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A B S T R A C T

Supercooled liquids and glasses are universally characterized by the non-Arrhenius temper-
ature-dependence of relaxation times, the non-exponential shape of the α-process and the
non-linear response to temperature changes. Despite decades of research, a comprehensive
theory of the glass-transition phenomenon is still pending. The present work attempts to
contribute to the understanding of two of the three aspects by employing dynamic light
scattering experiments.

In the frequency domain, the non-exponential shape of the α-process manifests as an
asymmetrically broadened relaxation peak with ν−β high-frequency behavior. For molecular
supercooled liquids, the common belief based on results from dielectric spectroscopy has
been that values of β depend on the molecular structure and are distributed between 0.3 and
1. On the contrary, it is shown for various supercooled liquids that the relaxation shape of the
α-process probed by dynamic light scattering shows a generic ν−1/2 high-frequency behavior.
The discrepancy with regard to results from dielectric spectroscopy is resolved by showing
that dipolar cross-correlation contributions influence the relaxation shape considerably and
lead to larger values of β . Building on this, a quantitative relation between β and the degree
of static dipolar cross-correlations quantified in terms of the Kirkwood correlation factor gK

is established. It resolves the previously identified empirical correlation between β and the
dielectric relaxation strength. The developed concepts are applied to disentangle the relaxation
spectra of hydrogen-bonding supercooled liquids, which are complex to interpret due to
containing different contributions associated with structure-formation. Cross-correlation
effects also contribute considerably to relaxation spectra of asymmetric binary mixtures. In
this regard it is shown that solute-induced solvent-solvent cross-correlations are the origin of
apparent slow solvent relaxation, which are commonly observed in binary mixtures.

The non-linear response to temperature changes is universal for physical aging, i.e. the slow
and gradual evolution of material properties. One formalism for describing physical aging is
the concept of material time, which can be thought of as time measured on a clock whose rate
changes as the glass ages. Material time, however, has never been determined experimentally.
Here, multispeckle dynamic light scattering is used to probe time-resolved intensity autocor-
relation functions of an aging molecular glass. It is demonstrated that the material time can be
extracted from these data. Going further, it is shown that time-irreversible thermal fluctuations
during aging become reversible when replacing time with material time. Also other aging
materials are shown to obey material-time reversibility, i.e. a physically aging colloidal glass, a
chemically aging polymerizing epoxy and a physically aging computer-simulated glass. Thus,
the present work confirms aging of various different systems being controlled by a material
time. Finally, the evolution of the material-time clock rate is explored after small temperature
changes and quenches deep into the glassy state. The former can be described in terms of
a simple logistic differential equation, while a sub-linear aging behavior is observed for the
latter, thus challenging current theories of physical aging.



iv K U R Z Z U S A M M E N F A S S U N G

K U R Z Z U S A M M E N FA S S U N G

Die nicht-arrheniusartige Temperaturabhängigkeit der Relaxationszeit, die nicht-exponen-
tielle Form des α-Prozesses sowie die nicht-lineare Antwort auf Temperaturänderungen
sind universelle Eigenschaften unterkühlter Flüssigkeiten und Gläser. Trotz jahrzehntelanger
Forschung existiert bis heute keine allumfassende Theorie des Glasübergangs. Die vorliegende
Arbeit trägt mittels dynamischer Lichtstreuexperimenten (DLS) an unterkühlten Flüssigkeiten
und Gläsern zum Verständnis von zwei der drei diskutierten Aspekte bei.

In der Frequenzdarstellung zeigt sich die nicht-exponentielle Form des α-Prozesses als
asymmetrisch verbreiterter Relaxationspeak mit ν−β -Hochfrequenzverhalten. Ausgehend
von Ergebnissen der dielektrischer Spektroskopie (DS) wurde bisher angenommen, dass β
abhängig von der molekularen Struktur ist und Werte zwischen 0.3 und 1 annimmt. Stattdessen
zeigen nun DLS-Ergebnisse ein generischesν−1/2-Hochfrequenzverhalten für unterschiedliche
unterkühlte Flüssigkeiten. Der Widerspruch zu DS-Ergebnissen erklärt sich durch dipolare
Kreuzkorrelationsbeiträge, die das Hochfrequenzverhalten erheblich beeinflussen und zu
größeren Werten von β führen. Ausgehend davon wird eine quantitative Beziehung zwischen
β und dem Kirkwood-Korrelationsfaktor hergestellt. Letzterer quantifiziert die Stärke statis-
cher dipolarer Kreuzkorrelationen. Der ermittelte Zusammenhang liefern eine physikalische
Erklärung für die empirisch beobachtete Korrelation zwischen β und der dielektrischen Relax-
ationsstärke. Die im Rahmen der Arbeit entwickelten Konzepte werden zudem angewandt um
Relaxationsspektren verschiedener wasserstoffbrückenbildender Systeme zu entschlüsseln,
deren Interpretation aufgrund von Überlagerung unterschiedlicher Beiträge erschwert ist.
Auch zum Relaxationsverhalten asymmetrischer binärer Mischungen tragen Kreuzkorrelation-
seffekte erheblich bei. Ferner sind Orientierungskreuzkorrelationen zwischen Lösungsmittel-
molekülen die Ursache für das Auftreten augenscheinlich langsamer Lösungsmitteldynamik,
die häufig in binären Mischungen beobachtet wurde.

Die nichtlineare Antwort auf Temperaturänderungen ist universell für physikalische Al-
terungsprozesse in Gläsern. Ein Formalismus zur Beschreibung physikalischer Alterung ist das
Konzept der Materialzeit, die als Zeitmaß betrachtet werden kann, dessen Rate sich mit dem
Altern des Glases verändert. Die Materialzeit konnte jedoch bisher nicht experimentell bes-
timmt werden. Um dieses Ziel zu erreichen wird in der vorliegenden Arbeit multispeckle-DLS
eingesetzt, wodurch die Intensitätsautokorrelationsfunktionen eines alternden molekularen
Glases mit Zeitauflösung bestimmt werden können. Mithilfe eines iterativen Verfahrens lässt
sich daraus die Materialzeit extrahieren. Zusätzlich zeigt sich, dass die zeitlich unumkehrbaren
thermische Fluktuationen während des Alterns zeitumkehrbar werden, wenn sie statt als
Funktion der Zeit, als Funktion der Materialzeit betrachtet werden. Auch verschiedene an-
dere alternde Materialien verhalten sich materialzeitumkehrbar, wie für ein physikalisch
alterndes Kolloidglas, ein chemisch alterndes Epoxidpolymer und ein physikalisch alterndes
simuliertes Glas gezeigt wird. Abschließend wird untersucht wie sich die Rate der Materi-
alzeit im Falle kleiner Temperaturänderungen und nach dem Abkühlen weit unterhalb die
Glasübergangstemperatur entwickelt. Ersteres Szenario wird durch eine einfache logistische
Differentialgleichung beschrieben, während in letzterem ein sublineares Verhalten bezüglich
der Wartezeit beobachtet wird.
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1
I N T R O D U C T I O N

Once a liquid is cooled below its melting point while avoiding crystallization it is referred to
as being supercooled [1]. Supercooling a liquid leads to a dramatic slowdown of its structural
relaxation: While the characteristic relaxation times above the melting point are of the order
of picoseconds, they ranges from nanoseconds to seconds for supercooled liquids, depending
on the exact temperature. As a material’s viscosity is usually coupled to structural relaxation,
supercooled liquids are highly viscous and flow slowly. Upon further cooling, structural relax-
ation becomes so slow that its characteristic time scale exceeds typical periods of observation,
such that the material effectively behaves like a solid. It is then referred to as a glass. Clearly,
this definition of glassiness depends on what timescale of observation is considered. To give a
more precise definition, supercooled liquids are in metastable thermal equilibrium, while
glasses are out of equilibrium systems. Remarkably, unlike in crystal formation, no significant
changes of the microscopic structure are observed during the transition from liquid to glass,
thus glasses are considered as disordered solids.

In fact, a broad variety of materials appearing in everyday life are glasses, which however can
be very different in terms of their molecular structure: Most materials referred to as a "glass" in
current language are obtained from inorganic melts [2, 3], e.g. SiO2; plastics are polymer glasses
made from long chain-like molecules composed of repeating subunits [4, 5]; but glasses are also
made from metal alloys [6], or from non-polymeric organic liquids [7]. Finally, some systems
are not composed of molecules, but share many similarities with molecular glasses and, thus,
attract attention as model systems. These are spin glasses [8, 9], i.e. disordered compositions of
interacting spins, and colloidal glasses [10, 11], i.e. densely packed colloid particles dissolved
in a liquid solvent, for which the colloid volume-fraction instead of temperature is the control
parameter that drives the glass transition.

Although all these materials can have quite different properties reflecting their specific
microscopic composition, they all share some fundamental similarities due to them being
glassy. Despite their relevance and frequent use in everyday life, a comprehensive theory of
the glass transition phenomenon able to explain the physical origin of the extreme slow-down
of microscopic dynamics and other universal features of supercooled liquids and glasses is
lacking.

The universal characteristics of supercooled liquids and glasses can be expressed in terms
of the three non’s [12]. These are the non-Arrhenius temperature dependence of relaxation
times, the non-exponential relaxation shape of the structural-relaxation process and the non-
linearity of the response to temperature changes. While the three non’s are interconnected,
each of them can be discussed independently from the others, as will be done in the following
paragraphs.
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Non-Arrhenius temperature dependence of relaxation times

The average structural relaxation time τ of a liquid above its melting point approximately
evolves as an exponential function of temperature [13]

τ(T )∝ exp
�

E

kBT

�

(1.1)

i.e. an Arrhenius law with a constant activation energy E . By contrast, the temperature depen-
dence of structural relaxation times in the supercooled regime is super-Arrhenius, meaning the
activation energy increases as a function of decreasing temperature. It is commonly modeled
in terms of the empirical Vogel-Fulcher-Tammann (VFT) equation [14–16]

τ(T )∝ exp
�

E

kB(T −T0)

�

, (1.2)

which assumes a divergence of the relaxation time at some temperature T0 below the glass-
transition temperature Tg . There, however, exists no clear experimental evidence, but rather
reasonable doubt regarding the existence of this divergence [17, 18].

The physical origin of the super-Arrhenius temperature-evolution of relaxation times is
commonly believed to be associated with cooperative dynamics [19, 20]. While particles can
move independently from their vicinity in the liquid phase, particle-density is larger in the
supercooled-liquid state, which requires associations of particles to move cooperatively, thus
leading to a larger activation energy compared to the liquid state. The increase of the activation
energy with decreasing temperature is thought to reflect a gradually increasing cooperativity
length-scale. But also other explanation exist that do not explicitly assume cooperativity as
the origin of the super-Arrhenius behavior [21–24].

In fact, the degree of non-Arrhenius behavior varies among different materials, as best seen
by plotting τ(T /Tg) of various supercooled liquids. The degree of non-Arrhenius behavior is
quantified by the concept of fragility

m =
d logτ

d
�

T /Tg

�

|︁

|︁

|︁

|︁

Tg

(1.3)

proposed by Angell et al. [7], which uses the logarithmic slope of τ(T /Tg) at Tg as a measure
for non-Arrhenius behavior. Supercooled liquids with large m are called fragile, while those
with rather small m are referred to as strong.

Non-exponential relaxation shape

Relaxation functions of systems associated with a single structural relaxation time decay
exponentially [13]. Accordingly, the respective relaxation spectra are Lorentzian-shaped, thus
they appear in a double-logarithmic plot as a symmetric peak that evolves towards higher
res. lower frequencies asω1, res.ω−1. By contrast, relaxation functions reflecting structural
relaxation in supercooled liquids are non-exponential and the respective relaxation spectra
are asymmetrically broadened withω−β , β < 1 high-frequency behavior.

The most common interpretation of the asymmetrical broadening is dynamic heterogeneity,
in the sense that different subregions of the system are associated with different relaxation
times [19, 20, 25–29]. Each subregion is commonly assumed to contribute to the overall re-
laxation spectrum as a Lorentzian, while their superposition finally yields an asymmetrically
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broadened peak. In fact, dynamic heterogeneity in supercooled liquids is not static. Com-
parably fast relaxing regions have been slow before, and eventually will become slow again
as the system evolves [27, 28]. Recent results support the idea of dynamic facilitation, in the
sense that fast relaxing localized regions facilitate relaxation in their vicinity, thus leading to a
propagation of relaxation events throughout the system [30, 31].

Characterizing dynamic heterogeneity and determining its physical origin is considered
important in order to advance the understanding of the glass-transition phenomenon. In
this regard, extensive experimental effort has been invested into characterizing dynamic
heterogeneity of various different supercooled liquids by analyzing their respective structural
relaxation shapes [32–34]. Identifying general themes and patterns within the variety of ex-
perimentally observed relaxation shapes remains an ongoing task within the field. Especially
identifying universal characteristics of the relaxation shape in supercooled liquid would be
promising, as it might point towards universal features of dynamic heterogeneity.

Non-linear response to temperature changes

As discussed briefly above, a glass is obtained once a supercooled liquid falls out of equilibrium
due to structural relaxation becoming too slow. Because the relaxation time remains finite
in the glassy state, however, all glasses slowly relax towards an equilibrium state [5, 35, 36].
This process is referred to as physical aging and, depending on the temperature the glass is
kept at, it proceeds on timescales ranging from minutes to billions of years. The physical-
aging response to temperature changes is non-linear, as it critically depends, e.g., on whether
temperature up- or down-jumps are considered [36, 37]. Generally, physical aging depends
on the system’s history since it entered the glassy state, which is often referred to as a memory
effect.

The non-linear behavior of glasses is usually rationalized by considering that during aging
the system’s relaxation rate evolves as a function of time. It is believed that compensating for
these effects recovers a linear-response behavior, which is the basic idea behind the material-
time formalism postulated by Narayanaswamy [38]. While there is evidence supporting this
conjecture under specific experimental conditions [39–43], the material time has never been
determined experimentally and little is known about the limitations of the formalism’s appli-
cability. Exploring these open questions, however, is challenging, as it requires to probe the
time-evolution of the molecular dynamics within aging glasses. This is notoriously difficult,
because most experimental techniques require extensive temporal averaging and, thus, can-
not provide time-resolved access to the molecular dynamics of glasses.

This work sets out to contribute to the understanding of the physics behind two of the three
non’s, namely the non-exponential structural relaxation shape of equilibrium supercooled
liquids in Part I, and the non-linear response to temperature changes of non-equilibrium
glasses in Part II. The main experimental technique applied within this work is depolarized
dynamic light scattering (DDLS), where the light scattered from supercooled or glassy samples
is analyzed in order to draw conclusions on the fluctuations of molecular orientations within
the sample. DDLS is complemented by dielectric spectroscopy (DS), where the frequency-
dependent dielectric response of samples is analyzed. The theoretical background of both
experimental techniques is discussed in Chapter 2.

In Part I results regarding the relaxation shape of structural relaxation in various different
supercooled liquids are reported. Chapter 3 serves as an introduction by providing a review of
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the physical origin of the asymmetrically broadened structural relaxation shape, establishing
its connection to dynamic heterogeneity and discussing approaches to quantify it in terms of
model functions or by applying model-free approaches.

In Chapter 4 the conjecture of a generic structural relaxation shape in supercooled liquids
is discussed. It is shown that the structural relaxation shapes of many supercooled liquids
featuring a wide variety of molecular structures are strikingly similar and display a ν−1/2 high-
frequency behavior. These results build on earlier analyses published by Florian Pabst [44].
Moreover, it is shown that structural relaxation shapes of selected supercooled liquids obey
time-temperature superposition, meaning it is independent of temperature if analyzed closely
above Tg . Finally, the question as to what is special about the ν−1/2 high-frequency behavior
and how it might relate to recent developments in the field is pursued.

Contrary to what is observed in DDLS, the structural relaxation shape probed by means of
DS does not generally conform to the generic ν−1/2 high-frequency behavior and, instead, a
broad variety of power law exponents 0.3<β < 1 is observed for different supercooled liquids.
Again building on earlier work [44] Chapter 5 argues that dipolar cross-correlations contribute
considerably to dielectric relaxation spectra of certain types of supercooled liquids. These
cross-correlations superimpose the generic ν−1/2 high-frequency behavior, thus leading to
various other power law exponents. The conjecture is shown to conform to experimental
results obtained upon suppression of cross-correlations, as well as to various recent results in
the literature. Finally, a quantitative relation between the high-frequency power law exponent
β and the degree of dipolar cross-correlations is established.

Hydrogen-bonding supercooled liquids display especially complex relaxation behavior,
which makes it difficult to distinguish between various contributions to their relaxation spectra.
Building on the concepts established in previous chapters, Chapter 6 attempts to disentangle
these different contributions by combining results from DDLS and DS. In particular, the
influence of molecular architecture on the dynamics of hydrogen-bonded supra-structures is
explored by analyzing isomeric or homologous series of substances, i.e. phenyl propanols,
octanols and polyhydric alcohols. The comparison reveals cross-correlation effects as well as
different intra-molecular relaxation mechanisms that superimpose structural relaxation and
sensitively depend on molecular architecture.

Chapter 7 presents an analysis of the solvent dynamics in an asymmetric binary mixture.
While relaxation in binary mixtures displays various characteristics different from what is
observed in pure supercooled liquids, both have in common that cross-correlations can
contribute considerably to the respective relaxation spectra. It is shown by combining experi-
mental and computer-simulation results that the apparent slow solvent relaxation, which is
commonly observed in different asymmetric binary mixtures, results from solute-induced
solvent-solvent cross-correlation effects.

Part II deals with non-equilibrium glasses that age and, thus, evolve as a function of time.
After summarizing some fundamental characteristic of physical aging in Chapter 8, Chapter 9
introduces multispeckle dynamic light scattering (msDLS) as the experimental technique
applied to analyze non-equilibrium samples. By probing various different speckles of the
scattered light by means of a camera and by performing a speckle-average instead of temporal
averaging, msDLS allows to monitor the time-resolved structural relaxation dynamics of aging
samples. Finally, the msDLS setup optimized within this work, as well as the sample cells and
the related temperature control for physical aging experiments are discussed.

In Chapter 10 the material time of physical aging is determined experimentally for the first
time. Initially, the material-time concept and required theoretical tools are established, which
subsequently allow to confirm the existence of a material time and to introduce a procedure
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in order to extract the material time from time-autocorrelation functions probed by means of
msDLS. Finally, it is confirmed that the extracted material time does linearize physical aging
according to its definition within the Tool-Naranayaswamy-Moynihan formalism.

The material-time formalism is remarkable by recovering equilibrium properties for non-
equilibrium glasses. Expanding on this, Chapter 11 introduces the conjecture of material-time
reversibility, which is the idea that irreversible thermal fluctuations during aging become
reversible by replacing time with material time. The conjecture is verified for the intensity
fluctuations of light scattered from an aging molecular glass. Also three other aging materials
are shown to obey material-time reversibility, i.e. a colloidal glass, a polymerizing epoxy and a
computer-simulated glass with Lennard Jones-type interactions.

After having established the existence of a material-time and its general properties, Chap-
ter 12 explores how exactly the material time evolves as a function of time. In this regard, a
simple model is proposed for describing physical aging after small temperature jumps. More-
over, aging after deep quenches into the glassy state is shown to violate common theoretical
predictions.





2
E X P E R I M E N TA L T E C H N I Q U E S

The following chapter introduces the necessary experimental basics that are required for the
subsequent discussions of the results obtained within the present work. Section 2.1 introduces
some fundamental concepts related to quantifying relaxation in supercooled liquids and
glasses, namely autocorrelation functions, dynamic susceptibilities and the relations between
both. The subsequent sections 2.2 and 2.3 specifically discuss the two main techniques applied
during the present work, dynamic light scattering (DLS) and dielectric spectroscopy (DS).
Here, the main focus is on how the measured quantities relate to the molecular dynamics of
supercooled molecular liquids.

2.1 Q U A N T I F Y I N G M I C R O S C O P I C R E L A X AT I O N D Y N A M I C S

Two main approaches can be distinguished to access relaxation dynamics in supercooled
liquids and glasses: (i) Analyzing the equilibrium fluctuations of some quantity that reflects
the fluctuations of molecular positions and orientations, and (ii) applying an external pertur-
bation that drives the system out of equilibrium and, subsequently, monitoring its relaxation
towards the new equilibrium state. It will be shown below that, ultimately, both approaches
are equivalent in the limits of small external perturbations.

A system’s microscopic fluctuations can be accessed by probing some property X (Γ ), the
value of which depends on the system’s state Γ within its phase space, meaning X is a function
of the positions and orientations of molecules. Translational or orientational fluctuations
of the molecules as a function of time, expressed in terms of a phase-space trajectory Γ (t ),
translate into fluctuations of X .

To quantify these fluctuations it is convenient to solely regard the zero-mean fluctuations
∆X (t ) = X (t )−〈X 〉with regard to the average value

〈X 〉=
∫︂

X (Γ )ρ(Γ ) dΓ , (2.1)

given by the ensemble average of X that is expressed in terms of the probabilityρ(Γ ) to observe
the system in the state Γ . From the fluctuations∆X (t ), the normalized time autocorrelation
function is obtained as

CX (t , t +∆) =




∆X (t ) ·∆X (t +∆t )
�

r

¬

�

∆X (t )
�2¶¬�

∆X (t +∆t )
�2¶
=




∆X (t ) ·∆X (t +∆t )
�

¬

�

∆X (t )
�2¶ , (2.2)

Here, the second equation only holds in equilibrium, i.e. when the fluctuations are stationary.
For some fixed t , CX (t , t +∆) decays to zero for∆t →∞ and the characteristic time scale of
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its decay is associated with the characteristic time scale of molecular dynamics within the
system.

As the ensemble average can not be determined in experiments or computer-simulations,
it is often replaced by a temporal average 〈...〉t . According to the ergodic hypothesis, the
ensemble average is identical to a time average over a sufficient long period of time for
equilibrium systems, because the average time the system occupies some state Γ within phase
space is proportional to ρ(Γ ). In order to replace the ensemble average by a temporal average,
the autocorrelation function should solely depend on the lag-time∆t , such that

CX (∆t ) =




∆X (t ) ·∆X (t +∆t )
�

t
¬

�

∆X (t )
�2¶

t

. (2.3)

It is emphasized that the ensemble average can not be replaced by a time average for system
that behave non-stationary, e.g. for many non-equilibrium systems like physically aging
glasses.

For stationary processes the spectral density of the fluctuations ∆X (t ) can be obtained
as the Fourier transform of the autocorrelation function according to the Wiener-Khinchin
theorem [13, 45, 46], i.e.

Ŝ X (ω) =

∫︂ ∞

0

CX (t ) exp (−iωt ) dt . (2.4)

As mentioned above, besides probing the fluctuations of X , another approach is to apply
an external perturbation and to probe the system’s response. For instance, consider X being
the system’s electric polarization PPP , one could – instead of probing the equilibrium polar-
ization fluctuations – apply an electric field and study the system’s polarization response.
While sometimes step-like external perturbations are applied, many experiments instead
use harmonic external fields FFF (t ,ω) = FFF 0 exp(iωt ). In the limit of weak external fields, the
response of the system RRR (ω) is linear to the applied field and can be expressed in terms of the
dynamic susceptibility χ̂(ω) as

RRR (ω) = χ̂(ω)FFF (ω). (2.5)

χ̂(ω) is a complex quantity

χ̂(ω) =χ ′(ω)− iχ ′′(ω), (2.6)

with the real part χ ′ and the imaginary part χ ′′. Here, χ ′(ω) represents the non-dissipative
and χ ′′(ω) the dissipative part of the response.

The dynamic susceptibility obtained within a linear response experiment is related to the
spectral density of the corresponding fluctuations via the fluctuation-dissipation relation [47]

χ̂(ω) =
c

kBT

�

1− iωŜ (ω)
�

, (2.7)

where c depends on the experiment under consideration [48]. For the imaginary part of the
dynamic susceptibility Eq. (2.7) yields

χ ′′(ω) =
cω

kBT

∫︂ ∞

0

CX (t ) cos(ωt ) dt . (2.8)
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Eqs. (2.7) and (2.8) imply that the identical information are obtained by probing microscopic
fluctuations in equilibrium and by monitoring the linear response of a system to external
perturbations. In the course of the present work, these relations will allow to compare data
from different experimental techniques. A detailed discussion of the two main techniques
applied in this work, dynamic light scattering and dielectric spectroscopy, will follow in the
subsequent chapters.

2.2 D Y N A M I C L I G H T S C AT T E R I N G

In dynamic light scattering (DLS) experiments a sample is illuminated by polarized laser light
and the scattered light under the angle θ with respect to the laser beam is probed. The electric
field of the scattered light depends on the molecular arrangement within the scattering volume
and proper analyses of the scattered light allows to draw conclusions regarding the fluctua-
tions of the molecular arrangement. In the following section, an overview of the theoretical
background of DLS is given based on the comprehensive book of Berne and Pecora [49]. The
discussion starts by treating light scattering on a macroscopic scale and, finally, these results
are extended to the molecular scale in order to establish how DLS can be used to probe the
molecular dynamics in supercooled liquids and glasses. The main technique applied during
the present work is depolarized dynamic light scattering (DDLS), where only the depolarized
scattered light is analyzed. As it will be shown in Section 2.2.1 by means of an approximation
for symmetric top molecules, the analysis of the depolarized scattered light allows to monitor
the rotational dynamics of molecules. Finally, the experimental implementations of DLS are
discussed, namely photon correlation spectroscopy (PCS) and Tandem-Fabry-Perot interfer-
ometry (TFPI). Both techniques access different frequency ranges and thus, when combined,
can enable a broadband investigation of reorientation dynamics in supercooled liquids. In
Part II of this work, multispeckle DLS (msDLS) is applied to study non-equilibrium samples.
While the general basics discussed in the following section also apply for msDLS, the specifics
will be considered in Chapter 9.

2.2.1 Theoretical Background

In a first step, an expression for the electric field of light scattered from a dielectric medium is
derived. It is assumed to be illuminated by a plane electromagnetic wave, which is described
in terms of the incident electric field at position rrr and at time t

EEE i(rrr , t ) =nnn iE0 exp
�

i (kkk i · rrr −ωit )
�

. (2.9)

Here, nnn i is the polarization, E0 the amplitude, kkk i the wave vector andωi the angular frequency
of the incoming wave indicated by the index i. On a macroscopic scale, the scattering medium
is described in term of its local dielectric constant in tensorial representation

ϵϵϵ(rrr , t ) = ϵ01+δϵϵϵ(rrr , t ), (2.10)

where ϵ0 = 〈ϵ〉rrr ,t is the average dielectric constant and δϵϵϵ is the local dielectric constant-
fluctuation tensor. Based on these definitions, comprehensive electrodynamic calculations
yield a description of the scattered electric field. A condensed expression can be obtained by
considering the spatial Fourier transform of the dielectric constant-fluctuation tensor

δϵϵϵ(qqq , t ) =

∫︂

V

exp
�

iqqq · rrr
�

δϵϵϵ(rrr , t ) drrr , (2.11)
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where integration is performed over the entire scattering volume V , qqq =kkk f−kkk i is the scattering
vector and kkk f is the wave vector of the scattered light. The portion of the scattered electric
field with a certain polarization nnn f is then given by

Es(RRR , t ) =−
k 2

f E0

4πRϵ0
exp
�

i (kkk fRRR −ωit )
�

nnn f ·δϵϵϵ(qqq , t ) ·nnn i
⏞ ⏟⏟ ⏞

δϵif(qqq , t )

. (2.12)

In this equation RRR is the distance relative to the scattering volume, while the index f indicates
the properties of the scattered light. During the derivation of Eq. (2.12) it was assumed that
light scattering is quasi-elastic, i.e. |kkk i|= |kkk f|. This in turn implies that qqq solely depends on
the scattering angle θ . Although light scattering can be inelastic, which e.g. is utilized in
Raman spectroscopy, the techniques applied during the present work do only consider the
quasi-elastically scattered light, thus the assumption is justified.

With the scattered electric field being established, the time autocorrelation function of the
electric-field is found to be proportional to the time autocorrelation function of dielectric
constant fluctuations, i.e.




E ⋆s (RRR , 0)Es(RRR , t )
�

∝



δϵ∗if(qqq , 0)δϵif(qqq , t )
�

. (2.13)

The exact result depends on the polarization of the incoming light, as well as on what polar-
ization of the scattered light is probed, as indicated by the index if. The electric-field autocor-
relation function can be accessed indirectly in photon correlation spectroscopy experiments,
as will be discussed below.

Eq. (2.4) yields an expression for the corresponding spectral density

Ŝ if(qqq ,ω)∝
∫︂ ∞

0

exp(−iωt )



δϵ∗if(qqq , 0)δϵif(qqq , t )
�

dt (2.14)

Here,ω=ωf−ωi represents the frequency shift of the scattered light. Hence, if the local dielec-
tric constant temporally fluctuates within the sample, scattered light withω ̸= 0 is observed at
the detector. Vice versa, probing the frequency shift of the scattered light compared to the
incoming light allows to draw conclusions on the temporal dielectric-constant fluctuations
within the sample. This is the main idea behind Tandem-Fabry-Perot interferometry.

Approach on the molecular scale

Having established how the scattered electric field and the related time autocorrelation func-
tion, respectively spectral density depend on temporal and spatial fluctuations of the dielectric
constant within the sample, the following considerations relate these results to the molec-
ular scale. Irradiating a molecule by an electromagnetic wave with polarization nnn i induces
a molecular dipole moment that can be described in terms of the molecular polarizability
tensorααα. The light with polarization nnn f scattered by the molecule is given by

E mol
if (RRR , t )∝ exp

�

iqqq ·RRR (t )
� �

nnn f ·ααα(t ) ·nnn i

�

⏞ ⏟⏟ ⏞

αif(t )

. (2.15)

The light detected in a DLS experiment is the superposition of light scattered from all N
molecules within the scattering volume. Therefore, the total scattered electric field is given by

E mic
if (RRR , t ) =

N
∑︂

j=1

E
mol, j
if (RRR , t ) =

N
∑︂

j=1

α
j
if(t )exp
�

iqqq ·RRR j(t )
�

, (2.16)
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where j denotes the j th molecule. Calculating the time autocorrelation function of the scat-
tered electric field yields




E mic,⋆
if (RRR , 0)E mic

if (RRR , t )
�

∝
N
∑︂

j ,k

¬

α
j
if(0)α

k
if(t ) exp
�

iqqq
�

rrr j (t )− rrr k (0)
�

�¶

(2.17)

Without any further assumptions, Eq. (2.17) is difficult to interpret, as in principle, numerous
mechanisms can contribute. The majority of the present work considers the depolarized light
scattered from pure supercooled liquids and glasses. With this in mind, some assumptions
can be discussed that considerably reduce the complexity of Eq. (2.17). First of all, the ex-
ponential term considers translational dynamics on length-scales of the order of the light’s
wavelength, which in pure molecular liquids are much slower than molecular rotations. Thus,
the exponential term can be considered being unity to good approximation. Another typical
assumption is to disregard cross-terms. Although it will be shown within the present work
that this approximation is not always valid, disregarding cross-terms helps to establish a
relation that illustrates how DDLS probes the rotational dynamics of molecules. This relation
will be derived in the following section, by considering an approximation for the molecular
polarizability tensor.

Depolarized scattering from symmetric top molecules

As an approximation, the polarizability tensor of anisotropic molecules is approximated to
be cylindrical, or symmetric top, as commonly denoted in the literature. For symmetric top
molecules the polarizability tensor reads as

αi j =αδi j +β
�

ui u j −
1

3
δi j

�

⏞ ⏟⏟ ⏞

βi j

, (2.18)

where ui (with i , j ∈ {1,2,3}) are the components of the unit vector uuu along the symmetry
axis of the cylindrical tensor and δi j is Kronecker’s delta. The constants are given by

α=
1

3
(α∥+2α⊥) (2.19a) β = (α∥−α⊥), (2.19b)

where α∥ and α⊥ quantify the polarizabilities of the molecule along and perpendicular to the
symmetry axis. The tensor βi j in Eq. (2.18)) is called the optical anisotropy tensor.

These assumptions allow to calculate the self-part of the polarizability-tensor autocor-
relation function in Eq. (2.17) for the depolarized (if=vh) polarization geometry. Extensive
calculations yield




E mic,⋆
vh (RRR , 0)E mic

vh (RRR , t )
�

∝〈N 〉β2
¬

P2

�

uuu (0) ·uuu (t )
�

¶

= 〈N 〉β2
¬

P2

�

cos
�

Θuuu (t )
��

¶

(2.20)

Here, P2(x ) = (3x 2 − 1)/2 is the second-rank Legendre polynomial and Θuuu (t ) denotes the
angle between uuu (0) and uuu (t ). Eq. (2.20) represents an approximation of how the decay of the
scattered-light electric-field autocorrelation function relates to the rotational dynamics of
molecules in (supercooled) liquids. It is emphasized that cross-terms and the exponential term
related to translational dynamics from Eq. (2.17) have been disregarded in these considerations
following the arguments given above.
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2.2.2 Photon correlation spectroscopy

The following section discusses the general concept of photon correlation spectroscopy (PCS)
and the experimental implementation used within this work. It is referred to the "standard"
PCS experiment that involves temporal averaging and is applied to study equilibrium super-
cooled liquids. The extension towards the multispeckle experiment for the investigation of
non-equilibrium systems used in Part II of this work will be discussed in Chapter 9.

As derived above, the electric-field autocorrelation function contains information on the
rotational dynamics of molecules in (supercooled) liquids. In experiments, however, it is not
directly accessible, because only the intensity I = |E |2 of the scattered light can be probed by
detectors. Thus, the time-averaged normalized intensity autocorrelation function

g2(t ) =
〈I (0) I (t )〉
〈I 〉2

. (2.21)

is determined in PCS experiments. Here and in the remainder of this section, 〈...〉 denotes a
moving-time average.

As discussed previously, the autocorrelation function of interest is the one of the scattered
electric field

g1(t ) =
〈E ⋆(0)E (t )〉
〈I 〉

. (2.22)

g2(t ) and g1(t ) can be related to each other under certain approximations. However, the exact
relation depends on whether only light scattered from the sample is probed at the detector, or
whether it is superimposed by additional static-field contributions, e.g. light reflected from
the windows of the sample cell. The following section first discusses the two extreme cases, i.e.
the homodyne case and the fully heterodyne case, and, subsequently, treats the intermediate
case, which is the scenario that is typically encountered in most experiments.

Homodyne Case, Heterodyne Case and Somewhere in Between

In the homodyne case, only light scattered from molecules within the scattering volume is
probed by the detectors. The signal can then be considered to represent a superposition
of signals from distinct statistically independent subregions within scattering volume. This
implies the total electric field probed at the detector to be Gaussian-distributed, which yields
the simplest form of the Siegert relation [50]

g2(t ) = 1+Λ|g1(t )|2. (2.23)

Here Λ is the spatial coherence factor, which depends on the geometry of the experiment and
in the ideal case equals unity. As will be shown in Chapter 9, Λ can be estimated by probing
g2(t ) of a strongly diluted solution of spherical particles and amounts to Λ= 0.98 for the PCS
setup used within this work.

The heterodyne case refers to a scenario where the electric field probed at the detector
represents a superposition of light scattered from the sample, Es(t ), and static local oscillator
contributions, ELO(t ), i.e.

I (t ) = |Es(t ) +ELO(t )|2. (2.24)

Contrary to |Es(t )|, |ELO(t )| does not fluctuate as a function of t .
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In the fully heterodyne limit |ELO(t )| ≫ |Es(t )|, which yields

g2(t ) =




|Es(t ) +ELO(t )|2|Es(0) +ELO(0)|2
�

〈|Es(t ) +ELO(t )|2〉2
≈ 1+2

Is

ILO
|g1(t )|. (2.25)

Here, ILO = 〈|ELO(t )|2〉 and Is = 〈|Es(t )|2〉. In contrast to the homodyne case, for which g2(t ) is a
quadratic function of g1(t ), the heterodyne case yields a linear relation.

In experiments, some contributions of local oscillator fields might need to be considered,
however |ELO(t )| ≫ |Es(t )| is usually not satisfied. Such intermediate scenarios have been
treated by Bremer at al. [51] and later by Pabst et al. [52], which finally yields

g2(t ) = 1+ΛC 2|g1(t )|2+2ΛC (1−C )|g1(t )|, (2.26)

where C = Is/(Is+ILO) denotes the relative intensity of light scattered from the sample [51]. The
value of C is determined indirectly by solving Eq. (2.26) for t → 0 and considering g1(0) = 1,
which for A = g2(0)−1 yields

C = 1−
p

1−A/Λ. (2.27)

For supercooled liquids, however, it has to be considered that fast dynamics reduce the values
of g1(t ) at the shortest available time scale of the PCS experiment, t0, thus

g1(t0) = 1−Afast =λ. (2.28)

This finally yields the expression used within the present work [52], i.e.

C =
1−
p

1+A/Λ−2A/(λΛ)
2−λ

. (2.29)

λ can, in principle, be determined by performing TFPI measurements, however is estimated
as λ = 0.93 for most supercooled liquids analyzed within this work. The potential errors
resulting from this assumption for the average relaxation times extracted from g1(t ) have been
estimated to be small compared to other experimental uncertainties, like e.g. temperature [44].

Due to the limited temporal resolution of the detectors and the hardware correlator, auto-
correlation functions are accessible, at best, within 10−8 s< t < 102 s. To access shorter time
scales, the spectral density Ŝ (ω) of the scattered light can be probed using a TFPI, as will be
discussed in the following section.

Experimental Implementation

The PCS setup utilized to study equilibrium supercooled liquids within this work is pre-
sented in Fig. 2.1. Here, a Cobolt Samba 500 Nd:YAG laser is used as the light source, emitting
frequency-doubled light with λ= 532 nm in vertical polarization. To further suppress residual
horizontal polarization contributions, the light is passed through a vertically orientated po-
larizer (P1). The beam is directed and focused into the optical Cryovac cold-finger cryostat
containing the sample by an adjustable mirror (M) and a converging lens (L). The horizontally
polarized scattered light under θ = 90◦ is probed by guiding the scattered light through a
second polarizer (P2) from B. Halle with extinction ratio 10−7. Subsequently it is filtered by
a 2nm bandpass filter (F) and finally coupled into an optical fiber (FC). The light is split
into two portions of equal intensity by a fiber beam splitter (BS) and the intensity of each
portion is probed by a Laser Components COUNT T100 avalanche photo diode (APD). The
time-averaged intensity autocorrelation function is calculated by an ALV 7004 hardware cor-
relator (CC) and the resulting correlation function g2(t ) is recorded by the ALV software on
the computer (PC).
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Figure 2.1: Schematic illustration of the PCS setup used within the present work. It contains the follow-
ing components (see text for details): Nd:YAG laser, mirror (M), two polarizers (P1 and P2),
converging lens (L), cryostat with sample cell, bandpass filter (F), fiber coupler (FC), fiber
beam splitter (BS), two avalanche photo diodes (APDs), hardware correlator (CC), computer
with ALV software (PC)

2.2.3 Tandem Fabry Perot Interferometry

A Tandem-Fabry-Perot interferometer (TFPI) combines two Fabry-Perot interferometers (FPI)
to probe the real part of the spectral density of electric-field fluctuations, see Eq. (2.14). It
allows to probe the frequency-shift of scattered light with respect to the incoming laser beam
between 0.3 GHz and 3 THz, which allows to extend data obtained from PCS experiments to
higher frequencies. In the following, first the transmission of a single FPI is discussed, which,
subsequently, is extended to the TFPI. Finally, the experimental implementation used within
this work is introduced. The following sections follow the book by Hecht [53] as well as the
manual of the TFP-1 by Sandercock [54]

The Fabry Perot Interferometer

A FPI consists of two plane-parallel mirrors with spacing d , each of which being highly reflec-
tive. Light entering the interferometer is reflected between the mirrors multiple times, while
during each reflection cycle only a small portion of the light passes through one of the mirrors.
As a result, the transmitted light is subject to multi-beam interference, as each reflection
cycle introduces a path length difference of 2d (for light entering the FPI perpendicular to the
mirror planes).

Considering the interference effects yields a criterion for transmitted light, i.e. the wave-
length λ needs to obey

d =
1

2
nλ with n ∈N. (2.30)

The full transmission function of the FPI is given by

T (λ) =
T0

1+ (4F 2/π2)sin2(2πd /λ)
, (2.31)
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where T0 is the maximum possible transmission and F is the finesse of the FPI. T (λ) dis-
plays maxima at those wavelengths that obey Eq. (2.30). The spectral separation between two
consecutive transmitted wavelengths is denoted as∆λ, or free spectral range (FSR). Transmis-
sion peaks are slightly broadened with full width at half maximum (FWHM) δλ. The finesse
depends on the reflectivities of the mirrors, but is also related to∆λ and δλ as

F =
∆λ

δλ
. (2.32)

Thus, F quantifies the quality of a FPI in terms of its functionality as a spectrometer.
In order to characterize the spectrum of light scattered from a liquid sample, the mirror

spacing d is varied and the transmitted intensity I (d ) is probed. According to Eq. (2.30), there
only exists a one-to-one relation between I (d ) and I (λ) within a single FSR, while I (λ) can
not be determined unambiguously once the spectrum of the scattered light exceeds one FSR.
In a TFPI, this issue is resolved by introducing a second FPI with a slightly different mirror
spacing, which enhances the FSR of the spectrometer.

The Tandem Fabry Perot Interferometer

In a TFPI, two FPIs with slightly different mirror spacings d1 and d2 are coupled. In order for
light to be transmitted by both FPIs, two transmission criteria have to be met, i.e.

d1 =
1

2
nλ d2 =

1

2
mλ with n , m ∈N. (2.33)

Fig. 2.2a shows the transmission spectrum of a TFPI for the fixed ratio d2/d1 = 0.95 as the black
line. Global maxima are observed at frequencies where the corresponding wavelength meets
both criteria given in Eq. (2.33). For the given choice of d2/d1 = 0.95, the transmission maxima
of both FPIs do coincide only in every 20th order, thus the FSR of the TFPI is twenty times
larger than the FSRs of the single FPIs. This allows to characterize light with a significantly
larger bandwidth compared to what would be possible by using a single FPI.

Although the basic idea and the advantages of a TFPI are straight-forward, the technical
implementation is difficult, as the mirror-spacing ratio d2/d1 needs to be fixed while d1 and d2

are varied. Within the present work, the high-precession TFP-1 designed by Sandercock and
manufactured by Scientific Instruments [54] is used. The following section briefly discusses
the TFP-1 and how it is implemented.

TFP-1 and Measurement Set-Up

A schematic illustration of the experimental setup including the TFP-1 is shown in Fig. 2.2b.
A frequency-doubled Verdi Coherent Nd:YAG laser is used as the light source. In order to
automatically fine-tune the mirror positions and spacings inside the TFP-1, a small portion
of the laser light is coupled directly into the TFPI, which is achieved by using a beam splitter
and an attenuator to prevent overexposure of the APDs. The residual light is first guided
through a polarizer to ensure a vertical polarization of the light and, subsequently, focused
into the sample by a small prism and a converging lens. The backscattered light is collected
by a converging lens, defocused and finally guided around the prism, where only a small
portion of the scattered light is lost. A second lens is used to refocus the light into the pinhole
entrance of the TFP-1, while it passes a horizontally orientated polarizer to ensure that only
the depolarized portion of the scattered light is probed.
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Figure 2.2: (a) Transmission spectrum of a TFPI with d2/d1 = 0.95. The transmission maxima of both
FPIs do only coincide at every 20th order, which produces a global maximum in the TFPI
transmission spectrum. Otherwise, the transmission maxima of both FPIs are not synchro-
nized, as shown in the inset, where the colors indicate the transmission spectra of the
respective single FPIs. An additional bandpass filter is used to filter out the (n −20)th and
the (n +20)th order global maxima. (b) Schematic illustration of the TFPI used within this
work. Details can be found in the text. Both figures are adapted from Ref. [48].

The pinhole of the TFPI is equipped with a shutter motor in order to switch between the
non-scattered laser beam and the light scattered from the sample entering the TFP-1. The
unscattered light is used to fine-tune the mirror positions and orientations. Within the TFP-
1, the scattered light is defocused, guided into the the first FPI and, afterwards, into the
second FPI. To increase the extinction ratio, the light passes every FPI three times. Finally, the
transmitted light is collected and its intensity is probed by a JRS APD connected to the TFPI
controller and the PC.

After appropriate adjustments according to the manual [54], one measuring run consists
of numerous acquisition runs of 0.5s each. During one acquisition run, the mirror spacing
of both FPIs are varied approx. 500nm around the coarse-adjusted mirror spacings, which
typically are chosen between 3 and 30 mm. The small variations of the mirror spacings are
carried out using a specially shaped translation stage, displayed by the dashed line around
the mirror pairs in Fig. 2.2b. During an acquisition run it is shifted by piezo elements. The
geometry of the translation stage ensures the mirror-spacing ratio to be fixed at d2/d1 = 0.95.
Performing an appropriate number of acquisition runs yields an accurate representation
of the spectral density Re Ŝ (ω). Repeating the same procedure for different course-adjusted
mirror spacings allows to obtain broadband results between 0.3 GHz and 3 THz.

2.3 D I E L E C T R I C S P E C T R O S C O P Y

In dielectric spectroscopy (DS), the frequency-dependent response of a sample to an external
electric field is probed. The following section discusses the theoretical background and relates
the dielectric response to the molecular dynamics of supercooled liquids. If not marked
otherwise, the discussion grounds on the book by Kremer and Schönhals [47] and the PhD
thesis of Thomas Blochowicz [55].
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2.3.1 Theoretical Background

Following the considerations in Section 2.1, the linear polarization response to an external
harmonic electric field EEE (t ,ω) = EEE 0 exp(iωt )with angular frequencyω is given by

PPP (t ,ω) = ϵ0

�

ϵ̂(ω)−1
�

EEE (t ,ω). (2.34)

Here, ϵ̂(ω) is the complex dielectric permittivity, which can be expressed in terms of its real
part ϵ′ and imaginary part ϵ′′ as

ϵ̂(ω) = ϵ′(ω)− iϵ′′(ω). (2.35)

It can be shown that ϵ′ and ϵ′′ are related to each other via the Kramers-Kronig relations [56–
58]

ϵ′(ω0) = ϵ∞+
2

π

∫︂ ∞

0

ϵ′′(ω)
ω

ω2−ω2
0

dω (2.36)

ϵ′′(ω0) =
σdc

ϵ0ω0
+

2

π

∫︂ ∞

0

ϵ′(ω)
ω

ω2−ω2
0

dω. (2.37)

Taking this into account it becomes clear that ϵ′ and ϵ′′ contain the same information, apart
from the high-frequency limit of the dielectric constant

ϵ∞ = lim
ω→∞

ϵ′(ω) (2.38)

and the dc conductivityσdc. Relevant dc conductivity contributions are observed if the sample
contains a substantial amount of ions and, in certain cases, can mask the relevant physics
contained in ϵ′′. A conductivity-free representation of ϵ′′ can, in principle, be obtained by
utilizing Eq. (2.37), however the calculation of the integral presents a challenge, since it is
difficult to evaluate around the integrand’s singularity at ω0 [58]. Instead, the first-order
approximation of equation (2.37) can be considered, which yields

ϵ′′der(ω) =−
π

2

∂ ϵ′(ω)
∂ lnω

, (2.39)

where ϵ′′der denotes the conductivity-free representation of ϵ′′ [59]. After having established
the quantities obtained in a DS experiment, their relation to the microscopic dynamics within
the sample are discussed in the following section.

Fluctuation-Dissipation Approach to BDS

As discussed previously in Section 2.1, the complex dielectric permittivity obtained in a DS
experiment is related to the equilibrium fluctuations of the polarization at EEE = 0 via the
fluctuation-dissipation relation. The equilibrium fluctuations are expressed in terms of the
normalized orientation-polarization autocorrelation function

CP (t ) =
〈PPP or(t ) ·PPP or(0)〉
〈PPP or(0) ·PPP or(0)〉

. (2.40)

Here, the orientation polarization PPP or is considered, which excludes instantaneous polariza-
tion contributions related to ϵ∞.
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The orientation polarization is related to the total number of N molecular dipolesµµµ as

PPP or =
1

V

N
∑︂

j=1

µµµ j . (2.41)

A microscopic interpretation of the orientation-polarization autocorrelation function can
be established by explicitly considering n dipoles in a spherical cavity and by treating the
remaining N −n dipoles as a continuum [48]. This finally yields

CP (t ) =

¬

µµµ i (t ) ·
∑︁n

j=1µµµ j (0)
¶

¬

µµµ i (0) ·
∑︁n

j=1µµµ j (0)
¶ =




µµµ i (t ) ·µµµ i (0)
�

+
¬

µµµ i (t ) ·
∑︁

i ̸= j µµµ j (0)
¶

¬

µµµ i (0) ·
∑︁n

j=1µµµ j (0)
¶ . (2.42)

Here, the self-correlation and cross-correlation parts are separated in the last equation. While
the self-correlations indicate how the orientation of some dipole is correlated to itself at
different times, cross-correlations quantify the orientational correlations between adjacent
dipoles. The dynamics of dipolar cross-correlations have usually been disregarded in previous
studies, which yields

C self
P (t ) =

1

µ2




µµµ(t ) ·µµµ(0)
�

=



P1

�

cosΘµ(t )
��

, (2.43)

where P1(x ) = x indicates the first-rank Legendre polynomial and Θµ(t ) denotes the angle
between some dipole at times zero and t . However, as will be discussed in Chapter 5, dis-
regarding the dynamics of dipolar cross-correlations is not a valid assumption for various
different supercooled liquids.

While the dynamics of dipolar cross-correlations have been mostly disregarded, their effect
on the static permittivity

ϵs = lim
ω→0
ϵ′(ω) (2.44)

is well established. It is usually quantified in terms of the Kirkwood correlation factor

gK = 1+
1

µ2

*

µµµ i ·
∑︂

i ̸= j

µµµ j

+

(2.45)

and can be obtained as an extension to the Onsager equation, i.e.

gK =
9kBϵ0M T

ρNAµ2

(ϵs− ϵ∞)(2ϵs+ ϵ∞)
ϵs(ϵ∞+2)2

. (2.46)

Here T is temperature, M molar mass, ρ density and µ the absolute value of the gas-phase
molecular dipole moment. Within the present work, the high-frequency contribution to the
dielectric constant was estimated at optical frequencies in terms of the squared refractive
index, i.e. ϵ∞ = n 2. gK can be interpreted as a measure for the average orientational correlation
between adjacent dipoles. gK > 1 indicates preferably parallel and gK < 1 preferably anti-
parallel orientation of dipoles. However, these considerations have to be taken with care, as
(i) gK is an average quantity, thus might yield misleading results in cases where parallel and
anti-parallel orientations coexist; and (ii) gK does not consider induced dipole moments,
which have been shown to be of considerable importance [60]. Nevertheless, gK is a powerful
tool to identify dipolar cross-correlation effects in supercooled liquids, a detailed discussion
of which will be given in Chapter 5.
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2.3.2 Experimental setups

During the present work most DS data are acquired using the Alpha-Analyzer from Novo-
control Technologies GmbH & Co. KG, which is an impedance analyzer that accesses the
frequency range from 10−2 Hz up to 107 Hz. Here, liquid samples are filled into home-built
stainless steel sample holders, which contain a plate capacitor and are sealed by O-rings. The
design of the sample cells allows to fill the entire capacitor with the sample liquid, thus the
obtained absolute relaxation strengths are reliable, which is important, e.g., for calculating
gK . The sample temperature was controlled via the Novocontrol Quatro cryosystem. Sample
temperatures have been calibrated carefully in a previous work [44] and are comparable to
the temperatures in the DDLS setup with an accuracy of at least ±0.5 K.

In some cases, the data are extended to lower frequencies by using a home-built time-
domain setup up, which is described in Refs. [55, 61]. It records the dielectric permittivity as a
function of t during charging after an electric field step is applied at time zero and during
discharging after the field is switched off. By this, frequencies between 10−6 Hz and 100 Hz
can be accessed to extend the data obtained in the frequency-domain setup.

2.4 C O M B I N AT I O N A N D C O M PA R I S O N O F M E T H O D S

As it has been discussed in the previous sections, DDLS and DS both probe molecular re-
orientation dynamics. The following section discusses aspects that have to be considered
when the results from these techniques are compared to each other. The focus here is on the
self-correlations, as there exists no consensus on how cross-correlation contributions to the
respective techniques should be treated. Within the present work cross-correlation effects
have been characterized in some systems, which will be discussed in the respective chapters.

The self-parts of the DDLS and DS autocorrelation functions relate to the reorientation
dynamics of molecules as

CDS(t )∝



P1

�

cosΘµ(t )
��

(2.47)

C vh
DDLS(t )∝



P2

�

cosΘuuu (t )
��

(2.48)

Two main differences can be identified. First, the autocorrelations are associated with Legendre
polynomials of different ranks, namely ℓ= 1 for DS and ℓ= 2 for DDLS. This can lead to certain
differences, which, however, depend on the exact motional mechanism, thus are difficult to
estimate for systems with complex dynamics like supercooled liquids. Therefore, only the two
limiting cases are discussed, i.e. rotational diffusion and large-angle jump rotations. In the
latter case, the characteristic relaxation time constants would be independent of ℓ, i.e. τ1 =τ2.
For rotational diffusion, however, τ1 = 3τ2 is obtained, reflecting the fact that a smaller angle
Θ is required for the ℓ= 2 Legendre polynomial to decay to zero than for the ℓ= 1 case. Another
discrepancy would be expected for relaxation processes that are restricted to small angles,
e.g. high-frequency relaxation contributions in supercooled liquids. Here, the small-angle
reorientation is weighted stronger by the ℓ= 2 Legendre polynomial, thus a larger relaxation
strength would be observed for such processes in the ℓ= 2 case compared to ℓ= 1.

A further difference concerns the different molecular axes that are considered by the two
techniques, i.e. the dipole-moment vector in DS and the symmetry axis of the anisotropic part
of the polarizability tensor in DDLS. Different dynamics can be observed for these two axes in
case of anisotropic reorientation mechanisms or if intra-molecular degrees of freedom play a
role. These aspects have to be considered individually for each system and are discussed in
subsequent chapters upon comparison of DDLS and DS data.
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T H E S T R U C T U R A L R E L A X AT I O N S H A P E

3.1 P H Y S I C A L O R I G I N O F R E L A X AT I O N S T R E T C H I N G

The physical origin of the asymmetrically broadened structural relaxation peak has been, and
still is, matter of intense debate for decades. While herein a summary of selected experimental
and computational results is given, it is emphasized that these matters have been discussed
in more detail in several excellent reviews, e.g. by Böhmer [25, 62], Ediger [27], Richert [28],
Richert et al. [29] and Sillescu [26]. Moreover, it is noted that the discussion refers to the
relaxation shape of the structural relaxation or α-process, while additional high-frequency
relaxation contributions are not considered explicitly.

Regarding the origin of relaxation stretching in supercooled liquids, two "extreme" scenarios
have been discussed: the heterogeneous and the homogeneous one (cf. Refs. [25, 26, 28] and
references therein). In the heterogeneous scenario it is assumed that relaxation times of
particles are distributed according to some distribution g (τ), while each particle relaxes
exponentially and contributes to the susceptibility spectrum as a Lorentzian, reflecting it to
be associated with one single relaxation time. The asymmetrically broadened relaxation peak
is then obtained as an ensemble average over all particles and reads

χ ′′(ω) =

∞
∫︂

0

g (τ)
ωτ

1+ (ωτ)2
dτ. (3.1)

Therefore, in this scenario relaxation stretching is assumed to originate from dynamic hetero-
geneity.
On the other side, in the homogeneous scenario the relaxation of each particle is assumed
to be intrinsically stretched, while particle relaxation times are not distributed. Of course, in
addition, numerous in-between scenarios can be considered that combine a certain degree
of intrinsic stretching and some distribution of relaxation times.

Unfortunately, many commonly used experimental techniques are not suited to distinguish
between these different scenarios, as they probe the average over all particles in the sample
using two-time correlators, or the respective linear response equivalents. However, over the
years several experimental approaches have been developed that have been able to confirm the
existence of dynamic heterogeneity on the particle level. The general idea of early experiments
was to selectively probe only a certain dynamic sub-ensemble of particles, e.g. by applying
a low-pass filter and probing only the slower-than-average portion of particles. This can
be done either by using four-dimensional nuclear magnetic resonance (NMR) experiments,
where certain stimulated echo sequences allow for such filtering [25, 62–65]; or by deep
photo-bleaching, where fast-relaxing probe molecules dispersed in a supercooled liquid are
selectively destroyed and, subsequently, the relaxation of the remaining probes is observed [27,
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66, 67]. Both experimental approaches found significantly slower relaxation for the obtained
sub-ensemble than for the entire system. This observation could only be rationalized in
terms of dynamic heterogeneity on the particle level. Similar conclusions could be drawn
from dielectric hole burning [68] and solvation dynamics experiments [69]. Moreover, it was
found that after waiting sufficiently long, the slow subset displayed the average behavior, thus
indicating that rate exchange limits the lifetime of dynamic heterogeneity [25, 27, 67]. More
recently, insightful contributions to the ongoing debate came from fluorescence microscopy
experiments [70]. While these experiments have to rely on indirectly probing supercooled
dynamics using probe molecules, they offer the unprecedented opportunity to study rotational
dynamics of single molecules. Collecting relaxation data of many probe molecules revealed
a continuous distribution of relaxation times, thus confirming the established picture of
dynamic heterogeneity [70].

While these experimental findings seem to rule out the purely homogeneous scenario, they
are well in line with all in-between scenarios, where some degree of intrinsic broadening
instead of pure exponential relaxation exists on the particle level. In this regard, experimen-
tal findings are more ambiguous: On the one hand, solvation dynamics [71], dielectric hole
burning [68, 72, 73] as well as NMR [25] can estimate indirectly the degree of intrinsic broad-
ening and seem to be most compatible with the purely heterogeneous scenario. Noteworthy,
this does not necessarily hold for polymers [28, 74] and binary mixtures [73], where the re-
sults suggest some degree of intrinsic broadening, possibly related to chain-connectivity
effects in the prior and local concentration fluctuations in the latter case. On the other hand,
single-molecule studies explicitly observe stretched exponential relaxation of probe molecules.
However, these results are difficult to interpret, as substantial temporal averaging is required
to obtain adequate data quality [70]. Thus, the observed intrinsic broadened relaxation could
be a manifestation of rate exchange, in the sense that initially fast relaxing probes become
slow during the window of observation and vice versa. This conjecture is supported by the
observation that the degree of intrinsic broadening is reduced when shorter windows of
observation are analyzed.

More insight is provided with recent advances in computer simulations, which allow to study
relaxation of single particles or small clusters with temporal resolution using isoconfigurational
averaging, i.e. averaging over parallel simulation runs starting with identical particle positions
but varying particle velocities [75, 76]. It was found that the relaxation of fast particles tend
to display some intrinsic broadening, while slow particles relax close to exponential. These
results indicate that intrinsic relaxation broadening results from dynamic heterogeneity itself,
in the sense that the onset of rate exchange makes single particles experience slightly different
heterogeneous environments already during a single relaxation cycle, which results in slightly
stretched relaxation.[76]

Another ongoing debate concerns the spatial nature of dynamic heterogeneity. More specif-
ically the question is as to whether particle mobility is clustered into slow and fast regions
associated with some characteristic length scale. While this is suggested for supercooled
molecular liquids by some specific experiments [77–79], a large part of the experimental evi-
dence comes from microscopic imaging experiments on colloidal glasses [80–83], which could
be assumed to resemble molecular glasses in terms of dynamic heterogeneity. Noteworthy,
recent advances in computer-simulations have opened the pathway to obtain in-depth infor-
mation on spatial dynamic heterogeneity in deeply supercooled liquids. This was possible
upon introduction of swap Monte-Carlo algorithms [84] that allow to equilibrate supercooled
liquids down to the glass-transition temperature by performing unphysical particle swaps.
With this advance, the fundamental issue of computer simulations, being unable to reach the
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deeply supercooled temperature range where typical experiments are performed, is resolved,
allowing to extend the existing evidence from high temperatures [85] to low temperatures. First
pioneering studies following such approaches confirmed the picture of pronounced spatial
dynamic heterogeneity, suggesting a coexistence of slow and fast regions and the importance
of dynamic facilitation [30, 86].

3.2 Q U A N T I F Y I N G T H E R E L A X AT I O N S H A P E

In order to compare relaxation shapes of different supercooled liquids, or to study their tem-
perature dependence, the relaxation shape of the α-process has to be quantified using a set
of well-defined parameters. The most commonly analyzed parameter is the high-frequency
power-law exponent β . Occasionally, also the logarithmic half-width w1/2 is considered. Both
are illustrated in Fig. 3.1a for an exemplary spectrum of the silicone oil DC704. While it may
seem that both parameters are easily determined, in most other supercooled liquids addi-
tional contributions from so-called β-processes that appear at high frequencies as distinct
shoulders or excess wings usually mask the structural relaxation shape on the high-frequency
side. For this reason, β can usually not be determined by simply fitting a power law to the
high-frequency side of the peak, but instead, more involved approaches are required. Most
common are fitting procedures that are used to model the entire relaxation spectrum, includ-
ing additional high-frequency contributions like β-processes. Under certain assumptions,
this allows to isolate the relaxation shapes of the different processes. Unfortunately, the choice
of these model functions is quite arbitrary and different models usually yield quite different
results. Moreover, appropriate models require at least six (usually more) free parameters,
thus the decision which of these parameters are treated as free variables and which are kept
constant introduces additional bias.

In the following section, first, typical model functions are defined, second, the mentioned
difficulties when applying these model functions are discussed in more detail and, finally, the
fit model used in the remainder of this work is introduced. In the second section a model-free
approach for determiningβ is introduced that can serve as an alternative to fitting procedures,
due to being well-defined and bias-free.

3.2.1 Frequently used model functions

As discussed in Section 3.1, the relaxation shape in supercooled liquids is commonly inter-
preted in terms of a distribution of relaxation times, each of which contributes as a Lorentzian
to the relaxation spectrum. The two most commonly used model functions for the α-process,
however, are not explicitly defined in terms of a distribution of relaxation times, but as analyt-
ical function of frequency or time. First, the Cole-Davidson (CD) function

χ ′′CD(ω) = Im

�

∆χ

(1+ iωτCD)βCD

�

=∆χ
�

1+ (ωτCD)
2
�−βCD/2 sin
�

βCD arctan(ωτCD)
�

(3.2)

is defined as a function of frequency and produces an asymmetrically broadened peak with
low-frequency power lawω1, high-frequency power lawω−βCD and average relaxation time
〈τ〉=τCDβCD.
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Figure 3.1: Quantifying the relaxation shape. (a) Demonstration of frequently used measures to quantify
the relaxation shape (demonstrated for DC740-data), namely the high-frequency power-law
exponent β and the half-width w1/2. (b) Overview of the intrinsic shapes of commonly
used model functions with β = 0.5. Despite having the same high- and low-frequency
power-law exponents, the widths of the peaks are quite different. (c) DC704-data are fitted
using different model functions, which all yield different values for the high-frequency
power-law exponent. (d) Illustration how βKWW (right axis) varies depending on the chosen
high-frequency fit limit (vertical gray lines). Fits (black lines) are performed with logarithmic
residuals.

Second, the Kohlrausch-Williams-Watts (KWW) stretched exponential function is defined
as a function of time. However, it can be obtained as a function of frequency via Laplace
transformation, which yields

χ ′′KWW(ω) =∆χω

∞
∫︂

0

exp

�

−
�

t

τKWW

�βKWW
�

cosωt dt . (3.3)

It features a low-frequency power lawω1, a high-frequency power lawω−βKWW and average
relaxation time 〈τ〉=τKWWβ

−1
KWWΓ (β

−1
KWW), where Γ denotes the gamma function.

Both functions with βCD =βKWW = 0.5 and normalized to their respective peak maximum
frequencies and amplitudes are compared in Fig. 3.1b. Although high- and low-frequency
power-law exponents are identical, the KWW relaxation shape is significantly broader than
the CD relaxation shape. As a consequence, fitting data using the CD and the KWW function
usually yields quite different results for β . This is demonstrated in Fig. 3.1c, where βCD = 0.39
and βKWW = 0.54 are obtained from fits to the DC704 data. The main reason for this large
discrepancy is that both, the width and the high-frequency power-law exponent of the peaks,
are controlled by the single shape-parameter βCD res. βKWW . As a consequence, the value
of βCD res. βKWW that minimizes the regression of the fit represents a compromise between
an accurate description of the peak and of the high-frequency power law. This also implies
that the result of a fit can depend on the frequency fit range that is analyzed, or on whether
logarithmic or linear residuals are considered. The prior effect is analyzed in Fig. 3.1d, where
a KWW function is fitted to data ranging from 10−2 < ν/νmax < νup for different choices of
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the upper fit limit νup, each of which indicated by a gray vertical lines. Different values βKWW

are obtained (red points and right axis). The dependence on the fit range poses a problem,
because for many supercooled liquids an upper fit limit is naturally given by the on-set of a
β-process or excess wing.

Altogether, the discussed problems and biases introduced by the commonly applied model
functions make it difficult to perform systematic analyses of structural relaxation shapes or
to compare the results obtained for various supercooled liquids. In the following sections,
two solutions to some of these issues are discussed; first, a fit model with two independent
shape parameters to control width and high-frequency power-law exponent of the peak. And
second, a model-free approach for determining high-frequency power-law exponents.

3.2.2 Fit model based on the generalized gamma distribution

In the remainder of this work, a fit model based on a generalized gamma (GG) distribution of
relaxation times is applied, which was originally proposed by Blochowicz et al. [55, 87]. The
distribution of relaxation times for the α-process is given by

GGG(lnτ) =NGG(α,β ) exp

�

−
β

α

�

τ

τGG

�α
�

�

τ

τGG

�β

, (3.4)

with normalizing factor

NGG(α,β ) =
�

β

α

�β/α α

Γ (β/α)
. (3.5)

The resulting relaxation function in the time-domain is obtained as

Φ(t ) =

∞
∫︂

−∞

GGG(lnτ) exp
�

−
t

τ

�

d lnτ, (3.6)

which is the time-domain equivalent of Eq. (3.1). The relaxation spectrum is obtained analo-
gous to the procedure in Eq. (3.3), yielding an asymmetric peak with low-frequency power law
ω1, high-frequency power lawω−β and average relaxation time

〈τ〉=τGG

�

α

β

�1/α Γ
�

β+1
α

�

Γ
�

β
α

� . (3.7)

In contrast to the previously discussed model functions, however, the width can be adjusted
by varying 0<α<∞. In fact, α= 1 reproduces the KWW function, wheres α→∞ converges
to a relaxation shape similar to the CD function. As will be discussed in a later chapter of this
work, the α-process of many supercooled liquids is best described by α= 2 and β = 0.5. The
respective relaxation shape is compared to the KWW and CD functions in Fig. 3.1b and is
used to fit the relaxation spectrum of DC704 in Fig. 3.1c. It should be noted that an extended
version of Eq. (3.4) has been reported that includes an additional excess wing (cf. Eq. 7 of
Ref. [87]), which, however, is not used within the present work unless indicated otherwise. All
fits using the GG distribution of relaxation times are performed logarithmically, in the sense
that the logarithm of the fit model is fitted to the logarithm of the relaxation spectrum in order
to avoid strongly different weighting of the residuals between peak maximum and the regions
of the high- res. low-frequency power laws.
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Figure 3.2: (a) Fit model for relaxation spectra used in this work. In the frequency domain it is obtained
via convolution of an α-process , based of the GG distribution of relaxation times Eq. (3.4),
and a β-process , based of the the distribution defined in Eq. (3.8). High-frequency power-
law exponent and width of the α-process can be controlled via the parameters β , res. α,
while width and asymmetry of the β-process are controlled via a and b . (b) Model-free
approach for determining the high-frequency power-law exponent by determining the
minimum of the logarithmic derivative (d logϵ′′)/(d logν). The symbols represent DC704
data and the derivative of the fits from Fig. 3.1c are included as lines.

As mentioned above, an additional β-process contributes to the relaxation spectra of most
supercooled liquids at larger frequencies than theα-process peak-maximum frequency. While
β -processes are not the focus of this work, they need to be included in the fit model to allow a
full description of relaxation spectra. Finally, this allows to separate theβ -process contribution
from the α-process. In order to describe β -processes, another distribution of relaxation times

Gβ (lnτ) =Nβ (a , b )

�

b
�

τ

τβ

�a

+
�

τ

τβ

�−a b
�−1

(3.8)

with normalizing factor

Nβ (a , b ) =
a (b +1)
π

b b /(b+1) sin
�

πb

b +1

�

(3.9)

is employed. The corresponding process features a peak with low-frequency power lawωa

and high-frequency power law ω−a b . Thus, a controls the width and b the asymmetry of
the peak. It is noted that assuming a temperature-independent distribution of activation
energies implies a∝ T −1 [87]. This relation is considered in subsequent analyses that involve
an extensive description of the β-process.

Finally, the coupling between α- and β -process remains to be discussed. Here, the William-
Watts approach [88] is applied, which assumes that all molecules contribute to the β-process
at short times and, finally relax via the α-process at longer times, while both processes are sta-
tistically independent. This implies a multiplicative form of the combined relaxation function,

Φ(t ) =
�

f + (1− f ) Φβ (t )
�

Φα(t ), (3.10)

where Φα(t ) and Φβ (t ) are the individual relaxation functions of α- res. β-process. An illus-
tration of an exemplary combined relaxation spectrum is shown in Fig. 3.2. In frequency
representation, the William-Watts approach corresponds to the convolution of both individ-
ual relaxation peaks. It should be noted that the difference between the convolution and an
additive treatment of relaxation peaks is minor, as soon as the β -process contributes at much
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shorter timescales than the α-process, i.e. at low temperatures. Thus, none of the conclusions
drawn from the analyses within this work depend on the validity of the assumptions of the
William-Watts approach.

3.2.3 Model-free approach

A model-free approach for determining the high-frequency power-law exponent was intro-
duced by Nielsen et al. [33]. Here, β is defined as the logarithmic slope at the frequency of
steepest descent on the high-frequency side of the relaxation spectrum, i.e.

βd =−min

�

d logϵ′′

d logν

�

. (3.11)

The procedure is illustrated in Fig. 3.2b, where the logarithmic derivative of DC704-data is
shown as a function of frequency. The value at the minimum equals βd ∼ 0.5, in concordance
to the high-frequency power-law exponent determined via a fit using the GG distribution
of relaxation times. In contrast to fitting procedures, the disadvantage of the model-free
approach is that it is impossible to separate contributions of β-process, which are observed
in Fig. 3.2b at ν/νmax > 5 · 102 as an increase of the derivative compared to its minimum
value. Therefore, the best results are obtained at temperatures close to Tg , where the dynamic
separation between the α- and β-process is large. As the dynamic separation of α- and β-
process is strongly temperature dependent around Tg , the validity of results from Eq. (3.11)
can be verified by making sure that the variation of βd as a function of temperature is small.
The great advantage of the model-free approach, however, is that it is well-defined and can
easily be reproduced, independent of any assumptions of model functions. Therefore, it is
preferred for comparing the structural relaxation shapes of various different supercooled
liquids, e.g. in Section 5.4.
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The following chapter discusses the conjecture of a generic relaxation shape of the α-process.
For the sake of brevity, the latter is referred to as relaxation shape below without explicitly
indicating that it is referred to the α-process.

As discussed extensively in Section 3.1, various experimental results indicate the asymmetri-
cally broadened relaxation shape in supercooled liquids to reflect dynamic heterogeneity. Un-
derstanding the physics behind dynamic heterogeneity is presumed to be of major importance
for solving the glass-transition problem. Thus, it has been an important experimental effort to
elucidate what exactly controls the relaxation shape. In this regard, mainly dielectric-loss data
have been analyzed, as these are easily obtained and usually provide the best resolution and
highest signal-to-noise ratio, especially at frequencies above the peak-maximum frequency
where β is determined. It was found that the relaxation shape in general, and the values of
β specifically, vary significantly among various different supercooled liquids [32–34]. This
observation is illustrated in Fig. 4.1a, where ϵ′′(ν) of various different supercooled liquid is
plotted. Each spectrum is normalized with regard to its respective peak-maximum amplitude
and frequency. Values of β obtained for these data range from 1 to ∼0.35, as indicated by the
dashed gray lines.

It was attempted to relate the various values of β to several other characteristics of super-
cooled liquids and glasses. Böhmer et al. reported that larger values of β are associated with
smaller values of the fragility index m [32]. The analysis also included polymers and network
glasses, while the evidence for supercooled molecular liquids alone is rather weak and thus,
has been discussed critically [89, 90]. In the coupling model proposed by Ngai et al. (see
Ref. [91] and references therein), β is predicted to be related to the dynamic separation of the
α- and the Johari-Goldstein β-process . Here, the latter was argued to be associated with the
primitive relaxation of the system. Moreover, as β oftentimes is considered as a measure for
the degree of dynamic heterogeneity, its relation to the lengthscale of dynamic heterogeneity
has been studied using NMR techniques by Qui et al. [92]. Although the "expected" correlation
of smaller values of β being associated with larger dynamic heterogeneity lengthscale was
observed, the study considered only four substances with quite different molecular structures
and even included a polymer, thus no definite conclusions can be drawn. Paluch et al. [34]
reported a correlation between β and the dielectric relaxation strength∆ϵ for a broad variety
of molecular supercooled liquids. Here, larger β are associated with larger∆ϵ, meaning the
relaxation spectra of highly polar liquids tend to be less stretched than those of less polar
ones. Initially, this observation was rationalized by arguing that strong dipole-dipole inter-
actions increase the harmonicity of the inter-molecular potentials. This is thought to affect
the distribution of relaxation times and, thus, the relaxation stretching [34]. As will be argued
in Section 5.4, the results obtained during this work do not support the conjecture posed by
Paluch et al. and, instead, a mechanism involving dipolar cross-correlations is more likely to
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Figure 4.1: Comparing the relaxation shapes of different supercooled liquids. (a) Dielectric loss ϵ′′(ν)
and (b) DDLS χ ′′(ν) spectra normalized with regard to peak-maximum frequency and am-
plitude. The shape of ϵ′′(ν) varies strongly among the different systems, with high-frequency
power-law exponents ranging from 0.35 to 1.0. On the other hand, all χ ′′(ν)-data approxi-
mately collapse onto a single master curve, which is well-described by the relaxation shape
based on the GG distribution of relaxation times with parameters α = 2.0 and β = 0.5
(dashed black line, cf. Eq. (3.4)). Abbreviations: 1-phenyl-1-propanol (1P1P), 3-phenyl-1-
propanol (3P1P), 1-propanol (1P), 2-ethyl-1-hexanol (2E1H), propylene glycol (PG), propy-
lene carbonate (PC), tributyl phosphate (TBP), triethyl phosphate (TEP), triphenyl phos-
phite (TPhP), N,N-diethylacetamide (NNDEA), 2-methyltetrahydrofuran (MTHF), dibuthyl
phthalate (DBP), methyl-m-toluate (MMT), m-toluidine (mTol), butyl methacrylate (BM),
1-octylimidazole (Im8), 17% LiCl-water solution(LiCl-H2O).

be the origin of the observed correlation betweenβ and∆ϵ. Another comprehensive approach
was reported by Nielsen et al., who analyzed the dielectric relaxation shape, and its tempera-
ture dependence, for a large number of supercooled liquids. They determined the distribution
of β-values among these substances and found that its median is β ≈ 0.5 [33]. Remarkably,
substances with larger or smaller values of β tend to converge to β = 0.5 approaching low
temperatures close to or below Tg, as hypothesized earlier by Olsen et al [93].

Contrary to most of these observations from dielectric spectroscopy, in recent years grow-
ing evidence supports the conjecture of a generic α-process relaxation shape with β ∼ 0.5 in
supercooled molecular liquids. These observations have been enabled by advances in other
experimental techniques, e.g. dynamic light scattering, reaching experimental resolutions
comparable to the previously superior dielectric experiments. The initial report of the generic
relaxation shape was published in Ref. [94] and in the PhD-thesis of Florian Pabst [44]. These
studies were continued during the present work, thus the results reported below reproduce
some earlier results from Refs. [44, 94] and extend them in several regards. First, the remarkable
similarity of relaxation shapes observed for DDLS spectra of different supercooled liquids
is presented. Second, the degree to which these relaxation spectra obey time-temperature-
superposition is discussed. Finally, as an outlook, the question as to what is special about
the generic high-frequency power law of ν−1/2 is addressed briefly. While the present chapter
focuses mainly on results from DDLS, the discrepancies with regard to dielectric-loss data
are resolved in Chapter 5. Here it is argued that contributions from dipolar cross-correlations
strongly affect the dielectric relaxation shape. The discussion of relaxation shapes of hydrogen
bonding liquids is continued in Chapter 6, with the focus lying on how the molecular architec-
ture affects their respective hydrogen bonding characteristics and, in turn, the corresponding
relaxation shapes. Finally, these results allow to explain under which experimental conditions
the generic relaxation shape can be observed in Section 6.3.
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4.1 C O M PA R I N G R E L A X AT I O N S H A P E S O F S U P E R C O O L E D L I Q U I D S

Fig. 4.1b shows DDLS relaxation spectra of 19 different substances, each normalized to the
respective peak-maximum frequency and amplitude. Besides few exceptions, the plot covers
the same substances included in the equivalent plot of dielectric data in Fig. 4.1a. In stark
contrast to the latter, however, all DDLS spectra approximately collapse onto a single master
curve. Deviations due to β-processes occur only at ν/νmax > 102, the amplitudes and shapes
of which are individual for each substance. The master curve is well-described by the model-
function based on the GG distribution of relaxation times, Eq. (3.4), with parameters α= 2.0
and β = 0.5. Thus, it features a ν−1/2 high-frequency behavior and a width in-between the one
of the CD and a KWW function with βCD =βKWW = 0.5.

Notably, Fig. 4.1 includes data of monohydroxy alcohols, polyhydric alcohols, high-polar
and low-polar van-der-Waals liquids, as well as ionic systems like a water-salt mixture and
ionic liquids. Thus, it covers the full spectrum of organic low-molecular-weight glass formers.
Recently, the same exponent of β ≈ 0.5 was observed for the inorganic supercooled liquids
GeO2 [95] and (Na2O)x (GeO2)100−x [96] at temperatures close to Tg by using polarized dynamic
light-scattering. This observation suggests that the observed generic behavior might even
apply for a broader variety of substances. It is striking that, despite the chemical variety, these
systems share a common generic relaxation shape in the supercooled regime, suggesting that
this shape represents a deep-rooted characteristic feature of deeply supercooled liquids.

4.2 T I M E - T E M P E R AT U R E S U P E R P O S I T I O N

For each substance, Fig. 4.1b considers the relaxation spectrum obtained at one single temper-
ature. This procedure of comparing relaxation shapes can only be valid if the χ ′′(ν)-data obey
time-temperature superposition (TTS), meaning the temperature-dependence of the normal-
ized relaxation spectrum obeys χ ′′(ω, T ) =φ(ωτ(T )). Here, τ(T ) is the average relaxation time
of the α-process , whileφ(x ) represents the temperature-reduced relaxation spectrum [93].
It has to be noted that TTS inevitably fails as soon as β-processes contribute, because the
average relaxation times of the α- and the β -process have different temperature dependences,
thus the β-process does not obey a scaling relation based on the α-process relaxation time.
Consequently, TTS is only considered regarding the relaxation shape of the α-process. While
ϵ′′(ν)-data of some supercooled liquids were reported to obey TTS within experimental res-
olution [93], deviations are commonly observed [33, 93]. Interestingly, deviations from TTS
are especially apparent for supercooled liquids with values of β extracted from ϵ′′(ν) that
strongly deviate from 0.5 [33, 93]. It is thus interesting to verify to what degree χ ′′(ν)-data
of such substances obey TTS. This is done in Fig. 4.2, where TTS is qualitatively tested for
four selected supercooled liquids, i.e. glycerol, propylene glycol (PG), 3-phenyl-1-propanol
(3P1P) and 3-methyl-3-heptanol (3M3H), by plotting normalized relaxation spectra obtained
at several temperatures as functions of τmaxω=τmax 2πν. These four substances were chosen,
due to data over a broad temperature range with comparably high experimental resolution
being available. In all four cases, TTS is obeyed to good approximation in the temperature
range, where 10−1 < νmax(T )/Hz < 105 (see data as a function of ν in the inset). For 3P1P
and 3M3H, a distinct β-process contributes at high frequencies that starts to merge with the
α-process at the highest temperatures. The onset of this merging inevitably leads to deviations
from TTS.

For glycerol, a high-temperature spectrum obtained at 350 K (above the melting temper-
ature Tm = 290K) is included as the gray line. Its relaxation shape visibly deviates from the
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Figure 4.2: Testing TTS for χ ′′(ν)-data of (a) glycerol, (b) propylene glycol (c) 3-phenyl-1-propanol
and (d) 3-methyl-3-heptanol. For this purpose, normalized relaxation spectra obtained
at different temperatures are plotted as a function of τmaxω= τmax 2πν. The insets show
the same data as a function of ν. For glycerol, the high-temperature relaxation spectrum
obtained at 350 K using a TFPI is included as the gray line.

ones at temperatures close to Tg. Notably, the high-frequency power law remains close to
ν−0.5, in contrast to the notion that liquids above the melting point display a Lorentzian-
shaped relaxation spectrum. While the relaxation spectrum of glycerol at high temperatures
is less broadened than at low temperatures, also the opposite behavior is observed in other
substances. An example of this is shown in Section 6.2 for sorbitol.

In summary, χ ′′(ν)-data seem to obey TTS in the deeply supercooled regime (νmax(T ) <
105 Hz) within the experimental resolution. Exceptions are given by contributions from
β-processes. At higher temperatures, the relaxation shape usually deviates from the low-
temperature shape, however is almost never Lorentzian. A systematic study of the transition
from low- to high-temperature relaxation shapes should be the focus of future investigations.

4.3 W H AT I S S P E C I A L A B O U T ν−1/2 ?

The observation of a generic ν−1/2 high-frequency power law in a broad variety of deeply
supercooled liquids is striking and suggests a deep-rooted connection to the glass-transition
phenomenon. An obvious question is: What is special about ν−1/2? And what is the underlying
physical origin of this exact power law behavior? Interestingly, numerous theoretical studies
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following different approaches have predicted the ν−1/2 high-frequency behavior (see Ref. [97]
and references therein for a brief review).

Recently, Dyre provided a review of the solid-that-flows perspective on deeply supercooled
liquids, which involved a qualitative discussion of the structural relaxation shape [31]. It was
argued that structural relaxation proceeds via various localized flow events that start in highly
mobile regions with low local energy barriers and finally induce dynamic facilitation by re-
ducing large local energy barriers in less mobile regions. The time scale at which dynamic
facilitation mobilizes even the least mobile regions marks the long-time cutoff of the distribu-
tion of relaxation times and, thus, determines the frequency below which theν1 low-frequency
behavior is observed. At larger frequencies, solidity leads to the asymmetric loss peak with
a ν−β high-frequency behavior. In previous considerations [98], β = 1/2 was predicted by
translating the solid-that-flows conjecture into an expression for density fluctuations, which
was solved in the Gaussian approximation.

Dynamic facilitation in supercooled liquids has also been studied in recent computer-
simulation approaches [30, 86]. In harmony with the above mention notions it was found
that relaxation begins in localized highly-mobile regions that facilitate relaxation events in
their vicinity. Interestingly, close connections have been identified between dynamic facilita-
tion and the high-frequency power-law exponent of the respective relaxation spectra: The
high-frequency power-law exponent extracted from the relaxation spectra was found to also
describe the short-time evolution of the number of highly-mobile clusters, as well as the
waiting time distribution for the emergence of new clusters.

Considering these findings, it is tempting to contemplate whether the generic high-frequency
power law might reflect generic features of dynamic facilitation. Computer simulations are a
promising tool to elucidate this conjecture. However drawing more quantitative conclusions
for molecular liquids will require the study of more realistic simulation models, e.g. with
reduced polydispersity [99] or including rotational degrees of freedom [100, 101].
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The observation of a generic relaxation shape of various supercooled molecular liquids in
DDLS raises the question as to how these findings can be reconciled with the apparently
non-generic shape of corresponding dielectric loss spectra. In the following sections it is
argued that this apparent inconsistency can be resolved by considering that dipolar cross-
correlations contribute considerably to the dielectric-loss spectra of certain supercooled
liquids and mask the generic high-frequency power law. This idea is based on joint analyses
of ϵ′′(ν) and χ ′′(ν)-spectra obtained at the same temperature, as discussed in Section 5.1. In
Section 5.2, the assumption that suppressing dipolar cross-correlations should resolve the dis-
crepancy between ϵ′′(ν) andχ ′′(ν)-spectra is verified. Additional evidence is provided by other
experimental and computational studies in the literature, which are briefly reviewed in Sec-
tion 5.3. Finally, a quantitative relationship between the strength of dipolar cross-correlations
and the relaxation shape is established in Section 5.4. It allows to verify theories of dielectric
relaxation in polar liquids. Parts of the results discussed in Sections 5.1 and 5.2 were published
previously in Refs. [94, 102] and in the PhD-thesis of Florian Pabst [44]. To provide context for
subsequent sections, the main arguments and ideas are reproduced, as well as complemented
by additional data obtained during the present work.

5.1 C O M B I N E D A N A LY S I S O F B D S A N D D D L S S P E C T R A

Fig. 5.1 presents a comparison of ϵ′′(ν)- and χ ′′(ν)-data of a selection of different supercooled
liquids, both obtained at the same temperature, respectively. Here, substances are considered
for which a visible difference with regard to the high-frequency power-law exponent between
the ϵ′′(ν) and χ ′′(ν)-data is observed in Fig. 4.1. Three different sub-classes of supercooled
liquids are covered: Monohydroxy alcohols (left panels), polyhydric alcohols (middle panels)
and polar non-hydrogen bonding liquids (right panels). While the upper panels are reproduced
from Refs. [44, 94, 102], the lower panels show data obtained during the present work, which
were published in Refs. [103–105].

Immediately, two general conclusions can be drawn from Fig. 5.1: First, for all six substances
the peak-maximum frequency extracted from ϵ′′(ν) is markedly smaller than the one from
χ ′′(ν), i.e. the peak-relaxation time obtained from the dielectric loss is larger than the one
probed by DDLS. Second, ϵ′′(ν) is well-described by the weighted sum of the χ ′′(ν)-spectrum
and an additional slow and narrow relaxation contribution depicted by the gray shaded area.
The latter is either Debye-shaped, or in some cases slightly broadened, as described by the
Laplace-transform of the KWW stretched exponential function with 0.8 < βKWW < 1. The
quantitative description for the case of a Debye-shaped contributions reads as

ϵ′′(ν) =∆ϵself ·χ ′′(ν) +∆ϵcross ·
ωτcross

1+ (ωτcross)2
. (5.1)
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Figure 5.1: Comparison of ϵ′′(ν)- and χ ′′(ν)-data of a selection of different supercooled liquids, both
obtained at the same temperature. Upper panels (a)-(c) are reproduced from Refs. [44, 94],
while the lower panels (d)-(f) were obtained during the present work. The substances in
the left hand panels (a) and (d) are monohydroxy alcohols, in the middle panels (b) and
(e) are polyhydric alcohols and in the right hand panels (c) and (f) are polar vdW liquids.
The solid black lines represent fits to ϵ′′(ν) by Eq. (5.1), the gray shaded areas illustrate
the slow cross-correlation contributions ϵ′′cross(ν) and the dashed black lines represent the
self-correlation contribution ϵ′′(ν)− ϵ′′cross(ν). The normalized DDLS spectra χ ′′(ν) were
multiplied by∆ϵself according to Eq. (5.1). For all substances, besides the polyhydric alcohols,
the cross-correlation contribution is described by a Lorentzian, while the Laplace transform
of the KWW function with βKWW = 0.78 and βKWW = 0.86 is used for glycerol and propylene
glycol, respectively.

Here,∆ϵself and∆ϵD are the respective relaxation strengths of both contributions and τD is
the relaxation time of the Debye-contribution. The validity of Eq. (5.1) is illustrated in Fig. 5.1,
where the slow and narrow relaxation contribution is subtracted from ϵ′′(ν), which yields the
black dashed line that almost perfectly coincides with χ ′′(ν).

To unveil the physical origin of the additional slow contribution, monohydroxy alcohols are
discussed first. For these substances the existence of two distinct relaxation contributions to
ϵ′′(ν) is well established and understood: Via hydrogen-bonding, most monohydroxy alcohols
form chain-like supra-structures. Within these supra-structures, orientations of adjacent
molecular dipoles are correlated. In the static limit ν→ 0, these dipolar cross-correlations can
be quantified in terms of the Kirkwood correlation factor gK (cf. Eq. (2.45)), which for most
monohydroxy alcohols yields values significantly above unity. Due to the fact that the supra-
structures persist to much longer times than the average relaxation time of self-correlations,
an additional relaxation contribution to ϵ′′(ν) is observed that reflects the slow relaxation of
dipolar cross-correlations. Its relaxation time reflects the reorientation of the supra-structures
and can be up to a factor of thousand slower than the decay of self-correlations. The slow
contribution is usually referred to as Debye process, due to its unique relaxation shape, which
had been predicted by the Debye model of dielectrics (see Section 6.1 for a detailed discussion).
Considering the data of 1-propanol in Fig. 5.1a, DDLS apparently is insensitive to these dipolar
cross-correlations and does only probe the self-correlations, i.e. the rotation of single alcohol
molecules. This empirical conclusion is discussed and tested in more detail below, but for
now it is concluded that χ ′′(ν) does reflect the self-correlation dynamics.
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For a qualitative explanation on why the slow dipolar cross-correlation contribution is
Debye-shaped one can follow the line of argument by Anderson et al. [106]: In the limit of
the cross-correlation relaxation being significantly slower than that of the self-correlations,
the former is also slower than rate exchange. As a consequence, the slow relaxation of cross-
correlations reflects an average over various different heterogeneous environments. Thus it is
associated with one single average relaxation time and Debye-shaped. For cross-correlations
being only moderately slower than self-correlations, the averaging of dynamic heterogeneity
might be incomplete, leaving the cross-correlation contribution slightly broadened on the
high-frequency side.

While the discussed ideas seem to be broadly accepted for monohydroxy alcohols, the
middle and right-side panels of Fig. 5.1 reveal equivalent observations also for polyhydric
alcohols and some polar van-der-Waals (vdW) liquids. These results suggest that a slow dipolar
cross-correlation contribution, i.e. a Debye process, is a much more general feature, which
is not specific for monohydroxy alcohols. Actually, this might not be entirely unexpected:
The intermolecular interaction mechanisms in polyhydric alcohols (hydrogen bonding) and
polar vdW liquids (dipole-dipole interactions) are anisotropic, thus could lead to some sort
of structure formation. At least for polyhdric alcohols, the formation of a hydrogen-bonded
network structure is well-established. Moreover, similar to monohydroxy alcohols, these
substances exhibit significant static dipolar cross-correlations, as indicated by gK > 1 (see
detailed discussion in Section 5.4).

In fact, a recent theory of dielectric relaxation by Déjardin et al. suggests that gK > 1 alone is a
sufficient condition to observe a slow cross-correlation contribution to the dielectric loss [109].
The theory determines the static dielectric permittivity of an isotropic polar fluid from the
Langevin equations describing the dynamics of particles [60]. From the values of the molecular
dipole moment, the refractive index and the mass density, the theory correctly predicts the
static permittivity and the Kirkwood correlation factor as functions of temperature for real
molecular liquids, e.g. primary alcohols and various other vdW liquids. It introduces only a
single temperature-independent free parameter that quantifies inter-particle interactions.
Although the theory does not consider any complex intermolecular interactions like hydrogen-
bonding, it predicts that gK > 1 can be observed for polar liquids simply due to electrostatic
interactions of permanent dipoles as well as induction and dispersion forces.[110] At the same
time, the theory considers the dynamic susceptibility, where for gK > 1 an additional slow
cross-correlation process is observed, similar to what is is found for experimental data in
Fig. 5.1 [109].

The results presented in Fig. 5.1 suggest that, in certain supercooled liquids, dipolar cross-
correlations considerably contribute to ϵ′′(ν). They significantly affect the respective relaxation
shape and lead to the discrepancies observed between the ϵ′′(ν)- and χ ′′(ν)-relaxation shapes.
Conversely, this idea implies that, once there are no relevant contributions from dipolar cross-
correlations, the same relaxation shape should be observed for ϵ′′(ν) and χ ′′(ν)-data. This
conjecture is verified in Fig. 5.2a, where a detailed comparison of ϵ′′(ν) (colored symbols) and
χ ′′(ν)-spectra (black symbols) obtained at different temperatures of the low-polar and non-
hydrogen bonding silicone oil DC704 is shown. The analysis is reproduced from Refs. [44, 94].
Evidently, data from both techniques perfectly coincide and the relaxation shape corresponds
to the generic relaxation shape observed in Fig. 4.1b. Fig. 5.2b presents an overview of ϵ′′(ν)-
data obtained for various supercooled liquids with very low polarities, including different
branched alkanes, aromatic compounds and silicone oils. Some of these data were obtained
from the literature (see caption for details) [107, 108]. In contrast to the broad variety of
relaxation shapes observed in Fig. 4.1a, ϵ′′(ν)-data of these low-polarity supercooled liquids
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Figure 5.2: Relaxation spectra of low-polarity supercooled liquids, for which, most likely, no dipolar
cross-correlations contribute to ϵ′′(ν). Panel (a) shows a comparison of ϵ′′(ν) andχ ′′(ν)-data
of the silicone oil DC704. Relaxation spectra from both techniques superimpose almost per-
fectly. Data are reproduced from Refs. [44, 94] In panel (b), ϵ′′(ν)-relaxation shapes of various
other low-polarity supercooled liquids are compared by plotting the data normalized with
regard to the respective peak-maximum frequencies and amplitudes. Very similar relaxation
shapes are observed that agree well to the generic relaxation shape identified from DDLS
data in Fig. 4.1b(dashed black line). Data of the branched alkanes, 2,3-dimethylpentane,
2,4,6-trimethylheptane and 3-methylpentane, were obtained from Ref. [107], toluene-data
from Ref. [108] were kindly provided by Prof. Ernst Rössler. All other data were obtained
either by Florian Pabst [44] or during this work.

share very similar relaxation shapes, which are shown to coincide well to the generic relaxation
shape. This observation indicates that, indeed, the generic relaxation shape is observed also
in DS once dipolar cross-correlations are absent.

5.2 S U P P R E S S I O N O F C R O S S - C O R R E L AT I O N S

Following the conjectures discussed above, the generic relaxation shape should be recovered in
DS once cross-correlations are suppressed by some suitable experimental procedure. Fig. 5.3
presents three examples of such procedures for two different supercooled liquids.

Panel (a) reproduces data from Ref. [44, 102] for the non-hydrogen bonding supercooled
liquid tributyl phosphate (TBP), which features a distinct slow cross-correlation contribution,
see Fig. 5.1b. Most likely, these cross-correlations result from dipole-dipole interactions be-
tween TBP molecules, as suggested by the theory of Déjardin et al. [60, 110]. In an attempt
to suppress these cross-correlations, Pabst et al. studied mixtures of TBP with the non-polar
solvent n-pentane. This procedure is expected to increase the average distance between TBP
molecules, thus weakening dipole-dipole interactions. For a direct comparison, the relaxation
spectra in Fig. 5.3 are normalized to their respective peak-maximum frequencies and ampli-
tudes. For pure TBP, a significantly more narrow relaxation shape is observed for ϵ′′(ν) (green
symbols) compared to χ ′′(ν) (blue symbols). After sufficient dilution by n-pentane, however,
the ϵ′′(ν)-relaxation shape of TBP broadens and coincides with the χ ′′(ν)-relaxation shape.
Moreover, it was confirmed that the broadening saturates at high n-pentane concentrations,
thus, it could be excluded that the broadening reflects enhanced dynamic heterogeneity in the
binary mixture compared to the pure TBP. These results indicate that dilution by a non-polar
solvent suppresses dipolar cross-correlations in TBP.



5.3 E V I D E N C E F R O M O T H E R E X P E R I M E N TA L A N D C O M P U TAT I O N A L T E C H N I Q U E S 41

Figure 5.3: Verifying whether suppressing dipolar cross-correlations recovers the generic relaxation
shape for ϵ′′(ν)-data. Panel (a) is reproduced from Refs. [44, 102] and shows ϵ′′(ν)- (green
symbols) and χ ′′(ν)-data (blue symbols) of pure TBP, as well ϵ′′(ν)-data from two mixtures
with n-pentane with different concentrations indicated in the legend (red and orange
symbols). Dilution suppresses dipolar cross-correlations and recovers the generic relax-
ation shape. Similar data are shown in panel (b) for glycerol, where hydrogen bonding is
suppressed either by applying 1.8 GPa hydrostatic pressure (orange symbols) [111], or by hy-
perquenching from room temperature with 80, 000 K/s (red symbols) [112]. Both procedures
recover the generic relaxation shape.

Panel (b) shows similar results for glycerol, but based on different procedures to suppress
cross-correlations, which in glycerol most likely result from hydrogen-bond interactions. One
possibility to suppress hydrogen-bonding is to apply large hydrostatic pressures [113, 114].
A second possibility is to hyperquench glycerol from room-temperature directly into the
deeply supercooled state. This procedure essentially freezes the high-temperature structure
of the liquid, due to giving the system insufficient time for structural equilibration. Since
hydrogen bonding is less pronounced at high temperatures, the state of glycerol obtained
after hyperquenching is expected to feature a less pronounced hydrogen-bonded network. In
Fig. 5.3, the ϵ′′(ν)-relaxation shape of pressurized glycerol at 1.8 GPa from Hensel-Bielowka et
al. [111], as well as hyper-quenched glycerol cooled with 80, 000 K/s from Gainaru et al. [112]
are compared to data of pure glycerol. Again, ϵ′′(ν) of pure glycerol is more narrow than χ ′′(ν),
however both procedures of suppressing hydrogen bonding lead to an almost perfect collapse
of ϵ′′(ν) and χ ′′(ν). The results summarized in Fig. 5.3 support the conjecture that dipolar
cross-correlations are the reason for the narrow ϵ′′(ν)-relaxation shape observed for glycerol
and TBP.

5.3 E V I D E N C E F R O M O T H E R E X P E R I M E N TA L A N D C O M P U TAT I O N A L

T E C H N I Q U E S

Evidence for the significant impact of dipolar cross-correlations on the dielectric relaxation
shape is not only provided by DDLS experiments, but also by several other techniques. The
following section gives a brief review of the corresponding literature.

Important contributions to answering the question as to whether dipolar cross-correlations
alter the dielectric relaxation shape are provided by 2H-NMR. The reason for this it that 2H-
NMR directly probes an orientational self-correlation function and, thus, the interpretation
of the corresponding results does not rely on any assumptions, like the empirical observation
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that DDLS is mostly insensitive to orientational cross-correlations in pure supercooled liquids.
Analysis of NMR data for a wide variety of different supercooled liquids, mostly obtained from
field-cycling experiments, for the most part support the findings from DDLS, i.e. the NMR
and DDLS relaxation shapes agree well in many cases, while they differ from the dielectric
relaxation shape [115–117]. Still, a broader variety of high-frequency power-law exponents is
observed in NMR compared to DDLS. It is difficult to judge, however, whether some of these
discrepancies might result from the fitting procedures applied to NMR data. This is supported
by the fact that quite different results were obtained for different fit models [115].

Cross-correlation contributions were also identified in comprehensive analyses of shear
rheological data. For MAs, the shear modulus is dominated by theα-process, which is observed
at similar frequencies as in DDLS. However, an additional low-frequency contribution is
commonly identified that resembles chain-connectivity effects in polymers [118, 119]. A
similar contribution was also identified by Arrese-Igor et al. for glycerol in the complex viscosity
representation. It was found to coincide with the peak-maximum frequency of the dielectric
loss spectrum [120], thus supporting the latter’s assignment as a cross-correlation contribution.
Similar conclusions regarding the coexistence of self-correlational and collective modes in
shear rheological spectra of glycerol were drawn by Gabriel et al. for the shear compliance [121].
While it might not be surprising that hydrogen-bonded structures contribute considerably in
shear rheology, due to the fact that hydrogen bonds have to be broken in order to make these
systems flow [122], it is not clear whether the same behavior is to be expected for dipole-dipole
interactions induced cross-correlations. For TBP, Moch et al. identified a single contribution to
the real part of the shear compliance, the average relaxation time of which roughly coincides
with the one of the dielectric loss. This, among other observation, let these authors conclude
that the collective relaxation mode instead of the self-correlations are associated with the glass
transition [123]. Arresse-Igor et al. came to a different conclusion, as they clearly identified a
self- as well as cross-correlation contribution to the imaginary part of the viscosity and the
derivative of the real part of the shear compliance [124]. The latter can be thought of as an
approximation of the imaginary part of the shear compliance. These findings support the
DDLS results discussed above and clearly show that self-correlational and collective modes
contribute differently to the different shear rheological representations.

Similar observations were recently reported by Paluch et al., who proposed an approach for
identifying dipolar cross-correlations via the dielectric modulus M̂ (ω) [125], i.e. the dielectric
response upon applying a constant charge instead of an electric field. Because M̂ (ω) = ϵ̂(ω)−1,
relaxation processes contribute to the dielectric modulus with different weighting factors
compared to the dielectric permittivity. Processes with a rather large∆ϵ, e.g. dipolar cross-
correlations, contribute to M̂ (ω) with a rather small ∆M . As a consequence, the dielectric
modulus in many cases is dominated by dipolar self-correlations, as shown by Paluch et al.
through comparison to DDLS data [125].

Slow dipolar cross-correlations were also identified in some computer-simulation studies.
While such analyses are inherently limited to higher temperatures beyond the deeply super-
cooled regime, they can serve as valuable tools to unambiguously disentangle dipolar self- and
cross-correlations, because both can be directly calculated from the simulation trajectories.

Koperwas et al. studied the dipolar dynamics of two model-systems – one composed
of highly and one of weakly polar rhombus-like molecules. For both systems the macro-
scopic polarization autocorrelation function CP (t ) was decomposed into self- and cross-
correlations. While for the weakly polar system, CP (t )was shown to almost exclusively con-
tain self-correlations, it is dominated by cross-correlations for the highly polar system. The
observed cross-correlations are Debye-shaped and relax at significantly longer times than the
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self-correlations, thus supporting the experimental observation of a slow and narrow dipolar
cross-correlation contribution. Due to the choice of the particular model system, the observed
dipolar cross-correlations can be unambiguously identified to originate from dipole-dipole
interactions instead of other interaction mechanisms like hydrogen bonding.

A similar approach was taken by Hénot et al. for the "real" liquid glycerol [126]. They iden-
tified significant cross-correlation contributions that decay slower and with a steeper high-
frequency power law than the self-correlations. The analysis of preferred local dipolar associa-
tions revealed a pattern that approximately reflects the dipole-dipole interaction potential
with some additional contributions due to other effects, e.g. hydrogen-bonding or sterical
constraints. Moreover, Hénot et al. showed that considering the ℓ= 2 Legendre polynomial
instead of ℓ = 1 drastically reduces the cross-correlation contribution, such that the corre-
sponding ℓ= 2 relaxation spectrum is almost entirely dominated by self-correlations [126].
The reason for this seem to be the different angular sensitivities of the respective Legendre
polynomials, i.e. orientations of molecules are anti-correlated at an angle of 90◦ for ℓ = 2,
but at 180◦ ℓ = 1. These result can be considered as a first rationalization of the empirical
observation that cross-correlations do not contribute to the DDLS relaxation spectrum. An
open question remains whether the results for glycerol can be generalized to other liquids
with pronounced dipolar cross-correlations.

Finally, several studies dealing with the dynamics of liquid water have to be mentioned.
Similar to what is found for many other strongly polar liquids, the dielectric response of water
was found to be dominated by dipolar cross-correlations [127–129]. Notably, one of these
studies [128] used ab initio techniques and, thus, did not rely on using classical force-fields
to model hydrogen bonding. These observations of slow cross-correlation contributions to
the dielectric loss of water allow to rationalize the previously observed discrepancy between
dielectric and Raman spectra [130, 131]. Equivalent to what is observed for deeply supercooled
liquids, Raman spectroscopy, which is a high-frequency DDLS technique, is found to be mostly
insensitive to the dipolar cross-correlations in water.

5.4 Q U A N T I TAT I V E R E L AT I O N S B E T W E E N C R O S S - C O R R E L AT I O N S

A N D R E L A X AT I O N S T R E T C H I N G

All observations discussed in the previous sections clearly suggest that the narrow relaxation
shapes of the dielectric loss observed for various supercooled liquids are related to dipolar
cross-correlation contributions. So far, this relation is qualitative in the sense that no quanti-
tative connection between the strength of dipolar cross-correlations in a supercooled liquid
and its dielectric relaxation shape has been formulated. This section aims to establish such a
quantitative relation.

5.4.1 Correlation between gK and β

The underlying hypothesis of the following analyses is that the strength of dipolar cross-
correlations is correlated to the high-frequency power-law exponent β of the dielectric
loss. This conjecture is based on two assumptions: (i) In the absence of any dipolar cross-
correlations, β ≈ 0.5 is found for the dielectric loss spectrum. It grounds on the observations
for substances with low-polarity and for DDLS data of various supercooled liquids above. In
cases where cross-correlations contribute, β ≈ 0.5 is assumed to also hold for the self-part ϵ′′self
of the dielectric loss. (ii) Dipolar cross-correlations ϵ′′cross contribute as a slow Debye-shaped
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Figure 5.4: Illustration how a slow Debye-shaped cross-correlation process (dashed lines) that superim-
poses the self-part of the dielectric loss (blue line) affects the overall shape of the dielectric
loss. The blue curve is based on a GG distribution of relaxation times with parameters α= 2
andβ = 0.5 (cf. Eq. (3.4)) [87, 94]. Superposition by an additional cross-correlations contribu-
tion leads to a larger values ofβ that increase as functions ofτcross/τself and∆ϵcross/∆ϵself, as
shown here for two examples (green and red lines). (b) The exponent of the high frequency
power law can be determined in a model-free approach by calculating the minimum value
of the the logarithmic derivative, cf. Eq. (3.11). The inset represents a magnified plot of the
region around the minimum.

peak. The dynamic separation with regard to the self-correlations, τcross/τself, increases with
increasing quotient of the respective relaxation strengths,∆ϵcross/∆ϵself.

Such scenarios and the respective effects on β are explored exemplarily in Fig. 5.4a. Here,
the blue line shows the dielectric loss spectrum found for a supercooled liquid without any
cross-correlations, thus it is modeled with β = 0.5. The red and the green spectrum each are
obtained by superimposing the blue curve by a Debye function (dashed gray line) according
to different values of τcross/τself and∆ϵcross/∆ϵself. The resulting high-frequency power-laws
are steeper with exponents β = 0.6 and 0.8, respectively. Thus, it is concluded that β critically
depends on the specific properties of dipolar cross-correlations in each liquid and can result
in a variety of different values for β .

To quantify the strength of dipolar cross-correlations, in the following analyses the Kirkwood
correlation factor gK (cf. Eq. (2.45)) is considered. It is important to note that gK quantifies the
average strength of static dipolar cross-correlations. Thus, gK = 1 does not necessarily imply
the absence of any dipolar cross-correlations, but could as well reflect an ensemble average
over coexisting parallel and anti-parallel dipolar alignments. Most likely, the dynamic signature
of dipolar cross-correlations is associated with a more local degree of cross-correlations
instead of with the ensemble average. For instance, in a scenario where chain-like and ring-
like supra-structures coexist in a monohydroxy alcohol, one still would expect to observe
a slow contribution to the dielectric loss that reflects the reorientation of the chain-like
structures although gK could be unity. Indeed, this has been observed experimentally for the
monohydroxy alcohol 5-methyl-3-heptanol, as shown in Refs. [132–135] and discussed in
Section 6.1.2. As a consequence, substances where it has to be expected that gK does not reflect
the local geometry of dipolar associations, e.g. some octanol isomers, are not considered in
the following. Moreover, it is stressed that determining gK requires knowledge of the molecular
dipole moment µ, which needs to reflect the conformational states of the molecules in the
liquid phase and can be determined via dilution experiments [136, 137]. Typically, no such
data are available in the literature for more exotic molecules, like most pharmaceuticals
considered in a previous meta-analysis of the dielectric relaxation shape [34]. One of the
reasons is that these molecules are quite flexible and consist of several functional groups that
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Figure 5.5: β as a function of gK for various supercooled liquids. Substances from different sub-
categories are plotted in the same color (orange: phthalates, red: phosphates, dark red:
aromatic vdW, yellow: non-aromatic vdW, blue: polyhydric alcohols, light blue: phenols,
light green: aromatic monohydroxy alcohols, dark green: non-aromatic monohydroxy alco-
hols).
For each substance one temperature-averaged point over various temperatures that obey
10−1 Hz < νpeak(T ) < 105 Hz is included. Error bars reflect the standard deviation of the
temperature dependence of β and gK , as well as the uncertainty of the parameters used
for calculation gK (∆µ/µ= 0.05,∆n = 0.01,∆ρ/ρ = 0.05 and∆ϵs/ϵs = 0.01). All parameters
used for the calculation of gK can be found in Appendix A.
The dashed gray line represents the result of a linear regression analysis that yields β =
(9.76±0.61)·10−2 ·gK+(0.42±0.01) and a Pearson correlation coefficient ofρgK ,β = 0.91±0.02.
The gray shaded area indicates the 2σ-confidence interval.

carry a substantial dipole moment. In this case, the total molecular dipole moment strongly
depends on the conformational state of the molecule, making it impossible to assign one
single value of µ in order to calculate gK , let alone to determine µ in a dilution experiment
(cf. Section 6.2 for the example of sorbitol). Thus, the present analysis focuses on smaller
molecules, for which µ is readily available, which is the reason why a smaller number of
substances is considered compared to previous work [34].
β is determined using the model-free approach from Nielsen et al. [33]based on determining

the minimum of the logarithmic derivative of the dielectric loss, cf. Eq. (3.11) and Fig. 5.4b.
This procedure is favored over fitting procedures, as it is well-defined and, thus, well-suited to
compare the relaxation shape of various supercooled liquids without introducing bias from
the choice of applied model functions.

Fig. 5.5 displays β as a function of gK for 25 different deeply supercooled liquids. It confirms
the hypothesized correlation between both quantities. For clarity each point represents the
temperature-averaged value of both quantities. This temperature-averaging procedure is valid
as β (T ) and gK(T ) do not vary strongly as functions of temperature, at least in the deeply
supercooled regime. This is illustrated in both panels of Fig. 5.6, where β and gK are plotted
as functions of reduced temperature T /Tg. As far as crystallization could be avoided, for each
liquid temperatures were considered for which the peak-maximum frequency of the dielectric
loss is 10−1 Hz<νpeak(T )< 105 Hz. The error bars reflect the estimated uncertainty due to the
uncertainty of parameters for determining gK (see figure caption and Appendix A for details),
as well as the variation of gK and β as functions of temperature.

From Fig. 5.5 it is immediately clear that higher values ofβ are associated with larger gK . Both
quantities are strongly correlated with a Pearson correlation coefficient of ρgK ,β = 0.91±0.02
as determined via a linear regression that yields β = (9.76±0.61) ·10−2 · gK + (0.42±0.01) (gray
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Figure 5.6: β and gK as a function of reduced temperature T /Tg. Both quantities vary weakly with
temperature, thus temperature-averaged values can be considered. The symbols are the
same as in Fig. 5.5. Error bars for gK reflect the following uncertainties of parameters:
∆µ/µ= 0.05,∆n = 0.01,∆ρ/ρ = 0.05 and∆ϵs/ϵs = 0.01.

dashed line). Here, the uncertainties of ρgK ,β and the 2σ-confidence intervals of the linear
regression (gray shaded area) were determined by Monte-Carlo sampling the uncertainty
distributions of each point in Fig. 5.5.

Around gK ≈ 1 and β ≈ 0.5, a clustering of data points from different substances is observed.
This confirms the premise that the generic power-law exponent β = 0.5 is observed as soon
as dipolar cross-correlations are absent (gK ≈ 1). The opposite extreme is represented by
1-propanol, 2-ethyl-1-hexanol and 5-methyl-2-hexanol, i.e. three monohydroxy alcohols for
gK ∼ 4− 5 is found in agreement with their strong tendency to form supra-structures via
hydrogen bonding. In between both extremes, at 1 < gK < 4, a broad variety of different
substances is found. These have very different chemical structures and can be sorted into
different sub-categories, namely non-hydrogen bonding liquids with and without aromatic
groups, hydroxy aromatics, polyhydric alcohols, as well as monohydroxy alcohols with and
without aromatic groups. The same colors are used in Fig. 5.5 for substances that are similar
with regard to their assignment to one of these categories.

Obviously, the physical origin for dipolar cross-correlations must be fairly different among
these substances. For instance, hydrogen bonding, dipole-dipole interactions,π-π-interactions
and possibly also steric effects might be relevant. Remarkably, the relation between gK and
β appears to be similar for all the different sub-classes of substances. This finding suggests
that the dynamic signature of dipolar cross-correlation resulting from different microscopical
origin have a similar effect on the dielectric loss.

Notably, the observed correlation between gK and β also rationalizes the physical origin of
the correlation between the dielectric relaxation strength∆ϵ and β reported by Paluch et al.,
which hereafter is referred to as Paluch correlation. Initially this correlation was explained
by the authors by arguing that strong dipole-dipole interactions increase the harmonicity of
the inter-molecular potentials, which is thought to affect the distribution of relaxation times
and leads to less stretched relaxation shapes in highly polar substances [34]. This conjecture,
however, does contradict the more recent observations discussed above, as such effects on
the distribution of relaxation times should also be observed in DDLS or NMR experiments.
Evidently, this is not the case. Instead, the Paluch correlation can be understood as an indirect
consequence of the correlation between gK and β : Large values of gK are associated with
larger values of β . At the same time, according to the Kirkwood-Fröhlich equation, large gK

are associated with larger∆ϵ compared to what would be observed for a system with the same
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Figure 5.7: Analysis of how the β-gK correlation is related to the β-∆ϵ Paluch correlation [34]. (a)
Comparison of∆ϵ as a function of β obtained during this work (colored open symbols) to
the Paluch correlation (black symbols and gray dashed line). The assignment of the colored
symbols is the same as in Fig. 5.5. For comparison, propylene carbonate and propylene
glycol data from Paluch et al. are highlighted using colored symbols with black border
that correspond to the respective data from this work regarding color and shape of the
symbol. The discrepancy reflects the different ways of determining β (model-free in this
study, KWW by Paluch et al.). (b)∆ϵ as a function of gK . A correlation between both param-
eters is observed that suggests that the Paluch correlation indirectly follows from the β-gK

correlation.

dipole density but gK = 1. Thus, the probability that a liquid with large∆ϵ also has gK > 1, and
therefore β > 0.5, is enhanced compared to liquids with small∆ϵ.

These considerations are treated quantitatively in Fig. 5.7. Panel (a) attempts to reproduce
the Paluch correlation by plotting∆ϵ at one temperature close to Tg as a function of β for all
supercooled liquids considered in this work as the open colored symbols. The assignment
of colors and symbols is equivalent to the one in Fig. 5.5. The black symbols represent the
data reproduced from the original publication by Paluch et al. [34]. While the open colored
symbols from this work roughly follow the trend of the Paluch correlation, the spread of the
data points is significantly larger. There are two main reasons for this: First, the work by Paluch
et al. did not consider monohydroxy alcohols (dark green symbols), which have large values
of β at comparatively low∆ϵ. Second, in the Paluch correlation βKWW is used instead of the
model-free approach for determining βd. As discussed in Section 3.2.1, the KWW function
has only a single shape parameter, βKWW , that controls the high-frequency power law and
the width of the peak. As a consequence, for narrow relaxation shapes the fit overestimates
βKWW in order to fit the data around the peak maximum. For some substances this causes
quite large discrepancies between βKWW and βd, which in some cases lead to large deviations
of the data obtained during this work from the general trend of the Paluch correlation. This is
visualized in Fig. 5.7 for two substances that have been considered in both works, propylene
glycol (open dark blue circle) and propylene carbonate (open yellow hexagon), by plotting the
corresponding data from Paluch et al. as filled symbols in the same color, but with a black
border. The discrepancies are significant: For propylene glycol, βd = 0.65 while βKWW = 0.81,
and for propylene carbonate, βd = 0.62 while βKWW = 0.78.

In Panel (b) of Fig. 5.7 the relation between gK and∆ϵ is explored. As suspected above, both
quantities are correlated, which confirms the conjecture that the Paluch correlations is an
indirect consequence of the causal relation between gK and β .
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5.4.2 Relations between self- and cross-correlations

The previous analyses set out to explore the effect of dipolar cross-correlations on the relax-
ation shape of the dielectric loss. This was achieved by hypothesizing certain simple rela-
tions for dipolar self- and cross-correlations and by confirming the therefrom anticipated
correlation between gK and β . However, further and more direct insight can be gained by
disentangling self- and cross-correlation contributions to the dielectric loss via comparison
to DDLS data. It has to be noted though that, as DDLS experiments are considerably more
time consuming than dielectric experiments, the number of substances that could be ana-
lyzed in this way is smaller than in the previous section. Below, various relations between
dipolar self- and cross-correlations are analyzed for nine different supercooled liquids, i.e.
the six substances considered in Fig. 5.1, as well as three additional monohydroxy alcohols
1-phenyl-1-propanol (1P1P), 2-phenyl-1-propanol (2P1P) and 5-methyl-2-heptanol (5M2H).

Testing the Kivelson-Madden relation

As a first step, the famous "micro-macro" relation from the theory of Kivelson and Madden
(KM) [138, 139] is tested. Building on the earlier work of Keyes [140], KM attempted to obtain
a theoretical framework that connects the collective dielectric response of a liquid, which
is the quantity measured in a typical dielectric experiment, to the microscopic relaxation of
single dipoles. Under certain assumption their theory yields the simple relation

τM = gK τself, (5.2)

for the average relaxation times of the collective response, τM , and of single dipoles, τself.
Although the validity of the approach by KM was later challenged by Bordewijk [141], the KM
relation is still discussed in the context of dipolar cross-correlations to date [142]. Moreover,
several experimental and computer-simulation studies obtained results that support the
validity of Eq. (5.2) in the liquid regime above the melting point [143–146].

Following the joint interpretation of dielectric and DDLS spectra in Section 5.1, τM is
obtained as the peak-maximum relaxation time of ϵ′′(ν), while the peak-maximum relaxation
time of χ ′′(ν) is assumed to represent τself. In Fig. 5.8a, τM/τself is plotted as a function
of gK obtained at various temperatures for the nine supercooled liquids. Almost all points
deviate significantly from the dashed line that indicates the KM prediction Eq. (5.2). Instead,
the dynamic separation between collective and single-dipole relaxation is larger for almost
all studied supercooled liquids. It is thus concluded that, in contrast to high-temperature
liquids, the assumptions leading to Eq. (5.2) are not justified for deeply supercooled liquids.
It is noted that similar issues have been identified by Matyushov et al. [142], which these
authors have resolved by introducing an additional substance-specific factor to Eq. (5.2)
that compensates the discrepancies observed in Fig. 5.8a. In the context of the KM theory,
this parameter can be interpreted as the dynamical correlation factor JK , which quantifies
cross-correlations of dipolar angular velocities and usually is close to unity for liquids at high
temperature, which however might not necessarily be the case for supercooled liquids. These
adjustment allow Matyushov et al. to predict the ϵ′′(ν)-relaxation spectrum from χ ′′(ν). It has
to be noted, however, that in order to make the results from Fig. 5.8a agree with KM, quite
different values of JK would be required for substances with very similar chemical structures,
e.g. for the phenyl-propanol isomers JK ∼ 1− 6 depending on the position of the hydroxy
group. Further investigations are required in these regards and especially the recent advances
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in computer-simulations [126, 147] are promising tools to study the relation of τM and τself

when approaching the supercooled regime.
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Figure 5.8: (a) Testing the KM relation Eq. (5.2) by plotting the ratio of collective and self-correlation
times τM/τself as a function of gK . τself is obtained via comparison of ϵ′′(ν) and χ ′′(ν)-
data. The data visibly deviate from the KM prediction indicated by the gray dashed line.
(b) τcross/τself as a function of ∆ϵcross/∆ϵself for the same substances as in panel (a). All
data collapse onto a single master curve suggesting a common relation for self- and cross-
correlations.

Testing the assumptions leading to the prediction of the β-gK correlation

In Section 5.4.1 the prediction of the correlation between gK and β was rationalized based on
two hypotheses: The first one was the assumption that β ≈ 0.5 holds for the self-correlations
of the dielectric loss ϵ′′self(ν). It is confirmed by the observed clustering of data-points around
(gK ,β ) = (1, 0.5) in Fig. 5.5 and the fact that ϵ′′(ν)-data of supercooled liquids with gK > 1
could be described as a superposition of χ ′′(ν) with β = 0.5 and a slow cross-correlation
contribution in Fig. 5.1. The second assumption was that with increasing strength of dipolar
cross-correlations, ∆ϵcross/∆ϵself, the dynamic separation of these cross-correlations with
regard to the self-correlations, τcross/τself, increases. This notion is verified in Fig. 5.8b, where
τcross/τself is plotted as a function of ∆ϵcross/∆ϵself for the nine supercooled liquids at vari-
ous temperatures. Indeed, the hypothesized relation between both quantities is observed.
Moreover, the data for the different substances all collapse onto a single curve, a trend which
was previously reported for monohydroxy alcohols and rationalized in terms of the transient
chain model [148, 149], as both, τcross/τself and∆ϵcross/∆ϵself, are expected to increase with
increasing length of hydrogen bonded supra-structures. The interesting conclusion from
Fig. 5.8b is that also polyhydric alcohols and polar vdW liquids display the same relation. This
suggests the relation between τcross/τself and∆ϵcross/∆ϵself to be of much more fundamental
nature and to represent a common characteristic shared by dipolar cross-correlations of
diverse origin. In its essence, the finding from Fig. 5.8b is similar to the identification of a
spectral envelope for dielectric loss spectra reported by Gainaru [150]. The results obtained
in this work suggest that the physical origin of the identified envelope likely is related to the
somewhat universal way how cross-correlations contribute to the dielectric loss.

Considering that both τcross/τself and∆ϵcross/∆ϵself, as well as as β and gK are correlated,
one could expect that τcross/τself and∆ϵcross/∆ϵself are suitable predictors for β . This conjec-
ture is tested in panels (a) and (b) of Fig. 5.9, respectively. In both cases, a clear correlation is
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Figure 5.9: β as a function of (a) τcross/τself and (b) ∆ϵcross/∆ϵself for various supercooled liquids.
τcross/τself and∆ϵcross/∆ϵself have been determined using the fitting procedure explained
in Eq. (5.1) and illustrated in Fig. 5.1. The assignment of the colored symbols is the same as
in Fig. 5.8. (c) The heatmap illustrates the expected value of β as a function of τcross/τself

and∆ϵcross/∆ϵself. Iso-β curves are indicated by the solid lines. The data were obtained by
modeling the dielectric loss as the superposition of a Lorentzian shaped cross-correlation
contribution and self-correlations described by the GG distribution of relaxation times
with β = 0.5 and α = 2 (generic relaxation shape). β was determined for the modeled
relaxation spectra by using the model-free approach (Eq. (3.11)). Symbols represent data for
real supercooled liquids from panels (a) and (b), with the fill color of the symbols indicating
the respective values of β using the same color code as for the heat map. Crossed symbols
indicate substances for which the cross-correlation contribution was modeled by a KWW-
function with β < 1 instead of a Lorentzian.

observed, however the spread of the data is quite large and for some fixed value of τcross/τself

or∆ϵcross/∆ϵself, various different values of β are observed for the different substances.

To further interpret this observation, panel (c) of Fig. 5.9 shows how the dielectric relaxation
shape is expected to vary as a function of τcross/τself and ∆ϵcross/∆ϵself. These data were
obtained by modeling artificial dielectric relaxation spectra as the superposition of a self-
correlation contribution with β = 0.5 and a slow Debye-shaped cross-correlation contribution
and for different choices of τcross/τself and∆ϵcross/∆ϵself. Subsequently, the respective high-
frequency power-law exponents β were determined via the model-free approach and plotted
as a heatmap including iso-β curves as black lines. Opposing the simple idea discussed
previously with regard to Fig. 5.4, β does not simply increase with increasing τcross/τself and
∆ϵcross/∆ϵself and, instead, the relation is more complex.

To relate the modeled relaxation-shape diagram to real supercooled liquids, the data from
panels (a) and (b) are included as the circles. Their fill colors correspond to the respective
experimentally observed values of β following the same color code as the heat map. It is
found that the characteristic τcross/τself-∆ϵcross/∆ϵself curve of real supercooled liquids does
not pass perpendicular to iso-β curves, but instead runs almost parallel to these curves for
0.5< β < 0.8. As a consequence, already a rather small spread of the data points can imply
that points with similar τcross/τself and∆ϵcross/∆ϵself are located in quite different β-regions,
in harmony of what was found in panels (a) and (b).

Further insight can be gained by inspecting the fill color of the symbols in more detail.
In most cases, the fill color is similar to the color of the respective surrounding β-region.
However, this is clearly not the case for the symbols marked by the black crosses. These
represent the substances for which the cross-correlation contribution to the experimental
relaxation spectra could not been modeled as a Debye function (propylene glycol, glycerol
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and 1-phenyl-1-propanol), but instead by a KWW function with β < 1 (see caption of Fig. 5.1).
Obviously, these substances do no conform to the model the heatmap is based on. These
substances are also found to be the outliers in panels (a) and (b) (light green circles, blue
circles and blue squares).

To summarize, the present chapter compiled evidence supporting the notion that deviations
from β = 0.5 found for the dielectric loss result from dipolar cross-correlation contributions.
The final sections provided a quantitative relation between the dielectric relaxation shape
and the strength of static cross-correlations, which was shown to rationalize the previously
observed Paluch correlation. In addition, it provided evidence that the assumptions leading
to the KM relations are not justified for supercooled liquids.
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The following sections aim to address the question how different effects of hydrogen bonding
(H-bonding) are manifested in the relaxation spectra of H-bonding supercooled liquids. The
analyses rely on a detailed comparison of dielectric loss, ϵ′′(ν), and DDLS spectra, χ ′′(ν),
building on the concepts established in previous chapters. Despite the influence that hydrogen
bonding exerts on the molecular dynamics of these substances, in almost all cases the α-
process probed by means of DDLS corresponds to the generic relaxation shape. On the other
hand, dielectric-loss spectra are much more individual and depend on the specific H-bonding
properties of these substances, mainly because it is dominated by signatures of dipolar cross-
correlation reflecting supra-structures formed via H-bonding. Some of the data discussed in
the following chapter have already been discussed in the contexts of the previous chapters 4
and 5, while this chapter focuses more specifically on their H-bonding properties.

In particular, the presented analyses attempt to clarify how the geometry and the dynamic
signatures of H-bonded supra-structures depend on the molecular architecture. In this regard,
the general strategy is to compare results among different isomeric or homologous series of
monohydroxy and polyhydric alcohols. In Section 6.1.1, an isomeric series of phenyl propanols
is considered, attempting to clarify to what degree the steric hindrance of a phenyl ring
suppresses the formation of H-bonded structures. Section 6.1.2 analyses the transition from
chain-like to ring-like supra-structures being favored depending on molecular architecture
and temperature along an isomeric series of octanols. Here, it is found that ϵ′′(ν) contains two
distinct contributions reflecting H-bonding, namely a slow contribution due to the relaxation
of supra-structures, and a signature of the attachment and detachment process of hydroxy
groups to/from these structures. Finally, a homologous series of polyhydric alcohols is studied
in Section 6.2, among which the relaxation shape and the relevant relaxation mechanisms
sensitively vary with chain-length.

6.1 M O N O H Y D R O X Y A L C O H O L S

The study of monohydroxy alcohols (MAs) dates back to the early work of Peter Debye in
the 1910s and 1920s [151], who analyzed their dielectric properties in order to confirm his
model of polarization that predicted Lorentzian dielectric-loss spectra [152]. As obvious from
previous chapters, it was later shown that a Lorentzian-shaped relaxation spectrum is in fact
unusual and appears to be a quite unique feature of some MAs. Since the early works MAs
have been intensely studied and over the years various ideas and models have been developed
to describe their characteristic behavior. An overview on the rich history of the research on
MAs is presented in the excellent review by R. Böhmer et al. [148], while only the key results
that are relevant to this work are briefly summarized in the following introduction.
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(b)(a)

Figure 6.1: Molecular dynamics in MAs. (a) Illustration of the transient chain model adapted from
Ref. [149]. MA molecules form chain-like structures with large end-to-end dipole moments.
The structures rotate transiently via detachments and attachments of molecules from/to
the chain. (b) ϵ′′(ν) (squares) and χ ′′(ν) (triangles) data of 1-propanol at selected temper-
atures. A joint analysis involves a fit to χ ′′(ν) to identify the relaxation shapes of α- and
β -process (dashed line, purple area), and, subsequently, a fit to ϵ′′(ν) by Eq. (6.2) (solid line)
assuming α- and β-process to be superimposed by the Debye process (grey area).

Already a few years after the work of Debye it became clear that molecular supra-structures
have to be considered in order to explain the characteristic features of MAs, e.g. the low-q
pre-peak in X-ray scattering [153] or their anomalously large dielectric constants [154]. Soon-
after, the latter was explained in terms of orientational cross-correlations of dipoles [155] and
quantified by the Kirkwood correlation factor gK [156, 157], which to this day is still routinely
used as a tool to estimate the degree of structure-formation in MAs. While early works assumed
supra-structures to resemble "polymer-like" chains, it later became obvious that the geometry
of structures depends strongly on the molecular architecture. Their geometry can range from
chain-like to ring-like (and many in-between cases) and may even vary strongly as a function
of temperature [132, 133, 158–161].

Regarding dynamics, several experimental discrepancies [148] suggested that the Lorentzian
peak cannot represent the reorientation of single molecular dipoles and it was concluded that
it instead reflects the relaxation of supra-structures. Improved resolution of dielectric exper-
iments allowed the observation of a high-frequency shoulder to the Lorentzian peak [162],
which later was found to correspond to calorimetric glass-transition modes and, thus, was
concluded to represent the α-process [163, 164]. This finally lead to the semi-quantitative
model that is applied to interpret the dielectric loss of MAs to this date. It considers α- and
β-process contributions, both of which are universally observed in supercooled liquids, su-
perimposed by the Debye process that reflects the dynamics of supra-structures [148], i.e.

ϵ′′(ν) =∆ϵD ·
ωτD

1+ (ωτD)2
+∆ϵαβ · ϵ′′αβ (ν). (6.1)

Here, ∆ϵD and ∆ϵαβ represent the respective dielectric relaxation strengths of the contri-
butions and the Debye process is modeled by the Debye function, associated with a single
relaxation time τD.

While it had been well-established that the Debye process reflects the relaxation of supra-
structures, details about the dynamic nature of its relaxation were only revealed much later by
Gainaru et al. [149]. These authors used 1H and 2H NMR techniques to probe the supercooled
dynamics of OD and CD isotope-labeled 1-butanol. The carbon backbones were found to
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rotate on the same time scale as the dielectric α-process, while the characteristic relaxation
time of hydroxy groups τOH was found to be in-between the ones of the Debye- and the
α-process, i.e. τα <τOH <τD. These findings indicate that supra-structures relax transiently,
with molecules frequently attaching and detaching from the structure. This mechanism is
illustrated in Fig. 6.1a adapted from the original publication of the transient chain model by
Gainaru et al. [149].

The Debye process had been assumed to solely be a dielectric phenomenon, however it was
later observed also in shear rheological data, where it resembles typical chain-mode features
of polymers [118]. Following the analogy to normal modes in type-A polymers [165], a relation
between the relative dielectric relaxation strengths of the contributions in Eq. (6.1),∆ϵD/∆ϵα,
and the average length of supra-structures, N , was derived. It relies on the assumption that the
dielectric α-process reflects the reorientation of dipole-moment components perpendicular
to chain-structures, while the components parallel to chain-structures contribute to the Debye
process. This approach yields N = 7−8 for n-butanol at supercooled temperatures. [149]

More recently, dielectric and rheological experiments have been performed simultaneously
to study how supra-structures are affected by shear [122]. The observed deviations from the
dielectric spectrum obtained at equilibrium conditions could be rationalized in terms of a
living polymer model [166, 167] that quantifies some qualitative ideas of the transient chain
model and provides certain theoretical predictions to verify in future work.

Applying Eq. (6.1) to fit dielectric-loss data of MAs is not straight forward, as ϵ′′αβ (ν) is usually
masked by the strong Debye process. Thus, some model-functions are usually assumed to
describe ϵ′′αβ (ν). In this regard, DDLS experiments are useful, as they allow to determine the
self-correlation contributions to the dielectric loss, as discussed previously in Chapter 5. Thus,
performing complementary DDLS experiments allows to reduce Eq. (6.1) to

ϵ′′(ν) =∆ϵD ·
ωτD

1+ (ωτD)2
+∆ϵαβ ·χ ′′(ν), (6.2)

where χ ′′(ν) represents the (normalized) DDLS spectrum (cf. Eq. (5.1). Fig. 6.1b illustrates
this procedure for 1-propanol [168]; χ ′′(ν) (triangles) and ϵ′′(ν) (squares) are jointly analyzed
at two supercooled temperatures, which allows to identify the Debye- (grey area) and the
α- and β-process (purple area) contributions to ϵ′′(ν). The same or similar procedures have
been applied to analyze relaxation spectra of various different MAs [48, 103, 168–170], some
of which are discussed in the following sections. It is noted that in some cases the Laplace
transform of the KWW function with β < 1 is used instead of the Debye function in order to
quantify some degree of high-frequency broadening of the Debye process.

6.1.1 Phenyl propanol isomers

Phenyl alcohols are popular model systems to study how molecular architecture influences
the molecular dynamics and structure-formation in hydrogen bonding systems. In particular,
the combination of a hydroxy and a phenyl moiety is of interest, as both functional groups
are common constituents of molecules with biological and pharmaceutical relevancy. The
complex interplay of hydroxy and phenyl group introduces several additional molecular
interaction mechanisms, namely π-π interactions between two or more phenyl groups, π-OH
H-bonds and suppression of OH-OH H-bonds due to the sterical hindrance introduced by
the phenyl group.

Especially the latter effect has been discussed in previous studies by Johari et al. [161, 171]
and Kalinovskaya et al. [172] to interpret dielectric relaxation of different phenyl propanol iso-
mers. It was found that in these substances the characteristic Debye peak is largely suppressed,
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Figure 6.2: Relaxation spectra of phenyl propanol isomers. (a) Structure formulas of the investigated
isomers. The hydroxy group is fixed at a terminal position, while the position of the phenyl
ring is varied. (b)-(d) Combined analysis of ϵ′′(ν) (squares) andχ ′′(ν) (triangles) according to
Eq. (6.2) (dashed and solid lines). For 1P1P, the Fourier transform of a KWW with 0.8<β < 1
was used to model the Debye process.

leading to dielectric loss spectra with a single asymmetrically broadened main relaxation peak
that rather resembles the behavior found in non-hydrogen bonding supercooled liquids. This
effect was found to be particularly strong if the phenyl group is positioned in the direct vicinity
of the hydroxy group. For instance, neither any Debye process contribution, nor any static
cross-correlations (gK ≈ 1) could be identified by the authors for 1-phenyl-1-propanol. Conse-
quently, they concluded that the steric hindrance introduced by a phenyl group suppresses
the formation of H-bonds, especially if it is located close to the hydroxy group.

Contrasting observations are presented and discussed in the following section, which were
published in Ref. [103]. Here, DDLS experiments are utilized to accurately disentangle self-
and cross-correlation contributions to the dielectric-loss spectra of phenyl propanols. Finally,
the comparison allows to reevaluate the effect of phenyl rings on dynamics and geometry of
hydrogen bonded supra-structures.

The studied phenyl propanol isomers are shown in Fig. 6.2a. While the hydroxy group is
fixed at a terminal position, its distance from the phenyl ring is varied by shifting the latter
along the chain; the distance is reduced from 3-phenyl-1-propanol (3P1P), over 2-phenyl-1-
propanol (2P1P) to 1-phenyl-1-propanol (1P1P). Respective combined analyses of BDS and
DDLS data are shown in Fig. 6.2b-d, including fits to DDLS data (dashed lines) by a model
based on the GG distribution of relaxation times and fits to BDS data (solid lines) by the sum
of the fit to PCS data and a KWW with β ≲ 1 representing the Debye process, cf. Eq. (6.1). The
overall picture is quite similar for all three isomers: Over the entire temperature range the
comparison of the two techniques reveals pronounced Debye process contributions to the
dielectric loss, which are unresolved in DDLS. Peak relaxation-time constants of Debye and α-
process, τD and τα, as functions of inverse temperature are shown in Fig. 6.3a, while panel (b)
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Figure 6.3: Cross-correlations in phenyl propanol isomers. (a) Relaxation time constants of Debye-
(full symbols) and α-process (open symbols), τD and τα, as well as (b) dynamic separation,
τD/τα, as functions of inverse temperature. The color assignments are shown in panel
(c). (c) Static cross-correlations quantified by gK as a function of normalized temperature
T /Tg . Data for 1-propanol (1P) from Ref. [168] are included for reference. gK decreases
with decreasing distance between hydroxy group and phenyl ring and with increasing
temperature.

displays the corresponding dynamic separation τD/τα. Evidently, the dynamic separation is
comparably small (τD/τα < 20) for phenyl propanols compared to many simple MAs like, e.g.,
1-propanol (τD/τα ∼ 100, cf. Fig. 6.1a). As a consequence, the coexistence of both processes
is hardly noticed by analyzing only dielectric-loss spectra, which explains the contradicting
conclusions from previous studies [161, 171, 172].

Although a Debye process is observed independent of the phenyl-ring position, the latter
does in fact strongly affect the degree of static dipolar cross-correlations, as evident from
Fig. 6.3c. Here, gK is shown as a function of the normalized temperature T /Tg for the three
phenyl propanol isomers and their non-aromatic pendant 1-propanol. The figure confirms
earlier results [161, 171, 172] by showing that introducing a phenyl ring generally reduces the
degree of dipolar cross-correlations. The effect is more pronounced the closer the phenyl ring
is located with regard to the hydroxy group. For 1P1P, gK is almost unity, which is surprising
considering that a pronounced Debye process contribution to the dielectric loss is identified
in Fig. 6.2. This apparent discrepancy can be resolved by considering that gK ∼ 1 does not
necessarily indicate the absence of cross-correlations, as it evaluates the average degree of
dipolar associations. Instead, the coexistence of supra-structures featuring parallel (chain-like)
and anti-parallel (ring-like) dipolar associations can equally lead to gK ∼ 1, as was observed,
e.g., for certain octanol isomers [132, 133, 158]. Despite that, one expects to observe dynamic
signatures of cross-correlations, reflecting the relaxation of chain-like supra-structures which
manifests as a slow Debye process contribution to the dielectric loss. As this is consistent with
the observations for 1P1P it is likely that the steric hindrance introduced by the close proximity
of the phenyl ring to the hydroxy group favors the formation of ring-like supra-structures. This
finally results in a coexistence of structures with predominantly parallel and predominantly
anti-parallel dipolar associations.

Since the publication of the presented results, the isomeric series of phenyl propanol iso-
mers has attracted further attention, leading to several insightful publications, which will be
discussed briefly. The identification of self- and cross-correlation contributions to the dielec-
tric loss presented in Fig. 6.2 has been confirmed by several other studies using shear rheology
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measurements [119], logarithmic derivative analyses of dielectric data [173] and dielectric
modulus data [125]. In particular for 1P1P, Gabriel at al. utilized high-electric field measure-
ments to verify the conjecture that chain-like and ring-like structures coexist [174]. The basic
idea of their approach is that, in case of aforementioned coexistence, applying high electric
fields shifts the thermodynamic equilibrium towards chain-like structures being favored. This
should lead to an increase of the Debye-process amplitude while the self-correlation part of
the dielectric loss remains unaffected. Indeed, this effect was observed for 1P1P [174], similar
as previously reported for 5-methyl-3-heptanol [134], which is the prototypical example for a
MA featuring coexisting hydrogen bonded structures [132, 133, 158]. Signatures of structure-
formation via OH-OH and OH-π interactions were also observed in x-ray diffraction and
infrared-spectroscopy experiments [175, 176]. Recent computer-simulations support these
results and provide insight on the size and geometry of supra-structures. Compared to simple
monohydroxy alcohols like 1-propanol, the supra-structures in phenyl propanols are smaller
and their geometry is more heterogeneous due to the additional interactions introduced by
the phenyl ring. [177].

6.1.2 Octanol isomers

Octanol isomers are probably the most famous examples of how minimal changes of molec-
ular architecture can dramatically alter the structure-formation properties of MAs. For this
reason, the isomeric series n-methyl-3-heptanol has been a popular model system to study
the influence of molecular architecture on the structural and dynamical properties of MAs for
several decades [117, 132–135, 158–160, 178, 179]. The general observation is that by shifting
the methyl group closer to the hydroxy group, the overall dielectric relaxation strength ∆ϵ
strongly decreases [132, 133, 158]. The latter goes along with a reduction of the Debye process’
relaxation strength [134]. Qualitatively, these findings are explained by assuming the preva-
lence of ring-like supra-structures in alcohols with large steric hindrance in proximity of the
hydroxy group.

This section discusses DDLS data obtained for several octanol isomers and previously
published in Ref. [170]. The presented results provide new perspectives on the dynamics of
H-bonded supra-structures with different geometries. Most measurements were performed
during the master thesis of Timo Richter supervised by the present author. Structure formulas
of the studied octanol isomers are shown in Fig. 6.4a, including 2-ethyl-1-hexanol (2E1H), 5-
methyl-3-heptanol (5M3H), 4-methyl-3-heptanol (4M3H) and 3-methyl-3-heptanol (3M3H).
2E1H was studied instead of 6M3H and 7M3H (1-octanol), as the former was not available for
purchase and the latter is difficult to supercool. These three MAs, however, behave similarly
in the sense that they all show the strong tendency to form chain-like supra-structures. This is
confirmed for 2E1H in Fig. 6.4b, where gK of all studied octanol isomers is plotted as a function
of temperature. For 2E1H, gK is found to be considerably larger than unity. By contrast, gK < 1
is observed for 3M3H and 4M3H at all studied temperatures, indicating the prevalence of
predominately ring-like supra-structures being formed. An intermediate role is taken by
5M3H, featuring a transition from gK < 1 to gK > 1 as a function of temperature, which can be
interpreted as a transition from ring-like to chain-like supra-structures being favored. As a
consequence, ring and chain-like structures coexist over a certain temperature range [134,
180].

For each of the four isomers, ϵ′′(ν) and χ ′′(ν) obtained at a selected temperature are com-
pared in Fig. 6.5. Evidently, the shape of ϵ′′(ν) varies strongly between the different isomers,
reflecting the different geometries of supra-structures being formed predominantly. For chain-
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Figure 6.4: (a) Structure formulas of the studied octanol isomers. (b) gK as a function of temperature.
Chain-like supra-structures are predominant in 2E1H at all temperatures, while ring-like
structures are built in 4M3H and 3M3H. 5M3H represents an in-between case, as a transition
from gK < 1 to gK > 1 is observed as a function of temperature.

forming MAs (2E1H and also 5M3H at the displayed temperature), ϵ′′(ν) is dominated by a
narrow Debye process. In addition, a distinct shoulder is observed on the high-frequency
side of the Debye process, which usually is interpreted as the α-process [181]. Ring-forming
MAs (4M3H and 3M3H) display a broad multimodal peak, which has been interpreted as
a superposition of a Debye-like and the α-process, and both having comparable relaxation
strength [181, 182]. By contrast, the χ ′′(ν)-relaxation shape is very similar for all four isomers
and corresponds to the generic relaxation shape discussed in Chapter 4. Thus, it does not
reflect any signatures of structure-formation.

For a qualitative comparison the respective peak-maximum frequencies of χ ′′(ν) are indi-
cated in Fig. 6.5 by the black lines. For the chain-forming MAs, the peak-maximum frequency
of χ ′′(ν) coincides with the high-frequency shoulder in ϵ′′(ν), suggesting the respective α-
processes in both techniques to coincide. For ring-forming MAs, the main peak in χ ′′(ν) is
observed at approximately a factor ten larger frequencies than the broad plateau observed in
ϵ′′(ν). The β-processes probed by the two techniques are compared in the insets of Fig. 6.5.
In all cases, the peak-maximum frequencies, and approximately also the shape, coincide
between the techniques. For 4M3H, a high-frequency excess wing instead of a β-process is
observed in both techniques, therefore no low temperature data of 4M3H are included in
Fig. 6.5.

Fig. 6.6 displays the results of a quantitative analysis based on Eq. (6.1), which is included
as the solid black lines. It is assumed that ϵ′′(ν) can be described by the superposition of a
self-correlation contribution, represented by χ ′′(ν), and a slow Debye process fitted to the
low-frequency part of ϵ′′(ν). Details about the fitting procedure are described in the caption
of Fig. 6.6. Evidently, this approach is largely insufficient to describe ϵ′′(ν) over the entire
frequency range. For all isomers the model fails to describe the data in the intermediate fre-
quency range, suggesting the existence of an additional relaxation contribution not taken into
account in Eq. (6.1). The additional contribution, which hereafter is referred to as intermediate
process, is visualized by the black symbols obtained by subtracting the description based on
Eq. (6.1) from ϵ′′(ν). It has to be noted that qualitatively equivalent results are obtained when
considering the DDLS α-process to be slower by a potential factor of three, which could result
from the different Legendre polynomials probed by the two techniques (see Section 2.4). For



60 6 R E L A X AT I O N I N H Y D R O G E N - B O N D I N G S Y S T E M S

10−2 100 102 104 106

ν/Hz

10−1

100

101

ε0
0 (ν

),
χ0
0 (ν

)

2E1H, 162.1 K

100 103 106

ν/Hz

10−2

10−1

ε0
0 (ν

),
χ0
0 (ν

)

144.8 K

10−4 10−2 100 102 104 106

ν/Hz

10−2

10−1

100

101

ε0
0 (ν

),
χ0
0 (ν

)

5M3H, 170 K

100 103 106

ν/Hz

10−2

10−1

ε0
0 (ν

),
χ0
0 (ν

)

165 K

10−2 100 102 104 106

ν/Hz

10−2

10−1

100

ε0
0 (ν

),
χ0
0 (ν

)

4M3H, 170 K
10−2 100 102 104 106

ν/Hz

10−2

10−1

100

ε0
0 (ν

),
χ0
0 (ν

)

3M3H, 170 K

ε00(ν)
χ00(ν)

100 103 106

ν/Hz

10−3

10−2

ε0
0 (ν

),
χ0
0 (ν

) 130 K

Figure 6.5: ϵ′′(ν) (blue) andχ ′′(ν) (pink) for all four octanol isomers compared at selected temperatures
indicated at the bottom left of each panel. It is noted that χ ′′(ν) is normalized, thus the
amplitude of χ ′′(ν) in this figure does not reflect any physics. The black solid lines indicate
the peak maximum frequency of χ ′′(ν). In the inset, the β -processes are compared between
both techniques at a low temperature.

2E1H and 5M3H, a similar intermediate relaxation contribution to ϵ′′(ν)was identified previ-
ously by Arrese-Igor et al. [183, 184] via comparison to shear mechanical data and suppression
of H-bonding upon addition of salt.

Origin of the intermediate relaxation

Regarding the physical origin of the intermediate relaxation, a natural assumption could be
to attribute it to the dielectric signature of hydroxy-group reorientation, as the latter was also
found to proceed on time scales in between Debye- and α-process in NMR experiments [149,
185]. Starting with 2E1H, the validity of this conjecture is investigated in Fig. 6.7a, where
relaxation-time constants of the different processes are plotted as a function of inverse tem-
perature. Relaxation-time constants of Debye- and α-process, τD and τα, as well as of the
intermediate relaxation, τIM , from the the analysis in Fig. 6.6a are included. The error bars
included for τIM reflect its variation with different choices of fitting parameters during the
analysis shown in Fig. 6.6a. In addition, NMR spin-lattice relaxation times of OD-deuterated
2E1H, τOH , reflecting the reorientation of hydroxy groups, as well as stimulated-echo time
constants, τα,NMR, reflecting the α-process from Schildmann et al. [185] are included. To
avoid systematic deviations between relaxation times due to differences of the applied model
functions, the mean relaxation times 〈τ〉 from the respective distributions of relaxation times
are considered; except for τIM , where the peak-maximum time, τ= 1/(2πνpeak) is included.
Moreover, systematic temperature deviations between data obtained during the present work
and the literature data are ruled out by including fits to relaxation times obtained from ϵ′′(ν)
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Figure 6.6: Results of quantitative analyses for the data shown in Fig. 6.5 based on Eq. (6.1). χ ′′(ν)was
fitted using the model described in Section 3.2.2 with α = 2 and β = 0.5. The relaxation
strength∆ϵαβ was determined by fitting the high-frequency part of ϵ′′(ν). The relaxation
strength of the β-process determined from χ ′′(ν) had to be adapted to fit ϵ′′(ν). The contri-
bution∆ϵαβ ·χ ′′(ν) is included as the pink symbols.
Subsequently, the low-frequency part of ϵ′′(ν)was fitted by the Laplace-transform of the
KWW function to model the Debye process. For 2E1H and 5M3H, almost a pure Debye
shape (0.98 < βKWW < 1.0) is found. For 4M3H and 3M3H the exact value of βKWW can
not be determined, thus βKWW = 0.65 is chosen arbitrarily. Qualitatively similar results are
obtained for different values of βKWW . Evidently, Eq. (6.1) is insufficient to describe ϵ′′(ν) at
intermediate frequency. The deviations of ϵ′′(ν) from the fit are included as the open black
symbols.

from Ref. [185] as dotted lines, which are shown to coincide to the relaxation-times obtained
during the present work.

As revealed by Fig. 6.7, τIM coincides with τOH , respectively at lower temperatures with the
extrapolation of the VFT-fit to τOH , thus supporting the conjecture that the intermediate re-
laxation is the dielectric signature of hydroxy-group reorientation. This finding indicates that
dielectric relaxation spectra of MAs are more complex than previously thought: In addition to
the Debye process, reflecting reorientation of supra structures, and the α-process, reflecting
reorientation of single alcohol molecules, a third intermediate time scale reflects the reorienta-
tion of hydroxy groups. This observation suggests some degree of intra-molecular decoupling
of hydroxy group and carbon backbone. Yet, it is argued below that these observations are
mostly conform with the ideas of the transient chain model.

In order to establish a comprehensive picture combining the dielectric and DDLS results, it
is essential to discuss how both techniques differ regarding their sensitivity towards different
moieties of octanol molecules. Following the discussion in chapter 2.2, DDLS probes the reori-
entation of the entire octanol molecules and, thus, the signal is dominated by the reorientation
of the carbon backbones. By contrast, the dielectric relaxation mostly reflects the reorientation
of the C-O-H moieties, more precisely, O-H and C-O bonds contribute almost equally as their
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Figure 6.7: (a) Various relaxation time constants of 2E1H as a function of inverse temperature:
α-process time constants extracted fromχ ′′(ν), 〈τα〉; from NMR stimulted echo experiments
〈τα,NMR〉 obtained from Ref. [185]; and from fits to ϵ′′(ν), τα,BDS, also from Ref. [185]. Debye-
process time constants from this work, τD; as well as from Ref. [185]. Intermediate time
constants determined from NMR spin-lattice relaxation times: 〈τOH,NMR〉 as well as the
respective VFT fit; and from this work: 〈τIM〉. Angular brackets indicate that the average
relaxation time from the distribution of relaxation times is considered.
(b) Schematic illustration of the possible origin of different relaxation contributions in
chain-forming MAs. The colors represent the different motional mechanisms probed by the
different techniques. Red: polarizability tensor probed by DDLS; Yellow: Dipole moment of
the C-O bond associated with the dielectric α-process ; Purple: Reorientation of O-H bonds
due to breaking of H-bonds associated with the intermediate process; Blue: End-to-end
dipole moment of supra-structures associated with the Debye process.

respective dipole-moment components µOH and µCO are of similar magnitude. In particular,
if the reorientation of these two bonds decouples and proceeds on different time scales, two
distinct contribution to ϵ′′(ν) are observed. This seems to be the case for 2E1H according to
Fig. 6.7: While the O-H reorientation proceeds on the time scale of the intermediate relax-
ation, the contributions to ϵ′′(ν) on the time scale of the χ ′′(ν)main peak reflect the carbon
backbone dynamics. This contribution originates from the reorientation of the C-O bond, as
no other bond in the carbon backbone carries any notable dipole moment. Fig. 6.7b illustrates
schematically how this dynamic decoupling of hydroxy group and carbon backbone could be
understood. Here, a 2E1H molecule bound into a chain-like supra-structure is considered. Due
to the H-bonding, the reorientation of the O-H bond is hindered and its orientation is fixed
with respect to the supra-structure. By contrast, the carbon backbone (depicted in red) can
perform large angle reorientations, as evident from the fact that τα <τOH . While µOH is fixed
with respect to the orientation of the supra-structure, µCO is not fully restricted and therefore,
can rotate on a timescale comparable to τα (blue). Its dielectric signature is considered to be
the dielectric α-process, as its time scale is associated with the glass transition in MAs [148].
The reorientation of the O-H bond can only proceed if either the supra-structure rotates as a
whole, or once the molecule under consideration leaves the supra-structure. Evidently, the
latter mechanism is predominant, as τOH <τD [149]. Consequently, the fact that O-H bonds
rotate on an intermediate time scale between Debye- and α-process is a direct manifestation
of the transient nature of the supra-structures in chain-forming MAs.

Next, the results for the two ring-forming octanol isomers, 4M3H and 3M3H, are discussed.
In previous studies, curve-fitting procedures based on similar models as Eq. (6.1) have been
employed to identify the dielectric α-process in 4M3H [148, 181, 182]. However, these results
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Figure 6.8: (a) Comparison of the literature interpetation [148, 181, 182] of the α-process in 4M3H
(dashed orange line) to results from DDLS experiments performed within this work (pink
symbols). The solid black line represents a fit to ϵ′′(ν) similar to the ones in Refs. [148, 181,
182], which include the Debye- (gray shaded area) and the α-process contribution (orange
dashed line).
(b) Relaxation-time constants of 4M3H as a function of temperature: α-process time con-
stants extracted from χ ′′(ν), 〈τα〉; from NMR experiments 〈τα,NMR〉 obtained from Ref. [186];
and from fits to ϵ′′(ν) using a similar procedure as shown in (a) obtained from Ref. [181].
Debye process time constants from this work, τD; as well as from Ref. [181]. Intermediate
time constants determined from this work: 〈τIM〉. Angular brackets indicate that the average
relaxation time from the distribution of relaxation times is considered.

do not agree with the findings from DDLS, as illustrated in Fig. 6.8a, where the dashed orange
line represents α-process and β-process identified via fitting a modification of Eq. (6.1) to
ϵ′′(ν), similar to the procedures in Refs. [148, 181, 182]. The fit implies an average relaxation
time of the α-process that is by a factor of ten larger compared to the one probed by DDLS.
Fig. 6.8b displays relaxation time constants of the different processes identified in 4M3H
as functions of inverse temperature. Evidently, the discrepancy between α-process time
constants determined via fits in Ref. [182] (red dashed line) and those probed by DDLS (red
triangles) is observed independent of temperature. Moreover, NMR relaxation-time constants
from Ref. [186] (green crosses) coincide with the ones from DDLS. At the same time, the time
constants determined via fit to ϵ′′(ν) coincide with what is identified as the intermediate
relaxation in Fig. 6.6. Altogether, these results reveal that the reorientation of the carbon
backbone proceeds on a significantly faster time scale compared to what was previously
identified as the dielectric α-process in the literature [182]. Most likely, the origin of these
discrepancies is the dynamic decoupling of hydroxy group and carbon backbone, analogous
to the conclusions drawn for the chain-forming MA 2E1H above. In ring-forming MAs the
intermediate relaxation most likely reflects the characteristic time scale of hydroxy groups
exiting ring structures.

Intermediate relaxation at elevated temperatures

The above discussed interpretations of the experimental results suggest that the formation of
H-bonded structures in octanol isomers induce the dynamic decoupling of hydroxy groups
and carbon backbones. Both contribute to the dielectric loss at distinctly different frequencies.
As the number of molecules bound into hydrogen bonded structures decreases with increasing
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Figure 6.9: (a) Temperature evolution of ϵ′′(ν) (blue) and χ ′′(ν)-data (pink) of 4M3H from Tg to the
liquid regime. The amplitudes of the ϵ′′(ν)-data reflect the absolute relaxation strength that
changes significantly with temperature due to the increase of gK , cf. Fig. 6.4. The amplitude
of χ ′′(ν) is scaled according to analyses like the one shown in Fig. 6.6. In the inset, χ ′′(ν)
and ϵ′′(ν) are normalized to the peak maximum frequency and amplitude of the DDLS α-
process to highlight the decreasing discrepancy between both techniques with increasing
temperature.
(b) Relaxation strength excluding the Debye process (∆ϵ−∆ϵD)multiplied by T to compen-
sate for the trivial Curie temperature dependence. Solid lines represent linear fits to the
data. The inset illustrates the correlation between (∆ϵ−∆ϵD) and gK .

temperature [148, 187], the degree of dynamic decoupling of different moieties, as well as the
relaxation strength of the Debye process, are expected to decrease at elevated temperatures. As
a consequence, also the discrepancy between ϵ′′(ν) and χ ′′(ν) should decline with increasing
temperature. This hypothesis is tested in Fig. 6.9a, comparing data measured at temperatures
between 170 K and 280 K. The amplitudes of χ ′′(ν)-data are scaled to correspond to the α-
process contribution to ϵ′′(ν) following an analysis as the ones shown in Fig. 6.6. While the
above discussed differences are observed between χ ′′(ν) and ϵ′′(ν) at low temperatures, both
have a very similar relaxation shape and are separated by only a factor of ∼ 2.1 at 280 K. This
is also highlighted in the inset, where χ ′′(ν) and ϵ′′(ν) are normalized to the respective peak
maximum frequencies and amplitudes of χ ′′(ν). Thus, the expected temperature dependence
is observed for 4M3H, suggesting that the major part of the discrepancy between ϵ′′(ν) and
χ ′′(ν) is related to the dynamic signatures of H-bonding, manifested as the Debye process
and the dynamic decoupling of molecular sub-units. It is noted that at 280 K a substantial
portion of molecules do still form H-bonds, as evident from gK(280 K)< 1, thus the discrepancy
between χ ′′(ν) and ϵ′′(ν)might be reduced even further at higher temperatures.

The effect of dipolar cross-correlations

The different octanol isomers are fundamentally different regarding the degree of static dipolar
cross-cross correlations due to the formation of supra-structures. Thus, they are well-suited
as model systems to study how dipolar cross-correlations contribute to the dielectric loss.
As discussed above, it is well established that dipolar cross-correlations are the origin of the
low-frequency Debye process in MAs, while the self-part of dipolar relaxation is observed
at higher frequencies. A naive conjecture could be to assume that the Debye process is the
only contribution of dipolar cross-correlations on the dielectric loss. As a consequence, the
dielectric relaxation strength of self-correlations,∆ϵself, would be obtained by subtracting the
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relaxation strength of the Debye process,∆ϵD, from the overall dielectric relaxation strength,
∆ϵ, i.e.

∆ϵself =∆ϵ−∆ϵD. (6.3)

It is noted that the intermediate relaxation is explicitly considered to be part of the self-
correlations, because it is assumed to reflect the reorientation of hydroxy groups. If the as-
sumption leading to Eq. (6.3) were justified, the therein defined∆ϵself multiplied by T should
be the same for all octanol isomers according to Onsager’s equation [188], as they all share
approximately the same dipole density. This conjecture is tested in Fig. 6.9b, where∆ϵself ·T is
considered as a function of temperature. Contrary to the assumption, significant differences
are observed and∆ϵself ·T does follow the general trend of the respective gK (2E1H > 5M3H >
4M3H ≈ 3M3H). The correlation between∆ϵself and gK is confirmed in the inset. It is noted
that the factor T , which eliminates the trivial Curie-dependence of the dielectric relaxation
strength, is not included in the inset, as it is already considered in gK .

The observed correlation between∆ϵself determined via Eq. (6.3) and gK implies that the
Debye process is not the only contribution of dipolar cross-correlation to ϵ′′(ν). Instead, the
results suggest that in addition the self-correlations are weighted by a gK-dependent factor,
as suggested earlier for dipolar cross-correlations in polymers by Williams et al. [189]. In
conclusion, dipolar cross-correlations contribute to ϵ′′(ν) in two ways: First, they lead to the
Debye process, an additional contribution on time scales slower than the α-process . Second,
they appear as a weighting-factor to the self-correlations. These results imply that the relation
between∆ϵD/∆ϵα and the average length N of chain-like structures, which was established
following the transient chain model [149] could be invalid, as it is based on the assumption
that∆ϵα is unaffected by dipolar cross-correlations.

Generality of the findings

The above reported results for different octanol isomers suggest three distinct time scales to
be relevant for dielectric relaxation in MAs (disregarding any β-processes): τα, reflecting the
reorientation of the carbon backbone, which is the major part of the molecule; τIM =τOH , the
characteristic time scale of OH-group rotation; and τD, reflecting the relaxation of H-bonded
supra-structures. The fact that τOH ̸=τα implies that molecules do not rotate as rigid entities,
but, instead, pronounced dynamical decoupling between different moieties is observed.
Naturally, the question arises as to whether these results are a general feature of MAs. The
dynamic decoupling ofτOH andτα is especially easy to observe in octanol isomers, because in
these substances the Debye process is particularly strongly separated from theα-process. This
allows to identify an intermediate contribution at the time scale τOH . Although it is likely that
a distinct intermediate contribution to the dielectric loss exists also in other MAs, it would be
difficult to disentangle from the Debye process. In this regard NMR experiments can provide
unique insights, as probing OD-deuterated compounds allows to directly extract τOH , which
subsequently can be compared to ϵ′′(ν). Unfortunately, such NMR-data seem to exists only
for a very limited number of MAs, thus making it difficult to draw any general conclusions.

At this point it is worth to mention that very recently the dielectric and rheological response
of MAs has been rationalized [122, 190] in terms of a living polymer model [166, 167]. This
model explicitly predicts an intermediate relaxation process that is associated with chain-
breakage and chain-swapping [190], in analogy to the interpretation of the intermediate
contribution provided in this work. Further research in these regards might reveal whether a
general quantitative description of MAs can be achieved in terms of the living polymer model.
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6.2 P O LY H Y D R I C A L C O H O L S

For decades, polyhydric alcohols (PAs) have been intensively studied as prototypical glass-
formers, due to being easily supercoolable. Especially the homologous series of sugar alcohols
(glycerol, threitol, xylitol, sorbitol) has received considerable attention, among other reasons
because many fundamental properties of supercooled liquids and glasses, e.g. fragility, vary
among the series, thus making PAs perfect model systems to study correlations among these
properties. In the context of this work, especially the strong variation of the dielectric relaxation
shape along the series is of interest. It is illustrated in Fig. 6.10a, by plotting ϵ′′(ν) of different
PAs normalized to the peak-maximum frequency of the α-process at temperatures closely
above the respective Tg. In the inset the same data are shown, but additionally normalized
to their peak-maximum amplitudes. Evidently, increasing molecular weight is associated
with broader relaxation shapes and lower values of the high-frequency power-law exponents
β . Both observations have been previously interpreted to reflect an increase of dynamic
heterogeneity with increasing molecular weight and β of PAs was reported to be correlated
with the length scale of dynamic heterogeneity [92] and with fragility [32].

In the context of the results discussed in previous chapters of this work, the conclusions
regarding the degree of dynamic heterogeneity drawn from the relaxation shape of PAs raise
serious questions: The narrow dielectric relaxation shapes of short chained PAs, glycerol and
propylene glycol1, were shown to originate from dipolar cross-correlation contributions that
superimpose the self-correlations Chapter 5. Moreover, the latter were shown to correspond to
the generic shape in Chapter 4. On the other hand, the width of the α-process of long-chained
PAs exceeds the one of the generic shape; an observation that cannot be understood in terms
of cross-correlation contributions. The following sections reports DDLS data for PAs and
attempts to resolve the physical origin behind the different relaxation shapes among PAs. The
discussed results were previously published in Ref. [191].

Understanding the DDLS relaxation shape of polyhydric alcohols

The DDLS relaxation shapes of different PAs at selected temperatures are shown in Fig. 6.10b.
Each spectrum is normalized to its respective peak-maximum frequency and amplitude and
the temperatures are the same as in Fig. 6.10a. The generic relaxation shape is included as
the black dashed line. As already shown in Chapter 4, DDLS structural relaxation shape of
propylene glycol and glycerol correspond to the generic relaxation shape. In contrast, the
DDLS structural relaxation shapes of threitol, xylitol and sorbitol follow the generic relaxation
shape up to frequencies slightly above the peak-maximum frequency and deviate at higher
frequencies. The deviations are systematic in the sense that they increases with increasing
molecular weight; the respective values ofβ equal 0.40, 0.35 and 0.25 (±0.05 each), respectively.

In order to interpret these observations, it is important to note that previous work on sorbitol
observed a quite complex relaxation mechanism involving intra-molecular degrees of freedom.
Using 2H-NMR, Döß et al. [193] studied differently isotope-labeled sorbitol samples (-CD4

and -OD6) and observed differences regarding average relaxation time and relaxation shape
between the samples (cf. Ref. [116] and Fig. 6.36 in Ref. [193]). This result suggests dynamic
decoupling of C-H and O-H bonds in deeply supercooled sorbitol. At higher temperatures,
13C-NMR experiments and molecular dynamics simulation studies identified pronounced
dynamic decoupling between the different C-H bonds, with the bonds in the center of the

1 Propylene glycol is considered instead ethylene glycol, which is the low molecular weight extension to the homol-
ogous series, due to its superior glass-forming ability.
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Figure 6.10: Relaxation spectra of different polyhydric alcohols from (a) dielectric spectroscopy, ϵ′′(ν),
and (b) DDLS, χ ′′(ν). Data are normalized with regard to the respective peak-maximum
frequencies, and in panel (b) as well as in the inset of (a) also to the peak-maximum
amplitude. The respective temperatures are chosen to be closely above Tg and such that
the peak-maximum frequenciesνpeak are similar. Temperatures in panel (a) are 180 K, 200 K,
235 K, 255 K and 275 K from propylene glycol to sorbitol in order of increasing molecular
mass with 0.5<νpeak/Hz< 1.6; and in panel (b) 175 K, 200 K, 235 K, 255 K and 277.5 K with
1.0<νpeak/Hz< 3.2. The generic relaxation shape identified in Chapter 4 is included as
the dashed black line.

G-TT/TG-/ccG-TT/TG-/c G-TT/G+G-/c

Figure 6.11: Three most stable gas-phase conformers of D-sorbitol (cf. Ref. [192]) and their respec-
tive molecular dipole moment vectors (red arrows). Already subtle rotations of a few
hydroxy groups alter the magnitude (G-TT/TG-/c: µ1 = 1.00 D; G-TT/TG-/cc: µ2 = 2.01 D;
G-TT/G+G-/c: µ3 = 2.07D), as well as the orientation of the dipole moment vectors
(∢(µ1,µ2) = ∢12 = 38◦; ∢13 = 73◦; ∢23 = 110◦ in a molecule-fixed orthonormal frame).
Calculations were performed by Yann Cornaton, University of Strasbourg.

molecule having larger rotational relaxation times than to the ones at terminal positions [194,
195]. The fact that different chemical bonds within the sorbitol molecule rotate on different
time scales implies that transitions between different conformers proceed on time scales
comparable to those of the α-process. In the following, these effects are referred to as intra-
molecular dynamics. An example emphasizing the importance of considering intra-molecular
dynamics is presented in Fig. 6.11, where the three most stable gas-phase conformers of D-
sorbitol and their respective dipole-moment vectors are shown. Although the conformation of
the carbon backbones are almost identical, the magnitude and the direction of the molecular
dipole moment vectors differ drastically between the conformers due to subtle differences
regarding the orientations of hydroxy groups. As a consequence, reorientation of molecular
dipoles does not exclusively reflect reorientation of entire sorbitol molecules, but also intra-
molecular motions, which implies that dielectric spectroscopy experiments are sensitive to
intra-molecular dynamics. By contrast, no dynamic decoupling of different chemical bonds
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was observed for short-chained PAs like glycerol and therefore, their dipole moment can be
assumed to represent a fixed molecular axis in good approximation [193, 196].
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Figure 6.12: (a) χ ′′(ν) data of sorbitol obtained above the melting point at 420 K (blue symbols) using a
TFPI. The data are extended to higher frequencies by shifting the spectrum obtained at
390 K (gray symbols). The spectrum is clearly multimodal and can be described by the
sum of two processes based on GG distributions of relaxation times (dark blue lines). For
comparison, a low temperature spectrum obtained at 277.5 K is included (orange symbols),
which appears similarly broad and can be modeled by the same sum of two processes,
simply by adjusting the weights (red lines).
(b) Relaxation time constants from 13C-NMR experiments [195], representing the dynamics
of C-H bonds at the C1, C2 and C4 carbon atom of sorbitol (see sketched structure formula
for assignment). A pronounced intra-molecular dynamic decoupling is observed. The
13C-NMR time constants are extrapolated to 420 K (red circles) via fits by Arrhenius laws
(black lines). These time constants are indicated in panel (a) as the vertical black lines.
The dynamic decoupling of different carbon atoms within the sorbitol molecule roughly
coincides with the observed multimodality of the DDLS spectra.

How intra-molecular dynamics contributes to relaxation spectra of sorbitol is best studied
at temperatures around the melting point, because (i) intra-molecular dynamics usually are
more pronounced at higher temperatures and (ii) the results can be compared to literature
data, e.g. from 13C-NMR. For this purpose, TFPI measurements were performed at 420 K, the
results of which are shown in Fig. 6.12a as the blue symbols. Here, the α-process is observed in
the GHz region, while microscopic dynamics contribute in the THz region, which, however, are
not the focus of this work. Strikingly, the α-process is clearly bi- or even multimodal, resulting
in a very broad peak with two clearly distinct shoulders. To visualize the high-frequency
behavior of the α-process, which at 420 K is masked by microscopic dynamics, a second TFPI
spectrum measured at 390 K is included as the grey symbols and shifted along the frequency
axis. The bimodal relaxation shape of the combined TFPI spectrum can only be modeled by
the sum of two contributions (here chosen as two (GG) distributions of relaxation times). The
sum of both contributions is shown as the solid blue line, while the individual contributions
are shown as dashed, res. dashed-dotted blue lines.

To verify whether the observed bimodality is related to intra-molecular dynamics, relaxation
time constants of the C4-H, C2-H and C1-H bonds (numbered along the carbon backbone)
from 13C-NMR reproduced from Ref. [195] are included as vertical black lines. To obtain
relaxation-time constants at exactly 420 K, the data were extrapolated utilizing the fact that
their temperature dependence is approximately Arrhenius in the GHz region, as shown in
Fig. 6.12b. Evidently, the NMR time constants roughly coincide with the positions of the two
shoulders that are observed in the TFPI spectrum. This agreement indicates that the dynamic
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decoupling of different molecular moieties leads to the strong broadening and the bimodality
of the high-temperature relaxation shape. This is not surprising, as the rotation of the outer
parts (C1 and C6) of the sorbitol molecule has a significant impact on the optical anisotropy
tensor, as they make up a third of the molecule. In addition, also the rotational dynamics of
hydroxy groups is markedly heterogeneous [116] and decouples from the dynamics of C-H
bonds [193]. Especially the broadening at ν>νC1 could reflect hydroxy-group dynamics, as
suggested by the very asymmetrically broadened peak observed for OD-labeled sorbitol in
2H-NMR [116].

In addition to high-temperature data, a low-temperature relaxation spectrum of sorbitol
measured close to Tg is included in Fig. 6.12 as the orange symbols. It is shifted along the fre-
quency axis such that the ν1 low-frequency power law of high- and low temperature relaxation
spectra coincide. The widths and the high-frequency power-law exponents of both spectra
are comparable. Moreover, the comparison reveals that the position of the high-frequency
broadening observed for the low-temperature spectrum in Fig. 6.10 coincides with the po-
sition of the high frequency shoulder in the TFPI spectrum. This suggests that also at low
temperatures, intra-molecular dynamics contributes to the relaxation spectrum of sorbitol.
However, the influence of these intra-molecular modes appears to be less prominent in the
supercooled regime, as it is commonly observed [116]. The reason for this is probably the
onset of cooperative dynamics. Following these ideas, the low-temperature spectrum can be
modeled using a similar sum of relaxation contributions as used for the high-temperature
spectrum, however, with a reduced amplitude of the fast contribution. The resulting descrip-
tion is included as the dashed, dashed-dotted and solid orange lines in Fig. 6.12, representing
both contributions and the sum of both, respectively. It is noted that the description by the
sum of two contributions is purely empirical and serves to illustrate the enhanced complexity
of the relaxation spectra compared to what is found for low-molecular weight PAs. Obtaining
a meaningful quantitative description of these spectra would require an in-depth analysis of
relaxation time distributions of different chemical bonds and how these couple to the molec-
ular polarizability tensor or dipole moment. In the future this could possibly be achieved
by using ab-initio molecular dynamics simulations. While such simulations have recently
been performed for sorbitol [197], so far only the THz region can be covered, due to the high
computational cost of these simulations.

It remains to be discussed how the identified contributions of intra-molecular dynamics
relate to the concept of the generic relaxation shape. It is found that χ ′′(ν) corresponds to
the generic relaxation shape only for short-chained supercooled PAs, which rotate as rigid
entities, because conformational transitions are slow with respect to the α-process [196]. As
a consequence, the width of their relaxation spectra reflects the inter-molecular dynamic
heterogeneity, i.e. the distribution of relaxation times of different molecules. By contrast,
intra-molecular dynamics were shown to introduce additional dynamic heterogeneity in
sorbitol, resulting in spectra that are broadened compared to the generic relaxation shape.
Here, the width of the relaxation spectra reflects inter- as well as intra-molecular dynamic
heterogeneity. As both contributions are impossible to disentangle, it cannot be concluded
whether the relaxation spectrum of sorbitol reflecting only the inter-molecular dynamic
heterogeneity would correspond to the generic relaxation shape. Although no respective
NMR or simulation data exist for threitol and xylitol, it is reasonable to assume that some
transition occurs between the short- and the long-chain behaviors of PAs. This implies that
at chain-lengths between n = 3 and n = 6, the characteristic timescale of conformational
transitions approaches the one of the α-process, thus leading to deviations from the generic
shape.
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Finally, it should be noted that the majority of supercooled liquids, whose DDLS relaxation
spectra were shown to correspond to the generic shape (cf. Chapter 4 and Ref. [94]), have
some degree of intra-molecular flexibility. Usually, however, such intra-molecular degrees
of freedom are either very fast compared to the α-process and, e.g., appear as a non-Johari-
Goldstein β-process [198], or are frozen in the deeply supercooled and cooperative regime as
it is found, e.g., for glycerol where molecules are stuck in certain conformations [116]. Thus,
the question arises why intra-molecular dynamics and the α-process appear on comparable
timescales in long-chained PAs. Two aspects should be considered in this regard:

(i) The potential energy landscape of sorbitol is quite complex, due to the existence of
multiple interaction mechanisms and, most importantly, due to the large number of intra-
and inter-molecular H-bonds involved [197, 199]. This complexity, presumably, causes several
conformational states of sorbitol to have comparable Gibbs energies [192], which could favor
transitions between these conformers.

(ii) Due to each sorbitol molecule being involved in several H-bonds with surrounding
molecules, the reorientation of the carbon backbone requires several H-bonds at different
positions of the molecule to break simultaneously. Thus its reorientation is associated with a
comparably large activation energy. Therefore, smaller segments of the molecule are expected
to rotate individually and, thus, the α-process in fact occurs via a series of conformational
transitions. In such a scenario, bonds at the end of the molecule would rotate slightly faster
than the ones in the center and hydroxy-group dynamics could decouple from C-H or C-C
bond dynamics, all of which was observed in the case of sorbitol [116, 193, 195].

Slow dipolar cross-correlations in Polyhydric alcohols

Another questions concerns the slow cross-correlation contribution to the dielectric loss
spectra of PAs. In this regard, ϵ′′(ν)- and χ ′′(ν)-spectra at supercooled temperatures are com-
pared for the different PAs in Fig. 6.13a-e. As already discussed in Chapter 5, slow dipolar
cross-correlations contributions to ϵ′′(ν) are identified for the short-chained PAs propylene
glycol and glycerol by using a joint analysis of ϵ′′(ν)- and χ ′′(ν) according to Eq. (5.1); fits
of which are included in Fig. 6.13a,b. With respect to the α-process, cross-correlations are
stronger and more dynamically separated in PG compared to glycerol. For longer-chained PAs,
χ ′′(ν)-data at selected temperatures are included in Fig. 6.13 as the black symbols. Qualitative
comparison of ϵ′′(ν) and χ ′′(ν) reveals that both are very similar with regard to average relax-
ation times and relaxation shapes. The slight relaxation-time differences most likely originate
from small temperature discrepancies, which can have comparably large effects due to the
high fragility of long-chained PAs [200].

To rationalize these findings, it has to be noted that slow dipolar cross-correlations can only
be observed if orientational correlations of adjacent molecular dipole moments persist to
times longer than the α-process time scale. Such behavior could be observed if the reorienta-
tion of molecules is to some degree hindered by a hydrogen bonded network, as supposedly
the case for glycerol. However, this requires the molecular dipole moment to be fixed within
the molecular frame. As this is the case in PG and glycerol, dipolar cross-correlations can
persist up to time scales longer than the α-process until they eventually relax. In the case of
long-chained PAs, intra-molecular dynamics proceeds on similar, or even faster, timescales
than the α-process. As the direction of the molecular dipole moment strongly depends on the
conformational state (cf. Fig. 6.11), molecular dipole moments are not fixed within the molec-
ular frame. Thus, even if there were long-lived intermolecular correlations associated with
some molecular axis, they would not be reflected by the dipole moment. In such a case, the
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contribution of cross-correlations to the dielectric loss cannot be straight-forwardly identified
via comparison to DDLS spectra. They should, however, contribute to the static permittivity
ϵs. This, however, is difficult to verify quantitatively, as calculation of gK requires knowledge
of the molecular dipole moment, which can only be obtained as the average over the complex
conformational space of long-chained PAs. Nakanishi et al. [201] attempted to circumvent
this problem by calculating gK of sorbitol by treating each hydroxy groups as an indepen-
dent dipole. Their analysis yielded gK > 1, however intra- and inter-molecular orientational
correlations of dipoles cannot be distinguished in this approach, making the interpretation
of their result difficult. In conclusion, while static dipolar cross-correlations might exist in
long-chained PAs, they are not particularly long-lived and do not contribute to the dielectric
loss as a separate slow process.

6.3 G E N E R A L F I N D I N G S F O R H - B O N D I N G S U P E R C O O L E D L I Q U I D S

The previous sections presented data obtained for various different H-bonding supercooled
liquid. One common motive has turned out to be the broad shape-variety of the respective
dielectric loss spectra, which reflect the dynamic signatures of supra-structures with various
different geometries and sizes. Despite all that, orientational self-correlations, as probed
by DDLS, were shown to correspond to the generic structural relaxation shape, similar as
found for a broad variety of supercooled liquids. This implies that the α-process of H-bonding
supercooled liquids is mostly unaffected by the complexity introduced by structure-formation
and seems to reflect the same physics as in less complex structured supercooled liquids.

The second common observation are intra-molecular relaxation mechanisms, which lead
to dynamical decoupling of different molecular moieties. Evidently, such mechanisms are
relevant in H-bonding systems, because the orientations of hydroxy groups are fixed within
supra-structures. Thus, the other parts of the molecule can only relax via mechanisms involv-
ing conformational changes. In MAs, this leads to the observation of a relaxation contribution
at intermediate time scales between the Debye and the α-process. In longer-chained PAs, the
orientations of multiple hydroxy groups are fixed, thus the rotation of entire molecules has
to proceed via several rotations of sub-units. As a result, the structural relaxation shape is
broadened compared to the generic shape, as it reflects additional intra-molecular dynamic
heterogeneity. This observations helps to identify another condition for observing the generic
structural relaxation shape in supercooled liquids: Besides cross-correlation contributions
needing to be absent, the relaxation shape has to reflect the reorientation of molecule as a
whole, i.e. it needs to be associated with the intermolecular distribution of relaxation times.
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Figure 6.13: Comparison of χ ′′(ν) and ϵ′′(ν) data for all five studied PAs. For propylene glycol and
glycerol, χ ′′(ν) (triangles) and ϵ′′(ν) (squares) are jointly analyzed using Eq. (5.1) as already
shown for both substances at one exemplary temperature in Fig. 5.1. Fits are shown as
solid and dashed black lines. For the three longer-chained PAs, χ ′′(ν) is shown as the black
symbols at some selected temperatures. Here, only a qualitative comparison is performed,
due to the similarity of the relaxation shapes and the apparent absence of any slow cross-
correlation contribution.
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R E L A X AT I O N I N A S Y M M E T R I C B I N A R Y M I X T U R E S

After discussing relaxation spectra of pure molecular liquids in the previous chapters, the
following chapter considers supercooled asymmetric binary mixtures. Here, the term ’asym-
metric’ refers to the fact that the two constituents in their pure form display very different glass
transition temperatures, which, upon mixing, leads to dynamic decoupling of fast and slow
component. The interest in asymmetric binary mixtures ranges from fundamental science to
application-based material science, and covers systems with different levels of complexity
ranging from simple models based on disparately sized spheres to application-optimized
polymer-plasticizer systems or protein-water mixtures with highly complex solvent-solute
interactions. This work is situated somewhere in the middle of this spectrum and aims to gain
a fundamental understanding of molecular dynamics in concentrated polymer-solutions.
Specifically, the aim is to clarify the origin of apparent slow solvent dynamics, i.e. signatures
of solvent molecules that seem to relax on the timescale of the slow component. First, general
properties of asymmetric binary mixtures are reviewed in Section 7.1, and subsequently, the
results for the concentrated 2-picoline/PMMA mixture are discussed in Section 7.2. The latter
were obtained in cooperation with Robin Horstmann, who performed additional computer
simulations (see Ref. [202]).

7.1 A S Y M M E T R I C B I N A R Y M I X T U R E S : T H E G E N E R A L P I C T U R E

This section presents a brief review of the characteristics of asymmetric binary mixtures,
focusing on general observation instead of specifics. Three common themes are covered,
namely dynamic asymmetry, enhanced dynamic heterogeneity and intrinsic confinement
effects.

7.1.1 Dynamic asymmetry

Even though many binary mixtures are homogeneously mixed, they do not necessarily exhibit
one single structural relaxation process. Experimental evidence was provided by means of
differential scanning calorimetry (DSC), probing a sample’s heat capacity cp(T ) as a function
of temperature. During cooling, the glass transition is associated with a drop of cp(T ) at Tg .
By contrast to pure liquids, asymmetric binary mixtures usually display two distinct drops in
cp(T ), as was shown, e.g., for oligomers or polymers in solution with low-molecular weight liq-
uids [203–205] or for polymer-polymer blends [206, 207]. Both drops in the DSC curves can be
addressed to the dynamics of either solvent or solute, which implies that the two components
vitrify at two distinct glass-transition temperatures Tg,high and Tg,low, where Tg,high > Tg,low.
The observation of two distinct glass transitions implies that above Tg,high, both components
relax on different timescales and two α-processes are observed. This has been confirmed
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experimentally using several techniques, e.g. BDS [203, 205, 208–210], NMR [209, 211] and
DLS [208].
Similar separation of timescales was also observed in binary mixtures of two species of non-
polymeric molecules, e.g. tristyrene and methyltetrahydrofuran (MTHF) [205], thus the dis-
cussed effects are not specific to mixtures containing polymers. Below Tg,high, the slow compo-
nent is essentially frozen and and acts as a confinement for the fast component, as discussed
in detail below.

7.1.2 Enhanced dynamic heterogeneity

As discussed in Section 3.1, relaxation spectra of pure supercooled liquids appear asymmetri-
cally broadened with low-frequency power law ν1 high-frequency power law ν−β . This shape
is associated to spatial dynamic heterogeneity and dynamic facilitation, where the latter leads
to a low-frequency cutoff of the distribution of relaxation times. In binary mixtures, strong
enhancement of dynamic heterogeneity compared to the pure components is observed. Ap-
plying techniques that are sensitive to only one of the components allows to selectively probe
the relaxation spectrum of that component. This can be done, e.g., by isotope labeling and
performing component-selective NMR experiments or by choosing a non-polar component
and preforming dielectric experiments. Such approaches revealed some general features for
both, polymer-polymer blends [212, 213] and polymer-solutions [205, 208, 209, 211]: Only
subtle broadening of the α-process compared to the pure supercooled liquid is observed
for the slow component. By contrast, the fast component displays significantly enhanced
dynamic heterogeneity that varies with temperature, leading to strong deviations from TTS,
i.e. the width of the distribution of relaxation times is reported to increase linearly with 1/T at
temperatures below Tg,high [209]. Moreover, no ν1 low-frequency power law is observed for
the fast component. From the view of a dynamic-facilitation picture this is not surprising,
as the low-frequency cutoff of the distribution of relaxation times is expected to occur upon
percolation of fast-relaxing regions, which in asymmetric binary mixtures is hindered by the
slow component.

7.1.3 Intrinsic confinement effects in binary mixtures

The dynamic asymmetry in binary mixtures implies that the matrix formed by the slow com-
ponent effectively acts as a soft confinement for the fast component. These confinement
effects significantly alter the dynamic behavior of the fast component. For instance, they
enhance dynamic heterogeneity by introducing additional variations of molecular mobilities
as a function of distance of solvent molecules from the matrix, local solvent concentration,
local density or via additional solvent-solute interactions like hydrogen bonding or steric
interactions. Analogous features are observed for low-molecular weight liquids loaded into
tube- or sponge-like static confinements [214–217].

Another commonly observed feature in asymmetric binary mixtures is the reappearance
of the Arrhenius temperature dependence of solvent-relaxation times, which sometimes is
referred to as fragile-to-strong crossover. Within the Adam-Gibbs model, the super-Arrhenius
temperature dependence of structural-relaxation times in pure supercooled liquids is ratio-
nalized in terms of an increasing dynamic correlation-length with decreasing temperatures.
The naive conjecture for confined supercooled liquids is that the increase of the correlation-
length is limited by the characteristic length-scale of the confinement and thus, stays constant
below some temperature. This should restore the Arrhenius temperature dependence of re-
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laxation times, which, indeed, has been observed for some confined liquids [214, 218] and
in asymmetric binary mixtures [210]. However, the results might be misleading, because a
supercooled liquid in confinement is not guaranteed to be in thermodynamic equilibrium.
Due to immobilization upon cooling the local pressure within the pore can be expected to
deviate from ambient conditions.

A third observation that has been attributed to reflect the intrinsic confinement is ultra-slow
solvent relaxation. Several experimental studies have observed signatures of solvent relaxation
several orders of magnitude slower than the solvent α-process and on similar timescales as
the solute α-process . This work set out to determine the origin of this phenomenon, which
will be discussed in detail in the following section.

7.2 T H E O R I G I N O F A P PA R E N T S L O W S O LV E N T D Y N A M I C S

In recent years, experimental effort has increasingly focused on selectively probing the dif-
ferent components of binary mixtures. For instance, Blochowicz et al. [210] studied a 50 wt%
mixture composed of the polar solvent 2-methyl tetrahydrofuran (MTHF) and the apolar
polymer polystyrene (PS) by combining different experimental techniques. Due to the dif-
ferent polarity of the components, the dielectric response of the mixture only reflects the
relaxation of solvent-molecules. It was found that MTHF does not only contribute as a fast
process associated with its α-process, but also as a slow contribution with relatively weak
relaxation strength and on a same time scale as the solute α-process. This is illustrated in
Fig. 7.1a, reproducing some results from Ref. [210] obtained closely above Tg,high. In addition to
the solventα-process at high frequencies (dashed lines), which was probed using quasi-elastic
neutron scattering, a slow contribution is identified (colored symbols). This observation is
intriguing, considering that the slow solvent contribution is up to nine orders of magnitude
slower than the solvent α-process. Moreover, the relaxation strength of the slow solvent con-
tribution is observed to increase with decreasing temperature, reaching up to 10% of the total
dielectric relaxation strength. These findings were interpreted by the authors in terms of a
slow fraction of solvent molecules that becomes immobilized due to their interactions with
the polymer matrix, resulting in a bimodal solvent mobility distribution. Similar slow solvent
contributions have been observed also for other polymer solutions [219–222], for mixtures
containing non-polymeric macromolecules [223] and in aqueous peptide solutions [224, 225].

By contrast, isotope-selective NMR experiments have not been able to confirm the existence
of a slow fraction of solvent molecules. This is shown in Fig. 7.1b and c, reporting previously
unpublished NMR data for the MTHF-PS mixture studied in Ref. [210]. The 2H NMR spectra
in panel (b) selectively access the rotational motion of deuterated MTHF-d7, by probing the
quadrupolar interaction between the nuclear quadrupole moment of the deuteron and the
electric field gradient of the C–D chemical bond at the site of the nucleus. Solvent molecules
relaxing faster than the inverse quadrupole coupling constant 1/C ∗ ≈ 10−6 s produce a narrow
line in the spectrum, while those slower than 1/C ∗ contribute as a broad line, reflecting the
presence and absence of motional averaging, respectively. By fitting the spectra (see the lower
spectrum), the fraction of molecules relaxing at times slower than 10−6 s can be determined.
The results of such an analysis as a function of temperature are shown in panel (c) as the
orange symbols. While at low temperatures almost all MTHF molecules relax on timescales
slower than 1/C ∗, the slow fraction decreases with increasing temperature until it becomes
negligible around 190–200 K. These results can be compared to the fraction of the dielectric
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(b)

/kHz

Figure 7.1: Slow solvent relaxation in an MTHF-PS mixture. Some of the data are reproduced from
Ref. [210]while the other unpublished part was obtained during earlier work and was finally
discussed in Ref. [104]within the present work.
(a) Dielectric relaxation spectra (colored symbols) representing solely the solvent relaxation.
While the solvent α-process is observed at GHz, as found by means of quasi-elastic neutron
scattering experiments [210], an additional slow solvent contribution is observed at up to
nine orders of magnitude slower timescales than the α-process .
(b) 2H NMR spectra specifically probing the isotope labeled MTHF-d7 solvent dynamics. Sol-
vent molecules relaxing faster than the inverse quadrupole coupling constant 1/C ∗ ≈ 10−6 s
produce a narrow line in the spectrum, while those slower than 1/C ∗ contribute as a broad
line. Fitting these contribution allows to extract the fraction of solvent molecules slower
than 1/C ∗. The associated threshold frequency, ν=C ∗/2π, is indicated in panel (a) as the
gray dashed line.
(c) Comparison of the fraction of solvent relaxation slower than 1/C ∗ as a function of tem-
perature from NMR (orange symbols) and from BDS (green line). A significant discrepancy
is observed, which, however, disappears once the slow solvent contribution is disregarded
for the analysis of the dielectric data (blue line).

relaxation strength∆ϵ at ν<C ∗/2π, res.ω<C ∗, which corresponds to the relaxation strength
on the left hand side of the gray dashed line in panel (a) and amounts to

∆ϵslow

∆ϵ
=

∫︁ ln(C ∗)
−∞ ϵ′′(ω)d lnω
∫︁∞
−∞ ϵ

′′(ω)d lnω
. (7.1)

The obtained fraction of solvent molecules slower than 10−6 s according to ϵ′′(ν) is included
in Fig. 7.1c as the green line, while the green shaded area indicates the uncertainty of the
procedure. A significant discrepancy is observed between ∆ϵslow/∆ϵ and the results from
NMR. At a given temperature, the fraction of molecules slower than 10−6 s probed by NMR is
significantly smaller than suggested by∆ϵ. By contrast, the NMR results are well described by
the blue line obtained from Eq. (7.1) when the distinct slow relaxation process is ignored and
only the solvent α-process is considered, i.e., when the distribution of solvent relaxation times
is assumed to be unimodal instead of bimodal. Similar conclusions regarding the absence of
a slow contribution were drawn in another NMR study on asymmetric binary mixtures [223].
Moreover, detailed analyses of BDS and NMR results for aqueous ϵ-polylysine solutions
revealed the same discrepancy: While the dielectric analysis yielded a significant slow water
contribution [224, 225], 2H NMR measurements did not provide evidence for a slow fraction
of water molecules [226].

At least two possible explanations exist for this discrepancy: (i) It originates from the dif-
ferences between the ℓ= 1 and ℓ= 2 ranked correlation functions probed by BDS and NMR,
respectively, or (ii) the discrepancy reflects the fact that 2H NMR probes only self-correlations
of molecular reorientation, while BDS is also sensitive to cross-correlations, i.e. collective
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relaxation modes. The work presented in the following section set out to clarify this open
question by studying an asymmetric binary mixture using DDLS, which represents an ℓ= 2-
technique, which at the same time is, at least in principle, sensitive to collective relaxation
modes. These experiments were complemented by computer simulations performed by Robin
Horstmann, the results of which are published in more details in his PhD thesis [202]. The
following discussion covers mainly the complementary picture obtained by combining both
techniques, which has been published in Ref. [104].

7.2.1 Broadband DDLS relaxation spectra of an asymmetric binary mixture

In order to study the solvent dynamics using DDLS, a 50 wt% binary mixture of 2-picoline
and PMMA with approx. 43 repeat units per molecule was prepared (see sample preparation
details in Appendix B). These two components were chosen, because 2-picoline molecules
have a large optical anisotropy due to containing a π-electron system and, thus, give a strong
depolarized light-scattering signal. PMMA, on the other hand, produces a comparably weak
depolarized signal, thus it is expected that the large majority of the intensity fluctuations
probed by DDLS reflects the dynamics of 2-picoline molecules [221, 227]. The pure compo-
nents’ glass transition temperatures are Tg,picoline = 133K and Tg,PMMA ≈ 360K [228], thus the
respective binary mixture is expected to exhibit strongly asymmetric dynamics. This conjec-
ture is confirmed experimentally by performing dielectric experiments, which equally probe
the dipole reorientation dynamics of both components due to their comparable polarities.
Dielectric-loss spectra of the mixture obtained at various temperatures are shown in Fig. 7.2a.
As polymer solutions usually contain significant amount of charge-carriers, the effects of dc
conductivity and electrode polarization were removed from these data by considering the
approximation

ϵ′′(ν)≈
d
�

ϵ′(ν)− ϵ′pol(ν)
�

d lnν
, (7.2)

where ϵpol. denotes the electrode polarization contribution, which has been identified by
fitting a power law to ϵ′(ν). The approximation (see Eq. (2.39)) achieves accurate results for
broad loss peaks, thus is an appropriate approximation for dielectric data of asymmetric
binary mixtures [59].

For clarity, data at T > Tg,high are shifted upwards by a factor of ten. At the highest tempera-
tures (T ≥ 213.2 K) only a single relaxation process is identified in the frequency window of the
experiment, which is attributed to the segmental dynamics of PMMA. At intermediate temper-
atures (162.1 K < T < 213.2 K), a second relaxation process is observed at higher frequencies,
which is attributed to the relaxation of 2-picoline. Below Tg,high (lower data), only the solvent
relaxation is probed, which slows down and undergoes a marked spectral broadening while
approaching Tg,low (T half

g,low ≈ 150 K as determined from DSC measurements).
Corresponding broadband DDLS spectra are shown in Fig. 7.2a. Although it is to be expected

that DDLS mostly probes the relaxation dynamics of the solvent, these data are clearly bimodal.
However, before discussing in detail the conclusions that can be drawn from these data, the
procedures applied to obtain broadband DDLS data need to be discussed.
χ ′′(ν)-data obtained by PCS experiments at various temperatures are shown in Fig. 7.3a. It

is important to emphasize that the PCS experiments do not provide an absolute relaxation
amplitude for these data, as they are obtained via Laplace transformation of a normalized
autocorrelation function. Thus, the temperature evolution of the relaxation amplitudes of the
observed processes can not be extracted from these data. By contrast, TFPI experiments can
be operated such that an absolute relaxation amplitude is obtained, as they involve measuring



78 7 R E L A X AT I O N I N A S Y M M E T R I C B I N A R Y M I X T U R E S

Figure 7.2: Experimental relaxation spectra from (a) dielectric spectroscopy and (b) DDLS obtained at
various temperatures. Panel (a) plots the an approximation of the dielectric loss in order
to eliminate the influence dc conductivity and electrode polarization. Solute and solvent
relaxation are probed equally, due to both being similary polar. The DDLS relaxation spectra
in (b) reflect mostly the relaxation of the solvent. Broadband spectra are obtained by com-
bining results from PCS and TFPI (see Fig. 7.3). The inset displays the relaxation strength of
the slow solvent contribution as a function of temperature.

absolute scattering intensities. These can be compared across different temperatures as long
as the experimental conditions are comparable.χ ′′(ν)-data obtained from TFPI measurements
at the same and higher temperatures as the PCS data in panel (a) are shown in panel (b). While
the PCS experiment accesses the frequency range 10−2 >ν/Hz> 107, the TFPI experiments
operates at 3 ·108 >ν/Hz> 1011, thus the relaxation spectra obtained from both techniques do
not overlap. However, as will be discussed in the following, using appropriate model functions
does allow to extrapolate the relaxation spectra to obtain a full broadband description.

A single relaxation process contributes to the TFPI-relaxation spectra, which is identified as
the solvent α-process and shifts out of the accessible frequency window at T < 200K. It can
be modeled using the imaginary part of the Havriliak-Negami (HN) equation,

χ ′′(ν) = Im

�

∆χ

(1+ (i 2πντ)α)β

�

, (7.3)

which yields a peak with high-frequency power law ν−αβ and low-frequency power law να.
Thus, it is well suited to describe the broadened relaxation spectra commonly observed in
asymmetric binary mixtures. At sufficiently low temperatures (T < 240 K) the low-frequency
flank of the solvent α-process can be identified in the PCS relaxation spectra, which allows to
approximate the parameter α from Eq. (7.3) by fitting a power law. The results are shown in
Fig. 7.3a as the dashed lines. The inset of panel (b) shows the continuous decrease of αwith
decreasing temperature, the color of the symbols indicating whether the respective value was
determined from the TFPI or from the PCS data. The fact that both, TFPI and PCS, probe the
solvent α-process , allows to extrapolate the relaxation shape to the intermediate frequency
gap between both techniques and to assign an absolute relaxation amplitude to the PCS data.
This procedure is illustrated in Fig. 7.3c, where the dashed line indicates the HN equation
describing the solvent α-process , the amplitude and relaxation time of which has been fixed
via fit to the TFPI data, whileαwas determined from the PCS data. Subsequently, the amplitude
of the PCS-relaxation spectrum is scaled such that it matches the HN equation, which yields
the broadband DDLS relaxation spectrum. The same procedure shown in panel (c) can be
repeated at various different temperatures, the results of which are shown in Fig. 7.2a.
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Figure 7.3: Illustration of the procedures to obtain broadband DDLS relaxation spectra. (a) Relaxation
spectra from PCS measurements. The dashed lines indicate fits to the low-frequency power
law of the solvent α-process . (b) Corresponding TFPI data. Solid lines represent fits by the
HN equation. The inset displays the low-frequency power-law exponent α as a function of
temperature. Blue symbols indicate temperatures at which α was determined from PCS
data, while the orange symbols indicate that it was extracted from fits to the TFPI data. (c)
Illustration of the procedure applied to match PCS and TFPI data into broadband DDLS
spectra. After having determined the low-frequency power-law exponent of the solvent
α-process , the amplitude of the PCS data is scaled such that it corresponds to the HN fit to
the TFPI data.

As already mentioned above, a second slow relaxation contribution is observed in the DDLS
spectra in addition to the solvent α-process. Strikingly, its relaxation amplitude increases
considerably with decreasing temperature, as found by fitting the spectra by the sum of the
solvent α-process and a relaxation process based on a GG distribution of relaxation times
representing the slow contribution. Plotting the relaxation strength of the slow contribution,
∆χslow, as a function of temperature in the inset of panel (b) reveals an increase of around
a factor of 25 upon lowering the temperature from 243.8 K to 192.8 K. This strong tempera-
ture dependence indicates that the origin of the slow contribution can not simply be a weak
PMMA contribution to the DDLS signal, because the latter would be expected to show an
approximately constant relaxation strength, similar to what is found from the dielectric loss
spectra. By contrast, the strong increase of∆χslow much rather resembles the approximately
exponential temperature dependence of the slow solvent-relaxation amplitude observed in a
previous study for the MTHF-PS binary mixture [210]. Considering these findings, the slow
contribution to the DDLS spectra can be assigned to the relaxation of 2-picoline molecules.
The temperature dependence of the peak maximum frequency of the slow solvent contribu-
tion and of the dielectric PMMA relaxation approximately coincide, thus suggesting that the
slow solvent contribution is in one way or another related to the PMMA matrix relaxation.
In contrast to the earlier observation of a slow solvent contribution, the broad frequency
range accessible by combining two DDLS techniques allowed to resolve an entire relaxation
spectrum containing the solvent α-process and the slow solvent contribution. This allows to
precisely analyze the relaxation shape of the slow contribution, revealing a strong broaden-
ing on the high-frequency side, creating almost plateau-like relaxation curves, as well as ν1

low-frequency behavior.

Considering that DDLS spectra reveal an equivalent slow solvent relaxation as previously
identified in the dielectric loss spectra of an MTHF-PS binary mixture, it can now be excluded
that the absence of the slow contribution in NMR experiments reflects the ℓ = 2 nature
of the orientation correlation function. Instead, it is to be expected that collective solvent
relaxation modes, i.e. orientational cross-correlations are the origin of the slow contribution.
To confirm the existence of these cross-correlations and to unravel their physical origin,
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molecular dynamics (MD) simulation are employed, which allow to readily disentangle self-
and cross-correlation contributions.

7.2.2 Combining experiment and computer simulations

In the MD simulations a system consisting of N = 500 2-picoline molecules and 10 PMMA
chains, each comprising 50 repeat units, is analyzed. Thus, the 2-picoline concentration is
similar in experiment (50 wt%) and in the simulations (48 wt%). Inherently, MD simulations
are limited to higher temperatures, where dynamics is sufficiently fast such that the system can
be equilibrated within a reasonable time. To minimize the temperature-discrepancy between
experiments and simulations, a coarse grained united atom topology was used, which allowed
to push the duration of the simulation run to 17.5 µs at the lowest temperature. More details
about the MD simulations can be found in the PhD thesis of Robin Horstmann [202].

To unravel the molecular mechanisms behind the slow solvent relaxation, the simulation
trajectories are employed to calculate the collective dipole correlation function

CM (t ) =
1

N

∑︂

i , j




µi (0) ·µ j (t )
�

, (7.4)

as well as its self-part,

Cself(t ) =
1

N

∑︂

i

〈µi (0) ·µi (t )〉 , (7.5)

of only the solvent molecules. Here, µi (t ) denotes the normalized molecular dipole-moment
vector of solvent molecule i at time t and the angular brackets 〈...〉 denotes averages over
multiple time origins. To obtain results that are fully comparable to results from DDLS experi-
ments, a different molecular axis and the ℓ= 2 correlation should be considered. However, the
slow relaxation is weak in the mildly supercooled regime accessible by MD simulations, thus
it is exploited that it appears stronger in ℓ= 1 than in ℓ= 2 correlation functions. It is shown
below, however, that the results obtained for a different molecular axis and the ℓ= 2 Legendre
polynomial are qualitatively similar.

The difference between CM (t ) and Cself(t ) are the orientational cross-correlations of solvent
molecules

Ccross(t ) =
1

N

∑︂

i ̸= j




µi (0) ·µ j (t )
�

, (7.6)

which are obtained as
Ccross(t ) =CM (t )−Cself(t ). (7.7)

Fig. 7.4 presents the results obtained for the different dipole correlation functions analyzed
at various temperatures between 250 K and 500 K. The collective correlation function CM (t ) is
found to be dominated by a fast decay that is identified as the solvent α-process. However,
unlike in pure liquids, the α-process does not lead to a full decay to zero, but rather leaves
a finite correlation value, which is terminated by a second decay at longer timescales. This
behavior is qualitatively equivalent to the slow contribution identified in the experimental
light-scattering results. This is highlighted in the inset, showing the loss part of the dynamic
susceptibility associated CM (t ) as the solid blue line, which was obtained as the Laplace
transformation of a fit to CM (t ). Consistent with the DDLS results, the resulting frequency-
domain representation of the simulation data features the solvent α-process and a distinct
slow relaxation, which occurs on the same timescale as the PMMA segmental reorientation as
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Figure 7.4: Analysis of the solvent dipolar dynamics extracted from MD simulations of the 2-
picoline/PMMA mixture at various temperatures. (a) Collective dipole correlation function,
CM (t ), (b) self-part of the dipole correlation function, Cself(t ) and (c) cross-parts of the dipole
correlation function, Ccross(t ). Panel (d) compares the slow decay of Ccross(t ) to the PMMA
dipole correlation function CPMMA(t ) (dashed black lines). Here,CPMMA(t )was rescaled by a
factor P , such that its short-time plateau corresponds to the intermediate plateau of Ccross(t )
for better comparison. The inset in panel (a) compares the respective susceptibility represen-
tations of the correlation function of the collective (blue line), self (blue symbols) and PMMA
(black line) relaxation at 260 K. Again, the amplitude of the susceptibility representation of
CPMMA(t )was rescaled by P for better comparison.

shown by the solid black line. Similar to what is found in the experiment, the intensity of the
slow decay in the simulation data increases with decreasing temperature.

By contrast, the self-correlations Cself(t ) shown in panel (b) do not display a distinct slow
contribution, as evident also from comparing the susceptibility representation obtained at
260 K to the one of CM (t ) in the inset of panel (a). Here, the susceptibility of the self-correlations
was directly calculated from the raw data using the Filon algorithm [229]. Only a slight deviation
from a power law behavior is observed on the low-frequency side of the main peak, which
results from anisotropic ring dynamics (e.g. π-flips) and is not related to the presence of
slow solvent molecules. Thus, it can be concluded that, despite the slow contribution to the
collective dynamics, no slow species of solvent molecules exists.

Panel (c) displays the solvent cross-correlations Ccross(t ), which were calculated from the
simulations according to Eq. (7.7). In most pure liquids, cross-correlations decay on time
scales close to the one of the α-process. As shown in Chapter 5, slow cross-correlations can
persist up to time scales longer than the α-process in certain supercooled liquids, however
this involves some form of structure formation via H-bonding, or dipole-dipole interactions
and the resulting cross-correlation contribution usually superimposes the α-process. This is
not the case for the solvent cross-correlations in the present binary mixture, which feature a
distinct finite plateau at times longer than the α-process. Its height increases with decreasing
temperature. The final decay of the plateau coincides with the segmental dynamics of PMMA,
as confirmed in panel (d), where the self-part of the PMMA dipole correlation functions,
CPMMA(t ), at various temperatures are included as the black dashed lines. For better compari-
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son, CPMMA(t )was scaled by the temperature-dependent factor P that describes the height of
the long-time plateau of Ccross(t ).

Configuration-overlap analysis

To identify the underlying mechanism behind the observed cross-correlations, the overlap
of solvent configurations at different times is studied similar to what has been done in some
previous approaches [230–232]. At time t = 0, the solvent configuration is characterized by a
set of spheres of diameter 6 Å around the molecular centers. The diameter value is chosen
such that no sphere is occupied by more than one solvent molecule at the majority of times.
The self-occupation of sphere i , which has been occupied by solvent molecule i at time t = 0,
as a function of time is quantified as

o self
i (t ) =

�

1 occupied by molecule i
0 else.

(7.8)

Similarly, the distinct-occupation of sphere i is given by

o dist
i (t ) =

�

1 occupied by molecule j ̸= i
0 else.

(7.9)

From o self
i (t ) and o dist

i (t ), the self- and distinct configuration-overlap correlation functions
are obtained as

Oself(t ) = 〈o self
i (t )〉 (7.10)

and
Odist(t ) = 〈o dist

i (t )〉, (7.11)

respectively, where the angular brackets 〈...〉 indicate average of all spheres as well as over
multiple time origins. Simply speaking, Oself(t ) quantifies the portion of particles that have
not yet moved out of the sphere defined around them at t = 0, while Odist(t ) quantifies the
portion of particles that, at time t , have moved into a different sphere.

Oself(t ) and Odist(t ) as a function of t obtained at various temperatures are shown in panels
(a) and (b) of Fig. 7.5, respectively. At t = 0 one finds Oself(0) = 1 and Odist(0) = 0, reflecting the
fact that no solvent molecule has moved yet and every molecule sits in the sphere defined
around its center of mass at t = 0. For t →∞, Oself(t ) decays to zero, which signifies that
solvent molecules start to diffuse out of their respective t = 0-sphere. Because translation and
rotation of solvent molecules are coupled, the decay of Oself(t ) qualitatively resembles the one
of Cself(t ).

Odist(t ) converges to some fixed value O∞dist for t →∞, which represents the average oc-
cupation of the set of spheres once all particle positions are randomized. O∞dist depends on
the average packing density of the defined spheres and is weakly temperature dependent.
Strikingly, at intermediate times a distinct maximum is observed for Odist(t ). It signifies an
increased probability of solvent molecules being located at positions priorly occupied by
other solvent molecules. With decreasing temperature, the maximum value increases com-
pared to O∞dist, indicating that the solvent molecules increasingly occupy such locations. This
observation, which usually is not observed in pure molecular liquids, implies that there exist
regions within the binary mixture that are preferably occupied by solvent molecules. The
memory of these preferred locations persists over numerous solvent α-process time scales.

In a final step, the average orientational cross-correlation between solvent molecules that
have occupied the same sphere at different times, Cdist(t ), is determined. For this purpose,
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Figure 7.5: Configurational-overlap analysis of solvent molecules. (a) Self-occupation o self
i (t )of spheres

defined around solvent molecules at t = 0 as a function of t and (b) distinct-occupation
o dist

i (t ) of these spheres. The maximum observed for o dist
i (t ) at intermediate times indicates

preferred locations of solvent molecules. (c) Dipole cross-correlations of molecules occu-
pying the same preferred locations at different times, Cdist(t ). Values > 0 indicate favored
orientations of solvent molecules at preferred locations. (d) Comparison of Cdist(t ) and
CPMMA(t ) (rescaled). Both decay on similar time scales.

the angle ϕ(t ) between the orientation of solvent molecule i in sphere i at t = 0 and the
orientation of a distinct molecule j located in sphere i at a later time t is defined. Cdist(t ) for
the normalized dipole moment vectors µ is then calculated as

Cdist(t ) =
1

n

∑︂

replace-
ments

cos
�

ϕi (t )
�

=
1

n

∑︂

replace-
ments

µi (0) ·µ j (t ), (7.12)

where the summation is performed over all n replacement events, where some molecule j
replaced molecule i in sphere i . Thus, the summation also involves averaging over multiple
time origins. Cdist(t ) quantifies the overall orientational cross-correlations caused by the
distinct replacement mechanism.

In a scenario where no preferential orientations exists between solvent molecules that have
occupied the same sphere at different times, Cdist(t ) = 0 should be observed at all t . By contrast,
a clear peak is observed for Cdist(t ) in panel (c). Its maximum value increases with decreasing
temperature and its peak-maximum frequency roughly coincides with the peak observed for
Cdist(t ). This implies that solvent molecules positioned at the preferred locations identified
from Odist(t ) also exhibit a preferred orientation with regard to the dipole-moment vector. In
panel (d), Cdist(t ) is compared to CPMMA(t ) obtained at 260 K. The comparison reveals that
the long-time decay of the peak roughly coincides with the segmental reorientation of PMMA.
Thus, it can be concluded that solute molecules imprint preferred locations and orientations
onto neighboring solvent molecules, which persist until the solute molecules have rearranged.
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Figure 7.6: (a) Solvent cross-correlations based on the ℓ = 2 Legendre polynomial and the normal
vector of the phenyl ring, C 2,n

cross(t ). The results qualitatively resemble those in Fig. 7.4c
obtained for ℓ= 1 and the dipole-moment vector, C 1,µ

cross(t ). The similarity is confirmed in
panel (b) for data obtained at 260 K.

Results for ℓ= 2 Legendre polynomial and phenyl-ring normal vector

The discussed MD simulation results are based on ℓ = 1 orientation correlation functions
with regard to the 2-picoline dipole moment vector µ. By contrast, DDLS does probe the
ℓ= 2 orientation correlation function of the molecular optical anisotropy tensor. For aromatic
molecules, the latter approximately corresponds to the normal vector n of the phenyl ring.
Fig. 7.6a considers the orientational cross-correlations of solvent molecules for the ℓ = 2
orientation correlation function with regard to the vector n,

C 2,n
cross(t ) =

1

N

∑︂

i ̸= j




P2

�

ni (0) ·n j (t )
��

, (7.13)

where P2(x ) = (3x 2−1)/2 is the second rank Legendre polynomial. Similar to what was found
for ℓ = 1 and µ in Fig. 7.4c, a distinct slow cross-correlation decay is observed. Fig. 7.6b
compares C 2,n

cross(t ) obtained at 260 K to the corresponding ℓ = 1 cross-correlation function

C 1,µ
cross(t ) for the dipole moment vector µ. While the slow cross-correlation contribution is

found to have a lower amplitude for ℓ = 2 than for ℓ = 1, the respective relaxation times
are approximately identical and correspond to the decay of CPMMA(t ). It can be concluded
that preferred orientations of solvent molecules and the corresponding cross-correlation
also exist with regard to the phenyl-ring normal vector and the ℓ= 2 orientation correlation
function, i.e. approximately the correlation function that is probed by DDLS. In this regard,
the solvent-solvent cross-correlations in asymmetric binary mixtures do not resemble the
cross-correlations in pure supercooled liquids, as the latter have been found to vanish for
ℓ= 2 correlation functions [126, 147]. This also resolves the apparent contradiction as to why
DDLS probes exclusively the self-part of molecular dynamics in pure supercooled liquids,
whereas cross-correlations do contribute considerably to the DDLS spectra of asymmetric
binary mixtures.

Cross-correlation mechanism on the molecular level

The experimental and computational results allow to gain a detailed understanding of the
solvent dynamics in asymmetric binary mixtures. Unlike previously assumed [210, 219–223],
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there does not exist a distinct slow fraction of solvent molecules. Instead, it was shown that
the slow solvent contribution to experimental relaxation spectra can be attributed to the
slow decay of solvent-solvent cross-correlations. The upper panels of Fig. 7.7 show a cartoon
depicting the underlying molecular mechanism behind these cross-correlations. The fast
decay of the solvent self-correlation implies that all solvent molecules, also those located
close to the solute, relax on a significantly shorter timescale compared to the surrounding
polymer matrix. Thus, the potential energy landscape imposed on the solvent by the polymer
matrix can be assumed to behave quasi-static on the time scales of the solvent α-process.
At the same time, the interactions with the polymer introduces "preferred" locations, with a
larger-than-average occupation by solvent molecules. Once a solvent molecule leaves such a
preferred location, it is quickly replaced by another one, as shown in panels ① and ②. This
effect is manifested by enhanced distinct-occupations identified in the configuration-overlap
analysis shown in Fig. 7.5(b).

Additionally, matrix-solvent interactions at preferred locations cause favored orientations
of solvent molecules. Hence, molecules located at preferred locations at different times are
orientationally correlated, as was shown in Fig. 7.5(c). This scenario is illustrated in ③, where
the contours of the blue and the red molecule roughly coincide with respect to not only their
positions but also their orientations. An example of this phenomenon is also depicted in the
lower panels of Fig. 7.7 for a snapshot from the simulations, where the red molecule replaces
the blue one. With decreasing temperature the relative strength of matrix-solvent interactions
increases with respect to the thermal energy, thus the relative amplitude of the orientational
cross-correlations grows.

Preferred locations with enhanced orientational correlation only prevail until the energy
landscape is significantly altered due to the segmental relaxation of the solute on the charac-
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teristic timescale τPMMA. Consequently, solvent-solvent cross-correlations decay on a similar
timescale, i.e. τcross ≈ τPMMA as illustrated in ④. On longer timescales, no relevant solvent
contributions to experimental relaxation spectra or to the simulation correlation functions
are observed.

While BDS and DDLS both access collective solvent dynamics (see Eq. (2.42) and Eq. (2.17)),
2H-NMR is an incoherent technique, thus it does not probe any cross-correlations but only the
self-part of molecular dynamics. As evident from Fig. 7.1, any slow solvent contribution probed
by NMR experiments is significantly smaller compared to the equivalent contribution to the
dielectric loss. The slow contribution to NMR spectra is not zero, because of the enhanced
dynamic heterogeneity of the solvent. The latter was identified from the DDLS data, e.g., in
terms of the low-frequency power-law exponent α, which was found to be < 1 and decrease
significantly with decreasing temperature. An equivalent long-time tail contribution to Cself(t )
was identified in the simulations. The origin of the increased dynamic heterogeneity was
attributed to local solvent-solute concentration fluctuations in a further detailed analysis of
the simulation data discussed above [202]. As a consequence, NMR measurements probe a
"slow" contribution as the slowest part of the broad distribution of solvent-relaxation times.
However, the latter does not produce a distinct slow contribution and is much smaller than
the slow cross-correlation contribution to the dielectric loss.

Obviously, the illustration in Fig. 7.7 is over-simplified. Further analysis of simulation data at
the lowest studied temperature revealed that only around half of the cross-correlations can be
rationalized in terms of the simple "replacement mechanism". Additionally, the orientations
of adjacent solvent molecules close to the solute-surface, i.e. in adjacent preferred locations
can be correlated, and also solvent-solute cross-correlations can not be fully neglected.[202]

In his PhD thesis, R. Horstmann extended the analysis of solvent-solvent cross-correlations
to several other asymmetric binary mixture. It was found that the occurrence of the above
discussed mechanism is independent of the exact interaction mechanisms, i.e. the same
effects are found for mixtures involving non-polar solvent and solute molecules and an aque-
ous peptide solution [202]. For the latter, a distinct slow water relaxation contribution has
previously been identified from dielectric loss data [224, 225, 233] and was interpreted in
terms of a slow fraction of water molecules, which however could not be observed by recent
NMR experiments [226]. Instead, the present results suggest that solvent cross-correlation
effects might be the origin of the slow contribution.
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Most results discussed in Part I of this work refer to the physics of supercooled liquids in
metastable thermal equilibrium. Here, the term metastable refers to the fact that usually the
ordered structure of the crystal represents the state that minimizes free energy, while, however,
the formation of the crystal has been suppressed to obtain a supercooled liquid. As it is usually
impossible to crystallize the supercooled liquids discussed in the following chapters, the
notation metastable will not be used hereafter and the term equilibrium always refers to the
metastable supercooled liquid state.

From a thermodynamic point of view, the equilibrium nature of the supercooled liquid is
manifested by the fact that its entropy is constant as a function of time. Out-of-equilibrium
states can be obtained by exposing it to some perturbation, e.g. a temperature change. How-
ever, as long as the average relaxation time of the supercooled liquid is small, e.g. τ ∼ns
closely below the melting point Tm, the relaxation to the new equilibrium state is too fast to
be noticed. Because the average relaxation time of a supercooled liquid strongly increases
with decreasing temperature, however, its relaxation to the new equilibrium state after a quick
change in temperature becomes slow at low temperatures, such that an out-of-equilibrium
material, called a glass, can be obtained [234, 235]. The slow relaxation of glasses towards the
equilibrium supercooled-liquid state is referred to as physical aging. Here, the term physical
indicates that the equilibration process exclusively involves molecular rearrangements and
no chemical alterations of the material [5, 35, 36, 236]. In real-life applications where glassy
materials like conventional inorganic glasses [38, 237, 238] or plastics [5, 35, 236] are held
around room temperature, physical aging typically happens on time scales ranging from days
to many years. It usually is observed in terms of very subtle changes of physical properties
like, e.g., the refractive index [38, 239, 240] or the mechanical properties of material [5, 35, 238,
241].

From a fundamental science perspective, the best controlled physical aging experiments
involve exposing an equilibrium material to a rapid change of temperature. Afterwards, its full
relaxation towards equilibrium at a fixed annealing temperature is monitored by continuously
measuring some physical property, see e.g. Refs. [37, 242–244]. This process is illustrated
in Fig. 8.1a (adapted e.g. from Ref. [35]), where the material’s specific volume is plotted as
a function of temperature. Equilibrium states are located on the equilibrium line depicted
in black. Exposing the material to an instantaneous temperature change of magnitude∆T
results in a deviation of the specific volume from the equilibrium line, as illustrated by the
blue and red solid lines for temperature down- and up-jump, respectively. The dashed blue
and red lines indicate the slow relaxation towards the equilibrium state during physical aging.
It goes along with a slow and gradual change of the specific volume until it converges to its
new equilibrium value. This change of the specific volume characterizes the physical aging
process and could be probed using an appropriate experiment.
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Figure 8.1: (a) Schematic illustration of the evolution of a supercooled liquid in the specific volume-
temperature phase space after being exposed to an infinitely fast temperature change. After
the temperature change, the system deviates from the equilibrium liquid line (black) and
becomes glassy. The system’s slow relaxation back to the equilibrium line is referred to as
physical aging. (b) The relaxation towards the equilibrium state proceeds vastly different
for up- and down-jumps, i.e. normalized relaxation functions obtained for up- and down-
jumps of different magnitudes do not collapse, as it would be the case if physical aging was
a linear response phenomenon. A brief discussion of the normalized relaxation functions
in panel (b) is given in the text, while more details are reported in Section 10.4.1.

From a linear response perspective, the system’s response to temperature changes of dif-
ferent magnitudes∆T should be identical up to some scaling factor∝∆T . By contrast, it
is commonly found that the system’s relaxation towards equilibrium during physical aging
differs strongly for temperature jumps of different magnitude, which indicates that phys-
ical aging is a highly non-linear phenomenon [36, 37, 242, 245]. This fact is illustrated in
Fig. 8.1b, where the time evolution of the imaginary part of the complex dielectric permittivity
at 10 kHz, ϵ′′(t )≡ ϵ′′(t ,ν= 10 kHz) of supercooled 1-phenyl-1-propanol after various different
temperature up- and down- jumps to 193 K is presented in terms of the normalized relaxation
function [37]

Rϵ(t ) =
ϵ′′(t )− ϵ′′(t →∞)
ϵ′′(t = 0)− ϵ′′(t →∞)

. (8.1)

Here, the normalization with regard to the equilibrium values of ϵ′′(t ) before the temperature
jump at t = 0 and after complete equilibration at t →∞, ϵ′′(t = 0) and ϵ′′(t →∞), elimi-
nates the trivial scaling factor. Vastly different relaxation behaviors are observed for different
temperature jump amplitudes ranging from +4 K to -4 K: The relaxation after down-jumps is
visibly more stretched and faster compared to up-jumps. The degree of deviation between up-
and down-jump data increases with increasing amplitude of the jumps.

A qualitative explanation of these observations is obtained by considering how the average
relaxation rates of the system changes during aging. After a down-jump, the relaxation rate de-
creases as a function of t , or, as expressed by Kovacs, the jump is "auto retarded" [235], leading
to a stretched relaxation towards equilibrium. By contrast, up-jumps are "auto accelerated",
thus leading to a slow and compressed relaxation shape.

Narayanaswamy [38] expressed this qualitative idea in terms of a quantitative model by
introducing the concept of material time ξ(t ), which is defined in terms of its clock rate γ(t )
as

dξ(t ) = γ(t )dt . (8.2)
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ξ(t ) can be thought of as measure of time, the clock rate of which itself ages during the aging
of the material. The time-dependence of the material-time clock rate γ(t ) reflects the fact that
the system’s relaxation rate changes during aging.

The fundamental idea of Narayanaswamy was that the non-linear change of some physical
property X (t ) is linearized, once it is considered in terms of the material time ξ(t ) instead of
the conventional time t . That is, for a temperature protocol ending in equilibrium at T∞, where
X (t →∞) = X∞, the change ∆X (t ) = X (t )− X∞ during physical aging after temperature
history T (t ) = T∞−∆T (t ) can be expressed in terms of a linear response equation [12, 38]

∆X (ξ) =C∆T (ξ) +

ξ
∫︂

−∞

MX (ξ−ξ′)
d∆T (ξ′)

dξ′
dξ′. (8.3)

Here, the first term reflects an instantaneous aging contribution, while the second term
describes the slow relaxation part that is expressed in terms of a linear convolution integral with
a system-specific memory kernel MX , which importantly is independent of the temperature
protocol. For instantaneous temperature jumps at t = 0 like discussed above, the second
term of Eq. (8.3) yields∆X (ξ) =∆T ·MX (ξ(t )), i.e. the system’s response after temperature
jumps of different magnitudes as a function of ξ is identical up to a scaling factor. Thus, the
material-time concept suggests that the variation of the system’s relaxation rate during aging
is the only reason for aging being non-linear. More details regarding the material-time concept
and its validity will be discussed in Section 10.1.

One major problem for the material-time concept has been that ξ(t ) itself has not yet
been determined experimentally. An experimental approach would require to probe the
structural relaxation within the aging sample with time-resolution. This has been an impossible
task for almost all experimental techniques, because they require some sort of temporal
averaging to obtain these information: In order to probe structural relaxation with average
relaxation time τ, these measurements have to average over a multiple of τ. As physical aging
of molecular glasses after a temperature jump to T∞ proceeds on time scales of the order of
τ(T∞), any technique requiring substantial temporal averaging is not suitable to approach an
experimental determination of the material time.

Multispeckle dynamic light-scattering, however, represents one of the very few experimental
techniques that can probe a material’s structural relaxation without requiring any temporal
averaging. The basic idea is to replace the temporal average by an average over various speckles,
i.e. the light and dark spots in the granular interference pattern produced by the light scattered
from an aging sample. To utilize the unique advantages multispeckle dynamic light-scattering
provides for the experimental investigation of physically aging materials, a respective setup has
been built during this work, see Chapter 9. The probed time-resolved intensity autocorrelation
functions of the scattered light allow to experimentally determine the material time as a
function of t , see Chapter 10. The results allowed to verify the conjecture whether thermal
fluctuations of aging materials become statistically time-reversible if they are considered in
terms of the material time, see Chapter 11.
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M U LT I S P E C K L E D D L S E X P E R I M E N T F O R T H E
I N V E S T I G AT I O N O F A G I N G S A M P L E S

The fundamentals of conventional DLS experiments were covered in Section 2.2. In particu-
lar, it was discussed that a PCS experiment probes the intensity fluctuations within a single
speckle and extensive time-averaging is required to obtain the intensity autocorrelation func-
tion g2(∆t ) from which the electric field autocorroelation function g1(∆t ) can be calculated
using the Siegert relation (Eq. (2.23)). In order for g1(∆t ) to correctly reflect the microscopic
dynamics of the studied sample, significant requirements need to be met: (i) The dynamics
needs to be stationary. Due to the temporal averaging, any time-dependence of the dynamics
is not considered and, instead, g1(∆t ) reflects some average of the time-dependent dynamics.
(ii) The sample has to be ergodic on the time scale of the experiment. Erdodicity is the formal
requirement for the the temporal averaging to be equivalent to the ensemble average.[246]
Many systems in soft matter physics do not fulfill one or both of these requirements. Molecular
and colloidal glasses, as well as gels or foams are off-equilibrium systems, thus they behave in
a non-stationary manner. For instance, the structural relaxation of a physically aging sample
is explicitly time-dependent, thus its analysis requires proper two-time correlation functions,
g1(t , t +∆t ). In addition, these systems relax on time scales exceeding hours, days or even
weeks. Exploring the entire phase space by monitoring a single speckle would require a multi-
ple of these time scales, implying that, within reasonable experimental time scales, glasses and
gels usually are non-ergodic when intensity fluctuations are probed within a single speckle.

One solution to these fundamental issues is to no longer limit the experiment to probing
a single speckle, but to instead perform a multispeckle DLS (msDLS) experiment. These ex-
periments have been introduced in the early nineties [247], using the new CCD technology,
and have been improved ever-since alongside advances in imaging technology. Two general
approaches can be distinguished: On the one hand, the camera can be positioned in trans-
mission geometry, which allows to study a broad range of different q -vectors at the same
time [248, 249]. The second approach, which is the one pursued and discussed in this work,
is to study a multitude of speckles at approximately the same q . This procedure allows to
replace the temporal average in Eq. (2.22) by a speckle, res. pixel average 〈...〉px,

g2(t , t +∆t ) =




I (t ) I (t +∆t )
�

px

〈I (t )〉px〈I (t +∆t )〉px
. (9.1)

The multispeckle approach allows to determine time-resolved intensity autocorrelations in
samples with dynamics that change as a function of time, e.g. due to physical aging. Over the
years various adaptations of the msDLS concept have been developed for various applications
in soft matter physics. A brief review of the most important aspects is given in the following.

Especially in the earlier years after the concept was first introduced in 1993, msDLS was
limited to the study of ultra-slow dynamics in stationary systems [247, 250, 251], because
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the number of speckles that could be probed at once was limited. Here, the idea is to com-
bine temporal- and speckle-averaging to considerably reduce the required measuring time
compared to when only a single speckle would be probed in conventional DLS.

Time-resolved correlations became accessible in the earlier 2000s [252–254] and allowed
to study various different systems that evolve as a function of time, e.g., aging gels [249,
253–255] and coarsening foams [256–259]. Most of these experiments employ diffusing wave
spectroscopy (DWS), i.e. the detected light has been scattered many times within the sample.
Recurring observations have been intermittent relaxation events in the form of abrupt loss of
intensity correlation [253, 254, 259, 260], which has been associated with rare long-ranged
events, e.g. local restructuring in gels [253, 260] and bubble-rearrangements in foams [259].
Moreover, msDLS has been used to study the long-ranged spatial dynamic heterogeneity in
foams or gels by considering the temporal fluctuations of time-resolved correlations [256,
257].

Physical aging dynamics of glassy systems probed by means of msDLS have rarely been
reported. Noteworthy from the perspective of the present work are the experiments by Viasnoff
et al. [261], who investigated the physical aging of a colloidal glass under shear after the shear
strain was suddenly turned off. The time-resolved intensity autocorrelations probed by means
of multispeckle DWS revealed a continuous slow-down of the colloidal dynamics without the
occurrence of any intermittent events.

Various imaging optics can be used to perform msDLS experiments. In the simplest case, a
single aperture is sufficient to observe a speckle pattern on a camera chip. In such an approach,
light from the entire scattering volume contributes to each speckle. [251]On the other hand,
an imaging lens can be adjusted to introduce spatial resolution, in the sense that light detected
around a certain position within the speckle pattern originates from some limited spatial
subregion of the scattering volume [252, 259]. Such approaches have been referred to as photon
correlation imaging [259] and allow, e.g., to detect long-range spatial dynamic heterogeneity
in foams or gels. In recent years, the concept of photon correlation imaging has been adapted
and developed in order to study various different applications, e.g. to investigate material
failure [262], local displacement [263] or the yielding transition [264, 265] in materials under
mechanical strain or shear. But also more complex approaches exist, e.g., using two lasers and
two cameras to perform dynamic speckle holography, in order to obtain a 3d characterization
of the flow in a tube [266]. Although the present work focuses on the aging of molecular glasses
and does not utilize any spatial resolution, it also employs a photon correlation imaging-like
setup, as the latter provides several advantages that will be discussed in the following sections.

Finally, it remains to be noted that msDLS shares several similarities with x-ray photon
correlation spectroscopy (XPCS) experiments. In the latter, the speckle pattern formed by x-ray
photons scattered from a sample is probed at various different q -vectors. As a consequence,
XPCS also allows to determine time-resolved intensity autocorrelations via multispeckle
averaging, which was employed to investigate, e.g., the microscopic dynamics during physical
aging of metallic glasses. [267–270]

9.1 O P T I C A L I M P L E M E N TAT I O N

Considering the purpose of studying aging samples of molecular and colloidal glasses, three
key requirements can be defined: (i) A high temporal resolution is required. Molecular glasses
age on time scales similar to the characteristic time scale of structural relaxation. Thus, sub-
stantial changes of the autocorrelations as a function of t proceed on time scales comparable
to the decay of the autocorrelations as a function of∆t . Consequently, no substantial tem-
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poral averaging should be required to obtain well-resolved autocorrelation functions. This
condition can be fulfilled by detecting a large number of speckles, which provides sufficiently
large statistical power without requiring any temporal averaging. (ii) Physical aging is best
studied at low temperatures where it takes long times for samples to reach a new equilibrium
state. Thus, it is necessary to perform long-time measurements over several hours or even
days. At the same time, the hard-drive space required for data storage cannot be impractically
large. (iii) The intensities scattered from molecular glasses are usually quite low compared to
the systems that have been studied in msDLS traditionally, like gels, colloids and foams. Thus,
the performance of the setup in this regard needs to be optimized.

Considering points (i) and (ii) defines one key requirement: The size of a single speckle has
to be small, such that a comparably small image allows to probe a large number of speckles.
At the same time, the average speckle-size should not subceed the size of single pixels, as
otherwise many speckles would be probed within a single pixel, which implies substantial
loss of information. By performing a photon correlation imaging experiment, the speckle
size can easily be controlled by adjusting the imaging optics, which is the reason why such
a procedure was utilized within the present work. A photon correlation imaging approach
also helps to solve point (iii): The fact that light probed within one speckle originates from
some spatially limited area within the sample cell allows to selectively analyze only the light
scattered from the sample. Thus, undesired light, e.g. the light scattered from the walls of the
sample cell or from any impurities within the sample can be disregarded. If instead a msDLS
approach without any spatial resolution would be employed, each speckle would reflect a
superposition of light from all the mentioned sources. This would be especially problematic
in case the intensity of light scattered from the sample is significantly lower than the intensity
of undesired light, which is the case for many molecular glasses.

Fig. 9.1a presents a schematic illustration of the optical setup. All parts positioned between
laser and sample cell are identical to setup used for conventional PCS measurements as
explained in Section 2.2.2 and, thus, are not discussed herein. Two different sample cells are
used for experiments on supercooled liquids and glasses. Both are based on a borosilicate
glass tube with 10 mm res. 20 mm outer diameter and 1 mm res. 2 mm wall thickness and
will be discussed in further detail in Section 9.3. Scattered light is collected at 90◦ angle by
a home-built imaging optics, a photo and an illustration including dimensions of which is
shown in Fig. 9.1. First, the scattered light passes a combination of a spherical and a slit
aperture, the size of which can be adjusted. The f =5 cm spherical convex imaging lens is
positioned at a distance of 7 cm from the scattering volume. Behind the lens, a second slit
aperture of adjustable width is positioned at the focal point of the spherical lens. Afterwards,
light passes another Glan-Thompson polarizer from B. Halle (extinction ration 10−7, 12 mm
diameter) that can be operated in vertical or horizontal mode, and a 532±2 nm bandpass
filter. Finally, the speckle pattern is recorded using a Hamamatsu ORCA-Flash 4.0 V2 SCMOS
camera sitting at a distance of 10 cm behind the spherical lens. The camera is equipped with
a 2048 px x 2048 px image sensor (the size of single pixels is 6.5 µm x 6.5 µm) and can process
a maximum of 100 images per second.

9.2 S P E C K L E PAT T E R N S

Using the optical setup shown in Fig. 9.1 allows to record speckle patterns of various disordered
materials, as long as their respective structural relaxation dynamics exceed the minimum
temporal resolution of 0.01 s. In the following sections, the static and dynamic properties of
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Figure 9.1: Schematic illustration of the optical setup used for the multispeckle detection of scattered
light and photo of the imaging optics.

an exemplary movie of speckle images recorded for an equilibrium supercooled sample of
1-phenyl-1-propanol (1P1P) is discussed.

9.2.1 Static properties

An exemplary speckle pattern obtained for the depolarized light scattered from an equilibrium
sample of 1P1P closely above Tg is shown in Fig. 9.2a. Due to using an imaging optic, the camera
probes a real-space image of the laser beam: A horizontal stripe with a Gaussian intensity
profile, as shown in Fig. 9.2b. The imaging setup allows to only use ∼ 6% of the full 2048 x 2048
pixel sensor, while an optical setup based on a single aperture would illuminate the entire
chip and each speckle would be significantly larger.

To analyze the spatial dimension of speckles, the average spatial autocorrelation func-
tions [252] of intensity fluctuations δI (x , y , t ) = I (x , y , t )−〈I (x , y )〉t are obtained as

C (∆x ) =




δI (x , y , t ) ·δI (x +∆x , y , t )
�

x ,y ,t
r




δI (x , y , t )2
�

x ,y ,t
·



δI (x +∆x , y , t )2
�

x ,y ,t

. (9.2)

Here, I (x , y , t ) is the intensity probed at pixel coordinate (x , y ) at time t , the angular brackets
〈...〉x ,y ,t indicate averages over different pixels of the speckle image along x and y -direction
as well as temporal averaging over numerous frames of a speckle movie. 〈I (x , y )〉t was deter-
mined via temporal averaging of the probed intensities, while at the same time the symmetry of
the speckle pattern along the x direction was utilized, i.e. the fact that 〈I (x1, y )〉t = 〈I (x2, y )〉t
for any x1, x2. An procedure equivalent to Eq. (9.2), but along the y -direction yields C (∆y ).

C (∆x ) and C (∆y ) are shown in panels (d) and (e) of Fig. 9.2, respectively. In both cases, a
maximum is observed at∆x = 0, res.∆y = 0, while the spatial autocorrelations quickly decay
to zero for increasing |∆x |, res. |∆y |, because adjacent speckles are statistically independent.
C (∆x ) and C (∆y ) are well-described by Lorentzians (solid black lines), which allows to define
the full widths at half maximum wx and wy (red lines). wx and wy can be interpreted as the



9.2 S P E C K L E PAT T E R N S 97

0 200 400 600 800 1000 1200
pixels x-direction

0

100

200
pi

xe
ls 

y-
di

re
ct

io
n

500 1000
intensity

0

100

200
(b)

102

103

104

in
te

ns
ity

(a)

0 1000 2000 3000 4000 5000
intensity

10−6

10−5

10−4

10−3

P(
in

te
ns

ity
)

(c)

−10 0 10
Δx

0.0

0.2

0.4

0.6

0.8

1.0

C(
Δx

)

wx = 1.6 px

(d)

−10 0 10
Δy

0.0

0.2

0.4

0.6

0.8

1.0

C(
Δy

)

wy = 4.4 px

(e)

Figure 9.2: Analysis of the static structure of speckle patterns. (a) Exemplary intensity speckle pattern
reflecting the depolarized scattered light from an equilibrium sample of 1P1P closely above
Tg. The colors indicate the intensity on a logarithmic scale; see colorbar on the left hand
side. (b) Along the y-direction, the average intensities follow a Gaussian envelope (solid
black line), reflecting the Gaussian beam profile. (c) Probability distribution of speckle
intensities. The experimentally probed distribution corresponds well to an approximation
of the theoretical prediction for a speckle pattern probed using a finite aperture and a limited
spatial resolution (pixels), i.e. Eq. (9.3) as the black dashed line. Eq. (9.3) considers a uniform
distribution of average intensities, thus the Gaussian intensity profile was considered,
leading to some additional broadening compared to Eq. (9.3). (c),(d) Average spatial intensity
autocorrelations C (∆x ) and C (∆y ) as functions of∆x and∆y , respectively, obtained via
Eq. (9.2). Both are well described by Lorentzians (solid black lines), from which the full
widths at half maximum wx and wy are extracted (red lines).

average size of the speckles along the x and y -direction in units of pixels (px), respectively.
It is found that speckles are elliptically shaped (wx ̸=wy ), which is a direct consequence of
using a spherical lens to image an elongated scattering volume. Along the x -direction, the
average size of a single speckle corresponds to wx =1.6 px, thus almost the minimal feasible
speckle-size is probed. This implies a certain degree of overlap between adjacent speckles.
Such effects lead to a reduction of the∆t = 0-limit of the intensity autocorrelation functions
g2(t , t +∆t ) as is discussed in Section 9.2.2 below.

The probability distribution of pixel intensities is shown in Fig. 9.2c, revealing an asymmetric
distribution with a maximum at I0 > 0. Considering the theoretical treatment of speckle
images [271],

P (I ) =

�

m
I0

�m
I m−1 exp
�

−m I
I0

�

Γ (m )
(9.3)

is an approximation of the expected probability density of speckle intensities. It considers
that the speckle pattern is probed using a limited spatial resolution (pixels), or involves some
degree of speckle blurring due to a finite size aperture. Both effects combined are described
by the parameter m , which is unity if both are negligible. The dashed black line represents
a fit to the data with m = 2, where on top the effect of the Gaussian envelope (cf. panel b) is
considered, which is not yet taken into account in Eq. (9.3), as it assumes a uniform intensity
distribution.
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9.2.2 Intensity autocorrelation functions

The dynamics of a movie of speckle images can be quantified in terms of the normalized inten-
sity time autocorrelation function g2(t , t +∆t ) that is obtained as a multispeckle/multi-pixel
average. Again, the horizontal symmetry of the speckle pattern, 〈I (x1, y )〉t = 〈I (x2, y )〉t for any
x1, x2, is utilized. The symmetry implies that the normalization of the intensity autocorrelation
functions is identical for pixels with the same y -coordinates. Thus, the averages along x - and
y -direction are calculated independently, which yields

g2(t , t +∆t ) =
nx

ny

ny
∑︂

y=1

⎡

⎣

∑︁nx
x=1 I (x , y , t ) · I (x , y , t +∆t )
�

∑︁nx
x=1 I (x , y , t )
��

∑︁nx
x=1 I (x , y , t +∆t )

�

⎤

⎦ , (9.4)

where nx and ny denote the number of pixels along the x and y -direction, respectively.
Time-resolved intensity autocorrelation functions g2(t , t +∆t ) as a function of ∆t are

plotted in Fig. 9.3a. The different colors indicate different t . All curves approximately col-
lapse, reflecting that equilibrium dynamics in supercooled liquids is stationary. Thus, the
time-averaged intensity autocorrelation function g2(∆t ), included as the dashed black line,
represents a meaningful description of the stationary dynamics. Slight deviations of the indi-
vidual time-resolved autocorrelation functions from the average behavior are observed. They
reflect an inevitable consequence of probing a finite number of speckles. The main source
for these deviations is the imperfect normalization of Eq. (9.4). Thus, the autocorrelation
value at short ∆t , g 0

2 (t ) = lim∆t→0 g2(t , t +∆), is distributed. This fact is visualized in the
inset of Fig. 9.3a, showing a zoom into the main panel to illustrate deviations from perfect
collapse at short∆t . The dashed gray curve represents the distribution of g 0

2 (t )with standard
deviation ∆g 0

2 = 0.004, which corresponds to well below 1% deviation from the average. It
is noted that performing the same experiments with variations of the imaging optics that
result in larger average speckle sizes, i.e. a smaller total number of probed speckles, yields
a significantly broader distribution of g 0

2 (t ). In fact, the distribution’s width was minimized
during the process of optimize the performance of the imaging optics.

In Fig. 9.3b, the time-averaged intensity autocorrelation function obtained from the mul-
tispeckle experiment is compared to the corresponding results from a conventional single-
speckle DLS experiment employing an optical fiber optics. Both results are obtained from
the same sample, in the same sample environment and at the same temperature. Proper
singlespeckle data could only be obtained, because the sample is in equilibrium and at a
comparably high temperature, thus dynamics are comparably fast (up to a factor 103 faster
than in typical aging experiments). It has to be noted, however, that the single-speckle data
had to be averaged over 24 h of measurement, while proper multispeckle data could be ob-
tained after the time that it takes for the autocorrelations to decay to zero, i.e. after ∼ 100 s.
Obviously, the fiber-optical experiment outperforms the multispeckle approach considerably
in regards of providing information at short∆t . In addition, the short-∆t limit of the intensity
autocorrelations g 0

2 is significantly smaller for the camera-data compared to the fiber-data;
the physical origin of this will be discussed below. Apart from that, both experiments provide
the same information, as confirmed from the fits to the data (solid black lines) using

g2(∆t )−1= (g 0
2 − g∞2 ) ·φ(∆t ) + g∞2 , (9.5)

where g∞2 is the∆t →∞-limit of g2(∆t )−1, whileφ(∆t ) is a normalized relaxation function
describing the correlation decay of the supercooled liquid, which in this particular case
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Figure 9.3: Analysis of the intensity and electric-field autocorrelation functions probed using the
camera setup. (a) Time-resolved intensity autocorrelations g2(t , t +∆t ) of an equilibrium
sample of 1P1P. The different colors indicate data obtained at different t , whereas the black
dashed line represents the temporal average g2(∆t ) ≡ 〈g2(t , t +∆t )〉t . The inset shows a
zoom into the short-time part of the main panel, revealing that the short-time limit of
g2(t , t +∆t ), g 0

2 (t ), is distributed reflecting the finite number of speckles used to normalize
the g2(t , t +∆t ). The distribution of g 0

2 (t )-values is shown as the gray dashed line. (b)
Comparison of g2(∆t ) obtained from measurements using an optical fiber probing a single
speckle (blue symbols) and the camera (orange symbols). The solid black lines represent
fits by Eq. (9.5), assuming the same relaxation function, but different short and long-time
limits for fiber and camera data. (c) The inset shows fiber and camera data obtained for
strongly diluted polystyrene spheres dissolved in glycerol. From the short-time plateau, the
coherence factor Λ can be determined, which yields Λfiber = 0.98 and Λcam = 0.61. Inserting
the respective values into the Siegert relation, Eq. (9.7), and disregarding any heterodyning
yields g2(∆t )-data of 1P1P for fiber and camera that perfectly overlap (see main panel).

was modeled using a GG distribution of relaxation times for the α-process plus a fast β-
process contribution. Both data sets are described using the same relaxation functionφ(∆t ),
the only difference being the choices of values for g 0

2 and g∞2 .

The significant difference between g 0
2 -values observed for fiber and camera data mainly

reflects the different speckle selectivities of both techniques, meaning the two experiments are
associated with different coherence factors Λ. Generally, g 0

2 is reduced as soon as light from
more than one coherence area within the sample is detected, i.e. when the the light probed
within the detector area corresponds to more than one speckle. Otherwise, the amplitude of
the probed intensity fluctuations decreases compared to the case, where only light from a
single speckle is considered.

A direct analysis of this effect based on g2(∆t )-data obtained from a supercooled liquid,
however, is not straightforward, as two other effects can (potentially) lead to a reduction of
g 0

2 below unity. First, molecular dynamics on faster time scales than probed by the detector
lead to some unresolved decay of g2(∆t ). These contributions could be estimated using high-
frequency DLS experiments, e.g. Tandem Fabry-Perot interferometry. Second, detected light
that was not scattered from the sample, but, instead, stems from reflections from the sample
environment introduces some degree of heterodyning and can reduce g 0

2 .

Instead, coherence effects can be isolated by studying the polarized scattered light from
a strongly diluted colloidal suspension. Such a system does not show any fast relaxation
processes, but only a single exponential decay, the time scale of which depends on the hy-
drodynamic radius of the colloidal particles and the viscosity of the solvent. Moreover, the
very large intensity of the light scattered by the colloidal particles allows to neglect any het-
erodyning effects, thus for a suitable colloidal suspension Λ= g 0

2 . It has to be noted that the
geometry of speckles only depends on the imaging optics and the intensity profile of the laser
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beam. Thus, the coherence effects determined from experiments on a colloidal suspension
can be assumed to be the same as for any other sample.

The inset of Fig. 9.3c reports g2(∆t )-data obtained for 5.5 µm-sized polystyrene particles
dissolved in glycerol. The black lines represent fits to the data by the expression

g2(∆t )−1=Λ ·exp
�

−
∆t

τ

�

, (9.6)

which yields Λfiber = 0.98 and Λcam = 0.61. The fact that Λcam < Λfiber is no surprise, as an
optical fiber has a very strong angle selectivity regarding the transmitted light and, thus, is
well suited to obtain Λ-values close to unity. On the other hand, the camera setup has been
optimized to achieve small speckle-sizes, which necessarily implies a certain degree of overlap
between adjacent speckles and, thus, Λcam < 1.

In a final step it will be shown that, apart from the different coherence factors Λcam and
Λfiber, the information contained in the autocorrelations probed by both techniques are in
fact identical. For this to be the case, the respective electric-field autocorrelations g1(∆t ) need
to be identical. As discussed in Section 2.2.2, in the most general case, g1(∆t ) is related to
g2(∆t ) as

g2(∆t ) =ΛC 2g1(∆t )2+2ΛC (1−C )g1(∆t ) +1, (9.7)

where C = 〈Is〉/〈I 〉 is the relative intensity of light scattered from the sample and quantifies
the degree of heterodyning. For simplicity and because the depolarized scattered intensity
of 1P1P is very large, Cfiber = Ccamera = 1 is assumed. The resulting g1(∆t )-data are shown
in Fig. 9.3c, where a perfect collapse of fiber and camera data is observed. In addition it is
found that the short-time value of the g1(∆t ) fiber data corresponds well to the strength of
fast dynamics Afast ≈ 0.13 estimated from TFPI measurements of 1P1P. This concordance
indicates that, most likely, the choice of C ≈ 1 is justified. It has to be noted, however, that for
supercooled liquids with a lower depolarized scattering intensity most likely Ccamera < 1 has to
be chosen in order to collapse g1(∆t )-data obtained from fiber- and camera experiments. For
1P1P, however, the collapse of camera and fiber data confirms the consistency of the different
DDLS techniques and establishes multispeckle-DDLS as a suitable tool to reliably probe the
electric field autocorrelation function g1(∆t ) of molecular supercooled liquids and glasses.

9.3 S A M P L E C E L L S A N D T E M P E R AT U R E C O N T R O L

Performing physical aging experiments requires to quickly change the sample temperature
to a new annealing temperature T∞. "Quick" in this context means that the variation of the
temperature should be much faster than the glass’ response to the temperature change. This
implies that physical aging can also be studied in a controlled manner in case the temperature
change is rather slow, as long as the experiments are performed at sufficiently low tempera-
tures such that the response of the system is even slower. The downside of performing aging
experiments at such low temperatures is that also the time required for the system to ap-
proach the new equilibrium state becomes very long, i.e. several days or weeks. Consequently,
minimizing the time required for changing the temperature of DLS sample cells has been
an important task within this work. For the data discussed in the following sections, two
sample cells and corresponding temperature-control systems were used: During the first year,
aging experiments were performed using an adapted version of an aluminum sample cell,
which was originally designed for equilibrium measurements. Here, temperature changes
were performed by using an optimized protocol that involves varying the heating current of
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the cold-finger cryostat’s internal heater at large liquid-nitrogen (LN2) fluxes. The sample-cell
design, as well as the temperature-protocol optimization are discussed in Section 9.3.1. Subse-
quently, an optimized sample cell for aging experiments was designed, see Section 9.3.2. The
optimization involved reducing the size of the previously used sample cell and implementing
a Peltier element to allow faster and more precise changes of the sample temperature.

9.3.1 LN2-controlled sample cell

An illustration of the LN2- controlled sample cell is shown in Fig. 9.4a. It was originally design by
Jan P. Gabriel and is optimized for the investigation of equilibrium supercooled-liquid samples
at cryogenic temperatures within an optical Cryovac cold-finger cryostat. Two aspects of the
sample cell are optimized in order to reduce the thermal lag between the cold-finger cryostat’s
heat exchanger and the (supercooled) liquid sample: (i) All parts of the cell, apart from windows
and O-rings, are made from aluminum in order to increase the thermal conductivity and to
reduce the overall weight of the sample cell. (ii) The aluminum body, consisting of a tube with
cavities for optical access in all four directions, passes directly through the liquid sample. The
scattering volume is positioned within the tube, thus its distance from the aluminum surfaces
is small.

The sample cell is tightened by firmly pressing a Suprasil glass tube (outer diameter 20 mm,
wall thickness 2 mm) between a pair of Viton O-rings (thickness 2 mm) via an aluminum ring
equipped with an inner thread. Finally, the inner channel of the aluminum body is sealed by a
lid and another Viton O-ring. All aluminum parts of the cell are anodized, giving them a matt
black surface to reduce the reflection of laser light. To avoid large temperature gradients due
to heat input in terms of thermal radiation, the sample cell is surrounded by a gold-plated
heat shield coupled to the cold-finger.

When operated in equilibrium-mode, the sample cell achieves high temperature-stability
below ±0.01 K. However, despite the implemented optimizations compared to standard DLS
sample cells, simply changing the sample temperature from T0 to T∞ is rather slow and
can take several thousand seconds. Thus, in order to perform physical aging experiments,
some optimizations had to be implement during the present work. One first step involved
introducing ways of monitoring the sample temperature. Priorly, this could only be done
independently from DLS measurements by using an alternative lid equipped with a PT-100
temperature sensor, which could be placed inside the liquid close to the scattering volume.
While this procedure allows to precisely monitor the sample temperature, the PT-100 sensor
interferes with the laser light, thus probing the sample temperature during DLS measurements
was impossible. To solve this issue, another PT-100 temperature sensor was glued inside a
drilled channel within the bottom of the aluminum sample cell. Thermal contact between
sensor and sample cell was ensured by using thermally conducting epoxy glue (Loctite Stycast
2850FT with hardener CAT 23LV). It was confirmed that the change of temperature probed by
the bottom sensor corresponds to the one determined within the supercooled liquid, thus
allowing to probe a representation of the sample temperature during DLS measurements.

After having established a procedure to reliably probe the sample temperature, the cooling
protocol was optimized to achieve faster temperature down-jumps from T0 to T∞. As a first
measure, the LN2-flow through the cold-finger cryostat was increased considerably by setting
the nitrogen-pump pressure up to 0.5 bar instead of 0.1 to 0.2 bar typically used for equilibrium
measurements. Moreover, instead of simply changing the heat-exchanger settings to T∞,
the basic idea is to cool the heat exchanger below T∞, i.e. to T∞ −∆T . Subsequently the
sample is heated back towards T∞ with constant heating rate h1 and after some time t0 the
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Figure 9.4: Left side: Design of the LN2-controlled sample cell. See text for details. Right side: Time-
evolution of the sample temperature after an optimized down-jump protocol. The main
panel shows the sample temperature measured using a PT-100 temperature sensor installed
at the bottom of the cell (blue symbols). It was previously shown to reliably reflect the
temperature of the supercooled liquid sample, see text for details. Inset (a) shows the
temperature of the heat exchanger (red line) and the current set-temperature (green line).
Inset (b) is a zoom into the gray rectangle shown in the main panel and illustrates the
temperature-overshoot within the sample, which was optimized to be as small as possible.

heating rate is switched to h2 until T∞ is reached. This procedure temporarily enhances the
temperature gradient between heat exchanger and sample cell, which increases the resulting
heat flows. By optimizing the values of∆T , t0, h1 and h2 it is possible to cool the sample to T∞
comparably quickly. This is illustrated in Fig. 9.4 for a temperature down-jump from T0 =197 K
to T∞ =193 K. The main panel displays the sample temperature Tsample as a function of the
elapsed time t after initiating the jump. T∞ is reached after t ≈ 200 s, without any considerable
temperature over- or under-shoots as shown in inset (b). Inset (a) displays the temperatures
of the heat exchanger Theatex (red line), as well as the set-temperature of the heat exchanger
Tset (green line) as a function of t . Theatex temporarily reaches 186 K before it is heated back
to 193 K. Similar protocols were optimized for temperature jumps of different magnitude.
The corresponding aging-data obtained after applying these temperature protocols to the
molecular glass 1P1P are discussed in Chapter 10.

9.3.2 Peltier-controlled sample cell

Despite the considerable effort invested into optimizing the performance of the LN2-controlled
sample cell, several issues remain: (i) Taking ∼200 s, temperature jumps still are comparably
slow. (ii) Operating the setup using large LN2-flows leads to large LN2-consumption, which in
turn limits the maximum duration of experiments to around two days. (iii) The sample tem-
perature sensitively depends on the LN2-flow, which makes it almost impossible to perform
two consecutive aging experiments ending at exactly the same T∞. (iv) Optimizing∆T , t0,
h1 and h2 is very time consuming, as it requires repeating temperature jumps several times,
mostly because the optimal choice of parameters is different for jumps of different magnitude
or to different T∞ and has to be determined by trial-and-error. (v) The complex temperature
protocol combined with jumps being comparably slow makes it difficult to define t = 0 of an
aging experiment.
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Figure 9.5: Design of the Peltier-controlled sample cell. (a) Construction sketch of the sample cell to
scale. See text for details. (b) Photo of the sample cell in operation.

To resolve these issues, a new sample cell optimized for physical aging experiments was
developed during the present work, which is illustrated in Fig. 9.5. It represents a downsized
version of the LN2-controlled cell, being approximately a factor five smaller, which is close
to the smallest feasible design in order to maintain sufficient optical access and without
introducing significant amounts of parasitic stray light. Another important limitation are the
dimensions of the glass tube (here: outer diameter 10 mm, wall thickness 1 mm), as further
downsizing would introduce significant lensing-effects and, moreover, would complicate
the production of the corresponding glass tubes with polished edges. Another optimization
compared to the LN2-controlled cell is the fact that the orientation of the small cell is inverted,
such that heat flows into or out-of the sample do not need to pass though any threads, the
thermal conductivity of which typically is small compared to solid aluminum.

The most significant innovation, however, is the introduction of a Peltier element to control
the sample temperature. The basic concept is adapted from two setups developed within the
Glass and Time group at Roskilde university to perform aging experiments using dielectric
spectroscopy and neutron scattering, see Refs. [37, 272]. The addition of the Peltier element
introduces a "sub-cryostat", in the sense that it allows to change the temperature of a sub-
system containing only the sample cell, while all other parts of the cryostat are kept at some
constant temperature Tbase via conventional LN2-cooling. As the sub-system is much smaller
than the entire cold-finger cryostat, its thermal inertia is significantly lower, thus allowing for
faster changes of temperatures. In addition, the reduction of the distance between heat bath
and sample significantly reduces the thermal lag.

To ensure thermal contact between the Peltier element and the sample cell, as well as
between the Peltier element and the cold-finger cryostat, it is glued in-between the two
aluminum surfaces by applying a thin layer of Masterbond EP29LPSPAO-1 two-component
epoxy glue, which is a thermally conducting epoxy able to withstand cryogenic shocks down
to T = 4 K. In order to enhance the adhesion of the glue, the Al2O3-ceramic surface of the CUI
Devices CP402533 Peltier element (25 mm x 25 mm, 4 A) was mechanically roughened by using
a file. The Peltier element is controlled via the ±10 V analog voltage output of a Lakeshore 335
temperature controller, the signal of which is fed into the Huginn Peltier-element driver [272].
The latter was developed and manufactured by the electronic workshop of the Glass and Time
group at Roskilde university and supplies the dc current to drive the Peltier element. The
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Figure 9.6: (a) Time-evolution of the temperatures probed within the sample cell after performing
an instantaneous temperature change from T0 = 202K to T∞ = 201K. The temperature
probed right below the Peltier element, Tpeltier (green line), quickly equilibrates, while some
thermal lag is observed at the bottom of the cell, Tbottom (orange line). Via probing the
autocorrelations of the supercooled liquid sample, its temperature Tsample is estimated from
the relaxation time τ(t ) via Eq. (9.8) (blue symbols). It is found to correspond to Tsample in
good approximation. (b) Time required for the sample to reach T∞±0.2 K as a function of
the temperature-jump amplitude∆T .

temperature signal fed into the Lakeshore 335 is supplied by 1.2 mm x 1.6 mm sized PT-100
temperature sensor from IST Innovative Sensor Technology, which is glued into a groove
carved into the aluminum body of the cell (upper PT-100 in Fig. 9.6). A second identical PT-
100 is glued into the bottom part of the sample cell in order to monitor the current sample
temperature.

Fig. 9.6a explores the evolution of the sample temperature after an instantaneous temper-
ature jump from T0 = 202K to T∞ = 201K is performed via the Peltier element. Here, the
base-temperature of the cold-finger cryostat was set to Tbase = 170 K in order to compensate
for the heat produced within the Peltier element. While the temperature directly below the
Peltier element (green line) equilibrates in only a few seconds, some thermal lag is observed
at the bottom of the cell (orange line). T∞ is reached within approximately 50 s within ±0.2 K
accuracy.

To ensure that the temperature probed at the bottom PT-100 sensor does represent the
real sample temperature, the temperature of the supercooled-liquid sample was probed
indirectly via its relaxation time τ. The procedure is the following: The temperature-range
the temperature jump is performed in was chosen such that the equilibrium relaxation times
τ0 = τ(T0) and τ∞ = τ(T∞) of the supercooled liquid are as small as possible, while the
autocorrelation functions can still be probed via the camera with exposure time 0.01 s. At
these temperatures, the system’s response to a temperature jump is almost instantaneous,
i.e. it fully equilibrates in less than 10 s. Extracting the time-dependent relaxation time τ(t )
as a function of the time t after the jump was initiated allows to indirectly determine the
time-dependent sample temperature as

Tsample(t ) = T∞+ (T0−T∞)
logτ(T )− logτ∞

logτ0− logτ∞
. (9.8)

Here, τ∝ exp T is assumed to hold between T0 and T∞. Tsample(t ) is included in Fig. 9.6a as
the blue symbols. The observed correspondence to Tbottom confirms that the PT-100 at the
bottom of the sample cell can be considered to accurately represent the sample temperature.
Fig. 9.6b shows the time required for the sample temperature to reach T∞±0.2 K as a function
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of the jump amplitude∆T = T∞−T0. It was determined by repeating the experiment discussed
above for different T0 and T∞. The required time increases sub-linearly with increasing |∆T |
and is significantly smaller than for temperature jumps using the LN2-controlled sample cell.
Moreover, the temperature-reproducibility is significantly smaller than 0.05 K, thus making it
possible to perform several consecutive jumps to almost exactly the same T∞. Data obtained
using the Peltier-controlled sample cell are discussed in Chapter 12.
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The following chapter presents a procedure to experimentally determine the material timeξ(t )
from time-resolved intensity autocorrelation functions probed by msDDLS. In Section 10.1,
the material time concept and related considerations are discussed in detail. This includes
the TNM formalism that allows to obtain models to fit experimental data of, e.g., enthalpy
relaxation, the single-parameter aging concept that incorporates the material time in terms of
a differential equation, and finally, some general implications of the material time formalism
for time autocorrelation functions. Based of the latter, as a first step it is shown in Section 10.2
that the msDDLS intensity autocorrelation functions obey the triangular relation, which
suggests the existence of a material time. Subsequently, the procedure of how this material
time can be extracted from the intensity autocorrelation functions is discussed in Section 10.3.
In a final step, the validity of the determined material time is confirmed in Section 10.4, by
showing that it, indeed, linearizes physical aging.

10.1 T H E M AT E R I A L T I M E C O N C E P T

The material-time concept introduced by Naranayaswamy is phenomenological by postu-
lating the existence of a material time that linearizes physical aging. Neither does it propose
what the material time exactly is, nor does it suggest a direct procedure how the concept could
be verified experimentally. In order to apply the concept to experimental data and verify its
validity, several extensions have been derived, which will be discussed in the following sections.
Probably the most famous one is the Tool-Naranayaswamy-Moynihan (TNM) model that
combines concepts from all three authors in order to obtain a framework that can be applied,
e.g., to model enthalpy relaxation probed in calorimetric experiments. It is also commonly
used in industry to optimize the production of glassy materials. While it is very successful
with regard to quantitatively describing physical aging, the insights it provides on the underly-
ing physics are limited. By contrast, the single-parameter aging concept introduced by the
Glass and time group represents a more direct way of verifying the material-time concept for
the simplest case of physical aging, i.e. the relaxation from one equilibrium state to another
after a small instantaneous temperature change. Finally, some general implications of the
material-time formalism for time autocorrelations that are inherited from the equilibrium
state are discussed, i.e. material-time translational invariance and the triangular relation. The
latter was first introduced and discussed for the aging of spin glasses, but can also be applied
to other physically aging systems.
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10.1.1 The Tool-Narayanaswamy-Moynihan formalism

The TNM formalism combines concepts introduced by all three authors, i.e. the material-
time concept [38], the concept of a fictive temperature Tf first introduced by Tool et al. in
1931 [273, 274], and additional relations further connecting both concepts by Moynihan [40].
The following discussion gives a brief overview of the TNM formalism. For more details it is
referred to the excellent review by Hodge [39] that presents a detailed discussion of enthalpy
relaxation in general and the TNM formalism in particular.

The fictive temperature is a concept to describe the structural state of a system subject to
physical aging in terms of the temperature Tf at which the equilibrium supercooled liquid
would have the same structure as the aging glass [41, 273, 274]. Thus, the difference between
the actual physical temperature T and Tf quantifies the system’s departure from equilibrium.
As it turned out over the years, the idea that the microscopic structure of an aging system with
fictive temperature Tf fully resembles the one of an equilibrium supercooled liquid at T = Tf is
not really justified [39, 41]. Nevertheless, Tf remains a useful mathematical tool to quantify
the departure of an aging system from equilibrium in terms of structure.

Combining the material-time and the fictive-temperature concepts yields the so-called
Tool-Narayanaswamy (TN) formalism that considers Tf as a function of time in terms of a
linear convolution integral,

Tf(ξ) = T (ξ)−

ξ
∫︂

−∞

MTf
(ξ−ξ′)

d∆T (ξ′)
dξ′

dξ′. (10.1)

Moreover, the material time is derived from the microscopic relaxation time that is assumed
to be fully characterized by the physical and fictive temperature, i.e. τ(T , Tf), which yields

ξ(t ) =

t
∫︂

−∞

τ
�

T (t ′), Tf(t
′)
�−1

d t′ =

t
∫︂

−∞

�

A exp
�

x
∆H

RT (t ′)
+ (1− x )

∆H

RTf(t ′)

�

�−1

d t′. (10.2)

Here, the definition of τ(T , Tf) first suggested by Narayanaswamy [38] and later refined by
Moynihan [40] is considered in the third part of the equation. It introduces the non-linearity
parameter x that interpolates between τ(T , Tf) being controlled solely by temperature T
(x = 1) and solely by its structure, quantified by Tf (x = 0) [39, 41]. The prefactor A is a
constant and H is the activation energy. Obviously, this relation inevitably fails for fragile
systems, as it assumes a purely Arrhenian temperature, res. fictive-temperature dependence
of the microscopic relaxation time. To solve this issue, it sometimes is adapted to resemble
a VFT dependence [126]. Finally, the kernel MTf

is usually described in terms of a stretched
exponential (KWW) function with stretching exponent β .

A conceptually similar and mathematically equivalent formalism has been developed for
enthalpy relaxation in polymer glasses in terms of the Kovacs-Aklonis-Hutchinson-Ramos
(KAHR) model [275]. Both formalisms yield quantitative models that can, e.g, be used to fit
calorimetric data around Tg via the various free parameters [39, 276]. Unfortunately, a general
justification for the particular model used to describe τ(T , Tf), or at least an insightful physical
interpretation of the non-linearity parameter x are lacking. In this regard, the TNM model
could be considered as phenomenological fit model for the characterization of enthalpy
relaxation in glassy materials.
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10.1.2 Single-parameter aging

The single-parameter aging approach requires less assumptions and yields a differential
equation that describes aging after instantaneous temperature jumps of comparably low
amplitude. It was first introduced in 2015 by Hecksher et al. [42] for temperature jumps
T (t )+T∞ to some fixed temperature T∞. Later it was extended by Roed et al. [277] to consider
jumps to different T∞, and finally shown to be consistent with temperature protocols within
the linear response limit by Riechers et al. [43], which allowed to describe arbitrary temperature
protocols (as long as the departure from equilibrium is not too large). In the following, a brief
overview of the derivation of the key equations used to verify the material-time concept via
single-parameter aging is given based on Refs. [42, 43, 277].

Single parameter aging adopts the early ideas of Narayanaswamy, i.e. the existence of
a material time dξ = γ(t )dξ that allows to express the change of some quantity ∆X (t ) =
X (t )− X∞ in terms of a linear convolution integral, Eq. (8.3), to make predictions for the
normalized aging function

R (t ) =
∆X (t )
∆X (0)

. (10.3)

The linear convolution integral for ∆X (t ) implies that there exists a unique function φ(x )
such that

R (t ) =φ(ξ). (10.4)

φ(x ) can be determined experimentally via small temperature jumps within the linear limit,
where ξ∝ t holds to good approximation, as it was convincingly demonstrated recently
by Riechers et al. for small temperature jumps with ∆T ranging from 10 to 100 mK [43].
Considering the time derivative of Eq. (10.4) yields

dR (t )
dt

=
dφ(ξ)

dt
=

dφ(ξ)
dξ

dξ

dt
=

dφ(ξ)
dξ

γ(t ). (10.5)

As according to Eq. (10.4), ξ is a unique function of R , also dφ/dξ is a unique function of R ,
which was referred to as −F [R (t )] in Ref. [42], i.e.

dR (t )
dt

=−F [R (t )]γ(t ). (10.6)

Eq. (10.6) is equivalent to Narayanaswamy’s linear convolution integral, Eq. (8.3), for instan-
taneous temperature jumps at t = 0. The additional assumption of the single-parameter
aging approach is that a single unspecified parameter Q (t ) controls both X (t ), as well as the
clock rate γ(t ). For this to hold true for any quantity X , there has to exist a single universal
material time that controls the aging of all physical quantities of a glass. Moreover, it is as-
sumed that temperature jumps are sufficiently small such that both, X [Q (t )] and lnγ[Q (t )]
can be first-order Taylor expanded in Q , which yields ∆X (t ) = c1[Q (t ) −Q∞], as well as
lnγ(t )− lnγ∞ = c2[Q (t )−Q∞]. The logarithm is considered for γ to include that γ is con-
trolled by some form of energy barriers.

These assumptions lead to both, an analytical expression for the material-time clock rate,

γ(t ) = γ∞ exp
�

∆X (0)
Xconst

R (t )
�

, (10.7)

as well as, by including Eq. (10.6), a nonlinear differential equation for R (t ),

dR (t )
dt

=−γ∞ F (R ) exp
�

∆X (0)
Xconst

R (t )
�

. (10.8)
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Here, the abbreviation Xconst ≡ c2/c1 was introduced for clarity. It is recalled that the function
F (R ) is not specified, thus Eq. (10.8) can be rearranged to a form that allows to test its validity
without knowledge of F (R ), i.e.

ln
�

−
1

γ∞

dR (t )
dt

�

−
∆X (0)
Xconst

R (t ) = ln(F (R )). (10.9)

As F (R ) is a unique function of R , the left hand side of Eq. (10.9) plotted as a function of R
should collapse for data obtained after different temperature jumps, as long as the above
discussed assumptions are justified. For different jumps to the same temperature, γ∞ is
constant and can, e.g., be assumed as unity, because the material time is dimensionless. The
constant Xconst can be determined by comparing data from two different temperature jumps
to the same temperature T∞, as will be discussed below.

The validity of Eq. (10.9) has been tested for several different substances and quantities X ,
i.e. the mechanical resonance frequency, the dielectric loss at a fixed frequency, the dielectric
constant at a large fixed frequency such that it represents the density-change of a non-polar
liquid, as well as the peak-maximum frequency of the β-process [42, 277]. Deviations have
been observed in particular for larger temperature jumps up to 8 K [277].

The uniqueness of F (R ) implies that Eq. (10.9) can be applied to obtain a prediction for
an unknown relaxation function R2(t ) from an available relaxation function data R1(t ) of a
different temperature jump to the same T∞. R1(t ) is available in terms of measured data-
points R1 = (R 1

1 , R 2
1 , ..., R n

1 ) at times t1 = (t 1
1 , t 2

1 , ..., t n
1 ). Considering that the left hand side of

Eq. (10.9) is identical for both jumps, integrating the differential equation yields a time vector
t2 = (t 1

2 , t 2
2 , ..., t n

2 ) such that (t2,R1) is the predicted shape of R2(t ), i.e. [42, 277]

t2 =

t1
∫︂

0

exp
�

∆X1(0)−∆X2(0)
Xconst

R1(t
′
1)
�

dt ′1. (10.10)

Performing such an analysis for two known jumps allows to determine Xconst, which can then
be used for all other data.

As already mentioned above, aging in the linear limit has recently been explored by Riechers
et al. by probing the subtle changes of the dielectric constant ϵ′ at 10 kHz after small tem-
perature jumps with amplitudes between 10-100 mK [43]. As expected for responses within
the linear limit, R (t ) for these different jumps collapse, which implies that ξ(t )∝ t for such
small temperature changes. As a consequence, the probed R (t ) for small temperature jumps
correspond to the memory kernel Mϵ′ (ξ) in the Narayanaswamy’s linear convolution integral,
Eq. (8.3). Knowledge of Mϵ′ (ξ) allows to describe more complex temperature protocols within
the linear response limit via Boltzmann superposition, which has been confirmed by Riechers
et al. for small double temperature jumps and a temperature oscillation protocol. Moreover,
by adopting the single-parameter aging result for the material-time clock rate, Eq. (10.7), the
description could be extended to different temperature protocols beyond the linear-response
limit.[43] This confirms the TN prediction that knowledge of the linear aging response allows
to predict nonlinear aging [12, 42]

10.1.3 Material-time translational invariance and the triangular relation

The material-time concept is remarkable by transforming the nonlinear process of aging into
a linear phenomenon by replacing time by material time. Following the linear-response spirit,
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Dyre established a connection between the material-time concept and time correlations
functions [12]. Considering that msDDLS gives access to the intensity time autocorrelation
functions during aging, these conclusions provide a valuable basis for applying the material-
time formalism to experimental data obtained during the present work. Following Refs. [12]
and [278], the following section establishes various predictions for time autocorrelation func-
tions based on the material-time formalism.

Within linear-response theory, time-translational invariance holds, i.e. the linear response
does only depend on the elapsed time after some perturbation. Via fluctuation-dissipation
relations this characteristic is closely linked to time-translational invariance of time autocorre-
lation functions. Adopting this concept for the material-time formalism implies material-time
translational invariance (MTTI), in the sense that time autocorrelation functions only depend
on the elapsed material time, i.e. there exists a function FX (x ) such that




∆X (t1)∆X (t2)
�

≡CX (t1, t2) = FX

�

ξ(t1)−ξ(t2)
�

. (10.11)

Here, for generality the time autocorrelation functions of the fluctuations of any quantity
X are considered, however within the scope of the present work mostly the light-scattering
intensity is relevant, i.e. X (t ) = I (t ). In the following, the abbreviation C (t1, t2) instead of
CX (t1, t2) and F (ξ1−ξ2) instead of FX (ξ1−ξ2) is used for clarity, although obviously the time
autocorrelations and, consequently, also the function F (x ) generally can depend on the
quantity that is considered. Eq. (10.11) can be understood as an extension of the standard
time-translational invariance of equilibrium systems, because time-translational invariance
directly follows from Eq. (10.11) for ξ(t )∝ t . For an aging system, however, only MTTI holds,
while time-translational invariance is violated.

Eq. (10.11) allows to determine the material time of an aging system from time-resolved
autocorrelation functions. The procedure and results will be discussed in Section 10.3. In the
remaining part of this section some consequences of Eq. (10.11) are discussed that represent
necessary conditions for deriving the material time from time autocorrelation functions.

A direct consequence of Eq. (10.11) is the triangular relation, which for any three times
t1 < t2 < t3 establishes a relation for the pairwise autocorrelations C12 ≡C (t1, t2), C13 ≡C (t1, t3)
and C23 ≡C (t2, t3). Because F (x )monotonically goes to zero for x →∞ it can be inverted, i.e.
there exists Φ(x ) such that

(i) ξ(t1)−ξ(t2) =Φ(C12)

(ii) ξ(t1)−ξ(t3) =Φ(C13)

(iii) ξ(t2)−ξ(t3) =Φ(C23).

(10.12)

Adding (i) and (iii) yields

ξ(t1)−ξ(t3) =Φ(C12) +Φ(C23) =Φ(C13), (10.13)

where in the second step (ii) is used. Φ is monotonous, thus the second part of Eq. (10.13) can
be inverted and there exists a function f (x ) such that

C13 = f (C12, C23). (10.14)

Eq. (10.14) is the triangular relation and implies that knowledge of two of the three pairwise
autocorrelations uniquely determines the third one. If MTTI applies, the function f (x ) should
be the same for any temperature protocol.

The triangular relation was originally derived by Cugliandolo and Kurchan via a mean-field
description of aging spin glasses after a quench from an infinite to a low temperatur [279].
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Mathematically, it was shown that the validity of the triangular relation is a sufficient con-
dition for time-reparametrization invariance, i.e. the existence of functions h (t ) and j (x )
such that C (t1, t2) = j (h (t1)−h (t2)). In this regard, the time-reparametrization h (t ) has the
same properties as suggested for the material time by Eq. (10.11), however the interpretation
by Cugliandolo and Kurchan refers to a different context and does not consider the most
fundamental property of the material time, i.e. that it linearizes aging.

By an analogous procedure as discussed in Ref. [278] it can be derived that the function f
in Eq. (10.14) is symmetric: Because ξ(t ) is continuous, there exists t4 such that

ξ(t4)−ξ(t1) = ξ(t3)−ξ(t2), (10.15)

which in turn implies that
C14 =C23. (10.16)

At the same time, Eq. (10.15) can be rearranged to

ξ(t3)−ξ(t4) = ξ(t2)−ξ(t1), (10.17)

which yields
C43 =C12. (10.18)

By considering that
ξ(t3)−ξ(t1) =
�

ξ(t3)−ξ(t4)
�

+
�

ξ(t4)−ξ(t1)
�

(10.19)

and that Eq. (10.15) together with ξ(t ) being monotonically increasing implies t1 < t4 < t3,
one finds

C13 = f (C14, C43), (10.20)

which considering Eq. (10.14), Eq. (10.16) and Eq. (10.18) establishes the symmetry of f (x ), i.e.

C13 = f (C23, C12) = f (C12, C23). (10.21)

In equilibrium, the symmetry of f follows from time-reversal symmetry. The derivation of
this relation and the consequences for non-equilibrium aging samples will be discussed in
Chapter 11.

Recently, Douglass et al. [278] verified the validity of the triangular relation for the distances
between points in the 3n-dimensional configuration space that characterize an aging system
instead of time autocorrelation functions. These results indicate that the elapsed material time
is associated with the distance traveled in configurational space, thus providing a microscopic
interpretation of the material time, i.e. as stated by the authors it suggests ’distance as time’.
Moreover, it was shown that in this picture the material time is dominated by the distance
traveled by the slowest particles of the system.[278]

10.2 C O N F I R M I N G T H E E X I S T E N C E O F A M AT E R I A L T I M E

In this section, time-resolved intensity autocorrelation function data of the scattered light of
aging samples of 1P1P are discussed. To maintain the notations from the previous section and
in the publication of these data in Ref. [280], in the following the intensity autocorrelations
are referred to as

C (t , t +∆t ) = g2(t , t +∆t )−1, (10.22)

where g2(t , t+∆t ) is determined according to Eq. (9.4). In both panels of Fig. 10.1, C (t , t+∆t ) is
plotted as a function of∆t , while the colors represent different t , with darker colors indicating
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Figure 10.1: Time-resolved intensity autocorrelation functions of an aging sample of 1P1P after a
∆T = 2K (a) and a ∆T = 4K (b) temperature jump to similar temperatures T∞. The
equilibrium autocorrelation functions before the jump and after complete equilibration
at T∞ are shown as the black and the gray dashed lines, respectively. The colors indicate
different t , with darker colors indicating larger t . The data shown were obtained using the
LN2-operated sample cell, which is the reason why the annealing temperatures T∞ are
not exactly identical as it would be in the Peltier-driven sample cell.

larger t . Aging is initiated by a temperature down-jump from T0 to T∞, starting from an
supercooled liquid equilibrated at T0. Subsequently, the full equilibration of the sample at
T∞ is monitored. The two panels represent data for different∆T = T∞−T0, i.e.∆T =−2 K in
panel (a) and∆T =−4 K in panel (b). Intensity autocorrelations obtained for the equilibrium
system at T0 res. T∞ are included in Fig. 10.1 as the black and gray dashed lines. During aging,
a distinct t - dependence of C (t , t +∆t ) is observed, i.e. its rate of decay to zero for∆t →∞
slows down with increasing t , until it eventually reaches a stationary equilibrium at T∞ after
several thousand seconds.

The time autocorrelation functions presented in Fig. 10.1 provide a basis to verify the trian-
gular relation equations. To recall and put in simple terms, the considerations in Section 10.1.3
yield three conditions for the triangular relation to be obeyed.

(i) Two pairwise autocorrelations for three points in time predict the value of the third one,
Eq. (10.14).

(ii) The underlying relation connecting these pairwise autocorrelations, denoted by f (x ) in
Eq. (10.14), is the same for all temperature protocols.

(iii) f (x ) is symmetric, Eq. (10.21).

In order to test conditions (i) - (iii), C12, C23, and C13 were calculated for several million
time triplets, t1 < t2 < t3, from the speckle-pattern data obtained after the ∆T = −2K and
the∆T =−4K temperature down-jumps and for an equilibrium sample. This was done by
choosing 103 linearly spaced values of t1. For each t1, different t2 = t1+τ′ were constructed
for 169 logarithmically equally spaced values τ′. Subsequently, for each combination of t1 and
t2, different t3 = t2+τ′′ were constructed using the same 169 logarithmically equally spaced
values forτ′′. Combined, this procedure generated 1000·1692 ∼= 28.6·106 different time triplets.
For each of these, the pairwise autocorrelations C12, C13 and C23 were calculated according
to Eq. (9.4), where, e.g., t = t1 and t +∆t = t2 for the calculation of C12. Finally, subsets
with the same values of C12 and C23 were binned (with resolution∆C = 0.005). Each subset
yields a distribution of C13-values associated with the respective C12 and C23. Finally, from
each distribution the mean value, C13(C12, C23), and the corresponding standard deviation,
∆C13(C12, C23), were calculated. In the following, the (...) notation is dropped for clarity and
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Figure 10.2: Testing the validity of triangular relation. (a) Illustration of how the three pairwise auto-
correlation values C12, C23, and C13 are defined from two autocorrelation functions, one
starting at t1 (yellow line) and the second from t2 (red line). The x -axis considers absolute
times t instead of relative times∆t as it was done in Fig. 10.1, thus the autocorrelation
functions are plotted on a linear time-axis instead of a logarithmic one, leading to a differ-
ent appearance. (b) Mean values of C13 as a function of C12 for five fixed C23 indicated on
the right hand side. The different colors represent data obtained for different temperature
protocols, i.e. equilibrium data as black symbols and lines and∆T =−4 K, res.∆T =−2 K,
temperature down-jump data as blue squares res. orange spheres. Errorbars reflect the
standard-deviation values∆C13, which are much smaller than symbols size. C13-data for
the different protocols collapse, confirming that f (x ) in Equation (10.14) is independent
of the temperature protocol.

C13 ≡C13 denotes the mean of each distribution. For an illustration of how C12, C13 and C23

are defined for an exemplary time triplet, see Fig. 10.2.

The results of the triangular-relation analysis are plotted in different representations in
Fig. 10.2b and Fig. 10.3, which will be discussed in combination below. In Fig. 10.2b, C13(C12, C23)
is plotted as a function of C12 at five fixed values of C23. The errorbars indicate∆C13(C12, C23),
which, however, are difficult to identify as they are much smaller than the symbol size. Data
obtained for both temperature down-jumps and for an equilibrium sample are included.
Fig. 10.3 plots data in 2d -heatmap representation, where x - and y -axes represent C12 and C23,
respectively. The colors indicate the values of C13(C12, C23) (left side panels), ∆C13(C12, C23)
(middle panels) and a measure for the deviation from diagonal symmetry of the left side
panels, i.e. |C13(X , Y )−C13(Y , X )| for given values of X =C12 and Y =C23 (ride side panels).

In order for condition (i) to be fulfilled,∆C13(C12, C23) should be zero at each combination
of C12 and C23, as the latter uniquely determine C13. Obviously, due to the finite binning
resolution and due to experimental noise,∆C13 > 0. To judge whether∆C13-values obtained
for aging samples are sufficiently small in order to conclude that the triangular relation is
obeyed, the results are compared to the data obtained in equilibrium, where the triangular
relation holds trivially [12]. For both, the down-jump data and the equilibrium data, the er-
rorbars in Fig. 10.2 representing∆C13 are much smaller than the symbol size. Inspecting the
middle panels of Fig. 10.3 reveals that for the equilibrium data∆C13 ∼ 0.003 for all C12 and
C23, suggesting the minimum values that can be obtained considered the binning resolu-
tion and experimental noise. For the down-jump data, slightly larger values are observed at
intermediate C12 and C23 reaching values up to ∆C13 ∼ 0.006. While this indicates a slight
violation of triangular relation, the deviations are mostly below 1%, indicating that triangular
relation can be assumed to hold within good approximation. It has to be noted in this regard
that lowering the temperature of a macroscopic sample inevitably leads to some volume
contraction and fluxes, which can alter the recorded speckle pattern of scattered light, thus
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Figure 10.3: Testing the validity of triangular relation. All panels plot data as 2d heatmaps, where x - and
y -axes represent C12 and C23, respectively. The colors reflect mean C13(C12, C23) in panels
(a), (d) and (g), the standard deviation of C13,∆C13(C12, C23), in panels (b), (e) and (h), as well
the measure of deviation from diagonal symmetry of C13(C12, C23), |C13(X , Y )−C13(Y , X )|
for given values of X =C12 and Y =C23, in panels (c), (f ), and (i). Each row represents data
from one temperature protocol, i.e. in equilibrium (a-c) after the∆T =−2K down-jump
(d-f) and the∆T =−4 K down-jump (g-i).



116 10 E X P E R I M E N TA L D E T E R M I N AT I O N O F T H E M AT E R I A L T I M E

leading to subtle artifacts in the autocorrelation functions. Most likely, these effects lead to
some small deviations from triangular relation that do not reflect "real" violations on the
microscopic scale.

According to condition (ii), the function f (x ) that describes the relation between the three
pairwise autocorrelation values, i.e. C13 = f (C12, C23), should be independent of the temper-
ature protocol. Thus, the heatmaps in the left hand side panels (a), (d) and (g) of Fig. 10.3
should be identical and the data for the different temperature protocols in Fig. 10.2b should
collapse. Indeed, this is confirmed in Fig. 10.2b, i.e. f (x ) is almost identical for data obtained
from both temperature down-jumps and for the equilibrium sample.

Finally, in order for condition (iii) to be valid, the heatmaps in the left hand side panels (a), (d)
and (g) of Fig. 10.3 should be symmetrical along the diagonals. To quantify the deviations from
perfect symmetry, the measure |C13(X , Y )−C13(Y , X )| for given values of X =C12 and Y =C23

is considered in the left hand side panels (c), (f) and (i). It reflects the absolute difference
between the C13 values at some (C12,C23)-point and the value at its reflection point through
the diagonal axis, (C23,C12). The deviations from perfect symmetry are much smaller than
0.001 for both, equilibrium and temperature down-jump data, thus confirming the symmetry
of f (x ) independent of the temperature protocol.

To summarize, comparing autocorrelation data of aging and equilibrium samples of 1P1P
confirms the validity of the triangular relation. The latter can be considered as a necessary
requirement in order to define a material time on the basis of material-time translation invari-
ance, Eq. (10.11). The procedure to extract the material time will be discussed in Section 10.3.
Prior to this, Section 10.2.1 presents some artificially generated autocorrelation data con-
structed to disobey triangular relation. These considerations allow to estimate how precisely
deviations from triangular relation can be identified using the analysis tools applied in the
previous section. It is found that especially deviations from triangular-relation symmetry,
quantified by |C13(X , Y )−C13(Y , X )|, very sensitively indicate violations of the triangular rela-
tion. These results support the conclusions drawn regarding validity of triangular relation in
the previous section.

10.2.1 Artificially generated data disobeying triangular relation

In the following, two sets of artificially generated time autocorrelation functions are compared;
one defined to obey and the other one defined to disobey MTTI and thus, also triangular
relation. Time autocorrelations that obey MTTI are defined as stretched exponential functions
of the elapsed material time,

C (t1, t2) = exp

�

−
�

ξ(t2)−ξ(t1)
k

�β �

, (10.23)

where β = 0.5, k is some constant and ξ(t ) is obtained from some predefined function γ(t ) via
integration. Per definition, Equation (10.23) obeys MTTI and, thus, also obeys the triangular
relation. Time-resolved autocorrelations C (t , t +∆t ) obtained from Equation (10.23) are
plotted as a function of∆t in Fig. 10.4a. The underlying γ(t ) as a function of time is shown in
the inset of panel (a). It was chosen to resemble the experimentally observed material-time
clock rate of a ∆T = −2K down-jump. According to their definition, the autocorrelations
collapse as functions of∆ξ≡ ξ(t +∆t )−ξ(t ) in panel (b).

A definition similar to Equation (10.23), which, however, disobeys MTTI is given by

C (t1, t2) = exp

�

−
�

ξ(t2)−ξ(t1)
k

�β (t )�

, (10.24)
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Figure 10.4: Time-resolved autocorrelations defined in Equation (10.23) to obey MTTI (left panels (a)
and (b)) and defined in Eq. (10.24) to disobey MTTI. The upper panels (a) and (c) show
C (t , t +∆t ) as functions of∆t , where darker colors indicate larger t . The inset of panel (a)
shows the predefined material-time clock rate γ as a function of t , while the inset of panel
(c) shows the t -dependence of the stretching exponent β , which was introduced to violate
MTTI in Eq. (10.24). The lower panels (b) and (d) show the same data as the upper panels,
but as a function of the elapsed material time∆ξ≡ ξ(t +∆t )−ξ(t ), which collapses the
data obeying MTTI in (b), but not the ones disobeying MTTI in (d).

where now an explicit t -dependence of the stretching exponent β is included. Corresponding
autocorrelations for the same function γ(t ) as above are shown in panel Fig. 10.4c. β (t ) as
a function of t is shown in the inset. It is assumed to linearly change from 0.65 to 0.35 as a
function of log t . Indeed, the autocorrelations do not collapse as a function of∆ξ in panel (d),
indicating a violation of MTTI and, consequently, the autocorrelations defined by Eq. (10.24)
do not meet the criteria to obey triangular relation.

Triangular relation for both definitions of autocorrelations is tested in Fig. 10.5 by consid-
ering the same 2d heatmaps as in Figure 10.3. The various time triplets analyzed during the
corresponding analysis were determined using an equivalent procedure as for the analysis of
experimental data in Section 10.2.

The heatmaps based on autocorrelations defined to obey MTTI (upper panels) can be
considered as a representation of the equilibrium heatmap-data from Section 10.2 without any
experimental noise. Comparably small values for∆C13 and |C13(X , Y )−C13(Y , X )| are found
as for the experimental data above, suggesting that the observed deviations from zero mostly
reflect the finite binning resolution. By contrast, large values of∆C13 and |C13(X , Y )−C13(Y , X )|
are observed for the autocorrelations defined to disobey MTTI (lower panels) that significantly
exceed any of the deviations observed for the experimental data during aging. It is noted that
the color scales have been adapted compared to Figure 10.3 in order to include the much
larger values of ∆C13 and |C13(X , Y )−C13(Y , X )|. The upper limits of the color scales used
for the analysis of the experimental data are indicated as ticks in the color scales of Fig. 10.5.
Especially the deviations from symmetry for the autocorrelations based on Eq. (10.24) exceed
the experimentally observed maximum values by much more than a factor ten. This suggests
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that |C13(X , Y )−C13(Y , X )| is a very sensitive measure to identify deviations from triangular
relation.

Figure 10.5: Heatmaps for verifying triangular relation equivalent to Fig. 10.3 but for the time autocor-
relations shown in Fig. 10.4. Upper panels represent autocorrelations that obey MTTI and
triangular relation, while the lower-panel data disobey both.
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10.3 D E T E R M I N I N G T H E M AT E R I A L T I M E F R O M I N T E N S I T Y AU -
T O C O R R E L AT I O N F U N C T I O N S

The previous sections have confirmed a necessary condition for defining the material timeξ(t )
based on MTTI. As discussed in Section 10.1.3, the MTTI relation Eq. (10.11) can be inverted,
thus Φ(x ) exists such that

ξ(t1)−ξ(t2) =Φ (C (t1, t2)) . (10.25)

As a consequence, once the time autocorrelation function C (t1, t2) has decayed to some value,
say a , a fixed amount of material time∆ξ has elapsed. Thus, ξ(t ) can be determined from
experimental time autocorrelation functions via an iterative procedure, which is illustrated
on a linear time axis in Fig. 10.6. The basic idea is to construct a sequence of points in time,
t= (t1, t2, ..., tn ), such that consecutive elements of the sequence satisfy the criterion

C (ti , ti+1) = a . (10.26)

Then Eq. (10.25) implies that
ξ(ti+1)−ξ(ti ) =∆ξ≡ 1, (10.27)

i.e. ξ = (ξ(t1),ξ(t2), ...,ξ(tn )) = (1, 2, ..., n ). Here, it was used that the material time is dimension-
less, thus∆ξ≡ 1 can be chosen with no loss of generality.

Applying this procedure with a = 0.3 to the experimental data discussed in Section 10.2
yields the results shown in Fig. 10.7. Panel (a) plots ξ(t ) obtained for the different temperature
protocols, i.e.∆T =−2 K (orange line) and∆T =−4 K (blue line) down-jumps and equilibrium
(green line), as a function of t in double-logarithmic representation. While the expected
ξ(t )∝ t is confirmed for the equilibrium sample, ξ(t ) is a non-linear function of t during
physical aging. Panel (b) shows the same data as panel (a) but in linear representation. Here it
is found that during aging after a temperature down-jump the material time initially increases
quickly at short t , but eventually slows down and reaches a constant slope.

The rate the material time ticks with is obtained via the time-derivative

γ(t ) =
dξ(t )

dt
, (10.28)

which is plotted in double-logarithmic representation for all three data sets in panel (c) and
in linear representation in panel (d). These data confirm that following a temperature jump
γ(t ) goes from one value at the shortest times probed to the new equilibrium rate at T∞.
Here, it is noted that the data shown in Figure 10.7 have been obtained before the completion
of the Peltier-driven small sample cell and by using the LN2-cooled large sample cell. As a
consequence, T∞ for the∆T =−2 K and the∆T =−4 K temperature jumps were not exactly
the same, which was accounted for in Figure 10.7 assuming time-aging-time superposition,
the procedure of which will be discussed in Section 10.4.1. Similar data for jumps to exactly the
same T∞ obtained by using the Peltier-driven small sample cell will be shown in Section 12.1.

The data shown in Figure 10.7 have been derived using a = 0.3, i.e.∆ξ ≡ 1 elapses while
the intensity autocorrelation function decays to 0.3. In fact, the procedure for determining
ξ(t ) is valid independent of how a is chosen, thus the same results should be obtained for
different a . This conjecture is explored in Fig. 10.8, where panels (a) and (b) show ξ(t ) and
γ(t ) data as a function of t for a = 0.12...0.38. While the shape of the curves for different a are
very similar, no collapse is observed due to the fact that different choices of a imply different
definitions of the material-time base unit ∆ξ. For two choices of a , a1 and a2, ∆ξ elapses
while C (t , t +∆t ) decays to a1 res. a2, i.e. the times∆t1 and∆t2 that corresponds to∆ξ are
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Figure 10.6: Schematic illustration of the procedure used to determine the material time as a function of
time, ξ(t ), from time autocorrelation functions, plotted as linear function of t in the upper
panel. Starting at t0, t1 = t0+∆t is determined such that the function C (t0, t0+∆t ) (orange
line) equals a . Iterative repetition of this procedure yields the vector t= (t1, t2, ..., tn ), such
that ξ = (ξ(t1),ξ(t2), ...,ξ(tn )) = (1, 2, ..., n ), which finally provides the (non-linear) function
ξ(t ) shown in the lower panel. See text for details.
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Figure 10.7: Material time ξ(t ), panels (a) and (b), and material-time clock rate γ(t ), panels (c) and (d)
obtained from the experimental intensity-autocorrelation data. The different temperature
protocols are indicated by the different colors as indicated in the legend. Left hand side
panels (a) and (c) use double-logarithmic representation, while the right hand panels (b)
and (d) are plotted on a linear scale.
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Figure 10.8: Validation that the determined material time is independent of the choice of a in
Eq. (10.26). Upper panels consider ξ(t ) (a) and γ(t ) (b) as a function of t for various
values of a = 0.12, ...,0.38 indicated by the different colors. While the respective shapes
obtained for different a are very similar, the curves do not collapse, due to the different
definitions of the material-time base unit. A description with a common definition of
the material-time base unit can be obtained by considering the ∆t (a ) as a function of
a associated with ∆ξ for the equilibrium autocorrelation function in panel (c). This is
confirmed in panel (d), where all data from panel (b) collapse via Eq. (10.29).

defined as C (t , t +∆t1) = a1 and C (t , t +∆t2) = a2. According to MTTI, the ratio∆t1/∆t2 is
uniquely defined by the choices of a1 and a2, thus can be determined, e.g., from an equilibrium
autocorrelation function as illustrated in panel (c). The length of the colored horizontal lines
reflects∆t (a ) that elapses during∆ξ.∆t (a ) extracted from the equilibrium autocorrelation
function shown in panel (c) allows to calculate representations of γ(t ) obtained from different
values of a that have the same material-time base unit definition as the a = 0.3-data shown in
Fig. 10.7, i.e.

γa
norm(t ) =

∆t (a )
∆t (0.3)

γ̃(t ), (10.29)

where γ̃(t ) represents the material-time clock rate determined using a = 0.3. Indeed, γa
norm(t )

for various a are shown to collapse in panel (d). Only subtle deviations from a perfect collapse
are observed that suggest γa

norm(t ) to relax slightly slower for smaller a , however the validity
of this observation is difficult to judge considering the experimental noise. In summary, it
was confirmed that the procedure for determining ξ(t ) yields equivalent results for different
choices of a . For noisy autocorrelation data, small a -values yield less noisy γ(t )-data, however
information is lost at short t . a = 0.3 was chosen above as a compromise between these two
effects.
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10.4 T E S T I N G T H E VA L I D I T Y O F T H E M AT E R I A L T I M E

Section 10.3 presented the first experimentally determined material-time data for aging
molecular glasses, however, so far without any validation that these results represent the
correct material time. The following two sections provide such validations. Section 10.4.1
confirms that the determined material time linearizes aging relaxation functions, according
to Narayanaswamy’s linear convolution integral, Eq. (8.3). Section 10.4.2 tests the validity
of MTTI, Eq. (10.11), which, so far, was only confirmed indirectly by showing that the time
autocorrelations obey triangular relation in Section 10.2, but can now be tested explicitly with
knowledge of the function ξ(t ).

10.4.1 Linearizing aging via the material time

In a first step, a relaxation function RC (t ) is determined from the DDLS intensity autocor-
relation functions and it is tested whether replacing time by material time linearizes these
data. Within the single-parameter aging framework it is assumed that there exists one general
material time that controls the aging of any quantity. However, whether the material time that
controls the aging of some quantity X (t ) does also linearize the change of another quantity
Y (t ) during aging remains an open question and, in fact, is impossible to test experimentally.
As a first attempt to approach this important question, however, it is tested below whether the
material time determined from the DDLS intensity autocorrelation functions also linearizes
the change of the dielectric loss at a fixed frequency during aging.

DDLS relaxation functions

One popular quantity used to derive a relaxation function from is the dielectric loss ϵ′′ν (t )
evaluated at a fixed frequency νfix along the high-frequency side of the α-process [37, 42, 43,
244, 277, 281–283]. During aging, ϵ′′ν (t ) changes as a function of t as the average relaxation
time of the sample changes, thus leading to a shift of the α-process . Considering fluctuation-
dissipation relations, evaluating a susceptibility spectrum at a fixed frequency is conceptually
equivalent to evaluating a time autocorrelation function C∆t (t ) ≡ C (t , t +∆t ) at a fixed
short lag time ∆t . Thus, in this section the relaxation function based on DDLS intensity
autocorrelations

RC (t )≡
C∆t (t )−C∆t (t →∞)

C∆t (t = 0)−C∆t (t →∞)
(10.30)

is analyzed. Finally, this will allow to apply the material time determined from DDLS intensity
autocorrelations to relaxation functions obtained within the same experiment.

As a first step, Figure 10.9 explores how RC (t ) depends on the choice of∆t . Intensity auto-
correlation functions after a∆T =−4K down-jump are shown in panel (a). RC (t ) considers
the normalized change of the autocorrelations along the fixed lag times indicated by the
colored vertical lines. C∆t (t ) for the various∆t -values are shown in panel (b), while panel (c)
shows the normalized change of C∆t (t ) during aging, i.e. RC (t ). Quite different behavior is
observed for different∆t , i.e. RC (t ) decays steeper and at larger t for large values of∆t . To
confirm that this behavior is in-line with the material-time concept, panels (d)-(f) consider
the same analyses performed for artificially generated autocorrelation data, similar to the
ones in Section 10.2.1 and based on Eq. (10.23), but for a different choice of γ(t ) to resemble
the data shown in Figure 10.9a. Thus, per definition these artificially generated data fully
conform to a material time, however the same dependence of RC (t ) on ∆t is observed in
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Figure 10.9: Determining the DDLS relaxation function RC (t ). The left-side panels consider experi-
mental data for a∆T =−4 K down-jump, while the right-side panels considered artificially
generated data without any experimental noise based on Eq. (10.23). (a),(d) In order to
determine RC (t ), C (t , t +∆t ) are evaluated at fixed lag times∆t , which are illustrated as
vertical colored lines. (b),(e) Raw C∆t (t )≡C (t , t +∆t )-data obtained for various choices
of∆t between 0.2 and 1000 s. (c),(f) Normalized change of C∆t (t ), i.e. RC (t ), as a function
of time. Different shapes are observed for different choices of δt , reflecting the non-linear
weighting of short-time and long-time aging behavior.

panel (f). The quite different behavior for large ∆t can be understood by considering that
at short t and large∆t , C∆t (t ) is essentially zero, as the autocorrelations have already fully
decayed between t and t +∆t . As a consequence, almost no change of C∆t (t ) is detected at
short times and only once the decay of the autocorrelations has slowed down considerably
such that C∆t (t ) > 0, a relevant contribution is observed for RC (t ). Thus, different choices
of∆t essentially weight short- and long-time changes of time autocorrelations differently,
leading to considerably different appearances of RC (t ).

In fact, this effect is of quite general relevance: Even though two quantities X (t ) and Y (t )
obey the same material time, the corresponding relaxation functions RX (t ) and RY (t ) are not
necessarily equal as long as X and Y are different non-linear functions of t . Single-parameter
aging does treat this issue by considering small temperature jumps, such that changes of
X (t ) and Y (t ) can be Taylor expanded to first order and, thus, are treated as linear functions
of the quantity that controls aging and inherit the corresponding time-dependence, see
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Figure 10.10: (a) RC (t ) for the∆T =−2 K (orange) and the∆T =−4 K (blue) down-jumps are different,
reflecting the non-linear nature of physical aging. (b) These data collapse as a function of
the material time, i.e. RC (ξ). (c) Testing the single-parameter aging result that γ∝ exp(R ).

Section 10.1.2. Beyond the validity of the first-order Taylor expansion, however, two quantities
can obey the same material time, but show different relaxation functions RX (t ) and RY (t ).

In order to compare RC (t ) quantifying aging after different temperature jumps, small values
of∆t should be chosen to ensure that the entire relaxation from one to the other equilibrium
state is resolved equally. At the same time, RC (t ) obtained from the shortest obtainable∆t
are noisy. As a compromise, RC (t ) obtained from∆t = 6 s are used to verify whether using the
material time instead of conventional time linearizes RC (t ) in the second part of this section.

Fig. 10.10a shows RC (t ) obtained for the∆T =−4 K (blue line) and the∆T =−2 K (orange
line) down-jump as a function of t . As expected for temperature changes beyond the linear
limit, the two relaxation functions do not collapse. Instead, RC (t ) for the larger temperature
jump decays earlier and appears more stretched, reflecting a stronger auto-retardation effect
compared to the smaller temperature jump.

Plotting these data as a function of material time in panel (b) reveals a perfect collapse, thus
confirming the prediction of the Naranayaswamy linear convolution integral. Unfortunately,
obtaining RC (t )-data with sufficiently low noise is difficult for smaller temperature jumps,
thus it is currently impossible to explore the linear aging regime.

Finally, Fig. 10.10c verifies the single-parameter aging prediction that the material-time
clock rate γ(t ) is an exponential function of the relaxation function RC (t ). If the data would
obey the single-parameter aging prediction, plotting γ(t ) as a function of RC (t ) on a loga-
rithmic y -axis should be linear with a slope proportional to C∆t (t →∞)− C∆t (0). While
this, indeed, seems to be the case for the∆T =−2K-data, a distinct deviation from a linear
course is observed for the∆T =−4K-data. This deviation could reflect that the non-linear
variations of C∆t (t ) during aging are too strong in order to be Taylor expanded to first order of
the underlying single-parameter variable Q (t ). Such effects are usually not observed in the
standard frequency-domain experiments, because the probed fixed frequency corresponds
to much smaller lag-times than 6 s. Thus, the variations of the probed susceptibility during
aging are significantly smaller compared to the ones observed for C∆t (t ), i.e. after a∆T =−4 K
down jump, C∆t (t ) goes from 0.17 to 0.42 (see Figure 10.9b).

Dielectric relaxation functions

To verify whether the material time obtained from the DDLS intensity autocorrelation func-
tions does also linearize the change of some other quantity during aging, dielectric aging
experiments have been performed by Jan P. Gabriel in the Glass and Time group at Roskilde
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Figure 10.11: (a) Dielectric loss at ν= 10kHz for aging samples after temperature jumps of different
amplitudes to 193 K (b) From these data the dielectric relaxation function Rϵ(t ) is derived
using Eq. (10.31). No collapse is observed for data obtained after different temperature
jumps. (c) Testing single-parameter aging by plotting the left-hand side of Eq. (10.9) as a
function of Rϵ . Data collapse for smaller jumps, but distinct deviations are observed for
the largest jumps, indicating a violation of the single-parameter aging assumptions.

University. The experiments were performed in a custom-built cryostat system that allows
to quickly change the sample temperature within a few seconds via a Peltier element [37,
42]. After an equilibrium sample of 1P1P was exposed to a quick temperature change, the
complex capacity was measured at the fixed frequency ν0 =10 kHz, with an Andeen-Hagerling
AH 2700A high-precision bridge. From the complex capacity, the time-dependent complex
permittivity of 1P1P at 10 kHz was determined and its imaginary part, ϵ′′(t )≡ ϵ′′(ν= 10 kHz, t ),
was used to calculate the dielectric relaxation function

Rϵ(t ) =
ϵ′′(t )− ϵ′′(t →∞)
ϵ′′(t = 0)− ϵ′′(t →∞)

. (10.31)

Fig. 10.11 shows ϵ′′(t ) and Rϵ(t ) as a function of t for temperature jumps to 193 K with various
different amplitudes ∆T in panels (a) and (b), respectively. Panel (c) shows the results of
the single-parameter aging test based on Eq. (10.9), which involves plotting the left-hand
side of the equation as a function of R (t ). Once the data obey single-parameter aging, all
curves should collapse onto a single master curve. Here, the parameter ϵ′′const was determined
by collapsing R (t ) obtained from the∆T =±1K temperature jumps onto each other using
Eq. (10.10). As is evident from Fig. 10.11c, single-parameter aging breaks down for the±4 K data,
as it is commonly observed for large-amplitude temperature jumps [42, 277]. This observation
might also explain the deviation of the RC (t )-data from the single-parameter aging prediction
as shown in Fig. 10.10c.

In a next step, the material time obtained from the DDLS intensity autocorrelations shall
be applied to the dielectric relaxation functions. One major issue in this regard is the fact
that the two experiments are performed in different laboratories, thus the absolute annealing
temperatures of both experiments, T∞,DDLS and T∞,ϵ , are not the same. Moreover, the DDLS
data analyzed in the present chapter were obtained using the LN2-operated sample cell for
which no absolute temperature calibration is available, which introduces further ambiguity.
Thus, in order to perform a combined analysis of DDLS and dielectric data, a "retrospective"
temperature calibration is required. This can be done by comparing the equilibrium relax-
ation times at T∞,DDLS and T∞,ϵ . The DDLS equilibrium relaxation spectrum at T∞,DDLS was
obtained by Fourier-transforming the electric-field autocorrelation function g1(t ), which was
determined from the equilibrium intensity autocorrelation function g2(t ) = C (∆t ) + 1 via
the Siegert relation. It is plotted in Fig. 10.12c as the blue triangle symbols and is referred
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Figure 10.12: Rϵ as a function of ξ and related considerations. (a) Selected Rϵ(t )-data from Fig. 10.11b
for which comparable DDLS-data are available to extract ξ(t ). (b) Plotting the same data
as Rϵ(ξ) leads to an almost perfect collapse for ∆T ≤ 2K and some subtle deviations
for ∆T = 4K. (c) To adapt ξ(t ) obtained from DDLS to fit the dielectric experiments,
the differences regarding annealing temperatures T∞ have to be considered. This was
done by comparing equilibrium relaxation spectra obtained at the respective T∞ and
priorly presented data from Section 6.1.1. Details can be found in the text. (d) Knowledge
of the differences regarding equilibrium relaxation times allows to adapt ξ(t ) via TATS,
which is confirmed for the material time by comparing data obtained after two∆T = 2 K
temperature jumps. Rescaling by Eq. (10.32) leads to perfect collapse.

to in the legend as χ ′′cam. An equilibrium dielectric relaxation spectrum of the sample in the
Roskilde setup at T∞,ϵ = 193 K was obtained using a time-domain experiment. It is included
in Fig. 10.12c as the solid black line and is referred to in the legend as ϵ′′RUC. As discussed in
Section 6.1.1, χ ′′(ν) and ϵ′′(ν) of 1P1P do not reflect the same aspects of molecular dynamics,
as dipolar cross-correlations contribute considerably to the dielectric loss. Thus, χ ′′cam and
ϵ′′RUC cannot be compared straightforwardly. To resolve this issue, data from Section 6.1.1 can
be used, which provide a connection between χ ′′(ν) and ϵ′′(ν) obtained at exactly the same
temperatures. One combined data set obtained at T = 192.8 K is included in Fig. 10.12c as the
pink symbols and referred to in the legend as ϵ′′TUD, res. χ ′′TUD. Coincidentally, χ ′′TUD and ϵ′′RUC
coincide perfectly, thus χ ′′TUD can be considered as the representation of the DDLS spectrum
one would obtain at T∞,ϵ . Comparison of χ ′′cam and χ ′′TUD yields τ(T∞,DDLS) = (8±1) ·τ(T∞,ϵ).

The observed difference between the average equilibrium relaxation times at the annealing
temperatures implies that the material time ξ(t ) obtained from the DDLS intensity autocorre-
lations cannot be straightforwardly applied to the dielectric aging data. To modify the material
time in order for it to be applicable to dielectric aging data, time-aging time superposition
(TATS) can be utilized. TATS implies that aging after two temperature jumps with the same
amplitudes but to different annealing temperatures, T∞,1 and T∞,2, is identical except for a
scaling factor applied to the time-axis that is proportional to the ratio of the equilibrium relax-
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ation times at the two temperatures, i.e. proportional to δ≡τ(T∞,2)/τ(T∞,1). In addition, it
has to be considered that the material-time base unit will be different for the two temperature
jumps in an equivalent manner as it has been for different values of a in Fig. 10.8. All together,
TATS predicts the material-time clock rates γ1(t ) and γ2(t ) of the two jumps to T∞,1 and T∞,2,
to be related via

γ2(t ) =δγ1(δt ). (10.32)

This conjecture is tested in Fig. 10.12d, where γ(t ) for two different∆T =−2K temperature
jumps to different T∞ is plotted function of t as blue and pink lines, respectively. The dashed
gray line represents a rescaled version of the blue curve according to Eq. (10.32). Evidently,
the scaling yields a perfect collapse, thus confirming TATS for the material-time clock rate. It
has to be noted that in fact, not the temperature-jump amplitudes∆T need to be identical
for both jumps, but rather the ratio of the equilibrium relaxation times before and after the
jump, i.e. τ(T0,1)/τ(T∞,1)/τ(T0,2)/τ(T∞,2). Obviously, this equation is equivalent to∆T1 =∆T2

as long as logτ∝ T , however discrepancies between both become relevant once the super
Arrhenius temperature dependence of relaxation times plays a considerable role, i.e. for large
temperature jumps or for largely different T1 and T2.

As the ratio of equilibrium relaxation times at the annealing temperatures could be deter-
mined via the analysis shown in Fig. 10.12c, Eq. (10.32) allows to obtain a modified version of
ξ(t ) that compensates for the annealing-temperature discrepancy and thus, can be applied to
the dielectric aging data. In addition to the∆T =−2 K and −4 K-data shown above, material-
time data are available for∆T =−0.5 K and −1 K (similar data for smaller temperature jumps
are shown in Section 12.1). The corresponding Rϵ(t )-data as a function of t are shown in panel
(a) of Fig. 10.12, while the same data as a function of the material time ξ are shown in panel
(b). Evidently, the material-time description leads to an almost perfect collapse of the data.
Minor deviations from a perfect collapse are observed for the smaller temperature jumps,
while slightly larger deviations are observed for the∆T =−4 K-data.

In this regard it has to be kept in mind that the procedure of rescaling the material time via
Eq. (10.32) probably is imperfect and discrepancies likely increase for larger jump amplitudes.
It remains an open question whether the break-down of single-parameter aging observed for
larger temperature jumps in Fig. 10.11c indicates a general break-down of the TN formalism,
which would also lead to deviations in Fig. 10.12b, or whether it reflects a violation of the
additional single-parameter aging assumptions, which should be irrelevant for the analysis
using the experimentally obtained material time in Fig. 10.12b. In this regard it would be
insightful to perform DDLS and dielectric aging experiments within the same sample cell.
By this, any ambiguities regarding temperature protocols could be ruled out and the results
could provide further insight on the limits of single-parameter aging and the TN formalism in
general.

Within the scope of the present work, however, it can be concluded that the material time
obtained from the DDLS intensity autocorrelations, within the experimental uncertainties,
also linearizes data from the dielectric aging experiment. These results can be considered as a
first hint towards the existence of one single material time that controls the change of any
variable during aging. Obviously, similar tests should be performed for other variables, e.g.
for structural ones like density. The latter could be achieved, e.g., by repeating the presented
experiments for an unpolar liquid, such that the changes of ϵ′(t ) at some fixed frequency
can be assumed to reflect the change of density. Another approach could be to perform
similar experiments using X-rays instead of visible light, which allow to simultaneously probe
the dynamics and the structure factor of an aging sample. Computer simulations represent
another possibility, as many different variables can be extracted from the trajectories at the
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same time and, as will be shown in Section 11.3.3, also the material time can be obtained from
computer simulations using an equivalent procedure as shown in Section 10.3.

10.4.2 Confirming material-time translational invariance

Using the experimentally obtained material time ξ(t ) allows to verify the initial assumption
of material-time translational invariance (MTTI), Eq. (10.11). This is achieved by applying
the transformation t → ξ(t ) to the time autocorrelation functions C (t +∆t ) to obtain the
respective material-time autocorrelation functions C (ξ,ξ+∆ξ)with∆ξ≡ ξ(t +∆t )−ξ(t ).
Fig. 10.13 plots C (ξ,ξ+∆ξ) as a function of∆ξ for the same data and using the same color code
as in Fig. 10.1. As predicted by MTTI, the autocorrelations are found to collapse as a function of
the elapsed material time, with subtle deviations appearing only at small and large∆ξ. On the
one hand, deviations may be caused either by some artifacts that slightly distort the shape of
the autocorrelations. On the other hand, the deviations at large∆ξwould also be expected in
case of a dynamically heterogeneous material time, in the sense that microscopic regions with
larger local relaxation times age slower than regions with shorter local relaxation times. This
heterogeneous aspect of aging has been discussed previously as a natural implication of the
dynamically heterogeneous nature of equilibrium dynamics of supercooled liquids [284–289].
As a matter of fact, no signature of this heterogeneous aging scenario could be identified in
some first experiments studying physical aging after exposing a sample to a strong electric
field [282]. This observation has been rationalized in terms of rate exchange between slow
and fast regions, leading to an average homogeneous behavior [288], or in terms of a lack of
correlation between heterogeneous equilibrium dynamics and heterogeneous aging [289].
Recent computer-simulation imply that the homogeneous material time is dominated by
the slowest regions within the glass [278]. Further experimental and computational effort is
required in these regards and, unfortunately, at the current level of experimental resolution, the
DDLS autocorrelation functions cannot provide an unambiguous interpretation on whether
aging is heterogeneous or not.

Figure 10.13: Testing MTTI by plotting intensity time autocorrelation functions as a function of the
ellapsed material time∆ξ≡ ξ(t +∆t )−ξ(t ). The panels consider the same data as shown
in Fig. 10.1, i.e. data obtained after an ∆T = −2K down-jump in (a) and a ∆T = −4K
down-jump in (b). Autocorrelations obtained at different t approximately collapse, with
small deviations appearing especially at larger∆ξ.
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Most fundamental laws in physics are time-reversible, i.e. they are invariant under the trans-
formation t →−t . The evident time-irreversibility of everyday live is considered by the second
law of thermodynamics, which states that the entropy as a function of time of an isolated
system can only increase or stay constant but never decrease. Once a system’s entropy in-
creases as a function of time, its time-evolution is no longer invariant under transformation
t →−t and, thus, the system evolution as a function of time is said to be time-irreversible.
Supercooled liquids are in thermal equilibrium, i.e. their entropy is constant as a function of
time and, thus, their microscopic dynamics are time-reversible. This is reflected, e.g., by the
fact that time autocorrelation functions quantifying the microscopic dynamics of supercooled
liquids are invariant under time reversal, i.e. under the transformation t →−t .

Interestingly, time-reversal symmetry and time-translational invariance together represent a
sufficient condition for the symmetry of the triangular relation: Time-translational invariance,
i.e. C (t1, t2) = F (t2− t1) for t1 < t2, and the fact that F (x ) is monotonic imply that there exists
Φ such that for any t1 < t2 < t3, t2− t1 =Φ(C12) and t3− t2 =Φ(C23). Adding these two equations
yields

t2− t1− t2+ t3 =Φ(C12) +Φ(C23) (11.1)

t3− t1 = f (C12, C23), (11.2)

which is the triangular relation, Eq. (10.14). Time-inversion implies that now −t3 <−t2 <−t1

and, thus,
C31 = f (C32, C21), (11.3)

which is equivalent to
C13 = f (C23, C12), (11.4)

thus confirming the symmetry of f . It can be concluded that in thermal equilibrium the
symmetry of the triangular relation is a trivial consequence of time-reversibility.

Obviously, the evolution of physically aging glasses is not time-reversible: Physical aging
involves plasticity, dissipation, entropy production and the time autocorrelation functions
as well as the characteristic length scale of dynamical heterogeneity explicitly evolve as a
function of time [290]. Despite all that, the validity of triangular relation and its symme-
try during physical aging are "inherited" from thermal equilibrium, which in turn implies
time-reparametrization invariance as shown by Cugliandolo and Kurchan [279]. Also the
TN formalism recovers thermal-equilibrium physics for aging samples by describing aging
in terms of a linear convolution integral when time is replaced by material time. Together,
these considerations lead to the conjecture of material-time reversibility. The basic idea is
that the irreversible thermal fluctuations during aging recover the properties of equilibrium
fluctuations, meaning they become reversible, when they are considered in terms of material
time instead of time.
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The following chapter attempts to verify this idea by applying time-series analysis concepts
to intensity fluctuations probed by DLS. As the latter reflect fluctuations of molecular ori-
entations res. position within the sample, they can be considered as a proxy for the thermal
fluctuations of an aging sample. Section 11.1 presents a brief introduction to time-series
analyses, in particular for detecting reversibility, before discussing the main analysis tool used
in what remains of the present chapter, i.e. the visibility-graph algorithm. In Section 11.2
material-time reversibility is confirmed for the fluctuations of aging 1P1P samples, while Sec-
tion 11.3 finally attempts to extend material-time reversibility to other amorphous systems,
i.e. an aging colloidal glass, a polymerizing epoxy and a computer-simulated model glass.

11.1 T E S T F O R T I M E - R E V E R S I B I L I T Y: V I S I B I L I T Y- G R A P H A L G O -
R I T H M

Generally speaking, a time series (TS) is a sequence of measurement results at a discrete set
of equally spaced points in time. For measurements of some (physical) quantity X with time
resolution∆t at points in time (tn ) = (n ·∆t , n ∈N), the TS is given by (Xn ) = (X (t1), X (t2), ...).
Obviously, real-life time series are finite, thus they have some final element XN = X (tN ).

The concept of TS is universally applied in various scientific fields ranging from physics
over statistics and finance to ecological science. Hence, there exist a multitude of statistical
tools for TS analysis for various applications. The particular field relevant for the present
work is time-reversibility analysis. Here, the aim is to judge as to whether there are statis-
tical differences between a TS (Xn ) = (X1, X2, ..., XN ) and its own time-reversed counterpart
(X −n ) = (XN , XN−1, ..., X1), i.e. under transformation t →−t . For an excellent review discussing
TS analysis tools for testing time-reversibility it is referred to the work of Zanin et al. [291].
Generally speaking, for an irreversible process the probability that some line of events takes
place depends on whether the data are analyzed along or against the arrow of time, while it
is identical for both directions for a reversible process [292, 293]. Statistical tests attempt to
detect these, often subtle, differences via a multitude of approaches ranging from quite simple
procedures that, e.g., compare the bicovariances of (Xn ) and (X −n ) [294], to more complicated
algorithms for identifying repeating patterns on various different scales and comparing their
appearance along and against the arrow of time [295–299]. With recent advances in artifi-
cial intelligence, also machine-learning approaches for detecting time-(ir)reversibility have
emerged [300].

Many tests for detecting time-irreversibility either focus on small-scale irreversibility, i.e.
asymmetry of "local" time-series patterns under time-reversal, or require the user to specify
some scale on which irreversibility should be considered, thus introducing additional free
parameters. By contrast, irreversibility during physical aging most likely appears on a broad
range of more "global" scales. For instance, the irreversible evolution of the time autocorrela-
tions as a function of time proceeds over hundreds or thousands of seconds, while fluctuations
might appear to be (almost) reversible on shorter time scales. One family of tests that is suited
for the analysis of such global aspects of irreversibility are based on visibility graphs (VG). Here,
a TS is mapped onto a directed graph that "inherits" the structure of the TS. The following brief
discussion of VGs and related reversibility tests follows Refs. [301–303] by Lacasa et al., who
have established the VG as a general tool for TS analysis in 2008 and for reversibility-testing in
2012.

Considering again the real-valued TS (Xn ) = (X1, X2, ..., XN ), the corresponding VG is com-
posed of N nodes, each of which represents one element of the TS. Two nodes i < j are
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connected by a directed edge if element i of the TS can "see" element j in a plot where (Xn ) is
plotted over (tn ), i.e. one can draw a line from i to j that does not intersect with any other
element in between. This visibility criterion is illustrated in the left side panels of Fig. 11.1 for
a TS with six elements, the VG of which is shown below. Trivially, each node i has an outgoing
node to the subsequent node i +1, as no in-between nodes exist. On a longer scale, node 1 is
connected to node 4, while node 2 is not connected to node 4 because visibility is "blocked"
by node 3. Mathematically, the visibility criterion can be formulated as a convex criterion, i.e.
an outgoing edge from i to j with i < j exists if

Xk < X i +
k − i

j − i
(X j −X i ), ∀k : i < k < j . (11.5)

Here, the direction of the arrow of time is considered by the restriction to i < j . Inverting the
arrow of time is equivalent to inverting this criterion, or, alternatively, inverting the direction
of any edge, i.e. outgoing edges become incoming ones and vice versa. The basic idea of the
VG-based reversibility test is that if the TS (Xn ) is time-reversible, the two VGs constructed
from (Xn ) and (X −n ) have the same properties.

Typically, the property considered in this regard is the degree distribution of the VG, i.e. the
probability P (k ) that a randomly chosen node of the graph has exactly k edges. Because VGs
considered for testing reversibility are directed, each VG is, in fact, associated with two degree
distributions Pin(k ) and Pout(k ), which reflect the probabilities that a randomly chosen node
has k incoming, res. outgoing edges. Considering that time-reversal inverts the direction of
each edge, it can be derived [303] that the incoming and outgoing degree distributions of a
time-reversible TS are asymptotically identical for n→∞, i.e.

Pin(k ) = Pout(k ). (11.6)

This is illustrated in the right side panels of Fig. 11.1 for a correlated Gaussian random process,
i.e. an Ornstein-Uhlenbeck process without drift-term [304]. By definition, it is time-reversible.
Pin(k ) and Pout(k ) are shown to be (almost) identical in the lower panel, both averaged over 104

equivalent TS obtained from the same random process to reduce noise. VGs are determined
from the TS data by using the TS2VG python package [305], which is based on the algorithm
proposed by Lan et. al [306].

The TS shown in Fig. 11.1 is finite like any other real-life TS. Thus, Eq. (11.6) does not apply
exactly leading to minor differences between Pin(k ) and Pout(k ) reflecting the finite statistical
power. To quantify such discrepancies, a measure for the dissimilarity of Pin(k ) and Pout(k )
can be considered. One possible realization is the Kullback-Leibler (KL) divergence [307]

DKL

�

Pin||Pout

�

=
∑︂

k

Pin(k ) ln
Pin(k )

Pout(k )
, (11.7)

which can be considered as a statistical distance between the two probability distributions
Pin(k )and Pout(k ). DKL(Pin||Pout) = 0 for Pin = Pout and> 0 in any other case. DKL is not symmetric,
i.e. DKL(Pin||Pout) ̸= DKL(Pout||Pin). To obtain a symmetric version of the KL divergence, the
Jensen-Shannon (JS) divergence [308]

DJS(Pin||Pout) =
1

2

�

DKL

�

Pin||P̄
�

+DKL

�

Pout||P̄
�

�

, (11.8)

with P̄ = (Pin+Pout)/2, can be considered instead. In order to apply Eq. (11.8) to experimental
data it has to be considered how to deal with k where Pin(k ) = 0 or Pout(k ) = 0, as these would
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Figure 11.1: The visibility-graph formalism and the related test for TS-reversibility.
Left side: The upper panels illustrates how the "visibility criterion" Eq. (11.5) applies to an
exemplary TS with six elements , (X (t1), ..., X (t6)). Visibility is assessed along the arrow of
time, i.e. in direction of increasing time-index. The gray dashed line between two elements
X (ti ) and X (t j ) indicates "visibility", i.e. the view from X (ti ) to X (t j ) is not "blocked" by
another datum in-between. The corresponding VG is shown in the lower panel. It contains
a node for each TS element, while nodes are connected by a directed edge in case of
visibility. Here, the direction of the edge goes along the arrow of time. Note that for clarity
arrow-heads are only included for selected edges.
Right side: The VG formalism is applied to an exemplary TS (upper panel) obtained from
a correlated Gaussian random process, which is fully time-reversible. As a consequence,
the incoming and outgoing degree distributions Pin(k ) (black symbols) and Pout(k ) (red
symbols) as a function of k collapse in the lower panel. Deviations between both would
be observed in case of time-irreversibility.

Figure 11.2: (a) DJS obtained for TS that reflect a correlated Gaussian random process (see Fig. 11.1) as
a function of the TS length N . Here, the VG-degree distributions Pin and Pout are averaged
over 104 TS to reduce noise. DJS → 0 while N →∞ is observed, as it is expected for a
reversible process like a Gaussian random process. Despite the process being reversible,
DJS > 0 for finite N . A way for determining the lowest possible values DJS that could be
obtain for a certain TS if it were fully reversible are surrogates. Surrogates are defined
to resemble the TS they are based on in various aspects, however, are, per definition,
reversible. Panel (b) shows a surrogate (gray line) determined based on the original data
(black line) using the iAAFT algorithm.
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imply division by zero in Eq. (11.7). To avoid such instances, it is a standard procedure to
add a small bias to Pin or Pout [303], e.g. here, Pin+10−10 is analyzed instead of Pin. Before the
VG-based test for reversibility is applied to experimentally obtained intensity TS, a few general
aspects are discussed.

First of all, the degree of a certain node can, in principle, reflect the properties of a quite
large portion of the TS, which is the reason why the VG-based reversibility test is said to assess
"global" aspects of reversibility [302, 303]. In reality, of course, each node has a limited "visual
range", as reflected by the fact that nodes with large degrees become very rare, see the lower
right panel of Fig. 11.1. This implies that a VG has some effective accessible "time scale" on
which reversibility can be judged, which, however, depends on the exact properties of the
TS, e.g. how fast are the fluctuations or how are the TS values distributed. In principle, this
effective accessible time scale can be slightly varied by changing the number of elements
of the TS, e.g., by introducing some degree of averaging, which will also be applied for the
experimental data discussed below.

As already mentioned, fully-reversible but finite TS never have exactly identical incoming
and outgoing degree distributions, thus DJS(Pin||Pout)> 0. Reasons for this are the finite size
effects at the beginning and the end of the TS, as well as limited statistical power. In fact,
the lowest value of DJS that could be obtained for a finite TS with N elements is inversely
proportional to N , because finite size effects become less relevant at large N [302, 303]. An
illustration of this is given in Fig. 11.2, where DJS of the Gaussian random process is considered
as a function of the number of elements N of each TS. Again, the degree distributions are
averaged over 104 TS to reduce statistical noise. Evidently, DJS→ 0 for N →∞, as it is expected
for a reversible process like a Gaussian random process.

The fact that DJS(Pin||Pout)> 0 even for reversible but finite TS poses a problem: How can
an irreversible TS be distinguished from a reversible one if both yield values larger zero?
For mathematically defined TS, the solution to this problem is to perform an analysis of
the N -dependence in order to verify whether DJS → 0 for N →∞ [303]. Obviously, this is
usually impossible to test for real-life TS, as the amount of available data is limited. Thus,
another solution is to construct surrogates of the experimentally obtained TS. A surrogate
is constructed as a stationary Gaussian linear stochastic process that resembles the original
TS in certain basic feature, i.e. it has the same distribution of TS values and the same power
spectrum [309]. However, the fact that the surrogate is obtained from a Gaussian process
implies that it is, per definition, time-reversible. Thus, comparing the DJS-values obtained
for the surrogate, D surro

JS , provides a lower "reversibility limit" for DJS. It reflects the lowest
possible values of DJS that one could obtain for a TS with the given characteristics, thus, for
finite TS DJS >D surro

JS can be considered as the new criterion for irreversibility. In the present
work, surrogates are constructed using the iterated Amplitude Adjusted Fourier Transform
(iAAFT) algorithm [310] implemented in the IAAFT python package [311].

Finally, it remains to be noted that the large majority of statistical tests for reversibility,
including VG-based tests, deal with the issue that usually only a single or a few equivalent TS
are available that reflect some stochastic process, e.g. in finance [312] or climate science [313].
This usually requires to use some form of hypothesis testing under the null-hypothesis of re-
versibility. In the present work, thousands of intensity TS are available via the msDLS approach,
thus the distribution of DJS-values can be approximated and compared without requiring any
hypothesis testing.
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11.2 A P P L I C AT I O N T O E X P E R I M E N TA L D ATA

The discussed VG-based test for reversibility is now applied to intensity TS obtained for
physically aging and equilibrium samples of 1P1P in order to verify the conjecture of material-
time reversibility. The following two results are required in order to confirm material-time
reversibility:

(i) Intensity TS sampled equidistantly in time, (It ), are found to be irreversible. This obser-
vation confirms that the VG-based test for TS reversibility can, in principle, detect the
irreversibility of thermal fluctuations during aging.

(ii) Intensity TS sampled equidistantly in material time, (Iξ), are found to be reversible. This
could be confirmed by showing that the obtained "degree of irreversibility" in the form
of DJS is comparable to the one for intensity TS obtained from equilibrium samples. The
latter are assumed to be time- and material-time reversible.

In a first step, corresponding intensity TS (It ) and (Iξ) have to be extracted from the recorded
speckle patterns. This procedure is explained in Section 11.2.1. A necessary requirement for
material-time reversibility is material-time stationarity, which is tested for in Section 11.2.2.
Finally, material-time reversibility is verified in Section 11.2.3.

11.2.1 Obtaining intensity time-series

The recorded speckle-pattern movies are sampled with a fixed exposure time of∆t =0.2 s and
comprise approx. 4 ·105 pixels. To obtain reliable results from the VG-based reversibility test,
it has turned out to be favorable to average over 104 statistically independent TS reflecting
the same process. Therefore, a set of 104 uniformly spaced pixels within the speckle images is
chosen from which intensity TS are extracted. Here, the uniform spacing of the pixels ensures
that the corresponding intensity fluctuations can be assumed to be statistically independent.
In order to obtain a distribution of the reversibility-test result in order to extract an uncertainty
for DJS, the analysis is repeated for a total of ten different sets of 104 uniformly spaced pixels. In
the following, the procedure for extracting (It ) and (Iξ) from the intensity raw-data of a single
pixel is described, which was analogously applied to the combined number of 105 analyzed
pixel within the ten different sets of 104 pixels each.

The intensity TS are constructed from the raw I (t )-data within the time interval [0, tf], where
tf is chosen such that significant changes of the material-time clock rate are observed within
the entire interval, i.e. such that |dγ(t )/dt |> 0. Later times are excluded, as here the sample is
very close to thermal equilibrium and, thus, the reversibility of thermal fluctuations holds
trivially. To obtain intensity TS (It ) res. (Iξ) of length N , the interval [0, tf] is divided into N
sub-intervals, the lengths of which are chosen to either be constant in units of time t , or
res. constant in units of material time ξ. Within each sub-interval, the average intensity is
calculated from the raw I (t )-data. Finally, the intensity TS are constructed such that the j th

element of the TS is given by the average intensity obtained from the respective j th sub-
interval.

The discussed procedure for constructing TS may be thought of as measuring the scattered
intensity using a camera with an exposure time which is chosen to either be constant in
units of t , as it is done in conventional cameras, or in units of ξ. For aging samples, the latter
implies that the exposure time is explicitly time-dependent in units of t . While this is rather
uncommon for conventional cameras, it would be well-possible to obtain (Iξ) directly from an
experiment by accordingly programming the camera to use a time-dependent exposure time



11.2 A P P L I C AT I O N T O E X P E R I M E N TA L D ATA 135

Figure 11.3: Intensity TS reflecting the intensity fluctuations within one exemplary pixel after the
∆T =−4K temperature down-jump. The TS are sampled equidistantly in time, (It ) (left
side panels), and in material time, (Iξ) (right side panels), respectively. Each row reports TS-
data with a different number of elements N = 500, 1000, 2500, 5000 (from top to bottom).

and to normalize the data with regard to the exposure time, such that an intensity instead of an
absolute photon-count is obtained. Of course, choosing the exposure times requires preceding
knowledge of ξ(t ), which could be realized by repeating a temperature protocol twice for the
same sample. While there obviously is no reason to do this, because the post-experimental
data-treatment is much simpler, these considerations are meant to show that the construction
of (Iξ) does not involve any "unnatural" data treatment.

In order to ensure that the qualitative results are independent of the number of TS elements
N , the procedure discussed above is performed for various different N = 500, 1000, 2500, 5000.
Fig. 11.3 presents (It ) (left side) and (Iξ) (right side) for different N (rows) obtained from the
same exemplary pixel and after the∆T =−4K down-jump. Evidently, the choice of N does
not affect the low-frequency intensity fluctuations, while high-frequency fluctuations are
suppressed for smaller N due to the enhanced degree of averaging. While differences between
(It ) and (Iξ) are visible, their (ir)reversibility is difficult to judge by bare eye.

11.2.2 Time-series stationarity

A necessary condition for TS reversibility is TS stationarity [291, 292]. The exact definition
of stationarity is that two TS (X (t1), ..., X (tN )) and (X (t1+ l ), ..., X (tN + l )) have the same joint
probability distributions for all lag times l . Obviously, this definition is impossible to confirm
for real-life TS, such that weaker definitions of stationarity are commonly used. One example is
weak stationarity, which is defined as the mean valueµ(t ) and the autocovariance cov(t , t +∆t )
being independent of t . Instead of analyzing cov(t , t +∆t ) of a TS, equivalently its spectral
density can be considered, which is the Fourier transform of cov(t , t +∆t ). [314].
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Figure 11.4: Time-resolved Fourier analysis of intensity TS to assess stationarity. (a) Illustration of
the procedure to obtain a time-resolved res. material-time-resolved representation of an
intensity TS by multiplication with a Gaussian envelope with mean t0, res. ξ0 (red). The
result is a time-resolved wavelet representation (blue) of the original TS (It ) res. (Iξ) (gray).
Repeating this procedure for different t0 allows to obtain time-resolved res. material-time-
resolved periodograms P (ωk , t ) and P (ωk ,ξ). Panels (b) and (c) show these periodograms
as a function ofωk for different t res. ξ. The latter are indicated by the colors ranging from
light to dark for increasing t res. ξ. The dashed gray lines indicate the discrete Fourier
frequenciesωk the periodograms are analyzed at in Fig. 11.5.

This section presents a time-resolved analysis of the the spectral densities of (It ) and (Iξ).
Here, from the discrete Fourier transform of the TS,

Ak =
N−1
∑︂

n=0

Xn ·exp (−iωk n ) withωk = 2πk/N , (11.9)

which is calculated using the fast-Fourier transform (FFT) algorithm, the periodogram

P (ωk ) = |Ak |2 (11.10)

is determined and used as an estimator for the spectral density f (ω) [314]. It is noted that the
scaling factor between the temporal frequenciesω and the discrete Fourier frequenciesωk is
not considered below, as it does not affect any of the results.

To introduce temporal resolution, only short sub-sequences of the intensity TS (It ) and (Iξ)
are analyzed, which yields time-resolved periodograms P (ωk , t ) and material-time resolved
periodograms P (ωk ,ξ). As, however, cutting out a short sub-sequence of a TS using a rectangu-
lar envelope introduces significant artifacts to the discrete Fourier transform, time-resolution
is implemented by multiplying the TS by a Gaussian function with mean t0 (res. ξ0). This
procedure is illustrated in Fig. 11.4a, where an original intensity TS (gray) is multiplied by an
Gaussian envolope with mean t0 (red), which yields a time-resolved wavelet representation of
the TS around t = t0, res. ξ= ξ0 (blue).

Time-resolved periodograms of (It ) and (Iξ) as a function of ωk are shown in panels (b)
and (c) of Fig. 11.4, respectively. The colors indicate different t , res. ξ similar to the time-
resolved autocorrelations in Fig. 10.1. The low-frequency contribution to P (ωk , t ) res. P (ωk ,ξ)
represents the Fourier-transform contribution of the Gaussian envelope, while the data at
higher frequencies reflect the spectral density of the intensity fluctuations associated with
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Figure 11.5: Analyzing the stationarity of (a) (It ) and (b) (Iξ) by considering the spectral density, esti-
mated by the periodograms P (ωk , t ) and P (ωk ,ξ), at three fixed discrete Fourier frequen-
ciesωk (different colors). These three frequencies are indicated in Fig. 11.4 by the dashed
gray lines. While P (ωk , t ) is explicitly t -dependent and, thus, non-stationary, P (ωk ,ξ) is
constant as a function of ξ, confirming material-time stationarity of the intensity fluctua-
tions.

the microscopic dynamics within the sample. Evidently, (It ) is non-stationary, as the spectral
density explicitly depends on t . By contrast, the periodograms obtained from (Iξ) collapse for
different ξ0, thus (Iξ) can be considered being stationary. The same conclusions are drawn
from Fig. 11.5, where P (ωk , t ) res. P (ωk ,ξ) are plotted at three fixedωk , which are indicated in
Fig. 11.4 by the vertical dashed lines. While the spectral density evaluated at fixed frequencies
is explicitly time-dependent for (It ), it is approximately constant for (Iξ). To summarize,
while intensity TS during aging and sampled equidistantly in t are non-stationary, they are
found to be stationary when sampled equidistantly in material time. The latter observation
is a necessary condition for material-time reversibility to be valid, which will be verified in
the following section. Finally, it remains be noted that stationarity of intensity TS sampled
equidistantly in material time is equivalent to MTTI, due to the one-to-one relation between
the spectral density and the autocorrelation function.

11.2.3 Time-series reversibility

The conjecture of material-time reversibility is tested for intensity TS with N = 2500 obtained
in thermal equilibrium and during physical aging after the ∆T = −2K and the ∆T = −4K
down-jump. The main results of this section are summarized in Fig. 11.6, where DJS(Pin||Pout) is
plotted as a function of∆T . It can be considered to quantify the "degree of irreversibility" of a
TS. Red symbols indicate results for TS sampled equidistantly with regard to material time and
blue refer to TS sampled equidistantly in time. Each point reflects the average DJS(Pin||Pout)-
value obtained from ten equivalent analysis of 104 TS each (for details see Section 11.2.1), while
the error bars indicate the corresponding standard deviations. In addition, the "reversibility
limit" of these TS was determined via a surrogate analysis. It is indicated by the gray area,
which corresponds to theσ-interval obtained for the distribution of DJS(Pin||Pout)-values of
surrogates and can be interpreted as the range of values for which the TS can be considered
reversible.

As a first result, Fig. 11.6 rightfully indicates equilibrium intensity TS (∆T = 0) to be re-
versible. This finding can be regarded as a consistency requirement for applying the VG-
based reversibility test to assess the reversibility of intensity TS. Unsurprisingly, the same
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Figure 11.6: Analyzing the reversibility of (It ) and (Iξ) obtained for equilibrium and aging samples of
1P1P using the VG-based test for TS-reversibility, see Section 11.1. The Jensen-Shannon di-
vergence DJS obtained for (It ) (blue symbols) and (Iξ) (red symbols) is plotted as a function
of the temperature-jump amplitude∆T after which the TS data were obtained.∆T = 0
refers to a sample in thermal equilibrium. The error bars reflect the standard deviation
of the distribution of DJS, which was estimated by repeating the reversibility analysis for
ten different sets of intensity TS. The reversibility limit was determined via a surrogate
analysis, see Section 11.1, and is illustrated by the gray shaded area, the width of which
was determined using an equivalent procedure as for the determining the error bars.

DJS(Pin||Pout)-values are obtained for (It ) and (Iξ), because in equilibrium t ∝ ξ and thus,
(It )≈ (Iξ) except for small deviations due to experimental noise.

By contrast, significantly different DJS(Pin||Pout)-values are obtained for (It ) and (Iξ) for the
aging samples: While the results for (Iξ) are found to be within the reversibility limit and
close to the ones obtained for the equilibrium TS, the degree of irreversibility obtained for (It )
significantly exceeds the reversibility limit by up to a factor six. To summarize, these results
confirm material-time reversibility according to the criteria formulated in the beginning of the
present section: Irreversible (It ) confirm that the applied reversibility-test is capable of resolv-
ing the irreversibility of thermal fluctuations during aging. Moreover, intensity fluctuations
considered as a function of material time are equally reversible as corresponding equilibrium
fluctuations and surrogates. Before verifying the validity of material-time reversibility for other
aging systems, the remainder of the present section reports some additional details about the
test for material-time reversibility, namely a comparison of the full degree distributions and a
confirmation that the results presented in Fig. 11.6 are obtained independent of the number
of TS elements N .

To obtain a more in-depth understanding how the different DJS(Pin||Pout)-values shown in
Fig. 11.6 result from the respective degree distributions, Fig. 11.7 presents a detailed analysis
of Pin(k ) and Pout(k ) as a function of the degree k for equilibrium intensity TS (left side panels)
and for TS obtained after the∆T =−4K down-jump (right side panels). For equilibrium TS
in panel (a), Pin(k ) and Pout(k ) are found to collapse for (It ) (blue and green color) as well as
(Iξ) (red and orange color). Note that for clarity, the degree distributions obtained for (Iξ) are
shifted relative to those for (It ) along the k axis. Otherwise all data would collapse. Subtle
deviations between Pin(k ) and Pout(k ) are observed especially at large k for (It ) of an aging
sample in panel (b), while those for (Iξ) show no visible deviation.



11.2 A P P L I C AT I O N T O E X P E R I M E N TA L D ATA 139

Figure 11.7: Detailed analysis of the VG-degree distributions obtained from (It ) (blue and green colors)
and (Iξ) (red and orange colors) in equilibrium (left side) and after the ∆T = 4K down-
jump (right side). (a) and (b) Incoming and outgoing degree distributions Pin and Pout as a
function of the degree k . (c) and (d) Relative deviations between Pin and Pout, Eq. (11.11).
(e) and (f) Per-degree contribution, DJS(k ), to the total Jensen-Shannon divergence, DJS.

As discrepancies between Pin(k ) and Pout(k ) are difficult to identify in panels (a) and (b),
panels (c) and (d) report the relative deviation between both, i.e.

∆P (k ) =
|Pin(k )−Pout(k )|

Pin(k )
. (11.11)

The largest relative deviations are found for the degree distributions reflecting (It ) of the
aging sample, as evident in panel (d). All other data show similarly small relative deviations.
To indicate how these deviations contribute to DJS, the the contribution to DJS at each k

DJS(k ) = Pin(k ) ln
Pin(k )
P̃ (k )

+Pout(k ) ln
Pout(k )

P̃ (k )
(11.12)

such that
DJS =
∑︂

k

DJS(k ) (11.13)

is considered in panels (e) and (f). It is found for (It ) in panel (f) that the excess contributions
to DJS are observed at almost all k . Small k are usually associated with nodes that probe the TS
quite locally due to having very limited "visibility" of later portions of the TS, while, following
similar arguments, large k assess more global aspects of reversibility. Thus, it can be concluded
that thermal fluctuations during aging are irreversible on various different scales. Remarkably,
replacing time by material time yields reversible fluctuations on all these different scales.
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Figure 11.8: Analyzing how the reversibility analysis of (It ) and (Iξ) obtained after the∆T = 4 K down-
jump depends on the number of TS elements N . (a) DJS obtained for (It ) (blue), (Iξ) (red)
and corresponding surrogates (gray) as a function of N . The irreversibility of (It ) is best
observed for small N , which can be rationalized in terms of the degree distributions plotted
as a function of the relative degree k/N in panel (b). VGs obtained for TS with smaller N
assess (ir)reversibility on a more global scale than for larger N , which helps to detect the
global aspects of irreversibility during aging.

Finally, it is confirmed that material-time reversibility discussed in the context of Fig. 11.6
for intensity TS with N = 2500 elements is observed independently of the particular choice of
N . Fig. 11.8a shows DJS for (It ), (Iξ) and corresponding surrogates obtained for the∆T =−4 K
down-jump as a function of N . Indeed, the qualitative findings discussed above are the same
for all N , i.e. (It ) is found to be irreversible, while (Iξ) is reversible. The observed discrepancy
between DJS for (It ) and (Iξ) increases for decreasing N , which can be rationalized in terms of
the degree distributions Pin(k ) res. Pin(k ). The latter are plotted as a function of k/N in panel
(b), i.e. the degree is considered relative to the total number of TS elements res. nodes of the
corresponding VG graph. Evidently, the average node is connected to a large portion of the VG
graph for smaller N , thus more global aspects of reversibility are assessed for smaller N . As the
irreversibility during aging is of global nature due to the gradual change of the material-time
clock rate as a function of time, the irreversibility of (It ) is detected more strongly for small N .
Material-time reversibility is, however, detected independent of N .

11.3 R E S U LT S F O R O T H E R A M O R P H O U S S Y S T E M S

After having established material-time reversibility for the physical aging of an organic molec-
ular glass, the following sections explore how the concept translates to other aging amor-
phous systems. So far, physical aging was studied starting from and ending in an equilibrium
supercooled-liquid state. By contrast, an aging colloidal solution that gradually solidifies
into a colloidal glass without reaching an equilibrium state on any accessible time scale is
considered. Subsequently results for a chemically aging system, i.e. a polymerizing epoxy that
transforms from a monomeric liquid state into a polymeric glassy state are discussed. Despite
the distinct differences compared to the aging molecular glass discussed above, material-time
reversibility is equally observed for both of these systems. Finally, a computer-simulated
model glass is considered that ages after an instantaneous temperature change. Instead of
using the DLS intensity autocorrelations, here the material time time is extracted from the
per-particle potential energy autocorrelations. The presented analyses employ the same tools
as explained above, thus the procedures are only discussed briefly.
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~25nm

Figure 11.9: Intensity autocorrelation functions C (t , t +∆) obtained for a physically aging Laponite
suspension (3 wt%) in deionized water of pH 10. (a) Autocorrelations as a function of∆t ,
where colors indicate different t and (b) as a function of the elapsed material time ∆ξ.
The material time ξwas determined using the procedure discussed in Section 10.3 using
a = 0.3.

11.3.1 Laponite

Laponite is synthetic clay that, once suspended in water, ages and gradually solidifies into
different arrested states, i.e. into a colloidal gel, a colloidal glassy state or a nematic phase,
depending on the exact experimental conditions. Its rich variety of amorphous states lead
to Laponite being investigated in a fundamental-science context [315–324], as well as with
regard to various applications as a rheology-modifier [325, 326] or as nanomaterial in biology
or medicine [327].

Laponite-particles are disk-shaped with ∼ 25nm radius and ∼ 1nm thickness and attain
positive electric charge on the edges and a negative charge on the surface in deionized water.
Depending on the salt-content of the water and the mass-concentration of the colloid, these
charges lead to anisotropic inter-particle interactions, which finally support the formation of
different structures. A comprehensive review of the state-diagram of Laponite suspensions
has been published by Ruzicka et al. [323] based on various previous works (see references
therein).

From a physical aging perspective, Laponite is interesting as it allows to study the aging of a
colloidal glass. Typically, colloidal glasses are formed by preparing colloidal suspensions with
very large packing fractions, such that the colloidal particles experience caging effects similar
to the ones in molecular glasses, which lead to an extreme slowing-down of the colloidal
dynamics [10, 11]. The parameter that controls the colloidal glass transition is the volume
fraction φ, thus the straight-forward way to study physical aging would be to perform an
instantaneous change of the volume fraction. While this is possible in specially designed
colloids with a thermo-responsive diameter [328, 329], it is almost impossible to realize ex-
perimentally in conventional colloids. Alternatively, mechanical shear can be used as an
additional parameter that controls the colloidal dynamics, i.e. aging can be observed after
an external shear is switched off [261]. However, such a procedure has been shown to lead to
different aging behavior than changes of the volume fraction [330]. Laponite is quite different
in this regard, as its metastable equilibrium state is a glass already at comparably low volume
factions. The reason for this are the long-ranged electrostatic interactions that result in an
"effective" interaction diameter of Laponite particles that is much larger than ∼ 25 nm [323].
For instance, Bonn et al. estimated that while typical "true" volume fractions are as low as
φ ∼ 0.014, the "effective" volume fraction considering the Debye screening length can be
φ ∼ 0.43 [331], which is close to typical volume fractions at the colloidal glass-transition [10,
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11]. Such a phase is referred to as Wigner glass [332] in analogy to the Wigner crystal, i.e. a
crystal formed via electrostatic interactions [333].

Within the present work, using Laponite as the model-system to study physical aging of
colloidal glasses has two main advantages: (i) Physical aging is initiated simply by suspending
Laponite in water. Subsequently, the system slowly solidifies into a Wigner glass (as long as
the correct experimental conditions are met, see discussion below). (ii) Due to the low "true"
volume fraction, the Wigner-glass state of Laponite is optically transparent. This allows to
perform DLS experiments within the single-scattering limit.

Key aspects of the sample preparation follow the review by Ruzicka et al. [323]. The arrested
state the Laponite suspension evolves towards depends critically on the salt concentration
and the pH-value of water, as well as the Laponite concentration. A Wigner glass is formed in
pH 10 water with ionic strength I = 10−4 at 2-3 wt% of Laponite. To ensure that the Laponite
powder does not contain any residual water with other salt-concentration and pH, it was
dried in vacuum (1 mbar) for one week. Subsequently, 3 wt% Laponite were added to milli-Q
water, the pH of which was set to 10 by adding the appropriate amount of NaOH. The mixture
was stirred for 24 h and finally filtered using a 450 nm syringe filter. The filtering procedure
has been identified being important in previous work [320, 323], as it destroys any previously
formed aggregates of Laponite particles and defines t = 0 of the aging process.

The aging of the Laponite suspension was monitored at room temperature by msDLS
operated in polarized (VV) mode. Here, it has to be considered that, in contrast to molecular
liquids and glasses, rotational and translational dynamics of Laponite particles proceed on
comparable time scales [334]. However, as the depolarized signal is much weaker than the
polarized one, VV can be considered to reflect mostly the translational dynamics of Laponite
particles. The respective intensity autocorrelation functions as a function of∆t are reported
in Fig. 11.9a, where the strong slowing-down of the (structural) translation dynamics can
be observed with increasing time t over the course of two days. It is important to note that
only a selection of autocorrelation functions is considered: At earlier times the dynamics are
much faster and are barely resolved by the camera operated with an exposure time of 0.1 s; the
slow-down continues indefinitely at later times, where the autocorrelations are dominated by
artifacts.

Figure 11.10: Validating the triangular relation for the intensity autocorrelation functions of Laponite
(see Fig. 11.9). Equivalent plots for 1P1P and a detailed discussion of the plotted quantities
can be found in Fig. 10.3.
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Figure 11.11: Testing stationarity and reversibility of intensity TS (It ) and (Iξ) obtained for an aging
Laponite suspension. (a) and (b) show exemplary TS sampled equidistantly in t (a) and ξ
(b). Stationarity is verified in (c) and (d) by analyzing the corresponding periodograms
at three fixed frequencies, revealing pronounced non-stationarity of (It ) that is vastly
reduced for (Iξ). Material-time reversibility is demonstrated in (e).

By using an analogous procedure as discussed in Section 10.3, the material time ξ as a
function of t is extracted from the Laponite intensity autocorrelation functions using a = 0.3.
Fig. 11.9b plots the same data as in panel (a), but as a function of∆ξ, thus testing MTTI. The
data approximately collapse, showing some deviations at large∆ξ. Triangular relation is tested
in Fig. 11.10, revealing slightly larger values of∆C13 and stronger deviations from symmetry
compared to 1P1P, which however are still of the order of one percent and one promille,
respectively. In this regard, it has to be noted that a slowing-down of structural relaxation
times by more than two orders of magnitude is analyzed for Laponite, thus introducing more
potential for deviations from MTTI. To summarize, the aging of Laponite is reasonably well
controlled by a material time.

Material-time stationarity and reversibility of intensity TS are tested in Fig. 11.11. Exemplary
data for (It ) and (Iξ) are shown in panels (a) and (b). Here, it is immediately clear that (It )
is irreversible, due to showing a distinct t -dependence of the fluctuation amplitude and
frequency. (Iξ), on the other hand, does not show any of these features. To understand why
the amplitude of intensity fluctuations is different between (It ) and (Iξ), it is important to
consider that probing fluctuations with a comparably low sampling rate leads to a reduction
of the fluctuation amplitude due to temporal averaging. As thermal fluctuations in Laponite
are fast at short t and become very slow at large t , sampling with a fixed exposure time∆t
implies that the degree of temporal averaging changes as a function of t . This is not the case
when using an exposure time that is fixed in units of ξ, thus leading to a t -independent degree
of temporal averaging and to intensity fluctuations with constant amplitude. In principle, the
same effect applies for any aging sample, however it is particular pronounced in the case of
Laponite, where the strongest change of the relaxation time is observed during aging.

Stationarity of (It ) and (Iξ) is tested in panels (c) and (d), confirming the expectation that (It )
is strongly non-stationary. Replacing t byξ vastly reduces the non-stationarity, however, in line
with the observations in Figs. 11.9 and 11.10, some minor residual non-stationarity remains
that does not conform to ξ. Similarly, the reversibility analysis in panel (e) suggests that
the material-time description considerably reduces the degree of irreversibility observed for
(It ). While the average DJS obtained for (Iξ) slightly exceeds the reversibility-limited defined
by surrogates, the discrepancy is not significant considering the corresponding standard
deviations. It has to be noted that no comparison to TS obtained from the equilibrium state is
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possible for Laponite, as the equilibrium state is not reached within the experiments. Previous
work suggests that the aging of Laponite suspensions continues for hundreds of days [320],
thus it is not clear whether an equilibrium state would be reached eventually.

Figure 11.12: Intensity autocorrelation functions C (t , t +∆) obtained for an chemically aging epoxy
based on bisphenol A diglycidyl ether resin. (a) Autocorrelation functions as a function
of∆t , where colors indicate different t (darker colors indicate longer t ), and (b) same
data as a function of the elapsed material time∆ξ. The material time ξwas determined
using the procedure discussed in Section 10.3 using a = 0.15.

11.3.2 Polymerizing epoxy

The existence of a material time that controls aging and the related concept of material-time
reversibility seems to apply for most physically aging materials. By contrast, no such concepts
are predicted to hold during chemical aging, i.e. changes of material properties due to gradual
chemical reactions. Thus, searching for a counter example for material-time reversibility, the
gradual slow-down of the microscopic dynamics within a polymerizing epoxy is analyzed.
Polymerization proceeds via the reaction of the epoxy-groups of bisphenol A diglycidyl ether
resin with the amine groups of hardener molecules upon mixing both components, as vi-
sualized schematically in Fig. 11.12. Details about the sample preparation can be found in
Appendix B. The molecular geometry of the chosen hardener results in chain-like structures
being formed, i.e. the final product is a melt containing mostly linear-chained polymers.
During polymerization, the sample gradually solidifies from a low-viscosity liquid into a rigid
plastic. Fig. 11.12a shows the corresponding slowing-down of the intensity autocorrelation
functions as a function of∆t . The latter have been obtained in depolarized (VH) mode and
reflect the dynamics of resin-hardener concentration fluctuations. As for Laponite, the full
equilibration of the sample can not be monitored, as for large t the decay of the autocor-
relation functions becomes so slow that it is dominated by artifacts. Also autocorrelation
functions at small t , where the relaxation time is fast, are not considered in the subsequent
analysis, as here the material time can not be extracted reliably.

In an analogous procedure as described in Section 10.3, the material time is extracted from
the intensity autocorrelation functions using a = 0.15. MTTI is tested in Fig. 11.12b, revealing
an almost perfect collapse of autocorrelation functions as a function of∆ξ. Correspondingly,
negligible deviations from triangular relation are observed in Fig. 11.13 and the symmetry of
the triangular relation once again suggests material-time reversibility.

Intensity TS are analyzed in Fig. 11.14, confirming material-time stationarity in panel (d) and
material-time reversibility in panel (e), while (It ) is found to be non-stationary and irreversible.
Thus, surprisingly the chemical aging of a polymerizing epoxy is found to be well described in
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Figure 11.13: Validating the triangular relation for the intensity autocorrelation functions of a chem-
ically aging epoxy. Equivalent plots for 1P1P and a detailed discussion of the plotted
quantities can be found in Fig. 10.3.

Figure 11.14: Testing stationarity and reversibility of intensity TS (It ) and (Iξ) obtained for a chemically
aging epoxy. (a) and (b) show exemplary TS sampled equidistantly in t (a) and ξ (b).
Stationarity is verified in (c) and (d) by analyzing the corresponding periodograms at three
fixed frequencies, revealing pronounced non-stationarity of (It ) that is vastly reduced for
(Iξ). Material-time reversibility is demonstrated in (e).

terms of a material time and in this regard displays no notable differences compared to an
aging colloidal glass that also does not approach thermal equilibrium. It remains to be noted,
however, that material-time reversibility might not be generalizable to any chemically aging
system and it remains an open question to what extent the material-time concept does apply
to other chemically aging systems. One aspect that should be considered in this regard are
reaction kinetics, i.e. it should be verified whether chemical aging does conform to a material
time once the chemical reactions proceeds with a much faster rate. For the above discussed
epoxy system, the average microscopic relaxation time τ changes very slowly as a function
of t , i.e. dτ/dt ≪ 1, thus, the decay of the autocorrelation functions shifts towards larger∆t
very slowly.
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Figure 11.15: Time-resolved autocorrelation functions reflecting the per-particle potential-energy
fluctuations (Eq. (11.14)) in a LJ glass during aging after a temperature jump from T0 = 0.48
to T∞ = 0.40. (a) C (t , t +∆t ) as a function of ∆t for various t indicated by the colors.
C (t , t +∆t ) obtained for an equilibrium sample at T0 = 0.48 is included as the gray
dashed line. (b) Same data but plotted as C (ξ,ξ+∆ξ) as a function of ∆ξ (obtained
using a = 0.54). Replacing time by material time leads to a collapse of the autocorrelation
functions, thus confirming MTTI.

11.3.3 Computer-simulated Lennard-Jones glass

The third system is a computer-simulated model glass, which was analyzed to confirm that
material-time reversibility does not only apply for fluctuations of the scattered intensity, which
were considered as a proxy for thermal fluctuations of microscopic molecular positions and
orientations, but also for the fluctuations of a system’s potential energy. Molecular dynamics
(MD) simulations have long been a popular way of studying physical aging [278, 284, 290,
335–341], as (i) time-resolved autocorrelations can be extracted quite easily compared to most
experimental approaches and (ii) instantaneous changes of, e.g., temperature to initiate aging
can be implemented straightforwardly.

For this work, the Kob-Andersen binary Lennard-Jones (LJ) system [342, 343]was studied,
the interaction potential of which was modified to counteract crystallization according to
Ref. [344]. The simulations were performed by Lorenzo Costigliola from the Glass and Time
group at Roskilde University using the GPU-optimized software RUMD [345] and the resulting
data have been analyzed in the present work. A system consisting of 8000 particles (6400 type A
particles and 1600 type B particles, see snapshot in Fig. 11.15b) was equilibrated at temperature
T0 = 0.48 and density ρ = 1.20. Subsequently, the temperature was instantaneously changed
to T∞ = 0.40 and the system’s evolution at the new temperature was monitored for 1.68 ·
105 LJ time units with a time step of 0.005 (see Appendix for more details on the specific
simulation procedures). The potential energy of each particle was saved every 128 time steps,
corresponding to 0.64 LJ time-units. To obtain sufficient statistical power in order to determine
time-resolved potential-energy autocorrelation functions, simulations were performed for
a total of 30 independent starting configurations. Thus, in total, the simulations provided
per-particle potential-energy data as a function of time for N = 192.000 particles of type A
(particles of type B were not considered in the analysis below).

Time-resolved per-particle potential-energy autocorrelation functions are obtained as

C (t , t +∆t ) =

¬

∆ui (t )∆ui (t +∆t )
¶

N
r

¬

�

∆ui (t )
�2¶

N

¬
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�2¶

N

, (11.14)
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where 〈...〉N indicates the average over all particles and ∆ui (t ) = ui (t )− u (t ) denotes the
potential-energy fluctuations of particle i with respect to the time-dependent average per-
particle potential energy u (t ) = 〈ui (t )〉N .

C (t , t +∆t ) as a function of ∆t at various t are shown in Fig. 11.15a, where also the au-
tocorrelation function obtained for the equilibrium system at T0 = 0.48 is included as the
dashed line. It is noted that the amplitude of the equilibrium autocorrelation function was
slightly rescaled to compensate for the temperature dependence of the intermediate-time
plateau value of C (t , t +∆t ) (the short-time microscopic relaxation is almost unresolved in
Fig. 11.15a).

Figure 11.16: Testing triangular relation for the per-particle potential-energy autocorrelation functions
(Eq. (11.14)) of a LJ glass during aging after a temperature jump from T0 = 0.48 to T∞ = 0.40.
The plotted quantities are equivalent to the ones in Fig. 10.3.
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Figure 11.17: Verifying material-time reversibility and stationarity for the per-particle potential-energy
fluctuations of a LJ glass during aging after a temperature jump from T0 = 0.48 to T∞ = 0.40.
The exemplary TS in panels (a) and (b) are obtained using an Gaussian-weighter averaging
procedure (see text). Stationarity is verified in (c) and (d) by analyzing the corresponding
periodograms at three fixed frequencies, revealing pronounced non-stationarity of (δUt )
and stationarity of (δUξ). Material-time reversibility is demonstrated in (e).

The material time is extracted using the same procedure as applied to the intensity autocor-
relation functions before (a = 0.54). It is applied in Fig. 11.15b to confirm MTTI by plotting the
potential-energy autocorrelation functions as a function of∆ξ, which collapses all data shown
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in panel (a). Small deviations are only observed at very short∆ξ, where slight contributions
from the microscopic relaxation are observed. It is not surprising that the micropscopic relax-
ation does not conform to the material time, as its temperature-dependence is weak and thus,
it does not age. Consequently, those thermal fluctuations that reflect the micropscopic relax-
ation are approximately stationary and time-reversible as a function of t , even during aging,
such that replacing time by material time does in fact introduces additional non-stationarity
and irreversibility with regard to the microscopic fluctuations. However, this almost never
plays a role for experimental studies of physical aging, as at temperatures close to Tg any
microscopic relaxation processes are dynamically separated from the structural relaxation
process by many orders of magnitude and, thus, are not resolved. To summarize, microscopic
relaxations do not conform to the material-time formalism, however this mainly plays a role
for the aging of computer-simulated glasses, as these are studied at elevated temperatures.

The observed collapse of potential-energy autocorrelation functions when considered in
terms of the material time in Fig. 11.15b is especially convincing, considering that the shapes
of the autocorrelation functions during aging in panel (a) are clearly stretched compared to the
shape of the equilibrium autocorrelation function. The stretched shape reflects the decay of
the autocorrelation proceeding on a similar time scale as the change of the material-time clock
rate, and is, thus, fully compensated for by using material time instead of time in panel (b). In
principle, the same effects apply for the experimental data discussed above, however, there,
the autocorrelation functions decay faster with respect to the change of the material-time
clock rate and the stretching of the autocorrelation functions during aging compared to the
ones obtained for the equilibrium system is hardly noticeable.

Triangular relation is verified in Fig. 11.16. Although no large values of∆C13 are observed in
harmony with the perfect collapse of autocorrelations in Fig. 11.15b, subtle deviations from
perfect triangular-relation symmetry are identified in panel (c). So far, the origin of these
deviations is not clear. They might reflect contributions from the microscopic relaxation,
which, in principle, should violate triangular relation. However, strikingly, the deviations from
symmetry are observed at small C12 and C23, whereas the naive expectation would be that the
microscopic relaxation leads to deviations at large C12 and C23.

Fig. 11.17 presents an analysis of TS reflecting potential-energy fluctuations δU , examples
of which are included in panels (a) and (b) as a function of t and ξ, respectively. Each TS is
obtained as the sum of potential-energy fluctuations of 200 randomly chosen particles, thus
the results in Fig. 11.17 are obtained as an average of a total of 192.000/200= 960 independent
TS. The procedure for obtaining (δUt ) and (δUξ) is very similar to the one applied to intensity
TS described in Section 11.2.1, except that instead of averaging over discrete binning intervals,
a Gaussian weighted time-average at times chosen to be constant in time, res. material time
is performed. The width of the Gaussian filter is chosen proportional to the time clock rate
(which is constant), res. to the material-time clock rate. This procedure yields very similar
results as binning, but is able to filter out microscopic fluctuations more efficiently. Material-
time stationarity and reversibility for the obtained TS are confirmed in panels (c)-(e). As in
contrast to Laponite and the epoxy, the equilibrium state of the LJ system can be explored,
DJS obtained for (δUξ) during aging is compared to DJS of equilibrium TS at T = 0.48 in panel
(e). The comparison confirms that (δUξ) is as reversible as equilibrium TS. It has to be noted
that a subtle degree of irreversibility remains when (δUξ) is determined using the binning
procedure instead of the Gaussian weighted time-average, reflecting that the degree to which
the microscopic relaxation contributes to (δUξ) varies as a function of ξ.
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11.4 S U M M A R I Z I N G D I S C U S S I O N

Chapters 10 and 11 presented analyses of four different amorphous materials, which all are
subject to aging, i.e. slow and gradual evolutions of material properties as a function of time.
The focus has been the proposed procedure of extracting the material time postulated within
the TN formalism from time autocorrelation functions based on the underlying assump-
tion of material-time translational invariance (MTTI). The latter can be considered to be
inherited from thermal equilibrium as a logical consequence of the TN conjecture that aging
becomes a linear-response phenomenon by replacing time with material time [12]. A nec-
essary condition for defining a material time based on MTTI was discussed in terms of the
triangular relation, which has been proposed in a different context for aging spin-glasses by
Cugliandolo and Kurchan [279, 346]. Validity of the triangular relation has been shown to
imply time-reparametrization invariance, which is conceptually similar to MTTI, although
time-reparametrization invariance does not consider aging as a linear phenomenon like it is
done within the TN formalism. Verifying the triangular relation is possible without explicit
knowledge of the material time as a function of time, thus it could be confirmed for the
different aging systems without any underlying assumptions. For the molecular glass 1P1P,
the extracted material time was confirmed to linearize aging relaxation functions R (t ) by
showing that R (ξ(t )) obtained for different temperature protocols collapse, i.e. correspond to
the linear-response prediction.

The triangular relation is symmetrical, which in thermal equilibrium is associated with the
time-reversibility of thermal fluctuations. In a similar spirit, the conjecture of material-time
reversibility for aging samples has been proposed, i.e. the prediction that time-irreversible
thermal fluctuations during aging become reversible when they are considered in terms of the
material time. Using a statistical test for time-series reversibility, material-time reversibility
could be confirmed for the intensity fluctuations of the light scattered from aging samples,
which are used as proxies for thermal fluctuations on the microscopic scale. Applying the
same concepts used to analyze experimental data to results for a computer-simulated LJ
model glass allowed to demonstrate material-time reversibility also for the fluctuations of
the per-particle potential energies, thus confirming that it, indeed, applies at the shortest
length-scales.

In summary, material-time reversibility is observed during physical aging of a molecular
glass (1P1P), a colloidal glass (Laponite) and a computer-simulated LJ glass, as well as for
the chemical aging of a polymerizing epoxy. The nature of these systems, as well as the
aspects of the dynamics that have been probed in the experiments and simulations, are quite
different as it becomes clear from the following paragraph from Ref. [280]: "1P1P and epoxy
are molecular while Laponite is colloidal; 1P1P, Laponite and LJ age physically while epoxy
ages chemically; Laponite and epoxy do not converge to equilibrium within the window of
observation while 1P1P and LJ do. Moreover, our experiments probed dynamics on different
length scales: while reorientation of the optical anisotropy on a molecular scale is probed
in VH light scattering of 1P1P, in the case of VV scattering on Laponite density fluctuations
are probed on the scale of the optical wavelength. In VH scattering of the curing epoxy, it is
mainly hardener/resin concentration fluctuation effects that are probed. Finally, similar to
1P1P, the computer simulations access the single-particle scale."

The validity of material-time reversibility in various different contexts suggests it to be
of quite broad generality for amorphous systems and it remains a task for future work to
determine the exact scope of its validity. In this regard it would be important to identify system’s
that explicitly disobey the material-time formalism in general or material-time reversibility
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specifically. Promising in this regard are recent observations of extremely heterogeneous aging
after large temperature up-jumps from a glassy state of low fictive temperature, involving the
formation of liquid droplets within a glassy matrix [347, 348]. Intuitively, one might expect
the material-time formalism to fail in such cases, as liquid droplets and glassy matrix, most
likely, do not conform to a single material time and, instead, the material time might be
heterogeneous in space.

The previous analyses in chapters 10 and 11 mostly assessed the existence of a material time
and how it relates to the aspects of linear response as well as stationarity and reversibility of
thermal fluctuations. A whole other field of questions concerns how exactly the material-time
clock rate changes as a function of time for different materials. The following chapter provides
a brief introduction to these issues and suggests a model that predicts how the material-clock
rate changes as a function of time after small temperature changes.
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T I M E - E V O L U T I O N O F T H E D Y N A M I C S D U R I N G
A G I N G

The following chapter discusses how the material-time clock rate γ(t ) changes as a function of
t during aging based on results obtained for 1P1P. Due to how γ(t ) is defined in Chapter 10, it
is directly related to the relaxation time τ(t ) as γ(t ) =τ(t )−1, if τ(t ) is defined as C (t , t +τ) = a ,
as it is commonly done in computer simulation studies for a = lim∆t→0 C (t , t +∆t )/2. As a
consequence, the results obtained for γ(t )within the present chapter can be straightforwardly
compared to literature results for τ(t ).

First, Section 12.1 considers the evolution of γ(t ) after small temperature jumps, which
is dominated by the cross-over into the new equilibrium state. A simple model is proposed
that is able to describe the sigmoidal shape of γ(t ) in terms of a simple logistic differential
equation. Second, Section 12.2 considers larger temperature jumps deep into the glassy state,
such that the glass does not equilibrate on any experimentally accessible time scale. Here,
the evolution of γ(t ) conforms neither to the proposed differential equation, nor to what is
predicted by the simplest version of trap models.

12.1 D I F F E R E N T I A L E Q U AT I O N F O R S M A L L T E M P E R AT U R E J U M P S

Exposing an equilibrium supercooled liquid to a temperature jump from T0 to T∞ and waiting
sufficiently long such that the new equilibrium at T∞ is reached leads to a gradual evolution
of the material-time clock rate γ(t ) from its equilibrium value at T0, γ0, to the new equilibrium
value at T∞, γ∞. One of the simplest models that potentially could describe γ(t ) is the logistic
differential equation

d

dt
γ(t ) =−E γ(t )
�

γ(t )−γ∞
�

with γ(0) = γ0. (12.1)

Eq. (12.1) assumes that the change of γ(t ) as a function of t is proportional to γ(t ) itself, i.e. the
current relaxation rate, its distance from the equilibrium relaxation rate, (γ(t )−γ∞), and some
constant E that can be interpreted as the efficiency of the relaxation mechanism. Eq. (12.1)
can be solved analytically, which yields

γ(t ) =
γ∞γ0 exp
�

E γ∞t
�

γ∞−γ0+γ0 exp
�

E γ∞t
� . (12.2)

The material time is obtained via integration, i.e.

ξ(t ) =

t
∫︂

0

γ(t ′)dt ′ =
log
�

γ∞+γ0

�

exp
�

E γ∞t
�

−1
��

− log
�

γ∞
�

E
. (12.3)
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Figure 12.1: Testing the logistic differential-equation description of the material-time clock rate for
1P1P. (a) Material-time clock rate as a function of time after various temperature down-
jumps. All shown data were obtained using the Peltier-controlled sample cell. Black solid
lines represent the solution of Eq. (12.1) with γ0 and γ∞ being determined from the
respective equilibrium states at T0 and T∞, while E was treated as a free parameter. (b)
Equilibrium clock-rates as a function of sample temperature. The solid line is a fit by the
VFT equation, which is also used to interpolate data at temperatures where no equilibrium
measurement has been performed. It is noted that T is defined in terms of the PT-100
installed at the bottom of the sample cell, thus the temperatures do not exactly coincide
with the ones obtained within the LN2-controlled sample cell (data shown in Chapter 10).

γ0 and γ∞ are predefined through the equilibrium states at T0 and T∞, thus the only free
parameter of Eq. (12.2) is E . It is a simple scaling factor along the time-axis, thus does not affect
the shape of γ(t ). Fig. 12.1a explores whether Eq. (12.2) is able to describe the experimentally
obtained data after various temperature down-jumps with amplitudes ∆T between -0.5 K
and -4 K. All included data were obtained using the Peltier-controlled sample cell, thus T0 and
T∞ could reproduced very precisely. In addition, time zero for each temperature jump can be
determined more precisely than it has been possible with the LN2-controlled sample cell.

The solid lines represent the description in terms of Eq. (12.2), which in all cases agrees
well with the data. γ0 and γ∞ are extracted from equilibrium measurements performed at
T0 to T∞, or in some cases are interpolated by using a VFT description of the equilibrium
material-time clock rates γ(T ), see panel (b). The values of E vary slightly as a function of∆T ,
i.e. E ranges from 0.018 to 0.011 for∆T between -0.5 K and -4 K.

The presented results suggest that γ(t ) can be described in terms of a simple differential
equation. This is surprising considering that physical aging is a highly non-linear phenomenon,
which has been the reason why previous attempts of describing aging in terms of a differential
equation of, e.g., the fictive temperature have turned out to be insufficient [35]. However,
because the variation of γ(t ) as a function of t itself is the origin of the mentioned non-linearity,
it might be just the right quantity to consider in a differential-equation approach. It has to be
noted, however, that all data considered in Fig. 12.1 represent physical aging after temperature-
jump protocols, thus only the fictive temperature Tf changes as a function of t , while T is
constant. Following the TNM-assumption of γ being a function of both T and Tf, the scenario
analyzed above is an especially simple case of physical aging. It might well be that Eq. (12.1)
does not describe data obtained during more complex temperature protocols, during which
both T and Tf evolve as a function of t . Unfortunately, this conjecture has been difficult to
verify using the Peltier-controlled sample cell, as the evolution of γ(t ) during slow changes of
T most probably is affected by the t -dependence of temperature gradients within the sample
cell. Future experiments should aim at disentangling these different effects, in order to study
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physical aging during more complex temperature protocols, which, from a purely technical
point of view, can easily be implemented.

12.2 S U B - A G I N G A F T E R D E E P Q U E N C H E S

Although studying physical aging from one equilibrium state to another evidently is very
insightful from a fundamental-science perspective, it is hardly the scenario relevant with
regard to the typical applications of glassy materials. During production of inorganic or
polymeric glasses, liquid or supercooled-liquid melts are usually cooled to room temperature,
i.e. very far below their respective glass-transition temperatures. Consequently, these systems
do not reach an equilibrium state for a very long time, or possibly never at all, because
their relaxation rate becomes extremely slow. Clarifying how the relaxation rate changes as a
function of time after a quench deep into the glassy state is important in order to predict how
material properties evolve after their production.

Pioneering work in this regard was carried out and published in 1978 by Struik [35], who
analyzed the mechanical properties of aging plastics as a function of the annealing time after
a deep quench. He found that the creep compliance obtained after different annealing times
t could be collapsed by shifting the curves along the time axis by a factor∝ t −µ [35], or
expressed in terms of time autocorrelation functions [20]

C (t , t +∆t ) =C (∆t /t −µ). (12.4)

From a material-time perspective, Eq. (12.4) implies that γ(t )∝ t −µ, res. τ(t )∝ t µ. Struik
obtained µ ∼ 1 for many different polymers, however also values below unity have been
reported.

In later years, a characterization of aging behavior in terms of µ has been established, i.e.
µ= 1 is referred to as simple aging, µ< 1 is called sub-aging and the quite rare case of µ> 1 is
denoted as hyper-aging [341]. This classification is not only used for polymer glasses [35, 349,
350], but also for spin glasses [9, 351, 352] and structural glasses [341, 353].

In an insightful computer-simulation study, Warren et al. [353] showed for an LJ model-
system that simple aging is the "true" aging behavior after deep quenches, while sub-aging
is an "artifact" of the crossover to an equilibrium state, meaning the system does not reach
τ(t )∝ t 1, because it crosses into a stationary equilibrium state where τ= const. In such a
crossover scenario, the authors do not observe a constant power-law exponent µ< 1 over a
broad t -interval, but instead τ(t ) has a sigmoidal shape with varying logarithmic slope.

Theoretical models of aging after quenches into the glassy state have been formulated in
terms of "trap models", where it is assumed that the system explores an energy landscape
within configurational space by hopping between different minima. The minima states are
modeled as sites arranged on a hypercubic lattice with energies E drawn from some distribu-
tion ρ(E ). Early trap models assumed the hopping rate to depend only on the energy of the
current state, which yields a scaling law according to µ= 1, i.e. simple aging behavior [354,
355]. Later, these models have been extended by an additional parameter that allows the
hopping rate to depend on both, the energy of the current and of the target site. This approach
requires to assume quenched disorder instead of treating the system in terms of a mean-field
model. The extensions of the trap-model were shown to introduce sub-aging behavior, the
power law exponent of which depends on the choice of the different parameters assumed to
model the hopping rate. The authors rationalized the observation of sub-aging by the fact
that quenched disorder and the adapted hopping rate allow the system to revisit low-energy
states, which is not possible in a mean-field treatment [356, 357].
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Figure 12.2: Exploring the time evolution of the material-time clock rate of 1P1P after down-jumps
with different amplitudes from 194 K to T∞ indicated in the legend. (a) The equilibrium
clock rates at T∞ are included as the dashed colored lines, from which it becomes clear
that a cross-over to equilibrium is observed for the two smaller jumps, while the system’s
aging is studied far away from equilibrium for the two larger jumps. Panel (b) explores the
respective t -dependencies in more detail, revealing a sigmoidal shape for the two smaller
jumps and an inverse power-law behavior with exponent µ= 0.62 for the two larger jumps.
The black dotted line indicates the power law expected for simple aging, i.e. µ= 1.

Simple aging is also predicted by the differential equation, Eq. (12.1), because after a quench
to some low temperature γ(t )−γ∞ ≈ γ(t ), which yields

d

dt
γ(t ) =−E γ(t )2 (12.5)

with solution γ(t ) = γ0/(1+E γ0t ) proportional to t −1 for large t .
In order to determine the t -dependence of γ(t ) after large temperature down-jumps into

the glassy state, a sample of 1P1P was first equilibrated at T0 = 194 K and subsequently cooled
to T∞ ranging from 191 K to 183 K with a cooling rate of 1 K/min. Larger jumps or faster cooling
rates are difficult to achieve, as they enhance internal stresses within the glass, leading to the
formation of cracks, the light scattered from which makes it impossible to perform DDLS
experiments. However, no cooling-rate dependence has been observed for jumps with smaller
amplitudes, suggesting that the same is to be expected for larger jumps.

The results are summarized in Fig. 12.2. Panel (a) displays γ(t ) as a function of t and includes
the interpolated equilibrium clock rates at T∞ as the dashed lines. While a cross-over to the
equilibrium state is observed after the jumps to 191 K and 190 K, the system is far away from
its equilibrium state after jumps to 187 K and 183 K; even after annealing for up to three days.
Thus, it can be assumed that no cross-over to equilibrium does occur for the two largest down-
jumps. The t -dependencies of γ(t ) are explored in detail in panel (b). It is found that γ(t )
evolves proportional to t −0.62 after jumps deep into the glassy state. This observations seems
to be independent of T∞, as long as no cross-over into the equilibrium state is observed.
Considering that the same power law behavior is observed over more than two orders of
magnitude of t , it is unlikely that a transition to µ= 1 would be observed at larger t .

To summarize, sub-aging behavior is observed for the molecular glass 1P1P after quenches
deep into the glassy state. These results seem to contradict earlier computer-simulation studies
suggesting that sub-aging is an artifact due to the cross-over to an equilibrium state [353].
One reason for this apparent discrepancy might be that the temperatures considered in the
computer simulations are much higher than the ones considered in the presented experiments,
thus the geometry of the energy landscape the systems explore in both approaches might be
fundamentally different. Instead, the results obtained during this work support theoretical
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predictions of sub-aging behavior for certain trap-models defined to mimic hopping in an
energy landscape with quenched disorder [356, 357]. It remains to be confirmed that the same
sub-aging behavior is observed after even larger and faster down-jumps. Experience shows
that the temperature below Tg at which cracks form in a glass depend on the exact substance
that is studied, thus exploring other molecular glass formers might help to obtain data for
even deeper quenches.
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Part I of this work dealt with relaxation spectra of various different (equilibrium) supercooled
liquids. The main focus has been the relaxation shape of the α-process in pure molecular
supercooled liquids, the asymmetric broadening of which has been shown before to be asso-
ciated with dynamic heterogeneity in numerous studies [25–29]. Previous experimental effort
aiming at identifying universal characteristics of theα-process relaxation shape in supercooled
liquids mostly focused on data obtained from dielectric spectroscopy (DS) [32–34]. Although a
predominant high-frequency powerlaw of ν−1/2 has been identified based on DS-data in some
previous studies [33, 93], the general consensus has been that for the majority of molecular
supercooled liquids the high-frequency power law exponent β depends on the molecular
structure and is distributed between 0.3 and 1 [32, 34]. Contrasting results from depolarized
dynamic light scattering (DDLS) were discussed in Chapter 4, parts of which have already
been presented in previous work by Florian Pabst [44]. There, a ν−1/2 high-frequency behavior
is observed for a broad variety of supercooled liquids with different molecular structures
and interaction mechanisms. Moreover, selected supercooled liquids were shown to obey
time-temperature superposition, i.e. the relaxation shape of the α-process does not change as
a function of temperature within the deeply supercooled regime. Finally, the implications of
the generic ν−1/2 high-frequency behavior were discussed, which, following recent computer-
simulation results [30, 86], might reflect general characteristics of dynamic facilitation, e.g.
with regard to the rate at which mobile clusters emerge or the number of those clusters as a
function of waiting time.

The origin of the discrepancies between the structural relaxation shapes obtained by means
of DS and DDLS was discussed in Chapter 5, again building on earlier work [44]. It was
shown that dielectric loss spectra of various supercooled liquids can be described by the
superposition of the DDLS relaxation spectrum and a slow Debye-shaped contribution. The
latter was argued to reflect the relaxation of dipolar cross-correlations. So far, cross-correlation
effects have mostly been ignored in the interpretation of dielectric loss spectra, although it
is well-established that they substantially contribute to the static dielectric constant. The
conjecture was shown to be supported by multiple recently published results within the field;
among other things computer-simulation studies that unambiguously identify a slow dipolar
cross-correlation contribution in a polar model-liquid [147] and glycerol [126]. Moreover, it was
demonstrated based on literature data of glycerol that inhibiting the formation of hydrogen-
bonds by applying large hydrostatic pressures or by hyper-quenching from the liquid phase
recovers the DDLS structural relaxation shape, because dipolar cross-correlations are largely
suppressed. Finally, a quantitative relation was established between the high-frequency power
law exponent β and the degree of dipolar cross-correlations, which was quantified in terms
of the Kirkwood correlation factor gK [156]. Both were shown to be correlated for 25 different
supercooled liquids, i.e. the dielectric loss spectra of supercooled liquids with larger gK tend
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to feature a steeper high-frequency power law, β ≈ 0.5 was identified once dipolar cross-
correlations were absent (gK = 1). The results support the recent theory of Dejardin at al. [109]
that predicts an additional slow cross-correlation contribution to the dielectric loss as soon as
gK > 1. Finally, joint DS and DDLS-analyses allowed to demonstrate that most supercooled
liquids do not obey the micro-macro relations predicted by Kivelson and Madden, which
relate macroscopic and microscopic dipolar relaxation times while taking into account dipolar
cross-correlations [138, 139].

Due to dynamic signatures of hydrogen-bonded supra-structures with different geometries,
the dielectric responses of many hydrogen-bonding liquids are known to be especially com-
plex. In Chapter 6, the dielectric loss spectra of hydrogen-bonding supercooled liquids were
disentangled through comparison to respective DDLS relaxation spectra. The focus was to
study the influence of the molecular architecture on the dynamics of hydrogen-bonded supra-
structures along isomeric or homologous series. First, it was shown for an isomeric series
of phenyl propanols that, contrary to previous notions [161, 171, 172], the steric hindrance
introduced by a phenyl-ring does not generally suppress the formation of hydrogen-bonded
structures in monohydroxy alcohols. Instead, the geometry of these structures shifts from
predominantly chain-like to coexisting ring-like and chain-like structures being formed upon
decreasing the distance between hydroxy and phenyl group. Similar effects have been observed
previously for octanol isomers [132–135, 158–160, 179], which were also analyzed within the
present work. Here, combined DS and DDLS analyses revealed an intermediate relaxation con-
tribution to the dielectric loss at frequencies between the α-process and the Debye-process,
in accordance to results from shear rheology [183, 184]. Comparisons to NMR results from
the literature revealed that the intermediate contribution reflects the orientation of hydroxy
groups, which decouple from the remaining molecule due to being incorporated into supra-
structures. Finally, it was found for the homologous series of polyhydric alcohols (PAs) that
dielectric loss-spectra of short-chained PAs are dominated by dipolar cross-correlations. By
contrast, longer-chained PAs become more and more flexible, such that relaxation spectra are
dominated by intra-molecular relaxation mechanisms. Consequently, no contributions of slow
dipolar cross-correlation are observed, because intra-molecular flexibility leads to the dipole
moment vectors not being fixed within the molecular frames. Despite the evident complexity
regarding structure-formation, the α-process probed by DDLS was found to correspond to
the generic relaxation shape for most investigated supercooled liquids.

Finally, Chapter 7 attempted to shed light on the physical origin of slow solvent relax-
ation in asymmetric binary mixtures, which is the commonly obsered scenario that solvent-
contributions are observed on the time scale of the solute-relaxation [210, 219–225]. By ana-
lyzing a 2-picolin/PMMA binary mixture by means of broadband DDLS, solvent relaxation
was monitored over 13 orders of magnitude in frequency. The treatment allowed for a detailed
characterization of the slow solvent relaxation, the relaxation strength of which was found to
sharply decrease with decreasing temperature. Computer-simulation performed by Robin
Horstmann [202] for the same mixture revealed slow solvent relaxation is caused by long-lived
solute induced solvent-solvent cross-correlations, which reflect favored orientations of solvent
molecules in the vicinity of the quasi-static solute matrix. Combined, the presented results
suggest that slow solvent relaxation in asymmetric binary mixtures is not associated with a
bimodal distribution of solvent mobilities, but reflects the complex interaction mechanisms
between solvent and solute.

Part II focused on physical aging in non-equilibrium glassy systems and its description in
terms of a material time as postulated by Narayanaswamy [38]. Although the material-time
formalism has been applied to describe enthalpy relaxation in glasses for decades [39, 41,
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276], open questions remain, because it so far had been impossible to explicitly determine
the material time in experiments. The present work provides a way forward in this regard
by proposing a procedure to extract the material time from time-resolved autocorrelation
functions. In experiments, such data can be obtained by applying multispeckle dynamic light-
scattering (msDLS). Chapter 9 presented and characterized the msDLS experiment developed
within this work, which allowed to determine time-resolved intensity autocorrelations of
molecular glasses for the first time. In addition, studying physical aging requires to quickly
change sample temperatures, thus a Peltier-controlled DLS sample cell was constructed, which
considerably outperforms conventional sample-cell designs in terms of temperature-variation
capability.

Chapter 10 verified the material-time description of msDLS data obtained for the molecular
glass 1-phenyl-1-propanol (1P1P) after temperature down-jumps of different amplitudes.
First, a necessary condition for the existence of a material time was confirmed to be obeyed
by the autocorrelation-data, i.e. the triangular relation originally proposed for spin glasses
by Cugliandolo and Kurchan [279]. After having established the existence of a material time
that controls the aging of 1P1P, it was extracted from the intensity autocorrelation functions
via an iterative procedure. This is based on the assumption of material-time translational
invariance (MTTI), meaning that time-autocorrelations can be expressed as a unique function
of the elapsed material time. As proposed by Dyre [12, 278], MTTI is assumed to be inherited
from time translational invariance in thermal equilibrium, following Narayanaswamy’s idea
that the material-time description recovers equilibrium characteristics for physically aging
samples. The extracted material time was shown to linearize the changes of the dielectric loss
probed at a fixed frequency during aging. Furthermore, MTTI could be verified explicitly.

Physical aging is a non-stationary and time-irreversible process. It could be shown, how-
ever, that the triangular relation equations are symmetric, which in thermal equilibrium is
associated with time-reversal symmetry. Building on this observation, Chapter 11 explored
the conjecture of material-time reversibility, meaning that thermal fluctuations during aging
become reversible if considered as a function of the material time. Indeed, this notion was
confirmed by applying statistical tests for time-series reversibility to intensity fluctuations of
the light scattered from aging samples. In addition, material-time reversibility was confirmed
for three other disordered materials, namely the physically aging colloidal glass Laponite, a
poylmerizing epoxy that is subject to chemical aging, as well as a computer-simulated model
glass. For the latter, material-time reversibility was confirmed for potential-energy fluctu-
ations. The broad validity of material-time reversibility suggests that the irreversibility of
physical aging originates solely from the evolution of the system’s relaxation rate as a function
of time.

While chapters 10 and 11 explored as to whether a material time exists that controls physical
aging and how it relates to thermal fluctuations, Chapter 12 explicitly considered how the
material-time clock rate evolves during aging. Two distinct scenarios were considered: Physical
aging from one to another equilibrium state after small temperature changes, and physical
aging after deep quenches into the glassy state, after which the system does not equilibrate
within any experimentally accessible time period. For aging after small temperature changes
it was shown that the sigmoidal-shaped material-time clock rate as a function of time is
described in terms of a simple logistic differential equation. Here it is assumed that the change
of the clock rate is proportional to the clock rate itself, i.e. the system’s current relaxation rate,
as well as to the difference of the clock rate with respect to its equilibrium value. For deep
quenches into the glassy state, a common notion is that the clock rate evolves as t −1 [353],
which is referred to as simple-aging behavior. Instead, experimental results obtained within
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this work suggest a much weaker t -dependence of t −0.62. Such a sub-linear aging scenario
does not conform to predictions from simple mean-field trap models, which assume that the
system explores the rugged potential-energy landscape in phase space [354, 355]. Instead, it
is explicitly predicted for trap-models that involve quenched disorder and, thus, allow the
system to revisit low-energy states [356, 357].



Part III

A P P E N D I X





A
PA R A M E T E R S F O R C A L C U L AT I N G gK

The following discussion is adopted from the SI of Ref. [105]. All parameters used to determine
gK are listed in table A.1. In most cases, density data measured at several temperatures were
taken from the literature and extrapolated to supercooled temperatures using the linear
expression (see e.g. Ref. [358] for an example of the validity of this procedure)

ρ(T ) =ρ0−δ ·T . (A.1)

To calculate the temperature dependent refractive index n (T ), the Lorentz-Lorenz equation

n (T )2−1

n (T )2+2
=

NAρ(T )α
3ϵ0M

(A.2)

was used, where α is the molecular polarizability. No explicit knowledge of α is required to
solve Eq. (A.2). Instead, the literature value for the refractive index at 25◦C, n25, the density at
25◦C, ρ25, and ρ(T ) are used to obtain

n (T ) =

⌜

⃓

⎷
2 (n 2

25−1)ρ(T ) + (n 2
25+2)ρ25

(n 2
25+2)ρ25−2 (n 2

25−1)ρ(T )
. (A.3)

For some liquids (indicated in table A.1) the density is only reported at one single temperature.
In these cases the opposite procedure as Eq. (A.3) was applied, i.e. ρ(T )was calculated from
n (T ), which was measured at several temperatures using an Abbe refractometer (see Ref. [44])
and extrapolated linearly to lower temperatures.
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Table A.1: gK , β , µ, parameters ρ0 and δ from Eq. (A.1) and n25 at 25◦C of all investigated liquids. The citation behind the substance names refers to an earlier
publication of the dielectric data. a Due to structure formation of phosphates with benzene and carbon tetrachloride, data determined in solution
with alkanes are used. b For MAs, the dipole moment of the C-O-H bond, µCOH = 1.68D, is used. c Determined via refractive index. d Data are for
2-methyl-2-hexanol. e Determined by combining ρ(20◦C) [359] and temperature dependence of N,N-dimethylacetamide [360]. f Determined from
room temperature data due to problems with partial crystallization at low temperatures.

supercooled liquid gK β µ/D ρ0/(g cm−3) δ/(10−4 g cm−3K−1) n25 studied T /K
diethylphthalate 0.80 (8) 0.48 2.73 [361] 1.37338 [362] 8.7088 1.50 192-220

dibuthylphthalate 0.82 (8) 0.50 2.82 [361] 1.28348 [363] 8.1045 1.49 183-210
dioctylphthalate 0.83 (8) 0.47 2.84 [361] 1.20026 [362] 7.3896 1.49 185-189
triethyl phospate 1.98 (20) 0.61 2.86 [364] a 1.36609 [365] 9.9886 1.41 138-142

tripropyl phosphate 1.61 (16) 0.66 2.93 [364] a 1.27859 [366] 9.267 1.4136 140-160
tributhyl phosphate [102] 1.74 (18) 0.62 2.76 [364] a 1.22584 [362] 8.4999 1.42 147-178

triphenyl phosphite 0.70 (7) 0.49 1.51 [367] 1.44297 [368] 8.7143 1.56 206-208
methyl-m-toluate 0.76 (8) 0.51 1.97 [369] 1.29303 [370] 7.85 1.52 175-185
m-toluidine [371] 0.99 (10) 0.45 1.45 [372] 1.23679[373] 8.46 1.568 192-202

toluene [108] 0.90 (21) f 0.44 0.38 [369] 1.14090[374] 9.35 1.494 119-122
buthyl methacrylate 0.58 (6) 0.51 2.15 [361] 1.17547 [375] 9.5582 1.43 137-150

2-methyltetrahydrofuran 0.91 (9) 0.50 1.58 [376] 1.1545 [377] 10.285 1.41 97-102
propylene carbonate 1.09 (11) 0.62 4.55 [361] 1.50832 [378] 10.42 1.4218 159-177

N,N-diethylacetamide 2.05 (21) 0.72 3.68 [379] 1.16188 e 8.480 e 1.4385 165-180
propylene glycol [191] 2.92 (30) 0.66 2.25 [380] 1.24892 [381] 7.2503 1.43 175-210

glycerol [121] 2.48 (25) 0.59 2.67 [382] 1.42982 [381] 5.7469 1.47 204-234
phenyl salicate (salol) [383] 0.62 (6) 0.48 2.27 [384] 1.45381 [385] 8.652143 1.62 230-235

eugenol 1.08 (11) 0.56 2.49 [386] 1.30571 [387] 8.5018 1.54 199-204
1-phenyl-1-propanol [103] 1.59 (16) 0.59 1.68 b 1.19326 c 6.7363 1.5266 199-234

1-phenyl-2-propanol 3.39 (34) 0.68 1.68 b 1.19326 c 6.7363 1.5191 208-240
2-phenyl-1-propanol [103] 3.30 (33) 0.67 1.68 b 1.20365 c 6.7949 1.5266 203-234
3-phenyl-1-propanol [103] 3.52 (36) 0.74 1.68 b 1.20365 c 6.7949 1.5266 190-223

1-propanol [168] 4.56 (46) 0.92 1.68 b 1.03393 [381] 7.8577 1.3862 113-125
5-methyl-2-hexanol 4.07 (41) 0.86 1.68 b 1.04563 [388] d 7.95 1.4312 156-215

2-ethyl-1-hexanol [169] 4.93 (50) 0.94 1.68 b 1.04941 [389] 7.39 1.4325 170-220



B
S A M P L E P R E PA R AT I O N D E TA I L S

Details about the preparation of various samples analyzed within this work are summarized
in the subsequent sections.

Various supercooled liquids analyzed with regard to dipolar cross-correlations

All liquids were prepared as received from the vendor in a standard home-built dielectric
sample cell. The samples were quenched by exposing the entire sample holder to LN2. Sub-
sequently, the samples were progressively heated from Tg to room temperature, while the
dielectric spectrum was probed at various temperatures in-between.

Phenyl Propanols

1-phenyl-1-propanol (Acros Organics, 99%), 2-phenyl-1-propanol (Aldrich, 97%) and 3-phenyl-
1-propanol (Alfa Aesar, 99%) were filtered into a PCS sample-cell by using a 200 nm hydrophilic
syringe filter. The samples for DS were used without further purification.[103]

Octanol isomers

2-ethyl-1-hexanol (2E1H, Sigma Aldrich, 99%), 5-methyl-3-heptanol (5M3H, TCI Chemicals,
98%), 4-methyl-3-heptanol (4M3H, Alfa Aesar, 99%) and 3-methyl-3-heptanol (3M3H, TCI
Chemicals, 98%) were filtered into PCS sample-cells using 200 nm hydrophobic syringe filters.
The dielectric samples were prepared without further purification. A broad temperature range
was analyzed in PCS and DS, except for 5M3H, where in PCS only temperatures below 170 K
could be measured, due to turbidity of the sample. At low temperatures, turbidity could be
avoided by rapidly cooling from high temperatures to a temperature just below Tg with cooling
rates > 6 K/min. At these temperatures the sample stayed transparent for >24 h.[170]

Polyhydric alcohols

Propylene glycol (PG, 1,2-propanediol, Alfa Aesar, 99.5%), DL-threitol (Sigma Aldrich, 97%),
xylitol (Acros Organics, 99%) and D-sorbitol (Acros Organics, 97%) were measured in DS and
PCS. The data of glycerol were already published and discussed in Ref.[121]. PG was used
in this study, since ethylene glycol, the next smaller element of the homologous series after
Glycerol, tends to crystallized and is not easily supercoolable. For the DS measurements PG
and glycerol were used as received. For PCS both substances were filtered using a 400 nm
hydrophilic syringe filter. The other PAs were received as a white powder. For DS the powder
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was first filled into a sample cell, then dried at 1 mbar and room temperature for one hour, and
finally melted and once again dried at 150◦C and 1 mbar for three hours. The PCS samples were
prepared using the same drying and melting procedure, however carried out with the powder
filled into a glass syringe. A stainless steel filter holder in combination with 450 nm Nylon
membrane filters was used to fill the liquid sample into the PCS sample cell at 150◦C. This
procedure was repeated several times until a sufficiently large sample volume was obtained.
Finally, the sample was again dried in the vacuum oven for more than three hours.[191]

2-picoline/PMMA mixture

2-picoline (Aldrich, 98%) and Poly(methyl methacrylate) (PSS, Mw = 4300 Da, PDI= 1.05,
atactic) were mixed with a solvent concentration of 50 wt%. The mixture was sealed and
stored at 70◦C for four weeks to ensure complete mixing. Afterwards, a DS sample cell was
prepared without further purification and the remainder of the sample was filtered into a
light-scattering sample cell using a 450nm Nylon syringe filter. To ensure the high-viscosity
liquid to pass through the filter, the latter was flooded with 2-picoline before the filtering
process. The slight increase of concentration was estimated to be 2-3% by weight.[104]

Laponite

Laponite powder (Laponite-RD from BYK) was dried for one week at 1mbar to remove all
residual water. Water with pH 10 and ionic strength I < 10−4 M was obtained by adding an
appropriate amount of NaOH to milli-Q water. Subsequently, 2.98 wt% of Laponite was added
and the mixture was stirred for 24 h. Finally, the sample was filtered into a glass cylinder using
a 450 nm syringe filter, which may have led to a slight reduction of the Laponite concentration.
Physical aging starts directly after the mixture is filtered; however for the first few hours the
colloidal dynamics is too fast to be captured by the camera. The camera measurement with
exposure time 0.1 s was started several minutes after filtration, and the scattered light was
monitored in VV (polarized) geometry over 1,500,000 frames (∼ 42 h). Laponite was studied at
room temperature.[280]

Epoxy

The epoxy system is based on bisphenol A diglycidyl ether resin (Alfa Aesar). As polymerization
agent N,N,N’,N’-tetraethyldiethylenetriamine (Sigma Aldrich, 90%) was used. This specific
agent induces a linear polymerization; thus the mixture was prepared with a 1:1 molar ratio.
Before mixing, the resin was dried and degassed in a vacuum oven. Afterwards, it was filled
into a glass syringe equipped with a stainless steel filter holder containing a 450 nm nylon
membrane filter suitable for operation at high temperatures. The syringe was then heated to
150 ◦C to decrease the viscosity of the resin, which allowed us to filter the resin into a dust-free
sample glass. The appropriate amount of hardener was added, again, using a syringe filter.
Subsequently, the mixture was magnetically stirred at 400 rpm for 10 min and filled into a
dust-free cylindrical glass sample holder. Air-bubbles were removed by exposing the mixture
to vacuum for 15 min. Finally, the glass tube was sealed and placed inside a suitable sample
oven preheated to 310 K, and the camera measurement in VH geometry with exposure time
0.1 s was started for 2,000,000 frames (∼56 h).[280]
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LJ system

The data for the binary Lennard-Jones (LJ) system were produced using the GPU-optimized
software RUMD [345]. The interaction potential used is the modification of the standard
Kob-Andersen potential introduced in Ref. [344] to counteract crystallization. Jumps from
temperature 0.48 to 0.40 at density 1.20 for a system of N = 8000 particles (6400 A particles
and 1600 B particles) were simulated for 1.68 · 105 LJ time units with a time step of 0.005.
The simulations ran in the NVT ensemble using a standard Nosé-Hoover thermostat with
relaxation time of 0.2 in LJ units. Velocities were re-scaled at the start of the simulation to
temperature 0.40 in order to avoid nonphysical behavior of the thermostat. The potential
energy of each particle was saved every 128 time steps (corresponding to 0.64 LJ time units).
Simulations from 30 independent starting configurations were run. The data analyzed in
Section 11.3.3 refer to the A particles only and consider a total of 192,000 particles in order to
obtain time-resolved autocorrelations with minimal statistical noise. Starting configurations
were obtained from an equilibrium simulation at density 1.20 and temperature 0.48, separated
in time by 4.2 ·104 LJ units (roughly corresponding to 80 relaxation times).[280]

1P1P in the Peltier-controlled sample cell

Due to the small volume of the Peltier-controlled sample cell, the sample can not be prepared
as usual by drop-wisely filtering the liquid into the cell, due to the surface tension of the liquid.
To resolve this issue, first a cannula was cleaned with filtered 2-butanone and, subsequently,
it was inserted into the sample cell to fill it with filtered 1P1P. A second issue that has to
be considered are residual air-bubbles that remain inside of the sample cell after sealing it,
which would interfere with the laser beam during measurement. Thus, a teflon plug is used to
avoid air from the thread at the lid to enter the sample cell after it has been attached to the
cold-finger.
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