrahedal mesh, the procedure in section 4.2 can be used
to extract the boundary, where the classification step is replaced with the eigenvalue-based scheme to allow
for configuration with an input ridge angle.

102

In order to determine the face groups on the basis of the classified vertices, a propagation algorithm is
used. To prepare for the propagation, the neighboring faces are determined by lookup of the shared edges.
The key idea is to initially assign each triangle a unique face group and propagate over shared edges, while
ridge edges are ignored. A ridge edge connects two vertices that are not classified as face vertices. As two
adjacent triangles can be coplanar, while the shared edge connects two ridge vertices, it is not sufficient to
define ridge edges only on the basis of classified types of their vertices. Therefore, an additional criterion for
a ridge edge is that the angle between the two triangles is larger than γr to ensure that the triangles are not
co-planar:

isRidgeEdge(v1, v2, t1, t2) = type(v1) ̸= FACE ∧ type(v2) ̸= FACE ∧ angle(t1, t2) > γr,

where v1 and v2 are the two vertices of the edge shared by triangles t1 and t2. Thus, in parallel over triangles,
the face group extraction checks whether each of the three triangle edges are ridge edges and stores the index
of the three adjacent triangles. This results in a triplet of integers for each triangle. If a triangle edge is not
a ridge edge, the respective integer is the index of the adjacent triangle. Otherwise, the respective integer
is set to −1 indicating that propagation at that edge is prohibited. In addition, the algorithm constructs a
marking array that identifies ridge edges with a marking value of 1. Non-ridge edges are identified with a
marking value of 0. The marking array allows to quickly extract the ridge edges using a stream compaction
(cf. section 2.2.2).

Figure 6.2.: Visualization of the face group id propagation on a chess bishop model.

The subsequent propagation phase determines the face groups. Initially, each triangle is assigned its own
unique face group that is associated with its index. Throughout propagation, each triangle writes its face
group id to its neighbors, but only if its own face group id is larger than the id of the neighbor. Consequently,
all the triangles of one face group eventually will be associated with the same id. Since writing beyond ridge
edges is prohibited, each face group is eventually represented as a group of triangles sharing the same id.
A visualization of the face group id propagation appears in fig. 6.2. One propagation pass processes all the
triangles of the surface mesh in parallel. The face group extraction performs propagation passes until no
change in the face group assignment occurs in one pass.

6.1.3. Finding Feature Edges between Face Groups

While the algorithm in section 6.1.2 determines ridge edges to extract face groups, it does not provide the
exact edges separating the extracted face groups, because the propagation is only restricted by closed loops
of ridge edges. However, for visualization it can be difficult for users to separate many face groups only by
color. Additionally, mesh editing needs to be restricted to the user-selected parts of the mesh. Thus, this

103

thesis includes as algorithm to extract the ridge edge loops that separate face groups and ignores the strings
of edges inside only one single face group.

The algorithm to determine the edge loops between face groups depends on the surface mesh of the model
and the marking of ridge edges calculated in section 6.1.2. In order to prepare for loop finding, a stream
compaction (cf. section 2.2.2) first extracts all the indices of ridge edges from the mesh as well as the tuples
of a ridge edge’s two adjacent face groups. Each tuple (g1, g2) of two face group indices g1 ∈ N and g2 ∈ N
is ordered internally so that g1 < g2. The algorithm keeps the exclusive prefix sum calculated during the
stream compaction for later lookup purposes. Subsequently, the algorithm sorts the edge indices by their
respective face group tuples. The parallel sort by key algorithm of the Thrust library [NVI23c] executes the
sort by tuples, where the following relationship applies:

(g1, g2) < (g′1, g
′
2) ⇐⇒ g1 < g′1 ∨ (g′1 ≥ g1 ∧ g2 < g′2).

After the sorting algorithm terminated, a parallel pass over the sorted entries establishes an integer array that
represents the permutation of sorted elements to invert the prior sorting operation. This enables to retrieve
the original indices of edge indices before the sorting operation so that the exclusive prefix sum can be used
again.

After the preparation, the first step of determining the feature edges is to calculate the number NG of dif-
ferent face group tuples in the sorted list. This number can be obtained by incrementing a counter, whenever
the sorted array of face group tuples exhibits different consecutive tuples. To calculate this counter value,
the algorithm initializes an array with a zero entry for each ridge edge and a parallel pass over the sorted
face group tuples sets the respective entry of a tuple to 1 if the consecutive face group tuple is different. An
exclusive prefix sum calculates NG. Subsequently, the feature edges identification allocates an integer array
of the size NG and fills it with the ridge edge indices where different consecutive face group tuples were
found using the exclusive prefix sum results. As some ridge edges may be adjacent to more than two ridge
edges, the next step checks in parallel if ridge edges include vertices that are endpoints of several feature
edges. For each edge this parallel pass retrieves all the edges connected to the edge vertices and uses the
prefix sum of ridge vertices and the inverse sorting order to obtain the face group tuples of adjacent ridge
edges. Whenever adjacent edges exhibit the same face group tuple, a counter is incremented. If any of the
adjacent ridge edges is associated with a different face group tuple, the ridge edge is marked to contain
an endpoint of a feature edge. With the analog steps for calculating the upper bound of feature edges, the
feature edge identification computes the upper bound of endpoints for feature edges and establishes an array
of index positions of edges containing endpoints.

Using the pre-calculated endpoints, a sequential depth first search determines the feature edges as lists of
consecutive edges separating the face groups. This depth first search iterates over the NG sequences of ridge
edges that are all associated with the same face group tuples. If a sequence of ridge edges is associated with
a face group tuple (g1, g2) with g1 = g2, then this sequence of ridge edges does not separate two distinct
face groups and is skipped. Otherwise, the depth first search extracts feature edges from the list of edges.
The key strategy is to use the previously recorded endpoints to infer the number of feature edges associated
with the sequence of ridge edges. If within a sequence of ridge edges there is only one single endpoint, the
sequence of edges forms a loop. In this situation, the depth search writes the sequence of consecutive edges
in a list that represents a feature edge. If a sequence of ridge vertices contains many (potentially duplicated
endpoints) the depth first search writes consecutive ridge edges for each endpoint to a list representing the
feature edges. As a result, the feature edges contain sequences of consecutive ridge edges that separate the
face groups.

104

6.2. Volumetric Mesh Editing Operations

In order to allow for quick model customization using only the volumetric mesh, this section presents two
volumetric mesh editing operations. These operations are volumetric hole closing and erosion. After each
editing operation, a new numerical simulation can be automatically executed to immediately present the im-
pact of the changes to the user. Both editing operations build upon the concept of face groups (cf. section 6.1)
to enable convenient user interaction. In order to achieve interactive editing times, this section presents mas-
sively parallel algorithms for the most run time expensive steps. The algorithm fir closing co-planar holes
appears in section 6.2.1 and section 6.2.2 presents the algorithm for erosion.

6.2.1. Volumetric Hole Filling

Mechanical parts often include holes, e.g., for mounting or weight relief, that users may want to remove in a
modification step. With the use of face groups, the user can select the inner lateral surface of the cylindrical
hole to-be-closed. As can be seen in fig. 6.3, the hole closing can then detect the boundaries of the face
group to perform a meshing steps that fills the hole. Beyond closing the hole at both ends of the cylinder
formed by the hole’s inner surface, the hole in the tetrahedral mesh must be filled volumetrically. Therefore,
the meshing of the hole extracts several PLCs (cf. section 2.1.2) and proceeds in a hierarchical order. First,
the meshing closes the hole surface using 2D constrained Delaunay meshing. Thereafter, the a 3D meshing
step fills the hole volumetrically using 3D constrained Delaunay meshing on the resulting PLC. To sketch the
procedure, the hole closing algorithm performs the following four steps:

1. Search the triangular mesh of the face groups representing the hole’ cylindrical lateral surface for
boundary loops

2. For each loop: Close the loop performing planar constrained meshing using Shewchuck’s Triangle
library [She96]

3. Fill the resulting manifold by volumetrically meshing it using TetGen [Si20]

4. Merge the resulting tetrahedral mesh with the tetrahedral mesh of the model

The experiments have revealed that sequential execution on the CPU provides sufficiently fast run times
for as quickly perceived responses. The number of triangles in the lateral surface of a cylindrical hole is
typically small enough such that parallelization is not expected to achieve a significant impact on the perceived
response time. In the case of a lateral surface mesh with many triangles, the tetrahedral meshing step
(step three) may be worth parallelizing, but no GPU-parallel constrained tetrahedral meshing algorithms are
available yet. Consequently, a sequential volumetric hole filling algorithm is used. Nonetheless, the use of
GPU-accelerated boundary extraction (see section 4.2) leads to a substantial speedup.

As user-friendly maintenance of face groups requires reasonable assignment of newly added boundary
faces to either persisting or new face groups, the hole filling algorithm checks if the newly added faces shall
be assigned to a surrounding face group or not. Due to the hierarchical nature of our hole closing algorithm,
which generates a surface mesh for each boundary loop individually, it is known which sets of newly added
boundary faces are potentially added to an existing face group. The algorithm iterates through the boundary
faces obtained by meshing each boundary loop and marks all the edges of the newly added surface triangles.
Another loop iterates through all previously existing boundary triangles and checks, if a triangle contains any
of the marked edges. If a triangle contains a marked edge, a list records the face group of the triangle. After
this loop, if the list contains only one face group, we add the triangles closing the boundary loop to this face
group. Otherwise, the newly added boundary triangles represent a new face group. Although parallelization

105

(a) (b)

(c) (d)
Figure 6.3.: Experiments for hole closing. The yellow rectangles indicate the area of the to-be-closed hole. Figure (a)
shows the selected hole on the “SimJEB 633” model and Figure (b) shows the results. Figure (c) shows the selected
hole of a mechanical part and (d) the resulting model.

of our face group assignment check algorithm is straightforward, the experiments did not reveal any situation
in which sequential execution of face group assignment was the bottleneck.

6.2.2. Volumetric Mesh Erosion

The erosion operation can be used to remove parts of the model. See fig. 6.5 for examples of model cus-
tomization through erosion. An overview on the steps of mesh erosion appears in fig. 6.4. The erosion
method receives a set of boundary vertices belonging to the user selected surface triangles as an input. The
implementation uses the TCSR mesh data structure (cf. section 2.2.3), as it enables massively parallel com-
putation of connectivity relationships with efficient memory use. A marking identifies the remaining part of
the mesh after erosion by marking tetrahedra or vertices as 0 or 1, denoted as to-be-removed and remaining,
respectively. Initially, every tetrahedron of the mesh is unmarked. The first step of the erosion method is to
perform a parallel pass over the input boundary vertices and mark every tetrahedron including any of the
input vertices as to-be-removed. While users intend to thin down or remove a part of the model and expect
erosion to return a consistent mesh, direct removal of every marked tetrahedron can leave “islands” of tetra-
hedra that are not connected to the rest of the mesh. In order to prevent this issue, a flood fill method is used
to identify the to-be-removed parts of the mesh.

The flood fill propagates the remaining marking through the mesh starting from the unselected surface
triangles performing parallel passes on the GPU. To initiate the propagation, a parallel pass over boundary
triangles marks the tetrahedron associated with each boundary triangle. If the tetrahedron is not marked as

106

erode smooth optimize

repeat

smoothed

Figure 6.4.: Overview on the steps of the erosion method: First the user selects boundary triangles of the mesh (green).
Then a part of the mesh is eroded. Alternating steps of smoothing and element quality optimization produce a smoothed
surface.

to-be-removed already, it is marked as remaining. Subsequently, a flood fill propagates the remaining marking
by advancing into the interior of the mesh. To this end, the propagation checks the tetrahedra sharing an
interior face with a currently unmarked tetrahedron in parallel on the GPU. If an unmarked tetrahedron
is connected to a tetrahedron marked as remaining, the propagation marks it as remaining as well. The
propagation performs several parallel passes advancing the remaining part until no further tetrahedron can
be marked as remaining. Every tetrahedron without a marking is not connected to the mesh and is marked
as to-be-removed. With the use of the resulting marking, the mesh erosion method writes the remaining
tetrahedra and vertices to a buffer using Wald’s [Wal21] GPU-parallel re-indexing method.

After the user-specified part of the mesh is removed, a coarse “zigzag” surface appears at the surface newly
introduced due to erosion. However, users expect a smooth surface without protruding triangles. Therefore,
the erosion not only removes parts of the mesh but also involves GPU-accelerated surface smoothing. The
smoothing of the new surface uses the discrete Laplace-Beltrami operator [Nea+06], as it is efficient and
provides a unique solution for a compact surface [SCV14]. As simultaneous update of every vertex is more
efficient on the GPU than updating every vertex individually, the smoothing relocates all surface vertices
simultaneously.

The smoothing pass first calculates the Laplace-Beltrami gradient for each surface vertex in parallel. Since
the mesh editing algorithms aim to produce models suitable for the FEM, they must prevent element in-
versions. Similar to the vertex relocation in section 4.3.1, a binary search finds a step size λ such that
relocating the vertices along their gradients does not produce any inverted tetrahedra. As soon as such a λ is
determined, parallel Laplace-Beltrami smoothing relocates every vertex of the new surface. After a surface
smoothing step, the element quality of boundary tetrahedra typically deteriorates. In order to improve the
element quality of the tetrahedral mesh and enable successive smoothing passes without introducing inverted
elements, an optimization step improves mesh quality after each surface smoothing step. For fast run times,
the GPU-parallel mesh optimization algorithm presented in chapter 4 is used. For user control of workloads,
smoothness and quality, the user is able to specify the number of alternating passes of smoothing and element
quality optimization.

6.3. Evaluation of Tetrahedral Mesh Editing based on Face Groups

This section presents critical evaluation of the proposed methods to edit unstructured tetrahedral meshes on
the basis of face groups. Section 6.3.1 evaluates the proposed face groups detection algorithm. An evaluation
of the proposed hole closing algorithm appears in section 6.3.2. Section 6.3.3 evaluates the proposed hole
erosion algorithm.

107

(a) (b)

(c) (d)
Figure 6.5.: Experiments for erosion. The yellow rectangles indicate the to-be-eroded parts of the model. Figure (a)
shows the selected surfaces of a bracket and (b) shows the resulting model. Figure (c) shows the selected strut of the
“SimJEB 220” model and (d) shows the results.

6.3.1. Evaluation of Face Group Detection

Throughout the research for this PhD thesis, many students and colleagues applied the face group detection
algorithm to a multitude of meshes. The evaluation discusses the observations of the evaluation on 12 un-
structured tetrahedral meshes with different geometric features. These meshes and the resulting face groups
(separated by color) can be seen in fig. 6.6. The specifics about these meshes, input setups such as γr, and
the run times appear in table 6.1.

With setting a suitable ridge angle γr, the face group detection is able to organize many boundary triangles
into face groups. For meshes with surface features separated by ridges, the proposed detection algorithm
yields meaningful face groups that can be associated with semantic features such as a drill hole. The algo-
rithm’s applicability is not limited to meshes with only flat boundary features, e.g., Fan guard and Shutter,
but can also be used for meshes approximating smooth curves, e.g., Vase and Bishop. Thus, the user only
needs to find a suitable ridge angle γr, which can admittedly require several executions, if the user is not
aware of the boundary curvature specifics of the model at hand. This also means that smooth curves should
be approximated by a reasonable number of boundary triangles for achieving practical results with the pro-
posed face group detection algorithm. Since the entire partitioning of the surface into face groups depends
on one homogeneous ridge angle γr, the face group detection is not adaptive to the local surface curvature.
Therefore, it might happen that the intended face groups cannot be determined with a global ridge angle.
Nonetheless, the user can re-run the face group detection, whenever the current face groups do not allow
for specifying the current editing operation in mind. In addition, the user can select several face groups and
apply the editing operation to the selected groups, as if these groups were one single face group.

108

Connector Bishop Cylinder Shutter

Die Spire Thingi Fan guard

Lid Vase Spoon World
Figure 6.6.: For each tetrahedral mesh boundary, the resulting face groups are separated by colors.

As the face group detection is supposed to be used for interactive editing, the efficiency of the algorithm is an
important property. In order to evaluate the efficiency, the evaluation includes several run timemeasurements
for unstructured tetrahedral meshes with mesh sizes ranging from 2 k to more than 1Mof elements. As can be
seen in table 6.1, the face group detection only requires a fewmilliseconds for all the evaluated models, which
is acceptable for a user-configured pre-process. For most models, the run times do not admit a frame rate of 30
frames per second. Thus, the face group detection does not achieve real-time performance for large models.
However, in the context of a user-configured process, it is sufficient to enable presentation of results in below
one second [New94], though real-time performance of face group detection can be interesting for dynamically
varying geometry in a simulation. High-resolution models tend to demand longer run times, though it is not
generally true that a tetrahedral mesh with more elements leads to slower run time performance. As the run
time of the connectivity lookup of the TCSR mesh data structure (cf. section 2.2.3) scales with the complexity
of the mesh, it is reasonable that meshes with more elements tend to require longer run times. Another factor
that influence the run time performance, is the number of boundary triangles in a tetrahedral mesh. The more
boundary triangles the mesh includes, the more boundary facets need to be extracted and classified by the

109

Table 6.1.: Run times of face group detection on an NVIDIA RTX 3090 GPU for different tetrahedral meshes ordered
by NT.

Input Run time (ms)

Name NT NV N∂T γr Total Boundary
extraction

Face groups
detection

Feature edges
detection

Connector 2086 707 1286 15◦ 37 25 8 3

Lid 4332 1346 2244 20◦ 37 25 5 7

Spoon 7849 2765 5520 20◦ 30 27 2 1

Thingi 15 649 3939 4692 15◦ 34 23 8 3

Shutter 17 974 4782 6306 25◦ 39 27 7 5

Vase 20 865 6771 12 860 25◦ 45 28 12 4

Fan guard 82 902 19 674 24 440 20◦ 58 28 19 11

Cylinder 172 441 34 145 25 976 15◦ 39 30 6 3

Bishop 177 744 32 336 16 310 25◦ 43 30 10 3

Die 232 767 44 676 30 136 15◦ 37 32 11 4

Spire 247 476 47 065 31 924 2◦ 57 31 17 9

World 1 786 620 367 573 335 564 17◦ 133 63 44 26

boundary extraction procedure. Therefore, the run time of boundary extraction increases with the number
of tetrahedral elements NT and the number of boundary triangles N∂T. For many meshes, the boundary
extraction is the step with the largest portion of the total run time for face group detection.

The detection of face groups and feature edges benefit from the pre-calculated connectivity lookups in the
boundary extraction step. Therefore, these two steps typically exhibit faster run times than the boundary
extraction. As these steps work on the mesh surface, the number of boundary triangles is an important
factor for the run time performance. However, the workload for extracting face groups and feature edges
also depends on the complexity and number of surface features. For instance, the surface of the Fan guard
model consist of many face groups, which leads to significantly longer run times for extracting face groups
and feature edges compared to simpler models such as the Cylinder. Additionally, face groups that include
many boundary triangles require more propagation steps for face group detection, which increases run times.
As the extraction of feature edges needs to perform sequential depth first search, the number of separate face
groups significantly influences the run time of this step, as can be seen for meshes with a very large number
of face groups such as the World. However, the extraction of feature edges is typically the cheapest step,
because most edges on the mesh surface are filtered out by the classification steps before.

6.3.2. Run Time Performance and Element Quality for Hole Closing

In order to critically review the capabilities of the hole closing operation in VP, the evaluation covers run
time performance and element qualities of resulting meshes. As it is typically most promising to accelerate
the bottleneck of a process, the evaluation of the hole closing operation begins with an analysis of bottle-
necks. For this purpose, an evaluation of the relative run times for each step of the sequential hole closing
operation reveals overheads. The sequential hole closing operation can exhibit slow run time performance, if
the boundary extraction runs sequentially on the CPU. This is especially an issue, if boundary triangles shall
be mapped to face tags originating from CAD, because the boundary needs to be extracted and mapped,

110

whenever the shape of the volumetric mesh changes. For instance, compare the relative run times shown in
fig. 6.7 for purely sequential hole closing operation shown in fig. 6.3 (a) and (b).

0 10 20 30 40 50 60 70 80 90 100

Surface extraction

Map face groups

Merging

3D meshing

2D meshing

Loop finding

Percentage of overall runtime

Figure 6.7.: Relative run times of the individual steps of the hole closing operation in fig. 6.3 (a) and (b). The diagram
shows that surface mesh extraction is the bottleneck.

Therefore, fast boundary extraction is a necessity for achieving fast editing of volumetric meshes. If the face
groups are loaded from face tags originating fromCAD, then it is possible to quickly extract the boundary faces
with the algorithm from section 4.2. For the examples in fig. 6.3, the hole close operation can be accelerated
significantly (see fig. 6.8). If the face groups are detected using the algorithm in section 6.1.2, then the
massively parallel boundary extraction from section 4.2 is applied as a part of the face group determination.

0 2 4 6 8 10 12

SimJEB 633

Part

Speedup

Speedup of hole close compared to using sequential boundary extraction [Str+21]

Figure 6.8.: This figure shows the speedups due to the application of massively parallel boundary extraction compared
to the hole closing algorithm executed sequentially on the CPU [Str+21]. The evaluation machine is equipped with
an Intel i7-3930K CPU and an NVIDIA RTX 3090 GPU. The models SimJEB 633 and Part appear in fig. 6.3 (a) and (c),
respectively.

As the edited meshes should be of sufficient element quality for numerical simulation, the evaluation in-
volves a comparison of tetrahedral element qualities before and after hole close. Two examples are the Lid
and the Air manifold that appear in fig. 6.9. In order to evaluate if the element quality is suitable, the eval-
uation determines the worst element quality in the mesh and the quantiles for the worst 5% of elements.
Element quality is provided in terms of the dihedral angle ϕ and the scale-invariant AMIPS conformal energy
DAMIPS (cf. section 3.2.2). Typically, the resulting mesh after closing a coplanar hole is of sufficient element
quality for numerical simulation. The hole closing operation adds new tetrahedra to the mesh that fill the lat-
eral surface of the selected hole with a planar boundary. As an enclosing PLC is ensured by prior 2D meshing,
a clean volumetric closure of the hole is produced. The volumetric Delaunay meshing step (cf. section 2.1.2)

111

Lid Lid with closed hole
ϕmin = 10.06 ϕ0.05 = 36.45 ϕmin = 7.54 ϕ0.05 = 35.62
DAMIPS

max = 7.79 DAMIPS
0.95 = 5.39 DAMIPS

max = 10.95 DAMIPS
0.95 = 5.43

Air manifold Air manifold with closed hole
ϕmin = 6.19 ϕ0.05 = 41.18 ϕmin = 6.19 ϕ0.05 = 41.15
DAMIPS

max = 13.93 DAMIPS
0.95 = 4.19 DAMIPS

max = 13.93 DAMIPS
0.95 = 4.20

Figure 6.9.: Resulting boundaries and tetrahedral element qualities for the hole close operation applied to the Lid (top)
and the Air manifold models.

can then be executed on the resulting PLC to ensure the absence of inverted elements. As Tetgen enables to
preserve the input PLC triangles, the produced tetrahedralization’s boundary triangles are matching to the
lateral surface of the cylindrical hole, which provides a valid tetrahedral mesh. However, the meshing step
can add elements of lower quality than the input elements to the mesh, which can be seen for example with
the Lid mesh. Thus, the hole close operation can potentially degrade element quality. Typically, the degrada-
tion of element quality does not interfere the numerical simulation, because the meshing tools optimize for
element quality. Otherwise, one can perform quick optimization, e.g., using the massively parallel algorithms
in chapter 4 or section 5.2.

As an additional evaluation result, the run time performance of the hole close operation typically enables
to produce the edited mesh in a couple of milliseconds. The run times and mesh sizes for the experiments in
fig. 6.9 appear in table 6.2. For small meshes such as the Lid, the time for meshing the hole part is oftentimes
lower than the time for extracting the boundary and detecting new face groups. For larger meshes such as
the Air manifold, the time for meshing is predominantly governed by the number of triangles Nlateral. The
volume of the hole, i.e. the target resolution of the tetrahedral elements, is also a factor that governs the
run time of meshing. Since the hole close operation is a quick modification of a mock up, the meshers are
not configured to additionally refine the mesh of the lateral surface after creating a tetrahedralization of
good quality. Additional refinement can complicate the merging step with the input mesh. If the simulation
accuracy demands a finer resolution for more precision, mesh adaptation tools such as the tool discussed in

112

section 5.3 can be applied after hole closing. The run time for re-detecting the face groups after the hole close
operations is oftentimes longer than the time for hole meshing, when it comes to high-resolution meshes such
as the Air manifold. This is an expected observation, because TCSR mesh needs to re-compute connectivity
information and the the face group detection extracts and classifies the newly created surface.

Input Run time (ms)

Name NT NV Nlateral Total Hole close Face groups
determination

Lid 4332 1346 270 36 22 14

Air manifold 495 850 93 830 3132 292 74 218

Table 6.2.: Run times on an NVIDIA RTX 3090 GPU and an Intel i9-11900K CPU for hole close operations shown in
fig. 6.9.

6.3.3. Run Time Performance and Element Quality for Erosion

In order to evaluate the applicability of the erosion algorithm in section 6.2.2, the evaluation investigates its
run time performance and the element quality of the resulting meshes. As the use of a massively parallel
algorithm is supposed to accelerate the erosion operation, the evaluation compares the sequential erosion
variant from the paper introducing TEdit [Str+21] to the massively parallel variant [Str+23]. Figure 6.10
plots the speedup for the Bracket and SimJEB 220 models shown in fig. 6.5. The evaluation reveals significant
speedups of 4.55× and 5.52×. Thus, the use of massively parallel flood fill, smoothing andmesh optimization
(see chapter 4) leads to significantly faster run time performance.

0 1 2 3 4 5 6

Bracket

SimJEB 220

Speedup

Speedup compared to sequential erosion [Str+21]

Figure 6.10.: This figure shows the speedups due to the application of massively parallel boundary extraction compared
to the erosion algorithm executed sequentially on the CPU [Str+21]. The evaluation machine is equipped with an Intel
i7-3930K CPU and an NVIDIA RTX 3090 GPU. The models Bracket and SimJEB 220 appear in fig. 6.5 (a) and (c),
respectively.

As a typical example, the evaluation shows the run time and element qualities for the erosion of the bracket
in fig. 6.5 (a) and (b). Since the number of iterations for surface smoothing and element quality optimiza-
tion has a substantial impact on the results, the evaluation presents the results for performing none to six
iterations. Table 6.3 presents the medians of the measured run times and the resulting element qualities.

113

Element quality Run time (ms)

Iterations ϕmin ϕ0.05 DAMIPS
max DAMIPS

0.95 Total Connectivity
lookup

Generate
new mesh

Smooth &
optimize

None 11.21 37.41 8.34 4.68 175 92 83 0

1 13.81 41.43 8.17 4.11 282 92 83 107

2 8.94 41.43 11.15 4.12 332 92 83 157

3 5.61 41.42 18.49 4.12 378 92 83 203

4 3.78 41.43 28.68 4.12 422 92 83 247

5 2.68 41.41 35.86 4.13 484 92 83 309

6 1.51 41.40 58.51 4.13 511 92 83 336

Table 6.3.: Element qualities and run times for varying iteration counts of smoothing and quality optimization for
eroding the bracket in fig. 6.5 (a) and (b). The tetrahedral mesh of the bracket consists of NT = 108k tetrahedra and
NV = 31k vertices. For run time measurements, the median run times of several executions have been determined. The
evaluation machine is equipped with an NVIDIA RTX 3090 GPU and an Intel i9-11900K CPU.

Eroding the selected parts without smoothing the resulting surface exhibits a fast run time performance
but leaves a coarse surface. Performing one smoothing iteration already increases the run time significantly.
The mesh quality is significantly improved, because the mesh optimization algorithm in chapter 4 improves
the quality of every element in the mesh and the smoothing, which counteracts the degradation of shape
quality due to smoothing. After performing a second iteration of smoothing and element quality optimiza-
tion, the element quality is worse than the input, while the element quality still is sufficient for numerical
simulations. The performance of the second iteration exhibits only half the run time compared to the first
iteration. This observation is expected, because smoothing only changes a small subset of vertices, while the
remaining vertices still reside in a local minimum. Thus, the second optimization iteration exhibits faster
convergence. For each additional smoothing iteration, the mesh quality further degrades and the run time
further increases. Until after six iterations, the mesh quality has substantially degraded but still allows for
numerical simulation with the simulation algorithm of use, as our experiments revealed. The performance
for erosion with six iterations of smoothing and element quality optimization exhibits a run time of 551ms,
which is still a sufficient time for interactive editing. Thus, the erosion scheme exhibits sufficient results for
use cases like presented in fig. 6.5.

6.4. Evaluating the Capabilities of Cage-based Deformation

The previous section 6.3 investigated the editing of face group-based mesh editing, which is intended for me-
chanical parts. The surface of a mechanical part frequently includes sharp features. The face group detection
from section 6.1.2 can take advantage of the sharp features to obtain a meaningful separation of the mesh.
However, important VP applications such as 3D printing [Bad+16; Pop+20] or shape optimization [PTA20]
involve geometries with smooth and organic-like surfaces. As these geometries oftentimes include semantic
features that are not separated by sharp changes in curvature, which complicates the usage of face groups
for mesh editing. Editing geometries with smooth and organic-like surfaces oftentimes requires the defor-
mation of the shape with a smooth deformation approach. Therefore, this chapter evaluates the capabilities
of cage-based deformation (cf. section 2.3), in order to investigate a mesh editing approach for smooth and
organic-like geometries.

Many advances in the past decade have improved the capabilities of cage-based deformation. A survey
paper [Str+24] about these advances has been published and includes many of the following evaluations.

114

In order to evaluate the advances of cage coordinate types, the CageModeler tool set implements the most
relevant coordinate types and provides an interactive application for cage-based deformation. In addition,
CageModeler allows for cage-based deformation of unstructured tetrahedral meshes to support the shortening
of VP cycles. In the light of VP, especially important are the advances in cage generation (see section 6.4.1),
local deformation control (see section 6.4.2), freedom of cage connectivity (see section 6.4.3), and preserva-
tion of volume as well as shape (see section 6.4.4). Since cage-based deformation enables the use of massively
parallel GPUs for calculating the deformed geometry (see section 6.4.5), it provides efficient mesh editing.
For VP applications, the use of cage-based deformation can extend the capabilities of mesh editing in two
ways:

• deform an unstructured tetrahedral mesh so that the development team saves the overhead of changing
CAD geometries and re-meshing, and

• obtain smooth deformation of organic-like shapes, which can be useful for artistic designs or shape
optimization applications.

As the cage-based deformation of unstructured tetrahedral meshes for VP purposes depends on mesh qual-
ity, the evaluation involves an investigation of tetrahedral element quality in section 6.4.6. Finally, sec-
tion 6.4.7 presents a comparison of the overall coordinate types.

6.4.1. Comparing Cage Generation Methods

The evaluation discusses the methods for cage generation and presents a systematic comparison in table 6.4.
The first automatic cage generation methods fall into the offset surface simplification category. Progressively
collapsing edges is inherently a sequential procedure, which imposes low run time performance for cage
generation. Self-intersections are either resolved within the local topological vicinity or globally across C.
The avoidance of global self-intersections or intersections withM requires intersection tests for all cage faces
[DLM11] or the application of sophisticated offset surface handling [SVJ15], which significantly reduces run
time performance. Thus, these methods are not suitable for applications, where users expect a cage imme-
diately after loading a high-resolution model. Especially for high-resolution models, situations may occur,
where the simplification scheme is not able to decimate the fine-grained details of the offset surface leading
to robustness issues [CB17]. Nonetheless, offset surface simplification methods are successful in achieving a
low number of control vertices leading to improved run time performance at bind time. Consequently, cage
simplification is an important optimization step in many current cage generation methods.

The voxelization-based approaches offer simple and efficiently parallelizable methods for cage generation.
Self-intersections and intersections withM can be avoided easily, as the cage is formed from non-intersecting
voxel faces respecting an offset distance toM. Without post-optimization the resulting cages are even glob-
ally free of self-intersections. Users can control the resolution of the cage by specifying the voxel size. As it is
not intuitively predictable which voxel size leads to the intended results, users typically need to run the cage
generation method multiple times to obtain a suitable cage. Additionally, the majority of the fully automatic
methods only allow for a homogeneous voxel size, whereas some details might need finer sampling. Thus,
voxelization-based methods excel at quick and robust cage-generation but lack intuitive control.

The template-based methods are intended specifically for reusing skinning configurations across several
animated characters. The key advantage of template-based methods is that they assist users in posing the
model, because users only need to perform minor posing for the motion details not covered by the template.
Template-based methods come with the drawback that users require a large library to find similar charac-
ters with suitable templates. Moreover, template-based methods inherently depend on a skeleton for cage
generation. Cage generation constructs an offset surface along the skeleton curve, which is prone to self-
intersections, unless the methods of Yang et al. [Yan+12] are applied. For the typical scenarios of VP, the

115

Table 6.4.: Comparison of cage generation methods ordered by category (top to bottom: offset surfaces simplification,
voxelization-based, template-based, and interactive) and year of publication. Being conservative expresses the ability
to generate C not intersecting withM.

method no self-intersections conservative tightness symmetry comment

[San+00] Local 8 8 8 Basic building block for
cage generation

[SOS04] Resolution-dependent Resolution-dependent 4 8 Relies on iso-surfaces

[BWG09] Local 4 4 8 Intended for deformation transfer

[DLM11] Global Vertices of C only 4 8 Features post-hoc cage repair

[XZG13] Local Vertices of C only 4 8 Semantic mapping

[SVJ15] Global if the input
has no self-intersections 4 4 8 Generates a sequence

of nested cages

[XLG09] Global w/o smoothing
local with smoothing Vertices of C only 4 8 Smooth and tightly

fitting cages

[Nes+09] Global 4 8 8 Intended for linear
elasticity deformable objects

[XLG11] Global w/o improvement
local with improvement 4 4 8 Quick generation of coarse

cages for complex models

[XLX15] Global w/o collapsing
local with collapsing 4 4 8 Provides a high-quality cage

for a suitable voxel size

[Ju+08] Local 4 4 8 Usability depends on a
large template library

[Yan+12] Global if input
is of genus 0 4 4 8 Intended for muscle design

[CF14] Local 4 4 8 Generates a sequence of
cages from skeletons

[LD17] Local due to using
unbounded cut slides 4 4 4 Expressive interaction

through user-defined cuts

[CB17] Global 4 4 4 Highly efficient and robust

[Cas+19] Global for a sufficient
number of bending nodes 4 4 4 Generates a cage for a skeleton

by bending node control

template-based approaches are not useful, because skeletons are not a common data structure for engineer-
ing design. Thus, engineers would have to create a suitable skeleton in the first place, which is an undesirable
overhead. An exception is, when the prototype is effectively a character model that resembles typical char-
acters for animation applications. In such a case, template libraries like the one in Adobe’s Mixamo [Ado24]
can be used.

Since the cages generated by automated methods typically need manual adjustment to be suitable for
the intended deformation, the interactive cage generation methods are most useful. Especially for VP use
cases, the engineers can specify the semantic parts of a model that they intend to edit. This provides them
cages adapted to the intended deformation task and reduces the overhead of adjustment of cages. While the
fully automatic methods typically do not guarantee to provide symmetrically structured cages for symmetric
features, many interactive methods provide symmetric cages. The methods by Chen and Feng [CF14] and
Casti et al. [Cas+19] additionally depend on a skeleton, which renders them inapt for most VP scenarios.
Among the interactive methods, Le and Deng [LD17] and Casti et al. [Cas+19] provide the most fine-grained
user control of the cage generation. As Calderon and Boubekeur [CB17] offer a heterogeneous voxel size

116

that can be interactively controlled, their method benefits from the efficiency and robustness of parallel
voxelization.

6.4.2. Locality of Coordinate Types

chess bishop MVC MLC HC BBW LBC (τ̂(x) = 1)

0 0.01 0.02 0.03 0.05 0.09 0.15 0.24 0.39 0.63 1∑︁
red vertices λ(x)

Figure 6.11.: Visualization of the local influence of red control vertices for different coordinate types with a logarith-
mically scaled color map.

The use of cage-based deformation in VP requires protecting the global shape of the model when deforming
specific local features of a prototype. In addition, the influence of each cage vertex should be local for intuitive
deformation control. Thus, the evaluation of coordinate types includes the locality, i.e., the local influence,
of cage vertices. For this evaluation, the CageModeler tool set enables to plot the local influence of a set of
cage vertices. Prototypical for many experiments, fig. 6.11 plots the local influence of various GBC types for
a selected set of control vertices. Generally, all the coordinate types for cage-based deformation provide local
deformation but the degree of the locality highly varies across coordinate types.

MVC provide high influence near the control vertices, while the GBC functions decay only slowly in themore
distant regions. The probability-based coordinates such as MLC are less local and decay slower than MVC.
EMC (cf. section 3.6.2) exhibit the most local deformation control. HC are more local than MVC. A significant
increase of locality is achieved using BBW for cage-based deformation. The use of LBC (with τ̂(x) = 1)
inherently provides themost local set of GBC. Our experiments confirm that evenmore local GBC are obtained
by setting τ̂ to a monotonically increasing function. The locality of coordinates with normal control is more
difficult to plot, because face normals and stretch factors also influence the locality of deformation. Typically,
these coordinates provide less locality than the other coordinate types.

6.4.3. Cage Connectivity Support of Coordinate Types

As quad-layouts are more common in industry, many applications use quads for cages. Due to the frequent
use of VP for industrial applications, the support of quad-layouts for shape deformation is important in VP
processes. A cage needs to be triangulated, if the coordinate type only supports triangles. However, de-
forming a model with a triangulated cage can lead to artifacts (see fig. 6.12). Instead of triangulating cage
polygons, one should use suitable coordinates to avoid artifacts in the deformed geometry.

117

undeformed MVC QMVC GC QGC
Figure 6.12.: Cage triangulation can lead to artifacts. The use of tri-quad enabled coordinates such as QGC resolves
this issue.

The probability-based coordinate types conceptionally support pointwise evaluation for arbitrary poly-
gon cages, while MLC has only been evaluated for triangle cages up to now. Local deformation for planar
polygon cages can be obtained with the use of HC, though the numerical solver of use needs to provide an im-
plementation for the polygon type of the cage. Considering that the most commonly used solvers for HC are
implemented for triangular cages, users cannot easily benefit from the support of arbitrary planar polygons.
Users can easily deform models with quad or tri-quad cages using QMVC or QGC and benefit from simple
and efficient pointwise evaluation. An advantage of QGC extrapolation capabilities, which enable users to
only wrap the model parts of interest with cages while each cage still deforms the exterior parts.

6.4.4. Shape Preservation of Coordinate Types

As users typically wish to preserve surface features, cage-based deformation should avoid significant distor-
tion of surface features. However, large deformation can lead to unintended shape distortion. Especially in
VP processes the preservation of volume and shape under large deformation is important to avoid unintended
artifacts in the geometry of the prototype. Thus, the evaluation discusses the ability of different coordinate
types to preserve the input shape under large deformation. Figure 6.13 presents the resulting geometries by
substantially deforming an Ogre model.

The application of simple MVC to large deformation can impose sharp artifacts, because MVC is prone to
inflating the volume more at the parts near the cage vertices. This can lead to asymmetric shapes such as the
chest of the Ogre and sharp bumps such as the distortion at the Ogre’s wrist and shoulder. Since the locality of
MVC is governed by the euclidean distance between a point x ∈ Ω and a cage vertex, the occurrence of these
artifacts is difficult to avoid. Due to their increased locality, the EMC suffer from the same problem. Significant
artifacts are observed with the use of BBW, whereas one can easily preserve certain areas by incorporating
an additional energy term, e.g., preserving the Ogre’s right wrist. Among the EMC, the application of LBC
seems to most reliably prevent artifacts, because their calculation effectively minimizes total variation and
the locality is controlled by geodesic distances.

Deformation using MLC provides good shape awareness in the interior of the cage, which results in good
volume preservation. For instance, see the Ogre’s right arm after deformation with MLC. However, the
probability-based GBC also incur artifacts especially at the regions close to the cage boundary. The best
feature and volume preservation is provided by the cage coordinates with normal control, because they de-
form the model considering the shape and scaling of cage faces besides the cage vertex positions. As a result,
coordinates with normal control better avoid the introduction of asymmetries and sharp features (see the
Ogre’s chest and shoulder). While GC provide good feature preservation in general, improved control of

118

undeformed MVC HC BBW

LBC (τ̂(x) = x2) MLC GC SC (ν = 0.1)
Figure 6.13.: Comparison of the results of large deformation of an Ogre model using different coordinate types.

volume and shape preservation can be achieved using SC. Cage deformation using SC can restrict the volume
inflation of the model (see the Ogre’s right hand). The only drawback of coordinates with normal control
is that after large deformation the cage potentially intersects the model. In such a situation, the influence
of the cage on the model is not as intuitive and the user needs to gauge which cage vertices to relocate to
achieve the intended deformation.

6.4.5. Computational Cost for Coordinate Computation

The coordinate types for cage-based deformation differ in their computational overheads at bind time. The
EMC impose the most pre-calculation demands. One needs to obtain a sufficient embedding EC (see sec-
tion 3.5.6) to initiate the calculation of coordinates. Additionally, a numerical scheme is required to calculate
the coordinates, which typically cannot be trivially prallelized. As a result, the calculation of high quality
EMC such as BBW or LBC can impose low run time performance. For instance, the calculation of BBW or LBC
for an EC with over one million tetrahedra took several days on an Intel i9-11900K CPU and an NVIDIA RTX
3090 GPU. Thus, it is advised to offload the calculation of EMC on a remote machine and save the coordinates
for later use.

The other coordinate types can be calculated efficiently for high-resolution models in a couple of seconds
or even milliseconds. The actual run time performance depends on the implementation. Especially, the GBC
with explicit formulas and the coordinates with normal control admit efficient parallelization on massively
parallel GPUs. The probability-based coordinates require an additional numerical optimization step that
can be performed efficiently. After coordinate computation, the deformation update either requires only the
evaluation of eq. (2.16) or the additional evaluation of an affine sum of cage face normals and the computation
of stretch factors. Each of these schemes to calculate the deformed mesh can be implemented efficiently for

119

massively parallel processing so that fast deformation update is achieved for high-resolution models.

6.4.6. Element Quality of Deformed Tetrahedral Meshes using Cage-based Deformation

As numerical simulation for VP purposes requires sufficient element quality, we evaluate the preservation of
element quality using dihedral angles ϕ and AMIPS (cf. section 3.2.2). While fast optimization algorithms like
massively parallel harmonic mesh optimization (cf. chapter 4 and section 5.2) can improve element quality
after deformation, this evaluation investigates if shape quality of tetrahedral elements can be preserved by
cage-based deformation. In order to present a prototypical example for VP with many rounded and sharp
features, the evaluation scenario covers themodeling of a door handle, where a flat handle shall be customized
to be rounded. In the scenario, the engineer uses either a triangular or a quadrilateral cage for deformation
control and relocates control vertices along the middle of the handle in order to create a rounded handle.

Undeformed QMVC GC

ϕmin = 14.60 ϕ0.05 = 45.19 ϕmin = 9.79 ϕ0.05 = 44.20 ϕmin = 11.63 ϕ0.05 = 44.82
DAMIPS

max = 7.48 DAMIPS
0.95 = 3.95 vmin > 0 DAMIPS

max = 10.65 DAMIPS
0.95 = 4.13 vmin > 0 DAMIPS

max = 8.46 DAMIPS
0.95 = 3.99 vmin > 0

MLC QGC SC (ν = 0.1)

ϕmin = 8.09 ϕ0.05 = 43.86 ϕmin = 12.72 ϕ0.05 = 44.84 ϕmin = 9.90 ϕ0.05 = 43.90
DAMIPS

max = 12.83 DAMIPS
0.95 = 4.21 vmin > 0 DAMIPS

max = 7.99 DAMIPS
0.95 = 3.99 vmin > 0 DAMIPS

max = 11.83 DAMIPS
0.95 = 4.15 vmin > 0

Figure 6.14.: Deformed meshes and element qualities for GC and QGC. For element qualities, the figure provides
maximal (worst) AMIPS DAMIPS

max , the 95-percentile of AMIPS DAMIPS
0.95 , minimal dihedral angle ϕmin, the 5-percentile of

dihedral angles ϕ0.05 and the sign of the minimal volume (absence of inversions).

As EMC need special investigation due to their dependency on an embedding, the evaluation first investi-
gates the mesh quality using the other coordinate types. Figure 6.14 shows the results for the prototypical
door handle model, while many models have been evaluated. Like many tasks in geometry modeling, the
deformation of the door handle should preserve the symmetry of the surface features. For this reason, the
evaluation uses a quad cage, if it is allowed by the coordinate type of use. Otherwise, the evaluation uses a
triangulated cage to enable cage-based deformation for the coordinate type. None of the coordinate types
in fig. 6.14 introduce inverted elements. The deformation with QMVC yields a smooth result with good
preservation of mesh quality, while the symmetry of the door handle is not well preserved. The use of GC
yields better element quality and preservation of the symmetry. However, the deformed geometry abounds
from the cage, because GC are not interpolatory. The deformation with MLC introduces bumps at the han-
dle, as MLC are not robust near the cage boundary. This leads to significantly more degradation of element

120

quality compared to GC. Due to the support of quad cages, the deformation with QGC provides the best sym-
metry preservation. As the resulting geometry best preserves the shape of the input model, the use of QGC
provides the best preservation of element quality. However, the deformed mesh abounds the cage, because
QGC is like GC not interpolatory. For ν = 0.1, the use of SC incurs less swelling of the volume compared to
GC and QGC. This comes at the expense of less symmetry preservation, which results in more degradation
of element quality. For all of the evaluated coordinate types, the deformation degrades tetrahedral element
quality. Therefore, the use of cage-based deformation before a numerical simulation depends on the element
quality of the undeformed tetrahedral mesh. After large deformation, it is potentially necessary to optimize
element quality.

#Points for EC HC BBW LBC (τ̂(x) = x)

NC + NV

ϕmin = 0.38 ϕ0.05 = 43.92 ϕmin = 0.37 ϕ0.05 = 44.24 ϕmin = 0.71 ϕ0.05 = 43.75
DAMIPS

max = 193.93 DAMIPS
0.95 = 4.20

vmin < 0
DAMIPS

max = 122.44 DAMIPS
0.95 = 4.14

vmin < 0
DAMIPS

max = 100.65 DAMIPS
0.95 = 4.24

vmin < 0

NC + NV + 873

ϕmin = 8.30 ϕ0.05 = 44.01 ϕmin = 8.94 ϕ0.05 = 43.64 ϕmin = 9.42 ϕ0.05 = 43.88
DAMIPS

max = 18.04 DAMIPS
0.95 = 4.17

vmin > 0
DAMIPS

max = 19.11 DAMIPS
0.95 = 4.31

vmin > 0
DAMIPS

max = 13.52 DAMIPS
0.95 = 4.21

vmin > 0

NC + NV + 38096

ϕmin = 9.38 ϕ0.05 = 44.16 ϕmin = 7.79 ϕ0.05 = 43.31 ϕmin = 10.35 ϕ0.05 = 43.86
DAMIPS

max = 11.14 DAMIPS
0.95 = 4.14

vmin > 0
DAMIPS

max = 14.70 DAMIPS
0.95 = 4.45

vmin > 0
DAMIPS

max = 10.20 DAMIPS
0.95 = 4.19

vmin > 0

Figure 6.15.: Resulting surfaces and element qualities of the deformed door handle model using EMC, i.e., HC, BBW,
and LBC, with different numbers of points for EC .

In terms of element quality, the evaluation reveals similar deformation results for the cage-based methods
using a volumetric embedding EC (cf. section 3.6.2). Figure 6.15 compares resulting deformations of the
door handle using EMC, i.e., HC, BBW as well as LBC for different resolutions of EC . For the generation of
EC , Tetgen [Si20] receives as input the triangular cage, the vertices of the meshM and sizing parameters (-a
and -q switches). Deforming the door handle with HC, BBW or LBC achieves sufficient element quality for
numerical simulations. However, when constructing EC only of the cage vertices and the vertices ofM, the
HC, BBW and LBC coordinate types produce meshes of low-quality even including inverted elements. This
is primarily because of the low number of sampling points defined on the boundary of the cage. In order
to achieve better results, one needs to include more sampling points on the boundary of the cage. These

121

additional sampling points need to be expressed as affine sums of the cage vertices to properly construct
boundary conditions for numerically computing EMC.

The evaluation investigates the effect of adding additional points for EC , in order to investigate how many
additional points are required for achieving sufficient element quality for numerical simulation. Typically,
few points need to be added to achieve better element quality. For the door handle, empirical tests revealed
that for adding only 873 points to EC deformation using EMC already results in significantly better element
quality. Generally, our evaluation shows that LBC tends to produce better element quality than HC and
BBW, i.e., is more robust to the use of a low-resolution embedding. Although adding 873 points improves
tetrahedral element qualities the boundaries of the resulting meshes are not smooth. Consequently, a finer EC
is necessary to achieve smoother surfaces. Throughout the evaluation it was difficult to predict how to setup
the meshing tool such that a good trade-off between number of used elements and resulting deformation
quality.

Consequently, the next step is to evaluate the results when using a high-resolution EC with 38096 additional
points, which results in smooth surfaces and good mesh quality for all the coordinates types of EMC. Taking a
closer look at the resulting surfaces, a small bump appears in the deformed mesh, where three closely spaced
control points are located. Due to the strong local influence of EMC, the spatial proximity of control vertices
leads to an accumulation of the influence onM for the deformation. This leads to a larger deformation for
the parts ofM close to spatially dense control vertices, while smaller deformations occur for parts ofMmore
distant to the control vertices. Among HC, BBW and LBC, the resulting bump is the largest when using LBC
and the smallest when using HC.

6.4.7. Comparing Coordinate Types

As the various coordinate types possess different advantages and disadvantages, this thesis provides a com-
parison. Table 6.5 presents a comparative overview of the presented coordinate types.

The barycentric coordinates with explicit formulas offer a simple construction that is easy to apply to
various use cases, whereas these coordinates impose several limitations. Many of these limitations have been
overcome by other coordinate types. Especially the deformation artifacts for non-convex cages are an issue
for VP applications. Thus, barycentric coordinates with explicit formulas should only be used for simple
deformation that does not require non-convex cages.

The EMC offer improved locality for deformation control and should be used for applications where small
deformation is needed to adjust local details while preserving the global shape. This can be useful in VP,
because a high degree of locality ensures that the global shape of the model is well-preserved and only the
local to-be-deformed features of the mesh are altered. Moreover, suitable applications for EMC are tolerant
to long pre-calculation times. Therefore, one should prepare the use of EMC a considerable time before the
deformation of high-resolution models.

For quick and shape preserving modeling applications in VP, the coordinates with normal control are most
shape-preserving under large deformation. In particular the symmetry preservation of QGC can be useful to
model prototypes with symmetric features. However, the coordinates with normal control are not interpola-
tory, which means that a swelling of the volume can occur. This can be mitigated with the use of SC, while
this coordinate type currently does not support quad-layouts for cages.

The probability-based coordinates offer pointwise evaluation for topologically arbitrary cages, while MLC
have only been evaluated for triangle cages up to now. The freedom of cage design can be interesting for
modeling prototypes with irregular topology so that the cage can adapt well to the surface structure with
arbitrary polygons that do not need to be triangulated. However, they do not offer the locality of EMC or the
shape preservation of coordinates with normal control. While MLC exhibit good shape awareness, the cages
need to be designed such that the distance between the to-be-deformed geometry and the cage is sufficiently

122

Table 6.5.: Comparison of cage coordinate types ordered by category (top to bottom: GBC with explicit formulas, EMC,
probability-based coordinates, and coordinates with normal control) and year of publication.

coordinates Lagrange
property

pointwise
evaluation face type extrapolation comment

triangle quad

MVC [FKR05] 4 4 4 8 4 Simple and efficient

SBC [LBS06] 4 4 4 planar 4 Support for planar n-gon faces

PMVC [Lip+07] 4 4 4 8 8 Non-negative MVC on the GPU

QMVC [TMB18] 4 4 4 4 8 Use of tri-quad cages

HC [Jos+07] 4 8 4 planar 8 Local deformation influence

BBW [Jac+11] 4 8 4 8 8 Enables the joint use of cages,
skeletons, and point handles

LBC [Zha+14] 4 8 4 8 8 Enables to control locality

MEC [HS08] 4 4 4 4 8 Direct evaluation for
arbitrary polygon-cages

MLC [CDH23] 4 4 4 8 8 Better shape awareness than MEC

GC [LLC08] 8 4 4 8 4 Conformal mapping

QGC [TB22] 8 4 4 4 4 Symmetry preserving

SC [CDD23] 8 4 4 8 4 Volume control

large to avoid deformation artifacts.
It is worth to highlight, that the recent advances in better preservation of shape features, locality and

support for quad-layouts provides good means for usage of cage-based deformation to model the geometry of
smooth and organic shapes, because these traits enable the modification of a prototype without introducing
unintended deformation artifacts.

6.5. Summary

In summary, this chapter has presented methods for user-interactive feature-based editing and deformation
of unstructured tetrahedral meshes. Both types of methods have validated as useful for editing meshes to
save loop back to CAD in VP cycles. In addition, both types of methods cannot guarantee sufficient element
shape quality for numerical simulation.

For feature-based editing of unstructured tetrahedral meshes, this chapter has presented face groups that
allow to select a large part of the model surface at once. The face groups can either originate from CAD or
they can be determined by the curvature of the surface. With the use of the face groups, the user can specify
a part of the model, which is modified by an editing operation. On the basis of face groups, this chapter has
presented two editing operations: hole closing and mesh erosion. For both editing operations, this chapter
has introduced algorithms that perform expensive steps on the GPU. This has led to fast execution times,
which provides good means for interactive mesh editing. The quality of the resulting meshes was sufficient
for numerical simulation so that a mesh editing operation could be followed by FEA to inspect the impact of
the model customization. However, for both operations, the evaluation has revealed that element quality can
degrade. Therefore, complex mesh optimization and re-meshing might be necessary after mesh editing.

For deforming the shape of a non-mechanical prototype, this chapter has investigated the facilities of cage-

123

based deformation to deform smooth and organic-like geometries. Among the available methods to quickly
generate a cage for deformation control, the interactive cage generation is the most useful, because it enables
the users to specify the semantic parts of the model so that the generation places control vertices, where the
user intends to deform the model. Many methods are suitable for interactive mesh modeling of prototypes
(cf. section 6.4.7). The most relevant coordinate types have been implemented in the publicly available
CageModeler tool set. The CageModeler application also enable the cage-based deformation of unstructured
tetrahedral meshes. The set of available methods for cage-based deformation includes one method for the
most desirable design goals, e.g., MVC for simplicity of implementation, LBC for neat local influence of cage
vertices or QGC for proper shape preservation. Each method has its own advantages and shortcomings.
Thus, there is not one method that ultimately trumps the others. Once the cage is constructed, the run time
performance of cage based deformation allows for interactive deformation with the exception of computing
EMC. The evaluation of element shape quality has revealed that tetrahedral element quality preservation
benefits from the smoothness properties of deformation, while the element quality can degrade throughout
the deformation process. Thus, deforming the mesh for VP should be coupled with fast mesh optimization.

In view of RQ31, this chapter has shown that quick interactive editing of unstructured tetrahedral meshes
is possible with algorithms that are amenable to massively parallel processing. The resulting meshes are
typically suitable for downstream FEA such as a massively parallel FEM algorithm [Web+13; Web+15].
This enables fast customization and analysis of prototypes without loop back to CAD. Similarly to morph-
ing [Sta+11], the proposed algorithms can lead to degradation of element quality and in some cases require
intervention with element quality optimization, in order to provide FEA of the prototype. While this chapter
has addressed the modeling of prototypes for numerical, the subsequent chapter is concerned with the visual
analysis of the simulation results.

1RQ3: How can massively parallel mesh processing be used for quick editing of unstructured tetrahedral meshes to accelerate VP cycles?

124

7. Massively Parallel Post Processing of Unstructured
Tetrahedral Meshes for Analysis

The following papers contain the core content of this chapter:

[Str+20] D. Ströter, J. S. Mueller-Roemer, A. Stork, D. W. Fellner, “OLBVH: octree linear bounding volume
hierarchy for volumetric meshes”. In: The Visual Computer 36.10-12 (July 2020). Honorable mention
from Fraunhofer IGD for best papers in the category “Impact on Science”, Presented at Computer
Graphics International 2020, pp. 2327–2340. doi: 10.1007/s00371-020-01886-6

[SSF23] D. Ströter, A. Stork, D. W. Fellner, “Massively Parallel Adaptive Collapsing of Edges for Unstruc-
tured Tetrahedral Meshes”. In: High-Performance Graphics - Symposium Papers. Ed. by Jacco Bikker
and Christiaan Gribble. Presented at High-Performance Graphics 2023. The Eurographics Association,
2023. doi: 10.2312/hpg.20231139

[Bue+24] M. v. Buelow, D. Ströter, A. Rak, D. W. Fellner, “A Visual Profiling System for Direct Volume Ren-
dering”. In: Eurographics 2024 - Short Papers. Ed. by Ruizhen Hu and Panayiotis Charalambous. The
Eurographics Association, 2024. doi: 10.2312/egs.20241030

In addition to addressing the editing of meshes in chapters 4 to 6, this chapter presents massively parallel
post-processing methods of unstructured tetrahedral meshes to investigate RQ4. In order to allow for quick
spatial search, this chapter presents a memory-efficient spatial data structure for various post processing
tasks on unstructured tetrahedral meshes. The proposed data structure is denoted as octree linear bounding
volume hierarchy (OLBVH), because the bounding volumes of primitives define an octree-partition of the
space and nodes are aligned in a linear order in memory. An earlier version of the OLBVH was developed
in the author’s master thesis [Str19]. For this PhD thesis, several significant improvements of the OLBVH
and new algorithms using the OLBVH have been developed. Besides minor optimizations such as more
sophisticated usage of GPU-primitives (cf. section 2.2.2), this PhD thesis presents a significantly extended
version of the OLBVH. The following list presents the most relevant improvements to the OLBVH since the
master thesis:

• The data structure layout uses a prefix sum for primitive offsets (one integer per node) instead of ranges
(two integers per node).

• Instead of approximating the number of primitives for each potential tree node, a heuristic based on
the average edge length determines the maximum tree level.

• The construction determines offsets PO for primitives at the split recording step.

• On hierarchy construction, the PO are used to infer the child node indices of a tree node.

• Short stack traversal allows for leveraging faster shared memory (see section 7.1.4).

125

https://doi.org/10.1007/s00371-020-01886-6
https://doi.org/10.2312/hpg.20231139
https://doi.org/10.2312/egs.20241030

In order to enable post-processing applications to benefit from the memory-efficient OLBVH, this chap-
ter presents several massively parallel algorithms, which use the OLBVH to provide fast post-processing. As
DVR enables exploration of the simulation results in the interior of the unstructured tetrahedral mesh (cf. sec-
tion 2.4), this chapter introduces an algorithm for DVR using the OLBVH. Unlike structured data such as voxel
grids, the DVR of unstructured tetrahedral meshes still poses a challenge to memory management, because it
needs to manage the topology, geometry, and scalar field to locate and render tetrahedral elements [Sar+23].
Besides the memory efficiency, the run time performance of DVR is important for interactive exploration of
simulation results. Therefore, the design decisions of the intended DVR algorithm should not only optimize
memory usage but also run time performance.

As memory efficiency of DVR not only depends on the spatial data structure of use, this chapter also
attempts to use the re-meshing methods presented in chapter 5 to compress meshes for DVR. Potentially,
high-resolution meshes can be compressed for DVR, which can significantly reduce memory consumption.
However, the compression of the meshes should preserve the fidelity of the simulation results, because users
require an as truthful as possible rendering of the simulation results.

Another algorithm presented in this chapter attempts to facilitate the 3D printing of a prototype for anal-
ysis. This provides a physical prototype so that product development can benefit from real-world tests of the
prototype during the VP process.

The OLBVH spatial data structure is presented in section 7.1. A description of the DVR algorithm appears
in section 7.2. In order to improve memory efficiency beyond usage of the OLBVH, section 7.3 describes how
to coarsen meshes for DVR. A critical evaluation of the proposed DVR methods appears in section 7.4. For 3D
printing of the prototype, section 7.5 describes and evaluates an algorithm for conservative slicing. Finally,
section 7.6 summarizes the key conclusions of this chapter.

7.1. Octree Linear Bounding Volume Hierarchy

This section describes the basic concept of the OLBVH data structure and details the implementation (see sec-
tions 7.1.1 and 7.1.2) of the data structure as well as construction (see section 7.1.3) and traversal algorithms
(see section 7.1.4).

7.1.1. Quantization of AABBs along the Morton Curve

Like previous LBVH variants (see section 3.8.1), the OLBVH relies on approximate spatial sorting of elements
ordered byMorton code [Mor66]. This quantization encodes the input coordinates x, y, and z as l-bit integers
x̂ = (xl−1, xl−2, . . . , x0), interleaving their bits.

m(x̂, ŷ, ẑ) = (xl−1, yl−1, zl−1, . . . , x0, y0, z0)

The spatial domain of the quantization is the enclosing axis aligned bounding box (AABB) H(M) of the
volumetric meshM:

H(M) =
(︂
(xMmin, y

M
min, z

M
min)

T, (xMmax, y
M
max, z

M
max)

T
)︂
=
(︁
xMmin, x

M
max
)︁
.

A key difference to previous LBVH variants is that the OLBVH does not encode the centroids of AABBs.
Instead, the quantization relies on the fact that Morton codes inherently span an axis-equidistant grid. The
resolution of this grid depends on the number of bits l used for quantization. The cell size of the Morton grid
can be calculated as:

sl = (slx, s
l
y, s

l
z)

T =
xMmax − xMmin

2l − 1
. (7.1)

126

Using this size, quantization and reconstruction, respectively, follow the equations below:

q(x) =
⌊︃
x− xMmin

slx
+

1

2

⌋︃
= x̂

q−1(x̂) = xMmin + x̂ · slx

The quantized AABB Ĥ(p) of a primitive p ∈M is defined by two quantized points:

Ĥ(p) =
(︁
x̂pmin, x̂

p
max
)︁
.

For each primitive p ∈M, the quantization generates the Morton codes enclosed by the primitive’s quantized
AABB Ĥ(p). The set of generated Morton codes for a primitive p ∈M is given by:

M(Ĥ(p)) =

⎧⎨⎩m(x̂′, ŷ′, ẑ′) |
⋀︂

c ∈ {x,y,z}

ĉpmin ≤ ĉ
′ ≤ ĉpmax

⎫⎬⎭ .

Combined with a heuristic to determine the tree depth L = l + 1 (the root level is present, even for 0-bit
Morton codes), the OLBVH construction uses M(Ĥ(p)) to split primitives a priori and eliminate looseness,
i.e., sibling cells never overlap. Additionally, the OLBVH stores boundary flags at every node of the tree,
allowing for early termination at nodes containing only interior cells when only determining if a point or
bounding box is inside or outside the meshM. As interior primitives near the boundary must share points
with boundary primitives and the sets M(Ĥ(p)) are inclusive, cells that contain empty space must always
contain boundary primitives provided that no primitive has a negative signed volume.

7.1.2. Data Structure Layout

The OLBVH data structure consists of six arrays containing:

1. primitive indices P[Nm] in [0, Np) sorted by Morton code,

2. tree node bounding volumes BV[Nn],

3. child node offsets CO[nni + 1] in [0, Nn),

4. primitive index offsets PO[Nn + 1] in [0, Nm],

5. boolean boundary flags BF[Nn],

6. per-level node offsets NO[L] in [1, Nn],

where Np is the number of primitives inM, Nm is sum of the numbers of Morton codes per primitive, Nn is
the number of tree nodes, and Nni is the number of internal tree nodes excluding leaves.

As the bounding volume of a primitive may intersect with several spatial cells of the Morton grid, P may
contain duplicate indices. The bounding volumes of tree nodes BV are laid out linearly in memory following
a breadth-first traversal order. In order to allow for top-down traversal, CO stores child offsets for the tree
nodes. Every tree node is associated with a maximum of eight children. Due to the contiguous levelwise
order in memory, the CO array enables retrieval of the child node indices Ci of a given tree node i:

Ci = {j | CO[i] < j ≤ CO[i+ 1]}. (7.2)

127

0

00

1

830

9

30

10

1

2

102

11

2

12

3

13

5

14

6

3

147

15

7

16

9

4

1610

17

10

18

11

5

1812

19

12

20

15

21

17

6

2119

22

19

23

20

7

2322

24

22

25

23

8

25 2725

26

25

27

28 30

Figure 7.1.: This figure shows the data layout of the CO and PO arrays for a sample tree. The gray circles represent the
tree nodes. The blue numbers above the tree nodes represent entries of the CO array and the red numbers represent
entries of the PO array. The green arrow in the background indicates the in-memory order.

In order to manage memory efficiently, the CO array only contains entries for internal, i.e., non-leaf, nodes.
As a result of the chosen data structure, the node index of an internal node’s rightmost child is equal to the
child offset of its succeeding node in memory, i.e,

Node i is j’s rightmost child =⇒ CO[j + 1] = i. (7.3)

This property is useful while constructing the internal hierarchy levels starting from the leaves.
The OLBVH also incorporates a primitive offsets array PO to infer the primitive indices in P are associated

with node i. As nodes reside in memory in breadth-first order, it is necessary to handle adjacent nodes of
different hierarchical levels:

Pi =

{︄
{P[j] | 0 ≤ j < PO[i+ 1]}, if PO[i] > PO[i+ 1]

{P[j] | PO[i] ≤ j < PO[i+ 1]}, otherwise.
(7.4)

As any rightmost child has the same upper offset as its parent node, it holds that:

Node i is j’s rightmost child =⇒ PO[i+ 1] = PO[j + 1]. (7.5)

The memory layout of the CO and PO arrays is illustrated for a sample tree in fig. 7.1. The boundary flag
array BF stores a boolean boundary flag for each tree node i. The final array NO stores the node index offsets
for each level. It is used to determine the hierarchical level of a node given its index.

7.1.3. Construction

The OLBVH construction receives any volumetric meshM with marked boundary primitives as input, the fol-
lowing construction is designed with unstructured tetrahedral meshes in mind. However, OLBVH is applicable
to general polyhedral meshes. The construction relies on the TCSR mesh data structure (cf. section 2.2.3)
to efficiently store and process tetrahedral meshes on the GPU, and to extract the mesh boundary (cf. sec-
tion 4.2). If H(M) is not known beforehand, a parallel reduction (cf. section 2.2.2) on the mesh’s vertices
calculates xMmin and xMmax. The construction is performed in four steps:

1. Determine the tree depth heuristically

2. Calculate and sort Morton codes of primitive AABBs

3. Record at which levels the sorted Morton codes split

4. Bottom up construction based on split positions

128

Algorithm 8 Leaf node bounding volume and boundary flag determination.
1: procedure generateLeafNodes(l)
2: for all i ∈ [NO[l − 1],NO[l]) do ▷ In parallel
3: p← P[PO[i+ 1]− 1] ▷ Pick any entry in Pi

4: mx,y,z ← MC[p] ▷ Calculate AABB
5: min← q−1(m−1(mx,y,z))
6: max← min+ sl

7: BV[i]← (min, max)
8: for all p ∈ Pi do ▷ Calculate boundary flag
9: if p is marked as boundary primitive then

10: BF[i]← true
11: return
12: end if
13: end for
14: BF[i]← false
15: end for
16: end procedure

In the initial stage, the construction determines the number l ≤ lmax of bits to use for quantization, and
therefore the depth of the tree, according to element size. The maximum possible number of quantization
bits is lmax = 10 in the implementation, as it uses 32-bit integers to store Morton codes. In parallel over
primitives, the construction estimates the tree level by first computing the binary logarithm ld of the largest
tetrahedron AABB axis in relation to the maximum grid resolution:

lα(p) = max

(︄⌊︄
ld

⌊︄
xpmax − xpmin

slmax

⌋︄
max

⌋︄
, 0

)︄
,

where the division is performed per component. The binary logarithm can be efficiently implemented using
a count leading zeros instruction (the __clz intrinsic in CUDA). Subsequently, the construction procedure
chooses

l = clamp

(︄⌊︄
10.5−

(︄
average
p∈M

(lα(p)) + lα

)︄⌋︄
, 0, 10

)︄
by performing a parallel reduction on lα(p), where lα ∈ [−10, 10] is a tuning parameter. Though it is of
course possible to choose a negative lα, caution is advised, as the resulting Morton grid would be more
fine grained than most primitive AABBs. This may lead to oversampling situations and increased memory
consumption. Therefore, we define lα ∈ [0, 10]. Increasing lα results in a coarser Morton grid, and thereby
a faster construction and reduced use of memory, while decreasing lα leads to slower construction and more
memory consumption while potentially improving rendering performance.

Since the maximum level is heuristically determined, the tree construction proceeds with calculating the
Morton codes in the second step. The size of the Morton grid cells sl can be computed using eq. (7.1). On
the basis of sl, the construction allocates a temporary array of Morton codes MC. As the overall number of
Morton codes Nm is not known a priori, one parallel passes over primitives determines Nm to allocate MC.
A subsequent parallel pass over primitives fills MC. Each thread calculates

⃓⃓⃓
M(Ĥ(p))

⃓⃓⃓
for one primitive. A

parallel exclusive prefix sum determines the array offsets the Morton codes of each primitive are written to.
By performing the prefix sum forNp+1 elements, the final offset corresponds toNm and additional branching
is avoided. A second pass over all primitives generates the sets M(Ĥ(p)) and writes the Morton codes into
MC at the computed offsets, while also writing each primitive’s index to P at the corresponding offset.

With a parallel sort, the primitive indices P are sorted using the Morton codes in MC as keys. As a result,
the primitive indices are ordered along the Z-curve. Primitive indices are potentially duplicated, because

129

M(Ĥ(p)) may include several Morton codes. Additionally, the root node of the OLBVH is constructed at this
point. Because the root node encloses all primitives p ∈ M, its AABB is set to H(M). Moreover, the two
initial entries of PO are set to 0 and the overall number of Morton codes Nm, respectively. Straightforwardly,
the first entry of CO is 0, the first entry of NO is 1, and the last is Nn. Additionally, the root boundary flag
BF[0] is set to true.

Algorithm 9 Construction of internal nodes of level li.
1: procedure generateInternalNodes(li)
2: for all i ∈ [NO[li],NO[li + 1]) do ▷ In parallel
3: CI[PO[i+ 1]]← i
4: end for
5: CI[0]← NO[li]− 1
6: for all i ∈ [NO[li − 1],NO[li]) do ▷ In parallel
7: (begin, end)← (PO[i],PO[i+ 1])
8: if begin > end then ▷ Calculate primitive range
9: begin← 0

10: end if
11: CO[i]← CI[begin]
12: cbegin ← CO[i] + 1
13: cend ← CI[end]
14: if i = NO[li]− 1 then ▷ Set last child offset
15: CO[i+ 1]← cend
16: end if
17: BV[i]← BV[cbegin] ∪ · · · ∪ BV[cend] ▷ Merge AABBs
18: BF[i]← false
19: for j ← cbegin, . . . , cend do ▷ j ∈ Ci

20: if BF[j] then ▷ Calculate boundary flag
21: BF[i]← true
22: end if
23: end for
24: end for
25: end procedure

The third construction step determines the indices at which the Morton codes in MC indicate splits between
BVH nodes. As the OLBVH is an octree, the construction compares Morton codes advancing in 3-bit steps
beginning from the most significant bit. Thus, each split is associated with a level lc < L and an index
referring to a Morton code in the MC array. As the split positions refer to the Morton codes of primitives, the
split generation procedure writes these positions to the PO array. As in the case of Morton code generation,
the construction first determines the number of splits between neighboring codes. A parallel scan is then
used to determine the size of and offsets into the corresponding arrays. As no split is recorded for the last
Morton code, a split is appended sequentially by the CPU for each level. This can be done concurrently while
filling the remainder of the PO. A parallel stable sort by key procedure sorts PO by split level resulting in the
intended primitive offset order. As the splits are sorted by level, the remaining entries of the NO array can be
calculated by exploiting the per-level contiguous order. A parallel pass over splits searches for adjacent splits
of different level. If two such splits are found at positions i and i+ 1, a node level offset was found and thus
NO[splits[i].lc] = i+ 1.

The final step relies on NO and PO to construct the OLBVH in a bottom-up manner, i.e., starting at the leaf
level. As the data layout does not allow for immediate inference of the parent node for a given node, it is
not possible to construct the hierarchy in a single kernel launch using atomic flags as in Apetrei’s [Ape14]
agglomerative LBVH builder. Nonetheless, it is feasible to construct the OLBVH’s topology in separate kernel
launches.

Firstly, algorithm 8 calculates the leaf node AABBs and boundary flags BF in parallel over leaf nodes.

130

As all Morton codes associated with a leaf node are equal, the minimum AABB coordinates are obtained
by calculating q−1(m−1(mx,y,z)) for an arbitrary mx,y,z associated with the leaf node. Furthermore, the
maximumAABB coordinates are calculated by adding the grid size sl to the minimum coordinates. Therefore,
leaf node AABBs can be calculated in constant time. The boundary flag BF[i] of a leaf node is set if any
primitive in Pi is tagged as a boundary element. Therefore, boundary flag calculation for a leaf node is
O(|Pi|).

The generation of internal tree nodes relies on an auxiliary array CI of the same size as the overall number
of generated Morton codes Nm. Algorithm 9 outlines internal node generation. Algorithm 9 writes node
indices to the primitive offset positions of CI for each level. On construction of the parent hierarchical level,
algorithm 9 exploits eq. (7.5) to lookup the rightmost child indices for internal nodes at the upper primitive
offset positions of the CI array. To reduce the number of kernel launches, the computation of CI can be
merged with generateLeafNodes for the first iteration. Between internal levels, a separate kernel must be
used to prevent conflicting reads and writes. CI and PO are used to determine the child offsets CO according
to eq. (7.3). Finally, internal node AABBs and boundary flags are determined from their children.

7.1.4. Traversal

As the efficient usage of the OLBVH depends on fast traversal, this section presents a method for GPU-parallel
traversal of the OLBVH. Algorithm 10 outlines the OLBVH traversal approach used in this thesis. Figure 7.2
presents a sample traversal execution. Traversing the OLBVH for input geometric predicates FN for nodes
and FP for primitives proceeds by pushing child nodes to a traversal stack. If a full traversal stack is used,
its size is bounded by 7 · l + 8 node indices. This typically exceeds the amount of available fast on-chip
shared memory, imposing the use of slower cache-backed local memory (cf. section 2.2). Therefore, OLBVH
traversal uses a short stack [VWB19] to reduce the memory requirement for the stack. As a result of the
shallow hierarchy, a 32-bit integer is sufficient to encode the trail. Leaf nodes can be determined efficiently
by comparison with the lower level offset of the last level. Since siblings are on the same level, it suffices to
check the first child node. The short stack approach uses a queue Q to record the nodes in Ci (cf. eq. (7.2))
for which the predicate FN evaluates as true.

1

2

3

0

1

9 . . . 15

2

16 . . . 19

. . . 8

. . .

Traversal step 1:
k ← 0 = (0≫ 3·0)&0x7
leafLevel← false = 8 > 8

Q← (1, 2, 5, 6)

manageShortStack(. . .):
i← 1 = Q[k]

lcur ← 1 = lcur + 1

2

5

6

Sshort Traversal step 2:
k ← 0 = (0≫ 3 · 1) & 0x7
leafLevel← true = 15 > 8

FP (9), . . . , FP (15) = false
manageShortStack(. . .):
i← 2 = pop(Sshort)

lcur ← 1 = 0 + (1 ≤ 2)

trail← 1 = 0+(1≪ (3 ·0))

5

6

Sshort Traversal step 3:
k ← 0 = (1≫ 3 · 1) & 0x7
leafLevel← true = 19 > 8

FP (16) = true
result ← 16

exit ← true
found← true

Figure 7.2.: Traversal proceeds on the compacted tree until a leaf node satisfies FN . The blue arrows indicate the
traversal path. Variable assignments and short stack states appear below the tree. Initially, traversal concludes that
FN holds for nodes 1, 2, 5 and 6. Thus, the next node is 1, while nodes 2, 5 and 6 remain on the short stack. In the
second step, none of 1’s children satisfy FN . Thus, traversal pops 2 from the short stack determining the parent level
to increment the trail and find the current level using eq. (7.6). Finally, FN holds for 16 and traversal terminates.

Unlike Vaidyanathan et al.’s [VWB19] short stack implementation, the OLBVH traversal does not require
to tag parent nodes, avoiding unnecessary branching. Additionally, the OLBVH traversal does not treat leaf
nodes satisfying FN throughout traversal. This is due to the fact that depending on lα leaf nodes contain
several primitives and a high primitive count may lead to significant thread divergence. After pushing in-
tersecting child nodes to Q, the manageShortStack(. . .) procedure pushes tree nodes from Q to the short
stack and identifies the tree node at which traversal continues. This procedure corresponds to lines 10-27
of Vaidyanathan et al.’s BVH−N traversal method with N = 8. The only two adaptations are the bit-trail

131

handling and comparison of NO[parentLevel] to determine the level of a node on a short stack pop to avoid
unnecessary branching (lines 16-20 in Stack Pop):

lcur = parentLevel+ (NO[parentLevel] ≤ n) (7.6)

Algorithm 10 OLBVH traversal using a short stack
1: procedure traverseOLBVH(FN , FP)
2: trail← 0x0
3: lcur ← 0
4: Sshort ← ∅
5: i← 0 ▷ Initiate at root
6: result ← 0 ▷ Alternatively, N ← ∅
7: found← false
8: nodeBound← NO[l − 1]
9: exit ← false

10: do
11: Q← ∅
12: k ← (trail≫ 3 · lcur) & 0x7
13: leafLevel← CO[i+ 1] > nodeBound
14: for j ∈ Ci do
15: if FN (j) then
16: if leafLevel then
17: exit ← true
18: found← true
19: result← j ▷ Alternatively, push j onto N
20: else
21: Q← Q ∪ {j}
22: end if
23: end if
24: end for
25: manageShortStack(Sshort, trail, lcur, i, Q, k, exit)
26: while ¬exit
27: if found then ▷ Alternatively, test intersection for every j ∈ N
28: if FP (PM) for any pM ∈ Presult then ▷ cf. eq. (7.4)
29: treat incident
30: return
31: end if
32: end if
33: end procedure

In many applications, it is sufficient to traverse the tree evaluating FN until a leaf node is reached, since
sibling cells never overlap. Primitives associated with the resulting leaf node are then checked until FP

evaluates to true. However, for some applications such as intersection detection it is required to keep track
of intersecting leaf nodes and to test primitives for intersection. In such scenarios, a node set N is used to
maintain leaf nodes satisfying FN . This approach is inherently prone to overflow. Thus, additional treatment
is required in order to prevent exceeding the size of N on node push. A possible solution is to evaluate FP

for the primitives of all nodes in N if a node push would result in an overflow. After traversal, one needs to
evaluate FP only for the primitives associated with the resulting leaf node or the set of leaf nodes N .

7.2. Direct Volume Rendering using the OLBVH

As one of the concerns of this thesis is DVR of unstructured tetrahedral meshes (see section 2.4) for visual
analysis purposes, this section presents algorithms for rendering volumetric meshes using the OLBVH. A pre-

132

process before ray marching determines relevant intervals along view rays to avoid unnecessary overheads
due to sampling empty space. Section 7.2.1 presents this quick pre-process. After the pre-process, a ray
marching algorithm uses the OLBVH and the ray intervals to sample the scalar field defined on the unstruc-
tured tetrahedral mesh. The ray marching procedure appears in section 7.2.2.

7.2.1. Empty Space Skipping

As DVR of unstructured meshes requires repeated point location along each view ray, a potential performance
issue is that a large number of samples may not hit the geometry. For this reason, DVR benefits from the use of
the boundarymarking to efficiently compute the relevant ray interval in which the ray intersects the geometry.
Prior to ray marching, a quick pre-process traverses only the boundary nodes of the OLBVH for each ray and
determines the intervals for which each ray intersects leaf node AABBs. Ray marching then performs point
sampling only for the interval of the ray from the first hit to the last hit of boundary leaf nodes. As a result, the
number of samples for ray marching is significantly reduced. A visualization of the resulting space skipping
appears in fig. 7.3. The method for the calculation of the ray intervals uses the short stack traversal described
in section 7.1.4. While the following describes this method, algorithm 11 draws an outline.

interior leaf node of OLBVH

boundary leaf node of OLBVH

Camera
Image

Figure 7.3.: Space skipping exploits the marking of boundary tree nodes computed in OLBVH construction.

Since the renderer emits one ray per pixel that is calculated using the method of Shirley et al. [SDH23], the
computation of the interval of one ray is independent from the other rays. Thus, it is feasible to parallelize
the interval computations over rays, in order to perform the pre-process at interactive rates, whenever the
camera setup of the visualization changes. Therefore, the dimensions of the rendered image is a crucial factor
for the workload for each frame.

The initial assumption of the empty space calculation is that the ray does not hit any part of the geometry.
An invalid interval [trmin, t

r
max] = [∞, 0]with a value for the lower bound larger than the upper bound indicates

empty space. This design choice should improve simplicity and performance of the pre-process, because no
additional variables and branching are needed to express the case of empty space. In order to check the
assumption of empty space, the pre-process tests if a ray intersects with the boundary nodes of the OLBVH.
The key idea of the pre-process is motivated by the observation that a ray begins to intersect the object at a
boundary face of the tetrahedral mesh and exits the object at another boundary face. These two boundary
faces define the relevant interval and are by definition part of boundary tree nodes, which means that interior
tree nodes never contain these boundary faces and can be skipped. While performing intersection tests for
individual boundary faces is potentially too intrusive for a pre-process, a good estimation of the ray interval

133

Algorithm 11 Empty space skipping along view rays
1: procedure calculateRayInterval
2: for each pixel in Image do ▷ In parallel on the GPU
3: r ← getRayForPixel(pixel)
4: [trmin, t

r
max]← [∞, 0] ▷ Initial assumption is empty space

5: FN ← isBoundaryNode(N) ∧ intersectRayAABB(r,N) ▷ See [Wil+05]
6: FP ← true ▷ No check on primitives necessary
7: whenever an incident occurs during traverseOLBVH(FN , FP) do ▷ See line 29 in algorithm 10
8: [tNmin, t

N
max]← rayNodeInterval(r,N) ▷ Computed by [Wil+05]

9: [trmin, t
r
max]← [min(trmin, t

N
min), max(trmax, t

N
max)]

10: done
11: end for
12: end procedure

without empty space is the first and last intersection with a boundary leaf node. The intersection test of a
ray and an AABB can be efficiently and robustly implemented using the method of Williams et al. [Wil+05].

A short stack traversal as described in section 7.1.4 finds the intersecting boundary leaf nodes. Whenever
the traversal reaches a boundary leaf node, the intersection test by Williams et al. [Wil+05] determines the
interval [tNmin, t

N
max], along which the ray intersects the AABB of the leaf node. In order to compute the ray

interval [trmin, t
r
max] for the ray, the pre-process checks if the lower and upper bounds of [tNmin, t

N
max] identify

a new minimum or maximum for the ray interval, respectively. The traversal terminates, when every inter-
secting boundary node is visited. The final result of the pre-process is a set of ray intervals, which bound the
range for sampling along the view rays.

7.2.2. Sample the Simulation Results along View Rays

When the pre-process terminates, the ray marching performs point sampling along the view rays to compute
the image. For the same reasons as described in section 7.2.1, the ray marching performs calculations in
parallel over rays. As the CUDA model organizes GPU threads in grid blocks (cf. section 2.2.1), it is an
interesting question how rays should be assigned to blocks to improve performance. As load balancing for
ray tracing [HA98; CDE+13] and ray marching [MSE07] have been interesting research topics for decades,
empirical testing evaluated the benefits of several static approaches to distribute the rays to grid blocks. These
experiments statically assigned rays rowwise, columnwise and in tiles to the grid blocks. However, none of
these methods consistently exhibited a significant advantage over the other. Therefore, the renderer applies
the simple rowise pattern, whereas a dynamic approach for load balancing in ray calculation is an interesting
topic for future work.

For ray marching, each GPU thread first retrieves the ray and the interval [trmin, t
r
max] ⊂ R computed by the

pre-process. If the lower bound of the ray interval is larger than the upper bound, the ray does not hit the
geometry and ray marching is not necessary. Otherwise, the ray marching methods prepares for sampling.
In order to compute the number of samples for each ray, the bounds of the ray interval are quantized to
integers. The quantization performs a division by the user specified sampling rate and a subsequent rounding.
To obtain a conservative quantization the lower and upper bounds are rounded down and up, respectively.
Subsequently, the ray marching begins to sample along the ray.

The ray sampling generates points along a view ray starting from the quantized interval’s lower bound.
The sampling then increments this initial position by the user-specified sampling rate until it reaches the
interval’s upper bound or the color for the pixel becomes almost opaque. For each sampling point, the ray
marching traverses the OLBVH to find a tetrahedron containing the sampling point. As a result of the non-
overlapping AABBs of the tree nodes, the traversal does not even need a stack or a short stack for this task.

134

If the primitive for traversal is a single spatial point, then it suffices to find one child node with an AABB
containing the sampling point until traversal reaches a leaf node. The sampling point is either completely in
the interior of the resulting node’s AABB or lies on the boundary of up to eight leaf node AABBs. In both cases,
it is sufficient to check the tetrahedra of only one leaf node, because every tree node includes the tetrahedra
intersecting with its AABB by construction.

Whenever the traversal determined a leaf node containing the current sampling point, it checks all the
tetrahedra associated with this leaf node for intersection with the sampling point. An intersection test can
be implemented by calculating barycentric coordinates using Cramer’s rule [Cra50]. If an intersection with
a tetrahedron is found, the barycentric coordinates provide an interpolation of the scalar values associated
with the vertices of the tetrahedron. The transfer function (cf. section 2.4) maps the interpolated scalar value
to color. The mapped value is then composited over the current color value of the pixel. When ray marching
terminates, each pixel in the rendering image is colored and the image is ready for visualization to the user.

Algorithm 12 Ray marching using OLBVH
1: procedure rayMarch(SamplingRate ∆t)
2: for each pixel in Image do ▷ In parallel on the GPU
3: Load the ray r and [trmin, t

r
max] calculated by algorithm 11

4: if trmax < trmin then
5: continue
6: end if
7: start← floor(trmin/∆t)
8: end← ceil(trmax/∆t)
9: for i← start, . . . , end do

10: samplingPoint← r.origin+ i · r.direction
11: FN ← pointInAABB(N, samplingPoint)
12: FP ← pointInTetrahedron(P, samplingPoint)
13: obtain interpolated scalar value s using traverseOLBVH(FN , FP)
14: col← transferFunction(s) ▷ See section 2.4
15: pixel.color← compositOver(pixel.color, col) ▷ See section 2.4
16: if pixel.color.opacity > 99% then
17: continue
18: end if
19: end for
20: end for
21: end procedure

7.3. Coarsening Meshes for Direct Volume Rendering

As coarsening meshes reduces memory requirements and rendering workloads, this section presents an al-
gorithm using the collapsing method in chapter 5 that can reduce workloads for DVR with little loss of
rendering quality. In order to achieve this goal, the customizable functions of the collapsing algorithm need
to be specified for preserving rendering quality. In addition, this section describes an extension to the col-
lapsing algorithm for maintaining the scalar data for rendering. For preserving the rendering quality, the
coarsening method loads a scalar field Φ in addition to the tetrahedral mesh. Like in section 7.2.2, the scalar
field Φ includes one value for each vertex. In order to prevent loss of important details, the used cost function
measures the scalar field error incurred by an edge collapse operation:

C(vidx0 , vidx1 ,Φ) = |Φ(vidx0)− Φ(vidx1)|,

where vidx0 and vidx1 are the indices of the two edge vertices. In order to preserve features, the collapsing of
edges should be limited to edges incurring only a low cost. Thus, collapsing is limited to edges with a cost

135

value lower than
εΦ(χ) = χ

(︃
argmax

vidx=1,...,NV

Φ(vidx)− argmin
vidx=1,...,NV

Φ(vidx)

)︃
,

where χ ∈ [0, 1] controls the loss of fidelity. The implementation consistently uses the middle point placement
strategy, because the midpoint is an equidistant choice from both edge points resulting in a low scalar field
error.

Collapsing edges relocates vertices to other spatial positions, invalidating the scalar field. Thus, the scalar
values of relocated vertices need to be updated. Like Cignoni et al. [Cig+00], the coarsening for DVR interpo-
lates the original mesh to approximate the scalar values of new vertices. As this essentially is a point lookup
problem, the coarsening uses the acceleration structure applied for the DVR to interpolate scalar values of
newly added vertices from the old scalar field. While any acceleration structure for efficient point lookup
is applicable, this thesis uses the OLBVH. After each collapsing iteration, a parallel pass over the relocated
mesh vertices performs a point lookup on the original mesh using the traversal described in section 7.2.2.
For each of the relocated vertices, the lookup determines a tetrahedron including the vertex and calculates
the barycentric coordinates for scalar field interpolation. The scalar value of the relocated vertex is then
updated to the interpolated scalar value. In order to achieve robust barycentric interpolation, a safety tol-
erance of εb = 1e−3 is applied to the barycentric coordinates to avoid false results of the intersection test
during the search for a tetrahedron containing the sampling point. This measurement has led to significantly
better preservation of the scalar field compared to the results in the conference publication [SSF23] of the
coarsening method.

7.4. Evaluation of Post-Processing Performance

In order to critically evaluate the massively parallel post-processing algorithms proposed in this chapter, a
sequence of experiments demonstrates the performance of these algorithms and compares them with current
methods. A discussion of the set of meshes for the evaluation appears in section 7.4.1. As a quick construction
of a memory-efficient OLBVH is important for post-processing applications, section 7.4.2 evaluates and com-
pares the performance of the OLBVH construction in terms of run time efficiency and memory consumption.
In order to investigate the performance of ray marching for interactive DVR, section 7.4.3 investigates the
throughput of samples in a comparative evaluation. For an in-depth analysis of ray marching performance,
section 7.4.4 presents profiling results of DVR using OLBVH. Section 7.4.5 evaluates the performance of the
massively parallel coarsening algorithm for DVR.

7.4.1. Evaluation Meshes

The evaluation of the proposed post-processing algorithms uses many different meshes, in order to include
various mesh resolutions, tetrahedral element shapes, and surface geometries in the experiments. Figure 7.4
visualizes the different unstructured tetrahedral meshes used in the following evaluation. Themeshes include
simple geometries, e.g., cubic or cylindrical shapes, and shapes with complex surfaces, e.g., the Dragon or
the Tardis geometries. The dimensions of the models also span a large variety, because the set of meshes
includes models with even dimensions in each axis, e.g., the Die model, and thin models, e.g., the Wrench
model. In order to cover different structures of primitives sizes, the test set includes models with different
distribution of primitive sizes. Some meshes are rather regular such as the Jets model. Other meshes exhibit
a uniform distribution of the primitive size, while the tetrahedral mesh has an irregular structure, e.g., the
Part mesh. As many meshes for the FEM exhibit a fine-grained resolution at the boundary, while the interior
structure is coarser, meshes of this type are also part of the data set, e.g., the Bunny or the Wrench models.

136

Figure 7.4.: Meshes used in the evaluation of post-processing. Surface overlaid over a cross section shown to visualize
both exterior and interior resolution. From top left to bottom right: Bar, Bunny, Cube, Cylinder, SimJEB514, Die,
Dragon, Fusion, SimJEB122, Gargoyle, Jets, Part, Pot, Tardis, and Wrench. The models include meshes with highly
regular primitive size (e.g., Part) and meshes with large variance in primitive size (e.g., Tardis).

For an in-depth and critical view on the performance bottlenecks, section 7.4.4 presents profiling results of
DVR using the OLBVH.

7.4.2. Performance of OLBVH Construction

This section evaluates the OLBVH construction in terms of run time andmemory consumption. The evaluation
compares OLBVH construction with Apetrei’s [Ape14] improved LBVH construction and OptiX’ [NVI24a]
acceleration structure construction with subsequent compaction. The details of OptiX’ acceleration structure
are not documented and are considered a black box. The resulting construction times are shown in fig. 7.5. As
tree depth is affected by the choice of lα, we present construction times for lα ∈ {0, 1, 2}. For lα = 0 the OLBVH
construction is slower than Apetrei’s LBVH builder. For lα ∈ {1, 2} the OLBVH construction outperforms or
matches the construction times of the LBVH builder in many cases. If no hardware acceleration is used,
OLBVH construction is faster than OptiX [NVI24a] on all but the smallest meshes (cf. table 7.1), even for
lα = 0. When hardware acceleration is present, OLBVH construction is slightly slower than OptiX’ BVH
construction for lα = 0, but achieves significantly lower run times when lα ∈ {1, 2}.

137

0

50

100

150

200

250

300
Bu
nn
y

Dr
ag
on Pa
rt

Fu
sio
n

Je
ts

Co
ns
tr
uc

tio
n
tim

e
(m

s)

0

50

100

150

200

Bu
nn
y

Dr
ag
on Pa
rt

Fu
sio
n

Je
ts

Co
ns
tr
uc

tio
n
tim

e
(m

s)

LBVH OptiX OLBVH lα = 0 OLBVH lα = 1 OLBVH lα = 2

Figure 7.5.: Comparison of construction times between LBVH using Apetrei’s [Ape14] fast agglomerative approach,
OptiX, and OLBVH with lα ∈ {0, 1, 2} on a Quadro GP 100 (left) and an RTX 2080 Ti (right).

Table 7.1.: Comparison of memory consumption (MiB) between LBVH, OptiX’ compacted acceleration structure, and
OLBVH for lα ∈ {0, 1, 2}. Even for lα = 0, OLBVH consumes less memory for most meshes due to the flatter octree
hierarchy and compact offset-based encoding. The lowest results for allocated memory are provided in boldface.

Mesh NT LBVH OptiX [NVI24a] OLBVH lα =
non-RTX RTX 0 1 2

Bunny 32.0 k 2.07 10.4 1.94 1.83 0.57 0.27

Dragon 824.8 k 53.5 250 44.1 52.9 15.9 7.41

Part 1.1M 71.3 313 54.9 28.4 12.3 7.22

Fusion 3.0M 195 840 158 116 45.2 24.6

Jets 12.3M 797 3427 399 433 164 91.2

Besides construction time, another beneficial aspect of the OLBVH is its memory consumption. Table 7.1
compares the memory consumption of OLBVH to LBVH and OptiX’ acceleration structure. OLBVH consumes
significantly less memory than LBVH or OptiX without specialized RTX hardware. For the Jets and Dragon
meshes, OptiX [NVI24a] consumes slightly less memory than OLBVHwith lα = 0when RTX hardware is used.
Increasing lα results in a significant reduction of memory consumption due to generating shallow trees, i.e.,
fewer tree nodes. In a Bachelor thesis, González [Gon21] has shown that the memory consumption of OLBVH
can be significantly reduced by creating subtrees of varying lenghts adaptive to the local mesh resolution.

7.4.3. Performance of Sampling Throughput for DVR

Since DVR relies on repeated point location along each view ray (cf. section 2.4), the run time performance
of DVR highly depends on the throughput of the samples per time unit. Therefore, this section investigates
the sampling rate ∆t that represents the number of samples processed per second. For each mesh, the
sampling rate ∆t is set to the average edge length of the mesh. As a potential performance issue is that
a large number of samples may not hit the geometry, the evaluation of DVR includes the space skipping
presented in section 7.2.1. While many meshes were evaluated during this thesis, the evaluation discusses
the performance of DVR on five meshes of varying shape and size.

138

Part Jets Pot Fusion Wrench

Figure 7.6.: Rendered images of test cases cropped to content.

Table 7.2.: Sizes of DVR evaluation meshes and ray
interval computation times (ms) on a Quadro GP 100.

Mesh NT
Ray Interval lα =
0 1 2

Wrench 390.3 k 2.5 1.4 0.8

Part 1.1M 3.1 1.6 0.8

Fusion 3.0M 5.7 3.3 1.9

Pot 4.0M 4.8 2.5 1.4

Jets 12.3M 5.3 3.0 2.1

The sizes of the evaluated meshes are given in ta-
ble 7.2. The run times for the ray interval computation
appear in table 7.2 as well. The evaluation compares the
OLBVH DVR approach from section 7.2 with the LBVH as
well as Wald et al. [Wal+19] approach with and without
the RTX hardware accelerated spatial data structure (cf.
section 3.8.3). For the comparisons, the evaluation in-
vestigates the other approaches using the same camera
settings. In every measurement, a 10242 image was ren-
dered. A visualization of the rendered images appears in
fig. 7.6.

As the traversal for determining the relevant ray inter-
val only considers boundary nodes and skips the majority of nodes, its run time imposes only a small overhead
that is negligible compared to the actual sampling of view rays. Unlike Moriccal et al.’s [Mor+19] space
skipping extension, the space skipping using OLBVH does not require a secondary acceleration structure.
Therefore, the OLBVH space skipping does not add on the memory-consumption and construction overheads
evaluated in section 7.4.2.

1× 107

1× 108

1× 109

W
ren

ch Pa
rt

Fu
sio
n Po
t

Je
ts

Sa
m
pl
in
g
ra
te

(1
/s
ec
)

1× 107

1× 108

1× 109

1× 1010

W
ren

ch Pa
rt

Fu
sio
n Po
t

Je
ts

Sa
m
pl
in
g
ra
te

(1
/s
ec
)

LBVH OptiX OLBVH lα = 0 OLBVH lα = 1 OLBVH lα = 2

Figure 7.7.: Comparison of sampling rates per second (larger is better) using LBVH, Wald et al’s method [Wal+19],
and OLBVH with lα ∈ {0, 1, 2} on a Quadro GP 100 (left, no RTX) and an RTX 2080 Ti (right, with RTX). The evaluation
considers only samples inside the geometry.

Figure 7.7 shows the sampling rates per second for the different ray marching variants. If no specialized
RTX hardware is used and lα = 0, the OLBVH approach outperforms the ray marching technique of Wald et al.
[Wal+19] by up to 8.4× and the LBVH variant by 2×–13×. The Jets mesh benefits the least, which is due

139

to the fact that it is geometrically a cube. Thus, ray marching cannot benefit from the prior space skipping
using the OLBVH. Nonetheless, we observe a significant speedup. For the Fusion and Part meshes, it is even
possible to choose lα = 1 and match the performance of Wald et al.’s method [Wal+19]. When the Pot mesh
is rendered, the OLBVH approach achieves to match the sampling rate of Wald et al.’s method [Wal+19]
with lα = 2. Therefore, an application could construct the OLBVH more quickly and use less memory while
achieving the same performance. The use of the LBVH results in lower sampling rates than the other methods.
Traversing the binary radix tree consumes significantly more time than using our method with lα ∈ {0, 1}.
However, RTX hardware accelerated ray marching is faster than using the OLBVH approach. As only a mi-
nority of GPUs provides RTX hardware, the OLBVH approach is expected to be superior on the majority of
GPUs.

7.4.4. Profiling DVR Performance

As the above sections evaluate the DVR only in terms of measured performance data, they do not give an
in-depth insight into the actual bottlenecks of the method. Therefore, a joint project with Buelow et al.
[Bue+24] aimed at the development of a visual profiling tool specifically for DVR. While the colleagues
focused on the development of the profiling tool, the author of this PhD thesis prepared the OLBVH DVR
implementation for using the profiling tool and interpreted the results. For preparation, each allocated array
of interest receives a unique identifier id ∈ N, which is handed over together with the memory address to
a shared library that maintains data throughout the profiling session. This project has enabled interesting
performance insights. The remainder of this section firstly gives an overview on the recorded performance
data and then discusses the profiling results in detail.

(a) SimJEB122 (b) SimJEB514

Figure 7.8.: Render images of the used SimJEB [WBM21] models.

As the access to global GPU memory is slow (cf. section 2.2.1), the profiling tool counts the number Nreq
of requests to global memory. This counter is recorded for each pixel NReq(x,y) of the rendered image, i.e.,
for each view ray. In this way, the profiler illuminates, which rays and which parts of the geometry produce
the peak of requests to global memory. Another important metric for performance is the branching b of a
thread, as branching reduces the speedup obtained by parallel execution. For this reason, the profiler records
the branching b(x,y) for each view ray. Furthermore, the caching of the arrays for traversal and access to
primitives as well as the mesh can also illuminate bottlenecks due to incoherent access in memory. Therefore,
the profiler records the cache hit rates p(id) for a specified array of GPU memory with identifier id ∈ N. Since
the collection of performance data for each ray enables in-depth analysis, the cache hit rates p(id)(x,y) are
also recorded for each pixel (x, y). As the recorded performance characteristics for one render image can be
mapped to the interval [0, 1], it is convenient to present the performance data in images, where each pixel

140

Branching b Requests NReq Cache hits CO Cache hits PO Cache hits P Tetrahedra Vertices

∆t = 1
lα = 0 0

1

∆t = 1
lα = 1 0

1

∆t = 1
lα = 2 0

1

∆t = 2
lα = 0 0

1

∆t = 1
lα = 0 0

1

∆t = 1
2

lα = 0 0

1

Figure 7.9.: Results for profiling the SimJeb122 model visualizing the branching rate b(x,y), numbers of requests
NReq(x,y) normalized by 215, and cache hit rates p(id)(x,y) for individual allocations id.

(x, y) represents the recorded data with a color value interpolated along a color scale. Following the example
of flame graphs [Gre20], the color scale of use includes all the colors of fire to produce “flame images”.

In order to profile DVR performance for a real world scenario, the profiling evaluation used two meshes
from the SimJeb dataset [WBM21] that includes optimized mechanical brackets from an engineering design
competition. While we tested the profiling toolkit on many models, the evaluation showcases the results for
the SimJEB514 with many sharp features and the SimJEB122 with many rounded features (see fig. 7.8). To
determine the effects of different parameter setups, the evaluation covers rendering the models with different
sampling rates and tree depths lα. For the sampling rate, the average edge length of a mesh serves as the
reference sampling rate that is factored by ∆t ∈ {2, 1, 12}. The experiments all use the regular sampling
algorithm introduced in section 7.2.2. For the tree depth, the profiling covers the cases lα ∈ {0, 1, 2}. The
profiling determines the cache hit rates for particular arrays related to traversal, in order to provide an in-
depth analysis. For traversal, the most relevant arrays are the children offsets CO, primitive offsets PO , and
the primitive indices P. In addition, the profiling also evaluates the caching of the tetrahedra and vertices of
the mesh to investigate which parts of the geometry receive the best cache hit rates. Figure 7.9 and fig. 7.10
showcase the profiling results for rendering the SimJEB122 and SimJEB514 models, respectively.

Most branching occurs for the rays intersecting only with the silhouette boundary of the model. Thus, these
rays reduce the occupancy of massively parallel execution. Using shallower trees or finer sampling rates does
not lead to significant differences in regards to branching behavior. On the contrary, the number of global
accesses significantly increases when increasing lα or reducing∆t. Global access numbers are especially large
at the curved features of the models, where a tetrahedral meshing tool typically uses a finer resolution to
correctly represent the features with sufficient element quality for simulation.

141

Branching b Requests NReq Cache hits CO Cache hits PO Cache hits P Tetrahedra Vertices

∆t = 1
lα = 0 0

1

∆t = 1
lα = 1 0

1

∆t = 1
lα = 2 0

1

∆t = 2
lα = 0 0

1

∆t = 1
lα = 0 0

1

∆t = 1
2

lα = 0 0

1

Figure 7.10.: Results for profiling the SimJeb514 model visualizing the branching rate b(x,y), numbers of requests
NReq(x,y) normalized by 215, and cache hit rates p(id)(x,y) for individual allocations id.

Cache hit rates for the children offsets (CO) slightly increase for a shallower tree and a finer sampling rate,
because traversal more often terminates in the same or memory-adjacent leaf nodes. However, hit rates for
primitive offsets (PO) are equally distributed and do not significantly change for altering lα or ∆t. A more
varying cache hit rate occurs for the primitive indices (P), while changing lα or∆t does not exhibit significant
influence. The cache hit rate for primitive indices is more governed by the scalar data and the structure of
the model. As scalar values are low at the round holes, these regions are rendered with high transparency
leading the DVR to spend more sampling points on the corresponding rays. Due to the round structure of
the holes, the corresponding tree nodes contain more empty space and are associated with fewer tetrahedra,
which leads to better cache hit rates.

One vertical line in the right part of the images of the SimJEB514 model indicates a large number of
accesses. The mesh resolution is finer along this vertical line leading to more memory accesses. Our visual
representation shows that cache hit rates of the P array also increase at these positions. As more primitives
are located along this line, the cache contains more primitive indices from P and the probability for a cache
hit increases. Increasing lα or ∆t leads to a better cache hit rate at the thin structures near the boundary and
the vertical line compared to the remainder of the model. The distribution of cache hit rates for vertices is
uniform for all choices of lα or ∆t for rendering both models.

Reflecting on the profiling results, important insights about the performance of DVR have been gathered.
As expected, the number of memory accesses increases for finer sampling of shallower trees. Especially, parts
of the mesh with finer resolution receive more memory requests, because more primitives need to be checked
after traversal. While these observations match common expectation, other insights are rather difficult to
predict intuitively. One of these insights is that cache hit rates do not necessarily improve by using a finer

142

sampling rate or the number of memory accesses in general. Even though more sample look ups take the
same path during tree traversal when using finer sampling, the caching cannot compensate the more frequent
memory requests. Another unexpected insight is that curved features lead to many memory requests, because
the finer mesh resolution accounts for more candidates during the search for a containing tetrahedron. This is
related to another insight, which reveals that peak branching occurs at the silhouette of the geometry. These
insights suggest sampling adaptive to the local deviation of the scalar field and geometry features, e.g, mesh
resolution or boundary structures. Avenues to improve DVR performance are considered as future work.

7.4.5. Performance of Coarsening for DVR

Since this thesis proposes a massively parallel algorithm for coarsening unstructured tetrahedral meshes for
DVR in section 7.3, the evaluation also comprises this algorithm. The evaluation demonstrates the resulting
DVR images on the Wrench, Part and Fusion meshes in fig. 7.11. In order to avoid many collapsing iterations
with little effect (cf. section 5.4.4), the experiments run with a specified collapsing threshold of 200, 500, and
700 for the Wrench, Part, and Fusion, respectively. As different choices for χ impose different workloads, the
evaluation sets χ = 0.02 or χ = 0.08 for the experiments. The median run times for the different meshes and
choices for χ are measured to investigate the performance. The mesh sizes in terms of NT, NE, and NV are
determined in the evaluation to show the process of coarsening. The evaluation hardware setup is equipped
with an NVIDIA RTX 3090 GPU and an Intel i9-11900K CPU.

The rendering images of the coarsened meshes in fig. 7.11 exhibit only little deviation from the rendered
images of the original meshes. Due to favoring edge collapses with little cost, smooth transitions of color
are well preserved. However, the proposed coarsening method can smooth sharp changes in the scalar field,
e.g., see the sharp change from magenta to blue in the rendering image of the Wrench. While the rendering
images are well preserved, the proposed coarsening method achieves to substantially reduce the size of the
meshes. The evaluation shows that a small choice for χ such as χ = 0.02 already leads to a substantial
reduction of the mesh size. For χ = 0.02 the proposed coarsening algorithm produces meshes of half the
size and for χ = 0.02 the algorithm produces meshes of even a quarter of the size. Therefore, many edges
represent only small transitions in the scalar values, while only few edges represent the sharp and fine grained
transitions in scalar values. The run time performance of the proposed methods exhibits run times of a few
seconds for coarsening the meshes. Thus, run time performance of the proposed coarsening method for DVR
does not enable coarsening at interactive rates and the coarsening of large unstructured tetrahedral meshes
with millions of elements should be executed as a pre-process for rendering static models. It is notable that
the coarsening for χ = 0.02 can take several seconds, while the difference in run time between χ = 0.02
and χ = 0.08 is typically much smaller than several seconds. As the re-building of TCSR mesh is a dominant
overhead (cf. section 5.4.3), this is an expected observation, because themesh is becoming smaller throughout
coarsening and smaller meshes require less time for determining the connectivity relationships. Throughout
the evaluation of this thesis, experiments have investigated, if the coarsening of the meshes has an effect on
DVR performance. The run time performance of DVR does not change significantly, as the sampling rate ∆t
is the dominant factor for the run time performance and depends on the scalar field. Therefore, one needs to
specify the same sampling rate despite coarsening to obtain a detailed visualization of the simulation results.
Nonetheless, the performance in terms of memory consumption improves due to coarsening, because the tree
depth of the spatial data structure is governed by the resolution of the mesh. After coarsening the mesh, less
tree nodes are required to achieve the point lookup with similar run time performance.

143

Wrench Original Coarsened with χ = 0.02 Coarsened with χ = 0.08
- 1.49 s 1.50 s

NT = 390k NE = 572k NT = 143k NE = 208k NT = 110k NE = 161k
NV = 104k NV = 38k NV = 29k

Part Original Coarsened with χ = 0.02 Coarsened with χ = 0.08
- 2.59 s 2.86 s

NT = 1.1M NE = 2M NT = 474k NE = 587k NT = 234k NE = 296k
NV = 136k NV = 86k NV = 45k

Fusion Original Coarsened with χ = 0.02 Coarsened with χ = 0.08
- 8.02 s 9.42 s

NT = 2.9M NE = 3.6M NT = 1.6M NE = 1.9M NT = 689k NE = 814k
NV = 606k NV = 290k NV = 118k

Figure 7.11.: Render images for coarsened versions of the Wrench, Part, and Fusion meshes. The collapse threshold εc
was set to 200, 500, and 700 for the Wrench, Part, and Fusion, respectively.

144

7.5. Conservative Slicing

As an addition tomemory-efficient DVR of unstructured tetrahedral meshes, this thesis presents a conservative
slicing method to interpolate material/scalar parameters for a sampling point inside the input mesh using
the containing tetrahedron. In case of a sampling point outside the mesh, the method extrapolates using the
closest tetrahedron intersecting the conservative AABB. Section 7.5.1 presents an algorithm for conservative
slicing and section 7.5.2 evaluates its run time performance.

7.5.1. Algorithm for Conservative Slicing using the OLBVH

Slicing is a technique in 3D printing, where the to-be-printed model is sampled in slices of 2D grids. A
slicing algorithm checks whether a sampling point of a slice is inside or outside the input geometry. Typically,
3D printing relies on surface meshes. However, printing volumetric objects of multiple materials [Zas20]
can benefit from using unstructured tetrahedral meshes. Especially, for high-resolution tetrahedral meshes,
the slicing algorithm requires a spatial data structure for intersection tests and lookup of the tetrahedron
containing a sampling point. Therefore it is interesting to explore, whether the OLBVH can be used for quick
spatial search to achieve fast slicing of unstructured tetrahedral meshes.

3D printer resolution
OLBVH leaf grid

A visualization of one slicing plane (blue) and the cross section
of a model as well as the OLBVH appears in the inset. For each
point in the blue grid, the model is sampled. If the point inter-
sects with the to-be-printed model, the 3D printer fills this local
area with material. In this way, a 3D prototype can be printed
from the digital geometry connecting the sampled points. Thus,
slicing of volumetric meshes with volumetrically varying mate-
rials, see e.g., Altenhofen et al. [Alt+18], is like DVR a point
location problem.

As the resolution of the 3D printer limits the resolution of geo-
metric details for printing, it can be challenging to produce pro-
totypes of high-resolution geometric details. The idea of con-
servative slicing is to produce a prototype with a slightly larger
shape so that the intended prototype can be carved out of the
printed model. As post-processing of 3D printed models using
conventional CAM or by polishing can only remove material, slicing typically has to be performed conserva-
tively, i.e., material should be represented as a voxel of the printing volume even if only the AABB of the voxel
intersects the geometry and not the voxel centroid itself. Therefore, if a tetrahedron intersects the AABB of
the voxel, the sampling point is valid. Using the resulting conservative prototype, the development team is
no longer limited to the resolution of the 3D printer at hand, because it can carve fine-grained geometric
details out of the conservative prototype.

The following describes an efficient conservative slicing algorithm using OLBVH. This algorithm initially
traverses the OLBVH for a sampling point, attempting to find a containing tetrahedron. If such tetrahedron
is found, the slicing method computes the barycentric coordinates to interpolate the material properties.
Due to tightly fitting AABBs, it is sufficient to find the single leaf node that contains the sampling point (cf.
section 7.2.2). If no such tetrahedron can be found, the sampling point is potentially near the boundary. In
this case, a second and final traversal phase constructs a conservative AABB around the sampling point. In
order to switch between the two traversal phases, the slicing method utilizes the efficient re-initialization
feature of the short stack [VWB19]. The second phase checks for intersections between the conservative
AABB for the sampling point and the AABBs of tree nodes. This traversal pass only considers boundary nodes

145

to decrease the number of relevant tree nodes. During traversal, the slicing method pushes each intersecting
leaf node to a queue. For all the leaf nodes in the queue, the slicing method tests for intersection with
the conservative AABB and the tetrahedra of the node using the intersection test by Ratschek and Rokne
[RR97]. Whenever an intersection occurs, the slicing method calculates the barycentric coordinates of the
grid point for the tetrahedron. As the barycentric coordinates indicate the closest vertex of the tetrahedron
to the grid point, the slicing method calculates the distance of the point to the tetrahedron vertex. The slicing
method approximately determines the closest tetrahedron and extrapolates the material properties using the
barycentric coordinates.

7.5.2. Runtime Performance of Conservative Slicing

As the conservative slicing algorithm should achieve fast run time performance, the evaluation discusses run
time measurements of the proposed algorithm using OLBVH and LBVH. The evaluation uses a 9992 grid using
planes and slice thicknesses normal to the slicing plane as they appear in table 7.3. For each slice, the origin
of the plane is the mesh AABB’s midpoint. The LBVH variant traverses the tree for the voxel AABB finding
the closest point in the mesh to the sampling point. As Wald et al’s [Wal+19] approach only applies to point
sampling of unstructured tetrahedral meshes, it is not applicable to conservative slicing. Like the evaluations
above, the evaluation of conservative slicing uses the Quadro GP 100 and RTX 2080 Ti GPUs. In order to
investigate how the run times of conservative slicing scale, the evaluation includes varying mesh sizes. The
use of geometries with different surface structures reveals the bottlenecks of the algorithm.

Table 7.3.: Mesh sizes and slicing setups for conservative slicing where the origin is the mesh AABB’s midpoint. The
slice thickness is the voxel size normal to the slicing plane.

Mesh Tetrahedra AABB of mesh Slice
Plane Thickness

Bunny 32.0 k 1×0.99×0.77 xy 0.05

Cylinder 172.4 k 0.52×1.4×0.52 xz 0.025

Cube 1.5 M 2×2×2 xy 0.05

Fusion 3.0 M 4.9×4.9×2.9 xy 0.1

Jets 12.3 M 127×127×127 xy 1

Figure 7.12 presents the median run times for conservative slicing using LBVH and OLBVH with lα ∈
{0, 1, 2}. As the number of samples is equal for every geometry, the resolution of the mesh is not the pre-
dominant factor that governs the run time. One important factor is the thickness of the slicing plane. For
instance, the test case for the Cube scenario allows for 40 slicing planes, while the slicing of the Jets model
allows for more than 100 slicing planes. Thus, the relative thickness is larger for slicing the Cube than for
the slicing the Jets, which leads to slower run time performance for the Cube, although the Jets mesh con-
sists of significantly more tetrahedra and the boundaries of both meshes are cubical. Since a thicker slicing
plane typically leads to more potentially intersecting primitives, the traversal needs to check more tree nodes,
which increases the run time. Another important factor for run time performance is the boundary structure
of the mesh. The boundary of the Fusion model is a torus. Therefore, for many sampling points, the second
traversal phase needs to determine barycentric coordinates to perform extrapolation. Since both spatial data
structures rely on AABBs as hull volumes, a rounded surface structure is enclosed by several small AABBs
that trigger more expensive narrow phase intersection tests of tetrahedron to box. This increases run times
significantly.

For every experiment, the run time performance of conservative smoothing provides fast results. On both

146

GPUs, each slicing method exhibits fast performance for a single slice with run times of a few milliseconds.
The approach using OLBVH outperforms LBVH for lα ∈ {0, 1} with speedups between 3× and 25×. As a
result, the OLBVH allows for substantial acceleration of conservative slicing, while 3D printing applications
for producing exact prototypes can benefit from fast, memory-efficient construction on GPUs.

0

50

100

150

200

250

Bu
nn
y

Cy
lin
de
r

Je
ts

Cu
be

Fu
sio
n

Ru
n
tim

e
(m

s)

0

20

40

60

80

100

120

Bu
nn
y

Cy
lin
de
r

Je
ts

Cu
be

Fu
sio
n

Ru
n
tim

e
(m

s)
LBVH OLBVH lα = 0 OLBVH lα = 1 OLBVH lα = 2

Figure 7.12.: Comparison of slicing times for a single slice using LBVH and our approach for lα ∈ {0, 1, 2} on a Quadro
GP 100 (left) and an RTX 2080 Ti (right).

7.6. Summary

In summary, this chapter has presented the memory-efficient OLBVH spatial data structure along with algo-
rithms for memory-efficient DVR and conservative 3D printing. The OLBVH does not depend on the RTX
platform (cf. section 3.8.3) and is specifically for volumetric meshes. The data layout of the OLBVH has en-
abled sparser memory usage compared to other spatial data structure that enable GPU-parallel construction.
Further reduction of memory consumption has been achieved by reducing the tree depth at the cost of re-
duced run time performance due to larger sets of primitives in OLBVH leaf nodes. The evaluation results have
revealed that the construction of the OLBVH terminates within a fraction of a second for meshes consisting
of millions of tetrahedra.

The performance of the proposed DVR algorithm is comparable to current methods on GPUs without RTX
hardware acceleration. This applies to the majority of GPUs. Due to neat exploitation of the OLBVH’s bound-
ary tree node marking, an efficient space skipping method is able to quickly shorten the relevant interval for
each ray. In-depth profiling of the proposed DVR algorithm has revealed important bottlenecks: peaks in
memory requests at locally more high-resolution mesh parts, high branching at the silhouette of the mesh,
and many accesses to global memory for fine sampling rates.

For further reduction of memory consumption, this chapter has presented a massively parallel algorithm for
coarsening unstructured tetrahedral meshes respecting the scalar field of simulation results. This algorithm
relies on the conflict detection presented in chapter 5. The evaluation of the algorithm has shown that
high-resolution unstructured tetrahedral meshes can be reduced to only a quarter of the initial size while
well-preserving many details of the rendered images. However, the algorithm can smooth sharp transitions
in the scalar field of simulation results. Despite the usage of the GPU for edge collapsing, the simplification
of tetrahedral meshes until no more edges can be collapsed remains too expensive for real-time performance,
because measured run times amount to several seconds. Only few iterations of edge collapsing, e.g., to
remove ill-shaped tetrahedra, can be done within hundreds of milliseconds.

In order to extend the presented massively parallel algorithms for VP by a bridge to physical prototypes,

147

this chapter has introduced a method for conservative slicing, which enables the 3D printing of a conserva-
tive physical prototype. By carving surplus material more high-resolution prototypes can be produced than
the resolution of the 3D printer allows for. The usage of the OLBVH has shown significant acceleration for
conservative slicing compared to LBVH.

Returning to RQ41, this chapter has shown that the memory efficiency of post-processing can be signifi-
cantly improved for rendering unstructured tetrahedral meshes. This applies to a multitude of GPUs, because
the presented algorithms do not depend on specific hardware acceleration such as the RTX platform. Com-
pared to hardware accelerated post-processing, the primary costs of the improved memory efficiency is the
overhead of prior coarsening, the use of a slightly more expensive construction for the spatial data structure,
and reduced run time performance of rendering. Nonetheless, good run time performance of DVR could
be achieved, which enables interactive rendering on large models with millions of tetrahedra. It is worth
noting that the profiling has revealed potential for improving the performance of DVR with OLBVH by, e.g.,
implementing adaptive sampling or load balancing to reduce branching.

1RQ4: How can the massively parallel post-processing of unstructured tetrahedral meshes be implemented with efficient memory usage?

148

8. Conclusion and Future Work

As a key result, this thesis has facilitated the use of GPUs, which enables faster virtual prototyping (VP) for VP
processes that involve unstructured tetrahedral meshes. The evaluation of this PhD-project has revealed that
VP processes using high-resolution unstructured tetrahedral meshes include many computationally expensive
tasks. Using the methods presented in this thesis, people can achieve substantial speedups for these tasks.
Therefore, the research for this PhD thesis has enabled significant acceleration of many important geometry
processing applications.

Since the research for this PhD thesis is primarily concerned with the RQs stated in section 1.3, the research
results enable to formulate answers to the initial RQs in section 8.1. As the answers to the RQs impact many
geometry processing applications, the conclusion in section 8.2 reflects on the key findings of this PhD thesis
and describes their most relevant impacts on industry and science. In order to provide a critical view on this
PhD thesis, section 8.3 describes important limitations of the proposed methods. Finally, section 8.4 provides
avenues for future work based on this PhD thesis.

8.1. Answering the Research Questions

After investigating the RQs formulated in section 1.3, the research results of this PhD thesis provides answers
to these RQs. To return to these RQs, this section revisits the initial RQs and provides a concise research
answer (RA) to each of the RQs:

RQ1: How can the use of the GPU accelerate mesh optimization and re-meshing tasks for unstructured tetra-
hedral meshes?

→→ RA1: The efficient use of the GPU requires dense sets of independent sub-meshes. Methods for massively
parallel conflict detection can quickly determine large sets of conflict-free sub-meshes of high-resolution tetrahedral
meshes. For massively parallel edge/face flips, conflict detection can to find the locally most beneficial flip for a
convex set of tetrahedra, which results in speedups of 133× - 254×. For massively parallel cavity-based re-
meshing, conflict detection can use the mesh topology to find independent sub-meshes around edges in only two
parallel passes. Using the resulting sub-meshes, enables significant acceleration of complex re-meshing tasks. For
instance, detecting dense sub-meshes for coarsening unstructured tetrahedral meshes exhibits speedups of up to
34× compared to CPU-sequential re-meshing, of up to 7.4× compared to CPU-parallel re-meshing, and of up to
2.7× compared to state-of-the-art GPU-parallel re-meshing. A dense set of sub-meshes enables fast convergence
of re-meshing, because many tetrahedra, i.e., cavities, can be processed in each parallel pass. The convergence
of the overall optimization should require few iterations for convergence. Massively parallel optimization and
re-meshing should rely primarily on the connectivity of the mesh avoiding auxiliary data structures. Due to
following these principles, the massively parallel harmonic mesh optimization algorithm using vertex relocation
and edge/face flips achieves speedups of 10× - 84× for precise boundary preservation and 3.77× - 60× for
approximate boundary preservation.

149

RQ2: How can massively parallel optimization and re-meshing of unstructured tetrahedral meshes robustly
produce meshes of sufficient quality for numerical simulations?

→→ RA2: The conflict detection used for massively parallel processing needs to find non-overlapping sub-meshes
so that the resulting meshes are valid. For optimization of vertex positions, the parallel relocation of vertices
should perform a gradient descent of one vertex while the adjacent vertices are fixed, because this prevents inverted
elements and conflicting gradient descent steps. Re-meshing operations should be prioritized by their improvement
of the to-be-optimized functional for robust convergence. Each operation to change the geometry or connectivity
of an unstructured tetrahedral mesh should check for inverted elements and degradation of the to-be-optimized
functional. An optimization or re-meshing algorithm should prevent to perform operations that lead to inverted
elements or worsen the to-be-optimized functional. The boundary treatment of the massively parallel optimization
algorithm should carefully respect minimization of the to-be-optimized functional, which can be achieved with the
use of directional derivatives along the boundary. In order to preserve the boundary of the geometry, a detection
of the surface features is required. A robust and massively parallel detection of surface features can be achieved
by using the topology of the mesh as well as the surface triangle normals. By following these considerations, the
proposed optimization and re-meshing algorithms produce valid unstructured tetrahedral meshes on more than
10 k test meshes [Hu+20].

RQ3: How can massively parallel mesh processing be used for quick editing of unstructured tetrahedral meshes
to shorten VP cycles?

→→ RA3: Massively parallel mesh editing operations on the basis of face groups and cages for deformation
control can be implemented to avoid returning to CAD, but these editing operations can degrade tetrahedral
element quality. For a seamless transition from CAD, face groups can be assigned from tags that originate from
CAD. If semantic face tags are not available or not suitable for the use case, face groups can also be determined
with the proposed massively parallel algorithm, which immediately finds a set of face groups with a run time
performance in a few milliseconds for meshes consisting of several ten thousands of triangles. In order to facilitate
editing based on face groups, users can control the resulting set of face groups detected by the proposed algorithm
with a user-defined angle threshold. Mesh editing algorithms based on face groups can achieve sufficient run
time performance for immediate results below one second, which has been shown for two editing operations: hole
closing and erosion. Hole closing fills drill holes with planar boundary loops, while erosion removes thin plate-
like parts. The run time performance of tetrahedral mesh editing based on face groups significantly benefits from
massively parallel boundary extraction, which results in a speedup of up to 12.1× compared to CPU-sequential
processing. The erosion algorithm benefits from massively parallel propagation, optimization, and smoothing
resulting in a speedup of up to 5.5×. Both editing operations achieved fast run time performance below one
second for models of more than 100 k elements. For non-mechanical prototypes, cage-based deformation is a
versatile method for interactive modeling of geometry. Cage-based deformation allows to express the geometry as
linear affine sums of cage vertices, which is a suitable computation scheme for GPUs. The recent advances in cage-
based deformation in the local deformation influence, support for quad cage faces, and shape/volume preservation
provide means for more advanced use of cage-based deformation in VP applications. The local influence of cage
vertices ensures that only the local nearby features of the geometry are deformed, while the global geometric shape
is preserved. The support for quad layouts for cages enables symmetry preservation and compliance with industry
standards. Due to advanced control over shape and volume preservation, cage-based deformation can be applied
to prototypes with smooth organic-like surfaces.

150

RQ4: How can the massively parallel post-processing of unstructured tetrahedral meshes be implemented with
efficient memory usage?

→→ RA4: The OLBVH spatial data structure can be organized in a linear, compact, and offset-based encoding
that allows for massively parallel construction and traversal. On graphics cards without RTX hardware, this
results in up to 2.51× fewer memory consumption compared to state-of-the-art spatial data structures. On
graphics cards with RTX hardware, the OLBVH consumes up to 1.93× fewer memory. The maximum tree depth
can be controlled by a user-defined parameter lα to control the trade off between memory consumption and run
time performance. Through setting lα = 2, the memory consumption can be further reduced by up to 9.87×
on graphics cards without RTX and by up to 7.6×, albeit at the cost of reduced runtime performance for the
algorithms using OLBVH due to a more shallow hierarchy. Despite the more memory efficient layout, the DVR
using OLBVH achieves a speedup of up to 8.4× on graphics cards without RTX hardware, which is the majority
of GPUs. This speedup is due to efficient space skipping exploiting the boundary marking of OLBVH tree nodes.
On graphics cards with RTX, the hardware-accelerated DVR is one order of magnitude faster than DVR using
OLBVH. Besides using a more memory efficient spatial data structure, high-resolution unstructured meshes can
be significantly coarsened. The coarsening can reduce the number of tetrahedral elements in a meshes by more
than 75% while preserving most of the smooth features. Sharp transitions in the scalar field might be smoothed
by coarsening.

8.2. Key Conclusions

Since this PhD thesis provides answers to the RQs 1-4, many geometry processing and rendering applications
can be improved in terms of run time performance and memory consumption. The results of this PhD thesis
predominantly impact VP processes that involve volumetric meshes, while their implications are not limited
to the domain of VP.

The presented algorithms for low-level unstructured tetrahedral mesh editing (cf. section 3.1) provide
robustness and speedup of important tasks of the virtual prototyping cycle by up to one or two orders of
magnitude. The robustness of the presented methods has been validated on a large test set of 10 k unstruc-
tured tetrahedral meshes [Hu+20]. The core of the presented massively parallel re-meshing methods are
conflict detection methods that prioritize the operations with the most desirable impact on the mesh and
determine a dense set of sub-meshes. This thesis has introduced two types of conflict detection. One conflict
detection method is specifically for the parallelization of edge/face flips, while the other finds conflict-free
sub-meshes around edges. The proposed method for massively parallel edge/face flips enables a speedup of
133× - 254×. The run time performance evaluation of massively parallel harmonic mesh optimization has
revealed significant speedups for mesh optimization using vertex relocation and edge/face flips in orchestra-
tion. With proper treatment of the mesh boundary using directional derivatives along the boundary elements
of the mesh, the massively parallel optimization achieved speedups of 10× - 84× for full boundary preser-
vation and 3.77× - 60× for approximate boundary preservation. The vertex position optimization performs
line searches with safety measures that prevent element inversions. For coarsening unstructured tetrahedral
meshes, the proposed method achieves a speedup of up to 34× compared to CPU-sequential processing, of
up to 7.4× compared to CPU-parallel processing, and of up to 2.7× compared to state-of-the-art GPU-parallel
processing.

These substantial speedups enable acceleration of well-established geometry processing applications. As
mesh adaptation methods extensively apply edge/face flips, vertex relocation and cavity-based re-meshing
[Iba+17], common mesh adaptation tools can use the methods presented in this thesis, in order to more
quickly obtain volumetric meshes for numerical simulation. This enables acceleration of complex geometry
processing tasks that rely on mesh adaptation. One example is topology optimization using locally adaptive

151

mesh resolutions for finding better solutions [Li+21]. Since shape optimization methods also rely on re-
meshing to avoid low-quality elements [OSW23], the quick optimization methodology introduced in this PhD
thesis can be used to improve mesh quality repeatedly during interactive design changes. Similar implications
can be concluded for morphing methods, because these methods are also concerned with producing meshes
of sufficient quality for numerical simulations [Sta+11].

For high-level editing (cf. section 3.1) of unstructured tetrahedral meshes, this thesis has presented user-
interactive methods for modeling a prototype. The proposed methods offer two ways of user-interaction:
face group selection and deformation by cage control. The face groups represent semantic features and can
be extracted from CAD or detected with the use of a massively parallel algorithm introduced in this thesis. In
order to achieve conceptional proof of the editing approach based on face groups, this thesis has presented
the hole closing and erosion editing operations. Massively parallel boundary extraction enabled a speedup
of up to 12.1× for hole closing and of up to 5.5× for erosion. Both editing operations have shown fast run
time performance below one second for meshes with more than 100 k tetrahedra. Face group-based editing
has successfully enabled the modeling of unstructured tetrahedral meshes so that numerical simulation using
the method of Weber et al. [Web+13; Web+15] could immediately provide feedback on the design change
without returning to CAD.

As face group-based mesh editing does not provide shape deformation, this thesis has comprehensibly
reviewed the facilities of cage-based deformation for 3D modeling. This review of the state of the art has
revealed that the recent advances in the generation of cages and the cage-based deformation bode well for
versatile use in 3D modeling of geometries with smooth organic-like surfaces. The advances in interactive
cage generation allow for user-defined cages that respect the semantic parts of the model. The local defor-
mation control of cage-based deformation enable the modification of certain local features while protecting
the global shape of the model. As some coordinate types support quad cage layouts, cage-based deforma-
tion is conformal with industry standards and preserves symmetric features well. In order to preserve the
shape of the surface, some coordinate types provide shape and volume preservation. For the use in VP, the
evaluation has shown that cage-based deformation typically provides preservation of element quality due to
the smoothness of deformation. Many different coordinate types for cage-based deformation have been pro-
posed, where each type has its own advantages and disadvantages. The most relevant coordinate types can
be applied using the open source application CageModeler that was developed throughout this PhD project
and can be retrieved at https://github.com/DanStroeter/CageModeler.

The customization of geometry is facilitated by using the mesh editing methods presented in this thesis.
Users can apply the editing based on face groups for quick customization of models with immediate simulation
feedback. Parametric modeling tools such as Fusion [Aut24] could employ the massively parallel face group
detection method to enable users to quickly configure a set of face groups. Users can use CageModeler to
deform unstructured surface and tetrahedral meshes. This enables the quick modification of prototypes with
organic-like surfaces, which can be useful for 3D printing or shape optimization.

For memory-efficient post-processing of unstructured tetrahedral meshes, this thesis has presented an im-
proved version of the OLBVH and algorithms that use this spatial data structure for DVR, coarsening and 3D
printing. The memory efficiency of the OLBVH compares well to other spatial data structures that provide
GPU-parallel construction. The compact offset-based data layout of the OLBVH organizes mesh elements
linearly along a space filling curve, which is the key reason for the efficient usage of memory. As a result, the
OLBVH achieves up to 2.51× fewer memory consumption on a GPU without RTX hardware and consumes up
to 93% fewer memory on a GPU with RTX hardware. In order to reduce memory consumption even further,
setting a tuning parameter can lead to shallower trees reducing memory consumption by up to 9.87× with
RTX and by up to 7.6× without RTX. In the evaluation, the OLBVH construction has exhibited quick run time
performance creating an OLBVH within a fraction of a second for meshes consisting of millions of tetrahedra.
The run time performance of the DVR algorithm using OLBVH compares well with state-of-the-art methods

152

https://github.com/DanStroeter/CageModeler

that do not use RTX hardware acceleration achieving a speedup of up to 8.4×. The largest speedups are
achieved on meshes with shell-like boundaries, because the boundary marking allows for efficient empty
space skipping for these models. RTX hardware-accelerated DVR is one order of magnitude faster than DVR
using OLBVH. However, only a minority of the available GPUs includes RTX hardware. An in-depth profiling
has revealed great performance improvement potential for sampling adaptive to the local mesh resolution,
transfer function, and surface features.

Since the OLBVH provides controlled use of memory and fast rendering performance, it can be used on
GPUs that provide low memory capacity. Due to its fast construction performance, the OLBVH provides accel-
eration of spatial lookups in time-critical environments such as simulating dynamically deforming bodies. This
is interesting for collision detection applications, where several objects are dynamically moving and an inter-
section check needs to check for collision events. As the OLBVH is designed for volumetric meshes, it allows
for collision detection in the interior of an object as it is required for volumetric simulation applications such
as cut simulation [DKK22]. In addition, the post-processing of dynamically deforming geometry [Her+14],
e.g., the application of a displacement field, can benefit from fast construction of OLBVH for deformed ver-
sions of the unstructured volumetric mesh. Due to the memory efficiency of the OLBVH, different spatial data
structures can be computed for different deformed states of the geometry, provided that the deformation of
the geometry is predictable.

Besides the memory-efficient OLBVH this thesis has presented a coarsening method to compress meshes for
DVR, in order to reduce memory consumption. The evaluation has revealed that meshes can be significantly
compressed by up to 75%with good preservation of image fidelity. Smooth scalar data can be preserved well,
while sharp transitions in the scalar field may be smoothed by simplification. For 3D printing, this thesis has
presented an algorithm for slicing a high-resolution tetrahedral mesh consisting of millions of elements within
a few milliseconds for each slice. This slicing algorithm provides a conservative bound of the model instead
simple point sampling so that the printed model can be machined to a more fine-grained resolution.

The coarsening for DVR can be useful, whenever the mesh at hand exceeds the memory capacity of the ma-
chine. In addition, the coarsening can be used to compress high-resolution meshes for transmission over the
web. This can be useful for DVR with access to or retrieval from a database server [Kri+06]. The conservative
slicing can be applied in 3D printing of high-resolution geometries consisting of multiple materials [Zas20].

Besides presenting algorithms for massively parallel, memory-efficient processing of unstructured tetrahe-
dral meshes, this thesis has extended the framework of harmonic triangulation [Ale19], which is worthwhile
to reflect upon. The framework of harmonic triangulation has been extended by a gradient expression for a
vertex of a simplex (cf. section 4.1). This facilitates the usage of Gauß-Seidel iteration order for optimizing
vertex positions. Moreover, the new gradient expression consist only of geometric quantities, which enables
the geometric interpretation of the harmonic gradient in future work. Another contribution about the har-
monic triangulation consists in showing that the usage of edge collapse operations optimizing Dirichlet energy
effectively eliminates sliver tetrahedra (see section 5.2).

In view of the implications described above, facilitating the use of the GPU for processing high-resolution
unstructured tetrahedral meshes has opened the gate towards fast design and analysis of volumetric geometry.

8.3. Limitations

In order to reflect critically on the results of this thesis, this section describes relevant limitations that decrease
the utility of the proposed algorithms for VP processes.

The presented element quality optimization and re-meshing algorithms converge to a local minimum and
cannot guarantee to find a global minimum. Consequently, the proposed mesh improvement algorithms
cannot guarantee to achieve a target mesh quality. Such a guarantee would require exhaustive optimization
algorithms, which will typically exhibit slower run time performance, while the use of the GPU could also be

153

beneficial for this class of optimization algorithms. Especially for complex geometries, terminating in a local
optimum for element quality can lead to suboptimal mesh quality.

Similar to morphing methods [Sta+11], the element quality of tetrahedra can degrade throughout user-
interactive editing. Therefore, an additional optimization stepmight be necessary, in order to obtain sufficient
tetrahedral element quality for a numerical simulation. This can reduce the run time performance of editing
operations so that they are not perceived as immediate anymore.

The run time performance of coarsening high-resolution, unstructured tetrahedral meshes for DVR has
exhibited a run time performance of several seconds despite the usage of the GPU. Consequently, the coars-
ening does not achieve interactive rates for a collapsing of edges until convergence. Thus, it does not meet
the demands for real-time applications such as DVR and can only be considered as a pre-process for such
applications.

Since this thesis focuses on massively parallel processing, many of the proposed algorithms are designed
with high-resolution meshes in mind. For instance, the approximate boundary preservation for optimizing
quality (see-section 4.3.4) and the face group determination (see section 6.1.2) are probably not suitable for
coarse meshes, while CPU-processing should be fast enough for low-resolution meshes.

As the OLBVH sorts Morton codes of 32-bit integers, the construction is limited to 10 hierarchical tree
levels. Larger 64-bit integers could be used for storing Morton codes, which requires adjustment of the
described construction. In addition, using larger integers can potentially reduce the run time performance of
the construction significantly.

8.4. Future Work

Answering the initial research questions leads to new research questions, which can be addressed in future
work. Since the improvements in run time performance are attractive for many applications, there are many
avenues for future work based on this thesis. Section 8.4.1 suggests interesting avenues to further improve the
capabilities of fast methods to generate unstructured tetrahedral meshes for numerical simulations. In order
to better meet the demand for techniques to shorten the VP cycle, it might be worthwhile to further improve
the user-interactive editing methods by following the avenues described in section 8.4.2. The capabilities
of post-processing could be further improved by following the research avenues described in section 8.4.3.
Some of he presented algorithms can be extended to unstructured hexahedral meshes following the research
avenues described in section 8.4.4.

8.4.1. Avenues for Faster Generation and Optimization of Unstructured Tetrahedral Meshes

The following paragraphs describe avenues of future work based on the meshing techniques presented in this
thesis:

Mesh Optimization along Continuously Curved Boundaries It is an interesting avenue of future work to
explore if the boundary vertex optimization along directional derivatives (cf. section 4.3.4) can be extended to
curved B-Reps. Since the most common types of CAD curves enable the computation of a derivative, it could
be possible to efficiently evaluate the directional derivative for a given element quality function. This would
provide a sub-curve along the continuous geometry. A line search with bracketing could potentially be com-
bined with a sophisticated rule to handle the interfaces between different curves so that good mesh quality
and convergence properties are achieved. When using super-linear basis functions and higher order elements,
a massively parallel algorithm could probably be formulated and support for deforming objects could possibly
be achieved. The resulting algorithm could be an important contribution to the recently very active fields

154

of gradient-based mesh optimization [Rem+20; She+21; She+23] and shape optimization [CD20; WRC23;
Cha23; HES23], as the available algorithms in these fields oftentimes use level sets and could benefit from
increased efficiency. In addition, the proposed algorithm could find its use as an optimization step after mesh
generation.

Massively ParallelMeshGeneration using theAdvancing FrontMethod The advancing front (ADF)method
generates an unstructured volumetric mesh by repeatedly adding elements to a closed surface, i.e., the front,
until the front cannot evolve any further and the volumetric elements form a mesh representing Ω defined
by the input closed surface. As the evolving of the surface can be massively parallelized, which was demon-
strated by Zhou et al. [ZWY22], it may be possible to devise a massively parallel ADF method for generating
a harmonic triangulation (cf. section 2.1.3). As harmonic flips provide good run time performance (cf. sec-
tion 4.6.2), they can be used in place of Delaunay flips for ADF meshing. The resulting algorithm would allow
for massively parallel mesh generation from an input PLC, which is a desirable goal, as most 3D massively
parallel Delaunay triangulation algorithms [Cao+14; FLP14; Ray+18] do not ensure to conform to a PLC.

8.4.2. Avenues for Shorter Design Cycles in Virtual Prototyping

The following paragraphs describe avenues of future work based on the interactive editing operations of
unstructured tetrahedral meshes presented in this thesis:

Sophisticated Editing of UnstructuredTetrahedral usingMorphological Operations It might be possible to
extend the proposed editing operations of unstructured tetrahedral meshing bymore parametrized and robust
morphological operations. Recent work in the field of configurable and robust morphological operations in
surface meshes [Sel+20; SVM23] admit stable modeling using advanced morphological operations such as
closing or shrink wrap. Therefore, these methods could be applied on selected face groups (cf. section 6.1) of
the tetrahedral mesh boundary, in order to allow for more sophisticated editing. With the use of the presented
massively parallel low-level mesh editing algorithms, it might be possible to accelerate many steps of these
advanced morphological operations with the GPU so that fast run time performance for interactive editing is
achieved. As a result, the user would be able to customize a virtual prototype for certain optimization goals,
e.g., adding or removing material at selected parts of the model, while benefiting from immediate interactive
simulation feedback.

Fast Reconstruction of CAD Geometries using Face Groups Since the face groups provide a link to the
original geometry defined in CAD, it could be worthwhile to explore, whether the face groups can be used
to reconstruct constructive solid geometry (CSG)-trees from the face groups. Academic research has evolved
many methods to reverse-engineer CSG-trees from polygonal meshes [FF24]. Some of these methods could
be apt to extract a CSG-tree from the boundary face groups of an edited unstructured tetrahedral mesh.
One editing operation of the unstructured tetrahedral mesh typically invalidates the CAD geometry of the
prototype. In order to allow for seamless prototyping with unstructured meshes, it would be beneficial to
obtain CAD geometries after modeling the discrete mesh with immediate simulation feedback. As a result,
users would be able to perform simple modeling operations on the discrete mesh with immediate simulation
feedback and the modeling with high-precision demands could be carried out on the reconstructed CAD
geometry.

Cage Generation of CAD Geometries for Editing Prototypes So far, cage generation has primarily been
applied to discrete surface meshes. In VP, the discrete mesh is typically obtained from discretizing the B-
Reps defined in CAD. As present open source CAD frameworks such as Open Cascade [Cap24] provide a

155

multitude of algorithms to model geometry, it may be possible to robustly generate an enclosing cage of a
CAD geometry that can be used for deform the discrete mesh. Another important advantage of cages on the
basis of CAD geometries is that the generation can exploit the additional information stored by many CAD
formats. As many CAD formats allow to tag certain semantic parts of the geometry, the cage generation could
wrap the individual semantic parts with coarse cages combining these cages to one cage for the model. This
would result in a similar approach to CSG-trees.

8.4.3. Avenues to Advance Rendering Performance

The following paragraphs describe avenues of future work based on the post-processing techniques presented
in this thesis:

Improving thePerformanceofOLBVH As the evaluation revealed the current bottlenecks (see section 7.4.4),
which allows to devise potential performance improvements, an interesting avenue of future research is im-
proving the performance of DVR applications using OLBVH. One promising approach is the use of adaptive
sampling, because it reduces the number of samples per view ray. Adaptive sampling methods have been
successful in improving the performance of ray marching [Kra+07; Mor+19]. Since the OLBVH provides
non-loose bounding volumes, each bounding volume covers a unique part of the scalar field. Therefore,
statistical concepts could be applied to bounding volumes to govern the sampling rate for each bounding
volume. A pre-process could apply a statistical scheme that uses the sampling rate or the local mesh reso-
lution, in order to determine the sampling rate locally. The hierarchical structure of OLBVH could allow for
combination of statistics and early approximation of the scalar values during traversal. Since the view rays
that intersect the silhouette of the geometry impose the most branching, it could be beneficial to bundle these
rays in thread blocks to reduce thread divergence (cf. section 2.2.1).

Fast Dynamic Update of Spatial Data Structures Since the construction of the OLBVH uses a quick bottom-
up mapping scheme to assign primitives to unique bounding volumes, it might be beneficial to extend the
construction to dynamically changing geometries. Currently, the majority of spatial data structures for quick
GPU-parallel construction demands a reconstruction from scratch, whenever unpredictable and large defor-
mations of the corresponding geometry occur. Fast update schemes for moving or otherwise changing geom-
etry can potentially be derived by mapping new primitives and re-mapping changed primitives to existing
tree nodes or quickly re-organizing the hierarchy. Probably, such schemes impose the cost of preallocation of
larger buffers in memory for adding primitives. In numerical simulation environments, a fast update for the
OLBVH could enable DVR of a prototype during its simulation so that the engineers can investigate the impact
of loads during an actively running simulation that uses an unstructured volumetric mesh. Perhaps, research
in quick updates of spatial data structures for volumetric meshes can spark innovations for maintaining spa-
tial data structures for rendering surface meshes, because BLASes, e.g., for raytracing or pathtracing, need
also to be reconstructed after large and unpredictable deformation [Sjo22]. In a thesis under the author’s
supervision Kelling [Kel24] has shown that culling the scene with non-overlapping AABBs can significantly
accelerate pathtracing of dynamic scenes using state-of-the-art game engines. Thus, spatial data structures
similar to the OLBVH might be useful for culling techniques as well.

8.4.4. Avenues for Massively Parallel Processing of Unstructured Hexahedral Meshes

Besides tetrahedral meshes, many VP applications use unstructured hexahedral meshes for robust numerical
simulation [Pie+22]. However, the fast generation of high-resolution unstructured hexahedral meshes of

156

high element shape quality remains as a challenge. Therefore, the following paragraphs describe avenues of
future work for massively parallel processing of unstructured hexahedral meshes:

Massively Parallel Optimization and Re-meshing of Unstructured Hexahedral Meshes In order to accel-
erate the optimization of high-resolution unstructured hexahedral meshes, it could be worthwhile to extend
the optimization and re-meshing algorithms proposed in this PhD thesis to hexahedral meshes. The global op-
timization of unstructured hexahedral meshes is also a compute-intensive problem, which is typically solved
using Gauß-Seidel iterations to prevent inverted elements [Rui+15]. Therefore, a significant speedup of
the optimization can be achieved by extending the proposed massively parallel vertex relocation algorithm
to unstructured hexahedral meshes. The proposed vertex relocation prevents inversions by an intersection
test between the ray in the direction of steepest descent and the halfspace spanned by opposing faces of an
element. This can be extended to hexahedral elements to achieve a fast and robust optimization of vertex
positions. In addition, the detection and preservation of the boundary features could be extended to hexahe-
dral elements with the use of bilinear quads for interpolating surface normals. In this way, a boundary vertex
could be relocated along the surface using directional derivatives.

As unstructured hexahedral meshes can also be optimized performing flips that do not change the boundary
of their cavity [VPR19], extending the proposed conflict detection to hexahedral elements is a possible way
to accelerate the compute-intensive connectivity optimization of hexahedral meshes. This extension requires
computing the adjacent elements to a hexahedral element. Like the proposed algorithm, a conflict detection
for hexahedral elements could find the most beneficial flip checking a flip with all of the adjacent elements.
In another parallel pass, the locally most beneficial flip can be found. If two adjacent elements share the
same most beneficial flip, a locally most beneficial flip is found. While performing the locally most beneficial
flip, the other adjacent elements need to be fixed.

ImprovingMemory Efficiency of Post-processingUnstructuredHexahedralMeshes As the compact offset-
based data layout of the OLBVH can be extended to unstructured hexahedral meshes, it is an interesting av-
enue for future work to use the OLBVH for DVR of hexahedral meshes. This would enable to use the GPU for
visualizing simulation results using unstructured hexahedral meshes, which is a current challenge [Pie+22].
Many of the current approaches only use cutting planes to hide certain hexahedra [Bra+19]. Since this does
not scale well to meshes with millions of hexahedra, DVR of hexahedral meshes using OLBVH could improve
the state of the art in post-processing. For GPU-parallel construction of an OLBVH for unstructured hexahe-
dral meshes, one needs to implement a way to generate Morton codes for a hexahedron so that one Morton
code is generated for each cell of the Morton grid intersecting with the given hexahedron. In addition, it
would be useful to quickly determine the boundary hexahedra to employ boundary marking of tree nodes for
efficient empty space skipping. For convex hexahedra, the proposed massively parallel DVR algorithm using
OLBVH could perform the analogue steps to visualize a scalar field of simulation results using an unstruc-
tured hexahedral mesh, while for non-convex hexahedra the DVR involves additional challenges for efficient
intersection detection and interpolation.

157

References

[AAN12] G. Anderson, M. Aftosmis, M. Nemec, “Parametric deformation of discrete geometry for aerody-
namic shape design”. In: Proceedings of the 50th AIAA Aerospace Sciences Meeting including the
New Horizons Forum and Aerospace Exposition. Nashville, January 2012, Article 965, 18 pages.
doi: 10.2514/6.2012-965.

[Ado24] Adobe. Mixamo. 2024. url: https://www.mixamo.com (visited on May 7, 2024).
[Al +16] H. Al Akhras, T. Elguedj, A. Gravouil, M. Rochette, “Isogeometric analysis-suitable trivariate

NURBS models from standard B-Rep models”. In: Computer Methods in Applied Mechanics and
Engineering 307 (2016), pp. 256–274. doi: 10.1016/j.cma.2016.04.028.

[Ala+06] F. Alauzet, X. Li, E. S. Seol, M. S. Shephard, “Parallel anisotropic 3D mesh adaptation by mesh
modification”. In: Engineering with Computers 21.3 (January 2006), pp. 247–258. doi: 10.10
07/s00366-005-0009-3.

[Ale+20] M. Alexa, P. Herholz, M. Kohlbrenner, O. Sorkine-Hornung, “Properties of Laplace Operators
for Tetrahedral Meshes”. In: Computer Graphics Forum 39.5 (2020), pp. 55–68. doi: 10.1111
/cgf.14068.

[Ale19] M. Alexa. “Harmonic triangulations”. In: ACM Transactions on Graphics 38.4 (2019), pp. 1–14.
doi: 10.1145/3306346.3322986.

[All+05] P. Alliez, D. Cohen-Steiner, M. Yvinec, M. Desbrun, “Variational Tetrahedral Meshing”. In: ACM
Transactions on Graphics 24.3 (2005), p. 617. doi: 10.1145/1073204.1073238.

[Alt+18] C. Altenhofen, T. H. Luu, T. Grasser, M. Dennstädt, J. S. Mueller-Roemer, D. Weber, A. Stork,
“Continuous Property Gradation for Multi-material 3D-printed Objects”. In: Proceedings of the
29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing
Conference. SFF ’18. 2018, pp. 1675–1685.

[Alt21] C. Altenhofen. “Volumetric Subdivision for Efficient Integrated Modeling and Simulation”. PhD
thesis. Darmstadt, Germany: Technical University of Darmstadt, 2021. doi: 10.26083/tupr
ints-00014617.

[AO06] M. Arroyo, M. Ortiz, “Local maximum-entropy approximation schemes: A seamless bridge be-
tween finite elements and meshfree methods”. In: International Journal for Numerical Methods
in Engineering 65.13 (March 2006), pp. 2167–2202. doi: 10.1002/nme.1534.

[Ape14] C. Apetrei. “Fast and Simple Agglomerative LBVH Construction”. In: Computer Graphics and
Visual Computing (CGVC). 2014. doi: 10.2312/cgvc.20141206.

[APH17] D. Anisimov, D. Panozzo, K. Hormann, “Blended barycentric coordinates”. In: Computer Aided
Geometric Design 52–53 (March 2017), pp. 205–216. doi: 10.1016/j.cagd.2017.02.007.

[Arp+22] L. Arpaia, H. Beaugendre, L. Cirrottola, A. Froehly, M. Lorini, L. Nouveau, M. Ricchiuto, “H-
and r-adaptation on simplicial meshes using MMG tools”. In: Mesh Generation and Adaptation:
Cutting-Edge Techniques. Springer, 2022, pp. 183–208.

159

https://doi.org/10.2514/6.2012-965
https://www.mixamo.com
https://doi.org/10.1016/j.cma.2016.04.028
https://doi.org/10.1007/s00366-005-0009-3
https://doi.org/10.1007/s00366-005-0009-3
https://doi.org/10.1111/cgf.14068
https://doi.org/10.1111/cgf.14068
https://doi.org/10.1145/3306346.3322986
https://doi.org/10.1145/1073204.1073238
https://doi.org/10.26083/tuprints-00014617
https://doi.org/10.26083/tuprints-00014617
https://doi.org/10.1002/nme.1534
https://doi.org/10.2312/cgvc.20141206
https://doi.org/10.1016/j.cagd.2017.02.007

[Asa+21] A. Asaduzzaman, A. Trent, S. Osborne, C. Aldershof, F. N. Sibai, “Impact of CUDA and OpenCL
on Parallel and Distributed Computing”. In: 2021 8th International Conference on Electrical and
Electronics Engineering (ICEEE). IEEE, April 2021. doi: 10.1109/iceee52452.2021.9415
927.

[Att+08] M. Attene, M. Mortara, M. Spagnuolo, B. Falcidieno, “Hierarchical Convex Approximation of 3D
Shapes for Fast Region Selection”. In: Computer Graphics Forum 27.5 (July 2008), pp. 1323–
1332. doi: 10.1111/j.1467-8659.2008.01271.x.

[Aut24] Autodesk. Create a face group from faces on a mesh body. 2024. url: https://help.autode
sk.com/view/fusion360/ENU/?guid=MESH-CREATE-FACE-GROUP (visited on July 10,
2024).

[Aya15] U. Ayachit. The paraview guide: a parallel visualization application. Kitware, Inc., 2015.
[Bad+16] C. Bader, W. G. Patrick, D. Kolb, S. G. Hays, S. Keating, S. Sharma, D. Dikovsky, B. Belocon, J. C.

Weaver, P. A. Silver, N. Oxman, “Grown, Printed, and Biologically Augmented: An Additively
Manufactured Microfluidic Wearable, Functionally Templated for Synthetic Microbes”. In: 3D
Printing and Additive Manufacturing 3.2 (2016), pp. 79–89. doi: 10.1089/3dp.2016.0027.

[Bak+17] D. Bakunas-Milanowski, V. Rego, J. Sang, Y. Chansu, “Efficient Algorithms for Stream Com-
paction on GPUs”. In: International Journal of Networking and Computing 7.2 (2017), pp. 208–
226. doi: 10.15803/ijnc.7.2_208.

[Bel06] A. Belyaev. “On transfinite barycentric coordinates”. In: Proceedings of the 4th Symposium on
Geometry Processing. SGP ’06. Cagliari, June 2006, pp. 89–99. doi: 10.2312/SGP/SGP06/0
89-099.

[Ben+18] D. Benítez, E. Rodríguez, J. M. Escobar, R. Montenegro Armas, “Parallel optimization of tetrahe-
dral meshes”. In: Proceedings of the 6th European Conference on Computational Mechanics: Solids,
Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational
Fluid Dynamics. 2018, pp. 4403–4412.

[BHU10] D. Burkhart, B. Hamann, G. Umlauf, “Iso-geometric Finite Element Analysis Based on Catmull-
Clark Subdivision Solids”. In: Computer Graphics Forum 29.5 (September 2010), pp. 1575–
1584. doi: 10.1111/j.1467-8659.2010.01766.x.

[Bis17] J. E. Bishop. “Applications of polyhedral finite elements in solid mechanics”. In: Generalized
Barycentric Coordinates in Computer Graphics and Computational Mechanics. CRC Press, 2017,
pp. 179–196.

[BK04] M. Botsch, L. Kobbelt, “An intuitive framework for real-time freeformmodeling”. In: ACM Trans-
actions on Graphics 23.3 (August 2004), pp. 630–634. doi: 10.1145/1015706.1015772.

[BK16] N. Binder, A. Keller, “Efficient Stackless Hierarchy Traversal on GPUs with Backtracking in Con-
stant Time”. In: Eurographics/ACM SIGGRAPH Symposium on High Performance Graphics. Ed. by
Ulf Assarsson and Warren Hunt. The Eurographics Association, 2016. doi: 10.2312/hpg.20
161191.

[Ble23] Blender Foundation. Blender 4.0. 2023. url: https://www.blender.org/ (visited on
November 27, 2023).

[Ble90] G. E. Blelloch. Prefix sums and their applications. Tech. rep. School of Computer Science, Carnegie
Mellon University Pittsburgh, PA, USA, November 1990.

160

https://doi.org/10.1109/iceee52452.2021.9415927
https://doi.org/10.1109/iceee52452.2021.9415927
https://doi.org/10.1111/j.1467-8659.2008.01271.x
https://help.autodesk.com/view/fusion360/ENU/?guid=MESH-CREATE-FACE-GROUP
https://help.autodesk.com/view/fusion360/ENU/?guid=MESH-CREATE-FACE-GROUP
https://doi.org/10.1089/3dp.2016.0027
https://doi.org/10.15803/ijnc.7.2_208
https://doi.org/10.2312/SGP/SGP06/089-099
https://doi.org/10.2312/SGP/SGP06/089-099
https://doi.org/10.1111/j.1467-8659.2010.01766.x
https://doi.org/10.1145/1015706.1015772
https://doi.org/10.2312/hpg.20161191
https://doi.org/10.2312/hpg.20161191
https://www.blender.org/

[Boy10] S. Boyd. “Distributed optimization and statistical learning via the alternating direction method
of multipliers”. In: Foundations and Trends® in Machine Learning 3.1 (July 2010), pp. 1–122.
doi: 10.1561/2200000016.

[Bra+19] M. Bracci, M. Tarini, N. Pietroni, M. Livesu, P. Cignoni, “HexaLab.net: An online viewer for
hexahedral meshes”. In: Computer-Aided Design 110 (2019), pp. 24–36. doi: 10.1016/j.
cad.2018.12.003.

[BS07] A. I. Bobenko, B. A. Springborn, “A Discrete Laplace–Beltrami Operator for Simplicial Surfaces”.
In: Discrete & Computational Geometry 38.4 (September 2007), pp. 740–756. doi: 10.1007
/s00454-007-9006-1.

[BSB07] A. de Boer, M. S. van der Schoot, H. Bijl, “Mesh deformation based on radial basis function
interpolation”. In: Computers & Structures 85.11–14 (June 2007), pp. 784–795. doi: 10.101
6/j.compstruc.2007.01.013.

[Bud+16] M. Budninskiy, B. Liu, Y. Tong, M. Desbrun, “Power coordinates: A geometric construction of
barycentric coordinates on convex polytopes”. In: ACM Transactions on Graphics 35.6 (Novem-
ber 2016), Article 241, 11 pages. doi: 10.1145/2980179.2982441.

[Bue+24] M. v. Buelow, D. Ströter, A. Rak, D. W. Fellner, “A Visual Profiling System for Direct Volume Ren-
dering”. In: Eurographics 2024 - Short Papers. Ed. by Ruizhen Hu and Panayiotis Charalambous.
The Eurographics Association, 2024. doi: 10.2312/egs.20241030.

[BWG09] M. Ben-Chen, O. Weber, C. Gotsman, “Spatial deformation transfer”. In: Proceedings of the Sym-
posium on Computer Animation. SCA ’09. New Orleans, August 2009, pp. 67–74. doi: 10.114
5/1599470.1599479.

[Cao+14] T.-T. Cao, A. Nanjappa, M. Gao, T.-S. Tan, “A GPU accelerated algorithm for 3D Delaunay trian-
gulation”. In: Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. New York, NY, USA: Association for Computing Machinery, 2014, pp. 47–
54. doi: 10.1145/2556700.2556710.

[Cap24] Capgemini. Open Cascade. 2024. url: https://www.opencascade.com/ (visited on
June 7, 2024).

[Cas+19] S. Casti, M. Livesu, N. Mellado, N. Abu Rumman, R. Scateni, L. Barthe, E. Puppo, “Skeleton
based cage generation guided by harmonic fields”. In: Computers & Graphics 81 (June 2019),
pp. 140–151. doi: 10.1016/j.cag.2019.04.004.

[CB17] S. Calderon, T. Boubekeur, “Bounding proxies for shape approximation”. In: ACM Transactions
on Graphics 36.4 (July 2017), Article 57, 13 pages. doi: 10.1145/3072959.3073714.

[CC12] J. Cohen, P. Castonguay, “Efficient graphmatching and coloring on the GPU”. In:GPU Technology
Conference. 2012, pp. 1–10.

[CD20] B. Chaudet-Dumas, J. Deteix, “Shape Derivatives for the Penalty Formulation of Elastic Contact
Problems with Tresca Friction”. In: SIAM Journal on Control and Optimization 58.6 (2020),
pp. 3237–3261. doi: 10.1137/19M125813X.

[CDD23] J. Chen, F. De Goes, M. Desbrun, “Somigliana coordinates: An elasticity-derived approach for
cage deformation”. In: SIGGRAPH 2023 Conference Proceedings. Los Angeles, July 2023, Article
52, 8 pages. doi: 10.1145/3588432.3591519.

161

https://doi.org/10.1561/2200000016
https://doi.org/10.1016/j.cad.2018.12.003
https://doi.org/10.1016/j.cad.2018.12.003
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.1016/j.compstruc.2007.01.013
https://doi.org/10.1016/j.compstruc.2007.01.013
https://doi.org/10.1145/2980179.2982441
https://doi.org/10.2312/egs.20241030
https://doi.org/10.1145/1599470.1599479
https://doi.org/10.1145/1599470.1599479
https://doi.org/10.1145/2556700.2556710
https://www.opencascade.com/
https://doi.org/10.1016/j.cag.2019.04.004
https://doi.org/10.1145/3072959.3073714
https://doi.org/10.1137/19M125813X
https://doi.org/10.1145/3588432.3591519

[CDE+13] B. Cosenza, C. Dachsbacher, U. Erra, “GPU Cost Estimation for Load Balancing in Parallel Ray
Tracing”. In: Proceedings of the International Conference on Computer Graphics Theory and Ap-
plications and International Conference on Information Visualization Theory and Applications.
SciTePress - Science, 2013. doi: 10.5220/0004283401390151.

[CDH23] Q. Chang, C. Deng, K. Hormann, “Maximum likelihood coordinates”. In: Computer Graphics
Forum 42.5 (August 2023), Article e14908, 13 pages. doi: 10.1111/cgf.14908.

[CDM04] B. Cutler, J. Dorsey, L. McMillan, “Simplification and Improvement of Tetrahedral Models for
Simulation”. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing. Association for Computing Machinery (ACM), July 2004. doi: 10.1145/1057432
.1057445.

[CF14] X. Chen, J. Feng, “Adaptive skeleton-driven cages for mesh sequences”. In: Computer Animation
& Virtual Worlds 25.3–4 (May 2014), pp. 445–453. doi: 10.1002/cav.1577.

[Cha23] B. Chaudet-Dumas. “A shape optimization algorithm based on directional derivatives for three-
dimensional contact problems”. In: International Journal for Numerical Methods in Engineering
124.13 (2023), pp. 2935–2964. doi: 10.1002/nme.7235.

[CHB09] J. A. Cottrell, T. J. Hughes, Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA.
John Wiley & Sons, 2009. Chap. 1, pp. 1–7.

[Che+13a] S.-W. Cheng, T. K. Dey, J. Shewchuk, S. Sahni, Delaunay mesh generation. CRC Press Boca Raton,
2013, pp. 86–88.

[Che+13b] S.-W. Cheng, T. K. Dey, J. Shewchuk, S. Sahni, Delaunay mesh generation. CRC Press Boca Raton,
2013, pp. 91–95.

[Che+13c] S.-W. Cheng, T. K. Dey, J. Shewchuk, S. Sahni, Delaunay mesh generation. CRC Press Boca Raton,
2013, pp. 96–98.

[Che+13d] S.-W. Cheng, T. K. Dey, J. Shewchuk, S. Sahni, Delaunay mesh generation. CRC Press Boca Raton,
2013, pp. 98–102.

[CHP89] J. E. Chadwick, D. R. Haumann, R. E. Parent, “Layered construction for deformable animated
characters”. In: Proceedings of the 16th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’89. Boston, July 1989, pp. 243–252. doi: 10.1145/74333.74358.

[Cig+00] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, R. Scopigno, “Simplification of Tetrahedral
Meshes with Accurate Error Evaluation”. In: Proceedings Visualization 2000. IEEE, 2000. doi:
10.1109/visual.2000.885680.

[Cig+08] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia, “Meshlab: an open-
source mesh processing tool.” In: Eurographics Italian chapter conference. Vol. 2008. Salerno,
Italy. 2008, pp. 129–136.

[CM02] P. Chopra, J. Meyer, “TetFusion: An Algorithm for Rapid Tetrahedral Mesh Simplification”. In:
IEEE Visualization, 2002. VIS 2002. IEEE, 2002. doi: 10.1109/visual.2002.1183767.

[Com+09] G. Compère, J.-F. Remacle, J. Jansson, J. Hoffman, “A Mesh Adaptation Framework for Dealing
with Large Deforming Meshes”. In: International Journal for Numerical Methods in Engineering
82.7 (November 2009), pp. 843–867. doi: 10.1002/nme.2788.

[Cor+12] S. Coros, S. Martin, B. Thomaszewski, C. Schumacher, R. Sumner, M. Gross, “Deformable objects
alive!” In: ACM Transactions on Graphics 31.4 (August 2012), Article 69, 9 pages. doi: 10.11
45/2185520.2185565.

162

https://doi.org/10.5220/0004283401390151
https://doi.org/10.1111/cgf.14908
https://doi.org/10.1145/1057432.1057445
https://doi.org/10.1145/1057432.1057445
https://doi.org/10.1002/cav.1577
https://doi.org/10.1002/nme.7235
https://doi.org/10.1145/74333.74358
https://doi.org/10.1109/visual.2000.885680
https://doi.org/10.1109/visual.2002.1183767
https://doi.org/10.1002/nme.2788
https://doi.org/10.1145/2185520.2185565
https://doi.org/10.1145/2185520.2185565

[Cor+20] F. Corda, J.-M. Thiery, M. Livesu, E. Puppo, T. Boubekeur, R. Scateni, “Real-time deformation
with coupled cages and skeletons”. In: Computer Graphics Forum 39.6 (January 2020), pp. 19–
32. doi: 10.1111/cgf.13900.

[Cra50] G. Cramer. Introduction à l’analyse des lignes courbes algébriques. chez les frères Cramer et C.
Philibert, 1750.

[CTO20] Z. Chen, T.-S. Tan, H.-Y. Ong,On Designing GPU Algorithms with Applications to Mesh Refinement.
July 2020. arXiv: 2007.00324 [cs.GR].

[CV01] T. F. Chan, L. A. Vese, “Active contours without edges”. In: IEEE Transactions on Image Processing
10.2 (February 2001), pp. 266–277. doi: 10.1109/83.902291.

[Das+18] F. Dassi, L. Kamenski, P. Farrell, H. Si, “Tetrahedral mesh improvement using moving mesh
smoothing, lazy searching flips, and RBF surface reconstruction”. In: Computer-Aided Design
103 (2018), pp. 2–13. doi: 10.1016/j.cad.2017.11.010.

[DCH20] C. Deng, Q. Chang, K. Hormann, “Iterative coordinates”. In: Computer Aided Geometric Design
79 (May 2020), Article 101861, 13 pages. doi: 10.1016/j.cagd.2020.101861.

[DCH88] R. A. Drebin, L. Carpenter, P. Hanrahan, “Volume rendering”. In: ACM SIGGRAPH Computer
Graphics 22.4 (July 1988), pp. 65–74. doi: 10.1145/378456.378484.

[Dev+16] M. Deveci, E. G. Boman, K. D. Devine, S. Rajamanickam, “Parallel Graph Coloring for Many-
core Architectures”. In: 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, May 2016. doi: 10.1109/ipdps.2016.54.

[Dey+99] T. Dey, H. Edelsbrunner, S. Guha, D. Nekhayev, “Topology Preserving Edge Contraction”. In:
Publications de l’Institut Mathématique 66 (1999).

[Dia+23] L. Diazzi, D. Panozzo, A. Vaxman, M. Attene, “Constrained Delaunay Tetrahedrization: A Robust
and Practical Approach”. In: ACM Transactions on Graphics 42.6 (December 2023). doi: 10.1
145/3618352.

[Dim+06] D. Dimitrov, C. Knauer, K. Kriegel, G. Rote, “On the bounding boxes obtained by principal com-
ponent analysis”. In: Proceedings of the 22nd European Workshop on Computational Geometry.
EWCG ’06. Delphi, March 2006, pp. 193–196.

[DJS16] M. Davia-Aracil, A. Jimeno-Morenilla, F. Salas, “A new methodological approach for shoe sole
design and validation”. In: The International Journal of Advanced Manufacturing Technology
86.9–12 (October 2016), pp. 3495–3516. doi: 10.1007/s00170-016-8427-5.

[DKK22] H. Das, S. Kumar, S. Kumar, “Precise Parallel FEM-based Interactive Cutting Simulation of De-
formable Bodies”. In: IEEE 29th International Conference on High Performance Computing, Data,
and Analytics (HiPC). 2022, pp. 198–203. doi: 10.1109/HiPC56025.2022.00036.

[DLM11] Z.-J. Deng, X.-N. Luo, X.-P. Miao, “Automatic cage building with quadric error metrics”. In:
Journal of Computer Science and Technology 26.3 (May 2011), pp. 538–547. doi: 10.1007/s1
1390-011-1153-4.

[DMA02] M. Desbrun, M. Meyer, P. Alliez, “Intrinsic parameterizations of surface meshes”. In: Computer
Graphics Forum 21.3 (September 2002), pp. 209–218. doi: 10.1111/1467-8659.00580.

[DS99] H. De Cougny, M. S. Shephard, “Parallel Refinement and Coarsening of Tetrahedral Meshes”. In:
International Journal for Numerical Methods in Engineering 46.7 (1999), pp. 1101–1125. doi:
10/b84p49.

163

https://doi.org/10.1111/cgf.13900
https://arxiv.org/abs/2007.00324
https://doi.org/10.1109/83.902291
https://doi.org/10.1016/j.cad.2017.11.010
https://doi.org/10.1016/j.cagd.2020.101861
https://doi.org/10.1145/378456.378484
https://doi.org/10.1109/ipdps.2016.54
https://doi.org/10.1145/3618352
https://doi.org/10.1145/3618352
https://doi.org/10.1007/s00170-016-8427-5
https://doi.org/10.1109/HiPC56025.2022.00036
https://doi.org/10.1007/s11390-011-1153-4
https://doi.org/10.1007/s11390-011-1153-4
https://doi.org/10.1111/1467-8659.00580
https://doi.org/10/b84p49

[DT07] C. DeCoro, N. Tatarchuk, “Real-time Mesh Simplification using the GPU”. In: Proceedings of the
2007 Symposium on Interactive 3D Graphics and Games. Association for Computing Machinery
(ACM), April 2007. doi: 10.1145/1230100.1230128.

[DTC19] F. Drakopoulos, C. Tsolakis, N. P. Chrisochoides, “Fine-Grained Speculative Topological Trans-
formation Scheme for Local Reconnection Methods”. In: American Institute of Aeronautics and
Astronautics Journal 57.9 (2019), pp. 4007–4018. doi: 10.2514/1.j057657.

[DTM17] M. J. Doyle, C. Tuohy, M. Manzke, “Evaluation of a BVH Construction Accelerator Architecture
for High-Quality Visualization”. In: IEEE Transactions on Multi-Scale Computing Systems 4.1
(2017), pp. 83–94. doi: 10.1109/tmscs.2017.2695338.

[DV13] J. D’Amato, M. Vénere, “A CPU–GPU framework for optimizing the quality of large meshes”.
In: Journal of Parallel and Distributed Computing 73.8 (August 2013), pp. 1127–1134. doi:
10.1016/j.jpdc.2013.03.007.

[Eck+95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle, “Multiresolution analysis
of arbitrary meshes”. In: Proceedings of the 22nd Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’95. Los Angeles, September 1995, pp. 173–182. doi: 10.1
145/218380.218440.

[EG15] L. C. Evans, R. F. Gariepy, Measure Theory and Fine Properties of Functions. New York: Chapman
and Hall/CRC, 2015. doi: 10.1201/b18333.

[Els+24] Y. S. Elshakhs, K. M. Deliparaschos, T. Charalambous, G. Oliva, A. Zolotas, “A Comprehensive
Survey on Delaunay Triangulation: Applications, Algorithms, and Implementations Over CPUs,
GPUs, and FPGAs”. In: IEEE Access 12 (January 2024), pp. 12562–12585. doi: 10.1109/
access.2024.3354709.

[Eng+04] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, D. Weiskopf, “Real-time volume
graphics”. In: ACM Siggraph 2004 Course Notes. 2004, 29–es. doi: 10.1145/1103900.1103
929.

[ETA02] M. Elad, A. Tal, S. Ar, “Content based retrieval of VRML objects — An iterative and interactive
approach”. In: Multimedia 2001. Ed. by Joaquim Jorge, Nuno Correia, Huw Jones, and Meera
Blattner Kamegai. Vienna: Springer, 2002, pp. 107–118. doi: 10.1007/978-3-7091-6103
-6_12.

[Far+09] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, D. Lischinski, “Coordinates for instant image
cloning”. In: ACM Transactions on Graphics 28.3 (August 2009), Article 67, 9 pages. doi: 10.1
145/1576246.1531373.

[Far02] G. E. Farin. Curves and surfaces for CAGD: a practical guide. 5. Morgan Kaufmann, 2002, pp. 227–
228.

[FF24] P.-A. Fayolle, M. Friedrich, “A Survey of Methods for Converting Unstructured Data to CSG
Models”. In: Computer-Aided Design 168 (March 2024), p. 103655. doi: 10.1016/j.cad.2
023.103655.

[FJP99] L. Freitag, M. Jones, P. Plassmann, “A Parallel Algorithm for Mesh Smoothing”. In: SIAM Journal
on Scientific Computing 20.6 (1999), pp. 2023–2040. doi: 10.1137/s1064827597323208.

[FK98] G. Fairweather, A. Karageorghis, “The method of fundamental solutions for elliptic boundary
value problems”. In: Advances in Computational Mathematics 9.1–2 (September 1998), pp. 69–
95. doi: 10.1023/A:1018981221740.

164

https://doi.org/10.1145/1230100.1230128
https://doi.org/10.2514/1.j057657
https://doi.org/10.1109/tmscs.2017.2695338
https://doi.org/10.1016/j.jpdc.2013.03.007
https://doi.org/10.1145/218380.218440
https://doi.org/10.1145/218380.218440
https://doi.org/10.1201/b18333
https://doi.org/10.1109/access.2024.3354709
https://doi.org/10.1109/access.2024.3354709
https://doi.org/10.1145/1103900.1103929
https://doi.org/10.1145/1103900.1103929
https://doi.org/10.1007/978-3-7091-6103-6_12
https://doi.org/10.1007/978-3-7091-6103-6_12
https://doi.org/10.1145/1576246.1531373
https://doi.org/10.1145/1576246.1531373
https://doi.org/10.1016/j.cad.2023.103655
https://doi.org/10.1016/j.cad.2023.103655
https://doi.org/10.1137/s1064827597323208
https://doi.org/10.1023/A:1018981221740

[FKR05] M. S. Floater, G. Kós, M. Reimers, “Mean value coordinates in 3D”. In: Computer Aided Geometric
Design 22.7 (October 2005), pp. 623–631. doi: 10.1016/j.cagd.2005.06.004.

[FLG15] X.-M. Fu, Y. Liu, B. Guo, “Computing locally injective mappings by advanced MIPS”. In: ACM
Transactions on Graphics 34.4 (July 2015), pp. 1–12. doi: 10.1145/2766938.

[Flo03] M. S. Floater. “Mean value coordinates”. In: Computer Aided Geometric Design 20.1 (March
2003), pp. 19–27. doi: 10.1016/S0167-8396(03)00002-5.

[Flo15] M. S. Floater. “Generalized barycentric coordinates and applications”. In: Acta Numerica 24
(April 2015), pp. 161–214. doi: 10.1017/s0962492914000129.

[Flo97] M. S. Floater. “Parameterization and smooth approximation of surface triangulations”. In: Com-
puter Aided Geometric Design 14.3 (April 1997), pp. 231–250. doi: 10.1016/S0167-8396(9
6)00031-3.

[FLP14] V. Fuetterling, C. Lojewski, F.-J. Pfreundt, “High-Performance Delaunay Triangulation forMany-
Core Computers”. In: Prooceedings of the Eurographics/ ACM SIGGRAPH Symposium on High
Performance Graphics. The Eurographics Association, 2014, pp. 97–104. doi: 10.2312/HPG.2
0141098.

[Fly72] M. J. Flynn. “Some Computer Organizations and Their Effectiveness”. In: IEEE Transactions on
Computers C–21.9 (September 1972), pp. 948–960. doi: 10.1109/tc.1972.5009071.

[FO97] L. A. Freitag, C. Ollivier-Gooch, “Tetrahedral mesh improvement using swapping and smooth-
ing”. In: International Journal for Numerical Methods in Engineering 40.21 (November 1997),
pp. 3979–4002. doi: 10.1002/(sici)1097-0207(19971115)40:21<3979::aid-
nme251>3.0.co;2-9.

[Fra06] T. Frank. “Advanced visualization and modeling of tetrahedral meshes”. PhD thesis. Institut
National Polytechnique de Lorraine, 2006.

[FT15] E. Fogel, M. Teillaud, “The computational geometry algorithms library CGAL”. In: ACM Com-
munications in Computer Algebra 49.1 (2015), pp. 10–12.

[Gal+09] R. Gal, O. Sorkine, N. J. Mitra, D. Cohen-Or, “iWIRES: an analyze-and-edit approach to shape
manipulation”. In: ACM SIGGRAPH 2009 Papers. SIGGRAPH ’09. New Orleans, Louisiana: As-
sociation for Computing Machinery (ACM), 2009. doi: 10.1145/1576246.1531339.

[Gar+14] A. García, S. Murguia, U. Olivares, F. F. Ramos, “Fast parallel construction of stack-less complete
LBVH trees with efficient bit-trail traversal for ray tracing”. In: Proceedings of the 13th ACM
SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry.
ACM. 2014, pp. 151–158. doi: 10.1145/2670473.2670488.

[GH97] M. Garland, P. S. Heckbert, “Surface Simplification using Quadric Error Metrics”. In: Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’97.
ACM Press, 1997. doi: 10.1145/258734.258849.

[Gha+20] A. Ghazanfarpour, N. Mellado, C. E. Himeur, L. Barthe, J.-P. Jessel, “Proximity-aware multiple
meshes decimation using quadric error metric”. In: Graphical Models 109 (2020), p. 101062.
doi: 10.1016/j.gmod.2020.101062.

[Gie22] A. Giebel. Harmonic Mesh Optimization on the GPU. Visual Computing Lab. Technical University
of Darmstadt, Department of Computer Science, March 2022.

[GJG18] F. Gu, J. Jendersie, T. Grosch, “Fast and Dynamic Construction of Bounding Volume Hierarchies
Based on Loose Octrees”. In: Vision, Modeling and Visualization. 2018. doi: 10.2312/vmv.2
0181257.

165

https://doi.org/10.1016/j.cagd.2005.06.004
https://doi.org/10.1145/2766938
https://doi.org/10.1016/S0167-8396(03)00002-5
https://doi.org/10.1017/s0962492914000129
https://doi.org/10.1016/S0167-8396(96)00031-3
https://doi.org/10.1016/S0167-8396(96)00031-3
https://doi.org/10.2312/HPG.20141098
https://doi.org/10.2312/HPG.20141098
https://doi.org/10.1109/tc.1972.5009071
https://doi.org/10.1002/(sici)1097-0207(19971115)40:21<3979::aid-nme251>3.0.co;2-9
https://doi.org/10.1002/(sici)1097-0207(19971115)40:21<3979::aid-nme251>3.0.co;2-9
https://doi.org/10.1145/1576246.1531339
https://doi.org/10.1145/2670473.2670488
https://doi.org/10.1145/258734.258849
https://doi.org/10.1016/j.gmod.2020.101062
https://doi.org/10.2312/vmv.20181257
https://doi.org/10.2312/vmv.20181257

[GKN23] P. Gautron, C. Kubisch, NVIDIA Corporation, Interactive GPU-based Remeshing of Large Meshes.
March 2023. url: https://register.nvidia.com/flow/nvidia/gtcspring20
23/attendeeportal/page/sessioncatalog/session/1666622202853001BIHK
(visited on December 6, 2023). NVIDIA GTC Developer Conference.

[GL22] M. González, N. Licheva, Boundary Face Groups for Mesh Interaction. Visual Computing Lab.
Technical University of Darmstadt, Department of Computer Science, March 2022.

[Gon21] M. González Nothnagel. “Adaptive bounding volume hierarchy for volumetric meshes”. Bache-
lor’s Thesis. Technische Universität Darmstadt, 2021.

[GP89] J. Griessmair, W. Purgathofer, “Deformation of solids with trivariate B-splines”. In: Eurograph-
ics ’89 Conference Proceedings. Hamburg, September 1989, pp. 137–148. doi: 10.2312/egtp.
19891010.

[GPM11] K. Garanzha, J. Pantaleoni, D. McAllister, “Simpler and faster HLBVH with work queues”. In:
Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics. HPG ’11. 2011,
pp. 59–64. doi: 10.1145/2018323.2018333.

[GR09] C. Geuzaine, J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and
post-processing facilities”. In: International Journal for Numerical Methods in Engineering 79.11
(May 2009), pp. 1309–1331. doi: 10.1002/nme.2579.

[GR23] C. Geuzaine, J.-F. Remacle, MSH file format. 2023. url: https://gmsh.info/doc/texin
fo/gmsh.html#MSH-file-format (visited on September 16, 2023).

[Gre20] B. Gregg. Flame Graphs. October 2020. url: https://www.brendangregg.com/flameg
raphs.html (visited on April 5, 2024).

[GW74] W. J. Gordon, J. A. Wixom, “Pseudo-harmonic interpolation on convex domains”. In: SIAM Jour-
nal on Numerical Analysis 11.5 (1974), pp. 909–933. doi: 10.1137/0711072.

[HA98] A. Heirich, J. Arvo, “A Competitive Analysis of Load Balancing Strategies for Parallel Ray Trac-
ing”. In: The Journal of Supercomputing 12.1/2 (January 1998), pp. 57–68. doi: 10.1023/a:
1007977326603.

[Has20] D. Hastings. Atlas Shaper Crank S7-100. GRABCAD. July 2020. url: https://grabcad.
com/library/atlas-shaper-crank-s7-100-1.

[HB15] T. Hoefler, R. Belli, “Scientific Benchmarking of Parallel Computing Systems”. In: Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis.
Association for Computing Machinery ACM, November 2015. doi: 10.1145/2807591.2807
644.

[HCB05] T. Hughes, J. Cottrell, Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact
geometry and mesh refinement”. In: Computer Methods in Applied Mechanics and Engineering
194.39-41 (October 2005), pp. 4135–4195. doi: 10.1016/j.cma.2004.10.008.

[Her+14] I. Herrera, C. Buchart, I. Aguinaga, D. Borro, “Study of a Ray Casting Technique for the Visual-
ization of Deformable Volumes”. In: IEEE Transactions on Visualization and Computer Graphics
20.11 (2014), pp. 1555–1565. doi: 10.1109/TVCG.2014.2337332.

[HES23] P. J. Herbert, J. A. P. Escobar, M. Siebenborn, Shape optimization in W 1,∞ with geometric con-
straints: a study in distributed-memory systems. 2023. arXiv: 2309.15607 [math.OC].

[HF06] K. Hormann, M. S. Floater, “Mean value coordinates for arbitrary planar polygons”. In: ACM
Transactions on Graphics 25.4 (October 2006), pp. 1424–1441. doi: 10.1145/1183287.11
83295.

166

https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666622202853001BIHK
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666622202853001BIHK
https://doi.org/10.2312/egtp.19891010
https://doi.org/10.2312/egtp.19891010
https://doi.org/10.1145/2018323.2018333
https://doi.org/10.1002/nme.2579
https://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
https://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
https://www.brendangregg.com/flamegraphs.html
https://www.brendangregg.com/flamegraphs.html
https://doi.org/10.1137/0711072
https://doi.org/10.1023/a:1007977326603
https://doi.org/10.1023/a:1007977326603
https://grabcad.com/library/atlas-shaper-crank-s7-100-1
https://grabcad.com/library/atlas-shaper-crank-s7-100-1
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1109/TVCG.2014.2337332
https://arxiv.org/abs/2309.15607
https://doi.org/10.1145/1183287.1183295
https://doi.org/10.1145/1183287.1183295

[HG00] K. Hormann, G. Greiner, “MIPS: An efficient global parametrization method”. In: Curve and
Surface Design: Saint-Malo 1999 (2000), pp. 153–162.

[Hop96] H. Hoppe. “Progressive meshes”. In: Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’96. New Orleans, August 1996, pp. 99–108.
doi: 10.1145/237170.237216.

[Hor05] D. Horn. “Stream reduction operations for GPGPU applications”. In: GPU Gems 2. Ed. by Matt
Pharr and Randima Fernando. Vol. 2. Addison-Wesley Professional, April 2005. Chap. 36, pp. 573–
589.

[HS08] K. Hormann, N. Sukumar, “Maximum entropy coordinates for arbitrary polytopes”. In: Computer
Graphics Forum 27.5 (July 2008), pp. 1513–1520. doi: 10.1111/j.1467-8659.2008.012
92.x.

[HS17] K. Hormann, N. Sukumar, Generalized Barycentric Coordinates in Computer Graphics and Com-
putational Mechanics. Boca Raton: Taylor & Francis/CRC, 2017. doi: 10.1201/9781315153
452.

[HS86] W. D. Hillis, G. L. Steele, “Data parallel algorithms”. In: Communications of the ACM 29.12
(December 1986), pp. 1170–1183. doi: 10.1145/7902.7903.

[HSO07] M. Harris, S. Sengupta, J. D. Owens, “Parallel prefix sum (scan) with CUDA”. In:GPUGems 3. Ed.
by Cyril Zeller, Evan Hart, Ignacio Castaño, Kevin Bjorke, Kevin Myers, and Nolan Goodnight.
Addison-Wesley Professional, August 2007. Chap. 39, pp. 851–876.

[HT04] K. Hormann, M. Tarini, “A quadrilateral rendering primitive”. In: Proceedings of Graphics Hard-
ware. GH ’04. Grenoble, August 2004, pp. 7–14. doi: 10.2312/EGGH/EGGH04/007-014.

[Hu+18] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, D. Panozzo, “Tetrahedral meshing in the wild”.
In: ACM Transactions on Graphics 37.4 (August 2018), Article 60, 14 pages. doi: 10.1145/31
97517.3201353.

[Hu+20] Y. Hu, T. Schneider, B. Wang, D. Zorin, D. Panozzo, “Fast tetrahedral meshing in the wild”. In:
ACM Transactions on Graphics 39.4 (August 2020), Article 117, 18 pages. doi: 10.1145/338
6569.3392385.

[Hug+13] D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll, B. Spencer, “InK‐Compact: In‐Kernel Stream
Compaction and Its Application to Multi‐Kernel Data Visualization on General‐Purpose GPUs”.
In: Computer Graphics Forum 32.6 (April 2013), pp. 178–188. doi: 10.1111/cgf.12083.

[Iba+17] D. Ibanez, N. Barral, J. Krakos, A. Loseille, T. Michal, M. Park, “First Benchmark of the Unstruc-
tured Grid AdaptationWorking Group”. In: Procedia Engineering 203 (2017), pp. 154–166. doi:
10.1016/j.proeng.2017.09.800.

[Iba22] D. Ibanez. Omega_h. 2022. url: https://github.com/sandialabs/omega_h (visited
on July 5, 2024).

[Inr24] Inria. Graphite. 2024. url: https://github.com/BrunoLevy/GraphiteThree (visited
on June 11, 2024).

[IS16] D. Ibanez, M. Shephard, Mesh adaptation for moving objects on shared memory hardware. Tech.
rep. 2016-24. Rensselaer Polytechnic Institute, 2016. url: https://scorec.rpi.edu/
REPORTS/2016-24.pdf.

[Jac+11] A. Jacobson, I. Baran, J. Popović, O. Sorkine, “Bounded biharmonic weights for real-time defor-
mation”. In: ACM Transactions on Graphics 30.4 (July 2011), Article 78, 8 pages. doi: 10.114
5/2010324.1964973.

167

https://doi.org/10.1145/237170.237216
https://doi.org/10.1111/j.1467-8659.2008.01292.x
https://doi.org/10.1111/j.1467-8659.2008.01292.x
https://doi.org/10.1201/9781315153452
https://doi.org/10.1201/9781315153452
https://doi.org/10.1145/7902.7903
https://doi.org/10.2312/EGGH/EGGH04/007-014
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1111/cgf.12083
https://doi.org/10.1016/j.proeng.2017.09.800
https://github.com/sandialabs/omega_h
https://github.com/BrunoLevy/GraphiteThree
https://scorec.rpi.edu/REPORTS/2016-24.pdf
https://scorec.rpi.edu/REPORTS/2016-24.pdf
https://doi.org/10.1145/2010324.1964973
https://doi.org/10.1145/2010324.1964973

[Jac14] A. Jacobson. “Automatic skinning via constrained energy optimization”. In: Skinning: Real-Time
Shape Deformation. SIGGRAPH 2014 Course Notes. July 2014. Chap. 2. doi: 10.1145/2614
028.2615427.

[Jia+21] Z. Jiang, Z. Zhang, Y. Hu, T. Schneider, D. Zorin, D. Panozzo, “Bijective and coarse high-order
tetrahedral meshes”. In: ACM Transactions on Graphics 40.4 (July 2021). doi: 10.1145/345
0626.3459840.

[Jia+22] Z. Jiang, J. Dai, Y. Hu, Y. Zhou, J. Dumas, Q. Zhou, G. S. Bajwa, D. Zorin, D. Panozzo, T. Schnei-
der, “Declarative Specification for Unstructured Mesh Editing Algorithms”. In: ACM Transactions
on Graphics 41.6 (November 2022), pp. 1–14. doi: 10.1145/3550454.3555513.

[Jia06] X. Jiao. “Volume and Feature Preservation in Surface Mesh Optimization”. In: Proceedings of the
15th International Meshing Roundtable. Springer Berlin Heidelberg, 2006, pp. 359–373. doi: 1
0.1007/978-3-540-34958-7_21.

[JLW07] T. Ju, P. Liepa, J. Warren, “A general geometric construction of coordinates in a convex simplicial
polytope”. In: Computer Aided Geometric Design 24.3 (April 2007), pp. 161–178. doi: 10.101
6/j.cagd.2006.12.001.

[Jos+07] P. Joshi, M. Meyer, T. DeRose, B. Green, T. Sanocki, “Harmonic coordinates for character artic-
ulation”. In: ACM Transactions on Graphics 26.3 (July 2007), Article 71, 9 pages. doi: 10.114
5/1276377.1276466.

[JSW05] T. Ju, S. Schaefer, J. Warren, “Mean value coordinates for closed triangular meshes”. In: ACM
Transactions on Graphics 24.3 (July 2005), pp. 561–566. doi: 10.1145/1073204.1073229.

[Ju+05] T. Ju, S. Schaefer, J. Warren, M. Desbrun, “A geometric construction of coordinates for convex
polyhedra using polar duals”. In: Proceedings of the 3rd Symposium on Geometry Processing.
SGP ’05. Vienna, July 2005, pp. 181–186. doi: 10.2312/SGP/SGP05/181-186.

[Ju+08] T. Ju, Q.-Y. Zhou, M. van de Panne, D. Cohen-Or, U. Neumann, “Reusable skinning templates us-
ing cage-based deformations”. In: ACM Transactions on Graphics 27.5 (December 2008), Article
122, 10 pages. doi: 10.1145/1409060.1409075.

[Kar12] T. Karras. “Maximizing parallelism in the construction of BVHs, octrees, and k-d trees”. In:
Proceedings of the Fourth ACMSIGGRAPH/Eurographics conference on High-Performance Graphics.
HPG ’12. 2012, pp. 33–37. doi: 10.2312/EGGH/HPG12/033-037.

[Kav+08] L. Kavan, S. Collins, J. Žára, C. O’Sullivan, “Geometric skinning with approximate dual quater-
nion blending”. In: ACM Transactions on Graphics 27.4 (October 2008), Article 105, 23 pages.
doi: 10.1145/1409625.1409627.

[KBK13] M. Kremer, D. Bommes, L. Kobbelt, “OpenVolumeMesh – A Versatile Index-Based Data Structure
for 3D Polytopal Complexes”. In: Proceedings of the 22nd International Meshing Roundtable.
Springer Berlin Heidelberg, 2013, pp. 531–548. doi: 10.1007/978-3-642-33573-0_31.

[KE03] M. Kraus, T. Ertl, “Simplification of Nonconvex Tetrahedral Meshes”. In: Hierarchical and Geo-
metrical Methods in Scientific Visualization. Springer. 2003, pp. 185–195.

[Kel+83] D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz, I. Babuska, “A posteriori error analysis and
adaptive processes in the finite element method: Part I—error analysis”. In: International Jour-
nal for Numerical Methods in Engineering 19.11 (November 1983), pp. 1593–1619. doi: 10.1
002/nme.1620191103.

[Kel24] J. Kelling. “Memory-efficient Real-time Path Tracing for Computer Games”. Master’s Thesis.
Technische Universität Darmstadt, 2024.

168

https://doi.org/10.1145/2614028.2615427
https://doi.org/10.1145/2614028.2615427
https://doi.org/10.1145/3450626.3459840
https://doi.org/10.1145/3450626.3459840
https://doi.org/10.1145/3550454.3555513
https://doi.org/10.1007/978-3-540-34958-7_21
https://doi.org/10.1007/978-3-540-34958-7_21
https://doi.org/10.1016/j.cagd.2006.12.001
https://doi.org/10.1016/j.cagd.2006.12.001
https://doi.org/10.1145/1276377.1276466
https://doi.org/10.1145/1276377.1276466
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.2312/SGP/SGP05/181-186
https://doi.org/10.1145/1409060.1409075
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.1145/1409625.1409627
https://doi.org/10.1007/978-3-642-33573-0_31
https://doi.org/10.1002/nme.1620191103
https://doi.org/10.1002/nme.1620191103

[KG03] Y. Kho, M. Garland, “User-guided simplification”. In: Proceedings of the 2003 Symposium on
Interactive 3D Graphics. I3D ’03. Monterey, California: Association for Computing Machinery
(ACM), 2003, pp. 123–126. doi: 10.1145/641480.641504.

[Khr23] Khronos Group. OpenCL. 2023. url: https://www.khronos.org/opencl/ (visited on
December 4, 2023).

[Kim+14] J. Kim, Y. Seol, T. Kwon, J. Lee, “Interactive manipulation of large-scale crowd animation”. In:
ACM Transactions on Graphics 33.4 (July 2014), Article 83, 10 pages. doi: 10.1145/260109
7.2601170.

[Knu00] P. M. Knupp. “Achieving finite element mesh quality via optimization of the Jacobian matrix
norm and associated quantities. Part II - A framework for volume mesh optimization and the
condition number of the Jacobian matrix”. In: International Journal for Numerical Methods in
Engineering 48.8 (July 2000), pp. 1165–1185. doi: 10.1002/(sici)1097-0207(200007
20)48:8<1165::aid-nme940>3.0.co;2-y.

[Kra+07] M. Kraus, M. Strengert, T. Klein, T. Ertl, “Adaptive sampling in three dimensions for volume ren-
dering on GPUs”. In: 6th International Asia-Pacific Symposium on Visualization. 2007, pp. 113–
120. doi: 10.1109/APVIS.2007.329285.

[Kri+06] K. Krishnan, M. Marcellin, A. Bilgin, M. Nadar, “Efficient transmission of compressed data for
remote volume visualization”. In: IEEE Transactions on Medical Imaging 25.9 (2006), pp. 1189–
1199. doi: 10.1109/TMI.2006.879956.

[KS07] B. M. Klingner, J. R. Shewchuk, “Aggressive Tetrahedral Mesh Improvement”. In: Proceedings of
the 16th International Meshing Roundtable. 2007, pp. 3–23. doi: 10.1007/978-3-540-751
03-8_1.

[KS08] B. M. Klingner, J. R. Shewchuk, STELLAR A Tetrahedral Mesh Improvement Program. 2008. url:
https://people.eecs.berkeley.edu/~jrs/stellar/ (visited on July 5, 2024).

[KSE04] T. Klein, S. Stegmaier, T. Ertl, “Hardware-accelerated reconstruction of polygonal isosurface
representations on unstructured grids”. In: 12th Pacific Conference on Computer Graphics and
Applications, PG 2004. Proceedings. 2004, pp. 186–195. doi: 10.1109/PCCGA.2004.13483
49.

[Kur11] N. Kurachi. The magic of computer graphics. CRC Press, 2011. Chap. 6, pp. 55–58.
[KW03] J. Kruger, R. Westermann, “Acceleration techniques for GPU-based volume rendering”. In: IEEE

Transactions on Ultrasonics, Ferroelectrics and Frequency Control. VISUAL-03. IEEE, December
2003. doi: 10.1109/visual.2003.1250384.

[KW19] M. J. Kochenderfer, T. A. Wheeler, Algorithms for Optimization. The MIT Press, 2019. Chap. 3,
pp. 43–44.

[Lar+15] M. Larsen, S. Labasan, P. Navrátil, J. Meredith, H. Childs, “Volume Rendering Via Data-Parallel
Primitives”. In: Eurographics Symposium on Parallel Graphics and Visualization. Ed. by C. Dachs-
bacher and P. Navrátil. The Eurographics Association, 2015. doi: 10.2312/pgv.20151155.

[LAR20] J. López, C. Anitescu, T. Rabczuk, “CAD-compatible structural shape optimization with a mov-
able Bézier tetrahedral mesh”. In: Computer Methods in Applied Mechanics and Engineering 367
(2020), p. 113066. doi: 10.1016/j.cma.2020.113066.

[Lau+09] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha, “Fast BVH Construction on
GPUs”. In: Computer Graphics Forum 28.2 (2009), pp. 375–384. doi: 10.1111/j.1467-865
9.2009.01377.x.

169

https://doi.org/10.1145/641480.641504
https://www.khronos.org/opencl/
https://doi.org/10.1145/2601097.2601170
https://doi.org/10.1145/2601097.2601170
https://doi.org/10.1002/(sici)1097-0207(20000720)48:8<1165::aid-nme940>3.0.co;2-y
https://doi.org/10.1002/(sici)1097-0207(20000720)48:8<1165::aid-nme940>3.0.co;2-y
https://doi.org/10.1109/APVIS.2007.329285
https://doi.org/10.1109/TMI.2006.879956
https://doi.org/10.1007/978-3-540-75103-8_1
https://doi.org/10.1007/978-3-540-75103-8_1
https://people.eecs.berkeley.edu/~jrs/stellar/
https://doi.org/10.1109/PCCGA.2004.1348349
https://doi.org/10.1109/PCCGA.2004.1348349
https://doi.org/10.1109/visual.2003.1250384
https://doi.org/10.2312/pgv.20151155
https://doi.org/10.1016/j.cma.2020.113066
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1111/j.1467-8659.2009.01377.x

[LB16] P. Laug, H. Borouchaki, “Discrete CAD Model for Visualization and Meshing”. In: Procedia En-
gineering 163 (2016), pp. 149–161. doi: 10.1016/j.proeng.2016.11.039.

[LBS06] T. Langer, A. Belyaev, H.-P. Seidel, “Spherical barycentric coordinates”. In: Proceedings of the
4th Symposium on Geometry Processing. SGP ’06. Cagliari, June 2006, pp. 81–88. doi: 10.231
2/SGP/SGP06/081-088.

[LD17] B. H. Le, Z. Deng, “Interactive cage generation for mesh deformation”. In: Proceedings of the
21st Symposium on Interactive 3D Graphics and Games. I3D ’17. San Francisco, February 2017,
Article 3, 9 pages. doi: 10.1145/3023368.3023369.

[LD89] C. T. Loop, T. D. DeRose, “A multisided generalization of Bézier surfaces”. In: ACM Transactions
on Graphics 8.3 (July 1989), pp. 204–234. doi: 10.1145/77055.77059.

[LH13] X.-Y. Li, S.-M. Hu, “Poisson coordinates”. In: IEEE Transactions on Visualization and Computer
Graphics 19.2 (February 2013), pp. 344–352. doi: 10.1109/TVCG.2012.109.

[Li+21] H. Li, T. Yamada, P. Jolivet, K. Furuta, T. Kondoh, K. Izui, S. Nishiwaki, “Full-scale 3D structural
topology optimization using adaptive mesh refinement based on the level-set method”. In: Finite
Elements in Analysis and Design 194 (2021), p. 103561. doi: 10.1016/j.finel.2021.103
561.

[Lip+07] Y. Lipman, J. Kopf, D. Cohen-Or, D. Levin, “GPU-assisted positive mean value coordinates for
mesh deformations”. In: Proceedings of the 5th Symposium on Geometry Processing. SGP ’07.
Barcelona, July 2007, pp. 117–123. doi: 10.2312/SGP/SGP07/117-123.

[LJH13] X.-Y. Li, T. Ju, S.-M. Hu, “Cubic mean value coordinates”. In: ACM Transactions on Graphics 32.4
(July 2013), Article 126, 10 pages. doi: 10.1145/2461912.2461917.

[Lju+16] P. Ljung, J. Krüger, E. Groller, M. Hadwiger, C. D. Hansen, A. Ynnerman, “State of the Art in
Transfer Functions for Direct Volume Rendering”. In: Computer Graphics Forum 35.3 (2016),
pp. 669–691. doi: 10.1111/cgf.12934.

[LLC08] Y. Lipman, D. Levin, D. Cohen-Or, “Green coordinates”. In: ACM Transactions on Graphics 27.3
(August 2008), Article 78, 10 pages. doi: 10.1145/1360612.1360677.

[LLH22] K. Y. Lam, L.-H. Lee, P. Hui, “3DeformR: Freehand 3D model editing in virtual environments
considering head movements on mobile headsets”. In: Proceedings of the 13th Multimedia Sys-
tems Conference. MMSys ’22. Athlone, June 2022, pp. 52–61. doi: 10.1145/3524273.3528
180.

[LM14] A. Loseille, V. Menier, “Serial and Parallel Mesh Modification Through a Unique Cavity-Based
Primitive”. In: Prooceedings of the 22nd International Meshing Roundtable. Springer International
Publishing, 2014, pp. 541–558. doi: 10.1007/978-3-319-02335-9_30.

[LMA15] A. Loseille, V. Menier, F. Alauzet, “Parallel Generation of Large-size Adapted Meshes”. In: Pro-
cedia Engineering 124 (2015), pp. 57–69. doi: 10.1016/j.proeng.2015.10.122.

[Lo14a] D. S. H. Lo. Finite Element Mesh Generation. CRC Press, 2014, pp. 374–377. doi: 10.1201/b1
7713.

[Lo14b] D. S. H. Lo. Finite Element Mesh Generation. CRC Press, 2014, pp. 557–559. doi: 10.1201/b1
7713.

[Lo15] D. S. Lo. Finite element mesh generation. CRC Press, 2015. Chap. 1, pp. 7–8.
[LS07] T. Langer, H.-P. Seidel, “Mean value Bézier surfaces”. In: Mathematics of Surfaces XII. Ed. by

Ralph Martin, Malcolm Sabin, and Joab Winkler. Vol. 4647. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2007, pp. 263–274. doi: 10.1007/978-3-540-73843-5_16.

170

https://doi.org/10.1016/j.proeng.2016.11.039
https://doi.org/10.2312/SGP/SGP06/081-088
https://doi.org/10.2312/SGP/SGP06/081-088
https://doi.org/10.1145/3023368.3023369
https://doi.org/10.1145/77055.77059
https://doi.org/10.1109/TVCG.2012.109
https://doi.org/10.1016/j.finel.2021.103561
https://doi.org/10.1016/j.finel.2021.103561
https://doi.org/10.2312/SGP/SGP07/117-123
https://doi.org/10.1145/2461912.2461917
https://doi.org/10.1111/cgf.12934
https://doi.org/10.1145/1360612.1360677
https://doi.org/10.1145/3524273.3528180
https://doi.org/10.1145/3524273.3528180
https://doi.org/10.1007/978-3-319-02335-9_30
https://doi.org/10.1016/j.proeng.2015.10.122
https://doi.org/10.1201/b17713
https://doi.org/10.1201/b17713
https://doi.org/10.1201/b17713
https://doi.org/10.1201/b17713
https://doi.org/10.1007/978-3-540-73843-5_16

[LS08] T. Langer, H.-P. Seidel, “Higher order barycentric coordinates”. In: Computer Graphics Forum
27.2 (April 2008), pp. 459–466. doi: 10.1111/j.1467-8659.2008.01143.x.

[LU16] P. Laube, G. Umlauf, “A short survey on recent methods for cage computation”. In: Proceedings of
the 3rd BW-CAR Symposium on Information and Communication Systems. SInCom ’16. Karlsruhe,
December 2016, pp. 37–42.

[LW07] J. Li, Y. Wang, “Automatically constructing skeletons and parametric structures for polygonal
human bodies”. In: Proceedings of the 25th Computer Graphics International Conference. CGI ’07.
Pétropolis, May 2007.

[LZ08] Y. Li, Q. Zhu, “A New Mesh Simplification Algorithm Based on Quadric Error Metrics”. In: 2008
International Conference on Advanced Computer Theory and Engineering. 2008, pp. 528–532.
doi: 10.1109/ICACTE.2008.92.

[Mar+08] S. Martin, P. Kaufmann, M. Botsch, M. Wicke, M. Gross, “Polyhedral finite elements using har-
monic basis functions”. In: Computer Graphics Forum 27.5 (July 2008), pp. 1521–1529. doi:
10.1111/j.1467-8659.2008.01293.x.

[MAS17] J. S. Mueller-Roemer, C. Altenhofen, A. Stork, “Ternary Sparse Matrix Representation for Volu-
metric Mesh Subdivision and Processing on GPUs”. In: Computer Graphics Forum 36.5 (2017),
pp. 59–69. doi: 10.1111/cgf.13245.

[Max+08] A. Maximo, S. Ribeiro, C. Bentes, A. Oliveira, R. Farias, “Memory Efficient GPU-Based Ray Cast-
ing for Unstructured Volume Rendering”. In: IEEE/ EG Symposium on Volume and Point-Based
Graphics. Ed. by Hans-Christian Hege, David Laidlaw, Renato Pajarola, and Oliver Staadt. The
Eurographics Association, 2008. doi: 10.2312/VG/VG-PBG08/155-162.

[MCA15] M. Mandad, D. Cohen-Steiner, P. Alliez, “Isotopic approximation within a tolerance volume”. In:
ACM Transactions on Graphics 34.4 (July 2015), Article 64, 12 pages. doi: 10.1145/2766950.

[Mei+21] D.Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, J. Bittner, “A Survey on Bounding Volume
Hierarchies for Ray Tracing”. In: Computer Graphics Forum 40.2 (May 2021), pp. 683–712. doi:
10.1111/cgf.142662.

[Men+09] W. Meng, B. Sheng, S. Wang, H. Sun, E. Wu, “Interactive image deformation using cage coordi-
nates on GPU”. In: Proceedings of the 8th International Conference on Virtual Reality Continuum
and its Applications in Industry. VRCAI ’09. Yokohama, December 2009, pp. 119–126. doi: 10
.1145/1670252.1670279.

[Mey+02] M. Meyer, H. Lee, A. Barr, M. Desbrun, “Generalized barycentric coordinates on irregular poly-
gons”. In: Journal of Graphics Tools 7.1 (2002), pp. 13–22. doi: 10.1080/10867651.2002
.10487551.

[Mis+09] M. K. Misztal, J. A. Bærentzen, F. Anton, K. Erleben, “Tetrahedral Mesh Improvement using
Multi-face Retriangulation”. In: Proceedings of the 18th InternationalMeshing Roundtable. Springer
Berlin Heidelberg, 2009, pp. 539–555. doi: 10.1007/978-3-642-04319-2_31.

[MJ96] R. MacCracken, K. I. Joy, “Free-form deformations with lattices of arbitrary topology”. In: Pro-
ceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’96. New Orleans, August 1996, pp. 181–188. doi: 10.1145/237170.237247.

[MLD05] E. A. Malsch, J. J. Lin, G. Dasgupta, “Smooth two dimensional interpolants: A recipe for all
polygons”. In: Journal of Graphics Tools 10.2 (2005), pp. 27–39. doi: 10.1080/2151237X.2
005.10129192.

171

https://doi.org/10.1111/j.1467-8659.2008.01143.x
https://doi.org/10.1109/ICACTE.2008.92
https://doi.org/10.1111/j.1467-8659.2008.01293.x
https://doi.org/10.1111/cgf.13245
https://doi.org/10.2312/VG/VG-PBG08/155-162
https://doi.org/10.1145/2766950
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1145/1670252.1670279
https://doi.org/10.1145/1670252.1670279
https://doi.org/10.1080/10867651.2002.10487551
https://doi.org/10.1080/10867651.2002.10487551
https://doi.org/10.1007/978-3-642-04319-2_31
https://doi.org/10.1145/237170.237247
https://doi.org/10.1080/2151237X.2005.10129192
https://doi.org/10.1080/2151237X.2005.10129192

[MLS11] J. Manson, K. Li, S. Schaefer, “Positive Gordon–Wixom coordinates”. In: Computer-Aided Design
43.11 (November 2011), pp. 1422–1426. doi: 10.1016/j.cad.2011.08.019.

[MLT88] N. Magnenat-Thalmann, R. Laperrière, D. Thalmann, “Joint-dependent local deformations for
hand animation and object grasping”. In: Proceedings of Graphics Interface. GI ’88. Edmonton,
June 1988, pp. 26–33. doi: 10.20380/GI1988.04.

[MMG06] B. Merry, P. Marais, J. Gain, “Animation space: A truly linear framework for character anima-
tion”. In: ACM Transactions on Graphics 25.4 (October 2006), pp. 1400–1423. doi: 10.1145
/1183287.1183294.

[Möb27] A. F. Möbius. Der barycentrische Calcul. Leipzig: Johann Ambrosius Barth Verlag, 1827.
[Mor+19] N. Morrical, W. Usher, I. Wald, V. Pascucci, “Efficient Space Skipping and Adaptive Sampling of

Unstructured Volumes Using Hardware Accelerated Ray Tracing”. In: 2019 IEEE Visualization
Conference (VIS). IEEE, October 2019. doi: 10.1109/visual.2019.8933539.

[Mor+22] N. Morrical, I. Wald, W. Usher, V. Pascucci, “Accelerating unstructured mesh point location with
RT cores”. In: IEEE Transactions on Visualization and Computer Graphics 28.8 (August 2022),
pp. 2852–2866. doi: 10.1109/tvcg.2020.3042930.

[Mor+23] N. Morrical, A. Sahistan, U. Güdükbay, I. Wald, V. Pascucci, “Quick Clusters: A GPU-Parallel
Partitioning for Efficient Path Tracing of Unstructured Volumetric Grids”. In: IEEE Transactions
on Visualization and Computer Graphics 29.1 (2023), pp. 537–547. doi: 10.1109/TVCG.202
2.3209418.

[Mor66] G. M. Morton. A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing.
IBM Corporation. 1966. url: https://dominoweb.draco.res.ibm.com/reports/
Morton1966.pdf.

[MP07] P. Milbradt, T. Pick, “Polytope finite elements”. In: International Journal for Numerical Methods
in Engineering 73.12 (July 2007), pp. 1811–1835. doi: 10.1002/nme.2149.

[MS10] J. Manson, S. Schaefer, “Moving least squares coordinates”. In: Computer Graphics Forum 29.5
(July 2010), pp. 1517–1524. doi: 10.1111/j.1467-8659.2010.01760.x.

[MS18] J. S. Mueller-Roemer, A. Stork, “GPU-based Polynomial Finite Element Matrix Assembly for
Simplex Meshes”. In: Computer Graphics Forum 37.7 (2018), pp. 443–454. doi: 10.1111
/cgf.13581.

[MSE07] C. Müller, M. Strengert, T. Ertl, “Adaptive load balancing for raycasting of non-uniformly bricked
volumes”. In: Parallel Computing 33.6 (June 2007), pp. 406–419. doi: 10.1016/j.parco.2
006.12.002.

[MT23] É. Michel, J.-M. Thiery, “Polynomial 2D Green coordinates for polygonal cages”. In: SIGGRAPH
2023 Conference Proceedings. Los Angeles, July 2023, Article 23, 9 pages. doi: 10.1145/358
8432.3591499.

[Mue20] J. S. Mueller-Roemer. “GPU data structures and code generation for modeling, simulation, and
visualization”. PhD thesis. Darmstadt, Germany: Technical University of Darmstadt, 2020. doi:
10.25534/tuprints-00011291.

[Mui+11] P. Muigg, M. Hadwiger, H. Doleisch, E. Groller, “Interactive Volume Visualization of General
Polyhedral Grids”. In: IEEE Transactions on Visualization and Computer Graphics 17.12 (2011),
pp. 2115–2124. doi: 10.1109/TVCG.2011.216.

172

https://doi.org/10.1016/j.cad.2011.08.019
https://doi.org/10.20380/GI1988.04
https://doi.org/10.1145/1183287.1183294
https://doi.org/10.1145/1183287.1183294
https://doi.org/10.1109/visual.2019.8933539
https://doi.org/10.1109/tvcg.2020.3042930
https://doi.org/10.1109/TVCG.2022.3209418
https://doi.org/10.1109/TVCG.2022.3209418
https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf
https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf
https://doi.org/10.1002/nme.2149
https://doi.org/10.1111/j.1467-8659.2010.01760.x
https://doi.org/10.1111/cgf.13581
https://doi.org/10.1111/cgf.13581
https://doi.org/10.1016/j.parco.2006.12.002
https://doi.org/10.1016/j.parco.2006.12.002
https://doi.org/10.1145/3588432.3591499
https://doi.org/10.1145/3588432.3591499
https://doi.org/10.25534/tuprints-00011291
https://doi.org/10.1109/TVCG.2011.216

[Mur+13] S. Murguia, F. Avila, L. Reyes, A. Garcia, “Bit-trail traversal for stackless LBVH on DirectCom-
pute”. In: GPU Pro 4: Advanced Rendering Techniques. Ed. by Wolfgang Engel. 1st ed. CRC Press,
April 2013, pp. 319–336. doi: 10.1201/b14077-29.

[MV19] S. Mittal, S. Vaishay, “A survey of techniques for optimizing deep learning on GPUs”. In: Journal
of Systems Architecture 99 (October 2019), p. 101635. doi: 10.1016/j.sysarc.2019.101
635.

[NCC15] M. Naumov, P. Castonguay, J. M. Cohen, “Parallel Graph Coloring with Applications to the
Incomplete-LU Factorization on the GPU”. In: NVIDIA White Papers. 2015. url: https://
api.semanticscholar.org/CorpusID:15964368.

[ND10] J. Nickolls, W. J. Dally, “The GPU Computing Era”. In: IEEE Micro 30.2 (March 2010), pp. 56–
69. doi: 10.1109/mm.2010.41.

[NE04] V. Natarajan, H. Edelsbrunner, “Simplification of Three-dimensional Density Maps”. In: IEEE
Transactions on Visualization and Computer Graphics 10.5 (September 2004), pp. 587–597.
doi: 10.1109/tvcg.2004.32.

[Nea+06] A. Nealen, T. Igarashi, O. Sorkine, M. Alexa, “Laplacian mesh optimization”. In: Proceedings of
the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia
and Southeast Asia. New York, NY, USA: Association for Computing Machinery, 2006, pp. 381–
389. doi: 10.1145/1174429.1174494.

[Nes+09] M. Nesme, P. G. Kry, L. Jeřábková, F. Faure, “Preserving topology and elasticity for embedded
deformable models”. In: ACM Transactions on Graphics 28.3 (August 2009), Article 52, 9 pages.
doi: 10.1145/1531326.1531358.

[New94] A. Newell. Unified Theories of Cognition. Harvard University Press, 1994. Chap. 8.
[NF+06] M. Nesme, F. Faure, “Animating shapes at arbitrary resolution with non-uniform stiffness”. In:

Proceedings of the 3rd Workshop on Virtual Reality Interactions and Physical Simulations. VRI-
PHYS ’06. Madrid, November 2006, pp. 17–24. doi: 10.2312/PE/vriphys/vriphys06/0
17-024.

[NVI22a] NVIDIA. CUB. 2022. url: https://nvlabs.github.io/cub/ (visited on December 11,
2023).

[NVI22b] NVIDIA. CUDA 11.8 C++ Programming Guide. September 2022. url: https://docs.
nvidia.com/cuda/archive/11.8.0/cuda-c-programming-guide/index.html
(visited on December 5, 2023).

[NVI22c] C. NVIDIA Corporation. Cusparse library. 2022. url: https://developer.nvidia.com/
cuda-downloads (visited on July 9, 2014).

[NVI23a] NVIDIA. CUDA 11.8. 2023. url: https://developer.nvidia.com/cuda-11-8-0-
download-archive (visited on December 4, 2023).

[NVI23b] NVIDIA. Displacement Micro-Map Toolkit. April 2023. url: https://github.com/NVIDIA
GameWorks/Displacement-MicroMap-Toolkit (visited on December 6, 2023).

[NVI23c] NVIDIA. Thrust. 2023. url: https://developer.nvidia.com/thrust (visited on
December 11, 2023).

[NVI24a] NVIDIA. NVIDIA OptiX Ray Tracing Engine. 2024. url: https://developer.nvidia.
com/optix (visited on July 15, 2024).

[NVI24b] NVIDIA.NVIDIA RTX Technology. 2024. url: https://www.nvidia.com/en-us/design-
visualization/technologies/rtx/ (visited on January 25, 2024).

173

https://doi.org/10.1201/b14077-29
https://doi.org/10.1016/j.sysarc.2019.101635
https://doi.org/10.1016/j.sysarc.2019.101635
https://api.semanticscholar.org/CorpusID:15964368
https://api.semanticscholar.org/CorpusID:15964368
https://doi.org/10.1109/mm.2010.41
https://doi.org/10.1109/tvcg.2004.32
https://doi.org/10.1145/1174429.1174494
https://doi.org/10.1145/1531326.1531358
https://doi.org/10.2312/PE/vriphys/vriphys06/017-024
https://doi.org/10.2312/PE/vriphys/vriphys06/017-024
https://nvlabs.github.io/cub/
https://docs.nvidia.com/cuda/archive/11.8.0/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/archive/11.8.0/cuda-c-programming-guide/index.html
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-11-8-0-download-archive
https://developer.nvidia.com/cuda-11-8-0-download-archive
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://developer.nvidia.com/thrust
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://www.nvidia.com/en-us/design-visualization/technologies/rtx/
https://www.nvidia.com/en-us/design-visualization/technologies/rtx/

[OG14] E. Okuyan, U. Güdükbay, “Direct volume rendering of unstructured tetrahedral meshes using
CUDA and OpenMP”. In: The Journal of Supercomputing 67 (2014), pp. 324–344. doi: 10.10
07/s11227-013-1004-x.

[OSW23] S. Onyshkevych, M. Siebenborn, W. Wollner, “Preserving mesh quality in shape optimization”.
In: PAMM 24.1 (December 2023). doi: 10.1002/pamm.202300146.

[Pan22] D. Panozzo. “Robust Geometry Processing for Physical Simulation”. In: Symposium on Geometry
Processing Keynotes. SGP ’22. 2022. url: https://www.youtube.com/watch?v=rDo3P9
NGC28 (visited on May 8, 2024).

[Par22] M. Park. Refine. 2022. url: https://github.com/nasa/refine (visited on July 5, 2024).
[Ped23] J. Peddie. The History of the GPU - New Developments. Springer Nature, January 2023. Chap. 5.

doi: 10.1007/978-3-031-14047-1.
[Pen+22] Y. Peng, Y. Yan, S. Liu, Y. Cheng, S. Guan, B. Pan, G. Zhai, X. Yang, “CageNeRF: Cage-based

neural radiance field for generalized 3D deformation and animation”. In: Proceedings of the Con-
ference on Neural Information Processing Systems. NeurIPS ’22. New Orleans, November 2022,
pp. 31402–31415.

[Pie+22] N. Pietroni, M. Campen, A. Sheffer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.
Remacle, M. Livesu, “Hex-Mesh Generation and Processing: A Survey”. In: ACM Transactions on
Graphics 42.2 (October 2022). doi: 10.1145/3554920.

[PL10] J. Pantaleoni, D. Luebke, “HLBVH: Hierarchical LBVH Construction for Real-time Ray Tracing of
Dynamic Geometry”. In: Proceedings of the Conference on High Performance Graphics. HPG ’10.
2010, pp. 87–95. doi: 10.2312/EGGH/HPG10/087-095.

[Pla23] Plastic Software LLC. Plasticity. 2023. url: https://www.plasticity.xyz/ (visited on
November 27, 2023).

[Pop+20] D. Popov, E. Maltsev, O. Fryazinov, A. Pasko, I. Akhatov, “Efficient contouring of functionally rep-
resented objects for additivemanufacturing”. In: Computer-Aided Design 129 (2020), p. 102917.
doi: 10.1016/j.cad.2020.102917.

[Por+21] S. Porziani, C. Groth, W.Waldman, M. E. Biancolini, “Automatic shape optimisation of structural
parts driven by BGM and RBF mesh morphing”. In: International Journal of Mechanical Sciences
189 (January 2021), Article 105976, 11 pages. doi: 10.1016/j.ijmecsci.2020.105976.

[PP14] A. Papageorgiou, N. Platis, “Triangular Mesh Simplification on the GPU”. In: The Visual Com-
puter 31.2 (November 2014), pp. 235–244. doi: 10.1007/s00371-014-1039-x.

[PP93] U. Pinkall, K. Polthier, “Computing discrete minimal surfaces and their conjugates”. In: Experi-
mental Mathematics 2.1 (1993), pp. 15–36. doi: 10.1080/10586458.1993.10504266.

[Pre+02] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C. 2nd ed.
Cambridge University Pr., 2002, pp. 359–362.

[Pre07] W. H. Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university
press, 2007. Chap. 2, pp. 65–75.

[PTA20] R. Picelli, S. Townsend, H. Alicia Kim, “Microstructural Stress Shape Optimization Using the
Level Set Method”. In: Journal of Mechanical Design 142.11 (June 2020), p. 111705. doi: 10
.1115/1.4047152.

[Qia10] X. Qian. “Full analytical sensitivities in NURBS based isogeometric shape optimization”. In:
Computer Methods in Applied Mechanics and Engineering 199.29 (2010), pp. 2059–2071. doi:
10.1016/j.cma.2010.03.005.

174

https://doi.org/10.1007/s11227-013-1004-x
https://doi.org/10.1007/s11227-013-1004-x
https://doi.org/10.1002/pamm.202300146
https://www.youtube.com/watch?v=rDo3P9NGC28
https://www.youtube.com/watch?v=rDo3P9NGC28
https://github.com/nasa/refine
https://doi.org/10.1007/978-3-031-14047-1
https://doi.org/10.1145/3554920
https://doi.org/10.2312/EGGH/HPG10/087-095
https://www.plasticity.xyz/
https://doi.org/10.1016/j.cad.2020.102917
https://doi.org/10.1016/j.ijmecsci.2020.105976
https://doi.org/10.1007/s00371-014-1039-x
https://doi.org/10.1080/10586458.1993.10504266
https://doi.org/10.1115/1.4047152
https://doi.org/10.1115/1.4047152
https://doi.org/10.1016/j.cma.2010.03.005

[Rab+17] M. Rabinovich, R. Poranne, D. Panozzo, O. Sorkine-Hornung, “Scalable locally injective map-
pings”. In: ACM Transactions on Graphics 36.2 (April 2017), Article 16, 16 pages. doi: 10.114
5/2983621.

[Ram03] J. Rambau. “On a generalization of Schönhardt’s polyhedron”. In: Combinatorial and computa-
tional geometry 52 (2003), pp. 501–516.

[Ray+18] N. Ray, D. Sokolov, S. Lefebvre, B. Lévy, “Meshless voronoi on the GPU”. In: ACM Transactions
on Graphics 37.6 (December 2018). doi: 10.1145/3272127.3275092.

[Rem+20] E. Remelli, A. Lukoianov, S. Richter, B. Guillard, T. Bagautdinov, P. Baque, P. Fua, “MeshSDF:
Differentiable Iso-Surface Extraction”. In: Advances in Neural Information Processing Systems. Ed.
by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates,
Inc., 2020, pp. 22468–22478. url: https://proceedings.neurips.cc/paper_files
/paper/2020/file/fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf.

[RGD22] D. Reed, D. Gannon, J. Dongarra, Reinventing High Performance Computing: Challenges and Op-
portunities. 2022. arXiv: 2203.02544 [cs.DC].

[Rip90] S. Rippa. “Minimal roughness property of the Delaunay triangulation”. In: Computer Aided Geo-
metric Design 7.6 (November 1990), pp. 489–497. doi: 10.1016/0167-8396(90)90011-f.

[RR97] H. Ratschek, J. Rokne, “Test for intersection between box and tetrahedron”. In: International
Journal of Computer Mathematics 65.3-4 (1997), pp. 191–204. doi: 10.1080/00207169708
804610.

[Rui+15] E. Ruiz-Gironés, X. Roca, J. Sarrate, R. Montenegro, J. Escobar, “Simultaneous untangling and
smoothing of quadrilateral and hexahedral meshes using an object-oriented framework”. In:
Advances in Engineering Software 80 (2015). Civil-Comp, pp. 12–24. doi: 10.1016/j.adven
gsoft.2014.09.021.

[Rus07] R. M. Rustamov. Boundary Element Formulation of Harmonic Coordinates. Tech. rep. Department
of Mathematics, Purdue University, November 2007.

[Şah+21] A. Şahistan, S. Demirci, N. Morrical, S. Zellmann, A. Aman, I. Wald, U. Güdükbay, “Ray-traced
Shell Traversal of Tetrahedral Meshes for Direct Volume Visualization”. In: 2021 IEEE Visual-
ization Conference (VIS). 2021, pp. 91–95. doi: 10.1109/VIS49827.2021.9623298.

[San+00] P. V. Sander, X. Gu, S. J. Gortler, H. Hoppe, J. Snyder, “Silhouette clipping”. In: Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’00.
New Orleans, July 2000, pp. 327–334. doi: 10.1145/344779.344935.

[Sar+23] J. Sarton, S. Zellmann, S. Demirci, U. Güdükbay, W. Alexandre-Barff, L. Lucas, J. M. Dischler, S.
Wesner, I. Wald, “State-of-the-art in Large-Scale Volume Visualization Beyond Structured Data”.
In: Computer Graphics Forum 42.3 (2023), pp. 491–515. doi: 10.1111/cgf.14857.

[SATS07] C. Stoll, E. de Aguiar, C. Theobalt, H.-P. Seidel, A volumetric approach to interactive shape editing.
Tech. rep. MPI-I-2007-4-004. Max-Planck-Institut für Informatik, 2007.

[Sca+20] A. Scalas, Y. Zhu, F. Giannini, R. Lou, K. Lupinetti, M. Monti, M. Mortara, M. Spagnuolo, “A first
step towards cage-based deformation in virtual reality”. In: Proceedings of the Italian Chapter
Conference on Smart Tools and Apps for Graphics. STAG ’20. Online, November 2020, pp. 119–
130. doi: 10.2312/STAG.20201246.

[Sch+18] T. Schneider, Y. Hu, J. Dumas, X. Gao, D. Panozzo, D. Zorin, “Decoupling simulation accuracy
from mesh quality”. In: ACM Transactions on Graphics 37.6 (December 2018), Article 280, 14
pages. doi: 10.1145/3272127.3275067.

175

https://doi.org/10.1145/2983621
https://doi.org/10.1145/2983621
https://doi.org/10.1145/3272127.3275092
https://proceedings.neurips.cc/paper_files/paper/2020/file/fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf
https://arxiv.org/abs/2203.02544
https://doi.org/10.1016/0167-8396(90)90011-f
https://doi.org/10.1080/00207169708804610
https://doi.org/10.1080/00207169708804610
https://doi.org/10.1016/j.advengsoft.2014.09.021
https://doi.org/10.1016/j.advengsoft.2014.09.021
https://doi.org/10.1109/VIS49827.2021.9623298
https://doi.org/10.1145/344779.344935
https://doi.org/10.1111/cgf.14857
https://doi.org/10.2312/STAG.20201246
https://doi.org/10.1145/3272127.3275067

[Sch28] E. Schönhardt. “Über die Zerlegung von Dreieckspolyedern in Tetraeder”. In: Mathematische
Annalen 98.1 (1928), pp. 309–312.

[SCV14] J. Solomon, K. Crane, E. Vouga, “Laplace-Beltrami: The Swiss army knife of geometry process-
ing”. In: Symposium on Geometry Processing Graduate School (Cardiff, UK, 2014). Vol. 2. 2014.

[SDH23] P. Shirley, T. David Black, S. Hollasch, Ray tracing in one weekend. Vol. 4. Github, 2023. Chap. 4.
url: https://github.com/RayTracing/raytracing.github.io.

[Sel+10] S. Sellamani, R. Muthuganapathy, Y. Kalyanaraman, S. Murugappan, M. Goyal, K. Ramani,
C. M. Hoffman, “PCS: Prominent cross-sections for mesh models”. In: Computer-Aided Design
and Applications 7.4 (2010), pp. 601–620. doi: 10.3722/cadaps.2010.601-620.

[Sel+20] S. Sellán, J. Kesten, A. Y. Sheng, A. Jacobson, “Opening and closing surfaces”. In: ACM Trans-
actions on Graphics 39.6 (November 2020). doi: 10.1145/3414685.3417778.

[SF11] Y. Savoye, J.-S. Franco, “Cage-based tracking for performance animation”. In: Computer Vision
– ACCV 2010. Ed. by Ron Kimmel, Reinhard Klette, and Akihiro Sugimoto. Vol. 6494. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 599–612. doi: 10.1007
/978-3-642-19318-7_47.

[SF19] A. Schollmeyer, B. Froehlich, “Efficient and Anti-Aliased Trimming for Rendering Large NURBS
Models”. In: IEEE Transactions on Visualization and Computer Graphics 25.3 (2019), pp. 1489–
1498. doi: 10.1109/TVCG.2018.2814987.

[SFG20] V. V. Sanzharov, V. A. Frolov, V. A. Galaktionov, “Survey of Nvidia RTX Technology”. In: Pro-
gramming and Computer Software 46.4 (July 2020), pp. 297–304. doi: 10.1134/s0361768
820030068.

[SG98] O. Staadt, M. Gross, “Progressive Tetrahedralizations”. In: Proceedings Visualization ’98. IEEE,
1998. doi: 10.1109/visual.1998.745329.

[Sha+16] M. Shang, C. Zhu, J. Chen, Z. Xiao, Y. Zheng, “A Parallel Local Reconnection Approach for
Tetrahedral Mesh Improvement”. In: Procedia Engineering 163 (2016), pp. 289–301. doi: 10
.1016/j.proeng.2016.11.062.

[She+08] J. Shen, Z. Chen, Z. Ding, S. Zhang, “Heuristic region growing mesh reconstruction algorithm”.
In: Journal of Zhejiang University (Engineering Science 12 (2008), p. 007.

[She+21] T. Shen, J. Gao, K. Yin, M.-Y. Liu, S. Fidler, “Deep Marching Tetrahedra: a Hybrid Representation
for High-Resolution 3D Shape Synthesis”. In: Advances in Neural Information Processing Systems.
Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan. Vol. 34.
Curran Associates, Inc., 2021, pp. 6087–6101. url: https://proceedings.neurips.cc/
paper_files/paper/2021/file/30a237d18c50f563cba4531f1db44acf-Paper.
pdf.

[She+23] T. Shen, J. Munkberg, J. Hasselgren, K. Yin, Z. Wang, W. Chen, Z. Gojcic, S. Fidler, N. Sharp, J.
Gao, “Flexible Isosurface Extraction for Gradient-Based Mesh Optimization”. In: ACM Transac-
tions on Graphics 42.4 (July 2023). doi: 10.1145/3592430.

[She02a] J. R. Shewchuk. “Constrained Delaunay Tetrahedralizations and Provably Good Boundary Re-
covery.” In: Prooceedings of the 11th International Meshing Roundtable. Citeseer. 2002, pp. 193–
204.

[She02b] J. R. Shewchuk.What is a good linear finite element? Interpolation, conditioning, anisotropy, and
quality measures. Preprint. University of California at Berkeley, 2002. url: https://people.
eecs.berkeley.edu/~jrs/papers/elemj.pdf.

176

https://github.com/RayTracing/raytracing.github.io
https://doi.org/10.3722/cadaps.2010.601-620
https://doi.org/10.1145/3414685.3417778
https://doi.org/10.1007/978-3-642-19318-7_47
https://doi.org/10.1007/978-3-642-19318-7_47
https://doi.org/10.1109/TVCG.2018.2814987
https://doi.org/10.1134/s0361768820030068
https://doi.org/10.1134/s0361768820030068
https://doi.org/10.1109/visual.1998.745329
https://doi.org/10.1016/j.proeng.2016.11.062
https://doi.org/10.1016/j.proeng.2016.11.062
https://proceedings.neurips.cc/paper_files/paper/2021/file/30a237d18c50f563cba4531f1db44acf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/30a237d18c50f563cba4531f1db44acf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/30a237d18c50f563cba4531f1db44acf-Paper.pdf
https://doi.org/10.1145/3592430
https://people.eecs.berkeley.edu/~jrs/papers/elemj.pdf
https://people.eecs.berkeley.edu/~jrs/papers/elemj.pdf

[She96] J. R. Shewchuk. “Triangle: Engineering a 2D quality mesh generator and Delaunay triangula-
tor”. In: Applied Computational Geometry Towards Geometric Engineering. 1996, pp. 203–222.
doi: 10.1007/bfb0014497.

[SHF13] T. Schneider, K. Hormann, M. S. Floater, “Bijective composite mean value mappings”. In: Com-
puter Graphics Forum 32.5 (August 2013), pp. 137–146. doi: 10.1111/cgf.12180.

[Si20] H. Si. TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator (Version 1.6
- User’s Manual). Tech. rep. Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik,
August 2020.

[Sil+05] C. T. Silva, J. L. D. Comba, S. P. Callahan, F. F. Bernardon, “A survey of GPU-based volume
rendering of unstructured grids”. In: Revista de informática teórica e aplicada. Porto Alegre, RS.
Vol. 12, n. 2 (out. 2005), p. 9-29 (2005).

[Sjo22] J. Sjoholm. Best Practices for Using NVIDIA RTX Ray Tracing (Updated). July 2022. url: https:
//developer.nvidia.com/blog/best-practices-for-using-nvidia-rtx-ray-
tracing-updated/ (visited on July 9, 2024).

[SM06] N. Sukumar, E. A. Malsch, “Recent advances in the construction of polygonal finite element in-
terpolants”. In: Archives of Computational Methods in Engineering 13.1 (March 2006), pp. 129–
163. doi: 10.1007/BF02905933.

[SMB13] D. Sieger, S. Menzel, M. Botsch, “High Quality Mesh Morphing Using Triharmonic Radial Basis
Functions”. In: Proceedings of the 21st International Meshing Roundtable. Ed. by Xiangmin Jiao
and Jean-Christophe Weill. Springer Berlin Heidelberg, 2013, pp. 1–15. doi: 10.1007/978-
3-642-33573-0_1.

[Som85] C. Somigliana. “Sopra l’equilibrio di un corpo elastico isotropo”. In: Il Nuovo Cimento 17 (De-
cember 1885), pp. 140–148. doi: 10.1007/BF02817783.

[Sor+23] T. Sorgente, S. Biasotti, G. Manzini, M. Spagnuolo, “A Survey of Indicators for Mesh Quality
Assessment”. In: Computer Graphics Forum 42.2 (2023), pp. 461–483. doi: 10.1111/cgf.1
4779.

[SOS04] C. Shen, J. F. O’Brien, J. R. Shewchuk, “Interpolating and approximating implicit surfaces from
polygon soup”. In: ACM Transactions on Graphics 23.3 (August 2004), pp. 896–904. doi: 10.1
145/1015706.1015816.

[SP86] T. W. Sederberg, S. R. Parry, “Free-form deformation of solid geometric models”. In: Proceedings
of the 13th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’86.
Dallas, August 1986, pp. 151–160. doi: 10.1145/15922.15903.

[SS10a] R. Schmidt, K. Singh, “Meshmixer: An Interface for Rapid Mesh Composition”. In: ACM SIG-
GRAPH 2010 Talks. SIGGRAPH ’10. Los Angeles, California: Association for Computing Ma-
chinery, 2010. doi: 10.1145/1837026.1837034.

[SS10b] M. Schwarz, H.-P. Seidel, “Fast parallel surface and solid voxelization on GPUs”. In: ACM Trans-
actions on Graphics 29.6 (December 2010), Article 179, 10 pages. doi: 10.1145/1882261.1
866201.

[SS15] J. Smith, S. Schaefer, “Bijective parameterization with free boundaries”. In: ACM Transactions
on Graphics 34.4 (July 2015), pp. 1–9. doi: 10.1145/2766947.

[SSF10] S. P. Serna, A. Stork, D. W. Fellner, “Tetrahedral Mesh-Based Embodiment Design”. In: Interna-
tional Design Engineering Technical Conferences and Computers and Information in Engineering
Conference. 2010. doi: 10.1115/detc2010-28971.

177

https://doi.org/10.1007/bfb0014497
https://doi.org/10.1111/cgf.12180
https://developer.nvidia.com/blog/best-practices-for-using-nvidia-rtx-ray-tracing-updated/
https://developer.nvidia.com/blog/best-practices-for-using-nvidia-rtx-ray-tracing-updated/
https://developer.nvidia.com/blog/best-practices-for-using-nvidia-rtx-ray-tracing-updated/
https://doi.org/10.1007/BF02905933
https://doi.org/10.1007/978-3-642-33573-0_1
https://doi.org/10.1007/978-3-642-33573-0_1
https://doi.org/10.1007/BF02817783
https://doi.org/10.1111/cgf.14779
https://doi.org/10.1111/cgf.14779
https://doi.org/10.1145/1015706.1015816
https://doi.org/10.1145/1015706.1015816
https://doi.org/10.1145/15922.15903
https://doi.org/10.1145/1837026.1837034
https://doi.org/10.1145/1882261.1866201
https://doi.org/10.1145/1882261.1866201
https://doi.org/10.1145/2766947
https://doi.org/10.1115/detc2010-28971

[SSF23] D. Ströter, A. Stork, D. W. Fellner, “Massively Parallel Adaptive Collapsing of Edges for Unstruc-
tured Tetrahedral Meshes”. In: High-Performance Graphics - Symposium Papers. Ed. by Jacco
Bikker and Christiaan Gribble. Presented at High-Performance Graphics 2023. The Eurograph-
ics Association, 2023. doi: 10.2312/hpg.20231139.

[Sta+11] M. L. Staten, S. J. Owen, S. M. Shontz, A. G. Salinger, T. S. Coffey, “A Comparison of Mesh Mor-
phing Methods for 3D Shape Optimization”. In: Proceedings of the 20th International Meshing
Roundtable. Springer Berlin Heidelberg, 2011, pp. 293–311. doi: 10.1007/978-3-642-24
734-7_16.

[Ste+18] O. Stein, E. Grinspun, M. Wardetzky, A. Jacobson, “Natural Boundary Conditions for Smoothing
in Geometry Processing”. In: ACM Transactions on Graphics 37.2 (2018), pp. 1–13. doi: 10.1
145/3186564.

[Ste24] M. Stegemann. “Tetraedernetz-Adaption mittels Fehlerabschätzung und harmonischer Opti-
mierung”. Master’s Thesis. Technische Universität Darmstadt, 2024.

[Sti18] M. Stich. Introduction to NVIDIA RTX and DirectX Ray Tracing. 2018. url: https://devblo
gs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/ (visited on
July 5, 2024).

[Sto15] A. Stork. “Visual computing challenges of advanced manufacturing and industrie 4.0 [guest
editors’ introduction]”. In: IEEE Computer Graphics and Applications 35.2 (2015), pp. 21–25.
doi: 10.1109/MCG.2015.46.

[Str+20] D. Ströter, J. S. Mueller-Roemer, A. Stork, D.W. Fellner, “OLBVH: octree linear bounding volume
hierarchy for volumetric meshes”. In: The Visual Computer 36.10-12 (July 2020). Honorable
mention from Fraunhofer IGD for best papers in the category “Impact on Science”, Pre-
sented at Computer Graphics International 2020, pp. 2327–2340. doi: 10.1007/s00371-0
20-01886-6.

[Str+21] D. Ströter, U. Krispel, J. Mueller-Roemer, D. Fellner, “TEdit: A Distributed Tetrahedral Mesh
Editor with Immediate Simulation Feedback”. In: Proceedings of the 11th International Con-
ference on Simulation and Modeling Methodologies, Technologies and Applications. Presented at
SIMULTECH 2021. SciTePress 2013. SCITEPRESS - Science and Technology Publications, 2021,
pp. 271–277. doi: 10.5220/0010544402710277.

[Str+22] D. Ströter, J. Mueller-Roemer, D. Weber, D. W. Fellner, “Fast harmonic tetrahedral mesh op-
timization”. In: The Visual Computer (June 2022). Visual Computer Best Paper Award at
Computer Graphics International 2022. doi: 10.1007/s00371-022-02547-6.

[Str+23] D. Ströter, A. Halm, U. Krispel, J. S.Mueller-Roemer, D.W. Fellner, “Integrating GPU-Accelerated
Tetrahedral Mesh Editing and Simulation”. In: Simulation and Modeling Methodologies, Tech-
nologies and Applications. Ed. by Gerd Wagner, Frank Werner, Tuncer Oren, and Floriano De
Rango. Springer International Publishing, 2023, pp. 24–42. doi: 10.1007/978-3-031-231
49-0_2.

[Str+24] D. Ströter, J. M. Thiery, K. Hormann, J. Chen, Q. Chang, S. Besler, J. S. Mueller‐Roemer, T.
Boubekeur, A. Stork, D. W. Fellner, “A Survey on Cage‐based Deformation of 3D Models”. In:
Computer Graphics Forum 43.2 (May 2024). Presented at EUROGRAPHICS 2024. doi: 10.11
11/cgf.15060.

[Str19] D. Ströter. “Tetrahedral Mesh Processing and Data Structures for Adaptive Volumetric Mesh
Booleans on GPUs”. Master’s Thesis. Technische Universität Darmstadt, 2019.

178

https://doi.org/10.2312/hpg.20231139
https://doi.org/10.1007/978-3-642-24734-7_16
https://doi.org/10.1007/978-3-642-24734-7_16
https://doi.org/10.1145/3186564
https://doi.org/10.1145/3186564
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
https://doi.org/10.1109/MCG.2015.46
https://doi.org/10.1007/s00371-020-01886-6
https://doi.org/10.1007/s00371-020-01886-6
https://doi.org/10.5220/0010544402710277
https://doi.org/10.1007/s00371-022-02547-6
https://doi.org/10.1007/978-3-031-23149-0_2
https://doi.org/10.1007/978-3-031-23149-0_2
https://doi.org/10.1111/cgf.15060
https://doi.org/10.1111/cgf.15060

[Suk04] N. Sukumar. “Construction of polygonal interpolants: A maximum entropy approach”. In: Inter-
national Journal for Numerical Methods in Engineering 61.12 (November 2004), pp. 2159–2181.
doi: 10.1002/nme.1193.

[SV03] S. M. Shontz, S. A. Vavasis, “A Mesh Warping Algorithm Based on Weighted Laplacian Smooth-
ing”. In: Prooceedings of the 12th International Meshing Roundtable. Citeseer. 2003, pp. 147–
158.

[SV18] P. Salvi, T. Várady, “Multi-sided Bézier surfaces over concave polygonal domains”. In: Computers
& Graphics 74 (August 2018), pp. 56–65. doi: 10.1016/j.cag.2018.05.006.

[SVH20] S. M. Shontz, M. A. L. Varilla, W. Huang, “A Parallel Variational Mesh Quality Improvement
for Tetrahedral Meshes”. In: Proceedings of the 28th International Meshing Roundtable. February
2020, pp. 37–49. doi: 10.5281/zenodo.3653361.

[SVJ15] L. Sacht, E. Vouga, A. Jacobson, “Nested cages”. In: ACM Transactions on Graphics 34.6 (Novem-
ber 2015), Article 170, 14 pages. doi: 10.1145/2816795.2818093.

[SVM23] V. K. Suriyababu, C. Vuik, M. Möller, “Towards a High Quality Shrink Wrap Mesh Generation
AlgorithmUsingMathematical Morphology”. In: Computer-Aided Design 164 (2023), p. 103608.
doi: 10.1016/j.cad.2023.103608.

[Tak+10] K. Takayama, O. Sorkine, A. Nealen, T. Igarashi, “Volumetric modeling with diffusion surfaces”.
In: ACM Transactions on Graphics 29.6 (December 2010), Article 180, 8 pages. doi: 10.1145
/1882261.1866202.

[TB22] J.-M. Thiery, T. Boubekeur, “Green coordinates for triquad cages in 3D”. In: SIGGRAPH Asia
2022 Conference Proceedings. Daegu, December 2022, Article 38, 8 pages. doi: 10.1145/355
0469.3555400.

[TDZ19] J. Tao, B. Deng, J. Zhang, “A fast numerical solver for local barycentric coordinates”. In: Com-
puter Aided Geometric Design 70 (March 2019), pp. 46–58. doi: 10.1016/j.cagd.2019.0
4.006.

[Tho48] W. Thomson. “Note on the integration of the equations of equilibrium of an elastic solid”. In:
Cambridge and Dublin Mathematical Journal 3 (1848), pp. 87–89.

[TMB18] J.-M. Thiery, P. Memari, T. Boubekeur, “Mean value coordinates for quad cages in 3D”. In: ACM
Transactions on Graphics 37.6 (December 2018), Article 229, 14 pages. doi: 10.1145/32721
27.3275063.

[TS08] A. Tabarraei, N. Sukumar, “Extended finite elementmethod on polygonal and quadtreemeshes”.
In: Computer Methods in AppliedMechanics and Engineering 197.5 (January 2008), pp. 425–438.
doi: 10.1016/j.cma.2007.08.013.

[TTB12] J.-M. Thiery, J. Tierny, T. Boubekeur, “CageR: Cage-based reverse engineering of animated 3D
shapes”. In: Computer Graphics Forum 31.8 (October 2012), pp. 2303–2316. doi: 10.1111
/j.1467-8659.2012.03159.x.

[Uga22] J. Ugalde. T-Slot 3030 Corner Bracket 60x30. GRABCAD. September 2022. url: https://
grabcad.com/library/t-slot-3030-corner-bracket-60x30-1.

[Ura00] M. Urago. “Analytical integrals of fundamental solution of three-dimensional Laplace equation
and their gradients”. In: Transactions of the Japan Society of Mechanical Engineers Series A 66.642
(February 2000), pp. 254–261. doi: 10.1299/kikaia.66.254.

179

https://doi.org/10.1002/nme.1193
https://doi.org/10.1016/j.cag.2018.05.006
https://doi.org/10.5281/zenodo.3653361
https://doi.org/10.1145/2816795.2818093
https://doi.org/10.1016/j.cad.2023.103608
https://doi.org/10.1145/1882261.1866202
https://doi.org/10.1145/1882261.1866202
https://doi.org/10.1145/3550469.3555400
https://doi.org/10.1145/3550469.3555400
https://doi.org/10.1016/j.cagd.2019.04.006
https://doi.org/10.1016/j.cagd.2019.04.006
https://doi.org/10.1145/3272127.3275063
https://doi.org/10.1145/3272127.3275063
https://doi.org/10.1016/j.cma.2007.08.013
https://doi.org/10.1111/j.1467-8659.2012.03159.x
https://doi.org/10.1111/j.1467-8659.2012.03159.x
https://grabcad.com/library/t-slot-3030-corner-bracket-60x30-1
https://grabcad.com/library/t-slot-3030-corner-bracket-60x30-1
https://doi.org/10.1299/kikaia.66.254

[Var+03] G. Varadhan, S. Krishnan, Y. J. Kim, S. Diggavi, D. Manocha, “Efficient max-norm distance com-
putation and reliable voxelization”. In: Proceedings of the 1st Symposium on Geometry Processing.
SGP ’03. Aachen, June 2003, pp. 116–126. doi: 10.2312/SGP/SGP03/116-126.

[VBH17] M. Vinkler, J. Bittner, V. Havran, “Extended Morton codes for high performance bounding vol-
ume hierarchy construction”. In: Proceedings of High Performance Graphics. HPG ’17. 2017, 9:1–
9:8. doi: 10.1145/3105762.3105782.

[VF09] A. Vasilakis, I. Fudos, “Skeleton-based rigid skinning for character animation”. In: Proceedings
of the 4th International Conference on Computer Graphics Theory and Applications. GRAPP ’09.
Lisboa, February 2009, pp. 302–308. doi: 10.5220/0001799803020308.

[Vii+17] T. Viitanen, M. Koskela, P. Jääskeläinen, H. Kultala, J. Takala, “MergeTree: A Fast Hardware
HLBVH Constructor for Animated Ray Tracing”. In: ACM Transactions on Graphics 36.5 (2017),
p. 169. doi: 10.1145/3132702.

[Vii+18] T. Viitanen, M. Koskela, P. Jääskeläinen, A. Tervo, J. Takala, “PLOCTree”. In: Proceedings of the
ACM on Computer Graphics and Interactive Techniques 1.2 (2018), 35:1–35:19. doi: 10.1145
/3233309.

[VPR19] K. Verhetsel, J. Pellerin, J.-F. Remacle, “A 44-element mesh of Schneiders’ pyramid: Bounding
the difficulty of hex-meshing problems”. In: Computer-Aided Design 116 (2019), p. 102735.
doi: 10.1016/j.cad.2019.102735.

[VWB19] K. Vaidyanathan, S. Woop, C. Benthin, “Wide BVH Traversal with a Short Stack”. In: Proceedings
of the Conference on High-Performance Graphics. 2019. doi: 10.2312/hpg.20191190.

[Wac75] E. L. Wachspress. A Rational Finite Element Basis. Vol. 114. Mathematics in Science and Engi-
neering. New York: Academic Press, 1975.

[Wal+07] I. Wald, H. Friedrich, A. Knoll, C. D. Hansen, “Interactive Isosurface Ray Tracing of Time-
Varying Tetrahedral Volumes”. In: IEEE Transactions on Visualization and Computer Graphics
13.6 (2007), pp. 1727–1734. doi: 10.1109/tvcg.2007.70566.

[Wal+19] I. Wald, W. Usher, N. Morrical, L. Lediaev, V. Pascucci, “RTX Beyond Ray Tracing: Exploring the
Use of Hardware Ray Tracing Cores for Tet-Mesh Point Location”. In: Proceedings of the Con-
ference on High-Performance Graphics. HPG ’19. Strasbourg, France: Eurographics Association,
2019, pp. 7–13. doi: 10.2312/hpg.20191189.

[Wal+21] I. Wald, S. Zellmann, W. Usher, N. Morrical, U. Lang, V. Pascucci, “Ray Tracing Structured
AMR Data Using ExaBricks”. In: IEEE Transactions on Visualization and Computer Graphics 27.2
(2021), pp. 625–634. doi: 10.1109/TVCG.2020.3030470.

[Wal21] I. Wald. GPGPU-Parallel Re-indexing of Triangle Meshes with Duplicate-Vertex and Unused-Vertex
Removal. September 2021. doi: 10.48550/arXiv.2109.09812. arXiv: 2109.09812
[cs.DC].

[Wan+15] Y. Wang, A. Jacobson, J. Barbič, L. Kavan, “Linear subspace design for real-time shape deforma-
tion”. In: ACM Transactions on Graphics 34.4 (August 2015), Article 57, 11 pages. doi: 10.11
45/2766952.

[Wan+19] Z.Wang, Y. Li, W.Ma, C. Deng, “Positive and smooth Gordon–Wixom coordinates”. In: Computer
Aided Geometric Design 74 (October 2019), Article 101774, 9 pages. doi: 10.1016/j.cagd.2
019.101774.

180

https://doi.org/10.2312/SGP/SGP03/116-126
https://doi.org/10.1145/3105762.3105782
https://doi.org/10.5220/0001799803020308
https://doi.org/10.1145/3132702
https://doi.org/10.1145/3233309
https://doi.org/10.1145/3233309
https://doi.org/10.1016/j.cad.2019.102735
https://doi.org/10.2312/hpg.20191190
https://doi.org/10.1109/tvcg.2007.70566
https://doi.org/10.2312/hpg.20191189
https://doi.org/10.1109/TVCG.2020.3030470
https://doi.org/10.48550/arXiv.2109.09812
https://arxiv.org/abs/2109.09812
https://arxiv.org/abs/2109.09812
https://doi.org/10.1145/2766952
https://doi.org/10.1145/2766952
https://doi.org/10.1016/j.cagd.2019.101774
https://doi.org/10.1016/j.cagd.2019.101774

[Wan02] G. G. Wang. “Definition and Review of Virtual Prototyping”. In: Journal of Computing and In-
formation Science in Engineering 2.3 (September 2002), pp. 232–236. doi: 10.1115/1.1526
508.

[War+07] J. Warren, S. Schaefer, A. N. Hirani, M. Desbrun, “Barycentric coordinates for convex sets”. In:
Advances in Computational Mathematics 27.3 (October 2007), pp. 319–338. doi: 10.1007/s1
0444-005-9008-6.

[War96] J. Warren. “Barycentric coordinates for convex polytopes”. In: Advances in Computational Math-
ematics 6.1 (December 1996), pp. 97–108. doi: 10.1007/BF02127699.

[WBG07] M. Wicke, M. Botsch, M. Gross, “A finite element method on convex polyhedra”. In: Computer
Graphics Forum 26.3 (September 2007), pp. 355–364. doi: 10.1111/j.1467-8659.2007
.01058.x.

[WBM21] E. Whalen, A. Beyene, C. Mueller, “SimJEB: Simulated Jet Engine Bracket Dataset”. In: Com-
puter Graphics Forum 40.5 (August 2021), pp. 9–17. doi: 10.1111/cgf.14353.

[Web+12] D. Weber, J. Bender, M. Schnoes, A. Stork, D. Fellner, “Efficient GPU Data Structures and Meth-
ods to Solve Sparse Linear Systems in Dynamics Applications”. In: Computer Graphics Forum
32.1 (October 2012), pp. 16–26. doi: 10.1111/j.1467-8659.2012.03227.x.

[Web+13] D.Weber, J. Bender, M. Schnoes, A. Stork, D. Fellner, “Efficient GPU data structures andmethods
to solve sparse linear systems in dynamics applications”. In: Computer Graphics Forum. Vol. 32.
1. Wiley Online Library. 2013, pp. 16–26.

[Web+15] D. Weber, J. Mueller-Roemer, C. Altenhofen, A. Stork, D. Fellner, “Deformation Simulation using
Cubic Finite Elements and Efficient p-Multigrid Methods”. In: Computers & Graphics 53 (2015),
pp. 185–195. doi: 10.1016/j.cag.2015.06.010.

[WG10] O. Weber, C. Gotsman, “Controllable conformal maps for shape deformation and interpolation”.
In: ACM Transactions on Graphics 29.4 (July 2010), Article 78, 11 pages. doi: 10.1145/177
8765.1778815.

[Wic+10] M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, J. F. O’Brien, “Dynamic local
remeshing for elastoplastic simulation”. In: ACM Transactions on Graphics 29.4 (July 2010),
pp. 1–11. doi: 10.1145/1778765.1778786.

[Wil+05] A. Williams, S. Barrus, R. K. Morley, P. Shirley, “An efficient and robust ray-box intersection
algorithm”. In: ACM SIGGRAPH 2005 Courses on - SIGGRAPH ’05. SIGGRAPH ’05. ACM Press,
2005. doi: 10.1145/1198555.1198748.

[WMZ21] I. Wald, N. Morrical, S. Zellmann, “A Memory Efficient Encoding for Ray Tracing Large Un-
structured Data”. In: IEEE Transactions on Visualization and Computer Graphics 28.1 (2021),
pp. 583–592. doi: 10.1109/TVCG.2021.3114869.

[WRC23] Z. J. Wegert, A. P. Roberts, V. J. Challis, “A Hilbertian projectionmethod for constrained level set-
based topology optimisation”. In: Structural and Multidisciplinary Optimization 66.9 (Septem-
ber 2023). doi: 10.1007/s00158-023-03663-0.

[WS21] Y. Wang, J. Solomon, “Fast quasi-harmonic weights for geometric data interpolation”. In: ACM
Transactions on Graphics 40.4 (August 2021), Article 73, 15 pages. doi: 10.1145/3450626
.3459801.

[Wyl+02] B. Wylie, K. Moreland, L. Fisk, P. Crossno, “Tetrahedral projection using vertex shaders”. In:
Symposium on Volume Visualization and Graphics. Proceedings. IEEE / ACM SIGGRAPH. 2002,
pp. 7–12. doi: 10.1109/SWG.2002.1226504.

181

https://doi.org/10.1115/1.1526508
https://doi.org/10.1115/1.1526508
https://doi.org/10.1007/s10444-005-9008-6
https://doi.org/10.1007/s10444-005-9008-6
https://doi.org/10.1007/BF02127699
https://doi.org/10.1111/j.1467-8659.2007.01058.x
https://doi.org/10.1111/j.1467-8659.2007.01058.x
https://doi.org/10.1111/cgf.14353
https://doi.org/10.1111/j.1467-8659.2012.03227.x
https://doi.org/10.1016/j.cag.2015.06.010
https://doi.org/10.1145/1778765.1778815
https://doi.org/10.1145/1778765.1778815
https://doi.org/10.1145/1778765.1778786
https://doi.org/10.1145/1198555.1198748
https://doi.org/10.1109/TVCG.2021.3114869
https://doi.org/10.1007/s00158-023-03663-0
https://doi.org/10.1145/3450626.3459801
https://doi.org/10.1145/3450626.3459801
https://doi.org/10.1109/SWG.2002.1226504

[XGZ11] C. Xian, S. Gao, T. Zhang, “Tetrahedral Mesh Editing with Local Feature Manipulations”. In:
2011 12th International Conference on Computer-Aided Design and Computer Graphics. 2011,
pp. 130–137. doi: 10.1109/CAD/Graphics.2011.58.

[XH22] T. Xu, T. Harada, “Deforming radiance fields with cages”. In: Computer Vision – ECCV 2022.
Ed. by Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni M. Farinella, and Tal Hassner.
Vol. 13693. Lecture Notes in Computer Science. Cham: Springer, 2022, pp. 159–175. doi: 10
.1007/978-3-031-19827-4_10.

[Xi+21] N. Xi, Y. Sun, L. Xiao, G. Mei, “Designing Parallel Adaptive Laplacian Smoothing for Improving
Tetrahedral Mesh Quality on the GPU”. In: Applied Sciences 11.12 (June 2021), p. 5543. doi:
10.3390/app11125543.

[Xia+19] L. Xiao, G. Yang, K. Zhao, G. Mei, “Efficient Parallel Algorithms for 3D Laplacian Smoothing on
the GPU”. In: Applied Sciences 9.24 (December 2019), p. 5437. doi: 10.3390/app9245437.

[XLG09] C. Xian, H. Lin, S. Gao, “Automatic generation of coarse bounding cages from dense meshes”. In:
Proceedings of the International Conference on Shape Modeling and Applications. SMI ’09. Beijing,
June 2009, pp. 21–27. doi: 10.1109/smi.2009.5170159.

[XLG11] C. Xian, H. Lin, S. Gao, “Automatic cage generation by improved OBBs for mesh deformation”.
In: The Visual Computer 28.1 (April 2011), pp. 21–33. doi: 10.1007/s00371-011-0595-6.

[XLX15] C. Xian, G. Li, Y. Xiong, “Efficient and effective cage generation by region decomposition”. In:
Computer Animation & Virtual Worlds 26.2 (March 2015), pp. 173–184. doi: 10.1002/cav.1
571.

[Xu+09] K. Xu, Z.-Q. Cheng, Y. Wang, Y. Xiong, H. Zhang, “Quality encoding for tetrahedral mesh opti-
mization”. In: Computers & Graphics 33.3 (June 2009), pp. 250–261. doi: 10.1016/j.cag.2
009.03.020.

[XZG13] C. Xian, T. Zhang, S. Gao, “Semantic Cage Generation for FE Mesh Editing”. In: 2013 Interna-
tional Conference on Computer-Aided Design and Computer Graphics. 2013, pp. 220–227. doi:
10.1109/CADGraphics.2013.36.

[Yan+12] X. Yang, J. Chang, R. Southern, J. J. Zhang, “Automatic cage construction for retargeted muscle
fitting”. In: The Visual Computer 29.5 (June 2012), pp. 369–380. doi: 10.1007/s00371-01
2-0739-3.

[YHC13] M. Yoon, S.-H. Ha, S. Cho, “Isogeometric shape design optimization of heat conduction prob-
lems”. In: International Journal of Heat and Mass Transfer 62 (2013), pp. 272–285. doi: 10.1
016/j.ijheatmasstransfer.2013.02.077.

[Yif+20] W. Yifan, N. Aigerman, V. G. Kim, S. Chaudhuri, O. Sorkine-Hornung, “Neural cages for detail-
preserving 3D deformations”. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition. CVPR ’20. Seattle, June 2020, pp. 72–80. doi: 10.1109/CVPR42600.2020.00
015.

[YS19] Z. Yan, S. Schaefer, “A family of barycentric coordinates for co-dimension 1 manifolds with
simplicial facets”. In: Computer Graphics Forum 38.5 (August 2019), pp. 75–83. doi: 10.1111
/cgf.13790.

[YT08] J. Yin, C. Teodosiu, “Constrained mesh optimization on boundary”. In: Engineering with Com-
puters 24.3 (May 2008), pp. 231–240. doi: 10.1007/s00366-008-0090-5.

[Zas20] M. Zastrow. “The new 3D printing”. In: Nature 578.7793 (2020), pp. 20–23.

182

https://doi.org/10.1109/CAD/Graphics.2011.58
https://doi.org/10.1007/978-3-031-19827-4_10
https://doi.org/10.1007/978-3-031-19827-4_10
https://doi.org/10.3390/app11125543
https://doi.org/10.3390/app9245437
https://doi.org/10.1109/smi.2009.5170159
https://doi.org/10.1007/s00371-011-0595-6
https://doi.org/10.1002/cav.1571
https://doi.org/10.1002/cav.1571
https://doi.org/10.1016/j.cag.2009.03.020
https://doi.org/10.1016/j.cag.2009.03.020
https://doi.org/10.1109/CADGraphics.2013.36
https://doi.org/10.1007/s00371-012-0739-3
https://doi.org/10.1007/s00371-012-0739-3
https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.077
https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.077
https://doi.org/10.1109/CVPR42600.2020.00015
https://doi.org/10.1109/CVPR42600.2020.00015
https://doi.org/10.1111/cgf.13790
https://doi.org/10.1111/cgf.13790
https://doi.org/10.1007/s00366-008-0090-5

[Zel+23] S. Zellmann, Q. Wu, K.-L. Ma, I. Wald, “Memory-Efficient GPU Volume Path Tracing of AMR
Data Using the Dual Mesh”. In: Computer Graphics Forum 42.3 (June 2023), pp. 51–62. doi:
10.1111/cgf.14811.

[ZG19] D. Zint, R. Grosso, “Discrete Mesh Optimization on GPU”. In: Lecture Notes in Computational
Science and Engineering. July 2019, pp. 445–460. doi: 10.1007/978-3-030-13992-6_24.

[Zha+14] J. Zhang, B. Deng, Z. Liu, G. Patanè, S. Bouaziz, K. Hormann, L. Liu, “Local barycentric coor-
dinates”. In: ACM Transactions on Graphics 33.6 (November 2014), Article 188, 12 pages. doi:
10.1145/2661229.2661255.

[ZHL19] S. Zellmann, M. Hellmann, U. Lang, “A Linear Time BVH Construction Algorithm for Sparse
Volumes”. In: 2019 IEEE Pacific Visualization Symposium (PacificVis). 2019, pp. 222–226. doi:
10.1109/pacificvis.2019.00033.

[Zho+11] K. Zhou, M. Gong, X. Huang, B. Guo, “Data-Parallel Octrees for Surface Reconstruction”. In:
IEEE Transactions on Visualization and Computer Graphics 17.5 (2011), pp. 669–681. doi: 10
.1109/TVCG.2010.75.

[ZJ16] Q. Zhou, A. Jacobson, Thingi10K: A Dataset of 10,000 3D-Printing Models. 2016. doi: 10.485
50/ARXIV.1605.04797.

[ZWY22] Q. Zhou, Q. Wang, Z. Yu, “SAFT: Shotgun advancing front technique for massively parallel
mesh generation on graphics processing unit”. In: International Journal for Numerical Methods
in Engineering 123.18 (2022), pp. 4391–4406. doi: 10.1002/nme.7038.

[ZZ87] O. C. Zienkiewicz, J. Z. Zhu, “A simple error estimator and adaptive procedure for practical engi-
neerng analysis”. In: International Journal for Numerical Methods in Engineering 24.2 (February
1987), pp. 337–357. doi: 10.1002/nme.1620240206.

183

https://doi.org/10.1111/cgf.14811
https://doi.org/10.1007/978-3-030-13992-6_24
https://doi.org/10.1145/2661229.2661255
https://doi.org/10.1109/pacificvis.2019.00033
https://doi.org/10.1109/TVCG.2010.75
https://doi.org/10.1109/TVCG.2010.75
https://doi.org/10.48550/ARXIV.1605.04797
https://doi.org/10.48550/ARXIV.1605.04797
https://doi.org/10.1002/nme.7038
https://doi.org/10.1002/nme.1620240206

Appendices

185

A. Glossary

AABB axis aligned bounding box. 126, 127, 128, 129, 130, 131, 133, 134, 135, 145, 146, 156

ADF advancing front. 155

AMIPS advanced most isometric parameterizations. 29, 95, 111, 120

API application programming interface. 9, 15, 56

BBW bounded biharmonic weights. 45, 117, 118, 119, 121, 122, 123

BLAS bottom level acceleration structure. 56, 156

B-Reps boundary representations. 1, 2, 27, 99, 154, 155

CAD computer-aided design. 1, 3, 4, 20, 37, 53, 54, 99, 100, 101, 110, 111, 115, 123, 124, 150, 152, 154,
155, 156

CAM computer aided manufacturing. 145

CC Catmull-Clark. 35, 54

CGAL computational geometry algorithms library. 75

CPU central processing unit. 3, 16, 31, 32, 33, 55, 74, 75, 89, 90, 91, 92, 93, 94, 105, 110, 111, 113, 114,
119, 130, 143, 149, 150, 151, 154

CSG constructive solid geometry. 155, 156

DVR direct volume rendering. 3, 5, 7, 8, 9, 24, 25, 27, 56, 57, 126, 132, 135, 136, 137, 138, 139, 140, 141,
142, 143, 145, 147, 148, 151, 152, 153, 154, 156, 157

EMC energy minimization-based coordinates. 44, 46, 49, 117, 118, 119, 120, 121, 122, 123, 124

FEA finite element analysis. 2, 4, 5, 33, 53, 100, 123, 124

FEM finite element method. 2, 10, 24, 27, 29, 33, 34, 45, 53, 88, 100, 124, 136

GBC generalized barycentric coordinates. 21, 22, 23, 40, 41, 42, 43, 44, 46, 47, 48, 49, 117, 118, 119, 123

GC Green coordinates. 49, 50, 51, 52, 118, 119, 120, 121, 123

GPGPU general purpose graphics processing unit. 15

187

GPU graphics processing units. 1, 2, 3, 4, 5, 8, 9, 15, 16, 19, 20, 25, 31, 32, 34, 35, 40, 42, 53, 54, 55, 56,
57, 62, 63, 64, 74, 75, 79, 80, 81, 83, 87, 89, 90, 92, 94, 97, 100, 105, 106, 107, 110, 111, 113, 114,
115, 119, 123, 125, 128, 131, 134, 135, 140, 143, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
156, 157

HC harmonic coordinates. 44, 45, 117, 118, 119, 121, 122, 123

HLBVH hierarchical linear bounding volume hierarchy. 54, 55

HPC high-performance computing. 3, 32

IGA isogeometric analysis. 53, 54

LBC local barycentric coordinates. 45, 46, 117, 118, 119, 121, 122, 123, 124

LBS linear blend skinning. 23, 35, 36, 45

LBVH linear bounding volume hierarchy. 54, 55, 126, 130, 137, 138, 139, 140, 146, 147, 148

LOBVH loose octree bounding volume hierarchy. 55

MEC maximum entropy coordinates. 47, 123

MIPS most isometric parameterizations. 29

MLC maximum likelihood coordinates. 47, 48, 49, 117, 118, 119, 120, 122, 123

MVC mean value coordinates. 41, 42, 43, 48, 117, 118, 119, 123, 124

NURBS non-uniform rational B-splines. 1, 53, 54

OBB oriented bounding box. 38, 39

OLBVH octree linear bounding volume hierarchy. 5, 7, 41, 56, 125, 126, 127, 128, 130, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 145, 146, 147, 148, 151, 152, 153, 154, 156, 157

PCA principal component analysis. 38, 39

PDE partial differential equation. 2, 3, 44, 45, 46, 49, 53

PLC piecewise linear complex. 12, 13, 105, 111, 112, 155

PMVC positive mean value coordinates. 42, 43, 123

QFS quadratic fit search. 87

QGC Green coordinates for tri-quad cages. 50, 52, 118, 120, 121, 122, 123, 124

QMVC mean value coordinates for tri-quad cages. 43, 44, 50, 52, 118, 120, 123

quad quadrilateral. 21, 43, 44, 45, 53, 117, 120, 121, 122, 123, 150, 152, 157

188

RBF radial basis function. 36

RGBA red, green, blue and alpha. 24

SAH surface area heuristic. 54, 55

SBC spherical barycentric coordinates. 43, 123

SC Somigliana coordinates. 52, 53, 119, 120, 121, 122, 123

SIMD single instruction multiple data. 15, 16, 17

SIMT single instruction multiple threads. 15, 16

TCSR ternary compressed sparse row. 19, 62, 65, 72, 83, 89, 92, 97, 102, 106, 109, 113, 128, 143

TLAS top level acceleration structure. 56

VP virtual prototyping. 1, 3, 4, 5, 6, 27, 34, 36, 37, 38, 53, 54, 59, 80, 81, 97, 99, 100, 102, 110, 114, 115,
116, 117, 118, 120, 122, 123, 124, 126, 147, 149, 150, 151, 152, 153, 154, 155, 156

189

B. Supervisory Activities

B.1. Lectures

1. Teaching assistant for the Graphische Datenverarbeitung I course (TU Darmstadt TUCaN ID 20-00-0040-
iv)

2. Teaching assistant for the Graphische Datenverarbeitung II course (TU Darmstadt TUCaN ID 20-00-
0041-iv)

B.2. Practicals

1. Supervision of several programming practicals in the (Advanced) Visual Computing Lab course (TU
Darmstadt TUCaN IDs 20-00-0537-pr and 20-00-0418-pr).

2. Supervision of several teaching practicals for the Praktikum in der Lehre - Graphische Datenverarbeitung
I course (TU Darmstadt TUCaN ID 20-00-1101-pl).

B.3. Seminars

1. Supervision of several seminal works in the Applied Topics of Computer Graphics seminar (TU Darmstadt
TUCaN ID 20-00-0724-se).

B.4. Bachelor’s Theses

[Gon21] M. González Nothnagel. “Adaptive bounding volume hierarchy for volumetric meshes”. Bachelor’s
Thesis. Technische Universität Darmstadt, 2021

B.5. Master’s Theses

[Kel24] J. Kelling. “Memory-efficient Real-time Path Tracing for Computer Games”. Master’s Thesis. Tech-
nische Universität Darmstadt, 2024

[Ste24] M. Stegemann. “Tetraedernetz-Adaptionmittels Fehlerabschätzung und harmonischer Optimierung”.
Master’s Thesis. Technische Universität Darmstadt, 2024

191

C. Conference Presentations of Published Papers

During my PhD-project, I have presented my publications at several conferences. The following list shows
my conference presentations. If a conference presentation was given online due to the COVID-19 pandemic,
the presentation is marked as (online presentation):

• Computer Graphics International (CGI) October, 2020. Presentation of the paper: “OLBVH: octree lin-
ear bounding volume hierarchy for volumetric meshes”. Geneva, Switzerland (online presentation).
URL: https://www.youtube.com/watch?v=0Uzvu1v1SkA

• International Conference on Simulation and Modeling Methodologies, Technologies and Applications
(SIMULTECH) July, 2021. Presentation of the paper: “TEdit: A Distributed Tetrahedral Mesh Editor
with Immediate Simulation Feedback”. Lisbon, Portugal. (online presentation)

• Computer Graphics International (CGI) September, 2022. Presentation of the paper: “Fast harmonic
tetrahedral mesh optimization”. Geneva, Switzerland (online presentation). URL: https://www.
youtube.com/watch?v=K2gBBpKf6bc

• High-Performance Graphics (HPG) June, 2023. Presentation of the paper: “Massively Parallel Adap-
tive Collapsing of Edges for Unstructured Tetrahedral Meshes”. Delft, Netherlands. Conference
is sponsored by European Association for Computer Graphics (EUROGRAPHICS) and ACM Siggraph.
URL: https://www.youtube.com/watch?v=xY_W_No9Jxk

• Conference of the European Association for Computer Graphics (EUROGRAPHICS) April, 2024. Pre-
sentation of the paper: “A Survey on Cage‐based Deformation of 3D Models”. Limassol, Cyprus.

192

https://www.youtube.com/watch?v=0Uzvu1v1SkA
https://www.youtube.com/watch?v=K2gBBpKf6bc
https://www.youtube.com/watch?v=K2gBBpKf6bc
https://www.youtube.com/watch?v=xY_W_No9Jxk

	Introduction
	Motivation
	Approach
	Research Questions
	Publications and Contributions
	Outline

	Preliminaries and Notation
	Unstructured Triangulations
	Simplicial Meshes
	Delaunay Triangulation
	Harmonic Triangulation

	APIs, Algorithms and Data Structures for Massively Parallel Processing
	Massively Parallel GPU Computation and CUDA
	Common Algorithms for GPU Programming
	TCSR Simplicial Mesh Data Structure

	Manipulating Geometry with Cage-based Deformation
	Matrix Notation for Cage-based Deformation
	Generalized Barycentric Coordinates
	Linear Blend Skinning

	Direct Volume Rendering of Unstructured Grids

	Related Work
	The Two Scopes of Mesh Editing
	Mesh Optimization and Re-meshing of Unstructured Tetrahedral Meshes
	From Laplacian Smoothing to Optimizing Element Quality Metrics
	Distortion Energies for Mesh Optimization
	Edge Collapse in Tetrahedral Meshes
	Applications of Tetrahedral Mesh Coarsening
	Parallel Vertex Relocation
	Parallel Re-meshing
	Boundary Treatment in Mesh Optimization

	High-level Volumetric Mesh Editing
	Volumetric Mesh Editing on the Basis of Semantic Features
	Volumetric Mesh Editing by Shape Deformation

	Interactive Mesh Deformation for Model Manipulation
	Free-form Deformation using Lattices
	Skeletal-based Deformation
	Linear Subspaces
	Radial-Basis-Function-based Deformation

	Generation of Cages for Deformation Control
	Cage Quality
	Offset Surface Simplification Methods
	Voxelization-based Methods
	Template-based Methods
	Interactive Cage Generation Methods
	Embedding the Cage

	Construction of Cage Coordinates for Deformation Control
	Barycentric Coordinates with Explicit Formula
	Energy Minimization-based Barycentric Coordinates
	Probability-based Coordinates
	Coordinates with Normal Control

	Isogeometric Analysis
	Spatial Datastructures for GPU-parallel Construction and Rendering
	Linear Spatial Datastructures
	Massively Parallel Traversal
	Hardware Accelerated Spatial Data Structure

	Direct Volume Rendering of Unstructured Meshes

	Fast Harmonic Mesh Optimization
	Harmonic Gradient
	Boundary Features Extraction for Gradient Descent
	Vertex Relocation
	Relocating Interior Vertices
	Directional Derivatives for Boundary Treatment
	Preserving the Boundary
	Approximate Boundary Preservation to Relocate Every Vertex

	Parallel Harmonic Flipping
	Combined Vertex Relocation and Flipping
	Evaluation of Harmonic Mesh Optimization
	Implementation of the Original Harmonic Mesh Optimization Algorithm
	Run Time Performance of Parallel Flipping
	Robustness
	Element Quality and Convergence
	Run Time Performance of Harmonic Mesh Optimization

	Summary

	Massively Parallel Collapsing of Edges of Unstructured Tetrahedral Meshes
	Collapsing Algorithm
	Algorithm Design
	Finding Admissible Edges for Collapsing
	Finding Independent Sub-Meshes
	Collapsing Edges
	Determinism of Conflict Detection

	Collapsing for Mesh Improvement
	A Method for Massively Parallel Mesh Adaptation using Error Estimation
	Evaluation
	Robustness
	Conflict Detection
	Run Time Performance
	Skipping Iterations that Collapse only Few Edges
	Mesh Quality Improvement of Harmonic Optimization with Collapsing

	Summary

	User-guided Unstructured Tetrahedral Mesh Editing
	Face Groups for Interactive Mesh Modification
	Assigning Face Groups using Annotation from CAD
	Extracting Face Groups from the Surface Geometry
	Finding Feature Edges between Face Groups

	Volumetric Mesh Editing Operations
	Volumetric Hole Filling
	Volumetric Mesh Erosion

	Evaluation of Tetrahedral Mesh Editing based on Face Groups
	Evaluation of Face Group Detection
	Run Time Performance and Element Quality for Hole Closing
	Run Time Performance and Element Quality for Erosion

	Evaluating the Capabilities of Cage-based Deformation
	Comparing Cage Generation Methods
	Locality of Coordinate Types
	Cage Connectivity Support of Coordinate Types
	Shape Preservation of Coordinate Types
	Computational Cost for Coordinate Computation
	Element Quality of Deformed Tetrahedral Meshes using Cage-based Deformation
	Comparing Coordinate Types

	Summary

	Massively Parallel Post Processing of Unstructured Tetrahedral Meshes for Analysis
	Octree Linear Bounding Volume Hierarchy
	Quantization of AABBs along the Morton Curve
	Data Structure Layout
	Construction
	Traversal

	Direct Volume Rendering using the OLBVH
	Empty Space Skipping
	Sample the Simulation Results along View Rays

	Coarsening Meshes for Direct Volume Rendering
	Evaluation of Post-Processing Performance
	Evaluation Meshes
	Performance of OLBVH Construction
	Performance of Sampling Throughput for DVR
	Profiling DVR Performance
	Performance of Coarsening for DVR

	Conservative Slicing
	Algorithm for Conservative Slicing using the OLBVH
	Runtime Performance of Conservative Slicing

	Summary

	Conclusion and Future Work
	Answering the Research Questions
	Key Conclusions
	Limitations
	Future Work
	Avenues for Faster Generation and Optimization of Unstructured Tetrahedral Meshes
	Avenues for Shorter Design Cycles in Virtual Prototyping
	Avenues to Advance Rendering Performance
	Avenues for Massively Parallel Processing of Unstructured Hexahedral Meshes

	References
	Appendices
	Glossary
	Supervisory Activities
	Lectures
	Practicals
	Seminars
	Bachelor's Theses
	Master's Theses

	Conference Presentations of Published Papers

