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Kurzfassung

Zelluläre Prozesse finden nicht isoliert sondern vielmehr in einem Zusammenhang statt. Um diese Het-
erogenität zu berücksichtigen, betrachten wir die Modellklasse der chemischen Reaktionsnetzwerke mit
äußerem Rauschen (der Umgebung), das sich als zusätzliche Stochastizität in den Reaktionsratenkon-
stanten äußert. Eine gemeinsame Beschreibung von Teilnetzwerk und Umgebung ist rechenaufwendig.
Hier versuchen wir das Teilnetzwerk marginal zu beschreiben, als wäre es noch eingebettet. Das bringt
den Vorteil mit sich, stochastische Eigenschaften des Teilnetzwerks den Eigenschaften der Umgebung
zuzuschreiben. Die marginale Beschreibung ermöglicht darüber hinaus die Berechnung von Informa-
tionsgrößen. Um auszutüfteln wie die Zelle in der Anwesenheit von Umgebungsrauschen zuverläs-
sige Entscheidungen trifft, zielen wir rechnerisch auf die Berechnung der Pfadinformation zwischen
Umgebung und Teilnetzwerk ab. Dazu betrachten wir den Poissonkanal, der durch die Reaktion-
szähler, die das CRN hinreichend beschreiben, motiviert ist. Für geschlossene Ausdrücke und zu
Berechnungszwecken brauchen wir vereinfachende Annahmen. Folglich liegt ein besonderer Fokus der
Dissertation auf linear Teilnetzwerken in diskretwertigen Markov-Umgebungen und auf allgemeinen
Teilnetzwerken in linearer Umgebung.

Wir tragen auf mehreren Ebenen der stochastischen Beschreibung bei: (i) Auf der Ebene der
Momente verallgemeinern wir Ergebnisse der Warteschlangentheorie zur exakten Berechnung des sta-
tionären Mittelwerts von linear Teilnetzwerken in diskretwertigen Markov-Umgebungen. Unsere Formel
hängt von den Reaktionsratenkonstanten des linearen Teilnetzwerks ab, sowie vom Generator und der
stationären Verteilung der Markov-Umgebung. Wir erweitern die Spektralzerlegungen in intrinsis-
ches und extrinsischen Rauschen auf den Fall von korrelierten Umgebungskomponenten. (ii) Wir
präsentieren Liouville-Mastergleichungen mit Randbedingungen für den Wahrscheinlichkeitsverlauf
einer marginalen CRN-Beschreibung mittels Hilfsstatistiken. Unsere Methode der Rückwärtsrekurrenz-
zeit-Parametrisierung (BReT-P) für stückweise-deterministische Markov-Prozesse (PDMP) führt eine
Standardform für die marginale CRN-Beschreibung mittels approximativer Filter ein. Wir leiten ver-
allgemeinerte Mastergleichungen für Beispiele mit wenig Molekülarten her. (iii) Auf der Prozessebene,
formalisieren wir eine PDMP-Unterklasse, die Dirac-Maße als Verteilung bei Sprüngen hat, welche wir
Dirac-PDMP nennen. Wir führen einen approximativen Marginal-Simulationsalgo-rithmus an, der auf
optimalem linearen Filtern basiert.

Für CRN in einer linear stationären Umgebung, d.h. mit Exponential-Auto/Kreuz-Kovarianz-
funktion, geben wir einen approximativen Filter basierend auf Snyders optimalem linearen Filtern für
Zählprozesse. Indem wir chemische Reaktionen als Ereignisse betrachten, stellen wir eine Verbindung
zwischen CRN in einer linearen Umgebung und Hawkesprozessen her, einer Klasse selbstverstärkender
Zählprozesse, die zur Analyse von Ereignissen gebräuchlich ist. Wir zeigen, dass man die Hawkes-
Annäherung auf äquivalente Weise über ein Momentenschließungsverfahren und die optimale lineare
Approximation bezüglich des mittleren quadratischen Fehlers erhält. Darüber hinaus nutzen wir Mar-
tingaltechniken um Ergebnisse zu präsentieren zur Übereinstimmung von Hawkesprozess und exaktem
marginalem Prozess in ihren Statistiken zweiter Ordnung, d.h. Kovarianz und Auto/Kreuzkorrelation.
Indem wir das Hawkesmodell als Referenz nehmen, schreiben wir stochastische Eigenschaften des
Teilnetzwerks jeweils der linearen oder nicht-lineare Dynamik der Umgebung zu. Wir führen einen
approximativen Marginal-Simulationsalgorithmus ein und verdeutlichen ihn in Fallstudien.

Die empirischen Ergebnisse konzentrieren sich auf die Konformationsänderungen von Makromole-
külen und auf Exkursionen. Makromoleküle, die in verschiedenen Konformationen vorhanden sind,
wurden für Genexpressionsmodelle unter der Benutzung thermodynamischer Ensembles erforscht. Wir
hingegen beziehen die Dynamik der Konformationswechsel als Umgebungskomponente ein. Mit un-
serem Modellredukionsansatz erhöht diese Einbindung nicht die Zahl der Molekülarten. Damit über-
brücken wir eine Lücke zwischen Strukturkinetik und Genexpressionsmodellen, was unser Verständnis
von genregulatorischen Netzwerken verbessern und das Designen genetischer Schaltkreise erleichtern
kann. Für die Modulation der Translation durch die mRNA quantifizieren wir, wie viel die Dynamik
der mRNA-Struktur zur translationalen Heterogenität beiträgt. In weiteren Anwendungen konzen-
trieren wir uns auf das Phänomen von Exkursionen, nahezu linearen Anhäufungen von Molekülen in
Phasen mit verschwindender Abbaurate. Wir erforschen wie dieses den stationären Mittelwert erhöht
und führen diesen Anstieg auf den Zustand Null zurück. Wir besprechen einen Regler, der diesen
Effekt abschwächt und werten die Fähigkeit des Hawkesmodells aus, Exkursionen adäquat abzubilden.
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Um Informationsgrößen des Poissonkanals zu berechnen, stellen wir einen analytischen Ansatz vor,
der die Monte-Carlo-Schätzung umgeht. Diese simulationslose Schätzmethode wird ermöglicht, in-
dem wir unseren Augenmerk auf die bedingte Intensität von Zählprozessen und ihre asymptotische
Verteilung als die zentralen Größen richten. Für den Poissonkanal mit binärem Markov-Eingabesignal,
drücken wir die gegenseitige Information als Riemann-Integral aus. Während in den klassischen
Resultaten das kapazitätsausschöpfende Eingabesignal den Off-Zustand bevorzugt, führen wir On-
präferierende Bereiche für nach unten beschränkte mittlere Verweildauern in den On- und Off-Zustän-
den an. Zudem führen wir Evidenz dafür an, dass unter den binären Eingabesignalen die exponentiellen
Verweildauern nicht optimal sind. Nachdem wir die Eponentialbedingung lockern, indem wir mehrere
Off-Zustände zulassen, diskutieren wir den informationstheoretischen Vorteil des periodischen Durch-
laufens mehrerer Off-Zustände.

Durchweg nutzen wir bedingte Wahrscheinlichkeiten als Werkzeug zur Modellreduktion. Wir schla-
gen zwei Wege, das Bedingen auf die Umgebung und auf das Teilnetzwerk, ein. Wir zeigen die Äquiv-
alenz beider Wege in einer vereinenden Betrachtungsweise, die die Turmeigenschaft auf die Kolmogorov-
Rückwärts-Gleichung anwendet. Indem wir verschiedene approximative Filter für die konformation-
sändernde Umgebung vergleichen, beleuchten wir ihre gegensätzlichen Stärken. Wir führen Zweifel an
hinsichtlich der Frage ob die dargestellten Modellreduktionsstrategien den Fluch der Dimensionalität
von CRN auflösen kann verglichen mit dem Doob-Gillespie-Algorithmus. Zusammenfassend tragen wir
zur Modellreduktion, marginalen Simulation, Berechnung von Informationsgrößen und Attributions-
theorie für CRN in zufälliger Umgebung bei.
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Abstract

Cellular processes operate in context, rather than in isolation. To account for this heterogeneity, we
consider the model class of chemical reaction networks (CRNs) with extrinsic noise (the environment),
manifesting as additional stochasticity in the reaction rate constants. A joint description of subnetwork
and environment is computationally heavy. Here, we attempt to marginally describe the subnetwork
as if it was still embedded. This comes with the merit of attributing stochastic properties of the sub-
network to features of the environment. Additionally, the marginal description enables the estimation
of information measures. To puzzle out how the cell makes reliable decisions in the presence of the
environmental noise, we computationally target the path mutual information between environment
and subnetwork. Namely, we consider the minimal Poisson channel, motivated by the reaction coun-
ters that sufficiently describe the CRN. For closed-form expressions and computational purposes, we
require simplifying assumptions. Hence, a particular focus of this thesis lies on linear subnetworks in
discrete state Markov environments and on general subnetworks in linear environments.

We contribute at different levels of the stochastic description: (i) At the level of moments, we
generalize results from queuing theory about the exact stationary mean evaluation of linear CRNs in a
discrete state Markov environments. Our analytic expression depends on the reaction rate constants of
the linear subsystem, as well as the generator and stationary distribution of the Markov environment.
We extend spectral decomposition results on intrinsic and extrinsic noise to the case of correlated
environment components. (ii) We present Liouville master equations with boundary conditions for
the probability evolution of a marginal CRN description via auxiliary statistics. Our method of the
backward recurrence time parametrization (BReT-P) for piecewise-deterministic Markov processes
(PDMP) introduces a standard form for the marginal description of CRNs via approximate filters. We
derive generalized master equations for examples with a low number of species. (iii) At the process
level, we formalize a subclass of PDMPs having Dirac measures at jump times, which we call Dirac-
PDMPs. We offer an approximate marginal simulation algorithm based on optimal linear filtering.

For CRNs in a linear stationary environment, i.e., with exponential auto/cross-covariance func-
tion, we provide an approximate filter that is based on Snyder’s optimal linear filtering for counting
processes. By regarding the chemical reactions as events, we establish a link between CRNs in a lin-
ear environment and Hawkes processes, a class of self-exciting counting processes widely used in event
analysis. We show that the Hawkes approximation is equivalently obtained via moment closure scheme
or as the optimal linear approximation under the mean-square error. Furthermore, we use martingale
techniques to provide results on the agreement of the Hawkes process and the exact marginal process
in their second order statistics, i.e., covariance, auto/cross-correlation. Taking the Hawkes model as
a reference, we attribute stochastic properties of the subnetwork to the linear or non-linear dynamics
of the environment, respectively. We introduce an approximate marginal simulation algorithm and
illustrate it in case studies.

The empirical results focus on structure switching of macromolecules and excursions. Macro-
molecules that are abundant in different conformations have been studied for gene expression models
using thermodynamic ensembles. However, we include switching dynamics as the environmental com-
ponent. With our model reduction approach, this inclusion does not increase the number of species.
Thereby, we bridge a gap between structure kinetics and gene expression models, which can further
improve our understanding of gene regulatory networks and facilitate genetic circuit design. For the
modulation of translation by mRNA, we provide a method to quantify how mRNA structure dynamics
contributes to translational heterogeneity. In a further set of applications we focus on the phenomenon
of excursions, near-to-linear accumulation of a species in periods of a vanishing decay rate. We exam-
ine how this increases the stationary mean, attributing the increase to the zero state. We discuss a
controller that mitigates the effect and evaluate the ability of the Hawkes model to capture excursions.

For estimating information-measures of the Poisson channel, we present an analytic approach that
circumvents Monte Carlo sampling. This simulation-free estimation method is enabled by establishing
the conditional intensity of counting processes and its asymptotic distribution as central quantitites.
For the Poisson channel with binary Markov input, we express the mutual information as a Riemann
integral. While in the classical result the capacity-achieving input favors the Off state, we in contrast
report On-favoring regimes for lower-bounded average soujourn time in the On and Off states. Ad-
ditionally, we provide evidence that among the binary inputs the exponential sojourn times are not
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optimal. Relaxing the exponential constraint of the binary input by allowing for multiple Off states,
we discuss the information-theoretic advantage of cycling through several Off states.

Throughout, stochastic conditioning is used as the tool for model reduction. We take the two
routes of conditioning on the environment and on the subnetwork. We present the equivalence of both
routes in a unifying approach that uses the tower property on the Kolmogorov backward equation.
Comparing different approximate filters for the structure switching environment, we shed light on
their orthogonal strengths. We present doubts as to whether the presented model reduction strategies
can resolve the curse of dimensionality of CRNs compared to the Doob-Gillespie algorithm. Overall,
we contribute to the model reduction, marginal simulation, computation of information-measures and
attribution theory for CRNs in random environments.
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1 Introduction

In the real world, the systems we encounter are rarely isolated, but they interact in complex ways.
Thus, when explaining a phenomenon via mathematical modeling, we face the choice of which com-
ponents to include in the model. In closed systems, all factors relevant to the modeling of the system
and their interactions are explicitly described, all components are internal to the model description.
On the contrary, in open systems, external components influence the dynamics of the system, i.e., the
system is modulated by its environment. The term environment originates from the theory of open
quantum systems, in which the term (heat) bath is equivalently used [1]. When conducting experi-
ments, it is almost never feasible to explicitly capture all the factors that affect the observed system.
As a consequence, almost any experimental setup in a real world is an open system. The partial
observations are complemented by an external environment component that is hidden from the obser-
vations. This holds for cellular processes in particular [2, 3, 4]. Gene regulatory processes operate in a
heterogeneous context, rather than in isolation [5, 6]. The heterogeneity has its origin in the cell-to-cell
variability (static heterogeneity) as well as in temporal fluctuations. As an example for the former,
each cell is equipped with a different number of ribosomes. As an example for the latter, the process
of transcription undergoes fluctuations in transcription factors. The number of components that are
simultaneously observable in live-cell fluorescence microscopy is currently limited to a handful because
the spectra of common fluorophores overlap [7, 8, 9], which makes partial observability a relevant
modeling criterion. However, under some circumstances, a closed system models the phenomenon of
interest sufficiently well, while facilitating a tractable mathematical representation. Techniques such
as the quasi-steady state assumption were developed to close a system [10, 11].

Mathematical modeling is used to narrow down the mechanisms that are in accordance with ex-
perimental data and to ultimately make predictions [12]. Viewing models as magnifying glasses, in the
optimal case, the model magnifies precisely the relevant components to describe a phenomenon. This
can be the observed components and a small number of additional, unobserved, quantities. The exte-
rior components are abstracted into an environment. The environment can be an implicit compilation
of external influences whose fingerprint shows in the subnetwork or an explicit physical component.
To capture this difference, we distinguish between phenomenological and mechanistic models [13], il-
lustrated by the use of the Hill function [14]. The Hill coefficient has an interpretation as an indicator
for cooperativity [15]. In some cases (quorum sensing, cooperative binding to enzymes), a physical
mechanism can be detected that implements the cooperativity and justifies the Hill function as a mech-
anistic model. However, the Hill function is often used in a phenomenological sense [16, 17], due to its
properties (bounded, S-shaped, with a concentration of maximal steepness), without having identified
a mechanism of cooperativity on the molecular level. Another relevant example for gene regulation is
the two-state promoter model [18], often linked to the term ’transcriptional bursting’ [19], see figure
1A. In bacteria, the random switching between an inactive and an active state of DNA accessibility
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Figure 1: The standard transcription model with a two-state promoter. a) A random tele-
graph promoter switches between its active and its inactive state. Only in the active state, mRNA
is synthesized. The promoter stays active, so multiple mRNA strands can be transcribed in one ac-
tive period. The transcription reaction is of first order with fixed rate. b) Experimentally only the
transcription events are observed. The promoter is modeled as a context. An observation model for
transcription counts is obtained when we marginalize the joint system over the context. The transcrip-
tion reaction is of order zero with stochastic rate, i.e., a doubly stochastic Poisson process.

and exponential waiting times could be validated. However, for yeast or mammalian cells, the two-
state promoter model was merely used in a phenomenological way because it generates overdispersed
mRNA count data [20]. When time-lapse data of the transcriptional process became available, the
Markovian assumption was found not to hold for yeast [21] and mammalian cells [22]. Biophysicists
suggested mechanistic models that include more than one rate-limiting step [22, 23]. Modelers pro-
posed phenomenological promoter architectures, including cooperativity effects, refractory states and
competitive binding [24, 17, 25, 26, 27] as refinements to the two-state promoter model.

In this work, I focus on the particular model class of stochastic chemical reaction networks (CRNs)
in a random environment. CRNs are Markov jump processes on the state space Nn of molecule copy
numbers [28]. Transitions are dictated by reactions. Each reaction, as known from textbook chemistry,
specifies a number of reactants converting to a number of products. The net change from reactants to
products, i.e., the change vector of the reaction, establishes which transitions are possible. The rate
with which the reaction occurs is computed from the state, i.e., the copy number of the reactants. It is
specified by a functional form, often using the principle of mass-action kinetics. But other functional
forms, such as a Hill function, are possible. In the classical case, the functional form includes rate
constants. For instance, with the mass-action principle, this is simply a proportionality constant.

Typical quantities of interest for CRNs are the probability distribution, or the generating function,
and moments, both in the transient and stationary behavior. While being a pioneer of stochastically
described chemical reactions, Bartholomay [29] still emphasized the analogy of the mean equations with
the deterministic counterpart. However, the following works [28, 30] demonstrated that bimolecular
reactions cause a characteristic deviation of stochastic systems when the system is not in the ther-
modynamic limit, highlighting the need for other techniques. Early works computed the generating
function and mean at stationarity for small bimolecular networks comprising two balanced reactions
[31]. The observation that bimolecular reactions result in an unclosed mean equation brought more
attention to unclosed (hierarchical) moment equations. Unclosed moment equations have prompted
researchers to pursue several strategies. Among them, stochastic simulations for systems with highly
abundant components are time-consuming and therefore computationally prohibitive. Equally pro-
hibitive is the use of the master equation, which gave rise to more efficient hybrid methods [32, 33,
34]. Overall, previous studies developed and extensively explored various moment closure schemes [35,
36, 37, 38], identified the limitation of moment closures with regards to bimodal distributions [34] and
extinction [39], and pointed out the limited local character of moment closures [40]. More recently,
linear programming under positive semi-definite constraints was employed to compute upper and lower
moment bounds [41, 42, 43] and approximated the moments in the case of tight bounds.

For the class of CRNs in a random environment, we replace the rate constants by stochastic
processes. In this way, we model cell-to-cell heterogeneity, with the random environment manifesting
as stochastic reaction rates, and the subsystem embedded into this environment. One way to obtain an
embedded subsystem is by partitioning the species of a larger network into subsystem and environment
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species. Adhering to the experimental reality of partial observations, one modeling priority is to give
a self-contained description of the observed subsystem while accounting for the environment as if
the subsystem was still embedded, see figure 1B. A transfer from a joint closed description of the
environment and the subsystem to an (approximate) self-contained description of the subsystem is what
we call model reduction. We seek for model reductions that succeed to capture a certain phenomenon
that the original joint system exhibits. The effect of a random environment on the noise in linear
subsystems, i.e., on the variance, is well-studied. Many research groups adopted the decomposition of
noise into intrinsic and extrinsic components since its introduction by Swain and colleagues [44], and
this concept was expanded upon in later studies [45, 46, 47, 48]. Of equal interest is the question of
how the environment shapes the stationary distribution of the subsystem, e.g., bimodality [49]. In the
related field of queuing theory, stochasticians studied birth-death process in a random environment.
For a Markov environment, O’cinneide and Purdue [50] derived expressions for the stationary factorial
moments and reported bimodal stationary distributions. Random-telegraph-modulated service rates
were fully characterized in [51] and Falin [52] extended it to simultaneous birth- and death-modulation
by a semi-Markov environment.

Several levels of description are possible for stochastic processes [53, 54]: 1) the process evolution,
specifying a generative model, such as an SDE or doubly stochastic (multivariate) Poisson process, 2)
the probability evolution, specifying the generator or the differential form of the Chapman-Kolmogorov
forward equation, 3) the moment evolution, adjoined to the generator. We note that 2) and 3) describe
deterministic objects. Usually, we will encounter a model reduction that starts from an open descrip-
tion of the environment and the subsystem, i.e., only first- and second-order moment information on
the environment will be used. It is interesting to study failure modes of the quasi-steady state (Q.SS)
assumption. Besides the Q.SS-approximated models, we develop a novel reference model from a lin-
earization of the reaction rate based on optimal linear stochastic filtering. The deviations from the
reference model reveal which stochastic properties of the subnetwork must be classified as consequences
of the non-linear dynamic evolution of the intensity and which persist under the linearized dynamic
evolution of the intensity. We are guided by the question, which effects persist under a linearization
and can thus be attributed to a linearized version of the environment. Besides attributing subnetwork
properties to the environment, a marginal description of the embedded process is of interest for (i)
marginal simulations that bypass the co-simulation of the environment, (ii) obtaining new process
equations from which moment equations can be derived, (iii) the computation of information-theoretic
quantities, and (iv) state estimation of the unobserved environment. A focus of this thesis will be on
results for linear systems. We consider linear environments embedding general subnetworks and linear
subnetworks embedded in general environments.
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2 CRNs in a random environment

Stochastic CRNs model the synthesis, conversion and decay of molecules under the assumption of
spatial homogeneity and dominant effects of low copy numbers [28]. Often, the processes that are
modeled are not closed, but are embedded in the cellular context, which we call a random environment
[3]. The concept of the random environment is abstract enough to include cell-to-cell heterogeneity,
such as a varying polymerase copy number, and fluctuating processes within the cell, such as conforma-
tion changes of mRNA. Our way to model the embedding into a random environment is by replacing
the constants in the propensity functions by external stochastic process. For instance, the rate of
transcription synthesis events is modulated by multiple factors [55]. Recruitment of polymerase and
transcription factors as well as unwinding of the DNA strand, all contribute to the activation of a
promoter state, where transcription is initiated [56]. In other words, the reaction rate constants are
replaced by random (time-varying) quantities. An embedding into a random environment naturally
arises when one part of a larger CRN is labeled as the environment and the remaining part is the pro-
cess of interest. Diffusion processes that remain positive, such as the Cox-Ingersoll-Ross (CIR) process
[57] or a positive function of an Ornstein-Uhlenbeck process [58], are other ways to model fluctuating
concentrations as environment components. CRNs formalize the stochastic dynamics of molecules of
d types as Markov jump processes in the state space Nd of species copy numbers on some probability
space (Ω,F ,P).

2.1 Multivariate counting processes

By regarding the chemical reactions as events, CRNs are multivariate counting processes. External
noise manifests as stochastic reaction rates. To operate mathematically with these models, we provide
the martingale calculus for them. The stochastic concept of filtrations is introduced to capture different
stochastic conditioning.

Throughout we consider the setting of the subsystem X(t) embedded in a random environment
Z(t). The state X(t) = [X1(t), . . . , Xd(t)]

T contains the number of molecules of type X1, . . . ,Xd at
time t. Transitions of the Markov jump process are dictated by M reactions

R1 :
∑d
i=1 Si1Xi

a1(X(t),Z(t))−→ ∑d
i=1 Pi1Xi

...
...

RM :
∑d
i=1 SiMXi

aM (X(t),Z(t))−→ ∑d
i=1 PiMXi

(1)

where Sij , i = 1, . . . , d, j = 1, . . . ,M are the substrate coefficients and Pij , i = 1, . . . , d, j = 1, . . . ,M
the product coefficients. The superscripts aj(X(t), Z(t)) are the propensity functions. We assume that
they depend on the current state X(t) and on an external stochastic process Z(t). For examples of
this setting, see section 6. We call ν = P −S the stoichiometric matrix and its columns ν1, . . . , νM the
change vectors. Transitions of the Markov jump process are possible from x to x+νj and occur at a rate
given by the propensity function. We make this rigorous in the following counting process description.
First, we introduce the multivariate counting process Y (t) = [Y1(t), . . . , YM (t)]T , where the component
Yj(t) counts how often the Reaction Rj has occurred until time t, so naturally throughout Y (0) = 0.
Then the current state X(t) can be computed from the initial state and Y (t) as

X(t) = X(0) +
M
∑

j=1

Yj(t)νj = X(0) +N · Y (t). (2)

We use the terms point process and counting process equivalently. Note that we assume a unidirectional
coupling, with the environment Z modulating the subnetwork, but not the other way around.

2.1.1 Preliminaries on counting processes

We recall the theory of counting processes, which follows [59, §1 and §2]. The main purpose of this
subsection is the definition 2.2 of the conditional intensity of a counting process. Let (Zt)t≥0 be a
stochastic process and for each t ≥ 0 denote by σ(Zs, 0 ≤ s ≤ t) the smallest sigma-algebra for which
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all Zs, s ≤ t are measurable. A filtration is an increasing family (Ft)t≥0 of sigma-algebras. The
filtration FZt := σ(Zs, 0 ≤ s ≤ t) is said to be generated by Zt, t ≥ 0 and is called the canonical
filtration of the process (Zt)t≥0. Let (Zt)t≥0 be a stochastic process and (Ft)t≥0 be a filtration. Then
(Zt)t≥0 is called adapted to (Ft)t≥0 if FZt ⊆ Ft for all t ≥ 0. The smallest filtration to which a
process is adapted is its canonical filtration.

Definition 2.1 (Counting process, jump times, intensity). Let (Yt)t≥0 be a stochastic process on
a probability space (Ω,F ,P). Then (Yt)t≥0 is called a counting process if (i) its paths are right-
continuous and piecewise constant, (ii) Y0 = 0 and (iii) Yt − Yt− ∈ {0, 1} for all t ≥ 0, where Yt− =
lims→t− Ys denotes the left-sided limit. Denote by 0 = σ0 < σ1 < σ2 < . . . the jump times of (Yt)t≥0,
i.e., σ0 := 0 and, recursively,

σi := min{t > σi−1 : Yt − Yt− = 1},
where Yt− = lims→t− Ys denotes the left-sided limit. Let (Yt)t≥0 be adapted to a filtration (Ft)t≥0

and let (λt)t≥0 be a non-negative Ft-predictable process. Then (Yt)t≥0 admits the Ft-intensity λt iff
a) for all t ≥ 0

∫ t

0

λs ds <∞

P-almost surely and b) for all non-negative Ft-predictable processes (Ct)t≥0 it holds

E

[
∫ ∞

0

Cs dYs

]

= E

[
∫ ∞

0

Csλs ds

]

.

The counting process is non-explosive, if limi→∞ σi =∞.

Throughout, (Yt)t≥0 denotes a non-explosive counting process on a probability space (Ω,F ,P) and
we only consider counting processes (Yt)t≥0 that admit a predictable (Ft,P)-intensity λt. To highlight
its dependency on the filtration (Ft)t≥0, we usually include it in the notation. When we compare
different probability measures, we denote it explicitly, otherwise the intensity’s dependency on P is
ignored.

Definition 2.2 (Conditional intensity). Let (Yt)t≥0 be a counting process. We call its FYt -intensity
the conditional intensity (CI), denoted by (λ̂t)t≥0.

We follow Brémaud [59] and Daley, Vere-Jones [60] in using the term conditional intensity for the
FYt -intensity. It is not to be confused with its other usage as a special case of the Papangelou intensity.
For an introduction on the CI we refer the reader to [60, §7.2].

The Poisson channel without feedback, introduced by Kabanov [61], is a doubly stochastic Poisson
process (Yt)t≥0 defined via an external measurable process (Zt)t≥0 on a state space Z. Informally,
(Yt)t≥0 is conditionally a Poisson process with non-homogeneous intensity λ(Zt, t) given (Zt)t≥0. For-
mally, we use the following definition 2.3.

Definition 2.3 (Doubly stochastic Poisson process, modulating process). Let (Yt)t≥0 be a counting
process adapted to (Ft)t≥0 with the Ft-intensity λt. If there exists a measurable process (Zt)t≥0 on a
state space Z and a function λ : Z × [0,∞)→ R≥0, such that λt = λ(Zt, t) and F0 contains FZ∞, then
(Yt)t≥0 is called a doubly stochastic Poisson process with Ft-intensity λt and (Zt)t≥0 is called its
modulating process.

Remark 2.4. Instead of (Ft)t≥0 with FZ∞ ⊆ F0 we can also consider FZ,Yt := σ(Zs, Ys : 0 ≤ s ≤ t).
More informally, (Yt)t≥0 is conditionally a Poisson process with non-homogeneous intensity λ(Zt, t)
given (Zt)t≥0. In this work, we consider the setting λt = λ(Zt). This is precisely the setting of the
Poisson channel without feedback in the terminology of Kabanov [61].

Note that we lose the dependency of the intensity on a filtration in the informal definition. This
dependency is helpful, because it allows a change of filtration. For this purpose let us recall the
definition of the conditional expectation. For a random variable X on (Ω,F ,P) and a sigma-algebra
G the conditional expectation E[X|G] is the G-measurable random variable X̃ for which

∫

B

X dP =

∫

B

X̃ dP

for all B ∈ G. It is unique except for changes on P-null sets.
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Theorem 2.5 (Change of filtration, Brémaud 1981). Let (Yt)t≥0 be a counting process adapted to
(Ft)t≥0 with the Ft-intensity λt and FYt ⊆ Gt ⊆ Ft. Assume that a left-continuous Gt-adapted version
of E[λt|Gt] exists. Then (Yt)t≥0 admits the Gt-intensity E[λt|Gt]. In particular, if a left-continuous
FYt -adapted version of E[λt|FYt ] exists, then (Yt)t≥0 admits the FYt -intensity E[λt|FYt ].

Proof. The proof is found in [59, §2, theorem T14, p.32-33] and the remark thereafter.

Remark 2.6. If a counting process has an Ft-intensity for some filtration (Ft)t≥0 and the conditions
of theorem 2.5 hold, then it also admits a CI. Note, that the CI is attributed to the canonical filtration.

In this work, we consider the form λt = λ(Zt), which is the FZ,Yt -intensity for FZ,Yt := σ(Zs, Ys :
0 ≤ s ≤ t). The doubly stochastic Poisson process (Yt)t≥0 is also known by the term Cox process in
the literature. We call (Zt)t≥0 its modulating process. Note that λt is not yet the CI of (Yt)t≥0. We
apply Brémaud’s change of filtration theorem 2.5 to obtain that its CI is the conditional expectation
E[λt|FYt ].

Throughout, we only consider counting processes that admit a CI. In general, we are interested
only in the case that λ̂t is not deterministic.

Definition 2.7 (Self-exciting, history-dependent). A counting process (Yt)t≥0 is self-exciting if for
all t > 0, the conditional intensity λ̂t is not almost surely a constant. The conditional intensity is
history-dependent if λ̂t is not σ(Yt)-measurable for all t > 0.

Note that in [62, p. II.4.1], a self-exciting counting process is more weakly defined as counting
process accompanied by its canonical filtration. The CI of a self-exciting counting process in general
depends on a measurable function h of the trajectory Y[0,t] and the time t. In some models, it can be
written as a function solely of Yt. If this is not the case, we call it history-dependent.

We now consider the special case that the modulating process (Zt)t≥0 of the doubly stochastic Pois-
son process (Yt)t≥0 is a continuous time Markov chain on a finite state space and is time-homogeneous.

Definition 2.8 (Continuous time Markov chain, generator, Markov-modulated Poisson process). Let
Z be a finite set. By a continuous time Markov chain (CTMC) (Zt)t≥0 on the state space Z we
denote a time-homogeneous Markov process with values in Z. The generator A ∈ R|Z|×|Z| of (Zt)t≥0

is given, for any t ≥ 0, by

Az,z′ = lim
h→0

h−1(P[Z(t+ h) = z|Z(t) = z′]

− P[Z(t) = z|Z(t) = z′]). (3)

If (Yt)t≥0 is a doubly stochastic Poisson process modulated by a CTMC (Zt)t≥0, we call (Yt)t≥0 a
Markov-modulated Poisson process (MMPP).

Remark 2.9. By time-homogeneity, the definition of the generator does not depend on the choice of
t.

2.1.2 Standard filtrations for CRNs in a random environment

So far, we have considered counting processes in one dimension. A multivariate counting process
(Yt)t≥0 = ([Y1(t), . . . , YM (t)]T )t≥0 has the same component-wise properties as in definition 2.1. Addi-
tionally, no two components jump simultaneously. A filtration is an increasing family of sigma-algebras,
indexed by time, that, intuitively speaking, captures our knowledge at time t. Throughout, as a con-
vention, when s and t are used, then s ≤ t. Define the filtrations

FY Zt := σ({Y (s) : s ≤ t} ∪ {Z(s) : s ≤ t} ∪ {X(0)})
FYt := σ({Y (s) : s ≤ t} ∪ {X(0)}),

where σ(·) denotes the smallest sigma-algebra with respect to which all random variables in the ar-
gument are measurable. Then we can make the reaction system in Eq. (1) rigorous, by specifying
that Y (t) has FY Zt -intensity λ(t) = [a1(X(t−), Z(t−)), . . . , aM (X(t−), Z(t−))]T . By t− we denote
the left-sided limit, which makes λ(t) a predictable intensity. Equivalently, we also use the filtration

FY Z∞
t := σ({Y (s) : s ≤ t} ∪ {Z(s) : s ≥ 0} ∪ {X(0)}),
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as in definition 2.3. In contrast to FY Zt , the filtration FY Z∞
t has knowledge of the entire trajectory of

Z, also the future. Later, we consider different probability measures, which we indicate by (FY Zt ,P)-
intensity.

2.1.3 Linear environment and the order of the environmental modulation

General results for classes of environments are difficult to obtain. However, under special conditions,
results can be obtained. A well-studied class of environments are the linear stationary ones. When we
refer to them, we make simplifying assumptions on the external process Z(t) ∈ Rl and the functional
form a(X(t), Z(t)) of the FY Zt -intensity λ(t). We refer to these as the standard conditions. For the
process Z(t), we assume

Z(t) is weakly stationary, (C1)

i.e., its mean E[Z(t)] is a finite constant over time, and Cov[Z(t), Z(s)] only depends on t − s. Next,
we assume that there exist A,Σ ∈ Rl×l such that all eigenvalues of A have positive real part, Σ is
symmetric positive semi-definite, AΣ+ ΣAT is positive semi-definite and

Cov[Z(t), Z(s)] = e−A(t−s)Σ for t ≥ s ≥ 0. (C2)

For the form of λ(t) = a(X(t), Z(t)) we assume

a(x, z) = µ(x) + C(x) · z ∈ RM≥0 (C3)

for some µ(x) ∈ RM , C(x) ∈ RM×l. These simplifying assumptions include all linear reaction networks
Z(t), i.e., Z(t) is a CRN with only zeroth- and first-order reactions, for which we additionally assume
stationarity and ergodicity. For instance, this class covers the random telegraph model, compartmental
models with only monomolecular reactions as well as cascades of birth-death processes. Gardiner’s
regression theorem [63, §3.7.4b, Eq. (3.7.62), p.65] guarantees the matrix exponential form of the
time correlation matrix. For processes with continuous state space, the Cox-Ingersoll-Ross process [57]
satisfies these conditions. All the examples are Markov processes, see also section 6 for an illustration.

We classify the order of the environmental modulation. The order of a reaction in a CRN is the
number of reactants, i.e., the sum

∑d
i=1 Sij of substrate coefficients on the left-hand side of the reaction

Rj in Eq. (1). In a CRN with a modulating environment, the order of modulation is the order of the
subnetwork reaction. If aj(x, z) does not depend on z, the reaction Rj is unmodulated. By zeroth-
order modulation, we denote a form aj(x, z) = aT z + b, a ∈ Rl, b ∈ R and by first-order modulation,
we denote a form aj(x, z) = xTAz + xT b, A ∈ Rd×l, b ∈ Rd. To derive results, we consider another
condition

µ(x) ≡ µ, µj > 0 for all j, C(x) ≡ C, (C4)

i.e., the propensities do not depend on the stateX(t). This is the case, when only zeroth-order reactions
are modulated by the environment and Z(t) is of mean zero. See the section 6 for examples of how the
standard conditions are satisfied. For results on linear environments modulating zeroth-order reactions
of the subnetwork, see sections 3.2 and 4.1.3.

2.1.4 Martingale calculus for counting processes

Associated with a multivariate counting process Y (t) ∈ Nd and its Ft-intensity λ(t) for some filtration
Ft that contains σ(Y (s) : s ≤ t), there is the zero-mean Ft-martingale

M(t) = Y (t)−
∫ t

0

λ(u) du.

In fact, the property that the right-hand side is an Ft-martingale can be taken as the definition of
the Ft-intensity for non-explosive Y (t). With this definition, it becomes apparent that the intensity
depends on the filtration of the martingale. The increment can be written as dM(t) = dY (t)−λ(t) dt.
One benefit of martingale theory is that it provides a rich second-order calculus.
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In the following, we use the identities, see for instance [62, proposition II.4.1], for predictable
processes F (t) ∈ Rl1×d, G(t) ∈ Rl2×d

E

[
∫ t

0

F (u) dM(u)

]

= 0 (4)

E

[

∫ t

0

F (u) dM(u)

(
∫ s

0

G(u) dM(u)

)T
]

= E

[

∫ min(s,t)

0

F (u) diag(λ(u))G(u)T du

]

. (5)

2.1.5 Piecewise-deterministic Markov processes

The CI of MMPPs is obtained from the so-called Snyder filter, which we identify as a piecewise-
deterministic Markov process, see proposition 4.10 below. We first give the formulation of the Snyder
filter in proposition 2.10. The motivating example of the pair consisting of the Snyder filter and the
MMPP then prompts the investigation of more general pairs consisting of a PDMP, definition 4.7, and
a corresponding counting process, definition 4.9. Since this generalization abandons the setting of the
Poisson channel with Markov input, the computation of the relative entropy, Eq. (122) and Eq. (123),
is then our main motivation.

In the expression of the CI for MMPPs the conditional probabilities given FYt enter. This is to be
expected by Brémaud’s change of filtration theorem, see theorem 2.5. The task of finding the posterior
probabilities, Πt(z) := P[Zt = z|FYt ] for all z ∈ Z, is referred to as filtering. Taken together, we call
Πt(z)z∈Z the filtering distribution. The filtering distribution is a multi-variate stochastic process with
values in ∆ := {π ∈ [0, 1]|Z| :

∑

z∈Z π(z) = 1} and the Snyder filter provides its temporal evolution.

Proposition 2.10 (Snyder filter, conditional intensity of MMPP). In the setting and with the notation
of definition 2.8 the filtering distribution (Πt(z))z∈Z evolves as follows for all z ∈ Z, according to
Snyder [64, Eq.(7.153), p. 396],

d

dt
Πt(z) = (AΠt)(z)− (λ(z)− λ̂t)Πt(z) (6)

between jumps and is updated to [64, Eq.(7.154), p. 396]

Πt(z) =
λ(z)Πt−(z)

λ̂t
(7)

if Yt = Yt− + 1, i.e., for t = σi, i ∈ N0. Taken together, the Snyder filter reads

dΠt(z) = (AΠt)(z) dt+
(λ(z)− λ̂t)Πt−(z)

λ̂t
{ dYt − λ̂t dt}. (8)

By means of the filtering distribution, the conditional intensity is computed as

λ̂t =
∑

z∈Z
λ(z)Πt−(z).

Proof. The proof is found in [64, theorem 7.4.2, p.383-387, example 7.4.8, p.396].

A structural result on the convergence for the Snyder filter is presented in theorem 4.32 and
a positive lower bound for the CI is derived in theorem 4.34. The notation in Eq. (8) will be more
generally introduced and explained in Eq. (83) below. Loosely speaking, the Snyder filter follows a flow
in periods between jumps and is discontinuously updated upon jumps of the counting process (Yt)t≥0.
The hazard with which jumps occur is the CI, which is evaluated from the filtering distribution at any
time via a deterministic function. Finally, the update at jumps is also determined by the state of the
filtering distribution. For the definition of the PDMP, which follows the construction of Davis [65, §24,
p.57-59 & (24.8) standard conditions, p.62], see Appendix A. The three so-called local characteristics
of a PDMP are

• the flow F : ϑ→ Rn0 locally Lipschitz continuous,
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• the hazard l : ϑ → R≥0 measurable satisfying an integrability condition, specified in Eq. (290),
Appendix A,

• the jump updateQ : B(ϑ)×ϑ→ [0, 1], such thatQ(B, ·) : ϑ→ [0, 1] is measurable for allB ∈ B(ϑ),
where B denotes the Borel σ-algebra, and Q(·, θ) is a probability measure for all θ ∈ ϑ.

2.1.6 Comment on filtration-dependent intensities

From a modeling perspective, one might wonder how can (Yt)t≥0 have two intensities (λ̂t and λt) and
if one simulates trajectories with either of the two, how can they be on a par in terms of the same
statistical properties for (Yt)t≥0? This puzzle is solved if one incorporates the Ft-dependency of the
intensity as in definition 2.1. In the above case of the Cox process Ft = FYt or Ft = FZ,Yt . This
dependency can be expressed in at least three ways: (i) explicitly but not of operational value for
mathematical proofs

λt dt+ o( dt) = E[ dYt|Ft],
(ii) implicitly, and beneficial for mathematical rigidity and due to the available martingale calculus
[66] by requesting

Yt −
∫ t

0

λs ds

to be an Ft-martingale, (iii) as in the definition 2.1 by means of dual objects, which we chose to avoid
the introduction of martingales. The dependency implies that a general counting process (Yt)t≥0 can
admit several intensities depending on the respective sigma-algebra and for Gt ⊆ Ft, they can be linked
by Brémaud’s innovation theorem 2.5.

From the perspective of state estimation, λ̂t is an estimator. The term estimation has the conno-
tation of a deficit. However, far from being an estimator with deficits, the CI (λ̂t)t≥0 has a standing
as corresponding to the canonical filtration, i.e., it is the intensity with respect to the minimal filtra-
tion to which (Yt)t≥0 is adapted, compare remark 2.6. This is why it can be seen as the canonical
one among the FYt - and FZ,Yt -intensities. The FYt -intensity can be defined for any counting process
(Yt)t≥0 admitting some intensity, with no need to specify an external process, making it a universal
object for counting processes that admit an intensity.

The estimator perspective regards E[λt|FYt ] as a function of the history {Ys : 0 ≤ s ≤ t}. This
complicated functional dependence makes it hard to understand the limit object λ̂∞ of the convergence
λ̂t → λ̂∞ in distribution. In contrast, the conditional intensity view can offer a self-contained descrip-
tion of λ̂t via the Snyder filter, Eq. (8): all the knowledge on (Yt)t≥0 needed for understanding λ̂∞ is
captured in the jump times of (λ̂t)t≥0 which are shared with (Yt)t≥0. In this way, (λ̂t)t≥0 emancipates
from (Yt)t≥0.

For this emancipation it was crucial to note that we can consider (Yt)t≥0 to be jumping with
intensity (λ̂t)t≥0 in Eq. (8). In contrast, from a modeling perspective, (Yt)t≥0 is often viewed as
simulated from a two-step randomization procedure [59, p.21]. First, trajectories of (Zt)t≥0 are sampled
and secondly, conditional on the trajectory, a non-homogeneous Poisson process trajectory (Yt)t≥0 is
sampled with intensity (λ(Zt))t≥0. Then Eq. (8) can be evaluated trajectory-wise. This perspective,
however, dilutes the Markov property of (Πt)t≥0, for which the hazard (the second local characteristic
of the PMDP) must be a function l of the state Πt−. The intensity λ(Zt) can, however, not be evaluated
from the state Πt− alone. So the part dYt in Eq. (8) uses external knowledge and the equation is
not self-contained. The CI (λ̂t)t≥0 in place of (λ(Zt))t≥0 fulfills the requirement for l and establishes
the Markov property. In the modeling perspective this history-dependent intensity can be realized by
keeping track of the ODE (6) between jumps and using a thinning algorithm for (Yt)t≥0 or the inverse
sampling method for the sojourn times, as well as updating via Eq. (7) upon the occurrence of jumps.

2.2 Motivation

It is one modeling goal to find a closed, i.e., self-contained, description for a given CRN in a random
environment that behaves in its statistical properties as if it was still embedded. We call it the marginal
description. The goal are both evolution equations for deterministic quantities, i.e., the probability
evolution and evolution of moments, as well as process equations, that can be used for stochastic
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simulation. Probability and moment evolution equations describe the average behavior of the system,
stochastic simulations generate random samples. The descriptive and generative tasks of the marginal
description are complemented by the analytic task of attributing subnetwork features to environment
features, as well as estimation of information measures. In summary, the various purposes for studying
the CRNs in a random environment via stochastic conditioning are (i) marginal simulation, (ii) model
reduction, (iii) the computation of information measures, (iv) state estimation and (v) attribution of
effects to properties of the random environment.

2.2.1 Marginal simulation

The work by Zechner and Koeppl [3] proposed the marginal simulation algorithm that bypasses the co-
simulation of environment components, emphasizing its potential for efficient simulation and variance
reduction [67] as known from Rao-Blackwellized estimators [68, 69]. The marginal simulation approach
replaces the modulating component of a two-component process to obtain a one-component description
of the modulated component. The analysis of marginal simulation thus provides the foundation for
extending general gene regulatory networks by sources of heterogeneity. Addressing the problems
of simulating gene regulatory networks and the modular design of synthetic circuits, we provide an
efficient way of including heterogeneity. For the latter purpose, our method may help with in silico
studies, i.e., simulations, that precede in vitro studies. One ultimate goal of understanding each gene
expression step in gene regulatory networks is the engineering and synthesis of genetic circuits [70].
To design complex genetic circuits that function despite their embedding into a cellular context, it is
essential to account for identified sources of heterogeneity in a modular manner [71, 72]. The typical
workflow of circuit design involves the composition of networks or cascades from well-characterized
parts [73, 74]. Adhering to the Design-Build-Test-Learn cycle, it is common to simulate the composed
function in silico before conducting in vitro or in vivo experiments [75, 76]. Rational design thus
requires principled models that besides reliably predicting the behavior are also modular, in the sense
that it consists of single modules that can be easily replaced.

2.2.2 Model reduction

Zechner, Bronstein and Koeppl introduced the marginal process framework [77, 78] to reduce Markov
jump models. The reduced models specify new process equations and evolution equations for the
probability and moments. Recovering the Markov property, new process equations on an augmented
state space can be used to derive generalized (auxiliary-variable) [79] or reduced [80] master equations.
The reduced model with a marginal description served the purpose of genetic circuit design [81],
realizing the auxiliary variables as chemical species.

2.2.3 Information theory

Beyond the marginal description, the filter mean naturally appears in expressions for information
measures. Shamai and Lapidoth used the optimal linear causal estimate to obtain upper bounds on
the capacity for the spectrally constrained Poisson channel [82]. Duso, Moor and Zechner used the
Gamma filter [83, 84] to estimate the mutual information between two species in a CRN. Furthermore,
it has been known since the work on counting processes by Brémaud [59, §VI.6] that the relative entropy
between two counting processes is a difference functional of the filter means (’detection formula’). Atar
and Weissman used it to derive the error of mismatched estimation of the mutual information, when
using an approximate filter [85].

2.2.4 State estimation

We emphasize that the original purpose for the study of the filter mean was state estimation under
partial observability [86, 59]. In the literature on CRNs, this approach has been recently rediscovered.
In their works, Rathinam et al. and Fang et al. introduce particle filters to solve the filtering problem
for latent state estimation [87, 88]. State estimation for CRNs via smoothing, i.e., under the (partial)
knowledge of the trajectory until the final time point, is addressed in [89]. The causal, anti-causal
and non-causal estimator of the intensity, corresponding to forward filtering, backward filtering and
smoothing are usually closely related, as in [90] for the Poisson process. Along with state estimation,
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Figure 2: Schematic graph of the conditional expectation with respect to a sigma-algebra F . Projection
property and Pythagorean identity is shown in the Hilbert space of square-integrable random variables.
The plane indicates the linear subspace of F-measurable random variables.

one of the earliest application was in optimal control [59, §VII] sparked by the initial success of Kalman
[91]. A more recent application designed genetic circuits using approximate filters [81].

2.2.5 Attribution to the environment

In addition, approximate and reduced models can be used as baseline models. Deviations from the
reference give insight, how subnetwork properties can be attributed to the environment, similar to
knock-out experiments. They provide hypotheses about which features of the environment do or do not
evoke an observed stochastic property in the subnetwork. More generally, throughout we were guided
by the goal of quantifying the effect that the environment has on the moments of the subnetwork.

3 Conditioning on the environment

As a rather general strategy for the aforementioned tasks, we employ stochastic conditioning, i.e.,
the conditional expectation. Two routes can generally be taken: conditioning on the environment or
conditioning on the subnetwork. These approaches differ in that the conditioning on the environment
can only generate evolution equations for deterministic quantities, i.e., the probability evolution and
evolution of moments. The conditioning on the embedded subnetwork provides process equations in
addition, that can be used for marginal simulation.

The conditional expectation is a standard concept from probability theory and we use it here as our
main tool to reduce the CRN model, Eq. (1) in a random environment. The conditional expectation of
a random variable X with respect to a sigma-algebra F , E[X|F ] is an F-measurable random variable
X̃ with the defining property that

∫

A

X dP =

∫

A

X̃ dP

for all A ∈ F . It is unique defined up to changes on a set of measure 0. When F = σ(Y ) for another
random variable Y , then we write E[X|Y ] instead of E[X|σ(Y )]. The conditional expectation satisfies
the projection property

E[E[X|F ]|F ] = E[X|F ].
And more generally the tower property, i.e., for G ⊆ F

E[E[X|F ]|G] = E[X|G],

which says that conditioning can be done sequentially starting from the finer, and proceeding to the
coarser sigma-algebra. This is especially useful for the particular case of G = {∅,Ω}, telling us

E[E[X|F ]] = E[X],
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i.e., to evaluate an expectation by first conditioning on F as an intermediary before we take expecta-
tions. We can think of E[X|Y ] as a measurable function g(Y ) of Y . So we say, that conditioning on
Y eliminates the randomness in X, while keeping the randomness in Y . Also it holds, that

E[aX + bX̃|F ] = aE[X|F ] + bE[X̃|F ],

which makes E[·|F ] a linear projection. If X is square-integrable, then the projection has a stronger
geometric meaning in the Hilbert space of square-integrable random variables with the scalar product
〈X,Y 〉 = E[XY ], see figure 2. Namely, E[X|F ] minimizes E[(X̃−X)2] among all F-measurable random
variables X̃. This is seen by proving the Pythagorean identity

E[(E[X|F ]− X̃)2] + E[(E[X|F ]−X)2] = E[(X̃ −X)2].

Hence, E[·|F ] is an orthogonal linear projection onto the linear subspace of F-measurable random
variables.

We now apply this to our case. We started out with the joined system (Xt, Zt), where Xt is
the subsystem state and Zt is the environment state. When we are interested in the moment of an
observable E[h(Xt)] of Xt, we have two paths that we can take: first eliminating the randomness in
Xt or first eliminating the randomness in Zt. The remaining randomness is subsequently removed in
a second step. We cover the elimination of the randomness in Xt here. For the other path, see section
4. In particular, we condition on

FZt := σ({Z(s) : s ≤ t})
or sometimes

FZ∞ := σ({Z(s) : s ≥ 0}).
The second variant corresponds to sampling the entire trajectory of Z, such that we can condition on
it. Then E[h(Xt)] is computed as E[E[h(Xt)|FZt ]] or E[E[h(Xt)|FZ∞]]. Commonly, h can also be chosen
as an indicator function to cover probabilities P[Xt ∈ A] and P[Xt = k] within this framework.

3.1 First-order moments

We first investigate the effect of the random environment on the mean of a subsystem species. This
effect is visible when first-order reactions are modulated as the following simple example illustrates.
Consider a birth-death process with birth rate λ and death rate µ whose mean approaches λ/µ in the
equilibrium. Zero-order modulation corresponds to a modulation in the birth rate, i.e., stochastic λ
with mean λ̄. By the linearity of the function λ 7→ λ/µ and the linearity of the mean, the heterogeneous
mean λ̄/µ does not reflect the heterogeneity at the mean level. However, if µ is stochastic, the non-
linearity of µ 7→ λ/µ invalidates this argument. Instead, the excursions in the abundance that emerge
during µ = 0 can distort the heterogeneous mean away from λ/µ̄ (Fig. 3b). In the experimental
context, this means that even bulk data carries the fingerprint of a heterogeneous environment.

The simple birth-death process in a random environment has been studied in queuing theory. It
corresponds to an M/M/∞ queue, i.e., a queuing system with infinitely many servers and exponential
arrival and serving times. The birth rate is the rate of arrival, while the death rate corresponds to
the service rate. For a Markov environment, the stationary distribution, stationary factorial moments,
and the transient evolution equation of the moments were derived in [50]. We extend the existing
results in queuing theory to more reaction channels than the birth-death channel by considering the
general class of linear reaction systems whose reaction rates are modulated by a discrete state Markov
environment. As our main contribution, we analytically express the stationary mean for this class of
CRNs in terms of the subsystem rate constants, the environment generator matrix and the environment
equilibrium distribution. It also provides an exact alternative, at least on the mean level, to various
approximations that have been used to understand the effect of extrinsic noise on the mean, variance,
power spectrum and distribution. Furthermore, we propose a new method that quantifies the shares
that the environment states contribute to the stationary mean of a subsystem species. In section 8.3,
we analyze the deviation from the Q.SS behavior in a variety of case studies to illustrate non-linear
effects of the random environment.

21



100

200

300

20

40

60

a
b

u
n

d
a
n

c
e

1000

2000

100
0

0

2000

b.a.

time [s]

Figure 3: a. The cartoon shows an example subsystem of a reaction cascade (dashed box) that
is embedded into a cellular environment that includes RNA polymerase activity, ATP availability,
and the concentration of a degradation enzyme. Purple environment components from left to right
symbolize the RNA polymerase that modulates transcription, mitochondria that supply energy in form
of ATP and proteases that actively degrade proteins. More broadly, the embedding of the single cell
in a tissue and communication with neighboring cells via the extracellular matrix (light green) or ion
channels (blue) can contribute stochasticity. The reaction cascade consists of a sensor molecule (green)
and an enzyme (orange) whose expression is mediated by the sensor molecule. b. Trajectories of a
birth-death-process with heterogeneous death rate µ, modeled as a birth-death process on different
timescales. On the fast timescale, the trajectory resembles an unmodulated birth-death process (upper
panel). On the intermediate timescale, triangular excursions appear while µ = 0 (middle panel). On
the slow timescale, the excursions become more pronounced (lower panel). The mean death rate is the
same for all cases.
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3.1.1 Setting of embedded linear CRNs

Linear reaction networks are a class of CRNs whose propensities depend linearly on the state of
the system, i.e., the vector of species copy numbers. Assuming mass-action kinetics, this restriction
corresponds to admitting only first- and zeroth-order reactions. For this class, the first- and second
order moment dynamics are well-known both in the transient and stationary phase [92]. In particular,
the stationary mean of the stochastic system equals the equilibrium concentration of the corresponding
deterministic system [53].
Homogeneous linear CRN
Consider a linear CRN with the vector Xt ∈ Nd of species counts, namely, a CRN where the vector of
propensities for its M reactions is of the form

a : Nd → RM≥0, a(x) = Γx+ γ. (9)

If all reactions follow mass-action kinetics, this implies that only zeroth or first order reactions are
admissible [92]. Then Γx and γ are the vectors with the propensities of the first-order and the zero-
order reactions, respectively. Next, we construct the stoichiometric matrix that stores the change
vectors for each reaction:

N =





| |
ν1 . . . νM
| |



 ∈ Zd×M

via Nij = Pij − Sij and νj = P·j − S·j . This allows to write down the evolution of the mean:

d

dt
E[Xt] = E[

M
∑

j=1

νjaj(Xt)] = Na(E[Xt]) = NΓE[Xt] +Nγ =: b−AE[Xt]. (10)

The matrix A = −NΓ captures the first-order reaction rates, while the vector b = Nγ accounts for
the zero-order reaction rates. Throughout section 3.1, we assume that in the homogeneous case A has
only eigenvalues with positive real part. This property is called Hurwitz-stable, and it guarantees the
ergodicity of the system, in particular the existence of and convergence to the stationary mean [93].
Linear CRN in a random environment
We have just described the homogeneous case. Next, we embed the linear chemical reaction network in
a random environment. We assume that Z is a stationary continuous-time Markov chain (CTMC) on
a discrete state space Z. The environment modulates X by Z-dependent propensities which replace
Eq. (9) by

a(x, z) = Γ(z)x+ γ(z) (11)

with corresponding family of matrices A(z) = −NΓ(z) and vectors b(z) = Nγ(z) as defined in Eq.
(10). We refer to such a linear CRN in a random environment also as a heterogeneous, or modulated,
linear CRN. Throughout section 3.1, we assume that A(z) has only eigenvalues with non-negative real
part for each z ∈ Z. In contrast to the homogeneous case, 0 may be included as an eigenvalue. This
assumption is needed for the proof of proposition 3.5 and for the evaluation in Eq. (29) to prove the
main theorem 3.7. Both proofs are based on the lemma 3.4 below that uses the assumption.

Most prominently, Z can be a CRN on the state space of (environmental) species counts Z ⊆ Nm

[94, 3]. In this case, we call X the subsystem of the joint reaction network (X,Z). The equation that
governs the mean now reads

d

dt
E[Xt] = E[b(Zt)]− E[A(Zt)Xt], (12)

involving non-linear modulation terms E[A(Zt)Xt].
Quasi-steady state reference model

With a Q.SS assumption on the environment, we aim to map a heterogeneous linear CRN to a
homogeneous one. To this end, we replace the subsystem propensities a(x|z) by ā(x) = E[γ(z)] +
E[Γ(z)]x. Even though the Q.SS method has seen applications with much less coarse approximations
in stochastic models, i.e., at the level of the master equation [10], we use the term in the described
way at the mean level. The corresponding first-order rate matrix and zero-order rate vector, see Eq.
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(10), are Ā = −NE[Γ(z)], b̄ = NE[γ(z)]. In the case of Z ⊆ Rm≥0 and if Γ or γ depend linearly on z,
then Ā = −NΓ(z̄) or b̄ = Nγ(z̄), respectively. The mean Eq. (12) reads

d

dt
E[Xt] = b̄− ĀE[Xt] (13)

and converges to the equilibrium
E[XQ.SS

∞ ] = Ā−1b̄. (14)

We use the Q.SS model as a reference model. The deviation of the heterogeneous from the homogeneous
reference model quantifies the effect of the random environment on the subsystem. Quasi-steady state
model reduction is typically justified by the assumption that the environment operates on a faster
timescale than the subsystem. This particular rather coarse Q.SS model cannot be justified as a model
reduction technique, when taking into consideration that more elaborated and superior techniques [10,
11, 95] were developed. However, we justify our Q.SS in the reverse perspective. In the modeling
context, when we build a hierarchy of models, we may start with homogeneous reaction rates, i.e.,
a deterministic constant environment. As we pass to heterogeneous rates, the rate means are kept
constant, e.g., if the environment means were obtained from separate measurements.

Then the heterogeneous case deviates from the homogeneous Q.SS case. Is it necessary to include
a higher-order moment analysis in order to detect the deviation? We demonstrate how the fingerprint
of the heterogeneous rates emerges already in the stationary mean of the subsystem.

As a point of departure, we first portray a base case without deviation at the mean level, i.e., the
stationary mean of the Q.SS model coincides with the heterogeneous stationary mean. Suppose, the
environment modulates the subsystem only via zero-order reactions, i.e. A(z) ≡ Ā = A is independent
of the environment, while b(z) may maintain dependencies. Then Eq. (12) reduces to

d

dt
E[Xt] = E[b(z)]−AE[Xt]

with equilibrium state E[X∞] = A−1E[b(z)] = E[XQ.SS
∞ ]. Only in the second (and higher) order

moments the exact network deviates from the Q.SS model [48]. The additional term which enters in
the variance expressions is commonly interpreted as extrinsic noise, opposed to the intrinsic fluctuations
that are attributed to the subsystem alone [47].

While the stationary mean is not affected by the zero-order modulation, this is much different when
we allow modulation of first-order reactions. The question how the random environment affects the
subsystem even on the mean level guides the sections 3.1.2-3.1.4 and the case study 8.3. Since the
analytic expression for the stationary mean of the heterogeneous system that we provide in Eq. (18),
(21) and (22) below is complex, we mainly address this question numerically in the case studies, section
8.3. However, in the case of a birth-death process with modulated degradation, an analytical answer
can be obtained. We provide it in Eq. (229) below for a two-state environment and more generally in
subsection 8.3.4.

3.1.2 Bye bye linearity bye: exact stationary mean evaluation (ESME)

We analytically express the stationary mean for the class of CRNs introduced in the previous section.
The expressions only depend on the subsystem rate constants and standard characteristics of the
Markov environment that we specify as follows. Denote by Λ(z′, z)z′,z∈Z its generator and by π(z) its
stationary distribution, i.e., Λπ = 0. Introduce the notation Λ0(z) := −Λ(z, z) =

∑

z′ 6=z Λ(z
′, z) for

the total exit rate. Let (τn)n∈N be the jump times of Z. These induce the discrete-time Markov chain
(Wn)n := (Z(τn))n with transition kernel

K(z′, z) =

{

Λ(z′,z)
Λ0(z)

, z′ 6= z

0, z′ = z
.

The process Wn is called embedded discrete-time Markov chain that corresponds to the jump epochs
of Z(t) [96].
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Proposition 3.1. Let W be the embedded chain of a Markov jump process on Z with stationary
distribution π(z) and total exit rates Λ0(z), z ∈ Z. Define π̃(z) := π(z)Λ0(z). Then π̃ satisfies the
stationarity condition for the embedded chain, i.e., is an unnormalized stationary distribution of W .

Proof. We verify the stationarity condition for the embedded chain.

∑

z∈Z
K(z′, z)π̃(z) =

∑

z 6=z′

Λ(z′, z)

Λ0(z)
π(z)Λ(z) = −Λ(z′, z′)π(z′) = Λ0(z

′)π(z′) = π̃(z′).

For the computation of the stationary mean, we use the average values of the process X at the end
of intervals [τn, τn+1] in environmental state z. The computation of these average values is facilitated
by the fact that, conditional on the environment, the subsystem expectation progresses linearly.

Definition 3.2. Define x(n, z) := E[X(τn+1)|Z(τn) = z] and V (t) := E[X(t)|Z[0,t]].

Conditional on the history of Z, the subsystem X is linear and hence V evolves like

d

dt
V (t) = b(Z(τn))−A(Z(τn))V (t), τn < t < τn+1 (15)

and t 7→ V (t) is continuous. We note that the value Z(τn) is the only information in the history of
the environment that governs the evolution (locally in time). For the value V (t) global in time, the
initial jump value V (τn) is needed, which depends in a more complex way on past values of Z. This
is solved interval-wise by

V (t) = e−A(z)(t−t0)V (t0) +

∫ t

t0

e−A(z)(s−t0) ds b(z). (16)

By the update characterization of Markov chains, we can find a sequence (ξn)n≥0 of independent ran-
dom and a deterministic function h, such that ξn is independent of Z(τn) and Z(τn+1) = h(Z(τn), ξn), n ≥
0. Furthermore, the (ξn)n≥0 can be chosen independent of (τn+1 − τn)n≥0. Choosing t0 = τn and
t = τn+1 in Eq. (16), we expressed

(V (τn+1), Z(τn+1)) = g(V (τn), Z(τn), τn+1 − τn, ξn) (17)

for a deterministic update function g. By the update characterization of Markov chains, the inde-
pendent waiting times (τn+1 − τn)n and independence of τn+1 − τn from (V (τn), Z(τn)), we get that
the pair (V (τn), Z(τn))n forms a Markov chain. Furthermore, by the tower property of conditional
expectations, we obtain the following link between x and V

x(n, z) = E[V (τn+1)|Z(τn) = z].

At stationarity, x(n, z) does not depend on n anymore, because (V (τn+1), Z(τn)) has the same distri-
bution as (V (τn), Z(τn−1)). Hence, we can drop n. More formally:

Definition 3.3. Define (Ṽn, Z̃n)n as the stationary version of the Markov chain (V (τn), Z(τn))n and
x̃(n, z) := E[Ṽn+1|Z̃n = z]. Define x(z) := x̃(1, z).

The expressions in Eq. (16) with the evaluation in Eq. (17) suggest calculating the following mean
values.

Lemma 3.4. Let T be exponentially distributed with parameter µ > 0 and suppose that all eigenvalues
of A have non-negative real part. Then µ I+A is invertible and

(i)
E[e−AT ] = µ(µ I+A)−1

(ii)

E[

∫ T

0

e−At dt] = (µ I+A)−1
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(iii)

E[

∫ T

0

∫ t

0

e−As ds dt] = µ−1(µ I+A)−1

Proof of the lemma.

E[e−AT ] =

∫ ∞

0

µe−µte−At dt = µ(µ I+A)−1

E[

∫ T

0

e−At dt] =

∫ ∞

0

µe−µτ
∫ τ

0

e−At dt dτ =

∫ ∞

0

e−At

∫ ∞

t

µe−µτ dτ dt

=

∫ ∞

0

e−Ate−µt ds = (µ I+A)−1

E[

∫ T

0

∫ t

0

e−As ds dt] =

∫ ∞

0

µe−µτ
∫ τ

0

∫ t

0

e−As ds dt dτ

=

∫ ∞

0

e−As

∫ ∞

s

∫ ∞

t

µe−µτ dτ dt ds

=

∫ ∞

0

e−As

∫ ∞

s

e−µt dt ds =

∫ ∞

0

e−Asµ−1e−µs ds

= µ−1(µ I+A)−1

Proposition 3.5. The x(z), defined in definition 3.3, satisfy the linear equations

A(z)x(z) =
∑

z′∈Z
Λ(z, z′)

π(z′)

π(z)
x(z′) + b(z). (18)

Suppose that π(z) satisfies detailed balance, then

A(z)x(z) = (ΛTx)(z) + b(z). (19)

Proof.

x(z) = E[V (τn+1)|Z(τn) = z]

= E[e−A(z)(τn+1−τn)|Z(τn) = z]E[V (τn)|Z(τn) = z]

+ E[

∫ τn+1−τn

0

e−A(z)t dt|Z(τn) = z]b(z)

= Λ0(z)(Λ0(z) I+A(z))
−1

∑

z′ 6=z
P[Wn−1 = z′|Wn = z]x(z′) + (Λ0(z) I

+A(z))−1b(z)

= Λ0(z)(Λ0(z) I+A(z))
−1

∑

z′ 6=z
K(z, z′)

π̃(z′)

π̃(z)
x(z′) + (Λ0(z) I+A(z))

−1b(z)

= Λ0(z)(Λ0(z) I+A(z))
−1

∑

z′ 6=z
Λ(z, z′)

π(z′)

π(z)Λ0(z)
x(z′) + (Λ0(z) I+A(z))

−1b(z)

= (Λ0(z) I+A(z))
−1

∑

z′ 6=z
Λ(z, z′)

π(z′)

π(z)
x(z′) + (Λ0(z) I+A(z))

−1b(z)

Hence,

(Λ0(z) I+A(z))x(z) =
∑

z′ 6=z
Λ(z, z′)

π(z′)

π(z)
x(z′) + b(z),
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or upon adding of Λ(z, z)x(z):

A(z)x(z) =
∑

z′∈Z
Λ(z, z′)

π(z′)

π(z)
x(z′) + b(z).

If detailed balance hold, we substitute

Λ(z, z′)
π(z′)

π(z)
= Λ(z′, z),

yielding
A(z)x(z) =

∑

z′∈Z
ΛT (z, z′)x(z′) + b(z).

The structure of Eq. (18) can be captured graphically. Let us visualize the recursion by a directed
graph on the set of nodes Z. There is an edge from z′ to z, if x(z′) has a non-zero coefficient for
the equation of x(z). Then this graph is precisely the transition graph of the Markov chain Z. In
particular the sparsity of Eq. (18) is dictated by the sparsity of Λ.

Remark 3.6. Define v(z) := π(z)x(z) and denote by v
T = [v(z0)

T , v(z1)
T , . . . ] the concatenated

vector for an enumeration of the environment state. Further define the block matrices

A =







A(z0) 0 · · ·
0 A(z1)
...

. . .






∈ R|Z|d×|Z|d,B =







b(z0) 0 · · ·
0 b(z1)
...

. . .






∈ R|Z|d×|Z|.

Then Eq. (18) can be written as
(A− Λ⊗ Id)v = Bπ (20)

where Id is the (d × d) identity matrix, ⊗ is the Kronecker- or tensor-product and π ∈ R|Z|×1 is the
stationary probability vector. Denote by x

T = [x(z0)
T , x(z1)

T , . . . ] the concatenated vector for an
enumeration of the environment state. Furthermore consider b = Be with e ∈ R|Z|×1 the vector with
ones in all entries. Then Eq. (19) can be written as

(A− ΛT ⊗ Id)x = b.

We computed the average values of the process X at the end of intervals [τn, τn+1] with environ-
mental ’label’ z. With these auxiliary quantities, we obtain the following main result for the stationary
mean.

Theorem 3.7 (ESME). Let X be a linear CRN in a random environment as described in section
3.1.1. With x defined as in definition (3.3) and π the stationary distribution of Z, it holds

E[X∞] =
∑

z∈Z
π(z)x(z) (21)

Proof. See section 3.1.3 below.

Remark 3.8. If we invest equation (20), the resulting equation (21) for ESME is rewritten in matrix-
vector notation

E[X∞] = (eT ⊗ Id)(A− Λ⊗ Id)
−1

Bπ (22)

with ⊗ the Kronecker-product, Id the d× d-identity matrix and e ∈ R|Z|×1 the vector with ones in all
entries. For d = 1, the expression reduces to

eT (A− Λ)−1
Bπ

for diagonal matrices A,B. This is in agreement with the expression obtained in [50, theorem 3.1]. If
π(z) satisfies detailed balance, then it also holds

E[X∞] = (πT ⊗ Id)(A− ΛT ⊗ Id)
−1

b. (23)
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3.1.3 Proof of the ESME expression

In this section, we provide the proof for the main theorem 3.7 (ESME). This equips the reader with
the intuition on quantifying the shares that environmental states contribute to the stationary mean.
We define these in the next section. Note that our proof deviates from those in queuing theory in that
it does not pursue a generating function approach.

By the ergodic theorem, we can move from the ensemble mean to the temporal mean

E[X∞] = lim
N→∞

1

τN

∫ τN

0

X(t) dt. (24)

Next, we partition the time axis at the jump times τn both in the numerator and denominator to
obtain

E[X∞] = lim
N→∞

1
∑N−1
n=0 (τn+1 − τn)

N−1
∑

n=0

∫ τn+1

τn

X(t) dt. (25)

The summands (in both sums) are ordered by their appearance in time. The idea is now to sort
them by the values of Z(τn). This is achieved by multiplying each summand with unity of the form
∑

z∈Z 1(Z(τn) = z) and changing the order of summation. The outer sum is now indexed by z ∈ Z.
The next idea is to normalize the numerator and denominator by N to get empirical averages. As
N →∞, the ergodic theorem allows us to move back to expectations. In the denominator, this reveals
the average waiting time as a mixture of inverse exit rates:

∑

z∈Z
lim
N→∞

1

N

N−1
∑

n=0

1(Z(τn) = z)(τn+1 − τn)

=
∑

z∈Z
P[Z(τn) = z]E[τn+1 − τn|Z(τn) = z] (26)

=
∑

z∈Z
P[Z(τn) = z]Λ0(z)

−1.

In the numerator, the contributions of Z(τn) = z to the sum is handled analogously by moving from
the empirical mean to the expectation

∑

z∈Z
lim
N→∞

1

N

N−1
∑

n=0

1(Z(τn) = z)

∫ τn+1

τn

X(t) dt

=
∑

z∈Z
E

[

1(Z(τn) = z)

∫ τn+1

τn

X(t) dt

]

(27)

=
∑

z∈Z
P[Z(τn) = z]E

[
∫ τn+1

τn

X(t) dt|Z(τn) = z

]

. (28)

The integrals in Eq. (28) evaluate to

E

[
∫ τn+1

τn

X(t) dt|Z(τn) = z

]

=
x(z)

Λ0(z)
, (29)
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in detail, we have

E

[
∫ τn+1

τn

X(t) dt|Z(τn) = z

]

=E[

∫ τn+1

τn

V (t) dt|Z(τn) = z]

=E[

∫ τn+1−τn

0

e−A(z)(t) dt|Z(τn) = z]E[V (τn)|Z(τn) = z]

+ E[

∫ τn+1−τn

0

∫ t

0

e−A(z)s ds dt|Z(τn) = z]b(z)

=(Λ0(z) I+A(z))
−1

∑

z′ 6=z
P[Wn−1 = z′|Wn = z]x(z′)

+ Λ0(z)
−1(Λ0(z) I+A(z))

−1b(z)

=
x(z)

Λ0(z)
.

The consolidating technical calculations read

E[X∞] = lim
N→∞

∫ τN
0

X(t) dt

τN

=
limN→∞

1
N

∑N
n=0

∫ τn+1

τn
X(t) dt

∑

z∈Z 1(Z(τn) = z)

limN→∞
1
N

∑N
n=0(τn+1 − τn)

∑

z∈Z 1(Z(τn) = z)

=

∑

z∈Z limN→∞
1
N

∑N
n=0 1(Z(τn) = z)

∫ τn+1

τn
X(t) dt

∑

z∈Z limN→∞
1
N

∑N
n=0 1(Z(τn) = z)(τn+1 − τn)

=

∑

z∈Z P[Z(τn) = z]E[
∫ τn+1

τn
X(t)|Z(τn) = z]

∑

z∈Z P[Z(τn) = z]E[τn+1 − τn|Z(τn) = z]

=

∑

z∈Z π̃(z)
x(z)
Λ0(z)

∑

z∈Z π̃(z)Λ0(z)−1

=

∑

z∈Z π(z)x(z)
∑

z∈Z π(z)
.

Remark 3.9. The expression (21) has a rather astonishing interpretation that can be understood
as a consequence of the waiting time paradox [97]. Suppose the system operates in stationarity. For
simplicity, we assume X is one-dimensional. If we choose a random time t, then with probability π(z)
we hit an interval τn ≤ t < τn+1 with a ’label’ Z(t) = z. Call this event Iz. The time point adds
E[X(t)|Iz] to the mean if we think of the stationary mean as

∑

z∈Z π(z)
∫∞
0

E[X(s)|Iz] dFz(s), and
Fz(s) is the distribution of s = t − τn when in Z(t) = z. Looking at the structure of expression (21),
the integral evaluates to x(z) = E[X(τn+1)|Iz]. Why is this paradox? We might ad hoc assume that t
lands, on average, at some centered location within the interval [τn, τn+1], in particular it is, on average,
smaller than τn+1. The progression of s 7→ E[X(s)|Iz] = V (s), see Eq. (15), is strictly monotone.
Imagine it is increasing (decreasing). Then t < τn+1 implies E[X(t)|Iz] < (>)E[X(τn+1)|Iz]. By the
monotonicity of the expectation, this implies

∫∞
0

E[X(s)|Iz] dFz(s) < (>)x(z). In contrast, theorem 3.7
informs us that equality holds. This can be understood as a consequence of the waiting time paradox.
A uniformly random time point t satisfies that τn+1 − t is exponentially distributed with parameter
Λ0(z) by the memory-less property of the exponential distribution. However, due to symmetry reasons
in the uniform choice of t, the distance t−τn of the last Z-jump in backwards time is also exponentially
distributed with parameter Λ0(z). To deviate from the main line of thought, the interval that t lands
in has, on average, twice the expected length. This paradox is resolved by the size bias effect: longer
intervals have a higher chance to be hit by the point t. The explicit size-biased distribution of τn+1−τn
is provided in [97]. Returning to the main line of thought, a randomly chosen time point is actually an
average endpoint, regarded from the perspective of a randomly chosen interval. The difference lies in
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the random choice of a time point versus the random choice of an interval. The waiting time paradox
permits the slim formulation of theorem 3.7, once the recursion in proposition 3.5 is solved.

Davis [65, p.36] commented on non-Markovian models, which the process X(t) is an example
of. "For some non-Markovian models, in renewal theory for instance, special techniques have been
developed, but these tend not to extend beyond the very special assumptions on which the models
are based, so that generalizations will require a completely fresh approach." Our derivation resembles
those common in renewal theory with Eq. (26) computing average sojourn times. And indeed, for the
derivation of ESME to work it was crucial to assume the conditionally linear form of the propensities
in Eq. (11). From this assumption we obtained equations (15) that are closed in the conditional first
moment V (t). As a further consequence of the linear form the update function g in Eq. (17) is linear in
V (τn), see Eq. (16), from which we obtain the linear recursions in Eq. (18). If the linear assumption in
Eq. (11) was dropped we would not obtain closed equations as in Eq. (15) to begin with. Depending on
the functional form of the propensities the equation would involve higher order conditional moments,
e.g., for second-order mass-action reactions, or the conditional expectation of rational functions, e.g., for
Hill propensities. The analogue to the variable V (t) would need to summarize all the dependencies and
would be generally of infinite dimension. A conditional moment closure or other projection methods
would generally be required to reduce it to finite dimensions. This may result in non-linear g in Eq. (17)
and in non-linear recursions. One way to obtain a linear equation as in Eq. (15) would be the use
of conditional probabilities P[X(t) = x|Z[0,t]], indexed over all x ∈ Nd, together with an appropriate
closure scheme. We anticipate that this can become computationally prohibitive. However, it might
be feasible for systems that only access finitely many states, e.g., due to conservation relations. For
instance, this is the case if every reaction is a conversion reactions, i.e.,

∑d
i=1 Sij =

∑d
i=1 Pij for all j.

While the functional form was required to be linear in the state x, we emphasize that the dependence
in the environment component z can be of arbitrary functional form.

3.1.4 Quantification of environmental shares

The stationary mean is a composite result of the subsystem existing in different environmental states.
Thus, we aim to quantify the share that each environmental state contributes to the value of the
stationary mean. First, let us fix a subsystem species 1 ≤ i ≤ d and consider its stationary mean
E[Xi,∞]. When we computed the stationary mean following Eq. (25), we sorted the summands by
the environmental states Z(τn) = z. Inspired by Eq. (27), we define the environmental share that
environmental state z contributes to the stationary mean of species i, as

αi(z) := ζ−1
i E

[

1(Z(τn) = z)

∫ τn+1

τn

Xi(t) dt

]

(30)

with the normalization

ζi :=
∑

z∈Z
E

[

1(Z(τn) = z)

∫ τn+1

τn

Xi(t) dt

]

.

We note that, by definition,
∑

z∈Z αi(z) = 1. It holds

αi(z) =
π(z)xi(z)

E[Xi,∞]
, (31)

because E[1(Z(τn) = z)
∫ τn+1

τn
Xi(t) dt] ∝ π(z)xi(z) by Eq. (29) and proposition 3.1.

This novel technique allows to identify whether one environment state dominates the contribution
to the stationary mean. By this tool we pursue our goal to attribute the behavior of the subnetwork
to features of the environment. We apply the method in the case studies, section 8.3 below.

3.2 First- and second-order moments of counting processes in a linear ran-

dom environment

The first- and second-order moment characterization of Hurwitz-stable linear CRNs was provided by
[92] and the equivalence with the linear noise approximation was shown. We extend these for the
non-stable modulated birth process, i.e., doubly stochastic Poisson process, with a linear stationary
modulator. For the derivation we use point process theory [98].
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Theorem 3.10. Let Y (t) be a multivariate counting process for which the FY Zt -intensity and the
external process Z(t) satisfy the standard conditions (C1)-(C4), assuming A in Eq. (C2) is invertible.
Firstly, for all t ≥ 0, we have E[Y (t)] = µt. Secondly, for all t, s ≥ 0

Cov[Y (t), Y (s)] =
[

diag(µ) + C(A−1Σ+ ΣA−T )CT
]

s

+ C
[

ΣA−2T (exp(−AT s)− I) + (exp(−At)− exp(−A(t− s)))A−2Σ
]

CT .

Proof. For the first moment, we have

E[Y (t)] =

∫

µ+ CE[Z(u)] du = µt. (32)

using the zero-mean FY Zt -martingale Y (u)−
∫ t

0
λ(u) du.

Turning towards the covariance, we employ the covariance decomposition, the multivariate analogue
of [98, §3.3, Eq. (3.39)], suppressing the subscript P,

Cov[Y (t), Y (s)] = E[Cov[Y (t), Y (s)|FY Zt ]] + Cov[E[Y (t)|FY Zt ],E[Y (s)|FY Zt ]]

= diag(µ)s+ C

∫ t

0

∫ s

0

E[Z(u)Z(τ)T ] dτ du CT

I1

I2

I3

Figure 4: Integration domain

Now we split the integration domain [0, t]×[0, s] into three parts according to figure 4. Additionally,
we change the direction of integration to the 45◦ diagonal (indicated by dashed lines) on which the
auto/cross-covariance E[Z(u)Z(τ)T ] is constant. The reason for this is the constant time lag h = |τ−u|
and the assumed stationarity of the auto/cross-covariance. We get, using integration by parts,

I1 =

∫ s

0

(s− h)E[Z(u)Z(u+ h)T ] dh

= s

∫ s

0

Σexp(−ATh) dh−
∫ s

0

hΣexp(−ATh) dh = ΣA−T s+ΣA−2T (exp(−AT s)− I)

I2 =

∫ t−s

0

sE[Z(u)Z(u− h)T ] dh = s

∫ t−s

0

exp(−Ah)Σ dh

= s(exp(−A(t− s))− I)A−1Σ,

I3 =

∫ s

0

(s− h)E[Z(u)Z(u− (t− s+ h))T ] dh

= s

∫ s

0

exp(−A(t− s+ h))Σ dh−
∫ s

0

h exp(−A(t− s+ h))Σ dh

= s exp(−A(t− s))A−1Σ+ (exp(−At)− exp(−A(t− s)))A−2Σ.

In total,

Cov[Y (t), Y (s)] = diag(µ)s+ C(I1 + I2 + I3)C
T =

[

diag(µ) + C(A−1Σ+ ΣA−T )CT
]

s

+ C
[

ΣA−2T (exp(−AT s)− I) + (exp(−At)− exp(−A(t− s)))A−2Σ
]

CT .
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Var[Yt ]

τ → ∞

τ → 0

t

Figure 5: Schematic variance evolution of a Markov-modulated Poisson process. The lowest graph il-
lustrates the Poisson base case which coincides with uncorrelated modulator. The larger the correlation
time, the steeper is the asymptotic variance slope.

Relaxing the condition of unidirectional modulation, non-linear reaction systems were embedded in
a linear environment while assuming linear subsystem-environment interaction [99], i.e., zeroth-order
modulation (in both directions). First- and second order moment characterizations were derived, using
the projection operator formalism.

3.3 Fano factor decomposition

For the process class of MMPPs with linear modulator, we have just presented the analytical mean
and variance expressions. Asymptotically (t→∞), the covariance matrix behaves like

lim
t→∞

t−1Cov[Yt] = diag(µ0 + Cµ) + C
(

ΣA−T +A−1Σ
)

CT . (33)

For processes in one dimension, the inverse autocorrelation decay τ = A−1 ∈ R>0 is interpreted as
the correlation time of the process. Figure 5 shows how the variance initially increases quadratically in
time (tangential to the Poisson base case), and enters asymptotic linearity, the slope increasing with
τ . For the extreme case τ → 0, the Poisson base case is recovered, while for τ → ∞, the asymptotic
slope increases unboundedly. This matches the case of static, but random X (τ =∞) with quadratic
(and thus super-linear) asymptotic increase.

The Fano factor, i.e., the ratio of variance and mean, is a noise-quantifying device, suited in the
scenario of counting processes, because it assigns 1 to the base Poisson case. The Fano factor F of any
super-Poissonian random variable is naturally decomposed into F = 1 + ∆F to extract its deviation
∆F from the Poisson base case. For counting process models, we evaluate the asymptotic Fano factor
limt→∞ Var[Y (t)]/E[Y (t)]. See section 8.1.3 for a decomposition of translational noise. And see section
4.4 for additional tools to compute limt→∞ t−1Cov[Yt] for self-exciting counting processes.

3.4 Second-order moments: spectral formula

Several research groups have contributed to our good understanding of linear subsystems that are
modulated in their zeroth-order reactions. Raj et al. [100] calculated the variance for gene expression
models, using spectral theory. Warren et al. [92] proved the equivalence with the linear noise ap-
proximation for the second-order expressions of Hurwitz-stable linear CRNs. Gupta and Khammash
[48] characterized the second-order moments for linear subsystems with zeroth-order modulation by
uncorrelated environment components. Zeroth-order modulation by a linear environment is included
in the theory on linear systems, because the joint subsystem-environment network is linear. We take
a more general approach, providing spectral theory for linear subsystems in a correlated environment,
not necessarily linear. We also relax the Hurwitz condition for the subsystem.

Building on the previous work, we provide the second-order result in the frequency domain for
a linear CRN X in a random weakly stationary environment Z. Let X(t) = [X1(t), . . . , Xd(t)]

T be
the state vector of a linear CRN in a random environment, i.e., there are only first- and zeroth-
order reactions. We make the assumption that the external process only modulates the zeroth-order
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reactions. To formalize this, we assume that the reactions R1, . . . ,Rm are modulated by Z(t), i.e., the
propensity vector is λ(t) = [a1(Z(t)), . . . , am(Z(t))] = a(Z(t)) with

a(z) = µ+ C · z ∈ RM≥0, µ ∈ RM , C ∈ RM×l, (34)

and without loss of generality E[Z(t)] = 0. The reactions Rm+1, . . . ,RM are not modulated. Corre-
spondingly, the stoichiometric matrix decomposes into

N = [N1 N2] , N1 ∈ Zd×m, N2 ∈ Zd×(M−m). (35)

Let Y (t) ∈ Nm count the occurrence of reactions R1, . . . ,Rm and Ỹ (t) ∈ NM−m count the occur-
rence of reactions Rm+1, . . . ,RM . Then the state is obtained as

X(t) = X(0) +N1Y (t) +N2Ỹ (t), (36)

compare Eq. (2). Define the filtrations

FY Zt :=σ({Y (s) : s ≤ t} ∪ {Ỹ (s) : s ≤ t} ∪ {Z(s) : s ≤ t} ∪ {X(0)})
FYt :=σ({Y (s) : s ≤ t} ∪ {Ỹ (s) : s ≤ t} ∪ {X(0)}).

The FYt -intensity of the components Ỹ (t) is set to be

λ̃(t) = ΛX(t−) + b, Λ ∈ R(M−m)×d, b ∈ RM−m. (37)

We assume a general auto/cross-spectrum SZ(ω) ∈ Rm×m,

SZ,jk(ω) =

∫ ∞

−∞
E[∆Zj(t)∆Zk(t− τ)]e−iτω dτ,

where ∆Zj(t) := Zj(t)−EP[Zj(t)]. How is SZ(ω) transferred to SX(ω) under P, when assuming weak
stationarity also for X? The mean evolution equation of EP[X(t)] is

d

dt
EP[X(t)] = ΓEP[X(t)] +Nb̃, Γ = N Λ̃ = N2Λ, Λ̃ =

[

0
Λ

]

∈ RM×d, b̃ =

[

µ
b

]

∈ RM . (38)

Then all eigenvalues of Γ must have non-positive real part, otherwise the stationary mean of X(t)
does not exist. We distinguish the cases in which all eigenvalues of Γ are strictly negative, also called
Hurwitz-stability, and the remaining cases, in which Γ is degenerate. We only consider the following
mild form of degeneracy.

Definition 3.11. We call X(t) mildly degenerate, when

• eigenvalues of Γ with vanishing real part are 0,

• fΓ = 0 implies fN = 0 for all f ∈ Rd and

• in the Jordan canonical form of Γ the Jordan block of the eigenvalue 0 is the zero matrix.

Clearly, finitely many f1, . . . , fr in (ii) can be found that span the left eigenspace of eigenvalue 0.
The f1, . . . , fr correspond to conservation laws on the trajectories of X(t), since Eq. (72) implies

dfiX(t) =fiN1 dY (t) + fiN2 dỸ (t) = fiNA1 dY (t) + fiNA2 dỸ (t) = 0, (39)

A1 =

[

I

0

]

∈ RM×m, A2 =

[

0
I

]

∈ RM×(M−m).

Define the probability measure P̄, under which the intensities of Y (t) are replaced by their averages
µ, i.e., Y (t) is a homogeneous Poisson process. Then under P̄, the reaction system for X(t) has
propensities

λ̄(t) = Λ̃X(t−) + b̃, . (40)

33



The mean evolution equation of EP̄[X(t)] is the same as for EP[X(t)] in Eq. (38). When Γ is Hurwitz-
stable, then the stationary mean is EP̄(X) = EP(X) = −Γ−1Nb̃. Or in the mildly degenerate case,
we introduce the notations P[·|c] and P̄[·|c] for the measures conditional on fiX(0) = ci, i = 1, . . . , r.
Then EP(X|c) solves

ΓEP(X|c) +Nb̃ = 0,

fiEP(X|c) = ci, i = 1, . . . , r.

and so does EP̄(X|c). Denote by CovP̄(X) the stationary covariance matrix of the system X(t) under
P̄ in the Hurwitz-stable case and CovP̄(X|c) the conditional covariance matrix in the degenerate case.
Setting up the covariance evolution equation it can be shown that CovP̄(X) satisfies

ΓCovP̄(X) + CovP̄(X)ΓT +N diag(Λ̃EP̄(X) + b̃)NT = 0. (41)

and analogously for CovP̄(X|c) with EP̄(X) replaced by EP̄(X|c).
Proposition 3.12. Assuming that Z(t) is weakly stochastic with auto/cross-spectrum SZ(ω), while
X(t) is assumed to be weakly stationary with Hurwitz-stable or mildly degenerate Γ and Eq. (35)-(37)
hold. Then the auto/cross-spectrum of X(t) is

SX(ω) = (iω − Γ)−1B(−iω − ΓT )−1 + (iω − Γ)−1N1CSZ(w)C
TNT

1 (−iω − ΓT )−1,

with B = −ΓCovP̄(X)−CovP̄(X)ΓT , where CovP̄(X) is evaluated as
∑

c P̄[X(0) = c]CovP̄(X|c) in the
mildly degenerate case.

Proof. We present the proof for Hurwitz-stable Γ, which implies limt→∞ eΓt = 0. The changes for
mildly degenerate Γ are addressed in the end of the proof. We first expand the term Eq. (75) to
the following expression by using the martingale M(t) = Y (t)−

∫ t

0
CZ(u) + µ du with respect to the

filtration FY Z∞
t := σ({Y (s) : s ≤ t} ∪ {Z(s) : s ≥ 0} ∪ {X(0)}). In contrast to FY Zt , the filtration

FY Z∞
t has knowledge of the entire trajectory of Z, also the future. Then, due to vanishing cross terms,

E

[

∫ t

0

eΓ(t−u)N1(CZ(u) du+ dM(u))

(
∫ s

0

eΓ(s−u)N1(CZ(u) du+ dM(u))

)T
]

=

∫ s

0

eΓ(t−u)N1 diag(µ)N1e
ΓT (s−u) du (42)

+

∫ t

0

∫ s

0

eΓ(t−u)N1CE[Z(u)Z(σ)]C
TNT

1 e
ΓT (s−u) dσ du (43)

using Eq. (4) and Eq. (5). For convenience denote the term Eq. (43) by L(t, s). We add the terms
Eq. (42) and Eq. (76) to yield

∫ s

0

eΓ(t−u)N diag(Λ̃EP̄(X) + b̃)NT eΓ
T (s−u) du.

By Eq. (41) and using the product rule, this term evaluates to

eΓ(t−s)CovP̄(X)− eΓtCovP̄(X)eΓs. (44)

The covariance CovP[X(t), X(s)] is now the sum of the terms in Eq. (74), Eq. (43) and Eq. (44).
Letting t = s and t→∞, we may decompose

CovP[X(0)] = lim
t→∞

eΓtCovP[X(0)]eΓ
T t + lim

t→∞
CovP̄(X)− eΓtCovP̄(X)eΓt + lim

t→∞
L(t, t)

=0 + CovP̄(X) + L̄, L̄ := lim
t→∞

L(t, t). (45)

Inserting this decomposition into Eq. (74), we get

CovP[X(t), X(s)] =eΓtCovP̄(X)eΓ
T s + eΓtL̄eΓ

T s + eΓ(t−s)CovP̄(X)− eΓtCovP̄(X)eΓs + L(t, s)

=eΓ(t−s)CovP̄(X) + (L(t, s) + eΓtL̄eΓ
T s) (46)
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Now, in this decomposition the first term is precisely CovP̄[X(t), X(s)]. We further recognize the
bracket term as the auto/cross-covariance CovP[X̃(t), X̃(s)] of the system

d

dt
X̃(t) = ΓX̃(t) +N1CZ(t),

which is initialized such that it satisfies weak stationarity. By the linearity of the Fourier transform,
the decomposition Eq. (46) transfers to the spectrum as SX(ω) = S1(ω)+S2(ω). The first term yields

S1(ω) = (iω − Γ)−1B(−iω − ΓT )−1

by the corresponding result on linear CRNs, see [92, Appendix 3] and [63, §4.5.6]. For the second
term, we employ the transformation rule for spectra of linearly filtered weakly stationary stochastic
processes in continuous time, i.e., the continuous version of [101, §2.5 Eq. (2.94)] or the multivariate
version of [102, §4.12 Eq. (4-162b)], see, e.g., [103, §7.5.1 Eq. (7.163)]. With the impulse response
function G(τ) = 1[0,∞)(τ)e

ΓτN1C and its Fourier transform

Ĝ(ω) :=

∫ ∞

0

G(τ)e−iωτ dτ = (iω − Γ)−1N1C,

we derive the following expression

S2(ω) = Ĝ(ω)SZ(ω)Ĝ(ω)
T = (iω − Γ)−1N1CSZ(w)C

TNT
1 (−iω − ΓT )−1,

which concludes the derivation.
For mildly degenerate Γ, the proof is the same with P and P̄ replaced by P[·|c] and P̄[·|c], respectively.

But in order to see that Eq. (45) in the adapted form

CovP[X(0)|c] = CovP̄(X|c) + L̄

still holds, we use the following argument that replaces limt→∞ eΓt = 0. Note, that L̄ needs no
conditioning on c since E[Z(u)Z(σ)] is independent of X(0). It is enough to show

viCovP[X(0)|c] = viCovP̄(X|c) + viL̄ (47)

for a basis v1, . . . , vd of Rn. We choose a basis such that Γ is in the Jordan canonical form. Let
v1, . . . , vl correspond to the Jordan block of eigenvalue 0. For i = l + 1, . . . , d we have

lim
t→∞

vie
Γt = vi lim

t→∞
eλtq(Nt),

where λ has negative real part by property (i) in definition 3.11, q is a polynomial and N a nilpotent
matrix, such that the limit is 0. This establishes Eq. (47). Furthermore, by the property (iii) in
definition 3.11, v1, . . . , vl can be written as linear combinations of f1, . . . , fr and we can show the
equality for fi, replaced by vi. With

fie
Γt = fi · I+fiΓt+ · · · = fi · I+0 = fi

we obtain

fiCovP[X(0)|c] = lim
t→∞

fie
ΓtCovP[X(0)|c]eΓT t + fi lim

t→∞
CovP̄(X|c)− fieΓtCovP̄(X|c)eΓ

T t + fiL̄

= lim
t→∞

fiCovP[X(0)|c]eΓT t + fiCovP̄(X|c)− lim
t→∞

fiCovP̄(X|c)eΓ
T t + fiL̄

= lim
t→∞

EP[(fiX(0)− E[fiX(0)])(X(0)− E[X(0))|c]eΓT t + fiCovP̄(X|c)

− lim
t→∞

EP̄[(fiX(t)− E[fiX(t)])(X(t)− E[X(t))|c]eΓT t + fiL̄

= lim
t→∞

EP[(ci − ci)(X(0)− E[X(0))|c]eΓT t + CovP̄(X|c)

− lim
t→∞

EP̄[(ci − ci)(X(t)− E[X(t))|c]eΓT t + fiL̄

=0 + fiCovP̄(X|c)− 0 + fiL̄

The second to last equality holds because of what property (ii) in definition 3.11 implies for the
trajectories, see Eq. (39).
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This proposition generalizes the corresponding result by Gupta and Khammash [48, theorem 2.1],
who assigned the environment components to separate reactions and assumed them to be stochastically
independent. Furthermore, the theorem generalizes the result in queuing theory, which corresponds to
the birth-death with a Hawkes model [104] for the birth events. The expressions that we provide shed
light on the structure of the auto/cross-covariance, e.g., [105, Eq.(64)&(65)].

3.5 Probability evolution

So far, we have described the moments of the subsystem. Now, we present the probability evolution
equation of the subsystem in the form of a cumulant expansion as derived by Bronstein [106]. We
translate it into the language of the conditional expectation with its projection interpretation. Ex-
amples are provided in sections 6.1.1 and 8.3.6. Again, we use the tower property to conditioning on
the environment in a first step and resolve the remaining randomness in a second step to arrive at a
deterministic equation.

3.5.1 Model assumptions

We assume a multiplicative form for the propensities, such that they factorize into a Z dependent
and an X dependent factor. More precisely, we assume that conditionally on the (multidimensional)
environment trajectory, the differential form of the Chapman-Kolmogorov equation reads

∂tp(t, x | Z[0,t]) =

M
∑

j=1

Zj(t)(Λjp)(t, x|Z[0,t]). (48)

Here, Λj can be the jump operator of the chemical master equation, the differential operator of the
Fokker-Planck equation or the drift operator of the Liouville equation. They are constant. Further-
more, we assume stationarity for the environment. In particular, the mean µj := E[Zj(0)] ≡ E[Zj(t)]
is time-independent.

3.5.2 Generalized master equation: Cumulant expansion

We introduce the collection of marginal probability pt := p(t, x)x∈X , which is deterministic. Anal-
ogously, we introduce the notation p̃t for the collection of random variables p(t, x | Z[0,t])x∈X . The
probability pt is obtained from p̃t by the projection operator P : L2

Z → L2
Z with P p̃t := Ep̃t = pt. Here,

L2
Z denotes the space of Hilbert space of square-integrable random functions, that are measurable with

respect to Z[0,t] for some t.

{

f : Ω→ RX : E

[
∫

X
f(x)2 dν(x)

]

< 0, there exists t ≥ 0, s.t. f is Z[0,t] −measurable

}

where ν is the Lebesgue measure or counting measure. In order to apply the Mori-Zwanzig formalism,
we introduce the orthogonal operator Q := I−E, such that Qp̃t = p̃t−pt =: ∆pt denotes the deviation
from the mean. According to the Mori-Zwanzig formalism, we can decompose the evolution equation
(48) to obtain coupled evolution equations for pt = P p̃t and ∆pt = Qp̃t. Given the decomposition
p̃t = P p̃t +Qp̃t and the evolution equation ∂tp̃t = Ltp̃t, we obtain the coupled evolution equations

d

dt
P p̃t = PLtP p̃t + PLtQp̃t

d

dt
Qp̃t = QLtP p̃t +QLtQp̃t.

To this end, we also decompose the environment into Zj(t) = E[Zj(t)] + ∆Zj(t), which induces a
decomposition of the evolution operator

M
∑

j=1

Zj(t)Λj = Λ+∆Λ(Zt),
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using the deterministic operator Λ :=
∑M
j=1 µjΛj and the random operator ∆Λ(Zt) :=

∑M
j=1 ∆Zj(t)Λj .

For each of the terms fi in the re-written Eq. (48)

∂t(pt +∆p) = (Λ +∆Λ(Zt))(pt +∆p) = Λpt + Λ∆p+∆Λ(Zt)pt +∆Λ(Zt)∆p =:

4
∑

i=1

fi,

we check whether we are in one of the following two situations E[fi] = fi or E[fi] = 0. In the first case,
we can attribute it entirely to the evolution of pt, whereas, in the second case, we attribute it entirely
to the evolution of ∆pt. If neither is the case, we receive contributions of the term to the evolution
of both parts. This procedure corresponds to the decomposition Ltfi = PLtfi +QLtfi = PLtfi + 0
and Ltfi = PLtfi +QLfi = 0 +QLtfi in the Mori-Zwanzig formalism for the first and second case,
respectively. Adhering to this procedure, we obtain

∂tpt = Λpt + E[∆Λ(Zt)∆pt] (49)

∂t∆pt = ∆Λ(Zt)pt +
{

Λ + (I−E) ◦∆Λ(Zt)
}

∆pt. (50)

In order to eliminate the deterministic constant part Λ in the evolution equation of ∆pt, we consider
the change of variables, known as interaction picture, ∆p0t := e−tΛ∆pt and obtain

∂t∆p
0
t = e−tΛ∆Λ(Zt)pt + e−tΛ(I−E) ◦∆Λ(Zt)e

tΛ∆p0t . (51)

Its solution is expressed by the time-ordered exponential, i.e., the propagator for time-dependent
generators,

∆p0t =

∫ t

0

←−τ exp

{
∫ t

t′
e−τΛ{(I−E) ◦∆Λ(Zτ )}eτΛ dτ

}

e−t
′Λ∆Λ(Zt′)pt′ dt

′

=

∫ t

0

∞
∑

n=0

∫

∆n[t′,t]

(

n−1
∏

k=0

e−tkΛ{(I−E) ◦∆Λ(Ztk)}etkΛ
)

d(t0, . . . , tn−1)e
−t′Λ∆Λ(Zt′)pt′ dt

′

=

∞
∑

n=0

∫

∆n+1[0,t]

(

n
∏

k=1

e−tkΛ{(I−E) ◦∆Λ(Ztk)}etkΛ
)

e−t0Λ(I−E) ◦∆Λ(Zt0)pt0 d(t0, . . . , tn)

where ∆n+1[s, t] := {(t0, . . . , tn) ∈ [s, t]n+1 : t0 < t1 < · · · < tn} and
∏n
k=1Ak := An ◦ · · · ◦ A1.

We use the notation ∆tk := tk+1 − tk, k = 1, . . . , n with tn+1 := t denoting the lags and the set
[M ] := {1, . . . ,M}. Upon returning to the variable ∆pt,

∆pt =

∞
∑

n=0

∫

∆n+1[0,t]

(

n
∏

k=0

e∆tkΛ{(I−E) ◦∆Λ(Ztk)}
)

pt0 d(t0, . . . , tn),

where ∆tk := tk+1 − tk with tn+1 := t and t0 = t′. When we plug this into Eq. (49), we obtain

∂tpt = Λpt +

∞
∑

n=0

∫

∆n+1[0,t]

E

[

∆Λ(Zt)

(

n
∏

k=0

e∆tkΛ{(I−E) ◦∆Λ(Ztk)}
)]

pt0 d(t0, . . . , tn). (52)

We insert the definition of ∆Λ(Ztk) to obtain for the expectation

∑

ι∈{1,...,M}n+2

∑

φ : {0,...,n}→{0,1}
(−1)|φ|E

[

∆Zι(n+2)(t)

n
∏

k=0

aφ(k) ◦∆Zι(k+1)(tk)

]

Λι(n+2)

n
∏

k=0

e∆tkΛΛι(k+1),

where a0 := I, a1 := E and |φ| :=∑n
k=0 φ(k). Define the term

Cι(t0, . . . , tn, t) :=
∑

φ : {0,...,n}→{0,1}
(−1)|φ|E

[

∆Zι(n+2)(t)

n
∏

k=0

aφ(k) ◦∆Zι(k+1)(tk)

]

,

37



which we refer to as the cumulant term corresponding to ι. We observe, that the contribution of any
φ that has φ(k) = 1 = φ(k+1) for some k = 0, . . . , n−1 vanishes. The same holds true when φ(0) = 1
or φ(n) = 1. Defining the set

Φ := {φ : {0, . . . , n} → {0, 1}, φ(0) = 0 = φ(n), φ(k)φ(k + 1) = 0 for all k = 1, . . . , n− 2},

we have

Cι(t0, . . . , tn, t) =
∑

φ∈Φ

(−1)|φ|E
[

∆Zι(n+1)(t)

n
∏

k=0

aφ(k) ◦∆Zι(k)(tk)
]

.

If we define the higher-order autocovariance function

γι(t0, . . . , tn, t) := E

[

n+1
∏

k=0

∆Zι(k)

]

,

then the following recursion holds for the cumulants

Cι(t0, . . . , tn, t) = γι(t0, . . . , tn, t)−
n−1
∑

i=1

γι−(t0, t1, . . . , ti)Cι+(ti+1, . . . , tn, t),

where ι− = ι|{0,...,i} and ι+ = ι|{i+1,...,n} the restrictions of ι to the smaller sets {0, . . . , i} and
{i+ 1, . . . , n}, respectively.

Using the cumulant terms, the Eq. (52) can be written as

∂tpt = Λpt +

∞
∑

n=0

∫ t

0

∑

ι∈[M ]n+2

∫

∆n[t′,t]

Cι(t′, t1, . . . , tn, t)Λι(n+2)

n
∏

k=0

e∆tkΛΛι(k+1) d(t1, . . . , tn)pt′ dt
′

(53)

= Λpt +

∞
∑

n=1

∫ t

0

Kn(t′, t)pt′ dt′, (54)

for the kernels

Kn+1(t
′, t) :=

∑

ι∈{1,...,M}n+2

∫

∆n[t′,t]

Cι(t′, t1, . . . , tn, t)Λι(n+1)

n
∏

k=0

e∆tkΛΛι(k) d(t1, . . . , tn).

We refer to Eq. (53) as the cumulant expansion of the generalized master equation for a CRN in a
random environment. Since we only used that conditionally linear structure of Eq. (48), the same
derivation holds for a conditionally linear mean equation

d

dt
E[Xt | Z[0,t]] =

M
∑

j=1

Zj(t)AjE[Xt | Z[0,t]]. (55)

Remark 3.13. The structure of the (53) can be interpreted as follows. First, we pretend that the
environment marginals Z(t1), . . . , Z(tn) at any set of (distinct) time points t1, . . . , tn ∈ [0, t] are stochas-
tically independent of each other. This provides the first term, which is the averaged CME dynamics.
However, pretending this, we made an error, because there is a correlation between time point marginals
in the environment. We first correct this error, by pretending, that the current time point marginal
is correlated with exactly one other time point marginal, where we allow the second time point to
vary across the interval [0, t). For any third time point marginal, we pretend that independence holds.
This correction gives us the first cumulant term. Again, we make an error, when we pretend this. We
mitigate the error by correcting for the contribution we neglected, when a third time-point marginal
is correlated with the other two, which provides the second cumulant term, and so on. We illustrate
this in more detail at the end of example 8.3.6.
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4 Conditioning on the subnetwork

In the previous section we computed E[h(Xt)] by first eliminating the randomness in Xt, while condi-
tioning on Zt. We now take the path via the conditional expectation with respect to Xt. Unlike the
procedure in the previous E[h(Xt)|F ], where σ(Xt) ⊆ F , would only result in E[h(Xt)|F ] = h(Xt),
which does not eliminate randomness. Instead, the trick is that we use the conditional expectation
E[·|FXt ] for FXt = σ({Xs : s ≤ t}) on the intensities. We can do so because of the change of filtration
theorem by Brémaud, theorem 2.5. In section 4.3.2, we also use the conditional expectation E[·|FXt ]
on the right-hand side of the moment dynamics. For instance, if the propensity of a first-order reaction
Xj → ∅ is Zt, this involves moments E[E[XjZt|FXt ]] on the right-hand side of the moment dynamics.

To derive the process equation, previous works established an intimate link between marginal
descriptions and stochastic filtering [107, 108, 77, 78]. The property of self-excitation, that is charac-
teristic for the marginal description, emerges here from projecting high-dimensional systems to low-
dimensional ones, offering a mechanistic rather than phenomenological perspective on self-excitation.
The term stochastic filtering is a synonym for dynamic Bayesian estimation of the random environment
components from the observed part of the network [59]. It has been shown that the posterior mean (or
filter mean) of the random propensity conditional on the full history of observed reactions is the central
quantity that is needed for the marginal description. However, computing it is often impossible. For
this reason, we look for approximations of the filter mean. Approximate filters are typically obtained
from projections, variational methods, moments closures and assumed density approaches [3, 81, 78].

Note, that, by Eq. (2), aj(X(t−), Z(t−)) is indeed FY Zt -measurable. In short, we write

Rj : ∅ aj(X(t),Z(t))−−−−−−−−−−−−→ Yj , (56)

abusing the notation of birth processes for the reaction counters Y1, . . . , YM . By Brémaud’s theorem
on the change of filtration [59, §II, theorem T14], we obtain that the predictable FYt -intensity is
λ̂(t) = E[λ(t)|FYt ], provided that a left-continuous version of the conditional expectation exists. This
is always the case in our study, as we will see. We then write

Rj : ∅ E[aj(X(t),Z(t))|FY
t ]−−−−−−−−−−−−−→ Yj . (57)

Note that the great advantage of conditioning on Xt is the process level description that we obtain.
On the contrary, when conditioning on Zt, we were only able to target deterministic quantities, i.e.,
the probability distribution and the moments.

4.1 Process level

Taking the route via the intensity λ̂t = E[aj(X(t), Z(t))|FYt ] for the changed filtration FYt , let us
first observe that, in general, the FYt -intensity is some measurable function of the trajectory Y[0,t] :=
{Y (t)}0≤s≤t and X(0). As a first example, we consider the Hawkes counting process model in one
dimension with exponential kernel. Its positive parameters are the base level µ, the jump height β and
the decay α. In differential form, the FYt -intensity λ̂(t) = Ẑ(t−) reads

dẐ(t) = −α(Ẑ(t)− µ0) dt+ β dY (t). (58)

When a jump of Y occurs at time t, then dY (t) = 1 and hence Ẑ(t) increases by β. In periods of no
jumps, the intensity evolves according to the ODE specified in the first part of the evolution equation.
In integral form it reads

Ẑ(t) = µ0 +

∫ t

0

e−α(t−u)β dY (u). (59)

Under the assumption α−1β < 1, there exists a stationary version of Y (t) [109].
In multiple dimensions, the Hawkes process with exponential kernel is more delicate. Hawkes [104]

introduced the mutually exciting model for which the FYt -intensity λ̂(t) = Ẑ(t−) generalizes Eq. (59)
and reads in coordinate integral form

Ẑi(t) = µi +

d
∑

k=1

∫ t

0

βike
−αik(t−s) dYk(s). (60)
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When a jump of Yk occurs at time t, then dYk(t) = 1 and hence Ẑi(t) increases by βik. In particular,
a jump of a component can influence the intensity of another component, which is usually referred to
as mutually exciting. However, this is not the model that we considered in this study. We, in contrast
to Eq. (60), read Eq. (58) or Eq. (59) as matrix equations. Accordingly, the matrix analogue to Eq.
(58) in coordinate form reads

dẐi(t) = −
d
∑

k=1

αik(Ẑk(t)− µk) dt+
d
∑

k=1

βik dYk(t). (61)

and the matrix analogue to Eq. (59) reads

Ẑ(t) = µ0 +

∫ t

0

e−A(t−u)B dY (u), A = (αik)1≤i,k≤M , B = (βik)1≤i,k≤M , µ0 ∈ RM>0. (62)

Eqs. (61) and (62) are equivalent, but differ from Eq. (60), because in Eq. (62) the exponential
operation is a matrix exponential, while in Eq. (60) the exponential is scalar, applied entry-wise to
the matrix. Nonetheless, we call Eqs. (61) and (62) also Hawkes model. Eq. (61) generally requires
taking the positive part of the intensity components λ̂(t) = max(0, Ẑ(t−)), except in special cases
where positivity can be guaranteed. This makes Y (t) a non-linear Hawkes model. The condition for
the existence of a stationary version translates into α being invertible and α−1β having a spectral
radius strictly less than 1. Given the process description Eq. (57), we turn now to the state estimation
of Z(t), or more generally λ̂(t), from observation Y (t). This requires the estimation of the posterior
mean, which is a Bayesian estimation problem. Filtering theory is concerned with the solution of the
estimation problem in the time-evolving setting. Assuming that Z(t) is a Markov process, let the prior
probability pt(z) evolve according to the operator A, i.e.,

d

dt
pt(z) = (Apt)(z),

which can be the master equation, if Z(t) is itself a continuous-time Markov chain, or the Fokker-Planck
equation, if Z(t) is a diffusion process given by a stochastic differential equation. Then, extending
proposition 2.10 to multivariate counting processes, the Snyder filter specifies the evolution of λ̂(t)
[64]. It can be formulated in terms of the posterior probabilities Πt(z) := P[Z(t) = z|FYt ] for Z(t) on
a discrete state space or Πt(z) the respective posterior probability density on a continuous state space.
Extending [64, Eq. (7.138), p.392 & Eq. (7.151), p.396], the posterior probabilities evolve as

dΠt(z) = (AΠt)(z) dt+
M
∑

j=1

1(λ̂j(t) > 0)
(aj(X(t−), z)− λ̂j(t))Πt−(z)

λ̂j(t)
{dYj(t)− λ̂j(t) dt}

and the posterior moment is λ̂j(t) = EΠt−
[aj(X(t−), ξ)], where we mean that ξ is distributed according

to Πt−. The term after the prior dynamics is called the innovation term. It is the FYt -martingale incre-
ment scaled by a predictable factor, the innovation gain. This structure ensures that the expectation
of the posterior probability E[Πt] is governed by the prior dynamics, i.e.,

d

dt
E[Πt] = (AE[Πt])(z).

Assume additionally, that (C3) holds, and denote by F and G the prior dynamics of the mean
and the covariance of Z(t), for which we assume they are functions of the first, second and third prior
moments

d

dt
E[Z(t)] = F (E[Z(t)],Cov[Z(t)])

d

dt
Cov[Z(t)] = G(E[Z(t)],Cov[Z(t)], (Φijk(t))1≤i,j,k≤l) (63)

Φijk(t) := E[δZi(t)δZj(t)δZk(t)], δZl(t) := Zl(t)− E[Zl(t)].
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Then the evolution of the posterior mean Θ(t) := E[Z(t)|FYt ] can be expressed with the auxiliary
processes, which are the second- and third-order posterior moments

Vik(t) := E[∆Zi(t)∆Zk(t)|FYt ]

Sikl(t) := E[∆Zi(t)∆Zk(t)∆Zl(t)|FYt ]

∆Zj(t) := Zj(t)− E[Zj(t)|FYt ].

It reads

dΘ(t) =F (Θ(t), V (t)) dt+ V (t−)CT (X(t−)) diag{κ(λ̂(t))}{dY (t)− λ̂(t) dt}
dVik(t) =Gik(Θ(t), V (t), (Slmn(t))1≤l,m,n≤l) dt (64)

+

M
∑

j=1

Sik∗C
T
∗j(X(t−))κj(λ̂(t)){dYj(t)− λ̂j(t) dt}

−
(

V (t−)CT (X(t−)) diag2{κ(λ̂(t))} diag{dY (t)}C(X(t−))V (t−)
)

ik

where κj(λ) := 1(λj > 0)λ−1
j and λ̂(t) = µ(X(t−)) + C(X(t−)) ·Θ(t−).

The posterior mean Θ(t) is also called the state estimate of Z(t). Indeed, it minimizes the quadratic
criterion among all FYt -measurable random variables by the property of the conditional expectation.
Note that other criteria are also minimized by the state estimate, famously the natural loss criterion
[85]. For more details on filtering of point processes, see [59, §IV] and for the more explicit setting of
CRNs, we refer the reader to [3] and [78]. In general, the posterior moment equations are not closed
and the evolution of the posterior probabilities can become prohibitively high-dimensional.

4.1.1 Approximate filters

Propagating the posterior distribution or equivalently the conditional moments can pose a serious
challenge to achieving the goal of fast marginal simulation [3] due to state space explosion and un-
closed conditional moment equations. This problem is addressed by approximate filters obtained from
conditional moment closure, assumed density filtering, variational inference, entropic matching or pro-
jection [81, 78, 64]. We call the marginal simulation with an approximate filter approximate marginal
simulation.

The construction of approximate filters for the tasks has been guided by the principle of moment
closure and projection onto a tractable process class. Zechner used assumed density filtering with
the Poisson and the Gamma assumption on the filtering distribution [81]. Eden and Brown as well as
Harel and Opper used a Gaussian assumption [58, 110] for the state estimation from neural spike trains.
Bronstein derived the method of entropic matching, which projects the filtering distribution along the
Kullback-Leibler divergence time-point wise [78]. It was demonstrated for the product-Bernoulli and
the product-Poisson ansatz. Alternatively, the minimization of the Kullback-Leibler divergence for
the path likelihoods was recently proposed as a guiding principle for the model reduction [80]. This
principle had been successfully applied for variational inference before [111].

4.1.2 Optimal linear filtering

While a declared goal of marginal simulation is simulation efficiency, this is only a secondary goal here.
Rather, we concentrate on

(a) marginal simulation under limited knowledge about the environment and

(b) attribution of effects to properties of the environment.

For (a) we adhere to the experimental setting, in which only the first- and second-order moments
may be estimated robustly. For (b) we are guided by the question, what effects persist under a
linearization, and can thus be attributed to a linearized version of the environment. In the situation
of (a) we introduce an approximate intensity of the form λ̂OL(t) = a(X(t−), Ẑ(t−)) with a suboptimal
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FYt -measurable estimate Ẑ(t) of Z(t). This approximate intensity also serves as a baseline to capture
(b) in the case studies 8.1.1, 8.2.2 and 8.4.

In the previous section, we have discussed the problem of unclosed posterior moment equations.
Here, we consider a particular projection method to obtain an approximate filter, the optimal linear
filter Ẑ(t). It was originally introduced for state estimation of the external signal Z(t) that modulates
a doubly stochastic Poisson process [64, Eq. (7.238), p.429]. By optimal it is meant that it minimizes
the quadratic criterion, i.e., it is the solution

Ẑ(t) = argmin
Z̃(t)

E[(Z̃(t)− Z(t))2],

among all estimators

Z̃(t) = c(t) +

∫ t

0

h(t, u) dY (u),

i.e., affine-linear in the trajectory Y[0,t]. The doubly stochastic Poisson process, for which stochastic
filtering was originally considered by Snyder and Brémaud, precisely corresponds to a process X
with zeroth-order modulation by Z in the language of CRNs. In case of higher order modulation
we generalize the optimal linear estimator which results in c(t) and h(t, u) with a dependency on
the history X[0,t). Assuming the standard conditions (C1)-(C3), the optimal c(t) and h(t, u) can be
conveniently formulated in differential vector form with an auxiliary Riccati equation [64, Eq. (7.238),
p.429]. By shifting Z(t) to Z(t) − E[Z(t)], we can assume, without loss of generality, E[Z(t)] ≡ 0 to
obtain

dẐ(t) =−AẐ(t) dt+B(t)CT (X(t−)) diag{κ(µ)}{ dY (t)− a(X(t−), Ẑ(t−)) dt} (65)

d

dt
B(t) =AΣ+ ΣAT −AB(t)−B(t)AT −B(t)CT (X(t)) diag{κ(µ)}C(X(t))B(t), (66)

initialized in Ẑ(0) = 0, B(0) = Σ. In the examples, 8.1.7, 8.2.5, 8.3.8 and 8.4, these equations are
applied. We suppressed the dependency µ = µ(X(t−)) for readability. Note, that B(t) is deterministic
under (C4), i.e., in the case of zeroth-order modulation. The formulation has been proposed by Snyder
[64, p.370-371] and resembles the Kalman-Bucy filter. It was motivated by recognizing the optimal
h(t, u) from the theory of Gaussian channel. In detail, the optimal linear estimator, which is to say the
optimal c(t) and h(t, u), only depends on the first- and second-order information of the modulating
process. Grandell [112] specified this dependence by an integral equation for h(t, u) and choosing c(t)
such that the estimator is unbiased. However, the very same integral equation appears in filtering with
additive noise observations instead of point process observations [113]. Hence, the optimal h(t, u) can
be "borrowed" from the Kalman-Bucy filter when assuming a mock Ornstein-Uhlenbeck process with
mean 0, satisfying (C1)-(C2) and the observation model

R(t) =

∫ t

0

λ(s) ds+
√
µW (t)

for λ(t) satisfying (C3). This is the continuous-time additive Gaussian white noise channel r(t) =
λ(t) +

√
µN(t) with signal-to-noise ratio µ−1. The Kalman-Bucy filter specifies the kernel h(t, u)

in a differential form, which translates precisely to the equations Eq. (65)-(66) in the case of point
process observations, see [114], e.g., for application to neural spike trains. To summarize, in the case of
approximate state estimation, Y (t) in these equations is doubly stochastic with the (FY Zt ,P)-intensity
λ(t).

Building on this result, we repurpose the existing Eqs. (65) - (66) for an approximate marginal
description in the following, which we regard as the core idea of this section. Namely, we define the
probability measure Q, such that Y (t) is self-exciting with (FYt ,Q)-intensity

λ̂OL
j (t) :=

{

aj(X(t−), Ẑ(t−)), aj(X(t−), Ẑ(t−)) > 0

0, else.
(67)

Here, X(t) is as in Eq. (2) and Ẑ(t) is as in Eq. (65). The idea is that, firstly, sampling Y (t) from
Q only requires the first- and second-order statistics of the environment. In experiments, these might
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be the quantities that can be robustly estimated. Secondly, the comparison between P and Q allows
a classification of stochastic properties as resulting from the linear dynamic evolution of the intensity.
Finally, when the environment is high-dimensional, continuous or requiring the simulation of many
reaction events, sampling from Q can be simpler than from P, while P and Q are, hopefully, sufficiently
close. Since Q only takes into account the first- and second-order moments of Z(t), we anticipate that
statements about P and Q being close are confined to the first- and second-order moments of Y (t)
as well. We provide structural results for the first- and second-order comparison, section 4.1.3, and
empirical findings in sections 8.1, 8.2 and 8.4. The empirical findings focus on the deviation of P and
Q. They reveal what stochastic properties of Y (t) must be classified as consequences of the non-linear
dynamic evolution of the intensity and which persist under the linearized dynamic evolution of the
intensity.

On a technical note, we chose here to compare two counting processes by introducing one measure
for each. The reader might be more familiar with introducing a second process, denoting it by Y OL(t)
say, and comparing Y (t) and Y OL(t) under P. Those two perspectives are equivalent. After defining
Q we emphasize the difference between approximate state estimation and approximate marginal simu-
lation. State estimation considers Ẑ(z) in Eq. (65) under P, while marginal simulation considers Ẑ(t)
under Q.

Before we present the results, we assume (C4) to establish a link to the (multivariate) Hawkes
process with exponential kernel, introduced in the subsection 4.1. At stationarity under Q, Eq. (66) has
equilibrated and the time-dependent B(t) can be replaced by the constant asymptotic value B̄ = B(∞).
Then in integral form

Z̃(t) =

∫ t

0

e−(A+B̄CTDC)(t−u)B̄CTD dY (u)−
∫ t

0

e−(A+B̄CTDC)(t−u)B̄CTDµ du,

with D := diag−1(µ). In case (A + B̄CTDC) is invertible, the second term equilibrates to −(A +
B̄CTDC)−1B̄CTDµ. Let ẐH(t) be the linear filter with both B(t) and the second term equilibrated,
then λ̂H(t) = µ+ CẐH(t) is the (FYt ,QH)-intensity of a (multivariate) Hawkes process Y (t) with

λ̂H(t) = λ̄+

∫ t

0

Ce−(A+B̄CTDC)(t−u)B̄CTD dY (u) (68)

where (using the Sherman–Morrison–Woodbury formula)

λ̄ = (I−C(A+ B̄CTDC)−1B̄CTD)µ = (I−ΓD + Γ(diag(µ) + Γ)−1ΓD)µ

= (I+ΓD)−1µ, Γ = CA−1B̄CT .

The equilibrated scenario can be made rigorous by assuming that the process is defined on the entire
real axis and is at stationarity for all time t, provided that C(A+B̄CTDC)−1B̄CTD = Γ(diag(µ)+Γ)−1

has a spectral radius strictly less than 1. In this case, the lower integral bound in Eq. (68) is replaced
by −∞. We refer the reader to the examples in sections 8.1.1, 8.1.7, 8.2 and 8.2.3, where the usage of
Eq. (68) is illustrated.

In the multivariate case, the main difference to the classical Hawkes process is the use of a matrix
exponential instead of a weighted sum of one-dimensional exponential functions. The drawback of the
matrix exponential is that we cannot guarantee a priori that the intensity remains positive. However,
for the special case of M = 1 we derive a sufficient condition for a positive intensity at all times, see
proposition 6.4 below. Overall, in the considered case studies, we did not encounter negative intensities.
We now proceed with the time-dependent specification of Y (t) with the (FYt ,Q)-intensity as defined
in Eq. (65)-(67), which we call the tilted version of the Hawkes process.

4.1.3 Structural results for the approximate linear marginal simulation

We have defined two different probability measures P and Q. The measure P models the CRN in a
random environment as a doubly stochastic process by means of an external process. The measure
Q provides an approximate marginal description of the same CRN. We prove that the measure Q

preserves the second-order properties in case the external process only modulates the zeroth-order
reactions.
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For the formulation of the results, we assume that

λ̂OL
j (t) > 0 Q-a.s. for all j = 1, . . . ,M, t ≥ 0. (C5)

This condition implies that λ̂OL
j (t) = aj(X(t−), Ẑ(t−)) Q-almost surely for all j = 1, . . . ,M and t ≥ 0.

For convenience, we assume again E[Z(t)] ≡ 0 for the external process.

Theorem 4.1. Let Y (t) be a multivariate counting process for which the (FY Zt ,P)-intensity and the
external process Z(t) satisfy the standard conditions (C1)-(C4), assuming A in Eq. (C2) is invertible.
Furthermore, let the (FYt ,Q)-intensity be given by Eq. (65)-(67) and (C4)-(C5). Firstly, for all t ≥ 0,
we have EP[Y (t)] = EQ[Y (t)] = µt. Secondly, for all t, s ≥ 0

CovP[Y (t), Y (s)] = CovQ[Y (t), Y (s)]

and, with ∗ indicating P or Q, the expression is given in theorem 3.10.

Proof. For the first moment, we have, using (C4) and (C5) in Eq. (65), that

EQ[Ẑ(t)] = EQ

[
∫

exp(−A(t− u))B(u)CT diag{µ−1}
{

dY (u)− λ̂OL
j (u) du

}

]

= 0

because a deterministic function is integrated with respect to the zero-mean (FYt ,Q)-martingale
M(t) = Y (u)−

∫ t

0
λ̂OL(u) du. The conditions (C3)-(C5) imply

Y (t) =M(t) +

∫ t

0

λ̂OL(u) du =M(t) +

∫ t

0

µ+ CẐ(u) du, (69)

from which we obtain

EQ[Y (t)] =

∫ t

0

µ+ CEQ[Ẑ(u)] du = µt = EP[Y (t)]. (70)

Turning towards the covariance, the left-hand side was derived in theorem 3.10. We compute the
right-hand side with martingale techniques, again dropping the subscript Q and see that the expressions
agree. The martingale form of the optimal linear filter is

Ẑ(t) =

∫ t

0

exp(−A(t− u))B(u)CT diag−1(µ) dM(u)

First note that the cumulative centered intensity reads

∫ t

0

Ẑ(u) du =

∫ t

0

∫ s

0

exp(−A(s− u))B(u)CT diag−1(µ) dM(u) ds

=

∫ t

0

(
∫ t

u

exp(−A(s− u)) ds
)

B(u)CT diag−1(µ) dM(u)

= A−1

∫ t

0

(I− exp(−A(t− u)))B(u)CT diag−1(µ) dM(u). (71)
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We insert Eq. (69)-(71) into the right-hand side as follows,

E[(Y (t)− E[Y (t)])(Y (s)− E[Y (s)])T ]

=E

[(

M(t) + C

∫ t

0

Ẑ(u) du

)(

M(s)T +

∫ s

0

Ẑ(u)T du CT
)]

=E

[(
∫ t

0

I+CA−1(I− exp(−A(t− u)))B(u)CT diag−1(µ) dM(u)

)

×
(
∫ s

0

I+CA−1(I− exp(−A(s− u)))B(u)CT diag−1(µ) dM(u)

)T
]

=

∫ s

0

{

I+CA−1(I− exp(−A(t− u)))B(u)CT diag−1(µ)
}

diag(µ)×
{

diag−1(µ)CB(u)(I− exp(−AT (s− u)))A−TCT + I
}

du

=

∫ s

0

I diag(µ) I du

+ C

∫ s

0

A−1(I− exp(−A(t− u)))B(u) +B(u)(I− exp(−AT (s− u)))A−T duCT

+ CA−1

∫ s

0

(I− exp(−A(t− u)))B(u)CT diag−1(µ)CB(u)×

(I− exp(−AT (s− u))) duA−TCT =: diag(µ)s+ J1 + J2.

We used Eq. (5) in the third equality and continue with the main trick of the proof, namely
recognizing the ODE Eq. (66) in the integrand,

J2 =CA−1

∫ s

0

(I− exp(−A(t− u)))
{

AΣ+ ΣAT −AB(u)−B(u)AT − d

du
B(u)

}

×

(I− exp(−AT (s− u))) duA−TCT

=− J1 + CA−1

{
∫ s

0

d

du

[

(I− exp(−A(t− u)))(Σ−B(u))(I− exp(−AT (s− u)))
]

+ (AΣ+ ΣAT )−AΣexp(−AT (s− u))− exp(−A(t− u))ΣAT du
}

A−TCT

=− J1 + C(A−1Σ+ ΣA−T )CT s

+ C
{

Σ(exp(−AT s)− I)A−2T +A−2(exp(−At)− exp(−A(t− s)))Σ
}

CT

We next generalize the result to linear reaction networks in random environment, where the envi-
ronment modulates the zeroth-order reactions only. To this end, we first extend the theorem 4.1 in
the following corollary.

Corollary 4.2. Let [0, t], u 7→ f(u) and [0, s], u 7→ g(u) be continuous and deterministic functions,
then

CovP

[
∫ t

0

f(u) dY (u),

∫ s

0

g(u) dY (u)

]

= CovQ

[
∫ t

0

f(u) dY (u),

∫ s

0

g(u) dY (u)

]

Proof. Define the (matrix-valued and signed) measure CP on R2
≥0 by

CP([t1, t2]× [s1, s2]) = CovP[Y (t2)− Y (t1), Y (s2)− Y (s1)]

and analogously CQ. Then from theorem 4.1 it follows by expanding the term on the right-hand side
that CP = CQ on the rectangles [t1, t2] × [s1, s2]. Since those form a Π-system generating the Borel-
sigma-algebra on R2

≥0, the measures CP and CQ agree on R2
≥0. Then the claimed equality holds because

the terms can be expressed as
∫

1[0,t]f(τ)1[0,s]g(σ)
T dC∗(τ, σ),
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with the ∗ indicating P or Q, respectively.

Remark 4.3. The measure C∗ employed in the proof goes by the name of covariance measure in
the literature, see [115, §9.5, Eq. (9.5.12)] for a principled introduction. The covariance density and
complete covariance density for point processes had been introduced already at an informal basis [116]
before Brémaud’s rigorous definition of point processes with stochastic intensity. The measure C∗
has the covariance density (with respect to the Lebesgue-measure) CeA(t−s)ΣCT , and the complete
covariance density CeA(t−s)ΣCT+δ(t−s)µ. The theorem 4.1 and corollary 4.2 can thus be summarized
by the observation that the doubly stochastic (multivariate) Poisson process and the (multivariate)
Hawkes process have the same complete covariance density. This link was already stated in the original
paper by Hawkes [104] for the univariate and the diagonalizable (orthogonal) multivariate case with
exponential kernel and constant jumps at stationarity. To the best of our knowledge, the tilted version
with time-dependent jumps that corresponds to the stationary doubly stochastic case, but starting at
t = 0, is new. This offers a solution to the problem of simulating a stationary Hawkes process even
when the past is not available to avoid the transient burn-in phase.

Let now X(t) = [X1(t), . . . , Xd(t)]
T be as in section 3.4, Eq. (34)-(37). We consider two probability

measures P and Q for the process X(t). Let Z(t) be an external process satisfying (C1) and (C2) with
respect to P. Define the filtrations

FY Zt :=σ({Y (s) : s ≤ t} ∪ {Ỹ (s) : s ≤ t} ∪ {Z(s) : s ≤ t} ∪ {X(0)})
FYt :=σ({Y (s) : s ≤ t} ∪ {Ỹ (s) : s ≤ t} ∪ {X(0)}).

The (FY Zt ,P)-intensity of the components Y (t) of the joint counting process [Y (t)T , Ỹ (t)T ]T are as-
sumed as in (C3) and (C4). The (FYt ,Q)-intensity of the components Y (t) are assumed as in Eq.
(65)-(67) with (C4). Furthermore, assume (C5) holds for all j = 1, . . . ,m Q-almost surely. We recall
that the FYt -intensity of the components Ỹ (t) is set to be

λ̃(t) = ΛX(t−) + b, Λ ∈ R(M−m)×d, b ∈ RM−m,

which is assumed to hold for both measures P and Q.

Theorem 4.4. With the probability measures P and Q as just defined and assuming X(0) has the
same distribution for P and Q, it holds that

CovP[X(t), X(s)] = CovQ[X(t), X(s)].

Proof. Without loss of generality, we assume that EP[Z(t)] ≡ 0, such that EP[dY (t)] = EQ[dY (t)] = µ.
By E∗, we indicate that either P or Q makes the statement correct. We decompose the differential
form of Eq. (36) via the martingale increment dM̃(t) = dỸ (t)− λ̃(t) dt

dX(t) =N1 dY (t) +N2 dỸ (t) = N1 dY (t) +N2ΛX(t) dt+N2b dt+N2 dM̃(t) (72)

In the remainder of the proof, for technical reasons, we consider Eq. (72) with the FY∞
t -martingale

M̃ , where
FY∞
t := σ({Y (s) : s ≥ 0} ∪ {Ỹ (s) : s ≤ t} ∪ {X(0)}).

The reader can think of this filtration as corresponding to first sampling the entire trajectory Y (t), t ≥
0, and conditional on it sampling Ỹ (t). Since FY∞

t ⊇ FYt , the FY∞
t -intensity is also λ̃(t). From Eq.

(72), in integral form it holds with Γ := N2Λ

X(t) = eΓtX(0) +

∫ t

0

eΓ(t−u)N1 dY (u) +

∫ t

0

eΓ(t−u)N2(b du+ dM̃(u))

from which we conclude

EP[X(t)] = eΓtE∗[X(0)] +

∫ t

0

eΓ(t−u)N1µ du+

∫ t

0

eΓ(t−u)N2b du = EQ[X(t)]. (73)
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Then for the deviation of the mean ∆X(t) := X(t)− E∗[X(t)] both with respect to P and Q

∆X(t) = eΓt∆X(0) +

∫ t

0

eΓ(t−u)N1( dY (u)− µ du) +

∫ t

0

eΓ(t−u)N2 dM̃(u).

In order to evaluate E∗[∆X(t)∆X(s)T ], we first reassure that cross terms vanish. Cross terms with
M̃(u) are integrals of FY∞

t -predictable integrands with respect to the zero-mean martingale M̃(u),
which vanish by Eq. (4). For this reason, we defined the filtration of M̃(u) to be FY∞

t . The cross
term with ∆X(0) and Y (u) vanish because the increments of Y (t) are independent of the ∆X(0) by
assumption (C4). In total, we obtain

Cov∗[X(t), X(s)] =E∗[∆X(t)∆X(s)T ] = eΓtCov∗[X(0)]eΓ
T s (74)

+ Cov∗

[
∫ t

0

eΓ(t−u)N1 dY (u),

∫ s

0

eΓ(s−u)N1 dY (u)

]

(75)

+

∫ s

0

eΓ(t−u)N2 diag(ΛE∗[X(t)] + b)NT
2 e

ΓT (s−u) du (76)

by the application of Eq. (4) and Eq. (5). All three terms agree for the measures P and Q, the first
one by assumption, the second one by the corollary 4.2 and the third one by Eq. (73)

In section 4.1.2 we reviewed the optimal linear filter obtained from a projection method. We now
present a result that characterizes it as a moment closure.

Theorem 4.5. Suppose under a probability measure P, the (FYt ,P)-intensity λ̂(t) of Y (t), strictly
positive in all components for all t ≥ 0, is given by means of a predictable process V (t) ∈ Rl×l

dẐ(t) =−AẐ(t) dt+ V (t−)CT diag−1{λ̂(t−)}{ dY (t)− λ̂(t) dt}, (77)

d

dt
EP[V (t)] =AΣ+ ΣAT −AEP[V (t)]− EP[V (t)]AT − EP

[

V (t)CT diag−1{λ̂(t)}CV (t)
]

, (78)

λ̂(t) = µ+ CẐ(t−), (79)

initialized in Ẑ(0) = 0, V (t) = Σ. Then the following statements are equivalent.

(i) The process
(

V (t)CT diag−1{λ̂(t)}
)

t
is deterministic.

(ii) The moment closure holds for all t ≥ 0

EP

[

V (t)CT diag−1{λ̂(t)}CV (t)
]

= EP[V (t)]CT diag−1{µ}CEP[V (t)]. (80)

Furthermore either one implies that (Ẑ(t),EP[V (t)]) are equal to (Ẑ(t), B(t)) in Eq. (65)-(66).

Remark: Note that Snyder’s exact filter, Eq. (64), has the form for the appropriate F and G, Eq.
(63), when using that in the evolution equation for Vik(t), the expectation of the second term is zero by
Eq. (4). For the linear reaction networks as well as the CIR process, F and G are in the appropriate
forms to match.

For the proof, we need the following generalized Cauchy-Schwarz inequality.

Lemma 4.6. Let Xi, i = 1, . . . ,m be strictly positive random variables and Y = (Y1, . . . , Ym) be a
random vector. Then

E[Y diag(X)]E[diag2(X)]−1E[diag(X)Y T ] ≤ E[Y Y T ]. (81)

Furthermore, equality holds if and only if for every i = 1, . . . ,m there exists a deterministic scalar αi,
such that Yi = αiXi.
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Proof.

E[Y diag(X)]E[diag2(X)]−1E[diag(X)Y T ] =

m
∑

i=1

E[YiXi]
2

E[X2
i ]
≤

m
∑

i=1

E[Y 2
i ] = E[Y Y T ]

by the term-wise application of the classical Cauchy-Schwarz inequality. The additional statement
holds because the sums are equal if and only if term-wise equality holds.

Proof (theorem 4.5). (i)⇒ (ii). Denote β(t) := V (t)CT diag−1(λ̂(t)). Then we compute

E[V (t)]CT = E[V (t)CT ] = E[β(t) diag(λ̂(t))] = β(t) diag(µ) (82)

and we obtain

E[V (t)CT diag−1(λ̂(t))CV (t)] = β(t)CE[V (t)] = E[V (t)]CT diag−1(µ)CE[V (t)].

(ii)⇒ (i). For each k = 1, . . . , n apply the lemma for the choice Y = (V (t)CT diag−
1
2 (λ̂(t)))k∗ denoting

the k-th row, and Xi =

√

λ̂i(t). Then the equality of the k-th diagonal entry in Eq. (80) reads as Eq.
(81). Consequently, we obtain deterministic scalars αki(t) from the lemma that satisfy

(V (t)CT diag−
1
2 (λ̂(t)))ki = αki(t)

√

λ̂i(t).

We recognize the right-hand side as the ki-entry of α(t) diag
1
2 (λ̂(t)). Then in matrix notation,

V (t)CT diag−
1
2 (λ̂(t)) = α(t) diag

1
2 (λ̂(t))).

Upon multiplication with diag−
1
2 (λ̂(t)) (ii) follows.

Let us assume that (i) and (ii) hold. The Eq. (82) implies β(t) = E[V (t)]CT diag−1(µ) and together
with Eq. (80), this yields Eq. (65)-(66) for B(t) = E[V (t)].

In the special case of l = 1, the property (i) more simply states that V (t)/λ̂j(t) is deterministic for
j = 1, . . . ,M . For the modeler who asks for which environment Z(t) to use the Hawkes approximation
the property (i) can be a more intuitive approach than the process Eqs (65)-(66). Furthermore, note
that the property (ii) is not a closure scheme on the posterior moments, which are random processes.
It is a closure scheme on the moments of posterior moments. Therefore, it is remarkable that this
closure scheme already enforces the Hawkes approximate filter. Finally, this characterization sheds
light on the relation between different approximate filters. Two closure schemes were discussed in [3]
for the CIR modulated birth process, the second-order posterior moment closure expressing the third-
order posterior moment as S(t) = 2V (t)/Θ(t) on the one hand and the one-dimensional Eq. (80),
E[V (t)2/Θ(t)] = E[V (t)]2/E[Θ(t)], on the other hand. Both were conjectured to induce the Gamma
filter [3], an assumed density filter, characterized by a two-dimensional evolution equation of mimics of
the first- and second-order posterior moments. However, this statement reveals that both are different.
The first one induces the Gamma filter and the second one the Hawkes filter.

4.1.4 Auxiliary concepts: Dirac-PDMPs and the backward recurrence time process

Model reduction via conditional expectations has different goals. So far, in the path via conditioning
on X that uses the conditional intensity, Eq. (57), we have focused on marginal simulation and
attribution of properties in the subnetwork to properties of the environment. But the model reduction
via conditioning also aims at new master equations and at the computation of information measures.
The goal of this section is to prepare the joint master equation, see Eqs. (104) - (105), by using PDMPs.
We recall that PDMPs are defined by their three characteristics, the flow, the hazard and the jump
update. In the Snyder filter, proposition 2.10, the jump update is deterministic, which motivates us to
confine Q(·, θ) to a Dirac measure for each θ ∈ ϑ. Also in the optimal linear mimic, Eq. (65)-(66), we
faced a deterministic jump update. We introduce the following non-standard notion of Dirac-PDMPs
for a systematic approach.
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Definition 4.7 (Dirac-PDMP). Call a piecewise-deterministic Markov process (Θt)t≥0 a Dirac-
PDMP on the state space ϑ if its third local characteristic is Q(·, θ) = δf(θ)(·) for a measurable
function f : ϑ→ ϑ. For the Dirac-PDMP we specify the local characteristics by the triple (F, l, f).

We present the probability evolution equation for the Dirac-PDMP in proposition 4.20 below.
Analogously to stochastic differential equations, the process equations of the Dirac-PDMP can be
written as

dΘt = F (Θt) dt+ (f(Θt−)−Θt−) dYt, (83)

where (Yt)t≥0 is a counting process with the CI λ̂t = l(Θt−). The counting process (Yt)t≥0 is precisely
the embedded counting process that counts the jumps of the PDMP. For the Snyder filter, we have
already used Eq. (83) in Eq. (8). We refer to the first term on the right-hand side as the drift. Readers
interested in the corresponding equation for PDMPs may consult [1, §1.5.4.2, p.42-45].

For later reference in the examples and the case studies we add a transformation rule for Dirac-
PDMPs, which is the analogue to the Ito transformation rule of stochastic differential equations.

Proposition 4.8 (Ito rule for Dirac-PDMP). Let (Θt)t≥0 be a Dirac-PDMP on ϑ ⊆ Rn0 with local
characteristics (F, l, f) and Φ: ϑ→ Rm be a differentiable function. Then (Φ(Θt))t≥0 is a Dirac-PDMP
that follows the process equation

dΦ(Θt) = DΦ(Θt)F (Θt) dt+ (Φ(f(Θt−))− Φ(Θt−)) dYt.

Proof. The equation follows from the chain rule of differentiation for the first term and insertion of
Θt = f(Θt−) into Φ(Θt)− Φ(Θt−) if (Yt)t≥0 jumps at t for the second term.

We emphasize that our focus lies on the object (Yt)t≥0 in Eq. (83) and we study it via its CI l(Θt−).
Hence, let us confine the class of counting processes that we investigate in this work.

Definition 4.9 ((F, l, f)-counting process). Let (Yt)t≥0 be a counting process. We call it an (F, l, f)-
counting process, if its finite-dimensional marginal distributions agree with the embedded counting
process of a Dirac-PDMP with local characteristics (F, l, f).

Proposition 4.10. Markov-modulated Poisson processes as defined in definition 2.8 belong to the class
of (F, l, f)-counting processes.

Proof. Let (Zt)t≥0 be a CTMC with generator A and (Yt)t≥0 be a Markov-modulated Poisson process,
modulated by (Zt)t≥0 via λ(Zt). Then according to proposition 2.10 the filtering distribution is a
Dirac-PDMP on ϑ = ∆ = {π ∈ [0, 1]|Z| :

∑

z∈Z π(z) = 1} with

• F : ϑ→ R|Z|, π 7→ Aπ − (diag(λ(z)z∈Z)− l(π) I|Z|)π,

• l : ϑ→ R≥0, l(π) :=
∑

z∈Z λ(z)π(z),

• f : ϑ→ ϑ, π 7→ diag(λ(z)z∈Z)π/l(π).

Since l is bounded by the maximum of λ on Z, the integrability condition Eq. (290), Appendix A,
is satisfied. The jump times of (Πt)t≥0 coincide with the jump times of (Yt)t≥0, hence (Yt)t≥0 is the
embedded counting process of the Dirac-PDMP (Πt)t≥0.

The fact that the Snyder filter is a PDMP has been observed before, e.g., in [115, Example 10.3(e),
p.101-103] and [117]. For the particle interpretation of this fact we refer to [118]. The analogous results
for the filter with Gaussian instead of Poissonian observations has received much more attention [79,
119, 120].

Proposition 4.10 shows that the class of (F, l, f)-counting processes contains the MMPPs as an
interesting subclass. The typical alternative way to obtain an (F, l, f)-counting process is to specify
its CI directly via the process equation (83). We sometimes refer to counting processes obtained this
way as self-exciting (SE) counting process, even though MMPPs are also self-exciting. The reader
may recall the two examples for the class SE that we have seen already. One example is the Hawkes
process, 4.1. The second one is the approximate marginal simulation via the optimal linear filter. More
generally, the class of Dirac-PDMPs contains the approximate filters as a subclass. The approximate
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filters attempt to mimic the structure of the Snyder filter, proposition 2.10 and Eq. (64). As opposed
to the Snyder filter with its unclosed hierarchy of conditional moments, the approximate filters use a
description by finitely many sufficient state variables. For more approximate filters, see sections 8.1.4,
8.2 and 8.2.3 below.

In both cases (MMPP and SE) we refer to the particular corresponding process (Θt)t≥0 as the
sufficient state variables of joint Markovian progression. For the MMPPs, the posterior probabilities
are the sufficient state variables of joint Markovian progression. We constrain our analysis to the
(F, l, f)-counting processes, which leaves us with studying l(Θt−) for the Dirac-PDMP (Θt)t≥0.

We now introduce a standard form for the Dirac-PDMP, which has an especially simple F . It is
needed for the formulation and proof of the corollary 4.23 and theorems 4.24 - 4.28, below. Readers
mainly interested in the applications can skip this rather technical paragraph. We provide the relevant
link to the definition 4.7 and the notation needed for subsequent paragraphs in proposition 4.13 and
Eq. (84) - (85). The standard form comes with a notion of dimension for the (F, l, f)-counting process.
The name backward recurrence time process (BReT-P) of the standard form originates from its first
component, which has the natural interpretation as the time since the last jump.

Definition 4.11 (Backward recurrence time, BReT-P). Let (Yt)t≥0 be a counting process with jump
times 0 = σ0 < σ1 < σ2 < . . . , then the process (t− σYt

)t≥0 is the backward recurrence time [121,
§2.1, p.27] of (Yt)t≥0.

Let (τ(t), θ(t))t≥0 be a Dirac-PDMP with local characteristics (F,m, f) on the state space ϑ =
[0,∞) × E , E ⊆ Rn. We call (τ(t), θ(t))t≥0 a backward recurrence time process (BReT-P)
if the first local characteristic F has the form F (τ, θ) = [1,0],0 ∈ Rn and the third characteristic
is f(τ, θ) = [0, g(τ, θ)] for a measurable function g : ϑ → E . The pair (m, g) summarizes the local
characteristics of the BReT-P.

Proposition 4.12. Let (τ(t), θ(t))t≥0 be a BReT-P and (Yt)t≥0 its embedded counting process, then
(τ(t))t≥0 is the backward recurrence time of (Yt)t≥0.

Proof. Let 0 = σ0 < σ1 < σ2 < . . . be the jump times of (Yt)t≥0. By τ̇(t) = 1 for t ∈ (σi−1, σi) and
τ(σi) = 0 as specified in definition 4.11, the process τ(t) is fixed to be τ(t) = t− σYt

, which is exactly
the backward recurrence time of (Yt)t≥0.

The probability evolution equation for the BReT-P is derived in corollary 4.23 and the BReT-P is
used in the proofs of theorems 4.24-4.28 to derive the fixed point equation for embedded Markov chain
of the Dirac-PDMP.

Proposition 4.13. Let (Θt)t≥0 be a Dirac-PDMP. Then (Θt)t≥0 induces a BReT-P with the same
embedded counting process.

Proof. Consider a Dirac-PDMP (Θt)t≥0 with local characteristics (F, l, f). Denote by (Yt)t≥0 its
embedded counting process with jump times 0 = σ0 < σ1 < σ2 < . . . as in definition 2.1. Denote by

u : [0,∞)× ϑ→ ϑ, (84)

the function, such that τ 7→ u(τ, θ0) is the solution of the initial value problem Θ̇t = F (Θt),Θ0 = θ0.
Then define

τ(t) := t− σYt
, θ(t) := Θξ(t),

ξ(t) := σYt
= t− τ(t),m := l ◦ u, g := f ◦ u. (85)

Then for t ∈ (σi−1, σi) : τ̇(t) = 1 and θ̇(t) = 0. And τ(σi) = σi − σi = 0. Hence, (τ(t), θ(t))t≥0

is a BReT-P with local characteristics (m, g). Since the jump times remain unchanged, (Θt)t≥0 and
(τ(t), θ(t))t≥0 have the same embedded counting process.

Definition 4.14 (BReT-P counting process). Let (Yt)t≥0 be a counting process. We call it back-
ward recurrence time parametrized counting process (BReT-P counting process), if its
finite-dimensional marginal distributions agree with the embedded counting process of a BReT-P
(τ(t), θ(t))t≥0, which is then called a corresponding backward recurrence time processes.
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Corollary 4.15. Every (F, l, f)-counting process is a BReT-P counting process.

Hence, a study of BReT-P counting processes will be equivalent to our considered class of counting
processes in definition 4.9. To summarize the definitions 4.11 and 4.14, we consider counting processes
(Yt)t≥0 whose CI (λ̂t)t≥0 is parametrized by a process (τ(t), θ(t))t≥0 in the following form. The first
(scalar) component τ is the backward recurrence time. The second component θ ∈ E ⊆ Rn is a
(possibly multi-variate) auxiliary state variable, that possesses three properties

(A1) it is constant between jumps, i.e. θ(t) = θ(t− τ(t)),

(A2) there is a measurable m : [0,∞)×E → R≥0, satisfying λ̂t = m(τ(t−), θ(t−)) and for each θ0 ∈ E
there is an ε(θ0) > 0 such that

∫ ε(θ0)

0

m(τ, θ0) dτ <∞,

compare Eq. (290), Appendix A,

(A3) there is a measurable g : [0,∞)× E → E , satisfying g(τ(σi−), θ(σi−)) = θ(σi) at jump times σi
of (Yt)t≥0.

For a BReT-P counting process (Yt)t≥0 we denote by BP the set of corresponding backward recurrence
time processes.

Remark 4.16. The set BP has more than one element, because a new BReT-P (τ(t), θ̃(t))t≥0 can
be defined via θ̃(t) := [θ(t), 0] ∈ E × {0} with m̃ = m ◦ Γ and g̃ = Σ ◦ g ◦ Γ for the truncation
Γ: [0,∞)×E × {0} → [0,∞)×E , (τ, θ, 0) 7→ (τ, θ) and the extension Σ: E → E × {0}, θ 7→ (θ, 0). This
example extends the state space artificially. But in other examples the state space can be reduced.
To illustrate this, consider a Dirac-PDMP (Θt)t≥0 in the coordinate form Θt = (V1(t), . . . , Vn0

(t)) ∈
ϑ ⊆ Rn0 with local characteristics (F, l, f). In the proof of proposition 4.13, this induced a BReT-P
on [0,∞) × E , E ⊆ Rn with n = n0. If components of the third local characteristic f are constant
functions, then the dimension n of θ(t) can be reduced as we demonstrate now. Let us review the
proof of proposition 4.13. Suppose that n < n0 and fn+1 ≡ v0n+1, . . . , fn0

≡ v0n0
are constant, i.e.,

the values Vn+1, . . . , Vn0
are reset to the same values v0n+1, . . . , v

0
n0

at any jump. We now construct
the process (τ(t), θ(t))t≥0. For this purpose define the extension and truncation similarly as above via
Σ: E → Rn0 ,Σ(θ) := (θ, v0n+1, . . . , v

0
n0
) and Γ: Rn0 → Rn,Γ(v1, . . . , vn, vn+1, . . . , vn0

) = (v1, . . . , vn).
Furthermore, suppose that Θ0 = (θ(0), v0n+1, . . . , v

0
n0
). Define τ(t) := t − σYt

, θ(t) := Γ(Θξ(t)) ∈
Rn, ξ(t) := σYt

= t − τ(t) as well as m(τ, θ) = l ◦ u(τ,Σ(θ))) and g(τ, θ) = Γ ◦ f(u(τ,Σ(θ))). Let
(τ̃(t), θ̃(t))t≥0 be the BReT-P, constructed in the proof of proposition 4.13, then τ̃(t) = τ(t) and
θ̃(t) = Σ(θ(t)) ω-wise, in particular, both have the same embedded counting process.

This remark prompts the notion of a dimension for the (F, l, f)-counting processes. It is, loosely
speaking, the minimum dimension of θ(t) that we can reduce the BReT-P to.

Definition 4.17 (Dimension of (F, l, f)-counting process). Let (Yt)t≥0 be an (F, l, f)-counting process.
Consider the set D ⊆ N≥0 of natural numbers n, for which a BReT-P on [0,∞)× E , E ⊆ Rn is in BP.
Then the dimension of (Yt)t≥0, denoted by dim(Yt)t≥0, is the minimum of D.

Remark 4.18. For the MMPPs, the conservation of probability mass and zero-states, defined below,
reduce the dimension.

(i) In Eq. (8) the evolution equation of the Πt(z) for one z can be replaced by the trivial evolution
of
∑

z Πt(z). The value of this sum is constantly 1. Hence, the number n0 of sufficient state
variables of joint Markovian progression can be reduced to |Z| − 1. A reparametrization may
further decrease the number.

(ii) Call any z ∈ Z with λ(z) = 0 a zero-state. For zero-states, the reset value of the corresponding
Πt(z) in Eq. (7) is 0, i.e., f is constant for these components. Hence, for the MMPP (Yt)t≥0 it
holds

dim(Yt)t≥0 ≤ |{Z : λ(z) > 0}| − 1.
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The remark 4.16 and the definition of the dimension might require to modify the initial state of
the PDMP, or BReT-P. In the remark 4.16, the process was initialized with the constant reset values
Θ0 = (θ(0), v0n+1, . . . , v

0
n0
). Alternatively it is enough to initialize it in a state that can be reached

from the above state by the flow. This is not restrictive if the focus lies on the asymptotic analysis
and the process is ergodic, as discussed at the end of section 4.2.3 below.

4.2 Joint and marginal master equation using the conditional intensity

For the defined class of (F, l, f)-counting processes the rich Markov theory is now exploited which
provides the stationary analysis through the ergodic property and the invariance of measures. We
define a notion of stationarity that is tailored for our purpose. For more details on the stationarity of
point processes we refer the reader to [115, §12.5, p.222-236].

Definition 4.19 (Asymptotic stationarity, asymptotic conditional intensity distribution). Let (Yt)t≥0

be a counting process with a conditional intensity. If its conditional intensity converges in distribution,
then we call the counting process asymptotically stationary. We call the limiting distribution its
asymptotic conditional intensity distribution (ACID).

By stationary analysis, we mean the description of the asymptotic distribution via a stationarity
condition for the invariant measure. By ergodicity we mean the property to converge in distribution
to the unique invariant measure, independent of the initial distribution. The stationary analysis then
provides access to information measures, see section 5.1, via the CI λ̂t = l(Θt−) = m(τ(t−), θ(t−))
and its limiting distribution, the ACID.

4.2.1 Probability evolution equation and stationarity condition

Assuming the absolute continuity of the distribution, the stationary analysis is usually addressed via
the evolution equation of the density, which is known as the master equation or differential form of the
Chapman-Kolmogorov forward equation for Markov jump processes and as the Fokker-Planck equation
for diffusion processes. For PDMPs, we analogously obtain an equation that combines the drift term of
the Fokker-Planck equation with the jump terms of the master equation. It goes by different names in
the literature. We adopt the names differential Chapman-Kolmogorov equation [63, §3.4] and Liouville
master equation [1, §1.5].

Proposition 4.20 (Differential Chapman-Kolmogorov equation).

(i) Let (Θt)t≥0 be a PDMP on the state space ϑ ⊆ Rn0 with local characteristics (F, l, Q). Suppose
that Q(·, θ) is absolutely continuous and admits a density θ′ 7→ q(θ′, θ) for every θ ∈ ϑ and
suppose that Θt is absolutely continuously distributed with density θ 7→ p(t, θ) for t > 0. Suppose
that the partial derivatives of F exist. Then for θ in the interior of ϑ, it holds

∂tp(t, θ) = −
n0
∑

i=1

∂i(Fi(θ)p(t, θ)) +

∫

ϑ

l(θ′)q(θ, θ′)p(t, θ′)− l(θ)q(θ′, θ)p(t, θ) dθ′. (86)

(ii) Let (Θt)t≥0 be a Dirac-PDMP on the state space ϑ ⊆ Rn0 with local characteristics (F, l, f).

With ϑ̊ denoting the interior of ϑ define R := im f ∩ ϑ̊ ⊆ ϑ and suppose that the restriction
f |f−1(R) : f

−1(R) → R is a diffeomorphism with inverse f− : R → f−1(R). Suppose that Θt is
absolutely continuously distributed with density θ 7→ p(t, θ) for t > 0. Suppose that the partial
derivatives of F exist. Then for θ in the interior of ϑ, it holds

∂tp(t, θ) = −
n0
∑

i=1

∂i(Fi(θ)p(t, θ))− l(θ)p(t, θ) + 1R(θ)| detDf−(θ)|l(f−(θ))p(t, f−(θ)). (87)

Proof. For Eq. (87), according to [65, §26, Eq.(26.15), p.70 & §22, p.53], the generator of the Dirac-
PDMP reads

A∗ϕ(θ) =
n0
∑

i=1

∂iϕ(θ)Fi(θ) + l(θ)(ϕ(f(θ))− ϕ(θ)). (88)
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Then for smooth test functions ϕ : ϑ→ R that vanish at the boundary of ϑ, we have

∂t

∫

ϑ

ϕ(θ)p(t, θ) dθ = ∂tE[ϕ(Θt)]

=

∫

ϑ

A∗ϕ(θ)p(t, θ) dθ

=

∫

ϑ

n0
∑

i=1

∂iϕ(θ)Fi(θ)p(t, θ) dθ −
∫

ϑ

l(θ)ϕ(θ)p(t, θ) dθ +

∫

ϑ

l(θ)ϕ(f(θ))p(t, θ) dθ.

For the first term
∫

ϑ

n0
∑

i=1

∂iϕ(θ)Fi(θ) dθ = −
∫

ϑ

n0
∑

i=1

ϕ(θ)∂i(Fi(θ)p(t, θ)) dθ

with integration by parts and the assumption that ϕ vanishes on the boundary. By the assumptions
we get that for all θ ∈ ϑ\f−1(R), f(z) lies on the boundary of ϑ and hence ϕ(f(z)) = 0. Consequently,
for the third term the change of variables formula yields

∫

ϑ

l(θ)ϕ(f(θ))p(t, θ) dθ

=

∫

f−1(R)

l(θ)ϕ(f(θ))p(t, θ) dθ

=

∫

R

| detDf−(θ)|l(f−(θ))ϕ(θ)p(t, f−(θ)) dθ.

Then in summary,
∫

ϑ

ϕ(θ)∂tp(t, θ) dθ =

∫

ϑ

ϕ(θ)

[

−
n0
∑

i=1

∂i(Fi(θ)p(t, θ))

− l(θ)p(t, θ) + 1R(θ)| detDf−(θ)|l(f−(θ))p(t, f−(θ))] dθ,

which implies the claimed equation to hold for θ in the interior of ϑ. For Eq. (86), the proof works
analogously starting with

A∗ϕ(θ) =
n0
∑

i=1

∂iϕ(θ)Fi(θ) + l(θ)

∫

ϑ

(ϕ(θ′)− ϕ(θ))q(θ′, θ) dθ′

in place of Eq. (88). We refer to [63, Eq. (3.4.22), p.50], where the Eq. (86) is stated in a more general
form. We arrive at Eq. (86) by noting that in Eq. (3.4.1), p. 47 of [63] the function W (x|z, t) factorize
into l(z)q(x, z) and in Eq. (3.4.3), p.47 the function Bij vanishes.

We follow Petruccione and Breuer [1, §1.5, Eq.(1.150), p.33] in referring to the equations (86)
and (87) as Liouville master equations. The Liouville equation describes the probability evolution of
an ensemble of particles under a deterministic flow, referring here to the first term of the equation.

Remark 4.21. The equation (86) is linked to Eq. (87) informally via the delta distribution q(θ, θ′) =
δ(θ − f(θ′)) and the composition rule of the delta distribution for the substitution θ′ = f−(u) which
yields for the second term in Eq. (86)

∫

f−1(R)

l(θ′)q(θ, θ′)p(t, θ) dθ′

=

∫

f−(R)

l(θ′)δ(θ − f(θ′))p(t, θ) dθ′

=

∫

R

l(f−(u))δ(θ − f(f−(u)))p(t, f−(u))| detDf−(θ)| du

=

∫

R

l(f−(u))δ(θ − u)p(t, f−(u))| detDf−(θ)| du

=1R(θ)l(f−(θ))p(t, f−(θ))| detDf−(θ)| du.

53



In the one-dimensional case and with monotone f the proposition 4.20 (ii) can be reformulated.

Corollary 4.22. Let (Θt)t≥0 be a Dirac-PDMP on the state space ϑ = (a, b] or ϑ = (a,∞). For the
second case, denote b =∞. Let (Θt)t≥0 follow the stochastic evolution equation

dΘt = F (Θt) dt+ [f(Θt−)−Θt−] dYt

and jumps of (Yt)t≥0 occur with intensity t 7→ l(Θt−) for l : ϑ→ R>0, i.e., the local characteristics are
(F, l, f). We assume there exists λ1 > 0, such that l ≥ λ1. Suppose that F : ϑ → R is differentiable
and strictly negative and that f : ϑ → ϑ is differentiable and strictly monotonically increasing. Let
f− : ϑ → ϑ ∪ {a} be the inverse of f on im f and f−(θ) = a for θ /∈ im f . Then for a differentiable
initial condition p(0, θ), the probability density evolves according to the PDE for all t > 0, θ ∈ ϑ

∂tp(t, θ) = −∂θ(F (θ)p(t, θ))− l(θ)p(t, θ) + f ′−(θ)l(f−(θ))p(t, f−(θ)), (89)

where f ′−(θ) denotes the left-sided derivative of f− in θ.

Proof. Eq. (89) follows by an application of the Poisson-Liouville equation, proposition 4.20, Eq. (87)
by using f ′−(θ) = 0 for all θ /∈ im f . Eq. (135) follows from (134) by Leibniz differentiation under the
integral sign.

A more informal, but instructive, derivation of Eq. (89) considers jump probabilities in small time
intervals [t, t+∆t]. For the derivation, it holds that

P[Z(t+∆t) ∈ (−∞, z]]

=

∫ f−(z)

−∞
P[jump in [t, t+∆t]|Z(t) = z′]p(z′, t) dz′ + o(∆t)

+

∫ z−F (z)∆t+o(∆t)

−∞
P[no jump in [t, t+∆t]|Z(t) = z′]p(z′, t) dz′

=

∫ f−(z)

−∞
λ(z′)∆tp(z′, t) dz′ + o(∆t) +

∫ z−F (z)∆t+o(∆t)

−∞
(1− λ(z′)∆t)p(z′, t) dz′.

Now we take the derivative with respect to z. This yields

p(z, t+∆t)

=f ′−(z)λ(f−(z))p(f−(z), t)∆t

+ (1− λ(z)∆t)(1− F ′(z)∆t)p(z − F (z)∆t, t) + o(∆t)

=f ′−(z)λ(f−(z))p(f−(z), t)∆t

+ (1− λ(z)∆t)(1− F ′(z)∆t)(p(z, t)− F (z)∆tpz(z, t)) + o(∆t)

=f ′−(z)λ(f−(z))p(f−(z), t)∆t+ p(z, t)

−∆t[λ(z)p(z, t) + F ′(z)p(z, t) + F (z)pz(z, t)] + o(∆t).

Then

lim
∆t→0

p(z, t+∆t)− p(z, t)
∆t

= −∂z(F (z)p(z, t))− λ(z)p(z, t) + f ′−(z)λ(f−(z))p(f−(z), t).

We now show that the master equation is invariant w.r.t. continuously differentiable monotone
transforms. For this purpose let Wt = h(Zt) for h C1 and monotone. Let g be the inverse of h. The
Ito formula provides the process equation of W

dWt = (h′ ◦ g)(Wt) · (A ◦ g)(Wt)dt+ [(h ◦ f ◦ g)(Wt−)−Wt−]dYt

and jumps occur with intensity λW (w) = λZ(g(w)) = (λZ ◦ g)(w). The process W jumps from w to
f̃ = (h ◦ f ◦ g)(w) and jumps that enter at w, jumped from f̃−1(w) = (h ◦ f− ◦ g)(w). For the first
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Zt Wt

pZ (z, t) pW (w , t)

dZt = A(Zt )dt + [f (Zt−) − Zt−]dYt

∂tp(z, t) = −∂z (A(z)p(z, t)) − λ(z)p(z, t)

+ f 0
�

(z)λ(f�(z))p(f�(z), t)

Figure 6: Process equation and probability evolution equation under continuously differentiable mono-
tone transforms Wt = h(Zt). The translation from process equation to master equation as in corollary
4.22 makes the diagram commute. The transformed process equation is obtained by the Ito formula.
The probability densities transform via the chain rule.

term of the process equation note that h′(g(w))g′(w) = (h ◦ g)′(w) = 1. We omit the t-dependence of
pW in the following derivation of the probability evolution equation for readability.

∂tpW (w)

=− ∂w
(

(A ◦ g)(w)
g′(w)

pW (w)

)

− (λZ ◦ g)(w)pW (w)

+ (h ◦ f− ◦ g)′(w)(λZ ◦ g ◦ h ◦ f− ◦ g)(w)pW ((h ◦ f− ◦ g)(w))

=
g′′(w)

(g′(w))2
F (g(w))pW (w)− F ′(g(w))pW (w)− F (g(w))

g′(w)
∂wpW (w)− λZ(g(w))pW (w)

+ h′(f−(g(w)))f
′
−(g(w))g

′(w)λZ(f−(g(w)))pW ((h ◦ f− ◦ g)(w))

By the transformation rule of densities

pW (w) = g′(w)pZ(g(w))

and
∂wpW (w) = g′′(w)pZ(g(w)) + (g′(w))2∂zpZ(g(w))

we get

g′(w)∂tpZ(g(w))

=g′(w) [−F ′(g(w))pZ(g(w))− F (g(w))∂zpZ(g(w))
−λZ(g(w))pZ(g(w)) + λZ(f−(g(w)))f

′
−(g(w))pZ(f−(g(w)))

]

=− F ′(g(w))pW (w)− g′(w)F (g(w))∂wpW (w)− g′′(w)pZ(g(w))
(g′(w))2

− λZ(g(w))pW (w) + λZ(f−(g(w)))f
′
−(g(w))pZ(g((h ◦ f− ◦ g)(w)))

=− F ′(g(w))pW (w)− F (g(w))∂wpW (w)

g′(w)
+
g′′(w)F (g(w))

(g′(w))2
[g′(w)pZ(g(w))]

− λZ(g(w))pW (w) +
λZ(f−(g(w)))f ′−(g(w))g

′(w)pW (w)

(g′ ◦ h)((f− ◦ g)(w))

=− F ′(g(w))pW (w)− F (g(w))∂wpW (w)

(g′(w))
+
g′′(w)F (g(w))

(g′(w))2
pW (w)

− λZ(g(w))pW (w) + λZ(f−(g(w)))f
′
−(g(w))g

′(w)h′((f− ◦ g)(w))pW (w).

Hence the diagram in figure 6 commutes. Next, we formulate the proposition 4.20 (ii) for the special
case of the BReT-P (τ(t), θ(t)).
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Corollary 4.23. Let (τ(t), θ(t))t≥0 be a BReT-P on [0,∞) × E , E ⊆ Rn with local characteristics
(m, g) and let the distribution of (τ(t), θ(t)) be absolutely continuous with density (τ, θ) 7→ p(t, τ, θ).
Then it holds for all τ > 0 and θ in the interior of E

∂tp(t, τ, θ) = −∂τp(t, τ, θ)−m(τ, θ)p(t, τ, θ). (90)

Proof. By definition the BReT-P is a Dirac-PDMP with third local characteristic f(τ, θ) = [0, g(τ, θ)].
Hence im f is contained in the boundary of [0,∞) × E which implies R = ∅ and the third term of
Eq. (87) vanishes. The first local characteristic F ≡ [1,0] implies

∂τ (F1(τ, θ) · p(t, τ, θ)) +
n
∑

i=1

∂θi(Fi+1(τ, θ)p(t, τ, θ))

=∂τ (1 · p(t, τ, θ)) +
n
∑

i=1

∂θi(0 · p(t, τ, θ)) = ∂τp(t, τ, θ).

In section 4.2.4, we provide the master equation for the joint system of subnetwork state and
BReT-P. We now aim for the asymptotic distribution of (τ(t), θ(t))t≥0. It is in general not easy to give
precise conditions under which an invariant measure for a PDMP exists. We discuss more on this in
section 4.2.3 below. For the remainder of this thesis, we assume that a unique invariant measure exists
and that (τ(t), θ(t))t≥0 converges in distribution to it. We assume that it is absolutely continuous
admitting a density (τ, θ) 7→ p(τ, θ). With vanishing left-hand side in Eq. (90), it follows

∂τp(τ, θ) = −m(τ, θ)p(τ, θ). (91)

Let ρ solve this equation for ρ(0, θ) = 1. Since Eq. (91) is linear, the density of the invariant measure
then satisfies

p(τ, θ) = p(0, θ)ρ(τ, θ). (92)

4.2.2 Boundary condition

The function θ 7→ p0(θ) := p(0, θ) is the density of an unnormalized probability measure on E . It
has to satisfy a stationarity condition which serves as an integral boundary condition for the family
of differential equations (91). We state two versions of the condition. At the end of this subsection,
we comment on the interpretation of the following theorem as being the stationarity condition for
the embedded Markov chain (θ(σi))i∈N, which is known for PDMPs. The novelty is the formulation
for Dirac-PDMPs, which to the best of our knowledge is new. The linearity of the equation in the
unknown p0 makes the solution accessible numerically in order to allow for the numerical evaluation
of the ACID and the information-theoretic quantities, Eq. (121) and Eq. (123), see the section 5.2
below.

Theorem 4.24. Let the conditions of corollary 4.23 hold. Then for any B ∈ B(E) it holds
∫

B

p0(θ) dθ =

∫

g(τ,θ)∈B
m(τ, θ)ρ(τ, θ)p0(θ) dθ dτ. (93)

Proof. Let t > h > 0. The probability P[τ(t) ∈ [0, h), θ(t) ∈ B] can be written in two ways (up to
order o(h)), first

∫ h

0

∫

B

p(τ, θ, t) dθ dτ

and second, since we know a jump must have occurred in (t− h, t]
∫ t

t−h

∫

p(jump at h′|θ(h′) = θ′, τ(h′) = τ ′)p(τ, θ, h′)1(g(τ ′, θ′) ∈ B) dθ′ dτ ′ dh′

=

∫ t

t−h

∫

m(τ ′, θ′)p(τ ′, θ′, h′)1(g(τ ′, θ′) ∈ B) dθ′ dτ ′ dh′.
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Then dividing by h and letting h→ 0 gives the equality
∫

B

p(0, θ, t) dθ =

∫

g(τ,θ)∈B
m(τ, θ)p(τ, θ, t) dθ dτ.

If we drop the t because of stationarity and use Eq. (92) on the right-hand side, we get the result.

The differential version of this for the special case n = 1 is the following result.

Theorem 4.25. For each θ, θ′ let τi(θ, θ
′) for i = 1, . . . , N(θ, θ′) be an enumeration of the solutions

to g(τ, θ′) = θ, where we allow N(θ, θ′) = ∞. Assume that g is continuously differentiable and
∂τg(τi(θ, θ

′), θ′) 6= 0 for all i. Here, N(θ, θ′) is the number of such solutions. Then it holds

p0(θ) =

∫ N(θ,θ′)
∑

i=1

m(τ, θ′)ρ(τ, θ′)

| ∂∂τ g(τ, θ′)|
p0(θ

′)

∣

∣

∣

∣

∣

∣

τ=τi(θ,θ′)

dθ′, (94)

given that the right-hand side is finite.

Proof. Split {1, . . . , N(θ, θ′)} into C+ and C− depending on whether τ 7→ g(τ, θ′) − θ has a sign
change from − to + or from + to − at τi(θ, θ′). We choose B = (−∞, θ] in Eq. (93) and take
the derivative ∂θ on both sides. Then on the left-hand side we get p0(θ). For the right-hand side
define I(τ, θ) := m(τ, θ)ρ(τ, θ)p0(θ). There exists some choice C+ = {j1, . . . , jn+(θ,θ′)} or C+ =
{j1, . . . , jn+(θ,θ′)−1},∞ = jn+(θ,θ′) and C− = {i1, . . . , in+(θ,θ′)} or C− = {i2, . . . , in+(θ,θ′)}, i1 = 0
for which the right-hand side can be computed as

∂θ

∫ n+(θ,θ′)
∑

k=1

∫ τjk (θ,θ
′)

τik (θ,θ
′)

I(τ, θ′) dτ dθ′

=

∫ n+(θ,θ′)
∑

k=1

−∂θτik(θ, θ′)I(τik(θ, θ′), θ′) + ∂θτjk(θ, θ
′)I(τjk(θ, θ

′), θ′) dθ′

=

∫

∑

i∈C+∪C−

sgn{∂τg(τi(θ, θ′), θ′)}∂θτi(θ, θ′)I(τi(θ, θ′), θ′) dθ′,

where we used, that the ∂θ-derivatives vanish for the lower and upper limits τi1(θ, θ
′) = 0 and

τjn+(θ,θ′)
(θ, θ′) =∞. With

1 = ∂θg(τi(θ, θ
′), θ′)

= ∂τg(τi(θ, θ
′), θ′) · ∂θτi(θ, θ′)

= |∂τg(τi(θ, θ′), θ′)| · sgn{∂τg(τi(θ, θ′), θ′)}∂θτi(θ, θ′)

the result follows.

Remark 4.26. Note that the integral equation might become singular [122] if there exist τ0, θ0, θ′0,
such that g(τ0, θ′0) = θ0, but ∂τg(τ0, θ′0) = 0. This may occur both at τ0 with sign changes of
τ 7→ g(τ0, θ

′
0)−θ0 and without sign changes. In the first case, the equation (94) ought to be interpreted

as having an arbitrary value under the integral for this (θ0, θ
′
0)-pair. In the second case, the value

under the integral in Eq. (94) is defined for every (θ, θ′). However, for θ′ close to θ′0 the derivative
∂τg(τi(θ0, θ

′), θ′) will approach 0 and hence a singularity will appear nonetheless at (θ0, θ
′
0). The

existence of a solution for this singular integral equation needs to be carefully checked.

Remark 4.27. Theorem 4.25 can be generalized to more than one dimension. Let γi = (γi,1, γi,2) :
(ai, bi) × Ωi → [0,∞) × Ω, i = 1, . . . , η satisfy g(γi(t, θ)) = θ with each γi injective and differentiable
and [0,∞)× Ω = tηi=1γi((ai, bi)× Ωi) up to a set of Lebesgue measure zero. Then it holds that

p0(θ) =
∑

i : θ∈Ωi

∫ bi

ai

| detDγi(t, θ)|m(γi(t, θ))ρ(γi(t, θ))p0(γi,2(t, θ)) dt.
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Theorem 4.28. The normalization of p0 is related to the mean conditional intensity, i.e.,

∫

E
p0(θ) dθ = E[λ̂∞]. (95)

Proof. Using limτ→∞ p(τ, θ) = 0 and Eq. (91), we compute
∫

p0(θ) dθ =

∫

p(0, θ)− lim
τ→∞

p(τ, θ) dθ

=

∫ ∫ ∞

0

−∂τp(τ, θ) dτ dθ

=

∫ ∫ ∞

0

m(τ, θ)p(τ, θ) dτ dθ

and recognize the right-hand side as E[m(τ(∞), θ(∞))] = E[l(u(τ(∞), θ(∞)))] = E[l(Θ∞)] = E[λ̂∞].

Remark 4.29. We emphasize that the strong advantage of the BReT-P standard form of the Dirac-
PDMP lies in getting rid of the third term in Eq. (87). Figuratively speaking, all probability influx
terms align at τ = 0, i.e., the boundary of the domain [0,∞)× E 3 (τ, θ). These are processed in the
boundary condition (93) instead of the master equation. If the Dirac-PDMP (Θt)t≥0 in non-standard
form is chosen as the state variable, then the stationarity equation (91) grows wider by the third term
in Eq. (87), which is needed for any values Θt = θ in the interior of ϑ that jumps can anticipate, i.e.,
for θ ∈ R. Figuratively speaking, these are the probability influx terms. The equation then assumes
a difference-differential form, e.g., [60, 7.2.5 (iii)] or the corollary 4.22. The BReT-P circumvents this
difference-differential formulation for which solution techniques, like the method of steps, are needed in
general. A direct solution technique for a one-dimensional (Θt)t≥0 can handle the difference-differential
formulation. It uses a fixed point method, similar to Eq. (94). We refer the reader to paragraph 5.2.5
below and continue with the BReT-P method here. To summarize, the appealing simplicity of Eq. (91)
- being autonomous linear ODEs - comes at the cost of an integral boundary condition (τ = 0) which
is more involved.

A further advantage of the BReT-P standard form lies in dimension reduction. Consider again the
Dirac-PDMP Θt = (V1(t), . . . , Vn0

(t)) ∈ ϑ ⊆ Rn0 as in remark 4.16. The pair (τ, θ) uniquely informs all
state variables Vn+1(t), . . . , Vn0

(t) with constant reset values, i.e., via (τ, θ) 7→ u(τ,Σ(θ)). As discussed
in remark 4.16, we may consequently dismiss Vn+1(t), . . . , Vn0

(t) in the sufficient statistic θ(t). In case
we apply the Markov theory, Eq. (87), to (Θt)t≥0 instead of (τ(t), θ(t))t≥0 to obtain the analogue of
Eq. (91), can we dismiss the state variables with constant reset value as well? Generally not, because
the mapping (V1(t), . . . , Vn0

(t)) 7→ (V1(t), . . . , Vn(t)) can be non-injective. In that case there exists no
unique mapping (V1(t), . . . , Vn(t)) 7→ (V1(t), . . . , Vn0

(t)). As an example, see fig. 42 in the case study
9.4.2 below with V1 = U, V2 = A. The trajectory starting at U(0) = 0.6 intersects u = 0.5 twice.

The embedded Markov chain (EMC) (θ(σi))i∈N of the Dirac-PDMP (Θt)t≥0 has the transition
kernel

K(θ′, B) = Q(θ′, B,∞) =

∫

g(τ,θ′)∈B
m(τ, θ′)ρ(τ, θ′) dτ. (96)

The probability density of the EMC is proportional to p0 because it equals the probability density
of being in a state θ at a jump time. Consequently, Eq. (93) can be interpreted as the stationarity
condition for the EMC. When we approached the stationary distribution of the PDMP (Θt)t≥0 via
the BReT-P standard form to derive Eq. (91) and (93), the Eq. (96) shows that we took the well-
known strategy via the EMC whose stationary distribution is then lifted to the PDMP via the hazard
in Eq. (91). This link was first described in [123]. We refer the reader to the remark 4.33 below.
For readers that are more familiar with semi-Markov processes than with PDMPs we provide the
semi-Markov perspective on this approach following [124, §2, §3.1, §3.4]. This offers an additional
interpretation of the corollary 4.23 and theorems 4.24-4.28 and can thus also leverage improvements
on the computational or theoretic side.
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Definition 4.30 (Semi-Markov process). A semi-Markov kernel is a functionQ : E×B(E)×[0,∞)→
R≥0, such that for each θ, t: Q(θ, ·, t) is a measure with Q(θ, E , t) ≤ 1 and Q(θ, ·,∞) is a probability
measure, for each t, B: Q(·, B, t) is measurable, for each θ,B: Q(θ,B, ·) is a non-decreasing right-
continuous function with Q(θ,B, 0) = 0. Let (Xn, σn)n∈N0

be a Markov chain on E × [0,∞) with
transition kernel P ((x, s), B × [0, t]) = Q(x,B, t − s). Let (Yt)t≥0 be a counting process with jump
times (σn)n∈N0

, then θ(t) := ZYt
is called a semi-Markov process. The process τ(t) = t − σYt

is the backward recurrence time and (τ(t), θ(t))t≥0 the associated Markov process. The function
Sx(τ) = 1−Q(x,E, τ) is the survival function and if it is differentiable hx(τ) = − d

dτ lnSx(τ) is the
hazard. The process (Zn)n∈N is the embedded Markov chain.

Remark 4.31. Let H(θ, [s, t]) := ρ(s, θ)− ρ(t, θ). For the semi-Markov kernel

Q(θ′, B, τ) =

∫ τ

0

1B(g(τ
′, θ′))H(θ′, dτ ′) =

∫ τ

0

1B(g(τ
′, θ′))m(τ, θ′)ρ(τ, θ′) dτ ′

the BReT-P (τ(t), θ(t)) can be seen as the associated Markov process of the semi-Markov process θ(t)
with τ(t) being its backward recurrence time. Conditioned on being in state θ, the function m(τ, θ) is
the hazard and ρ(τ, θ) has an interpretation as the survival function P[T (θ) > τ ] of the sojourn time
T (θ). The embedded Markov chain (EMC) (θ(σi))i∈N has the transition kernel

K(θ′, B) = Q(θ′, B,∞) =

∫

g(τ,θ′)∈B
m(τ, θ′)ρ(τ, θ′) dτ. (97)

The probability density of the EMC is proportional to p0 because it equals the probability density
of being in a state θ at a jump time. Consequently, Eq. (93) can be interpreted as the stationarity
condition for the EMC. Finally, the relation p(τ, θ) = p0(θ)ρ(τ, θ) reflects the fact that the EMC’s
stationary distribution and the sojourn time factorize asymptotically [125].

4.2.3 Existence and uniqueness of the stationary distribution

The questions of existence and uniqueness of a stationary distribution for PDMPs are in general not
easy to answer [65, p.127]. Research on these questions as well as on stability, i.e., the ergodic property,
has seen multiple approaches [126, 127] and is ongoing [128, 129]. By the ergodic property we mean
the convergence to the invariant measure independent of the initial condition. However, in the case
of the Snyder filter for MMPPs as described in proposition 2.10, the questions can be answered in
the affirmative for both existence and uniqueness. We transfer the analogous results [79] on Gaussian
observations to the counting process observations giving a step-by-step repetition of the proof.

Theorem 4.32. Let (Zt)t≥0 be a stationary ergodic CTMC on a finite state space Z with stationary
distribution µ = (µx)z∈Z . The PDMP given by the Snyder filter in proposition 2.10 has a unique
invariant distribution and Πt converges to it in distribution for the initialization Π0 = µ.

Proof. The existence follows from a compactness argument. As before let ∆ := {π ∈ R
|Z|
≥0 ;

∑

z∈Z π(z) =
1} denote the set of probability measures on Z. Denote by M(∆) the probability measures on ∆,
equipped with the weak topology, i.e., the topology induced by weak convergence of measures. Since ∆
is compact, M(∆) is also compact in the weak topology. Denote by (Ππt )t≥0 the process that evolves
according to Eq. (8) with initial condition Ππ0 = π and if the superscript is suppressed we mean Π0 = µ.
Define νn ∈M(∆) for all Γ ∈ B(∆) by

νn(Γ) :=
1

n

∫ n

0

P[Πt ∈ Γ] dt.

By compactness there exists a subsequence (νnk
)k≥0 that converges weakly to ν ∈ M(∆). Then for
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any f : ∆→ R continuous
∫

∆

E[f(Ππt )] dν(π) = lim
k→∞

1

nk

∫ nk

0

E[f(Πt+s)] ds

= lim
k→∞

1

nk

∫ t+nk

t

E[f(Πs)] ds

= lim
k→∞

1

nk

∫ nk

0

E[f(Πs)] ds

=

∫

∆

f dν.

This proves that ν is invariant. A measure Φ ∈ M(∆) has barycenter µ if bΦ :=
∫

∆
π dν(π) = µ. For

the uniqueness, the idea of the proof is to introduce an order relation on Mµ := {Φ ∈M(∆) : bΦ = µ}
and show that the maximal and the minimal invariant measure with respect to this order relation
coincide. The maximal and minimal invariant measure are constructed as the limiting distribution of
(Ππt )t≥0 with π distributed according to the maximal and minimal element of Mµ, respectively.

Denote by C(∆) the continuous functions and by CC(∆) the continuous convex functions. By
interpretingM(∆) as a subset of the dual space of C(∆), we write for Φ ∈M(∆), F ∈ C(∆) the scalar
product 〈Φ, F 〉 to mean

∫

∆
F dΦ. Let us thus define the order relation ≤ on Mµ via

Φ ≤ Ψ :⇔ ∀F ∈ CC(∆) : 〈Φ, F 〉 ≤ 〈Ψ, F 〉.

When we refer to maximal and minimal in the following we mean with respect to this order relation.
The maximal element in Mµ is Φ :=

∑

z∈Z µzδ(π
z), where δ(a) is the Dirac measure δ(a)[B] = 1B(a)

and πz is the vertex of ∆ with πz(z′) = δzz′ for all z′ ∈ Z. The minimal element in Mµ is Φ := δ(µ).
Define the function

h : ∆× [0,∞)× C(∆)→ R, (π, t, F ) 7→ h(π, t, F ) := E[F (Ππt )].

Then h(·, t, F ) ∈ C(∆) We now show the following

• For each F ∈ CC(∆) and t ≥ 0: h(·, t, F ) ∈ CC(∆), corresponding to lemma 3.2. of [79].

• For each F ∈ CC(∆) : t 7→ 〈Φ, h(·, t, F )〉 is increasing and t 7→ 〈Φ, h(·, t, F )〉 is decreasing,
corresponding to lemma 3.3. of [79].

The strategy is to condition on appropriate sigma-algebras and use Jensen’s inequality. For the first
claim, let π1, π2 ∈ ∆, λ ∈ (0, 1) and π0 := λπ1 + (1− λ)π2. Define Φλ := λδ(π1) + (1− λ)δ(π2). Then
for π distributed according to Φλ by Jensen’s inequality

h(λπ1 + (1− λ)π2, t, F )
= h(π0, t, F ) = E[F (Ππ0

t )]

= E[F (E[Ππt |FYt ])]

= E[F (E[E[Ππt |FYt ∨ σ(Ππ0 )]|FYt ])]

≤ E[E[F (E[Ππt |FYt ∨ σ(Ππ0 )])|FYt ]]

= E[1(Ππ0 = π1)F (Π
π1
t )] + E[1(Ππ0 = π2)F (Π

π2
t )]

= P[Ππ0 = π1]E[F (Π
π1
t )] + P[Ππ0 = π2]E[F (Π

π2
t )]

= λh(π1, t, F ) + (1− λ)h(π2, t, F ).

For the second claim, let (Zt)t≥0 be stationary and consider FZs := σ(Zu, 0 ≤ u ≤ s). Then for any
F ∈ C(∆):

E[F (
(

P[Zt = z|FYt ∨ FZs ]
)

z∈Z)] =
∑

z′∈Z
µz′E[F (Π

πz′

t−s)]. (98)
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In particular this holds for s = 0. By noting that FYt ∨ FZ0 ⊆ FYt ∨ FZs , we obtain with Jensen’s
inequality for any F ∈ CC(∆)

〈Φ, h(·, t− s, F )〉

=
∑

z′∈Z
µz′E[F (Π

πz′

t−s)]

= E[F (
(

P[Zt = z|FYt ∨ FZs ]
)

z∈Z)]

= E[E[F (
(

P[Zt = z|FYt ∨ FZs ]
)

z∈Z)|F
Y
t ∨ FZ0 ]]

≥ E[F (E[
(

P[Zt = z|FYt ∨ FZs ]
)

z∈Z |F
Y
t ∨ FZ0 ])]

= E[F (
(

P[Zt = z|FYt ∨ FZ0 ]
)

z∈Z)]

= 〈Φ, h(·, t, F )〉.

Note that the larger sigma-algebra corresponded to the shorter time interval. For Φ, in contrast, the
larger sigma-algebra corresponds to the longer time interval, so we can expect the opposite inequality
to hold. For this purpose define FYs,t := σ(Yu−Ys, s ≤ u ≤ t). Then FYs,t ⊆ FYt and for any F ∈ CC(∆)

〈Φ, h(·, t, F )〉 = E[F (Πµt )]

= E[F (
(

P[Zt = z|FYt ]
)

z∈Z)]

= E[E[F (
(

P[Zt = z|FYt ]
)

z∈Z)|F
Y
s,t]]

≥ E[F (E[
(

P[Zt = z|FYt ]
)

z∈Z |F
Y
s,t])]

= E[F (
(

P[Zt = z|FYs,t]
)

z∈Z |)]
= E[F (

(

P[Zt−s = z|FYt−s]
)

z∈Z |)]
= 〈Φ, h(·, t− s, F )〉.

This proves the second claim. Since t 7→ 〈Φ, h(·, t, F )〉 and t 7→ 〈Φ, h(·, t, F )〉 are bounded by compact-
ness of ∆ and continuity of F , the limits for t → ∞ exist, and induce invariant measures Φ0 and Φ1,
by

〈Φ0, F 〉 = lim
t→∞
〈Φ, h(·, t, F )〉

and
〈Φ1, F 〉 = lim

t→∞
〈Φ, h(·, t, F )〉

for all F ∈ CC(∆). By Eq. (98), and since C(∆) is the closure of linear combination of elements in
CC(∆), this implies the convergence in distribution for t→∞

(

P[Zt = z|FYt ∨ FZ0 ]
)

z∈Z → Φ1

and analogously
(

P[Zt = z|FYt ]
)

z∈Z → Φ0.

This is exactly the claimed convergence of (Πt)t≥0 for Π0 = µ, if we prove that Φ0 is the unique
invariant measure. We first prove that Φ0 is the minimal invariant measure and Φ1 is the maximal
one. Let Φ be an arbitrary invariant measure, then for any t ≥ 0 because of the convexity of h(·, t, F )
and the definition of Φ and Φ as minimal and maximal, respectively

〈Φ, h(·, t, F )〉 ≤ 〈Φ, h(·, t, F )〉 ≤ 〈Φ, h(·, t, F )〉.

Now, 〈Φ, h(·, t, F )〉 = 〈Φ, h(·, 0, F )〉 = 〈Φ, F 〉 constant for all t ≥ 0 and hence when t→∞

〈Φ0, F 〉 ≤ 〈Φ, F 〉 ≤ 〈Φ1, F 〉.

This proves, that Φ0 and Φ1 define the minimal and maximal invariant measure.
In the derivations above we used that the PDMP is time-homogeneous. Since we were only in-

terested in distributions, this allowed - by time shifts of the Markov semigroup - to fix the random
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variable at a particular t. Then we conditioned on different sigma-algebra to make use of Jensen’s
inequality, instead of varying both the random variable and the sigma-algebra with respect to time.
This strategy will now again be used to prove that the minimal and maximal invariant measure co-
incide. To this end, let (Z̃t)t∈R be the stationary CTMC on the full real axis. And let (Ỹt)t∈R

be the corresponding integer-valued doubly stochastic Poisson process, i.e., there are sigma-algebras

F Z̃s,t := σ(Z̃u : s ≤ u ≤ t), F Ỹs,t := σ(Ỹv − Ỹu : s ≤ u ≤ v ≤ t) and F Z̃,Ỹs,t := F Ỹs,t ∨ F Z̃−∞,∞, such that

E[

∫ t

s

Cu dỸu] = E[

∫ t

s

Cuλ(Z̃u) du]

for all (Cu)s≤u≤t that are F Z̃,Ỹs,u -predictable. Then

(P[Z̃0 = z|F Ỹ−∞,0 ∨ F−∞,−n])z∈Z (99)

agrees in distribution with
(P[Zn = z|FYn ∨ FZ0 ])z∈Z ,

hence the limit of expression (99) for n→∞ is distributed as Φ1. Analogously,

(P[Z̃0 = z|F Ỹ−n,0])z∈Z (100)

agrees in distribution with
(P[Zn = z|FYn ])z∈Z ,

hence the limit of expression (100) for n→∞ is distributed as Φ0. By Levy’s downwards theorem the
expression (99) converges almost surely to

(P[Z̃0 = z|F Ỹ−∞,0 ∨
⋂

n≥0

F−∞,−n])z∈Z ,

and by Levy’s upwards theorem the expression (100) converges almost surely to

(P[Z̃0 = z|F Ỹ−∞,0])z∈Z .

By the ergodicity of the CTMC (Zt)t≥0 the sigma-algebra
⋂

n≥0 F−∞,−n is trivial and consequently,
the limits agree and in particular Φ0 and Φ1 agree. This concludes the proof.

The existence and uniqueness of an invariant measure for a PDMP, as well as ergodicity, are often
established via properties of the EMC, see the remark 4.31. The existence of an invariant measure is
linked to recurrence, or weaker, irreducibility combined with a compactness property, see [130, theorem
4.2]. Since the state space of the EMC is continuous, concepts such as ϕ-irreducibility, ϕ-recurrence
or Harris recurrence are needed. We refer the interested reader to Asmussen [131, §VI.1, p.168-171 &
§VII.3, p.198-206] for a collection of results and the link to regenerative processes and to Meyn and
Tweedie [132] for a compendium of results for Markov chains on general state spaces. If existence,
uniqueness or ergodicity could be shown for the embedded chain, it remains to transfer the property to
the PDMP. Conditions under which properties are transferable have been derived in the equivalence
results on ergodicity, recurrence and stability for the PDMP and its embedded chain [127].

Remark 4.33. The link between the set of stationary distributions of the EMC and the stationary
distributions of the PDMP was established for the first time in [123]. A simple sufficient condition
that guarantees the one-to-one-correspondence between both is the existence of constants λ1, λ2 > 0,
such that for all t ≥ 0

λ1 ≤ λ̂t ≤ λ2. (101)

We state and prove in the following that the condition is satisfied by the Snyder filter.

Theorem 4.34. Let (Zt)t≥0 be an irreducible CTMC on the finite state space Z. Then the piecewise-
deterministic Markov process given by the Snyder filter in proposition 2.10 satisfies the condition (101).
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We first introduce the proof idea and the notation required for the proof. Let Z0 := {z ∈ Z;λ(z) =
0} the set of zero-states. As above denote the state space of the PDMP by ∆ = {π ∈ R

|Z|
≥0 ;

∑

z∈Z π(z) =

1}, which is compact in the hyperplaneH := {π ∈ R|Z|;
∑

z∈Z π(z) = 1}. We construct a subset ∆̃ ⊆ ∆
which (i) is positively invariant under the flow F of the filtering equation (positively indicates forward
in time), namely under

F (π) := Aπ − (diag(λ(z)z∈Z)− l(π) I|Z|)π,

(ii) satisfies l(π) ≥ λ1 for all π ∈ ∆̃ for a global λ1 > 0 and (iii) contains the initial condition Π0

as well as all Πσi
for jump times σi. The construction of ∆̃ is recursive in k = |S| with S ⊆ Z0. In

each recursion step we construct a convex polytope ∆k ⊆ ∆ in the ambient space H that is positively
invariant, starting from ∆0 := ∆. Intuitively, ∆̃ is constructed by cutting off the vertices of Z0 first,
the edges of Z0 next and continuing with the higher dimensional faces until the convex hull of Z0 is
entirely removed, thereby always cutting parallel to the faces.

For the proof we require the following notions from the theory on convex polytopes. A convex
polytope is the convex hull of finitely many points or, equivalently, the intersection of closed half
spaces. A closed half-space H is given by a normal vector nH and a vector πH via H = {π ∈ H :
〈π − πH , nH〉 ≥ 0}. Since we work in the ambient space H, the normal vector nH is contained in the
tangent vector space TH = {π ∈ R|Z|;

∑

z∈Z π(z) = 0} of H and πH ∈ H. The normal vector nH is
pointing inward. To each half space H, a supporting hyperplane h := {π ∈ H : 〈π − πH , nH〉 = 0} is
assigned. A convex polytope, given by half spaces H1, · · · , Hn, is positively invariant under F , if for
all boundary points

π : π ∈ hi ⇒ 〈F (π), nHi
〉 ≥ 0. (102)

In particular, if the boundary point lies in the intersection hi ∩ hj , it must satisfy the condition for
both.

Define the vertices of ∆ as πz with πz(z′) = δzz′ for all z′ ∈ Z and πS = 1/|S|∑z∈S π
z. For each

S ⊆ Z define the corresponding face

BS := conv{πz : z ∈ S} = {π ∈ ∆ : π(z) = 0 for all z ∈ SC}.

For simplicity we introduce B := BZ0
. Clearly, S ⊆ S′ ⇒ BS ⊆ BS′ . Denote by B̊S the interior of BS

in the subspace topology on BS , i.e.,

B̊S = BS\
⋃

S′:S′(S

BS′ = {π ∈ ∆ : π(z) > 0⇔ z ∈ S}.

Now, for each S ⊆ Z, we define the vector

nS :=
∑

z∈SC

απz −
∑

z∈S
βπz,

where α, β > 0 depend on S and are chosen such that
∑

z∈Z nS(z) = 0 and ‖nS‖ = 1.

Remark 4.35. The vector nS is a normal vector for BS and points inward of ∆. More precisely, the set
hS := {π ∈ H : 〈π−πS , nS〉 = 0} is a supporting hyperplane of ∆, i.e., ∆ ⊆ {π ∈ H : 〈π−πS , nS〉 ≥ 0}.
Furthermore, it holds hS ∩∆ = BS .

Proof. For all π ∈ ∆

〈π − πS , nS〉 =
∑

z/∈S
απ(z)πz(z)−

∑

z∈S
βπ(z)πz(z) +

∑

z∈S
β · 1

|S|π
z(z)

=
∑

z/∈S
απ(z)−

∑

z∈S
βπ(z) + β

=
∑

z/∈S
(α+ β)π(z) ≥ 0.

Then

BS = {π ∈ ∆; ∀z ∈ SC : π(z) = 0} = {π ∈ ∆;
∑

z/∈S
π(z) = 0} = {π ∈ ∆; 〈π − πS , nS〉 = 0}.
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Lemma 4.36. Let S ⊆ Z0. Under the conditions of the theorem 4.34 for each π ∈ B̊S it holds
〈F (π), nS〉 > 0.

Proof. Let π ∈ B̊S ⊆ B. Since π(z) = 0 for all z /∈ Z0, we obtain l(π) = 0 and diag(λ(z)z∈Z)π = 0
and hence F (π) = Aπ. Then by using Eq. (3)

〈F (π), nS〉 =α
∑

z/∈S
〈Aπ, πz〉 − β

∑

z∈S
〈Aπ, πz〉

= lim
h→0

h−1α
∑

z′∈S
P[Zt+h /∈ S|Zt = z′]π(z′)− lim

h→0
h−1β

∑

z′∈S
(P[Zt+h ∈ S|Zt = z′]− 1)π(z′)

= lim
h→0

h−1(α+ β)
∑

z′∈S
P[Zt+h /∈ S|Zt = z′]π(z′).

Each summand is non-negative. Since A is irreducible and S 6= Z, we obtain limh→0 h
−1P[Zt+h /∈

S|Zt = z′] > 0 for at least one z′ ∈ S. Hence the sum is strictly positive.

Lemma 4.37. Let D ⊆ ∆ be a compact set with D∩BS ⊆ B̊S. Then there exists an εS > 0 such that
for all π ∈ D with 〈π − πS , nS〉 = εS it holds 〈F (π), nS〉 ≥ 0.

Proof of lemma 4.37. The proof uses the remark 4.35 and lemma 4.36. The property of lemma 4.36
holds for all π in the compact set D ∩ BS . Since π 7→ 〈F (π), nS〉 is continuous, its minimum MS is
assumed on D ∩BS and is strictly positive. Again by continuity, there is a set US ⊆ D, which is open
in D, contains D ∩BS and on which 〈F (π), nS〉 > MS/2. The complement D\US is closed and hence
compact as a subset of the compact set D. Now we write, by using BS = hS ∩∆ from remark 4.35,

D ∩BS = {π ∈ D : 〈π − πS , nS〉 = 0}.

By the choice of US ⊇ D ∩ BS , every π ∈ D\US is in the complement of D ∩ BS . and thus satisfies
〈π − πS , nS〉 > 0. Hence, the continuous function π 7→ 〈π − πS , nS〉 assumes its strictly positive
minimum mS on D\US . For εS := mS/2 it then holds that all π ∈ D\US satisfy 〈π − πS , nS〉 > εS ,
thus

π ∈ D, 〈π − πS , nS〉 ≤ εS ⇒ π ∈ US
⇒ 〈F (π), nS〉 > MS/2 ≥ 0.

Proof of theorem 4.34. Clearly, λ̂t ≤ max{λ(z) : z ∈ Z} < ∞. It remains to prove the lower bound.
We claim that for each k = 0, . . . , |Z0| we can define a convex polytope ∆k that is positively invariant
and for which ∆k ∩BS = ∅ for all S ⊆ Z0 with |S| = k. Start the recursive construction by ∆0 := ∆.
Clearly, ∆0 is positively invariant under F . Now assume, that ∆k−1 with the above properties has
been constructed, then ∆k−1 ∩BS ⊆ B̊S for all |S| = k. Define

∆k := ∆k−1 ∩
⋂

S⊆Z0,|S|=k
{π ∈ H : 〈π − πS , nS〉 ≥ εS} (103)

with εS as in lemma 4.37 for D = ∆k−1. Then

• ∆k is a polytope. To see this, let πH satisfy 〈πH − πS , nS〉 = εS . Then

〈π − πS , nS〉 = 〈π − πH + πH − πS , nS〉 = 〈π − πH , nS〉+ εS

hence 〈π − πS , nS〉 ≥ εS ⇔ 〈π − πH , nS〉 ≥ 0. Consequently, each condition 〈π − πS , nS〉 ≥ εS
defines a half space.

• For all π ∈ BS : 〈π − πS , nS〉 = 0 < εS and hence ∆k ∩BS = ∅ for all S ⊆ Z0 with |S| = k.
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• ∆k is positively invariant, because in the defining Eq. (103), we may replace ∆k−1 by the inter-
section of halfspaces H1, . . . ,Hn. Then each boundary point of ∆k that lies in a corresponding
hyperplane hi satisfies the condition (102) by the induction assumption. Each boundary point
of ∆k that lies in the hyperplane {π ∈ H : 〈π − πS , nS〉 = εS} satisfies the condition (102) by
lemma 4.37.

Hence, the induction step is completed. For the positively invariant ∆̃ := ∆|Z0| and ε := εZ0
, we have

by construction in Eq. (103) for all π ∈ ∆̃: 〈π − πZ0 , nZ0〉 ≥ ε and hence

l(π) =
∑

z∈Z
π(z)λ(z) =

∑

z/∈Z0

π(z)λ(z)

≥ min{λ(z) : z /∈ Z0}
∑

z/∈Z0

π(z)

≥ min{λ(z) : z /∈ Z0} ·
ε

α+ β
=: λ1 > 0.

Finally, we have that Πσi
∈ {π ∈ ∆ :

∑

z∈Z0
π(z) = 0}, which is compact and has empty intersection

with B. Hence it has a positive distance from B. And Π0 /∈ B because it is the stationary distribution
of Zt which satisfies Π0(z) > 0 because A is irreducible. Then by choosing εS , S ⊆ Z0 small enough,
the uniformly positive distance from B guarantees that Π0 and Πσi

, i = 1, 2, . . . are in ∆k for every
k = 1, . . . , |Z0|, in particular in ∆̃.

It is beyond the scope of this work to investigate the exact conditions on the local characteristics
(m, g) of a BReT-P, for which (i) a unique invariant measure exists and (ii) the BReT-P is ergodic,
meaning that it converges in distribution to (τ∞, θ∞) independent of the initial distribution. An
example of a non-ergodic process (τ(t), θ(t)) was investigated in [133]. We assume for the remainder of
this thesis that (m, g) is such that (i) and (ii) hold. Furthermore, we assume that m : [0,∞)×E → R>0

is continuous. Then λ̂t = m(τt, θt) converges in distribution to the ACID. In case it admits a density, we
denote it m 7→ pλ(m). Furthermore, we assume that the families {φ(λ̂t) : t ≥ 0} and {`(λ̂t, µ̂t) : t ≥ 0}
are uniformly integrable. Then the convergence of the means (not to be confused with L1-convergence)
is guaranteed [134, Appendix, Prop 2.3, p.494] in theorem 5.1. The condition (101) is sufficient for
the uniform integrability, since φ and ` restricted to the domains [λ1, λ2] and [λ1, λ2] × [µ1, µ2] are
bounded.

Ergodicity allows us to replace the initial distribution by an absolutely continuous one, which
makes the evolution equation (90) and the stationarity equation (91) valid. Also, since we are merely
interested in the asymptotic properties, we may assume that the Dirac-PDMP or the BReT-P is
initialized in the stationary distribution. This assumption implicitly underlies the remark 4.16 and
the definition 4.17 of the dimension. This guarantees that it is possible to reduce the dimension of
the state variables of joint Markovian progression already before the first jump in remark 4.16. For
instance, the Snyder filter, proposition 2.10, is originally initialized in the stationary distribution of
the signal process (Zt)t≥0, i.e., in a fixed state of the state space ∆. This is because FY0 = {∅,Ω} and
by definition Π0(z) = P[Z0 = z|FY0 ] = P[Z0 = z]. However, a stationary version can be interpreted
as induced by a doubly stochastic Poisson process (Yt)t∈R on the whole real axis as in the proof of
theorem 4.32. In one example below, section 9.2, we additionally treat the transient behavior, i.e.,
capturing explicitly the behavior before the occurrence of the first jump.

4.2.4 Joint master equation

Building on the master equation (90) for a one-dimensional counting process, we next provide the
corresponding equations for a CRN in a random environment. These are hybrid master equations
for a general set of reaction channels and finite dimensional sufficient statistics. As before, integral
boundary conditions are needed for a complete description. For the BReT-P with mj and gj as in
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definition 4.11

∂tp(t, x, τ, θ) = −
M
∑

j=1

mj(x, τ, θ)p(t, x, τ, θ)−
M
∑

j=1

∂τp(t, x, τ, θ) (104)

∫

B

p(t, x, 0, θ) dθ =

M
∑

j=1

∫

gj(x−νj ,τ,θ)∈B
mj(x− νj , τ, θ)p(t, x− νj , τ, θ) dθ dτ (105)

for any B ∈ B(E). The characteristic feature of the probability evolution equation is the partial
derivative with respect to the sufficient statistic.

For the marginal evolution equation of p(t, x), we depart from the Kolmogorov backward equation,
and use the tower property on the filtration Ft generated by the sufficient statistics

∂tp(t, x) =∂tE[1(Xt = x)]

=

M
∑

j=1

E[aj(Zt, x− νj)1(Xt = x− νj)]−
M
∑

j=1

E[aj(Zt, x)1(Xt = x)]

=

M
∑

j=1

E[E[aj(Zt, x− νj) | Ft]1(Xt = x− νj)]−
M
∑

j=1

E[E[aj(Zt, x) | Ft]1(Xt = x)]

=

M
∑

j=1

E[mj(x− νj , τt, θt)1(Xt = x− νj)]−
M
∑

j=1

E[mj(x, τt, θt)1(Xt = x)]

=

M
∑

j=1

E[mj(x− νj , τt, θt) | Xt = x− νj ]p(t, x− νj)−
M
∑

j=1

E[mj(x, τt, θt) | Xt = x]p(t, x).

Alternatively, marginalizing out sufficient statistics from Eqs. (104)-(105), we obtained
∫ ∞

0

∫

E
∂τp(t, x, τ, θ) dθ dτ = 0−

∫

E
p(t, x, 0, θ) dθ

= −
M
∑

j=1

∫

gj(x−νj ,τ,θ)∈E
mj(x− νj , τ, θ)p(t, x− νj , τ, θ) dθ dτ

= −
M
∑

j=1

∫ ∞

0

∫

E
mj(x− νj , τ, θ)p(t, x− νj , τ, θ) dθ dτ

= −
M
∑

j=1

E[mj(x− νj , τt−, θt−) | Xt = x− νj ]p(t, x− νj)

and hence

∂tp(t, x) =
M
∑

j=1

E[mj(x−νj , τt, θt) | Xt = x−νj ]p(t, x−νj)−
M
∑

j=1

E[mj(x, τt, θt) | Xt = x]p(t, x). (106)

We recover the familiar structure of probability inflow and outflow terms in the marginal master
equation. The derivation illustrated how the inflow term corresponds to terms in the fine-grained joint
master equation with sufficient statistics, namely the partial derivative with respect to the sufficient
statistic, Eq. (104) in combination with the boundary condition, Eq. (105).

4.3 Moment evolution equation

In the previous section we assumed, there are finitely many sufficient state variables θ of joint Markovian
progression that describe the filter distribution or an approximation thereof. In general, however, the
filter distribution is a measure-valued Markov process. We describe its evolution equation for moments
of test functions. First, introduce the following operator notation for the filter equation.
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4.3.1 Operator notation for the measure-valued filter equation

The measure-valued random variable Πt evolves as

dΠt(z) = (AΠt)(z)dt+
∑

j

(hj(z)− 〈hj ,Πt−〉)Πt−(z)
〈hj ,Πt−〉

(dYj(t)− cj(x)〈hj ,Πt−〉dt).

Or with the pointwise multiplication operator (Mfπ)(z) := f(z)π(z)

dΠt = (AΠt)dt+
∑

j

(Mhj
− 〈hj ,Πt−〉)Πt−
〈hj ,Πt−〉

(dYj(t)− cj(x)〈hj ,Πt−〉dt).

Then the joint process (Xt,Πt) is a piecewise-deterministic Markov process.

4.3.2 Moment equation

Let us now consider test functions in the multiplicative form ϕ(x, π) = c(x) · 〈h, π〉, where 〈h, ·〉 is a
linear functional. This covers all conditional expectations Eπ[ϕ(Z)] via

h(π) = hϕ(π) =

∫

ϕ(z)π(z) dz.

According to the Ito transformation rule for piecewise-deterministic Markov process we obtain

dϕ(Xt,Πt) =
∂ϕ

∂π
AΠt−dt+

∑

j

∂ϕ

∂π
cj(Xt)(〈hj ,Πt〉 −Mhj

)Πtdt

+
∑

j

{

ϕ

(

Xt + νj ,
Mhj

Πt−
〈hj ,Πt−〉

)

− ϕ(Xt−,Πt−)

}

dYj(t)

= c(Xt)〈A†h,Πt〉
+ c(Xt)

∑

j

cj(Xt)(〈h,Πt〉〈hj ,Πt〉 − 〈h,Mhj
Πt〉)dt

+
∑

j

{

c(Xt + νj)
〈h,Mhj

Πt−〉
〈hj ,Πt−〉

− c(Xt)〈h,Πt−〉
}

dYj(t).

For h = hϕ this reads

dϕ(Xt,Πt) = c(Xt)〈A†ϕ,Πt〉
+ c(Xt)

∑

j

cj(Xt)(〈ϕ,Πt〉〈hj ,Πt〉 − 〈ϕhj ,Πt〉)dt

+
∑

j

{

c(Xt + νj)
〈ϕhj ,Πt−〉
〈hj ,Πt−〉

− c(Xt)〈ϕ,Πt−〉
}

dYj(t)

= c(Xt)EΠt
[A†ϕ]

+ c(Xt)
∑

j

cj(Xt)(EΠt
[ϕ(Zt)]EΠt

[hj(Zt)]− EΠt
[ϕ(Zt)hj(Zt)])dt

+
∑

j

{

c(Xt + νj)
EΠt−

[ϕ(Zt−)hj(Zt−)])

EΠt−
[hj(Zt−)]

− c(Xt)EΠt−
[ϕ(Zt−)]

}

dYj(t).

The left hand side is c(Xt)EΠt
[ϕ(Zt)]. Upon using the martingale increments dYj(t)−cj(Xt)〈hj ,Πt−〉dt

we arrive at

d

dt
E[c(Xt)〈ϕ,Πt〉] = E[c(Xt)〈A†ϕ,Πt〉] +

∑

j

E[{c(Xt + νj)− c(Xt)}cj(Xt)〈ϕhj ,Πt〉] (107)
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The left hand side is simply

d

dt
E[c(Xt)〈ϕ,Πt〉] =

d

dt
E[c(Xt)E[ϕ(Zt)|X[0,t]]] =

d

dt
E[c(Xt)ϕ(Zt)],

whereas the right hand side is composed of the prior dynamics of the environment and the change due
to jumps in X

E[{c(Xt + νj)− c(Xt)}cj(Xt)〈ϕhj ,Πt〉] = E[{c(Xt + νj)− c(Xt)}cj(Xt)E[ϕ(Zt)hj(Zt)|X[0,t]]]

= E[{c(Xt + νj)− c(Xt)}ϕ(Zt)λj(Xt, Zt)].

This establishes the equivalence with the Kolmogorov backward equation for the joint system for mul-
tiplicative moments c(Xt)ϕ(Zt). The linking identity is the tower property of conditional expectations.
For non-linear functionals of Πt, we expect differing evolution equations. The conditional variance is
such a non-linear functional. In the paragraph 4.5 below we elaborate more on the equivalence of
master equations via the tower property.

4.4 Variance of Markov-modulated and self-exciting counting process

In subsection 3.3 we introduced the asymptotic variance slope for Markov-modulated Poisson processes.
Here, we cover the analogous results for a large class of self-exciting counting processes, which includes
the marginal counting processes obtained by the multinomial filters. Namely, we assume that the
(multivariate) counting process Y ∈ Nd is driven by the intensity vector λt = CΘt− + α,C ∈ Rd×l

with the global parameter vector Θt ∈ Rl governed by the stochastic evolution equation

dΘt = −A(Θt − Θ̄) dt+ V (t)diag−1(λt)( dYt − λt dt), (108)

where A ∈ Rl×l and V (t) ∈ Rl×d is a (predictable) process mimicking the conditional covariance. Then
we obtain the central result analogous to Eq. (33)

lim
t→∞

Cov[Yt]

t
= diag(Eλ∞) + C(A−1E[V (∞)] + E[V (∞)T ]A−T +A−1Cov[Θ∞] + Cov[Θ∞]A−T )CT .

(109)

The proof uses martingale techniques. By the Doob-Meyer decomposition for counting processes,
decompose Yt = Qt +

∫ t

0
λu du, where Qt is a (multivariate) mean-zero martingale. Then we compute

E[(Yt − E[Yt])(Yt − E[Yt])
T ]

=E

[(

Qt + C

∫ t

0

Θ(u)− Θ̄ du

)(

QTt +

∫ t

0

Θ(u)T − Θ̄T du CT
)]

=E

[∫ t

0

I+CA−1(I− exp(−A(t− u)))V (u) diag−1(λu) dQu×
(∫ t

0

I+CA−1(I− exp(−A(t− u)))V (u) diag−1(λu) dQu

)T
]

=

∫ t

0

E
{

I+CA−1(I− exp(A(u− t)))V (u) diag−1(λu)
}

diag(λu)×
{

diag−1(λu)V (u)T (I− exp(AT (u− t)))A−TCT + I
}

du

=

∫ t

0

E[diag(λu)] du

+

∫ t

0

CA−1(I− exp(−A(t− u)))E[V (u)] + E[V (u)]T (I− exp(−AT (t− u)))A−TCT du

+ CA−1

∫ t

0

(I− exp(−A(t− u)))E
[

V (u) diag−1(λu)V (u)T
]

(I− exp(−AT (t− u))) du A−TCT .

(110)
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Furthermore, we apply the Ito formula for counting processes to derive the evolution equation

dΘtΘ
T
t =−A(Θt − Θ̄)ΘTt −Θt(Θt − Θ̄)TAT + V (t) diag−1(λt)V (t)T dt

+Θt dQ
T
t diag−1(λt)V (t)T + V (t)T diag−1(λt) dQtΘ

T
t

+ V (t) diag−1(λt) diag( dQt) diag
−1(λt)V (t)T .

Taking expectations on both sides we obtain

d

dt
E
[

ΘtΘ
T
t

]

= −ACov[Θt]− Cov[Θt]A
T + E

[

V (t) diag−1(λt)V (t)T
]

, (111)

which at stationarity equals zero. Then from Eq. (110), with only the terms multiplied by I surviving
and using Eq. (111) equal to zero, we obtain the asymptotic behavior

lim
t→∞

t−1E[(Yt − E[Yt])(Yt − E[Yt])
T ]

= diag(Eλ∞) + CA−1E[V (∞)] + E[V (∞)T ]A−TCT

+ C(A−1Cov[Θ(∞)] + Cov[Θ(∞)]A−T )CT .

The variance result applies to the scenario of approximate marginal simulation via approximate filters,
see subsection 8.1.5.

Corollary 4.38. For d = l = 1, the asymptotic variance reads

lim
t→∞

t−1Var[Yt] = Eλ∞ +
2(CE[V (∞)] + C2Var[Θ∞])

A
. (112)

and the asymptotic Fano factor, correspondingly,

lim
t→∞

F[Yt] = 1 +
2(CE[V (∞)] + C2Var[Θ∞])

Eλ∞A
. (113)

If λt = Θt, C = 1 in the Snyder filter, then

lim
t→∞

t−1Var[Yt] = EΘ∞ +
2(E[V (∞)] + Var[Θ∞])

A
. (114)

For the Fano factor, correspondingly,

lim
t→∞

F[Yt] = 1 +
2(E[V (∞)] + Var[Θ∞])

EΘ∞A
. (115)

4.5 Unifying approach

We have taken the routes via stochastic conditioning on either the environment or the subnetwork
to arrive at generalized master equations. While the evolution equations may differ, the function
that solves it is the same. However, the different routes can be taken as starting points for different
approximation. As a summary, we present the unified version of the generalized master equations,
which highlights the equivalence of approaches. The unifying class of generalized master equations,
with the bracket 〈·〉 denoting the expectation, reads

∂tp(t, x) =

M
∑

j=1

〈E[aj(Zt, x− νj)1(Xt = x− νj) | Ft]〉 −
M
∑

j=1

〈E[aj(Zt, x)1(Xt = x) | Ft]〉

=































∑M
j=1〈Zj(t)λj(x− νj)p(t, x− νj | Ft)〉 − 〈Zj(t)λj(x)p(t, x | Ft)〉,

if Ft contains σ(Zt)

∑M
j=1〈E[Zj(t) | Ft]λj(x− νj)1(Xt = x− νj)〉 − 〈E[Zj(t) | Ft]λj(x)1(Xt = x)〉,

if Ft contains σ(Xt)

(116)

69



and in both cases we assumed the form aj(z, x) = zjλj(x).
As a characteristic feature each generalized master equation for CRNs in random environment

requires the expected value of its propensities at jump times. To evaluate this expected value, the
unifying approach suggests to use the tower property of conditional expectations. The choice of the
sigma-algebra that we condition on in the intermediate step determines which approach is taken.
Section 3.5 corresponded to Ft = σ(Zs; s ∈ [0, t]) and section 4.2 to Ft = σ(Xs; s ∈ [0, t]). The method
of conditional moments [34] is obtained, when choosing the j- and x-dependent F (j,x)

t = σ({Xt =

x−νj}) in the first sum and F (x)
t = σ({Xt = x}) in the second sum. In that case the summands in the

last line simplify to E[Zj(t) | Xt = x− νj ]λj(x− νj)p(t, x− νj)−E[Zj(t) | Xt = x]λj(x)p(t, x). Öcal et
al. [80] chose Ft = σ(Xt) along with a Markovian projection for the KL divergence as an information
theoretic loss.

5 Information-theoretic applications

The results obtained in the previous section contribute to the problem of estimating information mea-
sures for CRNs. From the perspective of information transmission in general CRNs, the discrete nature
of the reaction events, i.e., Poissonian observations, as opposed to continuous (Gaussian) observations,
is of interest. When we model the characteristics of the low copy number regime (as opposed to
approximating via a Gaussian diffusion), this discreteness can bring to attention the bottleneck char-
acter of sensor molecules. Namely, the signal they sense may be a concentration of a high copy number
transmitter, but their synthesis events are restricted to the discrete regime [135, 136]. Furthermore,
Poissonian channels are suited for the inclusion of temporal effects because they are capable of mod-
eling time-varying inputs and outputs. However, computing the path MI over Poissonian channels
remains difficult. Many works of research resort to basing the MI on single time-point marginals ig-
noring any encoding in the temporal profile [137, 138, 139]. Other approaches include: (i) Gaussian
approximations of the input to make use of analytic results [135], (ii) Monte Carlo estimators [140,
141, 83, 142]. (iii) Often, the intractability decoyed researchers to resort to other channels such as the
Gaussian channel [143, 144].

This Poisson channel naturally appears in the setting of CRNs in a random environment as we
defined it, because its stochastic rates are the input to the channel and the reaction counters are its
output. Namely, the Eq. (56) defines an information-theoretic channel, that transmits information
from Zt and Xt to Yt. Assuming the condition (C4), the channel is the Poisson channel with input Zt
and output Yt. Much is already known about the Poisson channel. In particular, its capacity under
amplitude constraint λ(Zt) ∈ [0, c] was determined by Kabanov [61] shortly after its introduction.
However, the capacity-achieving input distribution is found to switch infinitely fast between 0 and c
[61, 145]. This flaw in terms of physical interpretability was addressed by adding constraints on the
bandwidth [146, 147, 82]. While reducing the class of input processes this necessitates to review the
task of computing the mutual information (MI) between trajectories.

The definition of the MI depends on the Radon-Nikodym-derivative between probability measures
over the joint trajectories of input and output process. More precisely, if µZ,YT is the probability
measure of joint paths {(Zt, Yt), 0 ≤ t ≤ T} as specified by the doubly stochastic Poisson process,
whereas µZT and µYT are the measures for marginals {Zt, 0 ≤ t ≤ T} and {Yt, 0 ≤ t ≤ T} with the
product measure µZT × µYT of joint paths, then the MI and the mutual information rate (MIR) are

I(Z[0,T ], Y[0,T ]) := E

[

ln
dµZ,YT

d(µZT × µYT )

]

, I(Z, Y ) = lim
T→∞

1

T
I(Z[0,T ], Y[0,T ]) (117)

The definition, although complicated, is sometimes taken as a departure for computations [90]. Alter-
natively, at least two strategies of computing or estimating the MI for the Poisson channel are usually
considered. The first one represents the MI as the difference between the entropy of the output and
the conditional entropy of the output given the input [141, 142]. The second one uses the expression
obtained by Liptser [148].

Besides the path MI, we are motivated to look at the relative entropy and the relative entropy rate
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(RER) between path measures P and Q for the counting process (Yt)t≥0

D(PT ‖QT ) := EP

[

ln
dPT

dQT

]

, D(P‖Q) := lim
T→∞

1

T
D(PT ‖QT ). (118)

Here, for T > 0 denote by PT (QT ) the corresponding path measure of (Yt)0≤t≤T , i.e., the restriction
of P (Q) to FYT . When we compare stochastic processes, the relative entropy, also known as Kullback-
Leibler (KL) divergence in the literature, serves as an information measure to assess their similarity.
As an application in statistics, due to its definition as the expectation of the logarithm of the likelihood
ratio, the relative entropy is also closely related to sequential probability ratio tests [149]. For similar
applications in optimal control and finance see [59, §VII] for intensity control and [150, 151] for dynamic
pricing in finance. Statistical estimators for the RER in case of piecewise constant intensities are given
in the form of Monte Carlo estimates in [152], which uses the RER for sensitivity analysis with respect
to system parameters.

5.1 Information measures and the conditional intensity

The main purpose of this section is the link between the ACID, definition 4.19, and information-
theoretic quantities related to counting processes. Since we opt for asymptotic information-theoretic
quantities that complement transient ones and are simpler to compute, we assume stationarity as
defined in the this definition. A simulation-free way to compute the ACID is presented in section
5.2.4. We demonstrate that the CI and the ACID appear in expressions for Eq. (117) and (118), two
information-theoretic quantities related to counting processes. Both can be conveniently expressed
by means of the so-called natural loss function [85], defined as ` : R≥0 × R>0 → R≥0, `(x, x̂) =
x ln(x/x̂)− x+ x̂.

Theorem 5.1. Let φ : R≥0 → R, φ(z) := z ln z if z > 0 and φ(0) = 0.

1. Let (Yt)t≥0 be a doubly stochastic Poisson process with the FZ,Yt -intensity λt = λ(Zt) and (Zt)t≥0

its modulating process. Let (λ̂t)t≥0 be the conditional intensity of (Yt)t≥0. Then for the path
mutual information it holds

I(Z[0,T ], Y[0,T ]) =

∫ T

0

E[φ(λt)]− E[φ(λ̂t)] dt (119)

=

∫ T

0

E[`(λt, λ̂t)] dt. (120)

2. Suppose, additionally, that (λt)t≥0 is a stationary process. Furthermore, suppose (Yt)t≥0 is

asymptotically stationary, and {φ(λt) : 0 ≤ t < ∞} as well as {φ(λ̂t) : 0 ≤ t < ∞} are
uniformly integrable, then

I(Z, Y ) = E[φ(λ∞)]− E[φ(λ̂∞)], (121)

where λ̂∞ is distributed according to the ACID and λ∞ is distributed according to the stationary
distribution of (λt)t≥0.

3. Let (Yt)t≥0 be a counting processes on (Ω,F) with the conditional P-intensity (λ̂t)t≥0 and the
conditional Q-intensity (µ̂t)t≥0, respectively. For T > 0 denote by PT (QT ) the corresponding
path measure of (Yt)0≤t≤T , i.e., the restriction of P (Q) to FYT . Then the relative entropy between
path measures is

D(PT ‖QT ) = E

[

∫ T

0

`(λ̂t, µ̂t) dt

]

, (122)

where the expectation is taken over the path measure PT .

4. If the joint process (λ̂t, µ̂t)t≥0 converges in distribution on the probability space (Ω,F ,P) to

(λ̂∞, µ̂∞) and {`(λ̂t, µ̂t) : 0 ≤ t <∞} is uniformly integrable, then

D(P‖Q) := lim
T→∞

1

T
D(PT ‖QT ) = EP

[

`(λ̂∞, µ̂∞)
]

. (123)
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Proof. 1. According to Liptser [148, §19.5, Corollary, Eq. (19.140) and after, p.347-348]

I(Z[0,T ], Y[0,T ]) =

∫ T

0

E[λt lnλt − λ̂t ln λ̂t] dt

=

∫ T

0

E[λt ln
λt

λ̂t
+ (λt − λ̂t) ln λ̂t − λt + λ̂t] dt

=

∫ T

0

E[λt ln
λt

λ̂t
+ E[λt − λ̂t|FYt ] ln λ̂t − λt + λ̂t] dt

=

∫ T

0

E[`(λt, λ̂t)] dt.

2. Since φ is continuous φ(λt)t≥0 and φ(λ̂t)t≥0 also converge in distribution. Then by [134, Ap-
pendix, Prop 2.3, p.494], the means E[φ(λt)] and E[φ(λ̂t)] converge to E[φ(λ∞)] and E[φ(λ̂∞)]
and the l’Hospital rule proves the claim.

3. By [59, §VI.6., remark after theorem T12, p.188] the Radon-Nikodym derivative is

dPT

dQT
=
∏

n≥1

λ̂σn

µ̂σn

1(σn ≤ T ) exp
(

∫ T

0

µ̂t − λ̂t dt
)

.

Then for the relative entropy

EPT

[

ln
dPT

dQT

]

= EPT





∑

n≥1

ln
λ̂σn

µ̂σn

1(σn ≤ T ) +
∫ T

0

µ̂t − λ̂t dt





= EPT

[

∫ T

0

ln
λ̂t
µ̂t

dYt +

∫ T

0

µ̂t − λ̂t dt
]

= EPT

[

∫ T

0

ln
λ̂t
µ̂t
· λ̂t + µ̂t − λ̂t dt

]

= EPT

[

∫ T

0

`(λ̂t, µ̂t) dt

]

.

4. Since ` is continuous `(λ̂t, µ̂t)t≥0 also converges in distribution. Then by [134, Appendix, Prop

2.3, p.494], the mean EP

[

`(λ̂t, µ̂t)
]

converges to EP

[

`(λ̂∞, µ̂∞)
]

and the l’Hospital rule proves

the claim.

Remark 5.2. In Eq. (123) the projection λ̂∞ on the first component of the joint limit (λ̂∞, µ̂∞) is
P-distributed according to the ACID of the conditional P-intensity λ̂t. However, due to the asymmetry
of the relative entropy the projection µ̂∞ on the second component is neither necessarily Q-distributed
nor P-distributed according to the ACID of the conditional Q-intensity µ̂t.

5.2 Simulation-free computation

The difficulty in computing the MI via Eq. (119) clearly lies in the computation of E[φ(λ̂t)]. Different
approaches address this. (i) In case of a stationary input (λt)t≥0, Eq. (121) can simplify the com-
putation. The processes (λt)t≥0 and (λ̂t)t≥0 can be confined to the moments E[φ(·)] of their limiting
distributions. (ii) Properties of the function φ can be used. For instance φ is Lipschitz continuous
on bounded intervals, which was used for a reduction to second order moments of λ̂∞ for bounded λ
[61]. The non-negative third derivative of φ was used in a similar way [82]. (iii) Kabanov and Davis
used martingale theory with its rich second order analysis tools. (iv) The conditioning on a coarser
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sigma-field [147] or the use of a suboptimal estimator [82] provided upper bounds. (v) Alternatively,
one needs to have the knack for choosing tractable input process classes. For example, piecewise-
constant input trajectories, whose amplitudes follow a Markov chain were considered [153]. (vi) Being
an expectation the MI is often estimated via Monte Carlo sampling [140, 83].

Using our results from sections 4.2.1 and 4.2.2, we combined the approaches (i) and (v). In pursuit
of (v), we restrict ourselves to stationary continuous-time Markov chains (Zt)t≥0 with a low number of
input states. For this case, we present a simulation-free method for the computation of the asymptotic
information-theoretic quantities, the MIR, Eq. (121), and the RER, Eq. (123).

This technique is applied in the case studies 9.4.1, 9.4.3 and 8.2.1. In section 9.2 below, we
portray an example that permits an analytic solution for the mutual information, see theorems 9.2
and 9.3 below. Generally, it not possible to compute information-theoretic quantities for the Poisson
channel in analytically closed form. We propose a simulation-free estimation method using the above
filtering and Markov theory to avoid estimation from Monte Carlo simulations. This section provides
an implementation to obtain the ACID, definition 4.19, and the asymptotic information-theoretic
quantities, Eq. (121) and Eq. (123) for the counting processes specified in definition 4.7 and 4.9.

5.2.1 Discretization

We assume that Yt is a BReT-P counting process as in definition 4.14 and we discretize the integral
boundary condition (93). To this end, we assume that p0(θ) is supported on Ω ⊆ Rn. We choose a
partition (Ωi)i=1,...,N with equal volume vol(Ωi) = vol(Ωj) =: ν. For n = 1, this is an equidistant
partition. We discretize p0(θ) as

p0(θ) =

N
∑

i=1

ai1Ωi
(θ)

with unknowns ai and discretize m(τ, θ), respectively ρ(τ, θ), as

m(τ, θ) =

N
∑

i=1

m(τ, θi)1Ωi
(θ), ρ(τ, θ) =

N
∑

i=1

ρ(τ, θi)1Ωi
(θ) (124)

for a choice of representatives θi ∈ Ωi, e.g. the center of Ωi. Define the border crossing time points
τ0(θ

′) := 0 and recursively τk(θ′) := min{τ > τk−1 : g(τ, θ′) ∈ ∂Ωi for some i}. Define I(k, θ′) := i if
g(τ, θ′) ∈ Ωi for τk−1(θ

′) < τ < τk(θ
′). Then for B = Ωi the equation (93) reads

ai =

N
∑

j=1





∑

k:I(k,θ′j)=i

∫ τk(θ
′
j)

τk−1(θ′j)

m(τ, θ′j)ρ(τ, θ
′
j) dτ



 aj

=

N
∑

j=1





∑

k:I(k,θ′j)=i

ρ(τk−1(θ
′
j), θ

′
j)− ρ(τk(θ′j), θ′j)



 aj . (125)

Defining the bracket term as Ai,j , the equation can be written ~a = A~a in matrix form. Observe that
by a telescope sum argument and ρ(0, θ′j) = 1 the matrix A is left stochastic. If A is quasi-positive,
the fixed point equation has a unique non-zero solution by the Perron-Frobenius theorem. Then ~a can
be approximated by taking a column of a large enough power A2L and multiplying by the product of
weight ν and normalization constant E[λ̂∞].

5.2.2 The mutual information rate

We assume that (Yt)t≥0 is an asymptotically stationary MMPP as in definition 2.8 and 4.19 with the
local characteristics (F, l, f) of a corresponding Dirac-PDMP and (m, g) the local characteristics of the
corresponding BReT-P as in Eq. (84) - (85). Let λt → λ∞ in distribution. The MIR is

I(Z, Y ) = E[φ(λ∞)]−
∫ ∫ ∞

0

φ(m(τ, θ))p(τ, θ) dτ dθ. (126)
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The first term is a finite sum. The outer integral can be approximated by

N
∑

i=1

p0(θi)ν

∫ ∞

0

φ(m(τ, θi))ρ(τ, θi) dτ, (127)

where p0(θi) is found as in section 5.2.1. Define the partial integral J(t, θ′) by

J(t, θ′) :=

∫ t

0

φ(m(τ, θ′))ρ(τ, θ′) dτ.

Then for each i, the integral in Eq. (127) is efficiently solved by the joint ODE system, the dot denoting
the τ -derivative,

ρ̇(τ, θi) = −l(Θτ )ρ(τ, θi) (128)

Θ̇τ = F (Θτ ) (129)

J̇(τ, θi) = φ(l(Θτ ))ρ(τ, θi). (130)

The initial conditions are ρ(0, θi) = 1, Θ0 = (θi, v
0
n+1, . . . , v

0
n0
) and J(0, θi) = 0.

Remark 5.3 (J converges to the MIR exponentially fast). If m(τ, θ) ≥ m0 > 0 uniformly over τ, θ,
then ρ(τ, θ) ≤ e−m0τ . Let furthermore m(τ, θ) ≤ R(θ). Then

|J(∞, θ′)− J(t, θ′)| ≤
∫ ∞

t

|φ(m(τ, θ′))|e−m0τ dτ =
max{φ(R(θ′)), 1e}

m0
e−m0t.

In order to obtain exponential convergence of
∫

p0(θ
′)J(t, θ′) dθ′ to the integral in Eq. (126) for t→∞,

it needs to holds that
∫

p0(θ
′)max{φ(R(θ′)), 1

e
} dθ′ <∞.

Sufficient conditions are, for instance, if R is bounded or if θ 7→ R(θ) is linear in θ and the second
moment of p0 exists.

As a summary, a numerical approximation of the MIR can be obtained by solving for J(∞, θi) via
Eq. (128) - (130) and p0(θi) via Eq. (125). The weights in Eq. (125) can be determined on the fly
while solving Eq. (128) - (130).

5.2.3 The relative entropy rate

Let (Yt)t≥0 be an (F, l, f)-counting process with the corresponding BReT-P counting process charac-
teristics (m, g), see Eq. (84) and (85). Let (F̃ , l̃, f̃) and (m̃, g̃) be the local characteristics of another
counting process. Trajectory-wise for trajectories of (Yt)t≥0 the CI can be evaluated via Eq. (83) with
λ̂t = l(Θt−) and

dΘ̃t = F̃ (Θ̃t) dt+ (f̃(Θ̃t−)− Θ̃t−) dYt,

with µ̂t = l̃(Θ̃t−). For the computation of the RER the measure of the (F, l, f)-counting process (Yt)t≥0

is used, i.e., for both trajectory-wise evaluations (Yt)t≥0 is a counting process with the CI (λ̂t)t≥0.
Then define the concatenated Dirac-PDMP (Θt, Θ̃t)t≥0 on the state space ϑ× ϑ̃. For this purpose let
Γ : ϑ× ϑ̃→ ϑ and Γ̃ : ϑ× ϑ̃→ ϑ̃ be the projections. Then the local characteristics of the concatenated
process are (F ◦Γ, F̃ ◦Γ̃), l◦Γ, (f ◦Γ, f̃ ◦Γ̃). Note the asymmetry in the second local characteristic due to
the asymmetry of the relative entropy. The corresponding BReT-P characteristics for (τ(t), θ(t), θ̃(t))
on [0,∞)× E × Ẽ and projections γ : [0,∞)× E × Ẽ → [0,∞)× E , γ̃ : [0,∞)× E × Ẽ → [0,∞)× Ẽ are
m ◦ γ, (g ◦ γ, g̃ ◦ γ̃). If the stationary distribution p(τ, θ, θ̃) is found, then the RER can be deduced by

D(P‖Q) =

∫

Ẽ

∫

E

∫ ∞

0

`(m(τ, θ), m̃(τ, θ̃))p(τ, θ, θ̃) dτ dθ dθ̃.
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The outer double integral can be approximated by

N
∑

i=1

p0(θi, θ̃i)ν

∫ ∞

0

`(m(τ, θi), m̃(τ, θ̃i))ρ(τ, θi, θ̃i) dτ, (131)

where p0(θi, θ̃i) is found as in section 5.2.1. Define the partial integral L(t, θ′, θ̃′) by

L(t, θ′, θ̃′) :=

∫ t

0

`(m(τ, θ′), m̃(τ, θ̃′))ρ(τ, θ′, θ̃′) dτ.

Then for each i, the integral in Eq. (131) is efficiently solved by the joint ODE system, the dot denoting
the τ -derivative,

ρ̇(τ, θi, θ̃i) = −l(Θτ )ρ(τ, θi, θ̃i)
Θ̇τ = F (Θτ )

˙̃Θτ = F̃ (Θ̃τ )

L̇(τ, θi, θ̃i) = `(l(Θτ ), l̃(Θ̃τ ))ρ(τ, θi, θ̃i).

The initial conditions are ρ(0, θi, θ̃i) = 1, Θ0 = (θi, v
0
n+1, . . . , v

0
n0
), Θ̃0 = (θ̃i, ṽ

0
ñ+1, . . . , ṽ

0
ñ0
) and

L(0, θi, θ̃i) = 0.

5.2.4 Numerical approximation of the ACID

The ACID is obtained as the distribution pλ of m(τ, θ), where (τ, θ) is distributed according to the
density p(τ, θ), see Eq. (91) and (92). We discretize (0,∞) with mesh size ∆m and compute the weights

pi := P[mi−1 ≤ m(τ, θ) ≤ mi]

=

∫ ∫ ∞

0

1(mi−1,mi](m(τ, θ))ρ(τ, θ)p0(θ) dτ dθ.

If we define τ (m)
k (θ′) similarly as τk(θ′), namely by τ (m)

0 (θ′) = 0 and recursively τ (m)
k (θ′) := min{τ >

τ
(m)
k−1(θ

′) : m(τ, θ′) = mi for some i}, then

pi ≈ ν ·
N
∑

j=1

p0(θ
′
j)

∑

k:I′(k,θ′j)=i

∫ τ
(m)
k

(θ′j)

τ
(m)
k−1(θ

′
j)

ρ(τ, θ′j) dτ, (132)

where I ′(k, θ′) := i if g(τ, θ′) ∈ Ωi for τk−1(θ
′) < τ < τk(θ

′). We further have

∆m · pλ(m) ≈
∞
∑

i=1

pi1(mi−1,mi](m).

The ACID can be used for an empirical assessment of the similarity between counting processes,
e.g., by visualizing the histogram or by computing similarity measures between densities, such as the
Wasserstein metric.

5.2.5 Direct method

In special cases, the fixed point method 5.2.1 can be applied directly to the ACID pλ(m) without the
need of the BReT-P, i.e., we derived a linear fixed point equation

pλ(m) =

∫

K(m,m′)pλ(m
′) dm′ (133)

for the stationary solution of equation (89) in corollary 4.22.
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Theorem 5.4. Assume the conditions of corollary 4.22. Suppose that the function G : ϑ→ R evolves
as

G′(θ) = − l(θ)

A(θ)
G(θ)

on ϑ with G(c) = 1 for some c ∈ ϑ. If there is p : ϑ→ R≥0 that fulfills

p(θ) = −
∫ b

f−(θ)

l(z′)G(θ)

A(θ)G(f(z′))
p(z′) dz′, (134)

for all θ ∈ ϑ, then the stationarity condition is satisfied for all θ ∈ ϑ:

0 = −∂θ(A(θ)p(θ))− l(θ)p(θ) + f ′−(θ)l(f−(θ))p(f−(θ)). (135)

Proof. Eq. (135) follows from (134) by Leibniz differentiation under the integral sign.

The direct method applies for the case studies 9.4.1 and 8.2 below.

6 Examples of environments

Linear environments offer convenient choices as discussed in the introduction, section 2.1.3. Here we
introduce common examples, ranging from discrete state spaces with few states, and countably many
states to the positive reals. Along with their properties known from the literature, we also present
novel results that our case studies refer to. For the examples 6.1 and 6.2, we use that CRNs with only
zeroth- and first-order reactions are linear.

6.1 Conversion process

The conversion process describes metastable switching of a fixed total number N of molecules, that
can be in k different states, structures or conformations. This is an ubiquitous principle in cell biology.
Promoter states determine transcription efficiency, mRNA structures allocate different metastable
states to facilitate or hamper translation, enzymes change conformation upon activation to catalyze
reactions. We illustrate the model for promoter switching, but the promoter is exchangeable with
other macromolecules. Suppose there are N transcription sites with the same promoter architecture.
At each site, the promoter can be in one of k states. The switching between the states occurs according
to a Markov jump process with transition rates ci,j for the i-th to the j-th state. When being in the
i-th state, the transcription rate at which mRNA are produced is ri. We assume the transcription
sites have the same stochastic properties, i.e., the same ci,j and ri and are stochastically independent.
More formally, we define the conversion model MS to consist of the k different promoters and their
k(k − 1) inter-conversion reactions

Rj,i, Ri,j : Zj
cj,i−−−⇀↽−−−
ci,j

Zi, (136)

where j, i ∈ {1, . . . , k} and j 6= i, with the coupling matrix











0 c1,2 · · · c1,k
c2,1 0 · · · c2,k
...
ck,1 ck,2 · · · 0











.

The conversion process is Z(t) = [Z1(t), . . . , Zk(t)] where Zi(t) counts the number of transcription
sites that are in state i at time t. the conversion process is a closed system with only monomolecular
(conversion) reactions, in particular it is linear and hence (C2) is satisfied. Its stationary distribution
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is the multinomial distribution with parameters p1, . . . , pk and N . The system parameters are derived
to be

Aij = −cj,i, ci,i =
k
∑

j=1
j 6=i

ci,j , (137)

p = [p1, . . . , pk]
T , s.t. Ap = 0,

k
∑

i=1

pi = 1 (138)

Σij = N(δijpi − pipj). (139)

The multinomial stationary distribution implied the form of the covariance matrix, Eq. (139). Ac-
cording to Jahnke and Huisinga [154] p is uniquely determined by the condition in Eq. (138) if A is
irreducible. We assume (C1) to hold.

In combination with state-dependent transcription rates [r1, . . . , rk], such that the transcription
reaction is zero-order modulated as

R : ∅
∑k

i=1 ri Zi−−−−−−−−−−−→ Prot, (140)

the conditions (C3) and (C4) are satisfied with

C = r = [r1, . . . , rk] , µ = N〈r, p〉. (141)

The special case N = 1, k = 2 is the random telegraph process. For convenience, we call Z1 the On
state and Z2 the Off state and abbreviate c1 := c2,1, c2 := c1,2. Often in its standard form it satisfies
r1 = 1, r2 = 0 but in general we redefine λ1 := r1, λ0 := r2 with ∆λ := λ1 − λ0.

6.1.1 The cumulants of the random telegraph process

We derived the cumulants of the random telegraph process Z(t) based on the higher-order autoco-
variance functions [155]. The (n + 1)-th cumulant term for t1 < · · · < tn < t, defined in section 3.5,
reads

C(t1, . . . , tn, t) =
(c2 − c1)n−1

(c1 + c2)n−1
γ(0, t− t1) =

(c2 − c1)n−1

(c1 + c2)n−1
· c1c2
(c1 + c2)2

e−(c1+c2)(t−t1), (142)

where γ(t1, . . . , tn) = E[(Z(t1)−EZ(t1)) . . . (Z(tn)−EZ(tn))] is the higher-order autocovariance func-
tion. Our derivation of Eq. (142) departs from the following recursive definition of the cumulant
terms

C(t1, . . . , tn, t) = γ(0,∆t1, . . . ,∆tn)−
n−1
∑

i=2

γ(0,∆t1, . . . ,∆ti−1)C(ti+1, . . . , tn, t).

We proceed by induction on n. Clearly, for n = 1 and n = 2, the identity holds, because the sum is
empty. Assuming that the conjecture (142) holds up to and including n − 1. Then we compute with
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σ2 = c1c2
(c1+c2)2

, θ = c2−c1
c1+c2

, ϕ = c1 + c2 and fj = eϕ∆tj as in [155] for n = 2k − 1

C(t1, . . . , tn, t) =σ2e−ϕ(t−t1)θn−1 + e−ϕ(t−t1)
k−1
∑

r=1

θ2k−2−2r(σ2)r+1A(r)(2k − 2)

−
k−1
∑

j=1

γ(0,∆t1, . . . ,∆t2j−1)σ
2e−ϕ(t−t2j+1)θn−(2j+1)

−
k−2
∑

j=1

γ(0,∆t1, . . . ,∆t2j)σ
2e−ϕ(t−t2j+2)θn−(2j+2)

=σ2e−ϕ(t−t1)θn−1 + e−ϕ(t−t1)
k−1
∑

r=1

θn−1−2r(σ2)r+1A(r)(2k − 2)

−
k−1
∑

j=1

σ2e−ϕ(t2j−t1)
j
∑

r=1

θ2j−2−2(r−1)(σ2)r−1A(r−1)(2j − 2)σ2e−ϕ(t−t2j+1)θn−(2j+1)

−
k−2
∑

j=1

σ2e−ϕ(t2j+1−t1)
j
∑

r=1

θ2j−1−2(r−1)(σ2)r−1A(r−1)(2j − 1)σ2e−ϕ(t−t2j+2)θn−(2j+2)

=σ2e−ϕ(t−t1)θn−1 + e−ϕ(t−t1)
k−1
∑

r=1

θn−1−2r(σ2)r+1A(r)(2k − 2)

−
k−1
∑

j=1

e−ϕ(t−t1)
j
∑

r=1

θn−1−2r(σ2)r+1A(r−1)(2j − 2)f2j

−
k−2
∑

j=1

e−ϕ(t−t1)
j
∑

r=1

θn−1−2r(σ2)r+1A(r−1)(2j − 1)f2j+1

=σ2e−ϕ(t−t1)θn−1 + e−ϕ(t−t1)
k−1
∑

r=1

θn−1−2r(σ2)r+1×


A(r)(2k − 2)−
k−2
∑

j=r

A(r−1)(2j − 1)f2j+1 −
k−1
∑

j=r

A(r−1)(2j − 2)f2j





=σ2e−ϕ(t−t1)θn−1

The last equality holds because by the definition of the A(r)(m) the bracket term is 0 for each r =
1, . . . , k − 1 by the following lemma. The derivation for n = 2k works analogously.

Lemma 6.1. Let r ∈ N. For any k ≥ r + 1 it holds

A(r)(2k − 2) =

k−2
∑

j=r

A(r−1)(2j − 1)f2j+1 +

k−1
∑

j=r

A(r−1)(2j − 2)f2j

Proof. By induction on k, for the induction start k = r + 1, as in [155],

f2rA
(r−1)(2r − 2) = f2r(f2 · · · f2r−2) = A(r)(2r).
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And the induction step k → k + 1

A(r)(2k)

= (all terms in A(r)(2k) excluding f2k) + (all terms in A(r)(2k) including f2k)

= A(r)(2k − 1) + f2kA
(r−1)(2k − 2)

= A(r)(2k − 2) + f2k−1A
(r−1)(2k − 3) + f2kA

(r−1)(2k − 2)

=

k−2
∑

j=r

A(r−1)(2j − 1)f2j+1 +

k−1
∑

j=r

A(r−1)(2j − 2)f2j + f2k−1A
(r−1)(2k − 3) + f2kA

(r−1)(2k − 2)

=

k−1
∑

j=r

A(r−1)(2j − 1)f2j+1 +

k
∑

j=r

A(r−1)(2j − 2)f2j .

6.1.2 Stochastic filtering for the random telegraph model

Suppose (Zt)t≥0 is the random telegraph model, i.e., two-state Markov on Z = {0, 1} with the generator

A =

(

−c1 c2
c1 −c2

)

.

The intensity function λ : Z → R≥0 maps the input to λ0 := λ(0) ≥ 0, which is called the dark current,
and λ1 := λ(1) > λ(0). Define the amplitude ∆λ := λ1 − λ0.

Proposition 6.2. The doubly stochastic counting process (Yt)t≥0 with intensity λt is an (F, l, f)-
counting process with dim(Yt)t≥0 = 1 for λ0 > 0 and dim(Yt)t≥0 = 0 for λ0 = 0.

The proof proceeds by establishing the local characteristics of the corresponding Dirac-PDMPs.

Proof. According to proposition 4.10, the MMPP (Yt)t≥0 is an (F, l, f)-counting process. The remark
4.18 establishes 1, when λ0 > 0, and 0, when λ0 = 0, as upper bounds for dim(Yt)t≥0. Applying
the Snyder filter (proposition 2.10), the pair (Πt(0),Πt(1)) of posterior probabilities evolves according
to (8)

dΠt(0) =(c2Πt(1)− c1Πt(0)) dt

+
(λ0 − λ̂t)Πt−(0)

λ̂t
{ dYt − λ̂t dt} (143)

dΠt(1) =(c1Πt(0)− c2Πt(1)) dt

+
(λ1 − λ̂t)Πt−(1)

λ̂t
{ dYt − λ̂t dt} (144)

and (Yt)t≥0 jumps with hazard λ̂t = Πt−(0)λ0+Πt−(1)λ1. This provides the canonical two-dimensional
Dirac-PDMP which demonstrates that (Yt)t≥0 is an (F, l, f)-counting process. As in remark 4.18(i),
we can replace Πt(0) = 1−Πt(1) due to the conservation of probability mass for the conditional proba-
bilities, which yields the one-dimensional sufficient state variable (Πt(1))t≥0 of Markovian progression.
Then λ̃t = λ0 + ∆λΠt(1), the right-continuous version of λ̂t, is an affine-linear transform and hence
in bijection with Πt(1). Consequently, (λ̃t)t≥0 is an equivalent choice for a one-dimensional sufficient
state variable of Markovian progression. By abuse of the notation, we now replace λ̃t by the state
variable λ̂t with the same symbol as the CI, even though λ̂t is the left-continuous version of λ̃t. Using
the Ito-rule for Dirac-PDMPs (proposition 4.8) on Eq. (144), we obtain the evolution Eq. (220).

This equation establishes F and f as to match Eq. (83), i.e., f(λ̂) = λ̂−1(λ̂ − λ0)(λ1 − λ̂) + λ̂,
and the hazard is l = id of the Dirac-PDMP on the state space ϑ = [λ0, λ1]. By l(λ̂t−) = λ̂t−, it
is clear that the CI is meant to be the left-continuous version of the state variable. The function
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u : [0,∞) × ϑ → ϑ, Eq. (84), links the Dirac-PDMP to the BReT-P standard form via Eq. (85). To
derive u define ω̃1 < ω̃2 as the roots of the quadratic equilibrium equation

0 = c1∆λ− (c2 + c1 +∆λ)ω + ω2

and ωi := ω̃i + λ0, i = 1, 2. With ∆ω := ω2 − ω1 we obtain

u(τ, θ) = ω2 −
∆ω

1 + θ−ω1

ω2−θ e
−∆ωτ

.

For the local characteristics m and g of the BReT-P it holds m = id ◦u = u, g = f ◦ u. Taking a look
at the jump update f reveals that for λ0 = 0 we have

f(λ̂) =
λ̂(λ1 − λ̂)

λ̂
+ λ̂ = λ1,

hence the upper interval bound of the state space ϑ = [λ0, λ1] is targeted independent of the state θ.
This is equivalent to Πt(0) = λ0Πt−(0)/λ̂t = 0 for t = σi as discussed in remark 4.18(ii). It reduces
the dimension of the BReT-P to 0, i.e., (τ(t))t≥0 is a Markov process on its own with m(τ) = u(τ, λ1).
Then dim(Yt)t≥0 = 0 by definition 4.17, when λ0 = 0. For λ0 > 0, Eq. (220) shows that it is
impossible to parametrize the CI only with the backward recurrence time, because the image of f is
not a singleton.

Hence, we showed the claim and established the local characteristics (F, l, f) and (m, g) of the
MMPP to prepare the computation of the MIR in section 9.2.1.

6.1.3 Optimal linear filter for structure switching

We consider the equilibrated optimal linear (Hawkes) approximation of the conversion system in Eqs.
(136) - (141), i.e., λ̂H(t) as in Eq. (68). For this system, we provide the equilibrium value of the
ODE for λ̂H(t) between jumps, from which we compute ẐH(t) that is shown to be positive. For the
derivations, we require C ∈ R1×l and A to be invertible. For the conversion process, this is not the
case, since 1A = 0, but by truncation to l = k − 1 we can enforce it, see the Appendix B.

The equilibrium z̄ of the linear dynamics

ż = −(A+ B̄CTµ−1C)z − B̄CT (145)

between jumps is evaluated by the Sherman-Morrison formula as

z̄ = −(A+ B̄CTCµ−1)−1B̄CT

= −A−1B̄CT +
A−1B̄CTµ−1CA−1B̄CT

1 + CA−1B̄CTµ−1
=

−A−1B̄CT

1 + CA−1B̄CTµ−1
.

We assume that (A + B̄CTµ−1C) has only eigenvalues with positive real part. Then the equilibrium
is stable and the equilibrium value λ̄ of λ̂H(t) between jumps is

λ̄ = µ+ Cz̄ = µ− γ

1 + γµ−1
=

µ

1 + γµ−1

γ = CA−1B̄CT .

Furthermore, jumps of z(t) by B̄CTµ−1 increase λ̂H(t) by

∆λ̂H = CB̄CTµ−1 ≥ 0.

Proposition 6.3. The term γ = CA−1B̄CT is the positive root of

0 = 2CA−1ΣC − 2y − y2µ−1.
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Proof. First, we note that CA−1ΣCT ≥ 0, since

2CA−1ΣCT = CA−1(AΣ+ ΣAT )A−TCT

and by condition (C2) AΣ+ ΣAT is positive semidefinite. Since B(0) = Σ, we have

B(0) = −ΣCTµ−1CΣ = −ΣCT
√

µ−1(ΣCT
√

µ−1)T ≤ 0.

Then by [156, Corollary 3] B(t) is monotonically non-increasing. By the property of complete observ-
ability, B(t) converges monotonically to the equilibrium B̄ ≥ 0. Define x(t) := CA−1B(t)A−TCT .
Then by the monotonicity of B(t), it holds that d

dtx(t) < 0. With minor algebraic manipulation, we
express

d

dt
x(t) = 2CA−1ΣCT − 2y(t)− y(t)2µ−1 =: f(y(t))

in terms of y(t) = CA−1B(t)CT . Then necessarily, at equilibrium of x(t) and y(t), it holds 0 =
2CA−1ΣCT − 2γ − γ2µ−1. The positive and the negative solution γ1 and γ2 split the real line into
three intervals (−∞, γ2), (γ2, γ1), (γ1,∞) on which f(y) is negative, positive, negative. The initial value
y(0) = CA−1ΣCT is positive and f(y(0)) < 0, hence y(0) ∈ (γ1,∞). But since f(y(t)) = d

dtx(t) < 0
for all t ≥ 0, the solution y(t) ∈ (γ1,∞) for all t ≥ 0. Hence, γ is the positive root γ1.

Then immediately we obtain

λ̄ =
µ

√

1 + 2CA−1ΣCTµ−1
∈ (0, µ). (146)

For the condition (C5) to hold we provide the following sufficient criterion which guarantees that λ̂H(t)
stays positive at all times.

Proposition 6.4. Suppose that z1, . . . , zl form a basis of real eigenvectors of (A + B̄CTµ−1C) for
the positive eigenvalues ν1, . . . , νl, such that Czi > 0 for all i = 1, . . . , l. Let L be the matrix whose
columns are the eigenvectors z1, . . . , zl and assume that

L−1B̄CT has only positive entries. (D1)

Then λ̂H(t) > 0 for all t ≥ 0.

Proof. We consider the half-space Λ+ := {z;Cz + µ > 0} with boundary {z;Cz + µ = 0} as well
as the inward normal vector C, and the cone U := {z̄ +

∑

i αizi;αi > 0}. By Eq. (146), z̄ ∈ Λ+

and hence Czi > 0 implies U ⊆ Λ+. By assumption, there exist positive βi, i = 1, . . . , l such that
B̄CTµ−1 =

∑

i βizi. Consequently, f(U) ⊆ U for the map f(u) := u + B̄CTµ−1, which means that
jumps of the trajectory ẐH(t) by B̄CTµ−1 remain in U . The initial value ẐH(0) = 0 is in U because

L−1(0− z̄) = L−1(A+ B̄CTµ−1C)−1B̄CT = diag{ν}−1L−1B̄CT (147)

has only positive entries. Finally, we verify that the dynamics in Eq. (145) leaves U invariant. Let z
be any boundary point of U , i.e. z − z̄ =

∑

i βizi, β1, . . . , βl ≥ 0 and there exists i such that βi = 0.
Let η be any corresponding inward normal vector, in particular, 〈zi, η〉 = 0 for all i = 1, . . . , l. Then

〈ż, η〉 = 〈−(A+ B̄CTµ−1C)(z − z̄), η〉 = 〈−
∑

i

βiνizi, η〉 = −
∑

i

βiνi〈zi, η〉 = 0

As a remark, we note that the condition D1 is equivalent to

−L−1z̄ has only positive entries, (D2)

by Eq. (147). Geometrically, the condition corresponds to requiring that the ray starting from z̄ and
going through 0 lies within the cone U , defined in the proof.
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6.2 Birth-death process

The birth-death process is a one-dimensional linear reaction network with zeroth-order birth (or syn-
thesis) reaction and first-order death (or decay) reaction

R1,R2 : ∅ λ−−−⇀↽−−−
µ

Z, (148)

Its stationary distribution is the Poisson with mean λ
µ . Its mean evolution reads

d

dt
E[Z(t)] = λ− µE[Z(t)]

and its autocovariance function in the weak stationary case is Cov[Z(t), Z(s)] = λ
µe

−µ|t−s|. More
generally, its transient probability distribution remains invariant in the class of Poisson distributions
for time-varying birth and death rate parameters.

Proposition 6.5. For a birth-death process X(t) with time-dependent birth rate λ(t) and death rate
µ(t) and Poisson(Λ0)-distributed X(0), the marginals X(t) are Poisson-distributed, i.e.

P [X(t) = k] =
Λ(t)k

k!
e−Λ(t)

where Λ is such, that is solves

Λ̇(t) = λ(t)− µ(t)Λ(t),Λ(0) = Λ0.

By the variation of constant formula

Λ(t) = Λ0 exp(−
∫ t

0

µ(τ) dτ) +

∫ t

0

λ(s) exp(−
∫ t

s

µ(τ) dτ) ds.

If Λ0 = 0, then P [X(0) = 0] = 1.

Proof. By means of generating functions: Define p(t, n) = P [X(t) = n]

g(t, s) =
∞
∑

n=0

snp(t, n)

Then g(t, s) has to solve the partial differential equation

∂tg(t, s) = (s− 1)(λ(t)g(t, s)− µ(t)∂sg(t, s))

with initial condition
g(0, s) = exp((s− 1)Λ0).

The function g(t, s) = exp((s− 1)Λ(t)) satisfies

∂sg(t, s) = Λ(t)g(t, s)

and
∂tg(t, s) = Λ̇(t)(s− 1)g(t, s)

and thus solves the PDE. But [0, 1] 3 s 7→ g(t, s) is the generating function of Poisson(Λ(t)).

Remark 6.6. This result can also be obtained by just checking, that

p(t, n) =
Λ(t)n

n!
e−Λ(t)

satisfies
∂tp(t, n) = λ(t)(p(t, n− 1)− p(t, n))− µ(t)((n+ 1)p(t, n+ 1)− np(t, n))

The Poisson distribution is a limit distribution of the (N, p)-binomial distribution for N →∞, p→
0, Np → λ

µ . More generally, the birth-death process can be seen as a limit of the conversion process
with two structures, under the limit N →∞, c1,2 → 0, Nc1,2 → λ.
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6.3 CIR process

The CIR process is a Markov process on a continuous state space, that evolves according to the SDE

dZ(t) = γ(µ− Z(t)) dt+
√

2γσ2Z(t)

µ
dW (t) (149)

with velocity of adjustment γ, saturation level µ, diffusion parameter σ and a standard one-dimensional
Brownian motion. It was first introduced to model interest rates [57]. The condition µ ≥ σ2 is sufficient
for the process to remain positive. The corresponding Fokker-Planck operator reads

(Ap)(z, t) = γp(z, t) + γ

(

2σ2

µ
− (µ− z)

)

∂zp(z, t) +
γσ2

µ
z∂zzp(z, t)

with the Gamma distribution G(µ2/σ2, µ/σ2) as its stationary distribution. By Z ∼ CIR(µ, γ, σ2), we
abbreviate a CIR process with respective parameter triple, initialized in its stationary distribution.
Mean and auto-covariance for a CIR process, initialized in a distribution with mean µ0 and variance
σ2
0 read

E[Z(t)] = µ+ e−γt(µ0 − µ) (150)

and

Cov[Z(s), Z(t)] = σ2e−γ(t−s) + σ2e−γ(s+t)
(

1− 2µ0

µ
+
σ2
0

σ2

)

+ 2σ2e−γt
(

µ0

µ
− 1

)

. (151)

The derivation uses martingale techniques as follows. Analogously to [63, example 4.5.4], derive an
SDE for the transformed process

Y (t) = (Z(t)− µ)eγt.
The intuition behind choosing this transformation is the following:

z(t) = µ− e−γt

solves the deterministic equation dZ(t) = γ(µ−Z(t)) dt, which by the transformation is transformed
to constant −1. Hence figuratively speaking, only the fluctuating part survives. Applying Ito’s formula
to Y (t):

dY (t) = d(Z(t)− µ) d(eγt) + d(Z(t)− µ)eγt + (Z(t)− µ) d(eγt)

= 0 + (γ(µ− Z(t)) dt+ σ

√

2γ

µ
Z(t) dW (t))eγt + γ(Z(t)− µ)eγt dt

= σeγt
√

2γ

µ
Z(t) dW (t).

Upon resubstituting, we obtain

Z(t) = µ+ e−γt(Z(0)− µ) + e−γtσ

∫ t

0

eγs
√

2γ

µ
Z(s) dW (s).

Then we calculate the mean
E[Z(t)] = µ+ e−γt(E[Z(0)]− µ)

and, by using that for the martingale

M(t) =

∫ t

0

eγs
√

2γ

µ
Z(s) dW (s)
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it holds E[M(s)M(t)] = E[M(s)2], see below, the covariance for s ≤ t

E[Z(t)Z(s)]− E[Z(s)]E[Z(t)]

= e−γ(s+t)Var[Z(0)] + 0 + 0

+ e−γ(s+t)σ2E

[(∫ t

0

eγs
′

√

2γ

µ
Z(s′) dW (s′)

)(∫ s

0

eγs
′

√

2γ

µ
Z(s′) dW (s′)

)]

= e−γ(s+t)Var[Z(0)] + e−γ(s+t)σ2E

[

(∫ s

0

eγs
′

√

2γ

µ
Z(s′) dW (s′)

)2
]

= e−γ(s+t)Var[Z(0)] + e−γ(s+t)σ2

∫ s

0

E

[

(

eγs
′

√

2γ

µ
Z(s′)

)2
]

ds′

= e−γ(s+t)Var[Z(0)] + e−γ(s+t)σ2

∫ s

0

e2γs
′ 2γ

µ
E[Z(s′)] ds′

= σ2e−γ(t−s) + σ2e−γ(s+t)
(

1− 2E[Z(0)]

µ
+

Var[Z(0)]

σ2

)

+ 2σ2e−γt
(

E[Z(0)]

µ
− 1

)

For martingales {X(t)}t≥0 and 0 ≤ s ≤ t, it holds E[X(s)X(t)] = E[X(s)2], because

E[X(s)X(t)] = E[X(s)2] +E[X(s)(X(t)−X(s))] = E[X(s)2] +E[X(s)E[X(t)−X(s)|Fs]] = E[X(s)2],

where the second equality follows from the Fs-measurability of the factor X(s) combined with the
tower property E[E[Y |G]] = E[Y ] and the third equality is implied by the martingale property.

The following expression for the variance

Var[Z(t)] = e−2γtVar[Z(0)] + σ2

∫ s

0

e−2γ(t−s) 2γ

µ
E[Z(s)] ds

implies that the linear differential equation

d

dt
Var[Z(t)] = −2γ

(

Var[Z(t)]− σ2

µ
E[Z(t)]

)

, Var[Z(0)] = σ2
0

is satisfied. In summary, mean and variance solve the closed differential equations

d

dt
E[Z(t)] = −γ(E[Z(t)]− µ), E[Z(0)] = µ0

d

dt
Var[Z(t)] = −2γ

(

Var[Z(t)]− σ2

µ
E[Z(t)]

)

, Var[Z(0)] = σ2
0 .

In case of a CIR started in µ0 = µ, σ2
0 = σ2, the expressions simplify and read

E[Z(t)] = µ, Cov[Z(s), Z(t)] = σ2e−γ|t−s|.

In Eq. (63), for a CIR process Z(t), we have

F (Θ, V ) = −γ(Θ− µ), G(Θ, V ) = −2γ
(

V − σ2

µ
Θ

)

. (152)

Consequently, the first and second conditional moment equations in Eq. (64) for a CIR process Z(t)
read

dΘ(t) = (−γ(Θ(t)− µ)− cV (t)) dt+
V (t−)
Θ(t−) dYj(t) (153)

dV (t) =

[

−2γ
(

V (t)− σ2

µ
Θ(t)

)

− cS(t)
]

dt+

[

S(t−)
Θ(t−) −

V 2(t−)
Θ2(t−)

]

dYj(t) (154)

The CIR-modulated reactions have motivated the approximate Gamma filter, see section 8.2.3 below.
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6.4 Static Gamma heterogeneity

For a static environment random variable, the Gamma distribution is a convenient choice. Unlike
the normal distribution it has a positive support. Unlike the exponential distribution it has two
parameters such that its mean and variance can be independently chosen. The Gamma distribution
has the probability density function

p(z) ∝ zα−1e−zβ , z > 0

where α denotes the shape parameter and β the rate parameter. The normalization constant is
∫

p(z) dz =
Γ(α)

βα
.

The mean and variance of a G(α, β)-distributed Z are E[Z] = α
β and Var[Z] = α

β2 . For G(α, β)-
distributed Z and Y |Z = z Poisson distributed with mean z, the conditional distribution Z|Y = k
is G(α + k, β + 1). This property is called the Gamma distribution’s conjugacy with the Poisson
distribution. It is a convenient property of the Gamma distribution for modulated counting processes,
compared to the lognormal distribution.

The hybrid master equation, Eq. (87), is available for the static Gamma heterogeneity. Setting
Zj , j = 1, . . . ,M are independent Gamma-distributed random variables with shape αj and rate βj .
The heterogeneous reaction rate of the j-th reaction is Zjaj(n(t)), where n(t) is the vector of species
copy numbers at time t and aj is the state-dependent propensity function. Introduce the sufficient
statistics W (t) = (W1(t), . . . ,WM (t)) with Wj(t) =

∫ t

0
aj(n(t

′)) dt′. Then Ẇj(t) = aj(n(t)) and hence,
we apply Eq. (87) to obtain

∂tp(t, x, w) =

M
∑

j=1

mj(x− νj , w)p(t, x− νj , w)

−mj(x,w)p(t, x, w)−
M
∑

j=1

λj(x)∂ωj
p(t, x, w).

(155)

as in [106, p.96]. When the state X(t) describes the reaction count vector, and the initial species copy
number vector n(0) is fixed, then νj = ej , and, building on the previous work, mj(x,w) =

αj+xj

βj+wj
λj(x)

and λj(x) = aj(n(0) +
∑M
j=1 xjνj) with the state-dependent propensity function aj(n). The evolution

equation of p(t, x) obtained from marginalization over w. Marginalize out w as in Eq. (106) to obtain

∂tp(t, x) =

M
∑

j=1

E

[

αj + xj − 1

βj +Wj(t)
λj(x− ej)1(X(t) = x− ej)

]

− E

[

αj + xj
βj +Wj(t)

λj(x)1(X(t) = x)

]

=

M
∑

j=1

〈

αj + xj − 1

βj +Wj(t)

∣

∣

∣x− ej , t
〉

λj(x− ej)p(t, x− ej)−
〈

αj + xj
βj +Wj(t)

∣

∣

∣x, t

〉

λj(x)p(t, x).

The equation is not closed, but depends on the expected value of the propensities. We solve the
expected values for the particular example, section 8.5.1, below.

7 Marginal simulation

The joint simulation of the external process Z(t) and the reaction system X(t) provides samples for
Z(t) and X(t). Disregarding Z(t), as this is mostly not of interest, means a marginal simulation of
X(t) that behaves in its statistical properties as if it was still embedded. It can be obtained using the
FYt -intensity. Simulation with an approximate instead of Snyder’s exact filter yields an approximate
marginal simulation.

Approximate marginal simulation using the aforedescribed filters requires algorithm that can handle
time- and history-dependent propensities. Here, we use the modified next reaction algorithm by
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Anderson [157]. It proceeds by assigning each reaction counter an internal time that progresses as
a unit Poisson process. Then the internal time is transformed to the global time via the inverse of
the cumulative intensity. We now apply this algorithm for the simulation of a reaction system X(t)

that has probability Q, i.e., with FYt -intensity λ̂OL(t) given by Eq. (65)-(67). To this end, we need
to propagate the approximate state estimate Ẑ(t) and posterior covariance mock B(t) jointly between
jumps via

d

dt
Ẑ(t) =−AẐ(t)−B(t)CT diag{κ(µ)}(µ+ CẐ(t)) (156)

d

dt
B(t) =AΣ+ ΣAT −AB(t)−B(t)AT −B(t)CT diag{κ(µ)}CB(t). (157)

The coefficients µj and Cjk can be state-dependent. Additionally, each reaction Rj gets assigned
another state variable Λj(t), its cumulative intensity, which evolves as

Λ̇j(t) = µj + 〈Cj∗, Ẑ(t)〉. (158)

We collect them in the vector Λ(t) = [Λ1(t), . . . ,ΛM (t)]. For determining which reaction occurs, we
need to check whether the cumulative intensity has reached the internal time difference. For this we
define events, i.e., time points

tj : Λj(tj) = ∆Tj . (159)

Finally, Ẑ(t) needs to be updated when the reaction Rj occurs, i.e.,

Ẑ(t+) = Ẑ(t−) +B(t)CT diag{κ(µ)}ej , (160)

where ej is the j-th unit vector. The complete algorithm reads as follows.

Algorithm 1 Approximate marginal simulation with the optimal linear filter
1: Input: System parameters A,Σ, state-dependent functions µ(x), C(x), the stoichiometric matrix
N , the initial value X0 and length T of the simulated time interval.

2: Initialize internal times Tj = 0, jump times Pj ∼ expo(1) and ∆Tj = Pj − Tj , j = 1, . . . ,M .
3: Initialize global time t0 = 0.
4: Initialize coefficients µ = µ(X0), C = C(X0).
5: Initialize Ẑ(t0) = 0, B(t0) = Σ, Λ(t0) = 0.
6: Save t = t0. Save X = X0.
7: while t0 < T do
8: Set events as in Eq. (159), j = 1, . . . ,M
9: Evolve Ẑ, B, Λ jointly according to Eq. (156)-(158) on [t0, τ ] until τ = minj{tj}.

10: Assign J = argminj{tj}.
11: Update t0 ← τ and Ẑ(t0)← Ẑ(τ), B(t0)← B(τ), Λ(t0)← Λ(τ). Save t← [t, t0].
12: Update state X0 ← X0 + νJ . Save X ← [X,X0].
13: Update internal times Tj ← Tj + Λj(t0), j = 1, . . . ,M . Reset Λ(t0)← 0.
14: Draw ∆P ∼ expo(1). Update jump time PJ ← PJ +∆P . Update ∆Tj ← Pj −Tj , j = 1, . . . ,M .
15: Update Ẑ(t0) according to Eq. (160) with j = J .
16: Update coefficients µ = µ(X0), C = C(X0).
17: end while
18: return Jump times t and states X.

We formulated the algorithm for Anderson’s modified next reaction method, but other algorithms
that can handle time-dependent propensities [158, 159] can replace it, i.e., lines 3, 8, 10, 13, 14 must
be modified.

7.1 Independent environment components

When the environment has independent components, the line 9 of the algorithm can be simplified.
Assume a diagonal structure for A = diag{α},Σ = diag{σ2} and C = diag{c}, i.e., the environment
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components Z1(t), . . . , ZM (t) are stochastically independent and Zj(t) modulates Rj via µj(X(t)) +
cj(X(t))Zj(t). In this case B(t) is also diagonal, say diag{β(t)}. We assume that µj(X(t)) = 0 implies
cj(X(t)) = 0 to avoid negative rates. We analytically solve the joint ODE system of Ẑj(t), βj(t),Λj(t)
for j = 1, . . . ,M separately. For the derivation, we first solved the one-dimensional Riccati equation
for βj(t) with standard techniques. Upon plugging βj(t) into the evolution of Ẑj(t), the variation of
constants formula for linear systems with time-dependent coefficients yielded Ẑj(t), where we took
advantage of the logarithmic derivative d

dt ln ξj(t) in βj(t). Note that the derivative and first integral
of ξj(t) are analytically expressed as linear combinations of aj(t) and bj(t), together yielding the
expression for λ̂OL

j (t). Finally, for Λj(t), the integral was solved by the technique of partial fractions
and the substitution u = eρj(t−t0). Altogether, if cj 6= 0,

Ẑj(t) = Ẑj(t0)
ξj(t0)

ξj(t)
+

µj
cjξj(t)

(∫ t

t0

αjξj(τ)− ξ′j(τ) dτ
)

βj(t) =
µj
c2j

(

ξ′j(t)

ξj(t)
− αj

)

ξj(t) = ρjaj(t) +

(

αj +
c2j
µj
βj(t0)

)

bj(t)

ρj =

√

α2
j +

2αjσ2
j c

2
j

µj

aj(t) = cosh(ρj · (t− t0)), bj(t) = sinh(ρj · (t− t0))

λ̂OL
j (t) = µj + cjẐj(t) = Aj +

−2Aj +Bje
ρj ·(t−t0)

Cje2ρj ·(t−t0) + 1

Λj(t) =

∫ t

t0

λ̂OL
j (τ) dτ

=
Aj
ρj

ln

(

Cje
ρj(t−t0) + e−ρj(t−t0)

Cj + 1

)

+



















[

Bj√
Cjρj

arctan
(√

Cje
ρj(t−t0)

)

]t

t0

, Cj > 0

[

Bj√
|Cj |ρj

artanh

(

e−ρj(t−t0)√
|Cj |

)]t

t0

, Cj < 0, Bj < 0

Cj =
ρj + αj +

c2j
µj
βj(t0)

ρj − αj −
c2j
µj
βj(t0)

, Aj =
µjαj
ρj

,

Bj = 2
(cjẐj(t0) + µj)ρj −

µjαj(αj+
c2j
µj
βj(t0))

ρj

ρj − αj −
c2j
µj
βj(t0)

.

If cj = 0,

Ẑj(t) = e−αj(t−t0)Ẑj(t0)

βj(t) = σ2
j + e−2αj(t−t0)(βj(t0)− σ2

j )

Λj(t) = µj(t− t0).

Note, that for the case cj = 0 the mimics of the state estimate Ẑj(t) and the posterior variance Ẑj(t)
follow the prior dynamics of mean and variance. We demonstrate the use of this filter in the case study
8.3.8 when we investigate a two-stage gene expression in uncorrelated random environment.
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7.2 Sinzger’s min-thin algorithm

For the time-dependent intensities λ(t) in the marginal simulation algorithm the modeler requires a first
reaction method, which comes with a disadvantage over Doob-Gillespie’s direct next reaction method.
Namely, proposed waiting times are rejected, when choosing the first reaction, and the time-dependence
can make the computation of waiting times inefficient. This disadvantage is mitigated if a large
amount of reaction events in the environment complicates the Doob-Gillespie method. Independent
of the question, at which threshold of reaction events the disadvantages are on a par, we present an
optimized first reaction method for our purposes. The key idea is to sample waiting times with the
inverse method from finitely many auxiliary intensities f1(t), . . . , fk(t) whose sum dominates λ(t). The
auxiliary f1(t), . . . , fk(t) are chosen such that the inverse method is applicable in closed form for each.
Additionally, we decompose λ(t) = λ1(t)+ · · ·+λk(t), each part dominated by the corresponding fi(t).
A thinning step is applied that accepts the time with λi(t)/fi(t). With this method, we combine the
advantages of both the thinning method [158] and the Anderson MNRM [157]. Namely, on the one
hand, the Anderson method is only strong, if the integrated intensity can be inverted, on the other
hand, the thinning method is only strong if the acceptance rate is large enough.

To explain why the proposed method generates the correct law of sampled trajectories, we review
how the following two operations on intensities induce operations on simulated trajectories: (i) addition
and (ii) multiplication with a number between zero and one. Let us assume that {Y1(t)}t∈[0,T ] is a
counting process with intensity λ1(t) and {Y2(t)}t∈[0,T ] is a counting process with intensity λ2(t) which
is stochastically independent of {Y1(t)}t∈[0,T ]. Then Y (t) := Y1(t) + Y2(t) is a counting process with
intensity λ(t) = λ1(t) + λ2(t). In the point process picture we can visualize this. If the jumps of Y1(t)
and Y2(t) were marked with different colors on a common real axis, then Y (t) amounts to "forgetting"
their color. If {Y1(t)}t∈[0,T ] is a counting process with intensity λ1(t) and for each of the jump
times (τn)n≥0 we throw a coin, i.e. Un ∼ bernoulli(p(τn)), then Y p(t) :=

∑∞
n=1 1{τn ≤ t, Un = 1}

is a counting process with intensity λp(t) = p(t)λ1(t). Graphically we keep each point τn with a
probability p(τn). The latter procedure, called thinning, is the reverse of the addition. Each point
that is kept is marked with one color, each thinned point is marked with another color. Then Y p(t)
and Y 1−p(t) := Y1(t)− Y p(t) are stochastically independent counting processes with intensities λp(t)
and λ1−p(t) = (1− p(t))λ1(t). The decomposition λ1(t) = λp(t) + λ1−p(t) indicates that "forgetting"
the colors as before reverses the procedure. We call this decomposing operation (iii) assignment of
marks.

The origin of why the three operations on intensities result in the correct law of the counting
processes lies in the corresponding operations of exponentially distributed random variables. Let the
distributions for two independent random waiting times T1, T2 (here, not to be confused with the
internal times of algorithm 1) be given by their survival functions

P[Ti > t] = exp

(

−
∫ t

0

λi(s) ds

)

.

Then

P[min(T1, T2) > t] = P[T1 > t, T2 > t]

= P[T1 > t]P[T2 > t]

= exp

(

−
∫ t

0

λ1(s) + λ2(s) ds

)

.

Let S1, S2, . . . be random jump times from a point process with intensity λ(t) and conditional on

S1 = t1, S2 = t2, . . . let U1, U2, . . . be independent Bernoulli random variables with pi =
λ̃(ti)
λ(ti)

where

λ̃(t) ≤ λ(t) for all t ≥ 0. Let I := min(i : Ui = 1) and T̃ := SI , then for ∆n(t) := {~t ∈ [0, t]n : t1 ≤
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· · · ≤ tn} we obtain

P[T̃ > t] =

∞
∑

n=0

∫

∆n(t)

P[∀i = 1, . . . , n : Ui = 0|S1 = t1, . . . , Sn = tn, Sn+1 > t]

× p[S1 = t1, . . . , Sn = tn, Sn+1 > t] d~t

=
∞
∑

n=0

∫

∆n(t)

n
∏

i=1

{

λ(ti)− λ̃(ti)
λ(ti)

· λ(ti)
}

exp

(

−
∫ t

0

λ(s) ds

)

d~t

= exp

(

−
∫ t

0

λ̃(s)− λ(s) ds
)

exp

(

−
∫ t

0

λ(s) ds

)

= exp

(

−
∫ t

0

λ̃(s) ds

)

Building on this, the idea of Sinzger’s min-thin simulation algorithm is to combine two algorithms,
the modified next reaction algorithm by Anderson and the thinning algorithm by Lewis, to harvest
the advantages of both for an efficient simulation. To illustrate the conjunction of the algorithms by
Lewis and Anderson assume exemplary that the intensity of a one-dimensional counting process is

λ(t) = an + bn exp(−cnt) (161)

between (t(n), t(n+ 1)), where t(0) < t(1) < t(2) < . . . are the jump times Then Anderson’s modified
next reaction algorithm requires to invert the cumulative intensity

Λ(t) =

∫ t

0

λ(s+ t(n)) ds = tan + bn/cn(1− exp(−cnt)).

However, this function is not analytically invertible, which slows down the algorithm. On the contrary,
if we take the cumulative intensities of the intensities

λ1(t) = an, λ2(t) = bn exp(−cnt)

separately, we obtain invertible cumulative intensities for both. This corresponds to simulating two
counting processes (Y1(t))t≥0 and (Y2(t))t≥0 with intensities λ1(t) and λ2(t), respectively and then
adding both Y (t) := Y1(t) + Y2(t).

Similarly, if we have
λ(t) = αn(t) + bn exp(−cnt)

for which
∫ t

0
αn(s + t(n)) ds is not analytically invertible, but we know 0 ≤ αn(t) ≤ an. Then we

can simulate the two counting processes (Y1(t))t≥0 and (Y2(t))t≥0 as above and we thin the jumps of
counting process Y1(t) with probability αn(t)/an to yield the counting process Ỹ1(t). Then Y (t) :=
Ỹ1(t) + Y2(t)

This motivates the following general decomposition. Suppose that

λ(t) =

N
∑

i=1

λi(t) (162)

for non-negative λi(t), such that there exist f (n)i (t) ≥ λi(t), t ∈ [t(n), t(n+ 1)] for which

Λi,n(t) :=

∫ t

0

f
(n)
i (s+ t(n)) ds (163)

is analytically invertible in t. Let Ỹi(t), i = 1, . . . N be counting processes with intensity f (n)i (t), and

Yi(t) the counting processes obtained from Ỹi(t) by thinning with λi(t)/f
(n)
i (t). Then

Y (t) =

N
∑

i=1

Yi(t) (164)
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Algorithm 2 Sinzger’s min-thin algorithm

1: Input: Intensities λi(t), i = 1, . . . , N , dominating intensities f (n)i (t), length T of the simulated
time interval.

2: Initialize internal times Ti = 0, jump times Pi ∼ expo(1) and ∆Ti = Pi − Ti, i = 1, . . . , N .
3: Initialize global time t0 = 0 and event counter n = 0.
4: Save t(0)← t0.
5: Evaluate ti ← Λ−1

i,n(∆Ti), i = 1, . . . , N .
6: while t0 < T do
7: Assign I = argmini{ti}. Assign τ ← tI . Update t0 ← t0 + τ . Update ti ← ti − τ, i 6= I.
8: Sample u ∼ unif[0, 1].
9: if u < λI(t0)/f

(n)
I (t0) then

10: For i 6= I: Update internal times Ti ← Ti + Λi,n(t0 − t(n)), update ∆Ti ← Pi − Ti, evaluate
ti ← Λ−1

i,n(∆Ti).
11: Update n← n+ 1. Save t(n)← t0.
12: end if
13: Update internal time TI ← PI . Draw ∆P ∼ expo(1). Update jump time PI ← PI + ∆P .

Update ∆TI ← PI − TI . Update tI ← Λ−1
I,n(∆TI).

14: end while
15: return Jump times t(0), . . . , t(n).

has the desired law. This translates into the algorithm, where Λ−1
i,n(·) denotes the inverse of t 7→ Λi,n(t)

in lines 5, 10 and 13. If the minimum of the proposed times is thinned, i.e., if the condition in line 9 is
false, a new time must be proposed line 13 to compete with the remaining proposed times in line 7.

The challenge of the decomposition Eq. (162) lies in the condition that the λi(t) must be non-
negative, which becomes apparent when bn in Eq. (161) is negative. The case that for one component
there are almost surely only finitely many jumps on (0,∞) is included in the procedure and does not
cause a conflict, since the component then suggests ∞ as a jump time and is not chosen. This is the
case for the above example Y2(t) with intensity λ2(t) = bn exp(−cnt).

Our presented algorithm 2 portrays the case of a univariate counting process Y (t). It can be com-
bined with Anderson’s modified next reaction method to obtain the multivariate case (Y1(t), . . . , YM (t)),
for the reaction channels j = 1, . . . ,M . Each single channel Yj(t) is decomposed as in Eq. (164), i.e.,

Yj(t) =
∑N(j)
i=1 Yj,i(t), where the number of components N(j) can depend on j. Correspondingly, in

the algorithm 2, we use double indices Ti,j , i = 1, . . . , N(j), j = 1, . . . ,M .
We now apply Sinzger’s min-thin trick to obtain a fast simulation algorithm for a chemical reaction

network with independent environment components. The above difficulty of a non-negative decompo-
sition results in a distinction of various cases for the intensity λ̂OL(t) = µ + cẐ(t). For convenience
we suppress the subscript j. Define β̄ := limt→∞ β(t) = µ

c2 (ρ − α), λ̄ = limt→∞ λ̂OL(t) = µα
ρ and

λ0 := λ̂OL(t0). First of all we consider the case

• β(t0) = β̄. Then λ̂OL(t) = λ̄+ (λ0 − λ̄)e−ρ(t−t0).

– λ0 ≥ λ̄ is the case considered above and we choose

f1(t) = λ1(t) = λ̄ (165)

f2(t) = λ2(t) = (λ0 − λ̄)e−ρ(t−t0), (166)

whereas for

– λ0 < λ̄

λ1(t) = (λ̄− λ0)(1− e−ρ(t−t0)) (167)

f1(t) = (λ̄− λ0) ·min(1, ρ(t− t0)) (168)

f2(t) = λ2(t) = λ0, (169)

The next case we consider is
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• β(t0) < β̄. Then

λ̂OL(t) = λ̄
C − e−2ρ(t−t0)

C + e−2ρ(t−t0) +
Be−ρ(t−t0)

C + e−2ρ(t−t0) (170)

C =
β(t0) + β̄ + 2αµ

c2

β̄ − β(t0)
(171)

B = 2

(

λ̄− (λ0 − λ̄)ρµ
c2(β(t0)− β̄)

)

(172)

The first summand in Eq. (170) is positive, because ρ > 0 and C > 1. For the second summand,
it depends on the sign of B from which we obtain the case

– λ0−λ̄
β(t0)−β̄ ≤

c2α
ρ2 . In this case B ≥ 0 and we choose

f1(t) = λ1(t) = λ̄ · C − e
−2ρ(t−t0)

C + e−2ρ(t−t0) (173)

f2(t) = λ2(t) =
Be−ρ(t−t0)

C + e−2ρ(t−t0) , (174)

– λ0−λ̄
β(t0)−β̄ >

c2α
ρ2 . In this case B < 0 and we choose

λ1(t) = λ̂OL(t) (175)

f1(t) = λ̄ · C − e
−2ρ(t−t0)

C + e−2ρ(t−t0) (176)

f2(t) = λ2(t) = 0. (177)

Finally, we consider the case

• β(t0) ≥ β̄. Then again Eq. (170) holds and the first summand is positive because C < −1 and
ρ > 0. The denominator of the second term is negative. Again the sign of the second term
depends on the sign of B. We distinguish again the cases

– λ0−λ̄
β(t0)−β̄ ≤

c2α
ρ2 . In this case B ≥ 0 which makes the second term negative. Then we choose

Eq. (175) - Eq. (177) as above, whereas for

– λ0−λ̄
β(t0)−β̄ >

c2α
ρ2 we have we use Eq. (173) - Eq. (174). For later reference we write again

f2(t) = λ2(t) =
Be−ρ(t−t0)

C + e−2ρ(t−t0) , B < 0, C < −1, (178)

Note that the dynamics of λ̂OL(t) is dominated as follows

˙ˆOL
λ(t) = −ρ(λ̂OL(t)− λ̄)− (β(t)− β̄)λ̂OL(t) ≥ −ρ(λ̂OL(t)− λ̄),

because β(t) > β̄ for all t and λ̂OL(t) > 0. Consequently, λ̂OL(t) ≤ λ̄ + (λ0 − λ̄)e−ρ(t−t0)
Then we distinguish cases by the sign of λ0 − λ̄.

∗ λ0 − λ̄ > 0

The cumulative intensities and their inverses are for Eq. (165)

Λ(t) = λ̄t (179)

Λ−1(T ) =
T

λ̄
(180)
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and analogously for Eq. (169), for Eq. (166)

Λ(t) =
λ0 − λ̄
ρ

(1− e−ρt) (181)

Λ−1(T ) = −ρ−1 ln

(

1− Tρ

λ0 − λ̄

)

, 0 ≤ T <
λ0 − λ̄
ρ

(182)

for Eq. (168)

Λ(t) =

{

(λ̄− λ0)min
(

1
2ρt

2
)

, t ≤ ρ−1

(λ̄− λ0)min
(

t− 1
2ρ

)

, else
(183)

Λ−1(T ) =







√

2T
(λ̄−λ0)ρ

, T ≤ λ̄−λ0

2ρ

T
λ̄−λ0

+ 1
2ρ , else

, (184)

as well as

Λ(t) = λ̄t+
λ̄

ρ
ln

(

2ρ+ c2

µ (β(t0)− β̄)(1− e−2ρt)

2ρ

)

(185)

Λ−1(T ) =
T

λ̄
− ρ−1 ln(2) + ρ−1 ln

(

1 + C−1 +

√

(1 + C−1)2 − 4C−1e−2Tρλ̄−1

)

(186)

for Eq. (173) and Eq. (176). Finally, for Eq. (174), we obtain

Λ(t) =
B√
Cρ

(

arctan(
√
Ceρt)− arctan(

√
C)
)

(187)

Λ−1(T ) = ρ−1 ln

(

tan

(

T
√
Cρ

B
+ arctan(

√
C)

)

√
C−1

)

, 0 ≤ T < (
π

2
− arctan(

√
C))

B√
Cρ

(188)

whereas Eq. (178) yields

Λ(t) =
−B√
−Cρ

(

artanh(
√

−C−1)− artanh(
√

−C−1e−ρt)
)

(189)

Λ−1(T ) = −ρ−1 ln

(

tanh

(

T
√
−Cρ
B

+ artanh(
√

−C−1)

)√
−C
)

, 0 ≤ T < artanh(
√

−C−1) · −B√
−Cρ
(190)

Here, we have portrayed Sinzger’s min-thin algorithm 2 for our tilted Hawkes model. However,
the algorithm can be more generally applied for multivariate counting processes with piecewise-
deterministic intensities.

8 Case studies

We illustrate the derived methods and results in a variety of case studies. The different environments of
section 6 are employed. We derive probability evolution equations using the stochastic conditioning. A
focus of the case studies is on the comparison of approximate filters. The stationary mean is evaluated
for the birth-death process in different environments that modulate the death rate and the contribution
of environmental shares is analyzed. The examples cover zeroth- and first-order modulation. Preparing
for the channel interpretation of zeroth-order modulation, the table 8 summarizes the models that were
analyzed with the sufficient variables of joint Markovian progression, see section 4.1.4.

8.1 Modular embedding of structure conversion

At all three stages of gene expression the allosteric principle postulates that regulation occurs via the
switching between different states or conformations. The promoter region of the DNA strand can be
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Model (∗Type) Θt n0 dim l u F f

Random telegraph Πt(1) 1 0 cπ1 X Eq. (275) 1

Dark current λ̂t 1 1 id X Eq. (220) (λ̂−λ0)(λ1−λ̂)
λ̂

+ λ̂

Single On N Off
(Πt(z1),

. . . ,Πt(z|Z|−1))
|Z| − 1 0 cπ1 - Eq. (6) (1, 0, . . . , 0)

Double On
- N Off

(Ut, At,Πt(z3),
. . . ,Πt(z|Z|−1))

|Z| − 1 1 ca -
Ito from
Eq. (6)

(u, 1, 0, . . . , 0)

- Single Off (Ut, At) 2 1 ca - (287)-(288) (u, 1)

Hawkes∗ λ̂t 1 1 id X Eq. (58) λ̂+ β
Hawkes conversion∗ (z1(t), . . . , zk(t)) k k − 1 µ+ Cz X Eq. (145) z + B̄CTµ−1

Multinomial∗ (θ1(t), . . . , θk−1(t)) k − 1 k − 1 Eq. (202) - Eq. (200) Eq. (201)
Binomial∗ θ(t) 1 1 Eq. (203) X Eq. (200) Eq. (201)

Gamma filter∗ (Mt, St) 2 2 cm - Eq. (222) (m, s) + ( sm ,
s2

m2 )

Table 1: Snyder filters and approximate filters for zeroth-order modulated reactions. The type indicates
whether the model is a Snyder filter (Markov-modulated Poisson process, no ∗) or an approximate filter
(self-exciting counting process, ∗). The minus (−) in the column u indicates that no analytic solution
is available for τ 7→ u(τ, v0). For the Hawkes conversion process, see also the Appendix B

accessible for transcription or shielded. The mRNA can fold in different secondary structures and
transition among these via metastable switching. Proteins undergo conformational changes to fulfill
their function as enzymes, or to regulate as transcription factors via activation or repression. Both the
composition of the thermodynamic ensemble, i.e., the stationary distribution of structures, and the
switching dynamics between those, play a role. Structure kinetics and gene expression is often studied
separately. Here, we present approaches that allow quantitative information on structure switching
from biophysical experiments or coarse-grain molecular dynamics simulations to be included in gene
regulatory chemical reaction network models without an increase in the number of species. Addressing
the problems of simulating gene regulatory networks and the modular design of synthetic circuits, we
provide an efficient way of including heterogeneity due to structure switching. For the latter purpose,
our method may help with in silico studies, i.e., simulations, that precede in vitro studies. The ultimate
goal is the incorporation of the approaches in larger genetic circuits and gene regulatory networks.

8.1.1 Promoter-mediated transcription

The transcription of mRNA is a process that is shaped by the cellular context. The number of poly-
merases, fluctuating transcription factor concentrations, noncognate binding and chromatin remodeling
are some of the factors that determine the rate of transcription. Often these influences are abstracted
into a low number of discrete promoter states that determine the transcription rate. The effect of
switching between an active and an inactive promoter state is often equated with transcriptional
bursting. We continue the example of section 6.1 where X(t) denoted the total number of mRNA
from multiple transcription sites. Assume further that mRNA decays with a rate γ. Then X(t) is a
birth-death process whose birth rate is modulated by a conversion process Z(t) = [Z1(t), . . . , Zk(t)] as
described in section 6.1. The switching rates are ci,j and the transcription rates were denoted by ri.

We first considered a promoter model which unidirectionally transitions through an active, an
inactive and a refractory state, see figure 7A. We chose equal transition rates, hence the promoter
uniformly spends time in either state. Assuming leaky transcription, we set the transcription rate for
the inactive state to a small leakage value, the rate for the active state to the highest and for the
refractory state to an intermediate value. Furthermore, we considered four independent copy of the
promoter. We numerically verified the condition (D1) for the considered choice of parameters. We
looked at the stationary distribution of the mRNA, figure 7B to compare the exact system with the
equilibrated optimal linear (Hawkes) model, Eq. (68). From theorem 4.4 we know that the variances
coincide. However, also the shape is essentially captured. When looking at the true and approximated
state estimate (fig 7C) for a mRNA trajectory (fig 7D), both also agree to a large extent. Even though
the equilibrated optimal linear (Hawkes) model does not capture the base level, the state estimate
seems to allocate the regime where the linearization fits well for a large amount of time.
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Figure 7: Promoter-mediated transcription. A. Transcription model with promoter states modeled
by a discrete Markov process. The promoter model transitions through an active, an inactive and
a refractory state with all three transition rates being equal to 0.2. Each state summarizes at what
rate transcription is initiated. Assuming a leakage of 0.01, we chose exemplarily for the transcription
rates 1.01 (A), 0.01 (I), 0.06 (R). Furthermore, we considered four independent copies corresponding
to different transcription sites in the cell. We compared the true system (green) and the equilibrated
optimal linear (Hawkes) approximation (purple). B. Histogram of the stationary distribution for the
exact simulations, using Gillespie (green) and the approximate marginal simulations, using Anderson’s
modified next reaction method (purple). C. State estimate of the effective (posterior mean) transcrip-
tion rate obtained as an average over the posterior probabilities of being in either promoter state.
Green uses the true posterior probabilities, purple the equilibrated optimal linear (Hawkes) model,
Eq. (68). D. The mRNA trajectory for which the state estimate was computed. It was simulated,
using the Gillespie algorithm. E. A different promoter model is used compared to A with an inactive,
a weak and a strong state. The arrow thickness indicates the transition strength. Transition and
transcription rates were cWI = cSW = cSI = 0.2, cWS = 0.4, cIS = cIW = 2, λS = 90, λW = 10, λI = 0
(borrowed from [24]). We considered only a single transcription site. F. Histogram as in B. The exact
bimodal distribution is not captured by the equilibrated optimal linear (Hawkes) model, even though
the variances agree. G. State estimates as in C for the time interval [28, 34]. H. Sample trajectory
corresponding to G, simulated using Gillespie. The degradation rate of mRNA was chosen 0.1 in model
A and E.
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Figure 8: A sample trajectory of the mRNA counts for the approximate marginal simulation, i.e., the
analog to fig 7H
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Figure 9: Details on promoter-mediated transcription. Histograms of the stationary mRNA,
simulated from the exact system using the Doob-Gillespie algorithm. Final time point was t = 60. For
the upper row, the transition rates were multiplied by a = 1, . . . , 5. For the lower row N was increased
from 1 to 5. Otherwise, the parameters were as in 7E. The number of trajectories was 2500.

We now turn towards a promoter model, which has more extreme properties than the previous one.
The new model allows transitions in all directions, where two states, a strong and a weak one, are
dominantly allocated, see figure 7E. The major changes are: (i) an increase of the transcription rates
compared to the transition rates, (ii) only one transcription site as opposed to four copies. Again, we
numerically verified the condition (D1). Then we see that the true bimodal distribution is not captured
by the equilibrated optimal linear (Hawkes) model, even though the variance is captured correctly (fig
7F). Looking at the exact and the approximate state estimates (fig 7G and H) we see that the very
sharp transitions are not well captured by the equilibrated optimal linear (Hawkes) model. These
non-linearities are out of reach for the linearization. The sample trajectory (fig 7H) was simulated
with the exact system (Doob-Gillespie). An mRNA trajectory simulated by the approximate marginal
simulation is shown in the figure 8. It differs from the exact system in underestimating the time spent
in the regime of 80 to 100 mRNA copies, compare also the histograms in figure 7F.

We hypothesized that both a relaxation of (i) and (ii) could lead to a better agreement with the
linearization. As a necessary condition, the bimodal distribution must transform to a unimodal one.
To relax (i) we multiplied the transition rates by a factor a > 1, and to relax (ii) we varied N . In figure
9 we depict the corresponding histograms for a = 1, . . . , 5 and N = 1, . . . , 5, which provides evidence
that the necessary condition is met.

If in the case of relaxing (i) the timescale of the promoter approaches the timescale of the transcrip-
tion then the knowledge about the state is more vague, hence the domain of state estimate values that
are allocated narrows. On this domain, the linearization can have a good accuracy for a larger propor-

95



tion. The extreme case would be a much faster promoter timescale than the transcription timescale,
for which the state estimate distribution would narrow to a peak at the mean value. If in the case
of relaxing (ii) we increase the number of copies, the prior distribution of intensity values becomes
unimodal, in the sense that the distribution of 1√

N
(
∑N
i=1 λ(Zi)−NE[λ(Z1)] approaches a Gaussian for

the i.i.d. promoter copies Zi distributed as the stationary prior distribution of one promoter. Let us
assume the extreme case of perfect state estimation, with the distribution of state estimate values equal
to the prior distribution of intensity values. This distribution would resemble more the distribution of
intensity value a Hawkes model can achieve, see section 8.2 below. With imperfect state estimation,
the linearization is even improved by the above argument. In summary, we conjecture that both with
a lower frequency of point observations and with a more Gaussian shape of the prior distribution of
intensity values, the accuracy of the equilibrated optimal linear (Hawkes) model can increase. We
continue this case study in sections 8.2.2 and 8.3.6

8.1.2 Conformational mRNA switching dynamics mediates translation

With the conversion process environment, not only the promoter switching can be captured, but
also the conformational changes of macromolecules, such as mRNA or enzymes. A growing body of
experimental work indicates a negative correlation between translation efficiency and mRNA secondary
structure [160]. Structure switching thus contributes to translational heterogeneity [161, 4], which is not
covered in the classical approach via CRN models. While the use of statistical physics has illuminated
how the ensemble of mRNA secondary structures is composed, it is still an open question in what
way and how much the dynamics between these structures contributes to translational heterogeneity
[4]. A recent study hints at the importance of the unfolding kinetics near the ribosome binding site
[162]. Although the unfolding and refolding of mRNA can happen on its own, it is more commonly
mediated by ligands, small RNAs or proteins [163, 161, 164]. Riboswitches are included in this class
of translational regulators [165].

The dynamics of RNA structure changes occurs at different timescales [166, 167] (figure 10E). At the
fastest timescale of about femto- to nanoseconds, the structure changes as a result of intramolecular
thermal motion [161], e.g., exhibiting base wobbling or rotational diffusion. These fast changes of
the states, summarized by all atom positions, are called equilibrium fluctuations. A conformation,
or metastable state, of a macromolecule, such as mRNA, denotes a subset of atom configurations
that preserves large-scale geometric properties [168]. At a medium timescale, the switching is due to
conformational changes between metastable states. The dynamics remains in the metastable state for a
medium timescale with a probability of almost one until entering another metastable state [169]. Due to
energy barriers, these state transitions of functional importance happen only rarely [161]. Metastable
states are often linked to energy minima of the free energy landscape of mRNA folding [167]. Note
the role of co-transcriptional folding [170] that determines in which suboptimal local minimum the
structure might be trapped. At the slowest timescale of seconds or minutes, in contrast to equilibrium
fluctuations such as base wobbling, we consider switching due to changes in the energy landscape
that are induced by cellular cues, e.g., a change in ligand concentrations [171]. In particular, such
altered energy landscape comes with changes in the canonical ensemble, the conformations and the
conformational dynamics, i.e., the transition rates between metastable states [172]. While the state at
the fast and medium timescales is the physical position of atoms and the abstract metastable state, the
state at the slowest timescale is the energy landscape itself, i.e., the full RNA ensemble and transition
dynamics. A transition between such states is also called redistribution [167]. Note that Dethoff et
al. use the term conformational transition exclusively in the sense of altering the energy landscape.
Assuming that there is a dominant conformation for each altered energy landscape, a discrete state
Markov model might still be sufficiently accurate at the slow timescale. The dynamics of the cellular
effector then determines the transition between dominant mRNA structures.

We interpret Eq. (136) as mRNA structure switching and (140) as translation reaction. Different
mRNA conformations are associated with different translation rates. Denote the translation model
consisting of Eqs. (140) and (136) as MS, where S stands for structure.
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Figure 10: The inclusion of mRNA structure switching in the CRN modeling of gene expression in gene
regulatory networks. (A) A representative of a gene regulatory network. Nodes are genes, arrows indi-
cate activation and repression. (B) Statistical properties of protein trajectories, such as the variance,
the Fano factor. The figure shows trajectories without (green) and with (red) sources of heterogeneity
and indicates how the standard deviation increases. The Fano factor increase or the KL divergence
between trajectories can indicate the contribution of the heterogeneity. (C) The gene regulatory motifs
(activation and repression) are modeled in a classical two-stage gene expression model, separating tran-
scription (TX) and translation (TL). (D) Classical CRN models are extended to reflect translational
heterogeneity. Approximate stochastic filtering links biophysical knowledge about the reaction rate
constants to CRN models. (E) The translation reaction is refined to allow for mRNA conformations
with different translation rates. The dynamics of mRNA conformational switching occurs on different
timescales. At the slowest timescale, the conformation or energy landscape is altered by cellular ef-
fectors. Exemplarily, we depicted changed energy landscapes for a low (left) and high (right) ligand
concentration. The dynamics of the cellular effector that modulates the conformational landscape dic-
tates the timescale. At an intermediate timescale, transitions occur between conformations, i.e., sets of
atom configurations that preserve large-scale geometric shapes. At the fastest timescale, equilibrium
fluctuations due to intramolecular thermal motion occur. When accumulated, those lead to the more
rarely occurring conformational transitions. (F) The rates of transition and the translation rates are
deduced from biophysical experiments and (MD) algorithms, such as oxRNA, in combination with
hidden Markov state models.

8.1.3 Contribution of mRNA structure switching to translational noise

Experimental evidence hints at the contribution of mRNA structure to the translational noise. In order
to demonstrate this effect in the modeling context, we consider the standard transcription-translation
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model and enhance it with a two-structure model. The transcription-translation base model

MTX :
R1, R2 : ∅ µ→ Z

δ→ ∅
R3 : Z

r→ Z + Prot

is extended by accounting for structures to

MTX,S :

R1,2 : Z1
c1,2→ Z2

R2,1 : Z2
c2,1→ Z1

R1 : Z1
r1→ Z1 + Prot

R2 : Z2
r2→ Z2 + Prot

R3, R4 : ∅ α·c2,1→ Z1
δ→ ∅

R5, R6 : ∅ α·c1,2→ Z2
δ→ ∅.

When the structure Zi is synthesized, the probability to be in Z1 is chosen as f := c2,1/(c1,2 + c2,1) to
match the stationary ratio of structures due to switching between structures. This explains the choice
of the birth rates α · c2,1 and α · c1,2. The models are matched in that (i) the constant transcription
rate of the model MTX equals µ = α(c1,2 + c2,1), the total transcription rate of MTX,S, and (ii) its
constant translation rate equals the mean translation rate ofMTX,S, i.e., r = fr1+(1−f)r2. Without
loss of generality we assume the structure Z1 to possess the higher translation rate, i.e., r1 > r2, and
introduce the fold change ρ := r1/r2.

Both models are instances of Markov-modulated Poisson processes where the modulator is a linear
CRN. How to choose the parameters of the models MTX,MTX,S,MS in Eq. (33) is demonstrated
below. For example, τTX = δ−1 and τS = (c1,2 + c2,1)

−1 are the timescales of transcription R3 − R6

and structure switching R1,2, R2,1 in MTX,S, respectively.

Figure 11: Translational noise. Contribution of the structure compared to the transcript copy number
as in the expression Eq. (197). (A) Noise share as a function of the fraction of structure Z1. Local
maxima occur at f = (ρ + 1)−1, i.e., when (1 − f)/f = ρ. Different curves show different relative
correlation times τS/τTX (solid is high, dashed is low) and different fold changes ρ (blue is low, orange is
high). (B) The dependence of the noise share on the relative correlation time for different fold changes
ρ. The fraction f was set to (ρ+1)−1 to yield the maximal value. Curves saturate at (ρ−1)2/(ρ+1)2.
Diamonds and circles belong to corresponding parameter choices in the subfigures.

Let Y (t) count the number of translation synthesis events. We assess the total translational noise
by means of the asymptotic Fano factor FTX,S of the protein synthesis, i.e. limt→∞ Var[Y (t)]/E[Y (t)].
In order to disentangle the different noise sources we decompose the total noise into contributions from
translational intrinsic noise (Poissonian), translational noise due to transcription and due to switching
between structures

FTX,S = 1 +∆FTX +∆FS|TX. (191)
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We computed FTX,S and FTX as in Eqs. (32) and (33), section 3.3. Then ∆FTX = FTX − 1 yielded
∆FS|TX.

For the modelMTX the first- and second order statistics of the modulating birth-death process N
are

E[N ] =
µ

δ
,Cov[N t+h, N t] =

µ

δ
e−δh.

With C = r we obtain for the asymptotic variance slope

˙Var = lim
t→∞

t−1Var[Yt] = r · µ
δ
+

2r2 µδ
δ

and consequently, for the Fano factor:

FTX = 1 + 2 · r
δ
= 1 + 2 · f(r1 − r2) + r2

τ−1
TX

= 1 + 2 · τTX · r2(f(
r1
r2
− 1) + 1)

= 1 + 2
τTX

τTL
(f(ρ− 1) + 1).

For the model MTX,S, the modulator X = [Z1, Z2] induces as parameters the matrix

A =

[

c1,2 + δ −c2,1
−c1,2 c2,1 + δ

]

,

the mean

E[Z1] =
fµ

δ
,E[Z2] =

(1− f)µ
δ

while the matrix entries of the stationary covariance matrix Σ must satisfy

0 = αc2,1 +
αc1,2c2,1

δ
− (δ + c1,2)Σ11 + c2,1Σ12

0 = αc1,2 +
αc1,2c2,1

δ
− (δ + c2,1)Σ22 + c1,2Σ12

0 = −(2δ + c1,2 + c2,1)Σ12 −
2αc1,2c2,1

δ
+ c1,2Σ11 + c2,1Σ22,

which is solved by Σ11 = fµ
δ ,Σ12 = 0,Σ22 = (1−f)µ

δ . The stationary distribution can be shown to be a
joint of independent Poisson random variables. But through the matrix A, temporal cross-covariances
enter, such that the variance slope of Yt reads

˙Var =
rµ

δ
+ [r1, r2]

(

ΣA−T +A−1Σ
)

[r1, r2]
T

=
rµ

δ
+

2µ

δ(c1,2 + c2,1 + δ)
(r2(c1,2 + c2,1) + δ(r21f + r22(1− f))).

With transformations analogous to the ones above

FTX,S = 1 +
2r

δ
+

2(r1 − r2)2f(1− f)
(1 + δ

c1,2+c2,1
)(c1,2 + c2,1)r

(192)

= FTX +
2(ρ− 1)2f(1− f)

( τTL

τS
+ τTL

τTX
)(f(ρ− 1) + 1)

. (193)

For the modelMS with fixed number N of mRNAs we represent the modulator as one-dimensional
process Z = Z1 and use the conservation relation Z1+Z2 = N . Let Yj(t), j = 1, 2 count the number of
translation reactions via the structure Zj , and let Y (t) = [Y1(t), Y2(t)], whereas Y (t) := Y1(t) + Y2(t).
Then Σ =

c2,1c1,2N
(c1,2+c2,1)2

, C = [r1,−r2]T , µ0 = [0, Nr2], µ =
c2,1N

c1,2+c2,1
, A = c1,2 + c2,1 and hence

lim
t→∞

1

t
Cov(Y (t)) =

N

c1,2 + c2,1
diag([r1c2,1, r2c1,2]) +

[

r1
−r2

]

2c2,1c1,2N

(c1,2 + c2,1)3
[r1,−r2].
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Consequently,

lim
t→∞

1

t
Var[Y (t)] = lim

t→∞
1

t
Var[Y1(t) + Y2(t)]

= [1, 1] lim
t→∞

1

t
Cov(Yt)

[

1
1

]

=
(r1c2,1 + r2c1,2)N

c1,2 + c2,1
+ (r1 − r2)2

2c2,1c1,2N

(c1,2 + c2,1)3

= rN + 2τSr
2
2(
r1
r2
− 1)2f(1− f)N

= rN + 2τSr
2
2(ρ− 1)2f(1− f)N.

Hence, for the Fano factor

FS = 1 +
2τSr

2
2(
r1
r2
− 1)2f(1− f)

r2(f(
r1
r2
− 1) + 1)

= 1 +
2τS(ρ− 1)2f(1− f)
τTL(f(ρ− 1) + 1)

= 1 +
1 + τS

τTX

τTL

τS
+ τTL

τTX

· 2(ρ− 1)2f(1− f)
(f(ρ− 1) + 1)

= 1 +

(

1 +
τS
τTX

)

∆FS|TX.

Overall, for the noise contributions we obtained the terms

∆FTX = 2
τTX

τTL
(f(ρ− 1) + 1), (194)

∆FS|TX =
2(ρ− 1)2f(1− f)

( τTL

τS
+ τTL

τTX
)(f(ρ− 1) + 1)

(195)

with (i) the fold change ρ, (ii) the share f of Z1, (iii) the relative timescales τS/τTL and (iv) τTX/τTL,
where τTL = r−1

2 .
Both models MTX and MTX,S account for the transcription. Like MTX,S, the above translation

model MS (Eq. (136)-(140)) with k = 2 accounts for two mRNA structures. However, it neglects
transcription. Instead, the number of transcripts inMS is conserved. We set this constant number of
transcripts to N = µδ−1, the mean of the combined modelMTX,S, thereby matching the two models.
Then ∆FS|TX is related to the Fano factor FS of MS by

∆FS = (1 +
τS
τTX

)∆FS|TX. (196)

Note that the correction factor in Eq. (196) only depends on the timescale difference between tran-
scription and switching. And note further that ∆FS|TX does not depend on N , so the matching can
be neglected.

In order to set the translational noise due to structure in relation to the translational noise due to
transcription, we considered

∆FS|TX

∆FTX,S
=

∆FS|TX

∆FS|TX +∆FTX
=

1

1 + (1 + τTX

τS
)h(ρ, f)

, (197)

with h(ρ, f) = ((ρ − 1)−1 + f)2/f(1 − f), ρ > 1, f ∈ (0, 1). In this model, the contribution of
the structure depends only on (i) the fold change ρ, (ii) the share f of Z1 and (iii) the relative
timescale τS/τTX. The dependence is visualized in figure 11. For a fixed ρ, the function h is minimal
if f = (ρ+ 1)−1 which maximizes the contribution of the structure to the noise.

The contribution of the structure to the translational noise compared to the noise due to transcript
copy number fluctuation increases with the fold change and with the relative timescale, when fixing the
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remaining parameters (figure 11A). The dependence on the fraction f shows a local maximum (figure
11A) which, independently of the timescale, is located at f = (ρ+1)−1. This means that the structure
maximally impacts the translation noise when fr1 = (1−f)r2, i.e., when the odds of allocating the low-
translated structure equals the fold change. Or in other words, the larger the separation between the
high and low translation rate the less does the maximally noisy switching allocate the highly-translated
structure. The odds of its abundance decrease in exactly the way that the fold change increases. We
now consider the fraction at its maximizing value f = (ρ + 1)−1 (figure 11B). Not surprisingly, slow
switching structures have a higher impact on the translational noise when ρ is fixed. However, this
effect is limited, where the limit is dictated by the fold change of the translation rates (horizontal
asymptotes in figure 11B at (ρ− 1)2/(ρ+ 1)2). When fixing the relative timescale, however, we found
that the contribution of the structure can be brought arbitrarily close to 1 for large enough ρ.

In more detail, the relative noise contribution of the structure, Eq. (197), is

ν(f, ρ, τS/τTX) =
(ρ− 1)2f(1− f)

(ρ− 1)2f(1− f) +
(

τTX

τS
+ 1
)

(f(ρ− 1) + 1)2
.

For fixed ρ, it can be derived analytically that ν(f, ρ, τS/τTX) is maximized at f∗ = (ρ+ 1)−1. Then

ν(f∗, ρ, τS/τTX) =
(ρ− 1)2

(ρ+ 1)2 + 4 τTX

τS
· ρ

and

lim
τS/τTX→∞

ν(f∗, ρ, τS/τTX) =

(

ρ− 1

ρ+ 1

)2

.

Furthermore, limρ→∞ ν(f∗, ρ, τS/τTX) = 1 for every τS/τTX > 0. Finally, ν(f∗, ρ, τS/τTX) = α ∈ (0, 1)
is solved by

ρα =
α−1 + 1 + 2 τTX

τS

α−1 − 1
+

√

(

α−1 + 1 + 2 τTX

τS

α−1 − 1

)2

− 1,

which for α = 1/2 yields

ρ1/2 = 3 + 2
τTX

τS
+

√

(

3 + 2
τTX

τS

)2

− 1 ≈ 6 + 4
τTX

τS
,

whereas α = 0.05 yields

ρ0.05 =
21

19
+

2

19

τTX

τS
+

√

(

21

19
+

2

19

τTX

τS

)2

− 1.

The value of ρ0.05 approaches (1 +
√
0.05)/(1 −

√
0.05) = 1.58 for large τS/τTX and is approximately

2.21 + 0.21 τTX

τS
for τS/τTX < 0.1.

In summary, the contribution of the structure makes up half when ρ ≈ 6 + 4 τTX

τS
and potentially

becomes negligible (contribution at most 0.05) when ρ ≤ 2.21 + 0.21 τTX

τS
in the fast switching regime

( τS
τTX

< 0.1) and ρ ≤ 1.58 for slow switching ( τS
τTX

> 10). Considering fast switching compared to
the mRNA lifetime, fold changes of ρ ≥ 4.31 yield potentially non-negligible contributions by this
argumentation.

Next, we compared the contribution of structure switching to other sources of noise in the protein
abundance. Promoter switching is a well established noise source. When the promoter alternates
between the On and Off state, transcription occurs in bursts, and this heterogeneity transfers to the
protein counts during the translation step. We used the standard three-state gene expression model
with a two-state Markov model for the promoter. To include promoter switching we replaced the
reactions R3 and R5 in the model MTX,S by

R7 : Goff
kon→ Gon

R8 : Gon
koff→ Goff

R3a : Gon
α·c2,1→ Gon + Z1

R5a : Gon
α·c1,2→ Gon + Z2.
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to obtain the modelMTX,G,S. Denote by |G| the fixed sum of Gon and Goff , which typically is 1. Define
VarG = |G|PoffPon, where Pon = 1 − Poff = kon

kon+koff
, f = 1 − f, k = kon + koff and EX = |G|Pon

µ
δ .

With

A =





kon + koff 0 0
−fµ c1,2 + δ −c2,1

−(1− f)µ −c1,2 c2,1 + δ



 ,

Σ =









VarG
fµVarG
k+δ

fµVarG
k+δ

fµVarG
k+δ

f2µ2
VarG

δ(k+δ) + fEX
ffµ2

VarG
δ(k+δ)

fµVarG
k+δ

ffµ2
VarG

δ(k+δ)
f
2
µ2

VarG
δ(k+δ) + fEX









,

we obtained from Eq. (33)

FTX,G,S = 1 + 2 · r
δ
+ 2 · Poffµr

(kon + koff)δ
+ 2 · (r1 − r)(r − r2)

(c2,1 + c1,2 + δ)r
.

The expression analogously to Eq. (191) reads

FTX,G,S = 1 +∆FTX +∆FG|TX +∆FS|TX,G

∆FG|TX = 2
τTX

τTL
P2
offβ(f(ρ− 1) + 1)

with ∆FTX as in Eq. (194) and ∆FS|TX,G = ∆FS|TX as in Eq. (195). Here, β = µ/koff denotes the
mean number of mRNA per burst and Poff the frequency of being in the promoter Off state. In the
corresponding reference model MTX,G, that we obtained from MTX by replacing the reaction R3 by

R4 : Goff
kon→ Gon

R5 : Gon
koff→ Goff

R3a : Gon
µ→ Gon + Z,

we obtained

A =

[

kon + koff 0
−µ δ

]

,Σ =

[

VarG
µVarG

kon+koff+δ
µVarG

kon+koff+δ
µ2

VarG
δ(kon+koff+δ)

+ EX

]

,

and thus from Eq. (33)

FTX,G = 1 + 2 · r
δ
+ 2 · Poffµr

(kon + koff)δ
= FTX + 2 · P

2
offµδ

−1(f(ρ− 1) + 1)

koffr
−1
2

.

This implies for the contribution of the structure switching

∆FS|TX,G

∆FTX,G,S
=

1

1 + (1 + τTX

τS
)(1 + P2

offβ)h(ρ, f)
, (198)

We observed that, in this extended model, the contribution of the structure additionally depends on
Poff and β. The contribution is larger, when the promoter is more frequently active and when the
mean number of mRNA per burst is smaller. The qualitative dependence on the parameters ρ, f and
τS/τTX is as before. Secondly, we asked by how much the effect of structure switching is diluted by the
protein decay. We extended the model by a protein decay reaction. In detail,MTX,G,S,P andMTX,G,P

are extensions of MTX,G,S and MTX,G, respectively, by the reaction Prot→ ∅ with rate κ. Then the
theory of linear CRNs provides the stationary variances, from which the Fano factors are computed as

∆FTX,G,P =
Poffrµ(δ + k + κ)

(δ + κ)(k + κ)(k + δ)
+

r

δ + κ

∆FTX,G,S,P = ∆FTX,G,P +
(r1 − r)(r − r2)

r(c2,1 + c1,2 + δ + κ)
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This yields

∆FS|TX,G,P

∆FTX,G,S,P
=

1

1 +
(

1 +
c2,1+c1,2
δ+κ

)(

1 + P2
offβ

1+ κ
k+δ

1+κ
k

)

h(ρ, f)

=
1

1 + (1 + ( τS
τTX

+ τS
τP
)−1)

(

1 + P2
offβ ·

1+(
τP
τG

+
τP

τTX
)−1

1+
τG
τP

)

h(ρ, f)

, (199)

where τP = κ−1 is the inverse protein degradation rate and τG = k−1 is the inverse sum of the
On and Off switching rates of the promoter. For τP � τTX, the expression amounts to Eq. (198).
This expresses what the structure switching contributes to the Fano factor compared to other external
protein noise sources, i.e., the intrinsic transcription noise and the promoter switching, while excluding
the intrinsic protein noise from the consideration. As an additional observation, if we include the
intrinsic protein noise in the comparison, and again assume τP � τTX, we obtain

∆FS|TX,G

1 + ∆FTX +∆FG|TX +∆FS|TX,G
=

1

1 +
(

(1 + τTX

τS
)(1 + P2

offβ) + π−1
)

h(ρ, f)
,

where π = r/δ is the average number of protein translated by one mRNA.
The findings in this section justify incorporating noise due to mRNA structure into CRN modeling.

Since with increasing number of structures, direct stochastic simulations of the conversion reactions are
expected to become inefficient, we aim for a model reduction that incorporates effects of the switching.
This motivates the remainder of our work. While we chose a model reduction approach via approximate
stochastic filtering, the projection operator formalism has been used as an alternative in the literature
[173, 174, 175, 99, 176]. We opted for an approximate stochastic simulation approach that does not
presume specific copy number regimes and switching timescales. The projection operator formalism
provides process equations only for the diffusion approximations. On a discrete state space, it yields
probability evolution equations with memory terms, from which no immediate process equation can be
derived for simulations. Stochastic filtering is more commonly applied for state estimation in partially
observed reaction networks [58, 89, 87], whereas for model reduction purposes it was proposed by
Zechner and Koeppl [3] and rediscovered by Öcal et al [80].

8.1.4 Approximate filters for mRNA structure switching

The Hawkes filter can be compared to the multinomial filter, which is obtained as a multinomial
closure of the posterior mean equation (64). The stationary prior distribution of the heterogeneity
network is a multinomial M(N, (p1, . . . , pk)). This suggests a multinomial moment closure, assuming
M(N, (θ1(t), . . . , θk(t))) for the posterior distribution. We use θi(t) = N−1Mi(t) and express the second
order terms in the posterior mean equation (64) as

Vji =

{

Nθi(t)θj(t), i 6= j

Nθi(t)(1− θi(t)), i = j.

This leads to the multinomial parameter evolution equation

d

dt
θi =

k
∑

j=1
j 6=i

(−ci,jθi + cj,iθj)− riθi +
k
∑

j=1

rjθjθi (200)

in-between jumps of the translation counting process. When Y (t) jumps at t, we get

θi(t) =







θi(t−)
(

1− 1
N + ri

N
∑k−1

j=1 (rj−rk)θj(t−)+rk

)

i 6= k

1−∑k−1
i=1 θi(t−) i = k.

(201)
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We call

R : ∅ N
∑k

i=1 ri θi(t)−−−−−−−−−−−−−−→ Prot (202)

the model MP
M, where M stands for multinomial. It is shown in [A5] that the multinomial moment

closure coincides with an entropic matching evolution equation. For k = 2, we call the model MP
B ,

where B denotes binomial. The intensity of MP
B is equivalently expressed by

λBt = Nr1θ(t) +Nr2(1− θ(t)). (203)

The modelMY
B differentiates between translation reactions R1, counted by Y1(t), and R2, counted by

Y2(t). The evolution equation between jumps is equal to Eq. (200). However, the available information
about which reaction fired modifies the jump update equation Eq. (201) to

θ(t) =

{

1
N + N−1

N θ(t−), if Y1(t) = Y1(t−) + 1
N−1
N θ(t−), if Y2(t) = Y2(t−) + 1

.

Complementary, we considered the Hawkes approximate filter as in section 8.1.1. The mRNA switching
replaces promoter switching and protein production events replace transcription events

R : ∅ ẐH(t)−−−−−−−→ Prot. (204)

We indicate this reduced model by MP
L with L denoting linear, For k = 2, it simplifies to a one-

dimensional evolution equation

dẐH(t) =−A(ẐH(t)− µ) dt+ β(t)( dY (t)− ẐH(t) dt), (205)

d

dt
β(t) = −2Aβ(t) + 2AΣ− β(t)2, (206)

ẐH(0) = µ, β(0) =
Σ

µ
, (207)

with

A = c1,2 + c2,1,Σ = N(r1 − r2)2
c1,2c2,1

(c1,2 + c2,1)2
, µ = N

r1c2,1 + r2c1,2
c1,2 + c2,1

.

When we are interested in the asymptotic behavior, we may assume that β(t) has equilibrated and

replace it by the constant β =
√

A2 + 2AΣ
µ −A. Then the model reads in differential form

dẐH(t) = −α(ẐH(t)− µ0) dt+ β dY (t), ẐH(0) = µ,

α = A+ β, µ0 =
µA

A+ β
,

(208)

and in integral form

ẐH(t) = µ0 +

∫ t

0

βe−α(t−u) dY (u), (209)

upon replacement of ẐH(0) = µ0 for convenience, which is justified for the asymptotic analysis. In
particular, under the equilibrium assumption the model MP

L for k = 2 yields a Hawkes process with
standard exponential kernel. We indicate whether we used the non-equilibrated or the equilibrated
case.

8.1.5 Comparison of Fano factors for approximate filters

In this section, we apply the result of section 4.4 and investigate the Fano factor in the two-structure-
model with constant mRNA number. While comparing the contributions of noise due to structure
and intrinsic transcriptional noise in figure 11, here we investigated the relevance of fast switching
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timescales compared to the slowest translation rate, i.e., the dependence on τS/τTL = r2
c1,2+c2,1

. As
discussed in subsection 8.1.3, the Fano contribution ∆FS due to structure is

∆FS =
2τS(ρ− 1)2f(1− f)
τTL(f(ρ− 1) + 1)

. (210)

For the Fano factor FB of the binomial filter, Eqs. (200)-(201) for k = 2, we use that it is of the form
in Eq. (108) with one-dimensional global parameter and V (t) = (r1 − r2)θ(t−)(1 − θ(t−)), see the
section 8.1.6 below. Using Eq. (109), we find that ∆FB = ∆FS +∆FB|S with

∆FB|S =
2τS(ρ− 1)2(N − 1)Var[θ∞]

τTL(f(ρ− 1) + 1)
. (211)

This shows that the binomial filter systematically overestimates the exact Fano factor, because ∆FB|S >
0 if N ≥ 2. We explain this as follows. The binomial filter estimates the filter mean with only one
degree of freedom, since the filter parameter θ is a scalar. The binomial ansatz, however, relies on the
implicit assumption that the events for finding either of the N mRNA molecules in structure Z1 are
independent. The success probability is then calibrated, such that the mean matches, because there
is only one degree of freedom. But the events are not independent, since knowledge about the recent
history of the translation process adds implicit negative correlations. There is one exception. In the
case, when no event was observed for a long time, the filtering distribution converges to a binomial
distribution, implying that the independence assumption is met. For the derivation of the convergence,
suppose the θ1, . . . , θk satisfy

0 =

k
∑

i=1
i 6=j

cijθi − cjiθj − rjθj +
k
∑

i=1

riθiθj

for all j = 1, . . . , θk. Let x1, . . . , xk ∈ N0. Then upon multiplication with xj/θj and summation we get

0 =

k
∑

i,j=1
i 6=j

cijxj
θi
θj
− cjixj −

k
∑

j=1

rjxj +

k
∑

i=1

riθi(

k
∑

j=1

xj)

=

k
∑

i,j=1
i 6=j

cijxj
θi
θj
− cjixj −

k
∑

j=1

rj(xj − θj
k
∑

i=1

xi).

Now, we employ the multinomial ansatz

π(x1, . . . , xk) = θx1
1 . . . θxk

k

N !

x1! . . . xk!

for any x1, . . . , xk ∈ N0 that add up to N .
Plugging this ansatz into the dynamics (right-hand side) of the exact filtering equation, we obtain

d

dt
π(x1, . . . , xk)

=

k
∑

i,j=1
i 6=j

cij(xi + 1)π(. . . , xi + 1, . . . , xj − 1 . . . )

− cjixjπ(x1, . . . , xk)−
k
∑

j=1

rj(xj − Eπ[Xj ])π(x1, . . . , xk)

=π(x1, . . . , xk)











k
∑

i,j=1
i 6=j

cijxj
θi
θj
− cjixj −

k
∑

j=1

rj(xj −Nθj)











=0
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by applying N =
∑k
i=1 xi. Hence, the multinomial distribution is the equilibrium distribution of the

filtering equation between jumps.
In order to evaluate the term Var[θ∞] in Eq. (211), we made use of that computes the asymptotic

conditional intensity distribution (ACID) in a simulation-free way. The technique makes use of the
convenience that θt is a piecewise-deterministic Markov process.

The reduced modelMY
B yields the analogous result, Eq. (211), with the respective θt. In this case,

the asymptotic moment Var[θ∞] can be obtained by a tight moment bound approach [42, 41]. Applying
the Ito formula for counting processes to the powers θnt , n = 2, . . . , N yields a system of N − 1 linear
equations in the moments E[θ2∞], . . .E[θN+1

∞ ]. Then E[θ2∞] can be maximized and minimized under the
additional inequality constraints

E[θ∞] ≥ E[θ2∞] ≥ E[θ3∞] ≥ · · · ≥ E[θN+1
∞ ] ≥ 0.

For large enough N the obtained upper and lower bound are tight. Details on the moment equations
and the linear program are found in [A5].

The reduced model MP
L agrees with the exact model in terms of the Fano factor, compare 4.1 for

the non-equilibrated case. For the equilibrated case, Eq. (208), see section 8.1.6 below. Apparently,
the model uses its degrees of freedom µ0, α, β to match the three parameters (i) mean, (ii) variance
and (iii) correlation time of the modulating process Z1 or, equivalently, f, ρ, τS/τTL, that determine
the asymptotic Fano factor.

8.1.6 Derivation of the Fano factors for the model reductions MP
B , MY

B and MP
L

For the model MP
B , i.e.,MP

M for k = 2

R : ∅ (r1−r2)Nθ(t−)+Nr2−−−−−−−−−−−−−−−−−→ Prot, (212)

compare Eqs. (200)-(201), the intensity is expressed affine-linearly in θ(t−) of the form in Eq. (108)
with Θt = θ(t) ∈ [0, 1], d = l = 1, Θ̄ = c2,1(c1,2 + c2,1)

−1, V (t) = (r1 − r2)θ(t−)(1 − θ(t−)),
A = c1,2 + c2,1,C = N(r1 − r2), α = Nr2.

Then Eq. (109) yields

lim
t→∞

t−1Var[Yt] = Eλ∞ + 2CA−1(E[V (∞)] + CVar[θ∞])

= (r1 − r2)N
c2,1

c1,2 + c2,1
+Nr2 +

2(r1 − r2)2N
c1,2 + c2,1

(

c2,1
c1,2 + c2,1

−
Nc22,1

(c1,2 + c2,1)2
+ (N − 1)E[θ2∞]

)

= (r1 − r2)N
c2,1

c1,2 + c2,1
+Nr2 +

2(r1 − r2)2N
c1,2 + c2,1

(

c1,2c2,1
(c1,2 + c2,1)2

+ (N − 1)Var[θ2∞]

)

= lim
t→∞

t−1Var[Ỹt] +
2(r1 − r2)2N(N − 1)

c1,2 + c2,1
Var[θ∞],

where Ỹt denotes the counting process of model MS. The asymptotic Fano factor is hence given by

FB = FS +
2r22(

r1
r2
− 1)2(N − 1)Var[θ∞]

τ−1
S r2(f(

r1
r2
− 1) + 1)

= FS +
2τS(ρ− 1)2(N − 1)Var[θ∞]

τTL(f(ρ− 1) + 1)
.

For the model MY
B we have a bivariate counting process Yt = [Y1(t), Y2(t)] with Θt = θ(t) ∈ [0, 1],

d = 2, l = 1, V (t) = [V1(t), V2(t)] for V1(t) = r1θ(t−)(1 − θ(t−)), V2(t) = −r2θ(t−)(1 − θ(t−)),
A = c1,2 + c2,1,C1 = Nr1, C2 = −Nr2, α1 = 0, α2 = Nr2. Denote Y (t) := Y1(t) + Y2(t). Then the
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asymptotic variance Yt is given via the asymptotic covariance of Yt, i.e.,

lim
T→∞

Var[Y (T )]

T
=[1, 1] lim

t→∞
1

t
Cov(Yt)

[

1
1

]

=(r1 − r2)N
c2,1

c1,2 + c2,1
+Nr2 +

2(r1 − r2)2N
c1,2 + c2,1

(

c1,2c2,1
(c1,2 + c2,1)2

+ (N − 1)Var[θ2∞]

)

= lim
t→∞

t−1Var[Ỹt] +
2(r1 − r2)2N(N − 1)

c1,2 + c2,1
Var[θ∞],

where Ỹt denotes the counting process of model MS. The asymptotic Fano factor is hence given by

FB = FS +
2τS(ρ− 1)2(N − 1)Var[θ∞]

τTL(f(ρ− 1) + 1)
.

ForMP
L , we use Θ(t) = Z0(t) and V (t) = B̄CT ẐH(t)µ−1. Then at equilibrium in Eq. (111) we obtain

ACov[Θ∞]− Cov[Θ∞]AT

=E
[

V (∞) diag−1(λ∞)V (∞)T
]

=B̄CTµ−1CB̄

and, assuming that A is invertible, see appendix B, in Eq. (109)

lim
t→∞

t−1E[(Yt − E[Yt])(Yt − E[Yt])
T ]

=Eλ∞ + CA−1(B̄AT +AB̄)A−TCT + CA−1(B̄CTµ−1CB̄)A−TCT

=Eλ∞ + CA−1(AΣ+ ΣAT )A−TCT

=Eλ∞ + C(ΣA−T +A−1Σ)CT .

8.1.7 Demonstration of modular embedding of mRNA structure switching

We demonstrate how the binomial and the Hawkes filter can be used to incorporate intragenic trans-
lational heterogeneity due to mRNA structure into existing gene networks in a modular way. For
this purpose, we need to generalize the filters for time-varying N . We assume that each mRNA
structure degrades with the same rate and that new mRNA molecules are synthesized with probability
given by the stationary distribution of the prior process, i.e., a categorical distribution [p1, . . . , pk] as in
Eq. (138). Let us first consider the case N(t) = N(t−)−1. Since the N(t−) mRNA molecules are non-
distinguishable, by symmetry each of them is in conformation Zi with probability Eπ̃(t−)[Zi]/N(t−),
where π̃(t) denotes the exact or approximate filtering distribution. After any of the non-distinguishable
molecules degraded, again by symmetry, the remaining ones are still in the conformation Zi with
probability Eπ̃(t−)[Zi]/N(t−), which implies Eπ̃(t)[Zi] = N(t)

N(t)+1Eπ̃(t−)[Zi]. For the multinomial fil-
ter, this means θi(t) = θi(t−). Let us next consider N(t) = N(t−) + 1. The newly synthe-
sized mRNA molecule is in conformation Zi with probability pi, whereas the N(t−) are of type Zi
with probability Eπ̃(t−)[Zi]/N(t−). Hence, the expected mRNA molecule of type Zi at time t are

Eπ̃(t)[Zi] = Eπ̃(t−)[Zi] + pi. For the multinomial filter, this reads θi(t) =
N(t)−1
N(t) θi(t−) + pi

N(t) . For the

Hawkes model, let us first consider the case N(t) = N(t−)− 1, then Z0(t) =
N(t)
N(t−)Z0(t−) because it

scales linearly in N , and furthermore β(t) = β(t−), because the ratio of the variance and the mean does
not scale with N . Next, we consider N(t) = N(t−) + 1. Then Z0(t) = Z0(t−), because a stationary
contribution to the mean of the new mRNA does not contribute to Z0(t), which is linearly shifted to
have mean zero. The contribution of the new mRNA to the variance is independent of the conditional
variance of the present mRNAs, which means it is added. For the ratio of the variance and the mean
this implies

β(t) =
N(t−)

N(t−) + 1
β(t−) + 1

N(t−) + 1

(r1 − r2)2f(1− f)
(r1f + r2(1− f))

.

As a case study, we considered a stochastic toggle switch [177] which exhibits bistability caused by
mutual repression of two gene products. The first output protein represses the mRNA of the second
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output protein via a decreasing Hill function and vice versa. In the model, we included the effect
of mRNA structure, such that the full symmetric reaction system that we considered contains the
following reactions

MTX,S :

R1, R2 : ∅ h1,1→ Z1,1
δTX→ ∅

R3, R4 : ∅ h1,2→ Z1,2
δ→ ∅

R5 : Z1,1
c1,2→ Z1,2

R6 : Z1,2
c2,1→ Z1,1

R7 : Z1,1
r1→ Z1,1 + Prot1

R8 : Z1,2
r2→ Z1,2 + Prot1

R9 : Prot1
δTL→ ∅

R10, R11 : ∅ h2,1→ Z2,1
δTX→ ∅

R12, R13 : ∅ h2,2→ Z2,2
δ→ ∅

R14 : Z2,1
c1,2→ Z2

R15 : Z2,2
c2,1→ Z2,1

R16 : Z2,1
r1→ Z2,1 + Prot2

R17 : Z2,2
r2→ Z2,2 + Prot2

R18 : Prot2
δTL→ ∅

with h1,1 = g(P2)f, h1,2 = g(P2)(1 − f), h2,1 = g(P1)f, h2,2 = g(P1)(1 − f), g(x) = α
1+(x/p)H

, where p
is the half-max concentration, α is the full induction and H the Hill coefficient.

We also considered the reduced models, that consist only of the TX, TL and degradation reactions.
To this end, we replaced the translation rate constants by one of the following time- and history-
dependent filters, the Hawkes and binomial filter. The Hawkes model reads

MP
L :

R1, R2 : ∅ g(P2)→ Z1
δTX→ ∅

R3 : Z1
λL,1(t)→ Z1 + Prot1

R4 : Prot1
δTL→ ∅

R5, R6 : ∅ g(P1)→ Z2
δTX→ ∅

R7 : Z2
λL,2(t)→ Z2 + Prot2

R8 : Prot2
δTL→ ∅

where λL,i(t) = ẐH, as in Eq. (205) with updates of N(t) as in the first paragraph of section 8.1.7.
For the Hawkes filter we used the non-equilibrated version, since with the repeated modification of N
we cannot expect the filter to be at equilibrium, but assume that it spends a non-negligible amount
of time in the transient regime. For the binomial model MP

B , the reactions R3, R7 obtain altered
propensities λB,i(t) as in Eq. (203) with updates of N(t) as in the first paragraph of section 8.1.7.

The switching parameters and heterogeneous translation rates are accounted for by the filter. In the
case study, the parameters were chosen to match the mean translation rate of the extended model with
the one of the initial model as described in section 8.1.3 after the model introduction. We emphasize
that the extension does not alter the reaction types, in particular, it does not increase the number
of reaction types. Due to the model reduction via filtering, the switching reactions are not explicitly
simulated. Their effect enters implicitly via corresponding history-dependent propensities, that rely on
tracking a sufficient statistic, as opposed to depending on the current network state. For this reason,
a stochastic simulation algorithm that handles time-varying propensities is required, which excludes
the convenient Doob-Gillespie algorithm. Accordingly, the results were obtained by our algorithm
presented in section 7.1 for the Hawkes model and a modified algorithm 1 for the binomial model.

The stochastic toggle switch can operate in three different regimes. Here, we looked at the two
bistable regimes with (i) stable modes and (ii) unstable modes. The third monostable regime, which
is characterized by a unimodal joint distribution of the two protein species, is not of interest here.
The bistable regime is characterized by a bimodal joint distribution. For (i), transitions between the
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Figure 12: Symmetric toggle switch with conformational mRNA switching. (A) Heatmap showing the
average number of switching events per hour for varying fold change and relative correlation time.
Fold change increases from bottom (ρ = 5) to top (ρ = 50), relative correlation time increases from
left (τS/τTX = 0.1) to right (τS/τTX = 100) with logarithmic axes. Estimated values from simulation
of the reaction system MS. (B) The average number of switching events as a function of the relative
correlation time for three different fold changes (boxed by black in A). (C) Sample trajectories for
the first (black) and second (gray) protein species, ρ = 30.0, τS/τTX = 100. Exact and reduced
models are indicated. (D) Stationary variance of the protein abundance of the first protein species
as a function of the relative correlation time for two different fold changes (ρ = 10.8 is not shown to
avoid cluttering). In B and D, exact model MS (solid line, values as in A) and reduced models MP

L

(dashed),MP
B (dotted) are compared. Parameters were α = 1s−1, H = 5, p = 10, δTX = 0.2s−1, δTL =

0.1s−1. Translation rates r1, r2 and transition rates c1,2, c2,1 between structures were chosen such
that fr1 + (1 − f)r2 = 1s−1 with f = (ρ + 1)−1, and according to values of ρ as well as τS/τTX =
δTX/(c1,2+ c2,1). To estimate the values shown in A, B and D, 100 trajectories were drawn, initialized
in (Z1,1, Z1,2,Prot1, Z2,1, Z2,2,Prot2) = (5, 5, 0, 5, 5, 0) for the exact model and (Z1,Prot1, Z2,Prot2) =
(10, 0, 10, 0) for the reduced models. Simulations were terminated after 500, 000 reactions that changed
Prot1 or Prot2.

two modes are rare, and the bimodality is a result of the initial transition to either mode. For (ii), we
observed switching between the modes in the time course of a trajectory. A symmetric toggle switch,
which we study here, allocates both modes with equal probability. We expected that a heterogeneous
translation due to mRNA structure switching can alter the regime in which the toggle switch operates.
We conjectured that the stable modes of a bistable toggle switch can be destabilized. As we have
seen, the protein variance increases upon the introduction of heterogeneous mRNA structures. This
broadens the distribution of each mode, which increases the probability of transitions from one mode
to the other. Indeed, we found parameter choices for the Hill coefficient, the saturation values and the
degradation rates which exhibit a destabilizing behavior. As in section 8.1.3, the fold change between
translation rates is the ratio r1/r2. We investigated how the frequency of transitions varies for different
fold changes and timescales of mRNA conformational switching.

For the estimation of the number of switching events, 100 trajectories were simulated, until 500, 000
jumps had occurred in reactions that altered Prot1 or Prot2. The system state at the jump times yielded
a time series. The time series was smoothed by a moving average with window length 100, and the
sign changes of the difference between the smoothed protein abundances were counted. Each of the
100 trajectories yielded one total number of sign changes. We added all total numbers and divided by
the sum of elapsed time over all 100 trajectories. The stationary variance of Prot1 was estimated as a
time average over the appended trajectories. By the symmetry of the system in Prot1 and Prot2, we
appended all trajectories of Prot2, even though both are clearly not independent.

Consistently, we found that the quasi-steady state assumption holds for fast conformational switch-
ing. We observed that the switch switches more frequently with increased fold change for slow enough
conformational switching (figure 12 A). This behavior is qualitatively captured by the reduced Hawkes
and binomial models (figure 12 B). However, quantitatively, the reduced models deviate, overestimat-
ing the number of switching events, compare also the sample trajectories (figure 12 C). Because of the
non-linear propensities for the repression, realized by decreasing Hill functions, we cannot expect the
protein variance of the Hawkes model to agree with the exact model. We observed a lower variance
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(figure 12 D). At the same time, the effect of overdispersion for the binomial model persists, compare
section 8.1.5. The switching behavior for the Hawkes and binomial models shows an interesting non-
monotonic relation (figure 12 B). While for an intermediate fold change ρ = 10.8 the Hawkes model
switches less than the binomial model, for a high fold change ρ = 30.0 the Hawkes model switches
more. We explain this by the following observation. Due to the constraints of its linear approxima-
tion, the Hawkes model spends an overestimated amount of time in intermediate propensity values,
whereas the binomial model leans away from the central propensity values towards the high and low
propensity values. For larger fold changes, in particular, this brings the two modes closer together for
the Hawkes model, whereas it broadens the modes for the binomial model. This explains not only
the underestimated variance for the Hawkes model, but also implies that the Hawkes model has more
overlaps between the modes, which makes transitions more likely. For the binomial model, on the
contrary, the more likely transitions result from increased allocation of low propensity values. This
example shows that quantitative deductions from approximate stochastic filtering, as presented here,
need to be treated carefully when a CRN contains non-linear propensities. Not only the monotonic
agreement of the approximate filter’s propensity with Snyder’s filter matter, but also the proportion
with which the filter allocates the propensity values.

8.2 Hawkes modeling

For the inclusion of structure switching in the previous case study, we observed cases where the Hawkes
model and the exact joint model agree, as well as cases with a discrepancy. Based on these observations,
we investigated the Hawkes approximation in more detail. We used the ACID as a discrimination tool
and compared the Hawkes approximate filter, Eq. (208), to the Snyder filter for the random telegraph
model with a dark current. Formally, the model is equivalent to the promoter-mediated transcription
model or mRNA-structure-mediated translation model with k = 2 and N = 1.

We first provide the technical details of the computational approach for the ACID that uses sections
5.2.1 and 5.2.4. For this purpose, the Eq. (58) provides the one-dimensional sufficient state variable
of Markovian progression with linear F (z) = −α(z − µ0), f(z) = z + β and l = id. The CI λ̂t is the
left-continuous version of Ẑ(t) in Eq. (58). The link to the BReT-P is established by Eq. (84) and (85)

m(τ, θ) = u(τ, θ) = µ0 + e−ατ (θ − µ0), g(τ, θ) = m(τ, θ) + β. (213)

The next proposition parallels the proposition 9.6. In the Eq. (215) below we also provide the analogue
of Eq. (286), i.e. the kernel for the direct method. The support of p0(θ) is (µ0 + β,∞) and contained
in (µ0,∞). We consider the equidistant partition bi = µ0 + i∆θ, i = 0, . . . , N for ∆θ ·N large enough
to cover most of the probability weight, i.e., for

∫ ∆θ·N

0

p0(θ + µ0 + β) dθ ≈
∫ ∞

0

p0(θ + µ0 + β) dθ.

Proposition 8.1. Suppose that we partition the truncated p0(θ)-support Ω = (µ0+β, µ0+β+∆θ ·N ]
into equidistant intervals (bi−1, bi] with bi = µ0 + β + i · ∆θ, i = 1, . . . , N and choose representatives

θi =
bi+bi−1

2 . Then the matrix entries in (125) are given by

Ai,j = R(bi, θj) ∧ 1−R(bi−1, θj) ∧ 1

with

R(θ, θ′) =

(

θ − β − µ0

θ′ − µ0

)

µ0
α

e−α
−1(θ′−θ+β).

Proof. Continuing with Eqs. (213), we solve the Eq. (91) to obtain

ρ(τ, θ) = e−µ0τ exp

(

θ − µ0

α
(e−ατ − 1)

)

.

Define the function

T (θ, θ′) := α−1 ln

(

θ′ − µ0

θ − µ0

)

. (214)
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The number of solutions of g(τ, θ′) = θ is N(θ, θ′) ∈ {0, 1} with τ(θ, θ′) = T (θ − β, θ′). Then the
matrix entries in Eq. (125) are given by

Ai,j = ρ(τ(bi, θj) ∨ 0, θj)− ρ(τ(bi−1, θj) ∨ 0, θj)

= R(bi, θj) ∧ 1−R(bi−1, θj) ∧ 1.

The ACID was obtained from a fixed point iteration as described in 5.2.1 and, according to section
5.2.4, we employed τ (m)(θ, θ′) = T (θ, θ′), see Eq. (214), with numerical integration in Eq. (132).
Examples are shown in fig. 13. The other way to obtain the ACID via the direct method in Eq. (134)
yields for the Hawkes process

K(m,m′) =
m′(m− µ0)

µ0
α

−1

α(m′ + β − µ0)−
µ0
α

e
1
α
(m−m′−β) (215)

in Eq. (133). By "iterative solution" [178, p.2] this fixed point iteration could have originally been
meant instead of the method of steps. Fig. 13 shows agreement for three Hawkes examples.

The approximate pλ(m) may serve as initial distribution of λ̂0 for the stationary Hawkes process.
Using martingale theory, the equilibrium variance of λ̂t was derived to equal

Var[λ̂∞] =
αµ0β

2

2(α− β)2 . (216)

For this purpose the process equation for the Hawkes process is rewritten as

dλ̂t = −γ(λ̂t − cµ) dt+ β dQt

with the canonical FYt -martingale increment dQt = dYt− λ̂t dt. The parameters are linked as derived
in Eq. (68) with the correspondence λ̄ = µ0, B̄D = β,A = γ, i.e.,

β =

√

γ2 +
2cγσ2

µ
− γ, α = γ + β, αµ0 = cµγ, (217)

see also Eq. (208). We are interested in the asymptotic behavior, i.e. λ̂∞. It can be brought to finite
time t under the shift [60] of the time domain [0,∞) to (−∞, t):

λ̂t = cµ+

∫ t

−∞
e−γ(t−s)β dQs. (218)

By the Ito isometry for counting processes, Eq. (5), we get Eq. (216) from Eq. (218) via:

Var[λ̂t] = E[(λ̂t − cµ)2] = E

[

(
∫ t

−∞
e−γ(t−s)β dQs

)2
]

=

∫ t

−∞
e−2γ(t−s)β2E[λ̂s] ds

=
cβ2µ

2γ
= c2σ2 − cµβ = Var[λt]− E[λt]β. (219)

In section 8.2.4 below, we take Eq. (219) as a point of departure to define a relative effective noise that
is transferred from the environment to the subnetwork. The parameter sets in fig. 13 were chosen,
such that the ACID’s first and second order moments are constant, but vary in the exponential decay
parameter α of the Hawkes kernel. This makes the shape vary qualitatively. While, for fast decay (α
large), the region near the base value µ0 is frequented more heavily, for slow decay, the CI spends more
time in the middle regime around the mean cµ. This illustrates that the ACID analysis goes beyond
the mean and variance analysis, i.e., that the ACID is parameterized by more than two parameters.

Let us return to the perspective of the previous subsection, where we saw the Hawkes process as an
approximation of the MMPP modulated by (Zt)t≥0. We emphasize that the stationary distributions,
i.e., the distribution of λ∞ for common input processes (Zt)t≥0, such as the Cox-Ingersoll-Ross process,
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Figure 13: ACID for the Hawkes process. ACID mean cµ = αµ0

α−β = 2 and ACID variance
αµ0β

2

2(α−β)2 = 1 were constant, while α ∈ {0.3, 1, 3} varied. The truncation ∆θ·N of the support was chosen

to be the 0.999-quantile of the Gamma distribution with mean cµ and variance c2σ2. Discretization
granularity was N = 200. Additionally, three equidistant representatives θi, see Eq. (124) were chosen
in each interval. Their mean function evaluations were used in Eq. (125) for the coefficients of A.
Number of iterations was L = 15. Comparison of BReT-P and direct method is shown, where the
discretization granularity was N = 1000 for the direct method.

see case study 8.2.3 below, the birth-death process or random telegraph model, are entirely character-
ized by their mean and their variance. The autocovariance decay parameter γ, i.e., A in Eq. (C2), is
not captured by λ∞. In contrast, the ACID λ̂∞ does capture a change in γ, see fig. 13, so it contains
temporal information about the input process. Next we go into detail about the comparison of the
MMPP and its Hawkes approximation with the ACID and the RER. This exceeds the second-order
analysis, which by theorem 4.1 fails to tell them apart.

8.2.1 ACID discriminates Snyder and Hawkes filter

In the promoter-mediated transcription model with three structures, case study 8.1.1, we observed
that the Hawkes model does not capture the trajectory-wise non-linear Riccati dynamics of the Snyder
filter, see figure 7G. While the trajectories provide an empirical comparison of the dynamically evolving
conditional intensities. The information-measure RER, on the contrary, can assess the deviation of the
path measures. Alternatively, we use the ACID for an ensemble comparison of assumed conditional
intensity values, that summarizes the comparison of trajectories. We compare the Hawkes filter to the
exact Snyder filter, i.e.,

dλ̂t =
{

c1∆λ− (c2 + c1 +∆λ)(λ̂t − λ0) + (λ̂t − λ0)2
}

dt+
(λ̂t− − λ0)(λ1 − λ̂t−)

λ̂t−
dYt, (220)

see also section 6.1.2 and information-theoretic applications 9.2 and 9.4.1 below. We fixed the dynamic
range ∆λ = 1 and varied the intensity λ0 for the Off state, i.e., the leakage. The RER and the empirical
comparison of the ACID is employed to detect the parameter regimes where the approximate marginal
simulation deviates from the exact marginal simulation (fig. 14b, c). Let P denote the path measure of
the random telegraph modulated counting process with leakage, i.e., with the CI given by the Snyder
filter and Q the Hawkes process. Following section 5.2.3, the RER D(P‖Q) was computed. Figure 14e)
shows that for fixed switching rates, gain and amplitude, the deviation gets more severe for smaller
leakage. We also computed other similarity measures, depicted in fig. 14f). The Wasserstein metric
compares the ACIDs, while the metric

lim
T→∞

1

T

∫ T

0

|λ̂t − λ̂Ht | dt. (221)

implements a path-average L1-comparison. It depends on the context, i.e., the approximation goal,
when to use a comparison of the ACIDs and when to use the RER for assessing an approximation.
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Figure 14: The random telegraph with dark current modulates a Poisson process. Compar-
ison of the exact Snyder filter and the optimal linear filter (Hawkes process). a), d) Lower panel shows
100 realizations of the approximate marginal simulation (blue, increasing) and the exact simulation
(red, decreasing). The lower y axis was flipped to simplify visual comparison. Upper panel compares
λ̂t for the Hawkes (blue) and the exact (red, dashed). The trajectory t 7→ Yt for which both where
computed, is shown in the lower panel (black). b), c) The cdfs of the ACIDs are compared for Hawkes
(blue) and Snyder filter (red, dashed). e) The RER between the counting process obtained by the
Snyder filter, i.e., the MMPP with the random telegraph input, and the Hawkes process is depicted for
increasing dark current. f) The Wasserstein metric between the Hawkes ACID and the exact ACID
for increasing dark current. The dashed line depicts the path metric (221) obtained from a) as the
average distance between both paths. (The trajectory t 7→ Yt was obtained from the Snyder filter.)
All plots used the parameters ∆λ = 1, c1 = c2 = 0.1, c = 1. Dark current varied in e), while a), b)
used λ0 = 0.1, and c), d) used λ0 = 4. Both values are indicated as dots in e) and f).
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When approximating the MIR via Eq. (121) with an approximate filter λ̂t, a comparison of the ACIDs
seems suited. According to [85], the RER precisely quantifies the error of a mismatched computation
of the MIR, i.e., if an approximate filter is used in Eq. (8), while (Yt)t≥0 is distributed according to
the original counting process. Note that this differs from approximating Eq. (121) with λ̂∞ being
the ACID of the approximate filter. In the latter case, also the measure with respect to which the
expectation is taken, changes (compare remark 5.2) or, in other words, (Yt)t≥0 in Eq. (8) is a counting
process with the mismatched CI.

8.2.2 Mixing effects

At the end of case study 8.1.1, we observed that a higher copy number in the environment of switching
structures and faster switching than synthesis could impose more agreement with the Hawkes model.
Moreover, the section 8.2.1 revealed how the KL divergence decreases with faster switching and low
fold change even for the extreme case of N = 1. In addition, we observed that the binomial model
overestimated the variance of translation events with higher N , while being accurate for N = 1 (section
8.1.5). With its quadratic evolution equation it is able to capture the case when the intensity values
are concentrated more in the upper and lower region of the interval of achievable intensity values,
see figures 7F and 14a)-b). Building on these observations, we hypothesized that MP

M and MP
L ,

see section 8.1.4, are advantageous in different regimes. The model MP
L appears to be appropriate

when the intensity of the exact model MP
S allocates the intermediate regime most of the time. We

conjectured that different mixing behaviors imply this condition, i.e., (i) large enough N , (ii) smaller
ρ, (iii) larger k and (iv) faster τS compared to τTX. As for (iii), with one more conformation that
allocates an intermediate translation rate, we would expect an additional mixing effect in terms of
allocating medium intensity values. We hypothesized that k = 3 is disadvantageous over k = 2 for the
multinomial compared to the Hawkes model.

In order to check this systematically, we considered a cube with the three axes k,N, ρ and the
values k ∈ {2, 3}, N ∈ {2, 5}, ρ ∈ {10, 30}, compare figure 15A. For each of the eight combinations (the
vertices of the cube), we evaluated whether MP

L or MP
M(MP

B) was more advantageous in terms of a
lower KL divergence rate. If our hypothesis of the mixing behavior was true, we would expect to find a
separating hyperplane, s.t., the vertices on one side of the hyperplane would be advantageous for MP

L

and the vertices on the other side would be advantageous for MP
M. As a fourth parameter we varied

τS/τTL. To elaborate our hypothesis, we included intermediate values in our study to visualize the
transition between mixing and non-mixing conditions. In figure 15B, the KL divergence rates for the
faces k = 2 and 3 spanned by (N, ρ) are shown, while in the case k = 3 we iterated over three network
topologies. Results are shown for the fixed relative timescale τS/τTL = 1 and for the three-node-chain
topology, see figure 16. For a faster timescale of τS/τTL = 0.1 and for the approximately balanced and
flux network the results are shown in the figure 16.

Our analysis revealed a higher complexity than what we conjectured in the cube hypothesis. The
main reasons are influences that were not captured in the abstraction with three parameters, such as
the network topology in the case k = 3 and the timescale of conformation switching. But also among
the three parameters, we found deviations from the hypothesis. While for N there was a clear opposite
trend for MP

M and MP
L as hypothesized, for ρ homogeneous trends can be observed and for k effects

were heterogeneous for MP
M, depending on the network structure and the timescale. Thus, in the

following, we elaborate on the details of these findings. In order to resolve effects only present in either
MP

L or MP
M, we chose to present the KL divergence rates for both, instead of their difference, which

would obscure some trends.
Independent of k the multinomial model has the worst accuracy for ρ = 30, N = 5, the extreme

values among the ones studied. Decreasing N or decreasing ρ from there improved the accuracy. In
contrast, the Hawkes model exhibits an opposite trend. Its worst accuracy is found for ρ = 30, N = 2
while increasing N or decreasing ρ improves the accuracy. As expected, for slower switching the overall
accuracy decreases, compare figure 16. Changes with N confirm our hypothesis: For fixed ρ, decreasing
N improves the accuracy for MP

M, while increasing k improves the accuracy for MP
L . The larger ρ

the stronger is this effect. The outlier to this trend, MP
L , k = 2, N = 2, 3, τS/τTL = 0.1 can likely be

attributed to a numerical approximation error.
For MP

L , the additional mRNA conformation with intermediate translation rate (k = 3 instead
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Figure 15: Comparison of models MP
M and MP

L in the context of different mixing regimes characterized
by k,N, and ρ. (A) Cube with vertices corresponding to the minimum and maximum values of the
three mixing parameters k,N, and ρ. (B) Heatmaps showing the Kullback-Leibler divergence rates
(logarithmic scale) for (i) both models, and (ii) k = 2 and k = 3 mRNA conformations. In the
latter case, the underlying network topology is the three-node-chain from figure 16. In all cases, the
relative timescale τS/τTL was set to 1. The full heatmap table for all three k = 3 topologies and the
additional relative timescale τS/τTL = 0.1 can be found in figure 16. (C) Histogram of P−channel
intensities for the exact, multinomial and Hawkes approximation for the chain network with N = 3,
r1 = 0.1, r2 = 0.3, r3 = 3, (thus ρ = 30), and switching rates c1,2 = 4 = c2,3, c2,1 = 6, c3,2 = 8 scaled so
that τS/τTL = 1. Used with permission of Maleen Hanst.
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Figure 16: Full table of heatmaps: Kullback-Leibler divergence rate (logarithmic scale) for (i) the
multinomial and Hawkes model, (ii) k = 2 and 3, and (iii) relative timescales of τS/τTL ∈ {0.1, 1}.
Heatmaps spanned along (N, ρ). Used with permission of Maleen Hanst.

of k = 2) causes an the effect claimed in our hypothesis, with higher accuracy throughout the three
network topologies for both timescales. In the multinomial case, the behavior is depends on the
topologies and timescales. For the depicted chain network, the accuracy decreases strongly for both
timescales as our hypothesis claimed. For the approximately balanced and flux network, the result is
more heterogeneous and depends on the timescale as well. For fast switching, the accuracy increased
for both of the two topologies. For slow switching the accuracy decreased strongly for the flux and
slightly for the approximately balanced network. Contrary to our hypothesis, decreasing ρ improves
the accuracy for both models. For MP

L , k = 2 at both timescales, the fold change ρ is the dominant
factor determining the accuracy, compared to the number of mRNA molecules N .
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In figure 15C, histograms of the intensity values at equidistant time points for the models MP
S ,

MP
L , MP

B are shown. We observed three distinguished peaks in MP
S corresponding to 0, 1, 2 mRNAs

in structure Z3. Opposed to the hypothesized limitation of the Hawkes model in non-mixing cases, we
see that the peaks are captured qualitatively, even though they are not peaked enough.

We conclude this section with two remarks on what makes either filter advantageous, giving inter-
pretations that are to be tested in further experiments. First, we found that the worst overall accuracy
was observed in the multinomial case for the chain and flux networks within the slow switching regime
(τS/τTL = 1). We hypothesize that the reason for the strong deviation is the network structure which
violates the independence assumption in-between molecules for the multinomial filter, but this need to
be evaluated in more detail in ensuing work. Second, the Hawkes and multinomial filter have different
failure modes. The Hawkes filter tends to over-allocate the intermediate regime of achievable intensity
values, see figure 15C, which becomes a limiting drawback when there are not enough mixing prop-
erties, in particular for very small N . In order to achieve the same variance as the exact model, the
intensity at peaks is over-estimated which compensates for over-allocating the intermediate regime, see
figure 15C. For the multinomial filter, a general characteristic is that it is too steep in the intermediate
regime and tends to over-allocate the high and low achievable values, implying the overestimation of
the variance. Similarly as for the Hawkes model, we observed that it overestimated at the intensity
peaks.

8.2.3 Hawkes versus Gamma filter

The Gamma filter [3, 81] is an approximate filter obtained from conditional moment closure. It
departs from a doubly stochastic Poisson process (Yt)t≥0 that is modulated by a Cox-Ingersoll-Ross
(CIR) process [57]. As introduced in section 6.3, the CIR process is a Markov process with stationary
CIR-mean µ and CIR-autocovariance function σ2e−γt, i.e., Zt ∼ CIR(µ, σ2, γ) turning (Yt)t≥0 into an
MMPP for which we assume λt = cZt. The Gamma filter is the assumed density filter, where Zt|Y[0,t]
is assumed to be Gamma distributed. With two degrees of freedom for the Gamma distribution, two
equations sufficiently describe the filter. One governs the mean, one governs the variance. Expressing
the Gamma’s third centered moment in terms of mean and variance justifies the replacement E[(Zt −
µ)3|FY

t ] =
2E[(Zt−µ)2|FY

t
]2

E[Zt|FY
t
]

. Consider an approximate marginal simulation of (Yt)t≥0 that uses the

Gamma filter. This yields a self-exciting process (Y Gt )t≥0 with (Mt, St) mimicking (E[Zt|FY
t ],E[(Zt−

µ)2|FY
t ]), the CI λ̂Gt = cMt− and

dMt = {−γ(Mt − µ)− cSt} dt+
St−
Mt−

dY Gt

dSt = {−2γ(St −
σ2

µ
Mt)− 2c

S2
t

Mt
}dt+ S2

t−
M2
t−

dY Gt . (222)

It is instructive to contrast the approximate marginal simulation of (Yt)t≥0 with the estimation of
(Zt)t≥0. Both perspectives can make use of the equations (222). In approximate marginal simulation
(Y Gt )t≥0 is by definition self-exciting with λ̂Gt = cMt−, while in estimation Y Gt in Eq. (222) is replaced
by the original (Yt)t≥0, which is self-exciting with intractable CI λ̂t = cE[Zt|FY

t ]. We proceed with
(Y Gt )t≥0, i.e., the approximate marginal simulation. While the CI λ̂Gt alone is not of Markovian
progression, the joint (Mt, St) is, yielding dim(Yt)t≥0 = n0 = 2. With θ(t) = (Mt, St) at jump times,
the sufficient statistic can be defined.

The Gamma filter and the Hawkes filter were obtained from the CIR modulated Poisson process
with a different ansatz. The ACID is now employed to discriminate between approximate marginal
simulations with either one, indicating its limitations as a discrimination tool for approximate filters.
It, however, informs a decision, in which parameter regime to replace the Gamma by the optimal linear
filter when approximately computing the MIR. Moreover, the Gamma filter is used to illustrate the
method for dim(Y Gt )t≥0 = 2.

The Gamma ACID was computed using sections 5.2.1 and 5.2.4. The (m, s)-plane was truncated
in a way to respect the minimal value of m in the progression Eq. (222) and to cover 99, 5% of the
probability mass of a Gamma distribution with mean cµ and c2σ2. The bounds of the auxiliary s
were dictated by the minimum and maximum in Eq. (222) for the above determined range of m. The
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rectangular (m, s)-domain was partitioned into 100× 50 congruent rectangles. Denote the boundaries
of the rectangles by bmi and bsi , respectively. Similar to the Hawkes ACID, 3 × 3 equally spaced
representatives θi, see Eq. (124), were chosen in each rectangle. Their mean function evaluations were
used in Eq. (125) for the coefficients of A. As for the DOnSOff numerical approximation, the times
τk(θ

′
j) in (125) that satisfy

g1(τ, θ
′
j) = bmi or g2(τ, θ

′
j) = bsi (223)

were found by evolving the ODE system (91), (222) and checking for the event (223).
Consider the MMPP (Yt)t≥0 whose external signal is a CIR-process, i.e., satisfies Eq. (C1). The

Hawkes process seen as optimal linear filter and the Gamma filter both approximate the CI of (Yt)t≥0.
We compare them for the same parameters µ, σ2, γ, c. First, we inspect the asymptotic mean slope
and variance slope for the Gamma filter.

Proposition 8.2. For (Yt)t≥0 the CIR-modulated Poisson process and (Y Ht )t≥0 the corresponding

Hawkes process and (Y Gt )t≥0 the approximation via the Gamma filter it holds

lim
t→∞

1

t
Var[Y Gt ] = lim

t→∞
1

t
Var[Yt] = lim

t→∞
1

t
Var[Y Ht ].

Proof. By application of Eq. (112) for Θt =Mt and Vt = St we obtain that

lim
t→∞

1

t
Var[Y Gt ] = cµ+

2c2(E[S∞] + Var[M∞])

γ
. (224)

Furthermore, the Gamma filter satisfies the variance decomposition

E[S∞] + Var[M∞] = σ2, (225)

by the following derivation. The Ito rule, proposition 4.8, yields the evolution equation of M2
t from

Eq. (108)

dM2
t = {−2γMt(Mt − µ)− 2cMtSt} dt+ (Mt +

St
Mt

)2 −M2
t dYt. (226)

By applying the E and dYt − cMt− dt = dQt we get

cE

[

S2
t

Mt

]

=
d

dt
E[M2

t ] + 2γE[M2]− 2γµ2 =
d

dt
Var[Mt] + 2γVar[Mt].

Taking the expectation in Eq. (226) and Eq. (222) yields

d

dt
(E[M2

t ]− µ2) = cE

[

S2
t

Mt

]

− 2γ(E[M2
t ]− µ2)

d

dt
E[St] = −2γE[M2

t ] + 2γσ2 − cE

[

S2
t

Mt

]

.

So the derivative of the sum evolves as

d

dt
(E[St] + Var[Mt]) = −2γ(E[St] + Var[Mt]) + 2γσ2.

Since the sum starts in the steady state E[S0] + Var[M0] = σ2, it stays constant for all t and in
particular in the asymptotic. As a consequence of Eq. (225) plugged into Eq. (224), the Gamma filter
agrees with the exact CIR-modulated Poisson process in asymptotic first and second order moment,
like the Hawkes process did.

First and second order analysis cannot tell the counting processes obtained from the Hawkes and
the Gamma filter apart. A comparison of their ACIDs shows that they are remarkably similar. The
cdfs of their ACIDs approximately agree for a range of values σ2, γ, while the mean and gain were kept
constant µ = 2, c = 1. The Wasserstein metric was computed for the regime (σ2, γ) ∈ {0.05, 0.1, 2̇} ×
{0.2, 0.4, . . . , 4}. For the Gamma (Hawkes) filter, the numerical method yielded 93, 0% (98, 5%) of
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Figure 17: Comparison of the ACID for Gamma and Hawkes. a) and b) show the cdf of the
ACID for the Gamma filter and Hawkes process for µ = 2, γ = 0.65 and different values of σ2. c) The
Wasserstein metric was computed for a range of γ, σ2, while µ = 2, c = 1 were fixed. In the examined
regime γ has little effect, while the difference measure slightly increases with growing σ2. The largest
deviation for γ = 0.65, σ2 = 4 was depicted in b) still showing agreement of the ACIDs.

ACIDs that had mean value less than 0.01 from the true value µ and 40, 6% (53, 1%) with a difference
less than 0.001. For the Gamma filter, most outliers (deviation > 0.01) were detected for γ = 0.05
or σ2 > 4 · γ − 0.45. For the Hawkes filter all outliers were detected at γ = 0.05. The Wasserstein
metric values ranged from 0.0005 to 0.13. When neglecting γ = 0.05 the largest value was 0.078 for
σ2 = 4, γ = 0.65 and a decreasing trend for decreasing σ2 was detected, relatively independent of γ.
The large values for γ = 0.05 can be explained by the numerical inaccuracy in the Gamma ACID.
Exemplary graphs for µ = 2, γ = 0.65, c = 1 and smaller vs. larger variance are depicted in fig. 17.
The most prominent dissimilarity is found in base values and it becomes more pronounced for larger
variance.

In summary, a comparison of the ACIDs for a range of parameters revealed a slight increase
of the Wasserstein metric for increased σ2. The parameter γ had little effect on the Wasserstein
metric. Looking at the extreme case, fig. 17b depicts the example with the largest Wasserstein metric
among the considered parameters, revealing that the ACIDs are still very similar. Due to the ACID’s
limitation as a partial characteristic, we cannot deduce that the path measures are close in some notion
of distance. However, we conclude the following. When quantities are computed that only depend on
the ACID, the optimal linear filter - appealing with efficient analytic expressions - might replace the
Gamma filter. The MIR, Eq. (121), is such a quantity.

The MIR along the Poisson channel was efficiently approximated by Monte Carlo simulation in [83,
Case study 1] via the Gamma filter. We replaced the Gamma filter by the even more efficient Hawkes
filter. In more detail, for the birth-death input process (Zt)t≥0 with birth rate γµ and death rate γ
(i.e., mean µ and autocovariance function µe−γt) the gamma filter’s conditional variance equation is
slightly modified:

dSt = {−γ(2St −Mt − µ)− 2c
S2
t

Mt
}dt+ S2

t−
M2
t−

dYt.
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Figure 18: Comparison of the MIR I(Z, Y ) for an MMPP (Yt)t≥0, approximately computed with the
Gamma and Hawkes filter. The input Z was a birth-death process with birth rate γµ and death rate
γ. In the biological context this corresponds to the gene expression model with mRNA counts Zt and
protein translation event counts Yt. a) The x-axis shows the average mRNA lifetime γ−1. Both the
Gamma and Hawkes approximate MIR were computed as Monte Carlo average using [83, Eq. (16)]
with hyperparameters T = 200, sample size 10, 000. Parameters were µ = 10, c = 1 and γ = 1, . . . , 10.
The value at 0 was determined analytically via E[φ(Z∞)] − φ(E[Z∞]), with Z∞ ∼ Pois(µ). b) shows
the relative simulation time of the Gamma vs Hawkes in logarithmic scale with colors as in a).

In the limit γ → ∞ ACID is a delta distribution at λ̂∞ = E[λ∞] and hence

lim
γ→∞

I(Z, Y ) = E[φ(λ∞)]− φ(E[λ∞]).

Note, that both the Gamma filter and the Hawkes filter yield only an approximation of the exact
MIR. Between them, the Hawkes filter can be preferred in this case with its gain in efficiency and no
loss in accuracy relative to the Gamma. In what respect the replacement works for more complicated
reaction networks, must be carefully evaluated.

8.2.4 Effective noise conjecture

In [3] a direct relation between the effective noise Var[λ̂∞] and the noise of the output Yt was con-
jectured. The effective noise conjecture implies that second-order information about the environment
is lost in the marginal description of the subnetwork. However, the remark 4.3 shows that both the
variance of the environment and the autocovariance decay are recovered by the Hawkes process, and
both parameters are disentangled. Hence, at least for the modulated birth process, no second-order
information is lost, when the autocovariance function is available. For linear subnetworks with zeroth-
order modulation, the proposition 3.12 shows, how the second-order information of the environment is
convolved in the second-order information of the subnetwork. Whether the relation can be deconvolved
depends on the knowledge of Γ and B as well as the rank of N1C.

We next suppose that only the variance of the Yt is available. Let us look at the claim that
Var[λ̂∞], i.e., the variance of the ACID, can be interpreted as the effective variance transferred to Y .
In the expression (114) both the effective noise Var[λ̂∞] and suppressed noise E[V (∞)] contribute,
which again rejects the conjecture. The conjecture suggested that a reduction of the environmental
variance yields the variance in the subnetwork. From Eq. (33), the autocorrelation time τ is the
factor that reduces the contribution of the environmental variance to the variance in the subnetwork.
We asked whether, alternatively, a relative effective noise captures how the environmental variance is
reduced in the subnetwork, thus providing a direct relation. If we define the relative effective noise as
η := Var[ACID]

c2σ2 then the Hawkes Fano factor, Eq. (113) and Eq. (216) allows to be rewritten as

F = 1 +
4η

(1− η)2
. (227)

Does this relation also hold for the Gamma filter?
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Theorem 8.3. Let (Mt, St) be the Gamma filter associated with the quadruple (µ, σ2, γ, c) and λ̂Gt =

cMt the conditional intensity. Further let λ̂Ht be the Hawkes intensity corresponding to (µ, σ2, γ, c).

Define ηG :=
Var[λ̂G

∞]
c2σ2 and ηH :=

Var[λ̂H
∞]

c2σ2 . Then

ηG > ηH.

Proof. Considering the rescaling (µc ,
σ2

c2 , γ, 1) we may assume w.l.o.g c = 1. From Eq. (222) we obtain

0 = −2γ(E[S∞]− σ2)− E

[

S2
∞

M∞

]

.

Cauchy-Schwarz applied on
√
M∞ and S∞√

M∞

yields

E

[

S2
∞

M∞

]

≥ E[S∞]2

E[M∞]
.

Equality can be excluded: Suppose it would hold, then S∞√
M∞

= α
√
M∞ for α deterministic. Clearly

α = S∞

M∞
is not deterministic, as seen from applying Ito’s formula, proposition 4.8, to Eq. (222). Taken

together, we obtain

2γ(E[S∞]− σ2) +
E[S∞]2

µ
< 0.

This implies E[S∞] < µβ. By the relations Eq. (225) and (219) for c = 1 it follows Var[λ̂G∞] > Var[λ̂H∞],
which implies the claim.

As a consequence of the theorem the relation Eq. (227) is not exact for the Gamma filter. The
right hand side is strictly increasing in η. If the relation held for the Gamma filter, the statement of
the theorem would contradict proposition 8.2. However, the numerical evaluation suggests that for the
evaluated parameter regime the deviation is not severe.

This procedure allows for a generalization: Suppose we have an intensity process λ̂t = cMt that
depends on some auxiliary process as in Eq. (108). The asymptotic Fano factor for such a process is ob-

tained from Eq. (113). Then we can define η := limt→∞
Var[λ̂t]

E[c2Vt]+Var[λ̂t]
, appealing to the equalities (225)

and (219). This is an intrinsic definition of relative effective noise that requires no environmental pro-
cess with parameter σ2. If Vt can be obtained from a low number of state variables of joint Markovian
progression, the method introduced can compute the joint distribution of (λ̂∞, V∞). Both Var[λ̂∞]
and E[V∞] can be obtained from it to check how well η satisfies Eq. (227). So we hypothesize an
approximate relation (227) between the relative effective noise and the noise of the output, measured
by the asymptotic Fano factor. This relation can be intrinsically checked using the ACID and the
corresponding asymptotic distribution of the auxiliary process.

In summary, we reject the hypothesis of the effective noise contribution, that is based on a decom-
position of the variance into the contribution by the ACID and a suppressed noise The situation is
more complex and depends on an interplay of the variance and autocorrelation time, Eq. (33), or the
knowledge of both the variance of the ACID and the asymptotic expected conditional variance in Eq.
(114). We suggested a new direct relation that is based on a definition for a relative effective noise. As
shown, a relative effective noise can also be intrinsically defined for a self-exciting counting process.

8.2.5 Genetic feedback loop with fluctuating decay

As a next example we consider the following genetic feedback system studied by Holehouse et al. [49]:

R1 : G −→ G + P
R2 : G∗ −→ G∗ + P
R3 : G + 2P −→ G∗

R4 : G∗ −→ G + 2P
R5 : P −→ ∅

(228)

with extrinsic noise in the reaction rate parameters. Reaction R3 introduces the feedback.
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D = 0.003 D = 0.1

D = 0.75D = 0.2

Figure 19: Genetic feedback loop with fluctuating decay as specified by the reaction system Eq.
(228). Environment was chosen with characteristics µ, σ2 = D/τ, γ = 1/τ . Parameters were
[24, 464, 1000/Ω2, 1000, 1] for the reaction rate constants, Ω = 200, µ = 1, τ = 1 and D indicated
above, as in [49, Figure 3]. Figure shows Monte Carlo estimates from 107 equidistant samples from
one trajectory that was terminated after 4 · 108 reaction events. The first 107 reaction events were
discarded to ensure the chain reached the stationary regime.
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Holehouse et al. found for this system bimodal distributions in the case of a fluctuating decay
rate. We observed that the proposed tilted Hawkes model captures this bimodality, see figure 19. The
environment was simulated as a birth-death process, to mimic the reference model in the literature
case study. There is a difference with the case study 8.1.1. In case study 8.1.1, Z was bimodal, and
bimodality was transferred to X. Here, Z is not bimodal, but bimodality emerges from the topology
of X under the presence of noise in the decay rate.

8.3 Birth-death process in a random environment

Being guided by the general question of how the random environment leaves a fingerprint on the
ensemble statistics of the subsystem, we now focus on a minimal system to capture the fingerprint
on the mean. When a random environment modulates zeroth-order reactions, the mean value is not
altered compared to averaging the random environment to a reaction rate constant, see theorem 4.1.
As a minimal example consider a birth-death process with birth rate λ and death rate µ whose mean
approaches λ/µ in the equilibrium. By the argument for the mean of zeroth-order modulation we skip
the case of a stochastic λ. If µ is stochastic, in contrast, we expect effects of the random environment
on the mean, because the mean does not commute with the denominator, i.e., E[λ/µ] 6= E[λ]/E[µ].
Additionally, the excursions during µ = 0 (Fig. 3b) hint at a deviation from E[λ]/E[µ].

We illustrate this effect of three different stochastic environments E1 - E3 (Fig. 20a-c) on the
stationary mean of a birth-death process X. Our focus is on comparing the stationary mean of
the Q.SS model and ESME (theorem 3.7) to evaluate the effect of the random environment on the
mean of the embedded system. ESME requires the generator and the stationary distribution of the
Markov environment, as well as the reaction rate constants of the linear subsystem. The generator and
reaction rate constants are specified by the model, whereas the stationary distribution can be obtained
numerically, or in special cases analytically, e.g., for the class of monomolecular CRNs [154]. The
modulated first-order death reaction can be seen as a bimolecular reaction. Here, we demonstrate the
effect of different relative speeds between the environment Z2 and the subspecies X. The environments
E1 - E3 modulate the birth and death rates independently. The birth modulation via a birth-death
process Z1 is the same in all cases, while the complexity of the death rate modulation Z2 increases.

8.3.1 Death modulation via random telegraph (E1)

First, we considered the scenario where the death rate is modulated by a two-state Markov process
(Fig. 20a). A two-state modulation highlights the effect that the Off state Z∗

2 has on X. When the
instant decay rate is zero, the molecular numbers of X increase unboundedly. We call these phases
excursions. We expect the stationary mean to depend on (i) the length and (ii) the frequency of
excursions, because (i) the temporal average during one excursion increases with the length of the
excursion, and (ii) if excursions occur more frequently, the excursion average value is weighted more
strongly. The frequency can be characterized by POff := P[Z2 = 0], whereas the length of excursions
is proportional to the relative correlation time. The autocorrelation function of the random telegraph
process, as well as the birth-death process, is of the form e−t/τ , where t is the time lag and τ is the
correlation time. Thus, for the random telegraph process Z2 with On and Off switching rate c3, c4,
the correlation time is τZ = (c3 + c4)

−1, while for the birth-death process with constant degradation
c6 it is τX = c−1

6 . With these definitions, the expression of the stationary mean takes the form

E[X∞] = E[XQ.SS
∞ ]

(

1 + POff
τZ
τX

)

. (229)

In the derivation, we used the ESME, Eq. (23). The birth rate is a birth-death process and the death
rate is a two-state Markov process (random telegraph model), i.e., consider the CRN (see Fig. 20a.)

R1,R2 : ∅ c1−→ Z1
c2−→ ∅

R3,R4 : Z2
∗ c3−−⇀↽−−

c4
Z2

R5 : Z1
c5−→ Z1 +X

R6 : X + Z2
c6−→ Z2.

(230)
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Figure 20: a,b,c Environment schemes for the birth-death process X. The two processes Z1 and Z2

modulate the birth and the death rate, respectively. d, e, f The stationary mean as a function of
the relative correlation time systematically exceeds the Q.SS mean, to which it converges for a fast
environment (valid Q.SS assumption). d Lower panel. The contributions of Z2 to the stationary
mean (E1). For a slow environment the share of Z2 = 0 dominates. e Upper panel. The asymptotic,
the intermediate and the degenerate regime can be distinguished (E2). The matched plot of E1,
Eq. (234), shows agreement in the fast and slow regimes and a discrepancy for the intermediate
regime. Lower panel. The contributions of Z2 = z for z ∈ {0}, (0,E[Z2]), [E[Z2],∞) to the stationary
mean indicate the distinct regimes. f Mutable Z2 synthesis (E3): The curves reflect different relative
speeds between environmental components Z2, Z3. For a fast Z3 the muting is neglectable and the
environmental effect E2 from e is recovered. For slow Z3 the deviation from the Q.SS mean increases.
g,h,i The asymptotic behavior for E1 - E3 as the relative subsystem speed tends to ∞. The log-log
plot demonstrates that E[X∞] increases proportional with the relative correlation time. The dashed
line (proportionality constant) was computed according to section 8.3.4. Curves correspond to different
values of g P[Z2 = 0] in E1, h environment mean in E2, i relative speed of environmental components
in E3. The relative correlation times τZ/τX = c6/(c3 + c4) (E1), c6/c4 (E2, E3) progress from slow to
fast subsystem (hence slow environment) in increasing direction. All parameter choices kept the Q.SS
mean E[XQ.SS

∞ ] = 10 and the ratio c5/c6 = 1 fixed. For E2, E3 E[Z2] = 8 was chosen unless indicated
otherwise, while in E1 E[Z2] was calibrated to match P[Z2 = 0] with E2. For E3 E[Z3] = 0.8 was held
constant when varying τZ/τS = (c7 + c8)/c4.
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The stationary means of Z1 and Z2 are easily identified as

E[Z1] =
c1
c2
, E[Z2] =

c3
c3 + c4

.

In this case, the dimension of the subsystem is d = 1. Then A(z1, z2) = c6z2 and b(z1, z2) = c5z1
are scalars. Since Z1 only enters via the zero-order reactions, i.e., via b, we use the Q.SS assumption
and set it to its mean. This reduces the environment to Z = Z2 on the state space Z = {0, 1}. The
generator of the environment is

Λ =

[

−c3 c4
c3 −c4

]

with stationary distribution π = Bernoulli(c3/(c3+c4)). The expression of the stationary mean is then
(Eq. (23))

E[X∞] =
c1c5(c3 + c4)

c2c3c6

(

1 +
c6c4

(c3 + c4)2

)

. (231)

In the queuing literature, [51] already derived an equivalent expression in terms of rate constants,
along with other characteristics for the model, e.g., stationary distribution, using a generating function
approach. The bracket term is larger than 1, yielding a systematic positive deviation compared to the
Q.SS as a reference model (section 3.1.1). Note that this can be expected from the moment equations.
The mean equation for X is

d

dt
E[X(t)] = c5E[Z1(t)]− c6E[Z2(t)X(t)] (232)

= c5E[Z1(t)]− c6E[Z2(t)]E[X(t)]− c6 Cov[Z2(t), X(t)]. (233)

The first two terms in Eq. (233) would yield the Q.SS dynamics. Since Z2 and X are negatively
correlated, the stationary mean is larger compared to the Q.SS mean. As Eq. (229) shows, the deviation
is proportional to the separation of timescales τZ/τX and to the probability P[Z2 = 0].

Figure 20d (upper panel) portrays the stationary mean E[X∞] as a function of the relative corre-
lation time τZ/τX = c6/(c3 + c4), given that the Q.SS mean and POff are constant. Increasing the
relative correlation time can be achieved by accelerating X or decelerating Z2. Figure 20d (lower
panel) shows how the share of Z2 = 0 increases with the mean waiting time in Z2 = 0 (or decreases
with increasing speed of Z2). In the regime τZ/τX → 0, the stationary mean reaches the Q.SS mean,
confirming that the Q.SS assumption is valid for sufficiently fast Z2 or, equivalently, slow X.

8.3.2 Death modulation via birth-death process (E2)

We next investigated whether the generic expression Eq. (229) still holds when the death modulator
Z2 is itself a birth-death process (Fig. 20b). To this end, we altered τZ = c−1

4 and POff = exp(−E[Z2])
and asked whether

f

(

c6
c4

)

= E[XQ.SS
∞ ]

(

1 +
c6
c4

exp(−E[Z2])

)

(234)

approximates E[X∞], computed via ESME. In Eq. (230), replace the two reactions R3,R4 by

R3,R4 : ∅ c3−→ Z2
c4−→ ∅. (235)

The full CRN is visualized in figure 20b. While the collection of rates A, b of the X dynamics re-
mains the same, we make adjustments in the stationary mean state space, generator and stationary
distribution of Z2 accordingly:

E[Z1] =
c1
c2
, E[Z2] =

c3
c4
.

The standard birth-death generator on state space Z = N0 is given by

Λ(z, z′) =











c3, z = z′ + 1

c4z
′, z = z′ − 1

−(c3 + c4z
′), z = z′

(236)
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Figure 21: Model E2 with leakage. Upper panel. Stationary mean as a function of ln(c4).
The stationary mean systematically exceeds the Q.SS mean c1c5

c2c6(c3/c4+λ0)
= 9.97. Four regimes can

be distinguished: the asymptotic regime, the intermediate regime, the rising degenerate regime and
the saturating degenerate regime. Lower panel. The contributions of Z2 to the stationary mean.
Parameters were c1c5

c2
= 60, c3c4 = 6, c6 = 1, λ0 = 0.02.

with stationary distribution π = Poisson(c3/c4). The expression of the stationary mean was already
presented in [52] and [50]. Analogously to model E1, we analyzed the behavior of the stationary mean
E[X∞] as a function of the relative correlation time c6/c4. For computational purposes, we truncate
the state space Z to ZN = {0, 1, . . . , N} with a large enough N . Here, N = 99 was used.

Returning to Eq. (234), the approximation is valid for the extreme cases of (i) c4 large compared
to c6 or (ii) c4 small compared to c6 (Fig. 20e, upper panel). Namely, we found E[X∞] = O(f( c6c4 ))
for (i) c6

c4
→ ∞ and (ii) c6

c4
→ 0. The means E[Z1] and E[Z2], as well as c5/c6, were fixed.

Next, we partitioned the states of Z2 into three classes: the zero state, the non-zero states below
the mean, and the states equal to or above the mean. The relative speed τZ/τX of the environment
defines which of these three classes dominates in terms of the corresponding environmental share, i.e.,
the effect on the stationary mean. In order to interpret the deviation of E2 from E1, we quantified
environmental shares according to the three classes of environment states:

α(0), α<z̄ :=

dE[Z2]−1e
∑

k=1

α(k), α≥z̄ :=
∞
∑

k=dE[Z2]e
α(k).

We found that, depending on the relative speed of the environment, the subsystem can be in one of
three phases (Fig. 20e, lower panel). For a small c6/c4 ratio, the non-zero shares α<z̄ and α≥z̄ both
contribute significantly, with α≥z̄ showing a slight dominance over α<z̄, while the share of α(0) is
negligible. For a medium c6/c4 ratio, α<z̄ takes the lead in dominance, while α(0) is still negligible.
Finally, for large c6/c4, the share α(0) dominates the contribution to the mean. Returning to the
upper panel of the figure 20e, we confirm that the mean E[X∞] as a function of τZ/τX undergoes the
same phase transitions.

The qualitative behavior for large τZ/τX is driven by unbounded excursions in the state Z2 = 0.
However, in biological systems, these are generally prevented by, e.g., a leakage in the death rate. Upon
introducing a base death rate λ0, we expect the stationary mean to saturate at the upper bound as
the relative environmental speed approaches zero. To demonstrate this, we generalize the propensity
of the death reaction to a(x|z) = (c6z + λ0)x. This altered A, i.e., A(z) = c6z + λ0. The figure 21
indicates four qualitatively different regimes of the stationary mean over the relative correlation time.
In particular, the three phases of the model E2 analysis (Fig. 20e.) persist, whereas the fourth phase
with the largest τZ/τX reaches saturation.
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Figure 22: Model E3 Mutable c3 synthesis. a. The figure shows the c4 value at which α(0)
and α<z̄ intersect as a function of c8

c4
. Dominant α(0) > α<z̄ indicates that the stationary mean

has entered the degenerate regime. The three curves illustrate different values of P[Z3 = 0]. For
P[Z3 = 0] = 0.5, 0.8 and slow enough relative speed c8/c4 no intersection was found, because α(0)
dominated α<z̄ for all c4. The mean E[Z2] = 8 was fixed and c3/c4 adapted accordingly. Parameters
were c1 = 0.4, c2 = 0.01, c5 = 1, c6 = 0.5 and E[XQ.SS

∞ ] = 10. b. The left upper panel shows the
slow switching Z3, whereas the right panel shows the fast switching Z3, compare figure 20f. The
corresponding shares are depicted in the lower panels. Parameters were as in figure 20f.

8.3.3 Mutable synthesis of the modulator (E3)

We next considered the case where the modulating process Z2 is itself modulated by another process,
Z3 (Fig. 20c). The modulator Z3 ↔ Z∗

3 is a two-state Markov process that acts as a switch with
On (Z3) and Off (Z∗

3 ) states, switching rates c7, c8, and correlation time τS = (c7 + c8)
−1. Here, Z2

can be seen as a regulatory protein produced from a promoter Z3 that alternates between On and
Off states. Then Z2 is a Markov-modulated birth-death process and, as such, represents an example
of a non-Markovian death rate modulator. Since the joint environment (Z2, Z3) is Markovian, ESME
applies.

In detail, we modified reaction R3 of model E2, see Eq. (230) and Eq. (235), to

R3 : Z3
c3−→ Z3 + Z2

R7,R8 : Z3
∗ c7−−⇀↽−−

c8
Z3.

(237)

Then the two-dimensional environment Z = (Z2, Z3) ∈ N × {0, 1} has a stationary distribution that
is expressed via the confluent hypergeometric function. Expressions for P[Z2 = m,Z3 = 0] and
P[Z2 = m,Z3 = 1] were derived analogously to [18] by expanding the generating function given
therein.

Lemma 8.4. Define a = c7
c4
, b = c7+c8

c4
, µ = c3

c4
. Then it holds

P[Z2 = m,Z3 = 0] =
Γ(b)Γ(m+ a)(b− a)

Γ(a)Γ(m+ b+ 1)
1F1(m+ a,m+ b+ 1,−µ)µ

m

m!

P[Z2 = m,Z3 = 1] =
Γ(b)Γ(m+ a+ 1)

Γ(a)Γ(m+ b+ 1)
1F1(m+ a+ 1,m+ b+ 1,−µ)µ

m

m!
.

Proof. Define the partial probability mass functions pj(m) = P[Z2 = m,Z3 = j], j = 0, 1. They are
determined from Peccoud and Ycart’s expression for the corresponding generating functions

g0(z) =
c8

c7 + c8
1F1(a, b+ 1, µ(z − 1)), g1(z) = 1F1(a, b, µ(z − 1))− g0(z)

In order to get the coefficients of the Taylor series at expansion point 0 the following integral formula
for 1F1 is used. It is correct because the condition b > a > 0 holds.

1F1(a, b, x) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

exuua−1(1− u)b−a−1 du (238)
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Upon x = µ(z − 1) we get

g0(z) =
(b− a)Γ(b+ 1)

bΓ(a)Γ(b− a+ 1)

∫ 1

0

eµzue−µuua−1(1− u)b−a du

=
Γ(b)

Γ(a)Γ(b− a)

∞
∑

n=0

znµn

n!

∫ 1

0

e−µuun+a−1(1− u)(n+b+1)−(n+a)−1 du

=
Γ(b)

Γ(a)Γ(b− a)

∞
∑

n=0

znµn

n!
1F1(n+ a, n+ b+ 1,−µ)Γ(n+ a)Γ(b− a+ 1)

Γ(n+ b+ 1)

Consequently

p0(m) =
Γ(b)Γ(m+ a)(b− a)

Γ(a)Γ(m+ b+ 1)
1F1(m+ a,m+ b+ 1,−µ)µ

m

m!

By the analogous representation of 1F1(a, b, µ(z − 1)) we get

m!Γ(a)

µm
p1(m) =

Γ(b)Γ(m+ a)

Γ(m+ b)
1F1(m+ a,m+ b,−µ)− m!Γ(a)

µm
p0(m)

=
Γ(b)

Γ(b− a)

∫ 1

0

e−µuua+m−1(1− u)b−a−1 du

− (b− a)Γ(b)

Γ(b− a+ 1)

∫ 1

0

e−µuua+m−1(1− u)b−a−1(1− u) du

=
Γ(b)

Γ(b− a)

∫ 1

0

e−µuua+m−1(1− u)b−a−1(1− (1− u)) du

=
Γ(b)

Γ(b− a)
1F1(m+ a+ 1,m+ b+ 1,−µ)Γ(m+ a+ 1)Γ(b− a)

Γ(m+ b+ 1)

Hence

p1(m) =
Γ(b)Γ(m+ a+ 1)

Γ(a)Γ(m+ b+ 1)
1F1(m+ a+ 1,m+ b+ 1,−µ)µ

m

m!
.

ESME was calculated numerically using Eq. (22) with truncation N = 100. Figure 22a shows the
entry of the stationary mean into the degenerate regime as a function of the relative speed of the
modulator Z3 ↔ Z∗

3 . Figure 22b depicts the environmental shares for the slow and the fast modulator.
We varied the relative correlation time τZ/τX = c6

c4
while keeping the ratios c7

c4
, c8c4 , and c3

c4
constant.

Furthermore, we varied the relative speed of the environmental components by additionally varying
the relative correlation time τZ/τS = c7+c8

c4
while keeping the fraction of time the modulator is active,

E[Z3] =
c7

c7+c8
, constant. For a large relative speed c7+c8

c4
, the original model with a constant birth

rate c3E[Z3] is recovered as expected.
Comparing the stationary means at different relative switching speeds of the modulator (Fig. 20f),

we found the following. For slower relative speeds, the deviation from the Q.SS mean becomes more
pronounced already at smaller correlation times c−1

4 , and the intermediate phase vanishes. Meanwhile,
figure 22a visualizes how the entry into the degenerate regime depends on τZ/τS and E[Z3]. The
muting prolongs the excursions of X in the zero or sub-average Z2 states.

8.3.4 Stationary mean for slow environment

We considered each of the environments E1 - E3 without leakage in the death rate of X and analyzed
the behavior for a slow environment and a fast subsystem, i.e., τZ/τX → ∞. We aimed at isolating
the effect of the timescale separation. For this purpose, we kept the means and the relative speed of
the environment components, as well as c5/c6, fixed. As the plots of the environmental shares (Fig.
20d,e, 22b) suggest, the state Z2 = 0 is the only one that contributes in the limit case τZ/τX → ∞.

Consider any of the models E1, E2, E3. Under the fixation of E[XQ.SS
∞ ], c5c6 ,E[Z2],E[Z3] and τZ/τS

the stationary mean only depends on the relative timescale τZ/τX . Hence in the following we fix
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τX = c−1
6 = 1. Then, τZ/τX → ∞ is equivalent to c4 → 0. By our main theorem (3.7), we obtain

E[X∞] = O(π(0)x(0)) for c4 → 0 in the models 1a, 1b and E[X∞] = O(π(0, 0)x(0, 0) + π(0, 1)x(0, 1))
for model E3. By definition x(0) = E[X(τn+1)|Z2(τn) = 0]. The function t 7→ E[X(t)|Z2(τn) = 0]
progresses affine-linearly in time. For very slow Z2 the excursions are long and the base value at τn,
from which they depart, is small compared to the value they reach at τn+1. We thus neglect the base
value to obtain a linear progression with constant slope c5E[Z1], yielding

x(0) = O(c5E[Z1]E[τn+1 − τn|Z2(τn) = 0]) = O

(

c1c5
c2c3

)

.

In total we obtain for the stationary mean of models E1, E2

E[X∞] = O

(

c1c5
c2c3

P[Z2 = 0]

)

.

Since P[Z2 = 0] only depends on the mean E[Z2] which we keep fixed, the parameter c3 which scaled
linearly with c4 dominates the asymptotic behavior c4 → 0. More precisely, we obtain

lim
c4→0

E[X∞]

c−1
4

=

{

c5E[Z1]
(1−E[Z2])

2

E[Z2]
, Z2 random telegraph

c5E[Z1]
exp(−E[Z2])

E[Z2]
, Z2 birth-death

.

For model E3 the two states (Z2, Z3) = (0, 0) and (0, 1) contribute for c4 → 0. After setting up the
recursion that couples x(0, 0) and x(0, 1), see next paragraph, we obtain

lim
c4→0

E[X∞]

c−1
4

= c5E[Z1](
P[Z2 = 0]

E[Z2]
+
c4
c8

P[Z2 = 0, Z3 = 0]

1− E[Z3]
)

Note that P[Z2 = 0] and P[Z2 = 0, Z3 = 0] only depend on the relative rates c7
c4
, c8c4 ,

c3
c4

, which were fixed,
i.e., the timescale of the joint environment (Z2, Z3) was varied. The inverse proportional dependence
on c4 for models E1 - E3 is visualized in figures 20c.,f.,i.

For c4 → 0 we compute the stationary mean under assumption that all terms in Eq. (21) vanish
except for z = (0, 0), (0, 1). The recursion equations (18) for the two states (0, 0) and (0, 1) read

0 = −c7π(0, 0)x(0, 0) + c8π(0, 1)x(0, 1) + c4π(1, 0)x(1, 0) +
c5c1
c2

π(0, 0)

0 = −(c8 + c3)π(0, 1)x(0, 1) + c7π(0, 0)x(0, 0) + c4π(1, 1)x(1, 1) +
c5c1
c2

π(0, 1)

By assumption,

max{π(1, 1)x(1, 1), π(1, 0)x(1, 0)} � min{π(0, 1)x(0, 1), π(0, 0)x(0, 0)}

so we can set π(1, 1)x(1, 1) = π(1, 0)x(1, 0) = 0. Then the 2 dimensional linear system has the solution

π(0, 0)x(0, 0) =
c5c1
c2

· (
c8 + c3
c3c7

π(0, 0) +
c8
c3c7

π(0, 1))

π(0, 1)x(0, 1) =
c5c1
c2

·
π(0, 0) + π(0, 1)

c3

which by E[X∞] = π(0, 0)x(0, 0) + π(0, 1)x(0, 1) yields the result for limc4→0 E[X∞]c4.
In summary, we derived

E[X∞] = O

(

τZ
τX

)

, (239)

i.e., the stationary mean grows proportionally to the timescale differences. The parallel asymptotes in
the log-log plots with unit slope in the figures 20g,h,i reflect this dependence.
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8.3.5 Application to a division-dilution model

In a model similar to E1, subsection 8.3.1, Beentjes et al. [179] studied the dilution of protein copy
numbers due to cell division. The mean copy number in a single lineage increased in a model with
Erlang distributed division time and binomial partitioning at cell division (model III in the reference)
compared to the same model with deterministic division times (model II) and to a birth-death model
with averaged effective degradation rate (model I). We can attribute this deviation to the random cell
division times. To demonstrate this attribution, we elaborate on the analogy to the random duration
of excursions in E1. Let the extrinsic noise component (the environment) be the cell cycle duration.
To formalize this, we introduce the time points of division, denoted by a sequence of random variables
0 =: τ0 < τ1 < τ2 < . . . , such that the τi+1 − τi are i.i.d. Let X(t) be the number of proteins that
increases on average with rate λ between environment jumps, be it by geometrically distributed bursts
or by simple birth reactions. Furthermore, let X(τi) follow a Binomial distribution with p = 1/2 and
N = X(τi−). If the protein production, the binomial partition at division, and the environment jumps
are all assumed to be stochastically independent, it is easy to see that Y (t) := E[X(t)|(τi)i] evolves
as Ẏ (t) = λ between the jumps and is set to Y (τi) = 1/2 · Y (τi−) at the environment jumps. It
is furthermore easy to derive E[Y (τi)] = λE[τ1] for the stationary system. Then, analogous to the
derivation in section 3.1.3, we obtain

E[X∞] = lim
N→∞

1
N

∑N
i=1

∫ τi
τi−1

Y (t) dt

1
N

∑N
i=1 τi − τi−1

= λE[τ1] +
1/2λE[τ21 ]

E[τ1]

=
λ

2

(

3E[τ1] +
Var[τ1]

E[τ1]

)

.

For (N,N/y)-Erlang distributed τ1, i.e., E[τ1] = y and Var[τ1] = y2/N , this is in accordance with Eq.
(39) in [179], which was derived using a generating function approach. Compared with our two-state
Markov model of alternating linear increase and exponential decay in X, the division-dilution model
replaces the periods of exponential decay by instantaneous decays at divisions. In both models, the
stochasticity in the duration of excursions (referred to as cell cycle length variability in the reference)
causes an increase in the stationary mean. While in the reference paper this is the single cause of the
increase compared to the model I, in our case the increase is caused by an interplay of the random
duration, the frequency of the excursions, and the timescale separation between Z and X. Note that
the reference models (model I and Q.SS, respectively) are constructed differently. The degradation
rate of the model I was tuned such that the stationary mean matches with that of the deterministic
division-dilution model II. As a consequence, it encodes the timescale of the environment, whereas in
the Q.SS reference model, the degradation rate is uncoupled from the environment timescale. This
uncoupling provides a degree of freedom which causes a larger relative increase of the stationary mean
value in our case study than in Beentjes et al., compared to the respective reference models.

8.3.6 Probability evolution equation for the telegraph-modulated birth-death process

Zeroth-order modulation was seen to not impact the mean of the subsystem. However, the probability
evolution equation is affected. As a minimal example, we considered the promoter-mediated tran-
scription with mRNA decay, see case study 8.1.1. To keep the example minimal, we considered two
promoter structures, an active and an inactive one, i.e., a random telegraph model

Z
c2−−−⇀↽−−−
c1

Z∗,

Z∗ λ
−−−−−→ Z∗ +X, 1 ≤ i ≤ k (240)

X
δ

−−−−−→ ∅.

The cumulant approach, section 3.5, provides analytically closed probability evolution equations in
this case. The time point marginals of the random telegraph process at stationarity are Bernoulli
distributed with success probability ψ := c1

c1+c2
, having a variance of σ2 := c1c2

(c1+c2)2
. We applied the

cumulant expansion (53) for the canonical birth operator Λ1 = B with birth rate λ, the canonical
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death operator Λ2 = D with death rate δ and the mean operator Λ := ψB + D. Define ϕ := c1 + c2
is the switching timescale of the random telegraph process and θ := E[(−1)Z0 ] = 1− 2ψ = c2−c1

c1+c2
. For

the derivation we use the Baker-Campbell-Hausdorff formula, namely, if [X,Y ] = sX, then

X exp(Y ) = exp(Y )esX. (241)

Using Eq. (142), derived in section 6.1.1,

∂tpt = Λpt +

∞
∑

n=0

∫ t

0

∫

∆n[t′,t]

C(t′, t1, . . . , tn, t)B
n
∏

k=0

e∆tkΛB d(t1, . . . , tn)pt′ dt
′

= Λpt +

∞
∑

n=0

∫ t

0

∫

∆n[t′,t]

θnσ2e−ϕ(t−t
′)B

n
∏

k=0

e∆tkΛB d(t1, . . . , tn)pt′ dt
′

= Λpt +

∫ t

0

σ2Be−ϕ(t−t
′)

∞
∑

n=0

∫

∆n[t′,t]

etΛ
n
∏

k=1

e−tkΛ(θB)etkΛ d(t1, . . . , tn)e
−t′ΛBpt′ dt

′

= Λpt +

∫ t

0

σ2Be−ϕ(t−t
′)e(t−t

′)(Λ+θB)Bpt′ dt
′

= Λpt + B

∫ t

0

σ2e(t−t
′)(Λ+θB−ϕ)Bpt′ dt

′.

In summary, we resolved all terms in the series to obtain an explicit expression for the kernel without
the need of a truncation. Hence, the following generalized master equation governs the probability
evolution

∂tpt = Λpt + B

∫ t

0

σ2 exp
[

(Λ + θB − ϕ)(t− t′)
]

Bpt′ dt
′. (242)

Upon defining the integral term as qt one recovers the memory-less evolution equation system

∂tpt = Λpt + Bqt

∂tqt = σ2Bpt + (Λ + θB − ϕ)qt.
(243)

This system is a linear transformation of [18, Eq.(5)], which reads, for p(z)t (x) := P[Zt = z,Xt = x],

∂tp
(0)
t = −c1p

(0)
t + c2p

(1)
t +Dp

(0)
t

∂tp
(1)
t = c1p

(0)
t − c2p

(1)
t + Bp

(1)
t +Dp

(1)
t .

Namely, for pt(x) = p
(1)
t (x) + p

(0)
t (x) and qt(x) = (1− ψ)p

(1)
t (x)− ψp

(0)
t (x) we obtain Eq. (243) by a

linear transform.
In Eq. (242) as it is written, commuting the birth operator with the operator exponential simply

introduces another factor exp(−δ(t − t′)). More precisely, using Eq. (241) with X = B, Y = (t −
t′)(Λ + θB − ϕ), and [X,Y ] = (t− t′)[B,D] + (t− t′)[B, (ψ + θ)B − ϕ] = −(t− t′)δB + 0, we obtained

∂tpt = Λpt +

∫ t

0

σ2e(t−t
′)(Λ+θB−(ϕ+δ))B2pt′ dt

′. (244)

We make two remarks about what happens to Eq. (242), when (i) changing the modulated reaction,
(ii) altering the state variable pt to be the generating function. When (i) the random telegraph
environment modulates the death reaction instead of the birth reaction, then the same equation holds
with B replaced by D and with Λ = B + ψD accordingly. In detail, parallel to the calculation for the
modulated birth rate, we obtained

∂tpt = Λpt +

∞
∑

n=0

∫ t

0

∫

∆n[t′,t]

C(t′, t1, . . . , tn, t)D
n
∏

k=0

e∆tkΛD d(t1, . . . , tn)pt′ dt
′

= Λpt +D

∫ t

0

σ2e(t−t
′)(Λ+θD−ϕ)Dpt′ dt

′.
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Upon defining the integral term as qt one recovers the memory-less evolution equation system

∂tpt = Λpt +Dqt

∂tqt = σ2Dpt + (Λ + θD − ϕ)qt.
(245)

Unlike in the above case, the operator D does not commute with the operator exponential by the
simple compensation with a factor. Hence, we do not obtain an equation analogous to Eq. (244).

When we seek (ii) an evolution equation for the generating function p̂t : [0, 1] → R≥0 with p̂t(s) :=
E[sXt ] instead of pt, then the same (242) holds true using the corresponding operators (Bf)(s) = −λ(1−
s)f(s), (Df)(s) = δ(1− s)∂sf(s). Note that both X = Λ, Y = Λ̄− p1Λ = B and X = L, Y = L̄ − p1L
satisfy the same commutator relation [X,Y ] = −δp1Y .

To contrast the cumulant expansion approach for system in Eqs. 240 with the filtering approach,
we consider as a sufficient statistic the backward recurrence time τ(t) of the birth reaction counting
process, definition 4.11. It denotes the time since the last birth event and evolves according to ∂tτ(t) =
1, t ∈ (ti−1, ti), τ(ti) = 0. The hybrid master equation (104)-(105) is found in the section 4.2.4. The
marginalized hybrid master Eq. (106) in this example can be simplified by the help of Eq. (105).
Namely, from

∂tpt(τ, x) = −∂τpt(τ, x)− λg(τ)pt(τ, x) +Dpt(τ, x)

and integration over τ on the half axis [0,∞) by use of
∫∞
0
λg(τ)pt(τ, x) dτ = pt(0, x+ 1) we obtain

∂tpt(x) = q̃t(x+ 1)− q̃t(x) + (Dpt)(x) (246)

with q̃t(x+ 1) := pt(0, x+ 1). Moreover, we derive

pt(0, x+ 1) = lim
h→0

P[τ(t+ h) ∈ [0, h), X(t+ h) = x+ 1]

h

= lim
h→0

P[X(t+ h) = x+ 1, X(t) = x]

h

= λP[Z(t) = 1, X(t) = x]

= λp
(1)
t (x).

Then Eq. (246) becomes ∂tpt(x) = Bp
(1)
t (x)+Dpt(x), which is equivalent to the evolution of ∂t(p

(0)
t (x)+

p
(1)
t (x)) in Eq. (243). This illustrates the equivalence of the approaches, that condition on either

the environment or the subnetwork with the approach without conditioning, see section 4.5. The
equivalence is here obtained from linear transformations. We expect that linear transformations cannot
in general link the approaches.

8.3.7 Mean evolution for the telegraph-modulated birth-death process

In the previous paragraphs we derived generalized master equations for the birth-death process with
a modulated birth reaction. We also commented on how the equations are altered when the death
reaction is modulated. For the modulated birth reaction, the generalized mean equation agrees with
the Q.SS mean equation (section 3.1.1), i.e., ∂tE[Xt] = λE[Zt]−δE[Xt]. In contrast, for the modulated
death reaction we obtained equations that deviate from the naive mean equation, see Eq. (233). The
mean equations can be derived directly,

d

dt
E[Xt] = ĀE[Xt] + E[∆A(Zt)∆Xt]

d

dt
E[Xt] = ĀE[Xt] +

∫ t

0

C(t′, t)Ae(t−t
′)ĀAE[Xt′ ] dt

′+ . . .

+

∫ t

0

∫ t

t′
C(t′, t1, t)Ae

(t−t1)ĀAe(t1−t
′)ĀAE[Xt′ ] dt

′

+

∫ t

0

∫ t

t′
C(t′, t1, t2, t)Ae

(t−t2)ĀAe(t2−t1)ĀAe(t1−t
′)ĀAE[Xt′ ] dt

′.
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Then
∫ t

0

∫ t

t1

· · ·

∫ t

tn−1

e−
c1

c1+c2
δ(t−t1)(−µ)n+1C(t1, . . . , tn, t)E[Xt1 ] dtn . . . dt2 dt1

=

∫ t

0

µ2e−
c1

c1+c2
δ(t−t1)

E[Xt1 ]

∫ t

t1

· · ·

∫ t

tn−1

(−µ)n−1C(t1, . . . , tn, t) dtn . . . dt2 dt1

=

∫ t

0

µ2e−
c1

c1+c2
δ(t−t1)

E[Xt1 ]

(

−δ c2−c1c1+c2
· (t− t1)

)n−1

(n− 1)!
γ(0, t− t1) dt1.

Summing over n, we obtain

d

dt
E[Xt] =λ−

δc1
(c1 + c2)

E[Xt]

+

∞
∑

n=1

∫ t

0

∫ t

t1

· · ·

∫ t

tn−1

e−
c1

c1+c2
δ(t−t1)(−µ)n+1C(t1, . . . , tn, t)E[Xt1 ] dtn . . . dt2 dt1

=λ−
δc1

(c1 + c2)
E[Xt] +

µ2c1c2
(c1 + c2)2

∫ t

0

e
−(

c1
c1+c2

δ+δ
c2−c1

(c1+c2)
+(c1+c2))(t−t1)

E[Xt1 ] dt1

=λ−
δc1

(c1 + c2)
E[Xt] +

µ2c1c2
(c1 + c2)2

∫ t

0

e−(
δc2

c1+c2
+(c1+c2))(t−t1)

E[Xt1 ] dt1.

For the equilibrium, introduce y(t) for the integral term to obtain the two-dimensional linear ODE

d

dt

[

E[Xt]
y(t)

]

=

[

λ
0

]

+

[

−δψ δ2σ2

1 − (δ(1− ψ) + ϕ)

]

. (247)

Following the standard stability analysis for a two dimensional ODE, we compute the trace, determi-
nant and discriminant

tr = −(δ + c1 + c2) < 0

det = c1δ > 0

∆ = (δ + c1 + c2)
2 − 4c1δ > (δ − c1)

2 ≥ 0.

The trace-determinant criterion reveals that the fixed point is stable. In summary, applying the
cumulant expansion approach, we derived

d

dt
E[Xt] = λ− δψE[Xt] + δ2σ2

∫ t

0

e−(δ(1−ψ)+ϕ)(t−t′)
E[Xt′ ] dt

′ (248)

with the stable equilibrium E[X∞] = λ
δψ

(

1 + (1−ψ)δ
ϕ

)

. This expression for the stationary mean is in

accordance with Eq. (229).
When truncating the cumulant expansion after the first cumulant term, we obtain the same func-

tional form of the evolution equation, reading

d

dt
E[Xt] = λ− δψE[Xt] + δ2σ2

∫ t

0

e−(δψ+ϕ)(t−t′)
E[Xt′ ] dt

′ (249)

We notice that the exponent of the exponential kernel is different. This also results in mismatched
stationary means. As another consequence, if we inferred parameters based on the non-truncated
model and the truncated model, the interpretation of the inferred parameters would differ. Finally,
the mismatch indicates a non-intuitive property of an optimal projection. Suppose we constrained the
evolution equation to a second-order truncated functional form with variable exponent and we wanted
to project the exact evolution equation onto the functional form. Then the second-order truncation is
not generally the optimal choice of the variable exponent.
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To illustrate the correspondence with the alternative route via conditioning on the subnetwork, we
apply Eq. (107), for ϕ = 1 and ϕ = id reads

d

dt
E[Xt] = λ− δE[XtE[Zt|X[0,t]]]

d

dt
E[XtE[Zt|X[0,t]]] = E[Xt(c1 − (c1 + c2)E[Zt|X[0,t]])] + λE[E[Zt|X[0,t]]]− δE[XtE[Z

2
t |X[0,t]]].

In this particular example, we make use of Z2
t = Zt to obtain the closed two-dimensional system

d

dt

[

E[Xt]
E[XtΠt]

]

=

[

λ
λc1
c1+c2

]

+

[

0 δ
c1 − (c1 + c2 + δ)

]

. (250)

Note that the same equation also holds for E[XtΠt] replaced by E[XtZt] by the tower property. In
fact, E[XtΠt] = E[XtZt]. Hence, in this case, the filtering is not necessary to find the solution. For
the centered variable y(t) = E[XtΠt] − E[Xt]E[Πt], the equation (247) holds. We found that the
centered variable y(t) = E[XtΠt] − E[Xt]E[Πt] equals the integral term in (248). This demonstrates
that the approaches via conditioning on the environment and via conditioning on the subnetwork lead
to equations which are transformations of each other, emphasizing the equivalence of the approaches
without using properties of the conditional expectation, section 4.5.

In remark 3.13, we interpreted the terms in the cumulant expansion. To illustrate this interpretation
more clearly, we considered the example of a birth-death process X(t) and a stationary process Z(t)
with mean µ2 that modulates the decay reaction. Let c1 be the birth rate. For convenience, we
assumed X(0) = 0. Using the conditioning on the environment, the conditional mean evolves as

d

dt
E[X(t)|Z[0,t]] = c1 − Z(t)E[X(t)|Z[0,t]],

solved by

E[X(t)|Z[0,t]] =

∫ t

0

c1 exp

(

−

∫ t

s

Z(σ) dσ

)

ds = c1

∫ t

0

e−µ2(t−s) exp

(

−

∫ t

s

Z(σ)− µ2 dσ

)

ds

with mean

E[X(t)] = E[E[X(t)|Z[0,t]]] = c1

∫ t

0

e−µ2(t−s)E

[

exp

(

−

∫ t

s

Z(σ)− µ2 dσ

)]

ds.

Consequently,

d

dt
E[X(t)] = c1 − µ2E[X(t)]− E

[

(Z(t)− µ2)E[X(t)|Z[0,t]]
]

(251)

= c1 − µ2E[X(t)]− c1

∫ t

0

e−µ2(t−s)E

[

(Z(t)− µ2) exp

(

−

∫ t

s

Z(σ)− µ2 dσ

)]

ds. (252)

If we assume the approximation that Z(σ)σ≥t′ is independent of Z(σ)σ<t′ for any t′ ∈ [0, t), we get

E

[

(Z(t)− µ2) exp

(

−

∫ t

s

Z(σ)− µ2 dσ

)]

(253)

= E

[

(Z(t)− µ2)

∫ t

s

(Z(t′)− µ2) exp

(

−

∫ t′

s

Z(σ)− µ2 dσ

)

dt′
]

(254)

=

∫ t

s

E

[

(Z(t)− µ2)(Z(t
′)− µ2) exp

(

−

∫ t′

s

Z(σ)− µ2 dσ

)]

dt′ (255)

≈

∫ t

s

E [(Z(t)− µ2)(Z(t
′)− µ2)]E

[

exp

(

−

∫ t′

s

Z(σ)− µ2 dσ

)]

dt′. (256)
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Plugging this approximation into Eq. (252), we obtain

d

dt
E[X(t)]

≈ c1 − µ2E[X(t)]

− c1

∫ t

0

e−µ2(t−s)
∫ t

s

E [(Z(t)− µ2)(Z(t
′)− µ2)]E

[

exp

(

−

∫ t′

s

Z(σ)− µ2 dσ

)]

dt′ ds

= c1 − µ2E[X(t)]

− c1

∫ t

0

E[(Z(t)− µ2)(Z(t
′)− µ2)]e

−µ2(t−t′)
∫ t′

0

e−µ2(t
′−s)

E

[

exp

(

−

∫ t′

s

Z(σ)− µ2 dσ

)]

ds dt′

= c1 − µ2E[X(t)]−

∫ t

0

Cov[Z(t′), Z(t)]e−µ2(t−t′)E[X(t′)] dt′.

This recovers exactly the cumulant expansion truncated after the first cumulant term, see [106, Exam-
ple 4.2.3]. Hence, when we assume that the environment trajectories before and after the intermediate
time point t′ are independent, we obtain the first cumulant term.

8.3.8 Gene expression in a random environment

Next, we extend the single birth-death process to a cascade of two birth-death processes and place it in
a random environment. For this example, we illustrate the effects of the environmental parameter, i.e.,
the mean, variance and autocorrelation time, using the tilted Hawkes model for independent environ-
mental components, section 7.1. We applied Sinzger’s min-thin algorithm for an efficient simulation.
Each component modulates one of the four reactions of the following gene expression model, see figure
23A.

R1 : ∅ −→ mRNA
R2 : mRNA −→ ∅
R3 : mRNA −→ mRNA + protein
R4 : protein −→ ∅

When all environment components are set to their constant mean level, we recover the unem-
bedded gene expression model, i.e. the homogeneous Q.SS reference model. As we incorporate the
modulation of the first-order reactions, we do not expect the mean to coincide with the mean of the
reference model. As relevant characteristics of the environment, we considered the variance and the
autocorrelation time of the individual environment components. We varied these characteristics for
the first-order modulators Z2, Z3 and Z4 one at a time, while leaving the remaining ones fixed. Figure
23B depicts the setup of the simulation study. For the variance σ2

j , we chose µ2
j as an upper bound

for the considered domain. This bound is motivated by the CIR process, which guarantees the strict
positivity of the trajectory only for σ2

j ≤ µ2
j . For the autocorrelation time τj = γ−1

j , we distinguished
three regions. The region for which the timescale of changes in the environment is of the order of the
mRNA timescale or faster (low autocorrelation), the region where the environment timescale is shared
with the protein timescale (medium autocorrelation) and the slower-than-protein timescale (high auto-
correlation). Additionally, we investigated how the timescale differences between the mRNA level and
the protein level in the reference model affects the results. For this purpose, we separately considered
a fast mRNA timescale (Z1 and Z2 multiplied by c1 = c2 = 1) and a slow mRNA timescale (Z1 and
Z2 multiplied by c1 = c2 = 0.1). This choice keeps the mean of the protein level the same for the
homogeneous case, but brings the mRNA and protein timescales closer to each other in the latter
case. The gene expression model is a cascade of two birth-death processes. We thus were interested to
understand what was different between changing the modulation at the mRNA level (R2) compared
to the protein level (R3 and R4). Also, we expected to see differences between the modulation of the
birth reaction (R3) and the death reactions (R2 and R4).

We first investigated the regime of low environment correlation time, at most of the order of the
mRNA level. We saw no effect in the stationary mean of the protein (figure 23C) for varying the
modulation at the protein level (R3 and R4). For a variation at the mRNA level (R2), the stationary
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Figure 23: Gene expression model in a fast random environment. A. Four independent
environment components modulate the gene expression model. Each component Zj is characterized by
its mean µj , its variance σ2

j and its autocorrelation decay γj . The inverse of γj is the autocorrelation
time τj . The birth and death reactions of the mRNA can be multiplied by factors c1 and c2. B. The
setup of the simulation study - We simulated trajectories of the model in A with the approximate
marginal simulation algorithm for the tilted Hawkes approximation. For each component Z2, Z3 and
Z4, we varied σ2

j and τj . The parameter pairs (σ2
j , τj) for which we simulated trajectories with are

marked by crosses in the logarithmic (σ2
j , τj)-plane. For the comparison of the three components, we

varied σ2
j relative to µ2

j . Along the decreasing diagonals, the product τj × σ2
j /µ

2
j is constant. We

distinguished the low autocorrelation regime from the medium and high regime. A correlation time
of 50 − 500s (upper end of low regime to lower end of the medium regime) was the correlation time
of the mRNA. We conducted simulations for a slow (c1 = c2 = 0.1) and fast (c1 = c2 = 1) mRNA
timescale. The black circle and triangle symbolizes the reference model, in which all environment
components are replaced by their constant mean values. C and D. The mean and the variance of
the protein at time point t = 10000, estimated from 10000 sampled trajectories, is shown for the
different conditions. The ticks of the x-axis correspond to the four diagonals of the low regime in
B. Accordingly, the second and third tick combine two values which overlap, sometimes to an extent
that only one is visible. For Z2 we indicated the pair with the larger σ2

2 by orange (C). Lines were
added and different colors for the same tick were shifted horizontally to improve readability. The
stationary variance of the homogeneous model was added for reference in black. E and F. Sample
protein trajectories of the reference model were plotted in black to contrast the embedded model with
the largest variance and correlation for fast mRNA timescale and Z4 (E) and Z2 (F). Histograms of time
t = 10000 were added. Circled marks in B, C and D indicate that for these parameter choice trajectories
are shown in E and F. The components that were not varied were fixed at ((µj , σ

2
j , γj))j=1,...,4 =

((0.06, 0.001, 0.05), (0.02, 10−5, 0.3), (0.03, 3 · 10−4, 0.05), (4 · 10−4, 4 · 10−9, 0.3)). In the shaded low
regime of B parameters were σ2

j /µ
2
j = e−k, k = 0, 1, 2, 4 and τj = ek, k = 0, 2, 3, 4.
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mean increased when we increased σ2
2 or τ2. This effect was stronger for the fast mRNA timescale and

for larger σ2
2 when the product σ2

2 × τ2 was fixed. The autocorrelation showed no substantial change
in either case, see figure 25. In contrast, we saw a noticeable effect on the stationary variance of the
protein in all conditions, see figure 23D. The variance of the reference system was calculated as [92]

µ1µ3

µ2µ4

(

1 +
µ3

c2µ2 + µ4

)

.

It is composed of a Poissonian and an additional term. The Poissonian term accounts for the intrinsic
variance at the protein level, while the additional term captures the impact of the mRNA level. The
latter is dominated by the mRNA timescale c2µ2, which is larger than µ4. As a consequence, we get
a significantly higher variance level for the slow mRNA timescale, which is attributed to the effect
of the mRNA level on the protein noise. On top of these two reference values of the variance, the
modulating environment further increases the variance. We found that the effect was the strongest for
a modulation at the mRNA level by R2, while R3 and R4 showed a similar effect. Figure 23E illustrates
the broader distribution compared to the reference model for the modulation by Z4 with maximal σ2

4

and τ4. Can the increase be attributing to either an increased environment autocorrelation time τj
or environment variance σ2

j ? We obtained Monte Carlo estimates of the variance at time t = 10000
for different pairs of autocorrelation time and variance, see figure 23B. Interestingly, the simulation
studies seem to indicate that the product of τj and σ2

j majorly determines the variance level. This
observation is in line with the increase of the variance for the zero-order modulation.

An exception to this observation is the condition with a fast mRNA timescale and varying R2

modulation, which shows a steeper increase in the variance compared to the other conditions (fig
23D). Also for the slow mRNA timescale the R2 modulation shows a deviation compared to R3 and
R4 in the condition with the maximal σ2

2 and the highest τ2. Note the parallel to the protein mean in
figure 23C. Sample trajectories for the modulation of R2 with the largest values of τ2 and σ2

2 and for
the fast mRNA timescale are depicted in 23F. They are contrasted with trajectories from the reference
system. We observe the increase in both the variance and the mean. In summary, we found that in the
regime of low environment autocorrelation (the order of the mRNA at most), there is an effect on the
variance for all conditions, which becomes significant only when τj approaches the autocorrelation time
of the reference mRNA level and σ2

j approaches the maximal value. For the modulation of the mRNA
level, R2 there was a higher increase compared to R3 and R4, whose increase majorly depended on
the product of τj and σ2

j . This additional contribution is likely associated with the increased protein
mean for this condition. The trajectories look qualitatively the same as for the reference model.

Secondly, we investigated the regimes of medium and high environment autocorrelation. We were
interested whether our finding on the variance for the low regime still holds, or whether factors other
than the product of τj and σ2

j determine the variance. The exception of R2 modulation hints at other
contributing factors. For this purpose, we chose two pairs of autocorrelation time and variance, which
have the same product, figure 24A. One pair utilizes the maximal variance combined with a medium
environment correlation time which is of the order of the reference protein timescale. The other
pair utilizes an autocorrelation larger than the autocorrelation time of the protein, combined with a
medium value for the variance. In the protein mean, we saw a different behavior for the modulation
of death reactions compared to the birth reaction, figure 24B. For R2, we observed largely increased
values in the means for the first (correlation time, variance)-pair compared to the second. For R4,
we observed an increase comparable with the increase for R2 in the low regime under fast mRNA
timescale. In the variance, we noticed different values of both pairs for all reactions, figure 24C and
also the autocorrelation exhibits a noticeable difference 24D. Before we investigate these differences
further, we first note, that for the mean, it was to be expected that there is no effect when the birth
reaction R3 is modulated. The mean equations read

d

dt
E[mRNA(t)] = E[Z1(t)]− E[Z2(t)mRNA(t)]

d

dt
E[protein(t)] = E[Z3(t)mRNA(t)]− E[Z4(t)protein(t)].

Since the environment component Z3(t) is independent of mRNA(t), the first term in the second
line equals µ3E[mRNA(t)]. Hence, the mean equations do not depend on σ2

3 and γ3. Consequently,
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Figure 24: Gene expression model in a slow random environment. A. As fig 23B, but with focus
on the medium and high correlation time. The mark in the medium regime is the timescale τj = µ4 of
the reference model. We simulated trajectories of the model in fig 23A with the approximate marginal
simulation algorithm (tilted Hawkes approximation) for the two marked parameter pairs. Circled marks
indicate that E depicts corresponding trajectories. B and C. The protein mean and variance at time
t = 40000 estimated from 10000 sampled trajectories for the different conditions. Different colors for the
same tick were shifted horizontally to improve readability. D. The protein autocorrelation as a function
of the lag. Black trajectories indicate the analytically computed autocorrelation of the reference model.
Colored curves indicate the correlation coefficient of protein trajectories for the embedded model at
different conditions of varying Z2 and Z4, estimated from 10000 sampled trajectories. For reference
model and medium τj , dashed = fast mRNA timescale, solid = slow mRNA timescale. The high
correlation regime is shaded by gray (dashed-dotted = fast mRNA timescale, dotted = slow mRNA
timescale). E. Sample trajectories of the mRNA and the protein for the maximal σ2

2 value and medium
(protein-like) correlation time τ2. The left mRNA-protein pair depicts the fast mRNA timescale and
the right one depicts the slow mRNA timescale. F. Sample trajectories of the mRNA and the protein
for the pair of a high (more-than-protein) correlation time τ2 and a medium σ2

2 value with slow mRNA
timescale. Trajectories are depicted from t = 20000 after stationarity has been reached. G. Sample
trajectories of the protein for the pair of a high (more-than-protein) correlation time τ4 and a medium
σ2
4 value with a fast mRNA timescale, at stationarity as in F. In the shaded medium and high regime

of A parameters were σ2
j /µ

2
j = e−k and τj = 2500 · ek, k = 0, 2.
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the mean protein level is expected to be the same as in the low regime. Now, we turn to the more
interesting modulation of the death reactions. For the modulation of R4, we notice a difference in
the protein means. From the sample trajectories, see figure 26A, we conclude that periods of low
environment value Z4 can cause excursions, meaning periods of strong deviations from the mean, in
the protein. We further observe that the mean does not depend on the relative timescales of the
mRNA and protein. A way to explain this is by arguing that the protein mean depends linearly on the
average protein birth rate. The protein birth on average is majorly affected by the mRNA mean. The
mRNA however is the same for both the fast and the slow mRNA timescale. Conversely, this means
that when we see a difference in the protein mean for the two timescales of the mRNA, this might be
attributed to different mean mRNA levels. And indeed, for the modulation of R2, we see a significant
difference between both timescales (figure 24B). We confirmed that this difference can be attributed
to a difference in the mean levels of the mRNA, see figure 26B. By looking at sample trajectories in
figure 24E, we see excursions at the mRNA level. By the same argument as for the R4 modulation at
the protein level, these can be attributed to phases of low Z2. To explain the difference between the
two mRNA timescales, we see that the excursions are heavier for the fast mRNA timescale (left-hand
side of 24E) than for the slow one (right-hand side of 24E). This can be explained by a higher average
mRNA birth rate c1µ1 for c1 = 1 compared to c1 = 0.1, while the length of the excursions depends
mostly on τ2, which is the same for both cases. Looking for other quantities that are equal or differ
for both cases, we note that the scaled variance compared to the scaled mean squared c22σ

2
2/(c2µ2)

2 is
also the same. However, both cases differ in their values of c22σ

2
2 , which seem to play a negligible role.

The mRNA excursions and their strength directly translate to the protein level (lower panels of 24E).
We have thus explained the behavior of the protein mean for the pair of high variance and medium
correlation. For the other pair with high correlation and medium variance a similar behavior is not
observed, compare figure 24F and G. The lack of this behavior hints at the crucial role of a sufficiently
large environment variance in order to expose relevant excursions.

When we now turn towards the variance (fig 24C), we see a very different behavior compared
to the regime of low correlation (fig 23D). The variance for the low regime was dominated by the
base variance and a contribution by the product of τj and σ2

j , which increased as τj approached the
mRNA timescale and σ2

j its maximal value. For the medium and high regime, we see no significant
contribution of the base variance any more. It is still noticeable when we look at the differences between
the slow and the fast mRNA timescales for an R3 and an R4 modulation. However, what seems to
become the dominating factors are the mean level of the protein (largely caused by excursions) and
the environment variance. Consequently, the trajectories, figure 24E, look qualitatively different from
the reference case.

While for the protein mean and variance, the environment variance σ2
j played the essential role,

this is not the case when we look at the autocorrelation of protein trajectories, figure 24D. We an-
alytically computed the autocorrelation function for the reference system as in [92], and compared
it to the correlation coefficient obtained from 10000 Monte Carlo sample trajectories. We computed
the correlation coefficient between the final time point at t = 40000 and time points further in the
past, increasing the lag from 0 to 20000. To avoid cluttering, we excluded the R3 modulation. Its
behavior is qualitatively the same as R2 and R4, see figure 26C. Both the medium and the high regime
differed significantly from the reference case, showing a slower autocorrelation decay. When comparing
the high regime and the medium regime, the high regime even showed a much slower decay than the
medium regime. When we look for differences among the modulation by R2 and R4 combined with
the slow and fast mRNA timescale, we find that the R4 modulation in the fast mRNA timescale shows
the slowest decay, and the R2 in the slow regime the least slow one. The sample trajectories, figure
24F and G, indicate that two individual trajectories can remain separate for a rather long time. For
the R4 modulation in the fast mRNA timescale, we see that the trajectories show very little mixing
behavior (fig 24G). This illustrates the strong correlation between even far apart time points.

To summarize, we observed an increase in the protein mean, when both the correlation time and
the variance of an environment component that modulates a decay reaction, are large enough. We
attributed this effect to excursions. We saw a stronger effect for the modulation of the mRNA decay
than the protein decay. Interestingly, our findings differ from Keizer et al. [180] who investigated
the same gene expression model in a different environment, i.e., using log-normally distributed slow
extrinsic noise. For the parameter regime considered in their work, the mean protein levels were the
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same regardless of modulating the mRNA decay or the protein decay. In our case study, the increase
of the mean contributed to an increase in the variance, which, for the regime of medium to high
autocorrelation, is no longer dominated by the base variance and σ2

j × τj . The protein autocorrelation
increases essentially with the autocorrelation of any environment component, with minor differences
for the considered conditions.

8.4 Synthetic controller mitigating the heterogeneous degradation rate

One goal of synthetic biology is to design circuits that are robust to environmental changes. The
setpoint objective specifies a target copy number or concentration at which the species of interest
should be kept robustly, i.e., the concentration is supposed to re-adapt when environmental changes
perturb it. Building on the results of the case study 8.3, we considered the setting of a birth-death
process X and an environmental birth-death process Z that modulates the degradation of X (Fig.
27a). Additionally, a controller species U senses the environment and acts on the birth rate of X to
attenuate the effect and achieve the setpoint objective for X [81, Fig S.9c]. We chose the Q.SS mean
as the setpoint, and as the deviation measure we employed the relative deviation

∆ =
E[X∞]− E[XQ.SS

∞ ]

E[XQ.SS
∞ ]

, (257)

or the accuracy measure ∆−1, respectively. In the previous sections, we saw that Z = 0 can be the
main driver of deviations from the Q.SS. The controller U works against this effect. During phases
of otherwise unbounded X excursions, the birth rate of X is now down-regulated by U and, in the
extreme case, comes to a halt at a plateau.

Compared to environment E2, we replaced the reaction R1 in Eq. (230) , (235) by

R1 : Z2
c1−→Z2 + Z1.

In order to apply our general framework, we regard Z2 as the one-dimensional environment and (Z1, X)
as the modulated linear CRN. Then Z = N0 and Λ is the generator of a birth-death process with birth
rate c3 and death rate c4. Detailed balance is satisfied by Poisson-distributed π with parameter c3/c4.
For the dynamics of V we obtain

A(z) =

[

c2 0
−c5 c6z

]

b(z) =

[

c1z
0

]

.

We fix c6, c5 and the means c1
c2
, c3c4 . For different speeds c2 of Z1 we let the speed c4 of Z2 vary, see

figure 20k. For large c4 the stationary mean saturates to the Q.SS mean c1c5/c2c6 = 10 independent
of c2. The saturation level for small c4 depends on the speed c2 of Z1. For a fast enough Z1 a local
maximum appears. For a slower Z1 the saturation level increases. The stationary mean curve for small
c2 resembles the leakage case displaying the same four phases.

With stochastically independent birth and death modulation that we considered so far, the sta-
tionary mean was not affected by fluctuations in the birth modulation, and we could apply the Q.SS
assumption on Z1. Here, on the contrary, the timescale of the controller species U matters in reacting
robustly to the environment. Figure 27b depicts the stationary mean ofX for different controller speeds
c2/c6. The deviation ∆ gets more pronounced for a slower controller, whereas a fast controller achieves
better accuracy ∆−1. For the effect to become apparent, the environment needs to be sufficiently slow
(τZ/τX large). When the controller operates slowly, it does not have the attenuating effect. In this
regime, the target species achieves a base accuracy that depends on a given environment speed and its
mean (see Fig. 27c). The base accuracy decreases when the environment gets lower in mean or slower
in timescale. In particular, a slow controller achieves worse accuracy in a slow environment compared
to a fast one. As a contrary effect, as the controller speeds up, it departs to a better accuracy later in
a fast environment than in a slow one. That is why in figure 27c the accuracy curves for the slow and
the fast environments intersect, which also explains the local maxima in 27b. The slower environment
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- although having a lower base accuracy as a handicap - can be compensated for (in terms of accuracy)
already at a slower controller speed. For the details on the shares α(0), α<z̄, α≥z̄, see figure 28.

As a key question, we asked at which timescale the controller must operate to mitigate environ-
mental perturbations with a given accuracy. To formalize this, we request the deviation in Eq. (257)
to stay below a critical margin ∆∗ or the accuracy to stay above 1/∆∗. Interestingly, we found that
for each accuracy margin, a critical controller speed can be chosen that operates universally for all
environment speeds and means (see the dashed line in Fig. 27c). For fixed c5/c6 and c1/c2, the critical
relative controller speed is given by

c∗2/c6 = (∆∗)−1. (258)

When the environment changes in mean or timescale, the controller holds the accuracy within the
tolerated margin. Since the robustness that we analyze is defined via the steady state behavior, our
statement is restricted to environmental changes that occur so rarely that the steady state can be
reached between changes (see Fig. 29).

Which environment speed and mean exhaust the critical accuracy? It is not the fast and furious (i.e.,
large mean) environment that causes deviation from Q.SS. For fast environment, the degradation rate
of X averages out to the mean, making the Q.SS assumption valid. For large (furious) environment,
the main driver of deviation 0 is hardly visited. In addition, the furious environment boils up the
controller to act in a regime where it has a higher signal-to-noise ratio. This leaves the slow and low
Z to exhaust the critical deviation. During excursions (Z = 0), the average dynamics follows

u̇ = −c2u, u(0) = E[U |Z = 1] = c1/c2

ẋ = c5u, x(0) = E[XQ.SS
∞ ].

Consequently, the deviation for an infinitely long excursion rises, on average, to the value

x(∞)− E[XQ.SS
∞ ] =

c5c1
c2

∫ ∞

0

e−c2t dt =
E[XQ.SS

∞ ]c6
c2

.

The excursion becomes the single dominating share as E[Z] tends to 0, and τZ → ∞ justifies infinitely
long excursions. Since this dominating case is linear, the average dynamics is justified and the heuristic
derivation of Eq. (258) can be made rigorous.

In summary, we observed that the accuracy margin was exhausted by the regime of slow and low
environment, leaving the controller with the simple task to react as fast as to guarantee that a plateau
is reached within the tolerated deviation, on average. This finding joins the variations on the theme
’faster sensor molecules achieve higher accuracy’. Note that the setting and the control objective differ
from [135]. In the latter, a sensor molecule recorded the progression of the target species, while here it
senses the environment. The objective of suppressing fluctuations, i.e., the variance, in the controlled
species induced the quartic root law on the sensing event counts. Here, in contrast, we asked for the
stationary mean to stay within a tolerance of the setpoint, and this induced an inverse proportional
law on the speed with which the controller responds to the environment. To summarize, both findings
show that, when under the influence of a random environment, the accuracy can be increased at the
cost of a faster sensor molecule. Our finding stands out due to its independence of size and speed of
Z and the proportional relation in Eq. (258).

With analytic expressions for the stationary mean at hand, we aim to test whether the impact on
the stationary mean is also captured quantitatively by the approximate marginal simulation with the
Hawkes approximate filter. Since the joint process (U,Z) is used as the environment for the birth-death
process X, this is an example of a birth-death process embedded in a correlated environment. We
picked two different controller speeds from the setting of figure 27B. Then the figure 30B depicts the
stationary mean as a function of the environment speed for the exact model and the tilted Hawkes
model. We recall that the faster controller has the maximal point in the interior. The tilted Hawkes
model captures this behavior. In the sample trajectories figure 30C and D of the state estimates, we
notice that the fast controller tracks the environment and the slow one only follows with a sincere delay
or not at all. Hence, the state estimate mimics capture the behavior of environment and controller
qualitatively. We note here that we did not encounter negative values of the state estimates (Û , Ẑ).

Returning to the slow controller in figure 30B, we observe a deviation of more than 100% from
the set point, which the tilted Hawkes model does not exhibit. To see that the excursions cause the
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Figure 29: Trajectories for the environment E2 with controller. Environment Z and controller U are
shown in plain form, while X is depicted as a moving average with window length t = 10, 000 to match
the statement about the stationary mean. A burn-in time of t = 10, 000 was used. The environment
progresses through four stages of different mean and speed. a. A fast controller (c2/c6 = 10) keeps
the target species near the setpoint, on average, as the environment changes. According to the theory
the deviation stays within 10% of the setpoint. In the last phase a higher deviation indicates that
stationarity is not reached within the window length. The drop below the setpoint is due to a low
plateau value in the trajectory that would be counter-balanced by larger plateau values in the long
run. b. A slow controller (c2/c6 = 0.1) achieves low accuracy for the critical stage of low and slow
environment (last phase). Parameter values were E[XQ.SS

∞ ] = E[U ] = 10, c6 = 1 and in the four phases
the four pairs (E[Z], c4) = (4, 3), (0.1, 3), (4, 0.03), (0.1, 0.03) were used.
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Figure 30: Modulation of first-order reaction. A. A birth-death processX is embedded into a correlated
environment (U,Z). The controller U senses the environment component Z which modulates the death
rate of X, and it regulates the birth rate of X accordingly to achieve the set point goal of keeping X
near c1c5

c2c6
. B. The stationary mean is plotted for two controller speeds as a function of the environment

speed, dictated by the relative correlation time c6/c4. The environment becomes slower from left to
right. As a reference, the set point (quasi-steady state) is added. The stationary mean serves as a
proxy to assess whether the control goal is achieved. The error bars indicate the stationary mean of
the tilted Hawkes model (approximate marginal simulation algorithm). For each of the 20 replicates it
was computed as the temporal average of a trajectory of 55, 000 (100, 000) transitions, truncated by a
burn in period of the first 5000 (50, 000) transitions for the fast (slow) controller. The 95% bootstrap
confidence interval for the mean, using 1000 bootstrap samples of the 20 replicates, is shown. C. Sample
trajectory for the approximate state estimates of the controller U and the environment component Z
in the system with a slow controller. D. As in C for a slow controller. E. Sample trajectory of X for
the slow controller (Doob-Gillespie). F. Sample trajectory of X for the slow controller (approximate
marginal simulation). Parameters were c1/c2 = 10, c3/c4 = 4, c5 = c6 = 1 and c2 = 1, c6/c4 = 0.6 (C),
c2 = 0.01, c6/c4 = 54.6 (D-F).
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deviation from the set point to a large extent, we examined the shares that the different environment
states contribute to the stationary mean (fig 28). Also, when we compare sample trajectories of the
exact system (fig 30E) and the tilted Hawkes model (fig 30F), we see an excursion occurring for the
exact system at around t = 150, while the tilted Hawkes model does not show an excursion. We
conclude that the tilted Hawkes model underestimates the effect of the excursions on the stationary
mean. We did not rule out that for a slower environment, the severe deviation from the set point and
the rise to a plateau value for the slow controller can be qualitatively captured. Also, it is not unlikely
that the simulation time was too short for the last confidence interval (slowest considered environment,
slow controller) in figure 30E to properly capture the mean. When we cross-checked the Monte Carlo
estimation procedure by the exact system with the same hyperparameters, the mean was often not
captured by the confidence interval. This supports the hypothesis of failed convergence. Beside this
possible explanation for the discrepancy between the exact mean and the approximation, we recall that
in the case study 8.3.8, we saw the excursions only for sufficiently high values of σ2. Consulting these
findings, we hypothesize that the stationary variance of Z could be too small for excursions to arise.
In summary, we see that, on the one hand, the tilted Hawkes model captures important features of the
model such as the controller (not) following the environment and the maximal deviation occurring in
the interior environment speed. The quantitative deviation attributed to underestimating excursions,
on the other hand, poses a clear limitation to the approximation. This comparison also classifies the
excursions as imposed by the non-linear dynamics of the environment, as the linearized Hawkes model
does not capture them.

8.5 Gamma-modulated reactions

So far, we have considered examples with a dynamic environment. Characteristically, its reaction
counter had a variance that is asymptotically linear with respect to time, as discussed in section 3.2.
We now assume a static Gamma-distributed environment introduced in section 6.4 causing the variance
of Gamma-modulated birth process to increase quadratically with time, see figure 5.

8.5.1 Gamma-modulated decay reaction

We considered a minimal system with only M = 1 reaction, a decay X → ∅ with rate Zδx, where Z
is Gamma(α, β)-distributed. The scaled random variable δZ is Gamma Gamma(α, β/δ)-distributed.
Thus, by redefining β̃ = β/δ, we can assume without loss of generality δ = 1. Then, with W (t) :=
∫ t

0
X(s) ds and p(t, x) := P[X(t) = x],

∂tp(t, x) = 1(x < N)

〈

α+N − x− 1

β +W (t)

∣

∣

∣
x+ 1, t

〉

(x+ 1)p(t, x+ 1)−

〈

α+N − x

β +W (t)

∣

∣

∣
x, t

〉

xp(t, x). (259)

We claim with X(0) = N ,
〈

α+N − x

β +W (t)

∣

∣

∣
x, t

〉

=
α
∑N−x
k=0 (−1)k

(

N−x
k

)

(β + (x+ k)t)−(α+1)

∑N−x
k=0 (−1)k

(

N−x
k

)

(β + (x+ k)t)−α
. (260)
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The derivation uses the joint conditional distribution of the decay time points (T1, . . . , TN−x) condi-
tional on {X(t) = x} = {TN−x ≤ t, TN−x+1 > t}, derived with Bayes rule as follows

pT1,...,TN−x
(t1, . . . , tN−x | x, t)

∝ P(TN−x+1 > t|T1 = t1, . . . , TN−x = tN−x)pT1,...,TN−x
(t1, . . . , tN−x)

=

∫ ∞

t

∫ ∞

0

pTN−x+1
(tN−x+1|T1 = t1, . . . , TN−x = tN−x, Z = z)×

pT1,...,TN−x
(t1, . . . , tN−x | Z = z)pZ(z) dz dtN−x+1

∝

∫ ∞

t

∫ ∞

0

N−x
∏

i=0

z(N − i)e−z(N−i)(ti+1−ti)e−zβzα dz dtN−x+1

∝

∫ ∞

t

∫ ∞

0

exp

(

−z

(

β +

N−x
∑

i=0

(N − i)(ti+1 − ti)

))

z(α+(N−x+1) dz dtN−x+1

∝

∫ ∞

t

(

β +

N−x
∑

i=0

(N − i)(ti+1 − ti)

)−(α+N−x+1)

dtN−x+1

=

∫ ∞

t

(β + t1 + · · ·+ tN−x + xtN−x+1)
−(α+N−x+1)

dtN−x+1

∝ (β + t1 + · · ·+ tN−x + xt)−(α+N−x).

By ∝ we mean that there is constant depending on t, x,N, α, β, such that multiplication with this
constant turns the relation into an equality. Define the integrals

Cn,α,β(t0) :=
Γ(α)

Γ(α− n)

∫ t0

0

· · ·

∫ tn−1

0

(β + t1 + · · ·+ tn)
−α dtn . . . dt1, (261)

which by induction can be shown to evaluate to

Cn,α,β(t0) =
1

n!

n
∑

k=0

(−1)k
(

n

k

)

(β + kt0)
−α+n.

Then, with W (t) = xt+ T1 + · · ·+ TN−x,
〈

α+N − x

β +W (t)

∣

∣

∣
x, t

〉

= (α+N − x) ·

(
∫ t

0

∫ tN−x−1

0

· · ·

∫ t1

0

pT1,...,TN−x
(t1, . . . , tN−x | x, t) dt1 . . . dtN−x

)−1

×

∫ t

0

∫ tN−x−1

0

· · ·

∫ t1

0

(β + xt+ t1 + · · ·+ tN−x)
−1pT1,...,TN−x

(t1, . . . , tN−x | x, t) dt1 . . . dtN−x

=
αCN−x,α+N−x+1,β+xt(t)

CN−x,α+N−x,β+xt(t)

=
α
∑N−x
k=0 (−1)k

(

N−x
k

)

(β + (x+ k)t)−(α+1)

∑N−x
k=0 (−1)k

(

N−x
k

)

(β + (x+ k)t)−α
.

Then, Eq. (259) is solved by

p(t, x) =

(

N

x

)N−x
∑

k=0

(−1)k
(

N − x

k

)

(

1 + β−1(x+ k)t
)−α

=
N !βα

x!
CN−x,α+N−x,β+xt(t), (262)

which can be checked by differentiating. We recognize the discrete distribution on x ∈ {0, . . . , N} with

p(x | α, γ,N) =

(

N

x

)N−x
∑

k=0

(−1)k
(

N − x

k

)

(1 + (x+ k)γ)−α
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as the Gamma-binomial distribution GammaBin(α, γ,N) with the Gamma parameters (α, γ−1) and N
the number of trials [181]. This is a binomial mixture distribution, where the success parameter is e−Z

with Gamma-distributed Z, i.e., the conditional p(x|z) is the binomial distribution with parameters
(e−z, N).

For the mean of a GammaBin(α, γ,N)-distributed X, we find

E[X] =

N
∑

x=1

xp(x | α, γ,N)

=
N
∑

x=1

(

N

x

)

x

N−x
∑

k=0

(−1)k
(

N − x

k

)

(1 + (x+ k)γ)−α

= N

N
∑

x=1

(

N − 1

x− 1

)N−x
∑

k=0

(−1)k
(

N − x

k

)

(1 + (x+ k)γ)−α

= N
N−1
∑

x=0

(

N − 1

x

)

βα
N−(x+1)
∑

k=0

(−1)k
(

N − (x+ 1)

k

)

(1 + (x+ 1 + k)γ)−α

= N

N−1
∑

x=0

(

N − 1

x

)

βα
N−1+x
∑

k=0

(−1)k
(

N − 1 + x

k

)

(1 + γ + (x+ k)γ)−α

= N (1 + γ)
−α

N−1
∑

x=0

p(x | α, γ/(1 + γ), N − 1)

= N (1 + γ)
−α

.

Thus, with γ = β−1t, the mean E[X(t)] = N(1 + β−1t)α satisfies the evolution equation

d

dt
E[X(t)] =

−α

β + t
E[X(t)]. (263)

Similarly, for the second falling moment of a GammaBin(α, γ,N)-distributed X, we obtain

E[X(X − 1)] = N(N − 1) (1 + 2γ)
α
, (264)

which implies for the variance

Var[X] = N(N − 1) (1 + 2γ)
α
+N (1 + γ)

α −N2 (1 + γ)
2α
, (265)

The distribution GammaBin(α, β−1t,N) was to be expected for p(x, t), since conditional on Z = z,
each of the N molecules degrades independently of the other molecules and the probability of having
escaped degradation after time t is e−zt. The transformed random variable tZ is precisely Gamma-
distributed with parameters (α, βt−1).

In the limit for α → ∞, γ → 0 with αγ → µ the distribution GammaBin(α, γ,N) converges
to a binomial distribution with parameters (e−µ, N) with corresponding mean Ne−µ and variance
Ne−µ(1− e−µ).

8.5.2 Gamma-modulated conversion reaction

In the previous subsection, we obtained a Gamma-binomial distribution for the Gamma-modulated
decay reaction. Along the same lines of argument, we obtain a binomial mixture distribution for the
conversion process

X∗ r
−−⇀↽−−

Z
X

that is initialized in the binomial distribution with parameters (θ0, N). Again, the Gamma-distributed
Z is transformed to [0, 1] to serve as a success probability. However, this time the transform is not
Z 7→ e−tZ , but

Z 7→ θ0e
−(r+Z)t +

r

r + Z
(1− e−(r+Z)t),

such that the limit distribution for t→ ∞ is a binomial mixture distribution with success probability
r

r+Z for Gamma-distributed Z.
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8.5.3 Gamma-modulated birth-death reaction

Taking the limit N → ∞, r → 0 while rN → λ, we obtain a birth-death process with birth rate λ and
Gamma-modulated decay. Suppose, the initial distribution is a Poisson distribution with mean λ0,
then p(x, t) is a Poisson mixture distribution, where the parameter is

λ0e
−Zt +

λ

Z
(1− e−Zt)

with Gamma-distributed Z. Its limit distribution for t → ∞ is a Poisson mixture distribution with
parameter λ

Z for Gamma-distributed Z. This is different from a birth-death process with Gamma-
distributed birth rate and decay rate κ, whose distribution p(x, t) is a Poisson mixture distribution
with parameter

λ0e
−κt +

Z

κ
(1− e−κt)

for Gamma-distributed Z. For λ0 = 0, this is a Gamma-Poisson distribution, more commonly known
as negative binomial distribution.

9 Information-theoretic results

There is mounting evidence that the information encoded in the temporal concentration profiles of
biomolecules plays a key role in cellular sensing and decision making [182, 183] and helps to over-
come biochemical noise [184]. The computation of mutual information (MI) between time-varying,
biomolecular signals is complex, and analytical solutions so far relied on Gaussian [143] or steady-state
approximations [185]. Other papers based the MI on single time-point marginals ignoring any encod-
ing in the temporal profile, e.g., [138, 137]. Works, that account for the discrete nature of chemical
reactions, commonly assume diffusion approximations as inputs [135, 186] or are based on stochastic
simulation [141, 83, 140]. Restrictions to sub-classes of discrete-state input processes permit analytical
bounds on the capacity [153], often challenging diffusion based results [136].

9.1 Path mutual information in cell signaling

Our particular interest lies in studying the MI between time-varying signals in the biological cell. It
is widely assumed that the optimization of the MI could be an evolutionary strategy to mitigate noise
in the cellular signaling via metabolites and in gene regulatory networks [139]. The exact mechanisms
how temporal features result in decision making are unclear [187]. A path MI that is sensitive to
temporal effects has been recently introduced for a class of chemical reaction networks [83]. The MI
is often interpreted as a measure for the amount of input states that can be resolved accurately [188].
From an engineering perspective maximizing the path MI between sensor and actuator could thus
define a design principle to construct cellular circuits. Information theory has been used to reveal
fundamental physical limits of information transmission guiding our understanding of gene regulatory
motifs as information processing units [135, 189].

Why is the Poisson channel used as a communication model in cells? Transcription, i.e., the process
of synthesizing mRNA, can be modeled as a counting process that records the number of completed
mRNA molecules. In promoter-mediated transcription [24] the accessibility of the promoter determines
at which rate molecules are transcribed. The promoter state is then modeled as a finite-state CTMC
combined with an intensity function and the transcription as its corresponding doubly stochastic
Poisson process. The classical promoter model is the two-state random telegraph process (Fig. 1a),
i.e., Markovian switching between a high and low or zero transcription rate [18], but recently more
general models were studied [22, 55]. Among them the class with more than two states and a binary
intensity function separating the states into On states (high) and Off states (low or zero) was considered
[190]. The directed graph that captures possible transitions between the On and Off states is called the
promoter architecture. In particular, the model class contains the two-state non-Markov models with
phase-type sojourn time distribution. Constituting the smallest building block of gene regulation, the
promoter-mediated transcription is hypothesized to be optimized in an information-theoretic sense.
In order to find the optimal promoter architecture under appropriate physical constraints an efficient
computation of the MI between promoter state and mRNA transcription events is required.
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9.2 Poisson channel with binary input and average sojourn time constraints

The Poisson channel was introduced as a model for direct-detection optical communication systems
[191]. A random telegraph wave switches a light-source on and off and photons are detected by a
photosensitive device. Upon entry of photons to the detector, photoelectrons are generated. The
number of detection events are counted by (Yt)t≥0 according to a Markov-modulated Poisson process
with an intensity that follows the random telegraph wave. Additionally, due to a random generation
of electrons, a small electric current flows in the device. We model the input (Zt)t≥0 as a random
telegraph model on Z := {0, 1} with On and Off rates c1, c2.

Regarding the question of how the biological cell operates under uncertainty, we analyzed the
minimal gene expression model with a two-state promoter (see e.g. [100] and Fig. 2a in [3]) as an
analytically tractable example. Despite our biological interpretation of the mathematics, the following
analysis is transferable to other such applications. Switching stochastically between inactivated state
z1 and activated state z2, the promoter is modeled by a stationary random telegraph process Z(t),
i.e., a binary, time-homogeneous, stationary Markov process (BMP). Its state linearly modulates the
synthesis rate of messenger RNA (mRNA) molecules Y (t). The decay of mRNA molecules can be
ignored from an information theoretic point of view, because birth events are uniquely identified from
birth-death trajectories [83]. The joint distribution of (Z, Y ), that factorizes in the conditional Y |Z
and the input path distribution µZ , is equivalent to the Poisson channel, whose class of input processes
Z(t) is restricted to BMPs. We distinguish between channels with leakage (z1 > 0) and without leakage
(zero dark current case z1 = 0), see Fig. 33a. By Z[0,T ] we denote the trajectory Z(t)0≤t≤T of the
time-varying input signal with transmission duration T . The sojourn times σ1 in z1 and σ2 in z2 are
exponentially distributed with parameters c1 and c2 such that E[σ1] = c−1

1 and E[σ2] = c−1
2 . The

channel output Y (t) fires at rate c3Z(t), where c3 is the channel gain that dictates the timescale of
Y (t). We denote the switching times of Z as si with 0 < s1 < · · · < T and the jump times of Y as ti
with 0 < t1 < · · · < T .

9.2.1 Capacity of the Poisson channel and optimal allocation of binary input

When it comes to computing the capacity of the Poisson under constraints, classically, the input peak
and average power are constrained. Then among general inputs the class of BMPs achieves capacity,
however at the cost of infinite switching rates c1, c2 [61, 145]. This physical implausibility motivates
bandwidth-like constraints [146, 82]. By restricting general signals to binary inputs with |si−si+1| ≥ ∆
for some ∆ > 0, [147] reported a transition from asymmetric to symmetric allocation of the states
z1 and z2 for the capacity-achieving input, as ∆ increases. We consider the Poisson channel with
BMPs as input class and investigate the following bandwidth-like constraint (B1) 0 < c1 ≤ r1, 0 <
c2 ≤ r2, i.e., lower-bounding the average sojourn times by E[σ1] ≥ r−1

1 ,E[σ2] ≥ r−1
2 . A special case

is the homogeneous constraint max{c1, c2} ≤ r0, in analogy to [147]. We consider the path-wise
MI I(Z[0,T ], Y[0,T ]) [148] and the information rate, defined as Ī(Z, Y ) := limT→∞ T−1

I(Z[0,T ], Y[0,T ]).
Optimizing (i) the MI and (ii) the information rate among all admissible input path distributions µZ
yields (i) the capacity CT and (ii) the information rate capacity C. For fixed z1, z2, the distribution µZ
is parametrized by the system parameters c1, c2 > 0. Fixing c3, the capacity-achieving distributions
are characterized by the following constrained optimization problems

(i) sup
c1,c2

1

T
I(Z[0,T ], Y[0,T ]), (ii) sup

c1,c2

Ī(Z, Y )

subject to the constraint (B1). Applying Jensen’s inequality to the second integrand term of Eq. (119)
and using the identity φ(cz) = cφ(z) + zφ(c) as well as the stationarity of BMPs, the MI is bounded
by

I(Z[0,T ], Y[0,T ])

c3T
≤ (1−m)φ(z1) +mφ(z2)− φ (z1 +m∆z) =: J(z1, z2,m),

where ∆z := z2 − z1 is the dynamic range and m := P [Z(t) = z2] = c1/(c1 + c2) coincides with the
average power E[Z(t)] for a normalized signal z1 = 0, z2 = 1. Optimizing over the general average
power constraint 0 < z1 +∆z ·m ≤ z1 +∆x · p0 implies

CT ≤ c3J(z1, z2,min{p0, p̄}), (266)
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z2z1Zt...t+∆

1− z2∆ z2∆z1∆1− z1∆

p1− p

Y [t, t+∆]

Figure 31: Poisson channel with Two-State input reduced to binary random variables on small intervals
[t, t+∆]

where p̄ =
{

exp
(

∆z−1(φ(z2)− φ(z1))− 1
)

− z1
}

/∆z.
Kabanov and Davis showed that for c1, c2 → ∞ the bound (266) is indeed achieved with the

asymptotic ratio m = min{p0, p̄} [61, 145]. The case z1 = 0, z2 = 1 (no leakage) with p0 ≥ 1/e reduces
to C = CT = c3/e with m = 1/e. Why is the asymmetric allocation optimal for large switching rates?

In the following we caricature the Poisson channel as an input-output-pair of binary random vari-
ables. The idea is that the number of jumps of the channel output on small time intervals is essentially
a Bernoulli variable, i.e. only 0 or 1. In order to regard the input as a Bernoulli variable as well, we
split the time axis in small intervals, on which the input is constant. If the switching rates are large,
this corresponds to choosing the inputs on consecutive time intervals independently. This justifies that
the following picture captures the path mutual information by merely investigating a single small time
interval. Now we turn to a more formal description.

Consider an equidistant discretization of the time axis of length ∆. Suppose on each interval
[t, t+∆], [t+∆, t+ 2∆], . . . the input Z is constant. Later, we will let ∆ → 0. We write Zt...t+∆ for
the value of Z on the interval [t, t+∆]. Consider additionally the output Y [t, t+∆] := Y (t+∆)−Y (t).
Figure 31 summarizes the (conditional) probabilities of the two-stage experiment: Zt...t+∆ takes the
values z1 and z2 with probabilities p and 1− p. Y [t, t+∆]|Zt...t+∆ = zi takes the values 0 and 1 with
probabilities 1− zi∆+ o(∆) and zi∆+ o(∆) and all larger values with probabilities o(∆).

Now, we aim for the mutual information of the two binary random variables Z := Zt...t+∆ and
Y := Y [t, t + ∆] up to o(∆). We will first derive the result for z1 = 0, z2 = 1, and then state it for
general zi.

We decompose the mutual information I(Z, Y ) = H(Z) − H(Z|Y ), which is shown in figure 32.
The entropy

H(Z) = −p ln(p)− (1− p) ln(1− p) (267)

of the input Z is maximized by p = 1
2 . The evaluation of the conditional entropy H(Z|Y ) requires the

knowledge of P [Z = zi|Y = 0] and P [Z = zi|Y = 1]. Using the notation p(z|y) := P [Z = z|Y = y],
we have

p(1|1) = 1, p(0|1) = 0, p(1|0) =
p(1−∆)

1− p∆
, p(0|0) =

1− p

1− p∆
.

Then

−H(Z|Y ) =
∑

z∈{z1,z2},y∈{0,1}
p(z, y) ln(p(z|y))

= p∆ ln(1) + p(1−∆) ln

(

p(1−∆)

1− p∆

)

+ (1− p) ln

(

1− p

1− p∆

)

= p(1−∆) ln(p)− p∆+ p2∆+ (1− p) ln(1− p) + (1− p)p∆+ o(∆)

= p ln(p) + (1− p) ln(p)−∆p ln(p) + o(∆)

where we used the logarithm laws and the expansion ln(1−h∆) = −h∆+ o(∆). Adding terms, we
get

I(Z, Y ) = H(Z)−H(Z|Y ) = −∆p ln p+ o(∆).

Hence, the mutual information is of order ∆ and the instantaneous gain is maximized for p = exp(−1)
(Fig. (32)). This explains the asymmetric allocation that favors the state z1 = 0.

150



p(X = 1)

z1 = 0, z2 = 1,∆ = 0.05

Figure 32: The entropy, conditional entropy and mutual information for the discrete caricature of the
Poisson channel with Two-State input. The mutual information I(Z, Y ) is maximized for p(Z = 1) =
exp(−1).

For general zi it holds that

I(Z, Y ) = ∆(pz2 ln z2 + (1− p)z1 ln z1 − (p2z2 + (1− p)z1) ln(p2z2 + (1− p)z1)) + o(∆)

Define the bracket term as m1 = p2z2 + (1 − p)z1, such that for the mean it holds E[Y ] = P[Y =
1] = ∆m1. Using the logarithm laws and the expansion ln(1 − h∆) = −h∆ + o(∆) we compute the
conditional entropy

−H(Z|Y ) =
∑

z∈{z1,z2},y∈{0,1}
p(z, y) ln(p(z|y))

= pz2∆ ln

(

pz2∆

m1∆

)

+ (1− p)z1∆ ln

(

(1− p)z1∆

m1∆

)

+ p(1− z2∆) ln

(

p(1− z2∆)

1−m1∆

)

+ (1− p)(1− z1∆) ln

(

(1− p)(1− z1∆)

1−m1∆

)

= pz2∆ ln(p) + pz2∆ ln(z2) + (1− p)z1∆ ln(1− p) + (1− p)z1∆ ln(z1)

+ p(1− z2∆) ln(p)− pz2∆+ (1− p)(1− z1∆) ln(1− p)− (1− p)z1∆

− ((pz2 + (1− p)z1)∆ ln(m1)− pm1∆− (1− p)m1∆) + o(∆)

= p ln(p) + (1− p) ln(1− p) + ∆(pz2 ln z2 + (1− p)z1 ln z1 −m1 ln(m1)) + o(∆)

= −H(Z) + ∆(pz2 ln z2 + (1− p)z1 ln z1 −m1 ln(m1)) + o(∆)

By the decomposition I(Z, Y ) = H(Z)−H(Z|Y ) and definition of m1 the claim follows.

9.2.2 Average sojourn time constraints

For the Poisson channel with a random telegraph input, a bandwidth-like constraint is imposed to
avoid the physically implausible capacity-achieving input with infinitely fast switching rates. We thus
analyze how I(Z, Y ) depends on the system parameters c1, c2, c (as in the Eq. (220)) with the goal
to answer questions of optimality under constraints 0 < c1 ≤ r1, 0 < c2 ≤ r2. Continuing with Eq.
(220) for vanishing dark current, λ0 = 0, we consider the Dirac-PDMP (Πt(1))t≥0 on [0, 1], which is
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Figure 33: Dynamics of the causal estimator Θ(t) for c1 = c2 = 0.1, c = 1, z1 = 0, z2 = 1. a Sample
trajectory of the binary signal input Z(t). b The solid line is a sample trajectory of Θ(t). Crosses
indicate the jump times t1, t2, t3 of Y . The dotted line fm(t) is the common trajectory of Θ(t) prior to
the first jump. The dashed line f1(t) separates the (t, θ)-plane. Prior to the first jump the trajectories
evolve below, afterwards they evolve above. c The probability distribution of the causal estimator at
time t = 2 is composed of a Dirac measure with weight κ(2) at fm(2) and a density supported on
(f1(2), 1]. d Probability density of the asymptotic causal estimator.

the normalized version of λ̂t = λ1 · Πt(1). Its hazard is l(π) = cπ with π := π1 and c := ∆λ = λ1
for simplicity. Furthermore, we consider the normalized parameters c̃1 := c1/c, c̃2 := c2/c and, for
convenience, drop the tilde again. Let ω1 < ω2 be the roots of the quadratic equation at equilibrium

0 = c(c1 − (c1 + c2 + 1)ω + ω2)

with difference ∆ω := ω2 − ω1. We now use the results of sections 4.2.1 and 4.2.2.

9.2.3 Mutual information for the Poisson channel with binary Markovian input

First, we present the transient results. Since all trajectories Θ(t) start in the stationary mean E[Θ(0)] =
E[Z(0)] = c1/(c1 + c2) = m, the probability distribution of Z(0) is a point mass. In order to track
its progression, we switch to the trajectory-wise perspective (220). Solving the deterministic part of
(220), i.e. the Riccati equation d

dtfa(t) = A(fa(t)), fa(0) = a, yields

fa(t) = ω1 +∆ω(1 + e∆ωct(∆ω/(a− ω)− 1))−1

Θ(t) = fm(t)1[0,t1)(t) +
∑

i

f1(t− ti)1[ti,ti+1)(t)

For each t the ensemble of trajectories is partitioned by f1(t) into the ones that have and those that
have not yet jumped:

t < t1 ⇔ Z(t) ≤ f1(t) ⇔ Θ(t) = fm(t). (268)

Returning to the distribution perspective, Fig. 33c visualizes the ensemble of trajectories stopped at
a fixed t, while Fig. 33d visualizes the asymptotic distribution. The following theorem fully describes
the distribution of Θ(t). Besides preparing the main result, theorem 9.2, it can be interesting in its
own right in the related fields of filtering and control theory.

Theorem 9.1. The probability measure µt : B(ω1, 1] → [0, 1], µt(B) = P[Z(t) ∈ B], defined for Borel

sets B ⊆ (ω1, 1], is a hybrid measure

µt(B) = κ(t)δfm(t)(B) + νt(B), (269)

composed of a Dirac measure δz(B) = 1B(z), z ∈ R at fm(t) with weight

κ(t) = e−ω1ct ·
(

1− (∆ω)−1(m− ω1)(1− e−∆ωct)
)
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and an absolutely continuous measure νt(dz) = π(a)da supported on (f1(t), 1] with time-independent

density

π(a) =
cc1

c2(c1 + c2)

(

z − ω1

1− ω1

)

3−(c2+c1+1)/∆ω
2

(

ω2 − 1

ω2 − z

)

3+(c2+c1+1)/∆ω
2

, (270)

where

Proof. We use Eq. (268) and compute

P[Θ(t) ∈ B] = P[Θ(t) ∈ B, t1 > t] + P[Z(t) ∈ B, t1 ≤ t]

= P[t1 > t]δfm(t)(B) + P[Θ(t) ∈ B ∩ (f1(t), 1]]

having the form of Eq. (269). First,

P[t1 > t] = exp

(

−c

∫ t

0

fm(s) ds

)

= κ(t).

Second, by the equivalence

Θ(t) ∈ B ∩ (f1(t), 1] ⇔ t− sup{ti | ti ≤ t} ∈ f−1
1 (B), t1 ≤ t

the absolute continuity of the ti implies that νt(B) = P[Θ(t) ∈ B ∩ (f1(t), 1]] is an absolute continuous
measure, i.e., νt(da) = p(t, a)da with some density p(t, a) supported on (f1(t), 1]. Its solution is
obtained by the method of characteristics [192], initiated at the boundary condition p1(t) := p(t, 1)
and propagated through the rewritten linear PDE (104)

∂

∂t
p(t, a) +A(a)

∂

∂a
p(t, a) = p(t, a)

{

−ca−
d

da
A(a)

}

.

It remains to evaluate p1(t). We compute

E[cZ(t)] = E

[

lim
h→0

P[Y (t+ h)− Y (t) = 1 | Z[0,t]]

h

]

= lim
h→0

P[Y (t+ h)− Y (t) = 1]

h

= lim
h→0

P[Θ(t+ h) ∈ (f1(h), 1]]

h

= −f ′1(0)p(t, 1) = −A(1)p1(t) = c2p1(t).

The absolute continuity of νt was used in the fourth equality. Stationarity of Z implies that p1(t) ≡
cm/c2 independent of t. Plugging this in, p(t, z) = π(z)1(f1(t),1](a) is obtained.

Accordingly, for the mutual information, we obtain the following analytic expression.

Theorem 9.2. Let z1 = 0, z2 = 1, then

1

T
I(Z[0,T ], Y[0,T ]) =−

c

T

∫ T

0

φ(fm(t))κ(t) dt

− c

∫ 1

ω1

φ(a)π(a)(1− f−1
1 (a)/T ) da.

Proof. Using theorems 9.1, the identity φ(cz) = cφ(z) + zφ(c), and Fubini’s theorem, we evaluate Eq.
(119).

Next, we state the asymptotic results.
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Theorem 9.3. The process (Πt(1))t≥0 converges in distribution, where the density of the limiting

distribution is

pZ(z) =
cc1

c2(c1 + c2)

(

z − ω1

1− ω1

)

3−(c2+c1+1)/∆ω
2

(

ω2 − 1

ω2 − z

)

3+(c2+c1+1)/∆ω
2

, (271)

when we assume Z is distributed according to the limiting distribution. The limiting distribution of the

backward recurrence time (τ(t))t≥0 is

p(τ) =
cc1

c1 + c2

(

e−cω1τ
ω2 − 1

∆ω
+ e−cω2τ

1− ω1

∆ω

)

. (272)

The MIR of the random telegraph model and its Poisson channel output equals

I(Z, Y ) =−
cc1

c1 + c2

∫ ∞

0

φ

(

ω2 −
∆ω

1 + 1−ω1

ω2−1e
−∆ωτ

)

[

e−ω1τ
ω2 − 1

∆ω
+ e−ω2τ

1− ω1

∆ω

]

dτ (273)

=− c

∫ 1

ω1

φ(z)pZ(z) dz. (274)

Proof. According to theorem 4.32, Πt(1) converges in distribution to its unique invariant distribution.
The distribution in Eq. (271) satisfies the stationarity condition obtained from (104) by equating the
right side to zero. For Eq. (272) compute the solution u(τ) of

Π̇τ (1) = c(c1 − (c1 + c2 + 1)Πτ (1) + Πτ (1)
2), Π0(1) = 1 (275)

that yields

u(τ) = ω2 −
∆ω

1 + 1−ω1

ω2−1e
−c∆ωτ . (276)

As in Eq. (85) we have m(τ) = cu(τ). Then the unnormalized density ρ(τ) is obtained from solving
Eq. (91)

ρ(τ) = e−cω1τ
ω2 − 1

∆ω
+ e−cω2τ

1− ω1

∆ω
and p0 = E[λ∞] = cc1

c1+c2
. By p = p0 · ρ, the claimed Eq. (272) is proved. Using φ(cx) = cφ(x) + xφ(c)

the MIR can be written as

I(Z, Y ) =− cp0

∫ ∞

0

φ(u(τ))ρ(τ) dτ

=−
cc1

c1 + c2

∫ ∞

0

φ

(

ω2 −
∆ω

1 + 1−ω1

ω2−1e
−∆ωτ

)

[

e−ω1τ
ω2 − 1

∆ω
+ e−ω2τ

1− ω1

∆ω

]

dτ.

The linear time scaling τ 7→ cτ was used in the second equality. Analogously, Eq. (274) is obtained

from Eq. (271). We identify Eq. (273) as a reparametrization of Eq. (274) for ω = ω1 and Πt(1)
d.
→ Θ

I(Z, Y ) = −E[cφ(Z)] = −c

∫ 1

ω

φ(z)πZ(z) dz. (277)

The link can be obtained via the transformation rule applied on the transformation u : [0,∞) → (ω, 1].

Let T satisfy τ(t)
d.
→ T , i.e., T follows the stationary distribution of τ(t). Then

∫ 1

ω

φ(z)pΘ(z) dz =

∫ u−1(1)

u−1(ω)

φ(u(t))pΘ(u(t)) · u
′(t) dt

=

∫ ∞

0

φ(u(t)) [−pΘ(u(t)) · u
′(t)] dt

=

∫ ∞

0

φ(u(t))pT (t) dt

= p0

∫ ∞

0

φ(u(t))ρ(t) dt.
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Remark 9.4. The reparametrization Eq. (273) has the advantage over Eq. (274) that vertical
asymptotes of the integrand at z = ω can be avoided. Furthermore, the integral bounds do not depend
on the system parameters c1, c2, c, allowing more uniformly chosen integral bounds in the numerical
approximation, compare remark 5.3.

9.2.4 Computation of partial derivatives

Getting rid of the dependence on the parameters in the integral bounds has another advantage. It
enables the computation of partial derivatives. Let us pick up the tilde again. In order to answer
questions of optimality of I(Z, Y ), the partial derivatives of I(Z, Y ) = I(c̃1, c̃2, c) are relevant. Note
the relation ∂1I(c̃1, c̃2, c) := ∂c̃1I(Z, Y ) = c∂c1I(Z, Y ). In particular the nullclines [∂1I(c̃1, c̃2, c) = 0]
and [∂2I(c̃1, c̃2, c) = 0] contain information about optimal points. By the implicit function theorem,
the c̃1-nullcline c̃1 7→ h(c̃1) satisfies the ODE

h′c(c̃1) = −
∂11I(c̃1, h(c̃1), c)

∂12I(c̃1, h(c̃1), c)
. (278)

Furthermore, to decide on the convexity of the c1-nullcline, positivity of

h′′c (c̃1) =

[

2∂11I∂112I

∂12I
2 −

∂111I

∂12I
−
∂11I

2
∂122I

∂12I
3

]

(c̃1, hc(c̃1), c) (279)

must be checked. This motivates to compute partial derivatives up to the third order. The numerical
method is exemplified for ∂1I(c̃1, c̃2, c). In order to appreciate the reparametrization, we observe
that the Leibniz rule for differentiation of the parameter integral in Eq. (277) fails when there is
an asymptote at ω1. Then the lower boundary term evaluates to −∞. Thus, let us exploit the
reparametrization. Define u1(τ) := ∂c̃1u(τ) and p1(τ) := ∂c̃1p(τ) as well as

J1(τ) := ∂c̃1J(τ) = ∂c̃1

∫ τ

0

−cφ(u(t))p(t) dt = ∂c̃1

∫ cτ

0

−φ(u(t/c))p(t/c) dt.

For the evolution of u1(τ) one takes advantage of u̇1(τ) = ∂1u̇(τ). The joint evolution (for the time
scaling τ 7→ cτ , i.e., f̃(τ) := f(τ/c) for f = p, u, p1, u1, J1 and dropping the tilde again) is given by

ṗ(τ) = −u(τ)p(τ) (280)

u̇(τ) = c̃1 − (c̃2 + c̃1 + 1)u(τ) + u(τ)2 (281)

ṗ1(τ) = ∂1ṗ(τ) = −u1(τ)p(τ)− u(τ)p1(τ) (282)

u̇1(τ) = ∂1u̇(τ) = 1− u(τ)

− (c̃2 + c̃1 + 1)u1(τ) + 2u(τ)u1(τ) (283)

J̇1(τ) = −φ′(u(τ))u1(τ)p(τ)− φ(u(τ))p1(τ) (284)

with initial conditions ( cc̃1
c̃1+c̃2

, 1, cc̃2
(c̃1+c̃2)2

, 0, 0). The saturation value limτ→∞ J1(τ) is the partial deriva-

tive ∂1I(c̃1, c̃2, c).

9.2.5 Mutual information in the phase plane

For the analysis we set c = 1, which is justified by the scaling behavior I(c1, c2, c) = cI(c̃1, c̃2, 1) =:
cI(c̃1, c̃2). For convenience, we drop the tilde. Along the line (c1, (e − 1)c1), both partial derivatives
are numerically found not to switch sign. From this, we conclude that the nullclines do not intersect.
This excludes local optima of I(c1, c2). For a rectangular constraint 0 < c1 ≤ r1, 0 < c2 ≤ r2,
the maximizing pair (c∗1, c

∗
2) is consequently always located on one boundary c1 = r1 or c2 = r2.

The (c1, c2)-plane is split into regions A,B and C by the nullclines. The pair [sgn(∂1I), sgn(∂2I)]
characterizes the regions: [1,−1], [1, 1], [−1, 1] on A,B,C. Depending on the location of (r1, r2), the
maximum (c∗1, c

∗
2) shows different behavior. If located in A, it holds c∗1 = r1, c

∗
2 < r2, while a location

in B enforces c∗1 = r1, c
∗
2 = r2, and finally, c∗1 < r1, c

∗
2 = r2 for (r1, r2) in region C. As a summary,
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Figure 34: Phase plane analysis of the MIR for the Poisson channel with random telegraph input.
Nullclines ∂1Ī = 0 and ∂2Ī = 0 were evaluated, using T = 1000. Colored arrows indicate the gradient
of the MIR, calculated alike. Optimization domains are rectangular. Depending on the location of the
domain’s upper right corner (r1, r2), the optimum is assumed on the nullclines ∂1Ī = 0 [(r1, r2) in C]
and ∂2Ī = 0 [(r1, r2) in A], respectively, or in the interior of region B [(r1, r2) in B]. Regions I and II
contain all (r1, r2), whose optima favor the On and Off state, respectively. In the inset the dashed line
c2 = (e− 1)c1 separates the nullclines. The gain was fixed at c = 1.

the maximum is always located in region B or its boundary. Numerically, we find that the c1-nullcline
crosses the bisection line (c1, c1) at 0.29. An evaluation of ∂1I(c1, c2) for c1 ∈ (0, 0.29) indicates no
further intersections. The derivative (278) at c1 = 0.29 is found to be larger than one. Furthermore,
Eq. (279) evaluates to positive values in the region {(c1, c2) ∈ [0, 0.3]2 : c1 − 0.07 ≤ c2 ≤ c1 + 0.01}.
Hence, the isoclines that transit the region are convex, in particular the c1-nullcline. The constraint
0 < c2 ≤ r2 for r2 ∈ (0, 0.29) then returns a maximum (c∗1, c

∗
2) with c∗1 > c∗2. This shows that a

bandwidth-like constraint can impose an On-favoring maximum complementing the classical result
by Kabanov. The sequence of input processes for the Poisson channel that exhaust its capacity is a
random telegraph process with c1, c2 → ∞ and c2/c1 → e−1. The stationary input distribution favors
the Off state, occupying it 1− 1/e of the time.

Optimizing the allocation of the On and the Off state under constraint (B1) can be intuitively
explained as an interplay between different forces that maximize the efficiency and precision of signal
transmission. On the one hand, a force, reducing average sojourn times is predominant in region B
of Fig. 34. This force aims at increasing the amount of signals transmitted. On the other hand,
forces that increase the sojourn time in the On and Off states are predominant in regions A and C,
respectively. A larger sojourn time in the On state increases the likelihood of observing the On state at
the channel output. A larger sojourn time in the Off state decreases the likelihood of misinterpreting
the period between consecutive channel output pulses as an input Off phase. The phase diagram in
Fig. 34 explicitly quantifies how the ensemble of forces is balanced.

Given the analyzed model’s and the constraints’ rather minimal nature it might not account for
biophysical reality. Yet assuming that evolutionary strategies aim at achieving capacity [193] the model
supplies the hypothesis that system parameters c̃1, c̃2 are located in or near the optimal region B [194].
The prediction made by this interpretation is yet to be verified by experimentalists.

9.3 Optimal promoter architecture

The goal of this section is to provide evidence that the circular motif is information-theoretically
optimal for the 3- and 4- state promoter with one active and otherwise inactive states. We also
provide evidence that there is an information-theoretically optimal number of steps for the circle.

We considered the Poisson channel
R : ∅

λ(Zt)
−→ Y

with Markov input Zt ∈ Z. The input is discrete and λ(Zt) ∈ {0, 1}. For this reason, we call the input
binary. Moreover, we assume that there is a unique z ∈ Z, such that λ(z) = 1. For this reason, we
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say that the input has exactly one On state, while the remaining states are Off states. Without loss of
generality, Z = {1, . . . , k} and λ(1) = 1. Denote by αij the transition rate from i to j, where i, j ∈ Z.
Then, according to remark 4.18, the CI is of dimension 0 with the backwards recurrence time τ being
sufficient without additional state variables. In other words, the process Yt is a renewal process. The
mutual information I(Z, Y ) is computed by method 5.2.2, i.e., Eqs. (128)- (130) with auxiliary states
Θτ = (Πτ (1), . . . ,Πτ (k − 1)) and the evolution equation F for i < k

Π̇τ (i) = −(
∑

j,i 6=j
αij)Πτ (i) +

∑

i,i 6=j
αjiΠτ (j) + cΠτ (1)Πτ (i)− c1(i = 1)Πτ (i),

where Πτ (k) = 1 −
∑

j<k Πτ (j) and c = 1. The equation is initialized at (Π0(1), . . . ,Π0(k − 1)) =
(1, 0, . . . , 0). In Eq. (128) and (130), the function l(Π) = Π(1) is used, accordingly.

We considered Markov transition architectures A ∈ A(k) for |Z| = 3 and |Z| = 4, Formally we
define the set of architectures for k = |Z| as

A(k) = {A ∈ {0, 1}k×k; ∀i, j ∈ {1, . . . , k} : aii = 0, (Ak)ij > 0}/ ∼,

where we divide by the equivalence relation

A ∼ B ⇔ ∃Φ ∈ S({1, . . . , k}),Φ(1) = 1 : ∀i, j ∈ {1, . . . , k} : aΦ(i)Φ(j) = bij .

with S being the symmetric group. More informally, Φ corresponds to a relabeling of the states that
keep the active state 1 fixed. The entry aij = 1 means that there is a transition from j to i, whereas
aij = 0 means there is no such transition. The condition (Ak)ij > 0 guarantees that Zt is irreducible.
For each Markov transition architectures A ∈ A(k) we optimized the function I(Z, Y ) = I(αij) in the
parameter space of positive matrix entries

{(αij); i 6= j, aij = 1} = R
χ(A)
>0 , χ(A) =

∑

i,j

aij .

To capture the constraints on the mean On and Off time, define the set Q of Q matrices that are
transition matrices of irreducible CTMCs, i.e., off diagonal entries are non-negative, row-sums are
zero. Call 1 the active state in Z. For Zt with transition matrix Q, and jump times τ1, τ2, . . . , the
mean Off time is

m(Q) = E[min{τk − τn+1}|k > n+ 1, Zτn = 1 = Zτk ].

For given A ∈ A(|Z|), given mean Off time µ and mean On time M , we optimized over the set

{Q ∈ Q; max(sgn(Q), 0) = A,m(Q) = µ,Q11 = −M−1} ⊆ R
χ
>0(A)

where the sgn and max functions are applied entry-wise to map the Q into A(k).
The results for the three-state and four-state inputs are shown in figures 35, 36 and in the appendix

C. Within the constraints of the architecture, a one-directional circling through all states was preferred
over branching or smaller circles. Furthermore, Off states were equally allocated. The experimentally
obtained optimal input thus corresponds to an Erlang-distributed sojourn time.

Next, after we identified the circular motif as maximizing the mutual information rate, we were
interested, whether a higher number of steps in the circle always increases the mutual information.
To this end, we fixed the mean On and Off time. Interestingly, we found an information-maximizing
number of steps in the circle, see figure 37. This can be explained, when we notice that with an
increasing number of steps the Off time distribution becomes less informative. Its variance decreases
to 0, the distribution converges to a delta distribution with peak at the fixed mean. As a consequence,
information is only transmitted by the On time, while the Off time takes up part of the trajectory
without being informative. Since in the mutual information rate we divide by the time, this nearly
deterministic Off time causes loss of information transmission efficiency.

9.4 Leakage and non-exponential On time distributions

In the previous sections we restricted our study of the Poisson channel to binary inputs without leakage
and with exponentially distributed On sojourn time. Directions that could be taken for leakage and
non-exponential On time distributions are considered in the following two examples.
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Figure 35: Results of our experiment of the Poisson channel with three-state input, of which one was
active and two were inactive. The 10 different architectures were investigated. The active state is
labeled with a. The thickness of the arrow shows the transition rates of the optimal input under the
fixed average sojourn time. The coloring from red (low) to green (high) encodes the value of the mutual
information rate. The histogram shows the corresponding Off time distribution.
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Figure 36: Results of our experiment of the Poisson channel with four-state input, of which one was
active and three were inactive. The 287 different architectures were investigated, of which 40 are
shown. For the remaining 247, see the appendix C. Labels, colors and arrows as in figure 35.
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Figure 37: Circular promoter model with n inactive and one active state (left) and the mutual in-
formation rate between promoter input and Poisson channel output (right). The maximal mutual
information rate is non-monotone in n. We used r1 = · · · = rn and On switching rate r1/n, the inverse
of the mean Off sojourn time n/r1.

9.4.1 Random telegraph with dark current

We now consider the MMPP (Yt)t≥0 with a random telegraph modulator and λ0 > 0. As seen in the
proposition 6.2, dim(Yt)t≥0 = 1 and the integral boundary condition, theorem 4.24, will be in place
in contrast to the previous example with dim(Yt)t≥0 = 0. We numerically investigate how a non-zero
dark current alters I(Z, Y ). For this purpose, we apply sections 5.2.1 and 5.2.2.

Continuing the example 9.2 with f, c1, c2, ω1, ω2, λ0, λ1,m as defined in there, we first make the
following observation to choose the discretization domain.

Remark 9.5. For every θ the trajectory m(·, θ) is decreasing and limτ→∞ m(τ, θ) = ω1. Consequently,
for any τ, θ

g(τ, θ) > f(ω1) =
(ω1 − λ0)(λ1 − ω1)

ω1
=: f∞.

Proposition 9.6. Suppose that we partition the p0(θ)-support Ω = (f∞, λ1] into equidistant intervals

(bi−1, bi] with bi = f∞+i · 1−f∞
N

, i = 1, . . . , N and choose representatives θi =
bi+bi−1

2 . Then the matrix

entries in Eq. (125) are given by

Ai,j = R(bi, θj) ∧ 1−R(bi−1, θj) ∧ 1

with

R(θ, θ′) =

(

f−1(θ)− ω1

θ′ − ω1

)

ω1
∆ω

(

ω2 − θ′

ω2 − f−1(θ)

)

ω2
∆ω

,

where f, ω1, ω2,∆ω are as in example 9.2.

Proof. Continuing the example 9.2 and solving Eq. (91), we obtain

ρ(τ, θ) = e−ω1τ
ω2 − θ

∆ω
+ e−ω2τ

θ − ω1

∆ω
.

Define the function

T (θ, θ′) := ∆ω−1

{

ln

(

ω2 − θ

θ − ω1

)

+ ln

(

θ′ − ω1

ω2 − θ′

)}

. (285)

The number of solutions of g(τ, θ′) = θ is N(θ, θ′) ∈ {0, 1} with τ(θ, θ′) = T (f−1(θ), θ′). Then the
matrix entries in Eq. (125) are given by

Ai,j = ρ(τ(bi, θj) ∨ 0, θj)− ρ(τ(bi−1, θj) ∨ 0, θj)

= R(bi, θj) ∧ 1−R(bi−1, θj) ∧ 1.
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Figure 38: Phase planes with leakage. a x1 = 0.01, x2 = 1 b x1 = 0.1, x2 = 1. Black and gray
marks indicate the nullclines ∂1Ī = 0 and ∂2Ī = 0, respectively, and were obtained from Monte Carlo
simulations with sample size 2 · 106. The red shaded area indicates region B of the case x1 = 0.
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Figure 39: Random telegraph input with dark current λ0 and amplitude ∆λ = 1. The MIR
I(c1, c2) is plotted for different values of λ0, c1, c2. The graphs of c1 = 0.1, c2 = 0.1 and c1 = 0.1, c2 = 0.5
intersect, showing that dark current can alter the monotonicity properties of I(c1, c2) in the (c1, c2)-
plane.

The initial condition p0(θ) was found by fixed-point iteration A2L of Eq. (125) with L iterations.
The MIR I(Z, Y ) = I(c1, c2), Eq. (121), was computed with ODE system (128) - (130). Results for
different c1, c2 and increasing dark current are shown in figure 39. For any examined pair (c1, c2), the
MIR decreases with dark current as expected. The figure reveals a notable property. For fixed c1 = 0.1,
the plots for c2 = 0.1 and c2 = 0.5 intersect. This means that increasing the dark current increases the
MIR I(0.1, 0.1) relative to I(0.1, 0.5). Consequently, an increased dark current can qualitatively alter
the monotonicity and optimality properties in the (c1, c2)-phase plane. For example, the On favoring
region increases with a dark current, see figure 38.

For the histogram approximation of pλ, as described in section 5.2.4, we compute τ (m)(θ, θ′) =
T (θ, θ′), using Eq. (285) and explicitly obtain in (132)

∫ τ (m)(mi−1,θ
′)

τ (m)(mi,θ′)

ρ(τ, θ′) dτ =
(ω2 − θ′)

ω2
∆ω

∆ω(θ′ − ω1)
ω1
∆ω

[

(m− ω1)
ω1
∆ω

ω1(ω2 −m)
ω1
∆ω

+
(m− ω1)

ω2
∆ω

ω2(ω2 −m)
ω2
∆ω

]m=mi

m=mi−1

.

Fig. 40 shows the agreement of the computation with and without the Monte-Carlo sampling. The
ACID pλ(m) has an asymptote at ω1 and is not differentiable at f∞ = f(ω1).

The linear fixed point equation (134) can be used to return a numerical approximation of pλ(m)
directly. However, it can have a singularity at the equilibrium θ characterized by A(θ) = 0. And
the ad-hoc discretization into equidistant intervals is not guaranteed to be a stochastic matrix as in
Eq. (125).

The equation (134), which is the analogue to theorem 4.25, yields

K(m,m′) =
m′(m− ω1)

ω1
∆ω

−1(ω2 − f−(m
′))

ω2
∆ω

(f−(m′)− ω1)
ω1
∆ω (ω2 −m)

ω2
∆ω

+1
. (286)
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Figure 40: Random telegraph input with dark current. ACIDs obtained from Monte Carlo
samples and simulation-free computation via BReT-P agree. The direct method, computed by fixed
point iteration of Eq. (286), shows an inaccuracy. The density has a vertical asymptote at ω1 and is
non-smooth at f∞ = f(ω1). Parameters were c1 = c2 = 0.1, λ0 = 0.1,∆λ = 1. Sample size was 106 for
the Monte Carlo simulation. Grid point number was 2000 for the p0-support (f∞, λ1] and number of
fixed point iterations was L = 12.

Off On On
α01 α11

α10

Figure 41: State diagram for the Double On Single Off (DOnSOff) model. The three-state
model is Markovian. A refractory second active state realizes a non-exponential sojourn time in On.
For α11 = α10 the sojourn time is an Erlang distribution. The Off sojourn time remains exponential.

in the Eq. (133). In fig. 40 the accuracy for the considered random telegraph with dark current suffers,
possibly caused by the singularity at the equilibrium ω1. This is in contrast with fig. 13 that showed
good accuracy for the direct method.

9.4.2 Non-Markov On time distribution

In section 9.3 we considered promoter models which are binary and Markovian with precisely one unique
On state. Consequently, the On time was exponentially distributed. Now, we relax this condition. Let
(Zt)t≥0 be an ergodic CTMC with n states, let λ : Z → {0, c} be binary with two active, i.e., non-zero
states z1, z2 and (Yt)t≥0 the corresponding MMPP. We refer to the model as double On (DOn). Then
introduce the conditional probability of being in an active state

At = Πt(z1) + Πt(z2)

and Ut := Πt(z1)/At the contribution of z1 to this conditional probability. Then

Θt := (Ut, At,Πt(z3), . . . ,Πt(z|Z|−1))

are sufficient variables of joint Markovian progression. The reset value at jumps is (Ut−, 1, 0, . . . , 0).
Since all but the first component are set to a constant at jumps, we may choose the sufficient statistic
θ(t) = Ut−τ(t), hence dim(Yt)t≥0 = 1, compare remark 4.16. The progression of Θt can be found by the
chain rule, proposition 4.8, from Eq. (8). We only elaborate on it for the circular CTMC with double
On state and single Off state (DOnSOff), depicted in figure 41. Let α01, α11, α10 be the transition
rates of going from inactive to first active, first to second active and second active back to inactive,
then the generator is of the form

A =





−α11 0 α01

α11 −α10 0
0 α10 −α01



 .
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Figure 42: The Double On Single Off input. Trajectories (Πτ (z1),Πτ (z2)) evolve in the (π1, π2)-
plane with π1 + π2 ≤ 1. The gray grid indicates the change of coordinates (u, a) = (π1/(π1 + π2), π1 +
π2) ∈ [0, 1]2. The initial value is [u0, a0] = [θ, 1]. Dots indicate the temporal evolution, i.e. trajectory
values at equally spaced time points. The equilibrium is marked by the cross. Parameter values were
α01 = 0.4, α11 = α10 = 0.8, c = 1, θ = 0.2, 0.4, 0.6

The evolution of the conditional probabilities Πt(z1) and Πt(z2) is, according to the Snyder filter in
proposition 2.10,

Π̇t(z1) = α01(1−At)− α11Πt(z1)− c(1−At)Πt(z1)

Π̇t(z2) = α11Πt(z1)− α10Πt(z2)− c(1−At)Πt(z2).

Via the function ϕ(π1, π2) = (π1/(π1 + π2), π1 + π2) = (u, a) and the Ito rule, proposition 4.8, this
transforms to, omitting t,

U̇ = −α11U + α01
(1−A)(1− U)

A
+ α10U(1− U) (287)

Ȧ = −c(1−A)A+ α01(1−A)− α10(1− U)A. (288)

The update function according to Eq. (7) is f(u, a) = (u, 1), i.e., constant in the second component.
Figure 42 visualizes how trajectories for different initial values [U(τ), A(τ)]τ=0 = [θ, 1] evolve. The
coordinate system shows the plane (π1, π2), while the grid indicates the transformed radial-like coor-
dinates (u, a). The DOnSOff model is equivalent to a binary semi-Markov process with exponential
sojourn time in the Off state, while the sojourn time in the On state is the convolution of two expo-
nential distributions. It serves as an example of a non-Markovian binary input to the Poisson channel
whose I(Z, Y ) is compared to the Markov case in the following paragraph.

9.4.3 Double On single Off

Binary Markov input processes exhaust the capacity of the Poisson channel when their switching rates
tend to infinity. The defining property for optimality in the limit is only the proportion On/Off.
With the autocorrelation time going to 0 for an exhausting sequence of binary semi-Markov processes
also, the Markov property might as well be relaxed. Consider the following capacity problem: We
restrict the input process class to binary semi-Markov processes and impose a lower bound on the
average sojourn times in the On and the Off state. Is the Markov case with its exponential sojourn
times the capacity-achieving input? Here, we consider the DOnSOff model, which is a semi-Markov
processes with exponential sojourn time in the Off and Erlang sojourn time in the On state. For the
numerical evaluation, following sections 5.2.1 and 5.2.2, we discretize [0, 1] 3 θ. The state variables
(u(τ, θ), a(τ, θ)) evolve according to (287) - (288) with initial conditions [u(0, θ), a(0, θ)] = [θ, 1] and
g(τ, θ) = u(τ, θ), compare Eq. (85). The times τk(θ

′
j) in (125), that satisfy

g(τ, θ′j) = bi, (289)

were found by evolving the ODE system (91), (287), (288) and checking for the event (289). The matrix
entries (125) were evaluated and p0(θ) was found by fixed-point iteration with 2L iterations. The rates
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Figure 43: The Double On Single Off model increases the MIR compared to the random telegraph
model. Parameters were α01 = c1 = 0.04 and α11 = α10 = 2 · c2. This choice guaranteed a model
match in terms of mean On and Off times.

α01 = 0.04, α11 = α10 = 1.6 exhibit a MIR of I(Z, Y ) = 0.101 compared to I(Z, Y ) = 0.096 for the
Markov case. The rates were tuned such that the average sojourn times are the same. This example
shows that the Markov input does not generally solve the capacity problem with average sojourn time
constraint. It remains an open research question which On and Off sojourn time distributions are
capacity-achieving.

10 Summary, Discussion and Outlook

For the analysis of stochastic CRNs in a random environment, we contributed at different levels of the
stochastic description. At the process level, we established a link between CRNs in a linear random
environment with Hawkes processes. Furthermore, we introduced the class of Dirac-PDMPs and the
BReT-P, a standard form of marginal process equations that make use of auxiliary state variables. From
these, by proceeding to the probability evolution layer, we derived generalized master equations and
their asymptotic analysis. Those enabled the simulation-free estimation of information measures. We
presented the ACID, a characterization tool for counting processes. At the level of moments, with our
new method ESME, we computed the stationary means of linear CRNs in a Markov environment. For
the seemingly simple example of the birth-death process with environmentally modulated decay rate,
our case study 8.3 revealed a complex effect of the environment, even on the mean. We could explain
the asymptotic cases of a slow and a fast subnetwork. Between the two asymptotic regimes, however,
we observed a complex transition phase. At the levels of moments, probabilities and the stochastic
process, we compared the Snyder filter and approximate filters by using, respectively, asymptotic Fano
factors, the RER and anecdotal case studies.

We would like to point out misconceptions in the marginal process framework as introduced by
Zechner [3] and Bronstein [78]. Firstly, we found evidence that the interpretation of the variance
decomposition as effective and suppressed noise does not hold. Secondly, the Gamma filter is not
exact for the CIR-modulated reactions. Thirdly, the CI was previously seen as an optimal estimator of
the environment based on the subnetwork observations. Here, we advocate the perspective of filtration-
dependent intensities. With this change of perspective, the CI can emancipate as a state variable that,
on an augmented state space, is Markov. Furthermore, the filtration provides another tuning knob
that can be flexibly modified when developing model approximations.

10.1 Marginal simulation

We presented a novel approximate marginal simulation scheme for CRNs in random environments
based on the Hawkes approximation. The method builds on optimal linear state estimation for doubly
stochastic Poisson processes. The simulation scheme studied here provides a convenient way to account
for variance in the subsystem caused by the environment, even when only limited information about the
environment is available, i.e., the mean, covariance and auto/cross-covariance decay of the environment.
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This matches well with the situation of the experimentalist who has limited information about the
environment, but would like to include that information in the model.

It would be of interest to investigate whether the linearizing approach with a Gaussian environment
that has the appropriate first- and second-order characteristics, generates trajectories equivalent to the
Hawkes model. For the linear noise approximated environment, one can argue that the intensity can
become negative. In contrast, when considering independent environment components, our approach
guarantees positivity by the one-dimensional Hawkes model. For a correlated multi-component envi-
ronment that modulates a single reaction, we derived a sufficient criterion for positivity. However, in
general, we could not guarantee that the filter remains positive. Yet, we anticipate that the possibility
of negative rates is less restrictive than for the linear noise approximation, because we use marginal
rates. The latter ones have a smaller variance, and thus explore a smaller range of intensity values,
making negative intensities less likely.

Independent of the use of approximate filters, we introduced Sinzger’s min-thin algorithm, a new
simulation technique for time-dependent piecewise deterministic rates. It combines the strengths of
the Anderson MNRM and Lewis’ thinning method.

Using the established link with the Hawkes process, future research can transfer more results from
this well-studied self-exciting counting process to CRNs in a random environment. The Hawkes process
can be simulated using an immigration-birth-scheme based on branching processes [195]. We anticipate
that marginal simulation with approximate filters can be implemented in analogous schemes.

10.1.1 Evaluation of approximate filters

Although several approximate filter schemes have been proposed in the last decade, there has been
limited progress in systematic studies of their structural properties and estimation of their accuracy.
For the optimal linear filter, we provided structural results in terms of the second-order moment
agreement for zeroth-order modulation. It is to be expected that only statements about the first- and
second-order moments are possible, since the approximation ignores other features of the environment.

We presented different similarity measures for counting processes. On the one hand, the RER is
an established measure for the comparison of two counting processes based on their path measure. We
provided a simulation-free computational method for it. On the other hand, a comparison based on the
ACIDs is less established. The ACID may offer an accessible lower-dimensional statistic for comparison
that still exceeds the first- and second-order analysis. We exemplified this for the comparison of an exact
and an approximate filter or of two approximate filters. The ACID was successful at differentiating
between them. While the relative entropy can detect whether path measures are equal, the ACID, in
contrast, does not have this ability. By our current state of knowledge, it does not allow a conclusion
about the distance of the path measures in case two ACIDs are close.

Our characterization theorem 4.5 sheds light on the moment closure E

[

V (t)2

λ̂(t)

]

= E[V (t)]2/E[λ̂(t)],

which was misconceived before. In [3] this moment relation and its supposed equivalence with S3 =

2V/λ̂ was erroneously used to derive the Gamma filter from the CIR-modulated reaction channel. This
would have justified the Gamma filter as being exact for the CIR-modulated counting model. However,
we showed that the moment closure instead imposes the optimal linear filter.

For mRNA structure switching and its effect on translation in gene regulatory networks, we tested
several approximate filters. As a limitation of the method we saw the following effect. In cases with a
non-negligible deviation from the quasi-steady state, i.e., when the effect of the environment is needed,
the approximated models is also more prone to inaccuracies. The non-negligible cases were those
when the structure considerably contributed to the Fano factor. In contrast, the quasi-steady state
assumption was clearly valid for a fast switching timescale compared to the translation timescale, i.e.,
a mixing property in time. And also, when enough conditions for a mixing behavior in the states were
combined: (i) more than two structures, (ii) N ≥ 20, and (iii) low fold change in the translation rate
among structures. The results raise the question, in parameter regime is at once (i) biologically relevant,
(ii) non-negligibly contributing to the Fano factor (iii) well approximated by the reduced models and
(iv) less complex than the non-reduced model. The studies conducted here provide evidence that this
regime might be small, which questions the capability of the approximate filter approaches.

Namely, we observed complementary coverage in performance by the Hawkes and the multinomial
(binomial) model. The performance was measured in terms of a lower deviation of the KL divergence
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rate. While the Hawkes model performed better when a mixing behavior in the states is given, i.e.,
when Snyder’s filter allocates the intermediate values, the multinomial performed better when due to
lacking mixing properties, Snyder’s filter allocates more frequently the upper and lower values of the
achievable regime. This is the case in particular with low N . In the case study of a minimal gene
regulatory network, the toggle switch, we investigated how the symmetric stable switch is destabilized
with heterogeneous translation rates due to conformational switching. The binomial and the Hawkes
model captured qualitatively the increasing switching frequency for slower conformational transitions
and increased fold change. However, in line with the conclusions from the accuracy assessment, we
saw complementary failure modes. While the binomial model severely overestimated the variance,
the Hawkes model underestimated the variance only slightly, in return overestimating the switch-
ing strongly. Hence, more optimistically formulated, a single filter may be insufficient, but hybrid
approaches may be pursued if still in line with (iv).

We have doubts if a marginal simulation algorithm that uses filters can increase simulation effi-
ciency compared to a Doob-Gillespie-algorithm on the joint system. For any such marginal simulation
approach, auxiliary variables must be coevolved. In all examples we considered, there were at least as
many auxiliary variables as environmental species. Both the Hawkes filter and the multinomial filter
had a tie between auxiliary variables and environmental species, whereas the Snyder filter and the
Gamma filter had an increase in state variables. Even with a tie in the state space, this replacement
comes at the cost of losing the runtime advantages of Doob-Gillespie’s next reaction method. More-
over, generally, ODEs must be coevolved. Closed form solutions for the filter, efficiently simulated
using Sinzger’s min-thin, were an exception rather than a rule. Even in this case, the Doob-Gillespie
algorithm is faster. In addition, there is an accuracy loss from approximate filters. It remains unclear,
whether there exists a case with many environment species that can be reduced to only a few effective
auxiliary variables. Even in this case, we consider it more likely that a modified Doob-Gillespie algo-
rithm can be employed to eliminate some species using quasi-steady state assumptions. In contrast,
simulation efficiency is possibly gained in the case with a continuous environment, e.g., a concentration
evolving according to an SDE. In this case, the environment might alternatively be realized as a CTMC
with matched stochastic properties, to return to the Doob-Gillespie algorithm as the method of choice.

10.1.2 Design of approximate filters

We advocate that, before the design of approximate filters, one should initially define the approximation
goal. As seen with the comparison of the Hawkes and multinomial filters, approximations can have
complementary benefits and weaknesses. Alternatively, as seen with the Hawkes and Gamma filter,
efficiency can be increased without the loss of accuracy.

We anticipate that the optimal linear filter can be used as a base case which can be adjusted
and improved. We suggest adjustments in a controlled and hierarchical way to account for structural
properties at each level of the adjustment. We imagine that a principled approach for the adjustments
can take at least two routes. First, the base case uses a linearization in the trajectory of reaction counts.
A canonical adjustment is the incorporation of higher-order terms in increasing order. Since we covered
the case of first-order dependence, the next step could be a second-order dependence. A second route
could use variational methods to find the optimal functional form of improvements, similar to [196].
Thereby, we would not impose the polynomial order, but account for trajectory features. For instance,
this could be hierarchically achieved by an increasing family of sigma-algebras that control for the
trajectory features. The structural results revealed that the Hawkes model and the doubly stochastic
model coincide in the covariance measure. A matched covariance measure can also guide the design
of approximations for non-linear systems. It is the second term when expanding the logarithm of
the characteristic functional of the random measure associated with the counting process in terms of
cumulants [115, §9.5, proposition 9.5.V]. Higher order terms can successively be matched.

While the construction of the optimal linear filter used the quadratic loss criterion, other loss criteria
can be considered. Atar and Weissman showed that the natural loss criterion provides a principled
choice that is well-suited for positive random quantities [85]. In figure 44 we illustrate how the optimal
Hawkes parameters are altered when the natural loss criterion is used. Projection criteria that differ
from the quadratic loss criterion could be applied to rule out the possibility that the filter becomes
negative.

The usefulness of the ACID for the design of approximate filters might be strengthened if we find
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Figure 44: Optimal Hawkes parameters. Exemplarily, we chose a random telegraph modulated count-
ing process model. Consider the task of finding the optimal one-dimensional Hawkes model λ̂H(t) with

parameters as in Eq. (58). Level sets indicate the natural loss criterion limT→∞
1
T

∫ T

0
`(λ̂(t), λ̂H(t)) dt

in the (β, α)-plane. The red circle locates the optimum with respect to the quadratic criterion. The
stationary mean µ0α/β of the Hawkes intensity is equal for both criteria.

statements that allow conclusions of the following forms. (i) If the distributions of λ
(1)
∞ and λ

(2)
∞ are

close and the deterministic dynamics F (1) and F (2) are close, then the jump updates f (1) and f (2) are

close. (ii) If λ
(1)
∞ and λ

(2)
∞ are close and f (1) and f (2) are close, then F (1) and F (2) are close. This is

subject for future research that might allow concluding the closeness of the path measures from the
closeness of two ACIDs under mild additional conditions.

For the binomial model we observed and proved that it systematically overestimates the exact
variance of the Markov-modulated counting process. The binomial ansatz is limited to only one
free parameter. Within the theory of approximate filters, this is an interesting observation, since it
provides an example where limited free parameters imply that the second-order moment cannot be
captured properly. In contrast, both the Gamma filter and the optimal linear filter shared the variance
decomposition with the exact model. The finding on the binomial filter suggests a road map for future
improvement of the filter ansatz. For assumed density filtering, distributions that are underdispersed
compared to the binomial distribution should be preferred to replace the conversion environment.
A canonical way to introduce more degrees of freedom would be the use of binomial mixture models.
However, these generally increase the variance and are thus not suited. Underdispersion models, such as
the underdispersed continuation of the beta-binomial distribution [197], can be promising. Independent
of the precise route taken to design approximate filters in future works, this thesis provides a stepping
stone toward a systematic study of approximate filter schemes, that can foster better understanding
of environment effects and advance the discovery of new schemes tailored to the specific needs in the
biological context.

10.2 Model reduction and generalized master equations

The goal of model reduction approaches is to arrive at generalized master equations and process
equations. For this purpose, we used stochastic conditioning on either (i) the environment or (ii) the
subnetwork. For (i), we targeted only deterministic quantities, while for (ii), we also arrive at process
equations via stochastic filtering. This comes at the expense of an augmented state space, i.e., the
sufficient statistics of joint Markovian progression. In the case of the Snyder filter, this is the posterior
distribution with the corresponding filtering equation.

The Markovian nature of the filtering equation was also paraphrased as a ‘mysterious’ concept of
recursiveness by Brémaud [59, p.84]. Back in the days, more emphasis was on its purpose of saving
memory-space. A priori, the CI depends on the history of (Yt)t≥0. With the dependence only on the
current state, there is no need to record the history. In contrast, we use the insight on the Markovian
nature to analyze the asymptotic conditional intensity distribution. More generally, Daley and Vere-
Jones discuss the representation of counting processes with a CI by a Markov process whose states
represent past histories. They emphasize that the usefulness of this observation is limited, although
there are cases where the ’joint statistics’ [115, Example 10.3(e), p.101-102] can be reduced to a low-
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dimensional Euclidean space. The idea of resorting to the governing Markov process to describe the
convergence to the equilibrium of point processes was also explored [115, §12.5, p.225-229]. However,
this idea was not linked to the theory of PDMPs in particular. We spotlight the subclass of Dirac-
PMDPs as a novelty for which we provide the related expressions, such as the differential Chapman-
Kolmogorov equation (or Liouville master equation) and the stationarity condition of the embedded
Markov chain.

The simulation-free method for computing the limiting object, i.e., the ACID, is modular. The
parametrization of the sufficient statistic θ can be varied. The discretization scheme, used here to find
p0 according to Eq. (93) or (94), can be replaced with another technique. The normalization constant
can be employed from Eq. (95), or the resulting distribution p(τ, θ) can be normalized. Depending on
whether the entire ACID or a summary statistic, such as variance or E[φ(·)], is of interest, the method
can be modified. We expect that there is room for improvement: when substituting single modules
in the method, the precision might be increased, computation time decreased and limitations relaxed.
While our grid discretization was an ad-hoc approach, we consider our main contribution to lie in the
formulation of the BReT-P and the derivation of the integral boundary conditions, i.e., the stationarity
condition of the embedded Markov chain for Dirac-PDMPs. For the Hawkes process, to the best of
our knowledge, only the difference-differential equation (135) was available so far [60, 7.2.5 (ii)].

For the example 6.1.2 of dimension zero, we entered the territory of renewal processes, as discussed
by [115, §10.3, p.95 & example 12.5(a), p.227]. Then Eq. (272) for ρ expresses the known fact that the
sojourn time for the marginal distribution is a mixture of two exponential distributions [198]. Renewal
processes in general fall within our framework. They are characterized by dim(Yt)t≥0 = 0, as the

backward recurrence time τ(t) is sufficient for their description. Their CI is λ̂t = − ρ̇(τ(t))
ρ(τ(t)) for the

survival function ρ(τ). It is well established that the stationary distribution of τ has the probability

density ρ(τ)∫
ρ(u) du

[121, §5.1, Eq. (3), p. 61] and the theorem 4.28 reduces to stating that the expected

hazard, called the renewal density, is equal to (
∫

ρ(u) du)−1 [121, p. 62]. The transformation τ 7→ − ρ̇(τ)
ρ(τ)

provides the ACID, i.e., the hazard.
Faced with the problem of the intractable augmented state space, we require approximations.

The study of the approximation via optimal linear filtering revealed that the Hawkes model and the
doubly stochastic model coincide in the covariance measure. This hints at a future application for
model reduction, as the covariance measure is the second term in a cumulant expansion of the random
measure associated with counting processes.

Our Hawkes model is especially well-tailored for linear environment that modulate zeroth-order
reactions. Consequently, we expect that it can be used to replace linear leafs in the reaction network
graph and linear transit networks. As a word of caution, we would like to recall that, for this kind of
model reduction to work, the replaced linear environment must not be bi- or multimodal, as we have
seen in the case study 8.1.1. Multimodality also includes discrete-state environment models with few
states.

The optimal linear filter for counting processes has seen some application [199, 200]. Alternatively,
the Kalman filter has been used after applying a diffusion approximation [201], in the linear noise
approximated case [202], or for a continuous model to begin with [203]. Our assessment of the literature
suggests that the approach via diffusion approximations has been more common. In contrast, we
emphasize that the Kalman-like approach by Snyder, on which we built the Hawkes model, does not
require a diffusion approximation. The link between the Kalman filter for a Gaussian setup and the
Kalman-like filter for point processes is a shared integral equation for the estimation kernel. With this
insight, Snyder transferred the results from the continuous-time additive white Gaussian noise channel
to point processes.

The reduction techniques of approximate filtering and truncation of the cumulant expansion can
have difficulties in capturing the asymptotic mean correctly, as seen in the case studies 8.3.8, 8.4
and [106, p.70]. The expressions for the stationary mean might assist in detecting the parameter
regimes in which approximations succeed. On the one hand, ESME does not require Monte Carlo
approximations. On the other hand, our quantification of environmental shares can permit insight into
the failure mode of the approximate simulation or model reduction technique. Besides the detection
of parameter regimes, the knowledge of the exact stationary mean can tune approximation methods
towards capturing the asymptotic mean correctly.
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At the same time, our expressions are limited to a particular class of CRNs, i.e., the ones that can
be decomposed into a linear subsystem and an environment, where the modulation is only allowed
unidirectionally, from the environment to the subsystem. Often, such decomposition does not exist,
because the requirements of linearity and unidirectional modulation are limiting. Let us consider the
common violations of these requirements. (1) There exists a reaction A+B → C where at least one of
the three species is in the subsystem, e.g., the MAPK/ERK pathway [204]. If A is an environmental
species, it needs to be preserved during the reaction, and A and B cannot be both in the subsystem due
to the linearity assumption. (2) Any partition into two sets of species contains bimolecular reactions
of the forms Ai + Bi → Ai + ∗ with Ai in one set and Bi in the other set for one i and the other
way around for another i. Finally, (3) reaction rates that have a Hill or other non-linear dependency
violate the linearity constraint. We suggest that, for non-linear propensities, Monte Carlo simulations
with the method of conditional moments [34] are used to obtain numerical estimates of the stationary
mean. Additionally, our expressions require the stationary distribution of the environment, which
further limits our approach.

Previously, it was believed that generalized master equations decrease complexity over master
equations of joint Markov models, especially when alternatives, such as quasi-steady state model re-
ductions, are too simple to be exhaustive. In our studies, we could not validate that generalized master
equations with this benefit are within reach. Instead, the unifying approach showed that generalized
master equations require evaluating conditional expectations of random propensities, given the state
of the system. For the telegraph-modulated birth-death process, we derived evolution equations via
conditioning on the environment and conditioning on the subnetwork. For this tractable joint system,
we found that both the approach via the cumulant expansion and via stochastic filtering arrived at
the same equations as the classical CME for the joint system. In the Gamma-mediated decay reac-
tions, complex calculations via stochastic filtering yield the probability distribution of the subsystem.
However, the solution is more simply obtained by conditioning on the Gamma random variable and
solving the classical CME, i.e., the route of section 3.

The ansatz of the generalized CME via conditioning on the subnetwork, section 4, is the replacement
of environmental species by their state estimates, which become the new continuous state variables.
In the studied examples, the necessary number of state variables was at least as high as the number
of environmental species. More commonly, an augmented state space is needed to recover the Markov
property. Moreover, replacing discrete by continuous states implies the need for challenging hybrid
approaches. The advantages of this ansatz over joint Markov approaches in terms of reducing the
complexity have not become apparent in our studies. Overall, we conclude that (i) the curse of
dimensionality is not resolved by the two approaches in sections 3 and 4, and (ii) between both
approaches, the route in section 3 might be preferred for analytic approaches, as it parallels the
structure of the generative model, which defines the subnetwork conditionally on the environment.

10.3 Computation of information measures

We contributed to information theory in cell biology by presenting a Monte Carlo-free numerical
computation of the path mutual information rate of a Poisson channel for Markovian input with a
low state number. We aimed at computing the MIR and RER in a simulation-free way, i.e., without
Monte Carlo simulations. This involved the evaluation of ODEs on a grid with the dimension given
by the dimension of the sufficient statistic. We considered doubly stochastic Poisson processes (signal
process along Poisson channel) and self-exciting counting processes. The ACID is accessible by our
method in the case of very low number of non-zero signal states. With no limitations on the number
of zero states, the method enables us to analyze binary semi-Markov inputs, i.e., have non-exponential
phase-type Off-times. We demonstrated how the RER can compare two counting processes.

In section 8.2.3, we compared the Gamma filter and the optimal linear filter in their ability to
estimate the mutual information in the two-state model of gene expression. We noted that the optimal
linear filter improves the computation time with no decrease in accuracy. The conditions under which
either of the two approximate filters is preferable still have to be determined more systematically. The
characterization result for the optimal linear filter can be used to guide the intuition.

For the Poisson channel, we considered the input class restricted to binary processes that have a
Markov representation with one or two active states. For this class, we were able to contribute a novel
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MI optimization method that does not require costly Monte Carlo simulation. Instead, we took an ana-
lytic approach based on ODEs and a fixed-point iteration. With this approach, we observed interesting
effects, such as optimal promoter cycling and a favored allocation of the On state. Ultimately, it is the
goal to add one more stochastic layer in the channel. Namely, in gene regulatory networks, the channel
between a transcription factor as an input and mRNA transcription as an output is more interesting.
The promoter serves as a mediator. Mathematically, this requires another external stochastic process
that modulates the rates of the promoter switching. It is still unclear, whether the same techniques
that use the ACID and the BReT-P can be applied.

10.4 Attribution of subnetwork features to the environment

We contributed several decomposition results. The Fano factor decomposition for mRNA structure
switching showed its contribution to translational noise. The spectral formula for correlated environ-
ment has the common structure of intrinsic and extrinsic noise components. As a further novelty, we
provided the method of environmental shares that quantifies the contribution of the environmental
states to the stationary mean. The method of the environmental shares allowed to correctly attribute
the excursions to the zero state of the environment. Moreover, it showed an interesting decomposi-
tion of the parameter regions, in which different environment states dominate. Beyond these positive
results, we also provided a line of argument why the decomposition of subnetwork noise into effective
and suppressed noise as proposed by [3] seems misconceived.

In the case study 8.3.8, we found that excursions persist under the linearization, and for this reason,
we classified them as results of linear environment features, at least qualitatively. The same holds for
the local maximum in the case study 8.4, figure 30B. Non-linear features of the environment, such as
bimodality, skewness, a non-linear evolution of the intensity, and a discrete state space with few states,
are expected to cause deviations in X(t). These deviations suggest using more details than first- and
second-order moments of the stochastic description of Z(t). In the modeling context, if the Hawkes
model lacks specifics of the observed X(t), this indicates that non-linear environmental features may
cause these specifics. The case study 8.2.5 showed that the Hawkes model is not generally incapable of
bimodal distributions if the bimodality results from the architecture of the embedded system instead
of being caused by the bimodality of the environment.

To benefit future research on state estimation, the partial observations of the system that is be-
ing modulated could be used to infer the three characteristics of the environment using the proposed
Hawkes model. For this purpose, it would be desirable to derive path likelihoods for the Hawkes-
modeled CRNs when it is reasonable to assume that the environment has an exponentially decaying
auto/cross-covariance. Overall, among the studied applications, we see the largest benefit of approxi-
mate filtering and conditioning on the environment in the areas of information theory and attribution
theory. Disentangling intrinsically stochastic effects of the subnetwork and extrinsic effects of different
environment components beyond the decomposition of the variance can improve our fundamental un-
derstanding of how systems are shaped by being embedded and advance the design of synthetic biology
in a specific cellular context.
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A Piecewise-deterministic Markov processes

Here, the piecewise-deterministic Markov process is redefined. We follow the construction of Davis [65,
§24, p.57-59 & (24.8) standard conditions, p.62] step by step.

Construction A.1 (Piecewise-deterministic process). Let (Ω,F ,P) be a probability space. And let

U1, V1, U2, V2, . . . be independent and uniformly distributed random variables Ω → [0, 1]. Let ϑ ⊆ R
n0

be given. This will be the state space of the constructed process. Let B(ϑ) denote the Borel sets of ϑ
and let further three function be given

• F : ϑ → R
n0 locally Lipschitz continuous

• l : ϑ → R≥0 measurable satisfying an integrability condition, specified in Eq. (290)

• Q : B(ϑ) × ϑ → [0, 1], such that Q(B, ·) : ϑ → [0, 1] is measurable for all B ∈ B(ϑ), where B
denotes the Borel σ-algebra, and Q(·, θ) is a probability measure for all θ ∈ ϑ.

Then with these characteristics construct the following piecewise-deterministic process (Θt)t≥0 starting

from the fixed initial value Θ0 := S0 := θ ∈ ϑ at σ0 := 0. First, for each v0 ∈ ϑ denote by [0,∞) →
ϑ, τ 7→ u(τ, v0) the solution of the initial value problem

Θ̇t = F (Θt), Θ0 = v0

and assume that there exists an ε(v0) > 0, such that

∫ ε(v0)

0

l(u(τ, v0)) dτ < ∞. (290)

Now we construct the process recursively, for i = 0, 1, . . . .. Suppose, that we have constructed the

process until t = σi and Θσi
= Si. Then by the standard technique of the inverse cumulative distribution

function, let Fi+1 : [0, 1] → [0,∞) such that Ti+1 = Fi+1(Ui+1) is distributed as

P[Ti+1 > t] = exp

(

−

∫ t

0

l(u(τ, Si)) dτ

)

and set σi+1 := σi + Ti+1. Next, set Θt = u(t − σi, Si) for t ∈ (σi, σi+1) and let F̃i+1 : [0, 1] → ϑ be

such that Si+1 = F̃i+1(Vi+1) is distributed as Q(·, u(Ti+1, Si)). The process has then been constructed

until t = σi+1 and Θσi+1
:= Si+1.

According to Davis [65, §25, theorem 25.5, p.64], this process has the strong Markov property.

Definition A.1 (Piecewise-deterministic Markov process, embedded counting process). A Markov
process (Θt)t≥0 on the state space ϑ is called piecewise-deterministic Markov process (PDMP),
if its finite-dimensional marginal distributions agree with the construction A.1 for some triple (F, l, Q).
Then (F, l, Q) are called the local characteristics of the PDMP and the process Yt :=

∑∞
i=1 1(σi ≤ t)

with (σi)i∈N as in the construction A.1 is called the embedded counting process.

Remark A.2. The class of PDMPs as studied by Davis allows an active boundary meaning that an
entry into the active boundary triggers jumps automatically [65, §24, p.60 and §34, p.116]. In our
setting there is no active boundary.

B Invertibility of matrices for promoter-mediated transcription

This section discusses how to make A and A + B̄CTµ−1C invertible. The matrix A in Eq. (137)
has vanishing column sums, i.e., 1TA = 0

T for the vector 1 = [1, . . . , 1]T . For this reason A is non-
invertible. The matrix Σ2 has column and row sums zero, i.e., 1TΣ2 = 0

T and Σ2
1 = 0. We derive

an equation equivalent to Eq. (65) - Eq. (66) for the reduced state Z̃0(t) ∈ R
k−1, dropping the k-th

coordinate of Z0(t). This way, we make A invertible by reducing its dimension.
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To this end, we define Γ and decompose the matrices A and Σ2 as

Γ :=

[

Ik−1

−1
T

]

∈ R
k×(k−1), A =

[

A0

−1
TA0

]

= ΓA0, Σ2 =

[

Σ̃2 −Σ̃2
1

−1
T Σ̃2

1
T Σ̃2

1

]

= ΓΣ̃2ΓT ,

with A0 ∈ R
(k−1)×k, Σ̃2 ∈ R

(k−1)×(k−1). Then we define Ã := A0Γ ∈ R
(k−1)×(k−1), C̃ := CΓ ∈

R
1×(k−1). Let B̃(t) ∈ R

(k−1)×(k−1) solve

d

dt
B̃ = −ÃB̃ − B̃ÃT + ÃΣ̃2 + Σ̃2ÃT − B̃C̃Tµ−1C̃B̃.

Then we derive the evolution equation for

β :=

[

B̃ −B̃1

−1
T B̃ 1

T B̃1

]

= ΓB̃ΓT .

d

dt
β =− ΓÃB̃ΓT − ΓB̃ÃTΓT + ΓÃΣ̃2ΓT + ΓΣ̃2ÃTΓT − ΓB̃C̃Tµ−1C̃B̃ΓT

=− ΓA0ΓB̃ΓT − ΓB̃ΓTAT
0 Γ

T + ΓA0ΓΣ̃
2ΓT + ΓΣ̃2ΓTAT

0 Γ
T − ΓB̃ΓTCTµ−1ΓCB̃ΓT

=−Aβ − βAT +AΣ2 +Σ2AT − βCTµ−1Cβ.

Hence β(t) = B(t) for all t ≥ 0. Let further Z̃0(t) ∈ R
k satisfy

dZ̃0(t) = −ÃZ̃0(t) + B̃(t)C̃Tµ−1( dỸ (t)− (µ+ C̃Z̃0(t)) dt),

where the intensity of Ỹ (t) is assumed to be µ+ C̃Z̃0(t). Then ΓZ̃0(t) satisfies

dΓZ̃0(t) =− ΓÃZ̃0(t) + ΓB̃(t)C̃Tµ−1( dỸ (t)− (µ+ C̃Z̃0(t)) dt)

=−AΓZ̃0(t) + ΓB̃(t)ΓTCTµ−1( dỸ (t)− (µ+ CΓZ̃0(t)) dt)

=−AΓZ̃0(t) +B(t)CTµ−1( dỸ (t)− (µ+ CΓZ̃0(t)) dt).

Hence for Z̃0(0) equal to the first k − 1 entries of Z0(0), we have ΓZ̃0(t) = Z0(t) for all t ≥ 0 and in
particular ẐH(t) = µ+ C̃Z̃0(t), hence Ỹ (t) is equal to Y (t) in distribution.

C Promoter architectures

Results from the experiment described in section 9.3.
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