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Abstract

It is widely accepted that dense strong-interaction matter at low temperatures is governed by a colour-
superconducting ground state. To study the emergence of colour superconductivity in dense strong-interaction
matter at zero temperature for two massless quark flavours from first principles, we employ a renormalisation
group approach. For this purpose, we construct a new class of regulators for functional renormalisation
group studies that is designed to handle issues arising from the presence of a Cooper instability governing
the dynamics at intermediate and high densities.
We examine the dynamical formation of diquark states in the low-energy regime from the fundamental quark
and gluon degrees of freedom that govern the dynamics at high energies. This includes a computation of
the (chirally symmetric) diquark condensate, which is associated with a gap in the excitation spectrum of
the quarks, and describes pairing of the two-flavour colour-superconducting type. We study the dependence
of the gap on the chemical potential and the strong coupling and find a new scaling behaviour of the gap
expected to be valid at intermediate densities. Effects of different approximations entering our calculation and
possible extensions are discussed. Furthermore, we use the results from our first-principles renormalisation
group flows to construct a new simple low-energy model for dense strong-interaction matter.
We demonstrate the application of this low-energy model by computing the zero-temperature thermodynamics
of isospin-asymmetric matter with two massless quark flavours at high densities and zero temperature. For
trajectories relevant for astrophysical applications, we find indications for a first-order phase transition from
a colour-superconducting phase to an ungapped quark-matter phase when the density is increased. This
phase transition appears to be absent for isospin-symmetric matter. To provide an estimate for the speed of
sound in neutron-star matter, we include constraints from beta equilibrium, electric-charge neutrality, and
colour-charge neutrality. Coming from high densities, we find an increase in the speed of sound towards lower
densities and that it even exceeds the value associated with the noninteracting quark gas.
In addition to our explicit calculations of the properties of dense strong-interaction matter, we also discuss
the thermodynamics at high densities on general grounds. To this end, we consider an expansion of the
equation of state of isospin-symmetric matter in the presence of a colour-superconducting gap. This allows
us to identify mechanisms underlying qualitatively different behaviours of the speed of sound. For very high
densities, we find that the speed of sound approaches its value in the noninteracting limit from below, in
agreement with perturbative studies which do not take into account a superconducting gap in the excitation
spectrum of the quarks. However, towards lower densities, our general analysis indicates that gap-induced
contributions lead to an increase in the speed of sound that eventually exceeds the value associated with a
noninteracting quark gas, in agreement with our numerical renormalisation group results. We find that, even
for small gap-induced contributions, the existence of a colour-superconducting phase leads to a qualitative
change in the behaviour of the speed of sound. Taking into account results from studies based on chiral
effective field theory at low densities, these findings suggest the existence of a maximum in the speed of
sound at supranuclear densities for densities below ten times the nuclear saturation density.
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Kurzfassung

Es ist allgemein anerkannt, dass dichte, stark wechselwirkende Materie bei tiefen Temperaturen von einem
farbsupraleitenden Grundzustand beherrscht wird. Um die Entstehung von Farbsupraleitung in dichter, stark
wechselwirkender Materie bei verschwindender Temperatur für zwei masselose Quark-Flavours von fundamen-
talen Prinzipien ausgehend zu untersuchen, verwenden wir einen Renormierungsgruppenansatz. Zu diesem
Zweck konstruieren wir eine neue Klasse von Regulatoren für funktionale Renormierungsgruppenstudien,
die entworfen wurde, um Probleme zu behandeln, die sich aus dem Vorhandensein einer Cooper-Instabilität
ergeben, welche die Dynamik bei mittleren und hohen Dichten bestimmt.
Wir untersuchen die dynamische Bildung von Diquark-Zuständen im Niederenergie-Regime ausgehend von
den fundamentalen Quark- und Gluon-Freiheitsgraden, die die Dynamik bei hohen Energien bestimmen. Dies
beinhaltet die Berechnung des (chiral-symmetrischen) Diquark-Kondensats, das mit einer Energielücke im
Anregungsspektrum der Quarks assoziiert ist. Wir untersuchen die Abhängigkeit der Energielücke vom che-
mischen Potential und der starken Kopplung und finden ein neues Skalierungsverhalten dieser Energielücke,
welches für mittlere Dichten gültig sein sollte. Die Auswirkungen verschiedener Näherungen, die in unserer
Berechnung verwendet werden, und mögliche Erweiterungen werden diskutiert. Darüber hinaus verwenden
wir die Ergebnisse dieser Renormierungsgruppenrechnungen, um ein neues und einfaches Niederenergiemodell
für dichte, stark wechselwirkende Materie zu konstruieren.
Wir demonstrieren die Anwendung dieses Niederenergie-Modells, indem wir die Thermodynamik von isospin-
asymmetrischer Materie mit zwei masselosen Quark-Flavourn bei hohen Dichten und verschwindender Tem-
peratur berechnen. Für Trajektorien, die für astrophysikalische Anwendungen relevant sind, finden wir Hin-
weise auf einen Phasenübergang erster Ordnung von einer farbsupraleitenden Phase zu einer ungekoppelten
Quark-Materie-Phase, wenn die Dichte erhöht wird. Dieser Phasenübergang scheint in isospin-symmetrischer
Materie nicht aufzutreten. Um die Schallgeschwindigkeit in Neutronensternmaterie abzuschätzen, berück-
sichtigen wir Randbedingungen durch das Betagleichgewicht, die elektrische Ladungsneutralität und die
Farbladungsneutralität. Wir stellen fest, dass die Schallgeschwindigkeit von hohen Dichten zu niedrigen
Dichten zunimmt und sogar den Wert übersteigt, der mit einem nicht wechselwirkenden Quarkgas assoziiert
wird.
Zusätzlich zu unseren expliziten Berechnungen der Eigenschaften dichter, stark wechselwirkender Materie
diskutieren wir die Thermodynamik bei hohen Dichten auf Basis allgemeinerer Überlegungen. Zu diesem
Zweck untersuchen wir eine Entwicklung der Zustandsgleichung für isospin-symmetrische Materie in Gegen-
wart einer farbsupraleitenden Energielücke. Dies ermöglicht die Identifizierung der Mechanismen, die dem
qualitativ unterschiedlichen Verhalten der Schallgeschwindigkeit zugrunde liegen. Bei sehr hohen Dichten
nähert sich die Schallgeschwindigkeit ihrem Wert im nicht-wechselwirkenden Limit von unten an, was mit
perturbativen Studien übereinstimmt, die eine supraleitende Energielücke im Anregungsspektrum der Quarks
nicht berücksichtigen. In Richtung niedrigerer Energien zeigt unsere allgemeine Analyse jedoch, dass Beiträge,
die durch die Bindungslücke induziert werden, zu einem Anstieg der Schallgeschwindigkeit führen, sodass
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diese schließlich den Wert übersteigt, der mit einem nicht-wechselwirkendem Quarkgas assoziiert ist. Diese
Beobachtung stimmt auch mit unseren numerischen Renormierungsgruppenergebnissen überein. Wir stellen
fest, dass selbst bei kleinen durch die Bindungslücke induzierten Beiträgen die Existenz einer farbsupraleiten-
den Phase zu einer qualitativen Änderung des Verhaltens der Schallgeschwindigkeit führt. Unter Berücksich-
tigung der Ergebnisse von Studien, die auf chiralen effektiven Feldtheorien bei niedrigen Dichten basieren,
deuten diese Erkenntnisse auf die Existenz eines Maximums der Schallgeschwindigkeit bei supranuklearen
Dichten unter dem Zehnfachen der nuklearen Sättigungsdichte hin.
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Introduction

Physics serves as the cornerstone of natural sciences, as its name already suggests, since it can be translated
as the “study of Nature”. Its goal is to gain a deeper understanding of the phenomena occurring in Nature
and to comprehend the existence of the Universe in its current state. A central goal is to discover and describe
the inherent orders and laws governing the Cosmos. By the end of the 19th century, classical physics was
mostly explored and understood, setting the stage for the most important pillars of modern physics that were
developed in the 20th century.
The development of the theory of relativity in the beginning of the 20th century and quantum mechanics
in the first half of the 20th century fostered a dramatically different perspective of the Universe and led to
numerous scientific advancements. In the second half of the 20th century, additional advancements allowed
to further explore the fundamental nature of matter, resulting in a more comprehensive and unified under-
standing of the laws that govern the Cosmos. It is now well-established that four fundamental interactions
are observed in the Universe. These interactions are the strong interaction, the weak interaction, the elec-
tromagnetic interaction, and gravity. The first three are described by the Standard Model of physics which
was developed in the latter half of the 20th century. It introduces elementary particles whose dynamics is
governed by quantum mechanics. Twelve matter particles, namely six quarks (the up, down, charm, strange,
top, and bottom) and six leptons (the electron, muon, tau, and three neutrinos), which are all fermions
with spin 1/2, interact with force particles, the gauge bosons (the photon, gluon, W± bosons, Z boson, and
Higgs boson) which are spin-one particles. The Standard Model describes these three interactions in terms
of the theoretical framework of quantum field theory. However, only the weak interaction acts on all matter
particles, whilst the strong interaction only acts on the quarks and the electromagnetic interaction does not
act on the electrically neutral neutrinos.
Quantum field theory was initially developed in the beginning of the 20th century incorporating concepts from
quantum mechanics, classical field theory, and special relativity. However, it only became an essential part
of modern physics with the introduction of renormalisation techniques. This development was necessary for
quantum electrodynamics to become the well-established quantum field theory describing the electromagnetic
interaction. In particular, quantum electrodynamics became manageable because the corresponding small
coupling constant allows for perturbative calculations. These calculations first appeared to be the only ones
possible within this approach. In particular, the description of the strong interaction with a quantum field
theory was plagued by issues due to the strength of the corresponding coupling and the self-interactions of the
force carriers. Both of these aspects are absent in quantum electrodynamics. However, the development of
nonperturbative methods led to the possibility to describe the strong interaction via a quantum field theory,
specifically quantum chromodynamics. Finally, within the Standard Model, the weak, electromagnetic, and
strong interaction were all successively described by a renormalisable quantum field theory. Notably, Sheldon
Glashow, Abdus Salam, and Steven Weinberg were able to unify the electromagnetic force and the weak
interaction by introducing the electroweak interaction [1–3].
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Introduction

As the theory of the strong interaction, quantum chromodynamics describes interactions between the quarks
themselves and their antiparticles, the antiquarks, mediated by the exchange of force carriers, the gluons.
Quarks are the elementary constituents of hadrons that are held together by the strong interaction. The
quark model and the idea that hadrons consist of quarks were originally proposed by Murray Gell-Mann [4]
(who also coined the name “quark”) and George Zweig [5, 6]. It was preceded by the “eightfold way” pro-
posed by Murray Gell-Mann [7] and Yuval Ne’eman [8] that classifies and structures the hadrons based on
the symmetry group SU(3). Hadrons are generally classified into mesons and baryons. Baryons consist of
three quarks, while mesons consist of a quark and an antiquark. The most prominent examples for baryons
are the proton and the neutron. Although the strong interaction is short-ranged, it extends slightly beyond
the “edge” of the proton and the neutron allowing them to interact and form atomic nuclei. Interestingly, the
observed masses of the hadrons mostly result from the strong interaction and not the mass of their constituent
quarks.
In quantum chromodynamics, quarks and gluons come in three different colour charges, namely red, green,
and blue. Correspondingly, antiquarks come in colour charges antired, antiblue, and antigreen. The addi-
tional quantum number, later named colour [9], was first proposed by Oscar Wallace Greenberg [10] and
Moo-Young Han and Yoichiro Nambu [11]. It is important to note that hadrons are colourless, i.e., the
colour charges have to add up to “white”. This is fulfilled by combining three quarks where each quark has
a different colour. Alternatively, a quark can be paired with an antiquark which has the anticolour of the
quark. Therefore, hadrons are said to be colour-neutral. The phenomenon that no observed particles have
been experimentally found carrying a colour charge is referred to as colour confinement [12–14]. Quarks also
carry other charges, such as the electric charge. Based on the concept of colour, quantum chromodynamics
was developed by Harald Fritzsch, Heinrich Leutwyler, and Murray Gell-Man [15] based on the Yang-Mills
theory introduced by Chen Ning Yang and Robert Mills [16, 17] with coloured quarks and gluons, the force
carriers of quantum chromodynamics. In contrast to the photon, which is the force carrier of quantum elec-
trodynamics, the gluons interact with each other because they also carry a colour charge. In addition to
that, quantum chromodynamics is an asymptotically free theory implying that the strength of the interac-
tion decreases with increasing energy and vice versa so that the interaction becomes strong at low energies.
This phenomenon was discovered in quantum chromodynamics by David Gross, Frank Wilczek, and David
Politzer [18, 19].
Of special interest in research in recent years has been the phase diagram of quantum chromodynamics which
is shown in a simplified version in Fig. 1 spanned by the quark chemical potential µ, which is closely related
to the total baryon density, and the temperature T . In particular, the existence and properties of different
phases have been of significant interest, see Refs. [20–23] for reviews. Indeed, interesting phenomenological
aspects arise at finite chemical potential and temperature, and various phases of strongly interacting matter
are expected to appear.
Since quantum chromodynamics is an asymptotically free theory, quarks and gluons exist as a gas of almost
free particles at high energies. This regime is deconfined since the strong interaction is weak enough so
that quarks are not bound (in hadrons). As the system is effectively probed at energies of the order of µ
and T at high densities and temperature, respectively, these regions of the phase diagram are governed by
a weak strong interaction. The corresponding phase is referred to as the quark-gluon plasma [24–26] and
it is expected to behave like a dense and thin fluid [27]. However, this phase requires temperatures of over
1500 billion Kelvin (corresponding to ∼ 150MeV). It is expected that a quark-gluon plasma existed for a
short period of time in the early Universe. Experimentally, this region can be accessed in heavy-ion collision
experiments such as at the Relativistic Heavy Ion Collider (RHIC) or the Large Hadron Collider (LHC)
where conditions similar to the ones in the early Universe can be generated [28–32]. After the temperature
decreased in the early Universe, quarks “condensed” into hadrons. At these low energies (associated with
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temperature T

chemical potential µ

hadronic phase

colour-superconducting matter

quark-gluon plasma

Figure 1: Simplified schematic phase diagram of quantum chromodynamics spanned by the quark chem-
ical potential µ and the temperature T , where quarks are represented by coloured circles, antiquarks are
represented by coloured circles with an overline, and gluons are represented by curled lines. For high en-
ergies, associated with high densities and temperatures, strong-interaction matter exists as a quark-gluon
plasma. Going to lower energies, a phase transition occurs where quarks and gluons start to become bound
in hadrons characterising the hadronic phase. In this phase, strong-interaction matter is made up of mesons,
which consist of a quark and an antiquark, and baryons which consist of three quarks. The line separat-
ing the quark-gluon plasma from the hadronic phase represents a first-order phase transition with a critical
endpoint (represented by the grey circle) exhibiting a second-order phase transition. For high densities but
low temperatures a colour-superconducting ground state is expected where quarks form diquark-like Cooper
pairs, see main text for details.

temperatures below ∼ 150MeV and densities below ∼ 350MeV), where the interaction between the quarks
becomes strong, quarks only appear as bound states, i.e., confined in hadrons. The corresponding phase is
referred to as the hadronic phase. Consequently, no free quarks or gluons propagate in the vacuum, i.e., at
zero temperature and density. Since the hadronic phase represents a confined phase there has to be a phase
transition from the deconfined quark-gluon plasma to the confined hadronic phase [33, 34]. Additionally, a
second phase transition exists where chiral symmetry is restored, the so-called chiral phase transition [33–37].
It essentially describes a transition from heavy constituent quarks to light current quarks. The line represent-
ing the first-order phase transition between the hadronic phase and the quark-gluon plasma is drawn in Fig. 1
up to the possibly-existing critical point where a second-order phase transition is expected to occur [38–40].
For smaller chemical potential, the transition is expected to be a crossover. In the hadronic phase, there is
also a nuclear liquid-gas transition [41–45], which we do not show in Fig. 1. Of particular interest, regarding
the studies in the present work, is the region in the phase diagram associated with large chemical potentials
but sufficiently low temperatures where a colour-superconducting phase is expected to exist [20, 46–56]. We
shall come back to this aspect below. Interestingly, this phase may be governed by a multitude of different
types of so-called colour superconductors giving rise to a rich phase structure.
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The different regions in the phase diagram are associated with different symmetries and the spontaneous
breakdown of these symmetries. Spontaneous symmetry breaking refers to the phenomenon that the ground
state is not invariant under a symmetry transformation although the action of the theory under consideration
and the resulting equations of motion are invariant. This phenomenon is an essential part of modern physics.
For example, in quantum chromodynamics, chiral symmetry breaking [57, 58], referring to the spontaneous
breaking of the chiral symmetry, is responsible for the masses of the hadrons. The two lightest quarks (up and
down quark) are almost massless and their respective current masses are insufficient to explain the masses
of the observed hadrons. However, quarks acquire a mass due to chiral symmetry breaking, leading to con-
stituent quark masses of ∼ 300− 350MeV for the up and down quark [59, 60]. As it turns out, the concept of
symmetry breaking can be transferred to explain various phenomena in physics, such as the Anderson-Higgs
mechanism in particle physics, which explains the generation of gauge boson masses in the electroweak sector
of the Standard Model [61–66].
Outside of particle physics, the concept of spontaneous symmetry breaking appears, e.g., in the description
of superconductivity in condensed matter physics. Interestingly, the Anderson-Higgs mechanism in particle
physics was proposed based on and preceded by research in superconductivity [67, 68]. The exploration of
superconductivity can be traced back to the beginning of the 20th century when Heike Kamerlingh Onnes
noticed that mercury suddenly loses all its electrical resistance if a temperature of 4.2K is subceeded and
thereby discovered superconductivity in metals. The classical understanding of conductivity in metals cannot
explain this phenomenon. Attempts to find an explanation were made by, e.g., Fritz and Heinz London [69]
and Lev Landau and Vitaly Ginzburg [70]. However, it took approximately 50 years, after the first discovery
of superconductivity, to develop a complete microscopic theory. Leon Cooper developed the idea that in the
presence of a Fermi sea, two electrons can form a bond at its surface [71]. These two-electron bound states,
referred to as Cooper pairs, exist for an arbitrarily small attractive interaction. This instability towards the
formation of fermion pairs is known as the Cooper instability [71]. Building on this idea, John Bardeen, Leon
Cooper, and John Robert Schrieffer developed the so-called Bardeen–Cooper–Schrieffer (BCS) theory [72,
73]. While Cooper’s idea only considers two electrons at the Fermi surface, in the BCS theory many particles
interacting at the Fermi surface are considered. Analogous to Cooper’s idea, according to the BCS theory, a
system with at least a weak attractive interaction becomes unstable towards the formation of Cooper pairs.
For electrons in a metal, this attractive interaction is mediated by electron-phonon interactions which were
first proposed by Herbert Fröhlich [74, 75]. Since the Cooper pairs are effectively bosonic, they can condense
in the same state so that they have the same macroscopic wavefunction. This results in the macroscopic oc-
cupation of a coherent ground state. Since, at the Fermi surface, it is energetically favoured for the electrons
to form Cooper pairs, the energy of this new ground state is, in the range of the Fermi energy, energetically
lowered compared to the normal ground state. Consequently, an energy gap between the ground state and
excited quasiparticle states, i.e., Cooper pairs, arises resulting in a gap in the excitation spectrum. The
formation of this new ground state corresponds to the emergence of a superconducting phase. Therefore,
superconductivity in metals is explained by the formation of a suprafluid in an electron gas and the resulting
emergence of a macroscopic quantum state. However, the Cooper pairs in the superconducting phase can be
broken up by thermal fluctuations, which explains why superconductivity has only been observed at low tem-
peratures. Although the BCS theory was originally developed to explain superconductivity in metals, it turns
out that it is possible to generalise it by extending it to the formation and condensation of pairs of fermions
in general. Therefore, it can be applied to different fermionic systems such as liquids like helium-3 [76, 77]
or cold atomic gases in a trap like lithium-6 or potassium-40 [78].
Interestingly, the superconducting ground state exhibits spontaneous symmetry breaking associated with a
nonzero value of the expectation value of the pairing field, namely the Cooper pairs. Considering supercon-
ductivity in metals, where the Cooper pairs consist of electrons, the electromagnetic gauge symmetry, i.e.,
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the U(1) symmetry of electrodynamics, is broken. According to Goldstone’s theorem [79, 80], by breaking
a continuous symmetry so-called Goldstone modes emerge, which are massless excitations. The particles
corresponding to these excitations are called Goldstone bosons. However, loosely speaking, by breaking a
symmetry that is gauged, these Goldstone bosons are absorbed by the gauge bosons which then consequently
acquire a mass. These gauge bosons that “eat up” the Goldstone modes are the ones corresponding to the
broken generators of the underlying symmetry group. This generation of mass for gauge bosons is referred
to as the aforementioned Anderson-Higgs mechanism [61–66]. In condensed matter physics, by breaking the
electromagnetic U(1) gauge symmetry, one Goldstone boson would be generated, which is however absorbed
by the gauge boson of electrodynamics, namely the photon. Consequently, the initially massless photon effec-
tively acquires a mass, causing the electromagnetic field to become short ranged. This leads to the expulsion
of magnetic flux in the interior of a superconductor [67], a phenomenon known as the Meissner-Ochsenfeld
effect [81]. In particle physics, the role of the Cooper pairs is played by the Higgs boson which couples to the
gauge bosons of the weak interaction. Consequently, the W± and Z bosons appear massive analogous to the
photon in condensed matter superconductors.
In the context of quantum chromodynamics, taking into account that quarks are fermions, the existence of a
superconducting phase of quarks is expected since certain interactions are already attractive, indicating the
existence of a Cooper instability at the Fermi surface. Therefore, the phase diagram of quantum chromo-
dynamics, see Fig. 1, is expected to be governed by a colour-superconducting ground state at high densities
but low temperatures. The existence of such a ground state in quantum chromodynamics at supranuclear
densities was first discussed in the 1970s, see Ref. [55] for an early review. However, this phase attracted little
interest until it was found that colour-superconductivity and the resulting formation of sizeable pairing gaps
∼ 100MeV may considerably affect quantum chromodynamics at low temperatures, see Refs. [20, 46–54].
These studies suggest the emergence of a plethora of symmetry-breaking patterns [40, 82–92]. With this,
the interest in quantum chromodynamics at supranuclear densities flourished. In contrast to conventional
superconductivity, where Cooper pairs are formed by electrons with opposite spins, the Cooper pairs are
diquark-like states. In addition to that, instead of the electric charge, the corresponding charge is the colour
charge as the name already suggests. For colour-superconducting matter to occur, very specific conditions
have to be met. Densities have to be high enough so that quarks are not bound in hadrons and temperatures
low enough so that the diquark-like states (corresponding to Cooper pairs) are not broken up by thermal
fluctuations. Therefore, this state of matter is only expected to exist in strong-interaction matter in the
region of the phase diagram corresponding to high densities but low temperatures where quarks are expected
to form a Fermi liquid. Currently, it is not possible to experimentally investigate strong-interaction matter
under such extreme conditions. However, a colour-superconducting ground state is speculated to govern the
state of quark matter found in the core of neutron stars [46, 47, 50, 55, 93].
Neutron stars provide an excellent link between nuclear physics, particle physics, and astrophysics [94–96]
to test our understanding of physics in many ways. To this end, they provide a link between physics at two
very different regions across many length scales. At very small length scales, corresponding to microscopic
properties, the dynamics is governed by quarks and gluons, which are expected to be the relevant degrees
of freedom in the core of neutron stars. These fundamental dynamics influence the physics at very large
length scales where macroscopic properties such as the equation of state or the mass-radius relation are an
essential part of describing the properties of neutron stars. This connection enables us to test theories under
extreme conditions since the small-scale dynamics significantly determines the properties of neutron stars.
As we shall see, we encounter this connection between different length scales in several places throughout the
present thesis.
Stars with a mass greater than approximately eight times that of the sun are unable to support their own
weight once their fusion processes have depleted and the gas and radiation pressure is insufficient. As a
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result, they undergo a process known as core-collapse supernova, which produces remnants such as black
holes and neutron stars [97]. Neutron stars represent the most extreme and densest stable object known in
the Universe, only surpassed by black holes. They have a mass of one to two solar masses and a radius of
approximately ∼ 10 km [98], resulting in extremely high densities within the core of the star. The cores of
the exploded stars from which neutron stars emerge are mostly composed of iron. After the collapse, due
to gravitational pressure, the electrons are pushed into the protons, resulting in the formation of neutrons
through an inverse beta decay (electron-capture process) until beta equilibrium is reached. Therefore, neutron
stars are expected to consist mostly of neutron-rich matter, with a small fraction of protons and electrons.
Consequently, the neutron star is partially supported against collapse by the Fermi pressure of the neutrons
(in addition to, e.g., repulsive forces from the strong interaction). However, the relevant degrees of freedom
may be even more complex, particularly towards the core of the neutron star, where densities up to ten times
the nuclear saturation density are expected [96]. In particular, the explanation of the existence of two-solar
mass neutron stars [99–102] remains a problem that is not conclusively solved and still under investigation,
indicating that there is a lot that needs to be understood. Different states of matter and phenomena that
govern the dynamics inside neutron stars may exist [96]. At the densities present inside neutron stars, it
is expected that neutrons will dissolve into their composites, namely quarks and gluons. This suggests the
existence of deconfined quark matter [103–105]. Furthermore, the densities are high enough so that strange
quarks may become relevant. Therefore, a possible state of matter present in the core of a neutron star is
strange matter, such as hyperon-dominated matter [106–109], where hyperons refer to baryons consisting of
one or more strange quarks. Alternatively, the ground state in neutron stars may be governed by colour
superconductivity already discussed above. Indeed, the densities and temperatures present in neutron stars
suggest that strong-interaction matter, as realised in the core of neutron stars, is represented by the region
in the phase diagram along the chemical potential axis, see Fig. 1.
The impressive and recent advancements in the observation of neutron stars because of the first detection of
gravitational-wave signals of a neutron-star merger [110, 111], the ongoing missions aiming at the first direct
neutron star radius measurements [112–117], and the precise mass measurements of heavy neutron stars [99,
100, 102, 118], have sparked the interest in the exploration of neutron stars from a theoretical perspective.
This particularly challenges our understanding of the dynamics of dense strong-interaction matter and has
led to new interest in the phase diagram of quantum chromodynamics, especially in the region relevant for
the description of the properties of neutron stars, i.e., at supranuclear densities.
Indeed, the understanding of the properties of neutron stars requires knowledge about the equation of state
of dense strong-interaction matter across a wide range of densities. The recent breakthroughs in the observa-
tion of neutron stars provide constraints for the equation of state and challenge the theoretical description of
dense matter and require quantitative results for densities up to ten times the nuclear saturation density or
even higher [119]. Information about the temperature dependence of the equation of state up to ∼ 100MeV
are additionally needed for a description of neutron-star mergers. Therefore, constraints from the theoretical
point of view are indeed urgently needed. Another property, related to the equation of state, which can
be used to characterise matter is the speed of sound which serves as an indicator of the stiffness of matter
and the equation of state. It is a very sensitive quantity regarding changes in the density dependence of
the pressure, such that already small corrections to the pressure can lead to significant changes in the speed
of sound. The observed neutron-star masses suggest the existence of a maximum in the speed of sound
which exceeds the asymptotic value in the noninteracting limit [103, 119–124]. This maximum is expected
to be below n/n0 ≈ 10 (where n0 is the nuclear saturation density and n is the total baryon density). A
detailed knowledge about the equation of state and particularly the speed of sound across a wide density and
temperature range is very challenging because it requires to consider regimes where very different low-energy
dynamics with many different effective degrees of freedom are involved.
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From a theoretical standpoint, these regions with different effective degrees of freedom and the complex phase
structure require to explore the phase diagram of quantum chromodynamics with many different approaches.
Depending on the considered density and temperature, certain approaches may be more applicable than
others. In the low-density regime, where the effective degrees of freedom are nucleons and pions and the
dynamics is governed by chiral symmetry breaking, low-energy models that incorporate the relevant features
of quantum chromodynamics are applied. For the properties of nuclear matter, chiral effective field theo-
ries provide strong constraints for the equation of state at low densities (associated with densities around
n/n0 . 2 − 3) [125–129]. For example, for the speed of sound, these studies predict a rapid increase with
the density. In addition to chiral effective field theories, functional renormalisation group studies of the
equation of state based on nucleon-meson and quark-meson models also exist for low to moderate densities
and low temperatures [130–136]. For vanishing density, the phase diagram can be successfully explored up to
high temperatures through studies based on lattice calculations [137–141] and functional methods [142–150].
However, for finite densities, lattice studies suffer from the so-called sign problem [151–153]. For very high
densities, where quantum chromodynamics is expected to be weakly coupled and the dynamics is governed
by quarks and gluons, studies based on perturbative calculations (perturbative quantum chromodynamics)
provide constraints for the equation of state [154–163]. This approach is valid as long as possibly existing
condensates, such as a colour-superconducting gap in the excitation spectrum of the quarks, are small com-
pared to the chemical potential. The situation in terms of the phase structure becomes more complicated
when considering the intermediate density regime. Quantum chromodynamics becomes strongly coupled
and identifying the dominant effective degrees of freedom is less straightforward. In fact, many interaction
channels and condensates associated with different symmetry-breaking patterns become relevant [130–132,
135, 164–169]. Therefore, chiral and perturbative expansions of quantum chromodynamics are expected to
break down. In this regime, the chiral symmetry is at least effectively restored. However, the ground state
is still complex and is expected to be governed by colour superconductivity emerging from the presence of
a Cooper instability. The existence of this colour-superconducting ground state at low temperatures and
high densities has already been proposed by early low-energy models and first-principles studies in the weak-
coupling limit [40, 83, 85–88]. Because of the complex phase structure and the various dominant effective
degrees of freedom governing the dynamics, the equation of state and speed of sound are still plagued by
large uncertainties. Interestingly, this region is of special interest for astrophysical applications.
Renormalisation group methods present a well-suited approach for studying these aspects as they study
physics across many scales. This is particularly useful for addressing problems arising in strong-interaction
matter at intermediate densities which require to include different degrees of freedom that become important
on different scales. These methods enable the study of the effective action of quantum chromodynamics
under a variation of the resolution [126, 142, 143, 146, 170–178]. They also play an important role in studies
of the equation of state and symmetry-breaking patterns. In addition to that, they are widely used to study
phase structures, the dynamics of a Cooper instability associated with the formation of a pairing gap, and the
impact of quark-gluon dynamics on the equation of state, see, e.g., Refs. [82, 83, 91, 134, 143, 145, 146, 165,
179–192]. The functional renormalisation group is particularly useful for studying condensation effects and
the formation of diquark fields, which are associated with the emergence of a colour-superconducting ground
state. The aim of this work is to analyse dense strong-interaction matter using the functional renormali-
sation group approach by analysing the formation of a colour-superconducting ground state and its effects
on the equation of state, starting from the fundamental interactions that govern the dynamics of quantum
chromodynamics.
The present work builds on previous work on the analysis of dense strong-interaction matter with the func-
tional renormalisation group approach [126, 165, 179, 193, 194]: In particular, it utilises results from a
Fierz-complete calculation of four-quark interaction channels for two massless quark flavours where the four-
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quark interactions are induced by the underlying quark-gluon dynamics, see Ref. [179]. This study allowed
for an analysis of the symmetry-breaking patterns governing the ground state of quantum chromodynamics
and the dominant degrees of freedom across a wide range of densities for low to intermediate temperatures.
It was shown that, for low densities, the scalar-pseudoscalar channel becomes dominant indicating the on-
set of chiral symmetry breaking. However, for high densities, the diquark channel was found to become
dominant. The divergence of this channel is associated with the formation of a chirally symmetric diquark
condensate indicating the formation of a two-flavour colour superconductor. The existence of this colour-
superconducting ground state in dense strong-interaction matter is in accordance with several studies, ranging
from low-energy models, including only the most relevant degrees of freedom, to first-principles studies at
high densities utilising that the strong coupling is small [40, 82–90, 92]. In between the two density regimes
close to the nucleonic low-density regime, many interaction channels become important exhibiting roughly
the same strength. This indicates a complicated phase structure and ground state [130–132, 135, 164–169].
Consequently, for quantitative calculations, the inclusion of many interaction channels may eventually be
required which might also qualitatively alter the equation of state.
Building on the Fierz-complete study in Ref. [179], constraints for the equation of state for isospin-symmetric
two-flavour strong-interaction matter were provided over a wide range of densities in Ref. [126]. By comparing
these results towards the low-density regime with constraints obtained from chiral effective field theory [125,
126], it was found that the calculations show a remarkable consistency. Interestingly, the speed of sound as
a function of the density as obtained from the Fierz-complete study has a maximum at supranuclear densi-
ties [126]. This maximum exceeds the value of the speed of sound for asymptotically high densities associated
with a noninteracting quark gas. Notably, also the aforementioned advances in the observation of neutron
stars and constraints from neutron-star masses suggest that a maximum exists in the speed of sound at least
for neutron-rich matter [103, 119–122]. Recall that colour superconductivity is connected to the formation of
a gap in the excitation spectrum of the quarks. From perturbative calculations for very high densities where
the gap in the excitation spectrum is expected not to contribute significantly, the speed of sound is expected
to approach the noninteracting limit from below, see Refs. [126, 157–162].

Outline of the Thesis

The focus of the present thesis is on the study of the region of the phase diagram of quantum chromodynamics
where the ground state is expected to be governed by colour superconductivity. In particular, we explore
strong-interaction matter at supranuclear densities examining the underlying phase structure and study the
implications on thermodynamic quantities such as the speed of sound. For this purpose, the thesis is divided
into three main chapters.
In Chap. 1, we discuss the theoretical framework for our investigation of strong-interaction matter which is
based on renormalisation group methods. Starting with an introduction to the theory of the strong inter-
action, i.e., quantum chromodynamics, in Sec. 1.1, we present the action of quantum chromodynamics and
its subtleties, leading to the procedure of quantisation and gauge fixing necessary within the path integral
approach to quantum field theory. In addition to that, we take a closer look at the aforementioned theory of
renormalisation in Sec. 1.2, focussing on the functional renormalisation group which is the primary method
employed throughout the present work for analysing dense strong-interaction matter. Particularly, we in-
troduce a renormalisation group flow equation for the effective action, known as the Wetterich equation. In
Sec. 1.3, we discuss challenges in renormalisation group studies of dense relativistic systems, particularly those
arising from the presence of a Cooper instability. In view of our intention to employ the so-called derivative
expansion in the matter sector of quantum chromodynamics in the subsequent chapters, we address issues
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that are specific to this expansion. As it turns out, in order to ensure that the correct scaling behaviour is
recovered, fluctuations should be integrated out around the Fermi surface. This requires the introduction of
a regularisation scheme capable of handling the arising issues which is at least needed for calculations based
on the derivative expansion. We demonstrate the capabilities of this regularisation scheme by applying it to
a widely-used quark-diquark model.
After establishing the necessary field-theoretical tools, we start with the analysis of dense strong-interaction
matter from first principles which is the focus of Chap. 2. In particular, we start by only considering the
fundamental interactions of quantum chromodynamics and see how, only from those interactions, diquarks
emerge as dynamic degrees of freedom. Starting from the action of quantum chromodynamics, we motivate
the ansatz for the effective action in Sec. 2.1 by qualitatively examining the trajectory along the renormali-
sation group flow equation from high to low momentum scales. The description of the low-energy dynamics
may be more efficient in terms of suitably chosen degrees of freedom in the long-range limit. In case of dense
strong-interaction matter, this suggests to use diquark fields as low-energy effective degrees of freedom which
can be traced back to quark interactions at high momentum scales. Diquark fields, as composites of two
quarks, have a nontrivial colour structure which we shall discuss in detail. The ansatz for the effective action
is presented in Sec. 2.2, summarising the insight gained from our qualitative analysis of the renormalisation
group trajectory. We present the resulting flow equations in Sec. 2.3 which requires to introduce the so-called
dynamical bosonisation technique. In Sec. 2.4, we show the results for the renormalisation group flows which
allow us to study the dynamical formation of diquark fields in the low-energy limit and allow us to gain an
insight into the dynamics of quantum chromodynamics over a wide range of densities. At the heart of Chap. 2
is the calculation of the diquark gap which is shown in Sec. 2.5. It represents a gap in the excitation spectrum
of the quarks signalling the emergence of a colour-superconducting ground state. Lastly, we investigate the
influence of fluctuations of the diquark fields and the emergence of the gluon-diquark interactions in Sec. 2.6.
In particular, we improve the approximations underlying the analysis in the remaining chapter. In summary,
Chap. 2 establishes the field-theoretical foundations for first principles studies of the equation of state of
strong-interaction matter at supranuclear densities.
Based on the findings of the previous chapter, we analyse and narrow down the uncertainties of thermody-
namic quantities in Chap. 3. In particular, we analyse the density dependence of the speed of sound at zero
temperature. The speed of sound is a suitable quantity to probe the density dependence of the pressure of
dense strong-interaction matter. For this purpose, we use the results for the diquark gap obtained in Chap. 2
to constrain a low-energy model for two massless quark flavours at intermediate to high densities in Sec. 3.1.
We improve the model by extending it to finite isospin asymmetry which is ultimately needed for astrophys-
ical applications. However, it does not represent a first-principles study of asymmetric strong-interaction
matter. In addition to that, we only consider the zero-temperature limit. Using the low-energy model, we
estimate the zero-temperature phase diagram of asymmetric strong-interaction matter for n/n0 & 10 and
investigate the implications on neutron-star matter by taking into account constraints from beta equilibrium,
electric-charge neutrality, and colour-charge neutrality.
In Sec. 3.2, we consider the speed of sound from a more general point of view by employing an expansion
of the equation of state in the presence of a colour-superconducting gap for isospin-symmetric matter. We
analyse the speed of sound for two massless quark flavours and identify mechanisms underlying qualitatively
different behaviours of the speed of sound. For example, this shall allow us to relate the size of the colour-
superconducting gap to a specific density value where, coming from high densities, the speed of sound exceeds
the asymptotic value of the speed of sound, indicating the existence of a maximum of the speed of sound
above the value of the free quark gas.
Finally, we summarise the results and discuss possible extensions in the Summary and Outlook. In particular,
we discuss relevant contributions and improvements to the first-principles study discussed in Chap. 2.
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1
Fundamentals

In this chapter, we discuss the field-theoretical framework for our analysis of dense strong-interaction matter
in Chap. 2 and Chap. 3. The commonly-accepted theory of the strong interaction, one of the four known
fundamental interactions, is quantum chromodynamics (QCD), which is part of the Standard Model of
particle physics and describes the strong interaction between quarks via the exchange of gluons, the so-called
gauge fields of QCD. We introduce the fundamentals of QCD in Sec. 1.1. As we have already discussed in
the Introduction, the phase diagram of QCD can be investigated by many different approaches. As it turns
out, nonperturbative methods are needed in the regime considered in the present work, i.e., the intermediate
density regime where the coupling strength becomes large and the ground state is governed by the formation
of condensates. Phase transitions are associated with regimes where perturbative methods are no longer
applicable. The functional renormalisation group (fRG), which is a nonperturbative functional method,
appears to be very promising for intermediate densities. We introduce this method, which utilises the path-
integral approach to quantum field theory, in Sec. 1.2. However, the investigation of dense matter within
the fRG framework requires the introduction of a so-called regularisation scheme which is suitable to handle
divergences that appear in relativistic systems, particularly at finite densities. Therefore, we discuss aspects
of regularisation schemes in Sec. 1.3.

1.1 Quantum Chromodynamics

Quantum chromodynamics is a Yang-Mills gauge theory with an underlying SU(3) symmetry and is therefore
a non-Abelian gauge theory [16, 17]. The fundamental particles of QCD are the so-called quarks which
are spin-1/2 fermions and are represented by Dirac fields in the fundamental representation of the colour
group SU(3). There are six known species of quarks that are commonly referred to as flavours. These six
flavours are up (u), down (d), strange (s), charm (c), bottom (b), and top (t). The quarks are the elementary
building blocks of the hadrons which are the particles that are held together by the strong interaction. One
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distinguishes between mesons, which have integer spin and consist of an even number of quarks (one quark
and one antiquark), and baryons which have half-integer spin and consist of an odd number of quarks (three
quarks). Prominent examples of baryons are the proton and the neutron, while examples of mesons are the
pion or the rho meson. For each quark, there exists an antiquark that has opposite charges and lives in the
conjugate representation of SU(3). Quarks come in three colours where colour charge is a quantum number
specific to the strong interaction, loosely comparable to the electric charge in quantum electrodynamics.
In general, Yang-Mills gauge theories can be constructed for Nc colours where the underlying symmetry is
the SU(Nc) symmetry. The introduction of the colour charge allows to construct the observed hadrons while
still fulfilling the Pauli exclusion principle. It was first needed to explain the existence of, e.g., the Delta
baryon ∆++ which consists of three up quarks and could therefore not exist without an additional degree of
freedom, namely the colour charge. The three colour charges are referred to as red, green, and blue. Note
that the underlying colour symmetry SU(3) appears to be exactly realised in Nature. This is connected to
the observation that colours “weigh” the same, i.e., the mass of each flavour of quarks does not depend on
its colour charge. In the Standard Model, quarks carry an electric charge (either −1/3 or +2/3 times the
elementary charge) and a weak charge additionally to the aforementioned colour charge and flavour degree of
freedom. However, QCD is restricted to the consideration of colour and flavour charges. The quark flavours
can be loosely categorised by their corresponding masses. Generally, three heavy quarks (charm, bottom,
and top quark), two light quarks (up and down quark), and one intermediate-mass quark, the strange quark,
are distinguished. The two light quarks are frequently considered to be massless since their respective masses
are significantly smaller than the energy scales that are typically employed. For most applications, the three
heavy quark flavours are neglected because their masses are much bigger than the arising energy scales.
Interactions between the quarks are described via the exchange of gluons that are massless spin-one bosons
and are the so-called gauge fields (gauge bosons) of SU(3). There exist eight gluons that live in the adjoint
representation of the SU(3) colour-symmetry group. For a general Yang-Mills gauge theory with Nc colours,
there are N2

c −1 gauge fields corresponding to the number of generators of the underlying symmetry group. In
contrast to the photon, which is the gauge boson of quantum electrodynamics, gluons interact directly among
themselves because they carry a colour charge themselves. This is a consequence of SU(3) being a non-Abelian
symmetry group and, therefore, QCD being a non-Abelian gauge theory. Gluon self-interactions also imply
that QCD is short-ranged. Note that gluons have no flavour, no electric charge, and do not “participate”
in the weak interaction. To conclude, all elementary particles participating in the strong interaction, i.e.,
quarks and gluons, and their masses and quantum numbers are summarised in Fig. 1.1.
Before turning to the description of QCD in terms of the action and the path integral, we highlight some
important aspects. Recall that QCD is a non-Abelian gauge theory so that it follows that the gauge fields
interact among themselves. Closely related is the behaviour of the interaction strength in terms of the coupling
constant g which we shall refer to as the strong coupling. As it turns out, the coupling decreases towards
high energies whereas it becomes large for low energies. The opposite behaviour is observed in quantum
electrodynamics. It follows that quarks behave like free particles at very high energies. The phenomenon
that the coupling constant becomes weaker at high energies is called asymptotic freedom, a property of non-
Abelian gauge theories [199], and has been discovered in QCD by David Gross, Frank Wilczek, and David
Politzer [18, 19]. Further, as it turns out, the gluon self-interactions are directly responsible for asymptotic
freedom. Its appearance in the theory also implies that perturbative methods [200–203] may be used at
very high energies. However, as the energy is decreased, QCD becomes strongly coupled. This comes along
with another phenomenon, called colour confinement that experimentally no observed particles carry colour
charge [12, 13]. Therefore, at least at low energies where the coupling is large enough, quarks only appear
as bound states, i.e., confined within hadrons which are necessarily colourless, and only colour-singlet states
are observed.
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Figure 1.1: Illustration of the elementary particles participating in the strong interaction with their respective
mass, electric charge, and spin: The six quark flavours are up (u), down (d), strange (s), charm (c), bottom (b),
and top (t) and the gauge boson that mediates the interaction between the quarks is the gluon (g). For each
quark, there exists an antiquark with opposite charges. Masses taken from [60].

Since QCD is strongly coupled at low energies, standard perturbative methods are not applicable in this
region. Alternatives are lattice QCD [204–207], functional methods which we shall introduce in Sec. 1.2, and
effective theories such as chiral effective field theory [208–213]. Effective field theories use the experience
that the effective degrees of freedom of QCD at low energies are no longer quarks and gluons but are rather
represented by hadrons.
With the general aspects of QCD provided, we can start to introduce the action of QCD and quantise the
theory with the path integral formulation. The introduction to QCD and the following considerations are
based on textbooks covering this topic, see Refs. [214–219]. For the motivation of the QCD action, we start
with the action S of a free Dirac field with mass m given by

S[ψ̄, ψ] =

∫
x

ψ̄(i/∂ + im)ψ . (1.1)

We use the Feynman slash notation, i.e., /∂ ≡ ∂µγµ. If not stated otherwise, we exclusively work in Euclidean
spacetime. We do so because the corresponding path integral, which we shall introduce in the following, is
then closely related to the partition function from statistical physics, see, e.g., Refs. [200, 214, 215, 220–222]
for an introduction into this aspect. We only note that this relation allows for the calculation of physical
observables such as the pressure, density, and the speed of sound. In QCD, the quark fields, represented
by Dirac spinors ψ̄ and ψ, respectively, carry colour and flavour indices. Quarks with the same flavour but
different colour are assumed to have the same mass. Since colour and flavour are independent degrees of
freedom, the action for each one of the flavours can be considered separately and is represented by Eq. (1.1)
with ψ = (ψr, ψg, ψb)

T and ψ̄ = (ψ̄r, ψ̄g, ψ̄b) where m is the mass corresponding to the considered flavour.
Now, ψ and ψ̄ are three-component vectors representing the three colours r (red), g (green), and b (blue)
where each element itself is a four-component Dirac spinor. The symmetry group associated with the colour
degrees of freedom is the aforementioned SU(3). The SU(3) transformations of the quark fields ψ 7→ ψ′ = Uψ

with U ∈ SU(3) leave the physics invariant, i.e., the action is invariant under global SU(3) transformations.
The exponential representation of the group elements U is given by

U = exp
(
igθaT a

)
. (1.2)

Here, T a with the colour indices a = 1, ..., 8 are the generators of the group SU(3). Their definition can
be found in App. A.2. Additionally, g is the strong coupling and θa ∈ R. We now require that the SU(3)

symmetry not only holds globally but also locally, i.e., θ now depends on spacetime: θ 7→ θ(x) (U 7→ U(x)).
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1 Fundamentals

A priori, there is no argument why we should assume that the transformation has to hold locally. However,
as it turns out, this requirement of local gauge invariance leads to QCD, the well-established theory of the
strong interaction, and it may therefore be considered as a new principle of physics, see, e.g., Ref. [59]. The
transformations of the Dirac fields are given by

ψ 7→ ψ(θ) = exp
(
igθa(x)T a

)
ψ and ψ̄ 7→ ψ̄(θ) = ψ̄ exp

(
− igθa(x)T a

)
. (1.3)

Locally, for infinitesimal θa, these transformations can be written as

ψ 7→ ψ(θ) = ψ + igθa(x)T aψ and ψ̄ 7→ ψ̄(θ) = ψ̄ − igθa(x)ψ̄T a . (1.4)

We find that the action (1.1) is not invariant under these local transformations. However, an action that is
invariant can be obtained by replacing the conventional derivative with the covariant derivative

Dµ = ∂µ − igAµ . (1.5)

Here, Aµ = AaµT
a is the vector field which is the so-called gauge field of QCD. It is matrix-valued in colour

space so thatDµ is matrix-valued as well. We further note that there are eight gauge fields, the aforementioned
gluons, which carry colour charge. The covariant derivative (1.5) introduces a coupling of the quark fields to
the gauge fields Aµ. To ensure that the action is invariant under the gauge transformations (1.4), the gauge
fields have to transform according to

Aµ 7→ U(x)
[
Aµ +

i

g
∂µ

]
U†(x) . (1.6)

Locally, for infinitesimal θa this transformation can be written as

Aaµ 7→ Aa,(θ)µ = Aaµ + ∂µθ
a(x) + gfabcAbµθ

c(x) = Aaµ + D̄ab
µ θ

b(x) , (1.7)

where D̄ab
µ = ∂µδ

ab − gfabcAcµ. With the transformations of the gauge fields (1.6) and the quark fields (1.3),
we indeed find that ψ̄i /Dψ is gauge invariant. Therefore, we replace the derivative /∂ in Eq. (1.1) with the
covariant derivative /D, where /D ≡ Dµγµ.
Lastly, we would like to introduce a gauge-invariant kinetic term for the gauge fields to describe their dynam-
ics. The corresponding term in the action can be constructed from the so-called field strength tensor F aµν ,
which is given by

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (1.8)

We indeed find that F aµνF aµν is gauge invariant. It not only includes a term corresponding to a kinetic term
for the gauge fields but also self-interactions of these gauge fields, i.e., three- and four-gluon self-interactions,
which are mediated by the strong coupling g. The self-interactions are a result of the underlying non-Abelian
group structure, which is tightly connected to the phenomenon of asymptotic freedom, and are accordingly
also responsible for the finite range of the strong interaction, which is well-observed in Nature. In conclusion,
the resulting gauge-invariant action is given by

S[Aaµ, ψ̄, ψ] =

∫
x

{
ψ̄(i /D + im)ψ +

1

4
F aµνF

a
µν

}
. (1.9)

The gauge invariance comes at the cost of the introduction of the gauge fields Aµ. Note that terms other
than those in Eq. (1.9) are not permitted. A mass term for the gauge fields ∼ m2

AA
a
µA

a
µ is not permitted

since it is not a gauge-invariant quantity. It follows that the gauge fields are massless. Other gauge-invariant
terms also exist. However, these terms can be ruled out by identifying symmetries that have to be obeyed
by the action because they are realised in Nature. Additionally, the requirement for renormalisability, which
we shall go into more detail in Sec. 1.2, also excludes additional terms. In conclusion, the QCD action (1.9)
only includes three interactions, i.e., the quark-gluon interaction and three- and four-gluon self-interactions.
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1.1 Quantum Chromodynamics

Recall that we have considered the action for each of the quark flavours separately since colour and flavour
are independent degrees of freedom. Therefore, the action (1.9) represents the QCD action for one quark
flavour with mass m so that in total six actions are needed to represent six flavours. Alternatively, the action
can be generalised by considering that the elements in the vectors ψ = (ψr, ψg, ψb)

T and ψ̄ = (ψ̄r, ψ̄g, ψ̄b),
representing the different coloured states, are themselves vectors that contain fields to represent each of the
six quark flavours, i.e., ψc = (ψc,u, ψc,d, ψc,s, ψc,c, ψc,b, ψc,t)

T and ψ̄c = (ψ̄c,u, ψ̄c,d, ψ̄c,s, ψ̄c,c, ψ̄c,b, ψ̄c,t). This
yields ψ = (ψr,u, . . . , ψc,f , . . . , ψb,t)

T and ψ̄ = (ψ̄r,u, . . . , ψc,f , . . . , ψ̄b,t). Here, c is the colour index represent-
ing the three colours c = r, g,b and f is a flavour index, representing the six flavours, i.e., f = u,d, s, c,b, t.
Therefore, ψ and ψ̄ are vectors with 18 components where each component is a four-component Dirac spinor.
To account for the flavours having different masses, m becomes a matrix with different masses on its diagonal.

1.1.1 Quantisation and Gauge Fixing

To quantise the theory of the strong interaction, gauge fixing is essential. Therefore, we shall discuss it in
more detail in the following. There are essentially two possibilities to quantise a theory: In the so-called
canonical quantisation, fields are described by operators that are subject to commutation relations [215]. On
the other hand, the path-integral formalism works with classical fields instead of operators by introducing a
high-dimensional integral. Throughout the present work, we use the path integral approach to quantum field
theory. It is based on the action principle from classical mechanics where the solutions of the equations of
motion follow from requiring that the action S is stationary, which is called Hamilton’s principle, δS = 0. In
other words, a particle travelling from A to B takes a trajectory that makes the action stationary. In contrast
to that, in quantum mechanics not only the path that makes the action stationary but all paths are relevant,
i.e., it is assumed that a particle going from A to B can take every possible trajectory. They do not, however,
contribute equally but weighted by a complex phase factor that is determined by the classical action S and
that is, in Minkowski space, given by eiS/~. The contributions from the various trajectories along which a
system can evolve are then added up by integrating over all functions (corresponding to the position x of the
particle changing with time t) that describe the paths from A to B, represented by

∫
Dx(t). This yields∫

Dx(t) eiS/~ . (1.10)

Note that we included ~ (although we use “natural units”, see App. A.6, for the remainder of the present
work and therefore set ~ to one in the following) to indicate that classical physics is recovered from quantum
mechanics by taking the limit ~→ 0. The path integral for quantum mechanics then allows for the calculation
of transition amplitudes where each trajectory described by the classical action S contributes. Interestingly,
the exponential factor eiS/~ can be related to the Boltzmann factor e−Ĥ/(kBT ) (where Ĥ is the Hamilton
operator and kB is the Boltzmann constant) allowing for a connection between the path integral and statistical
physics. For a detailed discussion of this aspect and a general introduction to the path integral, see, e.g.,
Refs. [200, 214–216, 218–223].
Describing QCD in terms of the path integral requires to move away from quantum mechanics towards
quantum field theory. Integrating over all functions that describe the change of the position of a particle
travelling from A to B is replaced by integrating over all possible field configurations, i.e., the position
depending on time x(t) is replaced by fields that depend on spacetime. We restrict ourselves to Euclidean
spacetime so that the path integral formulation of QCD can, at least naively, be represented by the functional
integral ∫

Dψ̄DψDAaµ exp
(
−S[Aaµ, ψ̄, ψ]

)
. (1.11)
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Here, S is the Euclidean QCD action given by Eq. (1.9) and the integration runs over all possible field
configurations. However, this naive approach is plagued by problems since QCD exhibits gauge degrees of
freedom, i.e., the field strength tensor is invariant under the gauge transformation (1.7). Therefore, the path
integral (1.11) is ill-defined for gauge-invariant quantities since the integration includes physically equivalent
gauge-field configurations, i.e., for each physically unique configuration there may be many configurations
given by the choice of gauge. However, only physically inequivalent field configurations and not redundant
ones should be considered, leading to the necessity to (gauge) constrain the path integral. This is provided
by the aforementioned gauge-fixing procedure.
In the following, we shall use a trick put forward by Faddeev and Popov in Ref. [224]. See also Refs. [173,
214–216, 218] on which the following discussion is based on for further details. We first introduce the gauge-
fixing condition by defining the functional G which is set to zero as the gauge-fixing condition: Ga[Aaµ] = 0.
It is convenient to use

Ga[Aaµ] = ga[Aaµ]− fa(x) . (1.12)

Here, fa is some arbitrary scalar function and for the functional ga, we choose

ga[Aaµ] = ∂µA
a
µ(x) . (1.13)

Setting Ga[Aaµ] = 0 is a generalisation of the Lorenz gauge condition: ∂µAaµ = fa(x). Then, the usual Lorenz
gauge condition is recovered by setting fa = 0. Note that other choices for ga are possible but we shall
restrict ourselves to classes of gauges enforced by Eq. (1.13).
The observation, that many field configurations lead to the same value of the action, is related to the propa-
gator of the gauge fields (gluon propagator) being ill-defined. For example, the free gluon propagator is given
by the inverse of Mµν = p2δµν−pµpν which originates from the kinetic term of the gluons in the action (1.9).
We indeed find that Mµν exhibits an eigenvector kµ with eigenvalue zero so that it is not invertible.
The implementation of the gauge-fixing condition, which constrains the integral by restricting it to configu-
rations with Ga[Aaµ] = 0, can be achieved by introducing a delta functional such as δ(Ga[Aaµ]). Following the
work of Faddeev and Popov, this is accomplished by inserting the following ‘one’ into the path integral:

1 =

∫
Dθ δ

(
G
[
Aa,(θ)µ

])
det

(
δG
[
A
a,(θ)
µ

]
δθ

)
= ∆f[A

a
µ]

∫
Dθ δ

(
G
[
Aa,(θ)µ

])
. (1.14)

Here, Aa,(θ)µ is the gauge-transformed field and we have defined the so-called Faddeev-Popov determinant
∆f[A

a
µ] = det(δG[A

a,(θ)
µ ]/δθ) which is gauge invariant. As it turns out, only infinitesimal gauge trans-

formations are relevant in the latter expression. With this, we can assume that the gauge transforma-
tions can be written as an expression linear in θ so that the gauge fields transform as given in Eq. (1.7):
A
a,(θ)
µ = Aaµ + D̄ab

µ θ
b. As long as the gauge transformations are linear, the Faddeev-Popov determinant is

independent of θ so that it can indeed be pulled out of the integral. However, for non-Abelian gauge theories,
such as QCD, it still depends on the gauge fields. Using that the Faddeev-Popov determinant ∆f, the path
integral measure DAaµ = DAa,(θ)µ , and the action S[Aa,(θ)µ , ψ̄(θ), ψ(θ)] = S[Aaµ, ψ̄, ψ] are gauge-invariant, yields∫

Dθ ×
∫
Dψ̄DψDAaµ∆f[A

a
µ]δ(G[A

a
µ]) exp

(
−S[Aaµ, ψ̄, ψ]

)
. (1.15)

In doing so, we have achieved that the second factor is independent of θ so that
∫
Dθ can be identified with

the volume of the gauge group (integration over the gauge group) which can be absorbed in a normalisation
constant and cancels out in the calculation of correlation functions. Therefore, we only have to consider∫

Dψ̄DψDAaµ∆f[A
a
µ]δ(G[A

a
µ]) exp

(
−S[Aaµ, ψ̄, ψ]

)
. (1.16)
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The path integral is now restricted by the delta distribution to only include inequivalent field configurations
as required. However, let us bring the Faddeev-Popov determinant and the aforementioned delta distribution
into a more convenient expression to work with in the path integral formalism. For this purpose, we start by
rewriting the delta distribution. Recall that fa, which appears in Eq. (1.12), is some arbitrary function so
that the condition holds for all fa. Therefore, we can integrate over them using a Gaussian weight function
by inserting another ‘one’ which is given by

1 =

∫
Df exp

(
− 1

2ξ

∫
x

fafa
)
. (1.17)

Here, we have introduced the so-called gauge parameter ξ.
By inserting the latter expression into the path integral (1.16) and using the expression for the functional G
given in Eq. (1.12) together with the generalised Lorenz gauge enforced by Eq. (1.13), we obtain∫

Dψ̄DψDAaµ∆f[A
a
µ]

∫
Df exp

(
− 1

2ξ

∫
x

fafa
)
δ
(
∂µA

a
µ − fa

)
exp

(
−S[Aaµ, ψ̄, ψ]

)
=

∫
Dψ̄DψDAaµ∆f[A

a
µ] exp

(
− 1

2ξ

∫
x

(
∂µA

a
µ

)2)
exp

(
−S[Aaµ, ψ̄, ψ]

)
. (1.18)

Next, we turn to the calculation of the Faddeev-Popov determinant ∆f. As we shall see in the following, it
depends on the gauge fields which is a detail specific to non-Abelian gauge theories. In contrast to that, in
Abelian gauge theories such as quantum electrodynamics, the Faddeev-Popov determinant does not depend on
the gauge fields and can therefore be absorbed in a normalisation constant. However, considering generalised
Lorenz gauge and the transformation of the gauge fields according to Eq. (1.7), we find

∆f[A
a
µ] = det

(
δG
[
A
a,(θ)
µ

]
δθ

)
= det

(
∂µD̄

ab
µ

)
=

∫
Dc̄Dc exp

(
−
∫
x

c̄a∂µD̄
ab
µ c

b

)
. (1.19)

In the last step, we have used that a determinant can be written as the path integral over Grassmann
numbers. For this purpose, we have introduced the so-called Faddeev-Popov ghosts c̄ and c that belong to
the adjoint representation of the gauge group. Note that the ghosts are anticommuting Lorentz scalars, so
that they have no Lorentz indices, and there exists one ghost and one antighost for each gauge field. In
addition to that, the ghosts are unphysical virtual states because they violate the spin-statistic theorem and
are an artefact of the gauge-fixing procedure. The ghosts cancel the unphysical degrees of freedom in the
gauge fields and, in terms of Feynman diagrams, they only appear as internal lines. Since the Faddeev-Popov
determinant depends on the gauge fields, the ghost term introduces, besides a kinetic term for the ghosts, a
new interaction, i.e., the interaction between ghosts and gauge fields (ghost-antighost-gluon interaction). It
is also possible to consider axial gauges where ghost fields are absent. Recall that gauge fixing also has to
be done in quantum electrodynamics. However, interactions between ghosts and gauge fields only appear in
non-Abelian gauge theories so that the ghosts can simply be integrated out in Abelian gauge theories. In
any case, we end up with the following expression for the path integral for QCD:∫

Dψ̄DψDAaµDc̄Dc exp
(
− S[Aaµ, ψ̄, ψ]−

1

2ξ

∫
x

(
∂µA

a
µ

)2 − ∫
x

c̄a∂µD̄
ab
µ c

b

)
. (1.20)

In conclusion, the gauge-fixing procedure leads to two additional terms in the path integral that can be
absorbed into a redefinition of the action S which is then given by

S̄[Aaµ, ψ̄, ψ, c̄, c] = S[Aaµ, ψ̄, ψ] + Sgf[A
a
µ] + Sgh[A

a
µ, c̄, c] . (1.21)

Here, S is the QCD action given in Eq. (1.9), Sgf is the gauge-fixing term, and Sgh is the ghost term:

Sgf[A
a
µ] =

1

2ξ

∫
x

(
∂µA

a
µ

)2 and Sgh[A
a
µ, c̄, c] =

∫
x

c̄a∂µD̄
ab
µ c

b . (1.22)
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Recall that the original version of the path integral suffers from an ill-defined gauge-field propagator. This
problem is cured since the propagator is now given by the inverse of Mµν = p2δµν −

(
1 − 1/ξ

)
pµpν , which

is well-defined and given by M−1µν = (δµν + (ξ − 1)pµpν/p
2)/p2. Two commonly employed values for the

parameter ξ are ξ = 0 (Landau gauge) and ξ = 1 (Feynman gauge).
With this at hand, we can finally define the generating functional Z for QCD which reads

Z[J ] =

∫
Dψ̄DψDAaµDc̄Dc exp

(
− S̄[Aaµ, ψ̄, ψ, c̄, c] +

∫
x

(
JaµA

a
µ + η̄ψ + ψ̄η + µ̄aca + c̄aµa

))
. (1.23)

The gauge-fixed action S̄ is defined in Eq. (1.21) and we have introduced sources corresponding to the different
fields appearing in the action: Jaµ , η̄, η, µ̄a, and µa are the sources corresponding to Aaµ, ψ, ψ̄, ca, and c̄a.
The action S̄ is no longer gauge invariant since the gauge-fixing term Sgf breaks gauge invariance. However,
as it turns out, it is possible to use the ghosts and the corresponding ghost term Sgh to construct a new
symmetry that is not present in the classical action S̄ which is the so-called Becchi-Rouet-Stora-Tyutin
symmetry [225–228] (BRST symmetry), see also Refs. [215, 216, 219, 229] for an introduction. To introduce
this symmetry, we replace the gauge parameter θa in the gauge transformations for the quarks (1.4) and the
gauge fields (1.7) with θa 7→ λca, where ca are the Grassmann-valued ghosts and λ is a Grassmann-valued
parameter so that λca = −caλ. Note that the indices of the ghosts are the same as the ones from the gauge
parameter θa. For the gauge fields, we therefore find

Aaµ 7→ Aa,(λ)µ = Aaµ + λ∂µc
a + λgfabcAbµc

c = Aaµ + λD̄ab
µ c

b . (1.24)

For the quark fields, we find

ψ 7→ ψ(λ) = ψ + igλcaT aψ and ψ̄ 7→ ψ̄(λ) = ψ̄ − igλcaψ̄T a . (1.25)

Therefore, the transformations of the gauge fields and the fermion fields are simply local gauge transformations
where the gauge parameter is taken to be proportional to the ghost fields. The transformations of the ghosts
are now chosen such that they cancel out the transformation of the gauge-fixing term ∼ (∂µA

a
µ)

2/(2ξ) while
simultaneously ensuring that D̄ab

µ c
b is gauge invariant. The corresponding transformations are given by

ca 7→ ca,(λ) = ca − λ1
2
gfabccbcc and c̄a 7→ c̄a,(λ) = c̄a − λ1

ξ
∂µA

a
µ. (1.26)

The transformations for ca and c̄a can be chosen independently because, in contrast to ψ̄ and ψ, there is
no relation between the two restricting the respective transformation behaviour. We indeed find that S̄
is invariant by simultaneously applying Eqs. (1.24)–(1.26), i.e., under the so-called BRST transformation.
The BRST transformation highlights the purpose of the introduction of the ghost fields since it shows that
unphysical states of the non-Abelian gauge theory are cancelled by the Faddeev-Popov ghosts. The remnants
of transformations associated with terms that are not gauge invariant are cancelled by the corresponding
transformations of the ghosts. Therefore, the BRST symmetry can be interpreted as a generalisation of the
gauge invariance present in the classical theory to the quantised theory.

1.2 Renormalisation and the Functional Renormalisation Group
In the section, we begin with a brief introduction to the theory of renormalisation and the renormalisation
group (RG) in Sec. 1.2.1. This leads to the discussion of the functional renormalisation group (fRG) in
Sec. 1.2.2 which is the main method employed in the present work for our analysis of dense strong-interaction
matter. For more details on the theory of renormalisation and the renormalisation group, we refer the reader
to textbooks covering this topic in more detail, on which the following general considerations are based on,
see, e.g., Refs. [215, 216, 218, 229–233].
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1.2 Renormalisation and the Functional Renormalisation Group

1.2.1 General Considerations

Quantum field theories such as QCD (introduced in Sec. 1.1) owe much of their success to the framework
provided by the theory of renormalisation and modern developments would be unimaginable without it.
Already early studies of quantum field theories were plagued by the existence of infinities arising from “di-
verging quantities”. Historically, infinities already appeared in, e.g., classical electrodynamics when dealing
with point particles: For instance, the electron has an infinite electromagnetic “self-mass” since it is given
by ∼ 1/re (where re is the electron radius) so that this self-mass diverges for a point particle re → 0 [231,
234]. These issues with infinities extend to quantum field theories, e.g., as divergences in the calculation of
so-called n-point correlation functions or loop diagrams within perturbative calculations. The calculation of
correlation functions is a central aspect in quantum field theories, as knowledge about all correlation functions
implies a complete understanding of the theory under investigation. Therefore, addressing the problems of
divergences was a critical step forward for quantum field theories.
First steps towards solving the discussed issues were taken by observing that the appearance of divergences
turns out to be unproblematic if they do not appear in predictions for physical observables [235–243]. It was
found, for example, that the aforementioned divergence of the self-mass can be eliminated by reformulating
the theory in terms of the parameter representing the experimentally measured electron mass. In this sense,
the infinity appears only in a so-called bare electromagnetic mass. Here, the bare mass is simply a parameter
appearing in the corresponding equations which is not directly related to a measurable physical quantity
and is therefore not realised in experiments. This parameter is subsequently replaced with the so-called
renormalised mass which has been adjusted so that it corresponds to a measurable quantity.
These discoveries inspired the development of the theory of renormalisation. In quantum field theories, the
phenomena of divergences typically appear when dealing with high energy scales and the divergences are
therefore called ultraviolet (UV) divergences. More precisely, momentum integrals are encountered that di-
verge in the region where the momentum is sent to infinity so that the full momentum integral diverges. To
address this problem, a so-called regulator is introduced which is, e.g., a cutoff Λ corresponding to a large
momentum scale (or very small distance scale). Subsequently, the integrals are then only performed up to the
scale Λ which is large but finite. In doing so, effects originating below the length scale ≈ 1/Λ are effectively
neglected. These types of UV cutoffs can also be encountered more naturally in physical systems concerning,
e.g., condensed matter systems where effects originating from scales below the size of an atom are disregarded.
Therefore, the physics on larger scales can be understood from considering physics at the scale corresponding
to the size of an atom, which serves as the natural cutoff in such systems. However, considering fundamental
particles and the corresponding theories, the existence of a smallest scale appears less intuitive rendering
the introduction of the cutoff somewhat arbitrary. The introduction of the cutoff Λ is usually referred to
as regularisation, which only constitutes the first step to handle the UV divergences, since the results, e.g.,
correlation functions, now depend on the UV cutoff Λ. The subsequent step, referred to as renormalisation,
can be summarised as follows: Since the aforementioned cutoff is somewhat arbitrary, it needs to be removed
so that observables are insensitive to it and measurable quantities remain finite for Λ → ∞. This can be
achieved by first recognising that the parameters appearing in the theory under consideration, e.g., in the
action, do not correspond to actual physical observables. Therefore, the theory is, e.g., defined by a so-called
bare action with bare parameters. The divergent parts are split off from these parameters to obtain man-
ageable finite (renormalised) quantities. Alternatively, additional terms originating in the renormalisation
procedure can be added to the theory as so-called counterterms. In this manner, the appearing infinities are
assimilated into practically unobservable parameters and the theory is reformulated in terms of measurable
quantities (i.e., so-called renormalised quantities) that remain finite and are independent of the regulator,
e.g., the cutoff Λ. Renormalisation can therefore be summarised as an adjustment of the parameters of the
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theory. The artificial cutoff that has been introduced to regularise the theory is eliminated. Subsequently,
the renormalised parameters describe observables that are encountered in Nature and that can be measured.
In contrast to that, the bare parameters are not directly related to physical observables. Therefore, reg-
ularisation and renormalisation not only serve as tools to treat divergences appearing in the theory under
consideration but are also about constructing a theory that describes Nature. In practice, one calculates
observables by tuning the theory by means of other observables that are experimentally measured. In this
spirit, the short-distance physics is hidden in the observables that determine the theory from experiment.
With these considerations, it also becomes possible to classify quantum field theories with respect to their
renormalisability. If only a fixed number of physical observables from experiment are needed to remove all
UV divergences, the theory is called renormalisable. This is required for the theory having predictive power.
In contrast to that, if infinitely many parameters are needed, the theory is called nonrenormalisable. Note
that a fundamental theory that aspires to describe Nature is expected to be renormalisable. Therefore,
renormalisability became an important criterion in the development of the Standard Model that describes
the weak, electromagnetic, and strong interaction by a renormalisable quantum field theory. For example,
QCD introduced in Sec. 1.1 is a renormalisable field theory.
An alternative approach that is closely related to the concept discussed so far, is the so-called renormalisation
group, which originated in the field of condensed matter physics. Within this field, Leo Kadanoff introduced
the so-called block-spin renormalisation group [244, 245]. He found that it is possible to introduce “coarse
graining” for atoms with spin on an evenly spaced lattice (with lattice spacing ∼ 1/Λ) at a given tempera-
ture T . Only neighbouring atoms interact via a spin-spin interaction. Coarse graining can be thought of as
looking at the system under a variation of the resolution. For the aforementioned lattice, this corresponds to
introducing so-called block spins. This means that groups (blocks) of atoms with spin are constructed and
a single spin value is assigned to each block. Thereby, multiple spin values are combined in a single block
with a single spin value. The process is illustrated in Fig. 1.2. The key idea is that physical observables
should remain unchanged when using the average spin over a group of spins instead of using the individual
spins of the atoms. Other strategies, beyond using the average spin, can be employed to assign a single spin
value to a block of spins. The introduction of block spins leads to a reduction of nearby degrees of freedom
to a single effective degree of freedom for neighbouring atoms. However, when considering blocks of spins
rather than individual spins, it is necessary to adjust the interaction strength, i.e., the value of the spin-spin
interaction. This adjustment has to be done in a way such that the resulting physics stays the same. The
renormalisation group implements a way to systematically coarse grain a system by introducing so-called
RG transformations. Renormalisation group approaches have and still are an important part of condensed
matter physics, see, e.g., [246–249].
A continuum representation was implemented by Kenneth G. Wilson. It is usually referred to as Wilson’s ap-
proach to renormalisation [250, 251]. In the renormalisation group approach, instead of removing the cutoff Λ,
it becomes part of the theory. The cutoff is then chosen such that the corresponding length scale ∼ 1/Λ

is much smaller than the typical length scale of the physics that is examined. Macroscopic properties of
quantum-statistical systems are determined by their microscopic fluctuations. Since Λ is a parameter of the
theory, it is also reasonable to conceive of the parameters of the theory at Λ to be part of the theory as well.
Subsequently, they are adapted so that they already include effects originating from larger scales than Λ. In
this sense, they are then “determined” by a theory that is defined for larger scales.
Wilson’s approach starts with a given microscopic theory where the dynamics is, for example, defined by a
“classical” action S. From there, all fluctuations are successively integrated out from high to low momentum
scales [250–252]. By integrating out all fluctuations, macroscopic information about the system under con-
sideration can be extracted. The integration of the fluctuations is performed gradually. The change in the
scale when going towards the low-momentum regime is compensated by adjusting the parameters (i.e., the
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transformation

Figure 1.2: Illustration of coarse graining by introducing block spins in a system of atoms with spin up and
down arranged on an evenly spaced two-dimensional lattice with lattice spacing ∼ 1/Λ. The atoms only
interact via next-neighbour spin-spin interactions. In this example, atoms with spin are grouped into blocks
containing nine atoms. After the transformation, a single spin value is assigned to each of the blocks where
we have used the most common spin value in each of the blocks. The process of introducing block spins is not
unique and other strategies can be employed to assign a single spin value to the block. To ensure that the
transformation does not change the underlying physics, the coupling between the effective spins is adjusted
and thus different from the coupling between the original spins.

couplings) of the theory so that physical observables remain invariant. Therefore, the couplings {gi(Λ)} of
the theory under consideration have to be functions of the cutoff Λ so that the parameters become scale de-
pendent. The piecewise integration of fluctuations is performed from Λ to k = Λ/b where the parameter b > 1

is associated with looking at different momentum scales. Choosing b > 1 ensures that the long-range limit
(small-momentum limit) is considered which corresponds to going from microscopic to macroscopic scales,
i.e., going from small to large length scales. This corresponds to the coarse graining procedure that we
have already encountered in the block-spin renormalisation group. Here, coarse graining is implemented in
a continuous system in momentum space. The integration of fluctuations corresponds to a so-called RG
transformation. The renormalisation group is used to analyse how the parameters of the theory change with
changes in the momentum scale or more generally, with changes of the “scale of interest”. Therefore, the
transformation {gi(Λ)} 7→ {gi(Λ/b)} = {gi(k)} is considered. Here, k plays the role of a scale that connects
the microscopic k = Λ with macroscopic scales k → 0. We shall refer to this scale as the RG scale. Using
Wilson’s approach, differential equations can be obtained for the couplings that describe their change under
a variation of the scale. Then, the rescaling of the couplings leads to the couplings “travelling” along the so-
called RG trajectory (in the space spanned by the coupling constants) which is often referred to as RG flow.
Along this RG flow, going from the microscopic to the macroscopic scale, the number of relevant degrees of
freedom is reduced. The renormalisation group explores changes of the physical system under consideration
at different scales while the observables remain invariant under the changes of the parameters of the theory.
The scale dependence of the couplings is given by the so-called beta functions {βi(gi)} [216, 232, 253]. For
example, for a theory with a single coupling g, this beta function is given by β(g) = −(dg)/(d ln(b)). In
terms of the scale k and by introducing t = ln(k/Λ), we find β(g) = (dg)/(dt) = k(dg)/(dk). Therefore, the
beta function describes the behaviour of the coupling under a variation of the RG scale k.
To conclude this short introduction, we would like to highlight some interesting aspects that arise when
applying the renormalisation group. The introduction of the beta functions allows us to define so-called fixed
points in the RG flow. Considering, for example, the beta function for a theory with a single coupling g,
a fixed point g∗ is given by β(g = g∗) = 0. For theories with N couplings {gi} (where i = 1, . . . , N), a
fixed point is defined by βi({gi}) = 0. Exactly at the fixed point the system is scale invariant so that,
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loosely speaking, the system “looks” the same independently of the resolution. To illustrate this, let us again
consider the spin model shown in Fig. 1.2: If the spins are in complete disorder (associated with T → ∞),
the system looks identical on all scales, representing a fixed point. Alternatively, a fixed point exists if all
spins are aligned in the same direction (associated with T → 0) so that the system again looks identical on
all resolutions. A system can have multiple fixed points and the number of fixed points does not depend
on the applied renormalisation scheme but is a universal property. In addition to that, fixed points may be
repulsive or attractive. For attractive fixed points, the coupling “flows” towards its value at the fixed point
whereas the couplings are driven away from a repulsive fixed point. The Gaussian fixed point is associated
with points where all couplings are zero so that the system is described by a free theory. In this case, the
path integral becomes an exact Gaussian integral.
Some fixed points can be associated with critical points, i.e., points at which a phase transition occurs. This
indicates that the theory of renormalisation is closely related to phase transitions. It is noteworthy that
theories, which might describe two different physical systems with many different degrees of freedom, behave
very similarly in the vicinity of a (critical) fixed point, i.e., in the vicinity of a phase transition. It turns out
that only a few variables and scaling relations are relevant to describe the systems quantitatively, regardless
of the details of the interactions and the phenomenology of the system. Only the underlying symmetries of
the theories under consideration are important. Furthermore, the slope, referred to as the critical exponent,
of the beta function near a (critical) fixed point is universal. The qualitatively identical behaviour of different
theories close to a (critical) fixed point is called universality.
Based on the preceding considerations and implementation of the renormalisation group, we consider the so-
called functional renormalisation group in the following. It is a nonperturbative approach which is required
for calculations in strongly-interacting systems, such as QCD.

1.2.2 The Functional Renormalisation Group

As we have seen, from the viewpoint of the renormalisation group, macroscopic properties (which correspond
to long-range physics) of quantum-statistical systems are determined by microscopic fluctuations. To obtain
macroscopic information about the system, one has to integrate over all microscopic fluctuations. The
renormalisation group is a tool to understand what happens between the two extremes and how the parameters
of the theory evolve such that observables are invariant. For example, going from the microscopic dynamics to
the long-range limit, a weak coupling might turn into a strong coupling, different degrees of freedom become
relevant at different scales, or the symmetries of the system under consideration might change.
The functional renormalisation group is a nonperturbative approach to the renormalisation group that allows
for calculations using the path-integral formulation of quantum field theory. Its functional nature offers a
convenient and practical approach in comparison to other methods based on the renormalisation group. At
the core of the functional renormalisation group is the Wetterich equation, an evolution equation of the
so-called effective average action Γk [254, 255]. We shall derive this equation in the following. The derivation
and discussion in the present section are based on [172, 173, 256].
The Wetterich equation connects the microscopic physics given by the “classical” action S with the low-
energy regime associated with the full effective action Γ. Regarding statistical physics and thermodynamics
in terms of thermal field theory, we note that the full effective action is closely connected to macroscopic
properties, such as pressure, density, or speed of sound. The effective average action Γk depends on the
RG “time” t = ln(k/Λ) where k is the RG scale which connects the high-energy scales (k → Λ) with the
low-energy regime (k → 0). The initial condition Γk=Λ is fixed at the scale Λ. By taking the limit k → 0, we
recover the full effective action Γ = Γk=0. Before turning to the calculation of the evolution equation of Γk,
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we start by defining the infrared-regulated (IR-regulated) functional Zk[Jk]:

Zk [Jk] = exp
(
Wk[Jk]

)
=

∫
Dφ exp

(
−S[φ]−∆Sk[φk] +

∫
Jakφ

a
k

)
. (1.27)

The integration runs over all possible field configurations. Note that the generating functional is closely related
to the partition function in classical statistical mechanics. We modified the usual definition of the generating
functional to contain the functional ∆Sk[φk] carrying a regulator function Rk. The latter depends on the
scale k and can be interpreted as a momentum-dependent mass term that ensures infrared regularisation. In
momentum space, it is given by

∆Sk[φk] =
1

2

∫
p

∫
q

φak(−p)Rabk (q)φbk(q)(2π)
nδ(n) (p− q) = 1

2

∫
p

∫
q

φak(−p)R̃abk (p, q)φbk(q) . (1.28)

A suitable form for the regulator function Rabk has to be chosen. We shall come back to this aspect below.
For convenience, we exclusively work in momentum space in the following. However, the derivation can also
be performed analogously in position space. We have also introduced k-dependent fields into the Wetterich
equation which provides a powerful extension to the usually employed Wetterich equation [146, 170–175,
178, 257]. For this purpose, we have included the k-dependent fields φak which are a functional of the k-
independent fields φak = φak[φ]. We have not yet specified a field, but included the superfields φak, which
include fermionic and bosonic fields so that the index a is either a “fermionic” index corresponding to φak
being a fermionic field or a “bosonic” index corresponding to φak being a bosonic field. Additionally, the
index a may consist of a multitude of indices, such as Lorentz, colour, or flavour indices. The corresponding
source terms, which are also k-dependent, are given by Jk. Since φak and Jk may represent fermionic degrees
of freedom, which are represented by Grassmann-valued fields, one has to be careful with the order of the
fields and the corresponding derivatives.
From the generating functional Zk[Jk], we obtain correlation functions, which play a very prominent role in
quantum field theories, by taking functional derivatives with respect to the corresponding source Jk. For
example, for the two-point correlation function, we find

1

Zk[Jk]

δ

δJak (p)

δ

δJbk(−q)
Zk[Jk] = 〈φak(−p)φbk(q)〉J . (1.29)

Therefore, Zk[Jk] is called the generating functional of correlation functions. Note that correlation functions
are generally defined by setting the source term to zero Jk = 0. However, for the purpose of the present work,
we use the correlation function in the presence of a source as indicated by the subscript ‘J ’ in order to derive
the flow equation for the effective action. The two-point correlation function as introduced in Eq. (1.29) is
the product of two field operators with different momenta and averaged over all possible field configurations
and is therefore given by

〈φak(−p)φbk(q)〉J =
1

Zk[Jk]

∫
Dφφak(−p)φbk(q) exp

(
−S[φ]−∆Sk[φk] +

∫
Jak (p)φ

a
k(−p)

)
. (1.30)

Higher-order correlation functions, i.e., n-point correlation functions, as the product of n fields averaged
over all possible field configurations, can be obtained by taking additional derivatives with respect to the
source Jk. Correlation functions are closely related to scattering amplitudes in physical processes and play a
prominent role in statistical mechanics and quantum field theories. We have also introduced the generating
functional of the connected correlation functions Wk[Jk] ≡ ln(Zk[Jk]) where the terminology becomes clear
when again considering derivatives with respect to the source Jk:

δ

δJak (p)

δ

δJbk(−q)
Wk[Jk] = 〈φak(−p)φbk(q)〉J − 〈φ

a
k(−p)〉 〈φbk(q)〉J = 〈φak(−p)φbk(q)〉J,c = Gbak (q, p) . (1.31)
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Here, Gbak is the so-called full connected propagator. The functional Wk[Jk] only generates connected cor-
relation functions as indicated by the subscript ‘c’. Speaking in terms of Feynman diagrams, in contrast
to “normal” correlation functions, connected correlation functions do not include diagrams where external
lines are not connected to all other external lines. To derive an evolution equation for Γk, we calculate the
derivative of the generating functional Wk[Jk] with respect to the RG “time” ∂t = k∂k which yields

∂tWk[Jk] =
1

Zk[Jk]
∂t exp

(
Wk[Jk]

)
= −1

2

∫
p

∫
q

R̃abk (p, q)
(
〈
(
∂tφ

a
k(−p)

)
φbk(q)〉J + 〈φak(−p)∂tφbk(q)〉J

)
+

∫
p

Jak (p) 〈∂tφak(−p)〉J −
1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
〈φak(−p)φbk(q)〉J

+

∫
p

(
∂tJ

a
k (p)

)
〈φak(−p)〉J . (1.32)

In the following, we utilise

〈φak(−p)
(
∂tφ

b
k(q)

)
〉
J
=

(
δ

δJak (p)
+ 〈φak(−p)〉J

)
〈∂tφbk(q)〉J , (1.33)

〈
(
∂tφ

a
k(−p))φbk(q)〉J = (−1)ab

(
δ

δJbk(−q)
+ 〈φbk(q)〉J

)
〈∂tφak(−p)〉J . (1.34)

In addition to that, we use that the regulator is supposed to be chosen such that Rabk (p) = (−1)abRbak (−p)
and that it does not mix fermionic and bosonic degrees of freedom, i.e., it is zero if a is a fermionic index an b
is a bosonic index or vice versa. Only if a and b correspond to the same fermionic fields or the same bosonic
fields, the regulator is nonzero. Here, we have also introduced the factor (−1)ab which accounts for possible
Grassmann-valued fields. For fermionic fields, represented by anticommuting Grassmann numbers, the order
of the fields matters and it is (−1)ab = −1 (for a and b fermionic). For bosonic fields, we have (−1)ab = 1

(for a or b bosonic). This yields

∂tWk[Jk] = −
∫
p

∫
q

(
R̃abk (p, q)

( δ

δJak (p)
+ 〈φak(−p)〉J

)
〈∂tφbk(q)〉J

)
+

∫
p

Jak (p) 〈∂tφak(−p)〉J

− 1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
Gbak (q, p)− 1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
〈φak(−p)〉J 〈φ

b
k(q)〉J

+

∫
p

(
∂tJ

a
k (p)

)
〈φak(−p)〉J . (1.35)

Here, we have also replaced the two-point correlation function 〈φak(−p)φbk(q)〉J with the expression for the
connected propagator presented in Eq. (1.31). The class of correlation functions can conveniently be further
reduced. Recall that Wk[Jk] is the generating functional of connected correlation functions. Therefore,
we now define the generating functional of one-particle irreducible (1PI) correlation functions, the effective
(average) action Γk[ϕk], which is the Legendre transformation of the generating functional of connected
correlation functions Wk[Jk] with respect to the source Jk:

Γk[ϕk] = supJ
(∫

p

Jak (p)ϕ
a
k(−p)−Wk[Jk]

)
−∆Sk[ϕk] . (1.36)

In contrast to the well-known definition of the (full) effective action, i.e., Γ = supJ(
∫
Jϕ −W [J ]) [218], it

depends on the RG scale k and includes the regulator term ∆Sk that we have already introduced in the
functional Zk[Jk] in Eq. (1.27). In the limit k → 0, we require that we recover the full effective action.
Therefore, the regulator needs to fulfil some requirements that we shall discuss below in the present section.
Note that Γk[ϕk] is a functional of the scale-dependent so-called classical field ϕk, which is the expectation
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value of the field φk in the presence of the source Jk as given by

ϕbk(q) =
δ

δJbk(−q)
Wk[Jk] = 〈φbk(q)〉J . (1.37)

We emphasise that Jk is chosen such that
∫
Jkϕk −Wk[Jk] approaches its supremum as indicated by ‘supJ ’.

In the following, we therefore assume that the source Jk has been evaluated at this supremum. Taking the
derivative with respect to the RG “time” of the effective action (1.36) and inserting Eq. (1.35) yields

∂tΓk[ϕk] =

∫
p

∂tJ
a
k (p)ϕ

a
k(−p)− ∂tWk[Jk]− ∂t∆Sk[ϕak]

=

∫
p

Jak (p)
(
∂tϕ

a
k(−p)− 〈∂tφak(−p)〉J

)
+

∫
p

∫
q

R̃abk (p, q)ϕak(−p)
(
〈∂tφbk(q)〉J − ∂tϕ

b
k(q)

)
+

1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
Gbak (q, p) +

∫
p

∫
q

R̃abk (p, q)
δ

δJa(p)
〈∂tφbk(q)〉J . (1.38)

Recall that we have included k-dependent fields φak in the definition of the regulator term ∆Sk[φk] and the
functional Zk[Jk]. In the latter expression, this k dependence appears as derivatives of the fields with respect
to the RG “time” in terms of their expectation value 〈∂tφak〉J . A specific form for ∂tφak has not yet been
assumed. However, in practice, the derivative of the field ∂tφak is chosen such that 〈∂tφak〉J = ∂tϕ

a
k. Therefore,

the effective action simplifies to

∂tΓk[ϕk] =
1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
Gbak (q, p) +

∫
p

∫
q

R̃abk (p, q)
δ

δJa(p)
∂tϕ

b
k(q)

=
1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
Gbak (q, p) +

∫
p

∫
q

∫
q′
R̃abk (p, q)Gcak (q′, p)

δ∂tϕ
b
k(q)

δϕck(q
′)
. (1.39)

Here, we have replaced the derivative with respect to the source Jk with a more suitable expression in terms
of the connected propagator Gabk , which reads

δ

δJak (p)
∂tϕ

b
k(q) =

∫
q′

δϕck(q
′)

δJak (p)

δ∂tϕ
b
k(q)

δϕck(q
′)

=

∫
q′
Gcak (q′, p)

δ∂tϕ
b
k(q)

δϕck(q
′)
. (1.40)

In conclusion, we find

∂tΓk[ϕ] +

∫
p′

δΓk[ϕk]

δϕak(p
′)
∂tϕ

a
k(p
′) = ∂tΓk[ϕk] =

1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
Gbak (q, p)

+

∫
p

∫
q

∫
q′
R̃abk (p, q)Gcak (q′, p)

δ∂tϕ
b
k(q)

δϕck(q
′)
. (1.41)

To obtain an equation for the Wetterich equation for k-independent fields ∂tΓk[ϕ] = ∂t|ϕΓk[ϕk] we compare
the left- and right-hand side of Eq. (1.41). For the expression on the left-hand side, we have simply taken
the derivative of Γk with respect to the RG “time” by considering that Γk and φk depend on k, respectively.
The right-hand side is the expression for ∂tΓk as obtained from Eq. (1.39). We have introduced k-dependent
fields to provide an extension to the typically employed Wetterich equation. This leads to additional terms
that have to be compensated since the fields present in the underlying theory are still k independent. We do
so by employing ∂tΓk[ϕ] in the following. Therefore, the (modified) Wetterich equation used in the present
work is given by

∂tΓk[ϕ] =
1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
Gbak (q, p) +

∫
p

∫
q

∫
q′
R̃abk (p, q)

δ∂tϕ
b
k(q)

δϕck(q
′)
Gcak (q′, p)

−
∫
p′

δΓk[ϕk]

δϕak(p
′)
∂tϕ

a
k(p
′) . (1.42)

Here, the first term in the latter expression represents the typically employed Wetterich equation. The second
and third term take into account a possible k-dependence of the field ϕak.
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The Wetterich equation is generally written as a differential equation for the effective action Γk. Therefore,
we shall replace the connected propagator Gabk with a more suitable expression in terms of the effective
action Γk. To this end, we start by taking the derivative of the effective action (1.36) with respect to the
classical field ϕk from the right-hand side. This yields(

Γk[ϕk] + ∆Sk[ϕk]
) ←

δ

δϕak(q)
= Jak (−q) + (−1)ab

∫
p

Jbk(p)

←
δ

δϕak(q)
ϕbk(−p)−Wk[Jk]

←
δ

δϕak(q)
(1.43)

= Jak (−q) + (−1)ab
∫
p

Jbk(p)

←
δ

δϕak(q)
ϕbk(−p)−

∫
p

Wk[Jk]
←
δ

δJbk(p)

Jbk(p)
←
δ

δϕak(q)
= Jak (−q) .

This can be viewed as the quantum equation of motion with a regulator modification, i.e., the well-known
quantum equation of motion follows by dropping the regulator term ∆Sk[ϕk] and setting the source Jk to
zero. Taking the derivative of the modified quantum equation of motion with respect to the classical field
from the left-hand side yields

→
δ

δϕbk(−p)

(
Γk[ϕk] + ∆Sk[ϕk]

) ←
δ

δϕak(q)
=

→
δ

δϕbk(−p)
Jak (−q) . (1.44)

With this expression at hand, we now consider

δac(2π)nδ(n) (p′ − q) =
→
δ

δJck(−p′)
Jak (−q) =

∫
p

→
δ ϕbk(−p)
δJck(−p′)

→
δ Jak (−q)
δϕbk(−p)

= (−1)bc
∫
p

Gcbk (p′, p)

→
δ

δϕbk(−p)

(
Γk[ϕk] + ∆Sk[ϕk]

) ←
δ

δϕak(q)
. (1.45)

Here, the connected propagator enters the latter expression by using the condition for the classical field ϕk

determined by the Legendre transformation (1.37) which yields δϕbk(q)/δJak (p) = Gbak (q, p). Additionally, we
have used that Gbck (−q,−p) = 〈φck(p)φbk(−q)〉J,c = (−1)bcGcbk (p, q). Recall that we have (−1)ab = −1 for a
and b corresponding to fermionic fields and (−1)ab = 1 for a or b corresponding to a bosonic field. Therefore,
the connected propagator is given by the inverse of the regulated functional derivative of the effective action:

Gbak (q, p) = (−1)ab
(
Γ
(1,1)
k [ϕk, q, p) + R̃k(q, p)

)−1
ba

. (1.46)

Here, we have defined the (1 + 1)-point function

Γ
(1,1)
k,ba [ϕk, q, p) =

→
δ

δϕbk(−q)
Γk[ϕk]

←
δ

δϕak(p)
. (1.47)

From the modified Wetterich equation (1.42), we can recover the conventionally employed Wetterich equation
without scale-dependent fields by setting ∂tϕak = 0:

∂tΓk[ϕ] =
1

2

∫
p

∫
q

(
∂tR̃

ab
k (p, q)

)
Gbak (q, p) =

1

2
STr

{(
∂tR̃k(p, q)

) [
Γ
(1,1)
k [ϕ, q, p) + R̃k(q, p)

]−1}
. (1.48)

The minus sign that accounts for the presence of fermionic Grassmann-valued fields has been absorbed into
the “super trace” operator STr. In addition to a trace over the fields and a summation over indices, it includes
the momentum integration or, alternatively, an integration over coordinates since the Wetterich equation can
also be adopted in position space.
The Wetterich equation describes the evolution of the effective action and therefore of correlation functions
with the change of the scale k that connects macroscopic physics with microscopic interactions. In doing so,
the influence of fluctuations is analysed by considering the effective action at different scales. It is noteworthy
that the Wetterich equation is an exact flow equation for the effective action. The solution of the Wetterich
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Γk=0 = Γ (IR) Γk Γk=Λ = S (UV)

Figure 1.3: Illustration of the trajectory described by the solution of the Wetterich equation. The effective
average action interpolates between the microscopic (ultraviolet, UV) where the interactions are known and
the theory is defined by the action S and macroscopic properties and phenomena that can be extracted from
the full effective action Γ (infrared, IR).

equation describes a trajectory in theory space that interpolates between the infrared (IR) and the ultraviolet
(UV), see Fig. 1.3. Here, “infrared” refers to physics on large length scales and “ultraviolet” to physics on
small length scales. The initial condition of this trajectory is given for small length scales by Γk=Λ = S.
Here, Λ corresponds to the initial RG scale as a high UV cutoff scale. The trajectory is followed until the
full quantum effective action is recovered for k → 0: Γk=0 = Γ in the long-range limit. The advantage
compared to the path integral representation is that the Wetterich equation does not require to compute a
functional integral explicitly. Instead, it is a functional differential equation of the effective average action Γk.
Flow equations of higher-order n-point functions can be obtained by taking the corresponding derivatives
but, e.g., the flow equation for Γ

(n)
k requires knowledge about Γ

(n+1)
k and Γ

(n+2)
k . In general, this results in

an infinite number of coupled differential equations. This corresponds to saying that Γk should contain all
possible interactions that are consistent with the symmetries of the theory under consideration. In practice,
an inclusion of all possible interactions in an ansatz for Γk is not feasible at least in general. Therefore, an
ansatz with the most relevant degrees of freedom is usually employed. For example, in Chap. 2, we choose
an ansatz that includes the most relevant degrees of freedom for QCD considering the high-density regime.
Alternatively, in Sec. 3.1, we include the relevant low-energy degrees of freedom for the model that we shall
employ. In addition to only considering the relevant degrees of freedom, e.g., higher-order correlations are
also neglected and the momentum dependence is simplified. Finding the relevant degrees of freedom by
including the correct terms in the ansatz to obtain the correct physics is perhaps the most challenging part
of the Wetterich equation. More details about the properties of the Wetterich equation can be found in, e.g.,
Refs. [172, 173, 258, 259].
The connection between the functional renormalisation group and the conventional renormalisation group
discussed above can be seen in the effective average action Γk. It is a generalisation of the effective action Γ

since Γk only includes fluctuations with q2 & k2 at least if the regulator function is chosen accordingly.
Therefore, it is closely related to the coarse-graining procedure discussed above and Γk resembles a coarse-
grained free energy. The coarse-graining length scale is given by ∼ k−1. For large scales k, fluctuations are
suppressed so that the effective average action is close to the microscopic action. By lowering the scale k, more
and more fluctuation effects are successively included until the full effective action Γ is recovered for k → 0,
allowing for an investigation of the theory on larger and larger length scales.
Let us now turn to the role and some of the properties of the regulator that has been introduced as a
modification to the functional Zk[Jk] in Eq. (1.27). Firstly, the regulator is supposed to implement infrared
regularisation which is ensured by

lim
q2/k2→0

Rk(q) > 0 . (1.49)

This is especially important for massless theories as the regulator generates a mass-like term for small
momenta and, therefore, ensures infrared regularisation which is reflected in the Wetterich equation, see
Eq. (1.48), where the inverse of the (1 + 1)-point function is modified by the regulator term, resulting
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0 k2 2k2 5k2 10k2
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∂tRk

Rk

Figure 1.4: Example for a regulator Rk and derivative of the regulator ∂tRk with respect to the RG time
for a regulator commonly used for bosonic degrees of freedom: Rk(q) = q2r(q2/k2). For the regulator shape
function, we have used a four-dimensional polynomial regulator adapted for bosonic degrees of freedom, see
App. B.2 for their definition. For q2/k2 → 0, we find Rk(q)→ k2 and for q2/k2 →∞, we find Rk(q)→ 0.

in a k-dependent connected propagator. The regulator consequently guarantees that this propagator does
not diverge in the infrared. Secondly, the full quantum effective action is supposed to be recovered when
considering the limit k → 0. Therefore, we require that the regulator vanishes in the aforementioned limit:

lim
k2/q2→0

Rk(q) = 0 . (1.50)

With this requirement imposed on the regulator, the full effective action is recovered from the modified
version (1.36) for k → 0 since the regulator and the resulting k-dependence drop out in the generating
functional Wk→0[J ] = W [J ] and the effective action Γk→0[ϕ] = Γ[ϕ], respectively. In addition to that,
the action S which defines the microscopic properties of the system under consideration is supposed to be
recovered in the UV, i.e., for k2 → Λ2 →∞: Γk→Λ[ϕ] = S[ϕ]. This is ensured by

lim
k2→Λ2→∞

Rk(q)→∞ , (1.51)

which leads to a suppression of fluctuations for k → ∞ as required. Ultraviolet regularisation is provided
by the contribution ∂tRk to the Wetterich equation (1.48) since contributions from large momenta are sup-
pressed. In addition to that, it resembles Wilson’s approach to the renormalisation group because fluctu-
ations close to k provide the largest contributions. This becomes apparent by considering an example for
the regulator as done in the following. Note that the regulator is often written in terms of a dimension-
less regulator shape function r, e.g., Rk(q) ∼ r(q2/k2). For example, for bosonic degrees of freedom, we
may use Rb

k(q) = q2r(q2/k2) or Rb
k(q) = ~q 2r(~q 2/k2) only regularising the spatial momenta (referred to as

three-dimensional regulators). The requirements for the regulator translate to the regulator shape func-
tion. We introduce different regulator shape functions that comply with the aforementioned requirements in
App. B.2. As an example, we show the regulator and its derivative with respect to the RG time t employing
a polynomial regulator shape function in Fig. 1.4. Notably, for q2/k2 → 0, we find that Rk(q) → k2 which
corresponds to the mass-like term that guarantees infrared regularisation. The other two requirements for
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the regulator are also reflected in Fig. 1.4, i.e., for k2/q2 → 0 (q2/k2 → ∞), the regulator tends to zero
and it diverges for k → ∞. We add that, for fermionic degrees of freedom, the regulator is often chosen
such that Rψk (q) = −/q r(q2/k2) or Rψk (q) = −~/q r(~q 2/k2) only regularising the spatial momenta (referred to
as three-dimensional regulators) [260–263]. The challenges we are encountering in the present work, which
arise due to the presence of a chemical potential, require a more elaborate method to introduce a regulator
for fermionic degrees of freedom that is suitable for such systems. Therefore, we shall discuss these issues in
more detail and introduce a regulator that is capable of treating them in Sec. 1.3.
We would also like to point the reader to the fact that different regulators correspond to different trajectories
in theory space. The full effective action which is recovered for k →∞ should be independent of the specific
choice for the regulator. However, as soon as approximations or an ansatz are employed, the trajectory and
result may depend on the specific choice for the regulator.
We conclude the discussion of the Wetterich equation by pointing out its connection to perturbation theory
which becomes evident by replacing Γk with S in the effective action [173] so that

∂tΓ
1-loop
k [ϕ] =

1

2
STr

{(
∂tRk

)
·
[
S(1,1)[ϕ] +Rk

]−1}
=

1

2
∂t STr ln

(
S(1,1)[ϕ] +Rk

)
. (1.52)

The latter expression can then be integrated from Λ to zero so that

Γ1-loop[ϕ] = S +
1

2
STr ln

(
S(1,1)[ϕ]

)
+ const. , (1.53)

which is nothing but the standard one-loop result for the effective action.

1.3 Regularisation in Dense Relativistic Systems
The present work focuses on exploring the phase structure and thermodynamics of strong-interaction matter
at supranuclear densities using the fRG approach. In the following, we address issues arising in dense rela-
tivistic systems, particularly within the fRG approach.
As we have already discussed before, strong-interaction matter is expected to be governed by a colour-
superconducting ground state at supranuclear densities, see Refs. [20, 46–56] for reviews. The related Cooper
instability [71] leads to potential issues in calculations. In particular, the calculation of the effective action
requires to introduce a suitable regularisation and renormalisation scheme with a suitably chosen class of
regulators. As discussed in the previous section, fluctuations are usually integrated out successively from
high-momentum scales to low-momentum scales. Then, the regulator is employed to regularise divergences
around a given point in momentum space which appear in the low-energy limit at least for vanishing chem-
ical potential. In the following, we do not aim to discuss the issues arising in calculations governed by a
Cooper instability in detail but refer to Ref. [195] for details on the aspects that are only summarised in the
following. However, we present the regularisation scheme for fRG studies that allows us to systematically
handle the issues arising from the Cooper instability in Sec. 1.3.1 and we provide an example by applying it
to a simple quark-diquark model that demonstrates the abilities of the regularisation scheme in Sec. 1.3.2. A
quantitative understanding of relativistic fermions in a dense environment is not only essential for studying
dense strong-interaction matter but also for applications in, e.g., condensed matter physics, nuclear physics,
and high-energy physics. For the present work, we shall use this regularisation scheme in the subsequent
chapters for fRG studies of the theory of the strong interaction.
Any RG approach requires to define suitable renormalisation and regularisation schemes. However, these
schemes are not entirely at our disposal but are implicitly defined by certain aspects underlying the theory
under consideration. Theories with a finite chemical potential exhibit the so-called Silver-Blaze property [264].
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As it turns out, partition functions and observables do not depend on the chemical potential up to some crit-
ical value. This statement is valid as long as the regularisation scheme does not violate the underlying
Silver-Blaze symmetry. With the inclusion of a chemical potential, the action is invariant under a set of
transformations that are referred to as Silver-Blaze transformations reflecting the Silver-Blaze symmetry.
See Refs. [184, 264–266] for a detailed discussion of the Silver-Blaze property. It should be noted that the
Silver-Blaze property is no coincidence but can be understood from a phenomenological standpoint: The
chemical potential can be related to the change in the free energy when fermions are added or removed from
the system. For noninteracting fermions, a lower bound for this change in the free energy is the fermion mass.
Therefore, the fermion density can only become finite for chemical potentials greater than the corresponding
fermion mass. For chemical potentials below the fermion mass, this results in a partition function which does
not depend on the chemical potential at zero temperature.
The calculation of the effective action usually involves approximations. An approximation scheme that is
used throughout the present work is the derivative expansion [267–269], see also Refs. [172, 259, 270] for
reviews. This corresponds to an expansion of correlation functions in terms of their external momenta and
therefore requires to choose an expansion point. The derivative expansion is often used because resolv-
ing the full momentum dependence of correlation functions is very costly. It is now intuitive, to choose a
Silver-Blaze symmetric point in the calculation of the effective action within a derivative expansion. In-
deed, to preserve the Silver-Blaze property, an expansion in external momenta performed around a point
that preserves the Silver-Blaze symmetry is needed. This point is given by (p0 + iFµ, ~p ) = (0, 0) instead
of the conventional expansion point (p0, ~p ) = (0, 0) [184, 266]. Here, F is the fermion number where, e.g.,
diquark fields composed of two quarks or two antiquarks carry fermion number |F | = 2 and mesons com-
posed of quark and antiquark carry fermion number F = 0. However, this expansion point leads to issues
as we shall elaborate in the following. Concerning RG studies where fluctuations are integrated out suc-
cessively, it should be emphasised that the Silver-Blaze property is only preserved if the regularisation and
renormalisation scheme are chosen accordingly. In terms of the Wetterich equation [255], this requires to ap-
propriately choose the momentum dependence of the regulator functions, i.e., the regulator term for fermions
should obey Rψk (ip0, i~p , µ) = Rψk (i(p0 − iµ), i~p , 0) and the regulator for bosons composed of fermions should
obey Rb

k(ip0, i~p , µ) = Rb
k(i(p0 − iFµ), i~p , 0). In summary, an expansion around the point (p0, ~p ) = (0, 0)

and regulator terms that do not obey these rules break the invariance under Silver-Blaze transformations.
Therefore, to preserve the Silver-Blaze property in a derivative expansion of the effective action, these two
aspects have to be followed.
Another important aspect of the regularisation scheme is that it should not violate the scaling behaviours
for physical observables that are required to be recovered in, e.g., dense systems and the corresponding BCS-
type models. As it turns out, this scaling behaviour of physical observables is influenced by the expansion
point. For example, in BCS-type models a specific choice of expansion point may lead to a decrease in
physical observables O with increasing chemical potential although an increase is expected according to a
BCS-type scaling behaviour O ∼ exp(−c/µ2), where c > 0 is a positive constant [40, 82, 84–86]. Therefore,
an expansion in the derivative expansion with a Silver-Blaze symmetric expansion point is not suitable to
recover the expected BCS-type scaling behaviour. To be more explicit, considering the quark-diquark model
that we shall consider in Sec. 1.3.2 as an example, using a Silver-Blaze symmetric expansion point does not
lead to the expected behaviour for, e.g., the diquark gap which is expected to scale as |∆̄0| ∼ exp(−c/µ2).
Consequently, an expansion around a Silver-Blaze symmetric point is not always the correct choice espe-
cially from a phenomenological perspective. Instead, one could argue that the expansion point should be
given by (p0, ~p ) = (0, 0). However, this expansion point comes with a new problem. Using a Silver-Blaze
symmetric regulator without using a Silver-Blaze symmetric expansion point may result in ill-defined loop in-
tegrals. These ill-defined loop integrals originate from poles appearing in the calculation, see, e.g., Ref. [193].
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Therefore, the flow of the couplings also becomes ill-defined when fluctuations are integrated out from the
high-energy scale (k = Λ) to the low-energy limit (k = 0). In RG studies using the conventionally employed
class of regulator functions [172, 255], this pole is therefore always approached from one side. It should be
noted that the existence of these poles is not inherently problematic but a consequence of a Cooper instability
present in the system. Nevertheless, the treatment with conventional regularisation schemes is problematic.
To recover the correct BCS-type scaling behaviour in the presence of a Cooper instability and to render the
loop integrals well-defined, we need to introduce a new regularisation scheme. It turns out that the poles can
be cured by effectively gapping fluctuations around the Fermi surface. This is also the approach in Refs. [82,
84], where the correct scaling behaviour has been recovered, by implementing a sharp cutoff around the Fermi
surface. Notably, integrating around a scale set by the chemical potential is conventionally done in dense
nonrelativistic matter and ultracold atomic gases [247–249, 271–274]. A systematic implementation of inte-
grating out fluctuations around the Fermi surface to recover the expected scaling behaviour of observables,
at least in studies based on the derivative expansion, is provided by the regularisation scheme introduced in
Sec. 1.3.1 below. It provides a more applicable approach, especially for calculations underlying more complex
approximations, since the sharp cutoff comes with problems due to nonlocality and it leads to ambiguities
in the computations [172, 275]. A related class of regulators has already been introduced in nonrelativistic
theories, e.g., condensed matter physics and ultracold atomic gases, see Refs. [247–249, 271–274]. It is impor-
tant to emphasise that the regularisation scheme introduced in Sec. 1.3.1 breaks the Silver-Blaze symmetry
explicitly because it relies on regularising the chemical potential alongside the spatial momentum as we shall
see. Recall that it is necessary to break the Silver-Blaze symmetry anyhow by using an expansion point that
does not obey this symmetry to recover the correct BCS-type scaling behaviour. Therefore, breaking the
Silver-Blaze symmetry with the regulator may not be considered unreasonable. However, it should be noted
that the regulator vanishes in the low-energy limit. Still, if the regulator breaks Silver-Blaze invariance, this
breaking is also reflected in the low-energy limit even if a Silver-Blaze symmetric expansion point is used in
the derivative expansion.

1.3.1 Quasi-Particle Regularisation Scheme

The presence of a Cooper instability requires the introduction of a suitable regularisation scheme that can
handle the poles appearing in the fermion propagators. In the following, we refer to this regularisation scheme
as the “quasi-particle regularisation scheme” because it introduces projectors onto positive and negative
energy solutions of the free Dirac equation which can be related to particle and antiparticle states. We shall
come back to this aspect in more detail in the following. The two aforementioned projectors are given by

P± ≡ P±(~p ) =
1

2

(
γ0 ∓

i/~p

|~p |

)
γ0 . (1.54)

We use the slash notation /~p = piγi. The projectors obey the following rules:

P+ + P− = 1, P+P− = P−P+ = 0, P+P+ = P+, P−P− = P− ,

P−γ0 = γ0P+ , and P+γ0 = γ0P−.
(1.55)

The free Dirac equation comes with two solutions with positive energy and two with negative energy which
is reflected by Tr

(
P±
)
= 2. These solutions are related to particle and antiparticle states. Similar versions of

these projectors have already been introduced in, e.g., Refs. [218, 276, 277]. Similar to the free Dirac equation,
the projectors can be used to split the kinetic term for the fermions that comes with the corresponding action,
e.g., the action (1.76) defined in the following, see Sec. 1.3.2.
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The kinetic term is given by

Sψ̄ψ =

∫
p

Ψ̄(p)
(
− (p0 + iµ)γ0 − /~p

)
Ψ(p) . (1.56)

Here, we have performed a Fourier transformation of the kinetic term so that Ψ̄ and Ψ are the Fourier
transforms of the fields ψ̄ and ψ, respectively. The kinetic term suggests to introduce the kinetic operator

T = −(p0 + iµ)γ0 − /~p . (1.57)

Indeed, this definition is convenient in the calculation of loop diagrams and for calculations using the Wetterich
equation where the inverse of T appears. The kinetic operator T can be conveniently rewritten by utilising
the two projectors:

T = T
(
P+ + P−

)
= −

(
p0 + i (µ− |~p |)

)
P−γ0 −

(
p0 + i (µ+ |~p |)

)
P+γ0 = C−P−γ0 + C+P+γ0 . (1.58)

For convenience, we have introduced C± = (p0+i(µ±|~p |)). This decomposition allows us to split the kinetic
term (1.56) of the fermions into two contributions:

Sψ̄ψ =

∫
p

Ψ̄C−P−γ0Ψ+

∫
p

Ψ̄C+P+γ0Ψ . (1.59)

As we shall see, these contributions resemble modes with positive and negative energy values relative to the
Fermi surface.
At this point, some comments concerning the symmetries are in order. Firstly, we notice that the two
contributions in Eq. (1.59) are separately invariant under chiral transformation and separately invariant
under Silver-Blaze transformations as well. Secondly, the contributions are not separately invariant under
charge conjugation which is broken anyway at finite chemical potential. However, also for µ = 0, the two
contributions are not invariant under charge conjugation because the projectors split them into particle and
antiparticle contributions. In contrast to that,

∫
p
Ψ̄TΨ is invariant under charge conjugation for vanishing

chemical potential µ = 0.
Using the relations for the projectors, the expression for the kinetic operator T can be inverted:

T−1 = − P+γ0
p0 + i (µ− |~p |)

− P−γ0
p0 + i (µ+ |~p |)

= C−1− P+γ0 + C−1+ P−γ0 . (1.60)

From the latter expression the necessity for a suitable regularisation scheme for the problems arising in the
present work can be easily understood. We note that C+ is invertible since C+ 6= 0 (for any finite µ) so
that C−1+ is finite. In contrast to that, C− becomes zero at p0 = 0 and |~p | = µ so that C−1− exhibits a pole at
that position. Recall that |~p | = µ corresponds to the Fermi surface. We conclude that the kinetic operator T
is not invertible, at least in general. For vanishing chemical potential, the pole corresponds to a vanishing
four-momentum which is conventionally taken care of by a mass-like regularisation scheme. However, this
regularisation scheme does not cure the corresponding pole at the Fermi surface for finite chemical potential.
In the presence of a chemical potential, the vanishing of the four-momentum is screened by µ. This is
sufficient for C+ to be invertible at finite chemical potential. In contrast to that, the pole of C−1− at p0 = 0

and |~p | = µ is not cured in this way. In the next step, we therefore introduce a regularisation scheme to
address the problematic pole.
Before introducing the corresponding regulator term, we analyse the poles of the kinetic operator T from
an alternative viewpoint. For this particular consideration, we switch to Minkowski spacetime which can be
recovered by considering p0 7→ −ip0. Consequently, the kinetic propagator exhibits poles at p0 = ω± where

ω± = µ± |~p | , (1.61)
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which is nothing but the quasi-particle dispersion relations of relativistic (quasi-)particles in the presence of
a chemical potential. This dispersion relation gives the energy of the (anti-)fermions relative to the Fermi
surface.
To effectively handle both, the positive and negative, energy solutions in terms of the quasi-particle dispersion
relations, a regulator has to treat the modes associated with the two terms in the decomposed kinetic term
differently. The regularisation of the two energy states separately ensures that poles in C−1− can be removed
without introducing new poles in C−1+ . An exception to this is the sharp regulator (e.g., introducing a sharp
cutoff around the Fermi surface), which has the ability to handle the task but at the expense of additional
issues, e.g., leading to ambiguities in the evaluation of loop integrals. Therefore, it is preferable to implement
the regularisation scheme that we are introducing in the present section. It is important to note that the
modes should only be treated differently in the presence of a chemical potential, but should be handled in
the same manner in the limit of vanishing chemical potential. In the latter case, the regulator regularises
divergences in the low-momentum limit, ensuring that the charge conjugation symmetry remains unaffected
for µ = 0. In addition to that, the regulator should not break the chiral symmetry of the theory. A general
regulator term that fulfils these requirements is given by

Rψk = −i
(
µ− |~p |

)
r−P−γ0 − i

(
µ+ |~p |

)
r+P+γ0 . (1.62)

Here, we have introduced two different regulator functions r± that deal with the positive and negative modes.
In the following, we use regulator functions of the form

r± ≡ r (x±) with x± = (µ± |~p |)2/k2 . (1.63)

Here, r is a dimensionless regulator shape function. The subscript ‘±’ indicates that we regularise the solu-
tions associated with positive and negative energy values separately. The two different regulator functions
r± only differ by the argument of the regulator shape function r. This ensures that the two modes are
regularised identically for vanishing chemical potential. The regulator shape functions used throughout the
present work are found in App. B.2.
It should be emphasised that the regulator term (1.62) breaks Silver-Blaze symmetry explicitly in contrast to
conventionally employed three-dimensional regularisation schemes. This results from integrating out fluctu-
ations around the Fermi surface which requires to couple the spatial momentum and the chemical potential
by regularising them together. However, the breaking of the Silver-Blaze symmetry appears to be neces-
sary anyhow to recover the correct BCS-type scaling behaviour in the derivative expansion as discussed in
the beginning of this section. In addition to that, conventionally employed three-dimensional regularisation
schemes with an expansion point that breaks the Silver-Blaze symmetry lead to ill-defined loop diagrams
in the presence of a Cooper instability, see Ref. [195]. Note that although regulators vanish in the infrared
limit (k → 0), the possible breaking of the Silver-Blaze symmetry by the regulator is reflected in the low-range
limit even if a Silver-Blaze symmetric expansion point is chosen.
Recall that we have introduced requirements that have to be fulfilled by the regulator in Sec. 1.2 which trans-
late to conditions that have to be imposed on the regulator shape functions. These conditions are slightly
adapted to account for the presence of a chemical potential. In general, we consider shape functions that
fulfil (1+r) ≥ 0 so that no artificial divergences emerge in the calculation of loop diagrams. In order to guar-
antee that the regulator vanishes in the long-range limit k → 0 for fixed momentum and in the limit |~p | → ∞
for fixed k, we require

lim
x→∞

r(x) = 0 . (1.64)

In addition to that, we consider regulator shape functions for which

lim
x→0

√
x r(x) > 0 . (1.65)
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To be precise, for regulators employed in the present work we find limx→0
√
x r(x) = 1 so that

r(x±) =
k

|µ± |~p ||
+ · · · (1.66)

in the limit x → 0. This condition ensures that poles around the Fermi surface, i.e., around |~p | = µ,
appearing in the inverse of C− and therefore in the kinetic operator T are regularised. Fermionic regulator
shape functions that exhibit these properties are found in App. B.2.
Adding the regulator to the kinetic term leads to a regularised kinetic operator given by

T +Rψk = −
(
p0 + iε−

)
P−γ0 −

(
p0 + iε+

)
P+γ0 . (1.67)

Here, we have introduced

ε± =
(
µ± |~p |

)(
1 + r±

)
, (1.68)

which resembles a regularised “quasi-particle dispersion relation”. The inverse of the kinetic operator can be
calculated using the relations for the projectors which yields(

T +Rψk

)−1
= − P+γ0

p0 + iε−
− P−γ0
p0 + iε+

. (1.69)

This inverse is now well-defined for all p0 and ~p . The effect of the regularisation can be illustrated by con-
sidering the effect of the regulator on the “quasi-particle dispersion relation” associated with the negative
energy mode ε−. We find that ε− > 0 for µ > |~p | and ε− < 0 for µ < |~p |. Therefore, it changes its sign at
the Fermi surface so that, close to the Fermi surface, it is given by ε− = k sgn(µ− |~p |) + · · · . Consequently,
fluctuations around the Fermi surface are gapped by the regulator with a gap given by ∼ k. In the long-range
limit k → 0, this gap disappears so that all fluctuations are integrated out around the Fermi surface. In
contrast to that, we find ε+ > 0, where the chemical potential effectively acts as a regulator, even for k → 0.
Recall that we constructed the quasi-particle regularisation scheme such that, for vanishing chemical po-
tential, the positive and negative energy modes are regularised in the same manner. Therefore, for µ = 0

it is identical to the standard three-dimensional regularisation scheme because the regulator term reduces
to Rψk = i |~p |P−γ0r − i |~p |P+γ0r = −/~p r [260–263]. Then, the regularised kinetic operator becomes

T +Rψk = −p0γ0 − /~p (1 + r) . (1.70)

The regulator shape function r ≡ r(x) comes with the argument x = ~p 2/k2. It is useful to note that the
standard three-dimensional regularisation scheme for finite chemical potential (with Rψk = −/~p r [260–263])
can be recovered from the quasi-particle regularisation scheme by setting ε± → (µ± |~p | (1+ r)) in Eq. (1.67)
so that

T +Rψk = −(p0 + iµ)γ0 − /~p (1 + r) . (1.71)

We conclude this section on the introduction of the quasi-particle regularisation scheme that is suitable
for handling systems in the presence of a Cooper instability by putting it into context with the functional
renormalisation group. To do so, we show some useful relations for explicit calculations of flow equations.
Using the result for the inverse of the kinetic propagator (1.69), we find(

T +Rψk

)−1(
∂tR

ψ
k

)
=

i (µ− |~p |) (∂tr−)
p0 + iε−

P+ +
i (µ+ |~p |) (∂tr+)

p0 + iε+
P− . (1.72)

The properties of the projectors allow us to solve the trace over Dirac space (indicated by the subscript ‘D’)
resulting in

TrD

{(
T +Rψk

)−1(
∂tR

ψ
k

)}
=

2i (µ− |~p |) (∂tr−)
p0 + iε−

+
2i (µ+ |~p |) (∂tr+)

p0 + iε+
. (1.73)
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We find that derivatives with respect to the regulator only appear together with the corresponding energy
modes, i.e., the quasi-particle dispersion relations. More precisely, the scale derivative of the regulator r±
appears together with the corresponding dispersion relation ε±. Additionally, these two contributions are
conveniently split into two terms which can be handled separately. For applications of the Wetterich equation,
it is also useful to consider the complex conjugate of the kinetic operator which is given by(

T
)∗

= − (p0 − iµ) γT0 − /~p
T
= −

(
p0 − i (µ+ |~p |)

)
γ0P

T
− −

(
p0 − i (µ− |~p |)

)
γ0P

T
+ . (1.74)

With the complex conjugate of the regulator term
(
Rψk
)∗ the inverse of the regulated kinetic operator becomes

((
T
)∗

+
(
Rψk
)∗)−1

= −
γ0P

T
+

p0 − iε+
−

γ0P
T
−

p0 − iε−
. (1.75)

The expressions for the inverse of the regulated kinetic propagators, see Eqs. (1.69) and (1.75), can be
transferred to define the so-called propagator matrix we use in our fRG studies, see App. C for details. Note
that the regularisation scheme can be extended to account for an isospin asymmetry in the system, i.e., the
existence of different chemical potentials for the up and down quarks, and also to include colour chemical
potentials. This extension is required for the calculations in Sec. 3.1 and can be found in App. B.1.

1.3.2 Example: Diquark Condensation

Using the quasi-particle regularisation scheme, we demonstrate its application in the following by employing
a simple quark-diquark model (commonly used for dense strong-interaction matter, see, e.g., Refs. [46–50])
with two quark flavours and three colours at finite chemical potential which is represented by the following
ansatz for the effective action:

Γk =

∫
x

{
ψ̄
(
i/∂ − iγ0µ

)
ψ − 1

2

(
ψ̄τ2i∆

∗
aεaγ5Cψ̄T

)
+

1

2

(
ψTCγ5τ2i∆aεaψ

)
+ Uk(∆

∗
a,∆a)

}
. (1.76)

The quark fields ψ and ψ̄ carry two flavour degrees of freedom. The index a = 1, 2, 3 is a colour index and
the definitions of all matrices, i.e., colour, flavour, and Dirac matrices, can be found in App. A. We do not go
into detail about the construction and the motivation of the terms included in the action but refer to Sec. 2.1
where diquark fields are included from the fundamental quark-gluon interaction of QCD. Here, we only note
that the present ansatz (1.76) can be viewed as a low-energy effective model of the action underlying the
calculations in Chap. 2.
The diquark fields ∆a are complex-valued and carry fermion number |F | = 2. They represent states ∆a ∼
(ψ̄τ2εaγ5Cψ̄T ) with JP = 0+ where J is the angular momentum and P the parity. The diquark potential Uk
entering the ansatz for the effective action (1.76) is given by

Uk(∆
∗
a,∆a) = ν̄2k∆

∗
a∆a + λ̄k

(
∆∗a∆a

)2
. (1.77)

At the initial RG scale, the effective action is given by the classical action S = Γk=Λ where UΛ(∆
∗
a,∆a) =

ν̄2Λ∆
∗
a∆a. We emphasise that Uk contains diquark self-interaction channels but it should in general not be

confused with the effective potential which is given by Γk/V4 evaluated on constant fields. We drop a pos-
sible scale dependence of the Yukawa-type interaction term and the wavefunction renormalisation factors in
the ansatz (1.76), see also Ref. [194]. The couplings ν̄2k and λ̄k at the initial RG scale are external control
parameters of the model that can be used to determine the ground-state properties. The emergence of two
different ground states is possible in the vacuum, i.e., for µ = 0, see, e.g., Refs. [85, 165, 179, 193] for a
general fixed-point analysis and mean-field analysis. Firstly, the ground state might already be governed by
symmetry breaking and the resulting formation of a finite diquark gap. Secondly, the symmetry can only
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be broken at finite µ while it is intact in the vacuum. Setting the four-diquark coupling λ̄k to zero at the
initial RG scale so that it is only induced in the RG flow, the initial value for ν̄2k determines which of the
two possible ground states is realised in the vacuum. For sufficiently large ν̄2Λ the symmetry is only broken
for finite chemical potential whereas for small ν̄2Λ, the symmetry is already broken in the vacuum. These two
scenarios are separated by a critical value ν̄2∗ .
In the following, we do not aim to provide a detailed discussion of the quark-diquark model, since it is
a frequently used low-energy model for dense strong-interaction matter (see, e.g., Refs. [46–50]), but only
demonstrate the abilities of the quasi-particle regularisation scheme. We especially show that the correct
BCS-type scaling behaviour is recovered. Therefore, we only consider the running of the parameter ν̄2k and
the four-diquark coupling λ̄k.
The parameter ν̄2k represents the curvature of the diquark potential at the origin. It is therefore an indicator
for the onset of spontaneous symmetry breaking. At the initial RG scale k = Λ � µ, the starting point
is given by the classical action S which is invariant under U(1)V (where V stands for vector) transforma-
tions. Therefore, for large scales, we have ν̄2k > 0. However, towards the long-range limit, the curvature
of the potential, which serves as an indicator of the breakdown of the U(1)V symmetry, may eventually
change its sign determining the symmetry-breaking scale kSB. Note that ν̄2k is related to the inverse of a
four-quark interaction, see Sec. 2.1 and also Ref. [165, 179, 193] for details about this aspect. We add that,
for the present illustrative study, we only consider purely fermionic loops for simplicity and use the expansion
point (p0, ~p ) = (0, 0).
We calculate the flow of the curvature ν̄2k and the four-diquark coupling λ̄k using the quasi-particle regulari-
sation scheme and the Wetterich equation. For this, we identify the complex-valued diquark fields ∆a in the
ansatz (1.76) with homogeneous background fields ∆̄a: ∆a = ∆̄a. Then, the flow equation of the curvature
of the diquark potential ν̄2k is given by

∂tν̄
2
k =

1

V4

(
∂

∂(∆̄∗1∆̄1)
∂tΓk

)
gs
. (1.78)

Here, V4 =
∫
d4x is the four-dimensional volume and the subscript ‘gs’ indicates that we evaluate on the

ground state, i.e., ∆̄a = 0. At this point, we should note that terms ∼ µ2∆∗a∆a are generated in the RG flow.
These terms are related to the kinetic term of the diquark fields. However, these contributions are effectively
included in the running of the parameter ν̄2k , see also our discussion in Sec. 2.1 below.
Similarly to the flow equation of the curvature of the diquark potential, we calculate the flow equation of the
four-diquark coupling λ̄k using

∂tλ̄k =
1

2V4

(
∂2

∂(∆̄∗1∆̄1)
2
∂tΓk

)
gs
. (1.79)

Alternatively, we can define the flow equation of the parameter ν̄2k and the four-diquark coupling λ̄k with
a derivative with respect to (∆̄∗2∆̄2) or (∆̄∗3∆̄3), respectively. We employ an expansion of the Wetterich
equation ∂tΓk, see App. C for details. With these projection rules, the set of flow equations in the symmetric
regime is given by:

∂tν̄
2
k = −4

∫
p

∂̃t

(
1

p20 + (µ+ |~p |)2(1 + r+)2
+

1

p20 + (µ− |~p |)2(1 + r−)2

)
(1.80)

and

∂tλ̄k = 2

∫
p

∂̃t

(
1

(p20 + (µ+ |~p |)2(1 + r+)2)2
+

1

(p20 + (µ− |~p |)2(1 + r−)2)2

)
. (1.81)
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+iµ

−iµ

(p0, ~p ) (p0, ~p )

Figure 1.5: Loop diagram contributing to the running of the curvature ν̄k. The solid lines are associated
with fermions and the dashed lines are associated with diquark fields with external momenta (p0, ~p ). We use
(p0, ~p ) = (0, 0) as the expansion point in the derivative expansion.

Here, ∂̃t = (∂tr+)∂/∂r+ + (∂tr−)∂/∂r−. The integral on the right-hand side of the flow equation (1.80) for
the parameter ν̄k corresponds, in terms of Feynman diagrams, to the loop diagram shown in Fig. 1.5 where
the external momenta have been evaluated according to (p0, ~p ) = (0, 0).
We also find that the flow equations (1.80) and (1.81) are decoupled, at least within the present approximation,
as we have dropped fluctuation effects. Therefore, to calculate the symmetry-breaking scale, we only have to
consider Eq. (1.80) since the parameter ν̄2k serves as an indicator for the spontaneous breakdown of the U(1)V

symmetry associated with the formation of a gap in the excitation spectrum of the fermions referred to as
diquark gap [165, 179, 193]. In the symmetric regime, ν̄2k > 0 which is realised for at least a certain range of
values k ≤ Λ. At the symmetry-breaking scale kSB, depending on the initial condition ν̄2Λ, the parameter ν̄2k
may change its sign so that we can extract the scaling behaviour of the symmetry-breaking scale from
Eq. (1.80). For example, by using a linear shape function r(x) = (1/

√
x − 1)θ(1 − x) [263, 278, 279], the

right-hand side of the flow equation can be solved analytically so that we find

∂tν̄
2
k = 2k2/(3π2) + 2µ2/π2 . (1.82)

For the scaling behaviour, it follows kSB ∼ exp(−c/µ2) with c > 0 which is independent of the chemical
potential and determined by the initial condition ν̄2Λ. Here, we have assumed that kSB � Λ which is required
anyhow. Consequently, the expected BCS-type scaling behaviour (as expected from relativistic models, see
Refs. [40, 84–86]) is recovered. Since the symmetry-breaking scale sets the scale for low-energy observables O,
the scaling behaviour is passed down to physical observables in the infrared limit leading to O ∼ exp(−c/µ2),
see also Ref. [82] for the scaling behaviour.
The onset of spontaneous symmetry breaking is associated with the emergence of a nontrivial ground state.
While the diquark potential in the symmetric regime (k ≥ kSB) is given by Eq. (1.77), we expand the action
in the phase governed by spontaneous symmetry breaking around the scale-dependent ground state, i.e., the
diquark condensate |∆̄0|2. Therefore, the diquark potential for k ≤ kSB is given by

Uk(∆
∗
a,∆a) = λ̄k(∆

∗
a∆a − |∆̄0|2)2 . (1.83)

For convenience, we choose the diquark condensate to point in the three-direction in colour space without loss
of generality, i.e., ∆a,0 = |∆̄0|δa,3. In addition to that, ∆̄0 is assumed to be homogeneous and real-valued. We
calculate the flow equation of the diquark condensate |∆̄0|2 and the four-diquark coupling λ̄k by identifying
the diquark fields ∆a in the ansatz (1.76) with homogeneous background fields ∆̄a. However, in contrast to
the symmetric phase, we decompose the background field such that ∆a = ∆̄a = δ∆̄a + ∆̄3δa,3. Using this
decomposition, the flow equation of the diquark condensate |∆̄0|2 is obtained from

∂t|∆̄0|2 = − 1

2λ̄kV4

(
∂

∂(δ∆̄∗1δ∆̄1)
∂tΓk

)
gs
. (1.84)
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Here, the subscript ‘gs’ indicates that we evaluate on the ground state which is given by evaluating δ∆̄a = 0

and ∆̄3 = |∆̄0|. Alternatively, we can define the flow equation of the diquark condensate |∆̄0|2 with a
derivative with respect to (δ∆̄∗2δ∆̄2). However, a straightforward calculation by differentiating with respect
to (δ∆̄∗3δ∆̄3) is not possible since V −14 (∂/∂(δ∆̄∗3δ∆̄3)∂tΓk)gs = −2λ̄k∂t|∆̄0|2 + 2|∆̄0|2∂tλ̄k. Therefore, we
also differentiate with respect to (δ∆̄∗1δ∆̄1) or (δ∆̄∗2δ∆̄2) to define the flow equation of the four-diquark
coupling λ̄k so that

∂tλ̄k =
1

2V4

(
∂2

∂(δ∆̄∗1δ∆̄1)
2
∂tΓk

)
gs
. (1.85)

Employing these projection rules, the set of flow equations in the phase governed by spontaneous symmetry
breaking is given by

∂t|∆̄0|2 =
2

λ̄k

∫
p

∂̃t

(
1

p20 + (µ+ |~p |)2(1 + r+)2 + |∆̄0|2
+

1

p20 + (µ− |~p |)2(1 + r−)2 + |∆̄0|2

)
(1.86)

and

∂tλ̄k = 2

∫
p

∂̃t

(
1

(p20 + (µ+ |~p |)2(1 + r+)2 + |∆̄0|2)2
+

1

(p20 + (µ− |~p |)2(1 + r−)2 + |∆̄0|2)2

)
. (1.87)

We apply the set of differential equations (1.80), (1.81), (1.86) and (1.87) to calculate the symmetry-breaking
scale and the diquark condensate (diquark gap) for a specific example. In order to achieve this, the initial
conditions have to be specified. Firstly, we require that, at the initial RG scale Λ, the four-diquark interaction
vanishes so that λ̄Λ = 0. Secondly, the initial condition for the curvature ν̄2k is chosen so that the quarks
are gapped by a diquark condensate for finite chemical potential while they remain ungapped for µ = 0

on all scales. Therefore, the underlying U(1)V symmetry is only broken at finite chemical potential but
remains intact in the vacuum limit for all scales. The emergence of the diquark condensate for finite chemical
potential is then only generated due to the Cooper instability present in the system. For this purpose,
we choose (ν̄Λ/ν̄∗)

2 = 4/3, where ν̄2∗ represents the value of ν̄2k at the non-Gaussian fixed point. In the
following, we set the UV scale to Λ = 0.6GeV (which is a typically used scale in low-energy models, see, e.g.,
Refs. [48, 280]) and use a polynomial regulator shape function with N = 4. Then, we find ν̄2∗/Λ

2 ≈ 0.065

so that ν̄2Λ/Λ2 ≈ 0.087. The initial condition for the curvature of the diquark potential has to be fine-tuned
so that the U(1)V symmetry is broken at finite chemical potential. The Yukawa interaction is introduced
into the action artificially. In contrast to that, in Chap. 2, the Yukawa interaction will be introduced via a
four-quark interaction and generated dynamically from first principles in QCD so that no fine-tuning of the
parameter representing the curvature of the potential is required, see also Ref. [179].
We show the numerical results for the symmetry-breaking scale kSB and the diquark condensate |∆̄0| in the
long-range limit k → 0 as a function of the chemical potential in Fig. 1.6. We find that the diquark condensate
and the symmetry-breaking scale exhibit the same behaviour. This is expected since the symmetry-breaking
scale sets the scale for low-energy observables, i.e., kSB ∼ |∆̄0|. By increasing the chemical potential, the
symmetry-breaking scale and the diquark condensate increase monotonically. Towards µ → 0, we find an
exponential decrease. Therefore, we find the expected BCS-type scaling behaviour as a function of the
chemical potential which is given by kSB ∼ |∆̄0| ∼ exp(−c/µ2), where c > 0 is a positive constant. Note
that these results only present an example to illustrate the capabilities of the quasi-particle regularisation
scheme and to introduce the corresponding prerequisites for our analysis of dense strong-interaction matter.
Indeed, we shall come back to the scaling behaviour of the diquark condensate in a more detailed calculation
in Chap. 2 where the diquark condensate is obtained from a first-principles calculation of QCD.
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Figure 1.6: Symmetry-breaking scale kSB and diquark condensate |∆̄0|/Λ as a function of the chemical
potential µ normalised by the UV scale Λ. We set the UV scale to Λ = 0.6GeV and use a polynomial
regulator shape function with N = 4. The expected BCS-type scaling behaviour is reflected in the numerical
results: The symmetry-breaking scale and the diquark condensate increase monotonically for increasing
chemical potential and decrease exponentially for µ→ 0.

With respect to the capabilities of the quasi-particle regularisation scheme, we note that it is suitable to handle
calculations concerning systems with a Cooper instability. Indeed it leads to well-defined loop integrals in
the presence of a chemical potential, see Eqs. (1.80), (1.81), (1.86) and (1.87). In addition to that, the kinetic
term of the fermions in the action is conveniently split into two contributions resembling modes with positive
and negative energy values relative to the Fermi surface. By using this regularisation scheme, the correct
BCS-type scaling behaviour for observables is recovered. However, it breaks the Silver-Blaze symmetry
explicitly. It should be emphasised that the regularisation scheme is, therefore, only suitable for systems
that are governed by a Cooper instability since recovering the correct scaling behaviour requires to break the
Silver-Blaze symmetry anyway.
In contrast to that, for systems and regimes governed by the Silver-Blaze property, a regularisation scheme
that does not break the Silver-Blaze property explicitly should be employed while simultaneously choosing
an expansion point in the derivative expansion that maintains the Silver-Blaze symmetry. For example, a
regime for which the quasi-particle regularisation scheme is not well-suited is the small chemical potential
regime which is governed by chiral symmetry breaking. The dynamics of QCD is governed by the Silver-
Blaze property for baryon chemical potentials of the order and below the mass of the nucleon. Therefore,
observables should not depend on the baryon chemical potential as long as it is smaller than the nucleon
mass. Therefore, an expansion around the Fermi surface is not suitable since the system does not depend on
the chemical potential (for small chemical potential and temperature). In contrast to that, at high densities
the dynamics is expected to be dominated by a Cooper instability [71], which makes an expansion around
the Fermi surface preferable. In conclusion, the choice of a regularisation scheme has to be adjusted with
regard to the relevant degrees of freedom underlying the system under consideration. Considering QCD, this
leads to the necessity to switch from one regularisation scheme to the other one when considering different
density regimes in the QCD phase diagram at least in a derivative expansion.
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2
From Quarks and Gluons to Colour

Superconductivity

Exploring the properties and dynamics of strong-interaction matter over a wide range of temperatures and
densities has been of special interest of research in recent years and still presents a formidable challenge.
Of particular significance, especially within the context of the present work, is the investigation of the high
density regime where QCD is governed by an interesting phase structure. Indeed, at sufficiently high den-
sities strong-interaction matter is expected to exist as quark matter instead of hadronic matter. Combined
with sufficiently low temperatures, this suggests the existence of a colour-superconducting ground state, see
Refs. [20, 46–56] for reviews. This potentially existing ground state may significantly influence the dynamics
of QCD at sufficiently low temperatures and large chemical potential, thereby challenging our current un-
derstanding and revealing new insight into the nature of strong-interaction matter. Therefore, the present
chapter focuses on investigating the emergence of colour-superconductivity from the most fundamental de-
grees of freedom of QCD, namely quarks and gluons.
The theory that provides an explanation for the occurrence of superconductivity was originally developed
to be applied to electrons in metals. However, as it turns out, this so-called BCS theory [72, 73] can be
extended to different systems consisting of fermions to describe the formation of fermion pairs and their
condensation into a macroscopically occupied state. The condensation occurs because the fermion pairs
are effectively bosonic. They are referred to as Cooper pairs which form if a weak attractive interaction
between the fermions exists at the Fermi surface. This results in the emergence of an energy gap in the
excitation spectrum of the fermions that separates the ground state from the excited quasiparticle states.
Correspondingly, the dispersion relation of the quasiparticle excitations is given by E =

√
(εp − µ)2 + |∆|2,

where εp =
√
~p 2 +m2 is the single-particle energy and |∆| is the energy gap [48, 49, 281] which is also viewed

as the order parameter of the superconducting phase. The emergence of this phenomenon is associated with
the spontaneous breakdown of a local symmetry present in the system before the formation of a gap. In the
following, we shall concentrate on the formation of a superconducting ground state in dense quark matter.
For further details about the BCS theory in general, see, e.g., Refs. [281–284].
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In dense quark matter, the Cooper pairs consist of two quarks, i.e., they are given by diquark states which
have fermion number F = ±2 (or baryon number B = ±2/3). Therefore, we refer to the energy gap in the ex-
citation spectrum as the diquark gap in the following. Since these states carry colour degrees of freedom, the
phenomenon of superconductivity in quark matter is referred to as colour superconductivity. Interestingly,
diquark states have, besides the colour charge, additional degrees of freedom. This opens up the possibility
for different Cooper pairs. The diquark gap is given by the expectation value 〈ψTOψ〉 where O is an operator
in colour, flavour, and Dirac space: O = Ocolour ⊗ Oflavour ⊗ ODirac. Then, superconductivity occurs if this
expectation value of diquark states as the product of two quark fields becomes finite. From the Pauli exclusion
principle, it follows that the operator O has to be antisymmetric, i.e., OT = −O. Still, the colour, flavour,
and Dirac structure of the operator O opens up the possibility for different diquark condensates by combining
colour, flavour, and Dirac matrices. Notably, in QCD, certain channels of gluon exchange are attractive, in-
dicating the existence of a colour-superconducting phase in cold deconfined quark matter [56]. Since quarks
belong to the colour-triplet representation of the colour-symmetry group, the interaction between quarks
occurs in two channels, the (antisymmetric) antitriplet or the (symmetric) sextet: 3c ⊗ 3c = 3̄c ⊕ 6c. As we
shall elaborate in Sec. 2.1, it follows that diquark states can form an antitriplet (associated with an antisym-
metric colour wavefunction) and a sextet (associated with a symmetric colour wavefunction). At least in the
perturbative regime where the strong coupling is weak and the interaction between quarks is mediated by
the exchange of gluons, it follows from an analysis of the relevant interaction that the antitriplet channel is
attractive. Therefore, diquark fields are expected to condense in the colour antitriplet channel. It should,
however, be noted that this argument becomes unreliable if we do not consider asymptotically high densities.
For asymptotically high densities, the diquark gap has been calculated in Refs. [82, 83, 87, 88, 90].
Recall that diquark fields carry colour charge, i.e., they cannot be colour singlets. Therefore, their conden-
sation in terms of a finite expectation value breaks the local colour gauge symmetry SU(3) which effectively
drives the onset of colour superconductivity. At this point, it should be emphasised that it is well-known
that a local gauge symmetry cannot be truly broken spontaneously [285]. However, the existence of a gap
in the excitation spectrum is a gauge-invariant statement. Additionally, the spontaneous breakdown of rem-
nants of the gauge symmetry can happen after fixing the gauge [286, 287]. This situation is similar to
classical superconductivity where the U(1) gauge symmetry of electrodynamics is broken spontaneously or
the Anderson-Higgs mechanism in the electroweak sector of the Standard Model responsible for the mass
generation [61–66].
Apart from the colour wavefunction, diquark states can be classified by their total spin J = L+S where L is
the angular momentum and S is the spin of the particle. It appears that spin-zero condensates are favoured
which can be traced back to the fact that pairing can occur in a larger phase space. For spin-zero, i.e., J = 0,
the spin group is totally antisymmetric so that colour and flavour together have to be symmetric. Assuming
further that diquark fields favour to condense in a colour antisymmetric state (as indicated by the attractive
interaction at sufficiently high densities), the flavour wavefunction has to be antisymmetric as well. Under
these prerequisites, at least two quark flavours have to be considered which can be decomposed into a flavour
triplet and a flavour singlet: 2f ⊗ 2f = 1f ⊕ 3f . Importantly, the resulting flavour-singlet is antisymmetric.
In conclusion, this leads to a diquark condensate which is antisymmetric in flavour, colour, and Dirac space.
Therefore, the conventionally employed diquark condensate for two flavours is given by

∆k ∼ εαβεijk 〈ψTα,iCγ5ψβ,j〉 . (2.1)

Here, α and β are flavour indices corresponding to up and down quarks and i, j, and k are colour indices
corresponding to the three colours red, green, and blue. The Dirac indices have been suppressed. This
condensate is a chirally symmetric spin-zero condensate with JP = 0+ (where P represents the parity) which
is expected to be the most attractive channel for two-flavour QCD. To construct a spin-zero condensate, we
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have used the Lorentz scalar Cγ5. Alternatively, the Lorentz scalar C corresponds to a spin-zero condensate
with negative parity which, however, appears to be disfavoured and would also indicate that parity is broken
at high densities. Additionally, this condensate would break chiral symmetry. Indeed, various studies (see,
e.g., Refs. [40, 83, 85–88]) agree that for two flavours, quarks prefer to pair in the colour antitriplet and
flavour singlet condensate given by Eq. (2.1). Because of the antisymmetric flavour structure, the condensate
represents pairs consisting of one up and one down quark so that this mechanism is referred to as two-flavour
colour superconductivity (2SC) [55, 85]. The condensate is a vector in colour space which can be rotated
by SU(3) colour transformation which allows us to always rotate the vector into, for example, the three-
direction ∆ = ∆kδk3, which is the direction usually chosen. Identifying the colour indices with the three
colours, the explicit colour and flavour structure of the condensate yields

∆ ∼ 〈ψTu,rCγ5ψd,g〉 − 〈ψTu,gCγ5ψd,r〉 − 〈ψTd,rCγ5ψu,g〉+ 〈ψTd,gCγ5ψu,r〉 . (2.2)

We have identified the three-direction with the colour blue so that only red and green quarks participate in the
condensation. Consequently, blue quarks remain ungapped. Note, that it may be possible for the remaining
blue quarks to form a different condensate which only pairs blue quarks and therefore has a symmetric colour
structure. This may possibly lead to a spin-one condensate [288–293]. However, the corresponding gap is
expected to be much weaker.
Condensation is indicated by a nonvanishing expectation value in Eq. (2.1). This condensate breaks the
local SU(3) colour symmetry, but it does not break the symmetry completely. An SU(2) colour symmetry
remains intact, i.e., it remains intact in the subgroup of the red- and green-coloured quarks. Therefore,
the symmetry-breaking mechanism is SU(3)→ SU(2). Consequently, five Nambu-Goldstone bosons emerge.
However, these bosons are “eaten up” by five of the eight gluons which acquire a mass according to the
Anderson-Higgs mechanism [61–66] where the masses are of the order of the gap. Then, only three of the
eight gluons remain massless. In general, the number of massive gluons depends on the form of the condensate.
The condensate (2.1) also breaks the U(1)V symmetry (associated with baryon number conservation), and
interestingly, the electromagnetic gauge symmetry is also broken. However, since there exists a rotated
electromagnetic symmetry given by a linear combination of the electric charge and the eight generators of
the colour group SU(3), there is no additional electromagnetic superconductivity present in the system [56].
So far, we have only discussed the case for two quark flavours. At zero temperature only up, down, and
strange quarks are expected to play a role for densities reached in the Universe, e.g., in neutron stars. Other
quark species are too heavy, exceeding a mass of 1GeV. Although the present work focuses on two quark
flavours, we shall briefly comment on the case for three flavours. The most important condensate is then
given by

∆δ,k ∼ εαβδεijk 〈ψTα,iCγ5ψβ,j〉 . (2.3)

Here, α, β, and δ are flavour indices corresponding to up, down, and strange quarks and i, j, and k are colour
indices. Similar to the two-flavour case, it is a spin-zero condensate with an antisymmetric flavour and colour
structure. However, for three flavours, quarks can be decomposed into a flavour antitriplet and a flavour
sextet (3f ⊗ 3f = 3̄f ⊕ 6f ) where the antitriplet is antisymmetric. In this case, different flavours of quarks
are paired in the condensate. In particular, down-strange, up-strange, and up-down pairing exist. Therefore,
the condensate not only depends on a colour index, but also on a flavour index. Now, a possible condensate
has the form ∆δ,kδk,δ effectively coupling colour and flavour indices, i.e., for the condensate to stay invariant,
transforming the colour degrees of freedom requires to also transform the flavour degrees of freedom. This is
referred to as colour-flavour locking (CFL) [294]. Here, all colours participate in the condensation process.
In this case, all gluons become massive since the colour symmetry is completely broken. Alternatively, the
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condensate can have the form ∆δ,kδk,3δδ,3 which is similar to the 2SC phase in two-flavour QCD since only red
and green up and down quarks participate while blue up, blue down, and strange quarks remain ungapped.
Here, we have again identified the colour index three with the colour blue. The choice of which colour remains
ungapped is arbitrary. In this case, five of the eight gluons acquire a mass. However, the CFL case appears
to be favoured since all quarks participate in the condensation resulting in a bigger energy gain. Note that
other condensates are also possible but the ones discussed here appear to be the most important ones that
are most likely realised in Nature. See Refs. [46–50, 56, 295], on which the present short introduction is based
on, for further details about colour superconductivity.
Although strange quarks may potentially become important at the densities considered in the present work,
we leave them aside and consider only two quark flavours, namely up and down quarks, since the inclusion
of strange quarks complicates the analysis considerably. However, the present work provides a starting point
for future systematic and nonperturbative studies of dense strong-interaction matter, and we expect that it
already gives useful insight into the dynamics of matter at such extreme conditions. In addition to two quark
flavours, we concentrate on the diquark condensate in Eq. (2.1) which is the only possible condensate if we
require that it is a chirally symmetric spin-zero condensate belonging to the antisymmetric colour antitriplet.
Based on these findings, we discuss the formalism underlying our RG analysis in Sec. 2.1. In particular, we
explain how diquarks emerge as dynamic degrees of freedom from the fundamental quark and gluon dynamics.
Following this, we present the ansatz for the effective action required for the RG analysis in Sec. 2.2. The
resulting flow equations are presented in Sec. 2.3, the corresponding RG flows are then studied in Sec. 2.4,
and results for the aforementioned diquark gap as a function of the quark chemical potential are shown in
Sec. 2.5. We improve upon the approximations used up to this point in Sec. 2.6. In particular, we investigate
the influence of fluctuations of the diquark fields and the emergence of the gluon-diquark interaction. The
conclusions can be found in Sec. 2.7. In summary, we demonstrate that our RG approach is suitable to
study the dynamical formation of diquark fields in the low-energy limit allowing us to gain insight into the
dynamics of dense strong-interaction matter.

2.1 From the Quark-Gluon Interaction to Diquark Fields as the
Effective Degrees of Freedom

In the present work, we intend to perform a first-principles study of QCD for intermediate and high densities.
Therefore, we start with the classical Euclidean QCD action S with two massless quark flavours coming in
three colours which is given by

S =

∫
x

{
1

4
F aµνF

a
µν + ψ̄

(
i /D − iµγ0

)
ψ

}
. (2.4)

Here, F aµν = ∂µA
a
ν − ∂νAaµ + ḡfabcAbµA

c
ν is the field strength tensor where the gluon fields Aaµ come with

Lorentz (Greek letters; µ, ν = 0, . . . , 3) and colour (Roman letters; a = 1, . . . , 8) indices. Furthermore, fabc

are the structure constants of the SU(3) colour symmetry. The gluon fields are coupled to the quark fields ψ
via the covariant derivative which is given by Dµ = ∂µ − iḡAaµT

a. The strong coupling is given by ḡ and
the quarks have a chemical potential µ. The quark fields carry colour and flavour components so that
ψ = (ψr,u, ψr,d, ψg,u, ψg,d, ψb,u, ψb,d)

T and ψ̄ = (ψ̄r,u, ψ̄r,d, ψ̄g,u, ψ̄g,d, ψ̄b,u, ψ̄b,d) are six-component vectors
representing all combinations of the two flavours u (up) and d (down) and colour r (red), g (green), and b

(blue) where each element itself is a four-component Dirac spinor. For further details on the QCD action,
see Sec. 1.1. Note that we exclusively work with three colours Nc = 3 and two flavours Nf = 2.
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In the following, we use the Wetterich equation [255] for the analysis of properties of dense strong-interaction
matter. The Wetterich equation is an evolution equation for the effective action Γk which depends on the RG
scale k, see Sec. 1.2 for an introduction. The initial condition for the scale-dependent effective action Γk=Λ

is fixed at the scale Λ by the classical QCD action (2.4). In practice, we choose ΓΛ such that we at least
start in the vicinity of the QCD action, see Sec. 2.4.1 for details on fixing the initial conditions. Note that
we choose Λ � µ so that it is guaranteed that the RG flow is initialised in the perturbative high-energy
regime. Solving the Wetterich equation usually requires an ansatz for the scale-dependent effective action Γk

which captures the dynamics at high momentum scales, represented by the classical QCD action, as well as
relevant contributions in the low-energy sector in terms of effective degrees of freedom. We shall motivate
the necessary contributions to describe quark matter at intermediate to high densities in the following.
The only interaction present at the initial scale Λ, besides gluon self-interactions, is the quark-gluon vertex.
Following the RG flow from the initial RG scale Λ towards the low-energy regime, we find that the quark-
gluon vertex generates a plethora of interaction channels, e.g., quark self-interactions that are important
for the study of ground-state properties. Of particular importance are four-quark interactions which are
already generated at one-loop level by the exchange of two gluons as depicted in Fig. 2.1. Higher-order
quark interactions that are generated from the quark-gluon vertex along the RG flow are parametrically
suppressed at high momentum scales. The inclusion of four-quark interactions requires the inclusion of
different interaction channels in the ansatz for the effective action Γk in terms of

∑
i
λ̄i

(
ψ̄Oiψ

)2
. (2.5)

Here, λ̄i are the bare four-quark couplings associated with the four-quark interaction with the operator Oi
which is an operator in colour, flavour, and Dirac space. Notably, the four-quark interactions are therefore
generated from first principles rather than being introduced as input parameters, as commonly seen in low-
energy models. We shall return to this aspect in Sec. 3.1 where we employ a low-energy model based on
findings in the current chapter. As the four-quark interactions are generated by the exchange of two gluons,
as depicted in Fig. 2.1, we observe that λ̄i ∼ ḡ4. It is worth noting that the interaction channels that are
included in the ansatz for the effective action have to be consistent with the symmetries of the underlying
theory. Therefore, if the theory under consideration respects fewer symmetries, the number of possible
interaction channels increases, which is, for example, the case when introducing a chemical potential. The
inclusion of all possible interaction channels is beyond the scope of the present work. However, a study of
the dominance of different four-quark interaction channels for different density ranges has been carried out
in Ref. [179] in a so-called Fierz-complete setting which allows for the identification of relevant interaction
channels in different density regimes. This study has shown that for small chemical potentials, the so-called
scalar-pseudoscalar channel associated with pion dynamics is dominant which suggests the formation of a
chiral condensate. This is in accordance with QCD RG flows in the vacuum limit, see Refs. [176, 177]. In
contrast to that, in the large chemical potential regime which is relevant for the present work µ & 350MeV,
the so-called diquark channel becomes dominant which suggests the formation of a chirally symmetric diquark
condensate [179]. It is invariant under SU(3)⊗SUL(2)⊗SUR(2)⊗U(1)V transformations. This formation is
associated with pairing of the two-flavour colour superconductor (2SC) type, which is in agreement with early
studies of dense QCD matter [40, 83, 85–88]. The objective of the present work is to analyse the properties
of dense QCD matter. As the aforementioned diquark channel becomes dominant in this regime, we only
include this four-quark interaction in the ansatz for the effective action:

λ̄csc

2

(
ψ̄τ2iεaγ5Cψ̄T

)(
ψTCγ5τ2iεaψ

)
. (2.6)
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λ̄i

ḡ

ḡ

ḡ

ḡ

Figure 2.1: The quark-gluon vertex generates four-quark interactions via the exchange of two gluons already
at one-loop level. Therefore, the four-quark interaction with the coupling λ̄i has to be considered in the
ansatz for the effective action. Here, the solid lines represent quark fields and the curled lines represent gluon
fields. The quark-gluon vertex is proportional to the strong coupling ḡ so that λ̄i ∼ ḡ4.

Here, λ̄csc represents the four-quark coupling associated with the diquark channel. Note that we have in-
troduced the totally antisymmetric matrix εa in colour space where the entries of the matrix are defined
by the Levi-Civita tensor: (εa)bc = εabc with the colour indices a, b, c = 1, 2, 3 (alternatively represented by
a, b, c = r, g,b) so that the indices b and c couple to the colour degrees of freedom of ψ and ψ̄. Alterna-
tively, the colour structure can be expressed in terms of antisymmetric Gell-Mann matrices. Additionally, τ2
and γ5C are antisymmetric matrices in flavour and Dirac space, respectively. Therefore, the combination in
colour, flavour, and Dirac space is also antisymmetric which is needed to fulfil the Pauli exclusion princi-
ple, as we have also discussed at the beginning of this chapter. However, in contrast to that discussion of
the 2SC superconductor, we use the second Pauli matrix to represent the antisymmetric flavour structure,
i.e., (τ2)αβ = −iεαβ .
In the following, we intend to perform an expansion around the point-like limit which we expect to already
provide insight into symmetry-breaking patterns, see Refs. [179, 273, 296–298]. However, studies in the point-
like limit are only applicable up to some symmetry-breaking scale kSB. In this setting, symmetry breaking is
indicated by the divergence of a four-quark interaction at the symmetry-breaking scale kSB associated with
spontaneous symmetry breaking. In case of the diquark channel, the divergence of the corresponding cou-
pling λ̄csc signals that the U(1)V symmetry is broken. The breaking of this symmetry indicates the formation
of a colour-superconducting ground state associated with the formation of a gap in the fermionic excitation
spectrum. Going beyond the symmetry-breaking scale requires to resolve momentum dependences of the
quark correlation functions because it encodes information about bound states and the formation of conden-
sates. Accessing this regime can also be conveniently done by employing a so-called Hubbard–Stratonovich
transformation [299, 300] of at least the most dominant channel. However, since we only include a single
channel, namely the diquark channel, in the present study, we only have to transform this channel. For this,
we first consider the Hubbard–Stratonovich transformation and apply it to the effective average action in the
next step. For this purpose, let us first consider the simple NJL-type (Nambu–Jona-Lasinio-type) fermionic
model for dense QCD matter with the action

SM =

∫
x

{
ψ̄
(
i/∂ − iµγ0

)
ψ +

λ̄csc

2

(
ψ̄τ2iεaγ5Cψ̄T

)(
ψTCγ5τ2iεaψ

)}
. (2.7)

We have only included the diquark channel in the action SM along with a kinetic term for the quarks.
Following this, we consider the generating functional Z which is given by

Z = N
∫
DψDψ̄ exp

(
−SM

)
. (2.8)
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Here, N ensures normalisation. Next, we include a ‘one’ in the generating functional which is given by

1 = exp
(
−
∫
x

m̃2∆′∗a ∆
′
a

)
. (2.9)

Here, we have introduced so-called diquark fields ∆′a with a mass m̃2. The diquark fields are complex-valued
and carry colour indices a = 1, 2, 3 (alternatively represented by a = r, g,b). This yields

Z = N
∫
D∆′aD∆′∗a DψDψ̄ exp

(
− SM −

∫
x

m̃2∆′∗a ∆
′
a

)
= N

∫
D∆′aD∆′∗a DψDψ̄ exp

(
− S′M

)
(2.10)

with a redefined action S′M that now includes diquark degrees of freedom. To associate the recently introduced
diquark fields with the four-quark interaction, we shift the diquark fields according to

∆′∗a = ∆∗a +
h̄

2m̃2

(
ψTCγ5τ2iεaψ

)
, (2.11)

∆′a = ∆a −
h̄

2m̃2

(
ψ̄τ2iεaγ5Cψ̄T

)
. (2.12)

Here, we have introduced the real-valued Yukawa coupling h̄ as an a priori arbitrary variable so that we find

S′M =

∫
x

{
ψ̄
(
i/∂ − iµγ0

)
ψ + m̃2∆∗a∆a −

h̄

2

(
ψ̄τ2i∆

∗
aεaγ5Cψ̄T

)
+
h̄

2

(
ψTCγ5τ2i∆aεaψ

)}
. (2.13)

Since the Yukawa coupling h̄ is an arbitrary variable, it is at our disposal and we have chosen it so that

λ̄csc =
h̄2

2m̃2
. (2.14)

In doing so, the four-quark interaction has been replaced by an equivalent description in terms of bosonic
degrees of freedom. Consequently, a new interaction between quarks and diquarks as effective degrees of
freedom emerges, the so-called Yukawa interaction ∼ h̄. From the action S′M, the equations of motion for the
diquark fields can be extracted:

∆∗a = − h̄

2m̃2

(
ψTCγ5τ2iεaψ

)
and ∆a =

h̄

2m̃2

(
ψ̄τ2iεaγ5Cψ̄T

)
. (2.15)

In this sense, the interactions of the fermions are described via bosonic degrees of freedom. This is reason-
able since the macroscopic properties of a fermionic system are often described in terms of bosonic degrees
of freedom. Indeed, we can connect the fundamental particles (quarks) with bound states (diquarks), which
become important in the low-energy regime. In doing so, we connect the fundamental parameters of QCD in
the short-range regime with the low-energy momentum scale. As mentioned before, a diverging four-quark
coupling signals spontaneous symmetry breaking. In this case, the divergence of the diquark coupling λ̄csc

indicates the spontaneous breakdown of the U(1)V symmetry. In the description via the Yukawa interaction,
this can be translated as the mass m̃2 becoming zero. Then, symmetry breaking implies that ∆∗a or ∆a

obtain a finite vacuum expectation value, respectively. For more details on the Hubbard–Stratonovich trans-
formation, we refer the reader to Refs. [214, 299–301].
This simple model can already be used to study symmetry breaking. In a slightly more elaborate way, we shall
do so in Sec. 3.1 by including additional chemical potentials to differentiate between different quark species
and different colours. In this chapter, we are more interested in the emergence of a gap in the fermionic
excitation spectrum from the fundamental interactions. In the following, we shall refer to this gap as the
diquark gap. We now leave behind the simple model and return to the QCD action and the formulation
in terms of the functional renormalisation group. Recall that the quark-gluon vertex generates four-quark
interactions already at one-loop level via the exchange of two gluons, see Fig. 2.1. Hence, the four-quark
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interaction (2.6) has to already be included in the ansatz for the effective action after an infinitesimal RG
step δk. We only include the diquark channel which can be translated into low-energy effective degrees of
freedom via a Hubbard–Stratonovich transformation. Performing the Hubbard–Stratonovich transformation
requires to include the following term in the ansatz for the effective action:

m̃2∆∗a∆a −
ih̄

2

(
ψ̄τ2∆

∗
aεaγ5Cψ̄T

)
+

īh

2

(
ψTCγ5τ2∆aεaψ

)
. (2.16)

In this way, the four-quark interaction associated with the diquark channel can be remapped onto the Yukawa
interaction with the coupling h̄ and a term bilinear in the diquark fields corresponding to a mass term ∼ m̃2.
Consequently, the four-quark interaction is removed. However, the situation in terms of constructing an
ansatz for the scale-dependent effective action is more involved compared to the simple model. The use of
the Hubbard–Stratonovich transformation results in a new interaction, namely the Yukawa interaction. This
aspect has to be carefully considered when determining the interactions to be included in an ansatz for the
scale-dependent effective action. Considering the next RG step, after performing the Hubbard–Stratonovich
transformation, the quark-gluon vertex and the newly emerged Yukawa interaction give rise to a four-quark
interaction again, as illustrated in Fig. 2.2. Therefore, although the four-quark vertex has been rewritten
by introducing diquark fields, it still has to be considered in the ansatz for the effective action. Since the
interactions associated with the couplings h̄ and λ̄csc are only generated during the RG flow, they should be
set to zero at the initial RG scale.
The Hubbard–Stratonovich transformation of gluon-induced four-quark interactions can still be used to gain
insight into the low-energy dynamics. For example, the transformation can be performed at a scale Λ0 > kSB

(where kSB is the symmetry-breaking scale) as done in Ref. [126]. However, the introduction of such a scale
introduces an artificial dependence on the scale Λ0. This leads to additional uncertainties for the low-energy
observables. Further, it limits the range of chemical potentials that is accessible within this framework
to µ . Λ0 and the scale is also expected to depend on the chemical potential itself. This µ-dependence is at
least a priori difficult to determine. Removing this (artificial) scale Λ0 can be conveniently done by intro-
ducing the so-called dynamical bosonisation technique, see Refs. [146, 170–175, 178, 257] for an introduction
and recent developments. It essentially introduces a continuous Hubbard–Stratonovich transformation of the
gluon-induced four-quark interactions in the RG flow which works as follows: The four-quark interaction
is generated by the fundamental quark-gluon vertex already after an infinitesimal RG step. As discussed
above, we only take into account the diquark channel. This channel is removed by rewriting it in terms of
diquark degrees of freedom by performing a Hubbard–Stratonovich transformation already once it is gener-
ated. However, in the next infinitesimal RG step, the four-quark interaction is regenerated by the quark-gluon
interaction and the Yukawa interaction. Consequently, the Hubbard–Stratonovich transformation can be per-
formed again, which modifies the Yukawa coupling h̄ and the mass m̃2 of the diquark fields by removing the
four-quark interaction. As visualised in Fig. 2.3, this procedure of generating the four-quark interaction and
immediately mapping it onto the Yukawa interaction and a term bilinear in the fields, is repeated until the
low-energy regime is finally reached. Formally, this continuous application of Hubbard-Stratonovich trans-
formations can be performed with the dynamical bosonisation technique. Using the dynamical bosonisation
method, we continuously follow the RG flow from high momentum scales associated with the classical QCD
action (governed by quarks and gluons) down to the low-energy regime which is governed by the formation
of bound states and condensates. As we shall see in Sec. 2.3.1, this can be conveniently implemented by
introducing k-dependent fields as we have done in the derivation of the Wetterich equation, see Sec. 1.2 and
also Refs. [146, 170–175]. The modification of the Yukawa coupling and the mass of the diquark fields is then
cast into flow equations for the corresponding couplings which shall be derived in Sec. 2.3.1. Note that the
complex-valued diquark fields ∆∗a are now quark composites of the form ∼

(
ψTCγ5τ2iεaψ

)
. We emphasise

again that we only consider diquark fields as low-energy degrees of freedom because the diquark channel
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Figure 2.2: The quark-gluon vertex and the newly generated Yukawa interaction generate four-quark inter-
actions. The curled lines represent the gluon fields, the solid lines represent the quark fields, and the dashed
lines represent the diquark fields. Therefore, the four-quark interaction λ̄i not only consists of contributions
from the strong coupling ḡ but also from the Yukawa coupling h̄.

has been found to be the most dominant in the density regime relevant for the present work [179]. The
inclusion of, e.g., the scalar-pseudoscalar channel associated with pion dynamics would, in principle, require
the introduction of additional low-energy degrees of freedom. However, useful information might already be
extracted by investigating the effect of the scalar-pseudoscalar channel above the symmetry-breaking scale.
Since we do not take into account the scalar-pseudoscalar channel, the present work does not allow us to study
the transition from a colour-superconducting state at high to intermediate densities to a phase governed by
chiral symmetry breaking. A study of this transition region is anyway complicated since many four-quark
interaction channels become important indicating a complicated phase structure [166, 179].
In the process of bosonising the four-quark interaction, we introduced diquark fields. These fields become
dynamic degrees of freedom during the RG flow. This requires the inclusion of a kinetic term which is also
dynamically generated along the RG flow. Since diquarks consist of two quarks or two antiquarks, they are
associated with a chemical potential. The kinetic term is, therefore, given by[(

∂0 − 2µ
)
∆∗a

][(
∂0 + 2µ

)
∆a

]
+
(
∂j∆

∗
a

)(
∂j∆a

)
=
(
∂µ∆

∗
a

)(
∂µ∆a

)
+ 2µ

[
∆a∂0∆

∗
a −∆∗a∂0∆a

]
− 4µ2∆∗a∆a . (2.17)

Note that the last term in the latter expression effectively belongs to the potential of the diquark fields
and not to the kinetic term. Therefore, we absorb it into a “modified” mass m̃2 = m̄2 − 4Z∆µ

2 which
we, conveniently, have already introduced in Eq. (2.16). Now, m̄2 is the mass of the diquark fields and m̃2

represents the curvature of the potential. At the initial UV scale Λ, the diquark sector has to decouple from
the fermion sector. Hence, the kinetic term associated with the diquark wavefunction renormalisation in the
ansatz for the effective action has to be set to zero at the initial RG scale Λ. This corresponds to “making”
the renormalised mass parameter infinitely large for k → Λ: m̃2/Z∆ → ∞. Since the chemical potential is
finite and Λ � µ, this corresponds to m̄2/Z∆ → ∞ so that the contribution from the chemical potential
in m̃2 corresponds to a negligible contribution at Λ. If the mass of the diquark fields is large and positive,
they are nondynamic, noninteracting, and heavy at the UV scale Λ. Consequently, they effectively decouple
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k = 0 k = Λ − 2δk k = Λ − δk k = Λ

δk

H.S.T.

δkδk

H.S.T.

Figure 2.3: Illustration of the dynamical bosonisation technique to be understood from right (associated with
the initial scale Λ) to left (low-energy regime k = 0): After the first RG step δk, the quark-gluon interaction
generates four-quark interactions, i.e., we only include the so-called diquark channel. The four-quark inter-
action is, by introducing so-called diquark fields and using a Hubbard–Stratonovich transformation (H.S.T.),
replaced by a Yukawa interaction. In the next RG step, the four-quark interaction is again generated, now
by the quark-gluon vertex and the Yukawa interaction. Again, the four-quark interaction is replaced. This
cycle repeats until the low-energy regime associated with k = 0 is reached which is governed by the formation
of ground states and condensates.

from the fermion sector. However, as soon as the diquark wavefunction renormalisation becomes finite, the
diquark fields become dynamic degrees of freedom, solely as a consequence of the underlying quark-gluon
dynamics. To ensure the decoupling of the diquark degrees of freedom from the fermion sector at the initial
RG scale, we shall choose the initial conditions, according to the present discussion, in Sec. 2.4.1.
Because diquark-like eight-quark interactions can already become important at scales relevant for the present
work, we include a four-diquark interaction. We shall verify this statement in Sec. 2.4. Therefore, the diquark
potential V becomes

V (|∆|2) = m̃2∆∗a∆a + λ̄∆

(
∆∗a∆a

)2
. (2.18)

Here, |∆|2 = ∆∗a∆a. The coupling λ̄∆ corresponds to the interaction between four diquark fields and is
generated dynamically by the Yukawa interaction using the dynamical bosonisation technique. The potential
also includes the “modified” mass m̃2. Note that we have only included diquark self-interactions up to the
order four. However, the potential can, in principle, be expanded to arbitrary order in the diquark fields by
introducing higher orders:

V (|∆|2) = m̃2∆∗a∆a + λ̄∆

(
∆∗a∆a

)2
+ λ̄6

(
∆∗a∆a

)3
+ · · · . (2.19)

Here, λ̄6 is the coupling associated with the six-diquark interaction. For simplicity and since we expect the
interaction to be subdominant at high scales (λ̄6 ∼ g12), we only take into account diquark self-interactions
up to the fourth order, see Eq. (2.18), in the following. We add that higher-order diquark self-interactions
can be related to quark self-interactions with a nontrivial momentum structure, for example, the four-diquark
interaction is associated with an eight-quark interaction.
Recall that a diverging four-quark coupling signals the onset of spontaneous symmetry breaking. In terms of
diquark degrees of freedom, the curvature of the diquark potential m̃2 becoming zero signals the breakdown
of the aforementioned U(1)V symmetry. We can analyse this aspect further by considering what happens to
the diquark potential when the curvature becomes zero and eventually negative. For this, we consider the
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nontrivial minimum |∆0|2 of the diquark potential (2.18) which is given by

∂V (|∆|2)
∂|∆|2

∣∣∣∣
|∆|2=|∆0|2

!
= 0 ⇒ |∆0|2 = − m̃2

2λ̄∆
. (2.20)

Assuming that λ̄∆ is strictly positive so that for m̃2 > 0, only the trivial minimum at |∆|2 = 0 exists, see
left-hand side of Fig. 2.4. As soon as the mass becomes zero, we enter a phase with a finite minimum and
thereby enter the symmetry-broken phase, which corresponds to m̃2 < 0, see the right-hand side of Fig. 2.4.
Therefore, in the broken phase, it is convenient to rewrite the potential by replacing the mass of the diquark
fields with the minimum of the diquark potential:

V (|∆|2) = −2λ̄∆|∆0|2∆∗a∆a + λ̄∆
(
∆∗a∆a

)2
= λ̄∆

(
∆∗a∆a − |∆0|2

)2 − λ̄∆|∆0|4. (2.21)

Note that the last term in the latter expression is simply a constant, which does not need to be considered
in an ansatz for the effective action. With the Hubbard–Stratonovich transformation, we have related the
coupling λ̄csc to the diquark mass m̃2. Consequently, the divergence of the coupling λ̄csc →∞ or a vanishing
diquark mass m̃2 → 0 signals the spontaneous symmetry breaking, which for the present considerations, is the
breaking of the U(1)V symmetry. The emerging diquark condensate breaks the U(1)V symmetry but leaves
the chiral symmetry intact. The expectation value of diquark field becomes finite in the spontaneously broken
phase: 〈∆a〉 6= 0. In terms of quark fields, a finite expectation value for 〈ψOψ〉 or 〈ψ̄Oψ̄〉 arises. Here, O
is a matrix in colour, flavour, and Dirac space which has to be antisymmetric due to the Pauli-exclusion
principle. In the symmetric high-momentum regime, the ground state is at the origin which may become
unstable and tend towards a lower stable minimum at ∆0 in the low-momentum regime. This minimum can
be related to a so-called diquark gap ∆gap. Considering spontaneous chiral symmetry breaking instead, the
finite expectation value of a corresponding bosonic field corresponds to the quarks becoming massive. In
contrast to that, the occurrence of a finite expectation value of the diquark field leads to the formation of the
so-called diquark gap, analogous to the gap in the excitation spectrum of a conventional superconductor. The
scale at which the curvature of the potential becomes zero, indicating the onset of spontaneous symmetry
breaking, is the so-called symmetry-breaking scale kSB. Recalling the discussion about superconductivity
in two-flavour QCD at the beginning of this chapter, we emphasise that diquark fields considered in this
discussion are of the form ∼

(
ψTCγ5τ2iεaψ

)
. Recall that (τ2)αβ = −iεαβ and (εa)bc = εabc where α and β

are flavour indices and a, b, and c are colour indices. Therefore, a finite expectation value of these diquark
fields is associated with pairing of the two-flavour colour superconductor (2SC) type.
The diquark fields are not colour-neutral as they consist of two quark fields (and not a quark and an antiquark
field). Therefore, they interact directly with gluons. To determine the interaction of diquark fields and gluons,
we derive their transformation in colour space starting from the transformation of the quarks. Additionally,
we discuss the effect of colour in QCD by commenting on the colour wavefunctions for mesons and gluons.
In QCD, all quark fields carry a colour charge of red, green, or blue (r, g, b) and antiquarks carry a colour
anticharge of antired, antigreen, or antiblue (r̄, ḡ, b̄). The strong interaction is invariant under rotations in
colour space due to the underlying SU(3) colour symmetry. The generators T a of the SU(3) symmetry are
defined in App. A.2. We can use the eigenstates of T 3 and T 8 as the basis vectors to represent the three
colour states by:

|r〉 =

1

0

0

 , |g〉 =

0

1

0

 , and |b〉 =

0

0

1

 . (2.22)

The anticolour basis vectors are represented in the dual representation.
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transition

symmetric phasesymmetric phase

symmetry-broken phasesymmetry-broken phase

Re(∆a) Re(∆a)

V V

∆0

λ̄csc = h̄2

2m̃2

m̃2 > 0 m̃2 < 0

Figure 2.4: Illustration of the diquark potential V for Im(∆a) = 0. The symmetric phase (left-hand side) is
characterised by m̃2 > 0 while the symmetry-broken phase (right-hand side), where a finite expectation value
exists for the diquark gap, is associated with a negative mass m̃2 < 0. At vanishing diquark mass m̃2 = 0, the
coupling λ̄csc diverges which corresponds to a transition between the symmetric and the symmetry-broken
phase. Symmetry breaking suggests the formation of a chirally symmetric diquark condensate of the two-
flavour colour-superconductor (2SC) type characterised by an expectation value 〈ψψ〉 or 〈ψ̄ψ̄〉, respectively.

In the following, we use the analogy of the SU(3) colour symmetry to the approximate SU(3) flavour symme-
try for three quark flavours (u, d, s) used in the quark model to construct baryons and mesons. The quark
model was originally proposed by Murray Gell-Mann [4] and George Zweig [5, 6] and was preceded by the
“eightfold way” proposed by Murray Gell-Mann [7] and Yuval Ne’eman [8] classifying and structuring the
hadrons based on the symmetry group SU(3). Notably, the SU(3) symmetry is an extension of the SU(2)

isospin symmetry. This symmetry was introduced by Werner Heisenberg and was originally used to describe
proton and neutron as different states of the same particle [302]. See also Refs. [59, 303] for introductions
about the construction of mesons and baryons and the quark model.
In contrast to the approximate SU(3) flavour symmetry (which is approximate because of the different masses
of different quark flavours), the colour symmetry is an exact SU(3) symmetry. In analogy to the quark model,
where isospin and hypercharge are introduced, we define a colour isospin Ic

3 and a colour hypercharge Y c.
The colour isospin is given by the eigenvalue of T 3 and the colour hypercharge is the eigenvalue of 2/

√
3T 8.

These quantum numbers of the colour states and the anticolour states are shown in Fig. 2.5. The colour states
can be understood as a colour triplet and the anticolour states as a colour antitriplet. It is convenient, to
introduce the (ladder) operators T± = T 1± iT 2, U± = T 6± iT 7, and V± = T 4± iT 5 which, together with T 3

and 2/
√
3T 8, are also a representation of the SU(3) symmetry group. Notably, the operators T±, U±, and V±

shift the states as depicted in Fig. 2.5. The states for antiquarks are represented by the basis vectors of the
dual representation and corresponding ladder operators T̄±, Ū±, and V̄± can be defined. For a discussion of
colour in QCD, see, e.g., Ref. [59, 303].
With this at hand, we can construct colour wavefunctions for mesons, consisting of one quark and one anti-
quark, and for gluons. This is identical to the construction of flavour wavefunctions with three flavours u, d,
and s where quark and antiquarks are combined. We start with the construction of a product state consisting
of the colour triplet and the colour antitriplet. The states can then be constructed by starting with one state
and by applying the ladder operators. The resulting colour wavefunctions are shown in Fig. 2.6. In doing
so, we find a coloured octet and a colour-neutral singlet which is invariant under SU(3) transformations. We

52



2.1 From the Quark-Gluon Interaction to Diquark Fields as the Effective Degrees of Freedom
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3b̄

ḡr̄

T̄±

Ū±V̄±

Figure 2.5: Illustration of the quark colour triplet (left-hand side) and the antiquark colour antitriplet
(right-hand side) in the plane spanned by the colour isospin Ic

3 and the colour hypercharge Y c. The ladder
operators T±, U±, and V± (for quarks) and T̄±, Ū±, and V̄± (for antiquarks) shift the states along the
respective axes (represented by the dashed lines).

write 3c⊗ 3̄c = 8c⊕1c. Here and in the following, the subscript ‘c’ indicates that we consider the representa-
tion of the colour-symmetry group instead of, e.g., the flavour-symmetry group. It is strongly expected that
free particles can only exist as colourless states, i.e., asymptotic quark states, which would carry a net colour
charge, have never been observed. This aspect is known as colour confinement which is a well-established
phenomenon in QCD. Two of the particles in the octet are colour-neutral. However, they are not invariant
under SU(3) colour transformation. Only the singlet state is invariant under the aforementioned symmetry
transformation and, therefore, represents the only reasonable choice for the colour wavefunction of confined
matter, i.e., mesons. In contrast to that, we can also construct the gluon colour wavefunction by combining
the colour triplet and the colour antitriplet. However, a colour-singlet gluon cannot exist because it would
be colour-neutral and would behave like a strongly interacting photon. In Nature, there is no infinite-range
strong interaction, which contradicts the existence of a strongly interacting photon. Hence, the gluon colour
wavefunctions are given by the octet, indicating the existence of eight gluons [59].
In the present work, we are interested in the construction of the colour wavefunction for diquark fields ∆∗a
(antidiquarks ∆a) which consist of two antiquarks (quarks). This can be done by combining the colour triplet
(colour antitriplet) with another colour triplet (colour antitriplet). Similarly to the derivation of the meson
and gluon colour wavefunctions, we can employ the ladder operators to construct the diquark colour wave-
functions. From the combination of two triplets, we find an (antisymmetric) antitriplet and a (symmetric)
sextet. The colour wavefunctions of the antitriplet are totally antisymmetric under the exchange of colour
whereas the sextet is totally symmetric. We write 3c ⊗ 3c = 3̄c ⊕ 6c. The resulting states are shown in
Fig. 2.7. We can also combine two colour antitriplets and find an (antisymmetric) triplet and a (symmetric)
antisextet. Therefore, for diquark fields there are no colour singlets.
In this chapter, we have introduced diquark fields that are antisymmetric in colour space and can, therefore,
be identified with the colour triplet and antitriplet, respectively, which also represent antisymmetric colour
states. Following the discussion at the beginning of this chapter, we expect that diquark fields preferably
condense in the colour antitriplet channel (at least for two quark flavours) so that we only consider diquark
fields pairing in this channel in the present study. Note that the colour triplet for the diquarks is identical to
the colour antitriplet for the antiquarks, which becomes apparent when comparing Fig. 2.7 and Fig. 2.5 (right
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Figure 2.6: Colour wavefunctions as obtained by combining the colour triplet and the colour antitriplet. The
resulting nine states exist as an octet (left-hand side) and a singlet (right-hand side). The singlet state is
a colourless state with quantum numbers Ic

3 = Y c = 0. Applying the ladder operators to the singlet state
yields zero for each operator. Furthermore, it is invariant under SU(3) colour transformations.

panel). Therefore, the antisymmetric colour states transform like an antiquark triplet, and antisymmetric di-
quarks (antidiquarks) consisting of two quarks (consisting of two antiquarks) behave like antiquarks (quarks)
in colour space. By describing the behaviour of the diquarks as a quark or antiquark, we can also associate
a single colour with each diquark state: For example, an antisymmetric diquark(quark-quark) consisting of r
and g behaves like an antiquark with the colour b̄. This can also be explained more visually: The combi-
nations diquark-quark or antidiquark-antiquark are colour-neutral states similar to the colour-neutral states
antiquark-quark or quark-antiquark. In one case, baryons are built, while in the other case, mesons are built.
However, the behaviour in colour space appears to be “identical”. In the above example, this means that the
diquark which behaves like a b̄ antiquark coupled to a b quark yields a colour-neutral state as it would if we
directly coupled quarks with colours r, g, and b. The important information that can be explained by this
is that diquarks couple to gluons like a quark or an antiquark. Note that in our convention ∆a consists of
two antiquarks and ∆∗a consists of two quarks. Therefore, ∆a couples to a gluon like a quark and ∆∗a couples
to a gluon like an antiquark. Consequently, the diquark ∆∗a (antidiquark ∆a) transforms as an antitriplet
(triplet) in colour space.
Let us now directly consider the behaviour of the diquark fields used in the present work under SU(3) colour
transformations. Employing the transformations of the quark and antiquark under the local SU(3) trans-
formations, introduced in Sec. 1.1, and considering that the diquark fields are composites of quark fields
according to ∆a ∼

(
ψ̄τ2iεaγ5Cψ̄T

)
and ∆∗a ∼

(
ψTCγ5τ2iεaψ

)
, yields

∆a 7→
(
δae + iθs(x)T sae

)
∆e and ∆∗a 7→ ∆∗e

(
δae − iθs(x)T sea

)
. (2.23)

It follows that the antidiquarks ∆a transform like quarks and the diquarks ∆∗a transform like antiquarks
under colour transformations, as expected from our analysis of the colour wavefunctions of the diquark fields.
To ensure gauge invariance of the effective action, we therefore have to replace the derivatives with respect
to diquark fields with the covariant derivative

Dab
µ = ∂µδab − iḡ∆A

c
µT

c
ab, (2.24)

where a, b, and c are colour indices and ḡ∆ is the strong coupling via which the diquark fields couple to the
gluons. We indeed find that

(
Dca
µ ∆a

) (
Dcb
µ ∆b

)∗ and
(
∆a

(
Dab

0 ∆b

)∗ −∆∗a
(
Dab

0 ∆b

))
are gauge-invariant.
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Figure 2.7: Colour wavefunction as obtained by combining the colour triplet with a colour triplet. We find
that the nine states exist as an antitriplet (left-hand side) and a sextet (right-hand side). Notably, the
triplet looks like the colour antitriplet in Fig. 2.5. However, none of the states are colour-neutral. A similar
representation arises from the combination of the colour antitriplet with another colour antitriplet.

We close this section by noting that we include the diquark fields as effective degrees of freedom. Diquark fields
consist of either two quarks or two antiquarks so that they are not colour-neutral. Since we have expanded the
action in ∆∗a∆a, which is a gauge-invariant object and since we have included the gauge-invariant derivative,
the action itself is gauge invariant. However, the dynamical generation of a finite expectation value for the
diquark fields is not a gauge-invariant statement and it would break the SU(3) colour symmetry. It is well-
known that local gauge invariance cannot be truly broken [285]. Nevertheless, our prescription is suitable for
the formation of a gap ∼ ∆∗a∆a in terms of diquarks as the effective degrees of freedom which only presents
a convenient approach to access the low-energy dynamics [46]. The existence of such a gap in the excitation
spectrum of the fermions in colour-superconducting systems is a gauge-invariant statement since ∆∗a∆a is a
gauge-invariant quantity. In future studies, it may be possible to calculate the aforementioned gap without
relying on diquark fields as effective low-energy degrees of freedom. Instead, a direct computation of the full
momentum dependence of fermionic correlation functions in a vertex expansion and a resulting gap may be
possible. At the present, we consider our approach as a feasible way to study colour superconductivity at
high densities.

2.2 Ansatz for the Scale-Dependent Effective Action
With the considerations from the preceding section, we can write down an ansatz for the effective action in
our present study. Our effective action represents a combination of the classical QCD action (2.4) and an
ansatz including the relevant contributions in the low-energy sector, see the preceding section for details. By
also including wavefunction renormalisations for the respective fields, we find

Γk =

∫
x

{
Zψψ̄

(
i/∂ − iµγ0

)
ψ + ḡψ̄γµA

a
µT

aψ +
λ̄csc

2

(
ψ̄τ2iεaγ5Cψ̄T

)(
ψTCγ5τ2iεaψ

)
+ Z∆

(
Dca
µ ∆a

)(
Dcb
µ ∆b

)∗
+ 2µZ∆

(
∆a

(
Dab

0 ∆b

)∗ −∆∗a
(
Dab

0 ∆b

))
+ V (|∆|2)

+
ih̄

2

(
ψTCγ5τ2∆aεaψ

)
− ih̄

2

(
ψ̄γ5τ2∆

∗
aεaCψ̄T

)
+

1

4
ZAF

a
µνF

a
µν

}
+∆Γgf +∆Γgh . (2.25)
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Terms associated with covariant derivatives with respect to diquark fields include two-gluon two-diquark
interactions, one-gluon two-diquark interactions, and a kinetic term for the diquark fields. In practice, we
replace terms with a covariant derivative with respect to diquark fields by considering

Z∆

(
Dca
µ ∆a

)(
Dcb
µ ∆b

)∗
+ 2µZ∆

(
∆a

(
Dab

0 ∆b

)∗ −∆∗a
(
Dab

0 ∆b

))
(2.26)

→ Z∆

(
∂µ∆a

)(
∂µ∆

∗
a

)
+ 2µZ∆

(
∆a∂0∆

∗
a −∆∗a∂0∆a

)
+ 4µiḡ∆,1A

c
0∆
∗
aT

c
ab∆b + ḡ2∆,2A

c
µA

d
µ∆
∗
bT

c
bcT

d
ca∆a .

Here, the first two terms are kinetic terms, the third term represents a one-gluon two-diquark interaction asso-
ciated with the coupling ḡ∆,1, and the fourth term represents a two-gluon two-diquark interaction associated
with the coupling ḡ2∆,2 which, however, may be related by gauge invariance. In doing so, we have explicitly
introduced different couplings for the different interactions. We dropped possible interactions that explicitly
depend on the momentum, which would require to include additional interactions that also explicitly depend
on the momentum.
For the diquark potential V , we differentiate between the symmetric phase and the regime governed by
spontaneous symmetry breaking which are separated by the symmetry-breaking scale kSB so that

V (|∆|2) =


m̃2∆∗a∆a + λ̄∆

(
∆∗a∆a

)2
, symmetric phase (k ≥ kSB)

λ̄∆

(
∆∗a∆a − |∆0|2

)2
, phase governed by symmetry breaking (k ≤ kSB)

. (2.27)

Note that ∆Γgf is the gauge-fixing term and ∆Γgh represents the ghost term where we rely on the background
field approach to gauge theories [304, 305] within background covariant gauges and employ the background
field approximation. For details and applications, see also Refs. [179, 192, 306–315].
The ansatz for the effective action is spanned by the set of wavefunction renormalisations (Zψ, ZA, Z∆) and
couplings (ḡ, m̃2, λ̄∆, h̄, λ̄csc, ḡ∆,1, ḡ∆,2). The wavefunction renormalisations and couplings are k-dependent
but we do not show this dependence explicitly. In the phase governed by spontaneous symmetry break-
ing, we replace the curvature of the potential m̃2 with the minimum of the potential |∆0|2. We can
express the couplings in terms of dimensionless renormalised couplings, i.e., the renormalised strong cou-
pling g2 = Z−1A Z−2ψ ḡ2, the renormalised dimensionless curvature of the potential ε = m̃2Z−1∆ k−2, the renor-
malised diquark interaction λ∆ = λ̄∆Z

−2
∆ , the renormalised Yukawa coupling h = h̄Z−1ψ Z

−1/2
∆ , the renor-

malised dimensionless four-quark interaction λcsc = λ̄csck
2Z−2ψ , and renormalised strong couplings associated

with gluon-diquark interactions, g2∆,2 = Z−1A Z−1∆ ḡ2∆,2 and g∆,1 = Z
−1/2
A Z−1∆ ḡ∆,1. In the broken phase, the

renormalised dimensionless minimum of the potential is κ = Z∆|∆0|2k−2.

2.3 RG Flow Equations
In the beginning of this chapter, we established that the four-quark interaction emerges in each RG step due
to the quark-gluon vertex and the quark-diquark vertex. While the Hubbard-Stratonovich transformation
can be applied at a specific scale, it does not eliminate the four-quark interaction across all scales. Instead,
a continuous Hubbard-Stratonovich transformation can be utilised to eliminate the four-quark interaction
after each RG step. In the RG framework, a scale-dependent transformation is naturally feasible as it can be
accomplished by, for example, introducing scalar fields that depend on the scale k, such as scale-dependent
diquark fields ∆a,k. By modifying the diquark fields, the four-quark interaction can be absorbed continuously
as a function of the RG scale, a process referred to as the dynamical bosonisation technique. We employ this
technique in this study. In doing so, the four-quark interaction is eliminated at all scales which would not
be the case with only a single Hubbard–Stratonovich transformation since four-quark interactions would be
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regenerated in the RG flow. More precisely, the information of the four-quark interaction is assimilated into
the Yukawa interaction in each step. In doing so, the translation of the four-quark interaction is recast into
flow equations for the remaining couplings. For additional information and an introduction, see Refs. [146,
170–175, 178, 257] as the following discussion is based on their findings.
In the following, we derive the relations required for the application of the dynamical bosonisation technique.
For this purpose, we consider k-dependent diquark fields ∆a,k while the remaining fields are scale independent.
We exclusively work in momentum space with the four-momentum given by p = (p0, ~p ) and correspondingly
for q, p′, q′. Then, the super field ϕk as used in the derivation of the Wetterich equation for k-dependent fields
in Sec. 1.2 becomes, for the purpose of the present work, ϕk(q) =

(
Aaµ(q),∆

∗
a,k(q),∆a,k(−q), ψT (q), ψ̄(−q)

)T .
The introduction of k-dependent fields leads to a modification of the Wetterich equation which is shown in
Eq. (1.42), see Sec. 1.2 for details on its derivation. The modified version of the Wetterich equation consists
of a term that is simply the conventionally employed Wetterich equation for k-independent fields and terms
that represent corrections stemming from the scale dependence of the fields. Specifically, it includes a term
that shall modify the diquark anomalous dimension and a term that is used in the following to implement
the dynamical bosonisation in terms of recasting the flow of the four-quark interaction into the flow of the
remaining couplings. Before deriving the corresponding equations in Sec. 2.3.1, we start with the scale
dependence of the diquark fields ∆a,k. In principle, this scale dependence is at our disposal. However, a
suitable choice is needed to rewrite the four-quark interaction. Considering the quark-composite nature of
the diquark fields, i.e., diquarks consisting of two quarks or two antiquarks, it is reasonable that this is also
reflected in their scale dependence. Therefore, we choose

∂t∆a,k(p
′) =

1

2

∫
p

∫
q

(
ψ̄(p)γ5τ2iεaCψ̄T (q)(2π)4δ(4) (p′ − p− q)

)
∂tαk(p

′)−∆a,k(p
′)∂tβk(p

′) , (2.28)

∂t∆
∗
a,k(p

′) = −1

2

∫
p

∫
q

(
ψT (p)Cγ5τ2iεaψ(q)(2π)4δ(4) (p′ − p− q)

)
∂tαk(p

′)−∆∗a,k(p
′)∂tβk(p

′) . (2.29)

Note that the first part reflects the aforementioned quark-composite nature of the diquark fields which
would already suffice to rewrite the four-quark interaction associated with the diquark channel in terms of
diquark self-interactions and the Yukawa interaction in the following. However, the second term in the latter
expression, which takes into account a possible general scale dependence or rescaling of the diquark fields,
can be used to impose additional constraints. For now, the functions αk and βk are arbitrary functions that
depend on the scale k. In the following, see Sec. 2.3.1, these functions are chosen such that the four-quark
coupling vanishes at all scales, the Yukawa coupling h̄ is momentum-independent, and the running of the
diquark wavefunction renormalisation is given by ∂tZ∆(p0 = 0, |~p | = k) = −η∆Z∆. A similar determination
of the functions αk and βk has been discussed in Refs. [170, 171, 173, 175] for the chiral regime.
Taking into account the scale dependence of the diquark fields in Eqs. (2.28) and (2.29), the modified Wetterich
equation (1.42) reduces to

∂tΓk[ϕ] = ∂tΓ̄k[ϕ]−
∫
p′

{
δΓk[ϕk]

δ∆∗a,k(p
′)
∂t∆

∗
a,k(p

′) +
δΓk[ϕk]

δ∆a,k(p′)
∂t∆a,k(p

′)

}
. (2.30)

The first part of the latter expression is the original Wetterich equation for scale-independent diquark fields
but with a shifted diquark anomalous dimension:

∂tΓ̄k[ϕ] =
1

2
STr

{(
∂tR̃k(p, q)

)[
Γ
(1,1)
k [ϕ, q, p) + R̃k(q, p)

]−1}∣∣∣
η∆→η∆+2∂tβk

. (2.31)

The resulting flow equations are derived in Sec. 2.3.2. The shift in the diquark anomalous dimension η∆ →
η∆ + 2∂tβk stems from the second term on the right-hand side of Eq. (1.42). In the part representing the
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original Wetterich equation, we have replaced the full propagator Gbak with a more suitable expression for
our purposes below which is in terms of derivatives of the effective action Γk:

Γ
(1,1)
k [ϕk, q, p) =

→
δ

δϕTk (−q)
Γk[ϕk]

←
δ

δϕk(p)
. (2.32)

The derivative of the effective action Γ
(1,1)
k includes derivatives with respect to diquark fields, quark fields,

and gluons. For more details, we refer the reader to App. C. A suitably chosen regulator function is given by

R̃k(p, q) =


RA(q) 0 0 0 0

0 0 R∆(q) 0 0

0 R∆(q) 0 0 0

0 0 0 0 −RTψ(−q)
0 0 0 Rψ(q) 0

 (2π)4δ(4) (p− q) . (2.33)

The entries of this matrix are given by

RA(q) = ZA~q
2rB
(
~q 2/k2

)(
Aµν +Bµν + PLµν/ξ

)
δab , (2.34)

R∆(q) = Z∆~q
2rB
(
~q 2/k2

)
δab , (2.35)

Rψ(q) = −Zψi
(
µ− |~q |

)
P−γ0rψ

(
(µ− |~q |)2/k2

)
− Zψi

(
µ+ |~q |

)
P+γ0rψ

(
(µ+ |~q |)2/k2

)
. (2.36)

The regulator shape functions rB and rψ can be found in App. B. We use three-dimensional regulators and,
for the fermions, we use a regulator shape function that regularises around the Fermi surface, see Sec. 1.3 for
an introduction to this regularisation scheme.
In the phase governed by spontaneous symmetry breaking, we employ a homogeneous background for the
expansion of the diquark fields. In practice, we choose the background field ∆̄3 to point into the three-
direction such that ∆a 7→ ∆a + δa3∆̄3. Note that we do not study a potentially existing dependence of our
results on our choice of picking the three-direction for the background field. In the calculation of the flow
equations, we ultimately evaluate the background field at the minimum. With this, we basically choose to
evaluate the minimum in the three-direction: |∆0|2 =

∑
a |∆0,a|2 with ∆0,a = δa3∆0. Consequently, the

diquark gap is constructed from the gauge-invariant object
∑
a∆
∗
a∆a.

2.3.1 Dynamical Bosonisation

The introduction of k-dependent diquark fields ∆a,k leads to a modification of the Wetterich equation ac-
cording to Eq. (2.30). In particular, the flow equations of the couplings that span the ansatz for the effective
action (2.25) are altered by the second part of Eq. (2.30). The scale dependence of the k-dependent diquark
fields, see Eqs. (2.28) and (2.29), is chosen such that it is possible to recast the continuous change of the
four-quark interaction into flow equations for the couplings. We shall do so in the following. For this purpose,
we have introduced a priori arbitrary functions αk and βk.
For the Yukawa coupling, the modified Wetterich equation yields

∂th̄ = ∂th̄
∣∣
Γ̄
+
(
m̃2 + Z∆p

2 + 4iµZ∆p0
)
∂tαk(p) + h̄∂tβk(p) . (2.37)

Here and in the following, we use the subscript ‘Γ̄’ to indicate the contribution to the running couplings from
the part of the Wetterich equation for scale independent fields given in Eq. (2.31). For the mass and the
wavefunction renormalisation, we have the combined expression

∂t
(
m̃2 + Z∆p

2 + 4iµZ∆p0
)
= ∂t

(
m̃2 + Z∆p

2 + 4iµZ∆p0
)∣∣

Γ̄
+ 2
(
m̃2 + Z∆p

2 + 4iµZ∆p0
)
∂tβk(p) . (2.38)
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We can extract the contribution to the mass m̃2 by setting p2 = 0 and p0 = 0 in the latter expression so that

∂tm̃
2 = ∂tm̃

2
∣∣
Γ̄
+ 2m̃2∂tβk(0) . (2.39)

With this, we can also identify

∂tZ∆

(
p2 + 4iµp0

)
= ∂tZ∆

∣∣
Γ̄

(
p2 + 4iµp0

)
− 2m̃2∂tβk(0) + 2

(
m̃2 + Z∆p

2 + 4iµZ∆p0
)
∂tβk(p) . (2.40)

For the diquark coupling λ̄∆ and the quark coupling λ̄csc, we find

∂tλ̄∆ = ∂tλ̄∆
∣∣
Γ̄
+ 4λ̄∆∂tβk(p) , (2.41)

∂tλ̄csc = ∂tλ̄csc
∣∣
Γ̄
− h̄∂tαk(p) . (2.42)

We also find corrections to the running of the strong coupling associated with gluon-diquark interactions:

∂tḡ
2
∆,2 = ∂tḡ

2
∆,2

∣∣
Γ̄
+ 2ḡ2∆,2∂tβk(p) , (2.43)

∂tḡ∆,1 = ∂tḡ∆,1
∣∣
Γ̄
+ 2ḡ∆,1∂tβk(p) . (2.44)

Note that the functions αk and βk depend on the external momentum p. Since ∂tαk(p) is an arbitrary
function, we can choose it so that the four-quark interaction λ̄csc vanishes at all scales by requiring

∂tλ̄csc = ∂tλ̄csc(p)
∣∣
Γ̄
− h̄∂tαk(p)

!
= 0 ⇒ ∂tαk(p) =

1

h̄
∂tλ̄csc(p)

∣∣
Γ̄
. (2.45)

This condition, together with the initial condition λ̄csc → 0 for k → Λ, ensures that the four-quark interaction
corresponding to the diquark channel vanishes at all scales in the RG flow: λcsc = 0. The contributions to
the running of the four-quark coupling from the fundamental quark-gluon interaction are still generated but
are now mapped onto the diquark sector. From here on, ∂tλ̄csc(p) is the flow equation of the four-quark
coupling associated with the part of the Wetterich equation for scale independent fields.
In practice, we project the couplings onto zero external momentum. However, in general, the couplings
depend on the external momentum. Therefore, we keep the momentum dependence of the running of the
four-quark coupling for now. The choice of the vanishing four-quark interaction modifies the flow equation
for the Yukawa coupling which becomes

∂th̄ = ∂th̄
∣∣
Γ̄
+

1

h̄

(
m̃2 + Z∆p

2 + 4iµZ∆p0
)
∂tλ̄csc(p) + h̄∂tβk(p) . (2.46)

From the latter expression, it is obvious that the running of the four-quark interaction directly influences the
flow of the Yukawa coupling. This is expected since the general aim was to translate the emerging four-quark
interaction via a Yukawa interaction and scalar fields. This becomes more visible now: The flow of the
four-quark interaction which “measures” the emergence of the four-quark interaction at each RG step is now
recast into the flow equation for the Yukawa interaction.
Besides αk, we have also introduced βk as an arbitrary function because the field configuration is not fixed
uniquely, and we allow for a general rescaling of the diquark fields. In doing so, we can use the contribution
from βk(p) to absorb the momentum dependence of the Yukawa coupling. For this, we choose

∂tβk(p) = −
m̃2 + Z∆p

2 + 4iµZ∆p0
h̄2

∂tλ̄csc(p) + f(k) , (2.47)

where f(k) is a p-independent function which only depends on the scale k. It can be seen that, with this
choice, the running of the Yukawa coupling h̄ does not depend on the momentum p any more:

∂th̄ = ∂th̄
∣∣
Γ̄
+ h̄f(k) . (2.48)

In doing so, we ensure that the diquark gap is also momentum independent in the low-energy regime.
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The momentum-independent part f(k) can be used to guarantee that the wavefunction renormalisation Z∆

is momentum independent as well. This is required to render our assumption, that the wavefunction renor-
malisation is momentum independent, self-consistent. Consequently, we choose the momentum independent
function f(k) to read

f(k) =
1

Z∆k2h̄2

[ (
Z∆k

2 + m̃2
)2
∂tλ̄csc(p0 = 0, |~p | = k)− m̃4∂tλ̄csc(p0 = 0, |~p | = 0)

]
(2.49)

so that

k2∂tZ∆(p0 = 0, |~p | = k) = k2∂tZ∆

∣∣
Γ̄
. (2.50)

It follows

∂tβk(p) = −
m̃2 + Z∆p

2 + 4iµZ∆p0
h̄2

∂tλ̄csc(p) +
1

Z∆k2h̄2

[ (
Z∆k

2 + m̃2
)2 (

∂tλ̄csc(p0 = 0, |~p | = 0) + ∂t∆λ̄csc

)
− m̃4∂tλ̄csc(p0 = 0, |~p | = 0)

]
. (2.51)

Here, we have introduced the difference ∆λ̄csc = λ̄csc(p0 = 0, |~p | = k) − λ̄csc(p0 = 0, |~p | = 0). Note that
∆λ̄csc/λ̄csc(p0 = 0, |~p | = 0) < 0 and it is supposed to be small. This difference measures the suppression
of λcsc for large momenta, i.e., it measures the decay of the four-fermion interaction with the momentum.
For the case of vanishing external momentum (point-like limit), it is given by ∆λ̄csc/λ̄csc(p0 = 0, |~p | = 0) = 0

where the decay becomes maximal. As this represents the point-like limit, we choose ∆λ̄csc = 0 in the
following. This approximation has only a negligible effect on the symmetry-breaking scale and the diquark
gap as we have checked. Additionally, the four-quark interaction λ̄csc = h̄2/2m̃2 is unaffected by the difference.
It only affects the position of (pseudo-)fixed points in the RG flow of the couplings. More information and a
discussion of this approximation can be found in Refs. [170, 171].
The initially arbitrary functions αk(p) and βk(p) are now uniquely determined by the stated requirements.
In conclusion, this leads to a coupled system of differential equations for the running of the renormalised
squared Yukawa coupling h2 = Z−2ψ Z−1∆ h̄2, the renormalised dimensionless mass ε = Z−1∆ k−2m̄2, and the
renormalised four-diquark coupling λ∆ = Z−2∆ λ̄∆:

∂th
2 = Z−2ψ Z−1∆ ∂th̄

2
∣∣
Γ̄
+ 2(1 + 2ε)k2Z−2ψ ∂tλ̄csc(0) + h2η∆ + 2h2ηψ , (2.52)

∂tλ∆ = Z−2∆ ∂tλ̄∆
∣∣
Γ̄
+

4λ∆(1 + ε)

h2
k2Z−2ψ ∂tλ̄csc(0) + 2η∆λ∆ , (2.53)

∂tε = k−2Z−1∆ ∂tm̃
2
∣∣
Γ̄
+

2ε(1 + ε)

h2
k2Z−2ψ ∂tλ̄csc(0) + (η∆ − 2)ε . (2.54)

For convenience, we have replaced the flow equation of the Yukawa coupling h with the flow of the squared
Yukawa coupling h2. In addition to that, the flow equations of the renormalised strong couplings, g2∆,2 =

Z−1A Z−1∆ ḡ2∆,2 and g∆,1 = Z
−1/2
A Z−1∆ ḡ∆,1, associated with gluon-diquark interactions read

∂tg
2
∆,2 = Z−1A Z−1∆ ∂tḡ

2
∆,2

∣∣
Γ̄
+

2g2∆,2(1 + ε)

h2
k2Z−2ψ ∂tλ̄csc(0) +

(
ηA + η∆

)
g2∆,2 , (2.55)

∂tg∆,1 = Z
−1/2
A Z−1∆ ∂tḡ∆,1

∣∣
Γ̄
+

2g∆,1(1 + ε)

h2
k2Z−2ψ ∂tλ̄csc(0) +

1

2

(
ηA + 2η∆

)
g∆,1 . (2.56)

The function ∂tβk is, in the point-like limit, given by

∂tβk(0) =
1

h̄2
[
Z∆k

2 + m̃2
]
∂tλ̄csc(0) =

1 + ε

h2
k2Z−2ψ ∂tλ̄csc(0) . (2.57)
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Figure 2.8: Schematic representation of terms that drop out in the calculation while only considering one
channel, i.e., the diquark channel associated with the coupling λ̄csc. This coupling vanishes at all scales due to
the dynamical bosonisation which is used to ensure λ̄csc = 0. The contribution to the Yukawa interaction (a)
and contributions to the four-quark interaction (b–d) drop out. However, by considering more than only the
diquark channel in the ansatz for the scale-dependent effective action, similar diagrams would still appear
with other four-quark couplings.

Here, we have evaluated the couplings in the point-like limit, i.e., on vanishing external momenta p =

(p0, ~p ) = (0, 0). The wavefunction renormalisation of the diquark fields only enters the set of differen-
tial equations in terms of the diquark anomalous dimension η∆ which is determined by Eq. (2.50) so that
∂tZ∆(p0 = 0, |~p | = k) = −η∆Z∆. The four-quark interaction now enters the set of differential equations only
in terms of its running ∂tλ̄csc and not as an additional differential equation. Furthermore, the four-quark
interaction itself λ̄csc vanishes at all scales. As a consequence, ∂tλ̄csc only consists of diagrams emerging
from the fundamental quark-gluon interaction and the Yukawa interaction. Contributions corresponding to
diagrams that depend on λcsc drop out by construction. These diagrams are shown in Fig. 2.8. In practice,
this means that diagrams that contribute to the flow equation of (a) the Yukawa coupling and (b–d) the
four-quark interaction drop out.
The set of differential equations derived so far describes the system in the high-momentum regime where the
curvature of the effective potential ε is positive. Following the RG flow towards smaller scales, we shall find
that the curvature decreases and eventually becomes zero at the so-called symmetry-breaking scale kSB, see
Sec. 2.4.2. In this regime governed by a spontaneously broken U(1)V symmetry, the diquark field obtains
a finite expectation value associated with a nontrivial minimum of the diquark potential so that the set of
differential equations changes.
The derivation of the modifications to the running couplings due to the introduction of scale-dependent di-
quark fields in the regime governed by spontaneous symmetry breaking is very similar to the derivation in the
symmetric phase. Therefore, we keep it brief and only show the relevant changes in the derivation. In contrast
to the symmetric phase, in the regime governed by spontaneous symmetry breaking, we only consider the
fields ∆ā and ∆∗ā to be scale dependent. Here, ā = 1, 2 is a reduced colour index, i.e., it does not include the
three-direction. This choice for the scale dependence of the diquark fields is motivated by the following consid-
eration for mapping onto the diquark gap: While the different directions of the diquark field used in the pro-
jection for the curvature of the diquark potential in the symmetric phase are all equivalent, the three-direction
of the diquark fields is different in the phase governed by spontaneous symmetry breaking. Recall that we
choose the background field ∆̄3 to point into the three-direction such that ∆a 7→ ∆a + δa3∆̄3. With this, the
flow equation of the diquark condensate |∆̄0|2 can be obtained from −2λ̄∆∂t|∆̄0|2 = V −14 (∂/∂(∆∗1∆1)∂tΓk)gs.
Here, the subscript ‘gs’ indicates that we evaluate on the ground state which is given by evaluating on ∆a = 0

and ∆̄3 = |∆̄0| where |∆̄0| is the minimum of the diquark potential. Alternatively, we can define the flow
equation of the diquark condensate |∆̄0|2 with a derivative with respect to (∆̄∗2∆̄2) which is equivalent to
using a derivative with respect to (∆̄∗1∆̄1). However, a straightforward calculation by differentiating with
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respect to (∆̄∗3∆̄3) is not possible since V −14 (∂/∂(δ∆̄∗3δ∆̄3)∂tΓk)gs = −2λ̄∆∂t|∆̄0|2 + 2|∆̄0|2∂tλ̄∆. Here, we
obtain additional contributions that cannot be identified with the flow of the diquark condensate |∆̄0|2.
Therefore, a projection onto all three directions simultaneously would be inconsistent and we map only by
differentiating with respect to (∆̄∗1∆̄1) and (∆̄∗2∆̄2). Since we also differentiate with respect to diquark fields
in the second term of the modified Wetterich equation (2.60), a differentiation with respect to the three-
direction would also lead to additional terms. To solve this issue, we only consider the diquark fields in the
one- and two-direction to be scale dependent. Therefore, also the scale dependence of the diquark fields is
adapted to read

∂t∆ā,k(p
′) =

1

2

∫
p

∫
q

ψ̄(p)γ5τ2iεāCψ̄T (q)(2π)4δ(4) (p′ − p− q) ∂tαk(p′)−∆ā,k(p
′)∂tβk(p

′) , (2.58)

∂t∆
∗
ā,k(p

′) = −1

2

∫
p

∫
q

ψT (p)Cγ5τ2iεāψ(q)(2π)4δ(4) (p′ − p− q) ∂tαk(p′)−∆∗ā,k(p
′)∂tβk(p

′) . (2.59)

Consequently, the modified Wetterich equation is given by

∂tΓk[ϕ] = ∂tΓ̄k[ϕ]−
∫
p′

{
δΓk[ϕk]

δ∆∗ā,k(p
′)
∂t∆

∗
ā,k(p

′) +
δΓk[ϕk]

δ∆ā,k(p′)
∂t∆ā,k(p

′)

}
. (2.60)

Here, the first term in the latter expression is still given by Eq. (2.31).
For the Yukawa coupling h̄, we find

∂th̄ = ∂th̄
∣∣
Γ̄
+
(
Z∆p

2 + 4µiZ∆p0
)
∂tαk(p) + h̄∂tβk(p) . (2.61)

Instead of a flow equation for the mass, we find a flow equation for the minimum of the diquark potential |∆0|2

which is notably not directly affected by the contributions from the scale dependence of the diquark fields:

−2λ̄∆∂t|∆0|2 = −2λ̄∆∂t|∆0|2
∣∣
Γ̄
. (2.62)

The running of the diquark wavefunction renormalisation can be extracted from

∂t
(
Z∆p

2 + 4µiZ∆p0
)
= ∂t

(
Z∆p

2 + 4µiZ∆p0
)∣∣

Γ̄
+ 2
(
Z∆p

2 + 4µiZ∆p0
)
∂tβk(p) . (2.63)

Since ∂tαk(p) is an arbitrary function, we can choose it so that the four-quark interaction λ̄csc vanishes at
all scales by requiring ∂tαk(p) = ∂tλ̄csc(p)

∣∣
Γ̄
/h̄. It follows that ∂tαk remains unchanged in the broken phase

compared to the symmetric phase. However, ∂tβk changes which is, besides αk(p), also an arbitrary function
because the field configuration is not fixed uniquely. Therefore, we can use the contribution of βk(p) to absorb
the momentum dependence of the Yukawa coupling. As in the symmetric phase, we can also use βk(p) to
ensure that the wavefunction renormalisation Z∆ is momentum independent. For this purpose, we choose

∂tβk(p) = −
Z∆p

2 + 4µiZ∆p0
h̄2

∂tλ̄csc(p) +
Z∆k

2

h̄2
∂tλ̄csc(p0 = 0, |~p | = k) . (2.64)

Here, the first part guarantees that the Yukawa coupling is momentum independent and the second (p-
independent) part guarantees that the wavefunction renormalisation Z∆ is momentum independent as well:

k2∂tZ∆(p0 = 0, |~p| = k) = k2∂tZ∆

∣∣
Γ̄
. (2.65)

As in the symmetric phase, we introduced the difference ∆λ̄csc = λ̄csc(p0 = 0, |~p| = k)− λ̄csc(p0 = 0, |~p| = 0).
As it also represents the point-like limit, we choose ∆λ̄csc = 0 in the following. The initially arbitrary
functions αk(p) and βk(p) are now uniquely determined by the stated requirements. As in the symmetric
phase, the four-quark interaction now enters the set of differential equations only in terms of its running ∂tλ̄csc
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and not as an additional differential equation. Furthermore, the four-quark interaction itself λ̄csc vanishes on
all scales.
In conclusion, this leads to a coupled system of differential equations for the running of the renormalised
squared Yukawa coupling h2 = Z−2ψ Z−1∆ h̄2, the renormalised dimensionless minimum κ = Z∆k

−2|∆0|2, and
the renormalised four-diquark coupling λ∆ = Z−2∆ λ̄∆:

∂th
2 = Z−2ψ Z−1∆ ∂th̄

2
∣∣
Γ̄
+ 2k2Z−2ψ ∂tλ̄csc(0) + h2η∆ + 2h2ηψ , (2.66)

∂tκ = Z∆k
−2∂t|∆0|2

∣∣
Γ̄
− κη∆ − 2κ , (2.67)

∂tλ∆ = Z−2∆ ∂tλ̄∆
∣∣
Γ̄
+ 4

λ∆
h2
k2Z−2ψ ∂tλ̄csc(0) + 2λ∆η∆ . (2.68)

In contrast to the symmetric phase, the flow equation of the curvature of the potential has been replaced by
the flow of the minimum of the potential. However, the flow of the minimum does not receive contributions
originating from the use of the dynamical bosonisation technique.

2.3.2 Flow Equations

In this section, we turn to the first part of the modified Wetterich equation (2.30) which is simply the
conventionally employed Wetterich equation with a shifted diquark anomalous dimension η∆ → η∆+2β̇. For a
first calculation, we start with some assumptions and simplifications. Note, however, that the derivation of the
corrections to the flow equations derived in the preceding section does not rely on these assumptions. We shall
improve upon the following calculation in Sec. 2.6. In this section, we set the wavefunction renormalisation
of the quarks to one Zψ = 1 since it is expected to depend only mildly on the RG scale at least for small
densities [142, 146, 171, 175–177, 316]. Nevertheless, we take it into account in the next step. We also drop
bosonic fluctuations by effectively dropping kinetic terms of the diquark fields in the ansatz for the Wetterich
equation (2.25). By dropping bosonic fluctuations, the flow of different diquark self-interaction couplings
effectively decouple. Therefore, the inclusion of, e.g., a six-diquark interaction associated with the coupling λ6
(and higher-order diquark self-interactions) would not influence the flow equations of the remaining couplings.
However, the wavefunction renormalisation Z∆ is still generated in the RG flow already from purely fermionic
loop diagrams. Furthermore, we use Feynman gauge for convenience. For a first analysis, we shall also set
gluon-diquark interactions to zero g∆,1 = g2∆,2 = 0. We shall include them alongside the other improvements
of the current truncation in Sec. 2.6. In contrast to the gluon-ghost and higher-order gluon self-interactions,
there is no argument that they should be equal to the quark-gluon interaction even at one loop, see Sec. 2.6 for
details. We emphasise that λ̄csc = 0 because of the dynamical bosonisation, see Sec. 2.3.1. In the following,
we evaluate the couplings in the point-like limit. For more details on the derivation of the running couplings,
we refer to App. C.
Schematic representations of the terms that contribute to the running couplings are shown in Fig. 2.9.
Consequently, the running of the modified mass m̃2 = m̄2− 4Z∆µ

2 as the curvature of the diquark potential
can be obtained for k ≥ kSB by considering

∂tm̃
2
∣∣
Γ̄
=

1

3V4

(
∂

∂∆∗a

∂

∂∆a
∂tΓ̄k[ϕ]

)
gs

= −8Z∆k
2h2L(2)

ff

(µ
k
, 0, ρψ

)
. (2.69)

Here, V4 =
∫
d4x is the four-dimensional volume of Euclidean spacetime. and we have adapted the sub-

script ‘Γ̄’ from the preceding section to indicate that we only consider the first part of the modified Wetterich
equation (2.30). As we have already mentioned before, by following the RG flow towards lower scales, we find
that the curvature of the potential eventually becomes zero. Below the symmetry-breaking scale k ≤ kSB,
the curvature of the diquark potential, given by the modified mass m̃2, becomes negative and a colour su-
perconducting ground state is formed. Then, we replace the flow equation of the curvature with the flow of
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Figure 2.9: Schematic representations of the contributions to the different flow equations of the couplings
with the current approximations. One diagram contributes to the (a) curvature of the potential (modified
mass) m̃2, (b) the diquark coupling λ̄∆, (c) the Yukawa coupling h̄, and (d) the four-quark interaction λ̄csc,
respectively. Note that, although the four-quark interaction λ̄csc has been eliminated with the dynamical
bosonisation, its flow is still generated and contributes to the remaining couplings.

the minimum of the diquark potential |∆0|2 =
∑
a |∆0,a|2 which is given by
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Recall that we use a homogeneous background field for the expansion of the diquark fields in the phase
governed by spontaneous symmetry breaking. We choose this background field ∆̄3 to point into the three-
direction so that ∆a 7→ ∆a+δa3∆̄3. Following the discussion above Eq. (2.58), differentiating with respect to
diquark fields in the three-direction to map onto the minimum of the diquark potential is not straightforward.
Therefore, we only only differentiate with respect to diquark fields in the one- and two-direction by using
the reduced colour index ā = 1, 2. The subscript ‘gs’ indicates that we evaluate on the ground state, i.e., on
vanishing fields for k ≥ kSB. For k ≤ kSB, the ground state is given by evaluating on ∆a = 0 and ∆̄3 = |∆̄0|
while the remaining fields are set to zero. This effectively leads to an expansion of the diquark condensate
in the three-direction: ∆0,a = ∆0δa,3. The so-called threshold function L(2)

ff corresponds to a loop diagram
with two internal fermion lines as depicted in Fig. 2.9a.
The running of the four-diquark coupling λ̄∆ is for k ≥ kSB given by
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For consistency, we also differentiate with respect to the one- and two-direction in the calculation of the
diquark coupling in the phase governed by symmetry breaking. Therefore, for k ≤ kSB the running of the
diquark coupling is λ̄∆ given by
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Here, the threshold function L(2)
ffff corresponds to a loop diagram with four internal fermion lines as depicted

in Fig. 2.9b.
For the running of the Yukawa coupling h̄ for k ≥ kSB, we find
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For k ≤ kSB, we find
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Note that the notation is somewhat sloppy. In practice, we have compared the left- and right-hand side of
the Wetterich equation to identify the coefficients that contribute to the running of the Yukawa coupling and
dropped the remaining terms. Following the mapping of the minimum |∆0|2 and the diquark coupling λ∆
in ā = 1, 2 direction, we also consider the Yukawa coupling associated with this direction in the broken phase.
We further assume that the Yukawa coupling associated with the ā = 1, 2 direction is identical to the one in
the three-direction. The threshold function L(2)

bff is associated with a loop diagram with two internal fermion
lines and one internal gluon line as depicted in Fig. 2.9c.
Recall that the four-quark interaction λcsc has been eliminated with the aid of the dynamical bosonisation
technique so that there are no contributions to the running couplings that depend on λcsc, see Fig. 2.8 for
a selection of such diagrams. However, the running of the four-quark interaction ∂tλcsc contributes to the
remaining couplings that span the ansatz for the effective action (2.25). For k ≥ kSB, it is given by
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and for k ≤ kSB, it is given by
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ψ̄τ2iεāγ5Cψ̄TψTCγ5τ2iεāψ
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Similar to the Yukawa coupling, we have mapped onto the running of the four-quark interaction by com-
paring the left- and right-hand side of the Wetterich equation to identify the coefficients that contribute.
The diquark channel does not directly appear on the right-hand side of the Wetterich equation since only
terms ∼ (ψ̄ . . . ψ)(ψ̄ . . . ψ) appear. Consequently, we have performed a so-called Fierz transformation which
then allows us to map onto the diquark channel. However, after performing the Fierz transformation a mul-
titude of four-quark channels ∼ (ψ̄ . . . ψ̄T )(ψT. . . ψ) appears on the right-hand side of the Wetterich equation.
In the present study, we only map onto the diquark channel and drop the remaining terms. A rigorous
analysis would require to include a Fierz-complete set of four-quark interactions, see, e.g., Refs. [179]. The
Fierz transformations can be found in App. A. Similarly to the mapping of the Yukawa interaction, we use
the four-quark interaction in the ā = 1, 2 direction. The threshold function L(A)

bbff is associated with a loop
diagram with two internal fermions and one internal gluon line as depicted in Fig. 2.9d and consists of three
contributions:
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The definitions of all threshold functions used in the present work can be found in App. B.3. Note that they
entail the regularisation scheme. In the present study, we employ a three-dimensional regularisation scheme
with a polynomial regulator shape function which has been adapted to integrate out fermion fluctuations
around the Fermi surface. We have introduced this regularisation scheme in Sec. 1.3. The threshold functions
may also entail a possible temperature dependence, but in the present work, we work in the zero-temperature
limit. The argument ρψ entails all possible arguments from fermion propagators. The diquark gap is an argu-
ment of the fermion propagator which appears in the regime governed by spontaneous symmetry breaking in
the threshold functions in terms of the quantity h2κ which is closely related to the diquark gap ∆2

gap = k2h2κ.
Although the fermion propagators depend on this quantity, to better distinguish the threshold functions in
the symmetric phase and the regime governed by spontaneous symmetry breaking, we do not include the
diquark gap in ρψ but keep it as a separate argument in the threshold functions. Therefore, the only argu-
ment of the fermion propagator in the present study is the anomalous dimension ηψ: ρψ = [ηψ]. Note also
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that we have set Zψ = 1 so that ηψ = 0 but still keep their dependences in the equations. The argument ρA
collects all possible arguments coming from gluon propagators which in the present study is only the gluon
anomalous dimension ηA: ρA = {ηA}. In defining the threshold functions with “collective” arguments, we
can directly extend them to include, e.g., gluon masses. See Sec. 2.6.1 for the inclusion of gluon masses in
the flow equations.
With the contributions from the dynamical bosonisation, i.e., effectively employing Eqs. (2.52)–(2.54), the
coupled set of flow equations in the symmetric phase k ≥ kSB reads
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In the regime governed by spontaneous symmetry breaking k ≤ kSB, the system is described by
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As already mentioned, there is no flow equation for the four-quark coupling which is a consequence of the
dynamical bosonisation technique [146, 170–175, 178, 257]. However, it enters the flow equations for λ∆, ε,
and h2 as an additional contribution continuously generated in the flow by the elimination of the running of
the four-quark interaction. In the flow equations this is represented by the contribution ∼ g4 entering the
flow of λ∆, ε, and h2. Notably, there is no contribution to the flow of the curvature κ. The contribution ∼ g4

originally originates from a two-gluon exchange box diagram, see Fig. 2.9d. Additional contributions ∼ h4

and ∼ h2g2 might be generated when including diquark fluctuations in Sec. 2.6.
Lastly, we turn to the scale dependence of the diquark anomalous dimension and the gluon anomalous
dimension. Their corresponding contributions are shown in Fig. 2.10. The scale dependence of the diquark
anomalous dimension is given for k ≥ kSB by
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For k ≤ kSB, it is given by
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Here, we have defined the diquark anomalous dimension by differentiating with respect to the zeroth compo-
nent of the external four-momentum. A definition with a derivative with respect to the spatial component
of the external four-momentum is also possible. The inclusion of a chemical potential requires to differen-
tiate between the zeroth and the spatial component so that it is, in principle, necessary to consider both
definitions of the wavefunction renormalisation. In addition to the chemical potential, also the use of a
three-dimensional regularisation scheme generates this splitting as it breaks Lorentz invariance [317]. There-
fore, already for k � µ, we expect a difference in the wavefunction renormalisations of the corresponding
definitions which should be absent for a four-dimensional regularisation scheme. However, this distinction is
beyond the scope of the present work so that we approximate by assuming that both directions are equal
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Figure 2.10: Schematic representation of the contributions to the scale dependence of the (a) diquark anoma-
lous dimension η∆ and (b) the gluon anomalous dimension ηA.

and by taking the derivative with respect to the zeroth component of the external momentum as already
mentioned. In practice, this choice also simplifies the calculation because the regulator in a three-dimensional
setting does not depend on the zeroth component of the external momentum. The threshold function D(2)

ff
corresponds to the loop diagram shown in Fig. 2.10a.
In the present work, the gauge sector only enters via the running of the strong coupling g which is, in the
background-field formalism [304, 305] underlying the present work, given by

∂tg
2 = ηAg

2 . (2.86)

The gluon anomalous dimension consists of two contributions [296–298]: the pure gluonic part ηglue
A and the

quark contribution ηquark
A so that

ηA = −Z−1A ∂tZA = ηglue
A + ηquark

A . (2.87)

For the gluon contribution to the anomalous dimension ηglue
A , we use results from previous fRG studies where

it has been calculated nonperturbatively within the background field formalism, see Ref. [297, 298, 311]. This
approach also underlies the present work. For further details on the strong coupling see App. D. For the
quark contribution to the anomalous dimension ηquark

A for k ≥ kSB, we find
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Here, we project onto the transverse momentum by introducing PαβT = δαβ − PαPβ/P 2. Further, the only
contribution considered in the latter expression is the quark loop shown in Fig. 2.10b as indicated by the
subscript ‘quarkloop’. For vanishing chemical potential µ → 0, we find ηquark

A ' g2/(6π2), which is the
standard one-loop contribution of the quark fields to the running of the strong coupling. In the regime
governed by spontaneous symmetry breaking k ≤ kSB, we find
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Note that the expansion of the diquark fields into the three-direction leads to different contributions if map-
ping on different gluons. However, we do not aim to resolve this issue but simply average over the different
gluons for the quark contribution to the gluon anomalous dimension.
As already mentioned, we drop bosonic fluctuations in the present study. These fluctuations are associated
with loop diagrams with at least one internal diquark line. These contributions are, at least for scales above
the symmetry-breaking scale, parametrically suppressed since the curvature of the potential, entering the
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propagators of the diquark fields in terms of a modified mass, is large and only becomes small close to the
symmetry-breaking scale, see Sec. 2.4.2. Nevertheless, we shall include diquark fluctuations in Sec. 2.6 along-
side further improvements of the present calculation, at least in the symmetric phase.
In the regime governed by spontaneous symmetry breaking (k ≤ kSB) fluctuation effects may become impor-
tant. However, since the diquark fields are not expected to be massless below the symmetry-breaking scale,
fluctuation effects may be suppressed below kSB as well. Still, the situation is more involved in this regime
since diquark fields carry a net colour charge. This requires the consideration of an Anderson-Higgs-type
mechanism associated with the symmetry-breaking pattern SU(3)→ SU(2) in colour space. We expect that
only three of the eight gluons remain massless below the symmetry-breaking scale. Loosely speaking, by
“eating up” Goldstone modes in the diquark spectrum, the remaining five gluons become massive and are,
consequently, similar to the quarks, gapped in the phase governed by spontaneous symmetry breaking [50].
In the present work, we do not intend to resolve this issue but drop diquark fluctuations below the symmetry-
breaking scale. However, we at least aim to estimate the effect of the Anderson-Higgs-type mechanism and
the resulting gluon gapping, see Sec. 2.4.2.

2.4 RG Flow of Dense Strong-Interaction Matter

We turn to the RG flows of dense strong-interaction matter which are given by the set of differential equa-
tions (2.78)–(2.80) in the symmetric phase k ≥ kSB and (2.81)–(2.83) in the regime governed by spontaneous
symmetry breaking k ≤ kSB. The diquark anomalous dimensions enter the set of differential equations
via (2.84) and (2.85) and the gluon anomalous dimension via (2.87). Furthermore, the flow equation of the
strong coupling is given by Eq. (2.86). In practice, we follow the RG flow given by Eqs. (2.78)–(2.80) coming
from large scales. We find that the curvature of the potential ε decreases and eventually becomes zero which
defines the symmetry-breaking scale kSB. This indicates the formation of a colour-superconducting ground
state associated with the formation of a gap in the fermionic excitation spectrum. We refer to this gap as the
diquark gap, which is closely related to the minimum of the potential. Therefore, at the symmetry-breaking
scale, we replace the flow equation of the curvature of the potential ε with that of its renormalised dimen-
sionless minimum κ, which is then dynamically generated in the RG flow. As a result, the RG flow is given
by (2.81)–(2.83) until the long-range limit (k → 0) is reached. Before showing results for the RG flows in
Sec. 2.4.2, we start with a discussion of the initial conditions in Sec. 2.4.1.

2.4.1 Fixing the Initial Conditions

The discussion of the flow equations requires to fix the initial conditions at the UV scale first. This initial
RG scale Λ has to be chosen such that Λ� µ. For the purpose of the present study, we choose Λ = 10GeV
which allows us to cover a reasonable range of chemical potentials. It is important to emphasise that the
only external input parameter in the present study is the initial condition for the strong coupling g which
at Λ = 10GeV is given by g2(Λ) = 4πα(Λ) = 4π · (0.179 ± 0.004). This corresponds to the experimental
value α(mτ ) = 0.330± 0.014 at the tau-mass scale mτ [318]. The experimental error can be used to examine
the corresponding uncertainties in the following discussion. As the only input parameter, the strong coupling
sets the scale for all dimensionful quantities. To this end, we define ΛQCD as the deflection point of the
strong coupling in the vacuum limit which we use in the following to express all dimensionful quantities. We
find ΛQCD ≈ 209MeV resulting in, e.g., Λ/ΛQCD ≈ 47.8.
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Figure 2.11: As an example of the effect of the initial conditions, we show the squared Yukawa coupling h2

(left panel) and the inverse of the four-quark interaction 2ε/h2 (right panel) as a function of the scale k
for µ/ΛQCD = 2. We only show k-values close to the initial RG scale Λ = 10GeV. Note that we have varied
the initial condition for the Yukawa coupling h2Λ = 0.01, 0.1, 1, 10. Similar results are obtained by varying the
initial condition for the renormalised dimensionless mass ε while ensuring λcsc = h2/(2ε)� 1 (or 2ε/h2 � 1,
see right panel). It turns out that the initial condition only has an impact on the flow of the couplings at
scales (very) close to the initial RG scale Λ = 10GeV. After almost “no RG time” has passed, an effect due
to the different initial conditions cannot be seen in the flow any more. This effect is even smaller for the
inverse of the four-quark coupling 2ε/h2, see the reduced range of axis in the right panel.

Although the strong coupling is the only input parameter, we still need to determine the initial conditions
for the remaining couplings at the UV scale Λ. However, these initial conditions arise from the way these
couplings have been introduced into the ansatz (2.25) and the fact that, at the scale k = Λ, the effective
action is expected to be given by the classical QCD action: Γk=Λ = S. As we have already mentioned before,
the diquark sector has to decouple from the fermion sector at the initial RG scale. Accordingly, the diquark
wavefunction renormalisation is expected to vanish Z∆ → 0 at k = Λ corresponding to ε → ∞. In this
sense, the diquark fields are nondynamic, noninteracting, and heavy at Λ and effectively decouple from the
fermion sector. In practice, we choose Z∆ = 10−6 and ε = 106 for the dimensionless renormalised curvature.
Consequently, the dimensionful mass is of the order of the initial RG scale m̃2 = Λ2 at k = Λ. Note that
this corresponds to m̄2 = m̃2 + 4Z∆µ

2 ≈ Λ2 at k = Λ. Recall that Λ � µ. However, the necessary initial
condition is the one for m̃2 anyhow since it represents the curvature of the diquark potential. For the squared
Yukawa coupling, we set h2 = 0.01. This choice ensures that the four-quark coupling associated with the
diquark channel is small at the UV scale. Indeed, since it can be related to the renormalised diquark mass
and the Yukawa interaction by λcsc = h2/(2ε) and we have ε � h2, it is small at k = Λ. By doing so, the
RG flow is initialised very close to the Gaussian fixed point of the four-quark interaction λcsc. Lastly, we
choose λ∆ = 0 at k = Λ. These initial conditions indeed guarantee that we consider QCD-like scenarios by
initialising the system at least in the vicinity of the QCD action (2.4).
However, to assess and illustrate the impact of changes in the initial conditions on the couplings, we have
varied the initial condition for the squared Yukawa coupling h2 in Fig. 2.11. Our findings indicate that the
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specific details of the initial conditions only affect the flow of the couplings very close to the initial RG scale.
Furthermore, it seems as if the RG flow “forgets” about the details of the initial conditions after almost
“no RG time” has passed. The behaviour originates from the appearance of pseudo-fixed points in the RG
flow of the gluon-induced four-quark interaction channels, see Refs. [146, 171, 173–175] for a discussion for
QCD in the vacuum limit. Provided that kSB � Λ, the effect of the initial conditions is indeed remarkably
negligible. Therefore, the couplings and especially the diquark gap exhibit only a weak dependence on the
initial conditions, if any at all. Moreover, it turns out that the important initial condition is to ensure
that λcsc is small at k = Λ which is guaranteed by our choice for the initial conditions.
Another uncertainty, apart from the experimental error of the strong coupling, arises because of the regulator.
In the present study, we use polynomial regulator shape functions. With these, we can conveniently assess the
impact of the regulator by varying the order of the polynomial shape function. In practice, we use N = 4, 6,
and 8. The corresponding shape functions can be found in App. B.2. However, it turns out that uncertainties
from the variation of the order of the polynomial regulator are negligible compared to the ones from the
experimental error of the strong coupling, see Fig. 2.17 in Sec. 2.5 for an illustration of the error from the
variation of the regulator.

2.4.2 RG Flows

Finally, we turn to the discussion of the results from the solution of the flow equations. We show the
flow of the (squared) renormalised Yukawa coupling h2, the renormalised four-diquark coupling λ∆, and
the renormalised strong coupling α = g2/(4π) over a wide range of scales for two different chemical poten-
tials, µ/ΛQCD = 2 and µ/ΛQCD = 10, in Fig. 2.12. We also show the flow of the renormalised dimensionless
curvature ε for k ≥ kSB and the diquark gap ∆gap = hk

√
κ for k ≤ kSB for µ/ΛQCD = 2 in Fig. 2.13 and

for µ/ΛQCD = 10 in Fig. 2.14. Here, we have defined the diquark gap which is the gap in the fermionic excita-
tion spectrum and appears in the quark propagators. For µ/ΛQCD = 2, the symmetry-breaking scale is given
by kSB/ΛQCD ≈ 1.09 and for µ/ΛQCD = 10, the symmetry-breaking scale is given by kSB/ΛQCD ≈ 1.61. Sym-
metry breaking is indicated by a diverging four-quark interaction which translates into a vanishing curvature ε,
see Fig. 2.13 and Fig. 2.14. In the present section, we have fixed the strong coupling with g2(Λ) = 4π · 0.179.
However, we shall include the experimental error of the strong coupling (along with uncertainties from a vari-
ation of the regularisation scheme) in results for the diquark gap and the long-range limit for the couplings
in Sec. 2.5.
Let us begin our discussion with the couplings in the symmetric phase. Note that both, the squared Yukawa
coupling h2 and the diquark coupling λ∆, seem to have large values at the initial RG scale. However, this
apparent behaviour is simply a consequence of the existence of pseudo-fixed points in the RG flow [146,
171, 173–175]. In reality, both couplings start with very small values at Λ but rapidly increase in the RG
flow already in the vicinity of the initial scale Λ, see also our discussion above. This behaviour can, for the
(squared) Yukawa coupling, be seen in Fig. 2.11 (left panel). Towards the long-range limit, the couplings
decrease again, and the curvature of the diquark potential ε eventually “hits” zero. This indicates the onset
of the spontaneous breakdown of the U(1)V symmetry associated with the symmetry-breaking scale kSB.
This behaviour is driven by gluon-exchange diagrams associated with the strong coupling g which increases
towards smaller scales. The existence of a colour-superconducting ground state associated with spontaneous
symmetry breaking of the U(1)V symmetry should, however, not rely on strong gauge fluctuations. Instead,
the existence of a Cooper instability in the system should trigger the aforementioned symmetry breaking,
even for an arbitrarily small strong coupling [85, 165, 193]. The gauge fluctuations enhance the formation of
the colour-superconducting ground state. In this sense, strong gauge fluctuations also increase the symmetry-
breaking scale kSB and the diquark gap ∆gap ∼ kSB.
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Figure 2.12: Flow of the renormalised (squared) Yukawa coupling h2, four-diquark coupling λ∆, and strong
coupling α = g2/(4π) for two different chemical potentials, namely µ/ΛQCD = 2 (left panel) and µ/ΛQCD = 10

(right panel). The grey (vertical) dashed line is associated with the scale k = µ and the black (vertical) dashed
line is associated with the scale k = km, which is the scale where gluon screening masses exceed the scale k,
see main text for details. The couplings are given by solid and dashed lines. The dashed lines represent
results where the gluons remain ungapped and do not acquire a mass according to the Anderson-Higgs-type
mechanism. Solid lines have been obtained by fully decoupling gluons from the matter sector for k < kSB,
effectively “infinitely” gapping all gluons.

We have not included any gluon screening masses in our present calculation. However, we discuss their quali-
tative impact in the following. For this purpose, we introduced the scale km which is an estimate for the scale
at which the gluon screening masses exceed the scale k in Figs. 2.12–2.14 (black vertical dashed lines). For
the gluon screening mass mg in the high-energy symmetric regime k > kSB, we use mg = g(k)µ/π [319, 320].
Note that we do not distinguish between electric and magnetic masses here. The estimate for the scale km

is then obtained by considering mg = g(km)µ/π = km. However, these quantities are scheme dependent. A
more qualitative discussion of the effect of gluon screening masses on our present results will be postponed
to future studies. In Sec. 2.6.1, we shall at least present the RG flow equations in the symmetric high-energy
regime including gluon screening masses.
For µ/ΛQCD = 2, the scale, where the screening masses of the gluons exceed the scale k, is given by
km/ΛQCD ≈ 2.20. Therefore, we find a clear hierarchy of scales: kSB < µ < km. In the range k > km, we do
not expect that the inclusion of gluon screening masses influences the RG flows of the various couplings signif-
icantly because the corresponding effects are suppressed as mg/k < 1. Further, effects from the appearance of
the quark chemical potential in the quark propagators are even more suppressed: µ/k < mg/k < 1. However,
in the regime kSB < k < km, we expect that effects from the inclusion of gluon screening masses become
relevant because mg/k > 1. Therefore, at least one internal gluon line is suppressed. Because gluons drive
the spontaneous symmetry breaking, we expect that gluon screening masses lower the symmetry-breaking
scale and the diquark gap compared to our present study. However, considering that the scale where gluon
screening effects become important for small chemical potential, e.g., km/ΛQCD ≈ 2.20 (for µ/ΛQCD = 2), is
not much greater than the symmetry-breaking scale, e.g., kSB/ΛQCD ≈ 1.09 (for µ/ΛQCD = 2), we expect
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Figure 2.13: Renormalised dimensionless curvature ε for k ≥ kSB and the diquark gap ∆gap = hk
√
κ for

k ≤ kSB for µ/ΛQCD = 2. The grey (vertical) dashed line is associated with the scale k = µ. The black
(vertical) dashed line is associated with the scale k = km, see main text for details. The symmetry-breaking
scale for µ/ΛQCD = 2 is given by kSB/ΛQCD ≈ 1.09. Below the symmetry-breaking scale, the diquark
gap is given by solid and dashed lines, respectively. Dashed lines represent the results where the gluons
remain ungapped whereas solid lines correspond to “infinitely” gapped gluons where they have effectively
been decoupled from the matter sector for k < kSB.

that our results do not suffer too much from neglecting gluon screening effects, at least when considering
small chemical potentials. Indeed, the range in the RG flow where gluon screening effects become important
is comparatively small.
In contrast to that, for larger chemical potentials, we find that screening effects have to be considered over
a larger range in the RG flow. For example, for µ/ΛQCD = 10, the scale where the screening masses of the
gluons exceed the scale k is given by km/ΛQCD ≈ 6.99. Compared to the symmetry-breaking scale which
does not depend too much on the chemical potential, so that kSB/ΛQCD ≈ 1.61, we find that a larger range in
the RG flow may be affected by gluon screening effects. Furthermore, the hierarchy of scales changes so that
we find kSB < km < µ. It follows that the effect of the quark chemical potential in the quark propagators is
now greater than effects from gluon screening masses over a wide range of scales. However, the gluon screen-
ing masses scale roughly linearly with µ. Therefore, by going to larger chemical potentials, also the gluon
screening masses increase. This suggests a stronger suppression of gluonic contributions at large chemical
potential compared to small chemical potential and a stronger impact of gluon screening effects over a larger
range of scales. We therefore expect that our results may become less reliable for larger chemical potentials
where gluon screening effects have a stronger impact. Indeed, this may potentially lead to a decrease in the
symmetry-breaking scale (and consequently the diquark gap) for very large chemical potentials in contrast to
the conventional increase according to the BCS-type scaling at lower densities [40, 82, 84–86]. However, for
even larger chemical potentials (beyond those considered in the present work) it is expected that the diquark
gap increases as a function of the chemical potential again, see Refs. [82, 83, 87, 88, 90]. Motivated by this
discussion, we focus on µ/ΛQCD ≤ 5 in the following. Note, however, that the inclusion of gluon screening
effects shall be discussed in Sec. 2.5 in more detail.
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Figure 2.14: Renormalised dimensionless curvature ε for k ≥ kSB and the diquark gap ∆gap = hk
√
κ for

k ≤ kSB for µ/ΛQCD = 10. The grey (vertical) dashed line is associated with the scale k = µ. The black
(vertical) dashed line is associated with the scale k = km, see main text for details. The symmetry-breaking
scale for µ/ΛQCD = 10 is given by kSB/ΛQCD ≈ 1.61. Below the symmetry-breaking scale, the diquark
gap is given by solid and dashed lines, respectively. Dashed lines represent the results where the gluons
remain ungapped whereas solid lines correspond to “infinitely” gapped gluons where they have effectively
been decoupled from the matter sector for k ≤ kSB.

The situation becomes even more involved below the symmetry-breaking scale. As already mentioned before,
the emergence of a diquark gap for k ≤ kSB requires the inclusion of an Anderson-Higgs-type mechanism [61–
66] associated with the symmetry breaking SU(3) to SU(2) in colour space. Then, only three of the eight
gluons are massless while the others effectively acquire a screening mass which is related to the diquark gap.
In this sense, five of the eight gluons are “gapped” below the symmetry-breaking scale. However, an inclusion
of this effect is beyond the scope of the present work. Instead, we consider two approximations for k ≤ kSB

in the following so that we can assess the effects of gluon gapping and already gain an insight into the effect
of gluon screening in the long-range limit. Firstly, we assume that all gluons remain ungapped for k ≤ kSB

and, therefore, do not acquire a mass in contrast to what is expected according to the Anderson-Higgs-type
mechanism. In the following, we refer to this approximation as “ungapped” gluons. Secondly, we decouple the
gluons from the matter sector which can be viewed as “infinitely” gapping the gluons for k ≤ kSB. Therefore,
we refer to this as “gapped” gluons in the following. In our calculation, we have implemented this by effec-
tively dropping the quark-gluon interaction by setting the strong coupling to zero for k ≤ kSB. The results
for the couplings resulting from these two approximations are given as solid and dashed lines for k ≤ kSB,
respectively. Dashed lines represent the running of these quantities for “ungapped” gluons whereas solid
lines show the results for “gapped” gluons, where the gluons have been fully decoupled from the matter
sector for k ≤ kSB. Notably, when comparing “gapped” gluons with “ungapped” gluons, the diquark gap is
approximately reduced by a factor of two for µ/ΛQCD = 2 and by roughly a factor of 1.5 for µ/ΛQCD = 10.
This result can also be observed in the result for the diquark gap as a function of the chemical potential in
the subsequent section. In addition to that, also the couplings shown in Fig. 2.12 are (significantly) smaller
for “gapped” gluons. This is also present in the results for the couplings in the long-range limit as a function
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Figure 2.15: Diquark coupling λ∆ (green band), squared Yukawa coupling h2 (blue band), renormalised
dimensionless curvature of the diquark potential ε (red band), and inverse of the four-quark interaction λ−1csc =

2ε/h2 (orange band) as a function of the chemical potential. Here, we have evaluated the couplings at a scale
k = Λ′ = 1GeV ≈ 4.8ΛQCD above the symmetry-breaking scale: Λ′ > kSB. The bands represent the
uncertainties from the experimental error of the strong coupling and a variation of the regularisation scheme.

of the chemical potential shown in the subsequent section. This behaviour can already be understood from
considering that gluons boost the formation of the colour-superconducting ground state. By gapping/screen-
ing the gluons, these effects are effectively suppressed which leads to a smaller diquark gap.
To conclude this section, we show the couplings at a scale above the symmetry-breaking scale in Fig. 2.15.
The values of the couplings can be used to, e.g., extract parameters for low-energy models. However, this
task can be difficult because the couplings are in general scheme-dependent quantities. In practice, it might
therefore be easier to fix the model parameters at observables obtained in the long-range limit k → 0 such
as the diquark gap. Nevertheless, the qualitative behaviour of the couplings at a scale above the symmetry-
breaking scale might still be of interest. We shall include these results in the considerations underlying the
construction of a low-energy model in Sec. 3.1. As shown in Fig. 2.15, we find that the diquark coupling λ∆,
the squared Yukawa coupling h2, and the dimensionless curvature of the diquark potential ε show the same
qualitative behaviour and decrease towards higher chemical potentials. Notably, the inverse of the four-quark
interaction is almost constant for the entire range of chemical potentials considered in the present study.

2.5 Diquark Gap and Low-Energy Couplings

At the heart of the present study is the calculation of the diquark gap which corresponds to a gap in the
excitation spectrum of the quarks closely connected to the formation of a colour-superconducting ground state.
We show the results for the symmetry-breaking scale kSB and the diquark gap ∆gap = h̄Z−1ψ |∆0| = h

√
κk in

the limit k → 0 in Fig. 2.16. As in the preceding section, we consider two approximations below the symmetry-
breaking scale: Dashed lines represent “ungapped” gluons and solid lines represent “gapped” gluons. Further
details regarding these approximations can be found in Sec. 2.4.2. Within the range of chemical potentials
considered in the present study, we find that the diquark gap and the symmetry-breaking scale, as a function of

74



2.5 Diquark Gap and Low-Energy Couplings

the chemical potential, in both approximations, are consistent with the standard BCS-type scaling behaviour
(as expected from relativistic models, see Refs. [40, 82, 84–86]), i.e., it increases as a function of the chemical
potential. As discussed in the preceding section, we find that the gap is approximately twice as big in the
case for “ungapped” gluons compared to “gapped” gluons.
It is also possible to find an analytic estimate for the scaling behaviour of the symmetry-breaking scale and
the diquark gap, at least for small chemical potential, based on the following considerations: We can recover
the running of the four-quark interaction λcsc = h2/(2ε) above the symmetry-breaking scale from the running
of the curvature of the potential ε, see Eq. (2.79), and the squared Yukawa coupling h2, see Eq. (2.80), which
yields

∂tλcsc = 2λcsc + 16λ2cscL
(2)
ff +

16

3
g2λcscL(2)

bff + g4L(A)
bbff . (2.90)

Provided that the strong coupling g is sufficiently small, the RG flow is governed by two fixed points for
large scales k which can be translated into fixed points for the Yukawa coupling h and the curvature ε,
see Ref. [273]. At the initial RG scale Λ, the four-quark interaction is small λcsc ≈ 0 which corresponds
to ε � h2. Therefore, the RG flow is dominated by the two-gluon exchange diagram ∼ g4 whereas the
remaining contributions are initially subleading so that the flow equation reduces to

∂tλcsc = 2λcsc + g4L(A)
bbff . (2.91)

In the region where this approximation is feasible, we have L(A)
bbff < 0. In the following, we assume that

we can split the RG flow above the symmetry-breaking scale into two regions separated by some scale k̄:
For k > k̄, the RG flow is dominated by two-gluon exchange ∼ g4 so that the flow equation for the four-quark
interaction is given by (2.91). For k < k̄, however, the four-quark interaction has become strong enough so
that it dominates its own flow. In this region (k < k̄), contributions from the quark-gluon interaction, ∼ g4

and ∼ g2, can be dropped in Eq. (2.90) so that the flow equation for the four-quark interaction is given by

∂tλcsc = 2λcsc + 16λ2cscL
(2)
ff . (2.92)

Note that L(2)
ff < 0. We expect that the aforementioned scale k̄ exists such that the approximations un-

derlying Eqs. (2.91) and (2.92) are reasonable, at least for sufficiently small chemical potential. With these
assumptions, we find an estimate for the symmetry-breaking scale kSB. For this, we start by assuming that
the dependence on the chemical potential of the two-gluon exchange diagram is negligible for k > k̄, so that
Eq. (2.91) can be integrated analytically from k = Λ to k = k̄ which yields

λcsc(k̄) = −
1

2
L(A)

bbff g
4(k̄) +O(g6) . (2.93)

Here, we have dropped terms that are small for Λ � k̄ and terms from higher-order gluon interactions. In
the region, where the RG flow is dominated by four-quark interactions (k < k̄), the flow equation of the four-
quark interaction is given by Eq. (2.92). This flow equation is valid up to the symmetry-breaking scale and its
initial condition at k = k̄ is given by Eq. (2.93). The symmetry-breaking scale is given by the scale k at which
the curvature of the diquark potential ε becomes zero, causing the four-quark interaction λcsc = h2/(2ε) to
diverge: 1/λcsc(kSB) = 0. Moreover, for k < k̄ the RG flow enters a regime in which the loop diagram ∼ λ2csc
appearing in Eq. (2.92) can be estimated by L(2)

ff ∼ −cψ(µ2/k2) for µ > k, where cψ is a dimensionless scheme-
dependent constant. With these assumptions, we can now integrate (2.92) and identify the estimate for the
symmetry-breaking scale: kSB ∼ k̄ exp(−k̄2/(16cψλcsc(k̄)µ

2)). With the relation for λcsc(k̄), see Eq. (2.93),
we obtain an estimate for the scaling behaviour of the symmetry-breaking scale. Taking further into account
that the symmetry-breaking scale sets the scale for low-energy observables, such as the diquark gap, we find

∆gap ∼ kSB ∼ exp

(
− c̄

g4µ2

)
, (2.94)
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Figure 2.16: Diquark gap ∆gap and symmetry-breaking scale kSB (red band) as a function of the chemical
potential in units of the QCD scale ΛQCD = 209MeV. We show the diquark gap for two different approx-
imations: The dashed blue band (“ungapped” gluons) represents the result where we have left the gluons
ungapped in the broken phase k ≤ kSB whereas we have “infinitely” gapped the gluons for the solid blue band
(“gapped” gluons) and thereby have decoupled them from the matter sector for k ≤ kSB. We compare these
results, obtained in the present work, with a previous fRG study from Ref. [126] (orange band) where the
range of chemical potentials shown is associated with densities n/n0 ≈ 6 . . . 12. Here, n0 is the nuclear satura-
tion density. The bands for the gap and the symmetry-breaking scale (apart from the orange band) represent
the uncertainty of the strong coupling at the initial RG scale where we have used g2(Λ) = 4π · (0.179±0.004).
Further, they include a variation of the regularisation scheme in terms of the order of the polynomial regula-
tor. However, the dependence on the regulator scheme is negligible compared to the uncertainties arising from
the strong coupling, see Fig. 2.17. The orange band represents an estimate for the theoretical uncertainties
in the corresponding study, see Ref. [126] and main text for details.

where c̄ = −k̄2/(8cψL(A)
bbff) is a positive constant and the strong coupling is evaluated at k̄. The relation

between the symmetry-breaking scale and the diquark gap is also reflected in our numerical results, see
Fig. 2.16. Furthermore, as also indicated by the numerical results and the estimate (2.94), the diquark gap
seems to saturate with increasing chemical potential.
Comparing our analytic estimate for the diquark gap with other studies, we find that it differs from the
one in, e.g., Refs. [82, 84, 321, 322]. There, it was found that ∆gap ∼ kSB ∼ exp(−c̄′/(g2µ2), where c̄′

is a positive constant. Although the dependence on the chemical potential is identical, the dependence on
the strong coupling is different. The dependence on the strong coupling ∼ g2 can be traced back to the
assumption λcsc ∼ g2 which is associated with a tree-level consideration involving a one-gluon exchange. In
contrast to that, loop contributions to λcsc in the present work lead to a dependence ∼ g4. As a result, the
gap as considered in the present work increases more rapidly coming from small chemical potentials. As we
have already observed, the assumptions underlying the analytic estimate for the diquark gap are only valid
for small chemical potential. Going beyond chemical potentials considered in the present work to very large
chemical potentials, it is expected that the gap increases according to ∆gap ∼ µ exp(−c̄′′/g), where c̄′′ is a
positive constant. However, ∆gap/µ is expected to decrease, see Refs. [50, 82].
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Figure 2.17: Regulator dependence of the infrared values of the (squared) Yukawa coupling h2 and the diquark
coupling λ∆ (left panel) and the diquark gap ∆gap (right panel) for two values of the chemical potential. The
parameter N specifies the order of the polynomial regulator, see App. B.2 for the definition of the fermionic
and bosonic regulator shape functions. We show the regulator dependence for the approximation referred
to as “gapped” gluons and used g2(Λ) = 4π · 0.179 for the value of the strong coupling at the initial RG
scale. We find that the regulator dependence is small compared to uncertainties arising from a variation of
the strong coupling at the initial RG scale.

A more quantitative comparison of our present results for the diquark gap can be done by considering results
from a previous fRG calculation where they have also started from the underlying quark-gluon dynamics and
have, in contrast to the present work, used a Fierz-complete ansatz, see Fig. 2.16 (orange band) [126]. It
should be emphasised that a comparison is difficult because it requires the diquark gap as a function of the
density. The calculation of the diquark gap as a function of the density requires the pressure as a function
of the chemical potential, which is not accessible in the present study. However, we shall come back to
this comparison in Sec. 3.1 where the consideration of a low-energy model allows us to estimate the density.
Nonetheless, a comparison at this point might already provide insight into the underlying dynamics.
For this, we compare our results for the diquark gap from a computation with “gapped” gluons with the
results from the previous fRG study [126]. We consider the results for “gapped” gluons because gluonic
contributions are at least partially suppressed below the symmetry-breaking scale due to the Anderson-
Higgs-type mechanism resulting in a gap for the gluons. Only considering the diquark channel, as done
in the present work, seems to have less of an impact at large chemical potential in contrast to employing
a Fierz-complete ansatz. This result has been expected since, in the large chemical potential regime, the
diquark channel has been found to be the most dominant [179]. Consequently, for chemical potentials with
diquark channel dominance, the results are remarkably consistent. However, for small chemical potential,
the present results exceed the results from the aforementioned previous fRG calculation. For small chemical
potential, the scalar-pseudoscalar channel becomes dominant, and the dominance pattern becomes even more
involved in the transition region [167–169, 179]. Therefore, our results become less reliable towards the small
chemical potential regime, and Fierz completeness becomes more and more important. In practice, we find
that our present results for the diquark gap exceed those from Ref. [126] for µ/ΛQCD . 2.1. However,

77



2 From Quarks and Gluons to Colour Superconductivity

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

5

10

15

20

25

30

µ [ΛQCD]

h2 (“ungapped” gluons)
λ∆ (“ungapped” gluons)
h2 (“gapped” gluons)
λ∆ (“gapped” gluons)

Figure 2.18: Squared Yukawa coupling h2 and diquark coupling λ∆ as a function of the chemical potential µ
in units of the QCD scale ΛQCD = 209MeV. We show results for “gapped” gluons (dashed lines) and for
“ungapped” gluons (solid lines). The bands represent the error resulting from the uncertainties in the strong
coupling and a variation of the regularisation scheme in terms of the order of the polynomial regulator.
However, the dependence on the regulator scheme is much smaller compared to the uncertainties arising from
the strong coupling, see Fig. 2.17.

towards larger chemical potentials, the range of chemical potentials accessible in the present work is only
restricted by µ� Λ. In contrast to that, in Ref. [126], the transition between high-energy degrees of freedom
and the effective low-energy regime in terms of a Hubbard–Stratonovich transformation has been performed
at a fixed scale Λ0. This scale introduces a new artificial uncertainty, see Fig. 2.16 (orange band), and
restricts the range of chemical potentials that is accessible within this framework to µ . Λ0. Notably, this
artificial dependence on the scale Λ0 has been removed in the present work by implementing the dynamical
bosonisation technique in which the aforementioned transition from high-energy degrees of freedom to the
effective low-energy regime is performed continuously. This is a powerful extension of the fRG results from
Ref. [126] and already gives meaningful results at least in the chemical potential range that is dominated by
the diquark channel. An extension to cover a larger range towards the small chemical potential regime by
including at least the scalar-pseudoscalar channel is also expected to be possible, but it is beyond the scope
of the present work. We close this discussion of the diquark gap by remarking that, towards smaller chemical
potentials associated with densities n/n0 . 5, the results from Ref. [126] are consistent with results from
early low-energy models, see, e.g., Ref. [85]. There, it has been found that for n/n0 ≈ 5 the diquark gap is
given by ∆gap ≈ 70 . . . 160MeV.
Finally, we would like to comment on the low-energy couplings (k → 0). We show results for the squared
Yukawa coupling h2 and the diquark coupling λ∆ in the long-range limit k → 0 in Fig. 2.18. These couplings
are often used in the construction of low-energy models although they are scheme-dependent quantities. As
before, we show the results for two approximations: Dashed lines represent “ungapped” gluons and solid
lines represent “gapped” gluons. See Sec. 2.4.2 for more details on the approximation. We find, as also
observed for the diquark gap, that the couplings are bigger in the case of “ungapped” gluons compared to
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the approximation with “gapped” gluons. However, their qualitative behaviour as a function of the chemical
potential agrees and they decrease by increasing the chemical potential. Note that increasing the chemical
potential leads to a decrease in the four-diquark interaction λ∆ and it also leads to an increase in the minimum
of the potential towards larger values. This effect of an increasing minimum is almost cancelled by the fact
that the Yukawa coupling decreases with increasing chemical potential so that the diquark gap ∆gap is
almost constant across the range of chemical potentials considered in the present work and saturates towards
larger chemical potentials. In addition to that, the decreasing couplings indicate that the interactions between
quarks and diquarks and among diquarks themselves become weaker when the chemical potential is increased.
Therefore, the system is expected to turn into weakly coupled colour-superconducting matter at (very) high
densities (associated with large chemical potentials).

2.6 The Influence of Diquark Fluctuations and the Emergence of
the Gluon-Diquark Interaction

In the previous sections, we have used some approximations and assumptions in the calculation of the gap and
the symmetry-breaking scale. In the following, we improve some of these approximations and test whether
the corresponding assumptions have been justified. Although we do not overcome all the assumptions, we
expect that, with the present section, we can demonstrate that the foundations laid in the present work allow
us to systematically improve nonperturbative studies of dense strong-interaction matter. Additionally, we
provide further insight into the dynamics of dense strong-interaction matter by giving updates for the RG
flow of dense matter and by comparing the symmetry-breaking scale and the diquark gap.
Since the diquark fields carry a net colour charge and consequently transform under SU(3) colour trans-
formations similar to the quarks, they interact with the gluons. This requires to introduce gluon-diquark
interactions and to take into account the flow of the corresponding couplings, which we consequently consider
in the following. So far, we have dropped diquark fluctuations since they are expected to be suppressed at
least in the symmetric phase where we include them anyway in the following. Below the symmetry-breaking
scale, their inclusion would require to consider an Anderson-Higgs-type mechanism [61–66] which effectively
suppresses gluonic contributions. However, this is beyond the scope of the present work. Therefore, in the
broken phase, we apply the approximations from the previous section and decouple the matter sector from the
gauge sector by effectively infinitely gapping the gluons. In addition to these improvements, we also include
the quark anomalous dimension, which modifies the quark propagators, and we investigate the influence of
the gauge parameter ξ on the results. In particular, we compare Landau and Feynman gauge.
These extensions are already taken into account in the derivation of the dynamical bosonisation in Sec. 2.3.1.
In the following section, we present updates of our RG formalism. In particular, Sec. 2.6.1 provides updates
for the flow equations presented Sec. 2.3.2 and Sec. 2.6.2 for the RG flows shown in Sec. 2.4.2. In Sec. 2.6.3,
new results for the diquark gap are presented and compared with the results from Sec. 2.5.

2.6.1 Flow Equations

In the following, we provide updates for the RG flow equations presented in Sec. 2.3.2 by including diquark
fluctuations and the running of the gluon-diquark couplings. In contrast to the aforementioned section, we
also include the running of the wavefunction renormalisation of the fermions and derive the flow equations
without specifying the gauge parameter ξ. In addition to that, we also include gluon (screening) masses in
the flow equations. As in Sec. 2.3.2, the flow equations shown here represent the first part of the modified
Wetterich equation (2.30), which is simply the conventionally used Wetterich equation with a shifted diquark
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anomalous dimension, η∆ → η∆ + 2β̇, which appears in diquark propagators. In the following, we evaluate
the couplings in the point-like limit. More details on the derivation of the running couplings can be found in
App. C. Recall that with the help of the dynamical bosonisation technique, the four-quark interaction λcsc

vanishes on all scales. However, the corresponding flow equation ∂tλcsc contributes to the flow of the remaining
couplings. Note that we only consider the flow equations in the symmetric regime in the following. In the
phase governed by spontaneous symmetry breaking, we use the approximation with infinitely gapped gluons,
see Sec. 2.4.2 for details on this approximation. In addition, we also drop bosonic fluctuations in the regime
below the symmetry-breaking scale. The inclusion of these two effects would require to consider the Anderson-
Higgs-type mechanism, which is beyond the scope of the present work, see Sec. 2.4.2 for details on this aspect.
Therefore, we can reuse the flow equations in the phase below the symmetry-breaking scale from our studies
above. Unless stated otherwise, we use the same projection rules as already used in Sec. 2.3.2.
We start with the running of the curvature of the diquark potential in terms of the modified mass m̃2 which
consists of contributions from four different loop diagrams that are depicted in Fig. 2.19. In the symmetric
phase, it is therefore given by

Z−1∆ k−2∂tm̃
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. (2.95)

Here, we have used the subscript ‘Γ̄’ from Sec. 2.3.1 to indicate that we only consider the first part of the
modified Wetterich equation (2.30). In Fig. 2.19, the threshold function L(2)

ff corresponds to a loop diagram
with two internal fermion lines (a), the threshold functions L(1,0)

2×b and L(0,1)
2×b correspond to loop diagrams

with two internal bosonic lines (b), and the threshold function L(0,0)
1×b corresponds to loop diagrams with one

internal bosonic line (c and d).
Whether the internal bosonic lines represent gluon or diquark fields is determined by the argument of the
corresponding threshold function. Here and in the following, an argument ρD,M,L

A indicates that the cor-
responding loop diagram has an internal gluon line and ρ±∆ indicates an internal diquark line. There is no
distinction between different internal fermion lines, which are therefore always indicated by the argument ρψ
appearing in the corresponding threshold functions. Note that ρψ, ρD,M,L

A , and ρ±∆ are “collective” argu-
ments that entail all possible dependences of the respective propagator corresponding to internal lines in
the loop diagrams. The diquark gap is also an argument of the fermion propagator. However, in order to
better distinguish the threshold functions in the symmetric phase and in the regime governed by spontaneous
symmetry breaking, we do not include the diquark gap in ρψ but keep it as a separate argument of the
threshold functions. Therefore, the only argument of the fermion propagator in the present study, concern-
ing only the symmetric phase, is the anomalous dimension ηψ: ρψ = [ηψ]. The argument ρD,M,L

A collects
all possible arguments coming from gluon propagators, which, in the present study, are the gluon anoma-
lous dimension ηA and the gluon screening masses: ρDA =

{
εD, ηA

}
, ρMA =

{
εM , ηA

}
, and ρLA =

{
εL, ηA

}
.

Here, εM = m̄2
M/(ZAk

2) corresponds to the so-called Meissner mass m̄2
M , εD = m̄2

D/(ZAk
2) corresponds

to the so-called Debye mass m̄2
D, and εL = ξm̄2

L/(ZAk
2) is related to the so-called longitudinal mass m̄2

L.
Lastly, diquark propagators depend on the fermion number |F | = 2 (which corresponds to the baryon num-
ber |B| = 2/3), the anomalous dimension η∆, and the curvature of the diquark potential in terms of the
dimensionless quantity ε so that ρ±∆ =

{
± 2, ε, η∆

}
.
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Figure 2.19: Schematic representation of contributions in terms of loop diagrams to the flow equation of the
curvature of the diquark potential, i.e., the modified mass m̃2, originating from (a) the Yukawa interaction,
(b) the one-gluon two-diquark interaction, (c) the four-diquark coupling, and (d) the two-gluon two-diquark
interaction. Note that the diagrams (a) and (b) also contribute to the anomalous dimension of the diquark
fields. Without including diquark fluctuations and the gluon-diquark interactions, only diagram (a) con-
tributes to the flow equation of the curvature of the diquark potential, at least if terms coming from the
dynamical bosonisation technique are disregarded, see Sec. 2.3.2.

The threshold functions can, in principle, also be temperature dependent, but in the present study, we work
exclusively in the zero-temperature limit. In addition, they also depend on the regularisation scheme. As
before, we employ a three-dimensional regularisation scheme with a polynomial regulator shape function such
that fluctuations around the Fermi surface of the fermion propagators are integrated out successively. For
further details and the definitions of the threshold functions, see App. B.3.
The running of the four-diquark coupling λ̄∆ consists of contributions coming from six different loop diagrams
that are shown in Fig. 2.20. In the symmetric phase, it is therefore given by
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In Fig. 2.20, the threshold function L(0,0)
2×b corresponds to loop diagrams with two internal bosonic lines (a

and b), the threshold functions L(1,0)
3×b and L(0,1)

3×b correspond to loop diagrams with three internal bosonic lines
(c and d), the threshold function L(2)

ffff corresponds to loop diagrams with four internal fermionic lines (e),
and the threshold functions L(2,0)

4×b , L(1,1)
4×b , and L(0,2)

4×b correspond to loop diagrams with four internal bosonic
lines (f).
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Figure 2.20: Schematic representation of contributions in terms of loop diagrams to the flow equation of the
four-diquark coupling λ̄∆ originating from (a) the four-diquark coupling itself, (b, c, and f) gluon-diquark
interactions, (e) the Yukawa interaction, and (d) a combination of the gluon-diquark interaction and the
four-diquark interaction. Without including diquark fluctuations and the gluon-diquark interactions, only
diagram (e) contributes to the flow equation of the four-diquark coupling, at least if terms coming from the
dynamical bosonisation technique are disregarded, see Sec. 2.3.2.

The running of the Yukawa coupling h̄ consists of contributions from two different loop diagrams that are
shown in Figs. 2.21a and 2.21b.. In the symmetric phase, this yields
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The threshold function L(2)
bff corresponds to loop diagrams with two internal fermionic and one internal bosonic

line, see Fig. 2.21a, and the threshold function L(1)
bbf corresponds to loop diagrams with two internal bosonic

lines and one internal fermionic line, see Fig. 2.21b.
The running of the four-quark interaction λ̄csc consists of contributions from two different loop diagrams that
are shown in Figs. 2.21c and 2.21d. In the symmetric phase, it is given by
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Figure 2.21: Schematic representation of contributions in terms of loop diagrams to the flow equation of the
Yukawa coupling h̄ (a and b) and the four-quark interaction λ̄csc (c and d). Note that a box diagram with
two internal diquark lines is present in the calculation. However, it drops out at least in the symmetric phase.
Similarly, a diagram contributing to the Yukawa coupling similar to (a) but with an internal diquark line
instead of a gluon line does not exist, at least in the symmetric phase. Without diquark fluctuations and the
gluon-diquark interactions, only diagram (a) contributes to the flow equation of the Yukawa interaction and
diagram (c) to the flow equation of the four-quark interaction, at least if terms coming from the dynamical
bosonisation technique are disregarded, see Sec. 2.3.2.

The threshold functions L(1)
bbff, L(2)

bbff, and L(3)
bbff correspond to loop diagrams with two internal fermionic and

two internal bosonic lines. Note that a loop diagram contributing a term ∼ h4 to the flow equation, i.e., a
loop diagram with two internal diquark lines, is not present although it might be expected. However, such a
diagram drops out in the calculation of the running of the four-quark interaction, at least in the symmetric
phase.
Since we include gluon-diquark interactions, we have to consider the corresponding running couplings, as
they are different from the coupling associated with the quark-gluon interaction. We shall discuss this in
more detail in Sec. 2.6.2. The running of the coupling ḡ∆,1 can be calculated from the Wetterich equation
by considering
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Here, V4 =
∫
d4x is the four-dimensional volume of Euclidean spacetime and the subscript ‘gs’ indicates that

we evaluate on the ground state. In the symmetric phase, this projection yields
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It follows that the one-gluon two-diquark coupling ḡ∆,1 consists of contributions from four different loop
diagrams. These loop diagrams are shown in Figs. 2.22a–2.22d. The threshold functions L(1,0)

3×b and L(0,1)
3×b

correspond to loop diagrams with three internal bosonic lines (a), the threshold function L(2)
fff corresponds to

loop diagrams with three internal fermionic lines (b), and the threshold functions L(0,0)
2×b , L(1,0)

2×b , and L(0,1)
2×b

correspond to loop diagrams with two internal bosonic lines (c and d). Interestingly, at large scales where
diquark fluctuations are parametrically suppressed, the running of ḡ∆,1 is dominated by contributions from
the strong coupling ∼ g5 which follows from an analysis of the corresponding interaction in terms of the
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Figure 2.22: Schematic representation of contributions in terms of loop diagrams to the flow equation of the
one-gluon two-diquark interaction ḡ∆,1 (a–d) and the two-gluon two-diquark interaction ḡ∆,2 (e–l).

underlying fundamental quark-gluon interaction (i.e., h2g ∼ g5 because h ∼ g2). Since the strong coupling g
is small at large scales, the running of ḡ∆,1 is expected to also be suppressed.
The situation for the two-gluon two-diquark interaction is more involved. Considering the corresponding
term in the ansatz for the effective action we observe that
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As it turns out, the two-gluon two-diquark interaction consists of two terms. In order to map everything that
is generated on the right-hand side of the Wetterich equation, we consider these two contributions separately
by introducing ḡ2∆,2,a and ḡ2∆,2,b. The running of these two contributions can be calculated from the Wetterich
equation by considering
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However, the inclusion of both contributions separately is beyond the scope of the present work and we do
not aim to resolve this difference here since we do not expect it to have a significant impact. Nevertheless,
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it should be noted that ḡ2∆,2,a and ḡ2∆,2,b may be related via gauge invariance and the corresponding Ward-
Takahashi identities. Therefore, we calculate the running of ḡ2∆,2 by averaging over the two contributions:
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The running of the two-gluon two-diquark interaction in the symmetric phase is then given by

Z−1A Z−1∆ ∂tḡ
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It follows that the running of the two-gluon two-diquark interaction consists of contributions from eight
different loop diagrams that are shown in Figs. 2.22e–2.22l. The threshold function L(0,0)

2×b corresponds to loop
diagrams with two internal bosonic lines (e and f), the threshold functions L(0,0)

3×b , L(1,0)
3×b , and L(0,1)

3×b correspond
to loop diagrams with three internal bosonic lines (g, h and i), the threshold functions L(1,0)

4×b and L(0,1)
4×b

correspond to a loop diagram with three internal bosonic lines (j), and the threshold functions L(1)
ffff , L(2)

ffff ,
and L(3)

ffff correspond to loop diagrams with four internal fermionic lines (k and l). Interestingly, at large scales
where diquark fluctuations are parametrically suppressed, the running of ḡ∆,2 is dominated by contributions
from the strong coupling ∼ g6 which follows from an analysis of the corresponding interaction in terms of the
underlying fundamental quark-gluon interaction (i.e., h2g2 ∼ g6 because h ∼ g2). Since the strong coupling g
is small at large scales, the running of ḡ∆,2 is also expected to be suppressed.
Finally, we turn to the anomalous dimensions of the gluon, quark, and diquark fields. The diquark anomalous
dimension η∆ is given by contributions from the loop diagrams depicted in Figs. 2.19a and 2.19b so that
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The threshold function D(2)
ff corresponds to a loop diagram with two internal fermionic lines and the threshold

functions D(1,0)
2×b and D(0,1)

2×b correspond to a loop diagram with two internal bosonic lines. In both cases, the
threshold functions include a derivative with respect to the external momentum. The projection rule for η∆
is identical to that in Sec. 2.3.2, see Eq. (2.84). Recall that we have defined the anomalous dimensions by
differentiating with respect to the zeroth component of the external four-momentum.
In the first part of this chapter, we have set the anomalous dimension of the quarks to zero by setting Zψ = 1

for all scales. In the following, we consider the quark anomalous dimension ηψ which is calculated from

ηψ = −Z−1ψ ∂tZψ = Z−1ψ
1

4V4

(
∂

∂P0
TrD

[
γ0 ·

→
δ

δψ̄(P )
∂tΓk

←
δ

δψ(P )

])
gs,P=0

. (2.107)

Note that we have defined the anomalous dimensions by differentiating with respect to the zeroth component
of the external four-momentum. The subscript ‘P = 0’ indicates that we evaluate on vanishing external
momenta after differentiation. The inclusion of a finite chemical potential (and the fact that three-dimensional
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Figure 2.23: Schematic representation of contributions in terms of loop diagrams to the anomalous dimension
of the quark fields (a and b) and the contributions to the anomalous dimension of the gluon fields (c and d).

regulator schemes break Lorentz invariance [317]) leads to a difference in the anomalous dimension when
differentiating with respect to the zeroth or the spatial component so that it is, in principle, necessary to
consider both contributions separately. However, we do not attempt to resolve this difference here and
simply identify both anomalous dimensions with Eq. (2.107). For large scales k, where µ/k ≪ 1, this may
be justified, since both anomalous dimensions are identical at µ = 0, at least in the case of a four-dimensional
regularisation scheme. The contributions from loop diagrams to the quark anomalous dimension are shown
in Figs. 2.23a and 2.23b. The corresponding flow equation reads

ηψ = −4

3
g2
(
D(3)

bf

(µ
k
, 0, ρψ, ρ

D
A

)
− ξD(3)

bf

(µ
k
, 0, ρψ, ρ

L
A

)
− 1

2
D(1)

bf

(µ
k
, 0, ρψ, ρ

D
A

)
+
ξ

2
D(1)

bf

(µ
k
, 0, ρψ, ρ

L
A

)
−D(1)

bf

(µ
k
, 0, ρψ, ρ

M
A

))
+ h2D(1)

bf

(µ
k
, 0, ρψ, ρ

+
∆

)
. (2.108)

Here, the threshold functions D(1)
bf and D(3)

bf correspond to loop diagrams with one internal fermionic and one
internal bosonic line, see Figs. 2.23a and 2.23b. Note that they include a differentiation with respect to the
external momentum.
The gluon self-interactions only enter our present study only via the running of the strong coupling g which
is in the background-field formalism [304, 305] underlying the present work given by

∂tg
2 = ηAg

2 . (2.109)

The gluon anomalous dimension consists of three contributions, namely the quark contribution ηquark
A , the

diquark contribution ηdiquark
A , and the purely gluonic contribution ηglue

A so that

ηA = −Z−1A ∂tZA = ηquark
A + ηdiquark

A + ηglue
A . (2.110)

For the gluon contribution ηglue
A to the anomalous dimension, we use results from previous fRG studies where

it has been calculated nonperturbatively within the background-field formalism, see Ref. [297, 298, 311]. This
approach also underlies the present work. The loop diagram contributing to ηquark

A is shown in Fig. 2.23c and
the loop diagram contributing to ηdiquark

A is shown in Fig. 2.23d. Combining these two contributions yields

ηquark
A + ηdiquark

A =
8

3
g2D(1)

ff

(µ
k
, 0, ρψ

)
+ 4
(µ
k

)2
g2∆,1D

(2)
2×b

(µ
k
, ρ+∆, ρ

+
∆

)
. (2.111)

The threshold function D(1)
ff corresponds to the loop diagram with two internal fermion lines and the threshold

function D(2)
2×b corresponds to the loop diagram with two internal bosonic lines. Note that both functions

include a derivative with respect to the external momentum.
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With the contributions from the dynamical bosonisation, i.e., effectively employing Eqs. (2.52)–(2.54), as
derived in Sec. 2.3.1, the coupled set of flow equations in the symmetric phase k ≥ kSB reads

∂th
2 = 2hZ−1ψ Z

−1/2
∆ ∂th̄

∣∣
Γ̄
+ 2(1 + 2ε)k2Z−2ψ ∂tλ̄csc + h2η∆ + 2h2ηψ , (2.112)

∂tλ∆ = Z−2∆ ∂tλ̄∆
∣∣
Γ̄
+

4λ∆(1 + ε)

h2
k2Z−2ψ ∂tλ̄csc + 2η∆λ∆ , (2.113)

∂tε = k−2Z−1∆ ∂tm̃
2
∣∣
Γ̄
+

2ε(1 + ε)

h2
k2Z−2ψ ∂tλ̄csc + (η∆ − 2)ε . (2.114)

For convenience, we have not explicitly inserted the running of the couplings coming from the first part
of the modified Wetterich equation (2.30), as indicated by the subscript Γ̄. However, they are given by
Eqs. (2.95)–(2.98). Taking the contributions from the dynamical bosonisation into account, see Eqs. (2.55)
and (2.56), the running of the gluon-diquark couplings for k ≥ kSB are given by

∂tg
2
∆,2 = Z−1A Z−1∆ ∂tḡ

2
∆,2

∣∣
Γ̄
+

2g2∆,2(1 + ε)

h2
k2Z−2ψ ∂tλ̄csc +

(
ηA + η∆

)
g2∆,2 , (2.115)

and

∂tg∆,1 = Z
−1/2
A Z−1∆ ∂tḡ∆,1

∣∣
Γ̄
+

2g∆,1(1 + ε)

h2
k2Z−2ψ ∂tλ̄csc +

1

2

(
ηA + 2η∆

)
g∆,1 . (2.116)

The running of the gluon-diquark couplings stemming from the first part of the modified Wetterich equa-
tion (2.30), as indicated by the subscript Γ̄, are given by Eqs. (2.100) and (2.105). The anomalous dimensions
are for k ≥ kSB given by Eqs. (2.106), (2.108) and (2.110), respectively.
Below the symmetry-breaking scale k ≤ kSB, the consideration of diquark fluctuations and the quark-gluon
dynamics is more involved since diquark fields carry a net colour charge. As already discussed above, this
requires the consideration of an Anderson-Higgs-type mechanism associated with the symmetry-breaking
pattern SU(3) → SU(2) in colour space. According to this, we expect that only three of eight gluons re-
main massless below the symmetry-breaking scale. The remaining five gluons become massive and are,
consequently, similar to the quarks, gapped in the phase governed by spontaneous symmetry breaking. Con-
sidering this aspect is beyond the scope of the present work. Therefore, we drop bosonic fluctuations and
decouple the matter sector from the gauge sector by effectively “infinitely gapping” the gluons as already
done in the previous section. Then, we can reuse the flow equations from Sec. 2.3.2, so that

∂th
2 = h2η∆ + 2h2ηψ , (2.117)

∂tκ =
4h2

λ∆
L(2)

ff

(µ
k
, h2κ, ρψ

)
− κη∆ − 2κ , (2.118)

∂tλ∆ = 4h4L(2)
ffff

(µ
k
, h2κ, ρψ

)
+ 2λ∆η∆ . (2.119)

Note that by dropping diquark fluctuations below kSB, the four-quark interaction is only regenerated from
the fundamental quark-gluon dynamics. Since we decouple the matter sector from the gauge sector below
the symmetry-breaking scale, the running of the four-quark coupling effectively vanishes. Therefore, the
terms in the flow equation that originate from the dynamical bosonisation also drop out of the calculation.
Additionally, the quark anomalous dimension also vanishes:

ηψ = 0 . (2.120)

The diquark anomalous dimension for k ≤ kSB is given by

η∆ = 8h2D(2)
ff

(µ
k
, h2κ, ρψ

)
. (2.121)
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2.6.2 RG Flows

We turn to the RG flows of the couplings that span our ansatz of the effective action which are given by
Eqs. (2.112)–(2.116) in the symmetric phase k ≥ kSB and Eqs. (2.117)–(2.119) in the phase governed by
spontaneous symmetry breaking k ≤ kSB. The anomalous dimensions are given by Eqs. (2.106), (2.108)
and (2.110) and Eqs. (2.120) and (2.121), respectively. The running of the strong coupling is given by
Eq. (2.109). The present section should be viewed as an update of the RG flows presented in Sec. 2.4, where
we now include the gluon-diquark interactions and diquark fluctuations at least in the symmetric phase.
Furthermore, we include the anomalous dimension of the quarks and use Landau gauge ξ = 0. The latter is
preferred to minimise truncation errors since Landau gauge represents a fixed point in the RG flow and is
therefore preferred over Feynman gauge. However, we shall compare the results for the symmetry-breaking
scale and the diquark gap for Landau and Feynman gauge in Sec. 2.6.3. Moreover, we shall also discuss the
effects of the diquark fluctuations on the symmetry-breaking scale and the diquark gap in the aforementioned
section. Note that we still set the gluon masses to zero although they are included in the flow equations in
Sec. 2.6.1 and postpone their inclusion to future studies. For a discussion of the effects of gluon masses, we
refer to the analysis in Sec. 2.4.2 which can be directly transferred to the present section.
We follow the RG flow given by Eqs. (2.112)–(2.116) coming from large scales until the curvature of the
diquark potential ε becomes zero, indicating the formation of a colour-superconducting ground state. Below
the symmetry-breaking scale kSB, we then replace the flow of the curvature of the potential with the minimum
of the potential κ which is then closely related to the so-called diquark gap ∆gap. The emergence of a diquark
gap for k ≤ kSB requires the inclusion of an Anderson-Higgs-type mechanism associated with the symmetry
breaking SU(3) to SU(2) in colour space. Then, only three of the eight gluons are massless while the others
effectively acquire a screening mass so that five of the eight gluons are effectively “gapped”. However, the in-
clusion of “gluon gapping” is beyond the scope of the present work. Therefore, we decouple the matter sector
from the gauge sector by effectively “infinitely” gapping the gluons. For a detailed discussion of this aspect
and the effect of including the gauge sector by leaving all gluons ungapped below the symmetry-breaking
scale, we refer to Sec. 2.5. The following results correspond to what we refer to as “gapped” gluons in the
aforementioned section. In doing so, no gluon dynamics appears in the RG flow equations that determine the
RG flows in the phase governed by spontaneous symmetry breaking. We also add that the dynamics below
the symmetry-breaking scale becomes even more involved when also trying to consider diquark fluctuations,
as the diquarks themselves acquire a gap. Therefore, we also discard diquark fluctuations in the phase gov-
erned by spontaneous symmetry breaking. This is indeed a reasonable approximation since, in contrast to the
phase associated with chiral symmetry breaking, there are no Goldstone modes in this case and fluctuation
effects are expected to be suppressed.
Before turning to the results for the RG flows, we have to discuss the initial conditions. We employ the same
initial conditions as already used in Sec. 2.4 and also fix the strong coupling at g2(Λ) = 4π ·0.179. The initial
RG scale is given by Λ = 10GeV. We refer to the preceding section for details and a discussion of the initial
conditions. By including gluon-diquark interactions, we also have to specify the corresponding initial con-
ditions. Recall that the quark-gluon interaction and the gluon-diquark interactions originate from requiring
that the action is invariant under SU(3) colour transformations. Furthermore, we find that antidiquarks ∆a

transform like quarks and diquarks ∆∗a transform like antiquarks under SU(3) colour transformations so that
coupling these fields to the gluons comes with the same coupling constant, i.e., the strong coupling, at least
at the initial RG scale. Therefore, we might naively argue that the initial conditions for the gluon-diquark
couplings have to be initialised with the same value as the quark-gluon coupling. In addition to the cou-
pling constants, interaction terms in the ansatz for the effective action come with a vertex renormalisation
which we have tacitly absorbed into a redefinition of the couplings. Since the vertex renormalisations are
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Figure 2.24: Flow of the (squared) renormalised Yukawa coupling h2, the renormalised four-diquark cou-
pling λ∆, and the renormalised strong coupling α = g2/(4π) for µ/ΛQCD = 2 (left panel) and for µ/ΛQCD = 10

(right panel). The symmetry-breaking scales kSB are given by vertical dashed lines. For µ/ΛQCD = 2, it is
given by kSB/ΛQCD ≈ 0.8, and for µ/ΛQCD = 10, it is given by kSB/ΛQCD ≈ 1.25. The strong coupling is only
shown in the symmetric phase since we decoupled the matter sector from the gauge sector in the phase below
the symmetry scale. This corresponds to the approximation that we refer to as “gapped” gluons, see main
text and Sec. 2.5 for details. We have used Landau gauge and fixed the strong coupling at g2(Λ) = 4π ·0.179.

different, also the couplings g∆,1 and g2∆,2 are not equivalent to the strong coupling g. Additionally, from
an analysis of the corresponding loop diagrams, we find that (excluding contributions from the dynamical
bosonisation) ∂tg∆,1 ∼ g5 and ∂tg2∆,2 ∼ g6 at least for large scales where diquark fluctuations are suppressed.
For scales in the vicinity of the initial RG scale Λ, the running of the gluon-diquark couplings is dominated
by contributions originating from the use of the dynamical bosonisation technique. Since diquark fields only
become dynamic degrees of freedom along the RG flow, we expect that the interactions with gluons are
parametrically suppressed at the initial RG scale and are only generated in the RG flow. Therefore, we ini-
tialise the couplings associated with gluon-diquark interactions at zero. Note that this situation is different
from the ghost-gluon interaction, three-gluon interaction, and four-gluon interaction where the correspond-
ing couplings only deviate from the strong coupling for smaller scales where nonperturbative effects start to
play a role [175, 176], i.e., they are identical on the one-loop level which can be shown by employing the
corresponding Ward-Takahashi identities. However, we find that this is not the case for the gluon-diquark
interactions.
To update the results for the RG flows presented in Sec. 2.4, we start with the flow of the (squared) renor-
malised Yukawa coupling h2, the renormalised four-diquark coupling λ∆, and the renormalised strong cou-
pling α = g2/(4π) which are all shown in Fig. 2.24. We show the couplings over a wide range of scales for two
different chemical potentials, µ/ΛQCD = 2 and µ/ΛQCD = 10. We also show the renormalised dimensionless
curvature ε for k ≥ kSB and the diquark gap ∆gap = hk

√
κ for k ≤ kSB in Fig. 2.25. Compared to the RG

flows in Sec. 2.4, we find a shift of the couplings and the diquark gap towards lower values when considering
the long-range limit k → 0. However, the qualitative behaviour of the couplings as a function of the scale k
is identical to the one observed in Sec. 2.4: The (squared) Yukawa coupling h2 and the diquark coupling λ∆
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Figure 2.25: Renormalised dimensionless curvature ε of the diquark potential for k ≥ kSB and the diquark
gap ∆gap = hk

√
κ for k ≤ kSB for µ/ΛQCD = 2 (solid lines) and for µ/ΛQCD = 10 (dashed lines). The

vertical dashed lines are associated with the symmetry-breaking scales kSB/ΛQCD ≈ 0.8 for µ/ΛQCD = 2

and kSB/ΛQCD ≈ 1.25 for µ/ΛQCD = 10. The onset of spontaneous symmetry breaking is indicated by a
vanishing curvature ε (red line and red dashed line).

decrease towards the long-range limit. Furthermore, coming from large values, the curvature ε decreases and
eventually hits zero which determines the symmetry-breaking scale kSB. This indicates the onset of sponta-
neous symmetry breaking of the U(1)V symmetry. The symmetry-breaking scale is given by kSB/ΛQCD ≈ 0.8

for µ/ΛQCD = 2 and by kSB/ΛQCD ≈ 1.25 for µ/ΛQCD = 10. Comparing these values to our results from
Sec. 2.4, we find that the symmetry-breaking scale is shifted towards smaller scales k compared to the results
in Sec. 2.4. See the aforementioned section for a discussion about the qualitative behaviour of the RG flows
and the effects of gluon screening masses which remains correct for the analysis here.
In the present section, we have also included the interactions between diquark fields and gluons that exist
because diquark fields are not colour-neutral states. We show the quark-gluon interaction g2, the one-gluon
two-diquark interaction g2∆,1, and the two-gluon two-diquark interaction g2∆,2 for two different chemical po-
tentials, namely µ/ΛQCD = 2 and µ/ΛQCD = 10, in Fig. 2.26 across a wide range of scales. Note that
we only show them in the symmetric phase (for k ≥ kSB) since we have decoupled the gauge sector from
the matter sector below the symmetry-breaking scale kSB. Recall that the couplings associated with gluon-
diquark interactions are zero at the initial RG scale and are then generated along the RG flow towards the
symmetry-breaking scale. Notably, the one-gluon two-diquark interaction g2∆,1 is generally smaller than the
strong coupling and the two-gluon two-diquark coupling and becomes even smaller towards the symmetry-
breaking scale. It should be noted that it does not become zero. The two-gluon two-diquark interaction g2∆,2
has a similar qualitative behaviour as the quark-gluon interaction at least for scales not too close to the
symmetry-breaking scale. It increases coming from large scales but it eventually decreases again, at least for
small chemical potential. For large scales but below k = Λ and small chemical potentials, the coupling is even
greater than the (squared) quark-gluon interaction g2. However, towards the symmetry-breaking scale, the
quark-gluon interaction exceeds the couplings associated with the gluon-diquark interactions for the chemical
potentials considered in the present work.
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Figure 2.26: Flow of the couplings associated with gluon-matter interactions for µ/ΛQCD = 2 (left panel)
and µ/ΛQCD = 10 (right panel) as a function of the RG scale k for k ≥ kSB where the vertical dashed lines
are associated with the symmetry-breaking scale (k = kSB): We compare the strong coupling g2 (green line)
associated with quark-gluon interaction to the couplings between one gluon and two diquarks g2∆,1 (red line)
and between two gluons and two diquarks g2∆,2 (blue line), respectively. Note that we use a logarithmic
scale since the one-gluon two-diquark interaction g2∆,1 for µ/ΛQCD = 10 becomes very small compared to the
remaining couplings.

We conclude this section, by commenting on the values of the various couplings at a scale above the symmetry-
breaking scale kSB, namely the scale Λ′ = 1GeV. These values are shown in Fig. 2.27. The (squared) Yukawa
coupling h2, the diquark coupling λ∆, the curvature ε, and the inverse of the four-quark interaction λcsc (left
panel) show the same qualitative behaviour as in Fig. 2.15, see Sec. 2.4. Compared to before, the curvature
and also the four-quark interaction at 1GeV differ by about a factor of four. However, as we shall see in
Sec. 2.6.3, this only leads to a mild difference in the symmetry-breaking scale and the diquark gap. This
again shows that it is somewhat difficult to fix low-energy models with scheme-dependent quantities at, e.g.,
a scale above the symmetry-breaking scale, instead of using observables in the long-range limit. We also
show the values of the (squared) strong coupling g2, the gluon-diquark couplings g2∆,1 and g2∆,2. Notably,
the dependence on the chemical potential of g2 is small. In contrast to that, the gluon-diquark couplings
decrease with an increase in the chemical potential and the two-gluon two-diquark coupling g2∆,2 even exceeds
the strong coupling g2 for lower chemical potentials.

2.6.3 Symmetry-Breaking Scale and the Diquark Gap

In the following, we provide updates for the symmetry-breaking scale kSB and the diquark gap ∆gap =

h̄∆0 = hk
√
κ for the results obtained in Sec. 2.5. By comparing the results obtained from the RG flows

in Sec. 2.6.2 with those from the aforementioned section, we can estimate the effect of the approximations.
In addition to that, we shall also directly analyse the influence of the choice of the gauge-fixing parameter
on the results by comparing results for Landau and Feynman gauge. As already done in Sec. 2.5, we have
included uncertainties arising from the experimental error of the strong coupling g2(Λ) = 4π · (0.179± 0.004)

91



2 From Quarks and Gluons to Colour Superconductivity

k = Λ′ = 1 GeV

2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

µ [ΛQCD]

h2

λ∆

ε/50

λ−1
csc/5

k = Λ′ = 1 GeV

2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

µ [ΛQCD]

g2

g2
∆,1

g2
∆,2

Figure 2.27: Left panel: Diquark coupling λ∆ (green band), squared Yukawa coupling h2 (blue band),
renormalised dimensionless curvature of the diquark potential ε (red band), and inverse of the four-quark
interaction λ−1csc = 2ε/h2 (orange band) as a function of the chemical potential (in units of the QCD
scale ΛQCD). Right panel: Quark-gluon interaction g2, one-gluon two-diquark interaction g2∆,1, and two-gluon
two-diquark interaction g2∆,2 as a function of the chemical potential. The couplings have been evaluated at
a scale k = Λ′ = 1GeV ≈ 4.8ΛQCD above the symmetry-breaking scale: Λ′ > kSB. The bands represent the
uncertainties arising from the experimental error of the strong coupling and a variation of the regularisation
scheme. The qualitative behaviour of these quantities as a function of the chemical potential is identical to
the one found in Sec. 2.4.

and uncertainties of the regularisation scheme by varying the order of the polynomial regulator used in the
present work. However, the dependence of the results on the regularisation scheme is negligible compared to
those from the error of the strong coupling. Since the present section only presents updates for the results in
Sec. 2.5, the general statements and especially the estimates for the symmetry-breaking scale and the diquark
gap, see Eqs. (2.90)–(2.94), still hold. We still set the gluon masses to zero although they are included in the
flow equations in Sec. 2.6.1 and defer their inclusion to future studies. For a discussion of the possible effects
of gluon screening masses, see Sec. 2.4. However, the inclusion of gluon screening masses is expected to lead
to a decrease in the symmetry-breaking scale and consequently the diquark gap following the discussion in
the aforementioned section.
The symmetry-breaking scale kSB as a function of the chemical potential is shown in Fig. 2.28. By compar-
ing the results obtained in Feynman gauge, we find that the inclusion of diquark fluctuations, gluon-diquark
couplings, and the quark anomalous dimension as considered in the present section leads to a decrease in the
symmetry-breaking scale compared to the one from Sec. 2.5. However, the influence of these contributions
becomes smaller towards larger chemical potentials. We further note that the results for Feynman and Lan-
dau gauge as obtained from the RG flows in Sec. 2.6.2 scarcely overlap, with Landau gauge resulting in a
smaller symmetry-breaking scale.
Considering the analytic estimate (2.94) in Sec. 2.5 relating the diquark gap ∆gap and the symmetry-breaking
scale kSB, we expect that the discussed effects on the symmetry-breaking scale are also reflected in the di-
quark gap as shown in Fig. 2.29. Recall that the diquark gap corresponds to a gap in the fermionic excitation
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Figure 2.28: Symmetry-breaking scale kSB as a function of the chemical potential in units of the QCD
scale ΛQCD = 209MeV. We compare the results obtained in the present section for two different gauge-
fixing parameters, i.e., for Landau gauge ξ = 0 (green band) and Feynman gauge ξ = 1 (orange band),
with the result for the symmetry-breaking scale from Sec. 2.5 (red band) where we have dropped diquark
fluctuations, set the gluon-diquark interactions to zero, and set Zψ = 1. The bands for the symmetry-
breaking scale represent the uncertainty of the strong coupling at the initial RG scale where we have used
g2(Λ) = 4π · (0.179 ± 0.004). Furthermore, they include a variation of the regularisation scheme in terms
of the order of the polynomial regulator. However, the dependence on the regulator scheme is negligible
compared to the uncertainties arising from the strong coupling.

spectrum tightly connected to the formation of a colour-superconducting ground state. Comparing the di-
quark gap for Feynman gauge from Sec. 2.5 with our present results, we find that the inclusion of diquark
fluctuations, gluon-diquark couplings, and the quark anomalous dimension leads to a decrease in the diquark
gap. However, this decrease is smaller for the diquark gap than for the symmetry-breaking scale. Especially
for larger chemical potentials, the uncertainty bands even overlap. We also find that the diquark gap for
Feynman and Landau gauge, as obtained from the flow equations in Sec. 2.6.1, scarcely overlap at least
towards larger chemical potentials, while the diquark gap for Landau gauge is smaller.
At this point, it should be emphasised again that we have decoupled the gauge sector from the matter sector
and dropped diquark fluctuations below the symmetry-breaking scale kSB. Therefore, the flow equations in
the phase governed by spontaneous symmetry breaking, as used in the present section (see Sec. 2.6.1), are
identical to those underlying the result for the diquark gap from Sec. 2.5 for “gapped gluons”. As already dis-
cussed above in detail, we consider “gapped gluons” because gluonic contributions are expected to be at least
partially suppressed below the symmetry-breaking scale due to an Anderson-Higgs-type mechanism. From
the results for the diquark gap in Fig. 2.29, it also becomes apparent that the dependence of the diquark gap
on the gauge-fixing parameter is comparable or even larger than the remaining improvements to the diquark
gap from Sec. 2.5, i.e., the inclusion of diquark fluctuations and gluon-diquark interactions. We also note
that, within the range of chemical potentials considered in the present study, the symmetry-breaking scale
and the diquark gap are consistent with the standard BCS-type scaling behaviour, i.e., they increase if the
chemical potential is increased [40, 82, 84–86].
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Figure 2.29: Diquark gap ∆gap as a function of the chemical potential in units of the QCD scale ΛQCD =

209MeV. We compare the results obtained in the present section for two different gauge-fixing parameters,
i.e., for Landau gauge ξ = 0 (green band) and Feynman gauge ξ = 1 (orange band), to the result for the
diquark gap from Sec. 2.5 (blue band) where we have dropped diquark fluctuations, set the gluon-diquark
interactions to zero, and set the wavefunction renormalisation of the quarks to one (Zψ = 1). Note that we
have “infinitely” gapped the gluons in the phase governed by spontaneous symmetry breaking, i.e., we have
decoupled the matter sector from the gauge sector, see Sec. 2.5 for a discussion. The bands for the gap and
the symmetry-breaking scale represent the uncertainty of the strong coupling at the initial RG scale where
g2(Λ) = 4π · (0.179 ± 0.004). Further, they include a variation of the regularisation scheme in terms of the
order of the polynomial regulator. However, the dependence on the regulator scheme is negligible compared
to the uncertainties arising from the strong coupling.

To conclude the comparison of the symmetry-breaking scale and the diquark gap, we would like to comment
on the effect of the gluon-diquark interactions and the diquark fluctuations so that the error from dropping
these contributions can be estimated in future studies since their inclusion can considerably increase the
effort. Diquark fluctuations are anyhow expected to only become important close to the symmetry-breaking
scale when the curvature of the diquark potential, which enters the diquark propagators as an effective mass,
becomes small. For a large effective mass, the diquark propagates are parametrically suppressed. Indeed, we
find ε & 100 for k & 2kSB, see Fig. 2.25. Therefore, reasonably far away from the symmetry-breaking scale,
the diquark fluctuations are suppressed because of a large curvature ε of the diquark potential. This is also
reflected in the numerical results presented in Fig. 2.30 where results for the diquark gap for Landau gauge
with and without the inclusion of diquark fluctuations in the symmetric phase are compared. Indeed, the
inclusion of diquark fluctuations only leads to a small shift of the diquark gap which is negligible compared to
the uncertainties arising from, e.g., the error of the strong coupling at the initial RG scale. Apparently, the
small region close to the symmetry-breaking scale where diquark fluctuations become sizeable is not sufficient
to have a big impact on the diquark gap.
These considerations can be used in future studies to simplify the calculations by dropping corrections from
diquark fluctuations, at least in a qualitative study. In practice, dropping diquark fluctuations, i.e., contribu-
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Figure 2.30: Comparison of the diquark gap ∆gap for Landau gauge ξ = 0. We compare the diquark gap
already shown in Fig. 2.29 (green band), which includes diquark fluctuations and gluon-diquark interactions
in the symmetric phase, with the diquark gap where diquark fluctuations and gluon-diquark interactions have
also been dropped in the symmetric phase (red band). We find that the inclusion of diquark fluctuations and
gluon-diquark interactions only leads to corrections that are subleading compared to the error arising from
the strong coupling as represented by the uncertainty bands.

tions from diagrams with internal diquark lines, significantly simplifies the calculation of the corresponding
flow equations. For example, it reduces the diagrams that are needed for the calculation of the diquark
coupling from six to two, see Fig. 2.20. From this analysis, it also follows that it can be expected that higher-
order diquark self-interactions, e.g., six-diquark interactions, are subleading. Indeed, higher-order diquark
self-interactions only contribute to the remaining couplings when considering diquark fluctuations and the
corresponding flow equations fully decouple otherwise.
Additionally, the inclusion of gluon-diquark interactions also leads to subleading corrections compared to the
effect of varying the gauge-fixing parameter and the impact of the quark anomalous dimension, see Fig. 2.30.
Therefore, at least for qualitative studies, it seems reasonable to neglect gluon-diquark interactions.
We close by noting that the existence of symmetry breaking in the system considered here is very sensitive to
changes in the flow equations. For example, artificially amplifying the gluon-diquark interaction, so that it is
of the order of the quark-gluon strong coupling, might already influence the existence of symmetry breaking
so that, consequently, no diquark gap exists. For the quark-gluon coupling we have used results for the gluon
anomalous dimension from Ref. [297, 298, 311], see Eq. (2.109) and App. D for details. In contrast to that,
using the one-loop strong coupling proves to be difficult to implement because the symmetry-breaking scale
for chemical potentials considered in the present study is of the order of the Landau pole, which for the
one-loop running is given by ΛLandau ≈ 240...290MeV. Since the dependence of the symmetry breaking on
the chemical potential is small, the symmetry-breaking scale is expected to be of the order of the Landau
pole up to very high densities. Therefore, although the associated chemical potentials are well-beyond the
Landau pole, the dynamics close to the symmetry-breaking scale might still be dominated by nonphysical
effects from the Landau pole.
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2.7 Conclusions
With this chapter, starting in the high-energy regime where the dynamics is governed by the fundamental
quark and gluon degrees of freedom, we analysed the dynamical formation of diquark fields in the low-energy
regime. The formation of a finite expectation value of the diquark fields is associated with the emergence
of a colour-superconducting ground state that governs the physics in the low-energy regime. Since we only
consider two massless quark flavours, this ground state corresponds to pairing of the two-flavour colour-
superconductor (2SC) type, in agreement with Refs. [40, 82–90, 92, 179].
Our study represents a first-principles study of dense strong-interaction matter with the only external input
parameter being the value of the strong coupling at the initial RG scale. To continuously translate the degrees
of freedom from the high-energy regime to the low-energy regime, we have used the so-called dynamical
bosonisation technique. We have demonstrated that this provides a suitable method to study the dynamical
generation of diquark fields over a wide range of chemical potentials. Notably, this technique allows us to
achieve this without introducing an additional uncertainty, namely an additional scale Λ0 which appears
when bosonising at a specific scale instead of doing it continuously. This approach underlies the study in
Ref. [126]. Additionally, we used a new class of regulators which is adapted to handle issues arising in the
computations at finite chemical potential. Overall, this allowed for the calculation of the diquark gap which
is at the heart of this chapter over a wide range of chemical potentials. This diquark gap corresponds to a gap
in the excitation spectrum of the quarks which signals the formation of the colour-superconducting ground
state. We analysed the dependence of the diquark gap on the chemical potential and the strong coupling and
even found an analytic estimate for the diquark gap, see Eq. (2.94), giving an estimate for the dependences
on the aforementioned quantities.
We also analysed the approximations underlying our calculation of the diquark gap. In particular, we
discussed gluon-screening effects, which we have not included in the present study since we have dropped the
corresponding screening masses of the gluons. According to our estimates, we expect that their inclusion may
lead to a decrease in the symmetry-breaking scale, at least for high densities where the chemical potential
eventually exceeds the symmetry-breaking scale. However, the effect is expected to be less sizeable towards
smaller chemical potentials. Although we drop the gluon screening masses in the numerical results for the
RG flows and the diquark gap, we have included them in the derived flow equations so that their inclusion
is straightforward in future studies, at least in the symmetric phase.
In addition to gluon-screening effects, fluctuations of diquark fields may become important. At least in the
symmetric phase, we have included them in the calculation of the diquark gap where we find that their effect
is subleading. This is expected since large diquark screening masses suppress this effect in the symmetric
regime as they become small only close to the symmetry-breaking scale. This suppression of fluctuation
effects has already been observed in other early fRG studies, see, e.g., Refs. [259, 323, 324].
However, below the symmetry-breaking scale, the situation becomes more involved. The inclusion of diquark
fluctuations requires to consider an Anderson-Higgs-type mechanism [61–66], see, e.g., Refs. [325–327] for
general groundwork for studying this mechanism with the fRG method. Still, diquark fluctuation effects are
expected to be suppressed as symmetry breaking does not generate Goldstone modes in this case and the
diquark fields therefore remain gapped. In fact, according to this mechanism, five of the eight gluons acquire
a mass by “eating up” Goldstone modes, effectively gapping the gluons and consequently suppressing gluonic
contributions [50]. We analysed this effect by employing two different approximations below the symmetry-
breaking scale: Firstly, we have left the gluons ungapped so that they are assumed to not acquire a mass
according to the Anderson-Higgs-type mechanism. Secondly, we have infinitely gapped the gluons, effectively
decoupling the matter sector from the gauge sector. We found that the diquark gap is approximately twice
as big when leaving the gluons ungapped.

96



2.7 Conclusions

Since diquark fields are not colour-neutral states, they are expected to interact with the gluons. This requires
to include gluon-diquark interactions. We have studied the corresponding couplings, at least in the symmetric
regime where they appear to be subleading. The gluon-diquark couplings have to necessarily differ from the
strong coupling, which might be naively assumed considering that the behaviour of quarks and diquark fields
under SU(3) colour transformations is connected. We also analysed the dependence of the results for the
diquark gap on the gauge-fixing parameter ξ. We find that using Landau gauge compared to Feynman gauge
slightly reduces the size of the gap. However, the qualitative behaviour is identical.
Lastly, we would like to note that we have analysed the dependence of the results on the initial conditions
of the various couplings at the initial RG scale. Recall that the only external input parameter is the strong
coupling at the initial RG scale. Notably, the experimental uncertainty of this quantity represents the leading-
order contribution to the error bands in the calculations while effects from a variation of the regularisation
scheme are subleading. We have also checked that our results do not depend on the initial values of the
remaining couplings as long as they are chosen such that they are compatible with the QCD action at high
scales.
By comparing the present study with previous fRG results that take into account a Fierz-complete ansatz
of gluon-induced four-quark interaction, see Ref. [126, 179], we deduced that Fierz completeness becomes
more important towards lower chemical potentials, i.e., towards the nucleonic density regime. In the high-
density regime where the diquark channel is dominant, only considering this single channel appears to be
reasonable. While the dynamics in the intermediate density range is expected to be governed by many
different interaction channels (indicating a rich and complex phase structure) [130–132, 135, 164–169], the
scalar-pseudoscalar channel becomes dominant in the regime for small chemical potential [179]. However, the
inclusion of additional four-quark channels is well-beyond the scope of the present work.
Still, the present study provides important field-theoretical foundations that allow to systematically improve
the calculations of, e.g., the diquark gap. In particular, this paves the way for first principles studies of the
equation of state of strong-interaction matter at supranuclear densities. However, already at this point, we
have established an important and interesting insight into the dynamics governing dense strong-interaction
matter. In the subsequent chapter, we shall demonstrate that the findings in the present chapter, especially
the diquark gap as a function of the chemical potential, can be used to improve already existing low-energy
models of dense QCD. In particular, this shall allow us to calculate the speed of sound as a function of the
total baryon density and relate it to the size of the gap. Therefore, we show that the present chapter lays
the groundwork for upcoming first-principles calculations of the equation of state and the speed of sound at
supranuclear densities, which are ultimately needed for astrophysical applications.
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3
Thermodynamics of Dense

Strong-Interaction Matter

Investigating the thermodynamic properties of dense strong-interaction matter has become increasingly im-
portant due to recent advancements in the observation of neutron stars and the measurement of their proper-
ties. Notably, gravitational wave signals [110, 111], direct measurements of neutron-star radii [112–117], and
mass measurements of heavy neutron stars [99, 100, 102, 118] provide valuable constraints for the equation
of state of neutron-rich matter [119]. Consequently, quantitative theoretical results for the equation of state
are necessary for astrophysical applications across a wide range of densities. At low densities, where nucleons
and pions are the effective degrees of freedom and the dynamics is governed by spontaneous chiral symmetry
breaking, results from chiral effective field theory provide constraints the equation of state [125–127, 211].
In this density regime, results from fRG also exist, see Ref. [130–136]. On the other hand, results from per-
turbative QCD provide insight into the equation of state at very high densities. However, for intermediate
densities (about 10 times the nuclear saturation density), where the chiral symmetry is expected to be at
least partially restored, barely any results exist for the equation of state. This density regime remains of
particular interest for simulations of neutron stars.
In Chap. 2, it was demonstrated that dense strong-interaction matter is governed by the formation of a
colour-superconducting ground state due to a BCS-type instability, see also Refs. [20, 46–56] for reviews. In
the following, we utilise results obtained in the aforementioned chapter, particularly for the so-called diquark
gap, to impose constraints on the equation of state at zero temperature. Of particular interest for astrophys-
ical applications is the speed of sound (see e.g. Refs. [103, 119–122]), which serves as an indicator of the
stiffness of the equation of state and is a highly sensitive quantity concerning changes in the density depen-
dence of the pressure. The observation of massive neutron stars, particularly the existence of neutron stars
with masses of around two solar masses suggests that the speed of sound as a function of the density reaches
a maximum for intermediate densities n/n0 . 10, exceeding the value associated with the noninteracting
quark gas, see Ref. [103, 119–124]. In the present chapter, we pursue two (related) approaches to provide
constraints for the equation of state, particularly for the speed of sound. By addressing these aspects, we aim
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to provide valuable insight and constraints for the equation of state, which are essential for understanding
the properties of neutron stars. Notably, in previous fRG studies, it has been found that the presence of a
colour-superconducting gap leads to a maximum in the speed of sound for symmetric matter that exceeds
the value of a noninteracting quark gas [126]. In addition to that, for very high densities where it is assumed
that the colour-superconducting gap does not contribute significantly, it has been found that the speed of
sound approaches its asymptotic value from below [154–162, 320].
The description of neutron stars requires knowledge of the equation of state including different quark species.
While strange quarks are expected to already become relevant at densities relevant for astrophysical appli-
cations (see e.g. Ref. [328]), we only distinguish between up and down quarks in the following, omitting the
inclusion of strange quarks. Nevertheless, even with two quark flavours, we expect that the results already
provide valuable insight into the thermodynamic properties of dense strong-interaction matter which are
relevant for the understanding of the properties of neutron stars. This requires the introduction of different
chemical potentials for the up and down quarks, enabling us to extend the findings to finite isospin asym-
metry. Our investigations so far, especially in Chap. 2, have only focused on symmetric matter, and the
inclusion of isospin asymmetry in the QCD calculations performed in the aforementioned chapter exceeds
the scope of the present work. However, our analysis will show that the corrections induced by this asym-
metry are presumably small. In any case, in order to extend our calculations to finite isospin asymmetry
and also to calculate observables relevant to astrophysical applications, such as the speed of sound or the
pressure, we intend to improve an already existing low-energy model. In the first part of this chapter, see
Sec. 3.1, we therefore utilise the results from Chap. 2, where constraints from fundamental quark and gluon
degrees of freedom have been calculated, to constrain a low-energy model that includes isospin asymmetry.
This should allow us to calculate the speed of sound at intermediate to high densities. We further analyse
the zero-temperature phase structure for dense isospin-asymmetric matter with two quark flavours. This
requires, for an accurate description of neutron stars, the implementation of beta equilibrium, electric-charge
neutrality, and colour-charge neutrality [328, 329].
In the second part of this chapter, see Sec. 3.2, we also use the results obtained in Chap. 2, where the diquark
gap has been obtained from a first-principles study, but analyse thermodynamic properties by employing
an expansion of the equation of state for isospin-symmetric matter. This expansion can be deduced with
relatively simple arguments. We shall focus on the speed of sound since it is a very sensitive quantity concern-
ing changes in the density dependence of the pressure. Therefore, already small changes in the equation of
state might lead to qualitative changes in the speed of sound which requires to analyse the relevant effective
degrees of freedom at different densities. In order to identify the relevant degrees of freedom at different
densities and to analyse the qualitative behaviour of the speed of sound, we introduce a diquark gap and
include constraints from perturbative QCD in the expansion of the equation of state. Thereby, estimates for
the speed of sound can be obtained for a very wide density range. We conclude our findings in Sec. 3.3.

3.1 Low-Energy Model for Dense Strong-Interaction Matter

The description of the low-energy dynamics may be more efficient in terms of suitably chosen degrees of free-
dom in the long-range limit (e.g., diquark fields). This can be provided by so-called low-energy models which
also give reliable constraints for physical observables. By using the most relevant degrees of freedom of QCD,
the low-energy regime which is governed by nonperturbative phenomena, like spontaneous symmetry break-
ing, can be conveniently accessed by low-energy models. For low densities, the effective degrees of freedom
are nucleons and pions, whereas at intermediate to high densities (for n ≈ 10n0) the dynamics is dominated
by diquark degrees of freedom. As we have already seen in Chap. 2, strong-interaction matter is expected to
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exist in a colour-superconducting ground state even at asymptotically high densities. Without considering
strange quarks, the chirally symmetric diquark condensate of the two-flavour colour-superconductor (2SC)
type is expected to be the most dominant, see, e.g., Refs. [47, 56, 179]. This corresponds to the formation of
the so-called diquark gap which is a gap in the excitation spectrum of the quarks that leads to the formation
of a new ground state.
For the low-energy model considered in the following, we introduce ΛLEM as the scale below which the de-
scription in terms of suitable degrees of freedom is feasible. This model scale is scheme dependent but only
its existence matters for our discussion. One might be tempted to use the symmetry-breaking scale kSB as
the low-energy scale, but it is more appropriate to use a scale where spontaneous symmetry breaking has
not yet set in because the symmetry-breaking scale is often unknown, dependent on external parameters,
and scheme dependent. Furthermore, the scale has to be chosen in such a way that contributions from the
gauge degrees of freedom (i.e., gluons) are subdominant since they are not included in the low-energy model.
The existence of a scale that fulfils these requirements is indeed expected from the analysis of the relevant
operators in the RG flow [126, 273, 297, 298]. General aspects of the model have already been discussed
in Sec. 2.1 and shall only briefly be reviewed here. We refer the reader to the aforementioned chapter for
more details. In summary, the diquark channel is most dominant for densities relevant for astrophysical
applications. It indicates the formation of a chirally symmetric diquark condensate of the two-flavour colour-
superconductor type. To capture the momentum dependence of the correlation functions for the calculation
of thermodynamic properties, we introduce auxiliary fields, so-called diquark fields. We further rewrite the
four-quark interaction by employing a Hubbard–Stratonovich transformation [299, 300]. Thereby, we replace
the four-quark interaction with a suitable description of the interaction in terms of diquark fields
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∗
a∆̄a +

1

2
i
(
ψTCγ5τ2∆̄aεaψ

)
− 1

2
i
(
ψ̄γ5τ2∆̄

∗
aεaCψ̄T

)
, (3.1)

where εa is a matrix in colour space and its entries are given by the Levi-Civita tensor (εa)bc = εabc.
Here, a, b, c = 1, 2, 3 are colour indices and εa couples the colour degrees of freedom of the quarks to the
diquark fields. Note that the diquark fields carry a colour charge since they carry the quantum numbers
of (ψTCγ5τ2εaψ) and (ψ̄γ5τ2εaCψ̄T ), respectively. For better readability, we have omitted the colour, flavour,
and Dirac indices of the quark fields ψ and ψ̄. For more details on the Hubbard-Stratonovich transformation,
see Sec. 2.1. In contrast to the aforementioned section and to the definition of the effective action in Sec. 2.2,
we have expressed the coefficient of the curvature term ∼ ∆̄∗a∆̄a in terms of the inverse of the four-quark
coupling λ̄csc = h̄2/(2m̃2). This arises from the Hubbard-Stratonovich transformation so that it effectively
enters the action as a mass of the diquark fields. By assuming that the Yukawa coupling h̄ does not depend on
the scale k in this model, we were able to absorb it by rescaling the diquark fields ∆̄a = h̄∆a. Couplings like
the Yukawa coupling are frequently assumed to be scale independent in low-energy models. Since diquark-
like eight-quark interactions are already generated dynamically above the symmetry-breaking scale, as we
have seen in our RG study in Sec. 2.4.2, they are also relevant at the scale ΛLEM. Therefore, we include a
corresponding four-diquark interaction

λ̄eff

(
∆̄∗a∆̄a

)2
with λ̄eff > 0 . (3.2)

Here, λ̄eff is the effective four-diquark coupling associated with the four-diquark interaction. Since there are
presently no constraints available for higher-order interactions from the fRG study in Chap. 2, we shall not
include them in the following. To include a possible isospin asymmetry in the model, we allow for different
chemical potentials for the up and down quarks. For the description of neutron stars, beta equilibrium also
needs to be implemented which implies that we have to include electrons with a chemical potential. Since
interactions among the electrons and of quarks and electrons are much weaker than interactions generated by
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QCD, we do not include such interactions in the model but only include a kinetic term so that they only appear
as noninteracting spectators and provide a charged background. Note also that the action constructed from
the diquark and Yukawa interaction is not confining. In order to describe neutron stars which are colourless,
colour-charge neutrality needs to be enforced which requires the inclusion of chemical potentials for colour
charges. We do not include a kinetic term for the auxiliary diquark fields so that they are not dynamical
degrees of freedom. In doing so, we also ignore corrections that might render them dynamic which already
emerge from purely fermionic loops. With this, we end up with a frequently employed low-energy model for
dense strong-interaction matter (see, e.g., Refs. [46–50]), but we allow for different chemical potentials and a
four-diquark interaction which is already relevant at high scales and should therefore be present at the model
scale ΛLEM ∼ O(1GeV). With these considerations, we find the following ansatz for the low-energy model
employed in the present work:
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}
. (3.3)

This action is, aside from the inclusion of different chemical potentials and electron degrees of freedom, part
of the action (2.25) defined in Sec. 2.2. The quark fields are denoted by ψ̄ and ψ, whereas electrons are given
by ψ(e). The electron chemical potential is given by µe. We have also introduced different chemical potentials
for the up quark µu and down quark µd combined in a flavour-chemical potential

µ̂(f) = diag
(
µu, µd

)
f
⊗ 1c ⊗ γ0 (3.4)

and different chemical potentials for differently coloured quarks via

µ̂(c) = 1f ⊗ diag
(
µr, µg, µb

)
c ⊗ γ0 , (3.5)

where, on the right-hand side, the index ‘f’ refers to flavour space and ‘c’ to colour space. The chemical
potentials µr, µg, and µb are associated with the three colour charges (red, green, and blue). They are
related to the chemical potentials µ3 and µ8 which are associated with the colour generators T3 and T8 via

diag
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)
c = µ3T3 + µ8T8 (3.6)

with
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3
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The inclusion of the chemical potentials µ3 and µ8 is detailed in, e.g., Refs. [328–331]. Note that the chemical
potentials are not independent parameters. The colour-charge chemical potentials are determined by the
requirements for colour-charge neutrality which we shall introduce in Sec. 3.1.2. The chemical potential for
up and down quarks and the chemical potential of the electrons reduce to a single free parameter when
considering beta equilibrium and electric-charge neutrality, as we shall see in Sec. 3.1.6.

3.1.1 Calculation of the Effective Potential

The effective potential for the low-energy model can be obtained in different ways. In the following, we use
the Wetterich equation introduced in Sec. 1.2 for the average effective action of the low-energy model Γk,LEM

which is given by

∂tΓk,LEM =
1

2
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)−1
=

1

2
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)−1
. (3.8)
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We compute the effective action in a one-loop approximation and, consequently, replaced the derivative of
the effective action Γ

(1,1)
k,LEM appearing on the right-hand side of Eq. (3.8) with derivatives of the action S(1,1)

LEM.
Only considering “pure” fermion loops yields

S
(1,1)
LEM =

~δ

δϕT (−p)
SLEM

δ

δϕ(q)
, where ϕ(q) =

(
Ψ(q)

Ψ̄T (−q)

)
. (3.9)

Here, Ψ and Ψ̄ are the Fourier transforms of the quark fields ψ and ψ̄, respectively.
Note that we have restricted ourselves to quark loops for convenience. Contributions from electron degrees
of freedom can be added independently since they are assumed not to interact with the quarks and simply
contribute as a free electron gas. Further, we set the wavefunction renormalisation of the diquark fields
to zero, which allows us to drop kinetic terms of the diquark fields in the ansatz for the effective action.
Additionally, the wavefunction renormalisation of the quark fields is assumed to be constant. The regulator
matrix entering the Wetterich equation is given by

Rk =

(
0 Rτ

R 0

)
(2π)4δ(4) (p− q) . (3.10)

The various entries of the matrix are given by

R = R−P−γ0 +R+P+γ0 with R± = −idiag
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)
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The index ‘f,c’ indicates that R± and Rτ± are matrices in flavour and colour space, where we have defined
ε̄f,c± =

(
µf +µc±|~p |

)
rf,c± . Here, rf,c± is the regulator shape function. Recall that the projection operators P±

have been introduced in Sec. 1.3.1.
We expand the auxiliary diquark fields around a homogeneous background field ∆̄3 which we choose to point
into the three-direction in colour space, for convenience. We can do so because physical observables, such as
the pressure and the speed of sound, only depend on the gauge-invariant quantity |∆∗a∆a| and consequently
do not depend on the selected direction, see also Ref. [46]. Therefore, we find

(
S
(1,1)
LEM +Rk

)
=

(
iCγ5τ2∆̄3ε3 P ∗ψ(p)

Pψ(p) −iγ5Cτ2∆̄∗3ε3

)
(2π)4δ(4)(p− q) . (3.13)

For the matrix elements Pψ and P ∗ψ, we use the quasi-particle regularisation scheme. Their derivation and
definition can be found in App. C. Every entry of the latter matrix is itself a matrix in colour, flavour, and
Dirac space. Solving the additional “field” trace yields

∂tΓk,LEM =
1

2
STr

[
∂tRk

(
S
(1,1)
LEM +Rk

)−1]
= −1

2
Tr
[
∂tR

τ
(
S
(1,1)
LEM +Rk

)−1
21

+ ∂tR
(
S
(1,1)
LEM +Rk

)−1
12

]
. (3.14)

Here, the minus sign arises due to the super trace ‘STr’ which introduces a minus sign for fermion degrees of
freedom. For the upper left element of the inverse matrix, we find(

S
(1,1)
LEM +Rk

)−1
12

= G−
(
1− |∆̄|2G−,χ

)
P+γ0 + G+

(
1− |∆̄|2G+,χ

)
P−γ0 (3.15)

and for the lower right element of the inverse matrix we find(
S
(1,1)
LEM +Rk

)−1
21

= G∗−
(
1− |∆̄|2G∗−,χ

)
γ0P

T
− + G∗+

(
1− |∆̄|2G∗+,χ

)
γ0P

T
+ . (3.16)
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Here, we have introduced

G± = diag
(
Gu,r
± , Gu,g

± , Gu,b
± , Gd,r

± , Gd,g
± , Gd,b

±

)
f,c

(3.17)

and

G±,χ = diag
(
G

(u,r),(d,g)
±,χ , G

(u,g),(d,r)
±,χ , 0, G

(d,r),(u,g)
±,χ , G

(d,g),(u,r)
±,χ , 0

)
f,c
. (3.18)

Note that G±,χ are matrices in flavour and colour space as indicated by the subscript ‘f,c’. The elements of
the matrix are given by

Gf,c± = − 1

p0 + iεf,c±
and G

(f1,c1),(f2,c2)
±,χ =

1

|∆̄|2 + (p0 + iεf1,c1± )(p0 − iεf2,c2± )
. (3.19)

For convenience, we introduced |∆̄|2 = ∆̄∗3∆̄3 and εf,c± = (µf + µc ± |~p |) (1 + rf,c± ) where f, f1, f2 = u,d
and c, c1, c2 = r, g,b. In the following, we resolve the colour and flavour traces, which is tedious but straight-
forward. Recall that the trace also includes an integral over the momentum p. After solving the traces, we
can rewrite the result and find

∂tΓk,LEM

V4
= −2

∑
σ=±

∫
p

∂̃t ln
(
(p0 + iεd,b

σ )(p0 − iεu,b
σ )
)

− 2
∑
σ=±

∫
p

∂̃t ln
(
(p0 + iεd,g

σ )(p0 − iεu,r
σ ) + |∆̄|2

)
− 2

∑
σ=±

∫
p

∂̃t ln
(
(p0 + iεd,r

σ )(p0 − iεu,g
σ ) + |∆̄|2

)
. (3.20)

We have introduced the spacetime volume V4 = (2π)4δ(4) (0) and have started to sum over σ, for convenience.
The derivative ∂̃t now only acts on the k-dependence of the regulator. Interestingly, terms that are associated
with blue quarks, i.e., terms that contain a blue chemical potential, do not depend on the gap and can be
separated from terms involving red and green quarks. Further, terms containing the diquark gap mix red
and green quarks so that they cannot be separated from one another. This mixing arises as a consequence
of the aforementioned expansion into the three-direction. By expanding in a different direction, we expect
that quarks with other colours mix. However, the corresponding diquark gap is always associated with an
up and a down quark coming in different colours. By expanding the diquark fields around a homogeneous
background and using the fact that the Yukawa coupling is constant in our current setting, we can simply
integrate Eq. (3.20) from k to ΛLEM and find

Γk,LEM

V4
− ΓΛLEM,LEM

V4
= −2

∑
σ=±

∫
p

ln
(
(p0 + iεd,b

σ )(p0 − iεu,b
σ )
)∣∣∣k

ΛLEM

− 2
∑
σ=±

∫
p

ln
(
(p0 + iεd,g

σ )(p0 − iεu,r
σ ) + |∆̄|2

)∣∣∣k
ΛLEM

− 2
∑
σ=±

∫
p

ln
(
(p0 + iεd,r

σ )(p0 − iεu,g
σ ) + |∆̄|2

)∣∣∣k
ΛLEM

. (3.21)

According to the construction of our model, the initial condition is given by

ΓΛLEM,LEM

V4
=

1

2
λ̄−1csc|∆̄|2 + λ̄eff|∆̄|4 . (3.22)

An RG-consistent effective action can now be constructed by considering the effective action (3.21) at a new
scale Λ > ΛLEM instead of ΛLEM. Then, ΓΛ,LEM can be used to ensure RG consistency by including carefully
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chosen counterterms. Consequently, ΓΛ consists of two contributions, one that determines the effective action
at the scale ΛLEM and one that includes counterterms such that the effective action is RG consistent. Since
we are not aiming to discuss RG consistency in the following, we simply follow the line of arguments presented
in Ref. [194], where details about this aspect can be found, and adapt them to the present work, which is
straightforward.
The effective potential U can then be calculated by considering the long-range limit (k → 0) of the effective
action (3.21): U(|∆̄|2) = Γk→0,LEM/V4. In the following, we shall use a three-dimensional sharp cutoff, for
convenience.

3.1.2 Effective Potential

Including electron degrees of freedom, which only contribute as a free electron gas, the effective potential U
of the low-energy model is given by

U(|∆̄|2) = 1

2
λ̄−1csc|∆̄|2 + λ̄eff|∆̄|4 −

µ4
e

12π2
−
µ4

u,b

12π2
−
µ4

d,b

12π2
− 8l̄(|∆̄|2)

+
1

2
θ
(
δµ2

gr − |∆̄|2
)
δl̄(|∆̄|2)

∣∣
δµ=δµgr

+
1

2
θ
(
δµ2

rg − |∆̄|2
)
δl̄(|∆̄|2)

∣∣
δµ=δµrg

. (3.23)

Recall that |∆̄|2 = ∆̄∗3∆̄3 where ∆̄3 is the homogeneous background field. The so-called diquark gap ∆̄gap

which is the gap in the excitation spectrum of the quarks can now be obtained by minimising the effective
potential U with respect to |∆̄|2. The input parameters of the model are the four-quark interaction λ̄csc and
the effective diquark interaction λ̄eff which can be fixed such that observables are recovered from the effective
potential U . In Sec. 3.1.4, we shall see how we can use our results from the fRG study in Chap. 2 to fix the
model parameters. The µ4

e-term represents the electrons which only provide a charged background since they
do not interact with the quarks in the present model. The µ4

u,b and µ4
d,b terms originate from blue fermion

degrees of freedom that do not couple to the diquark fields, and therefore only appear as a “noninteracting
contribution” which is a consequence of the choice to expand the background field in the three-direction. The
contributions of the remaining quark loops are parametrised by the functions l̄ and δl̄ which depend on |∆̄|2:

l̄(|∆̄|2) = 1

4π2

∫ Λ

0

dp p2
(√

(p+ µ̄)2 + |∆̄|2 +
√
(p− µ̄)2 + |∆̄|2

)
− 1

2π2

∫ Λ

ΛLEM

dp p2
(√

p2 + |∆̄|2 + µ̄2|∆̄|2

2(p2 + |∆̄|2) 3
2

)
(3.24)

and

δl̄(|∆̄|2) = 2

π2

∫ p+

p−

dp p2
(√

(p− µ̄)2 + |∆̄|2 − |δµ|
)
, where p± = µ̄±

√
δµ2 − |∆̄|2 . (3.25)

Here, δl̄ describes the shift of the effective potential U for finite isospin asymmetry. The momentum integrals
in l̄ and δl̄ can be solved analytically since we have used a three-dimensional sharp cutoff. We have ensured
that the potential is RG consistent by carefully introducing counterterms included in l̄. Since the terms
depending on the isospin asymmetry, in particular δl̄, are not affected by the initial RG scale Λ, they do
not need to be considered when constructing counterterms. Therefore, we employ counterterms already
used in Ref. [194]. These counterterms are given by the second line in Eq. (3.24). If they are chosen
carefully, we expect that the results for physical observables do not depend on the regulator. Nevertheless,
the parameters of the model, λ̄csc and λ̄eff, are affected by the regularisation scheme. In Sec. 3.1.4, we shall
discuss how to properly set these parameters. By introducing counterterms, we introduce a new scale Λ
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where Λ� ΛLEM > µ̄. RG consistency is now ensured by considering the limit Λ→∞. We find

Λ∂ΛU(|∆̄|2) = −2µ̄4|∆|2

π2Λ2
+O

(
1/Λ4

)
. (3.26)

Therefore, the Λ dependence, which results from the Λ dependence of l̄, is removed in the limit Λ → ∞.
In the present work, we ensure this by choosing the scale Λ to be sufficiently large compared to the model
scale ΛLEM, i.e., Λ � ΛLEM > µ̄. Since we do not aim to discuss artefacts from the regularisation, we refer
the reader to Ref. [194] for a detailed discussion, and simply choose Λ = 10ΛLEM for the present work. As
the low-energy scale, we choose ΛLEM = 1GeV which is larger than the symmetry-breaking scale and which
allows us to cover a reasonable range of chemical potentials.
The different chemical potentials defined in the action (3.3), only appear in specific combinations in the
effective potential (3.23). The chemical potentials associated with the red and green quarks have been
replaced by combinations of µu, µd, µ3, and µ8 since red and green quarks mix in the colour-superconducting
phase such that

µ̄ =
µu + µd

2
+
µr + µg

2
=
µu + µd

2
+

1

2
√
3
µ8 , (3.27)

δµrg =
µu − µd

2
+
µr − µg

2
=
µu − µd

2
+

1

2
µ3 , (3.28)

δµgr =
µu − µd

2
+
µg − µr

2
=
µu − µd

2
− 1

2
µ3 . (3.29)

Here, µ̄ can be interpreted as the average of the two quark flavours and δµrg and δµrg are a measure of the
isospin asymmetry. The chemical potentials associated with the blue quarks are

µu,b = µu + µb = µu −
1√
3
µ8 and µd,b = µd + µb = µd −

1√
3
µ8 . (3.30)

In contrast to the chemical potential of the red and green quarks, the chemical potentials associated with the
blue quarks appear explicitly in the effective potential as they only appear as “noninteracting” spectators.
This is a consequence of the expansion of the diquark fields in the three-direction. Therefore, only red and
green quarks can obtain a gap in the fermionic excitation spectrum and the blue quarks remain “ungapped”
even in the phase governed by spontaneous symmetry breaking, see Fig. 3.1.
Note that it is possible to include additional four-quark interaction channels, alongside the diquark channel
used in the present approach, when constructing the low-energy model. As with the current approach, a
Hubbard–Stratonovich transformation can be employed to introduce suitable effective degrees of freedom.
With a fitting four-quark interaction channel, these effective degrees of freedom can be chosen such that
blue quarks can obtain a gap. Specifically, these degrees of freedom also represent diquark fields but come
with a symmetric colour structure so that these diquark fields always consist of quarks of the same colour,
e.g., blue quarks. It is important to emphasise that the resulting gap associated with blue quarks is then
different from the gap associated with red and green quarks as considered in the present work. However,
these considerations are beyond the scope of the present work.
From the effective potential U , it is possible to extract and analyse thermodynamic quantities of dense
strong-interaction matter. Accordingly, we define some thermodynamic properties that are calculated in the
following. The pressure is given by the effective potential U evaluated at the ground state (gs):

P = −U(|∆̄|2)
∣∣
gs,~µ − P0 , (3.31)

where the ground state at high densities is dominated by the emergence of the diquark gap ∆̄gap. Here, ~µ =

(µu, µd, µr, µg, µb, µe). The vacuum constant P0, associated with ~µ = 0, requires knowledge about the ground
state in the vacuum. However, the vacuum is governed by spontaneous chiral symmetry breaking which cannot
be reliably accessed in our current model since we only take into account diquark-like interactions. Therefore,
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Figure 3.1: Illustration of the interactions between the quarks that form diquark fields and possible diquark
condensates: Diquark fields as introduced in the present study always consist of one up and one down quark.
Additionally, by expanding the diquark fields in the three-direction, only the red and green quarks interact
and can therefore form diquark condensates. This leads to a gap in the fermionic excitation spectrum only for
red and green quarks. The blue quarks only contribute as free quarks that remain “ungapped”. By expanding
in a different direction, we expect that quarks with another colour contribute as free quarks while the quarks
with the remaining two colours mix.

also the pressure cannot be accessed in our current approximation. Nevertheless, in the high density regime
where the ground state is dominated by colour superconductivity, derivatives of the pressure with respect to
the chemical potentials are accessible so that the density for up and down quarks are given by

nu =
∂P

∂µu
and nd =

∂P

∂µd
, (3.32)

respectively. The electron density is given by

ne =
∂P

∂µe
. (3.33)

Note that we can define densities corresponding to each chemical potential present in the effective potential,
e.g., colour-charge chemical potentials.
Another thermodynamic quantity of interest, especially for astrophysical applications, is the speed of sound.
It can be thought of as a measure for the stiffness of matter or the stiffness of the equation of state and is
therefore a very sensitive quantity. Consequently, it is of particular interest for astrophysical application, see
Refs. [103, 119–122]. The speed of sound squared is given by the derivative of the pressure P with respect
to the energy density ε:

c2s =
∂P

∂ε
, where ε = −P + µunu + µdnd + µene . (3.34)

As the speed of sound does not depend on the vacuum constant P0, it can be accessed in the present work.
Before starting to discuss the phase structure, we can already enforce colour-charge neutrality. As we shall
see, this allows us to immediately eliminate one colour-charge chemical potential in the effective potential
with simple arguments. Macroscopic matter has to be colour-neutral, i.e., it has to be a colour singlet state
and therefore, we are interested in studying colour-neutral matter. Especially, to study realistic neutron-star
matter, colour-charge neutrality has to be implemented [328–330, 332]. It is important to emphasise that
colour-charge neutrality is not to be confused with colour confinement. To enforce colour-charge neutrality,
we have introduced the colour chemical potentials µr, µg, and µb in the ansatz for the effective action, see
Eq. (3.3). Colour-charge neutrality is given if all colour densities nr, ng, and nb are identical such that an
equal number of red, green, and blue quarks exists. Here, nr, ng, and nb are the densities of the red, green,
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and blue quarks, respectively. We enforce this by requiring that the densities that correspond to µ3 and µ8

vanish simultaneously: n3 = n8 = 0. This is enforced by choosing µ3 and µ8 accordingly. The colour densities
associated with µ3 and µ8 are

n8 =
∂P

∂µ8
=

1

2
√
3

∂P

∂µr
+

1

2
√
3

∂P

∂µg
− 1√

3

∂P

∂µb
=

1

2
√
3

(
nr + ng − 2nb

)
!
= 0 (3.35)

and

n3 =
∂P

∂µ3
=

1

2

∂P

∂µr
− 1

2

∂P

∂µg
=

1

2

(
nr − ng

)
!
= 0 . (3.36)

With the requirement that both densities vanish, we indeed find that an equal number of red, green, and
blue quarks exists: nr = ng = nb. Note that the effective potential U is invariant under r ↔ g so that
P (µr, µg) = P (µg, µr). Therefore, the constraint for n3 is fulfilled if µr = µg from which it follows that
µ3 = µr − µg = 0. This is a convenient consequence of the form of the effective potential. In general, the
constraints for n3 and n8, see Eqs. (3.35) and (3.36), have to be fulfilled simultaneously.
With these considerations, the potential assumes the following form:

U(|∆̄|2) = 1

2
λ̄−1csc|∆̄|2 + λ̄eff|∆̄|4 −

µ4
e

12π2
−
µ4

u,b

12π2
−
µ4

d,b

12π2
− 8l̄(|∆̄|2) + θ

(
δµ2 − |∆̄|2

)
δl̄(|∆̄|2) , (3.37)

and the chemical potential associated with µ3 simplifies to

δµgr = δµrg =
µu − µd

2
≡ δµ . (3.38)

Now, δµ controls the isospin asymmetry. Determining the value for µ8 is done by solving the constraint
for n8, see Eq. (3.35). This cannot be done analytically as for µ3 and is postponed to a later stage.

3.1.3 Qualitative Discussion of the Phase Structure

In the following, we qualitatively discuss the phase structure for isospin-asymmetric matter. For this, we
set µ8 = 0, for convenience. Note that µ3 = 0 has already been implemented because of the colour constraint
for n3. Then, µ̄ = (µu + µd)/2 is the quark-chemical potential as the average of the up- and down-quark
densities. The discussion shall give us insight into the dynamics that we can subsequently use to constrain
the model with QCD results from our fRG study in Chap. 2. For now, we only have to assume that the
parameters λeff and λcsc have been tuned such that the potential has a nontrivial minimum at |∆̄| = ∆̄gap.
Therefore, already for vanishing isospin chemical potential, a finite gap exists for all considered µ̄ values.
In practice, we have already tuned the model parameters according to the considerations in the subsequent
section, see Sec. 3.1.4.
The effective potential is shown for µ̄ = 0.5GeV and different isospin asymmetries in Fig. 3.2. Since the
potential remains invariant for δµ → −δµ, we only consider δµ > 0 in the following. For vanishing isospin
chemical potential δµ/µ̄ = 0, we find a nontrivial minimum for finite ∆̄, see Fig. 3.2 (blue line). As a global
minimum, this represents the ground state and gives rise to a diquark gap. By increasing the isospin asym-
metry to δµ/µ̄ = 0.45, we find that another minimum emerges at ∆̄ = 0, see Fig. 3.2 (red line). However,
for δµ/µ̄ = 0.45, this new minimum is still only a local minimum, and therefore, we still encounter a diquark
gap which is given by the global nontrivial minimum. Interestingly, the minimum associated with the diquark
gap remains in the same position as in the isospin-symmetric case. If we increase the asymmetry further
to δµ/µ̄ = 0.50 (see Fig. 3.2, green line) or δµ/µ̄ = 0.55 (see Fig. 3.2, orange line) the minimum at ∆̄ = 0

(which is a local maximum for δµ/µ̄ = 0 and a local minimum for δµ/µ̄ = 0.45) becomes a global minimum.
Therefore, the new ground state is associated with the trivial minimum at ∆̄ = 0 so that there is no diquark
gap for these isospin chemical potentials.
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Figure 3.2: Schematic illustration of the effective potential U for fixed chemical potential µ̄ = 0.5GeV as a
function of ∆̄/µ. We show the potential for different relative isospin chemical potentials δµ/µ̄. The global
nontrivial minimum for vanishing isospin chemical potential becomes a local minimum when increasing the
asymmetry and eventually disappears altogether. The position of the nontrivial minimum remains the same.
Note that we have set µe = 0 which would only lead to a global offset along the y-axis. The model parameters
have been tuned according to the considerations in the subsequent section, see Sec. 3.1.4.

We can deduce two important features of the potential: Firstly, there is a critical value for the isospin chem-
ical potential above which the diquark gap vanishes. Secondly, we find that the position of the nontrivial
minimum, see vertical dashed line in Fig. 3.2, does not change for different isospin asymmetries (for fixed
chemical potential µ̄). We shall discuss this behaviour and its origin in more detail in the following.
The behaviour of the position of the minimum can be explained by closer examining the relevance of the
“quantum correction” δl̄ in Eq. (3.37). Due to the θ-function, it does not contribute to the potential for δµ = 0.
More importantly, it also does not influence the form of the potential for |∆̄|2 > δµ2. In this region and
since the function l̄ does not depend on the isospin asymmetry, the potential is only shifted vertically by
a constant offset due to contributions from the blue quarks which are affected by the isospin asymmetry.
It immediately follows that (for fixed µ̄) the existence and the position of the nontrivial minimum remain
unchanged provided that the isospin asymmetry is smaller than the aforementioned nontrivial minimum.
From this, it follow three different scenarios: Firstly, this minimum can be a global minimum so that it can
be associated with the gap ∆̄gap, see vertical dashed line and blue and red line in Fig. 3.2. Secondly, the
nontrivial minimum still exists but only as a local minimum so that it cannot be associated with the diquark
gap, see green line in Fig. 3.2. In this case, the global minimum is at ∆̄ = 0. Thirdly, the nontrivial minimum
can vanish completely, see orange line in Fig. 3.2. These findings suggest that a finite range of values for δµ
exists where the gap ∆̄gap is identical to the gap in the isospin-symmetric limit.
The existence of the critical value for the isospin asymmetry can also be explained by considering the effect
of the “quantum correction” δl̄ in the region where it affects the potential (for |∆̄|2 < δµ2). We find that it
generates a second minimum at ∆̄ = 0 for a sufficiently large δµ. This minimum starts as a local one (see
red line) but it eventually becomes a global minimum for a sufficiently large isospin asymmetry (see green
line). Since the diquark gap is given by a nontrivial global minimum, a critical value δµcr exits such that the
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gap ∆̄gap vanishes for δµ2 > δµ2
cr. This transition is (at least for vanishing temperature as considered in the

present work) not continuous. Therefore, we encounter a first-order phase transition at δµ = δµcr where the
system transitions from a gapped phase governed by the formation of a diquark gap to an ungapped phase.
The existence of such a phase transition is also discussed in, e.g., Ref. [333].
As we have stated before, we expect that a finite range of values for δµ exists where the gap ∆̄gap(µ̄, δµ) is
given by the gap in the isospin-symmetric limit ∆̄gap(µ̄, 0). To demonstrate this, we show the diquark gap
as a function of the chemical potential µ̄ and the isospin asymmetry δµ in Fig. 3.3. We find that the gap
remains unchanged throughout the entire gapped region, i.e., for δµ < δµcr (see Fig. 3.3, blue region): The
isospin chemical potential only affects the potential for δµ2 < |∆̄|2. In the present study, the gap is larger
than the critical isospin asymmetry δµ2

cr < ∆2
gap. Therefore, in the gapped region δµ < δµcr, we find that

the potential can only be influenced by the “quantum correction” δl̄ in the region below the gap ∆gap, i.e.,
in the region δµ2 < ∆2

gap. It follows that the position of the gap cannot be changed in the gapped region for
a given chemical potential µ̄.
Above the critical value, the gap vanishes, see Fig. 3.3 (green region), and the quarks exist as a free (asymmet-
ric) quark gas. Both regions are separated at the critical isospin asymmetry by a first-order phase transition,
see Fig. 3.3 (red line). Following this figure for a given δµ from small chemical potential to large chemical
potential, we may find trajectories (for certain δµ-values) that cross the line for the critical isospin chemical
potential such that the gap jumps from zero to a finite value. This is associated with a first-order phase
transition. Inside the gapped phase (blue region), the gap does not depend on the isospin asymmetry and is
given by the gap for isospin-symmetric matter. In conclusion, the gap can be written as:

∆̄gap(µ̄, δµ) = ∆̄gap(µ̄, 0)θ(δµcr − |δµ|) . (3.39)

The finding that the gap remains unchanged (along the δµ-axis) in the entire gapped phase is a consequence
of our initial conditions. Therefore, the critical isospin asymmetry coincides with the first-order phase tran-
sition. There might be configurations where the gap only remains unchanged (along the δµ-axis) for a finite
part of the gapped region and varies before the phase boundary is reached. We further note that the exis-
tence of a finite range of isospin chemical potentials for which the gap remains unchanged is only valid for
vanishing temperature. Indeed, the gap depends on the isospin asymmetry δµ in the gapped phase when
considering a finite temperature. However, a phase transition to an ungapped phase still exists. For some
finite temperature, we expect that this transition from the gapped region (blue region in Fig. 3.3) to the
ungapped region (green region in Fig. 3.3) is smeared out so that the first-order phase transition becomes
a second-order phase transition. However, fixing the initial conditions for finite temperature, with the same
approach used in 3.1.4 for vanishing temperature, would require results for the temperature dependence of
the diquark gap (from, e.g., fRG calculation) which are presently unavailable. Therefore, we only consider
the zero temperature limit in the present work and postpone the inclusion of temperature to future work.
We close this section by comparing and extending the discussion to conventional superconductors. The
existence of a critical value above which superconductivity ceases to exist has already been observed in two-
component Fermi gases exhibiting a superconducting ground state [334, 335]. For example, the introduction
of up and down quarks can be suitably compared to an electron gas to which a magnetic field is applied. The
Zeeman coupling of the electron spin to the magnetic field induces an imbalance between spin-up and spin-
down electrons leading to the polarisation of the system. In a “classical” superconductor (superconductivity
in metals), pairs of electrons form so-called Cooper pairs resulting in the formation of a superconducting
ground state. The attractive forces necessary for the formation of Cooper pairs are strongest between elec-
trons with opposite spin. The decay and formation of such pairs are in equilibrium. By applying a magnetic
field to the superconductor, spin polarisations aligning with the magnetic field become more favourable as the
energy of the state with opposite spin alignment is higher. At the critical magnetic field, a sufficient number
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Figure 3.3: Diquark gap ∆̄gap as a function of the chemical potential µ̄ and the chemical potential that
measures the isospin asymmetry δµ. The red line represents the critical value δµcr of the isospin asymmetry
as a function of the chemical potential µ̄. Above this value, the system is in an ungapped phase (green area)
whereas a finite gap exists below this value. In the region below the critical isospin chemical potential, the
gap does not depend on the isospin chemical potential (blue area). The model parameters have been tuned
according to the considerations in the subsequent section but the existence of a finite range for the isospin
asymmetry where the gap is unaffected is a general feature of the present model. Further, the existence of
a phase transition is also unaffected by the choice of the parameters of the model as long as they are tuned
such that a diquark gap exists.

of spins align in the same direction preventing the formation of enough Cooper pairs required to maintain the
superconducting phase. Consequently, even at temperatures approaching zero, the superconducting phase
cannot exist in a classical superconductor when subjected to a magnetic field exceeding some critical value.
This critical value for the magnetic field depends on the temperature. It is worth noting that there are
two types of superconductors: Type I and Type II. In Type I superconductors there exists only one critical
magnetic field below which a superconducting phase exists. For Type II superconductors, on the other hand,
there exist two critical magnetic fields. Below the first, the system is governed by a superconducting phase
while above the second critical field, the system is not superconducting. In the region between the critical
magnetic fields, a mixed phase with magnetic vortices arises. For both types of superconductors, the mate-
rial expels a magnetic field as long as its magnitude is smaller than the critical value which is the so-called
Meissner-Ochsenfeld effect [81]. See also, e.g., Refs. [283, 336–338] for details about these phenomena.
The critical magnetic field, beyond which superconductivity breaks down, is associated with a first-order
phase transition to a normally conducting phase. Building upon the preceding discussion, it follows that a
critical magnetic field corresponds to a critical spin polarisation, compared to the critical isospin asymmetry
encountered in the present study. An estimate for the critical polarisation can be found by comparing the
pressure of the unpolarised superconducting ground state with the partially polarised ungapped phase. The
ground state is determined by the state with the highest pressure (i.e., lowest Gibbs energy). For more
details, see Refs. [334, 335]. Within the QCD inspired model employed in the present work, Cooper pairs
correspond to diquark fields formed by differently coloured up and down quarks. In contrast to a critical
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magnetic field, there is a critical value for the difference in the number of up and down quarks, represented
by δµ. We find some critical value for δµ above which the diquark gap vanishes. In contrast to the magnetic
field, which controls the polarisation in ordinary superconductors, the ratio of up and down quarks is not an
experimental control parameter but shall, e.g., be controlled by constraints for neutron-star matter.
The analogy between ordinary superconductors and colour superconductors can be used to find an estimate
for the critical isospin asymmetry. For quark matter, the formation of a diquark from two quarks gives an
energy gain per quark. This energy gain is of the order of the gap in the isospin-symmetric limit: ∆̄gap(µ̄, 0).
If the energy gain δµ by adding an up quark (or a down quark) to the system exceeds the critical value δµcr,
superconductivity breaks down. Comparing the pressure for isospin-asymmetric quark matter in the nonin-
teracting limit (Stefan-Boltzmann limit)

PSB(µ̄, δµ) =
(µ̄+ δµ)2

4π2
+

(µ̄− δµ)2

4π2
(3.40)

with the estimate for the pressure for gapped isospin-symmetric matter [46, 194, 339, 340]

P (µ̄) = PSB(µ̄, 0)

(
1 + 2

(
∆̄gap(µ̄, 0)

µ̄

)2

+ · · ·
)
, (3.41)

we can find an estimate for the critical isospin asymmetry δµcr. The relation for the pressure (3.41) can also be
obtained from the effective potential (3.37) in the weak-coupling limit for small ∆̄gap(µ̄, 0)/µ̄ and weak four-
quark and four-diquark interactions. Notably, the estimate does not depend on the model parameters λ̄csc

and λ̄eff. At the critical isospin asymmetry, both expressions for the pressure have to be identical: P (µ̄) !
=

PSB(µ̄, δµcr). Therefore, the estimate for the critical value of the isospin asymmetry becomes

|δµcr(µ̄)| = ∆̄gap(µ̄, 0)/
√
3 + · · · . (3.42)

The dots represent higher orders in the gap ∆̄gap(µ̄, 0). The scale for δµcr is, therefore, given by the diquark
gap and it inherits its µ̄-dependence in the isospin-symmetric limit. At δµcr, the system undergoes a first-
order phase transition, as already discussed in the present section, because the pressure is not continuously
differentiable at δµcr (see also Refs. [339, 341] for a similar analysis in 2+1 quark flavours). We shall compare
the analytic estimate (3.42) to the exact value obtained from the effective potential (3.37) in the subsequent
section after fixing the initial conditions.

3.1.4 Constraining the Model with the Diquark Gap from an fRG Calculation

The effective potential U can be used to calculate thermodynamic properties for phenomenological ap-
plications. However, utilising it, first requires to fix the parameters, λ̄−1csc and λ̄eff, of the model at the
scale ΛLEM = 1GeV. In the following section, we use the insight gained from the preceding section, see
Sec. 3.1.3, to constrain the low-energy model using the results for the gap obtained in Sec. 2.5, where the
diquark gap has been calculated from first principles, considering the underlying quark-gluon dynamics. It
should be noted that these results were only obtained for isospin-symmetric matter.
Nevertheless, it is reasonable to utilise the findings for isospin-symmetric matter to fix the initial conditions
also for isospin-asymmetric matter. This is mainly due to the fact that the gap remains unaffected by the
isospin chemical potential below some critical value δµcr and vanishes above this scale. Above the critical
value (for δµ2 > δµ2

cr), the effective potential corresponds to that of a noninteracting asymmetric quark gas.
Consequently, it is consistent to adopt the results for isospin-symmetric matter when setting the initial condi-
tions, even for isospin-asymmetric matter. In the following, we therefore, describe how the initial conditions
are adjusted such that the diquark gap from the fRG calculation obtained in Sec. 2.5 is recovered.
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Figure 3.4: Comparison of the effective diquark coupling as a function of the chemical potential µ̄ obtained
from the fRG calculation (see Sec. 2.4.2) λ̄eff = λ̄∆/h̄

4 and the effective coupling used as the initial condition
of the model in the present calculation λ̄eff. Note that the absolute values differ but the qualitative behaviour
agrees. For increasing chemical potential, also the effective coupling increases. The couplings have been
evaluated at the scale k = ΛLEM = 1GeV. The uncertainty band for the fRG results (green band) results in
the variation of the strong coupling at the initial RG scale. The uncertainty band for the model parameter
(orange band) represents the uncertainty coming from the diquark gap used to fix the initial conditions by
choosing the initial values so that we recover the diquark gap from the fRG study.

Our numerical results and the analytic estimate concerning the fRG calculation (see Sec. 2.4.2) indicate that
the four-quark coupling λ̄csc depends only mildly on the chemical potential at scales sufficiently larger than
the symmetry-breaking scale and the chemical potential. Consequently, we assume the four-quark coupling to
be constant at the scale ΛLEM > µ̄. In practice, we choose λ̄−1csc = 0.197GeV2 for all chemical potentials µ̄. In
contrast to that, the effective diquark coupling λ̄eff depends on the chemical potential already at scales larger
than the symmetry-breaking scale (see Fig. 3.4, green band). Therefore, we assume that the effective diquark
coupling depends on the chemical potential. The actual value for λ̄eff for each µ-value is then determined by
tuning it (while keeping the value for λ̄−1csc constant) so that the value for the gap ∆̄gap from the fRG study is
recovered when calculating the gap in the present model. The latter is achieved by minimising the effective
potential. In contrast to the model parameters which are scheme dependent, the diquark gap is, as a physical
observable, a scheme-independent quantity. We tune the parameters in such a way that we recover the gap
in the case of “gapped” gluons. Here, “gapped” gluons refers to the approximation where the matter sector
has been decoupled from the gauge sector in the phase governed by spontaneous symmetry breaking which
has been done to analyse the effect of “gluon gapping” according to an Anderson-Higgs-type mechanism. For
further details, we refer the reader to Sec. 2.4.2. The effect of using the gap for “ungapped” gluons can then
be inferred. The gap used to fix the model parameters is shown in Fig. 3.5 (left panel, green band). The
actual values of the model parameter λ̄eff as used for the present model are shown in Fig. 3.4 (orange band)
compared to the value obtained in the fRG calculation by evaluating at the model scale ΛLEM = 1GeV.
The specific numerical values are not meaningful because the model parameters depend on the regularisa-
tion scheme and are not scheme-independent quantities. However, the general dependence on the chemical
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Figure 3.5: Left panel: Diquark gap for symmetric matter ∆̄gap (green band) compared to the critical value for
the isospin asymmetry δµcr (blue band) as a function of the chemical potential µ̄. Below the critical value, a
gapped phase is encountered and above the critical value the gap vanishes and a free quark gas is encountered.
We find that ∆̄gap > δµcr. Right panel: Comparison of the relative critical isospin asymmetry δµcr/µ̄ as
obtained by minimising the effective action compared to the qualitative analytic estimate, see Eq. (3.42), as
a function of the chemical potential µ̄. We observe, that their qualitative behaviour is compatible. The error
bands represent the uncertainties of the results for the diquark gap which have been used to fix the initial
conditions.

potential µ̄ is consistent. In both cases, the effective diquark coupling increases with increasing chemical
potential. The gap used to fix the model parameters comes with an uncertainty band which is reflected in
the uncertainty band of the model parameter, see Fig. 3.4 (orange band). Note that extracting the model
parameters from the RG flows in Sec. 2.4.2 evaluated at a suitably chosen low-energy scale is, in principle,
also possible. For example, the couplings evaluated at 1GeV are shown in Fig. 2.15. Since the parameters are
scheme-dependent quantities, it is however not straightforward to match the couplings from the fRG results
to the couplings used in the low-energy model.
After fixing the initial conditions for the low-energy model, we can go back to some of the findings discussed in
the previous section regarding general aspects about the phase structure. Interestingly, the diquark gap ∆̄gap

is larger than the critical isospin asymmetry δµcr for all considered chemical potentials, see left panel in
Fig. 3.5. Only considering the gapped region δµ < δµcr, we consequently find ∆̄gap > δµ. Therefore, the
correction δl̄ does not contribute in the gapped phase. It follows that the diquark gap remains unchanged in
the entire gapped region (along the δµ-axis) and not only for some finite range as we have already discussed
in the previous section, see Fig. 3.3. As a consequence, the critical value for the isospin asymmetry coin-
cides with the position of the first-order phase transition. Consequently, it is consistent to use the gap for
isospin-symmetric matter to fix the model parameters also for asymmetric matter as we have already stated
at the beginning of this section. Further, we would like to comment on the analytic estimate for the critical
isospin asymmetry, see Eq. (3.42). We find that the analytic estimate is compatible with the critical isospin
asymmetry as obtained directly from the effective potential (3.37). Most importantly, we emphasise that the
qualitative behaviour agrees.
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Figure 3.6: Different results for the diquark gap ∆̄gap as a function of the baryon density n normalised by
the nuclear saturation density n0: The results for symmetric matter (green band), from the fRG calculation
for QCD in Sec. 2.5, have been used in the present section to fix the initial conditions. They are compared
to previous fRG results (red band, see Ref. [126]) and, as an example, a low-energy model from Ref. [85]
(blue). The error band for the green line includes a variation of the strong coupling at the initial RG scale.
The nuclear saturation density n0 is given by 0.165 nucleons per fm3.

After fixing the model parameters, we can proceed with the computation of thermodynamic observables in
Sec. 3.1.5. We conclude this section by providing additional insight on the behaviour of the diquark gap as
a function of the density. While we have already discussed the diquark gap as a function of the chemical
potential in Sec. 2.5, we can now consider the diquark gap as a function of the baryon density. Therefore, we
show the diquark gap ∆̄gap as a function of the baryon density n in units of the nuclear saturation density n0
in Fig. 3.6 for symmetric matter (green band) as obtained from the fRG calculation in Sec. 2.5. The results
reveal a relatively weak dependence of the gap on the density. To obtain the gap as a function of the density,
we have used the effective potential (3.37) for symmetric matter, enabling us to determine the associated
pressure and subsequently calculate the density. However, it is important to note that incorporating isospin
asymmetry and considering constraints from colour-charge neutrality and electric-charge neutrality which are
both relevant for astrophysical applications, may quantitatively alter the diquark gap as a function of the
density. Despite employing the same diquark gap to fix the initial conditions, the aforementioned constraints
influence the density, and consequently, the diquark gap as a function of the density. Nevertheless, we expect
these effects to be relatively minor as the leading-order contribution to the density is given by µ̄ ∼ n1/3

at least for isospin chemical potentials δµ that are small compared to µ̄. Taking these considerations into
account, we can derive an analytic estimate for the scaling behaviour of the diquark gap as a function of the
density. With the result for the gap from Sec. 2.5, ∆̄gap ∼ exp

(
−c/(g4µ̄2)

)
, and µ̄ ∼ n1/3, we find

∆̄gap ∼ exp

(
− c

g4n2/3

)
, c > 0 . (3.43)

It is worth noting that it follows that the ground state is nonperturbative in the presence of a diquark gap.
By comparing our present results for the diquark gap ∆̄gap (green band in Fig. 3.6) with previous fRG results,
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taken from Ref. [126], where a Fierz-complete ansatz was employed (red band), we conclude that at lower
densities, the inclusion of four-quark interactions other than the diquark channel becomes important. This
is indeed in agreement with the results from the aforementioned Fierz-complete study of gluon-induced four-
quark interactions, where it was also found that the scalar-pseudoscalar channel becomes important at lower
densities [179]. Therefore, we expect that the regime n/n0 & 7 is reliably accessible in our present study. For
comparison and as an example, we further show a result from a low-energy model from Ref. [85], see blue line
in Fig. 3.6. We find, that the results for the diquark gap from the present work and from Ref. [126] lie above
those from the low-energy model in Ref. [85]. This can already be understood from the analytic estimate for
the diquark gap (3.43), where the quark-gluon dynamics leads to a rapid increase in the gap at low densities.
The uncertainty from the diquark gap used to fix the initial conditions shall lead to uncertainties in the
phase structure and the thermodynamics for isospin-symmetric matter. In the following, this can be used to
analyse the sensitivity of the results, especially how a smaller or larger diquark gap would change the results.

3.1.5 Phase Diagram for Asymmetric Dense Strong-Interaction Matter

We start with a general discussion of the phase structure for zero-temperature dense strong-interaction matter
with two quark flavours. For this, we set µ8 = 0 in this section for convenience. At the end of this section, by
extending the results to finite µ8, we obtain a phase diagram for colour-neutral matter. Note that µ3 = 0 has
already been implemented because of the colour constraint for n3. The phase diagram spanned by the down
quark fraction nd/(nu +nd) as a function of the total baryon density n = (nu +nd)/3 in units of the nuclear
saturation density n0 is shown in Fig. 3.7. In practice, it has been obtained by considering the pressure in
the gapped and the ungapped case, respectively, and evaluating it at the phase boundary, i.e., the critical
isospin asymmetry. The pressure has been obtained by evaluating the potential, see Eq. (3.37), at the ground
state. The phase diagram reveals three distinct regions. The ungapped case (blue-shaded area in Fig. 3.7)
corresponds to a free (asymmetric) quark gas and can also be calculated in a perturbative setting [154–160].
When attempting to calculate the density (by differentiating the potential with respect to the corresponding
chemical potential) as a function of the chemical potential, we find that we cannot reach every density ratio
between the up and down densities. The density is discontinuous, which is a consequence of the first-order
phase transition. This region is unstable and is the so-called first-order region, see white area in Fig. 3.7.
For density ratios close to symmetric matter, characterised by the ratio nd/(nu + nd) = 0.5, a gapped phase
that is dominated by the formation of a colour superconducting ground state with spontaneous symmetry
breaking is encountered, see grey-shaded area in Fig. 3.7. The three regions are separated by the phase
boundaries (blue and black lines in Fig. 3.7) which come with an error band originating in the uncertainty
of the gap used to fix the initial conditions. When increasing the down quark fraction from the symmetric
limit nd/(nu + nd) = 0.5 to the limit of pure down-quark matter nd/(nu + nd) = 1 for fixed baryon density,
we find a (strong) first-order phase transition.
In the phase diagram, we observe that the phase boundaries separating the gapped and ungapped phase from
the first-order region decrease with increasing baryon density. This can already be understood by considering
an analytic estimate for the behaviour of the phase boundary. With Eq. (3.42), we found an estimate for the
critical isospin asymmetry which we can generalise to |δµcr| = ∆̄gap(µ̄, δµ = 0)/cδ+· · · by introducing cδ > 0.
The analytic estimate (3.42) can be recovered by setting cδ =

√
3. Note that only the sign of the constant

matters for the following discussion. However, by appropriately choosing cδ we can more closely recover the
result for δµcr as obtained from the effective potential, see Fig. 3.5 (right panel, blue band). Further, the
down-quark fraction in the ungapped phase for |δµ|/µ̄� 1 can be estimated by

nd

nd + nu
=

1

2
− 3

2

δµ

µ̄
+ · · · . (3.44)
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Figure 3.7: Phase diagram spanned by the down-quark fraction nd/(nu + nd) as a function of the baryon
density n normalised by the nuclear saturation density n0. Note that we have set µ8 = 0. The lower end of
the y-axis represents symmetric matter nd/(nu + nd) = 1/2 and the upper end represents pure down-quark
matter nd/(nu+nd) = 1. The error band of the transition lines (depicted by differently dashed lines) describes
the error given by the uncertainty of the gap where the dotted line is the upper end and the dot-dashed line
the lower end of the uncertainty band of the diquark gap. The phase transition lines have been calculated by
evaluating the pressure in the gapped phase and the pressure for the ungapped phase at the critical isospin
asymmetry, respectively.

By inserting the estimate for the critical isospin asymmetry δµcr into the latter expression, we find the
following expression for the critical down-quark fraction:

nd

nd + nu

∣∣∣∣
cr
=

1

2
− 3

2cδµ̄
∆̄gap(µ̄, 0) + · · · . (3.45)

With the total baryon density in the ungapped phase which is given by

n =
nu + nd

3
=

2µ̄3

3π2

(
1 + 3

(δµ
µ̄

)2)
(3.46)

and the scaling behaviour of the gap ∆̄gap ∼ exp
(
−c′/µ̄2

)
(as expected from relativistic models for the

colour-superconducting gap, see Refs. [40, 82, 84–86]), where c′ > 0, we find

nd

nd + nu

∣∣∣∣
cr
− 1

2
∼ 1

n1/3
exp

(
− c′′

n2/3

)
, where c′′ > 0 . (3.47)

The analytic estimate reflects what can already be observed in the phase diagram, see Fig. 3.7. By increasing
the baryon density the transition line between the ungapped phase and the first-order region decreases.
By further increasing the baryon density beyond values depicted in the phase diagram, it eventually (very
slowly) approaches the diquark fraction associated with isospin-symmetric matter, i.e., nd/(nu + nd) = 0.5,
for n → ∞. Therefore, also the transition line between the gapped phase and the first-order region has to
approach the limit for symmetric matter so that the gapped phase shrinks to zero. In the limit n → ∞, a
gap then exists only for isospin-symmetric matter.

117



3 Thermodynamics of Dense Strong-Interaction Matter

6 8 10 12 14 16 18 20 22 24 26 28 30
0.5

0.6

0.7

0.8

0.9

1

n/n0

n
d/
(n

u
+

n
d)

gapped phase

ungapped phase

first-order region

Figure 3.8: Phase diagram where colour-neutral matter undergoes a phase transition depicted by the down-
quark fraction nd/(nu+nd) as a function of the baryon density n in units of the nuclear saturation density n0.
The black line represents the (colour-neutral) transition from the gapped phase to the first-order region which
(in contrast to the one in Fig. 3.7) has been obtained by simultaneously requiring the colour-charge neutrality
constraint n8 = n3 = 0 and evaluating the pressure at the critical isospin asymmetry. Note that the transition
line from the first-order region into the ungapped phase remains unchanged. In addition to that, the transition
line from the first-order region into the gapped phase is only slightly affected by the colour-charge neutrality
constraint. As before, the error bands represent the errors originating in the uncertainty of the diquark gap.

The results can be directly extended to colour-neutral matter. Conveniently, the phase transition line between
the ungapped phase and the first-order region is already colour-neutral. The (colour-neutral) transition
line between the gapped phase and the first-order region can be obtained by solving the remaining colour
constraint n8 = 0 while simultaneously evaluating the pressure at the critical isospin asymmetry. Recall
that the colour constraint n3 = 0 has already been implemented in Sec. 3.1.2. The resulting phase diagram
spanned by the down-quark fraction as a function of the baryon density is shown in Fig. 3.8. Note that there
is only a small shift of the phase boundary depicted in the phase diagram mainly towards the lower density
regime compared to Fig. 3.7.
We close this section by commenting on the extension of the phase diagram to finite temperature. In this
case, we expect that the first-order phase transition, as observed in the zero-temperature limit, becomes a
second-order phase transition at some finite temperature. However, a detailed study is beyond the scope
of the present work because it requires results for the diquark gap at finite temperature. Additionally, at
finite temperature the existence of a finite range of isospin chemical potentials for asymmetric matter for
which the diquark gap remains unchanged (as observed in Sec. 3.1.3) is no longer expected to be valid any
more. Indeed, the θ function appearing in the effective potential (3.37) is “smeared” out at finite temperature
leading to a qualitative change compared to the vanishing temperature limit, see Sec. 3.1.3 for details on the
qualitative phase structure at vanishing temperature. In order to determine the model parameters for finite
temperature, results for the diquark gap are therefore required for finite temperature and for different isospin
chemical potentials.
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3.1.6 Towards Neutron-Star Matter

In the following, we use the results from Sec. 3.1.5 to identify trajectories in the phase diagram that are
relevant for astrophysical applications and extract information about the phase structure of neutron-star
matter. A realistic description of neutron-star matter in terms of a gapped quark gas requires to include
neutrality constraints, i.e., colour-charge neutrality as already introduced in Sec. 3.1.2 and electric-charge
neutrality. Additionally, neutron stars are in beta equilibrium [328, 329, 339]. We shall discuss these aspects
in detail in the following. We only consider two quark flavours, although densities relevant to the description
of neutron stars may require the inclusion of strange quarks. However, we expect that the results for only
two quark flavours already provide potentially useful insight into the mechanisms relevant in neutron stars.
To compare the results considering a gapped quark gas, which we expect to present a suitable description for
quark matter at high densities, we shall also include the aforementioned constraints for a free quark gas.
As the name suggests, it might be tempting to describe neutron star matter by considering pure neutron
matter which consists of twice as many down quarks as up quarks. Therefore, we expect that the down
density is approximately twice as big as the up density. This corresponds to a trajectory in the phase
diagram with nd/(nu + nd) = 2/3 which lies within the first-order region, see Fig. 3.8. However, in reality,
the situation is more involved since neutron stars do not purely consist of neutrons but also a certain fraction
of protons. Protons are positively charged, and macroscopic matter has to be charge neutral. Therefore, we
also expect a certain number of electrons. Furthermore, as already stated before, neutron stars are in beta
equilibrium. To describe this, we have to consider weak processes like

u←→ d+ e+ + νe . (3.48)

Here an up quark u decays to a down quark d, a positron e+, and an electron neutrino νe and vice versa.
This process is in equilibrium, meaning that no preferred direction exists. Therefore, we have to include
electrons that participate in the beta-equilibrium process in our discussion. We assume that enough time has
passed for all neutrinos to leave the system (see Refs. [48, 328, 329, 341–343]) so that we can set the chemical
potential of the neutrinos to zero. Therefore, we find in beta equilibrium that

µu = µd + µQ . (3.49)

Here, µQ is the charge chemical potential associated with the electric charge Q. To account for the charge
chemical potential µQ, we introduce an auxiliary chemical potential µ so that the chemical potentials for the
up and down quarks are now given by

µu = µ+
2

3
µQ and µd = µ− 1

3
µQ . (3.50)

The prefactors for the charge chemical potential µQ are determined by the electrical charge of the up and
down quark, respectively. Electrons are negatively charged so that their chemical potential is given by

µe = −µQ. (3.51)

Consequently, the effective potential (3.37) can be expressed in terms of

µ̄ =
µu + µd

2
+

1

2
√
3
µ8 = µ+

1

6
µQ +

1

2
√
3
µ8 and δµ =

µu − µd

2
=

1

2
µQ . (3.52)

The pressure can therefore be expressed as a function of µu, µd, and µ8 or µ, µQ, and µ8, respectively. Note
that we have already set µ3 = 0 according to the considerations in Sec. 3.1.2.
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A chunk of macroscopic matter has to be electric-charge neutral and colour-charge neutral. We enforce
electric-charge neutrality by requiring that the charge density nQ is zero

nQ =
∂P

∂µQ
=

2

3
nu −

1

3
nd − ne

!
= 0 . (3.53)

The electron density ne for the model considered here is given by a free relativistic fermion gas ne = µ3
e/(3π

2).
The electric-charge neutrality has to be constrained alongside the constraints for colour-charge neutral-
ity which we have already introduced in Sec. 3.1.2 where we found that the constraint for n3 requires to
choose µ3 = 0. Therefore, we are left with constraining µ8 by requiring that n8 = 0, see Eq. (3.35). In the
following, we find trajectories in the phase diagram spanned by the down-quark fraction nd/(nd + nu) as a
function of the baryon density n by considering the pressure in the “gapped” phase (which is governed by
the formation of the diquark gap ∆̄gap) and “ungapped” phase by evaluating the effective potential U at the
ground state. The pressure then depends on µu, µd, and µ8 (or µ, µQ, and µ8) so that the densities also
depend on these quantities. Enforcing colour- and electric-charge neutrality by solving Eqs. (3.35), (3.36)
and (3.53) with the constraint from beta equilibrium (3.49), we can uniquely match the chemical potentials
for up quarks µu and down quarks µd and the colour-charge chemical potential µ8 by, e.g., effectively singling
out a value for µu for each value of µd and µ8. Alternatively, we can match µ, µQ, and µ8. The resulting
densities uniquely determine the trajectory in the phase diagram.

3.1.6.1 Free Quark Gas with Neutrality Constraints and Beta Equilibrium

Before identifying the trajectory in the phase diagram that describes what we shall refer to as “neutron-star
matter”, we consider the pressure of a free quark gas and a free electron gas and implement the aforementioned
neutrality constraints. The combined pressure (which corresponds to the pressure obtained from the effective
potential (3.37) for vanishing diquark gap) is given by

Pfree =
µ4

u,b

12π2
+
µ4

d,b

12π2
+

µ4
u,r

12π2
+

µ4
d,r

12π2
+
µ4

u,g

12π2
+
µ4

d,g

12π2
+

µ4
e

12π2
. (3.54)

Here, the different chemical potentials are given by µf,c = µf +µc. By requiring colour-charge neutrality via
n8 = n3 = 0, we find µr = µg = µb. We also know that µb + µr + µg = 0 so that, in conclusion, it follows
µr = µg = µb = 0 so that µ3 = µ8 = 0. Therefore, the calculation of the up and down density simplifies
and we find nu = µ3

u/π
2 and nd = µ3

d/π
2. Since we describe beta equilibrium, we have to also consider the

electron density which is ne = µ3
e/(3π

2) where from beta equilibrium, it follows that µe = µd − µu. For the
charge density, we find

nQ =
∂Pfree

∂µQ
=

2

3
nu −

1

3
nd − ne =

2

3

(µ3
u
π2

)
− 1

3

(µ3
d
π2

)
− µ3

e
3π2

. (3.55)

Requiring that the charge density vanishes nQ = 0 yields the ratio between up and down density

µu ≈ 0.796µd ⇒ nd

nu
≈ 1.983 ⇒ nd

nd + nu
≈ 0.665 . (3.56)

The down-quark fraction corresponds to a trajectory in the phase diagram that we shall refer to as “non-
interacting neutron-star matter”, in the following. It should be noted that there is only a slight deviation
from pure neutron matter, where nd/(nd + nu) = 2/3. Furthermore, we can use this result to calculate the
electron density. We find that ne � nd: ne ≈ 0.0028nd.
Another interesting property is the proton fraction since protons and neutrons are the most relevant degrees
of freedom at low densities. Therefore, we assume that all quarks are bound in protons and neutrons: nu

p up
quarks are bound in protons, nd

p down quarks are bound in protons, nu
n up quarks are bound in neutrons,
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and nd
n down quarks are bound in neutrons. Since neutrons consist of two down and one up quark, we

have nd
n = 2nu

n whereas protons consist of two up and one down quark nd
p = 1

2n
u
p. The total number of up

and down quarks is nd
n + nd

p = nd and nu
n + nu

p = nu, respectively. Now, we introduce r as the ratio between
the up and down quark density so that nd = rnu. For the proton fraction, we find

np

nn
=

2− r
2r − 1

. (3.57)

For the ratio that we found for a free quark gas r ≈ 1.983, we find np/nn ≈ 0.0057. Therefore, more than 99%

of the quarks are bound in neutrons so that nn � np where nn is the neutron density and np is the proton
density. For a free quark gas it is therefore reasonable to assume, that noninteracting quark matter in beta
equilibrium mostly consists of pure neutron matter.

3.1.6.2 Gapped Quark Gas with Neutrality Constraints and Beta Equilibrium

Next, we calculate the trajectory in the phase diagram that we shall refer to as “neutron-star matter” in
the following, by calculating the pressure from the effective potential (3.37), while including constraints
from colour-charge neutrality, beta equilibrium, and electric-charge neutrality. Interestingly, we can find an
analytical result for the trajectory by considering the pressure in the gapped phase, which is given by

Pgap =
µ4

e
12π2

+
µ4

u,b

12π2
+
µ4

d,b

12π2
+ P̄ (∆̄2

gap)− P0 (3.58)

with

P̄ (∆̄2
gap) = −

1

2
λ̄−1csc∆̄

2
gap − λ̄eff∆̄

4
gap + 8l̄(∆̄2

gap) . (3.59)

Note that we cannot calculate the pressure in the vacuum P0. The function l̄ only depends on µ̄, at least for
vanishing temperature. Also, ∆̄2

gap only depends on µ̄, see Sec. 3.1.3. The term δl drops out because of our
considerations that, in the gapped region δµ < δµcr, we find ∆̄gap > δµ. In the ungapped phase, the pressure
is given by the pressure of a noninteracting quark gas so that the total pressure becomes

P = Pgapθ(δµcr − |δµ|) + Pfreeθ(|δµ| − δµcr) . (3.60)

In the following, we only consider the gapped phase. Then, the up and down densities are given by

nu =
µ3

u,b

3π2
+

1

2

∂P̄

∂µ̄
and nd =

µ3
d,b

3π2
+

1

2

∂P̄

∂µ̄
. (3.61)

We have already ensured that n3 = 0, so that we only have to simultaneously fulfil the electric-charge
neutrality constraint

nQ =
∂Pgap

∂µQ
=

2

3
nu −

1

3
nd − ne =

2

3

µ3
u,b

3π2
− 1

3

µ3
d,b

3π2
− µ4

e
3π2

+
1

6

∂P̄

∂µ̄

!
= 0 (3.62)

and the remaining colour-charge neutrality constraint

n8 =
∂Pgap

∂µ8
= − 1√

3

µ3
u,b

3π2
− 1√

3

µ3
d,b

3π2
+

1

2
√
3

∂P̄

∂µ̄

!
= 0 . (3.63)

With these relations and along with the constraint from beta equilibrium µe = µd − µu, we can uniquely
determine an up chemical potential for each down chemical potential, simultaneously fulfilling the constraints
for colour- and electric-charge neutrality. Notably, we can use the latter relation to eliminate P̄ in all
remaining equations such that the up and down density become

nu =
µ3

u,b

3π2
+

1

2

∂P̄

∂µ̄
= 2

µ3
u,b

3π2
+
µ3

d,b

3π2
and nd =

µ3
d,b

3π2
+

1

2

∂P̄

∂µ̄
= 2

µ3
d,b

3π2
+
µ3

u,b

3π2
. (3.64)
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We also eliminate P̄ in the equation for nQ so that the electric-charge neutrality constraint is fulfilled if

µ3
u,b − µ3

e
!
= 0 ⇒ µ3

u,b
!
= (µd,b − µu,b)

3
. (3.65)

Here, we used µe = µd − µu = µd,b − µu,b. With this, it follows

µu,b =
µd,b

2
. (3.66)

Inserting the latter expression into the expressions for the up and down densities, we notably find an exact
solution for the down-quark fraction

nd

nu + nd
=

17

27
, (3.67)

which yields nd/nu = 17/10. With this, the ratio between protons and neutrons becomes np/nn = 1/8 and
for the proton fraction, we find np/(np + nn) = 1/9. Therefore, there are 8 neutrons for each proton. Note
that, by eliminating P̄ , effectively all terms that come with an uncertainty band, the diquark gap ∆̄gap and
the model parameter λeff, drop out in the calculation of the down-quark fraction so that the down-quark
fraction for “neutron-star matter” does not come with an error band.

3.1.6.3 Trajectories in the Phase Diagram

Having identified the trajectories for “noninteracting neutron-star matter” and for “neutron-star matter”,
we can draw them into the phase diagram spanned by the down-quark fraction nd/(nu + nd) as a function
of the baryon density n normalised by the nuclear saturation density n0, see Fig. 3.9. The trajectory for
“noninteracting neutron-star matter” (green dashed line in Fig. 3.9) lies in the first-order region which would
also apply for a trajectory describing pure neutron matter. The trajectory representing “neutron-star mat-
ter” (red line in Fig. 3.9) lies in the gapped phase for densities below n ≈ 27n0. At this density, the system
undergoes a first-order phase transition from a gapped phase dominated by colour superconductivity into an
ungapped phase where the system can be described as a free noninteracting quark gas.
From the general discussions in Sec. 3.1.5, it follows that, provided that a gap exists for dense symmetric
matter, a phase transition from an ungapped phase described by a noninteracting quark gas and a gapped
phase governed by colour superconductivity exists for asymmetric matter. Furthermore, the line describ-
ing the phase transition approaches the quark density associated with symmetric matter for n → ∞. This
statement is model-independent and only relies on the expansion of the pressure in the gap, see Eq. (3.41).
From this, it follows that neutron-star matter eventually undergoes a first-order phase transition provided
that such a trajectory lies in the gapped phase for some finite density. Note that another phase transition is
expected to occur at much lower densities where a phase governed by spontaneous chiral symmetry breaking
undergoes a phase transition to the chirally symmetric colour-superconducting (gapped) phase considered
here. However, we shall not discuss this transition in the following.
The effects of the colour-charge neutrality constraint can be studied by considering what we shall refer
to as “colour-charged neutron-star matter”. For this, we ignore the colour-charge constraint and simply
set µ3 = µ8 = 0 while still implementing constraints from beta equilibrium and electric-charge neutrality. In
contrast to the trajectory for “neutron-star matter”, the trajectory comes with an error band since quantities
coming with an uncertainty do not drop out in the calculation. We emphasise that we only calculate this
trajectory to study the dependence of the results on the charge constraints, especially the colour-charge neu-
trality constraints. The resulting trajectory is shown in the phase diagram depicted in Fig. 3.10. The result
for “colour-charged neutron-star matter” lies in the gapped phase for densities below n ≈ 28n0 and it lies
close to the trajectory associated with “neutron-star matter”. Notably, the results for “neutron-star matter”

122



3.1 Low-Energy Model for Dense Strong-Interaction Matter

6 8 10 12 14 16 18 20 22 24 26 28 30
0.5

0.6

0.7

0.8

0.9

1

n/n0

n
d
/
(n

u
+

n
d
)

noninteracting neutron-star matter

neutron-star matter

gapped phase

ungapped phase

first-order region

Figure 3.9: Different trajectories appearing in the phase diagram for isospin-asymmetric strong-interaction
matter depicted by the down-quark fraction nd/(nu+nd) as a function of the baryon density n in units of the
nuclear saturation density n0: The red line represents neutron-star matter as obtained by our model where
we have implemented beta equilibrium and simultaneously satisfied the colour and electric-charge neutrality
constraints (nd/(nd + nu) = 17/27). The green dashed line represents noninteracting neutron-star matter
(nd/(nd+nu) ≈ 0.665) where the colour and charge constraints have been satisfied for a noninteracting quark
gas. The phase boundaries are where colour-neutral matter undergoes a phase transition as already enforced
in Fig. 3.8. As before, the uncertainties in the boundaries (depicted by differently dashed lines) originate
from the uncertainty of the gap.

and “colour-charged neutron-star matter” converge towards high densities. This effect is also reflected in
the electric-charge chemical potential µQ as depicted in Fig. 3.11 (left panel) that has been calculated in
determining the corresponding trajectories. The result for “neutron-star matter” (blue band) and “colour-
charged neutron-star matter” (green band) lie close to each other and converge when going to higher baryon
densities. Note that µQ is negative which implies that µd > µu as expected for matter which consists of
more neutrons than protons. Further, the electron chemical potential is positive which implies that electrons
instead of positrons are present in “neutron-star matter”.
Furthermore, the colour-charge chemical potential µ8 only “shifts” the chemical potential µ̄ (which is asso-
ciated with the up and down chemical potential) by µ8/(2

√
3). Therefore, if µ8/(2

√
3) is small compared

to the up and down chemical potential or µ̄, respectively, the difference between results with and without
colour-charge neutrality are expected to be small. We show the result for the relative colour-charge chemical
potential µ8/µ̄ in Fig. 3.11 as a function of the baryon density n. Indeed, we find that the relative colour-
charge chemical potential is small, especially for high densities regarding the density range relevant for the
trajectories in the gapped phase. This indicates that the effect of the colour-charge neutrality constraint is
only subleading at least for densities close to the phase boundary.
The electron density for “colour-charged neutron-star matter” as a function of the normalised baryon density
is depicted in Fig. 3.11 (right panel, blue band) and it increases towards lower densities. This is not what
is expected when considering constraints from nuclear physics and observations which appear to disfavour
large electron densities. Further, the electron fraction in neutron stars is not expected to increase towards
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Figure 3.10: Part of the phase diagram shown in Fig. 3.9 (with a reduced y-axis) where, additionally to
the line for “neutron-star matter” (red line), also the result for “colour-charged neutron-star matter” (blue
line) is shown. The line for “colour-charged neutron-star matter” has been obtained by setting µ3 = µ8 = 0,
implementing beta equilibrium, and electric-charge neutrality. Compared to the trajectory for “neutron-star
matter”, it comes with an error band originating in the uncertainty of the gap used to constrain the model.
The transition lines (black lines) correspond to colour-neutral matter undergoing a phase transition.

lower densities [119]. However, the line associated with “neutron-star matter”, see red line in Fig. 3.11 (right
panel), is in accordance with the results from nuclear physics and observations. The inclusion of constraints
for colour-charge neutrality is, therefore, indeed needed for qualitative results of the electron density. As
we shall see in Sec. 3.1.7, the inclusion of the aforementioned constraints seems to be less important when
considering the speed of sound as a function of density where the results for “colour-charged neutron-star
matter” and for “neutron-star matter” are practically almost identical. Similar to before, the result the
electron density for “colour-charged neutron-star matter” approaches the line associated with “neutron-star
matter” but differs for lower densities. For “neutron-star matter”, we again obtain an analytic result so that
the electron density becomes ne/n = 1/9 which is in accordance with the number of protons which is also
given by np/n = 1/9 and ensures that electric-charge neutrality is indeed fulfilled.

3.1.7 Speed of Sound for Neutron-Star Matter

As we have already stated at the beginning of this chapter, another quantity of interest, especially for
astrophysical observations, is the speed of sound. Since we have no access to the QCD vacuum constant in
our model, the pressure cannot be reliably calculated in the present model. For this reason, we focus on
the speed of sound for the discussion of thermodynamic properties of dense strong-interaction matter. To
calculate the speed of sound for colour- and electric-charge neutrality in beta equilibrium, we calculate the
pressure and the energy density by employing Eq. (3.34) along the corresponding trajectories.
In the following, we show the speed of sound squared c2s as a function of the baryon density n in units of the
nuclear saturation density n0 for three different approximations, see Fig. 3.12. Note that all approximations,
“symmetric matter” (green band), “neutron-star matter” (black band), and “colour-charged neutron-star
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Figure 3.11: Left panel: Relative colour-chemical potential µ8/µ̄ (red band) and charge-chemical poten-
tial µQ/µ̄ (blue band) for neutron-star matter (colour- and electric-charge neutrality in beta equilibrium)
as a function of the baryon density n normalised by the nuclear saturation density n0. The electric-charge
chemical potential µQ comes with an error band, although we find a constant value for the ratio of down
quark density to total density (and µQ itself has no error band) because µ̄ comes with an error band. We also
show the electric-charge chemical potential for “colour-charged neutron-star matter” (green band). For this,
we artificially set µ3 = µ8 = 0 and only implemented beta equilibrium and electric-charge neutrality. Right
panel: Comparison of the electron fraction ne/n as a function of the normalised density n/n0 for “neutron-
star matter” (red) and for “colour-charged neutron-star matter”. The missing error band for “neutron-star
matter” is a consequence of terms depending on the uncertainties dropping out in the calculation of the
down-quark fraction nd/(nu + nd). The result for “colour-charged neutron-star matter” comes with an error
band where the lower (upper) end represents the lower (upper) end of the uncertainty of the gap.

matter” (orange diamond pattern), exceed the value associated with the noninteracting quark gas which
is given by c2s = 1/3 and increase towards lower densities within the considered density regime. Notably,
the bands lie close to each other and even overlap going to higher densities where they seem to converge.
However, the apparent convergence of the speed of sound towards high densities has to be discussed carefully:
In Fig. 3.12, we have only plotted the speed of sound in the density regime (n/n0 . 27) where the trajectories
for “neutron-star matter” and “colour-charged neutron-star matter” lie in the gapped phase, see Fig. 3.9
and 3.10. However, the associated trajectory in the phase diagram eventually hits the first-order phase
boundary and then enters the ungapped phase, so that the system can be described by a noninteracting
quark gas. At this point, the speed of sound is, in the present model, given by the value associated with
the noninteracting quark gas c2s = 1/3. In contrast to that, symmetric matter remains in the gapped phase
and, for the current model, it remains above the value for the noninteracting quark gas. Still, the speed
of sound for symmetric matter may also cross the line associated with the noninteracting quark gas and
approach it from below at even higher densities when including higher-order corrections from QCD which are
not considered in the present model. We shall come back to this in detail in Sec. 3.2. However, in contrast to
asymmetric matter, a gap still exists for symmetric matter even at very high densities. For future calculations,
it is interesting to note that the bands for “neutron-star matter” and “colour-charged neutron-star matter”
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Figure 3.12: Speed of sound squared c2s in units of the speed of light squared as a function of the baryon
density n normalised by the nuclear saturation density n0. We compare the results obtained in the present
work for isospin-symmetric matter (green band) and for “neutron-star matter” (black band). We also show
the results for “colour-charged neutron-star matter” (orange diamond pattern). The noninteracting limit,
which is given by c2s = 1/3, is illustrated by the grey dashed line. The error bands represent the uncertainty
of the gap which has been used to fix the initial conditions, where the upper (lower) end corresponds to the
upper (lower) end of the gap.

are almost indistinguishable from one another, at least with regards to the density dependence of the speed
of sound. In comparison to that, the results for the electron fraction clearly deviate, especially for lower
densities, see Fig. 3.11 (right panel). Therefore, it seems to be sufficient to only implement electric-charge
neutrality and to ignore constraints from colour-charge neutrality in practice, at least if only the speed of
sound is of interest. Even results for symmetric matter seem to be a good estimate for the speed of sound in
“neutron-star matter”, provided that the corresponding trajectory lies in the gapped phase, considering that
the implementation of colour-charge and electric-charge neutrality might come at an increased numerical cost
in a more advanced calculation, taking into account additional degrees of freedom. Note that the inclusion of
the neutrality constraints appears to lower the speed of sound compared to symmetric matter, most notably
towards lower densities.
The qualitative behaviour can also be estimated from the pressure for symmetric matter in leading order
of the gap (3.41) and by assuming that the gap is given by ∆̄gap ∼ exp

(
−c′/µ̄2

)
and µ̄ ∼ n1/3 as done in

Sec. 3.1.5. Then, the deviation of the speed of sound squared from its value in the noninteracting limit is

c2s −
1

3
∼ 1

n2/3
exp

(
− 2c′′

n2/3

)
, where c′′ > 0 . (3.68)

Here, we have dropped higher-order corrections ∼ 1/n1/3 and ∼ ∆̄gap/µ̄. Therefore, we indeed find that the
speed of sound approaches the value associated with the noninteracting quark gas from above, at least for
symmetric matter. This statement is insensitive to the details of the form of the gap, only relying on the
expansion of the pressure (3.41) and that the gap increases monotonically as a function of µ̄, in particular,
that ∆̄gap/µ̄→ 0 for µ̄→∞.
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Figure 3.13: Speed of sound squared c2s in units of the speed of light squared as a function of the baryon den-
sity n normalised by the nuclear saturation density n0. The grey dashed line represents the value associated
with the noninteracting quark gas c2s = 1/3. We show the results obtained in this work for isospin-symmetric
matter (green band) and for neutron-star matter (black band) that have already been shown in Fig. 3.12. For
comparison, we show results for the speed of sound for isospin-symmetric matter obtained by chiral effective
field theory (chiral EFT, blue band) [126], an fRG study taking into account a diquark gap (red) [126], and
an fRG study where no diquark gap is included in the calculation (purple) [126].

In Fig. 3.12, we only show the speed of sound for densities above 7n0 because we cannot reliably constrain
the speed of sound for low densities. As we have seen by comparing the diquark gap used in the present
model with previous fRG results [126], see Fig. 3.6, the results agree nicely but deviate clearly when going
to lower densities because the previous fRG results include a Fierz-complete set of four-quark interactions.
Consequently, reliable constraints for lower densities require the inclusion of at least the scalar-pseudoscalar
channel because the low-density regime is governed by the formation of a chiral condensate and is dominated
by the formation of pions and nucleons. In this density regime, the speed of sound can be calculated using,
e.g., chiral effective field theory (chiral EFT). In Fig. 3.13, we therefore compare results for the speed of
sound squared as a function of the baryon density in units of the nuclear saturation density, as obtained
from chiral EFT at low densities (blue band, [125, 126]) to results from the present work where we show
the speed of sound for “neutron-star matter” (black band) and symmetric matter (green band). We further
show results from the previous fRG calculations, see Ref. [126, 179], based on a Fierz-complete set of (gluon-
induced) four-quark interactions (red band), which also indicates the formation of a diquark gap, and an
approximation that does not take into account the existence of a diquark gap (purple band). Our results
are consistent with the results employing a Fierz-complete set for n/n0 & 7. This is expected since this is
the density regime where the diquark channel is expected to be dominant according to the aforementioned
Fierz-complete study, see Refs. [179]. Furthermore, the speed of sound in the approximation not including
a diquark gap (purple band) does not exceed the value associated with a noninteracting quark gas. This
indicates that a diquark gap is essential to obtain a speed of sound that exceeds the noninteracting limit.
Note that the speed of sound for lower densities is not accessible in our current approximation but requires,
at least, the inclusion of chiral interaction channels. However, together with the results from chiral EFT
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Figure 3.14: Speed of sound (squared) for gapped isospin-symmetric matter as obtained by evaluating the
effective potential at the ground state (as already shown in Fig. 3.12 and Fig. 3.13) compared to an estimate
for the speed of sound for isospin-symmetric matter as obtained from the expansion of the pressure (3.41) in
terms of the gap (blue band). The error bands represent the uncertainties of the gap where the upper (lower)
end corresponds to the upper (lower) end of the gap. Note that we consider the expansion of the pressure in
more detail in the subsequent section, see Sec. 3.2. The horizontal dashed line represents the value for the
speed of sound for a noninteracting quark gas.

(blue band), the results indicated that the speed of sound squared exhibits a maximum for n/n0 . 10 which
is also in accordance with the previously mentioned fRG result from Ref. [126]. Therefore, the existence of
a maximum in the speed of sound seems to be tightly connected to the formation of a diquark gap associ-
ated with a colour-superconducting ground state. Interestingly, constraints from observations of neutron-star
masses strongly suggest that the speed of sound has a maximum for neutron-rich matter [103, 119–122]. The
exact position of the maximum remains unknown and indeed requires the inclusion of additional degrees of
freedom such as pions and nucleons, which become relevant in this density regime [165–168, 179].
Recall that we have used the results for the diquark gap from our fRG calculation, see Sec. 2.5, and considered
the result for “gapped” gluons instead of “ungapped” gluons to fix the model parameters. There, we found
that the gap for “ungapped” gluons is approximately two times bigger than compared to “gapped” gluons.
In principle, we can also tune the model parameters so that we recover the gap for “ungapped” gluons. The
change in the size of the gap affects the speed of sound such that we find an increase of up to 70% in the speed
of sound squared at least when considering the analytic estimate for the pressure (3.41). The qualitative
behaviour, i.e., the increase towards lower densities, remains unaffected.
We also have the freedom to choose the model parameters λ̄csc and λ̄eff. However, a variation of the model
parameters only results in a mild dependence of the speed of sound squared c2s and does not change the
qualitative behaviour if the model parameters are chosen such that the gap as a function of the chemical
potential does not change.
The pressure as a function of the density, which is another quantity that is of great importance for astro-
physical applications, is only determined up to a constant in the present study since this constant requires
knowledge about QCD in the vacuum. Different possibilities to calculate this constant have been discussed
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for low-energy models in Refs. [166, 344–346]. However, as already mentioned before, the speed of sound
as obtained in the present work is compatible with the result from the Fierz-complete study, see Ref. [126],
that also takes into account a colour-superconducting diquark gap. There, the pressure for isospin-symmetric
matter has been calculated and it has been found that the pressure is consistent with calculations that do not
take into account a diquark gap. Since the speed of sound is only mildly affected by the isospin imbalance,
at least in the density regime underlying the present study, we expect that the effect on the pressure is also
small. Therefore, we postpone a detailed analysis of this aspect to future work.
We close this section by guiding the discussion to the subsequent section, see Sec. 3.2. The reliability of
the present results can be investigated by considering the expansion of the pressure (3.41) already used for
the analytic estimates throughout Sec. 3.1. We compare the speed of sound for isospin-symmetric matter
with its estimate as obtained from this expansion of the pressure in Fig. 3.14. We find that the qualitative
behaviour is identical, i.e., the speed of sound exceeds the value associated with the noninteracting quark gas
and increases when decreasing the density. However, the estimated speed of sound is shifted towards lower
values. It is noteworthy that the expansion of the pressure (3.41) does not explicitly depend on the model
parameters but only depends on the chemical potential and the diquark gap. It should be emphasised that
the gap implicitly depends on the model parameters. The expansion of the pressure can be associated with
regimes where ∆̄gap/µ is sufficiently small. This aspect is also present in the results in Fig. 3.14 where the
results for the speed of sound seem to converge towards higher densities (associated with a larger chemical
potential). Note that in the density regime considered in the present work, we have 0.3 . |∆gap|/µ . 0.6.
In the following section, see Sec. 3.2, we shall extend on the idea to use an expansion of the pressure for the
qualitative study of the speed of sound. As already mentioned, the calculation of the speed of sound going to
even higher densities, becomes more involved. The present results indicate that the speed of sound squared
for symmetric matter stays above the noninteracting limit and approaches it from above. However, results
for corrections to the noninteracting quark gas, e.g., from perturbative QCD, should be taken into account
when going to even higher densities than those considered in the present work. Using an extended version of
the expansion of the pressure in terms of the gap by including effects from perturbative QCD should give us
an insight into effects from corrections to the noninteracting quark gas.

3.2 Constraints on the Equation of State and the Speed of Sound

In the previous section, see Sec. 3.1.7, we have seen that, by including a colour-superconducting gap, the speed
of sound exceeds the value associated with a noninteracting quark gas and approaches the corresponding limit
from above for n → ∞ at least for isospin-symmetric matter. However, constraints from perturbative QCD
suggest that the speed of sound approaches the aforementioned limit from below provided that the colour-
superconducting gap does not contribute significantly at very high densities [154–162, 320]. With the present
section, we intend to bridge the gap between these two density regions: At intermediate densities, we expect
that the speed of sound exceeds the noninteracting limit whereas, at very high densities, we expect that the
noninteracting limit is approached from below. This shall allow us to identify a density where, coming from
high densities, the speed of sound exceeds the noninteracting limit. In addition to that, we compare the
dominance patterns for different density regimes and analyse the qualitative behaviour of the speed of sound
and the underlying mechanisms. For this purpose, we again turn to symmetric matter so that the speed of
sound (squared) is given by

c2s =
1

µ

(
∂P

∂µ

)(
∂2P

∂µ∂µ

)−1
. (3.69)
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From this expression, it becomes clear that the speed of sound is very sensitive to changes in the density
dependence of the pressure so that a qualitative description requires to include the relevant degrees of freedom.
We consider density regimes which are governed by the presence of a colour-superconducting diquark gap. To
not only rely on results obtained in Chap. 2, in particular for the diquark gap signalling the onset of colour
superconductivity, we shall additionally use another functional form of the gap, see Sec. 3.2.1 and Sec. 3.2.2
for details.
We start with a general discussion of the expansion of the equation of state in the presence of a colour-
superconducting gap in terms of the pressure in Sec. 3.2.1, relying on very general assumptions. We consider
two massless quark flavours coming in three colours and concentrate on symmetric matter. In practice,
this leads to an extension of the expansion of the pressure (3.41) already underlying the analytic estimates
throughout Sec. 3.1. In Sec. 3.2.2, we apply the findings to a qualitative study of the speed of sound which
shall allow us to identify the relevant degrees of freedom and mechanisms for different densities.

3.2.1 Expansion of the Equation of State

The pressure for the noninteracting quark gas (Stefan-Boltzmann limit) is given by

PSB =
µ4

2π2
. (3.70)

However, we consider density regimes which are expected to be governed by the presence of a colour-
superconducting gap |∆̄gap| in the excitation spectrum of the quarks, see Chap. 2 for details. The gap
depends on the chemical potential and the strong coupling which we assume to be a constant parameter
for now. Since the chemical potential is the only dimensionful quantity, we can write the gap as |∆̄gap| =
|∆̄gap(µ, g)| = µf∆(g), where the function f∆ only depends on the strong coupling g.
In Chap. 2, we have considered the chirally symmetric diquark gap (with JP = 0+) associated with pairing
of the two-flavour colour-superconductor type (2SC). This gap is closely related to the expectation value
of a quark bilinear: ∆̄a

gap ∼ 〈ψTCγ5τ2εaψ〉. However, note that |∆̄gap|2 =
∑
a |∆̄a

gap|2 is a gauge-invariant
quantity. In the weak-coupling limit, the aforementioned gap was calculated analytically in Refs. [82, 83, 87,
88, 90] for very high densities. There, it was found that

|∆̄gap| ∼ µg−5 exp
(
− 3π2

√
2g

)
. (3.71)

By considering a constant strong coupling, the gap only exhibits a trivial dependence on the chemical potential
since it is the only dimensionful quantity. Going towards lower densities where the weak-coupling limit is
expected to break down, the functional form of the gap may deviate from Eq. (3.71) and become nontrivial,
see Refs. [50, 56, 82, 84, 87, 88, 126, 321, 322, 347] for discussions.
The calculation of the pressure, as the quantum effective action Γ evaluated at its minimum, requires to
take the emergence of the gap in the fermionic excitation spectrum into account, as we have already seen
in Sec. 3.1. The resulting pressure is a function of the gap and the strong coupling: P = P (g, |∆̄gap|2).
From dimensional and symmetry arguments, we therefore find an expansion of the pressure in terms of the
dimensionless quantity |∆̄0|2 = |∆̄gap/µ|2 so that

P = PSB

(
γ0(g) + γ1(g)|∆̄0|2 +

1

2
γ2(g)|∆̄0|4 + · · ·

)
. (3.72)

The coefficients depending on the strong coupling in the expansion are given by

γi(g) =
µ2i

PSB

∂iP (g, |∆̄gap|2)
∂(|∆̄gap|2)i

∣∣∣∣
|∆̄gap|=0

. (3.73)

130



3.2 Constraints on the Equation of State and the Speed of Sound

In the expansion, we assume the pressure to be an analytic function of the gap, which is reasonable to assume
to be valid far enough away from a phase transition. For the first coefficient γ0 that gives corrections to the
pressure in the absence of a gap (gap-independent contribution to the pressure), we have

γ0(g) = 1 +O(g2) . (3.74)

Provided that the strong coupling is sufficiently small, these corrections can be extracted from perturbative
calculations, see Refs. [154–162, 320].
For the coefficient describing corrections to gap-dependent contributions ∼ |∆̄0|2, we have

γ1(g) = 2 +O(g2) . (3.75)

The coefficients γj can be related to correlation functions with 4j quarks evaluated at vanishing gap. For
instance, γ1 can be obtained from a calculation of the four-quark correlation function〈

(ψ̄τ2εaγ5Cψ̄T )(ψTCγ5τ2εaψ)
〉 ∣∣
|∆̄gap|=0

. (3.76)

Correlation functions corresponding to j > 1 have been found to be subleading, see the discussion in Chap. 2.
Considering g-dependent corrections to γ1 is beyond the scope of the present work. However, note that the
ground state at sufficiently high densities is expected to exist in a colour-superconducting state. Therefore,
the pressure should be greater than the pressure without a gap. Otherwise, the system would exist in
an ungapped phase since the ground state is the phase associated with the highest pressure. It follows
that γ1(g) > 0 for sufficiently high densities, where ∆̄0 is small so that higher orders in the expansion can be
dropped.
Up to now, the only dimensionful quantity is the chemical potential. However, taking into account the
scale dependence of the strong coupling in a nonperturbative calculation, the gap may acquire a nontrivial
dependence on the chemical potential since the chemical potential has to be measured in units of the scale
set by the running coupling which introduces a new dimensionful quantity. Using for example the one-loop
coupling and evaluating it at the scale set by the chemical, which yields g2(µ/ΛQCD) = 1/(b0 ln(µ/ΛQCD)),
the dimensionful quantity introduced by the running of the strong coupling is ΛQCD. In the expansion of the
pressure, we therefore consider g as a function of the dimensionless quantity µ/ΛQCD so that

P = PSB
(
γ0
(
g (µ/ΛQCD)

)
+ γ1

(
g (µ/ΛQCD)

)
|∆̄0|2 + · · ·

)
. (3.77)

Here, ∆̄0 = ∆̄0(µ, g(µ/ΛQCD)). It follows, already in the limit of vanishing gap, that the pressure acquires
a nontrivial dependence on the chemical potential which already leads to a deviation of the speed of sound
from the noninteracting limit c2s = 1/3.

3.2.2 Speed of Sound

3.2.2.1 General Considerations

In the following, we use the considerations from the previous section to conduct a qualitative study of the
speed of sound. We employ Eq. (3.77) and set γi = 0 for i > 1 so that the pressure reduces to

P ≈ PSB
(
γ0 + γ1|∆̄0|2

)
. (3.78)

We expect that higher-order corrections ∼ |∆̄0|2n for n > 1 in the gap are not needed for the qualitative study
considered here. Indeed, we have seen that higher-order corrections do not alter the qualitative behaviour of
the speed of sound, see Fig. 3.14 and the discussion in Sec. 3.1.7. However, it is worth noting that considering
the expansion of the pressure instead of solving the underlying exact expression for the pressure shifts the
speed of sound towards slightly lower values.
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Before showing the speed of sound, we consider and discuss two limiting cases for γ0 and γ1. Firstly, we
set γ0 = 1 and γ1 = 2 which corresponds to the approximation of the pressure (3.41) underlying the analytic
estimates presented throughout Sec. 3.1 and the estimate for the speed of sound shown in Fig. 3.14. This
approximation also corresponds to early studies of the pressure of dense strong-interaction matter, see,
e.g., Refs. [46, 339, 340]. From the estimate of the speed of sound (3.68) underlying the aforementioned
expansion of the pressure, we find that the speed of sound for symmetric matter approaches the value in the
noninteracting limit from above for µ → ∞ (corresponding to n → ∞). The statement is insensitive to the
details of the form of the gap and only relies on the expansion of the pressure (3.41) and that ∆̄gap/µ̄ → 0

for µ̄→∞. This is in accordance with the expected behaviour of the gap for at least very high densities [46,
47, 49, 50, 56, 82, 84, 87, 88, 126, 321, 322, 330]. The behaviour of the speed of sound is also reflected in the
estimate in Fig. 3.14. Note that, in this setting, the γi’s are independent of the strong coupling g.
Secondly, we include corrections (i.e., perturbative contributions) to the gap-independent contribution γ0 to
the pressure while dropping all gap-induced corrections so that γi = 0 for i > 0. To recover the perturbative
QCD result for the pressure at leading order in the coupling g, see Refs. [154–156, 320], we choose

γ0(g) = 1− g2

2π2
+O(g3) . (3.79)

The contribution ∼ g2 in Eq. (3.79) is generated from a two-loop diagram. For our qualitative analysis,
however, we employ the standard one-loop result [318] for the strong coupling which is given by

g2(µ/ΛQCD) =
1

b0 ln(µ/ΛQCD)
. (3.80)

We evaluate the strong coupling at the scale set by the chemical potential. Here, the QCD scale ΛQCD is
given by ΛQCD = Λ0 exp(−1/(b0g20)) with b0 = 29/(24π2) and g0 is the value of the strong coupling at the
scale Λ0. For g20/(4π) = 0.179 at Λ0 = 10GeV, which is used in the following to fix the strong coupling,
we have ΛQCD ≈ 0.265GeV. For details about the strong coupling, see App. D. Within this approximation,
the speed of sound is smaller than the noninteracting limit and approaches it from below for n → ∞ which
we shall discuss in more detail below. This behaviour is unaffected when taking into account higher-order
corrections in γ0 [126, 160–162].
In the expansion of the pressure (3.78) gap-induced contributions appear to be suppressed, at least for
small ∆̄gap/µ̄. Indeed, for µ→∞ this contribution vanishes provided that ∆̄gap/µ̄→ 0 in this limit. Then,
the pressure effectively reduces to the ungapped case so that only γ0 has to be specified. However, while
this may be an appropriate and convenient estimate for the pressure, the qualitative behaviour of the speed
of sound is heavily influenced by gap-induced corrections to the pressure. This becomes apparent when
considering the definition of the speed of sound as the first derivative of the pressure divided by the second
derivative of the pressure each with respect to the chemical potential, see Eq. (3.69). The speed of sound
is consequently very sensitive to the dependence of the pressure on the chemical potential, so that even
comparatively small changes in the pressure that affect it only quantitatively can induce a qualitative change
in the speed of sound.
Therefore, we combine the previous two cases by setting γi = 0 for i > 1, choosing γ0 as introduced in
Eq. (3.79), and using γ1 = 2. Recall that choosing γ0 = 1 and γ1 = 2 leads to a speed of sound that exceeds
the noninteracting limit which is then approached from above towards very high densities. In contrast to
that, choosing γ0 as introduced in Eq. (3.79) and γ1 = 0 leads to a speed of sound that falls below the
noninteracting limit which is then approached from below. Consequently, we expect that the size of the gap
has an influence on the qualitative behaviour of the speed of sound.
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Figure 3.15: Comparison of the colour-superconducting gap |∆̄gap| (top panel) and the dimensionless quan-
tity |∆̄gap/µ| (bottom panel) as a function of the chemical potential µ. For the red lines, we have employed
the functional form of the gap in the weak-coupling limit (red line) from Ref. [56, 82, 87, 88]. The gap is
recovered by setting s0 = 1 in Eq. (3.81). The blue lines represent the gap shown in Sec. 2.6.3 as obtained
by the fRG calculation. More specifically, it is the gap in Landau gauge presented in Fig. 2.29, see main
text for details. The error bands have also been adapted from the aforementioned calculation which include
uncertainties from the experimental value of the strong coupling and a variation of the regularisation scheme.

For the dimensionless diquark gap |∆̄0|2 = |∆̄gap/µ|2 entering the expansion of the pressure (3.78), we employ
two different results since the precise functional form of the diquark gap as a function of the density is still
unknown and under ongoing investigation. In addition to that, we expect to gain a better understanding
on the influence of the density dependence of the gap on the qualitative behaviour of the speed of sound.
Firstly, we use the result from the aforementioned early study in the weak-coupling limit, see Refs. [56, 87,
88]. There, it has been found that

|∆̄gap| = sµg−5 exp

(
− 3π2

√
2g

)
, (3.81)

where s = 512π4 exp(−(4 + π2)/8)s0. We have introduced s0 to rescale the gap by a constant factor, see the
following discussion for details. For s0 = 1 the gap in the weak-coupling limit as found in Refs. [56, 87, 88]
is recovered.
Secondly, we use the diquark gap from the fRG study discussed in Chap. 2, where the gap has been calcu-
lated at intermediate densities from first principles. In particular, we use the gap obtained from the QCD
calculation in Sec. 2.6.3 in Landau gauge. Note that this gap depends implicitly on the strong coupling g,
see also the analytic estimate of the gap (2.94) in Sec. 2.5. The gap from the fRG study is only available in
numerical form but is consistent with the gap found in conventional low-energy model studies at least for low
densities [85, 126]. We show it as a function of the chemical potential alongside the gap in the weak-coupling
limit in Fig. 3.15.
To gain a better understanding of the influence of the size of the gap on the speed of sound, we shall vary the
size of the gap from the fRG calculation in Sec. 2.6.3 by rescaling it with a constant factor. For the gap in
the weak-coupling limit, we shall rescale the gap by varying the factor s0. Since we vary the size of the gap
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anyway, we do not use the error band depicted in Fig. 3.15 but use the gap as obtained by fixing the strong
coupling with g20/(4π) = 0.179 at Λ0 = 10GeV (blue line in Fig. 3.15). It should be noted that rescaling the
gaps employed in the present work slightly changes the respective density dependences.

3.2.2.2 Numerical Results

With Eq. (3.69) and the expansion of the pressure (3.78), we can calculate the speed of sound underlying
the aforementioned considerations, i.e., by choosing γ0 as introduced in Eq. (3.79) and γ1 = 2. The speed of
sound (squared) as a function of the baryon density n = (∂P/∂µ)/3 employing the gap in the weak-coupling
limit, see Eq. (3.81), is shown in Fig. 3.16. Utilising the gap from the fRG study leads to the speed of sound
shown in Fig. 3.17. The qualitative behaviour of the speed of sound as a function of the density remains
consistent in both cases. We show the speed of sound (squared) for different values of the gap at n/n0 = 10:
∆∗ = |∆̄gap(n/n0 = 10)|. Note that n/n0 = 10 is roughly associated with a chemical potential µ ≈ 0.6GeV.
The different values of the gap at n/n0 = 10 have been obtained by artificially varying the size of the gap
according to the discussion above. We find that for small values of the gap (associated with ∆? = 0.022GeV,
red lines), the speed of sound approaches the noninteracting limit from below and is almost identical to the
perturbative QCD result (blue dashed lines). However, by increasing the size of the gap, we find a change
in the qualitative behaviour of the speed of sound. This effect of the diquark gap becomes larger for smaller
densities where the speed of sound eventually exceeds the value in the noninteracting limit. Going to higher
densities, the speed of sound decreases so that it eventually crosses the line associated with the noninteracting
limit. We shall refer to this density as the “crossing density” n∗cs

in the following (coloured dots and dotted
lines in Fig. 3.16 and Fig. 3.17). In calculations where the crossing density is located at n∗cs

/n0 = 10, the
size of the gap at the crossing density is given by ∆∗ ≈ 0.175GeV for the gap in the weak-coupling limit
and ∆∗ ≈ 0.215GeV for the gap from the fRG calculation. Going to higher densities beyond the crossing
density, we eventually find a local minimum in the speed of sound at n = nmin. In the limit n → ∞, the
speed of sound then approaches the noninteracting limit from below and lies close to the aforementioned
limit for high densities. This behaviour for n→∞ is present for all sizes of the gaps whereas the increase in
the speed of sound towards lower densities only exists for sufficiently large values of the gap.
With these considerations, we can split the density range into two distinct regions: For n > nmin gap-induced
corrections are subleading and can therefore be dropped in the calculation of the pressure and the speed of
sound. For n < nmin gap-induced corrections become dominant and lead to a qualitative change of the speed
of sound so that it even exceeds the noninteracting limit at the crossing density n∗cs

. However, these values
for nmin and the crossing density n∗cs

depend on the size of the gap and the functional form. By considering
the same functional form, an increase in the size of the gap leads to a shift of the crossing density n∗cs

and
the minimum nmin towards higher densities. Comparing the speed of sound as obtained from the gap in the
weak-coupling limit and the one from the fRG calculation, we find that a larger gap is needed to exceed the
noninteracting limit demonstrating the dependence of the speed of sound on the functional form of the gap.
Recall, that the estimate for the speed of sound (as obtained from an expansion of the pressure) shown in
Fig. 3.14 is smaller compared to a calculation taking into account arbitrary orders in the gap. Therefore, we
expect that the current calculation rather underestimates the speed of sound.
We analyse the dependence of the crossing density on the gap and its functional form in more detail in
Fig. 3.18. There, we show the crossing density n∗cs

as a function of the value of the gap at the crossing
density |∆̄gap(n

∗
cs
)| (left panel) and the value of the gap at n/n0 = 10: |∆̄gap(n/n0 = 10)| (right panel).

We again find that increasing the size of the gap leads to an increase in the crossing density. Considering
a large gap, the speed of sound exceeds the noninteracting limit already for very high densities. As we
have already seen in Fig. 3.16 and Fig. 3.17, the crossing density also depends on the functional form of the
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Figure 3.16: Speed of sound (squared) as a function of the baryon density n normalised by the nuclear satu-
ration density n0 for different values ∆∗ as obtained from the gap in the weak-coupling limit, see Eq. (3.81).
Here, ∆∗ corresponds to the value of the gap at n/n0 = 10: ∆∗ = |∆̄gap(n/n0 = 10)|. In practice, the param-
eter s0 in Eq. (3.81) has been tuned such that we recover ∆∗ = 0.022GeV, 0.160GeV, 0.235GeV, 0.300GeV,
where ∆? = 0.022GeV corresponds to s0 = 1. In an early low-energy model, it has been found that
|∆̄gap| ≈ 0.07 . . . 0.16GeV at n/n0 = 5 [85]. For a comparison, we show the perturbative QCD (pQCD)
result (dashed blue line) which has been obtained by setting the gap to zero (or γi = 0 for i > 0) in the
expansion of the pressure (3.78) and choosing γ0 as given in Eq. (3.79). Note that it lies very close to the
line for ∆∗ = 0.022GeV. The density where the speed of sound for the different gap sizes crosses the line
associated with the noninteracting quark gas is given by coloured dots and dotted vertical lines and the speed
of sound of the noninteracting quark gas is given by the dashed horizontal line.

gap. Indeed, when comparing the crossing density for the gap in the weak-coupling limit with that from the
fRG calculation, we find that it differs for the same value of the gap at |∆̄gap(n

∗
cs
)| or |∆̄gap(n/n0 = 10)|,

respectively. Keeping the size of the gap |∆̄gap(n/n0 = 10)| fixed and comparing the crossing density as
obtained from the gap in the weak-coupling limit to the one from the fRG calculations, we find that the
crossing density eventually becomes larger for the fRG calculation (right panel). Nevertheless, by considering
the crossing density as a function of the gap at the crossing density |∆̄gap(n

∗
cs
)| (left panel) instead of the

gap at n/n0 = 10 (|∆̄gap(n/n0 = 10)|, right panel), the aforementioned difference in the crossing density is
smaller. For a given crossing density n∗cs

, the value of the gap at the crossing density is smaller employing
the functional form of the weak-coupling limit. This effect is stronger for densities n∗cs

. 40. However, the
qualitative behaviour of the crossing density in the two cases is similar.

3.2.2.3 Analytic Analysis

The qualitative behaviour of the speed of sound and the crossing density can already be understood by
considering an analytic estimate for the speed of sound. Inserting the expansion of the pressure (3.78) into
the definition of the speed of sound (3.69) and only considering terms up to the order |∆̄0|2 leads to

c2s =
1

3
+

π2

6µ3

∂

∂µ
PSB

(
γ0 − 1 + γ1|∆̄0|2

)
+ . . . . (3.82)
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Figure 3.17: Speed of sound (squared) as a function of the baryon density n normalised by the nuclear
saturation density n0 for different values ∆∗ as obtained by employing the gap with a functional as obtained
in the fRG study and as shown in Fig. 3.15. Here, ∆∗ corresponds to the value of the gap evaluated at
n/n0 = 10: ∆∗ = |∆̄gap(n/n0 = 10)|. In practice, we have simply rescaled the gap as already done for the gap
in the weak-coupling limit in Fig. 3.16 such that we recover ∆∗ = 0.022GeV, 0.160GeV, 0.235GeV, 0.300GeV,
where ∆? = 0.235GeV corresponds to the gap as shown in Fig. 3.15 without any scaling. As before, for a
comparison, we show the perturbative QCD (pQCD) result (dashed blue line), which was obtained by setting
the gap to zero (or γi = 0 for i > 0) in the expansion of the pressure (3.78) and choosing γ0 as given in
Eq. (3.79). The density where the speed of sound for the different gap sizes crosses the line associated with
the noninteracting quark gas is given by coloured dots and dotted vertical lines where the speed of sound of
the noninteracting quark gas is given by the dashed horizontal line.

Note that we have assumed that corrections to the noninteracting quark gas are small so that they can be
dropped in the denominator of Eq. (3.69). From the expansion (3.82) of the speed of sound, we can read off
that the speed of sound exceeds the value of the noninteracting quark gas provided that

∂

∂µ
PSBγ1|∆̄0|2 >

∂

∂µ
PSB (1− γ0) . (3.83)

Without taking into account corrections to the gap-independent contribution γ0 to the pressure, i.e., set-
ting γ0 = 1, it follows that cs > 1/3 provided that PSBγ1|∆̄0|2 increases as a function of the chemical
potential. With γ0 as introduced in Eq. (3.79) (i.e., with perturbative corrections included), we find that
the µ dependence of the right-hand side of Eq. (3.83) is given by

PSB (1− γ0) ∼
µ4

ln(µ/ΛQCD)
. (3.84)

The left-hand side of Eq. (3.83) depends on the diquark gap and its dependence on the chemical potential. In
the following, we assume that the µ dependence of the left-hand side of Eq. (3.83) can be written as follows

PSBγ1|∆̄0|2 ∼ µ2(1+σ) . (3.85)

A fit to the latter equation (for 0.5GeV . µ . 1.5GeV) gives σ ≈ 0.3 for the gap from the fRG calculation
and σ ≈ −0.2 for the gap obtained in the weak-coupling limit. This approximately corresponds to a µ

dependence of the gap |∆̄gap| ∼ µσ where σ is an effective scaling exponent.
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Figure 3.18: Density where the speed of sound crosses the line associated with the speed of sound associated
with the noninteracting quark gas (crossing density) n∗cs

normalised by the nuclear saturation density n0 as
a function of the value of the gap at the crossing density |∆̄gap(n

∗
cs
)| (left panel) and as a function of the

value of the gap at n/n0 = 10, |∆̄gap(n/n0 = 10)| (right panel). We compare the results from employing
the gap in the weak-coupling limit (red lines), see Eq. (3.81), with the ones from employing the gap from
the fRG calculation (dashed blue lines). See Fig. 3.15 for the functional form of the gaps as a function of
the chemical potential. The dots are associated with the dotted lines and coloured dots in Fig. 3.16 and
Fig. 3.17, respectively.

With these considerations, it is in principle possible to obtain an estimate for the value of the chemical
potential µ∗cs

where the speed of sound exceeds the value in the noninteracting limit. This chemical potential
is associated with the crossing density n∗cs

. It follows that this value depends on the size of the colour-
superconducting diquark gap and its functional form. Moreover, it is also possible to find an analytic
estimate for the speed of sound. Employing Eqs. (3.82), (3.84) and (3.85), we find

c2s ≈
1

3
+ c̄0(1 + σ)n

2(σ−1)
3 − c̄1

ln(c̄2n
1
3 )
. (3.86)

Here, c̄0, c̄1, and c̄2 are positive constants and c̄2n
1
3 > 1 within the considered density range. In addition

to that, σ measures the functional form of the gap. For σ < −1, we do not expect that the speed of
sound exceeds the noninteracting limit, at least at this order of our approximation. However, for σ > −1 it is
possible that the speed of sound exceeds the noninteracting limit, at least if the gap-independent contributions
(corresponding to c̄1) are small compared to gap-induced contributions (corresponding to c̄0).
The influence of the size of the diquark gap and its functional form can also be illustrated by comparing
the leading-order gap-induced contribution to the pressure of a noninteracting quark gas, given by γ1|∆̄0|2,
with the leading order perturbative correction to the gap-independent contribution to the pressure, given
by (1−γ0). We show this ratio in Fig. 3.19 for different values of the gap ∆∗ at n/n0 = 10. As expected, the
impact of the gap-induced contribution increases by increasing the gap. However, already comparatively small
gap-induced corrections might alter the qualitative behaviour of the speed of sound. For this, we consider,
e.g., the ratio associated with ∆? = 0.160GeV employing the gap as obtained in the weak-coupling limit
(solid green line in Fig. 3.16 and Fig. 3.19), where the crossing density is given by n∗cs

≈ 8. At this density,
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Figure 3.19: Comparison of the leading-order gap-induced correction, given by γ1|∆̄0|2, to the pressure with
the size of the leading order perturbative contribution, given by (1−γ0), as a function of the baryon density n
in units of the nuclear saturation density n0. The solid lines have been obtained by employing the gap from
the weak-coupling limit, see Eq. (3.81), while the dashed lines represent results obtained with the gap from the
fRG calculation. To examine the effect of the size of the gaps, they have been rescaled so that ∆? corresponds
to their respective values at n/n0 = 10, see main text for details. Here, ∆? = 0.022GeV corresponds to the
value of the gap in the weak-coupling limit without rescaling and ∆? = 0.235GeV to the value of the gap
from the fRG calculation without rescaling.

the perturbative contribution is four times larger than the gap-induced corrections. Going to n/n0 ≈ 28

where the speed of sound has a local minimum, we find that perturbative contributions are about six times
bigger than gap-induced corrections. In this density range, the gap-induced contribution to the pressure
corresponds to approximately 5% of the pressure. Similar to this, we can consider ∆? = 0.350GeV and use
the gap from the fRG calculation (solid orange line in Fig. 3.17 and dashed orange line in Fig. 3.19) so that
the crossing density is n∗cs

≈ 32. We again find that perturbative contributions are roughly twice as big as
gap-induced corrections. In this density range, the gap-induced contribution to the pressure corresponds to
approximately 20% of the pressure. Therefore, we can conclude that even if gap-induced contributions are
small compared to the gap-independent corrections and the change in the pressure might seem small, the
inclusion of gap-induced contributions might still lead to a qualitative and sizeable change in the speed of
sound. This behaviour has already been observed in a previous fRG calculation, see Ref. [126]. There, it
has been found that the pressure including a diquark gap, is consistent with calculations that do not take
into account a gap. In contrast to that, the presence of the diquark gap makes a significant difference in the
speed of sound and leads to a maximum at supranuclear densities.
We conclude this section by comparing the speed of sound as obtained from the expansion of the pressure
with results from the previous fRG calculation [126] and chiral EFT at low densities [125, 126] already shown
in Fig. 3.13 in Sec. 3.1.7. The speed of sound squared c2s as a function of the total baryon density n is shown
in Fig. 3.20. Note that the results in the present section only present qualitative estimates for the speed of
sound. However, since the error band includes the variation of the size of the gap and its functional form
as considered in the present section, we expect that it is useful to at least test the robustness of the results
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Figure 3.20: Speed of sound squared c2s in units of the speed of light squared as a function of the baryon den-
sity n normalised by the nuclear saturation density n0. The grey dashed line represents the value associated
with the noninteracting quark gas c2s = 1/3. We show the results obtained from the expansion of the pressure
(green band) as considered in the present section. The error band includes a variation of the size of the gap
(by rescaling it) and the functional form of the gap, see main text for details. The size of the gap has been
tuned such that ∆? = 0.022GeV . . . 0.300GeV where ∆? corresponds to the value of the gap at n/n0 = 10:
∆? = |∆̄gap(n/n0 = 10)|. For the functional form, we used the gap in the weak-coupling limit (3.81) and the
gap from the fRG calculation, see main text for details. For comparison, we show results for the speed of
sound for isospin-symmetric matter obtained by chiral EFT (blue band, [126]) and an fRG study taking into
account a diquark gap (red, [126]).

presented in Sec. 3.1. Still, some remarks are in order: The speed of sound (squared) as obtained from the
considerations in the present section is shown as the green band in Fig. 3.20. The lower end of the error
band (associated with ∆∗ = 0.022GeV, green solid line) represents the speed of sound as obtained from
the gap in the weak-coupling limit and the gap from the fRG calculation alike because they are practically
indistinguishable. For the upper end of the error band (which corresponds to ∆∗ = 0.300GeV), we show
the results for both functional forms of the gap as dashed and dotted green lines. The dotted line was
obtained from the fRG gap calculation while the dashed line (corresponding to a larger value for the speed
of sound at n/n0 = 10) was obtained from the gap in the weak-coupling limit. Note also that the lower
end of the error band (which corresponds to ∆∗ = 0.022GeV) coincides with the pure perturbative QCD
result, i.e., the speed of sound without the inclusion of a diquark gap in the expansion of the pressure (3.78).
It follows that, without a diquark gap, the speed of sound does not exceed the noninteracting limit and
approaches it from below for very high densities. For small gap sizes, the situation is similar. This aspect
should, however, be considered carefully since, if the gap is large enough, the speed of sound exceeds the
noninteracting limit. Considering for example the size of the gap from the fRG calculation, the speed of
sound exceeds the noninteracting limit, see orange line in Fig. 3.17. In addition to that, we expect (from the
results in Sec. 3.1.7) that the expansion of the pressure rather underestimates the speed of sound. As we have
already discussed throughout the present section, going to higher densities, the speed of sound approaches
the noninteracting limit from below, regardless of the existence or the size of the gap.
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3.3 Conclusions
In this chapter, we demonstrated that our results from the fRG study presented in Chap. 2 can be used
to improve already existing low-energy models of dense QCD matter. In particular, we have shown that
the results allow us to calculate the speed of sound in the phase governed by the formation of a colour-
superconducting ground state. Interestingly, for this region in the phase diagram, barely any results exist for
the equation of state, although it is of particular interest for astrophysical applications, e.g., for the description
of neutron stars [103, 119–122]. We laid the groundwork for the analysis of the equation of state and the speed
of sound over a wide range of densities while we expect that our results in their present form already provide
an important insight into the dynamics of dense strong-interaction matter. In this chapter particularly, we
employed two different approaches to gain insight into the underlying thermodynamics: Firstly, we considered
a low-energy model including the relevant low-energy degrees of freedom of dense QCD, and secondly, an
expansion of the equation of state in the presence of a colour-superconducting gap.
To begin with, we used the low-energy model employed in the first part of the present chapter to analyse
the zero-temperature phase diagram of dense strong-interaction matter with two quark flavours. Note that
the construction of the model was based on the findings of the previous chapter. In particular, it includes
the most relevant degrees of freedom of dense QCD. In addition to that, we included different chemical
potentials, namely chemical potentials for up and down quarks, effectively allowing for different up and down
quark densities, and different colour chemical potentials. Since we consider the density regime where, at least
for symmetric matter, the ground state is governed by colour superconductivity (see Refs. [20, 46–56] for
reviews), we used the diquark gap from the fRG study employed in Chap. 2 to constrain the model with the
gap values in the low-energy limit. Although we only calculated the diquark gap for symmetric matter, the
details of the model allowed us to conveniently use the diquark gap in the symmetric limit to also constrain
the model for finite isospin asymmetry.
In the phase diagram spanned by the down-quark fraction and the total baryon density, we encountered a
(strong) first-order phase transition from a colour-superconducting ground state to an ungapped quark-matter
phase. By increasing the total baryon density, we found that the line associated with the phase transition
decreases and approaches the line associated with the isospin-symmetric limit. However, isospin-symmetric
matter does not undergo a phase transition while isospin-asymmetric matter eventually enters the ungapped
quark-matter phase if the total baryon density has become large enough. Colour superconductivity exists
over a wide range of total baryon densities at least for small down quark fractions. By including constraints
from beta equilibrium, colour-charge neutrality, and electric-charge neutrality, we identified a trajectory
in the phase diagram that represents neutron-star matter. This trajectory lies in the gapped phase for
densities n/n0 . 27 where it eventually crosses the phase boundary and enters the first-order region. In
contrast to that, the line associated with noninteracting neutron-star matter (corresponding to almost pure
neutron matter with only a negligible fraction of protons and electrons) lies in the first-order region for all
densities considered in the present work.
In the region of the phase diagram that is governed by the colour-superconducting ground state, we calculated
two observables that are relevant for astrophysical applications, namely the electron fraction and the speed of
sound. We found that the electron fraction for neutron-star matter is in accordance with results from nuclear
physics and observations [119]. Concerning the speed of sound, we observed that it exceeds the value in
the noninteracting limit and increases towards lower densities. We find the qualitatively same behaviour for
symmetric matter and neutron-star matter. However, it should be noted that neutron-star matter eventually
undergoes a first-order phase transition going towards high densities. It eventually enters the phase associated
with ungapped quark matter. In this ungapped region, the speed of sound is expected to be given by the
speed of sound as computed within perturbative QCD.
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In the second part of this chapter, we extended the investigation of the speed of sound and the influence of a
gap in the fermionic excitation spectrum by employing an expansion of the equation of state in the presence
of a colour-superconducting gap. As before, we studied two massless quark flavours but only considered
symmetric matter. The leading order in the expansion can be identified with the pressure in the absence
of a colour-superconducting gap corresponding to results from, e.g., perturbative studies of QCD [154–162,
320]. The next-to-leading orders in the expansion are gap-induced contributions to the pressure. Notably,
this expansion only relied on the assumption that dense strong-interaction matter is a colour superconductor
at sufficiently low temperatures. Since higher-order gap-induced contributions appear to be suppressed, we
only considered the first gap-induced contribution to the pressure.
Utilising the expansion of the pressure, we analysed the speed of sound. Starting from the infinite density
limit, where the speed of sound is expected to be given by the noninteracting limit, we find that the speed
of sound first decreases even in the presence of a gap. This decrease results from perturbative corrections
to the gap-independent contributions to the pressure and, therefore, also agrees with calculations where a
gap is not taken into account [157–162]. Going towards lower densities, gap-induced contributions become
important, leading to an increase in the speed of sound. Consequently, a local minimum in the speed of
sound emerges. Above the local minimum gap-induced contributions to thermodynamic quantities may be
neglected. However, below the minimum gap-induced contributions become important which eventually
leads to the speed of sound crossing the line associated with the noninteracting quark gas. The associated
crossing density and the local minimum not only depend on the size of the gap but also its functional form,
i.e., its dependence on the chemical potential. We showed that already small gap-induced contributions to
the pressure may significantly influence the speed of sound since the included derivatives with respect to
the chemical potential become sizeable. However, a quantitative calculation of the crossing density and the
minimum requires higher-order corrections in the expansion which is beyond the scope of the present work.
Still, we believe that the present work already helps to understand mechanisms underlying the dynamics of
dense strong-interaction matter.
Both approaches to calculate the speed of sound predict that the speed of sound exceeds the value in the
noninteracting limit at supranuclear densities, in accordance with Ref. [126]. Together with results from chiral
EFT [125, 126], these findings suggest the existence of a global maximum in the speed of sound. However,
determining the position and value of this maximum is challenging since many interaction channels become
relevant towards the nucleonic density regime (see, e.g., Refs. [130–132, 135, 164–169]) where the position of
the maximum is expected. The increase in the speed of sound has not been observed in fRG calculations that
do not take into account the existence of a diquark gap [126]. Interestingly, the existence of a maximum in
the speed of sound is also expected from the analysis of constraints from neutron-star masses for neutron-rich
matter [103, 119–124]. Since the height of maximum is related to the size of the diquark gap, this may
possibly allow to infer information about the size of the gap from neutron-star measurements.
Finally, we should point out again that we have only considered two massless quark flavours. Strange quarks
may potentially contribute at densities considered in the present work which are relevant for astrophysical
applications. Then pairing of the two-flavour colour-superconductivity type, underlying the calculations in
the present work, may no longer be favoured [328]. Studies of QCD with two massless and one massive
quark flavours appear to be much more challenging since, for example, a phase with pairing of the colour-
flavour locking type may become relevant [47, 56, 328, 329]. However, the general considerations, particularly
regarding the expansion of the equation of state do not rely on the origin or type of the gap but only on its
existence. Therefore, we expect that our general considerations about the density dependence of the speed
of sound also hold for a situation where the gap originates from a different type of colour superconductivity.
Additionally, we expect that the present work provides a useful insight into dense strong-interaction matter,
helping to understand its dynamics and the emergence of different phases.
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Summary and Outlook

With the present work, we aim to analyse the phase diagram and the thermodynamics of dense strong-
interaction matter which have been the subject of intensive research in recent years. Note that we only
highlight the most important results of the present work here. More detailed conclusions and discussions,
including comments on the underlying approximations, can be found in the conclusions of the corresponding
chapters, see Secs. 2.7 and 3.3.
Using a newly constructed class of regulators, we studied the dynamical formation of diquarks in the low-
energy regime from the fundamental quark and gluon degrees of freedom employing the fRG approach. We
have thereby shown that the use of the aforementioned class of regulators is well-suited for studies of rela-
tivistic theories in the presence of a Cooper instability. Considering two massless quark flavours, namely up
and down quarks, we find the formation of a ground state characterised by the pairing of a chirally symmetric
two-flavour colour superconducting type at intermediate to high densities in accordance with, e.g., Refs. [40,
84–86]. We computed the corresponding gap in the excitation spectrum of the quarks over a wide range of
chemical potentials and towards (very) high chemical potentials. For the scaling behaviour of the gap as a
function of the strong coupling g and the chemical potential µ, we found an analytic estimate at intermediate
densities which is given by ∆gap ∼ exp(−c̄/(g4µ2)), where c̄ is a positive constant, see Sec. 2.5. We discussed
possible extensions of our present study. In particular, we analysed the effect of fluctuations of the diquark
fields which we have at least included above the symmetry-breaking scale where they appear to be subleading
as already observed for other fluctuation effects in early fRG studies [259, 323, 324]. In addition to that, we
discussed effects from gluon-screening masses and an Anderson-Higgs-type mechanism [61–66] in the phase
governed by spontaneous symmetry breaking. The Anderson-Higgs-type mechanism is expected to lead to a
suppression of gluonic contributions in the infrared regime.
We have demonstrated that our approach is capable of investigating dense strong-interaction matter over a
wide range of densities, including the possibility of systematic improvements by implementing the aforemen-
tioned extensions to our present study. In particular, our fRG approach allows us to connect the high-energy
regime associated with quarks and gluons with the low-energy regime associated with the emergence of a
colour-superconducting ground state at high densities.
Based on our first-principles RG flows, we demonstrated that our results can be used to constrain already ex-
isting low-energy models of QCD. In particular, we constructed a low-energy model of dense strong-interaction
matter to analyse the thermodynamics and phase structure of dense strong-interaction matter. By including
isospin asymmetry with two quark flavours, we found a (strong) first-order phase transition from a phase
governed by a superconducting ground state to an ungapped phase. We were able to identify trajectories
in the corresponding phase diagram spanned by the total baryon density and the down quark fraction. By
computing a trajectory representing neutron-star matter in this phase diagram, we found that this trajectory
lies in the phase governed by a superconducting ground state for up to a density of n/n0 . 27 where n is the
total baryon density and n0 is the nuclear saturation density. At this density, neutron-star matter undergoes
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a first-order phase transition to an ungapped phase. Interestingly, we found that this phase transition does
not occur in isospin-symmetric matter.
We then calculated the speed of sound at supranuclear densities using the low-energy model and, alterna-
tively, employing a systematic expansion of the equation of state of isospin-symmetric matter in the presence
of a superconducting gap. In doing so, we provided updates to a recent computation of the speed of sound
of dense strong-interaction matter [126]. Our results are in accordance with constraints from nuclear physics
and observations [119]. By including perturbative corrections in the expansion of the equation of state, we
found that, coming from asymptotically high densities, the speed of sound as a function of the total baryon
density decreases. This decrease is in agreement with, e.g., Refs. [126, 157–162], where a gap in the excitation
spectrum of the quarks was not taken into account. At lower densities, however, contributions to the equation
of state from the superconducting gap become relevant and lead to an increase in the speed of sound, so
that it eventually exceeds the value of the speed of sound in the noninteracting limit. Together with results
from chiral effective field theory at low densities [125, 126], we conclude that the speed of sound exhibits a
maximum at supranuclear densities as already observed and discussed in Ref. [126]. We would like to add
that, by including isospin asymmetry in the aforementioned low-energy model, we found that the density
dependence of the speed of sound, in the density regime considered in the present work (i.e., n/n0 & 7), for
neutron-star matter differs only slightly from that for symmetric matter, as long as the dynamics is governed
by a colour-superconducting ground state.
Interestingly, the existence of a maximum in the speed of sound is also supported by constraints from neutron-
star masses [103, 119–124]. In fact, the present study provides a possible explanation for this maximum with
the formation of a superconducting ground state, which is expected to govern the dynamics in the core of
neutron stars. Therefore, the insight gained in the present work may be used to improve already existing
constraints on the equation of state used as an input for astrophysical calculations, in particular, for neutron-
star simulations.
By comparing our present work with previous fRG studies [126, 179], we also analysed the reliability of our
present results, in particular for the speed of sound. From this, we concluded that our results are reliable
in the high-density regime where the diquark channel is dominant [179]. However, the approximation to
only include the diquark channel becomes less reliable as we move towards the nucleonic low-density regime,
where the use of a Fierz-complete basis of gluon-induced four-quark interactions becomes more important.
Therefore, we expect our present study to be limited to densities n/n0 & 7. In particular, the calculation
of the pressure within the fRG study requires at least the inclusion of the chiral dynamics by including
the chiral scalar-pseudoscalar channel as a four-quark interaction induced by the fundamental quark-gluon
dynamics in addition to the diquark channel. Recall that the scalar-pseudoscalar interaction channel is asso-
ciated with the formation of a chiral condensate which governs the dynamics of QCD for low densities [179].
For a first analysis of the dependence of the symmetry-breaking scale on the scalar-pseudoscalar channel, it
may be interesting to include this channel only above the symmetry-breaking scale without bosonising it.
Ultimately, however, the dynamical bosonisation of the scalar-pseudoscalar channel alongside the diquark
channel (associated with the formation of a colour-superconducting ground state) is required. In this way,
the momentum dependence of two interaction channels can be at least partially resolved, allowing access to
the low-energy degrees of freedom and the formation of bound states and condensates in the infrared regime.
Note that the dynamical bosonisation technique used in our studies has already been used in other studies
in the low-density regime for the scalar-pseudoscalar channel, see, e.g., Refs. [146, 175, 176, 316].
Moreover, between the regime where the dynamics is governed by the scalar-pseudoscalar channel and the
region where the diquark channel becomes dominant, a regime opens up in which many interaction chan-
nels become sizeable, indicating a rich phase structure [130–132, 135, 164–169]. Therefore, the inclusion of
additional quark-pairing channels other than the two discussed above is ultimately required to bridge the
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gap between the high- and low-density regime. However, the inclusion of additional pairing channels comes
with a significant cost since a certain number of additional four-quark interactions not only requires the
inclusion of the same number of additional flow equations, but also additionally couples the corresponding
quark-interaction channels, as already observed in Ref. [179]. Nevertheless, the inclusion of additional quark-
pairing channels should eventually allow us to obtain quantitative estimates for the density regime n/n0 . 7,
i.e., the regime excluded in the present work. It will be interesting to see how this affects the position and
height of the maximum of the speed of sound.
Given our goal to determine an equation of state relevant to astrophysical applications, especially for neutron
stars, an extension of our analysis to finite temperature is eventually required, especially for simulations con-
cerning neutron-star mergers. In addition to that, strange quarks may become relevant for densities reached
in the core of neutron stars. Taking strange quarks into account, so-called colour-flavour locking is expected
to be the most dominant pairing channel, in contrast to the pairing of the two-flavour colour-superconducting
type [47, 50, 56, 85, 328, 329]. The inclusion of colour-flavour locking is, in principle, also possible. However,
this requires to first study the dominance pattern of gluon-induced four-quark interactions for three quark
flavours. This analysis is expected to be much more challenging than the corresponding one for two quark
flavours in Ref. [179] preceding our present work, because the number of channels in a corresponding Fierz-
complete study increases significantly because the flavour symmetry is explicitly broken [348].
In conclusion, the present work provides a framework for the analysis of dense strong-interaction matter over
a wide range of densities and presents field-theoretical foundations for the calculation of the superconduct-
ing gap and the thermodynamics with the fRG approach. It thus provides the basis for future systematic
nonperturbative studies of the equation of state and speed of sound of dense strong-interaction matter.
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A
Notation and Convention

In the following, we introduce our conventions for the Fourier transformations in App. A.1, for the matrices
used for colour degrees of freedom in App. A.2, for the matrices used for flavour degrees of freedom in App. A.3,
and for the Dirac matrices in App. A.4. We present the so-called Fierz transformations in App. A.5 which we
use in the present work to rewrite products of bilinears consisting of spinors. Throughout the present work,
we work in natural units. We show how to convert them into SI units in App. A.6.

A.1 Fourier Conventions
For integrals as used in Sec. 1.2, we use the abbreviated form for n spacetime dimensions∫

x

≡
∫

dnx and
∫
p

≡
∫

dnp
(2π)n

. (A.1)

For the remainder of the present work, we work in four spacetime dimensions so that∫
x

≡
∫

d4x and
∫
p

≡
∫

d4p

(2π)4
. (A.2)

Here, x is the coordinate vector in Euclidean spacetime and p is the momentum vector. When using four
spacetime dimensions, we sometimes split the four-momentum vector p into its time (energy) component p0
and the spatial component, the three-momentum ~p. The Fourier convention used in the present work reads

ψ̄(x) =

∫
p

e−ipxΨ̄(p) , ψ(x) =

∫
p

eipxΨ(p) , Aaµ(x) =

∫
p

eipxAa
µ(p) ,

∆∗a(x) =

∫
p

eipx∆∗a(p) , and ∆a(x) =

∫
p

e−ipx∆a(p) . (A.3)

Here, Ψ̄, Ψ, Aa
µ, ∆∗a, and ∆a are the Fourier transforms of the fields ψ̄, ψ, Aaµ, ∆∗a, and ∆a, respectively.
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A.2 Colour Matrices
The gauge group for three colours Nc = 3 is the special unitary group SU(3). The generators of the group
SU(3) are the eight Hermitian Gell-Mann matrices λi (i = 1, . . . , 8) which are given by

λ1 =

 0 1 0

1 0 0

0 0 0

 , λ2 =

 0 −i 0

i 0 0

0 0 0

 , λ3 =

 1 0 0

0 −1 0

0 0 0

 ,

λ4 =

 0 0 1

0 0 0

1 0 0

 , λ5 =

 0 0 −i
0 0 0

i 0 0

 , λ6 =

 0 0 0

0 0 1

0 1 0

 , (A.4)

λ7 =

 0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 .

Note that λ†i = λi. As the colour generators, instead of the Gell-Mann matrices, we use the colour matrices

T a =
λa
2
, where a = 1, . . . 8 . (A.5)

To avoid confusion, we always use upper indices (e.g., a) to specify the generators (e.g., T a) so that we can use
lower indices to refer to the entries of the corresponding matrices, i.e., T aab represents the element at the a-th
row and the b-th column of the matrix T a. The generators T a satisfy the commutation and anticommutation
relations [

T a, T b
]
= ifabcT c and

{
T a, T b

}
=

1

3
1cδ

ab + dabcT c , (A.6)

where 1c is a 3× 3 identity matrix that acts as a ‘one’ in colour space. Furthermore, the structure constants
are fabc (totally antisymmetric), dabc (totally symmetric), and habc. They are given by

fabc = −2iTr
([
T a, T b

]
T c
)
, dabc = 2Tr

({
T a, T b

}
T c
)
, and habc = dabc + ifabc . (A.7)

From these definitions follow the relations

fabcdabd = 0 , fabcfabd = 3δcd , dabcdabd =
5

3
δcd , habchabd = −4

3
δcd , (A.8)

haab = daab = faab = 0 , and habc = hcab = hbca . (A.9)

The product of two colour generators is given by

T aT b =
1

6
δab1c +

1

2
habcT c , (A.10)

which yields

T aT a =
4

3
1c and T aT bT a = −1

6
T b. (A.11)

The first traces of the generators T a are given by

Tr(T a) = 0 , (A.12)

Tr
(
T aT b

)
=

1

2
δab , (A.13)

Tr
(
T aT bT c

)
=

1

4

(
dabc + ifabc

)
=

1

4
habc , (A.14)

Tr
(
T aT bT cT d

)
=

1

12
δabδcd +

1

8
habehecd . (A.15)
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A.3 Flavour Matrices

To represent the antisymmetric colour structure in the diquark channel, we have introduced matrices that
are totally antisymmetric via the Levi-Civita tensor εabc. Here, the lower indices refer to the colour indices
a, b, c = 1, 2, 3 (or alternatively a, b, c = r, g,b referring to the three colour charges red (r), green (g), and
blue (b)). With this, we define the three antisymmetric matrices εa where the entries of the matrices are
given by the Levi-Civita tensor: (εa)bc = εabc. The resulting matrices are closely related to the antisymmetric
Gell-Mann matrices and are given by

ε1 = iλ7 =

 0 0 0

0 0 1

0 −1 0

 , ε2 = −iλ5 =

 0 0 −1
0 0 0

1 0 0

 , ε3 = iλ2 =

 0 1 0

−1 0 0

0 0 0

 . (A.16)

The product of two Levi-Civita tensors is given by

εijkεlmn = δilδjmδkn + δimδjnδkl + δinδjlδkm − δinδjmδkl − δilδjnδkm − δimδjlδkn (A.17)

so that the product of two εa matrices is given by

(εaεb)ik = (εa)ij(εb)jk = δakδbi − δabδik . (A.18)

From this, it follow

εaεa = −21c and εaεbεa = −εb . (A.19)

The first traces of the matrices εa are given by

Tr(εa) = 0 , (A.20)

Tr(εaεb) = −2δab , (A.21)

Tr(εaεbεc) = εabc , (A.22)

Tr(εaεbεcεd) = δadδcb + δabδcd . (A.23)

A.3 Flavour Matrices
The gauge group for two flavours Nf = 2 is the special unitary group SU(2) of unitary matrices with
determinant 1. The generators of SU(2) are given by the Hermitian Pauli matrices τi (i = 1, 2, 3) which are

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
. (A.24)

The only antisymmetric Pauli matrix is τ2. Note that the Pauli matrices are traceless, τ †i = τi, and that
det τi = −1. The commutation and anticommutation relations for the Pauli matrices read[

τi, τj
]
= 2iεijkτk and

{
τi, τj

}
= 2δij1f . (A.25)

Here, εijk is the three-dimensional Levi-Civita symbol and 1f is a 2× 2 identity matrix which acts as a ‘one’
in flavour space. Furthermore, it is

τiτj = δij1f + iεijkτk and τ1τ1 = τ2τ2 = τ3τ3 = 1f . (A.26)

The first traces of the Pauli matrices are given by

Tr
(
τi
)
= 0 , (A.27)

Tr
(
τiτj

)
= 2δij , (A.28)

Tr
(
τiτjτk

)
= 2iεijk , (A.29)

Tr
(
τiτjτkτl

)
= 2
(
δijδkl + δilδjk − δikδjl

)
. (A.30)
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A Notation and Convention

A.4 Euclidean Dirac Matrices
Throughout the entire work, we use Euclidean spacetime. For the γ-matrices (also referred to as Dirac
matrices named after physicist Paul Dirac), we use the following convention:

γ0 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , γ1 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , (A.31)

γ2 =


0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

 , γ3 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 . (A.32)

The γ-matrices obey the Clifford algebra {
γµ, γν

}
= 2δµν . (A.33)

Since we work in Euclidean spacetime, there is no difference between matrices with upper and lower indices
so that we write all Dirac matrices with lower indices. Additionally, in Euclidean spacetime, the γ-matrices
are Hermitian matrices: γ†µ = γµ. Some products of γ-matrices are given by

γµγµ = 41D , γµγνγµ = −2γν , and γµγαγβγµ = 4δαβ . (A.34)

Here, 1D is a 4× 4 identity matrix that acts as a ‘one’ in Dirac space. We further define the γ5-matrix via

γ5 = γ1γ2γ3γ0 = − 1

4!
εαβµνγαγβγµγν . (A.35)

The γ5-matrix is not one of the γ-matrices, i.e., the indices of the γ-matrices are given by µ = 0, 1, 2, 3. The
γ5-matrix is its own inverse γ5γ5 = 1D and anticommutes with the γ-matrices: γ5γµ = −γµγ5. Therefore,
terms that contain γ5 change their sign under parity transformations so that a scalar becomes a pseudoscalar
and vectors become pseudovectors. For example, ψ̄ψ transforms like a scalar but ψ̄γ5ψ transforms like a
pseudoscalar. In addition to γ5, we also introduce the charge conjugation matrix C via

C = iγ2γ0 . (A.36)

It is also its own inverse: CC = 1D. Note that γ5 and C commute: γ5C = Cγ5. The introduction of these
matrices leads to some useful relations:

CγTµ = −γµC , γ5CγTµ = γµγ5C , CγTµ C = −γµ , and γ5CγTµ Cγ5 = γµ . (A.37)

We also define the commutator of γ-matrices via

σµν =
i

2
[γµ, γν ] = −iδµν + iγµγν . (A.38)

Some traces of products of γ-matrices and possibly γ5 are given by

Tr(γµ) = 0 , (A.39)

Tr(γµγν) = 4δµν , (A.40)

Tr(γµγνγργσ) = 4 (δµνδρσ − δµρδνσ + δµσδρν) , (A.41)

Tr(γ5) = Tr(γµγνγ5) = 0 . (A.42)

The trace of a product of an odd number of γ-matrices yields zero. In addition to that, γ5 times a product
of an odd number of γ-matrices also yields zero.
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A.5 Fierz Transformations

A.5 Fierz Transformations
In the following, we introduce the so-called Fierz transformations [349], see also Refs. [350–352]. They are
frequently used to rewrite Dirac bilinears, which are products of Dirac matrices taken between two spinors.
For instance, in calculations in quantum field theory, products of two Dirac bilinears often appear, which then
consist of four Dirac spinors in total. In these cases, the order of the appearance of the individual spinors
is critical. Fierz transformations can then be used to reorder the order of appearance of the spinors, as we
shall see in the following. In the present work, we use Fierz transformations for Dirac bilinears and for colour
and flavour matrices taken between two spinors. Therefore, we begin with the derivation of general Fierz
identities by considering N ×N matrices and show the explicit Fierz transformations for colour, flavour, and
Dirac matrices in Apps. A.5.1–A.5.3.
The N × N (square) matrices form an N2-dimensional vector space. Let Γa and Γb be basis elements of
this vector space with Tr

(
ΓaΓb

)
= ζ δab where ζ is a normalisation factor which depends on the choice for

the basis elements. Then, any N ×N matrix M in the vector space can be expanded in the basis elements
by considering M =

∑
aTr (MΓa) Γa/ζ. From these general aspects, we can infer a so-called completeness

relation. For this, we expand the basis element Γb itself in the basis, so that the entries of this matrix
are given by Γbij =

∑
a Γ

b
lkΓ

a
klΓ

a
ij/ζ. However, we can also write Γbij = Γblkδilδjk. By comparing the two

expressions for Γbij , we find the completeness relation∑
a

(
Γa
)
ij

(
Γa
)
kl

= ζδilδjk . (A.43)

We consider two N ×N matrices M and M ′ in the vector space. Using the completeness relation, we find(
M
)
ij

(
M ′
)
kl

=
(
M
)
mn

(
M ′
)
rs
δimδnjδkrδls = ζ−2

∑
cd

(
M
)
mn

(
Γd
)
nr

(
M ′
)
rs

(
Γc
)
sm

(
Γc
)
il

(
Γd
)
kj

= ζ−2
∑
cd

Tr
(
MΓdM ′Γc

)(
Γc
)
il

(
Γd
)
kj

=
∑
cd

ccd
(
Γc
)
il

(
Γd
)
kj
. (A.44)

Here, the coefficients are given by ccd = ζ−2Tr
(
MΓdM ′Γc

)
. This relation can conveniently be used to rear-

range spinors representing fermionic fields to find relations between different four-quark interaction channels.
When including fermionic fields, we have to account for an uneven permutation of Grassmann-valued fields
and include a minus sign. Therefore, mapping onto a quark-antiquark interaction yields

ψ̄i
(
M
)
ij
ψj ψ̄k

(
M ′
)
kl
ψl = −

∑
cd

ccdψ̄i
(
Γc
)
il
ψl ψ̄k

(
Γd
)
kj
ψj . (A.45)

Here, ψ̄ and ψ are Dirac spinors. Note that the order of the appearance of the spinors changes from ijkl

to ilkj. We can also find a second relation by again considering two N ×N matrices M and M ′ in the vector
space and by using the completeness relation, which yields(

M
)
ij

(
M ′
)
kl

=
(
M
)
mn

(
M ′
)
rs
δimδnjδkrδls = ζ−2

∑
cd

(
M
)
mn

(
Γd
)
ns

(
M ′
)
rs

(
Γc
)
rm

(
Γc
)
ik

(
Γd
)
lj

= ζ−2
∑
cd

Tr
(
MΓdM ′TΓc

)(
Γc
)
ik

(
Γd
)
lj
=
∑
cd

dcd
(
Γc
)
ik

(
Γd
)
lj
. (A.46)

Here, the coefficients are given by dcd = ζ−2Tr
(
MΓdM ′TΓc

)
. When including fermionic fields in this expres-

sion, we now have to account for an even permutation of Grassmann-valued fields and, therefore, not include
a minus sign. The Fierz transformation used for the quark-quark interaction reads

ψ̄i
(
M
)
ij
ψj ψ̄k

(
M ′
)
kl
ψl =

∑
cd

dcdψ̄i
(
Γc
)
ik
ψ̄k ψl

(
Γd
)
lj
ψj . (A.47)

In contrast to before, the order of appearance of the spinors changes from ijkl to iklj.
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A Notation and Convention

A.5.1 Colour Matrices

The colour matrices for three colours Nc = 3 as the generators of SU(3) have been introduced in App. A.2.
Together with the ‘one element’ in colour space 1c they span the vector space of all 3 × 3 matrices: Γ =

{T 0, T a} = {TS , TA}. Here, the uppercase index A refers to the antisymmetric subset of Γ given by the
antisymmetric colour matrices, i.e., A = 2, 5, 7, while S indicates the symmetric subset, i.e., S = 0, 1, 3, 4, 6, 8.
Note that S includes the symmetric colour matrices and the normalised ‘one element’ which is given by
T 0 = 1c/

√
2Nc. The lowercase index a corresponds to all colour matrices, i.e., a = 1, . . . , 8. Recall that

Tr[T aT b] = δab/2 and that we have normalised the ‘one element’ according to Tr[T 0T 0] = 1/2 and Tr[T 0T a] =

0 so that the normalisation factor is given by ζ = 1/2. The Fierz transformation can be applied for any
product of two matrices. However, we only show the Fierz transformations for the basis elements.

The Fierz transformations for the basis elements corresponding to the quark-antiquark interaction can
be obtained from Eq. (A.44) which yields( (

1c
)
ij

(
1c
)
kl(

T a
)
ij

(
T a
)
kl

)
=

(
1
3 2
4
9 − 1

3

)
·

( (
1c
)
il

(
1c
)
kj(

T a
)
il

(
T a
)
kj

)
. (A.48)

The Fierz transformations for the basis elements corresponding to the quark-quark interaction can be
obtained from Eq. (A.46) which yields( (

1c
)
ij

(
1c
)
kl(

T a
)
ij

(
T a
)
kl

)
=

(
2 2

− 4
3

2
3

)
·

( (
TA
)
ik

(
TA
)
lj(

TS
)
ik

(
TS
)
lj

)
. (A.49)

Here, it is useful to split the matrices on the right-hand side into symmetric and antisymmetric matrices.

A.5.2 Flavour Matrices

The flavour matrices for two flavours Nf = 2 as the generators of SU(2) have been introduced in App. A.3.
Together with the ‘one element’ in flavour space τ0 = 1f, they span the vector space of all 2 × 2 matrices:
Γ = {τ0, τa} = {τS , τ2}. Here, the uppercase index S refers to the symmetric matrices of Γ, i.e., S = 0, 1, 3,
which includes the symmetric Pauli matrices and the ‘one element’. The only antisymmetric matrix in the
set is the second Pauli matrix τ2. The lowercase index a refers to the three Pauli matrices a = 1, 2, 3. The
‘one element’ τ0 = 1f is already properly normalised in the sense that Tr [τ0τ0] = 2 and Tr [τ0τa] = 0. Recall
that Tr [τaτb] = 2δab so that the normalisation factor is given by ζ = 2. Note that the Fierz transformation
can be applied to any product of two matrices. However, we only show the Fierz transformations for the
basis elements.

The Fierz transformations for the basis elements corresponding to the quark-antiquark interaction can
be obtained from Eq. (A.44) which yields( (

1f
)
ij

(
1f
)
kl(

τa
)
ij

(
τa
)
kl

)
=

(
1
2

1
2

3
2 − 1

2

)
·

( (
1f
)
il

(
1f
)
kj(

τa
)
il

(
τa
)
kj

)
. (A.50)

The Fierz transformations for the basis elements corresponding to the quark-quark interaction can be
obtained from Eq. (A.46) which yields( (

1f
)
ij

(
1f
)
kl(

τa
)
ij

(
τa
)
kl

)
=

(
1
2

1
2

− 3
2

1
2

)
·

( (
τ2
)
ik

(
τ2
)
lj(

τS
)
ik

(
τS
)
lj

)
. (A.51)

Note that it is again useful to split the matrices on the right-hand side into symmetric and antisymmetric
matrices.
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A.5 Fierz Transformations

A.5.3 Dirac Matrices

Along with the Dirac matrices that have been introduced in Sec. A.4, a set of in total 16 matrices can be
introduced that span the 16-dimensional space of all 4× 4 matrices. The remaining matrices that are needed
have also been introduced in the aforementioned section. It follow the basis elements which are given by

Γ =
{
1D, γ5, γ0, γi, iγ5γ0, iγ5γi, σ0i, σ12, σ13, σ23

}
. (A.52)

Note that we consider the zeroth and i-th components of the matrices separately where i = 1, 2, 3. The
normalisation is given by Tr

(
ΓaΓb

)
= 4δab so that the normalisation factor is ζ = 4. The inclusion of the

imaginary unit i in the definition of some of the basis elements is important so that the normalisation holds
for all basis elements as required.

The Fierz transformations for the basis elements corresponding to the quark-antiquark interaction can
be obtained from Eq. (A.44) which yields

(
1D
)
ij

(
1D
)
kl(

γ5
)
ij

(
γ5
)
kl(

γ0
)
ij

(
γ0
)
kl(

γi
)
ij

(
γi
)
kl(

iγ5γ0
)
ij

(
iγ5γ0

)
kl(

iγ5γi
)
ij

(
iγ5γi

)
kl(

σ0i
)
ij

(
σ0i
)
kl(

σnm
)
ij

(
σnm

)
kl



=
1

4



1 1 1 1 1 1 1 1
2

1 1 −1 −1 −1 −1 1 1
2

1 −1 1 −1 −1 1 −1 1
2

3 −3 −3 −1 3 1 1 − 1
2

1 −1 −1 1 1 −1 −1 1
2

3 −3 3 1 −3 −1 1 − 1
2

3 3 −3 1 −3 1 −1 − 1
2

6 6 6 −2 6 −2 −2 −1


·



(
1D
)
il

(
1D
)
kj(

γ5
)
il

(
γ5
)
kj(

γ0
)
il

(
γ0
)
kj(

γi
)
il

(
γi
)
kj(

iγ5γ0
)
il

(
iγ5γ0

)
kj(

iγ5γi
)
il

(
iγ5γi

)
kj(

σ0i
)
il

(
σ0i
)
kj(

σnm
)
il

(
σnm

)
kj



. (A.53)

For the quark-quark interaction, instead of applying Eq. (A.46), we consider a slightly different approach
in the following. For this approach, we consider the two 4×4 matrices M and M̃ in the vector space spanned
by the matrices in Γ. By transposing the matrix M̃ , rewriting it in terms of M̃T = CM ′C, and by using the
Fierz transformation for the quark-antiquark interaction (A.44), we find the following relation:(

M
)
ij

(
M̃
)
kl

=
(
M
)
ij

(
M̃T

)
lk

=
(
M
)
ij

(
CM ′C

)
lk

=
(
M
)
ij

(
C
)
lm

(
M ′
)
mn

(
C
)
nk

=
(
C
)
lm

(
C
)
nk

∑
cd

dcd
(
Γc
)
in

(
Γd
)
mj

=
∑
cd

dcd
(
Γc C

)
ik

(
C Γd

)
lj
. (A.54)

Here, we defined the coefficients dcd and reintroduced the initial matrix M̃ so that

dcd =
1

16
Tr
[
MΓdM ′Γc

]
=

1

16
Tr
[
MΓdCM̃TCΓc

]
. (A.55)

With this approach, we have managed to introduce the charge conjugation operator C in the Fierz transfor-
mation so that it also appears in the product of two Dirac bilinears associated with a quark-quark interaction.
We have done this because it is, e.g., for the study of diquark condensates, often convenient and common
to write the Dirac spinors in terms of so-called Nambu-Gorkov spinors (ψ,ψC)T by introducing the charge
conjugated fields ψC = Cψ̄T and ψ̄C = ψTC, respectively. Recall that C = iγ2γ0 so that C switches particle
and antiparticle states in the Dirac spinor, i.e., it complex conjugates and switches the upper two and lower
two components of the Dirac spinor and also the two elements of the upper and lower two components. In
addition to that, the energy and spin change their sign. Note that ψC is also a solution of the Dirac equation,
as is ψ.
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A Notation and Convention

The Fierz transformations for the basis elements corresponding to the quark-quark interaction can be
obtained from Eq. (A.54) which yields

(
1D
)
ij

(
1D
)
kl(

γ5
)
ij

(
γ5
)
kl(

γ0
)
ij

(
γ0
)
kl(

γi
)
ij

(
γi
)
kl(

iγ5γ0
)
ij

(
iγ5γ0

)
kl(

iγ5γi
)
ij

(
iγ5γi

)
kl(

σ0i
)
ij

(
σ0i
)
kl(

σnm
)
ij

(
σnm

)
kl



=
1

4



1 1 1 1 1 1 1 1
2

1 1 −1 −1 −1 −1 1 1
2

− 1 1 −1 1 1 −1 1 − 1
2

− 3 3 3 1 −3 −1 −1 1
2

1 −1 −1 1 1 −1 −1 1
2

3 −3 3 1 −3 −1 1 − 1
2

− 3 −3 3 −1 3 −1 1 1
2

− 6 −6 −6 2 −6 2 2 1


·



(
C
)
ik

(
C
)
lj(

γ5C
)
ik

(
Cγ5
)
lj(

γ0C
)
ik

(
Cγ0
)
lj(

γiC
)
ik

(
Cγi
)
lj(

iγ5γ0C
)
ik

(
Ciγ5γ0

)
lj(

iγ5γiC
)
ik

(
Ciγ5γi

)
lj(

σ0iC
)
ik

(
Cσ0i

)
lj(

σnmC
)
ik

(
Cσnm

)
lj



. (A.56)

By using the transformation (A.54), the charge conjugation operator appears in the elements on the right-
hand side.

A.6 Natural Units
Throughout the present work, we work in natural units so that ~ = c = kB = 1. Therefore, the dimensions
of all quantities are measured in the dimension of energy: [temperature] = [length]−1 = [time]−1 = [mass] =
[energy]. Natural units can be translated into SI units by suitably multiplying with and dividing by ~, c,
and kB that are set to one when working in natural units.

For converting length, we find

1m
(
× 1/(~c)

)
= 1015 fm

(
× 1/(~c)

)
= 5.06773× 1012/MeV , (A.57)

1/MeV
(
× ~c

)
= 1.97327× 10−13 m . (A.58)

For converting temperature, we find

1K
(
× kB

)
= 8.61733× 10−11 MeV , (A.59)

1MeV
(
× 1/kB

)
= 1.16045× 1010 K . (A.60)

For converting time, we find

1 s
(
× 1/~

)
= 1.51927× 1021/MeV , (A.61)

1/MeV
(
× ~
)
= 6.58212× 10−22 s . (A.62)

For converting mass, we find

1MeV
(
× 1/c2

)
= 1.78266192× 10−30 kg , (A.63)

1 kg
(
× c2

)
= 5.60959× 1029 MeV . (A.64)

For the nuclear saturation density n0 used throughout the present work, we have 0.165 nucleons per fm3

which is given by n0 = 0.00127GeV3 in natural units.
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B
Regularisation Scheme

Recall that we have introduced a so-called regulator term in the derivation of the Wetterich equation in
Sec. 1.2. We have extended the discussion about the regularisation scheme in Sec. 1.3 by introducing a
regularisation scheme that is suitable to handle systems that exhibit a BCS-type instability. We refer to
this scheme as the quasi-particle regularisation scheme. However, the calculations in Chap. 3.1 require the
inclusion of different chemical potentials for up and down quarks and different colour chemical potentials.
Therefore, we shall extend the aforementioned regularisation scheme to account for these different chemical
potentials in App. B.1. In introducing the regularisation scheme and also in the discussion of the Wetterich
equation in Sec. 1.2, we write the regulator term in terms of dimensionless regulator shape functions. The
specific functional forms of different regulator shape functions, mainly those used throughout the present
work, are defined in App. B.2. In the calculation of loop diagrams especially throughout Chap. 2, we
encounter so-called threshold functions that depend on the regularisation scheme. The threshold functions
used in the present work are defined in App. B.3.

B.1 Extension of the Quasi-Particle Regularisation Scheme

In the following, we introduce the quasi-particle regularisation scheme for isospin-asymmetric matter with
different chemical potentials for differently coloured quarks. Note that we explicitly consider two flavours
Nf = 2 and three colours Nc = 3. The following should only be considered as an extension of the regularisation
scheme introduced in Sec. 1.3.1 where a detailed discussion of the aspects of the quasi-particle regularisation
scheme can be found. The kinetic term for the fermions (as, e.g., used in the action for the low-energy model
employed in Sec. 3.1) including different chemical potentials reads

Sψ̄ψ =

∫
p

{
Ψ̄(p)

(
− p0γ0 − i

(
µ̂(f) + µ̂(c)

)
− /~p

)
Ψ(p) . (B.1)
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B Regularisation Scheme

Recall that Ψ̄ and Ψ are the Fourier transforms of the fermionic fields ψ̄ and ψ, respectively. The kinetic
term suggests to introduce the kinetic operator

T = −p0γ0 − i
(
µ̂(f) + µ̂(c)

)
− /~p = −p0γ0 − i

(
diag

(
µu, µd

)
f
+ diag

(
µr, µg, µb

)
c

)
γ0 − /~p . (B.2)

Indeed, this definition is convenient in the calculation of loop diagrams and for calculations using the Wetterich
equation where the inverse of T appears. Here, the kinetic operator includes different chemical potentials for
the up µu and down quark µd combined in a flavour chemical potential µ̂(f) = diag

(
µu, µd

)
f
⊗ 1c ⊗ γ0 and it

introduces different chemical potentials for differently coloured quarks via µ̂(c) = 1f ⊗ diag
(
µr, µg, µb

)
c ⊗ γ0.

Here, the index ‘f’ refers to flavour space while ‘c’ refers to colour space. For convenience, we do not show
the unit matrices in colour and flavour space. The chemical potentials µr, µg, and µb correspond to the three
colour charges (red, green, and blue). For further details about the chemical potentials, see Sec. 3.1.
With the projectors P± defined at the beginning of Sec. 1.3.1, the kinetic operator can conveniently be split
into two parts so that it can be rewritten to read

T = T
(
P+ + P−

)
= T−P−γ0 + T+P+γ0 . (B.3)

Here, we have introduced

T± = −
(
p0 + i

(
diag

(
µu, µd

)
f
+ diag

(
µr, µg, µb

)
c ± |~p |

))
= −

(
p0 + i

(
diag

(
µu + µr, µu + µg, µu + µb, µd + µr, µd + µg, µd + µb

)
c,f
± |~p |

))
. (B.4)

Note that T± are matrices in colour and flavour space and that they are diagonal. This diagonal structure
allows, together with the properties of the projectors, for a straightforward calculation of the inverse of the
kinetic operator T . However, before calculating the inverse, we shall introduce a regulator term. Recall from
Sec. 1.3.1 that the inverse of the kinetic operator suffers from poles at the Fermi surface so that, in general,
it is not invertible. To handle these poles, we introduced a suitable regulator which resulted in handling
positive and negative energy solutions of the quasi-particle dispersion relations differently. The inclusion
of different chemical potentials for differently coloured up and down quarks requires to suitably adapt the
regulator term. As before, we require that the different energy solutions are only supposed to be treated
differently in the presence of chemical potentials but are still supposed to be treated in the same way in the
limit of vanishing chemical potentials. In addition to that, for µu = µd = µ and µr = µg = µb = 0, we
require to recover the regularisation scheme as introduced in Sec. 1.3.1. This results in a regulator that treats
the dispersion relations associated with positive and negative energy solutions and the terms with different
chemical potentials differently. A general regulator term that fulfils these requirements is given by

Rψk = R−P−γ0 +R+P+γ0 . (B.5)

Here, we have introduced R±, matrices in colour and flavour space (as indicated by the subscript c, f), which
are given by

R± = −idiag
(
ε̄u,r
± , ε̄u,g

± , ε̄u,b
± , ε̄d,r

± , ε̄d,g
± , ε̄d,b

±

)
c,f

with ε̄f,c± = (µf + µc ± |~p |) rf,c± . (B.6)

To deal with the positive and negative energy solutions as well as the different chemical potentials, we have
introduced 12 different dimensionless regulator shape functions rf,c± where f = u,d and c = r, g,b. The
subscript ‘±’ indicates that we regularise the solutions associated with positive and negative energy values
separately. The different regulator shape functions only differ by the argument since we use regulator shape
functions of the form

rf,c± ≡ r
(
xf,c±

)
with xf,c± = (µf + µc ± |~p |)2/k2 . (B.7)

Properties of the regulator shape functions have already been discussed in Sec. 1.3.1. Some regulator shape
functions, mainly those used in the present work, are introduced in App. B.2.
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B.1 Extension of the Quasi-Particle Regularisation Scheme

Adding the regulator term Rψk to the kinetic operator T yields the regulated kinetic operator

T +Rψk =
(
T− +R−

)
P−γ0 +

(
T+ +R+

)
P+γ0 , (B.8)

where

T± +R± = −diag
(
p0 + iεu,r

± , p0 + iεu,g
± , p0 + iεu,b

± , p0 + iεd,r
± , p0 + iεd,g

± , p0 + iεd,b
±

)
c,f
. (B.9)

We have introduced a generalised version of ε± from the one employed in Sec. 1.3.1 representing the regularised
quasi-particle dispersion relations. In contrast to before, it includes different chemical potentials:

εf,c± = (µf + µc ± |~p |) (1 + rf,c± ) . (B.10)

With the properties of the projectors P± and utilising that T± + R± are diagonal matrices in colour and
flavour space, we can simply invert the regulated kinetic operator T +Rψk and find(

T +Rψk
)−1

=
(
T− +R−

)−1
P+γ0 +

(
T+ +R+

)−1
P−γ0 , (B.11)

where(
T± +R±

)−1
= −diag

(
1

p0 + iεu,r
±
,

1

p0 + iεu,g
±
,

1

p0 + iεu,b
±
,

1

p0 + iεd,r
±
,

1

p0 + iεd,g
±
,

1

p0 + iεd,b
±

)
c,f
. (B.12)

We note that the inverse is now well-defined for all p0 and ~p . As before, the effect of the regularisation can
be visualised by considering the effect of the regulator on the “quasi-particle dispersion relation” (including
different chemical potentials) associated with the negative energy mode εf,c− . We find that ε− > 0 for
µf + µc > |~p | and εf,c− < 0 for µf + µc < |~p |. Therefore, it changes its sign at µf + µc = |~p | where it is given
by εf,c− = k sgn(µf +µc−|~p |)+ · · · . Consequently, fluctuations around this point are gapped by the regulator
with a gap given by ∼ k. In contrast to that, we find εf,c+ > 0, where the chemical potential effectively acts
as a regulator even for k → 0.
The results for symmetric matter and without the inclusion of any colour chemical potentials, as considered
in Sec. 1.3.1, can be straightforwardly recovered by setting µu = µd = µ and µr = µg = µb = 0. For terms
appearing in the application of the Wetterich equation, we find

Tr

{(
T +Rψk

)−1
∂tR

ψ
k

}
= 2i

∑
f=u,d

∑
c=r,g,b

(
(µf + µc + |~p |) rf,c+

p0 + iεf,c+

+
(µf + µc − |~p |) rf,c−

p0 + iεf,c−

)
. (B.13)

The trace runs over Dirac, flavour, and colour space. Interestingly, the derivatives with respect to the regu-
lator only appear together with the corresponding energy modes, i.e., the quasi-particle dispersion relations.
More precisely, the scale derivative of the regulator rf,c± appears together with the corresponding dispersion
relation εf,c± . We thus find 12 contributions, each with different combinations of up- and down-quark chem-
ical potentials, colour chemical potentials, and positive and negative energy solutions. These contributions
are conveniently split into twelve terms that can be handled separately. For applications of the Wetterich
equation, it is also useful to consider the complex conjugate of the kinetic operator which is given by(

T
)∗

= −p0γT0 + i
(
µ̂(f) + µ̂(c)

)
− /~pT = T ∗−γ0PT+ + T ∗+γ0PT− . (B.14)

With the complex conjugate of the regulator term (Rψk )
∗, the inverse of the regulated kinetic operator becomes((

T
)∗

+
(
Rψk
)∗)−1

=
(
T ∗− +R∗−

)−1
γ0P

T
− +

(
T ∗+ +R∗+

)−1
γ0P

T
+ , (B.15)

where(
T ∗± +R∗±

)−1
= −diag

(
1

p0 − iεu,r
±
,

1

p0 − iεu,g
±
,

1

p0 − iεu,b
±
,

1

p0 − iεd,r
±
,

1

p0 − iεd,g
±
,

1

p0 − iεd,b
±

)
c,f
. (B.16)

The expressions for the inverse of the kinetic operators, see Eqs. (B.11) and (B.16), can be directly transferred
to define the so-called propagator matrix, see App. C.3, which we use in our fRG studies.
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B.2 Regulator Shape Functions
In Sec. 1.2, we have introduced the Wetterich equation which introduces a regulator term. The regulator term
can be written in terms of dimensionless regulator shape functions. These functions have to ensure that the
properties required of the regulator terms, as introduced in Sec. 1.2, are fulfilled. Note that we have slightly
adapted these requirements to account for the presence of a chemical potential in Sec. 1.3.1 by introducing the
quasi-particle regularisation scheme. In addition to that, a suitable choice of shape functions may simplify
calculations especially considering possibly appearing numerical problems. In the following, we introduce
regulator shape functions for bosonic and fermionic degrees of freedom, mostly those used throughout the
present work. For further details and definitions of regulator shape functions, see, e.g., [172, 259, 262, 263,
278, 279, 323, 324, 353–355], from which the following definitions are adapted.
For the present studies, we mainly use polynomial regulator shape functions. The fermionic version of this
shape function rpol

ψ,N is given by

rpol
ψ,N (x) = −1 + 1√

1−
(∑N

n=0
1
n!x

n
)−1 with N > 2 . (B.17)

Here, the order of the polynomial in rpol
ψ,N is given by N . This function fulfils the necessary requirements

since it has the following properties: (i) It does not introduce any artificial divergences, which is ensured
by (1 + rpol

ψ,N ) ≥ 0, (ii) it vanishes in the long-range limit k → 0 for fixed momentum and in the limit
|~p | → ∞ for fixed k so that limx→∞ rpol

ψ,N (x) = 0, and (iii) it ensures infrared regularisation by satisfying
limx→0

√
x rpol

ψ,N (x) = 1 > 0. Considering the quasi-particle regularisation scheme, the argument of the shape
function is given by x = x± = (µ ± |~p |)2/k2. Therefore, property (iii) yields that, for x → 0, the shape
function is rpol

ψ,N (x±) = k/(|µ ± |~p ||) + · · · . The polynomial regulator shape function rpol
ψ,N has been defined

such that the exponential regulator shape function rexp
ψ is recovered for N →∞:

rexp
ψ (x) = rpol

ψ,N→∞(x) = −1 + 1√
1− exp(x)−1

. (B.18)

The bosonic version of the polynomial regulator shape function rpol
B,N is given by

rpol
B,N (x) =

1

−1 +
∑N
n=0

1
n!x

n
=

1∑N
n=1

1
n!x

n
with N > 2 . (B.19)

Again, the order of the polynomial in rpol
B,N is given by N . This function fulfils the necessary requirements

since it has the following properties: (i) It does not introduce any artificial divergences which is ensured by
(1+rpol

B,N ) ≥ 0, (ii) it vanishes in the long-range limit k → 0 for fixed momentum and in the limit |~p | → ∞ for
fixed k: limx→∞ rpol

B,N (x) = 0, (iii) it ensures infrared regularisation by satisfying limx→0 x r
pol
B,N (x) = 1 > 0.

The argument of the shape function is given by x = ~p 2/k2. Property (iii) yields that, for x → 0, the shape
function is rpol

B,N (x) = k/|~p | + · · · . The polynomial regulator shape function rpol
B,N has been defined so that

the exponential regulator shape function rexp
B is recovered for N →∞:

rexp
B (x) = rpol

B,N→∞ =
1

−1 + exp(x)
. (B.20)

Note that the exponential shape functions rexp
ψ and rexp

B fulfil the same properties as the corresponding
polynomial shape functions. To study how the results in the present work depend on the regulator term, we
use different orders N for the polynomial in rpol

ψ,N and rpol
B,N . However, we always use the same order for the

bosonic and fermionic degrees of freedom.

158



B.3 Threshold Functions

As we shall see in the subsequent section, the scale derivative ∂tr of the regulator functions appears in the
calculation of the threshold functions. Recalling that ∂t = k∂k and using that x = (µ±|~p |)2/k2 or x = ~p 2/k2,
respectively, the scale derivative is generally given by

∂tr(x) = −2x∂xr(x) . (B.21)

Therefore, for the fermionic version of the polynomial shape function defined in Eq. (B.17), we find

∂tr
pol
ψ,N (x) =

x
(∑N

n=0
1
n!x

n − 1
N !x

N
)

(
−1 +

∑N
n=0

1
n!x

n
)3/2√∑N

n=0
1
n!x

n

. (B.22)

The scale derivative of the bosonic version of the polynomial shape function defined in Eq. (B.19) yields

∂tr
pol
B,N (x) =

2x
(∑N

n=0
1
n!x

n − 1
N !x

N
)

(
−1 +

∑N
n=0

1
n!x

n
)2 . (B.23)

Another possible regulator shape function, which often allows to calculate the corresponding threshold func-
tions analytically, is the sharp regulator. The fermionic rsharp

ψ and the bosonic version rsharp
B are given by

rsharp
ψ (x) =

√
1

θ(x− 1)
− 1 and rsharp

B (x) =
1

θ(x− 1)
− 1 . (B.24)

B.3 Threshold Functions
In the following, we define the threshold functions used throughout the present work. Since threshold
functions correspond to loop diagrams, they can be classified by the type of internal lines the associated
loop diagrams have. The internal lines correspond to different propagators which entail the regularisation
scheme. For the fermionic contributions, we use the quasi-particle regularisation scheme, a three-dimensional
regularisation scheme that has been adapted to integrate out fluctuations around the Fermi surface. Recall
that the regulated quasi-particle dispersion relations are given by ε± = (µ± |~p |)(1 + r±) where r± ≡ rψ(x±)
and x± = (µ±|~p |)2/k2. For bosonic degrees of freedom, we use a three-dimensional regulator function which
is given by rB ≡ rB(x) where x = ~p 2/k2. For calculations with the Wetterich equation, see App. C for details,
we introduce the derivative ∂̃t which only affects the scale dependence of the regulator term. In addition
to the scale dependence of the regulator shape function, the derivative ∂̃t also acts on the wavefunction
renormalisations of the fields that are included in the regulator term. Therefore, the anomalous dimension
of the corresponding fields enters via this derivative. It follows that the derivative ∂̃t, by including fermionic
degrees of freedom regularised according to the quasi-particle regularisation scheme and bosonic degrees of
freedom, is given by

∂̃t = f+∂r+ + f−∂r− +
∑

l
fl∂rl

∣∣
rl=rB

. (B.25)

Here, we have defined

f± ≡ f±(x±) = ∂trψ(x±)− rψ(x±)ηψ , (B.26)

fl ≡ fl(x) = ∂trl(x)− rl(x)ηl . (B.27)

The sum over l runs over all bosonic degrees of freedom. Using different rl for bosonic degrees of freedom is
only a technical trick. We need it so that we can consider different anomalous dimensions for different types
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B Regularisation Scheme

of bosonic fields and still rewrite the dimensionless derivative via Eq. (B.25). After taking the derivative with
respect to rl, we can set rl = rB. For bosonic degrees of freedom, we also define

γl = p20 + ~p 2 (1 + rl) + k2m2
l . (B.28)

Here, m2
i is a renormalised and dimensionless bosonic mass (i.e., gluon or diquark mass).

Before turning to the definitions of the threshold functions, we also have to note that we define “collective”
arguments. The argument ρψ includes all possible arguments from fermionic propagators. Although the
diquark gap is also an argument of the fermion propagator, in order to better distinguish the threshold
functions in the symmetric phase and the regime governed by spontaneous symmetry breaking, we do not
include the diquark gap in ρψ but keep it as a separate argument in the threshold functions. In the following,
the diquark gap ∆2

gap enters the threshold functions via χ/k2 = h2κ = ∆2
gap/k

2. In addition to that, we
do not consider any fermion masses. Therefore, the only argument of the fermion propagator in the present
study is the anomalous dimension ηψ such that ρψ = [ηψ]. Note that we only consider one fermion species.
The argument ρl collects all possible arguments coming from bosonic propagators. In the present work, we
consider gluon propagators and diquark propagators which come with a mass. In addition to that, diquark
fields have a nonvanishing fermion number F , while gluons have a fermion number of zero. Therefore, the
general version of the argument for bosonic propagators includes the fermion number, a renormalised and
dimensionless mass m2, and the corresponding anomalous dimension η so that ρl =

{
Fl,m

2
l , ηl

}
.

Some threshold functions are only needed in the symmetric phase where a gap is absent. Therefore, some
threshold functions are defined only for vanishing gap. All threshold functions defined here only depend on
dimensionless (and renormalised) quantities and are dimensionless themselves. In the following, we distinguish
between threshold functions corresponding to loop diagrams with only bosonic lines, with only fermionic lines,
and with a combination of fermionic and bosonic internal lines.
All purely bosonic threshold functions used throughout the present work can be summarised by

L(n1,n2)
m×b

(
µ/k, ρ1, . . . , ρm

)
= k2m−4

∫
p

∂̃t

m∏
l=1

(
1

γl + 2i(Flµ)p0

)(
~p 2

p2

)n1
(
p20
p2

)n2

. (B.29)

In this case, the derivative ∂̃t simplifies to ∂̃t =
∑m
l=1 fl∂rl |rl=rB . This threshold function corresponds to loop

diagrams with m internal bosonic lines.
The threshold functions involving only fermion propagators are given by

L(2)
ff

(
µ/k, χ/k2, ρψ

)
=

1

2
k−2

∫
p

∂̃t

(
1

p20 + ε2− + χ
+

1

p20 + ε2+ + χ

)
, (B.30)

L(2)
ffff

(
µ/k, χ/k2, ρψ

)
=

1

2

∫
p

∂̃t

(
1

(p20 + ε2− + χ)2
+

1

(p20 + ε2+ + χ)2

)
, (B.31)

and

L(2)
fff

(
µ/k, 0, ρψ

)
= ik−1

∫
p

∂̃t

(
− 1

p0 + iε−

1

p20 + ε2−
− 1

p0 + iε+

1

p20 + ε2+

)
, (B.32)

L(1)
ffff

(
µ/k, 0, ρψ

)
=

∫
p

∂̃t
1

p0 + iε+

1

p0 + iε−

(
1

p20 + ε2+
+

1

p20 + ε2−

)
, (B.33)

L(3)
ffff

(
µ/k, 0, ρψ

)
=

∫
p

∂̃t

(
1

p20 + ε2+

1

p20 + ε2−

)
. (B.34)

The last three functions have only been defined in the symmetric regime where there is no finite diquark gap
so that χ/k2 = 0.
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The threshold functions including fermionic and bosonic propagators are given by

L(2)
bff

(
µ/k, χ/k2, ρψ, ρ1

)
=

1

2

∫
p

∂̃t

(
1

γ1 + 2i(F1µ)p0

)(
1

p20 + ε2− + χ
+

1

p20 + ε2+ + χ

)
, (B.35)

L(2)
bbff

(
µ/k, χ/k2, ρψ, ρ1, ρ2

)
=

1

2
k2
∫
p

∂̃t

2∏
l=1

(
1

γl + 2i(Flµ)p0

)(
1

p20 + ε2+ + χ
+

1

p20 + ε2− + χ

)
, (B.36)

L(1)
bbff

(
µ/k, χ/k2, ρψ, ρ1, ρ2

)
= k2

∫
p

∂̃t

2∏
l=1

(
1

γl + 2i(Flµ)p0

)
1

p0 + iε+

1

p0 + iε−
× (B.37)

×
(
1− 29

40

(
χ

p20 + ε2− + χ
+

χ

p20 + ε2+ + χ

)
+

3

4

χ

p20 + ε2+ + χ

χ

p20 + ε2− + χ

)
,

L(4)
bbff

(
µ/k, χ/k2, ρψ, ρ1, ρ2

)
= k2

∫
p

∂̃t

2∏
l=1

(
1

γl + 2i(Flµ)p0

)
×

×
(

1

(p20 + ε2− + χ)2
+ 6

1

p20 + ε2− + χ

1

p20 + ε2+ + χ
+

1

(p20 + ε2+ + χ)2

)
χ . (B.38)

Threshold functions that mix fermionic and bosonic propagators that have only been defined in the symmetric
phase are given by

L(1)
bbf

(
µ/k, 0, ρψ, ρ1, ρ2

)
= k

∫
p

∂̃t

2∏
l=1

(
1

γl + 2i(Flµ)p0

)(
− i~p 2 + |~p|p0

(p0 + iε+)p2
− i~p 2 − |~p|p0

(p0 + iε−)p2

)
, (B.39)

L(3)
bbf

(
µ/k, 0, ρψ, ρ1, ρ2

)
= k

∫
p

∂̃t

2∏
l=1

(
1

γl + 2i(Flµ)p0

)(
− ip20 − |~p|p0

(p0 + iε+)p2
− ip20 + |~p|p0

(p0 + iε−)p2

)
, (B.40)

L(3)
bbff

(
µ/k, 0, ρψ, ρ1, ρ2

)
=

1

2
k2
∫
p

∂̃t

2∏
l=1

(
1

γl + 2i(Flµ)p0

)(
(p0 + i|~p|)2

(p0 + iε+)2p2
+

(p0 − i|~p|)2

(p0 + iε−)2p2

)
. (B.41)

Lastly, we turn to the threshold functions that enter the flow equations of the anomalous dimensions so
that they generally (at least implicitly) include a differentiation with respect to the external momenta.
Where possible, we differentiate with respect to the external momentum appearing in fermion propagators,
in particular the time component of the four-momentum. To distinguish these threshold functions from those
without the inclusion of a derivative with respect to external momenta, we refer to them as D instead of L.
The first purely fermionic threshold function of this type is given by

D(1)
ff

(
µ/k, χ/k2, ρψ

)
=

1

4

∫
p

∂̃t

(
1 + b1(ε−)

(p0 + iε−)4
+

2(1 + b2(ε−, ε+))

(p0 + iε−)(p0 + iε+)3

+
2(1 + b2(ε+, ε−))

(p0 + iε+)(p0 + iε−)3
+

1 + b1(ε+)

(p0 + iε+)4

)
. (B.42)

Note that the diquark gap in terms of the parameter χ only enters via the functions b1 and b2 which vanish
when the gap is set to zero, i.e., χ = 0. These functions are given by

b1(ε) =
χ

12(p20 + χ+ ε2)4

(
− 41χ2(p20 + ε2)− 8(p0 − iε)(p0 + iε)3(−6ip0ε+ 7p20 − 3ε2)

− 6χ(16p20ε
2 + 4ip30ε+ 11p40 + 9ε4)− 11χ3

)
(B.43)

and

b2(ε1, ε2) = −
χ

12(p20 + ε21 + χ)(p20 + ε22 + χ)3

(
p20(41χ

2 + 24χ(ε21 + 3ε22) + 40ε42) + 6p40(11χ+ 8ε21 + 4ε22)

+ 8ip30ε2(3χ+ 8ε21) + 64ip50ε2 + 56p60 + (χ+ ε22)(2ε
2
2(11χ+ 8ε21)

+ χ(11χ+ 8ε21) + 8ε42)
)
. (B.44)
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The next purely fermionic threshold function is given by

D(2)
ff

(
µ/k, χ/k2, ρψ

)
=

1

2

∫
p

∂̃t

(
1 + b3(ε+)

(p20 + ε2+)(p0 − iε+)2
+

1 + b3(ε−)

(p20 + ε2−)(p0 − iε−)2

)
, (B.45)

where the diquark gap in terms of the parameter χ only enters via the function b3 which vanishes when the
gap is set to zero, i.e., χ = 0. This function is given by

b3(ε) = −χ
p20(7p

2
0 + 5χ+ 2ε2 − 8ip0ε) + (χ+ ε2)(2χ+ 3ε2)

2(p20 + ε2 + χ)3
. (B.46)

The last purely fermionic threshold function is given by

D(3)
ff

(
µ/k, χ/k2, ρψ

)
=

∫
p

∂̃t
1

24
χ

(
16p20

(p20 + χ+ ε2−)
3(p20 + χ+ ε2+)

+
16p20

(p20 + χ+ ε2−)(p
2
0 + χ+ ε2+)

3

+
8p20

(p20 + χ+ ε2−)
4
+

8p20
(p20 + χ+ ε2+)

4
− 4

(p20 + χ+ ε2−)
2(p20 + χ+ ε2+)

− 4

(p20 + χ+ ε2−)(p
2
0 + χ+ ε2+)

2
− 2

(p20 + χ+ ε2−)
3
− 2

(p20 + χ+ ε2+)
3

)
. (B.47)

The threshold functions, which (implicitly) include a differentiation with respect to external momenta that
mix fermionic and bosonic propagators, are only needed in the symmetric phase. They are given by

D(1)
bf

(
µ/k, 0, ρψ, ρ1

)
=

∫
p

∂̃t

(
1

γ1 + 2i(F1µ)p0

)(
1

(p0 + iε+)2
+

1

(p0 + iε−)2

)
, (B.48)

D(3)
bf

(
µ/k, 0, ρψ, ρ1

)
=

∫
p

∂̃t

(
1

γ1 + 2i(F1µ)p0

)(
~p 2 − i|~p|p0

(p0 + iε+)2p2
+

~p 2 + i|~p|p0
(p0 + iε−)2p2

)
. (B.49)

Lastly, we define the threshold functions that include a differentiation with respect to the external momenta
and that only include bosonic propagators. We have

D(1,0)
2×b

(
µ/k, ρ1, ρ2

)
=

1

2
k2
∫
p

∂̃t

(
1

γ2 + 2i(F2µ)p0

~p 2

p2

)
∂2

∂p20

(
1

γ1 + 2i(F1µ)p0

)
, (B.50)

D(0,1)
2×b

(
µ/k, ρ1, ρ2

)
=

1

2
k2
∫
p

∂̃t

(
1

γ2 + 2i(F2µ)p0

p20
p2

)
∂2

∂p20

(
1

γ1 + 2i(F1µ)p0

)
. (B.51)

It is important to note that the differentiation with respect to p0 acts only on the bosonic propagator
corresponding to ρ1 and that the differentiation with respect to an external momentum was rewritten as a
differentiation with respect to an internal momentum. Finally, we consider a threshold function contributing
to the anomalous dimension of the gluons which is given by

D(2)
2×b

(µ
k
, ρ1, ρ2

)
= −k

2

3

∂

∂ ~P 2

( ~P 2

P 2

)∫
p

∂̃t

(
G∆,1(p)G∆,2(p− P ) +G∆,1(p)G∆,2(p+ P )

)∣∣∣
P0→0, ~P→0

. (B.52)

Here, we have defined

G∆,l(p) =

(
1

p20 + ~p 2(1 + rl(~p 2/k2)) + k2m2
l + 2i(Flµ)p0

)
. (B.53)

It should be noted that we have defined the latter threshold function with a derivative with respect to the
external spatial momentum ~P because we encounter numerical problems when differentiating with respect
to the external momentum P0. We do not aim to resolve these issues here. After differentiation, we consider
the static limit, i.e., we first take the limit P0 → 0 and then the limit ~P → 0.

162



C
Expansion of the Wetterich Equation

In this appendix, we show details underlying the calculations in Chaps. 2 and 3, in particular calculations
with the Wetterich equation. However, we only consider the Wetterich equation without contributions from
the consideration of k-dependent fields, i.e., we do not consider any contributions used for the dynamical
bosonisation technique. See Sec. 2.3 for details on this aspect and Sec. 1.2 for a derivation of the Wetterich
equation. The conventionally used Wetterich equation in momentum space is then given by

∂tΓk[ϕ] =
1

2
STr

{(
∂tR̃k(q, p)

)[
Γ
(1,1)
k [ϕ, p, q) + R̃k(p, q)

]−1}
. (C.1)

The (1 + 1)-point function is given by(
Γ
(1,1)
k [ϕ, p, q)

)
ab

=
~δ

δϕTa (−p)
Γk[ϕ]

δ

δϕb(q)
. (C.2)

The regulator matrix R̃k is given by

(
R̃k(p, q)

)
ab

=



(
RA
)ab
µν
(p) 0 0 0 0

0 0
(
R∆

)
ab
(p) 0 0

0
(
R∆

)
ab
(p) 0 0 0

0 0 0 0 −RTψ(−p)
0 0 0 Rψ(p) 0

 (2π)4δ(4) (p− q) . (C.3)

The entries of this matrix are given by(
RA)

ab
µν(p) = ZA~p

2rB
(
~p 2/k2

)(
Aµν +Bµν + PLµν/ξ

)
δab , (C.4)(

R∆

)
ab
(p) = Z∆~p

2rB
(
~p 2/k2

)
δab , (C.5)

Rψ(p) = −Zψi
(
µ− |~p |

)
P−γ0rψ

(
(µ− |~p |)2/k2

)
− Zψi

(
µ+ |~p |

)
P+γ0rψ

(
(µ+ |~p |)2/k2

)
. (C.6)
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C Expansion of the Wetterich Equation

The regulator shape functions rB and rψ can be found in App. B.2. In addition to that, we have

Aij = δij −
pipj
~p2

, A00 = A0i = Ai0 = 0 , Bµν = PTµν −Aµν , (C.7)

PTµν = δµν −
pµpν
p2

, and PLµν =
pµpν
p2

. (C.8)

We have introduced the generalised field ϕ and the “super” indices a and b which include all possible indices of
the fields in ϕ. In the present work, the field ϕ includes gluons, diquark fields, and quark fields and is given by
ϕTa (−p) =

(
Aa
µ(−p),∆∗a(−p),∆a(p),Ψ

T (−p), Ψ̄(p)
)

and ϕb(q) =
(
Ab
ν(q),∆

∗
b(q),∆b(−q),Ψ(q), Ψ̄T (−q)

)T .
Therefore, the indices a and b include Lorentz indices and adjoint colour indices coming from the gluons
and colour indices coming from the diquarks. Note that the quark fields have flavour, Dirac, and also colour
indices. However, for convenience and better readability, we suppress them and consider the quark fields to be
vectors in colour, flavour, and Dirac space. In conclusion, the indices are given by a = µ, a, a and b = µ, b, b,
where the first entry is the Lorentz index, the second is the adjoint colour index, and the third is the colour
index. To distinguish between colour and adjoint colour indices, we always write colour indices as lower
Roman letters and adjoint colour indices as upper Roman letters.
It is often useful to rewrite the Wetterich equation by introducing the derivative ∂̃t which only acts on the
k-dependence of the regulator term. This yields

∂tΓk[ϕ] =
1

2
STr

{
∂̃t ln

[
Γ
(1,1)
k [ϕ, p, q) + R̃k(p, q)

]}
=

1

2
STr

{
∂̃t ln

[
Pk(p, q) + Fk[ϕ, p, q)

]}
. (C.9)

In the last step, we have also split Γ
(1,1)
k + R̃k into field-independent parts Pk and field-dependent parts Fk.

In general, Fk and Pk are matrix-valued and, therefore, Pk is often called propagator matrix and Fk is called
fluctuation matrix. This splitting allows to expand the Wetterich equation in powers of the fields, which is
called the PF-expansion. The Wetterich equation then becomes

∂tΓk[ϕ] =
1

2
STr

{
∂̃t lnPk

}
− 1

2
STr

{
∂̃t

∞∑
n=1

1

n

(
− P−1k Fk

)n}
. (C.10)

For more details on this expansion and for applications, see, e.g., Refs. [170, 273, 323]. The trace is performed
not only over the matrix structure of the propagator matrix and the fluctuation matrix but also over the
“super” indices a and b which Pk and Fk inherit from the (1+ 1)-point function. Therefore, the trace yields

Tr
{(
P−1k Fk

)n}
= Tr

{(
P−1k

)
a1b1

(p1, q1)
(
Fk
)
b1a2

[ϕ, q1, p2)

· · ·
(
P−1k

)
ambm

(pm, qm)
(
Fk
)
bmam+1

[ϕ, qm, pm+1)

· · ·
(
P−1k

)
anbn

(pn, qn)
(
Fk
)
bna1

[ϕ, qn, p1)
}
. (C.11)

The remaining trace on the right-hand side represents the trace over the propagator matrix, the fluctuation
matrix and the quark degrees of freedom. Notably, propagator and fluctuation matrices always alternate so
that each entry of the fluctuation matrix couples to a specific entry of the propagator matrix.
In App. C.1, we show the fluctuation matrix resulting from the action defined in Chap. 2 which is given by
Eq. (2.25). Recall that we drop gluon self-interactions since the gauge sector enters our study only via the
running of the strong gauge coupling. In addition to that, we set λ̄csc = 0, which is a simplification resulting
from the dynamical bosonisation technique, and we drop terms depending on derivatives of a field, except for
kinetic terms. The resulting propagator matrix is shown in App. C.2. In Chap. 3, we have included different
chemical potentials for differently coloured up and down quarks to study the effect of isospin asymmetry. We
extend the propagator matrix to include these chemical potentials in App. C.3.
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C.1 Fluctuation Matrix

C.1 Fluctuation Matrix

The fluctuation matrix Fk is given by

(
Fk
)
ab
[ϕ, p, q) =



(
F11

)ab
µν
(p, q)

(
F12

)a
µ,b

(p, q)
(
F13

)a
µ,b

(p, q)
(
F14

)a
µ
(p, q)

(
F15

)a
µ
(p, q)(

F21

)b
ν,a

(p, q)
(
F22

)
ab
(p, q)

(
F23

)
ab
(p, q)

(
F24

)
a
(p, q)

(
F25

)
a
(p, q)(

F31

)b
ν,a

(p, q)
(
F32

)
ab
(p, q)

(
F33

)
ab
(p, q)

(
F34

)
a
(p, q)

(
F35

)
a
(p, q)(

F41

)b
ν
(p, q)

(
F42

)
b
(p, q)

(
F43

)
b
(p, q)

(
F44

)
(p, q)

(
F45

)
(p, q)(

F51

)b
ν
(p, q)

(
F52

)
b
(p, q)

(
F53

)
b
(p, q)

(
F54

)
(p, q)

(
F55)(p, q)


. (C.12)

The entries of this matrix are given in the following: The term that only couples to gluon propagators is

(
F11

)ab
µν
(p, q) = ḡ2∆,2

∫
p′

∫
q′
δµν∆

∗
b(q
′)
(
T bbcT

a
ca + T abcT

b
ca

)
∆a(p

′)(2π)4δ(4) (p− q + p′ − q′) . (C.13)

Terms that couple to gluon propagators from one side and to diquark propagators from the other side are

(
F21

)b
a,ν

(p, q) =
(
F12

)b
a,ν

(p, q) = ḡ2∆,2

∫
p′

∫
q′
Aa
ν(q
′)
(
T aacT

b
cb + T bacT

a
cb

)
∆b(p

′)(2π)4δ(4) (p− q + p′ − q′)

+ 4iµḡ∆,1

∫
p′
δν0T

b
ab∆b(p

′)(2π)4δ(4) (p− q + p′) , (C.14)

(
F13

)a
b,µ

(p, q) =
(
F31

)a
b,µ

(p, q) = ḡ2∆,2

∫
p′

∫
q′
Ab
µ(p
′)∆∗a(q

′)
(
T bacT

a
cb + T aacT

b
cb

)
(2π)4δ(4) (p− q − q′ − p′)

+ 4iµḡ∆,1

∫
p′
δµ0∆

∗
a(p
′)T aab(2π)

4δ(4) (p− q − p′) . (C.15)

Terms only coupling to diquark propagators from both sides are given by

(
F32

)
ab
(p, q) =

(
F23

)
ba
(p, q) = ḡ2∆,2

∫
p′

∫
q′
Aa
µ(p
′)Ab

µ(q
′)T bbcT

a
ca(2π)

4δ(4) (p− q − p′ − q′)

+ 2λ̄∆

∫
p′

∫
q′

(
δab∆

∗
c(p
′)∆c(q

′) +∆∗a(p
′)∆b(q

′)
)
(2π)4δ(4) (p− q − p′ + q′)

+ 4iµḡ∆,1

∫
p′
Aa

0(p
′)T aba(2π)

4δ(4) (p− q − p′) , (C.16)

(
F22

)
ab
(p, q) =

(
F33

)∗
ab
(−p,−q) = 2λ̄∆

∫
p′

∫
q′
∆a(p

′)∆b(q
′)(2π)4δ(4)(p− q + p′ + q′) . (C.17)

Recall that we have kept the quark fields as vectors in colour, flavour, and Dirac space. Therefore, terms
in the fluctuation matrix that couple to a quark propagator and either a gluon or diquark propagator from
the other side are also given by a vector in colour, flavour, and Dirac space. Terms coupling to a quark
propagator from one side and a gluon propagator from the other side are thus given by

(
F14

)a
µ
(p, q) = −

((
F41

)a
µ
(p, q)

)T
= ḡ

∫
p′

Ψ̄(p′)γµT
a(2π)4δ(4) (p− q + p′) , (C.18)

(
F51

)b
ν
(p, q) = −

((
F15

)b
ν
(p, q)

)T
= ḡ

∫
p′
γνT

bΨ(p′)(2π)4δ(4) (p− q − p′) . (C.19)
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C Expansion of the Wetterich Equation

Similarly, the terms coupling to a quark propagator and a diquark propagator are(
F42

)
a
(p, q) =

(
F53

)
a
(p, q) =

(
F24

)
a
(p, q) =

(
F35

)
a
(p, q) = 0 , (C.20)(

F43

)
b
(p, q) = −

((
F34

)
b
(p, q)

)T
= ih̄

∫
p′

(
Cγ5τ2εbΨ(p′)

)
(2π)4δ(4) (p− q − p′) , (C.21)

(
F25

)
a
(p, q) = −

((
F52

)
a
(p, q)

)T
= −ih̄

∫
p′

(
Ψ̄(p′)γ5τ2εaC

)
(2π)4δ(4) (p− q + p′) . (C.22)

Since we keep the vector structure of the quark fields, the terms in the fluctuation matrix that couple to
quark propagators from both sides are matrices in colour, flavour, and Dirac space. These terms are given
by

(
F44

)
(p, q) =

(
F55

)∗
(−p,−q) = ih̄

∫
p′

(
Cγ5τ2∆a(p

′)εa

)
(2π)4δ(4) (p− q + p′) , (C.23)

(
F54

)
(p, q) = −

((
F45

)
(p, q)

)T
= ḡ

∫
p′
γµT

aAa
µ(p
′)(2π)4δ(4) (p− q − p′) . (C.24)

C.2 Propagator Matrix

For the propagator matrix, we distinguish between the symmetric phase and the regime governed by spon-
taneous symmetry breaking. In the symmetric phase, the propagator matrix Pk is given by

(
Pk
)
ab
(p, q) =



(
PA
)ab
µν
(p) 0 0 0 0

0 0
(
P ∗∆
)
ab
(p) 0 0

0
(
P∆

)
ab
(p) 0 0 0

0 0 0 0
(
P ∗ψ
)
(p)

0 0 0
(
Pψ
)
(p) 0

 (2π)4δ(4) (p− q) . (C.25)

The entries of this matrix are given by(
PA
)ab
µν
(p) = ZA

(
(p2R + m̄2

D/ZA)Bµν + (p2R + m̄2
M/ZA)Aµν + 1/ξ(p2R + ξm̄2

L/ZA)P
L
µν

)
δab , (C.26)(

P∆

)
ab
(p) = Z∆

(
p2R + 4iµp0 + m̃2/Z∆

)
δab , (C.27)(

Pψ
)
(p) = Zψ

(
− (p0 + iε−)P−γ0 − (p0 + iε+)P+γ0

)
. (C.28)

Recall that we use the quasi-particle regularisation scheme for quark degrees of freedom where the regularised
quasi-particle dispersion relation is given by ε± = (µ±|~p |)(1+r±) with r± ≡ rψ(x±) and x± = (µ±|~p |)2/k2.
In addition to that, we have introduced p2R = p20 + ~p 2(1 + rB) where rB = rB(x) and x = ~p 2/k2. For the
PF-expansion, the inverse of Pk is required which is given by

(
Pk
)−1
ab

(p, q) =



((
PA
)ab
µν
(p)
)−1

0 0 0 0

0 0
((
P∆

)
ab
(p)
)−1

0 0

0
((
P ∗∆
)
ab
(p)
)−1

0 0 0

0 0 0 0
((
Pψ
)
(p)
)−1

0 0 0
((
P ∗ψ
)
(p)
)−1

0


×

× (2π)4δ(4) (p− q) . (C.29)
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C.2 Propagator Matrix

The entries of this matrix are given by((
PA
)ab
µν
(p)
)−1

= Z−1A
(
GD
ABµν +GM

AAµν + ξGL
AP

L
µν

)
δab , (C.30)((

P∆

)
ab
(p)
)−1

= Z−1∆ G∆δab , (C.31)((
Pψ
)
(p)
)−1

= Z−1ψ
(
G−P+γ0 +G+P−γ0

)
. (C.32)

Here, we have defined

GD
A =

1

p2R + m̄2
D/ZA

, GM
A =

1

p2R + m̄2
M/ZA

, GL
A =

1

p2R + ξm̄2
L/ZA

,

G± = − 1

p0 + iε±
, and G∆ =

1

p2R + m̃2/Z∆ + 4iµp0
.

(C.33)

The gluon masses are given by m̄2
D (Debye mass), m̄2

M (Meissner mass), and m̄2
L (longitudinal mass) and the

curvature of the diquark potential is given by m̃2.
Turning to the phase governed by spontaneous symmetry breaking, we note that the existence of a finite
expectation value of the diquark fields leads to an Anderson-Higgs-type mechanism that effectively gaps the
gluons. However, we do not aim to resolve this aspect in the present work and simply leave the gluons
ungapped (i.e., using the same propagator for the gluons as in the symmetric phase) or “infinitely” gap them
(i.e., drop the gluon propagator). In addition to that, we drop diquark fluctuations below the symmetry-
breaking scale by effectively dropping the diquark propagators. Therefore, we only consider the quark part
of the propagator matrix in the following, which is given by

(
Pψk
)
ab
(p, q) =

((
ih̄Cγ5τ2∆̄3ε3

) (
P ∗ψ
)
(p)(

Pψ
)
(p)

(
− ih̄γ5Cτ2∆̄∗3ε3

)) (2π)4δ(4) (p− q) . (C.34)

Recall that we use a homogeneous background for the expansion of the diquark fields. In the phase governed
by spontaneous symmetry breaking, we choose the background field ∆̄3 to point in the three-direction so
that ∆a 7→ ∆a + δa3∆̄3. Notably, this background field appears on the diagonals of the propagator matrix.
The resulting inverse of the propagator matrix Pψk is given by

(
Pψk
)−1
ab

(p, q) =


(
Q∗ψ,χ(p)

)−1 (
Pψ,χ(p)

)−1(
P ∗ψ,χ(p)

)−1 (
Qψ,χ(p)

)−1
 (2π)4δ(4) (p− q) . (C.35)

The entries of this matrix are given by(
Pψ,χ(p)

)−1
= Z−1ψ G−

(
1 + χG−,χε3ε3

)
P+γ0 + Z−1ψ G+

(
1 + χG+,χε3ε3

)
P−γ0 , (C.36)(

Qψ,χ(p)
)−1

= −ih̄∆̄3Z
−2
ψ Cγ5τ2ε3

(
G−,χP− +G+,χP+

)
. (C.37)

Here, we have introduced

G±,χ =
1

p20 + ε2± + χ
. (C.38)

Note that the diquark gap is related to the parameter χ = h̄2|∆3|2Z−2ψ since, by evaluating the background
field at the minimum of the diquark potential |∆̄3|2 = |∆̄0|2 as done when calculating the flow equations for
the different couplings, we find χ = ∆2

gap.
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C Expansion of the Wetterich Equation

C.3 Inverse of the Propagator Matrix with Isospin Asymmetry
In the following, we show the propagator matrix including different chemical potentials, in particular different
chemical potentials for up and down quarks, namely µu and µd, and different chemical potentials for colours,
namely red µr, green µg, and blue µb. For details on the inclusion, see Sec. 3.1. Here, we only consider quark
degrees of freedom so that the propagator matrix Pψk is given by

(
Pψk
)
ab
(p, q) =

( (
ih̄Cγ5τ2∆̄3ε3

)
P ∗ψ(p)

Pψ(p)
(
− ih̄γ5Cτ2∆̄∗3ε3

) ) (2π)4δ(4)(p− q) . (C.39)

As before, ∆̄3 is the background field which we choose to point in the three-direction such that ∆a →
∆a + δa3∆̄3. The entries of the propagator matrix Pψk are given by

Pψ(p) = Zψ
(
P−P−γ0 + P+P+γ0

)
, (C.40)

where

P± = −diag
(
p0 + iεu,r

± , p0 + iεu,g
± , p0 + iεu,b

± , p0 + iεd,r
± , p0 + iεd,g

± , p0 + iεd,b
±

)
c,f
. (C.41)

Note that P± are matrices in colour and flavour space, as indicated by the subscript ‘c,f’. The regularised
quasi-particle dispersion relations entering this expression including different flavour and colour chemical
potentials are given by εf,c± = (µf + µc ± |~p |) (1 + rf,c± ) where rf,c± ≡ r

(
xf,c±

)
with xf,c± = (µf + µc ± |~p |)2/k2.

Inverting the propagator matrix Pψk yields

(
Pψk
)−1
ab

(p, q) =


(
Q∗ψ,χ(p)

)−1 (
Pψ,χ(p)

)−1(
P ∗ψ,χ(p)

)−1 (
Qψ,χ(p)

)−1
 (2π)4δ(4) (p− q) . (C.42)

The entries are given by(
Pψ,χ(p)

)−1
= Z−1ψ G−

(
1− χG−,χ

)
P+γ0 + Z−1ψ G+

(
1− χG+,χ

)
P−γ0 , (C.43)(

Qψ,χ(p)
)−1

= −ih̄∆̄3Z
−2
ψ Cγ5τ2ε3

(
G−,χP− + G+,χP+

)
. (C.44)

Here, we have defined

G± = diag
(
Gu,r
± , Gu,g

± , Gu,b
± , Gd,r

± , Gd,g
± , Gd,b

±

)
c,f
, (C.45)

G±,χ = diag
(
G

(u,r),(d,g)
±,χ , G

(u,g),(d,r)
±,χ , 0, G

(d,r),(u,g)
±,χ , G

(d,g),(u,r)
±,χ , 0

)
c,f
. (C.46)

Note that G± and G±,χ are matrices in colour and flavour space as indicated by the subscript ‘c,f’. In addition
to that, we have defined

G
(f1,c1),(f2,c2)
±,χ =

1

χ+ (p0 + iεf1,c1± )(p0 − iεf2,c2± )
and Gf,c± = − 1

p0 + iεf,c±
. (C.47)

We have only considered the phase governed by the emergence of a diquark gap. However, the result for the
symmetric phase can straightforwardly be obtained by setting χ = 0 (i.e., setting the background field to
zero ∆̄3 = 0). This yields(

Pψ(p)
)−1

= Z−1ψ
(
G−P+γ0 + G+P−γ0

)
and

(
Qψ,χ(p)

)−1
= 0 . (C.48)
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D
Strong Coupling

In the following, we give some details about the strong coupling g used throughout the present work. In
particular, in the first-principles study in Chap. 2, the gauge sector enters the calculation only via the strong
coupling. Its value at the initial RG scale Λ is the only external input parameter entering this study.
The calculations in the aforementioned chapter rely on the background-field formalism [304, 305]. Then, the
beta function βg2 of the (squared) strong coupling is given by

βg2 = k∂kg
2 = ηAg

2 . (D.1)

Here, ηA is the gluon anomalous dimension which consists of a pure gluonic contribution ηglue
A and a quark

contribution ηquark
A [296–298]. By including diquark fluctuations in Sec. 2.6, we obtain an additional diquark

contribution ηdiquark
A . However, as we have shown in Sec. 2.6, diquark fluctuations are subleading, at least

in the phase that is not governed by spontaneous symmetry breaking. In addition to that, diquark fields
enter our calculation only as effective low-energy degrees of freedom that are purely generated from the
quark-gluon dynamics. For the following discussion, we therefore drop this contribution so that the gluon
anomalous dimension is given by

ηA = −Z−1A ∂tZA = ηglue
A + ηquark

A . (D.2)

For the gluon contribution, we employ results from previous fRG studies where ηglue
A was calculated nonper-

turbatively within the background-field formalism [297, 298, 311]. This contribution does not depend on the
chemical potential. For the quark contribution, we find

ηquark
A =

4

3
g2NfD(1)

ff

(µ
k
, ρψ

)
. (D.3)

Here, Nf = 2 is the number of flavours. The threshold function D(1)
ff corresponds to a loop diagram with two

internal fermionic lines and its definition can be found in App. B.3. In particular, this contribution depends
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Figure D.1: Strong coupling g2 for four different chemical potentials, namely µ = 0, 10, 100, 1000MeV,
compared to the pure Yang-Mills coupling (red line) associated with Nf = 0. For a comparison, we also show
the result for the strong coupling in a one-loop approximation (dashed grey line) according to Eq. (D.5). We
have fixed the strong coupling with g2(Λ) = 4π · 0.179 at Λ = 10GeV.

on the chemical potential. Note that, in the phase governed by spontaneous symmetry breaking, the strong
coupling also depends on the diquark gap. However, we drop the diquark gap for the purpose of the present
illustration. For the effects of the diquark gap on the strong coupling, see Sec. 2.4, where the diquark gap
enters the strong coupling via the quark contribution to the anomalous dimensions ηA.
In Fig. D.1, we show the strong coupling for different chemical potentials and compare it to the pure
Yang-Mills coupling (associated with Nf = 0). We have fixed the strong coupling with g2(Λ) = 4π · 0.179
at Λ = 10GeV. This corresponds to the experimental value g2(mτ ) = 4π · 0.330 at the τ -mass scale mτ =

1.78GeV [318]. As the only input parameter, the strong coupling sets the scale for all dimensionful quanti-
ties. Therefore, we define ΛQCD as the deflection point of the strong coupling which we use to express all
dimensionful quantities. We find ΛQCD ≈ 209MeV in the vacuum limit.
In Sec. 3.2, we use the one-loop result for the strong coupling, which is also shown in Fig. D.1 for a comparison.
The corresponding beta function in a one-loop approximation reads, see, e.g., [215, 218, 318],

k∂kg
2 = −b0g4 . (D.4)

For Nc = 3 colours and Nf = 2 flavours, b0 is given by b0 = (11Nc − 2Nf)/(24π
2) = 29/(24π2). The beta

function can be solved analytically resulting in

g2 =
1

b0 ln(k/ΛQCD)
. (D.5)

For the one-loop result, the characteristic energy scale of QCD ΛQCD is defined as the location of the
divergence of the strong coupling and is given by ΛQCD = Λexp(−1/(b0g20)). Here, g0 is the value of the
strong coupling at the scale Λ. For g20 = g2(Λ) = 4π · 0.179 at Λ = 10GeV, we find ΛQCD ≈ 265MeV. With
the one-loop expression for the strong coupling (D.5), we find that QCD is asymptotically free if b0 > 0 which
is fulfilled for 11Nc > 2Nf. Therefore, the strong coupling decreases towards higher scales while it increases
towards lower scales.

170



Bibliography

[1] S. L. Glashow, “The renormalizability of vector meson interactions”, Nucl. Phys. 10, 107–117 (1959).
[2] A. Salam and J. C. Ward, “Weak and electromagnetic interactions”, Nuovo Cim. 11, 568–577 (1959).
[3] S. Weinberg, “A model of leptons”, Phys. Rev. Lett. 19, 1264–1266 (1967).
[4] M. Gell-Mann, “A schematic model of baryons and mesons”, Phys. Lett. 8, 214–215 (1964).
[5] G. Zweig, An SU3 model for strong interaction symmetry and its breaking; Version 1, CERN-TH-401

(1964).
[6] G. Zweig, An SU3 model for strong interaction symmetry and its breaking; Version 2, CERN-TH-412

(1964).
[7] M. Gell-Mann, The eightfold way: A theory of strong interaction symmetry, CTSL-20, TID-12608

(1961).
[8] Y. Ne’eman, “Derivation of strong interactions from a gauge invariance”, Nucl. Phys. 26, 222–229

(1961).
[9] W. A. Bardeen, H. Fritzsch, and M. Gell-Mann, “Light-cone current algebra, π0 decay, and e+e−

annihilation”, in Scale and Conformal Symmetry in Hadron Physics, edited by R. Gatto (John Wiley
and Sons, 1973), p. 139, arXiv:hep-ph/0211388.

[10] O. W. Greenberg, “Spin and unitary-spin independence in a paraquark model of baryons and mesons”,
Phys. Rev. Lett. 13, 598–602 (1964).

[11] M. Y. Han and Y. Nambu, “Three-triplet model with double SU(3) symmetry”, Phys. Rev. 139,
B1006–B1010 (1965).

[12] C. Burgess and G. Moore, The Standard Model: A Primer (Cambridge University Press, 2007).
[13] J. Greensite, An Introduction to the Confinement Problem (Springer Berlin Heidelberg, 2011).
[14] K. G. Wilson, “Confinement of quarks”, Phys. Rev. D 10, 2445–2459 (1974).
[15] H. Fritzsch, M. Gell-Mann, and H. Leutwyler, “Advantages of the color octet gluon picture”, Phys.

Lett. B 47, 365–368 (1973).
[16] C.-N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev.

96, 191–195 (1954).
[17] R. Mills, “Gauge fields”, Am. J. Phys. 57, 493–507 (1989).
[18] D. J. Gross and F. Wilczek, “Ultraviolet behavior of non-Abelian gauge theories”, Phys. Rev. Lett.

30, 1343–1346 (1973).
[19] H. D. Politzer, “Reliable perturbative results for strong interactions?”, Phys. Rev. Lett. 30, 1346–

1349 (1973).
[20] K. Fukushima and T. Hatsuda, “The phase diagram of dense QCD”, Rep. Prog. Phys. 74, 014001

(2011).

171

https://doi.org/10.1016/0029-5582(59)90196-8
https://doi.org/10.1007/BF02726525
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1016/S0031-9163(64)92001-3
http://dx.doi.org/10.17181/CERN-TH-401
http://dx.doi.org/10.17181/CERN-TH-412
https://doi.org/10.2172/4008239
https://doi.org/10.1016/0029-5582(61)90134-1
https://doi.org/10.1016/0029-5582(61)90134-1
https://arxiv.org/abs/hep-ph/0211388
https://doi.org/10.1103/PhysRevLett.13.598
https://doi.org/10.1103/PhysRev.139.B1006
https://doi.org/10.1103/PhysRev.139.B1006
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1119/1.15984
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001


Bibliography

[21] P. Braun-Munzinger and J. Wambach, “Colloquium: Phase diagram of strongly interacting matter”,
Rev. Mod. Phys. 81, 1031–1050 (2009).

[22] M. A. Stephanov, “QCD phase diagram: An overview”, PoS LAT2006, 024 (2006).
[23] S. Sharma, “Recent progress on the QCD phase diagram”, PoS LATTICE2018, 009 (2019).
[24] L. Van Hove, “Theoretical prediction of a new state of matter, the “quark-gluon plasma” (also called

“quark matter”)”, in 17th International Symposium on Multiparticle Dynamics, edited by J. N. Mac-
Naughton, W. Majerotto, and M. Markytan (1986), pp. 801–818.

[25] E. V. Shuryak and I. Zahed, “Rethinking the properties of the quark-gluon plasma at Tc < T < 4Tc”,
Phys. Rev. C 70, 021901 (2004).

[26] E. V. Shuryak, “Quark-gluon plasma and hadronic production of leptons, photons and psions”, Phys.
Lett. B 78, 150–153 (1978).

[27] B. Müller, “Investigation of hot QCD matter: Theoretical aspects”, Phys. Scr. 2013, 014004 (2013).
[28] E. Iancu, “QCD in heavy ion collisions”, in 2011 European School of High-Energy Physics, edited by

C. Grojean and M. Mulders (2014), pp. 197–266.
[29] J. I. Kapusta, “Quark-gluon plasma in the early Universe”, in Phase Transitions in the Early Universe:

Theory and Observations, edited by H. J. De Vega, I. M. Khalatnikov, and N. G. Sànchez (Springer
Dordrecht, 2001), pp. 103–121.

[30] B. Müller, J. Schukraft, and B. Wysłouch, “First results from Pb+Pb collisions at the LHC”, Ann.
Rev. Nucl. Part. Sci. 62, 361–386 (2012).

[31] B. Müller and J. L. Nagle, “Results from the Relativistic Heavy Ion Collider”, Ann. Rev. Nucl. Part.
Sci. 56, 93–135 (2006).

[32] P. Jacobs and X.-N. Wang, “Matter in extremis: Ultrarelativistic nuclear collisions at RHIC”, Prog.
Part. Nucl. Phys. 54, 443–534 (2005).

[33] J. B. Kogut, M. Stone, H. W. Wyld, W. R. Gibbs, J. Shigemitsu, S. H. Shenker, and D. K. Sinclair,
“Deconfinement and chiral symmetry restoration at finite temperatures in SU(2) and SU(3) gauge
theories”, Phys. Rev. Lett. 50, 393–396 (1983).

[34] F. Xu and M. Huang, “The chiral and deconfinement phase transitions”, Cent. Eur. J. Phys. 10,
1357–1360 (2012).

[35] V. Koch, “Introduction to chiral symmetry”, (1995), arXiv:nucl-th/9512029.
[36] R. D. Pisarski and F. Wilczek, “Remarks on the chiral phase transition in chromodynamics”, Phys.

Rev. D 29, 338–341 (1984).
[37] T. Schäfer, “The chiral phase transition”, Nucl. Phys. A 610, 13–25 (1996).
[38] A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, and G. Pettini, “Chiral phase transitions in QCD

for finite temperature and density”, Phys. Rev. D 41, 1610–1619 (1990).
[39] F. Wilczek, “Application of the renormalization group to a second-order QCD phase transition”, Int.

J. Mod. Phys. A 7, 3911–3925 (1992), [Erratum: Int. J. Mod. Phys. A 7, 6951 (1992)].
[40] J. Berges and K. Rajagopal, “Color superconductivity and chiral symmetry restoration at non-zero

baryon density and temperature”, Nucl. Phys. B 538, 215–232 (1999).
[41] G. Bertsch and P. J. Siemens, “Nuclear fragmentation”, Phys. Lett. B 126, 9–12 (1983).
[42] P. J. Siemens, “Liquid–gas phase transition in nuclear matter”, Nature 305, 410–412 (1983).
[43] A. D. Panagiotou, M. W. Curtin, H. Toki, D. K. Scott, and P. J. Siemens, “Experimental evidence

for a liquid-gas phase transition in nuclear systems”, Phys. Rev. Lett. 52, 496–499 (1984).
[44] K. Fukushima, J. Horak, J. M. Pawlowski, N. Wink, and C. P. Zelle, “The nuclear liquid-gas transition

in QCD”, (2023), arXiv:2308.16594 [nucl-th].

172

https://doi.org/10.1103/RevModPhys.81.1031
https://doi.org/10.22323/1.032.0024
https://doi.org/10.22323/1.334.0009
https://doi.org/10.1103/PhysRevC.70.021901
https://doi.org/10.1016/0370-2693(78)90370-2
https://doi.org/10.1016/0370-2693(78)90370-2
https://doi.org/10.1088/0031-8949/2013/T158/014004
https://doi.org/10.5170/CERN-2014-003.197
https://doi.org/https://doi.org/10.1007/978-94-010-0997-3_4
https://doi.org/https://doi.org/10.1007/978-94-010-0997-3_4
https://doi.org/10.1146/annurev-nucl-102711-094910
https://doi.org/10.1146/annurev-nucl-102711-094910
https://doi.org/10.1146/annurev.nucl.56.080805.140556
https://doi.org/10.1146/annurev.nucl.56.080805.140556
https://doi.org/10.1016/j.ppnp.2004.09.001
https://doi.org/10.1016/j.ppnp.2004.09.001
https://doi.org/10.1103/PhysRevLett.50.393
https://doi.org/10.2478/s11534-012-0084-1
https://doi.org/10.2478/s11534-012-0084-1
https://arxiv.org/abs/nucl-th/9512029
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1016/S0375-9474(96)00339-9
https://doi.org/10.1103/PhysRevD.41.1610
https://doi.org/10.1142/S0217751X92001757
https://doi.org/10.1142/S0217751X92001757
https://doi.org/https://doi.org/10.1016/S0550-3213(98)00620-8
https://doi.org/10.1016/0370-2693(83)90004-7
https://doi.org/10.1038/305410a0
https://doi.org/10.1103/PhysRevLett.52.496
https://arxiv.org/abs/2308.16594


Bibliography

[45] B. Borderie and J. D. Frankland, “Liquid–Gas phase transition in nuclei”, Prog. Part. Nucl. Phys.
105, 82–138 (2019).

[46] K. Rajagopal and F. Wilczek, “The condensed matter physics of QCD”, in At The Frontier of Particle
Physics, edited by M. Shifman (World Scientific, 2001), pp. 2061–2151.

[47] M. G. Alford, “Color-superconducting quark matter”, Ann. Rev. Nucl. Part. Sci. 51, 131–160 (2001).
[48] M. Buballa, “NJL-model analysis of dense quark matter”, Phys. Rept. 407, 205–376 (2005).
[49] I. A. Shovkovy, “Two lectures on color superconductivity”, Found. Phys. 35, 1309–1358 (2005).
[50] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, “Color superconductivity in dense quark

matter”, Rev. Mod. Phys. 80, 1455–1515 (2008).
[51] K. Fukushima, “QCD matter in extreme environments”, J. Phys. G: Nucl. Part. Phys. 39, 013101

(2012).
[52] R. Anglani, R. Casalbuoni, M. Ciminale, N. Ippolito, R. Gatto, M. Mannarelli, and M. Ruggieri,

“Crystalline color superconductors”, Rev. Mod. Phys. 86, 509–561 (2014).
[53] A. Schmitt, Introduction to Superfluidity: Field-theoretical Approach and Applications (Springer Cham,

2015).
[54] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, “From hadrons to quarks

in neutron stars: A review”, Rep. Prog. Phys. 81, 056902 (2018).
[55] D. Bailin and A. Love, “Superfluidity and superconductivity in relativistic fermion systems”, Phys.

Rept. 107, 325–385 (1984).
[56] D. H. Rischke, “The quark–gluon plasma in equilibrium”, Prog. Part. Nucl. Phys. 52, 197–296

(2004).
[57] Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with

superconductivity. I.”, Phys. Rev. 122, 345–358 (1961).
[58] Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with

superconductivity. II.”, Phys. Rev. 124, 246–254 (1961).
[59] D. Griffiths, Introduction to Elementary Particles (John Wiley & Sons, Ltd, 1987).
[60] M. Tanabashi et al. (Particle Data Group), “Review of particle physics”, Phys. Rev. D 98, 030001

(2018).
[61] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett.

13, 321–323 (1964).
[62] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett. 12, 132–133

(1964).
[63] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13, 508–509

(1964).
[64] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”,

Phys. Rev. Lett. 13, 585–587 (1964).
[65] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145, 1156–

1163 (1966).
[66] P. W. Anderson, “Plasmons, gauge invariance, and mass”, Phys. Rev. 130, 439–442 (1963).
[67] P. W. Anderson, “Random-phase approximation in the theory of superconductivity”, Phys. Rev. 112,

1900–1916 (1958).
[68] Y. Nambu, “Quasi-particles and gauge invariance in the theory of superconductivity”, Phys. Rev.

117, 648–663 (1960).
[69] F. London and H. London, “The electromagnetic equations of the supraconductor”, Proc. R. Soc.

Lond. A 149, 71–88 (1935).

173

https://doi.org/10.1016/j.ppnp.2018.12.002
https://doi.org/10.1016/j.ppnp.2018.12.002
https://doi.org/https://doi.org/10.1142/9789812810458_0043
https://doi.org/https://doi.org/10.1142/9789812810458_0043
https://doi.org/10.1146/annurev.nucl.51.101701.132449
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1007/s10701-005-6440-x
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1088/0954-3899/39/1/013101
https://doi.org/10.1088/0954-3899/39/1/013101
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1088/1361-6633/aaae14
https://doi.org/10.1016/0370-1573(84)90145-5
https://doi.org/10.1016/0370-1573(84)90145-5
https://doi.org/https://doi.org/10.1016/j.ppnp.2003.09.002
https://doi.org/https://doi.org/10.1016/j.ppnp.2003.09.002
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/http://doi.org/10.1098/rspa.1935.0048
https://doi.org/http://doi.org/10.1098/rspa.1935.0048


Bibliography

[70] V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity”, Zh. Eksp. Teor. Fiz. 20,
1064–1082 (1950).

[71] L. N. Cooper, “Bound electron pairs in a degenerate Fermi gas”, Phys. Rev. 104, 1189–1190 (1956).
[72] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity”, Phys. Rev. 108, 1175–

1204 (1957).
[73] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity”, Phys. Rev.

106, 162–164 (1957).
[74] H. Fröhlich, “Theory of the superconducting state. I. The ground state at the absolute zero of

temperature”, Phys. Rev. 79, 845–856 (1950).
[75] H. Fröhlich, “Interaction of electrons with lattice vibrations”, Proc. R. Soc. Lond. A 215, 291–298

(1952).
[76] D. D. Osheroff, R. C. Richardson, and D. M. Lee, “Evidence for a new phase of solid He3”, Phys.

Rev. Lett. 28, 885–888 (1972).
[77] D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee, “New magnetic phenomena in liquid

He3 below 3 mK”, Phys. Rev. Lett. 29, 920–923 (1972).
[78] B. DeMarco and D. S. Jin, “Onset of Fermi degeneracy in a trapped atomic gas”, Science 285, 1703–

1706 (1999).
[79] J. Goldstone, “Field theories with superconductor solutions”, Nuovo Cim. 19, 154–164 (1961).
[80] J. Goldstone, A. Salam, and S. Weinberg, “Broken symmetries”, Phys. Rev. 127, 965–970 (1962).
[81] W. Meissner and R. Ochsenfeld, “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit”, Naturwiss. 21,

787–788 (1933).
[82] D. T. Son, “Superconductivity by long-range color magnetic interaction in high-density quark matter”,

Phys. Rev. D 59, 094019 (1999).
[83] T. Schäfer and F. Wilczek, “Superconductivity from perturbative one-gluon exchange in high density

quark matter”, Phys. Rev. D 60, 114033 (1999).
[84] T. Schäfer and F. Wilczek, “High density quark matter and the renormalization group in QCD with

two and three flavors”, Phys. Lett. B 450, 325–331 (1999).
[85] M. G. Alford, K. Rajagopal, and F. Wilczek, “QCD at finite baryon density: Nucleon droplets and

color superconductivity”, Phys. Lett. B 422, 247–256 (1998).
[86] R. Rapp, T. Schäfer, E. V. Shuryak, and M. Velkovsky, “Diquark bose condensates in high density

matter and instantons”, Phys. Rev. Lett. 81, 53–56 (1998).
[87] R. D. Pisarski and D. H. Rischke, “Color superconductivity in weak coupling”, Phys. Rev. D 61,

074017 (2000).
[88] R. D. Pisarski and D. H. Rischke, “Gaps and critical temperature for color superconductivity”, Phys.

Rev. D 61, 051501 (2000).
[89] W. E. Brown, J. T. Liu, and H.-c. Ren, “Perturbative nature of color superconductivity”, Phys. Rev.

D 61, 114012 (2000).
[90] D. K. Hong, V. A. Miransky, I. A. Shovkovy, and L. C. R. Wijewardhana, “Schwinger-Dyson approach

to color superconductivity in dense QCD”, Phys. Rev. D 61, 056001 (2000), [Erratum: Phys. Rev.
D 62, 059903 (2000)].

[91] S. D. Hsu and M. Schwetz, “Magnetic interactions, the renormalization group and color superconduc-
tivity in high density QCD”, Nucl. Phys. B 572, 211–226 (2000).

[92] N. J. Evans, J. Hormuzdiar, S. D. H. Hsu, and M. Schwetz, “On the QCD ground state at high
density”, Nucl. Phys. B 581, 391–408 (2000).

174

https://doi.org/10.1016/B978-0-08-010586-4.50035-3
https://doi.org/10.1016/B978-0-08-010586-4.50035-3
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.79.845
https://doi.org/10.1098/rspa.1952.0212
https://doi.org/10.1098/rspa.1952.0212
https://doi.org/10.1103/PhysRevLett.28.885
https://doi.org/10.1103/PhysRevLett.28.885
https://doi.org/10.1103/PhysRevLett.29.920
https://doi.org/10.1126/science.285.5434.1703
https://doi.org/10.1126/science.285.5434.1703
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1007/BF01504252
https://doi.org/10.1007/BF01504252
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevD.60.114033
https://doi.org/10.1016/S0370-2693(99)00162-8
https://doi.org/10.1016/S0370-2693(98)00051-3
https://doi.org/10.1103/PhysRevLett.81.53
https://doi.org/10.1103/PhysRevD.61.074017
https://doi.org/10.1103/PhysRevD.61.074017
https://doi.org/10.1103/PhysRevD.61.051501
https://doi.org/10.1103/PhysRevD.61.051501
https://doi.org/10.1103/PhysRevD.61.114012
https://doi.org/10.1103/PhysRevD.61.114012
https://doi.org/10.1103/PhysRevD.61.056001
https://doi.org/10.1016/S0550-3213(99)00655-0
https://doi.org/10.1016/S0550-3213(00)00253-4


Bibliography

[93] M. Baldo, M. Buballa, F. Burgio, F. Neumann, M. Oertel, and H. J. Schulze, “Neutron stars and the
transition to color superconducting quark matter”, Phys. Lett. B 562, 153–160 (2003).

[94] E. S. Fraga, A. Kurkela, and A. Vuorinen, “Neutron star structure from QCD”, Eur. Phys. J. A 52,
49 (2016).

[95] H. Heiselberg and M. Hjorth-Jensen, “Phases of dense matter in neutron stars”, Phys. Rept. 328,
237–327 (2000).

[96] J. M. Lattimer and M. Prakash, “The physics of neutron stars”, Science 304, 536–542 (2004).
[97] A. W. Alsabti and P. Murdin, eds., Handbook of Supernovae (Springer Cham, 2017).
[98] A. Schmitt, Dense Matter in Compact Stars: A Pedagogical Introduction (Springer Berlin Heidelberg,

2010).
[99] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J. Hessels, “A two-solar-mass neutron star

measured using Shapiro delay”, Nature 467, 1081–1083 (2010).
[100] J. Antoniadis et al., “A massive pulsar in a compact relativistic binary”, Science 340, 1233232 (2013).
[101] E. Fonseca et al., “Refined mass and geometric measurements of the high-mass PSR J0740+6620”,

Astrophys. J. Lett. 915, L12 (2021).
[102] H. T. Cromartie et al. (NANOGrav), “Relativistic Shapiro delay measurements of an extremely mas-

sive millisecond pulsar”, Nature Astron. 4, 72–76 (2020).
[103] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A. Vuorinen, “Evidence for quark-matter cores in

massive neutron stars”, Nature Phys. 16, 907–910 (2020).
[104] E. Annala, T. Gorda, J. Hirvonen, O. Komoltsev, A. Kurkela, J. Nättilä, and A. Vuorinen, “Strongly

interacting matter exhibits deconfined behavior in massive neutron stars”, Nature Commun. 14, 8451
(2023).

[105] J. C. Collins and M. J. Perry, “Superdense matter: Neutrons or asymptotically free quarks?”, Phys.
Rev. Lett. 34, 1353–1356 (1975).

[106] A. Gal, E. V. Hungerford, and D. J. Millener, “Strangeness in nuclear physics”, Rev. Mod. Phys. 88,
035004 (2016).

[107] N. K. Glendenning, “Neutron stars are giant hypernuclei?”, Astrophys. J. 293, 470–493 (1985).
[108] J. Schaffner-Bielich, M. Hanauske, H. Stöcker, and W. Greiner, “Phase transition to hyperon matter

in neutron stars”, Phys. Rev. Lett. 89, 171101 (2002).
[109] I. Bombaci, “The hyperon puzzle in neutron stars”, JPS Conf. Proc. 17, 101002 (2017).
[110] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “GW170817: Observation

of gravitational waves from a binary neutron star inspiral”, Phys. Rev. Lett. 119, 161101 (2017).
[111] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Properties of the binary

neutron star merger GW170817”, Phys. Rev. X 9, 011001 (2019).
[112] A. L. Watts et al., “Colloquium : Measuring the neutron star equation of state using x-ray timing”,

Rev. Mod. Phys. 88, 021001 (2016).
[113] Z. Arzoumanian et al., “The Neutron Star Interior Composition Explorer (NICER): Mission defini-

tion”, in Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Vol. 9144, Proc.
SPIE (2014), p. 914420.

[114] K. C. Gendreau et al., “The Neutron Star Interior Composition Explorer (NICER): Design and de-
velopment”, in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Vol. 9905,
Proc. SPIE (2016), 99051H.

[115] M. C. Miller et al., “The radius of PSR J0740+6620 from NICER and XMM-Newton data”, Astrophys.
J. Lett. 918, L28 (2021).

175

https://doi.org/10.1016/S0370-2693(03)00556-2
https://doi.org/10.1140/epja/i2016-16049-6
https://doi.org/10.1140/epja/i2016-16049-6
https://doi.org/10.1016/S0370-1573(99)00110-6
https://doi.org/10.1016/S0370-1573(99)00110-6
https://doi.org/10.1126/science.1090720
https://doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1038/s41467-023-44051-y
https://doi.org/10.1038/s41467-023-44051-y
https://doi.org/10.1103/PhysRevLett.34.1353
https://doi.org/10.1103/PhysRevLett.34.1353
https://doi.org/10.1103/RevModPhys.88.035004
https://doi.org/10.1103/RevModPhys.88.035004
https://doi.org/10.1086/163253
https://doi.org/10.1103/PhysRevLett.89.171101
https://doi.org/10.7566/JPSCP.17.101002
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/RevModPhys.88.021001
https://doi.org/10.1117/12.2056811
https://doi.org/10.1117/12.2231304
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.3847/2041-8213/ac089b


Bibliography

[116] T. E. Riley et al., “A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing
and XMM-Newton spectroscopy”, Astrophys. J. Lett. 918, L27 (2021).

[117] G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S. Nissanke, A. Schwenk, T. E. Riley, A. L.
Watts, J. M. Lattimer, and W. C. G. Ho, “Constraints on the dense matter equation of state and
neutron star properties from NICER’s mass–radius estimate of PSR J0740+6620 and multimessenger
observations”, Astrophys. J. Lett. 918, L29 (2021).

[118] E. Fonseca et al., “The NANOGrav nine-year data set: Mass and geometric measurements of binary
millisecond pulsars”, Astrophys. J. 832, 167 (2016).

[119] S. Huth, C. Wellenhofer, and A. Schwenk, “New equations of state constrained by nuclear physics,
observations, and QCD calculations of high-density nuclear matter”, Phys. Rev. C 103, 025803
(2021).

[120] P. Bedaque and A. W. Steiner, “Sound velocity bound and neutron stars”, Phys. Rev. Lett. 114,
031103 (2015).

[121] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, “Constraining the speed of sound inside neutron stars
with chiral effective field theory interactions and observations”, Astrophys. J. 860, 149 (2018).

[122] S. K. Greif, G. Raaijmakers, K. Hebeler, A. Schwenk, and A. L. Watts, “Equation of state sensitivities
when inferring neutron star and dense matter properties”, Mon. Not. Roy. Astron. Soc. 485, 5363–
5376 (2019).

[123] S. Altiparmak, C. Ecker, and L. Rezzolla, “On the sound speed in neutron stars”, Astrophys. J. Lett.
939, L34 (2022).

[124] T. Gorda, O. Komoltsev, and A. Kurkela, “Ab-initio QCD calculations impact the inference of the
neutron-star-matter equation of state”, Astrophys. J. 950, 107 (2023).

[125] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, “Equation of state and neutron star
properties constrained by nuclear physics and observation”, Astrophys. J. 773, 11 (2013).

[126] M. Leonhardt, M. Pospiech, B. Schallmo, J. Braun, C. Drischler, K. Hebeler, and A. Schwenk, “Sym-
metric nuclear matter from the strong interaction”, Phys. Rev. Lett. 125, 142502 (2020).

[127] K. Hebeler, “Three-nucleon forces: Implementation and applications to atomic nuclei and dense mat-
ter”, Phys. Rept. 890, 1–116 (2021).

[128] J. Keller, K. Hebeler, and A. Schwenk, “Nuclear equation of state for arbitrary proton fraction and
temperature based on chiral effective field theory and a Gaussian process emulator”, Phys. Rev. Lett.
130, 072701 (2023).

[129] J. Keller, C. Wellenhofer, K. Hebeler, and A. Schwenk, “Neutron matter at finite temperature based
on chiral effective field theory interactions”, Phys. Rev. C 103, 055806 (2021).

[130] J. Berges, D. U. Jungnickel, and C. Wetterich, “Quark and nuclear matter in the linear chiral meson
model”, Int. J. Mod. Phys. A 18, 3189–3220 (2003).

[131] M. Drews and W. Weise, “Functional renormalization group approach to neutron matter”, Phys. Lett.
B 738, 187–190 (2014).

[132] M. Drews and W. Weise, “From asymmetric nuclear matter to neutron stars: A functional renormal-
ization group study”, Phys. Rev. C 91, 035802 (2015).

[133] R.-A. Tripolt, B.-J. Schaefer, L. von Smekal, and J. Wambach, “Low-temperature behavior of the
quark-meson model”, Phys. Rev. D 97, 034022 (2018).

[134] K. Otto, M. Oertel, and B.-J. Schaefer, “Hybrid and quark star matter based on a nonperturbative
equation of state”, Phys. Rev. D 101, 103021 (2020).

[135] K. Otto, M. Oertel, and B.-J. Schaefer, “Nonperturbative quark matter equations of state with vector
interactions”, Eur. Phys. J. ST 229, 3629–3649 (2020).

176

https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac089a
https://doi.org/10.3847/0004-637X/832/2/167
https://doi.org/10.1103/PhysRevC.103.025803
https://doi.org/10.1103/PhysRevC.103.025803
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.1093/mnras/stz654
https://doi.org/10.1093/mnras/stz654
https://doi.org/10.3847/2041-8213/ac9b2a
https://doi.org/10.3847/2041-8213/ac9b2a
https://doi.org/10.3847/1538-4357/acce3a
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.1103/PhysRevLett.125.142502
https://doi.org/10.1016/j.physrep.2020.08.009
https://doi.org/10.1103/PhysRevLett.130.072701
https://doi.org/10.1103/PhysRevLett.130.072701
https://doi.org/10.1103/PhysRevC.103.055806
https://doi.org/10.1142/S0217751X03014034
https://doi.org/10.1016/j.physletb.2014.09.051
https://doi.org/10.1016/j.physletb.2014.09.051
https://doi.org/10.1103/PhysRevC.91.035802
https://doi.org/10.1103/PhysRevD.97.034022
https://doi.org/10.1103/PhysRevD.101.103021
https://doi.org/10.1140/epjst/e2020-000155-y


Bibliography

[136] K. Kamikado, N. Strodthoff, L. von Smekal, and J. Wambach, “Fluctuations in the quark-meson
model for QCD with isospin chemical potential”, Phys. Lett. B 718, 1044–1053 (2013).

[137] G. D. Moore and T. Gorda, “Bounding the QCD equation of state with the lattice”, J. High Energ.
Phys. 2023, 133 (2023).

[138] S. Borsányi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabó, “Full result for the QCD
equation of state with 2+1 flavors”, Phys. Lett. B 730, 99–104 (2014).

[139] A. Bazavov et al. (HotQCD Collaboration), “Equation of state in (2+1)-flavor QCD”, Phys. Rev. D
90, 094503 (2014).

[140] O. Philipsen, “Lattice QCD at finite temperature and density”, Eur. Phys. J. Spec. Top. 152, 29–60
(2007).

[141] C. Ratti, “Lattice QCD and heavy ion collisions: A review of recent progress”, Rep. Prog. Phys. 81,
084301 (2018).

[142] J. Braun, “The QCD phase boundary from quark-gluon dynamics”, Eur. Phys. J. C 64, 459–482
(2009).

[143] J. Braun, L. M. Haas, F. Marhauser, and J. M. Pawlowski, “Phase structure of two-flavor QCD at
finite chemical potential”, Phys. Rev. Lett. 106, 022002 (2011).

[144] L. Fister and J. M. Pawlowski, “Yang-Mills correlation functions at finite temperature”, (2011),
arXiv:1112.5440 [hep-ph].

[145] W.-j. Fu, J. M. Pawlowski, F. Rennecke, and B.-J. Schaefer, “Baryon number fluctuations at finite
temperature and density”, Phys. Rev. D 94, 116020 (2016).

[146] W.-j. Fu, J. M. Pawlowski, and F. Rennecke, “QCD phase structure at finite temperature and density”,
Phys. Rev. D 101, 054032 (2020).

[147] F. Gao and J. M. Pawlowski, “QCD phase structure from functional methods”, Phys. Rev. D 102,
034027 (2020).

[148] P. Isserstedt, C. S. Fischer, and T. Steinert, “QCD’s equation of state from Dyson-Schwinger equa-
tions”, PoS FAIRness2022, 024 (2023).

[149] P. Isserstedt, M. Buballa, C. S. Fischer, and P. J. Gunkel, “Baryon number fluctuations in the QCD
phase diagram from Dyson-Schwinger equations”, Phys. Rev. D 100, 074011 (2019).

[150] P. Isserstedt, C. S. Fischer, and T. Steinert, “Thermodynamics from the quark condensate”, Phys.
Rev. D 103, 054012 (2021).

[151] P. de Forcrand, “Simulating QCD at finite density”, PoS LAT2009, 010 (2009).
[152] K. Nagata, “Finite-density lattice QCD and sign problem: Current status and open problems”, Prog.

Part. Nucl. Phys. 127, 103991 (2022).
[153] V. A. Goy, V. Bornyakov, D. Boyda, A. Molochkov, A. Nakamura, A. Nikolaev, and V. Zakharov,

“Sign problem in finite density lattice QCD”, Prog. Theor. Exp. Phys. 2017, 031D01 (2017).
[154] B. A. Freedman and L. D. McLerran, “Fermions and gauge vector mesons at finite temperature and

density. I. Formal techniques”, Phys. Rev. D 16, 1130–1146 (1977).
[155] B. A. Freedman and L. D. McLerran, “Fermions and gauge vector mesons at finite temperature and

density. III. The ground state energy of a relativistic quark gas”, Phys. Rev. D 16, 1169–1185 (1977).
[156] V. Baluni, “Non-Abelian gauge theories of Fermi systems: Quantum-chromodynamic theory of highly

condensed matter”, Phys. Rev. D 17, 2092–2121 (1978).
[157] A. Kurkela, P. Romatschke, and A. Vuorinen, “Cold quark matter”, Phys. Rev. D 81, 105021 (2010).
[158] E. S. Fraga, A. Kurkela, and A. Vuorinen, “Interacting quark matter equation of state for compact

stars”, Astrophys. J. Lett. 781, L25 (2014).

177

https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1007/JHEP12(2023)133
https://doi.org/10.1007/JHEP12(2023)133
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1140/epjst/e2007-00376-3
https://doi.org/10.1140/epjst/e2007-00376-3
https://doi.org/10.1088/1361-6633/aabb97
https://doi.org/10.1088/1361-6633/aabb97
https://doi.org/10.1140/epjc/s10052-009-1136-6
https://doi.org/10.1140/epjc/s10052-009-1136-6
https://doi.org/10.1103/PhysRevLett.106.022002
https://arxiv.org/abs/1112.5440
https://doi.org/10.1103/PhysRevD.94.116020
https://doi.org/10.1103/PhysRevD.101.054032
https://doi.org/10.1103/PhysRevD.102.034027
https://doi.org/10.1103/PhysRevD.102.034027
https://doi.org/10.22323/1.419.0024
https://doi.org/10.1103/PhysRevD.100.074011
https://doi.org/10.1103/PhysRevD.103.054012
https://doi.org/10.1103/PhysRevD.103.054012
https://doi.org/10.22323/1.091.0010
https://doi.org/10.1016/j.ppnp.2022.103991
https://doi.org/10.1016/j.ppnp.2022.103991
https://doi.org/10.1093/ptep/ptx018
https://doi.org/10.1103/PhysRevD.16.1130
https://doi.org/10.1103/PhysRevD.16.1169
https://doi.org/10.1103/PhysRevD.17.2092
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1088/2041-8205/781/2/L25


Bibliography

[159] E. S. Fraga, A. Kurkela, J. Schaffner-Bielich, and A. Vuorinen, “QCD constraints on the equation of
state for compact stars”, Nucl. Phys. A 956, 813–816 (2016).

[160] T. Gorda, A. Kurkela, P. Romatschke, M. Säppi, and A. Vuorinen, “Next-to-next-to-next-to-leading
order pressure of cold quark matter: Leading logarithm”, Phys. Rev. Lett. 121, 202701 (2018).

[161] T. Gorda, A. Kurkela, R. Paatelainen, S. Säppi, and A. Vuorinen, “Soft interactions in cold quark
matter”, Phys. Rev. Lett. 127, 162003 (2021).

[162] T. Gorda, A. Kurkela, R. Paatelainen, S. Säppi, and A. Vuorinen, “Cold quark matter at N3LO: Soft
contributions”, Phys. Rev. D 104, 074015 (2021).

[163] O. Komoltsev, R. Somasundaram, T. Gorda, A. Kurkela, J. Margueron, and I. Tews, “Equation of
state at neutron-star densities and beyond from perturbative QCD”, (2023), arXiv:2312.14127 [nucl-
th].

[164] S. Floerchinger and C. Wetterich, “Chemical freeze-out in heavy ion collisions at large baryon densi-
ties”, Nucl. Phys. A 890-891, 11–24 (2012).

[165] J. Braun, M. Leonhardt, and M. Pospiech, “Fierz-complete NJL model study. II. Toward the fixed-
point and phase structure of hot and dense two-flavor QCD”, Phys. Rev. D 97, 076010 (2018).

[166] L. McLerran and S. Reddy, “Quarkyonic matter and neutron stars”, Phys. Rev. Lett. 122, 122701
(2019).

[167] Y. Song, G. Baym, T. Hatsuda, and T. Kojo, “Effective repulsion in dense quark matter from non-
perturbative gluon exchange”, Phys. Rev. D 100, 034018 (2019).

[168] R. D. Pisarski, “Remarks on nuclear matter: How an ω0 condensate can spike the speed of sound, and
a model of Z(3) baryons”, Phys. Rev. D 103, L071504 (2021).

[169] R.-A. Tripolt, C. Jung, L. von Smekal, and J. Wambach, “Vector and axial-vector mesons in nuclear
matter”, Phys. Rev. D 104, 054005 (2021).

[170] H. Gies and C. Wetterich, “Renormalization flow of bound states”, Phys. Rev. D 65, 065001 (2002).
[171] H. Gies and C. Wetterich, “Universality of spontaneous chiral symmetry breaking in gauge theories”,

Phys. Rev. D 69, 025001 (2004).
[172] J. M. Pawlowski, “Aspects of the functional renormalisation group”, Ann. Phys. 322, 2831–2915

(2007).
[173] H. Gies, “Introduction to the functional RG and applications to gauge theories”, in Renormalization

Group and Effective Field Theory Approaches to Many-Body Systems, edited by A. Schwenk and J.
Polonyi (Springer Berlin Heidelberg, 2012), pp. 287–348.

[174] S. Floerchinger and C. Wetterich, “Exact flow equation for composite operators”, Phys. Lett. B 680,
371–376 (2009).

[175] J. Braun, L. Fister, J. M. Pawlowski, and F. Rennecke, “From quarks and gluons to hadrons: Chiral
symmetry breaking in dynamical QCD”, Phys. Rev. D 94, 034016 (2016).

[176] M. Mitter, J. M. Pawlowski, and N. Strodthoff, “Chiral symmetry breaking in continuum QCD”,
Phys. Rev. D 91, 054035 (2015).

[177] A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff, “Nonperturbative quark, gluon, and
meson correlators of unquenched QCD”, Phys. Rev. D 97, 054006 (2018).

[178] K. Fukushima, J. M. Pawlowski, and N. Strodthoff, “Emergent hadrons and diquarks”, Ann. Phys.
446, 169106 (2022).

[179] J. Braun, M. Leonhardt, and M. Pospiech, “Fierz-complete NJL model study III: Emergence from
quark-gluon dynamics”, Phys. Rev. D 101, 036004 (2020).

[180] N. Strodthoff, B.-J. Schaefer, and L. von Smekal, “Quark-meson-diquark model for two-color QCD”,
Phys. Rev. D 85, 074007 (2012).

178

https://doi.org/10.1016/j.nuclphysa.2016.01.037
https://doi.org/10.1103/PhysRevLett.121.202701
https://doi.org/10.1103/PhysRevLett.127.162003
https://doi.org/10.1103/PhysRevD.104.074015
https://arxiv.org/abs/2312.14127
https://arxiv.org/abs/2312.14127
https://doi.org/10.1016/j.nuclphysa.2012.07.009
https://doi.org/10.1103/PhysRevD.97.076010
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1103/PhysRevD.100.034018
https://doi.org/10.1103/PhysRevD.103.L071504
https://doi.org/10.1103/PhysRevD.104.054005
https://doi.org/10.1103/PhysRevD.65.065001
https://doi.org/10.1103/PhysRevD.69.025001
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1007/978-3-642-27320-9_6
https://doi.org/10.1007/978-3-642-27320-9_6
https://doi.org/10.1016/j.physletb.2009.09.014
https://doi.org/10.1016/j.physletb.2009.09.014
https://doi.org/10.1103/PhysRevD.94.034016
https://doi.org/10.1103/PhysRevD.91.054035
https://doi.org/10.1103/PhysRevD.97.054006
https://doi.org/https://doi.org/10.1016/j.aop.2022.169106
https://doi.org/https://doi.org/10.1016/j.aop.2022.169106
https://doi.org/10.1103/PhysRevD.101.036004
https://doi.org/10.1103/PhysRevD.85.074007


Bibliography

[181] N. Strodthoff and L. von Smekal, “Polyakov-quark-meson-diquark model for two-color QCD”, Phys.
Lett. B 731, 350–357 (2014).

[182] K. Morita, B. Friman, K. Redlich, and V. Skokov, “Net quark number probability distribution near
the chiral crossover transition”, Phys. Rev. C 88, 034903 (2013).

[183] K.-I. Aoki, S.-I. Kumamoto, and D. Sato, “Weak solution of the non-perturbative renormalization
group equation to describe dynamical chiral symmetry breaking”, Prog. Theor. Exp. Phys. 2014,
043B05 (2014).

[184] N. Khan, J. M. Pawlowski, F. Rennecke, and M. M. Scherer, “The phase diagram of QC2D from
functional methods”, (2015), arXiv:1512.03673 [hep-ph].

[185] C. Jung, F. Rennecke, R.-A. Tripolt, L. von Smekal, and J. Wambach, “In-medium spectral functions
of vector- and axial-vector mesons from the functional renormalization group”, Phys. Rev. D 95,
036020 (2017).

[186] T. Yokota, T. Kunihiro, and K. Morita, “Functional renormalization group analysis of the soft mode
at the QCD critical point”, Prog. Theor. Exp. Phys. 2016, 073D01 (2016).

[187] F. Rennecke and B.-J. Schaefer, “Fluctuation-induced modifications of the phase structure in (2+1)-
flavor QCD”, Phys. Rev. D 96, 016009 (2017).

[188] G. A. Almási, B. Friman, and K. Redlich, “Baryon number fluctuations in chiral effective models and
their phenomenological implications”, Phys. Rev. D 96, 014027 (2017).

[189] W.-j. Fu, J. M. Pawlowski, and F. Rennecke, “Strangeness neutrality and baryon-strangeness correla-
tions”, Phys. Rev. D 100, 111501 (2019).

[190] R.-A. Tripolt, D. H. Rischke, L. von Smekal, and J. Wambach, “Fermionic excitations at finite tem-
perature and density”, Phys. Rev. D 101, 094010 (2020).

[191] J. Braun, W.-j. Fu, J. M. Pawlowski, F. Rennecke, D. Rosenblüh, and S. Yin, “Chiral susceptibility
in (2+1)-flavor QCD”, Phys. Rev. D 102, 056010 (2020).

[192] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M. Pawlowski, M. Tissier, and N. Wschebor,
“The nonperturbative functional renormalization group and its applications”, Phys. Rept. 910, 1–114
(2021).

[193] J. Braun, M. Leonhardt, and M. Pospiech, “Fierz-complete NJL model study: Fixed points and phase
structure at finite temperature and density”, Phys. Rev. D 96, 076003 (2017).

[194] J. Braun, M. Leonhardt, and J. M. Pawlowski, “Renormalization group consistency and low-energy
effective theories”, SciPost Phys. 6, 056 (2019).

[195] J. Braun, T. Dörnfeld, B. Schallmo, and S. Töpfel, “Renormalization group studies of dense relativistic
systems”, Phys. Rev. D 104, 096002 (2021).

[196] J. Braun and B. Schallmo, “From quarks and gluons to color superconductivity at supranuclear den-
sities”, Phys. Rev. D 105, 036003 (2022).

[197] J. Braun and B. Schallmo, “Zero-temperature thermodynamics of dense asymmetric strong-interaction
matter”, Phys. Rev. D 106, 076010 (2022).

[198] J. Braun, A. Geißel, and B. Schallmo, “Speed of sound in dense strong-interaction matter”, SciPost
Phys. Core 7, 015 (2024).

[199] S. R. Coleman and D. J. Gross, “Price of asymptotic freedom”, Phys. Rev. Lett. 31, 851–854 (1973).
[200] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge

University Press, 2006).
[201] M. Laine and A. Vuorinen, Basics of Thermal Field Theory: A Tutorial on Perturbative Computations

(Springer Cham, 2016).
[202] A. Rebhan, “Hard thermal loops and QCD thermodynamics”, (2001), arXiv:hep-ph/0111341.

179

https://doi.org/10.1016/j.physletb.2014.03.008
https://doi.org/10.1016/j.physletb.2014.03.008
https://doi.org/10.1103/PhysRevC.88.034903
https://doi.org/10.1093/ptep/ptu039
https://doi.org/10.1093/ptep/ptu039
https://arxiv.org/abs/1512.03673
https://doi.org/10.1103/PhysRevD.95.036020
https://doi.org/10.1103/PhysRevD.95.036020
https://doi.org/10.1093/ptep/ptw062
https://doi.org/10.1103/PhysRevD.96.016009
https://doi.org/10.1103/PhysRevD.96.014027
https://doi.org/10.1103/PhysRevD.100.111501
https://doi.org/10.1103/PhysRevD.101.094010
https://doi.org/10.1103/PhysRevD.102.056010
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1103/PhysRevD.96.076003
https://doi.org/10.21468/SciPostPhys.6.5.056
https://doi.org/10.1103/PhysRevD.104.096002
https://doi.org/10.1103/PhysRevD.105.036003
https://doi.org/10.1103/PhysRevD.106.076010
https://doi.org/10.21468/SciPostPhysCore.7.2.015
https://doi.org/10.21468/SciPostPhysCore.7.2.015
https://doi.org/10.1103/PhysRevLett.31.851
https://arxiv.org/abs/hep-ph/0111341


Bibliography

[203] U. Kraemmer and A. Rebhan, “Advances in perturbative thermal field theory”, Rep. Prog. Phys. 67,
351–431 (2004).

[204] K. G. Wilson, “The origins of lattice gauge theory”, Nucl. Phys. B Proc. Suppl. 140, 3–19 (2005).
[205] C. Gattringer and C. B. Lang, Quantum Chromodynamics on the Lattice: An Introductory Presentation

(Springer Berlin Heidelberg, 2010).
[206] O. Philipsen, “The QCD equation of state from the lattice”, Prog. Part. Nucl. Phys. 70, 55–107

(2013).
[207] I. Montvay and G. Munster, Quantum Fields on a Lattice (Cambridge University Press, 1994).
[208] S. Weinberg, “Nuclear forces from chiral Lagrangians”, Phys. Lett. B 251, 288–292 (1990).
[209] S. Weinberg, “Effective chiral Lagrangians for nucleon - pion interactions and nuclear forces”, Nucl.

Phys. B 363, 3–18 (1991).
[210] S. Weinberg, “Three body interactions among nucleons and pions”, Phys. Lett. B 295, 114–121

(1992).
[211] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, “Modern theory of nuclear forces”, Rev. Mod.

Phys. 81, 1773–1825 (2009).
[212] R. Machleidt and D. R. Entem, “Chiral effective field theory and nuclear forces”, Phys. Rept. 503,

1–75 (2011).
[213] E. Epelbaum, “Nuclear forces from chiral effective field theory: A primer”, (2010), arXiv:1001.3229

[nucl-th].
[214] T. Kugo, Eichtheorie (Springer Berlin Heidelberg, 1997).
[215] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, 1995).
[216] M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014).
[217] E. B. Manoukian, Quantum Field Theory I: Foundations and Abelian and Non-Abelian Gauge Theories

(Springer Cham, 2016).
[218] S. Pokorski, Gauge Field Theories (Cambridge University Press, 1987).
[219] L. H. Ryder, Quantum Field Theory (Cambridge University Press, 1996).
[220] M. L. Bellac, Thermal Field Theory (Cambridge University Press, 1996).
[221] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, 2002).
[222] J. Zinn-Justin, Path Integrals in Quantum Mechanics (Oxford University Press, 2004).
[223] W. Greiner and J. Reinhardt, Field Quantization (Springer Berlin Heidelberg, 1996).
[224] L. D. Faddeev and V. N. Popov, “Feynman diagrams for the Yang-Mills field”, Phys. Lett. B 25,

29–30 (1967).
[225] C. Becchi, A. Rouet, and R. Stora, “Renormalization of gauge theories”, Ann. Phys. 98, 287–321

(1976).
[226] C. Becchi, A. Rouet, and R. Stora, “Renormalization of the Abelian Higgs-Kibble model”, Commun.

Math. Phys. 42, 127–162 (1975).
[227] C. Becchi, A. Rouet, and R. Stora, “The Abelian Higgs-Kibble model. Unitarity of the S-operator”,

Phys. Lett. B 52, 344–346 (1974).
[228] I. V. Tyutin, “Gauge invariance in field theory and statistical physics in operator formalism”, Lebedev

Physics Institute 39 (1975), arXiv:0812.0580 [hep-th].
[229] S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications (Cambridge University

Press, 1996).
[230] N. Goldenfeld, Lectures On Phase Transitions And The Renormalization Group (CRC Press, 1992).
[231] S. Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations (Cambridge University Press,

1995).

180

https://doi.org/10.1088/0034-4885/67/3/R05
https://doi.org/10.1088/0034-4885/67/3/R05
https://doi.org/10.1016/j.nuclphysbps.2004.11.271
https://doi.org/10.1016/j.ppnp.2012.09.003
https://doi.org/10.1016/j.ppnp.2012.09.003
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0370-2693(92)90099-P
https://doi.org/10.1016/0370-2693(92)90099-P
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://arxiv.org/abs/1001.3229
https://arxiv.org/abs/1001.3229
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1016/0003-4916(76)90156-1
https://doi.org/10.1016/0003-4916(76)90156-1
https://doi.org/10.1007/BF01614158
https://doi.org/10.1007/BF01614158
https://doi.org/10.1016/0370-2693(74)90058-6
https://arxiv.org/abs/0812.0580


Bibliography

[232] T. Lancaster and S. J. Blundell, Quantum Field Theory for the Gifted Amateur (Oxford University
Press, 2014).

[233] A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge University Press, 2010).
[234] J. Maddox, “Making the electron mass finite”, Nature 353, 497 (1991).
[235] H. A. Bethe, “The electromagnetic shift of energy levels”, Phys. Rev. 72, 339–341 (1947).
[236] J. S. Schwinger, “On quantum-electrodynamics and the magnetic moment of the electron”, Phys. Rev.

73, 416–417 (1948).
[237] J. S. Schwinger, “Quantum electrodynamics. I. A covariant formulation”, Phys. Rev. 74, 1439–1461

(1948).
[238] J. S. Schwinger, “Quantum electrodynamics. II. Vacuum polarization and self-energy”, Phys. Rev.

75, 651–679 (1948).
[239] J. S. Schwinger, “Quantum electrodynamics. III: The electromagnetic properties of the electron:

Radiative corrections to scattering”, Phys. Rev. 76, 790–817 (1949).
[240] R. P. Feynman, “A relativistic cut-off for classical electrodynamics”, Phys. Rev. 74, 939–946 (1948).
[241] R. P. Feynman, “Relativistic cut-off for quantum electrodynamics”, Phys. Rev. 74, 1430–1438 (1948).
[242] S. Tomonaga, “On a relativistically invariant formulation of the quantum theory of wave fields”, Prog.

Theor. Phys. 1, 27–42 (1946).
[243] F. J. Dyson, “The radiation theories of Tomonaga, Schwinger, and Feynman”, Phys. Rev. 75, 486–502

(1949).
[244] L. P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. Palciauskas, M. Rayl, J. Swift,

D. Aspnes, and J. Kane, “Static phenomena near critical points: Theory and experiment”, Rev. Mod.
Phys. 39, 395–431 (1967).

[245] L. P. Kadanoff, “Scaling laws for Ising models near Tc”, Physics Physique Fizika 2, 263–272 (1966).
[246] R. Shankar, “Renormalization-group approach to interacting fermions”, Rev. Mod. Phys. 66, 129–192

(1994).
[247] M. Salmhofer, C. Honerkamp, W. Metzner, and O. Lauscher, “Renormalization group flows into phases

with broken symmetry”, Prog. Theor. Phys. 112, 943–970 (2004).
[248] S. Diehl, S. Floerchinger, H. Gies, J. M. Pawlowski, and C. Wetterich, “Functional renormalization

group approach to the BCS-BEC crossover”, Ann. Phys. 522, 615–656 (2010).
[249] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer, “Functional renormal-

ization group approach to correlated fermion systems”, Rev. Mod. Phys. 84, 299–352 (2012).
[250] K. G. Wilson, “Renormalization group and critical phenomena. I. Renormalization group and the

Kadanoff scaling picture”, Phys. Rev. B 4, 3174–3183 (1971).
[251] K. G. Wilson, “Renormalization group and critical phenomena. II. Phase-space cell analysis of critical

behavior”, Phys. Rev. B 4, 3184–3205 (1971).
[252] K. G. Wilson and J. B. Kogut, “The renormalization group and the ε expansion”, Phys. Rept. 12,

75–199 (1974).
[253] M. Gell-Mann and F. E. Low, “Quantum electrodynamics at small distances”, Phys. Rev. 95, 1300–

1312 (1954).
[254] T. R. Morris, “The exact renormalization group and approximate solutions”, Int. J. Mod. Phys. A

9, 2411–2450 (1994).
[255] C. Wetterich, “Exact evolution equation for the effective potential”, Phys. Lett. B 301, 90–94 (1993).
[256] F. Rennecke, “The Chiral Phase Transition of QCD”, PhD thesis (Heidelberg University, 2015).
[257] H. Gies, J. Jaeckel, and C. Wetterich, “Towards a renormalizable standard model without a funda-

mental Higgs scalar”, Phys. Rev. D 69, 105008 (2004).

181

https://doi.org/10.1038/353497a0
https://doi.org/10.1103/PhysRev.72.339
https://doi.org/10.1103/PhysRev.73.416
https://doi.org/10.1103/PhysRev.73.416
https://doi.org/10.1103/PhysRev.74.1439
https://doi.org/10.1103/PhysRev.74.1439
https://doi.org/10.1103/PhysRev.75.651
https://doi.org/10.1103/PhysRev.75.651
https://doi.org/10.1103/PhysRev.76.790
https://doi.org/10.1103/PhysRev.74.939
https://doi.org/10.1103/PhysRev.74.1430
https://doi.org/10.1143/PTP.1.27
https://doi.org/10.1143/PTP.1.27
https://doi.org/10.1103/PhysRev.75.486
https://doi.org/10.1103/PhysRev.75.486
https://doi.org/10.1103/RevModPhys.39.395
https://doi.org/10.1103/RevModPhys.39.395
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1143/PTP.112.943
https://doi.org/10.1002/andp.201010458
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/PhysRev.95.1300
https://doi.org/10.1103/PhysRev.95.1300
https://doi.org/10.1142/S0217751X94000972
https://doi.org/10.1142/S0217751X94000972
https://doi.org/https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1103/PhysRevD.69.105008


Bibliography

[258] B. Delamotte, “An introduction to the nonperturbative renormalization group”, in Renormalization
Group and Effective Field Theory Approaches to Many-Body Systems, edited by A. Schwenk and J.
Polonyi (Springer Berlin Heidelberg, 2012), pp. 49–132.

[259] J. Berges, N. Tetradis, and C. Wetterich, “Non-perturbative renormalization flow in quantum field
theory and statistical physics”, Phys. Rept. 363, 223–386 (2002).

[260] J. Braun, K. Schwenzer, and H.-J. Pirner, “Linking the quark meson model with QCD at high tem-
perature”, Phys. Rev. D 70, 085016 (2004).

[261] B.-J. Schaefer and J. Wambach, “The phase diagram of the quark-meson model”, Nucl. Phys. A 757,
479–492 (2005).

[262] J.-P. Blaizot, A. Ipp, R. Méndez-Galain, and N. Wschebor, “Perturbation theory and non-perturbative
renormalization flow in scalar field theory at finite temperature”, Nucl. Phys. A 784, 376–406 (2007).

[263] D. F. Litim and J. M. Pawlowski, “Non-perturbative thermal flows and resummations”, J. High Energy
Phys. 11, 026 (2006).

[264] T. D. Cohen, “Functional integrals for QCD at nonzero chemical potential and zero density”, Phys.
Rev. Lett. 91, 222001 (2003).

[265] G. Markó, U. Reinosa, and Z. Szép, “Bose-Einstein condensation and Silver Blaze property from the
two-loop Φ-derivable approximation”, Phys. Rev. D 90, 125021 (2014).

[266] W.-j. Fu and J. M. Pawlowski, “Relevance of matter and glue dynamics for baryon number fluctua-
tions”, Phys. Rev. D 92, 116006 (2015).

[267] T. R. Morris, “Properties of derivative expansion approximations to the renormalization group”, Int.
J. Mod. Phys. B 12, 1343–1354 (1998).

[268] T. R. Morris, “Derivative expansion of the exact renormalization group”, Phys. Lett. B 329, 241–248
(1994).

[269] G. R. Golner, “Nonperturbative renormalization-group calculations for continuum spin systems”,
Phys. Rev. B 33, 7863–7866 (1986).

[270] C. Bagnuls and C. Bervillier, “Exact renormalization group equations: An introductory review”, Phys.
Rept. 348, 91–157 (2001).

[271] M. C. Birse, B. Krippa, J. A. McGovern, and N. R. Walet, “Pairing in many-fermion systems: An
exact renormalisation group treatment”, Phys. Lett. B 605, 287–294 (2005).

[272] S. Friederich, H. C. Krahl, and C. Wetterich, “Functional renormalization for spontaneous symmetry
breaking in the Hubbard model”, Phys. Rev. B 83, 155125 (2011).

[273] J. Braun, “Fermion interactions and universal behavior in strongly interacting theories”, J. Phys. G:
Nucl. Part. Phys. 39, 033001 (2012).

[274] D. Roscher, J. Braun, and J. E. Drut, “Phase structure of mass- and spin-imbalanced unitary Fermi
gases”, Phys. Rev. A 91, 053611 (2015).

[275] J. Braun, H. Gies, L. Janssen, and D. Roscher, “Phase structure of many-flavor QED3”, Phys. Rev.
D 90, 036002 (2014).

[276] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, 1965).
[277] T. Schäfer, “Hard loops, soft loops, and high density effective field theory”, Nucl. Phys. A 728,

251–271 (2003).
[278] D. F. Litim, “Optimised renormalisation group flows”, Phys. Rev. D 64, 105007 (2001).
[279] D. F. Litim, “Derivative expansion and renormalization group flows”, J. High Energy Phys. 11, 059

(2001).
[280] S. P. Klevansky, “The Nambu-Jona-Lasinio model of quantum chromodynamics”, Rev. Mod. Phys.

64, 649–708 (1992).

182

https://doi.org/10.1007/978-3-642-27320-9_2
https://doi.org/10.1007/978-3-642-27320-9_2
https://doi.org/https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1103/PhysRevD.70.085016
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2005.04.012
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2005.04.012
https://doi.org/10.1016/j.nuclphysa.2006.11.139
https://doi.org/10.1088/1126-6708/2006/11/026
https://doi.org/10.1088/1126-6708/2006/11/026
https://doi.org/10.1103/PhysRevLett.91.222001
https://doi.org/10.1103/PhysRevLett.91.222001
https://doi.org/10.1103/PhysRevD.90.125021
https://doi.org/10.1103/PhysRevD.92.116006
https://doi.org/10.1142/S0217979298000752
https://doi.org/10.1142/S0217979298000752
https://doi.org/10.1016/0370-2693(94)90767-6
https://doi.org/10.1016/0370-2693(94)90767-6
https://doi.org/10.1103/PhysRevB.33.7863
https://doi.org/10.1016/S0370-1573(00)00137-X
https://doi.org/10.1016/S0370-1573(00)00137-X
https://doi.org/10.1016/j.physletb.2004.11.044
https://doi.org/10.1103/PhysRevB.83.155125
https://doi.org/10.1088/0954-3899/39/3/033001
https://doi.org/10.1088/0954-3899/39/3/033001
https://doi.org/10.1103/PhysRevA.91.053611
https://doi.org/10.1103/PhysRevD.90.036002
https://doi.org/10.1103/PhysRevD.90.036002
https://doi.org/10.1016/j.nuclphysa.2003.08.028
https://doi.org/10.1016/j.nuclphysa.2003.08.028
https://doi.org/10.1103/PhysRevD.64.105007
https://doi.org/10.1088/1126-6708/2001/11/059
https://doi.org/10.1088/1126-6708/2001/11/059
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1103/RevModPhys.64.649


Bibliography

[281] L. Ballentine, Quantum Mechanics: A Modern Development (World Scientific, 1998).
[282] J. R. Schrieffer, Theory of Superconductivity (CRC Press, 1999).
[283] M. Tinkham, Introduction to Superconductivity (Dover Publications, 1975).
[284] J. R. Schrieffer and M. Tinkham, “Superconductivity”, Rev. Mod. Phys. 71, S313–S317 (1999).
[285] S. Elitzur, “Impossibility of spontaneously breaking local symmetries”, Phys. Rev. D 12, 3978–3982

(1975).
[286] S. Friederich, “Gauge symmetry breaking in gauge theories: In search of clarification”, Eur. J. Phil.

Sci. 3, 157–182 (2013).
[287] W. Caudy and J. Greensite, “Ambiguity of spontaneously broken gauge symmetry”, Phys. Rev. D

78, 025018 (2008).
[288] A. Schmitt, Q. Wang, and D. H. Rischke, “Electromagnetic Meissner effect in spin-one color super-

conductors”, Phys. Rev. Lett. 91, 242301 (2003).
[289] M. Iwasaki and T. Iwado, “Superconductivity in quark matter”, Phys. Lett. B 350, 163–168 (1995).
[290] X. Wang and I. A. Shovkovy, “Bulk viscosity of spin-one color superconducting strange quark matter”,

Phys. Rev. D 82, 085007 (2010).
[291] M. G. Alford, J. A. Bowers, J. M. Cheyne, and G. A. Cowan, “Single color and single flavor color

superconductivity”, Phys. Rev. D 67, 054018 (2003).
[292] A. Schmitt, “The ground state in a spin-one color superconductor”, Phys. Rev. D 71, 054016 (2005).
[293] A. Schmitt, “Spin-one color superconductivity in neutron stars”, in Structure and Dynamics of Elemen-

tary Matter , edited by W. Greiner, M. G. Itkis, J. Reinhardt, and M. C. Güçlü (Springer Dordrecht,
2004), pp. 321–328.

[294] M. G. Alford, K. Rajagopal, and F. Wilczek, “Color-flavor locking and chiral symmetry breaking in
high density QCD”, Nucl. Phys. B 537, 443–458 (1999).

[295] G. Nardulli, “Introduction to color superconductivity”, Proc. Int. Sch. Phys. Fermi 164, 797–815
(2007).

[296] H. Gies and J. Jaeckel, “Chiral phase structure of QCD with many flavors”, Eur. Phys. J. C 46,
433–438 (2006).

[297] J. Braun and H. Gies, “Running coupling at finite temperature and chiral symmetry restoration in
QCD”, Phys. Lett. B 645, 53–58 (2007).

[298] J. Braun and H. Gies, “Chiral phase boundary of QCD at finite temperature”, J. High Energy Phys.
06, 024 (2006).

[299] J. Hubbard, “Calculation of partition functions”, Phys. Rev. Lett. 3, 77–80 (1959).
[300] R. L. Stratonovich, “On a method for the computation of quantum distribution functions”, Russian,

Proc. USSR Acad. Sci. 115, 1097–1100 (1957), Translation: Soviet Physics Doklady. 2: 416 (1958).
[301] P. Kopietz, Bosonization of Interacting Fermions in Arbitrary Dimensions (Springer Berlin Heidelberg,

1997).
[302] W. Heisenberg, “Über den Bau der Atomkerne. I.”, Z. Phys. 77, 1–11 (1932).
[303] M. Thomson, Modern Particle Physics (Cambridge University Press, 2013).
[304] L. F. Abbott, “The background field method beyond one loop”, Nucl. Phys. B 185, 189–203 (1981).
[305] L. F. Abbott, “Introduction to the background field method”, Acta Phys. Pol. B 13, 33–50 (1982).
[306] M. Reuter and C. Wetterich, “Effective average action for gauge theories and exact evolution equa-

tions”, Nucl. Phys. B 417, 181–214 (1994).
[307] M. Reuter and C. Wetterich, “Gluon condensation in nonperturbative flow equations”, Phys. Rev. D

56, 7893–7916 (1997).

183

https://doi.org/10.1103/RevModPhys.71.S313
https://doi.org/10.1103/PhysRevD.12.3978
https://doi.org/10.1103/PhysRevD.12.3978
https://doi.org/10.1007/s13194-012-0061-y
https://doi.org/10.1007/s13194-012-0061-y
https://doi.org/10.1103/PhysRevD.78.025018
https://doi.org/10.1103/PhysRevD.78.025018
https://doi.org/10.1103/PhysRevLett.91.242301
https://doi.org/10.1016/0370-2693(95)00322-C
https://doi.org/10.1103/PhysRevD.82.085007
https://doi.org/10.1103/PhysRevD.67.054018
https://doi.org/10.1103/PhysRevD.71.054016
https://doi.org/https://doi.org/10.1007/978-1-4020-2705-5_24
https://doi.org/https://doi.org/10.1007/978-1-4020-2705-5_24
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.3254/978-1-58603-846-5-797
https://doi.org/10.3254/978-1-58603-846-5-797
https://doi.org/https://doi.org/10.1140/epjc/s2006-02475-0
https://doi.org/https://doi.org/10.1140/epjc/s2006-02475-0
https://doi.org/10.1016/j.physletb.2006.11.059
https://doi.org/10.1088/1126-6708/2006/06/024
https://doi.org/10.1088/1126-6708/2006/06/024
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1007/BF01342433
https://doi.org/https://doi.org/10.1016/0550-3213(81)90371-0
https://doi.org/https://doi.org/10.1016/0550-3213(94)90543-6
https://doi.org/10.1103/PhysRevD.56.7893
https://doi.org/10.1103/PhysRevD.56.7893


Bibliography

[308] D. F. Litim and J. M. Pawlowski, “On gauge invariant Wilsonian flows”, in The Exact Renormalization
Group, edited by A. Krasnitz, Y. A. Kubyshin, R. Potting, and P. Sá (World Scientific, 1999), pp. 168–
185.

[309] F. Freire, D. F. Litim, and J. M. Pawlowski, “Gauge invariance and background field formalism in the
exact renormalisation group”, Phys. Lett. B 495, 256–262 (2000).

[310] D. F. Litim and J. M. Pawlowski, “Wilsonian flows and background fields”, Phys. Lett. B 546,
279–286 (2002).

[311] H. Gies, “Running coupling in Yang-Mills theory: A flow equation study”, Phys. Rev. D 66, 025006
(2002).

[312] J. Braun, H. Gies, and J. M. Pawlowski, “Quark confinement from color confinement”, Phys. Lett. B
684, 262–267 (2010).

[313] J. Braun, A. Eichhorn, H. Gies, and J. M. Pawlowski, “On the nature of the phase transition in
SU(N), Sp(2) and E(7) Yang-Mills theory”, Eur. Phys. J. C 70, 689–702 (2010).

[314] U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, “Deconfinement transition in SU(N) theories
from perturbation theory”, Phys. Lett. B 742, 61–68 (2015).

[315] U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, “Deconfinement transition in SU(2) Yang-Mills
theory: A two-loop study”, Phys. Rev. D 91, 045035 (2015).

[316] F. Rennecke, “Vacuum structure of vector mesons in QCD”, Phys. Rev. D 92, 076012 (2015).
[317] J. Braun, “Thermodynamics of QCD low-energy models and the derivative expansion of the effective

action”, Phys. Rev. D 81, 016008 (2010).
[318] S. Bethke, “The 2009 world average of αs”, Eur. Phys. J. C 64, 689–703 (2009).
[319] J. I. Kapusta, “Infrared properties of quark gas”, Phys. Rev. D 20, 989–995 (1979).
[320] T. Toimela, “Perturbative QED and QCD at finite temperatures and densities”, Int. J. Theor. Phys.

24, 901 (1985), [Erratum: Int. J. Theor. Phys. 26, 1021 (1987)].
[321] N. J. Evans, S. D. H. Hsu, and M. Schwetz, “An effective field theory approach to color superconduc-

tivity at high quark density”, Nucl. Phys. B 551, 275–289 (1999).
[322] N. J. Evans, S. D. H. Hsu, and M. Schwetz, “Non-perturbative couplings and color superconductivity”,

Phys. Lett. B 449, 281–287 (1999).
[323] D. U. Jungnickel and C. Wetterich, “Effective action for the chiral quark-meson model”, Phys. Rev.

D 53, 5142–5175 (1996).
[324] J. Berges, D. U. Jungnickel, and C. Wetterich, “Two flavor chiral phase transition from nonperturbative

flow equations”, Phys. Rev. D 59, 034010 (1999).
[325] M. Reuter and C. Wetterich, “Average action for the Higgs model with Abelian gauge symmetry”,

Nucl. Phys. B 391, 147–175 (1993).
[326] D. F. Litim, “On the Renormalization of the Abelian Higgs Model and the Phase Transition of

Superconductors”, PhD thesis (Heidelberg University, 1995).
[327] H. Gies, S. Rechenberger, M. M. Scherer, and L. Zambelli, “An asymptotic safety scenario for gauged

chiral Higgs-Yukawa models”, Eur. Phys. J. C 73, 2652 (2013).
[328] M. Alford and K. Rajagopal, “Absence of two-flavor color-superconductivity in compact stars”, J.

High Energy Phys. 06, 031 (2002).
[329] A. W. Steiner, S. Reddy, and M. Prakash, “Color-neutral superconducting quark matter”, Phys. Rev.

D 66, 094007 (2002).
[330] M. Buballa and I. A. Shovkovy, “Note on color neutrality in Nambu-Jona-Lasinio-type models”, Phys.

Rev. D 72, 097501 (2005).

184

https://doi.org/https://doi.org/10.1142/4159
https://doi.org/https://doi.org/10.1142/4159
https://doi.org/https://doi.org/10.1016/S0370-2693(00)01231-4
https://doi.org/https://doi.org/10.1016/S0370-2693(02)02693-X
https://doi.org/https://doi.org/10.1016/S0370-2693(02)02693-X
https://doi.org/10.1103/PhysRevD.66.025006
https://doi.org/10.1103/PhysRevD.66.025006
https://doi.org/10.1016/j.physletb.2010.01.009
https://doi.org/10.1016/j.physletb.2010.01.009
https://doi.org/10.1140/epjc/s10052-010-1485-1
https://doi.org/10.1016/j.physletb.2015.01.006
https://doi.org/10.1103/PhysRevD.91.045035
https://doi.org/10.1103/PhysRevD.92.076012
https://doi.org/10.1103/PhysRevD.81.016008
https://doi.org/10.1140/epjc/s10052-009-1173-1
https://doi.org/10.1103/PhysRevD.20.989
https://doi.org/10.1007/BF00671334
https://doi.org/10.1007/BF00671334
https://doi.org/10.1016/S0550-3213(99)00175-3
https://doi.org/10.1016/S0370-2693(99)00093-3
https://doi.org/10.1103/PhysRevD.53.5142
https://doi.org/10.1103/PhysRevD.53.5142
https://doi.org/10.1103/PhysRevD.59.034010
https://doi.org/10.1016/0550-3213(93)90145-F
https://doi.org/10.1140/epjc/s10052-013-2652-y
https://doi.org/10.1088/1126-6708/2002/06/031
https://doi.org/10.1088/1126-6708/2002/06/031
https://doi.org/10.1103/PhysRevD.66.094007
https://doi.org/10.1103/PhysRevD.66.094007
https://doi.org/10.1103/PhysRevD.72.097501
https://doi.org/10.1103/PhysRevD.72.097501


Bibliography

[331] I. Shovkovy and M. Huang, “Gapless two-flavor color superconductor”, Phys. Lett. B 564, 205–211
(2003).

[332] P. Amore, M. C. Birse, J. A. McGovern, and N. R. Walet, “Color superconductivity in finite systems”,
Phys. Rev. D 65, 074005 (2002).

[333] P. F. Bedaque, “Color superconductivity in asymmetric matter”, Nucl. Phys. A 697, 569–577 (2002).
[334] B. S. Chandrasekhar, “A note on the maximum critical field of high-field superconductors”, Appl.

Phys. Lett. 1, 7–8 (1962).
[335] A. M. Clogston, “Upper limit for the critical field in hard superconductors”, Phys. Rev. Lett. 9,

266–267 (1962).
[336] W. Buckel and R. Kleiner, Supraleitung (John Wiley & Sons, Ltd, 2012).
[337] H. Ibach and H. Lüth, Festkörperphysik: Einführung in die Grundlagen (Springer Berlin Heidelberg,

2009).
[338] G. Sarma, “On the influence of a uniform exchange field acting on the spins of the conduction electrons

in a superconductor”, J. Phys. Chem. Solids 24, 1029–1032 (1963).
[339] K. Rajagopal and F. Wilczek, “Enforced electrical neutrality of the color-flavor locked phase”, Phys.

Rev. Lett. 86, 3492–3495 (2001).
[340] I. A. Shovkovy and P. J. Ellis, “Thermal conductivity of dense quark matter and cooling of stars”,

Phys. Rev. C 66, 015802 (2002).
[341] M. G. Alford, K. Pangeni, and A. Windisch, “Color superconductivity and charge neutrality in Yukawa

theory”, Phys. Rev. Lett. 120, 082701 (2018).
[342] D. Ebert and K. G. Klimenko, “Pion condensation in electrically neutral cold matter with finite baryon

density”, Eur. Phys. J. C 46, 771–776 (2006).
[343] J. O. Andersen and L. Kyllingstad, “Pion condensation in a two-flavor NJL model: The role of charge

neutrality”, J. Phys. G: Nucl. Part. Phys. 37, 015003 (2009).
[344] G. A. Contrera, D. Blaschke, J. P. Carlomagno, A. G. Grunfeld, and S. Liebing, “Quark-nuclear

hybrid equation of state for neutron stars under modern observational constraints”, Phys. Rev. C
105, 045808 (2022).

[345] O. Ivanytskyi and D. Blaschke, “Density functional approach to quark matter with confinement and
color superconductivity”, Phys. Rev. D 105, 114042 (2022).

[346] T. Kojo, D. Hou, J. Okafor, and H. Togashi, “Phenomenological QCD equations of state for neutron
star dynamics: Nuclear-2SC continuity and evolving effective couplings”, Phys. Rev. D 104, 063036
(2021).

[347] D. Nickel, J. Wambach, and R. Alkofer, “Color-superconductivity in the strong-coupling regime of
Landau gauge QCD”, Phys. Rev. D 73, 114028 (2006).

[348] J. Braun, M. Leonhardt, J. M. Pawlowski, and D. Rosenblüh, “Chiral and effective U(1)A symmetry
restoration in QCD”, (2020), arXiv:2012.06231 [hep-ph].

[349] M. Fierz, “Zur Fermischen Theorie des β-Zerfalls”, Z. Phys. 104, 553–565 (1937).
[350] J. F. Nieves and P. B. Pal, “Generalized Fierz identities”, Am. J. Phys. 72, 1100–1108 (2004).
[351] C. C. Nishi, “Simple derivation of general Fierz-type identities”, Am. J. Phys. 73, 1160–1163 (2005).
[352] P. B. Pal, “Representation-independent manipulations with Dirac spinors”, (2007), arXiv:physics/

0703214.
[353] D. F. Litim, “Mind the gap”, Int. J. Mod. Phys. A 16, 2081–2088 (2001).
[354] D. F. Litim, “Optimisation of the exact renormalisation group”, Phys. Lett. B 486, 92–99 (2000).
[355] S. Floerchinger, “Analytic continuation of functional renormalization group equations”, J. High Energy

Phys. 2012, 21 (2012).

185

https://doi.org/10.1016/S0370-2693(03)00748-2
https://doi.org/10.1016/S0370-2693(03)00748-2
https://doi.org/10.1103/PhysRevD.65.074005
https://doi.org/10.1016/S0375-9474(01)01234-9
https://doi.org/10.1063/1.1777362
https://doi.org/10.1063/1.1777362
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/DOI: 10.1016/0022-3697(63)90007-6
https://doi.org/10.1103/PhysRevLett.86.3492
https://doi.org/10.1103/PhysRevLett.86.3492
https://doi.org/10.1103/PhysRevC.66.015802
https://doi.org/10.1103/PhysRevLett.120.082701
https://doi.org/10.1140/epjc/s2006-02527-5
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1103/PhysRevC.105.045808
https://doi.org/10.1103/PhysRevC.105.045808
https://doi.org/10.1103/PhysRevD.105.114042
https://doi.org/10.1103/PhysRevD.104.063036
https://doi.org/10.1103/PhysRevD.104.063036
https://doi.org/10.1103/PhysRevD.73.114028
https://arxiv.org/abs/2012.06231
https://doi.org/10.1007/bf01330070
https://doi.org/10.1119/1.1757445
https://doi.org/10.1119/1.2074087
https://arxiv.org/abs/physics/0703214
https://arxiv.org/abs/physics/0703214
https://doi.org/10.1142/S0217751X01004748
https://doi.org/https://doi.org/10.1016/S0370-2693(00)00748-6
https://doi.org/10.1007/JHEP05(2012)021
https://doi.org/10.1007/JHEP05(2012)021


186



Erklärung laut Promotionsordnung

§ 8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version über-
einstimmt.

§ 8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem
Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs
mitzuteilen.

§ 9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebe-
nen Quellen verfasst wurde.

§ 9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, den

Benedikt Paul Schallmo




	Abstract
	Kurzfassung
	Danksagung
	Contents
	Introduction
	Outline of the Thesis
	List of Publications

	1 Fundamentals
	1.1 Quantum Chromodynamics
	1.1.1 Quantisation and Gauge Fixing

	1.2 Renormalisation and the Functional Renormalisation Group
	1.2.1 General Considerations
	1.2.2 The Functional Renormalisation Group

	1.3 Regularisation in Dense Relativistic Systems
	1.3.1 Quasi-Particle Regularisation Scheme 
	1.3.2 Example: Diquark Condensation 


	2 From Quarks and Gluons to Colour Superconductivity
	2.1 From the Quark-Gluon Interaction to Diquark Fields as the Effective Degrees of Freedom 
	2.2 Ansatz for the Scale-Dependent Effective Action 
	2.3 RG Flow Equations
	2.3.1 Dynamical Bosonisation 
	2.3.2 Flow Equations 

	2.4 RG Flow of Dense Strong-Interaction Matter 
	2.4.1 Fixing the Initial Conditions 
	2.4.2 RG Flows 

	2.5 Diquark Gap and Low-Energy Couplings 
	2.6 The Influence of Diquark Fluctuations and the Emergence of the Gluon-Diquark Interaction
	2.6.1 Flow Equations
	2.6.2 RG Flows
	2.6.3 Symmetry-Breaking Scale and the Diquark Gap 

	2.7 Conclusions

	3 Thermodynamics of Dense Strong-Interaction Matter
	3.1 Low-Energy Model for Dense Strong-Interaction Matter 
	3.1.1 Calculation of the Effective Potential 
	3.1.2 Effective Potential 
	3.1.3 Qualitative Discussion of the Phase Structure 
	3.1.4 Constraining the Model with the Diquark Gap from an fRG Calculation 
	3.1.5 Phase Diagram for Asymmetric Dense Strong-Interaction Matter
	3.1.6 Towards Neutron-Star Matter 
	3.1.6.1 Free Quark Gas with Neutrality Constraints and Beta Equilibrium
	3.1.6.2 Gapped Quark Gas with Neutrality Constraints and Beta Equilibrium
	3.1.6.3 Trajectories in the Phase Diagram

	3.1.7 Speed of Sound for Neutron-Star Matter

	3.2 Constraints on the Equation of State and the Speed of Sound
	3.2.1 Expansion of the Equation of State 
	3.2.2 Speed of Sound 
	3.2.2.1 General Considerations
	3.2.2.2 Numerical Results
	3.2.2.3 Analytic Analysis


	3.3 Conclusions

	Summary and Outlook
	A Notation and Convention
	A.1 Fourier Conventions
	A.2 Colour Matrices
	A.3 Flavour Matrices
	A.4 Euclidean Dirac Matrices
	A.5 Fierz Transformations
	A.5.1 Colour Matrices 
	A.5.2 Flavour Matrices
	A.5.3 Dirac Matrices 

	A.6 Natural Units

	B Regularisation Scheme
	B.1 Extension of the Quasi-Particle Regularisation Scheme
	B.2 Regulator Shape Functions
	B.3 Threshold Functions

	C Expansion of the Wetterich Equation
	C.1 Fluctuation Matrix
	C.2 Propagator Matrix
	C.3 Inverse of the Propagator Matrix with Isospin Asymmetry

	D Strong Coupling
	Bibliography

