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Atomic high-precision measurements have become a competitive and essential technique for tests of
fundamental physics, the Standard Model, and our theory of gravity. It is therefore self-evident that such
measurements call for a consistent relativistic description of atoms that eventually originates from quan-
tum field theories like quantum electrodynamics. Most quantum metrological approaches even postulate
effective field-theoretical treatments to describe a precision enhancement through techniques like squeez-
ing. However, a consistent derivation of interacting atomic quantum gases from an elementary quantum
field theory that includes both the internal structure as well as the center of mass of atoms, has not yet
been addressed. We present such a subspace effective field theory for interacting, spin carrying, and pos-
sibly charged ensembles of atoms composed of nucleus and electron that form composite bosons called
cobosons, where the interaction with light is included in a multipolar description. Relativistic corrections
to the energy of a single coboson, light-matter interaction, and the scattering potential between cobosons
arise in a consistent and natural manner. In particular, we obtain a relativistic coupling between the cobo-
son’s center-of-mass motion and internal structure encoded by the mass defect. We use these results to
derive modified bound-state energies, including the motion of ions, modified scattering potentials, a rel-
ativistic extension of the Gross-Pitaevskii equation, and the mass defect applicable to atomic clocks or
quantum clock interferometry.
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I. INTRODUCTION

Quantum field theories (QFTs) [1] are powerful and
successful tools with applications ranging from the field
of particle physics described by the Standard Model [2],
over quantum electrodynamics (QED) [3] to nonrelativis-
tic (NR) ultracold quantum gases [4,5]. Because these
gases consist of atoms, i.e., composite particles, and not
of elementary particles, they have to be described by
an effective field theory (EFT) [6–8]. Such EFTs are the
method of choice, for instance, in describing Bose-Einstein
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condensates (BECs) [9,10], but are usually not derived
from an elementary theory. Hence, they give no direct
access to relativistic and further corrections, including
radiative corrections [11–14], effects from the composite
nature of the nucleus [15], or the mass defect [16,17] rel-
evant for quantum clocks [18]. In this work, we derive a
subspace EFT from QED to describe NR composite par-
ticles, including relativistic corrections. As a result, we
obtain a field-theoretical description of charged, interact-
ing atomic ensembles including both the coupling of the
c.m. motion to the internal atomic structure, as well as
atom-atom and light-matter interactions with relativistic
corrections.

Since in many applications atoms move at NR veloc-
ities and pair creation plays no role, the respective EFT
leads to nonrelativistic QED (NRQED) [6–8,19]. It is
routinely used to describe an individual neutral, compos-
ite particle, where usually the c.m. degrees of freedom
are not taken into account and the light-matter interac-
tion is only considered to lowest order. This approach
is suited for studying atomic structures, such as in
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spectroscopy [20], giving rise to, e.g., radiative QED
corrections. On the other hand, atomic scattering exper-
iments imply the presence of more than one particle
and rely on the c.m. of atoms, so that the theory men-
tioned above has to be extended. Common approaches
[21] usually include the c.m. and atom-atom scattering
by generalizing single-atom theories to a corresponding
effective QFT, so that both coincide in the single-atom
limit. However, fundamental effects from QED remain
inaccessible in such a treatment. By reducing potential
NRQED (pNRQED) to a subspace EFT for interacting
atomic ensembles and taking their c.m. degrees of free-
dom into account, we find a description that includes
radiative corrections and scattering potentials. The cou-
pling of the inner-atomic structure to the atom’s c.m.
motion is a consequence of the relativistic mass defect [16–
18,22], e.g., used in quantum clock interferometry [23–26],
and which gives access to quantum tests of fundamen-
tal physics [27–34]. This coupling has been derived in
single-particle quantum mechanics for spin- and charge-
less particles with [17] and without [16] gravitational
backgrounds.

In this work, we derive a framework that includes
aspects of these concepts. To this end, we use pNRQED
[35–37], an EFT of NRQED, to describe two different
fermions (constituents of the coboson) on flat spacetime,
and project this EFT to its cobosonic subspace describing
charged (ionized) spin-carrying atomic clouds, including
the mass defect, which are exposed to atom-atom and
light-matter interactions.

The paper follows the hierarchical steps presented in
Fig. 1, summarizing transitions between different QFTs
at each step, where our contribution begins on the level
of pNRQED. This EFT eventually originates from QED
as a fundamental starting point for the description of
interactions between fermions and photons. Since we aim
for a description of NR interacting composite particles
consisting of bound fermions, it is sufficient to work in
the established NR limit of QED, where antiparticles are
removed from the formalism. The resulting model covers
the interaction of nuclei and electrons on a field-theoretical
level, including relativistic effects. This interaction is
mediated by (virtual) photons that account for the bind-
ing potential between the constituents of the composite
particle. Such virtual photons are matched to instanta-
neous potentials V̂ (ij ), resulting in the already mentioned
pNRQED [35–37]. These potentials mediate the electro-
magnetic (EM) interaction in the spirit of the classical
Coulomb problem, but still include relativistic corrections.
Derivations of these EFTs have been discussed previ-
ously, which is why we recall in Sec. II the pNRQED
Hamiltonian that constitutes the starting point for our
paper. However, in Appendix A we discuss NRQED in
more detail and present an explicit derivation of pNRQED
potentials.

scatt

scatt

(ij)

(ij)

FIG. 1. Hierarchy of effective field theories: At the top level,
quantum electrodynamics (QED) describes the interaction of
fermions (dots), in particular electrons (blue) and positrons
(black), with photons, where real (measurable) photons are repre-
sented by zigzag lines and virtual photons between two fermions
by wiggly lines. The respective field operators are the four-
component spinors ψ̂ and ψ̂ and four potential Âμ, whose
interaction is described by typical Feynman diagrams, such as
the vacuum polarization (solid lines with arrows are fermions)
shown on the right. The next refined field theory is nonrelativistic
QED (NRQED), where the antiparticle can be removed from the
description by the restriction to an NR limit of QED. In NRQED
fermion field operators are replaced by two-component spinors
ψ̂i creating and annihilating electrons or nuclei, where the lat-
ter are assumed as elementary fermions as well. These fermions
can interact with each other. For example, the Feynman diagram
shows two solid lines representing now two fermions scattering
via a virtual photon. In a next step potential NRQED (pNRQED)
replaces virtual photons in a second-order scattering process by a
nonlocal potential V̂ (ij ) for an effective first-order scattering pro-
cess, where external photons are completely described by the
vector potential Â in Coulomb gauge. This level is the start-
ing point of our work. The cobosonic subspace follows from a
projection, where we restrict the Hilbert space to only electron-
nucleus pairs (cobosons) and introduce a separation of scales,
i.e., atomic dimensions and scattering length. As a consequence,
fermionic field operators are replaced by cobosonic field opera-
tors ϕ̂ and interactions between cobosons (orange) are mediated
by scattering potentials V̂scatt. Here, Feynman diagrams now
feature double solid lines representing a coboson. Multipolar
cobosonic subspace describes external photons by EM fields Ê
and B̂ (dashed zigzag line) interacting with cobosons via mul-
tipoles whose degrees of freedom are described by c.m. and
relative coordinates.
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These potentials between elementary fermions in
pNRQED do not describe solely attractive potentials
between constituents of an atom, but also repulsive inter-
actions in a gas of fermions. To this end, we reduce
pNRQED to its cobosonic subspace via a projection tech-
nique on a subspace of paired nuclei and electrons that
is based on different length scales (Sec. III). In addition,
we introduce field operators for so-called cobosons (com-
posite bosons) [38] whose commutation relation differs
from the fundamental bosonic one [39]. Such a projection
was performed for a single atom [37] without introduc-
ing new spatial length scales and consequently scattering
plays no role. Conversely, an EFT for van der Waals
interactions that includes scattering between two atoms
was constructed [40] and matched to pNRQED while we
explicitly project pNRQED to the cobosonic subspace of
interacting cobosons. The resulting theory of composite
particles has the desired form, but is still given in terms
of the degrees of freedom of their constituents.

In Sec. IV we therefore describe the interaction of such
composite particles with light via electric and magnetic
fields [41,42] instead of the vector potential. At the same
time, we introduce c.m. and relative coordinates commonly
used in the description of bound or composite particles.
This approach clearly distinguishes between the internal
structure of composite particles and their c.m. motion,
so that it connects to the field-theoretical treatment of
quantum gases.

We present the main results in Sec. V, i.e., a multipolar
cobosonic subspace EFT for atoms, including their c.m.
and relative degrees of freedom, a coupling between both,
as well as their scattering and interaction with EM fields.

Finally, we put our results in Sec. VI into context with
existing approaches in different subfields, and we use this
discussion as motivation for sample applications given in
Sec. VII. We present the coupling of the atom’s energy
spectrum to the c.m. motion, reduce the scattering potential
to a generalized dipole-dipole potential, derive a QFT for
interacting cobosonic quantum gases, and find in a mean-
field description a modified Gross-Pitaevskii equation
[43,44], including the mass defect. We conclude in Sec.
VIII.

The detailed discussion of pNRQED from Appendix
A is followed by Appendix B presenting the full trans-
formation from the cobosonic subspace to its multipolar
version, while Appendix C presents the eigenfunctions for
the relative motion of hydrogenlike composite particles.

II. POTENTIAL NONRELATIVISTIC QED

To create a description of bound-state systems at NR
energies characterized by binding potentials, we use poten-
tial nonrelativistic quantum electrodynamics [35–37] as a
starting point. This theory is obtained by taking the NR
limit of QED, which leads to NRQED and subsequently

matching virtual photons to instantaneous potentials. For
a more detailed discussion of NRQED and the derivation
of pNRQED, we refer to Appendix A. Here, we will only
present the relevant pNRQED Hamiltonian

Ĥ = ĤEM +
∑

i

∫
d3xiψ̂

†
i ĥiψ̂i

+
∑
i, j

∫
d3xi

∫
d3x′

j ψ̂
†
i ψ̂

′ †
j V̂ (ij )ψ̂ ′

j ψ̂i (1)

accounting for photon and spin-1/2 fermion fields. The
former are represented in the free electromagnetic field
ĤEM = ε0

∫
d3x(Ê2 + c2B̂2)/2 defined through the vac-

uum permittivity ε0 as well as electric Ê and magnetic field
B̂. The latter appear in Eq. (1) through the single-fermion
sector (two field operators) that accounts for the energy of
fermion species i = e, n, i.e., we deal with two fermionic
species, namely electrons and nuclei. By that ĥi represents
the (first-quantized) energy of a single fermion i. Note that
we treat nuclei as effective fermions, even though they
are composite systems as well, which will be accounted
for via Wilson coefficients [45,46]. The field operators
are two-component spinors obeying anticommutator rela-
tions among components u, v = 1, 2 of the same species
{ψ̂i,u(x), ψ̂

†
i,v(x

′)} = δuvδ(x − x′) and {ψ̂i,u(x), ψ̂i,v(x′)} =
0. Simultaneously, electron and nucleus field operators act
on different Hilbert spaces implying vanishing commuta-
tors [ψ̂i,u, ψ̂†

j ,v] = 0 = [ψ̂i,u, ψ̂j ,v] for i �= j between differ-
ent particle species. Next, the multifermion sector (four
or more field operators) represents interactions between
fermions mediated through instantaneous potentials V̂ (ij ).

In this work, we employ the NR expansion in the order
c−2 of the speed of light c in which the single-fermion
Hamiltonian takes form

ĥi =mic2 + p̂
2
i

2mi
− c(i)F qi

ŝi · B̂
mi

− p̂
4
i

8m3
i c2

+ c(i)S qiŝi · p̂i × Ê − Ê × p̂i

4m2
i c2

+ c(i)W1qi

{
p̂

2
i , ŝi · B̂

}

4m3
i c2

− c(i)A1q2
i �

2 B̂
2

8m3
i c2

. (2)

The fermions carry rest mass mi giving rise to rest energy,
kinetic energy, and its relativistic correction. Due to the
fermion’s spin ŝi = �σ̂i/2 defined through the Pauli matrix
vector σ̂ = (σ̂x, σ̂y , σ̂z) there is also a coupling to the EM
fields in the NR expansion. Note that a contribution ∇ · Ê
(together with a coefficient cD) does not appear explic-
itly at this point anymore, because we work in Coulomb
gauge. Hence, after accounting for cD in the potential terms
V̂ (ij ), we can neglect the scalar potential φ̂ for simplicity
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FIG. 2. Relevant Feynman diagrams up to order c−2. The dashed and wiggly lines correspond to scalar photons resulting from a
contraction of the scalar potential and vector photons arising from contracting vector potential components, respectively. The vertices
are labeled according to the specific term in the Hamiltonian density being contracted: electric energy (red), kinetic energy (blue),
spin-magnetic field (green, cF), Darwin term (purple, cD), spin-orbit term (orange, cS), and contact interaction (brown, d1 and d2).
Details regarding c- and d-type Wilson coefficients can be found in Appendix A. The potential connected to each Feynman diagram
is calculated in both Coulomb (top, blue shaded) and Lorenz gauge (bottom, orange shaded). The Feynman diagrams of the first row
yield different potentials that depend on the gauge, whereas the potentials of the second row are identical in both gauges. The overall
effective potential is the sum of all contributions from the first and second row and is gauge invariant. The potential is given in units

of κij = −qiqj /(8πε0mimj c2) and we introduce abbreviations for individual minimally coupled angular momenta ˆ̄
�i = r × ˆ̄pi and

relative distance r = xi − x′
j omitting indices i and j for simplicity. In addition, we defined the spin contribution Ŝij = −ŝi · ŝ′

j + 3(r ·
ŝi)(r · ŝ′

j )/|r|2 of the magnetic dipole-dipole potential.

in this gauge, see also Appendix A. As a result, also the
divergence of the electric field vanishes but both can be
reincluded if needed. The interaction of fermions due to
their charge qe = −e and qn = +Ze with Z > 0 and the
elementary charge e with external photons is encoded in
minimally coupled momentum operators p̂i = p̂ − qiÂ.
This way, both the momentum operator p̂ = −i�∇ and the
vector potential Â enter. The Wilson coefficients c(i)k are
discussed in Appendix A. The interaction between an arbi-
trary number of fermion fields appears also in pNRQED.
However, contact interactions originating from NRQED
that include N fermion fields are at least of order c5−3N/2.
Consequently, only the fermion-fermion interaction (N =
4) presented in Eq. (1) with potentials V̂ (ij ) [47] detailed in
Fig. 2 is relevant for our purpose and all higher interactions
(N > 4) are suppressed. In addition, all potentials matched
to interactions where more than four fermion fields are
present are also beyond the order of c−2. These potentials
correspond to one part of the Breit-Pauli Hamiltonian

[48–50] but also include QED corrections through Wilson
coefficients. The pNRQED Hamiltonian is valid for any
Feynman diagram in c−2 not yet included in the poten-
tials already. Even though one can choose an arbitrary
gauge, we use Coulomb gauge (∇ · Â = 0) for the elec-
tromagnetic field for simplicity. This choice allows us to
eliminate φ̂ in ĥi, because all virtual scalar photons are
already matched to potentials and the scalar potential of
external photons vanishes in Coulomb gauge. In particular,
also the self-energy of the fermions, and by that the Lamb
shift [51,52], can still be obtained because only virtual
vector photons contribute [35,53] to this shift.

A derivation of the pNRQED potentials in the order c−2

based on the matching of S-matrix elements as an alter-
native to equating Green’s functions [37] is presented in
Appendix A, also confirming their gauge independence.
In contrast to the usual convention relying only on the
relative-coordinate contribution to the potentials, we give
the potentials in terms of single-fermion coordinates as we
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take also the c.m. of our bound-state systems into account.
Moreover, in our description the external photons in the
Feynman diagrams are also matched to potentials, which
introduces minimally coupled momentum operators.

III. COBOSONIC SUBSPACE

We now move from the single-fermion to a composite-
particle description. Moreover, we restrict ourselves to
ensembles of one atomic species and we reduce the prob-
lem to the simplest case of electron-nucleus pairs, forming
a composite boson, i.e., a coboson [37–39]. The distance
between electron and nucleus that form a coboson is given
by an atomic length scale, whereas the distance to other
cobosons and their constituents is much larger. Thus, we
consider a situation that is sufficiently dilute, such that
individual cobosons do not overlap. Motivated by these
different length scales, we describe atoms as spatially
restricted cobosons resembling hard-sphere-based mod-
els [54–56], such that two constituents within a sphere
of a certain cutoff radius form a composite particle and
are, by definition, free fermions outside of it. Formally,
we achieve such a transition from the fermionic pNRQED
to its cobosonic subspace by means of a projection π̂Cb
of the Schrödinger equation i�d |
〉 /dt = Ĥ |
〉. Here,
cobosonic states are part of the general second-quantized
state |
〉, represented in the following by uppercase sym-
bols, in contrast to lowercase symbols that represent first-
quantized states. Thus, the projection operator is chosen
such that only spatially restricted cobosonic states are
selected, giving rise to intracobosonic and intercobosonic
length scales. Conversely, observations like atomic decay,
free fermions, multielectron atoms, molecules, etc., do
not lie within the subspace spanned by this projection.
Figure 3(a) shows one exemplary configuration that is
ruled out by projection and another one that is selected
by the projector. Guided by the intuitive picture in the
figure, we define the intracobosonic scale a and the length
scale b � a associated with the distance between differ-
ent cobosons. As a result, the dominant EM interaction
between fermions are the attractive binding potentials
between atomic constituents. Contrarily, intercobosonic
interactions are based both on attractive and repulsive
interactions between the fermionic constituents of dif-
ferent cobosons. Usually, EFTs are derived by directly
integrating out certain energy scales such that the EFT is
associated with a new energy range. By introducing new
length scales we do not address the explicit characteriza-
tion of a new energy scale associated with our theory, but
emphasize that such spatial length scales may be identified
with a corresponding energy range.

In the spirit of such QFTs for atoms, we expect our
cobosonic subspace to be characterized by creation ϕ̂† =
ψ̂

†
n ψ̂

†
e and annihilation operators ϕ̂ = ψ̂nψ̂e associated

with only the creation and annihilation of whole atoms
instead of single-fermion field operators. To reduce the

(a)

(b)

scatt

subspace

(ne) (nn)

(ee) (ne)

(ne)

(ne)

FIG. 3. (a) The left-hand side shows the situation in pNRQED,
where all elementary fermions of the system interact with each
other and no interaction is dominant compared to the others.
A projection to the coboson subspace introduces length scales,
and by that our system is only composed of uniquely assigned
electron-nucleus pairs. In particular, we find an atomic length
scale a associated with the inner-atomic distance between the
constituents and a scattering length scale b associated with the
distance between different cobosons. The separation of scales
allows for the identification of the dominant binding potential
V̂b = V̂ (ne) + V̂ (en) between the constituents of a coboson com-
pared to the weaker scattering potential V̂scatt = V̂ (nn) + V̂ (ne) +
V̂ (en) + V̂ (ee) composed of attractive and repulsive interactions
among constituents of different cobosons. (b) The separation of
scales has also implications for the allowed position of different
cobosons. The nucleus of coboson 1 can be placed anywhere,
but the corresponding electron only within a vicinity of radius
a around it. The nucleus of coboson 2 must not be closer than
a distance b from the nucleus of coboson 1. As a consequence,
the purple sphere around coboson 1 is excluded for coboson 2.
Similarly, coboson 3 must not be located in the purple and green
spheres around cobosons 1 and 2, respectively.

Hilbert space to the states depicted in Fig. 3(a) we
define a projector π̂Cb = ∑N

k=0 π̂k that projects on up to
N cobosons, where π̂k projects onto a subspace of k
cobosons. As such, the subspace projection

π̂k = 1
k!

∫

C1

d6x1 · · ·
∫

Ck

d6xk

(
k∏
�=1

ϕ̂
†
�

)
|0〉 〈0|

(
k∏
�=1

ϕ̂�

)

(3)

is defined by the cobosonic operator ϕ̂†
� = ψ̂†

n (x�,n)ψ̂
†
e (x�,e),

creating a coboson at position (x�,n, x�,e), with an anal-
ogous definition for the annihilation operator. Moreover,
Eq. (3) contains the abbreviation of a six-dimensional inte-
gration measure d6xk = d3xk,n d3xk,e and by definition the
subspace projectors are orthogonal, i.e., π̂kπ̂� = 0 for k �=
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�. As explained in Fig. 3(a), such a projection implies that
not all fermion coordinates are independent. In fact, we
have to equip the integrals with proper integration regions
Ck = Ck,n × Ck,e for the nucleus and electron of the kth
coboson. This way, we introduce the internal cobosonic
(atomic) length scale a by restricting the electron coor-
dinates xk,e of coboson k to Ck,e = Ba(xk,n) denoting a
spherical volume with radius a around the nucleus of cobo-
son k positioned at xk,n. The intercobosonic scale b enters
through regions for nuclei coordinates in an iterative man-
ner, see also Fig. 3(b). The first nucleus may be positioned
anywhere, i.e., in the volume C1,n = R3. However, the
second nucleus must not be within a sphere of radius b
around the first nucleus and is therefore located in a region
C2,n = R3 \ Bb(x1,n). The distance b between the cobosons
has to be larger than the atomic length scale a such that
the pairing of nucleus k and electron k remains unique. A
generalization to the kth coboson [57] yields

Ck = Ck,n × Ck,e = R
3 \

k−1⋃
�=1

Bb(x�,n)× Ba(xk,n). (4)

Because of these limits of integration the idempotence of
the projector, i.e., π̂2

k = π̂k and by that π̂2
Cb = π̂Cb, follows

from a normalization factor of 1/k!. This fact becomes
apparent by considering the form of the cobosonic com-
mutator

[
ϕ̂′

u′v′ , ϕ̂
†
uv

] = δu′uδv′vδ(x′
n − xn)δ(x′

e − xe)

− δu′uδ(x′
n − xn)ψ̂

†
e,vψ̂

′
e,v′

− δv′vδ(x′
e − xe)ψ̂

†
n,uψ̂

′
n,u′ , (5)

between the cobosonic field operators that is defined
through the fermionic anticommutation relations. The first
term coincides with a fundamental bosonic commutation
relation and, thus, corresponds to purely atomic dynamics.
The second and third terms amount to the cobosonic part
representing exchange characteristics between fermions of
different cobosons. When we determine π̂2

k by consecu-
tive application of only the bosonic part of the coboson
commutator, i.e., the first line of Eq. (5), idempotence
directly demands a normalization 1/k!. Due to this fact our
projector resembles bosonic behavior. Ignoring the lim-
its of integration, the remaining terms generated by the
cobosonic part of the commutator give rise to further con-
tributions, so that π̂k is not idempotent [58]. However,
the chosen limits of integration uniquely assign pairwise
field operators summarized in ϕ̂ and ϕ̂† each. Hence, these
additional cobosonic terms are vanishing by construction.

Using this time-independent projection operator, we
define the projected states via |
〉Cb = π̂Cb |
〉 and their

equation of motion

i�
d
dt

|
〉Cb = π̂CbĤ π̂Cb |
〉Cb + π̂CbĤ(1 − π̂Cb) |
〉 .

(6)

In the remainder of this paper we focus on the contribu-
tion to the motion induced by the cobosonic Hamiltonian
ĤCb = π̂CbĤ π̂Cb, as well as its eigenvalues and proper-
ties. However, the coupling to states (1 − π̂Cb) |
〉 that lie
outside of our projected Hilbert space leads to additional
energy shifts and other effects of the environment in the
spirit of open quantum systems [59,60].

Projecting the Hamiltonian from Eq. (1) yields three
contributions. Since the free EM Hamiltonian does not fea-
ture any fermionic field operators, its projection remains
invariant and we begin with the single-fermion Hamilto-
nian

∫
d3xiψ̂

†
i ĥiψ̂iπ̂Cb. Expanding the projector into the

subspace projectors π̂� and applying the fermionic anti-
commutation relation � times yields � terms. The integra-
tion variables in these terms can be relabeled, but it is not
obvious that all terms are identical because of the asym-
metry of integration variables also contained in the nested
limits of integration. Nevertheless, the limits of integration
are generic in such a way that it is equivalent whether one
specific coboson’s coordinates are restricted to the whole
space except for spheres around all the other cobosons,
or the other way around. As a result, a symmetrized ver-
sion of the limits of integration exists and allows the
exchange of the nested regions. In the simplest case of two
cobosons, this property implies that we may interchange
the arguments in any integrand f depending on the six-
dimensional vector xk = (xk,n, xk,e) while preserving the
limits of integrations such that
∫

C1

d6x1

∫

C2

d6x2 f (x1, x2) =
∫

C1

d6x1

∫

C2

d6x2 f (x2, x1) (7)

holds. The case for more than two cobosons follows anal-
ogously. With this consideration, the projection simplifies
to

∫
d3xψ̂†

i ĥiψ̂iπ̂Cb =
N∑
�=1

∫

C1

d6x1ϕ̂
†
1 ĥiπ̂�−1\x1 ϕ̂1 (8)

containing already only cobosonic operators but still the
projector

π̂�−1\x1 =
∫

C2

d6x2 · · ·
∫

C�
d6x�

ϕ̂
†
2 · · · ϕ̂†

� |0〉 〈0| ϕ̂� · · · ϕ̂2

(�− 1)!
(9)

on the subspace of �− 1 cobosons, of which none is
located within the sphere associated with the coboson
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of coordinates x1. Hence, this projector begins with C2
instead of C1 and a generalization to N cobosons is defined
accordingly. Finally, the term π̂�−1\x1 ϕ̂1 indicates the anni-
hilation of a coboson at coordinates x1 after which we
project onto the subspace of �− 1 cobosons that must not
coincide with the already annihilated coboson by construc-
tion. This procedure, however, is equivalent to projecting
first onto the full subspace of � cobosons and then anni-
hilating one coboson at position x1. Consequently, the
projected single-fermion Hamiltonian

∫
d3xiψ̂

†
i ĥiψ̂iπ̂Cb =

∫

C1

d6x1ϕ̂
†
1 ĥiϕ̂1π̂Cb (10)

has the form of a composite-particle theory as the
fermion operators are replaced by coboson operators,
while the region accessible to the electron is restricted
to the atomic scale around the nucleus. The projec-
tion Ĥf-fπ̂� of the fermion-fermion Hamiltonian Ĥf-f =∑

i, j

∫
d3x1

∫
d3x2ψ̂

†
i ψ̂

†
j V̂ (ij )ψ̂j ψ̂i comprises the projec-

tion of the repulsive (i = j ) and attractive (i �= j ) poten-
tials. First, the repulsive part requires the commutation of
two fermion field operators of the same species with the
corresponding � operators contained in π̂� that yield now
�(�− 1) terms. With the same argument as before, these
terms can be combined to∫

d3x1

∫
d3x2ψ̂

†
i ψ̂

†
i V̂ (ii)ψ̂iψ̂iπ̂�

=
∫

C1

d6x1

∫

C2

d6x2ϕ̂
†
1 ϕ̂

†
2 V̂ (ii)π̂�−2\x1,x2 ϕ̂2ϕ̂1 (11)

with π̂�−2\x1,x2 defined analogously to Eq. (9). Similar to
the single-fermion Hamiltonian before, it is identical to
first annihilate two cobosons and projecting then on the
�− 2 subspace or annihilating these two cobosons after
we projected onto the subspace of � cobosons allowing
the interchange of these operations. When we consider
then the attractive part of the fermion-fermion Hamilto-
nian, we find that this projection follows schematically a
combination of the procedures presented with the single-
fermion and the repulsive fermion-fermion Hamiltonian.
As a result, the projected fermion-fermion Hamiltonian
with both the repulsive and attractive part resolves to

Ĥf-fπ̂Cb =
∫

C1

d6x1ϕ̂
†
1

(
V̂ (ne) + V̂ (en)

)
ϕ̂1π̂Cb

+
∫

C1

d6x1

∫

C2

d6x2ϕ̂
†
1 ϕ̂

†
2

∑
i, j

V̂ (ij )ϕ̂2ϕ̂1π̂Cb. (12)

The two different contributions for the attractive potentials
can formally be traced back to applying the two differ-
ent parts of the coboson commutator, where the bosonic

part gives rise to the first line and the cobosonic part to
the second line. As also indicated in Fig. 3(a), the inter-
action between the fermions divides into the dominant
binding potential given by V̂b = V̂ (ne) + V̂ (en) in the single-
coboson part (first line), while the intercobosonic scatter-
ing potential

∑
ij V̂ (ij ) in the two-coboson part includes

attractive and repulsive interactions. Because of the sep-
aration of scales, these interactions are weaker than the
binding potential. Hence, the projected Hamiltonian reads

ĤCb = ĤEM +
∫

C1

d6x1ϕ̂
†
1 ĥCbϕ̂1

+
∫

C1

d6x1

∫

C2

d6x2ϕ̂
†
1 ϕ̂

†
2 V̂scattϕ̂2ϕ̂1 (13)

with the internal cobosonic energy ĥCb = ĥn + ĥe +
V̂ (ne) + V̂ (en). This contribution gives rise to the Breit-
Pauli Hamiltonian for an electron and a nucleus [48–50]
consisting of the sum of individual fermionic energies
together with their total binding potential V̂ (ne) + V̂ (en)

arising from EM interaction between the fermionic con-
stituents. The scattering potential V̂scatt = V̂ (nn) + V̂ (ne) +
V̂ (en) + V̂ (ee) is based on both attractive (V̂ (ne) + V̂ (en))
and repulsive (V̂ (nn) + V̂ (ee)) EM interactions among all
fermions of different cobosons. In particular, these attrac-
tive terms are weaker than the single-particle binding
potentials, since the coordinates x1,i and x2, j of different
cobosons are separated by b � a. Compared to bosonic
field theories for atomic ensembles [21,61], our subspace
EFT is based on creation ϕ̂† and annihilation ϕ̂ operators
whose components u, v = 1, 2 obey a cobosonic commuta-
tion [39] relation from Eq. (5) rather than a purely bosonic
one. Moreover, the projection operator includes integration
regions that naturally ensure a bosonlike normalization of
1/k! even for this type of commutation relation. In fact, the
cobosonic part of the commutator in the second and third
line is responsible for the scattering potential in Eq. (12).
When projecting to a single-coboson subspace [36], these
two aspects, the cobosonic part of the commutator and
integration regions ensuring unique electron-nucleus pairs,
become irrelevant. In this case, we recover conventional
single-particle quantum mechanics.

So far, we constructed a cobosonic theory from second-
order scattering of fermions, where the internal structure
is governed by the combined single-fermion energy and
where their binding potential results from attractive inter-
actions. Furthermore, the intercobosonic dynamics arises
from the interfermionic interactions between the con-
stituents of different cobosons. We emphasize that this pro-
jection does not exclusively work for the single-fermion
Hamiltonian from Eq. (2) and the potential from Fig. 2
but rather for arbitrary single-fermion Hamiltonians and
potentials. However, effects of the environment given by
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states that do not lie within the coboson subspace have
been neglected in our treatment.

IV. SECOND-QUANTIZED TRANSFORMATIONS

Although the Hamiltonian from Eq. (13) has already
the desired form of a subspace EFT for cobosons, it still
involves the constituents’ coordinates. In the spirit of
composite particles, we now move to c.m. and relative
coordinates, where the latter take the internal cobosonic,
i.e., atomic, structure into account. Also, light-matter inter-
action enters in lowest order via the vector potential Â
contained in the canonical momenta through minimal cou-
pling. For a description of experiments, it is more conve-
nient to express the coupling by EM fields Ê and B̂. In this
section we derive a method to incorporate the multipolar
form of our cobosonic subspace EFT and move to rela-
tivistically corrected c.m. and relative coordinates of the
second-quantized Hamiltonian ĤCb from Eq. (13).

In first-quantized regimes (characterized by lowercase
symbols), realizing these operations involves unitary trans-
formations [41,42,62–64] û that transform a state |ψ〉 =
û|ψ̃〉, where û = exp{iλ̂/�} may be expressed through
a (time-independent) single-particle generator λ̂. Conse-
quently, the effective Schrödinger equation i�d |ψ〉 /dt =
ĥCb |ψ〉 for the single-coboson Hamiltonian ĥCb yields a
transformed operator

ˆ̃hCb = û†ĥCbû (14)

as long as û is time independent.
Guided by this concept, we define for the second-

quantized Hamiltonian ĤCb from Eq. (13) an analogous
[65,66] transformation |
〉Cb = Û|
̃〉Cb on a second-
quantized state |
〉Cb (characterized by uppercase sym-
bols) with a unitary Û = exp{î/�} generated by ̂. We
choose the second-quantized generator ̂ in such a way
that the transformation reduces to the single-particle trans-
formation acting on the first-quantized Hamiltonian ĥCb.
With the choice

̂ =
∫

C1

d6x1ϕ̂
†
1 λ̂ϕ̂1, (15)

where λ̂ is the generator of the corresponding first-
quantized transformation, we achieve the desired behavior.

To see this connection, we determine the transformation

Û†ϕ̂Û =
∞∑
�=0

1
�!

(
− i

�

)� [
̂, ϕ̂

]
�

(16)

with the help of a Baker-Campbell-Hausdorff formula
where [̂, ϕ̂]� = [̂, [̂, ϕ̂]�−1] and [̂, ϕ̂]0 = ϕ̂. Focusing

first on the bosonic part of the coboson commutator, it can
be shown that

[
̂, ϕ̂

]
�
=
(
−λ̂

)�
ϕ̂. (17)

Regarding the additional parts of the coboson commutator,
they do not vanish trivially but can be resolved by con-
sidering only the projected transformation π̂CbÛ†ϕ̂Ûπ̂Cb
where these additional terms vanish due to the regions of
coboson coordinates. Through the cobosonic part of the
commutator, we generate terms containing the annihilation
of two electrons (nuclei) within the same sphere around
one nucleus (electron), which lies outside of our projected
subspace and thus vanishes. This fact may be made explicit
by introducing the projected transformation π̂CbÛ†ϕ̂Ûπ̂Cb
as ϕ̂ = π̂Cbϕ̂. Consequently, the transformation reduces to

Û†ϕ̂Û = ûϕ̂, (18)

i.e., the second-quantized unitary transformation given by
Û reduces to the first-quantized unitary û defined via their
respective generator [65].

With this relation, we obtain the transformed second-
quantized Hamiltonian

Û†ĤCbÛ = Û†ĤEMÛ +
∫

C1

d6x1ϕ̂
†
1 û†

1ĥCbû1ϕ̂1

+
∫

C1

d6x1

∫

C2

d6x2ϕ̂
†
1 ϕ̂

†
2 û†

1û†
2V̂scattû2û1ϕ̂2ϕ̂1

(19)

given that [̂, ĥCb] = [̂, V̂scatt] = 0. If λ̂ contains EM
fields, we also need to transform ĤEM, otherwise it remains
invariant. Here, the first-quantized unitary transformation
ûk = û(xk,n, xk,e) of coboson k acts only on coordinates and
operators associated with coboson coordinates (xk,n, xk,e).

In the following, we specify the transformations to
describe the multipolar cobosonic subspace by c.m. and
relative coordinates including relativistic corrections.

A. Nonrelativistic c.m. and relative coordinates

First, we move from the set of electron {xk,e, p̂k,e, ŝk,e}
and nucleus {xk,n, p̂k,n, ŝk,n} coordinates to NR c.m.
{Rk, P̂k, Ŝk} and relative {rk, p̂k, ŝk} coordinates describ-
ing coboson k. The connection between the different
coordinates are listed in Table I and chosen such that
c.m. (position Rk, momentum P̂k) and relative (posi-
tion rk, momentum p̂k) share nonvanishing canonical
commutators [R(u)� , P̂(v)k ] = [r(u)� , p̂ (v)k ] = i�δuvδ�k where u,
v = x, y, z. These coordinates are defined through the total
and reduced mass M = me + mn and mr = memn/M as
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TABLE I. Single-fermion coordinates of coboson k expressed
through their c.m. and relative counterparts in the NR limit.
The positions, momenta and spins {xk, j , p̂k, j , ŝk, j } of fermion
j = e, n are expressed through their respective c.m. and rela-
tive coordinates {Rk, P̂k, Ŝk} and {rk, p̂k, ŝk}. Here, M = me + mn
and mr = memn/M describe the total and reduced mass of the
coboson, respectively, and mj is the mass of its constituents.

j e n

Position xk, j Rk + mrrk/me Rk − mrrk/mn

Momentum p̂k, j meP̂k/M + p̂k mnP̂k/M − p̂k

Spin ŝk, j meŜk/M + ŝk mnŜk/M − ŝk

well as the total spin Ŝk and the relative spin ŝk. Changing
the coordinates leaves the integration measure invariant
and we replace d6xk → d6Rk = d3Rk d3rk in ĤCb from Eq.
(13) together with single-particle coordinates in ĥCb and
V̂Scatt according to the transformation specified in Table I.
Note that the field operators ϕ̂k = ϕ̂(Rk − mrrk/mn, Rk +
mrrk/me) have thus become a function of c.m. and relative
coordinates as well.

B. Relativistic corrections to c.m. and rel. coordinates

Our description contains relativistic corrections up to the
order c−2. However, the transformation to NR c.m. and rel-
ative coordinates from Table I is inconsistent to this order
and has to be modified [62,63,67,68]. These corrections
can be implemented via a first-quantized unitary transfor-
mation [62,63], which circumvents issues regarding the
integration measure and the transformation of certain terms
in the scattering potential that arise with an actual coordi-
nate transformation. Such a first-quantized unitary [62] is
generated by

λ̂
(rel)
k = rk · P̂ k

4M 2c2

[
p̂ k · P̂ k +�m

(
p̂ 2

k

mr
+ qeqn

4πε0|rk|

)]
+ H.c.

− 1
4mrMc2

(
p̂ k × P̂ k + H.c.

)
· ŝk. (20)

The Coulomb-potential term proportional to the mass dif-
ference �m = mn − me arises due to the internal EM
interactions. In addition, single-particle masses are con-
tained in the total mass M = me + mn and the reduced
mass mr = memn/M , and the Hermitian conjugate H.c.
ensures hermiticity of the generator. We also account for
c−2 corrections to light-matter interactions by using gauge-
invariant minimally coupled momenta [67] P̂ k = p̂ k,e +
p̂ k,n and p̂ k = (mn p̂ k,e − mep̂ k,n)/M instead of purely
kinetic momentum operators. To apply this first-quantized
transformation to a second-quantized theory, we need to
confirm that [̂rel, ĥCb] = [̂rel, V̂scatt] = 0, where ̂rel and
λ̂
(rel)
k are connected through Eq. (15). Since ̂rel contains

an integration over coordinates that are independent of
ĥCb and V̂scatt, the cobosonic operators trivially commute.
While the vector potential commutes in Coulomb gauge
with itself, its commutator with the electric fields in ĥCb
(spin-orbit term) is nonvanishing. The resulting additional
terms from this commutator, however, are yet ruled out by
the limits of integration in ĤCb. This fact is again a con-
sequence of the projection, ensuring that a coboson can
contain only one nucleus and electron, and may be made
explicit by introducing ϕ̂ = π̂Cbϕ̂, similar to before. Thus,
the transformation reduces to Eq. (19).

C. Power-Zienau-Woolley transformation

We now introduce the interaction of light with matter
through electric and magnetic fields Ê and B̂ rather than
through the vector potential, i.e., we move to multipolar
cobosonic quantum field theory. This transition follows
from applying the unitary Power-Zienau-Woolley (PZW)
transformation [41,42,64] defined by its first-quantized
generator λ̂(PZW)

k = ∫
d3yPk (y) · Â (y) through the polar-

ization field [69]

Pk (y) =
∑

i

qi
(
xk,i − Rk

) 1∫

0

dρδ[y − Rk − ρ(xk,i − Rk)]

(21)

of the kth coboson. Here, we choose the coordinate Rk,
which could be arbitrary, in general, to coincide with the
c.m. position. Based on the discussion above, it can be
shown that this generator meets the requirements to reduce
the second-quantized transformation to the first-quantized
one as well.

D. Transformation sequence

Finally, the total transformation sequence addresses first
the generation of relativistic corrections to NR c.m. and
relative coordinates, followed by the PZW transformation.
This particular order of transformations is crucial to remain
gauge invariant. The transformations of Eq. (13) leads to
the replacements

ĥCb → û(PZW) †
1 û(rel) †

1 ĥCbû(rel)
1 û(PZW)

1 (22a)

V̂scatt → û(PZW) †
12 û(rel) †

12 V̂scattû
(rel)
12 û(PZW)

12 (22b)

ĤEM → Û†
PZWÛ†

relĤEMÛrelÛPZW, (22c)

where û12 = û1û2 combines the transformation of both
coordinate sets. For a more detailed discussion on the
above transformations, we refer to Appendix B and present
the major results in the next section.
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V. MULTIPOLAR COBOSONIC SUBSPACE

Together with the transformations from the previous
section, our multipolar cobosonic subspace is formulated
with respect to c.m. and relative coordinates, while every
scale is corrected in c−2. In particular, the theory includes
corrections to internal dynamics encoded in ĥCb, interco-
bosonic dynamics in V̂scatt, and light-matter interactions
contained in both terms. Consequently, the multipolar
cobosonic Hamiltonian

ĤMpCb = ĤEM +
∫

C

d6Rϕ̂†ĥMpCbϕ̂

+
∫

C1

d6R1

∫

C2

d6R2ϕ̂
†
1 ϕ̂

†
2 V̂scattϕ̂2ϕ̂1 (23)

accounts via ĥMpCb for the single-coboson energy, while
the scattering potential is accounted for by V̂scatt. In the
former, we omit the subscript “1” for simplicity and, there-
fore, whenever there are no interactions between more than
one coboson in the following.

A. Single-coboson Hamiltonian

The explicit form of the single-coboson Hamiltonian

ĥMpCb = Mc2 + ĥ(0)rel + ĥ(1)rel + P̂2
Q

2M

(
1 − ĥ(0)rel

Mc2

)
− P̂4

Q

8M 3c2

+ ĥ(0)I + ĥ(1)I (24)

consists of the internal structure ĥ(0)rel + ĥ(1)rel , c.m. kinetic
terms proportional to the minimally coupled momentum
P̂2

Q, as well as the light-matter interaction ĥ(0)I + ĥ(1)I . The
kinetic term couples to the internal structure as a conse-
quence of the mass defect [16–18]. The rest energy Mc2 is
modified by the relative motion

ĥ(0)rel = p̂2

2mr
+ qeqn

4πε0|r| (25)

solely given by a hydrogen-type Hamiltonian. The next-
order correction is given by

ĥ(1)rel = − p̂4

8m3
r c2

m3
e + m3

n

M 3 − κ

|r|3
(

1
2
�̂

2 + (
r · p̂

)2
)

+ καDπ�
2δ(r)+ κ

α�S

|r|3 �̂ · Ŝ + κ
α�s

|r|3 �̂ · ŝ

+ καssπδ(r)ŝn · ŝe + κ
c(n)F c(e)F

|r|3 Ŝne. (26)

Similar to Sec. II, we defined κ = 2κne = −qeqn/(4πε0mr
Mc2) and the abbreviation αv summarizes all Wilson coef-
ficients in Table II. These corrections [48–50] give rise

TABLE II. Low-energy effective Wilson coefficients αv that
contribute to the relativistic corrections of the relative motion,
i.e., to the internal structure. They can be connected to the high-
energy Wilson coefficients c( j )

D , c( j )
F , and c( j )

S that correspond to
the Darwin, Fermi, and Seagull coefficients of fermion j = e, n
as well as to the Wilson coefficients d(ij )1 and d(ij )2 for j �= i that
originate in the contact interaction.

v αv

Darwin D
m2

nc(e)D + m2
ec(n)D

2mrM
+ d(en)

1 + d(ne)
1

πZα

(Total spin)-orbit �S
mec(e)F + mnc(n)F

M
+ mec(n)S + mnc(e)S

2M

(Relative spin)-orbit �s c(e)F − c(n)F + c(e)S m2
n − c(n)S m2

e

2mrM

Spin-spin ss
8
3

c(n)F c(e)F − 4
d(en)

2 + d(ne)
2

πZα

to the fine- and hyperfine structure of hydrogenlike atoms
and correspond in the same order to the kinetic relative
correction, orbit-orbit coupling, Darwin term, spin-orbit
coupling of angular momentum �̂ = r × p̂ to total and
relative spin, spin-spin contact coupling, as well as the
magnetic dipole-dipole interaction Ŝne = −ŝn · ŝe + 3(ŝn ·
r)(ŝe · r)/|r|2. Note that ŝn and ŝe refer to the spin of
nucleus and electron and may be expressed through their
corresponding total and relative spin. Here, we reproduce
results known from the literature [37] that are augmented
by particle-species dependent Wilson coefficients c(i)F and
c(i)S .

In addition to the internal structure, our results include
c.m. degrees of freedom. The c.m. kinetic energy appears
as the dominating, lowest-order contribution but is mod-
ified by a correction proportional to the relative Hamil-
tonian ĥ(0)rel as a consequence of the mass defect [16–18],
where relative and c.m. degrees of freedom couple to each
other. Relativistic corrections to the relative Hamiltonian
ĥ(1)rel are not included in the mass-defect term for consis-
tency, since these couplings are of order c−4. The mass
defect implies an internal-state-dependent c.m. motion that
can be identified with a state-dependent mass [16,17,24–
26,30–34], which we show in detail later.

The fact that our description allows also for charged
cobosons (ions) manifests in a monopole coupling where
the total charge Q = qn + qe and the vector potential eval-
uated at the c.m. position Â(R) appear in minimally cou-
pled momenta P̂Q = P̂ − QÂ(R). The kinetic c.m. degrees
of freedom are completed by the c.m. relativistic kinetic
correction proportional to P̂4

Q, analogously [16] to the case
of neutral atoms with Q = 0.
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TABLE III. Contributions to the leading-order light-matter
interaction ĥ(0)I . The individual terms ĥv describe a coupling of
generalized electric (ME) and magnetic (MM) moments as well
as the Röntgen (R) and diamagnetic (dia) interaction together
with the self-energy (self). They describe a coupling of the polar-
ization field P , the magnetization M̂, magnetic moments μ̂i to
c.m. momenta P̂Q, magnetic fields B̂, and the transverse electric

field Ê
⊥

.

v ĥv

ME − ∫
d3yP⊥ · Ê

⊥

MM − 1
2

∫
d3y

(
M̂ · B̂ + H.c.

)
−∑

i=e,n μ̂i · B̂ (xi)

R 1
2M

{
P̂Q,

∫
d3yP × B̂

}

dia

(∫
d3yP×B̂

)2

2M +

[∑
i qi

m2
r

m2
i

r ×
1∫

0

dρρB̂
(

R − ρ
qi

|qi|
mr

mi
r
)]2

2mr

self 1
2ε0

∫
d3y

(P⊥)2

Further, external EM fields interact with the coboson in
leading order via

ĥ(0)I = ĥME + ĥMM + ĥR + ĥdia + ĥself. (27)

The explicit form of the components are summarized in
Table III, where all EM fields depend on the integration
variable y if not stated otherwise. The polarization P and
the magnetization M̂ [see Eq. (28)] depend on y, as well as
on coboson coordinates xe and xn that have to be expressed
by c.m. and relative coordinates.

The term ĥME couples the transverse electric field Ê
⊥

to
the transverse part of the polarization field from Eq. (21),
giving rise to generalized electric moments (MEs). For
instance, a multipole expansion of the polarization field
in R implying small relative coordinates yields in lowest
order the dipole moment d = mr(qe/me − qn/mn)r.

Similarly, the magnetic field couples to magnetic
moments (MMs) in ĥMM and has two contributions: The
particles’ spin, i.e., the magnetic moment μ̂i = c(i)F qiŝi/mi,
couples to the magnetic field B̂(xi), where the single-
fermion coordinates have to be replaced by c.m. and rel-
ative coordinates xi = R − qi

|qi|
mr
mi

r. Moreover, constituents

of composite particles carry orbital angular momentum �̂

that induces an orbital magnetic moment contained in the
quantum magnetization

M̂(y) =
∑

i

mr

mi
qi

�̂

mi

1∫

0

dρρδ[y − R − ρ (xi − R)] (28)

similar to the relation between polarization fields and
electric moments. A multipole expansion of the magne-
tization and the magnetic field leads in lowest order to

the magnetic moment of a coboson μ̂� + μ̂n + μ̂e, with
μ̂� = mr(qe/m2

e + qn/m2
n)�̂/2, i.e., the sum of orbital, elec-

tron, and nucleus spin magnetic moments giving rise to the
Zeeman shift [70].

In addition, the c.m. motion of the coboson also yields
the c.m. Röntgen Hamiltonian ĥR [71–75]. Further, we find
that the diamagnetic interaction ĥdia with c.m. and relative
contribution corresponds to an induced magnetic moment
due to the external fields, being part of the quadratic Zee-
man effect [76]. Moreover, the cobosonic self-energy ĥself
is generally divergent, but can be renormalized [77] and
contributes to the Lamb shift [41].

The last contributions to the single-coboson Hamilto-
nian are relativistic corrections to the light-matter interac-
tion and, in general, depend on the electric or the magnetic
field. In many applications light-matter interactions are
dominated by electric fields. Here, we present these domi-
nant electric terms and suppress the influence of magnetic
fields in c−2. The full Hamiltonian including magnetic field
contributions is given in Appendix B, while the electric
field contribution resolves to

ĥ(1)I =
∑

i

c(i)S qiŝi ·
(

mi
M P̂Q − qi

|qi| p̂
)

× Ê + H.c.

8m2
i c2

+ 1
2

∑
i

[
Ê

⊥
(xi) · d̂

(1)
i + d̂

(1)
i · Ê

⊥
(xi)

]
. (29)

The second line originates from relativistic corrections
to c.m. and relative coordinates and describes the cou-
pling of the transverse electric field Ê

⊥
to dipole-moment

corrections

d̂(1)i

qi
= r

4M 2c2

(
p̂ · P̂Q + �m

mr
p̂2 + �mqeqn

4πε0|r|
)

+ H.c.

+ r · P̂Q

4M 2c2

[(
1 − 2

�m
mi

qi

|qi|
)

p̂ − mr

mi

qi

|qi| P̂Q

]
+ H.c.

+ 1
2mrMc2

(
mr

mi

qi

|qi| P̂Q + p̂
)

× ŝ (30)

in accordance [67] with the limiting case of Q = 0 and
arbitrary loosely bound cobosons.

B. Scattering potential

The scattering potential has the general form

V̂scatt =
∑
i, j

[
V̂ (ij )C + V̂ (ij )LL + V̂ (ij )LS + V̂ (ij )SS

]
+ V̂self, (31)

where the components are summarized in Table IV. For
simplicity, we include only the most dominant c.m. con-
tribution to the scattering for all c−2 terms by omitting
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TABLE IV. Contributions to the scattering potential V̂scatt.
The individual terms V̂ (ij )v mediate the interaction between two
fermions i, j of different cobosons and include a Coulomb (C)
interaction, a coupling of orbital magnetic moments through
angular momenta including a retardation correction (LL), a spin-
orbit interaction (LS), a magnetic dipole potential (SS) and the
self-energy (self).

v V̂ (ij )v

C
qiqj

8πε0|χ ij |
+ �m

M

eχ ij · (er1 − er2)

Mc2

qeqn

qiqj

(
qiqj

8πε0|χ ij |

)2

LL −μ0qiqj

8πM 2

1
|χ ij |3

(
1
2

L̂
(ij )
1 · L̂

(ij )
2 +

(
χ ij · P̂1

) (
χ ij · P̂2

))

LS − μ0

8π |χ ij |3
[ qi

M

(
L̂
(ij )
1 − L̂

(ij )
2

)(qj

qi
μ̂1,i + μ̂2, j

)

−1
2

qj qi

Mmi
L̂
(ij )
1 · ŝ1,i + 1

2
qiqj

Mmj
L̂
(ij )
2 · ŝ2, j

]

SS − μ0

8π |χ ij |3
[
μ̂1,i · μ̂2, j − 3

(
μ̂1,i · eχ ij

) (
μ̂2, j · eχ ij

)]

self
1

2ε0

∫
d3yP⊥

1 · P⊥
2

terms directly proportional to ri, while keeping the general
distance between two different constituents χ ij = x1,i −
x2, j and neglecting all terms proportional to the relative
momentum p̂i. Besides, we also exclude the influence of
light-matter interaction in the scattering processes pre-
sented in the table. The full scattering potential including
light-matter interactions and relative contributions is given
in Appendix B. As expected, the leading-order contribu-
tion of scattering is the Coulomb (C) interaction between
fermion i of coboson 1 and fermion j of coboson 2. How-
ever, we find a second Coulomb-like correction, including
the unit vector ew in w direction, where w is either the
distance χij between constituents of different cobosons or
relative distances between each coboson’s constituents r1
and r2. Corrections to the Coulomb potential are inter-
actions between all possible magnetic moments among
different cobosons. Consequently, in V̂ (ij )

LL we find orbital
magnetic moments coupling to each other through orbital
angular momenta L̂

(ij )
k = χij × P̂k. Moreover, we find also

in the scattering potential an additional term containing
momentum operators that corresponds to the so-called
retardation correction [48]. The spin-orbit (LS) interac-
tion includes an interaction of an effective orbital magnetic
moment proportional to L̂

(ij )
1 − L̂

(ij )
2 with an effective spin

magnetic moment qj μ̂1,i/qi + μ̂2, j , complemented by pure
spin-orbit coupling. These potentials are completed by the
known [78,79] magnetic dipole-dipole potential V̂ (ij )SS .

Moreover, one effect of the PZW transformation
becomes apparent only in second quantization, which is the
scattering self-energy [V̂self, Eq. (31)], arising analogously

(and additionally) to the cobosonic self-energy [ĥself in Eq.
(27)] in the single-coboson sector. Because of the multico-
boson nature, this contribution may be associated as one
part of the collective (or cooperative) Lamb shift [80,81].

With these results, we have introduced a multipo-
lar cobosonic subspace. The single-coboson Hamiltonian
includes c−2 corrections for the internal structure, the
mass defect in the c.m. motion, but also for the light-
matter interactions beyond a multipole expansion. We
derived scattering potentials based on lowest-order two-
particle scattering, yielding the Coulomb potential with
corrections in form of interactions between magnetic
moments.

VI. DISCUSSION

In the following section, we identify different physi-
cal systems and issues that can be described or addressed
by our multipolar cobosonic subspace, such as models
for atomic systems, bound-state energies, the scattering
between atoms, as well as ultracold quantum gases. The
examples demonstrate that our theory contributes to the
understanding of different subfields, complementing and
connecting existing approaches.

A. Models for atomic systems

First-quantized Lagrangian or Hamiltonian treatments
of atomic dynamics restricted to single-particle systems
have been studied extensively [70]. There are relativistic
treatments, e.g., extending the NR Schrödinger equation
for a hydrogen atom to relativistic equations [82] or for-
mulating equations of motion for c.m. coordinates of a
system of relativistic Dirac particles, which allows for a
description of relativistic bound-state systems [83]. How-
ever, the dynamics of atomic ensembles are often studied
in NR regimes since atomic quantum gases are mostly
restricted to low-energy scales. One accurate model of
bound-state particles that includes relativistic corrections
follows from two coupled Dirac equations in the respec-
tive NR limit [48–50], and is known as the Breit-Pauli
Hamiltonian. This Hamiltonian does not account for field-
theoretical QED corrections and is derived with respect
to single-fermion coordinates. As a result, additional rela-
tivistic corrections enter the Hamiltonian [67,68] once NR
c.m. and relative coordinates are introduced to separate the
inner-atomic structure from the c.m. motion. In the sim-
plified case where one ignores the spin of fermions, such
a description of atoms gives rise to a coupling of c.m. to
relative degrees of freedom as a consequence of the mass
defect [16–18,22]. In contrast to calculating relativistic
corrections to the NR bound-state atoms and their dynam-
ics, there are other models that focus on corrections arising
from a finite extension of atoms via hard-sphere models,
i.e., atoms confined in spherical impenetrable boxes, and
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they have been studied for hydrogen [84–93], hydrogen-
like [94], and many-electron atoms [95–98]. In this case,
different deviations from the standard NR treatment of
hydrogenlike atoms than the relativistic ones follow.

Based on such first-quantized models, one usually pos-
tulates a corresponding effective field theory [21,99],
and rigorous field-theoretical derivations for atoms are
not addressed. Conversely, our work embeds established
first-quantized concepts mentioned above into a field-
theoretical formulation. As a result, the Breit-Pauli Hamil-
tonian is further modified by QED corrections. Via our
projection formalism, we naturally introduce length scales
defining the extension of an atom, similar to hard-sphere
impenetrable boxes. Introducing c.m. and relative coordi-
nates leads also to the mass defect, where we extend known
derivations [16,17] to arbitrary numbers of spin-carrying
and charged cobosons in a field-theoretical framework, yet
restricted to special relativity.

Models for atomic systems include not only isolated
atoms but also the description of their interaction with
external fields, e.g., light and gravity. In quantum and
atom optics for instance, atoms are manipulated via the
interaction with light, leading, e.g., to magneto-optical
traps [100–103] for neutral atoms as well as Paul [104–
107] and Penning [108–111] traps for ions. Instead of
trapping atoms, light pulses [112–114], in principle even
entangled ones [115], or Bloch oscillations [116–121] are
used to manipulate the atoms’ momenta and might also
induce transitions between internal states [122,123]. In the
context of cold atoms, magnetic fields give control over
scattering dynamics between atoms via Feshbach reso-
nances [124–128] but are also crucial to implement, e.g.,
E1M1 [129–131] or magnetically induced single-photon
[122,132] pulses.

In many applications [133,134] and field-theoretical
treatments [37] it is sufficient to take only the lowest-order
multipole expansion of the EM field into account. Further
contributions, such as higher-order multipole moments
driving transitions [135] or respective energy shifts [136],
are then considered individually to the desired order [75].
In our present work, we use the generalized polarization-
field approach [69] for the PZW transformation [41,42,64].
Moreover, relativistic corrections to light-matter interac-
tion on the level of elementary fermions are known most
accurately in the field of NRQED [137]. Once we move
to the multipolar form defined with respect to NR c.m.
and relative coordinates, additional relativistic corrections
arise also for EM fields. These have been studied for
electric field contributions [67,138] but magnetic field
contributions have not been discussed explicitly yet. Our
treatment includes relativistic corrections to EM fields
appearing in light-matter interactions, in particular, also
magnetic field contributions.

Based on operational arguments, particle detectors, also
known as Unruh-DeWitt detectors [139,140], have been

postulated [141] as an alternative to microscopically mod-
eling composite particles and their interaction with, e.g.,
EM fields from first principles. Usually, such models
assume an effective first-quantized or two-level system as a
detector, either with classical [141,142] or quantized [143–
145] c.m. motion, interacting with an already suitably
tailored external field, such as an EM field. While useful,
e.g., for entanglement-related studies [142], they do not
include corrections [75] accessible only by microscopic
models like our multipolar cobosonic subspace, such as
the full light-matter interaction or many-body effects of the
detector itself, although there are attempts to generalize it
to second-quantized formulations [146].

The simple first-quantized model of atoms falling in
gravitational potentials [147], as another external field,
has been extended to a post-Newtonian description for
an atomic Hamiltonian. This description includes rela-
tivistic corrections associated with the coupling of gravity
to atoms [17,22,148,149] for single, spinless, and neutral
atoms. Some of these works derived the mass defect under
gravity [17], confirming original ideas for quantum clock
interferometry [23–25]. The mass defect shows a connec-
tion to proper time associated with the c.m. of the atom and
can be encoded by atomic [22] and quantum [26,32,150]
clocks in gravitational backgrounds. Some theories even
predict effective gravitational decoherence mechanisms
[151]. In addition, quantum clock interferometry allows for
tests of general relativity [30–32,34]. However, also in the
gravity-free case, a coupling of internal degrees of freedom
to the atomic c.m. via the mass defect leads to possible
measurements of a quantum twin paradox [26,152,153] or
allows for dark-matter detection [27–29,33]. With QFT on
curved spacetime and a generalization of the respective
coordinate transformations, an extension to gravitational
fields seems in principle possible.

B. Bound-state energies

Most models of atoms focus on their internal structure,
allowing for calculations of bound-state energies. Conse-
quently, in most accurate treatments, radiative QED cor-
rections [11–14] and effects from the composite-particle
nature of the nucleus [154,155] enter bound-state ener-
gies [37] of composite particles. These can be calculated
with relativistic approaches [156], e.g., for hydrogen-
like atoms with bound-state QED [157–160] or with the
Bethe-Salpeter equation [161–164]. Bound states and their
properties for atoms have also been derived from field the-
ory via flow equations and the functional renormalization
group [165–167].

In contrast to these fully relativistic treatments, rela-
tivistically corrected bound-state energies for hydrogenlike
atoms can be obtained from EFTs in the NR regime, e.g.,
NRQED [7,168–174] or pNRQED [35–37,175]. These
approaches exploit simplifications arising in inherent NR
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regimes while radiative corrections and effects from the
nucleus are still taken into account via Wilson coeffi-
cients [7,137]. However, bound-state calculations within
these EFTs are usually restricted to a single atom that is
assumed to be trapped. Consequently, the c.m. motion as
well as its relativistic corrections and corrections to the
relative coordinates become irrelevant [62,67,68]. Natu-
rally, in the single-atom limit no atom-atom interactions
occur and usually only basic light-matter interaction is
considered, such as electric-dipole coupling for neutral
atoms. These approaches for calculating bound-state ener-
gies of trapped atoms may include contributions to the
NR Lamb shift [35,175–178] but can also be used for
fundamental tests [179], the determination of the pro-
ton charge radius [15,154,175,177,178], and dark-matter
searches [180]. Since they typically focus only on the
atomic spectrum, there are calculations, e.g., for hydro-
gen [174], going beyond the precision of the internal
energies derived in our work. In particular, a pNRQED
treatment [37] may include next-order loop corrections that
are omitted in the present paper for simplicity but can be
incorporated straightforwardly. Moreover, these pNRQED
derivations focus on positronium (equal-mass case of con-
stituents) or neutral atoms, without taking c.m. degrees of
freedom into account, while light-matter interactions enter
solely through electric-dipole couplings. As a result, light-
induced internal energy shifts or shifts arising from the
interaction with other atoms are not covered in these treat-
ments. Finally, in pNRQED Wilson coefficients have to
be determined for each particular system, which, e.g., has
been carried out explicitly for positronium [37], but also
for hydrogenlike systems [178].

In the following applications, we will thus determine
bound-state energies, i.e., the QED-corrected hyperfine
structure of hydrogenlike atoms, including parts of the NR
Lamb shift [41,51,52], where we keep arbitrary Wilson
coefficients such that our results remain valid for generic
hydrogenlike atoms [178]. Because we also extend single-
atomic considerations to an arbitrary number of atoms,
scattering dynamics arise in addition to the usual pNRQED
approaches. Such two-body scattering dynamics for atoms
were previously constructed and matched to pNRQED for
the special case of van der Waals interactions [40].

C. Scattering between atoms

Since we aim to describe ultracold quantum gases, these
atom-atom interactions become highly relevant. There are
several theoretical models [181] describing NR atomic
scattering. One possible description is based on interaction
potentials between two scattering partners, where higher-
order scattering events [182] are neglected. The NR scat-
tering of neutral atoms is then dominated by van der Waals
interactions [183–186]. In this context, theoretical models
have been developed to determine van der Waals scattering

potentials [187,188] and cover also density-functional-
theory approaches [189–192]. Approximations to the van
der Waals interaction are often performed according to an
expansion of the form −C6/�R6 − C7/�R7 + · · · with
real constants Cn [193], where �R is the distance between
the c.m. of two atoms. Hence, the long-range behavior may
be observed in lowest order. For example, the C6 coeffi-
cient for hydrogen [194,195] can be obtained by second-
order perturbation theory [196] of the dipole-dipole poten-
tial [197] in first-quantized regimes [184]. Retardation
effects may also be taken into account and correspond to
the C7/�R7 term [184,198]. Another approximation of
the van der Waals potential is the Lennard-Jones potential
[199]. In contrast to such first-quantized approaches, there
are also EFTs [40,200] dealing with van der Waals inter-
actions directly. For the case of charged cobosons, ion-
ion scattering [201,202] is characterized by the Coulomb
repulsion to lowest order. We augment these existing
approaches for neutral and charged cobosons by deriving
relativistic corrections to the lowest-order Coulomb scat-
tering potentials and cover the interactions between mag-
netic moments associated with orbit-orbit, spin-orbit, and
spin-spin (magnetic dipole-dipole potential) interactions.
Spin-orbit and spin-spin magnetic moment interactions are
known, e.g., from magnetic scattering in the context of
neutrons [203–207]. Since neutrons are free of charge, no
Coulomb interaction is present and such interactions dom-
inate the process. Magnetic moments coupling in atomic
scattering processes are partly discussed in the context of
spinor BECs [10,208]. In addition to the Coulomb poten-
tial and its corrections, we find a scattering self-energy,
that is part of the collective Lamb shift and was postu-
lated before by embedding light-matter interaction into a
field-theoretical framework [99].

D. Ultracold quantum gases

The combination of bound-state energies with scatter-
ing dynamics together allows for a consistent treatment
of ultracold quantum gases including their internal struc-
ture. So far, the description of ultracold quantum gases
often relies on bottom-up approaches for EFTs based on
extensions of NR first-quantized theories. Consequently,
there are successful field-theoretical descriptions of scalar
BECs [21,209–211] as well as spinor BECs including
internal states [10,208]. Although their realization is chal-
lenging [212,213], due to the Coulomb repulsion among
charged bosons, also ionized BECs [214–218] have been
studied. These descriptions usually do not address rel-
ativistic corrections, the inner-atomic structure is often
of minor importance, and light-matter interaction is only
partly accounted for. Our basic assumption for cobosonic
subspace EFT, to introduce different length scales, enters
our description of an ultracold quantum gas in terms of
hard-sphere atoms, and naturally the scattering dynamics
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in our model remain perturbations to the single-coboson
contribution.

Moreover, this scattering dynamics is usually treated
with approximations, leading to effective scattering lengths
from s-wave scattering [21] as well as introducing effective
pseudopotentials for scattering from hard-sphere inter-
actions [54,219] instead of the full scattering potential.
Within these approximations, we may derive the Gross-
Pitaevskii equation (GPE) [43,44,220] that describes a
Schrödinger-type equation complemented by a nonlinear
collision term corresponding to the lowest-order effects
of the condensate mean-field contribution [10,21,221].
Here, the field operator can be approximated by a wave
function of the condensate by symmetry-breaking [222]
or number-conserving approaches [223,224]. Higher-order
corrections such as fluctuations [221,225] arising from the
coupling of the condensate to a noncondensed thermal
cloud may also be taken into account. There are exten-
sions to coupled GPEs, both for different modes [226,227]
and quantized light fields [99,228], which are usually pos-
tulated extensions of first-quantized considerations. Some
studies [229,230] generalize the GPE to a relativistic
equation by postulating an invariant Klein-Gordon-type
equation [3,231,232] to account for relativistic effects. The
modified GPE then follows in these approaches in the NR
limit by separating a rest-energy phase from the conden-
sate function [233], resulting into a relativistic correction
proportional to a second derivative in time of the conden-
sate function. However, such a treatment does not include
relativistic effects and the mass defect. Consequently, as
another application, we will derive a GPE including the
mass defect, relativistic corrections, also for light-matter
interactions, and a coupling of different internal states of
the coboson. This modified GPE differs significantly from
previous Klein-Gordon-type derivations and might lead to
fundamentally different predictions. The deviation orig-
inates from the fact that atoms, as composite particles,
are not fundamental bosons but rather cobosonic in their
nature and, thus, they do not obey a Klein-Gordon equation
describing spin-0 particles.

VII. APPLICATIONS

Following the discussion above, we aim to derive the
dynamics of interacting quantum gases and their internal
structure encoded in the coboson field operator ϕ̂. This
includes modified bound-state energies associated with the
fine and hyperfine structure of the coboson and a cou-
pling via the mass defect to its c.m. motion. We determine
the scattering potentials between two internal states of the
coboson with respect to internal degrees of freedom giv-
ing access to generalized van der Waals potentials. The
mean-field contribution of the field operator gives rise to
a GPE modified by relativistic corrections and the mass
defect.

A. Modes of relative motion

In the spirit of composite particles, we introduced c.m.
and relative coordinates for the multipolar cobosonic sub-
space. As a next step, we explicitly describe the equation
of motion of cobosons and separate between the c.m. and
modes for the relative motion between constituents. In con-
trast to the Schrödinger equation, where the complete time
dependence enters through the state vector |
(t)〉 while
all field operators ϕ̂, Â, Ê, B̂ are explicitly time indepen-
dent, ϕ̂ and all other field operator become time depen-
dent once we consider the equation of motion, effectively
corresponding to a change into the Heisenberg picture.

1. Cobosonic equation of motion

First, we derive the equation of motion for the
cobosonic field operator ϕ̂ based on the Heisenberg
equation i�dϕ̂/dt = [ϕ̂, ĤMpCb], neglecting the influence
of the environment that lies outside of our cobosonic
subspace. We recall that the equation of motion follows
from the cobosonic commutation relation, generating addi-
tional terms compared to a purely bosonic field operator.
However, these additional terms correspond to processes
that lie outside of the projected Hilbert space, such as
the annihilation of an electron and a nucleus of different
cobosons. To derive the effective equation of motion, we
rely on the projected equation of motion i�π̂Cbdϕ̂/dtπ̂Cb =
π̂Cb[ϕ̂, ĤMpCb]π̂Cb that resolves to

i�
d
dt
ϕ̂ = �(a − |r|)

⎛
⎜⎝ĥMpCb +

∫

C2

d6R2ϕ̂
†
22V̂scattϕ̂2

⎞
⎟⎠ ϕ̂.

(32)

The Heaviside step function �(x) accounts for creation
and annihilation of only such cobosons whose constituents
posses relative distances |r| ≤ a. The equation of motion
yields a Schrödinger-like equation for the single-coboson
energy governed by ĥMpCb, while the second term accounts
for the influence of all other cobosons in the system via
scattering. Equation (32) does not exhibit general analyt-
ical solutions due to the combination of the relativistic
corrections and the coupling to arbitrary light fields con-
tained in the Breit-Pauli Hamiltonian ĥMpCB as well as due
to the scattering dynamics V̂scatt. For specific initial states,
the time evolution of the associated N -particle Hamilto-
nian can be solved numerically. Since both the relativistic
corrections and the scattering act perturbatively in such
an atomic model, they can be approached with perturba-
tive methods. In particular, the relativistic corrections are
dealt with an expansion into unperturbed relative hydro-
gen modes while the influence of scattering is resolved via
a delta potential [219] together with mean-field and sub-
sequent beyond-mean field approaches [221]. Within these
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mean-field approaches, Bogoliubov theory [10,234] may
allow for an analytical solution. Special cases like a single-
mode or few-mode approximation for the coboson field
operator [235] allow further simplifications of the problem.
Solving for the field operator in the presence of light-
matter interactions often requires further approximations
like a pure dipole coupling or single-mode approxima-
tions. Thus, in the following we present such a perturbative
treatment.

2. Expansion into unperturbed hydrogenlike modes

While the dynamics implied by Eq. (32) is involved, the
limits of integration restrict the relative distances between
constituents of different cobosons to |x1,i − x2, j | > b �
a, and allow for a perturbative treatment of the scat-
tering potentials. The remaining dominant term denotes
the single-coboson contribution associated with ĥMpCb,
where the leading-order contribution ĥ(0)rel = p̂2/(2mr)+
qeqn/(4πε0|r|) is followed by other perturbative terms
contained in ĥ(1)rel . Consequently, we use an expansion into
eigenmodes of ĥ(0)rel , i.e., into hydrogenlike modes of the
relative motion, and find

ϕ̂ =
∑
β

ψβ(r)
̂β(R, t), (33)

where ψβ is the (first-quantized) wave function of the rel-
ative motion associated with internal state β. The field
operator 
̂β(R, t) annihilates a coboson in state β at c.m.
position R. The commutation relation of the remaining
field operator 
̂β(R, t) is completely defined through the
original cobosonic commutator from Eq. (5). Furthermore,
the cobosonic equation of motion requires the wave func-
tions to vanish at |r| = a, similar to the case of atoms
in an impenetrable spherical box [84–93]. This condi-
tion is numerically solvable, with an energy depending on
the particular choice of a and converging to the known
energies of hydrogen-type atoms for a → ∞. In the fol-
lowing, we choose the standard hydrogenlike wave func-
tions for the relative motion, because for suitable values
of a the probability density is exponentially suppressed in
regions |r| > a. However, a numerical treatment is possi-
ble as well [88]. Hence, the hydrogenlike wave function
ψβ(r) is associated with a generalized quantum number
β encompassing all quantum numbers, i.e., the princi-
pal quantum number n with energy eigenvalues E(0)n =
−mr(Zαc)2/(2n2), the quantum number j associated with
total angular momentum ĵ = �̂ + Ŝ, its projection to the z
axis (mj ), the orbital angular momentum (�) and the quan-
tum number of the total spin S associated with the spin
Ŝ = ŝe + ŝn. We present the angular momentum basis in
Appendix C, where ψβ takes also the spin degrees of free-
dom of the coboson into account, i.e., it contains in total
four spinor components from the two spin-1/2 fermions.

By inserting the field-operator expansion from Eq. (33)
into the equation of motion, multiplying with the conjugate
wave function ψ∗

α , and using the orthonormality of the rel-
ative modes when integrating over the relative coordinate,
the equation of motion for the c.m. field operator of mode
α resolves to

i�
d
dt

̂α = ĥMpCb,α
̂α +

∑
β �=α

T̂αβ
̂β

+
∑
βνμ

∫

|�R|>b′

d3R′
̂ ′ †
ν V̂αν;βμ
̂

′
μ
̂β . (34)

It contains only an integration with respect to c.m. coor-
dinates. The intercobosonic scale was introduced through
the nucleus coordinate. Thus, for consistency with the
previous definition, we replace b with b′ = b + a for
the distance �R = R − R′ between the c.m. positions
of two cobosons. Next, we present the internal Hamilto-
nian ĥMpCb,α , the transition elements T̂αβ between inter-
nal states, and scattering matrix elements V̂αν;βμ in the
following two subsections.

B. Modified bound-state energies

The equation of motion for the field operator 
̂α associ-
ated with the annihilation of a coboson in mode α at c.m.
position R includes the bound-state energy

ĥMpCb,α = Mαc2 + E(1)α + P̂2
Q

2Mα

− P̂4
Q

8M 3c2 + 〈ĥI〉α , (35)

of a coboson in internal state α. Figure 4 shows the energy-
momentum dispersion for the Hamiltonian ĥMpCb,α for dif-
ferent modes α. By introducing an internal-state-dependent
rest mass Mα = M [1 + E(0)α /(Mc2)], the spectrum of the
atom enters the rest energy Mαc2 and, through the rela-
tivistic mass defect, the minimally coupled kinetic energy
P̂2

Q/(2Mα), where the latter implies a lowest-order Taylor
expansion. As a result, the energy-momentum dispersion
depends on the internal energy of the coboson. Fine and
hyperfine splittings [36] enter through relativistic inter-
nal corrections E(1)α = 〈ĥ(1)rel 〉α , where 〈ô〉α = ∫

d3rψ∗
α ôψα

denotes the expectation value with respect to internal state
α of an arbitrary operator ô. These first-order correc-
tions are of the order E(1)α /E

(0)
α ∼ 10−5 of the unperturbed

energy E(0)α , when α corresponds to the ground state of
a hydrogen atom. A detailed expression for these correc-
tions is given in Appendix C. Due to these corrections,
there is a splitting of the unperturbed hydrogenlike energy
levels also presented in Fig. 4. In the presence of EM
fields, energy shifts occur in the form of 〈ĥI〉α = 〈ĥ(0)I 〉α +
〈ĥ(1)I 〉α , accounting for first-order perturbative shifts such
as, e.g., the linear Zeeman shift [70]. Contrarily, second-
order effects like the quadratic Stark effect [76] are not
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FIG. 4. Due to the mass defect, the energy-momentum disper-
sion of a neutral coboson (with Q = 0) depends on the unper-
turbed internal state defined by the principal quantum number
n = 1, 2, 3, . . . . Additional relativistic corrections cause a split-
ting into sublevels that correspond to the fine and hyperfine
structure given by the set of quantum numbers ( j , S, �). These
structures do not enter the modified energy-momentum disper-
sion at our level of approximation in c−2. The quantum number
j coincides with the quantum number f that is the standard form
for the hyperfine splitting in atomic physics and results from cou-
pling the electron’s spin with the relative angular momentum,
before coupling the nuclear spin.

explicitly accounted for in the diagonal matrix elements.
Further nonperturbative EM fields, giving rise to shifts
such as ac-Stark [236] and other light shifts [237,238] are
also not solely represented by these diagonal elements. To
cover such additional effects, the second term in Eq. (34),
including all off-diagonal transition elements

T̂α,β =
∫

d3rψ∗
α

(
ĥ(1)rel + ĥI

)
ψβ (36)

from internal state β to α, cannot necessarily be treated
perturbatively.

In summary, using the expansion into relative hydro-
genlike modes, we find both the bound-state energy of
a coboson, including energy shifts due to internal rela-
tivistic corrections, as well as transitions between different
internal-coboson states driven by both internal interactions
and light fields.

C. Modified scattering potentials

The multicoboson aspect of our theory enters via the
scattering matrix elements

V̂αν;βμ =
∫

d3r
∫

d3r′ψ∗
αψ

′ ∗
ν 2V̂scattψ

′
μψβ , (37)

describing the scattering from internal modes βμ into
αν, where V̂αν;βμ is a function of both R and R′. Simi-
lar to the splitting of the single-coboson energy into the
bound-state energies and internal transitions, we divide the
scattering matrix elements into one part without transi-
tions, i.e., α = β, and a part including actual transitions,
i.e., α �= β, that corresponds to internal state changing

collisions. As a result, the equation of motion

i�
d
dt

̂α =

⎛
⎜⎝ĥMpCb,α +

∑
νμ

∫

|�R|>b′

d3R′
̂ ′ †
ν V̂αν;αμ
̂

′
μ

⎞
⎟⎠ 
̂α

+
∑
β �=α

⎛
⎜⎝T̂αβ +

∑
νμ

∫

|�R|>b′

d3R′
̂ ′ †
ν V̂αν;βμ
̂

′
μ

⎞
⎟⎠ 
̂β

(38)

for internal state α includes the single-coboson energy
ĥMpCb,α and is augmented by the scattering accounting for
the mean field created by all other cobosons interacting
with the coboson of mode α. Transitions from mode β to
α are either induced via internal or light-matter interac-
tions but also by scattering with other cobosons that change
its internal state from μ to ν. By integrating over relative
degrees of freedom to obtain the scattering matrix ele-
ments from Eq. (37), we gain via Eq. (38) access to exact
scattering potentials predicted by our model.

We obtain analytic expressions for the potentials
approximated order by order, at least for the regime where
b′ � a, via the Taylor expansion of V̂scatt around xi −
x′

j
∼= �R in Eq. (37). The dominant contribution in this

regime follows from the Coulomb potential. We find the
generalized electric dipole-dipole potential

V̂scatt ≈ 1
8πε0

{
Q2

|�R| + Q
e�R · (d − d′)

|�R|2

+ Q

∑
u(Quu +Q′

uu)− 3
∑

u,v e(u)�R

(
Quv +Q′

uv

)
e(v)�R

|�R|3

+ d · d′ − 3 (e�R · d)
(
e�R · d′)

|�R|3
}

(39)

that accounts in general for cobosonic ions [66]. For
Q �= 0, the leading order corresponds to a repulsive
Coulomb potential proportional to Q2 as indicated in
Fig. 5(a). It is followed by corrections in which the dif-
ference of generalized dipole moments d = mr(qe/me −
qn/mn)r enters as well as the quadrupole-moment ten-
sor Quv = −rurvm2

r (qe/m2
e + qn/m2

n)/2 with components
u, v = x, y, z. The last term, the only one remaining in
the limit of neutral cobosons with Q = 0, corresponds to
the standard electric dipole-dipole potential whose dipole
moment simplifies to d = qer for qe = −qn. Such a poten-
tial is the starting point to describe interatomic interac-
tions in dipolar quantum gases [239–241]. We plot it in
Fig. 5(b) for parallel r and r′, as well as for different
values of the angle between �R and r. For instance, using
second-order perturbation theory in first quantization, the
dipole-dipole potential gives rise to the energy shift asso-
ciated with the van der Waals potential [127,183,184] of
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(a) (b)

scatt

FIG. 5. Form of the scattering potential. (a) Two ionized
cobosons with Q �= 0 experience a repulsive Coulomb potential
as the dominant contribution of their interaction. (b) For neutral
cobosons with Q = 0 higher-order dipole terms are dominat-
ing the interaction. The panel shows the dipole-dipole potential
Vd-d ∝ (Z − 1)2/|�R| + Za2(1 − 3cos2ϑ)/|�R|3 for the sim-
plified case of r = r′ = aer, where ϑ is the angle r and �R.
Depending on the orientation, the potential is either attractive or
repulsive.

the form −C6/|�R|6 with a real constant C6. As a conse-
quence, using the full Coulomb potential together with all
relativistic corrections and explicitly integrating over rel-
ative degrees of freedom gives access to generalized van
der Waals scattering potentials between cobosonic modes.
This approach can serve as the cobosonic model predic-
tion to van der Waals potentials that may be compared with
experimental results. In addition, as we derived scattering
dynamics with respect to internal states of the coboson, we
are able to model cobosonic entanglement through scat-
tering. Since scattering can also be used for squeezing
of internal states of atoms [242–245] and its description
requires a field-theoretical formulation, our subspace EFT
can be embedded into the field of quantum metrology.

D. Modified Gross-Pitaevskii equation

The derivation of approximate solutions to the equation
of motion from Eq. (34) for the c.m. field operator often
follows a mean-field approach [234]. Such a treatment
leads to the celebrated Gross-Pitaevskii equation (GPE)
[43,44], which we derive below in favor of approaches
following, e.g., density-functional theory [246].

The scattering potentials in Eq. (38) have the form of
a hard-sphere interaction [54,219] characterized by a non-
vanishing potential only at distances |�R| > b′, which is
ensured by integration regions in our model. In this case
and for low temperatures as well as weakly interacting,
dilute gases, such hard-sphere potentials can be replaced
by a pseudopotential [219] of the form ηαν;αμδ(R − R′),
where no integration region appears [247]. Instead, we find

an effective, renormalized [221,248,249] scattering length
[250] ηαν,αμ, mediating scattering between cobosons of
mode α with that of mode μ transitioning into mode ν.
An analogous replacement in the collision-induced cou-
pling between modes α and β in the second line of Eq.
(38) with an effective scattering length ηαν,βμ can be made.
Within this approximation the equation of motion for the
field operator takes the form

i�
d
dt

̂α =

(
ĥMpCb,α +

∑
νμ

ηαν;αμ
̂
†
ν 
̂μ

)

̂α

+
∑
β �=α

(
T̂α,β +

∑
νμ

ηαν;βμ
̂
†
ν 
̂μ

)

̂β . (40)

Such an approximation is often applied in the context of
ultracold quantum gases [21,251] and corrections may also
be taken into account [252,253].

However, already in a mean-field theory we observe
a difference to the conventional treatment, i.e., we have
access to relative and c.m. relativistic corrections, as well
as to the full coupling to external EM fields. To this end,
we approximate Eq. (40) by moving to a first-quantized
equation of motion 
̂α → 
α where 
α represents the
mean field of the condensate [234]. There are several
ways to introduce the mean field as lowest-order contribu-
tion of the equation of motion [221,254,255]. Extending
the lowest-order contribution to beyond mean-field the-
ory [235,256–258] may be achieved by including also an
operator-valued noncondensate part of the field operator
in terms of a thermal cloud that couples to the mean field
[221]. Within the mean-field approach, we find new effec-
tive scattering lengths η̃αβ and η̃αβ;α′β ′ that may differ from
the previous values. These approximations result in the
modified GPE

i�
d
dt

α =

(
Mαc2 + E(1)α + 〈ĥI〉α + P̂2

Q

2Mα

− P̂4
Q

8M 3c2

+
∑
νμ

η̃αν;αμ

∗
ν
μ

)

α

+
∑
β �=α

(
T̂α,β +

∑
νμ

η̃αν;βμ

∗
ν
μ

)

β (41)

that contains, compared to the NR bosonic GPE [43,44],
first-order relativistic corrections. It is valid for spinor
Bose-Einstein condensates [10] and has a state-dependent
mass Mα differing from previous derivations [229,230,
233]. Moreover, the description applies also to cobosonic
ions (coupling via P̂Q), as long as the gas can still be treated
as weakly interacting. In addition, we find the energy shift
E(1)α from the internal cobosonic structure and we account
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for light-matter interaction in 〈ĥI〉α . Moreover, we observe
that the GPE for mode α may couple to other modes
through 
∗

ν
μ terms [259], where usually only the contri-
butions proportional to |
μ|2 are taken into account. The
coupling to other modes enters via nonvanishing internal
transition elements T̂α,α′ , as well as via a scattering element
including transitions from mode μ to ν.

To our knowledge, a modified GPE for c.m. degrees
of freedom, taking into account internal degrees of free-
dom and incorporating the mass defect, has not yet been
derived from first principles. In contrast to previous deriva-
tions of relativistically corrected GPEs [229,230,233], dis-
cussed in more detail in Sec. VI D, our results include
the mass defect expressed through the internal-state-
dependent total mass Mα , and by that a state-dependent
dispersion relation. Moreover, we include also the first-
order internal-energy shift E(1)α , the kinetic correction
P̂4

Q, and a complete treatment of light-matter interaction.
In addition, the equation is usually derived only for neu-
tral and spinless particles. References [229,230,233] aim
at describing relativistic Bose-Einstein condensates start-
ing from a nonlinear generalization of the Klein-Gordon
equation.

In experiments with cold atoms, actual interactions not
approximated as contact potentials and beyond-mean-field
effects may dominate over these relativistic corrections and
Eq. (41) needs to be extended to account also for these
effects. Such a procedure can be applied to Eq. (40) and
gives rise to Bogoliubov-des Gennes equations [222,234,
260], for example, as well as couplings of the mean field
to the noncondensate part of the field proportional to the
density of the noncondensate in lowest order [221].

However, high-precision experiments relying on atom
interferometry are currently discussed for fundamental-
physics tests, such as Einstein-equivalence-principle vio-
lations [30,32], or dark-matter [29,261] and gravitational-
wave [262] detection. Since these campaigns aim for the
detection of perturbations, an analysis of contributions,
such as the special-relativistic effects derived in this work
are required for a consistent treatment. For example, pro-
posals for fountain geometries, ranging from ten [263]
to several hundred meters [264–266], give rise to veloc-
ities v/c that are in the order 10−7 when the atoms are
accelerated for a hundred meters by Earth’s gravitational
field. Due to the P̂4 term, the kinetic energy experiences
then a correction proportional to (v/c)2 ∼ 10−14 that, in
principle, has to be included for the analysis of high-
precision tests targeting at such sensitivities, depending
on the observable. For atomic clocks in a storage ring
moving with a c.m. velocity with v = 0.03c [267], this
correction would even increase to (v/c)2 ∼ 10−3, becom-
ing important for already performed experiments.

Moreover, the relativistic mass defect corrects the
kinetic energy by a term of the order 10−11 during

optical clock transitions, for example, through the 1S0-3P0
transition in 88Sr [122]. This correction is key to geome-
tries for ambitious tests of the Einstein equivalence prin-
ciple as it induces differential recoil shifts [26] and has to
be considered in quantum clock interferometry [24]. Even
though the most precise measurements of the fine-structure
constant were achieved with atom interferometers gener-
ated by a combination of Raman pulses and Bloch oscil-
lations [268], similar setups based on large-momentum
transfer through optical single-photon transitions might
have to consider a modified recoil velocity. Furthermore,
the mass defect was also explicitly measured in atomic
clock setups [269–271] as part of the relativistic or second-
order Doppler shift. Thus, the analysis of state-of-the-art
atomic clocks has to consider the mass defect, i.e., second-
order Doppler shifts, which we discuss in this context
explicitly in the next subsection.

E. Reduction to mass defect

With the modified GPE we reproduce two special cases:
(i) We find the typical atomic physics NR GPE by neglect-
ing all relativistic contributions. (ii) By restricting the
treatment for Q = 0 to two modes, i.e., ground (g) and
excited (e) state, and by neglecting the P̂4 term, inter-
nal relativistic corrections in E(1)α , as well as the influence
of any scattering, we reproduce a Hamiltonian [16,17]
that is relevant in an atomic [18,22] and quantum clock
context [23,24,26,30–34]. For the sake of presentation,
we neglect light-matter interactions for the moment. In
this limit, the equation of motion for both, ground and
excited state, reduces to i�d |j 〉 /dt = ĥj |j 〉 with a first-
quantized Hamiltonian ĥj = Mj c2 + P̂2/(2Mj ), including
the abstract form of the wave function in position rep-
resentation 
j = 〈R|j 〉, with j = g, e. Since the differ-
ential equations for the internal states are now decou-
pled, we find a Schrödinger equation for the general state
|
〉 = 
g |g〉 +
e |e〉 with |
g|2 + |
e|2 = 1. After Tay-
lor expanding the state-dependent mass Mj , the system
Hamiltonian, i.e., the sum of the two Hamiltonians ĥj ,
takes the form

ĥ = Mc21 + ĥ(0)rel + P̂2

2M

(
1 − ĥ(0)rel

Mc2

)
, (42)

which is the limit of addressing only two internal states of
ĥ(0)rel = Eg |g〉〈g| + Ee |e〉〈e| in Eq. (24), as expected. This
Hamiltonian can be recast into the form

ĥ =M c21 + ĥcl + P̂2

2M

(
1 − ĥcl

M c2

)
(43)
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by introducing a new mean mass M = M + (E(0)e +
E(0)g )/(2c2) together with replacing the unperturbed Hamil-
tonian of the relative degrees of freedom ĥ(0)rel by the clock
Hamiltonian

ĥcl = E(0)e − E(0)g

2
[|e〉〈e| − |g〉〈g|]. (44)

This clock Hamiltonian describes the internal (relative)
dynamics and constitutes the basis of atomic and quantum
clocks [16–18,22–24,26,30–34], in our case without grav-
ity. In particular, the preceding two equations are related
by the fact that in the order c−2 the equivalence

ĥ(M , ĥ(0)rel ) = ĥ(M , ĥcl) (45)

holds. Moreover, the energy difference E(0)e − E(0)g can be
associated with the transition frequency of a clock as well
as the mass difference between both internal states. This
equivalence can be extended in the order c−2 to the case
where the total momentum P̂ is replaced by its minimally
coupled version P̂Q. Similarly, the equivalence holds in the
order c−2 also for the corrected relative degrees of free-
dom ĥ(1)rel , and the corrected EM interaction ĥ(1)I in Eq.
(24). However, replacing M by M would lead to addi-
tional relativistic modifications for some parts of the NR
EM interaction ĥ(0)I , especially when considering magnetic
fields, while its leading-order NR contributions maintain
the same form.

The Hamiltonian accounts for a modified c.m. motion
and dispersion relation for atoms in different internal states
through the mass defect. To underline the implications of
the mass defect, we observe that wave packets associated
with the ground and excited state of a free coboson disperse
and propagate differently over time, as indicated in Fig.
6. Due to the state-dependent mass, the amplitude and the
uncertainty differ. Since both wave packets share the same
initial momentum they evolve with a different velocity.

The c.m. of clocks moving at a velocity v experi-
ences a time dilation t′ = t(1 − [v/c]2)−1/2, which, in turn,
implies, after Taylor expansion, a second-order Doppler
shift �′ = �[1 − (v/c)2/2] of any frequency � as a first-
order correction, and by that also the transition frequency
� = (E(0)e − E(0)g )/� of atomic clocks [272]. A semiclas-
sical treatment of such frequency shifts leads to relative
values up to order (v/c)2 ∼ 10−12 and has to be taken
into account for the analysis of high-accuracy frequency
standards [273]. These shifts, which are nonneglibile for
high-precision clocks [22,271], are, for example, caused
by micro- or macromotion of ions in traps, where the ion
is not prepared in the c.m. ground state, but has some ther-
mal excitation, and is not located at the exact minimum of
the trap, which has a complex and time-dependent struc-
ture [274]. To estimate these shifts, usually an ensemble

FIG. 6. Sketch of the time evolution of noninteracting
cobosons in a superposition of ground |g〉 and excited |e〉 state.
The c.m. probability distribution |
j (x, t)|2 of the atom in state
|j 〉 is shown by different wave packets. Their form depends on the
internal states due to different dispersion relations, which depend
on the masses Mg and Me due to the mass defect. Moreover, if
both wave packets have the same initial momentum, the ground
state propagates with a higher velocity.

average over the induced classical motion of a thermal
ensemble is performed. However, Eq. (43) incorporates the
time-dilaton shift on a quantum level, since it can be recast
in the form

ĥ =
[
M c2 + P̂2

2M

]

+ ��

2
[|e〉〈e| − |g〉〈g|]

⎡
⎣1 − 1

2

(
P̂

Mc

)2
⎤
⎦ . (46)

A generalization to ions and the inclusion of trapping
potentials caused by electromagnetic fields is straightfor-
ward within our framework. Tracing out the c.m. degrees
of freedom of the bound systems, we find a relative shift
−〈(P̂/Mc)2〉/2 of the transition frequency. It can be asso-
ciated with the ensemble average of the semiclassical
approach and is determined by the specific parameters of
the trap and the associated micro- and macromotion [271].
Moreover, combining our description with a perturbative
treatment [275] also allows for the explicit description of
second-order Doppler effects in Ramsey sequences or for
probing transitions, where the atoms undergo a complex
motion in time-dependent traps. Here, one distinguishes
between a momentum distribution caused by finite tem-
peratures and the associated uncertainties in momentum,
but also the excess micromotion when the clock is initially
displaced from the trap minimum [276]. Hence, our results
can be directly applied for the analysis of time-dilation
effects in atomic or ion clocks, complementing semiclassi-
cal approaches that so far are the backbone of the analysis
of relativistic motional effects of atomic clocks. For the
order of magnitude of such effects, see Refs. [136,272].

Moreover, in contrast to previous works discussing
Hamiltonians of the form of Eq. (43), our framework
allows for the treatment of spin-dependent interactions
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such as in spinor ion traps [274] or spinor atom interfer-
ometry [122] through ĥI in Eq. (24). Besides well-known
Zeeman-like effects [136], including the coboson’s spin
also enables the treatment of, e.g., magnetically induced
single-photon transitions [132] and beyond-Standard-
Model effects, such as axion couplings [277]. Additionally,
such spin- and internal-state-dependent interactions allow
for addressing each spin state with a different trapping
potential, leading to guided quantum clock interferome-
try [32], where the clock’s c.m. state is being brought into
spatial delocalization. Such schemes can be used for novel
internal sensors, e.g., for rotation sensing [278], as well
as for fundamental tests such as the Einstein equivalence
principle [32]. Hence, an extension of our framework to
gravity would allow for a detailed study of gravitational-
redshift tests across single wave packets or on small scales
[279,280], exceeding so far semiclassical descriptions of
clocks. For such tests, reaching an uncertainty level of
10−21, the effects discussed in our treatment are crucial.
More generally, such an extension could be used to study
the gravitational redshift itself as a further relativistic cor-
rection, augmenting the p̂4 kinetic correction in similar
orders of magnitude.

VIII. CONCLUSIONS

By projecting existing NR EFTs, we derived in this
paper a subspace EFT for (possibly) charged, spin-
carrying, and interacting composite bosons based on their
constituents. Our approach includes relativistic contribu-
tions such as radiative corrections, mass defects, as well
as atom-atom scattering, and light-matter interactions. We
therefore combined low-energy aspects of particle physics,
quantum optics, and atomic physics in one multipolar
cobosonic subspace EFT with a range of applications, e.g.,
to scattering experiments [181,281], ultracold quantum
gases [4,5,21], and high-precision measurements based on
quantum clocks [18,22–24,26–32,34].

By considering their c.m. motion, we observed
intercobosonic interactions via relativistically corrected
scattering potentials and a coupling between c.m. and
relative degrees of freedom that arises from the rela-
tivistic mass defect. Moreover, our projection technique
can be applied to other single-fermion Hamiltonians
ĥi and potentials V̂ (ij ). Our second-quantized transfor-
mations led to relativistic corrections to c.m. and rel-
ative coordinates together with the multipolar version
of our subspace EFT. The extension to spin-carrying
charged cobosons confirms that the coupling between
c.m. and relative degrees of freedom induced by the
mass defect holds also in this framework. To the best of
our knowledge, relativistically corrected scattering poten-
tials to this extent are given for the first time, includ-
ing a scattering self-energy term. In addition, we pre-
sented a modified, coupled GPE including light-matter

interactions, other relativistic corrections, and the mass
defect.

The projection formalism introduces length scales asso-
ciated with atoms composed of electron-nucleus pairs.
Introducing further different length scales may result into
subspace EFTs for other types of composite particles, e.g.,
multielectron atoms and molecules. A subspace EFT for
molecules would directly connect to and extend existing
approaches [282] and lead to a field-theoretical descrip-
tion of interacting ultracold molecules. Such an effective
theory revolves around established concepts such as the
Born-Oppenheimer approximation [283] and other bound-
state calculations for many-body bound systems, such as
density-functional theory [284]. Furthermore, our model
describing single-species ensembles may be extended to
mixtures, e.g., of cobosons and free fermions, different
species, isotopes, as well as ions within neutral quantum
gases, the latter giving rise to respective spinor quantum
gases. Moreover, effects of the environment that lie outside
of the cobosonic subspace could, in principle, be incorpo-
rated by techniques known from open quantum systems
[59,60], and will lead to additional energy shifts as well as
to decoherence mechanisms.

Including external nonelectromagnetic fields, such as
gravity or violation fields in a similar fashion would
set a quantum-field-theoretical foundation for established
single-particle descriptions, being of essence for quantum
clock interferometry but also for atomic clocks exposed to
micromotion [18,22], tests of special and general relativity
[30–32,34], as well as dark-matter detection [27–29,33].
By determining c.m. scattering potentials between two
cobosons by integrating over relative degrees of freedom
numerically, we expect to find corrected van der Waals
scattering potentials [187,188]. Moreover, our results facil-
itate a field-theoretical description of both the c.m. motion
as well as the internal states of atomic quantum gases.
Since quantum-metrological methods enhancing the pre-
cision through techniques like squeezing rely on such a
treatment and might be even generated through scattering,
our results lay the basis for the description and modeling
of supersensitive measurements below the shot-noise limit
and can be applied to spin-squeezed experiments [242,243]
or momentum-squeezed atom interferometry [244,245].

In summary, the presented multipolar cobosonic sub-
space EFT can be applied to a large class of atomic ensem-
bles, e.g., Bose-Einstein condensates [10,21,78,79,240],
ionized quantum gases [214–218], and thermal clouds
[285,286] that may be exposed to light-matter interactions,
including trapping potentials [287] and light pulses [112–
114]. It also includes relativistic corrections to the relative
Hamiltonian, the mass defect, light-matter interaction in
its most general form, and scattering potentials. Therefore,
our results are a basis for studies of composite particles,
both for fundamental physics but also for the application
of quantum systems in a vast area of different subfields.
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APPENDIX A: POTENTIAL NRQED REVISITED

We assume that composite particles are built from two
fermionic particle species, namely electrons (e) and nuclei
(n) [288]. Since NR effects are primarily responsible for
the bound-state dynamics between the constituents, one
usually relies on NRQED [6–8,19,168,174] for a field-
theoretical description. NRQED is an established EFT of
QED valid in NR regimes of both nucleus and electron
momenta where antiparticles are of no relevance. This
assumption requires sufficiently low photon energies such
that the particle-antiparticle dynamics remains negligible.

Because of the absence of antiparticles, the con-
stituents are simply described by two-component field
operators ψ̂i(x) and ψ̂

†
i (x), associated with the anni-

hilation and creation of particle i = e, n at position x,
rather than four-component spinors containing both par-
ticle and antiparticle field operators. Thus, the components
u, v = 1, 2 of field operators of the same species obey

anticommutation relations {ψ̂i,u(x), ψ̂
†
i,v(x

′)} = δuvδ(x −
x′) and {ψ̂i,u(x), ψ̂i,v(x′)} = 0. Simultaneously, electron
and nucleus field operators act on different Hilbert
spaces implying vanishing commutators [ψ̂i,u, ψ̂†

j ,v] = 0 =
[ψ̂i,u, ψ̂j ,v] for i �= j between different particle species.

The Lagrangian density governing the dynamics of the
fermionic field operators may be constructed [19] by con-
sidering all possible operator combinations that preserve
the symmetries (namely hermiticity, as well as gauge,
rotational, parity, and time-reversal invariance). Each com-
bination is then equipped with a coefficient determined
by a matching of cross sections in the low-energy limit
of QED [7,168]. Alternatively, the NRQED Lagrangian
follows directly from the QED Lagrangian by applying
the Foldy-Wouthuysen transformation [289], where the
matching coefficients have to be added manually. These so-
called Wilson coefficients [45,46] partly account for QED
effects that are no longer accessible in NRQED, such as
the anomalous magnetic moment [290–292]. In the spirit
of EFTs, they also account for composite-particle aspects
of the nucleus, loop corrections, or radiative effects.

After a Legendre transformation of the NRQED
Lagrangian density [137] up to order c−2 of the speed of
light c, the NRQED Hamiltonian density

Ĥ = ĤEM +
∑
i=e,n

ψ̂
†
i ĥiψ̂i + Ĥcont (A1)

contains three contributions [293]. The first one corre-
sponds to the free energy density of the EM field ĤEM =
ε0(Ê2 + c2B̂2)/2. The second term accounts for the energy
density of electrons and nuclei, where the single-fermion
Hamiltonian

ĥi = mic2 + qiφ̂ + p̂
2
i

2mi
− c(i)F qi

ŝi · B̂
mi

− p̂
4
i

8m3
i c2

− c(i)D qi�
2 ∇ · Ê

8m2
i c2

+ c(i)S qiŝi · p̂i × Ê − Ê × p̂i

4m2
i c2

+ c(i)W1qi

{
p̂

2
i , ŝi · B̂

}

4m3
i c2

− c(i)A1q2
i �

2 B̂
2

8m3
i c2

(A2)

corresponds to the energy of a single fermion of species i.
The Hamiltonian constitutes the basis for the Schrödinger
equation of first-quantized systems. It is sandwiched
between the field operators ψ̂

†
i and ψ̂i and creates a

weighted particle-number density in a field-theoretical
treatment.

In leading order, the energy of particle species i is the
sum of rest energy due to its rest mass mi, energy caused
by the scalar potential φ̂ because of its charge qi, kinetic
energy, as well as energy due to the coupling of spin
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ŝi = �σ̂ i/2 with Pauli-matrix vector σ̂ i of particle i to a
magnetic field B̂. The kinetic energy associated with the
particle’s minimally coupled momentum p̂i = p̂ − qiÂ,
with momentum operator p̂ = −i�∇, is modified by the
vector potential Â, and obeys the commutation relation
[xu, p̂v] = i�δuv for u, v = x, y, z. Note that we rely on posi-
tions x as integration variables and consequently they are
not operator valued. In contrast to that, we introduced
the momentum operator, similarly to the covariant deriva-
tive, with a hat to emphasize the particular fact that p̂
and x do not commute and p̂ has to be used in position
representation.

The first-order relativistic corrections are the kinetic
(p̂

4
i ) and electric field corrections, covering the Darwin

term (∇ · Ê) and spin-orbit term (p̂i × Ê), which give rise
to a corresponding hydrogen fine-structure contribution.
While p̂i acts on the field operator, ∇ · Ê is only a spatial
derivative of Ê. The last line of Eq. (A2) contains rela-
tivistic corrections to light-matter interaction in the form of
general magnetic moment and diamagnetic corrections. All
light fields are functions of position x and are connected to
φ̂ and Â via Ê = −∇φ̂ − ∂tÂ and B̂ = ∇ × Â.

The Wilson coefficients c(i)k in Eq. (A2) are determined
from tree-level QED matching [7], and particular sub-
scripts stand for Fermi, Darwin, and Seagull. Because we
also allow for different charge numbers Zi of nucleus and
electron, we include Zi explicitly into Eq. (A2), so that
our coefficients c(i)k and c(i)A1 are connected to the conven-
tional Wilson coefficients [137,178] through c(i)k = Zic

(i)
k

and c(i)A1 = Z2
i c(i)A1. This factor of Zi is directly connected

to the charges qi = Zie. In particular, c(i)F = 1 + ai/Zi is
related to the anomalous magnetic moment ai of particle i
and its charge number Ze = −1 and Zn = Z. For instance,
we can relate c(e)F = ge/2 to the g factor of the electron.
Some Wilson coefficients are defined completely through
other coefficients [137]; and specific values for electrons
[7] or protons [155] have been determined.

The third term

Ĥcont = �
3
∑
i, j

d(ij )1 ψ̂
†
i ψ̂iψ̂

†
j ψ̂j − d(ij )2 ψ̂

†
i σ̂ iψ̂i · ψ̂†

j σ̂ j ψ̂j

mimj c

(A3)

of the Hamiltonian density from Eq. (A1) describes con-
tact interactions through which fermions couple directly
(Darwin-like contact interaction) and through their spin
(spin-spin contact interaction). The Wilson coefficients
d(ij )1 and d(ij )2 are in lowest order proportional to the
fine-structure constant α = e2/(4πε0�c)with vacuum per-
mittivity ε0. These d-type Wilson coefficients are given in
standard form, i.e., factors of ZiZj are included in their
definition. However, compared to common definitions

[37], our coefficients differ by a factor of 1/2 in the case of
the interaction between two different particle species due to
the summation over all values of i and j . For example, the
interaction between electron and positron [37] corresponds
to dee+

1 = de+e
1 = ds/2 = 3πα/4 + O(α2). A similar iden-

tification can be made with our d2 and dv . These contact
terms solely arise from loop corrections [53], such that
they cannot be obtained from a pure tree-level treatment.
As a result, Ĥcont is of order α/c and by that of c−2 [294].
The Hamiltonian neglects loop corrections of the order
c−2, which are suppressed by another d-type Wilson coeffi-
cient and are in fact of order α/c2. Moreover, the NRQED
Hamiltonian generally features also terms proportional to
more than four fermionic field operators and there are also
further contributions to the EM Hamiltonian, which we
both omitted here as they are beyond our order.

1. Potential matching

The Hamiltonian from Eq. (A1) allows a description of
composite particles based on their fermionic constituents.
However, the defining property of composite particles, i.e.,
a bound-state potential due to EM interactions between
fermions, does not appear explicitly yet. Instead, it is con-
tained in the EM fields, which give rise to all allowed
NRQED Feynman diagrams involving photons. These
photons may be categorized into real (external lines in
Feynman diagrams) and virtual (internal lines in Feyn-
man diagrams) photons. The former describe all photons
from external fields that scatter with the composite parti-
cle, the latter are virtual mediating EM interaction between
the fermionic constituents of the composite particle. Such a
separation is sketched in Fig. 7(a) where all possible Feyn-
man diagrams between two constituents (solid lines) may
be written as a sum of all virtual photon diagrams (dashed
and wiggly lines), that scatter an increasing number of real
photons (zigzag lines).

Integration over all positions and performing such a
separation leads to the Hamiltonian

Ĥ = ĤEM +
∑

i

∫
d3xiψ̂

†
i ĥiψ̂i + Ĥf-f, (A4)

where the EM interaction between two fermions now
explicitly appears in a modified fermion-fermion interac-
tion Hamiltonian Ĥf-f absorbing also Ĥcont, while the EM
fields in the original single-fermion Hamiltonian [first term
in Eq. (A4)] are now only associated with real photons
scattering with fermions (light-matter interaction).

To determine Ĥf-f, one considers the first type of Feyn-
man diagram in Fig. 7(a) involving solely virtual pho-
tons. According to Fig. 7(b), the interaction or scattering
between two real fermions i and j follows to lowest order
from a second-order scattering process, i.e., two vertices in
a Feynman diagram connected by a virtual scalar (dashed
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(a)

(b)
Second order First order

FIG. 7. (a) Set of all possible Feynman diagrams of two
real fermions (which model in our treatment the constituents
of a composite particle), interacting with EM fields. It can be
described by the exchange of purely virtual photons (VP) and
real photons (zigzag lines). The former can be any combina-
tion of scalar photons (dashed line), and vector photons (wiggly
line) mediating the interaction between both fermions. This set of
Feynman diagrams can be expanded into an increasing amount of
scattering processes with real photons that account for external
EM fields. (b) The lowest-order nontrivial set of virtual pho-
tons includes all possible Feynman diagrams with one virtual
scalar or vector photon (second-order scattering). All diagrams
are reduced to an effective first-order scattering by matching to
an effective potential V̂ (ij ) in the framework of pNRQED.

line) or vector photon (wiggly line). These second-order
interactions are reduced to an effective first-order scatter-
ing processes with one vertex containing an instantaneous
potential V̂ (ij ). Consequently, the resulting Hamiltonian
takes the form

Ĥf-f =
∑
i, j

∫
d3xi

∫
d3x′

j ψ̂
†
i ψ̂

′ †
j V̂ (ij )ψ̂ ′

j ψ̂i + O
(
c−3)

(A5)

and gives rise to the effective field theory of poten-
tial nonrelativistic quantum electrodynamics [35–37,155,
173,295]. In Eq. (A5) we use the abbreviations ψ̂i =
ψ̂i(xi), ψ̂ ′

j = ψ̂j (x′
j ), and V̂ (ij ) = V̂ (ij )(xi, x′

j , p̂i, p̂′
j , ŝi, ŝ′

j ).
The potential itself is determined by considering all pos-
sible virtual photons as indicated in Fig. 7(b), leading to
potentials of order c−2.

In the following, we review the actual matching pro-
cedure for the potentials [296] based on the reduction of
scattering-matrix elements represented in Fig. 7(b) giv-
ing rise to the Hamiltonian from Eq. (A5). To this end,
we move to an interaction picture in the Hamiltonian
associated with Eq. (A1) with respect to the Hamiltonian

Ĥ0 =
∑

i

∫
d3xiψ̂

†
i

(
mic2 + p̂2

i

2mi

)
ψ̂i + ĤEM (A6)

accounting for the free EM and fermion fields. The result-
ing interaction Hamiltonian density

ĤI =
∑

i

ψ̂
†
i

(
qiφ̂ +

−
{

p̂, qiÂ
}

+ q2
i Â

2

2mi
− c(i)F qi

ŝi · B̂
mi

− c(i)D qi�
2 ∇ · Ê

8m2
i c2

− c(i)S qiŝi · p̂i × Ê − Ê × p̂i

4m2
i c2

)
ψ̂i

(A7)

shows only those terms relevant for the matching in the
order c−2. In particular, the kinetic correction and the
last two terms of ĥi in Eq. (A1) give rise only to Feyn-
man diagrams of orders higher than c−2. Moreover, the
contact interaction has already the form of first-order scat-
tering so that it does not give rise to additional second-
order Feynman diagrams. In this interaction picture, all
field operators ψ̂i, φ̂, and Â depend on x� = (ct, x) with
� = 0, 1, 2, 3, i.e., they become explicitly time dependent.
The EM fields are connected to the four potential Â� =
(φ̂/c, Â) via Ê = −∂Â/∂t − ∇φ̂ and B̂ = ∇ × Â. With
the interaction Hamiltonian density from Eq. (A7) and the
time-ordering operator T̂ , we define the scattering matrix
Ŝ = T̂ exp

{
− i

�c

∫
d4xĤI (x)

}
. The actual matching corre-

sponds to determining scattering-matrix elements up to a
given order for the desired interactions [37]. In our case,
we match up to the order c−2 for virtual photons between
two fermions. Hence, second-order scattering

Ŝ(2) = 1
2!

(
− i

�c

)2 ∫
d4x

∫
d4x′T̂

{
ĤI (x)ĤI (x′)

}

(A8)

is the first and only relevant scattering-matrix element
whose time ordering is resolved by Wick’s theorem [3,
297], giving rise to only normally ordered contractions. As
a result, we select all contractions with two (real) fermions
entering and exiting the scattering (constituents of the
cobosons), i.e., only contractions of EM fields, scalar pho-
tons Â0Â′

0, and vector photons ÂrÂ′
s with r, s = 1, 2, 3, are

involved. After power counting [37], we find that consis-
tent matching up to the order c−2 requires the contraction
of all scalar and vector photons between terms in the first
line of Eq. (A7). The terms in the second line can only be
contracted via a scalar photon with the Coulomb potential
(compare with the Feynman diagrams depicted in Fig. 2).

a. Coulomb gauge

To determine the matrix elements, a choice of gauge
is required to resolve the contractions. First, we move to
Coulomb gauge where contractions of the scalar and vector
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photon take the form [298]

Â0Â′
0 = i�

δ(x0 − x′
0)

4πε0c|x − x′| (A9a)

and

ÂrÂ′
s = �μ0c

2
1

(2π)3

∫
d3keik·(x−x′)

(
δrs

|k| − krks

|k|3
)

×
(

e−i|k|(x0−x′
0)�(x0 − x′

0)+ (
x0 ↔ x′

0

))
(A9b)

with the Heaviside step function �(x0 − x′
0). Further, con-

tractions between the vector and scalar potential ÂrÂ′
0 = 0

vanish. Multiplying all elements of ĤI (x)ĤI (x′) yields
a term proportional to φ̂φ̂′, whose contraction leads to
the Coulomb potential and corresponds to the first Feyn-
man diagram in Fig. 2. This particular second-order matrix
element

Ŝ(2)C =
(

− i
�

)2 ∑
i, j

qiqj

2!

∫
d4x

∫
d4x′ψ̂†

i ψ̂
′ †
j Â0Â′

0ψ̂
′
j ψ̂i

(A10)

contains abbreviations ψ̂i = ψ̂i (x) and ψ̂ ′
j = ψ̂j

(
x′),

where the order of fermion operators takes both com-
muting and anticommuting field operators into account.
Inserting the contraction of the scalar potential from Eq.
(A9a) yields

Ŝ(2)C = − i
�

∫
dt
∫

d3x
∫

d3x′ ∑
i, j =e,n

ψ̂
†
i ψ̂

′ †
j V̂ (ij )

C ψ̂ ′
j ψ̂i

(A11)

and the corresponding Coulomb potential V̂ (ij )
C = qiqj /

(8πε0|x − x′|). Thus, we reduced the second-order scat-
tering process associated with the Coulomb interaction to
effective first-order scattering whose corresponding Hamil-
tonian density takes the same form as was presented in the
fermion-fermion Hamiltonian in Eq. (A5).

Moving first to the contribution proportional to{
p̂r, Â(r)

} {
p̂ ′

s, Â′ (s)
}

, i.e., the case where external photons
(red zigzag lines in Fig. 2 are not yet accounted), we find
the matrix element

Ŝ(2)LL =
(

− i
�c

)2 1
2!

∑
i, j =e,n

qiqj

mimj

∫
d4x

∫
d4x′

× ψ̂
†
i ψ̂

′ †
j p̂rp̂sÂrÂ′

sψ̂
′
j ψ̂i (A12)

with the help of p̂� · Â� = Â� · p̂� in Coulomb gauge. The
contraction of the vector photon is not an exact delta func-
tion in time, i.e., not instantaneous. However, by partial

integration with respect to one temporal coordinate we
extract from the instantaneous part of the matrix element

Ŝ(2)LL = −i
�

∫
dt
∫

d3x
∫

d3x′ ∑
i, j

ψ̂
†
i ψ̂

′ †
j V̂ (ij )

LL ψ̂
′
j ψ̂i

(A13)

the potential

V̂ (ij )
LL = 4πκij

(2π)3

∫
d3keik·(x−x′)

(
δrs

|k|2 − krks

|k|4
)

p̂rp̂ ′
s (A14)

associated with the orbit-orbit coupling, while the remain-
der of the integral is of higher order and thus neglected.
Here, we introduce κij = −qiqj /(8πε0mimj c2). After per-
forming the Fourier transform we find

V̂ (ij )
LL = κij

2

(
1
|r| p̂ · p̂′ + 1

|r|3 r · (r · p̂
)

p̂′
)

. (A15)

It is straightforward to show the equivalence to the form
given in Fig. 2.

The remaining potentials in relevant order are derived
in a completely analogous procedure and are therefore
summarized by Fig. 2 showing all relevant Feynman dia-
grams and their corresponding terms contributing to V̂ (ij ).
The full potential V̂ (ij ) is given with respect to single-
fermion coordinates up to order c−2. In addition to the
explicitly derived lowest-order Coulomb interaction V̂ (ij )

C

and orbit-orbit V̂ (ij )
LL interaction, the potential is completed

by spin-orbit V̂ (ij )
LS , spin-spin V̂ (ij )

SS , Darwin V̂ (ij )
D , and the

contact interaction. The last term already had the form of
a fermion-fermion interaction. These potentials are also
known as part of the Breit-Pauli Hamiltonian [48–50],
however, augmented by QED corrections in our descrip-
tion.

b. Lorenz gauge

Figure 2 presents also the potentials calculated in Lorenz
gauge [299]. When we use this gauge instead of Coulomb
gauge to determine the potentials, the general procedure
remains identical but we need to take into account that p̂� ·
Â� �= Â� · p̂�. The contraction then reads

ÂμÂ′
ν = − �μ0c

2
ημν

(2π)3

∫
d3k

eik·(x−x′)

|k|
×
(

e−i|k|(x0−x′
0)�(x0 − x′

0)+ (
x0 ↔ x′

0

))
.

(A16)

All potentials are identical to the ones obtained in Coulomb
gauge except for the orbit-orbit and Coulomb potentials.
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For the first, we find

V̂ (ij )
LL = κij

|r|3
(
�̂ · �̂

′ + (
r · p̂

)
(r · p̂′)

)
− κijπ�

2δ(r).

(A17)

The Coulomb potential is of order c0, but in Lorenz gauge
the scalar photon propagator is not instantaneous in time.
As a consequence, there is a non-negligible remaining inte-
gral after a partial integration. The instantaneous part of
this matrix element corresponds to the Coulomb potential
and the remainder yields a term of order c−2. We resolve
the second part as well with the help of partial integration
in time and use consecutively the continuity equation

∂

∂t

(
ψ̂

†
i ψ̂i

)
= i�

2mi
∇ ·

(
ψ̂

†
i

[
∇ψ̂i

]
+
[
∇ψ̂†

i

]
ψ̂i

)
(A18)

to remove partial derivatives in time. This procedure leads
to the potential

V̂ (ij )
C = qiqj

8πε0|r| − κij
1

2|r|3 �̂ · �̂
′ + κijπ�

2δ(r) (A19)

showing that the sum of all potentials is identical in both
gauges.

2. Matching potentials with external photons

So far we discussed the potential between two fermions
due to EM interactions mediated by virtual photons that
will eventually give rise to the binding potential of com-
posite particles. In addition, we also aim to describe
light-matter interaction between composite particles and
external light fields. The scattering process of a real photon
with a composite particle contains fermion-photon inter-
actions that correspond to the EM fields appearing in the
single-fermion Hamiltonian ĥi from Eq. (A4). Since the
constituents form a bound system, we have to include
also the case of a real photon that scatters from two
fermions exchanging a virtual photon. This process is not
yet accounted for in Ĥf-f, since no minimally coupled
momentum operators appear in the potential that origi-
nates in the first term of Fig. 7(a). We incorporate this case
in Ĥf-f by including Feynman diagrams according to the
remaining two terms in Fig. 7(a). The relevant additional
Feynman diagrams with external photons (depicted in red)
are summarized in Fig. 8. Together with these additional
diagrams, we find potentials in which the momentum oper-
ators are replaced by minimally coupled momenta to arrive
at the potentials presented in Fig. 2. Here, we use Coulomb
gauge (∇ · Â = 0) to determine the matching, and conse-
quently our remaining external photons are also fixed to
this gauge from now on. In this case, the vector potential

FIG. 8. Canonical momenta appear in the effective potentials
of the orbit-orbit (LL) coupling V̂ (ij )

LL and the spin-orbit (LS) cou-
pling V̂ (ij )

LS . To replace these by minimally coupled momentum
operators, we augment the orbit-orbit Feynman diagram by three
additional diagrams: two fermions i and j exchanging a virtual
photon while they scatter a real photon, respectively, together
with the diagram where simultaneously both fermions scatter a
real photon. Both spin-orbit diagrams exchanging a virtual vector
or a virtual scalar photon, respectively, have to be augmented by
one additional diagram describing the scattering of a real photon
during this process.

can be decomposed as

Â =
2∑

r=1

1
(2π)3/2

∫
d3kAker (k)

[
âr (k) eik·x + H.c.

]
.

(A20)

We introduced the vacuum amplitude Ak = √
�/2ε0c|k|

and unit polarization vectors er (k) corresponding to the
wave vector k. In the interaction picture used in Appendix
A 1 a the vector potential is time dependent and its
nonvanishing commutator is responsible for the propagator
of the electromagnetic field. However, since we work in the
Schrödinger picture here, all field operators including the
vector potential given in Eq. (A20) are time independent.
Thus, the commutators of the field-operator components
commute such that [Âu(x), Âv(x′)] = 0 for u, v = x, y, z.

The scalar potential φ̂ contains both real and all virtual
photons arising from contractions, such as the Coulomb
potential V̂ (ij )

C . In Coulomb gauge, there are no real scalar
photons in the absence of a free charge density sourcing
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the external field, and up to order c−2 we determined all
possible virtual scalar-photon contributions by collecting
them in Ĥf-f. Consequently, we set φ̂ = 0 [300]. The self-
energy of the fermions, being the main contribution to the
Lamb shift [51,52], can still be determined since only the
virtual vector photon contributes in Coulomb gauge to it.

The result is a full minimally coupled Hamiltonian

Ĥ = ĤEM +
∑

i

∫
d3xiψ̂

†
i ĥiψ̂i

+
∑
i, j

∫
d3xi

∫
d3x′

j ψ̂
†
i ψ̂

′ †
j V̂ (ij )ψ̂ ′

j ψ̂i (A21)

where the potential V̂ (ij ) = V̂ (ij )(xi, x′
j , p̂i , p̂

′
j , ŝi, ŝ′

j ) is now
a function of minimally coupled momenta and all EM
fields are given in Coulomb gauge.

APPENDIX B: MULTIPOLAR COBOSONIC
HAMILTONIAN FROM UNITARY

TRANSFORMATIONS

In this Appendix, we present the transformation of the
coboson Hamiltonian into its multipolar form including
relativistic corrections of c.m. and relative coordinates, and
provide the full expressions omitted in the main body of the
paper. In Sec. IV we demonstrated that the transformation
of the field-theoretical Hamiltonian can be reduced to its
single-particle counterpart, summarized in Eq. (22). This
Appendix gives details on the respective single-particle
transformations.

As discussed in Sec. IV, we first perform a unitary trans-
formation to introduce relativistic corrections to c.m. and
relativistic coordinates, before we transform in a second
step the resulting operators with the help of the PZW
transformation. Because only the lowest-order relativis-
tic correction is of relevance, we find for any single-
particle operator Ô the transformation û(rel) †Ôû(rel) = Ô −
i
[
λ̂(rel), Ô

]
/� = Ô + Ô

(1)
. The generator λ̂(rel) already

given in Eq. (20) has the form

λ̂
(rel)
k = rk · P̂ k

4M 2c2

[
p̂ k · P̂ k +�m

(
p̂ 2

k

mr
+ qeqn

4πε0|rk|

)]

+ H.c. − 1
4mrMc2

(
p̂ k × P̂ k + H.c.

)
· ŝk. (B1)

The subsequent PZW transformation is performed with
the help of the generator λ̂(PZW)

k = ∫
d3yPk (y) · Â (y),

where Pk is a polarization field of the kth coboson and
is defined in Eq. (21). According to Eq. (22), we discuss in
the following the individual transformations of the single-
coboson Hamiltonian, the coboson scattering potential,
and the EM Hamiltonian.

1. Single-coboson Hamiltonian

The single-coboson Hamiltonian from Eq. (22a)
includes the operators P̂ , p̂ , 1/|r|, B̂, ŝi, and Ê [301] that
have to be transformed.

a. Relativistic corrections

To compute the relativistic corrections Ô
(1)

, we first cal-
culate the commutators between the components l, m, n =
x, y, z of minimally coupled momenta to

[
P̂� , P̂m

]
= i�ε�mnQB̂Q,n, (B2a)

[
p̂� , P̂m

]
= i�ε�mnq1B̂q1,n, and (B2b)

[
p̂� , p̂m

]
= i�ε�mnq2B̂q2,n. (B2c)

Here, we introduce the abbreviation B̂qr = ∑
i sgn(−qi)

r

qi(mr/mi)
rB̂(xi)/qr with r = 0, 1, 2 that contains the

weighted charge qr = ∑
i sgn(−qi)

rqi(mr/mi)
r and is cho-

sen such that the lowest-order multipole expansion of B̂qr

coincides with B̂(R). In the particular case q0 = Q we
write the total charge Q and sgn is the sign function.
With the commutators of minimally coupled momenta we
determine all corrections, which are presented in Table V.
We see that c.m. and relative momentum are modified by
light-induced corrections in the general r × B̂ structure. In
Table V we introduced the operators

δ̂r = r · P̂
4M 2c2

(
P̂ + 2

�m
mr

p̂
)

− P̂ × ŝ
4mrMc2 (B3a)

δ̂R = r · P̂
4M 2c2 p̂ +

p̂ · P̂ +�m
(

p̂ 2

mr
+ qeqn

4πε0|r|
)

4M 2c2 r + p̂ × ŝ
4mrMc2

(B3b)

where δ̂r and δ̂R follow from a commutator involving
the relative and c.m. momentum, respectively. Moreover,
terms arise that are of the form of a second-order multipole
expansion of the magnetic field B̂rs = qrB̂qr + �m

mr
qsB̂qs .

While the c.m. momentum contains only light-induced
corrections, the relative momentum has an additional cor-
rection that is not induced by magnetic fields. The correc-
tion to the Coulomb potential coincides [16] with the one if
light-field corrections are neglected, but the canonical c.m.
and relative momenta are exchanged by minimally coupled
ones. Finally, the correction to the magnetic field may be
rewritten into a second-order multipole expansion form but
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TABLE V. Lowest-order relativistic corrections obtained by the transformation û(rel) †Ôû(rel) = Ô +
Ô
(1)

for the c.m. momentum, the relative momentum, Coulomb-like terms, the magnetic field at
the position of a fermion, and its spin. They are obtained by calculating Ô

(1) = −i
[
λ̂(rel), Ô

]
/�.

They depend on the operators δ̂r, δ̂R and δ̂B given in Eqs. (B3) and (B4) as well as the terms
B̂qr = ∑

i sgn(−qi)
rqi(mr/mi)

rB̂(xi)/qr and B̂rs = qrB̂qr + �m
mr

qsB̂qs with a weighted charge qr =∑
i sgn(−qi)

rqi(mr/mi)
r.

Ô Ô
(1)

P̂ −δ̂R × QB̂Q − δ̂r × q1B̂q1 + H.c. − �2

4M 2c2 (r · ∇)∇ × B̂12

p̂ −δ̂R × q1B̂q1 − δ̂r × q2B̂q2 + H.c. − �2

4M 2c2 (r · ∇)∇ × B̂23

+ 1
4M 2c2

[
P̂
(

p̂ · P̂ + �m
mr

p̂ 2 + �mqeqn

4πε0|r|
)

− �mqeqn

4πε0
r · P̂

r
|r|3 + H.c.

]

1/|r| 1
|r|3

(
P̂ · r

)2

2M 2c2 + �m
2mrMc2

(
1

|r|3
(

P̂ · r
) (

r · p̂
)

+ H.c.
)

− 1
2mrMc2

1
|r|3 r × P̂ · ŝ

B̂(xi)
(
δ̂B̂ · ∇

)
B̂ + H.c. + �2

4M 2c2

qi

|qi|
mr

mi

(
1 − �m

mi

qi

|qi|
)
(r · ∇)∇2B̂

ŝi ŝi × qi

|qi|
p̂ × P̂ + H.c.

4miMc2

with the operator

δ̂B̂ = −
p̂ · P̂ + �m

mr
p̂ 2 + �mqeqn

4πε0|r|
4M 2c2 r + qi

|qi|
mr

mi

P̂ · r
4M 2c2 P̂

−
(

1 − 2
qi

|qi|
�m
mi

)
P̂ · r

4M 2c2 p̂ −
p̂ + qi

|qi|
mr
mi

P̂

4mrMc2 × ŝ

(B4)

together with a contribution proportional to the Laplacian
of the magnetic field. Since the electric fields are already
of the order c−2 in the Hamiltonian, there are no further
relevant corrections.

b. PZW transformation

We perform the PZW transformation in Coulomb gauge
where the vector potential commutes with itself and the
magnetic field at any position. Thus, only the transfor-
mation of minimally coupled momenta and the electric
field is remaining. As a result, we find the transformations
[69,302]

P̂ →P̂PZW = P̂Q + F̂
(cm)

(B5a)

p̂ →p̂PZW = p̂ + F̂
(rel)

(B5b)

Ê
⊥
(y) →Ê

⊥
(y)− 1

ε0
P⊥(y). (B5c)

In the case of ions with Q �= 0, the c.m. momentum
couples minimally to a monopole evaluated at the c.m.
position of the vector potential, i.e., P̂Q = P̂ − QÂ(R).
Moreover, both c.m. and relative momenta are modified
by generalized r × B̂ summarized by

F̂
(cm) =

∫
d3yP (y)× B̂ (y) (B6a)

F̂
(rel) =

∑
j =e,n

qj
m2

r

m2
j

r ×
1∫

0

dρρB̂
(
R + ρ(xj − R)

)
,

(B6b)

where the c.m. momentum now includes the polariza-
tion field defined in Eq. (21). The electric fields in the
single-coboson Hamiltonian are evaluated at positions xi.
Since the polarization field P(xi) = 0 vanishes, there is no
electric field contribution from the single-coboson electric
fields.

c. Hamiltonian

After we insert the PZW-transformed momenta,
also into the corrections from Table V, the trans-
formed single-coboson Hamiltonian ĥCb from Eq. (22a)
resolves to

ĥ′
MpCb = Mc2 + P̂2

Q

2M

(
1 + ĥ(0)rel

Mc2

)
− P̂4

Q

8M 3c2 + ĥ(0)rel + ĥ(1)rel

+ ĥ(0)IB + ĥ(1)IB . (B7)
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The prime indicates that electric field contributions that
arise from the transformation of the EM Hamiltonian are
not yet included. The relative Hamiltonian is identical to
Eq. (26) and ĥ(0)IB contains the magnetic field contribu-

tion of lowest-order light-matter interaction. It is listed
in Table III. The additional part, magnetic field contribu-
tions to light-matter interaction at the order of c−2, are
collected in

ĥ(1)IB = −
(

P̂2
PZWĥ(0)rel,PZW − P̂2

Qĥ(0)rel

4M 2c2 + H.c.

)
− P̂4

PZW − P̂4
Q

8M 3c2 − m3
n + m3

e

M 3

p̂4
PZW − p̂4

8m3
r c2

− κ

|r|
(
p̂2

PZW − p̂2)+ κ

|r|3 r × F̂
(rel) ·

(
α�SŜ + α�sŝ

)
+
∑

i

⎡
⎣c(i)S qi

(
mi
M P̂PZW − qi

|qi| p̂PZW

)
× Ê

4m2
i c2

· ŝi + H.c.

⎤
⎦

+
∑

i

c(i)W1qi

{(
P̂PZW − qi

|qi|
mr
mi

p̂PZW

)2

, ŝi · B̂(xi)

}

4m3
i c2

−
∑

i

c(i)A1q2
i �

2 B̂
2
(xi)

8m3
i c2

+
{

P̂(1)PZW, P̂PZW

}

2M
+
{

p̂(1)B,PZW, p̂PZW

}

2mr

−
∑

i

(
μ̂
(1)
i,PZW · B̂ + μ̂i · B̂

(1)
PZW

)
+ �2

16mrM 2c2

[
p̂PZW · ∇ × q1B̂q1 −

(
P̂PZW + 2

�m
mr

p̂PZW

)
· ∇ × q2B̂q2 + H.c.

]

+ �2

4mrM 2c2

[
q2B̂q2 ·

(
QB̂Q + �m

mr
q1B̂q1

)
+ q1B̂q1 ·

(
q1B̂q1 + �m

mr
q2B̂q2

)]
. (B8)

Note that κ = 2 κen. Due to the PZW transformation
and the fact that we keep light-matter interactions also
in the order c−2, we find for all c−2 terms from the
single-coboson Hamiltonian light-field contributions that
are listed in the first three lines of ĥ(1)IB . Every term
that appears with a subscript “PZW” contains PZW-
transformed momenta. The relativistic corrections μ̂

(1)
i,PZW,

B̂
(1)
PZW, P̂(1)PZW, and p̂(1)PZW are the ones from Table V,

only with PZW-transformed momenta, where μ̂
(1)
i =

c(i)F qiŝ
(1)
i /mi. Moreover, we collect all PZW-transformed

terms of p̂(1)PZW directly proportional to B̂ in p̂(1)B,PZW that
includes light-field-induced corrections. The last line in
Eq. (B8) represents the remainder of combining c.m. and
relative parts of the kinetic correction and the relativis-
tic correction p̂(1) due to the noncommutativity of c.m.
and relative momenta. We see that in c−2 the influence
of the magnetic field becomes cumbersome, but the gen-
eral structure is expressed through r × B̂ terms, B̂

2
terms

and ∇ × B̂-type terms in various combinations with other
operators.

2. Coboson scattering potential

In the following, we determine the transformation of the
scattering potential

V̂scatt =
∑
i, j

(
V̂ (ij )

C + V̂ (ij )
LL + V̂ (ij )

LS + V̂ (ij )
SS

)
. (B9)

To our order, only relativistic corrections to the Coulomb
potential

V̂ (ij )
C = qiqj

8πε0|χij |
(B10)

between fermion i of coboson 1 and fermion j of coboson
2 at a relative distance χij = x1,i − x2, j have to be con-
sidered. Here, xk,i = Rk − sgn(qi)mrrk/mi in NR c.m. and
relative coordinates. The transformation resolves to

û(rel) †
12

1
|χij |

û(rel)
12 = 1

|χij |
+ δ̂

(ij )
1,i + δ̂

(ij )
2, j + O

(
c−4) (B11)

with corrections δ̂(ij )k,t = −i
[
λ̂
(rel)
k , 1/|χij |

]
/� that take the explicit form

δ̂
(ij )
k,t = − (−1)k

4M 2c2|χij |3
{

rk · χij
�mqeqn

4πε0|rk| + �̂
(ij )
β ·

(
L̂ k + �m

M
�̂ k

)
+
(
χij · P̂ k

)
rk ·

(
p̂ k − qt

|qt|
mr

mt
P̂ k

)

+
(
χij · p̂ k

)
rk ·

(
�m
M

p̂ k +
(

1 − 2
�m
M

qt

|qt|
mr

mt

)
P̂ k

)
+ M

mr

(
�̂ (ij ) + qt

|qt|
mr

mt
L̂ (ij )

)
· ŝk + H.c.

}
. (B12)
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These relativistic corrections can be identified with a
scalar correction to the Coulomb potential, orbit-orbit-
like and spin-orbit-like potentials. For instance, the orbit-
orbit scattering potential V̂ (ij )

LL describes orbit-orbit cou-
pling between fermions of two different cobosons due to
their respective angular momentum χij × p̂i. Similar terms
appear also in δ̂(ij )k,t that depend on the angular momen-

tum �̂
(ij )
k = χij × p̂ k, which is the outer product of the

distance between two fermions of different cobosons and
the relative momentum of coboson k, where the bar indi-
cates again minimally coupled momenta. These angular
momenta between cobosons couple in this case to the inter-
nal total L̂ k = rk × P̂ k and relative �̂ k = rk × p̂ k angular
momentum of coboson k. Next, we find a spin-orbit cou-
pling between angular momenta L̂ (ij ) and �̂ (ij ) to the
relative spin ŝk.

Applying the PZW transformation as well changes
all momenta in the scattering potentials to the PZW-
transformed ones, also in the correction term given in Eq.
(B12). Consequently, the transformed scattering potential
reads

V̂scatt =
∑
i, j

qiqj

8πε0

(
1

|χij |
+ δ̂

(ij ,PZW)

1,i + δ̂
(ij ,PZW)

2, j

)

+ V̂ (ij )LL + V̂ (ij )LS + V̂ (ij )SS . (B13)

The potentials V̂ (ij )v are the ones from Fig. 2 where
we replace r by χ ij as well as p̂i → miP̂1,PZW/M −
sgn(qi)p̂1,PZW and p̂′

j → mj P̂2,PZW/M − sgn(qj )p̂2,PZW for
the momenta.

Scattering between two cobosons reduces to interactions
between fermion i and j of two different cobosons via the
Coulomb potential in lowest order together with magnetic
moments associated with both spin and orbital motion. By
that, all magnetic moments couple, i.e., spin to spin, spin
to orbit, and orbit to orbit where the latter has an additional
retardation correction. In addition, corrections to NR c.m.
and relative coordinates arise from the Coulomb term and
modify the Coulomb potential, the LL coupling, as well as
the LS coupling.

3. EM Hamiltonian

Finally, the transformation of the EM Hamiltonian
requires the direct computation of the second-quantized
unitary Û as it contains no cobosonic field operators.
Hence, we determine

Û†
PZWÛ†

relĤEMÛrelÛPZW. (B14)

Note that momentum operators contained in field-
theoretical unitaries do not act on the variables of inte-
gration in ĤEM such that the transformation is solely

determined through EM fields. Moreover, Ûrel and ÛPZW

contain only the vector potential Â that commutes with
itself and with the magnetic field B̂ in Coulomb gauge, so
only the electric field gives rise to additional terms. The
relevant commutator between the vector potential and the
electric field

[
Â(�)(x), Ê(m)(y)

]
= − i�

ε0
δ�m,⊥(x − y) (B15)

is defined through the transverse delta function [303]. The
transformation generating the relativistic corrections gives
rise to the form

Û†
relĤEMÛrel = ĤEM +

∫

C1

d6R1ϕ̂
†
1 ĥ

(1)

IE ϕ̂1. (B16)

The relativistic corrections can be written as ĥ
(1)

IE =
1
2

∑
i

(
Ê

⊥
i · d̂ i + d̂ i · Ê

⊥
i

)
and appears with d̂ i defined in

Eq. (30), but the momenta are still the minimally coupled
ones. Applying the PZW transformation to the first term in
Eq. (B16) results in

Û†
PZWĤEMÛPZW = ĤEM +

∫

C1

d6R1ϕ̂
†
1 ĥ(0)IE ϕ̂1

+
∫

C1

d6R1

∫

C2

d6R2ϕ̂
†
1 ϕ̂

†
2 V̂selfϕ̂2ϕ̂1.

(B17)

Here, ĥ(0)IE contains the electric multipole moments and the
self-energy from Table III and V̂self is the scattering self-
energy known from Table IV.

The PZW transformation of the second term in Eq.
(B16) reduces now, due to the coboson field operators, to

the first-quantized PZW transformation of ĥ
(1)

IE only, such
that the electric field Êi is again not affected as P(xi) =
0 vanishes. The momenta are exchanged by the PZW-

transformed ones, i.e., ĥ
(1)

IE → ĥ(1)IE . This Hamiltonian is the
electric part of c−2 corrections to light-matter interaction
from Eq. (30), where we replace canonical momenta with
the PZW-transformed ones.

By taking into account the contributions from the EM
Hamiltonian, the single-coboson Hamiltonian is modified
in the light-matter interaction part to ĥ(k)I = ĥ(k)IB + ĥ(k)IE with
k = 0, 1. The scattering potential gets an additional self-
energy V̂self.

APPENDIX C: FIRST-ORDER ENERGY SHIFT

To determine first-order energy shifts, the actual form
of the wave function of relative modes of hydrogenlike
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cobosons ψβ is required and is given in terms of quantum
numbers n, j , mj , �, S. In particular, the wave function

ψβ = αj ,S,1ψn,�,mj −1χS,1 + αj ,S,0ψn,�,mj χS,0

+ αj ,S,−1ψn,�,mj +1χS,−1 (C1)

consists of ψn,�,m, the standard spatial part of the solu-
tion to hydrogenlike Schrödinger equation. The spin wave
function χS,mS is the eigenbasis of operators Ŝ

2
and Ŝz

of the total spin Ŝ = ŝe + ŝn. By that, the total spin of
a coboson formed by two spin-1/2 fermions can either
be S = 0 or S = 1, while its projection onto the z axis
can take magnetic spin numbers mS = 0 or mS = −1, 0, 1,
respectively. In the superposition of Eq. (C1) together
with Clebsch-Gordan coefficients αj,S,mS [304] (detailed in

Table VI), we find the eigenbasis of the operators Ĵ
2
, Ĵz, �̂

2
,

and Ŝ
2
, where Ĵ = �̂ + Ŝ is the total angular momentum.

With this explicit wave function in angular momentum
eigenbasis we determine the first-order energy shift E(1)β =

∫
d3rψ∗

β ĥ(1)relψβ and arrive at

E(1)β = m2
r c2(Zα)4

M

{
m3

e + m3
n

8mrM 2

(
3 − 8n

2�+ 1

)
1
n4

+
(

1 − 3n
2�+ 1

)
1
n4 +

(
αD − 3

4
αss + αssδS,1

)
δ�,0

n3

+ (δ�,0 − 1)δS,1

�(�+ 1)(2�+ 1)
Cj ,�

}
, (C2)

that has been obtained before [37,178]. The individ-
ual terms correspond to the kinetic correction (first),
orbit-orbit coupling (second), Darwin and contact interac-
tion (third) where ŝe · ŝn = (

Ŝ
2 − ŝ2

e − ŝ2
n

)
/2 was exploited

such that ŝ2
i takes also a Darwin-like spin-independent

form. The last term combines both spin-orbit terms and the
magnetic dipole-dipole potential in Ŝne = −ŝn · ŝ′

e + 3(r ·
ŝn)(r · ŝ′

e)/|r|2 with

Cj ,� =

⎧⎪⎪⎨
⎪⎪⎩

�
2�+3

[
2(2�+ 3)

(
α�S + �m

2M α�s
)− c(e)F c(n)F

]
, for j = �+ 1

−2
(
α�S + �m

2M α�s
)+ c(e)F c(n)F , for j = �

− �+1
2�−1

[
2(2�− 1)

(
α�S + �m

2M α�s
)+ c(e)F c(n)F

]
, for j = �− 1

(C3)

and the low-energy Wilson coefficients αv are given in
Table II. Hence, the first-order energy shift depends on
quantum numbers n, j , �, and S, but not on mj .

TABLE VI. Clebsch-Gordan coefficients αj ,S,mS for the
angular-momentum eigenbasis of total angular momentum Ĵ =
�̂ + Ŝ. Here, j is the quantum number of the total angular
momentum, S the quantum number of the total spin, and mS its
magnetic quantum number. Moreover, � is the quantum num-
ber of orbital angular momentum and mj the magnetic quantum
number of the total angular momentum.

�
��( j,S)

mS 1 0 −1

(�+ 1, 1)
√
(�+mj )(�+mj +1)

2(�+1)(2�+1)

√
(�−mj +1)(�+mj +1)

(�+1)(2�+1)

√
(�−mj )(�−mj +1)

2(�+1)(2�+1)

(�, 1)
√
(�+mj )(�−mj +1)

2�(�+1) − mj√
�(�+1) −

√
(�−mj )(�+mj +1)

2�(�+1)

(�− 1, 1)
√
(�−mj )(�−mj +1)

2�(2�+1) −
√
(�−mj )(�+mj )

�(2�+1)

√
(�+mj )(�+mj +1)

2�(2�+1)

(�, 0) 0 1 0
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