
M A C H I N E L E A R N I N G M O D E L S
in N E T W O R K I N T R U S I O N D E T E C T I O N S Y S T E M S

Self-Supervised Detection of Malicious Flows and Traffic Patterns Recognition
in Programmable Networks

Vom Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von

pegah golchin, m .sc .

Vorsitz: Prof. Dr. rer. nat. Sascha Preu
Referent: Prof. Dr.-Ing. Dr. h.c. Ralf Steinmetz

Korreferent: Prof. Dr. Andreas Mauthe

Tag der Einreichung: 7. Mai 2024

Tag der Disputation: 16. Juli 2024

Darmstadt 2024

Pegah Golchin, M.Sc.: Machine Learning Models in Network Intrusion Detection Systems,
Self-Supervised Detection of Malicious Flows and Traffic Patterns Recognition
in Programmable Networks

Darmstadt, Technische Universität Darmstadt

Jahr der Veröffentlichung der Dissertation auf TUprints: 2024

Tag der mündlichen Prüfung: 16. Juli 2024

Dieses Dokument wird bereitgestellt von This document is provided by
tuprints, E-Publishing-Service der Technischen Universität Darmstadt.

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als: Please cite this document as:
URN: urn:nbn:de:tuda-tuprints-278400

URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/27840

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International (CC BY 4.0 International)
https://creativecommons.org/licenses/by/4.0/deed.de

This publication is licensed under the following Creative Commons License:
Attribution 4.0 International (CC BY 4.0 International)
https://creativecommons.org/licenses/by/4.0/deed.en

ii

http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-278400
urn:nbn:de:tuda-tuprints-278400
https://tuprints.ulb.tu-darmstadt.de/id/eprint/27840
https://tuprints.ulb.tu-darmstadt.de/id/eprint/27840
https://creativecommons.org/licenses/by/4.0/deed.de
https://creativecommons.org/licenses/by/4.0/deed.en

A B S T R A C T

The recent increase in cyber-attacks highlights the critical need for reliable Network
Intrusion Detection Systems capable of detecting anomalies before they inflict sub-
stantial damage. Conventional intrusion detection methods often fail to classify pre-
viously unseen intrusion patterns accurately. This shortfall is exacerbated by the
emergence of new network intrusion types and the evolving nature of network struc-
tures. Machine Learning (ML) models address this need by learning representations
of network traffic flows. Nonetheless, challenges persist, particularly in ensuring
their adaptability and ability to generalize in detecting various network traffic pat-
terns and integrating them into programmable networks.

The first contribution of this thesis highlights the presence of diverse flow fea-
ture patterns in existing network traffic patterns. To mitigate the impact of these
disparities on the final detection performance and minimize noise in flow features,
thereby reducing the complexity of ML models, an Ensemble Feature Selection ap-
proach is devised. This method integrates statistical and ML-based feature selectors,
taking into account the imbalance of benign and attack traffic to avoid biased fea-
ture extraction. Evaluation results demonstrate the potential to attain high detection
performance with a reduced flow feature dimension. Additionally, a data-driven ap-
proach is incorporated into the proposed feature selection method to improve the
transferability of selected flow features across different network traffic patterns.

The second contribution aimed at tackling two main challenges: the limited avail-
ability of annotated network traffic flow data required for training ML models and
the limited ability of ML models to generalize across various network traffic patterns.
To overcome these challenges, a Self-Supervised Contrastive Learning approach is
introduced, which is specifically trained on benign flows to learn the abstract rep-
resentation of benign flow patterns. The results illustrate improvements in the gen-
eralization of detection performance across diverse network traffic patterns. These
improvements surpass the performance of both supervised and unsupervised ML
models used as baselines.

The last contribution explores integrating ML models into programmable net-
works, particularly following the Software-Defined Networking paradigm, which
separates the data plane from the control plane. However, deploying complex ML
models in the control plane can increase the risk of overwhelming it, given the ne-
cessity to forward flows through it. Conversely, employing lightweight models with
few trainable parameters in the data plane may compromise detection performance.
To tackle these challenges, we propose a collaborative ML-based intrusion detection
approach. This approach facilitates cooperation between ML models deployed in the
data plane and the control plane based on the confidence level of the deployed ML
model in the data plane. Using this approach, a balance is achieved between attaining
high detection performance and speed while reducing network load.

iii

K U R Z FA S S U N G

Die jüngste Zunahme von Cyberangriffen verdeutlicht den zwingenden Bedarf von
zuverlässigen Systemen zur Erkennung von Eindringlingen in Netzwerken. Solche
Systeme müssen diese Eindringlinge erkennen, bevor deren Angriffe erheblichen
Schaden anrichten können. Herkömmliche Methoden zur Erkennung von Eindring-
lingen sind oft nicht in der Lage, neue oder bisher unbekannte Angriffsmuster genau
zu klassifizieren. Dieses Manko wird durch das vermehrte Auftreten neuartiger An-
griffsversuche und die sich verändernden Netzwerkstrukturen noch verschärft. Me-
thoden des maschinellen Lernens (ML) addressieren dieses Problem, indem sie cha-
rakteristische Eigenschaften von Netzwerkverkehr lernen. Dennoch bestehen weitere
Herausforderungen, insbesondere bei der Gewährleistung ihrer Anpassungsfähig-
keit und Generalisierbarkeit bei der Erkennung verschiedener Netzverkehrsmuster
und ihrer Integration in programmierbare Netzwerke.

Der erste Beitrag dieser Arbeit behandelt die Existenz verschiedener Muster von
Verkehrsflussmerkmalen. Um die Auswirkungen dieser Unterschiede auf die endgül-
tige Erkennungsleistung abzuschwächen, das Rauschen in den Verkehrsflussmerk-
malen zu minimieren und damit die Komplexität der ML-Modelle zu reduzieren,
ist ein Ensemble-Feature-Selection-Ansatz entwickelt worden. Diese Methode inte-
griert statistische und ML-basierte Merkmalsselektoren und berücksichtigt das Un-
gleichgewicht zwischen gutartigen und bösartigen Verkehrsdaten, um eine verzerrte
Merkmalsextraktion zu vermeiden. Die Evaluationsergebnisse zeigen, dass mit ei-
ner reduzierten Merkmalsdimension dennoch eine sehr hohe Erkennungsleistung
unter Berücksichtigung aller Flussmerkmale erreichbar ist. Um die Übertragbarkeit
ausgewählter Verkehrsflussmerkmale auf verschiedene Verkehrsmuster im Netz zu
verbessern, wird ein datengesteuerter Ansatz in die vorgeschlagene Methode zur
Merkmalsauswahl integriert.

Der zweite Beitrag umfasst weitere Untersuchungen zur Bewältigung zweier Her-
ausforderungen: die begrenzte Verfügbarkeit von annotierten Netzwerkverkehrsfluss-
daten, die für das Training von ML-Modellen erforderlich sind, und die Fähigkeit
von ML-Modellen, über verschiedene Netzwerkverkehrsmuster hinweg zu generali-
sieren. Um diese Herausforderungen zu bewältigen, wird Contrastive Self-Supervised
Learning genutzt, das speziell auf gutartigen Datenflüssen trainiert wird, um die ab-
strakte Darstellung gutartiger Datenflussmuster zu erlernen. Die Ergebnisse zeigen
Verbesserungen bei der Generalisierung der Erkennungsleistung über verschiedene
Netzwerkverkehrsmuster hinweg. Diese Verbesserungen übertreffen die Leistung so-
wohl überwachter als auch unüberwachter ML-Modelle, die als Vergleichsansätze
verwendet werden.

Der letzte Beitrag befasst sich mit der Integration von ML-Modellen in program-
mierbaren Netzen, insbesondere in Anlehnung an das Paradigma des Software-Defined
Networking, in welchem die Datenebene von der Kontrollebene getrennt ist. Der Ein-

v

satz komplexer ML-Modelle in der Kontrollebene kann diese jedoch überlasten, da
Datenströme durch das Kontrollnetzwerk weitergeleitet werden müssen. Dagegen
vermindert die Verwendung leichtgewichtiger Modelle mit wenigen trainierbaren
Parametern in der Datenebene die Erkennungsleistung negativ. Um diese Heraus-
forderungen zu bewältigen, wird in dieser Arbeit ein kollaborativer ML-basierter
Ansatz zur Erkennung von Eindringlingen vorgeschlagen. Dieser Ansatz ermöglicht
die Zusammenarbeit von ML-Modellen auf der Datenebene und der Kontrollebene,
basierend auf dem Vertrauensniveau des ML-Modells in der Datenebene. Mit diesem
Ansatz wird eine Balance zwischen hoher Erkennungsleistung und Geschwindigkeit
bei gleichzeitiger Verringerung der Netzwerklast des Kontrollnetzwerks erreicht.

vi

P R E V I O U S LY P U B L I S H E D M AT E R I A L

This thesis incorporates content that has been previously published in scientific con-
ferences. Table 1 outlines the relevant previous publications, none of which has been
directly reprinted in this thesis, except for tables and figures, specifically for eval-
uation sections. Each source is clearly identified by providing its reference in the
corresponding caption. A comprehensive list of the author’s publications is available
in Appendix C.

Throughout this dissertation, I have acknowledged science as a collaborative effort
where all the findings are derived from teamwork. Therefore, I would like to extend
my gratitude and acknowledge the contributions of all the relevant collaborators,
co-authors, and their respective affiliations. In cases where no specific affiliation is
mentioned, it should be noted that the individual is or has been a colleague at the
Multimedia Communications Lab of the Technical University of Darmstadt. In the
following chapters, the pronoun "we" will be used to acknowledge the collaborative
team effort.

Table 1: Previously publications in each thesis chapter

Chapter Publications

1 [57], [61], [60], [58]

2 [57], [61], [60], [58], [56]

3 [57],[59],[60]

4 [58]

5 [61]

Chapter 2 offers a comprehensive overview of the related work in Machine learning-
based Network Intrusion Detection Systems (ML-based NIDS) and examines the
state-of-the-art to identify pertinent research gaps. During the preparation of pre-
vious publications, I conducted several literature reviews for the respective related
work sections. Consequently, a significant portion of the related work analysis has
already been published, with the primary analysis outlined in [57], [58], and [61].
The related work chapter of the thesis is a refined, reorganized, and restructured
amalgamation of these sections. To address the research gaps, I received valuable
support from Prof. Dr.-Ing. Dr. h.c. Ralf Steinmetz, Dr.-Ing. Ralf Kundel, Dr.-Ing. To-
bias Meuser and Dr. Nima Rafiee (Zalando, Berlin) through discussions on relevant
papers and regular meetings. Their insights contributed to the depth and clarity of
the analysis.

Chapter 3 conducts a comprehensive exploratory data analysis of several pub-
lic network traffic datasets, pinpointing research gaps concerning feature selection
methods employed in ML-based NIDS. To shed light on these gaps, I collaborated

vii

with Nima Rafiee, Dr.-Ing. Tim Steuer, and Jannis Weil, M.Sc., to explore artificial in-
telligence aspects and with Ralf Kundel to examine network communication perspec-
tives. Our collaborative efforts culminated in [57], [60], and [59] publications, which
further elucidated our findings. Ralf Steinmetz supervised this research project and
scientific positioning. To ensure the quality of our scientific publications relevant
to this chapter, all co-authors thoroughly review the papers and provide valuable
feedback. This collaborative effort helps refine and improve the publications, incor-
porating diverse perspectives and expertise. The Ensemble Feature Selection (EFS)
method, introduced in paper [57], serves as the foundation for the evaluations con-
ducted in Chapter 3 (Section 3.7) of this dissertation. However, the evaluations pre-
sented in this chapter extend beyond those in [57], encompassing evaluations on a
broader range of network traffic datasets. To improve the transferability of the fea-
ture selection approach, a data-driven solution is integrated into the EFS method,
termed DD-EFS [59]. The feature importance illustrated in Figure 8 and evaluation
results demonstrated in Table 6 are reprinted from [59].

Chapter 4 addresses the challenges posed by the imbalance and scarcity of anno-
tated malicious flow data in network traffic datasets, aiming to enhance the general-
ization of ML models’ detection performance. A Self-Supervised Contrastive Learn-
ing approach is devised, and its efficacy across multiple network traffic datasets
is investigated. The conceptualization of this approach involved regular meetings
with Nima Rafiee. The findings of this research are detailed in [58], a publication
that underwent thorough review and feedback from all co-authors, Ahmad Khalil,
M.Sc., Mehrdad Hajizadeh, M.Sc. (Communication Networks, Technical University
of Chemnitz), and Ralf Kundel to enhance its quality. Ralf Kundel and Ralf Steinmetz
supported and advised me. The method presented in this chapter is fully described
in [58], and the algorithm 2 is the same as the one available in the paper [58]. Ad-
ditionally, Section 4.6.2, 4.8.2, 4.8.3, and 4.8.7 are taken almost verbatim from [58].
Furthermore, the selected hyperparameters in Section 4.8.1 and evaluation metrics
in Section 4.7.4, and the figures and tables in the evaluation section of this chap-
ter (Section 4.8) are identical to those in [58]. Nevertheless, in this dissertation, each
figure and table is elucidated with more detailed explanations to provide a deeper
understanding of the evaluation process and results.

The concept of deploying a lightweight ML model with few trainable parameters
in programmable networks, as discussed in Chapter 5, originated from a master
thesis I proposed to Yizi Liu, M.Sc.. Through analyzing the results and related liter-
ature, I hypothesized that relying solely on an ML model in the programmable data
plane might not achieve optimal detection performance while deploying it solely in
the control plane could increase network load and latency. These insights prompted
me to propose a collaborative approach between them, leveraging the confidence of
the deployed ML model in the programmable data plane. I proposed this idea for
a master thesis to Chengbo Zhou, M.Sc., who completed his master thesis under
my supervision. His thesis was awarded the Best Master Thesis at the Multimedia
Communications Lab. The outcomes of this thesis were subsequently expanded and
published in [61], receiving the best paper award. The conception of this work origi-

viii

nated completely from my ideas, and I developed the ML models and preprocessing
pipelines used. Chengbo Zhou also actively made contributions to the implementa-
tion of this work. The paper was written mainly by me. Chengbo Zhou, Pratyush
Agnihotri, M.Sc., Mehrdad Hajizadeh, and Ralf Kundel provided feedback on the
manuscript. Ralf Steinmetz supervised me scientifically during this work. The col-
laborative machine learning-based intrusion detection system (CML-IDS) concept is
also available in [61], and the general architecture of CML-IDS depicted in Figure 18
can be found in [61] as well. Similarly, the figures and tables showcased in the evalu-
ation section (Section 5.8) of this dissertation are reproduced from [61]. Additionally,
Figure 21 and Figure 24 are reproduced from Chengbo Zhou’s master thesis. More-
over, Section 5.8.9 is taken almost verbatim from [61].

The aforementioned publications underwent thorough peer-review processes in-
volving numerous anonymous reviewers who provided invaluable feedback. I in-
corporated their suggestions into the final versions of the papers and articles, thus
indirectly contributing to this thesis. I would like to express my gratitude once again
to all reviewers for their invaluable contributions.

This thesis reflects my independent work, and certain sections have been linguis-
tically reviewed using the assistance of tools like Grammarly and ChatGPT. These
tools were utilized specifically to refine the grammatical structure and enhance the
clarity of expression.

ix

C O N T E N T S

1 introduction 1
1.1 Motivation for Using Machine Learning in Malicious Pattern Detection 2

1.2 Research Challenges . 3

1.3 Research Goals and Contributions 4

1.4 Structure of the Thesis . 6

2 background and related work 7
2.1 Integrating Machine Learning into Intrusion Detection 7

2.2 Network Traffic Data . 8

2.2.1 Public Network Traffic Datasets 8

2.2.2 Categories of Network Intrusions 9

2.3 Network Traffic Converter . 10

2.4 Machine Learning Approaches . 10

2.4.1 Supervised Learning Models 10

2.4.2 Unsupervised Learning Models 12

2.4.3 Self-Supervised Learning Models 13

2.5 Software-Defined Networking . 14

2.5.1 P4 Language . 15

2.5.2 SDN Security Challenges . 15

2.6 Related Work . 16

2.6.1 Generalization of Machine Learning Approaches 16

2.6.2 Machine Learning-based Intrusion Detection in SDN 20

2.7 Summary and Identified Research Gap 22

3 ensemble flow features selection 25
3.1 Exploratory Analysis of Network Traffic Datasets 26

3.1.1 Benign and Attack Samples Distribution 26

3.1.2 Flow Features Prunning . 27

3.1.3 Pearson Correlation between Flow Features 28

3.1.4 Low Variance Filtering . 29

3.1.5 Flow Features Distribution 29

3.2 Feature Selection Approaches . 30

3.2.1 Random Forest Gini Importance 30

3.2.2 L1-norm in Logistic Regression 31

3.2.3 L1-norm in Support Vector Machines 31

3.3 Comparison between Different Feature Selection Approaches 32

3.4 Proposed Preprocessing Pipeline . 33

3.5 Proposed Ensemble Feature Selection 34

xi

xii contents

3.6 Evaluation Design . 35

3.6.1 Datasets . 36

3.6.2 ML Models Used in Evaluation Scenarios 36

3.6.3 Evaluation Metrics . 36

3.6.4 System Information . 37

3.7 Evaluation Results . 37

3.7.1 Selected Flow Features . 37

3.7.2 Impact of Feature Selection on Detection Performance 39

3.7.3 Impact of Feature Selection on Training Time 39

3.7.4 Effectiveness of Ensemble Flow Feature Selection 41

3.7.5 Transferability of Selected Flow Features 43

3.8 Summary . 45

4 self-supervised network intrusion detection system 47
4.1 Problem Statement . 48

4.2 Pretext Tasks . 49

4.3 Contrastive Learning . 49

4.4 Transfer Learning . 50

4.5 Contributions . 50

4.6 Proposed Self-Supervised Contrastive Learning 51

4.6.1 Flow Scope & Preprocessing Pipeline 51

4.6.2 Data Augmentation . 52

4.6.3 Model Architecture . 53

4.7 Evaluation Design . 54

4.7.1 Generalization Evaluation Scenarios 54

4.7.2 Comparison Baselines . 56

4.7.3 Evaluation Datasets . 56

4.7.4 Evaluation Metrics . 57

4.8 Evaluation Results . 58

4.8.1 SSCL-NIDS Training Hyper-parameters 58

4.8.2 Similarity Metric for Unsupervised Models 58

4.8.3 Impact of the Corruption Rate on Detection Performance 58

4.8.4 Scenario 1: Detection Performance on Intra-Dataset Flows . . . 59

4.8.5 Scenario 2: Detection Performance on Cross-Domain Attacks . . 60

4.8.6 Scenario 3: Detection Performance on Cross-Domain Flows . . . 61

4.8.7 Impact of Adding New Dataset to the Training Data 63

4.8.8 t-Distributed Stochastic Neighbor Embedding (t-SNE) 64

4.8.9 Sample Efficiency of SSCL-NIDS for Transfer Learning 66

4.8.10 Comparing SSCL-NIDS with State-of-the-Art Approaches . . . 67

4.9 Summary . 68

5 integrating machine learning in programmable networks 71
5.1 Deploying Machine Learning Model in the Control Plane 72

5.2 Deploying Machine Learning Model in the Programmable Data Plane . 72

5.2.1 Similarity between Random Forest and Match-Action Pipeline . 73

contents xiii

5.2.2 Integrating a Random Forest into a Match-Action Pipeline . . . 74

5.3 Contributions . 75

5.4 Collaborative Machine Learning in Software-Defined Networking . . . 75

5.4.1 Required Modules in the Control Plane 76

5.4.2 Programmable Switch in the Data Plane 77

5.4.3 Flow and Subflow Scopes in CML-IDS 77

5.4.4 DP-IDS Model Confidence Calculation 80

5.4.5 Investigating Incompatible Sub-Flow Features 81

5.5 CML-IDS Implementation . 83

5.5.1 CP-IDS Implementation . 83

5.5.2 DP-IDS Implementation . 88

5.5.3 Collaboration between DP-IDS and CP-IDS 89

5.6 Evaluation Results . 91

5.6.1 Evaluation Metrics . 91

5.7 Evaluation Setup . 93

5.7.1 Evaluation Environment . 93

5.7.2 Evaluation Parameters . 93

5.8 Evaluation Results and Analysis . 94

5.8.1 Analysis of the Optimized Number of Packets in a Sub-flow . . 94

5.8.2 Analyzing Flow Distribution Extracted in Programmable Switch 95

5.8.3 Impact of MCthr on the Percentage of Forwarded Sub-flows . . 96

5.8.4 Detection Performance of CML-IDS 97

5.8.5 Impact of MCthr on Detection Time 98

5.8.6 Selecting the Optimal MCthr 98

5.8.7 Detection Performance of CP-IDS for Low-confident Flows . . . 100

5.8.8 Expiration and Hash Collision 101

5.8.9 Comparison between CML-IDS and an Existing Approach . . . 102

5.9 Summary . 103

6 summary, conclusions , and outlook 105
6.1 Summary of the Thesis . 105

6.1.1 Contributions . 105

6.1.2 Conclusions . 106

6.2 Outlook . 108

bibliography 111

A appendix 129
A.1 Extracted Flow Features from NFStream 129

A.2 Explanation of the Utilized Network Traffic Datasets 134

A.3 Flow Features List . 137

A.4 Flow Features for In-Network Training 138

A.5 Pearson Correlation between Features of Various Datasets 139

A.6 Impact of Feature Selection on Training Time 140

A.7 Selecting Features with Individual Feature Selection Approach 141

xiv contents

A.8 List of Acronyms . 143

B supervised student theses 145

C author’s publications 147

D erklärungen laut promotionsordnung 149

1
I N T R O D U C T I O N

The pervasive growth of Internet connectivity, with nearly two-thirds of the world’s
population projected to reach by 2023, underscores the deep integration of the

Internet into our daily lives [34]. These interconnections have led to unparalleled
technological progress, driving economic growth and innovation. However, the dig-
ital revolution has paved the way for increased cyber security risks [81]. According
to Cisco’s annual report, the number of Distributed Denial of Service (DDoS) attacks
with a peak attack traffic between 100 Gbps and 400 Gbps increased by 776% from
2018 to 2019 [34]. Additionally, findings from a recent study [168] highlight a grow-
ing trend in the frequency of cyber attacks, revealing a doubling in the total number
of DDoS attacks from 7.9 million in 2018 to 15.4 million by 2023.

If such cyber attacks target a company, it can result in significant financial losses
and damage to its reputation [5]. For instance, Amazon Web Services (AWS) expe-
rienced a massive DDoS attack that reached a peak traffic of 2.3 terabits per second
in 2020 [14]. This attack temporarily disrupted the services provided by AWS Shield.
Although AWS successfully mitigated the attack, this incident highlighted the criti-
cal role of detecting intrusions in preventing substantial financial losses and service
disruptions [6]. Therefore, there is a need for Network Intrusion Detection Systems
(NIDSs) that can detect such network anomalies rapidly.

A NIDS resides within the network and actively monitors network traffic for sig-
nals of suspicious activities [53]. Various methodologies can be employed in the
development of a NIDS to enhance its efficacy in identifying potential threats [165].
In a NIDS, one important metric is its detection performance. This refers to how
accurately the system can classify network traffic as either benign or attack (i.e., ma-
licious) flows.

Traditional detection techniques within a NIDS often rely on exact pattern match-
ing to identify malicious activities, drawing comparisons with previously recorded
attacks [1]. However, with the continuous evolution of cyber threats and the emer-
gence of novel malicious patterns, there is a pressing need for the NIDS to detect not
only known attacks but also new and previously unseen malicious patterns. This can
enhance their capability to detect a broader of cyber attacks [117].

Machine Learning (ML) models can meet the requirement of classifying unseen
traffic flows by leveraging statistical features extracted from flow data [42, 174]. These
models possess the ability to discern intricate patterns and anomalies within net-
work traffic, thereby empowering them to effectively detect potential threats, even
those that have not been previously encountered [53]. Moreover, as cyber threats
are not confined to traditional distributed network architectures and can also occur
within emerging network programming paradigms like Software-Defined Network-
ing (SDN), there is a critical need for adaptable NIDSs. ML-based NIDSs fulfill this

1

2 introduction

requirement by continuously learning from new data, enabling them to recognize
evolving patterns and anomalies in network traffic within SDN environments.

1.1 motivation for using machine learning in malicious pattern de-
tection

Anomaly-based NIDSs aim to define the normal behavior of network traffic and pro-
tect the network whenever the deviation from the expected normal behavior exceeds
a predefined threshold [53]. Anomaly detection techniques are widely used in NIDSs
and can identify both known and unknown attacks, thereby proving to be more ef-
fective than signature-based techniques. Additionally, these techniques are useful in
creating new signatures for signature-based NIDSs [131].

Statistical-based techniques, such as univariate, multivariate, and time series mod-
els, involve analyzing network traffic to create a profile, including its stochastic be-
havior [15, 68]. These methods can learn the expected behavior of the system through
observations. Furthermore, they can provide notifications of malicious activities oc-
curring over extended periods. However, configuring the values of various parame-
ters poses a challenge, particularly due to the delicate balance required between false
positives and false negatives [15, 55]. Furthermore, many of these statistical methods
rely on the assumption of a quasi-stationary process, which may not always align
with real-world scenarios and emerging unknown attack types [25].

ML models can overcome the limitations of statistical models by leveraging histori-
cal traffic patterns to learn the statistical features inherent in network traffic patterns.
This enables them to effectively discern the relationship between features and at-
tack or benign labels [132]. Furthermore, with the emergence of various new attack
behaviors, ML models demonstrate better detection performance compared to statis-
tical approaches like univariate and multivariate models [25].

Cyber threats are not limited to traditional networks but also pose risks to pro-
grammable network architectures like SDN [114]. SDN separates the control plane
and data plane, enhancing network management flexibility [83]. However, while the
logically centralized structure of SDN improves network management, it can be vul-
nerable to cyber attacks [100]. Consequently, attacks on the control plane can inflict
significant damage on the entire SDN infrastructure. Thus, rapid and effective detec-
tion in SDN is crucial for preventing potential damage. ML-based NIDSs can fulfill
these requirements and detect malicious patterns in SDN as well, especially in the
SDN control plane, where abundant computational resources are accessible.

While ML-based NIDSs can detect malicious patterns and are adaptable for de-
ployment in programmable networks, their detection performance is closely tied
to their training strategy, model complexity, and the network traffic datasets used
during training. Furthermore, the complexity of evolving cyber threats, particularly
their ability to closely mimic benign flows, as evidenced in Multi-Stage Attacks and
dynamically adaptive botnets, presents additional challenges for precisely detect-
ing malicious patterns [12, 99]. Additionally, deploying ML-based NIDS in SDN re-
quires careful consideration of the classifier placement. This is crucial as improper

1.2 research challenges 3

placement can potentially overwhelm the control plane and decrease detection per-
formance and speed.

Given these issues, evaluating the generalization ability of ML models becomes
crucial. In machine learning, generalization involves assessing a model on new and
previously unseen data, which may exhibit distribution variations from the training
data [43]. This assessment can demonstrate the effectiveness of an ML-based NIDS
in classifying previously unseen network flows, regardless of their similarity to their
training data distribution. Moreover, exploring strategies for deploying an ML-based
NIDS in SDN that balances detection performance, detection speed, and network
load opens a relevant research field to fulfill the demands of next-generation NIDSs.

1.2 research challenges

Even though ML-based NIDSs can meet the basic requirements of detecting new
attacks by learning the network traffic pattern, several challenges regarding their
model complexity level, detection performance generalization, and deployment in
programmable networks like SDN exist. The challenges associated with ML-based
NIDSs, which will be the primary focus of this thesis, will be briefly explained.

Challenge: Extracting relevant features from imbalanced network traffic datasets with vary-
ing flow patterns

Various studies demonstrate that supervised ML models perform better in detect-
ing attacks when trained on less noisy features [2, 87, 136, 182]. In the field of net-
work traffic, different types of flow features fall into categories such as time-related,
packet-related, protocol-specific, directional-based, and statistical features. Each cat-
egory could be important for a specific attack, depending on the attack’s purpose,
target, and damage type [69]. Additionally, network traffic datasets frequently ex-
hibit imbalances, comprising a disproportionate distribution of benign and attack
flows. This imbalance often results in a scarcity of data for specific classes within the
dataset. The imbalance between attacks and benign flows, along with the intrinsic
differences among flow patterns, makes it difficult to extract the most relevant fea-
ture set. Hence, addressing these challenges and selecting relevant features that can
be applied to various network patterns while reducing the ML model’s complexity
is crucial.

Challenge: Generalizing detection performance of ML-based NIDSs across diverse network
traffic patterns

Supervised ML models exhibit high detection performance when encountering pre-
viously unseen data from the same distribution as their training dataset [3, 39, 89,
162]. However, they rely on annotated data for training, which restricts their ability
to detect flows that diverge significantly from the patterns in their training datasets.
Due to the growing number of network applications and emerging technologies, the
nature of network traffic has become more dynamic than ever before. Capturing and
annotating such dynamic traffic has become a challenging task, if not impossible

4 introduction

[67]. This poses a challenge to the efficacy of supervised ML-based NIDS in detect-
ing new and unseen traffic flows with different distributions. Moreover, advanced
attack types such as SlowDoS and Botnets exhibit behavior that is very similar to
benign flows making it difficult for ML models to detect them without learning the
abstract representation of benign flows [12, 99]. All these challenges indicate a high
likelihood of receiving new flows or attacks that have a different distribution from
the training dataset of a supervised ML-based NIDS, which can reduce its detec-
tion performance. This challenge is called cross-domain detection performance [39,
94], which requires an innovative approach to increase the generalization of the ML-
based NIDS for detecting different attack types with varying distributions across
different network traffic patterns.

Challenge: Balancing network Load, detection Performance, and speed in the ML-Based
NIDS deployment within SDN

The usage of the ML-based NIDS extends beyond traditional networks to encom-
pass SDN, where potential intrusion can target the SDN control plane, data plane
switches, and users [35, 41, 83, 147]. ML models demand computational resources,
making the control plane a logical embedding location. However, this choice ne-
cessitates forwarding all flows to the control plane for classification, increasing the
risk of overwhelming it and directing attack traffic towards it. The emergence of
programmable switches, such as P4 switches, offers a solution by enabling the de-
ployment of lightweight ML models aligned with the match-action tables of these
switches [23, 98]. While this approach addresses the challenges associated with em-
bedding ML-based NIDS in the control plane and enhances detection speed to line
rate, the detection performance of the ML-based NIDS can be decreased because
of the constrained capabilities of lightweight ML models. Therefore, striking a bal-
ance between the detection performance, network load, and detection speed of the
deployed ML-based NIDS within SDN is needed.

1.3 research goals and contributions

The main goal of this thesis is to investigate how to achieve high detection perfor-
mance on intra-dataset and inter-dataset flows utilizing ML-based NIDS and effec-
tively integrate it within programmable networks. To accomplish these, we specify
the following research goals.

Research Goal 1: Selecting the most relevant flow features

Eliminating non-relevant flow features can reduce the complexity of ML-based NIDS
while retaining detection performance. An appropriate feature selection method ex-
tracts relevant flow features for diverse network traffic types. Training ML models
on this precise feature set enhances the model’s generalization ability while reducing
training time. In this thesis, we develop an ensemble feature selection method to iden-
tify the most relevant features for effectively classifying between attacks and benign
flows [57]. The proposed ensemble feature selection approach takes into account the

1.3 research goals and contributions 5

dataset’s class imbalance to prevent bias towards the majority class. Furthermore,
a data-driven approach is integrated into the proposed ensemble feature selection
approach to enhance the transferability of the selected features.

Research Goal 2: Increasing the cross-domain detection performance of ML-based NIDSs

The accurate detection of previously unseen flow patterns is a critical evaluation
metric for an ML-based NIDS. In our research goal, we aim to enhance the detection
performance and generalization of the ML-based NIDS across network traffic flows
with distributions different from those in the training dataset. To achieve this, we
need an ML model capable of learning abstract representations of benign flows to
effectively identify attacks that exhibit distinct behavior from benign flows. Addition-
ally, we aim to decrease the reliance of ML models on labeled data, given the scarcity
of annotated datasets [58].

Research Goal 3: Increasing detection performance of an ML-based NIDS in SDN, while
decreasing network load

The separation of the control plane and data plane in SDN architecture can make
the network vulnerable to security threats. However, deploying an ML-based NIDS
solely in the control plane can lead to an increase in network load as it entails for-
warding flows to the control plane for classification tasks. On the other hand, de-
ploying ML-based NIDS exclusively in the data plane reduces detection performance
due to the use of a lightweight ML model. In this research goal, we aim to develop a
framework that reduces the number of forwarded flows to the control plane, which
in turn reduces the risk of attacks against the control plane and minimizes network
overload [61]. We also aim to increase detection speed compared to solely deploying
the ML model in the control plane. Furthermore, we aim to achieve higher detection
performance within this framework, which is crucial for an ML-based NIDS.

In the following, we briefly discuss topics that fall outside the scope of this thesis.
In this thesis, our focus is on the domain of offline ML-based NIDS, where models
are trained once and deployed for subsequent detection tasks. However, the field
of online learning, where the model updates its training, presents its own set of
challenges related to concept drifts, adaptability, and the method of integration of
updated information [60].

A Hybrid NIDS, combining both signature-based and anomaly-based approaches,
can leverage the strengths of both methodologies. Their synergy can improve the
robustness of the detection performance and utilize their complementary capabilities
[133]. Nonetheless, this thesis primarily concentrates on exploring key metrics within
the realm of ML-based NIDS.

Furthermore, in our contribution to designing a collaborative ML-based NIDS in
SDN, we deploy the data plane’s ML-based NIDS in BMv2, a softwarized P4 switch.
However, deploying an ML model on a physical P4 switch, such as Tofino, can pose
new challenges due to the limited number of registers available on such switches.
Although we have considered the hardware constraints and have limited the number

6 introduction

of registers in our framework, it can still impact the scalability and effectiveness of
the ML-based NIDS in Tofino switches.

1.4 structure of the thesis

After a brief introduction to this thesis, we focus on describing the necessary back-
ground and previous works regarding ML-based NIDS in traditional networks and
SDN paradigms in Chapter 2. In Chapter 3, we demonstrate various network traffic
data analyses to highlight the differences between network traffic patterns. Based on
the findings, we introduce an ensemble feature selection approach aimed at reduc-
ing flow feature dimensions and selecting a transferable flow feature set. Chapter
4 demonstrates the limitations of supervised ML-based NIDS in detecting out-of-
distribution flow patterns. In this chapter, we introduce a new self-supervised con-
trastive learning approach that exclusively trains on benign flows and enhances the
generalization of detection performance. In Chapter 5, we explain the network se-
curity challenges in SDN and propose our collaborative framework that can take
advantage of collaborating between deployed ML-based NIDS in both data and con-
trol planes. The thesis concludes in Chapter 6 with a brief summary of the core
contributions. Lastly, we provide an outlook on potential future work.

2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter offers a concise exploration of various Machine Learning (ML) cate-
gories applicable to Network Intrusion Detection Systems (NIDS). It also delves into
the Software-Defined Networking paradigm and the programmable data plane. Af-
ter introducing the thesis background, the chapter explores related work relevant
to each contribution. Its objective is to provide both a comprehensive overview of
current advancements and to highlight gaps in solutions for identified issues.

2.1 integrating machine learning into intrusion detection

ML models have shown their efficacy in fulfilling the demands of a NIDS by discern-
ing anomalies in network behavior or classifying network traffic. These models learn
patterns within network flows, enabling them to detect both known and previously
unseen network intrusions based on deviations from normal behavior [53, 134].

Integrating ML approaches into NIDSs necessitates deploying sequential modules
as a pipeline to detect intrusions within network traffic. Figure 1 illustrates the gen-
eral architecture of an ML-based NIDS, comprising several interconnected modules,
each playing a crucial role in the overall detection process.

The input to an ML-based NIDS comprises network traffic data in a Packet Cap-
ture (PCAP) format collected from various sources such as network sensors or log
files. In this thesis, we used publicly available network traffic datasets. The informa-
tion about them is available in Appendix A.2. The raw input is converted to flow
feature files, which is understandable for ML models. The feature files undergo a
preprocessing pipeline where it is cleaned, transformed, and normalized to prepare
features for further analysis. Subsequently, feature selection techniques are applied
to identify the most relevant and informative attributes from the preprocessed data,
reducing dimensionality and focusing the model’s attention on discriminative fea-
tures. Once the feature selection is complete, the preprocessed data is fed into an ML
model, which is trained on labeled examples of normal and attack network flows.
The trained model then classifies incoming network traffic as either benign or at-
tack flows based on learned patterns and characteristics. Postprocessing techniques
may be applied to the model’s output to refine and filter detection results, reducing
false positives and enhancing detection accuracy. Finally, the output of the ML-based
NIDS includes alerts or notifications indicating potential network security breaches
or suspicious activities within the network. This enables timely response and miti-
gation measures. In the following, we explain the required information concerning
each of these modules utilized in this thesis.

7

8 background and related work

Figure 1: The architecture of a Machine Learning-based Network Intrusion Detection Sys-
tem (NIDS) is composed of various modules that collaborate to detect network
intrusions. These modules include the Network Traffic Converter, Preprocessing
Pipeline, ML Models, and Post Processing Pipeline. This work primarily contributes
to the Preprocessing and ML Model modules.

2.2 network traffic data

To capture network traffic, packets can be intercepted as they move through a net-
work interface [141]. This process involves selecting specific points within the net-
work architecture, such as routers or firewalls, for capturing. Once a suitable point
is identified, a capturing tool must be chosen and installed on a server connected
to the capture point. This tool is then configured to capture traffic on the desired
interface or VLAN. The data obtained from this captured network traffic can be in
either packet-based or flow-based formats. Packet-based data typically contains com-
prehensive details about each individual packet, including source and destination IP
addresses, port numbers, protocol type, packet size, timestamp, and payload data.
In contrast, flow-based data is more aggregated and generally consists of metadata
from network connections. This aggregation involves combining packets with shared
properties, such as 5-tuple information, within a specific time window into one flow.
Flows can be either unidirectional, aggregating packets from source A to destination
B, or bidirectional, considering packets in both directions, from source A to destina-
tion B and vice versa.

2.2.1 Public Network Traffic Datasets

When training an ML model, it is crucial to utilize relevant data pertaining to the task
at hand. Researchers often rely on various publicly available network traffic datasets
to develop ML-based NIDS and evaluate the proposed models’ abilities. However,
these datasets employ different traffic converters, either packet-based or flow-based,
leading to differences in feature extraction methods.

In this thesis, our goal is to comprehensively evaluate proposed models and algo-
rithms across a range of diverse network traffic datasets. To accomplish this, we em-
ployed NFStream (as mentioned in Section 2.3) to extract flow features from publicly
available network traffic files in PCAP format. Additionally, we utilized the provided

2.2 network traffic data 9

information on attacker or victim IP addresses to label feature files for evaluation,
which necessitated ground truth labels indicating whether the traffic was malicious
or benign.

In Section A.2, we briefly explain CICIDS17, UNSW-NB, CTU-13, CICDoS, and
Botnet network traffic datasets which are used in this thesis. Our decision to use
these datasets was based on their availability of network traffic files in PCAP format
and the presence of various attack types for thorough evaluation.

2.2.2 Categories of Network Intrusions

Various methods can be used to categorize attacks or malicious network patterns,
such as those outlined in [70, 76, 152, 154]. One approach is based on the Open Sys-
tems Interconnection (OSI) model, which divides system communication into phys-
ical, Media Access Control (MAC), network, transport, and application layers. Dif-
ferent protocols and specifications are implemented at each of these layers. The Ap-
plication layer employs Hypertext Transfer Protocol (HTTP) to provide web services,
File Transfer Protocol (FTP) for large file transfers, and Simple Mail Transfer Protocol
(SMTP) for sending electronic mail. The Transport layer utilizes Transmission Con-
trol Protocol (TCP) for dependable data delivery and User Datagram Protocol (UDP)
to minimize protocol overhead. The Network layer facilitates data delivery using
Internet Protocol (IP) addresses through IP and generates error messages using In-
ternet Control Message Protocol (ICMP). In Wi-Fi networks, the MAC layer employs
CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance), while Addi-
tive Link On-line Hawaii Area (ALOHA) is utilized for military purposes. Finally,
the Physical layer manages physical transmission characteristics.

In this thesis, we focus on attacks exploiting protocol vulnerabilities in network,
transport, and application layers, which we briefly explain below.

Attacks on the network layer exploit weaknesses in IP and ICMP protocols, in-
cluding hijacking, IP spoofing, and the Smurf attack [154]. IP spoofing disguises the
attacker’s identity by forging IP addresses, potentially causing network congestion
and disruption. Hijacking involves seizing control of legitimate users’ IP addresses
and facilitating unauthorized access to confidential data. The Smurf attack inundates
victims with ICMP packets, crippling network performance. Both TCP and UDP pro-
tocols in the transport layer are susceptible to security attacks such as TCP flooding
and UDP flooding attacks [152]. TCP flooding inundates victim nodes with ICMP
ping requests, delaying network connections [143]. UDP flooding overwhelms vic-
tim nodes with excessive UDP packets, rendering them unreachable [169]. Therefore,
the flooding type of DoS and DDoS attacks can be categorized under the transport
layer of the OSI model.

The HTTP, SMTP, and FTP protocols in the application layer are often targeted by
botnets, posing significant network security threats. Botnets leverage malware such
as Trojans, worms, and viruses to compromise systems and intercept sensitive data
exchanged over these protocols [66]. Additionally, botnets exploit vulnerabilities like
SQL injection in data-driven applications, enabling unauthorized access to websites.

10 background and related work

FTP, commonly utilized for large file transfers, becomes a prime target for botnet
attacks, including FTP bounce attacks aimed at hijacking data transfers. Similarly,
botnets orchestrate SMTP attacks, utilizing worms and viruses for email spoofing
and password sniffing, further amplifying the risks to network security. In addition
to the mentioned attacks, many other attacks in these three layers use the protocol’s
vulnerabilities. Furthermore, the emergence of new types of attacks, such as Multi-
Stage Attacks (MSA), involves sequential steps, where each step might not be neces-
sarily recognized as an attack on its own, but their collective execution constitutes a
comprehensive attack traffic [12]. The SlowDoS attacks and Botnets are well-known
examples of MSA. Additionally, BruteForce attacks, where an attacker attempts to
crack the password, are categorized as application layer attacks. These encompass
capturing and altering data transmitted between the user and the system [124].

2.3 network traffic converter

In this thesis, the NIDS is composed of four main components: a traffic file converter,
a preprocessing pipeline, an ML model, and a post-processing pipeline, as discussed
in Section 2.1. To convert the traffic file to feature files and extract statistical features
of a network flow, we have used NFStream [11], a renowned Python framework. NF-
Stream can extract over 80 features, which are categorized into core features, statisti-
cal features, and post-mortem features. The features and their respective descriptions
are listed in Section A.1.

It is important to note that certain features like source and destination IP addresses,
source and destination MAC addresses, or port numbers can reveal certain informa-
tion to the model. This might prevent the model from learning the statistical features
and cause it to only differentiate between attack and benign flows based on their
addresses [57]. Therefore, in this thesis, we excluded these specific features before
training the model.

2.4 machine learning approaches

In this thesis, we explore different types of ML models, each tailored to specific train-
ing strategies, annotated data requirements, and intended tasks. Here, we explain
several approaches frequently employed.

2.4.1 Supervised Learning Models

Supervised ML models rely on extracting the relationship between features and la-
bels to discern between normal and abnormal behavior [145]. As a result, these mod-
els require training data that includes the ground truth label for each flow. However,
the scarcity of annotated datasets imposes limitations on the capacity of supervised
learning models, restricting their ability to detect new flows that resemble those
present in the training set [148].

2.4 machine learning approaches 11

Supervised learning models encompass various categories, including linear, instance-
based, and tree-based models [159]. Each category offers unique strengths and weak-
nesses, catering to different types of data and problem domains. Additionally, ad-
vancements in deep learning have led to the development of complex neural net-
work architectures capable of capturing intricate patterns in data [107]. Furthermore,
ensemble methods like gradient boosting leverage a combination of multiple weak
learners into a strong and robust predictive model, enhancing the overall classifica-
tion performance [50]. In the following, some of the supervised learning models are
briefly explained.

Logistic Regression (LR)

The primary objective of logistic regression (LR) is to model the probability that a
given input belongs to a particular class [74]. Unlike linear regression, which fore-
casts continuous values, logistic regression employs the logistic function (sigmoid
function) as depicted in Equation 1 to confine the output within the range of 0 and 1

[158]. Therefore, this model is suitable for binary classification tasks.

σ(z) =
1

1+ e−z
(1)

In the Equation 1, z is the linear combination of input features and coefficients. The
LR model is trained using a maximum likelihood estimation process [137]. The aim
is to identify the set of coefficients that maximizes the likelihood of the observed
data given the model. This optimization is usually accomplished using iterative al-
gorithms such as gradient descent.

Decision Tree (DT)

A decision tree (DT) [21] is a predictive modeling tool that operates by recursively
partitioning the dataset into subsets based on the most significant attribute at each
node, ultimately leading to a tree-like structure where each leaf node represents a
decision or an outcome. The algorithm employs a top-down approach, starting with
the entire dataset and selecting the attribute that maximizes information gain or
minimizes impurity, often measured using metrics like the Gini index, at each node,
effectively dividing the data into homogeneous groups. This process persists until it
reaches a predetermined stopping criterion, such as the maximum tree depth or the
minimum number of samples in a leaf node.

Random Forest (RF)

Random Forest (RF) [22] is an ensemble learning technique that builds multiple DTs
during training and outputs the mode of the classes (classification) or the mean
prediction (regression) of the individual trees. The main difference between an RF
model and a single DT lies in the approach to diversity and robustness. Therefore,
this approach enhances the model’s ability to handle complex patterns in network

12 background and related work

traffic data while mitigating the risk of overfitting and reducing sensitivity to varia-
tions. By averaging out individual tree biases, the RF model provides a more robust
and accurate predictive model for identifying malicious activities in network traffic,
making it an effective ML model for the ML-based NIDS [37].

Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron (MLP) [142] is a type of artificial neural network designed
for supervised learning that consists of multiple layers of interconnected nodes or
neurons. It is characterized by an input layer, one or more hidden layers, and an
output layer. Each connection between neurons is associated with a weight, and each
node has an associated activation function. During training, the model learns op-
timal weights through the backpropagation process, where the error between the
predicted output and the ground-truth target is minimized by adjusting the coeffi-
cients using gradient descent. The hidden layers enable the network to capture com-
plex and non-linear relationships within the data. The activation functions introduce
non-linearity, enabling the network to grasp and extract intricate patterns within the
input data. MLPs have demonstrated effectiveness in numerous applications, includ-
ing computer vision and natural language processing, owing to their ability to model
intricate relationships within high-dimensional data [63].

Extreme Gradient Boosting (XGBoost)

XGBoost, an open-source machine learning library, offers an implementation of the
gradient boosting algorithm [30]. Unlike the RF technique, gradient boosting is an en-
semble learning method that combines several weak learning models, typically DTs,
to create a more accurate predictive model [101]. However, XGBoost distinguishes
itself by iteratively enhancing overall performance. Instead of training each DT with
a subset of features, XGBoost sequentially adds new trees to the ensemble model,
aiming to rectify errors made by preceding trees. This iterative refinement process
results in better performance compared to RF classifiers, particularly evident in terms
of training speed and scalability.

2.4.2 Unsupervised Learning Models

Unsupervised learning constitutes a fundamental machine learning paradigm de-
signed to identify underlying patterns, structures, or relationships within unanno-
tated datasets [40]. In unsupervised learning, the algorithm delves into the intrinsic
structure within the data, rendering it suitable for tasks such as clustering, dimen-
sionality reduction, outlier detection, and anomaly detection in an ML-based NIDS
[9]. In contrast to supervised learning, which relies on labeled data with predefined
outcomes, unsupervised learning operates on unlabeled datasets, necessitating algo-
rithms to autonomously uncover latent patterns or groupings without explicit target
labels [164]. In this section, we will provide a brief explanation of Autoencoders,
which will be used as a baseline for one of the contributions of this thesis.

2.4 machine learning approaches 13

AutoEncoders

Autoencoders represent a neural network architecture employed in unsupervised
learning endeavors, particularly for tasks involving dimensionality reduction and
feature learning [166, 175]. The fundamental concept of autoencoders involves encod-
ing input data into a lower-dimensional representation (referred to as the encoding
or bottleneck layer), followed by decoding it back to the original input [27]. During
training, the network learns to reconstruct the input as accurately as possible, forcing
the model to capture essential features and patterns within the data. Autoencoders
consist of an encoder, which transforms the input data into a latent space representa-
tion, and a decoder, which reconstructs the input from the encoded representation.

In the context of NIDS, autoencoders can be valuable for anomaly detection [175].
By training an autoencoder on a dataset containing normal network behavior, the
model learns to encode the typical patterns and structures within the data [33, 46].
During deployment, the autoencoder is applied to new, unseen data. If the recon-
structed output significantly deviates from the original input, it indicates an anomaly
or potentially malicious activity. Therefore, autoencoders serve as an effective unsu-
pervised model applicable to ML-based NIDS.

2.4.3 Self-Supervised Learning Models

Self-supervised learning (SSL) is a machine learning paradigm that serves as a bridge
between supervised and unsupervised learning by harnessing the intrinsic structure
present within the data to generate labels [128]. In supervised learning, models are
trained on annotated datasets, which can be costly and time-consuming to acquire,
especially for domains like network security and anomaly detection [67]. On the
other hand, unsupervised learning relies on extracting patterns from unlabeled data,
which might not capture the nuanced and complex nature of network behaviors
effectively [128].

SSL addresses these challenges by formulating tasks that generate pseudo-labels
from the input data. Instead of relying on external annotations, the model creates
its own labels, often through pretext tasks [108]. For NIDS, pretext tasks can involve
predicting the next step in a network sequence, identifying whether two network
flows belong to the same category (contrastive learning), or reconstructing parts of
the network traffic that was corrupted [4, 119, 170, 176]. These pretext tasks guide the
learning process and enable the model to capture essential features and relationships
within the data without requiring explicit labels.

One advantage of self-supervised learning over pure unsupervised learning in the
context of anomaly detection is that it introduces structured learning by defining
pretext tasks that inherently encode relevant information about network behavior.
While unsupervised learning methods like clustering and dimensionality reduction
aim to uncover latent patterns, SSL explicitly defines tasks that guide the model to
learn more meaningful representations. This structured approach often results in
better performance, especially when dealing with complex and dynamic network

14 background and related work

Figure 2: A general architecture of a conventional network and Software-Defined Network-
ing (The Figure is inspired by [144]). As depicted, SDN separates the control plane
from the data plane, making network management more flexible.

environments where anomalies may manifest in subtle ways. Consequently, it can
improve the generalization performance of the ML-based NIDS. By integrating SSL
into NIDS, we enhance the model’s ability to discern between normal and malicious
network behavior, contributing to more robust and effective intrusion detection sys-
tems.

2.5 software-defined networking

The key fundamental concept of SDN is decoupling the control plane from the data
plane and enabling the network control with high programmability [127, 153]. Figure
2 (inspired by [144]) illustrates a comparison between conventional network architec-
ture and SDN Network. In SDN, the responsibility of forwarding network traffic is
with the data plane, while controlling the network is the control plane’s responsi-
bility. Accommodating a logically centralized control plane gives it a global view,
enabling SDN to support different applications in the network. The most popular
protocol in SDN to make communication between the control plane and the data
plane is OpenFlow protocol [78].

OpenFlow allows dynamic programming of network traffic management through
predefined match rules set by the SDN controller. Flow tables in OpenFlow switches
contain entries comprising match fields, priority, instructions, and timeouts. These
entries are populated by the controller and used to process incoming packets [72].
Packet processing involves comparing packet headers with match fields in flow en-
tries to update action sets and forward packets accordingly [13]. This approach en-
hances switch behavior customization, offering greater network management flexi-
bility and reducing device complexity [36, 93].

2.5 software-defined networking 15

The northbound API simplifies network management for SDN applications by
providing a high-level view of the physical network, freeing operators from hard-
ware intricacies [135]. These policies are transmitted to the data plane through the
controller using both northbound and southbound APIs. SDN applications cover di-
verse areas such as traffic engineering for dynamic rerouting, network security (the
focus of this thesis), Quality of Service (QoS), etc. [138].

2.5.1 P4 Language

The high-level language for Programming Protocol-Independent Packet Process (P4)
has emerged to provide a flexible and efficient means of defining how network pack-
ets are processed and forwarded within SDN architectures [92]. P4 aims to enable
programmable forwarding and foster innovation in networking protocols while pro-
moting hardware independence by abstracting underlying hardware details [88]. Fig-
ure 3 illustrates the packet processing pipeline in a programmable switch using the
P4 language [118]. Upon packet arrival, the parser extracts predefined header field
values [18]. These values then enter the ingress match-action pipeline, driven by
match-action tables populated by the controller. Table entries match keys and execute
corresponding actions. The order of table execution is defined within a control block.
Following the ingress pipeline, packets may be forwarded, dropped, replicated, or
sent to the controller. The egress pipeline handles per-instance modifications like
queueing and scheduling, while the deparser reassembles modified headers into out-
going packets [19, 54].

The P4 language facilitates value concatenation and slicing, storage and updating
using registers, and tracking network traffic statistics with counters [73]. However,
P4 lacks support for mathematical operations like division, logarithm, and exponen-
tiation, as well as traditional loop constructs such as ’for’ or ’while’ loops, making it
challenging to implement complex algorithms requiring these operations [171].

2.5.2 SDN Security Challenges

While SDN provides centralized enforcement of security policies and a comprehen-
sive network overview, simplifying attack detection compared to conventional net-
works, its centralized architecture also introduces inherent security challenges that
require attention [35, 41, 72, 83, 147]. For instance, attacks targeting the control plane,
such as packet-in flooding and controller’s switch table flooding, pose significant
threats [83]. In packet-in flooding, adversaries overwhelm the controller with mal-
formed network packets, exhausting its computational resources. Similarly, the con-
troller’s switch table flooding exploits the lack of authentication in OpenFlow control
packet reception, allowing attackers to flood the controller’s switch table with fake
entries, degrading its performance over time. A compromise of the controller could
have severe consequences, leading to widespread network disruption or unautho-
rized access to sensitive data.

16 background and related work

Figure 3: The P4 processing pipeline consists of several stages (The Figure is inspired by
[118]). Each stage plays a crucial role in processing network packets, from pars-
ing incoming data to preparing it for transmission. This modular approach enables
efficient and customizable packet processing tailored to specific networking require-
ments.

Therefore, It is essential to deploy an NIDS in SDN to overcome the security
challenges associated with SDN. Anomaly-based NIDSs can detect previously un-
seen network attacks in SDN networks, similar to conventional networks when com-
pared to signature-based NIDS. The following section explains the related work on
anomaly-based NIDSs deployed in SDN.

2.6 related work

This section delves into research relevant to each contribution made in this thesis.
Firstly, we delve into the assessment of generalization in ML models, encompassing
both supervised and unsupervised approaches. Subsequently, we discuss pertinent
studies concerning the deployment of ML models in SDN environments.

2.6.1 Generalization of Machine Learning Approaches

Generalization performance in the context of ML-based NIDS pertains to the ML
model’s ability to detect anomalies of data it hasn’t seen before. In this thesis, when
the new unseen data belongs to the same dataset used for training, we refer to it as
intra-dataset generalization performance. Conversely, if the new unseen data comes
from different datasets, potentially with different distributions, we refer to it as inter-
dataset generalization performance.

2.6 related work 17

Generalization in Supervised Learning Models

In this section, we delve into related works that have investigated the generaliza-
tion performance of supervised learning ML-based NIDS. Subsequently, we present
related studies that developed feature selection algorithms. Feature selection is high-
lighted as a method aimed at enhancing the intra-dataset generalization performance
of supervised learning ML-based NIDS.

In [39], the authors delved into the intra-dataset and inter-dataset generalization
of supervised learning ML-based NIDS. They created a pipeline that encompassed
twelve supervised learning models spanning various families. These models were
employed to evaluate detection performance across common attack types (such as
DoS, SSL, and botnet) originating from the same dataset (intra-dataset) and two dis-
tinct datasets (inter-dataset). Notably, tree-based models exhibited superior gener-
alization performance in the inter-training-dataset scenario. However, they encoun-
tered challenges in achieving robust detection performance when faced with un-
seen data from different datasets. The study also observed that ensemble ML mod-
els got better detection performance for intra-dataset, attributed to their capacity
to derive detection results through a combination of models. In [38], the authors
stressed the importance of evaluating the generalization performance of ML-based
NIDS. They highlighted the necessity to improve it, especially after finding that while
some state-of-the-art models showed strong detection performance on unseen data
from the training dataset (intra-dataset generalization), they struggled when faced
with data from different sources (inter-dataset generalization). The study focused on
the top three models with exceptional intra-dataset generalization. It found that for
network-centric attack classes like brute force and denial of service, these models
maintained high precision and recall, with losses below 5%. However, performance
varied across other attack classes, ranging from significant recall losses for botnets to
complete degradation of precision for web attacks and infiltrations. These findings
underscored the complexities involved in achieving robust generalization across di-
verse attack types in ML-based NIDS. Building upon the insights from [39] and [38],
[95] delved into the generalizability of ML-based NIDS using seven supervised and
unsupervised models across four well-known network datasets. Their investigation
revealed that none of the models could generalize across all datasets effectively. No-
tably, they highlighted a high degree of asymmetry in generalizability, where swap-
ping the source and target domains significantly altered classification performance.
The study found that unsupervised models exhibited superior generalization perfor-
mance compared to supervised learning models. Furthermore, the authors employed
SHAP [112], an explainable feature importance extraction method, to delve into the
reasons behind the lack of generalizability. Their analysis revealed that the main fac-
tor contributing to this issue was the strong correlation between the values of one or
more features and the Attack/Benign classes in certain network traffic dataset-model
combinations, which were absent in other network traffic datasets with different fea-
ture distributions. These findings shed light on the intricate dynamics affecting the
generalization capabilities of ML-based NIDS and underscored the importance of
robust feature representation across diverse datasets.

18 background and related work

Flow Feature Selection in ML-based NIDS

The findings from [38, 95] highlight the considerable influence of feature selection
on the generalization of supervised models, particularly when employing ensem-
ble methods comprising multiple models. In [48], the authors leveraged Spearman’s
rank correlation coefficient to identify unused features and reduce the feature dimen-
sion. Furthermore, they devised an ensemble learning approach combining logistic
regression (LR), decision trees (DT), and gradient boosting to harness the strengths
of each ML model. They conducted a comparison between this ensemble model
and seven standalone ML models, both with and without employing a feature se-
lection approach. The results indicated improved performance for the ensemble ML
model when feature selection was employed. In [7], the authors explored multi-class
ML-based NIDSs across four benchmarking datasets using six ML models. They em-
phasized the importance of a robust preprocessing pipeline for enhancing detection
performance, including data cleaning, transformation, normalization, and feature
selection. Their study addressed critical questions about dataset selection criteria
for maintaining quality in IoT-based IDSs, the impact of quality assurance factors
on ML-based IDSs in IoT contexts, and how quality assurance methods can boost
performance. They also proposed a lightweight framework based on model quality
assurance methods to improve IDS detection rates in IoT environments. In [80], the
authors introduced a novel multi-stage optimized ML-based NIDS aimed at reduc-
ing computational complexity while preserving detection performance. The study
explored the impact of oversampling techniques, particularly SMOTE [28], on train-
ing sample sizes, resulting in a significant reduction (39-74%) compared to original
datasets. Additionally, two feature selection methods, Information Gain (IGBFS) and
Correlation-Based Feature Selection (CBFS), were evaluated, both reducing the fea-
ture set size by almost 60% and further decreasing the required training sample
size (33-50% reduction post-SMOTE). Moreover, different ML hyperparameter opti-
mization techniques were investigated, leading to improvements in detection perfor-
mance, reduced computational complexity, and shorter detection times. Authors in
[130] introduced a filter method for feature selection named EMFFS. Their approach
involved aggregating the outputs of four filter selection methods, namely Informa-
tion Gain, Gain Ratio, Chi-squared, and ReliefF, to score the features. By employing
majority voting and a predefined threshold, they selected only 30% of the features.
Their evaluation was limited to a single dataset, where they observed an improve-
ment compared to scenarios without feature dimension reduction. They inferred that
this enhancement indicated the presence of redundancy or non-informative features
in the original dataset. Following [130], authors in [90] integrated Information Gain
and correlation filter techniques to diminish feature dimensionality, focusing specifi-
cally on DDoS attacks. They divided the output of each individual feature selection
method into three subsets using predefined thresholds. Subsequently, they combined
the most relevant features from the union into the highest subset and the most rel-
evant features from the intersection into the second-highest subset, resulting in a
reduced set of features. Their findings demonstrated an enhancement in detection
performance with the utilization of their feature selection algorithm.

2.6 related work 19

Considering all the aforementioned related work underscores the critical impor-
tance of generalization performance, encompassing both inter- and intra-dataset sce-
narios, as a crucial metric when utilizing ML-based NIDS. However, supervised
learning models exhibit poor generalization performance as they aim to establish
relationships between features and labels within a single dataset. The mentioned
related works indicate that proper feature selection can enhance detection and gen-
eralization performance, particularly in the context of intra-dataset generalization
and, to some extent, inter-dataset generalization. Despite the development of ensem-
ble feature selection methods using various statistical approaches, many overlook
the significant issue of dataset imbalance in network traffic datasets. These methods
typically apply feature selection once on the entire dataset to derive a subset of fea-
tures. Consequently, the feature selection process tends to prioritize learning features
relevant to the majority class while disregarding minority ones. This oversight can
adversely affect the generalization performance.

Generalization in Unsupervised Learning Models

In [126], the authors introduced TS-IDS, a groundbreaking graph-based Traffic-aware
Self-supervised model for Network Intrusion Detection. TS-IDS revolutionizes intru-
sion detection by harnessing Self-Supervised Learning (SSL) techniques, which are
integrated into the model to enrich the graph representation. Unlike traditional ap-
proaches, TS-IDS doesn’t rely on predefined feature extraction methods. Instead, it
leverages Graph Neural Networks (GNNs) specifically tailored for graph-structured
data to capture intricate network relationships effectively. Their proposed traffic-
aware SSL module can enhance the graph representation and consider the historical
behavior of nodes and communication patterns between them (edge features). Node
auxiliary labels are extracted based on traffic volume, labeling nodes with high traf-
fic as suspicious. However, this approach is limited to detecting only volumetric
attacks. In [106], the authors developed an ensemble feature selection approach in-
tegrated with contrastive learning. This approach extends the use of Autoencoder
from unsupervised to supervised learning, allowing both normal visits and attacks
to contribute to feature learning. Additionally, classical clustering algorithms were
implemented under the supervised learning scheme based on network embedding
of data labels. To combat imbalanced data distribution, the framework employed a
modified version of Focal Loss [102], traditionally used in the image field, resulting
in improved model performance for both binary and multi-class classification tasks.
In [110], the authors proposed a contrastive learning-based approach that integrated
flow labels into the embedding space along with flow features to facilitate flow clas-
sification. In this case, the sample features should be close to the correctly annotated
samples (positive pair) while keeping the distance with the other clusters (negative
pairs) high. Therefore, ground-truth labels are required to create the positive and
negative pairs. They evaluated their approach in noisy and unbalanced datasets to
show the effectiveness of their method. Similarly, [105] employed a supervised con-
trastive learning approach by incorporating sample labels to tackle imbalanced and
constrained feature extraction capability issues. In this process, they dropped some

20 background and related work

layers in the encoder randomly to generate augmented data. Additionally, ground-
truth labels were utilized to categorize the augmented samples.

The authors in [177] aimed to address the scarcity of annotated samples in network
traffic by designing a self-supervised contrastive learning approach. They devised a
heuristic method to construct contrastive tasks based on random masking of network
packet sequences, generating positive and negative sample pairs to represent sample
relationships effectively. Additionally, they proposed a contrastive cross-entropy loss
function that combines supervised contrastive loss and cross-entropy loss, facilitat-
ing accurate decision-making while minimizing intra-class distance and maximizing
inter-class distance. However, as explained in [61], important information can be re-
trieved from the initial packets; therefore, corrupting them may lead to information
loss. Also, it should be noted that this approach was trained using both benign and
attack flows. The authors in [167] introduced a self-supervised contrastive learning
model that transformed the flow array into a two-dimensional array format resem-
bling a gray image. Various image-related augmentations, including horizontal and
vertical flips, random cropping, and shuffling, were applied to create positive and
negative pairs. However, the use of image augmentations on sequential intrinsic flow
data points might generate pairs with differing semantics. Additionally, the study
utilized the attention mechanism as the backbone of the encoder. This mechanism
autonomously learns and assesses the input data’s contribution to output classifica-
tion. It effectively suppresses less relevant features while boosting those crucial for
classification in intrusion detection data. The method’s generalization performance
was evaluated across three diverse datasets. Similar to [126], authors in [26] extracted
features from each node using GNN. However, their methodology diverged as they
trained the SSL model in an unsupervised manner, devoid of label information. To
generate positive pairs, they adopted a strategy involving the random selection of
K neighbors for each graph node. Notably, this approach entailed masking infor-
mation from certain neighbors of each node in the graph. Additionally, the authors
conducted evaluations on two distinct datasets to demonstrate the generalization
capabilities of their work.

2.6.2 Machine Learning-based Intrusion Detection in SDN

In this section, we present an overview of anomaly-based NIDS deployed in the
SDN control or data plane and briefly explain the associated challenges. Deploying
ML models in the SDN control plane can be a suitable option, as it has the required
computational resources.

Authors in [49] developed HFS-LGBM IDS, which was deployed in the SDN con-
trol plane to detect network intrusions. To improve the detection performance, the
authors used a hybrid feature selection algorithm which involved correlation-based
feature selection and random forest recursive feature elimination. Then, they trained
a LightGBM algorithm on the optimal feature subset obtained from the hybrid fea-
ture selection method. The comparative analysis with some single ML model base-
lines indicated improvements in the system’s approach. In [97], authors improved

2.6 related work 21

the ML-based NIDS deployed in the SDN control plane. They addressed various
challenges that ML models faced in achieving high detection performance, such as
an imbalanced dataset, a proper feature selection method, and detection speed. They
used conditional Generative Adversarial Networks (GAN) to address the imbalance
dataset issue while using deep sparse autoencoder to reduce the feature dimension
to the most relevant ones. Furthermore, they utilized NetFPGA to accelerate the
packet processing task and increase detection speed. In [51], authors investigated
detection performance for an ensemble method consisting of multiple ML models,
including Support Vector Machine, Logistic Regression, Neural Networks, and Ran-
dom Forests. In their proposed ensemble methods, each of these single models is
trained on a different subset of features. In their evaluation, they illustrated how dif-
ferent feature sets can modify detection performance; therefore, they highlighted the
feature selection method importance.

The mentioned research studies have mainly focused on improving the detection
performance of ML-based NIDS deployed in the control plane. However, deploying
such systems in the control plane can increase the risk of successful attacks against
it. This is because the flows need to be forwarded to the control plane, which can
also lead to network overload and overwhelm the control plane. In addition, the
detection speed is not in the line rate. To overcome these challenges, some studies
propose deploying ML-based NIDS on the programmable data plane.

One category of related work developed an external ML-based NIDS that commu-
nicates directly with a programmable P4 switch. Consequently, in these studies, the
responsibility for feature extraction falls on the P4 switch, while the classification
decision is handled by the external ML-based NIDS. In [123], authors employed var-
ious ML models, including RF, KNN, and SVM, within an external ML-based NIDS
to identify TCP flood attacks. They introduced five distinct window-based flow fea-
tures computed by the P4 switch, which were utilized for training the ML models.
These features were derived by aggregating the values of individual packets over a
predefined window duration. Similar to [123], in [24], multiple ML models are de-
ployed in an external ML-based NIDS. However, they opted to compute flow-based
features within a specific timeframe directly within the P4 switch rather than uti-
lizing window-based features. Consequently, the input data for training the model
was organized based on flows within a predetermined observation window size. Ad-
ditionally, their proposed approach extended to the detection of a broader range
of attacks. In these studies, the necessity to forward packets or flow features to an
external ML-based NIDS can lead to heightened network load and latency.

The second category of related work embedded ML models directly inside the
P4 programmable switch to construct an in-network ML-based NIDS. In [173], four
ML models, including DT, SVM, NB, and K-means, were deployed on both software
and hardware programmable switches (BMv2 and NetFPGA [183]). However, due
to limitations in the mathematical operations supported by the P4 language, they
were unable to compute statistical features of flows within the switch. Therefore,
they utilized look-up tables to retrieve the specific results. Their investigation re-
vealed that this approach required extensive table entries, resulting in heightened

22 background and related work

memory usage. Authors in [171] argued that tree-based ML models are the most
suitable for deployment in P4 switches due to their compatibility with the match-
action table structure. They asserted that other ML models like SVM, ANN, KNN,
and NB are impractical in P4 switches due to the lack of support for certain oper-
ations in the P4 language. They trained a DT model using both packet-based and
flow-based datasets, finding that while packet-based methods require fewer compu-
tational resources, their detection performance is inferior to feature-based DT models.
Additionally, the flow-based implementation exhibited slower detection speeds due
to the need to extract all packets of a flow. Moreover, hard-coding the DT model in
the programmable switch reduces the flexibility of the In-Network NIDS, necessi-
tating rewriting if the model is updated. Building on this research, authors in [98]
implemented an RF model with 11 trees directly within the P4 switch (BMv2). In
their approach, each flow feature was stored in a separate register based on its flow
ID. However, this storage method resulted in increased detection time, as each reg-
ister needed to be read and written repeatedly upon receiving new packets in the
switch. Additionally, this framework may face compatibility issues with hardware-
based switches. Authors in [23] expanded the concept of [98] by deploying multiple
RF models for an In-Network NIDS. They introduced subflow features, which are
derived from a specific number of initial packets rather than capturing all packets
within a flow, aiming to enhance detection speed. In their framework, flows were
divided into subflows, with individual RF models trained on each subflow. Addi-
tionally, they utilized bit concatenation to convert flow feature values into binary
strings, thereby reducing the total number of required registers.

Deploying ML-based NIDS directly within programmable switches, like P4 switches,
addresses the challenges of deploying ML-based NIDS in the control plane. However,
their detection performance may not match that of NIDS deployed in the control
plane, as programmable switches can only accommodate lightweight ML models.
Thus, there’s a need to develop a framework that leverages the advantages of de-
ployment in both the control and data planes.

2.7 summary and identified research gap

In this section, we delve into the diverse categories of ML models and address the
critical considerations for employing ML-based NIDS. A significant advantage of
ML-based NIDS lies in their capability to detect novel, unseen flows. Hence, it’s
imperative to evaluate their detection and generalization performance across varied
scenarios. Generalization within ML-based NIDS can be delineated into two facets:
within the same dataset (intra-dataset) and across different datasets (inter-dataset).

Diminishing the feature dimension to pertinent features can enhance intra-dataset
generalization, especially within a supervised learning framework. However, several
feature selection methods were used on all datasets. Given the highly imbalanced
nature of network traffic datasets, they often prioritize features relevant to the major-
ity class, neglecting informative features for minority ones. Furthermore, attacks can
vary in behavior and distribution depending on the network traffic dataset. To tackle

2.7 summary and identified research gap 23

this challenge, we propose a novel approach to feature selection termed ensemble
feature selection. This algorithm is constructed to identify a subset of features that
offer valuable information across all classes present in the dataset. Additionally, it
enhances the ability of supervised ML-based NIDS to generalize within the dataset.
To address the constraints posed by annotated network traffic datasets and to achieve
broader generalization across different datasets in machine learning-based NIDS, it
is crucial to develop a generic representation of benign traffic through unsupervised
learning. To this end, we propose a Self-Supervised Learning (SSL) approach com-
bined with a novel augmentation algorithm specifically tailored for network traffic
samples. These contributions pave the way for a more adaptable ML-based NIDS
capable of detecting new, previously unseen, and out-of-distribution attacks.

Additionally, in this chapter, we explore network security challenges in SDN and
deploying ML-based NIDS. Prior research suggests deploying ML models on the
control plane due to its ample computational resources. However, this necessitates
forwarding flows to the control plane for detection, potentially increasing attack vul-
nerabilities, causing detection delays, and overloading the network. To tackle these
issues, some approaches in the literature deploy ML models on the data plane, but
this may reduce detection performance due to limited computational resources. To
overcome these challenges, we propose a framework for deploying ML models in
both the data plane and the control plane. The data plane handles intrusion detec-
tion unless confidence falls below a threshold, in which case it is forwarded to the
control plane. This contribution increases detection performance of the ML-based
NIDS in the SDN while reducing network overload, and detection delay.

3
E N S E M B L E F L O W F E AT U R E S S E L E C T I O N

Machine Learning (ML)-based Network Intrusion Detection Systems (NIDS)
have emerged as a critical component in modern cybersecurity infrastructure

to detect network intrusions before they damage the network. Supervised learning
models (mentioned in Section 2.4.1) are one of the main categories of ML models that
are used in anomaly-based NIDSs. These ML models can train on various network
traffic datasets to learn the statistical flow features and distinguish between benign
and attack flows. Supervised ML-based NIDSs are trained on annotated datasets,
which makes them interpretable and helpful for understanding the decision-making
procedure [15]. By continuously analyzing network traffic patterns, these ML-based
NIDSs can proactively detect potential threats, enhancing overall network security
and network management [20].

The effectiveness of ML-based NIDS detection can be influenced by the informa-
tiveness of its flow features [3, 75]. However, with the vast amount of data generated
in network traffic and different types of traffic patterns, not all flow features are
equally important for detecting network intrusions [91, 116].

Definition — Feature selection techniques help to identify the most informative
and discriminative features, reducing computational complexity and improv-
ing model performance [65, 160, 178].

Additionally, feature selection helps to optimize model generalization and inter-
pretability, which leads to better understanding and management of security threats
in complex network environments [20]. Therefore, integrating feature selection mech-
anisms is an essential preprocessing step, which can enhance the efficacy and effi-
ciency of ML-based NIDS [62].

While feature selection offers numerous advantages, it is crucial to carefully choose
informative features to effectively cover all network traffic types. Network traffic
datasets often exhibit imbalances, with benign flows making up the majority of data.
Additionally, among samples of attack flows, certain types of attacks may be more
prevalent than others. Therefore, the feature selection approach should not be biased
towards the predominant samples. Additionally, given the intrinsic heterogeneity of
network traffic and the emergence of new traffic patterns, it is essential to select a
set of transferable features. Training ML models with these features should indeed
empower the model to achieve high detection performance with a high degree of
generalizability.

25

26 ensemble flow features selection

Definition — Transferable features refer to a set of network traffic features that
can be effectively used for training ML models across different network traffic
datasets or scenarios, regardless of whether they exhibit similar or diverse
network traffic patterns.

However, selecting flow features from only one network traffic dataset can dimin-
ish the transferability of the feature to different network traffic datasets with varying
patterns.

To address these challenges, this chapter proposes a preprocessing and feature
selection pipeline designed to minimize noise in the feature space while preserving
informative features. This approach aims to decrease the complexity of ML models
and reduce training time while maintaining high detection performance. Moreover,
the proposed method incorporates a data-driven approach to extract transferable
network traffic features across diverse traffic patterns.

3.1 exploratory analysis of network traffic datasets

In order to develop an appropriate ML model, it is crucial to gain a thorough un-
derstanding of network traffic datasets through exploratory data analysis (EDA). In
the following sections, we conduct various analyses to comprehend the flow features
and distribution of the network traffic datasets.

3.1.1 Benign and Attack Samples Distribution

In this thesis, we utilize five distinct network traffic datasets, each containing vari-
ous types of attacks. Detailed information about the data collection process for each
dataset is provided in Section A.2. After utilizing the NFstream tool [11] to convert
the pcap traffic flows into the feature files, 88 flow features are extracted for each
network traffic dataset. These features are available in Section A.3. After removing re-
dundant flow samples from network traffic datasets, the respective sample counts are
as follows: CICIDS17 contains 709,517 samples, SlowDoS contains 198,414 samples,
CTU13 contains 2,398,949 samples, Botnet contains 205,611 samples, and UNSW-NB
contains 237,853 samples. Figure 4 illustrates the distribution of benign and attack
flows within each dataset. As depicted, most datasets (except the Botnet dataset) ex-
hibit highly imbalanced distributions, with the majority class of benign flows. This
imbalance is a critical consideration, as it can impact the detection performance of
ML models, potentially leading to overfitting [79]. Awareness of imbalance issues in
network traffic datasets is essential for ensuring that the feature selection algorithm
and subsequent model training are not unduly affected by the disproportionate class
distribution.

3.1 exploratory analysis of network traffic datasets 27

23.5%

76.6%

Attack

Benign

Distribution of CICIDS17
Dataset

Distribution of Botnet
Dataset

Benign

Attack

Distribution of CTU13
Dataset

Attack

Benign

0.9%

99.1%

Distribution of SlowDoS
Dataset

0.8%

99.2%

Attack

Benign

Attack

Benign

90.8%

9.2%

Distribution of UNSW-NB
Dataset

63.6%
36.4%

Figure 4: The distribution of attack and benign flow samples within five distinct network
traffic datasets. It demonstrates that most of the network traffic datasets are pre-
dominantly imbalanced, with benign flows comprising the majority of samples in
most cases.

3.1.2 Flow Features Prunning

Each statistical feature within a network traffic dataset provides information for dis-
tinguishing between benign and attack flows. However, it’s crucial to prevent poten-
tial information leakage as this could introduce bias into the ML model and hinder
its ability to learn traffic patterns accurately. For example, IP address information
may exhibit a high correlation with attack or benign labels due to specific victim or
attacker hosts in the network. Training the model with such information could bias
it to merely learn associations between IP addresses and labels rather than capturing
the underlying patterns of attacks. Additionally, certain features, such as time-related
ones (excluding duration), may be heterogeneous across different network architec-
tures, potentially hindering the ML model’s ability to generalize well.

To address these issues, a preprocessing step is undertaken. In this step, all five-
tuple features, including source and destination IP addresses, source and destina-
tion MAC addresses, and port numbers, are removed. Furthermore, all time-related
features are eliminated from the dataset. These eliminations result in reducing the
feature set from 88 to 50 in each network traffic dataset, ensuring that the model is
trained on a more generalized set of features.

28 ensemble flow features selection

Pearson Correlation between
features of CICIDS17 Dataset

1

10

20

30

40

Pearson Correlation between
features of UNSW-NB Dataset

1 10 20 30 40

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.001

10

20

30

40

1

10

20

30

40

1 10 20 30 40 1 10 20 30 40

Figure 5: Pearson correlation between flow features within the CICIDS17 and UNSW-NB
datasets. Red points represent direct linear correlations between features, while
blue points indicate indirect correlations. As depicted, each network traffic dataset
can have different feature correlations. The list of features with their corresponding
identity numbers can be found in Section A.3.

3.1.3 Pearson Correlation between Flow Features

In this step, we investigate the Pearson correlation between features to understand
their linear relationships. The Pearson correlation coefficient measures the strength
and direction of linear relationships between variables (here, they are flow features),
indicating how changes in one variable are associated with systematic changes in
another [146]. Equation 2 shows how to calculate Pearson correlation between two
variables X and Y [146].

r =

∑︁
(Xi − X̄)(Yi − Ȳ)√︁∑︁

(Xi − X̄)2
√︁∑︁

(Yi − Ȳ)2
(2)

where Xi and Yi represent individual data points corresponding to variables X and
Y, respectively. Similarly, X̄ and Ȳ denote the average values of variables X and Y,
respectively.

Figure 5 displays the Pearson correlation among features within the CICIDS17 and
UNSW-NB datasets, accompanied by heatmap plots. Additional feature correlation
figures for other network traffic datasets are provided in Section A.5. Furthermore,
to enhance readability, the figure includes feature identity numbers, while a compre-
hensive list of features with their corresponding identity numbers can be found in
Section A.3. High linear correlations between features suggest redundancy, which
can be addressed by removing such features to reduce dimensionality, simplify mod-
els, and improve computational efficiency without significant loss of information
[44]. This process can be integrated into a feature selection algorithm aimed at mit-
igating multicollinearity issues among features, consequently ensuring more stable
parameter estimation by ML models [85]. Correlation analysis provides valuable in-

3.1 exploratory analysis of network traffic datasets 29

sights into the underlying structure of data, uncovering patterns or dependencies
that may not be immediately evident. This aids in data preprocessing by identifying
and addressing correlated features, ensuring that the data is cleaned and prepared
for analysis. By eliminating redundant or irrelevant information, ML models can be
trained without being influenced by extraneous factors.

In Figure 5, the white line represents zero variance features, indicating those with
only one value. Such features are considered non-informative as they do not con-
tribute to distinguishing between different data points.

Additionally, the comparison between Figure 5 and the corresponding correlation
plots for other network traffic datasets in Section A.5 highlights the notable differ-
ences among these datasets and their respective attack patterns. Such disparities pose
challenges for feature selection methodologies.

3.1.4 Low Variance Filtering

Low variance statistical method for feature selection involves identifying and remov-
ing features with very little variation across various network traffic datasets [17].
Features with low variance have nearly constant values and are often considered
non-informative. By eliminating these low variance features, the dimensionality of
the dataset can be reduced, simplifying models and improving computational effi-
ciency. Moreover, removing such features can help mitigate the risk of overfitting, as
the model is less likely to memorize noise or irrelevant information. Low variance
feature selection is particularly useful in scenarios where datasets contain numer-
ous features, and there’s a need to prioritize those that contribute significantly to
the predictive performance of the model. Upon examining various correlation fig-
ures, including Figure 5 and those in Section A.5, it becomes evident that different
features have zero variance within these datasets. This observation highlights the dif-
ferences among network traffic datasets and demonstrates that distinct features may
be informative in detecting various types of attacks.

3.1.5 Flow Features Distribution

In EDA, understanding the distribution of features can provide fundamental insights
into the underlying structure and characteristics of the dataset. By visualizing feature
distributions using tools like boxplots, it is possible to gain a comprehensive under-
standing of the data’s central tendency, variability, and potential outliers [151]. This
understanding is essential for identifying patterns, trends, and anomalies within the
dataset, which in turn informs subsequent analysis and modeling decisions.

For instance, Figure 6 illustrates the distribution of certain features within the
UNSW-NB network traffic dataset. It is evident that the distribution between attack
and benign flows within this dataset varies.

30 ensemble flow features selection

Destination to source
 maximum packet size

Benign Benign BenignAttack Attack Attack

Bidirectional maximum
packet size

Bidirectional Standard-
deviation packet size

1500
1250
1000
750
500
250

0

1500
1250
1000
750
500
250

0

600
400
200

0

Figure 6: The disparities in the distribution of three chosen features between attack flows,
and benign flows within the UNSW-NB network traffic dataset highlight clear dis-
tinctions. These differences serve to identify these features as potentially informa-
tive for distinguishing between attack and benign flows.

3.2 feature selection approaches

EDA of five different network traffic datasets reveals their diversity, influenced by
differences in network intrusion types, architectures, and management rules. This
variability extends to general network traffic behavior, which is susceptible to con-
cept drift and the emergence of new intrusions. To mitigate the effects of concept
drift, feature selection approaches can be employed. These methods aim to iden-
tify the most relevant features while mitigating the influence of those that do not
accurately represent traffic patterns. By reducing the complexity of machine learn-
ing models while maintaining high detection performance, these approaches enable
effective adaptation to evolving network dynamics.

In this section, different feature selection approaches that can be used to select
relevant flow features are introduced. These methods are used in our proposed En-
semble feature selection approach.

3.2.1 Random Forest Gini Importance

Random Forest’s Gini Importance can serve as a feature selection approach. It oper-
ates by assessing the significance of each feature in a random forest model through
the reduction of Gini impurity, a measure quantifying the degree of disorder within
a dataset [111]. Mathematically, Gini impurity (Gini(p)) for a node t with probability
distribution p across K classes is calculated as:

Gini(p) = 1−

K∑︂
k=1

p2
k (3)

During the construction of decision trees within the random forest, at each node,
the algorithm evaluates different features to determine optimal splits. The decrease
in Gini impurity resulting from each feature’s split is recorded and averaged across
all trees, yielding the Gini Importance score for each feature. These scores provide
a quantitative measure of feature relevance, facilitating automatic feature selection
based on their importance rankings.

3.2 feature selection approaches 31

Random Forest’s Gini Importance offers several advantages, including interpretabil-
ity, efficiency, and robustness [111]. Quantifying the impact of features on predictive
performance enhances model interpretability and aids in understanding which fea-
tures contribute most significantly to classification accuracy. Furthermore, its averag-
ing across multiple decision trees improves efficiency and reduces the risk of over-
fitting, making it robust to noisy data and outliers. Feature selection using Random
forest falls under the category of Embedded methods, which combine the qualities
of filter and wrapper methods [103].

3.2.2 L1-norm in Logistic Regression

In logistic regression, the L1 norm, also known as Lasso regularization, is utilized for
feature selection by penalizing the absolute values of the coefficients associated with
each feature. The L1 norm adds a regularization term to the logistic regression cost
function, which is the sum of the error between predicted and actual values, along
with the absolute values of the coefficients multiplied by a regularization parame-
ter (λ). This regularization encourages sparsity in the coefficient values, effectively
driving some coefficients to zero, thus performing automatic feature selection [149].

The cost function of logistic regression with L1 regularization can be expressed as
Equation 4.

J(θ) = −
1

m

m∑︂
i=1

(︂
y(i) log(hθ(x

(i))) + (1− y(i)) log(1− hθ(x
(i)))

)︂
+ λ

n∑︂
j=1

|θj| (4)

where θ represents the coefficients (including the intercept term), x denotes the
feature matrix, y is the label variable, hθ(x) is the logistic function, m is the number
of samples, n is the number of features, and λ is the regularization parameter. The
term

∑︁n
j=1 |θj| denotes the L1 norm of the coefficients. It is particularly useful when

dealing with high-dimensional datasets with many irrelevant or redundant features,
as it helps in identifying and focusing on the most important features while ignoring
noise or less relevant ones [149].

3.2.3 L1-norm in Support Vector Machines

The L1 norm in Support Vector Machines (SVM) for feature selection operates by
incorporating an L1 penalty term into the SVM’s optimization objective. This ap-
proach encourages sparsity in the model parameters, effectively driving some fea-
ture weights to zero, thus performing feature selection [47]. In contrast to the tradi-
tional SVM that focuses on maximizing the margin between different classes while
penalizing classification errors, the L1-regularized SVM adds an additional layer of
complexity by also penalizing the absolute value of the weights. The L1-regularized
SVM can be expressed as minimizing the objective function as in Equation 5.

min

(︄
1

2
∥w∥2 +C

n∑︂
i=1

ξi + λ∥w∥1

)︄
(5)

32 ensemble flow features selection

Table 2: Comparison of Random Forest Gini Importance, L1-norm Logistic Regression, and
L1-norm Support Vector Machine from different aspects. The differences show that
each of these feature selectors can be suitable for a specific dataset with different
kinds of relationships between features.

Feature RF Gini Importance L1-norm LR L1-norm SVM

Methodology Reducing the impurity
across trees

Pushing coefficients to
zero using L1 penalty

Affecting feature
weights using L1 penalty

Use Cases Complex dataset with
non-linear relationships,
robust to overfitting, han-
dles categorical features

High-dimensional
datasets with linear rela-
tionships, interpretable

High-dimensional,
sparse datasets, handles
both linear and non-
linear separations

Advantages Non-parametric, less
sensitive to outliers,
models complex interac-
tions.

Straightforward interpre-
tation, valuable for ex-
planatory purposes and
prediction.

Handles linear/non-
linear boundaries, ro-
bust in high-dimensional
spaces.

Limitations Biased towards features
with more categories;
doesn’t eliminate but
ranks features.

Assumes a linear re-
lationship between fea-
tures and targets, which
may not always hold.

Requires careful tuning
of parameters; compu-
tationally intensive for
large datasets.

where, ∥w∥1 is the L1 norm of the weight vector w, ξi, are the slack variables repre-
senting misclassification errors, C is a parameter that controls the trade-off between
maximizing the margin and minimizing the misclassification error, and λ controls
the strength of the L1 penalty encouraging sparsity in the weight vector.

L1-regularized SVMs are particularly effective for datasets where feature selection
is crucial, typically in high-dimensional spaces with a large number of features but
a relatively small number of samples. This scenario is useful for domains where the
data might be sparse, and the relevant features for making accurate predictions are
a small subset of the total features available.

However, the effectiveness of L1-regularized SVMs can depend on the choice of
the regularization parameter λ, which requires careful tuning [10]. Moreover, this
approach works better when there is an assumption that the impact of the majority
of features on the target variable is minimal or that the data contains many irrelevant
features. In contexts where most features contribute equally to the decision boundary
or in very low-dimensional datasets, the benefits of L1 regularization might not be
as pronounced.

3.3 comparison between different feature selection approaches

Table 2 presents a comparison of the aforementioned feature selection methods. As
highlighted, each method offers distinct advantages that are beneficial for different
types of datasets. Consequently, employing a combination of these approaches can
enhance the quality of the final feature subset, potentially making the methodology
more versatile and applicable to a broader range of datasets.

3.4 proposed preprocessing pipeline 33

3.4 proposed preprocessing pipeline

The exploratory data analysis in Section 3.1 reveals that network traffic datasets ex-
hibit considerable differences. Supervised ML models discern different categories by
learning the relationship between the feature space and ground-truth labels. In order
to improve the generalization of supervised learning models, one effective approach
is to augment the training data by incorporating additional network traffic datasets.
To ensure the adaptability of ML-based NIDS to new network traffic data, a stan-
dardized preprocessing pipeline is essential. The proposed preprocessing pipeline is
demonstrated in the first stage of Figure 7.

According to the EDA findings, certain features exhibit high linear correlations,
implying redundancy in the information they provide to the ML model. Addition-
ally, some features display zero variance, rendering them non-informative for the
ML model. Therefore, features exhibiting a correlation exceeding 95%, as per Pear-
son correlation analysis, are pruned. Furthermore, features with zero variance are
removed, as they do not contribute to distinguishing between attack and benign
flows. In addition, certain flow features may introduce biases in the model, leading
it to make decisions relying solely on this subset of information, thus limiting its
ability to generalize across different flow samples with different distributions. These
features include five-tuple features, which have a direct relation to the ground-truth
labels (Benign/Attack), and time-related features, which can be different based on
each network topology, network management rules, and the available concept drifts.
These features are also pruned in our preprocessing pipeline. Therefore, in the first
stage (statistical approaches), we effectively reduced the number of features to 45. To
summarize, the preprocessing pipeline is presented in Algorithm 1.

Algorithm 1 : Preprocessing pipeline to create an appropriate flow features
for training supervised ML-based NIDSs
Input : Network traffic dataset converted with NFStream tool to the feature

space of F = {f1, f2, ..., fk} with the mean of features µ = {µ1,µ2, ...,µk}

Output : Reduced feature set

1 Preprocessing:
2 Five tuple features & time− related features← Remove;
3 if 1

n

∑︁n
i=1(fji − µj)

2 = 0 then
4 fj ← Remove;
5 end
6 if |ρ(fi, fj)| > 0.95 then
7 fi ← Remove;
8 end

34 ensemble flow features selection

3.5 proposed ensemble feature selection

After reducing the size of flow features through the preprocessing pipeline (Sec-
tion 3.4), we implement an Ensemble Feature Selection (EFS) method, depicted in
the second stage of Figure 7. This process aims to decrease the dimensionality of
flow features, which can impact the complexity of the supervised ML model and
its ability to generalize detection performance. This becomes crucial if retraining the
ML model used in the NIDS is necessary, such as in online learning approaches, or
if computational resources are limited [60].

However, it is vital to ensure an accurate selection of informative features for im-
balanced network traffic datasets. This entails retaining not only features crucial
for classes with a majority of samples but also preserving information relevant to
all categories. Additionally, network traffic datasets show different patterns due to
extracting from different network architectures with various network management
rules and routing protocols [39]. This inherent diversity results in variations between
network traffic datasets. Consequently, these differences pose challenges for feature
selection approaches, especially when focusing solely on one network traffic dataset.
Features selected utilizing one network traffic dataset may extract important charac-
teristics of network traffic patterns with only similar behavior.

As discussed in Section 3.3, each feature selection method has its own strengths
and limitations. To design a feature selection method capable of being applied to
various network traffic datasets and detecting flow features transferable to others,
we combine their output results with certain considerations in this method.

Within the proposed EFS, each network traffic dataset undergoes three distinct
approaches: Lasso Logistic Regression (LR), Lasso Support Vector Machine (SVM),
and Random Forest (RF) Gini Importance. If a network traffic dataset encompasses
multiple attack types, separate datasets are created for each attack and benign flows.
This approach mitigates bias in differentiating between benign and attack flows, par-
ticularly in datasets where certain attack types dominate, potentially overshadowing
crucial features.

The output of each feature selection method comprises coefficient values assigned
to individual features, indicating their importance. Subsequently, features are ranked
in descending order of coefficient values. The top features from each set are selected,
followed by the intersection of these selections. This process yields the final feature
set, comprising the 5, 10, 15, 20, and 30 most important flow features.

To improve the transferability of our proposed EFS method, we introduce a data-
driven approach known as DD-EFS [59]. In this approach, the EFS method is em-
ployed across multiple network traffic datasets to extract the top 20 features from
each. This selection (top 20 features) is based on the optimal performance achieved
by the EFS method. Subsequently, an intersection is taken over these features, result-
ing in 5 common network traffic flow features. By utilizing multiple network traffic
datasets, which differ according to EDA results (mentioned in Section 3.1), to se-
lect these 5 features, the likelihood of their transferability to new, previously unseen
network traffic datasets is increased.

3.6 evaluation design 35

Figure 7: The general architecture of the proposed preprocessing pipeline and the proposed
Ensemble Feature Selection (EFS) approach. The first stage illustrates the prepro-
cessing pipeline crafted following exploratory analysis of network traffic datasets.
Subsequently, the second stage demonstrates the EFS approach, leveraging the ca-
pabilities of three ML-based feature selectors to enhance the method’s robustness.

3.6 evaluation design

In this section, we elaborate on our evaluation design to explore our proposed EFS
from different perspectives. We utilize multiple supervised ML models to assess
the efficacy of our proposed EFS approach [57]. To evaluate both the robustness
of the proposed method and the transferability of the selected features, we utilize
five network traffic datasets. These network traffic datasets were chosen for their
differences, as revealed in the EDA discussed in Section 3.1, and their availability in
pcap format. More details about the datasets can be found in Section A.2.

In this section, we first investigate the influence of the number of selected relevant
features on detection performance and its impact on the training and evaluation
time of ML models. Furthermore, to assess the effectiveness of designing an en-
semble method, we evaluate detection performance using features selected by each
individual feature selection method and compare it with the scenario where they are
combined into an ensemble (EFS). Additionally, to understand the transferability of

36 ensemble flow features selection

selected features across various network traffic datasets with diverse distributions
and attack types, we augment the proposed EFS approach by applying it to multiple
network traffic datasets. The transferability of these selected features is investigated
in comparison to extracting features solely from one network traffic dataset.

3.6.1 Datasets

This section provides details about the datasets utilized for both training and evalu-
ation purposes: CICIDS17, CTU13, UNSW-NB, Botnet, and SlowDoS. Each network
traffic dataset, as explained in Section A.2, is divided into training, validation, and
test datasets, with proportions of 70%, 10%, and 20% of the total dataset, respectively.

To optimize each ML model’s detection performance, we employ cross-validation
techniques using the training and validation sets. The test set remains unseen until
the final evaluation stage. Consequently, the models’ hyperparameters are chosen
based on the results of cross-validation conducted on the validation dataset.

To assess the DD-EFS approach, results are extracted using CICIDS17, CTU13,
and UNSW-NB datasets, and their transferability is investigated on two different,
previously unseen datasets: Botnet and SlowDoS.

3.6.2 ML Models Used in Evaluation Scenarios

To evaluate the effectiveness of our proposed preprocessing techniques, EFS algo-
rithm, and DD-EFS algorithm, we conducted experiments using a range of super-
vised ML models. These models include:

• Random Forest (RF) model, comprising 200 decision trees.

• Logistic Regression (LR) model, with a maximum of 200 iterations.

• Multi-Layer Perceptron (MLP) model, consisting of four layers with neuron
counts of 20, 32, 20, and 1, respectively. Batch normalization is incorporated
into each layer, and dropout regularization with a rate of 0.3 is applied to the
second and third layers. Binary cross-entropy is employed as the loss function,
while the Adam optimizer is used for parameter optimization.

Further details regarding the model structure can be found in Section 2.4.1.

3.6.3 Evaluation Metrics

To evaluate the efficacy of the proposed EFS method, it is crucial to assess the detec-
tion performance of the ML model. For this purpose, we utilize the macro-average
of the F1-score metric. The F1-score is chosen as it accounts for both false positives
(FP) and false negatives (FN), providing a comprehensive evaluation of the detection
performance.

3.7 evaluation results 37

In this study, the positive class denotes attacks, while the negative class represents
benign flows. Recognizing that benign flows typically constitute the majority of net-
work traffic, we opt to compute the macro-average of the F1-score. This approach
ensures equal consideration of each class, irrespective of its frequency or potential
imbalance in the dataset [57].

To compute the F1-score, precision and recall are derived using Equations 6 and 7,
respectively. Subsequently, the F1-score and its macro-average are calculated based
on Equations 8 and 9.

Precision =
TP

TP+ FP
(6)

Here, TP refers to True Positive, representing the number of attack samples that
are correctly identified as attack samples. FPs represent benign samples that are
incorrectly detected as attack samples.

Recall =
TP

TP+ FN
(7)

Where FNs represent attack samples that are incorrectly detected as benign samples.

F1-score =
2×precision×recall

precision+recall (8)

Macro-averageF1-score = 1
N

∑︁N
i=1 F1i (9)

Where N denotes the number of classes, with two classes representing "Benign" and
"Attack" samples.

3.6.4 System Information

To implement the proposed preprocessing pipeline, EFS, DD-EFS, and train ML mod-
els, we utilize a Ubuntu server equipped with 128GB RAM and 4 CPUs (Intel Core
i9-10900K). Moreover, the implementation is done in Python, using the Scikit-learn,
pandas, and PyTorch libraries. Each evaluation is independently run five times to
present the mean value of the results, ensuring the robustness of the final values.

3.7 evaluation results

In this section, we conduct experiments to investigate the scenarios discussed in
Section 3.6.

3.7.1 Selected Flow Features

This section presents the final coefficient values of each flow feature extracted using
the proposed EFS method. To address variations in the outputs of Lasso LR, Lasso

38 ensemble flow features selection

Figure 8: Feature importance values obtained through the proposed EFS method for five
various network traffic datasets. The coefficient value of each individual feature
selection method is normalized between 0 and 1, so the maximum value that a
feature importance can have is 3. This figure is extracted from [59].

SVM, and RF feature selection methods, we normalize their outputs to ensure they
fall within the range of 0 to 1. This normalization prevents any individual selector
from disproportionately influencing the final coefficient values, ensuring that the
total sum of all coefficients does not exceed three. Analyzing the coefficient values

3.7 evaluation results 39

for each feature across different network traffic datasets, as illustrated in Figure 8,
highlights variations in feature relationships among the datasets. This observation
indicates that different network traffic datasets exhibit distinct flow patterns due
to their unique attack types and characteristics. Consequently, employing a feature
selection algorithm on a single dataset and applying the selected features across
diverse datasets to construct a generalized ML-based NIDS is ineffective.

Hence, it becomes essential to explore which features are transferable among var-
ious network traffic datasets. This challenge is addressed through the design of DD-
EFS.

3.7.2 Impact of Feature Selection on Detection Performance

In this section, we evaluate the detection performance of multiple ML models using
different feature sets, including the 5, 10, 15, 20, and 30 most relevant features. We
compare the detection performance achieved by incorporating feature importance
with a scenario where only a preprocessing pipeline (reducing feature size from 88

features to 45 features) is applied to the network traffic feature files, utilizing all 45

features during the training process.
Based on the findings presented in Table 3, it is observed that the performance

achieved without the proposed EFS using all 45 features can be achieved by using
only 15 or 20 features. This indicates a potential reduction in the feature set by 67%
or 56%, respectively, while still maintaining comparable detection performance to
that obtained with the entire feature set.

According to Table 3, the RF model consistently demonstrates high detection per-
formance across various network traffic datasets. Specifically, when trained on 20 se-
lected features, its detection performance closely aligns with scenarios where no fea-
ture selection is applied. Remarkably, expanding the feature set from 5 to 15 features
notably enhances detection performance in the CICDoS and Botnet datasets while
yielding minor improvements in other network traffic datasets. The MLP model ex-
hibits similar detection performance to the RF model across most datasets, except for
the Botnet dataset, where it achieves comparatively lower detection rates.

Both the RF and MLP models showcase the potential to maintain high detection
performance even with reduced feature dimensions, similar to scenarios without
feature selection. Conversely, for the LR model, reducing the feature dimension to
smaller selected subsets can also enhance detection performance in specific network
traffic datasets such as CICIDS17, CICDoS, and UNSW-NB.

3.7.3 Impact of Feature Selection on Training Time

One primary objective of selecting the most relevant features is to reduce feature
dimensions, thereby minimizing noise within features and speeding up the training
time of ML models. This becomes particularly crucial when employing ML-based
NIDS in online scenarios [60]. In scenarios requiring retraining of the ML model, it’s
crucial to ensure that updating ML-based NIDS doesn’t introduce significant time

40 ensemble flow features selection

Table 3: Comparison of the detection performance of RF, LR, and MLP-based NIDS across
diverse network traffic datasets, with and without the proposed EFS. It highlights the
impact of feature size on detection performance, emphasizing the trade-off between
information loss and detection effectiveness. It also shows the efficiency of EFS in
optimizing detection performance without utilizing all available features.

Dataset
F1-score (%)

Without EFS 5 Features 10 Features 15 Features 20 Features 30 Features

CICIDS17:

RF 99.8 98.1 99.4 99.4 99.5 99.4

LR 74.3 94.3 99.0 94.1 89.1 73.2

MLP 99.9 99.2 99.2 99.0 99.6 99.6

CICDoS:

RF 99.1 80.2 94.6 99.0 99.0 99.0

LR 82.3 75.1 86.4 86.2 90.2 82.5

MLP 96.0 80.0 93.1 94.4 95.0 95.0

CTU-13:

RF 99.9 95.9 97.3 99.1 99.4 99.4

LR 93.0 94.2 94.2 93.0 94.1 90.0

MLP 98.7 94.3 94.4 97.2 97.2 97.7

Botnet:

RF 94.6 68.3 85.1 93.2 94.4 94.5

LR 64.2 57.8 60.0 62.3 63.1 64.0

MLP 79.7 70.1 80.0 80.1 80.0 80.2

UNSW-NB:

RF 99.9 99.0 99.9 99.9 99.9 99.9

LR 74.7 94.2 99.0 94.2 89.5 73.8

MLP 99.9 99.1 99.9 99.9 99.9 99.9

overhead. This is essential to avoid increased network latency, potential packet loss,
and a decline in Quality of Service (QoS).

In this section, we investigate the impact of reducing feature dimensions on the
training and evaluation times of each supervised ML model. Table 4 showcases the
results for one large (i.e., CTU-13) and one small (i.e., Botnet) network traffic dataset.
Additional results for other datasets can be found in Section A.6. Our analysis in
Table 4 reveals that RF and MLP models exhibit longer training times, mainly ow-
ing to their structural complexity, unlike LR, which is a linear model. However, the
results show that the training time of RF is highly influenced by the number of fea-
tures, with an increase in feature size leading to a corresponding increase in training

3.7 evaluation results 41

Table 4: The training time required for three distinct ML models, including RF, LR, and MLP,
across varying feature dimension sizes for both the largest and smallest network
traffic datasets. As demonstrated, the training time is influenced by both the number
of data points and the feature dimension size.

Dataset
Training Time (Second)

5 Features 15 Features 30 Features 45 Features

CTU-13 with

3,329,312 flow samples:

RF 63.19 253.13 533.52 592.54

LR 4.53 24.35 30.12 47.78

MLP 274.41 264.56 268.07 276.91

Botnet with

182,999 flow samples:

RF 3.62 17.87 36.59 33.89

LR 0.16 0.91 0.79 2.55

MLP 14.57 15.45 17.89 19.23

time. Conversely, MLP training time shows only a slight increase, suggesting it is less
dependent on feature size. Additionally, a comparison across two distinct datasets
reveals that retraining time is influenced not only by the feature size but also by the
dataset size. Specifically, in datasets with a greater number of flow samples, training
time tends to increase.

3.7.4 Effectiveness of Ensemble Flow Feature Selection

In this section, we compare detection performance when the models are trained on
feature sets received from individual feature selection with the case where features
are extracted from the proposed EFS approach. This comparison can show the ef-
fectiveness of combining the feature selection methods over using a single feature
selection approach.

Selecting Features Leveraging Solely RF Gini Importance

In the following analysis, feature selection is conducted solely based on the RF
Gini importance method. The ML models are then trained using subsets compris-
ing 11% (5 most important features), 22% (10 features), 33% (15 features), 44% (20

features), and 66% (30 features) of the total features. The results are presented in
Table 5. A comparison between Table 5 and Table 3 reveals that features selected
through RF Gini importance significantly impact the detection performance of the

42 ensemble flow features selection

Table 5: Detection performance of different supervised ML-based NIDS across various net-
work traffic datasets with selected features from solely RF gini importance selector.

Dataset
F1-Score (%)

5 Features 10 Features 15 Features 20 Features 30 Features

CICIDS17:

RF 96.0 96.2 96.3 96.7 97.0

LR 91.7 92.2 92.1 89.1 72.9

MLP 91.1 96.2 94.4 94.5 96.1

CICDoS:

RF 98.0 99.1 99.2 99.1 99.1

LR 74.3 82.9 83.2 85.8 78.1

MLP 78.1 93.2 94.4 94.5 94.7

CTU-13:

RF 95.4 98.3 99.1 99.3 99.3

LR 86.3 87.1 87.4 81.2 80.0

MLP 91.0 93.6 95.2 97.0 97.1

Botnet:

RF 93.4 94.2 94.3 94.3 94.3

LR 56.1 60.0 60.1 60.1 62.2

MLP 70.0 74.2 78.5 74.3 77.1

UNSW-NB:

RF 99.2 99.7 99.9 99.9 99.9

LR 83.1 86.9 84.8 83.2 82.1

MLP 98.2 99.2 99.2 99.3 99.3

RF model. This is likely due to the compatibility between the model’s architecture
and the feature selection method, leading to improved detection performance. How-
ever, utilizing features selected solely via the RF Gini importance method results in
decreased detection performance for the MLP and LR models compared to when the
EFS method is employed.

The outcomes obtained from selecting features solely based on L1-norm LR and
L1-norm SVM are presented in Section A.7. A comparison between the detection per-
formances achieved when either of these models is used individually and when they

3.7 evaluation results 43

are combined through the EFS method reveals that ensembling leads to improved
detection performance, even with a smaller subset of flow features.

3.7.5 Transferability of Selected Flow Features

In this section, to select a transferable feature set, we introduce a data-driven solu-
tion and integrate it into the proposed EFS method, naming it DD-EFS. Considering
the results of Exploratory Data Analysis (EDA) and the coefficient values of each
network traffic dataset, it is evident that these datasets can differ from one another.
Moreover, in real-world scenarios, the emergence of new, previously unknown at-
tacks and concept drift in network traffic distribution are common. Therefore, the
selected features should demonstrate high detection performance not only on simi-
lar pattern flows but also on different patterns.

In DD-EFS, the selected features consist of the intersection of the top 25 features
from three datasets: CICIDS17, CTU13, and UNSW-NB. This approach ensures that
the selected features are not based solely on one dataset but are instead derived
from multiple datasets, enhancing their potential transferability and robustness. The
selected 5 common features include "bidirectional maximum packet size", "bidirec-
tional mean packet size", "source to destination maximum packet size", "destination
to source SYN packets", and "bidirectional duration in milliseconds" [59].

To assess their transferability, the ML models are trained on these 5 features of
Botnet and SlowDoS network traffic datasets, which were excluded during the se-
lection process. The detection performance is shown in Table 6. The performance of

Table 6: Investigating transferability of the selected features from DD-EFS. Here, DS1, DS2,
and DS3 refer to CICIDS17, UNSW-NB, and CTU13 datasets, respectively. The table
is extracted from [59].

Dataset
F1-Score (%)

5 top features 5 top features 5 top features DD-EFS

of DS1 of DS2 of DS3 features

SlowDoS

RF 96.3 98.1 76.8 99.0

LR 71.6 64.3 71.2 72.7

MLP 91.1 95.2 76.4 95.5

Botnet

RF 85.9 82.7 70.4 91.8

LR 60.3 59.3 60.8 64.8

MLP 79.2 70.6 70.4 83.2

44 ensemble flow features selection

DD-EFS is compared to the scenario where the features are selected solely from one
of the datasets using EFS. According to the results, DD-EFS achieves higher detection
performance on both previously unseen network traffic datasets compared to select-
ing features solely from one network traffic dataset. This highlights the effectiveness
of DD-EFS in identifying transferable features across diverse datasets. The highest
detection performance is shown in bold.

Since the features extracted from DD-EFS are not the top 5 features of each net-
work traffic dataset individually, we also evaluate the detection performance on each
dataset and present the results in Table 7.

According to the results, while the 5 features extracted from the corresponding
network traffic dataset can achieve the highest detection performance, the features
extracted from DD-EFS achieve the second-best detection performance with only a
slight difference. This suggests that while dataset-specific features may offer slightly
better performance on their respective datasets, the transferable features selected by
DD-EFS still demonstrate competitive detection performance across different datasets.
Therefore, we can infer that these selected features not only exhibit high performance
but also encapsulate crucial information necessary for detecting various intrusions
across diverse network traffic scenarios.

Table 7: Investigating Detection performance of the selected features from DD-EFS for net-
work traffic datasets that were involved in DD-EFS. Here, DS1, DS2, and DS3 refer
to CICIDS17, UNSW-NB, and CTU13 datasets, respectively.

Dataset
F1-Score (%)

5 top features 5 top features 5 top features DD-EFS

of DS1 of DS2 of DS3 features

CICIDS17

RF 98.1 95.0 88.2 96.1

LR 94.3 89.2 88.1 90.3

MLP 99.2 93.1 87.9 94.6

UNSW-NB

RF 98.1 99.0 50.0 98.8

LR 56.7 94.2 50.0 73.8

MLP 69.4 99.1 50.0 92.8

CTU13

RF 90.2 90.0 95.9 95.0

LR 81.9 55.3 94.2 87.4

MLP 90.8 86.8 94.3 92.9

3.8 summary 45

3.8 summary

In this chapter, we conduct an exploratory data analysis (EDA) to illustrate the diver-
sity of network traffic datasets. This analysis highlights that using only one method
to extract the most relevant features may work well for one dataset but may not be
suitable for others.

Therefore, we introduce a new ensemble feature selection (EFS) method [57] that
leverages statistical and ML-based feature selection techniques to reduce feature di-
mensionality while maintaining robust detection performance. By employing our
proposed EFS method, a reduction in feature dimension by 56% is achievable while
maintaining detection performance comparable to using all features. Additionally,
we demonstrate that utilizing the EFS method leads to decreased training time,
which is crucial when updating the ML model is necessary [60].

Lastly, we explore the possibility of extracting transferable flow features across
diverse network traffic datasets by providing a data-driven solution and integrating
it into the proposed EFS method (DD-EFS) [59]. The results show that features ex-
tracted from DD-EFS can be transferable across different, previously unseen network
traffic datasets compared to features selected solely from one network traffic dataset.

4
S E L F - S U P E RV I S E D N E T W O R K I N T R U S I O N D E T E C T I O N
S Y S T E M

In this chapter, Sections 4.6.2, 4.8.2, 4.8.3, and 4.8.7 are taken verbatim from [58].

The performance of a Machine Learning (ML)-based Network Intrusion Detec-
tion System (NIDS) can vary depending on various factors such as the compo-

sition of its training dataset, the structure of its ML model, and the distribution of
its evaluation dataset. For instance, supervised ML-based NIDSs can achieve high
detection performance for network flows within a dataset (intra-dataset) through a
proper preprocessing and feature selection approach [57]. However, studies indicate
that their performance degrades significantly when evaluated with traffic patterns
different from the training dataset, a phenomenon known as cross-domain detection
performance or inter-dataset generalization of an ML-based NIDS [3, 96, 179].

Definition — Cross-Domain Detection Performance denotes the efficacy of an
ML-based NIDS when trained on one dataset and tested on another dataset
that may have a distinct distribution [39, 94].

This is an important issue to consider, as the traffic patterns within a network are
influenced by various factors such as network architecture, deployed network ser-
vices, network security management rules, and the number of employees accessing
the network [179]. The variability in the network environment can directly impact
the behavior of network users and network traffic flow features.

Therefore, the ML-based NIDS trained on network traffic collected from a spe-
cific network setting may exhibit high detection performance when analyzing flows
originating from the same network pattern. However, its detection performance may
decline when dealing with new flows from a different network environment. This
mirrors real-world situations where the NIDS encounters diverse network traffic
patterns due to the heterogeneous nature of network data [8]. Additionally, the
emergence of new network intrusions may exhibit distributions differing from those
present in the training dataset, and detecting them accurately is necessary.

Furthermore, supervised learning models primarily learn the relationship between
flow features and ground truth labels, thereby lacking the ability to discern abstract
representations of the underlying nature of a flow. Consequently, they encounter dif-
ficulties in detecting new network intrusions that may mimic benign flow patterns,
such as botnets and multi-stage attacks (MSA) [12]. Additionally, collecting and accu-
rately annotating such intrusions can pose difficulties for humans, thereby limiting
the availability of various annotated network intrusion flows for training supervised
ML models.

47

48 self-supervised network intrusion detection system

Conversely, unsupervised ML models do not need annotated datasets and can ac-
quire more abstract representations of features. However, it primarily learns dataset-
specific features through feature reconstruction [167]. While this approach can be
advantageous in discovering underlying patterns in unlabeled data, it also poses
challenges when faced with network flows divergent from the training data pattern.
In such cases, the model’s ability to generalize may be limited, leading to decreased
detection performance akin to the constraints observed in supervised learning.

Therefore, both supervised and unsupervised models encounter challenges in
achieving high cross-domain detection performance, a crucial metric for designing
a generalized ML-based NIDS. This chapter introduces a novel approach using self-
supervised learning to address these challenges by learning abstract representations
of only benign flows.

4.1 problem statement

Training an ML-based NIDS on a limited set of network traffic flows can diminish
the model’s ability to generalize to other datasets with different distributions, which
is referred to as cross-domain detection performance.

To illustrate the issue, suppose the ML-based NIDS is trained on a training dataset
Ds = {Xs,Ps(x), x ∈ Xs}, where Xs represents the feature space and Ps(x) denotes
the marginal probability distribution of all samples in the feature space. In scenar-
ios where network traffic exhibits heterogeneity due to diverse user behaviors, net-
work management rules, and varying network topologies, it is highly probable to
encounter another network traffic dataset Dt = {Xt,Pt(x), x ∈ Xt} with probability
distributions Ps(x) ̸= Pt(x). Even if the ML-based NIDS f is trained on Ds using a
specific learning algorithm A to minimize a loss function L, its detection performance
on Dt may not match the performance achieved on Ds. In fact, its performance may
deteriorate significantly on Dt. Thus, Performance(f,Ds) ̸= Performance(f,Dt).
This disparity in performance underscores the presence of the cross-dataset prob-
lem, where the model’s effectiveness on the training dataset does not perform well
in the testing dataset.

To address this problem and align the ML-based NIDS more closely with real-
world scenarios, where access to all network traffic and its varied distributions, as
well as the emergence of new attacks, is not feasible, we need to design a model
that doesn’t rely on annotated attack flows. This is because capturing the traffic and
pattern of a novel attack can be time-consuming, and depending solely on annotated
data may hinder the ML-based NIDS’s ability to detect previously unseen threats ef-
fectively. Therefore, this model should be capable of learning abstract representations
of network traffic to enable effective discrimination between benign and malicious
entities.

4.2 pretext tasks 49

4.2 pretext tasks

The Self-Supervised Learning (SSL) method, as defined in 2.4.3, is categorized un-
der unsupervised learning, eliminating the requirement for annotated network traf-
fic data. Unlike conventional unsupervised learning models, SSL can discern more
abstract representations of data by optimizing pretext tasks and harnessing inher-
ent properties and content within the dataset [31, 156]. In the following, some well-
known pretext tasks utilized in SSL are succinctly elaborated.

Pretext tasks serve as mechanisms to enable ML models to grasp the underly-
ing structure or relationships within the data [161]. By training the model on these
pretext tasks, it can be refined for downstream tasks, especially in situations where
labeled data is scarce or costly [121].

In the domain of Natural Language Processing (NLP), common pretext tasks in-
clude word masking and word prediction within sentences [108]. Similarly, in com-
puter vision, pretext tasks such as image colorization and image rotation prediction
enable the model to learn invariant features and abstract representations of images,
which can then be utilized for classification tasks [120]. For tabular data, adding
noise to features through column or row scrambling or column or row masking and
accurately predicting these modifications is regarded as a pretext task [163].

4.3 contrastive learning

Contrastive learning is a technique used in SSL to train models without labeled data.
It operates by contrasting pairs of similar and dissimilar samples in the latent space
[108]. Specifically, the model is trained to map similar instances (positive pairs) closer
together while pushing dissimilar instances (negative pairs) farther apart. This is typ-
ically accomplished by employing contrastive loss functions, such as InfoNCE (Noise
Contrastive Estimation) [129] or Normalized Temperature-Scaled Cross-Entropy (NT-
Xent) loss [32], to measure the agreement between positive pairs and the divergence
between positive and negative pairs. By optimizing this objective, the model learns to
capture meaningful representations of the data that capture underlying structures or
relationships, which can then be transferred to downstream tasks. Contrastive learn-
ing is particularly effective for SSL as it leverages the inherent structure of the data
itself, making it well-suited for scenarios where labeled data is scarce or unavailable
[109].

Creating similar and dissimilar instances, referred to as positive and negative
pairs, respectively, involves the generation of variations or manipulations to the data,
which is akin to data augmentation. Data augmentation techniques are widely uti-
lized in machine learning to expand the training dataset artificially by introducing
variations or transformations to the existing data. These techniques encompass vari-
ous methods such as image transformations (e.g., cropping, rotation, flipping) [120],
text transformations (e.g., shuffling words, paraphrasing) [108], and manipulation of
tabular data (e.g., adding noise, shuffling rows or columns) [163]. These augmenta-

50 self-supervised network intrusion detection system

Figure 9: The idea of transfer learning, where one model is trained for a specific task can be
used as a pre-trained model for solving another task.

tions play a vital role in fostering the creation of diverse pairs and make the model’s
capacity to generalize to unseen data.

4.4 transfer learning

Transfer learning is a machine learning technique that utilizes knowledge from one
domain (source) or task to another (target) domain. It is mostly used when the tar-
get task has a limited amount of annotated data available [58]. Transfer learning is
widely utilized in computer vision, and natural language processing, where a ma-
chine learning model pre-trained on a source dataset is employed for prediction
tasks on a target dataset [77]. It is important to note that pretraining can occur with
or without label supervision from the source dataset [58]. In this chapter, we show
that our proposed contrastive SSL NIDS can be used as the pre-trained model.

4.5 contributions

As detailed in Section 4.1, supervised ML-based NIDSs heavily rely on annotated net-
work datasets to establish relationships between trained network traffic flow features
and ground-truth labels. Conversely, unsupervised ML-based NIDSs do not require
annotated data for training; however, they learn representations by reconstructing
the training dataset, thus making their learned representations dependent on the
specifics of the training data. Consequently, both supervised and unsupervised ap-
proaches face limitations in achieving high cross-domain detection performance.

The SSL methods discussed in Section 2.6.1 are categorized based on their uti-
lization of label information in their pretext task and the generation of positive and
negative pairs (explained in Section 4.3). Some methods use labels for this purpose,

4.6 proposed self-supervised contrastive learning 51

Head

Head

NTXent
loss

Preprocessing

Positive
Sample

Shared weights

SSCL-NIDS

Encoder

Encoder

Corrupted
Anchor

Benign
Flows

Select a
Sample

Anchor

Cp

Ca

1

32

 : Adding a
corruption mask

Flow
Features

Feature
Extraction

Network Traffic
Dataset

DS5
DS4
DS3
DS2
DS1

Figure 10: The general architecture of the proposed SSCL-NIDS. It comprises three main
modules, including (1) preprocessing pipeline, (2) data augmentation, and (3)
model training. The figure is extracted from [58].

while others remain unsupervised, devoid of label information. In our endeavor to
reduce the dependency on annotated data, our proposed approach keeps the pretext
task unsupervised. Furthermore, to tackle the generalization challenge in ML-based
NIDSs effectively, we aim to design a model capable of learning generic representa-
tions of benign traffic patterns. Unlike other SSL-based NIDSs, we enhance the aug-
mentation process by applying corruption masks to create both positive pairs and
modified anchors. Additionally, we train the ML-based NIDS on benign flows from
multiple network traffic datasets. This dual augmentation strategy, along with the in-
clusion of diverse network traffic patterns, enables the model to learn more generic
representations of benign flows. Furthermore, we leverage our proposed model as
a pre-trained model and explore its effectiveness in transfer learning scenarios. This
approach allows us to assess the model’s adaptability.

4.6 proposed self-supervised contrastive learning

In this section, we introduce our approach aimed at increasing the generalization
and cross-domain detection performance of ML-based NIDS, called Self-Supervised
Contrastive Learning-base Network Intrusion Detection System (SSCL-NIDS) [58].
As depicted in Figure 10, which provides a general overview of the proposed SSCL-
NIDS, this ML-based NIDS comprises multiple modules. These include a prepro-
cessing pipeline, data augmentation, and model training, which are explained in the
following sections.

4.6.1 Flow Scope & Preprocessing Pipeline

In this work, each flow comprises packets characterized by identical 5-tuple features,
encompassing source and destination IP addresses, source and destination MAC ad-

52 self-supervised network intrusion detection system

dresses, and port numbers. As detailed in Section 2.3, we employ the flow aggrega-
tion tool NFStream [11] to aggregate network traffic packets into flow-based datasets
and extract flow-based features. These extracted features are then categorized into
specific groups, which are detailed in Section A.3.

To elucidate the flow feature extraction process employed in the training and eval-
uation of SSCL-NIDS, we provide an explanation of the NFStream implementation
below. NFStream provides a flexible attribute configuration for flow feature extrac-
tion. The enabled attributes in our implementation, along with their purposes, are
listed below:

• The "accounting_mode" is set to 3, allowing the accumulation of payload lengths
for bytes-related features.

• "statistical_analysis" is enabled, facilitating the extraction of post-mortem flow
statistical features.

• The "activation timeout" ("active_timeout" property) is set to 30 minutes, signi-
fying that packets with similar 5-tuple features received within this timeframe
are added to the indexed flow; otherwise, they are considered as a new flow.

Further processing of the aggregated flow-based dataset is required, as it still encom-
passes features of entire flows and early statistical features are stored as lists. We
utilize Pandas (Python library) to eliminate redundant features, splitting the early
statistical features into distinct values for each packet, before storing the complete
flow-based dataset in a CSV file. This process is applied consistently across all five
datasets to ensure uniformity in the number of flow-based features, totaling 88. The
list of features can be found in Section A.1.

Ground-truth labels (Benign/Attack) are assigned based on information about vic-
tim hosts and attacker IP addresses provided within each dataset, which are used
solely for evaluating the proposed SSCL-NIDS.

The preprocessing pipeline, which is similar to the preprocessing pipeline in Sec-
tion 3.4, involves removing certain features prone to leaking information and bias-
ing ML models. Specifically, 5-tuple features exhibiting high linear correlations with
ground-truth labels are removed, along with time-related features, to prevent infor-
mation leakage of dataset-specific network topology and management rules. Only
the "duration" feature, essential for certain attack types like DoS and DDoS, is re-
tained, given its significance and lack of specificity across datasets and scenarios.
Additionally, features with zero standard deviation are filtered out as they lack infor-
mativeness and may introduce noise. This preprocessing reduces the feature dimen-
sion to 45, which are available in Section A.3.

4.6.2 Data Augmentation

This section is taken verbatim from [58].
In SSL methods, augmentation generates additional training data by applying

different transformations (here, we use a corruption mask) to the existing training

4.6 proposed self-supervised contrastive learning 53

data [31]. In SSCL-NIDS, to create a positive pair (i.e., semantically similar samples),
an augmented view of an anchor (original sample) is generated by incorporating
the content of the sample. Each augmented sample represents a variant of the an-
chor sample with subtle differences, preserving essential semantic information. This
approach ensures the creation of meaningful pairs for effective contrastive learning.
In this work, to generate a positive pair, we randomly apply a corruption mask
with two different corruption rates of Cp and Ca to two subsets P and A of the an-
chor’s features. These subsets are randomly selected from the original set of features
F = {f1, f2, ..., fM}, where |P| = Cp ×M and |A| = Ca ×M respectively. The value of
the jth corrupted feature fĵ is selected uniformly from the empirical marginal dis-
tribution of fj; hence fĵ ∼ Uniform(fj). The marginal distribution of each feature is
calculated for the entire dataset initially. The method of extracting the value of the
corrupted feature from the marginal distribution aligns with the structure of traffic
flow features, which often includes diverse numerical scales and types. Integrating
the positive corruption rate provides control over the dissimilarity among positive
pairs. Larger values can alter all feature values, whereas smaller corruption rates
only affect a limited subset of features. This results in a more straightforward opti-
mization task and a less robust learned representation. The algorithm of corruption
mask and making augmentation is also summarized in Algorithm 2.

4.6.3 Model Architecture

In the proposed SSCL-NIDS method, as illustrated in Figure 10, a dual model archi-
tecture consisting of an encoder network, denoted as g, and a head network, denoted
as h, are introduced. Each of them is explained in the following sections.

Encoder:

The encoder plays a crucial role in learning a compressed latent representation of
the raw data. This representation captures significant features or attributes of the
input data in a lower-dimensional space, aiming to extract features beneficial for
downstream tasks without explicit supervision. In SSCL-NIDS, an MLP-based en-
coder g is employed, comprising five hidden layers with 45, 64, 128, 64, and 45

neurons, respectively, which are the same as related work. The encoder is trained
using augmented data generated by a corruption mask, aiming to produce latent
representations conducive to the contrastive learning task. It endeavors to bring sim-
ilar augmented samples closer while pushing dissimilar ones farther apart in the
latent space. The trained encoder can subsequently serve as a pre-trained model for
transfer learning.

Head:

The head also referred to as the decoder or task-specific module, is responsible for
executing specific tasks leveraging the learned representations from the encoder. The
output of the encoder is fed into the head network h, which consists of a projection

54 self-supervised network intrusion detection system

head followed by a normalization layer. This configuration prepares the features
for computing the contrastive loss. Additionally, the weights of the encoder and
projection head are shared to ensure consistent representation learning across diverse
views of the same input, as depicted in Figure 10.

Contrastive Loss Function:

To minimize the distance between similar representations for positive pairs (zi, zî)
while simultaneously maximizing the distance between dissimilar representations
for negative pairs (zi, zj), we employ the NTXent loss function [32].

NTXent(zi, ẑi) = − log

(︄
exp (sim(zi, ẑi)/τ)∑︁2N−1

j=1 exp
(︁
sim(zi, zj)/τ

)︁)︄ (10)

The NTXent loss is defined by Equation 10, where sim(zi, ẑi) represents the similarity
score between positive pairs and sim(zi, zj) denotes the similarity score between the
anchor and other samples in the mini-batch. Moreover, τ serves as the temperature
parameter, scaling the logits before applying the softmax activation function.

Additionally, the temperature parameter τ plays a crucial role in controlling the
proximity of similar data points. A smaller value of τ results in a higher penalty,
compelling the model to position semantically similar data points closer to each
other. Conversely, a larger value of τ leads to a softer penalty, allowing for greater
flexibility in the arrangement of similar representations within the latent space. This
mechanism provides the model with the ability to adapt its clustering behavior based
on the specific requirements of the task or dataset.

Algorithm 2 shows the proposed SSCL-NIDS, including its corruption mask proce-
dure, the output of encoder and head models, and how to incorporate these elements
into the loss function [58].

4.7 evaluation design

In this section, we design various evaluation scenarios and experiment setups to
evaluate the detection and generalization performance of the proposed SSCL-NIDS
using five distinct datasets as detailed in Appendix A.2. Generalization performance
encompasses the model’s ability to detect new, unseen flows. Specifically, when the
dataset differs from the training dataset, it is referred to as cross-domain generaliza-
tion performance. In a real-world scenario, the ML-based NIDS should possess the
capability to detect various flows with different distributions. This is essential due to
the inherent heterogeneity of network traffic.

4.7.1 Generalization Evaluation Scenarios

In this section, we explain various scenarios that highlight the generalization and
cross-domain detection performance of the SSCL-NIDS from different perspectives
and levels of difficulty.

4.7 evaluation design 55

Algorithm 2 : SSCL-NIDS Algorithm [58]

Input : Training data X ⊆ RM, Batch size N, temperature τ, anchor corruption
rate Ca, positive pair corruption rate Cp, encoder network g, head
network h

1 ta = ⌊Ca ×M⌋;
2 tp = ⌊Cp ×M⌋;
3 B = {1, ...,M};
4 for sampled mini-batch {xi}Ni=1 do
5 forall i ∈ {1, ...,N} do
6 Ai: uniformly sample subset from B of size ta;
7 Pi: uniformly sample subset from B of size tp;
8 sample j uniformly from {1, ...,M};
9 if j /∈ Ai then
10 aji = xji;
11 else
12 aji = x

j
k, where xk ∼ Uniform(X);

13 end
14 let z2i−1 = h(g(ai));
15 sample j uniformly from {1, ...,M};
16 if j /∈ Pi then
17 pj

i = xji;
18 else
19 pj

i = x
j
k, where xk ∼ Uniform(X);

20 end
21 let z2i = h(g(pi));
22 end
23 forall i ∈ {1, ..., 2N} and j ∈ {1, ..., 2N} do

24 si,j =
zTi zj

(∥zi∥∥zj∥) ;

25 end

26 let l(i, j) = − log e
si,j/τ∑︁2N

k=1 1k̸=ie
si,k/τ ;

27 LSSCL = 1
2N

∑︁N
k=1⟨l(2k− 1, 2k) + l(2k, 2k− 1)⟩;

28 end

56 self-supervised network intrusion detection system

• Scenario 1: This scenario involves assessing the SSCL-NIDS’s ability to general-
ize detection performance on previously unseen network flows, encompassing
both benign and attack flows sourced from the same dataset as the training
data.

• Scenario 2: Here, we assess the ability of the models to detect attack flows
that were not present in the training dataset. The models are trained on benign
flows from all five datasets and then evaluated on different previously unseen
benign and attack flows sourced from these datasets.

• Scenario 3: To introduce an additional challenge to the evaluation process, this
scenario entails training the model solely on benign flows from a single dataset.
Subsequently, its ability to generalize detection performance across network
traffic datasets is assessed by testing it on unseen flows from other datasets.

4.7.2 Comparison Baselines

In each of the generalization evaluation scenarios outlined in Section 4.7.1, the pro-
posed SSCL-NIDS is benchmarked against supervised and unsupervised baseline
models. The design of these baselines is detailed as follows.

• Unsupervised Setup: An AutoEncoder model is utilized as the unsupervised
learning approach, focusing on optimizing data reconstruction. This model
comprises an encoder and a decoder. The embedded data represents the com-
pressed latent representations obtained from the encoder. Classification of flows
using the AutoEncoder involves computing the distance of the new sample
from the embedded training data (only benign flows). In this study, the Au-
toEncoder model is constructed with a three-layer encoder containing 64, 32,
and 23 neurons, respectively, and a three-layer decoder containing 23, 32, and
45 neurons, respectively.

• Supervised Setup: A deep Multi-Layer Perceptron (MLP) model is employed
as the supervised learning approach. This model consists of multiple layers
designed to learn the connections between features and labels (benign/attack).
Training this model requires labeled data for both benign and attack classes.
The MLP model in this study comprises four layers with 64, 128, 64, and 32

neurons, respectively. A Sigmoid activation function is applied in the final layer
to extract the score between 0 and 1 for each sample belonging to each class.

4.7.3 Evaluation Datasets

In this section, we provide information about the training and test datasets that
are used to train and evaluate the SSCL-NIDS and supervised and unsupervised
baselines, respectively. It is important to note that training the AutoEncoder and
SSCL-NIDS models does not necessitate any attack flow samples. However, training
the MLP model (our baseline for comparison) requires samples from both the benign

4.7 evaluation design 57

and attack categories, as its learning process involves finding relationships between
features of each class and the corresponding ground truth label.

• Training Dataset for Unsupervised Models: The training dataset used for
SSCL-NIDS and AutoEncoder models includes 60% of only benign flows from
each dataset. Depending on the specific generalization evaluation scenario out-
lined in Section 4.7.1, this can entail selecting 60% of the benign flows from each
dataset individually (as in scenarios 1 and 3) or aggregating 60% of the benign
flows from all datasets and training the models collectively (as in scenario 2).

• Training Dataset for supervised Model: For the MLP model, in scenarios 1 and
3, the training dataset includes 60% of the attack flows, alongside the training
dataset used for the unsupervised models (SSCL-NIDS and AutoEncoder). In
scenario 2, along with benign flows from all datasets, 60% of the attack flows
from CICIDS17 are also included in the training dataset.

• Test Dataset: In scenario 1, evaluating the detection performance of the mod-
els on unseen flows sourced from the dataset used in training involves a test
dataset comprising 40% unseen benign flows and all the attack flows from that
dataset. For scenario 2, which explores cross-domain generalization, the model
is assessed on 40% benign flows from different datasets, along with previously
unseen attack flows. To enhance the evaluation difficulty in scenario 3, the
model is tested on all the benign and attack flows from another network traffic
dataset, which is different from the training dataset. It is important to note that
for the MLP model in scenarios 1 and 3, evaluation is conducted on 40% of
both attack and benign flows of the corresponding dataset. In scenario 2, the
evaluation involves 40% of unseen benign flows and all attack flows except for
CICIDS17, which accounts for only 40% of its attack flows.

4.7.4 Evaluation Metrics

The Area Under the Receiver Operating Characteristic curve (AUROC) is a crucial
metric used to evaluate the performance of a binary classification model. It measures
the model’s ability to distinguish between positive (attack) and negative (benign)
classes by comparing the true positive rate (TPR) to the false positive rate (FPR)
across various threshold values, which are as follows. The TPR is represented in
equation 11.

TPR =
TP

TP+ FN
(11)

where TP denotes true positive predictions and FN shows false negative predictions.
Similarly, the FPR is determined by equation 12.

FPR =
FP

FP+ TN
(12)

where FP indicates false positive predictions and TN represents true negative predic-
tions.

58 self-supervised network intrusion detection system

4.8 evaluation results

To perform the preprocessing and training, we utilize an Ubuntu server equipped
with 250GB RAM and 4 GPUs (NVIDIA GeForce RTX 2080). The implementation is
in Python, using the Scikit-learn, Pandas, and Pytorch libraries.

4.8.1 SSCL-NIDS Training Hyper-parameters

Following cross-validation on various hyper-parameters, a positive corruption rate
of Cp = 0.4 is selected. The impact of this corruption rate on the final AUROC
value will be shown in the evaluation results. The τ of the NTXent loss function in
Equation 10 is set to 0.5. The embedding dimension remains the same as the original,
i.e., ed = 45. Moreover, the SSCL-NIDS trains for 500 epochs on the batch size of
bs = 2046.

4.8.2 Similarity Metric for Unsupervised Models

This section is taken verbatim from [58].
To evaluate the embedded data learned by SSCL-NIDS and AutoEncoder, we com-

pute a similarity score sim(.) by calculating the cosine similarity between the embed-
ding vector gtest of test data xtest and embedding vector gm of all training data and
finally take the maximum one. This calculation is performed using Equation 13.

sim(xtest) = max
m

(
gTtestgm

∥gtest∥∥gm∥
) (13)

According to Equation 13, it is possible to compute the directional similarity between
the embedded benign training data and the embedded benign or attack data in the
unseen test dataset. The expectation is that attack samples will exhibit a higher cosine
similarity score, indicating that they are oriented in a different direction compared
to benign samples.

4.8.3 Impact of the Corruption Rate on Detection Performance

This section is taken verbatim from [58].
As explained in Section 4.6.2, the anchor corruption rate (Ca) and positive pair

corruption rate (Cp) are fundamental in SSCL-NIDS architecture. While Cp controls
the similarity of constructed positive pairs, Ca introduces additional noise to the
original data, challenging the SSCL-NIDS model, leading to an improvement in its
detection performance generalization. Through our experiments, we observed that
selecting Ca greater than 0.2 reduces the model’s detection performance due to ex-
cessive noise added to the original data. Therefore, we set Ca = 0.2 for all evaluation
results. Additionally, varying the value of Cp influences the corruption of a larger
subset of features, generating dissimilar positive pairs and impacting the optimiza-
tion process. A higher Cp makes the optimization task more challenging, while a

4.8 evaluation results 59

Figure 11: Impact of positive pair corruption rate (Cp) on detection performance. The exper-
iment is carried out over three independent runs, and the figure depicts the mean
value and standard deviation for each dataset. The figure is extracted from [58].

smaller Cp results in a less robust representation. Figure 11 illustrates the impact of
different Cp values on the final detection performance, measured through AUROC
values, with the experiment conducted three times independently. According to the
findings presented in Figure 11, a Cp value of 0.4 consistently yields the highest de-
tection performance across all datasets. In contrast, a very small Cp value, specifically
Cp = 0.2, results in a lower AUROC value than Cp = 0.3 and Cp = 0.4. Therefore,
we choose Cp = 0.4 as the optimal corruption rate for the final evaluation results of
SSCL-NIDS.

4.8.4 Scenario 1: Detection Performance on Intra-Dataset Flows

In this scenario, we assess the performance of our proposed SSCL-NIDS model us-
ing a test dataset derived from the same source as the training dataset, referred to as
intra-dataset flow samples. In this experiment, the unsupervised models, including
SSCL-NIDS and AutoEncoder, are trained solely on 60% of benign flows from each
dataset. The remaining 40% of the test data comprises the remaining benign flows
and all attacks from the corresponding dataset. Conversely, for the supervised learn-
ing model, MLP, training involves 60% of both benign and attack flows from each
dataset, with an evaluation conducted on the remaining 40% of benign and attack
data. Table 8 illustrates the results of this experiment across all five distinct datasets.
The results indicate that, as expected, supervised learning exhibits better detection
performance compared to other unsupervised models due to its training on both
benign and attack flows of each dataset individually. However, in contrast to the Au-

60 self-supervised network intrusion detection system

Table 8: Evaluating the detection performance of SSCL-NIDS and comparing it with baseline
models, including an unsupervised model (AutoEncoder) and a supervised model
(MLP). Their detection performance is evaluated on previously unseen data, main-
taining the same distribution as the training data, referred to as intra-dataset flows.

Dataset
AUROC Value (%)

SSCL-IDS Unsupervised Model Supervised Model

CICIDS17 92.78 83.51 94.64

CICDoS 83.25 76.11 86.54

CTU-13 93.92 84.19 99.13

Botnet 88.82 81.92 90.96

UNSW-NB 92.07 82.80 88.98

toEncoder, the proposed SSCL-NIDS demonstrates better performance, with results
that are close to those of the supervised learning model. This comes from the dif-
ferences between the learning process of self-supervised learning and AutoEncoder.
The results show that SSCL-NIDS could learn more abstract representations of the
benign flows.

4.8.5 Scenario 2: Detection Performance on Cross-Domain Attacks

To assess the cross-domain detection capabilities of the ML models, we train the un-
supervised models using 60% of benign flows from all datasets and evaluate them on
the remaining unseen flows, comprising 40% benign flows and all attack instances.
Additionally, in the supervised learning model, we also include training on 60% of
attack flows from the CICIDS17 dataset. Table 9 demonstrates the detection perfor-
mance of these models across all five datasets.

Table 9: Evaluating the detection performance of SSCL-NIDS and comparing it with baseline
models, including an unsupervised model (AutoEncoder) and a supervised model
(MLP). This evaluation is conducted on unseen attack flows, which are not available
in the training dataset. In this scenario, ML models are trained on all the benign
flows of all the datasets. The table is extracted from [58].

Dataset
AUROC Value (%)

SSCL-IDS Unsupervised Model Supervised Model

CICIDS17 96.54 70.79 97.25

CICDoS 87.73 72.71 57.14

CTU-13 99.85 77.61 72.77

Botnet 89.21 73.48 60.64

UNSW-NB 98.32 65.64 60.59

4.8 evaluation results 61

As indicated in Table 9, SSCL-NIDS demonstrates the highest cross-domain de-
tection performance compared to both supervised and unsupervised learning base-
line models, with the exception of the CICIDS17 dataset. For this dataset, where
the supervised learning model was trained on its attack flows, SSCL-NIDS achieves
the second-best result, closely trailing the supervised model (MLP). Therefore, for
CICIDS17, the evaluation is like the first scenario. However, it’s worth noting that
training on labeled data may not entirely show real-world conditions. The super-
vised model’s detection performance on other datasets reflects its cross-domain gen-
eralization performance, which is the lowest, as expected. In contrast, the proposed
SSCL-NIDS model exhibits up to 27% better detection performance compared to the
supervised model across all datasets. Moreover, it outperforms the unsupervised
model by up to 15% across all datasets.

We argue that the enhanced generalization of SSCL-NIDS is attributable to differ-
ences in its learning processes. Specifically, contrastive learning within SSCL-NIDS
encourages the model to aggregate the representations of samples with similar se-
mantics in the embedding space. This approach, as supported by prior research [31,
139], facilitates the acquisition of more effective representations related to the seman-
tics of the training data. Consequently, it enables the model to learn a more efficient
representation of benign flows.

4.8.6 Scenario 3: Detection Performance on Cross-Domain Flows

In Section 4.8.4, we evaluate the detection performance of the models on samples
originating from the same source as their training dataset. The results indicate that
SSCL-NIDS closely follows the performance of the supervised learning model, al-
though it trained only on benign flows. Moving to Section 4.8.5, we assess the mod-
els’ detection performance on cross-domain attack samples, where they are trained
on 60% of all benign flows. In that scenario, SSCL-NIDS outperforms other models,
while the supervised learning model exhibits the lowest performance, as expected.

This leads to two questions:

• How do the results change when models are trained solely on benign flows
from one dataset instead of all datasets?

• What impact does adding new flows from different datasets to the training
dataset have on the final detection results?

In this section, we address the first question by training the models on 60% of benign
flows from only one dataset at a time, while evaluating them on all other datasets.
This scenario poses a more challenging task for evaluating generalization since the
models have not been exposed to benign flows from other datasets, as well. Con-
sequently, both benign and attack flows are unseen, new, and different for the ML
models.

The results depicted in Figure 12 illustrate the outcomes of the scenario. The up-
per figure represents the results of SSCL-NIDS, while the lower figure depicts the

62 self-supervised network intrusion detection system

Figure 12: Comparison of detection performance generalization between SSCL-NIDS (upper)
and the supervised ML-IDS (lower). Both models are trained on one dataset and
evaluated on other network traffic datasets. Diagonal values indicate evaluation
on a network traffic dataset similar to the training set. The figure is extracted from
[58].

4.8 evaluation results 63

results of the supervised model. The diagonal values are representing scenario 1 re-
sults, where each model is trained on a dataset and evaluated on unseen data of the
same dataset. A comparison of these figures highlights the improved generalization
of SSCL-NIDS compared to the supervised learning model. Notably, the detection
performance of the MLP model on CICIDS17 and CICDoS, when trained on Botnet,
is approximately 50%, akin to random prediction.

Moreover, training SSCL-NIDS with certain datasets, such as CTU-13 and CI-
CIDS17, enables the model to acquire more abstract representations of benign flows,
resulting in better cross-domain detection performance on other datasets. For in-
stance, evaluation with test datasets like UNSW-NB demonstrates detection perfor-
mance exceeding 80% with the trained model from any of the datasets. This suggests
that attack types exhibit different behaviors from benign flows, rendering them more
easily detectable with high accuracy. However, even though SSCL-NIDS achieves
high detection performance on the UNSW-NB dataset when trained on any dataset,
MLP fails to achieve high detection performance on it when trained with datasets
other than UNSW-NB.

Furthermore, as shown in Figure 12, when the SSCL-NIDS model is trained on
dataset X and evaluated on dataset Y, its detection performance differs from when
it is trained on dataset Y and evaluated on dataset X. Hence, each dataset reveals
distinct aspects of benign flows and the SSCL-NIDS can learn different information
about benign flows by training on them. This observation leads us to proceed with
the next evaluation, aimed at assessing the impact of incorporating new datasets into
the training data on the final detection performance.

4.8.7 Impact of Adding New Dataset to the Training Data

This section is taken almost verbatim from [58].
In this section, we address the second question outlined in Section 4.8.6, which

explores the impact of adding new flows from different datasets on the final detec-
tion and generalization performance of the SSCL-NIDS. The result of this evaluation
is illustrated in Figure 13. The number of datasets increases following the sequence
outlined in Table 8. To clarify, the initial dataset (One DS) is CICIDS17, with CICDOS
added in the second dataset (Two DS), and so on.

Notably, CICDOS shows an increase in AUROC value when included in the Two
DS training, and a similar improvement is observed for CTU13 in the Three DS train-
ing with the addition of its dataset. Likewise, the detection performance of UNSW-
NB shows a high value when the SSCL-IDS is trained with all datasets, including its
training dataset.

Our findings show that incorporating additional benign flows from various datasets
encourages the model to learn a more comprehensive understanding of benign traf-
fic, thereby enhancing its generalization and detection performance. Furthermore,
training the model on diverse benign flows sourced from multiple datasets facili-
tates the transfer of this pre-trained model to other network classification tasks. The
same concept is studied in the area of Large Language Models (LLM) [125].

64 self-supervised network intrusion detection system

Figure 13: Comparing AUROC values for each dataset when the number of training datasets
increases. In the x-axis of the figure, ’DS’ refers to the dataset. As expected, when
the dataset is added to the training data, its AUROC value increases. The number
of datasets increases following the sequence outlined in Table 8. The figure is ex-
tracted from [58].

4.8.8 t-Distributed Stochastic Neighbor Embedding (t-SNE)

In this experiment, which is also available in [58], we employ t-Distributed Stochas-
tic Neighbor Embedding (t-SNE), a dimensionality reduction technique, to visualize
the embedding data produced by the SSCL-NIDS in a lower-dimensional space [113].
This approach enables us to evaluate the quality of the learned embeddings, demon-
strating how well the model has captured the inherent structure of the data. At its
core, t-SNE aims to map high-dimensional data points to a lower-dimensional space
while preserving local similarities between points as accurately as possible. This is
achieved through a two-step process: first, computing pairwise similarities between
data points using a Gaussian kernel to measure similarity in the high-dimensional
space. The similarity pij between data point xi and xj is computed according to
equation 14 [113].

pij =
exp(−||xi − xj||

2/2σ2
i)∑︁

k̸=i exp(−||xi − xk||2/2σ
2
i)

(14)

Where σi, is the variance of the Gaussian kernel which determines the effective
number of neighbors for each data point.

Next, t-SNE defines conditional probabilities qij in the lower-dimensional space.
It aims to represent pairwise similarities pij in the high-dimensional space with
conditional probabilities qij in the lower-dimensional space. These conditional prob-
abilities are determined by a t-distribution as shown in equation 15, aiming to closely

4.8 evaluation results 65

Raw Data Embedded Data

Figure 14: Comparing the embedded data with the raw data of the CICIDS17 dataset in
lower-dimensional space. The t-SNE plot of the embedded data (the right one)
depicts a separation between data points belonging to different classes. The figure
is extracted from [58].

match the pairwise similarities in the lower-dimensional space to those in the high-
dimensional space [113].

qij =
(1+ ||yi − yj||

2)−1∑︁
k̸=l(1+ ||yk − yl||2)−1

(15)

where, yi and yj are the low-dimensional representations of xi and xj, respectively.
The optimization objective of t-SNE involves minimizing the Kullback-Leibler di-

vergence between the distributions of pairwise similarities in the high-dimensional
and lower-dimensional spaces. This is achieved by minimizing the cost function
shown in equation 16 using gradient descent or other optimization techniques [113].

C =
∑︂
i

KL(Pi||Qi) =
∑︂
i

∑︂
j

pij log
pij

qij
(16)

where Pi and Qi are the distributions of pairwise similarities for data point xi in
the high-dimensional and lower-dimensional spaces, respectively.

Figure 14 shows the t-SNE plots for both the raw data and the embedded data (out-
put of the SSCL-NIDS) within the CICIDS17 dataset. Clustering of similar examples
in the t-SNE plot indicates that the proposed SSCL-NIDS has effectively captured
relevant features and relationships within the data.

Notably, in the plot with embedded data, the data points of each class are closely
grouped, exhibiting clearer separation and fewer overlaps compared to the t-SNE
plot of the raw data. This improved separation enhances the model’s ability to dis-
tinguish between attack and benign flows, thereby improving overall detection per-
formance.

66 self-supervised network intrusion detection system

Figure 15: Comparing label efficiency for the benign/attack classification task, ’ED’ repre-
sents embedded data, reflecting the detection performance when transfer learning
is employed. On the other hand, ’RD’ denotes raw data, indicating the results of
supervised ML-IDS training. The similar figure is in [58].

4.8.9 Sample Efficiency of SSCL-NIDS for Transfer Learning

Transfer learning, as defined in Section 4.4, is a machine learning technique that lever-
ages the knowledge acquired by a pre-trained model to tackle new tasks, especially
in situations where labeled data is scarce or difficult to obtain.

In this section, we explore the transferability of the SSCL-NIDS, specifically ex-
amining the number of labeled samples required to achieve high detection perfor-
mance using transfer learning. To accomplish this, we utilize the SSCL-NIDS as a
pre-trained model and fine-tune it with an MLP model possessing the same config-
uration outlined in Section 4.7.2, utilizing various proportions of flow samples. The
results of this investigation are presented in Figure 15. For comparative analysis, we
also train the same MLP model using raw data (RD) and assess its performance
in comparison to when it is trained on SSCL-NIDS representations, referred to as
embedded data (ED).

4.8 evaluation results 67

To evaluate sample efficiency for each dataset, labeled samples are incrementally
added to the training dataset, beginning from a portion equivalent to 10−5 of the
original dataset size. This initial portion comprises only 7 to 20 labeled samples,
depending on the size of the dataset. As illustrated in Figure 15, across all datasets,
the AUROC values indicate higher detection performance when the SSCL-NIDS is
fine-tuned for the classification task. This performance gap is bigger when only a
small number of labeled samples are used for training. For instance, the detection
performance for the CICDoS and UNSW-NB datasets, when trained on 20 or fewer
labeled samples of raw data, is similar to random guessing (AUROC = 50%). In
contrast, using pre-trained embeddings yields AUROC values exceeding 80%.

Furthermore, it’s noteworthy that higher detection performance is achieved when
utilizing all labeled samples for training with the pre-trained SSCL-NIDS compared
to training with raw data.

4.8.10 Comparing SSCL-NIDS with State-of-the-Art Approaches

In this section, we conduct a comparative analysis of our proposed SSCL-NIDS with
other related works that employ SSL as a basis for ML-based NIDS. This comparison
is based on the reported values provided by these studies. It is important to note
that variations in preprocessing pipelines among different works may influence their
final results.

Table 10 comprises two categories: supervised SSL methods (first category), where
label information was utilized in pretext tasks or augmentation approaches, and un-
supervised SSL methods (second category), where the flows’ ground-truth labels
were not used. The evaluation metrics include the AUROC score and F1-score, en-

Table 10: Comparison of SSCL-NIDS with SSL-based State-of-the-Art approaches. Notably,
supervised SSL relies on labeled data (Benign/Attack) for training, whereas unsu-
pervised models operate without such labels. The same table is in [58].

Related Work
AUROC / F1-Score (%)

CICIDS17 CICDoS CTU-13 Botnet UNSW-NB

Supervised SSL:

RLB-CL [110] - / 90.72 - - - / 85.65 - / 89.42

ConFlow [105] - / 99.96 - - - / 99.16 -

CLDNN [177] - / 99.96 - - - / 99.47 - / 92.91

TS-IDS [126] 98.80 / 99.55 - - 97.14 / 96.67 99.86 / 99.75

Unsupervised SSL:

BYOL [167] 96.0 / 95.48 - - 97.0 / 98.46 88.0 / 92.41

Anomal-E [26] - / 90.72 - - - - / 92.18

SSCL-NIDS (ours) 96.54 / 97.73 87.73 / 95.47 99.85 / 98.32 89.21 / 97.16 98.32 / 99.43

68 self-supervised network intrusion detection system

abling comprehensive comparisons between SSCL-NIDS and other related works.
While some related studies assessed their models using the NSL-KDD network traf-
fic dataset, we could not do the same because the network traffic in pcap format
was not available. To enhance the flexibility of SSCL-NIDS for evaluating generaliza-
tion on new datasets, we implemented a preprocessing pipeline (outlined in Section
4.6.1) capable of handling traffic files. Additionally, no SSL-based approach has been
evaluated on the CICDoS and CTU-13 network traffic datasets based on available
information.

As indicated in Table 10, some supervised SSL techniques that leverage label in-
formation to generate positive and negative pairs during data augmentation exhibit
better detection performance compared to SSCL-NIDS, which does not use label in-
formation for forming positive pairs [58]. The details for each related work are avail-
able in Section 2.6.1. The difference in their detection performance on the CICIDS17

network traffic dataset is at most around 2%, on the UNSW-NB dataset around 1%,
and on the Botnet dataset it is approximately 8%. Note that SSCL-NIDS outperforms
the majority of supervised SSL methods on the UNSW-NB network traffic dataset.

Moreover, SSCL-NIDS outperforms all other unsupervised SSL-based related works,
except for BYOL, specifically on the Botnet dataset. A comparison of SSCL-NIDS with
BYOL on other datasets shows that our model outperforms it across other network
traffic datasets. This difference in detection performance could stem from various
factors, including disparities in preprocessing pipelines, such as variations in the uti-
lized flow features or differences in the augmentation process for creating positive
pairs. In fact, these factors can result in the model providing better insights into the
benign flows in one dataset compared to other datasets.

To assess the generalization and cross-domain detection performance, we con-
duct evaluations of our proposed SSCL-NIDS on a broader range of network traffic
datasets compared to existing approaches. For example, the CTU-13 network traf-
fic dataset encompasses botnets involved in multi-stage attacks (MSA), which are
known for their challenging detection characteristics [99]. Additionally, the CICDoS
network traffic dataset includes SlowDoS attacks, which can mimic benign flow pat-
terns. Our approach, SSCL-NIDS, demonstrates high detection performance on these
datasets, underscoring its effectiveness in detecting sophisticated attack flows.

4.9 summary

In this chapter, we delve into the challenges associated with supervised ML-based
NIDSs. These challenges include their reliance on annotated network traffic datasets,
the risk of overfitting due to imbalanced network traffic datasets, and the scarcity
of labeled network intrusions. These issues collectively constrain supervised learn-
ing models to train on limited network traffic datasets with a restricted number of
network intrusions. Consequently, this limitation can result in degraded detection
performance when the model encounters previously unseen network flows with po-
tentially different distributions from the training dataset. Similar challenges apply to

4.9 summary 69

unsupervised learning, as it optimizes for features that may only be effective for the
training dataset.

However, in real-world scenarios, network traffic is heterogeneous, and new net-
work intrusions continually emerge. Therefore, there is a necessity for designing a
generalized ML-based NIDS capable of achieving high detection performance across
various unseen network traffic datasets, ideally demonstrating high cross-domain
detection performance. To tackle this challenge, we introduce SSCL-NIDS [58] in this
chapter, which utilizes self-supervised contrastive learning to learn abstract repre-
sentations of flows and exclusively trains on benign flows, reducing the dependency
on annotated datasets.

Our results demonstrate that, compared to supervised and unsupervised baseline
models, our proposed SSCL-NIDS achieves higher cross-domain detection perfor-
mance. Furthermore, we investigate the transferability of SSCL-NIDS and find that
even with a small number of annotated samples (less than 20), SSCL-NIDS achieves
detection performance exceeding 80%. This suggests the potential for utilizing pre-
trained SSCL-NIDS for online learning to rapidly adapt to new distributed network
flows while maintaining high detection performance.

5
I N T E G R AT I N G M A C H I N E L E A R N I N G I N P R O G R A M M A B L E
N E T W O R K S

In this chapter, Section 5.8.9 is taken almost verbatim from [61].

Software-defined networking (SDN) revolutionizes network control by separat-
ing the data plane and control plane functionalities, offering enhanced automa-

tion and flexibility compared to traditional networks [153]. This architecture facili-
tates efficient resource utilization, greater programmability, and heightened flexibil-
ity, addressing the limitations of legacy networking [78]. More details about SDN
can be found in Section 2.5.2.

The centralized design of the SDN control plane exposes it to diverse cyber-attacks,
such as Denial of Service (DoS) or Distributed DoS (DDoS) attacks, aiming to disrupt
network operations [29]. These attacks can directly target the control plane or indi-
rectly impact it by flooding the data plane [83]. When attackers target the control
plane through the data plane, excessive flows may flood the switch, depleting its
flow table memory and preventing the acceptance of new flows. Additionally, rapid
influxes of packet flows can exhaust the switch’s buffer, causing it to forward all
buffered packets to the control plane, potentially overwhelming its bandwidth [45].

Therefore, equipping SDN with an effective NIDS is essential. ML-based NIDSs
emerge as a suitable choice due to their ability to distinguish between attack and
benign flows through training on flow features. Unlike signature-based NIDSs, they
excel in classifying new flows, not just existing ones. In these approaches, a flow com-
prises all packets that share identical characteristics, such as source and destination
IP addresses, L4 ports, and protocols [157].

Given the intensive computational requirements for training ML models, integrat-
ing an ML-based NIDS into the SDN control plane, which provides substantial com-
putational resources, is entirely viable [115]. However, for each flow to be classified
using this system, flow features must traverse from the data plane to the control
plane, where the ML-based NIDS resides [61]. Following this, the control plane can
establish appropriate network policies based on the classification outcomes (attack-
/benign) for each flow, subsequently implementing them in the data plane. Neverthe-
less, this process of transmitting flows and populating policies can increase network
load and overwhelm the control plane.

Additionally, the rapid detection of attack traffic flows is often mandated to occur
within a short timeframe according to security standards [180]. However, the flow
detection process performed by the ML-based NIDS deployed in the control plane
does not operate at a line rate.

SDN has evolved with programmable switches, allowing the programming of data
plane behavior using languages like Programming Protocol-Independent Packet Pro-
cessors (P4)[18, 19]. More details about programmable switch structure can be found

71

72 integrating machine learning in programmable networks

in Section 2.5.1. Implementing an IDS in the data plane using these switches can re-
duce latency and improve intrusion detection speed. However, training an ML-based
IDS in the data plane faces challenges due to switch resource constraints. Integrating
a pre-trained ML model into the P4 switch’s MA pipeline enables traffic classification
but may result in decreased detection performance and increased misclassification
risk, impacting network QoS and security.

To maintain high detection performance while minimizing latency and resource
usage, alternative approaches are necessary. Our proposed Collaborative ML-based
NIDS (CML-IDS) leverages ML-based NIDS deployment in both the data plane and
control plane to achieve these goals.

5.1 deploying machine learning model in the control plane

Within SDN, the control plane has a global network view, which facilitates traffic
collection and monitoring. Moreover, it has sufficient computational resources for
implementing a preprocessing pipeline and training ML models; therefore, the ML-
driven approaches are generally implemented in the control plane [86].

Definition — Here, CP-IDS is an ML-based NIDS deployed in the control
plane that integrates dataset preprocessing, ML model training, and decision-
making modules. The sufficient computational resources available in the con-
trol plane allow for the implementation of more complex ML models [172].

Deploying various ML models, including supervised, unsupervised, and ensemble
techniques, in the control plane presents an opportunity. This diversity, along with
utilizing ML models with more learnable parameters, has the potential to enhance
detection performance.

Nevertheless, forwarding a large volume of flows to the control plane for classi-
fication could result in increasing network load and overwhelm the control plane.
Moreover, the detection speed may fall short of the line rate.

5.2 deploying machine learning model in the programmable data

plane

To address the limitations of CP-IDS, the concept of deploying ML-based NIDS
within the programmable data plan has been introduced [23, 98, 171].

Definition — Here, DP-IDS is an ML-based NIDS deployed in the pro-
grammable data plane. The structure of the programmable switch exhibits
similarities with tree-based ML models, enabling their deployment in these
switches [171].

5.2 deploying machine learning model in the programmable data plane 73

Figure 16: An example to illustrate the structural similarity between Decision Tree classifiers
and Match-Action pipelines in P4 switches. The figure is extracted from [61].

The programmable data plane, facilitated by the P4 language [18], allows for adapt-
able packet processing.

In programmable switches, packet processing begins with a parser, which directly
extracts headers from incoming packets at the ingress port [104]. These packets are
then categorized into flows using a flow ID generated by hashing 5-tuple fields, in-
cluding source and destination IP addresses, port numbers, and the transport layer
protocol. Each flow entry, along with its corresponding flow ID index, is stored in
a flow buffer. Upon packet arrival, relevant features undergo continuous updates in
registers until either the last packet in the flow arrives or the arrival time exceeds
the timeout threshold. While these registers are accessible from both the data plane
and control plane, the switch’s limited resource capacity imposes constraints, allow-
ing only a finite number of registers in a programmable switch. Furthermore, the
P4 language’s limitations, such as the absence of support for iterative constructs
and certain mathematical operations like division, logarithm, and exponentiation,
restrict the ML models implementable within the programmable switch using the
P4 language. These constraints confine the deployed DP-IDS to lightweight designs
aligned with the switch’s pipeline. However, integrating a lightweight ML model
may compromise overall detection performance.

5.2.1 Similarity between Random Forest and Match-Action Pipeline

The RF classifier, detailed in Section 2.4.1, is an ensemble ML model composed of
multiple DT models. In the RF model, decision-making relies on majority voting over
the decisions made by individual DTs.

DT’s classification structure is similar to the MA table structure in a P4 pro-
grammable switch, making it well-suited for integration into the switch as the DP-
IDS. To illustrate the similarity between the RF model and MA tables, we present
an example of a two-level DT model in Figure 16. In each node, the flow feature
fi, threshold ti for data splitting, and Gini impurity value gi represents purity mea-
surement. We highlight the classification path (1-3-6) to explain the decision-making
process of a DT model [61]. Depending on the feature value comparison with the

74 integrating machine learning in programmable networks

threshold at each node, the path proceeds left if the condition is met. This decision-
making process continues, classifying the input flow as attack or benign. DT clas-
sification relies solely on feature value comparisons without complex mathematical
operations.

In a programmable switch, packets undergo processing through the MA pipeline
for flow classification. This pipeline comprises sequential stages where packets are
processed based on predefined MA tables containing keys for matching and actions
to execute. Entries in these tables, populated from the control plane, define keys
and actions executed upon match. While each table can have multiple entries, it is
executed only once through the pipeline. Additionally, output from the previous
stage can serve as input in the current stage, facilitating sequential processing.

Feature comparison execution in a DT classifier occurs once at each level along
a classification path, similar to MA table operation at each pipeline stage. Each DT
level, except the root node, contains multiple intermediate nodes or leaves. Entries
in Match-Action (MA) tables can construct nodes at each DT level. The outcome of
feature comparison determines the next level’s node choice, aligning with sequential
MA pipeline execution.

5.2.2 Integrating a Random Forest into a Match-Action Pipeline

In this section, we discuss how the Decision Tree (DT) depicted in Figure 16 can be
integrated into a MA pipeline, as shown in Figure 17. Within the MA pipeline, MA
tables interpret both tree nodes and leaves, utilizing their sequential execution to
construct a classification path within the programmable switch.

Figure 17: Match-action table entries which are established to construct the DT depicted in
Figure 16. In this representation, "-" indicates that there is no value for a key to
compare, as the root node does not have a previous node. It is important to note
that the keys of the root node are always a match. The left column in each MA
table represents keys, while the right column represents the required actions for
the corresponding key.

5.3 contributions 75

During traversal along the classification path within a DT, two operations occur.
At the root and intermediate nodes, the action involves comparing the feature value
with the threshold and determining the next node. At leaves, the classification con-
cludes, and the incoming flow is classified as benign or attack, requiring an action
to classify accordingly. To determine the executed action, the previous node ID and
the result of the previous feature comparison can serve as keys in the MA table. The
previous node ID indicates the reached classification step, while the previous feature
comparison result directs the classification path.

As depicted in Figure 16, the sample tree consists of three levels, necessitating
three stages in the MA pipeline, as illustrated in Figure 17. Each stage executes an
MA table with keys and actions. Stage 1, with the level 1 MA table, contains one
table entry. Stage 2, with the level 2 MA table, includes two table entries, while
stage 3 has four table entries due to the four leaves in the tree structure. The sample
classification path involves nodes 1, 3, and 6, with feature values f1 and f3 used for
flow classification, requiring three table entries to construct the path.

A Random Forest (RF) classifier comprises multiple DTs. The number of tables
needed to interpret an RF equals the total number of levels in all trees, while the
number of table entries equals the sum of all nodes in the trees. However, the hard-
ware programmable switch supports a limited number of stages. Therefore, the com-
plexity of the RF switch should align with available hardware resources.

5.3 contributions

Section 5.1 and Section 5.2 explored the deployment possibilities of CP-IDS and DP-
IDS, each with its own set of advantages and drawbacks. For instance, CP-IDS offers
to use a more complex ML model with more trainable parameters, which leads to a
more accurate classification, or DP-IDS can classify each flow in a line rate and avoid
forwarding flows to the control plane. However, neither of them can fully meet the
requirements for achieving high detection performance, speed, and low network
load simultaneously.

This chapter introduces a novel collaborative framework aimed at enhancing detec-
tion performance compared to DP-IDS alone, while also improving detection speed
and reducing network load compared to CP-IDS alone.

5.4 collaborative machine learning in software-defined network-
ing

The Collaborative ML-based Network Intrusion Detection System (CML-IDS) com-
prises two distinct machine learning (ML) models: DP-IDS and CP-IDS. DP-IDS is a
Random Forest (RF) model deployed in the data plane, while CP-IDS is an ensemble
ML model consisting of RF, XGBoost, and MLP models deployed in the control plane.
To effectively utilize both models, as discussed in Section 5.3, the initial step involves
determining when to employ DP-IDS and when to utilize CP-IDS. This determina-
tion is based on defining a threshold for the model confidence (MC) of DP-IDS. If the

76 integrating machine learning in programmable networks

Figure 18: The general architecture of CML-IDS (Collaborative ML-based IDS) involves the
deployment of DP-IDS in the programmable data plane, which works in collabora-
tion with CP-IDS deployed in the control plane. If the model confidence of DP-IDS
fails to meet the predefined threshold of MCthr, then CP-IDS classifies the flow.
Otherwise, DP-IDS classifies the flow. The figure is extracted from [61].

MC for a classified flow does not exceed the threshold (MCth), the flow is forwarded
to the control plane for classification using CP-IDS. The overall architecture of the
CML-IDS framework is depicted in Figure 18. For successful collaboration between
these components, additional modules within the control plane and data plane are
required.

5.4.1 Required Modules in the Control Plane

This section provides an explanation of the Machine Learning, P4 Program Generator,
and Data Plane Control modules, which are integrated into the control plane.

Machine Learning Module

The Machine Learning module carries several responsibilities. Firstly, it preprocesses
the network traffic dataset, encompassing tasks such as converting PCAP traffic files
to network traffic features suitable for training ML models and performing feature
selection. Within this module, the ML models used for both the DP-IDS and CP-IDS

5.4 collaborative machine learning in software-defined networking 77

are trained. Furthermore, it manages the final prediction of flows that the DP-IDS
could not classify.

P4 Program Generator Module

The P4 Program Generator is one of these crucial modules for dynamically generat-
ing P4 code snippets and MA table entries using the trained embedded RF classifier.
Whenever a new RF classifier is trained for embedding as the DP-IDS, the P4 Pro-
gram Generator automatically generates the necessary P4 code. This code is then
merged with predetermined components to create a comprehensive P4 program,
which is embedded into the programmable switch.

Data Plane Control Module

Another essential module is the Data Plane Control Module, specifically designed to
interface with the data plane. This module is responsible for installing the generated
P4 program into the data plane and populating the entries of an MA table. Addition-
ally, it handles forwarding the final decisions of the CP-IDS to the programmable
data plane for further actions, such as either forwarding the flow or blocking it. The
PacketIO sub-module facilitates packet transfer between the switch and controller,
including directing a flow to the controller and delivering the predicted label to the
switch.

5.4.2 Programmable Switch in the Data Plane

The programmable switch within the programmable data plane operates using the
P4 program, which is installed via the Data Plane Control module in the control
plane and PacktIO sub-module. It manages incoming packets by parsing their packet
headers. Additionally, it is responsible for defining and identifying flows based on
the hash value obtained using 5-tuple fields. Each identified flow is stored in the
flow buffer, and its features are updated based on the arrival packet information.
These features are crucial for the classification of each flow using the DP-IDS. If
the confidence of the DP-IDS falls below the predefined threshold MCthr, the flow
features are forwarded to the CP-IDS via PacketIO.

5.4.3 Flow and Subflow Scopes in CML-IDS

The definition of a flow can vary depending on different network management op-
erations [71]. In CML-IDS, a traffic flow is identified using the CRC32 hash function,
which considers the 5-tuple packet information, including source and destination IP
addresses, source and destination port numbers, and transport layer protocol.

To reduce detection delays caused by waiting to complete the flow, we introduce
a sub-flow concept, which consists of the initial N packets of each flow [61]. These
initial packets contain sufficient information for training the ML models. In Sec-
tion 5.8.1, we elaborate on the process of determining the value of N. Based on our

78 integrating machine learning in programmable networks

Algorithm 3 : Sub-Flow identification procedure
Input : An incoming packet p, Sub-flow size N

1 for p do
2 idj ← CRC32(psip ,pdip

,psport ,pdport
,pproto);

3 Fj ← Buffer.read(idj);
4 if Fj is empty then
5 Buffer← add Fj;
6 else
7 if len(Fj) < N then
8 Fj ← Add features of pj ;
9 pj ← Forward ;

10 end
11 if len(Fj) == N then
12 Fj ← Add features of pj ;
13 pj ← Forward ;
14 Start classification for the sub-flow Fj;
15 end
16 if len(Fj) > N then
17 if Label of Fj == Benign then
18 pj ← Forward to the appropriate port;
19 else
20 pj ← Drop

21 end
22 end
23 end
24 end

assessment and related work reports (e.g., [23]), we found that utilizing the initial
8 packets led to receiving sufficient information while keeping the detection speed
high [61].

After parsing each incoming packet p, the flow ID of p is determined using the
CRC32 hash function to collect packets of a flow. The flow buffer retrieves the cor-
responding flow F based on the computed flow ID. The next processing step is then
executed depending on the status of p, as outlined in Algorithm 3. The feature updat-
ing and initiation of the classification process for the corresponding flow F depend
on the arrival count of packets and whether this count is less than N, which defines
the sub-flow or not. To extract the statistical features of a network flow, we utilize
NFStream, a Python framework that can extract early statistical and post-mortem
flow features [11]. The extracted statistical features are divided into three directions,
including source to destination (src2dst), destination to source (dst2src), and bidirec-
tional (involving packets flowing in both src2dst and dst2src directions). To determine
the direction of each flow, we employ Algorithm 4. Upon the arrival of each packet

5.4 collaborative machine learning in software-defined networking 79

Algorithm 4 : Identifying packet direction
Input : An incoming packet p

1 (src2dst_no_match, src2dst_empty)← False;
2 idj ← CRC32(psip ,pdip

,psport ,pdport
,pproto);

3 Fj ← Buffer.read(idj);
4 if Fj is not empty then
5 if p.5_tuple = Fj.5_tuple then
6 p is the src2dst packet of Fj;
7 else
8 src2dst_no_match← True;
9 end

10 else
11 src2dst_empty← True;
12 end
13 if src2dst_no_match or src2dst_empty is True then
14 idi ← CRC32(psip ,pdip

,psport ,pdport
,pproto);

15 Fi ← Buffer.read(idj);
16 if Fi is not empty then
17 if p.swapped_5_tuple = Fi.5_tuple then
18 p is the dst2src packet of Fi;
19 else
20 if src2dst_no_match is True then
21 Hash collision happens;
22 else if src2dst_empty is True then
23 p results in a new sub-flow Fj;
24 end
25 end
26 else
27 if src2dst_no_match is True then
28 Hash collision happens;
29 else if src2dst_empty is True then
30 p results in a new sub-flow Fj;
31 end
32 end
33 end

p, the features for the corresponding flow are calculated considering the packet’s
direction. For instance, the creation timestamp of F is set with the timestamp of the
first packet arrived for this flow, which is later used to compute the expiration time
to terminate packet collection for that flow. Furthermore, all packets contribute to
updating bidirectional features.

80 integrating machine learning in programmable networks

5.4.4 DP-IDS Model Confidence Calculation

The Gini impurity quantifies how often a randomly chosen element from a set would
be inaccurately labeled based on the subset’s label distribution. In decision trees, it’s
a common criterion for node splitting [21]. Mathematically, for a set with K classes
and pi denoting the probability of an item being labeled with class i, the Gini impu-
rity is computed as shown in Equation 17:

Gini = 1−

K∑︂
i=1

p2
i (17)

For binary classification, like distinguishing between attack and benign, the Gini
impurity calculation is different, as illustrated in Equation 18:

Gini = 1− (p2
1 + p2

2) (18)

This value ranges from 0 to 0.5. A Gini impurity of 0 represents perfect classi-
fication (all elements belong to a single class), while 0.5 represents the worst-case
scenario (equal probability of belonging to either class).

In decision trees, the goal when splitting a node is to minimize the Gini impurity of
child nodes. This means that a split is favorable if it results in child nodes with more
homogeneous classes. This iterative process constructs a decision tree by selecting
splits that minimize the Gini impurity.

Hence, in classification using a decision tree model, the Gini impurity of leaf nodes
(the tree’s endpoints) serves as a measure of confidence in the predicted class. Lower
Gini impurity values indicate higher confidence, suggesting that the majority of in-
stances at that leaf node belong to a single class.

According to Algorithm 5, the Model Confidence (MC) of the DP-IDS, consisting
of an RF model and three DT models, is compared with MCthr to determine whether
to forward the flow to the CP-IDS.

Definition — The MCthr is a predefined threshold value used to determine whether
the MC value indicates that the decision from DP-IDS is reliable or if the features
should be forwarded to the control plane for further analysis.

To establish the MC of the DP-IDS, the Gini values of all three DT models are
extracted. If all three DTs make consistent decisions, the average of their Gini values
is compared with MCthr. If two DTs agree on a decision different from the third one,
the average Gini value of the two agreeing DTs is compared with the Gini value of
the dissenting DT. Additionally, this average Gini value of the two DTs is compared
with MCthr. If any of these comparisons are satisfied, the sub-flow is forwarded to
the CP-IDS; otherwise, the decision of the two DTs is accepted for the sub-flow.

Our collaborative flow classification mechanism balances classification accuracy,
detection speed, and network latency. Forwarding the sub-flow to the controller

5.4 collaborative machine learning in software-defined networking 81

yields a more accurate prediction but increases network latency due to transmis-
sion time between the programmable switch and controller. Conversely, the DP-IDS
predicts a flow with relatively lower accuracy but achieves high detection speed.
Thus, MCthr serves as a compromise between sub-flow classification accuracy and
latency. Setting MCthr too low results in more sub-flows delivered to the controller,
enhancing overall classification accuracy. Conversely, setting MCthr higher leads to
more sub-flows classified within the switch using the RFswitch classifier. Therefore,
selecting an optimal MCthr is crucial for balancing this trade-off, as discussed in
Section 5.8.1.

5.4.5 Investigating Incompatible Sub-Flow Features

When deploying an ML model in the programmable data plane, it’s essential to ac-
count for limitations concerning the flow features on which the ML model can be
trained. This is because programmable switches may not be capable of extracting all
flow features due to factors such as complex mathematical operations or differences
in scale compared to traffic converters like NFStream. Below, we outline the incom-
patible features and provide explanations for their removal from the training of the
ML model.

Architecture-derived Features:

Algorithm 5 : Decision making process using Gini impurity
Input : Sub-flow F, RF model contains of three DTs DTi,DTj,DTl with the

final prediction of Ci,Cj,Cl, Model Confidence threshold MCthr

Output : Decision about forwarding the sub-flow F

1 if Ci = Cj = Cl then
2 Ḡi,j,l(F) =

1
3(Gi(F) +Gj(F) +Gl(F));

3 if Ḡi,j,l(F) ⩾ MCthr then
4 Forward F to CP-IDS;
5 else
6 Accept the detection result;
7 end
8 else
9 if Ci = CjandCi ̸= Cl then
10 Ḡi,j(F) =

1
2(Gi(F) +Gj(F));

11 if Ḡi,j(F) ⩾ Gl(F) or Ḡi,j(F) ⩾ MCthr then
12 Forward F to CP-IDS;
13 else
14 Accept the detection result;
15 end
16 end
17 end

82 integrating machine learning in programmable networks

Table 11: Comparison of Packet Inter Arrival Time (PIAT) measurements between pro-
grammable switch (BMv2) and network traffic converter, NFStream. The results
indicate the differences in time measurement, which can affect training of the ML
model.

Time-Related Features
Measured in

BMv2 (µs)

Measured by

NFStream (µs)

Min. PIAT (dst2src) 3410.7 2000

Min. PIAT (bidirectional) 255.6 0

PIAT (between 1st and 2nd packet) 729.4 0

In order to ensure the broad applicability of CML-IDS across all network traffic
passing through a switch, it is imperative to exclude features derived from network
architecture (such as IP addresses, Mac addresses, and port numbers).

Temporal Features: These features are calculated within the DP-IDS by accessing the
ingress_global_timestamp and egress_global_timestamp values of the P4 language, which
indicate the times when a packet enters and exits the switch, respectively. These
timestamps are expressed in microseconds within the programmable switch (BMv2),
while NFStream measures temporal features in milliseconds. To ensure uniformity
in time units, the results obtained by NFStream are multiplied by 1000. However,
a notable discrepancy persists due to NFStream’s lower precision in time measure-
ment. Specifically, NFStream assigns a value of 0 to temporal features that are less
than 1 millisecond. Table 11 illustrates the disparity between the measured values of
temporal features in BMv2 and NFStream. The BMv2 measurements represent the
average of ten individual readings. Furthermore, it demonstrates that NFStream’s
temporal features are less accurate compared to BMv2. Consequently, we have ex-
cluded temporal features from the training dataset.

Complex Computational Features: The constraints of the P4 language present a hur-
dle for computing intricate features that entail loops or divisions (such as determin-
ing packet size standard deviation) within the DP-IDS. Consequently, it is currently
impractical to calculate most of these features within the programmable switch.

To address this challenge, [23] proposed employing the Exponential Weighted
Moving Average (EWMA) method to estimate the mean value of a feature instead of
computing the exact mean. This method can be utilized within the switch for estima-
tion purposes. For instance, the estimation of the src2dst_mean_ps feature (where ps
denotes packet size) is conducted using Equation 19, employing a smoothing factor
of 0.5.

PS̄
t
src2dst =

PS̄
t−1
src2dst + Payloadt

src2dst

2
(19)

Here, PS̄tsrc2dst represents the current mean packet size, and PS̄
t−1
src2dst denotes the

previous mean packet size. As the P4 language does not support the division op-

5.5 cml-ids implementation 83

eration in Equation 19, the division by 2 is achieved by right-shifting the binary
value by one position. However, the accuracy of the estimated mean value using
EWMA may be compromised if the payloads of packets within a sub-flow vary sig-
nificantly [61]. In our implementation, given that the maximum number of packets
per sub-flow remains constant (i.e., 8), the bidirectional_mean_ps feature value can
be accurately computed by right-shifting the binary value of the bidirectional_bytes
feature (which represents the sum of packet sizes of extracted packets within a sub-
flow) by three positions. Consequently, all features related to mean values, except
for bidirectional_mean_ps, are excluded from the training dataset. In fact, the number
of src2dst or dst2src packets of a sub-flow (i.e., 8 packets) can vary depending on
the traffic pattern; however, the number of bidirectional packets always remains 8

due to the definition of subflow. Furthermore, computing features associated with
standard deviation are currently unattainable within the existing P4 switch pipeline
architecture.

The total number of flow features that can be extracted after excluding incom-
patible features is 59. Among them, 20 features are selected as the most important
features leveraging the EFS method explained in Chapter 3. The list of 20 selected
features is available in Section A.4. Reducing the number of features can also reduce
the required computational resources for training the ML model in the DP-IDS. Ad-
ditionally, it can reduce the risk of overfitting the mode to a special network traffic
pattern [84].

5.5 cml-ids implementation

In this section, we provide a detailed explanation of the implementation of the pro-
posed CML-IDS. To enhance clarity, we outline the implementation of each defined
module in the CP-IDS (as described in Section 5.4.1), DP-IDS (as outlined in Sec-
tion 5.4.2), and those required for communication between them.

5.5.1 CP-IDS Implementation

The control plane is developed using two modules utilizing the Python programming
language. These modules include the Machine Learning Module and the P4 Program
Generator. In the following each of them is explained.

Implementation of Machine Learning Module

The Machine Learning Module within the control plane is responsible for a pre-
processing pipeline, which involves aggregating the packet-based dataset into a
subflow-based dataset. It also handles the creation of training datasets for build-
ing each ML classifier, conducting hyperparameter searches, and performing feature
selection. Additionally, this module is responsible for training and constructing the
embedded DP-IDS within the programmable switch and each ML model within the
ensemble CP-IDS. Furthermore, it is tasked with classifying the received sub-flows

84 integrating machine learning in programmable networks

that couldn’t be classified by the DP-IDS. In the following, the implementation of
each of these sub-modules are explained.

Converting Network Traffic Dataset:
To train the ML models and evaluate the CML-IDS, we primarily utilize the CI-

CIDS2017 dataset [150], which comprises both benign and attack traffic. The attacks
mainly consist of BruteForce, DoS/DDoS, and Botnet attacks. The dataset provides
two distinct types of extracted traffic data: PCAP files containing raw packet-based
traffic and CSV files containing flow-based datasets with traffic labels for each flow
entry, converted using their designated traffic converter.

In order to ensure the adaptability of the CML-IDS to any type of network traf-
fic dataset, we designed a preprocessing pipeline that functions uniformly across
all datasets. Consequently, we opt to use the raw packet-based datasets, providing
greater flexibility and generalization in processing and training classifiers. To facil-
itate this process, we employ the NFStream flow aggregation tool [11] to convert
the packet-based datasets into flow-based datasets and extract customized subflow-
based features. These features encompass core features, post-mortem statistical fea-
tures, and early statistical features, including direction features, packet size, and
inter-arrival time for the first N packets within a flow (F).

NFStream offers configurable attributes for extracting flow features, each serving
specific purposes:

• accounting_mode: When set to 3, it accumulates payload lengths solely for
byte-related features.

• udps: This setting employs our customized FlowSlicer class, facilitating the
extraction of subflow-based features from the first N packets within a flow.

• statistical_analysis: It activates the extraction of post-mortem flow statistical
features.

• splt_analysis: Set to N, it stores early statistical features for the first N packets
within F.

Our customized FlowSlicer copies core and post-mortem statistical features during
packet aggregation into flows. The process concludes either when bidirectional pack-
ets reach the maximum number of N (based on the sub-flow definition) or when
NFStream ends flow aggregation due to timeout conditions. Subsequently, subflow-
based features were created to contain information from initial packets. Entries are
categorized based on bidirectional packet count:

• If bidirectional packets are less than N, the entry is discarded from the flow-
based dataset.

• If bidirectional packets equal N, the entry is retained.

The extracted features are utilized to train CP-IDS and DP-IDS, as well as evaluate
their performance.

5.5 cml-ids implementation 85

Dataset Preprocessing:
NFStream initially sets the early statistical features to −1 to denote the absence of a

packet. However, managing negative values in the P4 language is complex. Therefore,
a workaround is implemented where all early statistical features are incremented by
1 to prevent negative values. Considering the first packet of a given flow F always
serves as the src2dst packet, only the directional feature splt_direction_1_1 remains for
the first packet, while subsequent packets’ directional features exclude those with the
suffix 0. Following the concatenation of all datasets, data points undergo shuffling to
enhance generalization. The final selection of features is based on their compatibility
with the P4 switch, detailed in Section 5.4.5.

Reading and Writing Flow Features:
Our flow storage strategy implementation utilizes a single register as the buffer to

store all extracted flow entries. This compact approach significantly reduces the need
for registers and enables the storage of a wide range of flow features. All compatible
features of a flow, along with the flow metadata, are serialized into a bit string using
the bit concatenation operation supported by the P4 language [61]. This bit string is
then stored in the flow buffer, with the index determined by the flow ID computed
using the CRC32 hash function.

The process of accessing a flow entry from the flow buffer begins by providing a
specific sub-flow ID to the flow buffer. Next, the sub-flow bit string is retrieved from
the flow buffer and subsequently converted into a flow structure data type similar
to the struct in the C programming language. Each feature value is then assigned to
a corresponding feature parameter.

Tuning Hyperparameters of ML models:
The final proper network traffic datasets are split into training, validation, and test

datasets with the proportion of 70%, 10%, and 20%, respectively. The DP-IDS is an
RF model with three DTs tailored to the programmable switch’s constrained compu-
tational resources. To ascertain the optimal hyperparameter of maximum depth for
each DT, we leverage the grid search cross-validation technique, which is employed
in the training and validation set. This involves calculating the macro-average F1

scores for all RF classifiers with three DTs, varying the maximum depths from 1

to 10. The objective is to tune the hyperparameters to achieve a high detection per-
formance with fewer DT models in the RF model. Figure 19 depicts the RF model
performances with various maximum depth values. According to the result, a max-
imum depth of 5 yielded a macro-average F1 score exceeding 0.9424. Consequently,
this value is selected as the optimal maximum depth for each DT within the RF
model. Subsequently, the trained RF model is passed to the P4 Program Generator
module to generate the ML-related P4 code snippets.

In contrast to the data plane, the control plane exhibits a higher level of flexibil-
ity and programmability, enabling the deployment of more advanced ML models.
The CP-IDS deployed in the control plane consists of three distinct ML models: an
MLP classifier, an RF classifier, and an XGBoost classifier. Further details about these

86 integrating machine learning in programmable networks

Figure 19: Results of grid-search cross-validation for determining the optimized value for the
"maximum depth of DT" hyper-parameter. The F1-Score shows a slight improve-
ment after a depth of 5.

Table 12: Selected hyperparameters for the ML models deployed in the DP-IDS and the CP-
IDS.

Parameters Values

CP-IDS:

XGB max_depth: 25, tree_method: ’approx’, scale_pos_weight: 40

RF n_estimators: 500, min_samples_leaf: 5, max_depth: 10

MLP number of hidden layers: 14, batch_size:2048, epochs:200

DP-IDS:

RF n_estimators: 3, min_samples_leaf: 1, max_depth: 5

models can be found in Section 2.4.1. The ensemble ML classifier generates the fi-
nal prediction by aggregating the individual predictions produced by each of these
three classifiers. All compatible flow-based features (totaling 59 features) obtained in
Section 5.4.5 are utilized for training, evaluation, and test datasets. Table 14 presents
the hyperparameters of both the DP-IDS and the CP-IDS.

Final Decision of the CP-IDS:
According to Algorithm 6, upon receiving a sub-flow F that couldn’t be classified

at the data plane, each classifier within the ensemble CP-IDS evaluates the sub-flow
and generates probabilities indicating whether it belongs to the benign or attack
class. The final probability, used for the final decision, is computed by averaging

5.5 cml-ids implementation 87

each probability. If the final probability for a benign flow exceeds that for an attack,
the ensemble ML classifier assigns the final predicted label CCP(F) for the received
flow as 0, indicating the sub-flow F as benign. Conversely, if CCP(F) is set to 1, it
indicates that the sub-flow F is classified as an attack.

Implementation of P4 Program Generator Module

A P4 program encompasses various stages to manage incoming packets, including
header processing, parsing, checksum verification, and ingress processing. Among
these stages, ingress processing is pivotal as it orchestrates the MA pipeline to han-
dle parsed packets. As discussed in subsection 5.2.2, the RF classifier trained by the
machine learning module is represented through MA tables and their entries within
the pipeline. Hence, dynamically adapting the P4 program becomes essential to ac-
commodate changes in DP-IDS.

The automatically generated components of the P4 program are listed below. More
details about them can be found in Section 5.2.2.

• MA tables to represent each tree level of the RF model deployed in the DP-IDS.

• Table entries to depict roots, intermediate nodes, and leaves within each tree of
the DP-IDS.

• Classification logic to predict the sub-flow label through the MA pipeline.

• Feature comparison logic to construct the classification path.

• Conversion of struct data types into bit strings to store sub-flow entries in the
flow buffer.

• Conversion of bit strings into struct data types to retrieve sub-flow entries from
the flow buffer.

Algorithm 6 : Ensemble ML classifier flow prediction algorithm.
Input : Sub-flow F

Output : CCP(F): predicted class by the ensemble ML model.
1 [Prbenign1,Prattack1]← MLP.predict(F) ;
2 [Prbenign2,Prattack2]← RFCP−IDS.predict(F) ;
3 [Prbenign3,Prattack3]← XGBoost.predict(F);
4 Prbenign = 1

3(Prbenign1 + Prbenign2 + Prbenign3);
5 Prattack = 1

3(Prattack1 + Prattack2 + Prattack3);
6 if Prbenign > Prattack then
7 CCP(F)← 0 ;
8 else
9 CCP(F)← 1;

10 end

88 integrating machine learning in programmable networks

Subsequently, the entire P4 program is compiled into JSON and P4Info files using
the p4c1 compiler. These compiled files encapsulate crucial information about the P4

program and the metadata of its entities. These files are then dispatched to the Data
Plane Control Module to initialize the BMv2 switch.

p4c Compiler:
The p4c compiler is an essential tool for converting P4 program source code into

JSON and P4Info files, which are crucial for establishing connectivity between the
controller and BMv2 switch. The JSON file contains data structures, MA tables, and
packet processing logic from the P4 program, while the P4Info file provides descrip-
tions and metadata for tables, counters, registers, PacketIn, and PacketOut head-
ers. The table metadata helps the controller understand each table’s structure in the
switch, allowing it to populate corresponding table entries accurately. Descriptions
of PacketIn and PacketOut headers aid in parsing incoming packets to extract flow
feature values and set header fields in outgoing packets. Additionally, p4c supports
generating visual representations of P4 programs, making it easier to visualize the
workflow within the switch.

5.5.2 DP-IDS Implementation

To implement CML-IDS, the software switch BMv2
2 is utilized within the data plane.

It handles incoming network packets and conducts preliminary subflow-based traf-
fic classification using DP-IDS. This switch operates according to a P4 program pro-
grammed in the P4 language.

Behavioral Model Version 2 (BMv2)

BMv2, the second iteration of the reference P4 software programmable switch sup-
ported by the p4 language project, operates on the P4 language and serves as a
platform for developing and testing P4 programs in the data plane.

To enable efficient packet reception and forwarding, the BMv2 software switch
requires connections to network interfaces. In our testing environment, we create
two virtual network interfaces using the IP command on the Linux machine. Each
interface’s Maximum Transmission Unit (MTU) is set to the maximum value of 65535

bytes, ensuring seamless processing of all packets within the switch.
The trained DP-IDS from the machine learning module in the control plane is de-

ployed within BMv2 as MA tables and entries, functioning as an in-network intrusion
detection system.

5.5 cml-ids implementation 89

gRPC Server

Instrumentation

Programmable Switch

Remote Controller

gRPC Client

P4Runtime

Install P4 program

Packet transfer

Add/remove table entries

P4 Pipeline(Entities,
Config)

Figure 20: DP-IDS and CP-IDS interact through P4Runtime API, and the data between them
is serialized using protobuf.

5.5.3 Collaboration between DP-IDS and CP-IDS

The interaction between the data plane and control plane is enabled by the P4Runtime
API [64], utilizing a gRPC connection between the switch and the controller, as illus-
trated in Figure 20. This connection employs Protocol Buffers (Protocol Buffer3) to
serialize the data format for communication between the two planes. Collaborative
flow classification is facilitated by integrating the DP-IDS in the BMv2 switch, the
CP-IDS in the control plane, and the connection established through the P4Runtime
API.

P4Runtime API

This API supports various functions for managing the BMv2 switch by the controller.
Specific use cases in our implementation are detailed in the Interaction between the
Switch and Controller. It involves the P4Runtime Shell3 as the P4Runtime client and
the P4c compiler, which is explained in Section 10.

P4Runtime Shell
The P4Runtime client is customized and deployed within the control plane to

facilitate communication with the P4Runtime server situated in the data plane. Var-
ious implementations of the P4Runtime client exist, including p4runtime_lib4 and
P4Runtime Shell. Both clients necessitate the JSON and P4Info files compiled from
the P4 program to establish connectivity with the BMv2 switch. Establishing the

1 https://github.com/p4lang/p4c
2 https://github.com/p4lang/behavioral-model
3 https://github.com/p4lang/p4runtime-shell
4 https://github.com/p4lang/tutorials/tree/master/utils/p4runtime_lib

https://github.com/p4lang/p4c
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4runtime-shell
https://github.com/p4lang/tutorials/tree/master/utils/p4runtime_lib

90 integrating machine learning in programmable networks

connection requires specifying the gRPC socket address, which is set during BMv2

switch initialization via the simple_switch_grpc CLI. However, PacketIO support is
lacking in p4runtime_lib, hindering packet transfer between the data plane and the
control plane. Consequently, our approach employs P4Runtime Shell as the client.

Within the P4Runtime Shell, the PacketIn handler enables packet capture from the
designated CPU port, defined during BMv2 switch initialization. Captured packets
undergo parsing and processing within the controller. Additionally, the PacketOut
handler in P4Runtime Shell allows specifying header field values in outgoing pack-
ets, which are then sent to the switch. In our setup, incoming packets convey flow
information, while outgoing packets encapsulate the predicted flow label.

Protocol Buffers (protobuf)

Protocol Buffers, developed by Google, is a language-agnostic data serialization for-
mat designed to efficiently encode structured data into a compact binary format. Its
versatility makes it invaluable for transmitting data over networks or storing it in
files. In the context of the P4Runtime API, Protocol Buffers plays a crucial role in
defining messages and semantics that govern the interface between the switch and
controller. The P4Runtime API enables the controller to access P4 entities declared in
the P4Info metadata, which is outlined within the P4Info protobuf file. This meta-
data provides comprehensive information about MA tables, packet header fields
exchanged between the controller and switch, and other data structures declared
within the P4 program. By leveraging Protocol Buffers, the P4Runtime API estab-
lishes a standardized and efficient means for the controller to traverse these entities.
This allows for the extraction of header fields from PacketIn and PacketOut packets,
which contain feature values of uncertain flows and the ultimately predicted flow
label, respectively.

Remote Procedure Call (RPC)

gRPC, an open-source framework developed by Google, provides a high-performance
RPC (Remote Procedure Call) solution that enables seamless communication be-
tween network entities. It operates using the Protocol Buffers data serialization for-
mat, facilitating efficient data exchange.

As illustrated in Figure 20, within the scope of the P4Runtime API, gRPC functions
as the foundational element for establishing connectivity between the P4Runtime
server, located within the switch, and the P4Runtime client deployed in the control
plane. This robust connection mechanism guarantees seamless and dependable com-
munication between the switch and the controller.

In the data plane, the software switch BMv2 is launched using either simple_switch5

or simple_switch_grpc6 CLI. The simple_switch CLI required the JSON file com-
piled from the P4 program to start the BMv2 switch. Once launched, the BMv2

switch is equipped with the installed P4 program. However, the simple_switch CLI

5 https://github.com/p4lang/behavioral-model/tree/main/targets/simple_switch
6 https://github.com/p4lang/behavioral-model/tree/main/targets/simple_switch_grpc

https://github.com/p4lang/behavioral-model/tree/main/targets/simple_switch
https://github.com/p4lang/behavioral-model/tree/main/targets/simple_switch_grpc

5.6 evaluation results 91

lacks the capability to connect to the control plane via the P4Runtime API. To address
this limitation, the alternative version simple_switch_grpc CLI is utilized in our case.
simple_switch_grpc supports the P4Runtime API, enabling the establishment of a
gRPC connection to the control plane. The invocation of simple_switch_grpc is as
follows:

simple_switch_grpc - -no-p4 \

-i <PORT1>@<IFACE1> -i <PORT1>@<IFACE1> \

- -grpc-server-addr <IP>:<TCP PORT> -cpu-port <CPU PORT>

The option -no-p4 allows for initiating the BMv2 switch without utilizing a JSON
file, meaning the switch will start without a pre-installed P4 program. Instead, the
P4 program will be installed from the control plane via the P4Runtime API. The
flag -i <PORT>@<IFACE> sets the port number for each network interface. Using
-grpc-server-addr <IP>:<TCP PORT> provides a socket address to run the P4Runtime
server, enabling it to receive connections from P4Runtime clients. Finally, -cpu-port
<CPU PORT> specifies a CPU port number and activates the PacketIO support of the
P4Runtime API. Packets sent to this CPU port number will be forwarded to the
P4Runtime clients in the control plane for ensemble ML classification.

5.6 evaluation results

In this section, we evaluate the proposed CML-IDS using network traffic sourced
from the CICIDS2017 datasets. We assess its detection performance, speed, and net-
work load utilization. To compare the effectiveness of the CML-IDS, we consider
baselines, including in-network NIDS, which deploys ML models solely in the data
plane, and the ML model deployed solely in the control plane. In our evaluation, we
investigate how adjustments in the MCthr parameter impact detection performance
and network load, with the goal of finding a threshold that optimizes both factors.

Subsequent sections provide detailed information on the evaluation metrics and
setup, including hardware and software environments. Each evaluation scenario is
then presented alongside the corresponding results.

5.6.1 Evaluation Metrics

To evaluate the detection performance of CML-IDS, We utilize the macro-average
of precision, recall, and F1 Score. The F1 Score is a reliable evaluation metric as it
accounts for both false positives and false negatives, thus providing a more precise
evaluation of detection performance. In our analysis, the positive class denotes at-
tack traffic, while the negative class signifies benign traffic. Given that benign flows
usually dominate network traffic, we chose to compute the macro-average of the
F1 Score. This ensures fair treatment of each class, irrespective of its occurrence fre-
quency or any imbalances in the dataset [155]. The computation formulas for these
metrics are described as follows.

92 integrating machine learning in programmable networks

False Negative (FN)
FN arises when the ground truth label is positive, indicating an attack flow, yet the
model incorrectly detects it as belonging to the negative class or benign flow.

False Positive (FP)
FP arises when the ground truth label is negative, indicating a benign flow, yet the
model incorrectly detects it as belonging to the negative class or attack flow.

True Negative (TN)
TN occurs when the ground truth label is negative, indicating a benign flow, and the
model correctly detects it as belonging to the negative class or benign flow.

True Positive (TP)
TN occurs when the ground truth label is positive, indicating an attack flow, and the
model correctly detects it as belonging to the positive class or attack flow.

Precision
Precision assesses the accuracy of positive predictions by measuring the ratio of true
positive cases among all instances predicted as positive, indicating the model’s abil-
ity to identify relevant instances accurately [140]. The formula to compute precision
is expressed in Equation 20.

Pr =
TP

TP+ FP
(20)

where Pr represents precision.

Recall
Recall (Re), known as sensitivity, measures the ability of an ML model to correctly
identify all relevant instances from the dataset by calculating the ratio of true posi-
tive cases to the sum of true positive and false negative cases [140]. The formula to
compute recall is expressed in Equation 21.

Re =
TP

TP+ FN
(21)

where Re represents recall.

F1 Score
The F1 score offers a comprehensive assessment of the model’s performance by incor-
porating both precision and recall. A high F1 score indicates that the model achieves
high precision and recall, reflecting strong classification performance [140]. The F1

score is computed using the formula shown in Equation 22.

F1 =
2× Pr× Re

Pr+ Re
(22)

5.7 evaluation setup 93

where F1 represents F1 score.

Macro Average Metrics
The formulas to compute each macro-average F1 Score metric in our evaluation are
expressed in Equation 23.

F1macro−avg =
F1(Benign) + F1(Attack)

2
(23)

5.7 evaluation setup

In this section, we outline the specifics of our evaluation setup, which include the
hardware and software environment settings. We clarify the parameter setup for our
evaluation in Section 5.7.2. Furthermore, details of the ML models’ hyperparameters
are available in Table 14.

5.7.1 Evaluation Environment

We assessed the performance of our proposed CML-IDS using a virtual machine op-
erating on the Ubuntu system. The hardware specifications of this virtual machine
are provided in Table 13. For the data plane, we employed a BMv2 software switch
as the programmable switch, deployed alongside the controller on the same machine
and locally connected to the BMv2 switch.

For training and evaluation, we utilize datasets from CIC-IDS2017 containing Brute
Force, DoS, DDoS, and Botnet attacks. Each dataset is replayed at its original speed
using Tcpreplay7 to replicate real-world traffic forwarding conditions.

Table 13: Specifications of the hardware used for conducting CML-IDS.

Component Specifications

Operating System Ubuntu 20.04.2

CPU 4 Cores, Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz

RAM 126 GB

5.7.2 Evaluation Parameters

Table 14 enumerates the parameter configurations employed in our assessment. The
length of the bit string represents the memory usage needed for storing a single
flow entry, calculated by summing the lengths of all flow features. In our case, the

7 https://tcpreplay.appneta.com/

https://tcpreplay.appneta.com/

94 integrating machine learning in programmable networks

Table 14: CML-IDS flow-based parameters.

Parameters Values

Number of Registers 1

Length of bit string 1225 bits

Size of flow buffer 10,000,000

Expiration timeout 30 min

MCthr [0.1, 0.2, 0.3, 0.4]

combined length of all features equals 1225 bits. The size of the flow buffer deter-
mines the maximum number of simultaneous flow entries it can accommodate, set
at 10,000,000 to effectively handle hash collisions. The expiration timeout dictates the
maximum duration a flow entry remains in the buffer; entries exceeding this timeout
are discarded. NFStream typically aggregates packets into flows with a default active
timeout of 30 minutes, which we maintain for consistency in our evaluation.

In our assessment, the MCthr plays a crucial role in determining the confidence
level of the DP-IDS within the programmable switch. Similar to the Gini impurity
in concept, MCthr defines the reliability of DP-IDS classifications. When a flow’s
detection confidence falls below MCthr (with a smaller Gini value indicating higher
confidence), the DP-IDS considers it as a reliable detection and utilizes it as the final
classification for that flow entry. Conversely, flows with detection confidences ex-
ceeding MCthr are forwarded to the CP-IDS and use its detection as the final result.
A lower MCthr imposes a stricter criterion for accepting classification within the
switch, leading to more flows being forwarded to the controller. MCthr values range
between 0 and 0.5. To ensure the stability of our evaluation results, each threshold
has been evaluated three times.

5.8 evaluation results and analysis

In this section, we analyze the detection performance of CML-IDS from various per-
spectives and compare it with different baselines. This comparison aims to elucidate
our ultimate objective of enhancing detection performance and detection speed while
minimizing network load.

5.8.1 Analysis of the Optimized Number of Packets in a Sub-flow

Our main objective, as described in section Section 5.4.4, is to quickly classify each
flow. To accomplish this goal, we rely on DP-IDS, which has the ability to categorize
flows at line speed. Furthermore, we condense the total number of packets within a
flow to a set of N initial packets, defining it as a sub-flow. This approach eliminates
the necessity to wait for flow completion.

In this section, we explore the effectiveness of different numbers of initial packets
in providing valuable insights for distinguishing between attacks and benign flows.

5.8 evaluation results and analysis 95

Figure 21: Distribution of benign and attack flows within each network traffic dataset. Flows
with more than eight packets are annotated in CML-IDS, which considers eight
initial packets as a sub-flow.

Specifically, we examine quantities of 4, 8, 15, and 30 initial packets for this analysis.
Models are trained using datasets extracted from each of these packet quantities, and
their performance is evaluated using a validation dataset. Importantly, during this
phase of determining the optimal number of packets, the evaluation is limited to the
training and validation datasets.

The findings indicate a substantial reduction in both FP and FN sub-flows, averag-
ing 62.9% when transitioning from 4 to 8 initial packets. This shift correlates with an
overall enhancement in detection performance.

As the number of initial packets increases from 8 to 15 and then to 30, the improve-
ment observed in the process diminishes to 7% and 13%, respectively. This marginal
increase compared to the difference between 4 and 8 initial packets suggests that
a sub-flow size of 8 packets should be selected in order to minimize delays in the
detection process initiation and the need for additional packet waiting.

5.8.2 Analyzing Flow Distribution Extracted in Programmable Switch

To understand the network traffic dataset used in evaluating our proposed CML-
IDS, we initially annotate sub-flows for further analysis and investigate the distribu-
tion of attack and benign flows within the dataset. Annotating of sub-flows is done
leveraging victim and attacker IP addresses from the CICIDS2017 dataset (details in
Appendix A.2). The ground-truth labels are utilized by the programmable switch to
compute FN, FP, TN, and TP alongside the predicted labels.

96 integrating machine learning in programmable networks

Figure 22: Number of sub-flows forwarded to the control plane and classified by the CP-IDS
based on different model confidence thresholds. Furthermore, the percentage of
these forwarded sub-flows is indicated in each figure. The similar figure is in [61].

In Figure 21, the distribution of benign and attack flows in each dataset, cate-
gorized by attack type, is presented. The values shown above each bar represent
the averages from 12 evaluation runs (each with the model confidence threshold
MCthr evaluated three times), with error bars indicating the standard deviation.
Minimal standard deviation signifies the consistent flow extraction capability of the
programmable switch.

5.8.3 Impact of MCthr on the Percentage of Forwarded Sub-flows

This section examines how different values of MCthr can influence the percentage
of sub-flows forwarded to the control plane for classification using CP-IDS.

As depicted in Figure 22, for MCthr = 0.1, over 90% of sub-flows from the Brute-
Force and DoS/DDoS network traffic datasets, and more than 70% of sub-flows from
the Botnet dataset, are forwarded to the CP-IDS. This high percentage is due to the
requirement of a very high confidence level from the DP-IDS to refrain from forward-
ing the sub-flow to the CP-IDS. However, as expected, with an increase in MCthr, the
proportion of sub-flows forwarded to the CP-IDS decreases, indicating an increased
tolerance for accepting the detection results from the DP-IDS.

5.8 evaluation results and analysis 97

5.8.4 Detection Performance of CML-IDS

This section evaluates the overall detection performance achieved through the collab-
oration of the DP-IDS and the CP-IDS using various MCthr. Additionally, the results
are compared with a "baseline," which refers to the scenario where the CP-IDS in the
control plane is inactive, and the final prediction (Attack/Benign) for all sub-flows
is determined solely by the DP-IDS. To clarify the distinctions, we also measure the
misclassification rate of CML-IDS using Equation 24.

MR =
(FP+ FN)

(FP+ FN+ TP+ TN)
(24)

Table 15 illustrates the impact of different MCthr values on the detection per-
formance and misclassification rate. The results indicate that the macro-average F1

Score improves when utilizing CML-IDS (for all MCthr values) compared to the
baseline approach, which relies solely on the DP-IDS. Moreover, the results of the
misclassification rate demonstrate that CML-IDS effectively reduces the percentage
of misclassifications. This improvement is attributed to the CP-IDS being more so-
phisticated than the DP-IDS; therefore, forwarding sub-flows that are challenging
for the DP-IDS to detect (based on its confidence) to the CP-IDS can enhance the
overall detection performance.

In terms of the different model confidence thresholds, MCthr of 0.1 yields the best
classification performance, as it causes to forward a large number of sub-flows to
the control plane for classification by the CP-IDS. As shown in Figure 22, more than
90% of the classified sub-flows for Brute Force and DoS/DDoS attacks, as well as
70% of Botnet attacks, are classified within the controller. On the other hand, MCthr

of 0.4 results in relatively the lowest detection performance among the collaborative
classification since most sub-flows are classified within the DP-IDS. The frequent
packet transfer between the programmable switch and controller could overwhelm
the network bandwidth between the data plane and the control plane. This drawback
is not aligned with our design goal of detecting flows as early as possible.

Table 15: Relative detection performance (DP) and misclassification rate (MR) of different net-
work traffic datasets for different MCthr. After conducting three individual exper-
iments, the standard deviations for all values are below 0.001. The table is extracted
from [61].

MCthr
BruteForce DoS/DDoS BotNet

DP(%) MR(%) DP(%) MR(%) DP(%) MR(%)

0.1 96.8 0.7 83.0 7.1 95.5 3.7

0.2 96.7 0.7 83.7 7.2 96.6 2.9

0.3 96.7 0.7 87.0 6.3 96.7 2.6

0.4 88.1 3.1 82.0 7.9 94.7 4.4

Baseline 84.5 4.4 81.2 8.9 93.1 5.7

98 integrating machine learning in programmable networks

Table 16: Comparison of detection time between DP-IDS and CP-IDS for different MCthr val-
ues. More sub-flows are forwarded to CP-IDS for low MCthr, resulting in increased
detection time. The table is extracted from [61].

Model Confidence Detection Time in Detection Time in

Threshold the DP-IDS (second) the CP-IDS (second)

0.1 0.067 (± 0.0) 137.066 (± 61.417)

0.2 0.075 (± 0.023) 0.546 (± 0.05)

0.3 0.057 (± 0.001) 0.361 (± 0.04)

0.4 0.057 (± 0.001) 0.354 (± 0.044)

The maximum difference is for MCthr = 0.3, displayed in bold in Table Table 15.
At this threshold, the detection performances for BruteForce, DoS/DDoS, and Botnet
attacks are improved by 12.2%, 5.8%, 3.6%, respectively, and the misclassification
rates are reduced by 84.0%, 29.2%, 54.3%, compared to the baseline.

5.8.5 Impact of MCthr on Detection Time

In the domain of network security, promptly identifying attack patterns is crucial for
minimizing potential harm and maintaining the integrity of the network. Depending
on the network task, the delay tolerance can be different [181]. This section explores
the investigation into the time taken to detect attacks for different MCthr values,
while also comparing the detection speeds of DP-IDS and CP-IDS. The impact of di-
recting sub-flows to the CP-IDS on the overall detection time is depicted in Table 16.
Notably, when MCthr = 0.1 is employed, the detection time rises due to a higher
proportion (93.5%, 90.1%, and 70.1% for various attacks as shown in Figure 22) of
sub-flows being routed to the CP-IDS. Consequently, the classification of sub-flows
using the CP-IDS for MCthr = 0.1 demands more time. The significant delay in
detection observed with the CP-IDS for MCthr = 0.1 emphasizes the drawbacks of
solely depending on ML models deployed in the control plane for effective intru-
sion detection. However, the detection time for other MCthr values remains below 1

second, indicating swift detection.

5.8.6 Selecting the Optimal MCthr

To strike a balance between achieving high detection performance and maintaining
low network load, various metrics are taken into account when determining the
suitable MCthr value. While Table 15 illustrates strong detection performance across
MCthr values of 0.1, 0.2, and 0.3, Figure 22 indicates that a higher number of sub-
flows are routed to the CP-IDS for MCthr = 0.1 and MCthr = 0.2 compared to
MCthr = 0.3, leading to increased network latency. Therefore, selecting MCthr = 0.3
is more aligned with the primary objectives of CML-IDS.

5.8 evaluation results and analysis 99

In addition to the evaluation metrics mentioned earlier, the distribution of various
types of classified sub-flows forwarded to the controller is monitored to evaluate
the detection performance of CML-IDS. These sub-flows, initially classified by the
DP-IDS with confidence levels below the MCthr, are categorized based on their clas-
sifications within the DP-IDS, namely FN, FP, TN, and TP. To improve classification
efficiency, sub-flows classified as FN or FP should be prioritized for forwarding to
the controller since erroneous predictions made within the switch can be corrected
by the CP-IDS. However, it’s essential to consider the total number of sub-flows for-
warded to the CP-IDS to prevent an increase in network bandwidth load. Conversely,
sub-flows correctly classified within the switch as TN or TP should be minimized
from being forwarded to the controller to decrease network bandwidth usage and
reduce controller workload. Therefore, the objective is to increase the proportion of
flows classified as FN or FP among all flows sent to the controller.

The findings depicted in Figure 23 reveal that across all network traffic datasets,
the proportion of FP and FN sub-flows forwarded to the controller increases when
MCthr = 0.3 compared to MCthr = 0.2, showing increments of 28.8%, 20.8%, and
33.6% for BruteForce, DoS/DDoS, and Botnet attacks, respectively. Additionally, the
data illustrates that over 95% of sub-flows forwarded to the CP-IDS were accurately

Figure 23: Percentages of various classified types of sub-flows among all sub-flows for-
warded to the CP-IDS vary based on different model confidence thresholds. Specif-
ically, the percentage of the forwarded FP and FN that are correctly forwarded to
the CP-IDS is depicted in the figures. The similar figure is in [61].

100 integrating machine learning in programmable networks

Table 17: Comparison of important metrics to select the best MCthr. Each cell represents
the corresponding value for the BruteForce, DoS/DDoS, and Botnet attacks, respec-
tively. The table is extracted from [61].

MCthr
Forwarded

Sub-flows (%)

Macro-Average

F1 Score (%)

Misclassified For-

warded Flows (%)

0.1 93.5, 90.1, 70.1 96.8, 83, 95.5 4.5, 6.7, 5.8

0.2 10.1, 13.4, 8 96.7, 83.7, 96.6 40.1, 33.6, 43.2

0.3 5.7, 7.4, 4.3 96.7, 87.0, 96.7 68.9, 54.4, 76.8

0.4 2.8, 4.9, 2.1 88.1, 82.0, 94.7 53.8, 47.1, 72.5

detected (TP and TN). Hence, employing MCthr = 0.1 results in the lowest efficiency
regarding forwarding incorrectly classified sub-flows to the CP-IDS. In summary,
Table 17 presents all the relevant metrics and their corresponding values. Each cell in
the table contains three values representing the metrics for BruteForce, DoS/DDoS,
and Botnet attacks. The values for MCthr = 0.3 are highlighted in bold to facilitate
comparison.

The following points lead us to choose MCthr = 0.3 as an optimal threshold for
CML-IDS.

• A MCthr of 0.3 yields an average high macro-average F1 Score of 93.4% across
three datasets, surpassing the scores achieved by MCthr values of 0.2 and 0.4.
This indicates that 0.3 offers the highest detection performance among all eval-
uated thresholds, except for 0.1, which is deemed impractical due to its reliance
solely on ML models in the control plane.

• The detection latency when using MCthr = 0.3 (0.361 s) is lower than that
observed with 0.2 (0.546 s) and comparable to that of 0.4 (0.354 s). However, 0.4
results in the lowest detection performance among all thresholds evaluated.

• Employing MCthr = 0.3 results in a minimal percentage of flows forwarded
to the controller compared to all classified flows (5.7%, 7.5%, 4.3% for each
attack type). Furthermore, it also leads to the highest proportion of incorrectly
classified flows being routed to the controller, indicating that 0.3 achieves the
highest efficiency in terms of flow delivery.

5.8.7 Detection Performance of CP-IDS for Low-confident Flows

Figure 24 illustrates the detection distribution carried out by the CP-IDS in the con-
troller, utilizing a MCthr of 0.3. This classification distribution showcases how the
collaborative flow classification implemented by CML-IDS effectively addresses in-
correct predictions made by the DP-IDS in the programmable switch.

For the Brute Force attack type, out of 86 flows initially misclassified as FN within
the switch, 84 are rectified to TP by the CP-IDS, and over 50% of the FP predictions

5.8 evaluation results and analysis 101

are corrected to TN. Furthermore, the majority of correct TN and TP predictions
made within the switch remain unchanged post-classification in the CP-IDS. Notably,
the collaborative classification mechanism demonstrates significant proficiency in
rectifying FP to TN across all assessed attack types.

These findings underscore the efficacy of this prediction correction mechanism
facilitated by collaborative flow classification in enhancing intrusion detection per-
formance.

5.8.8 Expiration and Hash Collision

The CML-IDS system has a single register that acts as a buffer to store all sub-flow
entries, each indexed by its unique ID. These IDs are generated using the CRC32 hash
function. However, there exists a potential for hash collisions to arise, particularly
when a freshly extracted sub-flow shares the same ID as an already existing sub-flow
within the buffer. Hash collisions influence both the feature update and inference
procedures. If a hash collision occurs during the feature updating process for a flow
with less than 8 packets, it can lead to an inaccurate feature update. Moreover, if
a hash collision occurs, it can result in potentially incorrect packet inference. As a
result, a higher number of hash collisions indicates a more unstable system.

Figure 24: The re-classification distribution achieved by the CP-IDS varies for different net-
work traffic datasets when employing a model confidence threshold of 0.3.

102 integrating machine learning in programmable networks

To ensure efficient storage of sub-flows and minimize hash collisions, a flow expi-
ration mechanism has been implemented. This mechanism removes a sub-flow entry
from the buffer after 30 minutes. The time frame of 30 minutes is aligned with the
NFStream timeout for aggregating packets and creating flows, as explained in Sec-
tion 5.7.2. NFStream uses sub-flow statistical features to analyze network traffic. We
conducted three separate experiments to measure the frequency of hash collisions
while utilizing the flow expiration mechanism.

Figure 25 demonstrates the proportion of expired flows out of all extracted flows,
with an expiration timeout set at 30 minutes. Additionally, it highlights the count of
flows that encountered hash collisions while stored in the flow buffer. The findings
indicate that the proposed flow expiration mechanism effectively mitigated hash col-
lisions for each attack dataset. The observed percentages of flows affected by hash col-
lisions were 0.13%, 0.13%, and 0.30% for BruteForce, DoS/DDoS, and Botnet attacks,
respectively, indicating the minimal impact of hash collisions on the overall system
performance. Furthermore, 20.08%, 23.68%, and 15.83% of the flows for BruteForce,
DoS/DDoS, and Botnet attacks, respectively, expired after reaching the expiration
timeout, suggesting that the evaluations were conducted under stable conditions.

5.8.9 Comparison between CML-IDS and an Existing Approach

This section is taken almost verbatim from [61].
In this section, we provide a comparison between the CML-IDS and SwitchTree [98]

which is presented in Table 18. We decided to compare with SwitchTree primarily

Figure 25: The number of expired flows due to the packet arrival time termination and the
hash collision occurrence within the CML-IDS. These numbers are depicted in
addition to the total number of extracted sub-flows.

5.9 summary 103

Table 18: Comparison between CML-IDS and SwitchTree. The table is extracted from [61].

Metric CML-IDS SwitchTree [98]

Deployed ML model CP & DP DP

DP-IDS complexity Max. Depth: 5 Max. Depth: 11

Number of Registers 1 20

Macro-Average F1 Score 93.4% 87.7%

because their open-source code is readily accessible, and their approach bears the
closest resemblance to our DP-IDS (though not the entire CML-IDS).

For a fair comparison, it was essential to evaluate their model using the dataset
employed in this study and convert the network traffic to the feature set using our
proposed preprocessing pipeline. Table 18 presents a comparison of these two ap-
proaches across various metrics. The CML-IDS involves the collaboration of two ML
models, DP- and CP-IDS, while SwitchTree utilizes only an RF model as a DP-IDS.
Therefore, CML-IDS employs a more intricate approach compared to SwitchTree.
However, the proposed DP-IDS in SwitchTree utilizes a more complex design of an
RF model with a maximum depth of 11, making it challenging to embed in a pro-
grammable switch, whereas CML-IDS utilizes a lightweight RF model with a maxi-
mum depth of 5. Moreover, concerning hardware resources, the SwitchTree approach
requires 20 registers, whereas CML-IDS employs an efficient register usage technique
by applying the bit concatenation operation (as explained in Section 5.5.1). Addition-
ally, the average detection performance across all attack datasets demonstrates that
the CML-IDS model (with MCthr = 0.3) outperforms SwitchTree. Furthermore, in
CML-IDS, the RF model is deployed in DP-IDS with the flexibility to facilitate model
updates by utilizing a combination of Machine Learning, P4 Generator, and Control
Data Plane Modules. However, SwitchTree rigidly hardcoded the RF model in the
software switch.

5.9 summary

In this chapter, we introduce CML-IDS (Collaborative ML-based Intrusion Detection
System), a novel ML-based NIDS tailored for SDN environments. CML-IDS leverages
collaboration between distinct ML models in both the data plane (DP-IDS) and con-
trol plane (CP-IDS) to achieve high detection performance, swift detection speed, and
reduced network load. This collaboration is facilitated by assessing the confidence of
the DP-IDS model in classifying a sub-flow and comparing it to a predefined thresh-
old. When the model confidence is low, indicating uncertainty in classification, the
sub-flow features are forwarded to the control plane for further analysis. The eval-
uation underscores the critical role of selecting an appropriate predefined threshold
(MCthr) value. In this study, a value of 0.3 is chosen for MCthr based on several cri-
teria, including detection performance, detection speed, network latency, and correct
forwarding of incorrectly detected sub-flows. The results demonstrate that employ-

104 integrating machine learning in programmable networks

ing CML-IDS leads to an average reduction of 54.66% in the misclassification rate
compared to the baseline, which relies solely on DP-IDS. Additionally, CML-IDS
effectively enhances detection performance and reduces latency by minimizing the
need to forward flows to the control plane.

6
S U M M A RY, C O N C L U S I O N S , A N D O U T L O O K

To summarize this work, an overview of the preceding chapters is presented in
Section 6.1, outlining the main contributions. Drawing from the obtained re-

sults, conclusions are synthesized in Section 6.1.2. Finally, open issues and potential
future work that can be done in the field of ML-based NIDSs are discussed in Sec-
tion 6.2.

6.1 summary of the thesis

Chapter 1 delves into the challenges faced by Machine Learning (ML)-based Network
Intrusion Detection Systems (NIDS). These encompass grappling with the diversity
and imbalance of network traffic datasets, which can significantly impact the general-
ization of feature selection and the overall detection performance of ML-based NIDSs.
This influence applies not only to individual datasets sharing similar network traffic
patterns but also to multiple datasets exhibiting varying traffic patterns. Addition-
ally, the challenges associated with integrating ML-based NIDSs into programmable
networks, such as in Software-Defined Networking (SDN), are discussed.

Chapter 2 provides crucial background information on the ML models utilized
in this thesis, alongside an exposition of the concepts explored in each contribu-
tion chapter. Furthermore, existing research with similar objectives is investigated,
identifying some research gaps. Utilizing insights from state-of-the-art analyses and
considering various specific scenarios, the contributions of this thesis are presented
and discussed as follows.

6.1.1 Contributions

Chapter 3 introduces the initial contribution, focusing on diminishing noise and fea-
ture dimensionality within network traffic datasets to reduce ML model complexity
while maintaining high detection performance. Within this chapter, an Ensemble Fea-
ture Selection (EFS) method comprising a preprocessing pipeline and feature selec-
tion approach is introduced [57]. This method aims to reduce feature dimensionality
across various network traffic datasets encompassing different network attack types
and architectures. The results demonstrate a 65% reduction in feature dimensionality
while maintaining high detection performance comparable to using all flow features
for training. Through exploratory data analysis, the distinctiveness of network traf-
fic datasets and their unique sets of relevant features are highlighted. Furthermore,
the investigation into the possibility of selecting transferable features across diverse
network traffic datasets through the integration of a data-driven solution (DD-EFS)
is undertaken. Utilizing DD-EFS, five common features among the top 25 features

105

106 summary, conclusions , and outlook

across these datasets are identified, and all ML models are trained solely on these
features. The findings suggest that these selected five features are more transferable
across the available and previously unseen network traffic patterns.

The exploratory data analysis revealed that each network traffic dataset possesses
distinct characteristics, leading to achieving high detection performance solely on
network traffic patterns similar to the training dataset. Therefore, designing a model
capable of accurately detecting distinct, previously unseen traffic patterns is neces-
sary to demonstrate the generalization of its detection performance.

In response to these insights, Chapter 4 introduces a self-supervised contrastive
learning approach (SSCL-NIDS) [58], which exclusively trains on benign flows. This
approach enhances the capability to detect previously unseen attack flows without
direct training on them, aiming to strengthen the generalization capability of the ML-
based NIDS. Results demonstrate an improvement in classifying previously unseen
network traffic patterns compared to both supervised and unsupervised baselines.
Furthermore, the possibility of fine-tuning the SSCL-NIDS and employing it in trans-
fer learning is explored, thereby reducing reliance on large amounts of annotated
training data.

Chapter 5 investigates the deployment of ML-based NIDS within programmable
network architectures like in SDN. While the control plane in SDN offers ample com-
putational resources suitable for preprocessing and training ML models, forwarding
flows to the control plane for intrusion detection tasks can lead to increased network
load and detection time, which are crucial metrics to consider. To achieve line-rate de-
tection speed and minimize network load, deploying a lightweight ML model in the
programmable data plane is a viable option, given its computational resource con-
straints. However, the detection performance of such lightweight models may not
match that of more complex ML models. To reconcile high detection performance
and speed without overwhelming the control plane, a Collaborative ML-based IDS
(CML-IDS) [61] is proposed. In this framework, each flow undergoes initial detection
using a lightweight ML model deployed in the programmable data plane. If the de-
tection confidence falls below a predefined threshold, the flow is forwarded to the
control plane for classification using an ensemble ML model. Results demonstrate
that compared to solely deploying an ML model in the data plane, the proposed
CML-IDS enhances detection performance. Moreover, compared to deploying an ML
model solely in the control plane, it reduces network load and detection time.

6.1.2 Conclusions

Throughout a comprehensive evaluation, various scenarios are examined to assess
each contribution from diverse perspectives. The following summarizes the attained
results.

In Section 3.6, the effectiveness of the proposed EFS approach is demonstrated
by reducing feature dimensionality by at least 56% while maintaining high detection
performance. To ensure the robustness of the results across different ML model struc-
tures, three different ML models are employed to evaluate the proposed EFS method:

6.1 summary of the thesis 107

Random Forest, Logistic Regression, and Multi-Layer Perceptron Model. Addition-
ally, to showcase the versatility of the designed EFS pipeline, the evaluation is con-
ducted on five distinct network traffic datasets. Across all datasets and ML models,
it is observed that drastically reducing feature dimensionality can lead to a decrease
in detection performance due to the potential exclusion of informative features. The
results indicate that training ML models with 44% of the entire features maintain
consistent detection performance. Moreover, the findings demonstrate the impact of
feature dimension reduction on training time, which is a crucial metric when retrain-
ing ML models is required. Furthermore, integrating a data-driven approach into
the proposed EFS method demonstrates an enhancement in the transferability of the
selected features for classifying different, previously unseen network traffic patterns.

Section 4.8 presents the findings of the proposed SSCL-NIDS, which is trained ex-
clusively on benign flows. This approach aims to reduce the annotation process for
network traffic datasets and address imbalanced network traffic datasets. The results
indicate that SSCL-NIDS surpasses both the supervised baseline (by over 27%) and
the unsupervised baseline (by over 15%), demonstrating its capacity to learn an ab-
stract representation of benign network traffic. This enables it to effectively identify
previously unseen attack patterns. The evaluation of SSCL-NIDS involves three key
scenarios: assessing detection performance on an unseen dataset extracted from the
same distribution as the training dataset, evaluating performance on unseen attack
flows (where the model was trained solely on benign flows from the dataset contain-
ing those attacks), and testing on an unseen attack flows dataset where the model had
not encountered any flows, including benign ones. This comprehensive evaluation
underscores the robustness and adaptability of SSCL-NIDS in detecting previously
unseen attack patterns. Furthermore, SSCL-NIDS exhibits promising results when
employed as a pretraining model and fine-tuned with only a few samples (10−5 of
the entire dataset) from a new network traffic dataset. Remarkably, this fine-tuning
process yielded a detection performance exceeding 80%, which is at least 15% higher
than that of the supervised baseline model across various network traffic datasets.

Section 5.6 demonstrates a comprehensive evaluation of the proposed CML-IDS,
emphasizing its detection performance, detection time, and the flows transmitted
between the data plane and control plane for the classification task.

The proposed CML-IDS is compared with scenarios where ML-based NIDS is de-
ployed solely in the control plane and solely in the programmable data plane. The
findings demonstrate that CML-IDS outperformed ML-based NIDS deployed solely
in the data plane, resulting in an average intrusion detection performance increase of
7.1%. Additionally, CML-IDS reduces detection time compared to ML-based NIDS
deployed solely in the control plane and decreases network load by reducing packet
transfers between the data plane and the control plane by approximately 78.76%.
Furthermore, as the CML-IDS operates based on the confidence of the ML model
deployed in the programmable data plane, the analysis examines the impact of the
model confidence threshold on various metrics. This analysis aims to determine an
optimal threshold for maximizing detection performance, minimizing detection time,
and optimizing the percentage of forwarded flows to the control plane. Additionally,

108 summary, conclusions , and outlook

assessing the percentage of incorrectly detected flows forwarded correctly to the con-
trol plane provided valuable insights into identifying an optimal model confidence
threshold.

6.2 outlook

In this work, fundamental approaches are introduced to address critical research
gaps in integrating ML models into NIDSs.

The first contribution emphasizes reducing feature dimensionality to mitigate noise
in network traffic datasets. Additionally, a transferable feature set among various net-
work traffic datasets is selected through the integration of a data-driven approach.
Based on the results, the proposed EFS and DD-EFS methods can be employed for
online learning approaches, facilitating rapid retraining of the ML model [60]. More-
over, as EFS is utilized in the preprocessing step for ML-based NIDS, it can be in-
tegrated into more complex ML-based NIDSs, as demonstrated in the second and
third contributions of this thesis.

In the second contribution, an approach called SSCL-NIDS is devised to be exclu-
sively trained on benign flows, aiming to enhance the generalization of detection
performance in ML-based NIDSs. Data augmentation is accomplished by applying
a random corruption mask to the flow sample within the proposed SSCL-NIDS. To
enable the model to acquire a more generic representation of benign flows and im-
prove its detection performance against adversarial attack samples, it is feasible to
employ Generative Adversarial Networks to generate negative samples.

Furthermore, the SSCL-NIDS is utilized as a pre-trained model and fine-tuned
with a limited number of samples from new network traffic patterns. This strategy
enables the method to effectively classify new network patterns, even with only a
small number of samples. Leveraging transfer learning eliminates the necessity to
train a model from scratch, as the SSCL-NIDS is already trained with a diverse range
of network traffic patterns, thereby enhancing its adaptability in different scenarios.

The final contribution focuses on facilitating the integration of ML-based NIDS
into SDN, considering factors such as detection performance, speed, and poten-
tial additional network load. The framework is implemented within a softwarized
P4 switch (BMv2), taking into consideration potential hardware limitations, such
as those of Tofino switches. As a follow-up work, investigating the deployment of
the framework on real hardware will be conducted to confirm its practical viability.
Moreover, the flexible design of CML-IDS allows for the addition of new modules
aimed at retraining deployed ML models and integrating online learning approaches.
This has the potential to enhance the detection performance of CML-IDS when en-
countering various previously unseen traffic patterns.

open-source

Collaboration between researchers and engineers drives scientific advancements and
technological innovations. To foster future achievements within the research com-

6.2 outlook 109

munity and enable the replication of our findings, we have openly shared multiple
implementations of this work as open-source projects.

acknowledgments

This work is funded by the Federal Ministry of Education and Research of Ger-
many (BMBF) through CELTIC-NEXT Flagship Project AI-NET-PROTECT and the
Software Campus Grant 01IS17050 (ML-based NIDS).

B I B L I O G R A P H Y

[1] Oluwadamilare Harazeem Abdulganiyu, Taha Ait Tchakoucht, and Yakub
Kayode Saheed. “A systematic literature review for network intrusion detec-
tion system (IDS).” In: International Journal of Information Security 22.5 (2023),
pp. 1–38. doi: 10.1007/s10207-023-00682-2.

[2] Manal Abdullah, Arwa Alshannaq, Asmaa Balamash, and Soad Almabdy.
“Enhanced intrusion detection system using feature selection method and en-
semble learning algorithms.” In: International Journal of Computer Science and
Information Security (IJCSIS) 16.2 (2018), pp. 48–55.

[3] Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang, Johari Abdullah,
and Farhan Ahmad. “Network intrusion detection system: A systematic study
of machine learning and deep learning approaches.” In: Transactions on Emerg-
ing Telecommunications Technologies 32.1 (2021), e4150. doi: 10.1002/ett.4150.

[4] Saleh Albelwi. “Survey on Self-Supervised Learning: Auxiliary Pretext Tasks
and Contrastive Learning Methods in Imaging.” In: Journal of Entropy 24.4
(2022). doi: 10.3390/e24040551.

[5] Iñaki Aldasoro, Leonardo Gambacorta, Paolo Giudici, and Thomas Leach.
“The drivers of cyber risk.” In: Journal of Financial Stability 60 (2022), p. 100989.
doi: 10.1016/j.jfs.2022.100989.

[6] Osama Alkadi, Nour Moustafa, and Benjamin Turnbull. “A Review of Intru-
sion Detection and Blockchain Applications in the Cloud: Approaches, Chal-
lenges and Solutions.” In: Journal of IEEE Access 8 (2020), pp. 104893–104917.
doi: 10.1109/ACCESS.2020.2999715.

[7] Sarah Alkadi, Saad Al-Ahmadi, and Mohamed Maher Ben Ismail. “Toward
Improved Machine Learning-Based Intrusion Detection for Internet of Things
Traffic.” In: Journal of Computers 12.8 (2023). doi: 10.3390/computers12080148.

[8] Mohammad Almseidin, Jamil Al-Sawwa, Mouhammd Alkasassbeh, and Mo-
hammed Alweshah. “On detecting distributed denial of service attacks using
fuzzy inference system.” In: Journal of Cluster Computing 26.2 (2023), pp. 1337–
1351. doi: 10.1007/s10586-022-03657-5.

[9] Zahangir Alom and Tarek Taha. “Network intrusion detection for cyber
security using unsupervised deep learning approaches.” In: IEEE Na-
tional Aerospace and Electronics Conference (NAECON). 2017, pp. 63–69. doi:
10.1109/NAECON.2017.8268746.

111

https://doi.org/10.1007/s10207-023-00682-2
https://doi.org/10.1002/ett.4150
https://doi.org/10.3390/e24040551
https://doi.org/10.1016/j.jfs.2022.100989
https://doi.org/10.1109/ACCESS.2020.2999715
https://doi.org/10.3390/computers12080148
https://doi.org/10.1007/s10586-022-03657-5
https://doi.org/10.1109/NAECON.2017.8268746

112 bibliography

[10] Fatemeh Amiri, MohammadMahdi Rezaei Yousefi, Caro Lucas, Azadeh Shak-
ery, and Nasser Yazdani. “Mutual information-based feature selection for in-
trusion detection systems.” In: Journal of Network and Computer Applications
34.4 (2011). Advanced Topics in Cloud Computing, pp. 1184–1199. doi: 10.
1016/j.jnca.2011.01.002.

[11] Zied Aouini and Adrian Pekar. “NFStream: A flexible network data analysis
framework.” In: Journal of Computer Networks 204 (2022), p. 108719. doi: 10.
1016/j.comnet.2021.108719.

[12] Franciso Aparicio-Navarro, Konstantinos Kyriakopoulos, Ibrahim Ghafir, San-
garapillai Lambotharan, and Jonathon Chambers. “Multi-Stage Attack Detec-
tion Using Contextual Information.” In: IEEE Military Communications Confer-
ence (MILCOM). 2018, pp. 1–9. doi: 10.1109/MILCOM.2018.8599708.

[13] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford,
and David Walker. “SNAP: Stateful Network-Wide Abstractions for Packet
Processing.” In: Proceedings of the ACM SIGCOMM Conference. Association for
Computing Machinery, 2016, pp. 29–43. doi: 10.1145/2934872.2934892.

[14] AWS hit by largest reported DDoS attack of 2.3 Tbps. June 2020. url: https://
www.a10networks.com/blog/aws-hit-by-largest-reported-ddos-attack-

of-2-3-tbps/ (Last accessed on April 10, 2024).

[15] Zahedi Azam, Md. Motaharul Islam, and Mohammad Nurul Huda. “Compar-
ative Analysis of Intrusion Detection Systems and Machine Learning-Based
Model Analysis Through Decision Tree.” In: Journal of IEEE Access 11 (2023),
pp. 80348–80391. doi: 10.1109/ACCESS.2023.3296444.

[16] Elaheh Biglar Beigi, Hossein Hadian Jazi, Natalia Stakhanova, and Ali Ghor-
bani. “Towards effective feature selection in machine learning-based botnet
detection approaches.” In: IEEE Conference on Communications and Network Se-
curity. 2014, pp. 247–255. doi: 10.1109/CNS.2014.6997492.

[17] Andrea Bommert, Xudong Sun, Bernd Bischl, Jörg Rahnenführer, and Michel
Lang. “Benchmark for filter methods for feature selection in high-dimensional
classification data.” In: Journal of Computational Statistics & Data Analysis 143

(2020), p. 106839. doi: 10.1016/j.csda.2019.106839.

[18] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. “P4: programming protocol-independent packet processors.”
In: SIGCOMM Computer Communication Review 44.3 (2014), pp. 87–95. doi:
10.1145/2656877.2656890.

[19] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. “Forwarding metamor-
phosis: fast programmable match-action processing in hardware for SDN.” In:
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. Association
for Computing Machinery, 2013, pp. 99–110. doi: 10.1145/2486001.2486011.

https://doi.org/10.1016/j.jnca.2011.01.002
https://doi.org/10.1016/j.jnca.2011.01.002
https://doi.org/10.1016/j.comnet.2021.108719
https://doi.org/10.1016/j.comnet.2021.108719
https://doi.org/10.1109/MILCOM.2018.8599708
https://doi.org/10.1145/2934872.2934892
https://www.a10networks.com/blog/aws-hit-by-largest-reported-ddos-attack-of-2-3-tbps/
https://www.a10networks.com/blog/aws-hit-by-largest-reported-ddos-attack-of-2-3-tbps/
https://www.a10networks.com/blog/aws-hit-by-largest-reported-ddos-attack-of-2-3-tbps/
https://doi.org/10.1109/ACCESS.2023.3296444
https://doi.org/10.1109/CNS.2014.6997492
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2486001.2486011

bibliography 113

[20] Fatima Bouchama and Mostafa Kamal. “Enhancing Cyber Threat Detection
through Machine Learning-Based Behavioral Modeling of Network Traffic
Patterns.” In: International Journal of Business Intelligence and Big Data Analytics
4.9 (2021), pp. 1–9. url: https://research.tensorgate.org/index.php/
IJBIBDA/article/view/76 (Last accessed on April 10, 2024).

[21] Leo Breiman. “Bagging predictors.” In: Journal of Machine learning 24 (1996),
pp. 123–140. doi: 10.1007/BF00058655.

[22] Leo Breiman. “Random forests.” In: Journal of Machine learning 45.1 (2001),
pp. 5–32. doi: 10.1023/A:1010933404324.

[23] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias Bühler,
and Laurent Vanbever. pForest: In-Network Inference with Random Forests. 2022.
doi: 10.48550/arXiv.1909.05680.

[24] Ranyelson Neres Carvalho, Lucas Rodrigues Costa, Jacir Luiz Bordim, and
Eduardo Adilio Pelinson Alchieri. “Detecting DDoS Attacks on SDN Data
Plane with Machine Learning.” In: Ninth International Symposium on Comput-
ing and Networking Workshops (CANDARW). 2021, pp. 138–144. doi: 10.1109/
CANDARW53999.2021.00030.

[25] Carlos Catania and Carlos García Garino. “Automatic network intrusion de-
tection: Current techniques and open issues.” In: Journal of Computers & Elec-
trical Engineering 38.5 (2012). Special issue on Recent Advances in Security
and Privacy in Distributed Communications and Image processing, pp. 1062–
1072. doi: 10.1016/j.compeleceng.2012.05.013.

[26] Evan Caville, Wai Weng Lo, Siamak Layeghy, and Marius Portmann.
“Anomal-E: A self-supervised network intrusion detection system based
on graph neural networks.” In: Knowledge-Based Systems Journal 258 (2022),
p. 110030. doi: 10.1016/j.knosys.2022.110030.

[27] David Charte, Francisco Charte, María J. del Jesus, and Francisco Herrera.
“An analysis on the use of autoencoders for representation learning: Funda-
mentals, learning task case studies, explainability and challenges.” In: Journal
of Neurocomputing 404 (2020), pp. 93–107. doi: 10.1016/j.neucom.2020.04.
057.

[28] Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and Philip Kegelmeyer.
“SMOTE: synthetic minority over-sampling technique.” In: Journal of artificial
intelligence research 16 (2002), pp. 321–357. doi: 10.1613/jair.953.

[29] Kuan-yin Chen, Anudeep Reddy Junuthula, Ishant Kumar Siddhrau, Yang
Xu, and H. Jonathan Chao. “SDNShield: Towards more comprehensive de-
fense against DDoS attacks on SDN control plane.” In: 2016 IEEE Conference
on Communications and Network Security (CNS). 2016, pp. 28–36. doi: 10.1109/
CNS.2016.7860467.

https://research.tensorgate.org/index.php/IJBIBDA/article/view/76
https://research.tensorgate.org/index.php/IJBIBDA/article/view/76
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.1909.05680
https://doi.org/10.1109/CANDARW53999.2021.00030
https://doi.org/10.1109/CANDARW53999.2021.00030
https://doi.org/10.1016/j.compeleceng.2012.05.013
https://doi.org/10.1016/j.knosys.2022.110030
https://doi.org/10.1016/j.neucom.2020.04.057
https://doi.org/10.1016/j.neucom.2020.04.057
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/CNS.2016.7860467
https://doi.org/10.1109/CNS.2016.7860467

114 bibliography

[30] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting Sys-
tem.” In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Association for Computing Machinery,
2016, pp. 785–794. doi: 10.1145/2939672.2939785.

[31] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
Simple Framework for Contrastive Learning of Visual Representations. 2020. doi:
10.48550/arXiv.2002.05709. arXiv: 2002.05709 [cs.LG].

[32] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A
Simple Framework for Contrastive Learning of Visual Representations.” In:
Proceedings of the 37th International Conference on Machine Learning. Vol. 119.
PMLR, 2020, pp. 1597–1607. url: https://proceedings.mlr.press/v119/
chen20j.html (Last accessed on April 10, 2024).

[33] Hyunseung Choi, Mintae Kim, Gyubok Lee, and Wooju Kim. “Unsupervised
learning approach for network intrusion detection system using autoen-
coders.” In: The Journal of Supercomputing 75 (2019), pp. 5597–5621. doi:
10.1007/s11227-019-02805-w.

[34] Cisco Annual Internet Report (2018-2023). Mar. 2020. url: https://www.cisco.
com/c/en/us/solutions/collateral/executive- perspectives/annual-

internet-report/white-paper-c11-741490.html (Last accessed on April 10,
2024).

[35] Juan Camilo Correa Chica, Jenny Cuatindioy Imbachi, and Juan Felipe Botero
Vega. “Security in SDN: A comprehensive survey.” In: Journal of Network and
Computer Applications 159 (2020), p. 102595. doi: 10 . 1016 / j . jnca . 2020 .

102595.

[36] Weverton Luis da Costa Cordeiro, Jonatas Adilson Marques, and Luciano
Paschoal Gaspary. “Data plane programmability beyond openflow: Opportu-
nities and challenges for network and service operations and management.”
In: Journal of Network and Systems Management 25 (2017), pp. 784–818. doi:
10.1007/s10922-017-9423-2.

[37] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. “Supervised
Learning.” In: Machine Learning Techniques for Multimedia: Case Studies on Or-
ganization and Retrieval. Springer Berlin Heidelberg, 2008, pp. 21–49. doi: 10.
1007/978-3-540-75171-7_2.

[38] Laurens D’hooge, Miel Verkerken, Tim Wauters, Filip De Turck, and Bruno
Volckaert. “Investigating Generalized Performance of Data-Constrained Su-
pervised Machine Learning Models on Novel, Related Samples in Intrusion
Detection.” In: Journal of Sensors 23.4 (2023). doi: 10.3390/s23041846.

[39] Laurens D’hooge, Tim Wauters, Bruno Volckaert, and Filip De Turck. “Inter-
dataset generalization strength of supervised machine learning methods for
intrusion detection.” In: Journal of Information Security and Applications 54

(2020), p. 102564. doi: 10.1016/j.jisa.2020.102564.

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.48550/arXiv.2002.05709
https://arxiv.org/abs/2002.05709
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1007/s11227-019-02805-w
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1016/j.jnca.2020.102595
https://doi.org/10.1016/j.jnca.2020.102595
https://doi.org/10.1007/s10922-017-9423-2
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.3390/s23041846
https://doi.org/10.1016/j.jisa.2020.102564

bibliography 115

[40] Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Ku-
mar. “A survey of deep learning and its applications: a new paradigm to
machine learning.” In: Archives of Computational Methods in Engineering Journal
27 (2020), pp. 1071–1092. doi: 10.1007/s11831-019-09344-w.

[41] Raktim Deb and Sudipta Roy. “A comprehensive survey of vulnerability and
information security in SDN.” In: Journal of Computer Networks 206 (2022),
p. 108802. doi: 10.1016/j.comnet.2022.108802.

[42] Ayesha Siddiqua Dina and Dakshnamoorthy Manivannan. “Intrusion detec-
tion based on Machine Learning techniques in computer networks.” In: Jour-
nal of Internet of Things 16 (2021), p. 100462. doi: 10.1016/j.iot.2021.100462.

[43] Abhimanyu Dubey, Vignesh Ramanathan, Alex Pentland, and Dhruv Ma-
hajan. “Adaptive Methods for Real-World Domain Generalization.” In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2021, pp. 14340–14349. doi: 10.1109/CVPR46437.2021.01411.

[44] Heba F. Eid, Aboul Ella Hassanien, Tai-hoon Kim, and Soumya Banerjee.
“Linear Correlation-Based Feature Selection for Network Intrusion Detection
Model.” In: Advances in Security of Information and Communication Networks.
Springer Berlin Heidelberg, 2013, pp. 240–248. doi: 10.1007/978- 3- 642-
40597-6_21.

[45] Lubna Fayez Eliyan and Roberto Di Pietro. “DoS and DDoS attacks in Soft-
ware Defined Networks: A survey of existing solutions and research chal-
lenges.” In: Journal of Future Generation Computer Systems 122 (2021), pp. 149–
171. doi: 10.1016/j.future.2021.03.011.

[46] Fahimeh Farahnakian and Jukka Heikkonen. “A deep auto-encoder based
approach for intrusion detection system.” In: 2018 20th International Conference
on Advanced Communication Technology (ICACT). 2018, pp. 178–183. doi: 10.
23919/ICACT.2018.8323688.

[47] Hongliang Fei, Brian Quanz, and Jun Huan. “Regularization and feature se-
lection for networked features.” In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management. Association for Comput-
ing Machinery, 2010, pp. 1893–1896. doi: 10.1145/1871437.1871756.

[48] Qusyairi Ridho Saeful Fitni and Kalamullah Ramli. “Implementation of
Ensemble Learning and Feature Selection for Performance Improvements
in Anomaly-Based Intrusion Detection Systems.” In: 2020 IEEE International
Conference on Industry 4.0, Artificial Intelligence, and Communications Technology
(IAICT). 2020, pp. 118–124. doi: 10.1109/IAICT50021.2020.9172014.

[49] Thangasamy Anitha G. Logeswari Shilpi Bose. “An Intrusion Detection Sys-
tem for SDN Using Machine Learning.” In: Journal of Intelligent Automation &
Soft Computing 35.1 (2023), pp. 867–880. doi: 10.32604/iasc.2023.026769.

https://doi.org/10.1007/s11831-019-09344-w
https://doi.org/10.1016/j.comnet.2022.108802
https://doi.org/10.1016/j.iot.2021.100462
https://doi.org/10.1109/CVPR46437.2021.01411
https://doi.org/10.1007/978-3-642-40597-6_21
https://doi.org/10.1007/978-3-642-40597-6_21
https://doi.org/10.1016/j.future.2021.03.011
https://doi.org/10.23919/ICACT.2018.8323688
https://doi.org/10.23919/ICACT.2018.8323688
https://doi.org/10.1145/1871437.1871756
https://doi.org/10.1109/IAICT50021.2020.9172014
https://doi.org/10.32604/iasc.2023.026769

116 bibliography

[50] Mudasir Ahmad Ganaie, Minghui Hu, Ashwani Kumar Malik, Mohammad
Tanveer, and Ponnuthurai Nagaratnam Suganthan. “Ensemble deep learning:
A review.” In: Journal of Engineering Applications of Artificial Intelligence 115

(2022), p. 105151. doi: 10.1016/j.engappai.2022.105151.

[51] Aparna Ganesan and Kamil Sarac. “Mitigating Evasion Attacks on Machine
Learning based NIDS Systems in SDN.” In: IEEE 7th International Confer-
ence on Network Softwarization (NetSoft). 2021, pp. 268–272. doi: 10 . 1109 /

NetSoft51509.2021.9492526.

[52] Sebastian García, Martin Grill, Jan Stiborek, and Alejandro Zunino. “An em-
pirical comparison of botnet detection methods.” In: Journal of Computers &
Security 45 (2014), pp. 100–123. doi: 10.1016/j.cose.2014.05.011.

[53] Pedro García-Teodoro, Jesús Díaz-Verdejo, Gabriel Maciá-Fernández, and
Enrique Vázquez. “Anomaly-based network intrusion detection: Techniques,
systems and challenges.” In: Journal of Computers & Security 28.1 (2009),
pp. 18–28. doi: 10.1016/j.cose.2008.08.003.

[54] Christoph Gärtner, Amr Rizk, Boris Koldehofe, Rhaban Hark, René Guil-
laume, Ralf Kundel, and Ralf Steinmetz. “POSTER: Leveraging PIFO Queues
for Scheduling in Time-Sensitive Networks.” In: 2021 IEEE International Sym-
posium on Local and Metropolitan Area Networks (LANMAN). IEEE, 2021, pp. 1–
2. doi: 10.1109/LANMAN52105.2021.9478796.

[55] Sravanthi Godala and Rama Prasad Venkata Vaddella. “A study on intru-
sion detection system in wireless sensor networks.” In: International Journal of
Communication Networks and Information Security 12.1 (2020), pp. 127–141. doi:
10.17762/ijcnis.v12i1.4429.

[56] Pegah Golchin, Leonard Anderweit, Julian Zobel, Ralf Kundel, and Ralf
Steinmetz. “In-Network SYN Flooding DDoS Attack Detection Utilizing P4

Switches.” In: Proceedings of the 3rd KuVS Fachgespräch "Network Softwariza-
tion". 2022, pp. 1–2. doi: 10.15496/publikation-67441.

[57] Pegah Golchin, Ralf Kundel, Tim Steuer, Rhaban Hark, and Ralf Steinmetz.
“Improving DDoS Attack Detection Leveraging a Multi-aspect Ensemble Fea-
ture Selection.” In: NOMS 2022-2022 IEEE/IFIP Network Operations and Man-
agement Symposium. 2022, pp. 1–5. doi: 10.1109/NOMS54207.2022.9789763.

[58] Pegah Golchin, Nima Rafiee, Mehrdad Hajizadeh, Ahmad Khalil, Ralf Kun-
del, and Ralf Steinmetz. “SSCL-IDS: Enhancing Generalization of Intrusion
Detection with Self-Supervised Contrastive Learning.” In: 2024 IFIP Network-
ing Conference (IFIP Networking). IEEE. 2024, pp. 1–9. Forthcoming.

[59] Pegah Golchin, Nima Rafiee, and Ralf Kundel. “A Data-Driven Solution for
Improving Transferability of Traffic Flow Feature Selection.” In: 2024 IFIP Net-
working Conference (IFIP Networking). IEEE. 2024, pp. 1–3. Forthcoming.

https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1109/NetSoft51509.2021.9492526
https://doi.org/10.1109/NetSoft51509.2021.9492526
https://doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1109/LANMAN52105.2021.9478796
https://doi.org/10.17762/ijcnis.v12i1.4429
https://doi.org/10.15496/publikation-67441
https://doi.org/10.1109/NOMS54207.2022.9789763

bibliography 117

[60] Pegah Golchin, Jannis Weil, Ralf Kundel, and Ralf Steinmetz. “Dynamic net-
work intrusion detection system in Software-Defined Networking.” In: 2nd
Workshop on Machine Learning & Networking (MaLeNe), co-located with the 5th
International Conference on Networked Systems (NetSys 2023). 2023, pp. 1–2.

[61] Pegah Golchin, Chengbo Zhou, Pratyush Agnihotri, Pratyush Agnihotri,
Mehrdad Hajizadeh, Ralf Kundel, and Ralf Steinmetz. “CML-IDS: Enhancing
Intrusion Detection in SDN Through Collaborative Machine Learning.” In:
19th International Conference on Network and Service Management (CNSM). 2023,
pp. 1–9. doi: 10.23919/CNSM59352.2023.10327863.

[62] Florian Gottwalt, Elizabeth Chang, and Tharam Dillon. “CorrCorr: A fea-
ture selection method for multivariate correlation network anomaly detection
techniques.” In: Journal of Computers & Security 83 (2019), pp. 234–245. doi:
10.1016/j.cose.2019.02.008.

[63] Palash Goyal, Sumit Pandey, and Karan Jain. Deep Learning for Natural Lan-
guage Processing. 1st. Apress Berkeley, CA, 2018. doi: 10.1007/978-1-4842-
3685-7.

[64] The P4.org API Working Group. P4Runtime Specification. https://p4.org/p4-
spec/p4runtime/main/P4Runtime- Spec.html. (Last accessed on April 10,
2024).

[65] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature
selection.” In: Journal of Machine Learning Research 3 (2003), pp. 1157–1182. doi:
10.5555/944919.944968.

[66] Nabil Hachem, Yosra Ben Mustapha, Gustavo Gonzalez Granadillo, and
Herve Debar. “Botnets: Lifecycle and Taxonomy.” In: Conference on Net-
work and Information Systems Security. 2011, pp. 1–8. doi: 10 . 1109 / SAR -

SSI.2011.5931395.

[67] Mehrdad Hajizadeh, Sudip Barua, and Pegah Golchin. “FSA-IDS: A Flow-
based Self-Active Intrusion Detection System.” In: IEEE/IFIP Network Oper-
ations and Management Symposium (NOMS). 2023, pp. 1–9. doi: 10 . 1109 /

NOMS56928.2023.10154343.

[68] Suzan Hajj, Rayane El Sibai, Jacques Bou Abdo, Jacques Demerjian, Abdal-
lah Makhoul, and Christophe Guyeux. “Anomaly-based intrusion detection
systems: The requirements, methods, measurements, and datasets.” In: Trans-
actions on Emerging Telecommunications Technologies 32.4 (2021), e4240. doi: 10.
1002/ett.4240.

[69] Simon Hansman and Ray Hunt. “A taxonomy of network and computer at-
tacks.” In: Journal of Computers & Security 24.1 (2005), pp. 31–43. doi: 10.1016/
j.cose.2004.06.011.

[70] Simon Hansman and Ray Hunt. “A taxonomy of network and computer at-
tacks.” In: Journal of Computers & Security 24.1 (2005), pp. 31–43. doi: 10.1016/
j.cose.2004.06.011.

https://doi.org/10.23919/CNSM59352.2023.10327863
https://doi.org/10.1016/j.cose.2019.02.008
https://doi.org/10.1007/978-1-4842-3685-7
https://doi.org/10.1007/978-1-4842-3685-7
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://doi.org/10.5555/944919.944968
https://doi.org/10.1109/SAR-SSI.2011.5931395
https://doi.org/10.1109/SAR-SSI.2011.5931395
https://doi.org/10.1109/NOMS56928.2023.10154343
https://doi.org/10.1109/NOMS56928.2023.10154343
https://doi.org/10.1002/ett.4240
https://doi.org/10.1002/ett.4240
https://doi.org/10.1016/j.cose.2004.06.011
https://doi.org/10.1016/j.cose.2004.06.011
https://doi.org/10.1016/j.cose.2004.06.011
https://doi.org/10.1016/j.cose.2004.06.011

118 bibliography

[71] Rhaban Hark, Mohamed Ghanmi, Ralf Kundel, Patrick Lieser, and Ralf
Steinmetz. “Monitoring Flows with Per-Application Granularity using
Programmable Data Planes.” In: IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN). 2021, pp. 1–6. doi: 10 . 1109 /

LANMAN52105.2021.9478798.

[72] Rhaban Simon Hark. “Monitoring Federated Softwarized Networks: Ap-
proaches for Efficient and Collaborative Data Collection in Large-Scale
Software-Defined Networks.” PhD thesis. Darmstadt: Technische Universität
Darmstadt, 2019. url: http://tuprints.ulb.tu-darmstadt.de/9073/.

[73] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner, Vladimir
Gurevich, Florian Zeiger, Reinhard Frank, and Michael Menth. “A survey
on data plane programming with P4: Fundamentals, advances, and applied
research.” In: Journal of Network and Computer Applications 212 (2023), p. 103561.
doi: 10.1016/j.jnca.2022.103561.

[74] Simon Haykin. Neural Networks and Learning Machines. 3rd ed. Pearson Edu-
cation India. url: https://books.google.de/books?id=ivK0DwAAQBAJ (Last
accessed on April 10, 2024).

[75] Imran Hidayat, Muhammad Zulfiqar Ali, and Arshad Arshad. “Machine
Learning-Based Intrusion Detection System: An Experimental Comparison.”
In: Journal of Computational and Cognitive Engineering 2.2 (2022), pp. 88–97. doi:
10.47852/bonviewJCCE2202270.

[76] Nazrul Hoque, Monowar Bhuyan, Ram Charan Baishya, Dhruba Kumar Bhat-
tacharyya, and Jugal Kumar Kalita. “Network attacks: Taxonomy, tools and
systems.” In: Journal of Network and Computer Applications 40 (2014), pp. 307–
324. doi: 10.1016/j.jnca.2013.08.001.

[77] Asmaul Hosna, Ethel Merry, Jigmey Gyalmo, Zulfikar Alom, Zeyar Aung,
and Mohammad Abdul Azim. “Transfer learning: a friendly introduction.”
In: Journal of Big Data 9.1 (2022), p. 102. doi: 10.1186/s40537-022-00652-w.

[78] Fei Hu, Qi Hao, and Ke Bao. “A Survey on Software-Defined Network and
OpenFlow: From Concept to Implementation.” In: IEEE Communications Sur-
veys & Tutorials 16.4 (2014), pp. 2181–2206. doi: 10.1109/COMST.2014.2326417.

[79] Shamsul Huda, Kevin Liu, Mohamed Abdelrazek, Amani Ibrahim, Sultan
Alyahya, Hmood Al-Dossari, and Shafiq Ahmad. “An Ensemble Oversam-
pling Model for Class Imbalance Problem in Software Defect Prediction.” In:
Journal of IEEE Access 6 (2018), pp. 24184–24195. doi: 10.1109/ACCESS.2018.
2817572.

[80] MohammadNoor Injadat, Abdallah Moubayed, Ali Bou Nassif, and Abdallah
Shami. “Multi-Stage Optimized Machine Learning Framework for Network
Intrusion Detection.” In: IEEE Transactions on Network and Service Management
18.2 (2021), pp. 1803–1816. doi: 10.1109/TNSM.2020.3014929.

https://doi.org/10.1109/LANMAN52105.2021.9478798
https://doi.org/10.1109/LANMAN52105.2021.9478798
http://tuprints.ulb.tu-darmstadt.de/9073/
https://doi.org/10.1016/j.jnca.2022.103561
https://books.google.de/books?id=ivK0DwAAQBAJ
https://doi.org/10.47852/bonviewJCCE2202270
https://doi.org/10.1016/j.jnca.2013.08.001
https://doi.org/10.1186/s40537-022-00652-w
https://doi.org/10.1109/COMST.2014.2326417
https://doi.org/10.1109/ACCESS.2018.2817572
https://doi.org/10.1109/ACCESS.2018.2817572
https://doi.org/10.1109/TNSM.2020.3014929

bibliography 119

[81] IOT traffic is tracking over; 5G, WiFi 6 are ascending. Jan. 2020. url: https://
www.networkworld.com/article/968399/cisco-iot-traffic-is-taking-

over-5g-wifi-6-are-ascending.html (Last accessed on April 10, 2024).

[82] Hossein Hadian Jazi, Hugo Gonzalez, Natalia Stakhanova, and Ali Ghorbani.
“Detecting HTTP-based application layer DoS attacks on web servers in the
presence of sampling.” In: Journal of Computer Networks 121 (2017), pp. 25–36.
doi: 10.1016/j.comnet.2017.03.018.

[83] María Jiménez, David Fernández, Jorge Eduardo Rivadeneira, Luis Bellido,
and Andrés Cárdenas. “A Survey of the Main Security Issues and Solutions
for the SDN Architecture.” In: Journal of IEEE Access 9 (2021), pp. 122016–
122038. doi: 10.1109/ACCESS.2021.3109564.

[84] Myung-Jin Jun. “A comparison of a gradient boosting decision tree, random
forests, and artificial neural networks to model urban land use changes: the
case of the Seoul metropolitan area.” In: International Journal of Geographical
Information Science 35.11 (2021), pp. 2149–2167. doi: 10.1080/13658816.2021.
1887490.

[85] Rajesh Kalakoti, Sven Nõmm, and Hayretdin Bahsi. “In-Depth Feature Selec-
tion for the Statistical Machine Learning-Based Botnet Detection in IoT Net-
works.” In: Journal of IEEE Access 10 (2022), pp. 94518–94535. doi: 10.1109/
ACCESS.2022.3204001.

[86] Murat Karakus and Arjan Durresi. “A survey: Control plane scalability issues
and approaches in Software-Defined Networking (SDN).” In: Journal of Com-
puter Networks 112 (2017), pp. 279–293. doi: 10.1016/j.comnet.2016.11.017.

[87] Sydney Mambwe Kasongo and Yanxia Sun. “Performance analysis of intru-
sion detection systems using a feature selection method on the UNSW-NB15

dataset.” In: Journal of Big Data 7 (2020), pp. 1–20. doi: 10.1186/s40537-020-
00379-6.

[88] Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb. “An Exhaustive Survey on
P4 Programmable Data Plane Switches: Taxonomy, Applications, Challenges,
and Future Trends.” In: Journal of IEEE Access 9 (2021), pp. 87094–87155. doi:
10.1109/ACCESS.2021.3086704.

[89] Geeta Kocher and Gulshan Kumar. “Machine learning and deep learn-
ing methods for intrusion detection systems: recent developments and
challenges.” In: Journal of Soft Computing 25.15 (2021), pp. 9731–9763. doi:
10.1007/s00500-021-05893-0.

[90] Deepak Kshirsagar and Sandeep Kumar. “A feature reduction based reflected
and exploited DDoS attacks detection system.” In: Journal of Ambient Intelli-
gence and Humanized Computing 13.1 (2022), pp. 393–405. doi: 10.1007/s12652-
021-02907-5.

https://www.networkworld.com/article/968399/cisco-iot-traffic-is-taking-over-5g-wifi-6-are-ascending.html
https://www.networkworld.com/article/968399/cisco-iot-traffic-is-taking-over-5g-wifi-6-are-ascending.html
https://www.networkworld.com/article/968399/cisco-iot-traffic-is-taking-over-5g-wifi-6-are-ascending.html
https://doi.org/10.1016/j.comnet.2017.03.018
https://doi.org/10.1109/ACCESS.2021.3109564
https://doi.org/10.1080/13658816.2021.1887490
https://doi.org/10.1080/13658816.2021.1887490
https://doi.org/10.1109/ACCESS.2022.3204001
https://doi.org/10.1109/ACCESS.2022.3204001
https://doi.org/10.1016/j.comnet.2016.11.017
https://doi.org/10.1186/s40537-020-00379-6
https://doi.org/10.1186/s40537-020-00379-6
https://doi.org/10.1109/ACCESS.2021.3086704
https://doi.org/10.1007/s00500-021-05893-0
https://doi.org/10.1007/s12652-021-02907-5
https://doi.org/10.1007/s12652-021-02907-5

120 bibliography

[91] Vinod Kumar, Vinay Choudhary, Vivek Sahrawat, and Vinay Kumar. “De-
tecting Intrusions and Attacks in the Network Traffic using Anomaly based
Techniques.” In: 5th International Conference on Communication and Electronics
Systems (ICCES). 2020, pp. 554–560. doi: 10.1109/ICCES48766.2020.9137968.

[92] Ralf Kundel. “Accelerating Network Functions Using Reconfigurable Hard-
ware: Design and Validation of High Throughput and Low Latency Network
Functions at the Access Edge.” PhD thesis. Technische Universität Darmstadt,
2024. url: https://tuprints.ulb.tu-darmstadt.de/id/eprint/22023.

[93] Ralf Kundel, Christoph Gärtner, Manisha Luthra, Sukanya Bhowmik, and
Boris Koldehofe. “Flexible Content-based Publish/Subscribe over Pro-
grammable Data Planes.” In: NOMS 2020 - 2020 IEEE/IFIP Network Operations
and Management Symposium. 2020, pp. 1–5. doi: 10.1109/NOMS47738.2020.
9110381.

[94] Siamak Layeghy, Mahsa Baktashmotlagh, and Marius Portmann. “DI-
NIDS: Domain invariant network intrusion detection system.” In: Journal
of Knowledge-Based Systems 273 (2023), p. 110626. doi: 10.1016/j.knosys.
2023.110626.

[95] Siamak Layeghy and Marius Portmann. “Explainable Cross-domain Eval-
uation of ML-based Network Intrusion Detection Systems.” In: Journal of
Computers and Electrical Engineering 108 (2023), p. 108692. doi: 10.1016/j.
compeleceng.2023.108692.

[96] Siamak Layeghy and Marius Portmann. “Explainable Cross-domain Eval-
uation of ML-based Network Intrusion Detection Systems.” In: Journal of
Computers and Electrical Engineering 108 (2023), p. 108692. doi: 10.1016/j.
compeleceng.2023.108692.

[97] Long Tan Le and Tran Ngoc Thinh. “On the Improvement of Machine Learn-
ing Based Intrusion Detection System for SDN Networks.” In: 8th NAFOSTED
Conference on Information and Computer Science (NICS). 2021, pp. 464–469. doi:
10.1109/NICS54270.2021.9701522.

[98] Jong-Hyouk Lee and Kamal Singh. “Switchtree: in-network computing and
traffic analyses with random forests.” In: Neural Computing and Applications
(2020), pp. 1–12. doi: 10.1007/s00521-020-05440-2.

[99] Moemedi Lefoane, Ibrahim Ghafir, Sohag Kabir, and Irfan-Ullah Awan.
“Multi-stage Attack Detection: Emerging Challenges for Wireless Networks.”
In: 2022 International Conference on Smart Applications, Communications and
Networking (SmartNets). 2022, pp. 01–05. doi: 10.1109/SmartNets55823.2022.
9994027.

[100] Wenjuan Li, Weizhi Meng, and Lam For Kwok. “A survey on OpenFlow-
based Software Defined Networks: Security challenges and countermea-
sures.” In: Journal of Network and Computer Applications 68 (2016), pp. 126–139.
doi: 10.1016/j.jnca.2016.04.011.

https://doi.org/10.1109/ICCES48766.2020.9137968
https://tuprints.ulb.tu-darmstadt.de/id/eprint/22023
https://doi.org/10.1109/NOMS47738.2020.9110381
https://doi.org/10.1109/NOMS47738.2020.9110381
https://doi.org/10.1016/j.knosys.2023.110626
https://doi.org/10.1016/j.knosys.2023.110626
https://doi.org/10.1016/j.compeleceng.2023.108692
https://doi.org/10.1016/j.compeleceng.2023.108692
https://doi.org/10.1016/j.compeleceng.2023.108692
https://doi.org/10.1016/j.compeleceng.2023.108692
https://doi.org/10.1109/NICS54270.2021.9701522
https://doi.org/10.1007/s00521-020-05440-2
https://doi.org/10.1109/SmartNets55823.2022.9994027
https://doi.org/10.1109/SmartNets55823.2022.9994027
https://doi.org/10.1016/j.jnca.2016.04.011

bibliography 121

[101] Shan Lin, Hong Zheng, Bei Han, Yanyan Li, Chao Han, and Wei Li. “Compara-
tive performance of eight ensemble learning approaches for the development
of models of slope stability prediction.” In: Journal of Acta Geotechnica 17.4
(2022), pp. 1477–1502. doi: 10.1007/s11440-021-01440-1.

[102] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal
Loss for Dense Object Detection. 2018. doi: 10.48550/arXiv.1708.02002. arXiv:
1708.02002 [cs.CV].

[103] Haoyue Liu, MengChu Zhou, and Qing Liu. “An embedded feature selection
method for imbalanced data classification.” In: IEEE/CAA Journal of Automat-
ica Sinica 6.3 (2019), pp. 703–715. doi: 10.1109/JAS.2019.1911447.

[104] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee,
Robert Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster.
“p4v: practical verification for programmable data planes.” In: Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication. As-
sociation for Computing Machinery, 2018, pp. 490–503. doi: 10.1145/3230543.
3230582.

[105] Lan Liu, Pengcheng Wang, Jianliang Ruan, and Jun Lin. “Conflow: contrast
network flow improving class-imbalanced learning in network intrusion de-
tection.” In: Research Square Preprint (2022). doi: 10.21203/rs.3.rs-1572776/
v1.

[106] Qigang Liu, Deming Wang, Yuhang Jia, Suyuan Luo, and Chongren Wang. “A
multi-task based deep learning approach for intrusion detection.” In: Journal
of Knowledge-Based Systems 238 (2022), p. 107852. doi: 10.1016/j.knosys.2021.
107852.

[107] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad
Eid Alsaadi. “A survey of deep neural network architectures and their appli-
cations.” In: Journal of Neurocomputing 234 (2017), pp. 11–26. doi: 10.1016/j.
neucom.2016.12.038.

[108] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang,
and Jie Tang. “Self-Supervised Learning: Generative or Contrastive.” In: IEEE
Transactions on Knowledge and Data Engineering 35.1 (2023), pp. 857–876. doi:
10.1109/TKDE.2021.3090866.

[109] Ziyu Liu, Azadeh Alavi, Minyi Li, and Xiang Zhang. “Self-Supervised Con-
trastive Learning for Medical Time Series: A Systematic Review.” In: Journal
of Sensors 23.9 (2023). doi: 10.3390/s23094221.

[110] Manuel Lopez-Martin, Antonio Sanchez-Esguevillas, Juan Ignacio Arribas,
and Belen Carro. “Supervised contrastive learning over prototype-label em-
beddings for network intrusion detection.” In: Information Fusion Journal 79

(2022), pp. 200–228. doi: 10.1016/j.inffus.2021.09.014.

[111] Gilles Louppe. Understanding Random Forests: From Theory to Practice. 2015. doi:
10.48550/arXiv.1407.7502. arXiv: 1407.7502 [stat.ML].

https://doi.org/10.1007/s11440-021-01440-1
https://doi.org/10.48550/arXiv.1708.02002
https://arxiv.org/abs/1708.02002
https://doi.org/10.1109/JAS.2019.1911447
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.21203/rs.3.rs-1572776/v1
https://doi.org/10.21203/rs.3.rs-1572776/v1
https://doi.org/10.1016/j.knosys.2021.107852
https://doi.org/10.1016/j.knosys.2021.107852
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/10.3390/s23094221
https://doi.org/10.1016/j.inffus.2021.09.014
https://doi.org/10.48550/arXiv.1407.7502
https://arxiv.org/abs/1407.7502

122 bibliography

[112] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions.” In: Advances in Neural Information Processing Systems. Vol. 30. Cur-
ran Associates, Inc., 2017. doi: doi/10.5555/3295222.3295230.

[113] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-
SNE.” In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605. url:
http://jmlr.org/papers/v9/vandermaaten08a.html.

[114] Yassine Maleh, Youssef Qasmaoui, Khalid El Gholami, Yassine Sadqi, and
Soufyane Mounir. “A comprehensive survey on SDN security: threats, miti-
gations, and future directions.” In: Journal of Reliable Intelligent Environments
9.2 (2023), pp. 201–239. doi: 10.1007/s40860-022-00171-8.

[115] Ziadoon Kamil Maseer, Robiah Yusof, Nazrulazhar Bahaman, Salama
Mostafa, and Cik Feresa Mohd Foozy. “Benchmarking of Machine Learning
for Anomaly Based Intrusion Detection Systems in the CICIDS2017 Dataset.”
In: Journal of IEEE Access 9 (2021), pp. 22351–22370. doi: 10.1109/ACCESS.
2021.3056614.

[116] Fares Meghdouri, Tanja Zseby, and Félix Iglesias. “Analysis of Lightweight
Feature Vectors for Attack Detection in Network Traffic.” In: Journal of Applied
Sciences 8.11 (2018). doi: 10.3390/app8112196.

[117] Weizhi Meng, Wenjuan Li, and Lam-For Kwok. “EFM: Enhancing the per-
formance of signature-based network intrusion detection systems using
enhanced filter mechanism.” In: Journal of Computers & Security 43 (2014),
pp. 189–204. doi: 10.1016/j.cose.2014.02.006.

[118] Michael Menth, Habib Mostafaei, Daniel Merling, and Marco Häberle. “Im-
plementation and Evaluation of Activity-Based Congestion Management Us-
ing P4 (P4-ABC).” In: Journal of Future Internet 11.7 (2019). doi: 10 . 3390 /

fi11070159.

[119] Bruno Henrique Meyer, Aurora Trinidad Ramirez Pozo, Michele Nogueira,
and Wagner Nunan Zola. “Federated Self-Supervised Learning for Intrusion
Detection.” In: IEEE Symposium Series on Computational Intelligence (SSCI).
2023, pp. 822–828. doi: 10.1109/SSCI52147.2023.10371956.

[120] Ishan Misra and Laurens van der Maaten. “Self-Supervised Learning of
Pretext-Invariant Representations.” In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). June 2020. doi:
10.48550/arXiv.1912.01991.

[121] Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, Jakob D. Havtorn,
Joakim Edin, Christian Igel, Katrin Kirchhoff, Shang-Wen Li, Karen Livescu,
Lars Maaløe, Tara N. Sainath, and Shinji Watanabe. “Self-Supervised Speech
Representation Learning: A Review.” In: IEEE Journal of Selected Topics in Sig-
nal Processing 16.6 (2022), pp. 1179–1210. doi: 10.1109/JSTSP.2022.3207050.

https://doi.org/doi/10.5555/3295222.3295230
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1007/s40860-022-00171-8
https://doi.org/10.1109/ACCESS.2021.3056614
https://doi.org/10.1109/ACCESS.2021.3056614
https://doi.org/10.3390/app8112196
https://doi.org/10.1016/j.cose.2014.02.006
https://doi.org/10.3390/fi11070159
https://doi.org/10.3390/fi11070159
https://doi.org/10.1109/SSCI52147.2023.10371956
https://doi.org/10.48550/arXiv.1912.01991
https://doi.org/10.1109/JSTSP.2022.3207050

bibliography 123

[122] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set for net-
work intrusion detection systems (UNSW-NB15 network data set).” In: Mili-
tary Communications and Information Systems Conference (MilCIS). 2015, pp. 1–6.
doi: 10.1109/MilCIS.2015.7348942.

[123] Francesco Musumeci, Ali Can Fidanci, Francesco Paolucci, Filippo Cugini,
and Massimo Tornatore. “Machine-Learning-enabled DDoS attacks detection
in P4 programmable networks.” In: Journal of Network and Systems Management
30.1 (2022), pp. 1–27. doi: 10.1007/s10922-021-09633-5.

[124] Muhammad Nadeem, Ali Arshad, Saman Riaz, Shahab Band, and Amir
Mosavi. “Intercept the Cloud Network From Brute Force and DDoS Attacks
via Intrusion Detection and Prevention System.” In: Journal of IEEE Access 9

(2021), pp. 152300–152309. doi: 10.1109/ACCESS.2021.3126535.

[125] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,
Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. A Com-
prehensive Overview of Large Language Models. 2024. doi: 10.48550/arXiv.2307.
06435. arXiv: 2307.06435 [cs.CL].

[126] Hoang Nguyen and Rasha Kashef. “TS-IDS: Traffic-aware self-supervised
learning for IoT Network Intrusion Detection.” In: Journal of Knowledge-Based
Systems 279 (2023), p. 110966. doi: 10.1016/j.knosys.2023.110966.

[127] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia
Obraczka, and Thierry Turletti. “A Survey of Software-Defined Networking:
Past, Present, and Future of Programmable Networks.” In: IEEE Communica-
tions Surveys & Tutorials 16.3 (2014), pp. 1617–1634. doi: 10.1109/SURV.2014.
012214.00180.

[128] Kriti Ohri and Mukesh Kumar. “Review on self-supervised image recognition
using deep neural networks.” In: Journal of Knowledge-Based Systems 224 (2021),
p. 107090. doi: 10.1016/j.knosys.2021.107090.

[129] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with
Contrastive Predictive Coding. 2019. doi: 10.48550/arXiv.1807.03748. arXiv:
1807.03748 [cs.LG].

[130] Opeyemi Osanaiye, Haibin Cai, Kim-Kwang Raymond Choo, Ali Dehghan-
tanha, Zheng Xu, and Mqhele Dlodlo. “Ensemble-based multi-filter feature
selection method for DDoS detection in cloud computing.” In: EURASIP Jour-
nal on Wireless Communications and Networking 2016.1 (2016), pp. 1–10. doi:
10.1186/s13638-016-0623-3.

[131] Yazan Otoum and Amiya Nayak. “As-ids: Anomaly and signature based ids
for the internet of things.” In: Journal of Network and Systems Management 29.3
(2021), pp. 1–26. doi: 10.1007/s10922-021-09589-6.

[132] Merve Ozkan-Okay, Refik Samet, Ömer Aslan, and Deepti Gupta. “A Com-
prehensive Systematic Literature Review on Intrusion Detection Systems.” In:
Journal of IEEE Access 9 (2021), pp. 157727–157760. doi: 10.1109/ACCESS.2021.
3129336.

https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1007/s10922-021-09633-5
https://doi.org/10.1109/ACCESS.2021.3126535
https://doi.org/10.48550/arXiv.2307.06435
https://doi.org/10.48550/arXiv.2307.06435
https://arxiv.org/abs/2307.06435
https://doi.org/10.1016/j.knosys.2023.110966
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1016/j.knosys.2021.107090
https://doi.org/10.48550/arXiv.1807.03748
https://arxiv.org/abs/1807.03748
https://doi.org/10.1186/s13638-016-0623-3
https://doi.org/10.1007/s10922-021-09589-6
https://doi.org/10.1109/ACCESS.2021.3129336
https://doi.org/10.1109/ACCESS.2021.3129336

124 bibliography

[133] Panos Panagiotou, Notis Mengidis, Theodora Tsikrika, Stefanos Vrochidis,
and Ioannis Kompatsiaris. “Host-based intrusion detection using signature-
based and ai-driven anomaly detection methods.” In: Information & Security:
An International Journal 50.1 (2021), pp. 37–48. doi: 10.11610/isij.5016.

[134] Animesh Patcha and Jung-Min Park. “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends.” In: Journal of Com-
puter Networks 51.12 (2007), pp. 3448–3470. doi: 10.1016/j.comnet.2007.02.
001.

[135] Minh Pham and Doan B Hoang. “SDN applications - The intent-based North-
bound Interface realisation for extended applications.” In: IEEE NetSoft Con-
ference and Workshops (NetSoft). 2016, pp. 372–377. doi: 10.1109/NETSOFT.2016.
7502469.

[136] Ngoc Tu Pham, Ernest Foo, Suriadi Suriadi, Helen Jeffrey, and Hassan Fa-
reed M Lahza. “Improving performance of intrusion detection system using
ensemble methods and feature selection.” In: Proceedings of the Australasian
Computer Science Week Multiconference. Association for Computing Machinery,
2018. doi: 10.1145/3167918.3167951.

[137] James Press and Sandra Wilson. “Choosing between Logistic Regression and
Discriminant Analysis.” In: Journal of the American Statistical Association 73.364

(1978), pp. 699–705. doi: 10.1080/01621459.1978.10480080.

[138] Madhukrishna Priyadarsini and Padmalochan Bera. “Software defined net-
working architecture, traffic management, security, and placement: A survey.”
In: Journal of Computer Networks 192 (2021), p. 108047. doi: 10.1016/j.comnet.
2021.108047.

[139] Nima Rafiee, Rahil Gholamipoor, Nikolas Adaloglou, Simon Jaxy, Julius Ra-
makers, and Markus Kollmann. “Self-supervised Anomaly Detection by Self-
distillation and Negative Sampling.” In: Artificial Neural Networks and Machine
Learning – ICANN 2022. Springer Nature Switzerland, 2022, pp. 459–470. doi:
10.1007/978-3-031-15937-4_39.

[140] Cornelis van Rijsbergen. Information Retrieval. 2nd. USA: Butterworth-
Heinemann, 1979. doi: 10.1002/asi.4630300621.

[141] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and An-
dreas Hotho. “A survey of network-based intrusion detection data sets.” In:
Journal of Computers & Security 86 (2019), pp. 147–167. doi: 10.1016/j.cose.
2019.06.005.

[142] David Everett Rumelhart and James Lloyd McClelland. “Learning Internal
Representations by Error Propagation.” In: Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition: Foundations. The MIT Press, 1987,
pp. 318–362. doi: 10.7551/mitpress/4943.003.0128.

https://doi.org/10.11610/isij.5016
https://doi.org/10.1016/j.comnet.2007.02.001
https://doi.org/10.1016/j.comnet.2007.02.001
https://doi.org/10.1109/NETSOFT.2016.7502469
https://doi.org/10.1109/NETSOFT.2016.7502469
https://doi.org/10.1145/3167918.3167951
https://doi.org/10.1080/01621459.1978.10480080
https://doi.org/10.1016/j.comnet.2021.108047
https://doi.org/10.1016/j.comnet.2021.108047
https://doi.org/10.1007/978-3-031-15937-4_39
https://doi.org/10.1002/asi.4630300621
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.7551/mitpress/4943.003.0128

bibliography 125

[143] Aqeel Sahi, David Lai, Yan Li, and Mohammed Diykh. “An Efficient DDoS
TCP Flood Attack Detection and Prevention System in a Cloud Environment.”
In: Journal of IEEE Access 5 (2017), pp. 6036–6048. doi: 10.1109/ACCESS.2017.
2688460.

[144] Rakesh Salam and Ansuman Bhattacharya. “Efficient greedy heuristic ap-
proach for fault-tolerant distributed controller placement in scalable SDN ar-
chitecture.” In: Journal of Cluster Computing 25.6 (2022), pp. 4543–4572. doi:
10.1007/s10586-022-03694-0.

[145] Iqbal Sarker. “Machine learning: Algorithms, real-world applications and re-
search directions.” In: Journal of SN computer science 2.3 (2021), p. 160. doi:
10.1007/s42979-021-00592-x.

[146] Patrick Schober, Christa Boer, and Lothar A Schwarte. “Correlation coeffi-
cients: appropriate use and interpretation.” In: Journal of Anesthesia & analgesia
126.5 (2018), pp. 1763–1768. doi: 10.1213/ANE.0000000000002864.

[147] Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. “Sdn Security:
A Survey.” In: IEEE SDN for Future Networks and Services (SDN4FNS). 2013,
pp. 1–7. doi: 10.1109/SDN4FNS.2013.6702553.

[148] Pratap Chandra Sen, Mahimarnab Hajra, and Mitadru Ghosh. “Supervised
Classification Algorithms in Machine Learning: A Survey and Review.”
In: Emerging Technology in Modelling and Graphics. Springer Singapore, 2020,
pp. 99–111. doi: 10.1007/978-981-13-7403-6_11.

[149] Reehan Ali Shah, Yuntao Qian, Dileep Kumar, Munwar Ali, and Muhammad
Bux Alvi. “Network Intrusion Detection through Discriminative Feature Se-
lection by Using Sparse Logistic Regression.” In: Journal of Future Internet 9.4
(2017). doi: 10.3390/fi9040081.

[150] Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghorbani. “Toward Gen-
erating a New Intrusion Detection Dataset and Intrusion Traffic Characteri-
zation.” In: International Conference on Information Systems Security and Privacy.
Vol. 1. 2018, pp. 108–116. doi: 10.5220/0006639801080116.

[151] Neha Sharma and Narendra Singh Yadav. “Ensemble Learning based Classifi-
cation of UNSW-NB15 dataset using Exploratory Data Analysis.” In: 9th Inter-
national Conference on Reliability, Infocom Technologies and Optimization (Trends
and Future Directions) (ICRITO). 2021, pp. 1–7. doi: 10.1109/ICRITO51393.
2021.9596213.

[152] Chris Simmons, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, and Chase
Wu. “AVOIDIT: A Cyber Attack Taxonomy.” In: CTIT technical reports series
(2009). url: https : / / api . semanticscholar . org / CorpusID : 349528 (Last
accessed on April 10, 2024).

[153] Maninder Pal Singh and Abhinav Bhandari. “New-flow based DDoS attacks
in SDN: Taxonomy, rationales, and research challenges.” In: Journal of Com-
puter Communications 154 (2020), pp. 509–527. doi: 10.1016/j.comcom.2020.
02.085.

https://doi.org/10.1109/ACCESS.2017.2688460
https://doi.org/10.1109/ACCESS.2017.2688460
https://doi.org/10.1007/s10586-022-03694-0
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://doi.org/10.1007/978-981-13-7403-6_11
https://doi.org/10.3390/fi9040081
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1109/ICRITO51393.2021.9596213
https://doi.org/10.1109/ICRITO51393.2021.9596213
https://api.semanticscholar.org/CorpusID:349528
https://doi.org/10.1016/j.comcom.2020.02.085
https://doi.org/10.1016/j.comcom.2020.02.085

126 bibliography

[154] Preeti Sinha, Vijay Kumar Jha, Amit Kumar Rai, and Bharat Bhushan. “Secu-
rity vulnerabilities, attacks and countermeasures in wireless sensor networks
at various layers of OSI reference model: A survey.” In: International Confer-
ence on Signal Processing and Communication (ICSPC). 2017, pp. 288–293. doi:
10.1109/CSPC.2017.8305855.

[155] Marina Sokolova and Guy Lapalme. “A systematic analysis of performance
measures for classification tasks.” In: Journal of Information Processing & Man-
agement 45.4 (2009), pp. 427–437. doi: 10.1016/j.ipm.2009.03.002.

[156] Chetan Srinidhi, Seung Wook Kim, Fu-Der Chen, and Anne Martel. “Self-
supervised driven consistency training for annotation efficient histopathology
image analysis.” In: Journal of Medical Image Analysis 75 (2022), p. 102256. doi:
10.1016/j.media.2021.102256.

[157] Rodrigo Vieira Steiner and Emil Lupu. “Towards more practical software-
based attestation.” In: Journal of Computer Networks 149 (2019), pp. 43–55. doi:
10.1016/j.comnet.2018.11.003.

[158] Jill Stoltzfus. “Logistic Regression: A Brief Primer.” In: Journal of Academic
Emergency Medicine 18.10 (2011), pp. 1099–1104. doi: 10.1111/j.1553-2712.
2011.01185.x.

[159] Tala Talaei Khoei and Naima Kaabouch. “Machine Learning: Models, Chal-
lenges, and Research Directions.” In: Journal of Future Internet 15.10 (2023).
doi: 10.3390/fi15100332.

[160] Jiliang Tang, Salem Alelyani, and Huan Liu. “Feature selection for classifi-
cation: A review.” In: Data Classification. CRC Press, 2014, pp. 37–64. doi:
10.1201/b17320.

[161] Zhulin Tao, Xiaohao Liu, Yewei Xia, Xiang Wang, Lifang Yang, Xianglin
Huang, and Tat-Seng Chua. “Self-Supervised Learning for Multimedia Rec-
ommendation.” In: IEEE Transactions on Multimedia 25 (2023), pp. 5107–5116.
doi: 10.1109/TMM.2022.3187556.

[162] Ankit Thakkar and Ritika Lohiya. “A survey on intrusion detection system:
feature selection, model, performance measures, application perspective, chal-
lenges, and future research directions.” In: Journal of Artificial Intelligence Re-
view 55.1 (2022), pp. 453–563. doi: 10.1007/s10462-021-10037-9.

[163] Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. “SubTab: Subsetting
Features of Tabular Data for Self-Supervised Representation Learning.” In:
Advances in Neural Information Processing Systems. Vol. 34. Curran Associates,
Inc., 2021, pp. 18853–18865. doi: 10.48550/arXiv.2110.04361.

[164] Muhammad Usama, Junaid Qadir, Aunn Raza, Hunain Arif, Kok-lim Alvin
Yau, Yehia Elkhatib, Amir Hussain, and Ala Al-Fuqaha. “Unsupervised Ma-
chine Learning for Networking: Techniques, Applications and Research Chal-
lenges.” In: Journal of IEEE Access 7 (2019), pp. 65579–65615. doi: 10.1109/
ACCESS.2019.2916648.

https://doi.org/10.1109/CSPC.2017.8305855
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.media.2021.102256
https://doi.org/10.1016/j.comnet.2018.11.003
https://doi.org/10.1111/j.1553-2712.2011.01185.x
https://doi.org/10.1111/j.1553-2712.2011.01185.x
https://doi.org/10.3390/fi15100332
https://doi.org/10.1201/b17320
https://doi.org/10.1109/TMM.2022.3187556
https://doi.org/10.1007/s10462-021-10037-9
https://doi.org/10.48550/arXiv.2110.04361
https://doi.org/10.1109/ACCESS.2019.2916648
https://doi.org/10.1109/ACCESS.2019.2916648

bibliography 127

[165] Jyothsna Veeramreddy, Rama Prasad, and Koneti Munivara Prasad. “A re-
view of anomaly based intrusion detection systems.” In: International Journal
of Computer Applications 28.7 (2011), pp. 26–35. doi: 10.5120/3399-4730.

[166] Yasi Wang, Hongxun Yao, and Sicheng Zhao. “Auto-encoder based dimen-
sionality reduction.” In: Journal of Neurocomputing 184 (2016), pp. 232–242. doi:
10.1016/j.neucom.2015.08.104.

[167] Zhendong Wang, Zeyu Li, Junling Wang, and Dahai Li. “Network intrusion
detection model based on improved BYOL self-supervised learning.” In: Secu-
rity and Communication Networks Journal 2021 (2021), pp. 1–23. doi: 10.1155/
2021/9486949.

[168] Sharyar Wani, Mohammed Imthiyas, Hamad Almohamedh, Khalid M Al-
hamed, Sultan Almotairi, and Yonis Gulzar. “Distributed Denial of Service
(DDoS) Mitigation Using Blockchain—A Comprehensive Insight.” In: Journal
of Symmetry 13.2 (2021). doi: 10.3390/sym13020227.

[169] Hung-Chuan Wei, Yung-Hao Tung, and Chia-Mu Yu. “Counteracting UDP
flooding attacks in SDN.” In: IEEE NetSoft Conference and Workshops (NetSoft).
2016, pp. 367–371. doi: 10.1109/NETSOFT.2016.7502468.

[170] Zhichao Wu, Xin Yang, Xiaopeng Wei, Peijun Yuan, Yuanping Zhang, and
Jianming Bai. “A self-supervised anomaly detection algorithm with inter-
pretability.” In: Journal of Expert Systems with Applications 237 (2024), p. 121539.
doi: 10.1016/j.eswa.2023.121539.

[171] Bruno Missi Xavier, Rafael Silva Guimarães, Giovanni Comarela, and Magnos
Martinello. “Programmable Switches for in-Networking Classification.” In:
IEEE Conference on Computer Communications (IEEE INFOCOM). 2021, pp. 1–
10. doi: 10.1109/INFOCOM42981.2021.9488840.

[172] Junfeng Xie, F. Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, Chenmeng
Wang, and Yunjie Liu. “A Survey of Machine Learning Techniques Applied
to Software Defined Networking (SDN): Research Issues and Challenges.”
In: IEEE Communications Surveys & Tutorials 21.1 (2019), pp. 393–430. doi: 10.
1109/COMST.2018.2866942.

[173] Zhaoqi Xiong and Noa Zilberman. “Do Switches Dream of Machine Learn-
ing? Toward In-Network Classification.” In: Proceedings of the 18th ACM Work-
shop on Hot Topics in Networks. Association for Computing Machinery, 2019,
pp. 25–33. doi: 10.1145/3365609.3365864.

[174] Zhen Yang, Xiaodong Liu, Tong Li, Di Wu, Jinjiang Wang, Yunwei Zhao,
and Han Han. “A systematic literature review of methods and datasets for
anomaly-based network intrusion detection.” In: Journal of Computers & Secu-
rity 116 (2022), p. 102675. doi: 10.1016/j.cose.2022.102675.

[175] Mahmood Yousefi-Azar, Vijay Varadharajan, Len Hamey, and Uday Tupakula.
“Autoencoder-based feature learning for cyber security applications.” In: 2017
International Joint Conference on Neural Networks (IJCNN). 2017, pp. 3854–3861.
doi: 10.1109/IJCNN.2017.7966342.

https://doi.org/10.5120/3399-4730
https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.1155/2021/9486949
https://doi.org/10.1155/2021/9486949
https://doi.org/10.3390/sym13020227
https://doi.org/10.1109/NETSOFT.2016.7502468
https://doi.org/10.1016/j.eswa.2023.121539
https://doi.org/10.1109/INFOCOM42981.2021.9488840
https://doi.org/10.1109/COMST.2018.2866942
https://doi.org/10.1109/COMST.2018.2866942
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1016/j.cose.2022.102675
https://doi.org/10.1109/IJCNN.2017.7966342

128 bibliography

[176] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang.
“Self-Supervised Learning for Recommender Systems: A Survey.” In: IEEE
Transactions on Knowledge and Data Engineering 36.1 (2024), pp. 335–355. doi:
10.1109/TKDE.2023.3282907.

[177] Yawei Yue, Xingshu Chen, Zhenhui Han, Xuemei Zeng, and Yi Zhu. “Con-
trastive Learning Enhanced Intrusion Detection.” In: IEEE Transactions on Net-
work and Service Management 19.4 (2022), pp. 4232–4247. doi: 10.1109/TNSM.
2022.3218843.

[178] Rizgar Zebari, Adnan Abdulazeez, Diyar Zeebaree, Dilovan Zebari, and Jwan
Saeed. “A Comprehensive Review of Dimensionality Reduction Techniques
for Feature Selection and Feature Extraction.” In: Journal of Applied Science and
Technology Trends 1.1 (2020), pp. 56–70. doi: 10.38094/jastt1224.

[179] Chunrui Zhang, Gang Wang, Shen Wang, Dechen Zhan, and Mingyong Yin.
“Cross-domain network attack detection enabled by heterogeneous transfer
learning.” In: Journal of Computer Networks 227 (2023), p. 109692. doi: 10.1016/
j.comnet.2023.109692.

[180] Zonghua Zhang and Hong Shen. “Application of online-training SVMs for
real-time intrusion detection with different considerations.” In: Journal of Com-
puter Communications 28.12 (2005), pp. 1428–1442. doi: 10.1016/j.comcom.
2005.01.014.

[181] Chengbo Zhou, Christoph Gärtner, Amr Rizk, Boris Koldehofe, Björn
Scheuermann, and Ralf Kundel. “RDA: Residence Delay Aggregation for
Time-Sensitive Networking.” In: Proceedings of 2024 IEEE Network Operations
and Management Symposium (NOMS 2024). 2024. doi: 10.1109/NOMS59830.
2024.10574998.

[182] Yuyang Zhou, Guang Cheng, Shanqing Jiang, and Mian Dai. “Building an
efficient intrusion detection system based on feature selection and ensemble
classifier.” In: Journal of Computer Networks 174 (2020), p. 107247. doi: 10.1016/
j.comnet.2020.107247.

[183] Noa Zilberman, Yury Audzevich, G. Adam Covington, and Andrew W.
Moore. “NetFPGA SUME: Toward 100 Gbps as Research Commodity.” In:
Journal of IEEE Micro 34.5 (2014), pp. 32–41. doi: 10.1109/MM.2014.61.

All web pages cited in this work have been checked in April 2024. However, due to the
dynamic nature of the World Wide Web, their long-term availability cannot be guaranteed.

https://doi.org/10.1109/TKDE.2023.3282907
https://doi.org/10.1109/TNSM.2022.3218843
https://doi.org/10.1109/TNSM.2022.3218843
https://doi.org/10.38094/jastt1224
https://doi.org/10.1016/j.comnet.2023.109692
https://doi.org/10.1016/j.comnet.2023.109692
https://doi.org/10.1016/j.comcom.2005.01.014
https://doi.org/10.1016/j.comcom.2005.01.014
https://doi.org/10.1109/NOMS59830.2024.10574998
https://doi.org/10.1109/NOMS59830.2024.10574998
https://doi.org/10.1016/j.comnet.2020.107247
https://doi.org/10.1016/j.comnet.2020.107247
https://doi.org/10.1109/MM.2014.61

A
A P P E N D I X

a.1 extracted flow features from nfstream

The core features, post-mortem features, and early statistical features extracted by
NFStream and their short descriptions are listed in Table 19, Table 20 and Table 21

below.

Table 19: Core features extracted by NFStream.

No Feature Name Description

1 id Flow identifier.

2 expiration_id
Identifier of flow expiration trigger. Can be 0

for idle_timeout, 1 for active_timeout or -1 for
custom expiration.

3 src_ip Source IP address string representation.

4 src_mac Source MAC address string representation.

5 src_oui
Source Organizationally Unique Identifier
string representation.

6 src_port Transport layer source port.

7 dst_ip Destination IP address string representation.

8 dst_mac
Destination MAC address string representa-
tion.

9 dst_oui
Destination Organizationally Unique Identi-
fier string representation.

10 dst_port Transport layer destination port.

11 protocol Transport layer protocol.

12 ip_version IP version.

13 vlan_id Virtual LAN identifier.

14 tunnel_id Tunnel identifier.

15 protocol_1 Transport layer protocol (ICMP).

16 protocol_2 Transport layer protocol (IGMP).

17 protocol_6 Transport layer protocol (TCP).

18 protocol_17 Transport layer protocol (UDP).

19 protocol_58 Transport layer protocol (ICMPv6).

20 protocol_132 Transport layer protocol (SCTP).

129

130 bibliography

Table 19: Core features extracted by NFStream.

No Feature Name Description

21 bidirectional_first_seen_ms
Timestamp in milliseconds on the first flow
bidirectional packet. (microseconds in our
work)

22 bidirectional_last_seen_ms
Timestamp in milliseconds on the last flow
bidirectional packet.

23 bidirectional_duration_ms Flow bidirectional duration in milliseconds.

24 bidirectional_packets Flow bidirectional packets accumulator.

25 bidirectional_bytes
Flow bidirectional bytes accumulator (payload
in our work).

26 src2dst_first_seen_ms
Timestamp in milliseconds on the first flow
src2dst packet.

27 src2dst_last_seen_ms
Timestamp in milliseconds on the last flow
src2dst packet.

28 src2dst_duration_ms Flow src2dst duration in milliseconds.

29 src2dst_packets Flow src2dst packets accumulator.

30 src2dst_bytes
Flow src2dst bytes accumulator (payload in
our work).

31 dst2src_first_seen_ms
Timestamp in milliseconds on the first flow
dst2src packet.

32 dst2src_last_seen_ms
Timestamp in milliseconds on the last flow
dst2src packet.

33 dst2src_duration_ms Flow dst2src duration in milliseconds.

34 dst2src_packets Flow dst2src packets accumulator.

35 dst2src_bytes
Flow dst2src bytes accumulator (payload in
our work).

bibliography 131

Table 20: Post-mortem features extracted by NFStream.

No Feature Name Description

1 analysis_time
Time in seconds during which flows were ana-
lyzed.

2 nb_expired_flows Number of expired flows during the analysis.

3 nb_invalid_checksum Number of packets with invalid checksum.

4 nb_invalid_ttl
Number of packets with invalid Time-to-Live
(TTL).

5 nb_misplaced_packet Number of misplaced packets in the buffer.

6 nb_flow_mismatch
Number of flows with mismatched bidirec-
tional counters.

7 nb_unhandled_protocols
Number of unhandled transport layer proto-
cols.

8 nb_unhandled_icmp_type Number of unhandled ICMP types.

9 nb_icmp_error_messages Number of ICMP error messages.

10 nb_invalid_tcp_flags Number of packets with invalid TCP flags.

11 nb_tcp_segment_
out_of_order

Number of TCP segments out of order.

12 nb_tcp_segment_
unsynchronized

Number of unsynchronized TCP segments.

13 nb_tcp_segment_not_
captured

Number of TCP segments not captured.

14 nb_missing_tcp_data Number of missing TCP data segments.

15 nb_fragmented_packets Number of fragmented packets.

16 nb_fragment_errors Number of fragment errors.

17 nb_ignored_packets Number of ignored packets.

18 nb_flow_started Number of started flows.

19 nb_flow_finished Number of finished flows.

20 nb_flow_timeout Number of flows that timed out.

21 nb_ignored_unfavored_
packets

Number of ignored unfavored packets.

22 nb_no_flow_start_packet Number of packets not starting a flow.

23 nb_flow_start_packet_
ignored

Number of ignored flow start packets.

24 nb_flow_start_packet_
outside_flow

Number of flow start packets outside of a flow.

25 nb_packet_with_flow_
start_tag

Number of packets with the flow start tag.

132 bibliography

Table 21: Early statistical features extracted by NFStream.

No Feature Name Description

1 splt_piat_ms_1

Inter arrival time, always 0 for the first packet
(1 in our work).

2 splt_piat_ms_2 Inter arrival time between 1st and 2nd packets.

3 splt_piat_ms_3

Inter arrival time between 2nd and 3rd pack-
ets.

4 splt_piat_ms_4 Inter arrival time between 3rd and 4th packets.

5 splt_piat_ms_5 Inter arrival time between 4th and 5th packets.

6 splt_piat_ms_6 Inter arrival time between 5th and 6th packets.

7 splt_piat_ms_7 Inter arrival time between 6th and 7th packets.

8 splt_piat_ms_8 Inter arrival time between 7th and 8th packets.

9 splt_ps_1

Packet size of 1st packet (payload in our
work).

10 splt_ps_2

Packet size of 2nd packet (payload in our
work).

11 splt_ps_3

Packet size of 3rd packet (payload in our
work).

12 splt_ps_4

Packet size of 4th packet (payload in our
work).

13 splt_ps_5

Packet size of 5th packet (payload in our
work).

14 splt_ps_6

Packet size of 6th packet (payload in our
work).

15 splt_ps_7

Packet size of 7th packet (payload in our
work).

16 splt_ps_8

Packet size of 8th packet (payload in our
work).

17 splt_direction_1_0 No 1st packet.

18 splt_direction_1_1 1st packet direction (src2dst).

19 splt_direction_1_2 1st packet direction (dst2src).

20 splt_direction_2_0 No 2nd packet.

21 splt_direction_2_1 2nd packet direction (src2dst).

22 splt_direction_2_2 2nd packet direction (dst2src).

23 splt_direction_3_0 No 3rd packet.

24 splt_direction_3_1 3rd packet direction (src2dst).

25 splt_direction_3_2 3rd packet direction (dst2src).

26 splt_direction_4_0 No 4th packet.

bibliography 133

Table 21: Early statistical features extracted by NFStream.

No Feature Name Description

27 splt_direction_4_1 4th packet direction (src2dst).

28 splt_direction_4_2 4th packet direction (dst2src).

29 splt_direction_5_0 No 5th packet.

30 splt_direction_5_1 5th packet direction (src2dst).

31 splt_direction_5_2 5th packet direction (dst2src).

32 splt_direction_6_0 No 6th packet.

33 splt_direction_6_1 6th packet direction (src2dst).

34 splt_direction_6_2 6th packet direction (dst2src).

35 splt_direction_7_0 No 7th packet.

36 splt_direction_7_1 7th packet direction (src2dst).

37 splt_direction_7_2 7th packet direction (dst2src).

38 splt_direction_8_0 No 8th packet.

39 splt_direction_8_1 8th packet direction (src2dst).

40 splt_direction_8_2 8th packet direction (dst2src).

134 bibliography

a.2 explanation of the utilized network traffic datasets

The following briefly describes the available network traffic datasets used in this
thesis for training ML models and evaluating proposed methods.

CICIDS17 Dataset [150]

The CICIDS2017 (Canadian Institute for Cybersecurity Intrusion Detection Systems
2017) dataset is a network traffic data collection designed to evaluate intrusion de-
tection systems. Within this dataset, benign traffic was captured by the abstract be-
havioral profiles of 25 users through protocols such as HTTP, HTTPS, FTP, SSH, and
email. In addition to benign traffic, the dataset includes various types of attack traffic,
such as BruteForce, DoS/DDoS, and Botnet attacks. We annotated the network traffic
datasets to evaluate the proposed models and retrieve information about the source
and destination IP addresses of victims and attackers from the official document of
CICIDS17. The attacker and victim IP addresses are demonstrated in Table 22.

Table 22: Pair of IP addresses of attack flows. (* means wildcard)

Dataset Source IP Address Destination IP Address

BruteForce 172.16.0.1 *

DoS/DDoS 172.16.0.1 *

Botnet

192.168.10.12 52.6.13.28

192.168.10.50 172.16.0.1

172.16.0.1 192.168.10.50

192.168.10.17 52.7.235.158

192.168.10.8 205.174.165.73

192.168.10.5 205.174.165.73

192.168.10.14 205.174.165.73

192.168.10.9 205.174.165.73

205.174.165.73 192.168.10.8

192.168.10.15 205.174.165.73

UNSW-NB Dataset [122]

The UNSW-NB15 (University of New South Wales - Network-Based 15) is a publicly
available dataset for network intrusion detection research. The IXIA PerfectStorm
tool was conducted to generate benign and attack traffic using three virtual servers.
Therefore, The dataset consists of benign activities and synthetic attack behaviors col-
lected in a controlled environment. The attacker and victim IP addresses are demon-
strated in Table 23.

bibliography 135

Table 23: Pair of IP addresses of attack flows. (* means wildcard)

Dataset Source IP Address Destination IP Address

Attacks

175.45.176.0 149.171.126.10, 149.171.126.11, 149.171.126.12

175.45.176.1 149.171.126.13, 149.171.126.14, 149.171.126.15

175.45.176.2 149.171.126.16, 149.171.126.17, 149.171.126.18

175.45.176.3 149.171.126.19

CTU-13 Dataset [52]

The CTU-13 dataset (CTU University, Czech Republic) is designed to assess Bot-
Net detection systems. It consists of 13 scenarios of botnet, benign, and background
data, replicating the proportional distribution observed in authentic network set-
tings where attacks constitute a minor fraction. Benign traffic was extracted from
university routers to represent real users’ behavior. Each of the 13 botnet scenarios
is constructed to represent various malware behavior. The attacker and victim IP
addresses are demonstrated in Table 24.

Table 24: Pair of IP addresses of attack flows. (* means wildcard)

Dataset Source IP Address Destination IP Address

Botnet

* 147.32.84.165

* 147.32.84.191

* 147.32.84.192

* 147.32.84.193

* 147.32.84.204

* 147.32.84.205

* 147.32.84.206

* 147.32.84.207

* 147.32.84.208

CICDoS Dataset [82]

CIC-DoS dataset (Canadian Institute for Cybersecurity) is specifically designed to
detect slow-rate DoS attacks falling under the MSA category. These attacks were
combined with another dataset (ICSX 2012), which consists of high-rate DoS attacks.
The attacker and victim IP addresses are demonstrated in Table 25.

Botnet Dataset[16]

Botnet Dataset (Canadian Institute for Cybersecurity) is designed with a focus on
generality, realism, and representativeness. In pursuit of these objectives, the dataset

136 bibliography

Table 25: Pair of IP addresses of attack flows. (* means wildcard)

Dataset Source IP Address Destination IP Address

Attacks
192.168.5.122 192.168.1.101

192.168.5.122 192.168.4.121

192.168.5.122 192.168.3.115

192.168.5.122 192.168.3.114

incorporated diverse centralized and decentralized botnets utilizing various proto-
cols. It comprises 16 botnets characterized by varying lifespans, accommodating both
short and long-lived instances to enhance realism. This temporal diversity facilitates
the observation of dormant bot functionalities. Moreover, the dataset integrates mul-
tiple existing datasets containing real benign flows, thereby providing heterogeneity
and a real-world complexity dataset. Below is a list of IP addresses annotated as
attack flows, sourced from the official Botnet dataset document. The attacker and
victim IP addresses are demonstrated in Table 26.

Table 26: Pair of IP addresses of attack flows. (* means wildcard)

Dataset Source IP Address Destination IP Address

Botnet

192.168.4.118 192.168.1.103

192.168.2.112 131.202.243.84

192.168.5.122 198.164.30.2

192.168.2.110 192.168.5.122

192.168.248.165 *

74.78.117.238 *

131.202.243.84 *

147.32.84.130 *

192.168.3.65 *

bibliography 137

a.3 flow features list

In Table 27, a subset of flow features is listed, which are utilized in various analy-
ses, including Exploratory Data Analysis (EDA), Ensemble Feature Selection Method
(EFS), and Self-Supervised Contrastive Learning (SSCL) approaches. This subset rep-
resents a selection from the complete list of features presented in Section A.1.

Table 27: Utilized flow features for data analysis in EDA and training ML models in the
proposed EFS and the proposed SSCL.

ID Name ID Name

1 bidirectional_duration_ms 24 bidirectional_ece_packets

2 bidirectional_packets 25 bidirectional_urg_packets

3 bidirectional_bytes 26 bidirectional_ack_packets

4 src2dst_duration_ms 27 bidirectional_psh_packets

5 src2dst_packets 28 bidirectional_rst_packets

6 src2dst_bytes 29 bidirectional_fin_packets

7 dst2src_duration_ms 30 src2dst_syn_packets

8 dst2src_packets 31 src2dst_cwr_packets

9 dst2src_bytes 32 src2dst_ece_packets

10 bidirectional_min_ps 33 src2dst_urg_packets

11 bidirectional_mean_ps 34 src2dst_ack_packets

12 bidirectional_stddev_ps 35 src2dst_psh_packets

13 bidirectional_max_ps 36 src2dst_rst_packets

14 src2dst_min_ps 37 src2dst_fin_packets

15 src2dst_mean_ps 38 dst2src_syn_packets

16 src2dst_stddev_ps 39 dst2src_cwr_packets

17 src2dst_max_ps 40 dst2src_ece_packets

18 dst2src_min_ps 41 dst2src_urg_packets

19 dst2src_mean_ps 42 dst2src_ack_packets

20 dst2src_stddev_ps 43 dst2src_psh_packets

21 dst2src_max_ps 44 dst2src_rst_packets

22 bidirectional_syn_packets 45 dst2src_fin_packets

23 bidirectional_cwr_packets

138 bibliography

a.4 flow features for in-network training

In Table 28, a subset of flow features is listed, which are utilized for training the
random forest model deployed in the data plane (DP-IDS). This subset represents a
selection from the complete list of features presented in Section A.1.

Table 28: Utilized Features for training the random forest model deployed in the SDN data
plane. The definition for these features is available in Section A.1.

ID Name ID Name

1 bidirectional_bytes 11 bidirectional_fin_packets

2 src2dst_packets 12 src2dst_psh_packets

3 src2dst_bytes 13 src2dst_ack_packets

4 dst2src_packets 14 dst2src_ack_packets

5 dst2src_bytes 15 splt_ps_4

6 bidirectional_mean_ps 16 splt_ps_6

7 bidirectional_max_ps 17 splt_ps_7

8 src2dst_max_ps 18 splt_ps_8

9 dst2src_max_ps 19 splt_direction_7_1

10 bidirectional_psh_packets 20 splt_direction_7_2

bibliography 139

a.5 pearson correlation between features of various datasets

In this section, we present heatmap plots illustrating the Pearson correlation between
the flow features for three other network traffic datasets. These visualizations help
to distinguish between datasets and highlight variations in attack patterns among
them. The white lines in the plots indicate zero-variance features, which means that
these features are not informative for training ML models. As shown in Figure 26,
the white lines occur for different feature flows within a dataset, and these differ-
ences can have an impact on relevant feature selection approaches. Furthermore, it’s
important to note that the diagonal always shows a Pearson correlation of 1, as it rep-
resents the correlation between the same flow feature, which essentially compares a
feature to itself.

Pearson Correlation between
features of SlowDoS Dataset

Pearson Correlation between
features of CTU13 Dataset

Pearson Correlation between
features of Botnet Dataset

1

10

20

30

40

1

10

20

30

40

1

10

20

30

40

1

10

20

30

40

1

10

20

30

40

1

10

20

30

40

1

10

20

30

40

1

10

20

30

40

1 10 20 30 401 10 20 30 40 1 10 20 30 401 10 20 30 401 10 20 30 40

1 10 20 30 401 10 20 30 401 10 20 30 40

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure 26: Pearson correlation between flow features within the SlowDoS, CTU13, and Botnet
datasets. Red points represent direct linear correlations between features, while
blue points indicate indirect correlations.

140 bibliography

a.6 impact of feature selection on training time

In this section, we present the results of training time using various feature sizes
for three additional network traffic datasets: CICIDS17, UNSW-NB, and CICDoS. It’s
worth noting that Random Forest (RF) and Multi-Layer Perceptron (MLP) are more
complex ML models compared to the Logistic Regression (LR) model, which results
in longer training times. The results are demonstrated in Table 29.

Table 29: The required training time for each supervised ML model for various feature di-
mension sizes on three additional network traffic datasets.

Dataset
Training Time (Second)

5 Features 15 Features 30 Features 45 Features

CICIDS17 with

498,024 flow samples:

RF 10.01 43.70 94.81 89.47

LR 0.32 2.08 6.42 6.17

MLP 39.05 40.08 42.85 41.41

UNSW-NB with

302,234 flow samples:

RF 8.44 14.40 25.99 24.06

LR 0.84 1.66 3.15 3.95

MLP 25.39 26.43 28.77 25.76

CICDoS with

275,438 flow samples:

RF 56.64 57.07 94.73 78.27

LR 0.40 1.37 2.12 3.01

MLP 21.25 22.16 23.22 23.02

bibliography 141

a.7 selecting features with individual feature selection approach

In this section, the supervised ML models are trained twice: once on the features
extracted solely from the L1-norm LR selector (results in Table 30) and another time
on features extracted solely from the L1-norm SVM selector (results in Table 31).
The detection performance of each model for each network traffic dataset on various
feature dimensions is demonstrated in Table 30 and Table 31. The results in both
Table 30 and Table 31 indicate that as the feature dimension increases, the detec-

Table 30: Detection performance of different supervised ML-based NIDS across various net-
work traffic datasets with selected features from the L1-norm logistic regression
approach.

Dataset
F1-Score (%)

5 Features 10 Features 15 Features 20 Features 30 Features

CICIDS17:

RF 94.6 95.7 96.3 96.3 96.3

LR 94.1 94.3 94.3 91.3 72.4

MLP 94.6 95.9 95.9 96.4 96.7

CICDoS:

RF 80.2 90.3 96.7 98.7 99.1

LR 75.4 85.8 86.8 92.5 81.6

MLP 80.8 83.2 94.2 94.3 94.9

CTU-13:

RF 79.8 82.4 90.1 93.7 94.5

LR 94.5 94.5 94.2 94.6 88.7

MLP 84.9 88.1 90.3 95.0 95.5

Botnet:

RF 68.2 71.7 86.2 90.3 94.3

LR 59.7 63.1 66.9 69.2 72.1

MLP 70.4 71.7 76.5 80.9 83.1

UNSW-NB:

RF 41.8 89.3 96.8 99.2 99.2

LR 50.6 94.6 97.6 99.4 99.4

MLP 40.8 96.6 99.8 99.8 99.8

142 bibliography

tion performance approaches the results achieved from the proposed EFS method.
However, in lower feature dimensions, the detection performance tends to be lower.
Additionally, results in Table 30 demonstrate that the detection performance of the
LR model closely matches the results obtained when utilizing EFS, likely because its
structure is similar to the selector’s structure. This suggests that the features selected
by the L1-norm LR may be the best fit for the LR model.

Table 31: Detection performance of different supervised ML-based NIDS across various net-
work traffic datasets with selected features from the L1-norm Support Vector Ma-
chine approach.

Dataset
F1-Score (%)

5 Features 10 Features 15 Features 20 Features 30 Features

CICIDS17:

RF 94.2 95.1 96.0 96.2 96.2

LR 94.4 94.7 94.3 94.3 93.7

MLP 94.3 94.7 95.1 95.4 96.2

CICDoS:

RF 72.1 88.7 93.2 98.3 98.6

LR 70.7 82.5 83.7 80.4 82.4

MLP 75.8 89.0 90.1 94.5 95.0

CTU-13:

RF 86.1 90.2 95.6 96.1 96.3

LR 83.3 89.5 92.0 93.2 88.8

MLP 86.9 92.1 95.3 95.7 97.8

Botnet:

RF 67.5 71.8 86.3 93.3 94.2

LR 56.8 59.9 61.4 64.8 66.5

MLP 69.3 71.0 80.3 78.0 83.0

UNSW-NB:

RF 86.2 93.3 96.6 98.8 99.1

LR 85.1 91.1 94.1 88.6 74.6

MLP 86.1 95.7 97.8 99.0 99.0

bibliography 143

a.8 list of acronyms

DDoS Distributed Denial of Service

NIDSs Network Intrusion Detection Systems

ML Machine Learning

SDN Software-Defined Networking

PCAP Packet Capture

OSI Open Systems Interconnection

MAC Media Access Control

HTTP Hypertext Transfer Protocol

FTP File Transfer Protocol

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

ALOHA Additive Link On-line Hawaii Area

LR Logistic Regression

RF Random Forest

DT Decision Tree

MLP Multi-Layer Perceptron

XGBoost Extreme Gradient Boosting

AE Auto Encoder

SSL Self-Supervised Learning

GNN Graph Neural Network

EDA Exploratory Data Analysis

EFS Ensemble Feature Selection

DD-EFS Data-Driven Ensemble Feature Selection

QoS Quality of Service

NLP Natural Language Processing

NT-Xent Normalized Temperature-Scaled Cross-Entropy

SSCL Self-Supervised Contrastive Learning

AUROC Area Under the Receiver Operating Characteristic

LLM Large Language Model

t-SNE t-Distributed Stochastic Neighbor Embedding

MSA Multi-Stage Attacks

144 bibliography

IDS Intrusion Detection System

CML-IDS Collaborative Machine Learning-based Intrusion Detection System

P4 Programming Protocol-Independent Packet Processors

CP Control Plane

CP-IDS Control Plane Intrusion Detection System

DP Data Plane

DP-IDS Data Plane Intrusion Detection System

MA Match-Action

DoS Denial of Service

B
S U P E RV I S E D S T U D E N T T H E S E S

[1] Hengyu Liu. “Incorporating Collaborative Online Machine Learning for In-
trusion Detection in Software Defined Networking.” Master Thesis. KOM-M-
0775. TU Darmstadt, 2024.

[2] Kexin Wang. “Generating Adversarial C2 Communication Attacks leveraging
the Shift Distribution Strategy.” Master Thesis. KOM-M-0773. TU Darmstadt,
2024.

[3] Chengbo Zhou. “A Collaborative Machine Learning-based Network Intru-
sion Detection Architecture in Software Defined Networking.” Master Thesis.
KOM-M-0784. TU Darmstadt, 2023. Received the Best Master Thesis Award
at the Multimedia Communications Lab.

[4] Yizi Liu. “In-Network intrusion detection system leveraging decision tree
model inference.” Master Thesis. KOM-M-0752. TU Darmstadt, 2023.

[5] Leonard Anderweit. “In-Network DDoS Attack Detection Leveraging Time
Series Data in Programmable Data Planes.” Bachelor Thesis. KOM-B-0713.
TU Darmstadt, 2022.

[6] Stefan Stegmueller. “Generative Adversarial Network-based Robustness Eval-
uation of Machine Learning Classification Algorithms for DDoS-Attacks.”
Master Thesis. KOM-M-0737. TU Darmstadt, 2022. Received the Best Master
Thesis Award at the Multimedia Communications Lab.

145

C
A U T H O R ’ S P U B L I C AT I O N S

main publications

[1] Pegah Golchin, Nima Rafiee, and Ralf Kundel. “A Data-Driven Solution for
Improving Transferability of Traffic Flow Feature Selection.” In: 2024 IFIP Net-
working Conference (IFIP Networking). IEEE. 2024, pp. 1–3. Forthcoming.

[2] Pegah Golchin, Nima Rafiee, Mehrdad Hajizadeh, Ahmad Khalil, Ralf Kun-
del, and Ralf Steinmetz. “SSCL-IDS: Enhancing Generalization of Intrusion
Detection with Self-Supervised Contrastive Learning.” In: 2024 IFIP Network-
ing Conference (IFIP Networking). IEEE. 2024, pp. 1–9. Forthcoming.

[3] Pegah Golchin, Chengbo Zhou, Pratyush Agnihotri, Pratyush Agnihotri, Mehrdad
Hajizadeh, Ralf Kundel, and Ralf Steinmetz. “CML-IDS: Enhancing Intrusion
Detection in SDN Through Collaborative Machine Learning.” In: 19th Inter-
national Conference on Network and Service Management (CNSM). 2023, pp. 1–9.
doi: 10.23919/CNSM59352.2023.10327863.

[4] Pegah Golchin, Jannis Weil, Ralf Kundel, and Ralf Steinmetz. “Dynamic net-
work intrusion detection system in Software-Defined Networking.” In: 2nd
Workshop on Machine Learning & Networking (MaLeNe), co-located with the 5th
International Conference on Networked Systems (NetSys 2023). 2023, pp. 1–2.

[5] Pegah Golchin, Leonard Anderweit, Julian Zobel, Ralf Kundel, and Ralf Stein-
metz. “In-Network SYN Flooding DDoS Attack Detection Utilizing P4 Switches.”
In: Proceedings of the 3rd KuVS Fachgespräch "Network Softwarization". 2022,
pp. 1–2. doi: 10.15496/publikation-67441.

[6] Pegah Golchin, Ralf Kundel, Tim Steuer, Rhaban Hark, and Ralf Steinmetz.
“Improving DDoS Attack Detection Leveraging a Multi-aspect Ensemble Fea-
ture Selection.” In: NOMS 2022-2022 IEEE/IFIP Network Operations and Man-
agement Symposium. 2022, pp. 1–5. doi: 10.1109/NOMS54207.2022.9789763.

co-authored publications

[7] Ahmad Khalil, Tizian Dege, Pegah Golchin, Rostyslav Olshevskyi, Antonio
Fernandez Anta, and Tobias Meuser. Federated Learning with Heterogeneous
Data Handling for Robust Vehicular Object Detection. 2024. doi: 10.48550/arXiv.
2405.01108. arXiv: 2405.01108 [cs.CV].

147

https://doi.org/10.23919/CNSM59352.2023.10327863
https://doi.org/10.15496/publikation-67441
https://doi.org/10.1109/NOMS54207.2022.9789763
https://doi.org/10.48550/arXiv.2405.01108
https://doi.org/10.48550/arXiv.2405.01108
https://arxiv.org/abs/2405.01108

[8] Mehrdad Hajizadeh, Sudip Barua, and Pegah Golchin. “FSA-IDS: A Flow-
based Self-Active Intrusion Detection System.” In: IEEE/IFIP Network Oper-
ations and Management Symposium (NOMS). 2023, pp. 1–9. doi: 10 . 1109 /

NOMS56928.2023.10154343.

[9] Daniel Mulnaes, Pegah Golchin, Filip Koenig, and Holger Gohlke. “Topdo-
main: exhaustive protein domain boundary metaprediction combining multi-
source information and deep learning.” In: Journal of chemical theory and com-
putation 17.7 (2021), pp. 4599–4613. doi: 10.1021/acs.jctc.1c00129..

[10] Annika Behrendt, Pegah Golchin, Filip König, Daniel Mulnaes, Amelie Stalke,
Carola Dröge, Verena Keitel, and Holger Gohlke. “Vasor: Accurate prediction
of variant effects for amino acid substitutions in multidrug resistance protein
3.” In: Journal of Hepatology Communications 6.11 (2022), pp. 3098–3111. doi:
10.1002/hep4.2088.

148

https://doi.org/10.1109/NOMS56928.2023.10154343
https://doi.org/10.1109/NOMS56928.2023.10154343
https://doi.org/10.1021/acs.jctc.1c00129.
https://doi.org/10.1002/hep4.2088

D
E R K L Ä R U N G E N L A U T P R O M O T I O N S O R D N U N G

§ 8 abs . 1 lit. d promo

Ich versichere hiermit, dass von mir zu keinem vorherigen Zeitpunkt bereits ein
Promotionsversuch unternommen wurde. Andernfalls versichere ich, dass der pro-
motionsführende Fachbereich über Zeitpunkt, Hochschule, Dissertationsthema und
Ergebnis dieses Versuchs informiert ist.

§ 9 abs . 1 promo

Ich versichere hiermit, dass die vorliegende Dissertation, abgesehen von den in ihr
ausdrücklich genannten Hilfsmitteln, selbstständig und nur unter Verwendung der
angegebenen Quellen verfasst wurde. Weiterhin versichere ich, dass die “Grundsätze
zur Sicherung guter wissenschaftlicher Praxis an der Technischen Universität Darm-
stadt” sowie die “Leitlinien zum Umgang mit digitalen Forschungsdaten an der TU
Darmstadt” in den jeweils aktuellen Versionen bei der Verfassung der Dissertation
beachtet wurden.

§ 9 abs . 2 promo

Ich versichere hiermit, dass die vorliegende Dissertation bisher noch nicht zu Prü-
fungszwecken gedient hat.

Darmstadt, 7. Mai 2024

Pegah Golchin

colophon

This document was typeset using the typographical look-and-feel classicthesis

developed by André Miede. The style was inspired by Robert Bringhurst’s seminal
book on typography “The Elements of Typographic Style”. classicthesis is available
for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection
of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of August 14, 2024 (classicthesis).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Abstract
	Kurzfassung
	Previously Published Material
	Contents
	1 Introduction
	1.1 Motivation for Using Machine Learning in Malicious Pattern Detection
	1.2 Research Challenges
	1.3 Research Goals and Contributions
	1.4 Structure of the Thesis

	2 BACKGROUND AND RELATED WORK
	2.1 Integrating Machine Learning into Intrusion Detection
	2.2 Network Traffic Data
	2.2.1 Public Network Traffic Datasets
	2.2.2 Categories of Network Intrusions

	2.3 Network Traffic Converter
	2.4 Machine Learning Approaches
	2.4.1 Supervised Learning Models
	2.4.2 Unsupervised Learning Models
	2.4.3 Self-Supervised Learning Models

	2.5 Software-Defined Networking
	2.5.1 P4 Language
	2.5.2 SDN Security Challenges

	2.6 Related Work
	2.6.1 Generalization of Machine Learning Approaches
	2.6.2 Machine Learning-based Intrusion Detection in SDN

	2.7 Summary and Identified Research Gap

	3 Ensemble Flow Features Selection
	3.1 Exploratory Analysis of Network Traffic Datasets
	3.1.1 Benign and Attack Samples Distribution
	3.1.2 Flow Features Prunning
	3.1.3 Pearson Correlation between Flow Features
	3.1.4 Low Variance Filtering
	3.1.5 Flow Features Distribution

	3.2 Feature Selection Approaches
	3.2.1 Random Forest Gini Importance
	3.2.2 L1-norm in Logistic Regression
	3.2.3 L1-norm in Support Vector Machines

	3.3 Comparison between Different Feature Selection Approaches
	3.4 Proposed Preprocessing Pipeline
	3.5 Proposed Ensemble Feature Selection
	3.6 Evaluation Design
	3.6.1 Datasets
	3.6.2 ML Models Used in Evaluation Scenarios
	3.6.3 Evaluation Metrics
	3.6.4 System Information

	3.7 Evaluation Results
	3.7.1 Selected Flow Features
	3.7.2 Impact of Feature Selection on Detection Performance
	3.7.3 Impact of Feature Selection on Training Time
	3.7.4 Effectiveness of Ensemble Flow Feature Selection
	3.7.5 Transferability of Selected Flow Features

	3.8 Summary

	4 Self-Supervised Network Intrusion Detection System
	4.1 Problem Statement
	4.2 Pretext Tasks
	4.3 Contrastive Learning
	4.4 Transfer Learning
	4.5 Contributions
	4.6 Proposed Self-Supervised Contrastive Learning
	4.6.1 Flow Scope & Preprocessing Pipeline
	4.6.2 Data Augmentation
	4.6.3 Model Architecture

	4.7 Evaluation Design
	4.7.1 Generalization Evaluation Scenarios
	4.7.2 Comparison Baselines
	4.7.3 Evaluation Datasets
	4.7.4 Evaluation Metrics

	4.8 Evaluation Results
	4.8.1 SSCL-NIDS Training Hyper-parameters
	4.8.2 Similarity Metric for Unsupervised Models
	4.8.3 Impact of the Corruption Rate on Detection Performance
	4.8.4 Scenario 1: Detection Performance on Intra-Dataset Flows
	4.8.5 Scenario 2: Detection Performance on Cross-Domain Attacks
	4.8.6 Scenario 3: Detection Performance on Cross-Domain Flows
	4.8.7 Impact of Adding New Dataset to the Training Data
	4.8.8 t-Distributed Stochastic Neighbor Embedding (t-SNE)
	4.8.9 Sample Efficiency of SSCL-NIDS for Transfer Learning
	4.8.10 Comparing SSCL-NIDS with State-of-the-Art Approaches

	4.9 Summary

	5 Integrating Machine Learning in Programmable Networks
	5.1 Deploying Machine Learning Model in the Control Plane
	5.2 Deploying Machine Learning Model in the Programmable Data Plane
	5.2.1 Similarity between Random Forest and Match-Action Pipeline
	5.2.2 Integrating a Random Forest into a Match-Action Pipeline

	5.3 Contributions
	5.4 Collaborative Machine Learning in Software-Defined Networking
	5.4.1 Required Modules in the Control Plane
	5.4.2 Programmable Switch in the Data Plane
	5.4.3 Flow and Subflow Scopes in CML-IDS
	5.4.4 DP-IDS Model Confidence Calculation
	5.4.5 Investigating Incompatible Sub-Flow Features

	5.5 CML-IDS Implementation
	5.5.1 CP-IDS Implementation
	5.5.2 DP-IDS Implementation
	5.5.3 Collaboration between DP-IDS and CP-IDS

	5.6 Evaluation Results
	5.6.1 Evaluation Metrics

	5.7 Evaluation Setup
	5.7.1 Evaluation Environment
	5.7.2 Evaluation Parameters

	5.8 Evaluation Results and Analysis
	5.8.1 Analysis of the Optimized Number of Packets in a Sub-flow
	5.8.2 Analyzing Flow Distribution Extracted in Programmable Switch
	5.8.3 Impact of MCthr on the Percentage of Forwarded Sub-flows
	5.8.4 Detection Performance of CML-IDS
	5.8.5 Impact of MCthr on Detection Time
	5.8.6 Selecting the Optimal MCthr
	5.8.7 Detection Performance of CP-IDS for Low-confident Flows
	5.8.8 Expiration and Hash Collision
	5.8.9 Comparison between CML-IDS and an Existing Approach

	5.9 Summary

	6 Summary, Conclusions, and Outlook
	6.1 Summary of the Thesis
	6.1.1 Contributions
	6.1.2 Conclusions

	6.2 Outlook

	Bibliography
	A Appendix
	A.1 Extracted Flow Features from NFStream
	A.2 Explanation of the Utilized Network Traffic Datasets
	A.3 Flow Features List
	A.4 Flow Features for In-Network Training
	A.5 Pearson Correlation between Features of Various Datasets
	A.6 Impact of Feature Selection on Training Time
	A.7 Selecting Features with Individual Feature Selection Approach
	A.8 List of Acronyms

	B Supervised Student Theses
	C Author's Publications
	D Erklärungen laut Promotionsordnung
	Colophon

