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Abstract

Machine learning (ML) has significantly contributed to the development of advanced process and condition
monitoring systems in manufacturing, enabling real-time monitoring and analysis of equipment and processes
to detect deviations from normal operations and predict potential failures. As ML applications transcend from
academic research to real-world usage, questions regarding their continuous reliability on the shopfloor arise.
The training dataset of an ML model only captures a snapshot of the manufacturing process in time. After
model deployment, the environment will encounter changes such as wear, aging or defective sensors as well
as changes in factory layout and machine placement that are not captured in the training dataset, a scenario
referred to as concept drift, which is often neglected in academic studies. Concept drift leads to performance
degradation of an ML model which is not obvious to machine or plant operators, potentially causing unnoticed
downstream issues unless addressed properly. Recent process models for structuring industrial ML projects such
as CRISP-ML(Q) have started to consider this issue, but do not offer guidance on implementing mechanisms
to detect or counteract concept drift. Motivated by this gap, this thesis analyzes methods for the detection of
concept drift in the context of ML applications for process and condition monitoring in manufacturing, aiming
to improve the application’s reliability and acceptance. First, a literature review and expert interviews are
conducted to gain insights on concept drift handling in manufacturing research and practice. Consequently,
a framework is derived that concretizes the monitoring phase of the CRISP-ML(Q) process model for the
target domain by outlining active and passive concept drift detection strategies accompanied by decision
criteria for their respective usage. Existing concept drift detection strategies often rely on two-sample tests
assuming independent and identically distributed (i.i.d.) data, an assumption that proves invalid in the
targeted use cases. Thus, a refinement method called Localized Reference Drift Detection (LRDD) is proposed
as a preprocessing step for two-sample testing. The developed framework as well as the proposed LRDD
method are validated in terms of applicability and performance through three case studies. In the first
case study, a tool condition monitoring scenario is investigated. It is shown how variations in the operating
conditions degrade the model performance and how the framework can reliably detect drifts, employing LRDD
for active concept drift detection. In the second case study, the use case of process monitoring in milling is
analyzed. It is shown that concept drift is present in the dataset due to the aging of the machine components
between experiment runs. The drift is reliably detected through the configured active concept drift detection.
In the third case study, a condition monitoring use case is implemented within a pigment production line at
a company. Within the case study, passive concept drift detection is implemented as the data distributions
vary strongly between production batches. It is shown that the passive concept drift detection paired with
automatic retraining enables effective condition monitoring of a critical component within the production line.
Overall, this thesis provides solution approaches to dealing with concept drift in the manufacturing domain.
The proposed methods and decision criteria can either be directly applied to existing use cases or serve as
inspiration and guidance for use cases beyond the scope of the case studies.
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Zusammenfassung

Maschinelles Lernen (ML) hat wesentlich zur Entwicklung fortschrittlicher Prozess- und Zustandsüberwachungs-
systeme in der Fertigung beigetragen. Sie ermöglichen die Überwachung und Analyse von Anlagen und
Prozessen in Echtzeit, um Abweichungen zu erkennen und mögliche Ausfälle vorherzusagen. Da ML-
Anwendungen zunehmend von der Forschung in die Praxis übergehen, stellt sich die Frage nach ihrer
dauerhaften Zuverlässigkeit in der Produktion. Der Trainingsdatensatz eines ML-Modells erfasst nur eine
Momentaufnahme des Fertigungsprozesses. Während der Nutzungsphase des ML-Modells kommt es in der
Umgebung zu Veränderungen, wie z.B. Werkzeug- und Maschinenverschleiß, alternden oder defekten Sen-
soren sowie Änderungen im Fabriklayout und in der Maschinenaufstellung, die im Trainingsdatensatz nicht
erfasst sind. Dieses Szenario wird als Konzeptdrift bezeichnet und in akademischen Studien oft vernachläs-
sigt. Konzeptdrift führt zu einer Leistungsverschlechterung des ML-Modells, die für die Maschinen- oder
Anlagenbediener/-innen nicht offensichtlich ist und zu nachgelagerten Problemen führen kann, wenn sie nicht
richtig adressiert wird. Prozessmodelle für industrielle ML-Projekte wie CRISP-ML(Q) berücksichtigen dieses
Problem, bieten aber keine konkreten Richtlinien für die Implementierung von Mechanismen, um Konzeptdrift
zu erkennen oder entgegenzuwirken. Motiviert durch diese Lücke, analysiert diese Dissertation Methoden zur
Erkennung von Konzeptdrift im Kontext von ML-Anwendungen für die Prozess- und Zustandsüberwachung in
der Fertigung, mit dem Ziel, die Zuverlässigkeit und Akzeptanz der ML-Anwendungen zu verbessern. Zunächst
werden eine Literaturrecherche und Experteninterviews durchgeführt, um Erkenntnisse über den Umgang
mit Konzeptdrift in Forschung und Praxis zu gewinnen. Daraufhin wird ein Framework abgeleitet, das die
Überwachungsphase des CRISP-ML(Q)-Prozessmodells für die Zieldomäne konkretisiert, indem aktive und
passive Strategien zur Erkennung von Konzeptdrift zusammen mit Entscheidungskriterien skizziert werden.
Bestehende Strategien zur Erkennung von Konzeptdrift beruhen häufig auf Zwei-Stichproben-Tests unter der
Annahme unabhängiger und identisch verteilter Daten, eine Annahme, die sich in den betrachteten Anwen-
dungsfällen als ungültig erweist. Daher wird eine Vorverarbeitungsmethode namens Localized Reference Drift
Detection (LRDD) für den Vergleichsdatensatz vorgeschlagen. Das entwickelte Framework und die LRDD-
Methode werden anhand von drei Fallstudien auf ihre Anwendbarkeit und Leistungsfähigkeit hin überprüft. In
der ersten Fallstudie wird ein Szenario zur Überwachung des Werkzeugzustands untersucht. Es wird gezeigt,
wie Schwankungen in den Betriebsbedingungen die Leistung des ML-Modells beeinträchtigen und wie das
Framework Drifts zuverlässig erkennen kann, wobei LRDD zur aktiven Erkennung von Konzeptdrift eingesetzt
wird. In der zweiten Fallstudie wird der Anwendungsfall der Prozessüberwachung beim Fräsen analysiert. Es
wird gezeigt, dass Konzeptdrift aufgrund der Alterung der Maschinenkomponenten zwischen den Versuch-
släufen vorhanden ist. Die Drift wird durch aktive Konzeptdrift-Erkennung zuverlässig erkannt. In der dritten
Fallstudie wird ein Anwendungsfall für die Zustandsüberwachung in einer Pigmentproduktionslinie in einem
Unternehmen implementiert. In der Fallstudie wird eine passive Konzeptdrift-Erkennung implementiert. Es
wird gezeigt, dass die passive Konzeptdrift-Erkennung in Verbindung mit einer automatischen Neutrainierung
eine effektive Zustandsüberwachung ermöglicht. Insgesamt bietet diese Dissertation Lösungsansätze für den
Umgang mit Konzeptdrift im Fertigungsbereich. Die vorgeschlagenen Methoden und Entscheidungskriterien
können entweder direkt auf bestehende Anwendungsfälle angewendet werden oder als Inspiration und
Anleitung für Anwendungsfälle dienen, die über den Rahmen der Fallstudien hinausgehen.
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1. Introduction

Artificial Intelligence (AI) in general andMachine Learning (ML) in particular have emerged as key technologies
of the 21st century [Chui23]. Independent of the recent introduction of general purpose AI tools such as
ChatGPT and DALL·E which leverage generative AI, the adoption of ML technology within manufacturing
environments has seen significant advancements in the last decade [Chui21; Manu23]. Due to the capital-
intensive nature of manufacturing operations, the potential benefits of ML in this sector are perceived as
particularly high [Pric17; Mett21]. Ongoing digitization and the deployment of advanced technologies
in the context of Internet of Things (IoT) and Industry 4.0 are transforming manufacturing lines of today
into Cyber-Physical Systems (CPS), which generate large amounts of data during operation, essential for
the training of ML models [Cass22]. Companies are progressively integrating ML into their manufacturing
processes, acknowledging its operational advantages. A 2021 McKinsey & Company study [Chui21] indicates
that among companies operating ML applications, 87% have reported cost benefits from their deployment.
ML-related research has significantly contributed to the development of advanced process and condition
monitoring systems in manufacturing, enabling real-time monitoring and analysis of equipment and processes
to detect deviations from normal operation and predict potential failures [Wues16; Chui21]. In the quality
management domain, ML models can analyze sensor and machine control data to detect defects early in the
manufacturing process, thus reducing or preventing the production of scrap [Jour21b; Fert23].
Companies face a strong upfront investment to build up the talent, the knowledge and the infrastructure
required to conduct ML projects at scale [Mett21; Chui23]. Long-term operational deployment beyond pilot
projects and proof of concepts is thus necessary to justify the investments involved and maximize the economic
benefits of developing ML applications in this domain [Chui21; Elle23]. However, the adoption journey of ML
in manufacturing is still in its early stages with the majority of applications in companies being smaller-scale
pilot projects that do not reach truly operational status [Delo20; Mett21; Manu23].

As ML applications become increasingly mature and transition from academic research and proof of concepts to
real-world operational usage, questions regarding their continuous reliability and robustness after deployment
arise, which is typically not the focus of academic research [Kühl21]. While this topic may not be necessary
if the research objective is to prove the feasibility of a new approach, it is paramount for the practical
implementation in industrial environments where it is difficult to guarantee that an ML application operates in
the intended domain of use on which it has been trained and validated [Sche15; Jöhn21; ISO/IEC 24029-2].
The training dataset of an ML model is limited to a certain state of the manufacturing process in time. After
model deployment though, the manufacturing environment will likely encounter changes such as tool and
machine wear, aging or defective sensors or changes in the factory layout and machine placement that are not
captured in the training dataset [Wu21], a scenario referred to as concept drift [Žlio10b]. Concept drift can
lead to reduced performance during the operation of an ML model in contrast to the performance that was
evaluated on a static test dataset during development, cf. Figure 1.1, up to the point where the ML model
becomes useless [Acke20b; Huye22]. Critically, the performance degradation due to concept drift is typically
not evident to the user or equipment operator, as most often no continuous feedback of true labels is available
for comparison with the model prediction in manufacturing scenarios. Thus, ML models and the data they
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process must be continuously monitored for concept drift. Additionally, appropriate alarms and mechanisms
should be in place to address external changes and technical defects [Kusi17; Stud21; Wu21; Huye22].

Initially reported performance

Performance
degradation

Drift detection,
root cause analysis

& update

Time after ML model deployment

M
L
pe
rf
or
m
an
ce

Updated model Static model

Figure 1.1.: Conceptual performance visualization of a deployed ML model over time in the presence of
gradual concept drift. Concept drift can lead to a degradation in performance over time which is
not evident to the user. The illustration demonstrates the necessity of detecting drift, identifying
the root cause and applying model updates in contrast to a purely static model. Own illustration.

1.1. Problem statement and research questions

In recent years, process models for structuring industrial ML projects such as the Cross-Industry Standard
Process Model for the Development of Machine Learning Applications with Quality Assurance Methodology
(CRISP-ML(Q)) [Stud21] have emerged that explicitly account for degrading performance over time as this
phenomenon applies to a wide range of application areas. These models, however, lack detailed instructions
on the practical implementation of mechanisms to detect or counteract performance degradation, merely
emphasizing their importance [Elle23].
Concept drift detection and handling are crucial for the reliable long-term operation of ML applications in the
manufacturing sector. While research work exists on the methods for detecting or preventing performance
degradation in general ML literature, it remains unanswered how these methods can be applied to ML
applications in the manufacturing context. The practical problem of data scientists and production experts
to design reliable ML applications results in a scientific need of developing a framework that provides
implementation guidance.

The Research Objective (RO) of this thesis is thus defined as the following:
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Research Objective

Development of a framework for detecting concept drift in ML applications used in process and condition
monitoring of manufacturing processes.

Based on this research objective, three research questions are derived which shall be answered throughout
this thesis.

Research Question 1

What impact does concept drift have on ML applications used in process and condition monitoring of
manufacturing processes and how is it currently addressed in both research and practical applications?

Research Question 2

What methods for detecting concept drift in ML applications exist in the literature?

Research Question 3

How should the detection of concept drift be implemented for ML applications used in process and condition
monitoring of manufacturing processes?

1.2. Thesis structure

The work in this thesis is subdivided into six chapters. The chapter structure is summarized and visualized in
Figure 1.2.

Chapter 1 introduces the topic and its practical importance. Following this introduction, the research objective
is established, and the research questions to be addressed in the thesis are derived. In Chapter 2, the
theoretical background is presented, on which the subsequent chapters are built, including ML paradigms,
algorithms, performance metrics, practical aspects of implementation as well as the relevant use cases within
the manufacturing domain. Chapter 3 analyzes the state-of-the-art in research and practice through a literature
review and expert interviews, thus investigating the first research question. The findings are aggregated
and factors are derived that guide the development in the subsequent chapter. On this basis, a framework
for detecting concept drift in ML applications for monitoring manufacturing applications is developed in
Chapter 4, addressing the second and third research questions. To this end, a systematic literature review
is conducted to highlight existing approaches as well as their properties and requirements. Additionally, a
novel method for conducting hypothesis tests is derived that is particularly suited to the targeted use cases in
the manufacturing domain. The developed framework and method for hypothesis testing are consequently
validated through three case studies in Chapter 5. The case studies involve condition monitoring as well as
process monitoring use cases. Chapter 6 concludes this thesis by summarizing the findings and providing
concise answers to the research questions. Lastly, the limitations of the study are discussed and avenues for
future research work are derived.
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Chapter 1
Introduction

Chapter 2
Fundamentals

Chapter 3
Challenges and required action

Chapter 4
Framework development

Chapter 5
Case studies and validation

Chapter 6
Summary and Outlook

Motivation
Research questions
Thesis structure

Domain-specific literature review
Expert interviews
Challenges in research and practice

Active & passive drift detection
Decision criteria for a given application
Localized reference drift detection

Case study 1: Tool condition monitoring in CNC milling
Case study 2: Process monitoring and predictive quality in CNC milling
Case study 3: Sieve condition monitoring in pigment production

Answers to research questions
Limitations of the study
Future work

Machine learning
Process models and MLOps
Manufacturing application domain

Figure 1.2.: Thesis structure.
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2. Fundamentals

In this chapter, the essential theoretical and conceptual foundations for the research in this thesis are introduced.
Section 2.1 outlines the relevant parts of fundamental ML theory, while Section 2.2 presents the specific
algorithms used throughout this thesis. Section 2.3 presents ML lifecycle concepts, process models as well
as the theoretical foundation of concept drift and related phenomena. Section 2.4 introduces the specific
hypothesis testing methods that are utilized in the case studies. Section 2.5 provides an overview of process
monitoring, predictive quality and condition monitoring as they are the relevant ML application areas for
this thesis. Consequently, Section 2.6 introduces relevant features for the respective ML applications in
manufacturing that can be extracted from time series data. This chapter concludes in Section 2.7 with a short
summary of the presented fundamentals and the derived implications for the following chapters.

The following two sections draw heavily from the books titled Pattern recognition and machine learning by
Bishop et al. [Bish06], Machine learning: a probabilistic perspective by Murphy [Murp12] and An introduction
to outlier analysis by Aggrawal et al. [Agga17].

2.1. Machine learning paradigms and evaluation

This section provides the required background knowledge concerning the fundamental paradigms of ML
relevant to this thesis. First, an overview of high-level concepts in ML is given and the notation is introduced.
Consequently, concepts and metrics for the performance evaluation of ML algorithms are explained.

ML is a subset of the broad field of AI which comprises different techniques to resemble intelligent behavior in
machines or computer programs [Kühl20]. An often-cited definition of ML by Prof. Tom Mitchell states the
following [Mitc97]:

Definition 1 (Machine Learning) A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

Within Definition 1, the task T refers to the relevant problem that the application addresses, such as predicting
the wear condition of a machine tool, e.g., [Hess19]. The performance measure P indicates the quality with
which the ML model is able to perform the task T, e.g., the average ratio of correct tool wear classifications.
Lastly, the experience E refers to the dataset that is used to create or train the ML model. Another well-cited
description of ML attributed to Prof. Arthur Samuel states that ML algorithms build a model based on sample
data, in order to make predictions or decisions without being explicitly programmed to do so [Samu59].
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2.1.1. Learning paradigms and notation

When analyzing ML in the context of industrial applications, a further differentiation between learning
paradigms is necessary. A distinction is typically made between supervised learning, unsupervised learning
and reinforcement learning [Jord15; Wues16]. While all three paradigms have seen widespread usage in
industrial and scientific contexts, supervised and unsupervised learning are the most relevant for the specific
tasks that are analyzed within this thesis. Thus, they are introduced in more detail in this section.
In addition, another relevant distinction can be made temporally between online/sequential learning and
offline learning, which is introduced thereafter.

Supervised learning

In supervised learning, the model learns a mapping between a vector of inputs xi ∈ Rd and the corresponding
label yi ∈ R given a set of input-output pairs D = {(xi, yi)}ni=1. In this notation, D is referred to as the dataset,
and n is the number of data samples. xi is a d-dimensional vector that contains representative attributes of
the sample i. X ∈ Rn×d is the matrix that contains the sample vectors in its rows. The attributes are often
referred to as features whereas the label yi is often alternatively referred to as the annotation or target variable.
Attributes can be real-valued, continuous values such as sensor readings or discrete, categorical values such as
a system status or mode. Note that in certain use cases such as working with image-like data or multivariate
time series, the single input data samples can have matrix shape Xi ∈ Rd1×d2 with two dimensions or tensor
shapeXi ∈ Rd1×d2×d3 with three or more dimensions.
The label yi can be either continuous or discrete. The discrete case is referred to as classification and yi
is assumed to take values from a finite set of c options j ∈ {1, . . . , c}, usually referred to as classes. An
exemplary classification task from the domain of manufacturing is the classification of the product quality as
yi ∈ {OK,NOK}. In this example, xi might contain attributes like the amplitude of the measured vibration or
the average temperature during the machining process. Classification tasks with c = 2 classes are referred
to as binary classification tasks and the classes are often termed positive (1) and negative (0), yi ∈ {0, 1}.
Classification tasks with c > 2 classes are referred to as multiclass classification. On the other hand, if yi is
real-valued, the corresponding ML task is referred to as regression. An exemplary regression task from the
manufacturing domain is the regression of a specific quality parameter such as a geometric diameter, based
on relevant sensor measurements from the process. Depending on the use case, the target variable for a single
sample may also be shaped as a vector yi ∈ Rd1 , matrix Yi ∈ Rd1×d2 or tensor Y i ∈ Rd1×d2×d3 .

The following parts of this chapter focus on classification tasks, as these are most relevant for the subsequent
chapters. Classification problems can be formulated as function approximation problems with the goal of
learning an estimate ŷ = f̂(x) of the true function y = f(x) using the datasetD. The estimates of classification
algorithms are typically represented as probability distributions over possible labels j ∈ {1, . . . , c}, conditioned
on the input sample x and model parameters θ as p(y | x,θ). Models with a fixed number of parameters θ are
called parametric models while models where the number of parameters grows with the amount of training
data are called nonparametric. For a given input sample xi, a probability p(y = j | xi,θ) is associated with
every class j and the final class prediction ŷi ∈ {1, . . . , c} is typically inferred as the class with the highest
associated probability:

ŷi = f̂(xi) = argmax
j

p(y = j | xi,θ) (2.1)

This way of estimation is referred to as Maximum a Posteriori (MAP) estimation [Bish06; Murp12].
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Unsupervised learning

Unsupervised learning describes the identification of relevant patterns from unlabelled input dataD = {(xi)}ni=1.
Most tasks in the field of unsupervised learning can be formulated as density estimation tasks, building models
that represent the likelihood of the data itself as p(xi | θ). Common tasks within unsupervised learning
are clustering, dimensionality reduction and anomaly detection out of which anomaly detection is the most
relevant for this thesis.

Anomaly detection, also referred to as outlier detection, novelty detection and out-of-distribution detection
[Agga17], has great relevance for various practical applications, including fault detection in manufacturing,
intrusion detection for cyber-security as well as fraud detection in payment systems [Chan09]. In its simplest
form, an anomaly is is defined as a data point that differs significantly from the rest of the data. Data within
applications like the ones previously mentioned typically has a normal mode, which anomalies are deviating
from. Many algorithms for anomaly detection exist, three of which are introduced in the following parts of
this chapter. For a given data point xi, anomaly detection algorithms output either

• a continuous outlier score h(x), quantifying the level of abnormality in the data point under the
assumptions of the algorithm, or

• a binary label ŷi ∈ {0, 1}, indicating whether the data point is an outlier or not, which is a type of binary
classification.

While a continuous score is useful for, e.g., ranking possible outliers as well as for the performance evaluation
of models, practical applications typically require binary labels. Outlier scores h can be converted to binary
labels ŷ by applying a threshold δ as

ŷ(x) =

{︃
1 if h(x) ≥ δ
0 if h(x) < δ

. (2.2)

The threshold δ is typically chosen based on the statistical distribution of the anomaly scores.

A number of variants exist that combine parts of both supervised and unsupervised learning paradigms. While
fully unsupervised anomaly detection tasks assume that anomalies in the respective dataset are rare, there
are multiple levels of partial supervision possible, with varying terminologies in the literature. Typically,
semi-supervised anomaly detection tasks contain either some (labeled) examples of anomalies within the data
or explicitly only normal data [Agga17].

Sequential learning and offline learning

A further distinction is made between different temporal learning paradigms that are relevant for this thesis:
offline learning and sequential learning, often referred to as online learning [Gama09; Žlio10b].
Offline learning largely overlaps with the scenario described for supervised learning above. A fixed set of
historical data D = {(xi, yi)}ni=1 is used to train a model which is consequently deployed to make predictions
on new data points. The model is not updated or influenced by the predictions it is making on the new data
points after deployment. Sequential learning on the other hand, describes a paradigm where the model is not
static over time. An initial model is trained on historical data. After deployment though, sequential learning
assumes that for a new data point xt at time t, the ground truth label yt is revealed after the model has made
its prediction ŷt. The new data point (xt, yt) is then added to the dataset D and the model is retrained on the
whole or parts of this extended dataset. Thus, the model is updated after every new data point [Žlio10b].
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In practice, sequential learning is used in scenarios where data continuously streams, ground truth labels
quickly become available and it is crucial to adapt to new data in real-time or near-real-time. Examples
include online recommender systems where labels can be inferred from user behavior, as well as forecasting
systems where the true value is observed after the forecasting period. In the scope of ML applications for the
monitoring of manufacturing processes, offline learning is prevalent as ground truth labels are typically not
observable after deployment [Jour23a].

2.1.2. Performance evaluation

In the following section, the most common metrics for performance evaluation of classification and anomaly
detection algorithms are introduced. Consequently, concepts for evaluating model performance and their
respective reasoning are introduced, including dataset splits and Cross-Validation (CV).

Metrics

As explained in Section 2.1.1, classification can be done either in a binary (c = 2) or multiclass (c > 2) fashion.
The metrics explained in the following are targeting binary classification problems with a positive (1) and a
negative (0) class, y ∈ {0, 1}, where P is defined as the number of positive samples, while N is defined as the
number of negative samples in the dataset that is used for evaluation. Most metrics assume that the positive
class is the class of interest, i.e. that should be detected, while the negative class is the more common, general
case [Murp12; Agga17]. Multiclass problems can be evaluated in a similar fashion to binary problems, by
evaluating on a per-class basis, treating the class of interest as positive, and all other classes as the combined
negative class. This is also referred to as One-vs-Rest evaluation. Classified samples in binary classification
problems belong to one of the following four categories:

• True Positive (TP): Number of positive samples which are correctly classified as positive.

• True Negative (TN): Number of negative samples which are correctly classified as negative.

• False Negative (FN): Number of positive samples which are incorrectly classified as negative.

• False Positive (FP): Number of negative samples which are incorrectly classified as positive.

These metrics are often visualized in a confusion matrix as shown in Figure 2.1. The confusion matrix for
multiclass classification similarly shows the predicted classes as rows and true classes as columns.

True class y

Positive (y = 1) Negative (y = 0)

Prediction ŷ
Positive (ŷ = 1) TP FP

Negative (ŷ = 0) FN TN

Total P N

Figure 2.1.: Confusion matrix of a binary classifier. Own illustration.

Further metrics can be calculated based on these scores:
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The accuracy
accuracy = TP+ TN

P+ N
(2.3)

describes the fraction of all instances that have been classified correctly. Accuracy is a common metric used to
evaluate classification systems. A fundamental problem of this metric is its sensitivity to class imbalance. Class
imbalance exists if the samples are not evenly distributed across the set of classes in a dataset. As accuracy
uses values from both columns in the confusion matrix, its value changes for a different class distribution even
if the classification performance of the evaluated model remains the same [Bish06].

The True Positive Rate (TPR), also called hit rate and recall, is defined as the fraction of correctly classified
positive samples:

TPR = recall = TP
P
. (2.4)

The False Positive Rate (FPR), also called false alarm rate, is defined as the fraction of incorrectly classified
negative samples:

FPR =
FP
N
. (2.5)

TPR/recall and FPR do not depend on both columns of the confusion matrix and are therefore insensitive
against changes in class distribution.

The precision is defined as:
precision = TP

TP+ FP
. (2.6)

The F1-score is defined as the harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision+ recall

. (2.7)

Most supervised classification algorithms, cf. Section 2.1.1, produce scores p(y = j | x) for each class, which
are interpreted as pseudo-probabilities that describe the likelihood of the sample x belonging to a certain
class j. Binary classifiers often only produce a single score for the positive class, cf. Section 2.2. The predicted
class label ŷ is commonly chosen as the class with the highest score via Equation (2.1). Similarly, anomaly
detection algorithms often produce anomaly scores h, indicating the degree to which a sample is considered
an anomaly. A threshold δ is subsequently used in Equation (2.2) to infer the binary predicted class label
ŷ ∈ {0, 1}. When evaluating a classifier, one may be interested in the overall quality of the score in addition to
the absolute class predictions. Depending on the application scenario, even the class predictions of supervised
classification algorithms may be decided using a fixed threshold δ instead of simply choosing the maximum
scoring class since the threshold can be used to control the proportion of FPs vs FNs, as visualized in Figure 2.2.
In the binary case, the decision function then becomes Equation (2.2), analogous to anomaly detection.

A common method to assess the quality of classification scores as well as anomaly scores independent of the
threshold is the Receiver Operating Characteristic (ROC). The ROC visualizes the relative trade-off between
TPR and FPR of binary classifiers [Fawc06]. In ROC space, a classifier is represented by its FPR on the abscissa
and its TPR on the ordinate. As the ROC depends only on rates, it is robust against changes in class distribution.
A discrete classifier with a threshold δ is represented by a single value pair (TPR, FPR), which corresponds to
a point in ROC space also called the operating point. A perfect classifier is represented by the point (0, 1),
classifying every positive sample correctly with no FPs. Points on the diagonal line TPR = FPR represent a
random classifier that has the same likelihood of choosing either class.

2. Fundamentals 9



0.2 0.4 0.6 0.8 1.0δ

TPTN

FN

FP

p(y = 1)

D
en
si
ty

Negative
Positive

Figure 2.2.: Threshold-based classification and resulting proportions of error types. High thresholds δ lead
to conservative classification, with proportionally more FNs, while low thresholds lead to more
FPs. The threshold setting can thus be tuned to reflect the costs of incurring either error in the
application scenario. Own illustration.

Classifiers that produce a continuous output score can be visualized as a curve in ROC space by varying the
threshold δ of Equation (2.2). Each threshold value corresponds to a point in ROC space. The analysis in
ROC space can be used to tune the threshold for a specific use case and the desired behavior of the classifier.
The highest threshold value results in the ROC point (0, 0), rejecting all samples as negatives. Lowering the
threshold results in a movement to the upper right corner of the ROC space, reaching the point (1, 1) for the
lowest threshold. An example of the ROC curves of two classifiers is shown in Figure 2.3. In this example,
classifier A shows superior performance compared to classifier B, as its ROC curve is closer to the top left
of the ROC space. The diagonal TPR = FPR representing a random classifier is shown as a dashed line. A
ROC curve beneath this diagonal indicates performance that is worse than random guessing. The ROC space
visualizes the classifier’s ability to produce meaningful relative scores rather than calibrated ones.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

TP
R

Classifier A (better)
Classifier B
Random Performance

Figure 2.3.: ROC curves of two example classifiers. Classifier A shows superior performance (AUROC = 0.79)
compared to Classifier B (AUROC= 0.65). The solid line shows the ROC for random performance
yielding AUROC = 0.5. Own illustration.
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The ROC curve of a classifier that produces a continuous score can be summarized in a single scalar by
calculating the Area Under the Receiver Operating Characteristic (AUROC). Since both FPR and TPR are
limited to the interval [0, 1], the AUROC is limited to the interval [0, 1] as well. The AUROC has an intuitive
statistical property. The AUROC of a classifier is equivalent to the probability that the classifier will assign
a higher score to a randomly chosen positive instance than a randomly chosen negative one. A value of
AUROC = 0.5 corresponds to a random classifier, while a perfect classifier corresponds to AUROC = 1.0
[Fawc06]. In the example of Figure 2.3, Classifier A has a higher AUROC than Classifier B indicating better
performance.

Model selection and assessment

There are a variety of ML algorithms for both supervised learning and unsupervised learning with different
properties and capacities, of which the developer has to select one given the configuration of the use case
and other requirements. In addition, ML algorithms typically have hyperparameters, which configure their
learning and inference process. In contrast to learnable parameters θ, hyperparameters are not optimized in
the learning process but have to be chosen by the developer, either in a manual or partially automated way.
The process of model selection involves choosing both the algorithm as well as its appropriate hyperparameter
settings [Murp12]. This requires several considerations which are briefly explained in the following.

Generalization, overfitting and bias-variance trade-off In the context of model selection and assessment,
several aspects are of importance for the investigation in this thesis. In most real-world application scenarios,
ML models are used to classify new data that is similar but not equal to the training data. The ability to
correctly categorize these new samples is known as generalization, which is a central goal of ML engineering.
This is because even a large set of training data can only comprise a tiny fraction of all possible occurrences
within the real world [Bish06]. The degree to which a model is able to fit the training data is not a good
indicator of how well this model will perform on unseen (test) data due to the possibility of overfitting to the
training data. Overfitting describes the phenomena of a model being overly adapted to the particularities of the
training data, e.g., by memorizing parts of it internally. In the case of k-Nearest Neighbor (kNN) classification,
cf. Section 2.2, an extreme case of overfitting can be observed for k = 1. In this case, the training error will
be 0 as the kNN always returns the correct label for each training sample without necessarily having any
generalization ability. Overfitting is often caused by using ML models with too much complexity / high degrees
of freedom, cf. Figure 2.4, for the problem at hand [Murp12].

As the ML training process commonly involves the fastest way of minimizing some kind of loss function which
depends on the training error, the model will memorize the training data if it has the capability and capacity
to do so. Especially with high-dimensional input data, complex models tend to get sensitive to random
patterns and small fluctuations in the training data such as measurement noise which is not descriptive of
the underlying data generating process they are used to model. The error due to this phenomenon is termed
variance. It is thus important to select an ML model with a capacity that is appropriate for the problem that
should be modeled. Overfitting can be identified by analyzing the discrepancy between the model error on
the training and test set, cf. Figure 2.4. Conversely, if a model is chosen that is too simple for the problem,
underfitting can occur, e.g., when a linear model is applied to data in which the dependencies are nonlinear.
While simple models such as linear regression tend to not overfit as strongly as more complex models such as
Neural Networks (NNs), they introduce errors caused by their limitations and assumptions on the data. The
error due to this phenomenon is termed bias.
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Figure 2.4.: Behavior of test and training set error as the model complexity is varied. Meaningful learning
stops when the test error plateaus. In the context of deep learning, the abscissa in this figure can
also refer to the number of epochs the model is allowed to train, cf. Section 2.2. Own illustration
adapted from [Hast09].

In this context, the bias-variance trade-off describes the conflict of trying to minimize both error sources
during the model selection process. Models that have low bias, such as NNs, are more vulnerable to variance
and vice versa [Murp12], cf. Figure 2.4.

For the reasons stated above, the introduced performance metrics are not calculated and assessed on the data
the model is trained with but on a reserved part of the data that is not used during the training process. The
typical process is visualized in Figure 2.5. The available dataset D is randomly split into three sets:

• The training set Dtrain of length ntrain used to train the models,

• the validation set Dval of length nval used to optimize the hyperparameters that control the training
process, and

• the test setDtest of length ntest used to assess the final model and estimate its generalization performance
on unseen data.

The test set should only be used to calculate the metrics explained in Section 2.1.2 after all optimizations of the
model and the training process are final, to give a realistic estimate of the achievable real-world performance
in the model assessment step [Murp12].

Fixed training-validation splits have several downsides with the major one being that the validation set only
gives a very noisy estimate of the final model performance and can thus lead to suboptimal choices of the
hyperparameters. This is due to the often small portion of the available data that is assigned to it, i.e. 10%-20%.
It is thus best practice to use Cross-Validation (CV) instead, as visualized in Figure 2.6. Here, the training set
is not split into Dtrain and Dval but rather split into k folds that are iteratively used to train the model and
validate its performance k times. The final validation performance that is used to select the optimal set of
hyperparameters is the average of the k obtained validation results of the single folds.
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The advantage of CV is the usage of the full training set for validation and thus a less noisy estimate of the
final model performance, often leading to a better selection of hyperparameters [Murp12]. CV is adopted for
all experiments in this thesis.

Available Data D

Training Set

Training Set Dtrain Validation Set Dval

Test Set Dtest

Model Training
Model Selection
Algorithm Selection

Hyperparameter Tuning
Model Assessment

(1) (2)

Figure 2.5.: Dataset splits for ML training, model selection and model assessment. Own illustration adapted
from [Pedr11].

Training Set

Dfold 1

Dtrain 1,1

Dtrain 2,1

Dtrain 3,1

Dtrain 4,1

Dtrain 1,2

Dtrain 4,2

Dtrain 3,2

Dtrain 2,2 Dtrain 2,3

Dtrain 3,3

Dtrain 4,3

Dtrain 1,3

Dfold 2 Dfold 3 Dfold 4

Dval 1

Dval 2

Model Training
Dtrain k,{1,2,3}

Model Selection
Dval k

Model Assessment
(1) (2)

Dval 3

Dval 4

Test Set Dtest

k-times:

Figure 2.6.: k-fold CV with k = 4 as a more comprehensive alternative to training-validation set splits. Instead
of a fixed training-validation set split, a k-fold split is applied. Own illustration adapted from
[Pedr11].

Independent of whether training-validation splits or k-fold CV is used, optimization of the hyperparameters is
done in an iterative fashion. The most common way to optimize hyperparameters is grid search. In grid search,
the hyperparameter space is discretized in a n-dimensional grid, with n being the number of hyperparameters
that should be optimized. For each hyperparameter, a suitable set of options or a discretized value range
is selected and consequently a model is trained using every parameter combination, either on the training
split, if fixed splits are used, or via CV. Finally, the parameter combination with the lowest validation error is
selected as the final parameter set [Zhan23].

2.2. Machine learning algorithms

This section introduces the supervised classification algorithms as well as the unsupervised anomaly detection
algorithms that were utilized in the experiments throughout this thesis. The section is divided into neighbor-
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based algorithms, tree-based algorithms, Support Vector Machines (SVMs) as well as NNs. Lastly, the relevant
ML-based visualization techniques for high-dimensional data are introduced. Within this thesis, the adaptation
of a model’s learnable parameters θ or memory to a given dataset D is referred to as training, while the usage
of a trained model on new data points is referred to as inference.

Neighbor-based algorithms

Neighbor-based algorithms rely on data point proximity to analyze patterns, emphasizing spatial relationships
for predictions or classifications, based on the principle that similar data points tend to cluster together. The
relevant neighbor-based algorithms for this thesis include kNN classification as well as Local Outlier Factor
(LOF).

k-nearest neighbor classification

The kNN algorithm is a classification1 algorithm that estimates the class membership of an input data sample
x by determining the majority class of the k closest points out of the training datasetDtrain given some distance
metric d(·). An example for kNN classification is visualized in Figure 2.7. Formally, the kNN algorithm is based
on the assumption that the likelihood of an input data sample x belonging to class j can be expressed as

p(y = j | x,Dtrain, k) =
1

k

∑︂
i∈nk(x,Dtrain)

I (yi = j) , (2.8)

where nk(x,Dtrain) are the k nearest training samples to the input data sample x in Dtrain and I(e) is the
indicator function defined as follows:

I(e) =

{︄
1 if e is true
0 if e is false

. (2.9)

k is a hyperparameter which is manually optimized and should be set to an odd number k ∈ {2N− 1} to avoid
ties in the classification [Murp12]. kNN is a nonparametric algorithm as it does not have trainable parameters
θ and instead uses memory-based learning. A common metric utilized to compute the distance between two
d-dimensional data points xi,xj ∈ Rd with continuous features is the Euclidian distance

dEUC(xi,xj) = ∥xi − xj∥2 =

⌜⃓⃓⎷ d∑︂
l=1

(︂
x
(l)
i − x

(l)
j

)︂2
. (2.10)

The choice of distance metric represents another hyperparameter of the kNN algorithm. In addition to
the majority voting in Equation (2.8), most implementations of the kNN algorithm such as in the popular
framework scikit-learn [Pedr11] allow a weighting of the neighbors by the inverse of their distance. In this
case, closer neighbors of a query point will have a greater influence than neighbors which are further away.
If x contains categorical features then special distance metrics such as the Hamming distance or a prior
conversion of the categorical data to a numerical format is required.
1kNN can also be used for regression tasks, however, this is out of this thesis’ scope.
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Figure 2.7.: Example visualization of kNN with k = 3 applied to a two-dimensional dataset with two classes
yi ∈ {0, 1}. Data point x1 would be classified as negative with p(y = 0 | x1,Dtrain, k = 3) = 2

3 , x2

as positive with p(y = 1 | x2,Dtrain, k = 3) = 3
3 = 1. Own illustration adapted from [Murp12].

The most commonly used method for converting categorical features to numerical values is one-hot encoding,
which converts a categorical scalar variable x with m possible states to a vector x̃ ∈ Rm as

x̃ = [I(x = 1), . . . , I(x = m)]. (2.11)

For instance, if there are m = 5 possible states, then a data point from state x = 2 would be given the one-hot
encoded vector

x̃ = (0, 1, 0, 0, 0)T .

This form of preprocessing the data is common for a number of algorithms and may also be used to preprocess
labels y for algorithms such as NNs, cf. Section 2.2.

As distance metrics such as the Euclidian distance rely on absolute distances of the feature values, they are
sensitive to the scale of the feature values. If features represent different physical units or have inherently
different value ranges such as, e.g., vibration amplitudes vs temperatures, standardization of the input data
is a requirement. A real-valued variable x ∈ R can be standardized as

x̃ =
x− µ̂

σ̂
(2.12)

where µ̂ is the sample mean of the training dataset, computed as

µ̂ =
1

ntrain

n∑︂
i=1

xi (2.13)

and σ̂ is the sample standard deviation of the training dataset, computed as:

σ̂ =

⌜⃓⃓⎷ 1

ntrain − 1

ntrain∑︂
i=1

(xi − µ̂)2. (2.14)
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As mentioned for one-hot encoding, standardization of the input data to align the feature value ranges is a
common preprocessing method for a number of algorithms besides kNN such as NNs. The standardization
parameters µ̂, σ̂ directly influence the training process of the model. They should thus be computed on the
training set instead of the whole set of available data as knowledge about Dtest might otherwise leak into the
model, making the later model assessment less trustworthy with respect to the actual real-world performance
[Murp12].

Local outlier factor LOF [Breu00] is a neighbor-based algorithm for unsupervised anomaly detection that
identifies abnormal data points by measuring the local deviation in density around a given data point with
respect to its neighbors. Calculation of the LOF score is based on reachability distances. The reachability
distance of a point xi with respect to another point xj is defined as max{k-distance(xj), d(xi,xj)} where the
k-distance is defined as the distance between xj and its k−th nearest neighbor. The reachability distances of
a data point are aggregated to Local Reachability Density (LRD). The LRD of a data point is the inverse of
the average reachability distance of it to its k neighbors. A low LRD for xi means it is far from its neighbors
compared to how close those neighbors are to each other. The LOF calculates an anomaly score h(xi) for each
data point as

h(xi) =

∑︁
j∈nk(xi)

LRD(xj)
LRD(xi)

|nk(xi)|
, (2.15)

where nk(xi,Dtrain) are the k nearest points of the training samples in Dtrain to xi. A score around 1 indicates
that the data point has a similar density to its neighbors (considered normal), while a score significantly
greater than 1 suggests that the data point is an outlier. The greater the LOF score, the more anomalous the
data point is. As with kNN, the most important hyperparameters of the LOF are the choice of the distance
measure as well as the number of neighbors k.

Tree-based algorithms

Tree-based algorithms organize data using tree structures to infer predictions, segmenting the dataset into
branches based on decision rules. This approach facilitates efficient classification tasks by hierarchically
breaking down the data. First, simple Decision Trees (DTs) are introduced. Consequently, the concept of
ensemble learning is described, before explaining the Random Forest (RF) and Isolation Forest (IF) algorithms.

Decision trees DTs recursively partition the input space using decision rules in a hierarchical fashion such
that samples with the same classes are grouped together. DTs consist of three basic building blocks: nodes,
edges and leaves, cf. Figure 2.8. At each node, a single feature of the data point is tested. Edges connect the
possible options of the feature tested at a given node to either further tests in other nodes or leaves. Leaves
constitute the class predictions of the DT.

DTs are trained using a dataset Dtrain and the training process is done in a recursive fashion. The basic
algorithm for learning DTs from datasets that only contain categorical features is the Iterative Dichotomiser 3
(ID3) algorithm [Quin86]. It starts by selecting the feature of the dataset that best separates the instances into
different classes for the root node. The selection of the feature should yield edges that ideally contain pure
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(b) Exemplary instantiation with the decision of going surfing depending on the environmental conditions.

Figure 2.8.: Decision tree for a binary decision with y ∈ {0, 1} and two nodes, testing binary features A0 and
A1 each. Own illustration.

sets with respect to the classes of the training set instances. To this end, the selection is based on maximizing
a certain criterion, such as the Information Gain (IG) which is defined as

IG(D, A) = H(D)−
∑︂

v∈values(A)

|Dv|
|D|

H(Dv). (2.16)

In Equation (2.16), A is a feature in the dataset and H is a measure of impurity. Dv refers to the samples in D
that have the value v within feature A. Possible choices for H include the Shannon Entropy

HEntropy = −
∑︂
j

pj log2 pj , (2.17)
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where pj is the proportion of elements with class j in the training dataset Dtrain. An alternative to using the
Entropy is using the Gini coefficient

HGini = −
∑︂
j

pj(1− pj). (2.18)

The choice of the criterion for assessing the split quality is a central hyperparameter of the decision tree. In
the case of real-valued features, this selection does not only involve the feature but also the split value within
the feature’s value range. This is implemented in the successor algorithm of ID3, called C4.5 [Quin14].

After a feature is selected, edges are constructed for each value of that feature. Depending on the pureness of
the data points that correspond to each edge, either leaf nodes are constructed, or another decision node is
constructed, using the same mechanism for the selection of the next test feature. The pureness is assessed
using either the Shannon Entropy or the Gini coefficient as described before. If a leaf node is constructed, the
corresponding prediction class is set as the majority class of the corresponding data points in the training
dataset. A prediction probability for a sample x, and a trained DT T is calculated similar to the kNN, cf.
Equation (2.8), as the proportion of training samples of each class j in the respective leaf node

p(y = j | x, T ) =

∑︁
i∈Leaf(x) I(yi = j)

|Leaf(x)|
. (2.19)

In Equation (2.19), |Leaf(x)| is the total number of training instances out of Dtrain in the leaf node that x falls
into. A special type of DT that only has a single node and thus only performs a single test is referred to as a
decision stump. The inference process of a new data point xi involves traversing the tree from the root until a
leaf node with a class label c is reached which corresponds to executing "If condition then ..." rules for each
node.

DTs can create overly complex trees that do not generalize well to new data as they tend to overfit on the
training data [Pedr11], cf. Section 2.1.2. DT implementations such as scikit-learn thus offer additional
hyperparameters to control and limit the complexity of the learned tree:

• max_depth controls the maximum depth i.e. maximum levels of decision nodes in the tree. If this
parameter is not used, the tree will grow until the leaf nodes are pure, i.e. contain only samples of a
single class or until one of the other, hyperparameter-controlled, conditions is met.

• min_samples_split controls the minimum amount of training samples required to generate a new decision
node. If the amount of samples on an edge is below this parameter, a leaf node is generated instead of a
decision node.

• min_samples_leaf similarly governs the creation of new decision nodes. If this parameter is set, a new
decision node will only be generated if it produces edges or leaves that contain at least the configured
amount of samples each. If this is not reached, a leaf node is generated instead of a decision node.

Ensemble learning As explained above, the DT can be an algorithm with inherently high variance, as it
is able to strongly overfit on small variations in the training dataset, cf. Section 2.1.2. One popular way to
reduce the variance of predictions and to generate more powerful models is to combine multiple models
into an ensemble of models. In this context, bootstrap aggregating – bagging – refers to drawing m subsets
of the training dataset Dtrain with replacement (bootstrapping) and training a separate model on each of
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them. During inference, the predictions of the models are combined (aggregated) by averaging the individual
probabilities

pbag(y = j | x, {(θl)}ml=1) =
1

m

m∑︂
l=1

p(y = j | x,θl) (2.20)

before applying Equation (2.1) or, alternatively, by using majority voting. θl in Equation (2.20) corresponds
to the learned parameters of model l inside the ensemble. The more uncorrelated the errors of the individual
ensemble models are, the greater the performance benefit of using this method [Bish06; Murp12].

ŷl=1 = 1

ŷ = argmax
j∈{0,1}

∑︁4
l=1 I (ŷl = j) = 1

x

ŷl=2 = 1 ŷl=3 = 1 ŷl=4 = 0

0

0

1 0 1

0

0
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Figure 2.9.: Example visualization of a RF for a binary classification problem withm = 4 DTs as ensemble
members. Decisions of the ensemble are combined via majority voting. Own illustration.

Random forests The RF is a popular algorithm that utilizes ensembles ofm DTs. RFs use bagging on sample
level and feature level. The individual models are therefore trained on a bootstrapped subset of the features
as well as on a bootstrapped subset of the dataset samples. While RFs typically reach significantly higher
performance levels compared to DTs, the prediction process is not easily interpretable anymore. In addition
to the hyperparameters of the DTs in the RF ensemble, the number of trees m is an important additional
hyperparameter of the RF. A visualization of a RF is shown in Figure 2.9.

Isolation forest Unlike RFs, which are primarily used for supervised classification tasks, the IF [Liu08] is a
popular ensemble algorithm for anomaly detection [Agga17]. The IF consists of m isolation trees that are
grown by randomly selecting a single feature A for each isolation tree and recursively selecting random split
points within the value range of this feature until either

• all data points at the leaf nodes have the same values, or

• the leaf nodes only contain a single data point, or

• a predefined tree height limit is reached.
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During inference, the path length from the root node to the terminating root in the isolation trees serves as a
measure of normality for a given data point. The anomaly score for a data point x and a training dataset of
size ntrain is defined as

h(x, ntrain) = 2
− E(l(x))

c(ntrain) , (2.21)

where E(l(x)) denotes the average path length l(x) over all trees in the forest, and c(ntrain) is a normalization
factor that represents the average path length h for a dataset of size ntrain, independent of the current data
point. A high score h – approaching 1 – implies that the data point was isolated with fewer splits, indicating
its significant deviation from the rest of the dataset. Such points are more likely to be anomalies. A lower
score – near 0 – means that the data point required more splits to be isolated, suggesting that it behaves
similarly to many other points in the dataset, and is therefore likely to be normal.

Support vector machines

In the following, two algorithms based on the SVM are introduced, the Support Vector Classifier (SVC) and
the One-Class Support Vector Machine (OC-SVM).

w

Feature 1

Feature 2

(a) SVM for binary classification (SVC).

w

b

Normal

Anomalous

Feature 1

Feature 2

(b) OC-SVM for anomaly detection.

Figure 2.10.: Visualization of an SVM for binary classification and OC-SVM for anomaly detection applied to
a two-dimensional dataset. In both (a) and (b), hard margin SVMs are visualized, with no slack
variables, thus not allowing for misclassifications of the training data. Own illustration adapted
from [Bish06; Agga17].

Support vector classifiers SVC is an algorithm for supervised binary classification that can be extended to
multiclass classification. The fundamental idea behind SVMs in general and SVCs in particular is to find a
hyperplane in the feature space that optimally separates the data points into binary classes. The SVC algorithm
is used to find the hyperplane that maximizes the margin between the hyperplane and the nearest data points
from either class, referred to as the support vectors, visualized as the dotted lines in Figure 2.10a. The support
vectors influence the position and orientation of the hyperplane, represented by the equation

wTx− b = 0, (2.22)
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where x is an individual data point in the feature space, w is a weight vector and b is a bias term that defines
the distance of the hyperplane from the origin. From Equation (2.22), the size of the margin can be expressed
as 2

∥w∥ and is maximized in the learning process. As real-world data is typically not perfectly separable, SVCs
employ two additional measures. First, the kernel trick is used. This technique involves transforming the input
data into a higher-dimensional space where it is possible to find a linear separating hyperplane. Different types
of kernels, like linear, polynomial, and Radial Basis Function (RBF), are used to perform this transformation.
The objective of maximizing the margin can be expressed as the following quadratic programming problem
with a training dataset Dtrain = {(xi, yi)}ntraini=1 :

min
w,b,ξ

1

2
∥w∥2 + c

ntrain∑︂
i=1

ξi, (2.23)

subject to yi
(︁
wTxi − b

)︁
≥ 1− ξi, ξi ≥ 0 ∀i ∈ {1, . . . , ntrain}.

Here, ξi are the so-called slack variables, which allow for some data points to lie on the wrong side of the
hyperplane to maximize the margin and account for the effects of noise and other real-world phenomena that
prevent perfect separation of the training data. The regularization parameter c serves as a trade-off between
maximizing the margin and minimizing the classification error [Bish06]. The choice of kernel as well as the
parameter c are the most important hyperparameters of the SVC.

For inference of a new data point xi the SVC calculates the decision function

f(xi) = w · xi + b (2.24)

and determines the class membership as

ŷi =

{︄
1 if f(xi) ≥ 0,

0 if f(xi) < 0.
(2.25)

Different to the ML models that were presented so far, SVCs have no in-built mechanism for estimating class
probabilities. If class probabilities are required for a given application, they are typically estimated depending
on the distance of the data points to the hyperplane, e.g., using isotonic regression [Plat99].

One-class support vector machine The OC-SVM is a model for anomaly detection tasks, visualized in
Figure 2.10b. In many aspects, OC-SVMs work similarly to SVCs. While SVCs focus on maximizing the
margin between two classes, OC-SVMs aim to encapsulate the normal data points in the feature space. This
is achieved by finding a hyperplane that separates the majority of the data from the origin with maximum
margin, effectively isolating outliers or anomalies. In OC-SVMs the decision function is similar to that of SVCs,
tailored to a one-class scenario:

ŷ =

{︄
+1 if wTϕ(x)− ρ ≥ 0,

−1 if wTϕ(x)− ρ < 0,
(2.26)

where ϕ(x) is a function that maps the input data to a higher-dimensional space (often using the same kernel
trick as described above for SVCs), and ρ is a threshold parameter. During training, the OC-SVM aims to solve
the following optimization problem:

min
w,ρ,ξ

1

2
∥w∥2 + 1

νntrain

ntrain∑︂
i=1

ξi − ρ, (2.27)
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subject to wTϕ(xi) ≥ ρ− ξi, ξi ≥ 0 ∀i ∈ {1, . . . , ntrain}.

Here, ν is a parameter that sets an upper bound on the fraction of outliers and a lower bound on the fraction
of support vectors. This formulation essentially creates a soft boundary around the data, allowing for some
flexibility in terms of what is considered an outlier, comparable to the slack variables in SVCs. Important
hyperparameters of the OC-SVM are the choice of the kernel ϕ(·) as well as ν [Agga17].

Neural networks and deep learning

The Artificial Neural Network (ANN), commonly referred to as NN, is an ML algorithm which originated
from attempts to find mathematical representations of biological structures that process information in the
brains of humans and animals [Bish06]. Within this subsection, the fundamental building blocks of NNs are
explained and consequently more complex architectures such as Convolutional Neural Networks (CNNs) and
Auto-Encoders (AEs) are introduced.

This subsection draws heavily from the books titled "Deep Learning: Foundations and Concepts" by Bishop et al.
[Bish23] and "Deep Learning" by Goodfellow et al. [Good16].

Perceptron and multilayer perceptron Preceding today’s NNs is the perceptron algorithm. It was introduced
in 1958 as a model for understanding brain activities [Rose58]. The perceptron exhibits the most important
attributes of the more complex NNs that are being used today. The perceptron takes a d-dimensional numerical
input vector x ∈ Rd. Every scalar input xi is multiplied with its respective weight wi out of the weight vector
w ∈ Rd. A bias term w0 is added to the linearly combined inputs and weights as

a(x, w0,w) = w0 + w1x1 + · · ·+ wdxd = w0 +
d∑︂

i=1

wixi. (2.28)

The set of weights w and bias w0 define the learnable parameters θ of the perceptron. In order to achieve a
clean notation, it is common to append the bias term w0 to the 0-indexed position of w and in turn append a
constant x0 = 1 to x so that Equation (2.28) becomes

a(x,w) =

d∑︂
i=0

wixi = wTx, (2.29)

with x,w ∈ Rd+1. The resulting value a is passed through an activation function h(·) to calculate the output
value ŷ = h(a). In case of the original perceptron, the activation function is a simple threshold function
[Rose58]. While the capacity of the perceptron to model complex functions is limited, it can be significantly
increased by adding multiple outputs and hidden layers. In this context, the neurons are called units that
are connected in m layers. While multiple definitions exist, NNs with more than two layers of weights are
commonly called deep NNs and the sub-field of machine learning that focuses on such networks is called
deep learning [LeCu15; Bish23]. A Multilayer Perceptron (MLP) with a single hidden layer that takes as
input the vector x ∈ Rd and outputs the vector y ∈ Rc is shown in Figure 2.11. The weights of a single layer
in the MLP are defined as matrices W (1), · · · ,W (m). In each layer i, the outputs of the linear combination
in Equation (2.29), referred to as pre-activations a(i) are transformed to activations z(i) = h(a(i)) using an
activation function h(·), similar to the perceptron. The activation function enables the MLP to model nonlinear
functions. The choice of the activation function as well as the number of layers m and their respective number
of units are important hyperparameters of the MLP. Common choices for activation functions are:
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• The sigmoid function

sigmoid(a) =
1

1 + exp(−a)
(2.30)

• The hyperbolic tangent function

tanh(a) =
ea − e−a

ea + e−a
(2.31)

• The Rectified Linear Unit (ReLU)
ReLU(a) = max(0, a) (2.32)

The pre-activations a(m) of the final layer of the MLP are transformed using an appropriate output activation
function f(·) to the vector of network outputs y = f(a(m)). For a two layer MLP as visualized in Figure 2.11,
the final activations are calculated as

y(x,w) = f
(︂
W (2)h

(︂
W (1)x

)︂)︂
. (2.33)

The choice of the output activation function mainly depends on the type of task that should be performed by
the NN, i.e. classification or regression, as the output activation function determines the value range of the
output.
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Figure 2.11.: Example visualization of a two-layer MLP with an input vector of size d, k hidden units and an
output vector of size c. The hidden layers of the MLP are often called fully connected layers
since every unit of a layer is connected to all of the units of the subsequent layer. As visualized
in Figure 2.11, NNs exhibit a graph-like structure. This structure is often called the computational
graph, the architecture, or the model of the NN. Own illustration adapted from [Bish23].

NNs used for classification tasks use output activation functions to normalize the numerical values of the last
network layer to pseudo-probabilities that describe the likelihood of a given sample x belonging to a certain
class j as a scalar score p(y = j | x) ∈ [0, 1]. NNs that are used for binary classification tasks where yi ∈ {0, 1}
typically use an output vector of size 1 and the sigmoid function, cf. Equation (2.30), as the output activation
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function. The resulting score is then treated as the likelihood of the sample belonging to the positive class (1).
The likelihood of the negative class (0) is in turn inferred as

p(y = 0 | x) = 1− p(y = 1 | x). (2.34)

In case the model is used to perform multiclass classification, the softmax function can be used as the final
activation function. The softmax function can be seen as the multiclass generalization of the sigmoid function
[Good16] and originates from the Boltzmann distribution used in statistical mechanics [Jayn57]. The softmax
function normalizes the c-dimensional network output over the discrete set of c classes so it can be treated as
a probability distribution y : Rc →

{︂
y ∈ Rc | yj > 0,

∑︁c
j=1 yj = 1

}︂
. The softmax score in the m-th layer of

the NN for class j is computed as

softmax
(︂
a
(m)
j

)︂
= p(y = j | x) = ea

(m)
j∑︁c

i=1 e
a
(m)
i

∀i, j ∈ {1, · · · , c}. (2.35)

Training of neural networks The NN is an algorithm that can be used for function approximation as described
in Section 2.1.1. The NN is therefore a function with a set of parameters or weights w that accepts an input x
and computes the output as ŷ = f̂(x,w). In the context of NNs, this inference process is also referred to as
forward pass and NN architectures that operate in this way are called feedforward networks, as information
flows forward through the computational graph of the network. The objective of the learning process of an NN
is to minimize a distance measure L(y, ŷ) between the ground truth y and the prediction ŷ. In this context,
L(y, ŷ) is referred to as the loss function which mathematically describes the discrepancy between ground
truth and prediction. In classification tasks, the Cross-Entropy (CE) is a widely used loss function [Bish23].
The CE loss for a binary classification task, commonly referred to as Binary Cross-Entropy (BCE), for a single
sample is defined as

LBCE(y, ŷ) = − (y log (ŷ) + (1− y) log (1− ŷ)) , (2.36)

where y ∈ {0, 1} represents the true label and ŷ ∈ [0, 1] is the predicted probability. The CE is a measure for
the difference between distributions and closely related to the Shannon Entropy, cf. Equation (2.17). The BCE
loss in Equation (2.36) approaches zero as the predicted probability ŷ closely aligns with the true label y.
Specifically, the loss decreases as ŷ approaches 1 when y = 1, or as ŷ approaches 0 when y = 0, reflecting a
lower penalty for predictions that closely match the actual labels. Optimization of the CE-loss thus pushes the
network output to be close to the extremes of its value range [Bish23]. For the multiclass case, the CE loss for
a single sample is defined as:

LCE(y, ŷ) = −
c∑︂

i=1

yi log (ŷi) , (2.37)

where y typically is a one-hot-encoded ground truth vector, cf. Equation (2.11). Similar to before, the
multiclass CE loss in Equation (2.37) is minimized if the distribution of estimated class probabilities ŷ match
the ground truth vector y. The loss is aggregated over the respective n samples

L =
1

n

n∑︂
i=1

LCE(yi, ŷi). (2.38)

NNs for regression tasks, where y ∈ R is scalar, typically employ the Mean Squared Error (MSE) loss

LMSE(y, ŷ) =
1

n

n∑︂
i=1

(yi − ŷi)
2. (2.39)
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Popular optimization algorithms for NNs are based on Gradient Descent (GD) [Good16; Bish23; Zhan23].
During the training process, the weights w of the NN are optimized iteratively using the gradient of the loss
function, calculated for the whole dataset or parts of it. Arguably the most popular algorithm for gradient-based
optimization of NNs is Stochastic Gradient Descent (SGD) [Good16; Bish23; Zhan23]. In each iteration τ of
SGD, the current weights w(τ−1) of the NN are updated as

w(τ) = w(τ−1) − η∇wJ(w
(τ−1)), (2.40)

where ∇wJ(w) is the estimated gradient of the loss function L with respect to the weights. The gradient of
the loss function is used to determine the influence of the specific weights on the loss and is calculated by the
backpropagation algorithm. This algorithm recursively uses the chain rule of calculus to derive the gradients
with respect to specific weights going backward in the computational graph of the network [Bish06]. Thus,
this step is called the backward pass.

In contrast to classic GD, the loss function and respective gradients in SGD are not calculated on the entire
training set but rather estimated using random subsets of the training set referred to as batches with b samples
in each batch, commonly referred to as batchsize:

∇wJ(w) =
1

b

b∑︂
i=1

∇wL (ŷi, yi) . (2.41)

A full iteration of the training set corresponds to ⌊ntrainb ⌋ batch forward and backward passes, which is called
an epoch. η is a hyperparameter referred to as the Learning Rate (LR) as it controls the magnitude of the
parameter updates in each iteration. The batch size, number of epochs or choice of stopping criterion as well
as the LR are important hyperparameters that control the learning process of NNs.

Multiple extensions to SGD exist. Notably, momentum tries to solve the problem of the learning process
converging in local minima. Momentum achieves this by accumulating the previous gradient steps

v(τ) = αv(τ−1) − η∇wJ(w
(τ−1)), (2.42)

and consequently using this accumulation for the update step [Good16]:

w(τ+1) = w(τ) − v(τ). (2.43)

Additionally, momentum effectively reduces the noise introduced by using batches for gradient estimation
in SGD. The optimizer used for all experiments involving neural networks in this thesis is the Adaptive
Moments Estimation (ADAM) optimizer [King14] which is a further extension of SGD and momentum. ADAM
calculates an adaptive LR for each parameter of the network individually by tracking the first and second-order
momentum.

Convolutional neural networks NNs that are used for computer vision applications today mainly rely on a
special type of NN architecture called the CNN [Bish23]. The CNN architecture, as it is used today, was first
introduced in 1989 by Le Cun et al. for the classification of handwritten digits [LeCu10], cf. Figure 2.12.

CNNs are particularly suited for image data as they exploit important properties of images such as nearby
pixels being more strongly semantically correlated than distant pixels [Bish06]. Furthermore, CNNs enable NN
architectures that are invariant to certain kinds of transformations such as variations in the position of objects
within images. This property is important for tasks such as image classification. For example, the position of a

2. Fundamentals 25



28× 28× 1 28× 28× 6 14× 14× 6 5× 5× 1610× 10× 16 120 84 10

Input Conv + Sigmoid Conv + SigmoidPool Pool MLP + Sigmoid Output

Figure 2.12.: A simple CNN architecture for handwritten digit classification from the MNIST dataset [LeCu10]
with c = 10 classes representing digits 0, ..., 9 (LeNet [LeCu98]). LeNet uses 5× 5 convolutional
kernels and 2×2 average pooling layers. The penultimate layers before the output classification
are referred to as the learned embeddings. Own illustration in part generated using [LeNa19].

dog in an image should not matter in classifying whether the image is showing a dog or not. Moreover, CNNs
implement a weight-sharing mechanism through kernels which lowers the model capacity and computational
load significantly when compared to image processing with MLPs which is typically infeasible. Although CNNs
find applications in a broad spectrum of computer vision tasks, including semantic segmentation [Long15],
object detection [Redm16], and depth estimation [Ming21], the scope of the investigations in this thesis
is confined to their use in image classification. Consequently, the architectural explanations and analyses
presented herein are tailored to this particular task. CNNs became popular for the task of image classification
in 2012, when AlexNet won the ImageNet challenge, significantly outperforming traditional methods [Kriz12].
CNN architectures for classification commonly consist of three components: Convolutional layers, pooling
layers and a final classification module that is typically an MLP.

Convolutional layer The input of a CNN is typically a 3-dimensional tensor X ∈ Rw×h×d where h is the
height, w the width and d the depth, or number of channels of the input. In the case of images, d = 3 typically
represent the Red Green Blue (RGB) color matrices. Features within intermediate layers are referred to as
feature maps [Bish06]. In contrast to the MLP, the layers in a CNN are not fully connected but represented by
kernelsK ∈ Rd1×d2×d3 that are swiped over the previous feature maps, performing a discrete convolution
operation. A simple example regarding a convolution operation with one channel without nonlinearity is
shown in Figure 2.13a, and a multichannel example is shown in Figure 2.13b.

In the convolution operation, the kernel weights are linearly combined with the feature values of the patch
of the input feature map. Similar to the MLP, CNN network architectures commonly include a nonlinearity
as the activation of the linear combination of the kernel and the feature map. Intuitively, a kernel can be
thought of as a detector that reacts to specific patterns of features. Swiping the kernel across the feature map
allows the network to be invariant to the location of specific patterns. A convolutional layer usually includes
multiple kernels. The spatial dimensions of a kernel constitute the local receptive field of this layer. Stacking
convolutional layers increases the size of the resulting receptive field, enabling the CNN to capture complex
patterns hierarchically.

The convolutional kernel is swiped over the input feature map with a displacement between each patch that is
called the stride. The stride is an important hyperparameter as it controls the size reduction by the convolution
operation. Depending on the size of the kernel, the stride and the size of the input feature map, the spatial
size of the feature map may be extended by a padding. Padding enlarges the input feature map by adding
values around the borders of the feature map. Commonly, zero padding is used which extends the feature
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(a) 2D convolution of a 3× 3 feature map with a single 2× 2 kernel resulting in a 2× 2 output feature map.

∗ =

(b) Convolution of a 3× 3× 3 feature map with two 1× 1 kernels resulting in a 3× 3× 2 output feature map.

Figure 2.13.: Examples for convolution operations on a single channel input with a single kernel (a) and a
3-channel input with two kernels (b). Own illustration adapted from [Zhan23].

map borders by zeros. Due to the use of kernels, a convolutional layer significantly reduces the number of
weights compared to a fully connected layer.

Pooling layer Pooling operations reduce the size of feature maps by summarizing subregions [Dumo16].
This subsampling is done by applying a pooling function to patches of the feature map. The majority of
popular CNN architectures use either maximum or average pooling [Bish23]. This reduces the input patch
to the maximum value or the average value respectively. Average pooling smooths the feature map while
max-pooling only passes the highest activation of the input feature map. While convolutional and pooling
layers are input size agnostic, the attached classification MLP typically forces a fixed input size.

The possible applications of CNNs are not limited to image data and generally include structured data that has a
known grid-like topology [Good16; Bish23]. Especially in industrial and speech recognition applications, CNNs
have proven to be effective in processing image-like data originating from time series, such as spectrograms
and scalograms [Abde14; Wang17; Bieg23]. See Section 2.6 for explanations regarding the data types and
Sections 2.5.1 and 2.5.2 for applications.

Autoencoder The AE is a special type of NN that is trained to copy its input to its output [Good16]. The
underlying idea of an AE is to reconstruct its own input x ∈ Rd after compressing it to a lower dimensional
latent space z(x) ∈ Rm, also referred to as a bottleneck. AEs consist of two components, the encoder network,
which compresses the input into the latent space and the decoder, which reconstructs the input from the
latent space. As the latent space has a lower dimensionality m < d than the input layers of the AE, the AE
has to learn an efficient compression algorithm to be able to reconstruct the data from the latent space. The

2. Fundamentals 27



MSE loss, cf. Equation (2.39), is typically used for training AEs with continuous input/output space so the
minimization objective becomes

LAE(x, ŷ(x)) =
1

n

n∑︂
i=1

∥ŷ(xi)− xi∥2 . (2.44)

AEs can be built out of fully connected layers / MLPs or convolutional layers. In the case of convolutional
layers, the resulting architecture is typically referred to as a Convolutional Auto-Encoder (CAE). While the
encoder in a CAE consists of convolutional and pooling layers as introduced above, the decoder is built out
of transpose convolutional layers and upsampling layers that commonly use nearest-neighbor or bilinear
upsampling [Bish23].

Use cases for AEs include dimensionality reduction, representation learning and anomaly detection [Bish23].
Typically, the reconstruction performance of an AE degrades if the input data distribution deviates from the
training data, which is exploited when AE are used in anomaly detection tasks [Garc22]. In this sense, the
reconstruction error L is used as the anomaly score, cf. Section 2.1.1.

Visualization techniques

Within this subsection, two ML-based visualization techniques are introduced, which are utilized to depict
data distributions throughout the thesis.
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Component Analysis (PCA).
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(b) Dimensionality reduction using t-SNE.

Figure 2.14.: Examples of dimensionality reduction techniques applied to theMNIST handwritten digit dataset
[LeCu10], cf. Figure 2.12. As the samples in MNIST contain complex, nonlinear relationships
between the features, t-SNE is able to capture the data-inherent clusters in a more distinctive
way than PCA. Own illustration.
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Principal component analysis PCA is an unsupervised algorithm used for applications such as dimensionality
reduction with the purpose of feature extraction and data visualization as well as anomaly detection [Joll02;
Bish06; Bieg23]. PCA is the orthogonal projection of data onto a lower dimensional space, known as the
principal subspace. This projection (1) maximizes the variance of the projected data and (2) minimizes the
average reprojection cost L defined as the MSE, cf. Equations (2.39) and (2.44), between the original data
points and their projections

LPCA =
1

n

n∑︂
i=1

∥x̂i − xi∥2 =
⃦⃦
WZT −X

⃦⃦2
F

(2.45)

where x̂i =Wzi is the reprojection of sample xi in X ∈ Rn×d out of the corresponding score zi =W Tx, zi ∈
Rm using m linear basis vectors wj ∈ Rd [Pear01]. The optimal solution minimizing Equation (2.45) is
obtained by setting W = Vm where Vm contains the m eigenvectors with the largest eigenvalues of the
empirical covariance matrix

Σ̂ =
1

n

n∑︂
i=1

xix
T
i . (2.46)

Importantly, the input data X must be standardized, cf. Equation (2.12), before applying PCA as it is sensitive
to feature scales. The scores Z ∈ Rn×m contain the projected samples in lower dimensional space m < d.
For visualization, m is typically set to m = 2, so the data can be plotted in two-dimensional scatter plots, as
visualized for an example dataset in Figure 2.14a. For anomaly detection, the reprojection error L can be
monitored, similar to AEs. The main constraint of PCA is its limitation to linear projections which inhibits
finding dependencies in real datasets which often contain nonlinear dependencies [Bish06]. The projection
and reprojection of PCA is comparable to a linear autoencoder [Good16]. In the context of this thesis, PCA is
used for dimensionality reduction with the goal of data distribution visualization.

t-distributed stochastic neighbor embedding t-Distributed Stochastic Neighbor Embedding (t-SNE) is
an unsupervised algorithm used for visualizing high-dimensional nonlinear data [Van 08]. t-SNE starts by
converting the high-dimensional (d-dimensional) Euclidian distances between data points in the dataset into
conditional probabilities that represent similarities between data points. The similarity of a data point xi to
another data point xj is given by a conditional probability pj|i which is proportional to the probability that
xi would pick xj as its neighbor if neighbors were picked in proportion to their probability density under a
Gaussian centered at xi [Van 08]. This can be expressed as

pj|i =
exp(−∥xi − xj∥2/2σ2i )∑︁
k ̸=i exp(−∥xi − xk∥2/2σ2i )

, (2.47)

where σi is the variance of the Gaussian centered on data point xi. The value of σi is chosen such that it
corresponds to a perplexity, which is a hyperparameter reflecting the effective number of local neighbors of
each point. Based on the conditional probabilities, the joint probability is defined as pij =

pj|i+pi|j
2n . In the

lower-dimensional (m-dimensional) space, t-SNE calculates probabilities qij using a Student’s t-distribution,
aiming to preserve the local structure of the data:

qij =
(1 + ∥zi − zj∥2)−1∑︁
k ̸=l(1 + ∥zk − zl∥2)−1

, (2.48)

where zi and zj are the low-dimensional embeddings of high-dimensional points xi and xj , respectively. The
goal of t-SNE is to minimize the Kullback-Leibler (KL) divergence between the two distributions P and Q,
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which quantifies the difference between the high-dimensional and low-dimensional representations:

KL(P ||Q) =
∑︂
i

∑︂
j

pij log
pij
qij
. (2.49)

This minimization is typically achieved through gradient descent, where the positions of points in the low-
dimensional space are iteratively adjusted. The optimization process is sensitive to the initial configuration
and the choice of perplexity and is usually run for a fixed number of iterations or until convergence. t-SNE
excels in revealing the underlying structure of the data, particularly in forming distinct clusters. However, due
to its nonlinear and iterative nature, t-SNE does not offer an inverse transformation from the low-dimensional
embedding back to the high-dimensional space and can thus not be used for anomaly detection which stands
in contrast to PCA. Similar to PCA, t-SNE is used within this thesis for dimensionality reduction with the goal
of visualizing high-dimensional datasets in 2D scatter plots, with an example shown in Figure 2.14b.

2.3. Practical aspects of developing machine learning applications

While the previous sections focus on the theoretical background of ML, this section is concerned with the
practical aspects of implementing ML-based applications in the real world, introducing several central themes
of this thesis. First, the phenomena of data distribution shifts in general and concept drift in particular are
explained, which are of great relevance for the practical application of ML models. Consequently, process
models are introduced, which are a tool for structuring ML projects in industrial applications.

2.3.1. Data distribution shifts

In Section 2.1.2, the concept of generalization was presented. ML algorithms are employed to model the
underlying data generating function that produced the datasets that are used for training and testing [Bish06].
One of the central goals in model selection and assessment is to ensure that the trained model leverages the
knowledge gained from the training process to generate accurate predictions on unseen data. Performance
metrics, cf. Section 2.1.2, are used to estimate the error on unseen data, using a hold-out test set that is
typically randomly split from the whole set of available data. Both the training and the performance estimation
are done under the central assumption that the training and testing data used in development come from
the same, or very similar, data distribution as the model will be exposed to in production after deployment
[Huye22]. In the long term, however, this assumption is commonly violated, as is elaborated for manufacturing
use cases in Section 3.1.

Following the book "Designing machine learning system" by Huyen [Huye22], this is generally due to two main
reasons. First, training data is finite and constrained by the time and effort that was put into recording the
dataset, while real-world data is multifaceted and theoretically infinite in its possible variations. Thus, the
training data can only capture a subset of the data distribution that might occur after deployment. Second,
the real world is not stationary, which is the main theme of this thesis and visualized in Figure 2.15. A
popular example of non-stationarity that affected many ML systems such as demand forecasting or product
recommendation systems is the COVID-19 pandemic. Non-stationarity is not only caused by extreme, unusual
events but is rather common in ML practice, e.g., seasonal temperature variations [Ditz15; Huye22; Vela22].
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Figure 2.15.: Manufacturing process, data distributions and ML model over time. Models are typically trained
on a static dataset but the processmay evolve over time, changing the data distribution acquired
from it. Own illustration.

Definitions According to [Gama14; Webb16], a concept in the context of supervised ML is defined as the
joint probability distribution P (X,Y ) of input features X and target labels Y . In the unsupervised case, the
concept is reduced to the prior probability distribution over the input features P (X). Still, a joint distribution
P (X,Y ) might exist, if (unknown) labels are assumed to exist for the data, such as normal vs anomalous, cf.
Section 2.1.1. As such, concepts describe the observations of the underlying data-generating function that
shall be modeled using ML. Especially in the context of real-world applications, concepts may change over
time [Webb16], which makes the concept dependent on a given time t as Pt(X,Y ). Data distribution shifts
can thus generally be defined as differing concepts over time:

Pt=t1(X,Y ) ̸= Pt=t2(X,Y ). (2.50)

Oftentimes, t1 manifests as the training and testing dataset that was used in model development, while t2 may
be a point in time after the deployment of the model, thus during productive use. This specific kind of shift is
often referred to as dataset shift [Žlio10b; Baie21]. The underlying data-generating function as well as the
observation model (e.g. sensors) are not directly available to the ML model which renders detection of changes
as in Equation (2.50) non-trivial [Widm96; Ditz15]. The joint distribution P (X,Y ) can be decomposed in
two ways [Huye22]:

P (X,Y ) = P (Y | X)P (X), (2.51)
and as

P (X,Y ) = P (X | Y )P (Y ). (2.52)
P (Y | X) denotes the conditional probability of labels given the input data, which is typically what ML-
algorithms are used to model, cf. Section 2.1.1, also referred to as discriminative learning. P (X | Y ) describes
the conditional probability of input data given the labels. ML-algorithms used to model this dependency are
typically referred to as generative models.
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Depending on the decompositions in Equations (2.51) and (2.52), the following terminologies are defined
[Gama14; Huye22], which are visualized in Figure 2.16:

• Covariate shift, visualized in Figure 2.16b, describes a type of distribution shift where P (X) changes but
P (Y | X) remains the same, referring to the first decomposition of the joint distribution. Consider an ML
application for the prediction of product quality based on process measurements such as temperatures,
pressures and forces. Covariate shift could manifest, e.g., when temperature sensors measure on average
slightly higher temperatures in the summer than in the winter without affecting the resulting product
quality. The prevalence of specific values in the feature space thus changes. Even if this change does not
influence P (Y | X), it might still degrade model performance as the model encounters input distributions
it is not optimized for.

• Label shift, visualized in Figure 2.16c, describes a type of distribution shift where P (Y ) changes but
P (X | Y ) remains the same, referring to the second decomposition of the joint distribution. In the
manufacturing example from before, this shift could correspond to a difference in the rate of quality
problems between the training and testing data. While the training data might be artificially enriched
with quality problems to train the algorithms, failures in actual production are rare, thus a label shift is
present between training and testing data distributions. Similar to covariate shift, label shift can degrade
the model performance as it can result in a shift towards a class where the proportional performance
levels are lower.

• (Pure) Concept drift, visualized in Figure 2.16d, describes a type of distribution shift where P (Y | X)
changes but P (X) remains the same, referring to the first decomposition of the joint distribution.
Concerning the manufacturing example from before, concept drift might manifest if the sensors used to
gather the input data of the ML model start to drift or get uncalibrated. As a consequence, the mapping
from sensor data values to product quality outcome changes, invalidating the function approximation
that was learned by the ML model, resulting in potentially degraded performance.

(a) Original data. (b) Covariate shift
affecting P (X).

(c) Label shift
affecting P (Y ).

(d) Concept drift
affecting P (Y | X).

Figure 2.16.: Categorization of distribution shifts, depending on which parts of the joint distribution P (X,Y )
changes visualized for two-dimensional example data with two classes blue and grey with the
dashed line representing the decision boundary of a classifier. Own illustration adapted from
[Gama14].

The usage of these terms in literature is often inconsistent and various additional terminologies exist such as
real drift and virtual drift [Gama14; Lu18]. However, since concept drift is typically no isolated phenomenon
but occurs in conjunction with both covariate and label shift, the majority of reviewed publications refer to
the term concept drift when describing the general shift in the joint distributions between two points in time
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as stated in Equation (2.50) [Widm96; Gama14; Žlio16; Lu18; Baie21]. Thus, the same definition of concept
drift is adapted for this thesis:

Definition 2 (Concept drift) Concept drift refers to the phenomenon of the joint distribution between input data
X and target variable Y changing over time, cf. Equation (2.50).

Literature further distinguishes different types of concepts depending on their temporal structure [Žlio10b;
Gama14] as visualized in Figure 2.17, which are also observed in empirical studies such as [Vela22]. In
the manufacturing context, sudden and gradual drift may be caused by sensor failure or slow degradation
respectively, while incremental and recurring drift may be caused by changes between batches, materials or
product variants, among other possible causes.
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Figure 2.17.: Categorization of distribution shifts according to their behavior over time. The visualization
shows a univariate data stream that transitions - drifts - between two discrete states. Own
illustration, adapted from [Žlio10b; Gama14].

Handling concept drift Concept drift in ML is a critical issue that substantially impacts the deployment and
long-term usability of models in real-world applications as it can lead to a gradual or abrupt decline in the
performance of predictive models, when the assumptions under which these models were originally trained
no longer hold true, cf. Figure 1.1 [Gama14; Ditz15; Huye22; Vela22]. A recent, large-scale study showed
that performance degradation of deployed ML models is a nearly universal problem [Vela22]. Mechanisms for
monitoring deployed ML models are thus required to detect distribution shifts and accompanying performance
degradation to trigger the adaptation of models to a changing environment and guarantee reliability. Updating
models can be done based on a multitude of triggers such as time-based, performance-based or data-based,
depending on the particularities of the ML use case [Ditz15; Huye22]. The selection of a suitable trigger for
model updates in manufacturing use cases is a central theme of this thesis which is investigated in Chapter 4.
With respect to Figure 2.17, research into concept drift adaption for the first three types typically focuses
on how to recognize and adapt to the drift in the fastest possible way, while research concerning recurring
concepts emphasize the use of historical concepts and corresponding ML models that shall be matched [Lu18].
In the context of model adaptation, two ML paradigms are of importance and are briefly introduced:
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• Continual learning Also referred to as lifelong learning, continual learning is a special case of sequential
learning, cf. Section 2.1.1, which aims at continually accumulating knowledge and experience over time
by steadily adapting a model. Typically, continual learning assumes an online learning scenario, where
training data including target labels is received incrementally. As continual learning tries to maintain an
existing model over time and adapt it to changing concepts, one of the main challenges is retaining past
knowledge [Terc22a; Sari23]. This challenge is often referred to as catastrophic forgetting. Methods
and literature in the realm of continual learning investigate how models can be assimilated to new
concepts without losing the ability to perform well on past data. Concept drift detection plays a key
role in continual learning, where it is used to trigger the adaptation of the model once a new concept is
detected [Huye22].

• Transfer learning Techniques in the realm of transfer learning aim at leveraging knowledge acquired
by an ML model in a certain task to improve or expedite learning in a related but different task or
domain. This approach is rooted in the observation that certain features or patterns learned by a model
in one context can be relevant and beneficial in another, thus reducing the need for extensive data
collection and training from scratch for each new task [Huye22]. Specific techniques used in transfer
learning are among others, fine-tuning and domain adaptation. Fine tuning of NNs involves performing
gradient-based optimization of (typically) the weights of the last layers of a trained NN with respect to
data of a new task while keeping the weights of early layers constant [Bish23]. Domain adaptation on
the other hand aims at adapting trained ML models to distribution shifts, where the task stays the same
by learning domain-invariant representations of the data [Wils20].

More generally, continual learning aims at adapting a model to new tasks or domains while retaining the
performance on previously experienced tasks and domains, while transfer learning is typically only concerned
with maximizing performance on the new task or domain [Masc23].

2.3.2. Process models and MLOps

Several process models exist that aim to guide practitioners through the complex process of structuring and
conducting data science and ML projects within industrial contexts. In this section, two commonly employed
process models are introduced, the Cross-Industry Standard Process for Data Mining (CRISP-DM) and the
more recent Cross-Industry Standard Process Model for the Development of Machine Learning Applications
with Quality Assurance Methodology (CRISP-ML(Q)).

CRISP-DM One of the most popular [Kurg06; Piat14] frameworks for structuring data science projects
in industrial contexts is the CRISP-DM proposed in 2000 [Wirt00]. Developed by an industry consortium,
CRISP-DM provides a generic stage model which divides data science projects into six cyclical phases as
visualized in Figure 2.18.

• Business understanding This phase focuses on understanding the project objectives and requirements
from a business perspective. The aim is to convert business objectives into data mining problem definitions
and prepare a preliminary strategy to achieve the objectives.

• Data understanding The data understanding phase starts with an initial data collection and proceeds
with activities to get familiar with the data, identify data quality problems, discover first insights into
the data, or detect interesting subsets to form hypotheses for hidden information.
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• Data preparation The data preparation phase covers all activities needed to construct the final dataset
from the initial raw data. Tasks include table, record, and attribute selection, as well as transformation
and cleaning of data for modeling tools. The data is cleansed, formatted, and structured in a way that is
suitable for the chosen modeling technique.

• Modeling In this phase, various modeling techniques are selected and applied, and their hyperparameters
are calibrated to optimal values. Techniques may include ML algorithms, statistical methods, or other
data analysis techniques.

• Evaluation Once a model (or models) has been built, it is important to thoroughly evaluate it and review
the steps executed to construct the model to be certain it properly achieves the business objectives. This
phase involves assessing the model and evaluating its performance based on domain-specific success
criteria. The key objective is to determine if there are any important business issues or technical aspects
that have not been sufficiently considered.

• Deployment The deployment phase involves the actual implementation of the model into the business
environment. This could mean implementing an application into a production environment, initiating
actions based on the model’s outcomes, or simply handing over the results to the client. Depending
on the requirements, the deployment phase can be as simple as generating a report or as complex as
implementing a repeatable data mining process across the organization.

Business
understanding

Data
understanding

Data
preparation

Modeling

Evaluation

Deployment

Data

Figure 2.18.: The phases of the CRISP-DM process model. Own illustration adapted from [Wirt00].

As CRISP-DM is not specific to any industry or problem category, the guidance provided is rather abstract even
at the lowest, most specific hierarchy level of the model. Furthermore, CRISP-DM was originally proposed for
data mining projects, not necessarily the development and deployment of ML applications that should have
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the capability of reliably inferring decisions over a long period of time, which exhibits special challenges such
as concept drift that are not considered in CRISP-DM [Žlio16; Stud21].

CRISP-ML(Q) More recently, [Stud21] proposed the CRISP-ML(Q) model as a successor to CRISP-DM,
addressing the shortcomings and accounting for the differences of building ML applications when compared
to conducting data mining projects. The changes between CRISP-DM and CRISP-ML(Q) are visualized in
Figure 2.19.
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CRISP-ML(Q)

Evaluation Deployment Monitoring &
maintenance

Figure 2.19.: Comparison between the phases of the CRISP-DM and CRISP-ML(Q) process models. Changed
or added phases in CRISP-ML(Q) are highlighted in blue. Own illustration.

CRISP-ML(Q) shifts the focus from data mining processes to the full lifecycle of ML-based applications and
introduces an explicit phase for monitoring2 and maintenance of the ML model after deployment. The moni-
toring part of this phase is concerned with identifying non-stationary data distributions, hardware degradation
or system updates that jeopardize the predictive performance of the model. The maintenance part of this phase
is concerned with adapting the model once a distribution shift or other form of performance degradation has
been identified. The information provided by CRISP-ML(Q) on the monitoring and maintenance phase is still
on a rather abstract level as it aims at being as broadly applicable as CRISP-DM. Thus, the guidance regarding
the monitoring and maintenance of ML models is limited to a description of the general necessity for such
mechanisms and high-level examples for the implementation. In addition to the monitoring and maintenance
phase, CRISP-ML(Q) adds Quality Assurance (QA) steps to all lifecycle phases, aiming at catching errors as
early as possible in the development process and thus minimizing the costs of the project. Lastly, CRISP-ML(Q)
merges business understanding and data understanding into a single phase, arguing that they are strongly
intertwined in practice as business objectives can be derived or changed based on the available data.

MLOps Machine Learning Operations (MLOps), is an overarching paradigm that integrates ML with data
engineering and software engineering practices to optimize the lifecycle management of ML systems. MLOps
is a compound of "machine learning" and DevOps from the field of software engineering [John21]. It leverages
DevOps principles such as Continuous Integration / Continuous Delivery (CI/CD), and automated pipelines,
specifically tailored to address the nuances of ML projects, including data versioning, model training and
validation, and deployment strategies. At its core, MLOps focuses on automating the ML model development
process, encompassing data preprocessing, model training, validation, and deployment phases, with an
emphasis on tracking and versioning not only code but also datasets and models. This ensures reproducibility
and traceability throughout the ML lifecycle. Automated testing and validation are critical, involving techniques
like A/B testing and canary releases to ensure model reliability and performance before full-scale deployment.
2Monitoring in the scope of the CRISP-ML(Q) process model refers to the monitoring of deployed ML models, in the sense of
ensuring their continuous reliability, thus introducing some ambiguity with respect to process and condition monitoring as the
manufacturing-specific use cases of this dissertation.
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CI/CD pipelines are adapted for ML workflows, automating the integration of new code changes and the
deployment of models to production environments. This process includes the automation of model training,
testing, and deployment tasks, enabling faster iteration and deployment cycles while maintaining high-
quality standards. Monitoring and governance in MLOps go beyond traditional software metrics to include
model performance monitoring, concept drift detection, and retraining triggers [Syme22; Test22]. Tools
and platforms in the MLOps ecosystem provide capabilities for logging, monitoring, and alerting that help
maintain the health and accuracy of deployed models over time.

Process models that structure the lifecycle of ML models as well as the MLOps paradigms are of special
importance for this thesis as the detection of concept drift and the consequent root-cause analysis or model
retraining are integral parts of the ML model lifecycle. Thus, the approaches developed within this thesis
can be viewed as concretizations of parts of the process models, specifically adapted to ML applications for
monitoring manufacturing processes. This is elaborated in Chapter 4.

2.4. Two-sample hypothesis testing

Two-sample hypothesis testing plays an important role in the detection of concept drift within Chapter 4 of
this thesis. Thus, the hypothesis tests that are utilized within the experiments are elaborated in this section.

Generally, two-sample hypothesis tests are performed on data of two random samples which are each
independently obtained from different given populations. The test is performed to determine whether there
is a statistically significant difference between the two populations. Thus, the null hypothesis H0 typically
assumes that the distributions are equal [Chat18]. The null hypothesis H0 is rejected if the p-value associated
with the test statistic is less than α, suggesting a statistically significant difference in the distributions of the
two groups.

In the following, the Kolmogorov-Smirnov (KS) test, the Chi-squared test as well as the Maximum Mean
Discrepancy (MMD) test will be introduced. While many more tests have been proposed in literature, these
tests have proven their utility in concept drift detection and open-source implementations are available, e.g.,
[Van 19], allowing their implementation in practical settings.

Kolmogorov-Smirnov test

The KS test is a nonparametric test used to determine if two real-valued, univariate samples, x1 and x2,
originate from the same distribution (H0) [Lehm86]. To employ the KS test for two-sample hypothesis testing,
the Empirical Distribution Functions (EDFs) F1(z) and F2(z) of the two samples are computed.
The KS statistic, Z, is the maximum absolute difference between the two EDFs over their full value range z:

Z = max
z

|F1(z)− F2(z)| . (2.53)

UnderH0, the KS statistic Z follows the Kolmogorov distribution. On this assumption, the p-value is computed,
indicating the probability of observing a Z statistic as extreme as, or more extreme than, the one calculated
from the samples, assuming that H0 is true.
The KS test does not rely on assumptions on specific distributions or properties regarding the data samples
besides them being Independent and Identically Distributed (i.i.d.). A small p-value leads to the rejection of
H0, suggesting that the two samples are likely drawn from different distributions.
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Chi-squared test

While the KS test is a popular two-sample test for continuous variables, it is not suitable for categorical
variables [Raba19]. In the case of categorical features such as the tool number, a Computerized Numerical
Control (CNC) program status or the position of certain switches, the KS test is thus not applicable. In these
cases, the nonparametric Chi-squared test for homogeneity can be employed [Lehm86]. To test a feature for
the previously defined null hypothesis using the Chi-squared test, a contingency table has to be constructed
that tabulates the observed frequencies of each category of the categorical variable in each group. In the
contingency table, the r columns represent the different categorical states of the variable, while the two rows
represent the two samples – x1 and x2 – respectively. The Chi-squared statistic is calculated as

X2 =
r∑︂

i=1

2∑︂
j=1

(oij − eij)
2

eij
, (2.54)

where oij is the observed frequency of group i in category j and eij is the expected frequency of group i in
category j. The expected frequency eij is computed under the hypothesis of homogeneity across the groups,
based on the marginal totals of the table.

Maximum Mean Discrepancy test

Both the KS test as well as the Chi-squared test are designed as univariate tests, thus testing one-dimensional
samples. In contrast, the MMD test [Gret12] is a popular nonparametric two-sample test for multivariate data
samples. The MMD test is grounded in the framework of kernel methods, similar to the SVM, explained in
Section 2.2.

The MMD is a statistical distance measure for comparing two distributions, P and Q, by evaluating the
difference between their sample means within a high-dimensional feature space. A critical component in
computing the MMD is the kernel function k(x,x′). The RBF kernel, defined as k(x,x′) = exp

(︂
−∥x−x′∥2

2σ2

)︂
,

with σ as the bandwidth parameter, is typically utilized due to its effectiveness in capturing similarities
between high-dimensional vectors based on their Euclidean distance. The RBF kernel is commonly used in
SVMs as well, cf. Section 2.2.

The squared MMD statistic is formulated as:

MMD2(P,Q) = ∥E[ϕ(x1)]− E[ϕ(x2)]∥2 , (2.55)

where ϕ represents the mapping function to the feature space, and x1,x2 are multivariate samples from
distribution P and distribution Q, represented as vectors.3. Simplifying this using kernel functions yields:

MMD2(P,Q) = E[k(x1,x1)] + E[k(x2,x2)]− 2E[k(x1,x2)]. (2.56)

To determine the statistical significance of the observed MMD statistic, permutation testing is employed. This
involves combining the multivariate samples from both distributions and randomly reallocating them into
two new groups of the same sizes as the original groups. The MMD statistic is recalculated for each of nperm
3Note that x in the context of the MMD describes a single multivariate sample while in the context of the KS and Chi-squared tests it
referred to multiple univariate samples.
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permutations, forming a distribution of MMD values under the null hypothesis that assumes no inherent
difference between P and Q. The p-value, reflecting the proportion of permuted MMD statistics that are as
extreme as or exceed the original value, is calculated by dividing the number of permuted MMD values greater
than or equal to the original MMD value by the total number of permutations.

The MMD test is able to capture a wide range of distributional properties, making it particularly powerful for
analyzing complex or high-dimensional data.

2.5. Machine learning in manufacturing

AI in general and ML in particular have a multitude of application areas in manufacturing-related tasks
[Wues16; Hati19]. An overview is shown in Figure 2.20, highlighting the diverse landscape of possible use
cases within the manufacturing domain. The interest in applying ML to manufacturing problems has been
rising steadily for the past years [Chui21; Chui22], fueled by the increasing amount of available process data
through IoT systems and other technologies in the scope of Industry 4.0 as well as the accessibility of ML
technology through open source frameworks such as scikit-learn [Pedr11] and pytorch [Pasz19][Wues16].

Maintenance Logistics
Quality management
and quality control

Product and process
development

AutomationResource planningProcess optimization
and control

Digital
assistance systems

Figure 2.20.: Application areas of AI in manufacturing-related tasks. Own illustration adapted from [Hati19].

The investigation in this thesis focuses on the use case of monitoring manufacturing processes and equipment,
thereby relating to the areas of "Maintenance", "Process optimization and control" and "Quality management
and quality control", highlighted blue within Figure 2.20. The overarching aim of monitoring is to assess the
behavior of the object that is monitored [Brec21]. Monitoring within the domain of manufacturing can be
broadly partitioned into process monitoring and condition monitoring.

Process monitoring focuses on the machining process, aiming to ensure optimal performance, maintaining
product quality and identifying deviations [Brec21]. In the context of ML, data-based process monitoring is
sometimes referred to as predictive quality [Krau20; Cass22; Cass23; Fert23]. Condition monitoring on the
other hand aims at measuring or estimating the health or wear state of machine components with the ultimate
goal of preventing unscheduled breakdowns and quality problems [Brec21]. The terminology regarding
monitoring of machine tool wear is subject to varying classifications depending on the source: Some authors
classify it as process monitoring when the respective study is focussed on overseeing the operational aspects
of the process where damaged machine tools are a possible factor that may negatively impact the process
quality, e.g., [Brec21]. Other authors classify it as part of condition monitoring when the emphasis of the
respective study shifts to estimating and tracking the wear and health of tools over time, e.g. [Reho05].

In the following parts of this section, the tasks of process monitoring, predictive quality and condition
monitoring using ML are explained in detail, accompanied by an overview of recent research studies. This
section focuses on recent studies related to the general implementation of the aforementioned use cases in
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manufacturing while an overview of studies involving concept drift in relation to the use cases is given in
Section 3.1.

2.5.1. Condition monitoring

Condition monitoring, also referred to as Condition-based Maintenance (CbM) is a type of maintenance activity.
Maintenance is defined by the DIN EN 13306 as "the combination of all technical, administrative and managerial
actions during the lifecycle of an item intended to retain it in, or restore it to, a state in which it can perform its
required function" [DIN EN 13306]. Different types of maintenance activities exist, as visualized in Figure 2.21.
Corrective maintenance is carried out after a failure has occurred and is aimed at restoring an item to a state
in which it can perform its required function. Corrective maintenance can be unplanned (immediate) or
planned (deferred) until a suitable break in operations. Condition monitoring on the other hand belongs to
the category of preventive maintenance. This type of maintenance is carried out at predetermined intervals
or according to prescribed criteria, aimed at reducing the likelihood of failure or the degradation of the
functionality of an item. Condition monitoring is part of the discipline of Prognostics and Health Management
(PHM). PHM systems enable maintenance action on machines and machine components based on the actual
system condition in contrast to the use of preventative schedules [NISTIR 8012]. Figure 2.22 visualizes a
reference architecture for the implementation of PHM systems in industrial applications as defined in the
[ISO 13374-2].

Maintenance types

Corrective

Predetermined

Condition-based

Predictive

Deferred

Immediate

Preventive

Figure 2.21.: Categorization of maintenance types according to DIN EN 13306. Condition-based maintenance
is the focus of the respective case studies within this thesis. Own illustration adapted from
[DIN EN 13306].

In the first stage, the data of suitable sensors as well as accompanying metadata is acquired. Subsequently,
the data is preprocessed, e.g., by aligning sensor data with timestamps or removing outliers. If the PHM
approach involves utilizing ML in subsequent stages, it is essential to extract and select features that effectively
describe the machine state. The next five steps represent the development stages of a PHM system. In the
state detection stage, univariate features are monitored using simple predetermined thresholds. If a feature
exceeds a given limit, an alert or an alarm is raised. Health assessment involves the multivariate analysis
of the extracted features to compute a health indicator representing the current condition of the monitored
component. Potentially detected problems are diagnosed or classified. In the final two stages, the focus shifts
to providing a prognosis of the Remaining Useful Lifetime (RUL) of the equipment, along with subsequent
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Figure 2.22.: Reference processing architecture Open System Architecture for Condition-Based Maintenance
(OSA-CBM) of a PHM system according to ISO 13374-2:2007. Own illustration adapted from
[ISO 13374-2; NISTIR 8012].

recommendations for maintenance [NISTIR 8012; Preu18]. This prognostic aspect corresponds to predictive
maintenance in Figure 2.21.

Data-based PHM In developing algorithms for a PHM system, literature distinguishes between different
categories such as model-based, data-based and hybrid approaches. Model-based approaches describe the
physical system behavior of a component through a set of mathematical laws which are utilized to model the
degradation behavior or detect deviations from the expected operating modes [Preu18; Ting19]. Data-based
models rely on historical data and algorithms from the realm of ML to model the dependency between
extracted features and the condition of the monitored component [Zhou18]. Hybrid approaches combine
model-based and data-based methods.

The case studies within this thesis are concerned with data-based approaches that can be associated with the
health assessment stage of OSA-CBM, cf. Figure 2.22. Thus, the expected output of the condition monitoring
system is the health state of the monitored system. In recent literature, this task is typically posed as either a
supervised classification problem or an unsupervised anomaly detection problem that relies on high-frequency
data recorded from one or multiple sensors [Bert21]. The classification is done either binary, e.g., with the
classes healthy and faulty [Hess19], or in a multiclass way, e.g., with different fault types [Kank11], or
severities [Abde18]. In certain cases, a continuous health state is estimated using regression models [Soua14].
Reviews cite NNs, tree-based methods such as RFs as well as SVMs as commonly applied ML techniques in
condition monitoring problems in manufacturing applications [Bert21].
Within the last decade, the application of deep learning methods became increasingly relevant for condition
monitoring applications [Fink20]. Utilizing sensors and data acquisition electronics capable of high sampling
rates, quantities such as acoustic emissions, accelerations or cutting forces are recorded. Consequently, image-
like representations of the time series data are generated using time-frequency transformations resulting in
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spectrograms or scalograms using Short-Time Fourier Transformation (STFT), Continuous Wavelet Transfor-
mation (CWT) or the Hilbert-Huang Transformation (HHT), which is elaborated upon in Section 2.6. These
representations can be processed using CNNs, yielding strong performance in empirical evaluations without
the need for manual feature engineering. Common architectures include classification CNNs, cf. Figure 2.12
as well as CAEs [Vers17; Garc22].

Tool conditionmonitoring Tool conditionmonitoring is a subdomain of conditionmonitoring which comprises
the monitoring of machining tools to reduce the number of unplanned downtimes and quality problems
due to tool wear or tool damage using hardware for signal acquisition and software for signal analysis and
interpretation [Zhan16]. It is estimated that the fraction of unplanned downtime in CNC machining processes
that is caused solely by unexpected tool breakage amounts to 7-20% [Dan90]. In addition, untreated excessive
tool wear can negatively affect the quality of the workpiece, thereby generating scrap parts [Seri20]. Effective
tool condition monitoring thus has great potential in improving manufacturing operations. Methods for
tool condition monitoring can be broadly categorized into direct and indirect approaches [Seri20]. Direct
methods, e.g., [Jour21a], use, among others, vision sensors, proximity sensors or radioactivity sensors to
measure actual changes in the tool geometry that are caused by wear. Direct methods are less susceptible to
concept drift as they don’t model the dependencies between input features and the wear state but directly
measure the quantity of interest. However, they are typically only applicable offline, i.e. when the machining
process is halted due to the mostly inaccessible cutting area and the continuous contact between tool and
workpiece [Ambh15]. Indirect methods on the other hand, e.g. [Ahma20; Moha20], rely on signals that are
correlated with tool wear such as spindle current, cutting forces, vibrations or acoustic emissions to infer the
tool condition during machining and are thus more common. As their functionality depends on the validity
of the learned dependency between signals and the actual tool wear, they are vulnerable to changes in the
data distribution [Grim99]. ML-based approaches for indirect tool condition monitoring typically rely on the
methodologies described above for data-based PHM systems [Seri20].

2.5.2. Process monitoring and predictive quality

Quality in manufacturing is defined by the DIN EN ISO 9000ff standards as the ability of a product to fulfill its
requirements [DIN EN ISO 9000]. Products that do not comply with the requirements or specifications have
to be either disposed or reworked, in turn generating costs for the respective company [DIN EN ISO 9001;
Krau20]. Manufacturing processes are influenced by random as well as systematic disturbances that can result
in fluctuations of the product quality. While systematic disturbances are often addressed using frameworks such
as Statistical Process Control (SPC), random disturbances necessitate the monitoring of quality characteristics
during production, referred to as Quality Control (QC), to prevent defective products from reaching the
customer undetected. Commonly, QC involves the drawing of representative test samples, e.g. from each batch
of production, whereas certain scenarios mandate comprehensive 100% inspections to rigorously ascertain
the conformity and integrity of the product [Brem15; Fert23].
The monitoring of product quality through explicit measurement of quality characteristics, e.g., in coordinate
measurement machines for machining parts, is a costly process that is typically not value-adding [Zieg20]. Data-
driven methods that can detect defects early on and provide quality estimates without explicit measurement
thus have great potential in saving costs for manufacturing companies. In literature, approaches relying
on analytical models, approaches based on experiments or wear trials as well as ML-based approaches can
be identified [Bena03; Fert23]. The investigations within this thesis focus on the latter. ML-based quality
prediction tasks can be further divided into approaches that aim at optimizing production parameters such
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as, e.g., machining feed rate, and approaches that estimate the resulting process quality from time series
process measurements such as vibrations, forces or internal machine signals [Fert23] which is the focus of the
respective case study within this thesis. Similar to the domain of data-based PHM, ML tasks in this realm
can be posed as either anomaly detection problems, e.g., [Bieg22], or supervised classification problems, e.g.
[Tnan22b; Cass23; Fert23]. In certain cases, continuous quality measurements such as geometrical deviations
are estimated with regression methods, e.g., [Neto13].
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Figure 2.23.: General approach to predictive quality applications as described by [Terc22b]. Own illustration
adapted from [Terc22b].

Generally, predictive quality involves three main steps: The collection and aggregation of process and quality
data to build a dataset, the training of the ML model, and the deployment and usage of the model for real-time
predictions as an addition or replacement for manual QC. Figure 2.23 contains a high level visualization of
the general approach to predictive quality.

In literature, there is no clear distinction in terminology between ML-based process monitoring and predictive
quality as both are typically concerned with identifying process behavior deviations that lead to quality
problems. It is, however, observed that the term predictive quality is more frequently associated with
supervised classification tasks, whereas the term process monitoring is often linked to unsupervised anomaly
detection. This thesis acknowledges that there are exceptions in both domains, e.g., [Md22], but adheres to
this general differentiation for clarity and consistency in discussion. A recent review [Terc22b] into supervised
ML-based predictive quality methods shows RF, SVM, kNN as well as CNNs and MLPs as commonly employed
algorithms. Common data types used for predictive quality are sensor data, machine parameters as well as
(visual) product measurements [Terc22b]. In ML-based process monitoring, both supervised and unsupervised
algorithms are used [Amin18]. Prominent methods in the realm of unsupervised process monitoring include
variations of AEs, IFs, OC-SVMs as well as CNNs. Datasets for process monitoring and predictive quality
are often imbalanced, as the proportion of defective products in a modern manufacturing plant is very low
[Krau20; Jour21b; Terc22b; Tnan22a].

2.6. Time series feature extraction

As identified in Section 2.5, a significant share of ML applications in the manufacturing domain as well as the
case studies in Chapter 5 rely on time series data from sensors such as accelerometers or internal machine
signals. For raw time series data to be processed using the ML algorithms introduced in Section 2.2, feature
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extraction is performed as a preprocessing step. This involves distilling meaningful patterns, trends and other
relevant information from the temporal sequence.
Three main feature families are commonly used for time series signals in industrial applications of ML: Time
domain features, frequency domain features as well as time-frequency domain features, cf. Figure 2.24
[Delg11; Zhou18]. While the time domain features typically represent simple statistical properties of the time
series, such as minimum, maximum, Root Mean Square (RMS) or peak-to-peak, frequency and time-frequency
domain features require further preprocessing as explained in the following. The features that are utilized
within the case studies in Chapter 5 are summarized in Table B.1 in the Appendix.

Time series

Time domain
features

Frequency domain
features

Time-frequency
domain features

RMS DFT coefficients
DFT centroidSkewness

Kurtosis
Peak-to-Peak
...

...

STFT
Wavelet...

Figure 2.24.: Time series feature types used for ML in the case studies of this thesis. Own illustration adapted
from [Preu18; Zhou18]

Frequency and time-frequency features

Three relevant methods for capturing frequency and time-frequency information from time series are utilized
in this thesis: Fourier transformation, STFT and CWT. The following explanations draw primarily from the
book titled "Mechanical vibrations and condition monitoring" by Correa et al. [Corr20].

Fourier transformation The Fourier transformation is a mathematical operation to transform a function of
time into a function of frequency. It is a fundamental tool in signal processing and analysis of data originating
from sensors such as accelerometers, dynamometers as well as acoustic emission sensors. The transformation
enables the identification of characteristic frequencies that indicate normal operation or specific types of faults.
In the industrial context, the Discrete Fourier Transformation (DFT) is used for discrete, digital signals that
are sampled using sensors, data acquisition devices and Analog-to-Digital Converter (ADC). Mathematically,
the DFT for a time series {xi}ni=1 is defined as

x̃k =

n∑︂
i=1

xi · e−
2πj
n

(k−1)(i−1) for k = 1, 2, . . . , n, (2.57)

where j is the imaginary number, x̃k are the Fourier coefficients, representing magnitude S(fk) = |x̃k| and
phase at the k-th frequency bin with frequency fk = (k−1)fs

n and sampling rate fs in Hz (1s). By analyzing
the values of x̃k, one can perform spectral analysis of the signal, identifying dominant frequencies, detecting
periodicities, and understanding the overall frequency content.

44 2. Fundamentals



Short-time Fourier transformation While the DFT only offers global information about the time series, the
STFT is a powerful tool for analyzing the content of non-stationary signals, where the signal’s properties
change over time. Given a discrete time series {xi}ni=1 as above, the STFT result X̃ at a discrete time index t
and a frequency bin k is calculated as:

x̃t,k =

l−1∑︂
i=0

xt+i · w(i) · e−
2πij
l

ki, (2.58)

where l represents the length of the individual windows, t represents the position of the current window
in the overall signal and w(i) is the window function value at point i relative to the center of the current
window. The window function w(·), which is often a Gaussian or a Hann window, selectively segments the
signal into short sections and weighs the signal to attenuate the edges of the section. This windowing is crucial
because it minimizes the spectral leakage that would otherwise occur due to segmenting the signal into finite
intervals. The STFT is computed by sliding the window function along the time axis, computing the Fourier
transformation at each position, which results in a two-dimensional representation of the signal, where one
dimension represents time and the other represents frequency. The squared magnitude |X̃2| of the STFT can
be represented as a spectrogram, which is a visual depiction of the signal’s frequency spectrum as it varies
with time, cf. Figure 4.8 for an example. The resolution of the STFT in both time and frequency is determined
by the size of the window. A wider window provides better frequency resolution but poorer time resolution,
and vice versa, known as the time-frequency resolution trade-off.

Continuous wavelet transformation Unlike the Fourier transformation, which uses sinusoids, and the STFT,
which uses a windowed version of the Fourier transformation, the CWT employs wavelets – small waves that
grow and decay within a finite period. Mathematically, CWT is defined as the convolution of a signal with a
family of wavelets generated from a mother wavelet ψ. These wavelets are scaled and translated versions of the
mother wavelet, which is a small wave with limited duration. The CWT of a discrete signal is a computation
that produces a two-dimensional representation of the signal, similar to STFT. In contrast to STFT and the
resulting spectrograms though, the CWT representation is referred to as scalogram, encoding wavelet scale
on the ordinate and the position in time on the abscissa, providing insight into the signal’s frequency content
as it varies over time, cf. Figure 4.8. The CWT of a discrete time series {xi}ni=1 is given by:

x̃a,b =
1√
a

n∑︂
i=1

xi · ψ∗
(︃
i− b

a

)︃
, (2.59)

also referred to as the wavelet coefficients, where parameter a controls the scale the wavelet is dilated by,
parameter b controls its position in time and ψ∗(·) denotes the complex conjugate of the mother wavelet.
The scaling factor 1√

a
is introduced for energy normalization across different scales [Gao11]. The choice

of the mother wavelet is an important parameter of the CWT. In the context of vibration analysis for fault
identification, process monitoring and condition monitoring, the Morlet wavelet defined as

ψ(t) =
1
4
√
π
ejω0te

−t2

2 , (2.60)

has shown high performance in similar studies, cf. [Gao11; Bieg23], and is thus adopted for the experiments
in this thesis.
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2.7. Summary

Chapter 2 introduces the essential theoretical and conceptual foundations for the research in the following
chapters of this thesis. Section 2.1 presents the utilized mathematical notation and fundamental paradigms of
ML, focussing on supervised and unsupervised learning. Furthermore, metrics for the performance evaluation
of classification and anomaly detection models are introduced, including metrics for both discrete classification
results as well as continuous score assessment. Section 2.2 gives a concise overview of the theoretical
background and properties of the ML algorithms that are utilized. Section 2.3 introduces the concept of MLOps
as well as the most common process models used for developing industrial ML applications. Furthermore, the
phenomenon of concept drift is introduced. Notably, recent process models such as the CRISP-ML(Q) recognize
the issue of concept drift and non-stationarity but do not provide specific advice on how to approach or handle it,
which is the fundamental problem that this thesis focuses on. Section 2.4 presents univariate and multivariate
two-sample tests which are utilized within the following chapters. Consequently, condition monitoring, process
monitoring and predictive quality are introduced in Section 2.5 as the central manufacturing use cases of ML
within this thesis. The presented use cases share several similarities regarding general architecture, employed
data types as well as ML algorithms. It is shown that ML tasks in this domain often rely on high-frequency
sensor data and internal machine signals and pose the problem as either supervised classification – in the
use cases condition monitoring and predictive quality – or anomaly detection – in the use case of process
monitoring. Commonly used algorithms for supervised classification include RFs, SVCs, kNNs as well as NNs
while AEs, IFs, OC-SVMs and AEs are used for anomaly detection problems in this domain. Typically, features
from the time domain, frequency domain or time-frequency domain are extracted from the raw time series
data to be used as input data for the ML models as presented in Section 2.6. The described types of problems,
employed algorithms and data formats are considered throughout the following chapters and case studies of
this thesis to increase the practical relevance of the research.
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3. Challenges and required action

The preceeding chapter presents a comprehensive overview of relevant ML techniques and their usage in
monitoring manufacturing processes as well as the definition of concept drift and related phenomena. Building
on these fundamentals, this chapter investigates the general relevance and state-of-the-art approaches for
addressing concept drift specifically in the manufacturing context. This is done in two ways: First, a literature
review is conducted in Section 3.1 to summarize the outcomes of recent studies on concept drift within ML
applications in the manufacturing sector. This review seeks to delineate the primary focuses of these studies
and identify potential gaps in the current research landscape. Second, Section 3.2 presents the results of
expert interviews conducted with industry practitioners to explore the consequences of concept drift in practice
as well as practical needs that exist in the industry. Consequently, the results are aggregated and summarized
in Section 3.3.

Overall, this chapter aims at answering the following research question, defined in Chapter 1:

Research Question 1

What impact does concept drift have on ML applications used in process and condition monitoring of
manufacturing processes and how is it currently addressed in both research and practical applications?

3.1. Literature on concept drift in machine learning for manufacturing

The literature referenced in the fields of condition monitoring, process monitoring and predictive quality
within Sections 2.5.1 and 2.5.2 concentrates on addressing challenges encountered in the manufacturing
domain. This includes the identification or classification of special defect types, as well as the development
and implementation of novel algorithms uniquely tailored to solve process-specific problems. It is commonly
presumed that there is an ample supply of data available for the respective problem, or that a substantial
quantity of data can be effectively gathered through experimental means. Less focus is put on the potential
practical deployment and usage of the developed methods and models in industrial plants of companies.

In the following part of this section, the relevant literature is presented, beginning with use case-specific
publications, followed by use case-independent ones, ordered by year of publication. Literature specifically
addressing the detection, management, or adaptation to concept drift in manufacturing applications of ML is
limited when compared to the broader ML literature on concept drift and its applications in various domains
like recommender systems. One possible reason is that even though ML has a large potential in manufacturing,
the number of actually established ML applications running productively in the long term beyond prototype
status is still relatively low and the adoption has only picked up in recent years [Mett21].
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3.1.1. Condition monitoring

[Zeni19] introduces an approach for concept drift detection through the training of an ML model to predict
single features or process measurements based on other features or process measurements that are available
to the application. The ML model is thus used as a virtual sensor. Concept drift is assumed to manifest from
machine wear or process anomalies and is detected by monitoring the regression error of the aforementioned
model. Within the study, this indication is not used to determine whether an ML application requires being
updated but rather to indicate necessary maintenance activities of the monitored machinery.
[Lin19] monitor the change rate of the error quantities within the confusion matrix of a classification model
used for condition monitoring to detect concept drift. Aging machine components are mentioned as the
primary source of concept drift in the described scenario. The employed Linear Four Rates (LFR) method sets
thresholds for warning and drift levels based on the calculated rates. If a rate exceeds the warning threshold,
it indicates a potential drift, and the system starts preparing for retraining, e.g., by collecting data points. If it
exceeds the drift threshold, it confirms a concept drift, prompting the system to adapt by retraining the model
with collected data points. The method is evaluated using synthetic datasets.
[Tian19] presents an approach for online anomaly detection under concept drift in structural health monitoring
using OC-SVMs. The method distinguishes between concept drift and actual anomalies that should be detected
by evaluating the relative relationship between an incoming sample and margin support vectors, error support
vectors and reserve vectors of the OC-SVM. The mentioned sources of concept drift include changes in ambient
temperature and load factors. In case of detected concept drift, the OC-SVM model is adapted to the changed
conditions. Case studies show that the model stays reliable over time.
[Yong20] utilize AEs for concept drift detection in a condition monitoring case study concerning the component
health of a hydraulic test bench. The model is trained on a certain subset of process conditions and then
subsequently tested on the full set as well as data that contains artificial noise. Concept drift is thus assumed
to arise from changing process conditions as well as changing measurement characteristics of the sensors.
The authors show that the reconstruction error of the AE increases in case of unseen process conditions as
well as when noise is injected to the data, making it a promising basis for detecting concept drift in related
applications, although no explicit detection is conducted in the scope of the study.
[Masc20] present a deep learning-based approach for predictive maintenance of turbofan engines, leveraging
Elastic Weight Consolidation (EWC) for continual learning. ML models are adapted to different engines.
Concept drift is not explicitly detected but assumed to be present when applying the trained model to a
different instance of the engine.
[Mole20] presents a study on handling concept drift in predictive modeling for the maintenance of electricity
production units in power plants. In the case study, concept drift is caused by varying operating conditions
of the plant. Through comparing stationary and adaptive models, the authors demonstrate that adaptive
methods significantly improve the accuracy of fault prediction by adjusting the model in response to changes
in data properties over time. This research highlights the effectiveness of concept drift detection techniques
that rely on detecting changes in algorithm performance metrics. Labels for retraining and drift detection are
assumed to be available.
In a similar use case to [Zeni19], [Lour22] use simulation to evaluate a concept drift detector for condition
monitoring in the context of identifying clogged or defective screen packs in an extrusion process. The
throughput of the extrusion process as well as the screw’s rotational speed are monitored for changes to detect
concept drift and process anomalies.
[Gori22] use a time series prediction model to identify anomalies of turbo-machinery in a plant. Recurrent
NNs are trained to predict the output of a certain sensor based on other sensors on the same machine. A
rising error rate indicates faults or anomalies. It is noted that concept drift due to changing environmental
conditions and operating modes of the machine is degrading the model performance over time. The ML model
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is thus periodically retrained to adapt to changing concepts without explicit detection.
[Pati22] presents a system for condition monitoring of machines by predicting the time when maintenance
needs arise. Concept drift is detected by monitoring the model performance for significant changes. Possible
sources for concept drift are not explicitly mentioned. Ensemble models are adapted to new data distributions
in case of detected drifts. Labels for retraining and drift detection are assumed to be available.
[Jiao23] proposes an approach called drift-aware weight consolidation for adaptive fault diagnosis in IoT
applications. The proposed method uses classifier confidences modeled with beta distribution for drift detection
and the triggering of retraining. The proposed method is evaluated on a case study focussing on bearing fault
detection where concept drift is assumed to arise mainly due to changing operating parameters and load
factors.
[Kerm23] addresses the challenge of anomaly detection in industrial collaborative robots (cobots), which are
versatile and operate in dynamic environments where concept drift is caused by changing working conditions
and robot tasks. The authors propose an unsupervised anomaly detection method that effectively handles
concept drift by distinguishing changes due to different working conditions from actual system degradation.
Concept drift is detected by monitoring the latent space of a variational AE and comparing it with a reference
distribution using the Mahalanobis distance.

3.1.2. Predictive quality and process monitoring

[Mera19] presents Learn++.MIL, an incremental Multiple Instance Learning (MIL) algorithm designed for
non-stationary and recurrent target concepts in industrial visual inspection. It effectively handles concept drift
by dynamically selecting and weighing ensemble members for the classification of product quality. Changes in
the inspection environment and the raw material induce concept drift. Drift adaptation is triggered passively
for every incoming batch of data, without explicit detection.
[Soll20] developed a dynamic error prediction system for industrial machines. If the cumulative drift across
multiple features exceeds a certain threshold, it is flagged as a potential error, indicating that the machine’s
behavior is deviating significantly from its expected operational parameters. In a comparable setting to
[Zeni19] this information is not used to update another ML model, but to detect process failure conditions.
[Yang21] propose an adaptive learning method for general anomaly detection use cases in IoT data streams.
Novel defect types as well as aging and replaced equipment are mentioned as relevant sources of concept
drift in this scenario. Retraining of the model is triggered when accuracy drops are observed using a sliding
window approach. Labels are assumed to be available for both retraining and drift detection.
In [Seif21], the authors present a method for detecting concept drift in ML models used for manufacturing
process monitoring that leverages Shapley Additive Explanations (SHAP) values to cluster data points into
groups with similar properties. Concept drift is then detected by tracking the precision of data points per
cluster. If the precision of a given cluster drops below a certain threshold, the corresponding predictions are
ignored. In addition to the threshold-based examination, the Page-Hinkley test is applied to the precision over
time to detect concept drift. Mechanical properties and wear of tools are mentioned as relevant drift sources.
Labels are assumed to be available for drift detection.
[Banf22] propose a novel approach for optical defect detection, applied to steel production use cases. The
optical defect detection relies on a CNN classification model for images. The feature embeddings from the
trained CNN are subsequently used to build a separate outlier detection model. The outlier detection model
uses an IF and a threshold on the outlier score to identify samples that show distribution shift, which could
lead to unreliable predictions from the defect detector. New defect types, not contained in the training data,
are mentioned as a source of concept drift. Experiments show that the concept drift detection method is able
to reliably flag classifier performance degradation.
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[Terc22a] investigate the use of memory-aware synapse models for continual learning in quality prediction
of injection molding processes. The model is adapted to new product variants, without explicitly detecting
concept drift with a similar implementation in [Terc19]. Labels are assumed to be available for retraining.
[Sen23] investigate the application of replay-driven continual learning to process monitoring applications
in manufacturing. Disturbances such as temperature variations at the tooltip, vibrations depending on the
shopfloor layout, and electromagnetic interference are indicated as relevant sources of concept drift. While
the exact method of drift detection is not specified, the authors indicate that adaptation of the ML models is
performed when low performance levels on the task are observed. Labels are assumed to be available for both
retraining and drift detection.
In [Kvak23], the authors use ML models to predict the quality of injection molded parts, indicated as the
resulting part weight after the process. The process is influenced by internal and external disturbances such
as component wear and material batch fluctuations, inducing concept drift. Multiple existing methods for
detecting concept drift are evaluated in experiments that include artificial disturbances. Methods based on
monitoring the error rate of the weight prediction model showed the highest performance, requiring the true
part weight or the label for the incoming data samples.
In a similar context, [Pasq23] present DARWIN, an adaptive business process monitoring tool that tracks the
error rate of the ML model to detect concept drift over time. The ML model is fine-tuned on new data once
a drift is detected. Labels are assumed to be available for both the fine-tuning as well as the concept drift
detection.

3.1.3. Other industrial use cases

While the previous subsections contain studies that can be categorized in the use case categories introduced
in Section 2.5, the following studies are related to general industrial use cases of ML.

[Wang20] propose the monitoring of the FPR of ML models to detect concept drift in general IoT data streams.
Labels are assumed to be available for the drift detection. The paper does not explicitly detail a mechanism
for adapting the model in response to detected concept drift.
[Tian21] use a special architecture of recurrent NNs called Error-Long Short-Term Memory (LSTM) for online
prediction of industrial compressor vibration signals. Concept drift is present due to machine wear and changes
on the shopfloor environment. The proposed method enhances accuracy and efficiency by updating the model
based on the test error.
[Bach21] discusses the challenges and recommendations for implementing continuous model improvement in
smart manufacturing environments. It emphasizes the importance of managing the lifecycle of ML models after
deployment. The authors describe different possibilities for detecting concept drift in industrial ML applications,
including the monitoring of the model error rate or observable variables and process measurements. It is
noted that industrial settings often do not allow monitoring of the error rate as true labels are typically not
available in time.
Similar to [Bach21], [Eck22] describes a monitoring framework for deployed ML models in manufacturing
and supply chain forecasting applications. Relevant sources of drift include changing consumer habits in
supply chain use cases as well as changing sensor operating conditions and units in manufacturing use cases.
The suggested concept drift detection method includes monitoring both, univariate features as well as the
model error rate, which can be computed in forecasting settings. The emphasis of the study is put on the IT
architecture and integration into existing software stacks.
[Kahr22] investigate concept drift aware ML models for predicting energy consumption of industrial machines.
Potential concept drifts are identified by the prolonged inactivity of the respective machines. Consequently,
the model’s prediction error after a period of inactivity is observed to decide whether a given period will be
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considered as drifted and if the model shall be retrained.
[Sari23] use continual learning methods, more specifically memory-aware synapses, for the prediction of
Numerical Control (NC) signals, such as current and control deviations, in machining processes. Concept drift
arises through new process conditions or programs. The exact mechanism of detecting unknown conditions
the model shall adapt to is not explained.

3.1.4. Summary

Analyzing the findings of the preceding state-of-the-art literature review, several observations can be made
that are summarized in five key statements.

• The body of literature is sparse when compared to the number of studies that target general ML
applications in the respective use cases, as can be compared in recent systematic review studies, cf.
[Seri20; Terc22b; Bret23].

• There is a large variety in the methods for detecting and handling concept drift found in the studies. Two
general categories of approaches can be identified. Approaches belonging to the first category actively
identify concept drift by testing for significant changes in quantities of interest. Employed methods in
this category rely, among others, on monitoring of error rates, e.g., [Lin19; Wang20; Tian21; Pati22],
model feature embeddings, e.g., [Yong20; Banf22] and model confidences, e.g., [Jiao23]. The second
category does not quantitatively identify concept drift through correlated quantities but rather updates
the ML model proactively in equidistant time intervals or through external triggers such as machine
state changes, e.g., [Gori22; Kahr22].

• In the context of anomaly detection tasks in condition monitoring and process monitoring, concept drift
detection is sometimes used as a proxy for the actual monitoring task, cf. [Zeni19; Soll20; Lour22],
creating some ambiguity in the terminology. In this sense, detections of concept drift are seen as a
deviation from normal operating conditions. Thus, the concept drift detector is not used as a reliability
indicator of another ML model but as the primary model itself.

• The majority of reviewed studies target very specific use cases or application scenarios within manufac-
turing with few exceptions, e.g., [Bach21]. In addition to the specificity of the application scenarios, the
applied ML methods for detecting concept drift are commonly very specific too. The majority of studies
either propose a new method or investigate the utility of a specific method from ML research for their
use case. Thus, it is not straightforward to draw conclusions or guidelines that extend to other, similar
use cases in the scope of monitoring manufacturing processes.

• Most studies are conducted using static datasets and/or laboratory setups while only very few studies
actually deploy systems into production. Consequently, many studies assume that labeled data for
retraining as well as drift detection is available which is oftentimes unrealistic in production [Huye22].
The analyzed studies often do not only consider drift detection but also the consequent model adaptation
through techniques such as continual learning or transfer learning, cf. Section 2.3.1. Thus, it is assumed
that the distribution shifts are caused by intangible changes in the manufacturing environment, rather
than analyzing potential causes.
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3.2. Practitioner views on concept drift in machine learning for manufacturing

In addition to the literature review, which elucidated the state-of-the-art in terms of concept drift detection
in academia, this section presents the results of an expert interview study with an emphasis on monitoring
and maintenance of deployed ML applications in practice. This extension is necessitated by findings from
the literature review, which indicate that most studies on concept drift in manufacturing employ simulated
conditions and static datasets. Consequently, the inclusion of expert interviews with data science practitioners
is imperative to analyze the practical implications of deploying ML applications in the manufacturing domain.
The methodology and key implications of the interview study are summarized in the following.

3.2.1. Interview methodology and participants

Parts of this section have been previously published as a conference paper titled "Toward the Sustainable Development
of Machine Learning Applications in Industry 4.0" which appeared in the proceedings of the European Conference
on Information Systems (ECIS) in 2023 [Elle23].

The interviews follow a semi-structured interview guideline in accordance to [Sark13], comprising relevant
questions to identify challenges along the phases of the CRISP-ML(Q) process model while allowing interviewees
to freely share further insights and experiences. Overall, 15 data science and ML experts of Industry 4.0
start-ups, Small and Medium-sized Enterprises (SMEs) and large companies are interviewed as Interview
Partners (IPs), as shown in Table 3.1.

Table 3.1.: Overview of IP symbols and corresponding industry roles. Note that interviewees may be part of
multiple categories.

Manufacturing company External consultancy / software provider

Data scientist:
ML service provider

Consultant:
Operations and industrial ML

Manager:
Industrial ML software provider

IP1, IP2 IP7, IP8, IP9, IP10, IP11,
IP12, IP13, IP14, IP15 IP3, IP4, IP5, IP6, IP7, IP8, IP9, IP10

Experts fill both internal corporate roles as managers and data scientists as well as external consulting roles
for ML in Industry 4.0, or work as managers of software providers that offer software for ML applications in
Industry 4.0. The involvement of interviewees in both the development and deployment phases of ML projects
enables a holistic approach to be adopted, analyzing the interdependencies between ML system design and its
long-term deployment in the industry. Even though most ML applications in this sector have only emerged
in the past decade, seven ML experts with more than 15 years of experience are interviewed. Moreover, 13
interviewees have at least five years of experience in ML development for Industry 4.0. All of the participants
have already provided expert knowledge to various ML development teams prior to this study. In addition to
general experience in ML development in industry 4.0, the majority of the participants (IP1,2,4,5,10,11,13,14)
possess expertise in manufacturing quality control in the automotive and aerospace sectors. IP8 and IP9 also
bring extensive experience in chemical product manufacturing to the study. IP3 and IP12 primarily gained
experience in condition monitoring of machinery plants.
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After addressing interviewee-related questions to gain insights into their prior experience, current position, and
the industries they have been working in, the participants were provided with an overview of the CRISP-DM
and CRISP-ML(Q) process models. It was consequently inquired whether the presented process models fit the
interviewee’s current approach of structuring ML projects within their respective companies. Subsequently,
in the main part of the expert interviews, the interviewees were walked through the CRISP-ML(Q) phases
and specifically asked how these phases are usually implemented in their projects. In each phase, it was
investigated whether there is already consideration regarding reliability and long-term deployment and which
specific challenges arose in past projects in this regard. Interviews were conducted from February to April
2022 via video call and lasted 52 minutes on average. After mutual agreement, all interviews were recorded
and transcribed using the software Amberscript [Ambe23]. During the analysis of the last three interviews,
theoretical saturation was reached, meaning that no further challenge was mentioned by the remaining
interviewees [Flic04].

3.2.2. Interview results

In this section, the interview results are aggregated and presented. The section focuses on results that
are directly related to the topic of reliability or that were mentioned in the context of the monitoring and
maintenance phase of the CRISP-ML(Q) process model. For the full interview results the interested reader is
referred to the corresponding publication [Elle23]. Four major themes emerged from the interviews: active
industry recognition, lack of standards and best-practices, handling unlabeled data and consideration along the
lifecycle which are used to structure the interview results in the following.

Active industry recognition A large majority of interviewees recognized the issue of changing environmental
conditions or machine states and their influence on the post-deployment model performance as significant
and recognized in their application domains although some were not familiar with the terminology concept
drift (IP1,2,3,4,5,6,9,10,11,12,13,14,15). Most interviewees agreed in this context that monitoring and
maintenance are paramount for long-term deployment. One interviewee described: "ML models only provide
value in situations that are shown in the dataset, [. . . ] they are only ever meta-stable" (IP12). Five practically
experienced sources of change were repeatedly mentioned in the interviews: Sensor drift or general sensor
and data quality problems (IP1,4,5,6), seasonalities or time dependencies not identified during development
(IP5,11,15), changes in the machine or product configuration (IP1,3,12,13), network or hardware problems
that render their respective data sources invalid or unavailable (IP6,12), and changes in material properties
(IP4,5,6,15). "Data drift is a significant issue, especially for long-running and old machinery with retrofits"
(IP14). In connection to concept drift, the importance of testing ML systems even shortly after deployment to
surface problems that cannot be revealed using a static test set was highlighted by (IP4,5,6,11). One of the
interviewees stated: "For us, it is crucial to evaluate the model before and after deployment [. . . ] we were surprised
how many problems can only be revealed after deployment" (IP6). Multiple interviewees (IP2,6,11) mentioned
that it is critical to identify a set of environmental conditions as well as operating modes of the machine or
production line which the ML application needs to handle, already in the early stages of development as
this choice strongly influences the requirements on the training and testing data. Exiting this defined set
after deployment necessitates model adaptation with current data. In this context, the integration of domain
knowledge is seen as crucial. Workshops with the stakeholders and domain experts should be conducted for
clarification, which is viewed as a possible approach to get an initial set of conditions and modes (IP2,8,10,15).
Nevertheless, it was mentioned in the same context that this is "very hard" (IP2) and unlikely to result in a
complete set, making continuous model monitoring and checks mandatory (IP1,6,9,10,11,12,13,14).
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One interviewee explained, “Whatever challenge we face, in the end, it’s always about data. Before development,
we often don’t know what we need or we do not have the data needed and in the end, data drifts and other changes
kind of force us to reconsider if our trained models are still useful” (IP5). Multiple interviewees stated that the
robustness and sustainable long-term use of ML applications have only recently emerged as a major focus of
their work, as the productive usage of ML applications is only slowly becoming a reality in the last years and
the number of deployed models is still relatively small (IP1,7,12,14,15).

Lack of standards and best practices A number of interviewees mentioned a lack of standards / best-practice
solutions for monitoring and maintenance of ML applications in industrial environments (IP1,2,6,12,14,15)
and emphasized the difficulties faced due to this void. The majority of interviewees saw the CRISP-ML(Q)
process model as relatively close to the way they internally structure ML projects, even though, at the same time,
most of the interviewees have only heard about the predecessor CRISP-DM prior to the interview. In addition,
a number of interviewees (IP1,4,8,12,13,14,15) mentioned that CRISP-ML(Q), compared to CRISP-DM, fits
real projects better, as the additional monitoring and maintenance phase is crucial for practical deployment.
Interviewees described both process models as abstract and high level though, providing only structural
guidance rather than concrete implementation advice. The majority of interviewees that had experienced the
issue of post-deployment performance degradation firsthand, described that the accompanying issues were
commonly only fixed after they already impacted the respective production process and thus retrospectively
rather than proactively through concept drift detection. "We usually are in a ’wait and see’ mode for obvious signs
of problems that we would then try to diagnose and fix" (IP14). Corresponding root causes did not always prove
to be related to general drift or seasonalities in the data but also to faulty equipment or network problems
(IP4,6,14). “Our ML development pretty much follows the CRISP-DM process model. But if I am honest, we are
primarily concerned with delivering models, and processes become – let’s say - less standardized after deployment.
So we really need something like a monitoring and maintenance phase, but right now I would say we rather
intervene in emergencies only" (IP9). While some interviewees have successfully implemented concept drift
detection systems, their approaches underline the absence of a unified methodology in addressing concept
drift within manufacturing as they are catered to individual use case configurations. Interviewees who did
implement monitoring systems described that the utilized approaches often involve monitoring the properties
of the input data (IP2,6,10) or a set of conditions for the usage of the model (IP6,14). Statistical measures can
be used to capture properties of the training data that are then compared to the live data during operation.
Suitable measures include distribution distance metrics or simple thresholds like SPC. It was mentioned that
the complexity of the monitoring task rises with the number of data sources (IP2,6). In addition to the input
data, it was described that the model errors can be monitored (IP1,2,11,14) although this approach is seen
as difficult to execute systematically as labels are required for calculating the model error quantitatively.
Oftentimes only obvious prediction errors catch the attention of employees (IP1,14). In this context, it was
mentioned that there is uncertainty around the correct approach to monitoring (IP1,2,6,12,14,15).

Handling unlabeled data A fundamental and often encountered problem during both development and
post-deployment monitoring is missing meta-data in the form of data annotations and labels related to the
target variable, e.g., maintenance activities, faulty products or machine breakdowns (IP1,3,4,5,6,8,12,13). A
possible remedy is the usage of semi- or unsupervised ML algorithms, which do not require explicit labels but
are not suitable in all use case scenarios. One interviewee mentioned, “We almost exclusively use unsupervised
approaches in manufacturing projects, because labeled data is rarely available in sufficient quality and quantity,
and target variables such as fault types are expensive to obtain and may change over time” (IP4). An interviewee
(IP8) noted further, "It is not just about the data or the algorithms; it is also about how well our teams understand
the manufacturing processes and can infer useful labels from their knowledge".
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With respect to post-deployment concept drift detection, one interviewee stated that "Differentiating between
real model problems and normal process fluctuations without labels is challenging." (IP3). Without access to
ground truth labels during operation, data scientists cannot monitor the actual performance of the model in
terms of ML Key Performance Indicators (KPIs). In other application domains, such as recommender systems
or forecasting models, this is different. Extensive logging during operation is thus important to quickly analyze
model errors and find their root causes (IP1,11,14). As articulated by (IP14), "Systematically maintaining
the accuracy and relevance of ML models over time is difficult without consistent, labeled data [...] we are often
reliant on indirect measures to assess system health".

Consideration along the lifecycle A number of interviewees stated that drift-related concerns such as
post-deployment monitoring and maintenance activities should be considered along the whole model lifecycle,
including the initial planning and project setup. One interviewee (IP13) stated “Never change a running
system – that is something I hear quite often from our customers in this context and it is really slowing us down.
I am convinced that we will provide services to maintain ML systems in the future, but to do that we need to
reduce the complexity of these systems. [. . . ] So I advocate for future projects to keep ML system maintenance in
mind from the beginning and consider that in, yeah, pretty much every future system design”. Post-deployment
considerations significantly influence the planning and development stages of ML models. These considerations
include a high degree of automation through DevOps and MLOps pipelines, as referenced in Section 2.3. This
automation supports data access, automated monitoring, and notifications. Additionally, where possible, it
allows for automated retraining and model deployment when deviations in data distributions are detected
(IP2,8,15). Moreover, thinking about the model’s lifecycle affects early development decisions, like selecting
reliable operating conditions and choosing the right algorithms. This forward-thinking approach is crucial for
reducing future maintenance burdens and ensuring the sustainability of ML systems (IP2,8,10,15). Moreover,
the integration of lifecycle consideration into ML projects has implications for business models and contractual
frameworks within the industry. Although challenging, monitoring and maintenance of ML models is seen
as a viable addition to the business model of ML solution providers as mentioned both by manufacturing
company internal and external interviewees (IP1,6,8,10,11,12,13,14,15) as it “provides a constant revenue
stream whereas, you know, for this prior development process, we usually agree on project-based fixed-term work
and payment” (IP15). At the same time, this may provide another challenge, as monitoring and maintenance
activities are often not covered by the initial development contracts (IP15).

3.3. Summary

In this section, the agreements as well as the identified differences between the literature review in Section 3.1
and the expert interview study in Section 3.2 are summarized, answering the first research question:

Research Question 1

What impact does concept drift have on ML applications used in process and condition monitoring of
manufacturing processes and how is it currently addressed in both research and practical applications?
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Common findings

• Recognition of concept drift as a significant challenge: Both, the expert interview as well as the
literature review have established that a central challenge for the practical implementation of ML
models for condition monitoring, process monitoring and predictive quality in real-world manufacturing
environments is the fact that production processes are subject to continuous change and variation. In
both sections, similar sources of concept drift were mentioned, including changing operating parameters,
environment conditions, sensor issues and general data quality problems. This often leads to performance
degradation due to concept drift which must be properly addressed.

• Variety in detection methods: The literature review and expert insights both highlight the diversity of
methods for detecting concept drift. The two overarching categories identified in the literature review –
active detection vs periodically or externally triggered model updates – are also noted in the discussion
within the expert interviews.

• Gap in standardized frameworks for detection: The literature review and expert feedback collectively
highlight the absence of standardized frameworks and best practices for detecting concept drift in
manufacturing ML systems. While the literature indicates a diverse array of specific strategies for concept
drift detection without a common framework, expert insights stress the essential need for uniform
guidelines to direct the lifecycle management of ML models, including development, monitoring, and
updating processes. This consensus points to the critical demand for the creation and implementation of
standardized protocols to enhance the robustness and longevity of ML applications against concept drift,
starting with effective monitoring of deployed ML models.

Diverging findings

• Specificity vs general applicability: The literature review points out that most studies focus on highly
specific use cases and application scenarios, often proposing novel or tailored methods for those scenarios.
In contrast, expert interviews express a desire for more generalized solutions and standards that can be
applied across various manufacturing contexts, indicating a gap between academic research’s specificity
and the industry’s need for broader applicability.

• Assumption of labeled data: A significant portion of the literature assumes the availability of labeled
data for retraining and drift detection. However, expert interviews reveal that in real-worldmanufacturing
settings, labeled data is often scarce or unavailable, highlighting a disconnect between academic
assumptions and industrial reality.

• Real-world validation: Experts emphasize the importance of testing and validating ML models in actual
production environments, pointing out that many problems only become apparent post-deployment.
The literature, however, tends to focus on theoretical models and controlled experiments, with less
emphasis on real-world deployment and the practical challenges encountered therein.

• Differences in addressing root causes: Literature often presumes that responding to concept drift
necessitates updating or adapting the ML model. However, expert interviews suggest a broader view,
indicating that drifts may also stem from external factors such as connectivity or sensor issues, not just
intangible changes in data distribution. This divergence highlights the literature’s focus on algorithmic
solutions, whereas practical insights reveal the importance of diagnosing and rectifying hardware or
environmental issues as part of drift management.
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In both the literature review as well the expert interviews, it has been shown that a multitude of heterogeneous
possibilities for detecting and adapting to concept drift exists. This finding is supported by the preceding
analysis of process models and paradigms for structuring the lifecycle of ML models, cf. Section 2.3. It is
shown that recent process models such as CRISP-ML(Q) acknowledge the need to continuously check for
concept drift and related performance problems after model deployment but do not provide guidance on how
this should be implemented for a given use case.
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4. Framework development

This chapter encompasses the development of a framework that provides decision support and guidance for
the implementation of appropriate methods for detecting concept drift in ML applications for the monitoring
of production processes.
The chapter is divided into six sections. First, Section 4.1 presents the Design Science Research (DSR) approach
as the research methodology used in this thesis, along with the framwork’s scope and objectives. Consequently,
Section 4.2 introduces the framework on a high level. Section 4.3 and Section 4.4, respectively, present the
derived structure of active and passive approaches to concept drift detection in detail. Importantly, Section 4.3
furthermore introduces Localized Reference Drift Detection (LRDD) as a novel method for active drift detection
that is specifically tailored to the manufacturing applications targeted by this thesis.
Following the introduction of active and passive drift detection as the main components of the framework,
Section 4.5 discusses decision factors, requirements and practical considerations regarding the implementation
of the introduced methods. The main findings are summarized in Section 4.6.

4.1. Research design

The research process in this thesis follows the DSR approach as proposed in [Hevn04; Peff07; Vais07]. DSR
sees widespread use in the development and validation of artifacts such as algorithms, human-computer
interfaces and process models. In contrast to explanatory science, DSR aims at academic research objectives
that target practical engineering problems in the real world through the development of novel methods and
frameworks that enable professionals of the discipline to design solutions for their field problems [Hevn04;
Peff07].

While multiple instantiations or models for the DSR approach exist, this thesis utilizes the methodology
proposed by [Peff07], which is visualized in Figure 4.1 and divides the research process into six phases,
also referred to as activities. Following [Peff07], the six activities are defined: In the first activity, problem
identification & motivation, the specific research problem is identified and the value of a solution justified.
Within this thesis, this is done through the expert interviews and literature review conducted in Chapter 3.
Consequently, objectives or requirements for the solution that is to be designed are defined in the second
activity, objectives of solution, along with the scope that the solution shall be applicable to. The main RO for
this thesis is consequently defined and introduced in the following, along with four derived sub-objectives
(RO.a – RO.d):

Research Objective (RO)

Development of a framework for detecting concept drift in ML applications used in process and condition
monitoring of manufacturing processes.
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Figure 4.1.: DSR approach used in this thesis along with the relevant chapters of the document. Own illustra-
tion following [Peff07].

The main requirement of this framework is to provide methods that are able to detect any concept drifts
that would jeopardize the reliability of the respective ML applications, resulting in the objective of a high
recall of the drift detection (RO.a). Simultaneously, normal operating conditions should not be erroneously
flagged as drifted, thus requiring a high precision of the drift detection (RO.b). The target scope of the
solution follows the conclusions of Chapter 2, particularly Section 2.5 along with the findings of Chapter 3.
The framework should therefore be applicable to ML-based condition monitoring, process monitoring
and predictive quality scenarios in the manufacturing domain (RO.c). It should cover use cases that
rely on high-frequency, multivariate time series data that is used in the supervised and unsupervised ML
models for classification and anomaly detection identified in Section 2.5.The use cases are chosen as they are
seeing strong adoption in companies [Chui21; Mett21] and rely on similar ML architectures as elaborated in
Section 2.5.
In summary, the framework serves as a concretization of the corresponding monitoring & maintenance phase of
the CRISP-ML(Q) model specific to the aforementioned use cases. Importantly, the solution scope is limited to
the detection of concept drift, excluding follow-up activities such as root cause analysis or ML model retraining.
Findings from the expert interviews detailed in Section 3.2 highlight the diversity in potential sources of
concept drift and suitable follow-up activities as it is often unconscious errors, physical defects or network
issues that lead to model performance deterioration, necessitating targeted interventions at the root cause
level rather than indiscriminate model updates. Other sources of concept drift may be transient, such as
network problems or ongoing maintenance work, and thus do not substantiate the training of new models.
Automatic model updates are typically unsuitable in commercial manufacturing settings due to the significant
costs associated with the frequent acquisition of new labels [Cobb23]. For the same reason, drift detection
methods that are relying on ML performance metrics and, in turn, true labels are unsuitable as well. Therefore,
the final sub-objective encompasses that no true labels are required for drift detection (RO.d).

The third activity, design & development, encompasses the actual creation of the solution approach. In the
context of this thesis, a framework for concept drift detection in ML applications used to monitor manufacturing
processes is developed within the following sections of this chapter. To achieve this, existing methodologies
for addressing concept drift in general ML literature are reviewed to identify which methods are suitable for
the target use cases, which requirements and decision criteria exist, and if use case-specific extensions are
required.
The developed framework defines guidelines for the detection of concept drift in the targeted ML applications
in manufacturing and thus provides a Level 2 contribution in the classification of DSR contribution types,
referring to, e.g., constructs, methods, models and design principles and technological rules [Greg13].

The fourth and fifth activities, demonstration and evaluation, are concerned with the exemplary usage of the
designed solution approach in experimentation, simulation or other appropriate activities and the consequent
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evaluation of whether the intended purpose is fulfilled and the objectives, defined in the second phase, are
reached. Within this thesis, the demonstration and evaluation are performed through three case studies in
Chapter 5 that show diverse instantiations of condition monitoring, process monitoring as well as predictive
quality applications in the manufacturing domain:

• Case study 1 investigates concept drift detection in an accelerometer-based tool condition monitoring
application in milling using an experimental setup and dataset that are specifically created for this thesis.

• Case study 2 investigates concept drift detection in a predictive quality and process monitoring application
in milling that relies on internal NC signals of the milling machine.

• Case study 3 investigates concept drift detection in an accelerometer-based condition monitoring
application for pigment sieving developed together with an industry partner.

Lastly, the details of the developed solution as well as the results of the demonstration and evaluation are
disseminated in the final activity, communication. In the scope of this thesis, this is done through the thesis
itself as well as through the published articles that relate to the topic which are listed in the first section of the
Bibliography.

4.2. Framework overview

The proposed framework is visualized on a high level in Figure 4.2 and encompasses the monitoring part of
the monitoring & maintenance phase of the CRISP-ML(Q) process model.
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Figure 4.2.: Proposed framework for monitoring of deployed ML models in the specific application scope of
this thesis as an implementation of the corresponding CRISP-ML(Q) phase. Own illustration.

Model monitoring aims at identifying situations that may cause performance degradation of a deployed
ML model in the manufacturing use cases described in Section 2.5. The output of the model monitoring
component is a trigger for the model maintenance component.
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As identified in the preceding chapter through the literature review and expert interviews, practical drift
detection methods for the target use cases in manufacturing can be broadly categorized into two families,
active drift detection and passive drift detection which are defined for the scope of the proposed framework
in Definitions 3 and 4.

Definition 3 (Active drift detection) Active drift detection constitutes a proactive and continuous strategy,
systematically assessing specific quantities of interest that are related to the ML model’s performance, such as error
rates, prediction confidences and input data for significant changes. This approach employs real-time analysis
and distributional comparisons to promptly detect deviations caused by concept drift and provide notifications to
operators accordingly.

Definition 4 (Passive drift detection) Passive drift detection adopts a reactive strategy, characterized by waiting
for predefined intervals (temporal triggers) or external events to trigger model maintenance actions. Thus, this
approach does not continuously scan for changes in data streams related to the ML model’s performance but
rather responds to predetermined stimuli. In turn, passive drift detection triggers model maintenance in case of
the specified trigger conditions, regardless of whether actual concept drift is present.

While the distinction in Definitions 3 and 4 is based on the practical considerations in Chapter 3, other defini-
tions involving the wording active and passive have been proposed in general ML literature. Ditzler et al. (2015)
define active approaches towards concept drift in a way that closely resembles the previously mentioned
approach, but conceptualize passive monitoring as an online learning scenario, cf. Section 2.1.1, where the
model is continuously adjusted to accommodate every new data point [Ditz15]. A similar classification has
been proposed in [Han22].
In fact, a large portion of the literature concerning concept drift detection and adaptation assumes online
learning or sequential learning scenarios, where data points and corresponding labels arrive continuously and
new models can be trained or adapted quickly, e.g., [Gama04; Baen06; Bife07; Gama14]. In these studies,
the detection of concept drift is mainly utilized to control which data is used for the sequential or incremental
training of the model. If a drift is detected, only the data points arriving after the detected change point are
used to train a new model [Gama04].
In contrast, Definition 4 does not assume updating the model with each new data point as this is not practical
in the addressed scenarios. The analysis in this study is thus constrained to an offline, or batch learning
scenario, cf. Section 2.1.1, where ML models are deployed after training and evaluation, and only updated or
generally maintained based on triggers as visualized Figure 4.2.

Both active and passive drift detection approaches are further defined in the following, answering the second
research question:

Research Question 2

What methods for the detection of concept drift in ML applications exist in the literature?

While the decision between active and passive drift detection is a major consideration within the proposed
framework – I. in Figure 4.2 – several further design decisions are involved when implementing active and
passive drift detection – II.a. and II.b. in Figure 4.2 which are elaborated upon within Sections 4.3 and 4.4.
The findings are consequently summarized and suggestions for implementation derived in Section 4.5, aiming
to answer the third research question:
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Research Question 3

How should the detection of concept drift be implemented for ML applications used in process and condition
monitoring of manufacturing processes?

4.3. Active drift detection

Several research articles exist in application-independent, general ML literature concerning methods to actively
detect concept drift in deployed ML applications. To investigate the mechanisms of existing methodologies, a
systematic literature review is conducted in this section. Consequently, a general architecture of active drift
detection systems is derived, along with design methods and respective considerations for implementation.

4.3.1. Systematic literature review

Methodology

The literature review follows the methodology of Kitchenham and Charters [Kitc07] which splits the review
process into three phases: planning the review, conducting the review and reporting the review results. Initially,
research questions are defined and a review protocol is developed to guide the review process, including study
selection criteria and data extraction methods. In the conducting phase, studies are identified and selected
according to specific criteria and consequently evaluated for quality. Key data from these studies are collected
and combined to address the research questions. In the final reporting phase, findings are presented and
discussed, highlighting implications with respect to the defined research questions and future work.
Two Sub Research Questions (SRQs) are formulated to guide the analysis of the primary studies and answer
the aforementioned research question:

• SRQ1: How can the identified approaches be structured and categorized?

• SRQ2: Which advantages, disadvantages and requirements do the identified approaches have?

The search was conducted using the ACM Digital Library1, IEEE Xplore2, and ScienceDirect3 as databases.
The following search string is adapted to fit each of the search engines of the publication databases: ((drift
OR shift) AND detect*) AND (machine learning OR deep learning OR artificial intelligence). The search is
constrained to articles published in the past 15 years (2009-2023), to focus on contemporary research and
recent advancements in addressing the challenge of concept drift.

Exclusion criteria The initial query yielded a total of 785 publications, combined from the three databases.
After merging the search results from each database, duplicates were removed based on paper titles and
Digital Object Identifiers (DOIs). For every of the remaining candidate papers, the paper title and, if required,
the abstract was reviewed. Reasons for the exclusion of candidate publications include:

• publication is not directly concerned with concept drift detection (n=628),
1ACM Digital Library: https://dl.acm.org/
2IEEE Xplore: https://ieeexplore.ieee.org/Xplore/home.jsp
3ScienceDirect: https://www.sciencedirect.com/
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• publication is not written in English (n=4),

• publication does not provide technical and implementation details of the proposed solution (n=32),

• publication is a survey or literature review (n=9),

• publication proposes a solution that is highly specific to a certain domain or data type or is not applicable
to the type of problems this thesis focuses on (n=18),

• publication is concerned with online or sequential learning or the publication proposes a solution that
depends on ground truth labels during operation (n=49).

While most of the exclusion criteria are self-explanatory, the last one requires additional consideration. As
stated before, online or sequential learning is not relevant to the majority of applications in the considered
use cases within manufacturing, thus the respective studies are excluded. While online learning requires
ground truth labels during operation for continually training the ML model, the search additionally revealed a
large number of methods for concept drift detection that assume the availability of ground truth labels for
the detection of drift itself. Methods that rely on the availability of ground truth labels typically calculate
performance KPIs such as the accuracy during model operation and flag significant drops as concept drifts.
These techniques are referred to as supervised or explicit concept drift detection methods while techniques
that do not rely on ground truth labels are referred to as unsupervised or implicit [Seth15; Seth17; Ab G20].
The assumption of label availability is not realistic in manufacturing scenarios, thus studies concerning
supervised/explicit methods are excluded as well, cf. RO.d.
After the first review, 660 publications were excluded, primarily due to a bad content fit. Consequently, the
full texts of the remaining 125 publications were skimmed and 45 publications were selected for the analysis.
Within this round of exclusions, the majority of studies were excluded due to being focused on online learning
or requiring true labels (n=49). Lastly, snowballing was conducted through the references in the selected
studies, to identify additional relevant studies that were not revealed through the keyword search in databases,
adding 13 additional studies for a total of 58. The final list of studies is included in Table A.1 within the
Appendix and the findings are presented along the derived framework in the following sections.

Framework for active drift detection

Based on the identified studies, concept drift detection based on monitoring quantities of interest such as the
input data is typically achieved in three stages: Stage 1: data acquisition & windowing, stage 2: data
modeling and stage 3: hypothesis testing, e.g., [Lu18], as visualized in Figure 4.3.

In stage 1, a window of the most recent data points Dlive as well as a window of reference data points Dref are
acquired to be compared in the subsequent stages. Even though concept drift detection methods that rely on
model performance KPIs are excluded, Figure 4.3 shows both the input data xt as well as the labels yt for
completeness. Both data windows are then abstracted in stage 2, typically involving dimensionality reduction
or feature extraction and consequently compared in stage 3 using univariate or multivariate two-sample tests to
determine whether the two windows represent the same data distribution at some chosen significance level α.
The three stages are elaborated upon in detail in the following sections, along with the corresponding findings
of the literature review and practical considerations regarding the targeted use cases in the manufacturing
domain.
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Figure 4.3.: Framework for active drift detection, divided into three stages: data acquisition & windowing,
data modeling and hypothesis testing. Data is streaming in from top to bottom of the figure,
divided into two windows (stage 1), abstracted (stage 2) and consequently used for hypothesis
testing (stage 3). Own illustration.

Stage 1: Data acquisition and windowing

In this first stage, data is typically divided into two sets or windows, e.g., [Lind13; Pina15; Baie23]. The
first window Dref corresponds to the reference data that the model is expected to reliably work upon, thus
characterizing a stable concept [Seth17; Lu18]. In the identified literature, the training or evaluation data
that was acquired during model development in the earlier phases of the CRISP-ML(Q) process is often used
for Dref [Dos 16; Jawo17; Seth17]. While publications exist that also treat Dref as a sliding window, e.g.,
[Žlio10a], a static reference set is more suitable for the target use cases as the ML model and thus its known
concepts are typically static in manufacturing.
The live window Dlive represents the data distribution that is currently processed by the model in operation.
Thus, a sliding window is commonly used that shows the last |Dlive| data points. The size |Dlive| of the live
window is an important hyperparameter of the active drift detection framework. The window should be large
enough to capture the current data distribution and have sufficient robustness to noise, while small enough to
be reactive to changes without a strong detection lag [Žlio10a; Gözü19].
Hyperparameters in drift detectors are problematic in practice as there is typically no data available to
systematically tune them [Žlio10a], a fact that is often ignored in scientific studies, e.g., [Gözü19]. While
the reference distribution is well known, the possible data distributions after a concept drift has occurred are
unknown, thus making it impossible to quantitively tune parameters for detection. This stands in contrast to
hyperparameters of the actual ML models, cf. Section 2.2, that can be tuned using validation datasets or CV.
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In general, a window size should be chosen that corresponds to the expected reaction time of the application.

Most of the studies identified in the literature review are designed to operate on tabular data. However, the
application scenarios relevant to this thesis and thereby also the case studies work on raw sensor data streams
from sensors such as accelerometers and internal machine control signals. Thus, in contrast to general ML
literature, a data point for the ML model typically corresponds to a segment of the recorded sensor data in time
as visualized for xt in Figure 4.3 rather than referring to a single measurement. The segment may contain
univariate data of a single sensor or multivariate data of multiple sensors or other signals, such as internal
machine control signals that have to be partitioned with respect to the use case on hand. The segmentation of
the individual signals is visualized Figure 4.4.
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Figure 4.4.: Time series contextualization and partitioning. The multivariate time series with n signals is split
intom semantic segments that are either equidistant or represent timespans of interest such as
tool operations or specific sub-geometries of the manufactured part. Own illustration.

Segments are defined either by metadata such as Programmable Logic Controller (PLC) signals which allow
semantic contextualization in time or alternatively by setting constant segment lengths and optional pauses in
between considered segments. In the first option, semantic segments may be defined, e.g., as the time frame
in which a specific geometric feature of the workpiece was machined as can be identified from the state of the
NC program in time. The state of the NC program can typically be acquired from the PLC machine controller,
cf. [Fert23]. Depending on the use case configuration, the semantic segments may be further divided into
sub-windows of equal length. The start and end timestamps of the identified segments are applied to partition
all individual signals within the multivariate time series, independent of the sampling rate. Generally, the
segmentation method chosen for the concept drift detection should correspond to the windowing for the
actual ML model. If, e.g., a tool condition monitoring application is developed for a milling tool, only data
that corresponds to the active operation of this tool should be used for both the tool condition monitoring as
well as the concept drift detection.

Following data acquisition & windowing, data modeling is applied in the second stage which is explained in
the next section.
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Stage 2: Data modeling

Data modeling involves dimensionality reduction of the data points in Dref and Dlive to extract quantities that
meaningfully summarize the characteristics of the data distributions before the two-sample testing referred
to as X̃ref and X̃ live in Figure 4.3. This represents an important intermediate step as the raw data often has
a high dimensionality or format that can render two-sample testing computationally infeasible [Raba19;
Pian22]. There are strong differences within the implementation of this stage in the literature review studies
with four major categories emerging that are visualized in Figure 4.5.
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confidence (18)
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embeddings (6)

Figure 4.5.: Overview and categorization of themajor options for datamodeling with the number of respective
studies in parentheses. Supervised techniques were excluded in the review but are visualized for
completeness. Own illustration.

The first distinction can be made between supervised and unsupervised concept drift detectors. Supervised
drift detection methods rely on true labels that can be compared with the model predictions to continuously
compute performance KPIs or error rates. A significant increase in the error rate would indicate concept drifts.
As supervised concept drift detection mechanisms are excluded from the review and the framework (RO.d)
though, only unsupervised methods are elaborated further. Within unsupervised methods, a further distinction
can be made between model-independent methods and model-dependent methods. While model-independent
methods solely rely on the data that is processed by the ML model, model-dependent methods take the
particular ML model that is used within the application into account as visualized for an example application
in Figure 4.6.

Model-inpendent: Input data distribution The first category concerns methods for concept drift detection that
utilize the input data of the ML model for concept drift detection, with or without additional processing before
the two-sample testing. This is based on the assumption that most forms of concept drift, cf. Section 2.3.1,
affect the input data distribution P (X) and are thus detectable by monitoring P (X) for significant changes.
The majority of identified studies (34) fall into this category which can be attributed to the high diversity of
approaches as well as to the large applicability of this category, as it can be applied regardless of the actual
ML model that is used. Several studies in this category resort to direct monitoring of the input data without
further data modeling techniques, e.g., [Dos 16; Raba19; Porw22], which is the simplest option. In the
scenarios that are targeted within this thesis, this option is not advisable as elaborated for the first stage. In
contrast, there are multiple studies that perform dimensionality reduction via feature extraction in the data
modeling step, e.g., [Ditz11; Lee12; Cava16; Dos 16; Souz20a].
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Figure 4.6.: Data modeling options for unsupervised active drift detection visualized in a predictive quality
example application. Model-dependent options rely on quantities computed by the ML model –
learned embeddings or prediction confidences – while model-independent options rely solely on
the input data. Own illustration.

Typically, the same features are used for concept drift detection which are also used for the prediction of the
actual ML application. Based on the raw time series data and the transformations introduced in Section 2.6,
two categories of features are identified, which are suitable for different families of ML models that are
commonly utilized in the target use cases: scalar features and image-like features.
In case of scalar features, feature calculators are used, which compute specific attributes for each window in
a univariate time series as depicted in Figure 4.7. For a given window, multiple features – l in Figure 4.7 –
may be calculated for each individual univariate time series. These are consequently concatenated with other
features as well as features calculated on the other time series belonging to the same window, resulting in
a feature vector xi for a given time window i, describing the properties of each univariate signal in it. This
feature vector is generated for each window in the dataset, thus resulting in a feature matrix X ∈ Rm×nl,
with the m windows in its rows and n · l combinations of l feature calculators and n signals in its columns,
corresponding to the descriptions in Section 2.1.1. Table B.1 in the Appendix contains a list of all time,
frequency and time-frequency domain features that are utilized within the case studies of this thesis.
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Figure 4.7.: Feature extraction from multivariate time series windows. The features, including statistical and
frequency-based ones, are calculated separately for each signal and then concatenated in one
vector x per windowm. Own illustration.

68 4. Framework development



The second category for extracting features from the raw time series data involves generating image-like
spectrograms or scalograms using STFT and CWT respectively, as described in Section 2.6 and depicted in
Figure 4.8. These two-dimensional representations may be treated as images that can be processed by suitable
NN architectures such as CNNs and CAEs. The usage of CNNs on time-frequency representations has been
shown to yield high performance in a number of recent publications, cf. [Vers17; Garc22; Bieg23]. While
the utility of processing time series data this way has been proven empirically, there are differences between
actual images vs spectrograms and scalograms, including the fixed semantic meaning of the ordinate as well
as the not necessarily inherent hierarchical structure in spectrograms and scalograms. Both STFT and CWT
are applied individually to each signal in a window, resulting in a matrix X(j)

i , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
for every signal and window. For a single window, the resulting n matrices can be stacked to form a tensor
Xm, representing a multi-channel image.
In contrast to scalar features, image-like features cannot be easily monitored as they have very high dimen-
sionality. Thus, if the ML model uses image-like features, the dimensionality should either be further reduced
by techniques such as PCA or the prediction confidences of the ML should be used for concept drift detection
instead, which is explained in the following sections.
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Figure 4.8.: For usagewith CNNs, spectrograms or scalograms are generated using STFT or CWT respectively,
resulting in an image-like matrix per signal. Own illustration.

While it is practical to utilize the features that are extracted for the ML application already in case of
scalar features, approaches exist that utilize techniques such as singular value decomposition or PCA for
dimensionality reduction and feature extraction, e.g., [Shan17]. More recently, another subcategory of
methods based on the input data distribution emerged, which uses additional ML models for the purpose
of detecting distribution shifts. These methods often resort to models that are commonly used for anomaly
detection, such as the reconstruction error of AEs or restricted bolzmann machines, e.g., [Jawo17; Raba19;
Kory21; Kami22]. These models are consequently trained on Dref and the resulting reconstruction error is
used as the abstracted reference set. Consequently, the reconstruction error is calculated for the live windows
as well. A significant change in the reconstruction errors over time signalizes potential concept drift.
Another variant of using additional models is proposed in [Gözü19] and evaluates the capability of a model to
distinguish between the reference data and the current live data. If the model can do so with high performance,
there is likely a significant difference in the data distributions existing.
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While having the advantage of being applicable regardless of the ML model chosen, model-independent
methods have the commonly mentioned disadvantage of often being oversensitive and prone to false alarms
[Seth17; King21; Baie23]. This downside can be explained by the fact that they are testing for all significant
distribution deviations between Dref and Dlive, not differentiating if the identified deviations will influence the
model predictions and in turn the model performance. Additionally, some data formats cannot easily be used
for two-sample tests without additional preprocessing, such as camera images, scalograms and spectrograms.

Model-dependent: Prediction confidence The category with the second-largest amount of studies encom-
passes model-dependent approaches that rely on the prediction confidences of the ML model that is being
used in the application as visualized in Figure 4.6. Of the identified studies, 18 belong to this category.
These methods are based on the assumption that the confidence and thus the uncertainty of the model in its
predictions will significantly change if the data distributions change due to concept drift, e.g., [Lind13].
While some methods in this category are only applicable to certain types of models such as SVMs, e.g.,
[Seth15], or NNs, e.g., [Baie23], others are applicable, independently of the algorithm, as long as a confidence
score is produced, e.g., [Žlio10a; Lind13; Lipt18; Raba19; King21].
ML models commonly compute univariate scores for binary classification problems and multivariate scores in
case of multiclass classification problems as models produce one score per class option, e.g., via the softmax
function in NNs, cf. Section 2.2. Multivariate scores can be reduced to univariate values via the Shannon
entropy, cf. Equation (2.17) in Chapter 2, e.g., [Baie23]. Most anomaly detection models produce scores
that can be interpreted similarly to confidences, cf. Section 2.2, and can thus also be used in this category of
concept drift detectors.

Approaches in this category have the advantage of only being sensitive to changes in the data distribution that
influence the model output, thus alleviating this specific disadvantage of model-independent methods. Further-
more, they strongly reduce the dimensionality for the two-sample testing, thereby lowering the computational
effort and runtime of the drift detector and are not limited by the input format. Thus, model-dependent
methods also allow concept drift detection when the input format is not easily usable for classic feature
extraction, such as with camera images, spectrograms or scalograms.
The applicability of the techniques in this category depends on the type of ML model used as not all models
output meaningful scores alongside their predictions as elaborated in Section 2.2. In existing studies, ensemble
models such as RFs have shown superior performance in terms of sensitivity of the confidence scores to concept
drift when compared to, e.g., NNs [Jour21c]. As several methods for enhancing the confidence estimation of
NNs were proposed in recent years, a comprehensive comparison of the suitability of uncertainty estimation
methods for usage in concept drift detection was performed and is presented in Appendix C. In essence, the
study indicates that there is no significant performance gain in terms of concept drift detection when using
seemingly more advanced methods for uncertainty estimation in NNs compared to using the standard softmax
confidences introduced in Section 2.2. Ensembles are not exclusive to DTs and other models can be used in
ensembles as well, e.g., [Seth17]. Alternatively, approaches exist that attempt to learn meaningful decision
boundaries and confidence scores for models that do not have the ability, e.g., [King21].

Model-dependent: Learned embeddings More recently, with the first study published in 2020, cf. Table A.1,
an additional category of model-dependent concept drift detection methods has emerged in the literature. This
category uses embeddings for concept drift detection, which are the feature values in intermediate layers of
deep NNs and CNNs as visualized in Figure 4.6. In the LeNet example architecture in Figure 2.12 in Chapter 2,
embeddings may be taken from either of the last two layers before the output activation.
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Six of the studies identified in the literature review belong to this category. The majority of these studies
utilize the concept drift detectors in image classification use cases, e.g., [Banf22; Pian22].
Typically, the embeddings produced by the NNs are multi-dimensional but some authors propose to reduce
the dimensionality by averaging the embedding vectors, e.g., [Acke20a].
The methods that belong to this category are only applicable to deep NNs and CNNs as only these models
produce embeddings, in contrast to classic ML models such as RFs or SVMs. They share the advantages of
confidence-based methods, specifically being more robust to drifts that do not influence the performance
as well as being input-format independent. Additionally, they retain more information when compared to
confidence-based methods, due to the commonly higher dimensionality of the embeddings when compared to
confidences or the entropy.

Following data modeling, hypothesis testing is applied to compare the abstracted data windows which is
explained in the next section.

Stage 3: Hypothesis testing

One or multiple two-sample hypothesis tests, cf. Section 2.4, are used within the final stage of the active
drift detection framework to test whether the data distribution Plive of the current live data window after the
modeling stage (X̃ live) originates from the distribution Pref of the reference data window after the modeling
stage (X̃ref).

Therefore, the hypotheses used in the two-sample test are as follows:

H0 : Plive = Pref ⇒ no concept drift

H1 : Plive ̸= Pref ⇒ concept drift

The null hypothesis H0 describes the case of no concept drift, where the ML model is making predictions
within its known domain and data distribution. Thus, the model performance should be comparable to the test
set performance that was evaluated during development. The alternative hypothesisH1 indicates concept drift
if a significant difference between the current live data window and the reference data was observed. Thus,
the model is operating outside of the reference data distribution and the prediction performance will likely be
degraded. This corresponds to the trigger connection between model monitoring and model maintenance in
Figure 4.2.

Two-sample tests involve calculating a test statistic, cf. Section 2.4, which quantitatively measures the
discrepancy between the two distributions Plive and Pref. This statistic serves as the basis for comparing
the observed data against the expectations under the null hypothesis. The p-value, derived from the test
statistic, quantifies the probability of observing data at least as extreme as the current findings, assuming H0

is true [Lehm86; Chat18]. A decision on the hypothesis is made by comparing the p-value to a predetermined
significance level α:

Decision =

{︄
Reject H0 in favor of H1, if p ≤ α

Retain H0, if p > α
(4.1)

The studies analyzed within the literature review utilize various hypothesis tests, of which a popular selection,
the KS test, the MMD test and the Chi-squared test are introduced in Section 2.4. Nonparametric tests like
these are preferable for concept drift detection as oftentimes no assumptions about the distribution of the
data can be made [Dos 16; Van 19]. The adequate choice of a hypothesis test primarily depends on the
dimensionality and type of the data after the data modeling stage. For a univariate data modeling strategy,
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such as using the prediction confidences, the KS test is often employed, e.g., [Žlio10b; Dos 16; Raba19]. While
the KS test is designed for continuous values, the Chi-squared test is suitable for categorical values [Lehm86].
If the data modeling stage yields multivariate data, such as learned embeddings or features derived from the
input data distribution, multiple univariate tests can be conducted on the individual feature dimensions, or
multivariate hypothesis tests can be used. The MMD test is a commonly used nonparametric multivariate test
employed in several analyzed publications, e.g., [Raba19; Cobb22]. If, instead, multiple univariate tests are
used, the p-values of the individual univariate tests must be properly combined to prevent accumulation of the
α-errors [Lehm86]. As suggested for similar scenarios in [Raba19], the Bonferroni correction [Blan95] can be
used, which adjusts the critical α value to α

n where n is the number of individual two-sample tests that are
performed. H0 is thus rejected if the minimum p-value among all tests is less than α

n .
Lastly, multivariate tests such as the MMD test have the theoretical advantage of being able to detect divergences
that only manifest as unusual combinations of feature values, while a combination of univariate tests only
checks the distributions of each feature individually. Thus, a combination of univariate tests may be unable to
detect certain drifts.

The targeted use cases present certain challenges when applying two-sample hypothesis tests, which will be
elaborated in the following section.

4.3.2. Challenges regarding hypothesis testing

Parts of this section have been previously published as a conference paper titled "A Nearest Neighbor-Based
Concept Drift Detection Strategy for Reliable Tool Condition Monitoring" which appeared in the proceedings of
the International Workshop on Software Engineering and AI for Data Quality in Cyber-Physical Systems in 2023
[Jour23b] and which was additionally reviewed and presented at the Neural Information Processing Systems
(NeurIPS) 2023 Workshop on Distribution Shifts [Jour23c].

All of the introduced state-of-the-art hypothesis testing methodologies for active concept drift detection rely on
the assumption that the samples in the reference and live windows are Independent and Identically Distributed
(i.i.d.) under non-drift conditions. Thus, H0 assumes that the data points in the windows are independently
drawn from the same population. This assumption is problematic in the targeted use cases, especially in the
case of condition monitoring, for multiple reasons:

• Temporal correlation: Even if a large live window is chosen, in use cases related to condition monitoring
it will typically only show a certain sub-population of the full data distribution such as a certain wear
state of a tool or component that is being monitored as wear states change slowly [Tora15]. The data
points within the live window will be highly correlated, and, if the size of the live window is chosen small,
even distances due to different times of day might be flagged as significant deviations in two-sample
tests.

• Sample selection bias: During the acquisition or recording of training data for an ML model, it can be
necessary to stage defects or provoke certain situations that show phenomena like strong wear or product
defects as they are typically rare in actual production [Wues16]. This can lead to a class distribution in
the training and reference data, e.g., the proportion of OK vs NOK parts, that does not correspond to the
class distribution that is observed during the operation of the model, affecting all targeted use cases.
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Thus, it can generally not be assumed that batches of recent deployment data are i.i.d. even if no concept
drift is present. This is problematic as the i.i.d. assumption is essential for the two-sample tests used for drift
detection. Concept drift detectors without further measures might thus raise a high number of false alarms
and thus only provide low precision [Cobb22; Jour23b] which is problematic with respect to RO.b.
This issue is visualized for an exemplary synthetic condition monitoring dataset in Figure 4.9. The synthetic
reference dataset is generated using two features in a diagonal ellipsis with three classes that show progressing
wear states from the bottom left to the top right in three shades of grey.
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Figure 4.9.: Synthetic condition monitoring dataset with two features and three classes of progressive wear
visualized in shades of grey as the referencewindow for drift detection. A livewindow is visualized
in blue, clearly being within the bounds of the known feature space. Visibly, the densities of both
features are strongly different and would thus yield a false positive concept drift detection in a
two-sample test as this would compare the blue and grey densities. Own illustration.

This systemic issue is recognized in a recent publication that proposes Context-Aware Drift Detection [Cobb22].
In their approach, the authors extend a multivariate MMD-based two-sample testing approach for drift
detection by a context variable. This context variable can be, among others, the classifier prediction or the time
of day, and is consequently used to weigh the reference set and increase the relevance of data that corresponds
to a context that is close to the current deployment context. The approach by [Cobb22] will be referred to as
ContextMMD in the following.
Even if the classifier prediction is used as context, the intra-class variance may still yield false positives in use
cases like condition monitoring as visible in Figure 4.9. Thus, a novel approach is developed in this thesis as a
simple and computationally cheap, yet effective alternative: Localized Reference Drift Detection (LRDD). By
choosing an adaptive local reference set to the current deployment data through nearest neighbor search, this
approach aims to reduce false alarms for concept drift without the need to explicitly define a context variable.
In this way, the approach produces a hybrid solution between outlier detection and distributional two-sample
testing. The LRDD algorithm pseudocode is given in Algorithm 1 and visualized in Figure 4.10.
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Algorithm 1 Localized Reference Drift Detection (LRDD)
Input: Reference dataset Dref = {(xi, yi)}nrefi=1

Input: Current data window Dlive,t = {(xi, ŷi)}
nlive
i=1

Input: Number of neighbors k
Input: Significance level α
Output: Drift detection result
1: Standardize Dref and Dlive,t
2: Initialize kNN with Dref
3: Initialize an empty set of indices INN
4: for xi, ŷi in Dlive,t do
5: Get k-nearest neighbors of xi in Dref where yi = ŷi
6: Update INN with the indices of these neighbors
7: end for
8: Extract the refined reference dataset Dlocal,t from Dref using the unique indices in INN
9: Compute p-value using a two-sample test
10: if p ≤ α then return Drift detected
11: elsereturn No drift detected
12: end if
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(a) Example for data distributions with a live window
that is not drifted.
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(b) Example for data distributions with a live window that
is drifted.

Figure 4.10.: Exemplary visualization of the LRDD concept using a synthetic two-feature dataset with three
classes that are distributed along an ellipsis shape. Two scenarios are shown: (a) a live window
that is not drifted. The local reference set shows overlapping distributions. (b) a live window
that is significantly drifted. The local reference set shows strongly distinct distributions, thereby
enabling effective detection. Own illustration.
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LRDD consists of the following procedure: After training of the ML model, a nearest neighbor model is fitted
to the test split Dref of the available dataset. During the operation of the ML model at time t, a data window
Dlive,t = {(xi, ŷi)}

nlive
i=1 that contains the nlive most recent input data points x as well as the corresponding

model predictions ŷ up until time t is used to detect concept drift. Therefore, the k-nearest neighbors of the
data points in Dlive,t are queried from the nearest neighbor model, only considering data points in Dref that
have class labels y that correspond to the ML models estimates ŷ, similar to [Cobb22]. Following this step,
duplicates in the resulting k-neighbor data points are removed. The resulting set of unique k-neighbors forms
the localized reference set Dlocal,t, which can be compared against Dlive,t to check for concept drift.
This approach allows a refined comparison of the current data distribution with a sub-distribution of the
reference set that is closest in feature space, therefore considering the correlation between the data points in
Dlive,t and preventing false positive detections when Dlive,t is not i.i.d. and does not contain samples from all
classes or feature regions in Dref. In case of drift, the samples in Dlocal,t are expected to be far away in feature
space from the samples in Dlive,t which can be detected through two-sample testing.
The two-sample test can be performed with any existing method for checking distributional equality such as
permutation testing with MMD or a combination of univariate KS tests for all feature dimensions as explained
before. The proposed approach has been evaluated using a tool condition monitoring dataset that was released
in the scope of the 2010 challenge of the PHM society [PHM 10]. The evaluation has shown that LRDD
significantly enhanced the precision in detecting drifts by minimizing false alarms for active concept drift
detection based on the ML models input features. For the full details of this evaluation, the interested reader
is referred to the respective publication ([Jour23b]). The approach is further validated in the first case study
of Chapter 5.

4.4. Passive drift detection

In contrast to active drift detection, the passive approach, as stated in Definition 4, does not scan the data
stream for changes that indicate concept drift directly but rather indirectly detects drift by assuming concept
drift is linked to external triggers such as a change of production variants or predefined time intervals. Passive
drift detection thus has the major caveat of potentially triggering model maintenance actions, cf. Figure 4.2,
even if no actual concept drift occurred and, conversely, not being able to directly detect problems such as
sensor defects when they appear. It is thus less precise than active concept drift detection and generally only
preferable if active concept drift detection is not feasible or if the reasons for concept drift are isolated and
well-known.

The primary reason for using passive drift detection is the ambiguity between concept drift detection and
general anomaly detection as identified in Section 3.1.4. In an example application where a specific machine
component or production process is monitored for defects using anomaly detection algorithms such as OC-
SVM, the changes in the observed data from sensors that manifest from a persistent component defect that
sporadically or gradually manifests are not distinguishable from concept drift that is caused by, e.g., a drifting
sensor that does not negatively influence the production process which is monitored. In this scenario, false
positive drift detections may arise from the process or condition monitoring task itself.
Thus, a decision rule can be derived: In the case of anomaly detection applications where anomalies are
not transient but persistent, cf. Figure 4.11, only passive concept drift detection is applicable. The model
maintenance phase is thereby either triggered periodically or by predefined triggers. Active concept drift
detection would only be possible in a supervised way, using true label feedback which is typically unavailable
in anomaly detection use cases.
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Figure 4.11.: Visualization of transient anomalies vs persistent anomalies. Persistent anomalies caused, e.g.,
by a component defect are not easily distinguishable from concept drift. Own illustration.

A secondary reason for passive drift detection is given if the reasons for concept drift are isolated and well-
known, e.g., as identified using historical data.
Manufacturing processes and their output depend on a multitude of internal and external influence factors that
can be suitable as triggers for model maintenance. Figure 4.12 visualizes exemplary influence factors in an
Ishikawa diagram, a tool often used in QC to identify the root cause of a problem [Ishi90]. Ishikawa diagrams
and the included factors are commonly structured using the so-called 5M model, considering Manpower
(people), Material, Machine (equipment), Medium (environment) and Method (process).
ML applications utilizing passive concept drift detection are implemented in [Gori22] in the use case of
anomaly detection for turbomachinery and in [Kahr22] in the use case of energy consumption prediction
using periodic model updates and external triggers for updates, respectively. Furthermore, this path of the
framework is validated in case study 3 in Chapter 5.
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Figure 4.12.: Factors of influence on the manufacturing process visualized as an Ishikawa diagram [Ishi90].
Most of the factors are not constant over time, necessitating adaption of ML models that are
deployed within the process. The 5M model can be used to identify potential concept drift
triggers. Own illustration.
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4.5. Implementation

Within this section, the decision between the presented approaches for concept drift detection is discussed,
followed by practical aspects of the implementation.

The introduced approaches for concept drift detection are summarized together with their respective key
requirements from the preceding sections in Table 4.1. On a high level, the table shows approaches with
increasing detection capabilities from top to bottom. In parallel, the application requirements are increasing
as well, as indicated in the rightmost column. Model performance KPIs are included for completeness, they
are, if applicable, the most direct measure of concept drift in terms of practical model degradation. However,
in the targeted real-world use cases, the requirement of continuous access to true labels typically cannot be
fulfilled as it would make the ML use case itself obsolete.
The decision between an active or passive concept drift detection approach or the utilization of a combination
of both is the first major decision a practitioner has to take when implementing the framework in Figure 4.2.
As described, a passive approach should only be chosen if active detection is not possible or if external triggers
are well-known and accessible, e.g., via an Manufacturing Execution System (MES) or via Open Plattform
Communications Unified Architecture (OPC UA). In use cases that utilize ML for anomaly detection with
permanent anomalies, only passive concept drift detection is applicable, with an exemplary implementation in
case study 3 in Chapter 5.

Table 4.1.: Overview of strategies for concept drift detection with submethods and primary requirements.
Model performance KPIs are included for completeness.
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Category Method Submethod / Data modeling Requirements

Passive (a) Fixed trigger (a.1) Time interval R.a.1 Time interval can be determined
with historic data

(a.2) External trigger R.a.2 Meaningful triggers are known
and accessible

Active (b) Model-independent
monitoring

(b.1)Raw data R.b.1 Model input data is accessible
and meaningful

(b.2)With preprocessing R.b.2 Suitable preprocessing methods
are available

(c) Model-dependent
monitoring

(c.1) Prediction confidences R.c.1 Model is based on an architecture
that produces meaningful confi-
dences or anomaly scores, e.g.,
ensembles

(c.2) Learned embeddings R.c.2 Deep learning is used and embed-
dings are accessible

(c.3) Model performance KPIs R.c.3 Continuous access to true labels
is available
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If the operating conditions of the ML application have been well-defined in the early stages of the CRISP-ML(Q)
process, a combination of both techniques can be applicable, where model maintenance is triggered both
actively, through the described methods, and passively, through known factors such as a change of the product
variant.
With regard to active concept drift detection, ML model-dependent concept drift detection approaches are
generally preferable, as they are less susceptible to false alarms but have specific requirements concerning the
suitability of the utilized ML model as outlined in Table 4.1. If, e.g., a DT is used in the application which
provides neither prediction confidences nor embeddings, only a model-independent method can be used.
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The reference window Dref should ideally be filled with data that was acquired during actual production or
with a held-out test dataset. Especially with ML model-dependent approaches, the training dataset should not
be used, as the distribution of prediction confidences and embeddings may differ due to the training process
[Sun19; Van 19]. Furthermore, it is shown in Section 4.3.2 that standard two-sample tests rely on the i.i.d.
assumption, which is often violated in the targeted use cases. Thus, data modeling techniques that produce
multivariate outputs should utilize the proposed LRDD approach.
Lastly, a significant challenge in configuring concept drift detection methods lies in the lack of testing data for
drifted conditions as these, per definition, are unknown. Thus, parameters such as the significance threshold α
cannot be precisely tuned beforehand. Instead, a first estimate needs to be made and then tuned iteratively. If,
for example, an initial significance level of α = 0.05 is chosen but regular false drift alarms (FP) are observed,
the significance level should be iteratively lowered over time.

4.6. Summary

Chapter 4 introduces a framework for concept drift detection in ML applications used in process and condition
monitoring of manufacturing processes.
First, Section 4.1 presented the DSR approach as the research process in this thesis. Importantly, four objectives
for the framework have been defined, including high precision (RO.a) and recall (RO.b) of the concept drift
detection, applicability to the targeted use cases in manufacturing and their respective common architectures
(RO.c), and lastly, the objective that concept drift should be detected without access to labels after deployment
(unsupervised) (RO.d). In Section 4.2, an overview of the framework and its intended role in concretizing
the monitoring phase of the CRISP-ML(Q) process model is presented. The framework identifies and defines
active and passive concept drift detection. Active concept drift detection is further structured and elaborated
upon in Section 4.3. Active concept drift detection methods track changes in the distribution of the data
that is consumed by the ML application or in the values that are computed by the ML model itself. A three-
staged approach is derived from a systematic literature review that can be configured to fit the application
requirements of a given ML use case in manufacturing. In the first stage, two windows are defined, containing
data from the known reference concept (Dref) as well as a sliding window that shows the most recent data
points (Dlive). In the second stage, data modeling, dimensionality reduction is performed to extract meaningful
values for comparison (X̃ref, X̃ live). In this stage, three major options are identified and discussed. In the last
stage, hypothesis testing, it is assessed whether there are statistically significant differences between the two
windows, which would indicate concept drift. Importantly, it is identified that standard two-sample tests yield
false positive drift detections in the target use cases, as the live window contains highly correlated data points
that do not cover the full value distribution, even if no concept drift occurred. LRDD is proposed as a method
to refine Dref for this scenario.
Section 4.4 introduced passive concept drift as an alternative method if active concept drift detection is not
applicable. Passive concept drift detection triggers model maintenance using predefined external conditions or
time intervals. The Ishikawa diagram is shown as a potential method for identifying influencing factors that
may be used as triggers.
Lastly, Section 4.5 provides a holistic view of all presented approaches as decision guidance for practitioners.
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5. Case studies and validation

This chapter presents the validation of the proposed framework for detecting concept drift in ML-based
monitoring of manufacturing processes through its application in case studies. In three exemplary use
cases, listed in Table 5.1, it is investigated whether the framework is applicable and whether it allows the
effective design and implementation of concept drift detection mechanisms with respect to the ROs defined in
Section 4.1, drawing conclusions and recommendations for practitioners in the process.
Section 5.1 presents the first case study which involves a tool condition monitoring use case applied to a CNC
milling process on a testbed machine. Varying process conditions such as altered feed rates are used to create
diverse datasets with and without drift for testing. Active drift detection is implemented and evaluated for
different scenarios as recommended by the proposed framework. The second case study is presented within
Section 5.2 and is subdivided into a process monitoring and a predictive quality use case. Two experiments
are conducted under equal conditions on a testbed machine but with multiple months in between, introducing
concept drift due to aging equipment. Active drift detection is implemented and evaluated within this case
study as well. Section 5.3 presents the third case study which encompasses a condition monitoring use case
implemented at the site of an industry partner. Here, an anomaly detection application concerned with
permanent anomalies is developed. Thus, passive drift detection is employed and evaluated. Lastly, Section 5.4
discusses the overall findings of the case studies and derives practical recommendations.

Table 5.1.: Overview of case studies and their respective configuration.
Case study Use case Process ML application Drift detection

Case study 1 Condition monitoring CNC milling Supervised classification Active

Case study 2 Predictive quality CNC milling Supervised classification ActiveProcess monitoring Anomaly detection

Case study 3 Condition monitoring Pigment sieving Anomaly detection Passive

5.1. Case study 1: Tool condition monitoring in a CNC milling process

The first case study is concerned with an accelerometer-based tool condition monitoring system within a
CNC milling process. Tool condition monitoring in milling processes is a popular research field with high
practical relevance as presented in Section 2.5.1. This case study serves the purpose of validating the proposed
framework and evaluating the performance of the proposed LRDD method as well as the underlying hypothesis
that the i.i.d. assumption will be violated in condition monitoring use cases, even if no concept drift occurs.
Multiple datasets are generated under specified reference operating conditions and various deviations, leading
to the introduction of concept drift. Consequently, the developed framework for concept drift detection is
applied to the use case, considering different scenarios and ML application designs.
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5.1.1. Use case description and machine learning application design

Experimental setup and equipment

The case study incorporates a 3-axis table milling machine that is located in the FlowFactory learning factory at
the Technical University of Darmstadt, Germany. Specifically, the study utilizes a Stepcraft M.500 3-axis gantry
milling machine, cf. Figure 5.1 that is purposefully selected, configured and retrofitted for the experiments.
This machine type is chosen for its accessibility and possibilities of reconfiguration due to its relatively small
size as well as its relative ease of usage concerning NC programming and control software usage. In contrast
to the stock configuration, the machine is retrofitted with high-frequency accelerometers and equipped with a
minimal quantity lubrication system to prevent edge build-up on the milling tools. Furthermore, mounting
points are installed on the table, as to provide a constant position of the workpiece relative to the machine axis.
Both the lubrication system as well as the mounting points are used to ensure that the experiment conditions
are repeatable and non-deliberate distribution shifts are avoided. As the implementation of the sensors did
not involve structural changes to the machine, the presented system can be transferred to a wide range of
similar machine tools and processes.

(a) CNC machine used for acquiring the datasets with
the attached laptop running the NC control software
WINPC-NC.

(b) Detail view of the milling tool above the aluminum
plate.

Figure 5.1.: Stepcraft M.500 3-axis CNC milling machine used in the tool condition monitoring case study. In
contrast to the stock configuration, a chassis, automatic lubrication, automatic tool exchanger,
accelerometers, as well as a chip extraction system, were retrofitted to enable the experiments.
Own illustration.

The machine is retrofitted with a Bosch CISS multi-sensor. The CISS multi-sensor incorporates an array of
Micro-Electro-Mechanical System (MEMS) sensors, including a triaxial accelerometer (BMA280), gyroscope
(BMG160) and acoustic emission sensor (AKU340). For this case study, only the accelerometer is utilized.
The properties of the accelerometer and the inbuilt data acquisition hardware are summarized in Table 5.2.
The sensor is mounted on the Z-axis of the machine, close to the spindle mount on the gantry. The mount
point is chosen so that the sensor does not exhibit relative movement to the spindle and thus the milling tool,
ensuring relatively constant vibration characteristics across the different positions of the machine. The CNC
machine is controlled by the software WINPC-NC [Lewe24] which interprets G-code that is generated by
Computer-aided Manufacturing (CAM) software from technical drawings of the desired workpiece geometry.
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WINPC-NC enables the export of controller-internal signals to the host PC with a sampling rate of 5Hz via the
Windows registry. Relevant exported signals include:

• absolute axes positions on X, Y and Z,

• controller status, allowing the distinction between regular drive, tool changes, referencing and idle
states, as well as,

• the currently processed program line in the NC program.

Table 5.2.: Properties of the accelerometer used in the Bosch CISS sensor for the tool condition monitoring
case study.

Sensor property Value/Description

Sensor name Bosch BMA280
Measurement axis X,Y,Z
Measurement range ±16 g
Sensor type MEMS

Data acquisition Onboard via USB
Sampling rate fs 2000Hz
ADC resolution 14 bit

As this case study aims to investigate concept drift in tool condition monitoring applications, the general
experiment setup is configured to allow for the generation of comprehensive datasets under varying operating
conditions, while minimizing unnecessary complexity or external disturbances. The machines are used to mill
patterns of pocket geometries into cold-cured aluminum (AlCuMg1) plates with a thickness of 8mm and a
size of 300mm×250mm. During the experiments, 15× 12 pockets are milled in a grid shape into the plate, cf.
Figure 5.1b, in a single pass. The machining parameters are summarized in Table 5.3. The pocket geometry is
chosen as it represents a common geometric feature in various industries [Fert23], while being simple enough
to be machined using a single tool.

Table 5.3.: Tool condition monitoring case study cutting parameters.
Parameter Value/Description

Spindle speed 16 000min−1

Feed rate horizontal 120mmmin−1

Feed rate vertical 30mmmin−1

Depth of cut 4mm
Tool flutes 2
Tool type Solid carbide
Tool diameter 6mm
Material Aluminum 7075
Number of passes 1

Tool wear states

The tool condition monitoring use case considers two different tool conditions. The first condition represents
relatively unworn tools that are able to produce the desired quality outcomes of a typical machining process
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while the second condition represents tools with high wear leading to artifacts such as poor surface finish
and burrs [Zhou18] which can be observed on the aluminum plates used in the experiments. The wear of
milling tools can be quantified by optically measuring the distance from the cutting edge to the end of the
abrasive wear on the flank faces of the tool, defined as Verschleißmarkenbreite (VB) in [DIN 6583]. The
maximum observed value, VBmax, is commonly used as the wear indicator in publications targeting tool
condition monitoring in milling processes [Sagl03; Zhou18].

(a) Milling tool in new condition. (b) Milling tool in worn condition.

Figure 5.2.: Two-flute solid carbide milling tool used in the tool condition monitoring experiments in new (a)
and worn (b) states. Images are taken with a Keyence VHX 5000 digital microscope that is also
utilized to optically measure the flank wear. Own illustration.

To ensure comparable magnitudes of the actual wear in the experiments, a special contraption was designed
that drives a diamond-coated file along the cutting edges of the tools, while applying a constant spring-driven
normal force and optically observing the wear level VBmax through a microscope. Through this mechanism, it
is ensured that both wear classes have low intra-class variance, to minimize the influence of stochastic wear
effects on the results. Similar setups have been proposed in recent tool condition monitoring publications such
as [Fari20]. ATORN 6mm two-flute and three-flute solid carbide tools are used for the trials. Solid carbide
tools are chosen to further reduce intra-class variance as the tools are expected to not experience significant
wear throughout the trials except for the controlled wear that is introduced through the aforementioned
methodology.
In the experiments, healthy tools are defined as tools with a VBmax < 30µm while worn tools are defined as
tools with a VBmax ≥ 30µm. On average, healthy tools had a measured VBmax of 9.7µm while worn tools
had a measured VBmax of 85.7µm. Importantly, the magnitude of the tool wear is oftentimes considered
still acceptable, depending on the use case. While stronger tool wear would likely be easier to detect in the
accelerometer signals, this level is chosen to render the problem more challenging from an ML perspective.

Machine learning application design

A dataset representing the reference operating conditions for the use case is recorded using five tools in
both healthy and worn conditions. The reference condition dataset is split into a training/validation and test
dataset. The training/validation dataset is generated while milling a full aluminum plate using a set of three
tools whereas the test dataset is generated using two additional tools on a different aluminum plate. Thus,
differing instances of the plates, differing instances of the used tools as well as potentially slightly differing
mounting points are assumed to be the expected variation in operating conditions during normal operation.
In summary, two full aluminum plates are used to generate the reference condition training/validation and
testing set, respectively containing 180 milled pockets. An optimized tool-to-pocket assignment is computed
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that ensures that the tools and their respective wear conditions are used evenly across the potential positions
on the aluminum plate. An example image of the NC tool paths is visualized in Figure B.1 in the Appendix.
This is done to prevent unintentional drift caused by varying vibration levels depending on the pocket position
as well as an undesired correlation between pocket position and tool condition.

The host computer running the NC control software is recording two data streams during operation: low-
frequency internal variables of the NC control software as well as the high-frequency 3-axis accelerometer
data. Both are visualized for part of the reference condition dataset in Figure 5.3. The two data sources are
synchronized using the clock of the host computer. Using the NC program state and the current machine
coordinates, windows are extracted that contain the horizontal pocket milling processes, highlighted red in
Figure 5.3. Furthermore, an NC program parser is developed to associate NC program line numbers to the
currently active tool. To enable live predictions of the tool condition during machining, the identified time
windows are further divided into 10 s windows that are treated as individual data points in the experiments.
Consequently, features are extracted from the accelerometer data of the individual windows. Two types
of features are extracted, as outlined in Section 4.3.1: scalar features, cf. Table B.1 in the Appendix, and
image-like features as visualized in Figure 4.8. The fundamentals of the specific features are described in
more detail within Section 2.6. Although there are various other possible features for processing raw data,
these features have proven to be useful in comparable studies, cf. [Cai20]. The scalar features are used to
train shallow models, including all non-deep learning models as well as MLPs.

As identified in Section 2.5.1, tool condition monitoring use cases are typically posed as supervised ML
problems, employing a variety of models, including RFs, SVCs, kNNs, DTs as well as deep learning-based
architectures with wear states or specific fault types as classes. For this experiment, a binary classification
between tools in healthy conditions (y = 0) and tools with strong wear (y = 1) is adopted as introduced
before, comparable to recent studies such as [Hess19]. To enable a comprehensive analysis, all aforementioned
algorithms are trained and compared within the case study.
Five tools are used on two aluminum plates to generate the training and testing data for the reference
conditions. Three of the tools are used for training and validation of the models, while two tools are used
for testing the finalized models. Hyperparameter optimization is done using 5-fold CV on the data from the
training tools and the final hyperparameter values for all models are documented in Table B.2 in the Appendix.
The CNNs use a relatively simple architecture, inspired by LeNet [LeCu98], which is reported in Table B.3 in
the Appendix.
The tool condition classification performance of all the ML models is listed in Table 5.4. Accuracy can be used
to assess performance in this case study as the dataset has almost perfectly balanced class ratios.

Table 5.4.: ML model performance on the reference condition test dataset of the tool condition monitoring
case study.

Metric RF SVC kNN DT MLP CNN (STFT) CNN (CWT)

Accuracy 0.991 0.992 0.970 0.954 0.993 1.000 0.999

F1-Score 0.990 0.992 0.970 0.953 0.993 1.000 0.999

All models show high performance in classifying the tool condition with an average accuracy of 98.53%,
even though training and testing data have been recorded using distinct instances of tools of the same type,
indicating that all models can be used for tool condition monitoring under the defined reference conditions.
The CNN using STFT features reaches perfect accuracy on the reference condition test set.
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Figure 5.3.: Synchronized accelerometer and NC control data of the reference experiment in the tool condition
monitoring case study. Identified windows of horizontal milling are shaded in red. One window
corresponds to a completed pocket in Figure 5.1b. Not all recorded signals are shown. Own
illustration.

5.1.2. Data collection with concept drift

After establishing the ML application on reference conditions with high classification accuracy, further datasets
are generated which are used to evaluate the influence of concept drift on the application and consequently
evaluate the applicability of the framework proposed in Chapter 4.
Four additional experiments are performed to generate a comprehensive dataset under varying operating
conditions. In each of the experiments, data is again recorded for tools in healthy and worn conditions with
different changes to the process. The process changes are assumed to be examples of realistic variations that
might occur over longer terms of application usage. To the equipment operator, it is not obvious if the ML
model is robust against these changes or if the performance will be degraded. The different conditions that
are used in the experiments are detailed within Table 5.5. All additional configurations use a single aluminum
plate each, thus yielding 180 pockets per configuration and 1080 pockets in total.
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The introduced ML models are evaluated on the data recorded with the designated testing tools to get realistic
performance estimates. Importantly, the models are only trained on the data from the designated training
tools under reference conditions. Therefore they have not been exposed to data of the drifted conditions
during training. The performance of the models on the altered operating conditions are reported in Table 5.6.

Table 5.5.: Reference and drift conditions in the tool condition monitoring case study.
Name Expected

influence
Description

Reference conditions - Default milling conditions and parameters as described in Table 5.3.

Spindle change Low Exchanged spindle motor with 1.65 kW instead of 1.4 kW in the original
motor. Process parameters are unchanged with respect to Table 5.3.

Crooked mounting Low The aluminum plate is partially mounted on a 0.2mm thick piece of
copper, thereby introducing crookedness and leading to a slightly larger
depth of cut.

Three-flute cutter High Exchanged cutting tools to three-flute tools out of the same material.
Cutting parameters are unchanged with respect to Table 5.3.

Parameter drift High Feed rates both horizontally and vertically are increased by 10% with
respect to Table 5.3.

Table 5.6.: Performance degradation of the tool condition monitoring application with respect to the intro-
duced process changes. All models are trained on a subset of the reference conditions and
consequently tested on the test split of the reference and the altered conditions.

Metric Configuration RF SVC kNN DT MLP CNN (STFT) CNN (CWT) Avg.

Ac
cu
ra
cy

Reference conditions 0.991 0.992 0.970 0.954 0.993 1.000 0.999 0.985

Spindle change 0.869 0.778 0.802 0.874 0.804 0.829 0.881 0.834
Crooked mounting 0.961 0.963 0.958 0.926 0.965 0.963 0.967 0.958
Three-flute cutter 0.524 0.774 0.440 0.557 0.616 0.451 0.496 0.551
Parameter drift 0.624 0.452 0.487 0.660 0.506 0.478 0.553 0.537

F
1
-S
co
re

Reference conditions 0.990 0.992 0.970 0.953 0.993 1.000 0.999 0.985

Spindle change 0.891 0.837 0.817 0.900 0.824 0.845 0.900 0.859
Crooked mounting 0.942 0.945 0.938 0.894 0.948 0.945 0.951 0.937
Three-flute cutter 0.390 0.809 0.354 0.503 0.612 0.122 0.455 0.464
Parameter drift 0.502 0.472 0.057 0.582 0.144 0.099 0.345 0.314

Two important observations can be made from the results in Table 5.6. First, the introduced process variations
lead to a significant decrease in performance. Crooked mounting introduces the lowest performance decrease
which is expected as the slightly offset mounting will not influence the vibrations as strongly as the other
variations.
Second, the performance degradation of the evaluated algorithms has a large variance but none of the al-
gorithms are robust against the introduced process variations. Interestingly, the feature type – statistical vs
image-like – does not seem to have a systematic influence on the robustness of the algorithms.
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5.1.3. Concept drift detection

Summarizing the preceding section, the developed tool condition monitoring application is performing well
under the defined operating conditions but is, at the same time, clearly vulnerable to concept drift in the form
of operating conditions deviating from the reference. If, e.g., the NC program is updated with new process
parameters or the tool type is changed, the performance will strongly degrade, which is not obvious to the
machine operator. Other changes such as different mounting have less of an influence, cf. Table 5.6, making
it difficult to specify exactly beforehand, under which circumstances the ML model needs to be checked or
updated. Thus, the framework introduced in Chapter 4 is applied in this section.

Active vs passive drift detection

The presented ML application architecture uses supervised classification. Thus, the main reason for resorting
to passive drift detection in case of unsupervised ML with permanent anomalies is not given and active drift
detection can be used. Furthermore, the results of the reference condition experiments, cf. Table 5.6 and
Figure 5.4, show that the models are able to classify the tool condition accurately on the test dataset, which
has been created using different tools and aluminum plates than those used to train the models. Thus, there is
no significant concept drift present in the operating condition variance that is observed for normal operation
of the system and active drift detection is generally preferable in this case study.

In the next sections, the evaluation methodology for the active drift detection experiments is introduced,
followed by a scenario analysis and the respective results.

Reference conditions
Spindle change

Cutter type
Parameter drift

Crooked mounting

Figure 5.4.: t-SNE visualization of experiments conducted in the tool condition monitoring case study. Visu-
alization is based on the features listed in Table B.1. Own illustration.
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Experimental evaluation

The experimental evaluation aims to assess the capability of the active drift detectors to reliably detect
significant distribution shifts that may lead to degradation of classification performance while not raising
false alarms under unshifted conditions. Thus, this experiment is evaluated using the classification metrics
introduced in Section 2.1.2. In this context, the positive – drifted – class is defined as a live window Dlive that
contains data points that do not belong to the reference conditions, e.g., the spindle change dataset, while the
negative class is defined as a live window that contains data points that do belong to the reference conditions.
The data distributions are visualized in a two-dimensional t-SNE plot in Figure 5.4. Most of the introduced
process changes introduce strong drift of the feature distributions. Only the data points of the crooked mounting
dataset do not exhibit a significant change in the feature space, mostly overlapping with the data points of the
reference conditions.

For quantitative evaluation, the dataset corresponding to the training portion of the reference conditions is
further split into a training set (50%) and validation set (50%). The reference condition validation set is used
to initialize all drift detectors and thus corresponds to Dref in Figure 4.3. Consequently, n = 100 sequences
of length |Dlive| are randomly chosen from the reference condition testing set as well as the datasets with
changed process conditions and shown to the initialized detectors. Importantly, only the sequence starting
points are randomly selected and the sequences thus contain data points in their original temporal sequence
which are not randomly shuffled. This renders concept drift detection significantly harder but is more closely
aligned to the real deployment of such a system as explained in Section 4.3.2.
The detectors produce p-values concerning the null hypothesis, cf. Section 4.3.1. Assuming a significance level
α, the elements of the confusion matrix (TP, FP, TN, and FN) are computed for the concept drift detection
performance. Based on these, precision, recall, and the F1-score are reported.

Active drift detection configuration

For active drift detection, the three stages, data acquisition & windowing, data modeling and hypothesis
testing need to be configured as visualized in Figure 4.3.
The tool condition monitoring ML application uses 10 s data windows for feature extraction and prediction.
Thus, these sample lengths are adopted for the drift detection framework as well. A live window size of
|Dlive| = 50 is configured, to strike a trade-off between timely alarms in case of emerging concept drift and
robustness against single outliers.
The recorded datasets, paired with the large variety of implemented ML models allow the investigation of
different scenarios for data modeling. Therefore, three scenarios out of Table 4.1 are evaluated that are deemed
to be of practical relevance in this use case and assume different levels of availabilities and configurations of
the ML models as will be explained in the following:

• model-independent drift detection with preprocessing, b.2 in Table 4.1,

• model-dependent drift detection using prediction confidences, c.1 in Table 4.1, as well as,

• model-dependent drift detection using learned embeddings, c.2 in Table 4.1.
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Scenario b.2: Model-independent drift detection with preprocessing In this scenario, it is assumed that
there is either no direct access to the ML model for drift detection purposes or that the utilized model does not
produce meaningful prediction confidences or learned embeddings, which is the case for a significant portion
of models that are evaluated in this case study. Thus, the drifted operating conditions shall be detected by
monitoring the distribution of the sensor data. Drift detection based on raw data – b.1 in Table 4.1 – is not
seen as a viable alternative for two reasons: First, the high sampling rate of the sensor would lead to extremely
long runtimes and computational costs of the drift detection algorithms. Secondly, existing literature shows
that spectral and statistical features are required to capture the information regarding tool wear from the
accelerometer time series data [Cai20]. Thus, the feature values that are used for prediction by the models, cf.
Table B.1, are utilized for active drift detection as well. Compared to further preprocessing or dimensionality
reduction techniques, this has the benefit of being computationally cheap as the features need to be calculated
either way, and it further increases the relevance of the detections as the drift detection uses the same features
as the models used for tool wear prediction. Importantly, this scenario only applies to the scalar features and
cannot easily be applied to spectrograms or scalograms. In those cases, the subsequent scenarios – c.1 and c.2
– are applicable.
Four methods are consequently implemented and evaluated for two-sample testing as introduced in Section 4.3.
All methods operate on the 48-dimensional data points containing the features listed in Table B.1.

• KS: Univariate KS tests are used on all feature dimensions individually aggregated using the Bonferroni
correction as implemented in alibi-detect [Van 19].

• MMD: A multivariate MMD test is used on all feature dimensions using the implementation in alibi-detect
[Van 19].

• ContextMMD: Contextualized version of MMDDrift as introduced in [Cobb22], cf. Section 4.3.2, using
the implementation in alibi-detect [Van 19]. The model predictions are used as context variables.

• LRDD: The kNN-based reference set refinement method proposed in Section 4.3.2 applied as a prepro-
cessing method before the actual two-sample testing. A parameter study is conducted concerning the
optimal choice of two-sample test and number of neighbors k in the proposed LRDD approach with the
results reported in Table B.4 in Appendix B.2. Notably, k = 1 with MMD testing is the best-performing
approach and this configuration is consequently adopted for the further evaluation of the case study.

The F1-scores of this scenario are reported in Table 5.7. Additionally, precision and recall of this experiment
are listed within Tables B.5 and B.6 in the Appendix. From the results in Table 5.7, three main conclusions
can be drawn. First, the low F1-scores for KS and MMD confirm the hypothesis of Section 4.3.2 that simple
two-sample tests are not suited for drift detection in condition monitoring applications. This can be explained
by the high correlation of the data points in the live window over time and the fact that they only show a
certain subset of the full reference conditions at a given time. Further analysis shows that the low F1-scores
for KS and MMD detectors are caused by the detector flagging almost all data samples as drifted, independent
of whether they belong to the reference conditions or the drifted ones. This results in a very low precision,
while the recall is very high, cf. Tables B.5 and B.6 in the Appendix. Second, using the proposed LRDD method
or alternatively ContextMMD [Cobb22], the drift detectors reach significantly higher scores. Thus, the drifted
conditions are detectable in all three datasets using the proposed methods in this scenario. In this context, it
is notable that lower α values lead to higher performance in terms of F1-scores as the number of false positive
detections is lowered, consequently increasing the precision. Lastly, even the detectors that perform well for
other datasets show low performance on the crooked mounting dataset. This is a desirable result, as crooked
mounting does not decrease the performance of the ML model significantly as presented in Table 5.6. Thus, it
should not be distinguishable from the reference operating conditions.
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Table 5.7.: Drift detection performance in scenario b.2 of the tool condition monitoring case study. Mean
F1-scores and their standard deviations are reported over 10 experiment runs. Crooked mounting*
is marked with an asterisk as it did not degrade the performance of the application as listed in
Table 5.6 and thus does not constitute concept drift.

F1-Scores
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Features

KS 0.667± 0.000 0.667± 0.000 0.667± 0.000
MMD 0.668± 0.002 0.667± 0.001 0.667± 0.001
ContextMMD 0.888± 0.008 0.868± 0.004 0.782± 0.019
LRDD 0.923 ± 0.014 0.902 ± 0.011 0.880 ± 0.013

Crooked mounting* Features

KS 0.667± 0.000 0.667± 0.000 0.667± 0.000
MMD 0.668± 0.002 0.667± 0.001 0.667± 0.001
ContextMMD 0.266± 0.056 0.318± 0.035 0.471± 0.021
LRDD 0.050± 0.022 0.098± 0.035 0.179± 0.050

Three-flute cutter Features

KS 0.667± 0.000 0.667± 0.000 0.667± 0.000
MMD 0.668± 0.002 0.667± 0.001 0.667± 0.001
ContextMMD 0.888± 0.008 0.868± 0.004 0.782± 0.019
LRDD 0.922 ± 0.014 0.902 ± 0.012 0.879 ± 0.013

Parameter drift Features

KS 0.667± 0.000 0.667± 0.000 0.667± 0.000
MMD 0.668± 0.002 0.667± 0.001 0.667± 0.001
ContextMMD 0.881± 0.004 0.865± 0.003 0.782± 0.019
LRDD 0.920 ± 0.015 0.901 ± 0.011 0.880 ± 0.013

Scenario c.1: Model-dependent drift detection using prediction confidences In this scenario, it is assumed
that there is direct access to the ML model’s prediction confidences, thus enabling model-dependent drift
detection. The confidence monitoring is implemented using KS-tests on the (univariate) prediction entropy
H(p(y|x)) of each of the trained models. All models except the CNN are implemented using the scikit-learn
python library [Pedr11] and use the corresponding implementations for confidence estimation, as introduced
in Section 2.2. As SVCs do not possess an in-built mechanism for estimating prediction confidences, the
confidences are estimated using isotonic regression [Plat99].

The evaluation results of this scenario are reported in Table 5.8. Again, precision and recall values for this
experiment are listed in Tables B.7 and B.8 in the Appendix. The results in Table 5.8 indicate that only
the monitoring based on the RF confidences provides satisfactory detection performance. While the RF
confidence-based detection even outperforms some of the approaches in scenario b.2, all other models perform
poorly in this scenario. This follows previous studies, indicating that ensemble algorithms like the RF provide
more meaningful confidence estimates for data unseen during training than other algorithms [Diet00; Laks17;
Jour21c]. The experiment results further indicate that if univariate confidences or entropies are used, the i.i.d.
problem described in Section 4.3.2 and indicated in scenario b.2 does not arise and unmodified two-sample
tests show high drift detection performance. This is most likely due to the confidence not depending on the
current class as much as the feature distributions. The additional usage of the proposed LRDD method did not
show performance increases in this scenario.

In conclusion, prediction confidence-based drift detection in conjunction with a univariate KS-test can be
utilized effectively if models are used that provide well-calibrated confidences.
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Table 5.8.: Drift detection performance in scenario c.1 of the tool condition monitoring case study. Mean
F1-scores and their standard deviations are reported over 10 experiment runs. Crooked mounting*
is marked with an asterisk as it did not degrade the performance of the application as listed in
Table 5.6 and thus does not constitute concept drift.

F1-Scores
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Entropy

KS (RF) 0.920 ± 0.018 0.922 ± 0.016 0.886 ± 0.020
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.655± 0.005 0.660± 0.005 0.668± 0.003
KS (kNN) 0.281± 0.060 0.373± 0.073 0.460± 0.054
KS (MLP) 0.616± 0.035 0.618± 0.036 0.651± 0.018
KS (CNN) 0.637± 0.005 0.641± 0.005 0.658± 0.005

Crooked mounting* Entropy

KS (RF) 0.223± 0.048 0.285± 0.037 0.410± 0.028
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.665± 0.008 0.666± 0.006 0.667± 0.004
KS (kNN) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (MLP) 0.510± 0.025 0.552± 0.021 0.610± 0.009
KS (CNN) 0.670± 0.001 0.670± 0.001 0.670± 0.003

Three-flute cutter Entropy

KS (RF) 0.935 ± 0.015 0.932 ± 0.015 0.887 ± 0.020
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.615± 0.013 0.639± 0.012 0.664± 0.006
KS (kNN) 0.408± 0.038 0.463± 0.032 0.541± 0.026
KS (MLP) 0.734± 0.022 0.735± 0.023 0.749± 0.014
KS (CNN) 0.497± 0.002 0.502± 0.003 0.499± 0.004

Parameter drift Entropy

KS (RF) 0.930 ± 0.015 0.928 ± 0.014 0.887 ± 0.020
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.670± 0.005 0.670± 0.004 0.670± 0.003
KS (kNN) 0.031± 0.022 0.048± 0.027 0.071± 0.026
KS (MLP) 0.665± 0.038 0.676± 0.024 0.696± 0.018
KS (CNN) 0.638± 0.003 0.663± 0.007 0.670± 0.003

Scenario c.2: Model-dependent drift detection using learned embeddings In this scenario, it is assumed
that deep learning models are used that provide learned embedding values that are accessible. This scenario
is partially similar to the first one, mainly exchanging the handcrafted features in Table B.1 by features which
are learned and computed by the model itself. For the experiments, the 32-dimensional output of the first
fully connected layer within the CNN architecture is used, cf. Table B.3. The same four detector variants as in
scenario b.2 are used. The evaluation results of this scenario are reported in Table 5.9 with precision and
recall values reported within Tables B.9 and B.10 in the Appendix.

The most notable result of the evaluation in this scenario is the similarity of the results to scenario b.2. The same
problem of a high number of false positives and thus a low precision arises with the simple two-sample tests
(KS and MMD). Again, this problem is effectively mitigated using the proposed LRDD method or ContextMMD
[Cobb22]. Importantly, the results for configurations such as parameter drift show, on average, the highest
F1-scores of the three analyzed scenarios. This is explainable by the fact that the CNN embeddings are both
model-specific, as they represent the learned features of the model, and are still fine-grained when compared
to the model confidences.
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Table 5.9.: Drift detection performance in scenario c.2 of the tool condition monitoring case study. Mean
F1-scores and their standard deviations are reported over 10 experiment runs. Crooked mounting*
is marked with an asterisk as it did not degrade the performance of the application as listed in
Table 5.6 and thus does not constitute concept drift.

F1-Scores
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Embeddings (CNN)

KS 0.670± 0.001 0.670± 0.001 0.670± 0.001
MMD 0.670± 0.001 0.670± 0.001 0.667± 0.001
ContextMMD 0.898 ± 0.004 0.890 ± 0.005 0.856± 0.005
LRDD 0.841± 0.023 0.870± 0.009 0.901 ± 0.005

Crooked mounting* Embeddings (CNN)

KS 0.670± 0.001 0.670± 0.001 0.670± 0.001
MMD 0.670± 0.001 0.670± 0.001 0.667± 0.001
ContextMMD 0.385± 0.055 0.442± 0.075 0.523± 0.081
LRDD 0.000± 0.000 0.000± 0.000 0.000± 0.000

Three-flute cutter Embeddings (CNN)

KS 0.670± 0.001 0.670± 0.001 0.670± 0.001
MMD 0.670± 0.001 0.670± 0.001 0.667± 0.001
ContextMMD 0.898 ± 0.004 0.890± 0.005 0.856± 0.005
LRDD 0.895± 0.004 0.891 ± 0.005 0.923 ± 0.007

Parameter drift Embeddings (CNN)

KS 0.670± 0.001 0.670± 0.001 0.670± 0.001
MMD 0.670± 0.001 0.670± 0.001 0.667± 0.001
ContextMMD 0.898± 0.004 0.890± 0.005 0.856± 0.005
LRDD 0.949 ± 0.023 0.974 ± 0.016 0.993 ± 0.002

5.1.4. Interim summary

This case study shows an exemplary implementation of the developed framework in a real-world tool condition
monitoring use case. A diverse dataset is generated that represents both reference operating conditions as well
as multiple drifted conditions recorded under realistic variations of the process parameters and the general
setup. Several ML models are trained on the reference conditions and tested on both reference conditions and
the drifted conditions. It is shown that the performance of all models remains stable in reference conditions
but degrades strongly in the drifted conditions, highlighting the necessity of continuously checking deployed
ML applications in manufacturing for concept drift.

An active drift detection approach is selected and implemented in three different scenarios, showing that the
drifted operating conditions can be reliably detected in all of them using the identified methodology, achieving
objectives RO.a-RO.d for this case study.
Importantly, it is shown in two scenarios, specifically for scenarios b.2 and c.2 that simple two-sample testing
fails in condition monitoring scenarios within manufacturing as even for the reference conditions, the live data
only shows a subset of the whole data distribution and the data points are highly correlated over time, violating
the i.i.d. assumption. In the evaluated cases, the KS and MMD tests yield a high number of false positives,
thereby flagging even the reference conditions as drifted, confirming the assumptions stated in Section 4.3.2.
Consequently, the proposed LRDD approach is validated in these two scenarios, showing strongly improved
detection rates.
Furthermore, the results validate the assumption that model-dependent drift detection techniques are to be
typically preferred overmodel-independent drift detectionmethods, as they achieve slightly higher performance
values throughout the experiments.
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Lastly, the experiments show that choosing a suitable significance level α presents a major challenge in
implementing a drift detection framework, as no single α value is optimal in each experiment. Thus, the
significance value should be adjusted throughout the application lifetime.

5.2. Case study 2: Predictive quality and process monitoring in a CNC milling
process

The second case study is concerned with predictive quality and process monitoring in a CNC milling process
based on NC control-internal signals of the CNCmachine. Process monitoring based on internal machine signals
is highly relevant for commercial applications as machine tools are increasingly equipped with sophisticated
edge computing solutions that enhance data availability while not relying on external sensors [Fert22a;
Fert22b].
This case study serves the purpose of validating the proposed framework for additional use cases and data
types when compared to the previous one. Importantly, process monitoring often involves anomaly detection
ML models, which were not used in the first case study. Two datasets are used that were originally presented
in [Fert22b] and which have been recorded in equal settings but 1.5 years apart. Consequently, the influence
on ML model performance is analyzed and the developed framework for concept drift detection is applied to
the use case, again considering different scenarios and application designs.

CIR_2

Figure 5.5.: Schematic representation of the part geometry and quality-relevant features in the predictive
quality case study. The binary quality prediction of CIR_2 is analyzed within the case study. Figure
corrected and extracted from [Fert22b].

5.2.1. Use case description and machine learning application design

Experimental setup and equipment

As this dataset has been previously published, only a concise summary is presented in this section and the
interested reader is referred to the respective publications, cf. [Fert22a; Fert22b], for the full details regarding
the dataset, the experiment setup and the data segmentation process. The dataset for this case study was
generated in the TEC-Lab at the Technical University of Darmstadt, Germany, and captures the milling process
of pocket geometries, cf. Figure 5.5. In the analyzed process, a total of 392 pockets are milled into eight plates
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of 42CrMo4V steel in a 7× 7 grid pattern. The part geometry and machining parameters are summarized in
Figure 5.5. Each pocket consists of seven quality-relevant geometric elements with defined tolerances.

The parts are manufactured in the summer of 2020 on a DMG MORI 3-axis DMC 850 V machining center,
which is equipped with a Sinumerik 840D sl control system. Additionally, an edge computing solution was
installed that provides access to NC control-internal signals at a frequency of 500Hz. The recorded signals
of this dataset are summarized in Table 5.10. After the production, the quality-relevant geometric features

Table 5.10.: Available NC controller signals in the predictive quality case study. All signals are recorded at
500Hz.

Signal name Axis

CMD_SPEED X, Y, Z, Spindle
CTRL_DIFF X, Y, Z
CURRENT X, Y, Z, Spindle
linENC_POS X, Y, Z
ENC_POS Spindle
POWER X, Y, Z, Spindle
TORQUE X, Y, Z, Spindle

were measured in a coordinate measurement machine. The test series served the purpose of investigating
process-parallel quality predictions under near-production conditions. Thus, various perturbations were
introduced during the milling process, which partially resulted in quality deviations.

Machine learning application design

The quality measurements are used to assign a binary label y ∈ {OK,NOK} to each quality-relevant feature,
which is the target variable for the ML task. In this case study, the classification regarding the CIR_2 feature,
cf. Figure 5.5, being in (OK) or out of tolerance (NOK) is exemplarily considered.
In contrast to the authors of the original publications [Fert22a; Fert22b], this thesis defines the positive class
as the (rarer) NOK class as the dataset shows a strong class imbalance and is biased towards the majority (OK)
class making up 78% of the pockets. This is done to enhance the meaningfulness of the metrics as especially
precision and recall strongly depend on the class balance. Most metrics assume that the positive class is the
class of interest, i.e. that should be detected, while the negative class is the more common, general case
[Murp12; Agga17].

The machine control signals are partitioned into time segments each corresponding to the milling process of
the geometric feature CIR_2 in an individual pocket. The partitioning is achieved based on the NC controller
state using the slicing algorithm presented in [Fert22a]. Based on the segments, the scalar statistical and
spectral features listed in Table B.1 in the Appendix are extracted.1 Due to a large number of features
(23 signals× 16 features = 368) and a low number of samples (392 pockets), an additional feature selection
is performed using the python package tsfresh [Chri18]. The 10 features with the overall highest correlation
to the target variable on the training set are kept, which are listed in Table B.11 in the Appendix.
As identified in Section 2.5.2, quality-related ML use cases are commonly posed as either supervised clas-
sification tasks in the context of quality prediction or unsupervised anomaly detection tasks in the context
1In this case study, no image-like features such as spectrograms and scalograms are considered as those did not yield satisfactory
performance levels with this type of input data, consistent with earlier analysis [Fert22b]. This may be caused by the considerably
lower sampling rate compared to the other case studies.
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of process monitoring. Thus, both categories of ML models are analyzed. The dataset is split into training
and testing data and hyperparameter optimization is done using 5-fold CV on the training data. The final
hyperparameter values of all models are documented in Table B.12 in the Appendix.
The accuracy and the F1-Scores for all models are summarized in Table 5.11.

Table 5.11.: ML model performance on the test dataset of the predictive quality and process monitoring case
study.

Supervised classification Anomaly detection
Metric RF SVC kNN DT MLP IF LOF OC-SVM

Accuracy 0.992 0.975 0.992 0.975 0.992 0.898 0.941 0.763

F1-Score 0.980 0.943 0.980 0.941 0.980 0.806 0.877 0.641

All supervised classification models reach high levels of performance on the test dataset. On average, the
classification models achieve significantly higher performance than the anomaly detection models. This is
most likely caused by an overlap of the defect types between training and testing data – as the supervised
classification models are trained with examples of the NOK data, they can identify it easier when compared to
anomaly detection models which are only exposed to OK data during training.

5.2.2. Data collection with concept drift

To study the influence of concept drift on this type of ML application, another 196 pockets, distributed over
four plates were produced in a second run in the winter of 2022 using the same experimental design, machine
and process perturbations as introduced earlier. The class imbalance is almost identical to the aforementioned
dataset collected in 2022, with 79% of pockets having the CIR_2 feature within the given quality tolerances
(OK). Similar to the first case study, the models trained on the training data of the first trial (summer 2020)
are consequently evaluated on the testing data of the second trial (winter 2022) and the results are listed in
Table 5.12.

Table 5.12.: Performance degradation of the predictive quality and processmonitoring application concerning
the recording dates of the data used for testing. All models are trained on the training split of
the Summer 2020 data and consequently tested on the test split of both experiment runs.

Supervised classification Anomaly detection
Metric Dataset RF SVC kNN DT MLP IF LOF OC-SVM Avg.

Accuracy Summer 2020 0.992 0.975 0.992 0.975 0.992 0.898 0.941 0.763 0.941

Winter 2022 0.718 0.633 0.706 0.718 0.689 0.220 0.271 0.215 0.521

F1-Score
Summer 2020 0.980 0.943 0.980 0.941 0.980 0.806 0.877 0.641 0.894

Winter 2022 0.324 0.270 0.316 0.324 0.304 0.317 0.287 0.322 0.308

Similar to the first case study, there is strong performance degradation in all of the ML models. Again, the
performance decrease is relatively uniform across the model categories, with the anomaly detection models
suffering a stronger decay than supervised classification models. The degradation of the F1-Score is higher
compared to the accuracy which is caused by the class imbalance. In contrast to the first case study, this
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degradation cannot be directly attributed to a change in the process parameters but rather is caused by
cumulative changes, wear, the change of seasons and aging that happened in the 1.5 years that passed
between the experiment runs, highlighting the vulnerability of ML models in manufacturing operations.
The distribution of the feature values is visualized in Figure 5.6 – notably, both the OK and NOK classes appear
shifted between the experiment runs, explaining the performance degradation.

Summer 2020 - OK
Summer 2020 - NOK

Winter 2022 - OK
Winter 2022 - NOK

(a) Results of 2D PCA, colored by trial and class.

Summer 2020 - OK
Summer 2020 - NOK

Winter 2022 - OK
Winter 2022 - NOK

(b) Results of 2D t-SNE, colored by trial and class.

Figure 5.6.: PCA and t-SNE visualizations of the experiments in the predictive quality case study. Visualiza-
tions are based on statistical and spectral features, cf. Table B.11 in the Appendix. One sample
corresponds to the milling process data of the CIR_2 geometric feature in one pocket. Own
illustration.

5.2.3. Concept drift detection

Summarizing the preceding section, the developed predictive quality and process monitoring application
shows high performance under the defined operating conditions but suffers strong performance degradation
in the second experiment run that is likely caused by subtle changes that happened in the 1.5 years between
the trials, which would not be obvious to the machine operator and may only be noticed when the false
predictions of the ML model cause problems downstream. Thus, the framework introduced in Chapter 4 is
applied in this section.

Active vs passive drift detection

The presented ML application uses two categories of ML models: supervised classification, which is similar to
the first case study, and anomaly detection. As anomalies in terms of NOK parts are expected to be rather
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sporadic and not due to permanent state changes of the production process, active drift detection is preferable,
as described in Section 4.5.

Experimental evaluation

The evaluation largely follows the structure that is introduced in the first case study, cf. Section 5.1.3. Again,
multiple scenarios are evaluated that depend on the configuration of the use case. Importantly, three major
differences exist compared to the first case study.
First, the dataset is limited in the way it was recorded: The defect types are not introduced sporadically but
rather one after the other. Thus, it is required to randomly shuffle the data to get representative training and
testing splits, different to the first case study, in which there were separate tools used for testing. Through
the random shuffling, the temporal correlation is not given anymore and it is thus not necessary to use the
introduced LRDD method. Importantly, this only applies to this evaluation, in practical usage it would still be
required.
Second, as mentioned in the previous section, deep learning approaches based on spectrograms and scalograms
did not yield satisfactory prediction results in this case study. Thus, learned embedding-based approaches, c.2
in Table 4.1, are not evaluated here, as those approaches are only compatible with deep learning models.
Lastly, the process monitoring use case utilizes anomaly detection models that output anomaly scores, similar
to the prediction confidences of supervised classification models. Thus, they are utilized in the same way.

As the remaining scenarios overlap with the scenarios of the first case study, they are briefly introduced:

• Scenario b.2: Model-independent drift detection with preprocessing – equivalent to scenario b.2 in the
first case study.

• Scenario c.1.1: Model-dependent drift detection using prediction confidences – equivalent to scenario
c.1 in the first case study.

• Scenario c.1.2: Model-dependent drift detection using anomaly scores – equivalent to scenario c.1 in
the first case study, but using anomaly scores instead of prediction confidences.

The F1-scores of all scenarios are reported in Table 5.13. Additionally, precision and recall of this experiment
are listed within Tables B.13 and B.14 in the Appendix.

The results in Table 5.13 show that the drifted data is detectable in all three scenarios. Interestingly, the
KS-based detector in scenario b.2 is performing poorly on this dataset. This may be caused by the data
structure, as the signals used as input data, cf. Table 5.10, are likely less correlated than the signals used in
the first case study, which all originated from the same sensor. The multivariate MMD-based detection method
performed very well in comparison.
In scenario c.1.1, only the RF confidences allow effective drift detection, similar to the previous case study,
closely followed by the MLP.
In scenario c.1.2, all anomaly detection model scores are showing very high performance in detecting the
drifted operating conditions, surpassing the results of the other two scenarios in certain configurations. This
highlights the utility of using model-dependent drift detection methods, especially if anomaly detection models
are used.
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Table 5.13.: Drift detection performance in the predictive quality and process monitoring case study. Mean
F1-scores and their standard deviations are reported over 10 experiment runs.

F1-Scores
Dataset Scenario Detector α = 0.005 α = 0.01 α = 0.05

Winter 2022

Scenario b.2 KS 0.183± 0.060 0.233± 0.066 0.704± 0.032
MMD 0.971± 0.013 0.991± 0.004 0.978± 0.008

Scenario c.1.1

KS(RF) 0.880± 0.031 0.923± 0.031 0.983± 0.010
KS(DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS(SVC) 0.182± 0.055 0.228± 0.075 0.539± 0.056
KS(kNN) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS(MLP) 0.830± 0.021 0.861± 0.021 0.931± 0.021

Scenario c.1.2
KS(IF) 1.000± 0.000 0.986± 0.006 0.952± 0.013
KS(OC-SVM) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS(LOF) 1.000± 0.000 1.000± 0.000 0.957± 0.010

5.2.4. Interim summary

This case study shows an additional implementation of the developed framework in a predictive quality
and process monitoring use case. Two datasets are generated that capture the same milling process at
different times and seasons. It is shown that ML models trained with data of the first experiment run have
significantly degraded performance on the later experiment run. Thus, concept drift has occurred in between
the experiments, which may be caused by aging equipment and the differing seasons.
An active drift detection approach is again selected and implemented in three different scenarios, showing
that the drifted operating conditions can be reliably detected in all of them using the identified methodology,
achieving objectives RO.a-RO.d for this case study. In addition to the scenarios that were evaluated in the
first case study, it is shown that the anomaly score of anomaly detection models in the context of process
monitoring is a strong method for data modeling in the respective scenario.

5.3. Case study 3: Condition monitoring in a pigment sieving process

The third case study is concerned with an accelerometer-based condition monitoring system for ultrasonic
sieves within a pigment production process chain. The work presented within this case study is done in the
context of a research project conducted with a company in the chemical sector. The produced pigments are
used, among others, in cosmetics, food products and the automotive industry. The case study investigates
the special case, identified in Section 4.4, of anomaly detection use cases with permanent anomalies. In this
situation, concept drift cannot be distinguished from the permanent anomalies the ML application is designed
to detect. Thus a passive approach to drift detection is implemented. Through multiple trial runs on a test
machine, the magnitude of concept drift between production runs is evaluated and a suitable ML application
design is derived by applying the developed framework.
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5.3.1. Use case description

The pigment production is conducted in batches of product variants which are produced in three continuous
shifts over multiple days or sometimes weeks.
The pigment production process starts with raw mica as the starting material. The raw materials are stored in
a barrel located on the top floor of the production building and then flow down into the coating barrel. In this
stage, coloration occurs as the raw material particles receive a coating. Following this, the intermediates are
pumped back up from the intermediate vessel to a filtration system. This system contains a rotating cylinder
equipped with a filtering mesh, designed to remove foreign and coarse particles. The next step involves
dehydrating the purified product solution in a drying facility. At this point, the product is in a powdered form
and is placed on a flat conveyor belt for calcination. During this process, impurities and extraneous substances
are evaporated. Additionally, for some products, thermal decomposition occurs due to the high temperatures,
facilitating the formation of the final product.
The last operation in the production process is the sieving of the final product to remove impurities and
pigment particles with diameters that exceed the specification. The pigment material that passes through the
sieve is immediately packaged in the final packaging. That way, the sieving has a critical influence on the final
product quality.
The sieving process involves sieving machines from different suppliers, cf. Figure 5.7 that all operate in similar
ways. The sieving machines consist of metal enclosures in which a metal mesh with varying mesh sizes
depending on the pigment specification is installed. The machines are excited in two ways to facilitate the
material flow rate: First, an excentric electrical motor shakes the whole sieving assembly at low frequencies
(fexcentric ≈ 100Hz) but high amplitudes. Second, the mesh itself is excited by an ultrasonic resonator at
fultrasonic ≈ 35 kHz.

Material entering

Excentric

Sieve mesh

Ultrasonic
motor

resonator

Observation
window

Material leaving
(a) Schematic side cut-out drawing of the sieving appara-

tus with both sources of excitation. Own illustration.
(b) Example of sieving mesh with ultrasonic excitation

source. Extracted from [Ultr24].

Figure 5.7.: Components of the sieving machine used in the pigment production case study.

Amajor problem in pigment production is that the sieve mesh sporadically develops tears as shown in Figure 5.8.
Tears lead to particles and other impurities entering the final product that do not adhere to the specifications,
affecting the product’s quality.

As the tears appear highly sporadically, the currently applied maintenance strategy is corrective which
oftentimes involves a significant delay. Employees regularly check the mesh surface optically through an
observation window in two-hour intervals, which is a non-value-adding activity. Oftentimes, tears are not
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noticed for prolonged times as optical observation is inhibited by the dusty air inside the sieve. Additionally,
samples of the sieved pigments are checked in the laboratory. While the laboratory method exhibits a high
accuracy, it also introduces a delay of hours to days until a problem is noticed. As the batches that were sieved
with tears in the mesh have to be processed again or discarded, this leads to high costs for the company. Thus,
the case study’s goal is to investigate how a condition monitoring system can be designed to detect starting
tears early on and consequently notify employees autonomously.

(a) (b) (c) (d)

Figure 5.8.: Examples of sieve mesh tears in the pigment production case study. Own illustration.

5.3.2. Experiment setup and data exploration

While several patents exist on approaches to detect tears in industrial sieving machines, cf. [Zhu22], no
commercial solution was found that is applicable to the requirements of the pigment production process. A
master’s thesis supervised by the thesis author selected anomaly detection within the sieve’s vibration response
to the ultrasonic excitation as the most promising approach for condition monitoring among several competing
concepts [Zhu22]. A sampling rate of fs ≥ 2 · fultrasonic should be chosen according to the theorem of Nyquist
to prevent aliasing [Lyon97] and thus properly record the vibration response of the sieve to the excitation.
Consequently, an ADC and sensor are chosen that allow sampling of the acceleration at fs =102.4 kHz. Two
uniaxial accelerometers are attached to the outer hull of the lower cone of the designated test sieving machine,
cf. Figure 5.7a for the purposes of the experiment. The properties of the accelerometers are summarized in
Table 5.14.

Table 5.14.: Properties of the accelerometer used in the pigment production case study.
Sensor property Value/Description

Sensor name HBK 4397-a
Measurement axis Z
Measurement range ±500 g
Sensor type IEPE

Data acquisition NI 9250 DAQ
Sampling rate fs 102 400Hz
ADC resolution 24 bit

To analyze the viability of the data acquisition setup and the detectability of sieve tears through the vibration
response, four experiment runs have been performed with a test sieving machine under near-production
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conditions. In the experiments, the sieve is left running, and after a certain time, a tear is introduced manually
through a sharp object, cf. [Zhu22]. The STFT spectrograms of two experiments are exemplarily visualized in
Figure 5.9. Visibly, there is a strong amplitude at the excitation frequency fultrasonic ≈ 35 kHz and possible
harmonics at approximately half the excitation frequency.
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Figure 5.9.: Spectrograms of two full experiment runs in the piegment sieving case study. Brighter colors
signalize higher amplitudes at the respective frequencies. The artificial tears are introduced
at approximately time step 6100 in the first run and 6800 in the second run. The experiment
duration is approximately 166min in each run. Only one sensor signal is visualized for each run.
Own illustration.

Two important findings can be derived from the experiments and the visualization in Figure 5.9: First, the
vibration response after the sieve tear is visibly different from the vibration response before the tear, indicating
the general viability of the measurement concept. Secondly, the vibration response differs strongly between
the two visualized experiments and also between the other two conducted experiments. This includes both,
the vibration response prior to the tear as well as the vibration response after the tear. This variance can
be attributed to concept drift between the experiments. The sieve meshes were exchanged in between the
experiments, which involved variations in sieve mesh size and mounting position as there is no fixed reference
for the orientation of the sieve, the excitation source and the respective cable connection. This variation is
only expected to increase in real production as this involves the added variation of different pigment types
flowing through the apparatus.
The ML application in this case study is tasked with predicting if a given data point belongs to an intact sieve
surface which corresponds the negative class (y = 0), or a torn sieve which corresponds to the positive class
(y = 1). In contrast to the previous two case studies, no metadata exists to semantically segment the data in
time within this case study as the process is continuous. Thus, the data is divided into 2 s segments for feature
extraction. Based on the segments, two feature types are calculated for different kinds of ML models. First,
the scalar statistical and spectral features listed in Table B.1 in the Appendix are computed for each of the two
sensor signals. Additionally, spectrograms and scalograms are computed for each segment and signal as input
for CNN-based models. Based on the extracted features, the data distributions of the experiments shown in
Figure 5.9 are visualized as two-dimensional plots using PCA and t-SNE in Figure 5.10. This plot supports the
visual findings from Figure 5.9 as it shows that both the healthy and tear classes are visibly different between
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the two experiment runs. Notably, the classes within the trials are separable in both the PCA and t-SNE plots.
The class clusters of different trials are not overlapping though, signalizing significant concept drift in between
the experiment runs.

#1 (Healthy)
#1 (Tear)

#2 (Healthy)
#2 (Tear)

(a) Results of 2D PCA, colored by trial and class.

#1 (Healthy)
#1 (Tear)

#2 (Healthy)
#2 (Tear)

(b) Results of 2D t-SNE, colored by trial and class.

Figure 5.10.: PCA and t-SNE visualizations of two experiments in the pigment production case study. Visual-
izations are based on statistical and spectral features, cf. Table B.1. One sample corresponds
to a one-time window with a length of 2 s. Own illustration.

5.3.3. Machine learning application design and concept drift detection

As the sieve tears can appear at any location on the sieve surface with various sizes and orientations, cf.
Figure 5.8, the positive class has an expectedly large variance. Therefore, anomaly detection is preferable
for this application scenario in contrast to supervised classification [Zhu22]. The introduced ML models for
anomaly detection are implemented and evaluated for this case study. In addition to the three models used in
the previous case study (IF, LOF and OC-SVM), a CAE is implemented that utilizes either the spectrogram
(STFT) or scalogram (CWT) features as introduced in Section 2.2. The architecture of the CAE is listed in
Table B.16 in the Appendix. All models are trained on the first 20% of each trial, which contains only data
corresponding to a healthy sieve, and consequently tested on the remaining 80%, which contains data of
the healthy and damaged sieve as visualized in Figure 5.11. The average performance of the models in
classifying between healthy (y = 0) and torn (y = 1) sieve over all four experiment runs is listed in Table 5.15.
The hyperparameters are optimized using CV between the experiment runs and documented in Table B.15.
Importantly, each model is trained and tested on the same experiment run.
The results in Table 5.15 indicate that the anomaly detection models trained on data points of the healthy sieve
are able to detect sieve tears during the respective experiment runs with high performance. The CAE model
using scalograms from the CWT achieves the highest overall performance. In the following, the developed
framework is applied.
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Figure 5.11.: Visualization of the data partitioning for each experiment run with respect to the results in
Table 5.15. Own illustration.

Table 5.15.: Results of the model selection phase for the condition monitoring in pigment production case
study. The mean and standard deviation are reported over the four experiment runs.

Model Features AUROC

IF
Statistical and spectral (Table B.1)

0.881± 0.077
LOF 0.899± 0.154
OC-SVM 0.847± 0.164

CAE STFT 0.876± 0.182
CAE CWT 0.911± 0.051

Active vs passive drift detection

The visual evaluation of the differences between the trials has shown that there is significant concept drift
in between production runs and it will therefore not be possible to train a single ML model that performs
well over multiple production runs. At the same time, this case study does not allow for active concept drift
detection, as the sieve tears constitute permanent anomalies and would not be distinguishable from concept
drift due to other causes like sensor defects. Thus, a passive strategy is applied as described in Section 4.4.
As the production runs of the pigment production line are in the scope of days and the experiments have
shown that especially the changeovers between production runs introduce significant concept drift, scenario
a.2 in Table 4.1 is suitable, with changeovers between production runs as the external trigger.

This concept has been implemented for production usage at the industry partner. As the ML model is trained
unsupervised only on data of the healthy sieve, it can be retrained automatically once the aforementioned
concept drift trigger arises. Therefore, this case study is the only case study within this thesis where the
maintenance part of the monitoring & maintenance phase within CRISP-ML(Q) can be implemented in an
automatic way. This is based on the assumption that the sieve is healthy for at least the duration of the time
interval used for training the model, which is confirmed by the domain experts at the production site. At
the same time, this is a major limitation, as tears that arise during model training are not detectable by this
concept. The changeover times of the production runs can be identified via OPC UA signals of the MES at the
production site. Once the start of a production run is identified, the implemented software starts recording
the sensor data. After a predefined duration (2 h) is reached, a new CAE model is automatically trained on
this data and deployed. The anomaly scores of this model are in turn provided via OPC UA to the MES of
the machine operators and consequently visualized. The system has been passively deployed for two sieving
machines at the production site of the company in late 2023. Since then, two tears have occurred on the
monitored machines which have been retrospectively confirmed to be detected by the ML model.
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5.3.4. Interim summary

This case study shows an implementation of the developed framework in a condition monitoring use case.
An unsupervised anomaly detection model is used to detect tears in ultrasonic pigment sieves, which are
permanent anomalies. Thus, they are not distinguishable from concept drift and a passive concept drift
detection approach is implemented. It is shown that there is significant concept drift when the production
batch is changed, due to differences in mounting positions and materials. Thus, the changeover is used as an
external trigger. Through the assumption that the sieve is intact when installed, the ML model is retrained for
each production batch, showing high performance on the four experiment datasets and promising first results
in practical deployment, having correctly identified two real-world sieve tears during production. The system
is connected to the company’s MES system and currently evaluated side-by-side with the preexisting manual
method of checking the sieves until the reliability is sufficiently assessed. If permanently used, the system
developed within the case study will lower maintenance costs through the automatic and early detection of
sieve tears, thereby reducing scrap production and the effort of manually checking the sieve condition.
For passive drift detection as applied in this case study, it is not possible to quantify the performance of the drift
detection in terms of precision and recall as in the other case studies, thus RO.a and RO.b cannot be confirmed
explicitly. Still, the case study shows the applicability of the framework to a use case that significantly differs
from the first case studies and also does not require true labels, thus achieving RO.c and RO.d.

5.4. Summary

In this chapter, the proposed framework for concept drift detection is validated in three ML use cases, showing
process monitoring, predictive quality and condition monitoring of different manufacturing processes. In all
three case studies, varying levels of concept drift degrade the performance of the ML models over time due to
various reasons including aging equipment, parameter variations or differences between production batches.
Active and passive strategies for concept drift detection are consequently selected and implemented based
on the framework. In the following, the achievements regarding the objectives defined in Section 4.1 are
discussed.

In case studies 1 and 2, active concept drift detection is utilized and the performance of the drift detection
is quantitatively evaluated. In both case studies, it is shown that high recall as well as a high precision is
achieved. Notably, the proposed LRDD method significantly increases the precision in the first case study.
Therefore, both RO.a (high recall of the drift detection) and RO.b (high precision of the drift detection)
are achieved. In the third case study, passive drift detection is implemented which cannot be quantitively
evaluated. However, the experiments have shown that the production batch changeovers are the strongest
source of concept drift and, therefore, their usage as external triggers is justified. For a quantitative evaluation,
the implemented condition monitoring application needs to be reviewed after longer terms of usage and a
statistically significant number of sieve tears. Nevertheless, the case study provides an important contribution,
as it shows an actual implementation and productive usage of the application at a commercial company under
production conditions. As the case studies show diverse ML applications, covering all introduced target use
cases in the monitoring of manufacturing use cases as well as various supervised and unsupervised ML models,
RO.c (applicability to monitoring use cases in manufacturing) is achieved. Lastly, all options in the framework
and, consequently, all case study implementations detect concept drift without requiring true labels during
operation. Therefore, RO.d (concept drift detection without true labels) is achieved, enhancing the practical
usage and applicability of the proposed framework.
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6. Conclusion and outlook

In this chapter, the efforts for answering the three research questions presented in Chapter 1 are summarized
and the results discussed. Based on the findings of the three case studies, recommendations regarding the
practical usage of the proposed approaches are formed. Lastly, the limitations of the research in this thesis are
presented along with ideas for future research.

Summary and answers to research questions

Supported by the ongoing digitization in the scope of Industry 4.0, ML applications are increasingly used
within manufacturing plants. Different to laboratory experiments though, conditions in real plants will change
over time, through faults, wear, operator preferences and further cumulative differences within plants, altering
the data distribution that the ML model operates on. As ML applications are typically trained using a static
dataset, these changes can degrade the application’s performance over time, without being evident to the
operators – a scenario referred to as concept drift. Motivated by this development, this thesis analyzes methods
for the detection of concept drift in the context of ML applications for process and condition monitoring in the
manufacturing domain, aiming to improve their reliability and acceptance.

The research in this thesis follows the DSR approach as presented in Section 4.1. In Chapters 2 and 3, the
problem is identified and the research is motivated through literature reviews and expert interviews, answering
the first research question regarding the impact of concept drift on ML applications in manufacturing. It is
derived that the targeted condition monitoring, process monitoring and predictive quality applications within
manufacturing primarily rely on a shared set of algorithms belonging to the supervised and unsupervised
learning paradigms. The literature review and expert interviews indicate that concept drift is recognized
as a serious issue in both practice and academia. Various ideas and methods for concept drift detection
exist but, specifically for practitioners working in the domain, there is a gap in standardized frameworks for
detection that provide implementation structure and highlight which methods can be applied to the targeted
use cases and respective data types. Recent process models for structuring ML projects such as CRISP-ML(Q)
acknowledge the need for detecting and handling concept drift but do not provide specific advice on how to
do so. As a result, a significant portion of ML applications remain in a prototypic status and practitioners often
resort to a wait and see mode, waiting for obvious signs of problems. Consequently, the proposed framework
serves as a concretization of the monitoring part of the CRISP-ML(Q) process model. The scope of this thesis is
limited to the detection of concept drift rather than the adaptation of the ML model, as the adaptation largely
depends on the root cause. If, e.g., a sensor malfunctions, the correct adaptation would involve repairing the
sensor instead of retraining the ML model.

The objectives of the concept drift detection framework, based on the identified fundamentals and use case
properties, are formalized in Chapter 4, specifically, as a high performance in detecting concept drift, quantified
as precision and recall (RO.a, RO.b), the applicability to the identified use case architectures and commonly
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used ML algorithms (RO.c), and lastly, the requirement to detect concept drift without continuous access to
true labels/ground truth during operation (RO.d).

The proposed framework identifies active and passive concept drift detection as overarching categories for
implementation. Active concept drift detection detects distribution shifts in various properties related to
the ML model input data and predictions by comparing the distribution of a reference dataset with that of
the most recent data points during operation. It is generally structured in three stages: data collection &
windowing, data modeling and hypothesis testing for which implementation guidance is derived based on a
systematic literature review, answering the second research question which investigates existing methods for
concept drift detection in general ML literature. Distinct alternatives are found in the data modeling stage,
with model-dependent and model-independent methods emerging as the major categories. Importantly, it
is shown that most two-sample hypothesis tests used in active drift detection rely on the i.i.d. assumption,
which is commonly violated in the targeted use cases due to the correlation of data points over time. Thus,
LRDD is proposed as a method to perform a preselection of the reference dataset, significantly reducing the
number of false positive drift detections.
In contrast to active concept drift detection, passive concept drift detection relies on predefined time intervals
or external triggers such as the changeover between production batches as signals for potential concept
drift. Active concept drift detection or a combination of both active and passive are generally preferable for
most use cases in comparison to only passive concept drift detection, as passive concept drift detection is by
definition vulnerable to false alarms and missed detections. In summary, the provided framework answers
the third research question by guiding how to implement concept drift detection depending on the use case
configuration.

The framework is validated under near-production conditions in three diverse case studies within Chapter 5.
The case studies show condition monitoring, process monitoring as well as predictive quality use cases in CNC
milling and chemical production processes. It is investigated how concept drift influences the performance of
the ML applications and if it can reliably be detected using the proposed methods.
In the first case study concerning accelerometer-based tool condition monitoring in CNC milling, multiple
datasets are generated that change specific parameters or aspects of the milling process to introduce concept
drift. It is shown that the performance of the tool condition monitoring application significantly degrades for
parts of the introduced changes while it stays rather constant for others. Three scenarios for concept drift
detection are considered, which rely on different quantities in the data modeling stage of the framework.
The experiments show that drift can be reliably detected in all scenarios. Furthermore, the proposed LRDD
method is validated and it is shown that the precision of the drift detection is significantly increased.
In the second case study, two datasets for process monitoring and predictive quality in CNC milling based on
machine control-internal signals are analyzed which have been recorded during different seasons and 1.5
years apart. It is shown that the performance of the application is significantly degraded in the second dataset.
Again, multiple scenarios are investigated, utilizing the proposed framework and showing that the drift can
be detected reliably in all of them. Importantly, the second case study additionally shows that anomaly scores
from anomaly detection models can be used for concept drift detection in place of prediction confidences of
supervised models, which is especially relevant for process monitoring use cases where unsupervised models
are often employed.
The last case study is concerned with accelerometer-based condition monitoring of sieves in pigment production
and is developed at the site of a chemical company. In this use case, anomalies are permanent and thus passive
concept drift detection is used with changeovers between production batches as the trigger. In this case study,
automatic retraining is implemented and the system showed promising results after being integrated into the
MES system of the company.
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Overall, this thesis provides solution approaches and exemplary implementations to deal with concept drift in
the manufacturing domain. The experiments show that concept drift is an important issue in all considered
use cases that needs to be addressed appropriately to keep ML applications in the manufacturing domain
usable and reliable over longer terms of usage. The thesis thereby aims to increase awareness among
researchers and practitioners about the issue of evolving input data over time and its effects on deployed ML
models. The proposed concept drift detection methods in the framework can be applied to both, existing ML
applications, lacking the implementation of the respective CRISP-ML(Q) phase, as well as to new projects in
the manufacturing domain as the requirements consider various configurations of the targeted use cases.
Ultimately, the author expects that better management of concept drift will not only help maintain the accuracy
of deployed ML models over time but also build more trust and acceptance for ML-based applications in
manufacturing. As a result, this work can help to increase the overall impact of ML in this domain.

Study limitations and future work

Besides the scientific and practical contributions, this study faces limitations that need to be considered when
interpreting the findings. Two major areas of limitations are described within this section.

Drift types In the first and second case study, methods for active drift detection are validated with machine
and process configurations that differ from the initial training configuration or have significantly aged, thus
introducing abrupt concept drift. While the evaluation methodology allows for the assumption that the
drift detection approaches will also work with slow, gradual or incremental drifts in the data, this could
not be explicitly tested due to the constraints of the case study design. Further studies, especially involving
long-term data recordings spanning multiple months or years of production are needed to validate this scenario
conclusively. Furthermore, all presented methods for active drift detection except for explicit monitoring of
performance KPIs are unable to detect concept drift that does not influence P (X) cf. Section 2.3.1, as this
type of drift does not alter the input data distribution. Overall, this type of drift was not practically observed
in any of the case studies or the relevant literature and thus seems rather exotic in real-world applications.

Case studies and data types While the case studies within this thesis cover application scenarios that are
common in industry and research, other application architectures and data types exist that were not analyzed.
Importantly, the case studies in this thesis do not involve image data, which is becoming increasingly relevant
in QC applications. While some of the proposed solutions such as model confidences may be transferable
without major changes, further studies should be conducted in this direction. Furthermore, only classification
and anomaly detection use cases have been analyzed. While this configuration is prevalent within the described
use cases, cf Section 2.5, regression models can be useful in certain scenarios such as directly predicting
equipment RUL or quality-relevant parameters or dimensions and should thus be considered in future work.

In addition to future work that addresses the aforementioned limitations of this study, several other directions
are suitable for further scientific exploration based on the results.

Exploitation of correlation properties The proposed LRDD method for enabling concept drift detection in
non-i.i.d. scenarios is only a starting point in this direction. It should be investigated whether explicit testing
methodologies can be defined that account for the temporal correlation of the data points within the detection
windows and thus enhance potential weak points of LRDD such as its insensitivity to drifts in data point
density.
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Efficient model updates and robustness As this thesis is focussed on the detection of concept drift, less
emphasis is put on the adaptation of models to new data distributions once a drift has occurred. As stated
in Chapters 3 and 4, automatic adaption of models in case of detected drift is not always desirable as the
drift might stem from external changes such as defective sensors that should be repaired instead of blindly
adapting the ML model. Concepts such as continual learning as well as domain adaptation and finetuning
from the domain of transfer learning can be explored and, in instances where it makes sense, combined with
concept drift detection to minimize the computational costs as well as labeling efforts when adapting models
to a changed environment. Lastly, with the recent success of foundation models in the fields of computer
vision and natural language processing [Bomm21], their application to the manufacturing use cases within
this thesis should be evaluated in the future. Models that provide zero-shot or few-shot capabilities would
require less effort in updating, e.g., [Tnan22b], or might even generalize robustly across domain shifts.
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A. Supplementary material for Chapter 4

A.1. Literature review studies

Table A.1.: Studies analyzed within the systematic literature review in Section 4.3.1 ordered by year of publi-
cation. Studies marked with (*) appear in more than one category.

Data modeling category Title Year Reference

Input data distribution Change with delayed labeling: When is it detectable?* 2010 [Žlio10a]

Hellinger distance based drift detection for nonstationary environ-
ments

2011 [Ditz11]

Detection of concept drift for learning from stream data 2012 [Lee12]

A dissimilarity-based drift detection method 2015 [Pina15]

A2D2: A pre-event abrupt drift detection 2015 [Esco15]

Fast unsupervised online drift detection using incremental
kolmogorov-smirnov test

2016 [Dos 16]

Using dynamical systems tools to detect concept drift in data
streams

2016 [Cost16]

Fedd: Feature extraction for explicit concept drift detection in time
series

2016 [Cava16]

Detecting and adapting to concept drift in continually evolving
stochastic processes

2017 [Gama17]

Concept drift detection for data stream learning based on angle
optimized global embedding and principal component analysis in
sensor networks

2017 [Liu17]

On applying the restricted Boltzmann machine to active concept
drift detection

2017 [Jawo17]

Multidimensional surrogate stability to detect data stream concept
drift

2017 [Cost17]

Fast concept drift detection using singular vector decomposition 2017 [Shan17]

Accumulating regional density dissimilarity for concept drift detec-
tion in data streams

2018 [Liu18]

Continued on next page
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Table A.1 – continued from previous page

Data modeling category Title Year Reference

Input data distribution DetectA: abrupt concept drift detection in non-stationary environ-
ments

2018 [Esco18]

Unsupervised drift detector ensembles for data stream mining 2019 [Kory19]

Failing loudly: An empirical study of methods for detecting dataset
shift*

2019 [Raba19]

Unsupervised concept drift detection with a discriminative classifier 2019 [Gözü19]

On learning guarantees to unsupervised concept drift detection on
data streams

2019 [Mell19]

Bayesian nonparametric unsupervised concept drift detection for
data stream mining

2020 [Xuan20]

Reactive soft prototype computing for concept drift streams 2020 [Raab20]

Reactive concept drift detection using coresets over sliding windows 2020 [Heus20]

Unsupervised drift detection on high-speed data streams 2020 [Souz20a]

Concept drift detection via equal intensity k-means space partition-
ing

2020 [Liu20]

Unsupervised concept drift detection based on multi-scale slide
windows

2021 [Yuan21]

A novel approach to detect concept drift using machine learning 2021 [Huss21]

Concept drift and model decay detection using machine learning
algorithm

2021 [Naya21]

A fully unsupervised and efficient anomaly detection approach with
drift detection capability

2021 [Tan21]

Concept drift detection from multi-class imbalanced data streams 2021 [Kory21]

A shape-based method for concept drift detection and signal de-
noising

2021 [Hind21]

Detection of data drift in a two-dimensional stream using the
Kolmogorov-Smirnov test

2022 [Porw22]

Reconstruction-based unsupervised drift detection over multivariate
streaming data

2022 [Kami22]

Unsupervised Concept Drift Detection Using Dynamic Crucial Fea-
ture Distribution Test in Data Streams

2022 [Wan22]

Context-aware drift detection 2022 [Cobb22]

Prediction confidence Change with delayed labeling: When is it detectable?* 2010 [Žlio10a]

Drift detection using uncertainty distribution divergence 2013 [Lind13]

Don’t pay for validation: Detecting drifts from unlabeled data using
margin density

2015 [Seth15]

Continued on next page
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Table A.1 – continued from previous page

Data modeling category Title Year Reference

Prediction confidence Drift detection in data stream classification without fully labelled
instances

2015 [Lugh15]

Concept drift detection on streaming data under limited labeling 2016 [Kim16]

On the reliable detection of concept drift from streaming unlabeled
data

2017 [Seth17]

Detecting and correcting for label shift with black box predictors 2018 [Lipt18]

Combining active learning with concept drift detection for data
stream mining

2018 [Kraw18]

A drift detection method based on active learning 2018 [Cost18]

Failing loudly: An empirical study of methods for detecting dataset
shift*

2019 [Raba19]

KS (conf): A light-weight test if a ConvNet operates outside of its
specifications

2019 [Sun19]

A concept drift detection algorithm based on fuzzy marginal density 2020 [Yang20]

Detection of data drift and outliers affecting machine learning
model performance over time

2020 [Acke20b]

Born-again decision boundary: Unsupervised concept drift detec-
tion by inspector neural network

2021 [King21]

Detecting concept drift with neural network model uncertainty 2021 [Baie23]

Automatically detecting data drift in machine learning classifiers 2021 [Acke21b]

Concept drift detection via boundary shrinking 2021 [Okaw21]

Augur: A step towards realistic drift detection in production ml
systems

2022 [Lewi22]

Learned embeddings Sequential drift detection in deep learning classifiers 2020 [Acke20a]

Drift lens: Real-time unsupervised concept drift detection by evalu-
ating per-label embedding distributions

2021 [Grec21]

Task-sensitive concept drift detector with constraint embedding 2021 [Cast21]

Machine learning model drift detection via weak data slices 2021 [Acke21a]

Who supervises the supervisor? Model monitoring in production
using deep feature embeddings with applications to workpiece
inspection

2022 [Banf22]

Detecting drift in deep learning: A methodology primer 2022 [Pian22]
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B. Supplementary material for Chapter 5

B.1. Scalar features

Table B.1.: Statistical and spectral features that are extracted from univariate time series {xi}ni=1 and conse-
quently used for the training of the shallow models within the case study experiments. In the case
of multivariate time series, the features are computed for each signal separately and consequently
concatenated, cf. Figure 4.7. Own illustration.

Category Name and computation

Time domain RMS
√︂

1
n

∑︁n
i=1 x

2
i

Variance
∑︁n

i=1(xi−µ)2

n

Mean 1
n

∑︁n
i=1 xi

Median median({xi})
Maximum max({xi})
Minimum min({xi})
Skewness E

(︂(︁
xi−µ
σ

)︁3)︂
Kurtosis E

(︂(︁
xi−µ
σ

)︁4)︂
Peak-to-Peak max({xi})−min({xi})
Zero-Crossing Rate 1

2

∑︁n−1
i=1 |sgn(xi+1)− sgn(xi)|

Frequency domain Spectral Skewness
∑︁k

i=1

(︂
fi−f̄
σf

)︂3

S (fi)

Spectral Kurtosis
∑︁k

i=1

(︂
fi−f̄
σf

)︂4

S (fi)

Spectral Centroid
∑︁k

i=1 fiS(fi)∑︁k
i=1 S(fi)

Spectral Spread
√︃∑︁k

i=1(fi−Spectral Centroid)2S(fi)∑︁k
i=1 S(fi)

Spectral Entropy −
∑︁k

i=1
S(fi)∑︁k

j=1 S(fj)
log2

(︃
S(fi)∑︁k

j=1 S(fj)

)︃
Time-frequency domain Wavelet energy

∑︁a
i=1

∑︁b
j=1 |x̃i,j |2
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B.2. Case study 1: Tool condition monitoring in a CNC milling process

Table B.2.: Final hyperparameter settings in the tool condition monitoring case study.
Method Hyperparameter Final fitted value

RF

bootstrap false
max_depth 10
max_features sqrt
min_samples_leaf 1
min_samples_split 5
n_estimators 100

SVC

C 1
degree 2
gamma scale
kernel rbf

KNN
metric euclidean
n_neighbors 1
weights uniform

DT

criterion entropy
max_depth 30
min_samples_leaf 1
min_samples_split 5

MLP

activation relu
alpha 0.0001
hidden_layer_sizes 50
learning_rate_init 0.001
learning_rate invscaling
max_iter 200
optimizer adam

CNN
learning_rate_init 0.001
optimizer adam
max_iter 20
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Table B.3.: CNN architecture used for the tool condition monitoring case study.
Architecture part Layer type Output shape (NCHW) Parameters

Feature extractor

Input (b, 3, 128, 256) 0
Conv2d (b, 32, 128, 256) 2432
Conv2d (b, 64, 10, 58) 51264
Linear (b, 32) 296992

Classifier Linear (b, 1) 33
Sigmoid (b, 1) 0

Table B.4.: Drift detection performance of LRDD for different choices of the number of neighbors k and
two-sample tests.

Precision Recall
Test k α = 0.005 α = 0.01 α = 0.05 α = 0.005 α = 0.01 α = 0.05

MMD 1 0.803± 0.003 0.793± 0.002 0.769± 0.000 0.980± 0.016 0.993± 0.009 1.000± 0.000
MMD 3 0.723± 0.002 0.704± 0.000 0.685± 0.000 0.993± 0.009 1.000± 0.000 1.000± 0.000
MMD 5 0.714± 0.000 0.694± 0.000 0.602± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
MMD 8 0.658± 0.000 0.588± 0.000 0.550± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

KS 1 0.607± 0.005 0.602± 0.000 0.562± 0.000 0.987± 0.020 1.000± 0.000 1.000± 0.000
KS 3 0.544± 0.000 0.544± 0.000 0.510± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS 5 0.521± 0.000 0.521± 0.000 0.510± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS 8 0.510± 0.000 0.510± 0.000 0.510± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

F1-Scores
Test k α = 0.005 α = 0.01 α = 0.05

MMD 1 0.883± 0.007 0.882± 0.004 0.869± 0.000
MMD 3 0.837± 0.003 0.826± 0.000 0.813± 0.000
MMD 5 0.833± 0.000 0.819± 0.000 0.752± 0.000
MMD 8 0.794± 0.000 0.741± 0.000 0.710± 0.000

KS 1 0.752± 0.007 0.752± 0.000 0.720± 0.000
KS 3 0.705± 0.000 0.705± 0.000 0.675± 0.000
KS 5 0.685± 0.000 0.685± 0.000 0.675± 0.000
KS 8 0.675± 0.000 0.675± 0.000 0.675± 0.000
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Table B.5.: Drift detection precision in scenario b.2 of the tool condition monitoring case study. Mean
precision and the corresponding standard deviation are reported over 10 experiment runs.

Precision
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Features

KS 0.500± 0.000 0.500± 0.000 0.500± 0.000
MMD 0.502± 0.003 0.501± 0.001 0.500± 0.001
ContextMMD 0.798± 0.013 0.767± 0.006 0.642± 0.026
LRDD 0.858± 0.024 0.822± 0.020 0.786± 0.021

Crooked mounting Features

KS 0.500± 0.000 0.500± 0.000 0.500± 0.000
MMD 0.502± 0.003 0.501± 0.001 0.500± 0.001
ContextMMD 0.428± 0.061 0.447± 0.038 0.463± 0.031
LRDD 0.153± 0.069 0.223± 0.072 0.313± 0.074

Three-flute cutter Features

KS 0.500± 0.000 0.500± 0.000 0.500± 0.000
MMD 0.502± 0.003 0.501± 0.001 0.500± 0.001
ContextMMD 0.798± 0.013 0.767± 0.006 0.642± 0.026
LRDD 0.858± 0.024 0.822± 0.020 0.786± 0.021

Parameter drift Features

KS 0.500± 0.000 0.500± 0.000 0.500± 0.000
MMD 0.502± 0.003 0.501± 0.001 0.500± 0.001
ContextMMD 0.796± 0.012 0.766± 0.005 0.642± 0.026
LRDD 0.857± 0.025 0.821± 0.020 0.786± 0.021

Table B.6.: Drift detection detection in scenario b.2 of the tool condition monitoring case study. Mean recall
and the corresponding standard deviation are reported over 10 experiment runs.

Recall
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Features

KS 1.000± 0.000 1.000± 0.000 1.000± 0.000
MMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
ContextMMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
LRDD 1.000± 0.000 1.000± 0.000 1.000± 0.000

Crooked mounting Features

KS 1.000± 0.000 1.000± 0.000 1.000± 0.000
MMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
ContextMMD 0.193± 0.047 0.247± 0.031 0.480± 0.014
LRDD 0.030± 0.013 0.063± 0.023 0.126± 0.039

Three-flute cutter Features

KS 0.667± 0.000 0.667± 0.000 0.667± 0.000
MMD 0.668± 0.002 0.667± 0.001 0.667± 0.001
ContextMMD 0.888± 0.008 0.868± 0.004 0.782± 0.019
LRDD 0.923± 0.014 0.902± 0.012 0.880± 0.013

Parameter drift Features

KS 1.000± 0.000 1.000± 0.000 1.000± 0.000
MMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
ContextMMD 0.987± 0.009 0.993± 0.005 1.000± 0.000
LRDD 0.994± 0.010 0.998± 0.006 1.000± 0.000
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Table B.7.: Drift detection precision in scenario c.1 of the tool conditionmonitoring case study. Mean precision
and the corresponding standard deviation are reported over 10 experiment runs.

Precision
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Entropy

KS (RF) 0.875± 0.027 0.871± 0.026 0.798± 0.033
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.495± 0.005 0.498± 0.004 0.502± 0.003
KS (kNN) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS (MLP) 0.590± 0.035 0.573± 0.034 0.565± 0.019
KS (CNN) 0.486± 0.003 0.489± 0.003 0.497± 0.004

Crooked mounting Entropy

KS (RF) 0.508± 0.091 0.569± 0.069 0.563± 0.047
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.501± 0.007 0.502± 0.005 0.502± 0.004
KS (kNN) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (MLP) 0.526± 0.026 0.533± 0.027 0.542± 0.015
KS (CNN) 0.505± 0.000 0.505± 0.000 0.503± 0.003

Three-flute cutter Entropy

KS (RF) 0.878± 0.026 0.873± 0.026 0.798± 0.032
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.473± 0.008 0.486± 0.008 0.500± 0.004
KS (kNN) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS (MLP) 0.652± 0.029 0.635± 0.029 0.617± 0.018
KS (CNN) 0.497± 0.002 0.502± 0.003 0.499± 0.004

Parameter drift Entropy

KS (RF) 0.877± 0.027 0.872± 0.026 0.798± 0.032
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.504± 0.005 0.504± 0.004 0.503± 0.003
KS (kNN) 0.800± 0.400 0.900± 0.300 1.000± 0.000
KS (MLP) 0.617± 0.037 0.605± 0.029 0.590± 0.020
KS (CNN) 0.487± 0.002 0.501± 0.004 0.503± 0.003
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Table B.8.: Drift detection recall in scenario c.1 of the tool condition monitoring case study. Mean recall and
the corresponding standard deviation are reported over 10 experiment runs.

Recall
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Entropy

KS (RF) 0.970± 0.015 0.980± 0.010 0.998± 0.004
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.965± 0.011 0.979± 0.012 0.996± 0.007
KS (kNN) 0.165± 0.042 0.232± 0.055 0.300± 0.046
KS (MLP) 0.646± 0.050 0.673± 0.052 0.768± 0.028
KS (CNN) 0.923± 0.012 0.933± 0.012 0.973± 0.005

Crooked mounting Entropy

KS (RF) 0.144± 0.035 0.191± 0.028 0.324± 0.029
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.987± 0.013 0.992± 0.010 0.995± 0.007
KS (kNN) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (MLP) 0.497± 0.040 0.573± 0.034 0.699± 0.021
KS (CNN) 0.997± 0.005 0.997± 0.005 1.000± 0.000

Three-flute cutter Entropy

KS (RF) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 0.881± 0.030 0.933± 0.023 0.988± 0.010
KS (kNN) 0.257± 0.031 0.302± 0.027 0.371± 0.024
KS (MLP) 0.840± 0.033 0.874± 0.029 0.954± 0.018
KS (CNN) 0.967± 0.005 0.983± 0.009 0.983± 0.009

Parameter drift Entropy

KS (RF) 0.990± 0.004 0.991± 0.003 1.000± 0.000
KS (DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS (SVC) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS (kNN) 0.016± 0.011 0.025± 0.014 0.037± 0.014
KS (MLP) 0.723± 0.048 0.767± 0.034 0.850± 0.026
KS (CNN) 0.923± 0.012 0.933± 0.012 0.973± 0.005
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Table B.9.: Drift detection precision in scenario c.2 of the tool condition monitoring case study. Mean
precision and the respective standard deviation are reported over 10 experiment runs.

Precision
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Embeddings (CNN)

KS 0.504± 0.001 0.503± 0.001 0.503± 0.001
MMD 0.503± 0.001 0.503± 0.001 0.501± 0.001
ContextMMD 0.815± 0.006 0.802± 0.008 0.748± 0.007
LRDD 1.000± 0.000 1.000± 0.000 0.996± 0.006

Crooked mounting Embeddings (CNN)

KS 0.504± 0.001 0.503± 0.001 0.503± 0.001
MMD 0.503± 0.001 0.503± 0.001 0.501± 0.001
ContextMMD 0.560± 0.052 0.585± 0.062 0.581± 0.047
LRDD 0.000± 0.000 0.000± 0.000 0.000± 0.000

Three-flute cutter Embeddings (CNN)

KS 0.504± 0.001 0.503± 0.001 0.503± 0.001
MMD 0.503± 0.001 0.503± 0.001 0.501± 0.001
ContextMMD 0.815± 0.006 0.802± 0.008 0.748± 0.007
LRDD 0.815± 0.006 0.822± 0.006 0.996± 0.005

Parameter drift Embeddings (CNN)

KS 0.504± 0.001 0.503± 0.001 0.503± 0.001
MMD 0.503± 0.001 0.503± 0.001 0.501± 0.001
ContextMMD 0.815± 0.006 0.802± 0.008 0.748± 0.007
LRDD 1.000± 0.000 1.000± 0.000 0.997± 0.005

Table B.10.: Drift detection recall in scenario c.2 of the tool condition monitoring case study. Mean recall and
the respective standard deviation are reported over 10 experiment runs.

Recall
Configuration Data modeling Detector α = 0.005 α = 0.01 α = 0.05

Spindle change Embeddings (CNN)

KS 1.000± 0.000 1.000± 0.000 1.000± 0.000
MMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
ContextMMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
LRDD 0.727± 0.034 0.770± 0.014 0.823± 0.009

Crooked mounting Embeddings (CNN)

KS 1.000± 0.000 1.000± 0.000 1.000± 0.000
MMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
ContextMMD 0.293± 0.049 0.357± 0.074 0.480± 0.100
LRDD 0.000± 0.000 0.000± 0.000 0.000± 0.000

Three-flute cutter Embeddings (CNN)

KS 1.000± 0.000 1.000± 0.000 1.000± 0.000
MMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
ContextMMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
LRDD 1.000± 0.000 1.000± 0.056 0.860± 0.008

Parameter drift Embeddings (CNN)

KS 1.000± 0.000 1.000± 0.000 1.000± 0.000
MMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
ContextMMD 1.000± 0.000 1.000± 0.000 1.000± 0.000
LRDD 0.903± 0.041 0.950± 0.029 0.990± 0.000
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Figure B.1.: Example of the tool assignment on the aluminum plates in the tool condition monitoring case
study. Own illustration.
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B.3. Case study 2: Predictive quality and process monitoring in a CNC milling
process

Table B.11.: Selected features in the predictive quality and process monitoring case study.
Signal name Axes Features

CURRENT Y Kurtosis, Variance, Skewness
Spindle Wavelet Energy, Maximum

TORQUE Y Kurtosis, Variance
Spindle Wavelet energy,

POWER Spindle Minimum, Wavelet energy
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Table B.12.: Final hyperparameter settings in the predictive quality and process monitoring case study.
Method Hyperparameter Final fitted value

RF

bootstrap false
max_depth 10
max_features sqrt
min_samples_leaf 1
min_samples_split 5
n_estimators 100

SVC

C 1
degree 2
gamma scale
kernel rbf

KNN
metric euclidean
n_neighbors 1
weights uniform

DT

criterion entropy
max_depth 30
min_samples_leaf 1
min_samples_split 5

MLP

activation relu
alpha 0.0001
hidden_layer_sizes 50
learning_rate_init 0.001
learning_rate invscaling
max_iter 200
optimizer adam

IF

n_estimators 100
max_samples auto
max_features 1.0
bootstrap false

LOF
n_neighbors 20
algorithm auto
leaf_size 30

OC-SVM

kernel rbf
gamma scale
nu 0.05
tol 1e-3
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Table B.13.: Drift detection precision in the predictive quality and process monitoring case study. Mean
precision and the respective standard deviations are reported over 10 experiment runs.

Precision
Dataset Scenario Detector α = 0.005 α = 0.01 α = 0.05

Early 2022

Scenario b.2 KS 0.906± 0.109 0.807± 0.088 0.868± 0.028
MMD 0.996± 0.005 0.983± 0.006 0.957± 0.015

Scenario c.1.1

KS(RF) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS(DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS(SVC) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS(kNN) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS(MLP) 1.000± 0.000 1.000± 0.000 0.923± 0.021

Scenario c.1.2
KS(IF) 1.000± 0.000 0.973± 0.012 0.908± 0.024
KS(OC-SVM) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS(LOF) 1.000± 0.000 1.000± 0.000 0.917± 0.018

Table B.14.: Drift detection recall in the predictive quality and process monitoring case study. Mean recall
and the respective standard deviations are reported over 10 experiment runs.

Recall
Dataset Scenario Detector α = 0.005 α = 0.01 α = 0.05

Early 2022

Scenario b.2 KS 0.103± 0.037 0.137± 0.043 0.594± 0.042
MMD 0.947± 0.024 0.999± 0.003 1.000± 0.000

Scenario c.1.1

KS(RF) 0.787± 0.050 0.859± 0.054 0.967± 0.020
KS(DT) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS(SVC) 0.101± 0.034 0.131± 0.049 0.371± 0.050
KS(kNN) 0.000± 0.000 0.000± 0.000 0.000± 0.000
KS(MLP) 0.710± 0.031 0.756± 0.033 0.940± 0.030

Scenario c.1.2
KS(IF) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS(OC-SVM) 1.000± 0.000 1.000± 0.000 1.000± 0.000
KS(LOF) 1.000± 0.000 1.000± 0.000 1.000± 0.000
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B.4. Case study 3: Condition monitoring in a pigment sieving process

Table B.15.: Final hyperparameter settings in pigment sieving case study.
Method Hyperparameter Final fitted value

IF

n_estimators 100
max_samples auto
max_features 1.0
bootstrap true

LOF
n_neighbors 20
algorithm auto
leaf_size 30

OC-SVM

kernel rbf
gamma scale
nu 0.01
tol 1e-4

CAE (STFT)

learning_rate 1e-4
epochs 10
final_activation false
batch_size 32

CAE (CWT)

learning_rate 1e-4
epochs 5
final_activation false
batch_size 64
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Table B.16.: CAE architecture used for the condition monitoring in pigment production case study.
Architecture part Layer type Output shape (NCHW) Parameters

Encoder

Input (b, 2, 128, 256) 0
Conv2d (b, 32, 128, 256) 608
ReLU (b, 32, 128, 256) 0

MaxPool2d (b, 32, 64, 128) 0
Conv2d (b, 16, 64, 128) 4624
ReLU (b, 16, 64, 128) 0

MaxPool2d (b, 16, 32, 64) 0
Conv2d (b, 8, 32, 64) 1160
ReLU (b, 8, 32, 64) 0

MaxPool2d (b, 8, 16, 32) 0
Conv2d (b, 4, 16, 32) 292
ReLU (b, 4, 16, 32) 0

MaxPool2d (b, 4, 8, 16) 0
Conv2d (b, 4, 8, 16) 148
ReLU (b, 4, 8, 16) 0

Decoder

Upsample (b, 4, 16, 32) 0
Conv2d (b, 8, 16, 32) 296
ReLU (b, 8, 16, 32) 0

Upsample (b, 8, 32, 64) 0
Conv2d (b, 16, 32, 64) 1168
ReLU (b, 16, 32, 64) 0

Upsample (b, 16, 64, 128) 0
Conv2d (b, 32, 64, 128) 4640
ReLU (b, 32, 64, 128) 0

Upsample (b, 32, 128, 256) 0
Conv2d (b, 2, 128, 256) 578
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C. Comparison of neural network uncertainty
estimation methods for drift detection

Parts of this chapter have been previously presented as a workshop contribution based on a bachelor thesis
supervised by the thesis author in the scope of this dissertation titled "An Empirical Study of Uncertainty Estimation
Techniques for Detecting Drift in Data Streams" at the Neural Information Processing Systems (NeurIPS) 2023
Workshop on Distribution Shifts. [Wint23a; Wint23b]

C.1. Methodology and experiments

An alternative to performance-based drift detectors is given by a class of drift detectors that work in an
unsupervised way, utilizing a model’s prediction confidence/uncertainty as a proxy for the error rate. Proposed
approaches include Confidence Distribution Batch Detection (CDBD) [Lind13] and Margin Density Drift
Detection (MD3) [Seth15]. More recently, Uncertainty Drift Detection (UDD) was proposed by Baier et al.
[Baie23], which utilizes neural network uncertainty estimates from Monte Carlo Dropout (MCD) sampling
[Gal16] as input for the Adaptive Windowing (ADWIN) detection algorithm [Bife07]. As MCD is only
one possibility of extracting uncertainty estimates from NNs, an analysis on the influence of the choice of
uncertainty estimation method on the performance of the overall drift detection capability is performed in
this chapter. In prior work, Ovadia et al. [Ovad19] analyzed uncertainty estimation methods under dataset
shift but only for synthetic drifts. While Baier et al. [Baie23] consider real-world datasets, they limit their
experiments to a single uncertainty estimation method. Thus, the core contribution of this chapter is an
empirical comparison of four state-of-the-art NN uncertainty estimation methods, as well as less a baseline
method, for classification tasks in combination with the ADWIN detector to identify drifts in real-world data
streams. These uncertainty estimators are evaluated using seven commonly used real-world datasets.

To compare the uncertainty estimation methods introduced in the following, two experiments are conducted
for each method and dataset. Both start by training the method with the initial five percent of the whole data
stream. The first experiment serves as a baseline and thus, the remaining data is tested without analyzing
uncertainty estimates or triggering retrainings. In the main experiment, however, batches of the stream are
evaluated and uncertainty estimates are used as a proxy for the error rate of the ADWIN detector. Once a
drift is detected, a retraining is triggered with the initial five percent plus the most recent samples equivalent
to one percent of the stream size. Thereby, models may adapt to new concepts while retaining sufficient
generalization. Every experiment is repeated five times with different random seeds and results are averaged
to allow for a fair comparison. Figure C.1 illustrates the process of the main experiment.
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Figure C.1.: Approach to uncertainty drift detection. Own illustration.

C.2. Uncertainty estimation methods

To quantify model uncertainty, Bayesian NNs, which learn a posterior distribution over model parameters,
can be employed [Ovad19]. This distribution enables the application of Bayesian Model Averaging (BMA)
during inference. Therefore, P sets of weights wi are drawn to gather a distribution of predictions pi(y|wi,x),
given input features x and target labels y. The final prediction pBMA(y|x) is then given as the average

pBMA(y|x) =
1

P

P∑︂
i=1

pi(y|wi,x). (C.1)

For regression tasks, the uncertainty is the standard deviation of said distribution. While there are several
uncertainty-related metrics for classification tasks, only Shannon’s entropy H, cf. Equation (2.17), does not
require ground-truth labels. Although Bayesian methods were previously considered state-of-the-art, they are
computationally intractable for modern NNs with millions of parameters [Madd19]. Therefore, alternatives
have been developed, of which the following are analyzed in the experiments. To get an uncertainty estimate,
Shannon’s entropy H is applied to the final prediction of each method.

Basic Neural Network. Given the focus on classification tasks, a distribution of predictions is not necessarily
required. Hence, the simplest method is to use a single prediction from an unmodified NN. The motivation for
this is to have a baseline for the more sophisticated methods.

MCD. Rather than drawing multiple weights from a posterior distribution as in BMA, a random dropout filter is
applied to the neurons for several forward passes. These estimates are then averaged to get a final prediction.
This allows for estimating the uncertainty in the model parameters based on the variability of the predictions
across different dropout masks [Gal16; Baie23].

Ensemble. A distribution of predictions can also be won by training multiple neural networks. Different seeds
of members introduce randomness due to their influence on the initial weights as well as the shuffling of data
during training. As Lakshminarayanan et al. [Laks17] have shown, few members, i.e. 5, can be sufficient for
good uncertainty estimates.

Stochastic Weight Averaging Gaussian (SWAG). Based on Stochastic Weight Averaging (SWA), a general-
ization technique in deep networks, Maddox et al. [Madd19] propose a method to approximate a posterior
distribution over NN weights. Therefore, a Gaussian is fit utilizing the SWA solution as the first moment and a
low rank plus diagonal covariance also inferred from stochastic gradient descent iterates. Given this posterior
distribution, BMA is applied to get a final prediction.

Activation Shaping (ASH). The ASH method can be considered a more advanced version of the basic neural
network, as it also works on single predictions. Djurisic et al. [Djur22] introduced it as an Out-of-Distribution
(OOD) detection method that reaches state-of-the-art performance. Assuming over-parameterized feature
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representations in modern NNs, the hypothesis is that pruning a larger percentage of activations in a late
layer helps with tasks such as OOD detection.

The hyperparameters of the introduced methods as well as the model architectures can be found in Ap-
pendix C.7.

C.3. Drift detector

Concept drift detectors, such as Drift Detection Method [Gama04], Page Hinkley Test [Page54], and ADWIN
[Bife07], are typically error rate-based, necessitating access to costly true labels [Gonç14]. In contrast,
data distribution-based detectors exclusively analyze input features, often using distance metrics like the
Kolmogorov-Smirnov test [Raab20] to identify changes in feature distribution. Regardless of the detection
method employed, distinguishing between noise and genuine concept drift poses a significant challenge
[Tsym04], requiring a balance between swift adaptation to changes and resilience to noise. ADWIN offers
performance guarantees for false positives and false negatives, making it an attractive choice. Furthermore, it
is able to work with any real-valued input instead of being limited to an error rate between 0-1. As introduced
by Bifet et al. [Bife07], ADWIN utilizes sliding windows of variable size. While no drift is present, new samples
are added to a window W. After each sample, the algorithm attempts to find two sub-windowsW0 andW1

that contain distinct averages. Once this happens a drift is assumed and the older sub-window is discarded.
The variability of heterogeneous real-world data streams can be addressed by the sensitivity parameter δ ∈
(0, 1). The configuration for the experiments can be found in Appendix C.7.

C.4. Datasets

Seven real-world classification datasets from the USP Data Stream Repository [Souz20b] are used for the
analysis. They encompass abrupt, incremental and reoccurring drifts, along with combinations thereof. In
the Gas sensor dataset chemical sensor data is analyzed to identify one of six gases. The Electricity dataset
focuses on predicting market price changes driven by supply and demand. For the Rialto dataset, segments of
images from a timelapse with changing weather conditions shall be classified. Lastly, optical sensors are used
to analyze moving patterns of flying insect species while drift is artificially introduced to generate the InsAbr,
InsInc, InsIncAbr and InsIncReo datasets.

C.5. Metrics and results

For evaluation, the following two metrics are used to capture the quality of the uncertainty estimates as well
as the drift detection performance:

Expected Calibration Error (ECE) ↓ [Naei15] measures the average deviation between prediction confidence
and accuracy. As the name suggests, it quantifies how well a model is calibrated. It is hypothesized that
calibration correlates positively with drift detection capability.

Matthew’s Correlation Coefficient (MCC) ↑ is able to handle class imbalances which generally makes it
a good metric for classification tasks [Chic20]. The MCC is employed to measure the overall prediction
performance of the models, averaged over the complete experiment runs. It is hypothesized that poor drift
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detection performance will lead to unsuitable retraining points, in turn producing low MCC scores and vice
versa.

Results

The results of the experiments can be found in Table C.1. To give an impression of the computational cost,
the last row contains the total execution times of the main experiment. Analyzing the MCC values of the
main experiment shows that the SWAG method offers the most balanced performance across all datasets.
However, the gap in performance to the other methods is minimal. In fact, all methods perform fairly similarly.
Surprisingly, even the basic method without any modifications keeps up with the others. Meanwhile, the
execution time rises for the sampling-based approaches. Greater differences can be identified when analyzing
the ECE as depicted in Figure C.2. Here, the SWAG method offers significantly better-calibrated predictions
in nearly all datasets. The only exception is the InsIncAbr dataset, where all methods achieve a proficient
calibration. All other methods appear to be equally worse calibrated compared to SWAG for the remaining
datasets. Despite that, this does not directly translate to a better drift detection performance, as shown by the
MCC values.

Table C.1.: Performance comparison of uncertainty estimation methods for drift detection. Table cells
contain the average MCC (↑) values and (number of retrainings) for the naive baselines without
retrainings (upper) and retrainings triggered by ADWIN when using the respective uncertainty
estimation method (lower), respectively. Bold numbers indicate the best performance.

Basic MCD Ensemble SWAG ASH

Gas 0.273 (0) 0.256 (0) 0.245 (0) 0.299 (0) 0.275 (0)
0.455 (36) 0.46 (55) 0.492 (50) 0.46 (52) 0.459 (35)

Electricity 0.178 (0) 0.198 (0) 0.183 (0) 0.191 (0) 0.175 (0)
0.424 (11) 0.421 (10) 0.405 (10) 0.419 (7) 0.438 (10)

Rialto 0.532 (0) 0.534 (0) 0.505 (0) 0.52 (0) 0.525 (0)
0.537 (43) 0.553 (48) 0.527 (45) 0.54 (52) 0.539 (43)

InsAbr 0.471 (0) 0.472 (0) 0.461 (0) 0.48 (0) 0.474 (0)
0.519 (9) 0.509 (8) 0.503 (8) 0.514 (6) 0.508 (7)

InsInc 0.087 (0) 0.1 (0) 0.081 (0) 0.1 (0) 0.085 (0)
0.241 (3) 0.238 (3) 0.241 (3) 0.301 (4) 0.231 (3)

InsIncAbr 0.304 (0) 0.307 (0) 0.308 (0) 0.299 (0) 0.316 (0)
0.53 (24) 0.525 (26) 0.518 (23) 0.445 (25) 0.531 (25)

InsIncReo 0.141 (0) 0.133 (0) 0.172 (0) 0.16 (0) 0.133 (0)
0.253 (18) 0.247 (20) 0.236 (18) 0.302 (21) 0.243 (20)

Total exec. time 6821s 7339s 15653s 9036s 6890s
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Figure C.2.: Calibration of the employed uncertainty estimation methods measured by ECE (↓) across the
seven datasets. Own illustration.

C.6. Conclusion

In this chapter, five uncertainty estimation methods for classification tasks were implemented and evaluated
in experiments including seven real-world datasets. The goal was to compare the utility of their uncertainty
estimates for unsupervised concept drift detection by using them as a proxy for the error rate in combination
with the ADWIN detector. Thereby, drift points in data streams shall be identified to trigger retrainings at
the appropriate time and ultimately prevent model decay. Interestingly, even the baseline method, relying
solely on the entropy calculated from the softmax scores, performed competitively with more sophisticated
state-of-the-art methods. Moreover, all methods performed fairly similar in terms of overall classification
performance as measured by the MCC metric. While the SWAG method achieved the most balanced MCC
values and differences were only marginal. However, this was not the case when analyzing the ECE. Here the
SWAG method offers significantly better calibrated predictions than all other methods. Regardless, these did
not translate to better results for the drift detection. Thus, the assumption can be made, that the choice of
method does not have a noteworthy influence on the performance of uncertainty-based concept drift detection
for real-world applications.
To confirm the previous assumption, future work may include testing further real-world datasets, including
regression problems. For those, the basic NN and the ASH method are no longer applicable. Instead, the effect
of the ASH method in combination with the remaining approaches could be studied.

C.7. Hyperparameters and architectures

To make the experiments reproducible, Table C.2 gives an overview of the neural network architecture used
for each dataset. Hidden layers use ReLU activations, while the softmax is applied in the final layer. The
ADAM optimizer is used with binary or categorical cross-entropy loss, depending on the number of classes. For
MCD, 100 forward passes are carried out. The Ensemble consists of three members. BMA is conducted with
100 samples from the posterior approximation of the SWAG method. Furthermore, the estimated covariance
matrix utilized in the approach has a rank of 25 and is updated each epoch, starting at the first iteration. For
the ASH method, the version termed ASH-p was chosen, where unpruned activations are not modified at all.
Pruning is applied in the penultimate hidden layer (i.e. third last overall layer) with a pruning percentage of
60%. Lastly, Table C.3 indicates the sensitivity values δ for the ADWIN detector.

C. Comparison of neural network uncertainty estimation methods for drift detection 147



Table C.2.: Overview of model architectures.

Name No. Layers Neurons per layer Dropout rate Epochs

Gas 5 128, 64, 32, 16, 8 0.2 100

Electricity 3 32, 16, 8 0.1 400

Rialto 4 512, 512, 256, 32 0.2 200

InsAbr 5 128, 64, 32, 16, 8 0.1 200

InsInc 5 128, 64, 32, 16, 8 0.1 100

InsIncAbr 3 32, 16, 8 0.1 50

InsIncReo 3 128, 64, 32 0.1 400

Table C.3.: Sensitivity values for ADWIN detector.

Gas Electricity Rialto InsAbr InsInc InsIncAbr InsIncReo

0.1 1e-15 1e-20 0.002 0.002 0.1 0.1
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