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Zusammenfassung

Quark-Gluon-Plasma (QGP) wird in Kollisionen mit niedriger Energie und einer hohen Net-
tobaryonenzahl erzeugt. Folglich ist das baryochemische Potential µB mehrere Male höher
als die Temperatur T . Dieses Regime kann nicht direkt auf dem Gitter untersucht werden,
daher ist die Hochdichteregion des QCD-Phasendiagramms nicht so gut verstanden wie die
(µB = 0)-Achse. Bei hohen Temperaturen kann man behaupten, dass die Störungsreihe
bei einem hohen chemischen Potential, also µB > T > Tc, besser funktioneren sollte, als
im Fall von µB = 0 [41]. Aufgrund der stark gekoppelten Beschaffenheit von weichen
Gluonen versagt die Störungstheorie in heißer QCD, bevor die Kopplung groß wird [62].
Bei hohem chemischen Potential wird jedoch die Streuung von Quarks um einen Faktor
von µ2

B/T
2 verstärkt, und man erwartet, dass sich die Störungsreihe besser verhält. Mit

dieser Motivation untersuchen wir in dieser Arbeit den Einfluss chemischer Potentiale auf
die QCD-Scherviskosität. Insbesondere erweitern wir die Arnold-Moore-Yaffe (AMY) Be-
rechnungen für Scherviskosität bei führendem Logarithmus [13] in schwach gekoppelter,
heißer und dichter QCD [41]. Anschließend führen wir auch eine Untersuchung der Scher-
viskosität mit mehreren erhaltenen Ladungen, nämlich Baryonenzahl (B), Strangeness (S)
und elektrischer Ladung (C), unter Verwendung der führenden Logarithmusbehandlung
durch. Danach erweitern wir die Hochdichteberechnungen auf die führende Störungs-
ordnung, erstmals berechnet in [9] für verschwindende chemische Potentiale, und auf
”fast” nächste führende Ordnung, basierend auf der Arbeit von Ghiglieri et al. [62]. Mit
diesen Ergebnissen testen wir die Konvergenz der Störungsreihe. Schließlich untersuchen
wir in einer ergänzenden Arbeit die lineare Antwortfunktion der Scherspannung und
untersuchen das Vorhandensein eines Verzweigungsschnitts, der den Ursprung in einem
System von selbstwechselwirkenden Skalarteilchen mit quartischen Wechselwirkungen
berührt.
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Abstract

Quark-gluon plasma (QGP) is generated in lower-energy collisions with a high net baryon
number. Consequently, the baryon chemical potential µB is several times higher than
the temperature T . This regime cannot be directly studied on the lattice; therefore, the
high-density region of the QCD phase diagram is not as well understood as the µB = 0
axis. At high temperatures, one can claim that the perturbative series should work better
at a high chemical potential, such that µB > T > Tc, than in the case of µB = 0[41]. Due
to the strongly coupled nature of soft gluons, perturbation theory fails in hot QCD before
the coupling becomes large [62]. However, at high chemical potential, the scattering
from quarks is enhanced by a factor of µ2

B/T
2, and one expects the perturbative series

to behave better. With this motivation, we study the influence of chemical potentials on
the QCD shear viscosity in this thesis. Namely, we extend the Arnold-Moore-Yaffe (AMY)
calculations for shear viscosity at leading log [13] in weakly coupled high-temperature and
dense QCD[41]. Following this, we also perform a study of shear viscosity with multiple
conserved charges, baryonic (B), strangeness (S), and electric (C), using the leading log
treatment. After that, we extend the high-density calculations to leading perturbative
order, first calculated in [9] for vanishing chemical potentials, and to ”almost” next to the
leading order, based on the work from Ghiglieri et al. [62]. With these results, we test
the convergence of the perturbative series. Finally, in a complementary work, we study
the shear-stress linear response function and investigate the existence of a branch cut
touching the origin in a system of scalar self-interacting particles with quartic interactions.
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Introduction

For the past decades, ultrarelativistic heavy-ion collisions have investigated the properties
of the deconfined phase of hot and dense Quantum Chromodynamics (QCD), the quark-
gluon plasma (QGP). Evidence shows that this phase was present in the early universe and
has been recreated at microscopic scales in heavy ion collision experiments[69]. These
results have sparked considerable interest in this subject for the past few decades, and
experiments indicate that the QGP in such collisions is a strongly coupled fluid[7, 6, 1]
and behaves closely to a perfect fluid[75, 102, 52]. The current theoretical modeling
[57, 128, 134] of the early universe matter produced in heavy-ion collisions is broadly
consistent with this picture, a nearly frictionless, strongly coupled quantum liquid over
distance scales not much larger than the proton radius, which makes the QGP formed in
colliders the hottest, smallest, densest, most perfect fluid known [114].

These ultrarelativistic heavy ion collisions aim, among other things, to recreate droplets
of Big Bang matter in the laboratory. In such conditions, one can learn about the properties
of QGP as well as about the QCD phase diagram in ways that would not be possible
via observations made with telescopes or satellites. Figure 1 illustrates our current
understanding of the features of the phase diagram of QCD as a function of temperature
and baryon doping, which is the excess of quarks over antiquarks, parametrized by
the baryonic chemical potential, µB [37]. A general framework for studying heavy-ion
collisions typically involves initial state modeling, followed by a pre-equilibrium phase
and subsequent hydrodynamic evolution, which is eventually integrated into hadronic
transport [114]. This framework constitutes the core of the standard model of heavy-ion
collisions [114, 135, 113]. Originally characterized by qualitative success, this theoretical
framework has developed impressive predictive power and quantitative accuracy; this is
usually demonstrated through applying Bayesian inference techniques[118].

However, many fundamental questions remain in our quest to understand heavy-ion
collisions and the QGP. This is a consequence of the impossibility of performing ab initio
real-time calculations in quantum chromodynamics beyond weak coupling. In that context,
the investigation of small systems, such as proton-proton (p+p) and proton-nucleus (p+A)
collisions have been significantly illuminating. This is because they require pushing the
boundaries of our understanding of the bulk collective properties of the quark-gluon
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Figure 1: The QCD phase diagram. Here, the red circles mark the location of freeze-
out points that were determined experimentally. The white lines indicate the
trajectories followed by hydrodynamically expandingmatter in the fireball. These
trajectories are labeled by the initial collision energies

√
sNN in GeV. Image

from ref. [50].

plasma[114].
Now, we shall present a qualitative picture of these collisions. For clarity, let us focus

our description on a system in the center of mass frame (the ”lab frame” at a collider).
Each incident nucleus is a Lorentz-contracted disc. For large nuclei such as Pb or Au, the
diameter of the disc is about 14 fm (femtometer, or Fermi) and its thickness is about 14/γ
fm, where, at the highest beam energies attainable at RHIC and LHC, the relativistic γ
factors are approximately 100 and 2500, respectively, corresponding to beam rapidities of
y = 5.3 and 8.5[114, 37].

Each nucleus is characterized by a density of quarks, antiquarks, and gluons, with
qq̄ pairs emerging from quantum fluctuations in the initial state. These fluctuations
manifest as wave functions that become almost real due to the time dilation happening
in the accelerated nucleus. These quarks and antiquarks serve as sources for strong,
predominantly transverse color fields, giving rise to corresponding field quanta known as
gluons, which also carry a color charge. The density of quarks, antiquarks, and gluons
escalates with the velocity of the nuclei and exhibits non-uniformity across the nucleus
surface, varying from one nucleus to another. The spatial distribution of partons primarily
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mirrors the instantaneous distribution of nucleons within the nuclei and of partons within
those nucleons. In essence, the incident nuclei represent intricate assemblies of partons
with a longitudinal momentum distribution, often referred to as a structure-function. This
momentum distribution closely resembles a superposition of those found within individual
nucleons, with minor adjustments due to the proximity and motion of nucleons within
the nuclei[37, 50].

As the two discs collide, most of the partons will lose some energy. However, most
of these interactions are ”soft”, meaning that they involve little transverse momentum
exchange. These strong interactions can be described in terms of interacting fields or
layers of energy. Some color charge exchange occurs between the discs, and longitudinal
color fields are produced, which fill the space between the two discs. Consequently, the
energy in the discs is reduced, and these fields gradually decay into qq̄ pairs and gluons[37,
50].

Upon closer examination of experimental observables, such as transverse momentum
spectra, collective flows of charged hadrons, or electromagnetic probes, it becomes evident
that their accurate estimation relies heavily on the transport parameters of the system.
This serves as a strong motivation for the quantitative study of the transport coefficients
of this medium, which is created while colliding two heavy ions ultra relativistically [37].
The transport coefficient under investigation in this thesis is shear viscosity, η.

1 Shear viscosity in heavy-ion collisions

Let us begin by defining shear viscosity in a simple system: a gas trapped between two
plates. The plate at the top moves with a constant velocity u, and the lower plate is at
rest. The distance between the two plates will be named L.

As the gas molecules are free, they will fly a typical distance λ before scattering with
another molecule. This distance λ is called the mean free path of the molecule. In the
center of the gas, molecules moving downward originated from higher levels, while those
moving upward came from lower levels. Since molecules above this point tend to move
forward, the downward-moving molecules also tend to move forward. However, the
upward-moving molecules originate from a region with a slower forward velocity since
the lower plate is not moving, making them less likely to move forward. Therefore, there
is a correlation between transverse and vertical velocity in the medium[37, 109]. The
particles that hit the bottom plate tend to move in the x direction, and therefore impart a
force on that plate, as shown in fig.2. At the top, the opposite happens, upward-going
particles are moving at a smaller velocity than the boundary plate, and this generates
a net backward force. This force is proportional to the plate area A and to the velocity
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Figure 2: Schematically view of the fluid trapped between two plates.

gradient, given by u/L. The force can be written as

F = η
Au

L
(1)

alternatively, one can define shear viscosity using the energy-stress tensor as,

Tzx = −η∂zux (2)

In both expressions, η is a material-dependent coefficient. In heavy ion collisions, η is used
to quantify the liquidness of the ultrarelativistic constituents. This is done by calculating
the ratio η/s, where s is the entropy density. This ratio plays a central role in the equations
of hydrodynamics, which governs the amount of entropy produced within the fluid as a
sound wave propagates through it.

The nature of this state of matter is determined by two crucial features of QCD [37].
One is related to asymptotic freedom, and the high energies probed at RHIC and the LHC.
The interactions between the quarks and gluons could be so weak that an equilibrium
thermal state of matter would never be reached. On the other hand, QCD is strongly
coupled at energy scales within an order of magnitude of the confinement/deconfinement
energy scale. Consequently, in these high temperatures, QCD describes a relativistic fluid
consisting of quarks and gluons so strongly coupled to their neighbors that the resulting
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liquid cannot even be described using a quasiparticle formalism. The weak coupling
picture is more likely to happen at early times in collisions with exceedingly high energy,
and the strong coupling picture would become applicable after a hydrodynamic fluid is
formed [37, 10].

In this thesis, we focus on the weakly coupled picture. Qualitatively, this picture can be
understood using the same tools as in the case of weakly interacting gas of particles. As
discussed at the beginning of this section, in this scenario, scatterings are rare, and the
directions of the momenta of the gas particles are random. This means that the initial
spatial anisotropy in the collision zone is washed out by random motion. Additionally, the
azimuthal distribution of particles in the final state is isotropic [37]. In this scenario, a
good description of the system can be done using kinetic theory, which consists of treating
QGP as an interacting system of quasiparticles. This allows one to calculate transport
coefficients purely theoretically[10].

Before hadronization, only full hydrodynamic simulations of the system can generate
the sizable anisotropies found[37]. Hydrodynamics is a gradient expansion, assuming
a fluid is everywhere close to thermal equilibrium but allowing for small gradients in
both temperature and velocity. In ideal (0th order) hydrodynamics, these gradients are
ignored, giving an isotropic plasma in the plasma’s local rest frame by assumption. For
viscous (first order) hydrodynamics, the gradients lead to an anisotropic stress tensor Tµν

according to [37],

Tµν = ε uµuν + p[ε]∆µν − η[ε]σµν − ζ[ε]∆µν∇µu
µ +O(∂2), (3)

σµν = ∆µα∆νβ(∇αuβ +∇βuα)− 2

3
∆µν∆αβ∇αuβ, (4)

∆µν = gµν + uµuν , (5)

Here, ϵ is the energy density, and uµ is the fluid velocity, which is given by uµ = (1, 0, 0, 0)
in the local fluid rest frame. The projector is given by ∆µν = diag(0, 1, 1, 1). The first
two terms in this equation represent ideal hydrodynamics, while the remaining terms are
dissipative corrections. We will review hydrodynamics in more detail in Chapter 2.

Hydrodynamic evolution follows from the conservation of the stress-energy tensor,
aligned with the equation of state, the transport coefficients, and the energy and velocity
profiles at an initial time [37]. For a hot QCD, determining transport coefficients requires
the system to be modeled away from equilibrium. Their determination can be done
within two equivalent approaches, the correlator technique in QCD using the Green-Kubo
formula and the semiclassical transport theory, e.g., Chapman-Enskog [109, 106]. In the
hydrodynamic evolution equations, ∇µTµν , the kinematic shear viscosity, given by the
ratio η/(ϵ+ P ) = η/(Ts), is proportional to the length scale over which momentum can

7



be transported and describes the relaxation of this fluid. At weak coupling, when the
hydrodynamic fluid is made up of quasiparticles with a well-defined mean free path λmfp,
it can be shown that η/(ϵ + P ) ∝ λmfp [37]. Whether the fluid is weakly or strongly
coupled, η/s controls how rapidly sound waves, shear stress, or gradients introduced in
the initial conditions are dissipated into heat. Therefore, this quantity is constrained by
comparing the hydrodynamic calculations of transport coefficients to data.

2 Scope and Outline of this thesis

In lower-energy collisions, quark-gluon plasma is generated with a significant net baryon
number, such that the baryon chemical potential µB is several times higher than the
temperature. This regime cannot be directly studied on the lattice due to the sign problem
(or complex action problem). For a chemical potential µB ̸= 0, the fermion determinant
(or Monte Carlo action) becomes complex, which ruins the probabilistic interpretation
of this quantity used in lattice QCD calculations[67]. For this reason, the high-density
region of the QCD phase diagram is much less well understood than the µB = 0 axis.
As experimental efforts focus on bringing clarity to this region, such as RHIC-BES [5],
HADES[4] and FAIR[55], the need for parallel theoretical development becomes clear.

At high temperatures, we claim that the perturbative series should work better at a
high chemical potential, such that µB > T > Tc, than in the case of µB = 0[41]. This is
a consequence of the fact that scattering from quarks is enhanced by a factor of µ2

B/T
2.

Due to the strongly coupled nature of soft gluons, perturbation theory fails in hot QCD
before the coupling becomes large. These play a central role in the breakdown of the
perturbative expansion for the shear viscosity [62]. However, when quarks play a more
significant role at high chemical potential, one expects the perturbative series to behave
better. This motivates using a kinetic theory treatment to study transport coefficients in a
regime of high density and high temperature.

Previously, Arnold, Moore, and Yaffe have computed the shear viscosity at leading
perturbative order in the absence of a chemical potential [9], and Ghiglieri et al have
extended this calculation to “almost” next-to-leading order [62]. Separately, we have
presented the shear viscosity at finite chemical potential at leading-log order [41]. Finally,
we have extended these calculations to ”almost” next-to-leading order [62]. This thesis
will focus on shear viscosity in QCD, particularly in high-temperature and high-density
scenarios.

This thesis is organized as follows. In Chapter 2, we start with a review of relativistic
hydrodynamics and an exposition on the dynamics of heavy-ion collisions. We delve into
the interplay between relativistic hydrodynamics and the dynamics of heavy-ion collisions,
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laying the groundwork for subsequent discussions along this thesis. By the end of this
chapter, we discuss shear viscosity in the context of QCD and heavy-ion collisions.

Chapter 3 delves into kinetic theory within the context of QGP. Here, we derive the
Boltzmann equation for both abelian and non-abelian theories, which will be extensively
used in the following chapters. Additionally, we present an exposition of the theoretical
framework employed for the calculations conducted in this thesis and introduce the
variational method used to solve the Boltzmann equation in the calculations performed in
this work.

Finally, Chapter 4.1 introduces the collision operator and computes shear viscosity at
leading logarithmic order on the coupling for high densities. We also discuss a basis
set to be used for solving the Boltzmann equation. The results from this chapter were
published in 2023 [41]. In Chapter 4, using an analytical result for the eigensystem of the
linearized collision term for a classical system of massless scalar particles with quartic self-
interactions, we show that the shear-stress linear response function possesses a branch-cut
singularity that covers the whole positive imaginary semi-axis. This is demonstrated by
truncating the exact, infinite linear system of linear equations for the rank-two tensor
modes, which reveals the cut touching the origin. This work results from my collaboration
with G. Rocha, K. Ingles, G. Denicol, and J. Noronha [125].

Then, in Chapter 3, we extend our analyses to accommodate multiple conserved charges.
We compute shear viscosity for a QGP with three conserved charges: baryonic, strangeness,
and electric. Our aim in this chapter will be to map shear viscosity along the QCD phase
diagram. For that, we introduce a hadron resonance gas (HRG) description used in the
region below the phase transition and a simple interpolation method for connecting the
two regions. This work was done in collaboration with J. Noronha-Hostler and J. Salinas
San Martin [39].

Chapter 4 describes the computation of shear viscosity at leading order on the coupling.
We begin by elucidating the relevant scattering diagrams and detailing the methodology for
computing the splitting contribution. Chapter 4 addresses the crucial corrections required
to compute shear viscosity at (almost) the next-to-leading order. Here, we present the
necessary adjustments and comment on the high-density regime. In the end, we present
our results and a comparison with leading order calculations, which allows us to check the
convergence of the perturbative series. Finally, in Chapter 9, we provide a comprehensive
analysis and synthesize our findings. This chapter discusses the implications of our results
and identifies potential avenues for future research.

9





Hydrodynamics and Heavy-Ion Collisions

In this chapter, we will discuss the evolution of a system with time, which can be addressed
as transport phenomena. This evolution can be encoded using the so-called transport
coefficients, such as shear viscosity, bulk viscosity, and diffusion. The most general
approach to studying transport phenomena in strongly coupled fluids is hydrodynamics
[141, 132]. This approach is based on the observation that the evolution of conserved
charges governs correlation functions at low energy and small momentum. Additionally,
the conservation laws imply that the densities of conserved charges cannot relax locally;
instead, they must propagate or diffuse over significant distances. This phenomenon is
reflected in hydrodynamic excitations characterized by dispersion relations such as ω ∼ q
(sound) or ω ∼ iq2 (diffusion)[132]. Namely, in the surrounding area of each point in
space, we define an infinitesimal volume, which is called a fluid element, in which the
matter is taken to be homogeneous, i.e., any spatial gradients can be neglected and are
described by a finite set of thermodynamic variables and currents [106].

The application of hydrodynamics requires a system to be describable as a fluid. This
means that it is a continuous system in which every infinitesimal volume element is
assumed to be close to thermodynamic equilibrium throughout its evolution. Therefore,
each fluid element must be large enough, in comparison to the microscopic length scales,
to guarantee that the system is close to thermodynamic equilibrium and, at the same
time, be small enough, relative to the macroscopic length scales, to ensure the continuum
limit[43]. One way to quantify the frequency of interactions, which in this case are just
collisions, is by comparing the mean-free path, λ, the average distance a particle travels
between collisions to the size, L, of the medium. The mean free path is defined as[132,
143]

λ =
1

ρσ
(1)

where ρ is the density of the medium and σ is the interaction cross section.
The leading order theory of hydrodynamics, called ideal hydrodynamics, only depends

on the equation of state and is exactly time-reversible. The next-order theory, (first order)
viscous hydrodynamics, involves a new set of parameters called transport coefficients and
describes dissipative, time-irreversible phenomena[143]. Determining transport coeffi-
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cients involves experimental measurements or computations derived from an underlying
field theory. The connection between transport coefficients and correlation functions in a
(quantum) field theory is provided by linear response theory. Using linear response theory,
one can link transport coefficients to the limit of zero energy and zero momentum of a
retarded correlation function, known as the Kubo relations[132]. Calculations based on
the Kubo formula are difficult, particularly if the interaction is not weak. The situation
simplifies if the system allows a microscopic description in terms of quasi-particles. In
such cases, an intermediate effective theory called kinetic theory can be employed to
relate the microscopic Lagrangian to the hydrodynamic description. Additionally, kinetic
theory offers a more detailed criterion for assessing the applicability of hydrodynamics
at a microscopic level[132]. A detailed description of Kinetic Theory will be provided in
Chapter 3.

1 Relativistic hydrodynamics

In this section, we explore the fundamentals of relativistic hydrodynamics, a critical
framework for understanding the behavior of matter under extreme conditions. We
present important definitions of relativistic hydrodynamics and review the concepts
necessary for the understanding of this thesis. In a relativistic fluid, the equations of
energy and momentum conservation can be written as a single equation[141, 132, 43,
143]

∂µT
µν = 0 , (2)

Here, Tµν is the energy-momentum tensor. In ideal fluid dynamics, the structure of Tµν is
entirely determined by Lorentz invariance,

Tµν = (ϵ+ P )uµuν + Pηµν , (3)

where uµ is the fluid velocity (u2 = −1) and ηµν = diag(−1, 1, 1, 1) is the metric tensor.
A second hydrodynamic equation then gives the conservation of particle number,

∂µ(nu
µ) = 0 , (4)

where n is the particle density. The hydrodynamic equations must be supplemented by an
equation of state P = P (ϵ) or P = P (ϵ, n). The four equations given in equ. (2) can be
split into two sets using the longitudinal and transverse projectors

∆||µν = −uµuν , ∆µν = gµν + uµuν . (5)
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With the help of thermodynamic relations,

dϵ = Tds (6)

and
ϵ+ P = sT , (7)

the longitudinal equation can be identified as equivalent to entropy conservation,

∂µ(su
µ) = 0 , (8)

while the transverse equation can be identified as the relativistic Euler equation

Duµ = − 1

ϵ+ P
∇⊥µP , (9)

where D = u · ∂ and ∇⊥µ = ∆µν∂
ν . From this relation, one can conclude that the inertia

of a relativistic fluid is governed by ϵ+ P , the enthalpy of the fluid, also named as ω.
The form of the dissipative terms depends on the precise definition of the fluid veloc-

ity[132]. The most usual choice of frame is the Landau frame [132, 99], which simply
means defining uµ by the requirement that in the local rest frame T 00 = ϵ and T 0i = 0.
In this frame, the dissipative correction to the energy-momentum tensor in the rest frame
has the same form as in the non-relativistic case, given by,

δΠij = −η

(︃
∇ivj −∇jvi −

2

3
δij∇ · v

)︃
− ζδij (∇ · v) . (10)

Here, we write the stress tensor as

Tµν = Tµν
0 + δ(1)Tµν + δ(2)Tµν + . . . , (11)

where Tµν
0 is the stress tensor of the ideal fluid given by,

Tµν = (ϵ+ P )uµuν + Pgµν , (12)

δ(1)Tµν is the first-order viscous correction, and δ(2)Tµν is the second, and so on. A
covariant expression for δ(1)Tµν is

δ(1)Tµν = −ησµν − ζ∆µν∂ · u (13)

where we have defined

σµν = ∆µα∆νβ

(︃
∂αuβ + ∂βuα − 2

3
ηαβ∂ · u

)︃
. (14)
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The dissipative correction to the conserved particle current is jµ = nuµ + δjµ with

δ(1)jµ = −κ

(︃
nT

ϵ+ P

)︃2

∆⊥µ

(︂µ
T

)︂
, (15)

where κ is the thermal conductivity and µ is the chemical potential, associated with the
conserved density n. Alternatively, one can define the velocity via the conserved particle
current, called the Eckart frame. In that case, there is no dissipative contribution to jµ,
and the thermal conductivity appears in the stress tensor [132].

As is well known, in viscous relativistic hydrodynamics, there is a problem with causality
in the equations of motion. This issue is evident in the linearized equation for the diffusive
shear mode, where discontinuities in initial conditions can propagate infinitely fast. While
these modes are beyond the scope of hydrodynamics, their acausal nature makes numerical
implementations more complicated. To overcome these issues, one can include second-
order gradient corrections in the stress tensor, which results in the so-called second-order
viscous hydrodynamics. One can show that for physically reasonable ranges of the second-
order coefficients, the theory is causal [127]. In general, there are a large number of
second-order terms [20]. Conformal symmetry implies that ζ = 0 and δ(1)Tµν = −ησµν .
The second order correction is

δ(2)Tµν = ητII

[︃
⟨Dσµν⟩ +

1

3
σµν(∂ · u)

]︃
(16)

+ λ1σ
⟨µ
λσ

ν⟩λ + λ2σ
⟨µ
λΩ

ν⟩λ + λ3Ω
⟨µ
λΩ

ν⟩λ ,

where σµν is the first order shear tensor defined above,

A⟨µν⟩ =
1

2
∆µα∆νβ

(︃
Aαβ +Aβα − 2

3
∆µν∆αβAαβ

)︃
(17)

denotes the transverse traceless part of Aαβ and

Ωµν =
1

2
∆µα∆νβ (∂αuβ − ∂βuα) (18)

is the vorticity. The coefficients τII and λ1,2,3 can be determined using kinetic theory
[148] or the AdS/CFT correspondence [20, 29].

Equation (16) is a constitutive relation that determines the stress tensor in terms of
thermodynamic variables. To obtain the equations of motion, one can use the Israel and
Stewart approach [81]. This approach works by promoting πµν = δTµν to a hydrodynamic
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variable. The equation of motion for πµν is then given by

πµν = −ησµν − τII

[︃
⟨Dπµν⟩ +

4

3
πµν(∂ · u)

]︃
(19)

+
λ1

η2
π
⟨µ
λπ

ν⟩λ − λ2

η
π
⟨µ
λΩ

ν⟩λ + λ3Ω
⟨µ
λΩ

ν⟩λ ,

This equation describes the relaxation of πµν to the Navier-Stokes form −ησµν . Several
more phenomenological approaches include some subset of higher order terms, for exam-
ple, the already mentioned Israel-Stewart formalism [81] or the equations of Lindblom
and Geroch [59]. We note that whatever formalism is used, a necessary condition for the
applicability of second-order hydrodynamics is that higher order corrections are small,
δ(2)Tµν ≪ δ(1)Tµν ≪ Tµν [141, 132]. Next, we apply the hydrodynamic equations to the
context of heavy-ion collisions.

2 Hydrodynamic description of heavy-ion collisions

Relativistic fluid dynamics has successfully explained the various collective phenomena
observed in astrophysics, cosmology, and the physics of high-energy heavy-ion collisions.
The collective behavior of the hot and dense quark-gluon plasma created in ultra-relativistic
heavy-ion collisions has been studied extensively within the relativistic fluid dynamics
framework. However, all fluids are dissipative due to the quantum mechanical uncertainty
principle [34]. Unfortunately, the relativistic dissipative fluid dynamics theory is not yet
conclusively established [84]. Therefore, here we describe a generic implementation of
viscous hydrodynamics applied to heavy-ion physics based in [141].

The implementation depends on several steps. The energy and flow velocities are
specified at initial times, which we name as τo. There is some arbitrariness in initializ-
ing the hydrodynamic fields at a time τo ≈ 1fm/c. Fortunately, in kinetic theory and
hydrodynamics, the final results are not particularly sensitive to this value[83, 103]. One
commonly used model for initial conditions is the Glauber model, which gives for the
energy density,

e(τo, x⊥) ∝
dNcoll
dxdy

(20)

where the overall constant in this expression is adjusted to reproduce the multiplicity of
particles in the event. Here, x and y are the coordinates in space, and x⊥ is the transverse
vector of coordinates. The simulations assume Bjorken boost invariance with the ansatz
[141]

e(τ, x⊥, η) ≡ e(τ, x⊥) (21)
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uµ(τ, x⊥, η) = (uτ , ux, uy, uη) = (uτ (τ, x⊥), ux(τ, x⊥), uy(τ, x⊥), 0) (22)
These calculations typically assume that at initial time τo the transverse flow velocity is
zero, which translates to,

ux(τo, x⊥) = uy(τo, x⊥) = 0 , uτ (τo, x⊥) = 1 (23)

The strains are taken from the Navier-Stokes theory, and reflect the traceless character of
shear stress [141]. This is exemplified by the expression below,

πµν(τo, x⊥) = diag
(︁
πττ , πxx, πyy, τ2πηη

)︁
=

(︃
0,

2

3

η

τ
,
2

3

η

τ
, −4

3

η

τ

)︃
. (24)

With these initial conditions, one can solve the equations of motion. In these equa-
tions, shear viscosity affects the hydrodynamic variables, modifying T and uµ, and the
off-diagonal components of the stress tensor through the viscous corrections πµν . The
magnitude of the viscous corrections depends on the size of the system and the shear
viscosity.

Later, the colliding ions start to cool down. At this point, a ”freezeout” condition can
be imposed. This is done by specifying a freezeout temperature or a kinetic condition,
depending on the freezeout model used. During the time evolution, a freezeout surface is
constructed. For instance, the freezeout surface can be the space-time three volume Σ
where Tfo ≃ 150MeV [51].

Finally, particle spectra are computed by matching the hydrodynamic theory onto kinetic
theory to compare with experimental data. Specifically, on the freezeout surface final
particle spectra are computed using[141]

E
dNa

d3p
=

da
(2π)3

∫︂
Σ
dΣµP

µfa(−P · u/T ) (25)

where a labels the particle species, the distribution function is,

fa(−P · u) = fa(−P · u/T ) + δfa(−P · u/T ) (26)

Moreover, da labels the spin-isospin degeneracy factor for each particle included. The
”freezeout” procedure is taken to be equivalent to running the hydro up to a particular
proper time τf or temperature Tf and declaring that the thermal spectrum of particles at
that moment are the measured particle spectrum[141].

In the hydrodynamic regime, the only properties that determine the evolution of the
system is the equation of state, which can be characterized by P (e), and the shear viscosity
and bulk viscosities, η(e) and ζ(e). In the sense that kinetic theory provides a reasonable
guess as to how the surface-to-volume ratio influences the forward evolution; these
models can be used to estimate the shear viscosity, which might be more reliable than the
hydrodynamic models.
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3 Shear viscosity in QCD

Viscosity significantly influences the evolution of real systems. In the context of the Quark-
Gluon Plasma (QGP), particularly in heavy ion collisions, viscosity plays a crucial role in
shaping the hydrodynamic evolution of the system [132, 141]. It might also be important
in neutron star mergers [2]. This section reviews concepts related to shear viscosity in
the hadronic and the QGP cases.

The shear viscosity, η, is defined as a linearization about equilibrium. First, we assume
that the gradients of velocity, ∂ivj , are small; typically, this implies that the resulting stress
tensor Tij is significantly smaller than the pressure[109]. Also, we assume a hierarchy
in which λ∂ivj ≪ λ2∂i∂jvk, which means that the gradients do not change rapidly. The
fluid flow, ∂iuj , is itself related to the stress tensor Tij . For instance, in a system in perfect
equilibrium, nonvanishing ∂iuj can be generated by distorting the metric, represented by
gµν = ηµν + hµν . In the path integral framework, this distortion arises from an interaction
HamiltonianHI = hµνT

µν[109]. Following this idea, as discussed in [112], one can derive
a Kubo relation for the shear viscosity in terms of equilibrium, unequal time, retarded
correlation functions[112, 109]:

η = i∂ω

∫︂
d3x

∫︂ ∞
0

dt eiωt
⟨︂[︂

T xy(x, t) , T xy(0, 0)
]︂⟩︂⃓⃓⃓

ω=0
, (27)

where T xy(x, t) denotes the traceless part of the stress tensor. In the QGP phase, well above
the first-order transition, the QCD medium can be described as a phase of massless quarks
and gluons. The energy density is approximately described by the Stefan-Boltzmann
equation of state [132]

eglue = dglue

∫︂
d3p
(2π)3

Ep

eEp/T − 1
equark = dquark

∫︂
d3p
(2π)3

Ep

eEp/T + 1
(28)

where dglue = 2× 8 counts spin and color, and dquark = 2 × 2 × 3 × 3 counts spin,
anti-quarks, flavor, and color. Here Ep is the energy of each particle.

In contrast, well below the phase transition, the correct description is a gas of hadrons.
This gas is very dilute, and the measured particle spectrum dominates the thermodynamics.
For instance, the number of pions in this low-temperature regime is[132]

nπ = dπ

∫︂
d3p
(2π)3

1

eEp/T − 1
(29)

where Ep =
√︁

p2 +m2
π and dπ = 3 counts the three-fold isospin degeneracy, π+, π−, π0,

in the spectrum. If all known particles are included up to a mass mres < 2.5GeV ,
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the resulting Hadron Resonance Gas (HRG) equation of state does a reasonable job
of reproducing the thermodynamics up to about T ≃ 180MeV . However, the validity
of the quasi-particle description is unclear above a temperature of T ≃ 140MeV [82,
115]. As the temperature increases, the hadron wave functions overlap until the medium
reorganizes into quark and gluon degrees of freedom [141]. While lattice QCD simulations
have provided a thorough understanding of the equation of state near the phase transition,
determining the transport coefficients is equally essential since shear and bulk viscosities
govern energy and momentum transport.

An interesting way to understand the influence of shear viscosity in a system is to write
a shear viscosity to entropy ratio, η/s, which is the ratio between the medium relaxation
time and the quantum time scale, as discussed earlier. For now, we use kinetic theory in a
simplified way to calculate this ratio by considering a simple classical massless gas with
particle density n and a constant hard sphere cross-section σo[141]. The equation of state
of this gas is e = 3P = 3nT and the shear viscosity is [147, 141]

η ≃ 1.2
T

σo
(30)

Here, Nc is the color number. The entropy is s = (e + P)/T and the resulting shear to
entropy ratio is

η

s
≃ 0.3

T

nσo
(31)

This expression estimates the transport time in “natural units”, as the ratio is dimensionless.
At asymptotically high temperatures, the coupling constant αs becomes weak, allowing

for the computation of shear viscosity using perturbation theory. Initially, these calculations
considered contributions from only 2 → 2 elastic scattering, and the shear viscosity was
computed at leading logarithmic order with self-consistent screening [21]. Later, it was
recognized [18, 17] that collinear Bremsstrahlung processes are also relevant for the
calculation of shear viscosity at leading order on the coupling, which resulted in a complete,
leading order calculation [9]. The ratio of shear viscosity to entropy density, η/s, can be
estimated in the perturbative plasma context using Eq. (30), where s ∝ T 3 and σ ∝ α2

s/T
2

[141],
η

s
∼ 1

α2
s

(32)

The final result can be written as

η

s
=

1

α2
s

F (mD/T ) (33)
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where F (mD/T ) is a function of the Debye mass, which was first computed for small
values of mD/T and then extrapolated to more realistic values[9] and is related to the
screening effects. Determining the appropriate values for the Debye mass and the coupling
constant presents a challenge due to the multiple scales in the problem. At the lowest
order in the coupling, the Debye mass is given by[24]

m2
D =

(︃
Nc

3
+

Nf

6

)︃
g2T 2 (34)

All calculations around the phase transition region have a great deal of uncertainty. On
the hadronic side, there is a relevant contribution from inelastic processes. On the other
hand, in the quark-gluon plasma regime, the strong dependence on the Debye scale and
the constant coupling is troubling. Hence, it is essential to have a strongly coupled theory
where the shear viscosity to entropy ratio can be computed exactly. In the context of
strongly coupled N = 4 SYM theory with a large number of colors, η/s can be computed
using gauge gravity duality and yields the result[122, 94]

η

s
=

1

4π
(35)

From the perspective of heavy ion physics, this result holds significant importance as it
demonstrates the existence of field theories where η/s can be surprisingly low. In the next
chapter, we shall review kinetic theory in the context of QCD and show how to derive
shear viscosity purely theoretically using perturbative QCD to compute the contributing
scatterings.
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Kinetic theory

The scope of hot, weakly coupled, ultra-relativistic gauge theories includes various spatial
and temporal scales. Depending on the regime considered, several methods are available
for capturing the physics across these different scales. These methods include but are not
limited to, perturbation theory, hard thermal loops, dimensional reduction, kinetic theory,
and hydrodynamics. For static properties of the deconfined phase of QCD, the hierarchy
of effective theories relevant to different distance scales is well-established [15, 33, 53].
However, when it comes to real-time properties and the study of non-equilibrium responses,
deriving an appropriate sequence of effective theories to disentangle the dynamics across
distance or time scales is challenging [15, 14]. This challenge can be exemplified by
the confusion surrounding the time scale for non-perturbatively large fluctuations in
gauge fields, such as those involved in baryon number violation in electroweak theory.
Understanding the hierarchy of effective theories for different time scales is important to
unravel the real-time dynamics of hot gauge theories.

In the context of kinetic theory, the significance of the effect of interactions becomes
relevant, particularly at late times when simple perturbation theory becomes ineffective.
There are essentially two ways of understanding this matter. First, let us consider a
diagrammatic approach. For extended periods, contributions comparable in magnitude
to the lowest-order diagram can emerge from an infinite series of ladder-like diagrams
containing nearly on-shell singularities [15]. Summing these diagrams yields the same
outcome from an effective kinetic theory description. Next, we discuss currents induced
by the fluctuations in plasma. Consider a region in space significantly larger than the
inter-particle separation at time zero; if a few more positively charged particles happen to
move leftward rather than rightward, and vice versa for negatively charged particles, a net
current j(0) forms towards the left. As time elapses, collisions gradually randomize the
particle directions, leading to the decay of the net current and the correlation ⟨j(t)j(0)⟩
approaching zero. To study the impact of these interactions, shifting focus from quantum
field theory to kinetic theory for times significantly larger than 1/T [15] is significantly
more interesting.

Kinetic theory applies to time scales and distances that are much larger than particle
energies and momenta. Moreover, its validity relies on the de Broglie wavelengths and
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scattering time scale being significantly smaller than the mean free path and mean
free time between collisions. This condition ensures that particles can be treated as
propagating classically, with on-shell energies, between collisions, regarded as independent
and uncorrelated events[15]. In this chapter, we present the derivation of the Boltzmann
equation, which will be sufficient to describe the quasi-particle system we are interested
in and correctly compute transport coefficients as shear viscosity. For that, we begin with
the essential tools necessary for this derivation, building up from scalar theories to abelian
gauge theories and, finally, non-abelian gauge theories, like QCD. Later, we describe the
theoretical framework to be used to obtain shear viscosity for QCD at vanishing and
nonvanishing chemical potential. Finally, we present a variational method to solve the
Boltzmann equation.

1 The Schwinger–Keldysh Contour

This section briefly introduces the Schwinger–Keldysh (SK) formalism, which is instru-
mental in the kinetic theory description of a hot-dense plasma. The SK formalism is
very similar to ordinary equilibrium theory, except that all time-dependent functions are
defined for time-arguments on a contour[100], known as the Schwinger–Keldysh contour
(illustrated in Fig. 1). This contour is designed with a forward branch (upper part) that
goes from t = −∞ all the way to t = +∞, and a backward branch (lower part) that goes
from t = +∞ to t = −∞.

This formalism offers a framework to characterize nonequilibrium dynamics based
only on the initial equilibrium state and is convenient in the study of time-dependent
phenomena with an initial density matrix other than the vacuum. This is because, given a
known density matrix of the full system at some finite time t0, it can be treated as initial
conditions for the evolution. Besides, details of how the system evolves in time with all
operator insertions are not necessary for finite-time computations[70].

Let us assume that we are interested in a system isolated for t < 0, which means that
the Hamiltonian does not depend on time, and we can write H0(t < 0) = H0. Later in
time, this system is disturbed by an external time-dependent field at t > 0[100]. Using the
SK-evolution operator, we can obtain the interesting Green’s Functions without assuming
the system’s final state at late times; we simply revert to the initial state following the
influence of interactions on the system [70]. The SK-evolution operator guides the system’s
evolution along the complex time contour C explained here. A well-defined time ordering
is necessary since we are interested in time-dependent phenomena. Consequently, it
is often advantageous to work with fields and operators labeled by the segment of the
contour they occupy. To illustrate, let us consider a complex (bosonic) operator Ô. The
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Figure 1: Schwinger-Keldysh closed-time-path contour.

Green’s function for this operator on the SK contour is expressed as[70]:

GC(x, y) = −i⟨Ω|Tc(Ô(x)Ô†(y))|Ω⟩ = −i⟨0|Tc(UCÔ(x)Ô†(y))|0⟩ (1)

where UC is the evolution operator in the contour, written as,

UC ≡ TC exp
(︃
−i

∫︂
C
dt′Ĥ int(t

′)

)︃
, (2)

where TC is the time-ordering operator that rearranges the operators in chronological
order. Here, there is no need for a normalizing denominator since UC |0⟩ = |0⟩, and the
operator does not acquire a phase. This contour approach is sufficient for deriving the
Green’s function for such a system. Considering x and y can reside on either the upper or
lower part of the contour, so it becomes evident that we should have a 2 × 2 matrix of
real-time Green’s functions, corresponding to the choice of operator insertions on either
segment. Thus, we define:

GC(x, y) =

(︃
GF (x, y) G<(x, y)
G>(x, y) GF̃ (x, y)

)︃
(3)

where the Green’s functions in this matrix are defined based on the contour positions.
Here, GF (x, y) represents the Feynman propagator, and GF̃ (x, y) the anti-time-ordering
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Feynman propagator. These functions are defined as follows[70],

iGF (x, y) = ⟨Ω|TC(Ô(x)Ô†(y))|Ω⟩ (4)

iGF̃ (x, y) = ⟨Ω|T̃ C(Ô(x)Ô†(y))|Ω⟩ (5)

iG>(x, y) = ⟨Ω|Ô(x)Ô†(y)|Ω⟩ (6)

iG<(x, y) = ⟨Ω|Ô(y)Ô†(x)|Ω⟩ (7)
(8)

where T̃ is anti-time-ordering. With these definitions, one can start working on the
Boltzmann equation.

In the upcoming section, we use the SK contour to derive the Boltzmann equation
within the framework of scalar theories. Although QCD is not a scalar theory, we leverage
this result to subsequently derive the Boltzmann equation for non-abelian theories. We
build upon the methodology outlined in multi-component scalar theories and QED.

2 Boltzmann equation for scalar theories

In this section, we delve into the derivation of the Boltzmann equation within the frame-
work of scalar theories. Although our ultimate goal is to apply this equation to QCD, we
initiate by focusing on scalar theories. This approach allows us to establish fundamental
concepts and a derivation method that we can extend to more complex theories later. We
will follow the derivation carried out in [14].

We start by considering a single-component scalar φ4 theory. We write the Green’s
function for this theory, using the definitions from SK formalism from the last section,
iGC(x, y) = ⟨TC(φ(x)φ(y))⟩. Here, we are no longer writing the states Ω to make the
notation more concise. The four different components from the last section are then given
by:

iG11(x, y) = ⟨TC(φ(x)φ(y))⟩, iG12(x, y) = ⟨φ(y)φ(x)⟩
iG21(x, y) = ⟨φ(x)φ(y)⟩, iG22(x, y) = ⟨T̃ C(φ(x)φ(y))⟩ (9)

We name the four components using the matrix indices to make the next steps easy to
follow. These definitions allow us to verify the time-ordering prescriptions, revealing that
GC must adhere to:

G11 +G22 = G12 +G21 (10)
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Now, by manipulating linear combinations of the above expressions, we can derive the
well-known advanced and retarded propagators, which can be expressed as functions of
the components of GC defined in eq. (9),

GR = G11 −G12 = G21 −G22,

GA = G12 −G22 = G11 −G21 (11)

More explicitly,

iGR(x, y) = θ(x0 − y0)⟨[φ(x), φ(y)]⟩
iGA(x, y) = −θ(y0 − x0)⟨[φ(x), φ(y)]⟩ (12)

As one goes from Minkowski space to Euclidean space, which means,

t2 − x⃗2 → −(τ2 + x⃗2) (13)

the advanced and retarded propagators represent the boundary values as the imaginary
(Matsubara) frequency iωn = 2πn/β is continued below or above the real frequency axis
[24].

To derive the Boltzmann equation, we commence by examining a free scalar field theory
governed by the Lagrangian:

L =
1

2
(∂µφ)

2 − 1

2
m2φ2 (14)

The Fourier transforms of the propagator components are as follows:

G̃11(p) =
1

p20 − ω2
p + iϵ

− iπ

ωp
[npδ(p0 − ωp + n−pδ(p0 + ωp)] (15)

G̃22(p) =
−1

p20 − ω2
p + iϵ

− iπ

ωp
[npδ(p0 − ωp + n−pδ(p0 + ωp)] (16)

G̃12(p) = − iπ

ωp
[npδ(p0 − ωp + (1 + n−p)δ(p0 + ωp)] (17)

G̃21(p) = − iπ

ωp
[(1 + np)δ(p0 − ωp + n−pδ(p0 + ωp)] (18)

where np represents the occupation number. By substituting these expressions back into
Eq. (12), we obtain the advanced and retarded propagators:

G̃R(p) =
1

(p0 + iϵ)2 − ω2
p
, G̃A(p) =

1

(p0 − iϵ)2 − ω2
p

(19)
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We introduce the self-energy Σ(x, y) to compute this theory’s propagator properly. This
means that Σ(x, y) can be related to the propagator by the following equations:

(−∂2
x −m2)GC(x, y) = ηxδ(x− y) +

∫︂
C
dzΣC(x, z)GC(z, y), (20)

(−∂2
y −m2)GC(x, y) = ηyδ(x− y) +

∫︂
C
dzΣC(x, z)GC(z, y) (21)

where ηx varies along the contour, it is +1 if x is on the upper part, and −1 if x is in the
lower part. Analogously to the procedure applied to the propagator, the self-energy can
also be decomposed into four components, allowing it to be expressed as 2× 2 matrix:

Σ(x, y) ≡
(︃
Σ11(x, y) Σ12(x, y)
Σ21(x, y) Σ22(x, y)

)︃
(22)

One can use this decomposition to obtain a more general form, substituting it in eq. (21):

(−∂2
x −m2)G(x, y) = σ3δ(x− y) +

∫︂
dzΣ(x, z)σ3G(z, y), (23)

(−∂2
y −m2)G(x, y) = σ3δ(x− y) +

∫︂
dzΣ(x, z)σ3G(z, y) , (24)

where the integral over z is just an ordinary spacetime integration, and σ3 is the usual
Pauli matrix. With these tools in place, deriving the Boltzmann equation becomes straight-
forward. First, subtract Eq. (23) from Eq. (24):

(∂2
x − ∂2

y)GC(x, y) =

∫︂
C
dz [GC(x, z)ΣC(z, y)− ΣC(x, z)GC(z, y)] (25)

Continuing from this point, we assume that the timescale for the system’s overall evolution
is much larger than the typical wavelength of a particle[14]. Consequently, the variation
of the propagator is significantly slower with respect to the average position, given by
(x+ y)/2, compared to the separation, given as x− y. For that reason, we write:

x = X +
s

2
, y = X − s

2
, x = X +

s

2
− s′ (26)

which, when inserted into Eq. (25) gives,

2
∂

∂Xµ

∂

∂sµ
GC(X, s) =

∫︂
C
ds′

[︄
GC

(︃
X +

s− s′

2
, s′
)︃
ΣC

(︃
X − s′

2
, s− s′

)︃

− ΣC

(︃
X +

s− s′

2
, s′
)︃
GC

(︃
X − s′

2
, s− s′

)︃]︄
(27)
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This variable change also implies that G and Σ will have a slow variation in terms of the
new variable X. This is rather convenient for this derivation, as it means that we can
simplify this expression by replacing the first argument in the propagator and self-energy
(G and Σ) on the right-hand side of eq.(27) by X. This gives, for example, for G12,

2
∂

∂Xµ

∂

∂sµ
G12(X, s) =

∫︂
ds′
[︂
G11(X, s′)Σ12(X, s− s′)−G12(X, s′)Σ22(X, s− s′)

− Σ11(X, s′)G12(X, s− s′) + Σ12(X, s′)G22(X, s− s′)
]︂

(28)

Next, we Fourier transform this expression with respect to the relative separation s using,

G̃(X, p) ≡
∫︂

dse−ipsG(X, s) , (29)

which leads to (simplifying the notation)

−2ipµ∂µG̃12 = Σ̃12(G̃11 + G̃22)− G̃12(Σ̃11 + Σ̃22) (30)

Rearranging the terms gives:

−2ipµ∂µG̃12 = Σ̃12G̃21 − G̃12Σ̃21 (31)

Finally, to obtain the Boltzmann equation, one has to assume that the excitations of the
nonequilibrium system are viewed as single fundamental particles. One can make the
ansatz:

G̃12(X, p) = − iπ

ωp
[δ(p0 − ωp)np(X) + δ(p0 + ωp)(1 + np(X))] (32)

G̃21(X, p) = − iπ

ωp
[δ(p0 − ωp)(1 + np(X)) + δ(p0 + ωp)np(X)] (33)

Substituting this ansatz in Eq. (30), one can rearrange the terms to get:

(∂t + v · ∂x)np =
i

2ωp
[Σ̃12(ωp,p)(1 + np)− Σ̃21(ωp,p)np] (34)

Which looks a lot like a Boltzmann equation. What is left to do is to substitute the explicit
propagators, given by:

Σ̃12(ωp,p) = − iλ2

2

∫︂
dp′dk′

(2π)62ωp′2ωk2ωk′
np′nk(1 + nk′)2πδ(ωp + ωp′ − ωk − ωk′), (35)

Σ̃21(ωp,p) = − iλ2

2

∫︂
dp′dk′

(2π)62ωp′2ωk2ωk′
(1 + np′)(1 + nk)nk′2πδ(ωp + ωp′ − ωk − ωk′)

(36)
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where k′ ≡ p+ p′ − k. Finally, one can now write the Boltzmann equation for a single
component scalar field:

(∂t + v · ∂x)np =
iλ2

2

∫︂
dp′dk′

(2π)6ωpωp′ωkωk′
2πδ(ωp + ωp′ − ωk − ωk′)

× [npnk(1 + np′)(1 + nk′)− np′nk′(1 + np)(1 + nk)] (37)

To derive the Boltzmann equation for QCD, one must first extend this derivation into a
multi-component case. We assume a field φa, where a represents the isospin. Due to
the increased degrees of freedom, the propagator and self-energy components become
matrices. This will bring some problems in our past derivation because the components of
G and Σ no longer commute. The new starting point is:

(∂2
x − ∂2

y)G12(x, y) =
1

2

(︂
{G11 +G22,Σ12} − [G11 −G22,Σ12]

− {Σ11 +Σ22, G12} − [Σ11 − Σ22, G12]
)︂

(38)

For a multi-component scalar field, the choice of ansatz has to be:

G̃
ab
12(X, p) = − iπ

ωp
[δ(p0 − ωp)n

ab
p (X) + δ(p0 + ωp)(δ

ab + nba
−p(X))] (39)

G̃
ab
21(X, p) = − iπ

ωp
[δ(p0 − ωp)(δ

ab + nab
p (X)) + δ(p0 + ωp)n

ba
−p(X)] (40)

Here, nab
p (X) is the density matrix. The choice of ansatz leads to some simplifications in

our expression, and the kinetic equation becomes:

(∂t + v · ∂x)np =
i

4ωp

(︂
{Σ12(ωp,p)(1 + np)} − {Σ̃21(ωp,p)np} (41)

− [Σ11(ωp,p)− Σ22(ωp,p), np]
)︂

(42)

This equation can be expressed in terms of loss and gain terms I− and I+. For that, we
define:

I− =
i

2ωp
Σ12(ωp,p), I+ =

i

2ωp
Σ21(ωp,p) (43)

and
ReΣ̄ =

1

4ωp
(Σ11 − Σ22) =

1

4ωp
(ΣR − ΣA) =

1

2ωp
ReΣR(ωp,p) (44)

28



where Σ̄ is the correction to the energy of excitation p. These simple definitions allow us
to write the right-hand side of the Boltzmann equation as:

C[n] =
1

2
{np, I−} −

1

2
{1± np, I+} − i[ReΣ̄, np] (45)

3 Boltzmann equation for gauge theories

We will now extend our approach from the previous section to gauge theories. First, we
will focus on scalar QED and illustrate how the Boltzmann equation can be derived with
some adjustments. These adjustments are necessary due to the increased complexity of
the self-energy Σ compared to scalar φ4 theory. The leading order contribution for Σ
comes from the one-loop diagram as

p p
p− q

q

and can be written as:

Σ̃12(p) = −ie2
∫︂

d4q

(2π)4
(2p− q)µ(2p− q)νD

µν
12 (q)G̃12(p− q) (46)

Where Dµν is the photon propagator, which can be obtained using the photon self-energy
Π, using the equations:

q2D12 = Π11D12 −Π12D22, (47)
q2D22 = Π21D12 −Π22D22 − 1. (48)

These relations are simply Eq. (23), if one makes Σ → Π and m = 0. Solving for D12

results in:
D12(q) =

Π12

(q2 −Π11)(q2 +Π22) + Π12Π21
(49)

Similar to the scalar case, the advanced and retarded propagators are obtained using the
relation:

(q2 −Π11)(q
2 +Π22) + Π12Π21 = (q2 −ΠR)(q

2 −ΠA) (50)

Therefore,
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D12(q) =
Π12

(q2 −ΠR)(q2 −ΠA)
= DRΠ12DA = |DR|2Π12 (51)

The photon self-energy will be defined by the one-loop diagram shown at the beginning
of this section and given as

Πµν
12 (q) = ie2

∫︂
dp′

(2π)4
(2p′ + q)µ(2p′ + q)νG12(p

′)G21(p
′ + q) (52)

Analogously to the scalar field case, we use the ansatz:

G̃12(p) = − iπ

ωp

[︁
fpδ(p0 − ωp) + (1 + f̄−pδ(p0 + ωp)

]︁
(53)

Here, we will use the notation that fp and f̄−p are the equilibrium distributions for
particles and antiparticles. Substituting it into the photon self-energy, given by Eq. (52),
yields:

Πµν
12 (q) = ie2

∫︂
dp′

(2π)3
(2p′ + q)µ(2p′ + q)ν

[︁
fp’+q(1 + fp’) + f̄p’+q(1 + f̄p’)

]︁
(54)

Now that we have all the ingredients necessary to express Dµν , we can write the scalar
self-energy explicitly as:

Σ12(ωp,p) = −ie2
∫︂

dp’dq
(2π)62ωp’2ωp-q2ωp’+q

(2π)δ(ωp + ωp’ − ωp-q − ωp’+q)

×|(2p− q)µ(2p
′ + q)νD

µν
R (q)|2

[︁
(1 + fp’)fp-qfp’+q + (1 + f̄p’)f̄p-qf̄p’+q

]︁
(55)

So far, we’ve only computed one off-diagonal scalar self-energy component Σ12. However,
it is quite direct to compute Σ21 using the same prescription. With these two expressions
in hand, one can finally write the Boltzmann equation for QED as,

(∂t + v · ∂x)np =

∫︂
dp’dk

(2π)62ωp2ωp’2ωk2ωk’
|Mpp’→kk’|2(2π)δ(ωp + ωp’ − ωk − ωk’)

×
{︂
(1 + fp)fk[(1 + fp’)fk’ + (1 + f̄p’)f̄k’]

− (1 + fk)fp[(1 + fk’)fp’ + (1 + f̄k’)f̄p’]
}︂

(56)

Since our objective in this chapter is to derive a Bolztamnn equation for QCD, we must
now turn to non-abelian gauge theory derivations. As most of the equipment necessary
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for this derivation has already been covered in this chapter, what remains is to combine
the treatment for multi-component scalar theory with QED. One can begin by computing
the gain and loss terms, which come from one-loop contributions to the self-energy. In
QCD, the self-energy is computed with a soft resummed gauge boson propagator,

p

k

k − p

p

and given as,

Σaā
12(ωp,p) = −ig2

∫︂
dp’dq

(2π)62ωp’2ωp-q2ωp’+q
(2π)δ(ωp + ωp’ − ωp-q − ωp’+q)

×|(2p− q)µ(2p
′ + q)νD

µν
R (q)|2

[︂
f b̄b
p′ (1± fp-q)

cc̄(1± fp’+q′)
dd̄
]︂

(57)

Here, there is an implied summation over the types and spins of the particles. Analogously,
we write the gain and loss terms, as done in the last section,

Iaā
− =

∫︂
p′k′k

M∗
āb̄c̄d̄Mabcdf

b̄b
p′ (1± fk)

cc̄(1± fk′)
dd̄ (58)

Iaā
+ =

∫︂
p′k′k

M∗
āb̄c̄d̄Mabcdn

c̄c
k ndd̄

k (1± nk′)
b̄b (59)

(60)

Finally, at this point, one can follow the same procedure and write the Boltzmann equation
for QCD:

(∂t + v·∂x)fa
p =

∑︂
bcd

∫︂
dp’dkdk′

(2π)62ωp2ωp’2ωk2ωk’

⃓⃓⃓
Mab

cd(p, k;p′, k
′)
⃓⃓⃓2

δ(4)(P +K − P ′ −K ′)
{︂
fa
p f b

k [1±f c
p′ ] [1±fd

k′ ]− f c
p′ f

d
k′ [1±fa

p ] [1±f b
k]
}︂

(61)

Where capital letters refer to 4-momentum, and a, b, c, and d represent different species
of particles, either bosons, quarks, or anti-quarks. From this point, Eq. (61) will be the
starting point for our transport coefficient calculations throughout this thesis.
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4 Theoretical Framework

Next, we introduce the setup necessary for the description of the QGP and the calculations
of shear viscosity. This formalism was first developed by Arnold, Moore, and Yaffe for the
leading log order in [13] and later expanded by us to the high-density regime in [41].
Therefore, this section will be based on the latter. We begin by outlining the essential
setup required to derive shear viscosity. In this context, it will be sufficient to solve the
Boltzmann equation linearized in small deviations away from an equilibrium state, which
has a given temperature T and chemical potential µ. Shear viscosity is a property of
systems featuring non-uniform flow velocities across space. This entails that the local
equilibrium form of the statistical function is:

fa
0 (p⃗, x⃗, t) =

1

exp (γβ (p0 − uipi − µa))∓ 1
=

1

exp (β (−uµPµ − µa))∓ 1
. (62)

We use a mostly-positive metric tensor gµν = Diag[−1,+1,+1,+1], and natural units,
c = 1, h̄ = 1. Capital letters P,K are 4-vectors, lower case letters p⃗, k⃗ or pi, ki are the
space components, p0 and k0 are the time components, and p, k are the magnitudes of the
space components.

Throughout these calculations, uµ = (γ, γv⃗) is the local velocity 4-vector, γ is the
associated relativistic gamma-factor, and β = β(x⃗, t) = 1/T is the local temperature. The
sign ∓1 corresponds to − for bosons and + for fermions (with the upper typically assigned
to bosons). Additionally, µa represents the baryonic chemical potential for species a, which
will be nonzero for quark species and have opposite signs for a particle and its antiparticle.
Later, we will introduce an effective chemical potential incorporating strangeness and
electric charge. However, for simplicity, we now concentrate on an SU(3) gauge theory
with nf vectorlike quark species characterized by identical baryonic chemical potential.

We will ignore the cases where fa
0 is time-dependent, which come from β variations

in space, and concentrate on the case where the flow velocity has a traceless-symmetric
spatial derivative. Our choice of frame will be the one that has ui(x⃗ = 0) = 0, giving a
shear tensor σij that is:

σij ≡ ∂iuj + ∂jui −
2

3
δij∂kuk ̸= 0. (63)

Under these conditions, the system won’t stay in equilibrium. The nonequilibrium distribu-
tion can be written by decomposing fa into an equilibrium and nonequilibrium correlator
according to the Landau-Lifshitz conventions; this gives:

fa(p⃗, x⃗) = fa
0 (p⃗, x⃗) + f0(1± f0) f

a
1 (p⃗, x⃗) , (64)
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This choice of normalization for f1 with a factor of f0(1 ± f0) is convenient for the
computational methods employed in this chapter. It is well known that the term f0(1±f0)f1
does not contribute to the energy density T 00 or momentum density T 0i. However, it is
expected to contribute to the stress tensor. For instance, this dependence is expected to
be linear in a system with small and slowly varying σij . As such, one defines:

Tij = Pgij − η σij (65)

In the above expression,P is the pressure and η represents the shear viscosity, characterized
as the coefficient governing the linear response of Tij to nonvanishing σij , discussed before
in Chapter 2.

The stress tensor can be determined from fa(p⃗, x⃗). Here, our focus lies solely on the
leading-order description, wherein particle masses are neglected, yielding an expression
given by:

Tij(x⃗) =

ffhc∑︂
a

∫︂
d3p

(2π)3
pipj
p

fa(p⃗, x⃗) (66)

where the sum runs over all colors c, helicities h, flavors/particle types f, and particle/an-
tiparticle f̄. Therefore, the sum has 16 terms due to gluons ( 2 helicities × 8 colors) and
12nf terms (2 helicities × 3 colors × particle + antiparticle) due to nf flavors of quarks.

The next step is determining fa
1 from σij . To accomplish this, we refer to the Boltzmann

equation for non-abelian theories derived in the previous Chapter. In a weakly coupled
system, the dynamics of fa are governed by a Boltzmann equation:[︂ ∂

∂t
+ v⃗p ·

∂

∂x⃗

]︂
fa(p⃗, x⃗, t) = −Ca[f ]. (67)

We leave out the terms, including the time derivative and the external force, as they won’t
be relevant to viscosity calculations. Furthermore, we neglect thermal and Lagrangian
masses; hence, the velocity vector is the unit vector in the direction of the momentum,
v⃗p = p̂ = p⃗/p. Since the focus of this chapter is to derive the theoretical framework, it will
be sufficient to consider 2 ↔ 2 collisions and save more details of the collision operator
for the following chapters. For now, let us express the collision operator as:

Ca[f ](p⃗) =
1

2

∑︂
bcd

∫︂
k⃗,p⃗,k′⃗

|Mabcd(P,K, P ′,K ′)|2

2p0 2k0 2p′0 2k′0
(2π)4δ4(P +K − P ′ −K ′)

×
{︂
fa(p⃗)f b(k⃗)[1± f c(p′⃗)][1± fd(k′⃗ )]

− f c(p′⃗)fd(k′⃗ )[1± fa(p⃗)][1± f b(k⃗)]
}︂

(68)
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here, the incoming/outgoing momenta p⃗, k⃗ and p⃗′, k⃗
′
are all on shell, p0 = p. We use the

simplified notation
∫︁
k⃗
=
∫︁

d3k⃗
(2π)3

. The factor 1/2 is included to prevent double counting
in the external state sum when c ̸= d and represents the relevant symmetry factor when
c = d. Finally, M represents the scattering process to be calculated using perturbation
theory at the order relevant for the calculation.

So far, we have introduced all the necessary tools to describe the system. We will
proceed by presenting a few additional definitions that will aid in setting up the problem.
We begin by introducing a more convenient rescaling of σij ,

Xij ≡
1√
6
σij (69)

Adding to that, one can rewrite the LHS of Eq. (67) in a more convenient way:

p̂ · ∂xfa
0 (p⃗, x⃗) = βp0fa

0 (1± fa
0 )Xij(x) Iij(p⃗) ≡ β2Xij(x)S

a
ij(p⃗) , (70)

Iij(p⃗) ≡
√︃

3

2

(︃
p̂ip̂j −

1

3
δij

)︃
, (71)

Sa
ij(p⃗) ≡ p0 T fa

0 (1± fa
0 )Iij(p⃗) . (72)

Here,Iij represents the angular dependence and is normalized as IijIij = 1. Given that this
expression is linear in Xij for the equilibrium distribution, the insertion of the departure
from equilibrium f1 will lead to an expression that is either quadratic in Xij or involves
derivatives of this quantity. We will neglect these terms, making use of the results from
Ref. [148].

Since the collision operator does not contribute to f → f0, it follows that it will be linear
in f1(p⃗), namely, f1(p⃗) ∝ Xij(p⃗). The distribution f1 is a scalar quantity; hence, it must
also be proportional to the contraction f1(p⃗, x⃗) ∝ Xij(x⃗)Iij(p⃗). Consequently, without loss
of generality, we can express the departure from equilibrium as:

fa
1 (p⃗, x⃗) = β2Xij(x⃗)χ

a
ij(p⃗) = β2Xij(x⃗)Iij(p⃗)χ

a(p) . (73)

Here, χa(p) represents a purely scalar function ofp. It characterizes the departure from
equilibrium in the presence of shear stress and can be referred to as the relaxation function
of each species a. As a consequence of the fact that both sides of Eq. (67) are proportional
to Xij , we can reformulate it as

Sa
ij(p⃗) = Cχa

ij(p⃗) . (74)

Here Cχa
ij(p⃗) refers to the collision operator of Eq. (68) with fa

1 → χa
ij(p⃗) inserted as

the departure from equilibrium. In other words, the collision operator is assured to be
proportional to Xij , and Cχa

ij(p) is the collision operator with this factor of β2Xij stripped
off.
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4.1 Variational solution

When confronted with coupled integral equations of this type, a systematic approach
involves reducing them to a set of scalar equations, discretizing the permissible values
of |p|, computing the matrix elements Cab(|p|, |q|) of the collision operator’s kernel using
quadrature methods. This procedure would then render (74) into a finite-dimensional
linear matrix equation. However, it has been argued in [13] that this is not the best strategy
due to the integrable singularities present in Cab(|p|, |q|), which would require a large
discretization to be overcome. Therefore, we turn to the variational method approach
used in [9, 13] in leading log and leading order calculations. It converts Eq. (74) into an
equivalent variational problem. We begin by defining the inner product:

(f, g) = β3
ffhc∑︂
a

∫︂
p⃗
fa(p⃗)ga(p⃗). (75)

The collision operator is Hermitian with respect to this inner product. This implies that
one can define a functional Q[χ], over the space of χa(p), this can be defined as:

Q[χ] = (χij , Sij)−
1

2
(χij , Cχij) , (76)

Setting the variation with respect to χa(p) equal to zero to find the extremum (maximum)
of this functional returns Eq. (74). That is, the functional Q takes its maximum value
when the Boltzmann equation is satisfied. Furthermore, its value at this maximum,

Qmax =
1

2
(χij , Sij) =

1

2
(χij , Cχij) =

1

2
(Sij , C−1Sij) , (77)

determines the viscosity:

η =
2

15
Qmax. (78)

The terms in this functional can be identified as the source:

(χij , Sij) = β2
ffhc∑︂
a

∫︂
p⃗
f0(p⃗)[1± f0(p⃗)]|p⃗|χaIij(p̂)Iij(p̂)

= β2
ffhc∑︂
a

∫︂
p⃗
f0(p⃗)[1± f0(p⃗)]|p⃗|χa (79)
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and the collision integral:

(χij , Cχij) =
β3

8

ffhc∑︂
abcd

∫︂
p⃗,k⃗,p′⃗,k′⃗

|Mabcd(P,K, P ′,K ′)|2

2p0 2k0 2p′0 2k′0
(2π)4δ4(P +K − P ′ −K ′)

× fa
0 (p)f

b
0(k)

[︁
1± f c

0(p
′)
]︁ [︂

1± fd
0 (k
′)
]︂

×
[︂
χa
ij(p⃗) + χb

ij(k⃗)− χc
ij(p

′⃗)− χd
ij(k

′⃗ )
]︂2

. (80)

The sum is over all scattering processes taking species a and b into species c and d. The
overall factor of 1/8 compensates for the eight times a given process is taken into account:
a ↔ b, c ↔ d, and (a, b) ↔ (c, d).

To maximize the functional Qmax exactly, it is usually necessary to work in the infinite-
dimensional space of arbitrary functions χ(p). However, as established in other variational
problems, highly accurate approximate outcomes can be attained by conducting a restricted
extremization within a carefully selected finite-dimensional subspace. Therefore, we
expand the χ(p) functions into a finite basis set:

χg(p) =

N∑︂
m=1

amφ(m)(p), χq(p) =

N∑︂
m=1

am+Nφ(m)(p), χq̄(p) =

N∑︂
m=1

am+2Nφ(m)(p).

(81)

Inserting the χ(p) functions back into the source and collision integrals, we get the source
vector and the truncated scattering matrix:

(Sij , χij) =
∑︂
m

amS̃m, (χij , Cχij) =
∑︂
m,n

amC̃mnan, (82)

where S̃m, C̃mn are Eq. (79) and Eq. (80) with χa replaced by individual basis functions
φ(m), φ(n), which gives

S̃m = (φ(m)Iij , Sij)

C̃mn = (φ(m)Iij , Cφ(n)Iij) . (83)

Within the subspace defined by this basis, one estimates that:

Q[χ] = amS̃m − 1

2
amC̃mnan (84)
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where C̃−1mn is to be understood as the matrix inverse of C̃mn, explicitly, C̃
−1
mnC̃no = δmo. And

shear viscosity is determined by substituting the correct distribution in Tµν and comparing
it with the constitutive relation:

Tµν(x) =

∫︂
p⃗
β2 p

ipj

|p⃗|
f0[1± f0]

1√
6
(∇iuj +∇jui − δij∇ · u⃗)

×
√︃

3

2
(p̂ip̂j −

1

3
δij)χ

a

=
β2

2

∫︂
p⃗
f0[1± f0]

pipj

|p⃗|
(p̂ip̂j −

1

3
δij)(∇iuj +∇jui

− δij∇ · u⃗)χa

=
β2

2

∫︂
p⃗
f0[1± f0]

2

3
|p⃗|(∇iuj +∇jui − δij∇ · u⃗)χa (85)

and we have to add a factor of 1
10 that comes from the symmetry of the tensor: [δliδnj +

δljδni − 2
3(δ

lnδij)]. Comparing the functional form with the constitutive relation, we can
see that:

η =
1

15
S̃mC̃−1mnS̃n , (86)

Therefore, shear viscosity can be obtained by simply inverting the scattering matrix and
multiplying it by the source vector. This procedure will be used for calculations in the
following chapters.
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Shear viscosity at leading logarithmic order

This chapter describes the first step toward studying chemical potentials in the QCD shear
viscosity. For that, we make use of the kinetic theory description of the system detailed in
Chapter 3. This kind of investigation of transport coefficients using kinetic theory was
first carried out correctly by Arnold, Moore, and Yaffe in [13], where they obtained shear
viscosity at leading logarithmic order in the coupling for a system with zero net baryon
density in weakly coupled high-temperature QCD. In this regime, the temperature is
taken to be much larger than the zero-temperature masses of elementary particles[13,
9], i.e., we require that T ≫ ΛQCD and T ≫ mq. Since we are interested in the chemical
potential dependence, dense QCD means that µ ≥ T . This chapter is largely derived from
my published work [41].

In the previous chapter, we elucidated the principles of kinetic theory and the derivation
of the Boltzmann equation for abelian and non-abelian theories. We have also derived
the theoretical framework necessary to compute transport coefficients for QGP. Here, we
apply these principles and obtain shear viscosity as a function of the chemical potential,
considering only contributions at leading logarithmic order on the coupling, g. For that,
we present the relevant scattering processes and compute each contribution in detail.
Later, we study a good basis set for these calculations. We then can extract the dependence
of shear viscosity to the baryonic chemical potential. Here, we perform calculations as a
function of µ, which represents the chemical potential from each quark, µ = µB/3. We
will use this notation for all kinetic theory calculations performed in this thesis.

1 Collision Integrals at Finite Chemical Potentials

In this section, our objective is to determine the magnitude of the contribution from each
diagram to (χij , Cχij). To achieve this, we adopt a method similar to that employed by
Arnold, Moore, and Yaffe, where we transform the integration over p⃗′ into an integration
over q⃗ = p⃗′−p⃗. In the weak coupling regime, the diagrams are predominantly influenced by
small values of q. The frame choice here will be the plasma frame, in spherical coordinates
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chosen with q⃗ as the z-axis and p⃗ lying in the x− z plane:

(χij , Cχij) =
β3

(4π)6

ffhc∑︂
abcd

∫︂ ∞
0

q2dqp2dpk2dk

∫︂ 1

−1
d(cos θpq)d(cos θkq)

∫︂ 2π

0
dφ

×
|Mab

cd|2

pkp′k′
δ4(P +K − P ′ −K ′)fa

0 (p)f
b
0(k)[1± fa

0 (p)][1± f b
0(k)]

×
[︂
χa
ij(p⃗) + χb

ij(k⃗)− χc
ij(p

′⃗)− χd
ij(k

′⃗ )
]︂2

(1)

The azimuthal angle of k⃗ is φ , and θpq is the plasma frame angle between p⃗ and q⃗.
Following Baym et al. [22], we introduce ω = p′ − p, which, along with the energy-

momentum delta functions, facilitates further simplification of the integrals:

(χij , Cχij) =
β3

(4π)6

ffhc∑︂
abcd

∫︂ ∞
0

dq

∫︂ q

−q
dω

∫︂ ∞
q−ω
2

dp

∫︂ ∞
q+ω
2

dk

∫︂ 2π

0
dφ

×
|Mab

cd|2

pkp′k′
ffa

0 (p)f
b
0(k)[1± f c

0(p
′)][1± fd

0 (k
′)]

×
[︂
χa
ij(p⃗) + χb

ij(k⃗)− χc
ij(p

′⃗)− χd
ij(k

′⃗ )
]︂2

. (2)

In general, the product between different species is given by:

χa
ij(p)χ

b
ij(k) = χa(p)χb(k)P2(cos θpk) = χa(p)χb(k)

(︃
3

2
cos2 θpk −

1

2

)︃
(3)

which depends on cos θpk through the Legendre polynomial P2(cos θpk).
At weak coupling, the scattering processes involving t-channel gluon exchange exhibit

a screened infrared divergence, resulting in significant contributions at small momentum
transfer q. This behavior is well-documented in the literature; see, for instance, [22].
Similarly, the exchange of t-channel quarks leads to logarithmically large cross-sections,
contributing to the interchange of particle types g ↔ q or q̄. The significance of each
process is thus magnified by a logarithm of the ratio πT/mD, where πT represents the
typical particle energy and mD denotes a screening scale typically small in the weak-
coupling regime. In the leading-log approximation, we focus solely on these processes and
the region of the scattering integrals where mD < q < πT . This approximation simplifies
our calculations, providing a qualitative description of how the viscosity evolves as µ/T
increases.
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The approximation q ≪ πT first allows us to continue the p, k integrals in Eq. (2) down
to 0. Additionally, it simplifies the evaluation of matrix elements, allowing us to employ
the following approximations for the Mandelstam variables:

−s

t
≃ u

t
≃ 2pk

q2
(1− cosφ). (4)

One can also use that since p ≃ p′, in evaluating f0 we neglect the difference between p
and p′ and between k′ and k. Finally, for processes with a virtual quark in the t-channel
we can approximate χa

ij(p) = χa
ij(p

′). For processes with a virtual gluon, the species labels
a and b are the same and this approximation gives zero. As the matrix element is strongly
divergent, the best approach here is to expand the last line of Eq. (2) to linear order in q:

χa
ij(p⃗)− χa

ij(p
′⃗) = −q⃗ · ∇χa

ij(p⃗) +O(q2). (5)

The collision operator requires the square of this quantity. Explicitly, the first term of
Eq. (5) can be written as,

q⃗ · Ii...j(p̂)∇(χa(|p⃗|)) = wIi...j(p̂)χ
a(|p⃗|)′ (6)

and the second term,

q⃗ · ∇(Ii...j(p̂))χ
a(|p⃗|) = q⃗ ·

[︂√︃3

2
(p̂i∇p̂j + p̂j∇p̂i)

]︂
χa(|p⃗|)

=

√︃
3

2

(︂qip̂j
p

+
qj p̂i
p

− 2
p̂ip̂jqip̂i

p

)︂
χa(|p⃗|) (7)

Hence, the evaluation of this product gives:

[χa
ij(p⃗)− χa

ij(p
′⃗)]2 = ω2[χa(|p⃗|)′]2 + 3

q2 − ω2

p2
[χa(p)]2. (8)

The term proportional to ω2 describes the change in energy, while the term proportional
to q2 − ω2 = q2⊥ describes the change in direction. For the cross-contributions that arise
in Eq. (2), one can use the approximations:

cos θpq ≃ cos θkq ≃ cos θp′q ≃ cos θk′q ≃
ω

q
(9)

cos θpk ≃ cos θp′k ≃ cos θpk′ ≃ cos θp′k′ ≃
ω2

q2
+

q2 − ω2

q2
cosφ. (10)
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Figure 1: Leading log diagrams for the scattering processes in a gauge theory with
fermions. Solid lines as fermions and the helices represent gluons. Time
may be regarded as running horizontally.

For the leading log order calculations, we focus on infrared divergent scattering processes,
shown in figure 1. Indeed, the inclusion of self-energies is enough to regulate these
divergencies; however, in this chapter, we are only interested in obtaining the coefficient
of the divergence, which translates to the size of each contribution to shear viscosity. The
next subsections will be dedicated to computing each diagram in detail and discussing
the large µ region.

1.1 Diagrams (A), (B) and (C)

For diagrams (A), (B), and (C), we will make use of some common approximations, as
suggested in [13]. Despite describing different scatterings, in the soft particle exchange
(q → 0) limit, the vertices in diagrams (A)-(C) have a universal form that depends only on
the color charge of the particle that is scattering. This simplification can be used for all
three diagrams, and it has the form:

2pµgtaδhh′ (11)
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Where ta is the color generator, and h and h′ represent the helicities of the scattering
particles. This approximation allows one to compute these diagrams easily:

|Mab
cd|2lead−log = Aab

4p2k2

q4
(1− cosφ)2 (12)

where Aab = 4dATRaTRbg
4, and we have only summed over the outgoing particles’ helicity.

Here dA = N2
c − 1 = 8 is the dimension of the adjoint representation, and TR is the

trace normalization, 1/2 for quarks, and Nc = 3 for gluons. After reinstating this matrix
element into the integral and leveraging the relation (8), the integrals over φ and ω
become straightforward. ∇qχ(p)∇qχ(k) cross-terms vanish upon integrating over ω and
φ, leaving behind only those terms where the statistical function appears twice on one
side of the diagram. The remaining ones are:

(χij , Cχij)
(A)−(C) =

ffh∑︂
ab

2Aabβ
38π

(4π)6

∫︂ ∞
0

dq

∫︂ ∞
0

dp

∫︂ ∞
0

dk
k2

q

× fa
0 (p)f

b
0(k)[1± fa

0 (p)][1± f b
0(k)]

×
[︁
p2[χa(|p⃗|)′]2 + 6[χa(p)]2

]︁
(13)

The Bose-Einstein distributions are not dependent on the chemical potential, and the
integral over k for diagram (A) is well known to give:∫︂ ∞

0
dkk2f b

0(k)[1± f b
0(k)] = λbT

3π
2

6
(14)

Where λb is 2 for bosons and 1 for fermions.
On the other hand, for diagram (B), there are two distinct contributions: The first is

given when both χ factors correspond to the fermion line and the second when both χ
factors correspond to the gluon line. In both cases, the integration over energy is feasible.
From now on, we name the integrals after the departure from equilibrium we are left
with; for example, Bf will result from integrating over the gluon momentum when quark
χ-factors are present. Evaluating the contribution where both χ represent quarks, we
find:

(χij , Cχij)
(Bf ) =

fh∑︂ 4dATRaTRbλb

293π3

∫︂ ∞
0

dpff
0 (p)

[︂
1− ff

0 (p)
]︂

{︃
p2
[︂
χf (|p⃗|)′

]︂2
+ 6

[︂
χf (p)

]︂2}︃
. (15)
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Here
∑︁fh means that the sum runs over flavor and helicity but not over particle-antiparticle

(which is explicit) or color (which is included in the color factors). Similarly, there is a
contribution when the line represents an antiquark:

(χij , Cχij)
(Bf ) =

fh∑︂ 4dATRaTRbλb

293π3

∫︂ ∞
0

dpff
0 (p)

[︂
1− ff

0 (p)
]︂

{︃
p2
[︂
χf (|p⃗|)′

]︂2
+ 6

[︂
χf (p)

]︂2}︃
. (16)

These integrals depend on χf and must be performed numerically for each combination
of basis functions, except for the case of N = 1, which can be computed analytically.

On the other hand, the bosons’ departure from equilibrium is given after the integration
over the fermion vertex is performed. The integral to be computed this time is:

∑︂
±

∫︂ ∞
0

dk k2
1

eβ(k±µ) + 1

[︃
1− 1

eβ(k±µ) + 1

]︃
=
∑︂
±

∫︂ ∞
0

dk 2kT
1

eβ(k±µ) + 1

=
π2T 3

3
+ µ2T . (17)

Once we put the results back in Eq. (2), we are left with:

(χij , Cχij)
(Bg) =

h∑︂
ab

4Aabβ
38π

(4π)6

(︃
T 3π2

6
+

Tµ2

2

)︃
×∫︂ ∞

0
dp fg

0 (p)[1 + fg
0 (p)]

{︁
p2[χg(p)′]2 + 6χg(p)2

}︁
. (18)

We observe here that the gluonic contribution to diagram (B) surpasses the contribution
to diagram (A) in regimes where the µ2 term mentioned above significantly outweighs the
T 2 term. Consequently, at high chemical potentials, diagram (B) will outweigh diagram
(A) in significance.

Using the approximations described for diagrams (A) and (B), it is straightforward to
compute diagram (C). This time, only fermionic departures from equilibrium are relevant,
and the scatterer is always a fermion, leading to a µ2T+π2T 3/3 type contribution similarly
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to what was observed for diagram (B). Explicitly, one finds:

(χij , Cχij)
(Cf ) =

fh∑︂
ab

4Aabβ
38π

(4π)6

(︃
T 3π2

6
+

Tµ2

2

)︃
× (19)∫︂ ∞

0
dp
{︂
ff
0 (p)[1− ff

0 (p)]
[︂
p2[χf (p)′]2 + 6[χf (p)]2

]︂}︂
(χij , Cχij)

(Cf ) =

fh∑︂
ab

4Aabβ
38π

(4π)6

(︃
T 3π2

6
+

Tµ2

2

)︃
×∫︂ ∞

0
dp
{︂
ff
0 (p)[1− ff

0 (p)]
[︂
p2[χf (p)′]2 + 6[χf (p)]2

]︂}︂
Compared to the χf -dependent term originated from the integration in diagram (B), this
contribution is amplified by µ2/T 2 and will prevail in the high chemical potential regime.
Consequently, in this regime, the fermionic contributions to shear viscosity outweigh those
from gluons, given that fermions dominate the stress tensor by a factor of µ4/T 4. Hence,
diagram (C) is the most crucial process under these conditions.

1.2 Diagrams (D) and (E)

At leading logarithmic order on the coupling, diagrams (D) and (E) can be treated
using the same approximations. Not only are these diagrams similar, but they are also
highly suppressed in the high-density region. We will dedicate this section to carefully
applying these approximations. We begin with diagram (D), which can take the following
possibilities: ff → gg, ff → gg, gg → ff and gg → ff . As the chemical potential
increases, the number of anti-fermions decreases, and the rate for this process becomes
small.

Using well-known results from QED, one should be able to compute diagram (D) and
get:

|Mff
gg |2lead−log = Af

(︂u
t
+

t

u

)︂
(20)

where Af = 4dATRfCRfg
4. Interchanging the outgoing legs makes t/u → u/t, so one

can keep only u/t and multiply the result by 2. Diagrams (D) and (E) present an infrared
log divergence, which allows one to make use of all possible small q approximations. In
that sense, we write the equilibrium distributions as,

f0(w + p) = f0(p) , f0(k − w) = f0(k) (21)
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and the angles
cos θpp′ ≃ cos θkk′ ≃ 1 (22)

That includes the fact that at small q the matrix element can be rewritten as:

u

t
≃ 2kp

q2
(1− cosφ). (23)

Plugging these back into Eq. (2) gives:

(χij , Cχij)
(D) =

f fh∑︂ 4Afβ
3

(4π)6

∫︂ ∞
0

dq

∫︂ q

−q
dw

∫︂ ∞
0

dk

∫︂ 2π

0
dφ(1− cosφ)

2pk

q2

× ff
0 (p)f

f
0 (k)[1± fg

0 (p)][1± fg
0 (k)]

{︂
[χf (p)− χg(k)]2

+ [χf (k)− χg(k)]2 + 2P2(cos θpk)[χf (p)− χg(k)]

[χf (k)− χg(k)]
}︂
. (24)

The crossing terms vanish for l > 0 as a consequence of the orthogonality of the Legendre
Polynomials, using Eq. (9):∫︂ q

−q
dω

∫︂ 2π

0
dφP2

(︃
q2 − ω2

q2
cosφ

)︃
(1− cosφ) = 0 (25)

For the remaining terms, the integrals over ω and φ are trivial. One is left with two
possible integrals, one over fermions and one over anti-fermions. For the term involving
the fermions, one must compute:∫︂

dk k
1

eβ(k−µ) + 1

(︃
1 +

1

eβk − 1

)︃
(26)

Which gives:

(χij , Cχij)
(Df ) =

fh∑︂ 4Afβ8π

(4π)6

∫︂ ∞
0

dp pff
0 (p)[1± fg

0 (p)][χ
f (p)− χg(k)]2

×

[︄
2π2

6
+

µ2

2T 2
− Li2

(︄
eµ/T

1 + eµ/T

)︄
− 1

2
ln2
(︂
1 + eµ/T

)︂]︄
× 1

eµ/T + 1
(27)
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And for the term involving anti-fermions:∫︂
dk k

1

eβ(k+µ) + 1

(︃
1 +

1

eβk − 1

)︃
(28)

The result is:

(χij , Cχij)
(Df ) =

fh∑︂ 4Afβ8π

(4π)6

∫︂ ∞
0

dp pff
0 (p)[1± fg

0 (p)]
[︂
χf (k)− χg(k)

]︂2
× eµ/T

eµ/T + 1

(︃
π2

6
− Li2(−eµ/T )

)︃
(29)

The involvement of an incoming antiquark in this diagram causes these results to be
suppressed by e−µ/T in the large µ/T regime, as antiquarks become exponentially rare
with a fugacity of e−µ/T .

Finally, the Compton scattering diagram (E) differs slightly from the annihilation
diagram (D) in leading log order. As discussed in [13] for Compton scattering, the
matrix element is given by (−s/t), but at leading order in small q one can consider
−s/t = u/t. The computation is straightforward and gives:

(χi...j , Cχi...j)
(Ef ) =

fh∑︂ 4Afβ8π

(4π)6

∫︂ ∞
0

dp pff
0 (p)[1± fg

0 (p)][χ
f (p)− χg(p)]2

× e−µ/T
eµ/T

eµ/T + 1

(︃
π2

6
− Li2

(︂
−eµ/T

)︂)︃
(30)

(χij , Cχij)
(Ef ) =

fh∑︂ 4Afβ8π

(4π)6

∫︂ ∞
0

dp pff
0 (p)[1± fg

0 (p)]
[︂
χf (p)− χg(p)

]︂2
× eµ/T

eµ/T + 1

[︂2π2

6
+

µ2

2T 2
− Li2

(︄
eµ/T

1 + eµ/T

)︄
− 1

2
ln2(1 + eµ/T )

]︂
. (31)

As previously mentioned, diagram (E) is also highly suppressed in dense regions. At
leading-log order, this phenomenon results from the fact that the final-state quark’s energy
matches the initial-state gluon’s energy. To overcome a considerable Pauli blocking factor,
the final-state quark must have an energy E ≥ µ. At the same time, a sufficiently energetic
gluon has a Boltzmann suppression factor of e−µ/T , which makes it considerably difficult
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to have a highly energetic final-state quark. Consequently, the process is again suppressed
by e−µ/T . The Compton scattering of an antiquark is similarly suppressed because the
incoming antiquark statistical function has the same e−µ/T suppression factor. Therefore,
processes (D) and (E) not only become less important in comparison with process (C),
but their reduced importance is exponential and not just polynomial[41].

2 One-function ansatz calculations

As a warm-up, one can perform some of these integrals analytically. In this section, we
obtain the scattering matrix for a one-function ansatz given by φ = p2/T . First, we
compute the integrals for each possibility of our 5 diagrams, leaving a dependence on the
chemical potential, and then we put these results in a scattering matrix.

We begin with diagram (A), which only considers contributions from boson scattering.
Hence, at leading log order, the chemical potential won’t play any part in this calculation,
and the integrals can be easily computed as:

(χi...j , Cχi...j)
(A) =

h∑︂
ab

4dATRaTRbλb

283π3

∫︂ ∞
0

dpfg
0 (p)[1 + fg

0 (p)]{p
2[χg(p)′]2

+6χg(p)2}

=
dATATA

24π3

∫︂ ∞
0

dp

[︃
1

e
p
T − 1

(︃
1 +

1

e
p
T − 1

)︃]︃(︃
4p2

T 2
+

6p4

T 2

)︃
=

10dATATAT
3

24π3
4!ζ(4)

=
πT 3dATATA

9
(32)

On the other hand, diagram (B) has one vertice with external gluons states and another
with external quark states. Using the same definitions from the last section, we can write:

(χi...j , Cχi...j)
(Bq) =

fh∑︂ 4dATRaTRbλb

293π3

∫︂ ∞
0

dpff
0 (p)[1− ff

0 (p)]{︂
p2[χf (|p⃗|)′]2 + 6[χf (p)]2

}︂
(33)

=
16dATANfTF

293π3

∫︂ ∞
0

dp
p4ep−µ

(ep−µ + 1)2

(34)
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To perform the integral, one can use the relation:

Fs(x) =
1

Γ(s+ 1)

∫︂ ∞
0

ts

et−x + 1
dt = −Lis+1(−ex) (35)

and that gives us:

(χi...j , Cχi...j)
(Bq) = −

10dATANfTFT
3

π3
Li4
(︂
−eµ/T

)︂
Analogously for anti-fermions:

(χi...j , Cχi...j)
(Bq) =

fh∑︂ 4dATRaTRbλb

293π3

∫︂ ∞
0

dpff
0 (p)[1− ff

0 (p)]{︂
p2[χf (|p⃗|)′]2 + 6[χf (p)]2

}︂
(36)

=
16dATANfTFT

3

293π3

∫︂ ∞
0

dp
p4ep+µ

(ep+µ + 1)2

= −
10dATANfTFT

3

π3
Li4(−e−µ/T ) (37)

(38)

There is also the possibility of starting the integration by the fermionic vertex, which
allows us to work on the departure from equilibrium from bosons:

(χi...j , Cχi...j)
(Bg) =

ffhc∑︂
ab

4Aabβ
38π

(4π)6

(︃
T 3π2

6
+

Tµ2

2

)︃∫︂ ∞
0

dp

fg
0 (p)[1 + fg

0 (p)]
{︁
p2[χg(p)′]2 + 6χg(p)2

}︁
=

NfTFdATA

12π3

(︃
T 3π2

6
+

Tµ2

2

)︃∫︂ ∞
0

dp
p4ep

(ep − 1)2

=
2NfTFdATAT

3

3π

(︃
π2

6
+

µ2

2T 2

)︃
(39)

Diagram (C) has only fermionic vertexes. The collision integrals can be computed again
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using relation Eq. (35), which gives:

(χi...j , Cχi...j)
(Cq) =

fhc∑︂
ab

4Aabβ
38π

(4π)6

(︃
T 3π2

6
+

Tµ2

2

)︃∫︂ ∞
0

dp{︂
ff
0 (p)[1− ff

0 (p)]
[︂
p2[χf (p)′]2 + 6[χf (p)]2

]︂}︂
=

dANfTFNfTFT
3

32π5

(︃
π2

6
+

µ2

2T 2

)︃∫︂ ∞
0

dp
p4ep−µ

(ep−µ + 1)2

= −
60dANfTFNfTFT

3

π5

(︃
π2

6
+

µ2

2T 2

)︃
Li4(−eµ/T ) (40)

Repeat these steps for anti-fermionic external states (Cq),

(χi...j , Cχi...j)
(Cq) =

fhc∑︂
ab

4Aabβ
38π

(4π)6

(︃
T 3π2

6
+

Tµ2

2

)︃∫︂ ∞
0

dp{︂
ff
0 (p)[1− ff

0 (p)]
[︂
p2[χf (p)′]2 + 6[χf (p)]2

]︂}︂
=

dANfTFNfTFT
3

32π5

(︃
π2

6
+

µ2

2T 2

)︃∫︂ ∞
0

dp
p4ep+µ

(ep+µ + 1)2

= −
60dANfTFNfTFT

3

π5

(︃
π2

6
+

µ2

2T 2

)︃
Li4
(︂
−e−µ/T

)︂
(41)

Finally, diagram (D) has contributions that are not diagonal; this means contributions of
the type χfχg and χfχg, so we divide it into 3 integrals:∫︂ ∞

0
dppff

0 (p)[1± fg
0 (p)]

[︂
χf (p)

]︂2
(42)

∫︂ ∞
0

dppff
0 (p)[1± fg

0 (p)] [χ
g(p)]2 (43)

−
∫︂ ∞
0

dppff
0 (p)[1± fg

0 (p)]
[︂
χf (p)χg(p)

]︂
(44)

Because of the basis choice, for the one parameter ansatz, the three integrals will look the
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same:

(χi...j , Cχi...j)
(Dq) =

fh∑︂
f

4Afβ8π

(4π)6

∫︂ ∞
0

dppff
0 (p)[1± fg

0 (p)][χ(p)]
2 1

eµ + 1

×
[︂2π2

6
+

µ2

2
− Li2

(︂ eµ

1 + eµ

)︂
− 1

2
ln2(1 + eµ)

]︂
(45)

The integral we must compute is:∫︂
p5dp

1

ep−µ + 1

(︃
1 +

1

ep − 1

)︃
(46)

where p/T → p and µ/T → µ. We rewrite it as:

eµ
∫︂

dp
p5ep

(ep − 1)(ep + eµ)
(47)

Now we make the same change of variables v = ep − 1, p = ln(v + 1) and dp = e−pdv:

eµ
∫︂

dv
ln5(v + 1)

v(v + eµ + 1)

And integrate this by parts. This gives:

(χi...j , Cχi...j)
(Dq) =

NfdATFCFT
3

8π5

[︄
8eµ/T

(︁
π6 − 945Li6

(︁
−eµ/T

)︁)︁
63(eµ/T + 1)

]︄
1

eµ + 1

×
[︃
2π2

6
+

µ2

2
− Li2

(︃
eµ

1 + eµ

)︃
−1

2
ln2(1 + eµ)

]︃
This result is also the contribution for χfχg and χgχg. We repeat the process for the
anti-fermions.

(χi...j , Cχi...j)
(Dq) =

fh∑︂
f

4Afβ8π

(4π)6

∫︂ ∞
0

dppff
0 (p)[1± fg

0 (p)]
[︂
χf (p)− χg(p)

]︂2
× eµ

eµ + 1

(︃
π2

6
− Li2(−eµ)

)︃
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Again, we only need to perform one of the integrals, and we can use the same change of
variables we did before and integrate by parts a few times.

(χi...j , Cχi...j)
(Dq) =

NfdATFCFT
3

8π5

[︄
8eµ/T (π6 − 945Li6(−e−µ/T ))

63(eµ/T + 1)

]︄

× eµ

eµ + 1

(︃
π2

6
− Li2(−eµ)

)︃

This result is also the contribution for χfχg and χgχg. So this diagram contributes for the
scattering matrix with the terms χgχg, χfχg and χfχf . At last, the remaining integrals
for diagram (E) will be exactly the same as computed for diagram (D),

(χi...j , Cχi...j)
(Eq) =

NfdATFCFT
3

8π5

[︄
8eµ/T (π6 − 945Li6(−eµ/T ))

63(eµ/T + 1)

]︄

× 1

eµ + 1

(︃
π2

6
− Li2(−eµ)

)︃
(48)

(χi...j , Cχi...j)
(Eq) =

NfdATFCFT
3

8π5

[︄
8eµ/T (π6 − 945Li6(−e−µ/T ))

63(eµ/T + 1)

]︄

× eµ

eµ + 1

[︂2π2

6
+

µ2

2
− Li2

(︃
eµ

1 + eµ

)︃
− 1

2
ln2(1 + eµ)

]︂
(49)

These integrals can now be evaluated for each chemical potential of interest and will
be the input for the scattering matrix, which is organized as follows,

C̃ =

⎡⎣ χgχg −χgχq −χgχq

−χqχg χqχq 0
−χqχg 0 χqχq

⎤⎦ (50)

So, for example, the first coordinate of this matrix, represented by χgχg, is the result
of the sum of all integrals that have contributions for external gluon states. Hence, all
diagrams but diagram (C). The zeros are a consequence of Eq. (25).
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μ=1T μ=2T

μ=3T μ=4T

Figure 2: Basis set as a function of the momentum for N = 6 normalized by the one-
function ansatz p2/T , plotted along with the statistical function for µ = 0

3 The basis set

In this section, we check the convergence of our results as the basis size is expanded. The
procedure implemented in this work is based on an extremization technique that uses a
finite-sized functional basis, as discussed around Eq. (81). For this work, we have used
the basis set proposed in Ref. [13]:

φ(m) =
p(p/T )m

(1 + p/T )N−1
, m = 1, ..., N . (51)

In figure (2), we display the basis set for N = 6 as a function of momentum for different
values of µ. Each curve represents φ(m) as m goes from 1 to N normalized by the 1-
parameter ansatz, φ = p2/T . Along with that, we also plot the statistical distribution
f0[1− f0] as functions of momentum for chemical potential varying between 1T and 4T .

The subspace defined by this basis strictly increases asN is increased. However, we check
that there is rapid convergence as we increase N . Therefore, we vary N in Eq. (51) and
examine how the resulting shear viscosity changes. This is illustrated in figure 4, which
shows the difference of the N -basis answer from the 6-basis answer for N = 1, 2, 3, 4, 5.
We observe a rapid convergence with basis size, although the single-function basis works
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Figure 3: Basis-size dependence of the extracted shear viscosity. The curves show the
relative error for the different basis set sizes compared to N = 6.

much less well than in the µ = 0 case. In what follows, we will use N = 6, which the
figure indicates is more than sufficient to eliminate issues associated with finite basis size.

4 Results

In the previous sections, we have derived all the computational apparatus necessary to
obtain shear viscosity as a function of the chemical potential. We have also demonstrated
the importance of each diagram for the different regimes of interest and tested the
convergence of our results with the basis choice presented. Now, we display the result for
shear viscosity calculated with a 6-function basis in figure 4.

The figure shows that the shear viscosity depends strongly on µ when expressed in
units of the temperature T . Physically, this phenomenon is a consequence of the rapid
increase in the number of quarks as µ/T escalates at fixed T . Therefore, it makes sense to
normalize the shear viscosity in terms of something that gives a more physically relevant
result. For that, we write the thermodynamical quantities of interest for a free gas of u, d,
s flavors, using the partition function[143],

T lnZQGP =
ggV

90π2
T 4 +

gfV

12

(︃
7π2

30
T 4 + µ2T 2 +

1

2π2
µ4

)︃
(52)
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Figure 4: Shear viscosity, normalized to the temperature, for a 6-function basis, 3 flavors
of quarks andNc = 3, as a function of chemical potential. For µ = 0, we recover
the value obtained in Ref. [13].

Here, gg = 16 accounts for the gluon degrees of freedom since the gluon has 8 colors and
two helicities. The factor gf = 18 accounts for 2 helicities, 3 flavors, and 3 colors for the
quarks. Therefore, the leading-order entropy density s, pressure P , and energy density e,
as functions of (T, µ), are:

s =
19π2

9
T 3 + 3µ2T (53)

3P = e =
19π2T 4

12
+

9

2
µ2T 2 +

9µ4

4π2

In figure 5, we show the shear-viscosity to entropy density ratio η/s, and in figure 6, we
plot the ratio of the shear viscosity to the enthalpy density, ηT/(e+P ), also referred in the
hydrodynamics community as the kinematic shear viscosity. The advantage of η/s is that
the ratio is directly dimensionless, and it is also a combination that has been speculated
to satisfy a conjectured lower bound [94]. In both plots, a factor of g4 ln(g) is extracted
such that the result is a single dimensionless curve valid at all coupling strengths in the
leading-log approximation. On top of that, all results shown here were computed using a
6-function basis set and considering the 3-color, 3-flavor case, which is of the most physical
interest.
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Figure 5: Shear viscosity divided by the entropy density as a function of µ. The points
represent our leading-log calculation. The pink line is a quadratic fit, which
gives a fair but imperfect representation of our result.

Figure 5 clearly shows that this ratio follows a parabola in the high-density region.
That can be interpreted as follows. The dominant scattering mechanism for particles
to change their direction is the ℓ(ℓ+ 1)χ2 term in the collision operator in Eq. (8). For
soft scattering, this is well described in terms of momentum diffusion with a momentum-
diffusion coefficient q̂:

q̂ ≡
∫︂

d2q⊥
(2π)2

q2⊥ C(q⊥) (54)

where C(q⊥) is the differential rate to exchange transverse momentum q⊥. In a thermal
system without chemical potential, this is given by:

C(q⊥) = g2CFT
m2

D

(q2⊥)(q
2
⊥ +m2

D)
(55)

In a high-density regime, the expression for q̂ remains the same, but the Debye screening
mass is now dependent on the chemical potential, that is, it takes the value of m2

D ∼ g2µ2.
This causes an increase in the value of the form q̂ ∼ g4µ2T . At the same time, the amount
by which a particle must change momentum for the system to equilibrate also increases
and is directly dependent on the chemical potential, (∆p)2 ∼ µ2 rather than T 2. The time
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Figure 6: Kinematic shear viscosity ηT/(e+ P) as a function of µ.

scale necessary for the system to equilibrate can then be estimated as:

t ∼ (∆p)2

q̂
∼ 1

g4T
(56)

Hence, shear viscosity can be estimated as:

η ∼ P

t
∼ µ4

g4T
. (57)

As Eq. (53) shows, at large µ/T , the entropy scales as s ∝ µ2T . Therefore, one would
expect that η/s behaves as:

g4 log(g−1)η/s = A+Bµ2/T 2. (58)

Naturally, the true curve does not follow this form precisely since there is a transition, as
µ/T is increased, from a system where gluons carry much of the energy and cause much
of the scattering to a system where both are dominated by quarks[41]. However, the
expectation for parabolic behavior at large µ/T is certainly justified in this calculation.
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In contrast with η/s, which is of theoretical interest, the kinematic viscosity ηT/(e+ P )
holds more physical relevance, directly controlling the time scale on which the system
approaches equilibrium. This significance arises from the enthalpy density’s role in
hydrodynamic equations alongside shear viscosity. Since both η and e + P scale as µ4

in the large-µ regime, we expect the ratio Tη/(e+ P ) to depend weakly on µ/T and to
approach a constant at large µ/T [41]. This is observed in our results. Interestingly, this
constant value is smaller than the value we obtain at µ = 0, indicating that, in terms
of the time scale 1/T , a high-density fluid will relax somewhat more quickly than one
at vanishing chemical potential[41]. The same behavior is also present in ηT/(e + P )
calculations using holography for strongly coupled fluids[69], as mentioned earlier in this
thesis.
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Shear response function for a quartic
self-interacting theory

So far in this thesis, we have computed shear viscosity for QGP in leading log order using
kinetic theory to describe our system. Here, we use a similar description in terms of
relativistic dissipative hydrodynamic models [45, 44, 133, 129, 119, 130] to study the
shear response on a scalar theory. As explained in Chapter 2, hydrodynamics describes
the long-time, long-wavelength behavior of the conserved quantities of a given system.
Information on the dynamics is then encoded in the conserved currents of the system,
such as the energy-momentum tensor and particle currents. When the system is in local
equilibrium, the evolution of these currents is dictated by thermodynamic parameters
such as temperature, chemical potential, and the four-velocity of the fluid [126].

The most widely used viscous hydrodynamic formulation in heavy-ion collisions was
first proposed by Israel and Stewart [80, 81]. The interpretation of Israel-Stewart-like
theories is subject to ongoing debate, as they involve various transport coefficients beyond
the shear and bulk viscosities [110, 144]. Here, we are interested in the perspective
that posits that Israel-Stewart-like equations of motion and their transport coefficients
should reflect the underlying microscopic interactions, extending the regime of validity
of Navier-Stokes theory to the transient non-equilibrium regime [126, 47, 45, 43, 108].
In this view, the relaxation time of a dissipative current is associated with a pole of the
retarded Green’s function governing the underlying dynamics in the linearized regime
[47]. However, evidence suggests that the shear-stress retarded Green’s function may
possess a branch-cut singularity that touches the origin in frequency space [110, 117, 58].

In this Chapter, we study the shear-stress linear response function and investigate the
existence of a branch cut touching the origin in a system of scalar self-interacting particles,
even when Boltzmann statistics are used. This is done using recent developments [46],
where the spectrum and eigenfunctions of the linearized collision term were computed
exactly for this system. Therefore, the presence of the branch cut in this system is not
attributed to Bose statistics effects but likely arises from the interaction characteristics of the
particles, such as a vanishing cross-section at high energy, observed in both quantum and
classical regimes. This chapter is based on the work from [125] done with collaborators.
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Here, we include the numerical calculations I carried out with the help of K. Ingles and
cross-checked with G. Rocha’s version.

1 Kinetic Theory and Hydrodynamics

In Chapter 3, we have carefully derived the Boltzmann equation for scalar theories as
a first step to achieve the derivation of this equation for gauge theories. In this chapter,
we make use of Eq. (41) in a slightly different notation. If quantum statistics effects are
neglected and only two-to-two processes are considered, it reads [42],

pµ∂µfp =

∫︂
dK dK ′ dP ′Wpp′↔kk′(fpfk′ − fpfp′), (1)

where we introduced the Lorentz-invariant integral measure for on-shell massless particles,
given by dP ≡ d3p/[(2π)3p0], similarly to Chapter 3. Here, we define W as the transition
rate, given by

Wpp′↔kk′ = (2π)6sσ(s,Θ)δ(4)(p+ p′ − k − k′) , (2)

and σ(s,Θ) is the differential cross section, which depends on the Mandelstam Variable s.
For the calculations performed here, we use the most minus (+,−,−,−) metric signature,
contrasting with the previous Chapters, but we keep natural units so that h̄ = c = kB = 1.

As mentioned above, in this study, we consider a system composed of massless scalar
particles whose dynamics are given by the Lagrangian density,

L =
1

2
∂µϕ ∂µϕ− λϕ4

4!
. (3)

In this case, the corresponding total cross section at leading order in the coupling constant
is given simply by[121],

σT (s) =
1

2

∫︂
dΦdΘ sinΘσ(s,Θ) =

λ2

32πs
≡ g

s
, (4)

where Φ is the azimuthal angle in the momentum rest frame and g ≡ λ2/(32π).
The energy-momentum tensor for this system will be given by Eq. (12), with the

correction terms from Eq. (13), using the convention that πµν = −ησµν is the shear-stress
tensor we can write,

Tµν = εuµuν − P∆µν + πµν , (5)

and the particle four-current is written as

Nµ = nuµ + νµ, (6)
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where n is the total particle density, and νµ is the particle diffusion 4-current. In what
follows, we shall consider linear perturbations around a local equilibrium state. Then,
assuming Landau’s prescription for the definition of this state gives

n ≡ n0(µ, T ), ε ≡ ε0(µ, T ) P ≡ P0(µ, T ) + Π, (7)

which define µ and T , so the total particle and energy density coincides with the local
equilibrium. In the above equation, Π is the bulk viscous pressure. In Kinetic Theory, the
components related to the local equilibrium state, appearing in Eq. (6), can be computed
by performing integrals in momentum space, as shown in Chapter 4.1. Using Eq. (66)
and Eq. (53), we can also write the constitutive relation for the pressure as,

P0 ≡ −1

3
∆µνT

µν =
1

3

∫︂
dP (−∆µνp

µpν) f0p, (8)

where ∆µν was defined in Eq. (5), and the equilibrium distribution is the usual one, as
presented in Eq. (62). Using this, we can write the remaining dissipative currents

Π ≡ 1

3

∫︂
dP (−∆µνp

µpν) (fp − f0p),

νµ ≡ ∆µ
νN

ν =

∫︂
dP p⟨µ⟩fp,

πµν ≡ ∆µν
αβT

αβ =

∫︂
dP p⟨µpν⟩fp,

(9)

where we introduced the double symmetric, traceless projection tensor,

∆µναβ ≡ 1

2

(︂
∆µα∆νβ +∆να∆µβ

)︂
− 1

3
∆µν∆αβ . (10)

We also note that, for massless particles and Landau matching conditions, the bulk viscous
pressure is Π = 0.

2 Linear response theory for the shear-stress tensor

In this section, we investigate the linear response theory for a system of self-interacting
scalar particles based on the Boltzmann equation. We focus on the shear tensor’s contri-
bution and consider it the only relevant one. Additionally, this section presents the results
for the eigensystem of the linearized collision term. Understanding the basis formed
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by the eigenfunctions of this operator is crucial for our analysis. We begin by writing
cross-section given by Eq. (4) for a φ4 theory and Boltzmann statistics as

pµ∂µf0p + pµ∂µδfp =
g

2

∫︂
dK dK ′ dP ′(2π)5δ(4)(p+ p′ − q − q′)

× f0pf0p′(φk + φk′ − φp − φp′)

≡ f0pL̂φp, (11)

where φp is the relative deviation from local equilibrium, defined similarly to Chapter
4 (Eq. (64)), but without the Bose stimulation factor. In general, pµ∂µf0p is expressed
in terms of gradients of perturbations in temperature, chemical potential, and fluid four-
velocity. Next, we consider that only gradients related to the shear stress are relevant,

pµ∂µf0p ≃ −f0pβp
⟨µpν⟩σµν , (12)

where σµν is given in Eq. (14). Here, we define δuµ as the 4-velocity perturbations and
the velocity of the unperturbed system as uµ. It is important to note that in the linear
regime, uµδuµ = 0. Additionally, all projections are now taken with respect to uµ.

At this point, we perform some simplifications analogously to Chapter 3. We assume
that non-equilibrium perturbations are spatially homogeneous. This implies that space-
like gradients of δfp in the local rest frame are negligible, and therefore the Boltzmann
equation can be written as

pµ∂µδfp = Epu
µ∂µδfp + pµ∇µδfp ≃ Epu

µ∂µδfp, (13)

where Ep ≡ uµp
µ and ∇µ = ∆ν

µ∂µ reduces to spatial gradients in the local rest frame of
the fluid. Given the simplifications represented by Eqs. (12) and (13), the Fourier-space
evolution of the perturbations around local equilibrium is given by

f0pEpiΩ ˜︁φp − f0pL̂˜︁φp = f0pβp
⟨µpν⟩˜︁σµν , (14)

which is an inhomogeneous linear integral equation for ˜︁φp. In most cases, the Boltzmann
equation cannot be solved analytically, making it necessary to employ numerical methods
as in [117]. However, in [46], the authors were able to find the eigenfunctions of the
linearized collision term for the system described by the Lagrangian in Eq. (3) (at leading
order in λ). The eigenfunctions and eigenvalues are given as,

L̂
[︂
L
(2ℓ+1)
np p⟨µ1 · · · pµℓ⟩

]︂
= χ(ℓ)

n L
(2ℓ+1)
np p⟨µ1 · · · pµℓ⟩,

χnℓ = −g

2
M
(︃
n+ ℓ− 1

n+ ℓ+ 1
+ δn0δℓ0

)︃
,

(15)
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where L
(2ℓ+1)
np = L

(2ℓ+1)
np (βEp) represents associated Laguerre polynomials, which form a

complete set of orthogonal polynomials. Here, M = (n0β)/2 is the matrix element of in-
terest, and p⟨µ1 · · · pµℓ⟩ ≡ ∆µ1···µℓν1 · · · νℓpν1 · · · pνℓ denote irreducible tensors constructed
from products of the four-momentum. These tensors are symmetric, orthogonal to uµ,
and traceless for each pair of indices[42, 43].

The 2ℓ-rank tensor ∆µ1···µℓ
ν1···νℓ is built using combinations of the projection operator ∆µν =

gµν − uµuν . It is important to note that this tensor is designed in a way that ensures
symmetry concerning permutations in any of the indices µ1 · · ·µℓ and ν1 · · · νℓ, separately,
and also to make it traceless within each subset of indices [42, 43]. These irreducible
tensors satisfy the orthogonality relation given by∫︂

dP p⟨µ1 · · · pµℓ⟩p⟨ν1 · · · pνm⟩H(Ep) =
ℓ!

(2ℓ+ 1)!!
∆µ1···µℓ

ν1···νℓ δℓm

∫︂
d3p

(2π)3p0
(∆µνpµpν)

ℓH(Ep),

(16)
where H(Ep) represents an arbitrary weight function that is sufficiently regular to en-
sure convergence of the integral[126], the set of eigenfunctions satisfies the following
orthogonality relation:∫︂

dP (∆µνpµpν)
ℓ L

(2ℓ+1)
np L

(2ℓ+1)
mp f0p = A(ℓ)

n δnm ≡ (−1)ℓ
n0

2β2ℓ−1
(n+ 2ℓ+ 1)!

n!
δnm,

(17)
where n0 is the local particle density. Even with the eigenfunctions of the collision operator,
there are still some subtleties to be taken into account while solving equation (14). This
is a consequence of the non-commutativity of the operator L̂ and Ep when considered
as operators acting on momentum-space functions [126]. Specifically for this problem,
the action of Ep on the eigenfunctions L̂ can be determined using basic properties of
associated Laguerre polynomials [49, 68]. To make this complication more clear, let us
consider the case ℓ = 2 and write the operators acting on our eigenfunctions,

βEpL
(5)
n,p = −(n+ 1)L

(5)
n+1,p + 2(n+ 3)L

(5)
n,p − (n+ 5)L

(5)
n−1,p, (18)

which is a linear combination of eigenfunctions of L̂with different eigenvalues. In contrast,
we know from Eq. (15) that

L̂
[︂
L5
npp
⟨µ1 · · · pµℓ⟩

]︂
= χ5

nL
5
npp
⟨µ1 · · · pµℓ⟩ (19)

Then, acting on an eigenfunction with L̂ and Ep leads to different results when these
operators are interchanged. Unfortunately, this complication implies that one can perform
a numerical analysis or use techniques like trotterization to study this system. In this thesis,
we focus on the numerical analysis, which will be described in detail in the following
section.
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3 Numerical analysis

In this section, we provide a numerical method to solve Eq. (14). For that, we make use of
the knowledge of the eigenfunctions of the linearized collision term. We analyze the system
of equations formed by the moments of fp constructed with respect to eigenfunctions of
the linearized collision term. Using the discussion from the previous section, we focus
on calculating the shear-stress response function numerically. For that, we perform an
integration with the corresponding tensor rank-2 eigenfunctions of the linearized collision
term

∫︁
dP (· · · )L(5)

n p⟨αpβ⟩ on both sides of Eq. (14),

i
Ω

β

[︂
−Φαβ

1 + 6Φαβ
0

]︂
− χ02Φ

αβ
0 =

8n0

β2
˜︁σαβ, n = 0,

i
Ω

β

[︂
−(n+ 1)Φαβ

n+1 + 2(n+ 3)Φαβ
n − (n+ 5)Φαβ

n−1

]︂
− χn,2Φ

αβ
n = 0, n = 1, 2, 3, · · ·

(20)
Where we defined the eigenmodes

Φµν
n ≡

∫︂
dPL

(5)
npp
⟨µpν⟩δfp. (21)

We also have employed the fact that the linearized collision term is self-adjoint, which
means that given two arbitrary functions of momentum Ap and Bp, we have∫︂

dPf0pApL̂Bp =

∫︂
dPf0pBpL̂Ap (22)

Next, we make use of the eigenfunction equation (15), and the identity

βEpL
(2ℓ+1)
n,p = −(n+ 1)L

(2ℓ+1)
n+1,p + 2(n+ ℓ+ 1)L

(2ℓ+1)
n,p − (n+ 2ℓ+ 1)L

(2ℓ+1)
n−1,p , (23)

which is a consequence of the basic properties of the Laguerre polynomials.
From definition (21), it is clear that Φαβ

0 = παβ is the shear-stress tensor. Therefore, its
linear response is completely determined by solving Eq. (20) for Φαβ

0 . That equation can
be written as∑︂

m

MnmΦαβ
m = Bn

Mnm = −iˆ︁Ω(n+ 1)δn+1,m + [2(n+ 3)iˆ︁Ω− ˆ︁χ(2)
n ]δn,m − iˆ︁Ω(n+ 5)δn−1,m

Bn =
8

β2
I1,0σ

αβδn,0,

(24)
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where we have employed the normalized variables for simplification

ˆ︁Ω =
Ω

gβI00
, ˆ︁χ(2)

n =
χ
(2)
n

gI00
= −1

2

n+ 1

n+ 3
. (25)

The shear-stress linear response problem is then formally solved by

παβ = Φαβ
0 =

∑︂
j

(S−1)0jBαβ
j ≡ 2η(ˆ︁Ω)˜︁σαβ,

η(ˆ︁Ω) = 8

gβ3
(S−1)00.

(26)

Thus the linear response problem can be solved by Φαβ
0 = (M−1)00B0. We observe that

M forms an infinite tridiagonal matrix. For a finite-dimensional truncation of this matrix,
a closed form of the elements of its inverse can be derived [126],

(SN )nm = bnδn+1,m + anδn,m + cnδn−1,m, n,m = 0, 1, 2, · · · , N − 1,

an = 2(n+ 3)iˆ︁Ω+
1

2

n+ 1

n+ 3
, bn = −iˆ︁Ω(n+ 1), cn = −iˆ︁Ω(n+ 5),

(27)

Particularly for this problem, we have:

(S−1N )00 =
ϕ2(ˆ︁Ω)
θN (ˆ︁Ω) , (28)

where ϕ2 and θN are obtained, respectively, by the following recursion relations

ϕj = aj−1ϕj+1 − bj−1cjϕj+2, j = N − 1, N − 2, · · · , 2, 1,
θj+1 = aj−1θj−1 − bj−2cj−1θj−2, j = 2, 3, · · ·N,

(29)

With the initial conditions:

ϕN+1 = 1, ϕN = aN−1, θ0 = 1, θ1 = a0, (30)

Where an,bn, and cn for (M−1)00 are given as a function of the eigenvalues and eigenvec-
tors of the linearized collision operator:

an = 2(n+ 3)iˆ︁Ω+
1

2

n+ 1

n+ 3
, bn = −iˆ︁Ω(n+ 1), cn = −iˆ︁Ω(n+ 5), (31)

Here, N represents the rank of the matrix truncation. Thus, examining the linear response
simplifies to analyzing the ratio’s analytical properties ϕ2/θN as N → ∞. Specifically, as
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Figure 1: Poles of the response function for N = 100

the roots of ϕ2(ˆ︁Ω) and θN (ˆ︁Ω) are distinct, the poles of the homogeneous Green function
correspond to the zeros of θN . In Fig. 1, we display the poles found for a basis of size
N = 100. The poles lie on the Re z = 0 axis due to our choice of sign in the Fourier
transform,

f(x, p) =

∫︂
d4q

(2π)4
eiqxf̂(q, p), (32)

The plot indicates the existence of a branch cut as N approaches infinity, as evidenced
by the decreasing separation of the poles with each increase in N . In Fig. 3, we illustrate
the pole nearest to the origin as N increases, up to N = 700. Once again, we observe
that the poles become closer to zero with increasing the basis size. Additionally, the plot
shows that the minimum pole decreases significantly as a function of N , with a relation
approximately given by min pole ∼ 1/N0.996. To assess whether the poles converge to a
continuous line or a set of discrete points, in Fig. 3, we show the average relative distance
between the 15 poles closest to the origin,

⟨∆Ω⟩15 =
14∑︂
k=1

|ωk+1 − ωk|
|ωk|

, (33)
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Figure 2: Left: Pole nearest to the origin for N up to N = 700. Right: Average relative
distance between the 15 poles closest to the origin ⟨∆Ω⟩15

as a function of N , ωk represents the k-th pole closest to the origin. Since all poles lie
on the real axis with Re z = 0, we have |ωk+1 − ωk| = |ωk+1| − |ωk|. The fitting results
indicate that ⟨∆Ω⟩15 ∼ 1/N1.794. This means that the average relative distance between
the poles closest to ˆ︁Ω = 0 will converge to zero faster than the pole nearest to the origin
converges to ˆ︁Ω = 0.

These findings indicate the shear response function for the λφ4 possesses a branch
cut along the imaginary axis, i0+ < Ω < i∞ as N → ∞ [125]. Additionally, they
imply that this behavior for the non-hydrodynamic modes is not associated with quantum
statistics or quantum effects but is associated with long-lived hydrodynamic modes present
in the ϕ4 theory. Since the cross-section is negligible for large (center-of-momentum)
energies, high-energy modes overpopulate evolution at late times and give rise to infinitely
many long-lived modes. We note that the value of Imˆ︁Ω for a singularity is related to the
relaxation time of the mode. Hence, its extension to the origin means that obtaining the
relaxation time for this system is not possible using the usual method [43].

67





Phenomenological shear viscosity across the
QCD phase diagram

In this chapter, we extend the calculations of shear viscosity from Chapter 4.1 to a system
with multiple conserved charges. In this case, shear viscosity will depend on an effective
chemical potential that is a function of baryonic (µB), strangeness (µS), and electric
charge (µQ) chemical potentials. Additionally, we conduct a phenomenological study of
shear viscosity across the QCD phase diagram, incorporating a Hadron Resonance Gas
(HRG) model for the temperature regime below the first-order transition. As mentioned in
Chapter 2, HRG can reproduce the thermodynamics of the system for lower temperatures.

Usually, perturbative Quantum Chromodynamics (pQCD) calculations are useful at
very high temperatures, where the QGP tends to transition from a strongly coupled to
a weakly coupled state. However, the exact temperature at which pQCD calculations
apply still needs to be determined. On the other end of the temperature spectrum, when
temperatures are low, it becomes feasible to compute the shear viscosity employing kinetic
theory and the well-known characteristics of the Hadron Resonance Gas (HRG) [39]. For
example, one can incorporate an HRG model featuring an excluded volume [66, 115,
104] , which diminishes as the temperature rises (a trend anticipated if a minimum value
of η/s exists at the cross-over phase transition). This observed behavior of η/s in the
HRG is explained by the increasing degrees of freedom at higher temperatures, thereby
increasing the entropy and consequently reducing η/s [116]. In this work, we use data
from the Particle Data Group (PDG) as of 2021, encompassing over 700 hadrons, to obtain
values of ηT/ω below the first-order phase transition.

However, neither of these techniques describes the intermediate region well. Therefore,
in this work, we employ an interpolation function to connect these two regimes and
carefully explain the procedure necessary to obtain a sensible shear viscosity compared
to what we know from experimental data and Bayesian analysis. This chapter is based
on work from [39]. Here, my collaborator J. Salinas San Martin performed enthalpy
calculations using excluded volume HRG for the region below the phase transition and
provided me the data from Particle Data Group (PDG) as of 2021.
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1 Shear viscosity at leading logarithmic order for multiple
conserved charges

As a detailed description of how to compute shear viscosity was already given in Chapter
4.1, we will focus on the necessary changes to include strangeness and electric charges
in this calculation. The procedure can be repeated for the case of multiple chemical
potentials with some minor differences. As a consequence of having multiple charges,
different flavors of quarks and antiquarks must have different relaxation functions:

χg(p) =

N∑︂
m=1

amφ(m)(k), χu(p) =

N∑︂
m=1

am+Nφ(m)(k), χd(k) =

N∑︂
m=1

am+2Nφ(m)(k)

χs(k) =

N∑︂
m=1

am+3Nφ(m)(k), χu(k) =

N∑︂
m=1

am+4Nφ(m)(k), χd(k) =

N∑︂
m=1

am+5Nφ(m)(k)

χs(k) =

N∑︂
m=1

am+6Nφ(m)(k) (1)

and the basis set used for it was the same as used in [41]:

φ(m) =
k(k/T )m

(1 + k/T )N−1
m = 1, ..., N (2)

This change implies that the contribution from each quark in all diagrams has to be counted
separately, and therefore, the scattering matrix will evolve differently as a function of
each chemical potential. As discussed previously, at finite densities, the shear viscosity is
normalized by ηT/w such that we require knowledge of the enthalpy or ε+P . To do that,
we used a free gas of BSQ charges with three active flavors, analogously to the description
used in Chapter 4.1 [143],

T lnZQGP =
ggV

90π2
T 4 +

∑︂
i

gfV

12

(︃
7π2

30
T 4 + µ̃2

iT
2 +

1

2π2
µ̃4
i

)︃
(3)

Here, gg = 16 accounts for the gluon degrees of freedom since the gluon has eight colors
and two helicities. The factor gf = 6 accounts for two helicities and three colors for the
quarks, and the sum is over quarks flavors. The contribution from antiquarks is already
included in the partition function and doesn’t require extra counting. These calculations
were performed for QGP with three flavors: u, d, s. And µ̃ is the effective chemical
potential for each particle, i, defined as:

µ̃i = Bi
µB

T
+ Si

µS

T
+Qi

µQ

T
(4)
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Figure 1: ηT/ω as a function of µS/T , µB/T and µQ/T .

and Bi is the baryon number, Si is strangeness, and Qi is the electric charge. Additionally,
µB, µS , and µQ are the corresponding chemical potentials for each conserved charge.

Figure 1 shows a curve for ηT/w as a function of µS/T ,µQ/T , and µB/T while having
the other chemical potentials set to zero. We observe that the curves have entirely differ-
ent behaviors, suggesting that shear viscosity is strongly dependent on which chemical
potential is present in the system. We find that ηT/w increases with increasing µS/T
whereas ηT/w decreases with increasing µQ/T . In Chapter 4.1, we showed that ηT/w
increased slightly before generally decreasing at µB/T ≳ 1. Therefore, all 3 chemical
potentials lead to strikingly different shear dependencies. This can be explained by the
fact that ρQ, the net density associated with the conserved electric charge, grows slower
as a function of µQ than the equivalent for ρB and ρS . This increase affects the enthalpy,
which will change significantly less than for the same value of µB or µS . We also note that
the values of µS and µQ were chosen to be positive for these calculations, even though
the symmetry ηT/w(µ) = ηT/w(−µ) should be observed.

To understand the interplay between chemical potentials, we first set µQ = 0 and
vary µB and µS (corresponding to isospin symmetric matter). In Fig. 2 we plot µB/T
on the x-axis while varying µS/T using different colors on the left and on the right, we
analogously vary µS/T on the x-axis and µB/T in different colors. The plots show that
even small values of µS/T significantly influence the curves, leading to an overall increase,
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Figure 2: ηT/(e+ P ) as a function of µS for each µB . The color code indicates the value
of the chemical potential over the temperature

especially for smaller values of µB/T . It is also clear that while µB/T seems to change the
overall magnitude of ηT/ω, leading to quicker relaxation of the fluid, while µS/T causes
ηT/ω to increase, corresponding to a slower relaxation.

Typically, heavy-ion collisions do not exclusively explore finite µB, but instead, they
investigate the ”strangeness neutral” (SN) scenario, characterized by the enforcement of
two key conditions:

⟨nQ⟩ =
Z

A
⟨nB⟩ (5)

⟨nS⟩ = 0 (6)

Here, Z is the charge number, and A is the number of nucleons of the heavy-ion. The
first condition implies the conservation of electric charges. On the other hand, the second
condition is a consequence of the initial conditions of the heavy-ion collisions. Since the
incident nuclei do not carry strangeness, the net strangeness ⟨nS⟩ = 0 is fixed [56].

In principle, in this work, we have 4 degrees of freedom {T, µB, µS , µQ}. Still, for the
strangeness neutral trajectories through the QCD phase diagram, µS(T, µB) and µQ(T, µB)
are constrained to be single values for a specific temperature and baryon chemical potential,
therefore in this case, we have only 2 degrees of freedom. In Fig. 3, we compare ηT/w
for the case of only finite µB (pink) to the strangeness neutral trajectory (shown in blue)
where we set Z/A = 0.4. For just finite µB, there is a non-monotonic behavior in ηT/w,
which was first observed in [41]. In contrast, once we enforce the strangeness neutrality
conditions, the non-monotonicity disappears, and ηT/w only decreases with increasing
µB, which agrees with the curves obtained in Fig. 2, since for strangeness neutrality µQ

72



0 1 2 3 4 5 6 7 8 9

μB/T

4.0

4.2

4.4

4.6

4.8

5.0

5.2

T
η

(e
+

P
)

×
g

4
ln

g
−

1

μS = μQ = 0

SN

Figure 3: Shear viscosity as a function of µS(µB, T ) and µQ(µB, T ) for the strangeness
neutral case that has the conditions shown in Eq. (5-6) compared with the case
of µS = µQ = 0.

is small compared to µS and µB, and will have a small influence. In the next section,
we explore the confined phase of QCD, the hadronic phase, and define the switching
temperature, where one expects the system to go from the confined to the deconfined
phase.

2 Hadron resonance gas model and switching temperature

At low temperatures within heavy-ion collisions, the quark-gluon plasma undergoes a
phase transition; it suffers a freeze-out into a gas comprised of interacting hadrons. To
describe this phase, we begin with the ideal hadron resonance gas model, where the
equation of state is described using a gas of free hadrons. With this model, one can
obtain thermodynamical quantities and transport coefficients, assuming that hadrons are
point-like particles. The total density of particles for species i can be calculated as follows:

nid
i (T, µB, µS , µQ)

T 3
=

gi
2π2

∫︂ ∞
0

dkk2

⎡⎣exp
⎛⎝
√︂
k2 +m2

i

T
− µ̃i

⎞⎠+ (−1)Bi−1

⎤⎦−1 (7)
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where Bi is the baryon number of the particle, p is the momentum, mi is the mass of the
particle, and the degeneracy gi = 2Ji + 1 comes from spin Ji. The effective chemical
potential for species i is defined in the same way as in Eq. (4).

It is well known that hadrons interact with each other in several different channels.
Some of these channels represent repulsive interactions, while others represent attrac-
tive interactions. As hadronic species are included, the treatment used in [142] is not
guaranteed to be applicable. This is because the standard assumption behind hadron
resonance models is that the interacting hadronic system can be described by a free gas
of the original hadrons and resonances[115]. In general, the inclusion of resonances
represents the contribution from the attractive channels, while repulsive interactions are
usually modeled using excluded volume corrections to the thermodynamics, for instance
[71, 91, 124, 115]. Given that, we incorporate repulsive interactions via an excluded
volume approach, where the hard-core volume is typically specified as[115, 104]:

V = 4 · 4
3
πr3 (8)

where r is the radius of an individual hadron. The factor of 4 arises from considering that
the excluded volume for a sphere is 8 times its volume. However, this volume is shared
between two interacting particles, resulting in a factor of 4. We assume that all hadrons
have the same volume for the calculations performed in this Chapter. The radius for the
excluded volume has been tuned to reproduce the lattice QCD entropy in [104] using
the PDG16+ particle list. Here, we use the PDG2021+ particle list, which includes more
particles. However, these are predominately heavier particles, so their influence does not
play a strong role in the entropy calculation, as shown in [131].

In kinetic theory, the shear viscosity is related to,

η ∝ n
∑︂
i

λi⟨|k|⟩i (9)

where the total particle number density is

ntot =
∑︂
i

ni (10)

Here, the total particle density describes the amount of total matter summed with the
anti-matter in the system, not the net amount of matter. And, λi is the mean free path,
related to the inverse of the space occupied by the density of hadrons as,

λ ∝ 1/(nir
2) (11)
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and ⟨|k|⟩i is the average thermal momentum of particle i, given by,

⟨|k|⟩i =

∫︁∞
0 k3 exp

[︂
−
√︂
k2 +m2

i /T + µ̃i

]︂
dk∫︁∞

0 k2 exp
[︂
−
√︂
k2 +m2

i /T + µ̃i

]︂
dk

(12)

which is the integral weighted by momentum. We note that the µ̃i term is independent of
the momentum, which allows us to pull it out of the integral, and Eq. (13) is rewritten as,

⟨|k|⟩i =

∫︁∞
0 k3 exp

[︂
−
√︂
k2 +m2

i /T
]︂
dk∫︁∞

0 k2 exp
[︂
−
√︂
k2 +m2

i /T
]︂
dk

(13)

even at finite chemical potentials. Substituting this into Eq. (9), we can write

η ∝ 1

r2

∑︂
i

ni

n

∫︁∞
0 k3 exp

[︂
−
√︂
k2 +m2

i /T
]︂
dk∫︁∞

0 k2 exp
[︂
−
√︂
k2 +m2

i /T
]︂
dk

(14)

where we assume a single hard-core radius for all hadrons considered here. When
including the excluded volume effects, the particle number density ni can be written as,

nex
i =

e−vp/Tnid
i

1 + ve−vp/Tnid
tot

(15)

where the total excluded volume particle number density is given by the sum of the
number densities as,

nex
tot =

∑︂
i

nex
i

=
∑︂
i

e−vp/Tnid
i

1 + ve−vp/Tnid
tot

(16)

and, since the excluded volume v is the same for all particle species, we pull out the nid
i

term from the summation, simplifying this to,

nex
tot = nid

tot

e−vp/T

1 + ve−vp/Tnid
tot

. (17)
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Therefore, the density ratios
nex
i

nex
tot

=
nid
i

nid
tot

(18)

are remain the same.
Now, we can finally write the shear viscosity at finite µ̃ using an excluded volume

description for a hadron resonance gas:

ηHRG =
5

64
√
8

1

r2
1

nid
tot

∑︂
i

nid
i

∫︁∞
0 k3 exp

(︄
−
√︂

k2+m2
i

T + µ̃i

)︄
dk

∫︁∞
0 k2 exp

(︄
−
√︂

k2+m2
i

T + µ̃i

)︄
dk

(19)

where the prefactors were derived in [101, 66]. Then the normalization for ηHRG requires
an excluded volume calculation for the energy density εex, given by,

εex (T, µ) =
εid (T, µ)

exp [vpex (T, µ) /T ] + vnid
tot (T, µ)

, (20)

where the excluded volume pressure pex is given by:

pex(T, µB, µS , µQ)

T
= nid(T, µB, µS , µQ) exp

(︃
−v pex(T, µB, µS , µQ)

T

)︃
, (21)

The excluded volume pressure has a self-consistent equation, which can be solved analyti-
cally using the Lambert W function if we only have a single v for all hadrons:

pex(T, µB, µS , µQ) =
T

v
W (v nid(T, µB, µS , µQ)), (22)

such that we calculate the kinematic shear as,

ηHRG T

(εex + pex)
=

ηHRG T

wex
, (23)

which, in the limit of µ̃ → 0 can be simply calculated as ηHRG/sex, where the entropy sex

can be obtained from the thermodynamical relation:

sex =
∂pex

∂T

⃓⃓⃓⃓
µ

. (24)
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Figure 4 compares η/s between two choices of ratio size, 0.1fm and 0.25fm, in the
temperatures below where one would expect a first-order transition. The plot shows
that shear viscosity is highly dependent on the radius. We also note that the difference
between the magnitudes of the two radii is observed for the entire temperature range
considered in this work.

r = 0.1 fm

r = 0.25 fm

100 110 120 130 140 150

0.5

1

5

10

T(MeV)

η
/s

EV-HRG with PDG2021+

Figure 4: η/s as a function of the temperature. The excluded volume result for the
PDG2021+ list for r = 0.1 fm (blue line) is compared to r = 0.25 fm (yellow
dot-dashed line).

However, the region close to the first-order transition line cannot be described by either
the perturbative QCD or HRG model presented in this thesis. Therefore, we use an
interpolation function to connect the two models. We first consider the chiral phase
transition line with just finite µB as it is usually defined using a Taylor expansion over the
switching temperature:

Tsw(µB)

Tsw,0
=

[︄
1− κ2

(︃
µB

Tsw,0

)︃2

− κ4

(︃
µB

Tsw,0

)︃4
]︄
, (25)

Where Tsw = Tsw,0 = 156 MeV, with Tsw being the chiral transition line temperature,
which varies with µB, as shown in Fig. 5. Since we intend to work with multiple conserved
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charges, we replace that with the extension of Eq. (25), given by,

Tsw(µB, µS , µQ)

Tsw,0
=

⎧⎨⎩1−
∑︂
i,j,k

∑︂
X,Y,Z=B,S,Q

[︄
κXY
i+j=2

(︄
µi
Xµj

Y

T 2
sw,0

)︄
+ κXY Z

i+j+k=4

(︄
µi
Xµj

Y µ
k
Z

T 2
sw,0

)︄]︄⎫⎬⎭ ,

(26)

Figure 5: First order transition line between HRG and QGP regimes for µS = µQ = 0 and
finite µB . This is the expected transition between confined and deconfined
QCD.

However, current lattice QCD results [23] do not include all non-diagonal terms, there-
fore, Eq. (26) simplifies to

Tsw(µB, µS , µQ)

Tsw,0
=

⎧⎨⎩1−
∑︂

X=B,S,Q

[︄
κX2

(︃
µX

Tsw,0

)︃2

+ κX4

(︃
µX

Tsw,0

)︃4
]︄
− 2κBS

2

µBµS

T 2

⎫⎬⎭ ,

(27)
Table 1 lists the κXn coefficients used in this work. The actual lattice QCD calculations

have statistical error bars on their calculations, but here, we chose to use the central values
or an average over collaboration, given the available results.
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n κBn κSn κQn κBS
n

2 0.015 0.017 0.029 −0.0050
4 0.0007 0.004 0.008 n/a

Table 1: Values used for the κXn coefficients and single available off-diagonal term κBS
2

that describe the slope of the pseudo-critical temperature for the diagonal terms
in Eq. (27). These values are averaged central values from different lattice QCD
collaborations [31, 25, 30, 23, 48]

The next section describes the procedure used to connect the shear viscosity values
from HRG and pQCD.

3 The phenomenological model

This section builds the phenomenological model for shear viscosity up to the three con-
served charges. We connect the HRG and pQCD using an interpolating function for the
different temperature regimes studied here, separated as follows. Temperatures below
the switching line (Tsw = 156 MeV for µB = 0), i.e., T < Tsw, are studied using the
hadron resonance gas model with excluded volume. For the region above the switching
line, i.e., T > Tsw, pQCD is expected to be the most appropriate description; however,
we have set our lower boundary by comparing pQCD results and lattice calculations. In
[138, 107, 74], it has been shown that pQCD calculations of thermodynamic observables
match lattice calculations at temperatures above T ≳ 300 MeV for µB = µS = µQ = 0.
Therefore, we set our intermediate region between T = 156 MeV to T = 300 MeV, where
we implement an interpolating function.

As discussed in section 1, shear viscosity for T > 300 MeV was obtained using kinetic
theory as a function of the BSQ chemical potentials and the strong coupling 1/(g4 log(g−1)).
As a consequence of the logarithmic dependence of the coupling, it is not possible to reach
reasonable values of shear viscosity without first performing a rescaling of these results.
For that purpose, we used the results for η/s obtained by Ghiglieri, Moore, and Teaney
(GMT) for calculations at (almost) NLO[62] as follows. We begin by extracting the values
of η/s for NLO for a fixed coupling using the two-loop Electrostatic QCD (EQCD [33,
32, 34, 88, 87]) value with µEQCD = (2.7 ↔ 4π)T . We use these values to match our
results at µB = µS = µQ = 0 and set the scale for each temperature for µ̃ ≥ 0. Once the
pQCD results at vanishing densities have been rescaled, the interpolation function can be
calculated by simply matching the pQCD and HRG results as follows.
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Figure 6: Different functional forms connecting the HRG shear viscosity at low T and
r = 0.25 fm to rescaled pQCD shear viscosity to GMT [62] at high T

Here, we choose to use a simple polynomial fit defined by:

F (x) = a+ bx+ cx2 + dx−1 + fx−2, (28)

where a, b, c, d, f are free parameters that ensure that the shear viscosity matches the
HRG and pQCD at their respective transition points. For instance, we make c = d = f = 0
for a linear fit, and using d = f = 0 leads to a quadratic fit. Additionally, we ensure that
ηT/w is continuous.

To make it more clear, we explain the matching for the linear fitting used here,

F (x) = a+ bx, (29)

which means that we have set c = d = f = 0 from Eq. (28). At fixed µ̃, one takes the
transition point, given by the switching line obtained in the previous section, from the
HRG calculation to the interpolation function at Tsw,HRG(µB). The corresponding shear
viscosity is

(ηT/w)1 ≡ ηT/w(Tsw,HRG(µB), µ̃) (30)

similarly, we define the transition point from the interpolation function to the pQCD shear
viscosity at Tsw,pQCD(µB) where the corresponding shear viscosity is

(ηT/w)2 ≡ ηT/w(Tsw,pQCD(µB), µ̃). (31)
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Then, we can determine a and b from these two points just by enforcing continuity. Since
this is a linear function, we know that b is the slope. Therefore, we can substitute our two
points at T1 = Tsw,HRG(µB) and T2 = Tsw,pQCD(µB) to calculate b combining Eq. (30)
and Eq. (31) as:

b =
(ηT/w)2 − (ηT/w)1
Tsw,pQCD − Tsw,HRG

. (32)

We can then substitute in b at either point back into Eq. (29), such that a is obtained as,

(ηT/w)1 = a+
(ηT/w)2 − (ηT/w)1
Tsw,pQCD − Tsw,HRG

Tsw,HRG

a = (ηT/w)1 −
(ηT/w)2 − (ηT/w)1
Tsw,pQCD − Tsw,HRG

Tsw,HRG. (33)

The same procedure applies for all polynomials of the form of Eq. (28), which always
determines at least two unknown variables. If there are N > 3 coefficients, then N − 2
coefficients remain free parameters, which must be determined for each µ̃ desired value.

In Fig. 6, we plot a comparison between 4 different choices of interpolating functions.
We note that the pQCD results in Fig. 6 are already rescaled according to the GMT results
from [62], and we use the HRG for r = 0.25 fm since the minimum value for this ratio is
close enough to the pQCD to make the matching acceptable. As evident from Fig. 6, the
location and overall value of the minimum (η/s)min is strongly dependent on the functional
form of the interpolation function. Some functional forms lead to nonphysical values of
η/s < 0. For this work, we ensure that shear viscosity is always positive, consistently with
stability constraints for relativistic viscous fluids [26, 8]. We choose to take a+ bx (blue
curve in Fig. 6), which only has two coefficients fixed by the transition points. Our a, f
coefficients are determined independently along slices of µ̃.

As a final comment to Fig. 6, the overall magnitude, especially at high and low T , is
significantly high when compared to what is expected for η/s(T ) using Bayesian analyses
[52, 113, 28, 120]. Therefore, we implement an overall normalization constant gnorm
(which can shift the final curve up or downward but does influence the dependence on µ̃)
that will be discussed in detail in the next section. We also note that our choice of overall
normalization is justified as we are primarily interested in obtaining models with a finite
µ̃ behavior such that given an η/s at µ̃ = 0, we can then use this approach to extrapolate
to finite µ̃. This allows us to explore the non-trivial behavior presented by HRG and pQCD
with 3 conserved charges.
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Free Parameters

Parameter Default Value

(η/s)set 0.08
Tsw,HRG 156
Tsw,pQCD 300 MeV
r 0.25 fm

Constrained Parameters

Parameter Source

gnorm (η/s)set/(η/s)min

gGMT (η/s)T,pQCD/(η/s)T,GMT

a, b, c, d, f determined from matching

Table 2: Table with free and constrained parameters in the phenomenological ηT/w
presented here [39].

In summary, our shear viscosity algorithm is [39]

(︃
ηT

w

)︃
tot

(T, µ̃) = gnorm

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂
ηT
w

)︂
HRG

T < Tsw,HRG(︂
ηT
w

)︂
int

Tsw,HRG < T < Tsw,HRG

gGMT

(︂
ηT
w

)︂
pQCD

T > Tsw,pQCD

(34)

where gGMT is the scaling factor to reproduce the pQCD results from NLO calculations
[62] at µ̃ = 0 and gnorm is the overall normalization constant, constrained at µ̃ = 0.

We summarize all parameters in Tab. 2. The parameter gnorm is constrained by (η/s)set
and the details of the rest of the calculation that leads to a certain minimum of η/s at
µB = 0; and gGMT is determined from the calculations in [62]. The value of (η/s)set is
guided by experimental data, Tsw,HRG and Tsw,pQCD are guided by comparisons of the
HRG and pQCD results to lattice QCD, and r is constrained within the given range if one
uses PDG2021+ to reproduce lattice QCD thermodynamic results.
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Figure 7: ηT/w as a function of the temperature for each value of µB in MeV for r = 0.25
fm. The results are shown before an overall rescaling is applied (i.e., gnorm = 1),
but include the pQCD rescaling.

4 ηT/w for 3 conserved charges

This section discusses results for the phenomenological ηT/w built in the last section.
Additionally, we motivate and explain our choice of overall rescaling. We begin with
results for conserved baryon density and later consider the implications of all 3 conserved
charges. In Fig. 7, we show the result of our ηT/w for µB = 0–600 MeV where in this case,
we have not yet included an overall rescaling, i.e., gnorm = 1. Fig. 7 shows the r = 0.25
fm case in the HRG phase. The pQCD sector has the same renormalization to GMT at
µ̃ = 0. The region where shear viscosity is calculated with our interpolation function in
Eq. (28) is marked on each edge using large dots. We observe that the minimum is always
located around T = 300 MeV, which is a consequence of the high values found for HRG
calculations compared to the values found by GMT for the QGP phase.

However, one issue observed is that the ηT/w in Fig. 7 are still above the KSS bound
[94] and differ in magnitude from what is seen in the Bayesian analyses. Thus, we will
use our scaling factor gnorm to readjust the magnitude of η/s at µ̃ = 0 to obtain more
reasonable values compared to experimental data. Then, gnorm remains constant across
µ⃗.

Here, we follow the same procedure as in [104]:
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• Find the minimum value of (η/s)min at µB = 0. With that, we identify Tmin as being
the temperature where (η/s)min has its minimum value for µB = 0.

• Then we can determine gnorm from

gnorm =
(η/s)set
(η/s)min

(35)

where we have chosen (η/s)set ≡ 0.08 to be the new minimum of η/s at µB = 0 in
the following results.

Initially, one could consider employing a data-driven method to establish the values for
(η/s)set and the other parameters listed in Table 2. However, the main objective of this
study is to use these models to obtain a plausible behavior across µB, µS , µQ, as there is
scarce theoretical and experimental guidance available on ηT/w under finite densities.

100 110 120 130 140 150
0

1

2

3

4

5

6

T(MeV)

η
/s

Figure 8: η/s as a function of the temperature in orange for r = 0.1 fm and blue for r =
0.25 fm. The shaded region corresponds to the uncertainty in our calculations
due to the effective core radius choice.

From this point, we will now set (η/s)set = 0.08 such that gnorm ̸= 1. As mentioned
before, the value of gnorm only shifts the overall magnitude of ηT/w but does not change
the behavior across T, µB. Figure 8 shows the renormalized η/s at µ̃ = 0 for two different
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Figure 9: ηT/w(T, µB) along different slices of µB in MeV for r = 0.25 fm. Here, we
show the curves with the overall rescaling gnorm. The large dots show the
interpolation region on the plot.

values of r = 0.1 fm (orange line) and r = 0.25 fm (blue line). Even after the overall
rescaling, the values of η/s in the hadronic phase for r = 0.1 fm remain significantly
higher than those predicted by other hadronic models, such as SMASH [73]. Hence, for
the remainder of this Chapter, we focus only on the r = 0.25 fm case, which leads to
values of shear viscosity that are more reasonable in magnitude and have a relevant finite
µ⃗ dependence for the pQCD limit.

We now study our shear viscosity at finite µB, using the formalism from the last section.
As explained earlier, we use the same functional form at finite µB. However, the coefficients
in the function form depend on µB, since they are determined at the matching points at
both high and low temperatures to the pQCD and HRG results. In Fig. 9, we plot our
results at finite µB for r = 0.25 fm where we have included the rescaling. The first effect
we observe from our final functional is that, since the shear viscosity in the HRG phase at
the transition point is generally higher than the shear viscosity at the pQCD transition
point, i.e.,

ηT

w
(Tsw,HRG(µB), µB) >

ηT

w
(Tsw,pQCD(µB), µB) , (36)

the minimum in ηT/w for a fixed µB ends up being at T ∼ 300 MeV. One other effect
that we see is that due to the drop in Tsw at finite µB, the ηT/w(Tsw,HRG(µB), µB)
ends up increasing at large µB. In contrast, the transition point between pQCD and
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Figure 10: ηT/w as a function of the temperature for r = 0.25 fm comparing the three
scenarios of µB > 0 with µS = µQ = 0, µS > 0 with µB = µQ = 0, and µQ > 0
with µB = µS = 0. The large dots mark the edges of the interpolation region
on the plot.

the interpolation does not vary nearly as strong with µB and therefore remains close to
ηT/w(Tsw,pQCD(µB), µB) ∼ (η/s)set.

In Figs. 7-9, we can also study the dependence of the HRG phase on T, µB. Generally,
the HRG varies much more in T than the pQCD phase. Our setup also shows that the HRG
has a stronger µB dependence than the pQCD phase. For a fixed T but increasing µB,
we find that ηT/w for the HRG regime consistently decreases, and the same behavior is
observed for a fixed µB but increasing T . Thus, the HRG regime has the opposite behavior
compared to the pQCD phase, which increases with increasing T and µB. The difference
in how ηT/w behaves in the HRG vs pQCD regime can be understood as follows. In the
hadronic phase, we use a geometric cross-section for all the contributing scatterings in the
system; as the number of particles increases and the scatterings become more frequent,
this system will equilibrate faster. In the deconfined phase, this equilibration is only
slightly affected by the density of particles, which tends to a constant.

Next, in Fig. 10, we compare three simple scenarios: µB > 0 with µS = µQ = 0, µS > 0
with µB = µQ = 0, and µQ > 0 with µB = µS = 0. This is similar to what was previously
shown for pQCD in Fig. 1, but here, we have matched the HRG calculations and plotted
the final functional form obtained. The pQCD results for ηT/w are nearly identical for µB

and µS finite for the range of chemical potentials we considered here. However, the HRG
results find that a finite µS leads to a considerable suppression of ηT/w in the HRG phase.
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Figure 11: ηT/w as a function of the temperature for each value of µB for r = 0.25 fm.
The interpolation region is indicated with closed-circle markers.

Using the same procedure described in the last section, we also show ηT/w for the case
of µQ = 0, µB > 0, and µS > 0 in Fig. 11 plotted vs the T . The colors here represent
different values of µB, while the different line styles are the values of µS , as indicated in
the figure. For µB = 200[MeV ], the effect of µS is very small in the 0− 200[MeV ] range.
However, at µS = 400[MeV ], shear viscosity shifts to higher values in the pQCD regime.
Additionally, we see a substantial shift in the transition between interpolation and HRG to
lower values of T , such that the HRG calculation only appears around T ∼ 100[MeV ]. We
note that the shift in switching temperature is much smaller in the deconfined region than
for the first-order phase transition. This happens because the Taylor series in Eq. (27)
scales with µ/T0 where the more significant value of T0 for pQCD implies that a larger µ is
needed to see the same effect (compared to the HRG transition). Finally, Fig. 12 shows the
effect of positive and negative µQ on a system with µS = µB > 0. We observe that for the
HRG region, µQ > 0, there is a bigger suppression of ηT/ω than for µQ < 0. The opposite
happens for the deconfined region, where the influence of µQ is not as pronounced as in
the HRG phase.

Here, we have allowed the calculations of ηT/w from HRG and pQCD to determine the
value of ηT/w(Tsw,HRG(µB), µB) and ηT/w(Tsw,pQCD(µB), µB) at the transition points.
The pQCD results’ overall magnitude is motivated by NLO calculations, which will be
discussed further in this thesis. Although convergence has not yet been shown in the
series, there is no clear indication of how to compute NNLO. On the other hand, in the
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Figure 12: ηT/w as a function of the temperature for r = 0.25 fm when all three chemical
potentials are finite. Here we hold µB = µS = 300 MeV fixed and vary only µQ.

HRG results, the magnitude results from a correlated combination between the number
of hadronic states in the system, the masses, and the excluded volume [39]. Additionally,
the HRG calculations depend on the assumption of a fixed volume for all hadrons. The
overall magnitude may change if one were to measure further hadronic states eventually
or include more complicated interactions.
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Collision operator at leading order

In Chapter 4.1, we performed leading-log calculations of shear viscosity at high-temperature
and high-density gauge theories — neglecting relative corrections suppressed only by pow-
ers of the inverse logarithm of the gauge coupling, 1/ log(1/g). Leading-log calculations
may be regarded as improvements over phenomenological estimates based on relaxation
time approximations [140, 139, 123, 27, 93, 92, 76]. However, they cannot be trusted to
provide even a factor of two estimate in any real application, because the logarithm of the
inverse gauge coupling, is never that large even for electromagnetism. This motivates us
to extend these calculations to the leading order in g.

Transport coefficients are dominantly sensitive to the dynamics of excitations (i.e.,
quarks and gluons) with typical momenta of the order of the temperature T . And, as
discussed in [9], it is possible to formulate an effective kinetic theory that correctly
describes the leading-order dynamics of such excitations. The leading-order collision
operator encodes the contribution of tree-level 2 ↔ 2 scattering processes, with Hard-Loop,
resumed propagators in the soft-sensitive channels, as well as collinear, effective 1 ↔ 2
processes, resuming the effect of an infinite number of soft scatterings. Both processes
contribute to order g4T to the collision operator; a subset of C2↔2

a [f ] is logarithmically
enhanced, g4T ln(1/g), due to the sensitivity to the soft scale gT . C2↔2

a [f ] and C1↔2
a [f ]

are described in detail in [10, 9]. Therefore, the collision term has the form:

Ca[f ] = C2↔2
a [f ] + C1↔2

a [f ] (1)

In this Chapter, we perform a complete leading-order evaluation of shear viscosity. First,
we describe the collision operator at leading order, considering contributions from 2 ↔ 2
and 1 ↔ 2 processes. Later, we present the results of these calculations and prepare the
reader for the next-to-leading order corrections computed in the next chapter. These
results, along with NLO results, are part of the work from [40] done in collaboration with
my supervisor Guy D. Moore.
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Figure 1: Diagrams contributing to the collision operator at the leading order.

1 Contributions from 2 ↔ 2 scatterings

This section introduces the matrix elements contributing to 2 ↔ 2 processes at leading
order. These contributions come from the diagrams shown in Fig. 1, listed from (A) to
(J). Here, diagrams (A) to (E) are the same as those used in Chapter 4.1 for the leading
log calculations; the difference is that we do not cut the infrared divergences this time.
Instead, we include thermal masses to regularize the collision integrals and obtain the full
leading order contribution. The matrix elements generated from these diagrams, Mab

cd,
are listed in table 1. The left column indicates the species involved in each scattering, and
the right column shows the sum of the contributions from diagrams (A) to (J) to each
specific scattering possibility. Here, underlined terms indicate the existence of an infrared
divergence and the need for thermal self-energy correction to regulate its contribution.
Singly underlined denominators indicate IR-sensitive contributions from soft gauge boson
exchange, while double-underlined denominators indicate IR-sensitive contributions from
a soft exchanged fermion. In terms of the collision operator, these contributions can be
written as:

C2↔2
a [f ](p⃗) =

1

2

∑︂
bcd

∫︂
kp’k’

|Mab
cd (p, k;p′, k

′)|2(2π)4δ(4)(P +K − P ′ −K ′){︂
fa(p)f b(k)[1± f c(p′)][1± fd(k′)]− f c(p′)fd(k′)[1± fa(p)][1± f b(k)]

}︂
(2)
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ab ↔ cd
⃓⃓
Mab

cd

⃓⃓2
/g4

q1q2 ↔ q1q2 ,
q1q̄2 ↔ q1q̄2 ,
q̄1q2 ↔ q̄1q2 ,
q̄1q̄2 ↔ q̄1q̄2

8
d2FC

2
F

dA

(︃
s2 + u2

t2

)︃

q1q1 ↔ q1q1 ,
q̄1q̄1 ↔ q̄1q̄1

8
d2FC

2
F

dA

(︃
s2 + u2

t2
+

s2 + t2

u2

)︃
+ 16 dFCF

(︃
CF−

CA
2

)︃
s2

tu

q1q̄1 ↔ q1q̄1 8
d2FC

2
F

dA

(︃
s2 + u2

t2
+

t2 + u2

s2

)︃
+ 16 dFCF

(︃
CF−

CA
2

)︃
u2

st

q1q̄1 ↔ q2q̄2 8
d2FC

2
F

dA

(︃
t2 + u2

s2

)︃
q1q̄1 ↔ g g 8 dFC

2
F

(︄
u

t
+

t

u

)︄
− 8 dFCFCA

(︃
t2 + u2

s2

)︃
q1 g ↔ q1 g ,
q̄1 g ↔ q̄1 g

−8 dFC
2
F

(︄
u

s
+

s

u

)︄
+ 8 dFCFCA

(︃
s2 + u2

t2

)︃
g g ↔ g g 16 dAC

2
A

(︃
3− su

t2
− st

u2
− tu

s2

)︃

Table 1: Expressions for the squares of vacuum matrix elements for 2 ↔ 2 particle
processes in QCD-like theories, after summing over spins and colors of all four
particles. Where q1 and q2 represent fermions of distinct flavors, and q̄1 and q̄2
are the associated antifermions. Moreover, g represents a gauge boson. Table
taken from [9].
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where the incoming/outgoing momenta p⃗, k⃗ and p⃗′, k⃗
′
are all on shell, p0 = p. The matrix

squared element |Mab
cd is summed over all spin polarizations, colors, and hard thermal

loop (HTL) resumed. We write
∫︁
k⃗
=
∫︁

d3k⃗
(2π)3

to simplify the notation. Next, we delve into
the self-energy corrections for soft fermion and boson exchange.

1.1 Fermion self-energy corrections

Diagrams (D) and (E) represent 2 ↔ 2 particle processes involving t (or u) channel
fermion exchange and are displayed in table 1 double-underlined. When these processes
are computed using free propagators, the resulting squared matrix elements generate
logarithmic infrared divergences in the collision term[13, 9].

To cut off this divergence, one can include the retarded thermal self-energy. This
computation can be rather involved, in that one can perform the same cut-off by replacing
the matrix element with that computed in the Hard Thermal Loop (HTL) approximation
that self-consistently treats the medium interaction correctly to leading order. This was
already done for the photon rate by Refs. [90, 19], and for AMY calculations of leading
order[9]. It was later shown in Refs. [3, 95] that there is a simpler treatment, which is also
correct at this order. This process involves substituting the small angle approximation of the
full Hard Thermal Loop (HTL) rate for the infrared divergent small angle approximation
in the complete matrix element. Specifically for a soft fermion exchange in the t or u
channel, one can use:

u− s

t
→ u− s

t

q2

q2 + ξ2qm
2
q

(3)

where q is the exchanged momentum, ξq = e/2, and mq is given by:

m2
q = 2g2

∫︂
p
[2CF fg(p) + CF (fq(p) + fq̄(p))] (4)

Here, mq the in-medium effective masses of quarks, and ξq = e/2 is chosen so that the
matrix element reproduces the full HTL results at leading order for isotropic distributions
[3, 61].

1.2 Gauge boson self-energy corrections

Analogously to diagrams (D) and (E), processes involving t or u-channel gauge boson
exchange also have infrared divergencies when computed with free propagators. These
diagrams are named as (A)-(C) in fig. 1. To handle this, one has to include the thermal
gauge boson self-energy on the internal propagator to cut off the infrared sensitivity of
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these processes. The self-energy must be taken to be an O(1) correction, and all momenta
must be considered to be in the same order[111, 9]. For that, we use,

(s2 + u2)

t2
=

1

2
+

1

2

(s− u)2

t2
su

t2
=

1

4
− 1

4

(s− u)2

t2
, (5)

Now, the matrix element of interest, (s− u)2/t2, can be written as:

(s− u)2

t2
−→ |Dret(P − P ′)µν(P − P ′)µ(K −K ′)ν |2 , (6)

where Dret
µν is the retarded boson propagator, and P ,P ′,K and K ′ are the 4-momenta of

the intial and final states. Furthermore, this can be understood by writing the square
vacuum amplitude for t-channel exchange between massless scalars[10]:

|Dret(P − P ′)µα(P − P ′)µ(K −K ′)ν |2 =
⃓⃓⃓⃓
(P − P ′) · (K −K ′)

(P − P ′)2

⃓⃓⃓⃓2
=

(s− u)2

t2
(7)

Following the same notation as [111], the plasma frame frequency and momentum
carried by the gauge boson propagator are denoted as ω and q. The retarded gauge boson
propagator can be conveniently expressed as:

Dret
00 (ω,q) =

1

q2 −Π00(ω,q)
(8)

Dret
ij (ω,q) =

δij − q̂iq̂j
q2 − ω2 +ΠT (ω,p)

(9)

Dret
0i (ω,q) = Dret

i0 (ω,q) = 0 (10)

The sign ofDret
ij is opposite to the most common convention due to the metric, but the sign

of Πret
T corresponds to the common usage. The equilibrium transverse and longitudinal

gauge boson self-energies in the hard thermal loop approximation are [89, 146]

ΠT (ω,q) = m2
D

{︃
ω2

2q2
+

ω (q2−ω2)

4q3

[︃
ln
(︃
q + ω

q − ω

)︃
− i π

]︃}︃
, (11)

Π00(ω,q) = −m2
D

{︃
1− ω

2q

[︃
ln
(︃
q + ω

q − ω

)︃
− i π

]︃}︃
, (12)

where we have assumed |ω| < q, which is the only case of relevance for the calculations
performed in this thesis. The expressions for obtaining these HTLs are detailed in the
appendix 1, along with a comparison between HTL at µ = 0 and µ > 0. The remaining
diagrams and the interference terms are finite and can be computed directly. Therefore,
the next section describes the parametrizations used to compute these integrals in each
channel.

93



1.3 The parametrizations for s, t and u channels

Performing the collision integrals at the leading order can be computationally challenging
because one needs to perform multi-dimensional numerical integration at high precision.
One straightforward method is to use an adaptive Monte Carlo integrator. However, as
commented earlier in this thesis, we use one-dimensional adaptive Gaussian integration.
In this section, we describe the convenient parametrizations for each channel and perform
all possible integrations analytically, leaving only 4 integrals that must be numerically
evaluated. The remaining of this section will be based on the work from [9], where the
authors have first derived and computed these collision integrals.

t and u channels

For terms containing t = −(P ′−P )2 in the denominator, we use the techniques derived in
Chapter 3 for the leading log calculations. First, use the spatial delta function to perform
the k′ integration, and to shift the p′ integration into an integration over p′−p ≡ q. Again,
the angular integrals may be written in spherical coordinates defined such that the z axis
is in the direction of q while p lies in the xz plane,

(︂
χij , C2↔2χij

)︂
=

β3

(4π)6

∑︂
abcd

∫︂ ∞
0

q2dq p2dp k2dk

∫︂ 1

−1
d cos θpq d cos θkq

∫︂ 2π

0
dφ

1

p k p′ k′

×
⃓⃓⃓
Mab

cd

⃓⃓⃓2
δ(p+k−p′−k′) fa

0 (p) f
b
0(k) [1±f c

0(p
′)] [1±fd

0 (k
′)]

×
[︂
χa
ij(p) + χb

ij(k)− χc
ij(p′)− χd

ij(k
′)
]︂2

, (13)

Here, we also use the same convention as the leading log calculations, where p, k, and q
denote the magnitudes of the corresponding three-momenta, p′ ≡ |q+ p| and k′ ≡ |k− q|
are the magnitudes of the outgoing momenta, φ is the angle between the p,q plane and
the k,q plane, and θpq is the angle between p and q.

Next, one may introduce a dummy integration variable ω, defined to equal the energy
transfer p′ − p, so that

δ(p+ k − p′ − k′) =

∫︂ ∞
−∞

dω δ(ω + p− p′) δ(ω − k + k′) . (14)

Following the same procedure as the leading log calculations, one can compute all angular
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integrals except one, and the remaining integrals are

(︂
χij , C2↔2χij

)︂
=

β3

(4π)6

∑︂
abcd

∫︂ ∞
0

dq

∫︂ q

−q
dω

∫︂ ∞
q−ω
2

dp

∫︂ ∞
q+ω
2

dk

∫︂ 2π

0
dφ

×
⃓⃓⃓
Mab

cd

⃓⃓⃓2
fa
0 (p) f

b
0(k) [1± f c

0(p
′)] [1± fd

0 (k
′)]

×
[︂
χa
ij(p) + χb

ij(k)− χc
ij(p′)− χd

ij(k
′)
]︂2

, (15)

with p′ = p + ω and k′ = k − ω. For evaluating the final factor of (15), we use the
relationship

Iij(p̂) Iij(k̂) = Pℓ(cos θpk) . (16)

One, therefore needs expressions for the angles between all species, as well as the re-
maining Mandelstam variables s and u, which may appear in M2. They are[13, 9]

s =
−t

2q2

{︃[︁
(p+ p′)(k + k′) + q2

]︁
− cosφ

√︂
(4pp′ + t) (4kk′ + t)

}︃
, (17a)

u = −t− s , (17b)

and

cos θpq =
ω

q
+

t

2pq
, cos θp′q =

ω

q
− t

2p′q
, (18a)

cos θkq =
ω

q
− t

2kq
, cos θk′q =

ω

q
+

t

2k′q
, (18b)

cos θpp′ = 1 +
t

2pp′
, cos θkk′ = 1 +

t

2kk′
, (18c)

cos θpk′ = 1 +
u

2pk′
, cos θp′k = 1 +

u

2p′k
, (18d)

cos θpk = 1− s

2pk
, cos θp′k′ = 1− s

2p′k′
. (18e)

where only t appears in the denominator of the matrix element, the φ integration can
be straightforwardly conducted analytically, while the remaining integrals necessitate
numerical evaluation. Analogously, when the denominator contains u = −(K ′ − P )2, the
natural choice of variables is exchanging p′ and k′ in the t channel parameterization.
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s channel

On the other hand, for terms in which s = −(P +K)2 appears in the denominator, one
may use the spatial delta function to perform the k′ integration. However, the shift this
time has to be from k to q = p + k, the total incoming spatial momentum (and the
momentum on the internal propagator in s channel exchange processes). Again choosing
spherical coordinates so that q lies on the z axis and p lies in the xz plane, the 2 ↔ 2
contribution (68) becomes

(︂
χij , C2↔2χij

)︂
=

β3

(4π)6

∑︂
abcd

∫︂ ∞
0

q2dq p2dp p′
2
dp′
∫︂ 1

−1
d cos θpq d cos θp′q

∫︂ 2π

0
dφ

1

p k p′ k′

×
⃓⃓⃓
Mab

cd

⃓⃓⃓2
δ(p+k−p′−k′) fa

0 (p) f
b
0(k) [1± f c

0(p
′)] [1± fd

0 (k
′)]

×
[︂
χa
ij(p) + χb

ij(k)− χc
ij(p′)− χd

ij(k
′)
]︂2

, (19)

where now k = |q−p|, k′ = |q−p′|, and φ is the azimuthal angle of k (and k′). Analogously
to the t channel, we introduce the total energy ω via

δ(p+ k − p′ − k′) =

∫︂ ∞
0

dω δ(ω − p− k) δ(ω − p′ − k′) , (20)

and defining s = ω2 − q2, one finds

δ(ω − p− k) =
k

pq
δ

(︃
cos θpq − ω

q
+

s

2pq

)︃
Θ(ω − p ) , (21)

δ(ω − p′ − k′) =
k′

p′q
δ

(︃
cos θp′q −

ω

q
+

s

2p′q

)︃
Θ(ω − p′) . (22)

Integration over cos θpq and cos θp′q yields unity provided q < ω, |2p − ω| < q, and
|2p′ − ω| < q (and zero otherwise). Therefore,

(︂
χij , C2↔2χij

)︂
=

β3

(4π)6

∑︂
abcd

∫︂ ∞
0

dω

∫︂ ω

0
dq

∫︂ ω+q
2

ω−q
2

dp

∫︂ ω+q
2

ω−q
2

dp′
∫︂ 2π

0
dφ

×
⃓⃓⃓
Mab

cd

⃓⃓⃓2
fa
0 (p) f

b
0(k) [1±f c

0(p
′)] [1±fd

0 (k
′)]

×
[︃(︂

χa
ij(p) + χb

ij(k)− χc
ij(p′)− χd

ij(k
′)
)︂2]︃

. (23)

96



with k = ω − p and k′ = ω − p′. The other Mandelstam variables are

t =
s

2q2

{︂[︁
(p− k)(p′ − k′)− q2

]︁
+ cosφ

√︁
(4pk − s)(4p′k′ − s)

}︂
, (24a)

u = −s− t , (24b)

and the angles between q and the external momenta are

cos θpq =
ω

q
− s

2pq
, cos θp′q =

ω

q
− s

2p′q
, (25a)

cos θkq =
ω

q
− s

2kq
, cos θk′q =

ω

q
− s

2k′q
. (25b)

Eqs. (18c)–(18e) for the angles between external momenta still hold. The angular integra-
tion over φ can be easily performed analytically, leaving four integrals to do numerically,
similarly to the t channel.

2 Gluon emission in QGP

While the soft scatterings described in the last section may not appreciably change the
momentum state of the particle, they could bring it slightly off-shell, thereby making it
kinematically possible for the particle to decay through nearly collinear splitting [95].
As a consequence of that, effective 1 ↔ 2 processes become a leading order effect.
Hence, understanding the rate of gluon emission in a hot QCD plasma is essential for
computing transport coefficients, such as shear viscosity [11]. The internal time scale
associated with these phenomena closely mirrors the mean free time for soft scattering
interactions with other particles within the plasma. Consequently, the gluon emission rate
is susceptible to multiple scatterings throughout the emission event. This phenomenon
is known as the Landau-Pomeranchuk-Migdal (LPM) effect [98, 97, 105]. Particularly
in the nearly-collinear scenario, any additional explicit factors, such as gs, are effectively
offset by significant enhancements arising from the internal quark propagators and softly
exchanged gluons. In this section, we will focus on the contributions of bremsstrahlung
and pair annihilation to the rate of gluon emission, based on the works from [11, 12].
We present the expression for the gluon emission rate, starting from the photon emission
rate expression, and a method to evaluate this rate. A detailed derivation for the photon
emission rate can be found in the appendix 2.

2.1 Gluon emission rate

Here, we notice that, as pointed out in [11], the main difference between photon and
gluon emission [136, 85, 86, 72, 79, 137] is that the gluon also carries color. Thus, a hard
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Figure 2: The diagrams show that the interactions are time ordered from left to right,
whose interference contributes to the rate of gluon emission. The first diagram
represents gluon emission at time zero, the second at time x0, and both dia-
grams show the evolution between these two times. Figure from [11]

gluon emitted can interact with the random colored background field akin to the emitting
particle. However, when considering hard gluon emission, it is crucial to discern that the
emitted gluon constitutes a distinct (quasi)particle from the soft background[11].

The gluon and quark involved in this emission process must be nearly collinear, leading
to interactions that must happen in a definite order; this is illustrated in Fig.2. This
ordering is necessary so the entire wave packet is well localized in all three dimensions.
Nonetheless, there are a few complications to this description. Firstly, a color matrix TA

ab

is incorporated at the vertex of the hard particle. Secondly, correlations emerge between
the soft gauge field encountered by the gluon and either emitter line.

Given that the interactions are ordered, it becomes feasible to summarize the diagrams
using an integral equation. This equation comprises three components in the collision term,
each corresponding to the three distinct types of correlations between lines illustrated in
Fig. 3. The group theoretic coefficients can be found using,

T b
R T a

R T b
R =

(︃
CR − 1

2
CA

)︃
T a
R , T c

R T b
R ifabc =

1

2
CA T

a
R . (26)

where T a
R denote representation R color generators. The temporal ordering of the soft

gluon correlators allows one to determine the group factor for the whole diagram. This is
done simply by including a factor of (CR − 1

2CA) to each line between emitters and1
2CA

to each line from an emitter to the emitted gluon [11].
As a reflection of the fact that the gluon can scatter during the process time scale, which

is 1/g2T , a cross-rung can change either p, k, or both. Hence, using the expression for
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Figure 3: Diagrams showing the interference of the two gluon emission amplitudes of
Fig. 2. Left: the product of amplitudes in a given background field. Right: the
result after averaging over random background fields. Each line interacts with
the soft background. When the background is averaged over, besides same-
line correlations, represented by double lines for the sidebars, there are three
distinct kinds of correlations between lines. Figure from [11].

photon emission from 2 and adding the differences, we can write:

dΓLPM
g

d3k
=

αs
4π2k

∑︂
s

Ns dsCs

∫︂ +∞

−∞

dp∥

2π

{︄∫︂
d2p⊥
(2π)2

d2k⊥
(2π)2

fs(p∥ + k∥) [1∓ fs(p∥)]

×[1 + fb(k∥)]
⃓⃓⃓
J (s)
p∥←p∥+k∥

⃓⃓⃓2
2∆pk · Re Fs(p⊥, k⊥; p∥, k∥)

}︄⃓⃓⃓⃓
⃓
k∥→k

, (27)

Here, 1+fb(k) is a radiation stimulation factor, ∆pk ≡ p⊥ − p∥k⊥/k∥ is the component of
p perpendicular to k, and |Fs| is defined by the integral equation [11]:

2∆pk (2π)
2 δ(2)(k⊥) = i δE Fs(p⊥, k⊥; p∥, k∥) + g2

∫︂
Q
2π δ(q0−q∥)

⟨︂⟨︂
A+(Q) [A+(Q)]∗

⟩︂⟩︂
×
{︃
(Cs − 1

2CA)
[︁
Fs(p⊥, k⊥; p∥, k∥)− Fs(p⊥−q⊥, k⊥; p∥, k∥)

]︁
+ 1

2CA
[︁
Fs(p⊥, k⊥; p∥, k∥)− Fs(p⊥+q⊥, k⊥−q⊥; p∥, k∥)

]︁
+ 1

2CA
[︁
Fs(p⊥, k⊥; p∥, k∥)− Fs(p⊥, k⊥+q⊥; p∥, k∥)

]︁}︃
. (28)

Next, we exploit the rotational invariance of the problem, similarly to what is done for the
collision operator. Except for |Fs|, the elements of the integrand in the rate formula (27)
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are invariant under small angle (θ ∼ g) rotations, which predominantly affects p⊥ and k⊥
at leading order, while leaving p∥ and k∥ largely unaffected[11]. Thus, we can decompose
the d2p⊥ > d2k⊥ into one component involving the relative momentum ∆pq and another
integral accounting for small rotations. The integration over small rotations can be merged
into Fs, defining a new function solely dependent on the quantity h ≡ k∥∆pq, which can
be expressed as,

h = k∥ p⊥ − p∥ k⊥. (29)

This may also be written as h = (k×p)× e∥, where e∥ is the unit vector in the ∥ direction.
The corresponding equations that only track changes in h are

dΓg

d3k
=

αs
4π2k2

∑︂
s

Ns dsCs

∫︂ +∞

−∞

dp

2π

∫︂
d2h
(2π)2

fs(p+k) [1∓ fs(p)] [1 + fb(k)]

× 1

k3
|J (s)

p←p+k|
2 2h · Re Fs(h; p, k) , (30)

where Fs(h; p, k) is the solution to the integral equation

2h = i δE(h; p, k) Fs(h; p, k) + g2
∫︂
Q
2π δ(q0−q∥)

⟨︂⟨︂
A+(Q) [A+(Q)]∗

⟩︂⟩︂
×
{︃
(Cs − 1

2CA) [Fs(h; p, k)− Fs(h−k q⊥; p, k)]

+ 1
2CA [Fs(h; p, k)− Fs(h+(k+p)q⊥; p, k)]

+ 1
2CA [Fs(h; p, k)− Fs(h−pq⊥; p, k)]

}︃
, (31)

Here, A+(Q) represents the thermal Wightman correlator for the gluonic field, whereas
δE is the energy difference between the initial and final collinear particles. It reads

δE(h; p, k) =
m2

g

2k
+

m2
s

2p
+

m2
s

2(−p−k)
− h2

2p k (−p−k)
. (32)

where m2
s is the asymptotic mass of the particle with momentum p. To simplify the

presentation of these and the subsequent equations, we have omitted the ∥ subscripts
from p∥ and k∥. Additionally, it is worth noting that rotational invariance dictates that
Fs(h; p, k) should be proportional to h multiplied by a scalar function of |h|, p, and k.
However, the integral equation (31) is more effectively expressed when Fs(h; p, k) remains
as a vector function.
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Since this computation is rather involved, from this point, we will only consider the case
g ↔ gg, in eq. (30). The other possibilities, g ↔ qg, g ↔ q̄g and g ↔ q̄q can be computed
analogously. In the fully gluonic case, the sum over species s is only over gluons, which
have Ns = 2, ds = dA, and Cs = CA. The splitting function for gluons is[11, 9]

Pgg←g(z) =
1 + z4 + (1−z)4

z (1−z)
(33)

where Pgg←g(z) is the Altarelli-Parisi (or DGLAP) splitting function. For z < 1, which
means hard gluons[11], it gives

|J (g)
p←p+k|

2 =
p4 + k4 + (p+k)4

8p3 (p+k)3
. (34)

At this point, we note that one can recover photon emission results from the final gluon
emission expressions (30) by substituting CA=0 inside the integral equation, indicating
that the emitted particle is colorless rather than in the adjoint representation. Please refer
to 2 or consult [11, 9] for more detailed information.

Our aim in this section is to write the second term in the collision operator in Eq. (1).
This is done by rewriting the leading-order equilibrium differential rate production for
hard gluons, as defined in Eq. (30) in a similar form of (2). First, Eq. (30) is evaluated in
equilibrium and then multiplied by νg/(2π)

3. We begin by noting that further symmetry
in this result, whether for quark or gluon emitters, can be revealed by reorganizing group
factors such that the expression within curly braces in the integral equation (31) is{︃

1
2(CR3 + CR1 − CR2) [Fs(h; p, k)− Fs(h−p2 q⊥; p, k)] +

1
2(CR1 + CR2 − CR3) [Fs(h; p, k)− Fs(h−p3 q⊥; p, k)] +

1
2(CR2 + CR3 − CR1) [Fs(h; p, k)− Fs(h−p1 q⊥; p, k)]

}︃
, (35)

where (p1, p2, p3) denotes the three momenta (p, k,−p−k) and (CR1 , CR2 , CR3) denote
the quadratic Casimirs (Cs, CA, Cs) of the corresponding color representations.

Next, we define γabc as the splitting rate, using the splitting function |J (g)
p←p+k|. In the

full gluonic case, the splitting rate is given by:

γggg(p; p− k, k) =
g2dACA

64π4

(︃
p4 + k4 + (p+k)4

8p3 (p+k)3

)︃∫︂
dh2

(2π)2
2h ·ReFs(h) (36)

As pointed out in [10], this differential gluon production rate is an infrared divergent
quantity. This divergence comes from the part of the integral that represents processes
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where a hard gluon with momentum p′ nearly equal to k undergoes a soft scattering
with emission or absorption of a soft gluon to produce a hard gluon with momentum k.
However, it was observed that physical quantities depend on this production rate with the
subtraction of the corresponding rate at which gluons are scattered out of mode k, and
the infrared sensitivity cancels in the difference between these rates, therefore causing
the collision terms to be infrared safe [11].

Finally, we can express the complete collision operator for 1 ↔ 2 processes using the
production rate. Here, we use a, b, and c to represent the species and write the collision
term in a more general form,

C1↔2
a [f ](p⃗) =

(2π)3

2|p⃗|2νa

∑︂
bc

∫︂ ∞
0

dp′dkδ(|p| − p′ − k)γabc(p; p′p̂, kp̂){︂
fa(p)[1± f b(p′p̂)][1± f c(kp̂)]− f b(p′p̂)f c(kp̂)[1± fa(p)]

}︂
+

(2π)3

2|p⃗|2νa

∑︂
bc

∫︂ ∞
0

dkdp′δ(|p|+ k − p′)γabc(p; p′p̂, kp̂){︂
fa(p)f b(kp̂)[1± f c(p′p̂)]− f c(p′p̂)[1± fa(p̂)][1± f b(kp̂)]

}︂
(37)

The splitting rate is now determined by solving the integral equation Eq. (31). This
integral equation is rather involved, and it was computed in ref. [9] using a variational
method similar to the one used to compute shear viscosity. Later, it was shown in [16]
that this process is way more straightforward if worked out in the impact parameter
space instead of the momentum space. We explore this approach in the following section,
describing the method used to build the code for the splitting rate, written by G. Moore
and adapted to be used in this work.

2.2 Solving the integral equation for γa
bc

Here, we show how to compute the splitting rate in the impact parameter space. For the
sake of clarity, we begin with some definitions. In the last section, we have presented the
splitting rate for the full gluonic case, γggg(p′; p, k), here we introduce a more general form,
γabc(p

′; p, k), for particle types a ↔ bc with momenta p′ ↔ pk. For non-Abelian gauge
theories such as QCD, the splitting/joining functions of interest are given in equilibrium
by [11, 9]

102



γqqg(p
′; p, k) = γ q̄q̄g(p

′; p, k) =
p′2 + p2

p′2 p2 k3
Fq(p

′, p, k) , (38a)

γgqq̄(p
′; p, k) =

p2 + k2

k2 p2 p′3
Fq(k,−p, p′) , (38b)

γggg(p
′; p, k) =

p′4 + p4 + k4

p′3 p3 k3
Fg(p

′, p, k) , (38c)

where
Fs(p

′, p, k) ≡ dsCs α

2(2π)3

∫︂
d2h

(2π)2
2h · Re Fs(h; p′, p, k) (39)

and α ≡ g2/(4π). The function Fs(h; p′, p, k), is the same as defined in the last section,
and for fixed given values of p′, p, and k, depends only on h. For simplicity we will use
the notation Fs(h; p′, p, k) = F(h), and rewrite the integral equation Eq. (31) for F as,

2h = iδE(h, p, ω)F(h) +
∫︂

d2q⊥
(2π)2

C(q⊥)
{︃
(CR − CA/2)[F(h)− F(h− ωq⊥)]

+
CA
2
[F(h)− F(h+ pq⊥)] +

CA
2
[F(h)− F(h− (p− ω)q⊥)]

}︃
. (40)

where
C(q⊥) ≡

∫︂
dqz

2π

⟨︁
A−(Q)[A−(Q)]∗

⟩︁ ⃓⃓⃓⃓
q0=qz

. (41)

Here Q = (q0,q⊥, qz), A− ≡ A0 −Az, and
⟨︁
A−(Q)[A−(Q)]∗

⟩︁
is again the thermal Wight-

man correlator evaluated in the hard-thermal-loop approximation.
To tackle this, we follow [16], and Fourier transform this integral equation into an

ordinary differential equation by going to impact parameter space. This process is straight-
forward if one defines,

F(h) ≡
∫︂

d2b e−ih·bF(b) . (42)

and Eq. (40) becomes

0 = i

(︄
−
m2

p

2p
+

m2
k

2k
+

m2
p−k

2(p− k)
− p

k(p− k)
∇2

b

)︄
F(b)

+
1

2π

(︃
C1K(b) + C2K

(︃
bk

p

)︃
+ C3K

(︃
b(p− k)

p

)︃)︃
F(b) (43)
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where C1, C2, C3 = Cparticle − CA/2, and mp−k is still the asymptotic mass but identified
with the corresponding momentum since these masses could be either from gluons or
quarks. Finally, K is the modified Bessel function of the second kind so that

K(b) = K0(b) + ln(b/2) + γE (44)

We can now rewrite it as a scalar equation. First, we make f⃗ = b⃗u(b). Then we plug it
back into Eq. (43),

0 = i

(︄
−
m2

p

2p
+

m2
k

2k
+

m2
p−k

2(p− k)

)︄
u− i

p

k(p− k)

3

b
u′(b)− i

p

k(p− k)
u′′(b)

+

(︃
C1K(b) + C2K

(︃
bk

p

)︃
+ C3K

(︃
b(p− k)

p

)︃)︃
u(b) (45)

In this form, we analyze the behavior of the imaginary part to decide which solution is the
correct one for our problem. For example, if the imaginary part shows a 1/b2 behavior, the
solution to this problem is given by the real part times 4/π. In the end, we multiply our
solution by a factor of (k(p− k))/pT to make up for the rescaling of the equation. Since
numerically solving this equation can be a rather involved process, we add conditions to
the derivatives of u(b). We define u(b)u(b) = b2u(b). It obeys

uu′′ =
uu′

b
+

(︃
−m2

p

2p +
m2

k
2k +

m2
p−k

2(p−k)

)︃
p

k(p−k)
uu−i

C1K(b) + C2K
(︂
bk
p

)︂
+ C3K

(︂
b(p−k)

p

)︂
p

k(p−k)
uu (46)

Again, we must select the interesting solution to our problem. When the value at b = 0 is
purely imaginary and 1, we want the solution where,

u(b) =
2

π

k(p− k)

pTb
Re[uslope] (47)

For off-shell production, there is an additional scalar longitudinal component equation.
However, this is related to the original equation with a missing factor of h on the left-hand
side. Consequently, the term 3

bu
′ becomes 1

bu
′, and the boundary condition shifts to

requiring Im[u] = const when the purely real behavior of u′ is 1
b .

The solution to this problem involves a code that can handle differential equations with
exponentially diminishing boundary conditions for large values. The objective is to isolate
the finite component orthogonal to the divergent one at the origin. However, we will not
be providing more details on the numeric evaluation of this differential equation because
this is out of the scope of this thesis. In the next section, we comment on the high-density
regime.
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3 The high-density regime

In this section, we delve into the differences between the description of QGP at vanishing
chemical potential, µ = 0, and at high densities, µ > 0. In leading-order and, consequently,
next-to-leading-order calculations, it is necessary to regulate the infrared divergences
arising from soft gluon exchanges in diagrams (A) to (E), as discussed in the last section.
In [10], the author has tested the efficiency of hard thermal loops for a leading-order
computation of transport coefficients at vanishing chemical potential, which we will use
in this thesis.

Here, we make use of the results from [35] for hard thermal loops at high densities. In
their work, the authors have shown that hard thermal loops are always proportional to
the square of the thermal gluon mass, which is given by,

mg =
1

9
Ngg

2T +
1

18
Nfg

2

(︃
T 2 +

3

π2
µ2

)︃
(48)

At high chemical potential, there is an increase in the number of quarks and, therefore,
an increase in the screening effect produced in this plasma. Hence, one must shift the
screening mass as m2

D ∝ T 2 + µ2/π2, where the inclusion of π here is necessary to scale
mD at high densities correctly. Here, we use this result to regularize infrared divergences
on the soft gluon exchange. This effect also influences the NLO calculations since the
contribution to soft gluon corrections has a linear dependence on mD. Similarly to the
hard thermal loops, the splitting/joining processes will also be affected by the shift in
the screening mass. Apart from that, smaller contributions at NLO from collinear and
semi-collinear processes also depend on this shift, as we will see in the next Chapter.

Additionally, the physical picture of a dense plasma can be understood analogously to
the leading log case from Chapter 4.1. The dominant scattering mechanism for particles
to change their direction, for soft scattering, is well described in terms of momentum
diffusion with a momentum-diffusion coefficient q̂:

q̂ ≡
∫︂

d2q⊥
(2π)2

q2⊥ C(q⊥) (49)

where C(q⊥) is the differential rate to exchange transverse momentum q⊥. In a thermal
system without chemical potential, this is given by:

C(q⊥) = g2CFT
m2

D

(q2⊥)(q
2
⊥ +m2

D)
(50)

In a high-density regime, the expression for q̂ remains the same; however, due to the shift
of the screening mass, the momentum-diffusion coefficient is now directly dependent on
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the chemical potential. This affects not only the statistical distributions of the system but
also influences the relevance of the contributing scatterings.

4 Results

In the previous sections, we presented the ingredients necessary for the computation of
shear viscosity in the leading order, except for the basis set. In the original AMY leading
order calculations[9], the authors have presented a convenient basis for calculations at
vanishing chemical potentials; however, since we are interested in the behavior of shear
viscosity as a function of chemical potential, we will use the basis discussed in Chapter 4.1.
This section presents results for the shear viscosity for different chemical potentials using
the computational apparatus described in this Chapter. Starting with low temperatures
and then going to the region where perturbation theory is expected to be mostly accurate.

Following the same approach used for the leading log analysis, we plot the shear viscosity
to entropy density ratio η/s for LO in figure 4. Here, we chose to present η as a function
of the temperature, going from lower temperatures, where only three flavors are included,
up to high temperatures, where six flavors are expected to contribute. In figure 5, we show
the kinematic viscosity, ηT/(e+ P ), as a function of the temperature in GeV. For these
plots, we have used the EQCD coupling µEQCD = 2.7 T, following the treatment from
[62], more details about the coupling prescription can be found in Appendix 3. Given that
our calculations include high chemical potentials, there is no literature indicating which
choice of coupling is the most appropriate, so we remark that other couplings could also
be reasonable and still give different results. The different colors in these plots represent
lines with a fixed chemical potential, µ = 0, 3, and 6. The plots show behavior similar to
that found for the leading log calculations. As the chemical potential increases, η/s is
also increased. On the other hand, ηT/(e+ P ) has the opposite behavior and decreases
with the chemical potential. The plots show that the qualitative conclusions from Chapter
4.1 remain valid up to the leading order. We observe the ratio Tη/(e + P ) to depend
weakly on µ/T [41]. Additionally, we observe again that in terms of the time scale 1/T ,
a high-density fluid will relax somewhat more quickly than one at vanishing chemical
potential[41].
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Figure 4: η/s as a function of the temperature for µ = 0, 3, 6, calculated using µEQCD =
2.7 T.

Figure 5: Kinematic shear viscosity as a function of the temperature for µ = 0, 3, 6,
calculated using µEQCD = 2.7 T.
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Next-to-Leading Order corrections

In the last Chapter, we described how to reorganize the collision operator to include
screening effects and collinear processes. Next, we focus on the next-to-leading order
corrections, first computed by Ghiglieri, Moore, and Teaney in [62]. In this work, the
authors carefully described how to reorganize the leading-order treatment of Arnold,
Moore, and Yaffe [9] into a contribution from generic momenta without screening, cut off
at a transverse scale µ⊥, and effective diffusion and identity changing processes. According

Figure 1: Left: kinematic regions, in terms of exchanged transverse momentum and
exchanged light-cone momentum q+, which are relevant at leading order. Right:
the same regions (yellow) plus regions that are relevant at next-to-leading order
(pink) and where subtractions of leading-order effects are needed (blue). Figure
taken from [62].

to this characterization, the linearized collision operator C is constructed purely as a g4

entity multiplied by a logarithm plus a constant, thereby lacking any contributions formally
subleading in g content. In this Chapter, we revisit the methodology to incorporate O(g)
corrections and describe the extension to the high-density regime.

Corrections of O(g) can only arise if the calculations are sensitive to q ∼ gT , as shown
in Fig. 1. These energy levels are highly occupied, and loop corrections are of order
g2f0(q) ∼ g when bosons propagate at this energy scale [62]. Furthermore, the HTL
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effects, essential at this momentum due to the infrared divergencies, as already described
in Chapter 4, receive the first non-HTL corrections at O(g). Additionally, in the 2 ↔ 2
processes, the gT scale will only appear when the exchanged momentum is small or
when an external particle becomes soft, meaning that p ∼ O(gT ). In the first case, the
process degenerates into a diffusion or identity change process. In the latter case, the
states are nearly collinear or semi-collinear processes as referred to in [62]. In the case of
1 ↔ 2 processes, the authors observed that the gT scale would appear in the transverse
exchange momentum q⊥ and the screening mass m∞. Furthermore, the leading order
treatment used in the last Chapter (Eq. 16) involved a collinear approximation which
breaks down when one of the splitting daughters ( final state particles) becomes soft,
k ∼ gT , p− k ∼ gT , or when the transverse momentum becomes larger, h ∼ √

gT 2. The
large-h region is what was called semi-collinear processes in [62]. In this Chapter, we
review each correction, except for the soft quark exchange, which, up to this day, can only
be estimated and will not have a central part in the high-density region. Later, we present
the results of shear viscosity at high densities at the next-to-leading order on the coupling.

1 Soft gluon exchange

Typically, NLO contributions from soft gluon exchange come from diagrams (A), (B), and
(C) of Fig (1) when one or both the external gluons are soft. It was shown in [62, 77],
that the effect of soft gluon exchange on the evolution of the system can be summarized
by a Fokker-Planck equation. To conserve energy and momentum, the Fokker-Planck
equation must be supplemented by gain terms that describe how the momentum lost
by a parton in the bath is redistributed. This redistribution of energy and momentum
is essential in determining the transport coefficients, like shear viscosity and diffusion.
The computation of these gain terms is not amenable to an evaluation using light-cone
techniques since more than one light-like particle is involved, and therefore, computing
the gain terms constitutes a major obstacle to computing transport coefficients at NLO.
The Fokker-Planck collision kernel can be written as[62]

(C2↔2
diff f1)

a(p) = −1

2

∂

∂pi
q̂ija fa

0 (p)(1±fa
0 (p))

∂fa
1 (p)
∂pj

+ gain-terms , (1)

where

q̂ija = q̂a,Lp̂
ip̂j + 1

2 q̂a
(︁
δij − p̂ip̂j

)︁
(2)
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represents the momentum diffusion parallel and perpendicular to the momentum of a
particle through q̂L and q̂, respectively. The gain terms will take the form:

gain-terms =
1

2

∂

∂pi

(︄
fa
0 (p)(1±fa

0 (p))
∑︂
b

νb

∫︂
k
Cij
ab(p̂ · k̂) f b

0(k)(1± f b
0(k))

∂f b
1(k)
∂kj

)︄
. (3)

This gain term describes the redistribution of energy lost by a parton with momentum k,
as mentioned at the beginning of this section. The explicit form of the angular function,
Cij
ab(p̂ · k̂), will be given ahead in the text. Since the diagrams of interest here are (A), (B),

and (C), our aim here is to describe the t-channel matrix element in the soft approximation,
which was done in [10, 9], and in Chapter 4 in the following form,

|Mab
ab|2soft g t

(2p)2(2k)2
=

νaCRaνbCRb
g4

dA

⃓⃓
Dret

µν (Q)vµpv
ν
k
⃓⃓2

. (4)

Here, Dret
µν is again the retarded HTL-resummed propagator as given in [36, 54] in the

Coulomb gauge. Furthermore, in the soft expansion used in this section, it is possible to
approximate the departures from equilibrium appearing as,[︂

fa
1 (p) + f b

1(k)− fa
1 (p′)− f b

1(k
′)
]︂2

=

[︃
qi
∂fa

1 (p)
∂pi

− qj
∂f b

1(k)
∂kj

]︃2
. (5)

With the use of these approximations, the 2 ↔ 2 collision operator can be rewritten in
terms of the derivatives of fa

1 , and separated into a gain term and a loss term as follows,

(f1, C
2→2
diff f1) ≡ (f1, C

2→2
dff f1)

⃓⃓
loss + (f1, C

2→2
diff f1)

⃓⃓
gain , (6)

where the loss term is given by,

(f1, C
2→2
diff f1)

⃓⃓
loss =

1

2
β3
∑︂
a

νa

∫︂
p
fa
0 (p)(1± fa

0 (p)) q̂
ij
a

∂fa
1 (p)
∂pi

∂fa
1 (p)
∂pj

, (7)

and the gain term in the soft approximation can be rewritten as,

(f1, C
2→2
diff f1)

⃓⃓
gain= −β3

2

∑︂
ab

νaνb

∫︂
pk
fa
0 (p)(1±fa

0 (p))f
b
0(k)(1±f b

0(k)) C
ij
ab(p̂·k̂)

∂fa
1 (p)
∂pi

∂f b
1(k)
∂kj

,

(8)
and finally, the angular function Cij

ab(p̂ · k̂) is written as,

Cij
ab(p̂ · k̂) = g4CRaCRb

dA

∫︂
d4Q

(2π)4
|Dret

µν (Q)vµpv
ν
k |

2 2πδ(vp ·Q)2πδ(vk ·Q)qiqj , (9)
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and q̂ija is given by:

q̂ija =
∑︂
b

νb

∫︂
k
f b
0(k)(1± f b

0(k)) C
ij
ab(p̂ · k̂) , (10)

The expression for the loss term (f1, C
2↔2
diff f1)

⃓⃓
loss was carefully examined in [62], and

the authors noticed that it involves a single light-like vector denoted as vp. The properties
of light-like correlators were studied by Caron-Huot [38] while he was investigating the
bremsstrahlung energy loss of high energy partons moving in the quark-gluon plasma at
weak coupling. And made it possible to evaluate these soft contributions to q̂ and q̂L in a
closed form [16, 63, 61],

q̂a
⃓⃓⃓⃓
soft

=
g2CRaTm

2
D

2π
ln

µ⊥
mD

, q̂aL

⃓⃓⃓⃓
soft

=
g2CRaTm

2
D

4π
ln

√
2µ⊥
mD

. (11)

Here gT ≪ µ⊥ ≪ T is a cutoff on the transverse momentum q⊥ ≡
√︁
q2 − ω2 integration,

which is meant to separate the soft from the hard scale. The dependence on this cutoff
cancels against the region where ω, q >∼ T . This is the region where the bare matrix
elements can be employed to evaluate the hard contribution to C2↔2[62]. We also note
that the simple form of q̂ and q̂L is a consequence of the fact that points separated by
light-like intervals are causally disconnected concerning the influence of soft gauge fields.
Next, we make use of the explicit form of the angular dependence of fa

1 (p) = β2χij(p)Xij ,
presented in Chapter 4.1, inserted in the inner product of Eq. (80). With that, we can
simplify the loss term and rewrite it as

(︂
χij , C

2↔2
diff χij

)︂⃓⃓⃓
loss

=
β3

2

∑︂
a

νa

∫︂
p
fa
0 (p)(1± fa

0 (p))×[︃
(χa(p)′)2q̂aL

⃓⃓⃓⃓
soft

+
ℓ(ℓ+ 1)χa(p)2

2p2
q̂a
⃓⃓⃓⃓
soft

]︃
, (12)

which is the form commonly used to evaluate transport coefficients like shear viscosity
and diffusion.

So far, we have presented the formalism necessary to treat the soft gluon exchange
contributions from diagrams (A)-(C), which are of order O(g). However, in order to
compute next-to-leading order corrections from these diagrams, we follow the prescription
from [62], and perform a shift in the transverse momentum diffusion coefficient q̂a as
[38]

δq̂a =
g4CRaCAmDT

2

32π2

(︁
3π2 + 10− 4 ln 2

)︁
. (13)
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the shift included in the soft gluon exchange diffusion rate gives,(︂
χij , C

δq̂ χij

)︂
=

β3

2

∑︂
a

νa δq̂
a

∫︂
p
fa
0 (p)[1± fa

0 (p)]
ℓ(ℓ+ 1)χa(p)2

2p2
. (14)

This contribution is diagonal and has similar behavior to the leading log contributions from
Chapter 4.1. The gain terms will not be calculated in this thesis since their contribution
can, up to this day, only be estimated, and as suggested in [62], can be set to zero.

2 Collinear contributions

In this section, we present the formalism used to introduce NLO corrections to the 1 ↔ 2
collision kernel from Chapter 4. Similarly to the leading order treatment, we approximate
these contributions to be collinear. Then, we introduce a shift in the thermal masses to
obtain the NLO contribution. For the sake of clarity, we write again the collision operator
for 2 ↔ 1 processes in a more compact way,

C1↔2
a [f ](p⃗) =

(2π)3

2|p⃗|2νa

∑︂
bc

∫︂ ∞
0

dp′dkδ(|p| − p′ − k′)γabc(p; p′p̂, k′p̂){︂
fa(p)[1± f b(p′p̂)][1± f c(kp̂)]− f b(p′p̂)f c(kp̂)[1± fa(p)]

}︂
+

(2π)3

2|p⃗|2νa

∑︂
bc

∫︂ ∞
0

dkdp′δ(|p|+ k − p′)γabc(p; p′p̂, kp̂){︂
fa(p)f b(kp̂)[1± f c(p′p̂)]− f c(p′p̂)[1± fa(p̂)][1± f b(kp̂)]

}︂
(15)

where the γabc(p; p− k, k) is defined by the integral,

γabc(p; p− k, k) =
g2dRb

CRb

64π4

⎧⎪⎪⎨⎪⎪⎩
p4+k4+(p−k)4
p3k3(p−k)3 g ↔ gg

p2+(p−k)2
p2k3(p−k)2 q ↔ qg
p2+(p−k)2
p3k2(p−k)2 g ↔ qq̄

∫︂
dh2

(2π)2
2h ·ReF(h) (16)

Here we follow the same procedure described in [64], which means we Fourier transform
h and q⊥ into impact-parameter variables, as proposed in [16] to solve Eq. (31), in the
same way as in Chapter 4. This diagonalizes the collision kernel C(k⊥) and converts an
integral equation into a differential equation. Additionally, the source on the left-hand
side becomes a boundary condition at b = 0. At the same time, the desired final integral
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corresponds to a boundary value of the ordinary differential equation (ODE) solution.
Hence, using the definition from Chapter 4,

F(b) =
∫︂

d2h

(2π)2
eib·hF(h) , (17)

we have that
Re
∫︂

d2h

(2π)2
2h · F(h) = Im(2∇b · F(0)) , (18)

and Eq. (31) becomes

−2i∇δ2(b) =
i

2pω(p− ω)

(︁
p(p− ω)m2

∞ω + pωm2
∞ p−ω − ω(p− ω)m2

∞ p −∇2
b
)︁
F(b)

+

(︃
C′R(|ω| b)−

C′A(|ω| b)
2

+
C′A(|p| b)

2
+

C′A(|p− ω|b)
2

)︃
F(b), (19)

with
C′R(|ω| b) ≡

∫︂
d2k⊥
(2π)2

(︂
1− eiωb·k⊥

)︂
CR(k⊥) . (20)

Here, we are interested in the effects of O(g) that can manifest into our collision operator.
These can be cast as:

• the effective thermal masses squared m2
∞,p,

• the collision kernel C(k⊥) receive O(g) corrections

These corrections will affect the differential Eq. (19), which now has contributions in the
following form[64],

m2
∞ p,LO+NLO = m2

∞ p + δm2
∞ p, (21)

C′R ,LO+NLO(b) = C′R(b) + δC′R(b). (22)

where δm∞ p represents the shift in the LO thermal mass that is necessary to make it NLO
and is given by

δm2
∞ = −gCF

TmD

2π
, (23)

This thesis highlights that the NLO collision kernel was first computed in [38] inmomentum
space. Later, the Fourier transformation into impact parameter space was performed in
[64], giving the form we present in this section. Furthermore, in [38], the authors have
also explicitly shown that “three-pole” contributions are absent at NLO, so the sum of
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two-body (dipole) interactions on the second line of Eq. (19) still hold. Which agrees
with the treatment used in this work.

Finally, Eq. (19) can be solved perturbatively, by treating F(b) formally as an expansion
in powers of δm∞ and δC, so that the function F(b) can be written as,

F(b) = F0(b) + F1(b) + . . . (24)

A first-order expansion is already sufficient to compute the effects of order O(g). The
zero-order expression is just Eq. (19), and the linear order the expression reads[64]

0 =

(︃
i

2pω(p− ω)

(︂
(p(p− ω)m2

∞ω + pωm2
∞ p−ω − ω(p− ω)m2

∞ p −∇2
b

)︂
+C′R(|ω| b)−

C′A(|ω| b)
2

+
C′A(|p| b)

2
+

C′A(|p− ω|b)
2

)︃
F1(b)

+

(︃
i

2pω(p− ω)

(︂
(p(p− ω)δm2

∞ω + pω δm2
∞ p−ω − ω(p− ω)δm2

∞ p

)︂
+δC′R(|ω| b)−

δC′A(|ω| b)
2

+
δC′A(|p| b)

2
+

δC′A(|p− ω|b)
2

)︃
F0(b) , (25)

where the leading order solution F0(b) acts as a source term in the differential equation
for F1(b). To evaluate Eq. (19), one must deal with mixed boundary conditions. These
conditions are: the function f(b) must decay to zero as b → ∞ , and it must yield the
correct normalization, which, at zero, is given by

∇2
bf0(b) =

4p+(k+p+)

k
∇δ2(b) (26)

Here, p+ = p0+pz
2 , is the light-cone coordinate. Hence, the evaluation is done by evolving

the differential equation starting at large b, with initial conditions ensuring that the
solution decays as b → ∞ but with an arbitrary normalization. Subsequently, one solves
the differential equation inward towards the origin. This solution is then scaled by a
complex constant so that Eq. (26) is satisfied. Similarly, when solving Eq. (25) for f1(b),
the boundary condition that f1(b) should decay at large b is insufficient to completely
determine the solution[64, 60].

Consequently, one typically obtains a solution that combines the solution to Eq. (25)
with the correct boundary condition limb→0∇2f1(b) = 0, along with a multiple of the
homogeneous solution with the incorrect boundary condition at zero. However, the
homogeneous solution is proportional to f0, which is known, allowing it to be subtracted
to obtain the solution with the correct boundary condition. For more details on the
boundary conditions and the numerical evaluation of these equations, one should refer to
[64, 60, 65]
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3 Semi-collinear contributions

Next, we focus on the semi-collinear processes. These contributions lie between elastic
scattering, where the particle undergoes a substantial change in energy and transverse
momentum, and collinear contributions, where the change in energy is significant but the
change in transverse momentum is small[62]. As a result, it requires subtractions from
each. Additionally, it requires subtraction of its soft-exchange tail.

To obtain the semi-collinear contributions, we will treat the emission in the Bethe-
Heitler limit, which means ignoring LPM corrections. First, we consider the simplifying
approximation used in the collinear contributions as h becomes large, namely h ≫ gT 2.
As shown in [62] and discussed in the last section, the integral equation, Eq. (18), can be
solved iteratively in large δE:

Fb1(h) = 2h/iδE(h) , (27)

Fb2(h) =
i

δE(h)

∫︂
d2q⊥
(2π)2

C̄(q⊥)

{︃(︃
CRb

− CA

2

)︃
[Fb1(h)− Fb1(h− kqp)]

+
CA

2
[Fb1(h)− Fb1(b+ pqp)] +

CA

2
[Fb1(b)− Fb1(h− (p−k)qp)]

}︃
.

We can assume that the h2 term dominates in the expression for δE, so δE(h) =
h2/(2pk(p − k)). However, this expansion breaks down for high values of h. The rea-
son is that we can no longer neglect q− relative to q⊥. This discrepancy arises because
q− = δE ∼ gT ∼ q⊥, which contrasts with the assumption made in exchange processes
where q∥ = ω (implying q− = 0), that we have used to compute the collinear processes.
Therefore, the kinematics of scattering are changed and C̄(q⊥) must be recomputed. A
more accurate form for C̄(q⊥) in this regime is [64, 61]

C̄NLO(q⊥, δE) =
g2Tm2

D

(q2⊥ + δE2)(q2⊥ + δE2 +m2
D)

+
2g2TδE2

q2⊥(q
2
⊥ + δE2)

. (28)

Physically, this arises from two distinct processes: one where the splitting is induced by
elastic scattering and another where the absorption of a soft on-shell particle induces it.
Consequently, we need to perform two subtractions. The first subtraction accounts for the
already-computed leading-order (LO) 1 ↔ 2 contribution, corresponding to the small δE
limit. The second subtraction adjusts for the already-included LO 2 ↔ 2 contribution, as
discussed in [62]:

δC̄(q⊥, δE) =
g2Tm2

D

(q2⊥ + δE2)(q2⊥ + δE2 +m2
D)

− g2Tm2
D

q2⊥(q
2
⊥ +m2

D)
. (29)
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The second term is the LO collinear form for C̄ (the small δE limit of Eq. (28), which will
be calculated using the Bethe-Heitler bremsstrahlung emission rate). The other subtraction
of the mD → 0 limit removed the second term appearing in Eq. (28). Therefore, we can
use the full expression for δC̃ in Eq. (27), and obtain the manifestly finite result for the
semi-collinear rate as,

γabc

⃓⃓⃓⃓
semi

(p; p− k, k) =
g2

32π4

⎧⎪⎪⎨⎪⎪⎩
dACA

p4+k4+(p−k)4
p3k3(p−k)3 g ↔ gg

dFCF
p2+(p−k)2
p2(p−k)2k3 q ↔ qg

dFCF
(p−k)2+k2

(p−k)2k2p3 g ↔ qq̄

∫︂
d2h
(2π)2

∫︂
d2q′

(2π)2
δC̄(q′, δE)

×

[︄(︃
CR − CA

2

)︃(︃
h

δE(h)
− h− kq⊥

δE(h− kq⊥)

)︃2

+
CA

2

(︃
h

δE(h)
− h+ pq⊥

δE(h+ pq⊥)

)︃2

+
CA

2

(︃
h

δE(h)
− h− (p− k)q⊥

δE(h− (p− k)q⊥)

)︃2
]︄
, (30)

To compute this rate, we first write explicitly the integral equation for each term of δC̃;
the first term gives,

γabc

⃓⃓⃓⃓
first

(p; p− k, k) =
g2

32π4

⎧⎪⎪⎨⎪⎪⎩
dACA

p4+k4+(p−k)4
p3k3(p−k)3 g ↔ gg

dFCF
p2+(p−k)2
p2(p−k)2k3 q ↔ qg

dFCF
(p−k)2+k2

(p−k)2k2p3 g ↔ qq̄

∫︂
d2h
(2π)2

∫︂
d2q⊥
(2π)2

×
g2Tm2

D

(q2⊥ + δE(h)2)(q2⊥ + δE(h)2 +m2
D)

[︄(︃
CR − CA

2

)︃(︃
h

δE(h)
− h− kq⊥

δE(h− kq⊥)

)︃2

+
CA

2

(︃
h

δE(h)
− h+ pq⊥

δE(h+ pq⊥)

)︃2

+
CA

2

(︃
h

δE(h)
− h− (p− k)q⊥

δE(h− (p− k)q⊥)

)︃2
]︄

(31)

with (CR − CA/2) appearing on the h + pq⊥ term for g ↔ qq̄ processes. The angular
integrals for this expression can be performed analytically using,∫︂ 2π

0

1

1 +A cosφ
=

2π√
1−A2

(32)∫︂ 2π

0

1

(1 +A cosφ)2
=

2π

(1−A2)3/2
, (33)

leaving only the integrals over the magnitude of h and the exchanged momentum q⊥ to be
performed numerically. The remaining term of δC̃ represents the Bette-Heitler subtraction,
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given by,

γabc

⃓⃓⃓⃓
BH

(p; p− k, k) =
g2

32π4

⎧⎪⎪⎨⎪⎪⎩
dACA

p4+k4+(p−k)4
p3k3(p−k)3 g ↔ gg

dFCF
p2+(p−k)2
p2(p−k)2k3 q ↔ qg

dFCF
(p−k)2+k2

(p−k)2k2p3 g ↔ qq̄

∫︂
d2h
(2π)2

∫︂
d2q⊥
(2π)2

×
g2Tm2

D

q2⊥(q2⊥ +m2
D)

[︄(︃
CR − CA

2

)︃(︃
h

δE(h)
− h− kq⊥

δE(h− kq⊥)

)︃2

+
CA

2

(︃
h

δE(h)
− h+ pq⊥

δE(h+ pq⊥)

)︃2

+
CA

2

(︃
h

δE(h)
− h− (p− k)q⊥

δE(h− (p− k)q⊥)

)︃2
]︄
. (34)

This can be calculated using the same numerical approach for the collinear processes in
Chapter 4, with some minor modifications to accommodate the Bette-Heitler limit. This
part of the calculation was also performed using Guy Moore’s code for gluon emission.
The final result from these two contributions is then inserted into Eq. (15), resulting in(︂
f1, Csemif1

)︂
≡ 2π

T 3

∑︂
abc

∫︂ ∞
0

dp

∫︂ p

0
dk γabc

⃓⃓⃓⃓
semi

(p; p− k, k)fa
0 (p)[1± f b

0(k)][1± f c
0(p− k)]

×
[︂
fa
1 (p)− f b

1(kp̂)− f c
1((p− k)p̂)

]︂2
. (35)

There are other methods for obtaining the semi-collinear rate, but it was noted in [62]
that this is the most practical one. It also leads to a manifestly positive collision operator
at NLO, which is important since we rely on a variational method to obtain shear viscosity.

4 The counterterms

As mentioned earlier in this Chapter, the computation of next-to-leading order transport
coefficients requires reorganizing the leading order collision operator. Some of the contri-
butions computed in the LO treatment are already of order O(g) and must be subtracted
to avoid double counting. Therefore, in this section, we focus on the counterterms to
be subtracted at NLO. First, we name (f1, C2↔2

O(g) finite f1) as the O(g) region of the 2 ↔ 2

processes that needs to be subtracted. As argued in [62], both gluon and quark exchange
processes contribute to this double counting so that we can rewrite it as a sum of the
quark (antiquarks will have the same contribution except for the statistical functions) and
gluon contributions(︂

χij , C2↔2
O(g) finite χij

)︂
=
(︂
χij , C2↔2

O(g) finite g χij

)︂
+
(︂
χij , C2↔2

O(g) finite q χij

)︂
, (36)
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where the g and q labels represent gluon and quark (and antiquark) exchange contribu-
tions.

Next, we use the same parameterization for the t channel in Chapter 4. Which is given
by (suppressing particle-species labels and an overall factor of 1/(28π5)) [9](︂
χij , C2↔2χij

)︂
=

∫︂ ∞
0

dq

∫︂ q

−q
dω

∫︂ ∞
q−ω
2

dp

∫︂ ∞
q+ω
2

dk
|M|2

16pkp′k′
f0(p)f0(k)[1±f0(p

′)][1±f0(k
′)]

×
(︂
χij(p) + χij(k)− χij(p′)− χij(k′)

)︂2
. (37)

We begin with the evaluation of the gluon exchange contribution. For that, we must
consider the region where ω and q and an external gluon line (p or k) are soft. Using
these assumptions, we are able to simplify Eq. (37), and write it as,(︂

χij , C2↔2 χij

)︂
soft g k

=
β

(4π)6

∑︂
a

∫︂ +∞

−∞
dω

∫︂ µ⊥

0
dq⊥

q⊥
q

∫︂ ∞
0

dp

∫︂ µk

q+ω
2

dk

k(k − ω)

∫︂ 2π

0
dφ

× 2(2− δag)
⃓⃓
Mag

ag

⃓⃓2
soft g t k fa

0 (p) [1± fa
0 (p)]

×
[︂
χa
ij(p) + χg

ij(k)− χa
ij(p′)− χg

ij(k
′)
]︂2
. (38)

Within this context, µ ⊥ and µk serve as cutoffs, delineating the soft and hard scales. This
final line transforms into,[︂

χa
ij(p) + χg

ij(k)− χa
ij(p′)− χg

ij(k
′)
]︂2
soft k

= ω2
[︁
(χa(p)′)2 + (χg(0)′)2

]︁
+

ℓ(ℓ+ 1)

2
q2⊥

(︃
χa(p)

p

)︃2

− 2k(k − ω)

[︃
Pℓ

(︃
1−

q2⊥
2k(k − ω)

)︃
− 1

]︃
(χg(0)′)2 +O(g3), (39)

where the (χg(0)′)2 is a consequence of the infrared nature of the ℓ = 2 departure from
equilibrium, as shown in [62]. Furthermore, the matrix element pertinent to this scaling
can be extracted from Appendix A of the reference [9]. It is given by,

|Mag
ag|2soft, g,t,k = 16dACATRag

4p2
⃓⃓⃓⃓
(2k − ω)GL

R(Q) +
q2⊥
q2

cos(φ)
√︂

4k(k − ω)− q2⊥G
T
R(Q)

⃓⃓⃓⃓2
.

(40)
At this point, symmetry factors must be taken into account. The gg ↔ gg process receives
a factor of 2 due to the identical u-channel contribution and another factor of 2 from the
region where p ∼ gT and k ∼ T . Conversely, the qg ↔ qg process acquires a factor of
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4 owing to the symmetries of the initial and final states. Thus, the overall contribution
becomes:

(︂
χij , C2↔2

O(g) g χij

)︂
=

dACAg
4

32π5T

∫︂ +∞

−∞
dω

∫︂ ∞
0

dq⊥
q⊥
q

∫︂ ∞
0

dp p2
∫︂ µk

q+ω
2

dk

k(k − ω)

×
[︃
(2k − ω)2

⃓⃓
GL

R(Q)
⃓⃓2
+

q4⊥
2q4

(4k(k − ω)− q2⊥)
⃓⃓
GT

R(Q)
⃓⃓2 ]︃

×
∑︂
a

TRaf
a
0 (p) [1± fa

0 (p)]

[︃
ω2
[︁
(χa(p)′)2 + (χg(0)′)2

]︁
+

ℓ(ℓ+ 1)

2

q2⊥
p2

[χa(p)]2 − 2k(k − ω)

[︃
Pℓ

(︃
1−

q2⊥
2k(k − ω)

)︃
− 1

]︃
(χg(0)′)2

]︃
,

(41)

Next, we must perform the integrals in ω and then subtract the bare, UV-divergent
contribution from (41). A comprehensive treatment of this procedure can be found in the
Appendix of [62]. In this discussion, we only provide an overview of the essential points
of this derivation and apply the results to our calculation. The resulting dω integration is
then computed numerically and gives,

(︂
χij , C2↔2

O(g) finite g χij

)︂
=

dACAg
4mD

32π5T

∑︂
a

TRa

∫︂ ∞
0

dp p2 fa
0 (p)[1± fa

0 (p)]

×
{︃
4.2695

[︁
(χa(p)′)2 + (χg(0)′)2

]︁
+ 7.1769

ℓ(ℓ+ 1)

2p2
[︁
(χa(p))2 + (pχg(0)′)2

]︁
+18.0669 δℓ2[χ

g(0)′]2
}︃
. (42)

Next, we turn to the fermion exchange processes, i.e., Compton scattering and qq̄ anni-
hilation. Let us revisit Eq. (37). This time, we aim to expand it for ω, q, p ∼ gT , and
k ∼ T . Additionally, we’ll encounter a comparable contribution for p ∼ T and k ∼ gT .
Consequently, the departure from equilibrium for Compton processes becomes[62]:

[︂
χq
ij(p) + χg

ij(k)− χg
ij(p

′)− χq
ij(k

′)
]︂2
soft p

= (χg(k)− χq(k))2 + (χq(0))2 +O(g). (43)

We can compute the annihilation case analogously. Given the p̂ · k̂ independence of that
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expression, we can directly compute the averaged expansion over φ, which is∫︂ 2π

0

dφ

2π

⃓⃓
Mqg

qg

⃓⃓2
soft q t = −

8dFC
2
F g

4k

q2
{︁
(p+ ω)

[︁
(ω − q)2S+

R (Q)S+
A (Q) + (ω + q)2

S−R (Q)S−A (Q)
]︁
− 1

2

[︁
(ω − q)3S+

R (Q)S+
A (Q) + (ω + q)3S−R (Q)S−A (Q)

]︁}︃
, (44)

so that the O(g) contribution from soft p becomes,(︂
χij , C2↔2

O(g) soft p χij

)︂
= −

dFC
2
FNfg

4

16π5T 2

∫︂ ∞
0

dq⊥ q⊥
q3

∫︂ ∞
−∞

dω

∫︂ ∞
0

dk k

∫︂ µp

q−ω
2

dp

2(p+ ω)

×
{︁
(p+ ω)

[︁
(ω − q)2S+

R (Q)S+
A (Q) + (ω + q)2S−R (Q)S−A (Q)

]︁
−1

2

[︁
(ω − q)3S+

R (Q)S+
A (Q) + (ω + q)3S−R (Q)S−A (Q)

]︁}︃
×f q

0 (k)[1 + fg
0 (k)]

[︁
(χq(k)− χg(k))2 + (χq(0))2

]︁
, (45)

We included 8Nf to accommodate the initial and final state symmetries, accounting for
the antiquark contribution in the Compton case and the u-channel contribution in the
annihilation case. For the ℓ = 2 scenario, we utilized the property χq = χq̄. Proceeding
with the integration over dp with a UV cutoff and discarding linearly divergent terms akin
to the gluon exchange case, we retain only the terms that are even in ω, resulting in:(︂
χij , C2↔2

O(g) soft p χij

)︂
=

dFC
2
FNfg

4

64π5T 2

∫︂ ∞
0

dk k f q
0 (k)[1 + fg

0 (k)]
[︁
(χq(k)− χg(k))2+(χq(0))2

]︁
×
∫︂ ∞
−∞

dω

∫︂ ∞
0

dq⊥ q⊥
q3

{︁
q
[︁
(ω − q)2S+

R (Q)S+
A (Q) + (ω + q)2S−R (Q)S−A (Q)

]︁
− tanh−1

(︃
ω

q

)︃[︁
(ω − q)3S+

R (Q)S+
A (Q) + (ω + q)3S−R (Q)S−A (Q)

]︁}︃
. (46)

The two-dimensional integration over ω and q⊥ is finite, as the O(g) correction to the
conversion rates is free of linear ultraviolet (UV) divergences in the transverse integrals.
The numerical integration gives [62]:(︂

χij , C2↔2
O(g) soft p χij

)︂
=

dFC
2
FNfg

4m∞
64π5T 2

9.95268

∫︂ ∞
0

dk k f q
0 (k)[1 + fg

0 (k)]

×
[︁
(χq(k)− χg(k))2 + (χq(0))2

]︁
. (47)

This was just the contribution from having p soft and k hard. Conversely, the opposite
scenario yields an equivalent contribution, which is evident from the symmetries of the
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integrand. Therefore, the total contribution from double-counting amounts to 2 times
Eq. (47)[62],(︂

χij , C2↔2
O(g) finite q χij

)︂
=

dFC
2
FNfg

4m∞
32π5T 2

9.95268

∫︂ ∞
0

dk k f q
0 (k)[1 + fg

0 (k)]

×
[︁
(χq(k)− χg(k))2 + (χq(0))2

]︁
. (48)

5 Summary

In summary, the corrections to be added to the strict leading-order contributions of the
previous section produce a collision operator that is fully NLO. The NLO collision term
will be given as, (︂

f1, CNLO f1

)︂
=
(︂
f1, CLO f1

)︂
+
(︂
f1, δC f1

)︂
, (49)

where(︂
f1, δC f1

)︂
≡
(︂
f1, C

δq̂ f1

)︂
−
(︂
f1, C

2↔2
O(g) finite f1

)︂
+
(︂
f1, C

semi f1

)︂
+
(︂
f1, δC

1↔2 f1

)︂
,

(50)

The first term is the contribution from soft gluon scattering. The second term is the
sum of the counter terms from the last section. The third term is the contribution from
semi-collinear processes. Finally, the last term is the correction to the splitting rate. In
the next section, we present our results.

6 Results

So far in this thesis, we have presented the formalism necessary for the computation of
shear viscosity at leading order and discussed the relevant next-leading-order corrections.
Our basis for NLO calculations was chosen following the analysis presented in Chapter
4.1. We reproduce this basis again here,

φ(m) =
p(p/T )m

(1 + p/T )N−1
, m = 1, ..., N . (51)

We note that this choice differs from the original choice for NLO calculations in [62] but
gives compatible results at vanishing chemical potential. Using the formalism presented
in this thesis for the leading order collision operator and adding the NLO corrections
discussed in the previous sections, we can finally compute shear viscosity at (almost) NLO.
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Figure 2: η/s as a function of the temperature for µ = 0, 3, 6. The dashed lines represent
NLO order results, while continuous lines are LO results. Both were calculated
using µEQCD = 2.7T

In figure 4, we plot the shear-viscosity to entropy density ratio η/s. The continuous
lines represent leading order results, while the dashed lines show NLO calculations. In
figure 5, we show the kinematic viscosity, ηT/(e+ P ). The plots clearly show that at high
chemical potential, NLO calculations work better, especially at high temperatures, with
contributions from 6 different flavors and the region where the applicability of perturbation
theory is better established. We have used the EQCD coupling µEQCD = 2.7T for these
plots, following the treatment from [62], details of the coupling prescription are given in
Appendix 3.

Since the motivation to study high-density regimes comes from the claim that pertur-
bation theory should have a better convergence at high densities, we present a more
detailed comparison between LO and NLO results in Fig. 5. We plot the ratio between LO
and NLO calculations as a function of the temperature for each fixed chemical potential.
As expected, corrections from NLO contributions are dominant close to µ/T = 0 and
dominate the collision operator. Once one goes to higher densities, these soft gluon
contributions are less important, and LO effects again dominate the collision operator,
especially for a 6-flavor plasma, but still with a significant contribution from NLO.

One can also notice that despite having different values, all orders present the same
dependence on the chemical potential; they all follow a parabola at the high-density
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Figure 3: Kinematic shear viscosity as a function of the temperature for µ = 0, 3, 6. The
dashed lines represent NLO order results, while continuous lines are LO results.

region, as presented in Fig. 5, and pointed out in Chapter 4.1. Naturally, as observed for
lower order calculations, the true curve does not follow this form precisely since there is a
transition, as µ/T increases from a system where gluons carry much of the energy and
cause much of the scattering to a system where both are dominated by quarks. However,
the parabolic behavior is also clearly present at NLO as well.
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Figure 4: Comparison of LO andNLO calculations as a temperature function forµ = 0, 3, 6.
Both were calculated using µEQCD = 2.7T .

Figure 5: NLO shear viscosity plotted in blue with a quadratic fit of the formA+B(µ2/T 2)
in pink.
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Discussion and Conclusions

In this final chapter, we synthesize the results presented in previous Chapters of this thesis
and draw our conclusions. First, we provide a concise overview of studies performed in
this work, emphasizing key insights based on our results. Additionally, we endeavor to
establish connections between the results shown in this thesis. Finally, we present our
final conclusions and delve into the prospects for future research.

1 Final results and conclusions

We will now recover the main results presented in this thesis. Following the sequence laid
out here, we begin by recapping the results concerning calculations of shear viscosity as a
function of µ/T at leading logarithmic order, shown in figs 5 and 6. In Chapter 4.1, we
have successfully extended AMY shear viscosity calculation at leading logarithmic order to
high densities, using the computational apparatus described in Chapter 3 and the collision
operator presented in Chapter 4.1. For clarity, we reproduce these plots again in fig 1. In
both plots, a factor of g4 ln(g) is extracted, resulting in a dimensionless curve.

On top of that, we have performed analytical calculations for a one-function ansatz and
observed that a one-function basis is not sufficient for the study of transport coefficients
at high density, in contrast to what was found for vanishing densities. However, good
results were observed for a basis of size six. Therefore, our final results were computed
using a 6-function basis set, and on top of that, we considered the most physically relevant
scenario, with 3-color and 3-flavor (up, down, and strange). The curves obtained show
that η/s has a clear dependence on the chemical potential. The left plot of Figure 1 clearly
shows that this ratio follows a parabola in the high-density region. As discussed in Chapter
4.1, this is a consequence of the dependence of the debye mass on the chemical potential
since now the Fermi sphere has a ratio of µ instead of T . Additionally, we can point out
that the dominant scattering mechanism for particles to change their direction, for soft
scattering, is well described in terms of momentum diffusion with a momentum-diffusion
coefficient q̂ given by:

q̂ ≡
∫︂

d2q⊥
(2π)2

q2⊥ C(q⊥) (1)
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Figure 1: Left: Shear viscosity divided by the entropy density as a function of µ. The
points represent our leading-log calculation. The pink line is a quadratic fit,
which gives a fair but imperfect representation of our result. Right: Kinematic
shear viscosity ηT/(e+ P ) as a function of µ.

where C(q⊥) is the differential rate to exchange transverse momentum q⊥. In a thermal
system without chemical potential, this is given by:

C(q⊥) = g2CFT
m2

D

(q2⊥)(q
2
⊥ +m2

D)
(2)

As a consequence of the shift of the screening mass, the momentum-diffusion coefficient
is now directly dependent on the chemical potential.

On the other hand, the right plot of Fig. 1 shows the kinematic shear viscosity, ηT/(e+P ).
As expected, this curve approaches a constant and is not strongly dependent on the
chemical potential. Interestingly, this constant value is smaller than the value we obtain
at µ = 0, indicating that, in terms of the time scale 1/T , a high-density fluid will relax
somewhat more quickly than one at vanishing chemical potential [41].

Next, we extended this formalism to multiple conserved charges in Chapter 3 and
performed a phenomenological study of shear viscosity over the QCD phase diagram. We
used a hadron resonance gas description with a state-of-the-art list of resonances for the
region below the first-order phase transition. In principle, the region above this transition
could be described using pQCD. However, as pointed out in chapter 3, it was observed
in [138, 107, 74] that pQCD calculations of thermodynamic observables match lattice
calculations at temperatures above T ≳ 300 MeV for µB = µS = µQ = 0. Hence, based
on these results, we chose to fix our lower boundary at T = 300 MeV and leave the region
in between to be interpolated.
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Figure 2: ηT/w as a function of the temperature for each value of µB in MeV for r = 0.25
fm. Here, we fixed η/s(Tsw,HRG(0), 0) = η/s(Tsw,pQCD(0), 0) and rescaled the
HRG η/ω for µ̃ = 0 to understand better the finite chemical potential behavior
in the deconfined region. The large dots mark the edges of the interpolation
region on the plot.

In this work, we have applied a phenomenological approach to produce curves of
ηT/w(T, µB, µS , µQ) on the QCD phase diagram, which can be used to feed relativis-
tic viscous hydrodynamic codes simulating collisions at energies covered by the RHIC
Beam Energy Scan. In figure 2, we show the variation of shear viscosity when the HRG
values are renormalized to match the QGP transition such that η/s(Tsw,HRG(0), 0) =
η/s(Tsw,pQCD(0), 0). In this plot, we can clearly see the effect of each conserved charge
on our kinetic theory calculations. And how sometimes the two regions have different
dependencies on each chemical potential. For instance, we can use the blue line (µB = 400
MeV) as a baseline since only the baryon chemical potential is considered. Comparing
it to the orange dotted line, µS = 400 MeV, we observe that µS > 0 increases ηT/ω in
the pQCD regime and decreases ηT/ω in the HRG, causing a minimum in the overall
ηT/ω at T ∼ 100 MeV, for µS > 0, and then grows with T. For the case of µB = µS = 400
MeV, the HRG regime increases ηT/ω. Finally, we compare the scenario where µB and
µS are fixed (µB = 400 MeV, µS = 300 MeV), and µQ = ∓100 MeV. We observe that
µQ < 0 flattens ηT/ω across T because the HRG and pQCD results have similar values at
their respective transition points. However, for µQ > 0 we find that a minimum of ηT/ω
occurs at low T . In this work, we have considered three scenarios, one conserved charge
(µB > 0 with µS = µQ = 0), two conserved charges (µB > 0 and µS > 0 with µQ = 0)
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Figure 3: η/s as a function of the temperature for µ = 0, 3, 6. The dashed lines represent
NLO order results, while continuous lines are LO results. Both were calculated
using the coupling µEQCD = 2.7T

and three conserved charges. With that, we have presented the first study of ηT/w with
three conserved charges along the QCD phase diagram and used an easily reproducible
procedure.

Following that, we computed shear viscosity at leading order on the coupling in Chapter
4. For these calculations, we have used thermal masses to treat the infrared divergences
appearing in diagrams (A) to (E) and included contributions from gluon emission and pair
annihilation. More details on the HTL approximation can be found in 1. Later, in chapter
4, we computed the (almost) next-to-leading order corrections to the collision operator
and extended these calculations to the high-density region. We carefully described the
corrections from soft gluon exchange, which present similar behavior to the leading log
contributions from Chapter 4.1; the semi-collinear and collinear processes; and finally,
the necessary counter terms at O(g). We observed that the soft gluon exchange remains
the most significant contribution, especially at high densities.

Here, we present results from leading order and (almost) next-to-leading order together
since they can be directly compared. In figure 3, we plot the shear-viscosity to entropy
density ratio η/s for LO and NLO, and in figure 4, we show the kinematic viscosity. The
plots clearly show that at high chemical potential, NLO calculations work better, especially
at high temperatures, with contributions from 6 different flavors.
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In this work, we have used the EQCD coupling µEQCD = 2.7T , following the treatment
from [62]. We note that other choices for µEQCD could also be reasonable since there
is no literature to determine a reasonable choice at such a dense region. Here, we have
performed a first NLO determination of the shear viscosity of QCD at high temperature
and baryon chemical potential. Compared to vanishing-µ QCD, we find that the viscosity
is larger when expressed in terms of η/s and smaller in terms of (e+ P )/T , as observed
for the leading log calculations. This indicates that leading log calculations are an inter-
esting method for studying shear viscosity as a function of chemical potential since it is
computationally much simpler and is in qualitative agreement with NLO results.

We have also argued that the behavior of Debye vs magnetic screening scales is more
favorable at high chemical potentials, implying a wider range of validity for the perturbative
analysis. Though we do not expect the perturbative analysis to work quantitatively down
to the temperatures and densities obtained in intermediate-energy heavy-ion collisions,
we do expect the calculations to work much closer to this regime than proves to be the
case in the µ = 0 case. This is because, as we demonstrated, the relevant physics is much
more dominated by quarks and less by gluons, and the strong mutual interactions between
gluons are the cause of large NLO effects on the µ = 0 axis [62].

Figure 4: Kinematic shear viscosity as a function of the temperature for µ = 0, 3, 6. The
dashed lines represent NLO order results, while continuous lines are LO results.
Both were calculated using the coupling µEQCD = 2.7T

A more detailed comparison between LO and NLO results is shown in Fig. 5. As
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described in Chapter 4, corrections from NLO contributions are dominant close to µ/T = 0.
However, one expects that perturbation theory should be better behaved at high densities,
and this is what we observe in the plot. Once one goes to higher densities, these soft gluon
contributions are less important, and LO effects again dominate the collision operator, but
still with a big contribution from NLO.

Figure 5: Comparison of LO andNLO calculations as a temperature function forµ = 0, 3, 6.
Both were calculated using µEQCD = 2.7T .

Finally, we have also studied the shear-stress linear response function in chapter 4. In
this work, we investigated the existence of a branch cut touching the origin in a system
of scalar self-interacting particles with quartic interactions using Boltzmann statistics.
What we observed is that the response function for the shear stress, which has the form˜︁πµν = 2η(ˆ︁Ω)˜︁σµν , possesses a branch-cut singularity in the Fourier variable Ω = qµu

µ for
homogeneous perturbations around local equilibrium (ˆ︁Ω = 2Ω/(gn0β

2)). In this thesis,
we performed a numerical evaluation of the poles, which indicated the existence of a
branch cut even for small values of basis size N[125]. This can be verified by the fact that
the average distance between poles decreases with the basis size, and we observe that
the poles become closer to zero with the increase in the rank of the matrix truncation,
suggesting that the shear response function for the λφ4 possesses a branch cut along the
imaginary axis, i0+ < Ω < i∞ as N → ∞ [125].

These results imply that this behavior for the non-hydrodynamic modes is not associated
with quantum effects. The existence of the branch cut is associated with long-lived non-
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hydrodynamic modes present in this theory. This is a consequence of the fact that the
total cross-section for this system has the functional form σ(s) = g/s, which is negligible
for particles with large energy in the center of the momentum frame [125]. Therefore,
we observe that there is a more subtle relation between the hydrodynamic transport
properties and non-equilibrium evolution, which is clearly seen when considering more
realistic approaches to the collision term. However, we also observe that this high-energy
modes do not contribute to the transport properties of the system. This is a consequence
of the fact that their interactions are weak.

2 Summary and future prospects

Throughout this thesis, we have performed a study of shear viscosity using both kinetic
theory and hydrodynamics. We mainly focused on the high-density region for this analysis
since it is a region that is not accessible through lattice calculations and, therefore, is much
less well-known than the temperature axis of the QCD phase diagram. We computed shear
for a system with three flavors at leading logarithmic order and up to six flavors at (almost)
next-to-leading order. These results show that although perturbation theory works better
at high µ, NLO effects still contribute with large corrections. Apart from that, we have
extended this formalism to multiple conserved charges at leading log order and studied
the behavior of shear viscosity as a function of an effective chemical potential. These
results were combined with an excluded volume HRG description for the hadronic phase,
describing shear along the four-dimensional QCD phase diagram. Finally, we have studied
the shear-stress linear response function and observed that, indeed, there is a strong
indication of the existence of a branch cut, which is related to the non-hydrodynamic
modes of the theory and is not connected to quantum effects.

These results leave several opportunities for future work. For instance, it would be
interesting to investigate shear viscosity and diffusion for a system with multiple conserved
charges at NLO. These results would be useful input for hydrodynamics simulations since
there is very little theoretical guidance for transport coefficients in the high-density region.
Apart from that, the formalism used in this thesis could be used in different systems with
lower temperatures but higher densities, such as neutron stars. However, the regime
with very large chemical potential and low temperature has some subtleties due to the
possibility of color superconductivity and the contribution from a different spectrum of
resonances. Additionally, in a system with the size of a neutron star, the time scales are
much larger than the ones studied in this thesis, causing different processes to contribute
to transport coefficients.
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Appendix

1 HTL at high chemical potential

In this section, we discuss the HTL approximation for the high-density regime. Before
delving into comparisons, we begin with some simple definitions following Eq. (11). For
convenience, we define [111]:

Π̃L = −Π00, Π̃T =
q2

q2 − ω2
ΠT (1)

Using these, one can rewrite Eq. (7) as[111]:

2

(︃
u2 + s2

t2

)︃
=

1

|q2 + Π̃L|2
(4pp′ + t)(4kk′ + t) (2)

− 2

|q2 + Π̃
∗
L||q2 + Π̃T |

(p+ p′)(k + k′)
√︁
(4pp′ + t)(4kk′ + t) cosφ (3)

+
1

|q2 + Π̃T |2
[(4pp′ + t)(4kk′ + t) cosφ2 + q2(2ω2 + 4pp′ + 4kk′) (4)

Here, φ is the angle between the q, p plane and the q, k plane. We note that complete
expressions for ΠL and ΠT were obtained by Weldon [145]. The usual expressions for
the hard thermal loop limit of the self-energies were extracted as a particular limit. Here,
we employ the same procedure as in [111] and substitute all self-energies with just the
thermal part of the self-energy in the HTL approximation whenever that treatment is
parametrically justified. The thermal parts are given by:

Π̃L,th =
g2NfT

2

3
H(ω, q), Π̃T,th =

g2NfT
2

3

(︃
−1

2
H(ω, q) +

q2

2(q2 − ω2)
G(ω, q)

)︃
(5)
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where H(ω, q) and G(ω, q) are, using 2ω+ = ω + q and 2ω− = ω − q [111]:

ReG(ω, q) =
3

π2T 2

∫︂ ∞
0

dkf(k)

(︃
4k +

q2 − ω2

2q
ln
[︃
(k + ω−)(k − ω+)

(k − ω−)(k + ω+)

]︃)︃
ReH(ω, q) =

3

π2T 2

∫︂ ∞
0

dkf(k)
(︂
2k − 4k2 + ω2 − q2

4q
ln
[︃
(k + ω−)(k − ω+)

(k − ω−)(k + ω+)

]︃
− 2kω

q
ln

ω+

ω−
− kω

q
ln
[︃
(k + ω−)(k − ω+)

(k − ω−)(k + ω+)

]︃)︂
ImG(ω, q) =

3

π2T 2

∫︂ ∞
0

dkf(k)
q2 − ω2

2q
[Θ(k + ω+)Θ(−k − ω−)−Θ(−k + ω+)Θ(k − ω−)]

ImH(ω, q) =
3

π2T 2

∫︂ ∞
0

dkf(k)
[︂
− (2k + ω)2 − q2

4q
Θ(k + ω+)Θ(−k − ω−)

+
(2k − ω)2 − q2

4q
Θ(k − ω−)Θ(−k + ω+) +

2kω

q
Θ(ω+)Θ(−ω−)

]︂
(6)

In the hard thermal loop, which means taking ω ≪ T ,q ≪ T and extracting the nonvan-
ishing part, the functions H(ω, q) and G(ω, q) are simply:

HHTL(ω/q) = 1− ω

2q
ln

ω+

ω−
+ i

πω

2q
Θ(ω+)Θ(−ω−) (7)

GHTL(ω/q) = 1 (8)

General expressions for H(ω, q) and G(ω, q) can be found in [111], along with a more
detailed discussion of vacuum and thermal contributions in different energy limits.

To better study the HTL expansion’s reliability at high densities, we present here a
leading order calculation of collision integrals directly compared with full self-energies.
In figure 1, one can see the ratio between collision integrals for s2 + u2/t2 calculated by
taking the HTL limit and performing the integrals for the thermal part of the self-energy,
both using a one function ansatz. These calculations strongly depend on the choice of
screening mass; as one goes to the high-density region, the increase in the number of
quarks will increase screening effects in that region. Therefore, we takem2

D = T 2+µ2/π2.
It is clear from the plot that as the screening effects become larger, the HTL approximation
has a better accuracy at leading order, which is a consequence of the fact that now small
momentum transfer can be taken to be q ≪ µ.

2 Photon emission rate

Here, we derive an expression for the gluon emission rate based on the work from [11,
12], where the author computed the photon emission rate for ultrarelativistic plasmas.
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We begin with the differential photon emission rate per unit volume, at leading order in
αEM , is given by the relation[11]

dΓγ =
d3k

(2π)3 2|k|
∑︂
a=1,2

ϵµ(a)(k)
∗ ϵν(a)(k)Wµν(K) , (9)

where K = (k0, k) = (|k|, k) denotes the photon 4-momentum, the ϵ represents a basis
of transverse polarizations for the photon and Wµν(K) is the Wightman electromagnetic
current-current correlator, given by

Wµν(K) =

∫︂
d4x e−iKx ⟨jµ(0)jν(x)⟩ . (10)

To obtain the photon emission rate, we must first perform some intermediate steps. Our
first task is to rewrite the current correlator (10) in terms of propagation amplitudes of
single-particle states in the random background. We will focus on the bremsstrahlung
process and comment on the pair annihilation in the end since these processes can be
computed analogously. Bremsstrahlung emission corresponds to a contribution to the
current correlator (10) of the form

W brem
µν (K) =

∫︂
d4x e−iKx

∫︂
pipf

f(pi)[1± f(pf )]

⟨︄⟨︄
⟨pi|jµ(0)|pf ⟩ ⟨pf |jν(x)|pi⟩

⟩︄⟩︄
, (11)

where |pi⟩ and |pf ⟩ represent one-particle states of the emitting, and n is the equilibrium
distribution function, which can be written as fb(p) or ff (p). The next step uses a rela-
tivistic one-particle Schrödinger equation to describe particles propagating nearly on-shell
in a soft background. With this description, one can obtain the contribution from a single
carrier type and spin state; this is done using

W brem
µν (K) = 2Re

[︃∫︂
P
f(p+k) [1± f(p)] ⟨p|jµ(k)|p+k⟩∗ Sν(P ;K)

]︃
. (12)

Here, the photon four-momentum K is fixed, but the four-vector P has to be integrated
over. However, we will simplify the dependence of Sν(P ;K) on P as follows. First, we
write the component of p in the direction k of the photon as p∥, and let p⊥ be the part of
p perpendicular to k. Finally, Sν(P ;K) satisfies the integral equation,

Sν(P ;K) =

(︃
i

(p0 + k0)− Ep+k + iΓp+k

)︃∗ i

p0 − Ep + iΓp
(13)

×
[︃
⟨p|jν(k)|p+k⟩+ g2CR

∫︂
Q

⟨︃⟨︃
[vp+k ·A(Q)] [vp ·A(Q)]∗

⟩︃⟩︃
Sν(P−Q;K)

]︃
,
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where Ep =
√︁
p2 +m2

∞, and m2
∞ = 1/4CRg

2T 2, is the thermal mass. In [11], it was
observed that the momentum transfer in this process is O(gT ), and so the relevant values
of p⊥ are O(gT ). Therefore, we can expand the expression in p⊥ and m∞, this leads to,

p0 − Ep + iΓp ≃ (p0 − p∥)−
p2⊥ +m2

∞
2p∥

+ iΓp , (14)

(p0 + k0)− Ep+k + iΓp+k ≃ (p0 − p∥)−
p2⊥ +m2

∞
2(p∥ + k)

+ iΓp+k , (15)

in this expression, the photon is on-shell, and p∥ > 0, meaning that the photon travels in
the same direction as the emitter.

Now we take advantage of the fact that Sν(P ;K) is only going to be integrated against
functions that are smooth on the scale of O(g2T ) variations in p0−p∥, and perform the
following approximation,(︃

i

(p0 + k0)− Ep+k + iΓp+k

)︃∗ i

p0 − Ep + iΓp
≃

2πi δ(p0−p∥) θ(p∥)

(Ep+k + iΓp+k)− (k0 + Ep − iΓp)

≃
2π δ(p0−p∥) θ(p∥)

i δE + (Γp+k + Γp)
, (16)

where we have used that,

δE ≡
k (p2⊥ +m2

∞)

2p∥ (k + p∥)
≃ k0 + Ep − Ep+k . (17)

This is known as the pinching pole approximation. Making this substitution into the
integral equation (13), one sees that the resulting solution will have the form

Sν(P ;K) = Sν(p;K) 2π δ(p0−p∥) θ(p∥) . (18)

Inserting this form and rewriting

δ(p0−p∥) δ
[︁
(p0−q0)− (p∥−q∥)

]︁
= δ(p0−p∥) δ(q

0−q∥) , (19)

one finds

W brem
µν (K) = 2Re

∫︂
p
f(p+k) [1± f(p)] ⟨p|jµ(k)|p+k⟩∗ Sν(p; k) θ(p∥), (20)

138



where

Sν(p; k) =
1

iδE + (Γp+k + Γp)

[︄
⟨p|jν(k)|p+k⟩

+ g2CR

∫︂
Q
2π δ(q0−q∥)

⟨︃⟨︃
[vp+k ·A(Q)] [vp ·A(Q)]∗

⟩︃⟩︃
Sν(p−q; k)

]︄
. (21)

In terms of the current matrix elements appearing in the original definition (11), the
function Sν(p; k) is given by that portion of the time-evolved off-diagonal matrix element
of the current, evaluated in the fluctuating background gauge field[11]. At leading order
in g, this is written as,∫︂

d4x θ(−x0) e−iKx
⟨︂⟨︂
⟨p|jν(x)|p+k⟩

⟩︂⟩︂
= Sν(p; k) θ(p∥) . (22)

Here, time evolution is given implicitly in jν(x) = jν(x
0, x) = U(0, x0) jν(x)U(x0, 0).

In the interaction term of Eq. (21) one may, at leading order, replace vp ·A by

A+ ≡ A0 −A∥ (23)

and rewrite the integral equation in the form

⟨p|jν(k)|p+k⟩ = [i δE + (Γp+k + Γp)]Sν(p; k)

− g2CR

∫︂
Q
2π δ(q0−q∥)

⟨︂⟨︂
A+(Q) [A+(Q)]∗

⟩︂⟩︂
Sν(p−q; k) . (24)

This integral equation mixes different values of p∥ and p⊥ in the argument of S(p; k).
This is a consequence of the O(gT ) momentum transfers in the interaction term. The
characteristic size of p∥ for a hard quasi-particle is O(T ). In leading order, no elements in
the equation are sensitive to gT variations in p∥. Consequently, we can treat p∥ as fixed
inside the interaction term, replacing the equation by

⟨p|jν(k)|p+k⟩ = [i δE + (Γp+k + Γp)]Sν(p⊥; p∥, k)

− g2CR

∫︂
Q
2π δ(q0−q∥)

⟨︂⟨︂
A+(Q) [A+(Q)]∗

⟩︂⟩︂
Sν(p⊥−q⊥; p∥, k) . (25)

So far, we have been able to simplify the expressions and obtain a linear integral equation
in p⊥ space, for fixed values of p∥ and k. However, we still haven’t addressed the fact
that both the width Γp and the total scattering cross-section has infrared divergences in

139



these approximations. These infrared divergencies were shown to be proportional to the
Q → 0 divergence of

∫︁
Q 2πδ(q0 − q∥) ⟨⟨A+(Q)[A+(Q)]∗⟩⟩ in [11]. Particularly, in the case

of Γp, this apparent infrared sensitivity is illusory for our problem. This can be observed
by rewriting the width in a form similar to the interaction term in Eq. (25). The width
comes from the imaginary parts of self-energy insertions for nearly on-shell particles and,
to leading order, is given by[11]

Γp = Im
[︃
ig2CR

∫︂
Q

i

(p0−q0)− Ep−q + i

⟨︂⟨︂
A+(Q)A+(−Q)

⟩︂⟩︂]︃
p0=Ep

≃ g2CR

∫︂
Q
πδ(q0−q∥)

⟨︂⟨︂
A+(Q) [A+(Q)]∗

⟩︂⟩︂
. (26)

Substituting this into (25), one obtains the infrared-safe equation

⟨p|jν(k)|p+k⟩ = i δE Sν(p⊥; p∥, k) + g2CR

∫︂
Q
2π δ(q0−q∥)

⟨︂⟨︂
A+(Q) [A+(Q)]∗

⟩︂⟩︂
× [Sν(p⊥; p∥, k)− Sν(p⊥−q⊥; p∥, k)] . (27)

We may rewrite the expression forWµν using that n(p) ≃ n(p∥), since p⊥ is O(gT ). Hence,
up to leading order, we have

W brem
µν (K) = 2Re

∫︂
p
f(p∥+k) [1± n(p∥)] ⟨p|jµ(k)|p+k⟩∗ Sν(p⊥; p∥, k) θ(p∥) . (28)

The current matrix element ⟨p|jµ(k)|p+k⟩ is the only ingredient of these expressions that
depends on the nature of the emitter. We now perform another approximation, since p⊥
is parametrically small compared to p∥, we will only evaluate these matrix elements in the
limit of small transverse momentum. This is justified since we only need the transverse
components of jµ. We can use rotational invariance about the k axis to conclude that these
must be proportional to p⊥. Then in the small p⊥ limit, the transverse current matrix
element takes the form

⟨p|j⊥(k)|p k⟩ ≃ 2qep⊥ Jp∥←p∥k, (29)

where qe denotes the electric charge of the emitting particle. The explicit form of the
”splitting function” Jp∥←p∥+k, will be given later in the text. For now, we proceed, as in
[11], and factor out all dependence on the emitter type by redefining the transverse part
of Sν(p⊥; p∥, k) as

S⊥(p⊥; p∥, k) = qeJp∥←p∥+k F(p⊥; p∥, k) (30)
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to obtain∑︂
a

ϵµa
∗ϵνaW

brem
µν (K) = 2(qe)2 Re

∫︂
p
f(p∥+k) [1±f(p∥)] |Jp∥←p∥+k|2 2p⊥ ·F(p⊥; p∥, k)θ(p∥),

(31)
where f(p⊥; p∥, k) is the solution to

2p⊥ = i δE F(p⊥; p∥, k) + g2CR

∫︂
Q
2π δ(q0−q∥)

⟨︂⟨︂
A+(Q) [A+(Q)]∗

⟩︂⟩︂
×
[︁
F(p⊥; p∥, k)− F(p⊥−q⊥; p∥, k)

]︁
. (32)

This gives the result for bremsstrahlung production from a single type, spin, and color of
the charged particle. The advantage of this expression is that it isolates the dependence
on the type of the particle in the splitting factor |Jp∥←p∥+k|2, and the dependence on the
details of the frequency-dependent correlation of the background field in the correlator⟨︂⟨︂
AA
⟩︂⟩︂
.

Now, we can explicitly write the ”splitting function.” For fermions, expression (29) gives
the following,

|Jp∥←p∥+k|2 =

⎧⎪⎪⎨⎪⎪⎩
1

4p∥ (p∥+k)
, scalars;

p∥
2 + (p∥+k)2

8p∥2(p∥+k)2
, fermions.

(33)

The same treatment can be used for pair annihilation. We start by writing the analogous
form of the contribution to the current-current correlator,

W pair
µν (K) =

⟨︂⟨︂∫︂
d4x e−iKx

∫︂
pp̄

n(p)n(p̄) ⟨pp̄|jµ(0)|vac⟩ ⟨vac|jν(x)|pp̄⟩
⟩︂⟩︂

. (34)

Performing the same approximations as before, one obtains,∑︂
a

ϵµa
∗ϵνa W

pair
µν (K) = 2 (qe)2 Re

∫︂
p
f(k−p∥) [1± f(p∥)] |Jvac←p∥,k−p∥ |

2

× 2p⊥ · ˜︁F(p⊥; p∥, k) θ(p∥) θ(k−p∥), (35)

and

2p⊥ = i ˜︂δE ˜︁F(p⊥; p∥, k) + g2CR

∫︂
Q
2π δ(q0 − q∥)

⟨︂⟨︂
A+(Q) [A+(Q)]∗

⟩︂⟩︂
×
[︂˜︁F(p⊥; p∥, k)− ˜︁F(p⊥ − q⊥; p∥, k)

]︂
, (36)
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where, ˜︂δE ≡ −
[︃
p2⊥ +m2

∞
2

]︃ [︃
k

p∥ (k−p∥)

]︃
≃ k0 − Ek−p − Ep . (37)

Proceeding analogously, one also obtains the ”joining functions” as,

|Jvac←p∥,k−p∥ |
2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

4p∥ (k−p∥)
, scalars;

p∥
2 + (k−p∥)

2

8[p∥ (k−p∥)]2
, fermions;

(38)

which is the same, up to an overall sign, as taking p∥ → −p∥ in the bremsstrahlung formula
(33).

3 Coupling prescription

Here, we describe how to obtain the running coupling used in the calculations for this
thesis. The code for the coupling prescription was written by G. Moore and adapted to
the calculations performed here. The effective EQCD coupling is given by [96]

g2EQCD (Nf)
(µ) = g2QCD (Nf)

(µ) + α
(Nf)
E7

g4QCD (Nf)
(µ)

(4π)2
+ γ

(Nf)
E1

g6QCD (Nf)
(µ)

(4π)4
, (39)

where µ represents the renormalization scale, and[78, 88, 96]

αE7 =− β0 ln
(︃
µeγE

4πT

)︃
+

CA
3

− 8

3
Nf ln 2 ,

γE1 =− β1 ln
(︃
µeγE

4πT

)︃
+ α2

E7 −
1

18

{︃
C2

A
[︁
− 341 + 20ζ(3)

]︁
+ 2CANf

[︁
43 + 24 ln 2 + 5ζ(3)

]︁
+ 3CFNf

[︁
23 + 80 ln 2− 14ζ(3)

]︁}︃
. (40)

Eq. (39) holds for m(Nf)
q ≤ µ ≤ m

(Nf+1)
q . The value of g2QCD (Nf)

(µ) was obtained from a
numerical two-loop evolution from αz(Mz) = 0.1185, with the MS renormalization scale
µ in the range [πT, 4πT ] and with one-loop quark threshold matching at µ = mq, using
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the equation,

µ
d

dµ
g2QCD (Nf)

(µ) =
β
(Nf)
0

(4π)2
g4QCD (Nf)

(µ) +
β
(Nf)
1

(4π)4
g6QCD (Nf)

(µ) , (41)

m(Nf)
q ≤ µ ≤ m(Nf+1)

q , (42)

g2QCD (Nf)

(︂
m(Nf+1)

q

)︂
= g2QCD (Nf+1)

(︂
m(Nf+1)

q

)︂
, (43)

at the fermion thresholds, we switch to the values of the coefficients in Eq. (40) with nf±1,
following the prescription used in [62]. Hence, the EQCD coupling is not continuous at the
thresholds. In Fig. 2, we plot the screening mass, mD, as a function of the temperature for
different chemical potential values at µEQCD = 2.7T . As one can see, some discontinuities
in these curves cause shear viscosity to have a curve less smooth than expected.

We conclude by noting that this prescription was first used for vanishing densities, and
there is no indication of which values of µEQCD should be used for the high-density regime.
Therefore, although the results in this thesis are all calculated using µEQCD = 2.7T , we
highlight that other choices might also be reasonable for high chemical potentials.
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Figure 1: Collision integral, (χij , Cχij), calculated using hard thermal loops and using full
self energies.
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Figure 2: Kinematic shear viscosity as a function of the temperature for µ = 0, 3, 6.
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