
FLEX IB I L I TY in REAL -T IME NETWORKS

Analytical Approaches for Adapting Time-Sensitive Networks
to Dynamic Traffic Requirements

Vom Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

von
christoph gärtner, m.sc.

Vorsitz: Prof. Dr.-Ing. Jutta Hanson
Referent: Prof. Dr.-Ing. Dr. h.c. Ralf Steinmetz

Korreferent: Prof. Dr.-Ing. Amr Rizk

Tag der Einreichung: 7. Mai 2024
Tag der Disputation: 18. Juli 2024

Darmstadt 2024

Christoph Gärtner, M.Sc.: Flexibility in Real-time Networks,
Analytical Approaches for Adapting Time-Sensitive Networks to Dynamic Traffic Re-
quirements

Darmstadt, Technische Universität Darmstadt

Jahr der Veröffentlichung der Dissertation auf TUprints: 2024
Tag der mündlichen Prüfung: 18. Juli 2024

Dieses Dokument wird bereitgestellt von This document is provided by
tuprints, E-Publishing-Service der Technischen Universität Darmstadt.

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als: Please cite this document as:
URN: urn:nbn:de:tuda-tuprints-278806

URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/27880

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International (CC BY 4.0 International)
https://creativecommons.org/licenses/by/4.0/deed.de

This publication is licensed under the following Creative Commons License:
Attribution 4.0 International (CC BY 4.0 International)
https://creativecommons.org/licenses/by/4.0/deed.en

http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-278806
urn:nbn:de:tuda-tuprints-278806
https://tuprints.ulb.tu-darmstadt.de/id/eprint/27880
https://tuprints.ulb.tu-darmstadt.de/id/eprint/27880
https://creativecommons.org/licenses/by/4.0/deed.de
https://creativecommons.org/licenses/by/4.0/deed.en

ABSTRACT

In the context of Industry 4.0, achieving flexible and deterministic data delivery is
crucial, particularly within networks that leverage Time-Sensitive Networking (TSN)
– an extension of traditional Ethernet – for real-time service guarantees. Current TSN
configurations, however, are predominantly static and do not offer the adaptability re-
quired to cater to the continuously evolving demands of applications. Adaptations be-
come increasingly complex when changes need to be incorporated during operation,
and applications demand more stringent service guarantees. This complexity stems
from elaborate TSN planning requirements, resulting in static switch configurations.
Furthermore, these configurations lack indicators for the reconfiguration potential,
thus making and predicting adaptations difficult. The static nature of TSN schedule
configurations typically necessitates complete reconfigurations, resulting in service
downtimes for applications in the network.

To address these challenges, this thesis introduces a novel flexibility metric called
“flexcurve” designed to enhance the management of dynamic TSN networks. The in-
troduction of the flexcurve metric aims to quantify the flexibility at network bottle-
necks by considering frame size and other traffic requirements, thereby measuring
possibilities for the integration of new traffic without extensive rescheduling. Conse-
quently, it enables a central TSN controller to perform more informed traffic admis-
sibility checks, path selection, and scheduling adjustments during the configuration
planning phase. Utilizing a path-based approach, the flexcurve metric captures the
essence of end-to-end scheduled traffic. Furthermore, the formulation allows for both
disaggregation and aggregation, enhancing efficiency. Disaggregations enable traffic
admissibility checks of different sources simultaneously, while aggregations facilitate
the rapid construction of the metric from existing configurations.

The thesis builds on the flexcurvemetric and introduces a search heuristic algorithm
that employs the flexcurve for dynamic scheduling. This algorithm is designed to gen-
erate eligible candidates and incorporates a secondary heuristic for pruning to select
themost promising candidates. Additionally,methods are included for choosing paths
that optimize the value of the flexcurve.

As final contributions, the deployment capabilities of TSN to non-TSN hardware
have been augmented by leveraging programmable Push-In-First-Out (PIFO) queues
and by developing the Residence Delay Aggregation (RDA) method, which ensures
per-flow delay guarantees on programmable switches. Additionally, the flexcurve has
been further extended by integrating multi-mechanism support, significantly improv-
ing network flexibility and broadening TSN deployment opportunities.

iii

KURZFASSUNG

Industrie 4.0 erfordert den Einsatz flexibler und deterministischer Datenübertragung,
besonders in Netzen, die Time-Sensitive Networking (TSN) nutzen. TSN, eine Erwei-
terung von Ethernet, bietet Echtzeitgarantien für die Datenübertragung. Allerdings
sind bestehende TSN-Konfigurationen überwiegend statisch und können sich nicht
ausreichend an sich dynamisch ändernde Anforderungen anpassen. Ihre statische Na-
tur, verbundenmit einem hohen Planungsaufwand und fehlenden Indikatoren für Re-
konfigurationsmöglichkeiten, erschwert die Anpassung an veränderliche Bedingun-
gen und führt bei Änderungen häufig zu Netzausfällen.

Um diese Herausforderungen anzugehen, wird in dieser Arbeit eine neuartige Fle-
xibilitätsmetrik, die “Flexcurve” eingeführt, die es ermöglicht, das Management von
dynamischen TSN-Netzwerken zu verbessern. Ziel der Flexcurve-Metrik ist es, die
Flexibilität an Netzengpässen zu quantifizieren, indem sie die Datengrößen und ande-
re Verkehrsanforderungen von Anwendungen berücksichtigt. Dadurch können ohne
umfangreiche Neuplanung die Möglichkeiten für die Integration neuer Datenströme
gemessen werden. Folglich ermöglicht sie es einem zentralen TSN-Controller, Prüfun-
gen über die Zulässigkeit von Datenströmen, die Auswahl von geeigneten Pfaden und
eine Anpassung der Zeitplanung durchzuführen. Durch einen pfadbasierten Ansatz
erfasst die Flexcurve-Metrik den Ende-zu-Ende zeitgeplanten Netzverkehr. Darüber
hinaus erlaubt die konkrete Formulierung der Flexibilitätsmetrik sowohl ein “Aufbre-
chen” als auch ein “Zusammensetzen”, was die Effizienz steigert. Das Aufbrechen
ermöglicht Prüfungen auf Zulässigkeit von verschiedenen Quellen gleichzeitig, wäh-
rend das Zusammensetzen den schnellen Aufbau der Metrik aus bestehenden Konfi-
gurationen erleichtert.

Aufbauend auf dieser Metrik präsentiert diese Arbeit einen heuristischen Suchal-
gorithmus, der die Flexcurve für eine dynamische Zeitplanung verwendet. Dieser Al-
gorithmus ist darauf ausgelegt, geeignete Zeitplan-Kandidaten zu erzeugen und be-
inhaltet eine sekundäre Heuristik zum Vorselektieren, um die vielversprechendsten
Kandidaten auszuwählen. Zusätzlich sindMethoden zur Auswahl von Pfaden enthal-
ten, die den Wert der Flexcurve optimieren.

Abschließend betrachtet diese Arbeit die Einsatzfähigkeit von TSN auf Nicht-TSN-
Geräten durch die Nutzung programmierbarer Push-In-First-Out (PIFO)-Puffer sowie
durch die Entwicklung der Residence Delay Aggregation (RDA)-Methode. RDA er-
möglicht Latenzgarantien pro Datenstrom auf programmierbaren Netzwerkgeräten.
Zudem wurde die Flexcurve durch Unterstützung für mehrere Mechanismen erwei-
tert, was die Netzwerkflexibilität verbessert und die Einsatzmöglichkeiten von TSN
erweitert.

v

PREV IOUSLY PUBL I SHED MATER IAL AND USED TOOLS

This thesis includes material previously published in scientific journals and confer-
ences. Table 1 summarizes all previously publishedmaterial that was included as part
of this thesis.

Scientific research is often the result of teamwork. This work reflects the contribu-
tions of computer scientists and researchers from other fields. I will clearly list the
contributions and affiliations of all co-authors and contributors. If an affiliation isn’t
listed at the first mention, it means that the person is, or was, a colleague at the Tech-
nical University of Darmstadt (TU Darmstadt), working in the Multimedia Communi-
cations Lab (KOM).

Several figures and tables that illustrate fundamental concepts and outcomes have
been reproduced in this thesis. Additionally, certain sections directly incorporate or
closely paraphrase content from prior publications. Following, I detail the chapters
that contain either direct quotations or adapted segments from previous published
works or other collaborations. A comprehensive list of my publications, including
those not directly related to this thesis, is given in Appendix C. Throughout this doc-
ument, the pronoun we is used to highlight the collective nature of the research. In
general, in terms of previous contributions, Prof. Dr.-Ing. Amr Rizk (University of
Duisburg-Essen), Prof. Dr. Boris Koldehofe (Technical University of Ilmenau), Dr.-Ing.
Ralf Kundel, and Prof. Dr.-Ing. Ralf Steinmetz have played vital roles in supervising
the entirety of the research process, offering critical insights into the methodology, ap-
proach, and overall development. Specific acknowledgments are made to each person
as necessary, should the contributions vary for a particular publication.

Beginning with Sections 3.1 and 3.2, I depict the thesis context and controller de-
sign. This essence is derived from the results of three prior publications: [30], [26], and
[28]. Additionally, I incorporate the controller design from [27]. All four papers were
created as part of project T3 within the German Research Foundation (DFG)-funded
Collaborative Research Center (CRC) 1053 – MAKI.

In [30], we first proposed the flexcurve concept, which is an integral part of this
thesis. Prof. Dr.-Ing. Amr Rizk and Prof. Dr. Boris Koldehofe supported me in devel-
oping the underlying concept of the paper. Dr. René Guillaume (Robert Bosch GmbH)
provided feedback on the underlying concept and offered a practical context from an
industrial perspective. Dr.-Ing. Rhaban Hark (ABB AG) supervised the entire process
and provided valuable feedback regarding methodology and approach. We extended
the concept in the subsequent paper [26] to include deadline-awareness. Addition-
ally, the paper presents a search algorithm for finding flow embeddings that can also
be utilized to construct a deadline-aware flexcurve. Amr Rizk, Boris Koldehofe, and
Ralf Kundel assisted in extending the concept and participated in the writing process.
René Guillaume provided valuable feedback on the overall conceptualization and con-
tributed further knowledge on the industrial context. We revised this paper with an

vii

Table 1: Previously published material.

Section [30] [26] [28] [29] [100] [27]

Chapter 3: flexibility-based tsn management

3.1: Managing Scenario 3 3 3

3.2: Controller 3 3 3 3

Chapter 4: flexibility notion

4.1: Flexcurve: A Notion of Flexibility for
TSN

3

4.1.1: Disaggregations for Admissibility De-
cisions

3

4.1.2: Aggregations for Quick Construction
and Incremental Updates

3 3

4.1.3: Deadline-awarenes 3 3

4.2: Evaluation 3 3 3

Chapter 5: optimization

5.1.1: Eligibility Candidates for Deadline-
aware Flexcurves

3 3

5.1.2: Eligibility Candidate Selection 3 3

5.3: Queue Assignments 3

5.4: Evaluation 3 3 3

Chapter 6: multi-mechanisms

6.1: PIFO Structures in TSN 3

6.2: RDA: Residence Delay Aggregation 3

Appendix A: appendix

A.1: Flexibility-aware Controller Implemen-
tation

3

A.2: Lemmas and Proofs (3)

extended version in [28], where we include a fast candidate selection of results from
the previous search algorithm and queue assignments to enable deployment on ac-
tual TSN hardware switches. The share of contributions of this paper are distributed
as in [26]. For the demonstration in [27], all co-authors provided feedback on the paper
writing process.

viii

Continuing with Chapter 4, I included concepts and results from [30], [26], and [28]
once again. In particular, Section 4.1 presents the flexcurve concept, first introduced
in [30], along with a similar example. In Section 4.1.1, the concept of flexcurve disag-
gregations is drawn from [30]. Furthermore, in Section 4.1.2, the concept of flexcurve
aggregations is derived from [26] and [28]. Moreover, Section 4.1.3 incorporates the
concepts of flowdelays and deadline-aware flexcurves, as given in [26] and [28]. Lastly,
in the chapter’s evaluation, cf. Section 4.2, I depicted results from the flexcurve sched-
uler comparison, as detailed in [26] and [28].

Continuing with Chapter 5, in Section 5.1.1, I included the approach for finding
eligibility candidates for deadline-aware flexcurves from [26, 28]. In Section 5.1.2, I
incorporated Section 4.3.1 from [28], detailing the approach for selecting eligibility
candidates verbatim. I adjusted this content to alignwith the notation used throughout
this thesis. In Section 5.3, I included Section 4.2 from [28], which outlines the method
for finding queue assignments, verbatim. This content has been adjusted to align with
the notation used in the rest of this thesis. For the chapter’s evaluation, cf. Section 5.4,
I included results and assumptions from [26–28].

Continuing with Chapter 6, in Section 6.1, I included the paper [29], regarding
PIFO usage for TSN, verbatim. I adjusted this content to align with the notation used
throughout this thesis. Furthermore, in Section 6.2, I included the paper [100], regard-
ing the proposed mechanism RDA, verbatim. I adjusted this content to align with the
notation used throughout this thesis. In [29], we introduced the idea of using PIFO
to deploy the Time Aware Shaper TSN mechanism. Amr Rizk assisted me in the con-
ceptualization for this paper. Rhaban Hark supervised the entire process. René Guil-
laume provided helpwith the writing process. In [100], Chengbo Zhou and I are equal
first authors. We developed the idea together based on similar original concepts, with
me focusing on the flexibility aspects, and Chengbo Zhou focusing on the conceptu-
alization for programmable hardware. Chengbo Zhou and I had equal share in the
paper writing process. Ralf Kundel further assisted in the writing process. Amr Rizk
provided further help for the overall conceptualization. Boris Koldehofe and Prof. Dr.
Björn Scheuermann supervised the process.

Lastly for Appendix A, Appendix A.1 includes the controller design from [27]. Ap-
pendix A.2 includes the proof for Lemma A.3 given in [28] verbatim. I adjusted this
content to align with the notation used throughout this thesis.

Tools used for creation of the thesis

This thesis is the result of my independent work, it has been in parts linguistically
revised with the help of the tools Grammarly and ChatGPT. These tools were em-
ployed solely for the purpose of revising grammatical structure and ensuring clarity
of expression.

ix

CONTENTS

1 introduction 1
1.1 Motivation for Flexibility in Time-Sensitive Networking 2
1.2 Research Challenges . 3
1.3 Research Goals and Contributions 4
1.4 Structure of the Thesis . 6

2 background & related work 7
2.1 Notational Reference . 7
2.2 Time-Sensitive Networking . 10
2.3 Scheduling . 15
2.4 Software-defined Networking . 19
2.5 Flexibility . 20
2.6 Transitions in Time-Sensitive Networking 23

3 flexibility-based tsn management 25
3.1 Managing Scenario . 25

3.1.1 Network Model . 28
3.2 Controller . 29

4 flexibility notion 33
4.1 Flexcurve: A Notion of Flexibility for TSN 35

4.1.1 Disaggregations for Admissibility Decisions 40
4.1.2 Aggregations for Quick Construction and Incremental Updates . 44
4.1.3 Deadline-awarenes . 47
4.1.4 Holistic Flexibility View . 50

4.2 Evaluation . 52

5 optimization 57
5.1 Flexcurve-based Scheduling . 57

5.1.1 Eligibility Candidates for Deadline-aware Flexcurves 57
5.1.2 Eligibility Candidate Selection 62
5.1.3 In-place Scoring . 64

5.2 Path Selection . 65
5.3 Queue Assignments . 66
5.4 Evaluation . 68

6 multi-mechanisms 77
6.1 PIFO Structures in TSN . 77
6.2 RDA: Residence Delay Aggregation 81
6.3 Flexibility of Simultaneous usage of TSN mechanisms 89

xi

xii contents

7 summary, conclusions, and outlook 95
7.1 Summary of the Thesis . 95

7.1.1 Contributions . 95
7.1.2 Conclusions . 97

7.2 Outlook . 98

bibliography 101

A appendix 111
A.1 Flexibility-aware Controller Implementation 111

A.1.1 SMT Scheduler . 112
A.2 Lemmas and Proofs . 115
A.3 Additional Figures . 118
A.4 In-place Scoring Scenarios . 121
A.5 List of Acronyms . 123

B supervised student theses 125

C author’s publications 127

D erklärungen laut promotionsordnung 129

1
INTRODUCT ION

Packet-switched computer networks are the foundation ofmodern digital communica-
tion, enabling data exchanges worldwide. They are indispensable in supporting data
communication across multiple platforms, from the Internet to data centers, even to
smartwatches. The evolution of network technologies, from early analog systems to
modern digital networks, has been a journey of increasing complexity and capabil-
ity. In packet-based communication, as in today’s Ethernet-based computer networks,
data packets are forwarded along their paths by network devices such as switches
and routers. Switched Ethernet (IEEE Std 802.1Q [42]) is nowadays the fundamental
technology for local networks, facilitating packet transmission. Ethernet devices are
cheap and offer high performance.

Traditional switched Ethernet does not support service guarantees in data transmis-
sion. Packets adhere to a best-effort (BE) delivery, where each packet is forwarded as
efficiently as possible, given the current condition and hardware capabilities. How-
ever, best-effort delivery is insufficient in many environments. In particular, industrial
or in-vehicle communication requires real-time service guarantees for their applica-
tions to function [10, 11, 65, 96]. Here, additional measures are necessary to guarantee
the traffic requirements of critical applications.

Historically, computer networks supporting real-time communication are built on
proprietary systems. They are specifically designed for applicationswhere reliable and
timely delivery of data is critical [96]. A class of those systems are proprietary Ethernet-
based solutions such as TTEthernet [93] and Profinet [76]. They emerged to meet
the growing requirements of industrial communications [16, 21, 78, 96], thus showing
the need for specialized solutions in environments where traditional Ethernet’s best-
effort servicemodel falls short. Ethernet’s ubiquity, interoperability, and scalability are
desired.

This has led to the development and extension of IEEE Std 802.1Q switched Ethernet
called Time-Sensitive Networking (TSN). The extensions provide mechanisms within
standard Ethernet to handle time-sensitive data with the required service guarantees.
This standard inclusion enables a diverse vendor ecosystemwherein devices are more
likely to be interoperable. It also creates more accessible opportunities for research.

As larger-scale, e. g., factory-wide, networks become possible through the adoption
of Ethernet, varying application requirements and evolving topologies pose new chal-
lenges. Although TSN is highly effective for its intended applications, the usage of
TSN reduces the inherent flexibility of traditional Ethernet. Without TSN, Ethernet is
quickly able to adapt to changes in topology and traffic, as there is no need to con-
sider given service guarantees. This newfound rigidity in Ethernet systems can limit
the network’s scalability and adaptability in dynamic environments where network
demands are continuously changing.

1

2 introduction

1.1 motivation for flexibility in time-sensitive networking

As industries and processes evolve, the need for a network infrastructure that han-
dles real-time requirements and adapts to changing conditions becomes paramount.
For instance, in a factory environment, it is crucial to adjust network paths, accommo-
date new applications and their devices, or respond to changing production demands
without impacting real-time communication. Through TSN and Ethernet, deploying
factory-wide real-time trafficmixed with non-real-time traffic becomes possible. How-
ever, any change to the configuration is potentially affecting all currently deployed
devices, highlighting the key limitation for flexible TSN-based networks. In the worst
case, breaking the given guarantees leads to catastrophic failures. A TSN configura-
tion is deployed on network devices, affecting the network’s behavior to achieve the
required communication requirements. The parameters for the configuration differ
depending on which TSN mechanisms are available and needed.

Current configurations in TSN are typically static and designed for the existing net-
work applications. A configurator collects application requirements beforehand and
sets the network configuration accordingly. Creating a working configuration requires
a thorough analysis of the requested requirements and the current configuration state.
State-of-the-art approaches usually use constraint-based solvers like satisfiabilitymod-
ulo theories (SMT) or integer linear programming (ILP) for strict traffic requirements
that are supported by scheduled traffic (ST) [13, 18]. However, these approaches are
very time-intensive, even for light network utilizations. The resulting configuration
also usually disregards potential future changes. This time-consuming computation
and the resulting static configuration dramatically limit application adaptation possi-
bilities once a configuration is deployed.

While less strict real-time requirements may offer more flexibility when more in-
herently flexible mechanisms can be used, this diminishes with stricter demands and
increasing traffic volume.

Definition — Scheduled Traffic (ST), also called time-triggered traffic, is a traffic
class where network traffic is forwarded according to a precomputed timetable
at each hop. This timetable defines the achieved bandwidth, delay, jitter, and
sending period.

This configuration approach, while effective in the short term, poses significant lim-
itations:

1. The static nature of these configurations limits online reconfiguration capabili-
ties.Networksmay require complete reconfiguration to implement changes, lead-
ing to potential operational disruptions or costly shutdowns when networks are
reconfigured.

2. Configurations, where application requirements can be incorporated on the fly,
are prohibited. Flexible configurations would allow for guaranteed adjustments

1.2 research challenges 3

to accommodate unexpected or planned changes in device usage while not af-
fecting previously deployed applications.

3. The inflexibility of current TSN configurations poses challenges in aligning with
Industrial Internet of Things (IIoT) and Industry 4.0 goals for data exchange, re-
quiring flexibility and determinism in communication [66].

The need to balance the deterministic nature of TSN with the desired inherent flex-
ibility of traditional Ethernet is becoming increasingly critical as we move towards
more interconnected and versatile network infrastructures. Approaching the versatil-
ity of traditional Ethernet with deployed TSN is a central goal of this thesis.

1.2 research challenges

To clearly specify the meaning of flexibility in the context of TSN, we provide the fol-
lowing definition:

Definition — Flexibility is the ability to accommodate future changes of config-
urations at runtime.

Building on the previously mentioned motivation to gain flexible TSN configurations.
We identify three major challenges, that hinder an inherent flexbility in TSN:

Challenge: Deployed TSN configurations can be complex and provide no inherent intuition
for reconfiguration possibilities.
ExistingTSNconfigurations and their static nature often overlook future traffic changes,
as the configuration is primarily created to satisfy the given application requirements.
Consequently, determining feasible changes and their impact on active applications is
non-trivial. For instance, in scheduled traffic environments, without rescheduling, it is
unknown if new traffic can be included. Capturing the level of flexibility for the current
configuration state can help determine whether traffic can be admitted. Further, this
can also facilitate a more flexible TSN usage by allowing partial reconfigurations and
direct adaptation to new applications. However, to be able to reason about flexibility,
a flexibility metric is required that can assess the level of flexibility for TSN scheduled
traffic.

Challenge: Elaborate configuration planning requirements with strict real-time traffic.
While the planning process of TSN configurations varies between mechanisms, traffic
with strict requirements supported by scheduled traffic, require an elaborate schedul-
ing phase. With scheduled traffic, packets are scheduled in advance at each network
hop, considering interfering traffic, forwarding delays, and application requirements
within the scheduler. The planning of such schedules often uses constraint satisfac-
tion toolswhich impose high computational overhead.Heuristicmethods can improve
the scheduling speed significantly but result in less capable schedules. However, both

4 introduction

planningmethods usually disregard flexibility aspects to support future changes.Min-
imizing the need for complete reconfigurations and improving the quality of TSN con-
figurations requires an understanding of how knowledge of flexibility can support
planning reconfigurations.

Challenge: Mechanism selection and abstraction disparities.
Deploying a configuration for real-time network applications necessitates a two-step
process: 1. choosing an available and suitable mechanism that can support all service
requirements, and 2. setting the mechanism’s parameters to ensure all requirements
are met. Often, there is a disparity between an application’s requirements and the pa-
rameters of the chosenmechanism. Both tasks are non-trivial, as the selection of mech-
anisms and parameters significantly impacts the flexibility that can be achieved. It is
beneficial for configuration flexibility to extend the variety of mechanisms and allow
for their combined utilization. When multiple mechanisms are used, mechanisms can
directly cater to their application requirements without the need to over-provision
resources for service guarantees that are not needed. However, this requires the ap-
propriate coordination in setting up the TSN configurations for multiple mechanisms.
Knowledge of other mechanisms’ attributes and their proper integration is needed
within the configuration planning process to consider flexibility impacts properly.

1.3 research goals and contributions

Themain goal of this work is to increase the flexibility of deployed TSN configurations
for runtime adaptions. This is divided into the following primary research goals.

Research Goal 1: Provide a mechanism for analyzing flexibility of scheduled traffic configu-
rations.
The flexibility level of the current state of configuration needs to be assessed to achieve
increases in flexibility. In research goal 1, we focus this notion on scheduled traffic
scenarios, which enable applications with strict real-time traffic requirements. These
scenarios are highly relevant to industrialmanufacturing applications and provide the
least inherent flexibility due to the rigid precomputed schedule. To address this goal,
we provide a flexibility notion for TSN schedules [26, 28, 30] that captures possibilities
for future traffic admissions without interference to previously admitted scheduled
traffic.

Research Goal 2: Methods for optimizing the flexibility of TSN schedules.
Building on the flexibility notion for TSN schedules, we aim as part of the 2ⁿᵈ research
goal at improving scheduled traffic flexibility under constant changes. Reconfigura-
tions are triggered by changing applications or changing application requirements
participating in the network. Without respecting potential future changes, created
configurations may become inadequate or require a complete re-scheduling, result-
ing in undesirable downtimes. Respecting potential future changes helps to reduce

1.3 research goals and contributions 5

this. The flexibility notion of Research Goal 1 lends itself to be combined with sched-
ulers in the planning process to influence TSN configurations for increased flexibility.
We incorporate this flexibility notion within flow scheduling procedures in [26–28].
Increasing schedule flexibility helps to reduce the need for an elaborate configuration
re-scheduling.

Research Goal 3: Enabling a flexible deployment of TSN mechanisms to achieve application
requirements.
Extending the variety of mechanisms, e. g., due to different hardware capabilities, cre-
atesmore deployment opportunities, enablingmore flexible device usage.We propose
alternative mechanisms in [29] and [100]. Furthermore, concurrently using multiple
mechanisms also leads tomore flexible deployments. Selecting the appropriatemecha-
nism for each application to prevent over-provisioning network resources is a straight-
forward way to maintain flexibility. To allow for multiple mechanisms while preserv-
ing flexibility, we have incorporated multi-mechanism support in the configuration
planning process, extending our TSN flexibility notion, as detailed in Section 6.3.

Scope of the Thesis

In the following, we briefly discuss topics that fall outside the scope of this thesis.
This thesis adopts the centralized Software-defined Networking (SDN) paradigm. A
centralized global view is possible and common in local networks where TSN is com-
monly deployed. This means distributed reservation protocols, which are also part
of TSN standardization, are not considered. Narrowing this focus also excludes layer
three routed networks, as advanced by the IETF working group DetNet¹. Resilience
aspects of improving flexibility, either in a cyber security or redundancy sense, are
also not considered. Except for Chapter 6, which considers multiple mechanisms, this
thesis primarily examines approaches that require scheduled traffic. Scheduled traffic
is a major focus for this thesis because of its inherent lack of flexibility due to enabling
strict real-time guarantees and the necessity to precompute timetables. This choice is
based on the expectation that enhancing the flexibility of scheduled traffic in TSNmay
yield significant benefits for its users and may also translate to approaches with less
strict needs.

1 Information about the DetNet working group can be found here: https://datatracker.ietf.org/wg/
detnet/about/ (Last accessed on 19th January 2024)

https://datatracker.ietf.org/wg/detnet/about/
https://datatracker.ietf.org/wg/detnet/about/

6 introduction

1.4 structure of the thesis

The structure of this thesis is outlined as follows: Chapter 2 provides background in-
formation and a review of related work relevant to the context of the thesis. Chapter 3
discusses our assumptions for a flexibility-aware TSN management. The first, second,
and third research goals are addressed in Chapter 4, Chapter 5, and Chapter 6, respec-
tively. Each of these chapters includes specific evaluations relevant to its focus. The
thesis concludes with Chapter 7, which summarizes the contributions and provides
an outlook on potential future work.

2
BACKGROUND & RELATED WORK

In this chapter, we provide relevant background knowledge and information on re-
lated work of this thesis. The subsequent section also provides with Table 2.1 descrip-
tions for important notational symbols used throughout the remainder of this thesis.

2.1 notational reference

Table 2.1: Notational Reference

Symbol Description

i, j : Natural number iterators within a local scope
[i] : Subset of natural numbers {1,… , i}
| ⋅ | : Cardinality of a set

G, V, E : Graph Gwith the set of nodes V and directed links E
vi : The i-th node in V
p : A directed link or source port (vi, vj), the source port is as-

sociated to the node vi
pω : Theω-th port in the path
P : A path consisting of a sequence source ports (p1, … , pm)
m : Number of ports in the path
F, 𝐅 : Set of all flows F, Set of requested flows 𝐅 = {𝐟1, … , 𝐟u} ⊆ F
fδ : The δ-th flow in F
u : Number of requested flows
α : Iterator of requested flows α ∈ {1,… , u}

𝐏, 𝐏α : The requested path when u = 1 and α-th requested path
𝒫 : Intersection of all requested source/destination port pairs:

𝒫 = ⋂𝐏α

𝐟, 𝐟α : The requested flow when u = 1 and α-th requested flow
𝔓δ : Set of eligible paths for flow fδ
h : Hyperperiod also known as network cycle period

c, 𝐜, 𝐜α : Frame size, requested frame size and α-th requested frame
size

Continued on next page

7

8 background & related work

Table 2.1 – continued from previous page

Symbol Description

sp : Port schedule for port p
φp : Duration of the last gap within port schedule sp
s⃑p : Port schedule sp with end-shifted departure times
χp : Number of distinct frame departure times in sp

𝒯p,β : Time point of the β-th free slot at port schedule s⃑p
n, κ : Natural numbers used as slot index iterators
d, 𝐝 : Frame deadline, requested frame deadline
λ : The λ-th flexcurve disaggregation step

cmax,P : Maximum frame size along path P
𝐜max,λ,𝒫 : Maximum frame size for the λ-th disaggregated flexcurve

with 𝐜max,0,𝒫 = cmax,𝒫

𝒞λ : Set of requested indices 𝒞λ ⊆ {1,… , u} that are admissible
for the λ-th disaggregation

Ψp : Number of gaps within the port schedule sp
Ψ⃑p : Number of gaps within the end-shifted port schedule s⃑p
Ψ⃑P : Total number of end-shifted gaps along path P: Ψ⃑P =

∑p∈P Ψ⃑p

gp : Sequence of gap starting times gp = (g1p, g2p, … , g
Ψp
p) for the

port schedule sp ordered by time relative to beginning of the
schedule

g⃑p : Sequence of gap starting times for the end-shifted schedule
s⃑p

Δp : Sequence of gap durations Δp = (Δ1
p, Δ2

p, … ,Δ
Ψp
p) corre-

sponding to gp
Δ⃑p : Sequence of gap durations for the end-shifted schedule s⃑p
aω : Assignment for a specific time-point within the port-

schedule spω . E. g., a port transmission time for flow candi-
dates

Gap(aω) : The mapping from a port assignment aω to a
specific gap is given by the function Gap(aω) =
i, where i is the largest index such that: gipω ≤ aω

qω : A specific candidate assignment aω
A : A sequence of assignments A = (a1, … , am)
𝒜 : Set of all eligible assignments A for a flow with frame size c

and deadline d

Continued on next page

2.1 notational reference 9

Table 2.1 – continued from previous page

Symbol Description

𝒜p : Reduces 𝒜 to a single port pω such that aω ∈ 𝒜ω

𝒜 : Set of eligible assignments A derived from Algorithms 2
and 3 for deadline and frame size constraints

𝒜
p

: Reduces 𝒜 to a single port pω such that aω ∈ 𝒜ω

𝒜A : The set 𝒜 pruned with all overlaps of A
t(n, κ) : The delay between two time slots n, κ for any two consecu-

tive ports (pω, pω+1) for a given frame size of c and hyper-
period h

tmax : Themaximum delay between two consecutive ports is given
as h + c − 1 for a given frame size of c and hyperperiod h

T(A) : The end-to-end delay for a given assignment A
max (T) : The maximum end-to-end delay is given as max (T) = (m−

1)tmax +c for a given path lengthm, frame size c and hyper-
period h

𝒬 : Set of shared queue identifiers available for scheduled traffic
in the network

𝒬̂ω : The set of occupied queue identifiers at port pω at time point
aω−1 for the duration of the frame c

𝒬′
ω : The set of available queues at port pω is given by 𝒬′

ω = 𝒬 ∩
𝒬̂ω

Cp(n) : Cumulative capacity up to slot index n at port p
bP(c) : Basic flexcurve value for frame size c along path P
bdP(c) : Deadline-aware flexcurve value for frame size c, deadline d

along path P
b̃∆(c) : Canonical flexcurve value for frame size c and period Δ

w : A Credit-based Shaper (CBS) class w ∈ {1,… , 8}
cdwp : The CBS deadline for port p and class w
edwp : The CBS eligibility duration for port p and class w

10 background & related work

2.2 time-sensitive networking

Time-Sensitive Networking (TSN) is the Ethernet standard extension designed to inte-
grate real-time communication into switched Ethernet. Available migration strategies,
such as those outlined in [85] for the proprietary Ethernet system ProfiNet, simplify
the transition to this standard protocol. The IEEE Standard 802.1Q [42] has incorpo-
rated several extensions over the years (e. g., IEEE Std 802.1Qbv [40], 802.1Qbu [41],
802.1Qci [45], 802.1Qcr [43]) to support real-time data communication.

We will next define the term real-time as used in this thesis.

Definition —Real-time in the context of data transmission can give service guar-
antees for data delivery in the network.

TSN consists of several sub-standards, including standards,

• IEEE Std 802.1Q [42]: Bridges and Bridged Networks

• IEEE Std 802.1AS [47]: Timing and Synchronization for Time-Sensitive Applications

• IEEE Std 802.1CB [46]: Frame Replication and Elimination for Reliability

that constitute the core functionality. We define Flows in the context of this thesis as:

Definition —A flow is a sequence of Ethernet frames that adhere to application
specific requirements.

Flows are themain subject of TSN, as additional real-timemechanisms are deployed
to ensure the compliance of application requirements for application flows. Flows are
identifiable, e. g., by utilizing the unique parameters such as source and destination, or
using a unique identifier field. The TSN standard also includes a configuration model.
We describe in detail in Chapter 3, how we designed and apply a flexibility-based
configuration model for TSN management.

Delays in Switched Forwarding

The transmission of flows in a switched communication networks is not instantaneous.
Different delays are introduced as the flow’s frames are forwarded. The end-to-end
delay of frames is comprised of transmission, switch processing, port queueing, and link
propagation delays. The transmission delay is the time required for a frame to be trans-
mitted. This time is influenced by the line rate at which the frame is transmitted. The
processing delay is the time required for the reception of the frame at the forwarding
element until it is available in the egress queue. The queueing delay is the time a frame
resides in the egress queue until it is eligible for forwarding. The propagation delay is
the delay introduced by the physical layer until the first bit arrives at the ingress port.
It depends on the forwarding hardware, length and the type of the medium.

2.2 time-sensitive networking 11

Time Synchronization

Some TSN mechanisms require a globally synchronized time to function. To achieve
synchronization between time-aware end-devices and switches (Ethernet bridge), the
IEEE Std 802.1AS [47] can be used, and is recommended in IEEE Std 802.1Q. It is based
on the Precision Time Protocol (IEEE Std 1588 [39]), and provides configurations and
procedures to ensure synchronization for time-sensitive applications as supported by
IEEE Std 802.1Q [42] can be met. In this thesis, we assume that the time synchroniza-
tion is given, and we will not consider the impacts of failures, interferences, or inaccu-
racies that may arise from the used time synchronization method. Thus, we will not
present further details regarding the time synchronization methods.

TSN Mechanisms

The TSN standard collection encompasses multiple mechanisms. Depending on the
flow requirements, the appropriate mechanisms need to be chosen. In the following
Table 2.2, we first provide a quick overview of the main traffic shaping mechanisms
specified currently in IEEE Std 802.1Q, followed by a more detailed description of the
relevant mechanisms for this thesis. The possible guarantees any mechanism can give,
also depend on the deployed configuration, e. g., bandwidth parameters.

Synchronous: Scheduled Traffic

IEEE Std 802.1Q [42, p. 222] specifies enhancements for scheduled traffic, also known
as the Time Aware Shaper (TAS). This extension enables switch egress queues to be
scheduled based on time with cyclic gate control lists (GCLs). The egress queues are
assumed to adhere to a first-in-first-out (FIFO) principle. The standard allows for a
total of eight egress queues per port. The Priority Code Point (PCP) header field (3-
bit field) of the VLAN tag is used to distinguish between frame priority values, to
enqueue the frame in the corresponding queue. Consequently, in order to be effective,
global time synchronization is required, which allows for synchronized execution of
the network’sGCLs (cf. Figure 2.1). A singleGCL is utilizedper egress port, controlling
the eligibility of a port’s queues for frame transmission selection.

Queued frames from each port’s queues are selected by a transmission selection al-
gorithm, if the corresponding queue’s gate is open. This algorithm defaults to strict
priority, meaning the queue with the highest priority is selected. However, alterna-
tive selection algorithms exist: credit-based shaping, asynchronous traffic shaping, or
enhanced transmission selection. With the freely configurable GCLs and several trans-
mission selection algorithms, the TSN enhancements for scheduled traffic can be ap-
plied in a variety of ways.

Each entry of the GCL, controlling the queue’s eligibility states, is executed at its
specified time. The GCL execution is repeated after a configurable cycle time. Addi-
tionally, the base time from which future cycles are computed is also configurable.
While port cycles can be configured independently, for ease of configuration, it is com-

12 background & related work

Table 2.2: TSN Traffic Shaping Mechanism Overview [42]

Time Sync. Complexity

Strict Priority

Prioritizes network packets based on VLAN header pri-
ority.

7 Low

Enhanced Transmission Selection

Allocates the available bandwidth among different traf-
fic classes, e.g., using variants of round-robin schedul-
ing.

7 Low

Credit-based Shaper

Manages the bandwidth allocation of affected traffic
classes through a credit system to reduce congestion
and ensure fairness.

7 Medium

Asynchronous Traffic Shaper

Similar to the credit-based shaper, allows per flowdelay
modeling.

7 Medium

Scheduled Traffic

Can ensure precisely timed packet delivery via time-
synchronized queue scheduling.

3 High

Cyclic Queueing and Forwarding

The affected traffic is transmitted and queued in a cyclic
fashion. Allows for simple flow latency calculations.

3 Low

mon to apply a network cycle time or hyperperiod, h. This hyperperiod can be selected
by computing the least common multiple of the periods of all given flows.

Scheduled traffic is themainmechanism that is used as underlying TSNmechanism
in thesis. Unless otherwise specified, we assume the default strict priority transmis-
sion selection when scheduled traffic is employed. The traffic class scheduled traffic, as
introduced, is defined as follows:

Definition — Scheduled Traffic (ST), also called time-triggered traffic, is a traffic
class where network traffic is forwarded according to a precomputed timetable
at each hop. This timetable defines the achieved bandwidth, delay, jitter, and
sending period.

2.2 time-sensitive networking 13

Queue 1
Queue 2

Figure 2.1: Execution of gate opening events is time synchronized across the network. Figure
derived from [28].

Queue 0

Queue 1

Queue 2

Queue 7

Switch Egress Port

St
ric

tP
rio

rit
y

Queues Gates Transmission Selection

Best-effort

Scheduled TrafficTime-Aware Shaper

Flow-level Schedule

Frame Egress

Queue 0 Queue 1

t0 t1 t2 t3 t4 h

Gate Control List (GCL)
t0 1 1 1 1 1 1 0 0
t1 0 0 0 0 0 0 0 1
t2 1 1 1 1 1 1 0 0
t3 0 0 0 0 0 0 1 0
t4 1 1 1 1 1 1 0 0

Scheduled Traffic Best-effort

Figure 2.2: Example mapping from flow- to queue-level schedule for a single egress port.
Events within the flow-level schedule can be mapped to gate events in the GCL.
Best-effort and scheduled traffic frames are queued in their corresponding queues.
The gates are depicted with state t1. Figure derived from [28].

With its flexible configuration, scheduled traffic configuration can be complex and
focus on different goals, with different approaches to create such a configuration. We
summarize some state-of-the-art approaches in Section 2.3.

While TSN supports queue-level schedules via GCLs directly, scheduled traffic can
also apply at the flow-level. That is, each flow’s frame is forwarded according to a
precomputed timetable. We can map flow-level schedules to queue-level gate open-
ing and closing events, provided that the availability of queues permits this mapping.
Time is assumed to be discrete, as the time granularity within hardware is limited. For
instance, a time granularity of 1ns results in discrete time slots, each of 1ns duration.
The number of slots that are required depend on the port’s line rate and overall flow
reservation requirements. We depict an example mapping from flow- to queue-level
egress port schedule in Figure 2.2. The example depicts a port schedule at the flow-
level and the corresponding GCL and queue assignments. The flow-level schedule has
two contiguous flow reservations assigned to queue 0 and queue 1. The switch port, as
depicted, supports best-effort and scheduled traffic. Queues in the switch’s egress port
are assigned to specific traffic types. In this example, the two highest priority queues,

14 background & related work

0 and 1, are reserved for scheduled traffic. When a scheduled traffic flow is scheduled
to egress (e.g., t1), the corresponding queue is opened (queue 0), and all other queues
are closed. This effectively disables the strict priority transmission selection, as only
one queue is eligible for transmission until the scheduled transmission ends at time
t2. At time t2, queue 0 is closed, queue 1 remains closed, and the remaining best-effort
(BE) queues are opened. The process continues until the port cycle repeats. Note, that
we are assuming implicit guard bands, protecting the higher priority scheduled traf-
fic windows for interference from lower priority frames. With implicit guard bands,
frames are not transmitted if they cannot be completely transmitted within the remain-
ing time of the transmission window.

With scheduled traffic supported by GCLs, multiple queues can be utilized to sepa-
rate frames of different traffic types or separate frames of the same type. The utilization
of multiple queues within scheduled traffic, for instance, allows for a spatial separa-
tion of flows, referred to as flow isolation [18] or deterministic queues [80]. Frames of
different flows need to be isolated to avoid side effects in the event that a flow sud-
denly goes missing or multiple flows arrive at the same time on different links. Flow
isolation can also be achieved by avoiding the dual use of a queue with multiple flows
queued at the same time.

Asynchronous: Credit-based Shaper

The Credit-based Shaper (CBS) [42, p. 220] is a shaping algorithm that essentially lim-
its the bandwidth of a single queue to a fraction of the available line rate. This frac-
tion can be controlled by a single parameter, denoted idleSlope, for the selected CBS
queue. The Credit-based Shaper utilizes a credit mechanism to control the queue’s
frame transmission eligibility. Frames are eligible for transmission if the accumulated
credit value is ≥ 0. See Figure 2.3 for an example depiction of the credit value be-
havior. Credit is accumulated at a rate of idleSlope in bits per second, starting from
zero, when queued frames are waiting for transmission. Note, credit accumulation is
paused when a present GCL closes the gate for the corresponding CBS queue. The
credit is decreased by the sendSlope rate, during active frame transmissions of the
queue. An empty queue resets the credit value to zero.

The bandwidth limiting behavior of the credit-mechanism ensures lower priorities
(queues that are selected later in strict priority) are able to transmit frames in a pre-
dictable way. This increases the fairness between traffic classes compared to strict pri-
ority transmission selection, by limiting the frame bustiness [79]. Multiple approaches
exist to model the delay behavior of the Credit-based Shaper, e.g., [20, 64, 67, 68, 70,
73, 98, 99]. A majority of these approaches utilize the network calculus framework [19,
24, 60] to calculate worst-case delay bounds for CBS traffic classes.

Due to their function and asynchronous nature, shapers like CBS, or Asynchronous
Traffic Shaping (ATS) [43, 91] can only give poor jitter (frame delay variation) guaran-
tees. However, works exist that can reduce jitter by damping the traffic rate to achieve
more consistent per-hop latency [34].

2.3 scheduling 15

idl
eSl

ope sendSlope

0

low credit

high credit

increasing time
C

re
di

tC
BS

A

ST Pause ST Pause

idl
eSl

ope sendSlope

0

low credit

high credit

increasing time

C
re

di
tC

BS
A

ST
Pa

us
e

Figure 2.3: Example illustration of the credit behavior of the credit-based shaper for class A.
The credit value increases when the queue is not transmitting frames. Frames are
eligible for transmission if the credit is not negative. Credit is accumulated at the
idleSlope rate, and decreases with a rate of sendSlope.

2.3 scheduling

Scheduling is an important problem in computer science, and other domains. There is
a distinction in scheduling terminology between a scheduling policy (e. g., [8, 54, 63, 82]),
and a sequence or schedule (e. g., [18, 28, 90]) of tasks [74]. This distinction is important,
as both concepts are applied in TSNmechanisms. Policies are applied for queue or flow
selection algorithms, and schedules can describe exact time-sequences of relevant Eth-
ernet frames. Scheduled sequences enable the deterministic usage of resources. How-
ever, the scheduling problem is in general NP-hard [74].

In networking scenarios, to avoid single flows being able to easily influence the per-
formance of other flows, scheduling policies were introduced to improve fairness [92].
Due to the hardware limit of available FIFO-queues within network switches, these
scheduling policies usually don’t operate on a per-flow level when utilized within
switches. This would require one separate queue per flow. Scheduling policies appli-
cable to TSN transmission selection algorithms include strict priority and round-robin
varieties.

• The strict priority policy selects the highest priority queue that has frames ready
for transmission.

• The round robin policy cyclically selects queues that have waiting frames. Upon
reaching the last queue, it cycles back to the first. Several variants of round-robin
exist, such as theWeighted Round Robin (WRR), where the number of transmis-
sion opportunities for a queue is influenced by its weight [50], and the Deficit
Round Robin (DRR), which accounts for varying frame sizes [88] to enable bet-
ter fairness. Additional variants are discussed in references such as [5] and [82].

In addition to queueing policies aimed at enhancing overall fairness, some schedul-
ing policies incorporate deadline considerations. These can also be applied in the con-

16 background & related work

text of network forwarding. Notably, Rate Monotonic scheduling [63] assigns priori-
ties based on the period of network flows, with those having shorter periods receiving
higher priority. Dynamic policies, such as the EarliestDeadline First (EDF) policy prior-
itize flows according to their upcoming deadlines [60]. Additionally, dynamic variants
like Least Slack Time First (LSTF) [62] consider the remaining slack time, defined as
the difference between the remaining time until a flows’s deadline and the remaining
processing time.

Implementing these flow-level scheduling policies in hardware devices presents
challenges, as they necessitate either an isolated queue for each flow or arbitrary in-
sertion capabilities to correctly select the queued flows according to the scheduler’s
criteria.

The deployment of scheduled traffic cannot be implemented using these schedul-
ing policies. Therefore, the focus of the remainder of this thesis is on the schedule
sequencing problem.

Scheduling TSN Scheduled Traffic

In classical sequence scheduling problems, constraint-based approaches can be em-
ployed to identify viable optimal schedules [74]. Optimal, in the sense that a solution is
found if one exists. Similarly, TSN-schedulers that utilize the same concept exist. For ex-
ample, [18] and [83] employ satisfiability modulo theories (SMT)-based formulations
to schedule flows using the tool Z3 [97] for use with TSN GCLs and full flow isolation.
A constraint-based TSN scheduler for scheduled traffic must define mathematical re-
lationships concerning the flow requirements that are scheduled. This encompasses
scheduled traffic parameters like frame sizes and deadlines, but also dependencies
among flows, particularly at shared ports, or hardware restrictions like the number of
available queues. The implementation of a TSN SMT scheduler used for evaluation
purposes is documented in Appendix A.1.1.

However, because constraint-based approaches, depending on the number of flows,
can sometimes require hours to days to find viable results [18, 28], efforts are being
made to try to improve scheduling speed. The work of [9] enhances the constraint-
based solver with a heuristic to accelerate the scheduling speed. Meanwhile, the au-
thors of [36] combine constraint-based scheduling with heuristics by utilizing a bin-
packing technique with a first-fit heuristic and scheduling the remaining resources
using SMT.

Some TSN flows might require the scheduled sequence to incorporate multicast
transmissions. That is, flows that have multiple listeners, where frames get replicated
as necessary along their path. In this thesis, we do not explicitly consider multi-path
flows. Multicast scheduling requires special consideration within the scheduler [61].

Incremental Scheduling

In dynamic scenarios, when application requirements and network conditions are con-
stantly changing, resetting scheduling resultsmay be infeasible. Re-schedulingmay re-

2.3 scheduling 17

sult in different time slot allocations for a flow, which would require the interruption
of the affected application. Therefore, incremental approaches, that build on previous
results to adapt the schedule for new requirements, are important. This typically in-
volves fixing the current flow requirements and incorporating new flow(s) and their
requirements by modifying the existing schedule. Incremental approaches that also
utilize constraint-based methods exist. Pure scheduling heuristics also typically work
in a “keep-modify-integrate” manner, instead of combining flow admissions together.

The incremental approach is relevant to this thesis, due the need to adapt configu-
rations at runtime. Several contributions are present in the literature. In the following
we highlight some approaches:

In [71], the authors introduce an incremental schedulingmethod for networks, specif-
ically limiting scheduling operations to end-nodes within their framework denoted
Time-sensitive Software-DefinedNetworking (TSSDN). This approach reduces the need
for scheduled switch nodes, although it is constrained by the absence of intermediate
scheduling capabilities. The approach employs an integer linear programming (ILP)
strategy to formulate the schedule configuration.

A method for rapid re-scheduling in the event of network node failures is given by
[25]. The approach introduces SMT constraints to reassign routing of faulty nodes to
a backup route. In scenarios where this node-limited re-scheduling is infeasible, the
algorithm employs a recursive backtracking technique, revisiting and adjusting the
schedules of upstream nodes until a feasible scheduling solution is found.

Pure heuristics

In the literature, pure scheduled traffic heuristic schedulers operate in an incremental
manner. A heuristic approach to use multiple queues for flow isolation and also using
relaxed jitter requirements is given in [17]. Whereas the scheduling heuristic, given by
[6], enables a task-based abstraction scheduling, using a ordering function to select the
next incrementally added flow.

The concept of a “soon-as-possible” strategy, we refer to as first-fit heuristic schedul-
ing, is presented in [75]. This methodology aims to schedule flows at the earliest pos-
sible opportunity.

Additionally, an alternative strategy proposed by [33] advocates for the shared uti-
lization of GCLs windows to enhance the dynamic capabilities of the implemented
schedules. Although this approach compromises flow isolation and elevates jitter lev-
els, it has the potential to achieve greater dynamicity, provided that the flow require-
ments can accommodate the reduced guarantees.

Wait-free vs Queueable

The authors of [61] present a scheduling heuristic that reduces the search space to
no-wait flow schedules while permitting non-zero jitter. Notably, this approach also
can enable multicast transmission, thus broadening its applicability in complex net-
work scenarios. A flow schedule designated as no-wait ensures that a flow is scheduled
with minimal latency during the transmission of its frames within the network. This

18 background & related work

effectively eliminates queueing delay, as frames are immediately forwarded to their
subsequent destinations. In [13] the authors also employ a no-wait strategy, both with
random and greedy scheduling approaches, with the latter incrementally scheduling
a flow by minimizing contention between existing flows.

Similarly, the authors of [22] employ no-wait scheduling with means of an ILP for-
mulation. They also employ a first-fit heuristic that adheres to no-wait flows and is
capable of incrementally adding flows. It is important to note that, in general, first-fit
heuristics may allow the introduction of queueing delays. As a consequence, they do
not limit the search space exclusively to scenarios without no-wait constraints.

In the concepts described in this thesis, we consistently assume that all flows are
permitted to accumulate queuing delays along their paths within the network.

Joint Routing and Scheduling

Few approaches integrate routing into the primary scheduling process. Incorporat-
ing routing significantly increases the complexity of problem formulations, rendering
them challenging to manage due to their expanded size. Thus, approaches use well-
known metrics, like shortest path routing, as a route selection mechanism, or do not
specify how the route is obtained at all.

Approaches that explicitly consider the path selection typically employ custommet-
rics to sort paths for their scheduling viability. The approach [72] introduces the flow-
span metric, where the goal is to keep it minimal. The flowspan is the total time, from
the first transmission to the end of the last transmission, that all scheduled flows re-
quire in the network. Whereas in [61], the proposed heuristics continuously use only
the shortest paths available and switch to a fallback if paths are ineligible for schedul-
ing.

A noteworthy contribution is [12], which builds upon the work of [31]. This ap-
proach is a strategy for scheduling TSN scheduled traffic while simultaneously ac-
commodating the requirements of another TSN mechanism, specifically, the Credit-
based Shaper. Our approach of mechanism combination, described in Section 6.3, pri-
marily serves as an extension of our flexibility metric, additionally enabling limited
scheduling capabilities. Further, [12] introduces a sorting metric that also selects po-
tential routes prior to scheduling. Thismetric incorporates scheduled traffic utilization
and the number of CBS flows.

In summary, various approaches can effectively schedule scheduled trafficflows.Among
these, heuristic methods balance overall schedulability with rapid generation and in-
cremental efficiency.However, to the best of our knowledge, all existingmethodsdemon-
strate a limited understanding of TSN schedule flexibility. Only a few approaches in-
corporate metrics to further steer their scheduling decisions for improvements, such
as the overall schedule utilization, withmeans of flowspan [72] or path utilization [12].

2.4 software-defined networking 19

2.4 software-defined networking

With the advent of Software-defined Networking (SDN), the paradigm of splitting the
control- and data-plane of network forwarding devices was established. The control-
plane is responsible for deciding howpackets are being forwarded, and the data-plane
forwards packets according to the deployed configuration received from the control-
plane. Interfaces to and from the logically centralized control-plane (controller) are
split into north- and south-bound Application Programming Interfaces (APIs) to con-
figure the network. The north-bound API is used by users of the network to interact
with the controller, while the south-boundAPI enables the configuration of network el-
ements [52]. Refer to Figure 2.4 for a schematic overview of this split control- and data-
plane paradigm of SDN. One prominent example of a south-bound API is OpenFlow
[69]. Devices providing the OpenFlow API allow for the configuration of the device’s
flow tables. Flow table entries are matched against incoming frames and allow the exe-
cution of specific actions, such as frame forwarding, modification, or dropping. While
OpenFlow provides a unified API for configuration, it is still limited. The forwarding
behavior itself cannot be controlled. The domain-specific language P4 [14], aims to
narrow this gap by allowing for more flexible control of the data-plane forwarding
behavior. With a C-like syntax, P4 allows for the support of custom protocols.

Switch Switch Switch

Controller

control-plane
data-plane

Northbound API
Southbound API

User 1 User 2 … User n

Figure 2.4: SDNassumes a split control- anddata-plane.Users access the centralized controller
via the northbound API. The controller configures the network devices via south-
bound interfaces.

P4 code adheres to a directed acyclic graph structure, prohibiting loops or backward
jumps to preceding statements. This allows P4 code to be executed in a pipelined fash-
ion. Products exist based on application-specific integrated circuits, such as the Intel
Tofino platform [2, 48], that support line-rate packet processing and forwarding un-
der these P4 constraints. Programmers can define custom parsing and packet process-
ing behaviors. Packets are manipulated using a set of instructions (actions in P4) and
lookup operations (match-action tables in P4). For instance, P4 enables modifications
such as rewriting header fields, and adding or dropping headers. Stateful operations,
such as registers, depend on available architecture-specific API definitions. The math-
ematical operations in P4 are also constrained; notably, P4 lacks inherent support for
division. The application of P4 has been demonstrated to enable an offloading of spe-
cialized tasks to the data-plane. For example, the forwarding decisions of publish/-

20 background & related work

subscribe brokers can be implemented through P4 programs [55, 94]. Moreover, P4
can accelerate the indication of the explicit congestion notification (ECN) header field
[56] in TCP traffic and support efficient load balancing strategies [15, 51].

TSN, while not directly associated with SDN, still allows the matching of SDN con-
cepts to TSN specificationswhenusedwith TSN’s fully centralized configurationmodel.
For instance, we can access the configuration of TSN devices with a south-bound API.
We further elaborate on how this impacted design decisions for this thesis in Chapter 3.

While P4 significantly enhances the capabilities of forwarding devices, it is not a
substitute for TSN mechanisms. For example, the programmable forwarding hard-
ware supported by P4 cannot manipulate the scheduling logic required by certain
TSN mechanisms. The traffic manager within P4 switches [58], responsible for queuing
and scheduling, is not programmable via P4. It is positioned between the ingress and
egress pipeline processing stages of P4. The ingress pipeline’s processing capabilities
are limited to configuring exposed API parameters set by the architecture, which in
turn define the traffic manager’s behavior. A typical operation involves selecting the
appropriate egress port for the packet currently being processed. Subsequently, the
egress pipeline processes the packet further post-scheduling by the traffic manager.

Hence, when only using P4,we are limited to approaches that do not directly control
the scheduling logic of the traffic manager (cf. Section 6.2). An approach to allow for
programmable schedulers is provided by push-in-first-out (PIFO) [89] queues. PIFO
suggests the usage of hierarchical priority queues, i.e., queues in which the insertion
order can be specified according to a ranking algorithm. However, PIFO-enabled de-
vices are not currentlywidely available. This limitation restricts the emulation of actual
TSN mechanisms on typical SDN-hardware (cf. Section 6.1).

2.5 flexibility

Flexibility can be defined in various ways. For instance, flexibility in manufacturing
systems, as surveyedby [86], is divided intomultiple distinct types of flexibility.Among
them are machine flexibility, operation flexibility, process flexibility, and many others.

Within the surveyed approaches, the consideration of speed, number of possible
actions, and costs is common in their conceptualization of flexibility. In the domain
of business processes, the survey by [84] groups flexibility types according to flexibil-
ity strategy: by design, by (temporary) deviation, by underspecification, and by change. This
notion of flexibility is assumed to be applicable at runtime. As this thesis is mainly
concerned with sequencing flexibility in the context of TSN scheduled traffic, the flex-
ibility type is akin to the operation flexibility utilizing a by change strategy. Operation
flexibility refers to the ability to achieve the result (e. g., a part production) in differ-
ent ways. Utilizing other strategies could lead to either intentional over-provisioning,
which is costly, or to unnecessary reservations, which degrade the performance of cur-
rently deployed traffic flows.

2.5 flexibility 21

A possible quantification for operation flexibility, for instance, is given by [81]. The
sequencing flexibility measure considers possible operation sequences and the overall
number of operations for a task:

Sequencing flexibility measure = 1 − 2Λi

ni(ni − 1)

With Λi being the number of transitive precedence arcs in a graph of operations for
task i, and with ni being the total number of operations for task i. Hence, it measures
the flexibility on a per-task basis. Conversely, the flexibility metric (cf. Chapter 4) of
this thesis adopts a path-based perspective. This emphasizes the flexibility quantifi-
cation of entire scheduled paths rather than distinct flows. This path-based approach
reflects the stringent routing requirements of scheduled traffic, allowing system-wide
adjustments and decisions rather than decisions for individual flows.

Network Flexibility

The term network flexibility is readily associated with the concept of SDN, as the cen-
tralized controller can easily adapt the forwarding elements through the south-bound
API [49]. However, the means of deploying changes, does not inherently provide the
network’s flexibility. For instance, wireless networks are considered to bemore flexible
than their wired counterparts [87]. SDN can help improve the network flexibility by
adding configuration paths or allowing for faster configuration adaptions. The possi-
ble network adaptations are, however, limited by the deployed applications.

The generalized model to measure network flexibility by [7], defines network flex-
ibility in the following way: “Given the demands the communication network has to
respond, network flexibility is the ability of the network to adapt its state to satisfy the
new demands promptly and with little effort” (p. 15).

The consensus on the conceptualization of flexibility, derived from some under-
standings [7, 30, 84, 86], suggests that it is captured by metrics of speed, possible ac-
tions, and associated costs. Similar to the previously mentioned sequencing flexibility
measure, the model of [7] quantifies flexibility by electing to find achievable changes
for the application demand, however, that also depend on the time and cost of intro-
ducing these changes:

μ(𝒜X(T ,𝐂))

With a set of achievable changes 𝒜X(T ,𝐂) for network configuration X under time T
and cost 𝐂 requirements, and with the measure μ, which can represent the count of
achievable changes. This framework is highly versatile and can be adapted to various
scenarios and contexts. Additionally, the authors suggest a potential normalization us-
ing the ratio µ(𝒜)

µ(𝒜∗) , where𝒜∗ denotes the maximal number of changes across all possi-
ble network configurations. However, themodel does not inherently provide amethod
for identifying the set of achievable changes in particular contexts. Specifically, in the
context of TSN, this thesis outlines an approach to evaluate the achievable changes for

22 background & related work

isochronous traffic. It is important to note that the costs and timing of changes are not
specified within the scope of this thesis.

We adapt the definition of flexibility for TSN in this thesis, and reiterate the defini-
tion of flexibility from the first chapter:

Definition — Flexibility is the ability to accommodate future changes of config-
urations at runtime.

In the literature, several metrics capture the behavior of scheduled traffic to varying
extents. For instance, the term “makespan” refers to the total time required for the
completion of all tasks within a system [74]. Similarly, the term flowspan, adapted from
themakespan concept, is introduced by [72]. Flowspan denotes the total time required
to handle all scheduled flows, distinct from both the hyperperiod and individual flow
periods.

Anothermetric is the route orderingmetric proposed byBerisa et al. [12]. Thismetric
constitutes a weighted sum with weights w1, … ,w4 for path P and link p:

w1 ⋅ nP +w2 ⋅ uP +w3 ⋅ ûP +w4 ⋅ np
AVB

Here, nP represents the normalized number of links between the talker and listener,
uP denotes the average schedule utilization along the path P, and ûP is the standard
deviation of the path’s schedule utilization. Notably, this metric integrates CBS flows,
where np

AVB represents the normalized number of CBS flows at link p, relative to the
total number of CBS flows in the network.

In contrast to our approach, which is described in detail in Chapter 4, both metrics
primarily focus on utilization. Unlike thesemetrics, ours adapts according to the actual
flow requirements. The Berisametric, like ours, is also a path-basedmetric but restricts
the view to specific ports for CBS traffic.

2.6 transitions in time-sensitive networking 23

2.6 transitions in time-sensitive networking

In communication systems, transitions between similar mechanisms can increase the
overall system’s flexibility [4]. For instance, a mobile phone might transition from a
cellular network to a WiFi connection to maintain the connection at a stable quality
level.

Similarly, in the context of Time-Sensitive Networking, transitions between network
configurations are crucial for accommodating the dynamic requirements of industrial
applications or those applications that are constantly changing. TSN, by design, pro-
vides mechanisms for deterministic data delivery. This is in contrast to networking
mechanisms where this inherent guarantee cannot be given and must be achieved
through a mechanism transition.

The concept of transitions within TSN thus extends beyond mechanism transitions.
We need to enable the network’s configuration to support changes of application re-
quirements. This thesis proposes the usage of a centralized control design, akin to
SDN, to facilitate this increased flexibility. With centralized control, we can not only
facilitate a dynamic adaptation of the network configuration but also ensure that the
configuration transitions are seamless. Seamless transitions are facilitated by utilizing
the flexibility metric for scheduled traffic described in this thesis.

3
FLEX IB I L I TY-BASED TSN MANAGEMENT

In this chapter, we describe the design of a flexibility-based Time-Sensitive Network-
ing (TSN)management scenario. This sets the stage for the subsequent chapters,where
we implement and discuss approaches to achieve the research goals outlined in Chap-
ter 1. The scenario described in this chapter is reflective of real-world situations in TSN
network management and operation.

3.1 managing scenario

Connecting the digital and physical worlds to create more efficient systems in indus-
trial processes is a current trend in automation andmanufacturing processes. The term
Industry 4.0 is often referred to when referencing, among other advances, the desired
increase in interoperability, flexibility and connectivitywithin industrial processes [59,
77, 95].More specifically, in a factory context, the term smart factory and Industrial Inter-
net of Things (IIoT) was coined to describe a factory with machines that are connected
using traditional packet-based networks [37, 53, 66]. TSN lends itself as a key enabling
technology for smart factories to support the traffic requirements of industrial automa-
tion applications [10, 66].

Industrial applications havemultiple different types of real-time traffic requirements,
depending on the specific application. Different traffic types might also be used simul-
taneously. Further, TSN communication can be used to communicate within or be-
tween machines. E. g., a programmable logic controller (PLC) of a conveyor belt com-
municates with a PLC of a robot. Below are some noteworthy traffic types of industrial
applications as specified by [10] and [1]:

• Best-effort (BE) traffic: Traffic with no service requirements. It is transferred as
effectively as the network conditions allow. Packets of this traffic type may also
be dropped if necessary.

• Audio/Video: Periodic traffic with guaranteed latency and bandwidth. The data
size is bounded.

• Network control: Sporadic traffic with strict priority. The network control traffic
type is not available for normal network end-devices.

• Cyclic real-time: Periodic traffic with guaranteed delivery deadline and band-
width. Periods are multiples of the network cycle time. The data size is bounded
to a single packet. Network access is based on local time.

• Isochronous cyclic real-time: Periodic traffic with cycles ranging from 1μs to
4ms, guaranteed delivery, deadline and bandwidth. The data size is bounded to
a single packet. Network access is based on synchronized time.

25

26 flexibility-based tsn management

With TSN flexibility as the main research subject of this thesis, the traffic type of pri-
mary relevance is the isochronous cyclic real-time traffic type. This traffic typepromises
strict real-time guarantees with short periods. The requirements of this type can be
satisfied with gate control lists (GCLs) and scheduled traffic (ST). BE-traffic is still as-
sumed to be present at all times in the network, and its presence or absence must not
interfere with any given service guarantees.

Network Management

With isochronous traffic, we assume a time-aware talker (the network application) is
participating in the network. How we assume the network to be managed is similar
to the Software-defined Networking paradigm using a logically centralized controller.
The amendment IEEE Std 802.1Qcc [44] defines a fully centralized TSN configuration
model as standard functionality. We chose to be compliant to the standard, as the fully
distributed configuration model is not intended to deploy ST. Additionally, [44] recog-
nizes significant advantages in the configuration computationwhen a fully centralized
model is used. A centralized configuration model reduces complexity significantly
when network wide schedules and knowledge of application requirements is needed.

The central controller is divided into two logical entities: Centralized User Configu-
ration (CUC) and Centralized Network Configuration (CNC). The CUC serves as the
logical entity to represent all network applications to the CNC. For this, the CUCneeds
to collect their requirements and configure the TSN specific features. The CNC serves
as the central network configurator. The CNC interfaces with the CUC to exchange
traffic requirements and network configurations. The specifics of the CUC-CNC pro-
tocol are being considered in IEEE Std 802.1Qdj [38]. However, the protocol between
CUC and actual applications is not standardized.

We provide a high-level overview of this paradigm in Figure 3.1, depicting a small
network that includes three TSN switches, two PLCs, the controlled application, and
a combined CUC/CNC entity. The network features two flows: f1, a control-to-control
flow, and f2, which controls the application. It is important to note that this configura-
tion is not static; PLCs or applications may be repositioned or request changes in flow
requirements through interactions with the central controller.

The CUC does not autonomously discover end-stations and applications in our sce-
nario. Instead, it receives requests for new flow requirements when application re-
quirements change or emerge. It also might choose to aggregate multiple requests
before contacting the CNC. Any participating device can initiate the request, but typ-
ically, a managing device of the relevant application is responsible for this task. Com-
munication with the CUC can occur off-network or using the deployed TSN infras-
tructure. When the TSN network is used, the CUC needs to be reachable via a non-
management port of a TSN switch. In IEEE Std 802.1Q [42, p. 1673], the flow specifi-
cation for talkers/listeners encompasses a variety of use cases, leading to a verbose
hierarchy. To simplify, we have condensed the traffic, end-station, and network require-
ments of flows to these six essential elements, suitable to describe the requirements of
a flow for isochronous real-time traffic: Flow ID, Source, Destination, Frame interval,

3.1 managing scenario 27

TSN Switch TSN Switch TSN Switch

CUC/CNC

PLC 1

relocated

PLC 2

PLC 1

Provide changing flow
requirements

Status response

Update Configuration

Application Device

f1
f2

Figure 3.1: The generic centralized configuration model assumed throughout this thesis. A
central controller manages the TSN network, consisting solely of TSN-capable de-
vices. Network applications, e. g., PLC request their flow requirements at the CUC.
Figure derived from [26, 28].

Frame size and Deadline. A description of each flow parameter is given in Table 3.1.
We assume these parameters as specification for a flow’s requirements throughout the
remainder of the thesis.

On a high-level, the request/reply protocol for applications to interactwith the CUC
is assumed as follows:

1. Applications request flow admissions to the network by sending change requests
to the CUC. Requests include new or updated flow parameters (cf. Table 3.1).
Multiple requests can be made non-blocking. Applications should also inform
the CUC when flows become obsolete.

2. Applications await a status response from the CUC.

3. The Status response is used to confirm a successful flow admission within the
network configuration. The TSN specific features of the talkers, namely the prior-
ity code for correct queue assignment, timed sending and clock synchronization,
can then be configured.

Like the flow requirement specification, IEEE Std 802.1Q specifies flow status [42,
p. 1686]. Due to the consideration of multiple use cases and failure scenarios, this spec-
ification is similarly verbose. Hence, we reduce the flow status to its essential param-
eters. We assume the CUC includes the parameters Is admissible, PCP and Allowed
starting time in the status response to the applications for each requested flow. The
PCP reflects the priority identifier to correctly separate traffic for flow isolation pur-
poses.

28 flexibility-based tsn management

Table 3.1: Description of flow parameters for isochronous traffic.

Parameter Description

Flow ID A unique identifier for the flow, determined in conjunction with
the source.

Source The interface identifier from which the flow is initiated.
Destination The target interface identifier where the flow is directed.
Frame Interval The regular time interval at which frames in the flow are transmit-

ted.
Frame Size The maximum size of each data frame within the flow.
Deadline The maximum allowable end-to-end latency for a frame to meet

its timing constraints.

If a flow admission request results in an admissible flow, i. e., succeeds, the CNC
already initiated the required configuration changes within each affected switch. Re-
quired changes include deploying replication and forwarding rules and adjusting the
affected TSN parameters. Note, there is no priority for isochronous flows, meaning all
requested flows are of equal priority to the network. We also assume there is no flow
request priority, i. e., flows are not evicted without explicit application request, e. g., in
order to clear necessary capacity for new flows with higher application priority.

3.1.1 Network Model

We model a given network as a graph G(V, E), where nodes V represent time-aware
devices such as switches, talkers, and listeners, and edges E represent directional links
connecting these devices. Let vi and vj be two distinct nodes in V. These nodes are
connected if there exists an edge p ∈ E such that p = (vi, vj), denoting the physical link
and uniquely identifying source and destination ports between vi and vj. In duplex
networks the reverse direction p = (vj, vi) exists as well. A path P of m-hops in the
network is specified by a sequence of directed links P = (p1, … , pm), called ports.

The CNC tries to admit the set of isochronous flows F = {f1, f2, …} to be simulta-
neously deployed in the network. A flow fδ ∈ F has traffic parameters that are speci-
fied by the application (cf. Table 3.1). The set of flow-level port schedules is given by
S = {sp ∣ p ∈ E}. Each schedule sp is a sequence departure times sp = (s1p, s2p, … , s

χp
p)

for the given source port p. We define a mapping function M ∶ S → F such that
M(sip) = fδ, where sip is the departure time of the i-th schedule entry, and fδ is the
flow to which this entry belongs to. This mapping ensures that each departure time is
associated with a specific flow.

3.2 controller 29

Application require-
ments interface

Manage set of flow
requirements

CUC

Path feasibility Query flexcurve

Compute schedules Select suitable method

Update TSN configu-
ration

Update flexcurve

Request changes

St
at

us
re

sp
on

se

Flow request Status response

CNC

Figure 3.2: High-level control flowofCUCandCNC. The control flowalso depicts the hooks of
research goals 1 and 2. Namely, the consultation of the flexibility metric (flexcurve)
to decide the feasibility of requested changes and steer the scheduling decisions.
Figure derived from [26, 28]

3.2 controller

All approaches and their prototype implementations (cf. Chapters 4 to 6) semanti-
cally adopt the centralized CUC/CNC architecture with the protocol as mentioned
above for applications to request their flow requirements. Applications communicate
directly with the CUC, send requests, and receive status responses. In our demon-
stration [27] to showcase TSNmanagement with flexibility awareness, the CUC/CNC
entities are combined on a single host. Specifics about the prototype implementation
of this flexibility-aware controller are described in Appendix A.1.

In this thesis, we can extend the capabilities of the CUC by integrating approaches
from Research Goal 1 and 2 to improve the achieved flexibility. Figure 3.2 depicts a
possible control flow of this extended CUC/CNC capability. The control flow begins
with a flow request from an application to the CUC. The CUCprovides anApplication
Programming Interface (API) for applications to access. After the CUC receives a flow
request, it updates its internal set of requested and active flows. The CUC can delay
further processing for aggregation possibilities or immediately request changes from
the CNC. After the CNC receives the requested changes from the CUC, it checks first
for feasibility. Feasibility is checked by consulting the flexibility metric (cf. Chapter 4,
flexcurve). The flexcurve enables a path selection based on the level of path flexibility
if multiple paths are available between the talker and listener. It can also approximate
whether an admission on the selected path is possible. After path selection, the CNC
needs to create the updated TSN configuration. Depending on which changes are re-
quested by the CUC, the CNC needs to choose a suitable method to satisfy the change

30 flexibility-based tsn management

request. Methods can include heuristics to allow for partial reconfigurations and can
also incorporate the flexcurve to steer the resulting configuration (cf. Chapter 5). Some
requests, which incremental methods cannot satisfy, might require complete reconfig-
urations or are otherwise not schedulable due to insufficient capacity or unfit topol-
ogy. In this case, the change is declined, and the field Is admissible is set to False.
If a configuration can be changed without affecting deployed applications, the CUC
initiates updates on affected network devices. The status response confirms success
with Is admissible set to True. The field PCP is set to the assigned queue identifier,
and Allowed starting time is set to the earliest absolute network time when affected
devices can accept the changed traffic. This status response is given for each affected
flow.

For scheduled traffic, the Allowed starting time is indirectly given by the List Con-
fig state machine, specified in IEEE Std 802.1Q [42, p. 228]. The List Config statemachine
exposes the variable ConfigChangeTime, which specifies the time the new configura-
tion is active at the affected port. The Allowed starting time, relevant to the time
aware talker, is determined by adding the flow’s schedule offset at the talking port to
ConfigChangeTime. The scheduling procedure yields flow schedule offsets, indicating
the relative time offset from the start of the cycle period when flows are scheduled.
In the case, the ConfigChangeTime differs at different ports, the CNC needs to ensure
consistency and aligned GCL cycles. The CNC can achieve consistency by moving the
cycle base time to a future time. This results in the ConfigChangeTime being set to a
CNC specified time. Inconsistent ConfigChangeTime variables can occur when differ-
ent cycle periods are deployed.

Hardware Abstraction Layer

When the TSN configuration changes, it must be deployed. The CNC initiates updates
of affected devices after successfully concluding the scheduling process based on the
requested changes from the CUC. The method to compute the requested changes can
operate on different abstraction levels. For instance, methods operating solely on a
flow level cannot be directly deployed using the GCL mechanism. The reason is that
TSN GCLs affect the data transmission per queue, not per flow. Therefore, to deploy
flow-level schedules, additional information is required.

A possible solution is to use a hardware abstraction layer (HAL), that sits below
the scheduling logic of the CNC. A possible HAL layering is depicted in Figure 3.3. It
is split in north- and southbound API. The northbound API interacts with the CUC.
Here, the CNC has access to various methods to create an updated configuration
model to satisfy the flow request.Methods can include classical constraint-based sched-
ulers, heuristics and the flexcurve. Whereas the southbound API interacts with hard-
ware devices for deploying the configuration. Different hardware devices can have
different capabilities. For instance, if a device supports GCLs, the HAL populates the
necessary list entries to deploy the configuration model, and selects the correct queue
assignments to guarantee proper flow isolation. Other devicesmight support different
mechanisms, such as push-in-first-out (PIFO) queues that allow direct deployment of

3.2 controller 31

SchedulerFlexcurve Heuristics

Controller API

Hardware Abstraction Layer

RDAGCL PIFOSo
ut

h-
bo

un
d

N
or

th
-b

ou
nd

CUC/CNC

PLC

Flow request (isochronous)
– Flow ID
– Source
– Destination
– Deadline
– Frame size
– Frame interval

Flow status response
– Is admissible
– Allowed starting time
– PCP

TSN Switch

Configuration Update

Figure 3.3: A hardware abstraction layer can be used to translate results from the scheduling
process to individual device configurations.

flow-level schedules and residence delay aggregation (RDA), which does not support
isochronous traffic.

A possible translation process of flow-level schedules to GCLs is discussed in Sec-
tion 5.3. The deployment procedure of PIFO and RDA is discussed in Sections 6.1
and 6.2 respectively.

4
FLEX IB I L I TY NOT ION

In this chapter, we introduce the flexibilitymetric flexcurve for Time-SensitiveNetwork-
ing (TSN) to assess the level of flexibility in TSN scheduled traffic. This chapter ad-
dresses ResearchGoal 1. Initially, we present the fundamental concept, followed by the
formulation of the flexcurve in Section 4.1, and incorporating extensions for deadline-
awareness and overall speed enhancements. We conduct an empirical evaluation of
the proposed approaches in Section 4.2.

Isochronous real-time traffic requires a careful configuration planning process, which
includes flow scheduling mechanisms orchestrated by the Centralized Network Con-
figuration (CNC). The resulting schedules of this planning process are opaque to pos-
sibilities for future changes. This is the case for both flow- and queue-level sched-
ules. Without specific indicators, we cannot directly determine which schedule offers
a higher level of flexibility between two given schedules.

Although flows can be removed if the scheduling mechanism supports flow iso-
lation, the extent of the resulting gain in flexibility remains uncertain. Similarly, the
flexibility of the schedule to accommodate new flows is also unclear. There is inherent
uncertainty associated with introducing changes. A metric is needed that can accu-
rately reflect the flexibility. As described in the previous chapter, the scheduling pro-
cess must be revisited whenever new flows are requested. Depending on the schedul-
ing mechanism, this could necessitate a complete rescheduling, potentially impacting
all deployed real-time flows. Furthermore, even if incremental updates are feasible,
the admission of new flows is not guaranteed.

To quantify the flexibility, we need to select sensible indicators to specify the sched-
ule flexibility level. Generalized models to measure network flexibility as of [7] are
suited to describe the flexibility of a networked system. The flexibility model requires
reporting the achievable changes for the application demand, that also depend on the
time and cost of introducing these changes to the network. In this chapter, we propose
how to assess the achievable changes for isochronous traffic within TSN. It is very
hard to completely support such a flexibility model for TSN scheduled traffic, that
also includes a cost-model to achieve these changes. Hence, we limit our assessment
to important parameters for isochronous traffic flows.

On the other hand, using well-known, simple metrics like utilization and fragmen-
tation are not well suited to reflect TSN scheduled traffic flexibility. They can lead to
completely opposing flexibility levels if chosen as flexibility indicators. The fragmenta-
tion of a schedule reflects the count of interruptions between reservations. The utiliza-
tion of the schedule reflects the count of reserved slots. Figure 4.1 illustrates schedule
utilization and fragmentation with an example: Both depicted port schedules contain
the same number of reserved slots (red), indicated by the same slot utilization of 5.
It is not specified which slots are assigned to specific flows. The red highlight merely

33

34 flexibility notion

indicates if a reservation is made by the scheduler for this time point. The schedule on
the left (sp1) exhibits a relatively high fragmentation with four interruptions, whereas
the schedule on the right (sp2) shows fragmentation that is low, with only one inter-
ruption, resulting in one contiguous gap within the cyclic repetitions of the schedule.

sp1 sp20 h 0 h

Utilization:
Fragmentation:

5/10
4/10

Utilization:
Fragmentation:

5/10
1/10

Slot Occupied Slot Available

Figure 4.1: Depicted are two port schedules with different slot utilization and fragmentation.
The metrics utilization and fragmentation are not well suited to describe possible
changes, i. e., flexibility in port schedules. Schedule fragmentation reflects the count
of interruptions between occupied slots and utilization gives the overall total count
of occupied slots. Both metrics do not regard the timed nature of isochronous traf-
fic.

When the fragmentation metric is used individually, it can only give little informa-
tion on possible changes for the given schedule. We can only conclude that gaps are
available within the hyperperiod h, which have some capacity for future reservations
if the number of fragmented reservations exceeds 0. The utilization can give an upper
bound of possible admissions until the schedule’s capacity is fully exhausted. There-
fore, both utilization and fragmentation specify flexibility only to a minimal degree.

Utilization and fragmentationmetrics are employed in block-based allocation strate-
gies within data storage scenarios. Although real-time traffic scheduling and block-
based allocation may appear similar at first glance, due to both processes involving
the placement of data or information, significant differences exist that make the reuse
of concepts challenging or unfeasible.

The key distinctions between block-based allocation and the scheduling of real-time
flows are as follows:

• Contiguous Slot Reservations: Unlike data storage blocks, that can be stored
non-sequentially or not contiguous, isochronous flows require slots to be reserved
contiguously. This means a frame for an isochronous flow being scheduled at a
port cannot be preempted by other traffic at its initially scheduled time and re-
sumed later.

• Slot Eligibility: In port schedules, each slot is associatedwith a specific transmis-
sion time, rendering arbitrary time assignments for flows infeasible. For example,
scheduling the transmission of frames too late may violate flow requirements,
potentially causing deadline misses or frame drops.

• Synchronization Across Hops: The scheduler is assuming a time-synchronized
network, meaning each port schedule is synchronized in execution. This means

4.1 flexcurve: a notion of flexibility for tsn 35

each slot placement depends on the allocation of the previous and subsequent
port schedules, to create one functioning global traffic schedule. Multi-hop tim-
ing dependencies are not considered in block-based storage systems.

The fact that port schedules are not isolated but depend on the previous and sub-
sequent schedules makes an isolated view less useful. An empty port schedule, able
to accommodate a flow with any requirements, is irrelevant if along the flow’s path
a bottleneck limits this flexibility. In addition, the flexibility of two distinct paths in
the network can be vastly different. Therefore, a metric to measure scheduled traffic
flexibility should reflect the path and consider all schedule allocations along this path.

4.1 flexcurve: a notion of flexibility for tsn

We propose the flexibility notion flexcurve for TSN scheduled traffic. The flexcurve
notion quantifies the capacity for accommodating new flows with selected flow re-
quirements along a specified path. The intuition behind this is, that paths with lower
flexibility offer limited capacity for new admissions, whereas those with higher flexi-
bility can support more flow requests. Flow exclusions are implicitly accounted for, as
the exclusion of a flow increases the potential for new admissions. Themodification of
flows is represented on the flexcurve in a two-step process: initially as a flow exclusion
(i), followed by a flow admission (ii). A flexcurve value of zero should indicate com-
plete inflexibility, meaning no additional flows can be admitted. To quantify the path
flexibility, the metric needs to consider the allocation of the schedule and the flow re-
quirements. This goes beyond simple utilization and fragmentation. In the following
we assume the network model introduced in Section 3.1.1.

The flexcurve, reflecting schedule path capacity for new flows, necessitates that its
simplest form incorporates the flow frame size and path. Thus, a basic flexcurve asso-
ciated with a path P = (p1, … , pm) of lengthm, quantifies the number of feasible flow
configurations for a flow characterized by frame size c and path P. This formulation
notably excludes the frame deadline and specific frame interval parameters. The net-
work’s hyperperiod is denoted by h. Because a frame transmission occurs once within
a port schedule the frame interval is assumed to be h time slots for a basic formulation.

To gain insight into a specific schedule’s capacity, we denote the cumulative capacity
for port schedule sp up to slot index nwith n ∈ {1,… , h} by

Cp(n) =∑
β
1{n≥𝒯p,β} (4.1)

where 1{⋅} maps to the value 1 if the argument is true, and 0 otherwise. The time point
of the β-th free slot at s⃑p is given by 𝒯p,β.

The gap duration, i. e., number of contiguous free slots, after the last reservation
ends at a port schedule sp up to index h in sp is given byφp. We define the end-shifted
sequence of sp as s⃑p = (s1p + φp, s2p + φp, … , s

χp
p + φp), with χp being the number

of departure times. Figure 4.2 depicts an example of the cumulative capacity with sp
and s⃑p as schedule basis for 𝒯p,β.

36 flexibility notion

Note, we use the end-shifted sequence s⃑p instead of sp to consider the cyclic nature
of the schedule (cf. Lemma 4.2). The example depicts a port schedule sp with gaps
near the cycle boundary h, whereas the end-shifted port schedule s⃑p is shifted for the
duration of the last gapφp = 2. The corresponding cumulative capacityCp(n) reaches
the maximum value earlier than with sp as data basis. However, the overall utilization
did not change, hence the cumulative capacity for both depicted port schedule variants
eventually reaches the same value of 5.

0 1 2 3 4 5 6 7 8 9 h
0
2
4
6
8

Slot Index nC
um

ul
at

iv
e

N
um

be
r

of
Fr

ee
Sl

ot
s
C

p
(n

)

0 1 2 3 4 5 6 7 8 9 h
0
2
4
6
8

Slot Index n

sp s⃑p

Slot Occupied Slot Available

Figure 4.2: Example: A visualization of a schedule sp (left), and its end-shifted variant s⃑p with
φp = 2 (right). Below each variant is the plot of the respective cumulative capacity
Cp(n). Figure derived from [30].

Next, we denote the basic flexcurve, which reflects the flow requirements for path
P and frame size c, as

bP(c) = min
p∈P

h−c
∑
τ=0

1{Cp(τ+c)−Cp(τ)=c} (4.2)

The flexcurve provides the number of possible arrangements for a flow with frame
size c at the bottleneck schedule (cf. Lemma 4.1). The frame size c corresponds to the
number of reserved slots for this flow’s frame in the port schedule. The number of
slots directly gives the time required to transmit the complete frame, as considered
by the schedule. Therefore, this value depends on the schedule’s time granularity and
link speed. For instance, a nanosecond granularity reflects a time requirement of 1 ns
per slot. A higher link speed results in fewer slots needed per frame bit. We assume a
shared common link speed and granularity along path P. Note, the usage of minimum
along the flow’s path to identify the bottleneck schedule.

With c ∈ {1,… , h} the flexcurve denotes all frame sizes along path P for cycles of
h and undefined deadline without needing to recalculate the schedules along the
path. Note, that flow-level schedules are considered, meaning transformed queue-
level schedules and their potential queue isolation constraints are not reflected.

Lemma 4.1. Given the basic flexcurve calculation

bP(c) = min
p∈P

h−c
∑
τ=0

1{Cp(τ+c)−Cp(τ)=c} (4.2)

4.1 flexcurve: a notion of flexibility for tsn 37

and cumulative capacity Cp(n), with the flow’s frame interval set to the hyperperiod h, and
deadline requirements disregarded , the expression∑h−c

τ=0 1{Cp(τ+c)−Cp(τ)=c} accurately counts
the number of valid arrangements for inserting a frame of size c into the schedule sp.

Proof. Given a schedule sp, a frame of size c is validly inserted into sp if, from the
starting position, the new frame reservation contiguously occupies slots in the sched-
ule without overlapping with existing reservations, thus satisfying the flow’s frame
size constraint.

The expression Cp(τ + c) − Cp(τ) = c checks whether the increase in cumulative
capacity over the interval τ to τ+c precisely matches the size of the frame, c. This indi-
cates that a contiguous block of time slots (τ to τ + c) is available to accommodate the
frame without any interruptions or overlaps with existing reservations. By summing
over all possible starting times τ ∈ {0,… , h−c}, the sum∑τ 1{Cp(τ+c)−Cp(τ)=c} counts
the total number of valid arrangements for frame size c at sp.

Note that the last interval to be checked is from h − c to h. By using s⃑p for the
calculation of the cumulative capacity, we ensure that the cyclic nature of the schedule
is adequately reflected (cf. Lemma 4.2).

Lemma 4.2. Given the hyperperiod h and 𝒯p,β that gives the time point of the β-th free slot
at the port schedule sp. When calculating the cumulative capacity of port schedule sp

Cp(n) =∑
β
1{n≥𝒯p,β} (4.1)

with end-shifted departure times s⃑p = (s1p + φp, s2p + φp, … , s
χp
p + φp), Cp(n) equals the

total number of contiguous free slots without interruption at the cycle boundary.

Proof. The cumulative capacity Cp(n) counts the number of free slots (capacity) up to
slot index n. Cp(n) only counts β up to the last free slot of sp. At the most β reaches
the hyperperiod h. It therefore does not account for repeated contiguous free slots that
are interrupted by the cycle boundary.

Considering that the schedule repeats every h slots, the end-shifted sequence s⃑p is
derived by adding the closing gap durationφp to the departure times, effectively shift-
ing the observationwindowwithin the cyclic nature of the schedulewithout changing
its periodicity. Therefore, the cumulative capacity (4.1), when calculated with the end-
shifted sequence s⃑p, equals the total number of contiguous free slots without interrup-
tion at the cycle boundary, ensuring that no contiguous free slots are interrupted by
the cycle boundary.

The formulation of (4.2) does consider overlapping arrangements. Restricting the
formulation to not consider overlaps would reduce the encoded information that the
basic formulation provides:

• Number of Arrangements: By definition, the flexcurve bP(c) provides the num-
ber of possible arrangements for a flow of size c along path P.

• Residual Capacity: The flexcurve encodes the residual capacity at the bottleneck
schedule. bP(1) retrieves the number of possible arrangements for a frame of

38 flexibility notion

size 1 along path P. All available slots are eligible because 1-slot is the smallest
possible frame size that a schedule can support. Hence, the bottleneck’s remain-
ing capacity is returned.

• Maximum frame size: By Lemma 4.1, a positive value of bP(c) indicates that
there is at least one possible arrangement along path P that can accommodate a
newflowwith frame size c. The value arg minc bP(c)|bP(c)>0 identifies the frame
size c for which bP(c) is still positive. The use of arg min finds the frame size c
that minimizes bP(c) under the constraint that bP(c) is positive, effectively iden-
tifying the largest frame size that is still eligible for inclusion, i. e., has at least one
possible arrangement along path P. Therefore, the maximum frame size, still el-
igible for embedding, can be retrieved by

cmax,P = arg min
c

bP(c)|bP(c)>0 (4.3)

• Disaggregations: The flexcurve can be disaggregated to improve checking for
admissibility and aggregated to foster incremental updates. Refer to Sections 4.1.1
and 4.1.2.

Numerical Example

To facilitate the better understanding of the basic flexcurve, we provide the following
example. The example is derived from [30].

We define flows as illustrated in Figure 4.3. Each flow is characterized by a source
and destination port identifier, along with specified frame size, interval, and deadline
requirements. It is assumed that f4■ has not yet been admitted to the network and
lacks a specified deadline. A CNC has already configured the network and computed
the schedules shown in Figure 4.3. Note that the provided schedule table is a partial
view. The network’s hyperperiod is defined as h = 20. The notation v∗ signifies a node
beyond the scope depicted.

Wemarked the future reserved slots of f4■with crosshatching. A routing overview
for each flow is provided in Figure 4.4. Notably, there is a potential bottleneck at ports
(v1, v2) and (v2, v∗).

With the current port schedules, the flexcurve can be calculated for any arbitrary
path. This path does not need to match currently active flow paths or even anticipated
future paths. Any path of interest can be chosen.

For practical purposes, paths expected to contain flows are of particular interest. To
simplify the example, we present three paths, with P□ denoting the path of flow fδ□
within the scope of the depicted topology.

It is noteworthy that flexcurves for disjoint paths might be identical if their bottle-
necks are at the same port. In this example, this applies to f1■ and f3■, both of which
have an identical flexcurve for all frame sizes, limited by the bottleneck at port (v1, v2)
at the selected path. We depict the flexcurves of flows f1■, f2■ and f3■ in Figure 4.5.
Notice, how after admission of f4■, bP■(c) and bP■(c) are negatively affected. The

4.1 flexcurve: a notion of flexibility for tsn 39

Flow Source Dest. Frame Size Interval Deadline

f1■ (v8, v1) (v3, v∗) 2 10 10
f2■ (v7, v3) (v∗, v∗) 2 20 10
f3■ (v3, v1) (v∗, v∗) 2 10 10
f4■ (v4, v1) (v3, v7) 4 20 —

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 h

s(v2,v∗)

s(v1,v2)

s(v3,v2)

s(v2,v3)

Slot Occupied Slot Available Flow f4 scheduled

Figure 4.3: Example: The figure shows the schedule allocation of three flows: f1■, f2■, and
f3■ across four ports. Their requirements are met in the TSN network. Flow f4■
is scheduled for inclusion.

v4

v8

v3 v7…

f4

f1

f3
f2

Switch
v1

Switch
v2

Switch
v3

…

Figure 4.4: Example topology: It consists of three switches v1 to v3 and four talker nodes v3,
v4, v7 and v8. The routed paths of flows f1 to f4 are depicted.

residual capacity bP(1) is affected by the frame size of f4■. The maximum embed-
dable frame size cmax,P is reduced as well. Whereas, bP■(c) is completely unaffected.
This is because f2■ and f4■ do not share a path, hence the bottleneck of f2■ cannot
shift.

40 flexibility notion

2 4 6 8 10 12 14 16 18 h
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

cmax,P■
cmax,P■

cmax,P■

bP■(1)
bP■(1)

Frame Size c

N
um

be
r

of
A

rr
an

ge
m

en
ts

b
P
(c

)
bP■(c) bP■(c) bP■(c)

2 4 6 8 10 12 14 16 18 h
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

cmax,P■
cmax,P■

cmax,P■

decrease

Frame Size c

Pre f4 Admission Post f4 Admission

Figure 4.5: Example: Three flexcurves with given paths (cf. Figure 4.4), before (left) and after
(right) admission of f4■. Notice bP■(c) and bP■(c) share a bottleneck, and are af-
fected after flow admission. Whereas, bP■(c) is unaffected, while f3■ and f3■ are
sharing ports. Figure derived from [30].

4.1.1 Disaggregations for Admissibility Decisions

The first and direct application of the flexcurve extending beyond merely quantify-
ing flexibility are flow admissibility decisions. The flexcurve is defined to provide the
number of possible arrangements for a specific flow. The parameters considered vary
according to the specific version of the flexcurve utilized.

In subsequent discussions, we employ the basic definition of the flexcurve, denoted
as bP(c). Nevertheless, it is possible to substitute this with the deadline-aware version,
bdP(c), which is detailed later in Section 4.1.3, or to explore alternative versions as dis-
cussed in Section 6.3, incorporating additional parameters as necessary.

Basic Flow Admissibility

To decide the admissibility of a flow with frame size c for path P, we apply the defini-
tion bP(c) > 0. An admission is possible with any value greater than zero, subject to
remaining flow requirements not mapped by the flexcurve’s version.

A note on path selection: A flow fδ may have multiple eligible paths that it can be
routed through to the destination: 𝔓δ = {P1δ, P2δ, … }. Each path can be checked for its
eligibility: ∀P ∈ 𝔓δ ∶ bP(c) > 0. For a basic narrowing of the number of viable path

4.1 flexcurve: a notion of flexibility for tsn 41

candidates, the path with the highest overall flexibility value – i. e., the largest area
sum under the flexcurve – can be selected:

Pmax,δ = arg max
P∈𝔓δ

∑
c
bP(c) (4.4)

It is important to note that predicting the change in flexibility value after the flow’s
actual admission is challenging, as the change in bP(c) depends on the flow’s start-
ing position assigned by the scheduler. Given the inability to directly determine the
changes in bP(c), a refined path selection method should incorporate an approxima-
tion that admits the flow to path P. This method evaluates the effects on flexibility
within the scheduling process without formal flow admission. Refer to Chapter 5 for
a potential approach.

Additionally, selecting a path based on the current flexibility does not guarantee op-
timal utilization, since subsequently admitted flows may introduce cross traffic, thus
rendering previous decisions suboptimal.

Multi Flow Admissibility

The following approach is restricted to the basic flexcurve bP(c).
A hard problem for heuristic schedulers is the admission of multiple flows in one

atomic step. To the best of our knowledge, all heuristic TSN scheduling approaches
for scheduled traffic, only support incremental single flow admissions. However, the
ordering of flow admissions affects admissibility. Badly assigned starting times can
block further admissions, which would have been possible if the next flow require-
ments were considered.

The basic flexcurve bP(c) can decide admissibility for multiple flows in the follow-
ing way. Let 𝐅 = 𝐟1, … , 𝐟u ⊆ F be the set of flows, each with their corresponding frame
sizes 𝐜1, … , 𝐜u and paths 𝐏1, … , 𝐏u, that are currently requested and dependent. Mul-
tiple flows are considered dependent if they share at least one common transmission
port along their paths. Let 𝒫 = ⋂𝐏α represent the set intersection of all requested
source/destination port pairs. This implies that if 𝒫 ≠ ∅, then there exist dependent
flows. Independent flowsmay be processed in parallel. Note thatwe assume that every
port within the intersection 𝒫 contains ports belonging to all 𝐟α ∈ 𝐅. If disjunct inter-
sections exist, they need to be considered separately. Dependent flows can be checked
for simultaneous admission by checking the concatenated frame sizes for admissibility
at each shared port:

b𝒫(
u
∑
α=1

𝐜α) > 0 (4.5)

Note that 𝒫 need not be a valid path. We use the flexcurve’s ability to check ports
independently. If (4.5) confirms possible admission at each shared port, we further
need to check each flow’s unique admissibility, as the individual path was not yet
regarded:

∀α ∈ {1,… , u} ∶ b𝐏α(𝐜α) > 0 (4.6)

42 flexibility notion

If Eqs. (4.5) and (4.6) hold, the resulting admissibility condition suffices under the
basic flexcurve model. This is because the assessment at shared ports accounts for the
combined frame sizes, necessitating a contiguous slot availability. However, additional
capacity may be found if inter frame fragmentation is possible.

We can check for possible fragmentations using a set of disaggregated flexcurves.
The λ-th disaggregated flexcurve b′𝒫,λ(c) can be obtained by recursively subtracting
the canonical flexcurve b̃∆(c), essentially reducing the capacity for each flow 𝐟α to be
included:

b′𝒫,0(c) = b𝒫(c) (4.7)
b′𝒫,λ(c) = b′𝒫,λ−1(c) − b̃𝐜max,λ−1,𝒫(c) (4.8)

The canonical flexcurve is given by

b̃∆(c) = max {0, Δ − c + 1} (4.9)

reflecting the staircase flexcurve, as if the schedule is empty with a period of Δ. We
define 𝐜max,λ,𝒫 analogous to cmax,P (4.3) as

𝐜max,λ,𝒫 = arg min
c

b′𝒫,λ(c)|b′
𝒫,λ(c)>0. (4.10)

With 𝐜max,λ,𝒫, the maximum frame size still eligible for the λ-th disaggregated flex-
curve is retrieved. Therefore, 𝐜max,0,𝒫 = cmax,𝒫. Each disaggregation step yields a
canonical flexcurve of contiguous available slots, reflecting a single port flexcurve
with an empty schedule and a period of Δ. Note that a canonical flexcurve cannot
be mapped to a specific slot sequence; it represents continuous capacity. See also Sec-
tion 4.1.2 for a discussion on the aggregation of canonical flexcurves.

Note the usage of 𝒫which denotes a virtual path. Essentially, the disaggregated flex-
curve considers all ports that are shared. The virtual path matches the flow paths if
and only if the complete path is shared. The subtraction is recursively applied u times,
or until b′𝒫,λ(1) = 0 which indicates the residual capacity has been exhausted.

An example of a two step disaggregation for the flexcurve is depicted in Figure 4.6.
The initial flexcurve (left, solid) is reduced by the 4ᵗʰ canonical flexcurve b̃𝐜max,0,𝒫(c) =
b̃4(c). In the next step (middle), the 3ʳᵈ canonical flexcurve b̃𝐜max,1,𝒫(c) = b̃3(c) reduces
the residual capacity to zero (right). Given the presence of two canonical flexcurves, it
can be concluded that the capacity at the bottleneck on the virtual path 𝒫 allowed for
a total of two independent contiguous available slots (gaps) to be utilized.

We can check for admissibility, by leveraging the canonical flexcurves, gained from
the disaggregation process. As each canonical flexcurve represents contiguous avail-
able free slots, we can check each for admissibility, using the following heuristic. We
assume a decreasing order of frame sizes, i. e., 𝐜1 ≥ … ≥ 𝐜u stands. We concatenate
the frame sizes, from the largest to the smallest frame, until an admission cannot be
achieved, i. e., there is insufficient capacity in the current disaggregation. The follow-
ing Eq. (4.11) maps each disaggregation step λ to a set of indices 𝒞λ, that the canonical

4.1 flexcurve: a notion of flexibility for tsn 43

1 2 3 4 5 6 7 8 9 h
0
1
2
3
4
5
6
7

𝐜max,0,𝒫

b′
𝒫,0(c)

Frame Size c

#A
rr

an
ge

m
en

ts

1 2 3 4 5 6 7 8 9 h
𝐜max,1,𝒫

b′
𝒫,1(c)

Frame Size c

1 2 3 4 5 6 7 8 9 h

b′
𝒫,2(c)

Frame Size c

λ = 0 λ = 1 λ = 2

b′
𝒫,λ(c) b̃𝐜max,λ,𝒫(c)

Figure 4.6: An example of flexcurve disaggregations is depicted. The initial flexcurve (left,
solid) can be disaggregated twice until the residual capacity is exhausted. At each
step, the canonical flexcurve (dotted) is subtracted, reducing the capacity by one
maximum sized embedding. (For the large version of this Figure reference Fig-
ure A.4)

flexcurve b̃∆(c) can admit, excluding frame sizes of frames that have already been
admitted at a prior step:

𝒞0 = ∅

𝒞λ = {α ∣ b̃𝐜max,λ−1,𝒫 (
α
∑

i=min Γ
𝐜i) > 0, ∀α ∈ Γ ∶= {1,… , u} ⧵

λ−1
⋃
i=0

𝒞i
}

(4.11)

In the first step, 𝒞1, Eq. (4.11) checks up to which index α, the requested flows 𝐟α can
be concatenated for admittance. Eligible indices are removed in the subsequent step
λ + 1, and so on, until all flows can be admitted, or there are insufficient disaggrega-
tions. Note the similarities to Eq. (4.5), in checking the aggregation of flow sizes. Given
that the canonical flexcurve encodes a contiguous number of free slots, an alternative
approach involves verifying whether the aggregation∑𝐜i ≤ 𝐜max,λ−1,𝒫. This method
simplifies implementation.

This approach employs frame size ordering as a heuristic for assigning frames to a
canonical flexcurve.Optimally leveraging the total capacity of each canonical flexcurve
would increase admission possibilities. However, this necessitates combinatorialmeth-
ods, in which case a scheduler could initially be utilized. Other heuristics could also
be applied, such as selecting the next frame based on the residual capacity remaining
after placing a frame.

The approach to check for admissibility is detailed in Algorithm 1.We omitted early
returns for readability. The algorithm first checks each flow for admissibility individ-
ually (lines 1 to 3). In the repeat-loop (line 6), the algorithm starts the disaggregation
process, while simultaneously checking up towhich index i the current disaggregated
canonical flexcurve b̃𝐜max,λ,𝒫(c) can admit the flows 𝐟i together (line 8). If an admission
is no longer possible, the algorithm continues with the next disaggregation (line 12),

44 flexibility notion

and repeats the aggregated admission check, now starting starting from index i, which
indicates the last successfully admitted index.

If all flows are admitted, or if disaggregation is no longer possible, the algorithm
exits the loop (line 13). The algorithm returns True if all flows are successfully admit-
ted (line 15). If the algorithm cannot admit all flows, it returns Null to indicate an
indeterminate result (line 17).

Algorithm 1 : Check the flow admissibility using flexcurve disaggregations. De-
rived from [30]
Input :

• Requested flows 𝐟1, … , 𝐟u, their corresponding paths 𝐏1, … , 𝐏u, sorted by their
frame sizes 𝐜1 ≥ ⋯ ≥ 𝐜u. With 𝒫 = ∩𝐏α.

Result : True/False/Null indicating if the flows are admissible
1 forall α ∈ {1,… , u} do // Individual admissibility (4.6)
2 if b𝐏α(𝐜α) ≤ 0 then
3 return False

4 λ ← 1
5 i ← 0 // Index of last flow possible to admit

6 repeat
7 c ← 𝐜i+1 // Concatenated frame size

8 while b̃𝐜max,λ,𝒫(c) > 0 ∧ i < u do
9 i ← i + 1

10 c ← c + 𝐜i+1

11 // Go to next disaggregation

12 λ ← λ + 1
13 until b′𝒫,i(1) = 0 ∨ i > u
14 if i > u then
15 return True

16 else
17 return Null

4.1.2 Aggregations for Quick Construction and Incremental Updates

The flexcurve bP(c), as given in (4.2), is independent of the number of flows. However,
calculating the flexcurve can be computationally intensive. To accumulate all values,
considering the hyperperiod h, it is necessary to compute h values of the flexcurve.
For each flexcurve value, the number of possible arrangements needs to be counted
for each hop in the given path P with m hops. To count the number of possible ar-
rangements, we can use Cp(n) (4.1) within (4.2). This results in a very high compu-
tational runtime complexity, with hyperperiod h and path length m as a variable, of
O(mh3) (cf. Lemma A.1). It is not unusual, when schedules offer nanosecond granu-

4.1 flexcurve: a notion of flexibility for tsn 45

larity, to see hyperperiods of 1ms or more resulting in 106 slots or greater. Note, in
implementations, optimized schedule data structures and dynamic programming ap-
proaches can reduce the runtime complexity of calculating the number of possible
arrangements for a frame size c significantly. The path length is also bounded by the
maximum hop distance between two nodes.

Computing the complete flexcurve up to h, might also not be necessary.When flows
are limited to certain ranges, computing these ranges might suffice, greatly decreasing
runtimes further. A reservation of the whole schedule’s cycle is rather excessive. We
also note, that values for the flexcurve can be computed asynchronously, meaning they
can be precomputed offline, standing ready for potential flow requests.

However, when values are precomputed, any updates to the schedule invalidates
all affected precomputations. In the following, we describe a possible computation for
the flexcurve, that is optimized to enable rapid incremental updates. It also enables
faster lookups of individual flexcurve values.

We employ an additional data structure, based on the schedule, to facilitate the re-
trieval of contiguous free slots (gaps)within the schedule. The sequence of gap starting
times for schedule sp is represented as gp = (g1p, g2p, … , g

Ψp
p), along with their corre-

sponding durations Δp = (Δ1
p, Δ2

p, … ,Δ
Ψp
p). It is noted that the previously introduced

φp, which indicates the duration of the gap following the last reservation, equals ΔΨp
p

only when gΨp
p +ΔΨp

p = h. The gaps in thementioned sequences do not encode wraps,
i.e., they conclude at the hyperperiod boundary h at the latest.

The flexcurve can be computed by aggregating the canonical flexcurves for each gap
and limiting the value to the bottleneck port, effectively reversing the process of flex-
curve disaggregation. An illustration of flexcurve aggregation is depicted in Figure 4.7.
Each gap duration Δi

p within a schedule sp defines its canonical flexcurve b̃∆(c). Per
Lemma A.2 an empty schedule yields a canonical flexcurve. The gap-local canonical
flexcurve specifies the number of feasible arrangements for a frame size c up to the
duration of the gap. When c = Δi

p, the gap is exactly filled, permitting only a single
arrangement. The aggregation (4.14) of gap-local flexcurves results in a port-local flex-
curve, indicating the aggregate number of arrangements for a frame size c at port p.
Hence, this port-local flexcurve limits the perspective to a single port p, i. e., the path
P comprises solely one port.

To reflect gaps correctly near the cycle boundary, we can base the gap sequence on
the end-shifted schedule sequence s⃑p, resulting in

g⃑p =
⎧
⎨
⎩

(0, g2p +φp, … , g
Ψp−1
p +φp) for φp > 0 ∧ g1p > 0

gp otherwise
(4.12)

Δ⃑p =
⎧
⎨
⎩

(φp + Δ1
p, Δ2

p, … ,Δ
Ψp−1
p) for φp > 0 ∧ g1p > 0

Δp otherwise
(4.13)

sequences. The approach is analogous to calculating the cumulative capacity Cp(n)
(4.1) using the end-shifted schedule s⃑p. This is because the basic flexcurve values do
not depend on the starting position of the cycle. The first and last gaps are merged

46 flexibility notion

1 2 3 4 5
0
2
4
6

Frame Size cN
um

be
r

of
G

ap
-lo

ca
l

A
rr

an
ge

m
en

ts
b̃

∆
(c

)

1 2 3 4 5
Frame Size c

1 2 3 4 5
Frame Size c

1 2 3 4 5
Frame Size c

1 2 3 4 5
0
2
4
6
8

10

Frame Size c

N
um

be
r

of
Po

rt
-lo

ca
l

A
rr

an
ge

m
en

ts
b

(
p
)
(c

)

Slot Occupied
Slot Available

Schedule sp

∆1
p = 1 ∆2

p = 2 ∆3
p = 4 ∆4

p = 2

Figure 4.7: Example of a port-local aggregation of four canonical flexcurves, described by their
gap durations (Δ1

p, Δ2
p, Δ3

p, Δ4
p). The aggregated flexcurve is equal to a basic flex-

curve reflecting only a single port b{p}(c). Figure derived from [26, 28]

only when there are free slots at both the beginning and end of the schedule, to reflect
the contiguous number of free slots at the cycle boundary. See Appendix Figure A.1
for a visualization of the different end-shifted cases.

b{p}(c) =
Ψp

∑
i=1

b̃ ⃗⃑∆i
p
(c) (4.14)

=
Ψp

∑
i=1

max {0, Δ⃑i
p − c + 1}

Wenote that the number of gaps in a schedule is usuallymuch smaller than the num-
ber of slots Ψp ll h. For paths withm > 1, per definition of the basic flexcurve (4.2),
to reflect the bottleneck:

bP(c) = min
p∈P

b{p}(c) = min
p∈P

Ψp

∑
i=1

b̃ ⃗⃑∆i
p
(c) (4.15)

Thus, we obtain a basic flexcurve for path P by aggregating the gap-local flexcurves of
each schedule along the path P.

The time complexity of creating the basic flexcurve for c ∈ {1,… , h}, using gaps
(gp, Δp), with Ψ⃑P = ∑p∈P Ψ⃑p being the total number of gaps along the path P, is
O(hmΨ⃑P).

4.1 flexcurve: a notion of flexibility for tsn 47

The shift from slot-level to gap-level generation of the flexcurve brings enormous
complexity benefits. We also retain the ability to easily update the flexcurve¹. When
changes are introduced by the CNC, updates to the underlying flexcurve data struc-
ture become as simple as updating the schedule itself, provided that gap retrieval is
supported. Otherwise, updating the gap sequence becomes necessary. However, only
affected ports need to update the list. There are three possibilities after the scheduler
assigns a single flow to a schedule sp: (i) the gap is closed, resulting in the removal of
the entry; (ii) the transmission time of the new flow either matches the starting time or
connects to the end of the gap, in which case the gap duration is reduced by the frame
size; or (iii) the flow is scheduled between the start and end of a gap, leading to the
gap being split.

Bridging Aggregation and Disaggregation

It might seem evident that with aggregated canonical flexcurves we are capable of by-
passing the disaggregation steps for admissibility decisions of multiple flows. How-
ever, it is important to note that the disaggregation step yields canonical flexcurves
with respect to the overall path capacity. The capacity is bottlenecked by the schedule
with the minimum residual capacity; however, frame sizes might still be limited by
schedules before and after the residual capacity bottleneck. Gap-local flexcurves can-
not bemapped 1-to-1 to disaggregated canonical flexcurves; therefore, not all gap-local
flexcurves are eligible.

This is best demonstrated through an example: In Figure 4.8, we depict two sched-
ules along a common path. Schedule sp1 has a residual capacity of 6, whereas the
highly fragmented schedule sp2 has a greater residual capacity of 10 slots. The two re-
sulting aggregated gap-local flexcurves are located below the schedule visualization.
Even though sp1 possesses a lower capacity, the gap durationΔ2

p1 = 5 is not eligible for
use in a disaggregation process due to the frame size limitations of sp2 . Disaggregating
the final flexcurve (□) results in 6 canonical flexcurveswith b̃1(c), for use in admissibil-
ity decisions. Notice how there is no mapping to specific gap-local flexcurves. Instead,
the achievable frame sizes up to a maximum capacity are reflected.

4.1.3 Deadline-awarenes

Up until now, we have only considered the frame size c and h as flow parameters for
admission to calculate flexibility values with the flexcurve and to check for admissibil-
ity. Evidently, the number of valid arrangements for admission can be reduced when
additional constraints are considered. The deadline flow requirement is of special im-
portance, as it is one of the key properties of the isochronous traffic type. We address
this limitation by providing a formulation of the flexcurve that is deadline-aware.

1 Direct incremental updates are supported by the slot-level generation (4.2), however, depending on the
implementation, schedule updates might trigger a complete recomputation, e.g., due to cache invalida-
tions.

48 flexibility notion

1 2 3 4 5 6
0
2
4
6
8

10

b{p1,p2}(1)

Frame Size c

N
um

be
r

of
Po

rt
-lo

ca
l

A
rr

an
ge

m
en

ts
b

(
p
)
(c

) b{p1}(c)

1 2 3 4 5
Frame Size c

b{p2}(c)

sp2

sp1

∆=1 ∆=1 ∆=1 ∆=1 ∆=1 ∆=1 ∆=1 ∆=1 ∆=1 ∆=1

∆1
p1 =1 ∆2

p1 =5

Slot Occupied Slot Available

Figure 4.8: Example illustration of two schedules, sp1 and sp2 , along a common path with
residual capacities of 6 and 10 slots, and their associated port-local flexcurves. De-
spite sp1 having a lower capacity, the example highlights the ineligibility of the gap
duration Δ2

p1 = 5 for the disaggregation process due to frame size constraints in
sp2 .

Because we are considering scheduled traffic, the delay a frame experiences is deter-
mined by the scheduler. It refers to the timespan from the first scheduled transmission
time to the time the last transmission ends at the last scheduled port of the path. This
delay must not exceed the deadline. Note that the transmission starts with the time-
aware talker at the first scheduled transmission time at the earliest.

We extend the slotted schedule access notation with:

op(n) ∶=
⎧
⎨
⎩

1 ∶ slot is free

0 ∶ slot is occupied
(4.16)

which denotes the occupancy of slot n ∈ {1,… , h} in schedule sp.
The delay between two time slots n, κ for any two consecutive ports (pω, pω+1) for

a frame size of c is given by

t(n, κ) =
⎧
⎨
⎩

κ − n ∶ κ ≥ n + c

h + κ − n ∶ otherwise
(4.17)

The cycle of the schedule repeats every hyperperiod h, ensuring that in each cycle,
there exists a transmission window for a slot. Consequently, the latest starting slot κ
for a consecutive port is set to be one slot before the end of the previous transmission,
denoted as n + c − 1.

4.1 flexcurve: a notion of flexibility for tsn 49

A note on transmission delays: In real-world systems, additional delays are present.
These delays stem from switch processing delays when frames arrive at a port, as well
as propagation delays until bits arrive at the next hop. To enhance readability, we omit
these additional delays and focus on the variable queueing delay. Propagation and link
delays depend on the hardware and individual link properties and are typically con-
sidered constant, given the parameters. To account for the additional delays present
at the affected hop, it would require to add the constant delay for the corresponding
consecutive ports.

This results in queueing of the frame for nearly a complete cycle. Therefore the max-
imum possible delay between two consecutive ports results in:

tmax ∶= t(n, n + c − 1) = h + c − 1 (4.18)

We describe a sequence of departure times for a flow with frame size c, along a path
P with assignments A = (a1, … , am). It is important to note that this sequence does
not necessarily constitute a valid schedule; it can describe potential candidates as well.
Given a sequence of departure times A, we can aggregate the consecutive delays to
calculate the end-to-end delay along path Pwithm hops.

T(A) = c +
m−1
∑
i=1

t(ai, ai+1) (4.19)

Note, we add the fame size c to account for the transmission duration at the last hop.
The maximum end-to-end delay is given by max (T) = (m − 1)tmax + c.

Incorporating deadline requirements

Aflexcurve that is deadline-aware, bdP(c), should only consider possible frame arrange-
ments on a given path P, if the frame size c, and deadline d, properties are satisfied. A
flexcurve without deadlines calculates as many possible arrangements for flow admis-
sion as capacity allows, whereas a frame arrival deadlinemay restrict possible arrange-
ments. Hence, tightening deadlines limits the flexibility of a configuration. Moreover,
this is in line with our initial assumption: that the scheduled traffic configuration flex-
ibility of a path is dependent on the specific flow properties.

Therefore, for a deadline-aware flexcurve of path P, with an end-to-end deadline d, the
following applies:

bdP(c) ≤ bP(c) (4.20)
bdP(c) = bP(c) if d ≥ max (T) (4.21)

Any value of a deadline-aware flexcurve is smaller or equal to a basic flexcurve. For
the proof refer to Lemma A.3.

In order to create a deadline-aware flexcurve, we first must be capable of determin-
ing the eligibility of the initial slot, and possible subsequent slots, based on whether
they can meet the deadline requirements. This process bears a strong resemblance to

50 flexibility notion

0 1 2 3 4 5 6 7 8 9 h

sp1

sp2

sp3

Slot Occupied
Slot Available

Figure 4.9: Example of starting, intermediary, and end assignments for a flow with frame size
c = 1. Depending on the chosen start slot in schedule sp1 , slots in consecutive port
schedules up to the frame’s end-to-end deadline are eligible for assignment.

a heuristic scheduler. In fact, this knowledge of eligibility can be utilized to schedule
flows, due to the specific assignments required to verify the end-to-end delay.We elab-
orate on our approach to find slot eligibility in Chapter 5.

An illustration of such slot eligibility is depicted in Figure 4.9. Eligible slots must be
selected based on the transmission start at the first schedule sp1 . Up to the frame dead-
line, slots in subsequent schedules are either discarded or deemed eligible. Once a slot
is eligible, it can be included in an eligibility set for frame size c, in the corresponding
schedule’s deadline-aware flexcurve computation.

The set of all eligible assignments for a flowwith frame size c and deadlined is given
by A ∈ 𝒜. We remind the reader that a flexcurve considers the bottleneck schedule.
We reduce the set of assignments to a port pω with notation aω ∈ 𝒜ω. The value of a
deadline-aware flexcurve is reflected by the minimum number of eligible assignments
along the path P:

bdP(c) = min
pω∈P

|𝒜ω| (4.22)

for frame size c and deadline d, with | ⋅ | reflecting the cardinality of the set. Refer to
Appendix Figure A.2 for a visualization of an example deadline-aware flexcurve.

4.1.4 Holistic Flexibility View

The flexcurve is a path-based metric; it does not measure overall network flexibility.
To compare different configurations, the flexcurve inherently encourages selecting dis-
tinct paths for a path-based comparison. Nevertheless, a global view can sometimes be
of interest when a comparison of complete networks is desired. The flexcurve formula-
tion lends itself only very restrictively to describe this. We outline a possible approach
to achieve a network-wide view.

If the set of viable routes in the network is known, then the flexcurve values for paths
within this set of routes could be used in an aggregated fashion, i. e., given the set of
all viable paths ρ, the sum

∑
P∈ρ

bP(c) (4.23)

4.1 flexcurve: a notion of flexibility for tsn 51

would generate a network-wide flexcurve. To normalize the values and allow for com-
parison between networks with different numbers of routes, we can divide each value
by the total number of viable routes |ρ|. However, we note the flexcurve is deliberately
designed not to reflect overall network flexibility, as scheduled traffic is highly path-
dependent. Distinct routes have no direct interference between each other.

One other network property that we intentionally disregard is cost and timing con-
siderations for their impact on the flexibility level. By excluding cost considerations,
we simplify the metric, which, due to the nature of scheduled traffic, already requires
consideration of very specific requirements. It also allowsus to focus on themain thesis
goal of increasing the flexibility, by being able to measure the configurations inherent
schedule flexibility.

Active Reordering to Improve Flexibility

One indirect application that is enabled by the flexcurve, in addition to measuring
the level of flexibility, is the ability to precisely predict how a modification affects the
schedule. In a static scenario and configuration, the modification of the active sched-
ule, e. g., the shifting of transmission slots for certain flows, is neither intended nor
necessary. There exists no notion of where existing slots should or need to be shifted
to.

With the usage of the flexcurve, this changes, as now when a controller intends to
modify the schedule, it is able to assess the modified flexibility impact, essentially im-
proving the flexibility during operation. This might be utilized when flows leave the
system. Of course, the actual shifting process of flows within a schedule is non-trivial
and is out of scope of this thesis. Factors other than just flexibility need to be consid-
ered, such as the allowed jitter, or the impact on consecutive ports queue isolation.

Future Flow Assumptions

The flexcurve does not include assumptions of traffic pattern behaviors in the future.
The level of flexibility might change depending on the traffic properties that are ad-
mitted in the future. Not including traffic assumptions has two main benefits:

• The flexcurve can support arbitrary traffic patterns; since there are no assump-
tions, it inherently supports various traffic properties. This is particularly impor-
tant when deployments are unable to make predictions for future traffic inclu-
sions.

• Reflecting future trafficpatterns in the current flexcurve valueswould incorrectly
skew the flexibility value if the future traffic patterns do not match. Hence, inclu-
sion decisions might be made that are non-optimal, or even counterproductive.

We designed the flexcurve to avoid additional complexity in incorporating future traf-
fic patterns and to focus on general assumptions. Nevertheless, incorporating future
traffic assumptions has benefits. It provides the opportunity to better reflect the actual

52 flexibility notion

flexibility level based on the traffic expected in the future. For example, when future
traffic patterns are known, current configurations might offer zero flexibility, a state
that is beneficial to accurately reflect.

Current Limitations

In this chapter, we have provided flexcurve formulations that reflect the level of flex-
ibility based on the selected path and frame size. We have also included a method to
incorporate deadline awareness. However, we did not extend the model to include de-
viating frame cycle times or an extension to consider TSN multi-mechanism support.
For the latter, we have provided an extension in Section 6.3. The former is deferred to
future work. With any additional extension, an increase in complexity is introduced.
It highly depends on the individual requirements as to how accurately the flexcurve
needs to reflect the level of flexibility.

4.2 evaluation

We evaluate the notion of flexibility and its applicability with different schedulers, as
well as its runtime performance using the previously proposed formulations. Runtime
evaluations were conducted using Python 3.12 on a MacBook Pro with an M1 Pro
processor and 16GiB RAM

Within the first runtime evaluation (cf. Figure 4.10), we focus on the theoretical anal-
ysis from the previous section by comparing the computation runtime of initial flex-
curve formulation (4.2) and aggregated formulation (4.15). The computation is con-
strained to a single schedule, which is populated in a stochastic manner, with slots
being allocated based on a uniform distribution. Note, this approach produces high
fragmentation, especially for low utilizations, and is not reflective of real-world sched-
ules, where slots belonging to one flow are necessarily coherent. We visualize the
effects on runtime based on the hyperperiod parameter. For each point, we sample
c ∈ {500,… , 1000} of the flexcurve.

The expectation is that the initial flexcurve formulation exhibits exponential runtime
growth as the hyperperiod increases and the runtime reduces based on the utilization.
We remind the reader that with an increase in slot utilization, the initial formulation,
calculated at the slot level as presented in (4.2), leads to a decrease in the number of
free slots; consequently, fewer slots are counted within the cumulative capacity for-
mulation (4.1). For clarity, we omit the depiction of utilizations exceeding 100 slots in
Figure 4.10.

However, the runtime is still heavily dependent on the hyperperiod, as evidenced
by the basic flexcurve formulation’s runtime complexity of O(mh3). With our eval-
uation assumptions, the basic formulation of (4.2) reduces to a complexity of O(h2),
and that of the aggregated formulation (4.15) to O(Ψp1). This behavior is depicted in
Figure 4.10. The runtime analysis was performed ten times and averaged for the aggre-
gated flexcurve and one time for the basic flexcurve. With a fixed number of slots, the
runtime of (4.1) approaches a constant value. This is in line with our assumption that

4.2 evaluation 53

103 104 105 106 107

10−1
100
101
102
103

107

8h
1d

Hyperperiod h

Ru
nt

im
e
[s
]

b{p1}(c) using (4.2) with memoization

103 104 105 106 107 108

10−4

10−3

10−2

10−1

Hyperperiod h

b{p1}(c) using (4.15)

100 Slots 1000 Slots 5000 Slots

Runtimes with Random Slot Occupancy

Figure 4.10: The experimental runtime analyses of implementations from initial flexcurve for-
mulation (4.2), left, and aggregated formulation (4.15), right, are depicted. The
runtime of (4.2) increases exponentially O(h2) with an increasing hyperperiod.
The dotted line extension is the corresponding extrapolation. Conversely, the ag-
gregated flexcurve (4.15) remains independent of the hyperperiod. As the hyper-
period increases, the initial random slot placement only minorly affects the gap
count, explaining why the runtime approaches a constant time.

the number of gaps is the sole influencing factor. We used a memoization technique
to cache the cumulative capacity for computation of (4.2).

The actual runtime behavior of how gaps affect the aggregated flexcurve (4.15) is in-
vestigated in Figure 4.11. The runtime demonstrates a linear correlation with increas-
ing number of gaps. We conducted an evaluation of the runtime for up to 20,000 gaps
within a schedule over a hyperperiod consisting of 50 million slots. The runtime analy-
sis was conducted 25 times. The runtime is presented in the graph as the mean values,
with error bars representing the standard deviation calculated using a delta degrees
of freedom of 1. Such a schedule would permit at least 20,000 distinct transmission
starts per cycle. The sampling of points remains at c ∈ {500,… , 1000}.

Next, we depict that the flexcurve can be used with output from various different
schedulers for comparison purposes. Each scheduler necessarily outputs lists compat-
ible with TSN gate control lists (GCLs); the lists describe the number of reserved slots
and their reserved transmission starting times. This information can be used as sched-
ule basis for the flexcurve calculation. This allows for a comparison of the output flexi-
bility according to the flexcurve of different schedulingmechanisms or parameters. An
example of such a comparison is given in Figure 4.12. Here, we compare three sched-
ulers: an incremental flexcurve-based approach (discussed in the next chapter), an in-
cremental satisfiabilitymodulo theories (SMT)-based scheduler, a classical SMT-based
scheduler, and a publicly available scheduler called TSNSched [83]. TSNSched is also
based on SMT. We can observe that the incremental approaches result in the overall

54 flexibility notion

0 2 4 6 8 10 12 14 16 18 20

⋅103

0

0.5

1

1.5

Gapcount Ψp1

Ru
nt

im
e
[s
]

Runtime of Aggregated Flexcurve (4.15) for b{p}(c)

Figure 4.11: The experimental runtime analysis of (4.15). The runtime is linearly affected by
the number of gaps within the schedule. The hyperperiod is fixed to 50 million
slots.

highest flexibility values, directly followed by the classical SMT-based approach, and
then by TSNSched. All schedulers were asked to schedule 10 flowswith equal flow pa-
rameters for a given path. The schedules along this path are initialized empty. There
are no direct optimizations regarding flexcurve values applied, to allow for direct com-
parisons. Due to the incremental nature of the scheduling, the incremental approaches
are expected to achieve good performance. The SMT-based approach does not con-
sider flexibility values. The scheduler decided to introduce fragmentation; hence, the
schedule resulted in less flexibility. TSNSched also didn’t introduce fragmentation;
however, the schedule resulted in overall less residual capacity, due to padding.

4.2 evaluation 55

1 50 100 150 200 250 300
400

500

600

800

1,000

920

734

Frame Size c

N
um

be
r
of

A
rr
an

ge
m
en

ts
b

P
(c

)

Flexcurve Scheduler Comparison

Incremental (Sect. 5.1), Incr. SMT-based SMT-based TSNSched [83]

Figure 4.12: We compare the scheduling flexibility of three algorithms: a flexcurve-based, an
SMT-based, and the open sourced TSNSched scheduler. It highlights that the
flexcurve-based scheduler offers the highest flexibility according to the flexcurve
metric, while the SMT-based scheduler shows reduced flexibility due to fragmen-
tation, and TSNSched the least, due to introduced slot padding behavior.
Figure derived from [26, 28]

5
OPT IM IZAT ION

In this chapter, we apply the notion of flexibility, flexcurve, from the previous chap-
ter to steer scheduling decisions for requested changes in Time-Sensitive Network-
ing (TSN) configurations, thus addressing research goal 2. Additionally, we present
a search algorithm designed to assist in creating a deadline-aware flexcurve. This al-
gorithm is also applicable for the scheduling of individual flows.

5.1 flexcurve-based scheduling

In principle, any scheduler that can generate optimal flow-level schedules for TSN, in-
cluding satisfiabilitymodulo theories (SMT) and integer linear programming (ILP) ap-
proaches, could employ a flexcurve to enhance the scheduling process and improve the
flexcurve values of the resulting schedules. However, integrating a flexcurve steering
mechanismwithin heuristic schedulersmight provemore practical. Classical constraint-
based schedulers already consume substantial computing resources, and incorporat-
ing additional criteria increases both complexity and computational time.

In Section 4.1.3, we outlined a method for generating a deadline-aware flexcurve.
A deadline-aware flexcurve necessitates the explicit knowledge of the scheduled time
at each hop to accurately determine the resulting end-to-end delay. This knowledge
is essential to construct a deadline-aware flexcurve. Subsequently, we describe how
to identify eligibility candidates for a deadline-aware flexcurve and, in a second step,
how to decidewhich candidate should be selected based on its flexcurve value. Finally,
we apply a heuristic to incorporate the candidate selection directly into the candidate
search algorithm itself.

5.1.1 Eligibility Candidates for Deadline-aware Flexcurves

Given a schedule sp, a frame of size c can be validly inserted into the port schedule sp
if it occupies slots contiguously from the starting position and does not overlap with
existing transmissions. This is reflected by the basic flexcurve (cf. Lemma 4.1). To addi-
tionally reflect frame deadlines, to create a deadline-aware flexcurve, the frame dead-
line dmust also be considered. Therefore, a frame of size c can be validly inserted into
sp if the new frame transmission contiguously occupies slots in the schedule without
overlapping with existing transmissions and the end-to-end delay does not exceed the
deadline: T(A) ≤ d. We note that this, similar to a basic flexcurve, allows for frames to
be queued at each port.

We remind the reader that the set of all eligible schedule assignments for a flowwith
frame size c and deadline d along the path P = (p1, … , pm) is given by A ∈ 𝒜. The
schedule assignments A = (a1, … , am) used for the deadline-aware flexcurve must

57

58 optimization

satisfy the constraints imposed by the frame size and deadline. The deadline-aware
flexcurve bdP(c) depicts the number of arrangements at the bottleneck port, which cor-
respond to the given frame size c and frame deadline d for the frame cycle period h.
Thus, an algorithm designed to populate such an eligibility list must consider these
constraints.

Initial Assignments

We first present an algorithm capable of finding a valid schedule assignment with the
configuration’s smallest possible deadline, allowing for queueing, for a single flow.
The deadline is given by scheduled assignments with T(A). Afterwards, we extend
this algorithm to populate the eligibility list.

The management scenario described in Chapter 3 is assumed. Specifically, flows
are requested according to their application requirements. The Centralized Network
Configuration (CNC) selects a path, which is subsequently passed as a parameter to
the algorithm that follows.

Initially, we apply a first-fit heuristic to schedule the flow. A first-fit heuristic oper-
ates by assigning the first viable slots in each port schedule to the flow’s frame. The
transmission time for each consecutive ports is assigned, at the earliest from the trans-
mission end of the previous port’s schedule. An example of such a first-fitting is de-
picted in the upper group of Figure 5.1. This enables a rapid identification of flow port
assignmentsA that satisfy the basic flexcurve constraints. Thus, if the first-fit heuristic
finds a flow assignment, only the frame size constraint is satisfied. If the first-fit heuris-
tic is unable to schedule the flow, the given path has insufficient residual capacity to
accommodate the new flow.

The assignment results in a specific end-to-end delay of T(A), which might exceed
the flow’s deadline d. Note, we continue to omit switch processing and propagation
delays from our considerations to simplify the notation. Compare with Figure A.3 for
the inclusion of processing and propagation delays.

It is necessary to consider other possible transmission starting times in a1 to deter-
mine if they can achieve quicker delays.

Shifting Assignments

We propose a search algorithm (Algorithm 2) designed to identify a valid assignment
A that achieves the minimum possible end-to-end delay on the requested path 𝐏. This
algorithm ensures compliance with the requested application’s deadline 𝐝 and frame
size 𝐜, whenever feasible. It works by iteratively adjusting the starting transmission
time a1 to the right, shifting by one slot at each iteration (Line 4). Initially, assignments
are determined using a first-fit heuristic, allowing for an early return if the delay con-
straint is already met by this preliminary assignment (Line 1). This incremental shift
strategy is key, as it ensures that potential latency improvements are found that de-
pend on the initial position of a1.

To maintain the temporal order and immediacy of consecutive port assignments,
the algorithm verifies after each shift of a1 that subsequent assignments (a2, … , am)

5.1 flexcurve-based scheduling 59

Slot Occupied Slot Available Candidate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

h

h

sp1

sp2

sp3

sp1

sp2

sp3

a1

a2

a3

a1

a2

a3

A

A′

End-to-End Delay T(A)

Figure 5.1: Two example states ofAlgorithm2. The search algorithm shifts the starting position
of the candidate a1 within the schedule to the right. The following assignments
(a2, a3) always follow their corresponding preceding assignment. sp1 reflects the
talker source port. Red slots are reserved by different flows.
Figure derived from [26, 28].

do not commence earlier than their predecessors (Line 10). Further, if the identified
gap for an assignment becomes too narrow to accommodate the frame, the algorithm
bypasses this invalid starting time in favor of the next feasible gap (Lines 6 and 13). The
process returns successfullywhen it finds a path assignmentA thatmeets the deadline
criteria (Line 15). If no such assignment can be identified, the algorithm concludes that
a viable solution is unattainable (Line 17). To consider the cyclic nature of each port
schedule, we can repeat the reservations in each schedule beyond the hyperperiod.
Resulting assignments need to be adjusted for the relative start afterwards (using the
modulo operation ai mod h). An example of this shifting operation is depicted in Fig-
ure 5.1. The assignments are depicted as white crossed boxes. The initial assignment
(A) is given by a first-fit heuristic scheduler. After several shift operations in sp1 for
a1, the updated assignments (A′) are reflected. Consecutive assignments (a2, … , am)
are pushed by their corresponding previous assignment (black arrow down). When
virtually extending the schedules, we can also simplify the end-to-end delay calcula-
tion. As there is no longer a need to compute each consecutive delay explicitly, we can
immediately retrieve the end-to-end delay by

T(A) = am − a1 + c for non wrapping extended schedules. (5.1)

60 optimization

Algorithm 2 never revisits slots, and in the worst case needs to shift a1 up to hyper-
period h times. Each consecutive assignment (a2, … , am) only needs a fixed number of
operations to follow the preceding assignment. Hence, the algorithm has a worst-case
runtime complexity of O(hm). For a hyperperiod h and path lengthm.

Algorithm 2 : Find flow position eligibility candidate. Derived from [26, 28].
Input :

• Requested flow 𝐟, its corresponding path 𝐏, deadline 𝐝, and frame size 𝐜.

• For each port along 𝐏, initial assignments A of the requested flow 𝐟.
Assignments are denoted as A = (a1, … , am).

• For each port along 𝐏, schedule gaps gp1 , … , gpm and gap durations
Δp1 , … , Δpm .

• Mapping from a port assignment to a specific gap:
Gap(aω) = i, where i is the largest index such that: gipω ≤ aω

Note: To reduce notational overhead when considering cycle boundaries and potential
wraps, we extend the port schedules and their corresponding gaps beyond the
hyperperiod. Additionally, gaps in the list are filtered to be able to contain the requested
frame size 𝐜. We also omit some failure cases for readability.

Result : A/False
1 if T(A) ≤ d then // Return the initial first-fit if the deadline is

met.

2 return A
3 while a1 < h do // Shift initial assignments up to hyperperiod.

4 a1 ← a1 + 1
5 i ← Gap(a1)
6 if gip1 + Δi

p1 − a1 < 0 then // Check if current gap is large enough.

7 // Otherwise, use the next viable gap

8 a1 ← gi+1
p1

9 forω in 2,… ,m do
10 if aω < aω−1 + 𝐜 then // Assignments follow previous.

11 aω ← aω−1 + 𝐜
12 i ← Gap(aω)
13 if gipω + Δi

pω − aω < 0 then // Move to next gap if needed.

14 aω ← gi+1
pω

15 if T(A) ≤ d then
16 return A

17 return False

5.1 flexcurve-based scheduling 61

Finding eligibility candidates

Algorithm 2, in its unmodified form, only returns one eligible candidate assignment.
However, to create the deadline-aware flexcurve, we need all slot eligibility candidates.
This allows to accurately reflect the eligibility number at the bottleneck needed for
creation of the flexcurve. Two modifications are required to yield such a list.

1. Instead of early termination upon finding a solution, the discovered solution is
appended to a result list. The algorithm then continues to iterate over a1 up to
the hyperperiod for each execution.

2. Secondary shifts must be introduced to adjust the consecutive assignments with
(a2, … , am) up to the allowed end-to-end delay T(A) of the deadline d.

It is tempting to omit the second modification; however, doing so might underes-
timate the value of the deadline-aware flexcurve, as slots that might still be eligible
under the deadline constraint are not considered. Consider the scenario depicted in
Figure 5.2, where eligibility for the initial assignment is limited. In the initial descrip-
tion, the algorithm would already stop at this initial state, overlooking the eligible
slots of the second schedule sp2 . However, when eligibility candidates are shifted un-
til the deadline is reached, every eligible slot is visited, and the resulting candidate
list accurately reflects the assignments. The secondary shift modification, detailed in
Algorithm 3, can also be seen as a reverse shifting pass. This occurs because the pri-
mary shift progresses along the designated path, while the secondary shift operates in
the opposite direction. This reversal is essential to accommodate the shifting up to the
frame deadline d, thereby guaranteeing that successive assignments do not commence
prior to the completion of their predecessors. This modification can be introduced af-
ter the primary shift in Algorithm 2 at Lines 9-14. The assignments are reverse-shifted
in Algorithm 3 up to the last eligible slot that is below or at the deadline (Line 10), with
eligible assignments being added to the result set (Line 11). We denote the result set
of eligible assignments found by Algorithms 2 and 3 as 𝒜.

Slot Occupied Slot Available Candidate

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 h

sp1

sp2

a1

Deadline d = 14

a2

Secondary shift required

Figure 5.2: Example of the secondary shift modification for Algorithm 2. The discovery of ad-
ditional eligible slots beyond the initial assignment, up to the allowed deadline, is
enabled.

It is important to note that the modification, as outlined in Algorithm 3, does not
identify every possible combination of eligible slots𝒜. For the creation of the deadline-

62 optimization

aware flexcurve (cf. Section 4.1.3), it is sufficient that an eligible slot is included at least
once.

Algorithm 3 : Secondary shift. Modification for Algorithm 2.
Input :

This algorithm modifies Algorithm 2 with a secondary shift to find all candidates up to
the deadline. It is applied after the primary shift (Lines 9-14). Inputs are adopted from
Algorithm 2.

Note: We also omit some failure cases for readability.

1 forω inm,… , 2 do // Shift in reverse order.

2 shiftedUntilDeadline← False
3 while ¬shiftedUntilDeadline do
4 i ← Gap(aω)
5 if gipω + Δi

pω − aω < 0 then // Move to next gap if needed.

6 aω ← gi+1
pω

7 else
8 aω ← aω + 1
9 // Shift until the deadline or the begin of the following

assignment.

10 ifω = m and T(A) ≤ d orω < m and aω + 𝐜 ≤ aω+1 then
11 𝒜 ← 𝒜∪ {A}
12 else
13 shiftedUntilDeadline← True

5.1.2 Eligibility Candidate Selection

The process extends beyondmerely generating a list of eligible assignments. It further
requires the selection of a suitable candidate to optimize the resulting flexcurve value.

The remainder of this Subsection 5.1.2 is taken verbatim from Section 4.3.1 of [28]. The
notation is adapted to align with the overall thesis notation.

In this subsection, we illustrate the update of the deadline-aware flexcurve as depicted
in Figure 3.2. The depicted computation of the new schedule can be carried out using
differentmethodswith orwithout taking the flexcurve as a constraint. In the following,
we show how to obtain nearly optimal schedules in terms of the schedule flexibility
after embedding an incoming flow request. Indeed, different proper flow embeddings
may well lead to different schedule flexibility values after the embedding. To this end,
we show next how to choose the assignment candidate for a given flow request such

5.1 flexcurve-based scheduling 63

that the deadline-aware flexcurve is maximized. A further constraint is to achieve this
in an fast and incremental fashion.

Since any A ∈ 𝒜 is a valid assignment candidate according to the flow require-
ments (𝐏, 𝐜, 𝐝), any appropriate candidate could be directly admitted. However, since
𝒜 only gives the current deadline aware flexcurve value bdP(c) for the currently de-
ployed schedule, the value of the resulting flexcurve after an admission is unknown.
To find the updated value of the deadline aware flexcurve after candidate admission,
the recreation of 𝒜 based on the post-admission schedule is required.

The selection of an optimal candidate, i.e., Ak that maximizes bdP(c) after admis-
sion requires repeating the deadline-aware flexcurve computation |𝒜| times. This ap-
proach is only optimal within 𝒜, as there may be a better assignment candidate, that
is not included in the saved candidate set 𝒜. Finding the optimal candidate is in-
feasible in production scenarios as even for simple scenarios the computation time
quickly rises to multiple hours (cf. Figure 5.8 and Table 5.2) if the scheduling granu-
larity or period requires a high amount of slots. Therefore, we propose an alternative
approach by pruning the initial set 𝒜 using the prior calculated arrangements of the
candidates, to generate a near-optimal solution. Being able to remove candidates in 𝒜
that would not occur after a candidate’s admission directly gives the new flexcurve’s
value with minp∈P |𝒜

p
|, without applying the modified embedding-search algorithm

(Algorithms 2 and 3) again.
This pruning operation with a candidate (q1, … , qm) ∈ 𝒜 removes each Ak ∈ 𝒜

where q overlaps withAk. Note that it is sufficient for an element removal to detect an
overlap at any port along the path. An overlap occurs when two compared assignment
candidates occupy at least one identical time slot. More specifically: (qω) ∈ 𝒜 overlaps
with another candidate A with aω along path P = (p1, ..., pm), when the following is
true:

⋁
ω∈{1,...,m}

{ aω ≤ qω < aω + 𝐜
aω + 𝐜 ≥ qω + 𝐜 > aω}

(5.2)

For example, with set 𝒜 = {A1, A2, A3}, and with A1 overlapping A2, the three prun-
ing operations could result in the following three new sets:

𝒜A1 = {A3} 𝒜A2 = {A3} 𝒜A3 = {A1, A2}

By pruning the result set, we remove all embeddings that could be selected instead
of the candidate but are invalid for selection as the slots are now occupied. We there-
fore reduce the number of viable assignment candidates. Now, we assign the updated
deadline-aware flexcurve values to each pruned set. For example, given

min
pω∈P

|𝒜
ω
A1 | = 4 min

pω∈P
|𝒜

ω
A2 | = 4 min

pω∈P
|𝒜

ω
A3 | = 12

we select A3 as the near-optimal assignment candidate.

64 optimization

Alignment to existing reservations Fragmented alignment

Slot Occupied Slot Available Candidate

Figure 5.3: It is possible to prune fragmented candidates, as their resulting flexcurve value is
always lower than that of aligned assignment candidates.
Figure derived from [26, 28].

This incremental approach requires O(|𝒜|2) operations as we are not further isolat-
ing good candidates, but it is much faster than finding the optimal solution. Flexcurve
values are higher if less gaps are produced at equal utilization. Less gaps result in
a higher count of possible arrangements, which the flexcurve value reflects. We can
therefore pre-prune viable candidates by only pruning the result set 𝒜 with candi-
dates which align to or after existing schedule entries at any port-schedule. This pre-
pruning is allowed because aligned assignment candidates will always result in less
fragmented schedules thus higher flexcurve values (cf. Figure 5.3). While the worst-
case complexity remains atO(|𝒜|2) our empirical results in Table 5.2 show an improve
in runtime performance, as fewer candidates are checked in total. The significance of
the runtime benefit depends on how many assignment candidates can be pre-pruned.

5.1.3 In-place Scoring

We can avoid the pruning process outlined in the previous section 5.1.2, if we are able
to modify Algorithm 2 by incorporating a scoring heuristic. This scoring heuristic is
intended for the selection of the best candidate while 𝒜 is being populated.

We propose the following scoring mechanism for a candidate A, along path P and
with a frame size c. The mapping from a port assignment to a specific gap is given by
the function Gap(aω) = i, where i is the largest index such that: gipω ≤ aω.

μ(ω) = min{ aω − g
Gap(aω)
pω

gGap(aω)
pω + ΔGap(aω)

pω − aω + c
(5.3)

max
pω∈P

μ(ω) (5.4)

∑
pω∈P

μ(ω) (5.5)

For each candidate A, we apply Eq. (5.4) and keep track of the current best (i. e.,
the lowest value). The equation yields the maximum value of μ(ω) along the given
path P. Eq. (5.3), μ(ω), calculates the distances to the beginning and end of the current
gap of aω and returns the shortest distance to either end. This scoring mechanism
essentially aims tominimize the distance of the candidate to either gap border. If a new
candidate results in a lower maximum value according to Eq. (5.4), we additionally

5.2 path selection 65

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9h h

sp1

sp2

sp3

(a) (b)

Slot Occupied Slot Available Candidate

Figure 5.4: The example illustrates an in-place scoring outlier. The candidate placement in (a)
has the same maximum distance to either end of the gaps with maxμ(ω) = 3 as
(b). However, the total distance in (b) is higher, with∑μ(ω) = 6, than in (a), where
∑μ(ω) = 5, due to the presence of more severe outliers.

apply Eq. (5.5). If the sum total, i. e., score, of the distances is lower, the current best
candidate is updated. By employing this two-step approach, we ensure not to select
bad outliers that have a low distance score but exhibit overall worse placements. We
illustrate this behavior in Figure 5.4. The left (a) candidate placement has the same
worst-case distance of three slots as the right (b) placement. However, the total distance
in (b) is higher than (a), which would result in (a) being selected over (b).

Incorporating in-place scoring into the candidate selection can be seamlessly inte-
grated into the 𝒜 population process of Algorithm 2 itself, thereby eliminating costly
post-processing times.

5.2 path selection

Only a few approaches in TSN scheduling incorporate path selection as an inherent
part of their scheduling process (cf. Section 2.3). Similarly, the scheduling strategy out-
lined with Algorithm 2, as discussed in Section 5.1.1, does not consider multiple eligi-
ble paths either.

We remind the reader that, as described in Section 4.1.1, the basic flexcurve can be
utilized for making path selection decisions based on the current value of the flex-
curve. This principle can analogously be applied to a deadline-aware flexcurve bdP(c)
with path P and frame deadline d. However, we noted the challenge in predicting the
flexibility changes for the selected path.

When computing a deadline-aware flexcurve, given by the eligibility list 𝒜,

bdP(c) = min
pω∈P

|𝒜
ω
| (4.22)

we can utilize the eligibility candidate selection process, as mentioned in Section 5.1.2,
to approximate the new value of the flexcurve. The path for a flow fδ with multiple
eligible paths𝔓δ = {P1δ, P2δ, … }, can then be selected based on approximated expected

66 optimization

changes. This is done using the pruned eligibility list with candidate assignment A ∈
𝒜 for a path P, with frame size c and deadline d, using

Pmax,δ = arg max
P∈𝔓δ

∑
c

min
pω∈P

|𝒜
ω
A | (5.6)

Essentially selecting the best path with admission of the candidate.

5.3 queue assignments

As part of the hardware abstraction layer, that is part of the controller described in
Section 3.2, we need a way to deploy the flow-level port schedules to a supported TSN
mechanism. A mechanism able to support this is IEEE Std. 802.1Qbv [42], Enhance-
ments for scheduled traffic, also known as Time Aware Shaper (TAS).

The remainder of this Section 5.3 is taken verbatim from Section 4.2 of [28], with some
adaptions for clarity. The notation is adapted to align with the overall thesis notation.

While Algorithm 2 can find a valid embedding within the given port schedules, the
resulting schedulemay be infeasible for an immediate deploymentwith a TAS-capable
device. The reason for this lies in the fact that TAS works by following the gate con-
trol list (GCL) of each output port to open and close priority queues for the egress. If
packets are scheduled with a no-wait-constraint one queue is sufficient for scheduling
as arriving packets are immediately processed and forwarded to the next hop. In our
case, Algorithm 2 finds suitable embeddings which may require the packet to queue
for a finite and predetermined amount of time before the scheduled time arrives, while
still respecting any deadline requirements of the flow. This waiting capability requires
flows to be isolated from each other, either by arrival time or by sorting into different
queues. Otherwise flows can lead to false or premature forwarding.

Lack of isolation might occur when new flows arrive to the same queue before
present flows can egress. Therefore, specific queue allocations are required, in addi-
tion to the scheduled time points A.

So far, we considered the requirement to utilize sp at the slot level, i.e., to check
whether slots are occupied or not. This was sufficient to find viable schedule embed-
dings and flexcurve values. To assign queue identifiers to A for deployment in a TAS
switch (cf. Figure 2.2), we need to also consider the separable flows within sp and their
corresponding arrival and queue allocations at this port. There are χp departure flow
instances within the schedule sp. A flow instance sip has a queue(sip) identifier, an
arrival(sip) time relative to the start of sp and duration(sip) of occupancy at port p.

To assign viable queues for A, the returned embedding result of Algorithm 2, we
need tomake sure the chosen queue for a port along the path is (i) part of the available
scheduled traffic queue set (cf. Figure 2.2) and (ii) not currently occupied by other flows
already waiting at the port.¹

1 To the best of our knowledge, current TSN switches do not allow changing the Priority Code Point (PCP)
code, i.e., the priority code of a TSN flow, hence all chosen queue identifiers must be identical.

5.3 queue assignments 67

p1 p2 p3

𝒬̂1 = {1 } 𝒬̂2 = {1,2 } 𝒬̂3 = {0,2 }

0 0 0

1 1 1

2 2 2

Scheduled Traffic Frame

Figure 5.5: Example: At the time aω, the scheduled traffic queues at port pω are displayed,
along with their occupancy. Only the empty queues (dashed) at the port are avail-
able for enqueuing to guarantee flow isolation. The example shows that a single
common queue identifier cannot be used among all ports, but it is possible to find
an assignment of queue identifiers for that path. Note that the corresponding im-
plementation in state-of-the-art switch hardware requires the ability to rewrite the
PCP field.
Figure derived from [28].

We assume a shared common queue set 𝒬 for scheduled traffic among all ports.
Along the path (p1, … , pm), the occupied queue set for a port pω is given by 𝒬̂ω at
time aω−1 for the duration of the flow c as the chosen queue must be available at the
start time of transmission at the previous port pω−1. The first port p1 is disregarded
as it is part of the sender and we assume there are no incoming packets forwarded
for switching purposes. The intersection of the occupied queue set with the common
queue set gives the possible queue set 𝒬′

ω = 𝒬∩ 𝒬̂ω of free queues at the desired port
pω. This is depicted in Figure 5.5. Note that state-of-the-art TSN switches are not able
to change the flow PCP code along a path. Hence, we find in this case that for a given
flow the queue identifier is identical along the path. This queue identifier is chosen
out of the set of possible queues that is given by the intersection of all possible queues
⋂m

ω=1 𝒬′
ω. This restriction is also depicted in Figure 5.5 as the black arrow.

To create the occupied queue set 𝒬̂ω at port pω all identifiers of occupied queue are
combined into a set:

𝒬̂ω = ⋃
i∈[χp]

queue(sipω) if aω−1 intersects sipω (5.7)

An assignment aω−1 intersects the flow instance sip at port pω if the following two
intervals intersect:

[aω−1, aω−1 + c] ⋂ [arrival(sipω), arrival(sipω) + duration(sipω)]

In other words, this condition arises if for any duration of the residing flow instance
sip the new flow to be embedded is scheduled to wait at port pω simultaneously. For
example, if sip represents a schedule entry that arrives at 10 and lasts at the port for 3
slots, then the interval aω−1 intersects sip if aω−1 = 9 and c = 4.

68 optimization

5.4 evaluation

Newmetrics or algorithms introduce different computational loads or additional com-
putational overheads. Hence, it is important to consider the timing requirements and
algorithmic complexity of the proposed concepts. The computational impacts on steer-
ing the scheduling process and path selection may not be tolerable for the network’s
users. Runtime evaluations were conducted using Python 3.12 on aMacBook Prowith
anM1 Pro processor and 16GiB RAM. The timing requirements need to be experimen-
tally evaluated on different topologies and with different parameters, such as network
utilization, flowdeadlines, frame sizes, and intervals. The evaluated topologies should
reflect real-world scenarios as well as fabricated worst-case examples.

Flow and Topology Assumptions

For our runtime evaluations, we use two different topologies: First, a line-topology
with four hops, reflecting a worst-case scenario, as each added flow interferes with
the others, meaning each flow is added to the bottleneck. Second, a machine topology
(cf. Figure 5.6), reflecting a real-world scenario [28]. The complex machine topology
consists of a three-switch hierarchical layout, with three switches at the center, each
with three subsections in a line topology. Each subsection switch has six end-nodes at-
tached; one end-node is the designatedmachine programmable logic controller (PLC).
Each node is time-aware and either a TSN-switch or an end-node/PLC. The number of
flows within the machine-network results in a total of 106 flows. All end-nodes trans-
mit flows to the designated PLC, and the PLC transmits flows to all other end-nodes as
well. In Table 5.2, we list the flow properties that are used in the following evaluations.

Table 5.1: Flows used for evaluation. Derived from [26, 28].

Topology Period [ms] Deadline [ms] Size [bytes] Avg. Pkt Size [bytes]

Line 1.0 1.0 100 100
Machine 1.0 0.5 60 to 300 180

Scheduling

Wefirst evaluate the runtime ofAlgorithm2 for incrementally scheduling flows, as out-
lined in Section 5.1.1, i. e., for incoming single-flow requests, given the flow require-
ments in Table 5.1. We compare the runtime across the two given topologies with a
classical SMT-based approach and an incremental SMT-based approach. The classi-
cal SMT approach schedules all flows simultaneously and is not incremental by de-
sign. This approach cannot guarantee online adaptations due to potentially shifting
transmission times. In contrast, the incremental approaches fix the previously sched-
uled flow transmission times, thus only needing to find transmission times for the

5.4 evaluation 69

0

1
2

34

5
6

7
89

10 11

121314
15

16

17

18

19
2021

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43 44

45

46

47

48
49

50

51

52

53

54

55

56

57

58
59

60
61

62

63

64

65

3 3 6

Figure 5.6: Depicted is the machine topology used for evaluation purposes. Nodes are num-
bered. The topology consists of three sections, three subsections and six end-nodes.
One end-node is designated to act as the network’s controller. Figure derived from
[26, 28].

new flows. The empiric runtime results depicted in Figure 5.7 indicate that the clas-
sical approach, for a small number of flows, is still fast compared to the incremental
approaches, with sub seconds runtimes. However, the classical SMT-based approach
quickly escalates to a significant amount of computational time, reaching hourly run-
times with only 50 flows. This is the expected behavior of this holistic constraint-based
approach. Both incremental approaches demonstrate linear runtime behavior up to
the observed number of flows. The classical SMT-based approach was run one time
for each depicted flow count, whereas the incremental approaches were averaged over
10 runs per added flow.

Eligibility Candidate Selection

Continuing, we evaluate the runtime of the eligibility candidate selection, as outlined
in Section 5.1.2. As the flexcurve is path-based, we depict the scenarios in Table 5.2 for

70 optimization

1 10 20 30 40 50
10−2

10−1

101

103

104

1s

60s

1h

Ru
nt

im
e
[s
]

Topology = Line

1 10 20 30 40 50

10−2

10−1

101

103

104

1s

60s

1h

Topology = Machine

1 200 400 600 800 1,000
10−5

10−3

10−1

101

103

1s

60s

1h

Total Flows

C
um

ul
at
iv
e
Ru

nt
im

e
[s
]

1 20 40 60 80 100
10−5

10−3

10−1

101

103

1s

60s

1h

Total Flows

SMT Alg. 2 Incremental SMT

Scheduling Runtimes

Figure 5.7: Scheduling Runtime comparisons of both line and machine topology. The classical
SMT scheduling approach quickly rises to hourly runtimes, due to scheduling all
flows together. The incremental SMT and incremental Algorithm 2 approach pro-
vide significant runtime advantages. Figure derived from [26, 28].

the line topology with 1000 slots for each schedule. We evaluate three scenarios: Sce-
nario (i) First Fit / 10 Flows, admits 10 flows along the path with no fragmentation due
to the first-fit admission strategy. Scenario (ii) Random / 50 Flows has 50 flows admitted
with random frame transmission times, resulting in 35% utilization. Scenario (iii) Ran-
dom / 100 Flows is analogous to (ii) with the same utilization of 35%, albeit with 100
flows. Increased fragmentation and utilization result in fewer candidates, improving
the selection performance due to fewer candidates in the eligibility list. The optimal
recomputation approach of the deadline-aware flexcurve is not affected by the num-
ber of eligibility candidates, as it is applied independently again and works with the
scheduling state itself.

Deadline-aware Flexcurve

With the eligibility list (cf. Section 5.1.1), a deadline-aware flexcurve can be described.
In Figure 5.8, we depict the empirically gathered runtimes for the computation of one

5.4 evaluation 71

Table 5.2: Computation times for eligibility candidate selection, compared to a complete re-
computation. Table derived from [26, 28].

Scenario |𝒜| Recompute [s] Selection (5.1.2) [s] w/ Prepruning (5.1.2) [s]

First Fit / 10 Flows 8115 126.79 24.02 7.41
Random / 50 Flows 3186 191.88 8.54 7.48
Random / 100 Flows 2376 448.00 4.75 4.64

point on the deadline-aware flexcurve. We consider four different utilizations: 10%,
25%, 35%, and 50%. The schedules along the evaluated path (2–6 hops) are allocated
in a uniformly random manner, leading to a very high fragmentation. As the eligibil-
ity list needs to consider each starting position, the runtime increases as more slots
are associated with a schedule. This behavior is observed to be linear and matches
the expectation from Algorithm 2 and its secondary shift extension given in Algo-
rithm 3. The number of hops in the path influences the slope of the runtime graph.
This also matches the expectation, because the algorithm needs to shift more schedule
candidates along a longer path. Also, note that with increased utilization, the runtime
decreases. This is because fewer slots are eligible; therefore, fewer slots need to be
checked for the creation of the eligibility list in Algorithms 2 and 3.

In-place Scoring Comparison

Utilizing our prototype controller implementation, as documented in Appendix A.1
and part of [27], we enabled the in-place scoring selectionmechanism (cf. Section 5.1.3)
for application in a scheduling scenario. This strategy is compared with random flow
assignments and the first-fit strategy. The in-place scoring heuristic prefers candidates
that alignwith existing schedule slot entries. The in-place scoring heuristic exhibits be-
havior akin to the first-fit strategy when schedule gaps are progressively filled by new
frame reservations. In contrast, the random strategy assigns frames to empty slots in a
uniformly random manner, ignoring deadline requirements and serving as a baseline.

We define the following scenario: the visualization is restricted to a sampled cu-
mulative flexcurve using frame sizes c ∈ {100, 110, 120, 130,… , 240} along the selected
path (p1, p2, p3). The underlying network topology is depicted in Figure 5.9. Admitted
frames may traverse two potential paths: Path A, which is the selected and visualized
path, and Path B, which introduces cross traffic at the second port p2. Along with the
sampled cumulative flexcurve, we also depict a visualization of the number of slot
fragments. The selected path is initialized with 40 randomly placed flows with frame
properties relfected from the scenario.

The sampled frame sizes reflect a subset of the frame sizes from flows that are re-
quested for admission. The frame sizes admitted are uniformly and randomly dis-
tributed between 100 and 250 slots. The frame periods are set to 15,000 slots with an
end-to-end deadline of the same duration.

72 optimization

0 0.2 0.4 0.6 0.8 1

⋅106

0

5

10

15

20

Ru
nt

im
e

[s
]

Flow Utilization = 10%

0 0.2 0.4 0.6 0.8 1

⋅106

0

5

10

15

20

Flow Utilization = 25%

0 0.2 0.4 0.6 0.8 1

⋅106

0

5

10

15

20

Slots in Schedule

Ru
nt

im
e

[s
]

Flow Utilization = 35%

0 0.2 0.4 0.6 0.8 1

⋅106

0

5

10

15

20

Slots in Schedule

Flow Utilization = 50%

2 Hops 3 Hops 4 Hops
5 Hops 6 Hops

Deadline-aware Flexcurve Runtimes

Figure 5.8: Depicted is the deadline-aware flexcurve runtime. Schedules are randomly allo-
cated with varying utilizations; as utilization increases, the runtime decreases due
to a reduced number of slots available that must be considered for the eligibility
list. Figure derived from [26, 28].

We conduct a simulative evaluation of the behavior of three strategies across two
dynamic scenarios. In Scenario 1, flowadmission requests are clustered before a cluster
of flow evictions occurs. When a flow is evicted, a random active flow is removed.
Scenario 2 features fewer large clusters of admissions and evictions, leading to more
continuous dynamism. The specific sequence of flow requests for Scenarios 1 and 2 is
detailed in Appendix A.4.

The first scenario, depicted in Figure 5.10, illustrates a decrease in flexibility upon
acceptingflowadmission requests, and an increasewhenflows are evicted. The second
scenario, visualized in Figure 5.11, shows that the fragmentation remains on similar
levels under a random strategy throughout the scenario, due to shorter admission
clusters. In contrast, flexibility is distinctly impacted due to the gradual increases in
admitted cross-traffic, which creates a bottleneck at the second port. It is noteworthy
that the first-fit strategy effectively tracks the changes of the in-place scoring selection.

5.4 evaluation 73

SwitchSwitch Switch

Switch

Switch

p1
p2 p3

Path A, selected

Path B

Figure 5.9: Topology of the controller scenario. Figure derived from [27].

Regarding the performance of the greedy first-fit algorithm relative to in-place scor-
ing, several factors contribute to its effectiveness. Firstly, the in-place score approxima-
tion targets a single point of the flexcurve using deadline and frame size, whereas the
visualization utilizes a cumulative flexcurve derived from multiple frame sizes. Sec-
ondly, the uniformity of frame periods ensures favorable flexcurve outcomes when
fragmentation is minimal. This is achieved by the first-fit strategy’s ability to locate
the first viable spot, thus minimizing gaps. Lastly, the in-place selection focuses on the
requested paths, rather than the selected visualization of path (p1, p2, p3).

74 optimization

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2
⋅105

C
um

ul
at

iv
e

Fl
ex

-
cu

rv
e

Va
lu

es
∑

b
P
(c

)

Scenario 1

Flexibility-aware (In-place Scoring) First-fit (Greedy) Random

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

Number of Changes Requested

N
um

be
r

of
Sl

ot
Fr

ag
m

en
ts

Figure 5.10: Flow requests with scenario 1 (Appendix A.4). Figure derived from [27].

5.4 evaluation 75

50 100 150 200 250 300 350
0

0.5

1

1.5

⋅105

C
um

ul
at

iv
e

Fl
ex

-
cu

rv
e

Va
lu

es
∑

b
P
(c

)

Scenario 2

Flexibility-aware (In-place Scoring) First-fit (Greedy) Random

50 100 150 200 250 300 350
0

50

100

Number of Changes Requested

N
um

be
r

of
Sl

ot
Fr

ag
m

en
ts

Figure 5.11: Flow requests with scenario 2 (Appendix A.4). Figure derived from [27].

6
MULT I -MECHANISMS

In this chapter, the scope of this thesis is expanded beyond Time-Sensitive Network-
ing (TSN) and scheduled traffic (ST). Research goal 2 is addressed by introducing
two methods to enhance TSN deployment capabilities. In Section 6.1, we describe a
method for deploying TSN scheduled traffic using programmable push-in-first-out
(PIFO) queues. In Section 6.2, we present the novel residence delay aggregation (RDA)
method. RDA can be implemented on programmable network switches while ensur-
ing per-flow delay guarantees. Finally, in Section 6.3, the concept of the flexcurve is
extended to support Credit-based Shaper (CBS) flows. It is essential for the flexcurve
metric to incorporate CBS to facilitate the deployment of multiple mechanisms on the
same egress port using the flexcurve and scheduled traffic.

6.1 pifo structures in tsn

The Section 6.1 is taken verbatim from [29]. The notation is adapted to align with the overall
thesis notation.

Time-Sensitive Networking (TSN) has risen in recent years as an approach to con-
vergent real-time networking standard with deterministic guarantees for industrial
applications. Currently, TSN relies on special switching hardware which determinis-
tic ensures latency guarantees for a handful of given scheduling mechanisms. One
popular mechanism for scheduling real-time flows is the Time Aware Shaper (TAS),
standardized in IEEE 802.1Qbv. It allows the programming of cyclic open and close
instructions regulating queues with strict priority transmission selection at supported
switch output ports. These instructions allow providing so called scheduled traffic, i.e.
the real-time traffic class, with predefined transmissionwindows for jitter and loss free
communication.

Push-In-First-Out (PIFO) [89] queues can be regarded as a priority queuing concept,
designed for line-rate deployability in hardware. Packets can be inserted at an arbitrary
position in the queue, but are always dequeued from the head. Enqueueing a packet
at a certain position corresponds to the rank of that packet relative to the enqueued
packets. This versatile concept allows expressing different types of schedulers such as
priority and Least Slack Time First schedulers [89]. Current trends allow anticipating
upcoming off-the-shelf switching hardware with PIFO support, e.g. as an extension to
P4 data-plane programmable switches.

In this work, we propose utilizing PIFO queues to express the main functionality of
the TSN Time Aware Shaper mechanism. We show how it can be used to realize non-
overlapping scheduled traffic. Using a queuingmodel like PIFO requires the computa-
tion of a rank at the time of enqueue, and in addition, the design of an appropriate hier-

77

78 multi-mechanisms

archical queue structure, such that the desired scheduling algorithm can bemapped to
a PIFO structure. Note that the PIFO queuing concept supports hierarchical queueing,
which are drained from the root [89].

Scheduled Traffic using PIFO queues

The Time Aware Shaper has a port cycle time, and up to eight priority queues, that
can be opened and closed subject to hardware-specific time-granularity. A frame is
not transmitted out of a queue if there is not enough time available until the next gate
close instruction.

ST
0

BE
1

48 48 0

Root PIFO

Shaper Scheduled Traffic
PIFO Queue

Best-effort

Figure 6.1: Hierarchical PIFO queue structure to support scheduled traffic (ST) windows and
best-effort (BE) traffic. Each queue-element is sorted by its rank. The root references
PIFO queues of the leaf. The shaper is responsible for enqueuing ST references
when the clock reaches the assigned rank. Figure derived from [29].

We consider two classes of traffic that are supported by our approach: (a) scheduled
traffic (ST), which has cyclic windows designated for pre-computed real-time flows,
and (b) best-effort (BE) traffic, which does not receive service guarantees. Scheduled
traffic windows are provided by scheduling algorithms such as [18]. Using a PIFO
queue hierarchy as depicted in Fig. 6.1, we can ensure that scheduled traffic packets
are transmitted in their designated time-slots. This is enabled by a secondary shaping
PIFO queue, which holds back the enqueuing of references to the scheduled traffic
queue into the root PIFO until the time of their designated window is reached. The
scheduled time at the initial enqueue of a scheduled packet also directly gives the
packet rank, i.e. its order.

0 T

ScheduledScheduled

Best-effort

Best-effort traffic arrives

Scheduled traffic window start

Scheduled traffic is delayed

Additional Jitter

Figure 6.2: BE packets scheduled using PIFO just before scheduled traffic windows can result
in additional jitter per hop. Figure derived from [29].

6.1 pifo structures in tsn 79

A naive approach is to let the root PIFO queue prioritize all scheduled traffic and
de-prioritizes all best-effort traffic by assigning a rank of 1 for best-effort and 0 for
scheduled traffic at the root PIFO. However, applying this approach would introduce
jitter for scheduled traffic windows. This occurs when the transmission time of best-
effort traffic overlaps with the reserved window of scheduled traffic (cf. Figure 6.2),
and may repeat if multiple packets are transmitted within the reserved window. This
per-hop jitter is bounded by the transmission time of the best-effort packet MTU, e.g.
12μs at 1 Gbps with 1514 byte packets. In standard TAS this behavior is avoided as
the gate responsible for best-effort traffic can be closed when a scheduled traffic gate
is open. Furthermore, TAS switches use implicit or explicit guard-bands to ensure no
BE frame overlaps onto scheduled traffic windows.

To ensure this behavior with our approachwe need to provide the guard-band func-
tionality using the PIFO concept. Since we cannot delay the BE queue like a standard
TAS, BE packets need to be scheduled dynamically based on the reserved scheduled
traffic windows at the corresponding port. This must be done at each hop along a net-
work path of a stream. Note that dynamical scheduling of BE packets in the proposed
approach is not trivial, since loops are not directly supported by programmable switch-
ing hardware [14]. Hence, we cannot shift the scheduled time of new BE packets until
the scheduled time is cleared of the reserved window.

Our approach relies on a look-up table (LUT), as depicted in Figure 6.3, to pro-
vide this behavior. By segmenting the port cycle into scheduled and non-scheduled
windows, we can lookup the required information to avoid overlaps of BE packets
onto scheduled traffic. For each window we keep a vector with (i) the number of time-
units until the next reserved scheduled traffic window, (ii) the next scheduled traffic
window-size, as well as (iii) the beginning time of the current window. All time-points
are relative to the start of the port cycle time. The sum of a window’s vector will corre-
spond to the next possible insertion position relative to the beginning of a cycle. There-
fore, the next window-size must point to a time-point, where at least one MTU-sized
best-effort packet can be scheduled without overlapping onto a reserved window, i.e.
reserved window gaps smaller than one MTU are ignored. The rank calculation of
the best-effort shaper is sketched in Algorithm 4, with last_BE_endtime representing
the time point, at which the transmission of the last scheduled best-effort packet ends.
This and the rank are the only modified state.

ALUT can be implementedwithin a programmable switch usingmatch-actionunits.
The contained tables support range matches, which in turn support the retrieval of
the window-vector. In case no range matches are supported by the device, they can be
realized by multiple prefix or exact matches.

The approach illustrated here is comparable to using implicit guard-bands. A best-
effort packet is sent before reserved scheduled traffic windows, if the packet size per-
mits. However, if there are gaps of less than one MTU, this approach cannot populate
these gaps, due to the safety margin within the window-size variable. To support this,
it would require new entries in the LUT for different possible BE packet sizes.

80 multi-mechanisms

ST ST

0 1 2 3 4 5 6 7 8 9 10 11

Range Match

1
0
2

Free Slots
Begin

Window Size

0
1
2

4
3
2

0
7
2

3
9
2

Figure 6.3: Look-up table encodes the number of time-units until the next reserved window,
as well as the size of the next reservedwindow.When usedwith range-lookups the
table must also reference the beginning of the matched range. Figure derived from
[29].

Algorithm 4 : Rank for Best-Effort PIFO Queue Shaper. Derived from [29].
Data : Packet p(frameduration);
last_BE_endtime;

1 if last_BE_endtime < NOW then
2 last_BE_endtime = NOW;
3 rel_pos_start = last_BE_endtime % CYCLE_TIME;
4 lut = LUT(rel_pos_start);
5 slots_available = lut.begin - rel_pos_start + lut.free_slots;
6 if slots_available < p.frameduration then
7 p.rank = last_BE_endtime - rel_pos_start + ∑i lut.i;
8 else
9 p.rank = last_BE_endtime;

10 last_BE_endtime = p.rank + p.frameduration;

Conclusion

In this work we presented a novel approach for replacing special time-sensitive net-
workinghardware byprogrammable of-the-shelf switcheswith PIFOqueues.We showed
how to use PIFO queues to schedule real-time TSN traffic together with best-effort
traffic. We provided an algorithm that can be directly implemented on programmable
switches with a PIFO programmable traffic manager to isolate scheduled traffic from
best-effort traffic using a guard-band functionality.

6.2 rda: residence delay aggregation 81

6.2 rda: residence delay aggregation

The Section 6.2 is taken verbatim from [100]. The notation is adapted to align with the overall
thesis notation.

Time-Sensitive Networking (TSN) is a collection of standard extensions for the IEEE
802.1Q [42] Ethernet standard. TSN introducesmultiple mechanisms that enable guar-
anteed Quality of Service (QoS) based on standard Ethernet. Different TSN mecha-
nisms are able to offer different kinds of guarantees, ranging from token bucket traffic
shaping to deterministic scheduled traffic with zero jitter. Without TSN mechanisms,
the sole use of basic static priority mechanisms is known to suffer from starvation
problems for the best-effort traffic class. For example, the Credit-based Shaper (CBS)
restricts the flow rate, and the Time Aware Shaper (TAS) may close higher priority
queues for a certain time period [23].

TSN mechanisms are deployed on network switches, where scheduling and shap-
ing decisions aremade according to the usedQoSmechanism and its configuration for
egress ports. To integrate known TSN schedulers into a switch, the egress port sched-
uler needs to be capable of the intended mechanism at the design phase or capable of
such a configuration later.

The domain-specific language P4 [14] enables the programmability of the data plane
behavior on nowadays available networkdevices.However, P4 is constrained in its abil-
ity to program the behavior of a device’s egress queue scheduling. Nevertheless, P4
devices can be programmed to run or emulate some stateful scheduling techniques, in-
cluding variations of the priority queuing PIFO-mechanism [3] or Active Queue Man-
agement (AQM) algorithms [58].

Problem Statement

Typically, TSN configuration deployments are considered static. The network is not dy-
namically adjusting to current load situations. While critical traffic flow behavior and
requirements may change over time, the deployed configuration does not adapt auto-
matically. Furthermore, mechanismswith static resource reservations waste resources
unnecessarily when flows change dynamically. We seek to find a resource-sharing
mechanism that can be deployed on off-the-shelf programmable network devices like
P4 switches.

In this paper, we analyze the Residence Delay Aggregation (RDA) approach, specif-
ically designed for implementation on P4 switches. Unlike the traditional Least Slack
Time First (LSTF) scheduling strategy, which prioritizes packets based on the remain-
ing time to their deadline and necessitates a priority queue, RDA provides a solution
for real-time dynamic scheduling on current P4 switches. Importantly, RDA dynami-
cally determines when critical traffic should be prioritized.

82 multi-mechanisms

Switch 1 Switch 2
Talker Listener

fr

T1prop T1proc T2prop T2proc T3
prop

Figure 6.4: Time-consumption along the transmission path. Tprop indicates propagation delay.
Tproc indicates processing time within the switch. Figure derived from [100]

Residence Delay Aggregation

The core concept of RDA, similar to LSTF, is that the priorities of deadline-carrying
packets are determined by the total residence delay of packets as they travel through
the network. The residence delay represents the cumulative time that a packet spends
on switches while traversing the network. In a nutshell, packets with deadlines spec-
ified by the application are given a time allowance, encoded in the header of each
packet, during which they can traverse between switches in best-effort queues (BEQ)
without special handling. Upon the arrival of a deadline-carrying packet in a switch,
the allowance time is checked before enqueuing the packet. If the allowance time does
not suffice to meet the packet’s deadline, the packet will instead be enqueued at a
high-priority urgent queue (UQ).

Network Delays

TSN mechanisms achieve deterministic communication by providing upper bounds
on the end-to-enddelay. Figure 6.4 illustrates a simple networkwith twoP4programmable
switches. The sender generates a packet (fr) which is delivered to the receiver through
switches sw1 and sw2. In addition to the link propagation delay (Tprop), each switch
comprises a processing delay (Tproc) which we describe here as

Tproc = tparser + tingress + tq + tegress + tdeparser (6.1)

In this paper, we let Tproc comprise the internal operations taking place within the
programmable switches such as queuing and pipeline operations, as illustrated in Fig-
ure 6.5. Further elaboration of this figure is presented in Section 6.2.

Upon the arrival of a packet in a switch, it is initially parsed by the parser and sub-
sequently proceeds through the ingress pipeline until reaching the traffic manager.
The time consumed by parsing and ingress processing is denoted by tparser and tingress,
respectively. The packet is then enqueued in the traffic manager and waiting to be
dequeued. This queuing delay, denoted by tq, depends on the total amount of traffic
pushed in the queues and on the applied traffic shaping and scheduling algorithms.
After the packet is dequeued from the traffic manager, it proceeds through the egress
pipeline (assuming the switch offers an egress pipeline for packet processing) and the
deparser to reach the egress port. The time consumed by the egress pipeline and de-
parser is denoted by tegress and tdeparser, respectively. We assume that the factors tparser,
tingress, tegress, and tdeparser are almost constant. Therefore, tq stands as the sole factor
that can affect Tproc and, consequently, impact the overall end-to-end latency.

6.2 rda: residence delay aggregation 83

Λ = Λ+dUQ
max

Λ < d(BEQ)

Λ ≥ d(BEQ)

Decision-making

Meter

Best-effort Packet

Drop
Red/Yellow

Green

Ingress Pipeline

q(UQ)

q(BEQ)

UQ

BEQ

St
ric

tP
rio

rit
y

Traffic Manager

Λ = Λ− (tdeq − tenq)

Update Allowance

Egress Pipeline

Figure 6.5: System design of RDA. Packets in traffic manager: Red ■: urgent traffic, Yellow
■: non-urgent traffic, Blue ■: best-effort traffic. tenq: timestamp when packet is en-
queued. tdeq: timestamp when packet is dequeued. Figure derived from [100]

Queuing Model

The existing TSN mechanisms prioritize traffic based on their types. According to the
Class of Service in IEEE 802.1 Q standard, a 3-bit field Priority Code Point is presented
in the VLAN header to indicate eight different classes of traffic. Therefore, a minimum
of eight queues associated with fixed priority levels for each egress port are needed
to isolate distinct traffic if the switch is required to support the complete set of traffic
classes. Strict priority transmission selection ensures that higher-priority traffic is de-
queued before lower-priority traffic, hence, the time-critical sessions running on the
end devices can be accomplished in a timely manner.

One goal of TSN is to guarantee that packets reach their destination before a dead-
line. The urgency of reaching the deadline is the most critical factor for prioritizing
traffic. The urgent traffic, which has an imminent deadline, should be assigned with
higher priority than the non-urgent traffic, which still has a loose gap until the dead-
line.

In RDA, each switch dynamically sets traffic priorities based on two factors: the re-
maining time to meet the deadline and the current fill level of queues in the switch.
Traffic may become more or less urgent in subsequent switches, depending on the
queuing delay in the current switch. This dynamic priority assignment enables bal-
ancing traffic load while providing time guarantees for deadline-carrying packets.

RDA uses two separate queues for each egress port to buffer three types of traf-
fic, as shown in the traffic manager in Figure 6.5. An urgent queue (UQ) assigned
with high priority is designated for buffering the urgent traffic, whereas a best-effort
queue (BEQ) assigned with low priority is used for buffering the best-effort and non-
urgent traffic.With strict priority transmission selection, the urgent traffic in theUQ is
ensured to be transmitted before any traffic in the BEQ. A meter (also called policer) is
applied forUQ to limit the urgent traffic rate. The meter has the burst and rate param-
eters (Bmeter, rmeter) that denote the maximum burst size and the maximum long-term
rate allowed for the UQ flows, respectively [60].

Note that, similar to existing TSNmechanisms, the deadline for packets can be guar-
anteedwhen the packet passes through theUQs of all switches along the path. In order
to determine whether a packet is urgent or non-urgent, the switch should answer the
question: Can the deadline of the incoming packet still be guaranteed when buffering

84 multi-mechanisms

the packet in the BEQ of this switch and in theUQs of all subsequent switches? There-
fore, RDA prescribes that the packet header of each deadline-carrying packet contains
a field called time allowance denoted as Λ, which specifies how long this packet can be
buffered in the BEQ over the transmission path for switches ω ∈ {1, ...,m}. The i-th
switch is denoted by swω. The sender sets the initial value of Λ as

Λ = d −∑
l
T lprop −∑

ω
Tωpipe −∑

ω
tωUQ,max (6.2)

where d is the deadline for reaching the destination. Here, l indicates the index of links
along the transmission path; tωpipe represents the time consumed in swω except for the
queuing delay in the traffic manager. The variable

tωUQ,max =
Bω
UQ,meter

rωline
(6.3)

for swω indicates the maximum queuing delay for the UQ, i.e., the maximum time
until packets are served when assigned to this queue. Bω

UQ,meter is the burst size for
the meter assigned to the UQ in swω. The line rate for the egress port in swω is given
by rωline. The maximum queuing delay for transmitting packets exclusively through the
UQ in all switches is denoted as ∑ω tωUQ,max. This value, propagation and pipeline
delays are then subtracted from the given deadline to establish the allowance time Λ
for buffering in the BEQ.

The initial value of Λ is given by the sender, or the network controller which needs
awareness of the delay values (6.2) along the path. Λ is initialized to be ≥ 0 to ensure
on-time delivery because worst-case delays for subsequentUQs are accounted for dur-
ing the initialization ofΛ. Specifically, if no time remains for enqueuing the packet into
BEQs, UQs are exclusively used to ensure an on-time packet delivery.

Note that, first, this proposal is conservative in the sense that we assume worst-case
delays at every UQ. Secondly, with this method, we need to adjust Λ with the actual
queuing delay at each switch after the packet is dequeued to reflect the actual resi-
dence time. For an initial value ofΛ < 0, the packet still may arrive within its deadline
due to not fully utilized UQs along the path; however, no guarantees can be given.

Figure 6.5 depicts the control flow when a packet (fr) enters the switch. If fr is a
deadline-carrying packet observed by the parser, the decision-making process in the
ingress pipeline is triggered. The value ofΛ is first increased by tωUQ,max of this switch
swω. This adjustment allows reclaiming the subtracted maximum queuing delay in
theUQ from the packet deadline, as the packet has not yet entered theUQ at swω. This
ensures the accurate representation of the packet’s deadline constraints as it moves
through the network.

The switch then compares the value of Λ with the threshold tω(BEQ) to decide
which queue is eligible for fr. The value of tω(BEQ) represents the queuing delay if fr
is buffered into the BEQ. This delay encompasses the transmission time of the current
packets in the BEQ and UQ, as well as the upper bound delay caused by any packets

6.2 rda: residence delay aggregation 85

Bω
UQ,meter

rωline−rωUQ,meter

Bω
UQ,meter

Busy Period
rω
UQ,meter

rω
line

t

bi
ts

Figure 6.6: The arrival and service curves of UQ. The arrival curve is colored in black, while
the service curve is in red. Figure derived from [100]

that will enter the UQ in the future before fr is eventually dequeued. Therefore, the
classical delay bound tω(BEQ) at swω is given by

tω(BEQ) = qω(BEQ)
rωline − rωUQ,meter

+
Bω
UQ,meter

rωline − rωUQ,meter
(6.4)

where qω(BEQ) is the current depth of the BEQ, observed by an arriving packet.
Should a packet be in risk of being droppedwhile being enqueued into the BEQwhen
BEQ is full, tω(BEQ) is assigned a value of∞, to force the deadline-carrying packet
into the UQ instead. The second term denotes an upper bound on the busy period of
the UQ. This is a worst-case bound, as it assumes that the urgent packets are always
enqueued into UQ at the meter rate (rωUQ,meter). The value of this upper bound is de-
termined leveraging network calculus theory [60], as shown in Figure 6.6. The arrival
curve for UQ is expressed by affine function γr,b(t) = rt + b, where r = rωUQ,meter
and b = Bω

UQ,meter. The service curve for UQ is represented by peak rate function
λR(t) = Rt, where R = rline. The busy period of UQ lasts until the backlog reaches 0,
which is the value of the second term in (6.4).

If Λ ≥ tω(BEQ), then the packet is eligible to be enqueued in the BEQ, as the ex-
pected waiting time would not exceed the packet’s deadline at swω. Otherwise, the
UQ is selected. Recall that the UQ should be metered to ensure an upper bound of
tω(BEQ). The packet fr is dropped if it is set to be enqueued into UQ and UQ is cur-
rently full. This dropping mechanism ensures that the packets transferred to UQ see
at most the delay described in (6.3); however, such packet dropping should never ap-
pear under normal circumstances. The meter can also be applied to different traffic
sources (e.g., based on flows) to prevent UQ from being flooded by a specific source
with urgent traffic. Finally, after being dequeued, the value of Λ in the packet header
is decreased with the residence delay (tωdeq − tωenq) in the Egress pipeline of swω. The

86 multi-mechanisms

updated value ofΛ is utilized at the next switch to decide which queue would be used
for buffering this packet.

Limitations of Programmable Switches

The computation of tω(BEQ) requires knowing the current depth of the BEQ in the
ingress pipeline, which is not supported by all programmable switch architectures
(e.g., Tofino). The Tofino2 switch architecture allows a ghost thread to retrieve queue
depths from the traffic manager to the ingress pipeline [2]. To accommodate differ-
ent programmable switch architectures, the threshold tω(BEQ) = tωBEQ,max (compare
(6.4)) can be modified to the static

tωBEQ,max =
qωBEQ,max + Bω

UQ,meter

rωline − rωUQ,meter
(6.5)

where qωBEQ, max is the maximum depth of the BEQ at swω.
Note that the P4 language lacks support for division operations [58]. Hence, one

approach to approximate the division operation is through performing bit shifting
which requires the denominator to be a power of 2 for exact results [32]. To this end,
the meter rate needs to be configured to a value that ensures (rωline − rωUQ,meter) is a
power of 2.

Implement RDA in P4 Programmable Switches

The implementation of RDA relies on the programmable switch architecture, as de-
scribed in Section 6.2. The pseudocodes interpreted in this subsection are based on
the bmv2 switch, which is a programmable software switch and does not support re-
trieving the current queue depth in the ingress pipeline. Therefore, equation (6.5) is
leveraged as the delay threshold for the decision-making procedure.

The P4 pseudocode for the ingress processing is presented in Listing 6.1. The values
of tωUQ,max, qωBEQ,max, Bω

UQ,meter, and the exponent n in (6.6) are stored in the metadata
of the programmable switch by uq_max_del, beq_max_dep, uq_bs, and rate_diff_power,
respectively. These values are configured by the controller through the match-action
table. Upon the arrival of a deadline-carrying packet, which is determined by the tag
is_deadline_packet, the meter for constraining the rate of entering UQ is triggered.
Note, that there is only onemeter applied toUQ itself, not to each individual flow. The
execution of meter results in three colors, as defined in RFC 2697 [35]. The meter_tag
stores the result of the meter execution (according to the meter rate rωUQ,meter). A green
result is indicated by 0. Once the deadline-carrying packet is allowed to be enqueued
in UQ, the value of tωUQ,max is reclaimed to the allowance time carried in the packet
header. The value of delay threshold tωBEQ,max is computed by shifting q_dep to the
right by n bits, computed in:

2n = rωline − rωUQ,meter (6.6)

The arrived deadline-carrying packet is assigned a queue ID of 1 if the allowance time
is less than the delay threshold. A higher queue ID corresponds to a higher queue

6.2 rda: residence delay aggregation 87

Listing 6.1: P4 pseudocode for decision-making, meter usage and queue assignment. Listing
derived from [100]

1 if (meta.is_deadline_packet == 1) {
2 meter_uq.execute_meter (0, meta.meter_tag);
3 if (meta.meter_tag == 0) {
4 hdr.rda.at = hdr.rda.at + meta.uq_max_del;
5 q_dep = meta.beq_max_dep + meta.uq_bs;
6 del_thr = q_dep >> meta.rate_diff_power;
7 if (hdr.rda.at < del_thr) {
8 standard_metadata.priority = 1;
9 } else {

10 standard_metadata.priority = 0;
11 }
12 } else {
13 drop();
14 }
15 } else {
16 standard_metadata.priority = 0;
17 }

Listing 6.2: P4 pseudocode for updating the allowance time. Listing derived from [100]

1 if (meta.is_deadline_packet == 1) {
2 hdr.rda.at = hdr.rda.at - standard_metadata.deq_timedelta;
3 }

priority. Thus, the queue with ID 1 indicates the UQ, whereas the BEQ is represented
by the queue with ID 0.

Updating the allowance time in the egress pipeline is shown in Listing 6.2. The field
deq_timedelta in standard_metadata stores the value of the time consumed by queu-
ing in the traffic manager, which is then deducted from the current value of the al-
lowance time.

Related Work

We briefly discuss related concepts in the following. The Push-In-First-Out (PIFO) [89]
priority queuing concept is a promising approach to enable a flexible configuration of
egress port schedulers. It is capable of emulating schedulers like Earliest Deadline
First (EDF), Least Slack Time First (LSTF), and TSN Time Aware Shaper [29]. How-
ever, support for PIFO is unavailable on off-the-shelf devices and FPGAs are needed.
Similarly, for other queueing challenges the use of FPGAs has proven to be a practical
solution [57].

We alsowant to highlight one particular TSNmechanismdue to similar goals: Asyn-
chronous Traffic Shaping (ATS) as given by [43, 91]. Both RDA andATS aim to provide
end-to-end delay bounds per flowwithout reservations but achieve this through differ-

88 multi-mechanisms

ingmechanisms. ATS employsmultiple queues for each egress port to separate ingress
flows based on ingress port and priority. Each queue calculates an eligibility time
for its topmost flow, retaining packets until this time is met. Unlike RDA, there is no
need for additional encoded information (allowance time) in packets during transmis-
sion. However, ATS necessitates amore complex hardware support including queuing
structure and queuing scheduling, leading to increased resource overhead compared
to RDA. Currently, no off-the-shelf devices are available that support ATS with the
required queuing and scheduling strategies. In contrast, RDA only requires priority
queues and a strict priority transmission selection algorithm, which is specified as
the default algorithm for selecting frame for transmission in IEEE 802.1Q [42]. RDA is
implementable on Tofino-based switches solely with the availability of strict priority
scheduling and FIFO-queues.

Conclusion

We proposed a new dynamic scheduling mechanism called Residence Delay Aggre-
gation (RDA), which is designed to provide time guarantees for time-critical traffic
while only utilizing priority queuing when necessary to deliver packets timely. The
presented approach is built on top of dynamic traffic scheduling at each switch, pri-
oritizing traffic based on the urgency of meeting packet deadlines and the current
queue states. RDA is designed to be implementable on the modern P4 programmable
switches. In future work, we plan to assess the performance of RDA across various
hardware platforms in different network topologies and traffic scenarios. The impact
on the performance due to the limitation imposed by the P4 programming language
and the underlying concepts will be investigated. Additionally, we will extend RDA
by incorporating multiple urgent queues to enhance its flexibility in prioritization.

6.3 flexibility of simultaneous usage of tsn mechanisms 89

6.3 flexibility of simultaneous usage of tsn mechanisms

In the preceding Chapters 4 and 5, we introduced the concept of the flexcurve and
applied it to TSN scheduled traffic (ST). When traffic with less stringent requirements
– which can be satisfied by mechanisms other than TSN ST – is requested, it is appro-
priate to select mechanisms suitable for this type of traffic. Choosing the appropriate
mechanism can reduce unnecessary reservations of network resources. For instance,
unlike ST, asynchronous mechanisms do not explicitly reserve time slots. The separa-
tion and simultaneous handling of different traffic types can be achieved by reserving
distinct queues for each type at the corresponding egress port.

The flexcurve does not consider the impacts of other types of real-time traffic that
are also currently active simultaneously in the network. A potential scenario involves
the usage of ST alongside TSN Credit-based Shaper (CBS) flows. The CBS enables the
calculation of delay bounds [20, 64, 67, 68, 70, 73, 98, 99] as well, is however unsuitable
to support the more stringent isochronous flows. When separating the traffic types
by queue, operating traffic that has less stringent requirements compared to those en-
abled by ST, is enabled.

The simultaneous deployment of scheduled traffic and CBS impacts the observed
delay of CBS queues by essentially pausing the credit mechanism of the CBS (cf. Sec-
tion 2.2), when the higher priority isochronous traffic is scheduled. To integrate aware-
ness of additional real-time traffic types, particularly CBS, we propose an extension of
the flexcurve. This extension is akin to the integration of deadline awareness, in that
it requires additional parameters to be provided, which are respected by the result-
ing flexcurve values. The deadline-aware flexcurve bdP(c) (cf. Sections 4.1.3 and 5.1) is
based on an eligibility list 𝒜, that includes assignments A for which the given param-
eters of path P, frame size c, and deadline d are respected. Similarly, we argue that a
flexcurve, which is CBS-aware, needs to respect the requirements of such CBS traffic.

The CBS traffic properties that need to be respected include the deadlines and trans-
mission eligibility durations per CBS class per port. Transmission eligibility durations
are determined by the expected maximum delay, combined with the maximum burst
duration traffic is allowed to transmit at the port. The CBS deadlines per port p along
path P ∈ {p1, … , pm} per CBS class w ∈ {1,… , 8} are given by cdwp , along with their
corresponding eligibility durations edwp .

When populating the eligibility list 𝒜, for example, using Algorithms 2 and 3, can-
didates can now only be considered eligible (in addition to the ST requirements for
deadline d and frame size c), if the CBS eligibility durations edwp do not exceed the
corresponding CBS deadlines cdwp as a result of admitting the candidate. The deadline
can be exceeded, because placements of ST pause the transmission of CBS queues.

Quick Eligibility Check

We can check this condition quickly by evaluating the total number of ST slots, de-
termined either by the sum of all frame sizes in the port schedule or by the residual
capacity using h − bp(1). However, this condition is merely sufficient; there may be
too many total reserved slots. The transmission of CBS frames is asynchronous, and

90 multi-mechanisms

hence, can occur at arbitrary points in time. Therefore, in scenarios where the simple
frame size approximation is insufficient, it becomes necessary to conduct a worst-case
transmission time search for the CBS-traffic type. This determines whether the poten-
tial begin of a CBS transmission, coupled with the admission of a candidateA and the
remaining schedule entries, might surpass the CBS deadline at the port at fragmented
schedules.

Worst-case Transmission Time

A worst-case transmission time is given when the maximum number of ST reserved
slots pause the credit mechanism of the CBS. We visualize this search in Figure 6.7.
Reserved slots, including the candidate A, are colored red. In the example, the max-
imum extension of the eligibility window for the first CBS queue is given at starting
time 1. This worst-case placement results in a worst-case eligibility duration of ed1p+2.
However, this still results in fewer slots than the corresponding CBS deadline cd1p at
the port. Therefore, with the current state of the port schedule, the candidate, if any,
can be deemed eligible.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 h
sp

ed1
p ST Pause

CBS Deadline cd1
p = 8

ST Reservation Slot Available

Figure 6.7: Example of a worst-case placement for a CBS transmissionwindow. Theworst-case
placement is achieved when the maximum number of reserved slots interfere with
the CBS transmission eligibility window.

Worst-case Transmission Time Search

A fastway of finding theworst-case placement for aCBS transmissionwindow is to use
a dynamic slidingwindow algorithm. For a given port schedule sp, and CBS eligibility
duration ed ∶= edwp for the classw, we depict a possible approach inAlgorithm 5. Note,
that a potential candidate A needs to be included in the searched schedule, as if an
admission was performed.

The algorithm can be implemented linearly by iterating through each frame trans-
mission start sip within the port schedule sp, assuming starting times are sorted: s1p <
s2p < s

χp
p . This narrows the number of slots needing to be checked significantly from

hyperperiod h-slots to χp-schedule entries. It is sufficient to check only these slots,
as with each starting time of a frame sip, the complete ST pause of this instance will

6.3 flexibility of simultaneous usage of tsn mechanisms 91

be regarded. Other starting times cannot constitute a worst-case, as less interruption is
given by the ST frame. This way, there are no partial overlaps, as the subsequent sched-
ule entries also participate in their full duration to the ST pause, should they overlap
with the growing window.

In a nutshell, theworst-case search ofAlgorithm 5 iterates through each schedule en-
try sip, increasing the eligibility duration window edwith each schedule entry’s frame
durationwhere thewindow overlaps. Each entry is a potential starting position for the
worst case. The window is moved to a new potential starting position when an entry
does not overlap with the previous window anymore.

In more detail, Algorithm 5 requires the following variables to keep track of the
current window and worst-case time (Lines 1-4):

• potstart, reflecting the current search window’s starting time.

• ext, reflecting the number of slots (duration) that are extended by all overlapping
schedule entries. The searchwindow’s length is a result of the eligibility duration
ed plus the window extension ext.

• wcext, wctime are keeping track of the currentworst-case values for the extension
ext and potential start potstart.

The algorithm begins by iterating through each schedule entry (Line 6). Each schedule
entry extends the duration of thewindow (Line 14). Theworst-case time and extension
are updated in Lines 16-18. The window is extended until the iterated port schedule
entry i does not overlap with the current extended eligibility window (Line 8). If the
extension does not overlap, the search window start potstart is shifted to the new
entry’s position (Line 10). The current window extension is reset as we move to a new
potential starting position (Line 12).

The algorithm returns the worst-case starting time wctime and window extension
duration wcext (Line 19).

To reflect wraps, we can extend the schedule. The schedule is extended for each
entry by shifting the transmission time by the hyperperiod:

(s1p, … , s
χp
p , s

χp+1
p + h,… , s2χp

p + h)

This process essentially involves copying each entry and appending the entries one
cycle later. Starting times need to be checked only until the potential window start
potstart, either exceeds or matches the hyperperiod: potstart ≥ h.

The variable wcext tracks the current worst-case extension of the CBS window. If
the worst-case extension wcext, does not exceed the corresponding CBS deadline cdwp ,
the checked schedule can accommodate the CBS class. This implies that the current
scheduled traffic does not interfere in a way that prevents the CBS requirements from
being met. Consequently, if a candidate A is included in the port schedule sp, the
candidate can be deemed eligible with respect to the CBS class constraints.

92 multi-mechanisms

Integrating this worst-case search within Algorithms 2 and 3 prior to “saving” the
candidate A as part of the eligibility list ensures that the CBS-traffic requirements are
satisfied. This modification substantially expands the parameter set of the flexcurve
by explicitly accounting for other traffic types.

Concerning an integration without deadline-awareness: the use of the eligibility list
enables the rejection of candidates based on supplementary requirements. This capa-
bility is absent in the basic flexcurve formulation Eq. (4.2), where candidates for eligi-
bility are not explicitly selected.

6.3 flexibility of simultaneous usage of tsn mechanisms 93

Algorithm 5 : Find the CBS worst-case starting time for a given port.
Input :

• The port schedule sp with χp-entries for which the CBS worst-case starting
time should be searched. The candidate A is assumed to be integrated in this
given schedule. The schedule is assumed to be sorted: s1p < s2p < s

χp
p .

• The duration(sip) of occupancy at port p for a frame instance sip.

• The CBS eligibility duration which is checked: ed

Note: We omit a second pass with shifted schedule to consider schedule wraps and early
returns from empty schedules.

Result :

• wctime: The worst-case starting time

• wcext: The overlap duration for wct

1 ext← 0 // Current window extension (total ST pause duration)

2 potstart← s1p // Potential starting time, initialize to first entry

3 wcext← 0 // Worst case ST pause

4 wctime← 0 // Worst case starting time

5 // Iterate schedule entries i ∈ {1,… , χp}:
6 for i in 1,… , χp do
7 // Check if interval [potstart, potstart+ ed+ ext] does not overlap

with current frame instance sip
8 if sip ∉ [potstart, potstart+ ed+ ext] then
9 // Move to next potential start

10 potstart← sip
11 // Reset search window extension

12 ext← 0
13 // Update the window extension with corresponding frame duration

14 ext← ext+ duration(sip)
15 // Update worst-case time and overlap duration

16 if ext > wcext then
17 wcext← ext
18 wctime← potstart

19 return wct, wco

7
SUMMARY, CONCLUS IONS , AND OUTLOOK

In this work, we have discussed various challenges associated with enhancing flexi-
bility in Time-Sensitive Networking (TSN) and proposed approaches to address these
challenges. To conclude, we summarize the preceding chapters and outline the main
contributions. Finally, we explore avenues for future research.

7.1 summary of the thesis

We motivated this work in Chapter 1 introduction and discussed three essential
challenges that hinder an inherent flexibility in TSN. As network applications evolve
and requirements shift, such asmanufacturing systems in a factory environment, there
is a necessity for adaptationwithin network configurations and infrastructure. This be-
comes increasingly complex as applications demand strict traffic service requirements.
We focused the main research direction of this work to scheduled traffic, which can
support isochronous traffic types. In Chapter 2 background & related work, we
provided an overview of the relevant background information, and reviewed existing
works and approaches related to this research. Consequently, we derived three specific
research goals, aimed at enhancing flexibility:

• Research Goal 1: Provide a mechanism for analyzing flexibility of scheduled
traffic configurations.

• Research Goal 2: Methods for optimizing the flexibility of TSN schedules.

• Research Goal 3: Enabling a flexible deployment of TSNmechanisms to achieve
application requirements.

Taking into account these research goals, we summarize the contributions of this thesis
as follows.

7.1.1 Contributions

The management process of TSN encompasses a variety of scenarios and numerous
procedures. In Chapter 3 flexibility-based tsn management, we propose an en-
hancement for centralized TSN controllers to incorporate a flexibility metric, thereby
significantly improving the adaptability of the scheduling process. This chapter pro-
vides context on the applicability of the contributions in this thesis. The metric may
be consulted by the controller prior to making critical decisions. The metric serves as
a tool to enhance decision-making processes across various domains. Its application
is particularly crucial for determining the admissibility of new flows, ensuring the

95

96 summary, conclusions, and outlook

network’s capabilities can support the flow requirements without necessitating sepa-
rate scheduling processes. By integrating the flexcurve into the scheduling process, a
scheduler can steer the flow scheduling towards flexibility optimizations. Moreover,
as a path-based metric, the flexcurve facilitates the selection of promising paths for fu-
ture flows. Furthermore, we refine the parameters exchanged between the controller
and applications to a selected set that we consider essential for integrating flexibility
awareness into TSN management.

In Chapter 4 flexibility notion, we address Research Goal 1, focusing on the
conceptualization of flexibility within the context of TSN scheduled traffic. Our con-
tribution, denoted flexcurve, quantifies the flexibility at the network’s bottleneck by
considering the flow frame size requirements, thus indicating possibilities for accom-
modating new flows. Contrary to most related works in this domain, we introduce a
path-based metric, thereby capturing the intrinsic characteristics of scheduled traffic.
This allows for amore detailedmeasurement of the network’s environment. Moreover,
we leverage the structure of the flexcurve to facilitate partial aggregations and disag-
gregations. Disaggregations permit simultaneous flow admissibility checks for multi-
ple flows. This feature can assess the network’s capability to accommodate additional
traffic without requiring exhaustive, individual flow scheduling procedures. Aggre-
gations, on the other hand, enable a rapid construction of the flexcurve for selected
data points, by leveraging the underlying schedule’s data-structure itself. Finally, we
extend this flexibility notion further with additional deadline requirements that are
specified by the user.

Building upon the foundational concepts introduced in the Chapter 4, Chapter 5 op-
timization addresses Research Goal 2 by detailing the integration of flexcurve-based
scheduling into the scheduling process. We introduce a search heuristic algorithm for
scheduling TSN scheduled traffic, which can also be utilized to identify flow schedul-
ing candidates crucial for constructing a deadline-aware flexcurve. Through the intro-
duction of two approximation methods for the pruning of eligibility candidates and
in-place scoring during the algorithm’s runtime, alongside a novel approach for path
selection that considers potential flexcurve changes,we can efficiently leverage the flex-
curve for flexibility-aware scheduling purposes. Finally, this chapter further extends
our search algorithm to enable TSN gate control list (GCL) deployment. Supporting
GCLs is critical for realizing actual TSN deployments of configurations on forwarding
devices.

Continuing with Chapter 6 multi-mechanisms, we address Research Goal 3. Ex-
tending the variety ofmechanisms providesmore opportunities for deploymentwhen
different types of forwarding hardware can be leveraged. In Section 6.1, we facilitate
the deployment of TSN scheduled traffic by proposing a configuration method for the
push-in-first-out (PIFO) queueing concept. This adaptation allows TSN mechanisms
to be deployed on hardware supporting this type of programmable scheduler. Sec-
ondly, in Section 6.2, we introduce a novel scheduling policy, denoted residence de-
lay aggregation (RDA). RDA is an asynchronous mechanism capable of ensuring per-
flow delay guarantees on programmable hardware switches by utilizing two separate
queues with simple strict priority for transmission selection. Finally, we incorporate

7.1 summary of the thesis 97

multi-mechanism support into the flexcurve metric for scheduled traffic by consider-
ing the requirements of Credit-based Shaper (CBS) flows. The deployment opportu-
nities increase when multiple mechanisms are available, as flows with less stringent
requirements canutilizemechanisms offering lower guarantees. In the context of using
flexibility metrics, it is imperative to include competing mechanisms in the flexibility
quantification, to ensure multi-mechanism usage is considered.

7.1.2 Conclusions

Time-SensitiveNetworking is an enabling technology for achieving deterministic com-
munication in standardEthernet. As the goals of the Industrial Internet of Things (IIoT)
and Industry 4.0 demand both flexibility and determinism in data communication,
there is a need to enhance adaptability when deploying TSN. However, the inherent
flexibility of Ethernet diminishes when real-time guarantees are provided through the
deployment of TSNmechanisms. Thus, the adaptability of real-time data communica-
tion at runtime becomes a critical issue.

In this thesis, we introduce a novel notion of flexibility, the flexcurve, designed to
enhance and quantify the flexibility of the TSN scheduling process. This addresses a
critical gap in achieving both deterministic communication and online adaptability.

We evaluate the flexcurve measure by analyzing its runtime behavior using various
formulations. Empirical results confirm that these match the expected runtime behav-
ior. Notably, through flexcurve aggregations, we achieve constant lookup times when
schedules exhibit similar fragmentations.

To integrate the flexcurve into the scheduling process, we introduce a search algo-
rithm to identify flow eligibility candidates. We assess the algorithm’s runtime on two
distinct topologies: a worst-case line topology and a hierarchically complex machine
topology. Our findings demonstrate sub-second runtimes for the machine topology,
which are significantly improved compared to traditional scheduling and incremental
SMT-based approaches. To accommodate additional parameters in the flexcurve, our
evaluations indicate increased runtime requirements for computing a deadline-aware
flexcurve, relative to the limited formulation. However, this runtime decreases as the
schedule capacity increases. The approximation to select flexcurve optimal candidates,
shows up to 96x in runtime improvements, compared to naive recomputations.

We extend the flexcurve to accommodate requirements beyond scheduled traffic.
Given the diversity of the TSN mechanism ecosystem, mechanisms can be selectively
chosen to meet application requirements. This selective choice avoids the necessity of
selecting mechanisms that provide more stringent guarantees than necessary, thereby
preventing the reservation of excessive resources. The extension of the flexcurve to in-
clude additional traffic types, such as CBS, reflects the interplay between mechanisms
and their impact on scheduled traffic flexibility. Further, by extending deployment
support to enable deployment on other forwarding hardware not directly supporting
TSN, such as programmable forwarding hardware and programmable schedulers, we
further enhance themechanism ecosystem. This enhancement increases the versatility
of network configurations and adaptability across various networking environments.

98 summary, conclusions, and outlook

This thesis shows and establishes a comprehensive framework for quantifying flex-
ibility in TSN networks. This framework can be extended to include multiple schedul-
ing mechanisms, and reflect the requirements that are specified by flows of interest.
This adaptability ensures that the metric reflects the true potential for accommodat-
ing varying network demands and hardware capabilities.

7.2 outlook

In this section, we identify potential avenues for future research and outline possible
approaches to address these open problems.

The flexcurvemetric incorporates various flow parameters, depending on user spec-
ifications. We have provided specific formulations of the metric to include frame sizes
and deadlines. Further extension of these formulations to encompass additional pa-
rameters, such as specific flow periods or multiple destinations, would allow for a
more precise representation of application flow requirements. Incorporating arbitrary
flow periods addresses a significant limitation of the flexcurve formulations, as dis-
cussed in this thesis, and would facilitate a comprehensive view of future scheduled
traffic. A potential approach to include arbitrary flow periods could involve extend-
ing Algorithm 2 to identify eligible candidates. The algorithm can be modified to ac-
commodate arbitrary cycles, as the current version assumes cycles equal to the hy-
perperiod. One possible method could be to enable the shifting of multiple frame
instances that are separated by a fixed cycle period of slots. The inclusion of multi-
destination capabilities, implying multiple listeners per flow, necessitates multicast
support. Currently, the flexcurve does not accommodate multicast, a limitation that
would necessitate substantial modifications to its definition. Moreover, the potential
for multiple bottlenecks along diverging paths raises further questions. It is unclear
whether a multicast-aware flexcurve should resemble a unicast flexcurve by reflecting
shared bottlenecks, or whether it would be more effective to segregate paths directed
toward individual listeners.

We have extended the flexcurve to reflect the concurrent deployment of the TSN
CBS mechanism. Extending the flexcurve to include the remaining mechanisms, such
as Asynchronous Traffic Shaping (ATS), could facilitate more possibilities for the si-
multaneous deployment of TSN mechanisms when the flexcurve is used to quantify
scheduled traffic flexibility. The method could be akin to integrating CBS; it should
allow the limiting of eligibility candidates based on the criteria of other traffic type
flows. Naturally, the configuration becomes increasingly complex with the concurrent
deployment of multiple mechanisms. Additionally, it is imperative to ensure that the
mechanisms adequately account for their interferences, provided that these have not
already been considered.

The flexcurve metric quantifies the flexibility of scheduled data frame sequences.
Further research is needed to examine the utility of this metric in other domains apart
from TSN. It is essential to determine both the feasibility of adapting the flexcurve
metric and the effectiveness of its application for other domains. Areas such as manu-

7.2 outlook 99

facturing systems and public transportation, where scheduled sequences are common,
could particularly benefit from this exploration.

Lastly, in TSN, the implementation of Frame Replication and Elimination for Reli-
ability (FRER) mechanisms facilitates the introduction of data redundancy over mul-
tiple paths to enable instantaneous failover. It is essential to explore how FRER can
be incorporated into the flexcurve framework when applications necessitate physical
redundancy. There is a potential opportunity to combine the use of FRER with multi-
cast support, as both require modifications to the formulations of the flexcurve. While
multicast addresses multiple listeners via one diverging path, FRER aims to establish
disjoint paths to one or more destinations. Both, FRER and multicast, necessitate the
consideration of additional routing specifications.

acknowledgments

Work described in this thesis was funded by the German Research Foundation (DFG)
within the Collaborative Research Centre 1053 “MAKI”. Additionally, work in this
thesis was aided by Robert Bosch GmbH, within the T3 subproject of MAKI.

B IBL IOGRAPHY

[1] Industry IoT Consortium (IIC). Time Sensitive Networks for Flexible Manufactur-
ing Testbed Characterization andMapping of Converged Traffic Types. Tech. rep. Mar.
2019. url: https://www.iiconsortium.org/pdf/IIC_TSN_Testbed_Char_
Mapping_of_Converged_Traffic_Types_Whitepaper_20180328.pdf (Last ac-
cessed on Jan. 30, 2024).

[2] Anurag Agrawal and Changhoon Kim. “Intel Tofino2 – A 12.9Tbps P4-
Programmable Ethernet Switch.” In: 2020 IEEE Hot Chips 32 Symposium
(HCS). IEEE, 2020, pp. 1–32. doi: 10.1109/HCS49909.2020.9220636.

[3] Albert Gran Alcoz, Alexander Dietmüller, and Laurent Vanbever. “SP-PIFO:
Approximating Push-In-First-Out Behaviors using Strict-Priority Queues.” In:
17th USENIX Symposium on Networked Systems Design and Implementation (NSDI
20). NSDI’20. USENIX Association, 2020, pp. 59–76.

[4] BastianAlt,MarkusWeckesser, Christian Becker,MatthiasHollick, SounakKar,
Anja Klein, Robin Klose, RolandKluge, Heinz Koeppl, Boris Koldehofe,Wasiur
R. Khudabukhsh, Manisha Luthra, Mahdi Mousavi, Max Mühlhäuser, Mar-
tin Pfannemüller, Amr Rizk, Andy Schürr, and Ralf Steinmetz. “Transitions: A
Protocol-Independent View of the Future Internet.” In: Proceedings of the IEEE
107.4 (2019), pp. 835–846. doi: 10.1109/JPROC.2019.2895964.

[5] Onur Altintas, Y. Atsumi, and T. Yoshida. “Urgency-based round robin: a new
scheduling discipline for packet switching networks.” In: ICC ’98. 1998 IEEE
International Conference on Communications. Conference Record. Affiliated with SU-
PERCOMM’98 (Cat. No.98CH36220). Vol. 2. 1998, 1179–1184 vol.2. doi: 10.1109/
ICC.1998.685195.

[6] Anna Arestova, Wojciech Baron, Kai-Steffen J. Hielscher, and Reinhard Ger-
man. “ITANS: Incremental Task and Network Scheduling for Time-Sensitive
Networks.” In: IEEE Open Journal of Intelligent Transportation Systems 3 (2022),
pp. 369–387. doi: 10.1109/OJITS.2022.3171072.

[7] Péter Babarczi, Markus Klügel, Alberto Martínez Alba, Mu He, Johannes Zer-
was, Patrick Kalmbach, Andreas Blenk, and Wolfgang Kellerer. “A mathemat-
ical framework for measuring network flexibility.” In: Journal of Computer Com-
munications 164 (2020), pp. 13–24. doi: 10.1016/j.comcom.2020.09.014.

[8] Thomas Bach, MuhammadAdnan Tariq, Boris Koldehofe, and Kurt Rothermel.
“A cost efficient scheduling strategy to guarantee probabilistic workflow dead-
lines.” In: 2015 International Conference andWorkshops on Networked Systems (Net-
Sys). IEEE, 2015, pp. 1–8. doi: 10.1109/NetSys.2015.7089072.

101

https://www.iiconsortium.org/pdf/IIC_TSN_Testbed_Char_Mapping_of_Converged_Traffic_Types_Whitepaper_20180328.pdf
https://www.iiconsortium.org/pdf/IIC_TSN_Testbed_Char_Mapping_of_Converged_Traffic_Types_Whitepaper_20180328.pdf
https://doi.org/10.1109/HCS49909.2020.9220636
https://doi.org/10.1109/JPROC.2019.2895964
https://doi.org/10.1109/ICC.1998.685195
https://doi.org/10.1109/ICC.1998.685195
https://doi.org/10.1109/OJITS.2022.3171072
https://doi.org/10.1016/j.comcom.2020.09.014
https://doi.org/10.1109/NetSys.2015.7089072

102 bibliography

[9] Mohammadreza Barzegaran and Paul Pop. “Communication Scheduling for
Control Performance in TSN-Based Fog Computing Platforms.” In: Journal of
IEEE Access 9 (2021), pp. 50782–50797. doi: 10.1109/ACCESS.2021.3069142.

[10] Rudy Belliardi, Josef Dorr, Thomas Enzinger, Florian Essler, János Farkas, Mark
Hantel, Maximilian Riegel, Marius-Petru Stanica, Guenter Steindl, Reiner
Wamßer, Karl Weber, and Steven A. Zuponcic. Use Cases IEC/IEEE 60802 v1.3.
Sept. 2018. url: http://www.ieee802.org/1/files/public/docs2018/60802-
industrial-use-cases-0918-v13.pdf (Last accessed on Jan. 23, 2024).

[11] Lucia Lo Bello. “Novel trends in automotive networks: A perspective on Ether-
net and the IEEE Audio Video Bridging.” In: Proceedings of the 2014 IEEE Emerg-
ing Technology and Factory Automation (ETFA). 2014, pp. 1–8. doi: 10.1109/ETFA.
2014.7005251.

[12] Aldin Berisa, Luxi Zhao, Silviu S. Craciunas, Mohammad Ashjaei, Saad
Mubeen, Masoud Daneshtalab, and Mikael Sjödin. “AVB-aware Routing and
Scheduling for Critical Traffic in Time-sensitive Networks with Preemption.”
In: Proceedings of the 30th International Conference on Real-Time Networks and
Systems. RTNS ’22. Association for Computing Machinery, 2022, pp. 207–218.
doi: 10.1145/3534879.3534926.

[13] Randeep Bhatia, T.V. Lakshman, Mustafa F. Ozkoc, and Shivendra Panwar.
“FlowToss: Fast Wait-Free Scheduling of Deterministic Flows in Time Synchro-
nized Networks.” In: 2021 IFIP Networking Conference (IFIP Networking). IEEE,
2021, pp. 1–6. doi: 10.23919/IFIPNetworking52078.2021.9472838.

[14] Pat Bosshart, DanDaly, GlenGibb,Martin Izzard,NickMcKeown, Jennifer Rex-
ford, Cole Schlesinger, DanTalayco, AminVahdat, GeorgeVarghese, andDavid
Walker. “P4: Programming Protocol-Independent Packet Processors.” In: Jour-
nal of SIGCOMM Computer Communication Review 44.3 (2014), pp. 87–95. doi:
10.1145/2656877.2656890.

[15] Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. “Window-Based
Parallel Operator Execution with in-Network Computing.” In: Proceedings
of the 16th ACM International Conference on Distributed and Event-Based Sys-
tems. DEBS ’22. Association for Computing Machinery, 2022, pp. 91–96. doi:
10.1145/3524860.3539804.

[16] Dietmar Bruckner, Marius-Petru Stănică, Richard Blair, Sebastian Schriegel,
Stephan Kehrer, Maik Seewald, and Thilo Sauter. “An Introduction to OPCUA
TSN for Industrial Communication Systems.” In: Proceedings of the IEEE 107.6
(2019), pp. 1121–1131. doi: 10.1109/JPROC.2018.2888703.

[17] Daniel Bujosa, Mohammad Ashjaei, Alessandro V. Papadopoulos, Thomas
Nolte, and Julian Proenza. “HERMES: Heuristic Multi-queue Scheduler for
TSN Time-Triggered Traffic with Zero Reception Jitter Capabilities.” In: Pro-
ceedings of the 30th International Conference on Real-Time Networks and Systems.
Association for Computing Machinery, 2022, pp. 70–80. doi: 10.1145/3534879.
3534906.

https://doi.org/10.1109/ACCESS.2021.3069142
http://www.ieee802.org/1/files/public/docs2018/60802-industrial-use-cases-0918-v13.pdf
http://www.ieee802.org/1/files/public/docs2018/60802-industrial-use-cases-0918-v13.pdf
https://doi.org/10.1109/ETFA.2014.7005251
https://doi.org/10.1109/ETFA.2014.7005251
https://doi.org/10.1145/3534879.3534926
https://doi.org/10.23919/IFIPNetworking52078.2021.9472838
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3524860.3539804
https://doi.org/10.1109/JPROC.2018.2888703
https://doi.org/10.1145/3534879.3534906
https://doi.org/10.1145/3534879.3534906

bibliography 103

[18] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelík, andWilfried Steiner.
“Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive Net-
works.” In: Proceedings of the 24th International Conference on Real-Time Networks
and Systems. RTNS ’16. Association for Computing Machinery, 2016, pp. 183–
192. doi: 10.1145/2997465.2997470.

[19] Rene L. Cruz. “A calculus for network delay. I. Network elements in isolation.”
In: IEEE Transactions on Information Theory 37.1 (1991), pp. 114–131. doi: 10 .
1109/18.61109.

[20] Joan Adrià Ruiz De Azua and Marc Boyer. “Complete modelling of AVB in
Network Calculus Framework.” In: Proceedings of the 22nd International Confer-
ence on Real-Time Networks and Systems. RTNS ’14. Association for Computing
Machinery, 2014, pp. 55–64. doi: 10.1145/2659787.2659810.

[21] Libing Deng, Guoqi Xie, Hong Liu, YunboHan, Renfa Li, and Keqin Li. “A Sur-
vey of Real-Time Ethernet Modeling and Design Methodologies: From AVB to
TSN.” In: Journal of ACM Computing Surveys 55.2 (2022). doi: 10.1145/3487330.

[22] Frank Dürr and Naresh Ganesh Nayak. “No-Wait Packet Scheduling for IEEE
Time-Sensitive Networks (TSN).” In: Proceedings of the 24th International Confer-
ence on Real-Time Networks and Systems. RTNS ’16. Association for Computing
Machinery, 2016, pp. 203–212. doi: 10.1145/2997465.2997494.

[23] Jonathan Falk, David Hellmanns, Ben Carabelli, Naresh Nayak, Frank Dürr,
Stephan Kehrer, and Kurt Rothermel. “NeSTiNg: Simulating IEEE time-
sensitive networking (TSN) in OMNeT++.” In: 2019 International Conference on
Networked Systems (NetSys). IEEE, 2019, pp. 1–8. doi: 10.1109/NetSys.2019.
8854500.

[24] Markus Fidler andAmrRizk. “AGuide to the StochasticNetworkCalculus.” In:
IEEE Communications Surveys & Tutorials 17.1 (2015), pp. 92–105. doi: 10.1109/
COMST.2014.2337060.

[25] WenGao, Borui Zhao, andXuMao. “Research on Incremental Scheduling Back-
trackingAlgorithm for Time-triggered Ethernet.” In: 2020 2nd International Con-
ference on Advances in Computer Technology, Information Science and Communica-
tions (CTISC). IEEE, 2020, pp. 75–79. doi: 10.1109/CTISC49998.2020.00019.

[26] Christoph Gärtner, Amr Rizk, Boris Koldehofe, René Guillaume, Ralf Kundel,
and Ralf Steinmetz. “On the Incremental Reconfiguration of Time-sensitive
Networks at Runtime.” In: 2022 IFIP Networking Conference (IFIP Networking).
IEEE, 2022, pp. 1–9. doi: 10.23919/IFIPNetworking55013.2022.9829815.

[27] Christoph Gärtner, Amr Rizk, Boris Koldehofe, René Guillaume, Ralf Kundel,
and Ralf Steinmetz. “Demo: Flexibility-Aware Network Management of Time-
Sensitive Flows.” In: Proceedings of the ACM SIGCOMM 2023 Conference. ACM
SIGCOMM ’23. Association for Computing Machinery, 2023, pp. 1176–1178.
doi: 10.1145/3603269.3610869.

https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1109/18.61109
https://doi.org/10.1109/18.61109
https://doi.org/10.1145/2659787.2659810
https://doi.org/10.1145/3487330
https://doi.org/10.1145/2997465.2997494
https://doi.org/10.1109/NetSys.2019.8854500
https://doi.org/10.1109/NetSys.2019.8854500
https://doi.org/10.1109/COMST.2014.2337060
https://doi.org/10.1109/COMST.2014.2337060
https://doi.org/10.1109/CTISC49998.2020.00019
https://doi.org/10.23919/IFIPNetworking55013.2022.9829815
https://doi.org/10.1145/3603269.3610869

104 bibliography

[28] Christoph Gärtner, Amr Rizk, Boris Koldehofe, René Guillaume, Ralf Kundel,
and Ralf Steinmetz. “Fast incremental reconfiguration of dynamic time-
sensitive networks at runtime.” In: Journal of Computer Networks 224 (2023),
p. 109606. doi: https://doi.org/10.1016/j.comnet.2023.109606.

[29] Christoph Gärtner, Amr Rizk, Boris Koldehofe, Rhaban Hark, René Guillaume,
Ralf Kundel, and Ralf Steinmetz. “POSTER: Leveraging PIFO Queues for
Scheduling in Time-Sensitive Networks.” In: 2021 IEEE International Sympo-
sium on Local and Metropolitan Area Networks (LANMAN). IEEE, 2021, pp. 1–2.
doi: 10.1109/LANMAN52105.2021.9478796.

[30] Christoph Gärtner, Amr Rizk, Boris Koldehofe, Rhaban Hark, René Guillaume,
and Ralf Steinmetz. “Leveraging Flexibility of Time-Sensitive Networks for dy-
namic Reconfigurability.” In: 2021 IFIP Networking Conference (IFIP Networking).
IEEE, 2021, pp. 1–6. doi: 10.23919/IFIPNetworking52078.2021.9472834.

[31] Voica Gavriluţ, Luxi Zhao, Michael L. Raagaard, and Paul Pop. “AVB-Aware
Routing and Scheduling of Time-Triggered Traffic for TSN.” In: IEEE Access 6
(2018), pp. 75229–75243. doi: 10.1109/ACCESS.2018.2883644.

[32] Pegah Golchin, Chengbo Zhou, Pratyush Agnihotri, Mehrdad Hajizadeh, Ralf
Kundel, andRalf Steinmetz. “CML-IDS: Enhancing IntrusionDetection in SDN
Through Collaborative Machine Learning.” In: 2023 19th International Confer-
ence on Network and Service Management (CNSM). IEEE. 2023, pp. 1–9.

[33] Alexej Grigorjew, Nicholas Gray, and Tobias Hoßfeld. “Dynamic Real-Time
Stream Reservation with TAS and Shared Time Windows.” In: 2021 IFIP
Networking Conference (IFIP Networking). IEEE, 2021, pp. 1–6. doi: 10.23919/
IFIPNetworking52078.2021.9472800.

[34] Alexej Grigorjew, Florian Metzger, Tobias Hoßfeld, Johannes Specht, Franz-
Josef Götz, Feng Chen, and Jürgen Schmitt. “Constant Delay Switching:
Asynchronous Traffic Shaping with Jitter Control.” In: 2022 IFIP Network-
ing Conference (IFIP Networking). IEEE, June 2022, pp. 1–9. doi: 10 . 23919 /
IFIPNetworking55013.2022.9829777.

[35] Juha Heinanen and Roch Guerin. A Single Rate Three Color Marker. RFC 2697.
Sept. 1999. doi: 10.17487/RFC2697. url: https://www.rfc-editor.org/info/
rfc2697 (Last accessed on Apr. 2, 2024).

[36] Jia Huang, Jan Olaf Blech, Andreas Raabe, Christian Buckl, and Alois Knoll.
“Static scheduling of a Time-Triggered Network-on-Chip based on SMT solv-
ing.” In: 2012 Design, Automation Test in Europe Conference Exhibition (DATE).
IEEE, 2012, pp. 509–514. doi: 10.1109/DATE.2012.6176522.

[37] IBM. What is Industry 4.0? url: https://www.ibm.com/topics/industry-4-0
(Last accessed on Jan. 23, 2024).

[38] “IEEE Draft Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks Amendment 38: Configuration Enhancements for
Time-Sensitive Networking.” In: IEEE P802.1Qdj/D2.0, November 2023 (2023),
pp. 1–49.

https://doi.org/https://doi.org/10.1016/j.comnet.2023.109606
https://doi.org/10.1109/LANMAN52105.2021.9478796
https://doi.org/10.23919/IFIPNetworking52078.2021.9472834
https://doi.org/10.1109/ACCESS.2018.2883644
https://doi.org/10.23919/IFIPNetworking52078.2021.9472800
https://doi.org/10.23919/IFIPNetworking52078.2021.9472800
https://doi.org/10.23919/IFIPNetworking55013.2022.9829777
https://doi.org/10.23919/IFIPNetworking55013.2022.9829777
https://doi.org/10.17487/RFC2697
https://www.rfc-editor.org/info/rfc2697
https://www.rfc-editor.org/info/rfc2697
https://doi.org/10.1109/DATE.2012.6176522
https://www.ibm.com/topics/industry-4-0

bibliography 105

[39] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.” In: IEEE Std 1588-2008 (Revision of IEEE
Std 1588-2002) (2008), pp. 1–269. doi: 10.1109/IEEESTD.2008.4579760.

[40] “IEEE Standard for Local and metropolitan area networks – Bridges and
Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic.”
In: IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as amended by
IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor
1-2015) (2016), pp. 1–57. doi: 10.1109/IEEESTD.2016.8613095.

[41] “IEEE Standard for Local and metropolitan area networks – Bridges and
Bridged Networks – Amendment 26: Frame Preemption.” In: IEEE Std
802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014) (2016), pp. 1–52. doi:
10.1109/IEEESTD.2016.7553415.

[42] “IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks.” In: IEEE Std 802.1Q-2022 (Revision of IEEE Std 802.1Q-
2018) (2022), pp. 1–2163. doi: 10.1109/IEEESTD.2022.10004498.

[43] “IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks - Amendment 34: Asynchronous Traffic Shaping.” In: IEEE
Std 802.1Qcr-2020 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018, IEEE Std 802.1Qcc-2018, IEEE Std 802.1Qcy-2019, and IEEE Std
802.1Qcx-2020) (2020), pp. 1–151. doi: 10.1109/IEEESTD.2020.9253013.

[44] “IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks – Amendment 31: Stream Reservation Protocol (SRP) En-
hancements and Performance Improvements.” In: IEEE Std 802.1Qcc-2018
(Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std 802.1Qcp-2018)
(2018), pp. 1–208. doi: 10.1109/IEEESTD.2018.8514112.

[45] “IEEE Standard for Local and metropolitan area networks–Bridges and
Bridged Networks–Amendment 28: Per-Stream Filtering and Policing.” In:
IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE
Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, IEEE Std 802.1Q-2014/Cor 1-2015,
IEEE Std 802.1Qbv-2015, IEEE Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016)
(2017), pp. 1–65. doi: 10.1109/IEEESTD.2017.8064221.

[46] “IEEE Standard for Local and metropolitan area networks–Frame Replication
and Elimination for Reliability.” In: IEEE Std 802.1CB-2017 (2017), pp. 1–102.
doi: 10.1109/IEEESTD.2017.8091139.

[47] “IEEE Standard for Local and Metropolitan Area Networks–Timing and Syn-
chronization for Time-Sensitive Applications.” In: IEEE Std 802.1AS-2020 (Re-
vision of IEEE Std 802.1AS-2011) (2020), pp. 1–421. doi: 10.1109/IEEESTD.2020.
9121845.

[48] Intel® Tofino™ 2. url: https://www.intel.com/content/www/us/en/products/
details/network-io/intelligent-fabric-processors/tofino-2.html (Last
accessed on Apr. 23, 2024).

https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2016.7553415
https://doi.org/10.1109/IEEESTD.2022.10004498
https://doi.org/10.1109/IEEESTD.2020.9253013
https://doi.org/10.1109/IEEESTD.2018.8514112
https://doi.org/10.1109/IEEESTD.2017.8064221
https://doi.org/10.1109/IEEESTD.2017.8091139
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino-2.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino-2.html

106 bibliography

[49] Enio Kaljic, Almir Maric, Pamela Njemcevic, and Mesud Hadzialic. “A Survey
on Data Plane Flexibility and Programmability in Software-Defined Network-
ing.” In: IEEE Access 7 (2019), pp. 47804–47840. doi: 10.1109/ACCESS.2019.
2910140.

[50] ManolisKatevenis, Stefanos Sidiropoulos, andCostasCourcoubetis. “Weighted
round-robin cell multiplexing in a general-purpose ATM switch chip.” In:
IEEE Journal on Selected Areas in Communications 9.8 (1991), pp. 1265–1279. doi:
10.1109/49.105173.

[51] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. “HULA: Scalable Load Balancing Using Programmable Data Planes.”
In: Proceedings of the Symposium on SDN Research. SOSR ’16. Association for
Computing Machinery, 2016. doi: 10.1145/2890955.2890968.

[52] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Veríssimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. “Software-Defined
Networking: A Comprehensive Survey.” In: Proceedings of the IEEE 103.1 (2015),
pp. 14–76. doi: 10.1109/JPROC.2014.2371999.

[53] VC Kumar. The state of functional safety in Industry 4.0. Tech. rep. Texas Instru-
ments, Dec. 2018. url: https://www.ti.com/lit/fs/spry329/spry329.pdf
(Last accessed on Jan. 23, 2024).

[54] Ralf Kundel, Jeremias Blendin, Tobias Viernickel, Boris Koldehofe, and Ralf
Steinmetz. “P4-CoDel: Active Queue Management in Programmable Data
Planes.” In: 2018 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). 2018, pp. 1–4. doi: 10 . 1109 / NFV -

SDN.2018.8725736.
[55] Ralf Kundel, ChristophGärtner,Manisha Luthra, Sukanya Bhowmik, and Boris

Koldehofe. “Flexible Content-based Publish/Subscribe over Programmable
Data Planes.” In: NOMS 2020 - 2020 IEEE/IFIP Network Operations and Manage-
ment Symposium. 2020, pp. 1–5. doi: 10.1109/NOMS47738.2020.9110381.

[56] Ralf Kundel, Nehal Baganal Krishna, Christoph Gärtner, Tobias Meuser, and
AmrRizk. “Poster: Reverse-PathCongestionNotification:Accelerating theCon-
gestion Control Feedback Loop.” In: 2021 IEEE 29th International Conference on
Network Protocols (ICNP). IEEE, 2021, pp. 1–2. doi: 10.1109/ICNP52444.2021.
9651961.

[57] Ralf Kundel, Leonhard Nobach, Hans-Joerg Kolbe, Tobias Meuser, and Ralf
Steinmetz. “FPGA-assisted Massive Packet Queueing and Traffic Shaping at
the Network Edge.” In: 2022 IEEE 30th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 2022, p. 1. doi: 10.1109/
FCCM53951.2022.9786068.

[58] Ralf Kundel, Amr Rizk, Jeremias Blendin, Boris Koldehofe, Rhaban Hark, and
Ralf Steinmetz. “P4-CoDel: Experiences on Programmable Data Plane Hard-
ware.” In: ICC 2021 - IEEE International Conference on Communications. 2021,
pp. 1–6. doi: 10.1109/ICC42927.2021.9500943.

https://doi.org/10.1109/ACCESS.2019.2910140
https://doi.org/10.1109/ACCESS.2019.2910140
https://doi.org/10.1109/49.105173
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1109/JPROC.2014.2371999
https://www.ti.com/lit/fs/spry329/spry329.pdf
https://doi.org/10.1109/NFV-SDN.2018.8725736
https://doi.org/10.1109/NFV-SDN.2018.8725736
https://doi.org/10.1109/NOMS47738.2020.9110381
https://doi.org/10.1109/ICNP52444.2021.9651961
https://doi.org/10.1109/ICNP52444.2021.9651961
https://doi.org/10.1109/FCCM53951.2022.9786068
https://doi.org/10.1109/FCCM53951.2022.9786068
https://doi.org/10.1109/ICC42927.2021.9500943

bibliography 107

[59] Thomas R. Kurfess, Christopher Saldana, Kyle Saleeby, and Mahmoud Parto
Dezfouli. “A Review ofModern Communication Technologies for Digital Man-
ufacturing Processes in Industry 4.0.” In: Journal of Manufacturing Science and
Engineering 142.11 (Sept. 2020), p. 110815. doi: 10.1115/1.4048206.

[60] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer Berlin Heidelberg, 2001. isbn:
978-3-540-42184-9. doi: 10.1007/3-540-45318-0.

[61] Dong-Jun Lee. “Incremental Routing and Scheduling Using Multipath and
Nonzero Jitter Bound for IEEE 802.1 Qbv Time Aware Shaper.” In: Journal of
IEEE Access 11 (2023), pp. 25035–25049. doi: 10.1109/ACCESS.2023.3255416.

[62] Joseph Y.-T. Leung. “A new algorithm for scheduling periodic, real-time tasks.”
In: Algorithmica 4.1 (June 1989), pp. 209–219. doi: 10.1007/BF01553887.

[63] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment.” In: Journal of the ACM 20.1 (1973),
pp. 46–61. doi: 10.1145/321738.321743.

[64] Xiaoyu Liu, Chi Xu, and Haibin Yu. “Network Calculus-based Modeling of
Time Sensitive Networking Shapers for Industrial Automation Networks.” In:
2019 11th International Conference on Wireless Communications and Signal Process-
ing (WCSP). 2019, pp. 1–7. doi: 10.1109/WCSP.2019.8927901.

[65] Lucia Lo Bello andWilfried Steiner. “A Perspective on IEEE Time-SensitiveNet-
working for Industrial Communication and Automation Systems.” In: Proceed-
ings of the IEEE 107.6 (2019), pp. 1094–1120. doi: 10.1109/JPROC.2019.2905334.

[66] David Zhe Lou, Jan Holler, Cliff Whitehead, Sari Germanos, Michael Hilgner,
and Wei Qiu. Industrial Networking Enabling IIoT Communication. Tech. rep. In-
dustry IoT Consortium (IIC), Aug. 2018. url: https://www.iiconsortium.org/
pdf/Industrial_Networking_Enabling_IIoT_Communication_2018_08_29.pdf

(Last accessed on Jan. 30, 2024).
[67] LisaMaile, Kai-Steffen J.Hielscher, andReinhardGerman. “Delay-Guaranteeing

Admission Control for Time-Sensitive Networking Using the Credit-Based
Shaper.” In: IEEE Open Journal of the Communications Society 3 (2022), pp. 1834–
1852. doi: 10.1109/OJCOMS.2022.3212939.

[68] Dorin Maxim and Ye-Qiong Song. “Delay analysis of AVB traffic in time-
sensitive networks (TSN).” In: Proceedings of the 25th International Conference
on Real-Time Networks and Systems. RTNS ’17. Association for Computing
Machinery, 2017, pp. 18–27. doi: 10.1145/3139258.3139283.

[69] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow:
enabling innovation in campus networks.” In: Journal of ACM SIGCOMM
Computer Communication Review 38.2 (2008), pp. 69–74. doi: 10.1145/1355734.
1355746.

https://doi.org/10.1115/1.4048206
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1109/ACCESS.2023.3255416
https://doi.org/10.1007/BF01553887
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/WCSP.2019.8927901
https://doi.org/10.1109/JPROC.2019.2905334
https://www.iiconsortium.org/pdf/Industrial_Networking_Enabling_IIoT_Communication_2018_08_29.pdf
https://www.iiconsortium.org/pdf/Industrial_Networking_Enabling_IIoT_Communication_2018_08_29.pdf
https://doi.org/10.1109/OJCOMS.2022.3212939
https://doi.org/10.1145/3139258.3139283
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746

108 bibliography

[70] EhsanMohammadpour, Eleni Stai,MaazMohiuddin, and Jean-Yves Le Boudec.
“Latency and Backlog Bounds in Time-SensitiveNetworkingwith Credit Based
Shapers and Asynchronous Traffic Shaping.” In: 2018 30th International Teletraf-
fic Congress (ITC 30). IEEE, Sept. 2018. doi: 10.1109/itc30.2018.10053.

[71] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. “Incremental flow
scheduling and routing in time-sensitive software-defined networks.” In: Jour-
nal of IEEE Transactions on Industrial Informatics 14.5 (2017), pp. 2066–2075. doi:
10.1109/tii.2017.2782235.

[72] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. “Routing algorithms
for IEEE802.1Qbv networks.” In: Journal of SIGBED Review 15.3 (2018), pp. 13–
18. doi: 10.1145/3267419.3267421.

[73] Don Pannell. AVB Latency Math. Nov. 2010. url: https://www.ieee802.org/
1/files/public/docs2010/BA-pannell-latency-math-1110-v5.pdf (Last
accessed on Mar. 30, 2024).

[74] Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. Fifth Edition.
Springer Cham, Feb. 2016. isbn: 978-3-319-26580-3. doi: 10.1007/978-3-319-
26580-3.

[75] Paul Pop, Michael Lander Raagaard, Marina Gutierrez, and Wilfried Steiner.
“Enabling Fog Computing for Industrial Automation Through Time-Sensitive
Networking (TSN).” In: IEEE Communications Standards Magazine 2.2 (2018),
pp. 55–61. doi: 10.1109/MCOMSTD.2018.1700057.

[76] PROFINET - The Leading Industrial Ethernet Protocol.url: https://www.profinet.
com (Last accessed on Apr. 8, 2024).

[77] Profinet und TSN sind Enabler für die Industrie 4.0. July 2021. url: https://www.
sps-magazin.de/protokolle-standards/profinet-und-tsn-sind-enabler-

fuer-die-industrie-4-0/ (Last accessed on Jan. 23, 2024).
[78] Gunnar Prytz. “A performance analysis of EtherCAT and PROFINET IRT.” In:

2008 IEEE International Conference on Emerging Technologies and Factory Automa-
tion. 2008, pp. 408–415. doi: 10.1109/ETFA.2008.4638425.

[79] Rene Queck. “Analysis of Ethernet AVB for automotive networks using Net-
work Calculus.” In: 2012 IEEE International Conference on Vehicular Electronics
and Safety (ICVES 2012). 2012, pp. 61–67. doi: 10.1109/ICVES.2012.6294261.

[80] Michael Lander Raagaard and Paul Pop.Optimization Algorithms for the Schedul-
ing of IEEE 802.1 Time-Sensitive Networking (TSN). Tech. rep. DTU Compute,
Technical University ofDenmark, Jan. 2017. url: http://www2.compute.dtu.dk/
~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%

20th-.pdf (Last accessed on Apr. 5, 2024).
[81] Ram Rachamadugu, Udayan Nandkeolyar, and Tom Schriber. “Schedul-

ing with Sequencing Flexibility*.” In: Journal of Decision Sciences 24.2 (1993),
pp. 315–342. doi: 10.1111/j.1540-5915.1993.tb00477.x.

https://doi.org/10.1109/itc30.2018.10053
https://doi.org/10.1109/tii.2017.2782235
https://doi.org/10.1145/3267419.3267421
https://www.ieee802.org/1/files/public/docs2010/BA-pannell-latency-math-1110-v5.pdf
https://www.ieee802.org/1/files/public/docs2010/BA-pannell-latency-math-1110-v5.pdf
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1109/MCOMSTD.2018.1700057
https://www.profinet.com
https://www.profinet.com
https://www.sps-magazin.de/protokolle-standards/profinet-und-tsn-sind-enabler-fuer-die-industrie-4-0/
https://www.sps-magazin.de/protokolle-standards/profinet-und-tsn-sind-enabler-fuer-die-industrie-4-0/
https://www.sps-magazin.de/protokolle-standards/profinet-und-tsn-sind-enabler-fuer-die-industrie-4-0/
https://doi.org/10.1109/ETFA.2008.4638425
https://doi.org/10.1109/ICVES.2012.6294261
http://www2.compute.dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf
http://www2.compute.dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf
http://www2.compute.dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf
https://doi.org/10.1111/j.1540-5915.1993.tb00477.x

bibliography 109

[82] SriramRamabhadran and Joseph Pasquale. “Stratified round Robin: a low com-
plexity packet scheduler with bandwidth fairness and bounded delay.” In: Pro-
ceedings of the 2003 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications. SIGCOMM ’03. Association for Computing
Machinery, 2003, pp. 239–250. doi: 10.1145/863955.863983.

[83] AellisonCassimiro T. dos Santos, Ben Schneider, andVivekNigam. “TSNSCHED:
Automated Schedule Generation for Time Sensitive Networking.” In: 2019 For-
mal Methods in Computer Aided Design (FMCAD). IEEE, 2019, pp. 69–77. doi:
10.23919/FMCAD.2019.8894249.

[84] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil van
der Aalst. “Process Flexibility: A Survey of ContemporaryApproaches.” In:Ad-
vances in Enterprise Engineering I. Springer, 2008, pp. 16–30. doi: 10.1007/978-
3-540-68644-6_2.

[85] Sebastian Schriegel and Jürgen Jasperneite. “A Migration Strategy for Profinet
Toward Ethernet TSN-Based Field-Level Communication: An Approach to
Accelerate the Adoption of Converged IT/OT Communication.” In: IEEE
Industrial Electronics Magazine 15.4 (2021), pp. 43–53. doi: 10.1109/MIE.2020.
3048925.

[86] Andrea Krasa Sethi and Suresh Pal Sethi. “Flexibility in manufacturing: A
survey.” In: International Journal of Flexible Manufacturing Systems 2.4 (1990),
pp. 289–328. doi: 10.1007/BF00186471.

[87] Eva Shayo, ProsperMafole, and AlfredMwambela. “A survey on time division
multiple access scheduling algorithms for industrial networks.” In: Journal of
SN Applied Sciences 2.12 (Dec. 2020), p. 2140. doi: 10.1007/s42452-020-03923-
4.

[88] M. Shreedhar and G. Varghese. “Efficient fair queuing using deficit round-
robin.” In: IEEE/ACM Transactions on Networking 4.3 (1996), pp. 375–385. doi:
10.1109/90.502236.

[89] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad
Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Ed-
sall, Sachin Katti, and Nick McKeown. “Programmable Packet Scheduling
at Line Rate.” In: Proceedings of the 2016 ACM SIGCOMM Conference. SIG-
COMM ’16. Association for Computing Machinery, 2016, pp. 44–57. doi:
10.1145/2934872.2934899.

[90] Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. “Flexible Job-Shop
Scheduling via Graph Neural Network and Deep Reinforcement Learning.” In:
IEEE Transactions on Industrial Informatics 19.2 (2023), pp. 1600–1610. doi: 10.
1109/TII.2022.3189725.

[91] Johannes Specht and Soheil Samii. “Urgency-Based Scheduler for Time-
Sensitive Switched Ethernet Networks.” In: 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS). 2016, pp. 75–85. doi: 10.1109/ECRTS.2016.27.

https://doi.org/10.1145/863955.863983
https://doi.org/10.23919/FMCAD.2019.8894249
https://doi.org/10.1007/978-3-540-68644-6_2
https://doi.org/10.1007/978-3-540-68644-6_2
https://doi.org/10.1109/MIE.2020.3048925
https://doi.org/10.1109/MIE.2020.3048925
https://doi.org/10.1007/BF00186471
https://doi.org/10.1007/s42452-020-03923-4
https://doi.org/10.1007/s42452-020-03923-4
https://doi.org/10.1109/90.502236
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1109/TII.2022.3189725
https://doi.org/10.1109/TII.2022.3189725
https://doi.org/10.1109/ECRTS.2016.27

110 bibliography

[92] Andrew S. Tanenbaum andDavid J.Wetherall.Computer Networks. 5th ed. Pear-
son Education, Inc., publishing as Prentice Hall, 2011. isbn: 978-0-13-212695-3.

[93] Time-Triggered Ethernet. url: https : / / www . tttech . com / explore / time -

triggered-ethernet (Last accessed on Apr. 8, 2024).
[94] Christian Wernecke, Helge Parzyjegla, Gero Mühl, Peter Danielis, and Dirk

Timmermann. “Realizing Content-Based Publish/Subscribe with P4.” In: 2018
IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN). 2018, pp. 1–7. doi: 10.1109/NFV-SDN.2018.8725641.

[95] Bundesministerium für Wirtschaft und Klimaschutz (BMWK). Fortschritts-
bericht 2023 Industrie 4.0: Auf dem Weg zur intelligent vernetzten Industrie. May
2023. url: https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/
Publikation/2023-fortschrittsbericht.html (Last accessed on Jan. 23, 2024).

[96] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. “The Future of
Industrial Communication: Automation Networks in the Era of the Internet of
Things and Industry 4.0.” In: Journal of IEEE Industrial Electronics Magazine 11.1
(Mar. 2017). Conference Name: IEEE Industrial Electronics Magazine, pp. 17–
27. doi: 10.1109/MIE.2017.2649104.

[97] Z3. url: https://github.com/Z3Prover/z3 (Last accessed on Apr. 8, 2024).
[98] Luxi Zhao, Paul Pop, and Sebastian Steinhorst. “Quantitative Performance

Comparison of Various Traffic Shapers in Time-Sensitive Networking.” In:
IEEE Transactions on Network and Service Management 19.3 (2022), pp. 2899–2928.
doi: 10.1109/tnsm.2022.3180160.

[99] Luxi Zhao, Paul Pop, Zhong Zheng, Hugo Daigmorte, and Marc Boyer. “La-
tency Analysis of Multiple Classes of AVB Traffic in TSNWith Standard Credit
Behavior Using Network Calculus.” In: IEEE Transactions on Industrial Electron-
ics 68.10 (2021), pp. 10291–10302. doi: 10.1109/TIE.2020.3021638.

[100] Chengbo Zhou, Christoph Gärtner, Amr Rizk, Boris Koldehofe, Björn Scheuer-
mann, and Ralf Kundel. “RDA: Residence Delay Aggregation for Time-
Sensitive Networking.” In: Proceedings of 2024 IEEE Network Operations and
Management Symposium (NOMS 2024). 2024. doi: 10.1109/NOMS59830.2024.
10574998.

All web pages cited in this work have been checked on the date given in the reference.

https://www.tttech.com/explore/time-triggered-ethernet
https://www.tttech.com/explore/time-triggered-ethernet
https://doi.org/10.1109/NFV-SDN.2018.8725641
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/2023-fortschrittsbericht.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/2023-fortschrittsbericht.html
https://doi.org/10.1109/MIE.2017.2649104
https://github.com/Z3Prover/z3
https://doi.org/10.1109/tnsm.2022.3180160
https://doi.org/10.1109/TIE.2020.3021638
https://doi.org/10.1109/NOMS59830.2024.10574998
https://doi.org/10.1109/NOMS59830.2024.10574998

A
APPENDIX

a.1 flexibility-aware controller implementation

As part of our demonstration in [27], we implemented a combined Centralized User
Configuration (CUC)/Centralized Network Configuration (CNC) Time-Sensitive Net-
working (TSN) controller. This controller, implemented in Python, integrates the flex-
ibility mechanisms described in this thesis. This implementation embodies the con-
cepts presented in Chapter 3. Below, we detail the specific features of this prototype
controller.

Application API

The controller is accessible to users or deployed applications via websockets. This
choice facilitates the creation of straightforward Web-demo interfaces, which can be
programmed using HTML/CSS and JavaScript to interact directly with the Python
backend.

The Websocket Application Programming Interface (API) manages asynchronous
flow requests. The controller issues a scheduleUpdate event in response, which, when
linkedwith physical hardware, incorporates the TSNconfiguration’s configChangeTime
to facilitate the initiation of new flows.

Controller

The controller architecture is divided into several components: User API, network
topology, flowmanagement, schedule management with schedulers and flexibility en-
hancements, and hardware abstraction or drivers. Designed as a prototype, this con-
troller showcases flexibility features without adhering to the standard interface or seg-
regation between the CUC and CNC as outlined in the TSN standard.

• TheUser API component handles requests fromapplications and interfaceswith
other controller components.

• The Network topology component manages the network layout, provides mech-
anisms to identify feasible and shortest routes between nodes, and links nodes
to physical devices for configuration deployment.

• The Flow management component maintains records of both deployed and re-
quested flows.

• The Schedule management component facilitates flow requests using the flow
management and network topology components. It can operate in various

111

112 appendix

modes to enable or disable flexibility aspects and enforce specific scheduling
mechanisms.

• Flexibility aspects and scheduling options include:
– Path selection strategies:

1. Shortest path
2. Basic flexcurve
3. Deadline-aware flexcurve
4. Least path utilization
5. Random path

– Flexcurve value computation using basic and deadline-aware formulations.
– Flow scheduling approaches:

1. Satisfiability modulo theories (SMT) and incremental SMT methods.
Refer to Appendix A.1.1 for details.

2. Random assignments
3. First-fit heuristics
4. Algorithms 2 and 3

• The Hardware Abstraction components are interfacing between flow manage-
ment and physical devices when scheduling succeeds. They are also responsible
to generate a viable gate control list (GCL) for each affected device.

a.1.1 SMT Scheduler

Given a set of flows F, where each flow fδ has requirements, we need to extend the
notation for requirements to allow for constraints between different flows. The period
of fδ is given by hδ. The number of hops of fδ is given by mδ. The frame size (slot
requirements) of fδ is given by cδ. The path is given by Pδ.

The deadline requirements (maximum end-to-end delay allowed) for flow fδ are
given by dδ. Flows may require a minimum traversal time in the network; for this
reason, the latency requirement (minimum delay required) for flow fδ is given by lδ.

The primary variables for this SMT formulation are the scheduled times for a flow
fδ ∈ F at port pω. For ease of readability, we extend the notation for assignments A
within the port schedule, to encompass different flows fδ.

Aδ
ω ∈ {0,… , h − 1}

and the queue assignment for fδ ∈ F:

Qδ
ω ∈ {1,… , 8}

A.1 flexibility-aware controller implementation 113

Specifying the distance between flow instances

The time between frames of a flow, where the period is less than the hyperperiod h,
need to be aligned according to their specified period hδ. The hyperperiod h, is the
least common multiple (LCM) of all flow cycle durations. nδ

subflows is the number of
subflows for flow δ, calculated as ⌈ h

hδ
− 1⌉.

We add secondary variables for each subflow sf of fδ:

Aδ,sf
ω ∈ ℕ

The constraints for aligning subflows at the talker and listener are formulated as fol-
lows, ∀fδ ∈ F, ∀sf ∈ {1,… , nδ

subflows} ∶

Aδ,sf
1 = Aδ

1 + hδ × sf, (A.1)

Aδ,sf
mδ = Aδ

mδ + hδ × sf (A.2)

With (A.1) aligning the subflow start time at the talker, and (A.2) aligning the sub-
flow start time at the last port, these constraints ensure that the start and end times of
each subflow are exactly one cycle duration apart from the original flow, thus aligning
them throughout the schedule. However, the subflows are permitted to be misaligned
between talker and listener ports.

Finally, we incorporate subflows into the original variables Aδ
ω, and consider them

as initial flows in all subsequent constraints.

Limiting the End-to-End Delay

We limit the end-to-end delay T(A)with port-consecutive delay t(n, κ)

T(A) = c +
m−1
∑
δ=1

t(aδ, aδ+1) (4.19)

for each flow:

∀fδ ∈ F, T(Aδ
ω) ≤ dδ,

T(Aδ
ω) ≥ lδ.

Alternatively, we can use the simpler notation. However, using this formulation disal-
lows schedule wraps:

∀fδ ∈ F, Aδ
mδ + cδ −Aδ

1 ≤ dδ,
Aδ

mδ + cδ −Aδ
1 ≥ lδ.

Limit range of scheduled time

Ensure that the scheduled time lies within the hyperperiod h for each flow at each
hop:

∀fδ ∈ F, ∀pω ∈ Pδ ∶ Aδ
ω ≥ 0,

Aδ
ω + cδ ≤ h,

114 appendix

Limit queue assignments

Ensure that the queue assignments are in valid ranges:

∀fδ ∈ F, ∀pω ∈ Pδ ∶ Qδ
ω ≥ 1,

Qδ
ω ≤ 8,

Fix the queue identifier along the path:

∀fδ ∈ F, ∀ω ∈ {1,… ,mδ − 1} ∶ Qδ
ω = Qδ

ω+1

Conflict free schedules

We need to ensure flows are not scheduled at the same time and overlap within port
schedules. The set OVp includes all flows that traverse through the port p.

Next, we define non-conflict constraints for all contended ports, to ensure scheduled
frame instances do not overlap. The starting time is either before or after each flow:

∀p, ∀fδ ∈ OVp, ∀fj ∈ OVp, δ ≠ j ∶ Aδ
p ≥ Aj

p + cj ∨Aj
p ≥ Aδ

p + cδ

To create viable schedules for TSNGCLs, we need to ensure flow isolation. Thatmeans
queues need to be separate when flows occupy the port at the same time, ∀p, ∀fδ ∈
OVp, ∀fj ∈ OVp, δ ≠ j ∶

Arrival(Aδ
p) ≤ Aj

p ∧Arrival(Aδ
p) ≥ Arrival(Aj

p)∨

Arrival(Aj
p) ≤ Aδ

p ∧Arrival(Aj
p) ≥ Arrival(Aδ

p) ⇒ Qδ
ω ≠ Qj

ω

When flows occupy the same queue at the port, ensure that frames arrive only after
the other has left the queue already, ∀p, ∀fδ ∈ OVp, ∀fj ∈ OVp, δ ≠ j ∶

Qδ
ω = Qj

ω ⇒ Arrival(Aδ
p) ≥ Aj

p + cj ∨Arrival(Aj
p) ≥ Aδ

p + cδ

Incremental scheduler

To support incremental scheduling, the currently active flows can be included as con-
stants. Conflicts within each constant do not need to be considered. This reduces the
number of constraint significantly.

We implemented this scheduler using the Python API of Z3 [97].

A.2 lemmas and proofs 115

a.2 lemmas and proofs

Lemma A.1. For a path P = (p1, … , pm), for all frame sizes ∀c ∈ {1,… , h}, the worst-case
computational complexity of the complete basic flexcurve bP(c) given as

bP(c) = min
p∈P

h−c
∑
τ=0

1{Cp(τ+c)−Cp(τ)=c} (4.2)

using the cumulative capacity Cp(n) with 𝒯p,β as constant time operation, given as

Cp(n) =∑
β
1{n≥𝒯p,β} (4.1)

is O(mh3).

Proof. Given the flexcurve calculation of (4.2), we list the computational complexity of
all nested operations. We are assuming a constant time lookup for 𝒯p,β. 𝒯p,β gives the
time point of the β-th free slot at the schedule for port p.

1. bP(c) is applied h times, since we need to reflect all frame sizes ∀c ∈ {1,… , h},
hence O(h).

2. The minimum value is taken for each p ∈ P, hence, O(m).

3. To count the number of arrangements, we aggregate the sum∑h−c
τ=0 1{⋅}. Hence,

O(h).
• With ∀c ∈ {1,… , h} from (1.), there are

h times
⏞⏞⏞(h − 1 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

c=1

+(h − 2 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
c=2

+⋯+ (h − h + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
c=h

= h(h + 1)
2

iterations in total. There are h calls from (1.). Each call of the aggregation
yields a linear runtime:

h(h+1)
2
h = h

2 +
1
2 , resulting in O(h) for each call.

4. Cp(n) is used twice within the indicator term, each Cp(n) aggregates the sum
∑h

β=1 1{n≥𝒯p,β} in the worst-case, i. e., an empty schedule. This requires 2h iter-
ations, hence O(h).

5. Each access of 𝒯p,β is constant, hence O(1).

The overall worst-case running time of calculating the flexcurve, as in (4.2), can be de-
duced by combining the complexities of each nested operation. Hence, the total com-
plexity results in O(mh3).

116 appendix

Lemma A.2. The gap-local flexcurve

b̃∆(c) = max {0, Δ − c + 1} (4.9)

is equal to a basic flexcurve at one port:

b{p}(c) = min
p∈{p}

h−c
∑
τ=0

1{Cp(τ+c)−Cp(τ)=c} (4.2)

with hyperperiod h = Δ, when the schedule sp is empty, i. e., 𝒯p,β = k, for all c ∈ {1,…Δ}.

Proof. Given that only one port is affected, we can omit the minimum, therefore

b{p}(c) = min
p∈{p}

h−c
∑
τ=0

1{Cp(τ+c)−Cp(τ)=c} =
h−c
∑
τ=0

1{Cp(τ+c)−Cp(τ)=c}

The hyperperiod h = Δ:

b{p}(c) =
∆−c
∑
τ=0

1{Cp(τ+c)−Cp(τ)=c}

Because, the schedule is empty, the increase in cumulative capacity over the interval
τ to τ + c always matches c. Hence, the indicator function is always true:

b{p}(c) =
∆−c
∑
τ=0

1

There areΔ−c+1 iterations in the sum. The sum counts its own number of iterations.
Hence,

b{p}(c) = Δ − c + 1 = b̃∆(c) = max {0, Δ − c + 1}

for c ∈ {1,… ,Δ}: This matches canonical flexcurve b̃∆(c). Values of c > h are unde-
fined in bP(c).

A.2 lemmas and proofs 117

Lemma A.3. Any value of a deadline-aware flexcurve is smaller or equal to a basic flexcurve:

bdP(c) ≤ bP(c) (4.20)
bdP(c) = bP(c) if d ≥ max (T) (4.21)

Proof. The following proof is cited verbatim from [28], adjusted to fit the notation of this
thesis.

The number of admissible assignments in a set of all possible assignments A ∈ 𝐀
for a stream of size c and path P is given by the flexcurve in (4.2). Given a stream
deadline d ≥ 0, the number of admissible assignments in𝐀 reduces to the number of
assignments in 𝐀′ by removing the assignments in the subset A ∈ 𝒜 ⊆ 𝐀 for which
T(A) > d, i.e., the deadline is not met. Hence, 𝐀′ = 𝐀 ⧵ 𝒜. Since 𝒜 is a subset of 𝐀,
(4.20) holds as the number of assignments never increases with the deadline d ≥ 0.

If the deadline d is fixed larger than the worst case delay, i.e., d ≥ max(T), then
𝒜 = ∅, because D(A) ≯ max(T) for all assignments A ∈ 𝐀. Any arbitrary delay
of specific assignments can never be greater than the maximum delay. Therefore the
number of admissible assignments does not decrease and (4.21) holds.

118 appendix

a.3 additional figures

+φp1

+φp3

φp1∆1p1

g1p1 g2p1 g3p1 ⃗⃑g1p1 ⃗⃑g2p1

sp1

sp2

sp3

s⃑p1

s⃑p3

0 h 0 h
Slot Occupied Slot Available

Figure A.1: Consider three cases for gaps in the end-shifted schedule s⃑p. The special empty
schedule is excluded from consideration. Case sp1 involves a gap at both the start
and end of the schedule. Case sp2 features no gap at the end. Case sp3 presents a
gap at the end and no gap at the start. For sp1 , the total number of gaps decreases
by one as the initial gap is extended. In sp2 , there is no alteration since the schedule
remains unshifted. In sp3 , the sequence of gaps is reordered by inserting the final
gap at the beginning.

A.3 additional figures 119

Figure A.2: A deadline-aware flexcurve reflects flexibility with respect to deadline and frame
size parameters. As the constraints become increasingly strict, the flexibility value
decreases or remains the same.

Slot Occupied Slot Available Candidate
Network propagation and processing delays

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 h

sp1

sp2

sp3

a1

a2

a3

A

End-to-End Delay T(A)

Figure A.3: To consider network and propagation delays in Algorithm 2, the extension of the
earliest time a proceeding assignment (a2, a3) can be scheduled is required.

120 appendix

1 2 3 4 5 6 7 8 9 h
0

1

2

3

4

5

6

7

𝐜max,0,𝒫

b′𝒫,0(c)

#A
rr

an
ge

m
en

ts

1 2 3 4 5 6 7 8 9 h
0

1

2

3

4

5

6

7

𝐜max,1,𝒫

b′𝒫,1(c)

#A
rr

an
ge

m
en

ts

1 2 3 4 5 6 7 8 9 h
0

1

2

3

4

5

6

7

b′𝒫,2(c)

Frame Size c

#A
rr

an
ge

m
en

ts

λ = 0

λ = 1

λ = 2

b′𝒫,λ(c) b̃𝐜max,λ,𝒫(c)

Figure A.4: Large version of Figure 4.6. An example of flexcurve disaggregations is depicted.
The initial flexcurve (left, solid) can be disaggregated twice until the residual ca-
pacity is exhausted. At each step, the canonical flexcurve (dotted) is subtracted,
reducing the capacity by one maximum sized embedding.

A.4 in-place scoring scenarios 121

a.4 in-place scoring scenarios

Scenario 1

Sequence of actions:

• 20 Times: Add Flow Path A

• 5 Times: Add Flow Path B

• 10 Times: Remove Random Flow

• 5 Times: Add Flow Path A

• 5 Times: Add Flow Path B

• 10 Times: Remove Random Flow

• 13 Times: Add Flow Path A

• 20 Times: Remove Random Flow

• 5 Times: Add Flow Path A

• 5 Times: Add Flow Path B

Scenario 2

• 27 Times:
– 3 Times: Add Flow
– 3 Times: Remove Random Flow
– Add Flow Path B
– Add Flow
– Add Flow Path B
– 3 Times: Remove Random Flow

• 3 Times: Add Flow

• 3 Times: Remove Random Flow

• Add Flow Path B

• Add Flow

• Add Flow Path B

• 3 Times: Remove Random Flow

A.5 list of acronyms 123

a.5 list of acronyms

API Application Programming Interface

ATS Asynchronous Traffic Shaping

BE best-effort

CBS Credit-based Shaper

CNC Centralized Network Configuration

CUC Centralized User Configuration

FIFO first-in-first-out

FRER Frame Replication and Elimination for Reliability

GCL gate control list

HAL hardware abstraction layer

IIoT Industrial Internet of Things

ILP integer linear programming

PCP Priority Code Point

PIFO push-in-first-out

PLC programmable logic controller

QoS Quality of Service

RDA residence delay aggregation

SDN Software-defined Networking

SMT satisfiability modulo theories

ST scheduled traffic

TAS Time Aware Shaper

TSN Time-Sensitive Networking

B
SUPERV I SED STUDENT THESES

[1] Marvin Härdtlein. “Hybrid Switch: Dynamic Software Switch Flow Rule Of-
floading on High Performance Networking Hardware.” Secondary supervisor.
KOM-M-0715. Master Thesis. TU Darmstadt, 2020.

[2] Ke Pan. “Multi-Path Scheduling in Time-Sensitive Networks.” KOM-M-0736.
Master Thesis. TU Darmstadt, 2021.

[3] Miron Abraha. “Scheduling Optimization for Time Aware Shaper in Time Sen-
sitive Networks.” KOM-M-0747. Master Thesis. TU Darmstadt, 2022.

[4] Patrick vanHalem. “Implementation andPerformance Evaluation ofAsynchronous
Traffic Shaping on Real-Time Processors.” KOM-M-0738. Master Thesis. TU
Darmstadt, 2022.

[5] Tewodros Kebede. “Traffic-Shaping Mechanisms Coordination in Time Sensi-
tive Networks.” KOM-M-0757. Master Thesis. TU Darmstadt, 2023.

125

C
AUTHOR ’ S PUBL ICAT IONS

main publications

[1] Christoph Gärtner, Amr Rizk, Boris Koldehofe, René Guillaume, Ralf Kundel,
andRalf Steinmetz. “Fast incremental reconfiguration of dynamic time-sensitive
networks at runtime.” In: Journal of Computer Networks 224 (2023), p. 109606. doi:
https://doi.org/10.1016/j.comnet.2023.109606.

[2] Christoph Gärtner, Amr Rizk, Boris Koldehofe, Rhaban Hark, René Guillaume,
and Ralf Steinmetz. “Leveraging Flexibility of Time-Sensitive Networks for dy-
namic Reconfigurability.” In: 2021 IFIP Networking Conference (IFIP Networking).
IEEE, 2021, pp. 1–6. doi: 10.23919/IFIPNetworking52078.2021.9472834.

[3] Christoph Gärtner, Amr Rizk, Boris Koldehofe, René Guillaume, Ralf Kundel,
and Ralf Steinmetz. “On the Incremental Reconfiguration of Time-sensitive
Networks at Runtime.” In: 2022 IFIP Networking Conference (IFIP Networking).
IEEE, 2022, pp. 1–9. doi: 10.23919/IFIPNetworking55013.2022.9829815.

[4] Christoph Gärtner, Amr Rizk, Boris Koldehofe, Rhaban Hark, René Guillaume,
Ralf Kundel, andRalf Steinmetz. “POSTER: LeveragingPIFOQueues for Schedul-
ing in Time-SensitiveNetworks.” In: 2021 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN). IEEE, 2021, pp. 1–2. doi: 10.1109/
LANMAN52105.2021.9478796.

[5] Christoph Gärtner, Amr Rizk, Boris Koldehofe, René Guillaume, Ralf Kundel,
and Ralf Steinmetz. “Enhancing Flexibility for Dynamic Time-Sensitive Net-
work Configurations.” In: Proceedings of the 3rd KuVS Fachgespräch “Network Soft-
warization”. 2022, pp. 1–2. doi: 10.15496/publikation-67440.

[6] Chengbo Zhou, Christoph Gärtner, Amr Rizk, Boris Koldehofe, Björn Scheuer-
mann, andRalf Kundel. “RDA:ResidenceDelayAggregation for Time-Sensitive
Networking.” In: Proceedings of 2024 IEEE Network Operations and Management
Symposium (NOMS 2024). 2024. doi: 10.1109/NOMS59830.2024.10574998.

co-authored publications

[7] Ralf Kundel, ChristophGärtner,Manisha Luthra, Sukanya Bhowmik, and Boris
Koldehofe. “FlexibleContent-basedPublish/Subscribe over ProgrammableData
Planes.” In: NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium. 2020, pp. 1–5. doi: 10.1109/NOMS47738.2020.9110381.

127

https://doi.org/https://doi.org/10.1016/j.comnet.2023.109606
https://doi.org/10.23919/IFIPNetworking52078.2021.9472834
https://doi.org/10.23919/IFIPNetworking55013.2022.9829815
https://doi.org/10.1109/LANMAN52105.2021.9478796
https://doi.org/10.1109/LANMAN52105.2021.9478796
https://doi.org/10.15496/publikation-67440
https://doi.org/10.1109/NOMS59830.2024.10574998
https://doi.org/10.1109/NOMS47738.2020.9110381

[8] Ralf Kundel, Nehal Baganal Krishna, Christoph Gärtner, Tobias Meuser, and
AmrRizk. “Poster: Reverse-PathCongestionNotification:Accelerating theCon-
gestion Control Feedback Loop.” In: 2021 IEEE 29th International Conference on
Network Protocols (ICNP). IEEE, 2021, pp. 1–2. doi: 10.1109/ICNP52444.2021.
9651961.

[9] Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. “Window-Based
Parallel Operator Executionwith in-Network Computing.” In: Proceedings of the
16th ACM International Conference on Distributed and Event-Based Systems. DEBS
’22.Association forComputingMachinery, 2022, pp. 91–96.doi: 10.1145/3524860.
3539804.

demo papers

[10] Christoph Gärtner, Amr Rizk, Boris Koldehofe, René Guillaume, Ralf Kundel,
and Ralf Steinmetz. “Demo: Flexibility-Aware Network Management of Time-
Sensitive Flows.” In: Proceedings of the ACM SIGCOMM 2023 Conference. ACM
SIGCOMM ’23. Association for Computing Machinery, 2023, pp. 1176–1178.
doi: 10.1145/3603269.3610869.

128

https://doi.org/10.1109/ICNP52444.2021.9651961
https://doi.org/10.1109/ICNP52444.2021.9651961
https://doi.org/10.1145/3524860.3539804
https://doi.org/10.1145/3524860.3539804
https://doi.org/10.1145/3603269.3610869

D
ERKLÄRUNGEN LAUT PROMOT IONSORDNUNG

§ 8 abs. 1 lit. d promo

Ich versichere hiermit, dass von mir zu keinem vorherigen Zeitpunkt bereits ein Pro-
motionsversuch unternommen wurde. Andernfalls versichere ich, dass der promo-
tionsführende Fachbereich überZeitpunkt,Hochschule,DissertationsthemaundErgeb-
nis dieses Versuchs informiert ist.

§ 9 abs. 1 promo

Ich versichere hiermit, dass die vorliegende Dissertation, abgesehen von den in ihr
ausdrücklich genannten Hilfsmitteln, selbstständig und nur unter Verwendung der
angegebenen Quellen verfasst wurde. Weiterhin versichere ich, dass die “Grundsätze
zur Sicherung guter wissenschaftlicher Praxis an der Technischen Universität Darm-
stadt” sowie die “Leitlinien zum Umgang mit digitalen Forschungsdaten an der TU
Darmstadt” in den jeweils aktuellen Versionen bei der Verfassung der Dissertation
beachtet wurden.

§ 9 abs. 2 promo

Ich versichere hiermit, dass die vorliegende Dissertation bisher noch nicht zu Prü-
fungszwecken gedient hat.

Darmstadt, 7. Mai 2024

Christoph Gärtner

colophon

This document was typeset using the typographical look-and-feel classicthesis de-
veloped by André Miede. The style was inspired by Robert Bringhurst’s seminal book
on typography “The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection
of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of August 22, 2024 (classicthesis).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Abstract
	Kurzfassung
	Previously Published Material
	Contents
	1 Introduction
	1.1 Motivation for Flexibility in Time-Sensitive Networking
	1.2 Research Challenges
	1.3 Research Goals and Contributions
	1.4 Structure of the Thesis

	2 Background & Related Work
	2.1 Notational Reference
	2.2 Time-Sensitive Networking
	2.3 Scheduling
	2.4 Software-defined Networking
	2.5 Flexibility
	2.6 Transitions in Time-Sensitive Networking

	3 Flexibility-based TSN Management
	3.1 Managing Scenario
	3.1.1 Network Model

	3.2 Controller

	4 Flexibility Notion
	4.1 Flexcurve: A Notion of Flexibility for TSN
	4.1.1 Disaggregations for Admissibility Decisions
	4.1.2 Aggregations for Quick Construction and Incremental Updates
	4.1.3 Deadline-awarenes
	4.1.4 Holistic Flexibility View

	4.2 Evaluation

	5 Optimization
	5.1 Flexcurve-based Scheduling
	5.1.1 Eligibility Candidates for Deadline-aware Flexcurves
	5.1.2 Eligibility Candidate Selection
	5.1.3 In-place Scoring

	5.2 Path Selection
	5.3 Queue Assignments
	5.4 Evaluation

	6 Multi-Mechanisms
	6.1 PIFO Structures in TSN
	6.2 RDA: Residence Delay Aggregation
	6.3 Flexibility of Simultaneous usage of TSN mechanisms

	7 Summary, Conclusions, and Outlook
	7.1 Summary of the Thesis
	7.1.1 Contributions
	7.1.2 Conclusions

	7.2 Outlook

	Bibliography
	A Appendix
	A.1 Flexibility-aware Controller Implementation
	A.1.1 SMT Scheduler

	A.2 Lemmas and Proofs
	A.3 Additional Figures
	A.4 In-place Scoring Scenarios
	A.5 List of Acronyms

	B Supervised Student Theses
	C Author's Publications
	D Erklärungen laut Promotionsordnung
	Colophon

