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Abstract

The noise reduction of technical systems has become one of the main challenges in the
twenty-first century. In order to tackle this challenge, numerical simulations are a cru-
cial part in the process of understanding the physical mechanisms of sound generation.
Nevertheless, experiments have been traditionally used to study the complex phenomenon
of sound generated by multiphase flows since there were no suitable numerical methods
available. For this reason, a numerical framework for simulating acoustics produced by low
Mach number multiphase flows is presented within this work.
The motion of the multiphase flow is described by a single set of the Navier-Stokes equa-
tions. Various phases in the computational domain are treated as one fluid with variable
material properties. The distribution of the phases is advected with the Volume of Fluid
method based on a high resolution scheme methodology. To account surface tension, a sin-
gular term formulated by the Continuous Surface Tension method is added to the governing
equations. For surface tension dominated flows, the accuracy of the forces around the in-
terface is greatly dependent on the interface curvature computation. Therefore, different
improvement strategies applied to curvature computation methods along with a machine
learning approach are introduced and analyzed.
Different orders in energy, length and time scales of the acoustics and the flow lead to a
segregated handling. An acoustic/viscous splitting approach is employed for the compu-
tation of the acoustics. After the multiphase flow field is obtained, the generation and
propagation of the acoustic waves is determined on the basis of the linearized Euler equa-
tions. The fluid and acoustic sets of equations are both discretized with the Finite Volume
method in the in-house solver FASTEST. A one-way coupling between the two physical
disciplines, justified by the difference in the characteristic scales, is accomplished by an
acoustic source term derived from the unsteady flow field. By adapting the acoustic source
term to the multiphase environment, the difficulties of a moving interface are overcome.
The coupled validation test cases show the expected results.
For the final part of this work, the developed numerical methods are applied on a three-
dimensional test case. A complex and not yet fully understood example of multiphase
acoustics is the sound of a water drop impacting into a water pool, as can be heard from
a tripping tap. First, the necessary of a very high resolution in space and time as well as
an accurate curvature model is demonstrated. Afterwards, the results of the simulations
are compared to experimental data with satisfactory agreement and further insights on the
sound producing physics are given.
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Zusammenfassung

Die Lärmminderung bei technischen Systemen ist zu einer der größten Herausforderungen
des einundzwanzigsten Jahrhunderts geworden. Um diese Herausforderung zu bewältigen,
sind numerische Simulationen ein entscheidender Bestandteil bei der Untersuchung von
physikalischen Mechanismen der Schallerzeugung. Aufgrund des Fehlens geeigneten nu-
merische Methoden, wurden in der Vergangenheit meistens Experimente verwendet, um
das komplexe Phänomen des von Mehrphasenströmungen erzeugten Schalls zu untersuchen.
Aus diesem Grund wird in dieser Arbeit eine Softwareumgebung für die Simulation der von
Mehrphasenströmungen mit niedriger Machzahl erzeugten Akustik vorgestellt.
Die Bewegung der mehrphasigen Strömung wird durch einen einzigen Satz der Navier-
Stokes-Gleichungen beschrieben. Die verschiedenen Phasen im Berechnungsgebiet werden
als ein Fluid mit variablen Materialeigenschaften behandelt. Die Verteilung der Phasen
wird mit der Volume-of-Fluid-Methode auf der Grundlage hochauflösender Grenzflächen-
erhaltungs-Schemata berechnet. Um die Oberflächenspannung zu berücksichtigen, wird
ein einzelner Term, der mit der Methode der kontinuierlichen Oberflächenspannung for-
muliert wird, zu den Erhaltungsgleichungen hinzugefügt. Bei Strömungen, die von Ober-
flächenspannung dominiert werden, hängt die Genauigkeit der Kräfte an der Grenzfläche
stark von der Berechnung der Grenzflächenkrümmung ab. Daher werden verschiedene
Verbesserungsstrategien für die Krümmungsberechnungsmethoden zusammen mit einem
maschinellen Lernansatz eingeführt und analysiert.
Unterschiedliche Größenordnungen in Energie-, Längen- und Zeitskalen zwischen der Akus-
tik und der Strömung führen zu einer getrennten Behandlung. Für die Berechnung der
Akustik wird ein akustisch-viskoser Splitting-Ansatz verwendet. Nachdem das mehrphasige
Strömungsfeld berechnet wurde, wird die Erzeugung und Ausbreitung der akustischen
Wellen auf Basis der linearisierten Euler-Gleichungen bestimmt. Die Strömungs- als auch
die Akustikgleichungen werden mit der Finite-Volumen-Methode im institutseigenen Gleich-
ungslöser FASTEST diskretisiert. Eine einseitige Kopplung zwischen den beiden physikalis-
chen Disziplinen, die durch den Unterschied in den charakteristischen Skalen begründet ist,
wird durch einen aus dem instationären Strömungsfeld abgeleiteten akustischen Quellterm
erreicht. Durch die Anpassung des akustischen Quellterms an die mehrphasige Umgebung
werden die Schwierigkeiten einer sich bewegenden Grenzfläche überwunden. Die gekoppel-
ten Validierungstestfälle zeigen die erwarteten Ergebnisse.
Im letzten Teil dieser Arbeit werden die entwickelten numerischen Methoden auf einen drei-
dimensionalen Testfall angewandt. Ein komplexes und noch nicht vollständig verstandenes
Beispiel für die Mehrphasenakustik ist das Geräusch eines in ein Wasserbecken fallenden
Wassertropfens, wie beispielweise bei einem undichten Wasserhahn. Zunächst wird die
Notwendigkeit einer sehr hohen räumlichen und zeitlichen Auflösung sowie eines genauen
Krümmungsmodells demonstriert. Anschließend werden die Ergebnisse der Simulationen
mit experimentellen Daten verglichen. Eine zufriedenstellende Übereinstimmung wird fest-
gestellt und weitere Einblicke in die schallerzeugende Physik gegeben.
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1. Introduction

1.1 Motivation

Product development in engineering disciplines has been driven by physical prototyping.
The process of finding an ideal design can be very costly and time-consuming. With the
rise of computer technology a field called Computational Fluid Dynamics (CFD) emerged,
which simulates a fluid flow of any kind in or around a geometry. By integrating CFD in
the development process, the number of physical prototypes and hence, the time-to-market
can be reduced. But not only engineers are profiting from CFD, also scientists are able to
gain deeper knowledge of complex physical behavior.
A focus in recent researches is the reduction of noise, which is defined as unwanted and/or
harmful sound [32]. In general, sound is produced mainly by two mechanisms: flow in-
duced sound (aeroacoustics) and sound generated by mechanical vibrations (vibroacous-
tics). However, there is sound which is not directly explainable with one of the main
mechanisms. Consider rain falling on a lake, waves breaking on a beach or a leaking tap
releasing water drops into a sink full of water. All those examples can be categorized as
multiphase acoustics, since the sound is produced by the presence of an interface between
air and water. Although the first experimental results on this topic have been presented
in the beginning of the nineteenth century [73], the airborne sound producing mechanisms
have not yet been fully discovered.
As most of the naturally occurring flows, the velocity is subsonic, so that the computation
of the acoustics imposes a multi scale problem. Different orders of magnitudes in energy,
length and time scales lead to a partitioned approach. Once the flow field has been pre-
cisely determined, the acoustics are then computed, fed by an acoustic source term. In
most of these hybrid models, turbulence effects are the main contributor to the acoustic
source term. The extension of an hybrid aeroacoustic simulation approach to multiphase
flows is part of the ongoing research.
Despite the physically correct coupling of the acoustics to the multiphase flow, the accurate
representation of the multiphase interface is required. For interface capturing methods, as
the employed Volume of Fluid (VOF) method, the transition region between phases is
implicitly present. This implies that the exact interface position is not directly available
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imposing difficulties for the curvature determination. Especially surface tension dominated
multiphase flows rely on proper methods estimating the interface curvature from the tran-
sition region.
Finally, building a numerical framework which includes the computation of surface tension
dominated multiphase flows, the propagation of sound within a multiphase domain and
their coupling remains for the mentioned reasons a challenge and motivates this work.

1.2 State of the Art

This chapter covers the developments concerning the numerical methods for computing
multiphase flow with surface tension, acoustics and the few approaches covering a coupled
framework.

Multiphase Flow

For most problems analyzed with CFD, the physical basis is given by the partial differential
equations derived by Navier and Stokes. By adding a transport equation for a variable that
separates the physical properties in the Navier-Stokes equations (NSE) for different phases,
the most commonly used method for computing multiphase flows, namely the Volume of
Fluid (VOF) method, is obtained.
The VOF method to track free boundaries was first introduced in 1981 by Hirt et al. [49].
A color function whose value is unity when a cell is fully occupied by fluid and zero if a
cell contains no fluid is transported through the domain. A value between unity and zero
represents the volume fraction of the fluid occupied in the cell, thus the interface between
phases. For the prediction of incompressible, immiscible multiphase flows, two fundamen-
tal types of VOF methods emerged: Geometric and compressive methods.
Geometric VOF methods reconstruct the interface explicitly from the volume fraction
field. The accuracy of geometric VOF methods and the sharpness of the interface are their
strengths, however the computational effort is their weakness [20]. Due to the geometrical
reconstruction algorithms, the computational resources and the implementation complexity
are increasing significantly for three dimensions or on arbitrary grids [144]. After present-
ing the Simple Line Interface Calculation (SLIC) algorithm [87], many improvements of
geometric VOF methods have been introduced in the literature [148, 108, 106, 7].
In contrast compressive, or algebraic, VOF methods solve an additional transport equation
for the color function, hence no explicit interface reconstruction is applied. However, in
order to keep the interface as sharp as possible, special discretization techniques in space
and time are necessary [21]. Algebraic VOF methods have been modified and improved
to compensate the drawbacks of the original algorithm. To reduce numerical diffusion and
to increase curvature approximations, the steep color function is replaced by a smooth

2



level-set approach [90, 129]. Another attempt to reduce the diffusion is to apply a high
resolution differencing scheme on the discretization of the transport equation for the color
function. As the original VOF method, the High Resolution Interface Capturing scheme
(HRIC) or Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) are
based on a donor-acceptor formulation [84, 135]. Other schemes like M-CICSAM [140] or
CUIBS [96] followed with enhanced performance concerning interface sharpness, interface
stability at higher Courant numbers or accuracy on different grid types.
The VOF method relies on a finite volume discretization, which solves partial differential
equations by dividing the domain into discrete control volumes (CV). These volumes are
then used to approximate the integral form of the governing equations, allowing for the
calculation of flow variables at each volume. One advantage of this Finite Volume Method
(FVM) is its ability to conserve mass, momentum, and energy within each volume. How-
ever, over the past years other numerical approaches have gained interest: the Discontinous
Galerkin (DG) method, the Lattice Boltzmann Method (LBM) and the Smoothed Particel
Hydrodynamics (SPH) method. Although the DG method is not available in commercial
CFD codes, several scientific open-source [59] or industrial in-house codes [138] are in de-
velopment. By combining features of the FVM and the Finite Element Method (FEM), the
DG method has advantages in the context of high-order, parallel and unstructured CFD
codes. On the other side, the DG struggles with the typical drawbacks of high-order meth-
ods such as instabilities [74]. A different class of numerical methods is the LBM, which is
motivated by the idea of capturing the physics of macroscopic flow through simple local
microscale operations [6]. On a discrete regular grid of lattices, a distribution function and
its temporal evolution are described by the Boltzmann equation. All relevant macroscopic
flow variables (velocity, pressure, etc.) are calculated from this molecular distribution
function. Its popularity is based on its ability to simulate flows beyond the limits of the
NSE and its efficient parallelization. Meshless methods, such as the SPH, are ideal for
time dependent complex geometries due to their flexibility and therefore, popular for free
surface flows. Generation, organization and adapting the numerical grid is often difficult
for mesh based methods in terms of computational time and complexity [112]. For solv-
ing partial differential equations with the SPH method, flow describing mass particles are
distributed equally in the fluid. Within a smoothing length, neighboring particles interact
through a kernel function and the flow variables are obtained by a summation approxima-
tion. Since the SPH method is not as mature as the FVM, some general challenges remain,
e.g. adaptive particle resolution or turbulent flows with high-Reynolds numbers [103].

Surface Tension

In some multiphase flow problems surface tension is not negligible, e.g. when the rela-
tion between the dynamic viscosity times a characteristic velocity and the surface tension
(capillary number) is high. For the computation of the naturally as surface force act-
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ing surface tension, Brackbill et al. [14] introduced the Continuum Surface Force (CSF)
model. Surface tension is modeled as a body force, which is imposed as a continuous,
three-dimensional effect across an interface. Although the CSF model has been employed
in all kinds of interfacial flow environments [2, 147, 4], its disadvantageous property of
producing unphysical flow (“spurious currents”) around the interface has been an issue
since. Francois et al. [33] stated three key conclusions for surface-tension-driven flows:
First, an exact balance between the surface tension and the pressure gradient forces can be
achieved, if the interfacial curvature is known exactly, by identical discretization of both.
Second, sharp and continuous surface tension representations within a balanced-force flow
algorithm and the same curvature approximation only differ in the spatial distribution of
the pressure jump across the interface. Third, the origin of spurious currents within a
balanced-force algorithm lies in the errors of the curvature estimation. Apart from these
three conclusions, it should be mentioned that if other forces, like buoyancy, are dominant,
there are no evident differences between surface tension models or curvature estimation
methods. Francois et al. worked with a geometric VOF method, nevertheless, others suc-
cessfully adapted the ideas to different interfacial flow algorithms [48, 22, 147, 145].
However, in real flow simulations where no a priori knowledge of the interface curvature is
present, the accuracy of surface force estimates mostly depends on the accuracy of the in-
terface curvature estimation [70]. Therefore, different methods have been developed, which
rely on either the direct derivation from the volume fraction field or on discrete differential
operators applied to an explicit description of the location of the interface [102].
Within the VOF, the curvature estimation methods are based on the implicit representa-
tion of the interface. Brackbill et al. [14] stated that the discontinuous volume fraction
field needs to be smoothed by a convolution kernel, before it is differentiated twice for
the curvature. The studies of Williams et al. [143] compared different smoothing kernels
and concluded that a kernel for convolution methods needs to satisfy certain requirements.
Although such methods are used for comparisons [16, 33] or in hybrid approaches [94],
they are not convergent with mesh refinement and labeled as outdated [102]. Apart from
an abruptly varying volume fraction field, a level-set function can be used either for in-
terface advection, as mentioned, or only for curvature computation. In the latter, the
level-set function is temporarily constructed from the volume fraction field for computing
the interface normals and curvatures. It is not advected nor it has an explicit effect on
the advection of the VOF field [92]. Other versions of this CLSVOF method, in which the
level-set field is advected as well, can be found exemplary in [128, 119, 15].
A different class of curvature computation methods are based on computing height func-
tions. Sussman et al. [125] first presented the idea in the context of curvature computations
in multiphase flows. In case of VOF methods, the discrete volume fractions are summed up
along the columns (“heights”) in the direction of the dominant normal vector component.
Then, the curvature is derived by differentiation of the heights around an interface cell.
Simple implementation [16] and yet the only method with convergence at mesh refinement
[27] are the main reasons for the intensive research over the past years [5, 34, 28, 27, 13].
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In general, the task of the mentioned methods is to identify the interface from the volume
fractions by a mathematical operation and use the outcome to estimate the curvature. A
new approach with promising results was presented by Qi et al. [105], which uses ma-
chine learning techniques to find a relation between volume fractions and their curvature.
Patel et al. [95] further investigated the machine learning methodology and evaluated its
performance with a flow solver.

Computational Aeroacoustics

In contrast ot the multiphase computation, the numerical prediction of sound is a com-
parable new field of research, although it origins from the work of Lighthill [69] in 1952.
The reformulation of the compressible Navier-Stokes equations into an inhomogeneous
wave equation, known as Lighthill’s acoustic analogy, set the path for the hybrid model-
ing approaches in computational aeroacoustics (CAA). In this context, hybrid expresses
the separate handling of flow and acoustics overcoming the multi scale problem. Sources
from the solution of the transient flow field are derived, which are used to compute the
acoustics. Lighthill’s findings are based on the investigations of unbounded free stream
flows and therefore, other configurations are not well represented. Extensions are given
by Curle’s formulation [17], which includes fixed rigid bodies or the most common Ffowcs
Williams-Hawkings (FW-H) formulation [142], which is able to model the sound generation
by moving surfaces. In comparison to the resources consumed by the flow field computa-
tion, all these integral methods are cost-efficient independent of the observer location.
In addition to the use of analogies, there are methods based on disturbance variables. The
acoustic/viscous splitting technique decomposes the compressible quantities into a super-
position of an incompressible part with an acoustic perturbation, referred as expansion
about incompressible flow (EIF). With this method the acoustic sources are derived from
the incompressible Navier-Stokes equations (NSE). Shen and Sørenson [116] modified the
original method from Hardin and Pope [45] by changing slightly the basic decomposition
of the variables in order to account for non-isentropic flows. Bailly et al. [8] and Bo-
gey et al. [12] showed that the linearized Euler equations (LEE) with their source term
definition are able to predict aerodynamic noise. Seo and Moon [113] proposed a differ-
ent version of the perturbation equations for handling near field compressibility effects,
which are named perturbed compressible equations (PCE). Later, Seo and Moon [114] lin-
earized their compressible perturbation equations (LPCE) to ensure that grid-independent
acoustic solutions are obtained by suppressing the generation of perturbed vorticity in the
formulation. The acoustic perturbation equations (APE) by Ewert and Schröder [29] were
presented in several versions, which are exited by source terms determined from a com-
pressible or incompressible flow problem. Hüppe et al. [50] proposed a computationally
efficient reformulation of an APE system leading to the perturbed convective wave equation
(PCWE). A comprehensive review of the existing hybrid aeroacoustic approaches is given
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by Schoder et al. [111]. Advantageous in all hybrid methods is the possibility of using
different computational grids and methods to compute each physical discipline achieving
the highest accuracy. A common feature of all hybrid models based on incompressible con-
servation equations is the one-sided coupling, in which the feedback of the acoustic field
on the flow is neglected.
Instead of modeling the acoustics, the Direct Noise Computation (DNC) solves the com-
pressible NSE resulting in the united field of flow and acoustics. Since all relevant (turbu-
lent) structures in the flow have to be resolved, the computational resources are immense.
Even with the current advancements in high performance clusters (HPC), the application
of DNC is restricted to certain flow configurations in the mid and high Mach number
regime [53]. With a certain degree of turbulence modeling as in a Large Eddy Simulation
(LES), a DNC is applicable to technical problems [77, 35]. However, if the underlying flow
is characterized by a low Mach number, the scale discrepancy of the characteristic lengths
between flow and acoustics increases, causing the DNC to become inefficient. Since many
industrial flow applications operate at low speeds with Mach numbers smaller 0.3, hybrid
methodologies are considered as the most practical methods for aeroacoustics [53].
The combination of incompressible multiphase flows and acoustics are not very frequent
in the literature of numerical methods. Mostly compressible phenomena and the effect
of the acoustics on the multiphase flow are investigated. Munz et al. [82] extended the
EIF approach for low Mach number flow with variable density, variable temperature and
heat transfer by replacing the incompressible solution of the NSE with the solution of the
compressible NSE at zero Mach number. Denner et el. [24] proposed a pressure-based
algorithm, which is able to retain the acoustic properties of shock waves at an interface.
The sound generation and propagation in two phases were simulated by Tajiri et al. [131]
with the help of a finite difference lattice Boltzmann method.

1.3 Objectives and Outline

In this work a simulation approach for predicting acoustics emerging from low Mach mul-
tiphase flows are investigated. In order to achieve the overarching objective of a reliable
coupled simulation framework, all numerical components must function optimally both
individually and with each other. In the particular case of this thesis, this means that
for the multiphase part a fast, accurate and in parallel usable curvature model has to be
developed. The surface tension computation is responsible for the pressure field, which
imposes a jump across an interface. The coupling mechanism to the acoustics is addressed
due to the abruptly varying pressure, especially if the interface is moving. The acoustic
computation is attached after the determination of the flow variables by treating the multi
scale problem of acoustics at low Mach number flows with a splitting technique. Both, the
multiphase and the acoustic part, are realized within the computational fluid dynamics
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solver FASTEST [25] of the Institute of Numerical Methods in Mechanical Engineering at
the Technical University of Darmstadt.
After the introductory Chapter 1, this thesis is structured as follows. Chapter 2 explains
the mathematical and physical principles with their equations. Valid assumptions, e.g.
one-fluid formulation for the multiphase flow or the linearization of the acoustic terms,
are given as well. In Chapter 3, the employed numerical methods for solving coupled
multiphase acoustic problems are presented. Due to the special treatment, the numerical
approaches around the interface are addressed in Chapter 4. Different curvature compu-
tation methods and the strategy for handling the acoustic source term are introduced.
Chapter 5 analyses the different curvature computation methods and demonstrates the
correct coupling between multiphase flow and acoustics. Additionally, a complex three di-
mensional drop impact test case is shown, analyzed and compared to experimental results.
The final Chapter 6 summarizes the findings of this thesis and gives an outlook on future
research opportunities.

7



2. Physical Models

Every numerical simulation is based on different physical laws and models. Dimensionless
numbers characterize the problem and support the engineer in the decision of which as-
sumptions and simplifications are valid. The Knudsen number is defined as the relation
between the mean free path of a particle and a characteristic length of the flow field. If
the Knudsen number is below or equal 0.01, the flow can be described as a continuum
and it is not necessary to consider every molecule. Hence, the fluid flow in the problem
domain can be described by a set of differential equations and boundary conditions. The
Navier-Stokes equations are the most common mathematical model to describe viscous
fluids in a continuum. However, assumptions are made to model the flows presented in
this work, such as mass transfer between phases is omitted as well as mass sources or sinks
and chemical reactions. Further, a critical Reynolds number is not reached in the problems
dealt with in this work. This means that the ratio between the inertia and viscosity forces
is comparatively low, so that the flow can be described as laminar and turbulence is not
considered.
Sound is understood as small fluctuations of pressure which are superimposed to the pres-
sure field. A sound source oscillates and brings the surrounding fluid or gas phase into
motion. Due to its compressibility and mass these oscillations are transmitted to the
receiver. In case of low Mach number fluid flows, a simultaneously computation of the
acoustics with the Navier-Stokes equations is inefficient. The different length scales of the
fluid motion and the acoustics would require very small time steps accounting the speed
of sound in combination with a fine numerical grid able to resolve the flow. Therefore, the
model employed to describe acoustics is based on the Euler equations linearized around a
stationary field.
Let the flow variables be the density ρ(t, xi), the velocity vector ui(t, xi) and the pressure
p(t, xi). Geometrical quantities are given by ni as the outward unit normal vector and ti
as the tangential vector of the corresponding surface. For clarity the dependency of space
and time of the flow variables will be left out.
In this chapter the physical models to describe the Navier-Stokes equations are presented in
Section 2.1, followed by the additional models for immiscible two-phase flows in Section 2.2.
Finally, the physics to describe acoustics in Section 2.3 conclude this chapter.
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2.1 Fluid Mechanics

A conservation law states that for an isolated system a particular physical measurable
property is conserved as the system changes over time. The conservation of mass, linear
momentum and energy are the basis for solving a fluid dynamics problem. Independent
of the fluid properties, these conservation laws completely describe the physical behavior.
In computational fluid dynamics an Eulerian formulation is the most common approach
for their mathematical description. Flow variables are measured at a fixed control point
or volume as the time passes. In contrast, the Lagrangian formulation focuses on a flow
particle and how its properties change over space and time by following its path. For a given
situation, one or the other of these techniques is easier to use, but regardless of their ease
of application, both must give the same results. The Reynolds transport theorem (2.1)
converts the conservation laws from a closed system formulation (Lagrangian) to that of a
control volume (Eulerian):

D

Dt

∫
V (t)

φ dV =

∫
V

∂φ

∂t
dV +

∫
S

(φui)ni dS. (2.1)

A fixed mass or closed system time derivative D
Dt

of an integral with varying region V (t) for
a quantity φ is equal to this quantity integrated over a fixed region V and to the flux uini of
this quantity through the bounding surfaces S, if both regions coincide at time t [120]. The
differential form of the Reynolds transport theorem applied on the conservation equations
for mass, momentum and energy are commonly know as Navier-Stokes equations.

2.1.1 Navier-Stokes Equations

Initially the name Navier-Stokes referred to the conservation equation of linear momen-
tum, however, nowadays it is understood as the collective of mass, momentum and energy
conservation equations [81]. Due to the assumption of constant temperature throughout
any problem considered in this work, the energy equation is omitted.

Conservation of Mass

Using the Eulerian part of the relation (2.1) for density in place of a general variable φ
leads to ∫

V

∂ρ

∂t
dV +

∫
S

(ρui)ni dS = 0. (2.2)

Mass sources or sinks are not present thus Equation (2.2) states that the temporal change
of mass is unequal to zero if mass enters or leaves the volume. Written in differential form
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the mass conservation is called continuity equation and is given by

∂ρ

∂t
+
∂ρui
∂xi

= 0. (2.3)

Conservation of Momentum

Newton’s second law of motion asserts that the momentum of a body only changes over
time if a net force is acting on it. In case of fluid mechanics momentum is defined as
the volume integral of the product between density and velocity. Similar to the mass, the
Reynolds transport theorem is applied to the linear momentum which becomes∫

V

∂(ρui)

∂t
dV +

∫
S

(ρui)uini dS = Fi. (2.4)

The sum of forces Fi generates the motion of fluid and can be divided into body forces,
which act on every fluid particle and into surface forces, which are exerted by the sur-
rounding environment on the surface of the considered part of the fluid:

Fi =

∫
V

ρfi dV︸ ︷︷ ︸
Body forces

+

∫
S

t∗i dS︸ ︷︷ ︸
Surface forces

. (2.5)

Whereas body or also volume force is trivial, a closer look is taken at the surface force and
its stress vector ti. Consider a material volume for which the stress principle of Cauchy
states that on any plane there is a force that depends on the orientation of the plane. The
stress vector becomes a linear function of the outward pointing unit normal vector of the
plane t∗i = t∗i (nj). For example in the i-th direction follows

t∗i = σ1in1 + σ2in2 + σ3in3 for i = 1, 2, 3. (2.6)

This results in nine components σji to describe the state of stress in any point inside a
material. Cauchy introduced the components in a tensor of second order, also known as
Cauchy stress tensor which is multiplied with the unit normal vector of the plane:

t∗i =
[
n1 n2 n3

]σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 . (2.7)

Each component of σji represents the stress acting on face i in the j direction. Each row
represents the face and each column stands for a force in the corresponding direction.
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Elements on the main diagonal (j = i) are normal stresses and on the secondary diago-
nal (j ̸= i) are shear stresses. With this formulation the differential form of the linear
momentum conservation is

∂ρui
∂t

+
∂(ρui)uj
∂xj

= ρfi +
∂σji
∂xj

. (2.8)

The same principles are valid for the conservation of angular momentum, which is defined
as the product of the moment of inertia and the angular velocity. It states that the
temporal change of momentum is equal to the moment acting on the body. Without further
description the conservation of angular momentum concludes that the Cauchy stress tensor
is symmetric

σji = σij. (2.9)

For further details on the derivation of the conservation laws the reader is referred to
[81, 120].

Assumptions

The conservation laws in Equations (2.3) and (2.8) require certain assumptions and rela-
tions for solving fluid mechanical problems. In the first instance the stress tensor is split
into normal and shear stresses

σij = τij − pδij, (2.10)

where in fluid mechanics normal stresses are expressed with pressure p multiplied with
the Kronecker delta δij (δij = 1, if i = j and δij = 0 otherwise). A linear viscous
isotropic fluid, named Newtonian fluid, is characterized by linear dependency of the viscous
stress and the strain rate with the dynamic viscosity µ as a constant of proportionality
(τ = µγ̇). Thus, the viscous stress tensor in Equation (2.10) for a general Newtonian fluid
is formulated in index notation as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ

(
∂uj
∂xj

)
δij, (2.11)

where the second term accounts the bulk viscosity. Using Equation (2.11) on a material
volume, a relation between the stress tensor σij and the flow variables can be established:

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
−
(
2

3
µ
∂uj
∂xj

+ p

)
δij. (2.12)

Adding the material law of Equation (2.12) to the differential form of the linear momen-
tum in Equation (2.8) yields the compressible Navier-Stokes equations without the energy
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equation.
Compressibility can be neglected if the Mach number, which is the relation between the
characteristic flow velocity and the prevailing speed of sound, is smaller than 0.3. In such
case the density of gases may be assumed constant, whereas in general at practical velocity
liquids are assumed incompressible. Due to the negligible density change the divergence of
the velocity vector in Equation (2.3) becomes zero (∂ui

∂xi
= 0). Consequently, the material

law in Equation (2.12) simplifies and the incompressible Navier-Stokes Equations written
in non-conservative form read as

∂ui
∂xi

= 0, (2.13)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= ρfi +

∂

∂xj

µ(∂ui
∂xj

+
∂uj
∂xi

)− ∂p

∂xi
. (2.14)

In addition to the conservation formulations for incompressible flows, the physical models
of two-phase flows with different material properties will be explained in the following
section.

2.2 Multiphase Flow

This section deals with the physical models for the computation of multiphase flows. The
term multiphase implies that in the domain there are different phases. However, different
fluids with the same phase are included as well. Here, the focus lies on immiscible gas-
liquid flows, without identifying any wall or body as a third phase. Sharp interfaces
separate different fluids or phases, whereby the transition of their properties (density,
viscosity) occurs on very small scales. By means of the continuum hypothesis the interface
is assumed to have vanishing thickness [134]. Nevertheless, constitutive models have to be
added to the Navier-Stokes equations in order to compute two-phase flows.

2.2.1 One-Fluid Formulation

One approach for multiphase flows is to employ the Navier-Stokes equations for each phase
coupled with appropriate conditions at the interface. The one-fluid formulation on the con-
trary uses one set of governing equations for the whole flow domain occupied by various
immiscible phases [134]. The differentiation between phases is employed by variable mate-
rial properties that change abruptly at the interface. For accounting two phases, denoted
with superscripts A and B, the dynamic viscosity and the density in the incompressible
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Navier-Stokes equations depend on an indicator function F as

µ = µAFA + µBFB,

ρ = ρAFA + ρBFB.
(2.15)

Important to mention is that for incompressible two-phase flows, in which the density
of each phase is constant, the mass conservation equation (2.13) is equivalent to single-
phase flows [19]. Since the velocity field is continuous among phases (uAi =u

B
i ), there is no

difference in normal or tangential velocity at the interface Σ:

uAi n
Σ
i = −uBi nΣ

i , (2.16)

uAi t
Σ
i = uBi t

Σ
i . (2.17)

Equation (2.16) represents an impermeable interface without mass transfer and the state-
ment in Equation (2.17) expresses a no-slip condition [141].

2.2.2 Volume Fraction Transport

Considering a volume V , the function F describes the proportion of a phase in it. For a
fluid A the function reads as

FA =
V A

V
. (2.18)

Due to the relation in Equation (2.18) the function F is called volume fraction. In case
of only fluid A occupies volume V , the volume fraction of fluid B is zero. Therefore, the
volume fraction of two phases (or in general of endless phases) in sum must equal one:

FA + FB = 1. (2.19)

However, in further explanations the volume fraction is referred to F without superscript.
Every value between zero and one represents the interface of finite thickness, thus the
representation of the scalar volume fraction in a fluid domain is described by

F (xi, t) =


1, ifxi ∈ fluidA,

0, ifxi ∈ fluidB,

0 < F < 1, ifxi ∈ between fluidA and fluidB.

(2.20)

Since the volume fraction moves with the continuous velocity field, it is employed in the
transport equation (2.1) and given in differential form for its advection:

∂F

∂t
+ ui

∂F

∂xi
= 0. (2.21)

The volume fraction transport equation (2.21) or the conservation equations of mass and
momentum as in (2.13)-(2.14) do not capture interface effects such as surface tension; hence
are described afterwards.
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2.2.3 Surface Tension

When dealing with multiphase flows, additional physics at the phase boundaries occur.
Some have been neglected in the introduction of this chapter, however, surface tension as an
interfacial phenomena of liquids will be included. The microscopic origin of surface tension
lies in the intermolecular interactions [75]. Molecules of liquids share cohesive forces equally
with all their neighbors. On the surface, for example in a water-air system, there are fewer
neighbor molecules to cling to, see Figure 2.1. This results in establishing a stronger bond

Figure 2.1: Microscopic view on surface tension (in reference to [136])

with the remaining neighbors and in a net force directed into the liquid. The latter creates
an internal pressure which is only observable at curved surfaces, where the unbalanced
surface tension forces are equilibrated by excess pressure on the concave side [11]. For
a curved interface without external forces the Young-Laplace equation approximates the
jump in fluid pressure ∆p as function of the surface tension coefficient σ and the principal
radii of curvature R1 and R2 as

∆p = σ

(
1

R1

+
1

R2

)
. (2.22)

The surface tension coefficient σ depends on the fluids and phases sharing the interface,
the temperature and the presence of surfactants [9], but in case of isothermal immiscible
flows without any contamination it may be regarded as constant. Evidently interfacial
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phenomena are concentrated only at phase boundaries, therefore the force due to surface
tension is modeled as a force per unit volume by

fi,σ =

∫
σ

σκni,SδS dS, (2.23)

with the mean curvature κ, the unit normal to the interface ni,S, the Dirac delta func-
tion with respect to the interface δS = δ(xi − xi,S) and the points xi,S on the interface σ.
Equation (2.23) is known as CSF model proposed by Brackbill et al. [14]. For a general in-
dicator function C over a transition region of finite thickness Equation (2.23) approximates
the volume force as

fi,S = σκ
1

∆C

∂C

∂xi
, (2.24)

where ∆C = CB−CA is the jump from fluid A to B. Considering the volume fraction (2.19)
as the interface defining function, the jump from fluid A with CA = 0 to fluid B with
CB = 1 results in ∆C = 1 and turns the integral in Equation (2.24) into

fi,S = σκ
∂F

∂xi
. (2.25)

Hence, to take the surface tension into account, Equation (2.25) is added as a source term
to the one-fluid formulation of the Navier-Stokes equations. The final form for immiscible
two-phase flows in presence of surface tension becomes

∂ui
∂xi

= 0, (2.26)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= ρgi +

∂

∂xj

µ(∂ui
∂xj

+
∂uj
∂xi

)− ∂p

∂xi
+ σκ

∂F

∂xi
, (2.27)

in which the general body forces fi are limited to the gravitational acceleration gi . In
order to solve a flow field coupled with acoustics the necessary physical fundamentals are
outlined in the next section.

2.3 Acoustics

Acoustics is the science of sound, its properties, its origin and propagation, its generation
and perception, its measurement and its application. Sound is described as mechanical
waves of an elastic medium, which propagate as sound waves through gases, liquids and
solids [66]. For example, a sound wave in air is an oscillatory fluctuation of ambient pressure
and density traveling through the medium. Hence, the frequency of sound is the number
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Table 2.1: Frequency ranges in acoustics [66]

Frequency range Label Examples

0Hz to 20Hz Infrasound Monitoring earthquakes, whale communication
20Hz to 20 kHz Audible sound Human speech, jet noise
20 kHz to 10GHz Ultrasound Sonogram, industrial cleaning
10GHz to 1THz Hypersound Phononic crystals

of pressure fluctuations per second, measured in Hertz (Hz). Acoustic sources can emerge
from anything that vibrates in a receiver dependent audible frequency range. In Table 2.1
an overview of frequency ranges are given. Not only is sound described by its frequency but
also by its pressure fluctuation amplitude and the speed of sound. Möser [85] states that
sound fields are almost always described by means of their pressure distribution, which is
justified by the simple detection by microphones. In contrast the sound density can only
be determined indirectly by the pressure. So, in order to quantify the sound signal the
acoustic pressure is measured. The human ear is able to perceive sound pressures from
20 × 10−6 Pa to 200Pa, thereby a logarithmic scale is more handy to represent this wide
range [85]. The sound pressure level Lp is given in decibel (dB) and defined by

Lp = 20 log10

(
p̂

p0

)
, (2.28)

where the reference pressure p0 = 2× 10−5 Pa represents roughly the hearing threshold at
a frequency of 1 kHz and p̂ expresses the root mean square value of the time domain signal.
A small overview of situations and their absolute pressure with equivalent sound pressure
level is shown in Table 2.2. The acoustic values in Table 2.2 fluctuate around the ambient
pressure, which is comparable high at 105 Pa. This disparity in pressure scales will be

Table 2.2: Sound pressure and corresponding sound pressure level with examples [85]

Sound pressure p̂ (Pa) Sound pressure level Lp (dB) Situation

2× 10−5 0 hearing threshold
2× 10−4 20 forest, slow winds
2× 10−3 40 library
2× 10−2 60 office
2× 10−1 80 busy street
2× 100 100 pneumatic hammer, siren
2× 101 120 jet plane during take-off
2× 102 140 threshold of pain, hearing loss
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revisited in the following section. A second characteristic of acoustics is the frequency of
the pressure fluctuation. Only their combination determines the actual hearing level. For
example, a tone at 50Hz with 80 dB is perceived with the same loudness as a 1 kHz tone
with 60 dB [85]. While on the subject, a tone is created by harmonic oscillations of the
acoustic pressure whereas noise is produced by highly erratic pressure variations composed
by many frequencies combined together. The frequency f can be expressed in terms of the
angular frequency ω or the time period T as

f =
ω

2π
=

1

T
. (2.29)

In non-dispersive media1 the fraction of the speed of sound and the frequency is the spatial
period known as wavelength λ:

λ =
c

f
. (2.30)

With the basic quantities (2.28) to (2.30) an acoustic signal can be described. However,
typical sounds are complex with many oscillations of varying amplitude and duration and
with distinct pattern [98]. Depending on the signal, different characteristics or measure-
ments are advantageous, for example an A-weighting applied to sound pressure levels to
account for relative loudness perceived by the human ear. In the following section, the rea-
son for not using the NSE for the acoustics is given. Afterwards, the equations employed
for generation and propagation of acoustic quantities are derived.

2.3.1 Coupling of Acoustics and Fluid Flow

When dealing with acoustics and fluid flow at low Mach numbers, different time and
space scales are present for each discipline. An average audible sound with a frequency
of f = 2000Hz traveling through air with a speed of sound of c = 343m s−1 results in
a characteristic length scale given by the wavelength λ = 1.715 × 10−1m. In contrast,
the problems discussed in this work contain geometries about 1 × 10−4m. Besides this
length scale disparity [53], the time scales differ by orders of magnitude as well. From the
previous mentioned speed of sound of air and the impact velocity of falling water drop
given by UI ≈ 1m s−1 follows the temporal disparity, which emerges if both velocities
are resolved properly. Without any modeling or assumptions, all physical disciplines can
be computed with the compressible NSE. A so-called Direct Noise Computation (DNC)
requires high numerical resolutions in time and space, ergo consumes much computational
resources. Due to the large disparities in the scales, the application of DNC for low Mach
number flows is highly inefficient and this topic is understood as multi scale problem.
Hence, hybrid methodologies, which separate the treatment of the fluid and the acoustics,

1In a dispersive medium different frequencies propagate with different phase velocities. An example
for non-dispersive medium is air for acoustic waves.
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have been established as the most practical methods for aeroacoustic computations [53].
In those hybrid approaches, a one-way coupling from the fluid flow to the acoustics is
generally assumed. That there are no significant physical effects from the acoustics to the
fluid field is justified by the disparity of the pressure scales. As mentioned in the previous
section, the flow field pressure is about 1× 104 times higher than the acoustic pressure. In
this work, the hybrid methodology originally developed for the underlying framework by
Kornhaas [57] is employed. The derivation of the equations to compute the acoustics is
presented in the upcoming section.

2.3.2 Equations of Linear Acoustics

Acoustics can be regarded as perturbations with small amplitudes indicated by the super-
script (′) to an ambient state, known as acoustic/viscous splitting technique [45]. Hence,
overall pressure, density and velocity are described as

p = p0 + p′,

ρ = ρ0 + ρ′,

ui = ui,0 + u′i.

(2.31)

The definition (2.31) inserted into the compressible Navier-Stokes equations (2.3) and
(2.14) without viscosity taking into account, also known as compressible Euler equations:

∂(ρ0 + ρ′)

∂t
+ (ui,0 + u′i)

∂(ρ0 + ρ′)

∂xi
+ (ρ0 + ρ′)

∂(ui,0 + u′i)

∂xi
= 0, (2.32)

(ρ0 + ρ′)
∂(ui,0 + u′i)

∂t
+ ρ(uj,0 + u′j)

∂(ui,0 + u′i)

∂xj
= ρfi −

∂(p0 + p′)

∂xi
. (2.33)

The terms in Equation (2.32) and (2.33) can be grouped into zero-order, first-order (one
primed variable) and second-order (two primed variables). By applying a linearization
around a stationary flow field (ambient flow variables are constant) the higher-order terms
are neglected, so that Equation (2.32) and (2.33) become

∂ρ′

∂t
+ ui,0

∂ρ′

∂xi
+ ρ0

∂u′i
∂xi

= 0 (2.34)

ρ0
∂u′i
∂t

+ ρ0uj,0
∂u′i
∂xj

+
∂p′

∂xi
= 0 (2.35)

where Equation (2.34) and (2.35) represent the evolution of acoustic density and velocity,
respectively. The acoustic pressure is derived with the equation of state which is determined
by thermodynamic properties and relates the changes in pressure. With the definition in
Equation (2.31) follows

p0 + p′ = p(ρ0 + ρ′, s). (2.36)
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The propagation of a sound wave in an ideal gas2 is so fast that an isentropic process3

entropy s = constant can be assumed. However, by employing a Taylor-series expansion
for p as a function of ρ and s in ρ′, grouping of terms by their order results in

p0 + p′ = p0 +

(
∂p

∂ρ

)
s

(ρ0 + ρ′ − ρ0) +

(
∂2p

∂ρ2

)
s

(ρ0 + ρ′ − ρ0)
2 + ... , (2.37)

with the derivatives evaluated at constant entropy. Further, simplifying and linearizing
the expression in (2.37) gives

p′ =

(
∂p

∂ρ

)
s

ρ′. (2.38)

With K being the bulk modulus of fluids and gases the speed of sound is given by

c =

√
K

ρ
. (2.39)

The bulk modulus can be interpreted as the stiffness of a medium,

K = −V ∂p

∂V
= ρ

∂p

∂ρ
, (2.40)

in which the volume is inversely proportional to the density [124]. Using expression (2.40)
in (2.39), the speed of sound becomes [66]

c =

√(
∂p

∂ρ

)
s

=

√
γ∗p

ρ
=
√
γ∗RT, (2.41)

and the correlation (2.38) can be written as

p′ = c2ρ′. (2.42)

To make use of the correlation in Equation (2.42), the decomposition is differentiated with
respect to time, so that

∂p0
∂t

+
∂p′

∂t
= c2

∂ρ0
∂t

+ c2
∂ρ′

∂t
. (2.43)

In a homogeneous medium, the ambient density does not change for flows with low velocity
and according to Shen et al. [117] Equation (2.43) yields

∂p′

∂t
− c2

∂ρ′

∂t
= − ∂p0

∂t
. (2.44)

2The equation of state of an ideal gas is defined as p = ρRT with R being the universal gas constant
and T being the absolute temperature [124].

3A process is described isentropic if the entropy S does not change so that pV γ∗
= constant. For an

ideal gas the bulk modulus is only dependent on the pressure and the heat capacity ratio γ∗ as K = γ∗p.
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The equation for acoustic density (2.34) is placed in formulation (2.44) to obtain the final
form for the acoustic pressure as

∂p′

∂t
+ ui,0

∂p′

∂xi
+ c2ρ0

∂u′i
∂xi

= − ∂p0
∂t

. (2.45)

The equations for acoustic density (2.46), velocity (2.47) and pressure (2.48) are known as
Linearized Euler equations (LEE) and in summary shown without the ambient notation
for better representation:

∂ρ′

∂t
+ ui

∂ρ′

∂xi
+ ρ

∂u′i
∂xi

= 0 (2.46)

ρ
∂u′i
∂t

+ ρuj
∂u′i
∂xj

+
∂p′

∂xi
= 0 (2.47)

∂p′

∂t
+ ui

∂p′

∂xi
+ c2ρ

∂u′i
∂xi

= − ∂p

∂t
. (2.48)

These were originally derived by Hardin et al. [45] and adapted by Shen et al. [116, 117]
for determining aerodynamically generated acoustic fields for low Mach number flows.
The temporal derivative of the pressure on the right hand side of Equation (2.48) is the
source term for the acoustics, which originates directly from the previously calculated
incompressible flow field. The approach of superposition the acoustic perturbations are
generally known as Expansion about Incompressible Flow (EIF). Different derivations can
be found in the literature, such as Shen et al. [117], Slimon et al. [118], Seo et al. [113] or
Ewert et al. [29].

2.3.3 Sound Generation

In general, acoustic signals are generated by forcing the particles in the underlying medium
to move around their position of rest causing a time and space dependent oscillation of the
density [30]. The force emerges from pressure differences acting on the medium, which in
turn have different sources.

Structural Acoustics

If mechanical waves in structures radiate sound into the surrounding acoustic fluid or the
vibrating structure itself emits sound, both are often referred to as vibroacoustics. Typcial
examples are the cones on a speaker which are vibrating structures that radiate sound
into the air [43] or the swinging strings of a musical instrument. A modeling approach is
that this kind of sound generation is based on the assumption that the normal velocity
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at the structure surface is equal to the acoustic velocity of the corresponding neighboring
fluid particle [44]. However, the moving structure compresses and expands the surrounding
medium leading to an acoustic signal.

Aeroacoustics

By means of aeroacoustics the sound is generated by the flow and its pressure disturbances.
In 1952 Lighthill [69] developed his theory for aerodynamically generated sound, initiating
today’s Computational Aeroacoustics (CAA) with his definition of the acoustic source
terms. The physical acoustic sources are reduced to simple types of emitters, which is why
the theory by Lighthill is often referred as acoustic analogies. According to Lighthill the
three basic sound generation mechanisms are: monopole, associated with fluctuating mass
injection or volume flow, e.g. a loudspeaker in a box; dipole, associated with unsteady
external forces or fluid pressure on a solid boundary, e.g. a loudspeaker without a box;
and quadrupole, associated with an unsteady Reynolds stress, e.g. free turbulent flows [3].

Multiphase Acoustics

In case of multiple phases the pressure fluctuation is caused by phase transition, e.g.
implosion of cavity bubbles, by coalescence and breakup or by the movement of an interface
between phases. The latter can be observed by oscillating gas bubbles in a liquid medium.
A combination of the mechanisms is found in the sound emitted by crashing waves, which is
characterized by the creation of bubbles and their sizes, hence their oscillation frequencies
[18].
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3. Numerical Framework

The accuracy of a Computational Fluid Dynamics (CFD) computation is determined by
the discretization methods of the domain and the equations. In this chapter the numerical
methods used for this work are introduced. Every implementation is done in the in-house
flow solver FASTEST [25]. The previous introduced Navier-Stokes Equations form the base
of FASTEST, which has been developed over several decades and therefore includes a wide
range of functionalities such as different turbulence models [51], optimization [83], Fluid-
Structure Interaction (FSI) [109] or the coupling of disciplines (Thermal-Fluid-Structure
Interaction (TFSI) [99], Fluid-Structure-Acoustic Interaction (FSA) [55]) for dealing with
complex three dimensional configurations.

3.1 Domain Discretization

For a successful CFD computation the preparation of the Computer Aided Design (CAD)
geometry and its discretization is crucial for producing reliable results. There are multiple
ways of dividing the continuous geometry into a grid of elements. FASTEST uses the
fully conservative Finite Volume Method (FVM) on block structured collocated grids. In
collocated grids all variables are stored in the center, whereas in staggered grids scalar
quantities are stored in the center and velocity components are stored at faces of a Con-
trol Volumes (CV). By using hexahedron elements in three dimensional space1, a regular
connectivity of neighboring elements is secured. This attribute of structured grids allows
simple and efficient implementations as well as fast memory access. The elements or in
this case Control Volumes (CV) are body-fitted to the (irregular) physical boundary and
its coordinates xi are mapped into a (regular) Cartesian system with logical coordinates ξi
as

xi = xi(ξj) or ξj = ξj(xi), with i, j = 1, 2, 3. (3.1)

1If a computation provides only a two-dimensional domain, hexahedron elements are used as well. The
third dimension is set to unity, making the simulation quasi two dimensional.
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A unique mapping is mandatory and can be achieved by an algebraic or an elliptic approach,
for example by a transfinite interpolation or by solving an elliptic differential equation, re-
spectively [110]. Cell nodes are in the center of each CV and denoted by capital letters,
while cell faces are stated by small letters. For example, starting from cell center P, face e
is shared with neighbor E in the east.
If the domain is decomposed into subdomains along the block boundaries for parallel com-
putations with distributed memory, one layer of ghost cells is employed in which variables
are exchanged. As in Figure 3.1, which describes the topology of FASTEST for two di-
mensions, next neighbor EE on processor 0 is a ghost cell receiving its values from the
equivalent CV on processor 1 across the subdomain interface. In an identical notation,

Domain

x

y

Subdomain 0 Subdomain 1

Subdomain interface
Processor 0

EEP EW

N

S SE

NENW

SW

e

Processor 1

Figure 3.1: Two dimensional schema of FASEST topology at block boundaries

appending the third dimension results in CVs in positive direction with top T and in neg-
ative direction with bottom B. However, from an application engineer’s point of view, the
chosen grid generation method should accurately represent the geometry as well as fit the
solution methods and modeling approaches.
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3.2 Equation Discretization

After the determination of the physical models in Chapter 2, the appropriate numerical
methods for the underlying differential equations are presented. By employing the FVM
for the spatial and the Finite Difference Method (FDM) for the temporal discretization a
non-linear algebraic system is obtained and needs to be solved.

3.2.1 Finite Volume Method

As stated in Section 3.1, the domain is divided into a finite set of control volumes. A
generic transport equation for variable ϕ serves as an example for the procedure consisting
of the temporal change, the convective transport, the diffusive transport with constant
diffusion coefficient Γϕ and a source term fϕ. First, for each CV the integral balances are
formulated:∫

V

∂(ρϕ)

∂t
dV +

∫
V

∂(ρϕ)ui
∂xi

dV =

∫
V

∂

∂xi

(
Γϕ
∂(ρϕ)

∂xi

)
dV +

∫
V

fϕ dV. (3.2)

Applying the Gauss theorem, which reformulates volume integrals of spatial gradients into
integrals at volume surfaces with corresponding unit normal vectors, leads to the following
equation ∫

V

∂(ρϕ)

∂t
dV +

∫
S

(ρϕ)uini dS =

∫
S

(
Γϕ
∂(ρϕ)

∂xi

)
ni dS +

∫
V

fϕ dV. (3.3)

Since the domain discretization is based on hexahedron elements, the surface integrals are
summed over all surfaces Sc denoted by c = e, w, n, s, t, b so that Equation (3.3) can be
written equivalently∫

V

∂(ρϕ)

∂t
dV +

∑
c

∫
Sc

(ρϕ)uini dSc =
∑
c

∫
Sc

(
Γϕ
∂(ρϕ)

∂xi

)
ni dSc +

∫
V

fϕ dV. (3.4)

The integral formulation applies on every CV as in equation (3.4) and on the whole do-
main. So if summation is done over the whole domain, the integrals of the inner CV faces
cancel each other out and the global conservation is preserved. This is the main advantage
of the FVM and the reason for its broad usage in CFD [31].
In the next step, the surface and volume integrals are approximated by numerical integra-
tion. The simplest approximation is the midpoint rule, for which the surface integrals are
expressed as values on the CV face midpoint, whereas volume integrals are approximated
by the variables in the CV node. Although the midpoint rule achieves second order for a
surface integral, other approximations like the trapezoidal rule or the simpson rule, which
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include more values of the integrated entity, can be employed as well but are not considered
here. Therefore, the convective transport at any face c approximated with the midpoint
rule gives ∫

Sc

(ρϕ)uini dSc ≈ (ρϕuini)c∆Sc, (3.5)

which expresses the component of the convective transport normal to the cell face c with
surface area ∆Sc. The same procedure is carried out for the diffusive transport as∫

Se

(
Γϕ
∂(ρϕ)

∂xi

)
ni dSe ≈

(
Γϕ
∂(ρϕ)

∂xi

)
e

∆Se, (3.6)

and the for the source term as ∫
V

fϕ dV ≈ (fϕ)P∆V. (3.7)

Assembling each part of initial balance equation (3.2) after integral approximation yields(
∂(ρϕ)

∂t

)
P

∆V︸ ︷︷ ︸
transient

+
∑
c

(ρϕuini)c∆Sc︸ ︷︷ ︸
conv. transport

−
∑
c

(
Γϕ

∂(ρϕ)

∂xi

)
c

∆Sc︸ ︷︷ ︸
diff. transport

= (fϕ)P∆V︸ ︷︷ ︸
source term

, (3.8)

in which the integral of temporal derivative is approximated in the same manner as for the
source term. For the final part of the FVM discretization procedure the temporal deriva-
tive, the scalars and the spatial derivatives in the CV center and faces need to be discretized.

3.2.2 Temporal Discretization

Although the temporal derivative can be understand as a FDM with discrete points in
time [31], it is presented here. The temporal derivative can be rewritten into a source term
f(t, ϕ) containing convective, diffusive and source term following∫

V

∂(ρϕ)

∂t
dV = −

∫
V

∂(ρϕ)ui
∂xi

dV +

∫
V

∂

∂xi

(
Γϕ
∂(ρϕ)

∂xi

)
dV +

∫
V

fϕ dV =

∫
V

f(t, ϕ) dV.

(3.9)
Employing the midpoint rule for the volume integral yields

∂(ρϕ)

∂t
∆V = f(t, ϕ)∆V. (3.10)
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There are two main classes of temporal discretization techniques. If the approximation is
carried out at the initial time step tn with n being the time step index, the explicit Euler
method is obtained by

∂(ρϕ)

∂t
(tn) ≈

(ρϕ)n+1 − (ρϕ)n

∆t
= f(tn, ϕ

n). (3.11)

The time step size ∆tn = ∆tn+1 = ∆t is held constant. In contrary using the end value
tn+1 for the approximation results in the implicit Euler method as

∂(ρϕ)

∂t
(tn+1) ≈

(ρϕ)n+1 − (ρϕ)n

∆t
= f(tn+1, ϕ

n+1). (3.12)

If a linear change is assumed over the time interval both methods can be combined resulting
in the principle of the Crank-Nicolson method

∂(ρϕ)

∂t
(tn+1/2) ≈

(ρϕ)n+1 − (ρϕ)n

∆t
=

1

2
(f(tn, ϕ

n) + f(tn+1, ϕ
n+1)). (3.13)

For example, the unknown (ρϕ) at the next time step tn+1 with implicit Euler method is
determined by

(ρϕ)n+1 = (ρϕ)n + f(tn+1, ϕ
n+1)∆t. (3.14)

Explicit methods tend to get unstable, if the time step is not small enough for the underly-
ing grid. A dimensionless parameter called Courant number Co (Courant-Friedrichs-Lewy
(CFL) number) characterizes this behavior and is defined as

Coi,n =
ui∆t

∆xi
. (3.15)

For max(Coi,n) < 1 an explicit method is stable and does not diverge. To obtain a so-
lution with implicit methods a system of equations has to be solved, which results from
the new values on the right hand side of Equation (3.12). Therefore, stability is not an
issue, yet memory consumption and implementation complexity increases. Both, implicit
and explicit Euler method are first order accurate while the Crank-Nicolson method can
be seen as Central Differencing Scheme (CDS) in time and thus has second order temporal
accuracy [110].
By including additional points between tn and tn+1 higher order methods can be derived.
The Runge-Kutta method of order four consists of the following steps to obtain the un-
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known at the new time step:

(ρϕ)∗n+1/2 = (ρϕ)n +
∆t

2
f(tn, ϕ

n), (3.16)

(ρϕ)∗∗n+1/2 = (ρϕ)n +
∆t

2
f(tn+1/2, ϕ

∗
n+1/2), (3.17)

(ρϕ)∗n+1 = (ρϕ)n +∆t f(tn+1/2, ϕ
∗∗
n+1/2), (3.18)

(ρϕ)n+1 = (ρϕ)n +
∆t

6
[f(tn, ϕ

n) + 2f(tn+1/2, ϕ
∗
n+1/2) (3.19)

+ 2f(tn+1/2, ϕ
∗∗
n+1/2) + f(tn+1, ϕ

∗
n+1)]. (3.20)

Due to the multiple evaluation and storage of the system f(t, ϕ), the Runge-Kutta method
of higher orders are intensive with respect to computation time [31].

3.2.3 Interpolation Techniques

Even though some of the techniques in the upcoming subsections are well known basic
principles, they are presented briefly due to several mentions throughout this work. First
the methods for approximating scalar values at face centers are presented. Despite the
standard methods for spatial derivatives, a coordinate transformation is briefly explained.
For a more detailed description the reader is referred to [141, 110, 31].

Upwind Differencing Scheme (UDS)

The first approximation method depends on the direction of the convective transport in
Equation (3.8). The scalar value on the surface ϕe is taken from either of the adjacent
nodes as

ϕe =

{
ϕP , if (uini)e > 0,

ϕE, if (uini)e < 0,
(3.21)

which corresponds to a first-order backward or forward differencing scheme. Evaluating the
Taylor series expansion of ϕP at location xi,e shows that the Upwind Differencing Scheme
(UDS) is unconditionally stable yet numerically diffusive. The numerical diffusion increases
if the flow direction deviates from the face normal and very fine grids would be necessary
for a solution of proper accuracy.

Central Differencing Scheme (CDS)

A second order approximation of the face value ϕe can be achieved by the CDS of gradients
with (

∂ϕ

∂x

)
i

≈ ϕi+1 − ϕi−1

xi+1 − xi−1

. (3.22)
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The values of the two adjacent center nodes P and E are linear interpolated with a geo-
metric interpolation factor γe, so that Equation (3.22) can be formally written for the face
value as

ϕe = ϕEγe + ϕP (1− γe) , with γe =
xe − xP
xE − xP

. (3.23)

With the increased order, in contrast to the UDS, follows a less stable behavior causing
numerical oscillations. However, second order accuracy holds for equidistant and non-
equidistant grids [110]. If the grid is distorted and non-orthogonal, more neighboring CV
center are incorporated for keeping the second order. The scheme for this case is the
Multidimensionale Lineare Interpolation (MuLI), which is given by

ϕe = ϕEγe + ϕP (1− γe) + γns(ϕN − ϕS) + γtb(ϕT − ϕB). (3.24)

Further details and the interpolation factors can be found in [62].

High Resolution Schemes (HR Schemes)

As well as for the velocities, the multiphase and the acoustic part, more advanced numerical
methods are employed. In general, numerical methods of a higher order tend to oscillate
and lead to numerical instabilities while methods of lower order introduce numerical dis-
sipation [68]. High resolution schemes are characterized by the combination of a lower
order and a higher order method to get an accurate yet bounded solution. There are two
approaches on which a cell face value can be determined: schemes based on the Normalized
Variable Diagram (NVD) and Total Variation Diminishing (TVD) schemes [52]. Both use
indicators to identify, if the boundedness of a scheme is preserved in the cell of interest.
The required high resolution schemes are explained in here and will be referenced in the
following sections. For creating the Normalized Variable Diagram (NVD), cell C (central)
and cell face f of a convected scalar ϕ in a one-dimensional case are normalized according
to

ϕ̃ =
ϕ− ϕU

ϕD − ϕU

, (3.25)

where U stands for upstream and D for downstream [64, 52]. Which neighboring cell is
down- or upstream depends on the flow direction, and an exemplary representation of the
naming convention can be seen in Figure 3.2. If either condition

ϕU ≤ϕC ≤ ϕD or (3.26)

ϕU ≥ϕC ≥ ϕD (3.27)

is fulfilled in every CV, the solution will be without any unphysical oscillations. In terms
of the normalized variables, the criterion is known as Convective-Boundedness-Criterion
(CBC) [40] with

0 ≤ ϕ̃C ≤ 1, (3.28)
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Figure 3.2: Naming convention in the context of NVD and Total Variation Diminishing
(TVD)

bounded by ϕC = ϕU and ϕC = ϕD. The normalized cell face value obtained via
Equation (3.25) can be rewritten into

ϕf = (1− β̃f )ϕC + β̃fϕD with (3.29)

β̃f =
ϕ̃f − ϕ̃C

1− ϕ̃C

. (3.30)

In the actual NVD the normalized cell face ϕ̃f is plotted against the normalized center
cell ϕ̃C . The hatched area in Figure 3.3 including the line ϕ̃f = ϕ̃C represents the CBC,
which means that for any differencing scheme located inside the boundedness is fulfilled.
For the convection of the flow velocities the Xue-MUSCL scheme with QUICK coefficients
(κ = 0.5) is employed [86, 56, 146], which gives the face values as

ϕ̃f,XUE-MUSCL =


2ϕ̃U for 0 ≤ ϕ̃U <

1+κ
4+2κ

,

(1− κ
2
)ϕ̃U + 1+κ

4
for 1+κ

4+2κ
≤ ϕ̃U ≤ 3−κ

4−2κ
,

1 for 3−κ
4−2κ

< ϕ̃U ≤ 1,

ϕ̃U elsewhere.

(3.31)

For the volume fraction transport the Modified Compressive Interface Capturing Scheme
for Arbitrary Meshes (M-CICSAM) [141] is employed, which blends a steady version of
the Steady Hyper-C (SHC) scheme [65] and the Fromm scheme [39] upon the interface
orientation. The blending factor γf depends on the angle αf between the unit normal to
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Figure 3.3: NVD with Upwind, CDS, Xue-MUSCL and OSHER

the interface and the unit vector between the cell centers in flow direction.

αf =arccos

∣∣∣∣∣ ∇FP,i

∥∇FP, i∥ · (xU,i − xP,i)

∥(xU,i − xP,i)∥

∣∣∣∣∣ , (3.32)

γf =∥ cosαf∥
1
4 , (3.33)

ϕ̃f = = γf ϕ̃SHC + (1− γf )ϕ̃Fromm. (3.34)

In case the interface unit normal of the flow is parallel to the unit vector of the CV centers
between the face of interest, Equation (3.35) determines the face value. The SHC, which
does not rely on the Courant number in contrast to the Hyper-C scheme, has a compressive
character which keeps the interface compact.

ϕ̃f,SHC =

{
min(1, 2ϕ̃U) for 0 ≤ ϕ̃U ≤ 1,

ϕ̃U elsewhere.
(3.35)

For the situation that the unit normal of the fluid is perpendicular to the unit vector of the
CV centers, the second order accurate bounded linear Fromm Scheme in Equation (3.36)
sets the face value:

ϕ̃f,Fromm =

{
min(1

4
+ ϕ̃U , ϕ̃SHC) for 0 ≤ ϕ̃U ≤ 1,

ϕ̃U elsewhere.
(3.36)

A more comprehensive study and comparison of the NVD-schemes in general or for the
underlying solver FASTEST can be found in [86, 139, 81, 121].
If a scheme should satisfy the more constrained TVD condition as well, it needs to stay
in the crosshatched area in Fig 3.3. The NVD and TVD formulations can be transformed
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into each other. Depending on the origin of the scheme it is mostly described in its
original framework. The basis for developing a High Resolution (HR)-scheme in the TVD
framework is the restriction that the Total Variation (TV) can not increase from one time
step to the following:

TV (ϕt+∆t) ≤ TV (ϕt). (3.37)

The TV is defined as
TV =

∑
i

|ϕi+1 − ϕi|, (3.38)

in which index i counts over the spatial CV in the domain. Instead of using normalized
variables, the flux through a face is limited by a scheme dependent flux-limiter ψ(rf ) with
a gradient coefficient

rf =
ϕC − ϕU

ϕD − ϕC

, (3.39)

so that the face value is calculated as

ϕf = ϕC +
1

2
ψ(rf )(ϕD − ϕC). (3.40)

A relation between the NVD and TVD formulations can be established through [81]

ϕ̃C =
rf

1 + rf
. (3.41)

If a limiter lies within the boundaries of 0 ≤ ψ(rf ) ≤ 2rf it satisfies the more restrictive
TVD-CBC, which leads to ϕ̃f = 2ϕ̃C in the NVD formulation [130]. Exemplary the Osher
limiter [89] (1 ≤ β ≤ 2) is given by

ψ(rf ) = max(0,min(β, rf )). (3.42)

Since the TVD concept has been introduced in the 1980’s [46, 47, 89, 130], a wide range of
limiter are present in the literature and have been compared for the acoustic development
of the in-house flow solver FASTEST [57].

Derivatives through transformation in local coordinates

In FASTEST, the derivatives are obtained either with the Coordinate Transformation
Scheme (CTS) or the Derivative Approximation Based on Multi Dimensional Taylor Se-
ries Expansion (DABT) in order to improve convergence and robustness properties of the
pressure-correction scheme (Section 3.4.1) on non-orthogonal grids [61]. Both methods
have the same structure but differ in terms of approximation points and interpolation co-
efficients. Since the CTS is employed for the pressure and of importance for the surface
tension it is briefly explained.
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Figure 3.4: Local coordinates on the east face of a CV

As previously stated in Section 3.1, the global coordinates xi = (x1, x2, x3) are transformed
into local coordinates ξj = (ξ1, ξ2, ξ3) at each CV face to handle the irregular physical do-
main (often referred as complex geometry) in combination with structured grids. The
correlation between the local and the global coordinates is shown in Figure 3.4. The
transformation for a generic scalar ϕ reads as

∂ϕ

∂xi
=
∂ϕ

∂ξj

∂ξj
∂xi

=
∂ϕ

∂ξj

βij
J
, (3.43)

with Jacobian J = det(∂xi / ∂ξj) and βij representing the cofactor matrix to (∂xi / ∂ξj)
in the Jacobian matrix [31]. With the transformation, the derivative at a cell face can be
approximated as [61, 141] (

∂ϕ

∂xi

)
f

≈
bfji
JδV

∆jϕ, i, j = 1, 2, 3. (3.44)

An auxiliary CV is built in the local coordinate system δV = ∆ξ1∆ξ2∆ξ3 and bji is derived
by CDS at the cell face (denoted by superscript f) given by

bfji =

∆2y∆3z −∆2z∆3y ∆2z∆3x−∆2x∆3z ∆2x∆3y −∆2y∆3x
∆3y∆1z −∆1y∆3z ∆1x∆3z −∆3x∆1z ∆1y∆3x−∆3y∆1x
∆1y∆2z −∆1z∆2y ∆1z∆2x−∆1x∆2z ∆1x∆2y −∆1y∆2x

 . (3.45)

In order to increase the readability, the global coordinates xi have been replaced by (x, y, z).
The delta variable ∆ stands for the geometric difference in the local coordinate system [141]
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Table 3.1: Replacement of the variables in the generic transport variables to obtain the
NSE

Equation ϕ Γϕ fϕ

continuity ui 0 0

momentum ui µ
∂

∂xj
µ

(
∂uj
∂xi

)
− ∂p

∂xi
+ ρgi + σκ

∂F

∂xi
volume fraction F 0 0

or exemplary for an east face

∆1xi = xE,i − xP,i (3.46)

∆2xi = xne,i − xse,i (3.47)

∆3xi = xte,i − xbe,i. (3.48)

The first local coordinate ξ1 points perpendicular to the face while the others are along the
face area, see Figure 3.4. The corner points ne, se, te, be are approximated by interpolation
of the surrounding CV centers. Matrix bij also contains the face area resulting from the
cross product of ∆2xi with ∆3xi, which can be found in the first row. By transforming the
generic transport equation (3.8) every term is expressed as the sum of three components.

3.2.4 Navier-Stokes Equations Discretization

Since the NSE contain the same elements as the generic transport equation (3.2), the
numerical methods presented can be employed. By replacing the generic variable ϕ with
the variables given in Table 3.1, the NSE represented by the continuity equation (2.26)
and the momentum equation (2.27) are obtained. Although the transformation in local
coordinates is employed, the discretization of the transient term as well as the convective
transport term have the same form as in the generic transport equation. However, the
diffusive flux FD of the momentum in the NSE becomes more complex. The first term of
the diffusive flux contains an implicit treated part and an explicit treated part which is
added to the source term. The second term is exclusively treated explicitly and therefore,
added to the source term. Its contribution vanishes if the viscosity µ is constant or if the
underlying grid is orthogonal [31, 141].
Aside from the explicit parts of the diffusive flux and the part from time discretization,
the source term fϕ contains the gravitational acceleration, a negative pressure gradient
and the surface tension. An accurate computation in the presence of fluids with different
material properties complicates the discretization at this point. At the interface between
the different fluids, an abrupt jump in body forces occur. If this discontinuity is not
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modeled appropriate, unphysical spikes in the velocity field appear and can lead to a
diverging solution [78]. Consider a zero velocity field ui = 0, then the momentum equation
of the NSE in the one-fluid formulation reduces to

0 = − ∂p

∂xi
+ ρgi + σκ

∂F

∂xi︸ ︷︷ ︸
fi

,

∂p

∂xi
= fi. (3.49)

In order to maintain the zero velocity flow field, the discretization of Equation (3.49) needs
to be in balance on both the CV center and faces [78]. Employing the local coordinate
system at cell faces and its derivative approximation yields(

∂p

∂xi

)
f

≈
bfji
JδV

∆jpf . (3.50)

With the three unknowns of ∆jpf , a system of linear equations emerges from
Equations (3.49) and (3.50) in

bSji∆jpf = JδV fi,f . (3.51)

By employing Cramer’s rule, the solution can be found through

∆jpf =

(
Wj

W

)
f

, with (3.52)

W = det(bSji) (3.53)

Wj = det(b̃Sji). (3.54)

In the deduced matrix b̃Sji, the j-th column of bSji is replaced by the vector JδV fi,f . The
discretization of Equation (3.50) in cell centers reads

fi,P =

(
∂p

∂xi

)
P

≈ bVji
J
∆jpP =

1

J
[bV1i(pe − pw) + bV2i(pn − ps) + bV3i(pt − pb)], (3.55)

and with linear interpolation in combination with the discretization derivation of the pres-
sure gradient on cell faces, the final expression is

fi,P =
bV1i
J

[
γe

(
Wi

W

)
+ γw

(
Wi

W

)]

+
bV2i
J

[
γn

(
Wi

W

)
+ γs

(
Wi

W

)]

+
bV3i
J

[
γt

(
Wi

W

)
+ γb

(
Wi

W

)]
. (3.56)
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The difference to the standard midpoint rule is that every component of the volume force
in (3.56) depends on the other components as well. A more comprehensive description can
be found in [141, 121, 76].
After describing the momentum equation of the NSE, the continuity equation follows.
Since incompressibility is assumed, the continuity equation (2.3) does not contain any
information about the pressure and is discretized as∫

S

∂ui
∂xi

dS ≈
∑
c

(uini)c∆Sc =
∑
c

ṁc

ρc
, (3.57)

which can be reformulated into mass fluxes. The coupling between the momentum and
continuity equation used in this work, will be presented in Section 3.4.

3.3 Volume of Fluid Discretization

The volume fraction transport equation in (2.21) requires temporal and spatial discretiza-
tion. As part of the FVM the integral formulation after applying the Gauss theorem yields∫

V

∂F

∂t
dV +

∫
S

Fuini dS = 0. (3.58)

Following the work of Ubbink and Issa [135], the Crank-Nicolson method described in
Section 3.2.2 is employed and the discretized volume fraction transport reads as

F n+1
P − F n

P

∆t
∆VP = −

nb∑
f=1

1

2
(F n

f u
n
i,f∆Sf + F n+1

f un+1
i,f ∆Sf ), (3.59)

where index n denotes the different time levels and Sf is the face area. The assumption that
the variation of the velocity field does not influence the volume fraction transport during
one time step is reasonable, when the time step size is small enough [135]. Subsequently
un+1
i,f = uni,f and Equation (3.59) can be reduced and rearranged for the unknown new value

of the volume fraction as

F n+1
P = F t

P − ∆t

∆VP

nb∑
f=1

1

2
(F n

f + F n+1
f )uni,f∆Sf . (3.60)

To guarantee a bounded solution while maintaining the sharpness of the interface, HR
schemes from Section 3.2.3 are necessary to calculate the face values of the volume fractions
Ff . Here, the M-CICSAM [141] consisting of the compressive Hyper-C-Scheme [65] and the
high-order FROMM-Scheme [39] is employed. The blending of these two schemes depends
on the angle between the normal vector of the interface and the connecting line of the
donor and the acceptor CV center. Comparisons between different HR-schemes can be
found in [135, 139].
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3.4 Numerical Solution

In order to find the unknown variables ui, p, F in the equations (2.26), (2.27) and (2.21)
the particular discretization methods from the previous sections are employed. At certain
stages throughout a time step a discrete system of equations needs to be solved. The
discretization of every CV in the domain for an unknown ϕ is assembled into

aϕ,ip ϕi
P +

∑
c

aϕ,ic ϕi
c = bip for all i = 1, ..., N, (3.61)

with N being the number of CV in the domain, a being the corresponding coefficient
and b being the source. FASTEST uses the incomplete LU decomposition with Stone’s
approximation [123], also known as Strongly Implicit Procedure (SIP), for computing each
solution of any linear equation system (3.61).

3.4.1 Pressure-Velocity Coupling

By taking a look at the incompressible NSE, it is noticeable that the velocity components
appear in both equations while the pressure only takes place in the momentum equation.
If the flow would be compressible, the continuity equation could be used for the density
transport and the pressure could be obtained through the equation of state p = p(ρ, T ).
However, incompressibility is assumed here, which defines the density as constant and
removes the connection between the velocities and the pressure. A missing equation for
pressure is overcome by a numerical coupling between velocity and pressure. The pressure-
correction algorithm Semi-Implicit Method for Pressure Linked Equations (SIMPLE) [93]
is employed to find a solution which fulfills simultaneously both the momentum and the
continuity equation.
The iterative procedure starts with an initial guess (e.g. from the previous iteration or time
step) for the pressure and velocity field. The discrete momentum equation is solved with
the initial values, which results in preliminary velocities. At this point, the preliminary
velocities satisfy the momentum equation but not the continuity equation and hence, they
need to be corrected. A pressure-correction equation is derived from the continuity and
the momentum equation, in which the unknown neighbor velocity corrections are neglected
(exclusive in the SIMPLE algorithm). After solving the pressure correction equation, the
pressure correction itself is used to update the initial flow field. With the updated flow field
the scalar equations are solved, e.g. temperature or the volume fraction transport. The
procedure is repeated until convergence is reached and the computation continues with the
next time step.
Within the pressure-correction algorithm some assumptions are made, e.g. the guessed
initial flow field or the neglecting of the neighboring velocity corrections. In order to keep
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the algorithm stable, an under-relaxation of the velocity and the pressure is employed.
The new velocity is a combination of the previous velocity and the current velocity from
the iteration procedure, in which the relaxation factor λui

determines the proportion.
The under-relaxation of the velocity components is incorporated in the pressure-correction
algorithm so that Equation 3.61 for a single CV reads

aui
p

λui

un+1
i,P +

∑
c

aui
c u

n+1
i,c = bui

P + (1− λui
)uni,P , (3.62)

while the pressure is simply the summation of the initial guess p∗ and the under-relaxed
correction term

pn+1 = p∗ + λpp
′, (3.63)

with relaxation parameter 0 ≤ λp ≤ 1 [110]. For the SIMPLE algorithm, an optimal
relation λp = 1− λui

should be kept [31].
The solver FASTEST used for this thesis is based on a collocated grid arrangement, which
means that the flow variables are computed for cell centers. In combination with the
incompressible NSE this arrangement can lead to a decoupling between the pressure and
the velocity fields [110]. Rather than discretizing the pressure gradient in the momentum
equation with linear interpolation methods, it is selective interpolated as proposed by Rhie
and Chow [107]. Thus, the velocity corrections in the SIMPLE algorithm depend on the
pressure corrections of the directly neighboring CVs and not on those of the neighbors at
twice the distance.
Additional corrections to the algorithm are necessary if rapidly changing volume forces
are present as in multifluid systems. The Rhie-Chow interpolation is modified with Gu’s
body force correction [78], which corrects the interpolation of the face velocities by the face
approximations of the body forces.

3.4.2 Boundary Conditions

Initial and boundary conditions are necessary to generate a unique solution of each system
of equations. In CVs located on boundaries of the domain, there are different types of
conditions to which the CV can be assigned to. The most basic boundary conditions are

● Dirichlet with ϕ = ϕb

● Neumann with
∂ϕ

∂xi
ni = bi,b

where ϕb and bi,b are prescribed values or functions. Other boundary conditions can be
derived from the two basic ones, e.g. the symmetry boundary condition is of type Neumann
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and is set to zero (∂ϕ/∂xini = 0). Application examples are no-slip walls, for which the
Dirichlet boundary condition for the velocity is applied with value zero. However, each
boundary condition alters the coefficient and the source for a CV in the linear system of
equations in (3.61).

3.5 Acoustic Discretization

To overcome the multi scale problem computing fluid flow at low Mach numbers and
acoustics, a sub-cycling technique employed for the Linearized Euler Equations (LEE),
presented in Section 2.3, solves a number of acoustic time steps Nac with the acoustic time
step size ∆tac. Sub-cycling or also known as frozen fluid approach [57] in this context
implies that for a single CFD time step multiple acoustic time steps are evaluated in order
to meet the overall computational time. In order to set the acoustic time quantities the
initial CFL number is calculated with the speed of sound c acting as velocity:

CFLac,init =
∆t · c
∆h

. (3.64)

Afterwards, a predefined acoustic CFL number CFLac,ref is used to set the acoustic time
step size as well as the number of the acoustic time steps as

Nac =
CFLac,init

CFLac,ref

, (3.65)

∆tac =
∆t

Nac

. (3.66)

The reference CFL number is set to CFLac,ref ≤ 0.5. The numerical methods for solv-
ing acoustics are implemented in FASTEST and therefore, the FVM with a dimensional
splitting-approach is employed for the LEE. For multiphase computations, the speed of
sound depends on the medium present in the CV of interest. Hence, the acoustic time step
size is determined by the maximum speed of sound in the whole computational domain.
In the following more details on the acoustic discretization are given and further insights
can be found in [67, 132, 57, 54].

3.5.1 Finite Volume Method for Linearized Euler Equations

For the discretization of the LEE given in Equations (2.32)-(2.34), the FVM is employed.
Since the LEE form a hyperbolic system of partial differential equations, the procedure
of the numerical solution differs from the NSE. For explanation purpose, the system is
rewritten into

∂U

∂t
+ Ax

∂U

∂x
+ Ay

∂U

∂y
+ Az

∂U

∂z
= S, (3.67)
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in which U(x, t) = U is defined as the variable vector for the acoustic quantities (′)

U = [ρ′, u′, v′, w′, p′]T . (3.68)

For each Cartesian coordinate x, y and z a coefficient matrix A is introduced, e.g.

Ax =


u ρ 0 0 0
0 u 0 0 1/ρ
0 0 u 0 0
0 0 0 u 0
0 c2ρ 0 0 u

 . (3.69)

Finally the source term S only contains the temporal pressure derivative as

S =

[
0, 0, 0, 0,

∂p

∂t

]T
. (3.70)

The flux formulation separated by coordinates (3.67) is reasoned by the employed dimen-
sional splitting scheme, which is a fractional step method for spatial directions. The idea is
to split multi-dimensional problems into a sequence of one-dimensional subproblems solved
by one-dimensional methods in a relative inexpensive way [67]. The solution of the initial
value problem after the first sweep (e.g. in the x-direction) is the Initial Condition (IC) of
the following sweep and so on. The solution of the last sweep is the final solution for the
new acoustic time step at (n + 1). Formally written in the flux form of Equation (3.67)
and the notation of Toro [132] yields

PDEs:
∂U

∂tac
+ Ax

∂U

∂x
= 0,

IC: Un,

 ∆tac===⇒ Un+1/3 (3.71)

PDEs:
∂U

∂tac
+ Ay

∂U

∂y
= 0,

IC: Un+1/3,

 ∆tac===⇒ Un+2/3 (3.72)

PDEs:
∂U

∂tac
+ Az

∂U

∂z
= 0,

IC: Un+2/3.

 ∆tac===⇒ Un+1 (3.73)

The three systems of Partial Differntial Equations (PDEs) are completed by adding the
source term to the IC of the first sweep, which can be expressed as an system of Ordinary
Differential Equations (ODEs)

ODEs:
∂U

∂tac
= S

IC: Un∗

 ∆tac===⇒ Un (3.74)
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The state before source term addition is marked as n∗. The sweep direction and the
variable vector are transformed at the cell face in the direction of the outgoing normal
vector (similar to Section 3.2.3). In case the numerical grid is aligned with the Carte-
sian coordinate system, the sweep direction from east to west corresponds to the pure
x-direction. However, the set of hyperbolic equations (3.71)-(3.73) are discretized with
the FVM, for which cell centers contain the solution of the unknown variables and the
fluxes at the cell faces have to be computed. Therefore, the numerical solution of each
augmented one-dimensional hyperbolic system is based on solving the Riemann problem
at the corresponding cell face.

In order to understand the Riemann problem and its solution, a brief explanation is given
in advance. Consider a system of hyperbolic equations such as a single sweep in the
dimensional splitting approach or such as

PDEs:
∂U

∂t
+ A

∂U

∂x
= 0,

IC: U(x, t0) =

{
UL if x < 0,

UR if x > 0.

(3.75)

where UL (left) and UR (right) are two constant values between a single jump discontinuity
at x = 0. The PDEs in combination with the special IC are defined as the Riemann
problem [67]. Due to the assumption of hyperbolicity the coefficient matrix A has m real
eigenvalues λi and m linearly independent eigenvectors ki with i = 1, . . . ,m, so that

Aki = λik
i and (3.76)

A± = KΛ±K−1, (3.77)

with matrix K = [k1, . . . , km] containing the eigenvectors and K−1 being the inverse of K.
The eigenvalues can be split into positive and negative values as

λ+i = max(λi, 0),

λ+i = min(λi, 0),
(3.78)

and the components of the diagonal matrix Λ are given by

Λ± =

 λ±1 0
. . .

0 λ±m

 . (3.79)

The splitting matrices satisfy the following conditions:

λi = λ+i + λ−i , |λi| = λ+i − λ−i , (3.80)

Λ = Λ+ + Λ− , |Λ| = Λ+ − Λ−, (3.81)

A = A+ + A− , |A| = A+
i − A−

i . (3.82)
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However, the one-dimensional system (3.75) is rewritten into its characteristic form as

∂w

∂t
+ Λ

∂w

∂x
= 0 or (3.83)

∂wi

∂t
+ λi

∂wi

∂x
= 0 , (3.84)

with the definition w = K−1U or its components wi since Λ is diagonal. The character-
istic form expresses that a set of linear combination of m waves travel at characteristic
speeds λ1, . . . , λm on characteristic curves x(t) = x(t0) + λit. The eigenvalues are called
characteristic values and the function wi(x, t) characteristic variables [67]. The decoupled
system in (3.84) of m independent advection equations is used to find the solution of the
Riemann problem with the piecewise constant initial values. The discontinuity at x = 0 of
the Riemann problem is expected to propagate along the characteristic curve, so that the
solution of each advection equation is found at

wi(x, t) =

{
wi

l if x− λit < 0,

wi
r if x− λit > 0.

(3.85)

The overall solution of the Riemann problem is achieved by composing left and right
solutions of each advection equation

U(x, t) =
∑

i:λi<x/t

wi
rk

i +
∑

i:λi>x/t

wi
lk

i (3.86)

at a given point (x, t). The jump of the variables in U over the i-th wave W i in the case
of a linear system can be decomposed such as

(wi
r − wi

l)k
i = δiki = W i, (3.87)

with the components δi of vector K−1(UR − UL) , also labeled as wave strength [132].
Equation (3.86) rewritten with the wave definition of (3.87) gives

U(x, t) = UL +
∑

i:λi<x/t

W i (3.88)

= UR −
∑

i:λi>x/t

W i. (3.89)

For the LEE, m = 5 and the eigenvalues of coefficient matrix A normal to the cell face are
given by

λ1 = u− c , λ2 = λ3 = λ4 = u , λ5 = u+ c, (3.90)
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with corresponding right eigenvectors [132]

K = [k1, k2, k3, k4, k5] =


ρ 1 ρ ρ ρ
−c 0 0 0 c
0 v 1 v 0
0 w w 1 0
ρc2 0 0 0 ρc2

 . (3.91)

Recalling on finding a solution to the equations of the LEE in the dimensional splitting
approach. By employing FVM in space and the explicit Euler method in time, Equation
(3.75) becomes

Un+1
P = Un

P − ∆t

∆x
(F n

e − F n
w). (3.92)

As for the multiphase computation a simple first- or second-order advection scheme is
not sufficient for the acoustics computation, for which reason high resolution methods
from Section 3.2.3 are employed here as well. The numerical flux F is constructed as a
combination of the low-order Godunov and high-order Lax-Wendroff method.
The Godunov first-order upwind method2 utilizes Equation (3.92) and requires the solution
of the local Riemann problem to compute the interface flux [132]. The numerical flux F
approximated with the positive/negative splitting (3.82) at the east face yields

F n
e = A+UP + A−UE, (3.93)

With those identical flux definitions, the first-order Godunov method yields

Un+1
P = Un

P − ∆t

∆x
(A+∆Uw + A−∆Ue), (3.94)

for which A±∆Uw/e are computed in the wave form. The second-order Lax-Wendroff is
derived by a Taylor expansion series and central difference approximations, which leads to
the numerical flux

F n
e = (A+Un

P + A−Un
E) +

1

2
|A|
(
I − ∆t

∆x
|A|
)
(Un

E − Un
P ), (3.95)

being the first-order upwind (3.93) with an correction term. The update to the variable
vector for the Lax-Wendroff method results in

Un+1
P = Un

P − ∆t

∆x
(A+∆Un

w + A−∆Un
e )−

∆t

∆x
(F n

e − F n
w). (3.96)

2Godunov proposed the following scheme to update a cell value Un
P to a new value Un+1

P : solve the two
Riemann problems at (Un

W , Un
P ) and at (Un

P , U
n
E) for the conservation law (3.75), take an integral average

in cell P of the combined solutions of these two local problems and assign the value to un+1 [132].
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In this context a HR method sets the proportions of the upwind method and the Lax-
Wendroff to the flux dependent on how the acoustic field is varying, expressed by a flux
limiter ψ(rf ) with gradient coefficient or smoothness indicator rf (see Section 3.2.3). The
smoothness indicator is evaluated for the east face f = e depending on

rie =
δif
δie

with f =

{
w if λi > 0,

ee if λi < 0.
(3.97)

The situation of each flux and its eigencomponents might be different, therefore, the cor-
rection term in (3.95) is decomposed into the eigencomponents with the corresponding
flux-limiter given as

F̃e =
1

2

m∑
i=1

|λi|
(
1− ∆t

∆x
|λi|
)
ψ(rie)δ

i
ek

i. (3.98)

Finally Equation (3.75) discretized with flux-limiter yields

Un+1
P = Un

P − ∆t

∆x
(A+∆Un

w + A−∆Un
e )−

∆t

∆x
(F̃ n

e − F̃ n
w). (3.99)

The Osher limiter in (3.42) among other limiters have been tested for the underlying frame-
work in [57]. Note that if the limiter tends to zero, the pure upwind method determines
the flux and on the other hand if it becomes one only the Lax-Wendroff is in charge. How-
ever, the smoothness indicator in Equation (3.97) might need a neighbor next to the direct
neighboring CV. Therefore, at block boundaries only the upwind method will be employed
due to the lack of more than one ghost CV.
To conclude the FVM for the LEE, acoustic boundary conditions have to be set. Except
walls, all flow boundaries are non-reflective, zero-order extrapolation acoustic outlets. At
walls the acoustics are completely reflected. Multiphase interfaces are special case and
explained in the following section.

3.5.2 Multiphase Acoustics

In the underlying framework different phases are taken into account by varying material
properties, so that ρ = ρ(xi) and c = c(xi). The impedance Z(xi) = ρ(xi)c(xi) is constant
within each CV, however, it may vary through the domain referred as layered medium
[67]. The solution algorithm of the acoustics, described in the previous section, splits the
multidimensional Riemann problem for a CV into three one-dimensional systems at the
corresponding cell faces in their normal direction. Additional to the piecewise constant
initial data (3.75), the one-dimensional Riemann problem in normal direction to the cell
face ξ reads as

Z(ξ) =

{
Zl if ξ < 0,

Zr if ξ > 0,
(3.100)
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with the discontinuity at ξ = 0. For example, the waves on each side of the discontinuity
for the acoustic pressure are computed with the impedance as

W p′,1 = Zl

∆p′ − Zr∆u
′
ξ

Zl + Zr

, (3.101)

W p′,5 = Zr

∆p′ + Zl∆u
′
ξ

Zl + Zr

. (3.102)

The acoustic velocity in normal direction uξ is obtained by projection on the vector normal
to the face. By employing the high resolution method, which solves the Riemann problem
for every CV, the varying material properties are taken into account naturally. Reflection
and transmission at an fixed interface between fluids of different impedance has been
verified in [122] with second order accuracy.

3.5.3 Acoustic Source

The one-way coupling of the flow field to the acoustics is achieved by the source term
on the right hand side of the acoustic pressure transport equation (2.34). The temporal
pressure derivative is approximated with the explicit Euler method (see Subsection 3.2.2),
so that

S = − ∂p

∂t
≈ −p

n+1 − pn

∆t
. (3.103)

Within the sub-cycles, the source term is split into Nac parts for the computation of the
sound propagation, so that

Unac+1 = Unac +
∆t

Nac

S. (3.104)
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4. Interface Treatment

Before running a simulation, each phase has to be initialized either as an inflow bound-
ary condition or as a geometry present in domain. In this work, only problems with an
initial volume fraction distribution are discussed. The methods implemented for interface
initialization are presented at first. Within a VOF framework an accurate estimation of
the interface surface tension force between two fluids depends on the discretization of the
surface tension and on the curvature model. The discretization strategy is explained in
previous Section 3.2.4 and the curvature models employed are presented secondly.

4.1 Interface Initialization

For some problem configurations certain geometrical shapes with curves are desired, e.g.
ellipses or spheres. For the initial distribution of the volume fraction field different ap-
proaches are existent. Here, two approaches are presented which set the volume fraction
for each CV center. Afterwards the values are smoothed for further computation. Depend-
ing on the distribution method used, the resulting volume fraction field shows different
width around the exact interface location.

4.1.1 Binary Initialization

First a simple weighted binary initialization is presented, which follows a discontinuous
indicator function as

α(xi) =

{
1 if xi ∈ fluid a

0 if xi ∈ fluid b.
(4.1)

On the basis of the center node P coordinates of each CV the binary decision (4.1) is made,
so that the volume fraction equals the indicator function F P

init = α(xPi ).
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Figure 4.1: Discontinuous and discrete distribution of fluid a and fluid b
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(b) Resulting volume fraction field with binary
initialization

Figure 4.2: Binary intialization

4.1.2 Numerical Initialization

For the second variant for each CV a set of Naux auxiliary vertices Paux are evenly placed
in each CV, see Figure 4.3a. Instead of the center node each auxiliary vertex is assigned
to a fluid as

Paux(xi) =

{
P a
aux if xi ∈ fluid a

P b
aux if xi ∈ fluid b.

(4.2)
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By summing the vertices which are located within the geometry of fluid a divided by the
overall auxiliary vertices of the CV, the volume fraction is obtained by

F P
init =

∑
P a
aux

Naux

. (4.3)

Considering the example shown in Figure 4.3,
∑
P a
aux equals 16 and the number of auxiliary

vertices Naux is 36 which results in a initial volume fraction of Finit = 0.44.
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(a) Auxiliary vertices within the red CV in
Figure 4.3b
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(b) Resulting volume fraction field with numer-
ical initialization

Figure 4.3: Numerical initialization

4.1.3 Smoothing of the volume fraction field

After the smoothing, the initial values of the volume fraction are further distributed around
the exact interface locations. With the help of the cell geometry the weighted averages of
the volume fraction are computed. First the cell face values Ff are determined by numerical
interpolation for which different methods can be employed. For example, employing the
CDS for the east face between the central node P and its neighbor E yields

F P
e ≈ F P (1− λe) + FE(λe) (4.4)

with the interpolation factor λe taken from Section 3.2.3. Afterwards the cell face values are
summed for each CV and multiplied by their geometric weights. Justified by the interface
capturing methods and the regular grids used in this work, the weights wc are set to unity.
Every connecting CV face Fc is used for the final smoothed volume fraction value in the
node as

F̃ =

∑
c Fcwc∑
cwc

. (4.5)
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For the exemplary red CV in Figure 4.4b, which holds the initial value Finit = 0.44, the
smoothed value is determined by the four cell face values c = e, w, n, s and

∑
cwc = 4

resulting in F̃ = (0.22 + 0.72 + 0.275 + 0.44)/4 = 0.41. As both Figures indicate, the
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(a) Smoothing after binary initialization
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(b) Smoothing after numerical initialization

Figure 4.4: Smoothing of volume fraction field

interface is smeared around the exact interface location. For the binary initialization
the interface stays within two cells along the coordinate axis whereas with the numerical
initialization the interface width spans over three CVs. However, throughout this work a
sharp interface will never occur.

4.2 Interface Curvature Estimation

For collocated variable arrangement in conjunction with interface capturing methods, the
determination of an accurate interface curvature has been challenging ever since [143, 26].
The present Eulerian interface description leads to a volumetric formulation of the surface
tension fi,S as in Equation (2.25)

fi,S = σκ
∂F

∂xi
. (4.6)

While the interface curvature κ and the volume fraction gradient have to be determined,
the material dependent surface tension coefficient σ is set constant. The volume fraction
gradient becomes zero outside the interface, since surface tension only acts on the interface.
Note that the volume fraction around the interface will always be diffuse to overcome the
difficulty of differentiating a discontinuous function. However, additional smoothing of the
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volume fraction field only for curvature determination could be employed. For the non-
constant part of the surface tension four methods and their improvements are presented
hereafter and evaluated in Section 5.1.

4.2.1 Curvature by Finite Difference Method

The curvature κ in Equation (4.6) can be written for three dimensions in Cartesian coor-
dinates with spatial derivatives denoted by indices x, y and z as

κ = −∇ · ni = −∇ · ∇F
|∇F | (4.7)

= −

FxxF
2
y + FxxF

2
z + FyyF

2
x + FyyF

2
z + FzzF

2
x + FzzF

2
y

−2FxFyFxy − 2FxFzFxz − 2FyFzFyz

(F 2
x + F 2

y + F 2
z )

3
2

(4.8)

In a two-dimensional case the derivatives including the z-coordinate vanish. To obtain
the curvature in each CV the first and second spatial derivative of the volume fraction
are needed. The simplest method to discretize expression (4.8) is to apply the CDS from
Section 3.2.3, which gives the first derivative in x-direction on uniform grid spacing (λx = 1

2
)

as

Fx ≈ Fe − Fw

xe − xw
=
λxFE + (1− λx)FP − (λxFP + (1− λx)FW )

xe − xw
=

1
2
FE − 1

2
FW

∆x
. (4.9)

In the context of curvature computation, the finite difference method will be referred as
Curvature by Finite-Difference-Method (CFDM). Since only direct neighbors are included
for the curvature calculation, the advantage of this method is the low computation time.
At the same time, it is also the disadvantage, since large radii cannot be represented well.
Although the method has second order accuracy, it tends to oscillate and to overshoot the
solution especially if the fraction field gradient is steep. To improve the accuracy of the
curvature values in each cell and in the mean, some additional features are applied which
are shown in Section 4.2.3.

4.2.2 Height Function Method

A different approach of the curvature estimation is the Height-Function (HF) method.
Although the principle was initially mentioned in the 1980’s ([133],[100]), Popinet [102]
states that its popularity began to grow with the work by Sussmann [125] and Cummins
et al. [16]. The HF method sums the volume fractions in a stencil along the largest
component of the unit vector ni = (nx, ny, nz) and differentiates a set of according heights.
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Figure 4.5: HF stencils in 2D and 3D

Consider a two dimensional volume fraction distribution as in Figure 4.5a with |ny| > |nx|
at the center of a 3 × 7 stencil. The CV indexing with i and j correspond to the x- and
y-coordinate directions, respectively. In the center of a stencil, where the curvature will be
approximated, a local indexing is introduced with i′ and j′. Following, the heights along
the x-coordinate, or the i-indexing, can be derived by

Hi′ =

j′=j+NH∑
j′=j−NH

Fi′,j′∆y , with i′ =
NN − 1

2
, i,

NN + 1

2
. (4.10)

The number of heights to be included is set by NN and the number of CV to be summed
in positive and negative j-direction per height is set with NH . Francois et al. [33] found
that the stencil with three heights NN = 3 and three CV above and below the reference
NH = 3 produces the most accurate results. With three heights computed with Equation
(4.10), first and second derivative are estimated with second order finite differences as

Hx =
Hi+1 −Hi−1

2∆x
, (4.11)

Hxx =
Hi+1 − 2Hi +Hi−1

(∆x)2
. (4.12)
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For three dimensional computations the derivatives in (4.11) and (4.12) are extended about
a cross derivative and the index k in the z-coordinate direction. In case of a 3 × 3 × 7
stencil with the largest normal in the z-direction (|nz| > |ny| and |nz| > |nx|), the central
differences formulas constructed for an interface cell are

Hx =
Hi+1,j −Hi−1,j

2∆x
, (4.13)

Hy =
Hi,j+1 −Hi,j−1

2∆y
, (4.14)

Hxx =
Hi+1,j − 2Hi,j +Hi−1,j

(∆x)2
, (4.15)

Hyy =
Hi,j+1 − 2Hi,j +Hi,j−1

(∆y)2
, (4.16)

Hxy =
Hi+1,j+1 +Hi−1,j−1 −Hi+1,j−1 −Hi−1,j+1

4(∆y∆x)
. (4.17)

(4.18)

The curvature in the central CV at index (i, j) and (i, j, k) can be determined by

κ =



− Hxx

(1 +H2
x)

3
2

, in 2D

−Hxx +Hyy +HxxH
2
y +HyyH

2
x − 2HxHyHxy

(1 +H2
x +H2

y )
3
2

, in 3D.

(4.19)

The HF curvature is second-order accurate [13]. Nevertheless, Lopez et al. [72] found
that the accuracy in three dimensions can be improved by smoothing the first and second
derivative with a factor γ as

γ =

{
0.0 , if θ < θcrit

0.2 , otherwise.
(4.20)

The smoothing parameter γ depends on the angle θ, which is measured between the height
function direction and the interface normal vector according to
θ = arccos(max(|nx|, |ny|, |nz|)). In case the angle reaches a critical value of θcrit = 0.8
[72], the smoothing takes effect on the derivatives following

Hx =
γ(Hi+1,j+1 −Hi−1,j+1) +Hi+1,j −Hi−1,j + γ(Hi+1,j−1 −Hi−1,j−1)

2∆x(1 + 2γ)
, (4.21)

Hxx =

γ(Hi+1,j+1 − 2Hi,j+1 +Hi−1,j+1)
+Hi+1,j −Hi,j +Hi−1,j

+ γ(Hi+1,j−1 − 2Hi,j−1 +Hi−1,j−1)

∆x2(1 + 2γ)
(4.22)
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One important drawback of the fixed stencil method is the fact that curvature calculation
only converges with mesh refinement, if the calculated heights in the column center is
located in the reference cell (red CV in Figure 4.6a). Hence, the implemented algorithm
has to disregard those cells, which do not satisfy this so called HF condition [94]. However,
Popinet et al. [101] proposes an improvement to the standard HF methods with the use of
adaptive stencils. By employing an adaptive stencil, which considers the topology around
the reference cell, the Adaptive Height-Functions (AHF) method is supposed to handle
difficult volume fractions configurations more robust [102]. In each column the heights are
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Figure 4.6: HF stencils in 2D inside green bounds, center CV in red bounds and origin
CV in dashed red bounds

constructed from a base (F = 1) to a top (F = 0) with a strictly monotonic variation of the
volume fraction, as in Figure 4.6b. If that is the case the column is flagged as consistent
and if all columns fulfill this requirement, the heights are summed by

Hi′ =

j′=top∑
j′=base

Fi′,j′∆y , with i′ =
NN − 1

2
, i,

NN + 1

2
. (4.23)
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Afterwards the heights are normalized relative to the base of the reference cell, called
origin, as

H∗
i′ = Hi′ − sgn(ny)(basei′ − origin)∆y. (4.24)

Otherwise, the stencil direction is defined as inconsistent and the method is applied in the
other normal direction. In case the other stencil direction turns out to be inconsistent
as well, accurate curvature computation within the adaptive stencil is not possible and a
fallback strategy has to take over (e.g. previous curvature value or finite difference curva-
ture computation 4.2.1). However, if a direction is found to be consistent the curvature is
computed whether the HF condition is fulfilled or not.

4.2.3 Improvements to CFDM and HF

The fastest methods for curvature computation are the CFDM approach and the basic HF.
Both can lack of accuracy at certain conditions, yet after employing some additional fea-
tures the results can be improved significantly. A better estimation of the first derivatives
is achieved by filtering the volume fraction with a smooth least-squares polynomial (LSP)
filter of degree two [91]:

F̃P =
1

3

3∑
xi=1

(∑2
k=−2 bkF

xi
P−k∑2

k=−2 bk

)
. (4.25)

The mean value of all spatial directions xi = (x, y, z), derived by the sum of the coefficients
bk times the corresponding concentrations divided by the sum of the coefficients, leads to
a smoother distribution of the concentration. Using the central differencing scheme on the
first derivatives to obtain the second derivatives, once again applying a filter on the first
derivatives does not improve the outcome.
Missing values for the second neighbor at block boundaries are linear extrapolated with the
help of the spatial and concentration gradients. Considering a CV next to the boundary
in positive x-direction, so that the coordinate extrapolation yields

xEE = xE +
(
2(xE − xP )− (xP − xW )

)
. (4.26)

The extrapolated coordinate is used for the concentration extrapolation in

FEE = FE +
xEE − xE
xP − xE

(FP − FW ). (4.27)

After checking for boundedness1, the extrapolated value at the second neighbor is then
placed into the filter.
For further improvement of the curvature a 5-point Chebyshev filter [91] in the manner

1FEE = min
(
max(FEE , 1), 0

)
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of Equation (4.25) and a volume fraction dependent weighting [22] is applied on the cur-
vature itself. The coefficients for the different filters are listed in Table 4.1. As stated

Table 4.1: Filter coefficients bk

b−2 b−1 b0 b1 b2

LSP degree 2 −3 12 17 12 −3
5-point Chebyshev −1 4 10 4 −1

by Renardy et al. [106] the curvature is expected to be more accurate when the volume
fraction is not close to zero or unity. Therefore, the weighting for the curvature is defined
as

κ∗P =
κPωF,P +

∑
Q κQωF,Q

ωF,P +
∑

Q ωF,Q

. (4.28)

Index Q denotes all the direct neighboring CVs and the weighting factor with the exponent
λ is given by

ωF,i =
[
1− 2(|0.5− Fi|)

]λ
. (4.29)

In Equation (4.29) it can be seen that the factor reaches zero if the volume fraction tends
zero or unity and becomes maximum when the volume fraction equals 0.5.

4.2.4 Coupled VOF Level-Set

In order to track the position of the interface, there are VOF-based methods as well as the
Level-Set (LS) method. With a combination of both methods in the context of curvature
computation, called Coupled-VOF-Level-Set (CVOFLS) method, the advantages of both
are combined, which are conserving the mass for the VOF method and an accurate repre-
sentation of interface geometry for the LS method [92]. For each curvature computation,
the LS function ϕF is initially constructed upon the VOF field with ∆h = max(∆xi) as

ϕ0
F = 2∆h(F − 0.5), (4.30)

which is larger than zero on one side, greater than zero on the opposite site and exact zero
on the interface (F = 0.5 in the VOF field). The so-called distance function indicates the
shortest distance to the interface in each cell center and its equation reads as

∂ϕF

∂τ
= sgn(ϕ0

F )

(
1−

∣∣∣∣∂ϕF

∂xi

∣∣∣∣
)
, (4.31)
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with τ being an artificial time. A smoothed Heaviside function is employed for the sign of
the LS function sgn(ϕ0

F ) for better and more stable approximation [92], which are given by

sgn(ϕF ) =


−1 when ϕF < ϵ,

2

(
H(ϕF )−

1

2

)
when |ϕF | ≤ ϵ,

1 when ϕF > ϵ

(4.32)

and

H(ϕF ) =


0 when ϕF < ϵ,
1

2
(1 +

ϕF

ϵ
+

1

π
sin

(
πϕF

ϵ

)
when |ϕF | ≤ ϵ,

1 when ϕF > ϵ.

(4.33)

In both functions the grid depended interface thickness on one side serves as criterion and
is set to ϵ = 2∆h. The LS distance function (4.31) is discretized in (artificial) time with a
fourth order Runge-Kutta method (Section 3.2.2) and in space with the Weighted Essen-
tially Non-Oscillatory (WENO) scheme [71]. The solution of the signed distance function
(4.31) should keep the interface in the initial position, which requires a reinitialization
procedure after each artificial time step [127]. For reducing the computational effort, the
signed distance function (4.31) is restricted to an area around the interface so that it is
solved only up to τ = α∆h, with α being a factor.
At the end of the solving procedure, the derivatives of ϕF are determined by also using the
WENO scheme and placed into the curvature computation of Equation (4.8). Only for the
CVOFLS method, the surface tension computation changes to

fi,S = σκ
∂H(ϕF )

∂ϕF

∂ϕF

∂xi
. (4.34)

For more details of the coupled method or the implementation the reader is referred to
[127, 126, 41, 92, 121].

4.2.5 Machine Learning

In the previous methods for computing curvature some sort of stencil around the interface
cell was taken into account. Then, an algorithm is applied to the stencil to calculate the
curvature. For the method described in this subsection, the algorithm is replaced by a
machine learning approach. The resulting curvature might be corrected with the methods
shown in Section 4.2.3. The overall procedure and findings are the results of a joint work
presented in [58]. Figure 4.7 outlines this procedure performed for each CV of the domain
along the interface. To feed the artificial neural network (ANN), a stencil of volume fraction
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Figure 4.7: Neural network-based curvature prediction from volume fraction stencil [58]

values is used around each computational point as input features. Before being passed to
the neural network, the individual volume fractions are always arranged in a vector of
the same order. The corresponding curvature value is obtained by the neural network’s
output, which is normalized by the cell size ∆ = max(∆xi) of the computational grid.
For the neural network to be used in a flow simulation, it has to be trained and tested
on a diverse and well-distributed data set. During training, the weights and biases of the
neural network are determined and optimized to predict the curvature accurately. The
neural network is considered deep if it has at least two hidden layers between the input
and output layer [42]. The trained neural network, along with its corresponding weights
and biases, is then implemented into the flow solver.

Data Generation

To train and test neural networks, a comprehensive data set of pairs of volume fraction
stencils and corresponding normalized curvatures of arbitrary fluid-fluid interface configu-
rations is required. The data set should cover a wide range of different interface configu-
rations to represent as many real situations as possible. The algorithm used in this study
to generate such a data set is loosely based on the work of [95] and is explained in the
following. Since the curvature is normalized, the domain with length L = 1m and the
equidistant grid with CV size ∆ = 10−3m do not change throughout the data generation
process. The generation starts with choosing a curvature in the bounds of ∆κmin = 10−5

and ∆κmax = 0.4, which are found by the precision of the neural network and by the mini-
mal possible geometry in a stencil, respectively. Therefore, the obtained data is uniformly
distributed over the curvature when a large data set is created and the neural network is
trained equally well on different curvature values. Three geometries are used to generate
the data set: a circle, an ellipse and a sine wave. Every geometry is parameterized in order
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to automatically generate different configurations as a function of few parameters. The
data set generation procedure can be summarized in:

1. Randomly choose a normalized curvature in the range of ∆κmin ≤ ∆κ ≤ ∆κmax.

2. Set the geometry parameters randomly within boundaries that guarantee the exis-
tence of the chosen curvature.

3. Find the specific location of the chosen curvature.

4. Randomly rotate (around an angle θ) and translate (up to one CV) the geometry
and the location of the curvature.

5. Set the stencil of size 7× 7.

6. Shift the stencil along the interface normal by a randomly generated length in the
bounds of ±2L∆ to account for CVs located next to the exact interface.

7. Compute initial volume fractions in the stencil.

8. Create two separate smoothed volume fractions stencils and blend those with the
initial stencil by a random number between 0.5 and 1.5.

9. Keep or invert volume fractions and curvature by a 50% chance.

10. Create data set from curvature and volume fraction stencil.

11. Repeat steps 1-10 until desired amount of data sets are created.

Interface Resharpening

Although the data generation covers a broad range of interface configurations, the input
stencil is optimized with an interface resharpening algorithm. It is introduced due to the
diffuse input stencil in the flow simulation with the algebraic VOF method. The resharp-
ening algorithm is employed for the input stencil in the data training as well as within
the flow solver, thereby the consistency of the neural network-based curvature prediction
on generic data and the usage within an actual simulation increases. The resharpening
is performed in each coordinate direction separately and uniform borders are eliminated,
which changes the 7× 7 stencil into two 5× 5 stencils (input elements only increase from
49 to 50). The algorithm sequence reads as:

1. Initialize the new 5× 5 stencils.
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2. Find CVs in the original stencil for which a neighbor is on the other side of the
interface.

3. Determine the sharp interface location by interpolation between the CV found in
step 2.

4. Assign a new volume fraction containing the sharp interface according to it (or the
mean, if each direction proposes a new value).

5. Set the volume fraction in CVs outside the sharp interface to one or zero, depending
on the previous affiliation.

Additionally the final volume fraction stencil is rotated and mirrored so that the normal
on the interface always shows in the same octant. Hence, the effort in training the neural
network is reduced and robustness is increased.

ANN

The trained neural network is directly available in FASTEST, but the data generation is
carried out in a Python environment and the training and testing is done with Google’s
Tensorflow. First the Artificial Neural Network (ANN) is being initialized with the number
of layers, the kind of layer, the nodes per layer, the activation function of the nodes as
well as the initial distribution of the weights between the layers. Afterwards the ANN is
compiled with setting the optimization method, the learning rate and the loss-function.
The methods and functions chosen for the ANN can be found in Table 4.2. After the data

Table 4.2: Settings for ANN

Setting Method or value

Activation function Rectified Linear Unit (ReLU)
Loss function Mean Square Error (MSE) of ∆κ
Initial weight distribution He-Uniform
Optimization method Adam
Learning rate 10−4

generation procedure there are 1× 106 data points available, which are divided into 70%,
15% and 15% for training, testing and validation, respectively. Before passing the data
sets from the generation and the interface resharpening to the training, they are divided
into batches of size 128. An early stopping criterion is employed, so that the training is
stopped if the validation error does not reduce further for several epochs (one epoch equals
all batches) of training. Different neural networks varying up to five hidden layers and
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up to 200 nodes each layer are evaluated, with and without interface sharpening and the
findings can be found in [58]. The most promising network configuration is trained with
200 nodes on each of three layers and with the interface resharpening algorithm for the
input stencil.

4.3 Interface Acoustics

For computing acoustics with the LEE as presented in Section 2.3, the source term on the
right-hand side of the acoustic pressure transport Equation (2.48) is the driver of every
acoustic appearance. The change of the pressure from one time step to the next produces
the acoustic source. In case of multifluid systems the pressure across an interface between
the fluids changes, which is expressed by the equilibrium in Equation (3.49). Consider a
moving water drop inside an air stream traveling with identical velocity, hence no relative
movement between both phases exist. Figure 4.8a shows the acoustic source term at the
interface in such configuration, additionally in Figure 4.8b the pressure jump and the
acoustic source along the horizontal center line of the drop is displayed.

(a) Schematic of acoustic source term
(blue=low, red=high) around moving inter-
face)
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(b) Pressure and acoustic source along horizon-
tal middle line of water drop

Figure 4.8: Unphysical acoustic sources around fluid-fluid interface

However, when computing acoustics in the underlying framework consisting of the VOF
method and the CSF formulation for the surface tension including their special discretiza-
tion techniques (Section 3.2.3 and Section 3.2.4), the interface spans over several CV. Not
only but especially if the interface moves, the pressure in these interface CV changes locally
and introduces unphysical acoustic sources (see Figure 4.8b). In order to suppress these
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erroneous sources in the interface region the temporal pressure gradient is corrected as

− ∂p

∂t
=

 0 if κ ̸= 0,

− ∂p

∂t
if κ = 0.

(4.35)

Additionally, in case the interface movement should be the main contributor to the acoustic
source, the pressure is corrected in each phase with the values from a point far away of the
area of interest. For a two-phase system of fluid A and fluid B the correction yields

− ∂p

∂t
=


− ∂(p− pref, fluid A)

∂t
if CV located in fluid A,

− ∂(p− pref, fluid B)

∂t
if CV located in fluid B.

(4.36)
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5. Numerical Examples

In this chapter numerical validations and examples are presented upon the framework
presented in Chapter 3 and Chapter 4. First the curvature computation methods are
validated on different configurations. Second the coupling between the acoustics and the
multiphase part is examined. At the end, a full three-dimensional test case covering every
aspect of this work is presented.

5.1 Curvature Validation

In order to get a fast, robust and accurate curvature value in each interface cell, differ-
ent methods have been presented in Chapter 4. To validate these methods simple yet
meaningful test cases are required. Since the CVOFLS curvature computation method
has been analyzed in previous work [121], it is not explicitly examined. The accuracy of
this model is outweighed by its high computational time, making it unusable for complex,
three-dimensional and multiblock distributed simulations. However, for some test cases it
will be considered as reference.
The process of the curvature validation begins with a static test case, for which the curva-
ture computation models CFDM, HF, ANN and the effect of each improvement of Section
4.2.3 are investigated. The curvature validation is performed in two dimensions, to gain
a general overview of the most promising combinations of each method and improvement.
Except the machine learning approach, all curvature computation models are available in
three dimensions. In a second validation test case, capillary oscillations around an equi-
librium solution further characterize the performance of each curvature method. Due to
the surface tension, the initially ellipse or square geometry oscillates around an equivalent
circle until steady state is reached. The capillary oscillations are particularly suitable for
testing curvature calculation methods because this represents the extreme case in which
the fluid motion is caused purely by surface tension. In other applications, the motion
induced by the surface tension is sometimes superimposed by a much stronger convective
flow, which reduces the influence of the surface force and thus reduces the tolerance for
incorrect curvature calculations.
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Each method and its best combination with the possible improvements is carried out on
different grid sizes to gain a comprehensive overview. After each test case a comparison
across the methods and a conclusion are given.

5.1.1 Static Drop

The static drop test case in any form is based on Laplace’s equilibrium (2.22) and the
standard for most of the surface tension dominated multiphase work given in the literature.
By placing a spherical drop in a static equilibrium the net surface force at each point should
be zero due to the balancing of the surface tension and the pressure gradient. The correct
solution to this problem is a zero velocity field and a pressure field that rises from a
constant value p0 outside the drop to p0 + σ/R inside the drop. The exact curvature for
a circle is known as κexact = 1/r. Measuring the deviation from the correct solution with
the curvature value itself, the magnitude of the velocity and the pressure jump across the
interface evaluates the curvature computation for each model. Different norms and errors
are employed to the physical quantities, which read as

L2(κ) =
1

κexact

√∑NI

j=1(κj − κexact)2

NI

, (5.1)

L∞(κ) =
1

κexact
max(|κj − κexact|), (5.2)

L∞(ui) = max(|ui|), (5.3)

E(∆pmax) =
|∆pmax −∆pexact|

∆pexact
, (5.4)

E(∆pinout) =
|∆pinout −∆pexact|

∆pexact
. (5.5)

In the curvature norms (5.1) and (5.2) index j counts to NI , which is the number of
interface CVs found by κj ̸= 0. The difference between maximum and minimum pressure
present in the domain ∆pmax = |max(p) − min(p)| defines the error E(∆pmax). The
pressure error E(∆pinout) depends on the average pressure inside and outside the drop as
∆pinout = | 1

Nin

∑Nin

l=1 pl − 1
Nout

∑Nout

m=1 pm| with Nin and Nout being the number of CVs inside
and outside the drop, respectively.
The computational domain of quadratic size with length L = 8m is partitioned by 16, 32,
64, 128 and 256 CVs. Within the background fluid resides the drop of radius R = 2m
centered in the domain. The surface tension coefficient is increased to σ = 73Nm−1

leading to a pressure jump of ∆pexact = 36.5Pa (2D) or ∆pexact = 73Pa (3D). Initially
every flow variable is set to zero demanding the solver to establish the pressure inside the
drop. Convergence is reached if the change of every flow variable is beneath the criterion
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of ϵ = 1× 10−4.
Each curvature computation method of Section 4.2 and every improvement (see Section
4.2.3) employed on it will be analyzed separately followed by a comparison of each best
combination. In order to gain a first insight the analysis is carried out after one time step
on 642 CVs. The material properties can be found in Table 5.1.

Table 5.1: Material properties of static drop test case

Property Symbol Unit Surrounding Drop

Density ρ [kgm−3] 1 1000
Viscosity µ [kgm−1 s−1] 1× 10−3 2× 10−5

Surface tension coefficient σ [Nm−1] 73

CFDM

The CFDM differentiates the volume fraction distribution in every spatial direction twice,
so that the curvature is estimated by a finite difference approximation as presented in
Section 4.2.1. In Figure 5.1a discrete curvature values in the interface region around a
small sector of the static drop are shown. Taking a look at the curvature of the standard
method in Figure 5.1a, it is obvious that the values are far away from the exact curvature
of κ = 0.5m−1. By employing a smoothing (denoted by )̃ on the concentration and on the
curvature and in addition weighting (denoted by ∗) the (smoothed) curvature, the results
improve significantly. Indicated by the green color, the improved discrete curvature values
are shown in Figure 5.1b.

Every modification combination was tested and its outcome is shown in Figure 5.2. Al-
though the least curvature error in Figure 5.2a is achieved by applying all of the named
steps, the spurious velocities in Figure 5.2b are at the lowest by only weighting the
smoothed curvature.

However, the pressure errors in Figure 5.2c are consistent with the best curvature result, so
that the optimal combination taking all measurements into account is obtained by applying
all improvements (F̃ , κ̃∗) to the standard CFDM (general denoted by Std.). The effect of
the improvements on the curvature values is contrasted to the standard in Figure 5.1b.

HF

The HF method consists of creating heights along the interface which are differentiated to
obtain the curvature as described in Section 4.2.2. Since the improvements can be employed
for the HF curvature computation as well, the impact is investigated and the results are
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Figure 5.1: Discrete curvature values of CFDM without and with improvements after one
time step on 642 CVs

(a) Curvature error norms (b) Spurious velocities (c) Pressure jump errors

Figure 5.2: Curvature errors, spurious velocities and pressure jump error of CFDM and
improvements

shown in Figure 5.3. The smoothing of the volume fraction (F̃ ) only changes the spatial
derivatives for the height direction determination and the surface tension term (4.6), yet
the smoothed values are not used for constructing the heights. For the standard HF method
finding the best overall improvement is not as distinct as for the CFDM method. For the
curvature error norms, most impact is achieved by smoothing the volume fraction and the
curvature and weighting the curvature (F̃ , κ̃∗) or only weighting the curvature (κ∗) as seen
in Figure 5.3a. Least spurious velocities are produced after smoothing the curvature (κ̃
in Figure 5.3b). Best results for the pressure in Figure 5.3c are achieved by employing
all improvements (F̃ , κ̃∗) and by smoothing the volume fraction and the curvature (F̃ , κ̃),
followed by only curvature smoohting (κ̃) and curvature smoothing and weighting (κ̃∗).
By ranking all results from one to seven and adding the ranks, the best combination is
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(a) Curvature error norms (b) Spurious velocities (c) Pressure jump errors

Figure 5.3: Curvature errors, spurious velocities and pressure jump error of HF and im-
provements

smoothing the curvature.
The stencil on which the height is constructed can be set adaptively instead of a fixed size.
On this HF approach the different improvement methods are employed and the results are
shown in Figures 5.4.

(a) Curvature error norms (b) Spurious velocities (c) Pressure jump error

Figure 5.4: Curvature errors, spurious velocities and pressure jump error of AHF and
improvements

Identical to the fixed height, the weighting of the curvature shows the best overall result
as well as for the curvature norms in Figure 5.4a. Spurious velocities in Figure 5.4b are
low for curvature smoothing (κ̃). The in-out pressure jump error in Figure 5.4c gives the
best results for the standard AHF, whereas the smoothing of the volume fraction and the
curvature (F̃ , κ̃). The ranking across all disciplines gives the smoothing of the curvature
to be the best combination.
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ANN

Instead of computing the curvature by differentiating the volume fraction field in some
manner, a trained ANN is able to return the curvature. The input data is a stencil of size
7× 7 and the result is the curvature value of the interface cell, described in Section 4.2.5.
As a curvature computation method rarely discussed in the literature, the ANN is only
available for two-dimensional problems. Here, the network is trained with 200 nodes on
each of three layers and the pre- and post-processing steps for the input stencil, explained
in Section 4.2.5, are employed. The results are shown in Figure 5.5 additionally with the
improvements to the curvature and the volume fraction.

(a) Curvature error norms (b) Spurious velocities (c) Pressure jump error

Figure 5.5: Curvature errors, spurious velocities and pressure jump error of ANN and
improvements

Note that volume fraction is manipulated exclusively for the first derivatives, as in the HF
method. The input of the ANN should be as identical as possible to the training data in
order to produce accurate curvature results. The curvature error norms show decreasing
behavior for all improvements in comparison to the standard method, with smoothing
and weighting the curvature and smoothing the volume fraction (F̃ , κ̃∗) having the least
errors, shown in Figure 5.5a. In contrast the spurious velocities are at the highest with the
least curvature error and the lowest for smoothing the curvature (κ̃), to be seen in Figure
5.5b. The least in-out pressure difference error is found to be with all improvements
employed (F̃ , κ̃∗), while the lowest maximum pressure difference results by only weighting
the curvature (κ∗). Both noticeable in Figure 5.5c. Equal to the HF method, a ranking
determines the best combination which is the curvature smoothing and weighting.
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Comparisons

After identifying the most promising combinations of each method with the improvements,
an overview of the outcome is given in Table 5.2. With the most effective improvements
and without them, a direct comparison of the curvature computation methods will be given
in the following.

Table 5.2: Standard methods and their most effective improvement

Method Volume Fraction Smoothing Curvature Smoothing Curvature Weighting

CFDM ✓ ✓ ✓
HF ✓
AHF ✓
ANN ✓ ✓

Starting with the computational time for one time step on the finest grid of 2562 CVs,
the initial statement to the CVOFLS as being the slowest is proven by Figure 5.6a, in
which the time is plotted relative to the time consumed by the fastest method. The
computational time includes all inner iterations of the SIMPLE algorithm. The improved
CFDM (CFDM∗) is faster than the standard CFDM, reasoned by the fewer iterations taken
for reaching convergence. The number of inner iterations are shown in Figure 5.6b and the
time spent per iteration in Figure 5.6c, both scaled ot the smallest value in each plot.

(a) Computational time (b) Iterations (c) Time per iteration

Figure 5.6: Computational time, inner iterations and time spent per iteration for one time
step on 2562 CVs scaled to smallest value

However, considering the computational time in Figure 5.6a all HF and CFDM methods
are in close range, while the ANN method is slightly slower. The time necessary to run
through the improvement routines are less than 5%.
In Figure 5.7 all methods without and with each best improvement employed, as per Table
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5.2, are compared on the reference grid of 642 CVs. The ANN offers the best curvature
values and the least maximum pressure error. However, the improved CFDM produces the
least spurious velocities.

(a) Curvature error norms (b) Spurious velocities (c) Pressue jump error

Figure 5.7: Curvature errors of CFDM, HF and ANN without and with their best improve-
ments (∗) and CVOFLS after one time step on 642 CVs

The accuracy of each method on different grid spacing is addressed next, starting at 162

CVs up to 2562 CVs. Note that this not solely a geometrical review rather than the results
after one time step. The errors shown in Figure 5.8 indicate that none of the presented
methods truly converges with grid refinement in every discipline analyzed.
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Figure 5.8: Curvature grid convergence results for curvature methods

Especially with the HF methods, an optimal grid resolution for the stencil is found at
64 CVs. Note that the literature [16, 94] includes only cells meeting the HF condition for
convergence studies, while here every interface cell is included into the error determination.
However, except the pressure error on 162 and 322 CVs of the standard HF method (see
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Figure 5.9), the best improvements of each method enhances the results on every grid level
and in every aspect. The most impact of the improvements is found to be with the CFDM
curvature computation method.
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Figure 5.9: Pressure grid convergence results for curvature methods

5.1.2 Capillary Oscillations

In this dynamic test case an ellipse or square is initially placed in the middle of the
domain. Due to the acting surface tension the geometry tries to transform into a circle and
overshoots the counterpart of its origin geometry until the equilibrium solution is reached.
The ellipse oscillates in the second mode (m = 2) and the square in the fourth mode
(m = 4), so that its oscillating frequency ωm and period τm can be described analytically
[60, 1] with

ωm =

√
σm(m− 1)(m+ 1)

(ρ1 + ρ2)R
3 , (5.6)

τ ∗m =
ρ1R

2

µ1(2m(m− 1))
, (5.7)

ω∗
m =

√
ωm(1− (ωmτm)−2), (5.8)

τm =
2π

ω∗
m

. (5.9)

The viscosity of the fluid reduces the natural oscillation frequency [10], which is considered
through the intermediate variables ω∗ and τ ∗. For the geometries an average radius R is
determined from the semi-axes a and b of each geometry. The geometrical data is listed in
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Table 5.3 and the material properties in Table 5.4, both are chosen in reference to [149] and
[137]. The two dimensional domain is of size L = 0.0075m, discretized with 64, 128 and

Table 5.3: Geometrical properties of capillary oscillation test case

Property Symbol Unit Ellipse Square

Semi-axis a [m] 0.016893 0.04
Semi-axis b [m] 0.028226 0.04
Average radius R [m] 0.02256
Domain L [m] 0.075
Analytical period τ0 [s] 1.5918 0.5025

Table 5.4: Material properties of capillary oscillation test case

Property Symbol Unit Surrounding Geometry

Density ρ [kgm−3] 1.1768 787.88
Viscosity µ [kgm−1 s−1] 0.002 0.024
Surface tension coefficient σ [Nm−1] 0.02361

256 CVs in each spatial direction. The time step size in the elliptical drop test case is set
to ∆t = 2.5× 10−3 s for the lowest grid size and ∆t = 1× 10−3 s for the middle and finest
grid. The motion of the square droplet is more dynamic, so that ∆t = 1× 10−3 s is set for
64 CVs, ∆t = 6.25×10−4 s in case of 128 CVs and ∆t = 3.125×10−4 s for 256 CVs. For the
investigation of the oscillation period, the north point of each geometry is tracked as shown
in Figures 5.10a and 5.10b. The position of the north point is approximated with linear
interpolation along the vertical middle line, starting at the center of the geometry. If the
derivative of the y-motion changes its sign, the time is stored and the error in percentage
is computed as

E(τm) =
|τm − τm,analytic|

τm,analytic

· 100. (5.10)

After initially distorted by 25% the elliptical droplet starts to oscillate in a certain fre-
quency with decreasing amplitude. The graphical representation of the simulation results
on 1282 CVs are shown in Figure 5.11, accompanied by the analytical period and its mul-
tiples marked by solid vertical lines in the enlarged view of Figure 5.11a. The first period
of each curvature method and the corresponding error E(τ2) are listed in Table 5.5. The
CVOFLS method serves as a reference for the amplitude as it agrees with the analytical
period across all grids within 1.5% and lower. It is difficult to make a general and univer-
sally valid statement about the best curvature method. As seen in the presented results,
the improved ANN shows the best results on 642 CVs and 2562 CVs, while the improved
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(a) Ellipse (b) Square

Figure 5.10: North point movement in capillary test cases
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Figure 5.11: North point movement of oscillating ellipse

AHF is the best on 1282 CVs. However, by looking at the amplitude of the oscillation in
Figure 5.11b it is obvious that the ANN∗ is in good agreement with the reference CVOFLS.
Although the improved CFDM produces the worst results, the error is in the range of 6%.
Considering a longer simulation time, the curvature values in the improved HF method lead
to lesser damping with tendencies to instabilities towards the end at t = 8 s. In contrary,
the improved CFDM shows an excessive damping behavior leading to smaller amplitudes
with a stable ending.
Replacing the elliptic geometry in the middle of the domain with a square, the frequency
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Table 5.5: Ellipse oscillation time period results

Method 642 1282 2562

τ2 [s] E(τ2) [%] τ2 [s] E(τ2) [%] τ2 [s] E(τ2) [%]

Analytical 1.592 0 1.592 0 1.592 0

CVOFLS 1.5675 1.530 1.5800 0.744 1.585 0.430
CFDM∗ 1.6850 5.852 1.6850 5.852 1.69 6.166
HF∗ 1.6450 3.339 1.6575 4.124 1.699 6.731
AHF∗ 1.6025 0.669 1.6050 0.826 1.63 2.397
ANN∗ 1.5925 0.041 1.5750 1.058 1.579 0.807

mode increases to m = 4. Figure 5.12 shows the north point movement of the simulation
on 1282 CVs at the beginning and until t = 8 s.
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Figure 5.12: North point movement of oscillating square

Table 5.6 supplements the corresponding numerical values determined in the same way
as for the ellipse. Initially, the distribution of the volume fraction values of the square ge-
ometry is quite challenging for the curvature methods as it has four sharp edges connected
by straight lines. Although the sharp edges are smoothed the curvature is high, while on
the straight lines the curvature tends to be infinite small. The AHF fails to compute the
curvature for the square at the beginning, hence no desired oscillation occurs. For that
reason, it is left out of the results.
Nevertheless, the simulation of the higher frequency mode shows similar results to the lower
case. The ANN with its improvements is the most accurate across all grid resolutions in
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Table 5.6: Square oscillation time period results

Method 642 1282 2562

τ4 [s] E(τ4) [%] τ4 [s] E(τ4) [%] τ4 [s] E(τ4) [%]

Analytical 0.5026 0.5026 0.5026

CVOFLS 0.522 3.869 0.518 3.099 0.519 3.348
CFDM∗ 0.561 11.629 0.552 9.815 0.548 9.005
HF∗ 0.569 13.221 0.559 11.307 0.566 12.551
ANN∗ 0.560 11.430 0.546 8.694 0.543 7.948

terms of period and amplitude, shown in Figure 5.12a. As before, the HF fails to keep the
simulation stable while the CFDM∗ and its over proportional damping shows no sign of
movement after t = 4 s, to be seen in Figure 5.12b.
In summary, the CVOFLS justifies its role as reference since it produces small errors while
being stable for any grid resolution. However, the computational time is five times greater
than with other methods, which makes its application impractical. Depending on the grid
resolution and the test case, the AHF shows promising results, which may be enhanced
by an even more sophisticated stencil construction [28] or by combining other methods
[101]. Nevertheless, for the square geometry the AHF was not able to compute the initial
curvature values at the edges leading to an overall failure.
Although having similar results to the CFDM in the static drop test case, the HF with fixed
stencil size is the least accurate curvature method for the capillary test case. Especially,
the unstable behavior for both geometries is not tolerable. As fastest curvature method
of those tested and simultaneously being unconditionally stable, the CFDM with its im-
provements turns out as versatile employable. At least, the ANN curvature computation
shows excellent results in every aspect and more effort in its development has to be made.

5.2 Coupling between Acoustics and Multiphase

In this section, the generation of the acoustic sources by surface-tension-driven multiphase
flow is presented. At first, the interface treatment of Section 4.3 is verified by two test
cases. In both test cases different phases and acoustics are computed, but in the first
configuration an acoustic signal should not occur while in the second it should be pro-
duced by the interface movement [37]. Secondly, a three-dimensional test case considering
airborne acoustics triggered indirectly through nearby oscillations is presented. Note that
each single part of the solver has been verified in [141, 57].
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5.2.1 Verification of the Interface Acoustics

For the first verification of the coupling between the acoustics and the multiphase part,
a water drop (fluid 1) in form of an ellipsoid is placed inside a duct filled with air (fluid
2) having a density ratio of ρ1/ρ2 = 1 × 103 and a viscosity ratio of µ1/µ2 = 1 × 102.
A uniform flow field with a constant velocity in x-direction u = 0.1m s−1 is set. The
time step size is ∆t = 2 × 10−5 s and the simulation time is T = 0.2 s. The duct has
a length in both directions of 0.05m, divided by 642 CVs resulting in the uniform cell
size ∆h = 7.8125 × 10−4m. The drop radius is r = 5 × 10−3m and the drop starts at
(x, y) = (0.0125m, 0.025m). Referring to Equation (2.22) with constant surface tension
σ = 0.08Nm−1, the exact pressure jump is ∆p = 16Pa. To focus on the moving interface
the curvature is kept constant and moreover the speed of sound for both fluids is set to
c = 1ms−1. Beside the inlet on the left side and the outlet on the right side, for the
top and the bottom of the domain symmetric boundary conditions are applied. All four
boundary conditions act like acoustic outlets.

(a) Acoustic pressure at t = 0.1177 s with
volume fraction isoline for F = 0.5
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(b) Comparison of acoustic pressure at
point P

Since the constant drop and the background fluid move simultaneously no acoustics should
be produced. In Figure 5.13b, the acoustic pressure contour plot is shown at time t =
0.011 77 s. The sources at the front and the back of the drop produce acoustic waves
which are emitted into the domain and inside the drop. Waves inside the drop travel
until the opposite side of the interface where they are nearly completely reflected due to
the material parameters of the fluids. Exemplary taking the acoustic pressure at point
P = (0.025m, 0.045m) over the simulation time, one can see in Figure 5.13b that the
magnitude is in a range of 10−4 Pa. If the simulation is repeated without the sources of
the interface, as presented in Section 4.3, the outcome is as expected. The magnitude of
the acoustic pressure in point P is about 10−17 Pa. Comparing the two simulations, the
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regime with the suppressed sources appears as a red line in Figure 5.13b. For this test case
suppressing the sources in the interface region leads to negligible acoustic pressure in the
domain.
Whereas in the previous test case a moving interface should not produce sound, the moving
interface in the second test case should emit acoustic waves. Similar to Section 5.1.2, an
elliptic drop with two semi-axes of a = 0.005m and b = 0.003m is placed in the center
of the domain. The lengths and discretization are the same as in the previous test case.
Due to the acting surface tension the ellipse oscillates around its equivalent circle shape,
while the background fluid is at rest. It is expected that the acoustic pressure emitted from
the ellipse has the same frequency as the oscillation itself. The simulation parameters are:
∆t = 3× 10−7 s, σ = 0.08Nm−1, ρ1/ρ2 = 1, µ1/µ2 = 1 and T = 0.15 s.

(a) Maximum deflection in y-direction (b) Maximum deflection in x-direction

Figure 5.14: Acoustic pressure contour of oscillating drop with concentration isoline for
F = 0.5

Figures 5.14a and 5.14b show the acoustic pressure contour plots at approximately maxi-
mum drop deflections. In Figure 5.14a it can be seen that the drop emits acoustic signals
in the north and south direction with positive acoustic pressure, corresponding to the el-
lipse deflection. As expected, the results in Figure 5.14b are inverted as the orientation
of ellipse deflection. The frequency of the drop oscillation is 60.1Hz. In Figure 5.15 the
Fourier analysis of the acoustic pressure is taken at point Q = (0.25m, 0.35m). The max-
imum amplitude occurs at a frequency of 58.6Hz. The difference between the frequencies
of the drop oscillation and the acoustic pressure is within 2.5% and therefore in a good
agreement.
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Figure 5.15: Fourier analysis of acoustic pressure at point Q

5.2.2 Acoustics at Nearby Surface

In order to check if the numerical methods presented in this work are suitable for the
following drop impact test case, a preliminary three-dimensional test case is set up [38].
According to Phillips et al. [97] the main driver of the drop impact acoustics is the bubble
oscillation after the detachment. Therefore, an ellipsoid-shaped air bubble, defined by
the major axis of 0.923 × 10−3m and the minor axis of 0.675 × 10−3m, is initialized at
(0.0025m, 0.0015m, 0.0025m) directly under a water surface at 0.139 × 10−3m. The grid
consists of 1283 CVs and the material parameters for air and water are listed in Table 5.7.

Table 5.7: Material properties of air and water

Property Symbol Unit Air Water

Density ρ [kgm−3] 1 1000
Viscosity µ [kgm−1 s−1] 1.7× 10−5 1× 10−3

Speed of Sound c [m s−1] 1 4.32
Surface tension σ [kg s−2] 0.074

The speed of sound is scaled due to the comparable small cubic domain of L = 5×10−3m.
The surface tension model is chosen to be the improved CFDM, as it is a full three-
dimensional test case running on eight processors in parallel. Similar to the capillary
oscillation test cases, surface tension will force the ellipsoid to return into a spherical
shape which leads to an oscillation of the bubble. In Figure 5.16 a series of six time steps
showing a slice through the xy-plane at constant z = 2.5 × 10−3m with the pressure as
contour, ranging from positive in red to negative in blue. The black isolines represent
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(a) t = 1× 10−5 s (b) t = 3.2× 10−4 s (c) t = 5.5× 10−4 s

(d) t = 6.1× 10−4 s (e) t = 9.3× 10−4 s (f) t = 1.15× 10−3 s

Figure 5.16: Pressure of oscillating ellipsoid driving the motion of above surface with
volume fraction isolines at F = 0.1, 0.5, 0.9

the volume fraction at values F = 0.1, 0.5, 0.9. The under-pressure between the bubble
and the surface in Figure 5.16a leads to a downward movement, see Figures 5.16b and
5.16c. After the point of inflection in Figure 5.16d, the pressure rises and pushes the above
surface in the upward direction (Figures 5.16e and 5.16f). The relative movement of the
water surface to the surrounding air drives the acoustics in the air. The acoustic pressure
above the surface and the surface motion are compared with respect to their frequency and
phase shift. The airborne signal taken at a monitoring point (0.003m, 0.004m, 0.003m)
and the surface movement right above the bubble are shown in Figure 5.17. Not taking
into account the first peak of each signal, the frequency of the following four peaks for the
airborne regime can be found at 664Hz, which is less than 10% diverging from the surface
oscillation frequency with 724Hz. In addition to the frequency, the shift in time of the
two signals is used for validation. Between the first upward directed peak of the surface at
1.38 × 10−3 s and the first positive peak of the acoustic pressure at 2.52 × 10−3 s, there is
a difference of ∆t1signals = 1.14 × 10−3 s. Between the first downward directed peak of the
surface at 2.13×10−3 s and the first negative peak of the acoustic pressure at 3.46×10−3 s,
the difference in time is ∆t2signals = 1.33 × 10−3 s. The distance of the first CVs above
the surface, in which the acoustic source is not suppressed, to the monitoring point is
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Figure 5.17: Airborne acoustics of preliminary test case (black) and surface position (red)

∆d = 1.52× 10−3m. With a speed of sound of 1m s−1, the phase shift between the surface
movement and the acoustic signal is in plausible range so that ∆d ≈ c · ∆t1,2signals. Due to
the scaled speed of sound, the acoustic pressure above the surface at three points in time
is made visible in Figure 5.18. The preliminary test case provides a promising result and
therefore the next step is to apply the methods to the more complex drop impact test case.

(a) t = 1× 10−3 s (b) t = 2.5× 10−3 s (c) t = 3.5× 10−3 s

Figure 5.18: Airborne acoustic pressure of oscillating surface driven by the motion of an
oscillating bubble and volume fraction isosurface at F = 0.5
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5.3 Drop Impact Acoustics

The final numerical example combines all models presented in this work. The physical
background of this test case was first investigated in the 1920’s [73]. A liquid drop impacts
under certain conditions into a larger body of liquid, which then produces a sound. A
common phenomena as it can be observed by a tripping tap releasing water drops into
a sink full of water or raindrops falling onto a lake. Various researches tried to find the
source of the sound. In 1959 Franz [36] concluded through the comparison of photographs
and hydrophones that the formation of a bubble in the liquid was found to coincide with
the start of a sound pulse. Thirty years later, Pumphrey et al. [104] investigated the
circumstances in which the air bubble is formed and stated that the sound pulse is emitted
by the pulsating air bubble under the surface of the water during the drop impact. They
concluded by their studies that the “regular bubble entrainment” only occurs under certain
conditions, which were later characterized by the Weber number

We =
ρU2

I D

σ
(5.11)

and the Froude number

Fr =
U2
I

gD
, (5.12)

where g is the acceleration due to gravity, UI is the impact velocity, D is the drop diameter
and σ is the surface tension. Oguz et al. [88] found that the boundaries of the regular
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Figure 5.19: Froude-Weber diagram with shaded regular entrainment region based on Oguz
et al. [88]; square represents the test case by Phillips et al. [97]; circle represents the test
case by Morton et al. [80]
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entrainment region, shown as shaded area in Figure 5.19, could be approximated by the
following power law relation:

We = A · Frβ, (5.13)

in which the upper boundary is given by A = 48.3, β = 0.247 and the lower boundary by
A = 41.3, β = 0.179. In this region a bubble detaches from the bottom of the cavity. It
was assumed by Leighton [63] in 2012 that the airborne sound results from the underwater
sound field propagating through the water-air interface. However, recently progress was
made in determining the source of the characteristic so-called “pling” sound by Phillips et
al. [97]. By increasing the performance of the experimental equipment used for capturing
the fluid and the acoustics, the group of Phillips contradicts Leighton’s assumption by
proposing the theory that the airborne sound is produced by an oscillation of the cavity
bottom. Like a piston in a baffle, the motion of the cavity bottom is driven by the oscillation
of the detached air bubble shown in Figure 5.20.

Figure 5.20: Schema of drop impact airborne sound source by Phillips et al. [97]

Various methods solving the acoustics and multiphase part are existent, but few works
handle a coupled simulation. For example, the sound generation and propagation in two
phases were simulated by Tajiri et al. [131] with the help of a finite difference lattice
Boltzmann method. For simulating a such physically rich test case, the task is to find an
optimal balance between computational time and physical correctness. The considerations
concerning spatial and temporal resolutions are presented in the following.

5.3.1 Spatial Resolution

Morton et al. [80] stated in their work that a certain resolution is necessary to capture all
the effects from the experiments. To achieve a sufficient resolution within an acceptable
amount of computational time, the grid gets adapted in r-refinement manner [110] as
explained in the following. First the simulation is performed on a uniform grid to identify
the area of interest. Afterwards the CVs are concentrated in this area while keeping the
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overall number of CVs constant. Inside the refined area the grid has a Cartesian structure.
To investigate the influence of the grid, the cavity depth over time is computed on four
different grid levels using a 2.9 × 10−3m diameter drop impacting with UI = 1.55m s−1

(We = 84, Fr = 94, circle in Figure 5.19). An example of the coarsest mesh can be seen in
Figure 5.21 and the grid level details can be found in Table 5.8. The results of the mesh
study in Figure 5.22 are scaled in length by the initial drop diameter D and in time by
D/UI.

Figure 5.21: Example mesh in xy-plane
with coarsest spacing and initial concentra-
tion α = 0.5
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Figure 5.22: Comparison between results by
Morton et al. [80] and simulations on four
grid levels

Table 5.8: Grid level details

Grid level CV Minimum cell size CPU cores

Coarse 643 2.266× 10−4m 2
Medium 1283 1.133× 10−4m 8
Fine 2563 5.664× 10−5m 64
Very fine 4163 3.090× 10−5m 216

No bubble entrapment occurs on the coarse grid, in comparison to the higher grid levels.
Since the detachment of a bubble is crucial for the acoustic part, the coarse grid will not
be included for the coupled simulation. However, the path of the four grid levels are very
similar until τ = 4 where the coarse grid regime stays at a lower cavity depth. The other
three finer resolutions differ slightly in the interval between τ = 6 and τ = 8. The regime
of the fine and the very fine grid resolution deflect slightly to the surface. With the very
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fine grid, the crater moves further to the depth before recoiling, visible as discrepancy
between the fine grid around τ = 6.5.
Additionally Figure 5.22 compares the results of the four simulations with the numerical
and the corresponding experimental results of Morton et al. [80]. The simulation and
experimental data by Morton et al. show different courses over time. The experimental
data starts with an offset between τ = 2 to τ = 4, while from τ = 4 to τ = 6 the mean
of the data points lies next to their simulation results. After τ = 6, the simulation data
of Morton stays constant until τ = 8, from where on the cavity bottom rises again. The
experimental data in contrast shows some sort of wave from τ = 6 on with a rise of depth
at the end. It can be seen that the results from the simulation on the fine and the very fine
grid level also behave wave like from τ = 6 on with a rise at the end. At the beginning,
simulations on all grid levels run for the mesh study show the same offset as the simulation
data of Morton et al. However, from τ = 5 to τ = 8 the fine and very fine grid level
regimes agree within a 4% range to the experimental data of Morton.

5.3.2 Temporal Resolution

The maximum temporal resolution is either given by the expected acoustic signal or the
capillary time-step constraint of the multiphase flow. From theory the acoustics are pro-
duced by an oscillating bubble which introduces oscillations in the bottom of the cavity.
The oscillation frequency was found to be in range of the natural oscillation frequency f
for a submerged gas bubble derived by Minnaert [79]:

f =
1

2πr

√
3γHP0

ρ
. (5.14)

With bubble radius r, specific heat ratio for the gas inside the bubble γH , static pres-
sure on the exterior surface of the bubble P0 and the density of the surrounding liquid
ρ, the frequency is a function of the bubble radius. In order to capture variations of the
bubble radius, a diameter range of 0.7 × 10−3m to 0.9 × 10−3m is considered and leads
to a frequency range of approximately 9500Hz to 7250Hz, respectively. To ensure that
the multiphase simulation is able to produce this oscillation, a maximum time step size is
determined following the Nyquist-Shannon sampling theorem [115], which states that the
sampling frequency should be twice as high as the signal frequency. In order to not only
ensure a distinguish association of a frequency but rather a clear resolution, the sampling
rate is being increased tenfold. These considerations concerning the acoustics lead to a
maximum time step size of ∆tmax = 1.053× 10−5 s.
Within multiphase flows with surface tension, the time step size needs to resolve the
propagation of capillary waves for a stable simulation [14]. In Denner et al. [23] it is
demonstrated that the constraint needs to be applied irrespective of an explicit or implicit
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surface tension implementation. According to Brackbill et al. [14] the capillary time step
constraint leads to a maximum time step size of

∆tmax <

[
(ρ1 + ρ2)(∆h)

3

4πσ

]1/2
. (5.15)

With the properties of air and water as listed in Table 5.7 and the minimum cell size of
the very fine grid level in Table 5.8, a maximum time step size of ∆tmax = 5.634 × 10−5 s
results.
Considering both criteria and in order to be in distance to a CFL number smaller than
0.3, the maximum time step size for the coarse, medium and fine grid simulations are set
to a maximum of ∆tmax = 1× 10−6 s and for the very fine grid ∆tmax = 1× 10−7 s.

5.3.3 Importance of Surface Tension

Before comparing the results, the importance of the curvature computation on the fine
grid is exposed in Figure 5.23a. Due to an inadequate curvature computation, the drop
loses its shape during the impact into the surface and some fluid emerges at the top of the
drop. In general, the surface appears as irregular and wavy leading to an unstable surface
representation. With the described improvements to the CFDM model from Section 4.2.3,
the surface tension stays stable as well as the shape of the drop in Figure 5.23b. Even in
the very fine grid configuration, the improved CFDM curvature computation works well
and shows no signs of faulty behavior. The isosurface of the volume fraction in Figure
5.23c appeals smoother than in the fine grid simulation.
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(a) CFDM on 2563 CVs

(b) Improved CFDM on 2563 CVs

(c) Improved CFDM on 4163 CVs

Figure 5.23: Difference between the standard CFDM and the improved CFDM on 2563 and
4163 of the initial stages of the drop impact test case, shown by volume fraction isosurface
for F = 0.5
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5.3.4 Results and Discussion

Phillips et al. [97] deliver snapshots of a high-speed video at key stages of a 4.0mm drop
impacting with UI = 1.29m s−1 (We = 90, Fr = 42, square in Figure 5.19). With the
settings of Morton et al. [80] the coupled multiphase acoustics simulation is carried out
on the fine [38] and the very grid resolution from Section 5.3.1. The material properties
are taken from Table 5.7, except the speeds of sound. The unscaled speeds of sound
are employed for this test case, which are 343m s−1 and 1484m s−1 for air and water,
respectively.
Figure 5.24 and Figure 5.26 show snapshots of the experiment, which are compared with
the numerical results on the very fine grid produced in this work. The Figures 5.25 and
5.27 represent slices in the x, y-plane at z = 0.017 35m taken from the coupled three
dimensional simulation.

Figure 5.24: Experiment [97] at 10.42×10−3 s, 15.82×10−3 s, 20.89×10−3 s and 22.92×10−3 s

Figure 5.25: Simulation at 7.724× 10−3 s, 13.10× 10−3 s, 17.19× 10−3 s and 19.08× 10−3 s

Due to the different drop diameter and impact velocity compared to the experiment, the
snapshots of the simulation results are shifted in time. However, the difference between
each frame for the simulation are in close range to the experiment. Every basic feature
stated by Franz [36] during a drop impact can be seen in the simulation: cavity creation
(Figure 5.25 at 7.724× 10−3 s and 13.10× 10−3 s), begin of recoiling due to surface tension
(Figure 5.25 at 1.719×10−3 s and 19.08×10−3 s), entrapment of a small air bubble (Figure
5.27 at 19.87× 10−3 s, 20.15× 10−3 s and 20.36× 10−3 s).
For a better understanding of the separation process in the simulation, more frames be-
tween 19.84×10−3 s and 20.31×10−3 s are shown in Figure 5.28. In the first row, the bubble
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Figure 5.26: Experiment [97] at 24.34× 10−3 s, 24.55× 10−3 s and 24.94× 10−3 s

Figure 5.27: Simulation at 19.87× 10−3 s, 20.15× 10−3 s and 20.36× 10−3 s

detaches from the cavity bottom followed by a contraction of the bubble. The pinch-off
creates a retracting of the air, which impacts into the bubble and initiates the oscillation
as seen in the second and third row. The cavity bottom seems to move monotonous in
upward direction after the bubble detachment. A direct influence of the bubble oscillation
onto the cavity bottom is not observable in the frames of Figure 5.28.
Nevertheless, by analyzing the pressure and the acoustic source around the bubble detach-
ment an acoustic initiating behavior is present. Before the crater collapses as in the first
frame of Figure 5.29, in both phases the pressure rises after the tightest point in the neck.
Going upwards from the tightest point to the top of the crater, the pressure sinks and is
less than in the surrounding air. After the pinch-off and above the newly created surface,
the pressure increases again indicated by the lighter nuance of the blue color. Below the
surface, the high pressure mostly keeps its position and pushes the bubble and cavity bot-
tom away from each other. By examining the acoustic source term in the same interval
in Figure 5.30, deflections in negative and positive directions are observable. During the
retraction phase negative acoustic sources emerge above the neck of the crater, as seen
in the first frame. Positive acoustic sources starting to occur right before the pinch-off.
These positive acoustic sources are the highest right after the pinch-off and seem to pen-
etrate the previous present negative sources. The last frame of Figure 5.30 shows again
some negative sources coming from the surface. Some CVs above the surface contain small
volume fraction values indicating water in which acoustic source artifacts emerge. Due to
the material properties, the signal produced inside these artifacts does not interrupt the
airborne acoustics. From the perspective of the flow variables, there should be an acoustic
signal coming from the drop impact. Therefore, the acoustic pressure in air and water

86



Figure 5.28: Bubble detachment from 20.11×10−3 s to 21.32×10−3 s in 0.04×10−3 s steps

Figure 5.29: Pressure of bubble detachment at t = 20.03× 10−3 s, 20.13× 10−3 s, 20.18×
10−3 s, 20.30× 10−3 s

at monitoring points (0.0173m, 0.0208m, 0.0173m) and (0.0173m, 0.0065m, 0.0173m) are
evaluated, respectively. The results of the airborne acoustics for the fine and the very fine
grid are presented in Figure 5.31.
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Figure 5.30: Acoustic source of bubble detachment at t = 20.03 × 10−3 s, 20.13 × 10−3 s,
20.18× 10−3 s, 20.30× 10−3 s
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Figure 5.31: Airborne signal of drop impact simulation

On both grid levels, the regime of the acoustic pressure is identical, as there are some small
spikes before the bubble detachment and a single great amplitude around the bubble de-
tachment. For a better correlation, the acoustic pressure around the pinch-off is shown in
Figure 5.32. On the fine grid with 2563 CVs the pinch-off occurs 0.3×10−3 s earlier than on
the very fine grid and the signal appears more disturbed than on the very fine grid. How-
ever, comparing the images of the very fine grid in Figures 5.29 and 5.30, the sound pulse
coincides with the acoustic source as expected. As seen in Figure 5.32b, the acoustic pres-
sure starts with a negative deflection and after reaching its peak around t = 20.13×10−3 s,
it is followed by an increase with a high at t = 20.17× 10−3 s. Afterwards very small oscil-
lation with positive peaks at t = 20.228 × 10−3 s and t = 20.303 × 10−3 s are present, yet
they are not distinguishable from the signal noise before and after the pinch-off. However,
the previous experimental findings that the acoustic signal emerges from the bubble en-
trainment and its pinch-off could be reproduced in the simulations carried out in this work.
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Figure 5.32: Close-up of airborne signal at drop detachment

Although the focus lies on the airborne signal, the acoustic pressure underwater for the fine
and the very fine grid are shown in Figures 5.33. From the scales of the acoustic pressure
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Figure 5.33: Underwater signal of drop impact simulation

above and below the surface, it can be seen that the amplitude difference between air and
water is in the expected range. At the beginning a deflection in the underwater signal
occurs, which is caused by the initialization of the simulation and not by the impact of the
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drop. As in the airborne signal, the underwater signal shows a big deflection at the bubble
entrainment. A close-up of the acoustic pressure in water during the detachment process
is shown in Figure 5.34.
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Figure 5.34: Close-up of underwater signal at drop detachment

Contrary to the acoustic pressure above the surface, the underwater signal is starting with
a positive deflection in the acoustic pressure signal. The regime on the fine grid level is
not as clear as the airborne results. Note that the underwater acoustics are more likely
sensible to general disturbances due the high speed of sound and the comparable small do-
main. The signal of the very fine grid resolution in Figure 5.34b starts to oscillate after the
pinch-off. Comparing the high frequency of the oscillation with the time series pictures in
Figure 5.28 and the theoretical considerations in Section 5.3.2, it is more likely to originate
from a different source than the bubble oscillation.

Concluding the results of the drop impact test case, the developed framework is able to re-
produce the corresponding experiment. Furthermore, the simulation gives a more detailed
insight in the physical mechanisms leading to the airborne acoustics and the characteristic
drop impact sound. The theoretical hypothesis of the induced oscillation on the cavity
bottom was not directly visible, although every other physical mechanism, including the
acoustic signal, occurs in the simulation. It should be noted that in the experiments the
effect of reverberation had influence on the damping of the signal oscillation [97]. In the
simulations, the employed non-reflecting acoustic outlets do not have this effect which
could be the reason for the missing oscillation after the pinch-off. However, by conduct-
ing a parameter study with varying drop diameters, impact velocities or surface tension
coefficients different correlations might be revealed.
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6. Summary and Outlook

The physical phenomena of acoustics emerging from multiphase flows is in the scope of
researches since the beginning of the last century. Experiments have been the main source
of theories concerning the sound producing mechanisms. With the development of reliable
computational simulations, a deeper understanding of the physics is achieved. In return,
the knowledge is used for reducing noise in technical systems which is one of the main
problems being faced in current century.
Within this thesis, a numerical framework for simulating acoustics emerging from surface
tension dominated two-phase flows at low Mach numbers was presented. Both physical
disciplines were computed on the basis of the finite volume method (FVM) and imple-
mented in the computational fluid dynamics solver FASTEST. In order to account for the
multiphase flow, the modified compressive interface capturing scheme for arbitrary meshes
(M-CICSAM) as part of the volume of fluid method (VOF) were employed. Surface ten-
sion was modeled with the continuum surface force (CSF), for which the determination
of the interface curvature is responsible for its accuracy. A main part of this work con-
sisted in improving the curvature computation. A smoothing kernel applied to the volume
fraction field as well as to the curvature values and a volume fraction dependent weight-
ing were implemented. Their impact individually and in all possible combinations were
investigated. It was found that the curvature computation methods have been improved
in all measured quantities with the appropriate combination. In addition new approaches,
such as the adaptive height function (AHF) or the machine learning approach, have been
implemented. All methods are validated on two surface-tension-driven test cases. The
best improvement was shown by the curvature by finite difference method (CFDM), while
the most promising results have been achieved by the machine learning approach using an
artificial neural network (ANN).
The second main part of this thesis was to develop a proper coupling between the mul-
tiphase flow and the acoustics. Due to the disparity of the scales between the low Mach
number flow and the acoustics, the latter is obtained by solving linearized Euler equations
(LEE) after the flow field has been computed. A sub-cycle technique for the necessary
small acoustic time steps and high resolution schemes with flux limiter for the compara-
ble large acoustic waves were employed. Without dealing with surface tension dominated
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multiphase flows, the coupling between the fluid flow and the acoustics is achieved by a
source term consisting of the pressure derivative with respect to the time. In the presence
of curved multiphase interfaces, a material dependent pressure jump across the interface
occurs naturally. A numerical difficulty of dealing with moving multiphase interfaces, ergo
a moving pressure jump, arises. Unphysical acoustic sources are produced, which have
been suppressed with a curvature based source term correction introduced in this work. A
verification and a validation test case showed the expected results.
Finally, the developed numerical framework was used to investigate the acoustics of a water
drop impacting into a water pool. With the improved CFDM method, full three dimen-
sional coupled simulations up to seventy million control volumes (CVs) were compared
to experimental results with satisfactory agreement. Furthermore, the results provided
physical insights into the sound producing mechanisms, being the first numerical work of
this kind. The simulation carried out in this thesis confirmed that the characteristic sound
is only produced right before and right after a small air bubble detaches from the cavity
bottom.

With the developed numerical methods, the ability of simulating a physical complex test
case is given. However, some challenges and questions of the multiphase and the acoustic
part are still remaining. Although the newly implemented improvements to the curva-
ture methods showed good results, an all-purpose curvature computation algorithm is not
available. Especially with distributed, multiblock domains, mainly the improved CFDM
method is able to deliver stable values. Since the machine-learning approach for the cur-
vature showed impressive results, the development should be carried on and extended to
three dimension.
Recalling the final drop impact test case at low grid resolutions, physical aspects did not
occur. For the bubble detachment as the initiator of the characteristic drop impact sound,
a very fine grid resolution was necessary. Even though the simulation ran on several cores
within a high performance cluster, the computational cost as well as the file sizes of the
results were challenging. For reducing the number of CVs, an adaptive grid should be im-
plemented. The mesh resolution around the multiphase interface could be increased while
in flow areas without any steep gradients it could be decreased.
The drop impact test case itself should be investigated further. Different configurations
concerning the drop impact velocity, drop radius or surface tension could give more in-
sights on the sound producing mechanism and the acoustic signal. A cooperation with the
authors of the experimental data would be advantageous.
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