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Zusammenfassung

Diese Dissertation untersucht das vielschichtige Gebiet der Cybersicherheit von modernen
Elektrofahrzeugen (EV) mit einem Schwerpunkt auf Fahrzeugkommunikationsprotokollen.
Unsere Forschung beleuchtet detailliert IT-Sicherheitsrisiken, wie die Manipulation des
Fahrverhaltens, Datenschutzverletzungen wéhrend des Ladevorgangs und Bedrohungen
fiir die Stabilitdt des Stromnetzes durch das Laden von EVs.

In dieser Arbeit identifizieren wir durch eine Bedrohungs- und Risikoanalyse (TARA)
identifizieren die kritischen Angriffspunkte in der Fahrzeugkommunikation. Wir fithren
dabei einen innovativen Ansatz zur automatisierten Bewertung der Angriffsflache ein, um
den TARA-Prozess zu beschleunigen und Fehler zu reduzieren. Diese Bewertung ergibt
hohe Risiken sowohl bei der internen Fahrzeug- als auch bei der Ladekommunikation.

Zur Absicherung der internen Kommunikation via CAN-Bus wird das BusCount-Protokoll
zum Schutz von Fahrzeugnetzwerken vorgestellt. Es bietet gegeniiber bestehenden Losun-
gen deutliche Vorteile beim Schutz vor Replay- und Delay-Angriffen.

Weiterhin validieren wir die Absicherung des modernen Automotive Ethernet mittels TLS
anhand verschiedener Kommunikationsszenarien. Wir messen die Leistungsauswirkungen
verschiedener Chiffren auf typischer Automotive-Hardware und vergleichen sie mit den
Anforderungen der Automobilindustrie. Fiir service-orientierten Kommunikation iiber
Automotive Ethernet weisen wir Sicherheitsliicken des verbreiteten SOME/IP Protokolls
nach und entwickeln zwei mogliche Protokollerweiterungen zur Absicherung.

Zur Sicherung der EV-Ladeinfrastruktur gehen wir auf potenzielle Manipulation des
Stromnetzes und Datenschutzprobleme wéhrend des Ladevorgangs ein. Weiterhin zeigen
wir, wie personenbezogenen Daten beim Ladevorgang reduziert werden kénnen und
schlagen eine Erweiterung fiir das bestehende Plug & Charge Protokolle vor, die ein
DAA-Schema nutzt, um einen anonymisierten Ladevorgang zu erméglichen.

Zusammenfassend trégt diese Arbeit zur Weiterentwicklung der Cybersicherheit von EVs
bei, indem kritische Aspekte durch eine Risikobewertung identifiziert und Losungen




zur Absicherung der internen CAN- und Automotive Ethernet-Kommunikation vorge-
schlagen werden. Dariiber hinaus werden Sicherheits- und Datenschutzprobleme der
EV-Ladeinfrastruktur adressiert. Diese Erkenntnisse bilden eine Grundlage fiir die IT-
Sicherheit in Elektrofahrzeuge in einer sich schnell entwickelnden Automobilindustrie.
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Abstract

This dissertation focuses on the cybersecurity of modern electric vehicles (EVs), specifically
their communication protocols. The research highlights IT security risks, such as the
manipulation of driving behavior, data breaches during the charging process, and threats
to the stability of the power grid from EV charging.

A threat and risk analysis (TARA) is conducted to identify the critical points of attack in
vehicle communication. We present an innovative approach to automating the assessment
of the attack surface, which will accelerate the TARA process and reduce errors. The
assessment reveals high risks in internal vehicle communication as well as in charging
communication.

To secure internal communication via the CAN bus, we propose the BusCount protocol
as a secure communication solution for protecting automotive networks. This approach
provides clear advantages over existing solutions in protecting against replay and delay
attacks.

Furthermore, we investigate securing modern automotive Ethernet using TLS and validate
various communication scenarios. We assess the potential performance impacts of different
ciphers on typical automotive hardware and compare them to the industry’s requirements.
Security gaps were identified in the widespread SOME/IP protocol in service-oriented
communication via automotive Ethernet. We developed two possible protocol extensions
to secure SOME/IP.

This work also addresses potential manipulation of the power grid and data protection
issues during the charging process to ensure the security of the EV charging infrastructure.
We show how to reduce the transmission of personal data during the charging process
and propose an extension for the existing Plug & Charge protocols. Our proposed solution
utilizes a Direct Anonymous Attestation (DAA) scheme for anonymous charging.

In summary, this work contributes to advancing EV cybersecurity by identifying critical
aspects through a risk assessment and proposing ways to secure internal Controller Area

vii



Network (CAN) and automotive Ethernet communication. Additionally, this work addresses
security and privacy issues related to the EV charging infrastructure. These findings and
solutions provide a solid foundation for creating a more secure environment for EVs in
the rapidly evolving automotive industry.
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1. Introduction

As vehicles evolve into complex cyber-physical systems with advanced features and commu-
nication protocols, protecting them from emerging cyber threats is crucial. This extensive
inquiry explores this pressing need at the dynamic intersection of automotive engineering
and cutting-edge information technology. This thesis analyzes cyber security vulner-
abilities linked to high-risk communication in electric vehicles and proposes security
measures.

1.1. Motivation

Information Technology (IT) is one of the main drivers for innovation in modern vehicles
and is of paramount importance towards autonomous vehicles. Next to autonomous
driving vehicles, the introduction of connected cars and EVs are further trends. Due to the
shift to electric engines, the engine’s complexity is reduced, and battery management and
charging are introduced. Thus, manufacturers introduced new communication protocols.
At the same time, new, more capable in-vehicle network communication technologies
have been introduced to vehicle architecture to transmit high-resolution sensor signals
necessary for autonomous or assisted driving. Moreover, advanced infotainment systems
and a connection unit, the so-called Telematic Control Unit (TCU), have been introduced,
enabling many connected driving features. Examples are remote updates, live traffic
information, remote parking, emergency calls, or online entertainment.

Traditionally, a vehicle network, the so-called E/E architecture, is separated into domains,
each with a Controller Area Network (CAN) bus network connecting Electronic Control
Units (ECUs) for a specific purpose. For example, the power or drive domain connects
ECUs that control the engine and brakes. The comfort domain contains side mirrors,
windows, electronic seat adjustments, and climate control controllers. An infotainment
domain with a radio, navigation system, and instrument cluster may also use a Media




Oriented Systems Transport (MOST) bus for message communication. All domains are
interconnected with domain controllers via CAN.

The general idea of this separation in in-vehicle network architectures remains mostly
the same in the next generation of vehicles; however, the technologies used can change.
With these innovative technologies, the domains are consolidated into a smaller number
of domains. One emerging trend in modern in-vehicle communication is utilizing network
technologies with enhanced bandwidth, such as Automotive Ethernet (100 Mbit/s) [36],
to replace the traditional CAN bus network, which interconnects the domains. Further-
more, the traditional CAN bus network technology (1 Mbit/s) evolves towards a higher
bandwidth with its predecessors Controller Area Network Flexible Data-Rate (CAN FD)
(5 Mbit/s) [62] and Controller Area Network Extra Long (CAN XL) (10 MBit/s) [5].

Introducing these changed network technologies in the architecture involves how data
communication is treated in vehicles. Currently, ECUs send a cyclic signal to indicate the
status of a system. For example, each car transfers the message rear light off every
50 milliseconds if the vehicle is not in reverse gear. This signal-based communication
is now partially replaced by service-based communication, allowing request-response
communication known from IP-based networks. The automotive industry developed the
middleware protocol Scalable service-Oriented MiddlewarE over IP (SOME/IP) [6, 7] for
Automotive Ethernet to communicate between ECUs. Besides SOME/IP, the automotive
industry has also introduced Audio Video Bus (AVB) for time-synchronous video and
audio transmission. Moreover, Diagnostics over Internet Protocol (DoIP) [92] implements
diagnostic functions and update mechanisms for vehicle repair shops. An overview of new
protocols is given in [124].

Vehicles also communicate with external entities beyond the local communication in the
in-vehicle network. Modern cars have multiple connections to external devices such as the
vehicle key, smartphones via Bluetooth or Wi-Fi, the manufacturer’s backend via cellular
communication (like LTE, GSM, or 5G), or other vehicles via Vehicular Ad Hoc Network
(VANet). Moreover, mechanics connect tester devices via On-Board Diagnostics (OBD) for
vehicle diagnostics [31]. Electric vehicles introduce a new connection and communication
to the charge point for recharging batteries directly to the vehicle network.

This communication with ISO 15118 allows the exchange of charging parameters as well as
the accounting of energy. The charging and billing of electric vehicles are currently realized
with different (primarily incompatible) systems, e.g., using multiple Radio Frequency
Identification (RFID) cards or smartphone apps. Almost all charging systems require
some registration with a service provider, and every charging session involves not only
an EV and a CS but also multiple backend systems of energy providers, power network




operators, vehicle manufacturers, regulators, and Mobility Operator (MO). For the
unification of charging and billing, so-called Plug-and-Charge (PnC) protocols, such as
ISO 15118 [89, 90, 91], Open Charge Point Protocol (OCPP) [140, 141], and Open
Intercharge Protocol (OICP) [142], were developed. Next to billing, these protocols also
allow vehicle smart charging to manage power consumption and maintain a stable power
grid.

1.2. Problem Statement

All these protocols and technologies increase the attack surface for hackers, especially since
information security is not a key focus when these are developed. Many prominent attacks
on vehicle networks and the surrounding infrastructure have already been shown in the
past. The academic demonstration of attacks on in-vehicle networks started with [106]
by controlling driving functionalities by injecting CAN messages. The message injection
can also occur via the diagnostics port OBD [59]. Next to these direct attacks on network
communication, several attacks show the vulnerability of vehicle ECUs. Examples are the
Jeep hack [128] and attacks on the Tesla Model S [137], Volkswagen [101], BMW [27],
Mercedes-Benz [200] and KIA [37]. Dalheimer has exposed attacks on the charging
infrastructure [40], demonstrating the ability to control different CSs and the unencrypted
communication between CSs and the corresponding backend system.

1.3. Goal

My overall goal for this thesis is to increase the security of vehicle communication by
showing the weaknesses of current vehicle networks with several newly introduced tech-
nologies and introducing my security concepts into the vehicle architecture. To achieve
this, I have developed the following:

* Systematically analyzes upcoming communication technologies of next-generation
EVs and their security goals.

* Development of attacks against these communication protocols.

* Introduction and evaluation of countermeasures for the presented vulnerabilities.




In the first step, we systematically analyze upcoming and present communication tech-
nologies of next-generation EVs. Based on this analysis, we determine a cyber attacker’s
attack feasibility and risks. For this purpose, we design a generic reference architecture of
modern EVs to evaluate the impacts of attacks. Next to the necessary reference architec-
ture, we establish an attacker model and attack vectors to derive the security properties of
automotive communication. A key focus of our analysis is security guarantees of protocols
regarding attacks that alter or delay messages for in-vehicle communication as well as
deriving of personal data for external vehicle communication. In-vehicle communication
includes low-level CAN bus, typically used for communication between ECUs in one do-
main, and high-level Automotive Ethernet communication, primarily for inter-domain
communication. Both are safety-critical communication technologies. On the one hand,
communication to and in a charging infrastructure via OCPP and ISO 15118 contains a
personal identifier, accounting information, and positioning and driving behavior of a
person. On the other hand, this communication allows controlling the charging process
of an EV, which has potential impacts on the power grid with catastrophic consequences
for grid stability. All this information is communicated via multiple entities. Further-
more, this communication influences the charging schedule, which impacts the power
consumed. This communication can also affect the power grid. Well-discussed automo-
tive protocols like VANet and classic Ethernet protocols like Dynamic Host Configuration
Protocol (DHCP) or Precision Time Protocol (PTP) are not part of this thesis.

1.4. Contribution

This thesis significantly enhances vehicle security in multiple ways. The following de-
lineates this work’s contributions to the advancement of the state of the art, along with
their respective impacts. Additionally, each chapter of the thesis clearly outlines my
contributions to the papers published, distinguishing them from those of my co-authors.

Generic Domain-based Vehicle Architecture Initially, we introduce a generic domain-
based vehicle reference architecture designed to analyze vehicle communication security
while considering the current vehicle architectures of different Original Equipment Manu-
facturers (OEMs). We also create attacker models derived from the real-world attacks
of the past years. This architecture was published in [207] and forms the basis of all
further contributions. The paper not only provides a realistic architecture but also gathers
components to implement our test bench, which we use in this thesis to simulate attacks




or implement security solutions. The test bench is the first academic platform using
automotive Ethernet. It integrates autonomous driving as well as safety functionalities
specially designed for evaluating attacks and security technologies on a model car with real
physical impacts. So far, most similar platforms focus on simulations to train autonomous
driving; thus, these do not mimic realistic network architectures with distributed sensors
and actors.

* [207] Daniel Zelle et al. “SEPAD - Security Evaluation Platform for Autonomous
Driving”. In: 28th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, PDP 2020, Visterds, Sweden, March 11-13, 2020. 1EEE,
2020, pp. 413-420. po1: 10.1109/PDP50117.20260.00070. urL: https://d
0i.org/10.1109/PDP56117.20260.00070

Automated Attack Feasibility Rating Next, we introduce an automated attack feasibility
rating mechanism for the newly established ISO 21434. This mechanism closes the gap
in ISO 21434 between the definition of the assets and potential-based rating, where the
ISO standard only gives high-level advice, by introducing a novel method to automatically
calculate potential-based attack feasibility based on an attack model and basic attack
steps. The procedure was published in [208] and is the first publication considering an
OEM'’s requirements. The risk analysis was initially developed for and in cooperation
with a German OEM that uses these results internally for further risk treatment decisions.
Multiple research projects in the industry have been acquired due to this topic, and our
training content has been updated to ISO 21434. The automatism of this approach reduces
the danger of human mistakes in the rating process. It thus generates attack vectors more
reliably based on the network model and basic attack steps. Furthermore, it reduces the
workload when creating a threat and risk analysis of vehicles or components.

e [208] Daniel Zelle et al. “ThreatSurf: A method for automated Threat Surface
assessment in automotive cybersecurity engineering”. In: Microprocessors and
Microsystems 90 (2022), p. 104461. 1ssN: 0141-9331. por: https://doi.org
/10.1016/]j.micpro.2022.104461. urL: https://www.sciencedirect
.com/science/article/pii/S0141933122000321

Security Improvement of Controller Area Network Furthermore, we discovered a new
security vulnerability in representative security protocols for CAN using formal security
verification and propose a solution to mitigate this issue. With the introduction of formal
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verification [67, 202], we expose that most security protocols for CAN, including Automo-
tive Open System Architecture (AUTOSAR)’s Secure Onboard Communication (SecOC),
send messages that can be monitored and altered by an attacker. This allows the attacker
to send this message at a later point in time, and potential receivers accept it. We present
our provably secure protocol extension for the data link layer of CAN that is compatible
with regular CAN controllers as well as its successors, CAN FD and CAN XL. This prob-
lem and its solutions have been integrated into industry projects with multiple tier-one
suppliers in the automotive industry.

* [202] Daniel Zelle, Sigrid Giirgens, and Anjia Yang. “BusCount: A Provable Replay
Protection Solution for Automotive CAN Networks”. In: Security and Communication
Networks 2021 (Jan. 2021). 1ssn: 1939-0114. po1: 10.1155/2021/9951777.
URL: https://doi.org/10.1155/2021/9951777

» [67] Sigrid Giirgens and Daniel Zelle. “A Hardware Based Solution for Freshness
of Secure Onboard Communication in Vehicles”. In: Computer Security - ESORICS
2018 International Workshops, CyberICPS 2018 and SECPRE 2018, Barcelona, Spain,
September 6-7, 2018, Revised Selected Papers. Ed. by Sokratis K. Katsikas et al.
Vol. 11387. Lecture Notes in Computer Science. Springer, 2018, pp. 53-68. 1SBN:
978-3-030-12785-5. por: 10.1007/978-3-030-12786-2\_4. urL: https:
//doi.org/10.1007/978-3-030-12786-2%5C_4

Security Improvement of Automotive Ethernet Moreover, we conduct a systematic anal-
ysis of automotive Ethernet, demonstrating the feasibility of TLS in a vehicle network for
the first time. The papers [206] have been developed in collaboration with a German OEM,
resulting in the adoption of TLS for in-vehicle communication and discussions on securing
in-vehicle networks with further OEMs and suppliers. We also present the first systematic
review of security attacks and countermeasures for Automotive Ethernet in ACM Com-
puting Surveys [189] covering 172 papers. Additionally, we identify new vulnerabilities
through the first formal security verification of SOME/IP in combination with low-layer
security protocols widely used in automotive networks. These vulnerabilities could be
verified within the reference implementation and a standard development environment in
the automotive industry. Due to the dynamic service-oriented communication, the protocol
allows attackers to attack the service discovery and gain a man-in-the-middle position
in all communication scenarios of SOME/IP, giving the attacker complete control over
the transmitted messages. To overcome these vulnerabilities, we propose and implement
two security extensions for SOME/IP; one is designed for improved performance, and the
other offers perfect forward secrecy. For both, we formally prove the security properties
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of both protocols. The paper [203] presented this and received the Best Paper award at
ARES "21. Furthermore, this research resulted in evaluations of OEMs and suppliers to
introduce further security technologies for their SOME/IP implementations.

* [203] Daniel Zelle et al. “Analyzing and Securing SOME/IP Automotive Services with
Formal and Practical Methods”. In: ARES 2021: The 16th International Conference
on Availability, Reliability and Security, Vienna, Austria, August 17-20, 2021. Ed. by
Delphine Reinhardt and Tilo Miiller. ACM, 2021, 8:1-8:20. po1: 10.1145/3465
481.3465748. urL: https://doi.org/10.1145/3465481.3465748 (Best
Paper Award)

* [206] Daniel Zelle et al. “On Using TLS to Secure In-Vehicle Networks”. In: Pro-
ceedings of the 12th International Conference on Availability, Reliability and Security,
Reggio Calabria, Italy, August 29 - September 01, 2017. ACM, 2017, 67:1-67:10.
ISBN: 978-1-4503-5257-4. por: 10.1145/3098954 .3105824. urL: https:
//doi.org/10.1145/3098954.3105824

* [43] Marco De Vincenzi et al. “A Systematic Review on Security Attacks and
Countermeasures in Automotive Ethernet”. In: ACM Comput. Surv. 56.6 (Jan. 2024).
1ssN: 0360-0300. por: 10.1145/3637059. urL: https://doi.org/106.114
5/3637659

Security and Privacy Analysis of Electric Vehicle (EV) Charging Finally, we identify
security and privacy issues in current charging protocols, demonstrating these vulnerabili-
ties through practical evaluations and developing an evaluation tool for CSs. Findings in
specific products have been reported to the charge station manufacturers. In [204], we
first examined the protocols of electric charging systematically to find all personal data
transmissions in the complete communication chain from the vehicle to the MO. Based on
the analysis of current charging protocols, with several privacy flaws, we developed the
first extension to ISO 15118 to overcome these problems using DAA that maintains the
ISO architecture and does not introduce additional actors but allows an exact accounting
of charging processes in the complex relationship between multiple Charge Station Op-
erators (CSOs), and MOs and their costumers. This extension uses DAA to authenticate
the user towards a CS anonymously and encrypts power consumption between CS and
MO, preventing a clearing house from learning the actual communication. Moreover, we
presented [212] at the Annual Computer Security Applications Conference (ACSAC) 2022,
describing possible attack scenarios on power grids based on security flaws shown in an
experimental evaluation of different attack techniques specially fitted for EV charging.
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The findings and results lead to multiple invitations due to our expertise regarding the
security and privacy of the current charging infrastructure. For example, with Electrify
America, Nationale Leitstelle Ladeinfrastruktur, CharIN Cybersecurity Workshop, and a
German OEM.

* [204] Daniel Zelle et al. “Anonymous Charging and Billing of Electric Vehicles”.
In: Proceedings of the 13th International Conference on Availability, Reliability and
Security, ARES 2018, Hamburg, Germany, August 27-30, 2018. Ed. by Sebastian
Doerr et al. ACM, 2018, 22:1-22:10. 1sBN: 978-1-4503-6448-5. po1: 10.1145/3
230833.3230850. urL: https://doi.org/10.1145/3230833.3230850

* [212] Maria Zhdanova et al. “Local Power Grids at Risk - An Experimental and
Simulation-based Analysis of Attacks on Vehicle-To-Grid Communication”. In: An-
nual Computer Security Applications Conference, ACSAC 2022, Austin, TX, USA, De-
cember 5-9, 2022. ACM, 2022, pp. 42-55. por: 10.1145/3564625.3568136.
URL: https://doi.org/10.1145/3564625.3568136

1.5. Structure

The thesis is structured into seven chapters. In the next chapter (Chapter 2), we introduce
the fundamentals of comprehending the communication technologies used in modern
vehicular networks and the electric vehicle charging infrastructure with its diverse com-
munication media and protocols. In the following Chapter 3, we describe the developed
reference architecture of modern electric vehicles, which details the connections between
different entities in the cars and the corresponding charging infrastructure. We also de-
scribe the typical communication scenarios of modern vehicles. Based on existing attacks
in this chapter, we then establish three different attackers relevant to the IT security of cars.
Based on the reference architecture, we discuss the risks associated with communication
vehicle data traffic in Chapter 4. For this purpose, a self-developed scheme based on
ISO 21434 [208] is used to evaluate and assess attack paths in the vehicle network. Based
on these results, a selection of problems is addressed in the following chapters, starting
with protecting low-level can bus communication in Chapter 5 against attackers. In the
Chapter 6, we explain possible attacks and security concepts for Automotive Ethernet.
First, a general approach is presented to secure vehicular communication with standard
TLS, including a possible certificate architecture and performance evaluations of TLS on
an automotive processor. Next, the service-oriented protocol SOME/IP is analyzed, and
security issues are discovered that cannot be solved by applying TLS. Two provable secure
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solutions are presented to overcome the security issue of the multicast service discovery
process. In the following chapter (Chapter 7), we discuss the security and privacy issues
of the charging communication. First, the security implications of EV smart charging on
the power grid are elaborated. Then, the approach is presented, ensuring end-to-end
privacy of charging processes. In the end, a conclusion is given of the presented results.







2. Background

This chapter gives an overview of standard communication technologies in a vehicle
network. We start with CAN bus and Automotive Ethernet communication. We will also
examine EV charging, the backend communication necessary for the charging and billing
process, and the scheduling of charging processes and control mechanisms to increase the
power grid’s stability.

2.1. Controller Area Network (CAN)

Controller Area Network (CAN) bus is a field bus commonly used in automotive net-
works [86]. In this bus network, all connected devices are able to send and receive
messages with up to 1 Mbit/s transfer rate.

Each regular CAN message comprises the parts: ”Start of frame” bit, message identifier,
control field, data field, checksum, confirmation field, and “end of frame”. Such a message
is shown in Figure 2.1.

1 bit 11 bit 6 bit 0 - 8 byte 16 bit 2 bit 7 bit
SOF| ID | Control Payload CRC | ACK|EOF

Figure 2.1.: A single CAN frame

After the first bit indicating the message starts, an 11-bit identifier is transferred with
every message, which stands for its priority and allows it to handle collisions using Carrier
Sense Multiple Access/Collision Resolution (CSMA/CR). CSMA/CR prevents collisions
with a simple procedure: all entities in a network send messages simultaneously, indicated

1



by the start of a frame. Due to the physical properties of the CAN bus, a dominant bit (0)
overwrites a recessive bit (1). Each entity monitors the bus, and in case its message ID is
overwritten, it stops sending. This means the lowest ID is sent without a collision.

The following control bits contain the data length, as well as a reserved bit and a bit
indicating that the message ID has been extended to an additional 18 bits.

After the payload of up to 8 bytes, a Cyclic Redundancy Check (CRC) over the message is
transmitted and checked by every ECU in the network. In case the CRC check has failed,
or another problem occurs, each entity in the network aware of the problem sends an
error frame that invalidates the message for all receivers. This action increases the error
counter by 8 for the sender and 1 for every receiver. An entity reaching an error count
of 128 is disabled and can no longer interact with the network. A successful message
transmission decreases the error counter, but only if the counter did not reach 128 before.

Since the transmission of 8 bytes is no longer sufficient, Controller Area Network Flexible
Data-Rate (CAN FD) [86] and Controller Area Network Extra Long (CAN XL) [5] have
been developed. Both differ mainly in the bit rate used to transfer the payload. CAN FD
transmits up to 64 bytes, while CAN XL is capable of a 2048-byte message payload in a
single CAN frame.

2.2. Automotive Ethernet

Automotive Ethernet is based on the BroadR-Reach-Ethernet-Physical-Layer [81], which
was later specified by the OPEN Alliance SIG! and IEEE in various standards. Automotive
Ethernet allows the connection of ECUs via unshielded single twisted pair cables, reducing
the wires’ weight and cost. It provides communication with up to 1000 Mbit/s in an IEEE
802.3 switch network, and thus, classic Ethernet communication via IP and UDP or TCP
is possible. Automotive Ethernet replaced parts of classical vehicle network technology;,
especially high bandwidth systems like MOST and FlexRay. A typical Automotive Ethernet
scenario is described in [56]. It contains a low number of control units with Ethernet
ports (between 10 and 20) and one or two Automotive Ethernet gateways or switches
connecting these ECUs. On the application layer, some automotive-specific protocols have
been introduced. Examples are SOME/IP or DoIP. These two application layer protocols,
SOME/IP and DolP, for Automotive Ethernet are discussed in the following.

'https://opensig.org/about/specifications/
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2.2.1. Scalable service-Oriented MiddlewarE over IP (SOME/IP)

With the introduction of Automotive Ethernet, signal-oriented communication has been par-
tially complemented with service-oriented communication. The Scalable service-Oriented
MiddlewarE over IP (SOME/IP) protocol, specified in AUTOSAR [6], is designed to pro-
vide service-oriented communication and acts as a middleware between hardware and
software components.

SOME/IP utilizes the TCP/IP or UDP/IP protocol to transport data (cf. Figure 2.2) and pro-
vides a serialization of control signals. Applications that use the SOME/IP interface do not
require IP addresses or ports. However, only a service identifier is needed to communicate,
making it a more flexible and bandwidth-efficient communication protocol. Furthermore,
its design elements provide the necessary features to facilitate communication efficiently.

SOME/IP
Middleware

AR

Automotive
Ethernet

Figure 2.2.: SOME/IP Architecture

To allow communication between entities based on service IDs, SOME/IP makes use of
Service Discovery (SD). Scalable service-Oriented MiddlewarE over IP (SOME/IP-SD) im-
plements the detection of service instances and introduces a publish/subscribe process [7].
A service instance offers by sending a multicast message. Since multiple instances can pro-
vide the same service in a network, each instance is uniquely identified by an Instance ID.
This is called offer message OfferService(Service ID, Instance ID), contain-
ing the endpoint options (IP address, IP Version, protocol, and port), service and instance
ID, and options for configurations load balancing. By sending a StopOffer (Service
ID, Instance ID) message, a server indicates that the service is no longer offered. A
client sends a FindService(Service ID, Instance ID) message to search for a
service actively. If the client only looks for a specific instance, the ID can be set to OXFFFF.
A server that provides the requested service responds with an offer service message.

SOME/IP offers different communication patterns depending on the type of service. Clients
can request a service and get a response from the server but also send a message to trigger
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a service provider function without any response message; this communication pattern
is called fire and forget. A client can also subscribe to a service that either notifies
the client regularly or when an event occurs. To subscribe to a service, also called an
event group, a client sends a SubscribeEventgroup(Service ID, Instance ID)
message to the server offering the service. The server confirms the subscription with
SubscribeEventgroupACK(Service ID, Instance ID). A client transmits a
StopSubscribeEventgroup(Service ID, Instance ID) message to unsub-
scribe from an event group. Figure 2.3 displays the regular information flow of this
subscription process.

Server S Client C
10.0.0.2 10.0.0.3

T T
|

OfferService 0x1234,0x5678 Endpoint 10.0.0.2:30509 !
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SubscribeEventgroup ACK 0x1234,0x5678
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Figure 2.3.: Typical SOME/IP publish subscribed protocol flow

Both protocol specifications, SOME/IP [6] and SOME/IP-SD [7], do not provide any
security mechanisms. A typical SOME/IP network offers about ten services per ECU,
according to [56]

2.2.2. Diagnostics over Internet Protocol (DolP)

A further Automotive Ethernet protocol, Diagnostics over Internet Protocol (DolP), is
specially designed for the particular use of vehicle diagnostics and troubleshooting in a
repair shop. DoIP [92] is a transportation layer protocol designed to enable communication

14



between automotive control units and testers. In the typical case, a testing tool is connected
to the vehicle via an OBD port and allows a mechanic to read error codes and vehicle
data. Furthermore, modern cars have an integrated tester that allows remote diagnostics
and updates by the vehicle manufacturer. An additional use case of DoIP enables the
connection of multiple testers with one or multiple vehicles via a wireless network in a
repair shop. This makes the work of mechanics more convenient and eliminates the need
for physical connections to the vehicle.

The DoIP protocol is divided into two phases: The discovery phase and the actual diag-
nostic communication to transfer, e.g., sensor values or trouble codes. In the initializa-
tion phase, a DoIP gateway broadcasts a VehicleAnnouncementmessage announcing
its presence to connected testers. The tester can also actively search for the gateway
by sending a VehicleIdentificationRequest, which the gateway answers with
aVehicleIdentificationResponse. In the following routing phase, the tester re-
quests the gateway to open a socket to receive further commands. Once the communication
is set up, the tester performs its diagnostics requests. Internally, the gateway can use DoIP
or proprietary protocols to get information from other control units in the vehicle.

2.3. Charging Infrastructure for Electric Vehicles (EVs)

A unique communication of an EV is the charging communication. This communication
allows the vehicle to communicate with Charge Station (CS) and exchange parameters
for the charging process. Furthermore, a schedule for the charging can be set up. It
also authenticates the power transfer and accounts for the charging process. Charging
communication is not only limited to communication between the CS and the vehicle but
also includes communication between the CS and backend systems and between backend
systems. Lots of protocols for EV charging have been proposed [149, 136, 72], but only a
small set is deployed in actual products. The primary standards are ISO 15118 [89] for
the communication between vehicle and CS, Open Charge Point Protocol (OCPP) [140,
141] by the Open Charge Alliance that enables remote control capabilities to manage
multiple chargers located at different sites and the accounting of charging processes, and
Open Intercharge Protocol (OICP) [142] that implements an interface between acCSO
and the MO, which sells energy to a customer.
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2.3.1. Plug-and-Charge Architecture

Based on the information given on the most common or upcoming charging protocols and
their role definition in Section 2.3, as well as the information on charging infrastructure
given in [205] and [73], a reference Plug-and-Charge (PnC) architecture is given.

In this architecture, a customer owns an EV and has a contract with an MO that allows the
customer to charge his vehicle at public CSs. For this purpose, the vehicle communicates
with the CS and authenticates using Plug-and-Charge. The CS forwards the authorization
request to the operator CSO using OCPP. In case the CSO cannot answer the request
directly, it will contact the Contract Clearing House (CCH) using OICP, which sends this
request to the corresponding MO. The response by the MO is then sent via the same
channels, and the vehicle can start charging. This charging process might be reduced
or interrupted by the Distribution System Operator (DSO). The DSO can send control
signals or tariff information to the CSO or a local Energy Management System (EMS),
and both can contact the CS using OCPP to re-schedule the charging process. This new
charging schedule is transmitted via Power-Line Communication (PLC) and ISO 15118 to
the vehicle. In the end, when the charging process is finished, the CS transmits the final
meter value to the car and the CSO. The CSO transmits the values to the CCH, and from
there, the values are sent to the MO, who sends a bill to the customer and pays the CSO
for the consumed energy. Figure 2.4 gives an overview of the reference architecture.

The assumed system architecture is based on the definitions of ISO 15118 [89, 90, 91],
OCPP 1.6 [140], and OICP 2.3 [142].

2.3.2. ISO 15118

ISO 15118 [89, 90, 91] is an international standard defining a Vehicle to Grid (V2G)
communication interface supported by a large number of OEMs and CS manufacturers [50].
The goal of ISO 15118 is to enable interoperability between different CSs and vehicles by
plugging in the power cable without further interaction.

To understand the complex charging infrastructure, it is essential first to know the different
actors and roles defined in [89]. Afterwards, the communication protocol is described.

The first party is the customer, who charges an EV at a CS. The customer may not
necessarily own a vehicle but can also be a family member or a user of a company
fleet or car-sharing service and thus have access to the vehicle. The EV has an Original
Equipment Manufacturer (OEM) Provisioning Certificate containing a unique Provisioning
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Figure 2.4.: Overview of Electric Charging Architecture

Certificate Identifier (PCID) identifying the car. This certificate is meant to be bound to
the vehicle for its entire lifetime and thus is valid for around 40 years. A replacement of
this certificate is only an exception and should not occur under normal circumstances.
The communication unit responsible for the ISO 15118 communication in an EV is called
Electric Vehicle Communication Controller (EVCC). Each EVCC has a unique Electric
Vehicle Communication Controller Identifier (EVCCID).

The customer has a contract with an Mobility Operator (MO) that sells energy to the cus-
tomer. Based on this contract, a Contract Certificate is issued in the context of ISO 15118,
valid for up to two years. Thus, a regular certificate update is necessary. This certificate
includes the E-Mobility Account Identifier (EMAID), an identifier of the contract between
both MO and the customer, and typically serves as a uniquely identifies a customer. The
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EMAID comprises a two-letter country code, the MO’s ID consisting of three alphanumeric
values, the individual contract identifier of nine digits and letters, and a checksum of
one digit. Furthermore, the MO can offer Value Added Service (VAS), but today, only a
negligible number have adopted this option. Energy providers sometimes take the MO
role, but an OEM, a CSO, or another company can also take the role of an MO if they have
contracts allowing them to sell energy indirectly.

Further essential parties in the context of EV charging are Charge Station Operators
(CSOs) and their Charge Stations (CSs). Every CS is equipped with an Supply Equipment
Communication Controller (SECC) to communicate with the vehicle during the charging
process and control this process at the CS. Each SECC has a certificate containing a
unique Charge Point Identifier (CPID) [90], also called Electric Vehicle Supply Equipment
Identifier (EVSEID) [142], to authenticate. CSs are deployed, managed, and maintained
by the CSO. Often, CSOs are energy suppliers, but new actors have also entered this
market.

To coordinate the accounting and billing of charging processes between CSOs and MOs,
ISO 15118 introduces the role of Contract Clearing House (CCH). Its task is to exchange
authorization information between CSOs and MOs so that only legitimate customers
can start a charging process. Moreover, the CCH forwards billing information and maps
customer contract certificates to the responsible MO. This process is often called roaming.

The authentication procedures supported by ISO 15118 are Plug-and-Charge (PnC) or
External Identification Means (EIM). The EIM can be implemented with an RFID card,
mobile app, or other authentication methods, performed out-of-band at the authorization
step of the ISO 15118 communication. PnC is the native authentication method based on
a challenge-response procedure to validate the X.509v3 contract certificate. The contract
certificate and all the previously described certificates (OEM, Electric Vehicle Supply
Equipment (EVSE), etc.) are issued by a complex Public Key Infrastructure (PKI) with a
deep certificate hierarchy specified in [90].

Before the ISO 15118 via the charging cable can start, a connection needs to be set up.
In the first step, the cable is plugged, and the cable is locked (cf. IEC 61851). Via the
control pilot wire, a PLC connection is established using HomePlug Green PHY
(HPGP), a special PLC standard that, e.g., leaves out security functionalities [91]. Once
this connection is established, CS and EV form an IPv6 network, where an initial service
discovery process via UDP takes place to initialize the TCP connection that is used for the
actual charging communication [90]. During recovery, both decide if the communication
uses a unilateral TLS or plaintext.
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The communication protocol ISO 15118 [90] on the application layer consists of a specified
order of request and response message pairs. The messages have a given XML/EXI-based
schema. The protocol can be divided into four phases: Communication setup, identification
authentication authorization sequence, charge control re-scheduling sequence, and end of
charging process. These abstract communication phases are displayed in Figure 2.5. In
the first phase, the TLS connection is established.

Furthermore, the protocol version, an authentication method, charge parameters (type of
charging, battery status, etc.), and a charging schedule are exchanged. The identification
authentication authorization sequence either waits for the external authentication or
performs the PnC authentication process. Next, in the charge control re-scheduling
sequence, the vehicle is charging. In this phase, the vehicle can stop or pause the charging
process at any time, or the CS can change the charging parameters, e.g., in case of a
critical grid situation. The final stage is the end of the charging process, which stops the
charging, transmits the final meter values for the billing process, and unlocks the cable. A
detailed description is given in the privacy analysis in Section 7.3.3.
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Figure 2.5.: Abstract ISO 15118 Protocol

The latest iteration of the network and application layer specification, ISO 15118-20 [88],
introduces a lot of new capabilities. Notably, it supports bidirectional power transfer and
wireless charging, marking a significant advancement in the domain. Furthermore, the
security concept has been revised, including pivotal enhancements such as the mandatory
adoption of TLS and seamless integration with Trusted Platform Module (TPM) 2.0 [211].
These pivotal updates collectively bolster the specification’s functionality and security.
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2.3.3. Open Charge Point Protocol (OCPP)

The most widely used communication standard for the exchange of data between CSs
and the backend system controlling CSO is OCPP [140, 141], specified by the Open
Charge Alliance [149, 212]. Today the most common version in commercial products is
Open Charge Point Protocol (OCPP) 1.6. OCPP 1.6 and before did not require any
cybersecurity mechanism but allowed all data transmission to be unauthorized and
unencrypted. OCPP 1.6 allows network-level security and alternatively presents the
possibility of implementing OCPP via TLS with an HTTP basic authentication scheme
for CSs and possibly a certificate authentication for CSOs. Only the most recent version,
OCPP 2.0.1[141], defines a basic security level by introducing TLS.

The OCPP communication scheme is a simple request-response state machine. Both CS
and CSO can send requests, and the respective receiver must answer them. One core
element of OCPP communication is the request for authorization of a charging EV. This
request contains a unique EMAID identifier that can be provided, e.g., with an RFID
token or via ISO 15118. The central backend server of the CSO confirms this request so a
charging process can be initialized. Additionally, the CS can store the validity value in a so-
called authorization list to authorize these identifiers in the future without requesting the
backend. This list can be synchronized with the central system of the CSO. Moreover, CSs
are able to notify the CSO of its current status, or the backend system may request status
information. For the accounting of a charging session, the CS transmits the transaction
ID, meter values, and other charging parameters to the CSO server.

CSs can also receive energy tariffs or grid signals from the CSO or a local energy man-
agement system. Furthermore, OCPP allows the maximum power to be set for a charging
process or a charging schedule. This way, a smart charging process can be achieved that
may reduce the cost based on power grid forecasts and ensure a stable grid. OCPP also
defines messages for remote configuration CSs, such as maintenance, troubleshooting, or
patching. Finally, OCPP can also be used to send arbitrary data packages.

2.3.4. Open Intercharge Protocol (OICP)

The Open Intercharge Protocol (OICP) [142] is an interoperable communication standard
developed in 2012 by Hubject. More than one thousand companies use OICP in 43
countries [142]. The study [149] also emphasizes its importance. The specification defines
the functionality of the CCH (or E-Mobility Clearing House (EMOCH) in ISO 15118 [89]).
The CCH enables communication between CSOs and MOs so customers can charge a
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vehicle at CSs without having a contract with the corresponding CSO. The CSO can use
the CCH to communicate with the customer’s MO to get paid for the consumed energy.
Such a service is typically a roaming service.

Implementing the OICP specification allows CSOs to authorize a charging process with
the corresponding MO either directly or remotely by relaying the charging session autho-
rization requests. This request contains the EMAID, which includes an identifier of the
MO. Based on this identifier, the CCH determines the contract between the CSO and MO
and forwards this information to the MO. The CSO is also informed if no contract exists.
The MO then validates if the contract with the customer related to the EMAID is still valid
and authorizes the charging. OICP also describes the transmission of the Charge Detail
Record (CDR), which transmits the collected information during a charging process. For
example, the CDR includes the EMAID, EVSEID, timestamps, and the amount of charged
energy. The CDR accounts for the charging session and is archived by the CCH.

Additionally, OICP can be used to place reservations for CSs. Vehicle and status infor-
mation can be uploaded and downloaded via OICP. Furthermore, the CCH can store
authentication data to approve a charging session in case the MO is offline.
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3. System Model

After the last chapter described the general technologies in modern electric vehicles, this
chapter explains what a vehicle network looks like. A special focus is set on communication
technologies and protocols as well as the different communication units, so-called ECUs.
For every entity, a general description of its tasks is given. This automotive network
architecture serves as a reference architecture in the following chapters. Next to the
vehicle architecture, the reference architecture of the complex charging infrastructure is
given.

Furthermore, an attacker model is described, containing relevant attackers for automotive
use cases. This model includes the relevant attackers for the security solutions presented
in this work. The attacker model consists of three types of attackers: the Local Attacker,
the Advanced Remote Attacker, and the Internal Attacker.

3.1. Vehicular Network

The network topology of modern electric vehicles has changed due to the introduction of
advanced communication standards, but also the demand to integrate additional and more
advanced sensors. Modern automotive E/E architectures can be categorized according
to their topology. A traditional E/E architecture based on gateways due to bandwidth
limitations has been replaced by domain-based or centralized architectures [44]. Further-
more, E/E architecture differs between OEMs due to different design principles. Thus,
adapting an existing architecture would narrow to this manufacturer. For this reason, an
abstract E/E automotive architecture has been generated from different publicly available
resources of automotive OEMs [160, 26, 195] and a survey on different vehicle networks
by Miller and Valasek [127]. Figure 3.1 illustrates our generic automotive E/E we de-
veloped based on the various publicly available architectures. It is a domain-based E/E
architecture, which means the vehicle has several networks divided by the functionality
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and the safety level required by the functions. This architectural framework contains
the internal network connections of a vehicle with various ECUs and sensors, as well
as external entities directly interacting with the car and the communication channels
between all these components.
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Figure 3.1.: Example Network Architecture of Modern Electric Vehicle

The reference architecture comprises five domains: drive and energy, Advanced Driver-
Assistance Systems (ADAS), infotainment, telematics, body, and diagnostics. All domains
are interconnected with an Automotive Ethernet backbone via a switch integrated into
the energy and drive domain controller.

The energy and drive domain combines the traditional domain of driving used to control
the engine and exhaust system with the energy system that includes the high-voltage
battery, charging, and inverters. The domain contains ECUs that control the engine,
brakes (including braking assistance like Electronic Stability Program (ESC) and Anti-lock
Braking System (ABS)), exhaust cleaning system (in case it is not fully electric), the battery
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management system, inverters that provide energy to the electric engine, accelerator, and
brake paddle. Internally, the connection between these ECUs is a CAN FD bus. Further-
more, this bus system is responsible for charging the battery, so the charger ECU has a PLC
connection to communicate with a charging station using ISO 15118 [88]. This includes
authorization of the vehicle with PnC. Next to charging, the thermal management of the
battery is also a task supervised in the drive and energy domain. The energy domain is
exclusive to electric vehicles and consists of the battery, the associated battery management
system, and the charge controller. The latter establishes a connection between the car
and a charging station to charge the battery, e.g., via PLC and a PnC standard such as
ISO 15118 [88]. Attached to the CS is the complete charging infrastructure presented in
Section 2.3.

One of the most modern functionalities of vehicles is automated or autonomous driving
functionalities, which are gathered in the second critical domain of safety. The ADAS
system is responsible for driving decisions, has high computational power, and is connected
to multiple sensors to surveil the vehicle’s surroundings. These sensors are mainly cameras,
radar, or lidar systems. The functionality of the ADAS ranges from automated parking
over lane keeping and emergency braking to fully automated driving in the near future.
Internally, the autonomous driving domain demands high bandwidth and thus uses
Automotive Ethernet or CAN FD for internal communication. Furthermore, the domain
controls the vehicle’s steering and braking system. Since braking is part of the drive
domain, these commands must be transferred via inter-domain communication. The
gateway of the autonomous driving domain contains an Automotive Ethernet switch
connecting all components of this domain.

Additionally, the infotainment domain in every vehicle is responsible for displaying infor-
mation to the driver, e.g., speed, temperature, possible faults, and battery status. This
information is typically displayed in the instrument cluster. Next to this fundamental
information about the vehicle, this domain also includes the navigation system as well
as entertainment functionalities, e.g., sound systems, radio, or applications like Apple
CarPlay or Android Auto. It also has access ports for different user devices, like USB or
AUX. Furthermore, the infotainment system allows the vehicle’s configuration; this can
be the temperature control, the adaptive suspension settings, the automated lighting,
or the behavior of the door locks. All these configurations impact other domains and
thus are communicated via the Automotive Ethernet backbone. Moreover, navigation or
different infotainment system applications require internet access, e.g., to get current
traffic information. For this purpose, a connection to the telematics domain is necessary.
Internally, all components are connected via Automotive Ethernet with a switch integrated
into the infotainment gateway.
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The telematics domain is responsible for most of the external communication of a vehicle.
The typical implementation is a TCU. The TCU is a wireless controller connected to the
Automotive Ethernet. It supports different long- or short-range communication interfaces,
including cellular communications, VANet for Vehicle-to-Everything (V2X) communication,
and Bluetooth. The cellular communication implements the emergency call of the vehicle
as well as a connection to the OEM backend for updates, traffic information, or other
infotainment functions (e.g., E-Mail, Spotify, ...). V2X communication [52] allows the
exchange of information about road conditions, critical situations, or traffic data with
other vehicles or roadside units in a local ad-hoc network. The TCU is also equipped with
an Onboard-Tester. Similar to a tester of a repair shop, this tester can perform diagnostic
tasks to find problems in a vehicle and perform over-the-air updates.

The body domain consists of ECUs that control all types of functions regarding the interior
and chassis of vehicles that are not highly safety-relevant. This includes the lights, horn,
door control for central locking of the vehicle, and wipers, but also internal functions
like climate control and (semi-) automatic seat adjustment. The communication for
these functions is realized internally via CAN or Local Interconnect Network (LIN). The
control signals from the infotainment system are transmitted via the Automotive Ethernet
backbone to the body domain.

Finally, the OBD port gives access to the vehicle’s diagnostic interface. This allows repair
shops to send diagnostic messages to the vehicle network, read sensor values or error codes,
and update ECUs. Third-party applications that have developed OBD dongles often use
this interface to allow customers to access more detailed vehicle information. Furthermore,
vehicle insurance services use this to monitor customers’ driving behavior [168].

3.2. Communication Scenarios Electric Vehicles

The presented architecture contains many different technologies and protocols but can
be summarized into three basic communication scenarios: In-vehicle communication,
external communication, and diagnostics.

3.2.1. In-vehicle Communication

Communication within the vehicle network between many different ECUs is necessary to
implement driving functionality. Signal-based broadcast communication has dominated
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in-vehicle communication in the past. CAN is used for this type of communication since it
is cost-efficient and fulfills real-time requirements. The low bandwidth was irrelevant for
the sensor and actor values like vehicle speed, temperature, pedal angle, wheel rotations,
or engine values.

Introducing more sensors for automated and assisted driving requires the transfer of much
more data. The same is true for connected driving features, where highly detailed maps or
infotainment data needs to be transmitted. For this reason, a service-orient interface based
on Automotive Ethernet is introduced. Service-oriented communication, like SOME/IP,
enables multicast communication over UDP or TCP based on Service IDs. Furthermore,
unicast communication is now possible in Automotive Ethernet.

Thus, we can distinguish in-vehicle communication between unicast, multicast, inter-
domain, and service-oriented communication defined in the following.

Unicast Communication Unicast communication refers to the transmission of messages
to a single network destination. This type of communication is necessary when sending
specific data to a particular recipient. For example, the video stream from a reversing
camera is only sent to the head unit.

Multicast Communication Multicast communication is one of the most common forms
of transmission in today’s vehicles. Since many vehicle communications are carried out
via bus systems, every ECU in a domain can receive the transmitted data. An example
of multicast communication is the broadcast of the brake signal in the safety domain,
which is not only received by the brakes but also by the anti-lock braking system and
potentially electric seatbelt pretensioners. In multicast communication, data from one
sender is transmitted to multiple receivers, which may not necessarily be within the same
domain.

Inter-Domain Communication As domains in vehicles have overlapping functionalities,
some data must be exchanged between domains. For instance, adjusting the temperature
via the infotainment system requires sending the relevant data from the infotainment
domain to the air conditioning ECU in the body domain. In this case, the domain controllers
forward the data from one domain to another. Inter-domain communication typically
occurs between two ECUs, commonly across the border of domains.
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Service-Oriented Communication Another notable trend in in-vehicle communication is
the shift from signal-based communication to service-based communication, where each
ECU offers a set of services that other ECUs can subscribe to or request information from.
The most widely adopted protocol for service-oriented communication is SOME/IP, as
described in Section 2.2.1.

3.2.2. External Communication

Next to internal communication, a vehicle also communicates with the outside world
through different channels. Modern vehicles are connected to the external world through
various communication interfaces. The most common is the direct connection to the OEM
backend via cellular communication. This is used for different functions, e.g., connected to
a mobile app to track, unlock, or start the vehicle. Furthermore, it allows remote updates
or feature unlocks as well as transmission of communication data. Additionally, direct
communication of the car to the Charge Station via Power-Line Communication or WLAN
for the charging communication is implemented in electric vehicles for authorization,
billing, and scheduling. All these connections are direct unicast communications between
the vehicle and one external entity over a TCP or UDP connection.

In addition to these communication cases, V2X allows local broadcast communication to
other vehicles and roadside units, exchanging traffic or safety information. V2X is either
realized with IEEE 802.11p Wi-Fi or cellular communication. Since V2X has been covered
extensively in previous literature [102], it is not the focus of this work.

3.2.3. Diagnostics

A special communication of vehicles is diagnostics. Diagnostics information is transmitted
inside the car to warn the driver of critical conditions and inform a service technician to
help detect problems. Furthermore, the diagnostics functionality can be used to update,
configure, or test the vehicle, e.g., for emission testing. Traditionally, a repair shop
connects to the OBD-II port of a vehicle for diagnostics, but lately, remote diagnostics has
also become more and more important.

Diagnostic requests are typically unicast connections but need to be routed to the corre-
sponding ECU from the tester through domain controllers to the actual ECU.

28



3.3. Attacker Model

For the presented communication channels, transport safety critical information or private
data can both be targets for attackers. This section describes relevant attacker models
derived from real attacks or attack scenarios: Local Attacker, Advanced Remote Attacker,
and Internal Attacker. These attack models are used for the threat and risk analyses in the
following chapters. Since the approach in the next chapter describes the attack feasibility
based on the difficulty of attacks, the attacker models are only needed to define an entry
point for the attacker. Local Attacker

3.3.1. Local Attacker

The first attacker model is the Local Attacker, based on the first in-vehicle communication
attacks presented by Kocher et al. in [106]. Kocher et al. could control many vehicle
functions by injecting messages to the CAN bus, including acceleration and braking. Next
to this finding, attacks on OBD dongles [59] or the introduction of tuning devices or AdBlue
emulators [68] to the vehicle network allows attackers to inject messages into the vehicle
network to manipulate the functionality of the vehicle either to increase performance, to
reduce the emission cleaning or to cause harm to the passengers.

The attack model allows the attacker to send arbitrary messages on any in-vehicle network.
Furthermore, the attacker can flip bits of messages sent by an honest, legitimate ECU.
Finally, she can monitor all messages sent in the in-vehicle network so all messages can be
replayed.

However, the attacker cannot access cryptographic keys and cannot use cryptographic
methods. Attacks to the software and keys stored on ECUs are prevented using coun-
termeasures, e.g., secure boot and a secure key store implementation using Hardware
Security Modules (HSMs). Thus, legitimate will behave correctly in this attacker model.

3.3.2. Advanced Remote Attacker

Widespread attacks on different automotive OEMs have shown that the assumption from
the previous attacker model about the security of ECUs is not necessarily valid. In the Jeep
hack [128] the researchers could obtain control over the infotainment and finally trigger
automated parking commands. Furthermore, the attacks on the Tesla Model S [137],
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the Volkswagen infotainment system [101], BMW [27], and Mercedes-Benz [200] have
pointed out the danger for ECUs.

For the Advanced Remote Attacker, the assumptions of the Local Attacker are extended by
the ability to compromise ECUs, but with the restriction of not being able to access HSMs
and the inability to break cryptographic primitives. Internal Attacker

3.3.3. Internal Attacker

The EV charging ecosystem is intricate and involves diverse stakeholders, as detailed
in Section 2.3.1. These stakeholders range from large corporations to start-ups, each
with varying degrees of security measures in place. The substantial number of entities
participating in the charging process significantly impacts the security and privacy of EV
users.

Given these complexities, it is reasonable to consider the potential compromise of an entity
within the charging infrastructure. In this context, the concept of an Internal Attacker
pertains to an attacker with the capability to access all information stored at or transmitted
to a specific charging entity. This extends to all messages sent and received by this entity,
a scenario reminiscent of a Dolev-Yao attacker [47].
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4. Risk Analysis of Next Generation Electric
Vehicles

To identify potential threats to modern electric vehicles, we conducted a comprehensive
Threat Analysis and Risk Assessment (TARA) of the reference architecture outlined in
Section 3.1. This assessment was carried out in collaboration with experts from the
industry and researchers, as detailed in the publications [208, 207]. These results have
been partially produced in multiple projects with a German vehicle manufacturer and a
tier-2 supplier, and both are using the results and insides of our presented methodology in
their operations. Notably, my contributions include a method to identify attack paths based
on orchestrating the attack feasibility rating process and designing and implementing an
automated algorithm for generating attack feasibility paths, which determine the most
viable attack paths for potential adversaries.

The approach we present in this report is not a standalone method. It aligns with the
ongoing initiatives to standardize and regulate cybersecurity practices. For instance, the
United Nations Economic Commission for Europe (UNECE) has issued regulations 155 on
”Cyber Security and Cyber Security Management System” [184] and 156 on ”Software
Update and Software Update Management System” [185], which render cybersecurity
requirements crucial for the approval of new vehicles and types. Our approach, which is
specifically developed with adherence to ISO/SAE 21434, is in line with these regulations.
The standards SAE J3061 [159] and ISO/SAE 21434 [95] have been developed to provide
a process for conducting TARAs in compliance with the UNECE 155 regulation. Next to
the TARA, ISO/PAS 5112 [94] released 2022 introduces an audit schema for the Cyber
Security Management System of [184] and ISO 24089 [93] specifies requirements and
recommendations for software update in correspondence to [185].

The structure of this chapter unfolds as follows: We begin by introducing the risk assess-
ment process outlined in ISO/SAE 21434, a standard that plays a pivotal role in our TARA
process. Subsequently, we assess the attack surface of the vehicle, followed by the attack
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feasibility rating. Additionally, we elaborate on our self-developed process for determining
attack paths within the vehicle network, addressing a gap not explicitly covered by the
standard. Based on the identified paths and the initial ratings of individual attack steps,
we determine the feasibility of the resulting attack paths. These findings ultimately guide
our decision on the technologies to investigate further in the subsequent chapters.

4.1. The ISO/SAE 21434 Threat Analysis and Risk
Assessment (TARA) Process

The year 2021 marked the release of the international standard ISO/SAE 21434 [95] for
cyber-security engineering in the automotive domain, replacing the SAE J3061 "Cyber-
security Guidebook for Cyber-Physical Vehicle Systems” [159]. This standard outlines
the Attack Surface Assessment with the TARA process, which involves multiple steps
illustrated in Figure 4.1.

The TARA process begins with the identification of relevant assets and corresponding
threat scenarios. For each identified threat scenario, the potential attack paths leading
to that scenario are analyzed, and the feasibility of these attacks is rated. Concurrently,
the potential impact caused by each threat scenario is assessed through an impact rating.
The combination of attack feasibility and impact ratings then enables the determination
of risk levels. Lastly, appropriate risk treatment measures must be suggested to address
the identified risks.

The standard provides informative annexes that propose weighting criteria, categories,
and matrices to support the TARA process. These criteria, along with their suggested
value ranges, are optional and can be adapted as needed. It is worth noting that the
ISO standard allows for using modified values or incorporating additional criteria in the
context of a risk analysis that aligns with the principles outlined in ISO/SAE 21434.

4.2. Attack Surface Assessment

The initial step of the TARA process, as outlined in ISO/SAE 21434 [95] (cf.Figure 4.1)
and Annex G, involves the identification of assets. Following this, the standard suggests
identifying threat scenarios, which are then utilized to determine attack paths and assess
the attack feasibility. However, this step is not explicitly described in the standard. In light
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Figure 4.1.: Process to determine Risk according to [95]

of this, we propose an approach for automatically generating attack paths and assessing
their feasibility based on rated basic attack building blocks.

4.2.1. Asset Definition in Modern Electric Vehicles

Drawing from the reference architecture presented in Section 3.1, we have identified five
categories of assets that require protection within modern electric vehicles:

1. Cryptographic keys and functionalities,
2. Wireless vehicle interfaces and communications,

3. Wired vehicle interfaces and communications,
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4. On-car ECUs including directly connected actors, and

5. On-car sensors.

Each asset category can be further divided into various attack methods, considering the
different technologies employed within the vehicle.

Cryptographic keys Cryptographic keys are integral to several security mechanisms,
such as secure communication and access control. For example, symmetric keys are used
in AUTOSAR’s SecOC [8] to secure in-vehicle communication. In contrast, asymmetric
keys are utilized in ISO 15118 PnC authentication for charging credentials [88]. In this
category, we consider the feasibility of breaking cryptographic algorithms and illegiti-
mately acquiring or modifying cryptographic keys. We distinguish between hardware and
software attacks targeting keys stored within ECU memory and those stored in shielded
locations such as HSMs or TPMs.

Wireless vehicle interfaces and communications Wireless interfaces and communica-
tion channels provide avenues for remote attacks without physical access to the vehicle. We
consider the feasibility of intercepting, listening, jamming, corrupting, altering, injecting,
or replaying messages transmitted through WiFi, cellular, GPS, and Bluetooth interfaces.

Wired vehicle interfaces and communications This category addresses attackers with
physical access to the vehicle. Attackers can exploit exposed interfaces such as OBD,
debug interfaces like JTAG, USB, and AUX, indirectly accessible interfaces to bus systems
including CAN, CAN FD, FlexRay, and Ethernet, as well as interfaces to the environment
like PLC for PnC. These attacks often serve as entry points for more sophisticated attacks.

On-car ECUs The ECUs present in a vehicle offer various assets that attackers may
seek to compromise. We consider attacks such as vulnerability exploitation, Denial of
Service (DoS) or ECU disabling, configuration changes, flashing of malicious code, and
execution of malicious code (potentially with escalated privileges).

On-car sensors Modern vehicles are equipped with multiple sensors, including those
for pedal position, steering angle, ultrasonic, LiDAR, radar, and cameras. Attackers may
attempt to spoof sensor signals or manipulate sensor input to deceive the vehicle’s systems.
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4.2.2. Attack Feasibility Rating

Our methodology for determining the feasibility of basic attacks is based on the attack
potential-based approach presented in ISO/IEC 18045 [87]. This approach, also recom-
mended in ISO/SAE 21434 [95], introduces five dimensions: Elapsed Time, Specialist
Expertise, Knowledge of the Item or Component, Window of Opportunity, and Equipment.

The Elapsed Time dimension characterizes the time required to prepare and execute an
attack, which can range from less than a week to more than three years.

The Specialist Expertise dimension describes the attacker’s level of skill and knowledge.
It is categorized as a layman (no particular expertise), proficient (familiar with the
target’s behavior), expert (possessing deep knowledge in a specific technique such as
cryptoanalysis), or multiple experts (with expertise in different fields).

The Knowledge of the Item or Component dimension indicates the difficulty of the attack,
classified as public, restricted, confidential, or strictly confidential information required to
execute the attack.

The Window of Opportunity dimension represents the timeframe during which an attacker
can carry out an attack, primarily constrained by target accessibility. Basic attacks only
consider immediate opportunities without pre-limiting conditions. For example, sending
a message on a bus depends on access to the bus, whether through physical access or
an ECU. However, once the precondition is met, the window of opportunity is unlimited.
This dimension includes the categories unlimited, easy, moderate, and difficult.

The Equipment dimension accounts for the necessary tools and resources that an attacker
needs to successfully execute an attack, classified as standard, specialized, bespoke, or
multiple bespoke.

Following the recommended value scale from Annex I of ISO/SAE 21434 [95], numerical
values are assigned to the quantitative values of the previously mentioned dimensions.

The combination of all ratings, obtained by summing up the numerical values, determines
the attack feasibility rating of a basic attack. The resulting attack feasibility rating can
fall into the categories: Very Low, Low, Medium, or High. Annex I of ISO/SAE 21434 [95]
provides a recommended value scale for transforming the numerical values back into
qualitative values. Our rating for different basic attacks is listed in Tables 4.1, 4.2, 4.3,
4.3, 4.4, 4.5, and 4.6, which includes all basic attacks against the vehicle architecture
introduced in Section 3.1.

35



Table 4.1.: Attack Feasibility Rating for Attacks Against Cryptographic Keys

Id Asset (attack) Elapsed  Spe- Knowledge Window  Equip- Attack
time cialist of item/ of oppor- ment feasibil-
exper- compo- tunity ity
tise nent

1.1 Keys (illegal acquisition, <3years Expert Restricted  Unlim- Special- Low
modification or breaking): ited ized
Extract from HSM (Soft-
warebug)

1.2 Keys (illegal acquisition, <3years Multiple Confiden- Difficult Bespoke  Very Low
modification or breaking): experts tial
Extract from HSM (Hard-
wareattack)

1.3 Keys (illegal acquisition, >3years Expert Restricted ~ Unlim- Special- Very Low
modification or breaking): ited ized
Extract from TPM (Soft-
warebug)

1.4 Keys (illegal acquisition, >3years Multiple Confiden-  Difficult Bespoke  Very Low
modification or breaking): experts tial
Extract from TPM (Hard-
wareattack)

1.5 Keys (illegal acquisition, <1 Profi- Confiden-  Unlim- Special- Medium
modification or breaking): month cient tial ited ized
Extract from Firmware
(Software)

1.6 Keys (illegal acquisition, >3years Expert Public Unlim- Standard  Very Low
modification or breaking): ited
Break Cryptographic algo-
rithm (min. AES-128/
RSA 2048/ ECC 256)

1.7 Keys (illegal acquisition, <3years Expert Confiden-  Difficult Bespoke  Very Low
modification or breaking): tial
Extract from Firmware
(Hardware)

1.8 Keys (forge): Brute Force <1 week Profi- Restricted  Difficult Standard Medium
SecOC cient
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Table 4.2.: Attack Feasibility Rating for Attacks Against Wireless Communication Inter-

faces
Id Asset (attack) Elapsed  Spe- Knowledge Window  Equip- Attack
time cialist of item/ of oppor- ment feasibil-
exper- compo- tunity ity
tise nent

2.1 On-car wireless interfaces <1 week Profi- Public Easy Standard High
(access): Bluetooth cient

2.2 On-car wireless interfaces <1 week Profi- Public Unlim- Special- High
(access): Cellular cient ited ized

2.3 On-car wireless interfaces <1 week Profi- Public Easy Standard  High
(access): WiFi cient

2.4 On-car wireless interfaces <1 week Profi- Public Unlim- Special- High
(access): GPS cient ited ized

2.5 Wireless Com. (jamming): <1week Layman  Public Easy Special- High
GPS ized

2.6 Wireless Com. (jamming): <1week Layman  Public Easy Standard  High
WiFi (IEEE 802.11p)

2.7 Wireless Com. (jamming): <1week Layman  Public Easy Special- High
Cellular (LTE/5G) ized

2.8 Wireless Com. (corrupt/ <1week Profi- Public Easy Standard  High
fake msg and info): WiFi cient
(IEEE 802.11p)

2.9 Wireless Com. (corrupt/ <1 Profi- Public Easy Special- High
fake msg and info): Cellu- month cient ized
lar (LTE/5G)

2.10Wireless Com. (corrupt/ <1 Profi- Public Easy Special- High
fake msg and info): GPS month cient ized
(spoofing)

2.11Wireless Com. (corrupt / <1week Profi- Public Unlim- Standard  High
fake msg and info): Con- cient ited
nected Car (via Cellular)

2.12Wireless Com. (listen): <1 week Profi- Public Easy Standard High
WiFi (IEEE 802.11p) cient

2.13Wireless Com. (listen): <1 Profi- Public Easy Special- High
Cellular (LTE/5G) month cient ized

2.14Wireless Com. (listen): <1 Profi- Public Easy Special- High
Bluetooth (BLE) month cient ized

2.15Wireless Com. (intercept, <1 week Profi- Public Easy Standard  High
alter, inject, replay): WiFi cient
(IEEE 802.11p)

2.16Wireless Com. (intercept, <1 Profi- Public Easy Special- High
alter, inject, replay): Cel- month cient ized
lular (LTE/5G)

2.17Wireless Com. (intercept, <1 Profi- Public Easy Special- High
alter, inject, replay): Blue- month cient ized

tooth (BLE)
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Table 4.3.: Attack Feasibility Rating of Attacks Against Wired Communication Interfaces

Id Asset (attack) Elapsed  Spe- Knowledge Window  Equip- Attack
time cialist of item/ of oppor- ment feasibil-
exper- compo- tunity ity
tise nent
3.1 On-car interfaces (access <1week Profi- Restricted Moderate Standard High
— physical tampering): cient
CAN/CAN FD, Automotive
Ethernet
3.2 On-car interfaces (access <1 week Profi- Restricted Moderate  Special- Medium
— physical tampering): cient ized
FlexRay
3.3 On-car interfaces (access <1 Expert Restricted = Moderate  Special- Medium
— physical tampering): De- month ized

bug interfaces (e.g. JTAG)
(for easy to access compo-

nents)
3.4 On-car interfaces (access <1 Expert Restricted  Difficult Special- Low
— physical tampering): De- month ized

bug interfaces (e.g. JTAG)
(for components with dif-
ficult access e.g. HV Bat-

tery)

3.5 On-car interfaces (physi- <1week Layman Public Easy Standard High
cal tampering): OBD

3.6 On-car interfaces (physi- <1 Profi- Public Easy Special- High
cal tampering): PLC month cient ized

3.7 On-car user hardware in- <1week Layman  Public Easy Standard  High
terfaces (access): USB

3.8 On-car user hardware in- <1week Layman  Public Easy Standard High
terfaces (access): Aux

3.9 Wired Communications <1 week Profi- Public Easy Standard High
(corrupt / fake msg and cient
info): USB

3.10Wired Communications <1 week Profi- Public Easy Special- High
(corrupt / fake msg and cient ized
info): AUX

3.11Wired Com. (intercept, al- <1 week Profi- Public Easy Standard  High
ter, inject, replay): USB cient

3.12Wired Com. (intercept, al- <1 week Profi- Public Easy Special- High
ter, inject, replay): AUX cient ized

3.13Wired Com. (intercept, al- <1 week Profi- Public Easy Special- High
ter, inject, replay): PLC cient ized
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Table 4.3.: Attack Feasibility Rating (Continued)

Id Asset (attack) Elapsed  Spe- Knowledge Window  Equip- Attack
time cialist of item/ of oppor- ment feasibil-
exper- compo- tunity ity
tise nent
Wired On-Car Interfaces and Communications

3.140n-car Communications <1 Profi- Public Easy Standard  High
(listen + wunderstand): month cient
PLC

3.15Wired/Wireless Com. <1week Layman  Public Unlim- Special- High
(spoof): External test and ited ized
diagnostic equipment

3.160n-car Communications <1 week Profi- Public Unlim- Standard High
(disable or Denial of cient ited
Service): CAN/CAN FD,
FlexRay, Automotive
Ethernet

3.170n-car Communications <1 Profi- Public Unlim- Standard High
(listen): CAN/CAN FD, month cient ited
FlexRay, Automotive Eth-
ernet

3.180n-car Communications <1 week Profi- Public Unlim- Standard  High
(intercept): CAN/CAN FD, cient ited
FlexRay, Automotive Eth-
ernet

3.190n-car Communications <1 week Profi- Public Unlim- Standard High
(replay): CAN/CAN FD, cient ited
FlexRay,Automotive Ether-
net

3.200n-car Communications <1 week Profi- Public Unlim- Standard High
(inject): CAN/CAN FD, cient ited
FlexRay, Automotive Eth-
ernet

3.210n-car Communications <1week Expert Public Unlim- Special- High
(alter): CAN/CAN FD, ited ized
FlexRay

3.220n-car Communications <1 week Profi- Public Unlim- Standard High
(alter): Automotive Ether- cient ited

net
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Table 4.4.: Attack Feasibility Rating of Attacks Against ECUs

Id Asset (attack) Elapsed  Spe- Knowledge Window  Equip- Attack
time cialist of item/ of oppor- ment feasibil-
exper- compo- tunity ity
tise nent
4.1 On-car ECU (exploit vuln. <6 Profi- Restricted Unlim- Special- Medium
or impl. error to access months cient ited ized
ECU): ECU with external
interface (wireless (Cellu-
lar/BLE/Wifi))
4.2 On-car ECU (exploit vuln. <6 Profi- Restricted ~ Unlim- Special- Medium
or impl. error to access months  cient ited ized
ECU): ECU with external
interface (wired (OBD/-
PLC/USB/AUX))
4.3 On-car ECU (exploit vuln. <6 Profi- Restricted ~ Unlim- Standard  High
or impl. error to access months cient ited
ECU): ECU with internal
interface (wired (CAN/-
CAN FD/FlexRay/Ether-
net))
4.4 On-car ECU (exploit vuln. <6 Profi- Restricted  Unlim- Special- Medium
or impl. error to access months cient ited ized
ECU): ECU with debug in-
terface (wired (UART/J-
TAG/...))
4.5 On-car ECU (exploit vuln. <6 Profi- Restricted Unlim- Standard High
or impl. error to access months cient ited
ECU): XCP (via CAN/CAN
FD)
4.6 On-car ECU (disable or <1 week Profi- Restricted Unlim- Standard  High
Denial of Service): Re- cient ited
source exhaustion of regu-
lar ECU
4.7 On-car ECU (disable or <1 Profi- Restricted Unlim- Standard High
Denial of Service): Shut- month cient ited
down/Halt
4.8 On-car ECU (disable or <1week Expert Restricted ~ Unlim- Special- High
Denial of Service): Re- ited ized

source exhaustion of High
Performance ECU
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Table 4.5.: Attack Feasibility Rating of Attacks Against ECUs (Continued)

Id Asset (attack) Elapsed  Spe- Knowledge Window  Equip- Attack
time cialist of item/ of oppor- ment feasibil-
exper- compo- tunity ity
tise nent

4.9 On-car ECU (configura- <1 Profi- Restricted Unlim- Standard High
tion change): Remote month cient ited

4.100n-car ECU (configura- <1 Profi- Restricced =~ Moderate  Special- Medium
tion change): Physical month cient ized

4.110n-car ECU (remote mal- <1 week Profi- Restricted Unlim- Standard  High
ware flash): No integrity cient ited
measures

4.120n-car ECU (remote mal- <3 years Profi- Restricted Unlim- Standard Medium
ware flash): With in- cient ited
tegrity measures

4.130n-car ECU (flash via <1 week Profi- Restricced  Moderate  Special- High
physical access): ECU cient ized
without integrity mea-
sures external flash

4.140n-car ECU (flash via <3years Profi- Restricced = Moderate  Special- Low
physical access): ECU cient ized
with integrity measures
(e.g., secure boot or mea-
sured boot)

4.150n-car ECU (flash via <6 Expert Restricted  Moderate Bespoke — Low
physical access): ECU months
without integrity mea-
sures with embedded
flash

4.160n-car ECU (exploit for <6 Profi- Restricted  Unlim- Standard High
priv. Escalation) months cient ited

4.170n-car ECU (execute <1 Profi- Public Unlim- Standard High
Code/Commands) month cient ited

4.180n-car ECU: Access to Re- <1week Layman  Public Unlim- Standard  High
placement Parts ited
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Table 4.6.: Attack Feasibility Rating of Attacks Against Sensors

Id Asset (attack) Elapsed  Spe- Knowledge Window  Equip- Attack
time cialist of item/ of oppor- ment feasibil-
exper- compo- tunity ity
tise nent
5.1 On-car Sensors (spoof of <1 week Profi- Restricted Moderate  Special- Medium
sensor Signal): Brake cient ized

pedal position, Throttle
pedal position, Steering
angle sensor

5.2 On-car Sensors (spoof of <1 week Profi- Restricced =~ Moderate  Special- Medium
sensor Signal): Ultrasonic, cient ized
Lidar, Radar Sensor

5.3 On-car Sensors (spoof of <1 week Profi- Restricced = Moderate  Special- Medium
sensor Signal): Rear view cient ized
camera, Stereo front cam-
era

5.4 On-car Sensors (disable or <1 week Profi- Restricted Moderate Standard High
Denial of Service): Brake cient

pedal position, Throttle
pedal position, Steering
angle sensor
5.5 On-car Sensors (disableor <1week Layman  Public Easy Standard High
Denial of Service): Ultra-
sonic, Lidar, Radar Sensor
5.6 On-car Sensors (disableor ~<1week Layman  Public Easy Standard High
Denial of Service): Rear
view camera, Stereo front

camera
5.7 On-car Sensors (external <1 week Profi- Restricted Moderate  Special- Medium
manipulation of sensor in- cient ized

put): Brake pedal posi-
tion, Throttle pedal posi-
tion, Steering angle sen-

sor
5.8 On-car Sensors (external <1 week Profi- Restricted = Moderate  Special- Medium
manipulation of sensor in- cient ized

put): Ultrasonic, Lidar,
Radar Sensor
5.9 On-car Sensors (external <1 week Profi- Restricted Moderate  Special- Medium
manipulation of sensor in- cient ized
put): Rear view camera,
Stereo front camera
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4.2.3. Discussion on Different Path Calculation Methods

The generation of attack paths is a crucial step in the TARA process. We need to establish a
function that determines attack feasibility based on the basic attack steps to automatically
generate the most feasible attack paths. We present five different approaches and discuss
their advantages, leading to the description of the chosen process.

Sum: This approach involves summing up all feasibility values along the path per cat-
egory. It is a simple and intuitive method that facilitates the comparison of paths of
equal length. However, comparing attack paths of different lengths can be challenging
since a long path with low difficulty at some point will reach the highest difficulty step.
Additionally, projecting the resulting values back to the attack feasibility categories defined
by ISO/SAE 21434 is difficult using this approach.

Average: The average approach calculates the average feasibility value per category
along the path. This addresses the disadvantage of the sum approach, as the values
obtained can be easily transferred to the rating choices per category. However, the average
function has a balancing property, which means that an attack path with one difficult step
will gain feasibility as more easy attack steps are added. Due to this property, we did not
choose this calculation method.

Maximum: In this approach, we consider the maximum feasibility value for each step
of the attack path per category. This ensures that the difficulty cannot be reduced along
the path. However, it does not adequately represent the difficulty of longer attack paths
compared to shorter paths.

Hybrid: In the hybrid approach, we combine different methods based on the category.
We use the sum approach for the Elapsed Time category since it is intuitive, to sum up the
time necessary for attack preparation and execution. We choose the maximum approach
for the categories of Specialist Expertise, Knowledge of the Item/Component, and Equipment
since these values cannot be added together. An attacker either needs expert knowledge
during the attack or not, and the same goes for equipment and knowledge. The Window
of Opportunity category is a special case since it characterizes the attacker’s opportunity
to attack the vehicle. For example, an attack via a cellular connection can be executed
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anytime with an Internet connection (if no restrictions exist). In contrast, the execution of
a CAN command can only be done locally, significantly reducing the window of opportunity.
We believe only the first attack step is essential to identify the window of opportunity.

Considering the drawbacks of the earlier approaches, we have decided to proceed with
the hybrid model for the exemplary application of the reference architecture described in
Section 3.1.

4.3. Automated Attack Path Generation

In order to derive attack paths efficiently and with fewer errors compared to manual pro-
cesses, we have developed a partially automated method that allows for quick adaptation
and faster results. This automated approach consists of several steps: Directed Weighted
Graph Generation, Attack Path Extraction, Threat Path Extraction, and Most Feasible Path
Calculation. The overall process is illustrated in Figure 4.2, and each step is explained in
detail below.

Architecture Definition .
Attack Step Rating ‘ Threat Model ]—)[ Target List ’

RRRRR

Most Feasible attack Path for
each Threat

e

Directed Weighted Graph

Attacker Model
Limitations

Figure 4.2.: Automated Method

All Shortest Paths

The input for the automated process is a manually created system model based on the
possible attack steps described in Section 4.2. For each attack step, we define preconditions
and the location of the attack within the vehicle model (see Section 3.1). For example,
an attacker may require a physical connection or have compromised an ECU connected
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to a specific bus in order to send a CAN-Bus message. Each node in the system model is
based on an attack step (e.g., ”17.2 On-car ECU (configuration change): Physical”) and a
location (e.g., "Headunit”).

4.3.1. Example

To illustrate the following description of our automated process, let’s consider a simple
example with three attack types: a1, as, and as. The attack step a; is rated as ("<1 week”,
“Expert”, "Public”, "Standard”), as as (<1 year”, "Expert”, "Public”, "Bespoke”), and
as as ("<6 months”, "Layman”, "Public”, "Specialized”). In the simplified example the
model only contains a single ECU with a bus connection. In this example, an attacker
can perform either a; or as on the bus before being able to perform a3 on the ECU. Our
analysis focuses on the attack goal of performing a3 on the ECU.

4.3.2. Directed Weighted Graph Generation

To generate the directed weighted graph for the following path generation steps we
designed a process which is described in the following. The pseudo-code of the is given in
Algorithm 1. In this step of the attack path generation, our automated method generates a
directed graph by connecting the attack steps according to the defined preconditions and
locations. In lines 2-14, we add a node to the attack graph for every attack, introduced in
Section 4.2.2, at every possible location. Next, in lines 15-30, we introduce the edges to
the attack graph This forms a directed attack graph representing all possible attack paths
in our vehicle model.

4.3.3. Example

After performing this algorithm in our example,is used to determine we get the attack graph
with three nodes: a1 @BUS ("<1 week”, "Expert”, ”Public”, "Standard”), ao@BUS (<1
year”, "Expert”, "Public”, "Bespoke”), and a3 @ECU (”<6 months”, "Layman”, "Public”,
”Specialized”). Both a; @BUS and a2, @BUS have edges to a3 @ECU with the wight (<6
months”, "Layman”, "Public”, ”Specialized”).
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Algorithm 1 Initialize attack graph

1: G+ {}
2: for all node € VehicleModel do
3:  for all attack € AttackSteps do

4: if node € attack.locations then
5: n < node(attack.id@node.location)
6: n.time = attack.time
7: n.experience = attack.experience
8: n.knowledge = attack.knowledge
9: n.opportunity = attack.opportunity
10: n.equipment = attack.equipment
11: G.nodes < G.nodes U {n}
12: end if
13: end for
14: end for

15: for allnl € G do
16: foralln2 € G do

17: if n1.location == n2.location A nl.location € n2.location.edges then
18: if nl.attack € n2.attack.prestep then
19: G. = attack.equipment

20: e <+ edge(nl,n2)

21: G.edges < G.edges U {e}

22: e.time = n2.time

23: e.experience = n2.experience

24: e.knowledge = n2.knowledge

25: e.opportunity = n2.opportunity
26: e.equipment = n2.equipment

27: end if

28: end if

29:  end for

30: end for

31: return G
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4.3.4. Attack Path Extraction

To prepare the extraction of attack paths in the next step, we prepare the calculation of
shortest paths in the attack graph using Algorithm 2. In line 2 we introduce a virtual
starting node (vStart) to the graph and connect this node in lines 3-12 to possible starting
nodes. In this example, we use every node without a previous attack step as a starting
node (line 4). At this stage, it is possible to apply restrictions to the attacker, such as
considering only remote attacks by not connecting physical attacks to vStart. We assign
weights to all edges from the virtual starting node to the starting nodes of an attacker.
The weights are the attack feasibility ratings of the starting nodes of an attacker. We then
assign weights to all edges in the graph based on the attack feasibility of the corresponding
attack steps (lines 7-11).

Finally, we calculate the shortest loop-free paths in the directed attack graph starting
from vStart. The BellmanFord algorithm [14, 58] is used to determine all shortest paths
in the attack graph starting with the virtual starting node (line 14). We modified the
weight function to the "hybrid” method introduced in Section 4.2.3 taking into account
the difficulty ratings for time, expertise, knowledge, opportunity, and equipment. The
result is a set of shortest paths representing the different attack paths in the graph.

Algorithm 2 Prepare shortest paths in attack graph

1: G < initialize AttackGraph

2: G.nodes «+ G.nodes U {vStart}

3: for all node € G.nodes do

4:  if |GT .edges[node]| = 0 A node € AttackerModel then
5: e + edge(vStart,node)
6
7
8
9

G.edges < G.edges U {e}
e.time = n2.time
e.experience = n2.experience
: e.knowledge = n2.knowledge
10: e.opportunity = n2.opportunity

11: e.equipment = n2.equipment
12: end if
13: end for

14: shortestPaths < BellmanFord(G.nodes, G.edges, vStart)
15: return shortestPaths
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4.3.5. Example

After preparing the attack paths the attack graph contains the node vStart with two
edges to a; @BUS where the weight is (<1 week”, ”Expert”, "Public”, ”Standard”) and
to as @ECU with the weight ("<1 year”, "Expert”, "Public”, "Bespoke”), and a3 @ECU
(<6 months”, "Layman”, "Public”, ”"Specialized”). Furthermore, all shortest paths are
calculated from vStart to the other three nodes. The final graph is given in Figure 4.3.

("<6 months",
("<1 week", "Expert", m "Layman", "Public",
vStart "Public", "Standard") 1, @BUS Specialized") 1,@ECU

("<1 year", "Expert”, S"<6 mor“l'th”S", .
"Public”, "Bespoke") Layman", "Public",
"Specialized")

a,@BUS

Figure 4.3.: Example of Attack Graph

4.3.6. Threat Path Extraction

In this step, we map predefined threats to the path nodes, which consist of an attack step
and a location. A threat may have multiple targets, such as performing a DoS attack on a
bus or shutting down an ECU. We extract the shortest path to each target of a threat from
the precomputed shortest paths (see Algorithm 3). Starting from the virtual start node
(vStart), we calculate the shortest path to each target. We then compare the shortest
paths to different targets of the same threat and select the shortest one. This results in
the shortest path for each threat.

Example

In our example, the BellmanFord algorithm calculates all the shortest paths from vStart.
In this example, the resulting paths are: vStart — a1, vStart — ag, and vStart —
ap — as.
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Algorithm 3 Extract shortest attack path of threat

1: Path «+ 0
2: for all target € threat do
3: T < target
4:  Pathyg,ge < target
5. while T # vStart do
6: print T
7: Pathyg,ger <— Pathyg,ger U shortest Paths.predecessor|T]
8: T < shortestPaths.predecessor|[T
9: end while
10:  if weight(Pathyger) < weight(Path) then
11: Path = Pathtwget
12: end if
13: end for
14: return Path

4.3.7. Most Feasible Path Calculation

In the final step, we calculate the feasibility of the most feasible attack path for each threat.
We combine the maximum attack feasibility values from each rating category to determine
the feasibility of the path.

Example

In our example with the three paths: vStart — a4, vStart — as, and vStart —
a1 — ag, but we predefined only one target (a3). Our method extracts all the shortest
paths from the graph that lead to this specific attack representing the threat. In this case,
the shortest path to as is vStart — a; — a3. The final attack path consists of two
attack steps: vStart — a1 (<1 week”, "Expert”, "Public”, "Standard”) and a; — as
(”<6 months”, "Layman”, "Public”, ”Specialized”). To calculate the attack feasibility of
the complete path we take the maximum required expertise ("Expert”), the maximum
required knowledge ("Public”), and the maximum required equipment (”Specialized”).
We sum up the required time where a; has an estimated time of two weeks and a3 has
an estimated time of four months resulting in the category ”<6 months”. Therefore, the
resulting attack path is rated as ("<6 months”, "Expert”, "Public”, "Specialized”).
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By following these automated steps, we can extract attack paths efficiently and determine
the feasibility of the most probable attack paths for different threats in our vehicle model.

4.4. Related Work on Threat and Risk Analysis

Several projects and standards have proposed schemas or processes for a TARA in the auto-
motive domain. One of the earliest methodologies proposed was the EVITA project [177]
in 2009, which introduced a security risk assessment methodology [156] for automotive
E/E systems based on ISO/IEC 18045:2008 [87]. This approach has been adopted in many
subsequent research projects, including HEAVENS [75] and SAE J3061 [159]. In 2014,
the National Highway Traffic Safety Administration (NHTSA) [125] proposed a composite
threat model for the automotive industry. In 2017, the European Telecommunications
Standards Institute (ETSI) released several versions of a Threat, Vulnerability, Risk Analysis
(TVRA) [51], which focuses on telecommunications threats. SAE J3061 [159], published
in 2016, also mentions the risk assessment methods of EVITA [156], an early version of
TVRA [51], and HEAVENS [111] as the basis for its task. In [161], an application of this
SAE method to a communication controller is shown.

Next to these standardization activities, several research approaches suggest improvements.
2015, the SAHARA [121] method was proposed, combining safety and security analysis
into one strategy. SAHARA uses the STRIDE model to identify security hazards during a
safety analysis. Macher et al. also reviewed recommendations for a TARA process in the
SAE J3061 and different threat analysis methods in [120]. RACE [22], which combines
EVITA with TVRA, was also proposed the same year, along with a risk calculation using
the EVITA controllability concept. In 2016, Sommer et al. presented a classification of
automotive attacks in [171], where the authors present a classification schema containing
a vulnerability rating that uses the common vulnerability scoring system (CVSS). The
work focuses on categorizing existing attacks contrary to our approach of generically
generating attack paths. Monteuuis et al. proposed the SARA framework [132], which
improves a threat model and introduces a new attack observation metric focusing on
driver assistance systems. In 2019, Bolovinou et al. suggested a controllability-aware
framework named TARA+ [20] for automated driving vehicles fusing features of the
previously introduced SAE and ISO standards, and Maple et al. published a reference
architecture for attack surface analysis of smart cars in [123]. The reference architecture
of Maple et al. focuses on the functions of vehicles rather than a detailed architecture
with communication technologies and different ECUs, which results in a more abstract
attack tree.
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The introduction of the ISO/SAE 21434 [95] in 2021 replaces the SAE J3061 ”"Cybersecu-
rity Guidebook for Cyber-Physical Vehicle Systems” [159]. One aspect of this standard is
the attack surface assessment with a TARA. Dantas et al., in their work [42] exemplify how
an incremental security engineering approach based on this standard can help engineers
argue the assets’ security claims.

Our work focuses on generically identifying the assets of modern electric vehicles that
form the attack surface and executing a feasibility assessment for attacks on these assets.
The concept of an attack tree introduced by Schneier [162], and unified parametrizable
notation for attack trees, proposed by Wang et al. [191], forms the basis of our approach.
Attack graphs, introduced by Phillips and Swiler [147], are closely related to attack trees
but comprise all possible attack paths rather than just one goal. Rieke introduced the
computation of compact representations of the graph and the inclusion of liveness analysis
in [153]. In their work, Manadhata and Wing [122] provide a formal model of an attack
surface.

Our approach is closest to the evaluation of the required attack potential identified using
attack trees in EVITA Deliverable 2.3 [156] and the attack surface tables proposed by
Petit and Shladover [145], with the exception that our work considers important assets of
current vehicles that these tables could not cover. We demonstrate how our method can
be used to evaluate specific attack scenarios, which can be integrated into the process
described in ISO/SAE 21434. Our approach also allows for the evaluation of various
mitigation strategies to secure vehicle networks and their impact on the overall attack
feasibility. This contributes to the goal of designing a secure vehicle.

To extend the idea, the work [172] connects threat descriptions of UN/ECE 155 [184],
Microsoft STRIDE, Common Attack Pattern Enumerations and Classifications (CAPEC),
and Common Weakness Enumeration (CWE). It validates these using real-world attacks
from the Automotive Attack Database (AAD), first introduced in [154].

4.5. Application to Reference Architecture

In this section, we apply our threat analysis method to the reference architecture introduced
in Chapter 3. We start by converting the reference architecture into a graph representation,
allowing us to identify potential entry points for the different attackers from our attacker
model, as described in Section 3.3. Subsequently, we use this graph to generate potential
attack paths based on the attack steps we identified and assessed in Section 4.2.2. By
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identifying the shortest paths in the attack graph, we can pinpoint the most feasible ones
in the reference architecture for various threat scenarios.

4.5.1. Transferring Reference Architecture to Graph

We create nodes for each ECU and communication channel to represent the reference
architecture as a graph. Each ECU is connected to the communication channels it interacts
with, forming a directed graph. This approach offers the advantage of accommodating
multiple ECUs connected to the same communication channel.

Based on the reference architecture presented in Chapter 3, we construct the graph
depicted in Figure 4.4. The graph illustrates the relationships between ECUs and commu-
nication channels.

4.5.2. Identifying Entry Points

Depending on the attacker model, potential entry points for attackers exist. Considering
the three attacker types from our model (Local Attacker, Advanced Remote Attacker, and
Internal Attacker), distinct entry points into a vehicle’s network can be identified:

Local Attacker: This attacker could introduce a device into the vehicle or connect to the
OBD port. This would grant the attacker access to various bus systems without direct
access to cryptographic materials for tasks like crafting SecOC messages.

Advanced Remote Attacker: This attacker would have access to an ECU and could execute
actions associated with that ECU’s capabilities. Potential target ECUs could be a TCU or
an ECU in the infotainment domain.

Internal Attacker: This attacker would have access to the charging infrastructure (CS or
CSO0), which operators with limited security expertise might manage.

4.5.3. Generating Attack Paths

We generate potential attack paths using the graph representation based on the steps
identified in Section 4.2.2. We assigned a location and the necessary attacks that needed
to be executed before the attack step for every attack. E.g., for the attack 3.23 On-car
Communications (legit): CAN/CAN FD, FlexRay, Ethernet, the attacker
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Figure 4.4.: Generated Network Graph from Reference Architecture

53



needs to have control over a regular ECU (Attack 4.17). Possible locations for Attack 3.23
are any CAN or Automotive Ethernet networks. We modeled a potential attack graph with
all attack steps where every node is an attack step at a specific location in our reference
architecture. Two nodes are connected if these are at the same or an adjacent location
(e.g., the TCU is adjacent to the Long Term Evolution (LTE) network), and the first node
is a condition to execute the second node. The weight of each edge is defined with the
attack feasibility of the second node.

Furthermore, we introduced a start node connected to all possible entry points of an
attacker described in the previous section. Again, the weight of the edge is determined by
the following attack step.

4.5.4. Identifying Attacker Goals

For further preparation in the analysis to determine the most feasible attack paths in
the TARA, it is crucial to identify the potential targets that attackers may pursue first.
Given the multitude of ECUs and features within vehicles, attackers could have a wide
range of attack goals. These might include unauthorized feature unlocking, odometer
manipulation, vehicle theft, engine manipulation, emission control tampering, and more.
However, to analyze the threat landscape effectively, it is essential to narrow the focus to
a subset of high-impact attack goals.

In the context of the vehicle’s safety, the most critical threat scenario involves attacks
that can influence driving functionalities, potentially leading to catastrophic accidents
involving the vehicle and posing risks to other road users. Within this safety-focused
framework, two primary attack types are of significant concern:

ECU Command Execution: Attackers may attempt to execute unauthorized commands or
code within an ECU, which can result in unintended vehicle behavior. This can involve
actions like accelerating or braking the vehicle. Such attacks could target ECUs within
the ADAS domain or the drive domain.

On-Car Communications Manipulation: Attackers might manipulate on-car communica-
tions, such as the CAN/CAN FD or Automotive Ethernet protocols, to inject malicious
data or alter legitimate messages. These attacks could impact both the drive and ADAS
domains, potentially leading to safety-compromising scenarios.

Table 4.7 enumerates the specific attacks and their corresponding potential impact loca-
tions, focusing on ensuring the safety of passengers and other road users.
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Table 4.7.: Final Attack Step to Impact the Vehicle Safety

Attack Location
3.19 On-car Communications (replay): CAN/CAN FD, FlexRay, | CAN Drive
Automotive Ethernet ADAS AE
3.20 On-car Communications (inject): CAN/CAN FD, FlexRay, | CAN Drive
Automotive Ethernet ADAS AE
3.21 On-car Communications (alter): CAN/CAN FD, FlexRay | CAN Drive
3.22 On-car Communications (alter): Automotive Ethernet ADAS AE
. . CAN Drive
3.23 On-car Communications (legit) ADAS AE
ADAS GW
Drive GW
4.17 On-car ECU (execute Code/Commands) Steering
Accelerator
Brake
Engine
Inverter

It is important to note that specific attacks, such as unauthorized door unlocking or
engine starting for theft purposes, may leverage the same attack methods. Additionally,
manipulations that do not directly impact vehicle safety, like engine tuning or odometer
tampering, may require persistent changes to vehicle ECUs.

Beyond the vehicle, the emerging electric charging infrastructure introduces risks both to
drivers and the power grid. This has been elaborated in detail in our previous work [212]
and in [99] for example. Attackers targeting the charging process could aim to manipulate
charging synchronization or exploit the payment system’s vulnerabilities. While the
financial gains from such attacks might be limited due to the relatively low cost of charging
(about 15 € based on'), the payment process also involves valuable personal data.

Attacking the power grid via the vehicle charging system requires accessing CSOs or CSs
to execute commands or manipulate charging processes through protocols like OCPP
or ISO 15118. Table 4.8 provides detailed possible final attack steps. For data theft,
attackers might engage in MitM attacks to intercept communication between the vehicle

'https://alternative-fuels-observatory.ec.europa.eu/consumer-portal/electric
-vehicle-recharging-prices
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and charging infrastructure partners. Table 4.9 shows the possible attack locations and
final attack steps.

Table 4.8.: Final Attack Step to Influence the Power Grid

Attack Location
3.13 Wired Com. (intercept, alter, inject, replay): PLC PLC
2.16 Wireless Com. (intercept, alter, inject, replay): Cellular (LTE/5G) | OCPP
x 3 CS
Control External Device or Server CSO
Table 4.9.: Final Attack Step to Gain Access to Private Information
Attack Location
3.13 Wired Com. (intercept, alter, inject, replay): PLC | PLC
2.13 Wireless Com. (listen): Cellular (LTE/5G) OCPP
. CS
x
Control External Device or Server cso

Notably, while many relevant attacks extend beyond the vehicle network itself, they are
interconnected with the extended communication network involving various backend sys-
tems. This highlights the complexity of safeguarding against these threats and underscores
the importance of a holistic security approach.

Finally, the attack on sensors presented in [169] or [29] may introduce catastrophic
outcomes in the future, especially concerning autonomous driving; however, in our model,
these are still assisting systems for the driver with limited effects, to the driving behavior.
These attacks will become more relevant in the future of automotive security and thus be
part of future work.

4.5.5. Identifying Feasible Attack Paths

With all the components, the reference architecture, the rated attack steps, the attack
goals, and the entry points, we can now calculate the most feasible attack paths using our
newly introduced algorithm. The final results presented here are split into attacks against
the vehicle’s safety and the charging communication, which would result in catastrophic
impacts if attacked successfully.
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4.5.6. Feasible Attack Paths against Vehicle Safety

When analyzing possible attack paths for the Local Attacker targeting vehicle safety, two
fundamental routes come up based on our algorithm and the specified entry points and
targets.

In the first path, the attacker may gain control of an ECU to execute code. In this scenario,
the attacker seeks to gain control over an ECU to execute unauthorized code. The attack
path involves accessing the bus of the targeted ECU (Attack 3.1), bypassing or overcoming
secure communication mechanisms (Attack 1.8), communicating with the ECU (Attack
3.19), executing an exploit (Attack 4.3), and ultimately taking control over the ECU (Attack
4.17). According to our hybrid assessment method, this attack path has a low feasibility
rating, with an elapsed time of less than 6 months, proficient specialist expertise, restricted
knowledge of the item, moderate opportunity, and standard equipment. According to ISO
21434, this results in a very low attack feasibility.

The second possible path for an attacker is to manipulate the internal vehicle communi-
cations: In this case, the attacker aims to manipulate on-car communications, such as
CAN/CAN FD, FlexRay, or Automotive Ethernet, by replaying a message (Attack 3.19).
This attack path is characterized by high feasibility, with an estimated elapsed time of less
than 1 week, proficient specialist expertise, restricted knowledge of the item, moderate
opportunity, and standard equipment.

Different feasible attack paths emerge for the Advanced Remote Attacker, who is limited to
the infotainment domain or the TCU. The most practical path involves taking over a safety-
critical ECU, starting with control over the TCU (directly connected to the Automotive
Ethernet backbone). From there, the attacker can execute commands on the TCU (Attack
4.17), sending legitimate commands (Attack 3.23) to the gateway of the drive domain.
These legitimate commands can trigger legal communication forwarded to a safety-critical
ECU, which needs to be exploited (Attack 4.3) to execute commands locally (Attack 4.17).
This attack path is assessed as having low feasibility, with an elapsed time of less than
6 months, proficient specialist expertise, restricted knowledge of the item, an unlimited
window of opportunity, and standard equipment. Injecting messages into a safety-critical
bus system is considered less complex, with a high feasibility rating based on the same
parameters.

In summary, our reference architecture is highly vulnerable to attacks on in-vehicle
communication. For both attacker types in our model, the most straightforward attack
path, as determined by the presented algorithm, has a high feasibility rating. As a result,
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we will investigate the security of in-vehicle networks in the following chapters, specifically
focusing on the security of CAN and Automotive Ethernet.

4.5.7. Feasible Attack Paths against Charging Communication

Regarding attacks on charging communication, the first attacker model (Local Attacker)
is focused on attacks against the PLC and ISO 15118 communication. Feasible attack
paths involve physical tampering with the PLC (Attack 3.6) and altering or injecting
PLC messages (Attack 3.13), both of which result in a medium attack feasibility rating.
Furthermore, the attacker must bypass the security of TLS, which, if properly implemented,
results in a very low attack feasibility rating.

Similarly, extracting personal data relies on the proper use of TLS, leading to attack paths
that are similar in feasibility.

For further communication involving CS to CSO, CSO to CCH, and CCH to MO, the attack
path only slightly differs in the low-level attack. Attacks against cellular communication
involve accessing cellular communication (Attack 2.2) instead of physical tampering
(Attack 3.6) and using cellular communication to alter or inject messages (Attack 2.16)
instead of PLC (Attack 3.13). These paths also result in a medium or very low attack
feasibility if TLS is implemented correctly.

The Advanced Remote Attacker can directly control charging limits in the infotainment ECU
without additional steps. However, attacking the charging communication or backend
components results in very low attack feasibility. In our reference architecture, the attacker
must first escape the infotainment domain, enter the drive domain, and take over the
charger ECU before being able to perform attacks against the CS.

The final attacker in our model, with access to a backend system, has a straightforward
path to gather information about a charge. This is because all information is exchanged
in clear text among communication partners, including the vehicle, CS, CSO, CCH, and
MO. Additionally, entities like CS and CSO can control the charging process, influencing
energy consumption in the grid.
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4.6. Summary of Risk Assessment for Modern Electric Vehicle
Reference Architecture

A TARA plays a pivotal role in the cybersecurity engineering of modern electric vehicles.
Central to risk determination is the thorough assessment of the attack surface, accompa-
nied by the feasibility evaluation of potential attacks on each asset within a vehicle. In this
chapter, we introduced a novel approach for assessing the attack surface, involving identi-
fying assets, threat scenarios, analysis of attack paths, and evaluating attack feasibility, all
in alignment with ISO/SAE 21434 standards. We also presented an automated method
to expedite this process, reducing errors and enhancing efficiency. Our attack feasibility
assessment serves as a valuable tool within a TARA, offering a holistic view of potential
threat scenarios and their likelihood. The automation of this process provides a quicker
and less error-prone alternative to manual attack derivation. Moreover, it demonstrates
how introducing security mechanisms can reduce attack feasibility, aiding in evaluating
various security technologies for safer vehicle architectures.

We explored three high-impact risks: manipulating driving behavior, privacy breaches
in the charging process, and threats to power grid stability through electric vehicle
charging. The application of our algorithm to these threat scenarios and our three attacker
models, considering our reference architecture, revealed paths with high or medium attack
feasibility. Building on these observations, our work in the next chapter delves into the
security of CAN communication, focusing on analyzing these networks against potential
vulnerabilities and securing them. We also investigate the protection of Automotive
Ethernet with a special emphasis on scenarios where a single ECU may be compromised
in Chapter 6. Lastly, we will check the security of electric charging communication,
particularly assessing the reliance on TLS for all connections and conducting a privacy
analysis to address the distribution of personal information among charging process
entities. By addressing these crucial aspects of vehicle cybersecurity, we aim to contribute
to developing safer and more secure electric vehicles in the rapidly evolving automotive
landscape.
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5. Controller Area Network (CAN) Bus
Security

Modern vehicles rely heavily on the CAN bus and its predecessors - CAN FD and CAN XL-
to control most of their safety-critical and non-critical functionalities. However, these
bus systems are not immune to attacks, where malicious messages can be injected or
manipulated. In this chapter, we analyze the security of various countermeasures for CAN
bus attacks and present our solution for a secure bus communication technology.

Most countermeasures use Message Authentication Code (MAC) coupled with time stamps
or message counters to provide message freshness. The most prominent example of such
a countermeasure is SecOC, which is standardized in AUTOSAR. The TARA we have
performed in Chapter 4 suggests a potential risk for CAN communication, especially for
a Local Attacker. For this reason, we analyze different countermeasures and derive a
generic model for secure CAN communication based on the security evaluation in this
chapter. Furthermore, we formally verify the security properties of this generic model.
The analysis showed some limitations with the generic model regarding the freshness
of messages, which were addressed in a self-developed solution called BusCount. This
solution is practically evaluated, and a formal proof verifies the security properties of the
solution. The two approaches, BusCount, and the generic model are compared regarding
their security properties in this chapter.

This chapter is based on the results of two papers [67] and [202]. The original manual
proof of both papers was the responsibility of Sigrid Giirgens, while I designed the protocol
and implemented the solution on an FPGA. For this thesis, I conducted an automated
proof using Tamarin, which yielded the same results as the proofs in the cited publications.

To begin with, the chapter outlines the protection goals for CAN bus communication
and describes the state-of-the-art protection mechanisms in CAN. The following sections
describe the generic model followed by the self-developed solution, and finally, their
effectiveness against a Local Attacker or Advanced Remote Attacker is evaluated.
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5.1. Setting

Chapter 3 describes the general reference architecture, also used in this part of the thesis.
Here, the focus is on the domains that still use CAN or CAN FD. Figure 5.1 shows the
energy and drive domain where the domain controller is connected with the brakes,
battery management, engine, accelerator, inverter, and charger in a CAN FD bus. Its basic
communication technique is described in Section 2.1. An attacker in these networks is
either a Local Attacker or an Advanced Remote Attacker, as introduced in Section 3.3, since
the Inside Attacker is only valid in communication scenarios with external entities. First, a
definition is given of the protection goals needed to be fulfilled to mitigate attacks by the
defined attackers. An overview of existing protection strategies is given in the second part
of the section. This overview is used in the following section to derive a generic model of
existing techniques.

This overview is used in the following section to derive a generic model of existing
techniques.
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Figure 5.1.: Example of a CAN Network
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5.1.1. Protection Goals

To prevent vulnerabilities introduced in the past, a secure CAN bus communication in
a vehicle must adhere to a set of specifications, such as data availability and integrity.
These are the Data Origin Authenticity, Immediacy, and Non-repeatability. The data origin
authenticity ensures that the data received are from an authentic entity and have not
been altered. Furthermore, the immediacy of transmissions is essential. It ensures the
timeliness of a message, which is especially significant for controlling cyber-physical
systems. Last, non-repeatability ensures that a receiver will not accept a valid message
twice, preventing replay attacks. Compared to most related work, a distinct separation
between the two properties, non-repeatability and immediacy, is made. Many works only
have a general security goal called message freshness to protect against message replay.
However, it does not cover whether a message is delayed in any way. In the following,
these specific requirements are defined, which are necessary for protecting the CAN bus
communication and, thus, the safety of the passengers of a vehicle.

Sy Data Origin Authenticity: Transmitted messages in an in-vehicle network must only
be accepted if and only if they were sent by a legitimate network member and were
intended for the recipient. This characteristic makes it impossible for attackers to
alter messages or send them through replaced components or third-party devices
on the bus system without the notice of the receiver. A more robust form of this
property is to demand that a message must be accepted if and only if it was sent by
the rightful entity in the network. This property excludes any attackers that take
control over an ECU that is not directly part of the communication.

Sy Immediacy: In contrast to classic communications in a computer network, processing
signals in in-vehicle networks within a tight time period is critical. Exceeding the
predefined time window can result in catastrophic accidents, even if the message
is authentic, as described in the previous property. One example would be a delay
of signals of the anti-lock braking system, which can cause the braking of tiers to
occur at the wrong time. The property immediacy is characterized by the trait that
a message sent at ¢1 is only processed until 5 if and only if the difference between
ty and t; is smaller than a predefined time limit.

S3 Non-repeatability: Next to data origin authenticity and immediacy, non-repeatability
is the third property needed for a CAN network. This property says that if a message
in a network is accepted at time ¢;, then the same message must not be accepted
again later. With this characteristic, attackers are not able to inject messages that
were previously recorded.
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5.1.2. State of the Art CAN Bus Security

Many secure communication technologies have been discussed in literature, and standards
have been introduced for the unique limitations of CAN bus communication. A very early
solution was presented in [164] with a truncated MAC, which is a basis for many of these
solutions. In the following, an outline of the various technologies is presented that can be
clustered into the following categories: Central component approaches, using a central
component to identify intrusive messages, and decentralized systems.

Most security approaches for CAN buses are based on sending a MAC of the transmitted
data to authenticate the message. However, there are still approaches without replay
protection since no freshness value is included in messages. One example is the approach
by Bella et al. [13]. They introduce the TOUCAN protocol that suggests appending a
Chaskey MAC to the payload and encrypting the entire message using SPECK64. The size
of the MAC is reduced to 24 bits. Next to this approach, Hazem et al. presented LCAP [74],
which uses an unconventional approach to protect against reply attacks compared to
most security solutions for CAN buses. Each CAN message secured with LCAP contains a
truncated part of a hash chain. The message is then encrypted. Woo et al. [198] suggest
a regular renewal of the MAC keys to counter attackers that replay messages. Recently,
Groza et al. [65] presented an approach to cycle through CAN IDs based on a customized
cryptographic hash that maintains the message hierarchy. In predefined time intervals,
the counter included in the MAC is incremented; thus, the IDs change. This approach
increases the resistance against reverse engineering and denial of service attacks related to
a specific ID. As mentioned in the paper, it does not provide data integrity and authenticity,
which needs an additional security protocol. Moreover, freshness is not guaranteed since
the counter used in the MAC of the CAN ID does not change with every message. In the
case of constantly changing counter values (IDs) and if a significant limitation of ID range
is acceptable, this can be a viable alternative to transferring fresh counter values.

Niirnberger and Rossow [138] developed VatiCAN, an HMAC-based authentication mech-
anism that transmits a MAC in a second separate message following the original CAN
message. With a delay of about 4 ms, the receiver validates the MAC. Replay protection
is realized with a monotonically incremented counter, its starting value being a random
nonce generated by a central component for every message ID. The authors recommend
performing this procedure only for a limited number of critical messages since it increases
the bus load. Van Bulck et al. improved this approach in [25] by introducing software
isolation, attestation, and key update mechanisms.

Hartkopp et al. presented a further approach to introduce freshness to CAN messages.
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MaCAN [71], formally verified in [24], introduces a central trusted time server that
distributes time information over the network. This information is used as a freshness
value for message authentication.

AUTOSAR specifies the protection of communication in in-vehicle networks based on a
MAC and a freshness value. The specification of the Secure Onboard Communication
(SecOC) [8] module suggests adding a truncated timestamp or message counter and
a truncated authenticator to every message. A specific counter mechanism is based on
splitting the counter (with a maximal length of 96 bits) into three different parts, named
trip counter, reset counter, and message counter. As the name suggests, the trip counter
changes every new trip. The reset counter resets periodically, and the message counter is
incremented with every message. Only the trip counter is stored persistently in the device
storage to prevent the loss of counter values in case of power loss of an ECU. A message
contains a truncated freshness value with a length between 0 and 8 bits. The truncated
authenticator consists of the first 24 to 28 bits of the MAC covering the full freshness value
and the message.

Similar to SecOC, many approaches in literature use counters and an application-level
protocol to ensure replay protection. Kurachi et al. [109] suggest attaching a truncated
MAC (8-bit) and a truncated monotonic counter (4-bit) to a message. A monitoring node
verifies messages during transmission and overwrites invalid messages with an error frame.
ECUs do not verify messages. Groll et al. [64] suggest an initialization phase to form
groups of ECUs. These groups generate a shared symmetric key using an asymmetric key
exchange. ECUs use the shared secret within these groups for authentic and confidential
encryption. A counter should be part of the message to protect against replay attacks. Lin
et al. presented an approach in [118] with symmetric keys for message authentication. A
sender calculates a MAC for every receiver. Every ECU also holds two counters for replay
protection per message ID, the last counter it has sent and the last one it has received.
Every receiver can verify the MAC and process its corresponding message. The LeiA
protocol by Radu et al. [150] is another solution that transfers MAC and counter value in a
separate message. Every ECU has a session key for each relevant message ID derived from
a long-term symmetric key and renewed after a certain period. VeCure [192] is a CAN
authentication framework similar to VatiCAN. The authentication value is also transmitted
via a separate message, but contrary to VatiCAN, the second message includes a Node-ID
besides a Message Counter and a four-byte HMAC value.

Alternatively, several approaches suggest using CAN+ [213], a protocol extension for CAN,
allowing the transport of 120 bits of additional data. The first approach is CANAuth,
presented by Van Herrewege et al. [187]. Another one is LiBrA-CAN [66]. LiBrA-CAN
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introduces (Linearly) Mixed MAC, which mixes multiple MACs of one message generated
with different keys, allowing receivers to verify a MAC even though they do not know all
keys. The approach ensures that receivers cannot impersonate a sender in an adequately
organized group. Both approaches send counter values in their messages to protect against
replay attacks.

Some works are also considering the implementation of a secure CAN bus controller.
Their approaches introduce the calculation of MACs, denial of service countermeasures, or
intrusion prevention mechanisms. [167] implemented a CAN controller that included key
generation and storage as well as a physical unclonable function, as well as encryption
and decryption, allowing authenticated communication over CAN, but it does not provide
any type of replay protection. Similarly, Ueda et al. presented a CAN controller with
integrated HMAC in [183]. To ensure replay protection, a truncated monotonic value of 4
bits is part of every message. Messages that are not authentic are destroyed while correct
messages update the counter.

We observed that most of the presented approaches (cf. Table 5.1) have similar ways to
ensure replay protection and authentication of messages. All approaches add a MAC to a
CAN message. A sufficient replay and delay protection requires a combination of a MAC,
which provides the authenticity of a message with a freshness value. Most approaches
introduce a counter value to provide freshness since the usage of time or nonce values has
disadvantages, as discussed for example in [214]. The transmission of MAC and freshness
values is either realized in an additional message or achieved by including truncated values
in the same message. The receiver performs the verification of a complete message or an
additional node. In the following section, we present a detailed generic model covering
the characteristics of the current counter-based approaches for freshness. This model is
then compared to our approach based on formal verification of the security goals.

5.2. The Generic Counter Concept

Regarding the recent research on secure CAN communication, which we discussed in
Section 5.1.2, several solutions show similarities. These are simplified to a generic model
for the security evaluation of high-layer security protocols in a CAN bus network. In this
section, we introduce this generic model, which uses a counter-based freshness value and
an arbitrary MAC like a majority of presented solutions in industry and academia.

The generic protocol flow is depicted in Figure 5.2, which shows three ECUs (ECUs A, B,
and C) connected via CAN. The figure illustrates the sending and receiving of messages
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Table 5.1.: Comparison of different authentication approaches for CAN-Bus (C: Counter,
T: Timestamp, N: Nonce, AID : Authenticated ID, H: Hash Chain, K: Key Renewal,
. not described)
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where ECU A sends a message that ECU B and C receive. Every ECU starts in an idle state
until A starts the sending process of a CAN message m, which is composed of the CAN ID
and the message payload msg. ECU then prepares the sending process by incrementing
its local counter and calculating the MAC for the message. The tag ¢ is calculated with
the MAC function over the message m, the local counter ¢, using a cryptographic key
k. In the final step, ECU A concatenates m, c,, and ¢ and transmits this message. Note
that most protocols use some sort of truncation to reduce the payload of the message or
an additional transmission is used to transmit all values. After the message is sent, it is
received by every ECU on the bus. ECU B and C' now verify the message with two checks.
First, the counter ¢, in the message must be larger than the local counter ¢, and the MAC
tag ¢ must be equal to the MAC calculation that ECU B performs with m, ¢,, and the key
k. If one of the checks fails, the message is discarded, and the ECU waits for the following
message. If both checks are valid, the message will be processed.

Most approaches do not explicitly introduce a synchronization mechanism for possible
error (e.g., power loss or software failure) in an ECU that causes a counter loss. Often, a
central component is used for the synchronization. One example is the SecOC standard [8],
which suggests a freshness master. If a sender has an incorrect counter, such a dedicated
entity or client must provide the correct counter value. In both cases, the counter value is
transmitted in the payload CAN message with a reserved ID secured identically to regular
messages.

Even though the generic counter protocol is relatively simple, it represents the charac-
teristic properties of all the protocols mentioned above that increment counters after
successfully validating the message. An essential characteristic property is that the local
counters of message recipients only change when a message is accepted. Consequently,
these protocols cannot prohibit so-called delay attacks, as will be formally shown in the
next section. For such an attack, the adversary with the abilities described in Section 3.3
reads and then invalidates a message and all subsequent ones related to the same counter.
The intended recipients will then accept the reinserted message at any later point in time
if no further countermeasures are taken.

5.2.1. Formal Security Analysis of Generic Counter Concept

Based on the given generic protocol, we designed a formal model with the well-established
Tamarin prover [12, 178]. We suggested using this in the work [110] for automotive
protocols. The complete formal model consists of states and state transitions, which are
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Figure 5.2.: Process of Generic Counter Communication

used to check security properties defined as lemmas. The complete formal model is shown
and explained in Section A.1.1.

Our formal model, within the Tamarin prover, successfully demonstrates the properties
of data origin authenticity and non-repeatability. However, the prover also uncovers a
potential attack that violates the property of immediacy. This finding is crucial, as it
reveals that an attacker could invalidate a message and repeat it in a different time phase.
Consequently, the receiver cannot be certain that the received message was sent within a
defined time frame and may be delayed by the attacker.
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5.3. BusCount: A Low Layer Bus Counter Solution

Addressing the security flaw outlined in the previous section, we present BusCount.
Our innovative approach to low-layer secure CAN bus communication guarantees key
security properties such as immediacy, non-repeatability, and authenticity of messages
(cf. Section 6.3.3). In addition to secure message transmission, our concept incorporates
a mechanism for synchronizing freshness values, further enhancing the security of the
system.

The core idea of BusCount is to make use of the fact that all participants of a bus system
are able to read all transferred messages in this system. For this reason, the number of
messages sent in the bus system is a value known by all attacked devices. This value
can serve as a source of freshness for cryptographic operations without transmitting it.
Furthermore, it changes with every transmitted message. This idea is applied to any bus
network with the same properties.

We explain the protocol flow of BusCount in the following. Figure 5.3 illustrates this
protocol.

The first step of transmitting message m in BusCount starts with decrementing the local
counter (Note: Decrementation is only used for technical reasons explained in Sec-
tion 5.3.1). Then, the MAC tag t, is calculated over m and the local counter ¢, with the
cryptographic key k. In parallel the controller starts transmitting m. When ¢, is ready
and m is sent, ¢, is added to the transmission. As soon as other ECUs start receiving a
message, they decrement their local counters. Once the receiving of m is completed, the
ECU calculates the MAC over its local counter ¢, and the message m. Each receiver then
validates whether the calculated tag equals the transferred one. Note that this means the
counter of sender and receiver need to be equal. If the MAC is correct, the message can be
processed. Otherwise, a receiver will overwrite the rest of the CAN message with an error
frame. In contrast to the generic model, this protocol cannot synchronize counters and
does not consume valuable space for a message. For this reason, we present a dedicated
synchronization mechanism in the next section.

5.3.1. Synchronization

Counters may differ due to various reasons (e.g., an ECU is powered off or due to software
faults). To ensure that this does not lead to a blocked CAN bus, every ECU can initialize a
synchronization at any point in time. This synchronization allows all active participants
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in the bus to synchronize their counters within the transfer of one message by using the
physical properties of the CAN bus. In particular, every O overwrites 1 sent via the bus
simultaneously.

The synchronization method is exemplified in Figure 5.4. First, an ECU decides to start
synchronization by sending a predefined ID. We suggest using ID=0 since this is the most
critical message transferred since no other message can be transmitted until the counters
are synchronized. Every ECU on the bus decrements its local counter, which is similar
to a regular message. Now, every ECU transmits its local counter until the complete
counter is sent or is overwritten at any bit. This mechanism is identical to the collision
resolution of CAN (c.f. Section 2.1). The smallest counter will finally be transmitted
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since a 0 is dominant over a 1. This explains why we decided to start a counter at the
maximum value and decrement it in the protocol. The presented concept is also used
in [134] to implement a key exchange over CAN. In parallel to the counter transfer, every
ECU calculates the MAC over the lowest counter, and the ECU, which transmits its full
counter, also transmits the MAC. Each ECU compares the transmitted value with the
locally calculated MAC.

If both MAC values match, the ECU will update its local counter. Otherwise, an error
frame invalidates the synchronization process.

5.3.2. Formal Verification of BusCount

Similar to the generic counter model, we also verified the current BusCount protocol using
Tamarin. In Section A.1.2, we describe the model of the BusCount message protocol in
three steps: initialization, sending a message, and receiving a message.

Based on the formal model, all security properties can be proven to be correct. However,
attackers can still perform DoS attacks. The results and the comparison between a generic
counter solution and BusCount are discussed in the security evaluation in the next chapter,
providing a comprehensive view of the protocol’s strengths and weaknesses.
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5.4. Evaluation

The evaluation chapter is divided into two sections. The first section discusses the security
properties of BusCount and the generic model based on the formal analysis results. Using
these results, we compare the two approaches. In the second section, we present a practical
evaluation of our BusCount concept with respect to the limitations and requirements of
CAN bus environments.

5.4.1. Security Evaluation

Based on the formal verification described in Section 5.2.1 and Section 5.3.2, we compare
the security properties of both approaches. The central difference between these ap-
proaches is that the generic counter only changes its value when a message is successfully
transmitted. In contrast, our BusCount decreases a global counter with every start of a
message transmission. This integral mechanism ensures constantly changing freshness
values. Since these freshness values are used to calculate the MAC of every message, an
attacker can’t replay or delay a message, as proven in the formal verification.

At the low layer of BusCount, all ECUs connected to the same bus can also validate the MAC
of a message and send an error frame if the validation fails, preventing the transmission
of the message. This further enhances the system’s resistance even if some ECUs have
outdated counter values.

The combination of these mechanisms allows for the formal verification of both immediacy
(S2) and non-repeatability (S3) of our BusCount system. Additionally, the MAC ensures
the authenticity of a message (S7). It is important to note that the properties of immediacy
and non-repeatability only hold under the assumptions of our proof that at least one ECU
has a correct counter. Therefore, it is necessary for the system to ensure that at the end
of a trip when ECUs are shut down, at least one ECU stores the correct counter value
in persistent storage. Furthermore, the system only works if all ECUs are constantly
connected. In the event that an ECU becomes disconnected, an attacker is able to inject
messages from other ECUs at a later point in time, as the disconnected ECU is not aware
of any counter updates. Finally, we also require that there is no overflow in the counter
value.

The generic counter model only provides the MAC to ensure authenticity, but its counter
mechanism can be bypassed by altering the CRC of a message, for example. A local or
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advanced attacker with the abilities described in Section 3.3 is capable of exactly this
attack, which allows to violate the property of immediacy.

From a security perspective, our BusCount has the advantage over the generic counter
model as it fulfills the property of immediacy. Furthermore, the update mechanism of
BusCount allows the system to quickly recover from an incorrect counter of all ECUs.
In contrast, traditional counter approaches rely on a central entity, such as a freshness
master [8], which needs to track all counter values to some extent and becomes a single
point of failure in the system.

In the following section, we discuss the size of the counter value and MAC that is sufficient
to protect CAN messages, along sight with other implementation details of our practical
evaluation.

5.4.2. Practical Aspects

To conduct a practical evaluation of BusCount under realistic conditions, we implemented
the protocol and performed tests in an automotive testbed. The results of these tests
demonstrate both the feasibility of our approach and its potential for implementation in a
cost-limited environment.

This section provides a detailed description of our setup, outlining the various components
employed for the implementation and simulation of the vehicle network. We place
particular emphasis on the design decisions we made, as these decisions significantly
influenced the performance results obtained from our implementation.

Setup

The core part of our setup is an ECU with a CAN controller that implements our BusCount
protocol. For this controller, we choose a low-cost FPGA in the form of an ICE40HX8K-B-
EVN that has 7680 logic cells and runs at a frequency of 12 MHz. A CAN transceiver is
necessary to convert signals from the FPGA to those used on the CAN bus to communicate
with a bus. In our setup, this function is done by an MCP2561. The CAN controller is
implemented based on an open-source CAN implementation' with the expansion of our
protocol. Furthermore, we implemented an SLCAN? interface so that a connected ECU

'https://github.com/keesj/can-hdl
2https://github.com/torvalds/linux/blob/master/drivers/net/can/slcan.c
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could send and receive messages. This ECU is emulated with an ARM1176JZF-S board
running Linux with its default CAN driver SocketCAN®. We modified the driver to reduce
the maximal payload of a message so the MAC has enough space in every message. For
the evaluation, we have two identical setups that allow us to test send and receive as well
as synchronization methods of BusCount. We also attached an automotive remaining bus
simulator to verify if our setup is interoperable with the regular CAN protocol. This setup
comprises a Vector VN5610 device and the PC simulation software CANoe v9. The entire
hardware setup is displayed in Figure 5.5 and contains:

e CAN controller: ICE40HX8K-B-EVN

¢ CAN transceiver: MCP2561

ECU: Raspberry Pi 2B

* Remaining bus simulation: Vector VN5610

=) (=)

SLCAN SLCAN
I I

‘ ICE40HX8K] [ICE4OHX8K ’

T T | T
X RX TX RX

[NIIP0256I1 ] [M};0256I1 ] VN5610
. .

120 Q
120 Q

Figure 5.5.: Evaluation Setup for BusCount

Shttps://www.kernel.org/doc/Documentation/networking/can.txt
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Design Decisions

In the development process, we made some decisions regarding the implementation
of BusCount, which we explain in this section. First, we decided on the length of the
transmitted MAC value; second, we decided on the size of the transmitted counter value;
and last, we needed a reasonable counter size that would prevent replay attacks.

In compliance with AUTOSAR SecOC [8], which uses a 24-bit truncated MAC, we choose
the same value for our approach. Due to the truncation of the MAC, it becomes more
likely for an attacker to forge a correct message just by guessing. One of the most fatal
attacks for the protocol would be to forge a synchronization message. For this reason,
we integrate a counter of failed synchronizations similar to the error counter of CAN (c.f.
Section 2.1). In the case of 16 failed synchronizations in a row or 128 failures in total,
an ECU considers the bus untrustworthy. This means that the ECU should enable limb
mode so that a driver can safely stop the car. An attacker thus has 128 attempts to forge a

synchronization message successfully. Based on the size of the MAC, the chance of success
924

for an attack is 0.000977% (7(%82)2(4127) ). A recovery mechanism is not part of the protocol.
128

Next to the MAC size, we also defined the size of the transferred counter. Due to the

size of the MAC, only 40 bits of the CAN message are left. Since this is already a very

limited payload, we decided not to transmit the counter value at all. Due to our protocol’s

high-speed synchronization mechanism, we can assume all ECUs have the same counter

or can quickly get the correct counter.

The message format for the synchronization limits the size of the counter since we want
to transmit the synchronization within one message. For this reason, the natural choice
would be a counter of 40 bits. With this counter size and a maximum of 17,543 messages
per second [190] that can be sent via the CAN bus, the counter can overflow in about
725.4 days (17’5432.;%) of continuous communication. An attacker could reduce this
by sending even shorter messages by starting a message and sending an error frame
immediately. This reduces a message to 15 bits and thus increases the messages per
second to 51,459(17, 543 - %). This can roughly reduce the time till the counter overflows
by 3 to only 247.3 days (ng]ﬁ(}%). We consider this value to be unacceptable for the
security of our system. For this reason, we transmit a counter value with an extended
ID CAN message. This message type introduces 18 more bits to the ID of the message
that we utilize to transmit 18 more bits of a counter. A 58-bit counter increases the time
till an overflow occurs to 82,884.75 years (W). We consider this time span
sufficient to protect the counter from an overflow.
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Due to these decisions, our security protocol is still fully compatible with regular CAN
controllers in one network if they only send messages under predefined IDs, which are
then not checked by the protocol. Every ECU can read the messages even if it does not
speak the BusCount protocol. Furthermore, it is easily adaptable for CAN FD and CAN XL
and compatible with the message structure defined by SecOC [8].

Practical Challenge

Because our protocol introduces error frames to invalidate unauthenticated messages, the
safety properties of CAN may change. The original mechanism for error frames, where the
error counter is incremented by an ECU by 8 if it sends the message or by 1 if it receives
the message, is already described in Section 2.1. Important for our change introduced due
to the protocol is the question of whether this can result in one or multiple disabled ECUs.
From our point of view, only three cases result in this failure. First, an ECU has a technical
problem that causes it to send or receive messages incorrectly. Either way, this would
result in an error frame since the CRC would be incorrect even without the MAC check.
For this reason, it does not affect the safety rating. In the second scenario, an attacker is
present that sends unauthenticated messages, causing the error counter to increase, which
is similar to an attack against the CRC. Both are not considered in a safety evaluation
since these are compliant behaviors. The last scenario concerns the start-up process of
a vehicle where different ECUs start communication at different points in time. For this
reason, the counter may differ between ECUs. To avoid unnecessary error frames, we
suggest that ECUs do not check or process messages until they perform synchronization.
This prevents an incorrect counter of ECUs after a wake-up. We conclude that BusCount
does not affect the safety of CAN.

Performance Evaluation

It is crucial to ensure that BusCount can be implemented in this setup and that the MAC
algorithm is fast enough to check incoming messages within the message transmission.
The basic CAN implementation on the ICE40HX8K already requires 4,483 logic cells of
the FPGA, leaving only 3,197 remaining logic cells. This limited space does not allow
for the classic cipher used for the MAC calculation, such as a CBC-MAC based on AES
or an HMAC based on SHA2. Therefore, a lightweight alternative is necessary for our
approach. We decided to test Present80 [19] and Prince [21] in CBC-MAC mode, as well
as SipHash [4] as an HMAC algorithm. All these MAC algorithms are designed with a
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64-bit block size. Since a regular CAN message has at most 29 bits for the ID, 4 bits for
the data length, and 64 bits of data, the BusCount approach requires calculating the MAC
over 131 bits. These include the 58-bit counter that is not transmitted and subtracts the
24 bits of truncated MAC. Thus, the MAC needs to be calculated over two blocks. Modern
alternatives will drastically increase the number of blocks. CAN FD needs 10 blocks for
579 bits of authentic data and CAN XL needs 258 blocks for at most 16,466 bits of data to
authenticate. Table 5.2 shows the results of our evaluation of the three ciphers. In the
first column, we determine the number of cycles to calculate the MAC for the two blocks.
The second shows the total number of logic cells used for the CAN controller.

Table 5.2.: Evaluation of ciphers for secure CAN controller

Algorithm Cycles Logic cells (total)
Plain CAN controller - 4,483
SipHash [4] 13 6,024
Prince [21] 30 5,947
Present80 [19] 68 5,599

The results show each cipher fits on the 7,680 logic cells of the FPGA where Present80 is
the smallest and Prince and SipHash have roughly the same size. In terms of speed, the
results are the other way around. SipHash clearly outperforms the others with 13 cycles,
where Prince needs 30 and Present80 68 cycles for both blocks. Since the calculation
of the last block needs to be performed very fast from the moment the last data bit is
written to the bus, the calculation needs to be finished before the first bit of the MAC is
written. All ciphers were able to do so but if even lower-performance chips were used
the slower algorithms could fail. For this reason, we recommend SipHash. The latest
crypto analyses [46, 199] also do not show any problems indicating a security risk using
SipHash.

5.5. Summary on CAN Bus Security

In this chapter, we presented our secure CAN communication protocol, BusCount, to
protect an automotive network. In a detailed formal analysis, we compare this solution
against the typical characteristics of counter-based approaches currently in use in modern
vehicles.
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We have shown the advantage of our approach in comparison to state-of-the-art protocols.
Especially the low-layer message counter, which is decremented with any message start,
makes manipulation of the counter impossible for an attacker. The integrated synchro-
nization mechanism allows a secure and fast way to propagate the current counter value
for all ECUs in a network with only one CAN message. A further key difference is the fast,
low-layer MAC calculation and verification, which enables the verification of the message
before it is fully transmitted. This property makes it possible to invalidate a message
during the transmission and hinders potential attackers from replaying messages without
affecting the system’s safety. Thus, the protocol guarantees the freshness of a message
since it ensures the authenticity and replay or delay attacks are impossible. In contrast, a
generic application-level protocol is vulnerable even if all ECUs have the correct counter,
which is not necessarily the case.

Building on the promising results, our future work focuses on implementing BusCount
into the firmware of a CAN controller. This step not only enhances the feasibility of our
solution but also reduces its costs. Additionally, we are exploring the integration of one or
multiple hardware security modules to safeguard the cryptographic keys from potential
attackers who might gain access to the controller.

Regarding the attack path feasibility for local attacks causing unintended driving behavior,
the presenter technology decreases the probability of bypassing the security mechanisms
of the CAN bus to a lower rating. For a replay attack, the time increases through the
category > 6 months, resulting in a low attack feasibility.
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6. Automotive Ethernet Security

With the widespread adoption of Automotive Ethernet in modern vehicles, the security
of in-vehicle communication becomes paramount. Automotive Ethernet is crucial in
facilitating inter-domain communication to integrate advanced sensors with ADAS systems
and support infotainment systems. As we discussed the importance of securing CAN
bus communication in the previous chapter, protecting in-vehicle communication via
Automotive Ethernet is equally vital.

In this chapter, we delve into the feasibility of employing Transport Layer Security (TLS)
in various communication scenarios, considering different functional and performance
requirements. Our analysis builds upon the comprehensive requirements analysis and
conceptual framework proposed in [206]. In this paper, I analyzed the requirements and
developed the concept of how to introduce TLS into the vehicle network with its different
communication protocols. Furthermore, I am responsible for the discussion on the final
results of the measurements. This work was the result of the collaboration with two OEMs.

Additionally, Automotive Ethernet enables service-oriented communication through the
use of the Scalable service-Oriented MiddlewarE over IP (SOME/IP). In the second part
of this chapter, we address the vulnerabilities introduced by this middleware and present
our research documented in [203]. In this research, I initially discovered the presented
vulnerabilities, implemented corresponding attacks, and performed practical tests against
various implementations. Furthermore, I devised two countermeasures and verified the
security of the security of SESO-RC. Our work in this area was not only recognized
with the Best Paper award of ARES 2021 but also sparked discussions with OEMs and
suppliers, leading to the introduction of different security mechanisms to mitigate these
vulnerabilities.

We also present the first systematic review of security attacks and countermeasures for
Automotive Ethernet in ACM Computing Surveys [189] covering 172 papers, where we
collaborated with the National Research Council of Italy. In this work, I coordinated the

81



review process of the 172 papers within the Fraunhofer team and reviewed a third of the
documents, answering the defined research questions categories of the papers.

To provide context for this chapter, we first give details on the relevant parts of the
reference architecture introduced in Section 3.1. These architectural components play a
crucial role in the following discussions on Automotive Ethernet security.

6.1. Setting of Automotive Ethernet Network

Notably, most connections inside and between domains in classic vehicles have been
established using the CAN Bus, which offers a maximum bandwidth of up to 1 Mbit/s.
In some cases, other protocols like MOST or FlexRay have been utilized. However, there
is a current trend towards faster connections such as CAN FD or Automotive Ethernet.
Automotive Ethernet, for instance, can provide speeds of up to 1000 Mbit/s, similar to
Fast Ethernet commonly used in LAN networks. With Automotive Ethernet, network
topologies shift from a bus system to a star system with switches. According to [69]
and [41],, Automotive Ethernet is initially employed to interconnect the domain controllers,
with the communication gateway acting as the switch connecting all domain controllers.
Additionally, certain domains form subnetworks with internal switches that connect each
ECU of the domain to the domain controller.

This aligns with our reference architecture introduced in Section 3.1, which serves as
the adaptable basis for evaluating the security of Automotive Ethernet communication
in modern vehicles. Figure 6.1 illustrates the various uses of Automotive Ethernet in our
architecture. It serves as a backend communication system connecting the different domain
controllers and facilitates communication within domains, such as the autonomous driving
domain or the infotainment domain. Furthermore, most modern vehicles incorporate an
Automotive Ethernet channel via the OBD-II connection.

We have previously introduced various communication scenarios in vehicles in Section 3.2.
To further analyze IP-based communication, we meticulously consider all these scenarios:
internal vehicle communication, including unicast, multicast, inter-domain, and service-
oriented communication, as well as diagnostic and external communication.

Our reference architecture utilizes SOME/IP as a service-oriented protocol since it is the
AUTOSAR standard. A typical configuration consists of a few switches and a relatively
small number of Automotive Ethernet-ECUs, usually in the low two-digit range, with each
ECU providing several tens of services, as mentioned in [56].

82



Automotive Ethernet

" Sound Instrument
% System Cluster
Climate| Navigation
control (Radio] System

Ty enr:atics r_[ Body ] [ Infotaimk@m

T
Automotive Ethernet D

Autonomou Energy
driving & Drive

Steering

Automotive Ethernet

Battery |
P
system

18015118] CANFD
Shop Char
5

Figure 6.1.: Example of the use of Automotive Ethernet in our Reference Architecture

In our reference network, we assume the presence of around 250 services evenly distributed
across 10 ECUs, resulting in an average of 25 services per ECU that implement service-
oriented communication. Initially, the ECUs do not possess information regarding the IP
addresses or ports of the offered services. Therefore, they need to synchronize during
startup or prior to utilizing a specific service.

We anticipate that approximately 20% of the services will be infrequently used and
subsequently forgotten after a certain period, typically around 1 minute. Examples of
such services include those required for a parking assistance function, where sensor values
are intermittently transmitted.

6.2. Introducing TLS to In-Vehicle Communication

When considering the potential threats discussed in Section 3.3, securing the communi-
cation between ECUs and connected devices becomes crucial to prevent attackers from
compromising the vehicle’s safety. It is essential to implement mechanisms that ensure
data origin authenticity and integrity. Confidentiality may also be required in specific
scenarios, such as in product piracy or privacy protection cases.
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With the increasing adoption of Ethernet and related technologies like IP, UDP, and TCP
in modern vehicles, replacing traditional bus technologies like CAN and FlexRay, it is
logical to evaluate the suitability of well-established cryptographic protocols like TLS.
However, it is important to note that TLS was not originally designed to meet the specific
requirements of embedded devices with limited memory and computational power.

This section analyzes whether employing TLS or similar technologies can effectively
ensure secure communication between ECUs, external devices, or backend systems when
utilizing high-bandwidth technologies like automotive Ethernet. We present three key
contributions in this section. First, we conduct a requirement analysis encompassing both
real-time and security requirements for communication in modern vehicles. Second, we
propose a key management concept and an approach for utilizing TLS to secure in-vehicle
communication. Finally, we evaluate the performance of our TLS concept through its
implementation on a typical automotive processor.

This section is structured as follows: We begin by analyzing the communication require-
ments for vehicle networks in Section 6.2.1. In Section 6.2.2, we delve into the application
of TLS to secure a vehicle network. Subsequently, we examine whether the performance
requirements can be met using TLS on an automotive platform and present the results in
Section 6.2.3. In Section 6.2.4, we discuss these results and present some optimization
potentials of TLS. Finally, we compare our ideas with related security concepts for vehicle
networks in Section 6.2.5.

6.2.1. Requirements Analysis

This section introduces the performance and security requirements that a secure commu-
nication protocol for automotive Ethernet must fulfill. First, we describe the performance
requirements gathered from multiple sources that are necessary for certain types of
communication. These requirements are essential for safety-relevant real-time scenarios
that rely on timely information. Second, we introduce security requirements for vehicle
communication based on the different communication scenarios of automotive Ethernet
introduced in Chapter 2.

Performance Requirements

Most internal vehicle communication must meet specific performance requirements, which
vary depending on the use case. These requirements include service interval, bandwidth,
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maximum latency, and maximum packet size. The maximum packet size characterizes the
maximum size of a single data package transmitted. The service interval represents the
interval between two package transmissions. The bandwidth defines the maximum bits
per second transferred via the Ethernet channel. Finally, the maximum latency describes
the time between the command to send a package and the reception of this package at the
point where the message can be processed. An overview of the performance requirements
is shown in Table 6.1, which covers different aspects of vehicle communication, including
simple multicast sensor value transfer as well as high-bandwidth video transmission.

The primary source for the requirements of different data types is [117]. This paper
introduces several types of communication in a vehicle network, such as control data, driver
assistance camera streaming, or video/audio streaming. The communication of sensor
values, which was also present in classic CAN or FlexRay communication, is represented
by the requirements Data 1 and Data 2. An example of this type of communication
could be a multicast transmission of sensor values, such as the vehicle’s current speed
or the brake pedal’s position. The difference between Data 1 and Data 2 is the stricter
latency requirement of 0.1 ms, as suggested in [112]. Furthermore, we added Data 3,
which includes requirements provided by an OEM. The requirement Camera represents
an advanced driver assistance system camera, which has an approximate bit rate of 25
Mbit/s for an MPEG2-TS-based video stream. Audio and Video represent the requirements
for audio and video data transmitted for infotainment purposes and, thus, do not have
similarly strict maximum latency requirements as the previous data types.

Table 6.1.: Performance Requirements

Data Type Max. Packet | Service Interval | Bandwidth Max. Latency
Size [byte] [ms] [Kbit/s] [ms]

Data 1l [112] | 20 10 - 100 1.6-16 0.1

Data 2 [117] 20 10 - 100 1.6-16 10

Data 3 ! 50 1 400 0.5

Camera [117] | 786 0.25 25100 45

Audio [117] 1472 8.4 1400 150

Video [117] 1472 1 11800 150

lelaborate together with an OEM
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Security Requirements

Fulfilling several security requirements is essential to effectively mitigate the risks posed
by attackers, as outlined in Section 3.3.

Sy Authenticity: Ensuring communication authenticity is crucial to prevent attackers

Sa

S3

from injecting malicious messages into the in-vehicle network. For example, verifying
the authenticity of a firmware update binary is imperative. Additionally, the identity
of communication peers must be verified to prevent unauthorized devices, such
as a malicious ECU, from connecting to the electrical system. As mentioned in
Chapter 3, appropriate measures should be implemented to prevent attackers from
compromising an ECU.

Integrity: Mechanisms for ensuring data integrity are necessary to prevent attackers
from tampering with messages undetected. This includes protection against replay
attacks, where attackers resend previously transmitted messages. Authenticity and
integrity are typically the most critical security requirements that must be upheld in
most scenarios.

Confidentiality: Implementing mechanisms to maintain data confidentiality is essen-
tial for preventing eavesdropping and unauthorized access by attackers. However,
confidentiality may be required only in specific situations, such as protecting intel-
lectual property, personal data, or sensitive information. For instance, firmware
updates and advanced diagnostics functionalities may contain proprietary knowl-
edge and should be encrypted. Furthermore, the transfer of personal data needs to
be protected from attackers. However, it is crucial to consider the potential down-
sides of confidentiality measures, such as increased overhead, which can impact
real-time communication conditions (cf. Section 6.2.1). Additionally, managing fully
encrypted networks may present challenges, requiring data decryption before direct
access is possible, even in a garage setting.

Sy Availability: Ensuring continuous and reliable communication is a critical safety

requirement. Disruptions in communication can have severe consequences, poten-
tially endangering lives and impacting the functionality of vehicle systems. While
this chapter primarily addresses unintentional events rather than direct attacks on
availability, it explores the interplay between security measures and the performance
requirements discussed in Section 6.2.1. It delves into how security measures can
be applied while still meeting the performance criteria.
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S5 Freshness: The security property freshness is important to guarantee that data or
messages exchanged between communicating parties are up-to-date and have not
been replayed by malicious actors. Achieving freshness is crucial to maintaining
the integrity and reliability of communication systems, especially in safety-critical
scenarios.

6.2.2. Discussion on the Applicability of TLS to Secure In-Vehicle Networks

TLS is the most intuitive solution for securing a vehicle’s communication in many scenarios.
For example, backend communication can be secured either using HTTPS [173] or a
Virtual Private Network (VPN) tunnel [96]. For this reason, it is tempting to apply TLS
for further use cases, especially in-vehicle communication.

In the following section, we argue about using TLS for secure in-vehicle communication
for the reference architecture described in Section 3.1 and whether it allows us to meet
the security requirements specified in Section 6.2.1. For this purpose, we elaborate on
how TLS can address the security requirements in every communication scenario. In
addition, we elaborate on using a certificate structure inside and outside of a vehicle and
describe their validation. The Section 6.2.3 then focuses on our implementation of TLS on
a typical embedded controller and the analysis of whether this implementation matches
the performance requirements.

TLS in Different Communication Scenarios

The different communication scenarios have been described in Section 6.1. In this section,
we match these scenarios with the possibilities of the TLS protocol. With TLS in place, it
ensures the authenticity, integrity, and confidentiality of every message.

Uni-Cast Communication Similar to classic direct communication in computer networks,
a default TLS connection can also be established between two ECUs. For uni-cast com-
munication in Automotive Ethernet, it is not necessary to change anything in the default
TLS protocol. Since TLS is not altered, it fulfills the security properties S1, So, S3, and S5,
which are discussed in detail in the following security discussion.
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Inter-Domain Communication The communication between domains is pretty similar to
the first scenario. The core distinction is that traffic is forwarded through one domain con-
troller into another domain to the ECU. Depending on the setting, the domain controller
may need to decrypt the communication and re-encrypt it to forward messages to the next
step in the communication chain. However, this poses an additional risk if such a domain
controller is compromised because then an attacker has access to all communications that
use that domain controller as a relay. Furthermore, additional computational overhead is
introduced into the domain controller. Therefore, it is best to establish an end-to-end TLS
channel between the communicating ECUs, if possible. The domain controller acts only
as a switch and forwards TLS packets between communication partners. In the rare cases
that the domain controller itself needs to receive data, this is covered by the first scenario.

External Communication Analogous to inter-domain and uni-cast communication, ex-
ternal communication involves a simple communication channel between two entities.
However, in this scenario, one communication entity is located outside the vehicle while
the other is part of the vehicle itself. As mentioned earlier in this section, TLS has already
been proposed to secure external communication between the communication gateway
and the external server, such as the OEM backend.

Nevertheless, similar to the inter-domain scenario, if the gateway or domain controller is
compromised, it undermines the security provided by the TLS protocol. To address this
concern, we propose directly using an additional TLS channel between the ECU and the
external entity, ensuring end-to-end security for this critical connection.

Initially, the communication is secured between the gateway and the external entity,
preventing unauthorized communication from being forwarded into the vehicle network.
Within this TLS channel, an additional TLS channel is established as a second layer of
security, directly connecting the external server and the internal ECU. This approach
further strengthens the security measures for the communication between the vehicle and
the external entity.

Multicast Communication Multicast communication is widely used in vehicles to simul-
taneously transmit messages to multiple ECUs. However, the current TLS standard and
typical implementations do not natively support this type of communication. Fortunately,
a proposal for multicast TLS based on (D)TLS has been made [98].

In multicast TLS, a group key authenticates and encrypts the multicast messages of every
multicast group member. All participants within the group share the same keys, enabling

88



them to send and receive messages. This approach presents a trade-off in terms of security.
On one hand, it reduces the ability to determine the exact sender of a message. On
the other hand, introducing multiple keys (one for each communication pair) would
compromise the advantages of multicast messages and result in increased bandwidth
consumption.

Using a key for every session would lead to either sending multiple packets with identical
content or including the same information multiple times within a single message. In the
latter case, each message is encrypted with one key, allowing each receiver to decrypt one
of the chunks in the message. While multicast TLS provides a solution for secure multicast
communication in vehicles, it is essential to consider the implications and evaluate the
specific requirements and trade-offs for each use case before implementation.

Security Discussion

In addition to addressing the communication scenarios, meeting the necessary security
requirements is crucial. TLS offers configurations to provide authenticity (S), integrity
(S2), and confidentiality (S3) [45]. During the initial TLS handshake, the communication
partners are authenticated using certificates or pre-shared keys. The record protocol
of TLS ensures message authenticity (S7), integrity (S2), and confidentiality (S3) by
encrypting messages and appending a Message Authentication Code.

While certificates provide the highest level of security, certain key management issues may
require using TLS Pre-Shared Key Cipher suites (TLS-PSK) [181]. TLS-PSK cipher suites
come in three types. The first one uses symmetric keys for authentication, the second
employs Diffie-Hellman key exchange authenticated with a symmetric pre-shared key, and
the third type combines pre-shared key authentication on the client side with public key
authentication on the server side.

Regarding using pre-shared keys in the vehicle context, caution is paramount, especially
if there is a need for easy ECU exchange without an extensive key-management process.
Storing the same key in each ECU type of vehicle model increases vulnerability to attacks,
as an attacker who obtains the key from one vehicle can then target all vehicles of the
same model. Therefore, the use of TLS-PSK cipher suites should be carefully considered
and evaluated.

It is crucial to understand that our focus in this chapter, as mentioned in Section 6.2.1,
is not on addressing attacks on availability directly (S4). Instead, we concentrate on
examining the interaction between security measures and performance requirements.
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In scenarios where an attacker gains access to the network, they may attempt to block
messages or overload the bus system, resulting in reduced throughput and increased delay.
They may also initiate numerous TLS handshakes to overwhelm other ECUs. It is essential
to consider additional measures to mitigate these attacks. For instance, in a switched
network architecture, an intrusion detection system (as described in [130]) could be
deployed to identify attacks and block messages from potentially compromised ECUs or
subnetworks.

TLS ensures the correct order of data using sequence numbers for sending and receiving
messages. Based on this sequence number, freshness S5 cannot be guaranteed to be
transmitted within a certain period of time, as discussed in the availability section (Sy).
The freshness S5 of a new connection is discussed in the following Section, Certificate
Verification.

Proposed Certificate Hierarchy

For a robust security framework, we advocate the use of certificates over TLS-PSK cipher
suites. Each ECU should be equipped with a certificate, serving as either a client or server
certificate, to ensure a high level of security.

The proposed certificate should contain the following elements: public key, issuer infor-
mation, ECU roles and rights, and the signature of a Certification Authority (CA). The
corresponding private key should be securely stored only on the ECU itself. The ECU
rights information should specify the type of ECU and include a list of rights for accessing
other ECUs, data types, or commands. This ensures that ECUs are granted access only to
the information necessary for their functionality. Additionally, the receiver can evaluate
whether to send data to another ECU and verify if an ECU is allowed to provide certain
data or execute specific commands.

We recommend generating public-private key pairs inside each ECU to generate the
certificates. During production, the vehicle manufacturer can extract the public key and
generate a certificate with all the required fields, which the manufacturer signs. The
certificate is then securely written to the ECU. It is crucial to ensure that the private key
stays in the ECU to prevent easy compromise during production. To further enhance
security, the use of an HSM is proposed for key generation and storage of the private key
as a non-exportable key, safeguarding the private key during the ECU’s life cycle.

Certificate management necessitates the establishment of a PKI. Figure 6.2 illustrates a
possible implementation of a CA hierarchy. The manufacturer operates a long-term root
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CA named "OEM CA.” Below the root CA, several CAs with shorter lifetimes are employed.
For each vehicle model, a ”Production CA Model X” is used to issue certificates for ECUs
specific to that model. If a model is discontinued, the corresponding CA can be disabled.
The "OEM Diagnose CA” is responsible for issuing certificates to diagnostic devices that
can be used across different model types. An "OEM Backend CA” is utilized to issue
certificates for services running in the manufacturer’s backend.

Certificate Verification

Each ECU and diagnosis tool utilizing TLS should be pre-configured with the "OEM CA
public key certificate” to enable them to validate certificates. During a TLS handshake,
this certificate is used to verify whether the received certificates of the communication
partners are indeed issued by the "OEM CA” or a CA lower in the hierarchy. However, two
issues regarding certificate verification arise in our scenario.

Firstly, the verification of certificate revocation usually requires an online connection.
Typically, a Certificate Revocation List (CRL) hosted on a backend server is checked to
verify a certificate. To address this, the manufacturer can operate an Online Certificate
Status Protocol (OCSP) Responder, and since modern vehicles are usually online most of
the time, CRLs can be downloaded at regular intervals whenever an online connection is
available.

91



Secondly, validating the validity period of a certificate relies on the accuracy of the time.
In small embedded systems like ECUs, there might not be a precise time source available.
Several alternatives can be considered. One solution is to equip each ECU to communicate
via TLS with a precise clock and an independent power source to run the clock, although
this may incur additional costs. Another option is having a trusted time server within
the vehicle that broadcasts the time to the ECUs. This time server can synchronize with
an external trusted Network Time Protocol (NTP) server. Alternatively, the validity of
a certificate can be tied not to a specific time period but to a certain number of vehicle
events. For example, a certificate may only be valid for a certain number of engine starts
before requiring renewal. This approach would only require a monotonic counter in an
ECU that increments with each engine start and would be compatible with the solution to
secure CAN in Chapter 5.

Certificate Renewal In the event of a security breach or nearing the end of a certificate’s
validity period, certificate renewal becomes necessary. Renewal can be performed during
maintenance at a trusted garage or repair shop or through the vehicle’s online connection.

Renewing certificates from a trusted garage or repair shop during maintenance has
the advantage of ensuring the authenticity of the entire installation process. Even if
some private CA certificates have been compromised, the vehicle can be updated with
new trusted certificates. However, this approach introduces additional overhead during
maintenance to update potentially all ECU certificates.

In any case, online certificate renewal may be preferred, especially if no security breach
has occurred. It also enables timely renewal of expiring certificates. Valid certificates are
used to establish a TLS channel with a backend update server, allowing the installation of
new certificates on the ECUs. More detailed concepts for over-the-air updates have been
presented, for example, in [146, 148].

6.2.3. Performance Analysis

After introducing the security concepts for utilizing TLS in an automotive environment, the
next step is to assess the performance of a standard TLS implementation and determine
its applicability to a typical automotive platform. To accomplish this, we have established
an evaluation environment to measure the performance and subsequently compare our
findings with the requirements outlined in Section 6.2.1.
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In the following sections, we present our testbed, which has been specifically designed for
this evaluation. We then proceed to showcase the performance measurements, focusing
on comparing various cryptographic algorithms. Finally, we discuss the outcomes of our
evaluation, explicitly examining the handshake and data transmission aspects of TLS
between two ECUs.

Evaluation Environment

The evaluation environment utilized for our tests comprises two automotive development
boards equipped with a TriCore TC297T?. This state-of-the-art automotive ECU features
three cores, each operating at a clock speed of 300MHz. The platform is equipped with
384KB of EEPROM, 8MB of Flash, 728KB of RAM, and an Ethernet interface capable
of supporting speeds up to 100 Mbit/s. The TriCore TC297T is commonly employed in
engine control units, electric power steering (EPS) systems, domain controllers, and ADAS.
It represents a typical middle-class system from the latest generation and is expected to
be utilized in smaller ECUs in the future.

During our evaluations, we exclusively utilized one core of the development board, en-
suring that there is ample computational power available to handle the safety-critical
functions of the ECU when it is installed in a vehicle.

We established a connection between the two development boards using a 1000 Mbit/s
Ethernet switch to eliminate the connection as a potential bottleneck. The switch features
a mirroring port, which enables real-time monitoring of the communication between the
two evaluation systems without interfering with the communication itself. We connected a
control server to this mirroring port to capture and store all messages within the Ethernet
network. The server is responsible for initiating and concluding measurements on the
development boards.

The software stack employed in the evaluation comprises the real-time operating system
ERIKA Enterprise version 2.1.0, integrated with the IwIP TCP/IP stack version 1.4.1. For
TLS implementation, we utilized wolfSSL version 3.9.6, a library specifically designed for
embedded devices that offers a range of cipher suites. To synchronize the clocks between
the boards before each measurement, we employed the PTP. This synchronization ensures

2https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-mic
rocontroller/32-bit-tricore-aurix-tc2xx/aurix-family-tc29xt/sak-tc297t-96f
300n-bc/
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that we can precisely measure the time difference between encryption on one device and
decryption on the other.

Performance Analysis of Cryptographic Algorithms

We conducted the evaluation in two parts: first, analyzing the performance of the cryp-
tographic algorithms themselves, and second, evaluating the performance of TLS. By
separating these two aspects, we can exclude the influence of external code, the operating
system’s scheduling, the delay introduced by the TCP stack, and the communication delay.

In this section, we focus on evaluating asymmetric cryptographic algorithms, which are
crucial for an authenticated TLS handshake during the initialization of communication.
Subsequently, we analyze the data transfer, which employs symmetric encryption and
authentication mechanisms.

Asymmetric Algorithms To evaluate the performance of asymmetric algorithms, we
selected RSA and the Elliptic Curve Digital Signature Algorithm (ECDSA) (P256), both
specified in TLS 1.2 for signing and verification during the TLS handshake. Following the
recommendations by [11], we chose a key length of 3072 bits for RSA and 256 bits for
ECDSA.

The execution times of the development board for generating a signature and performing
verification are displayed in Figure 6.3. RSA can generate signatures within a maximum
time of 1.353 seconds in 100 tries, which is relatively slow. However, it exhibits very
fast verification, taking only 34 milliseconds in the worst-case measurement. On the
other hand, ECDSA performs significantly better in signing data, with an average time of
177 milliseconds in the worst-case scenario. Unfortunately, the verification process takes
around 345 milliseconds, which is approximately ten times longer than RSA.

Both signing and verification are necessary to establish a TLS channel between two
components. When both operations are required, we recommend using ECDSA over
RSA. ECDSA offers advantages such as smaller key sizes and faster execution. However,
neither algorithm appears promising for establishing a TLS channel when data needs to be
transmitted since the cryptographic functions themselves cannot be executed in under 0.5
seconds. This issue is further discussed in Section 6.2.4. As a result, the performance of
symmetric encryption and authentication mechanisms becomes more critical, considering
that the TLS handshake can occur in advance.
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Figure 6.3.: Execution Speed of Asymmetric Algorithms

Symmetric Algorithms Unlike asymmetric cryptographic algorithms, symmetric ones
perform much faster, making them the go-to for data transportation once a connection
is established. Our comprehensive evaluation focuses on assessing the speed of data
encryption and authentication on our embedded system. To accomplish an adequate com-
parison, we test various encryption algorithms combined with authentication procedures
and measure the achievable throughput. The results are presented in Figure 6.4.

For our evaluation, we selected commonly used combinations of hash functions, including
SHA-1 and SHA-256, and encryption algorithms, namely 3DES, AES in CBC mode, and
AES in GCM mode. Our findings indicate that 3DES is the slowest algorithm, and SHA-256
reduces the throughput more significantly than SHA-1. As expected, AES encryption
demonstrates faster performance with shorter keys, as 256-bit encryption requires more
cycles for encryption compared to AES with a 128-bit key. Additionally; it is interesting
to note that GCM mode is slower than CBC, despite CBC mode being combined with a
hash-based MAC function.

Furthermore, we explored the throughput achievable with different stream ciphers. The
implementations that were provided included ChaCha, Rabbit, and HC-128 combined
with Poly1305. These stream ciphers easily outperform the block ciphers quite easily.
For instance, ChaCha20 achieves a practical throughput of 20.02 MBit/s, while HC-128
combined with Poly1305 achieves an even higher throughput of 43.75 MBit/s. These
results underscore that while encryption does introduce a noticeable bandwidth overhead,
it remains viable for real-world scenarios, as outlined in Section 6.2.1, where a maximum
throughput of 25.1 MBit/s is required.

95



3DES + SHA-256

3DES + SHA |

AES GCM 256 bit

AES GCM 128 bit |

AES CBC 256 bit + SHA-256

AES CBC 128 bit + SHA-256

AES CBC 256 bit + SHA

AES CBC 128 bit + SHA

ChaCha20 256 bit + Poly1305 |}

Rabbit 128 bit + Poly1305 -|fZ i

HC-128 + Poly1305 —|[fiiiiisiiisiiisiriieaieiiiiiiieeioaiiiaiioeioaiieiiieiieiiieiiieg]

MBit/s

Figure 6.4.: Throughput of Symmetric Ciphers

TLS Evaluation

The previous measurements provided a general performance assessment of cryptographic
operations in our evaluation setup. However, factors like the network behavior and
the packet sizes that encryption must handle also influence the performance of a TLS
connection.

To evaluate the performance of TLS in a vehicle environment, we measured the communi-
cation for different message types and compared the results to the requirements defined
in Section 6.2.1. First, we examine the regular handshake process of TLS, followed by an
analysis of the symmetric authenticated and encrypted channel.

Handshake The TLS handshake initiates every communication channel and is responsible
for the key exchange between the communication partners. In this evaluation step, we
measured the duration of different parts of the handshake process. As mentioned in
paragraph 6.2.3, our previous results indicate that elliptic curve cryptography outperforms
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RSA. Therefore, we measured the performance of Elliptic Curve Diffie-Hellman (ECDHE)
combined with ECDSA using a 256-bit key.

For comparison, we also evaluated a handshake with an RSA-signed certificate using a
3072-bit key. Additionally, we focused on handshakes that support perfect forward secrecy,
which adds some computational overhead but enhances security in case a symmetric key
is compromised. The results of our evaluation are presented in Table 6.2.

ECDSA 256 bit | RSA 3072 bit
Handshake Step Time [s] Time [s]
Client Hello 0.0000 0.0000
Server Hello 0.0004 0.0004
Certificate 0.0758 0.0973
Server Key Exchange 0.3535 1.5635
Server Hello Done 0.5022 1.6470
Client Key Exchange 1.1251 1.9969
Change Cipher Spec / Encrypted Handshake 1.1267 1.9982
Change Cipher Spec / Encrypted Handshake 1.2987 2.1695

Table 6.2.: ECDHE Handshake

Table 6.2 presents the duration of a regular handshake using RSA, which takes considerably
longer (2.17 seconds) compared to an ECDSA handshake (1.3 seconds), aligning with
our previous measurements. Another noteworthy observation is that ECDSA handshakes
show minimal performance variation among the 100 generated handshakes, with the
most significant difference being 0.23% from the average result. On the other hand, RSA
handshakes exhibit a more extensive performance spread, reaching 2.97%, albeit still
relatively low.

It is important to note that the fastest handshake recorded still took more than 1.3 seconds
and only involved server authentication. The overall time for a complete handshake,
including client certificate verification, exceeds 2 seconds. Clearly, such a lengthy duration
is impractical for scenarios where information needs to be transferred within milliseconds.
After analyzing the transport channel, we discuss this issue further in ??.

Transport Data transmission in the TLS protocol involves symmetric encryption, which
is significantly faster than the asymmetric encryption used in the handshake phase. Con-
sequently, it has the potential to meet the requirements outlined in Section 6.2.1. To
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evaluate the performance of TLS-encrypted data transmissions, we conducted experiments
with different packet sizes, focusing on throughput and delay. The captured encrypted
messages were obtained from the mirroring port of the switch, timestamped, and de-
crypted to extract the packet payload. We calculated the throughput using the payload size
and timestamps, comparing the results with the requirements specified in Section 6.2.1.

For our experiments, we examined modern AES cipher suites and the streaming cipher
ChaCha20 combined with Poly1305. Additionally, we included two ciphers that solely
use HMAC, which is commonly employed in literature to secure CAN bus messages (see
Section 6.2.5).

Table 6.3.: Throughput in Mbit/s

Datal | Data2 | Data3 | Camera | Audio Video
Requirements 0.016 0.016 0.4 25.1 1.4 11.8
TCP 0.16 0.16 0.40 33.27 38.72 38.72
NULL + SHA 0.16 0.16 0.40 (11.67) | 13.86 13.86
NULL + SHA256 0.16 0.16 0.40 (8.91) 10.26 (10.26)
AES128 + SHA 0.16 0.16 0.40 (5.78) | 6.56 (6.56)
AES128 + SHA256 0.16 0.16 0.40 (4.94) | 5.59 (5.59)
AES256 + SHA 0.16 0.16 0.40 (5.30) | 5.99 (5.99)
AES256 + SHA256 0.16 0.16 0.40 (4.60) | 5.19 (5.19)
AES128 GCM 0.16 0.16 0.40 (4.36) | 4.58 (4.58)
AES256 GCM 0.16 0.16 0.40 (4.05) | 4.28 (4.28)
ChaCha20 + Poly1305 | 0.16 0.16 0.40 (11.57) | 13.09 13.09

The throughput in Mbit/s for each data type with different cipher suites, including a
plain TCP connection for reference, is presented in Table 6.3. We observe that for small
data packets (Control Data 1, Control Data 2, and Control Data 3) with low throughput
requirements, all ciphers can achieve the necessary throughput. However, when larger
data packets need to be transmitted, the throughput becomes a challenge. Without
encryption, both audio and video data can be transmitted at a rate of 38.72 Mbit/s. With
encryption, the throughput is significantly reduced.

The fastest options are the variant with SHA-1-based MAC, reaching 13.86 Mbit/s, and
ChaCha20 combined with Poly1305, achieving 13.09 Mbit/s. AES in CBC mode and AES
in GCM mode prove to be too slow. Unfortunately, none of the cryptographic algorithms
provide sufficient bandwidth to meet the requirement for camera stream data.
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To measure the delay, we recorded timestamps before the encryption commenced is exe-
cuted. After transmitting the message to the second platform, it is decrypted, generating
a second timestamp. The difference between both timestamps represents the latency
caused by communication via TLS. In contrast to previous measurements, latency is not
a concern when transmitting large data packets. Instead, small packets transmitted at
high rates may encounter bottlenecks due to encryption. This is evident in the measured
results presented in Table 6.4.

Table 6.4.: Latency in ms

Datal | Data2 | Data3 | Camera | Audio Video
Requirements 0.1 10 0.5 45 150 150
TCP (0.192) | 0.192 0.213 0.277 0.310 0.310
NULL + SHA (0.319) | 0.319 0.378 1.128 1.791 1.791
NULL + SHA256 (0.419) | 0.419 0.484 1.473 2.353 2.353
AES128 + SHA (0.517) | 0.517 (0.602) | 2.285 3.683 3.683
AES128 + SHA256 (0.635) | 0.635 (0.742) | 2.453 3.982 3.982
AES256 + SHA (0.530) | 0.530 (0.625) | 2.453 3.982 3.982
AES256 + SHA256 (0.653) | 0.653 (0.785) | 2.850 4.467 4.467
AES128 GCM (0.332) | 0.332 0.441 2.952 4.134 4134
AES256 GCM (0.347) | 0.347 0.456 3.147 5.428 5.428
ChaCha20 + Poly1305 (0.251) | 0.251 0.278 1.153 1.889 1.889

Table 6.4 displays the latency in milliseconds for each data type. The communication
scenarios media data, including audio and video, demonstrate negligible latency across
all algorithms. However, Control Data 1 and Control Data 3, which involve significantly
smaller packet sizes and require lower latencies, present challenges. Even plain commu-
nication fails to meet the requirement of 0.1 ms latency for Control Data 1. Except for
AES in CBC mode, all ciphers achieve a latency below 0.5 ms for a packet size of 50 bytes,
as required for Control Data 3. Additionally, it is noteworthy that GCM mode encryption
outperforms encryption with CBC mode combined with a hash algorithm for small data
packets, as the hash algorithm substantially increases the packet size. Conversely, CBC
mode encryption is faster than GCM when dealing with larger messages, as the over-
head added by the hash algorithms becomes less significant. Overall, cipher suites with
ChaCha20 perform best in every scenario.
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6.2.4. Discussion of Measured Results

The measurements conducted in this study reveal that TLS can effectively meet major
requirements even within vehicular environments. The previous section demonstrated
that, in terms of performance, the ChaCha20 + Poly1305 cipher suite exhibits significant
potential and is currently included in the TLS standard. Unlike AES in GCM or CBC
mode, which is sensitive to packet size, the performance of ChaCha20 + Poly1305
remains consistent. Furthermore, this cipher suite ensures confidentiality, in contrast
to NULL+SHA. In this section, we address the remaining issues identified during our
evaluation. Firstly, we explore various approaches for performing handshakes to establish
TLS connections. Subsequently, we examine the performance limitations of encrypted
channels in two specific use cases.

Optimizing the TLS Handshake

The measurements in Section 6.2.3 revealed that the standard handshake procedure
between two embedded devices, including client and server certificate exchange, takes
more than two seconds to complete. In the context of vehicle networks with 50 or more
ECUs, where hundreds of connections need to be established, the initialization time for
each connection becomes a significant concern. Even with the possibility of parallelizing
key exchanges to some extent, the time required to initialize connections for a single ECU
can easily be half a minute or more if the most connected ECU requires 20 connections.
Clearly, it is impractical to have such lengthy handshake procedures during the start of
communication or engine start. Drivers would not be willing to wait a minute or longer
before the engine can start. Therefore, reducing the time required to perform a handshake
is crucial.

One potential solution is using pre-shared keys (PSK), significantly reducing the handshake
time to less than 100 ms. However, it is important to note that key establishment using
pre-shared keys is less secure, as discussed in Section 6.2.2. Another interesting approach
is to combine asymmetric ciphers with pre-shared keys, as proposed in the O-RTT (Zero
Round Trip) TLS protocol [179]. However, the O-RTT construct has potential security
flaws, as highlighted in [57]. To address these issues, TLS 1.3 [152] introduces a set of
recommendations to mitigate replay attacks in 0-RTT, such as ”Single-Use Tickets” and
”Client Hello Recording”, which need to be present to ensure replay protection.

Another avenue to explore is improving the performance of Elliptic Curve Cryptography
(ECQC). Existing literature offers several examples of performance enhancements for ECC,
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such as the work presented in [49], which demonstrates the possibility of achieving a
ten-fold performance increase for ECC in embedded systems compared to other implemen-
tations. By leveraging such improvements, an ECC handshake can become comparable in
speed to the tested pre-shared key implementation. However, it is essential to consider
that the simultaneous establishment of multiple connections consumes bandwidth and
may increase the latency of handshakes.

To address this challenge, we propose a solution inspired by [135], which involves sep-
arating the authentication process from the actual communication. We suggest that
handshakes can be performed during an ECU’s idle time, such as when a vehicle is stopped
or when the vehicle is in the process of pre-heating the interior. During these idle periods,
handshakes can be executed gradually, starting with older session keys. In the event
that the vehicle starts before every connection establishes new session keys, older session
tickets can be stored on the client and server sides. These stored session tickets can be
utilized to resume connections without the need for a handshake. This approach allows
for the renewal of session keys within a reasonable time frame while ensuring that existing
connections can be quickly reestablished for subsequent drives.

By implementing these optimizations and separating the authentication process from the
communication phase, we can significantly reduce the time required for TLS handshakes,
making them more practical and efficient for use within vehicles.

Optimizing Performance of the Encryption Channel

Section 6.2.3 highlights that the use cases "Control Data 1” and "Camera” fail to meet the
required performance criteria.

For the ”"Control Data 1” use case, a latency of 0.1 ms was specified, whereas the fastest
encrypted channel (ChaCha20) requires 0.251 ms. A comparison with plain TCP connec-
tions revealed that even TCP falls short of the required speed (0.192 ms). Interestingly,
when subtracting the TCP overhead from the encrypted connection, it becomes evident
that the encryption and decryption process only takes 0.059 ms. Thus, the majority of
time is consumed by TCP communication rather than the encryption itself. By switching
the communication protocol to UDP, for instance, achieving the desired performance level
and meeting the specified requirements is possible.

The second challenge pertains to the throughput of the camera use case. The desired
throughput is 25.1 Mbit/s, which can be achieved with TCP (up to 33.27 Mbit/s on our
development platform). However, ChaCha20 falls short, reaching only 11.57 Mbit/s. Even
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without considering the limitations of the transport channel, ChaCha20 can only reach
a maximum throughput of 20.02 Mbit/s. To meet the target throughput, it is necessary
to employ faster cipher streams like HC-128 or Rabbit, which are not currently part of
TLS. With HC-128, throughputs of 43.75 Mbit/s (without the TCP communication) can
be achieved. Additionally, enhancing processor performance by utilizing multiple CPU
cores can lead to faster connections, as our measurements were conducted on a single
core.

By considering alternative protocols and exploring faster cipher streams, along with
optimizing CPU utilization, the performance issues encountered in the "Control Data 1”
and “Camera” use cases can be addressed.

6.2.5. Related Work on Securing Automotive Ethernet

Security in in-vehicle networks has been extensively studied in both literature and stan-
dardization efforts. In this section, we provide an overview of previous work on vehicle
network security, which has often focused on addressing the limitations of CAN bus
systems.

Many studies on secure communication in vehicle networks emphasize the importance
of authenticated encryption, achieved by sending a MAC with or after the messages.
These have been extensively discussed in Section 5.1.2 and are not iterated here again.
Most trade security for the ability to fit into small CAN packages and focus solemnly on
authenticity. In contrast, TLS in Automotive Ethernet offers a state-of-the-art security
level.

Key distribution has also been a topic of discussion in in-vehicle network security. Some
proposals introduced additional devices dedicated to key distribution or firmware integrity
monitoring tasks. While TLS introduces overhead in ECU communication and consumes
more computational power, it provides confidentiality through encryption algorithms and
authenticity through a public key infrastructure.

Schulze et al. [163] suggested a Data Management System (DMS), a central data storage
system that receives data from various ECUs instead of directly communicating with ECUs.
The DMS enforces access control for reading or updating data on this central device,
along with ensuring data integrity. It also allows for protected storage in the event of an
accident.
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Groll and Ruland [64] proposed the concept of grouping ECUs into trusted groups, where
ECUs within the same group share a symmetric key. Key management is performed by a
Key Distribution Centre (KDC) within the vehicle network. The KDC distributes symmetric
keys to each ECU, and with signed Access Control Lists (ACLs), each ECU can prove its
membership in trusted groups to the KDC. Asymmetric encryption between the ECU and
KDC protects key distribution for trusted group keys.

Oguma et al. [139] suggested adding integrity validation of ECU software through hash
functions. Symmetric key exchange for ECU communication encryption is only performed
if the validation of hash values is successful. Their architecture involves a central ECU
that attests to the correct software state of every ECU, maintaining a list of all hash values.
Validated ECUs receive symmetric keys via a Key Predistribution System (KPS) and can
encrypt and sign messages using these keys. Each message includes replay protection and
proof of ECU integrity.

Wolf et al. [197] presented a similar approach to enhance communication security in
a vehicle network. In their architecture, each ECU is required to authenticate itself to
a gateway using a certificate. The gateway distributes symmetric encryption keys to
authenticated ECUs, and this key is shared within the local network. The key is used to
encrypt and authenticate each message in the local domain.

In the Internet of Things (IoT) context, Raza et al. [151] suggested using Internet Protocol
Security (IPsec) to provide authentication, encryption, and integrity checks. Several
studies have also proposed secure communication solutions for IoT. Capossele et al. [30]
presented a framework that optimized DTLS for low-end devices, considering constraints
such as small code size and minimal power consumption.

6.3. Secure Service Oriented Automotive Communication

In the previous section, we focused on the applicability of TLS in static communication
scenarios typical for classic vehicles. However, introducing Automotive Ethernet and IP in
vehicles enables dynamic and service-oriented communication with efficient bandwidth
utilization.

One prominent middleware solution for service-oriented communication in automotive
systems is the Scalable service-Oriented MiddlewarE over IP (SOME/IP), which supports
remote procedure calls, event notifications, and serialization/wire format (as introduced
in Section 2.2.1). Developed specifically to meet automotive requirements, such as
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integration in AUTOSAR and fast response times, SOME/IP can be utilized by ECUs of
different sizes and operating systems. ECUs can announce offered services as servers or
make use of services as clients through SOME/IP.

Unfortunately, the SOME/IP specification does not incorporate any security mechanisms.
As a result, it is often combined with link-layer security protocols like Media Access Control
Security (MACsec) or AUTOSAR SecOC. In this section, we conduct a formal security
analysis of SOME/IP using the Tamarin prover® to investigate its security implications,
particularly focusing on MitM attacks. We discover these attacks are feasible even when link
layer security protocols are in use if an attacker compromises a single ECU in the vehicle
(as described in our attacker model in Section 3.3). The MitM attack allows the intruder
to impersonate a SOME/IP server and a client, redirecting the communication through
the attacker. To validate our findings, we implement these attacks and successfully target
the open-source reference implementation vsomeip [18] and the automotive development
and testing tool CANoe [63].

To address the security vulnerabilities introduced by the service discovery of SOME/IP,
we propose two protocol extensions that ensure a protected service discovery process and
secure subsequent data transmissions. Our solutions enable authorization and authentica-
tion for SOME/IP services. The first approach utilizes classic asymmetric cryptography;,
employing certificates, digital signatures, and Diffie-Hellman key exchange to establish
symmetric keys that protect the subsequent SOME/IP communication. The second pro-
tocol extension is specifically designed for resource-constrained embedded devices and
leverages efficient symmetric cryptography. However, an additional authorization server
(AS) is required within the E/E architecture. Both approaches mitigate the impact of an
attack resulting from a compromised ECU by securing service provisioning and usage.
We use the Tamarin prover to formally verify the security properties of both proposed
protocol extensions and evaluate their performance and bandwidth overhead.

This section is structured as follows: In Section 6.3.1, we discuss the possible security
mechanisms that can be implemented in a vehicle network. In In Section 6.3.2, we review
related work on securing SOME/IP and other service-oriented communication protocols.
An overview of SOME/IP is provided in Section 2.2.1. We introduce our formal security
analysis approach in Section 6.3.3, which we utilize to identify the MitM attacks described
in Section 6.3.4. The implementation and evaluation of these attacks are described in
Section 6.3.5. In Section 6.3.6, we present our two security extensions for SOME/IP,
detailing their formal analysis and practical evaluation.

*https://tamarin-prover.github.io/
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6.3.1. Network Security Assumptions

Since SOME/IP lacks inherent security mechanismes, it is vulnerable to attacks. However,
to analyze SOME/IP under realistic conditions, we assume the presence of network security
protocols such as MACsec [79, 80], the previously discussed TLS, or AUTOSAR’s SecOC [8].
Consequently, ECUs only accept messages from other ECUs that can be authenticated.

MACsec, standardized as IEEE 802.1AE, is utilized to secure layer 2 Ethernet networks.
It provides data integrity, data origin authentication, and optional data confidentiality.
The default cipher suite is GCM-AES-128, which employs AES in Galois/Counter Mode
with a 128-bit key. Additionally, GCM-AES-256, utilizing a 256-bit key, can be selected.
MACsec Key Agreement (MKA), defined in IEEE 802.1X-2010, facilitates key establishment
between nodes through a key server. MACsec has been proposed as a security measure
for Automotive Ethernet networks, as discussed in [33] and [165].

SecOC, standardized in AUTOSAR, ensures the security of messages transmitted over
an automotive communication bus. SecOC guarantees data integrity and data origin
authentication by appending a truncated MAC and a freshness value to each message.

6.3.2. Related Work on Securing Service-oriented Communication

In the context of in-vehicle networks utilizing classical automotive bus systems like CAN,
complex MitM attacks were not considered relevant due to the necessity of routing in a bus
system. Previous research on in-vehicle attacks primarily focused on replay or injection
attacks on CAN and other bus systems. These attacks have been introduced in Section 3.3.

Several approaches for secure in-vehicle communication have been given in the literature.
AUTOSAR standardizes SecOC [8] for securing CAN communication using symmetric
cryptography. The security of SecOC has been formally analyzed by us in [110] using the
Tamarin prover. With the increasing computing power and higher bandwidth available,
asymmetric cryptography can also be employed. TLS, which is part of both AUTOSAR’s
classic and adaptive platforms, is one example of this. The protocol has been suggested
first by us in [206] as discussed in Section 6.2 for vehicle networks. IPsec is supported
by the adaptive platform as well. Formal analyses using tools like Tamarin [38] and
ProVerif [15] have been conducted on TLS 1.3. Tamarin has also been utilized to analyze
V2X revocation protocols [194] and an electric vehicle charging protocol [115].

In classical Ethernet networks, MitM attacks are well-discussed. Protocols such as Address
Resolution Protocol (ARP), Spanning Tree Protocol (STP), Dynamic Host Configuration
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Protocol (DHCP), and Domain Name System (DNS) are vulnerable to MitM attacks,
allowing attackers to gain a MitM position and perform further malicious actions such
as message redirection, modification, or eavesdropping. Countermeasures like MACsec,
IPsec, and TLS have been extensively studied in the literature, as shown in [103].

Securing SOME/IP is discussed in [108], proposing a central entity for key material
distribution using (D)TLS during the event group subscription. However, the service
offer and find offer messages are not protected. SOME/IP itself was extended
with a TESLA protocol to allow broadcast communication. Using TESLA with delayed
authentication for broadcast messages, as described in [144], requires modifications to
the SOME/IP process flow and introduces latency that may not be suitable for time-critical
data.

To detect attacks on SOME/IP, Herold et al. introduced an Intrusion Detection System
(IDS) based on Complex Event Processing (CEP) in [76]. This IDS can identify attacks in
the form of malformed packages, protocol violations, and timing issues. However, like
other IDS approaches, it suffers from false positives and false negatives.

Iorio et al. propose a security framework for protecting SOME/IP communications in [84].
They suggest performing individual handshakes between each client and the service-
offering server using certificates and asymmetric cryptography to establish a shared
symmetric key for securing subsequent messages. However, similar to TLS, this approach
introduces overhead due to asymmetric cryptography. Moreover, it is not designed to
broadcast service offer messages. Instead, FindService messages are sent to perform
individual key exchanges.

The discussion on securing service-oriented communication extends to other areas as
well. For instance, in order to secure the Robot Operating System (ROS), the Secure
ROS fork [175] enables secure communication among ROS nodes by establishing an
IPsec connection and restricting service providers and requesters to predefined allowed IP
addresses. By coupling IP addresses and permissions, the idea of a dynamic network with
distributed services over different entities is no longer possible.

6.3.3. Formal Security Analysis Approach

In this section, we present our approach to formally analyze the security of SOME/IP in
combination with a secure channel and our two proposed security extensions for SOME/IP.
We utilize the symbolic model, also known as the Dolev-Yao model, for performing the
security analysis. This model assumes cryptographic primitives to be perfectly secure,
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making it suitable for assessing the composition of these primitives and identifying practical
attacks on protocols (cf. Section 6.3.2).

As SOME/IP lacks inherent security mechanisms, we narrow the capabilities of the attacker
by assuming the use of an underlying authentication protocol like SecOC, TLS, or MACsec.
However, we still consider the possibility of the attacker compromising ECUs as per the
Advanced Remote Attacker proposed in our attacker model (cf. Section 3.3).

To analyze our proposed security extensions, we employ the same powerful Dolev-Yao
attacker model, which assumes complete control over the network, including the ability
to compromise ECUs. This allows us to thoroughly evaluate the effectiveness of our
extensions under worst-case scenarios.

Security Properties in the Symbolic Model

In our analysis, we focus on authentication to prevent unauthorized manipulation of
SOME/IP communication, particularly in the context of MitM attacks. To assess authenti-
cation, we employ the authentication properties defined by Lowe [119], which form a
hierarchy ranging from the relatively weak aliveness property to the more robust injective
agreement property.

The aliveness property, applied to a message authentication protocol, ensures that when
a message is received and accepted by a protocol entity, it can be inferred that the
entity presumed to be the sender had previously sent a message. However, the received
message does not have to be identical to the original message. This property verifies the
"aliveness” of the sender, confirming its previous engagement in the same protocol with
the corresponding role.

We utilize the injective agreement property to verify our proposed security extensions (cf.
Section 6.3.6). This property mandates that when a message is received and accepted,
an identical message has been previously sent to the recipient by the claimed sender.
Additionally, the recipient can only accept the message once, making the message replay by
the attacker infeasible. Thus, the injective agreement serves as an effective countermeasure
against MitM attacks.

While injective agreement is a strong authentication property, it does not directly account for
broadcast communication patterns. For protocols that involve broadcast communication
in a shared-key setting, such as SecOC (analyzed by Lauser et al. [110]), an adaptation
called a One-time group agreement is proposed. If the property is fulfilled, a message
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that is received and accepted was sent by a legitimate sender before. Furthermore, the
message is accepted only once by each recipient. Although slightly weaker than injective
agreement, as it does not verify recipient intent or individual senders, it is suitable for
analyzing broadcast communication scenarios and provides reasonable guarantees even
in the presence of compromised protocol entities.

In addition, we enforce syntactic secrecy for the secrets used within our proposed extensions.
This property ensures no valid traces in the model where the attacker learns the secret.
Furthermore, forward secrecy extends the previous requirement. It ensures that even if the
long-term credentials of one or more involved entities are compromised after the protocol
runs, the session secrets remain unknown to the attacker.

We utilize the well-established Tamarin prover in the symbolic model to facilitate our
formal analysis in Section 5.2.1. This powerful tool automatically proves security properties
based on a model of the protocol for an unbounded number of entities or generates a
counterexample.

6.3.4. SOME/IP Analysis and Attacks

We assume some secure communication channel is in place to protect SOME/IP. To
analyze the security of SOME/IP we use the Tamarin prover. The complete formal model
is given in Appendix A.2.1.

We focus especially on the service discovery messages, which are assumed to be secured
via group authenticated channels with replay and integrity protection. In the absence of
compromised legitimate ECUs, we can establish strong authentication properties, including
One-time group agreement. Under this assumption, the attacker is unable to inject valid
OfferService messages.

However, message authentication is no longer guaranteed when considering a stronger
attacker capable of compromising an ECU, even with the relatively weak aliveness property,
which is implied by all other authentication properties we consider (cf. Section 6.3.3). We
define the aliveness property with respect to OfferService as follows:

Definition 1 (Aliveness w.r.t. OfferService). For an honest server S and an honest
client C, we require that whenever C accepts an Of ferService message m as coming from

S, S has previously been active.

In Tamarin’s syntax, the lemma representing this property is as follows:
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lemma AlivenessOfferService:

7”7 All server client nonce #i.

E _C ReceiveOfferService(client ,server ,nonce) @i
=> (Ex #j. E_S_Created(server) @j)

| (Ex id #r. E_Corrupted(id) @r

& Honest(id) @i) ”

Here, E_C_ReceiveOfferService represents the event of the client receiving an
OfferService message, supposedly from the server. E_S_Created denotes the event
of the server being created by a rule, indicating its previous activity. Other lemmas use
the nonce parameter to differentiate between individual Of ferService messages. The
last two lines ensure that neither the server nor the client has been compromised.

The aliveness property fails to hold because the attacker has the ability to forge messages
from any Service ID. In SOME/IP, there is no mechanism that associates the Service ID
within an OfferService message with its legitimate sender. Similarly, the Client ID
used in service requests is not bound to a specific client. Therefore, when sending a
request from a compromised ECU, the attacker can use any Client ID of their choice.

By exploiting these two vulnerabilities, the attacker can execute a MitM attack with
minimal prior knowledge of the system. In the following section, we provide a description
of these practical MitM attacks that we derived from our formal analysis.

Copycat Attack on the Service Offer

The general idea of the copycat attack is that the attacker A offers a service as soon as
a regular server S broadcasts its service offer message with the endpoint option of the
attacker A.

We explain this attack using an example scenario (illustrated in Figure 6.5). Initially, the
legitimate server S offers a service by sending OfferService(0x1234, 0x5678) with
Service ID 0x1234, Instance ID 0x5678, and endpoint option with its IP address and port
Endpoint(160.0.0.2:30509). As soon as attacker A receives this message, she sends
an identical service offer but with her own endpoint Endpoint(10.0.6.4:30510).
Typically, a client C' would receive both service offers, as the attacker cannot influence
lower-layer communication. The client C' may choose the attacker A as the service provider
for sending requests. Consequently, A can forward these requests to the original server S
and relay the responses from S back to C'. In this MitM position, A can carry out additional
attacks such as message manipulation or selective message dropping.
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Figure 6.5.: Copycat Attack on the Service Offer

The presence of this attack in our Tamarin model can be demonstrated by a simple
verification. For this verification, we try to prove that whenever a client receives a response
with generated random data, unknown to the attacker before the send operation, from
a server, then the response is sent by the server to the correct client endpoint. Tamarin
generates an attack trace that corresponds to the described attack for this verification
attempt.

In practice, the copycat attack has several limitations from the attacker’s perspective.
Firstly, a client may already be connected to the legitimate server and not switch to
another server. Secondly, even if the client is open to changing service providers, there is
no guarantee that the client will select the attacker as the service provider. This attack
has a fundamental problem depending on the implementation because the client will
always receive the service offer from the original server first and the attacker’s service
offer second. Furthermore, this approach conflicts with the SOME/IP specification, which
requires unique SOME/IP service instances. Therefore, the attack could potentially be
detected by an Intrusion Detection System (IDS) could potentially detect the attack.
However, as our implementation and evaluation have demonstrated (cf. Section 6.3.5),
regular servers simply ignore such messages.

As an alternative, the attacker could try an alternate Instance ID for the same Service
ID. If the client accepts service instances other than the original one, it may choose the
attacker as the service provider. However, there is still no guarantee that the client will
select the attacker as the service instance. Additionally, the attacker needs knowledge of
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the valid Instance IDs accepted by the client, assuming that the client does not accept all
Instance IDs.

In cases where load balancing options are used (cf. Section 2.2.1), the attacker may send
a service offer with the highest priority and weight option. If no other service instance
with the highest priority and weight option is available, the client may choose the attacker.
Of course, multiple honest entities may have the highest priority and weight, leaving the
attacker at least with a chance of being picked.

De-association Attack on the Service Offer

To address the limitations of the copycat attack, we have enhanced the attack by deceiving
clients C' into believing that the legitimate server S no longer offers the requested service.
The attacker A accomplishes this by sending an additional unicast message to C' to de-
associate C' from S. This message contains a StopOffer with the endpoint option of
S.

An exemplary attack is illustrated in Figure 6.6. The communication begins with .S send-
ing an OfferService(0x1234, 0x5678) with Endpoint(10.0.0.2:30509). In
response, A sends a unicast StopOffer (0x1234, 0x5678) message to C, containing
Endpoint(10.0.0.2:30509). This leads C' to believe that S no longer offers the ser-
vice. Similar to the copycat attack, A offers the same service herself in order to establish
the MitM position.

Tamarin can generate this attack by further restricting the lemma mentioned in the
previous section to cases where the client already knew the server beforehand.

The attacker sends the unicast StopOffer messages to the clients. If server S were to
receive such a message as well, it would assume that another server has taken over and
stopped providing the service, potentially for load-balancing reasons. This would prevent
A from gaining a MitM position. The Of ferService message from the attacker can be
sent as a broadcast since S simply ignores this message.

The de-association attack requires attacker A to know which clients are interested in the
service in order to send the unicast StopOffer messages to them. Identifying these
clients poses a challenge for A since A can only eavesdropping on broadcast messages. One
option for her is to listen to broadcast messages to identify clients and their IP addresses,
in particular, the FindService message of SOME/IP reveals this information. The other
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Figure 6.6.: De-association Attack on the Service Offer

option for A is to send the StopOffer message to the entire IP range of the network
(excluding the regular server) to cover all potential clients.

Attack on Publish/Subscribe

Building on the request/response attack discovered with Tamarin, we have developed
an attack on the publish/subscribe communication pattern of SOME/IP, as illustrated in
Figure 6.7.

The attack scenario unfolds as follows: The regular server S sends an initial service offer
message OfferService(0x1234, 0x5678) with Endpoint(10.0.0.2:30509).
After this message, both the client C' and the attacker A subscribe to the service by sending
SubscribeEventgroup(0x1234, ©x5678) messages with their respective endpoint
options (Endpoint(160.0.0.3:3333) for C and Endpoint(10.0.0.4:4444) for
A). The server S acknowledges these subscriptions by sending the acknowledgment
message SubscribeEventgroupACK(0x1234, ©x5678). Furthermore, A quickly
executes one of the attacks on the service offer, misleading C into believing that the attacker
now offers the desired service. This results in C' sending a subscribe event group message
SubscribeEventgroup(0x1234, 0x5678) with Endpoint(10.0.0.4:3334) to
subscribe to A. A sends a StopSubscribeEventgroup(0x1234, ©x5678) message
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Figure 6.7.: Attack on Publish/Subscribe

to S, using C’s endpoint option (Endpoint(10.0.0.3:3333)), effectively unsubscrib-
ing C and preventing S from sending event messages to C. A then sends an acknowl-
edgment SubscribeEventgroupACK(0x1234, 0x5678) to C. C is now in a MitM
position. When S sends event messages Event (0x1234, 0x5678) for its service, these
messages are intercepted by attacker A instead of reaching C. A can then manipulate
these messages before forwarding them to C or choose to drop them entirely. This attack
compromises the integrity and confidentiality of the event messages, as they can be altered
or withheld by attacker A.
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6.3.5. Attack Evaluation

In this section, we provide a brief overview of our attack implementation, as well as the
evaluation process against the libraries vsomeip and CANoe.

Attack Setup

For our first evaluation, we utilized three components: a client, a server offering a service,
and the MitM attacker. Client and server are ARM1176JZF-S boards running Linux
Debian (Kernel 4.19) and vsomeip 3.1.16.1. These components were connected via a
switch and communicated using UDP (or TCP). We also evaluated TCP, which yielded
equivalent results. We leveraged the examples provided with vsomeip as test cases for
request/response and publish/subscribe communication. The server offered a service for
approximately 10 seconds, regularly sending Of ferService messages (at most every
2.5 seconds). After 10 seconds, the server sent a StopOffer message and waited around
10 seconds before repeating the process. The client sent data requests approximately every
second while the service was available. It is important to note that slight variations in
message transmission may occur based on system and network load. The publish/subscribe
example followed a similar pattern, with the client sending a subscribe message as soon
as the service became available. The server then sends events to the subscribed client
every second. The attacker component was implemented using Scapy [16], which already
supports SOME/IP.

In our second setup, we employed a VN5610 Automotive Ethernet interface connected
to a PC running CANoe 9.0.137 [63] with the SOME/IP library. The SOME/IP client
and server were implemented on the PC, while the attacker was implemented in a Linux
virtual machine on another machine. The attacker’s PC and VN5610 were connected via
a switch. The SOME/IP communication was implemented analogously to the vsomeip
implementation. For this experiment, we utilized the same attack implementation as
described in the previous case.

Evaluation of Service Offer Attacks

Both attacks on the service offer procedure, copycat (cf. Section 6.3.4) and de-association
attack (cf. Section 6.3.4), aim to route messages through the attacker. To evaluate the
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effectiveness of these attacks, we conducted experiments using both SOME/IP implemen-
tations (vsomeip and CANoe). We measured the number of response messages that were
sent directly from the server to the client and the number of messages redirected to the
attacker.

The results of our evaluation for both vsomeip and CANoe are presented in Table 6.5. The
table compares three scenarios: no attack, copycat attack, and de-association attack. The
Direct column indicates the number of response messages sent directly from the regular
server to the client, indicating successful communication without any attack. The MitM
column shows the number of response messages that were redirected to the MitM attacker,
indicating a successful attack.

Table 6.5.: Evaluation of Copycat and De-association Attacks

vsomeip CANoe
Direct MitM | Direct MitM
No Attack 458 0 498 0
Copycat 471 0 0 497

De-association 2 473 0 499

In the case of vsomeip, 458 response messages were sent without any attack, averaging 9
to 10 messages during the 10-second sending period. Unsurprisingly, the client received
all messages directly from the original server.

For the copycat attack in vsomeip, a total of 471 messages were sent, but all of them
were sent directly without being redirected to the attacker. This outcome is due to the
implementation’s restriction that only accepts new services with the same Service ID and
a different IP if the time to live (TTL) of the original service has expired. In our example
application, the TTL expiration only occurs after a StopOffer message has been sent.
This behavior prevents the success of the copycat attack. While we discovered a bug
in an older version of vsomeip where the basic attack was successful in overwriting a
ServiceOffer when using UDP, the newer version integrates the TTL check for both
TCP and UDP, making the attack unsuccessful. However, it is important to note that this
check is not part of the specification, and different implementations may still be vulnerable
to the copycat attack.

In contrast, the de-association attack in vsomeip was successful. Out of the total 475
response messages, only two were sent directly from the server to the client, while the
remaining 473 messages were redirected via the attacker. The reason for missed messages
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is the non-deterministic timing of the server’s responses. In rare cases, it was sent before
the StopOffer message of the attacker.

In the case of CANoe, both the copycat and de-association attacks were successful in the
request/response scenario. All messages were redirected to the attacker, indicating that
the CANoe implementation favors the last ServiceOffer, unlike vsomeip. However,
since CANoe is a closed-source implementation, we cannot verify this observation.

Overall, the evaluation demonstrates that the de-association attack is more effective
than the copycat attack in both the vsomeip and CANoe implementations. The de-
association attack successfully redirects the majority of response messages to the attacker,
compromising the communication integrity and confidentiality. On the other hand, the
copycat attack is less effective due to the implementation’s restrictions and the behavior
specified by vsomeip.

Evaluation of Publish/Subscribe Attack

The final attack we presented against the publish/subscribe mechanism can either make
use of the copycat or de-association attack. Table 6.6 presents the results of these attack
scenarios and the case without an attack for both the vsomeip and CANoe implementations.

Table 6.6.: Evaluation of the Attack on Publish / Subscribe

vsomeip CANoe
Direct MITM | Direct MITM
No Attack 556 0 500 0
Copycat 380 556 (499) 499

De-association | 0 (385) (0) 422 | (500) 500

In the vsomeip implementation, our reference test, without any attack, produces 556
event notifications that are sent directly from the server to the client. The evaluation
period was again 1000 seconds, as in the previous experiments.

For the copycat attack in vsomeip, the server generates event messages for a total of
556 events. Out of these 556 events, the server sends all event messages to the attacker.
However, the server also generates additional event messages for some of these events (380
out of 556) and sends them directly to the client. As a result, the client receives some events
twice. This behavior is due to the client’s subscription process, which occurs each time it
receives an Of ferService message from the server. Since the server regularly sends
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OfferService messages, the client subscribes multiple times, leading to duplicated
event messages.

In the case of the de-association attack combined with the copycat attack in vsomeip,
the attack does not work as intended due to an implementation error. The clients ignore
the first 0fferService message after receiving a StopOffer message. To address
this issue, we modified the attack by sending two Of ferService messages after the
StopOffer message. , With this modification, the attack becomes effective. The server
does not remove the client from the notification list and thus sends 385 event messages
directly to the client and 422 event messages to the attacker. The client, however, only
accepts messages from the attacker since the client has already received the StopOffer
message and rejects messages from the server. The total number of received event messages
at the client (422) is lower than in the previous cases (556) due to the additional steps
and time required for the attack to establish the MitM position.

In the CANoe implementation of SOME/IP, both the copycat and de-association at-
tacks are effective in the publish/subscribe scenario. Unlike in vsomeip, the CANoe
implementation server continues to send messages to the client even after receiving a
StopSubscribeEventgroup message from the attacker. However, the client ignores
these messages after receiving the StopOffer message, preventing any further commu-
nication between the server and the client.

Figure 6.8.: CANoe Setup
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6.3.6. Security Extensions

Attacks presented on SOME/IP-SD at the application layer are still possible even when
security mechanisms are deployed at lower layers. An attacker who has compromised
a single ECU, not necessarily a service-offering server, can authenticate as a legitimate
member of the network and perform MitM attacks.

In Section 6.3.2, we discussed related work on securing SOME/IP with an IDS [76],
TLS [108], TESLA [108], and digital signatures with asymmetric cryptography [84]. We
have shown in Section 6.2 that a combination of TLS and digital signatures with asymmetric
cryptography can meet general automotive requirements regarding performance and have
a zero false positive rate to detect potential attacks. These approaches can prevent an
outsider from performing MitM attacks. However, in our attacker model, we also consider
an insider attacker who can authenticate and execute MitM attacks. Additionally, TLS
and the approach proposed in [84] cannot be used for SD broadcast communication.

In the following sections, we propose two security extensions for SOME/IP to prevent or
at least mitigate MitM attacks on SOME/IP-SD by insiders. These extensions restrict the
keys to the services that an ECU is allowed to offer and/or use, thus limiting the impact
of an attacker who has compromised an ECU and obtained the keys.

Secure SOME/IP Service Discovery and Session Establishment using Restricted
Certificates and Digital Signatures (SESO-RC)

In SESO-RC, each ECU is equipped with a private secret key skgpcy and a corresponding
certificate Cert gy, which includes the public key pkgcr. A trusted certification authority
(CA) issues these Certificates, and every ECU stores the public key of the CA to verify the
correctness of other ECUS’ certificates. Each certificate contains additional information
about the services that the ECU is allowed to offer, stop, request, or subscribe to. For
simplicity, we assume that all trusted certificates are preconfigured on all ECUs, and the
hash of a certificate is used as a unique identifier I Dpcy for an ECU. Optionally, an ECU
can send the entire certificate during the handshake, and receivers verify this using the
locally stored trusted root CA certificate. This second approach, however, affects the
performance of the protocol. The preconfigured certificates could be deployed during
production and updated via firmware updates, although the secure update process is
outside the scope of this paper.
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A server sending an Of ferService message attaches an ephemeral-static Diffie-Hellman
(DH) key exchange and signs the whole message with its private key. The symmetric
session key established with DH is subsequently used to calculate a MAC of all following
SOME/IP messages, protecting the authenticity and integrity. A timestamp ensures the
freshness of messages if ECUs are loosely time-synchronized, or a counter could be used
instead.

Figure 6.9 illustrates the SESO-RC approach for request/response communication. A
certificate Clertg is stored on the server S with an access control list of services the server
is allowed to offer, stop, or consume. Certg further contains the server’s public key pkg.
It also stores the corresponding private key skg and the public keys of all clients. A client
stores a certificate Certo containing the public key pkc and a list of services the client
can request. It also stores the corresponding private key sk¢c and the certificates of all
servers, including their respective public keys.
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Figure 6.9.: SESO-RC with Request/Response

In the SESO-RC approach, the server broadcasts a service offer message OS that includes
the usual payload, such as the service ID, instance ID, identifier I Dg, a freshness value f1,
and a DH public key pkspr_s (used by all clients later in the generation of the shared
symmetric keys). This message is signed with the server’s private key skg.

A client that wants to request a service verifies the validity of the signature and checks
the freshness value f;. If the verification is successful, the client generates an ephemeral
DH key pair and includes the public part pkppr_c, a freshness value fo> that depends on
f1, and I D¢ in the service request message Req. This message is signed with the client’s
private key skc.
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Both the client and the server can now calculate the shared symmetric key ks using their
private DH keys and the received public key. Every other client also generates its own
ephemeral DH key pair and uses it with the server’s key (pkspr_s). This mechanism
ensures an individual session symmetric key for every connection. Finally, the server
sends the response message Res, which includes the requested service data, I Dg, and a
freshness value f3. Since the client and the server now possess the shared symmetric key
ksc, this and further messages are secured with a MAC.

This approach ensures that only authorized ECUs can participate in the service discovery
and session establishment process, as they possess the necessary private keys and valid
certificates. By restricting the keys to authorized services, the impact of an attacker who
has compromised an ECU is limited to the services allowed by its certificate.

Figure 6.10 illustrates the application of SESO-RC for publish/subscribe communication in
SOME/IP. In this scenario, the server broadcasts events to all clients C; that are subscribed
to the corresponding service. Since multiple clients are involved, a group key is required
to secure the communication.
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Figure 6.10.: SESO-RC with Publish/Subscribe

The initial steps of the service offer O.S and subscribe eventgroup S F messages are similar
to the request/response scenario. Each client C; has established an individual symmetric
key kgc, with the server.

The server generates a group key kg,up, Which is individually encrypted for each client
using their respective symmetric keys kgc,, to enable secure group communication. The
encrypted group key is then distributed to the clients in the subscribe event group acknowl-
edgment message SEA. The encryption process includes a freshness value to prevent
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replay attacks. Additionally, a MAC is calculated using ksc, and appended to the encrypted
group key to ensure integrity. It is important to note that, for simplicity, we use kg,
for both encryption and MAC in this illustration. In practice, using distinct keys for each
purpose is recommended, such as deriving distinct keys from kgc;.

By using SESO-RC with publish/subscribe, the communication between the server and
the subscribed clients is secured with individual symmetric keys and a group key. This
ensures that only authorized clients can receive and decrypt the events sent by the server.
The use of encryption, freshness values, and MACs provides confidentiality, data integrity,
and protection against replay attacks in the publish/subscribe scenario.

Secure SOME/IP Service Discovery and Session Establishment using an Authorization
Server (SESO-AS)

The SESO-AS approach utilizes very efficient symmetric cryptographic functions to reduce
delays compared to time-consuming asymmetric approaches. The drawback of this variant
is that it requires the authorization server (AS) to be further introduced into the E/E
architecture. In the SESO-AS approach, each ECU is assigned a unique identifier I Dgcy
and a symmetric key kzcp. These values are preconfigured and stored both on the ECU
and the AS. Additionally, the AS maintains information about the services that each ECU
is authorized to offer, stop, request, or subscribe to. A mechanism is deployed to ensure
the freshness of messages, either through loose time synchronization among all ECUs and
the AS or by using a counter value.

The SESO-AS approach relies on the secure operation of the authorization server, since
it acts as a trusted authority that controls and enforces the authorization of services,
providing an additional layer of protection against unauthorized access and malicious
activities. Since the AS is a single point of failure, we assume it is specially protected.
Possible protection mechanisms in place may be a hardware security module for a secure
execution environment for cryptographic functions or integrity protection of the platform
like a secure boot process.

The service discovery process remains similar to the standard SOME/IP-SD. However, now
the ECUs have the additional constraint of only being able to offer, request, or subscribe
to services authorized by the AS. This ensures that compromised ECUs can only offer and
use services within the authorized scope, mitigating the impact of an attacker.

Figure 6.11 illustrates the SESO-AS process for the Of ferService. When a server wants
to send a service offer message OS5, it includes the usual payload (denoted with ...), its
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own identifier I Dg, a freshness value fy, the encrypted session key k., and a MAC to the
AS. The AS verifies the MAC, freshness value fj, and the authorization of the server to
offer the service. If the verification is successful, the AS derives shared symmetric keys
ksc, from kg, for both the server and the authorized clients C; who can use (request or
subscribe to) the service. These keys are individually encrypted for each client C; using
their respective keys k¢, .

Next, the AS broadcasts the service offer message O.S with the usual payload and a new
freshness value f;. In addition, the AS appends individual containers E; to the message
for each legitimate client C;. For example, container £ contains the identifier /D¢, , the
encrypted symmetric key Ency,, (ksc,), and a MAC M ACy,, (OS, Er). When client C;
receives the message, it verifies the MAC, decrypts the symmetric key kgc, using its own
key k¢, , and uses kgc, to secure subsequent messages using a MAC.

Server S AS Client C1

| Eo(IDs, Encyg (kse)), |
; >
OS(...., fo).MACy (OS, Eq)
OS( : , fl), Fq (]Dcl R Enckcl (fl'rgcl )),
M:ACkCl (OS,E1), Ex(IDc, ..

Figure 6.11.: Offer Service with SESO-AS

Security Analysis and Verification

We model the key exchange extending SOME/IP-SD in Tamarin and use its prover to
verify the security of our proposed protection mechanisms. These models are appended
in Section A.2.2 and A.2.3. In contrast to our analysis of SOME/IP, we do not assume
underlying security protocols but allow the attacker full control over the network. We
abstract the freshness values f,, with random nonces.

SESO-RC For SESO-RC, we verify strong authentication of session keys as well as forward-
secrecy of session keys with the following two security properties (cf. Section 6.3.3):
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Definition 2 (Injective-agreement on session keys). For an honest server S and honest client
C, it holds that whenever S establishes a session, apparently with C, then C has previously
established a session, apparently with S, and C and S agree on all parameters of the session,
especially the session key. Moreover, each session established by S corresponds to a unique
session established by C.

Injective agreement not only implies aliveness (cf. Section 7.4) but also protection against
replay and MitM attacks, given that no ECU is authorized to offer and consume a service
at the same time.

Definition 3 (Forward-secrecy of session keys). For an honest server S and honest client C
and a session key k that either of the two parties believes to be a session key shared with the
other party, the attacker cannot learn k even if she compromises the private keys of S or C
later.

SESO-AS We assume for the formal verification, the authorization server AS will only al-
low key exchanges for a specific service between authorized servers and clients. Therefore,
we do not represent different authorization groups within our model. We require injective
agreement on the shared keys between a client and a server kgc, as well as secrecy of the
session keys ks and ksc, . An elementary difference in the security properties between
SESO-AS and SESO-RC is that SESO-RC additionally provides perfect forward-secrecy for
session keys because SESO-AS encrypts session keys always with the same key while
SESO-RC derives a key from DH key exchange. Both properties are verified in Tamarin.

Definition 4 (Injective agreement on shared keys). For an honest server S, honest client C,
and honest authorization server AS, it holds that whenever C receives an Of ferService
message, apparently from S, then S has sent an OfferService message before and the
shared symmetric key ksc received by C' has been correctly derived from the session key kse.
Moreover, each received event by C corresponds to a unique send event by S.

Definition 5 (Secrecy of shared keys). For an honest server S, honest authorization server
AS, and every session key ks, generated by S, the attacker cannot learn k.

In addition, for an honest server S, honest client C, and honest authorization server AS, it
holds that whenever C receives an 0fferService message with a shared symmetric key
ksc, apparently shared with S, the attacker cannot learn kgc.
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Performance Evaluation

In this section, we present the implementation of both solutions as well as evaluate the
performance overhead introduced by SESO-RC and SESO-AS. We compare the performance
of these approaches with ”Secure SOME/IP” [84], the solution [108] is excluded from
this comparison since it does not effectively protect the service discovery messages.

To begin with, we discuss the communication overhead resulting from the increased
message size in the three approaches. We then analyze the impact of the additional data
added to the SOME/IP messages to support the security extensions, including certificates,
signatures, session keys, and other security-related information.

Next, we evaluate the computational overhead of the three approaches during the com-
munication process. This includes the time required for cryptographic operations such as
signature generation and verification, encryption and decryption, and key derivation. By
measuring the execution time of these operations in each approach, we can assess the
computational impact of the security extensions.

Finally, we summarize the performance evaluation of SESO-RC, SESO-AS, and ”Secure
SOME/IP” by considering both the communication overhead and computational overhead.
We provide a comparative analysis of the three approaches, highlighting their strengths and
weaknesses in terms of performance. This evaluation will help assess the feasibility and
suitability of each approach in different scenarios and provide insights into the trade-offs
between the security and performance of the different solutions.

Message Overhead

Regarding message overhead, SESO-RC and SESO-AS introduce additional data to the
SOME/IP messages to support the security extensions.

In SESO-RC, each message includes a freshness value f of 4 bytes. The OfferService
message of the server includes the 32-byte public key for elliptic curve Diffie-Hellman
(ECDH) key exchange (X25519) and the 32-byte SHA-256 hash value of the certificate.
A 64-byte Ed25519 elliptic-curve signature also accompanies the message. Figure 6.12
illustrates the complete message format of the OfferService message in SESO-RC.
The first message (a Request or SubscribeEventgroup) sent by the client has an
identical format. The subsequent messages of the client and server include a 32-byte
HMAC-SHA-512 (truncated to 256 bits) for integrity protection and a 4-byte freshness
value.
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Figure 6.12.: Message Format of Offer Service with SESO-RC

In SESO-AS, each message includes a freshness value f of 4 bytes, along with a set of
encrypted keys for each possible client in the Of ferService message. For encryption and
authentication, an Authenticated Encryption with Associated Data (AEAD) construction
(ChaCha20-Poly1305) is used since we found this to be a performant cipher in Section 6.2.4.
The required nonce for the AEAD construction is the freshness value of the message. An
entry in the key set consists of a 1-byte identifier of the client (1 D¢,), the 32-byte encrypted
key ksc;, and a 16-byte AEAD authentication tag. The authentication tag includes the
SOME/IP Of ferService message as associated data. The complete message format is
depicted in Figure 6.13. Similar to SESO-RC, subsequent messages in SESO-AS include a
32-byte HMAC-SHA-512 (truncated to 256 bits) and a 4-byte freshness value.

Set of keys for legitimate receivers

A

SD

msg

f [IDc,| Enckg, (ksc;)| Tagre, | IDc;

4b 1b 32b 16 b 1b

Figure 6.13.: Message Format of Offer Service with SESO-AS

A regular SOME/IP message has an overhead of 36 bytes in both SESO-RC and SESO-
AS. However, the key exchange handshake differs depending on the number of clients.
Table 6.7 provides a comparison of the different approaches for varying numbers of clients,
indicating the number of additional messages (msg) and the total number of additional
bytes.

SESO-AS introduces a message overhead of 53 bytes in the service offer messages sent to
the AS, along with an additional OfferService message of 4 + 49 - ¢ bytes, where c is
the number of legitimate clients. This additional message is broadcast to every client in
the network.

SESO-RC does not introduce additional messages for the key exchange since the service
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Table 6.7.: Overhead of Cryptographic Key Exchange
Number of Clients
1 2 4 8 16

) msg 1 1 1 1 1
SESO-AS bytes | 106 155 253 449 841
SESO-RC msg 0 0 0 0 0

bytes | 264 396 660 1188 2244
msg | 0 2 4 8 16
bytes | 180 360 720 1440 2880

”Secure SOME/IP” [84]

offer message is directly broadcast to all potential clients. Both the service offer and the
first request have an overhead of 132 bytes. An additional 132 bytes of overhead is added
for each additional client requesting the service.

For ”Secure SOME/IP” [84], which uses a unicast handshake between each client and the
server, we replaced RSA with Ed25519 EC signatures for a fair comparison. The client
part of the handshake includes 36 bytes of the certificate hash along with a freshness
value. The server adds 144 bytes, which contain the asymmetrically encrypted and signed
group key. Both messages are sent for each additional client.

When comparing the three approaches regarding message overhead, SESO-RC introduces
the fewest additional messages, while Secure SOME/IP introduces the most messages.
This is the case due to the fact that Secure SOME/IP loses the ability to broadcast ser-
vice discovery messages. SESO-AS has the most negligible overhead in message size,
particularly when used with multiple clients.

CPU Overhead To evaluate the CPU overhead introduced by the security extensions, we
implemented SESO-RC, SESO-AS, and Secure SOME/IP on ARMv6 boards (ARM1176JZF-S
at 700MHz) connected via a 100 MBit/s switch. We utilized the libsodium* cryptography
library for the implementation.

The latency evaluation was performed by measuring the additional number of CPU instruc-
tions using the perf_events feature of the Linux Kernel. The measurements did not
include network transfer time or the interpretation of SOME/IP messages. For SESO-RC
and Secure SOME/IP, we evaluated both the client and server sides, while we additionally

*https://github.com/jedisct1/libsodium
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evaluated the AS side for SESO-AS. We conducted 1000 measurements for different num-
bers of clients and calculated the arithmetic mean and mean absolute deviation (MAD) to
assess the measurement error. The results are presented in Figure 6.14.
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Figure 6.14.: Additional CPU Instructions for Cryptography

SESO-AS clients and servers exhibited a very low overhead of only 7,032 instructions
(MAD: 13.1) and 9,182 instructions (MAD: 225.2), respectively, irrespective of the number
of clients. The authorization server required a maximum of 153,937 instructions (MAD:
3,615.6) when encrypting a broadcast message for 16 clients. As expected, SESO-AS
outperformed SESO-RC, which required an additional 4,134,880 instructions (MAD:
22,059.0) for the server and 4,134,550 instructions (MAD: 21,707.0) for the client.

Secure SOME/IP was faster (2,939,572 instructions, MAD: 15,371.1) compared to SESO-
RC on the client side. The signature verification of every client in SESO-RC resulted in
significantly higher CPU usage for the server compared to Secure SOME/IP, which did not
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verify the clients. Both SESO-RC and Secure SOME/IP experienced an equal increase in
CPU usage with a larger number of clients, while SESO-AS exhibited a moderate increase.

It is important to note that Secure SOME/IP requires additional time for the unicast
communication of service offers, which adds to the overall delay. In an established system,
previously exchanged symmetric keys could be utilized to validate client requests for new
keys, significantly improving server performance.

Summary SESO-AS outperforms the other approaches in terms of latency and message
overhead. However, it introduces a single point of failure regarding security and safety.
Moreover, integrating new devices into the E/E system becomes more complex since the
permission list of the authorization server needs to be updated, and keys need to be
exchanged in advance.

SESO-RC addresses these issues by employing certificates that can be easily distributed,
and the distributed authorization can be seamlessly integrated into the SOME/IP protocol.
SESO-AS requires a minor protocol change to send all service discovery messages to the
authorization server. Both approaches support broadcast service discovery, which Secure
SOME/IP does not.

With sufficient processing power, SESO-RC is the preferred option as it avoids a single
point of failure, provides forward secrecy, and simplifies the distribution of keys and
permissions through certificates. Hardware-based cryptography accelerators may enhance
performance for low-powered devices but at an additional cost. Alternatively, SESO-AS
can be employed with ECUs with limited computational power. However, ensuring the
security of the authorization server becomes crucial for the overall network security.

All three approaches effectively protect against the identified MitM attacks. Moreover,
SESO-RC and SESO-AS provide the ability to establish individual secure channels between
clients and servers, as well as secure broadcast channels for subscriptions.

6.4. Summary on Automotive Ethernet Security

In conclusion, the proposed communication strategy, assuming the security assumptions
of TLS hold, provides guarantees of authenticity through the handshake, as well as confi-
dentiality and integrity through channel encryption and authentication codes. Through
our investigation of real-world performance requirements for TLS in in-vehicle networks,
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we have found that these requirements can generally be met using typical automotive
hardware without the need for a dedicated encryption hardware module. Regarding
performance, we recommend using ChaCha20 + Poly1305, as it satisfies most of the
requirements. However, we have also explored more experimental algorithms, such as
HC-128 and Rabbit, which promise improving throughput and latency.

Additionally, we have presented a trust architecture based on a public-key infrastructure,
enabling the exchange of ECUs between vehicles and facilitating interactions between
vehicles, backends, and diagnostic devices. We have also discussed mechanisms to address
the limitations of automotive systems, such as the lack of a trusted time source and the
limited time available to establish connections with key exchanges.

However, it is important to note that this does not cover an essential aspect of Automotive
Ethernet communication: service-oriented communication in vehicles. After conducting
a comprehensive analysis of SOME/IP using Tamarin, we have identified three distinct
types of MitM attacks that can be executed on SOME/IP, even when link-layer security
mechanisms are in place. These attacks include the copycat attack and the de-association
attack on the service offer, which allow an attacker to gain a MitM position in request/re-
sponse communication. The third attack targets publish/subscribe communication and
can be executed by combining the first two attacks.

Our implementation and evaluation of these attacks on two real-world SOME/IP libraries,
vsomeip and CANoe, have demonstrated their effectiveness. In the case of vsomeip, the de-
association attack proves to be highly successful, as it redirects almost all messages through
the MitM attacker. When attacking publish/subscribe communication in combination with
the copycat attack using vsomeip, over two-thirds of the messages are routed through the
attacker. By incorporating the adapted de-association attack, all messages received by
the client are sent through the attacker, albeit with some loss of event messages from the
server. On the other hand, CANoe is susceptible to both attacks in request/response and
publish/subscribe scenarios, with the regular server continuing to send messages to the
client in the publish/subscribe case.

We propose two security extensions to counteract these attacks: Secure SOME/IP service
discovery and session establishment using restricted certificates and digital signatures
(SESO-RC) and Secure SOME/IP service discovery and session establishment using an
authorization server (SESO-AS). We have conducted a Tamarin analysis to evaluate the
security of these extensions, and our implementation supports their practical feasibility.

SESO-RC is particularly suitable for scenarios where ECUs have sufficient resources for
asymmetric cryptography. Notably, SESO-RC allows for the continued use of broadcast
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communication for service discovery, distinguishing it from related work. Alternatively,
SESO-AS offers a viable solution for resource-constrained ECUs by relying solely on efficient
symmetric cryptography. However, it introduces an additional component in the form of
the authorization server (AS).

By leveraging these security extensions, automotive systems employing SOME/IP can be
better protected against the identified MitM attacks. The combination of formal analysis,
practical evaluation, and the proposal of security extensions provides a comprehensive
approach to enhancing the security of SOME/IP communication.

Regarding the attack path feasibility for an Advanced Remote Attacker causing unintended
driving behavior after taking over the TCU in our model, SESO-AS or SESO-RC decreases
the probability of attacks against service-oriented communication. ECUs can no longer
send legitimate messages of services they do not originally use unless the attacker breaks
the cryptographic key or finds an exploit for an ECU with a direct connection to a safety-
critical system. This increases the attack feasibility to a very low rating.
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7. Improved Security and Privacy for
Charging Systems

There are already over 16 million fully battery-powered or plug-in hybrid EVs world-
wide [61], and their penetration in suburban and rural areas is expected in the near
future [180]. Many private households install CSs to recharge EV batteries at home.

These vehicles introduced a new communication channel for the charging process to
exchange charging schedules and parameters as well as the authentication of charging
processes via PnC. Furthermore, use cases like bidirectional charging emerge, allowing
grid operators to use the batteries to store power in the vehicle battery and use this energy
later when not much power is produced. The risk assessment in Chapter 4 indicates a
high risk due to the catastrophic effects of a blackout but also privacy risks.

For these reasons, we first discuss possible attacks against the charging infrastructure in
this chapter, subsequently resulting in attacks against the power grid, which is based on
our paper [212], where I contributed the attacks on EVs and CSs from a theoretical and
practical perspective, including the implementation of a MitM box to attack communication
between vehicle and charging stations. Additionally, we investigate the privacy impacts
of the charging communication and suggest an extension for ISO 15118 to prevent the
leakage of personal data by using DAA. This part of the chapter is based on [204], where
I contributed the analysis of the different charging protocols for personal data, designed
the privacy-preserving protocol, and analyzed its security.

These publications lead to multiple impacts. First, we had discussions with Electrify
America, and a German OEM regarding the security and privacy of the current charging
infrastructure that finally led to multiple industry projects with this OEM. Furthermore,
we participated in the CharIN Cybersecurity Workshop as well as being invited as an
expert to a workshop of the Nationale Leitstelle Ladeinfrastruktur by the BMBY, to the
Ladenburger Diskurs, and the Dialogkreis VDA-Datenschutzaufsichtsbehorden.

131



This chapter is structured as follows: First, we provide an introduction to the fundamentals
of DAA, later used in the privacy-preserving solution. Following this, we investigate
related work concerning grid and V2G attacks. In the subsequent sections, we evaluate
potential attack vectors and conduct a comprehensive security and privacy analysis of
EV charging. Additionally, we present various attacks on charging communication and
offer practical assessments of these attacks against real-world CS. For each attack, we
provide an assessment of its practicality and offer mitigation strategies to address the
identified vulnerabilities. To conclude, we present our privacy enhancement approach
for the charging process, encompassing a requirement analysis and a detailed security
discussion.

7.1. Basics on Direct Anonymous Attestation (DAA)

Direct Anonymous Attestation (DAA) plays a critical role in our proposed privacy-enhanced
charging solution. We provide a brief introduction to DAA in this section.

DAA is a remote authentication and attestation protocol used in a trusted computer system
to preserve the privacy of the system’s user. The Trusted Computing Group (TCG) has
adopted this protocol for use with the TPM. Attestation allows a third party to verify that
the software on a system has not been altered and is in a trustworthy state.

Before adopting DAA, the TCG specified a Privacy-Certified Attestation System (PCAS)
with Version 1.2 of the TPM [176], which is also standardized in ISO/IEC 11889 [85]. In
Privacy-CA solution (PCAS), a Privacy-CA (Certification Authority) acts as a trusted third
party that needs to be contacted before each anonymous authentication or attestation.
Instead of using the embedded RSA key pair (Endorsement Key (EK)) for authentication,
PCAS uses a new RSA key pair called Attestation Identity Key (AIK) for each authentication.
An EK is a unique asymmetric key pair embedded in the TPM during manufacturing. It’s
used to endorse or sign other keys and certificates within the TPM, contributing to the
platform’s overall security. The TPM sends the public AIK, signed by the EK, to the Privacy-
CA, which then verifies its validity and issues a certificate for the AIK. However, PCAS has
several drawbacks, such as requiring high availability and security for the Privacy-CA and
potential privacy violations if the Privacy-CA colludes with the verifier.

Based on RSA, the DAA protocol initially described in [23]. It involves Hosts, an Issuer,
and multiple Verifiers. Each Host is equipped with an integrated TPM security chip. The
Issuer generates and maintains a group of trusted systems and decides which Hosts and

132



associated TPMs can become members of this group. Verifiers can check whether a Host
is a member of the group.

Our concept employs the DAA protocol presented in [28], which overcomes the weaknesses
of earlier DAA schemes. We briefly introduce the basic functions of DAA:

1. Setup: The Issuer [ creates a key pair skj, pk; during the setup phase. This process
is represented as setup(I) = skr, pkr.

2. Join: During the join protocol, a Host H joins the group of an Issuer. Authenticated
by the Issuer, the TPM and Host obtain a credential sk enabling the Host to create
group signatures. To ensure security, part of the secret to create signatures is stored
on the TPM during the join process, preventing a compromised Host from leaking
keys. As a result, the Host can only sign in collaboration with the TPM. This process
is represented as join(I) = sky.

3. SignDaa: The Host can sign an arbitrary message m with respect to a basename
bsn. This process is represented as signDaa(m, bsn, sk).

4. Verify: Any Verifier can then verify the signature using the public key pk; from the
Issuer. This process is represented as verify(m, pkr).

5. Link: Additionally, Verifiers have the ability to link different signed messages if, and
only if, the basenames bsn of two messages m and m’ signed by the same TPM are
equal. This process is represented as link(m, bsn,m’).

These procedures ensure anonymity, making it impossible to distinguish whether the same
or different honest Hosts created two signatures. Moreover, no adversary can create valid
signatures, and no TPM can create a signature linked to another TPM.

7.2. Related Work of the Security of EV Charging

Attacks on Power Grids: In [39], researchers devised attacks that impacted grid fre-
quency through coordinated modulation of power consumption in a botnet of compromised
computers. These attacks had the potential to trigger unstable states within the grid,
requiring a substantial number of infections ranging from 2.5 to 9.8 million. The study
primarily focused on the grid’s response to production-consumption imbalances, including
aspects of self-regulation and primary control.
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In [170], an investigation delved into a botnet attack involving high-wattage IoT devices.
This research analyzed the consequences of such attacks, including frequency instability,
line failures leading to cascading failures, and escalating operating costs. The primary
emphasis was on dynamically simulating power flows within the transmission network.

Kern et al. proposed a framework in [99] for simulating and analyzing the impact of
e-mobility-based attacks on grid resilience. This framework was applied in various case
studies to evaluate the effects of e-mobility-based attacks on grid resilience.

In contrast to these studies, our research in [212] focuses on manipulations at the lowest
grid level in our simulations. Here, grid frequencies remain unaffected, and the threat
lies in overload situations that can result from an attack. Our approach fundamentally
differs from the works as mentioned earlier as it does not require dynamic consumer
and producer models. Instead, we concentrate on modeling a local grid with a realistic
structure, incorporating innovations such as photovoltaics, heat pumps, and EVs while
ensuring the integration of consistent time series data on household consumption and
production.

While previous research has examined the vulnerability of smart grids to attacks against
IT-based control systems, such as in [116, 201, 2], these studies did not consider local
grids or recent V2G communication protocols. Notably, a real-world attack on a DSO is
documented in [209], highlighting practical vulnerabilities. Additionally, in [196], control
over a power plant was compromised due to an attack on the communication link.

Attacks on V2G Components: Regarding the real-world security of cyber-physical sys-
tems in the context of V2G, practical attacks on chargers and EVs from multiple man-
ufacturers have been demonstrated. In [40], researchers showcased the installation of
manipulated firmware on a charger via a USB port alongside an intriguing example
involving a high-wattage device (a waffle iron) masquerading as a charging vehicle.

In [32], authors employed reverse-engineering techniques to manipulate the firmware
updates provided online by a CSO, gaining remote control over its charging points. Fur-
thermore, penetration tests conducted on charge points from various brands, as reported
in [174], uncovered additional vulnerabilities, enabling adversaries to exert complete
control.

In [105], a reported DoS attack on PLC systems was capable of remotely halting EV
charging. This attack prevented EV charging remotely. Moreover, the possibility of eaves-
dropping on plaintext ISO 15118 messages via PLC was demonstrated in [9] and [48].
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The associated testbed in [48] empowered attackers to read