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Oliver André Habrich, M.Sc.

aus Frankfurt am Main, Deutschland

Referent : Prof. Dr. Herbert Egger

Korreferent : Prof. Dr. Mária Lukáčová-Medvid’ová
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Abstract

The Cahn-Hilliard equation is a mathematical model used to study phase separation pro-
cesses within physics, chemistry or biology. Due to its phenomenological flavour, the
model parameters are not known in real-world applications, and a calibration is needed
to derive a quantitative agreement with data obtained from experiments. In this thesis,
we address the problem of identifying three model parameters within the Cahn-Hilliard
equation, i.e. the interface parameter, the double well potential function, and the mobility
function from spatially resolved measurements of the phase fraction. We derive identi-
fiability results and establish a linear and a non-linear approach to solve the parameter
identification problems numerically.
In the first part of this work, we identify an inherent non-uniqueness of the inverse prob-

lem, leading to the exclusion of the interface parameter in the following considerations.
We establish the identifiability of the mobility and the potential up to certain scaling
invariances under realistic observability conditions. In the second part, we consider an
equation error approach to solve the identification problems. Therefore, measurements
are directly inserted into the Cahn-Hilliard equation, leading to linear operator equations
in Hilbert spaces with perturbed operators. We use Tikhonov regularisation to derive sta-
ble approximations for the solutions of the ill-posed problems and show that this approach
is well-posed. Numerical experiments demonstrate the feasibility of the method.
The equation error method requires high assumptions on the regularity of the data.

We address this issue in the third part of our investigations by considering an output
least squares approach. This leads to non-linear inverse problems in Hilbert spaces.
Again, Tikhonov regularisation is employed to derive stable approximations for the so-
lution. We show the well-posedness and continuity properties of the non-linear forward
operator and establish the existence of solutions to the Tikhonov minimisation problem.
A Gauss-Newton iteration is applied to solve the resulting minimisation problem. We
show the differentiability of the forward operator and derive a representation for the ad-
joint operator of the derivative. The results regarding the output least squares approach
are established by considering auxiliary variational problems. The existence of unique
solutions to those problems is derived by Galerkin approximation and energy estimates.
Afterwards, we discuss the discretisation of this approach using a Petrov-Galerkin method
and present numerical results.
In the final part of this work, we consider more complex models and present numerical

tests, which indicate that the output least squares approach can also be applied to those
problems.
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Zusammenfassung

Die Cahn-Hilliard Gleichung ist ein mathematisches Modell zur Untersuchung von Phasen-
trennungsprozessen in der Physik, Chemie oder Biologie. Aufgrund des phänomenolo-
gisches Charakters, sind die Modellparameter in realen Anwendungen nicht bekannt,
und eine Kalibrierung ist erforderlich, um eine quantitative Übereinstimmung mit exper-
imentell ermittelten Daten zu erzielen. In dieser Arbeit behandeln wir das Problem der
Identifikation der drei Modellparameter innerhalb der Cahn-Hilliard Gleichung, diese sind
der Grenzflächenparameter, die double-well Potentialfunktion und die Mobilitätsfunktion,
aus räumlich verteilten Messungen des Phasenanteils. Wir zeigen Identifizierbarkeitsre-
sultate und präsentieren einen linearen und einen nichtlinearen Zugang zur numerischen
Lösung der Parameteridentifikationsprobleme.
Im ersten Teil dieser Arbeit wird eine inhärente Skalierungsinvarianz identifiziert, die

dazu führt, dass der Grenzflächenparameter in den folgenden Überlegungen nicht berück-
sichtigt wird. Wir werden die Identifizierbarkeit der Mobilitätsfunktion und der Poten-
zialfunktion unter bestimmten Skalierungsinvarianzen unter realistischen Beobachtungs-
bedingungen zeigen. Im zweiten Teil wird der Equation-Error Ansatz zur Lösung der
Identifikationsprobleme betrachtet. Dabei werden Messungen direkt in die Cahn-Hilliard
Gleichung eingesetzt und führen zu linearen Operatorgleichungen in Hilberträumen mit
gestörten Operatoren. Wir wenden die Tikhonov Regularisierung zur Stabilisierung der
schlecht gestellten Probleme an und zeigen, dass dieser Ansatz wohlgestellt ist. Nu-
merische Experimente werden die Durchführbarkeit der Methode zeigen.
Die Equation-Error Methode erfordert hohe Annahmen bezüglich der Regularität der

Daten. Wir adressieren dieses Problem im dritten Teil, indem wir einen Output-Least-
Squares Ansatz betrachten. Dies führt zu nichtlinearen inversen Problemen in Hilbert
Räumen, und wir verwenden wieder Tikhonov Regularisierung, um stabil Approxima-
tionen an die Lösung zu bestimmen. Wir zeigen die Wohlgestelltheit und Stetigkeit-
seigenschaften des nichtlinearen Vorwärtsoperators und die Existenz von Lösungen des
Tikhonov Minimierungsproblems. Eine Gauss-Newton Iteration wird angewendet, um
das resultierende Minimierungsproblem zu lösen. Wir zeigen die Differenzierbarkeit des
Vorwärtsoperators und leiten eine Darstellung des adjungierten Operators der Ableitung
her. Diese Resultate zum Output-Least-Squares Ansatz werden wir durch Betrachtungen
zu Hilfsvariationsproblemen beweisen. Wir verwenden Galerkin-Approximation und En-
ergieabschätzungen, um Existenzresultate für diese Hilfsprobleme zu zeigen. Anschließend
diskutieren wir die Diskretisierung dieses Ansatzes unter Verwendung einer Petrov-Galerkin
Methode und präsentieren numerische Ergebnisse.
Im letzten Teil dieser Arbeit werden wir komplexere Modelle betrachten und präsentieren

numerische Tests, die darauf hinweisen, dass der Output-Least-Squares Ansatz auch auf
diese Probleme angewendet werden kann.
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1. Introduction

Phase-field models are of special interest in a wide range of applications within the fields
of physics, chemistry or biology, aiming to effectively model and simulate phase transfor-
mation processes. One of the most widely used mathematical models is the Cahn-Hilliard
equation, which was initially introduced by Cahn and Hilliard to study phase separation
in binary alloys [23, 24]. Since then, the Cahn-Hilliard model has been applied in many
other applications, e.g. the spinodal decomposition of fluid mixtures [14], the modelling
of tumour growth [53] or phase-field modelling in material science [20].

The Cahn-Hilliard equation

We consider the Cahn-Hilliard system described by the equations

∂tϕ = div (b(ϕ)∇µ) , (1.1)

µ = −γ∆ϕ+ f(ϕ). (1.2)

Here, ϕ is the phase fraction of one of two components, µ is a chemical potential, b(ϕ)
a phase dependent mobility, γ an interface parameter, and f(ϕ) is the derivative of a
non-convex potential function. The system is complemented with initial conditions and
suitable boundary conditions.
The Cahn-Hilliard system (1.1)–(1.2) models a relaxation process governed by decay

of an associated free-energy, thus in accordance with the second law of thermodynamics
[23]. The existence of weak solutions was then shown by Galerkin approximation, relying
on energy estimates and using compactness arguments, see e.g. [43]. From this starting
point, further properties like the regularity of weak solutions or the qualitative behaviour
of the evolution have been studied extensively for many different assumptions on the
parameters. A detailed review will be presented in Chapter 2. These techniques have
also been used to establish suitable numerical approximations; an overview is given in
Chapter 5.

Energy stable approximation of gradient systems

In joint work with colleagues within the Collaborative Research Centre TRR 146 Multi-
scale Simulation Methods for Soft Matter Systems and the SPP 2256 Variational Methods
for Predicting Complex Phenomena in Engineering Structures and Materials, we made
some new contributions. In [36], we proposed a general framework for the numerical
approximation of evolution problems that preserves an underlying dissipative gradient
structure exactly. The Cahn-Hilliard equation fits into this structure, and we employed
this approximation procedure, using relative energy estimates, to conduct a stability and
discretisation error analysis, which led to a discretisation with optimal order error esti-
mates, see [19]. This approximation approach will be used later on.
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1. Introduction

Parameter identification

The Cahn-Hilliard equation describes the macroscopic behaviour of physical processes
happening on the microscale. It thus has to be understood as a phenomenological model.
The model parameters are unknown in real-world applications and must be calibrated to
obtain a quantitative agreement with more detailed microscopic descriptions or experi-
mental data [31, 61]. Finding the model parameters in (1.1)–(1.2) from measurement
data leads to parameter identification problems in non-linear systems of partial differen-
tial equations, see e.g. [6, 63] for an introduction and references. In the context of the
Cahn-Hilliard equation, we are in the field of parameter identification problems in non-
linear parabolic equations. Such problems and their stable solution have been studied
intensively in the literature; we will give a more detailed review later.

Outline of this thesis

We will study the identification of the model parameters γ, f(·) and b(·) from measure-
ments of the phase fraction ϕ. This problem of identifying the solution-dependent param-
eters in the Cahn-Hilliard equation has not been investigated before. We will provide a
thorough discussion, i.e. establish a complete analysis and present suitable discretisation
methods for solving the inverse problems. The results can be summarised into three main
contributions. First, we establish identifiability; second, we provide a linear identification
approach; and third, we discuss a non-linear identification method. Identifiability and
the linear identification method have already been published in [16], while the non-linear
approach is a new contribution.

Forward problem and identifiability

In Chapter 2, we introduce the setting of this work and recall the existence of solutions
of the Cahn-Hilliard equation from the literature and our work [19]. The identifiability
of the parameter γ, b(·) and f(·) is then investigated, and we first identify an underlying
scaling invariance which leads to the exclusion of γ in the following considerations. We
will establish identifiability results in three cases: the identification of either b(·) or f(·),
and the simultaneous identification of b(·) and f(·).

Equation error approach

In Chapter 3, we employ an equation error method to solve the parameter identification
problems. To do this, measurements ϕδ will replace ϕ in the system (1.1)–(1.2) and lead
to linear operator equations with perturbed operators to identify the parameter functions.
Those problems are ill-posed, and Tikhonov regularisation is employed to derive stable
reconstructions. The theory of linear inverse problems between Hilbert spaces is well
understood and has been successfully applied to other problems in the literature. Here,
our main challenges arise from the perturbation of the operator, and a slight extension of
the existing analysis on Tikhonov regularisation will be established to cover our problem
structure. We will then show that the regularised parameter identification problems of

14



b(·) and f(·) are well-posed and demonstrate the feasibility of the method in numerical
tests.

Output least squares approach

A known drawback of the equation error approach is its dependence on the smoothness
of the measurements. Therefore, in Chapter 4, we will consider the output least squares
approach, which is now a non-linear problem but can be applied using less regular data and
higher noise levels. Non-linear inverse problems are well investigated in the literature, and
we apply Tikhonov regularisation to our ill-posed inverse problems. To apply standard
theory, we will establish the well-posedness and continuity of the forward operator. This
leads to the existence of solutions to the Tikhonov minimisation problem, which we will
use to derive stable approximations to the solution of the inverse problems. To solve
the resulting optimisation problem, we will propose a Gauss-Newton method. For the
realisation of this iterative approach, we will then establish the differentiability of the
forward operator and derive a representation of the adjoint operator of the derivative.
As we apply standard theory, our main challenge is to derive the required properties of
the non-linear operator. This will be achieved via energy estimates and by proving the
existence of solutions to auxiliary variational systems, for which Galerkin approximation
and, again, energy estimates are employed.
In Chapter 5, we will consider the numerical approximation of the Tikhonov regulari-

sation approach, to which we employ the Petrov-Galerkin method from our work [19].

Extensions to more complex models

Within the Collaborative Research Centre TRR 146 and the SPP 2256, further inves-
tigations have been made into more complex models, incorporating the Cahn-Hilliard
equation. In [20], a Cahn-Hilliard/Allen-Cahn model was studied, and, using the tech-
niques of [19], a structure-preserving discretisation of this model in [17] was derived.
We will demonstrate that the output least squares approach can also be applied to these
more complex models. Without proof, we will demonstrate the numerical feasibility of
the identification method. A direction of future research would also be an analysis of the
other models investigated within the research collaboration, i.e. a viscoelastic phase field
model [15, 88, 21] or a Cahn-Hilliard-Navier-Stokes model [18].

List of publications

The following publications were produced as part of the doctorate and collaboration on
the projects:

1. H. Egger, O. Habrich, and V. Shashkov. On the energy stable approximation of
Hamiltonian and gradient systems. Comput. Methods Appl. Math., 21(2):335–349,
2021.

2. D. Spiller, A. Brunk, O. Habrich, H. Egger, M. Lukáčová-Medvid’ová, and B. Dünweg.
Systematic derivation of hydrodynamic equations for viscoelastic phase separation.
Journal of Physics: Condensed Matter, 33(36):364001, jul 2021.
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1. Introduction

3. A. Brunk, B. Dünweg, H. Egger, O. Habrich, M. Lukáčová-Medvid’ová, and D. Spiller.
Analysis of a viscoelastic phase separation model. Journal of Physics: Condensed
Matter, 33(23):234002, 2021.

4. A. Brunk, H. Egger, and O. Habrich. On uniqueness and stable estimation of
multiple parameters in the Cahn-Hilliard equation. Inverse Problems, 39(6):Paper
No. 065002, 19, 2023.

5. A. Brunk, H. Egger, and O. Habrich. A second-order structure-preserving dis-
cretization for the Cahn-Hilliard/Allen-Cahn system with cross-kinetic coupling.
arXiv:2308.01638, 2023.

6. A. Brunk, H. Egger, O. Habrich, and M. Lukáčová-Medviďová. A second-order
fully-balanced structure-preserving variational discretization scheme for the Cahn–
Hilliard–Navier–Stokes system. Math. Models Methods Appl. Sci., 33(12):2587–
2627, 2023.

7. A. Brunk, H. Egger, O. Habrich, and M. Lukáčová-Medviďová. Stability and dis-
cretization error analysis for the Cahn–Hilliard system via relative energy estimates.
ESAIM Math. Model. Numer. Anal., 57(3):1297–1322, 2023.

In the context of this work, we primarily use work (4) which covers identifiability and
the equation error approach. Moreover, the methods developed in the works (1) and (3)
are frequently used. The results from Chapter 4 and 5 covering the output least squares
approach are not published yet. For the extension of this new approach we use the results
from work (5).
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2. Analytical results

We start by introducing the setup of the Cahn-Hilliard equation and recalling well-known
results regarding the existence of solutions and their properties. After that, we will turn
to the parameter identification problems and investigate questions on identifiability from
observations of the phase fraction ϕ.

2.1. Introduction

As already mentioned in the introduction, the Cahn-Hilliard system

∂tϕ = div (b(ϕ)∇µ) , (2.1)

µ = −γ∆ϕ+ f(ϕ), (2.2)

has been extensively studied in the literature, and in particular, the existence and regular-
ity of weak solutions have been established under various assumptions on the parameter
functions. To simplify the following presentation, we will consider the Cahn-Hilliard
equation (2.1)–(2.2) on a d-dimensional cube complemented with periodic boundary con-
ditions, i.e.

(A0) Ω ≃ Td, is the d-dimensional torus; functions defined on Ω are assumed to be
periodic.

The subsequent analysis of the parameter identification problems is based on the following
assumptions on the model parameters γ, b(·) and f(·).

Assumptions 2.1.1. The domain satisfies (A0). Moreover,

(A1) γ > 0 is a positive constant;

(A2) b : R → R+ satisfies b ∈ C2(R) with 0 < cb ≤ b(s) ≤ Cb for all s ∈ R and
∥b′∥∞ ≤ Cb′ , ∥b′′∥∞ ≤ Cb′′ ;

(A3) f(s) = λ′(s) with λ ∈ C4(R) such that λ(s), λ′′(s) ≥ −cλ1 , for some cλ1 ≥ 0.

Furthermore, λ and its derivatives are bounded by |λ(k)(s)| ≤ C
(k)
λ2

+ C
(k)
λ3

|s|4−k for

0 ≤ k ≤ 4 with constants C
(k)
λ2
, C

(k)
λ3

≥ 0.

The assumptions (A1)–(A3) are standard, enabling us to establish the existence, unique-
ness, and regularity of smooth solutions to the Cahn-Hilliard system (2.1)–(2.2), see Sub-
section 2.2.
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2. Analytical results

Existence of solutions and properties

Let us start with an overview of the literature regarding solutions to the Cahn-Hilliard
equation. The Cahn-Hilliard model possesses a gradient flow structure that results in
energy decay during the evolution. Based on the model’s thermodynamic consistency,
weak solutions have been established using Galerkin approximation, energy estimates,
and compactness arguments. For the case of constant mobility and a polynomial poten-
tial function, the existence and regularity of weak solutions have been established in [41],
where a fourth-order system has been analysed after elimination of the chemical potential
by inserting it into the first equation. In [40], an existence result has been established
for the mixed formulation (2.1)–(2.2) of the Cahn-Hilliard equation. The analysis was ex-
tended to logarithmic potentials, see [30], and (non-)degenerate concentration dependent
mobility functions, see [8, 9, 43]. Let us also mention further results concerning exten-
sions to multi-component Cahn-Hilliard systems, see [7, 11], and multi-physical systems,
e.g. incompressible Cahn-Hilliard-Navier-Stokes systems [13, 49]. In recent works, vis-
coelastic phase separation models have also been considered; see our work [15] in project
C3 of the TRR 146, and further [14].

Besides the existence of weak solutions, the qualitative behaviour of solutions has also
been investigated. The thin interface limit γ → 0 has been considered in [50, 51]. The
long-term behaviour was investigated, and convergence of solutions to an equilibrium state
was established in [83, 95]. Further insights into the qualitative behaviour of solutions
have been established by using the technique of formal asymptotic expansions; see [10] and
references therein. For further extensions and properties of the Cahn-Hilliard equation
and its solutions, we refer to [28] and references therein.

In Section 2.2, we will introduce our notation and recall the precise results regarding
the existence, uniqueness and regularity of solutions we require. Therein, we will highlight
the regularities of the solutions, which will be relevant for our later analysis.

Parameter identification

The identification of the model parameters γ, b(·) and f(·) in the Cahn-Hilliard equation
has not been studied before. We first note that from the two system variables (ϕ, µ) in the
Cahn-Hilliard equation, only observations of the phase fraction ϕ are typically available
from simulations of microscopic models or experimental investigations [61]. The chemical
potential µ is realistically not directly measurable in experiments. Thus, we will study
the identification of the model parameters from observations of the phase fraction ϕ only.
Our inverse problem then reads: Given spatially distributed measurements of the phase
fraction ϕ, identify the model parameters γ, b(·) and f(·). First of all, this leads to the
question of identifiability of the parameters from the given data ϕ.

Parameter identification problems in nonlinear parabolic equations have been covered
extensively, and, in particular, questions on identifiability, also denoted as the uniqueness
of the inverse problem, have been addressed. A structurally similar problem to our identi-
fication of the mobility b(·) is the identification of the nonlinear conductivity function a(u)
in ∂tu = div(a(u)∇u), in the context of heat transfer and porous medium flow. This prob-
lem has been studied in [25, 27, 35], wherein uniqueness results have also been derived.
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2.2. Existence, uniqueness and regularity of solutions

For a uniqueness result concerning a related linear elliptic problem, we refer to [4] and
references provided therein. The identifiability of multiple parameters has also been anal-
ysed. We refer to [12, 22, 34, 37, 48, 80] for results in the direction of nonlinear elliptic
and parabolic problems and to [77] for results in context of a population model. Further,
there are identifiability results in the context of chemotaxis problems, see [38, 52], which
are closest to our following analysis regarding the applied proof techniques.
In Section 2.3, we will identify scaling invariances characterising an inherent non-

uniqueness of the parameter identification problem. Therefore, the identification of the
interface parameter γ will be excluded in our subsequent investigation. As a result, we
will only consider the identification of the mobility b(·) and the potential derivative f(·),
and address the following questions:

(i) Is it possible to uniquely identify the parameter f(·) from observations of ϕ?

(ii) Is it possible to uniquely identify the parameter b(·) from observations of ϕ?

Both questions will be answered positively under reasonable observability conditions while
γ and the other parameter function are known. Subsequently, we extend the question on
identifiability. The parameters b(·), f(·) are one-dimensional functions. At the same time,
the observations ϕ are typically available in space and time. Hence, we expect the inverse
problems to be overdetermined, which raises a third question:

(iii) Is it possible to uniquely identify both parameters b(·), f(·) simultaneously from
observations of ϕ?

Again, the answer will be positive, now under abstract observability conditions, which
can, in principle, be checked based on the available data. The questions (i)–(iii) are
formally discussed in Section 2.4, and we will establish uniqueness results for each of the
three cases.
Our main contributions in this chapter are the identifiability results for the identification

problems and the identification of the underlying non-uniqueness, formalised as a scaling
invariance. These results have also been published in [16].

2.2. Existence, uniqueness and regularity of solutions

Before we consider solutions and their properties, let us introduce our notation.

Notation

By Lp(Ω),W k,p(Ω) we denote the standard Lebesgue and Sobolev spaces and by ∥·∥0,p,
∥·∥k,p the corresponding norms. In the Hilbert space case p = 2, we write Hk(Ω) =
W k,2(Ω) and abbreviate ∥·∥k = ∥·∥k,2. We will, when it is clear, omit the symbol Ω and
briefly write Lp for Lp(Ω). The corresponding dual spaces are denoted by H−s(Ω) =
Hs(Ω)′. Note that for s = 0, we have Hs(Ω) = H−s(Ω) = L2(Ω) where we identified
L2(Ω) with its dual. The norm of the dual spaces is given by

∥r∥H−s = sup
v∈Hs(Ω)

⟨r, v⟩Hs

∥v∥Hs

,
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where ⟨·, ·⟩Hs denotes the duality product on H−s(Ω) ×Hs(Ω) for any s ≥ 0. Note that
for functions u, v ∈ H0(Ω) = L2(Ω) we have ⟨u, v⟩ =

∫
Ω
u v dx, i.e. for sufficiently regular

functions the duality product can be identified with the scalar product of L2(Ω). By
Lp(a, b;X),W k,p(a, b;X) and Hk(a, b;X), we denote the Bochner spaces of appropriate
integrable or differentiable functions in time with values in some spaceX. If (a, b) = (0, T )
we also abbreviate Lp(X) or W k,p(X). The spaces are equipped with their standard
norms, see [46]. The inner product of a space X, if it exists, is denoted by (·, ·)X . Generic
constants are denoted by C and may differ from line to line. Further we will abbreviate∫ t
0

∫
Ω
by
∫
Ωt
.

Solutions of the Cahn-Hilliard equation

Let us now establish the existence of solutions and their properties. By a periodic weak
solution of (2.1)–(2.2) on the interval (0, T ), we mean a pair of functions

ϕ ∈ L2(0, T ;H3(Ω)) ∩H1(0, T ;H1(Ω)′),

µ ∈ L2(0, T ;H1(Ω)),

satisfying the variational identities

(∂tϕ(t), v) + (b(ϕ(t))∇µ(t),∇v) = 0, (2.3)

(µ(t), w)− (γ∇ϕ(t),∇w)− (f(ϕ(t)), w) = 0, (2.4)

for all test functions v, w ∈ H1(Ω) and a.a. 0 < t < T . The pair (ϕ, µ) is a smooth
solution of (2.1)–(2.2) when it satisfies

ϕ ∈ L∞(0, T ;H3(Ω)) ∩ L2(0, T ;H5(Ω)) ∩H1(0, T ;H1(Ω)),

µ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)).

Under the Assumptions 2.1.1 on the model parameters, the existence of weak solutions
and their regularity properties can be deduced from classical results.

Lemma 2.2.1 ([19, Lem. 2]). Let Assumptions 2.1.1 hold. Then for any ϕ0 ∈ H1(Ω),
there exists at least one periodic weak solution (ϕ, µ) of problem (2.1)–(2.2) with initial
value ϕ(0) = ϕ0. If ϕ0 ∈ Hk(Ω),1 ≤ k ≤ 3 then

∥ϕ∥L∞(Hk) + ∥ϕ∥L2(Hk+2) + ∥∂tϕ∥L2(Hk−2) + ∥µ∥L2(Hk) + ∥µ∥L∞(Hk−2) ≤ CT (∥ϕ0∥k)

with CT (∥ϕ0∥k) depending only on the bounds for the coefficients, the domain Ω, the time
horizon T , and the bounds for the initial value. In dimension d = 3, the estimates k > 1
are only valid for sufficiently small T . Moreover, if ϕ0 ∈ Hk(Ω), k ≥ 2, then the weak
solution is unique.

Proof. For k = 1 and dimensions d = 2, 3, the existence of weak solutions and a-priori
bounds for any time T > 0 are classical results obtained by Galerkin approximation,
energy estimates, and compactness arguments, see e.g. [43] for details. For k > 1,
the improved regularity and the bounds are achieved through a bootstrapping argument
and elliptic regularity arguments, utilising regularity results of the Poisson problem, see
[13, 19] and references therein for details. In the case k ≥ 2, the uniqueness of the
solution is demonstrated in [13] using classical methods.
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Note, our definition of smooth solutions corresponds to the case k = 3 in Lemma 2.2.1.
In particular, a smooth solution is unique and also a strong solution (in the sense of
[54]). Smooth solutions and their properties are a necessary precondition in the upcoming
analysis of identifiability in Section 2.4 and the identification methods in Chapters 3 and
4. Let us gather some regularities and bounds of smooth solutions in the following remark.

Remark 2.2.2 (Regularity of smooth solutions). Based on the estimates in Lemma 2.2.1
and embedding theorems for Bochner spaces, see [92, Ch. 25], we can conclude that
smooth solutions (ϕ, µ) are continuous functions in time, i.e. we have that

(ϕ, µ) ∈ C([0, T ];H3(Ω)×H1(Ω)),

and consequently, ϕ is uniformly bounded on Ω × [0, T ]. Especially, we have that ϕ and
∇ϕ are bounded in L∞(0, T ;L∞(Ω)). This boundedness will be necessary to analyse the
nonlinear identification method in Chapter 4. In particular, when combined with the
bounds on the parameter functions, it allows to uniformly bound terms like f(ϕ). For
later reference, let us explicitly state the important uniform bounds:

∥ϕ∥C([0,T ];H3(Ω)) + ∥∇ϕ∥L∞(0,T ;L∞(Ω)) + max
0≤i≤2

∥f (i)(ϕ)∥C(ΩT ) ≤ C(∥ϕ0∥H3(Ω)).

Remark 2.2.3 (Degenerate parameters). Our analysis considers the non-degenerate case,
where the double-well potential λ(·) and its derivatives are polynomially bounded, and
the mobility function b(·) is strictly positive. For more general model parameter functions,
such as logarithmic potentials or degenerate mobilities, smooth solutions are expected to
stay away from the pure states. Therefore, the parameter functions can be regularised
outside the range of the solutions, ensuring the validity of the previous assumptions.
The approach of regularising the model functions is also employed in the proof of the
existence of solutions in the degenerate case, see [10, 43]. However, incorporating a
complete discussion of this case would complicate analysing the parameter identification
problems in the subsequent chapters. Thus, we will not discuss this case in further detail.

In summary, for any choice of model parameters satisfying Assumptions 2.1.1, we have
existence of a unique smooth solution with the discussed properties, which are required
in the following analysis.

2.3. Scaling invariances

We will later study in detail the question, if observations of the phase fraction ϕ uniquely
determine the model parameters γ, b(·), and f(·). As we have already indicated, this
is not the case due to the assumption that the chemical potential µ is unknown. In
the following lemma, we present the canonical scaling invariance that characterises the
inherent non-uniqueness of the parameter identification problem.

Lemma 2.3.1 ([16, Lem. 3]). Let (ϕ, µ) be a periodic solution of (2.1)–(2.2) for the
parameters (γ, b, f). Then for any c ∈ R and d > 0, the tuple (ϕ̂, µ̂) = (ϕ, µ/d + c) is a
solution of (2.1)–(2.2) for the parameters

γ̂ = γ/d, b̂(s) = d · b(s), and f̂(s) = f(s)/d+ c.
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Proof. Firstly, as (ϕ, µ) is a solution to (2.1)–(2.2), it satisfies the variational identi-
ties (2.3)–(2.4) for the parameters (γ, b, f). A constant rescaling of b→ b ·d and µ→ µ/d
in (2.3) maintains the validity of the identity with rescaled parameter b̂ = b · d and chem-
ical potential µ̂ = µ/d. Additionally, another rescaling of γ → γ/d, f → f/d restores the
validity of (2.4), which establishes the claim of the lemma for c = 0. Secondly, a constant
shift µ→ µ+ c and f → f + c leaves the identity (2.4) valid, which establishes the claim
of the lemma for d = 1. When combined with the first rescaling, we obtain the desired
result.

Remark 2.3.2. We immediately infer from Lemma 2.3.1 that when utilising distributed
observations of the phase fraction ϕ only, the parameters γ, b(·) and f(·) can be identified
at most up to the previous invariant scaling, i.e. solutions to the inverse problem are not
unique. However, it is easily seen that when γ is known, the rescaling with the parameter
d is not feasible. Thus, we assume γ > 0 to be known in the following and the remainder
of the thesis. The invariance with respect to the constant c is not removable. Hence, our
analysis investigates the identification of b(·), and f(·) up to a constant. If γ is unknown,
one must choose an artificial value, e.g. γ = 1. By the previous invariances, one then
identifies rescaled parameter functions b̂(s) and f̂(s).

2.4. Identifiability results

We will now investigate the identification of

(i) the potential derivative f(·) in Subsection 2.4.1,

(ii) the mobility function b(·) in Subsection 2.4.2,

(iii) the simultaneous identification of both parameter functions in Subsection 2.4.3.

As noted in Remark 2.3.2, we assume that the interface parameter γ > 0 is known. Under
this assumption and in view of Lemma 2.3.1, we can at most expect to be able to identify
the mobility b(·) uniquely from spatially distributed measurements of ϕ. In contrast, the
potential derivative f(·) can be at most determined up to a constant shift. Moreover, it
is clear that both parameter functions can only be identified on the range of the available
data ϕ, denoted by ran(ϕ).

2.4.1. Identification of f(·)
We first study the identification of the parameter function f(·) from distributed measure-
ments ϕ. The other parameters γ and b(·) are assumed to be known.
First, we eliminate the chemical potential µ by inserting its equation (2.2) into (2.1),

which results in the fourth-order formulation of the Cahn-Hilliard equation. Afterwards,
we obtain the weak form of this equation by multiplying it by a periodic test function
v ∈ H1(Ω) and integrating it over the domain Ω. After integration-by-parts and using
the periodicity of ϕ and v, we arrive at the variational identity∫

Ω

b(ϕ)f ′(ϕ)∇ϕ · ∇v dx =

∫
Ω

b(ϕ)γ∇∆ϕ · ∇v dx−
∫
Ω

∂tϕ v dx. (2.5)
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For the subsequent arguments, we will further transform the identity. To do so, we
introduce the primitive function

v : Ω → R, v(x) :=

∫ ϕ(x)

0

w(s)/b(s) ds

for any smooth test function w : ran(ϕ) → R. Since we have assumed b(·) to be strictly
positive, the primitive is well-defined. Upon inserting the primitive v as a test function
into the previous variational identity, we obtain∫

Ω

f ′(ϕ)w(ϕ)|∇ϕ|2 dx =

∫
Ω

w(ϕ)γ∇∆ϕ · ∇ϕ dx−
∫
Ω

∫ ϕ(x)

0

w(s)/b(s) ds ∂tϕ dx. (2.6)

Based on this identity, we can deduce the following result concerning the identifiability of
the potential derivative f(·).

Theorem 2.4.1 ([16, Thm. 5]). Let Assumptions 2.1.1 hold and ϕ be a smooth solution
of (2.1)–(2.2) on Ω× [0, T ]. Further, assume that γ > 0 and b(·) are known. Then f ′(·)
is uniquely determined on Rt := {s = ϕ(x, t) : x ∈ Ω} from observations of ϕ(·, t) and
∂tϕ(·, t) on Ω for 0 ≤ t ≤ T .

Proof. Throughout the following discussion, we always consider ϕ at a specific time
point t ∈ [0, T ], i.e. ϕ(x) = ϕ(x, t) for a fixed t. Let us assume f1(·), f2(·) to be two
functions leading to the same solution ϕ. By inserting the functions f1(·) and f2(·) into
equation (2.6) and subtracting the resulting identities, we obtain∫

Ω

(f ′
1(ϕ)− f ′

2(ϕ))w(ϕ) |∇ϕ|2 dx = 0. (2.7)

Further we define W (s) := f1(s) − f2(s) for s ∈ R, and w(s) = W ′(s), and observe that
∇W (ϕ) = w(ϕ)∇ϕ. Under the Assumptions 2.1.1 we are now allowed to insert w(·) in
the previous variational identity (2.7), and derive∫

Ω

|∇W (ϕ)|2 dx =

∫
Ω

|∇(f1(ϕ)− f2(ϕ))|2 dx =

∫
Ω

|f ′
1(ϕ)− f ′

2(ϕ)|2|∇ϕ|2 dx = 0.

Consequently f1(ϕ) − f2(ϕ) is constant on Ω, which implies that f1(x) = f2(x) for all
x ∈ Rt, i.e. f

′(·) can be uniquely determined on Rt.

Remark 2.4.2. In the proof, we considered measurements of a single time point only.
However, if we have measurements of ϕ on a space-time cylinder Ω× [t1, t2] with t1 < t2,
then the time derivative ∂tϕ is also known on this set. By using measurements from
multiple points in time, we then can determine f ′(·) on the set R[t1,t2] =

⋃
t1≤t≤t2 Rt.

In the previous proof, the knowledge of the mobility function is implicitly utilised, as the
last term of the identity (2.6) depends on b(·). Thus, assuming that the mobility function
is known is indeed necessary. However, upon considering the last term of identity (2.6),
we observe that the term vanishes if we assume ∂tϕ = 0 on Ω. The remaining terms
then correspond to an equilibrium distribution. In this particular equilibrium case, the
potential derivative f(·) can be determined without knowledge of the mobility. This is
analysed in the following result.
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Theorem 2.4.3 ([16, Thm. 7]). Let Assumptions 2.1.1 hold and (ϕ∞, µ∞) be an equi-
librium for (2.1)–(2.2), i.e. (ϕ∞, µ∞) satisfy

0 = div(b(ϕ∞)∇µ∞), (2.8)

µ∞ = −γ∆ϕ∞ + f(ϕ∞). (2.9)

Further, assume that γ > 0 to be known. Then the function f ′(·) is determined uniquely
on R∞ = {s = ϕ∞(x) : x ∈ Ω} from knowledge of ϕ∞.

Proof. In principle, the assertion can be directly inferred from the previous theorem.
Nevertheless, we provide a different, more direct, proof here. By multiplying equa-
tion (2.8) with µ∞ and integrating over the domain Ω, we obtain after using integration-
by-parts and the periodic boundary conditions that

0 =

∫
Ω

div(b(ϕ∞)∇µ∞)µ∞ dx = −
∫
Ω

b(ϕ∞)|∇µ∞|2dx.

As the mobility b(·) was assumed to be strictly positive, this implies that µ∞ must be
constant. Substituting µ∞ = C into equation (2.9) yields

f(ϕ∞) = γ∆ϕ∞ + C.

From this, we directly deduce that f(·) is determined up to a constant on R∞. Let us
mention that knowledge of the mobility function b(·) was not required for this deduction.

In fact, the constant µ∞ = C is then known, as it can be computed by testing equation
(2.9) with the constant function v ≡ 1.

Remark 2.4.4 (Stationary states). The convergence of the phase fraction ϕ to an equi-
librium distribution ϕ∞ was investigated and shown in the literature. We refer to [83, 95]
for details and proofs.

In conclusion, we established that the potential derivative f(x) can be identified up to
a constant, provided that the value x has been attained from the measurements of ϕ, an
expected and natural identifiability condition.

2.4.2. Identification of b(·)
Next, we address the identification of the mobility function b(·) while assuming that the
other parameters γ and f(·) are known. At first, we observe that the chemical potential
µ = −γ∆ϕ+ f(ϕ) is determined from observations of ϕ, as γ and f(·) are known. Hence,
we are left with the first equation (2.1) of the Cahn-Hilliard system, i.e.

div(b(ϕ)∇µ) = ∂tϕ on Ω× (0, T ). (2.10)

In the following theorem, we present a conditional identifiability result utilising equa-
tion (2.10). The subsequent proof then employs similar arguments as those used in [38].

24



2.4. Identifiability results

Theorem 2.4.5 ([16, Thm. 8]). Let Assumptions 2.1.1 hold and (ϕ, µ) be a smooth
solution of (2.1)–(2.2) on Ω × [0, T ]. Further, assume that γ > 0 and f(·) are known.
Then b(·) can be determined uniquely from observations of ϕ(·, t) and ∂tϕ(·, t) on the set

R̃t = {s = ϕ(x, t) : x ∈ Ω and ∇µ(x, t) ̸= 0} ⊂ Rt.

Proof. We consider ϕ at a fixed time point t ∈ [0, T ], without explicitly making ref-
erence to the time point t, i.e. ϕ(x) = ϕ(x, t). Let us assume b1(·) and b2(·) to be
two distinct mobility functions, both yielding the same solution ϕ of the Cahn-Hilliard
system (2.1)–(2.2), while using the same γ and f(·). We define the auxiliary function
B+(s) = max(b1(s)− b2(s), 0), and will argue subsequently that

div(B+(ϕ)∇µ) = 0 on Ω. (2.11)

To this end, we initially observe that the function B+(ϕ)∇µ is weakly differentiable, and
proceed by considering the equation on subdomains of Ω. First, we consider the set

Ω+(t) := {x ∈ Ω : B+(ϕ(x, t)) > 0} = {x ∈ Ω : b1(ϕ(x, t)) > b2(ϕ(x, t))}.

By inserting b = b1 and b = b2 into equation (2.10), followed by subtracting the resulting
equations, we derive the validity of equation (2.11) on the set Ω+(t). Second, we consider
the set Ω \ Ω+ and readily conclude the validity of equation (2.11), as B+(ϕ)∇µ ≡ 0 on
this set. Therefore, we can multiply equation (2.11) by µ and integrate over the domain
Ω. By employing integration-by-parts and periodic boundary conditions, we obtain

0 =

∫
Ω

div(B+(ϕ)∇µ)µ dx = −
∫
Ω

B+(ϕ)|∇µ|2 dx.

Consequently, we deduce that B+(ϕ) ≡ 0 on the set {s = ϕ(x, t) ∈ R̃t : x ∈ Ω+}. By
employing the same arguments, we verify that B−(ϕ) = min(b1(ϕ)− b2(ϕ), 0) is constant

zero on the set {s = ϕ(x, t) ∈ R̃t : x ∈ Ω−}, where we used the analogously defined set
Ω−(t) := {x ∈ Ω : b1(ϕ(x, t)) < b2(ϕ(x, t))}. By combining the assertions on the subsets

Ω+ and Ω−, we deduce that b1(s) = b2(s) on R̃t.

Remark 2.4.6. Similar to the identification of f(·), if we have access to data ϕ(x, t)
not only from a single time point but from a space-time cylinder Ω × [t1, t2] for t1 < t2,
then ∂tϕ is also known on this set. Consequently, we can determine the mobility b(·) on
R̃[t1,t2] =

⋃
t1≤t≤t2 R̃t. Therein we can take the closure of the sets, given that the function

b(·) was assumed to be smooth; see Assumptions 2.1.1. Additionally, let us comment on

the non-zero condition of ∇µ contained in the definition of the sets R̃t and R̃[t1,t2]. We

observe that if ∇µ ≡ 0 on a set {(x, t) : ϕ(x, t) ∈ (s1, s2)}, hence (s1, s2) /∈ R̃[t1,t2], then
b(s) for s1 < s < s2 does not influence the evolution of ϕ. Consequently, the mobility
cannot be identified on this set from observations of ϕ. Hence, the condition on ∇µ can
be understood as an observability condition; see also [4, 81].

In conclusion, we established that the mobility function b(·) can be uniquely determined
under an inherent observability condition on the chemical potential µ, which is determined
from the knowledge of ϕ, γ and f(·).
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2.4.3. Simultaneous identification of f(·) and b(·)
Next, we consider the simultaneous identification of both parameter functions b(·) and
f(·), while γ > 0 is assumed to be known. We will establish an identifiability result,
assuming a suitable observability condition. For similar arguments, we refer to [4, 82].
To begin, let ϕ be a smooth periodic solution of the Cahn-Hilliard system (2.1)–(2.2),

and let us define the auxiliary function c(s) := b(s)f ′(s). Note that since b(·) is strictly
positive, it is possible to deduce the function f ′(·) through the knowledge of c(·). By
inserting c(·) into the variational identity (2.5) and rearranging terms, we obtain∫

Ω

−b(ϕ)γ∇∆ϕ∇v dx+
∫
Ω

c(ϕ)∇ϕ∇v dx =

∫
Ω

∂tϕ v dx, (2.12)

for all periodic test functions v ∈ H1(Ω) and all time points t under consideration. To
proceed, we now introduce the Heaviside functionH(s) and its regularised piecewise linear
approximations Hε(s), i.e.

H(s) =

{
0, s ≤ 0,

1, s > 0,
and Hε(s) =

{
s/ε, 0 < s < ε,

H(s), else,

for some ε > 0. We test the identity (2.12) with v = Hε(ϕ− s). For ease of presentation,
we only consider the term involving c(ϕ) and obtain∫

Ω

c(ϕ)∇ϕ∇Hε(ϕ) dx =
1

ε

∫
0<ϕ<ε

c(ϕ)|∇ϕ|2 dx

=
1

ε

∫
ϕ>ε

c(ϕ)|∇ϕ|2 dx− 1

ε

∫
ϕ>0

c(ϕ)|∇ϕ|2 dx.

Then by applying the co-area formula, see [47, Sec. 3.4], we derive

1

ε

∫ ∞

ε

∫
ϕ=s

c(s)|∇ϕ| dHd−1 ds− 1

ε

∫ ∞

0

∫
ϕ=s

c(s)|∇ϕ| dHd−1 ds.

=
1

ε

∫ ε

0

∫
ϕ=s

c(s)|∇ϕ| dHd−1 ds,

where dHd−1 denotes the (d − 1)-dimensional Hausdorff measure. By taking the limit
ε→ 0, also considering the remaining terms of identity (2.12), we derive

−b(s)
∫
{ϕ=s}

γ∇∆ϕ
∇ϕ
|∇ϕ|

dHd−1 + c(s)

∫
{ϕ=s}

|∇ϕ| dHd−1 =

∫
Ω

∂tϕH(ϕ− s) dx. (2.13)

As the integrals on the left-hand side are the same as those appearing in the co-area
formula, they are well-defined for almost every value of s; see again [47, Sec. 3.4] for
details. Also consider [72] for an application in a similar context. For every t ∈ [0, T ],
(2.13) is a linear equation for the two scalar values b(s) and c(s). From this, we deduce
the following result.
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Theorem 2.4.7 ([16, Thm. 10]). Let Assumptions 2.1.1 hold, ϕ be a smooth solution
of (2.1)–(2.2) and γ > 0 known. Define

Ab(s, t) := −
∫
{ϕ(·,t)=s}

γ∇∆ϕ(x, t)
∇ϕ(x, t)
|∇ϕ(x, t)|

dx, Ac(s, t) :=

∫
{ϕ(·,t)=s}

|∇ϕ(x, t)| dx,

A(s, t) :=

∫
Ω

∂tϕ(x, t)H(ϕ(x, t)− s) dx,

and assume that {(Ab(s, ti), Ac(s, ti)) : i = 1, 2} are linearly independent. Then b(s), c(s),
and f ′(s) = c(s)/b(s) are uniquely determined.

Proof. From equation (2.13) and considering the definition of Ab, Ac and A, we obtain

Ab(s, t1) b(s) + Ac(s, t1) c(s) = A(s, t1),

Ab(s, t2) b(s) + Ac(s, t2) c(s) = A(s, t2),

which comprises of two linear equations for determining the two scalar values b(s), c(s).
By assumption, the two equations are linearly independent, and thus, the system possesses
a unique solution, yielding the claim of the theorem.

Remark 2.4.8. In contrast to the previous identifiability results, Theorem 2.4.7 yields a
conditional identifiability result. In principle, the required linear independence of the co-
efficients Ab, Ac can be verified explicitly by utilising the data ϕ, prior to any computation
of the values b(s), c(s). If this observability condition holds true, the unique identification
of the two scalar values b(s), f ′(s) can be achieved by solving the linear system (2.13).
Moreover, the reconstructions depend stable on the data ϕ and ∂tϕ.

Conclusion

In this chapter, we investigated the identifiability of the parameter functions γ, b(·) and
f(·) using observations of the phase fraction ϕ and established identifiability results con-
sidering the scaling invariance. In summary, we note that

(i) the interface parameter γ should be fixed,

(ii) the potential derivative f(·) can only be identified up to a constant,

(iii) both parameters b(·) and f(·) can only be identified on the range of the available
data ϕ.

Hence, in the following chapters, we establish methods to identify the parameter functions
b(·) and f(·) considering the conditions (i)–(iii).
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3. Regularised inversion by equation
error methods

In the previous Chapter 2, we established the unique identifiability of b(·) and f(·), the
latter up to a constant, separately and simultaneously. In this chapter, we present a
linear approach for the stable identification of the parameter functions b(·) and f(·) from
observations of the phase fraction ϕ. We will study the identification method theoretically
and then turn to its practical realisation.

3.1. Introduction

We consider the Cahn-Hilliard system

∂tϕ = div (b(ϕ)∇µ) , (3.1)

µ = −γ∆ϕ+ f(ϕ), (3.2)

complemented with periodic boundary conditions and appropriate assumptions on the
parameter functions. For convenience of the reader, we repeat them here.

Assumptions 3.1.1. We impose the following assumptions on the model parameters:

(A1) γ > 0 is a positive constant;

(A2) b : R → R+ satisfies b ∈ C2(R) with 0 < cb ≤ b(s) ≤ Cb for all s ∈ R and
∥b′∥∞ ≤ Cb′ , ∥b′′∥∞ ≤ Cb′′ ;

(A3) f(s) = λ′(s) with λ ∈ C4(R) such that λ(s), λ′′(s) ≥ −cλ1 , for some cλ1 ≥ 0.

Furthermore, λ and its derivatives are bounded by |λ(k)(s)| ≤ C
(k)
λ2

+ C
(k)
λ3

|s|4−k for

0 ≤ k ≤ 4 with constants C
(k)
λ2
, C

(k)
λ3

≥ 0.

Equation error approach

As our initial approach to address the parameter identification of b(·) and f(·), we consider
an equation error approach in the spirit of [6, 57]. To this end, we insert equation (3.2)
of the chemical potential µ into equation (3.1), and replace ϕ by measurements ϕδ in the
resulting partial differential equation, yielding

∂tϕ
δ = −γ div(b(ϕδ)∇∆ϕδ) + div(b(ϕδ)f ′(ϕδ)∇ϕδ). (3.3)
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3. Regularised inversion by equation error methods

By defining c(·) = b(·)f ′(·), yδ = ∂tϕ
δ and an operator T δ(b, c) = r, where r is the

right-hand side of equation (3.3), we derive a linear operator equation of the form

T δ(b, c) = yδ, (3.4)

with perturbed operators T δ and data yδ. This inverse problem is ill-posed, and a reg-
ularisation method is required to derive stable approximations for the solution. We will
employ the well-known Tikhonov regularisation; see [45] for a comprehensive analysis of
the method considering non-perturbed operators.

Related results

Equation error methods have been proposed and analysed in [26, 57] to compute stable
approximations for the identification problem of the nonlinear function a(u) in ∂tu =
div(a(u)∇u). Initially, these approaches have been developed for related linear elliptic
problems, for instance in [2, 4, 69, 71], see also [3, 68, 91]. Moreover, the simultaneous
identification of multiple parameters in nonlinear elliptic and parabolic problems has also
been investigated, see e.g. [12, 22, 37, 48, 80]. Further, relevant research can also
be found in the context of chemotaxis, as demonstrated in [38, 52]. For analysis and
examples involving equations of the form (3.4), we refer to [26, 38, 57, 90].
The standard approach to identity parameter functions in nonlinear parabolic equations

is the output least squares method, which results in a minimisation problem constrained
by the nonlinear system (3.1)–(3.2). The computation of a solution then requires subrou-
tines to compute the forward operator, its derivative, and potentially the adjoint derivative
if a Newton-type method is employed. Consequently, this method tends to be computa-
tionally expensive. Equation error methods present a computationally cheaper approach
if appropriate data is available. Nevertheless, we will investigate the output least squares
method in Chapter 4.
Let us point out that the main advantage of the equation error approach is that it

linearises the inverse problem compared to the nonlinear output least squares method.
Hence, the linear method is less involved concerning the required analysis and routines
and has cheaper computational costs. However, the quality of reconstructions is only as
good as the available data. We will comment on this at the end of the chapter.

Outline of this chapter

We will employ an equation error approach of the form (3.3). This approach reduces the
parameter identification problems of b(·) and f(·) to linear ill-posed operator equations
with perturbed operators as in equation (3.4). The stable solution to these equations
is then achieved using standard regularisation methods. In Section 3.2, we will consider
abstract linear ill-posed operator equations with perturbed operators in Hilbert spaces.
We employ Tikhonov regularisation to derive stable approximations for the solution and
recall the existing theory documented in the literature. The results will provide the theo-
retical support for the following analysis in Section 3.3, where we consider the regularised
approach of equation (3.4) for deriving stable reconstructions of the parameter functions
b(·) and f(·). Therein, we show that the abstract result from Section 3.2 applies to our
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3.2. Equation error approach

problems, provided the data satisfies reasonable smoothness assumptions. In Section 3.4,
we present the numerical realisation of the developed approach to verify its feasibility and
conclude with a discussion of its advantages and limitations.
Our main contributions in this chapter are the developed linear approaches to iden-

tify the parameters b(·) and f(·) in the Cahn-Hilliard system, which we study from a
theoretical and numerical point of view. These results have also been published in [16].

3.2. Equation error approach

We consider linear operator equations of the general form

T δx = yδ, (3.5)

with perturbed operators T δ : X → Y and data yδ, where X, Y are Hilbert spaces.
Here, the unknown parameter functions are denoted by x. Recall that the equation error
approach described by equation (3.3) leads to such linear operator equations. Hence, equa-
tion (3.5) represents our parameter identification problems in an abstract form. Inverse
problems of the form (3.5) are in most cases ill-posed. Hence, in the specific cases con-
sidered in the following, we use Tikhonov regularisation to derive stable approximations
of the parameters x, i.e. we define regularised solutions xδα by

∥T δx− yδ∥2Y + α∥x∥2X → min
x∈X

. (3.6)

Let us now consider the subsequent abstract result provided in [26, 38] and also inves-
tigated in [90]. This result will serve as theoretical support for using (3.6) before we
proceed with the specific parameter identification problems of f(·) and b(·) in the Cahn-
Hilliard system (3.1)–(3.2). To this end, we denote by R(T ) the range of the operator T .
Moreover, we call x ∈ X a least-squares solution of the unperturbed problem Tx = y if

∥Tx− y∥Y = inf{∥T x̃− y∥Y : x̃ ∈ X},

and we call x† ∈ X a minimum-norm solution of Tx = y if x† is a least squares solution
of Tx = y and

∥x†∥X = inf{∥x̃∥X : x̃ is a least squares solution of Tx = y}.

Theorem 3.2.1 ([16, Thm. 12]). Let T, T δ : X → Y be bounded linear operators between
Hilbert spaces X and Y . Further let y ∈ R(T ), yδ ∈ Y , and assume that

∥T − T δ∥X→Y ≤ Cδ and ∥y − yδ∥ ≤ C ′δ. (3.7)

Then for α = δ2γ with 0 < γ < 1, the regularised solutions xδα, determined by

∥T δx− yδ∥2Y + α∥x∥2X → min
x∈X

, (3.8)

converge to the minimum-norm solution x† of Tx = y with δ → 0. If x† = (T ∗T )µw for
some w ∈ X and 0 ≤ µ ≤ 1, then furthermore

∥x† − xδα∥X ≤ C ′′δmin(1−γ,2µγ). (3.9)

For γ = 1/(2µ+ 1), one thus obtains the order optimal rate ∥xδα − x†∥X ≤ C ′′δ
2µ

2µ+1 .
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3. Regularised inversion by equation error methods

Proof. The results follow from a modification of the arguments given in [45, Ch. 4,5],
and we only present the detailed steps for the second claim, i.e. we show (3.9). By using
the triangle inequality, we can split the error into two components

∥xδα − x†∥X ≤ ∥xδα − x̃α∥X + ∥x̃α − x†∥X ,

where we inserted x̃α = (T δ,∗T δ + αI)−1T δ,∗ỹ and ỹ = T δx†. Recall that by definition
xδα = (T δ,∗T δ + αI)−1T δ,∗yδ, and similar for x†. Inserting the definitions, using spectral
estimates and the assumptions of the theorem, then yields

∥xδα − x̃α∥X ≤ α−1/2 (∥yδ − y∥Y + ∥Tx† − T δx†∥Y ) ≤ α−1/2δ(C + C ′).

As a preliminary step for the second error component, we use the condition (3.7) on the
operator perturbation and interpolation estimates to deduce that

x† = (T ∗T )µw = (T δ,∗T δ)µw + η with ∥η∥X ≤ cδmin(2µ,1);

see e.g. [90] for details. Using this, we then estimate for the second error component

∥x̃α − x†∥X ≤ ∥(T δ,∗T δ + αI)−1T δ,∗T δx† − x†∥Y
= ∥rα(T δ,∗T δ)((T δ,∗T δ)µw + η)∥Y ≤ αµ∥w∥X + cδmin(2µ,1),

where we used the abbreviation rα(λ) = (λ+α)−1λ−1 = −α/(λ+α) and applied spectral
estimates for the residual functional in the second and third step; see [45, Ch. 4,5].
Combining the two bounds of the error components and choosing α = δ2γ yields

∥xδα − x†∥X ≤ c′(α−1/2δ + αµ + δmin(2µ,1))

≤ c′(δ1−γ + δ2γµ + δmin(2µ,1)).

The error bound (3.9) then follows by comparing the three terms.

Remark 3.2.2. The previous theorem provides estimates that establish convergence rates
for Tikhonov regularisation of linear inverse problems with perturbed operators, subject
to the usual source conditions. These conditions are sufficient but also necessary for the
predicted convergence rates; see [45, Sec. 4.2]. Moreover, the previous theorem shows
that convergence rates can be guaranteed for Tikhonov regularisation without knowing the
precise smoothness of the solution x†. However, these rates may not be of optimal order.
In [90], the author also established convergence rates for parameter choice according to
the discrepancy principle under the conditions on the operator perturbations stated in
our theorem.

In the following section, we will transform the parameter identification problems of
b(·) and f(·), outlined in Section 2.4, into linear operator equations of the form (3.5).
Using reasonable assumptions on observations ϕδ, we will show that the conditions (3.7)
of the previous abstract theorem are satisfied. The abstract result will then guarantee the
convergence of the regularised solutions.
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3.3. Parameter identification problems

3.3. Parameter identification problems

We will now apply the equation error approach to the parameter identification problems of
b(·) and f(·) in the Cahn-Hilliard system (3.1)–(3.2), which is complemented with periodic
boundary conditions. Let us start with the following assumptions on the available data.

Assumptions 3.3.1. Let ϕδ be spatially resolved measurements of ϕ for particular time
steps t ∈ [0, T ], and assume that

∥ϕ(·, t)− ϕδ(·, t)∥H3(Ω) ≤ δ, ∥∂tϕ(·, t)− ∂tϕ
δ(·, t)∥H−1(Ω) ≤ δ, (3.10)

with known noise level δ > 0, and we assume that ϕδ ∈ (−1, 1).

Considering the regularity results for the true solution, stated in Lemma 2.2.1, the
validity of Assumption 3.3.1 is realistic at least after appropriate pre-smoothing of the
data, see [68, 69] for considerations in this direction. Further, the assumption ϕδ ∈ (−1, 1)
simplifies the presentation and is realistic as phase fraction measurements outside this
interval are not physically reasonable and would be discarded.
By inserting the data ϕδ into (3.1)–(3.2), we transform the parameter identification

problems of f(·) and b(·) into ill-posed linear operator equations of the form T δx = yδ.
Using the Assumption 3.3.1 on the observations ϕδ, we then show that the conditions (3.7)
of Theorem 3.2.1 are satisfied.

3.3.1. Identification of f(·)
We assume that γ > 0 and b(·) are known and study the identification of the potential
derivative f(·) in the Cahn-Hilliard system (3.1)–(3.2) given measurements ϕδ. Similar
to Subsection 2.4.1, we eliminate the chemical potential µ by inserting (3.2) into (3.1).
Moreover, we define the auxiliary function c(s) := b(s)f ′(s). This results in

div(c(ϕ)∇ϕ) = γ div(b(ϕ)∇∆ϕ) + ∂tϕ. (3.11)

Note again that since the mobility function b(·) is strictly positive, it allows us to uniquely
and stably determine f ′(·) from knowledge of the auxiliary function c(·). Throughout the
following discussion, we consider ϕ from a single time point t ∈ (0, T ), and we write ϕ for
ϕ(·, t). Recalling Theorem 2.4.1 on identifiability of f(·), the parameter function f ′(·) can
be uniquely determined on the range Rt, which corresponds to the values attained by the
data ϕ. As discussed in Subsection 2.4.1, a similar statement holds if we use observations
from a whole time interval.

Equation error approach

By replacing the true solution ϕ in (3.11) with the measurements ϕδ, we derive

div(c(ϕδ)∇ϕδ) = γ div(b(ϕδ)∇∆ϕδ) + ∂tϕ
δ.

We then define the perturbed operator

T δ : H2(−1, 1) → H−1(Ω), c(·) → div(c(ϕδ)∇ϕδ), (3.12)
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3. Regularised inversion by equation error methods

and the corresponding perturbed right-hand side by yδ := ∂tϕ
δ+γ div(b(ϕδ)∇∆ϕδ). Recall

that we assumed ϕδ ∈ (−1, 1) allowing us to define the domain of T δ as H2(−1, 1).
Hence, we transformed the inverse problem of f(·) into a linear operator equation of the
form (3.5), i.e. T δ(c) = yδ. To derive stable reconstructions, we then apply Tikhonov
regularisation and aim to solve

∥T δc− yδ∥2H−1(Ω) + α∥c∥2H2(−1,1) → min
c∈H2(−1,1)

, (3.13)

which yields a reconstruction cδα(·) of the parameter function c(·), which is then used to
determine f δα(·).

Analysis of the linear operator equation

We now show that the conditions (3.7) of Theorem 3.2.1 are satisfied, which will verify
that the outlined approach is well-posed. Verifying the linearity of the operator T δ is
straightforward. By using integration-by-parts and Assumptions 3.1.1 on the parameter
functions, we estimate

∥T δc∥H−1(Ω) = sup
v∈H1(Ω)

(c(ϕδ)∇ϕδ,∇v)L2(Ω)

∥v∥H1(Ω)

≤ ∥c(ϕδ)∇ϕδ∥L2(Ω) ≤ ∥c∥L∞(−1,1)∥ϕδ∥H1(Ω).

From the Assumptions 3.3.1 on the perturbed data, we know that the last term is
bounded. Further, using the continuous embedding of H1(−1, 1) in L∞(−1, 1), we derive
∥T δc∥H−1(Ω) ≤ C∥c∥H2(−1,1), which shows that T δ is a bounded operator. By employing a
similar estimate, one can further show that ∥yδ∥H−1(Ω) ≤ C ′.
In the next step, we will confirm the validity of the two conditions in Theorem 3.2.1.

We estimate the dual norm as before and use the triangle inequality to obtain

∥T δc− Tc∥H−1(Ω) = ∥div(c(ϕδ)∇ϕδ)− div(c(ϕ)∇ϕ)∥H−1(Ω)

≤ ∥c(ϕδ)∇ϕδ − c(ϕ)∇ϕ∥L2(Ω)

≤ ∥c(ϕδ)∇(ϕδ − ϕ)∥L2(Ω) + ∥(c(ϕ)− c(ϕδ))∇ϕ∥L2(Ω).

By employing the mean value theorem and using the uniform bounds of the parameter
functions, see Assumptions 3.1.1, we deduce

∥T δc− Tc∥H−1(Ω) ≤ ∥c∥L∞(−1,1)∥∇(ϕδ − ϕ)∥L2(Ω) + ∥c′∥L∞(−1,1)∥ϕ− ϕδ∥L∞(Ω)∥∇ϕ∥L2(Ω)

≤ C∥ϕ− ϕδ∥H1(Ω)∥c∥H2(−1,1).

In the last estimate, we again used the continuous embedding of H1(−1, 1) in L∞(−1, 1).
Hence, from the Assumptions 3.3.1 on the data, we infer that the first condition of The-
orem 3.2.1 is valid, i.e.

∥T δc− Tc∥H−1(Ω) ≤ C δ ∥c∥H2(−1,1).
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By employing similar arguments, we can estimate the perturbations in the data to derive
the validity of the second condition, i.e.

∥yδ − y∥H−1(Ω) ≤ ∥γ div(b(ϕδ)∇∆ϕδ)− γ div(b(ϕ)∇∆ϕ)∥H−1(Ω) + ∥∂tϕδ − ∂tϕ∥H−1(Ω)

≤ C ′δ.

Note, for this estimate, we used the assumption on the data that the perturbations are
bounded in the space H3(Ω).

Summary

We verified in the previous analysis that the conditions of Theorem 3.2.1 are satisfied.
Hence, from Theorem 3.2.1, we deduce that our approach to derive reconstructions by
minimising the Tikhonov functional (3.13) is well-posed in the following sense. The com-
putation of the regularised approximations cδα(·) is stable and the approximations cδα(·)
converge to the minimum norm solution c†(·) of the unperturbed problem T (c) = y; pro-
vided δ → 0 and appropriate chosen regularisation parameter α. We conclude that the
parameter function f(·) can be reconstructed by the proposed approach up to a constant.

Remark 3.3.2 (Observations from a time interval). If we have observations ϕδ available
on a whole time interval (t1, t2), then it is sufficient to assume ϕ ∈ L∞(t1, t2;H

3(Ω)) and
further that

∥ϕ− ϕδ∥L2(t1,t2;H3(Ω)) ≤ δ, ∥∂tϕ− ∂tϕ
δ∥L2(t1,t2;H−1(Ω)) ≤ δ, (3.14)

which is slightly weaker than Assumption 3.3.1. By using interpolation inequalities, we
also deduce that ∥ϕ − ϕδ∥L∞(t1,t2;H1(Ω)) ≤ Cδ. We then define Y = L2(t1, t2;H

−1(Ω))
as the image space of the operator T δ, which is defined as in (3.12), and define the
Tikhonov minimisation problem as in (3.13) inserting the corresponding spaces X, Y . By
employing similar arguments as before and using the Assumptions (3.14), one can show
that T δ is a bounded linear operator. Moreover, one can also show that the two conditions
of Theorem 3.2.1 are valid, i.e.

∥T δc− Tc∥L2(t1,t2;H−1(Ω)) ≤ C δ ∥c∥H2(−1,1) and ∥yδ − y∥L2(t1,t2;H−1(Ω)) ≤ C ′δ.

Consequently, Theorem 3.2.1 again guarantees the convergence of the regularised solutions
cδα(·) to the minimum-norm solution c†(·) of the operator problem T (c) = y. Hence,
the proposed approach is also applicable if observations from a whole time interval are
available.

3.3.2. Identification of b(·)
As a next step in our analysis, we address the identification of the mobility function b(·)
while assuming that γ > 0 and f(·) are known. To do this, we consider equation (3.1)
and obtain upon rearranging terms

div (b(ϕ)∇µ) = ∂tϕ. (3.15)

35



3. Regularised inversion by equation error methods

Throughout the following discussion, we consider ϕ at a single time point t ∈ (0, T ), and
we write ϕ for ϕ(·, t). Recalling Theorem 2.4.5 on identifiability of b(·), the parameter

function can be determined uniquely on the range R̃t, i.e. values attained by the data ϕ
where the non-zero condition on ∇µ holds.

Equation error approach

We observe that the chemical potential µ can be approximated from the data ϕδ = ϕδ(·, t)
at t ∈ (0, T ). By inserting the data ϕδ, we obtain from equation (3.2) an approximation
µδ of the chemical potential

µδ = −γ∆ϕδ + f(ϕδ).

We then replace ϕ and µ in equation (3.15) by ϕδ and µδ and derive

div
(
b(ϕδ)∇µδ

)
= ∂tϕ

δ.

Next, we define the perturbed operator

T δ : H2(−1, 1) → H−1(Ω), b(·) 7→ div(b(ϕδ)∇µδ), (3.16)

and the perturbed right-hand side yδ = ∂tϕ
δ. Hence, we transformed the inverse problem

of b(·) into a linear operator equation of the form T δ(b) = yδ. Like before, recall that
the perturbed data satisfies ϕδ(x, t) ∈ (−1, 1), allowing to define the domain of T δ as
H2(−1, 1). We again use Tikhonov regularisation to stabilise the inverse problem, i.e. we
aim to solve

∥T δb− yδ∥2H−1(Ω) + α∥b∥2H2(−1,1) → min
b∈H2(−1,1)

, (3.17)

which yields the regularised reconstruction bδα(·) of the parameter function b(·).

Analysis of the linear operator equation

We continue to show that the conditions of Theorem 3.2.1 are satisfied, which will verify
that the approach (3.17) is well-posed to identify the mobility b(·). By using similar
arguments as in Subsection 2.4.1, we can show that T δ is linear and bounded, and further,
by Assumption 3.3.1, we know that yδ = ∂tϕ

δ is in Y = H−1(Ω).

Let us next turn to verify the two conditions (3.7) in Theorem 3.2.1. As a preliminary
step, we estimate the perturbation in the chemical potential. By similar arguments as in
Subsection 3.3.1, that are the triangle inequality, the mean value theorem and the uniform
bounds on the parameter functions from Assumptions 3.1.1, we obtain

∥µδ − µ∥H1(Ω) ≤ ∥−γ∆(ϕδ − ϕ) + f(ϕδ)− f(ϕ)∥H1(Ω)

≤ γ∥ϕδ − ϕ∥H3(Ω) + ∥f ′∥L∞(−1,1)∥ϕδ − ϕ∥H1(Ω) ≤ Cδ.

For the last estimate, we also employed Assumption 3.3.1 on the data noise. Now we verify
the first condition of (3.7). Using the perturbation estimate of the chemical potential,
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we can estimate the perturbation of the operator T δ and obtain by similar arguments as
before

∥T δb− Tb∥H−1(Ω) ≤ ∥b(ϕδ)∇µδ − b(ϕ)∇µ∥H−1(Ω)

≤ ∥b∥L∞(−1,1)∥∇(µδ − µ)∥L2(Ω) + ∥b′∥L∞(−1,1)∥∇µ∥L2(Ω)∥ϕ− ϕδ∥L∞(Ω)

≤ C δ ∥b∥H2(−1,1).

Once more, we used Sobolev embeddings and the uniform bounds for the parameter
b(·) ∈ H2(−1, 1) from the Assumptions 3.1.1. This estimate verifies the first condition of
Theorem 3.2.1. The second condition follows directly from the Assumptions 3.3.1 on the
data noise, i.e. ∥y − yδ∥H−1(Ω) = ∥∂tϕ− ∂tϕ

δ∥H−1(Ω) ≤ δ.

Summary

We conclude that the conditions of Theorem 3.2.1 are satisfied. Hence, we deduce that the
approach (3.17) is well-posed in the same sense as before, i.e. we derive stable reconstruc-
tions bδα(·) and the approximations converge to the minimum norm solution b†(·) of the
unperturbed problem T (b) = y, if δ → 0 and α(δ) chosen appropriately. We summarise
that the parameter function b(·) can be reconstructed by the proposed approach (3.17).

Remark 3.3.3 (Observations from a time interval). Similar to the previous considerations
in Subsection 3.3.1, if we have measurements ϕδ for a whole time interval (t1, t2), we use
Y = L2(t1, t2;H

−1(Ω)) as image space in the definition of the operator T δ, and further
use the bounds (3.14) for the assumptions on the data noise. Similar arguments as before
then lead to the conclusion that T δ is linear, bounded and satisfies the two conditions of
the abstract Theorem 3.2.1, i.e.

∥T δb− Tb∥L2(H−1(Ω)) ≤ C δ ∥b∥H2(−1,1) and ∥y − yδ∥L2(H−1(Ω)) ≤ δ.

Consequently, the abstract results of Theorem 3.2.1 can again be applied to deduce sta-
bility and convergence of the approximations bδα(·). Hence, the proposed approach is also
applicable if observations from a time interval are available.

3.3.3. Simultaneous identification of f(·) and b(·)
We assume γ > 0 to be known and consider the simultaneous identification of the pa-
rameter functions b(·) and f(·). Analogue to Subsection 2.4.1, we eliminate the chemical
potential µ by inserting (3.2) into (3.1). Rearranging the resulting terms yields

−γ div(b(ϕ)∇∆ϕ) + div(c(ϕ)∇ϕ) = ∂tϕ, (3.18)

where we introduced the auxiliary function c(s) = f ′(s)b(s), as before. Recall that the
function f ′(·) can be reconstructed through the knowledge of b(·) and c(·), since b(·) is
strictly positive. We recall from Theorem 2.4.7 that the parameters b(·) and c(·) can be
identified uniquely if an abstract observability condition holds.
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Equation error approach

Similar to before, we replace the true solution ϕ in (3.18) with data ϕδ = ϕδ(·, t) for a
single time instance, we derive

−γ div(b(ϕδ)∇∆ϕδ) + div(c(ϕδ)∇ϕδ) = ∂tϕ
δ.

We define the perturbed forward operator

T δ : H2(−1, 1)2 7→ H−1(Ω),

(b, c) 7→ −γ div(b(ϕδ)∇∆ϕδ) + div(c(ϕδ)∇ϕδ)
(3.19)

and the corresponding right-hand side by yδ = ∂tϕ
δ. Hence, we transformed the inverse

problem of b(·) and f(·) into a linear operator equation of the form (3.5), i.e. T δ(b, c) = yδ.
For the stable solution of the parameter identification problem, we propose Tikhonov
regularisation and aim to solve

∥T δ(b, c)− yδ∥2H−1(Ω) + α∥(b, c)∥2H2(−1,1) → min
(b,c)∈H2(−1,1)2

, (3.20)

which yields reconstructions bδα(·) and cδα(·), which are used to determine f δα = cδα(·)/bδα(·).

Analysis of the linear operator equation

In order to verify that the outlined approach is well-posed, we consider the conditions of
Theorem 3.2.1. By employing the same arguments used in the previous two subsections,
one verifies that T δ is linear and bounded. Moreover, the conditions (3.7) of Theorem 3.2.1
are satisfied, i.e. one verifies that

∥T δ(b, c)− T (b, c)∥H−1(Ω) ≤ C δ ∥(b, c)∥H2(−1,1)

by similar arguments as before, while ∥y − yδ∥H−1(Ω) ≤ δ holds by the Assumptions 3.3.1
on the data perturbation.

Summary

As the conditions of Theorem 3.2.1 are satisfied, we deduce that our approach (3.20) is
well-posed in the sense that we derive stable reconstructions (bδα(·), cδα(·)) and the approxi-
mations converge to the minimum norm solution (b†(·), c†(·)) as described for the previous
cases. We summarise that the parameter functions b(·) and f(·) can be reconstructed by
the proposed approach (3.20).

Remark 3.3.4 (Observations from a time interval). As before, if we have observations
ϕδ available on a whole time interval (t1, t2), we define Y = L2(t1, t2;H

−1(Ω)) as image
space in the definition of the operator T δ. Using (3.14) as assumptions on the data noise,
one establishes the two conditions (3.7) of Theorem 3.2.1. This yields the convergence of
approximate solutions and serves as a theoretical backup of the proposed regularisation
approach, i.e. to identify the parameters from data satisfying the abstract observability
conditions from Theorem 2.4.7.
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3.4. Numerical illustration

Let us briefly recap the main results obtained in the previous sections. We considered
an equation error approach to solve the parameter identification problems. To this end,
we inserted distributed observations ϕδ into the Cahn-Hilliard equation (3.1)–(3.2) and
interpreted the resulting equations as linear operator equations T δx = yδ, where x de-
notes the parameter functions. By defining the linear operators on suitable spaces and
using Tikhonov regularisation, we established that we can derive approximations of the
parameter functions by minimising the corresponding Tikhonov functional.
To illustrate our theoretical results, let us now briefly report on the actual perfor-

mance of the proposed regularisation strategies for model problems in dimension d = 1, 2.
First, we discuss a one-dimensional test case in Subsection 3.4.1–3.4.4, which allows for
a simple depiction of the observability conditions. The actual implementation is then
discussed in detail. Second, we present results obtained from a test in two dimensions
in Subsection 3.4.5. The implementation details carry over almost verbatim from the
one-dimensional test case.

3.4.1. Forward problem

Let us describe the setup of our model problem in dimension d = 1. As computational
domain, we choose Ω = (0, 1) and (3.1)–(3.2) are supplemented by periodic boundary
conditions. We select as potential derivative the function

f(s) = 2(s+ 0.99)3(s− 0.99)(3s− 0.99),

which is the derivative of the polynomial double-well potential λ(s) = (s−0.99)2(s+0.99)4

and recall that only f(s) appears in equation (3.2). The mobility function for our model
problem is chosen as

b(ϕ) = (1− ϕ)4(1 + ϕ)2 + 0.2,

and we set γ = 0.003 for the interface parameter. As the initial value for the phase
fraction, we choose

ϕ0(x) = 0.1 sin(2πx)− 0.1 sin(4πx) + 0.1 sin(12πx) + 0.1.

We then deduce from Lemma 2.2.1 that the solution ϕ is uniformly bounded on Ω× [0, T ],
see also Remark 2.2.2. Hence, the functions λ(·) and b(·) could be modified outside of the
range of ϕ. Up to such modification, which does not affect our analysis, we deduce that
the chosen model parameters satisfy the Assumptions 3.1.1.

3.4.2. Data generation

To generate appropriate data for the inverse problem, we first compute an approximate
solution ϕh,τ utilising the structure-preserving variational discretisation method described
in [19, 36]. The method employs quadratic finite elements in space and a Petrov-Galerkin
time-discretisation with piecewise linear ansatz functions. Details on the implementation
can be found in Section 5.1. The resulting solution of this simulation is a function ϕh,τ ,
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3. Regularised inversion by equation error methods

which is continuous, piecewise linear in time and piecewise quadratic in space. For the
discretisation parameters, we choose uniform grids in space and time with mesh size
h = 5 · 10−3 and time step τ = 2 · 10−5. The simulation is computed up to the final
time T = 0.02. Let us note that the following results do not depend on the choice of
the method employed to produce the data. Any other appropriate method to solve the
Cahn-Hilliard equation could be used as well.

In order to avoid inverse crimes, we employ a different discretisation strategy for the
inverse problem. We use cubic splines in space, choose a piecewise linear approximation
in time and a backward difference quotient for the discrete time derivative. For the grids,
we use uniform spatial and temporal grids with mesh size h̃ and τ̃ , different from those
used to generate the data. Therefore, we first compute an approximation ϕ̃h̃,τ̃ , which
is piecewise linear in time and a cubic spline in space, by interpolating the data ϕh,τ
on the grid with h̃, τ̃ . This approximation ϕ̃h̃,τ̃ plays the role of the perturbed data ϕδ

in our theoretical findings in Section 3.3. Let us note that the perturbations here stem
from discretisation and interpolation errors, and we do not add any additional artificial
noise. Moreover, we compute a cubic spline approximation µ̃h̃,τ̃ of the chemical potential

utilising the identity (3.2). We tested different choices for h̃ and τ̃ , resulting in comparable
outcomes. To simplify the presentation, we present the results for h̃ = 2h and τ̃ = 2τ in
the subsequent discussion.

In Figure 3.1, we depict contour plots of the interpolated functions ϕ̃2h,2τ and ∂xµ̃2h,2τ .
From these depictions, we can derive information about the identification intervals Rt =
{s = ϕδ(x, t) : x ∈ Ω} and R̃t = {s = ϕ(x, t) : x ∈ Ω, ∂xµ(x, t) ̸= 0}, where the parameter
functions f ′(·) and b(·) can be uniquely identified.

ϕ̃2h,2τ (x, t) ∂xµ̃2h,2τ (x, t)

Figure 3.1.: Contour plots of ϕ̃2h,2τ (x, t) (left) and ∂xµ̃2h,2τ (x, t) (right) with x ∈ (0, 1) on
the x-axis and t ∈ [0, 0.02] on the y-axis. The colour bar for the left plot
shows the range R = {ϕδ(x, t) : x ∈ Ω, t ∈ (0, T )} of data that are attained.
The right plot reveals areas where information about the mobility function
b(·) can be inferred from the data, i.e. areas where ∂xµ is nonzero.
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3.4.3. Numerical solution to the inverse problem

We now consider the implementation of the equation error methods introduced in Sub-
section 3.3. Therefore, we use the following discretisation strategy. The functions ϕδ, µδ

used to define the perturbed operators T δ in Subsection 3.3 are approximated by the cubic
splines ϕ̃2h,2τ and µ̃2h,2τ . The time derivatives are approximated by utilising backward
difference quotients. Lastly, the parameter functions f(·) and b(·) are discretised using
natural cubic splines on a uniform grid of the interval [−1, 1] with a grid size σ = 0.01.
Let us discuss some details on the implementation of the perturbed version of the

operator equation (3.11), i.e.

div(c(ϕδ)∇ϕδ) = γ div(b(ϕδ)∇∆ϕδ) + ∂tϕ
δ,

which is used to identify the potential derivative f(·). A similar strategy is used to
discretise the other two inverse problems.

Numerical realisation of identifying f(·)

We approximate the right-hand side yδ by a vector y, whose ith entry is computed by

yi = (dτ ϕ̃2h, ψ̃i)L2(Ω) − γ(b(ϕ̃2h)∇∆ϕ̃2h,∇ψ̃i)L2(Ω),

where ψ̃i denotes the ith periodic cubic spline basis function, ϕ̃2h = ϕ̃2h,τ (·, t) is the
evaluation of the data at time t, and dτ ϕ̃2h = 1

2τ
(ϕ̃2h,2τ (·, t) − ϕ̃2h,2τ (·, t − 2τ)) is the

approximation for the time derivative by the backward difference quotient. For the left-
hand side, we assemble the matrix representation of the operator T δ : c 7→ div(c(ϕ̃2h)∇ϕ̃2h)
by

Tij = −(θj(ϕ̃2h)∇ϕ̃2h, ψ̃i)L2(Ω)

where θj is the jth natural cubic spline basis function for the parameter function c(s) =∑
j cjθj(s). Moreover, we define the matrices Mij = (ψ̃j, ψ̃i)H1(Ω) and Rij = (θj, θi)H2(−1,1),

which represent the scalar products on H1(Ω) and H2(−1, 1). The discretisation of the
Tikhonov functional (3.13) for the inverse problem (3.11) is then given by

(Tc− y)⊤M−1(Tc− y) + αc⊤Rc,

where c = (c1, . . . , cN)
⊤ denotes the coefficient vector of the parameter function c(·). The

minimisation of the Tikhonov functional is then derived by solving the corresponding
normal equations, for which we employ the conjugate gradient algorithm.

Problem dimension and computational costs

By utilising data for a single time step, the discretisation of the operator T δ results in a
matrix T of size 100× 201. This implies that our discrete problem is underdetermined for
the given discretisation parameters. If we use data for multiple timesteps, we obtain a
matrix of size 100nt× 201 by padding the blocks for the individual time steps. However,
the resulting normal equations have the size 201 × 201. Therefore, the computational
costs of the method stem primarily from the matrix assembly computations.
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3. Regularised inversion by equation error methods

3.4.4. Numerical results

We will now present numerical results obtained for the three parameter identification
problems discussed in Section 2.4 utilising the regularised equation error methods dis-
cussed in Section 3.3. The regularisation parameter α is chosen heuristically, i.e. we
use the L-curve-criterium as parameter choice rule; see [45, 58]. Here, we consider the
one-dimensional model problem and refer to Section 3.4.5 for the two dimensional tests.

Identification of f(·)

We assume that γ and b(·) are known, defined as in Subsection 3.4.1 and consider the
identification of the potential derivative f(·). As stated in Lemma 2.3.1, we can determine
f(·) only up to a constant. Thus, we will identify and depict only the derivative f ′(·) in
the following. Recall that the function f ′(·) can only be uniquely determined on the
range of data Rt; see Theorem 2.4.1. In Figure 3.2, we depict the true value f ′(·) and the

t = 0.001 t = 0.004 t ∈ [0, 0.004]

Figure 3.2.: Reconstruction of f ′(·) using interpolated data ϕ̃2h,2τ (·, t), for t as speci-
fied in the title of the plots. The range of the data Rt is shaded in grey.
The solid blue line depicts the true function f ′(·), while the dotted red line
is the reconstruction (f δα)

′(·) computed by the regularised equation error
method of Section 3.3.1. The regularisation parameter was determined as
α = 10−6, 10−8, 10−5 in the three tests, respectively.

corresponding reconstruction (f δα)
′(·), determined by our approach. The equation error

method yields stable and accurate reconstructions in all three cases, where we varied the
utilised data. As expected from Theorem 2.4.1, the function f ′(·) can only be reliably
reconstructed within the range of available data Rt. The regularisation enforces stability
but also introduces a certain bias in regions without available data.

Identification of b(·)

We assume that γ and the potential derivative f(·) are known, defined as in Subsec-
tion 3.4.1 and consider the identification of the mobility b(·). Recall that the mobility b(·)
can only be determined uniquely on the range R̃t = {s = ϕ(x, t) : x ∈ Ω, ∂xµ(x, t) ̸= 0}
of the available data, where the gradient of the chemical potential µ does not vanish, see
Theorem 2.4.5. Note that R̃t can be determined prior to the reconstruction, and we used
Figure 3.1 to choose t appropriately. In Figure 3.3, we depict the reconstructions obtained
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t = 0.001 t = 0.002 t ∈ [0, 0.004]

Figure 3.3.: Reconstructions of the mobility function b(·) derived from interpolated data
ϕ̃2h,2τ (·, t) for time points t specified in the title of the plots. The range of
the data Rt is shaded in grey. The solid blue line is the true parameter, while
the dotted red line depicts the reconstructions. The regularisation parameter
was set to α = 10−5 for all tests.

from distributed phase fraction data, where we consider three cases varying the utilised
data. The reconstructed mobility aligns well with the true parameter b(·) on the range of
attained data, while the regularisation introduces a certain bias outside of this range.

Simultaneous identification of f(·) and b(·)

We assume that γ is known and consider the identification of both parameter functions
b(·) and f(·). From Theorem 2.4.7, we know that the simultaneous identification of
both parameters f(·) and b(·) requires observations at multiple time steps. Therefore, in

b(·) f ′(·)

Figure 3.4.: Simultaneous reconstructions of b(·) and f ′(·) from interpolated data
ϕ̃2h,2τ (·, t) with t ∈ [0, 0.004]. The range of the attained data Rt is depicted
in grey. The solid blue line denotes the true parameter functions, while the
corresponding reconstructions are depicted by dotted red lines. The regular-
isation parameter was set to α = 10−8.

Figure 3.4, we only consider reconstructions obtained for data on a whole time interval.
Again, the regularised equation error method yields stable and accurate reconstructions
of the parameter functions on the range of available data. Besides, we also verified the
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3. Regularised inversion by equation error methods

validity of the observability condition derived in Theorem 2.4.7 by numerically computing
the integrals Ab(s, ti), Ac(s, ti) for different values of s and ti. In most cases, we observed
the required linear independence.

3.4.5. Numerical results in two dimensions

Let us now consider a model problem in dimension d = 2. The implementation is, in
principle, similar to the model problem in dimension d = 1, and we only highlight the
differences. We use a similar setup as in Section 3.4.1 for our model problem in dimension
d = 2. As the computational domain, we choose the unit square Ω = (0, 1)2. Further, the
Cahn-Hilliard system (3.1)–(3.2) is complemented by periodic boundary conditions. We
select, similar to the 1-d experiment, the following parameter functions

f(s) = 0.3(2(s+ 0.99)3(s− 0.99)(3s− 0.99)), b(s) = (1− s)4(1 + s)2 + 0.1,

where f is the derivative of the double well potential λ(s) = 0.3(s−0.99)2(s+0.99)4, and
we set γ = 0.003 for the interface parameter. As the initial value for the phase fraction,
we choose

ϕ0(x, y) = −0.1 cos(4πx) sin(2πy) + 0.05 sin(2πx) sin(4πy).

As before, we deduce from Lemma 2.2.1 that the solution ϕ is uniformly bounded on
Ω× [0, T ], see also Remark 2.2.2. Here, the chosen model parameters satisfy the Assump-
tions 3.1.1, up to modifications which do not affect the analysis.

Data generation

We choose the same discretisation strategy as in Section 3.4.2 to produce data ϕh,τ for
the inverse problem, that is, the structure-preserving variational discretisation method
described in [36, 19]; see also Section 5.1. For the discretisation, we use a uniform
triangulation in space with mesh size h = 1/128 and a uniform grid in time with time
step size τ = 2.5 · 10−4. The simulation is computed up to the final time T = 0.15.
Again, we employ a different discretisation strategy for the inverse problem to avoid

inverse crimes. Here, we proceed as in Section 3.4.2. By interpolating the data ϕh,τ on
the grid with h̃, τ̃ , we compute an approximation ϕ̃h̃,τ̃ which is piecewise linear in time,
and, in extension for dimension d = 1, we use a tensor product structure for the cubic
spline approximation in space. The approximation ϕ̃h̃,τ̃ plays the role of the perturbed

data ϕδ. The discretisation parameters are set to h̃ = 2h = 1/64 and τ̃ = 2τ = 5 · 10−4.
In Figure 3.5, we depict the evolution of the interpolated data and provide a plot of the
corresponding energy.

Numerical realisation

The numerical solution of the inverse problem is realised in the same way as in Sec-
tion 3.4.3. The observability conditions can again be checked prior to computation. Here,
we used the plot of the energy evolution, see Figure 3.5, to identify regions where the mo-
bility b(·) can be identified. Hence, we chose points in time where the energy is dissipated
substantially.
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t=0 t=0.025 t=0.0625

t=0.125 t=0.15 energy

Figure 3.5.: Snapshots of the phase fraction ϕ̃h̃,τ̃ for time points t specified in the title
of the plots. The colour bar on the right of each plot shows the range R =
{ϕδ(x, t) : x ∈ Ω, t ∈ (0, T )} of data that are attained. The evolution of the
energy E(ϕ) =

∫
Ω
γ
2
|∇ϕ|2+λ(ϕ) dx, (f(s) = λ′(s)), is depicted with additional

markers on the x-axis which correspond to the time points of the snapshots.
The Cahn-Hilliard equation satisfies an energy-dissipation relation, i.e. it
holds ∂tE(ϕ) = −

∫
Ω
b(ϕ)|∇µ| dx. Hence, we use the depiction of the energy

to quickly identify regions where we expect ∇µ to be non-constant such that
b(·) can be identified.

Numerical results

The computed approximations for the identification problem of either f(·) or b(·) are
depicted in Figures 3.6 and 3.7, respectively. We observe that the reconstructions again
are in good agreement with the true parameter functions on the range of attained data.
Outside of this interval, the regularisation leads to a certain bias, as expected.
In Figure 3.8, we depict the result of the simultaneous identification of both parameter

functions. The results also show a good agreement with the true parameters.

Final remarks

In our presentation of numerical results, we only considered data whose perturbation
stems from discretisation and interpolation errors. In principle, one can use data per-
turbed by additional artificial noise. Then one has to include a presmoothing of the data,
as considered in [69] to satisfy Assumptions 3.3.1. We performed some tests using a
smoothing step, which shows the feasibility of this approach. However, this approach is
heuristically and roughly spoken, the equation error method yields good results as long
as the smoothed data yields an appropriate approximation of the third derivative of ϕ. In
summary, the equation error methods yield reconstructions, which show good alignment
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t = 0.0625 t = 0.15 t ∈ [0, 0.15]

Figure 3.6.: Reconstruction of f ′(·) using interpolated data ϕ̃2h,2τ (·, t), for t as specified
in the title of the plots. The range of the data Rt is shaded in grey. The
solid blue line depicts the true function f ′(·), while the dotted red line is the
reconstruction (f δα)

′(·) computed by the regularised equation error method of
Section 3.3.1. The L-curve criterium determined the regularisation parameter
as α = 10−4 in all three tests.

t = 0.025 t = 0.125 t ∈ [0.025, 0.125]

Figure 3.7.: Reconstructions of the mobility function b(·) derived from perturbed data
ϕ̃2h,2τ (·, t) for time points t specified in the title of the plots. The range of
attained data Rt is depicted in grey. The solid blue line is the true parame-
ter, while the dotted red line depicts the reconstructions. The regularisation
parameter was set to α = 10−4 for all tests.

with the true parameters if the quality of the data or smoothed data is appropriate.

3.4.6. Discussion

In this chapter, we studied the stable identification of the parameter functions b(·) and
f(·). We established the identification via a regularised equation error approach, which led
to linear operator equations with perturbed operators, and we demonstrated the feasibility
of the approach in the presence of discretisation errors.

The main disadvantage of the equation error method is its dependence on appropriate
data, leading to limitations in its application. With increasing noise level δ, potentially
by adding artificial noise, the quality of the reconstructions reduces. This problem can
be circumvented to some extent by pre-smoothing the data. Alternatively, it becomes
necessary to consider a different method, such as the output least squares method, which
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b(·) f ′(·)

Figure 3.8.: Simultaneous reconstructions of b(·) and f ′(·) from perturbed data ϕ̃2h,2τ (·, t)
with t ∈ [0, 0.15]. The range of the attained data is again depicted in grey.
The solid blue line denotes the true parameter functions, while dotted red
lines depict the corresponding reconstructions. The regularisation parameter
was set as α = 10−8.

we discuss in the next chapter.
We close this chapter by mentioning some directions for future research. The methods

developed to establish the uniqueness of the parameter identification problems might serve
as a starting point to derive abstract source conditions or stability estimates; see [63] and
[72] and further references therein. Another direction is the generalisation of the results
to more realistic models for phase separation processes; consider the references [1, 20, 62]
or [78] for some examples. With increasing complexity of the model, more parameters
or parameter functions are introduced, which increases the difficulty of deriving suitable
linear operator equations.
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In the previous Chapter 3, we studied the parameter identification problem of b(·) and
f(·) in the Cahn-Hilliard equation

∂tϕ = div (b(ϕ)∇µ) , (4.1)

µ = −γ∆ϕ+ f(ϕ), (4.2)

by an equation error approach. To this end, we inserted the data ϕδ for ϕ in (4.1)–(4.2),
which led to linear inverse problems with perturbed operators. In principle, this is a
feasible method. However, we required high regularity on the data ϕδ, which must be
distributed, and we can only identify the parameters where measurements are available.
Moreover, in some sense, the method is fine-tuned to the Cahn-Hilliard equation and is
not straightforwardly applicable to more complex models. To overcome these issues, we
will consider a non-linear approach, namely the output least squares method.

Output least squares approach

We introduce the parameter-to-measurement mapping

F : D(F ) ⊂ X → Y, (b(·), f(·)) 7→ ϕ,

which is usually referred to as the forward operator, where ϕ is the first component of
the solution (ϕ, µ) to the Cahn-Hilliard system (4.1)–(4.2), with (b(·), f(·)) inserted as
parameter functions. Note, the operator F is nonlinear. We then consider the following
inverse problem:

Given measurements ϕδ, find parameter functions (b(·), f(·)) such that

F (b, f) = ϕδ.

This parameter identification problem has the abstract form of a nonlinear inverse problem
F (x) = yδ in Hilbert spaces, where yδ denotes measurements of exact data y. Such
problems are in many cases inherently ill-posed, especially in infinite dimensional spaces,
and applying regularisation techniques is necessary. In order to solve the inverse problem
F (x) = yδ, we will apply Tikhonov regularisation. Hence, stable approximations to the
true parameter x†, which fulfils F (x†) = y, are derived by minimising the Tikhonov
functional

min
x∈D(F )

Jδα(x) :=
1

2
∥F (x)− yδ∥2Y +

α

2
∥x− x∗∥2X , (4.3)

where α > 0 is a regularisation parameter and x∗ is an initial guess for the parameter.
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Related results

The analysis of nonlinear inverse problems is considerably more involved in comparison to
linear inverse problems, which had to be solved by applying the equation error approach.
Nevertheless, such problems have been studied in the literature. For instance, a compre-
hensive discussion on the regularisation of nonlinear problems can be found in [45]. For
an overview of parameter estimation problems in nonlinear systems of partial differential
equations, consider [6, 63].
Identification problems based on spatial measurements have been addressed across a

diverse range of applications, see e.g [38], where a chemotaxis model is considered, or [77]
where a population model is considered. Further, the nonlinear identification of a solution-
dependent heat conduction coefficient, approached as a control problem, has been analysed
in [27]. For an identification problem for an elliptic equation of two variables, consider [4].
In recent work, [65] considers Bayesian parameter identification in a phase-field model
for tumour growth. Most relevant to our analysis, there are control problems discussed
in [29, 64], which consider linear control variables in tumour and diffuse interface models,
both involving the Cahn-Hilliard equation as a part of their models. The analysis of those
problems goes back to ideas of [74]. To our knowledge, the identification of the phase
fraction dependent parameter functions b(·) and f(·) has not been covered before.

Outline of this chapter

We will consider the stable identification of the parameter functions (f, b) in the Cahn-
Hilliard system (4.1)–(4.2) phrased as nonlinear inverse problem

F (b, f) = ϕδ. (4.4)

To obtain stable approximations to the true parameter functions (b†, c†), which fulfils
F (b†, c†) = ϕ, by minimising the Tikhonov functional

min
(b,f)∈D(F )

Jδα(b, f) :=
1

2
∥F (b, f)− ϕδ∥2Y +

α

2
∥(b, f)− (b∗, f ∗)∥2X , (4.5)

where α > 0 is a regularisation parameter, (b∗, f ∗) is an initial guess for the parameter
functions, and X, Y are Hilbert spaces. To be able to apply standard theory, the operator
F (·) must fulfil some properties, e.g. well-posedness, continuity and weak-continuity. In
our problem the forward operator has the special structure F (·) = L(S(·)), where L(·)
is a linear operator, and S(·) is the solution operator mapping parameters (b, f) to the
corresponding solution of the Cahn-Hilliard system (4.1)–(4.2). In short,

S : D(S) ⊂ X → Z, (b, f) 7→ (ϕ, µ)

L : Z → Y, (ϕ, µ) 7→ (ϕ).

As L(·) is a linear operator, the problem of showing certain properties of the forward
operator F (·) = L(S(·)) reduces to the properties of the solution operator S(·). Hence,
we will proceed as follows. In Section 4.1, we will show that the solution operator is well-
defined, continuous and weakly continuous. This allows us to establish the existence of a
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minimum of the Tikhonov functional (4.5) in Section 4.2. For the numerical realisation
of the Tikhonov regularisation, we will propose a projected Gauss-Newton iteration; also
in Section 4.2. Therefore, we need to establish the differentiability of the operator F (·),
which again will be reduced to a corresponding study of the solution operator S(·). This
is presented in Section 4.3. Moreover, for the iterative procedure, we need to calculate
the outcome of an application of F ′(x)∗. For this we derive a representation of F ′(x)∗ in
Section 4.4.

Challenges and related results

Let us discuss some challenges of the upcoming analysis. The following discussion and
proofs essentially rely on defining auxiliary variational problems for which we derive energy
estimates and the existence of solutions by standard Galerkin approximation.
In the work [64], the authors discussed an optimal control problem in a Cahn-Hilliard-

chemotaxis system. The main analytical novelty was considering a phase fraction de-
pendent mobility for the Cahn-Hilliard equation. While well-posedness and continuity of
the solution operator presented no problems, they encountered difficulties in establishing
Fréchet differentiability of the solution operator. Those problems have been overcome
by establishing continuity estimates in higher norms. We encounter similar difficulties
for our identification problems of b(·) and f(·). Hence, we will also derive continuity
estimates in higher norms, which will be necessary to establish Fréchet differentiabil-
ity of S(·). Namely our proof requires, among others, that ∇ϕ ∈ L∞(0, T ;L∞(Ω)) and
µ ∈ L∞(0, T ;H1(Ω))∩L2(0, T ;H3(Ω)). The basis of these estimates is the high regularity
of smooth solutions, as stated in Section 2.2.
Hence, our main contribution in this chapter is the complete analysis of the Tikhonov

regularisation approach. We will adjust the proof ideas of the existing analysis, which did
not cover identifying the identification of phase fraction dependent parameter functions
in the Cahn-Hilliard equation. Regarding the three parameter identification problems
discussed in Section 3.3, our analysis will be formulated for the case of simultaneous
identification. The separate identification of a single parameter function, either b(·) or
f(·), is then deduced by directly reducing the obtained results.

4.1. The solution operator S(·)
In this section, we will first establish the well-posedness of the solution operator S(·),
which maps parameters (b, f) to the corresponding solution of the Cahn-Hilliard system
(4.1)–(4.2). After that, we derive energy estimates for the operator S(·), leading to
continuity and weak continuity of the solution operator S(·). We already note here that
the energy estimates are in higher norms than required for the continuity properties.
However, they will be required later on.

4.1.1. Set-up and well-posedness

Let us start by presenting a recap of the solvability of the Cahn-Hilliard equation. After-
wards, we define the set-up for the solution operator S(·) and deduce its well-posedness.

51



4. Regularised inversion by an output least squares method

Recap: solutions of the Cahn-Hilliard equation

As before, we consider the Cahn-Hilliard system (4.1)–(4.2) on a periodic domain Ω and
complement the equations with periodic boundary conditions. For convenience of the
reader, let us recall the main assumptions already used in the previous chapters.

Assumptions 4.1.1. We impose the following assumptions on the domain and the pa-
rameters:

(A0) Ω ≃ Td, is the d-dimensional torus; functions defined on Ω are assumed to be
periodic.

(A1) γ > 0 is a positive constant;

(A2) b : R → R+ satisfies b ∈ C2(R) with 0 < cb ≤ b(s) ≤ Cb for all s ∈ R and
∥b′∥∞ ≤ Cb′ , ∥b′′∥∞ ≤ Cb′′ ;

(A3) f(s) = λ′(s) with λ ∈ C4(R) such that λ(s), λ′′(s) ≥ −cλ1 , for some cλ1 ≥ 0.

Furthermore, λ and its derivatives are bounded by |λ(k)(s)| ≤ C
(k)
λ2

+ C
(k)
λ3

|s|4−k for

0 ≤ k ≤ 4 with constants C
(k)
λ2
, C

(k)
λ3

≥ 0.

In addition, we assume ϕ0 ∈ H3(Ω).

Under these conditions, we established in Lemma 2.2.1 the existence of solutions and
their regularities. In particular, for ϕ0 ∈ H3(Ω), we have a unique solution (ϕ, µ), denoted
as smooth solution, satisfying the regularities

ϕ ∈ L∞(0, T ;H3(Ω)) ∩ L2(0, T ;H5(Ω)) ∩H1(0, T ;H1(Ω)),

µ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)).
(4.6)

As noted in Remark 2.2.2, the smooth solution (ϕ, µ) is a continuous function in time

(ϕ, µ) ∈ C([0, T ];H3(Ω)×H1(Ω)),

such that we have the following uniform bounds

∥ϕ∥C([0,T ];H3(Ω)) + ∥∇ϕ∥L∞(0,T ;L∞(Ω)) + max
0≤i≤2

∥f (i)(ϕ)∥C(ΩT ) ≤ C(∥ϕ0∥H3(Ω)). (4.7)

Throughout this chapter, we maintain the assumption that the interface parameter γ > 0
is known. Furthermore, we restrict the analysis to dimension d = 2. In this case, the
a-priori bounds of solutions to the Cahn-Hilliard equation are global; see Lemma 2.2.1.
This is not true in dimension d = 3, where the bounds are only valid up to a particular
time T , which is usually very small. Moreover, this simplifies the analysis in the following,
as we can use interpolation inequalities in two dimensions.
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Parameter-to-solution operator S(·)

Let us introduce the parameter-to-solution operator, in the following denoted solution
operator. To begin, we define the domain of the operator S(·), denoted by D(S), as
follows

D(S) := {(b, f) ∈ (H2(I))2 : Assumptions 4.1.1 hold},

where I := [a1, a2] is an interval chosen large enough, such that it holds ϕ(x, t) ∈ I for
all x ∈ Ω and t ∈ [0, T ]. Note that such an interval exists at least until a time T , as
smooth solutions are uniformly bounded by the initial distribution ϕ0. The domain D(S)
is non-empty and convex, as one can easily deduce by choosing convex combinations and
the observation that they still satisfy the bounds in Assumption 4.1.1. Moreover, together
the two properties imply that D(S) is weakly closed. Then we define the solution operator

S : D(S) ⊂ (H2(I))2 → (L2(0, T ;L2(Ω)))2, S(b, f) 7→ (ϕ, µ),

where (ϕ, µ) is the solution of (4.1)–(4.2) with initial conditions ϕ(0) = ϕ0. If initial
data ϕ0 ∈ H3(Ω) is provided, the Cahn-Hilliard system (4.1)–(4.2) has a unique smooth
solution. Consequently, it follows that the solution operator S : (b, f) 7→ (ϕ, µ) is well
defined on D(S).

Remark 4.1.2 (Separate identification). For the identification problems involving only
one of the parameter functions b(·) or f(·) (while the other one is known), the definitions
of the domain as well as the solution operator are analogous. The subsequent analysis
can then readily be reduced to separate parameter identification problems.

In the following, we will derive continuity properties of the solution operator S(·). These
properties are then used to deduce properties of the forward operator F (·).

4.1.2. Continuity estimates for S(·)
The following theorem establishes estimates for the difference of two smooth solutions of
the Cahn-Hilliard equation (4.1)–(4.2), i.e. (ϕ1, µ1)− (ϕ2, µ2), which yield continuity and
Lipschitz continuity of the solution operator S(b, f). Moreover, we derive estimates in
higher norms, which will be necessary to analyse the differentiability of S(b, f) later.

Theorem 4.1.3. Let Assumptions 4.1.1 and d = 1, 2. Further let {(ϕi, µi)}i=1,2 denote
two smooth solutions of (4.1)–(4.2) corresponding to parameters {bi, fi}i=1,2 and the same
initial data ϕ0 ∈ H3(Ω). Then there exists a constant C depending on the uniform bounds
of the parameter functions, the domain Ω and the a-priori bounds of the solutions, such
that

∥ϕ1 − ϕ2∥L∞(H2)∩L2(H4) + ∥∂t(ϕ1 − ϕ2)∥L2(L2) + ∥µ1 − µ2∥L2(H2)∩L∞(L2)

≤ C (∥b1 − b2∥H2 + ∥f1 − f2∥H2) .
(4.8)

Before we start with the proof, let us make some remarks. As noted in Section 4.1.1, we
restrict our analysis to dimension d = 1, 2, which simplifies the analysis. We expect the
following considerations can be extended to dimension d = 3 under additional assumptions
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on ϕ0. The basis of the estimates of the theorem is the high regularity of smooth solutions
(4.6) and, notably, the proof requires that ∇ϕ ∈ L∞(0, T ;L∞(Ω)). The following proof is
inspired by [64] and is divided into four steps. At first, we establish a variational system
that is fulfilled by the differences of two solutions. Subsequently, by testing the system,
we derive energy estimates and use Gronwall arguments to derive a first estimate of the
form (4.8). The subsequent steps will establish such estimates in stronger norms, using
elliptic regularity and a Gronwall argument.

Throughout the analysis, we will often estimate the difference of parameter functions,
for instance, b1(ϕ) − b2(ϕ), integrated over the space-time domain. For those terms, we
initially estimate∫

Ωt

|b1(ϕ)− b2(ϕ)| dx ds =
∫
Ωt

|(b1 − b2)(ϕ)| dx ds ≤ C(t,Ω)∥b1 − b2∥2L∞(I),

where we used that bi(·) and ϕ are uniformly bounded by Assumptions 4.1.1 and the
a-priori bounds (4.7). Again by the uniform bounds of ϕ, and the embedding of H1(I)
into L∞(I), we derive the estimate∫

Ωt

|b1(ϕ)− b2(ϕ)| dx ds ≤ C∥b1 − b2∥2L∞(I) ≤ C∥b1 − b2∥2H2(I).

These details will be omitted in the following.

Proof. Let {(ϕi, µi)}i=1,2 be smooth solutions of (4.1)–(4.2) corresponding to parameters

{bi, fi}i=1,2 with initial data ϕ0 ∈ H3(Ω). Further, we define ϕ̂ := ϕ1−ϕ2, and analogously

introduce µ̂. Additionally we define b̂(·) := b1(·)− b2(·) and similarly f̂(·).
We substitute the solutions {(ϕi, µi)}i=1,2, as well as the respective parameter functions,

into (4.1)–(4.2), and subtract the resulting equations. With the additional insertion of a
zero, that is b2(ϕ2)∇µ1, we find the following system satisfied by ϕ̂, µ̂ almost everywhere
in ΩT := Ω× [0, T ]:

∂tϕ̂ = div ((b1(ϕ1)− b2(ϕ2))∇µ1) + div (b2(ϕ2)∇µ̂) , (4.9)

µ̂ = −γ∆ϕ̂+ f1(ϕ1)− f2(ϕ2). (4.10)

First step: In the usual manner, we multiply the system with test functions and use
integration by parts. Here, we select v = γϕ̂ as test function for equation (4.9), and
for (4.10) we select w = b2(ϕ2)µ̂ as well as w = −εϕ, where ε > 0 is a constant to be
determined later. The resulting equations are the following

γ(∂tϕ̂, ϕ̂) = −γ((b1(ϕ1)− b2(ϕ2))∇µ1,∇ϕ̂)− γ(b2(ϕ2)∇µ̂,∇ϕ̂),
(µ̂, b2(ϕ2)µ̂) = γ(∇ϕ̂, b2(ϕ2)∇µ̂) + γ(∇ϕ̂, µ̂ b′2(ϕ2)∇ϕ2) + (f1(ϕ1)− f2(ϕ2), b2(ϕ2)µ̂),

−ε(µ̂, ϕ̂) = −γε(∇ϕ̂,∇ϕ̂)− ε(f1(ϕ1)− f2(ϕ2), ϕ̂).

Upon adding the three equations, the term γ(b2(ϕ2)∇µ̂,∇ϕ̂) cancels out, and using the
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lower bound on the parameter function b(·), see Assumptions 4.1.1, we obtain

γ

2

d

dt
∥ϕ̂∥2L2+cb∥µ̂∥2L2 + εγ∥∇ϕ̂∥2L2 ≤ ε

∫
Ω

|µ̂||ϕ̂| dx

+ε

∫
Ω

|f1(ϕ1)− f2(ϕ2)||ϕ̂| dx+ Cb

∫
Ω

|f1(ϕ1)− f2(ϕ2)||µ̂| dx

+

∫
Ω

|b′2(ϕ2)||∇ϕ2||µ̂||∇ϕ̂| dx+ γ

∫
Ω

|b1(ϕ1)− b2(ϕ2)||∇µ1||∇ϕ̂| dx

=: (i) + (ii) + (iii) + (iv) + (v).

(4.11)

The terms (i)–(v) on the right-hand side are now estimated separately. By employing
Hölder’s inequality and Young’s inequality, using appropriate factors, we obtain

(i) = ε

∫
Ω

|µ̂||ϕ̂| dx ≤ ε∥µ̂∥L2∥ϕ̂∥L2 ≤ cb
4
∥µ̂∥2L2 + Cε∥ϕ̂∥2L2 .

To estimate the second term, we utilise the triangle inequality and the mean value theorem
to estimate

(ii) = ε

∫
Ω

|f1(ϕ1)− f2(ϕ2)||ϕ̂| dx

≤ ε

∫
Ω

|f1(ϕ1)− f1(ϕ2)||ϕ̂|+ |f1(ϕ2)− f2(ϕ2)||ϕ̂| dx

≤ ε

∫
Ω

|f ′
1(ζ)(ϕ1 − ϕ2)||ϕ̂|+ |f1(ϕ2)− f2(ϕ2)||ϕ̂| dx,

with ζ(x, t) ∈ [min{ϕ1(x, t)−ϕ2(x, t)},max{ϕ1(x, t)−ϕ2(x, t)}]. Using the uniform bound
∥f ′(ϕi)∥C(ΩT ) ≤ C(∥ϕ0∥H3(Ω)), see (4.7), and applying Young’s inequality, we derive

(ii) ≤ C∥f ′
1∥L∞

∫
Ω

|ϕ̂|2 dx+ C(∥f1(ϕ2)− f2(ϕ2)∥2L2 + ∥ϕ̂∥2L2)

≤ C(∥ϕ̂∥2L2 + ∥f̂∥2H2),

(4.12)

where C depends on the domain Ω, the constant ε and the uniform bound of f ′(·). Using
similar arguments as before, we bound the third term in the following manner

(iii) = Cb

∫
Ω

|f1(ϕ1)− f2(ϕ2)||µ̂| dx

≤ Cb∥f ′
1∥L∞∥ϕ̂∥L2∥µ̂∥L2 + Cb∥f1(ϕ2)− f2(ϕ2)∥L2∥µ̂∥L2

≤ C(∥ϕ̂∥2L2 + ∥f̂∥2H2) +
cb
4
∥µ̂∥2L2 ,

where the constant C depends on the bounds of the parameter functions b(·), f ′(·) and
a constant derived from Young’s inequality. Additionally, we applied the continuous em-
bedding of H1(I) into L∞(I), which will be utilised on various occasions in the subsequent
estimates but will not be explicitly mentioned all the time. To estimate the fourth term,
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we use the uniform a-priori bounds (4.7), i.e. ∇ϕ is a-priori bounded in L∞(0, T ;L∞(Ω)),
which consequently establish the boundedness of ∥b′2(ϕ2)∇ϕ2∥L∞(L∞), and obtain

(iv) =

∫
Ω

|b′2(ϕ2)||∇ϕ2||µ̂||∇ϕ̂| dx ≤ ∥b′2(ϕ2)∇ϕ2∥L∞

∫
Ω

|µ̂||∇ϕ̂| dx

≤ 1

cb
∥b′2(ϕ2)∇ϕ2∥2L∞∥∇ϕ̂∥2L2 +

cb
4
∥µ̂∥2L2

≤ C∥∇ϕ̂∥2L2 +
cb
4
∥µ̂∥2L2 ,

where C is a uniform constant. For the fifth term, we again apply Hölder’s inequality

(v) = γ

∫
Ω

|b1(ϕ1)− b2(ϕ2)||∇µ1||∇ϕ̂| dx ≤ γ∥(b1(ϕ1)− b2(ϕ2))∇µ1∥L2∥∇ϕ̂∥L2 . (4.13)

Let us consider the first term on the right hand side and recall that∇µ1 ∈ L4(0, T ;L4(Ω)),
b ∈ C2(R), and {ϕi}i=1,2 are uniformly bounded to deduce that

∥(b1(ϕ1)− b2(ϕ2))∇µ1∥2L2 ≤ ∥∇µ1∥2L4

(
∥b1(ϕ1)− b1(ϕ2)∥2L4 + ∥b1(ϕ2)− b2(ϕ2)∥2L4

)
≤ ∥∇µ1∥2L4

(
Cb′∥ϕ̂∥2L4 + C∥b̂∥2H1

)
.

Next, we employ an interpolation inequality, which holds in dimension d = 2, i.e for
ϕ ∈ H1(Ω) it holds

∥ϕ∥L4(Ω) ≤ C(Ω)
(
∥ϕ∥

1
2

L2(Ω)∥∇ϕ∥
1
2

L2(Ω) + ∥ϕ∥L2(Ω)

)
,

details can be found in the appendix. Using this, along with Young’s inequality, we further
estimate

∥(b1(ϕ1)− b2(ϕ2))∇µ1∥2L2 ≤ ∥∇µ1∥2L4

(
Cb′
(
∥ϕ̂∥

1
2

L2∥∇ϕ̂∥
1
2

L2 + ∥ϕ̂∥L2

)2
+ C∥b̂∥2H1

)
≤ ∥∇µ1∥2L4

(
Cb′(∥ϕ̂∥L2∥∇ϕ̂∥L2 + ∥ϕ̂∥2L2) + C∥b̂∥2H1

)
≤ ∥∇ϕ̂∥2L2 + C

(
(∥∇µ1∥4L4 + ∥∇µ1∥2L4)∥ϕ̂∥2L2 + ∥∇µ1∥2L4∥b̂∥2H1

)
≤ ∥∇ϕ̂∥2L2 + C∥b̂∥2H2 + C(1 + ∥∇µ1∥4L4)∥ϕ̂∥2L2 .

Utilising this assertion, we deduce that (4.13) can be estimated further to derive a bound
of the fifth term

(v) ≤ C∥(b1(ϕ1)− b2(ϕ2))∇µ1∥2L2 + ∥∇ϕ̂∥2L2

≤ C∥b̂∥2H2 + 2∥∇ϕ̂∥2L2 + C(1 + ∥∇µ1∥4L4)∥ϕ̂∥2L2 .

Gathering the estimates for (i)–(v), we establish the differential inequality

γ

2

d

dt
∥ϕ̂∥2L2 +

cb
4
∥µ̂∥2L2 +

(
εγ − 2− C

)
∥∇ϕ̂∥2L2

≤ C
(
1 + ∥∇µ1∥4L4

) (
∥ϕ̂∥2L2 + ∥f̂∥2H2 + ∥b̂∥2H2

)
,
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where C depends only on the domain Ω, the constant ε and the uniform bounds on the
parameter functions b(·),f(·), see Assumptions 4.1.1. Choosing a sufficiently large value
for ε results in a positive coefficient in front of ∥∇ϕ̂∥2L2 . Additionally, by interpolation,
see [73], it holds that ∇µ1 ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ⊂ L4(0, T ;L4(Ω)) for
dimension d = 2. Hence, the preceding inequality remains valid upon integration over
the time interval (0, T ), such that an application of the Gronwall inequality, see Lemma
A.2.1, using that ∇µ1 ∈ L4(0, T ;L4(Ω)), yields

sup
t∈(0,T )

∥ϕ̂(t)∥2L2 + ∥µ̂∥2L2(L2) + ∥∇ϕ̂∥2L2(L2) ≤ C(∥f̂∥2H2 + ∥b̂∥2H2) =: C(∗).

Hence we conclude that we established as first estimate

∥ϕ̂∥L∞(L2)∩L2(H1) + ∥µ̂∥L2(L2) ≤ C(∥f̂∥2H2 + ∥b̂∥2H2) = C(∗). (4.14)

In the following, we will use the notation C(∗) to represent bounds that depend on the
difference of the parameter functions as defined.

Second step: To show higher regularity of ϕ̂, we first establish an additional bound for
the terms in (4.10). By using the bounds given in (4.14) and the Assumptions 4.1.1 for
f(·), we estimate in a similar manner as in (4.12) that

∥f1(ϕ1)− f2(ϕ2)∥2L2(L2) ≤ C
(
∥ϕ1 − ϕ2∥2L2(L2) + ∥f̂∥2H2

)
≤ C(∗).

Now, we consider equation (4.10) from the perspective of an elliptic equation for ϕ̂. By
virtue of elliptic regularity [46], we infer

∥∆ϕ̂∥L2(L2) ≤ C(∥µ̂∥L2(L2) + ∥f1(ϕ1)− f2(ϕ2)∥2L2(L2)).

Consequently, given that the domain Ω is periodic, we derive the estimate

∥ϕ̂∥L2(H2(Ω)) ≤ C(∥ϕ̂∥L2(L2(Ω)) + ∥∆ϕ̂∥L2(L2(Ω))) ≤ C(∗).

Third step: We will test the system (4.9)–(4.10) with suitable functions and use the pre-
viously established estimate (4.14) to derive energy estimates, which will lead to bounds
of ϕ̂ and µ̂ with respect to b̂ and f̂ in higher norms. For this purpose, we test (4.9) with
v = µ̂ and (4.10) with w = ∂tϕ̂, that is

(∂tϕ̂, µ̂) = −((b1(ϕ1)− b2(ϕ2))∇µ1,∇µ̂)− (b2(ϕ2)∇µ̂,∇µ̂),
(µ̂, ∂tϕ̂) = γ(∇ϕ̂,∇∂tϕ̂) + (f1(ϕ1)− f2(ϕ2), ∂tϕ̂).

By subtracting both equations and integrating over (0, t), we obtain

γ

2
∥∇ϕ̂(t)∥2L2 +

∫
Ωt

b2(ϕ2)|∇µ̂|2 dx ds

≤
∫
Ωt

|b1(ϕ1)− b2(ϕ2)||∇µ1||∇µ̂| dx ds+
∫ T

0

(f1(ϕ1)− f2(ϕ2), ∂tϕ̂) ds

=: (i) + (ii).

(4.15)
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To estimate the first term, we employ Hölder’s inequality and similar reasoning as for the
bounds of the terms in (4.13), and derive

(i) ≤ ∥b1(ϕ1)− b2(ϕ2)∥L4(L4)∥∇µ1∥L4(L4)∥∇µ̂∥L2(L2)

≤ C
(
Cb∥ϕ̂∥L4(L4) + ∥b̂∥H2

)
∥∇µ1∥L4(L4)∥∇µ̂∥L2(L2).

Once more, we utilised the boundedness of ∇µ1 in L
4(0, T ;L4(Ω)) by interpolation. With

the bounds given in (4.14) and Young’s inequality, we can now derive the following esti-
mate for the term (i) of (4.15):

(i) ≤ C(∗)
1
2∥∇µ1∥L4(L4)∥∇µ̂∥L2(L2) ≤ C(∗) + cb

4
∥∇µ̂∥2L2(L2).

The second term of (4.15) is estimated to

(ii) ≤ ∥f1(ϕ1)− f2(ϕ2)∥L2(H1)∥∂tϕ̂∥L2(H−1). (4.16)

We continue to derive estimates for the two terms separately. First, by employing inte-
gration by parts, we establish a bound for ∂tϕ̂, that is

∥∂tϕ̂∥L2(H−1) = sup
v∈L2(H1)

(−(b1(ϕ1)− b2(ϕ2))∇µ1 − b2(ϕ2)∇µ̂,∇v)L2(L2)

∥v∥L2(H1)

,

≤ ∥(b1(ϕ1)− b2(ϕ2))∇µ1∥L2(L2) + Cb∥∇µ̂∥L2(L2)

≤ ∥b1(ϕ1)− b2(ϕ2)∥L4(L4)∥∇µ1∥L4(L4) + Cb∥∇µ̂∥L2(L2).

Subsequently, with the boundedness of ∇µ1 in L
4(0, T ;L4(Ω)), the stated assumptions on

b(·), and the established bounds (4.14), we deduce

∥∂tϕ̂∥L2(H−1) ≤ C(∥ϕ̂∥L4(L4) + ∥b̂∥H2) + Cb∥∇µ̂∥L2(L2) ≤ C(∗)
1
2 + Cb∥∇µ̂∥L2(L2), (4.17)

as first estimate of the terms in (4.16). Here we used that by interpolation [73] it holds

∥ϕ̂∥L4(L4) ≤ C(∥ϕ̂∥L2(W 1,2) + ∥ϕ̂∥L∞(L2)).

Next, we establish an estimate of the difference of the functions f1(·), f2(·) in (4.16) in
L2(0, T ;W 1,2(Ω)). By differentiation and application of the triangle inequality, we get

∥∇(f1(ϕ1)− f2(ϕ2))∥L2(L2)

≤ ∥f ′
1(ϕ1)∇ϕ1 − f ′

1(ϕ2)∇ϕ2∥L2(L2) + ∥(f ′
1(ϕ2)− f ′

2(ϕ2))∇ϕ2∥L2(L2)

≤ ∥(f ′
1(ϕ1)− f ′

1(ϕ2))∇ϕ1∥L2(L2) + ∥f ′
1(ϕ2)(∇ϕ1 −∇ϕ2)∥L2(L2)

+ ∥(f ′
1(ϕ2)− f ′

2(ϕ2))∇ϕ2∥L2(L2).

By employing the mean value theorem, utilising the bounds of fi(·), and applying Hölder’s
inequality, we further estimate this to

C(f ′′
1 )∥ϕ̂∥L4(L4)∥∇ϕ1∥L4(L4) + C(f ′

1)∥∇ϕ̂∥L2(L2) + ∥f̂∥H2∥∇ϕ2∥L2(L2).
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Hence, together with the established bounds (4.14), we derive

∥∇(f1(ϕ1)− f2(ϕ2))∥L2(L2) ≤ C(∥ϕ̂∥L2(H1) + ∥f̂∥H2) ≤ C(∗)
1
2 , (4.18)

as second estimate of the terms in (4.16). Combining the previous estimates (4.18) and
(4.17), we can further bound (4.16) by

(ii) ≤ ∥f1(ϕ1)− f2(ϕ2)∥L2(H1)∥∂tϕ̂∥L2(H−1) ≤
cb
4
∥∇µ̂∥2L2(L2) + C(∗).

By combination of the inequality (4.15) and the bounds on (i)–(ii), we deduce that

∥ϕ̂∥2L∞(H1) + ∥∇µ̂∥2L2(L2) + ∥∂tϕ̂∥2L2(H−1) ≤ C(∗).

Further, combining this inequality with the bound (4.18), we obtain by elliptic regularity
that

∥ϕ̂∥L2(H3) ≤ C(∗)

and conclude the third step.

Fourth step: In order to derive our final estimates, we will test (4.9) with v = ∆2ϕ̂,
derive energy estimates and employ a Gronwall argument at the end. We initially derive
a bound for the difference of the functions fi(·) in L2(0, T ;W 2,2(Ω)). By differentiation,
we compute

∥∆(f1(ϕ1)− f2(ϕ2))∥2L2

≤
∫
Ω

|f ′′
1 (ϕ1)|∇ϕ1|2 + f ′

1(ϕ1)∆ϕ1 − f ′′
2 (ϕ2)|∇ϕ2|2 − f ′

2(ϕ2)∆ϕ2|2 dx,

and by introducing appropriate zero terms, we can further estimate

C

∫
Ω

|(f ′′
1 (ϕ1)− f ′′

1 (ϕ2))|∇ϕ1|2 + f ′′
1 (ϕ2)(∇ϕ̂∇ϕ1 +∇ϕ2∇ϕ̂) + (f ′′

1 − f ′′
2 )(ϕ2)|∇ϕ2|2|2

|(f ′
1(ϕ1)− f ′

1(ϕ2))∆ϕ1 + f ′
1(ϕ2)∆(ϕ1 − ϕ2) + (f ′

1 − f ′
2)(ϕ2)∆ϕ2|2 dx =: (i) + (ii).

To estimate the terms of (i), we employ the mean value theorem, along with the uni-
form bounds for f ′′(·) and f ′′′(·) from Assumptions 4.1.1, and the uniform bounds of the
solutions ϕi,∇ϕi ∈ L∞(0, T ;L∞(Ω)) to obtain

(i) ≤ C(∥f ′′′
1 (ζ)ϕ̂|∇ϕ1|2∥2L2 + ∥∇ϕ̂∥2L2 + ∥(f ′′

1 − f ′′
2 )(ϕ2)|∇ϕ2|2∥2L2)

≤ C(∥ϕ̂∥2L2 + ∥∇ϕ̂∥2L2 + ∥f̂ ′′∥2L2).

Considering ∆ϕi ∈ L2(0, T ;H2), we proceed to estimate the terms of (ii) and derive

(ii) ≤ C(∥f ′′
1 (ζ)ϕ̂∆ϕ1∥2L2 + ∥f ′

1(ϕ2)∆ϕ̂∥2L2 + ∥(f ′
1 − f ′

2)(ϕ2)∆ϕ2∥2L2)

≤ C(∥ϕ̂∥2L4∥∆ϕ1∥2L4 + ∥∆ϕ̂∥2L2 + ∥f̂ ′∥2L∞)

≤ C(∥ϕ̂∥2H1 + ∥∆ϕ̂∥2L2 + ∥f̂ ′∥2H1).
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By combining the estimates of (i) and (ii), we obtain the bound

∥∆(f1(ϕ1)− f2(ϕ2))∥2L2 ≤ C(∥ϕ̂∥2L2 + ∥∇ϕ̂∥2L2 + ∥∆ϕ̂∥2L2 + ∥f̂∥2H2). (4.19)

Now, we continue with testing the first system equation (4.9) by v = ∆2ϕ̂, i.e.

1

2

d

dt
∥∆ϕ̂∥2L2 = (div((b1(ϕ1)− b2(ϕ2))∇µ1),∆

2ϕ̂) + (div(b2(ϕ2)∇µ̂),∆2ϕ̂) := (i) + (ii).

Applying Young’s inequality, we can estimate (i) as follows

(i) ≤ C∥div((b1(ϕ1)− b2(ϕ2))∇µ1)∥2L2 +
γcb
4

∥∆2ϕ̂∥2L2 .

We recall that µ1 ∈ L2(0, T ;H3(Ω)) and proceed to calculate the application of the
divergence operator. This yields after another application of Hölder’s inequality

(i) ≤ C(∥b′1(ϕ1)∇ϕ1 − b′2(ϕ2)∇ϕ2∥2L2∥∇µ1∥2L∞ + ∥b1(ϕ1)− b2(ϕ2)∥2L6∥∆µ1∥2L3)

+
γcb
4

∥∆2ϕ̂∥2L2 .

Using similar arguments as in the derivation of bound (4.19), we then estimate the dif-
ferences involving the mobility functions bi(·) and obtain

(i) ≤ C(∥ϕ̂∥2H1 + ∥b̂∥2H2)(∥∇µ1∥2L∞ + ∥∆µ1∥2L3) +
γcb
4

∥∆2ϕ̂∥2L2 .

For the terms of (ii), we apply the divergence operator, along with Hölder’s and Young’s
inequality, while considering the regularity of ϕi, to estimate

(ii) = (b′2(ϕ2)∇ϕ2∇µ̂,∆2ϕ̂) + (b2(ϕ2)∆µ̂,∆
2ϕ̂)

≤ C∥∇µ̂∥2L2∥∇ϕ2∥2L∞ +
γcb
4

∥∆2ϕ̂∥2L2 + (b2(ϕ2)∆µ̂,∆
2ϕ̂).

We consider the last term and insert µ̂ = −γ∆ϕ̂ + f1(ϕ1) − f2(ϕ2), i.e. the definition of
µ̂ in (4.10). This is then estimated in a similar fashion as before, while also utilising the
estimate (4.19) on the difference of fi(·) and the uniform boundedness of b2(ϕ2), such that

(b2(ϕ2)∆µ̂,∆
2ϕ̂) = (b2(ϕ2)∆(−γ∆ϕ̂+ f1(ϕ1)− f2(ϕ2)),∆

2ϕ̂)

≤ −γ(b2(ϕ2)∆
2ϕ̂,∆2ϕ̂) +

γcb
4

∥∆2ϕ̂∥2L2

+ C(∥ϕ̂∥2H1 + ∥∆ϕ̂∥2L2 + ∥f̂∥2H2).

From this calculation, we then deduce

(ii) ≤ −γcb
2

∥∆2ϕ̂∥2L2 + C(∥∇ϕ2∥2L∞∥∇µ̂∥2L2 + ∥ϕ̂∥2H1 + ∥∆ϕ̂∥2L2 + ∥f̂∥2H2).

By gathering the estimates of (i)–(ii), we obtain the following differential inequality

1

2

d

dt
∥∆ϕ̂∥2L2 +

γcb
4

∥∆2ϕ̂∥2L2 ≤C(∥∇µ1∥2L∞ + ∥∆µ1∥2L3)(∥ϕ̂∥2H1 + ∥b̂∥2H2)

+ C(∥∇ϕ2∥2L∞∥∇µ̂∥2L2 + ∥ϕ̂∥2H1 + ∥∆ϕ̂∥2L2 + ∥f̂∥2H2).
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Recall that µi ∈ L2(0, T ;H3(Ω)) ∩ L∞(0, T ;H1(Ω)) and ∇ϕi ∈ L∞(0, T ;L∞(Ω)), such
that ∇µi ∈ L2(0, T ;L∞(Ω)) and ∆µi ∈ L2(0, T ;H1(Ω)). Now by integrating over the
time interval (0, t), we derive

∥∆ϕ̂(t)∥2L2 +
γcb
4

∥∆2ϕ̂∥2L2(L2)

≤ C(∥∇µ1∥2L2(L∞) + ∥∆µ1∥2L2(L3))(∥ϕ̂∥2L∞(H1) + ∥b̂∥2H2)

+ C(∥∇ϕ2∥2L∞(L∞)∥∇µ̂∥2L2(L2) + ∥ϕ̂∥2L2(H1) + ∥∆ϕ̂∥2L2(L2) + ∥f̂∥2H2)

≤ C(∗) + C

∫ t

0

∥∆ϕ̂∥2L2 ds.

By employing a Gronwall argument, see Lemma A.2.1, and utilising elliptic regularity
[46, 89], we deduce

∥ϕ̂∥L∞(H2)∩L2(H4) ≤ C(∗).

which is the final estimate for ϕ̂. Additionally, since we estimated ϕ̂ in L∞(0, T ;H2(Ω))
and (f1 − f2)(·) in L∞(0, T ;L2(Ω)) to C(∗), we deduce from the second system equa-
tion (4.10) that

∥µ̂∥L∞(L2) ≤ C(∗).

Lastly, we take the Laplacian of equation (4.10). By considering that we already estimated
ϕ̂ in L2(0, T ;H4(Ω)) and ∆(f(ϕ1)− f(ϕ2) in L

2(0, T ;L2(Ω))) to C(∗), we observe finally
that

∥µ̂∥L∞(L2)∩L2(H2) ≤ C(∗).

which completes the proof.

By an inspection of the first step in the proof, we deduce the following result.

Corollary 4.1.4. Under the assumptions of Theorem 4.1.3, one has the estimate

∥(ϕ1, µ1)− (ϕ2, µ2)∥L2(L2) ≤ C∥(b1, f1)− (b2, f2)∥H1

4.1.3. Properties of S(·)
Let us now establish some further important properties of the solution operator. Recall,
that

S : D(S) ⊂ (H2(I))2 → (L2(0, T ;L2(Ω)))2, S(b, f) 7→ (ϕ, µ),

is well-defined, where

D(S) := {(b, f) ∈ (H2(I))2 : Assumptions 4.1.1 hold}.

Now, we interpret the solution operator as a composition S(·) = S̃(E(·)) of the two
operators

S̃ : (H1(I))2 → (L2(0, T ;L2(Ω)))2, x 7→ (ϕ, µ),

E : (H2(I))2 → (H1(I))2, x 7→ x.
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From Corollary 4.1.4, we know that S̃ is a Lipschitz continuous operator, it holds

∥S̃(b1, f1)− S̃(b2, f2)∥L2(L2) ≤ C∥(b1, f1)− (b2, f2)∥H1 . (4.20)

Further, as the embedding H2(I) into H1(I) is compact, we know that E is a compact
linear operator. Hence, we derive the following lemma.

Lemma 4.1.5. Let Assumptions 4.1.1 hold. The solution operator S(·) is well-defined
and Lipschitz continuous. Further, S(·) maps sequences in D(S) weakly convergent in
(H2(I))2 to strongly convergent sequences in (L2(0, T ;L2(Ω)))2, i.e. S(·) is completely
(weak-to-strong) continuous.

Proof. Well-definedness is clear. Lipschitz continuity follows from the observation that
S̃(·) and E(·), as a linear operator, are already Lipschitz continuous operators. Hence,
it is left so show that S(·) is weak-to-strong continuous. This assertion follows from the
Lipschitz estimate (4.20) for S̃(·) and the fact that E(·) is a compact linear operator.

In particular, as S(·) is weak-to-strong-continuous, S(·) is also weakly continuous.

4.2. Tikhonov regularisation

Let us now consider the Tikhonov regularisation of the inverse problem

F (b, f) = ϕδ. (4.21)

In our problem the forward operator has the special structure F (·) = L(S(·)), where S(·)
is the solution operator to the Cahn-Hilliard system (4.1)–(4.2) as before and

L : (L2(0, T ;L2(Ω)))2 → L2(0, T ;L2(Ω)), (x1, x2) 7→ x1.

One immediately sees that L(·) is a linear and continuous operator. This leads us to the
definition of the forward operator

F (b, f) : D(F ) ⊂ (H2(I))2 → L2(0, T ;L2(Ω)), (b, f) 7→ L(S(b, f)) = ϕ,

where D(F ) := D(S) = {(b, f) ∈ (H2(I))2 : Assumptions 4.1.1 hold}. We assume that
the measurements ϕδ satisfy the following condition

∥ϕ− ϕδ∥L2(0,T ;L2(Ω)) ≤ δ

with a known noise level δ > 0. Our aim is to obtain stable approximations to the true
parameter functions satisfying F (b†, c†) = ϕ, by minimising the Tikhonov functional

min
(b,f)∈D(F )

Jδα(b, f) :=
1

2
∥F (b, f)− ϕδ∥2L2(L2) +

α

2
∥(b, f)− (b∗, f ∗)∥2H2(I) , (4.22)

where α > 0 is a regularisation parameter and (b∗, f ∗) is an initial guess of the parameter
functions, which, as f can only be identified up to constant, determines the constant C.
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4.2.1. Existence of minimisers

Using the previously established properties of the solution operator S(·), we can now
establish the following theorem.

Theorem 4.2.1. Let Assumptions 4.1.1 hold. Then for any α > 0 and any ϕδ ∈
L2(0, T ;L2(Ω)), the Tikhonov problem (4.22) has a minimiser (bδα, f

δ
α) ∈ D(F ).

Proof. The domain D(F ) is closed and convex, hence it is weakly closed. Further,
the solution operator S(·) is continuous and weak-to-strong continuous. As L(·) is a
continuous linear operator, we deduce that F (·) = L(S(·)) is also continuous and weak-
to-strong continuous. In particular F (·) is weakly continuous. Now existence of a solution
follows from standard theory, see Theorem A.1.1.

Remark 4.2.2. L(·) can be interpreted as a measurement operator which here amounts
to taking full observations of the phase fraction ϕ. Other measurement setups, including
partial or boundary observations of ϕ, could be considered similarly.

4.2.2. Realisation of Tikhonov regularisation

Using x = (b, f), yδ = ϕδ and X = (H2(I))2, Y = L2(0, T ;L2(Ω)), we can rewrite (4.22)
in compact form

min
x∈D(F )

Jδα(b, f) :=
1

2
∥F (x)− yδ∥2Y +

α

2
∥x− x∗∥2X . (4.23)

Motivation

Let us assume for a moment that D(F ) = X, i.e. we consider an unconstrained version
of the minimisation problem (4.23). Assuming that F (·) is Fréchet differentiable, we
formally calculate the derivative J ′(x) of the Tikhonov functional (4.23) in the direction
of h ∈ X

J ′(x)h =
(
F (x)− yδ, F ′(x)h

)
Y
+ α (x− x∗, h)X

=
(
F ′(x)∗(F (x)− yδ) + α(x− x∗), h

)
X
,

where F ′(x) denotes the Fréchet derivative of F (x), and F ′(x)∗ it’s adjoint operator, which
is defined by (F ′(x)∗y, h)X := (y, F ′(x)h)Y for all h ∈ X and y ∈ Y . This leads to the
necessary first-order optimality condition

0
!≡
(
F ′(x)∗(F (x)− yδ) + α(x− x∗), h

)
X
, (4.24)

for all h ∈ X. In order to solve equation (4.24), one can employ a Gauss-Newton approach.
In essence, the approach involves adapting Newton’s method while neglecting the terms
involving second-order derivatives of F (·). This results in the Gauss-Newton iteration

(F ′(xk)∗ F ′(xk) + αkI)∆xk = F ′(xk)∗(yδ − F (xk))− αk(xk − x∗),

xk+1 = xk +∆xk,
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where αk = 1/2k. This approach is referred to as the Levenberg-Marquardt method. It
was initially formulated as a trust region approach involving the solution of a linearised
Tikhonov problem on a domain around the current iterate. However, this iteration scheme
has several other possible interpretations and derivations, e.g. as a preconditioned version
of the Landweber iteration. We refer to [45, Ch.11] and [67] for more comprehensive
details towards the iterative regularisation of nonlinear problems, including discussions
on the convergence of the Gauss-Newton method, which we do not address here.

Projected Gauss-Newton iteration

Now, we consider the minimisation problem (4.23) including D(F ) as defined in Sec-
tion 4.1.1. The Gauss-Newton iteration, as described, has to be adapted to be applied.
In order to solve the minimisation problem, we use a projected Gauss-Newton iteration

(F ′(xk)∗ F ′(xk) + αkI)∆xk = F ′(xk)∗(yδ − F (xk))− αk(xk − x∗),

xk+1 = PD(F )(x
k + ω∆xk),

where 0 < ω < 1 is a stepsize, αk = 1/2k, and PD(F ) denotes the projection to D(F ) in
order to incorporate the constraints on the parameter functions, especially the positivity
constraint of b(·). We stop the iteration according to the discrepancy principle, which is
a parameter choice rule for the regularisation parameter α; see [45]. It reads as follows:
choose α = α(δ, yδ) such that

α = sup{α > 0 : ∥F (xδα)− yδ∥Y ≤ τδ} for some τ > 1.

Since the Gauss-Newton matrix is positive definite, ∆xk is a decent direction. The pro-
jected Gauss-Newton method combined with a suitable step size rule can therefore be
understood as a descent method for (4.23), see [60]. The projected Gauss-Newton itera-
tion in combination with the discrepancy principle has been analysed in [5, 66]. Moreover,
for applications of this method to solve minimisation problem of the structure (4.23), we
refer to [39, 77].

Summary and further outline

Let us briefly summarise. We have shown that the non-linear identification problem has
a solution and proposed a Gauss-Newton method to compute the minimiser. Now, in
order to apply the iterative solution method, we require the Fréchet derivative F ′(x). As
the forward operator is defined as F (·) = L(S(·)), we only need to study the Fréchet
derivative S ′(x) of the solution operator, which will be presented in the following Section
4.3. Further, to facilitate the iterative solution method, we will establish a representation
of the adjoint operator F ′(x)∗. This is presented in Section 4.4.

4.3. Fréchet derivative of the solution operator S(·)
We recall that the goal of this section is to establish the differentiability of the solution
operator S(·), which will lead to differentiability of the forward operator F (·).
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Let Assumptions 4.1.1 hold and consider a fixed pair of parameter functions (b, f) ∈
D(S) with corresponding smooth solution (ϕ, µ) of the Cahn-Hilliard system (4.1)–(4.2).
Moreover assume that we have functions (b̂, f̂) ∈ (H2(I))2, such that the pair of functions
(b + b̂, f + f̂) remains in D(S), hence also satisfying Assumptions 4.1.1. In this setting,
we analyse the following linearised state equations for the variables (ψ, ξ):

∂tψ − div(b′(ϕ)ψ∇µ)− div(b(ϕ)∇ξ) = div(b̂(ϕ)∇µ) in Ω× (0, T ), (4.25)

ξ + γ∆ψ − f ′(ϕ)ψ = f̂(ϕ) in Ω× (0, T ), (4.26)

with initial condition ψ(0, x) = 0 and complemented with periodic boundary conditions.
In the following two subsections, we show that the system (4.25)–(4.26) possesses

a unique solution (ψ, ξ) for any admissible (b̂, f̂). Afterwards, we prove that using
the solution (ψ, ξ), the Fréchet derivative of the solution operator S(·) is defined by
S ′(b, f)(b̂, f̂) = (ψ, ξ).

4.3.1. Existence of solutions to the linearised problem

Let us start with stating the following result regarding the existence of solutions to the
linearised system (4.25)–(4.26).

Theorem 4.3.1. Let Assumptions 4.1.1 hold. For any admissible (b̂, f̂) ∈ (H2(I))2, the
system (4.25)–(4.26) has a unique solution (ψ, ξ) with the regularity

ψ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ; (H1(Ω))′) := Zψ,

ξ ∈ L2(0, T ;H1(Ω)),
(4.27)

satisfying ψ(0, x) = 0 in L2(Ω), and equation (4.26), i.e.

ξ + γ∆ψ − f ′(ϕ)ψ = f̂(ϕ),

a.e. in Ω× (0, T ), and it holds

⟨∂tψ, v⟩H1 +

∫
Ω

(b′(ϕ)ψ∇µ+ b(ϕ)∇ξ) · ∇v dx = −
∫
Ω

b̂(ϕ)∇µ · ∇v dx (4.28)

for a.e. t ∈ (0, T ) and for all test functions v ∈ H1(Ω). Moreover, there exists a positive
constant C, not depending on (ψ, ξ), (b̂, f̂), such that

∥ψ∥Zψ + ∥ξ∥L2(H1) ≤ C(∥b̂∥H2 + ∥f̂∥H2). (4.29)

Before we go into the details of the proof, let us briefly highlight the main arguments.
The theorem is established by Galerkin approximation, which involves introducing a finite-
dimensional approximation, deriving a-priori estimates, and then employing compactness
arguments to go to the limit. Since many steps align with standard arguments for a
linear system, we will not consider every single step in detail. Instead, we will present the
derivation of the a-priori-estimates.
The approach for this proof is inspired by [64] and divided into five steps. In the first

step, we derive energy estimates and use a Gronwall argument to derive the first estimates
of the solution (ψ, ξ). The following three steps will establish estimates of the solution in
norms as stated in the theorem. Lastly, we derive uniqueness by considering the difference
between two solutions and following the same testing strategy as before.
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Proof of Theorem 4.3.1. We multiply the system (4.25)–(4.26) with test functions
v, w, integrate over the domain Ω and use integration-by-parts to obtain the following
weak formulation

⟨∂tψ, v⟩H1 + (b′(ϕ)ψ∇µ,∇v) + (b(ϕ)∇ξ,∇v) = −(b̂(ϕ)∇µ,∇v), (4.30)

(ξ, w)− (γ∇ψ,∇w)− (f ′(ϕ)ψ,w) = (f̂(ϕ), w), (4.31)

for all test functions v, w ∈ H1(Ω) and a.a. 0 < t < T and ψ(0, x) = 0.
As initial consideration, we observe that by testing (4.30) with v ≡ 1, we deduce

⟨∂tψ(t), 1⟩ = 0. After integrating over the time domain [0, t] and considering that
ψ(0, x) = 0, it follows that

∫
Ω
ψ(t, x) dx =

∫
Ω
ψ(0, x) dx = 0, i.e. the mean value is

constant zero in time.

First step: We test (4.30) with v = ξ and (4.31) with w = −∂tψ, and add the resulting
identities. Upon integration over the interval (0, t), taking into account that ψ(0, x) = 0
and using the lower bound of b(·), see Assumptions 4.1.1, we arrive at

γ

2
∥∇ψ(t)∥2L2 + cb

∫ t

0

∥∇ξ∥2L2 ds

≤
∫
Ωt

−b̂(ϕ)∇µ∇ξ − f̂(ϕ)∂tψ − f ′(ϕ)ψ∂tψ − b′(ϕ)ψ∇µ∇ξ dx ds

=:(i) + (ii) + (iii) + (iv).

(4.32)

The terms (i)–(iv) are now individually estimated. For the first term, we apply Hölder
and Young inequalities to derive

|(i)| ≤
∫ t

0

∥b̂(ϕ)∇µ∥L2∥∇ξ∥L2 ds

≤
∫ t

0

C∥b̂(ϕ)∇µ∥2L2 +
cb
4
∥∇ξ∥2L2 ds

≤ C(∥∇µ∥2L2(L2))∥b̂(ϕ)∥2L∞(Ωt) +
cb
4

∫ t

0

∥∇ξ∥2L2 ds.

For the second term, we employ integration-by-parts in the time direction, and once again
apply Hölder and Young estimates to deduce

|(ii)| ≤
∣∣∣∣∫

Ω

f̂(ϕ(t))ψ(t) dx

∣∣∣∣+ ∣∣∣∣∫ t

0

∫
Ω

f̂ ′(ϕ)∂tϕψ dx ds

∣∣∣∣
≤ ∥f̂(ϕ(t))∥L2∥ψ(t)∥L2 +

∫ t

0

∥ψ∥L6∥f̂ ′(ϕ)∥L2(Ω)∥∂tϕ∥L3 ds

≤ C(∥f̂(ϕ)∥2L∞(ΩT )
) +

γ

4
∥ψ(t)∥2L2 +

∫ t

0

∥ψ∥2H1 + C∥f̂ ′(ϕ)∥2L∞(Ω)∥∂tϕ∥2H1 ds.

We have also made use of the embedding of H1(Ω) into Lp(Ω) for 1 ≤ p ≤ 6 in dimension
d = 2. For the third term, we once more apply integration-by-parts in the time direction
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and compute

|(iii)| =
∣∣∣∣∫ t

0

∫
Ω

f ′(ϕ)
∂t|ψ|2

2
dx ds

∣∣∣∣
≤
∣∣∣∣12
∫
Ω

f ′(ϕ(t))|ψ(t)|2 dx
∣∣∣∣+ ∣∣∣∣12

∫ t

0

∫
Ω

f ′′(ϕ)∂tϕψ
2 dx ds

∣∣∣∣ .
By the uniform boundedness of ϕ, see (4.7), and the bounds for f(·) and its derivatives
provided by Assumptions 4.1.1, we deduce

|(iii)| ≤ ∥f ′(ϕ)∥L∞(Ωt)∥ψ(t)∥2L2 + ∥f ′′(ϕ)∥L∞(Ωt)

∣∣∣∣∫ t

0

∫
Ω

∂tϕψ
2 dx ds

∣∣∣∣ .
By applying Hölder and Young inequalities, along with standard Sobolev embeddings, we
derive the following estimate

|(iii)| ≤ ∥f ′(ϕ)∥L∞(Ωt)∥ψ(t)∥2L2 + ∥f ′′(ϕ)∥L∞(Ωt)

∫ t

0

∥∂tϕ∥L6∥ψ∥L3∥ψ∥L2 ds

≤ ∥f ′(ϕ)∥L∞(Ωt)∥ψ(t)∥2L2 + ∥f ′′(ϕ)∥L∞(Ωt)

∫ t

0

∥ψ∥2H1 + ∥∂tϕ∥2H1∥ψ∥2L2 ds.

Moving on to the last term (iv), we begin by using the bounds on b(·), the uniform
boundedness of ϕ, and Hölder’s inequality to estimate

|(iv)| ≤ C(b′, ϕ)

∫ t

0

∫
Ω

|ψ∇µ∇ξ| dx ds ≤ C(b′, ϕ)

∫ t

0

∥ψ∇µ∥L2∥∇ξ∥L2 ds

≤ C(b′, ϕ)

∫ t

0

∥ψ∥L4∥∇µ∥L4∥∇ξ∥L2 ds.

Subsequently, utilising the interpolation inequality (A.3), i.e.

∥ψ∥L4(Ω) ≤ C(Ω)
(
∥ψ∥

1
2

L2(Ω)∥∇ψ∥
1
2

L2(Ω) + ∥ψ∥L2(Ω)

)
,

and Young’s inequality, we obtain

|(iv)| ≤ C(b′, ϕ)

∫ t

0

∥∇µ∥L4∥∇ξ∥L2

(
∥ψ∥

1
2

L2∥∇ψ∥
1
2

L2 + ∥ψ∥L2

)
ds

≤ cb
4

∫ t

0

∥∇ξ∥2L2 ds+ C(b′, ϕ)

∫ t

0

∥∇µ∥2L4∥ψ∥L2 (∥∇ψ∥L2 + ∥ψ∥L2) ds

≤ cb
4

∫ t

0

∥∇ξ∥2L2 ds+ C(b′, ϕ)

∫ t

0

(1 + ∥∇µ∥4L4)∥ψ∥2L2 + ∥∇ψ∥2L2 ds.

To summarise, considering the estimates of the terms (i)–(iv) on the right-hand side
of inequality (4.32), using the boundedness of the parameter functions and also of the
solutions (ϕ, µ), we obtain the integral inequality

γ

4
∥∇ψ(t)∥2L2 +

cb
2

∫ t

0

∥∇ξ∥2L2 ds

≤ C

∫ t

0

(1 + ∥∇µ∥4L4 + ∥∂tϕ∥2H1)∥ψ∥2L2 + ∥∇ψ∥2L2 ds+ C(∥b̂∥2H2 + ∥f̂∥2H2),
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where C denotes a constant independent of (ψ, ξ) but relies on the bounds of the parameter
functions and a-priori estimates of (ϕ, µ). Now, by using Poincaré’s inequality, we simplify
the integral inequality to

γ

4
∥∇ψ(t)∥2L2 +

cb
2

∫ t

0

∥∇ξ∥2L2 ds

≤C
∫ t

0

(1 + ∥∇µ∥4L4 + ∥∂tϕ∥2H1)∥∇ψ∥2L2 ds+ C(∥b̂∥2H2 + ∥f̂∥2H2).

Note that the mapping s → ∥∂tϕ(s)∥2H1 is indeed in L1(0, t), a consequence of the regu-
larity of smooth solutions, see (4.6). We recall from (4.6) that ∂tϕ ∈ L2(0, T ;H1(Ω)) and
by interpolation, see [73], it holds that µ ∈ L4(0, T ;L4(Ω)), which allows us to apply the
Gronwall Lemma A.2.1. Consequently, we obtain the a-priori bounds

∥ψ∥L∞(H1) + ∥∇ξ∥L2(L2) ≤ C(∥b̂∥2H2 + ∥f̂∥2H2).

Now, an estimate for ξ ∈ L2(0, T ;L2(Ω)) is left in this first step. By testing (4.31) with
w ≡ 1 and making use of the fact that f ′(ϕ) ∈ L∞(0, T ;L∞(Ω)), we estimate the mean
value M(t) of ξ(t) and compute

M(t) :=

∫
Ω

ξ(t) dx =

∫
Ω

f ′(ϕ)ψ + f̂(ϕ) dx ≤ C(f ′, ϕ)∥ψ(t)∥L2(Ω) + C(f̂ , ϕ).

Hence, by Poincaré’s inequality we obtain

∥ξ(t)∥L2 ≤ C∥∇ξ(t)∥L2 + CM(t)2

and since ψ ∈ L2(0, T ;L2(Ω)) we can bound the mean value M(t) in L2(0, T ;L2(Ω)), i.e.
we deduce ξ ∈ L2(0, T ;H1(Ω)).

Second step: We aim to improve the regularity of ψ and proceed by testing the second
system equation (4.31) with w = ∆ψ. In fact, this test function is feasible because one
selects an appropriate Galerkin approximation space that is stable due to construction.
By applying integration-by-parts, we derive the estimate

γ

∫
Ω

|∆ψ|2 dx ≤
∫
Ω

|∇ξ∇ψ + f ′(ϕ)ψ∆ψ + f̂(ϕ)∆ψ| dx.

We estimate the terms on the right-hand side employing Hölder and Young inequalities,
and utilise the bounds on the parameter functions f(·), f̂(·), as well as the uniform bounds
of ϕ. This results in

γ

2

∫
Ω

|∆ψ|2 dx ≤ C(1 + ∥∇ξ∥2L2 + ∥ψ∥2H1).

Through integration over the interval [0, t] and recognising that ξ and ψ are already in
L2(0, T ;H1(Ω)), we conclude that ∆ψ is bounded in L2(0, T ;L2(Ω)). Hence, we deduce
that ψ ∈ L2(0, T ;H2(Ω)).
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Third step: To derive a bound of ψ in L2(0, T ;H3(Ω)), we make use of elliptic regularity
theory [46]. To achieve this, we consider the second equation of the linear system (4.26) as
an elliptic problem for ψ. Note that beside ψ all the terms in (4.26) are already bounded in
L2(0, T ;H1(Ω)) due to the previous estimates, the uniform bounds on ϕ and the parameter
functions. The estimate for ψ is then readily obtained through the application of elliptic
regularity, resulting in

∥ψ∥L2(H3) ≤ C(∥b̂∥2H2 + ∥f̂∥2H2).

Fourth step: It remains to establish ∂tψ in L2(0, T ; (H1(Ω))′), alongside the verification
of equation (4.28). To address this, we recall the definition of the dual norm

∥∂tψ(t)∥(H1)′ = sup
v∈H1

⟨∂tψ(t), v⟩H1

∥v∥H1

.

Initially, we consider the duality product in the numerator by inserting the variational
equation (4.30) and proceeding to estimate it using the Cauchy-Schwarz inequality. This
results in

⟨∂tψ, v⟩H1 = −(b′(ϕ)ψ∇µ,∇v)− (b(ϕ)∇ξ,∇v)− (b̂(ϕ)∇µ,∇v)
≤ (∥b′(ϕ)ψ∇µ∥L2 + ∥b(ϕ)∇ξ∥L2 + ∥b̂(ϕ)∇µ∥L2)∥∇v∥L2 .

Consequently, we deduce that the dual norm is bounded by

∥∂tψ(t)∥(H1)′ ≤ ∥b′(ϕ)ψ∇µ∥L2 + ∥b(ϕ)∇ξ∥L2 + ∥b̂(ϕ)∇µ∥L2 .

Through integration over the time interval [0, T ], while utilising the bounds of b(·) and ϕ,
we compute for an arbitrary test function v ∈ L2(0, T ;H1(Ω)) the estimate

∥∂tψ∥2L2((H1)′) =

∫ T

0

∥∂tψ∥2(H1)′ ds

≤
∫ T

0

∥b′(ϕ)ψ∇µ∥2L2 + ∥b(ϕ)∇ξ∥2L2 + ∥b̂(ϕ)∇µ∥2L2 ds

≤
∫ T

0

∥b′(ϕ)∥2L∞(Ω)∥ψ∥2L∞∥∇µ∥2L2 + ∥b(ϕ)∥2L∞(Ω)∥∇ξ∥2L2 + ∥b̂(ϕ)∥2L∞(Ω)∥∇µ∥2L2 ds

≤C(b′)∥∇µ∥L∞(L2)∥ψ∥2L2(L∞) + C(b)∥∇ξ∥2L2(L2) + ∥∇µ∥2L2(L2)∥b̂∥2H2 .

Thus, we deduce, using the previously established estimates of ψ and ξ, that ψ ∈
H1(0, T ; (H1(Ω))′) and one has

∥∂tψ∥L2((H1)′) ≤ C(∥b̂∥2H2 + ∥f̂∥2H2).

Uniqueness: The system (4.30)–(4.31) is linear with respect to the variables ψ and ξ.
Hence we consider the system (4.30)–(4.31) for two solutions {(ψi, ξi)}i=1,2, and subse-

quently subtract the equations. Then, the differences ψ̂ := ψ1 − ψ2 and ξ̂ := ξ1 − ξ2 also
fulfil the system (4.30)–(4.31) with b̂(·) and f̂(·) constant zero. Given the regularity of
the solutions {(ψi, ξi)}i=1,2, we are able to repeat the same testing procedure employed

previously and derive bounds with respect to b̂(·) and f̂(·). However, as b̂(·) and f̂(·) are
zero, it follows that the differences ψ̂, ξ̂ are zero almost everywhere on Ω× [0, T ]. Hence,
the uniqueness of the solution is established.
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4.3.2. Fréchet differentiability of the solution operator S(·)
We have previously established the existence of unique solutions (ψ, ξ) for the linearised
problem. In this section, we show that these solutions define the Fréchet derivative of
the solution operator S(·). Afterwards, we will deduce differentiability of the forward
operator F (·).

Theorem 4.3.2. Let Assumptions 4.1.1 hold, (b1, f1) ∈ D(S), and let (ψ, ξ) be the unique
solution to the linearised system (4.25)–(4.26). Then for any (b̂, f̂) ∈ (H2(I))2, such that
b2 := b1 + b̂, f2 := f1 + f̂ ∈ D(S), there exists a positive constant C, not depending on
(b̂, f̂), such that

∥(ϕ̄, µ̄)∥ZS′ ≤ C∥(b2, f2)− (b1, f1)∥2H2 = C∥(b̂, f̂)∥2H2 ,

where ϕ̄ := ϕ2 − ϕ1 − ψ, µ̄ := µ2 − µ1 − ξ with (ϕi, µi) := S(bi, fi) for i = 1, 2, and ZS′

denotes the product space

ZS′ :=
(
L2(0, T ;H2(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩H1(0, T ; (H2(Ω))′)

)
× L2(0, T ;L2(Ω)).

Then, for any (b, f) ∈ D(S) the Fréchet derivative S ′(b, f) ∈ L((H2(I))2, ZS′), is defined
as follows: For any (b̂, f̂) ∈ (H2(I))2, we have S ′(b, f)(b̂, f̂) = (ψ, ξ), where (ψ, ξ) is the
unique solution of the linearised problem (4.25)–(4.26) corresponding to (b̂, f̂).

Before going into the details, let us again briefly sketch the main arguments. The
subsequent proof is inspired by ideas presented in [29, 64]. We start by deriving a
problem that is solved by the variables (ϕ̄, µ̄). Then, we establish energy estimates and
employ a Gronwall argument to obtain a first estimate with respect to (b̂, f̂). Finally, we
show this estimate in a higher norm.
Let us point out that higher regularity of smooth solutions (ϕ, µ), see (4.6), along with

the estimates derived in Theorem 4.1.3, i.e. the estimates of (ϕ̂, µ̂) to (b̂, f̂) in higher
norms, are necessary for the upcoming proof.

Proof of Theorem 4.3.2. Let us begin by observing that for any (b1, f1) in the interior
of D(S), there exits a neighbourhood around (b1, f1) where, for sufficiently small (b̂, f̂),
we have (b2, f2) ∈ D(S). Subsequently, both (ϕ2, µ2) and the linearised solution (ψ, ξ)
corresponding to (b̂, f̂) are well defined. From Theorem 4.3.1, we know that the map-
ping S ′(b1, f1) : (b̂, f̂) → (ψ, ξ) is both linear and continuous as a mapping from (H2(I))2

to ZS′ . Therefore, we consider the mapping

r : (H2(I))2 → ZS′ ,

(b̂, f̂) 7→ r(b̂, f̂) := (ϕ̄, µ̄) = S(b2, f2)− S(b1, f1)− S ′(b1, f1)(b̂, f̂).

To establish Fréchet differentiability [60], we aim to show that r ∈ o(∥(b̂, f̂)∥H2), more
precisely, we will prove that

∥r(b̂, f̂)∥ZS′ = ∥(ϕ̄, µ̄)∥ZS′ ≤ C∥(b̂, f̂)∥2H2 .
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From the regularities of smooth solutions, see (4.6) and Theorem 4.3.1, we infer that the
residuals (ϕ̄, µ̄) satisfy the regularities

ϕ̄ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ; (H1(Ω))′),

µ̄ ∈ L2(0, T ;H1(Ω))

with ϕ̄(0, x) = 0.

First step: Now, we derive a system of equations that will be fulfilled by (ϕ̄, µ̄). Let
(ϕ1, µ1) and (ϕ2, µ2) correspond to the solution of the Cahn-Hilliard system (4.1)–(4.2),
with (b1, f1) and (b2, f2) = (b1 + b̂, f1 + f̂) being substituted for the parameter functions.
Moreover, let (ψ, ξ) be the unique solution of the linearised system (4.25)–(4.26), and let
(ϕ̄, µ̄) as defined before.
By combining the Cahn-Hilliard system (4.1)–(4.2) with the linearised system (4.25)–

(4.26), we obtain the following equations satisfied by (ϕ̄, µ̄)

∂tϕ̄+ div(−b2(ϕ2)∇µ2 + b1(ϕ1)∇µ1 + b′1(ϕ1)ψ∇µ1 + b1(ϕ1)∇ξ) = − div(b̂(ϕ1)∇µ1),

µ̄+ γ∆ϕ̄− (f2(ϕ2)− f1(ϕ1)− f ′
1(ϕ1)ψ) = −f̂(ϕ1).

We will now use Taylor’s theorem to rewrite the system, which will then be used to derive
the energy estimates. By considering the definitions of ϕ̄, ϕδ and ψ, and using Taylor’s
theorem, we obtain the identity

f2(ϕ2)− f1(ϕ1)− f ′
1(ϕ1)ψ = f1(ϕ2)− f1(ϕ1)− f ′

1(ϕ1)(ϕ2 − ϕ1) + f ′
1(ϕ1)ϕ̄+ f̂(ϕ2)

= (ϕ2 − ϕ1)
2f

′′
1 (ζ)

2
+ f ′

1(ϕ1)ϕ̄+ f̂(ϕ2)

with ζ(x, t) ∈ [min{ϕ2(x, t)− ϕ1(x, t)},max{ϕ2(x, t)− ϕ1(x, t)}]. Recall that the smooth
solutions ϕ1, ϕ2 are uniformly bounded, see (4.7). Consequently, using the Assump-
tions 4.1.1 on f(·), it follows that the function f ′′(ζ) is bounded in the space L∞(ΩT )
by a uniform constant C.
Again, through the application of Taylor’s theorem, we derive a similar identity with

respect to terms involving b(·)

b2(ϕ2)∇µ2 − b1(ϕ1)∇µ1 − b′1(ϕ1)ψ∇µ1 − b1(ϕ1)∇ξ

= (b1(ϕ2)− b1(ϕ1))∇(µ2 − µ1) + (b′1(ϕ1)ϕ̄+ (ϕ2 − ϕ1)
2 b

′′
1(ζ)

2
)∇µ1

+ b1(ϕ1)∇µ̄+ b̂(ϕ2)∇µ2

=: gb + b1(ϕ1)∇µ̄+ b̂(ϕ2)∇µ2.

Let us come back to the previous system for (ϕ̄, µ̄). By incorporating the previously
derived identities and considering the regularities of (ϕ̄, µ̄), we deduce that (ϕ̄, µ̄) satisfy

⟨∂tϕ̄, v⟩H1 +

∫
Ω

(gb + b1(ϕ1)∇µ̄)∇v dx =

∫
Ω

(b̂(ϕ1)∇µ1 − b̂(ϕ2)∇µ2)∇v dx (4.33)
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for all v ∈ H1(Ω) and a.e. t ∈ (0, T ), and

µ̄+ γ∆ϕ̄− (ϕ2 − ϕ1)
2f

′′
1 (ζ)

2
+ f ′

1(ϕ1)ϕ̄ = −f̂(ϕ1) + f̂(ϕ2) (4.34)

a.e. in Ω× [0, T ].

Second step: Now, we turn to the derivation of energy estimates required to apply the
Gronwall argument. To do this, we will employ a similar testing procedure as in Theorem
4.1.3, i.e. we will test (4.33) with v = ϕ̄, and (4.34) with w = εϕ̄ and w = b1(ϕ1)µ̄.
Before we start to test the first equation (4.33), we will establish a bound for gb in

L2(0, t;L2(Ω)). At first, we estimate

∥gb∥2L2(L2) ≤
∫ t

0

∫
Ω

|b1(ϕ2)− b1(ϕ1)|2|∇(µ2 − µ1)|2 dx ds

+

∫ t

0

∫
Ω

|b′1(ϕ1)ϕ̄− (ϕ2 − ϕ1)
2 b

′′
1(ζ)

2
|2|∇µ1|2 dx ds := (i) + (ii).

For the term (i), we employ Hölder’s inequality along with the mean value theorem, and
use the bounds on b1(·), b2(·), the regularity of ϕ2 − ϕ1, ∇(µ2 − µ1), and the bounds on
the differences established in Theorem 4.1.3. This leads us to the estimate

(i) ≤
∫ t

0

∥b1(ϕ2)− b1(ϕ1)∥2L3∥∇(µ2 − µ1)∥2L6 ds

≤
∫ t

0

∥b′1(ζ)(ϕ2 − ϕ1)∥2L3∥∇(µ2 − µ1)∥2L6 ds

≤ C∥ϕ2 − ϕ1∥2L∞(L3)∥∇(µ2 − µ1)∥2L2(L6)

≤ C(∥(b̂, f̂)∥4H2).

Regarding the second term (ii), we use similar bounds while additionally incorporating
the regularity of smooth solutions, in particular ∇µ1 ∈ L2(0, T ;H2(Ω))∩L∞(0, T ;L2(Ω)),
see (4.6). This leads us to the following

(ii) ≤
∫ t

0

∫
Ω

|b′1(ϕ1)ϕ̄|2|∇µ1|2 dx ds+
∫ t

0

∫
Ω

|(ϕ2 − ϕ1)
2 b

′′
1(ζ)

2
|2|∇µ1|2 dx ds

≤ C

∫ t

0

∥ϕ̄∥2L2∥∇µ1∥2L∞ ds+ C

∫ t

0

∫
Ω

|ϕ2 − ϕ1|4|∇µ1|2 dx ds

≤ C

∫ t

0

∥ϕ̄∥2L2∥∇µ1∥2L∞ ds+ C∥ϕ2 − ϕ1∥2L∞(L∞)∥ϕ2 − ϕ1∥2L2(L∞)∥∇µ1∥2L∞(L2)

≤ C(

∫ t

0

∥ϕ̄∥2L2∥∇µ1∥2L∞ ds+ ∥(b̂, f̂)∥4H2).

Let us point out that the estimates of ϕ̂ and µ̂ to (b̂, f̂) in higher norms, see Theo-
rem 4.1.3, are necessary for the estimates of (i)–(ii), especially ϕ ∈ L∞(0, T ;L∞(Ω))
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and µ ∈ L2(0, T ;W 1,6(Ω)). By combining the estimates of (i)–(ii) and utilising Sobolev
embeddings, we derive

∥gb∥2L2(L2) ≤ C(∥(b̂, f̂)∥4H2 +

∫ t

0

∥µ1∥2H3∥ϕ̄∥2L2 ds).

Moreover, utilising this bound and applying another Young inequality allows us to deduce∣∣∣∣∫ t

0

∫
Ω

gb∇ϕ̄ dx ds
∣∣∣∣ ≤ ∥gb∥L2(L2)∥∇ϕ̄∥L2(L2)

≤ C(∥(b̂, f̂)∥4H2 +

∫ t

0

∥µ1∥2H3∥ϕ̄∥2L2 ds) + ∥∇ϕ̄∥2L2(L2),

which we will employ in a moment.
We now proceed to test the equations (4.33)–(4.34). We begin by testing equation (4.33)

with v = ϕ̄, integrating over [0, t] and using the previous estimate, which results in

1

2
∥ϕ̄(t)∥2L2 =

∫ t

0

∫
Ω

(−gb − b1(ϕ1)∇µ̄+ b̂(ϕ1)∇µ1 − b̂(ϕ2)∇µ2)∇ϕ̄ dx ds

≤C
(
∥(b̂, f̂)∥4(H2)2 +

∫ t

0

∥µ1∥2H3∥ϕ̄∥2L2 ds

)
+ ∥∇ϕ̄∥2L2(L2) +

∫ t

0

∫
Ω

−b1(ϕ1)∇µ̄∇ϕ̄ dx ds

+

∫ t

0

∫
Ω

(b̂(ϕ1)∇µ− b̂(ϕ2)∇µ2)∇ϕ̄ dx ds =: (i) + (ii) + (iii) + (iv). (4.35)

As we will see later, the third integral (iii) will cancel out and we continue to establish
an estimate for the last integral, denoted by (iv). We initially observe that employing the
mean value theorem yields the identity

b̂(ϕ2)∇µ2 − b̂(ϕ1)∇µ1 = (b̂(ϕ2)− b̂(ϕ1))∇µ1 + b̂(ϕ2)∇(µ2 − µ1)

= b̂′(ζ)(ϕ2 − ϕ1)∇µ1 + b̂(ϕ2)∇(µ2 − µ1).

We substitute the obtained identity into the integrand of (iv) and apply Hölder’s inequal-
ity. By using the bounds on the parameter functions from Assumptions 4.1.1, along with
the Sobolev embedding H2(I) in W 1,∞(I) to bound b̂(·), we derive the estimate

(iv) ≤
∫ t

0

∫
Ω

(b̂′(ζ)(ϕ2 − ϕ1)∇µ1 + b̂(ϕ2)∇(µ2 − µ1))∇ϕ̄ dx ds

≤
∫ t

0

∥b̂∥H2∥(ϕ2 − ϕ1)∇µ1∥L2∥∇ϕ̄∥L2 + ∥b̂∥H2∥∇(µ2 − µ1)∥L2∥∇ϕ̄∥L2 ds.

This term is further estimated by using the corresponding regularity of the involved
differences and of µ1, resulting in

(iv) ≤C
∫ t

0

∥b̂∥2H2∥∇µ1∥2L2∥ϕ2 − ϕ1∥2L∞ + ∥∇ϕ̄∥2L2 + ∥b̂∥2H2∥∇(µ2 − µ1)∥2L2 ds

≤∥∇ϕ̄∥2L2(L2) + C∥b̂∥2H2(∥∇µ1∥2L∞(L2)∥ϕ2 − ϕ1∥2L2(L∞) + ∥∇(µ2 − µ1)∥2L2(L2))

≤∥∇ϕ̄∥2L2(L2) + C(∥(b̂, f̂)∥4H2).

73



4. Regularised inversion by an output least squares method

Hence, we have established all needed bounds of inequality (4.35), which yields

1

2
∥ϕ̄(t)∥2L2 ≤C

(
∥(b̂, f̂)∥4H2 +

∫ t

0

∥µ1∥2H3∥ϕ̄∥2L2 ds

)
+ ∥∇ϕ̄∥2L2(L2)

+

∫ t

0

∫
Ω

−b1(ϕ1)∇µ̄∇ϕ̄ dx ds (4.36)

We proceed by testing equation (4.34) with w = εϕ̄, applying integration-by-parts, and
using the periodic boundary conditions. Upon integrating over (0, t), this leads to the
following identity

εγ∥∇ϕ̄∥2L2(L2) = ε

∫ t

0

−((ϕ2 −ϕ1)
2f

′′
1 (ζ)

2
+ f ′

1(ϕ1)ϕ̄, ϕ̄)+ (µ̄, ϕ̄)+ (f̂(ϕ1), ϕ̄)− (f̂(ϕ2), ϕ̄) ds,

where ε is a positive constant, which is specified later. An application of the mean value
theorem and Young’s inequality with constant cb/4γ yields the following estimate for the
right-hand side

εγ∥∇ϕ̄∥2L2(L2) ≤
∫ t

0

−ε
(
(ϕ2 − ϕ1)

2f
′′
1 (ζ)

2
+ f ′

1(ϕ1)ϕ̄, ϕ̄

)
+
cb
8γ

∥µ̄∥2L2

+

(
2γε2

cb
+ 1

)
∥ϕ̄∥2L2 +

ε2

2
∥f̂∥2H2∥ϕ2 − ϕ1∥2L2 ds.

We denote the terms by (i) − (iv). The term (iv) is bounded by the estimates of
Theorem 4.1.3, i.e. (iv) is bounded by C(∥(b̂, f̂)∥4H2).The terms (ii) and (iii) remain
unchanged. As preliminary estimate for the term (i), we first utilise an interpolation
inequality, and again the bounds provided in Theorem 4.1.3, to derive∫ t

0

∥(ϕ2 − ϕ1)
2f

′′
1 (ζ)

2
∥2L2 ds ≤ C∥ϕ2 − ϕ1∥4L4(L4)

≤ C(∥ϕ2 − ϕ1∥L∞(L2) + ∥ϕ2 − ϕ1∥L2(W 1,2))
4 ≤ C(∥(b̂, f̂)∥4H2).

For the term (i), we now apply Hölder and Young inequalities, along with the previous
estimate, and the uniform bounds on f1(·) and ϕ1, yielding the following

ε

∫ t

0

−((ϕ2 − ϕ1)
2f

′′
1 (ζ)

2
+ f ′

1(ϕ1)ϕ̄, ϕ̄) ds

≤C
∫ t

0

∥(ϕ2 − ϕ1)
2f

′′
1 (ζ)

2
∥2L2 + ∥f ′

1(ϕ1)ϕ̄∥2L2 + ∥ϕ̄∥2L2 ds

≤C(∥(b̂, f̂)∥4H2) + C

∫ t

0

∥ϕ̄∥2L2 ds.

Combining the estimates for (i)–(iv) results in the inequality

εγ∥∇ϕ̄∥2L2(L2) ≤ C

∫ t

0

∥ϕ̄∥2L2 ds+
cb
8γ

∥µ̄∥2L2(L2) + C(∥(b̂, f̂)∥4H2).
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Moreover, in addition with the inequality (4.36), we derive as intermediate inequality

1

2
∥ϕ̄(t)∥2L2 + (εγ − 2)∥∇ϕ̄∥2L2(L2) ≤C

∫ t

0

(1 + ∥µ1∥2H3)∥ϕ̄∥2L2 ds+
cb
8γ

∥µ̄∥2L2(L2) (4.37)

+ C(∥(b̂, f̂)∥4H2) +

∫ t

0

∫
Ω

−b1(ϕ1)∇µ̄ · ∇ϕ̄ dx ds.

We once more test the second system equation (4.34), this time using w = b1(ϕ1)µ̄,
which is feasible due to the sufficient regularity of b1(ϕ1). By using integration-by-parts
in space, followed by integrating over the time domain and reordering of the terms, we
arrive at a similar inequality as before

cb∥µ̄∥2L2(L2) ≤
∫ t

0

(µ̄, b1(ϕ1)µ̄) ds

=

∫ t

0

((ϕ2 − ϕ1)
2f

′′
1 (ζ)

2
+ f ′

1(ϕ1)ϕ̄, b1(ϕ1)µ̄) + γ(∇ϕ̄,∇(b1(ϕ1)µ̄))

− (f̂ ′(ϕ1) + f̂ ′(ϕ2), b1(ϕ1)µ̄) ds.

We denote the terms by (i)–(iii), and estimate the terms individually employing similar
arguments as before

(iii) ≤
∫ t

0

C∥f̂∥2H2∥ϕ2 − ϕ1∥2L2 ds+
cb
8
∥µ̄∥2L2(L2) ≤ C(∥(b̂, f̂)∥4H2) +

cb
8
∥µ̄∥2L2(L2),

(i) ≤ C(∥(b̂, f̂)∥4H2) +

∫ t

0

C∥ϕ̄∥2L2 +
cb
8
∥µ̄∥2L2 ds.

For the term (ii), we differentiate using the product rule

(ii) =

∫ t

0

γ(∇ϕ̄,∇(b1(ϕ1)µ̄)) ds =

∫ t

0

γ(∇ϕ̄, b1(ϕ1)∇µ̄) + γ(∇ϕ̄, µ̄ b′1(ϕ1)∇ϕ1) ds,

and then proceed to estimate the latter term as follows

γ

∫ t

0

(∇ϕ̄, µ̄ b′1(ϕ1)∇ϕ1) ds ≤ γ

∫ t

0

∥b′1(ϕ1)∇ϕ1∥L∞∥∇ϕ̄∥L2∥µ̄∥L2 ds

≤ 2γ2

cb
∥b′1(ϕ1)∇ϕ1∥2L∞(L∞)∥∇ϕ̄∥2L2(L2) +

cb
8
∥µ̄∥2L2(L2)

≤ C∥∇ϕ̄∥2L2(L2) +
cb
8
∥µ̄∥2L2(L2),

where C is a uniform constant. By combining the estimates of (i)–(iii), we get

cb∥µ̄∥2L2(L2) − C∥∇ϕ̄∥2L2(L2)

≤ C(∥(b̂, f̂)∥4H2) +

∫ t

0

C∥ϕ̄∥2L2 +
3cb
8
∥µ̄∥2L2 ds+

∫ t

0

γ(∇ϕ̄, b1(ϕ1)∇µ̄) ds.
(4.38)
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We multiply (4.38) by 1/γ and then add the previous inequality (4.37) to derive

1

2
∥ϕ̄(t)∥2L2 + (εγ − 2− C)∥∇ϕ̄∥2L2(L2) +

cb
2γ

∥µ̄∥2L2(L2)

≤C
∫ t

0

(1 + ∥µ∥2H3)∥ϕ̄∥2L2 ds+ C(∥(b̂, f̂)∥4H2).

Now, by choosing ε to be sufficiently large such that the prefactor on the left is positive,
the inequality simplifies to

∥ϕ̄(t)∥2L2 + ∥∇ϕ̄∥2L2(L2) + ∥µ̄∥2L2(L2) ≤ C

∫ t

0

(1 + ∥µ1∥2H3)∥ϕ̄∥2L2 ds+ C(∥(b̂, f̂)∥4H2)

for any t ∈ (0, T ]. Through the application of a Gronwall argument, see Lemma A.2.1,
we consequently deduce the estimate

∥ϕ̄∥L∞(L2)∩L2(H1) + ∥µ̄∥L2 ≤ C(∥(b̂, f̂)∥2H2).

Third step: We will now show the estimate in two other norms. First, we consider (4.34)
as an elliptic problem for ψ̄. Therefore, by utilising the previously established estimates
of ϕ̄, µ̄, we deduce from elliptic regularity theory that

∥ϕ̄∥L2(H2) ≤ C(∥(ϕ2 − ϕ1)
2f

′′
1 (ζ)

2
+ f ′

1(ϕ1)ϕ̄∥L2(L2) + ∥µ̄∥L2(L2) + ∥f̂(ϕ1) + f̂(ϕ2)∥L2(L2))

≤ C(∥(b̂, f̂)∥2H2).

Second, it remains to show that ϕ̄ ∈ H1(0, T ; (H2(Ω))′). By testing equation (4.33) with
v ∈ L2(0, T ;H2(Ω)), using integration by parts, and utilising the previously established
estimate of µ̄, we obtain the following estimate∣∣∣∣∫ T

0

⟨∂tϕ̄, v⟩H2(Ω) ds

∣∣∣∣
≤
∫ T

0

∫
Ω

|gb∇v + b1(ϕ1)µ̄∆v + µ̄ b′1(ϕ1)∇ϕ1∇v + (b̂(ϕ1)∇µ1 − b̂(ϕ2)∇µ2)∇v| dx ds

≤
(
C(∥(b̂, f̂)∥2H2) + C∥µ̄∥L2(L2) + C(∥b′1(ϕ1)∇ϕ1∥L∞(L∞))∥µ̄∥L2(L2)

)
∥v∥L2(H2)

≤C(∥(b̂, f̂)∥2H2)∥v∥L2(H2),

which concludes the proof.

From differentiability of the solution operator S(·), we directly deduce the differentia-
bility of the forward operator F (·) = L(S(·)), defined in Section 4.2, by employing the
chain rule. Recall that L(·) is the linear continuous measurement operator.

Corollary 4.3.3. Let Assumptions 4.1.1 hold. Then the forward operator F (·) = L(S(·))
is Fréchet differentiable and defined by F ′(b, f)(b̂, f̂) := ψ.
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4.4. Adjoint operator F ′(x)∗

The proposed iterative method for minimising the Tikhonov functional requires the ap-
plication of the adjoint operator F ′(x)∗. Hence, we will derive a representation of the
adjoint operator F ′(x)∗ that can be used for the implementation later on. In optimal
control theory, the adjoint equations are derived from differentiation of the Lagrangian
function, see for instance [60]. Here, we only briefly present the involved steps and start
by defining the Lagrangian

L ((b, f), (ϕ, µ), (p, q)) :=

∫
ΩT

1

2
|ϕ− ϕδ|2 dx ds+

∫ T

0

(∂tϕ, p) + (b(ϕ)∇µ,∇p) ds

+

∫ T

0

(µ, q)− γ(∇ϕ,∇q)− (f(ϕ), q) ds,

where, with respect to optimal control theory, the first integral is the cost functional,
and the other ones are the state equations (4.1)–(4.2) tested with adjoint variables (p, q).
The adjoint equations are then derived from differentiating the Lagrangian by the state
variables (ϕ, µ). We denote the direction of the derivative by ϕ̃ and µ̃, and derive the
following derivatives

∂ϕL
′ =

∫ T

0

(ϕ− ϕδ, ϕ̃) ds+

∫ T

0

(∂tϕ̃, p) + (b′(ϕ)ϕ̃∇µ,∇p)− γ(∇ϕ̃,∇q)− (f ′(ϕ)ϕ̃, q) ds,

∂µL
′ =

∫ T

0

(b(ϕ)∇µ̃,∇p) + (µ̃, q) ds,

which yields the so-called adjoint problem, i.e. find adjoint variables (p, q) such that
∂ϕL ′(ϕ̃) + ∂µL ′(µ̃) = 0 for all directions ϕ̃, µ̃. From these preliminary considerations,
and by using integration by parts in time and imposing an additional boundary condition
p(T, x) = 0 for all x ∈ Ω, we deduce the subsequent problem for the adjoint states.
Let Assumptions 4.1.1 hold, and let (b, f) be a fixed pair of parameter functions with

corresponding smooth solution (ϕ, µ). We will analyse the subsequent system for the
adjoint states (p, q):

−∂tp+ b′(ϕ)∇µ∇p+ γ div(∇q)− f ′(ϕ)q = −rδ in Ω× (0, T ) (4.39)

q = div(b(ϕ)∇p) in Ω× (0, T ) (4.40)

with p(T, x) = 0 in Ω, periodic boundary conditions and data rδ ∈ L2(0, T ;L2(Ω)). Later
on the data rδ takes the form ϕ− ϕδ, wherein ϕδ corresponds to observations of ϕ.
In the following Subsection 4.4.1, we establish the existence of unique solutions (p, q) for

the adjoint problem. Afterwards, we will derive a representation of the adjoint operator
F ′(x)∗, which will implicitly define the application as the solution of a Laplace problem.
This will be presented in Subsection 4.4.2.

4.4.1. Existence of solutions to the adjoint problem

The following theorem establishes the existence of a unique solution (p, q) of the adjoint
problem (4.39)–(4.40).
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Theorem 4.4.1. Let Assumptions 4.1.1 hold and rδ ∈ L2(0, T ;L2(Ω)). Then for any
(b, f) ∈ D(S), there exists a unique pair (p, q), associated to the smooth solution S(b, f) =
(ϕ, µ), with regularity

p ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ; (H2(Ω))′) ∩ L∞(0, T ;L2(Ω)),

q ∈ L2(0, T ;L2(Ω)),

which satisfies p(T, x) = 0 in L2(Ω); and (4.40), i.e.

q = div(b(ϕ)∇p),

holds a.e. Furthermore, it holds

0 = ⟨−∂tp, v⟩H2 +

∫
Ω

(b′(ϕ)∇µ∇p− f ′(ϕ)q + rδ)v + γq∆v dx (4.41)

for a.e. t ∈ (0, T ) and for all v ∈ H2(Ω).

The proof is inspired by [29, 64]. We will test (4.39)–(4.40) to derive energy estimates
and employ a Gronwall argument. Afterwards, we improve the regularity of (p, q) and
show the uniqueness of the solution.

Proof. We omit the comprehensive discussion of the Galerkin approximation and proceed
by establishing the required a-priori estimates.

First step: Similar to the proofs of Theorem 4.1.3 and Theorem 4.3.2, we test the first
equation (4.39) with v = b(ϕ)p and the second equation (4.40) with w = γq and w = εp.
Let us start by considering the following identity

1

2

d

dt

(∫
Ω

b(ϕ)|p|2 dx
)

= (∂tp, b(ϕ)p) +
1

2

∫
Ω

|p|2b′(ϕ)∂tϕ dx. (4.42)

We test the first system equation (4.39) with the function v = b(ϕ)p. By utilising the
previous identity and computing the derivative ∇(b(ϕ)p), we obtain the following identity
by rearranging the terms

−1

2

d

dt

∫
Ω

b(ϕ)|p|2 =− 1

2

∫
Ω

b′(ϕ)∂tϕ|p|2 − b(ϕ)b′(ϕ)p∇µ∇p+ γb(ϕ)∇q∇p

+ γp b′(ϕ)∇q∇ϕ+ f ′(ϕ)b(ϕ)qp− b(ϕ)rδp dx.

Moreover, we test the system equation (4.40), using two different test functions w = γq
and w = εp, where ε is a positive constant that will be specified later. Adding these
equations to the previously derived one results in

−1

2

d

dt

∫
Ω

b(ϕ)|p|2 dx+ γ∥q∥2L2 + ε∥b
1
2 (ϕ)∇p∥2L2

= −1

2

∫
Ω

b′(ϕ)∂tϕ|p|2 − b(ϕ)b′(ϕ)p∇µ∇p+ γpb′(ϕ)∇q∇ϕ

− εqp+ f ′(ϕ)b(ϕ)qp− b(ϕ)rδp dx.
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We label the terms on the right-hand side as (i)–(vi). By employing Hölder’s and Young’s
inequality and using the uniform boundedness of b(ϕ), f(ϕ) and its derivatives, see As-
sumptions 4.1.1 and (4.7), we estimate the terms (iv)–(vi) as follows

(iv) + (v) + (vi) ≤ ε∥q∥L2∥p∥L2 + C(f ′, b)∥q∥L2∥p∥L2 + C(b)∥rδ∥L2∥p∥L2

≤ C(1 + ε2)(∥p∥2L2 + ∥rδ∥2L2) +
γ

4
∥q∥2L2 .

(4.43)

We will now estimate the terms (i)–(iii) separately, using the regularity of the smooth
solution (ϕ, µ). Let us briefly remind ourselves that

ϕ ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,∞(Ω)) ∩ L2(0, T ;H4(Ω)),

∇µ ∈ L2(0, T ;H2(Ω)).

To estimate the term (i), we apply Hölder and Young inequalities, along with the inter-

polation inequality ∥f∥L4 ≤ C(∥f∥
1
2

L2∥∇f∥
1
2

L2 + ∥f∥L2) [73], resulting in

(i) ≤ C(b′)∥∂tϕ∥L2∥p∥2L4

≤ C(b′)∥∂tϕ∥L2∥p∥L2(∥∇p∥L2 + ∥p∥L2)

≤ C(1 + ∥∂tϕ∥2L2)∥p∥2L2 + ∥∇p∥2L2 .

(4.44)

Similarly, we derive an estimate for the term (ii)

(ii) ≤ C(b)∥∇µ∥L∞ |
∫
Ω

p∇p dx| ≤ C(b, ∥∇µ∥2L∞)∥p∥2L2 + ∥∇p∥2L2 . (4.45)

To address the third term, we use integration-by-parts to see that∫
Ω

pb′(ϕ)∇q∇ϕ dx =

∫
Ω

q
(
b′′(ϕ)p|∇ϕ|2 + b′(ϕ)∇p∇ϕ+ b′(ϕ)p∆ϕ

)
dx.

This identity is substituted for the term (iii), and then estimated by Hölder and Young
inequalities to obtain

(iii) = γ

∫
Ω

q p(b′′(ϕ)|∇ϕ|2 + b′(ϕ)∆ϕ) + q(b′(ϕ)∇p∇ϕ) dx

≤ C(1 + ∥∆ϕ∥L∞)∥p∥L2∥q∥L2 + ∥b′(ϕ)∇ϕ∥L∞∥q∥L2∥∇p∥L2

≤ C(1 + ∥∆ϕ∥2L∞)∥p∥2L2 +
2

γ
∥b′(ϕ)∇ϕ∥2L∞∥∇p∥2L2 +

γ

4
∥q∥2L2 .

(4.46)

By combining the estimates for the terms (i)–(vi) and integrating over the interval [t, T ],
with t ∈ [0, T ), taking into account p(T, x) = 0, and rearranging terms, we arrive at

cb
2
∥p(t)∥2L2 +

γ

2
∥q∥2L2(t,T ;L2) + (εcb − 2− 2

γ
∥b′(ϕ)∇ϕ∥2L∞(L∞))∥∇p∥2L2(t,T ;L2)

≤
∫ T

t

C(ε2 + ∥∆ϕ∥2L∞ + ∥∇µ∥2L∞ + ∥∂tϕ∥2L2)∥p∥2L2 ds+ C∥rδ∥2L2(s,T ;L2).
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Now, by choosing a sufficiently large ε, the inequality simplifies to

∥p(t)∥2L2 + ∥q∥2L2(t,T ;L2) + ∥∇p∥2L2(t,T ;L2)

≤ C

∫ T

t

(1 + ∥∆ϕ∥2L∞ + ∥∇µ∥2L∞ + ∥∂tϕ∥2L2)∥p∥2L2 ds+ C∥rδ∥2L2(t,T ;L2).

By applying a Gronwall argument backwards in time, we obtain the bounds

∥p∥L∞(L2)∩L2(H1) + ∥q∥L2(L2) ≤ C.

Second step: We will now derive bounds of p in further norms. First, we employ an
elliptic regularity argument to improve the regularity of p. Therefore, we consider the
second equation (4.40) as an elliptic problem for p. Given that q ∈ L2(0, T ;L2(Ω)),
and that b(ϕ) strictly positive and uniformly bounded, see (4.7), we deduce from elliptic
regularity theory, see [46], that

∥p∥L2(H2) ≤ C.

Second, we will establish ∂tp ∈ L2(0, T ; (H2(Ω))′). To achieve this, let us consider v to be
an arbitrary function in L2(0, T ;H2(Ω)) and use it to test the first system equation (4.39).
Using integration-by-parts and previously derived bounds on (p, q), we derive∣∣∣∣∫ T

0

⟨∂tp, v⟩H2 ds

∣∣∣∣ ≤ ∣∣∣∣∫ T

0

∫
Ω

γq∆v + f ′(ϕ)qv + rδv + b′(ϕ)∇µ∇p v dx ds
∣∣∣∣

≤ C(f ′)∥q∥L2(L2)(∥∆v∥L2(L2) + ∥v∥L2(L2)) + ∥rδ∥L2(L2)∥v∥L2(L2)

+ C(b′)∥∇µ∥L∞(L2)∥∇p∥L2(L2)∥v∥L2(L∞)

≤ C∥v∥L2(H2).

Therefore we have established that p ∈ H1(0, T ; (H2(Ω))′), concluding the derivation of
regularities for p and q.

Third step: Next, we address the uniqueness of solutions. Let (p1, q1), (p2, q2) denote
two solutions, and let us define the differences as p̂ := p1 − p2, q̂ := q1 − q2, with initial
data p̂(T, x) = 0. The differences, p̂ and q̂, have the following regularities

p̂ ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩H1(0, T ; (H2(Ω))′),

q̂ ∈ L2(0, T ;L2(Ω)),

and p̂(T ) = 0 in L2(Ω). Further, equation (4.40) holds a.e. and we also have

0 = ⟨−∂tp̂, v⟩H2 +

∫
Ω

b′(ϕ)∇µ∇p̂v + γq̂∆v − f ′(ϕ)q̂v dx (4.47)

for a.e. t ∈ (0, T ) and for all v ∈ H2(Ω). The following approach involves applying the
same testing procedure as before and then utilising a Gronwall argument to establish the
uniqueness of solutions. For this, we first have to show that v = b(ϕ)p̂ is an admissible
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test function, i.e. we show v is an element of L2(0, T ;H2(Ω)). Therefore, as a preliminary
step, we compute

∆(b(ϕ)p̂) = b(ϕ)∆p̂+ b′(ϕ)∇ϕ∇p̂+ b′′(ϕ)|∇ϕ|2∇p̂+ b′(ϕ)∆ϕp̂+ b′(ϕ)∇ϕ∇p̂.

By using the uniform boundedness of ϕ and ∇ϕ, see (4.7), as well as the fact that ∂i∂jϕ ∈
L2(0, T ;H2(Ω))∩L∞(0, T ;H1(Ω)) and p̂ ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H2(Ω)), we deduce
that all terms can be estimated such that consequently

∥b(ϕ)p̂∥L2(H2) ≤ C.

Now, we proceed with the testing procedure and derive the a-priori-estimates. Inserting
v = b(ϕ)p̂ as test function into (4.47), and making use of the previously established
identity (4.42), yields the following

0 = −1

2

d

dt

∫
Ω

b(ϕ)|p̂|2 dx+ 1

2

∫
Ω

|p̂|2b′(ϕ)∂tϕ dx

+

∫
Ω

b(ϕ)b′(ϕ)p̂∇µ∇p̂− f ′(ϕ)b(ϕ)q̂p̂+ γq̂∆(b(ϕ)p̂) dx.

(4.48)

Moreover, the following identity is derived through differentiation,∫
Ω

q̂∆(b(ϕ)p̂) dx =

∫
Ω

q̂(div(b(ϕ)∇p̂) + b′′(ϕ)|∇ϕ|2p̂+ b′(ϕ)p̂∆ϕ+ b′(ϕ)∇ϕ∇p̂ dx.

Using this, and also inserting the second system equation (4.40) into (4.48), we obtain

1

2

d

dt

∫
Ω

b(ϕ)|p̂|2 dx =
1

2

∫
Ω

|p̂|2b′(ϕ)∂tϕ dx+
∫
Ω

b(ϕ)b′(ϕ)p̂∇µ∇p̂− f ′(ϕ)b(ϕ)q̂p̂ dx

+

∫
Ω

γ|q̂|2 + γq̂(b′′(ϕ)|∇ϕ|2p̂+ b′(ϕ)p̂∆ϕ+ b′(ϕ)∇ϕ∇p̂) dx.

We label the terms as (i)–(viii). These can be estimated similarly to the first step of
this proof. To be precise: we estimate (i) from below using the lower bound of b(·), (ii)
is estimated as in (4.44), (iii) as in (4.45), (iv) as in (4.43), and (vi), (vii), (viii) as in
(4.46). Moreover, by testing the second system equation (4.40) with w = εp̂ in order to
derive control on ∇p̂, we will obtain a similar inequality as before, just without the data
term involving rδ, that is

∥p̂(t)∥2L2 + ∥q̂∥2L2(t,T ;L2) + ∥∇p̂∥2L2(t,T ;L2)

≤ C

∫ T

t

(1 + ∥∆ϕ∥2L∞ + ∥∇µ∥2L∞ + ∥∂tϕ∥2L2)∥p̂∥2L2 ds.

Subsequently, using a Gronwall argument, see [53, Lemma 3.1] with α = 0, we arrive
at the conclusion that

∥p̂∥L∞(L2)∩L2(H1) + ∥q̂∥L2(L2) ≤ 0.

This establishes the uniqueness of the solution (p, q) for the adjoint state problem.
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4.4.2. Representation of the adjoint operator F ′(x)∗

Now, we are in the position to derive a representation for the adjoint operator F ′(x)∗. As
a brief reminder, the Fréchet derivative is the linear operator

F ′(b, f) : (H2(I))2 → L2(0, T ;L2(Ω)), (b̂, f̂) 7→ ψ.

The adjoint operator is then defined as a mapping L2(0, T ;L2(Ω)) → (H2(I))2 by the
following expression

(F ′(b, f)∗r, (b̂, f̂))H2 := (r, F ′(b, f)(b̂, f̂))L2(L2) = (r, ψ)L2(L2) (4.49)

for any r ∈ L2(0, T ;L2(Ω)) and (b̂, f̂) ∈ (H2(I))2. This definition is implicit, and we will
now establish a representation that can be used for the implementation to compute the
outcome g := (g1, g2) := F ′(b, f)∗r ∈ (H2(I))2.
To achieve this, we will utilise the linearised state equations (4.25)–(4.26) and the

adjoint state equations (4.39)–(4.40). We have the following result.

Theorem 4.4.2. Let Assumptions 4.1.1 hold and r ∈ L2(0, T ;L2(Ω)). Further, let (b, f)
be admissible parameter functions with associated solution (ϕ, µ) of the Cahn-Hilliard
system. Then there exists (p, q) as the solution to the adjoint problem (4.39)–(4.40),
which depends on (ϕ, µ), (b, f) and r. The result of an application of the adjoint operator,
i.e. the outcome g = (g1, g2) = F ′(b, f)∗r, is then defined as the solution of the following
variational problem:

(g, (b̂, f̂))H2 = (b̂(ϕ)∇µ,∇p)L2(L2) − (f̂(ϕ), q)L2(L2)

for all directions (b̂, f̂) ∈ (H2(I))2.

Proof. Let (b̂, f̂) ∈ (H2(I))2, (ψ, ξ) be the corresponding solution of the linearised prob-
lem, and let (p, q) be the solution of the adjoint problem associated with the data r.
By the definition of the adjoint operator, it holds

(F ′(b, f)∗r, (b̂, f̂))H2 := (r, F ′(b, f)(b̂, f̂))L2(L2) = (r, ψ)L2(L2) =: (i).

To begin, we select v = ψ as the test function for the identity (4.41) derived in Theo-
rem 4.4.1, i.e. the first equation of the adjoint system. Note that ψ possesses sufficient
regularity for this testing. We obtain

(i) = −
∫ T

0

⟨−∂tp, ψ⟩H2 + (b′(ϕ)∇µ∇p, ψ)L2 − (f ′(ϕ)q, ψ)L2 + γ(q,∆ψ)L2 ds.

We derive from the second equation of the linearised system (4.31), tested with w = q,
the equation ∫ T

0

(γ∆ψ − f ′(ϕ)ψ, q)L2 ds =

∫ T

0

(f̂(ϕ)− ξ, q)L2 ds,

and insert it into the previous identity, which yields

(i) = −
∫ T

0

⟨−∂tp, ψ⟩H2 + (b′(ϕ)∇µ∇p, ψ)L2 + (f̂(ϕ)− ξ, q)L2 ds.
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Now by applying integration-by-parts in the time direction, more details on this at the
end, also using the boundary conditions ψ(0, x) = p(T, x) = 0, we derive

(i) = −
∫ T

0

⟨∂tψ, p⟩H1 + (b′(ϕ)∇µ∇p, ψ)L2 + (f̂(ϕ)− ξ, q)L2 ds.

On the other side, we test (4.31) derived in Theorem 4.3.2, i.e. the first equation of the
linearised system, with test function v = p. Note that p is sufficiently regular for this
testing. This yields,∫ T

0

⟨∂tψ, p⟩H1 + (b′(ϕ)ψ∇µ,∇p)L2 ds =

∫ T

0

−(b(ϕ)∇ξ + b̂(ϕ)∇µ,∇p)L2 ds.

By inserting into the previous identity, we obtain

(i) = −
∫ T

0

−(b(ϕ)∇ξ + b̂(ϕ)∇µ,∇p)L2 + (f̂(ϕ)− ξ, q)L2 ds.

Moreover, by testing the second equation of the adjoint system (4.40) with w = ξ, we
observe that the sum (ξ, q)L2 + (b(ϕ)∇ξ,∇p)L2 evaluates to zero and we arrive at

(F ′(b, f)∗r, (b̂, f̂))H2 =

∫ T

0

(b̂(ϕ)∇µ,∇p)L2 − (f̂(ϕ), q)L2 ds.

It is left to consider some details on the integration-by-parts in the time direction. To
this end, let us first recall that both p and ψ belong toH1(0, T ; (H2(Ω))′)∩L2(0, T ;H2(Ω)),
allowing us to apply integration-by-parts with respect to time, i.e.∫ T

0

⟨−∂tp, ψ⟩H2 ds = −
∫
Ω

ψ(T )p(T ) + ψ(0)p(0) dx+

∫ T

0

⟨∂tψ, p⟩H2 ds.

The first integral vanishes due to the boundary conditions ψ(0, x) = 0, p(T, x) = 0.
Further recall that ∂tψ ∈ L2(0, T ; (H1(Ω))′) and p ∈ L2(0, T ;H1(Ω)), such that we deduce∫ T

0

⟨−∂tp, ψ⟩H2 ds =

∫ T

0

⟨∂tψ, p⟩H1 ds,

which we used before.

Summary

We discussed the Tikhonov regularisation approach for the inverse problem F (b, f) = ϕδ

and showed its well-posedness by continuity and weak-to-strong continuity of the solu-
tion operator S(·). Then, we proposed a Gauss-Newton approach for the realisation of
the Tikhonov minimisation problem. To do this, we established the differentiability of
the forward operator F (·), again by claims on the solution operator S(·). Further, we
investigated an adjoint system to derive a representation of the adjoint operator F ′(b, f)∗.
In the following chapter, we will consider the discretisation and implementation of the
previous theoretical results and present numerical tests.
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5. Numerical approximation of the
output least squares method

In the previous chapter, we studied the parameter identification problem of b(·) and f(·)
in the Cahn-Hilliard equation

∂tϕ = div (b(ϕ)∇µ) , (5.1)

µ = −γ∆ϕ+ f(ϕ), (5.2)

by an output least squares approach. To this end, we considered the forward operator
F (b, f) = ϕ and studied the parameter identification of b(·) and f(·) from measurements
of ϕ, i.e. F (b, f) = ϕδ, which is a nonlinear inverse problem in Hilbert spaces. We
showed continuity and weak continuity of the operator F (b, f) and considered Tikhonov
regularisation to derive stable approximations of the solution, i.e. we considered the
minimisation of the Tikhonov functional

min
(b,f)∈D(F )

Jα(b, f) :=
1

2
∥F (b, f)− ϕδ∥2Y +

α

2
∥(b, f)− (b∗, f ∗)∥2X . (5.3)

We showed that this output-least-squares approach is well-defined and suggested a Gauss-
Newton approach to solve the minimisation problem. As preparation for this iterative
approach, we established differentiability of F (b, f) and we derived a representation of
the adjoint operator F ′(b, f)∗.
In this chapter, we will now consider the numerical realisation of the previous theoretical

results. Initially, we have to discuss the numerical approximation of the Cahn-Hilliard
equation (5.1)–(5.2).

Literature

The main challenges arise from the non-convex double-well potential, i.e. the anti-
derivative of the function f(·). One has to carefully select a time-stepping method such
that the interactions within the interfacial regime are resolved while the energy stability of
the discrete method is ensured. The literature has extensively discussed feasible schemes
using various methods. The equations (5.1)–(5.2) consider the Cahn-Hilliard equation
as a system of two second-order differential equations. Hence, the phase fraction ϕ and
chemical potential µ are discretised separately. In the context of finite element approxi-
mations, this approach is recognised as a mixed finite element method. It was introduced
for the Cahn-Hilliard equation in [42] and further analysed in works such as [30, 33, 44].
Besides finite element methods, alternative discretisation methods have also been consid-
ered. Notably, discontinuous Galerkin methods have been examined in [70, 76, 93], and
Fourier spectral methods have been used in [59, 75].
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5. Numerical approximation of the output least squares method

We will consider a finite element approximation. As previously indicated, the pri-
mary challenges arise from the non-convex potential. Conventional explicit time-stepping
schemes, for instance, Euler schemes, suffer from severe time-step restrictions, while im-
plicit formulations lead to ill-conditioned non-linear algebraic systems. The reason for
this is the interfacial dynamic of the Cahn-Hilliard equation. An additional objective is
to preserve the energy structure at the discrete level.

Classical time-integration methods such as Runge-Kutta or multi-step schemes do not
generally preserve the structure. This has led to extensive research into the development
of energy-stable schemes, which aim to preserve energy dissipation while potentially intro-
ducing some artificial numerical energy dissipation. One approach involves decomposing
the potential function into a convex and a concave component, which are then treated
explicitly and implicitly to establish unconditionally energy-stable schemes. This is illus-
trated and discussed in works like [32, 55, 56]. Alternatively, another strategy involves
introducing an additional variable, hence an additional differential equation, which leads
to an artificial quadratic energy of the new system. This approach is known in the liter-
ature as invariant energy quadratisation (IEQ) or as scalar auxiliary variable (SAV), as
discussed in works like [84, 85, 86]. Those methods can be interpreted as a relaxation of
the energy and can be extended to more complex systems as demonstrated in e.g. [87].

Structure preserving discretisation

In [36], we described a general framework to preserve the underlying structure of a par-
ticular class of abstract evolution problems. Notably, the gradient-flow structure of the
Cahn-Hilliard system is included in this class. This structure-preserving property remains
intact when considering a fully discrete approximation by a Petrov-Galerkin approach.
In [36][Sec. 4.2], this approach is demonstrated on a Cahn-Hilliard equation with con-
stant mobility. Moreover, in [19], we applied the framework to the Cahn-Hilliard system
(5.1)–(5.2), notably including the solution-dependent mobility. As a result of this ap-
proximation, the conservation of mass and an energy-dissipation relation are achieved up
to machine precision in numerical tests. Furthermore, using relative energy estimates,
it was shown that this discretisation approach yields second-order convergence, which is
optimal with respect to the considered finite element spaces, see [19]. Most importantly,
conditions for the uniqueness of the discrete solution were also derived.

Outline

This chapter addresses the numerical realisation of the previous theoretical results. In
Section 5.1, we will outline the discretisation of the Cahn-Hilliard equation employing
the structure-preserving approach of [36]. Using this, we will define the discrete solu-
tion operator and deduce that it is well-defined from results in [19]. This discretisation
scheme will naturally lead to a discretisation of the scalar products of the Hilbert spaces
involved in the nonlinear identification problem. Subsequently, we introduce the discrete
forward operator and the discrete analogue of the Tikhonov problem (5.3) in Section 5.2
and establish the well-posedness of the discrete problem. Afterwards, we consider the
discretisation of the linearised and the adjoint problem, which follows naturally from the
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structure-preserving approach. Numerical examples will illustrate the application of the
discrete approach in Section 5.3. Concluding the chapter, we provide a discussion of the
results and a comparison to the results of the equation error method in Section 5.3.4.

5.1. Discretisation of the solution operator S(·)
We consider the Cahn-Hilliard system (5.1)–(5.2) on a periodic domain Ω complemented
with periodic boundary conditions. Let us recall the main assumptions used in the pre-
vious analysis, which we here repeat for the convenience of the reader.

Assumptions 5.1.1. We impose the following assumptions on the domain and on the
parameters:

(A0) Ω ≃ Td, is the d-dimensional torus; functions defined on Ω are assumed to be
periodic.

(A1) γ > 0 is a positive constant;

(A2) b : R → R+ satisfies b ∈ C2(R) with 0 < cb ≤ b(s) ≤ Cb for all s ∈ R and
∥b′∥∞ ≤ Cb′ , ∥b′′∥∞ ≤ Cb′′ ;

(A3) f(s) = λ′(s) with λ ∈ C4(R) such that λ(s), λ′′(s) ≥ −cλ1 , for some cλ1 ≥ 0.

Furthermore, λ and its derivatives are bounded by |λ(k)(s)| ≤ C
(k)
λ2

+ C
(k)
λ3

|s|4−k for

0 ≤ k ≤ 4 with constants C
(k)
λ2
, C

(k)
λ3

≥ 0.

In addition, we assume ϕ0 ∈ H3(Ω).

In this setting, we consider the following the Petrov-Galerkin approximation for the
Cahn-Hilliard equation (5.1)–(5.2).

Finite element spaces

Let Th denote a conforming partition of the domain Ω ∈ Rd, d = 2 into triangles. For
simplicity, we assume a uniform mesh size h for all elements K ∈ Th. Further, we consider
a periodic mesh Th in the sense that it can be extended periodically to periodic extensions
of the domain Ω. Then, we denote by

Vh := {v ∈ H1(Ω) : v|K ∈ P2(K)d, ∀K ∈ Th},

the space of continuous piecewise quadratic polynomials over the mesh Th. Next, we
introduce the time discretisation. Given a time step size τ = T/N , where N ∈ N, we
define discrete time points tn := nτ , and denote the corresponding partition of the time
interval [0, T ] as Iτ := {0 = t0, t1, . . . , tN = T}. We will denote by Πk(Iτ ;Vh) the space of
piecewise polynomials of degree k over the time grid Iτ with values in Vh, and denote by
Πc
k(Iτ ;Vh) = Πk(Iτ ;Vh)∩C(0, T ;Vh) the corresponding sub-space of continuous functions.

Furthermore, we will use a bar symbol ḡ to denote piecewise constant functions in time.
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5. Numerical approximation of the output least squares method

Discretisation of the Cahn-Hilliard equation

Our aim is to compute approximations (ϕh,τ , µ̄h,τ ) of (ϕ, µ) within the spaces

Yh,τ (0, T ) := Πc
1(Iτ ;Vh) and Qh,τ (0, T ) := Π0(Iτ ;Vh).

Let us emphasise that functions in Yh,τ (0, T ) are continuous and piecewise linear in time,
while functions q̄ ∈ Qh,τ (0, T ) are piecewise constant in time, which is indicated by the
bar symbol. We consider the following fully discrete approximation for the Cahn-Hilliard
system (5.1)–(5.2).

Problem 5.1.2. Let ϕh,0 ∈ Vh be given. Find (ϕh,τ , µ̄h,τ ) ∈ Yh,τ (0, T )×Qh,τ (0, T ), with
ϕh,τ (0) = ϕh,0 and such that∫ tn

tn−1

(∂tϕh,τ , v̄h,τ ) + (b(ϕh,τ )∇µ̄h,τ ,∇v̄h,τ ) ds = 0, (5.4)∫ tn

tn−1

(µ̄h,τ , w̄h,τ )− (γ∇ϕh,τ ,∇w̄h,τ )− (f(ϕh,τ ), w̄h,τ ) ds = 0. (5.5)

for all test functions (v̄h,τ , w̄h,τ ) ∈ Qh,τ (0, T )×Qh,τ (0, T ) and for n ≥ 1.

Well-posedness of the discrete scheme has been considered in [19], which we recall here.

Theorem 5.1.3 ([19]). Let Assumptions 5.1.1 hold. Then any for ϕ0,h ∈ Vh and any
τ > 0, Problem 5.1.2 has at least one solution (ϕh,τ , µ̄h,τ ) satisfying the uniform bounds

∥ϕh,τ∥L∞(H1) + ∥µ̄h,τ∥L2(H1) ≤ C(∥ϕh,0∥H1).

Further, let (ϕ, µ) denote a regular periodic weak solution of (5.1)–(5.2) with initial value
ϕ0 ∈ H3(Ω) satisfying additionally

ϕ ∈ H2(0, T ;H1(Ω)) ∩H1(0, T ;H3(Ω)),

µ ∈ H2(0, T ;H1(Ω)) ∩ L∞(0, T ;W 1,3(Ω)),

and let (ϕh,τ , µ̄h,τ ) be a solution to Problem 5.1.2 with initial value ϕ0,h(0) = π1
hϕ0 ∈ Vh,

where π1
h : H

1 → Vh denotes the H1-elliptic projection. Then

max
tn∈Iτ

∥ϕh,τ (tn)− ϕ(tn)∥21 + ∥µ̄h,τ − µ̄∥2L2(0,T ;H1) ≤ C ′
T (h

4 + τ 4),

with C ′
T depending on the norms of the solution (ϕ, µ), but independent of h and τ . If

τ ∼ h, then the discrete solution (ϕh,τ , µ̄h,τ ) is unique.

We refer to [19] for the proof. In short terms, the authors investigated the stability
of solutions to the Cahn-Hilliard equation. By relative energy estimates, they derived
bounds for the discretisation error and established order-optimal a-priori error estimates
of the previous approximation scheme, summarised in the theorem. The uniqueness of the
solution follows from a Gronwall argument using inverse inequalities and the convergence
rate estimates. For further insights, we again refer to [19].
From Theorem 5.1.3, we can deduce that if the more regular solution (ϕ, µ) exists, the

initial value is set as described, and τ ∼ h, then the estimates also imply the existence of
an interval I, such that ϕh,τ (x, t) ∈ I until at least some time T .
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Discretisation of the solution operator S(·)

Let us start by summarising the assumptions used to define the solution operator S(·).

Assumptions 5.1.4. We impose the following assumptions on the parameter functions
and the discretisation parameters:

(S1) let Assumptions 5.1.1 hold,

(S2) let Th be a uniform triangulation of the domain Ω,

(S3) let a more regular weak solution (ϕ, µ) of (5.1)–(5.2) exist, with regularity as de-
scribed in Theorem 5.1.3,

(S4) let τ ∼ h,

(S5) let the interval I be large enough, such that it holds ϕh,τ (x, t) ∈ I for solutions of
Problem 5.1.2.

Recall that the solution operator was defined as a mapping

S : D(S) ⊂ (H2(I))2 → (L2(0, T ;L2(Ω)))2.

By the discrete scheme for the Cahn-Hilliard equation, we have already chosen the discrete
subset Yh,τ (0, T ) × Qh,τ (0, T ) for the space (L2(0, T ;L2(Ω)))2. We proceed to consider
as discrete space for the parameter function space (H2(I))2 the space of natural cubic
splines on a uniform grid of the interval I := [a1, a2] with a grid size σ, denoted by Xσ.
The discrete solution operator is subsequently defined by

Sσ,h,τ : D(Sσ,h,τ ) ⊂ Xσ → Yh,τ (0, T )×Qh,τ (0, T ), (bσ, fσ) 7→ (ϕh,τ , µ̄h,τ ),

where (ϕh,τ , µ̄h,τ ) is the solution to the discrete forward problem, i.e. Problem 5.1.2, with
(bσ, fσ) employed for (b, f). The operator is defined on the domain

D(Sσ,h,τ ) := {(bσ, fσ) ∈ Xσ : Assumptions 5.1.1 hold}.

From our considerations, we can now readily deduce the following lemma.

Lemma 5.1.5. Let Assumptions 5.1.4 hold. Then the solution operator Sσ,h,τ (·) is well-
posed.

Note that the condition τ ∼ h guarantees the uniqueness of the solution ϕh,τ and is
necessary for the well-posedness of the operator.

Implementation of the solution operator S(·)

Remark 5.1.6 (On the resulting time-stepping scheme). As ϕh,τ is piecewise linear in
time, it is determined by the values ϕn−1

h and ϕnh. Hence, by considering ϕn−1
h and ϕnh in
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5. Numerical approximation of the output least squares method

Problem 5.1.2, one derives an implicit scheme of for the variables (ϕnh, µ
n−1/2
h ) by com-

puting the integrals over the interval [tn−1, tn]. In practice, by using a quadrature rule
(εj, ωj), 0 ≤ j ≤ J with sufficiently high accuracy, the integrals can be approximated, e.g.∫ tn

tn−1

fσ(ϕh,τ )w̄h,τ ds ≈ τ

J∑
j=0

ωjfσ(ϕh,τ (t
n
j ))w̄h,τ ,

where tnj = tn−1 + εj(t
n − tn−1) denotes intermediate time points. By utilising suitable

quadrature rules, we can achieve exact integration, such that, for instance, the energy
dissipation identity remains valid and mass is conserved, both up to machine precision;
as discussed in [14, 36]. Overall, the resulting system is nonlinear, and we use Newton’s
method to compute the solution. The time average involving the mobility b(·) can be
substituted by a midpoint approximation, which still yields second-order convergence
of the scheme, see [19]. However, we emphasise that the exact integration of the term
involving fσ(ϕh,τ ) remains necessary to ensure exact conservation of the energy-dissipation
identity.

Remark 5.1.7 (Implementation time averaged integrals). Let us comment in more detail
on the implementation, especially regarding the time-averaged integral. Let vj denote the
j-th basis function of Vh, then as usual the discrete representation of (g(x)vh, wh) is a
matrix M with entries

Mi,j = (g(x)vj, vi) =

∫
Ω

g(x)vjvi dx =
∑
K∈Th

∫
K

g(x)vjvi dx.

Therein, the integrals over the single elements are calculated via quadrature formulas, e.g.
(ωm,K , xm,K),m = 1, . . . ,M , such that

∑
K∈Th

∫
K

g(x)vjvi dx ≈
∑
K∈Th

M∑
m=1

ωm,Kg(xm,K)vj(xm,K)vi,K(xm,K) = I⊤i DIj,

where Ij is a column vector containing the evaluations of the basis function vj at all the
quadrature points xm,K , and D is a diagonal matrix where the entries are the evaluation
of the function g(x) at each quadrature point xm,K multiplied with the corresponding
weight ωm,K of the quadrature formula. Hence we observe that we can decompose the
matrix assembling into M = I⊤DI, where I is a matrix with columns Ij, i.e. one column
for every degree of freedom, where the entries are the evaluations of the basis functions
on the quadrature points. This decomposition should be understood as a pre-assembling
simplifying the handling of the integrals in time. As already pointed out, the exact
calculation of the time integrals is necessary for the structure-preserving scheme, and
is achieved using suitable quadrature rules (ωj, tj), j = 0, . . . , J . Using the previous
decomposition of the assembling in space, the time integrals can be computed as follows:∫ t2

t1
(g(s)vh, wh) ds ≈

∫ t2

t1
w⊤I⊤D(g(s))Iv ds ≈ w⊤I⊤

(
J∑
j=0

ωjD(g(tj))

)
Iv.
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Besides the pre-assembling aspect to safe computational cost, it is a practical form in
order to derive a full Newton scheme for our time-stepping problems. Analogue to this,
we use pre-assembling steps to compute stiffness matrices. In addition, if vh,τ is piecewise
linear in time, as in the Petrov-Galerkin scheme, one has to consider some additional
factors s, (1− s) which can be considered as additional factors in the diagonal matrix D.

5.2. Discretisation of Tikhonov regularisation

We will now consider the discretisation of the Tikhonov regularisation approach. At first,
we discretise the forward operator F (·) and then the Tikhonov minimisation problem
(5.3).

Discretisation of the forward operator F (·)

Recall that the forward operator was defined as

F : D(F ) ⊂ (H2(I))2 → L2(0, T ;L2(Ω)),

and has the special structure F (·) = L(S(·)). The discrete forward operator is subse-
quently defined as the mapping Fσ,h,τ (·) = Lh(Sσ,h,τ (·)), where Lh(·) denotes the linear
operator

Lh : Yh,τ (0, T )×Qh,τ (0, T ) → Yh,τ (0, T ), (vh,τ , w̄h,τ ) 7→ vh,τ .

This leads to the definition of the discrete forward operator

Fσ,h,τ : D(Fσ,h,τ ) ⊂ Xσ → Yh,τ (0, T ), (bσ, fσ) 7→ ϕh,τ ,

where ϕh,τ is the solution to the discrete forward problem, i.e. Problem 5.1.2, with (bσ, fσ)
employed for (b, f). The operator is defined on the domain

D(Fσ,h,τ ) := {(bσ, fσ) ∈ Xσ : Assumptions 5.1.1 hold }.

As Lh(·) is a linear operator and Sσ,h,τ (·) is well-defined by Lemma 5.1.5, we can directly
deduce that Fσ,h,τ (·) is well-posed.

Lemma 5.2.1. Let Assumptions 5.1.4 hold. Then, the discretised forward operator
Fσ,h,τ (·) is well-posed.

In the following, we will use the shorthand notation Fh(·) to refer to Fσ,h,τ (·).

Discretisation of Tikhonov problem

We are now in the position to establish the discrete Tikhonov problem to achieve the
computation of stable approximations of the parameter functions. First, we assume that
the measurements ϕδh,τ satisfy

∥ϕh,τ − ϕδh,τ∥Yh,τ ≤ δ
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5. Numerical approximation of the output least squares method

with known noise level δ > 0. Then we consider the minimisation problem

min
(bσ ,fσ)∈D(Fh)

Jδα,h(x) :=
1

2
∥Fh(bσ, fσ)− ϕδh,τ∥2Yh,τ +

α

2
∥(bσ, fσ)− (b∗σ, f

∗
σ)∥2Xσ , (5.6)

where α > 0 is the regularisation parameter and (b∗σ, f
∗
σ) are initial guesses of the param-

eters functions. The existence of discrete solutions follows from standard arguments of
nonlinear optimisation theory.

Lemma 5.2.2. Let assumptions 5.1.4 hold. Then the discretised version (5.6) of Tikhonov
regularisation has a solution.

Projected Gauss-Newton iteration

Following the derivation of the iterative scheme in Section 4.2, we use the following iter-
ation to derive the update of the parameters xnσ = (bnσ, f

n
σ ):

(F ′
h(x

n
σ)

∗F ′
h(x

n
σ) + αI)∆xnσ = F ′

h(x
n
σ)

∗(ϕδh,τ − Fh(x
n
σ))− αxnσ

xn+1
σ = PD(Fh)(x

n
σ + ω∆xnσ),

where 0 < ω ≤ 1, and PD(Fh) denotes the projection to D(Fh) in order to incorporate the
constraints of the parameter functions. The iteration is then stopped by the discrepancy
principle, i.e. we stop when ∥Fσ,h,τ (bσ, fσ) − ϕδ∥Yh,τ ≤ τδ is satisfied, with τ = 1.1. A
preconditioned conjugate gradient algorithm is used to solve the resulting linear system.
For the realisation of the iteration, we once again require to establish the derivative

F ′
h(bσ, fσ) and a representation of the adjoint operator F ′

h(bσ, fσ)
∗.

Discrete linearised problem and derivative of F ′(b, f)

The discretisation for the Cahn-Hilliard equation, i.e. Problem 5.1.2, leads, by differ-
entiation, readily to the corresponding discrete linearised problem. Hence, we examine
the following discrete approximation of the equations (4.25)–(4.26) to derive S ′

h(b, f), and
from Fh(·) = Lh(Sh(·)) we then deduce the existence of F ′

h(b, f).

Problem 5.2.3. Let (ϕh,τ , µ̄h,τ ) ∈ Yh,τ (0, T ) × Qh,τ (0, T ) be the solution of the discrete

forward problem for parameter functions (bσ, fσ) ∈ D(Fh) ⊂ Xσ, and let (b̂σ, f̂σ) ∈ Xσ.
Find (ψh,τ , ξ̄h,τ ) ∈ Yh,τ (0, T )×Qh,τ (0, T ), with ψh,τ (x, 0) = 0 and such that∫ tn

tn−1

(∂tψh,τ , v̄h,τ ) + (b′σ(ϕh,τ )ψh,τ∇µ̄h,τ ,∇v̄h,τ ) + (bσ(ϕh,τ )∇ξ̄h,τ ,∇v̄h,τ )

+ (b̂σ(ϕh,τ )∇µ̄h,τ ,∇v̄h,τ ) ds = 0,

(5.7)

∫ tn

tn−1

(ξ̄h,τ , w̄h,τ )− (γ∇ψh,τ ,∇w̄h,τ )− (f ′
σ(ϕh,τ )ψh,τ , w̄h,τ )− (f̂σ(ϕh,τ ), w̄h,τ ) ds = 0, (5.8)

for all test functions (v̄h,τ , w̄h,τ ) ∈ Qh,τ (0, T )×Qh,τ (0, T ) and for n ≥ 1.

This is a linear problem with respect to the variables (ψh,τ , ξ̄h,τ ), and as a result, the
existence of solutions can be established by standard arguments.
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5.2. Discretisation of Tikhonov regularisation

Lemma 5.2.4. Let Assumptions 5.1.4 hold. Then, for any (b̂σ, f̂σ) ∈ Xσ Problem 5.2.3
has a unique solution.

Proof. In order to show the existence of solutions, we use an induction argument. Let
ψh,τ (tn−1) be given and consider the n-th timestep, i.e. we need to determine the func-

tion ψnh,τ := ψh,τ (tn) and ξ
n−1/2
h,τ := ξh,τ (tn − τ/2) ∈ Vh. We can now repeat the test-

ing procedure from the proof of Theorem 4.3.1 on the discrete level, i.e. we test with
(v̄h,τ , w̄h,τ ) = (ξ̄h,τ , ∂tψh,τ ) and derive a-priori-bounds of solutions with constants depend-

ing on the bounds in Assumptions 5.1.1, and the norms of (b̂, f̂) and ψh,τ (tn−1). As this
is a linear system, it is sufficient to show, that a vanishing right-hand side implies that
the solution is zero. Hence, by the previous a-priori bounds, we conclude the existence of
a unique solution.

We conclude that the discrete derivative of the discrete solution operator Sh(·) is defined
as S ′

h(bσ, fσ)(b̂σ, f̂σ) := (ψh,τ , ξ̄h,τ ). Consequently, by the chain rule, the discrete derivative
of Fh(·) is defined as

F ′
h(bσ, fσ) : Xσ → Yh,τ (0, T ), (b̂σ, f̂σ) 7→ ψh,τ ,

where ψh,τ is the first component of the solution obtained from Problem 5.2.3 using

(b̂σ, f̂σ).

Lemma 5.2.5. Let Assumptions 5.1.4 hold. Then the derivative of Fh(·) is defined by
F ′
h(bσ, fσ)(b̂σ, f̂σ) = ψh,τ .

Remark 5.2.6. On the continuous level, we showed in the proof of Theorem 4.3.2
quadratic convergence of the residuals. We verified in our numerical experiments that
our discretisation approach preserves this convergence.

Discrete adjoint problem

Let us now derive the discrete version of the adjoint state equations (4.39)–(4.40). The
systematic way to derive the adjoint problem involves again the Lagrangian function.
By following the derivation analogue to the continuous level, we obtain the discretisation
scheme of the adjoint state problem. Consequently, we consider the following fully discrete
approximation for the equations (4.39)–(4.40).

Problem 5.2.7. Let (ϕh,τ , µ̄h,τ ) ∈ Yh,τ (0, T ) × Qh,τ (0, T ) be the solution of the discrete
forward problem for parameter functions (bσ, fσ) ∈ D(Fh), and let rδh,τ ∈ Yh,τ (0, T ). Find
(p̄h,τ , q̄h,τ ) ∈ Qh,τ (0, T )×Qh,τ (0, T ), with p̄h,τ (x, 0) = 0 and such that∫ tn

tn−1

(p̄h,τ , ∂tvh,τ ) + (b′σ(ϕh,τ )∇µ̄h,τ∇p̄h,τ , vh,τ )− (γ∇q̄h,τ ,∇vh,τ )

−(f ′
σ(ϕh,τ )q̄h,τ , vh,τ ) + (rδh,τ , vh,τ ) ds = 0

(5.9)

∫ tn

tn−1

(q̄h,τ , w̄h,τ ) + (bσ(ϕh,τ )∇p̄h,τ ,∇w̄h,τ ) ds = 0, (5.10)

for all test functions (vh,τ , w̄h,τ ) ∈ Yh,τ (0, T )×Qh,τ (0, T ) and for n ≥ 1.
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5. Numerical approximation of the output least squares method

Remark 5.2.8. While this formulation serves as a convenient formulation for deriving
the discrete adjoint formula for F ′

h(bσ, fσ)
∗, it is not directly recognised as a discretisation

of equations (4.39)–(4.40). Hence, let us provide a brief explanation of this scheme. The
variables p and q are discretised as piecewise constants in time. The first equation (5.9)
is then tested with piecewise linear elements, while the second one (5.10) is tested with
piecewise constant functions. In order to derive a standard time-stepping scheme, one
utilises for the time direction a basis of the space of piecewise linear functions in time.
By collecting the integrals (5.9)–(5.10) for all time steps, rearranging terms, and noting
that the time derivative of the test functions is constant on each interval, one derives a
formulation with the following structure

1

τ
(pn+1/2 − pn−1/2, w̄h,τ ) +

∫ tn+1

tn
(g1∇pn+1/2, w̄h,τ ) ds+

∫ tn

tn−1

(g2∇pn−1/2, w̄h,τ ) ds+ . . .

where g1, g2 are some functions depending on space and time.

Note that this is a linear problem in p and q. By reformulating the Problem 5.2.7
into a time-stepping scheme, the existence of solutions can be established using similar
arguments as for the discrete linearised problem.

Lemma 5.2.9. Let Assumptions 5.1.4 hold. Then for any rδh,τ ∈ Yh,τ (0, T ), the Prob-
lem 5.2.7 has a unique solution.

Discrete representation of the adjoint F ′(b, f)∗

Due to the chosen discretisation, one can derive the formula for the discrete adjoint oper-
ator F ′

h(bσ, fσ)
∗ following the same arguments as on the continuous level in Section 4.4.2.

As a result, we arrive at the following discrete representation.

Lemma 5.2.10. Let Assumptions 5.1.4 hold, and rδh,τ ∈ Yh,τ (0, T ). Further, let (bσ, fσ) ∈
D(Fh) be parameter functions with associated discrete solution (ϕh,τ , µ̄h,τ ) of the Cahn-
Hilliard system. Then there exist (p̄h,τ , q̄h,τ ) as the solution to the discrete adjoint problem
(5.9)–(5.10), which depends on (ϕh,τ , µ̄h,τ ), (bσ, fσ) and r

δ
h,τ . The result of an application

of the discrete adjoint operator, i.e. the outcome gσ := (gσ,1, gσ,2) := F ′
h(bσ, fσ)

∗rδh,τ , is
then defined as the solution of the following variational problem:

(gσ, (b̂σ, f̂σ))Xσ = (b̂σ(ϕh,τ )∇µ̄h,τ ,∇p̄h,τ )Yh,τ − (f̂σ(ϕh,τ ), q̄h,τ )Yh,τ

for all (b̂σ, f̂σ) ∈ Xσ.

Remark 5.2.11 (Separate identification). The previous schemes cover the simultaneous
identification of the parameters b(·) and f(·). The schemes for the separate identification
of the parameters follow from a straightforward reduction of the previous analysis. This
leads to minor modifications of the previous schemes. In the linearised Problem 5.2.3, the
direction of the derivative of the known parameter vanishes, i.e. b̂(·) or f̂(·). The adjoint
Problem 5.2.7 does not change, but the adjoint formula in Problem 5.2.10. In the separate
case, we seek only one function gσ, while on the right-hand side, the term corresponding
to the known parameter vanishes.
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5.3. Numerical illustration

5.3. Numerical illustration

For the equation error method, we had to impose strong conditions on the measurements
of ϕ. In comparison, the output least squares method can handle less regular data and a
larger noise level, which we will demonstrate in this section. For comparison, we will use
a similar setup for the numerical tests as for the equation error method in Section 3.4.4.
The domain for our test problems is chosen as Ω = (0, 1)d, where d = 1, 2 depends on the
experiment.

5.3.1. One dimensional test problem

As the initial experiment, we use the model parameters described in Subsection 3.4.1.
Hence, we select the parameter functions

f(s) = 2(s+ 0.99)3(s− 0.99)(3s− 0.99),

where f is the derivative of the double well potential λ(s) = (s − 0.99)2(s + 0.99)4, and
consider the mobility function

b(s) = (1− s)4(1 + s)2 + 0.2,

while we set γ = 0.003 for the interface parameter. The initial value of the phase fraction
is prescribed by

ϕ0(x) = 0.1 sin(2πx)− 0.1 sin(4πx) + 0.1 sin(12πx) + 0.1.

Up to modifications, we note again that these functions satisfy the Assumptions 5.1.1, see
also Subsection 3.4.1. As discretisation parameters of the finite element spaces, we select
σ = 0.1 for the parameter functions, and for the Cahn-Hilliard system, we choose for the
spatial discretisation h = 0.01 and the time step size τ = 4 · 10−5. The final time is set
to T = 0.004. The artificial measurements for our test are generated by an application of
the forward operator, using fσ(·) and bσ(·) as prescribed, computing ϕh,τ , which is then
perturbed by white noise with magnitude δ := ∥ϕh,τ −ϕδh,τ∥L2(0,T ;L2(Ω)). The precise noise
level is specified below.

Remark 5.3.1. The grid of the reconstruction corresponds to the configuration in Subsec-
tion 3.4.4. However, therein, we simulated the data on the distinct grid and subsequently
used interpolated measurements for the reconstruction. Thus, a direct comparison of the
two methods is not feasible already because of the assumption on the data perturbation,
but we will qualitatively comment on it.

We perform numerical tests for each of the three identification problems. For the
iterative scheme, we choose as initial values of the parameters b(·) and f(·), depending on
the identification problem,

b0(s) ≡ 1, f0(s) = 4s(s2 − 0.992),

where the later is the derivative of a symmetric potential λ0(s) = (s− 0.99)2(s + 0.99)2.
Further we set b∗(·) ≡ f ∗(·) ≡ 0. The results of the reconstructions are depicted below.
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5. Numerical approximation of the output least squares method

Remark 5.3.2 (Identifiability). In Subsection 3.4.4, we depicted the solution to infer in-
formation regarding the intervals where the parameter functions can be identified. Again,
this information will be used to determine the intervals where identification is feasible
and is depicted as a grey background in our figures. Beyond the intervals where unique
identification is ensured, the regularisation term determines the solution.

Identification of f(·)

We assume that γ and the mobility function b(·) are known, defined as prescribed, and
consider the identification of f(·). As outlined in Lemma 2.3.1, and already discussed in
Section 3.4, only the derivative f ′(·) can be identified. Moreover, the function f ′(·) can
only be uniquely determined within the range R = {s = ϕ(x, t) : x ∈ Ω, t ∈ [0, 004]}. In
Figure 5.1, we depict the true value of f ′(·) and the corresponding reconstruction (f δα)

′(·),
derived from our computations. The Tikhonov regularisation approach yields stable and

1% noise 5% noise

Figure 5.1.: Reconstructions of f ′(·) using perturbed data ϕδh,τ (·, t) where t ∈ [0, 0.004].
The noise level δ is specified in the title of the plots. The range of the
observations ϕδh,τ is depicted in grey. The solid blue line depicts the true

function f ′(·), while the dotted red line illustrates the reconstruction (f δα)
′(·)

obtained by the output least squares method outlined in Subsection 5.2. The
regularisation parameter α was determined using the discrepancy principle,
with τ = 1.1.

accurate reconstructions for both noise levels. As expected from Theorem 2.4.1, the
function f ′(·) is reliably reconstructed only on the range R. The regularisation enforces
stability but also a certain bias in the regions where less data is available.

Identification of b(·)

We assume that γ and the potential derivative f(·) are known and consider the identi-
fication of the mobility b(·). As shown in Theorem 2.4.5, the mobility b(·) can only be
identified on the range R̃t = {s = ϕ(x, t) : x ∈ Ω, ∂xµ(x, t) ̸= 0} of the attained data,
where the gradient of the chemical potential µ is non-zero. In Figure 5.2, we depict the
reconstructed functions bδα(·) derived from the perturbed data ϕδh,τ by the output least
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1% noise 5% noise

Figure 5.2.: Reconstructions of the mobility function b(·) derived from perturbed data
ϕδh,τ (·, t) with t ∈ [0, 0.004]. The noise level δ is specified in the title of the

plots. The range of the observations ϕδh,τ is once more depicted in grey. The
solid blue line depicts the true parameter, while the dotted red line represents
the reconstructions bδα(·). The regularisation parameter α was chosen by the
discrepancy principle, with τ = 1.1.

squares method. Once more, the reconstructed mobility aligns well with the true param-
eter b(·) on the range of attained data, while the reconstructions outside this range are
stable but biased by the regularisation term in the Tikhonov functional.

Identification of f(·) and b(·)

Here, we only assume that the interface parameter γ is known and consider the iden-
tification of both parameter functions. According to Theorem 2.4.7, the simultaneous
identification of both parameters b(·) and f(·) requires observations at multiple time
steps, which is naturally satisfied by the Tikhonov regularisation approach. Moreover,
the observability condition stated in Theorem 2.4.7 has to be valid. For our numerical
test, we verified the required linear independence. In Figure 5.3, we depict reconstruc-
tions bδα(·) and (f δα)

′(·) obtained from observations ϕδh,τ , acquired under two distinct noise
levels.

As expected, the parameter functions are reliably and accurately determined on the
range of available data. While the separate identification maintains stability and accu-
racy even at higher noise levels, the simultaneous identification exhibits a comparatively
reduced accuracy.

5.3.2. Two dimensional test problem

We use the same setup as in Subsection 3.4.5 for our model problem in dimension d = 2.
Hence, we consider as computational domain the unit square Ω. We select, similar to the
experiment in one dimension, the following parameter functions

f(s) = 0.3(2(s+ 0.99)3(s− 0.99)(3s− 0.99)), b(s) = (1− s)4(1 + s)2 + 0.1,
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b(·) f ′(·)

Figure 5.3.: Simultaneous reconstructions of b(·) and f ′(·) from perturbed data ϕδh,τ (·, t)
with t ∈ [0, 0.004]. Here, the noise level δ is 1% in the top row and 5%
in the bottom row. The range of the attained data is again depicted in
grey. The solid blue line depicts the true parameter functions, while the
corresponding reconstructions bδα(·) and (f δα(·))′ are denoted by dotted red
lines. The regularisation parameter was determined using the discrepancy
principle, with τ = 1.1.

where f is the derivative of the double well potential λ(s) = 0.3(s − 0.99)2(s + 0.99)4,
and we set γ = 0.003 for the interface parameter. Once again, note that Assumptions
5.1.1 are satisfied up to modifications. As the initial distribution of the phase fraction,
we choose

ϕ0(x, y) = −0.1 cos(4πx) sin(2πy) + 0.05 sin(2πx) sin(4πy).

The discretisation parameters of the finite element spaces are chosen as σ = 0.1 for the
parameter functions, and, for the Cahn-Hilliard equation (5.1)–(5.2), we choose for the
triangulation in space h = 1/32 and as time step size τ = 4 · 10−3. The final time is set to
T = 0.08, which amounts to the computation of 20 time steps. The artificial measurements
for our tests are generated as follows: We apply the forward operator using the parameter
functions f(·) and b(·) as prescribed to compute ϕh,τ , which is then perturbed by white
noise with magnitude δ := ∥ϕh,τ − ϕδh,τ∥L2(0,T ;L2(Ω)). The precise noise level is specified in
the tests.

Again, we compute reconstructions for each of the three identification problems. For
the iterative solution procedure, we choose as initial values of the parameters b(·) and
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f(·), depending on the identification problem, the functions

b0(s) ≡ 1, f0(s) = 0.8s(s2 − 0.992)

where the later is the derivative of a symmetric potential λ0(s) = 0.2(s−0.99)2(s+0.99)2.
Further we set b∗(·) ≡ f ∗(·) ≡ 0. The results of the reconstructions are depicted below.

Remark 5.3.3 (Identifiability). In Subsection 3.4.4, we depicted the evolution of the
phase fraction and the energy to infer information regarding the intervals where the pa-
rameter functions can be identified. From this, the identifiability conditions can be veri-
fied. These areas are depicted as grey backgrounds in our figures. Beyond the intervals
where unique identification is ensured, the regularisation term determines the solution.

The obtained approximations for the identification of either f ′(·) of b(·) are depicted in
Figures 5.4 and 5.5, respectively. We observe that the reconstructions again are in good
agreement with the true parameter functions on the range of attained data. Outside of
this interval, the regularisation leads to a certain bias, as expected.

1% noise 5% noise

Figure 5.4.: Reconstructions of f ′(·) using perturbed data ϕδh,τ (·, t) where t ∈ [0, 0.08]. The
noise level δ is specified in the title of the plots. The range of the observations
ϕδh,τ is depicted in grey. The solid blue line depicts the true function f ′(·),
while the dotted red line illustrates the reconstruction (f δα)

′(·) obtained by the
output least squares method outlined in Subsection 5.2. The regularisation
parameter α was determined using the discrepancy principle, with τ = 1.1.

In Figure 5.6, we depict the result of the simultaneous identification of both parameter
functions.

5.3.3. Comparison to the equation error method

As previously stated, a direct comparison between the two methods is unfeasible. How-
ever, we computed the interpolation error of the data utilised in the equation error method,
subsequently deriving the noise level. This approach allows a qualitative comparison of
the two methods. In doing so, we derived a noise level of approximately 0.1%. By em-
ploying this noise level for the output least squares method, the resulting reconstructions
are almost indistinguishable from the true parameter functions and surpass the results
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1% noise 5% noise

Figure 5.5.: Reconstructions of the mobility function b(·) derived from perturbed data
ϕδh,τ (·, t) with t ∈ [0, 0.08]. The noise level δ is specified in the title of the

plots. The range of the observations ϕδh,τ is once more depicted in grey. The
solid blue line depicts the true parameter, while the dotted red line represents
the reconstructions bδα(·). The regularisation parameter α was chosen by the
discrepancy principle, with τ = 1.1.

from the equation error method. On the other hand, the equation error method has
fewer computation costs and thus is a cheap-to-apply method if sufficiently regular data
is available.
Furthermore, the equation error method does not yield qualitatively good reconstruc-

tions for higher noise levels. This is expected, considering that the interpolation of the
data does not effectively prevent noise amplification, mainly due to the calculation of the
higher derivatives used in the equation error method. Although this behaviour can be
mitigated to a certain extent through presmoothing of the data, this becomes unfeasible
at some point.
Let us note that the nonlinear method is a more versatile approach, and it is more

transparent how to extend the method to more complex models. In contrast, the extension
of the equation error method might be more involved as the approach was fine-tuned to
the Cahn-Hilliard equation in a certain sense.

5.3.4. Final remarks

Let us provide some final remarks on additional numerical tests we conducted.

Remark 5.3.4 (Degenerate parameter functions). In our numerical examples, we con-
sidered non-degenerate polynomial parameter functions which satisfy Assumptions 5.1.1.
Moreover, as indicated in Remark 2.2.3, it is also possible to consider e.g. logarithmic
potentials by regularising the degenerate regions, which are expected not to be attained
by the data. Further numerical tests show that our approach yields reconstructions com-
parable to the examples we have presented.

Remark 5.3.5 (Convergence rates). By assuming that suitable source conditions are
valid, see e.g. the assumptions of Theorem A.1.3, the best rates we can expect for
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b(·) f ′(·)

Figure 5.6.: Simultaneous reconstructions of b(·) and f ′(·) from perturbed data ϕδh,τ (·, t)
with t ∈ [0, 0.08]. Here, the noise level δ is 1% in the top row and 5%
in the bottom row. The range of the attained data is again depicted in
grey. The solid blue line depicts the true parameter functions, while the
corresponding reconstructions bδα(·) and (f δα)

′(·) are denoted by dotted red
lines. The regularisation parameter was determined using the discrepancy
principle, with τ = 1.1.

Tikhonov regularisation are

∥xδα − x†∥H2(I) = O(
√
δ) and ∥F (xδα)− ϕδ∥L2(0,T ;L2(Ω)) = O(δ).

We attained these rates in a numerical test using the set-up of the experiment in one
dimension at the beginning of this Section 5.3. A detailed investigation of the source
conditions is open and is a possible direction for future research.

Remark 5.3.6 (Tests in three dimensions). We previously noted that our analysis does
not include dimension d = 3. As the existence of solutions of the Cahn-Hilliard equation
only holds up to a small time T , the analysis of the inverse problems is also restricted
to a small time frame. However, in practice, one expects the identification method also
to yield good reconstructions beyond T if we have measurements in three dimensions.
Indeed, we did some tests and can confirm that the output least squares method also
yields reconstructions in three dimensions, which are comparable to the results in two
dimensions.
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Conclusion

In this chapter, we have studied the realisation of the output least squares method to
identify the parameter functions f(·) and b(·). We discussed a suitable discretisation of the
approach by a Petrov-Galerkin framework and presented numerical results demonstrating
the feasibility of the method. Compared to the equation error method, the output least
squares approach yields reconstructions for less regular data and higher noise levels. This
comes with increased computational costs.
Let us mention some directions for possible future research. We have already indicated

that it is possible to obtain convergence rates; hence, one might investigate the source
conditions. Moreover, we used fully distributed measurements for our presentation, but
one might consider other data. Another direction is to use the presented framework
above and apply it to more complex models, for example [1], [20], [21], [29] or [62] and
references therein. In the next chapter, we apply the output least squares method to two
more complex models to support this claim.
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6. Extensions to more complex models

In the previous chapters, we discussed in detail the parameter identification problem in
the Cahn-Hilliard equation from measurements of distributed phase fraction data. Future
research might also consider extensions of those approaches to more realistic models which
incorporate more parameters to identify or include more physical variables.
We will now present preliminary results of applying the output least squares approach to

two extended models, i.e. a Cahn-Hilliard model incorporating a matrix-valued mobility
function in Section 6.1 and a Cahn-Hilliard-Allen-Cahn phase-field model incorporating
a generalised mobility in Section 6.2. Therein, we will consider the identification of the
mobility and will assume that the other parameter functions are known. As we aim to
illustrate the feasibility of the method from Chapter 4 and 5, we will present numerical
results without proofs. Instead, we will refer to the literature and suggest future research
directions.

6.1. Cahn-Hilliard with matrix-valued mobility

We consider the following modified Cahn-Hilliard model

∂tϕ = div (B∇µ) , (6.1)

µ = −γ∆ϕ+ f(ϕ), (6.2)

where the mobility B is now a matrix with values in Rd×d and may depend on the phase
fraction ϕ and its gradient ∇ϕ. For our illustration of the applicability of the output least
squares approach, we only consider the dependence on ∇ϕ. The system is complemented
with periodic boundary conditions and an initial distribution ϕ0. We choose the following
assumptions for the parameter functions of the modified Cahn-Hilliard model.

Assumptions 6.1.1. We impose the following assumptions on the model parameters:

(A1) γ > 0 is a positive constant;

(A3) f(s) = λ′(s) with λ ∈ C4(R) such that λ(s), λ′′(s) ≥ −cλ1 , for some cλ1 ≥ 0.

Furthermore, λ and its derivatives are bounded by |λ(k)(s)| ≤ C
(k)
λ2

+ C
(k)
λ3

|s|4−k for

0 ≤ k ≤ 4 with constants C
(k)
λ2
, C

(k)
λ3

≥ 0.

(A4) for any ∇ϕ, the matrix B : ∇ϕ→ B(∇ϕ) ∈ Rd×d is symmetric and positive definite
with

λ1|ξ|2 ≤ ξ⊤B(∇ϕ)ξ ≤ λ2|ξ|2, ∀ξ ∈ Rd.

Moreover, every component bij(·) of B(·) is a function in C2(R) of its arguments,
with derivatives which are uniformly bounded by some constants, i.e. ∥b′ij∥∞ ≤ Cb′ ,
∥b′′ij∥∞ ≤ Cb′′ .
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6. Extensions to more complex models

The existence of solutions can then be derived using standard techniques analogue to
Lemma 2.2.1, compare also to [20].

The inverse problem

We consider the parameter-to-measurement operator

F : D(F ) ⊂ X → Y, B 7→ ϕ,

where ϕ is first component of the solution to the problem (6.1)–(6.2). In this section,
the inverse problem under consideration is the following: given spatially measurements
ϕδ find a mobility B such that

F (B) = ϕδ.

This is a non-linear parameter identification problem between Hilbert spaces X and Y ,
which we define now. By X = H2(ΩB)

d×d we denote the space of d × d matrices with
entries from the Hilbert space H2(ΩB), where ΩB is a two dimensional domain, such that
∇ϕ(x, t) ∈ ΩB. On this space, we consider the inner product

(B(·), B̃(·))X :=
d∑

i,j=1

(bij(·), b̃i,j(·))H2 ,

and the corresponding norm

∥B(·)∥2X =
d∑

i,j=1

∥bij(·)∥2H2 .

For the image space, we choose Y = L2(0, T ;L2(Ω)). Hence, we define the domain of the
forward operator as follows:

D(F ) := {B ∈ X : Assumptions 6.1.1 hold}.

Remark 6.1.2 (Identifiability). In principle, our identifiability results from Section 2.4.2
can be generalised to the extended model, with some additional assumptions on the set
R̃t. The question on the identifiability of a matrix diffusion coefficient has been addressed
in a recent publication [79], which goes back to ideas of [94]. These works are a good
starting point to formulate an identifiability result for the extended model (6.1)–(6.2).

Tikhonov regularisation

We assume that the measurements ϕδ satisfy the following condition

∥ϕ− ϕδ∥L2(L2) ≤ δ,

with known noise level δ > 0. As in Chapter 4, we consider the Tikhonov regularisation
approach. Consequently, we will obtain stable approximations to the true parameter
function B†, which fulfils F (B†) = ϕ, by minimising the Tikhonov functional

min
B∈D(F )

Jδα(B) :=
1

2
∥F (B)− ϕδ∥2L2(L2) +

α

2
∥B−B∗∥2H2 ,
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6.1. Cahn-Hilliard with matrix-valued mobility

where α > 0 is a regularisation parameter and B∗ is an initial guess of the parameter
functions. At this point, we now would have to discuss the properties of the forward
operator F (·) to ensure the existence of a minimiser, which we leave out. To solve the
minimisation problem, we employ the Gauss-Newton iteration from the previous chapters,
i.e.

(F ′(Bk)∗ F ′(Bk) + αI)∆Bk = F ′(Bk)∗(yδ − F (Bk))− α(Bk −B∗),

Bk+1 = Bk + ω∆Bk,

where 0 < ω < 1. Note, we did not include a projection back to D(F ) here. We comment
on this again in the following. For the implementation of the iteration, we state the
linearised problem of the system (6.1)–(6.2), which is used to define the derivative F ′(B),
and an adjoint problem, which leads to a representation of F ′(B)∗. Both are derived
analogue to the derivation in Section 4.3 and 4.4, and we do not discuss proofs.

Linearised problem and derivative of F (·)

Let Assumptions 6.1.1 hold, and consider a fixed matrix B(·) ∈ D(F ) with corresponding
solution (ϕ, µ). Moreover, we assume for a matrix function B̂ ∈ X that B + B̂ remains
in D(F ), hence also satisfying Assumptions 6.1.1. In this setting, the linearised problem
of the extended Cahn-Hilliard model (6.1)–(6.2) for the variables (ψ, ξ) reads as follows

∂tψ − div(∂B(∇ϕ)∇ψ∇µ)− div(B(∇ϕ)∇ξ) = div(B̂(∇ϕ)∇µ) in Ω× (0, T ), (6.3)

ξ + γ∆ψ − f ′(ϕ)ψ = 0 in Ω× (0, T ), (6.4)

with initial condition ψ(0, x) = 0 and complemented with periodic boundary conditions.
Here, by ∂B we denote the component-wise total derivative of B, i.e.

(∂B)ij :=
d∑

n=1

∂Bij

∂xn
.

Subsequently, we define the derivative of F (·) as follows

F ′(B) : H2(ΩB)
d×d → L2(0, T ;L2(Ω)), B̂ 7→ ψ,

where ψ is the first component of the solution to the linearised problem.

Remark 6.1.3 (Convergence rate of the remainder). In the proof of Fréchet differentia-
bility in Section 4.3, we derived quadratic convergence of the residual ϕ̄ = ϕ2 − ϕ1 − ψ.
For the extended model, we analogously performed a numerical test also yielding the
quadratic convergence of the residual.

Adjoint problem

Let Assumptions 6.1.1 hold, and let B ∈ D(F ) be a fixed matrix with corresponding
solution (ϕ, µ) of the extended model (6.1)–(6.2). Then one derives in the same way as
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6. Extensions to more complex models

in Section 4.4, i.e. using the Lagrangian function, the following problem for the adjoint
states (p, q):

−∂tp+ div(∂B(∇ϕ)∇µ∇p) + γ div(∇q)− f ′(ϕ)q = −(ϕ− ϕδ) in Ω× (0, T ), (6.5)

q − div(B(∇ϕ)∇p) = 0 in Ω× (0, T ), (6.6)

with p(T, x) = 0 in Ω, periodic boundary conditions and data ϕδ ∈ L2(0, T ;L2(Ω)).

Representation of the Adjoint operator F ′(B)∗

The representation of the adjoint operator F ′(B)∗ is derived as in Theorem 4.4.2. Let
Assumptions 6.1.1 hold, and ϕδ ∈ L2(0, T ;L2(Ω)). Further, let B(·) be an admissible
matrix with associated solution (ϕ, µ) of the extended Cahn-Hilliard equation, and let
(p, q) be the solution to the adjoint problem (6.5)–(6.6), which depends on (ϕ, µ),B(·)
and ϕδ. Then, one formally defines the adjoint operator via

(F ′(B)∗r, B̂)X := (r, F ′(B)(B̂))Y = (r, ψ)Y ,

for all r ∈ Y and B̂ ∈ X. Analogue to the derivation in Section 4.4, one deduces that the
result of an application of the adjoint operator, i.e. the outcome of G := F ′(B)∗r ∈ X,
is then defined as the solution of the variational problem:

(G, B̂)X = (B̂(∇ϕ)∇µ,∇p)L2(L2)

for all B̂ ∈ X.

Numerical results

For the discretisation of the previous schemes, we proceed in the same way as described
in Section 5.1, i.e. utilising the Petrov-Galerkin approach, with obvious modifications due
to the new mobility matrix. We omit the details and continue with a numerical example
of the output least squares approach.
The domain of our test problem is chosen as Ω = (0, 1)2, we set γ = 0.003 for the

interface parameter and select

f(s) = 0.2(2(s+ 0.99)3(s− 0.99)(3s− 0.99)),

which is the derivative of the double-well potential λ(s) = 0.2(s− 0.99)2(s + 0.99)2. For
the mobility matrix, we select

B(x, y) = I+
0.2

10 + x2 + y2

(
x2 xy
xy y2

)
where I denotes the identity matrix. As the initial distribution of the phase fraction, we
choose

ϕ0(x, y) = 0.05 cos(4πx) sin(2πy) + 0.1.

Together, these functions satisfy Assumptions 6.1.1. As discretisation parameters of the
finite element spaces, we choose for the extended Cahn-Hilliard model (6.1)–(6.2) the
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6.1. Cahn-Hilliard with matrix-valued mobility

t=0 t=0.1 t=0.15

t=0.2 t=0.4 energy

Figure 6.1.: Snapshots of the phase fraction ϕh,τ for time points t specified in the title of
the plots. The evolution of the energy E(ϕ) =

∫
Ω
γ
2
|∇ϕ|2+λ(ϕ) dx is depicted

with additional markers which correspond to the time points of the snapshots.

spacial discretisation h = 1/32 and as time step size τ = 1 · 10−2. The final time is set
to T = 0.4, which amounts to 40 time steps. The evolution of the phase fraction ϕh,τ is
depicted in Figure 6.1.

Let us now turn to the inverse problem. The components of the mobility matrix are
discretised by the tensor product of one-dimensional cubic splines with natural boundary
conditions, and we choose Xσ = H2([a, b]2)2×2 with discretisation parameter σ = 1, while
the interval is chosen as a = −10, b = 10. The choice of a, b stems from the range of
∇ϕ. Note that the matrix is said to be symmetric. Thus, only three discrete parameter
functions are needed in practice.

The artificial measurements for our test are generated as follows: We apply the forward
operator using the parameter B(·) as prescribed to compute ϕh,τ , which is then perturbed
by white noise with magnitude δ := ∥ϕh,τ −ϕδh,τ∥L2(L2). For the noise level, we choose 1%.

For our iterative solution procedure, we choose as the initial values of the mobility
matrix B(·) the identity, i.e. B0 = I. Further, we set B∗ = I, as we used no measures to
impose the positive definiteness of the mobility matrix. Once more, we apply the discrep-
ancy principle to determine the regularisation parameter α. The resulting reconstructions
of the parameter functions in B(·) are depicted in Figure 6.2.

The Tikhonov regularisation approach yields stable and accurate reconstructions in
regions where data is available. A closer look at the data ϕ reveals that the range of the
derivative ∂yϕ is much larger than the range of the derivative ∂xϕ, see Figure 6.1. This
is (on purpose) a consequence of the chosen example. Considering the reconstructions
in Figure 6.2, we observe that the function (Bδ

α)22 agrees well with the true parameter
function, while the function (Bδ

α)11 is reconstructed on a smaller region. This reflects
our observation that more data is available in the y-direction. We conclude that the
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(B†)11 (B†)12 (B†)22

(Bδ
α)11 (Bδ

α)12 (Bδ
α)22

Figure 6.2.: Reconstructions of B(·) using perturbed data ϕδh,τ . The noise level δ is set to
1%. The reconstructions are depicted on the range of the observations ∇ϕ.
The upper row depicts the true parameter functions, while the corresponding
reconstructions are shown in the lower row. The regularisation parameter α
was determined by the discrepancy principle, with τ = 1.1.

reconstructions agree well in regions where much data is available. In regions with no
available data, the regularisation and the chosen B∗ determine the reconstructions. This
demonstrates the applicability of the method to the extended Cahn-Hilliard model (6.1)–
(6.2), but also highlights that observability conditions are now more involved.

Remark 6.1.4 (Challenges of future research). For the rigorous analysis of the parameter
identification problem in the extended Cahn-Hilliard model (6.1)–(6.1), there are two
main differences or challenges compared to the standard Cahn-Hilliard System (1.1)–
(1.2). First, the mobility is now matrix-valued and may depend on the gradient of the
phase-fraction. Using the techniques in the recent works [20, 17] should lead to the
existence of solutions, i.e. the forward operator, and should further lead to continuity
results. Second, the dependence on the gradients leads to a ∇ϕ term in the linearised
problem. In principle, the previous proof strategy in Section 4.3 should also apply here,
but a careful investigation has to be done.

6.2. Cahn-Hilliard/Allen-Cahn system with cross-kinetic
coupling

In this section, we apply the Tikhonov regularisation approach of Chapter 4 to a cou-
pled system of Cahn-Hilliard and Allen-Cahn equations with a strong coupling through
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6.2. Cahn-Hilliard/Allen-Cahn system with cross-kinetic coupling

gradient-dependent mobility matrices. We consider the following coupled system [20, 17]:

∂tρ = div(L11∇µρ + L12∇µη), µρ = −γρ∆ρ+ λρ(ρ, η), (6.7)

∂tη = −L12 · ∇µρ − L22µη, µη = −γη∆η + λη(ρ, η), (6.8)

where ρ and η are conserved and non-conserved quantities, γρ, γη are the corresponding
interface parameters, and λ(ρ, η) is a free energy density, whose partial derivatives are
denoted by λρ(ρ, η) and λη(ρ, η). We complement the system with periodic boundary
conditions and initial distributions of ρ and η. Moreover, L(·) denotes a generalised
mobility matrix, which is symmetric, positive definite and depends on the gradient of the
phase field ρ. In [20, 17], the authors allow the mobility matrix L to depend on ρ, η
and its gradients. However, we do not consider the general case for our demonstration
of applicability. For a detailed description and analysis of the model problem, we refer
to [20, 17]. Let us now formulate the assumptions on the domain and the parameters
ensuring the well-posedness of the problem.

Assumptions 6.2.1 ([17]). We assume

(A0) Ω ≃ Td, is the d-dimensional torus; functions defined on Ω are assumed to be
periodic.

(A5) the interface parameters γρ and γη are positive constants;

(A6) for any ∇ρ, the matrix L(∇ρ) ∈ R(d+1)×(d+1) is symmetric and positive definite with

λ1|ξ|2 ≤ ξ⊤L(∇ρ)ξ ≤ λ2|ξ|2, ∀ξ ∈ Rd+1.

Moreover, every component bi,j(·) of L(·) is a function in C2(R) of its argument ∇ρ,
with derivatives which are uniformly bounded by some constant λ3.

(A7) the potential λ(·, ·) is smooth with λ(ρ, η) > 0 and satisfies∣∣∣∣∂k+lλ(ρ, η)∂kρ ∂lη

∣∣∣∣ ≤ C1

∑
|ρ|4−k + |η|4−l + C2

for all 0 ≤ k, l, k + l ≤ 4. Furthermore, the shifted potential

λ(ρ, η) +
α

2
(|ρ|2 + |η|2)

is strictly convex for some α > 0.

In addition, we assume ρ0, η0 ∈ H1(Ω).

Under these assumptions, the existence and regularity of solutions and their discretisa-
tion have been discussed in [20, 17].
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The inverse problem

We consider the parameter-to-measurement operator

F : D(F ) ⊂ X → Y, L → (ρ, η),

where (ρ, η) are the first and third components of a solution to the problem (6.7)–(6.8).
The inverse problem under consideration in this section is the following: given measure-
ments (ρδ, ηδ) find a generalised mobility L(·) such that

F (L) = (ρδ, ηδ).

Again, this is a non-linear parameter identification problem between Hilbert spaces X
and Y , which we define as follows

X = (H2(ΩL))
(d+1)×(d+1), Y = L2(0, T ;L2(Ω))2,

where ΩL is a two dimensional domain, such that ∇ρ ∈ ΩL. We define the domain of the
forward operator as

D(F ) := {L ∈ X : Assumptions 6.2.1 hold }.

Remark 6.2.2 (Identifiability). In Section 2.4.2, we formulated and proved identifiability
conditions for the Cahn-Hilliard equation. Those results can adjusted to derive similar
identifiability conditions for the Allen-Cahn equation, where now the set R̃t depends on
the chemical potential instead of its gradient. In Section 6.1, we outlined proof ideas in
the case of a matrix-valued mobility. However, the identifiability of the parameters in the
coupled Cahn-Hilliard/Allen-Cahn system is an open problem. The previous ideas should
be a starting point for further investigations.

Tikhonov regularisation

We assume that the measurements (ρδ, ηδ) satisfy the following condition

∥ρ− ρδ∥L2(L2) + ∥η − ηδ∥L2(L2) ≤ δ,

with known noise level δ > 0. Again, we consider the Tikhonov regularisation approach
and will compute stable approximations to the true parameter functions L†(·), which
fulfils F (L†) = (ρ, η), by minimising the Tikhonov functional

min
L∈D(F )

Jδα(L) :=
1

2
∥F (L)− (ρδ, ηδ)∥2L2(L2) +

α

2
∥L− L∗∥2X ,

where α > 0 is a regularisation parameter and L∗(·) is an initial guess of the parameter
functions. Again, at this point, we now would have to discuss the properties of the forward
operator F (·) to ensure the existence of a minimiser, which we leave out. For the solution
we employ the Gauss-Newton iteration from the previous chapters, i.e

(F ′(Lk)∗ F ′(Lk) + αI)∆Lk = F ′(Lk)∗(yδ − F (Lk))− α(Lk − L∗),

Lk+1 = Lk + ω∆Lk,
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6.2. Cahn-Hilliard/Allen-Cahn system with cross-kinetic coupling

where 0 < ω < 1. Note, we did not include a projection back to D(F ) here. To implement
the iterative scheme, we state the linearised problem of (6.7)–(6.8), which is used to define
F ′(L), and an adjoint problem, which leads to a representation of F ′(L)∗. Both are derived
analogue to the derivation in Section 4.3 and 4.4.

Linearised problem and derivative of F (·)

Let Assumptions 6.2.1 hold, and consider a generalised mobility L(·) ∈ D(F ) with cor-
responding solution (ρ, µρ, η, µη). Moreover, we assume that for a matrix L̂ ∈ X that

L + L̂ remains in D(F ), hence also satisfying Assumptions 6.2.1. In this setting, the
linearised problem of the coupled Cahn-Hilliard/Allen-Cahn model (6.7)–(6.8) for the
variables (ρ̃, µ̃ρ, η̃, µ̃η) reads as follows:

∂tρ̃− div(∂ρL11∇ρ̃∇µρ + ∂ρL12∇ρ̃µη + L11∇µ̃ρ + L12µ̃η) = R1, (6.9)

µ̃ρ + γρ∆ρ̃− ∂ρλρρ̃− ∂ηλρη̃ = 0, (6.10)

∂tη̃ + ∂ρL12 · ∇ρ̃∇µρ + ∂ρL22∇ρ̃µη + L12 · ∇µ̃ρ + L22µ̃η = R2, (6.11)

µ̃η + γη∆η̃ − ∂ρληρ̃− ∂ηληη̃ = 0, (6.12)

in Ω × (0, T ), where R1 = − div(L̂11∇µρ + L̂12µη) and R2 = −(L̂12 · ∇µρ + L̂22µη), and
initial conditions ρ(0, x), η(0, x) = 0 complemented with periodic boundary conditions.
Subsequently, we define the derivative of F (·) as follows

F ′(L) : H2(ΩB)
(d+1)×(d+1) → (L2(0, T ; (Ω)))2, L̂ 7→ (ρ̃, η̃),

where (ρ̃, η̃) are the first and third components of the solution to the linearised problem.

Remark 6.2.3 (Convergence rate of the remainder). We performed a convergence test
of the remainder, which now includes ρ̄ := ρ2 − ρ1 − ρ̃ and η̄ := η2 − η1 − η̃, and observed
quadratic convergence.

Adjoint problem

Let Assumptions 6.2.1 hold, and let L ∈ D(F ) be a fixed matrix with corresponding
solution (ρ, µρ, η, µη) of the Cahn-Hilliard/Allen-Cahn model (6.7)–(6.8). By using the
Lagrangian function similar as in Section 4.4, we derive the following problem for the
adjoint states (p, q, r, s):

∂tp+ (∂ρL11∇µρ + ∂ρL12µη)∇p+ γρ∆q − ∂ρλρq − ∂ρληs

+(∂ρL12 · ∇µρ + ∂ρL22µη)r = −(ρ− ρδ),
(6.13)

q − div(L11∇p+ L12 · r) = 0, (6.14)

−∂tr + γη∆s− ∂ηληs− ∂ηλρq = −(η − ηδ), (6.15)

L22r + s+ L12∇p = 0, (6.16)

with p(T, x), r(T, x) = 0 for x ∈ Ω, data ρδ, ηδ ∈ L2(0, T ;L2(Ω)) and complemented with
periodic boundary conditions.
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Representation of the adjoint operator F ′(L)∗

The representation of the adjoint operator F ′(L)∗ is derived as in Theorem 4.4.2. Let
Assumptions 6.2.1 hold, and ρδ, ηδ ∈ L2(0, T ;L2(Ω)). Further, let L(·) be an admissi-
ble matrix with associated solutions (ρ, µρ, η, µη) of the Cahn-Hilliard/Allen-Cahn model
(6.7)–(6.8). Moreover, let (p, q, r, s) be the solution to the adjoint problem (6.13)–(6.16),
which depends on the solution (ρ, µρ, η, µη), the parameters L(·) and the data ρδ, ηδ. Then,
one formally defines the adjoint operator via

(F ′(L)∗y, L̂)X := (y, F ′(L)(L̂))Y = (y, (ρ̃, η̃))Y ,

for y ∈ Y and L̂ ∈ X. Similar as in Section 4.4, one deduces that the result of an
application of the adjoint operator, i.e. the outcome G := F ′(L)∗y ∈ X, is then defined
as the solution of the variational problem:

(G, L̂)X =(L̂11(∇ρ)∇µρ,∇p)L2(L2(Ω)) + (L̂12(∇ρ)µη,∇p)L2(L2(Ω))

+ (L̂12(∇ρ)∇µρ, r)L2(L2(Ω)) + (L̂22(∇ρ)µη, r)L2(L2(Ω))

for all L̂ ∈ X = (H2(ΩL))
(d+1)×(d+1).

Numerical results

The previous schemes are discretised using the Petrov-Galerkin approach described in
Section 5.1; consider also [17]. We omit the details and continue with a numerical example.
The following parameter choices resemble the numerical example in [17]. We consider

the domain Ω = (0, 1)2, set γρ = γη = 0.001 for the interface parameters and select as
potential function

λ(ρ, η) = Cρ2(1− ρ)2 +D[ρ2 + 6(1− ρ)(η2 + (1− η)2)− 4(2− ρ)(η3 + (1− η)3)

+ 3(η2 + (1− η)2)2],

where C = 1 and D = 0.062. For the generalised mobility matrix, we choose

L11(x, y) = I+
1

10 + x2 + y2

(
x2 xy
xy y2

)
, L12(x, y) =

√
100√

10 + x2 + y2

(
x
y

)
, L22 = 100,

where I denotes the identity matrix. As the initial distribution of the quantities ρ and η,
we choose

ρ0(x, y) = 0.5 + 0.45 sin(2πx) sin(2πy), η0(x, y) = 0.5 + 0.45 sin(4πx) sin(2πy).

Together, these functions satisfy Assumptions 6.2.1. As discretisation parameters of the
finite element spaces, we choose for the Cahn-Hilliard/Allen-Cahn system (6.7)-(6.8) the
spacial discretisation h = 1/32 and as time step size τ = 1 · 10−4. The final time is set to
T = 0.06, which amounts to 600 time steps. The evolution of the quantities ρh,τ and ηh,τ
are depicted in Figures 6.3 and 6.4.
Now, we consider the inverse problem. The components of the generalised mobility

matrix are again discretised by the tensor product of one-dimensional cubic splines with
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t=0 t=0.005 t=0.01

t=0.03 t=0.06 energy

Figure 6.3.: Snapshots of the phase fraction ρh,τ for time points t specified in the title of the
plots. The evolution of the energy E(ρ, η) =

∫
Ω
γ
2
|∇ρ|2+ γ

2
|∇η|2+λ(ρ, η) dx is

depicted with additional markers on the x-axis which correspond to the time
points of the snapshots.

t=0 t=0.005 t=0.01

t=0.03 t=0.06 energy

Figure 6.4.: Snapshots of the phase fraction ηh,τ for time points t specified in the title of the
plots. The evolution of the energy E(ρ, η) =

∫
Ω
γ
2
|∇ρ|2+ γ

2
|∇η|2+λ(ρ, η) dx is

depicted with additional markers on the x-axis which correspond to the time
points of the snapshots.

natural boundary conditions. We choose for the parameter space H2([a, b]2) the discreti-
sation parameter σ = 0.1, while a = −10, b = 10. The choice of a, b stems from the range
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of ∇ρ. Note that the matrix L(·) has to be symmetric. Thus, only six discrete parameter
functions are needed in practice. Further, we assume that L22(·) is just a real number.

The perturbed data for our test are generated as before: We apply the forward operator
using the previous parameters to compute ρh,τ and ηh,τ , to which we then add white noise
with magnitude δϕ = ∥ρh,τ − ρδh,τ∥L2(L2), δη = ∥ηh,τ − ηδh,τ∥L2(L2). As noise level, we choose
1% for both.

For our iterative solution procedure, we choose as the initial values of the generalised
mobility L(·):

L11,0 = I, L12,0 = 0, L22,0 = 1,

and we set

L∗
11,0 = I, L∗

12,0 = 0, L∗
22,0 = 1.

We used no further measures to impose the positive definiteness of the matrix. The
discrepancy principle is then applied to determine the regularisation parameter α. The
resulting reconstruction of L11(·) is depicted in Figure 6.5, while the result for L12(·) is
shown in Figure 6.6. The real number L22 was determined to Lα,δ22 = 98.3342 (L†

22 = 100).

(L†
11)11 (L†

11)12 (L†
11)22

(Lα,δ
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11 )12 (Lα,δ
11 )22

Figure 6.5.: Reconstructions of L11(·) using perturbed data ρδh,τ , η
δ
h,τ . The noise level δ

is set to 1%. The reconstructions are depicted on the range of ∇ρ. The
upper row depicts the true parameter functions, while the corresponding re-
constructions are shown in the lower row. The regularisation parameter α
was determined by the discrepancy principle, with τ = 1.1.

Also, for this more complex model, we derive stable and accurate reconstructions
demonstrating the applicability of the method to the Cahn-Hilliard/Allen-Cahn model
(6.7)-(6.8). A closer look at the data ρ reveals that the reconstructions agree well in
regions where data is available and are biased by the regularisation and the initial guess
where less or no data is available.
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Figure 6.6.: Reconstructions of L12(·) using perturbed data ρδh,τ , η
δ
h,τ . The noise level δ is

set to 1%. The reconstructions are depicted on the range of ∇ρ. The upper
row depicts the true parameter functions, while the corresponding reconstruc-
tions are shown below in the lower row. The regularisation parameter α was
determined by the discrepancy principle, with τ = 1.1.

Remark 6.2.4 (Challenges of future research). For the rigorous analysis of the param-
eter identification problem in the Cahn-Hilliard/Allen-Cahn model (6.7)–(6.8), there are
several challenges compared to the standard Cahn-Hilliard System (1.1)–(1.2). Similar
to the generalised Cahn-Hilliard model in the previous section, the generalised mobil-
ity is now matrix-valued and depends on the gradient of the phase-fraction. Using the
techniques in the recent works [20, 17], one derives the existence of solutions, and one
should further be able to obtain the required continuity results using similar techniques.
However, this is now a coupled model and identifiability results in this case are an open
problem. Moreover, the dependence on the gradients again leads to a ∇ρ term in the
linearised problem. In principle, the previous proof strategy in Section 4.3 might apply
here, but a careful investigation is necessary.
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7. Conclusion

In this thesis, we considered the identification of the phase fraction dependent parameter
functions in the Cahn-Hilliard equation from the knowledge of distributed phase fraction
data. We established identifiability results and derived a linear and a nonlinear approach
for the stable reconstruction of the parameter functions. The approaches were investi-
gated analytically, and we demonstrated the numerical realisation. Finally, we considered
preliminary results using our approach to identify parameters in more complex models.
Let us now summarise our main contributions and some directions for future research.

Identifiability

We established an inherent non-uniqueness of the parameter identification problem in the
Cahn-Hilliard equation, which led to the exclusion of the interface parameter γ from our
considerations. We then proved that the mobility b(·) and the potential derivative f(·)
can be identified uniquely under realistic observability conditions. Further, we derived a
conditional identifiability result to uniquely identify both parameters simultaneously.

Equation error method

We employed an equation error approach to solve the parameter identification problems.
The insertion of the data into the Cahn-Hilliard equation led to linear operator equations
with perturbed operators. As the problem is ill-posed, we applied Tikhonov regularisation
to derive stable reconstructions of the parameter functions. Here, we used an abstract
result as a theoretical backup and showed that our problems satisfied the prescribed
assumptions, establishing the well-posedness of the approach. In the numerical tests, we
demonstrated the feasibility of the method and discussed the limitations of this approach
due to its dependence on the quality of the available data.

Output least squares

In order to circumvent the problems of the previous method, we also considered an output
least squares approach. This led to a nonlinear inverse problem in Hilbert spaces, and
we applied Tikhonov regularisation to derive approximations to the solution. We carried
out a complete analysis of this approach. Hence, we considered the well-posedness and
continuity properties of the forward operator, leading to the existence of a solution to the
Tikhonov minimisation problem. A Gauss-Newton-type iteration was suggested to com-
pute the solution to the Tikhonov problem. To facilitate this iteration, we established the
differentiability of the forward operator and derived a representation for the adjoint of the
derivative. For those results, we defined auxiliary variational problems and showed the
existence of solutions via Galerkin approximation and additional energy estimates. The
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key to those results was the sufficient smoothness of solutions to the Cahn-Hilliard equa-
tion. Afterwards, we considered the discretisation of this method using a Petrov-Galerkin
approximation. We discussed the discretisation of the forward operator, the Tikhonov
problem and the required auxiliary problems. Numerical results were presented, which
backed the claim that this method addresses the issues of the previous linear approach.

Outlook

Future research might consider extensions of those approaches to more realistic models
incorporating more parameters to identify or include more physical variables. As exam-
ples, we considered a matrix-valued mobility in the Cahn-Hilliard system and a Cahn-
Hilliard/Allen-Cahn system [20], where the coupling of the system is realised through
state and gradient-dependent matrices. In principle, our preliminary tests indicate that
the output least squares approach could be extended to those models. However, a careful
investigation is required due to the new dependency of the mobility matrix, i.e. including
gradients. Therefore, a good starting point is to study the Cahn-Hilliard system with mo-
bility matrices incorporating the new dependencies and then examine the coupled model.
Especially for the coupled model, identifiability is an open problem, although recent works
indicate how to generalise our identifiability results. To conclude, our preliminary analysis
and numerical tests of both models suggest that this is a promising direction for continuing
the work of this thesis. Other more complex models are the Cahn-Hilliard-Navier-Stokes
system [18] and a viscoelastic phase-field model [14, 21], which have been studied in our
research cooperation and the results could be used for the analysis of the nonlinear inverse
problem. As a final direction for future research, we would like to mention the analysis
of convergence rates, which we did not cover in this thesis.
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A. Appendix

A.1. Tikhonov regularisation for nonlinear inverse
problems

This section addresses the stable derivation of solutions to ill-posed non-linear inverse
problems. For this, we provide a condensed overview of the analysis of such problems on
the abstract level, and we recall the established theory following [45][Chapter 10].

At the abstract level, we aim to find a solution x ∈ X that satisfies

F (x) = yδ (A.1)

where F : D(F ) ⊂ X → Y is a non-linear operator between two Hilbert spaces X and Y
with D(F ) := {x ∈ X : x admissible } denoting the domain of the operator F (·), which
we assume to be closed and convex. The observations yδ are considered as perturbed
measurements of a true distribution y† = F (x†), where x† denotes the true solution. We
assume that the noise level δ is known, i.e.

∥y† − yδ∥Y ≤ δ

The problem of finding a solution to (A.1) is typically ill-posed, which requires regular-
isation techniques. Here, we consider Tikhonov regularisation, the standard approach
in connection with output least squares problems, resulting in a standard minimisation
problem. Thus, in order to compute stable approximations to the true solution y†, we
consider the minimisation of the Tikhonov functional, i.e.

min
x∈D(F )

Jδα :=
1

2
∥F (x)− yδ∥2Y +

α

2
∥x− x∗∥2X , (A.2)

where α > 0 is the regularisation parameter and x∗ ∈ X an initial guess. It is important
to note that, in general, the minimisers of the non-linear Tikhonov functional are not
unique. In the case of multiple solutions, the initial guess x∗ acts as a selection criterion,
as discussed in [45, Section 10.1]. Here, we denote any solution of the minimisation
problem (A.2) by xδα ∈ D(F ).

Existence and convergence results:

The existence of a solution xδα for any α > 0 follows from standard theory, as shown in
for instance [45, 60].
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Theorem A.1.1 ([45, 60]). Let the forward operator F : D(F ) ⊂ X → Y be continuous
and weakly continuous. Further, assume that the domain D(F ) is weakly closed and non-
empty. Then for every α > 0, the minimisation problem (A.2) has at least one solution
xδα.

Note that if D(F ) is closed and convex, then it is weakly closed. Although the solutions
are not unique, it can be shown that the Tikhonov problem (A.2) is stable in the sense of
a certain continuous dependence of the solutions on the data yδ [45, Theorem 10.2]. By
imposing similar conditions on α(δ) as in the linear case, the convergence of the solutions
of (A.2) toward a solution of (A.1) can be ensured, as stated in the following theorem.

Theorem A.1.2 ([45, Theorem 10.3]). Let yδ ∈ Y with ∥y − yδ∥Y ≤ δ and let α(δ)
be such that α(δ) → 0 and δ2/α(δ) → 0 as δ → 0. Then every sequence {xδkαk}, where
δk → 0, αk := α(δk) and xδkαk is a solution of (A.2), has a convergent subsequence. The
limit of every convergent subsequence is an x∗-minimum-norm solution. If in addition,
the x∗-minimum-norm solution x† is unique, then

lim
δ→0

xδα(δ) = x† in X.

Here, an x∗-minimum-norm solution, is defined by

∥x† − x∗∥X := min{∥x− x∗∥X : F (x) = y}.

Achieving convergence rates in the non-linear case requires additional assumptions on
F (·), which are automatically satisfied in the linear case. One finds the following theorem
in the literature.

Theorem A.1.3 ([45, Theorem 10.4]). Let D(F ) be convex, let yδ ∈ Y with ∥y−yδ∥Y ≤
δ and let x† be an x∗-minimum solution. Moreover, let the following conditions hold:

(i) F is Fréchet differentiable,

(ii) there exists γ > 0 such that ∥F ′(x†) − F ′(x)∥ ≤ γ∥x† − x∥X for all x ∈ D(F ) in a
sufficiently large ball around x†,

(iii) there exists w ∈ Y satisfying x† − x∗ = F ′(x†)∗w and

(iv) γ∥w∥Y < 1.

Then for the choice α ∼ δ, we obtain

∥xδα − x†∥X = O(
√
δ) and ∥F (xδα)− yδ∥Y = O(δ)

The assertion of the theorem remains valid when the regularisation α = α(δ, yδ) is
chosen according to the discrepancy principle; see [45, Section 10.3]. The discrepancy
principle is a parameter choice rule for the regularisation parameter α; see [45]. It reads
as follows: Choose α = α(δ, yδ) such that

α = sup{α > 0 : ∥F (xδα)− yδ∥Y ≤ τδ} for some τ > 1.

This concludes our brief overview regarding the existence and convergence of regularised
solutions.
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A.2. Useful lemmas and inequalities

Let us first recall the well-known Gronwall inequality.

Lemma A.2.1 (Gronwall inequality,[92]). Let T > 0, v, g ∈ C[0, T ] and λ ∈ L1(0, T ) be
given. Further, assume that

v(t) ≤ g(t) +

∫ t

0

λ(s)v(s) ds, 0 ≤ t ≤ T,

and that λ(t) ≥ 0 for a.a. 0 ≤ t ≤ T . Then

v(t) ≤ g(t) +

∫ t

0

g(s)λ(s) exp
∫ t
s λ(r) dr ds, 0 ≤ t ≤ T.

Further, we gather some useful inequalities.

Interpolation inequality/Ladyženskaja [73]: Let Ω ∈ R2 be a bounded smooth
domain and f ∈ H1(Ω). Then, there exists a positive constant C depending only on Ω
such that

∥f∥L4(Ω) ≤ C
(
∥f∥

1
2

L2(Ω)∥∇f∥
1
2

L2(Ω) + ∥f∥L2(Ω)

)
. (A.3)

Interpolation inequalities [73]: Let v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)). Then
v ∈ L4(0, T ;L4(Ω)) for d = 2.

Elliptic Estimates [46][89]: Let Ω be a smooth domain. Then there exist constants C
only dependent on the domain such that

∥f∥H2(Ω) ≤ C(∥f∥L2(Ω) + ∥∆f∥L2(Ω)),

∥f∥H4(Ω) ≤ C(∥f∥L2(Ω) + ∥∆2f∥L2(Ω)).
(A.4)
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