
Computer Science 
Department
TU Darmstadt
Software Technology Group

Optimizing Collaborative 
Plain Text Editing Algorithms
for Decentralized Non-Realtime Text Editing
Bachelor thesis by Moritz Hedtke
Date of submission: August 5, 2024

1. Review: Prof. Dr.-Ing. Mira Mezini
2. Review: Dr.-Ing. Ragnar Mogk
Darmstadt



Optimizing Collaborative Plain Text Editing Algorithms
for Decentralized Non-Realtime Text Editing

Bachelor thesis by Moritz Hedtke

Date of submission: August 5, 2024

Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-278347
URL: https://tuprints.ulb.tu-darmstadt.de/27834
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

https://tuprints.ulb.tu-darmstadt.de/27834
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Moritz Hedtke, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB 
der TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen 
und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und 
anderer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt. Die von mir 
bei der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich benutzte 
Literatur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet und gesondert 
aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2  APB) ein Täuschungsversuch 
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch 
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische 
Fassung dem vorgestellten Modell und den vorgelegten Plänen. 

Darmstadt, 5. August 2024
Moritz Hedtke

3



Abstract

Text editing is ubiquitous, as it occurs on almost every website, mobile app, and desktop 
application. Collaborative text editing avoids manual synchronization when working 
together with others on text. This requires algorithms that can efficiently combine the 
concurrent edit operations in an intent-preserving way. Additionally, supporting a wide 
range of network scenarios enables offline work in a decentralized manner with better 
availability and reliability than with central servers. In this thesis, we first look at prior 
solutions for plain text editing and their ability to preserve user intentions, as users should 
not experience unexpected behavior when concurrently editing text. Then, we improve 
the benchmarking approach of prior research to estimate asymptotic complexity and to 
measure performance of algorithmic edge cases. Based on that, we propose optimizations 
for a prior collaborative text editing algorithm called Fugue. Our optimized algorithm 
can handle character insertion and deletion in logarithmic runtime in relation to the text 
length and with constant memory usage per character operation. It uses 25 bytes and 
one microsecond per operation on four Intel Xeon Gold vCPUs for a representative text 
with 25 million operations. We also develop a local web application as a proof of concept 
for working on plain text collaboratively using WebRTC. Additionally, we show that the 
maximally non-interleaving property in the Fugue paper can exhibit interleaving when 
deletions are involved. 

4



Contents

1. Introduction 7

2. Challenges with Collaborative Text Editing 10
2.1. Text Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Fugues Approach to Avoid Text Interleaving . . . . . . . . . . . . . . . . . 12
2.3. OT in Comparison to CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Fugue Algorithm 18
3.1. Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2. Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3. Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4. Intuitive Reason for Avoiding Interleaving . . . . . . . . . . . . . . . . . . 23

4. Implementation of Fugue Algorithm 24
4.1. Required Implementation Functionality . . . . . . . . . . . . . . . . . . . . 24
4.2. Browser Implementation of Text Editor . . . . . . . . . . . . . . . . . . . . 25
4.3. Synchronization of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4. Testing Using Property Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5. Issues in the Algorithmic Description . . . . . . . . . . . . . . . . . . . . . 27

5. Optimizing Common Edit Operations 29
5.1. Optimization Using Batching . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2. Optimization Using a Look-Up Datastructure . . . . . . . . . . . . . . . . . 37
5.3. Combined Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4. Performance Edge Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5. Node Data Structure Including All Optimizations . . . . . . . . . . . . . . 45

5



6. Evaluation 46
6.1. Measuring Maximum Memory Usage . . . . . . . . . . . . . . . . . . . . . 48
6.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3. Investigating Prior Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 50

7. Future Work 51

8. Conclusion 55

Acronyms 57

A. Appendix 62
A.1. CPU Profile for Simple Algorithm with Sequential Insertions . . . . . . . . 62
A.2. CPU Profile for Batching Algorithm with Sequential Insertions . . . . . . . 63
A.3. Allocation Profile for Batching Algorithm with Sequential Insertions . . . . 64
A.4. CPU Profile for Batching Algorithm with Real World Dataset . . . . . . . . 65
A.5. CPU Profile for Simple AVL Algorithm with Real World Dataset . . . . . . . 66
A.6. Allocation Profile for Simple AVL Algorithm with Real World Dataset . . . 67
A.7. Code Showing FugueMax Is Interleaving . . . . . . . . . . . . . . . . . . . 68

6



1. Introduction

Nearly all applications require text editing in some form — even if just for text entry into 
a form element. When we want to make these applications collaborative, those text fields 
need collaborative text editing. However, such functionality is not yet easily available. 
In contrast to single user text editing, collaborative text editing creates challenges with 
merging concurrent edit operations and especially handling conflicting edit operations and 
performance edge cases. Collaborative text editing algorithms need to handle conflicts in 
an intent-preserving and converging way.

Prior collaborative solutions require a central server, such as Microsoft 365 and Google 
Docs, or open source variants such as MediaWiki (which powers Wikipedia), Overleaf, 
Etherpad, Collabora Online or OnlyOffice. Needing a central server for text editing can be 
undesired for several reasons. First, when the server is operated by a third party it usually 
requires sending the text to the third party to handle the edit actions. Second, this creates 
a dependency on the availability of the server. The availability can be affected by power 
outages, cyberattacks, software and hardware failures including the network, overloading 
or natural disasters. Third, this also creates a dependency on the reliability or integrity of 
the server. Software and hardware failures especially of the storage can destroy the data, 
cyberattacks and human mistakes can manipulate or destroy the data, natural disasters 
or fire can destroy the server. Examples for such issues are OVHcloud’s burned down data 
center, CrowdStrike, the Facebook BGP outage, the Google Cloud UniSuper incident, the 
XZ Utils backdoor, WannaCry, and many others.

Similarly, the client may not be able to reach the server. This may be the case when 
public infrastructure like cell towers is unavailable, because of natural disasters, sabotage, 
cyberattacks, failure of infrastructure they depend on such as the power grid or for any 
other reason. A recent example are the Ahrtal floods.

Decentralized algorithms can adapt to these challenges by functioning in a wide range 
of network scenarios. For example, peer-to-peer (P2P) networks work without a central 
server. Furthermore, mobile ad hoc networks (MANETs) and delay tolerant networks 

7



(DTNs) do not require public communication infrastructure at all but instead can utilize 
Wi-Fi, Bluetooth and other short-range communication technology.

In a decentralized setting there is no guarantee that peers are frequently online. Therefore, 
the ability to handle non-realtime editing with potentially long periods of offline activity is 
essential. This combination of offline and decentralized software is often called local-first 
software [8].

The two major ways in research to approach collaborative text editing are operational 
transformation (OT) and conflict-free replicated data types (CRDTs) [15, page 2]. OT 
algorithms store edit operations based on the text position and therefore need to transform 
concurrent edit operations against each other to correct the text positions. Then, the 
algorithms apply the operations directly to the text. Prior algorithms for OT are, for 
example, COT [16] and Jupiter [11]. While some of these are not able to work in a 
decentralized network but need a central server to order changes like Jupiter [11], a 
lot of them are able to work in a decentralized network like COT [16] [17, Section 4]. 
Prior OT algorithms have a runtime complexity per remote operation that is linear in the 
amount of concurrent edit operations [18, Section 3.1.4]. This makes them really efficient 
for near-realtime editing where only few concurrent edit operations occur. Near-realtime 
editing means that only short connection interruptions happen [12]. For non-realtime text 
editing this leads to a highly inefficient runtime complexity because the many concurrent 
edit operations must be transformed against each other [17, Section 1]. Therefore, prior 
OT algorithms are undesirable for supporting a wide range of network scenarios like 
DTNs.

In contrast, CRDTs associate parts of the text with identifiers and merge these together on 
synchronization. Therefore, they need to convert between identifiers and text positions 
to handle text edit operations. Prior algorithms for CRDTs are, for example, WithOut 
Operational Transforms (WOOT) [13], Logoot [26], Replicated Growable Arrays (RGAs) 
[14] and Fugue [25]. CRDTs work in decentralized networks, but each prior algorithm 
has shortcomings that make it undesirable for a general solution. For example, Logoot 
[26] has quadratic memory use in some cases. Also, for handling text of some length 
their runtime complexity is often quadratic or worse in relation to the text length, as with 
WOOT [13], RGA [14] and Fugue [25] [15, Section 5.3].

While Fugue [25] avoids interleaving issues of prior solutions and works in an offline 
setting, the current implementation for handling text of some length has quadratic runtime 
complexity in relation to the text length.

8



In this thesis, we first investigate suitable algorithms for local-first plain text editing to 
integrate into our Scala based applications, see Chapter 2. Based on the evaluation of prior 
solutions in Fugue [25], we consider interleaving the major issue apart from performance 
issues, see Section 2.1. Therefore, we extensively investigate how the Fugue algorithm 
avoids interleaving by looking at the algorithm, the examples and the proofs in the Fugue 
paper [25], see Section 2.2. Additionally, we show that the property of maximally non-
interleaving in the Fugue paper [25] still allows interleaving when deletions are involved. 
Section 2.3 gives an insight into CRDTs and OT and their advantages and disadvantages.

Then, Chapter 3 describes the Fugue algorithm [25] in depth. Chapter 4 discusses our 
base implementation of Fugue in Scala to be able to experiment with the algorithm and 
proposes using property tests to ensure the convergence of our implementation. For easier 
experimentation and as a showcase we create a local web application to collaboratively 
edit a text using WebRTC.

The benchmarks in Chapter 5 show that the base implementation has severe performance 
issues. Therefore, we optimize our implementation based on our benchmarks and propose 
optimizations of the Fugue algorithm. Through the use of binary search trees at relevant 
places with some use-case specific customizations we achieve amortized logarithmic 
runtime per character insertion or deletion and thus an amortized runtime of 𝑂(𝑛 log(𝑛))
for handling 𝑛 character operations. Additionally, we implement batching of sequential 
insertions to reduce memory usage, which was already roughly mentioned in the Fugue 
paper without details on the exact implementation [25]. Furthermore, we contribute a 
benchmark that in comparison to prior work shows the asymptotic runtime and focuses 
on edge cases in the algorithm that may have performance characteristics different from 
those of the common execution path. Specifically, we focus on ensuring that the algorithm 
also has an acceptable runtime complexity when considering malicious or unexpected 
behavior of peers.

We evaluate our optimized implementation in Chapter 6 and show that we achieve the 
targeted 𝑂(𝑛 log(𝑛)) runtime complexity with a runtime of one microsecond per character 
operation and memory use of 25 bytes per operation for a realistic editing session on four 
Intel Xeon Gold vCPU. Finally, Chapter 7 shows future work such as rich text editing, and 
Chapter 8 concludes our work.

9



2. Challenges with Collaborative Text Editing

This chapter first introduces the goal of user intent-preservation by showing the problem 
of text interleaving in Section 2.1. Then, Section 2.2 introduces the solution proposed by 
Fugue [25] to solve text interleaving. Finally, Section 2.3 compares CRDTs and OT and 
shows that the current CRDTs runtime complexity is quadratic and current OT algorithms 
are unsuitable for non-realtime editing.

2.1. Text Interleaving

When users write text in a collaborative text editor, they expect that their text is not 
modified in an unexpected way by concurrent edits from other users. One example are 
insertions at different positions. Starting with the text "Alice plays Minecraft", Alice 
changes the text to "Alice happily plays Minecraft". Concurrently, Bob changes the 
text to "Alice plays Minecraft with Bob". Then, the expected result after synchronizing 
is "Alice happily plays Minecraft with Bob". As the insertions are at different 
positions in the text, the expected outcome is unambiguous, and all characters should 
stay at their relative position to the surrounding characters. Users also expect that text 
they wrote in one go is not interleaved by text that another user wrote concurrently. An 
example with insertions at the same position is the following. Starting with the text "milk, 
chocolate", Alice changes the text to "milk, eggs, chocolate" and Bob concurrently 
changes the text to "milk, bread, chocolate". The expected result after synchronizing 
is either "milk, eggs, bread, chocolate" or "milk, bread, eggs, chocolate". While 
there are two possibilities in this case, no interleaving occurs in either case.

10



BobAlice

Animals:
Colors:

synchronize

Animals: Bands:

Carol

Colors:

Animals:
Colors:

Animals:
* Alpacas
Colors:

synchronize

Animals:
* Alpacas
Bands:
Colors:

Animals:
* Alpacas
Bands:
Colors:

Figure 2.1.: Example for prioritizing forward insertions inspired by Figure 6 in Fugue [25]

11



For an insertion in the middle of a text, current editing behavior does not convey whether 
the insertion semantically belongs to the left side or the right side. Because most text 
is written in a forward direction, so for left-to-right script from left to right, it is more 
likely that an insertion in the middle of some text is appending to the left side of the 
insertion point instead of prepending to the right side of the insertion point. Figure 2.1 
exemplifies this. The three replicas Alice, Bob and Carol independently add three lists to 
some text. Then, Alice and Carol synchronize. Afterwards, Alice adds "* Alpacas" to her 
list, such that it comes after "Animals:" and before "Colors:" but inherently there is no 
information to which part it belongs. Finally, Alice and Bob synchronize. This separates
"* Alpacas" and "Colors:" by the received "Bands:", which may not be wanted. In 
this example the assumption of the more common forward insertion is correct though. 
Further improvements to this would need analysis of the language semantics of the text 
which Bauwens et al. looked into [2]. For the concrete example, a different idea could 
be to insert "Bands:" after "Colors:" so "* Alpacas" stays in place in relation to the 
text preceding and following it. Unfortunately this would lead to even more unexpected 
behavior for example when Bob and Carol synchronized before and would order the 
entries alphabetically because they do not know about the insertion of "* Alpacas". As 
soon as Alice would then synchronize with them, the entries would need to be reordered, 
so that they converge. As the synchronized data is not structured like the example may 
suggest, but instead consists of arbitrary characters, this reordering could result in sentence 
reordering or other unwanted results. Another idea could be to prefer the side by the 
same replica. This has similar issues if concurrent edits are received later and change the 
effect of that rule.

2.2. Fugues Approach to Avoid Text Interleaving

This section shows the proposed solution by Fugue [25] to solve text interleaving. It 
also gives an example that the proposed maximally non-interleaving property can still 
interleave text when deletions are involved.

Weidner et al. [25] show that a previous attempt at formalizing a property for non-
interleaving by Kleppmann et al. [7] is incorrect [25, Section 2.5]. Therefore, they 
propose their own property which they refer to as maximally non-interleaving. It associates 
every inserted character with the character to its left and right, which they label left and 
right origin. The property orders the characters by prioritizing keeping the left origin as 
the previous character because of the common forward insertions and otherwise ordering 

12



to preserve the right origin as the following character if possible. Only if both origins are 
the same, the order is arbitrary but deterministically chosen. Therefore, this property 
creates a unique order aside from tie-breaking [25, Section 4.5].

Fugue refers to an interleaving issue as forward interleaving, when only one character has 
another character as a left origin, yet the two characters are not consecutive. One example 
where the Logoot algorithm [26] interleaved characters, which also violates this rule, is 
concurrently inserting "bread" and "eggs", producing "bergegasd" [18, Section 4.4.1]. 
For example the "r" from "bread" has the "b" as its left origin and no other character 
has the "b" as its left origin but in the result they are not consecutive characters.

Weidner et al. refer to another problem that many prior algorithms exhibit as back-
ward interleaving. When two insertions have the same left origin but a different right 
origin, they should be ordered in a way that they are consecutive with their right ori-
gins. Although it may seem this is not a common use case, the following is a plau-
sible example [25, Figure 2]. Starting with the text "Shopping", Alice first appends
"* apples" after "Shopping" and then prepends "Fruit:" before "* apples". While 
semantically she is prepending, both inserted texts have "Shopping" as their left origin 
and different right origins. Concurrently, Bob first appends "* bread" after "Shopping"
and then prepends "Bakery:" before "* bread". The category insertions by Alice and 
Bob both have "Shopping" as their left origin but different right origins. Therefore, 
this should lead to either the outcome of "ShoppingFruit:* applesBakery:* bread"
or "ShoppingBakery:* breadFruit:* apples" which only differ in the order of which 
users text comes first, which is arbitrary. When algorithms exhibit backward interleaving,
"ShoppingBakery:Fruit:* bread* apples" can be a possible result. Note that the order 
of the elements has not changed in relation to each other (e.g. "Fruit:" comes before
"* apples" and after "Shopping") but this still violates the intent of the user.

According to Weidner et al., many popular algorithms they looked into exhibit either 
forward or backward interleaving [25, Table 1]. A review by Sun [19, 23, 22, 20] that 
refutes these claims for OT algorithms is addressed in Section 2.3. For Logoot [26] the 
character-by-character interleaving issue occurs. Further examples are provided in the 
appendix of the Fugue paper [25]. While the prior CRDT algorithms YjsMod1 and Sync92 
do not exhibit interleaving [25, Table 1], those approaches were not considered here due to 
the lack of documentation and their intrinsic complexity. Weidner et al. propose their own 
algorithms Fugue and FugueMax to solve these problems. They conjecture that Sync9 is 
semantically equivalent to Fugue and YjsMod is semantically equivalent to FugueMax [25, 

1https://github.com/josephg/reference-crdts
2https://braid.org/sync9

13

https://github.com/josephg/reference-crdts
https://braid.org/sync9


Section 6]. They also prove that FugueMax fulfills the maximally non-interleaving property 
[25, Theorem 9], prove that the Fugue algorithm is always forward non-interleaving [25, 
Lemma 7] and argue that it is also backward non-interleaving when there are not multiple 
interacting concurrent updates [25, Section 4.3].

A counter example that interleaving can also happen for the maximally non-interleaving
FugueMax algorithm is the following. Starting with the text "Shopping", Alice appends
"* apples" after "Shopping" and then prepends "Fruit:" before "* apples". Con-
currently, Bob appends "* bread" after "Shopping", then deletes and reinserts the "g"
of "Shopping" and finally prepends "Bakery:" before "* bread". The expected re-
sult would be "ShoppingBakery:* breadFruit:* apples" but the actual result can be
"ShoppingBakery:Fruit:* apples* bread" when the replicas IDs have a specific order. 
The code in Appendix A.7 verifies this with the reference implementation3. The reason the 
maximally non-interleaving property does not cover this case is that it disregards deletions. 
This example shows that this simplification is not suitable to ensure non-interleaving.

The basic implementation of Fugue has a linear runtime per character insertion or deletion 
in relation to the text length (including deleted text) which proved to be too inefficient for 
larger text given the resulting runtime scales quadratically with the text length. Comparing 
the results4 from Weidner et al. for benchmark B1.1 with benchmark B1.3 indicates, that 
even the optimized variant in the Fugue paper has quadratic runtime for sequential 
backward insertions.

3https://github.com/mweidner037/fugue
4https://github.com/mweidner037/fugue/blob/main/results_table.md

14

https://github.com/mweidner037/fugue
https://github.com/mweidner037/fugue/blob/main/results_table.md


BobAlice

xabc ab

O1 = Ins(0, "x")

O1' = T(O1, O2) = Ins(0, "x")

O2 = Del(2)

O2' = T(O2, O1) = Del(3)

abc abc

xab xab

Figure 2.2.: Example for operation transformation with two synchronizing peers based 
on figure by Sun [21, Section 1.4 Figure 1]

1 Tii(Ins[p1,c1], Ins[p2, c2]) {
2  if p1 < p2 or (p1 = p2 and u1 > u2)
3  return Ins[p1, c1];
4  else
5  return Ins[p1+1, c1];
6 }

Listing 2.1.: Example for transformation function from Sun [21, Section 2.15]

15



2.3. OT in Comparison to CRDTs

This section explains the differences and similarities between OT and CRDTs and shows 
that the current CRDTs runtime complexity is quadratic and current OT algorithms are 
unsuitable for non-realtime editing.

While CRDT papers often claim CRDTs are superior to OT, CRDTs often miss major relevant 
parts of the required algorithmic steps which makes them seem potentially simpler and 
more performant [15, page 2]. For example, CRDTs need to extract the text from their 
internal state and need to be able to address characters based on their text position as most 
text editors work that way [15, Section 5.1, Section 5.2]. CRDTs often miss this conversion 
step which is a major algorithmic complication that also affects their performance a lot 
[15, page 2]. Note that Fugue also has this issue as it does not describe converting the 
received operations to character offsets [25, Algorithm 1].

Sun et al. also show that both approaches are more similar than often presented [15, 
Section 4.1 Table 1]. While OTs have position based operations directly on the character 
sequence that are then transformed by concurrent operations, CRDTs have identifier 
based operations on an internal object sequence, that are converted to the position based 
character sequence after the operations have been applied.

OT based algorithms consist of a control algorithm and a transformation function [21]. 
The control algorithm is generic, and the transformation function is application specific. 
For example for plain text editing there could be two operations, Insert(index, character) 
and Delete(index). The transformation function 𝑇 (𝑂2, 𝑂1) transforms 𝑂2 against 𝑂1. 
This produces the operation that needs to be applied after 𝑂1 if they were concurrent 
before. Figure 2.2 shows an example where the positions of the concurrent operations 
are transformed when receiving them and therefore result in the same text at both peers. 
In that example the transformation function could be defined as shown in Listing 2.1 for 
transforming two insert operations [21, Section 2.15]. If a concurrent insertion happened 
at a position after the current insertion it does not need to be transformed. If a concurrent 
insertion happened at a position before the current insertion it needs to be offset by one. 
For equal positions, tie breaking using the replica identifier is required.

The control algorithms decide in which order operations need to be transformed to 
achieve the desired outcome [21, Section 2.2]. Depending on the control algorithm, the 
transformation function needs to fulfill different properties to ensure correctness [21, 
Section 2.20]. Also, some control algorithms are able to handle undo, some can undo 
arbitrary actions out of order, while some cannot [21, Section 2.12].

16



Transformation functions need to be defined for all possible combinations of operations. 
This means 𝑁2 such functions are needed for 𝑁 possible operations. An alternative 
proposed by Sun et al. is POT+COA (Primitive Operation Transformation plus Complex 
Operation Adaptation). It consists of having some primitive operations for which transfor-
mation functions are defined, and then complex application operations are converted to 
these primitive operations [17, Section 2.1.3].

OT based algorithms can be integrated into existing editors with little change of the editors 
source code as OT is operation and concurrency-centric. The algorithm can just apply the 
received and transformed operations to the local editor and send local operations to other 
peers. Sun et al. refer to this as Transparent Adaptation (TA) [17, Section 2.1.2].

According to Sun et al., OT uses a concurrency-centric and direct transformation approach 
and CRDT uses a content-centric and indirect transformation approach [15, Section 1]. 
This has an important consequence for the time and space complexity. The time and space 
complexity of OT for realtime editing depends on the number of concurrent operations 
which are usually small in realtime text editing while the time and space complexity 
of CRDT depends on the length of the text or even the length of the text including all 
deleted content which are usually a lot larger [15, Section 5.3]. The time complexity for 
prior OT based algorithms is at least 𝑂(𝑐) per remote operation [18, Section 3.1.4]. This 
means quadratic runtime complexity in relation to the operation count for handling some 
count of operations, which is unusable for non-realtime editing because there can be many 
concurrent operations. It is important to mention that the time complexity class is relevant. 
For example, 𝑂(log(text-length-including-deletions)) runtime complexity can be equally 
acceptable to 𝑂(concurrent-operations) runtime complexity because 𝑂(log(𝑛)) is growing 
quite slowly even for extremely large inputs. Prior research of CRDTs mostly managed a 
linear time complexity or worse except of a paper by Briot et al. which optimizes an RGA 
adaptation to 𝑂(log(𝑛)) per operation similarly to us [18, Table 4]. However, Briot et al. 
have not gone into the analysis of performance edge cases prohibiting us from drawing a 
fair comparison. Additionally, it is unclear whether they include the conversion of remote 
operations to character positions. Furthermore, as the algorithm is based on RGA, it 
exhibits interleaving [25, Table 1].

While CRDTs often seem to be simple and easy to understand, the fundamental concurrency 
issues which are inherent to unconstrained co-editing also exist there and mixing content 
and concurrency creates new difficulties with handling them [18, Section 4].

17



3. Fugue Algorithm

This chapter explains how the Fugue algorithm works and is heavily based on the Fugue 
paper [25]. Then, the next chapter discusses our implementation of Fugue. Further 
chapters discuss our improvements to the Fugue algorithm. The Fugue algorithm handles 
insertions and deletions for a list data structure and avoids interleaving. For text editing 
every list element is a character.

3.1. Traversal

Figure 3.1 visualizes the data structure of the algorithm. It is a tree starting with the root 
node at the top left. The nodes are connected using lines. Lines downwards to the right 
connect to a right child and lines downwards to the left connect to a left child. A node 
can have multiple children on each side. For every node except the root node, the first 
part is the character or whether the character is deleted, followed by a space and the ID 
of the peer that created that character, a # symbol and then a counter for that peer that is 
increasing for every insertion. For example, "t A#1" is the character "t" by peer "A" with 
the counter being 1. The ID of the peer combined with the counter that uniquely identifies 
an element is called a simple ID. The root node is a special node that behaves like a deleted 
character. To get the current text of the tree, it is traversed starting from the root node by 
recursively visiting the left children in order, then the value of the node itself and then 
the right children in order. For the example in Figure 3.1, the traversal starts with the left 
children of the root node. As there are none, the node itself is visited. As it contains a 
deleted character, it is ignored. Then the first right child is traversed. Its first left child 
produces "small " by the same rules applied recursively. It itself produces "t". Its right 
children produces "rees". Therefore, its whole traversal produces "small trees". Then 
the second right child is traversed in the same way and produces " grow". Combining all 
that will therefore produce the text "small trees grow".

18



␣ A#11

l A#10

l A#9

a A#8

m A#7

s A#6

s A#5

e A#4

e A#3

r A#2

t A#1

w B#5

o B#4

r B#3

g B#2

␣ B#1

⌫ root

Figure 3.1.: Fugue tree traversal

⌫ root

Figure 3.2.: Fugue tree with root node

a A#1

⌫ root

Figure 3.3.: Insertion of "a" into Fugue tree 
at index 0

3.2. Initial State

The initial state consists only of the root node as shown in Figure 3.2. Thus, the tree 
represents an empty text. The root node for every peer is the same, even though the root 
node is always created locally at every peer.

3.3. Operations

The chosen operations are insertion and deletion based on an index into the text relative 
to the start. The reason for choosing that interface is that text editors conform to it. All 
indices are zero based, so the element at index 0 is the first element.

19



c A#2

a A#1

⌫ root

Figure 3.4.: Insertion of "c" into Fugue tree 
at index 1

b A#3

c A#2

a A#1

⌫ root

Figure 3.5.: Insertion of "b" into Fugue tree 
at index 1

Insert operation

To insert an element 𝑥 at a position 𝑖, the algorithm first creates a new simple ID. A special 
case is inserting at position 0. In that case the root node is the left origin of the insertion. 
To insert the element, it is added as a right child to this left origin. This implies that the 
root node never has left children as otherwise this would be incorrect based on the tree 
traversal. Starting with an empty tree, Figure 3.3 shows an insertion at index 0.

Otherwise, the algorithm traverses through the tree, but only counts the visible elements 
(the ones that are not deleted) until the node at index 𝑖 − 1 is reached. As this is the node 
before the index for the insertion, the insertion point is to the right of it. Like in the special 
case for inserting at position 0 this is the left origin. If that node has no right children, 
it adds the new node as a right child to that left origin. Starting with the previous tree, 
Figure 3.4 shows an insertion at index 1.

Right children are always deterministically but arbitrarily ordered by their replica IDs. 
Therefore, if the node already has right children, the new node can not be added to the 
right while ensuring it is at the correct position. Instead, the algorithm adds it to the left 
of the right origin to ensure it gets placed at the correct index. The right origin is the 
next node (visible or not) in the tree traversal after the left origin. This right origin can 
not already have left children as otherwise one of them would be the right origin as they 
come earlier in the tree traversal. Starting with the previous tree, Figure 3.5 shows an 
insertion at index 1.

20



e A#5

c A#4

i A#3

l A#2

a A#1

⌫ root

Figure 3.6.: Fugue tree with text insertion at 
replica A

b B#3

o B#2

b B#1

⌫ root

Figure 3.7.: Fugue tree with text insertion at 
replica B

e A#5

c A#4

i A#3

l A#2

a A#1

b B#3

o B#2

b B#1

⌫ root

Figure 3.8.: Fugue tree with concurrent in-
sertions after synchronization 
between replica A and replica B

⌫ A#3

c A#2

a A#1

⌫ root

Figure 3.9.: Fugue tree with deletions

21



b A#3

c A#2

a A#1

⌫ root

Figure 3.10.: Fugue tree with sequential in-
sertions

a A#3

b A#2

c A#1

⌫ root

Figure 3.11.: Fugue tree with reverse se-
quential insertions

Concurrent insert operation

Due to concurrent insertions, it may happen that a node has several right or left children. 
This proceeds in the following way: To transmit the edits to others, the node identifier
of the inserted node and its parent, the side at which it is inserted (left or right) and the 
value that is inserted are transmitted using causal broadcast [25]. Causal broadcast, also 
referred to as causally-ordered multicasting, ensures that a message with an event, that 
may have causally happened before another event, is sent before that message [24, 3]. 
To incorporate remote edits, the received node is added to the own tree based on the 
parent identifier and side. For example when the edit in Figure 3.6 is concurrent with the 
edit in Figure 3.7, both clients end up with the tree in Figure 3.8 which has several right 
children. The order of "alice" and "bob" is deterministic based on their replica ID but 
otherwise unspecified. As there is no choice that is inherently better, it is just important 
that all clients compute the same tree.

Delete operation

Figure 3.9 shows the deletion of a character. The node to delete, which is calculated from 
the index in the tree traversal of visible nodes, is simply marked as deleted. If it already 
was deleted by a concurrent user, the operation does nothing.

22



Fruit: A#9.0-5

* apples A#1.0-7

Bakery: B#8.0-6

* bread B#1.0-6

Shopping C#1.0-7

⌫ root

Figure 3.12.: Fugue tree for shopping example

3.4. Intuitive Reason for Avoiding Interleaving

Consecutive insertions as shown in Figure 3.10 and reverse consecutive insertions as 
shown in Figure 3.11 create a single long branch in the Fugue tree. The intuitive reason 
this avoids interleaving in these cases is that merging concurrent edits never changes 
anything within concurrently created trees [25, Section 4].

Another reason is that Fugue prefers linking nodes to their left origin because of forward 
insertions and if there are already existing nodes it links to the right origin instead to 
avoid ambiguity. Figure 3.12 shows that this also keeps parts that were inserted together 
in one subtree. Note that consecutive right children are combined here to make the figure 
more readable.

23



4. Implementation of Fugue Algorithm

This chapter first lists the requirements for an implementation of the Fugue algorithm 
in Section 4.1. Section 4.2 gives insights into our editor implementation in the browser 
and our P2P functionality and Section 4.3 explains how our synchronization works and 
is optimized. Section 4.4 introduces our use of property tests to ensure convergence 
of our implementation and argues that extensive use of assertions for invariants aids in 
finding the root cause of test failures. Finally, Section 4.5 reveals some small issues in the 
algorithmic description in the Fugue paper [25].

The source code is available at:
https://github.com/mohe2015/bachelor-thesis-collaborative-text-editing

4.1. Required Implementation Functionality

Based on the Fugue paper [25] and our explanation of the Fugue algorithm in the last 
chapter, an implementation needs to provide the following functionality:

It needs to provide an interface to a tree with left and right children, possibly multiple 
children on each side but usually only one on one side. It requires fast retrieval of a node 
based on an index in the non-deleted node traversal and fast retrieval of an index in the 
non-deleted node traversal based on the node. Additionally, it requires fast retrieval of a 
node based on its ID. For initial loading it also needs to be able to traverse the whole tree 
in order. Furthermore, inserting nodes to the right and left of other nodes needs to be 
efficient with the special case of multiple left or right children.

In practice, trees usually contain many deep right descendants because of consecutive 
character insertions [25, Figure 5], so this is a case that should be heavily optimized.

24

https://github.com/mohe2015/bachelor-thesis-collaborative-text-editing


1 val schema = Schema(SchemaSpec(orderedmap.from(StringDictionary(
2 ("text", NodeSpec()),
3 ("doc",
4 NodeSpec()
5 .setContent("text*")
6 .setMarks("")
7 .setCode(true)
8 .setDefining(true)
9 .setParseDOM(

10 js.Array(TagParseRule("pre").setPreserveWhitespace(full)))
11 .setToDOM(_ => Array("pre", 0)))))))
12 val hardBreakCommand: Command = (state, dispatch, view) => {
13 dispatch.get(state.tr.insertText("\n"))
14 true
15 }
16 val editorStateConfig = EditorStateConfig().setSchema(schema)
17 .setPluginsVarargs(keymap(StringDictionary(("Enter", hardBreakCommand))))

Listing 4.1.: Code excerpt of ProseMirror schema setup

4.2. Browser Implementation of Text Editor

To properly use text editing algorithms an editor is required, so we implement an interface 
to ProseMirror1 and transpile Scala to JavaScript using Scala.js2 to be able to use our 
implementation on the web.

By default, ProseMirror creates newlines using <br/> tags and paragraphs using <p> tags. 
This makes it complicated to convert between the ProseMirror document offset and the 
text offset. Therefore, we configured ProseMirror to only support plaintext and use \n for 
newlines and configured the browser to render \n as newlines (which does not work by 
default) as shown in Listing 4.1.

We also implemented a demo using WebRTC3 to collaboratively edit a text. It keeps the 
full history on all connected peers, so it is not possible to permanently delete anything. 
This is the reason for not implementing persistence, see Chapter 7.

1https://prosemirror.net/
2https://www.scala-js.org/
3https://webrtc.org/

25

https://prosemirror.net/
https://www.scala-js.org/
https://webrtc.org/


4.3. Synchronization of Changes

The changes are synchronized using causal broadcast as in the Fugue paper [25]. The 
events are ordered using vector clocks [10, 6]. Only change synchronization updates the 
vector clock. Therefore, the clock does not need to be updated while working offline, 
and the changes can be sent in one batch which is more efficient. Instead of creating a 
message per character insertion or deletion, consecutive deletions and insertions that have 
the same causality are combined to optimize memory usage.

4.4. Testing Using Property Tests

Property tests are a core part of testing replicated data types (RDTs) as the existence of 
numerous edge cases make unit testing infeasible. The tests run both on the internal data 
structure, with an interface for inserting and deleting characters at indices, and on the 
local web application as a Playwright4 test.

The property tests run using ScalaCheck5 and specifically its stateful testing support6 using
Commands7. ScalaCheck Commands store a system under test and a state that is compared 
to the system under test. Possible actions are defined by implementing the Command7 
trait. The trait has several methods for pre conditions, post conditions, running the action 
and calculating the next state. ScalaCheck generates Commands and their contents using 
Generators, e.g. Gen.chooseNum(0, Int.MaxValue) which are then run by ScalaCheck 
against the system under test and if failures occur it tries to simplify the failure case.

Our property tests randomly create replicas, synchronize replicas, insert text at a replica 
or delete text at a replica. Then, they check whether replicas have the same text after 
they synchronized. Unfortunately it is not easily possible to check what the expected text 
would be as that would need more or less a reimplementation of the synchronization logic, 
see Chapter 7. We also have property tests that check that local operations match the 
same operations on a String.

4https://playwright.dev/java/
5https://scalacheck.org/
6https://github.com/typelevel/scalacheck/blob/main/doc/UserGuide.md#stateful-testing
7https://github.com/typelevel/scalacheck/blob/main/core/shared/src/main/scala/org/
scalacheck/commands/Commands.scala

26

https://playwright.dev/java/
https://scalacheck.org/
https://github.com/typelevel/scalacheck/blob/main/doc/UserGuide.md#stateful-testing
https://github.com/typelevel/scalacheck/blob/main/core/shared/src/main/scala/org/scalacheck/commands/Commands.scala
https://github.com/typelevel/scalacheck/blob/main/core/shared/src/main/scala/org/scalacheck/commands/Commands.scala


While trying out new approaches, implementation mistakes are likely, particularly when 
more complicated approaches have lots of edge cases. It is really laborious to find the root 
cause for every test failure to fix edge cases, especially for property tests that do not always 
produce the smallest possible test case. It helps significantly to add lots of assertions into 
the code that not only check local conditions like traditional uses of assertions but also 
check global invariants. Some examples of such assertions are ensuring that parent and 
child references are symmetric to each other and that insertions and deletions correctly 
update the positions of all characters. These assertions strongly affect the performance, 
so they need to be disabled for production use.

Ideally, invariant assertions would be automatically checked after every object creation 
and modification, but that is not easily possible with Scala. Therefore, they were added 
manually at relevant places. The tests also detect the bugs without these invariant 
assertions. The failure then happens at a later time in execution, which complicates 
finding the root cause, but does not decrease the reliability.

4.5. Issues in the Algorithmic Description

While working on our implementation, we found that the algorithmic description [25, 
Algorithm 1] is, for the most part, satisfactory. However, it contains one large issue. 
While the Fugue paper includes the conversion from character offsets to their internal 
representation, it misses the reverse direction [25, Algorithm 1]. Received operations also 
need to be converted to the index to update the local text editor. Therefore, we extended 
the algorithmic description with that. This is not just relevant for implementation but also 
for optimization, which we address in the next chapter. It means that further functionality 
is required, that can map a node ID to the position in the tree traversal of visible nodes, 
which is the visible text. The remaining issues were only minor or instances of suboptimal 
specification.

First, the ID type [25, Algorithm 1] can always be null. As this can only be the case for 
the root node, we moved this case to the places where the root node could potentially be 
used. There are some places where this could not be the case, e.g. remote insertions can 
not send the root node as the root node is always locally created.

Second, in line 10 of the description [25, Algorithm 1], root is initialized with a value that 
is invalid according to their specification because the side can only be L or R but never
null according to the types. Our implementation arbitrarily chooses the root node to be 

27



on the right side to simplify checks at other places in the code. An alternative would be 
to use an enumeration for the node and not have an ID, value, side and parent for the 
root node at all.

Third, each node does not necessarily need to store the ID of its parent and children [25, 
Algorithm 1]. It could also store a reference directly to them.

Lastly, the node after leftOrigin in line 24 [25, Algorithm 1] can be retrieved as the 
leftmost descendant of the first right child of the leftOrigin. The leftmost descendant is 
the node that is reached by repeatedly descending into the leftmost child until there are 
no left children. This is logical as the next node must be in the right subtree and there the 
first node is the leftmost node. Depending on the implementation that may be faster or 
easier.

28



5. Optimizing Common Edit Operations

Based on a theoretical understanding of our base implementation developed from the 
algorithmic description in the Fugue paper [25, Algorithm 1] we expect quadratic runtime 
complexity and linear memory usage in relation to the text length. This chapter discusses 
the implementation of benchmarks to verify the theoretical understanding of the runtime 
and memory complexity and then proposes optimizations for the implementation based 
on them.

The Fugue paper already proposes an optimization, but does not go into detail. It proposes 
to condense sequentially-inserted tree nodes into a single “waypoint” object instead of using 
one object per node [25, Section 5] but even with their implementation1 available, their 
exact approach is unclear. To avoid premature optimization we analyze the performance 
and optimize based on that.

The benchmarks also indicate a quadratic runtime complexity for our base implementation. 
In Section 5.1, we start with an optimization that combines consecutively inserted charac-
ters as that is how most text is written. This leads to good performance for sequentially 
written text but still quadratic runtime performance for text with realistic editing behavior 
like corrections and later additions. In Section 5.2, we create a look-up data structure 
that can quickly convert between text positions and nodes as that is the main performance 
bottleneck in the base implementation. This results in 𝑂(𝑙𝑜𝑔(𝑛)) runtime complexity per 
operation. Then, we combine both approaches to reduce memory usage using the batching 
optimization. This leads to the common case being well optimized, but there are still 
cases that can be quadratic for text of some length. In Section 5.4 we investigate these 
performance edge cases, and develop optimizations for them to ensure good performance 
in all cases. This is important so malicious peers or unusual editing behavior can not 
lead to unusable runtime performance. Finally, in Section 5.5, we give an overview of the 
resulting data structure.

1https://github.com/mweidner037/fugue

29

https://github.com/mweidner037/fugue


 0

 500

 1000

 1500

 2000

4000 8000 12000 16000 20000

simple

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4000 8000 12000 16000 20000

simple

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.1.: Benchmark results for sequential insertions with the simple algorithm

1 override def atVisibleIndex(i: Int): SimpleTreeNode[V] = {
2 factory.nodes().drop(i).iterator.next
3 }

Listing 5.1.: Code excerpt of node search based on index for the simple algorithm

The most basic case is sequential insertion of text which simulates a user that perfectly 
writes text and never needs to fix any mistakes or add something earlier in the text. 
Benchmarking our basic implementation called the simple algorithm leads to the result in 
Figure 5.1.

Note: The graphs show the time and memory per character operation, thus the total time 
to handle the character operations grows quadratically in Figure 5.1. All graphs with the 
same border color have the same axis scale to make them comparable.

As shown in Appendix A.1 almost all the time is spent in atVisibleIndex. This matches 
the repeated linear search to find the element at which we need to insert based on its 
index in the original algorithm as shown in Listing 5.1.

30



1 final case class BatchingTreeNode(
2 rid: RID | Null,
3 counter: Int,
4 var _values: StringBuilder | Null,
5 var offset: Int,
6 var to: Int,
7 side: Side,
8 var parent: BatchingTreeNodeSingle | Null,
9 var leftChildrenBuffer: mutable.ArrayBuffer[BatchingTreeNode],

10 var rightChildrenBuffer: mutable.ArrayBuffer[BatchingTreeNode],
11 var allowAppend: Boolean
12 )

Listing 5.2.: Data structure of batching node

31



5.1. Optimization Using Batching

The optimization that many algorithms already utilize and that the Fugue authors also 
have hinted at [25, Section 5], is batching sequential insertions by one peer to reduce 
metadata and memory overhead. In the following section we describe what is needed for 
that optimization in detail.

The previously used simple ID for tree nodes consists of a replica ID and a counter. To 
combine sequential tree nodes by the same replica, an offset is added to be able to address 
single characters for insert and delete operations. This ID that consists of a replica ID, 
counter and offset is called a batching ID and our algorithm the batching algorithm.

The algorithm intentionally only optimizes consecutive right children or rather forward 
insertions as that is the most common case. In all cases this is only a best-effort optimization 
as operations may not be combinable at all, for example if they are from multiple peers.

Listing 5.2 shows the rough data structure of a node. The replicaId and counter repre-
sent the simple ID part of this node. If the replicaId is null, then the value of the counter
is not relevant. This is the case for the root node. The _values reference one ArrayBuffer
per simple ID, so multiple nodes may reference the same ArrayBuffer. This happens 
when a batching node needs to be split. The offset and to variables represent which 
subrange of the ArrayBuffer this node represents, so which characters of the text it stores. 
This means the batching IDs for this node then consist of the simple ID part and each value 
in the range from offset until to combined with the character at that index in _values. 
In the tree these are always right children of their predecessor as we optimize forward 
insertions. The side stores if this is a left or right child of its parent, except for the root 
node where this value does not store anything meaningful. BatchingTreeNodeSingle
stores a reference to the parent BatchingTreeNode combined with the offset into that 
node at which this node is added. The leftChildrenBuffer and rightChildrenBuffer
store the children in an array. allowAppend stores whether appending an element to this 
node is possible by appending an element to _values. This is not allowed for the left part 
of a split because otherwise batching IDs could be duplicated.

32



Insert operation To insert an element there are the following cases.

Case 1: Insert to the right at the right edge of a non-deleted node with the same replica 
ID where appending is allowed and which does not already have right children This is 
the easiest and fastest case. It only consists of adding the value to the array of values.

Case 2: Insert to the right at the right edge of a non-deleted node with the same 
replica ID and counter where appending is allowed but which already has right children 
Directly appending here is disallowed because otherwise the already existing right children 
would be at the wrong position. Therefore, add a new right child node that references the 
existing buffer with correct offset and to values.

Case 3: Insert to the right at the right edge In this case a new node is added as a right 
child of the existing node.

Case 4: Insert to the left at the left edge In this case a new node is added as a left child 
of the existing node.

Otherwise: In the other cases, so ”Insert to the right not at the right edge” and ”Insert to 
the left not at the left edge” the node needs to be split and inserted at the correct location. 
Further details about splitting can be found in Section 5.4. As later optimizations combine 
sequential deletions, this also needs to be handled correctly.

Delete operation If an element is already deleted because of concurrent actions, nothing 
needs to be done. Note that also the editor then does not need any updates. Deletion 
generally needs to split a node into up to three parts (except if the first or last element is 
deleted) as there needs to be a node for the part before the deleted element, a node for 
the deleted element and a node for the part after the deleted element. Later optimizations 
avoid this for sequential forward and backward deletions by the same replica if both nodes 
have the same simple ID. Instead, the deleted element is moved to the node containing 
the other already deleted elements if the parent node has no other right children.

33



 0

 500

 1000

 1500

 2000

4000 8000 12000 16000 20000

simple
batching

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4000 8000 12000 16000 20000

simple
batching

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.2.: Benchmark results for sequential insertions comparing the simple algorithm 
and the batching algorithm

Results for sequential insertions Benchmarking the sequential insertions produces the 
results in Figure 5.2. The reason the batching algorithm is so fast in comparison to the 
simple algorithm is that it mainly needs to append to an ArrayBuffer for sequential 
insertions.

Even though every character insertion only needs to append a character to an ArrayBuffer, 
the memory usage per character is about 100 bytes. This is because it also stores the 
causal history which is required for properly syncing between peers but is only optimized 
in the final version later.

The CPU profile in Appendix A.2 shows that most time is spent in garbage collection. This 
indicates that allocating elements for the nodes and messages and resizing ArrayBuffers 
requires extensive CPU time. The profile shows the CPU time, so this affects the realtime 
less on a multithreaded system than on a single threaded system. Garbage collection makes 
it harder to optimize the code as the garbage collector creates a non-local performance 
bottleneck. It may be helpful to look at the allocation profile in Appendix A.3. There 
are some things like allocations of temporary values for iterators and views that can be 
optimized away. In our experience this only leads to limited improvements though. It 
would be easier to use a programming language that does not use a garbage collector or 
probably not even a JIT compiler to optimize the algorithm to that depth. Still, Scala, 
Java and the JVM are well-suited to look at the asymptotic performance because memory 
allocation or cyclic data structures do not need to be considered in contrast to low level 
languages like C++ or Rust.

34



 0

 500

 1000

 1500

 2000

4000 8000 12000 16000 20000

simple
batching

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4000 8000 12000 16000 20000

simple
batching

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.3.: Benchmark results for real world editing trace comparing the simple algorithm 
and the batching algorithm

Results for real world editing trace While this results in good performance, it clearly 
does not cover real world editing behavior. Therefore, we use the dataset from https://
github.com/automerge/automerge-perf which contains 259,778 insertion and deletion 
operations that produce a text with 104,852 characters. It is the editing trace from the 
LATEX source of https://arxiv.org/abs/1608.03960.

Figure 5.3 shows the runtime per operation grows linearly and is also extremely slow for 
only a few tens of thousands of characters. Appendix A.4 shows that most time is spent 
in findElementAtIndex similar to the simple sequential insertions. This is because the 
batching only helps to improve the performance by some factor that is correlated with 
the size of consecutive insertions. We therefore looked into an approach that fixes the 
root cause which is the search of the node in the tree that represents the character at a 
position in the text.

35

https://github.com/automerge/automerge-perf
https://github.com/automerge/automerge-perf
https://arxiv.org/abs/1608.03960


 0

 500

 1000

 1500

 2000

4000 8000 12000 16000 20000

simple
batching

simple AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4000 8000 12000 16000 20000

simple
batching

simple AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.4.: Benchmark results for real world editing trace comparing the simple algo-
rithm, the batching algorithm and the simple AVL algorithm

 0

 2

 4

 6

 8

 10

 12

 14

50000 100000 150000 200000 259778

simple AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50000 100000 150000 200000 259778

simple AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.5.: Benchmark results for real world editing trace with the simple AVL algorithm

36



 0

 2

 4

 6

 8

 10

 12

 14

50000 100000 150000 200000 259778

simple AVL
batching AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50000 100000 150000 200000 259778

simple AVL
batching AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.6.: Benchmark results for real world editing trace comparing the simple AVL 
algorithm and the batching AVL algorithm

5.2. Optimization Using a Look-Up Datastructure

For this optimization a data structure is needed, that can quickly retrieve the node based 
on its index in the text and also allows quick insertions and deletions at arbitrary positions. 
This is similar to a binary search tree with the difference that the index of a node shifts 
when inserting a node to the left of it. Therefore, instead of storing the index of a node, it 
stores the size of all (visible) subnodes in the search tree. Then a binary search on that 
size finds the insert position. This also means that an insertion needs to update all sizes up 
to the root. An AVL tree was chosen as the binary search tree because it has logarithmic 
asymptotic complexity in all cases and more complex and potentially faster binary search 
trees such as B-trees do not have better asymptotic complexity. The batching optimization 
is excluded to be able to isolate the performance changes to the algorithmic changes.

This results in a very low time per character operation as shown in Figure 5.4 in comparison 
to the two other approaches with the real world benchmark. As it is not possible to read 
the values for the simple AVL algorithm there, Figure 5.5 shows only the simple AVL 
algorithm with the full text, so much more operations, and a different y-axis scale. The 
CPU profile in Appendix A.5 shows that there is not a single hot location, but execution 
is distributed over many methods. The memory overhead is still very high, because a 
new node in the AVL tree and the Fugue tree needs to be created for every character. 
Figure 5.5 shows a memory usage of about 250 bytes per character operation. Note that 
this also includes the full insertion and deletion history and not only the tree itself.

37



c b0#0.0-0 c b1#0.0-0

⌫ root

(a) before

c b0#0.0-0 c b1#0.0-0 c b2#0.0-0

⌫ root

(b) after

Figure 5.7.: Example for edge case with many children

 0

 2

 4

 6

 8

 10

 12

 14

50000 100000 150000 200000 259778

batching AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50000 100000 150000 200000 259778

batching AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.8.: Benchmark results of an edge case with many children

5.3. Combined Optimizations

Combining the AVL tree optimization and node batching improves the memory usage and 
runtime. The results are shown in Figure 5.6 for the real world benchmark. The runtime 
per operation is one microsecond, thus one million operations can be handled per second. 
The memory usage per operation is about 25 bytes per operation. This concludes our 
optimization of the common execution path.

38



p a#2.0-0

p a#1.0-0

⌫ root

(a) before

p a#3.0-0

p a#2.0-0

p a#1.0-0

⌫ root

(b) after

Figure 5.9.: Example for edge case for insertion to the left of the root

1 val firstRightChild = leftOrigin.firstRightChild()
2 var side: Side | Null = null
3 val origin = if (firstRightChild == null) {
4 side = Side.Right
5 leftOrigin
6 } else {
7 side = Side.Left
8 firstRightChild.leftmostDescendant()
9 }

Listing 5.3.: Code excerpt of an edge case for insertion to the left of the root

5.4. Performance Edge Cases

An optimal algorithm must perform efficiently in all cases. Therefore, efficiently handling 
edge cases is essential. This is important because remote users can send arbitrary opera-
tions. Therefore, a malicious user could use that to attack the algorithm and render the 
text editing unusable. The following are specific cases for our algorithm. Other algorithms 
need to be analyzed case by case.

Edge case with many children Child insertions need to be efficient even after many chil-
dren are inserted at the same side of the same node as shown in Figure 5.7 with the bench-
mark results in Figure 5.8. Therefore, the children are stored in a mutable.SortedSet, 
so a binary search tree. This results in logarithmic insertion.

39



 0

 2

 4

 6

 8

 10

 12

 14

50000 100000 150000 200000 259778

batching AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50000 100000 150000 200000 259778

batching AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.10.: Benchmark results of an edge case for insertion to the left of the root

Edge case for insertion to the left of the root Another case is repeatedly inserting at 
position 0 as shown in Figure 5.9 with the benchmark results in Figure 5.10. As the root 
node has a right child after the first insertion, further nodes need to be inserted to the 
left of that child. To find the node before the child our algorithm retrieves the leftmost 
descendant of it as shown in Listing 5.3. This requires a recursive traversal down the 
leftmost child, which is a linear operation. Therefore, our algorithm uses a cache for the 
leftmost descendant of every node in the tree. As all nodes in the path from the node 
to its leftmost descendant have the same leftmost descendant, one cache is used for this 
group of nodes. As shown later, it needs to be possible to split the cache up, if a child is 
inserted somewhere in that path to the left. The cache also uses an AVL tree with the 
specialty of storing a parent reference in each AVL tree node and the root node storing a 
reference to the leftmost descendant of all nodes of that AVL tree. Therefore, the leftmost 
descendant of this group of nodes can be efficiently retrieved and updated, the cache can 
be efficiently split up by splitting the AVL tree and new nodes can be efficiently inserted.

40



ppp a#1.0-2

⌫ root

(a) before
p a#1.2-2 c b#1.0-0

p a#1.1-1 c b#0.0-0

p a#1.0-0

⌫ root

(b) after

Figure 5.11.: Example for edge case for concurrent insertion to the right

 0

 2

 4

 6

 8

 10

 12

 14

50000 100000 150000 200000 259778

batching AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50000 100000 150000 200000 259778

batching AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.12.: Benchmark results of an edge case for concurrent insertion to the right

1 val base = if (rightChildrenBuffer.nn.isEmpty || before.isEmpty) {
2 parent
3 } else {
4 BatchingAVLTreeNodeSingle(before.get, before.get.value.to)
5 .rightmostDescendant().complexTreeNode
6 }

Listing 5.4.: Code excerpt of an edge case for concurrent insertion to the right

41



ppp a#1.0-2

⌫ root

(a) before

p a#1.2-2

⌫ a#1.1-1

p a#1.0-0

⌫ root

(b) after

Figure 5.13.: Example for edge case for node splitting

 0

 2

 4

 6

 8

 10

 12

 14

50000 100000 150000 200000 259778

batching AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50000 100000 150000 200000 259778

batching AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.14.: Benchmark results of an edge case for node splitting

Edge case for concurrent insertion to the right In the edge case in Figure 5.11 with the 
benchmark results in Figure 5.12 the p nodes were first inserted and then c nodes were 
inserted concurrent to them. This means for every c node insertion, the node needs to be 
inserted at the correct position in the AVL tree to preserve the correct character ordering. 
For example as this is a concurrent insertion, the first c node needs to be inserted after 
the subtree of the child to the left of it. Therefore, the last node in the subtree of its left 
child needs to be retrieved, which requires to get the rightmost descendant of that child 
as shown in Listing 5.4. Therefore, this also needs the optimization as explained for the 
previous edge case.

42



c b0#0.0-0 c b1#0.0-0

pp a#1.0-1

⌫ root

(a) before

s a#3.0-0

c b0#0.0-0 c b1#0.0-0

p a#1.1-1

p a#1.0-0

⌫ root

(b) after

Figure 5.15.: Example for edge case for node splitting with many right children

 0

 2

 4

 6

 8

 10

 12

 14

50000 100000 150000 200000 259778

batching AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50000 100000 150000 200000 259778

batching AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 5.16.: Benchmark results of an edge case for node splitting with many right children

Edge case for node splitting Splitting a batched node as shown in Figure 5.13 with the 
benchmark results in Figure 5.14 needs to be efficiently handled. The consecutive elements 
are stored in an ArrayBuffer and splitting it would be a linear operation. Therefore, 
instead of splitting it, nodes reference a subpart of the buffer. This means splitting a node 
only requires creating and inserting a new node and updating a few references to the 
buffer start and end, inserting it into the AVL tree and updating the descendant cache. 
The disadvantage is that the memory for deleted nodes is not reclaimed.

Edge case for node splitting with many right children A previous version of the algorithm 
stored a reference to the parent in each node. Therefore, splitting a node as shown in 
Figure 5.15 with the benchmark results in Figure 5.16 required updating the parent of all 
its former children. The parent reference is not required for the batching AVL algorithm, 
therefore it was simply removed.

43



1 final case class BatchingAVLTreeNode[V](
2 replicaId: RID | Null,
3 counter: Int,
4 var _values: ArrayBuffer[V] | Null,
5 var offset: Int,
6 var to: Int,
7 side: Side,
8 var leftChildrenBuffer: SortedSet[AVLTreeNode[BatchingAVLTreeNode[V]]]
9 | AVLTreeNode[BatchingAVLTreeNode[V]] | Null,

10 var rightChildrenBuffer: SortedSet[AVLTreeNode[BatchingAVLTreeNode[V]]]
11 | AVLTreeNode[BatchingAVLTreeNode[V]] | Null,
12 var allowAppend: Boolean,
13 var leftDescCache: AVL2TreeNode[AVLTreeNode[BatchingAVLTreeNode[V]]],
14 var rightDescCache: AVL2TreeNode[AVLTreeNode[BatchingAVLTreeNode[V]]],
15 )

Listing 5.5.: Code excerpt of node data structure for batching AVL algorithm

Closing remarks It is important to note that there is no guarantee this covers all edge 
cases. Except for formal verification, the most feasible way is to thoroughly look at the 
source code and check that each possible operation is able to compute in the expected 
time. Appending to a batched node in our algorithm can be 𝑂(𝑛) in the case that the
ArrayBuffer requires resizing, but our algorithm intentionally targets amortized 𝑂(log(𝑛))
as it is not relevant if a single operation takes a bit longer. Also, resizing the ArrayBuffer
is fast as it only consists of a memory copy.

All these data structures also lead to a high per-node memory overhead, so it may be 
interesting if there are better ways to achieve the same performance goal. Note especially 
the last edge case where almost 1300 bytes are needed per character operation. Through 
optimization, probably in an ahead-of-time compiled language and not Scala or another 
JVM based language, this can probably be reduced at least a bit.

44



5.5. Node Data Structure Including All Optimizations

In Listing 5.5 we show our node data structure for the batching AVL algorithm that com-
bines the batching with the look-up tree optimization. The fields that are from the batching 
node data structure shown in Listing 5.2 have the same meaning as explained in Sec-
tion 5.1. For the look-up tree optimization, the leftDescCache and rightDescCache store 
an AVL tree for quickly retrieving the respective descendant. The leftChildrenBuffer
and rightChildrenBuffer use a SortedSet to insert nodes in log(𝑛) and have an opti-
mization for single or no children to save memory. They also store the children in an
AVLTreeNode for the fast node retrieval using an AVL tree.

45



6. Evaluation

We chose to evaluate our approach by benchmarking with JMH1 as that is the de facto 
Java benchmarking tool. We ran the benchmarks on four Intel Xeon Gold vCPUs with 
8 GB RAM rented from Hetzner Cloud2 (type cx32).

We use the JMH support for async-profiler3 because async-profiler is not affected by the 
Safepoint bias problem4 which can lead to bias in the profiler results. Additionally, its 
allocation profiling does not influence Escape Analysis5 or prevent JIT optimizations like 
allocation elimination and therefore measures only actual heap allocations3.

The Scala.js output was not considered in the analysis given the inherent challenges 
arising from the additional layer of indirection created by the transpilation from Scala 
to JavaScript. This indirection likely affects performance and complicates optimization 
efforts because they potentially only affect the transpiled version rather than the original. 
Furthermore, the resulting code from the transpilation is highly unreadable, which makes 
it difficult to correlate it with the original code especially when it involves standard 
library functionality. Benchmarking the JavaScript transpiled output would have had the 
advantage of being able to directly compare with most other research results, as there is a 
popular framework by Kevin Jahns6 that many publications use [25, Section 5.1].

For our final benchmarks the generic parameter which specified the type of the elements 
in the list data structure was removed and specialized for text. This reduces memory 
usage a bit as Scala otherwise needs to create an object per character. This leads to an 
overhead because of the required metadata per object and because a character object is 
two bytes large, but many characters only need a single byte.

1https://github.com/openjdk/jmh
2https://www.hetzner.com/cloud/
3https://github.com/async-profiler/async-profiler
4https://psy-lob-saw.blogspot.com/2016/02/why-most-sampling-java-profilers-are.html
5https://blogs.oracle.com/javamagazine/post/escape-analysis-in-the-hotspot-jit-compiler
6https://github.com/dmonad/crdt-benchmarks/

46

https://github.com/openjdk/jmh
https://www.hetzner.com/cloud/
https://github.com/async-profiler/async-profiler
https://psy-lob-saw.blogspot.com/2016/02/why-most-sampling-java-profilers-are.html
https://blogs.oracle.com/javamagazine/post/escape-analysis-in-the-hotspot-jit-compiler
https://github.com/dmonad/crdt-benchmarks/


1 ManagementFactory
2 .getPlatformMBeanServer()
3 .nn
4 .invoke(
5 new ObjectName("com.sun.management:type=DiagnosticCommand"),
6 "gcClassHistogram",
7 Array[Object | Null](null),
8 Array("[Ljava.lang.String;")
9 )

Listing 6.1.: Code excerpt of memory usage measurement

1  #instances  #bytes  class name (module)
2 -------------------------------------------------------
3  2957804  94649728  text_rdt.avl2.AVL2TreeNode
4  1609332  88413312  [B (java.base@21.0.3)
5  1478902  82818512  text_rdt.ComplexAVLTreeNode
6  1478902  59156080  text_rdt.avl.AVLTreeNode
7  1058700  50817600  text_rdt.ComplexAVLMessage$Insert
8  1254001  50160040  scala.collection.mutable.RedBlackTree$Node
9  1596802  38323248  java.lang.StringBuilder (java.base@21.0.3)

10  1478903  35493672  text_rdt.avl2.AVL2Tree
11  1596801  25548816  scala.collection.mutable.StringBuilder
12  710800  22745600  text_rdt.ComplexAVLMessage$Delete
13  538103  17219296  scala.collection.mutable.HashMap$Node
14  538105  12914520  scala.Tuple2
15  538101  12914424  text_rdt.SimpleID
16  2270  9637384  [Ljava.lang.Object; (java.base@21.0.3)
17  313201  7516824  scala.collection.mutable.RedBlackTree$Tree
18  313201  7516824  scala.collection.mutable.TreeSet
19  182315  4375560  text_rdt.FixtureOperation$Insert
20  2  4194368  [Lscala.collection.mutable.HashMap$Node;
21  77463  1239408  text_rdt.FixtureOperation$Delete
22 ...
23 Total  17763864  627984600

Listing 6.2.: Memory usage for batching AVL algorithm

47



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5x106  1x107  1.5x107  2x107  2.5x107

batching AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 5

 10

 15

 20

 25

 30

 0  5x106  1x107  1.5x107  2x107  2.5x107

batching AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 6.1.: Benchmark results for repeatedly concatenated real world text inserted locally 
with the batching AVL algorithm

6.1. Measuring Maximum Memory Usage

The memory usage is calculated using the code in Listing 6.1, which is equivalent to jcmd 
PID GC.class_histogram. It is measured before and after running the operations and 
the difference is then visualized in our graphs. The memory usage is returned using JMH
AuxCounters7 to ensure it is measured for exactly the same case as the CPU benchmarks.

For the 100 times consecutively written real-world benchmark the memory usage is as 
shown in Listing 6.2. The avl2 types are used for the leftmost and rightmost descendant 
cache which indicates that optimizing these would improve memory usage consider-
ably, see Chapter 7. The ComplexAVLTreeNode is created for every batched node and the
AVLTreeNode is needed for the AVL lookup tree and also created for every batched node. 
The byte arrays ([B) in combination with StringBuilder are used to store the underly-
ing text. The ComplexAVLMessage stores the history of all messages. The HashMap$Node,
[Lscala.collection.mutable.HashMap$Node, Tuple2 and SimpleID are used to asso-
ciate IDs with the respective nodes. The RedBlackTree and TreeSet are used for multiple 
same-side children and for quickly retrieving the correct node when a batching node 
has been split. The FixtureOperation is the underlying test data and therefore does not 
count towards the memory usage when measuring the memory usage difference before 
and after running the test.

7https://github.com/openjdk/jmh/blob/master/jmh-core/src/main/java/org/openjdk/jmh/
annotations/AuxCounters.java

48

https://github.com/openjdk/jmh/blob/master/jmh-core/src/main/java/org/openjdk/jmh/annotations/AuxCounters.java
https://github.com/openjdk/jmh/blob/master/jmh-core/src/main/java/org/openjdk/jmh/annotations/AuxCounters.java


 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5x106  1x107  1.5x107  2x107  2.5x107

batching AVL

tim
e 

(m
ic

ro
se

co
nd

s)
 / 

ch
ar

ac
te

r 
op

er
at

io
n

character operations

(a) time

 0

 5

 10

 15

 20

 25

 30

 0  5x106  1x107  1.5x107  2x107  2.5x107

batching AVL

m
em

or
y 

(b
yt

es
) 

/ c
ha

ra
ct

er
 o

pe
ra

tio
n

character operations

(b) memory

Figure 6.2.: Benchmark results for repeatedly concatenated real world text inserted re-
motely with the batching AVL algorithm

6.2. Results

Section 5.4 already looked at performance edge cases and artificial cases which are 
important to cover in the context of decentralized algorithms, so there is no case that 
could severely reduce the performance of the algorithm which could lead to it becoming 
unusable. Otherwise, edit actions that hit such an edge case by chance, attackers, or even 
just a large amount of activity could lead to this slowdown.

Figure 6.1 shows the real world text repeated 100 times to match benchmark B4x100 
from Jahns benchmark framework8. Figure 6.2 shows the same but simulating that the 
edit operations are received from a remote replica. Both benchmarks show that operations 
are performant independent of the text size with one microsecond per operation. Memory 
usage is acceptable with about 25 bytes per operation but could likely be improved further.

A real world editing trace with concurrent edits in an offline context would be useful to 
analyze performance in that case, but unfortunately we are not aware of such a dataset. 
As our algorithm has a time complexity of 𝑂(𝑛 log(𝑛)) for 𝑛 character operations in all 
cases this would only allow more accurate measurements, for example for the expected 
memory usage per operation.

8https://github.com/dmonad/crdt-benchmarks/

49

https://github.com/dmonad/crdt-benchmarks/


6.3. Investigating Prior Benchmarks

The prior benchmarks based on Jahns benchmark framework9 have several issues. First, 
they do not give any indication about asymptotic behavior as they are only executed with 
one relatively small choice for 𝑁 which parameterizes the repetition of operations or 
client count. Optimizing asymptotic behavior is much harder in general than achieving 
acceptable performance for the common choice of 𝑁 = 6000 on modern CPUs with 
multiple billion instruction cycles per second. Also, they do not use a trusted benchmark 
framework but use self-written warmup and benchmark code which is likely affecting the 
accuracy of the benchmark as they run in the context of a JIT compiler similar to the JVM. 
The JMH framework is designed to have as accurate results as possible.

9https://github.com/dmonad/crdt-benchmarks/

50

https://github.com/dmonad/crdt-benchmarks/


7. Future Work

In this chapter we look at what is missing and which aspects could be researched further.

Investigating OT Algorithms In their review of the Fugue paper, Sun shows that the 
claims in the Fugue paper [25] about OT being interleaving are not correct [19, 23, 22, 
20]. First, they show that mistakes were made in the Fugue paper when applying the 
OT algorithms which render their results regarding OT invalid [23, 22]. They also show 
that interleaving has been examined and documented before and can be solved in OT, 
usually by having operations based on strings and not single characters, but this is also 
possible when operating on single characters [22]. Therefore, investigating OT algorithms, 
especially in a non-realtime setting could be interesting.

Necessary Non-interleaving Properties for Intent-Preserving Text Editing The review 
by Sun also suggests that not all the properties that are proposed in the Fugue paper 
(especially multi-user relay interleaving and backward interleaving) are necessary or useful 
for user intent preserving text editing [22]. While the examples we show in Section 2.1 
and Section 2.2 are realistic, we do not know which properties are strictly necessary, 
as required properties seriously limit the freedom in the design of suitable algorithms. 
For example, the Fugue paper proposes a property of maximally non-interleaving that 
produces a unique order with the least possible interleaving. While it is interesting that 
this property produces a unique order it is unclear whether this is useful in practice. Our 
example in Section 2.2 also shows that this property is not sufficient for non-interleaving 
when deletions are involved. Future work could investigate how this property could be 
adapted to better model non-interleaving in such cases.

51



Privacy One big problem we see with all these algorithms is that it is hard or impossible 
to properly delete data in case a user wishes to do so while still being able to converge 
and preserve user intentions. Future work could investigate which possibilities exist to 
actually remove deleted text. One possibility could be to clear the deleted characters in 
the tree. This would also work for the causal broadcast messages but then undo would 
not be possible anymore. Therefore, maybe more control is needed for end users whether 
they want to do a normal deletion or a permanent deletion, which would break undo, and 
also to see which data is still visible in the internal data structure or in the message log.

As the messages are only required to be processed by the peers themselves, adding 
encryption should be comparatively easy. This could also route messages over a server 
and store them there without the server being able to read the contents. Some thought 
should still be put into what can be inferred from metadata like message timing and size. 
For example, it would likely be possible for the server to find out which user writes how 
many characters at what time.

Correctness Currently, there is little protection against messages that do not conform 
to the expected rules. For example if two peers send different characters with the same 
ID this will create inconsistencies or potentially also crashes. Also peers can easily send 
characters for other peers as the peer ID is not verified to be only used by the respective 
peer. This should be tested more, for example using fuzzing tests that can send arbitrary 
messages that do not conform to the rules. Also, inconsistencies by different characters 
with the same ID should be avoided, for example by making the character part of the ID.

While our property tests seemed to find all relevant issues, they were pretty limited for 
tests with multiple replicas and could not check the exact expected outcome in that case. 
Therefore, it may be interesting to find ways to more thoroughly test this while also testing 
non-interleaving.

Usability Rich text is probably the largest missing feature that may also lead to many 
design challenges. First, there is inline formatting like bold, underlined, italic, strike-
through, subscript or superscript text. But there is also structural formatting like headings, 
subheadings, ordered and unordered lists, tables, etc. Both create new challenges with 
user intent. While for OT there is a lot of previous work which is also successfully used 
in production e.g. Google Docs1, for CRDTs there is not much previous research [9]. 
The Peritext paper [9] investigates inline formatting and shows some problems in prior 

1https://www.google.com/docs/about/

52

https://www.google.com/docs/about/


algorithms with correctly preserving user intentions [9]. For example the Yjs algorithm 
based on Yet Another Transformation Approach (YATA) [12] adds markers where inline 
formatting starts and where it ends into the text. This fails to handle a simple case where 
a bold text is unbolded and concurrently part of that bold text is unbolded which then 
leads to unrelated text getting bold [9, Section 2.3.2].

In a collaborative context it needs to be possible to undo arbitrary actions by any user and 
not only the last action like it is usually the case in traditional editors. Therefore, support 
for so-called selective undo is needed. For OT algorithms, transformations need to be 
applied to the correct document context [16]. This means the control algorithms need 
to properly handle this and transformation functions potentially need to uphold specific 
properties [16].

When part of a text is moved and concurrently part of that text is edited it would make 
sense that these edits are correctly preserved. As normal copy and paste does not track 
this state this needs a special operation or needs to store the necessary metadata in the 
clipboard. Also, this needs support at the CRDT level [1, 5].

Instead of operating on a character level it could make sense to operate on a string level. 
This would be more efficient and could have better semantics for range deletions, copy and 
paste or moving text. For OT this seems to often be done but is much more complicated, 
especially in combination with undo [21].

While we did not look at this in this thesis, it is not hard to serialize and deserialize our 
representation. It may be interesting to find out which parts of the data structures, that 
are only needed to improve lookup performance, should be persisted to storage and which 
parts can be quickly rebuilt on loading.

Performance While in some cases the full editing history needs to be kept to be able 
to attribute all changes, in other cases it can be reduced as much as possible without 
causing causality problems. The approach of the antimatter2 algorithm is to combine 
operations that have been seen by the same group of peers by tracking acknowledgements. 
In case peers go offline but come online at some point later it can potentially still combine 
operations.

Our current performance measurements only test non-concurrent actions. It may be 
beneficial to either find or create some real-world editing trace with concurrent actions or 
generate some artificial trace like in YATA [12, Section 6.1].

2https://web.archive.org/web/20240623153539/https://braid.org/antimatter

53

https://web.archive.org/web/20240623153539/https://braid.org/antimatter


The memory usage per character is pretty high, even for the real world benchmark. Except 
for using a low-level language it could also make sense to investigate how to only create 
the cache for the leftmost and rightmost descendant if they are deeply nested which based 
on Section 6.1 would likely save large amounts of memory.

When the data is larger than the available memory, our algorithm currently can only 
be used with swapping. Future work could look into alternatives, for example to store 
currently not edited parts to disk.

54



8. Conclusion

This thesis shows that efficient collaborative plain text editing in a decentralized and 
non-realtime setting while preserving user intentions is possible. The optimization to 
logarithmic runtime per operation in relation to the text length ensures that this is 
also efficient for extremely large text. This thesis also shows that prior benchmarks do 
not measure asymptotic complexity and do not cover all algorithmic performance edge 
cases and proposes to include both in future benchmarks. This is especially an issue in 
decentralized networks, as there is only limited control over all messages and peers can 
send you messages with malicious content that triggers these edge cases.

The WebRTC implementation shows a practical example of text editing in P2P networks 
and allows easy experimentation.

Section 2.1 shows that interleaving for the maximally non-interleaving property [25] is 
indeed possible when deletions are involved. Therefore, a more accurate property should 
be researched to ensure non-interleaving.

Significant parts that are common in text editing are still missing, the largest being rich 
text support. Rich text support likely leads to further implementation and optimization 
challenges, and it is not clear whether these are solvable while preserving the same 
asymptotic complexity in all cases. Additionally, the preservation of user intentions of 
formatting actions likely has similar challenges as ensuring non-interleaving has. The 
interaction of rich text and being able to undo arbitrary actions likely also poses further 
challenges.

While testing whether the algorithm converges is comparably simple, testing intent preser-
vation and non-interleaving without reimplementing the algorithm in the test is chal-
lenging. As testing is a critical part to ensure correctness, more focus needs to be put on 
testing text editing algorithms.

55



Acknowledgments

I would like to thank everyone who reviewed drafts of this thesis. I would also like to 
thank my human and non-human rubber ducks for their help in debugging my code.

56



Acronyms

CRDT conflict-free replicated data type 8–10, 13, 16, 17, 52, 53

DTN delay tolerant network 7, 8

MANET mobile ad hoc network 7

OT operational transformation 8–10, 16, 17, 51–53

P2P peer-to-peer 7, 24, 55

RDT replicated data type 26

RGA Replicated Growable Array 8, 17

WOOT WithOut Operational Transforms 8

YATA Yet Another Transformation Approach 53

57



Bibliography

[1] Parwat Singh Anjana, Adithya Rajesh Chandrassery, and Sathya Peri. “ An Efficient 
Approach to Move Elements in a Distributed Geo-Replicated Tree”. In: IEEE 15th 
International Conference on Cloud Computing, CLOUD 2022, Barcelona, Spain, July 
10-16, 2022. Ed. by Claudio Agostino Ardagna et al. IEEE, 2022, pp. 479–488. doi: 
10.1109/CLOUD55607.2022.00071. url: https://doi.org/10.1109/CLOUD55607.
2022.00071.

[2] Jim Bauwens, Kevin De Porre, and Elisa Gonzalez Boix. “ [Short paper] Towards 
improved collaborative text editing CRDTs by using Natural Language Processing”. 
In: Proceedings of the 10th Workshop on Principles and Practice of Consistency for 
Distributed Data, PaPoC 2023, Rome, Italy, 8 May 2023. Ed. by Elisa Gonzalez Boix 
and Pierre Sutra. ACM, 2023, pp. 51–55. doi: 10.1145/3578358.3591330. url: 
https://doi.org/10.1145/3578358.3591330.

[3] Kenneth Birman, André Schiper, and Pat Stephenson. “ Lightweight causal and 
atomic group multicast”. In: ACM Trans. Comput. Syst. 9.3 (1991), pp. 272–314.
issn: 0734-2071. doi: 10.1145/128738.128742. url: https://doi.org/10.1145/
128738.128742.

[4] Loı̈ck Briot, Pascal Urso, and Marc Shapiro. “ High Responsiveness for Group Editing 
CRDTs”. In: Proceedings of the 2016 ACM International Conference on Supporting 
Group Work. GROUP ’16. Sanibel Island, Florida, USA: Association for Computing 
Machinery, 2016, pp. 51–60. isbn: 9781450342766. doi: 10 . 1145 / 2957276 .
2957300. url: https://doi.org/10.1145/2957276.2957300.

[5] Liangrun Da and Martin Kleppmann. “ Extending JSON CRDT with Move Oper-
ations”. In: CoRR abs/2311.14007 (2023). doi: 10.48550/ARXIV.2311.14007. 
arXiv: 2311.14007. url: https://doi.org/10.48550/arXiv.2311.14007.

[6] Colin J. Fidge. Timestamps in Message-Passing Systems That Preserve the Partial 
Ordering. 1988.

58

https://doi.org/10.1109/CLOUD55607.2022.00071
https://doi.org/10.1109/CLOUD55607.2022.00071
https://doi.org/10.1109/CLOUD55607.2022.00071
https://doi.org/10.1145/3578358.3591330
https://doi.org/10.1145/3578358.3591330
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/2957276.2957300
https://doi.org/10.1145/2957276.2957300
https://doi.org/10.1145/2957276.2957300
https://doi.org/10.48550/ARXIV.2311.14007
https://arxiv.org/abs/2311.14007
https://doi.org/10.48550/arXiv.2311.14007


[7] Martin Kleppmann et al. “ Interleaving anomalies in collaborative text editors”. 
In: Proceedings of the 6th Workshop on Principles and Practice of Consistency for 
Distributed Data, PaPoC@EuroSys 2019, Dresden, Germany, March 25-28, 2019. 
ACM, 2019, 6:1–6:7. doi: 10.1145/3301419.3323972. url: https://doi.org/10.
1145/3301419.3323972.

[8] Martin Kleppmann et al. “ Local-first software: you own your data, in spite of the 
cloud”. In: Onward! ACM, 2019, pp. 154–178.

[9] Geoffrey Litt et al. “ Peritext: A CRDT for Collaborative Rich Text Editing”. In: Proc. 
ACM Hum. Comput. Interact. 6.CSCW2 (2022), pp. 1–36. doi: 10.1145/3555644.
url: https://doi.org/10.1145/3555644.

[10] Friedemann Mattern. Virtual Time and Global States of Distributed Systems. 1988.
[11] David A. Nichols et al. “ High-Latency, Low-Bandwidth Windowing in the Jupiter Col-

laboration System”. In: ACM Symposium on User Interface Software and Technology. 
ACM, 1995, pp. 111–120.

[12] Petru Nicolaescu et al. “ Near Real-Time Peer-to-Peer Shared Editing on Extensible 
Data Types”. In: Proceedings of the 19th International Conference on Supporting 
Group Work, Sanibel Island, FL, USA, November 13 - 16, 2016. 2016, pp. 39–49. doi: 
10.1145/2957276.2957310. url: https://doi.org/10.1145/2957276.2957310.

[13] Gérald Oster et al. “ Data consistency for P2P collaborative editing”. In: Proceedings 
of the 2006 ACM Conference on Computer Supported Cooperative Work, CSCW 2006, 
Banff, Alberta, Canada, November 4-8, 2006. Ed. by Pamela J. Hinds and David
Martin. ACM, 2006, pp. 259–268. doi: 10.1145/1180875.1180916. url: https:
//doi.org/10.1145/1180875.1180916.

[14] Hyun-Gul Roh et al. “ Replicated abstract data types: Building blocks for collab-
orative applications”. In: J. Parallel Distributed Comput. 71.3 (2011), pp. 354–
368.

[15] Chengzheng Sun et al. “ Real Differences between OT and CRDT under a General 
Transformation Framework for Consistency Maintenance in Co-Editors”. In: CoRR
abs/1905.01518 (2019). arXiv: 1905.01518. url: http://arxiv.org/abs/1905.
01518.

[16] David Sun and Chengzheng Sun. “ Context-Based Operational Transformation in 
Distributed Collaborative Editing Systems”. In: IEEE Trans. Parallel Distributed 
Syst. 20.10 (2009), pp. 1454–1470. doi: 10.1109/TPDS.2008.240. url: https:
//doi.org/10.1109/TPDS.2008.240.

59

https://doi.org/10.1145/3301419.3323972
https://doi.org/10.1145/3301419.3323972
https://doi.org/10.1145/3301419.3323972
https://doi.org/10.1145/3555644
https://doi.org/10.1145/3555644
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/1180875.1180916
https://doi.org/10.1145/1180875.1180916
https://doi.org/10.1145/1180875.1180916
https://arxiv.org/abs/1905.01518
http://arxiv.org/abs/1905.01518
http://arxiv.org/abs/1905.01518
https://doi.org/10.1109/TPDS.2008.240
https://doi.org/10.1109/TPDS.2008.240
https://doi.org/10.1109/TPDS.2008.240


[17] David Sun et al. “ Real Differences between OT and CRDT in Building Co-Editing 
Systems and Real World Applications”. In: CoRR abs/1905.01517 (2019). arXiv: 
1905.01517. url: http://arxiv.org/abs/1905.01517.

[18] David Sun et al. “ Real Differences between OT and CRDT in Correctness and 
Complexity for Consistency Maintenance in Co-Editors”. In: CoRR abs/1905.01302 
(2019). arXiv: 1905.01302. url: http://arxiv.org/abs/1905.01302.

[19] Dr. Chengzheng Sun. A Critical Examination of “the Fugue Paper” in Relation to OT. 
2023. url: https://web.archive.org/web/20240603141053/https://medium.
com/codox/a-critical-examination-of-the-fugue-paper-in-relation-to-
ot-157f6ccaed95 (visited on 06/03/2024).

[20] Dr. Chengzheng Sun. Dispelling Misconceptions in the Fugue Paper about GOT and OT. 
2023. url: https://web.archive.org/web/20240603143419/https://medium.
com/codox/dispelling-misconceptions-in-the-fugue-paper-about-got-and-
ot-16e362609f6f (visited on 06/03/2024).

[21] Dr. Chengzheng Sun. Operational Transformation Frequently Asked Questions and 
Answers. 2024. url: https://web.archive.org/web/20240603145105/https://
www3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/ (visited on 06/03/2024).

[22] Dr. Chengzheng Sun. Unveiling Issues with the Fugue Paper Regarding Jupiter-OT. 
2023. url: https://web.archive.org/web/20240603142535/https://medium.
com/codox/unveiling-issues-with-the-fugue-paper-regarding-jupiter-ot-
72565337b923 (visited on 06/03/2024).

[23] Dr. Chengzheng Sun. What’s wrong with the Fugue Paper about adOPTed and OT?
2023. url: https://web.archive.org/web/20240603141850/https://medium.
com/codox/whats-wrong-with-the-fugue-paper-about-adopted-and-ot-
9e74ffa0f828 (visited on 06/03/2024).

[24] Andrew S. Tanenbaum. Distributed Systems: Pearson New International Edition : 
Principles and Paradigms. 2013. url: https://elibrary.pearson.de/book/99.
150005/9781292038001.

[25] Matthew Weidner, Joseph Gentle, and Martin Kleppmann. “ The Art of the Fugue: 
Minimizing Interleaving in Collaborative Text Editing”. In: CoRR abs/2305.00583 
(2023). doi: 10.48550/ARXIV.2305.00583. arXiv: 2305.00583. url: https:
//doi.org/10.48550/arXiv.2305.00583.

60

https://arxiv.org/abs/1905.01517
http://arxiv.org/abs/1905.01517
https://arxiv.org/abs/1905.01302
http://arxiv.org/abs/1905.01302
https://web.archive.org/web/20240603141053/https://medium.com/codox/a-critical-examination-of-the-fugue-paper-in-relation-to-ot-157f6ccaed95
https://web.archive.org/web/20240603141053/https://medium.com/codox/a-critical-examination-of-the-fugue-paper-in-relation-to-ot-157f6ccaed95
https://web.archive.org/web/20240603141053/https://medium.com/codox/a-critical-examination-of-the-fugue-paper-in-relation-to-ot-157f6ccaed95
https://web.archive.org/web/20240603143419/https://medium.com/codox/dispelling-misconceptions-in-the-fugue-paper-about-got-and-ot-16e362609f6f
https://web.archive.org/web/20240603143419/https://medium.com/codox/dispelling-misconceptions-in-the-fugue-paper-about-got-and-ot-16e362609f6f
https://web.archive.org/web/20240603143419/https://medium.com/codox/dispelling-misconceptions-in-the-fugue-paper-about-got-and-ot-16e362609f6f
https://web.archive.org/web/20240603145105/https://www3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/
https://web.archive.org/web/20240603145105/https://www3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/
https://web.archive.org/web/20240603142535/https://medium.com/codox/unveiling-issues-with-the-fugue-paper-regarding-jupiter-ot-72565337b923
https://web.archive.org/web/20240603142535/https://medium.com/codox/unveiling-issues-with-the-fugue-paper-regarding-jupiter-ot-72565337b923
https://web.archive.org/web/20240603142535/https://medium.com/codox/unveiling-issues-with-the-fugue-paper-regarding-jupiter-ot-72565337b923
https://web.archive.org/web/20240603141850/https://medium.com/codox/whats-wrong-with-the-fugue-paper-about-adopted-and-ot-9e74ffa0f828
https://web.archive.org/web/20240603141850/https://medium.com/codox/whats-wrong-with-the-fugue-paper-about-adopted-and-ot-9e74ffa0f828
https://web.archive.org/web/20240603141850/https://medium.com/codox/whats-wrong-with-the-fugue-paper-about-adopted-and-ot-9e74ffa0f828
https://elibrary.pearson.de/book/99.150005/9781292038001
https://elibrary.pearson.de/book/99.150005/9781292038001
https://doi.org/10.48550/ARXIV.2305.00583
https://arxiv.org/abs/2305.00583
https://doi.org/10.48550/arXiv.2305.00583
https://doi.org/10.48550/arXiv.2305.00583


[26] Stéphane Weiss, Pascal Urso, and Pascal Molli. “ Logoot: A Scalable Optimistic 
Replication Algorithm for Collaborative Editing on P2P Networks”. In: 29th IEEE 
International Conference on Distributed Computing Systems (ICDCS 2009), 22-26 
June 2009, Montreal, Québec, Canada. IEEE Computer Society, 2009, pp. 404–412.
doi: 10.1109/ICDCS.2009.75. url: https://doi.org/10.1109/ICDCS.2009.75.

61

https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/ICDCS.2009.75


A. Appendix

A.1. CPU Profile for Simple Algorithm with Sequential Insertions

62



A.2. CPU Profile for Batching Algorithm with Sequential Insertions

63



A.3. Allocation Profile for Batching Algorithm with Sequential In-
sertions

64



A.4. CPU Profile for Batching Algorithm with Real World Dataset

65



A.5. CPU Profile for Simple AVL Algorithm with Real World Dataset

66



A.6. Allocation Profile for Simple AVL Algorithm with Real World 
Dataset

67



A.7. Code Showing FugueMax Is Interleaving

1 let rng = seedrandom("42");
2 let docA = new CRuntime({
3 debugReplicaID: ReplicaIDs.pseudoRandom(rng),
4 });
5 let ctextA = docA.registerCollab(
6 "text",
7 (init) => new FugueMaxSimple(init)
8 );
9 let docB = new CRuntime({

10 debugReplicaID: ReplicaIDs.pseudoRandom(rng),
11 });
12 let ctextB = docB.registerCollab(
13 "text",
14 (init) => new FugueMaxSimple(init)
15 );
16 let messageA: Uint8Array = null!
17 docA.on("Send", (e) => {
18 messageA = e.message
19 })
20 let messageB: Uint8Array = null!
21 docB.on("Send", (e) => {
22 messageB = e.message
23 })
24 docA.transact(() => {
25 ctextA.insert(0, 'S')
26 ctextA.insert(1, 'h')
27 ctextA.insert(2, 'o')
28 ctextA.insert(3, 'p')
29 ctextA.insert(4, 'p')
30 ctextA.insert(5, 'i')
31 ctextA.insert(6, 'n')
32 ctextA.insert(7, 'g')
33 })
34 docB.receive(messageA)

68



35 docB.transact(() => {
36 ctextB.insert(8, '*')
37 ctextB.insert(9, 'b')
38 ctextB.insert(10, 'r')
39 ctextB.insert(11, 'e')
40 ctextB.insert(12, 'a')
41 ctextB.insert(13, 'd')
42 ctextB.delete(7)
43 ctextB.insert(7, 'g')
44 ctextB.insert(8, 'B')
45 ctextB.insert(9, 'a')
46 ctextB.insert(10, 'k')
47 ctextB.insert(11, 'e')
48 ctextB.insert(12, 'r')
49 ctextB.insert(13, 'y')
50 ctextB.insert(14, ':')
51 })
52 docA.transact(() => {
53 ctextA.insert(8, '*')
54 ctextA.insert(9, 'a')
55 ctextA.insert(10, 'p')
56 ctextA.insert(11, 'p')
57 ctextA.insert(12, 'l')
58 ctextA.insert(13, 'e')
59 ctextA.insert(14, 's')
60 ctextA.insert(8, 'F')
61 ctextA.insert(9, 'r')
62 ctextA.insert(10, 'u')
63 ctextA.insert(11, 'i')
64 ctextA.insert(12, 't')
65 ctextA.insert(13, ':')
66 })
67 docB.receive(messageA)
68 docA.receive(messageB)
69 console.log([...ctextA.values()].join(""))
70 console.log([...ctextB.values()].join(""))

69


	Introduction
	Challenges with Collaborative Text Editing
	Text Interleaving
	Fugues Approach to Avoid Text Interleaving
	OT in Comparison to CRDTs

	Fugue Algorithm
	Traversal
	Initial State
	Operations
	Intuitive Reason for Avoiding Interleaving

	Implementation of Fugue Algorithm
	Required Implementation Functionality
	Browser Implementation of Text Editor
	Synchronization of Changes
	Testing Using Property Tests
	Issues in the Algorithmic Description

	Optimizing Common Edit Operations
	Optimization Using Batching
	Optimization Using a Look-Up Datastructure
	Combined Optimizations
	Performance Edge Cases
	Node Data Structure Including All Optimizations

	Evaluation
	Measuring Maximum Memory Usage
	Results
	Investigating Prior Benchmarks

	Future Work
	Conclusion
	Acronyms
	Appendix
	CPU Profile for Simple Algorithm with Sequential Insertions
	CPU Profile for Batching Algorithm with Sequential Insertions
	Allocation Profile for Batching Algorithm with Sequential Insertions
	CPU Profile for Batching Algorithm with Real World Dataset
	CPU Profile for Simple AVL Algorithm with Real World Dataset
	Allocation Profile for Simple AVL Algorithm with Real World Dataset
	Code Showing FugueMax Is Interleaving


