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Kurzfassung

Die Energiewende bringt zahlreiche Herausforderungen mit sich, die eine Vielzahl von
Entscheidungen erfordern. Optimierungsbasierte Energiesystemmodelle (ESM) sind nüt-
zlicheWerkzeuge, um diese Entscheidungsprozesse zu erleichtern. Allerdings sind ESMs oft
zu umfangreich und komplex für Entscheidungsträger wie CEOs, Politiker oder Bürger, die
in der Regel nicht über Modellierungsexpertise verfügen. Erklärungen sind notwendig, um
die komplexen Ergebnisse und das unintuitive Verhalten von ESM für Entscheidungsträger
nutzbar zu machen und mögliche Diskrepanzen zwischen ihren Zielen und den Modellan-
nahmen zu erkennen.
Diese Arbeit konzentriert sich auf verschiedene Erklärungsansätze für optimierungsbasierte
ESM. Zunächst werden die Erklärungsansätze aus psychologischer und philosophischer
Sicht betrachtet, um die grundlegenden Prozesse und Faktoren zu identifizieren, die für
eine Erklärung notwendig sind und deren wahrgenommene Adäquatheit bestimmen.
Basierend auf diesen grundlegenden Konzepten, bewerten wir den aktuellen Stand der
Technik bei der Erklärung von ESM und identifizieren Mängel in den bestehenden Erk-
lärungsansätzen. Wir zeigen Parallelen zwischen den Herausforderungen der Erklärbarkeit
im Gebiet der ESM und dem Gebiet des maschinellen Lernens, insbesondere im Bereich
der Erklärbaren Künstlichen Intelligenz (XAI), die sich auf die Entwicklung von Methoden
zur Verbesserung der Erklärbarkeit von maschinellen Lernmodellen konzentriert.
Diese Arbeit beschäftigt sich mit drei verschiedenen Ansätzen aus den oben genannten
Bereichen, um Erklärungen für optimierungsbasierte ESM zu verbessern. Zunächst wird
ein Ansatz aus dem Bereich der XAI auf ein ESM übertragen, um zwei Defizite bestehender
ESM-Erklärungen zu adressieren: den Einfluss hochdimensionaler Eingabeparameter
und die Generierung von Erklärungen unterschiedlicher Komplexität für verschiedene
Zielgruppen. Angesichts der Schlüsselrolle, die der Kausalität bei der Erzeugung von
Erklärungen zukommt, untersuchen wir die Verwendung kausaler graphischer Modelle zur
Erklärung von ESMs. Schließlich entwerfen wir einen interaktiven Ansatz, um das praktis-
che Erlernen von ESM am Beispiel der Energiewende zu erleichtern, und evaluieren die
Wirksamkeit dieses Ansatzes im Rahmen eines Universitätskurses für Masterstudierende.
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Abstract

The transition towards a renewable energy system presents numerous challenges, de-
manding extensive decision-making processes. Optimization-based energy system models
(ESMs) are valuable tools to facilitate these decisions. However, these models often prove
too intricate and expansive for decision-makers, such as CEOs, politicians, or citizens,
who typically lack expertise in ESMs. Consequently, there is a pressing need for expla-
nations to bridge the gap between the complexity of ESM results and decision-makers
comprehension, allowing them to discern potential disparities between their objectives
and the model’s assumptions.
This thesis focuses on various explanations for optimization-based ESMs. Initially, we
explore explanations from psychological and philosophical perspectives to identify the
fundamental concepts necessary for creating comprehensive explanations and elucidate
the key factors essential for these explanations to be deemed adequate. Armed with these
foundational concepts, we assess the current state-of-the-art in explaining ESMs, identify-
ing existing shortcomings in explanation methodologies. We draw parallels between the
challenges faced by the ESM domain and the field of machine learning, particularly in
the domain of explainable artificial intelligence (XAI), which is dedicated to developing
methods to enhance the explainability of machine learning models.
This thesis delves into three distinct approaches from the abovementioned domains to
address these challenges and enhance explanations for optimization-based ESMs. Firstly,
we adopt an approach from XAI to ESMs to overcome two prevalent shortcomings in
ESM explanations: elucidating the impact of high-dimensional input data and tailoring
explanation complexities to different target audiences. Given the key role of causality in
crafting explanations, we explore the utilization of causal graphical models for explaining
ESMs. Finally, we design an interactive approach to facilitate hands-on learning of ESMs,
focusing on the example of energy transition, and evaluate the efficacy of this approach
within the context of a graduate-level university course.
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1. Introduction

The global shift from traditional, non-renewable energy sources such as coal, oil, and
natural gas towards renewable energy sources such as wind, solar, and hydropower is one
of the important tasks of our time. The transition to renewable energy responds to the
growing concern over climate change and the need to reduce greenhouse gas emissions
to limit its impacts. Energy production is one of the most significant contributors to
greenhouse gas emissions. Therefore a transition to renewable energy is essential for
reducing our carbon footprint.

With a transition towards a renewable energy system, new challenges emerge that require
a lot of decision-making. The intermittency and variability of renewable energy sources
pose challenges for grid operators, who must ensure a real-time balance between energy
supply and demand. A more diverse structure of energy consumers and producers, as well
as the limited local potential of some renewable power plants [1], will require significant
changes in storage and grid infrastructure [2].

While renewable energy is becoming increasingly cost-competitive, there are still significant
upfront costs associated with building new infrastructure that have to be financed. The
absence of supportive policies could slow the energy transition [3] if incentives to move
away from non-renewable energy sources are lacking. The transition might be hindered
even more if regulations are in place that actively limit the expansion of renewable power
plants [4].

Despite the energy transition’s potential environmental and economic benefits in the long
run[5], it may also result in job losses in traditional energy sectors, leading to social
and political backlash. Additionally, communities may resist developing new energy
infrastructure, such as wind turbines and solar farms, due to concerns about their impact
on local wildlife or their perceived visual or acoustic disturbance [6].

Therefore, decision-makers (DMs) who make energy-related investments face career risks,
such as loss of investment or loss of reputation, if they approve energy projects that fail.
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Such DMs could be CEOs who decide to invest in a new, more energy-efficient production
facility, politicians who decide on new regulations, e.g. for a minimum distance between
wind turbines and settlements, or citizens who invest in balcony power plants. Rejecting
projects has typically fewer immediate consequences, but rejecting projects necessary
to advance energy transition might be even more damaging for society then choosing
unpopular projects in the long run.

The success of energy systems projects often depends on various parameters. The systems
are commonly connected to other energy systems, making even small energy projects
complex and hard to understand. Energy system models can serve as valuable tools to
support DMs in making better-informed decisions.

Energy system models (ESMs), such as TIMES [7] or OSeMOSYS[8], provide insights
into the impacts and feasibility of different energy transition pathways. These models
simulate and evaluate the economic effects of various scenarios, such as different levels of
renewable energy deployment or the introduction of new technologies. Moreover, ESMs
can help identify the cost-optimal mix of energy sources that meet energy demand while
minimizing greenhouse gas emissions. By using ESMs, regulatory interventions intended
to support the energy transition, such as carbon pricing, renewable energy incentives, and
energy efficiency standards, can be evaluated before implementation in the real world.
These models can also offer insights into necessary energy infrastructure extensions, such
as additional transmission lines or energy storage. ESMs can have different temporal and
spatial scales, i.e., one ESM can help with operational planning for a single power plant,
while another can help with long-term development planning for the national power grid.

However, ESMs are typically designed by domain experts for domain experts. They con-
sist of numerous parameters, often reaching several millions, making expert knowledge
essential for their construction, operation, and interpretation of results. Even for domain
experts, interpreting ESM results can be challenging, as the models’ behavior may be
counter-intuitive under certain circumstances [9]. DMs responsible for energy infrastruc-
ture decisions are usually not domain experts but individuals with limited ESM expertise.
Therefore, DMs wishing to utilize ESMs for their decision-making must either trust and rely
on domain experts to interpret the results or strive to understand the models themselves
[10]. In order to make informed decisions and avoid undue reliance on potentially biased
domain experts, DMs should aim to understand ESMs or at least comprehend their results.

Hence, the challenge of this thesis is to develop methods that can generate explanations
for ESMs that are accessible to individuals without expertise in the energy system domain,
such as CEOs, politicians, or citizens. More specifically, this thesis focuses on explanation
methods for optimization-based ESMs based on linear programs (LP) [7] or mixed-integer
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linear programs (MILP) [11]. It is essential to differentiate between optimization-based
ESM and those based on statistical learning methods. Models based on statistical learning
are often perceived as black boxes because their internal parameters are learned from data
and are not known in advance, rendering their decision-making processes opaque. The field
of explainable artificial intelligence (XAI) explores methods to clarify the decision-making
of machine learning black box models, and these techniques can also be applied to learning-
based ESMs enhancing their transparency [12]. In contrast, optimization-based ESMs are
regarded as white-box models since domain experts select their internal parameters, and
the model does not learn the parameters. However, while explaining the derivation of
results for small ESM may be possible using methods such as sensitivity analysis [13],
doing so becomes impractical or even infeasible within a reasonable timeframe for large
models with millions of parameters and decision variables. Furthermore, the required
knowledge about the mathematical principles of optimization render the understanding
of such models impossible for those who lack this knowledge, despite the white-box
characteristics of optimization models.

To illustrate the challenges involved in explaining optimization-based ESMs to non-experts,
consider the following example.

Example 1. Consider the energy system of a single-family home equipped with a photo-
voltaic (PV) power plant and battery storage, as shown in Figure 1.1 (a). The system’s
electricity can be obtained from the grid or generated using the PV power plant to fulfill
the household’s electric demand. Any excess energy produced can be stored in the battery
for later use or sold back to the grid. In such an energy system, questions about the
capacity of the PV power plant, the battery storage capacity, or their operation plans that
minimize the overall system cost are of interest. An ESM can be employed to address
these questions, focusing on specific scenarios or input data. An optimization-based ESM
comprises an objective function that is either minimized or maximized, along with a
set of constraints that characterize component behavior and establish boundaries for
their operation. In this example, an objective function might involve minimizing system
costs. Constraints could involve ensuring electricity production, storage, and demand
equilibrium within each time step, maintaining storage equilibrium across multiple time
steps, and imposing limitations on power plant electricity production based on radiation
levels in a given time series.

Figure 1.1 b) provides a schematic representation of an ESM that corresponds to the
energy system of the single-family home discussed earlier. A subset of parameters for this
simplified ESM is displayed on the left side. Depending on the chosen time resolution and
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a)

Power at home
Photovolatic(PV)

Power grid

Power meter

Electric demand

Battery

b) Energy system
model

min f(x)
s.t. Ax ≤ b

Investment cost PV [e/kWh]

PV availability hour 1 [%]

PV availability hour 2 [%]

Interest rate [%/a]

Wear & tear cost PV [ct/(kW · a)]
Wear & tear cost Battery [ct/(kWh · a)]

Electric demand hour 1 [kWh]

Grid price hour 1 [ct/kWh]
...

Installed capacity PV [kW]

Installed capacity battery [kW]

PV power generation hour 1 [kW]

PV power generation hour 2 [kW]

Battery charge hour 1 [kWh]

Battery discharge hour 1 [kWh]

Power from grid hour 1 [kW]

Marginal energy cost [ct/kWh]
...

Figure 1.1.: a) Schematic view of an energy system for a single family home with pho-
tovoltaic electricity generation and a battery. b) Schematic view of an
optimization-based energy system model for the single family home. A large
number of information such as cost assumptions, efficiencies, and time se-
ries of demands, renewable availability, or model externals prices is required
as input parameters for the model. An objective that is bound by a set of
constraints is then optimized to create a multitude of outputs.

time horizon, the ESM for this small-scale home can comprise several thousand param-
eters, which rely on data related to pricing, weather patterns, demand variations, and
technical specifications. The ESM is subsequently optimized by minimizing or maximizing
a designated objective function, denoted as f (x) : RN×1 → R1. The feasible values for
the decision variables x ∈ RN×1 are bounded by a set of constraints, represented by the
matrix equation Ax ≤ b, which encodes the input parameters within matrix A ∈ RM×N

and vector b ∈ RM×1. In addition to determining the optimal value of the objective
function, the output of the ESM includes a set of values, denoted as x∗, that correspond
to the optimal solution. These values represent critical information such as cost-optimal
capacities or optimal operational plans. Moreover, the marginal power costs and can also
be readily derived from ESM.

Although optimization-based ESM can determine the cost-optimal values for variables
such as PV or battery capacity, the solvers that obtain these solutions do not inherently
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(a) Energy flow of the German energy system.
Taken from [14].

(b) Schematic image of a big energy system.
Taken from [15].

Figure 1.2.: Multi-modal energy systems are complex systems, that are hard to under-
stand by non-experts. ESMs can be used for optimizing big multi-modal
energy systems.

explain their decision-making process. Consequently, important questions such as "Which
factors significantly impact the optimal capacity of PV power plants?" remain unanswered
by the models. However, these insights are crucial for DMs to comprehend or validate a
model or implement regulatory changes that affect crucial parameters.

The energy system model provided in the small single-family household example is already
intricate, posing a challenge for non-experts to comprehend, despite its focus solely on
electricity. In Figure 1.2a, the energy flow diagram for the German energy system is
depicted, showcasing multiple modalities beyond electricity. This diagram showcases
the complexity of real energy systems. A schematic representation of an ESM aiming to
model a multi-modal energy system of Germany is illustrated in Figure 1.2b. Grasping
the intricacies of ESMs at this level of complexity is a demanding task even for domain
experts, making it virtually impossible for non-experts.

Currently, domain experts commonly employ sensitivity analysis to provide local expla-
nations of optimization-based ESM (as well as other optimization models). Sensitivity
analysis assesses the responsiveness of model outputs or system behavior to changes
in input parameters. It enables the evaluation of the extent to which input variations
influence specific output variables. Sensitivity analysis can also help identify a model’s

5



potential weaknesses or limitations by revealing which input parameters significantly
influence the output, so domain experts can decide whether these parameters are well
understood or uncertain.

However, it is essential to note that sensitivity analysis often concentrates on a restricted
set of input variables, thereby excluding the consideration of all possible scenarios or
combinations of input values. Consequently, the analysis may fail to capture the complete
spectrum of relevant factors that can impact the output. While sensitivity analysis is useful
at revealing the correlation between input variables and the output, it does not reveal
the underlying causal relationships between them. Consequently, the ability to make
well-informed decisions or take practical actions based solely on the analysis results may
be limited.

A potential approach to increase the amount of variables that are varied without increasing
the computational complexity is through marginal analysis, which involves conducting
sensitivity analysis based on marginal changes. Marginal changes can be calculated as a
byproduct of the LP solving process [16]. However, it is essential to note that marginals
only apply for small changes, restricting the validity of explanations to local contexts.
For non-experts, generating explanations based on the marginal sensitivity values of
several thousand (or even several million) parameters becomes impossible without expert
knowledge necessary to differentiate significant changes from irrelevant ones. Moreover,
sensitivity analysis fails to capture the impact of events that simultaneously affect multiple
parameters. For example, a power outage spanning several time steps can affect the
model’s solution that differs from the simple sum of sensitivities across those time steps.
Consequently, creating explanations for optimization-based ESM using sensitivity analysis
requires expert knowledge, as a comprehensive sensitivity analysis is often too complex
for laypeople to handle effectively.

We observe: the domain of machine learning faces similar challenges when explaining
their complex models to non-experts in their domain [17]. Recently there have been a
lot of research in the field of XAI, e.g., [18]–[22]. Methods and concepts of XAI might
be transferable to optimization-based ESM and thus could aid in explaining them. This
transfer is motivated by the similarity between high-dimensional inputs in machine
learning and ESM, where individual parameters may have minimal impact on the model’s
overall outcome.

In addition, some XAI explanation methods are scalable in complexity, catering to various
target audiences, which is missing in the current ESM explanations. For instance, domain
experts seeking to debug their models may require detailed, granular explanations to
identify specific issues. On the other hand, DMs without technical expertise may desire
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a simplified explanation that elucidates the fundamental relationships within an ESM
without requiring extensive prior knowledge. By providing explanations tailored to
different audiences, we aim to enhance the accessibility and usability of ESM for a broader
range of stakeholders.

We know from psychology and philosophy that causality is a crucial concept for explanation.
One type of model designed to represent such causal relations are causal graphical models.
Using these models as a substitute model for ESMs to represent the causal relations within
the ESM could allow for easy explanations that are understandable by non-expert DMs.

A growing number of gamification can be seen in learning and educational games , called
Serious Games [23]. Serious Games offer a variety of benefits in imparting knowledge
compared to traditional learning methods, such as their often entertaining nature, fast
feedback, competitive or cooperative elements, and the resulting engagement of learners
[24]. Such a Serious Game might facilitate comprehension of concepts and challenges
related to the energy transition. Enhancing players’ understanding of various units of
measurement of energy, demonstrating tasks and challenges within the energy and in-
dustry sectors, underscoring the significance of effective governance, and highlighting
the interconnectedness of different sectors in achieving carbon reduction goals could be
relevant learnings such a game could be able to convey. By better understanding magni-
tudes, players can answer approximate questions such as the number of CO2 emissions
produced by a coal power plant or an average household’s annual energy consumption (in
kilowatt-hours), encompassing thermal and electric energy requirements. Moreover, play-
ers’ comprehension of CO2 emissions, potential reduction opportunities, and associated
costs in different sectors will be enhanced. Players might learn the interdependence of
various stakeholders in achieving low carbon emissions through the necessity of interac-
tions within the Serious Game without having to understand the math that models this
behavior in an ESM.

1.1. Research Question

In order to create explanations for complex optimization-based ESM the following research
questions (RQ) regarding explanations in general are of interest:

RQ 1. How are explanations currently created in the domain of ESM and are there major
shortcomings?
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RQ 2. How are explanations done in the machine learning domain and are there concepts
that could improve ESM explanations?

Given there are explanation concepts in the domain of machine learning that could be
beneficial for the energy system domain, the following questions emerge:

RQ 3. How can the explanatory concepts from machine learning be transferred to complex
optimization-based energy system models?

RQ 4. Can the created explanations be adapted to suit different target audiences?

We will answer the following question regarding the use of directed causal graphical
models to explain ESMs:

RQ 5. Can causal graphical models be used to explain ESMs?

As for using a simple, interactive energy system model as a Serious Game for explaining
concepts of energy transition, the following research questions are relevant:

RQ 6. Which interactive game setup can explain the concepts of energy transition?

RQ 7. Can such a Serious Game help to achieve a set of learning goals regarding relevant
concepts of power generation, important units and magnitudes, involved actors, and
their conflicts of interest?

1.2. Contributions

To address the research questions above, we first review explanations and methodologies
for creating them across various domains. Initially, we provide an overview of explana-
tions from the perspectives of psychology and philosophy. This overview delves into
the purpose of explanations, examines general definitions, explores their selection process,
and identifies factors that contribute to their quality. Once we establish a foundation in the
general concepts of explanations, we investigate the domain of optimization-based ESMs
and conduct a broad review focusing on the explanations generated for these models and
the corresponding methods employed. Further, we compare the explanation generation
from the domain of optimization-based ESMs to explanation generation in XAI.

In response to these investigations, we then propose a novel method for explaining ESM,
drawing inspiration from the XAI technique known as LIME (locally interpretable model-
agnostic explanations) [19]. Our approach introduces LIME’s concept of an interpretable
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feature space into the domain of ESM. We define interpretable feature spaces for two
specific ESM and establish mappings to the models’ inputs. By exploring variations around
points of interest within the interpretable feature space and applying regression techniques
to the resulting changes in the models’ outputs, we generate explanations for multiple
points of interest within the two ESMs. Subsequently, we compare these explanations with
those produced by commonly used methods within the energy system modeling domain.
Additionally, we evaluate the robustness of different mappings from the interpretable
feature space to the input space for one of the ESM.

We also test an XAI approach that learns Causal Graphical Models from optimization-based
ESMs. We find that there are fundamental limitations to this approach.

Regarding the research questions RQ 5 and RQ 6 of this thesis, which involves utilizing
an interactive approach for explaining energy transition, we develop a Serious Game
corresponding to a country-level ESM from 2020 until 2050. The developed Serious
Game encompasses various aspects of the energy transition while constraining the decision-
making scope to small decision steps. We evaluate the Serious Game with different
groups of players and qualitatively assess their perceived learning outcomes related to
different facets of the energy transition.

Parts of this thesis have been previously published by the author of this thesis:

2023
[25] Jonas Hülsmann, Julia Barbosa, and Florian Steinke. "Local Interpretable Explana-
tions of Energy System Designs." Energies 16.5 (2023): 2161.

2020
[10] Jonas Hülsmann, Florian Steinke, "Explaining Complex Energy Systems: A Challenge",
NeurIPS 2020 Workshop on Tackling Climate Change with Machine Learning, 2020

The use of elements of these publications is not explicitly referred any more in the following
chapters.

1.3. Structure of this Thesis

The remainder of this thesis is structured as follows. In chapter 2, we examine general
concepts of explanations, as well as explanations in the domain of energy systems and
potential improvements through the use of XAI. In chapter 3, we develop a method that
uses XAI concepts and applies them to ESMs. For a different method of explanation, namely
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Figure 1.3.: Structure of this Thesis.

Causal Graphical Models, their benefits for explanation and their limited applicability on
ESMs are discussed in chapter 4. In chapter 5, we create a Serious Game based on an
ESM to explain concepts of the energy transition. A conclusion of this thesis can be found
in chapter 6.

We now take a more detailed look at chapters 2 to 5.

Chapter 2 - Explanations in different domains. This chapter begins by exploring general
concepts of explanations and universal principles from psychology and philosophy. It
investigates the psychological aspects of explanation selection and the key factors influ-
encing the perceived quality of explanations. This Chapter also delves into explanations
in the context of optimization-based ESM and machine learning. It identifies the types of
explanations commonly employed in the energy system domain, examines the methods
used to facilitate their creation, and highlights potential limitations of existing approaches.
Additionally, within the domain of machine learning, the Chapter explores the subfield
of explainable AI, seeking concepts or methodologies that could enhance explanations
within ESM.

Chapter 3 - Local Interpretable Explanations for Energy System Models. In this
chapter, we introduce a method based on the concept of an interpretable feature space
from XAI. This method addresses weaknesses identified in the previous chapter regarding
explanation methodologies for optimization-based ESM. The chapter begins by applying
the proposed method to a simple ESM, specifically a single-family house with a PV power
plant, battery storage, heat pump, and heat storage. The robustness of the generated
explanations is tested by evaluating different implementations of the mapping from the
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interpretable feature space to the input space. Subsequently, the method is applied to a
more complex model of the German energy system, generating explanations for various
transition pathways toward a low CO2 emissions energy system.

Chapter 4 - Causal Models for Energy System Models: A Negative Result. This chapter
discusses Structural Causal Models, and their potential benefits for creating explanations.
We give proof that classical structured causal models cannot be applied to energy system
model explanation. Further, we introduce an approach that allows to separate energy
system models into subsystems that might be eligible for causal explanation.

Chapter 5 - Energy System Model Explanation in Education - an Interactive Approach.
The chapter presents the development of an interactive simulation game designed to
illustrate aspects and challenges of energy transition from the perspective of different
agents. It defines the scope and limitations of the simulation game, including the various
agents, their goals, and individual challenges incorporated into the game. The chapter
introduces the interactive ESM, which defines the game’s fundamental rules. Finally, a
qualitative evaluation of the perceived learning outcomes is conducted using a test group
of 25 participants.
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2. Explanations in different domains

In this chapter, we delve into the topic of explanations in various contexts. We begin
by exploring different concepts of explanations in psychology and philosophy in section
2.1. This section sheds light on what explanations are, how they are derived, and how
their quality can be measured. Moving on, we analyze the state of the art in explain-
ing optimization-based ESMs in section 2.2. Lastly, we examine the concept of model
explanations in the domain of machine learning, also known as XAI, in section 2.3. In the
discussion of this chapter, we qualitatively align the classification of XAI methods with the
classification of current optimization-based ESM. While some of these XAI concepts are
already being applied to data-based energy system models [12], we then demonstrate in
the following chapter how the concept of XAI can also be extended to optimization-based
energy system models.

2.1. Concepts of Explanation in Psychology and Philosophy

In this section, we will explore the role of explanations in psychology, including their
purpose, definition, selection methods, and quality measures. The primary function
of an explanation is to transfer knowledge, allowing individuals to construct mental
models to understand past events, generalize properties, and make predictions about
future events [26]. They serve as filters for possible causes and can change prior beliefs.
Further, explanations can strengthen cognitive models and increase their stability [27].
Explanations can also facilitate the creation of sharedmeaning and influence an individual’s
emotions, thoughts, or actions [28], i.e., when explaining why somebody chooses a certain
action in a situation over another action. Additionally, they can be used for a variety of
purposes, including assigning blame, justifying a particular result or action, persuading
someone that a given algorithm works appropriately (even if it does not), or even for mere
aesthetic pleasure (e.g., explaining art) [29].
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Figure 2.1.: Schematic overview of the elements involved in the cognitive process of
deriving an explanation. Adapted from an image of [37].

Following Lewis’s theory of causal explanation [30], the primary function of an explanation
is to provide information about the causal history of an event and convey this information
to someone else. While causality is a crucial element of explanation, there are also some
non-causal explanations, such as answering descriptive questions like "What happened?"
that ask for a sheer repetition or summarization of events without reasoning about how
they come to be [31]. Causality has been a topic of interest in psychology and philosophy,
with several theories proposed. One of the earliest works on causality is Hume’s regularity
theory of causation [32], which suggests that an event A is causally related to an event
B if A is consistently followed by B. For example, the two events are causally related if
turning on a switch is always followed by a light bulb starting to glow. However, Lewis
[33] argues that the mere co-occurrence of events is insufficient to determine causal
dependence. Instead, counterfactual reasoning is necessary to establish whether event
A caused event B by considering what would happen if A had not occurred. Based on
the counterfactual model, various competing definitions of causality have emerged. For
instance, interventionist theories of causality state that event A is only considered a cause
of event B if B can be changed by solely intervening on A [34]. Probabilistic theories
suggest that A is a cause of B if bringing about A increases the probability of B occurring
[35]. Other works have focused on classifying causes based on their properties, such as if
they are necessary for an event to occur or if it is just sufficient for the event that one of
many possible causes occur [36], or whether causes are internal or external to a system
[27].

As argued by the authors of [26] and [38], explanations consist of the cognitive process
of deriving the explanation, the final explanation as a product, and a social process of
communicating the explanation. Figure 2.1 gives an overview of the elements involved in
the cognitive process. The cognitive process involves finding possible causes for the event
to be explained (explanandum) and selecting a subset from these possible causes as the
explanation (explanans). Typically, an explainer creates the explanation for an explainee
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by selecting an appropriate explanans. Abductive inference [39], also known as "inference
to the best explanation" [40], is often used to find causes. Abductive inference starts with
observing the explanandum, such as a glowing light bulb. Then one or more hypotheses
are made about the possible cause(s). For example, a hypothesis about a possible cause
for the glowing light bulb could be a turned-on light switch, closing the electric circuit.
The explainer judges the plausibility of the hypotheses and selects the "best" hypothesis
as the explanation. We discuss different measures of "best" in the context of explanation
selection and the various biases involved in this process in section 2.1.1.

The cognitive process of an explanation results in an explanans, i.e., the answer to a
question. Questions can be classified into three categories: "What?", "How?", and "Why?"
according to Pearl’s Causal Ladder [41]. Answering "What?"-questions requires reasoning
based on associations of unobserved events and observed events. For example "What event
lead to the light bulb starting to glow?" can be answered by associating the observed
events of a light switch being turned-on and the bulb starting to glow shortly after. "How?"-
questions require interventionist reasoning to be answered, i.e., which causes would need
to change to undo the event. "How could the glowing of the light bulb be prevented?"
can be answered by undoing a past event, i.e., "by not turning-on the light switch."
"Why?"-questions are the most challenging since they require counterfactual reasoning to
consider events that could have happened. There can be different answers to the same
question depending on the mode in which the question is asked. Aristotle’s Four Causes
[42] suggests that a "Why?"-question can be answered in different explanatory modes,
such as material, formal, efficient, and final causes. For example, the question "Why is
the light bulb glowing?" could be answered with "because it is made out of conductive
metals" (material), "because the metals were turned into a thing wire that emits light
when heated" (formal), "because somebody assembled the light bulb" (efficient/agent) or
"because somebody needed light to read a book" (final). [43] argues that different target
audiences require different explanans since they have different goals for the explanation.
For instance, when creating an explanation for stakeholders of a credit scoring model, a
different explanans is necessary to enable a bank employee to work with the system than
for a customer to understand why a credit loan is not granted.

The process of explaining involves more than just providing an answer to a question. It
also involves the social process of communicating the explanation from the explainer to
the explainee, which typically occurs in the form of a conversation. Hilton’s conversational
model of explanation [44] emphasizes that an explanation must be relevant to the question
asked and take into account the previous knowledge of the explainee. Following Grice’s
maxims of conversation [45], an explainer should only provide information that is known
not to be wrong (maxim of quality) and limit the information to what is necessary for
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the given question (maxim of quantity). Additionally, the explainer should stick with
the question asked (maxim of relevance) and communicate the answer politely and
understandably (maxim of manner). Overall, a compelling explanation requires a clear
and accurate answer, an understanding of the context in which the explanation is being
provided, and an ability to communicate that answer effectively to the explainee. It is
important to note that not all causes are relevant for explaining an event, even if a cause
has a high probability of being true. For example, if asked "Why is this light bulb not
working?" the cause of "it has a technical defect" has a higher probability than "its filament
burnt-out" since the burnt filament is a sub-class of technical defect, but the general
technical defect is probably already assumed by the explainee.

2.1.1. Explanation selection and evaluation

Both [26] and [30] highlight the importance of selecting a suitable subset of possible causes
as a significant concept for an explanation. Limited human comprehension necessitates
simplifying the causal structure of an explanandum. As argued by [46], an explainer can
employ causal backgrounding or discounting to reduce the number of relevant causes.
When discounting a cause, it is considered less relevant compared to other causes based
on additional information. For instance, for the question "Why is the light bulb glowing?",
both "Because she wanted to read a book." and "Because she forgot to turn it off." could
be possible answers. The explainer needs to assess which answer is more plausible by
using additional information, such as "She reads a lot." which makes the first answer
more credible. On the other hand, a cause is backgrounded when it is considered a
requirement or supporting factor for the primary cause. For instance, "Because electricity
is running through it." is a part of the explanation of a glowing light bulb, but it might be
backgrounded for the causal answer "Because the light switch was closed." which assumes
the former.

According to [44], explanations are often framed in contrast to some other event rather
than on their own. For instance, "Why is the light bulb glowing?" implies a contrasting case,
such as "Why is the light bulb glowing rather than being turned off?". This influences the
selection of causes since providing explanations to such contrastive questions is often easier
than offering a complete causal explanation because only the causal difference between
the two events needs to be explained [47]. However, it is crucial that the explainee
understands the contrastive case and that the explanation only includes causes that differ
between the two events [48]. For instance, the explanation "Because somebody wanted
to read a book." would answer the question "Why is the light bulb glowing?" if the implied
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contrastive case is "..., rather than being turned off.". However, if the contrastive case is
"..., rather than opening the window shutter.", the explanation is not considered good
because opening the shutter and turning on a light bulb could help with reading the book.

Explainers prefer abnormal causes over normal ones as the default [49], e.g., a broken
glass bulb leading to the burning out of a lightbulb’s filament is preferred as an explanation
over the oxygen in the atmosphere making the glass bulb necessary in the first place. Other
factors that can influence the selection of causes include their necessity or sufficiency to
explain an event [47], [50], perceived responsibility for the outcome [51], and whether a
cause leading to an event was intentionally caused or not [52]. Additionally, explainers
often choose to explain events through a conjunction of causes [53], which aligns with
the conjunction fallacy [54] where people consider the probability of two events occurring
together to be more likely than either event occurring alone if the conjunction is consistent
with their prior beliefs. For example, "The light bulb is glowing because she wanted to
read a book and it was dark." may be considered the "best" explanation even though it is
less likely than just the darkness or the intention to read being the cause. However, when
explaining failed actions, a single-cause explanation is mostly preferred [53].

According to the theory for explanatory coherence [55], coherence is the key criterion for
an explanation to be considered "good" by the explainee. Coherence requires that an
explanation is consistent with the prior beliefs of the explainee. When using multiple
causes in an explanation, these causes must be coherent and related. Simpler and more
general explanations, which use fewer causes and explain more events, are preferred if
they are coherent [56]. While probability plays a role in selecting an explanation, the best
explanation is not always the most probable cause [57]. For instance, when explaining why
a light bulb is not working, saying "Because the electric circuit is open." is more probable
than saying "Because the light bulb has a defect." However, the former can be assumed
to be already known by the explainee so that it can be backgrounded in the explanation.
People’s goals can also influence how they perceive explanations, as demonstrated by
[58]. Participants in their experiments rated explanations given in different explanatory
modes. Those tasked with a specific goal, like classifying an organism or finding causes
for certain traits preferred explanations with explanatory modes that matched their goals
rather than those explanations with a divergent explanatory mode. Further, [29] argues
that different domains require different types of explanation. For example, explanations
in biology might differ from those in physics or sociology.

This section analyzed explanations in the context of psychology, cognitive science, and
philosophy. Among these concepts, the significance of causality emerges as a pivotal insight,
a theme extensively employed throughout this thesis, particularly in Chapter 4. Numerous
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methods and tools discussed in the subsequent sections of this chapter, specifically those
addressing explanations in the domains of ESM and XAI, inherently leverage some form
of abductive inference to deduce the causal factors essential for their explanations. The
notion of counterfactual reasoning resurfaces in one of the methods outlined in the XAI
sections of this chapter. Finally, the act of communication as a vehicle for explanation
serves as the driving force behind the exploration in Chapter 5 of this thesis.

2.2. Explanations of Energy System Models - State of the Art

In this section, we present a comprehensive review of explanations within the domain of
ESMs. While there are numerous reviews available on ESMs covering different aspects
such as methodologies [59], available frameworks [60], correlation of input data sets [61],
and the impact of climate change on energy systems, and their representation in current
ESMs [62], our focus is on methods and tools domain experts use to explain the outputs
of optimization-based ESMs or to enhance the models’ comprehensibility. It is important
to note that our review concentrates explicitly on the methods and tools employed to
derive explanations rather than the explanations themselves. We exclude methodologies
such as principle component analysis, correlation analysis, or aggregation approaches
like those mentioned in [63], as they primarily serve to explain patterns or relationships
in the input data of ESMs and simplify them rather than explaining the behavior of the
ESMs. For an extensive review of time series aggregation approaches for reducing ESM
complexity, we refer readers to [64]. Although specific methodologies are more common
than others, we aim to cover as many different approaches for creating explanations as
possible, even if they are not used very often.

Figure 2.2 shows our categorization of explanation methods used in optimization-based
ESMs, referencing their uses in the energy system domain. We show a few examples of
each category, but do not claim completeness of the references. We distinguish between
methods that create explanations by varying the model’s input parameters and those that
do not involve input variations. The first class of explanatory methods, which explores
the model’s output sensitivity to specific parameter changes, is referred to as sensitivity
analysis. Based on the type of input variation, we identify three sub-classes of sensitivity
analysis:

1. Parameter Analysis: A small set of input parameters is varied extensively to observe
its impact on the model’s output.
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Figure 2.2.: Different classes of methodologies to create explanations for optimization-
based ESMs. We differentiate between explanations created by input varia-
tions, i.e., some variation of sensitivity analysis and other explanations that
do not consider input variation.

2. Marginal Analysis: The parameter sensitivity derived from the dual variables of
the optimization, making the explanation only valid for marginal changes, i.e.,
infinitesimally small changes. However, all parameter sensitivities are available at
once without additional computational effort.

3. Scenario Analysis: Multiple parameters are varied simultaneously in large steps
through expert-designed scenarios to assess the model’s behavior.

Regarding the explanation methods not based on input variation, we identify four classes:

4. Modelling to Generate Alternatives: This approach seeks solutions that are maximally
different from an optimal solution within a tolerated slack from the target value, e.g.,
it minimize the use of wind turbines at a maximum 10% increase in total system
cost.

5. Structured Heuristics: Certain parts of the ESM are substituted with heuristics,
which can be more easily explained, although potentially sacrificing optimality in
the solution.
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6. Restricting Model Design: This class includes design guidelines or substitute models
that aim to simplify or replace complex ESMs with models that are more under-
standable to DMs.

7. Interactive Approaches: Methods and tools falling under this category facilitate
knowledge transfer about energy systems through interaction with the models,
similar to the explanation through a conversation concept from the previous section.

2.2.1. Sensitivity Analysis

Parameter Analysis

We classify methods that assess a model’s output sensitivity on a very detailed level to a
limited set of parameters as parameter analysis. Unlike other sensitivity analysis methods,
parameter analyses extensively inspect the effect of a model’s parameters by utilizing
various parameter variations or even analyzing them over a continuous interval. However,
due to the computational expense of solving a model with numerous parameter variations,
parameter variations are typically limited to a few parameters since those methods usually
scale exponentially in the number of varied parameters. In the case of continuous analysis,
simpler models that can be solved analytically for the varied parameter are often used.
Varying less than three parameters allows for easy visualization the effects of parameter
variations as a graph.

In [65], the possibility of a 100% renewable generation scenario in Europe is investigated.
The authors compare historical normalized generation data for solar and wind power
generation to the normalized power demand, aiming to find the optimal renewable
generationmix. The authors employ two approaches to define the optimal mix of renewable
generation. The first approach defines the optimal mix as the combination of wind and
solar that minimizes the deviation between generation and demand. The second approach
uses the maximum power demand and productionmismatch for a givenmix, corresponding
to the storage capacity needed for this combination. To explain their results, the authors
parameterize their simple model based on the relative share of wind generation and
showcase the solution as a function of this single parameter. In a second case study, the
authors investigate transition scenarios, incorporating time-independent power generation
from fossil-nuclear fuels into their model. For this extended model, the authors explain the
transition paths that minimize storage capacity by performing a two-parameter variation
for the share of fossil-nuclear to renewable generation and wind within a renewable
generation.
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Similar parameter analyses are performed in [66] and [67], both utilizing the same dataset
of renewable generation potential as used in [65]. Parallel to the second case study of [65],
[66] analyzes the effect of the relative share of variable renewable energies (wind and solar)
and the share of wind within a renewable generation. However, [66] takes this analysis
further by examining the effect of these two parameters on the capacity of renewable
generation, necessary backup capacities, overproduction, the sum of backup power, and
several cost parameters. The authors analyze these additional model outputs for two
different setups: one without a grid and one with optimal grid extensions. Furthermore,
they employ a more comprehensive energy system model described in [91].

In [67], the authors introduce storage into the mix to investigate the optimal combination
of storage and grid investments in achieving a fully renewable energy generation Europe
while minimizing the required backup energy. The analyzed parameters are the grid size
and storage capacity. The authors assume fixed renewable generation capacities of 65% of
the average demand for wind and 35% for PV, as determined to be optimal in [65]. In a
second scenario, the same generation share but a total of 130% of the average demand
is assumed. However, the production capacities are unevenly distributed since regional
potential constraints limit them. The authors use the regional distribution to model the
grid size by aggregating renewable generation within a certain radius of each location.
With a larger grid, a mix of wind and PV generation closer to the optimum can be accessed.
In a second case study, the authors perform another parameter analysis using the same
parameters but for the resulting electricity price for different types of storage.

A completely different setup is used for the parameter analysis in [9], where the authors
demonstrate that ESMs can behave counter-intuitively under certain conditions. They
inspect a simple ESM with two types of fuels for electricity generation: lignite and gas.
Lignite has low costs but high CO2 emissions, while gas is more expensive but emits less
CO2. The authors examine two optimization problems: The first optimization minimizes
costs while meeting certain CO2 emission restrictions. The efficiency of the gas power
plant is varied as the parameter. Surprisingly, increasing the efficiency of gas power plants,
thereby reducing their CO2 output, results in less gas usage in the cost optimization. This
counter-intuitive outcome occurs because the lower CO2 emissions per energy unit of gas
allow some power generation to be replaced by cheaper coal power plants, leading to
additional cost savings.

In the second optimization, CO2 emissions are minimized while adhering to certain budget
limits, revealing a similar counter-intuitive effect. The authors introduce a CO2 tax and
vary its magnitude as the parameter. Raising the CO2 tax might be expected to increase
the usage of gas power generation due to its lower CO2 emissions. However, the opposite
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occurs because the CO2 tax impacts both fuels. Part of the power generation from gas must
be replaced with coal power generation to satisfy the electricity demand while staying
within budget limits.

Marginal Analysis

We refer to methods that create explanation based on local sensitivities derived from
infinitesimal changes as marginal analyses. The examination of marginal changes in
variations locally around a solution characterizes these analyses. One of the critical
advantages of marginal analyses is their computation efficiency, as they often do not require
solving the model multiple times, at least for common convex optimization formulations
[92], but allow to extract themarginal from the solution process [68]. However, analytically
calculatingmarginal sensitivities necessitates access to amodel’s constraints, which renders
this approach impractical for closed-source models. Furthermore, the sensitivities extracted
directly from a model’s optimization process describe only the relationship of the inputs to
the optimization objective. If relations to other model outputs are of interest, additional
computations are required, as in [68], where the marginal input sensitivities are computed
with respect to energy demand. Additionally, marginal sensitivities and any explanations
derived from them apply only to infinitesimal variations around the local solution or their
validity is zero.

In energy systems, marginal utilities or marginal costs, sometimes called shadow prices,
play a crucial role. They are employed to determine electricity prices in specific regions
and assess the electricity mix’s greenhouse gas emissions over time. The method employed
for determining the regional electricity price using marginal production costs is known
as locational marginal pricing [93]. Locational marginal pricing is actively used by
regional transmission organizations like PJM [94] and New York ISO [95]. By adopting
various ESMs, locational marginal pricing can be expanded to incorporate distributed
resources such as electric vehicles [69] or uncertainties in renewable energy generation
[70]. Furthermore, apart from determining electricity prices in real-world energy systems,
the concept of marginal pricing provides valuable insights into the behavior of the ESM
utilized for these calculations. I.e., a marginal analysis effectively demonstrates each
model variable’s impact on the ESM’s objective function.

Another application of marginal sensitivities lies in assessing greenhouse gas emissions,
such as determining the emissions caused by an additional electric application. Calculating
marginal emissions is often more challenging than computing local marginal prices,
as emissions are typically outside the objective function of an ESM, making the direct

21



use of the dual variables inapplicable. While [71] proposes an analytical approach for
deriving marginal emissions from the ESM via the Karush-Kuhn-Tucker conditions, other
publications predominantly resort to alternative methods, such as regression [96]–[98] or
merit order heuristics [99].

Scenario Analysis

The class scenario analysis involves comparing model results for a finite (typically small set)
of distinct input parameters and conditions, so called scenarios to provide explanations. A
scenario is not restricted by the magnitude of changes like a marginal analysis, nor the
number of parameters altered, as opposed to parameter analysis. Scenarios are commonly
used to model uncertainties related to future events or parameters. The advantage of
scenario analysis lies in its model-agnostic nature, making it applicable even to closed-
source models since it does not require interaction with the model’s internal functioning.
Additionally, scenarios can encompass various aspects, includingmodel inputs and different
ESMs utilizing the same inputs, as demonstrated in [72].

Incorporating uncertainty into scenarios also find applications in stochastic optimization
methods [100] and robust optimization [101]. Stochastic optimization seeks to find
decision variable configurations that optimize expected performance based on a given
distribution of scenarios. For instance, in energy systems, this could mean identifying an
energy system configuration that minimizes the expected costs for a set of scenarios with
a specified probability distribution. On the other hand, robust optimization aims to find a
variable configuration that optimizes a target function while ensuring that a set of hard
constraints remains valid for all scenarios in a given uncertainty set. For example, this
could involve finding an energy system configuration that can withstand extreme scenarios
without failure. Although these optimization methods share similarities with scenario
analysis in using scenarios to encode uncertainty, they differ in their ultimate objectives
[101]. Stochastic optimization and robust optimization focus on finding optimal solutions,
whereas scenario analysis aims to explain the behavior of an ESM. Consequently, despite
the everyday use of stochastic and robust optimization in the domain of energy system
models, e.g., in [102] or [103], we do not consider them as methods of explanation.

Explanations derived from scenario analysis heavily depend on the scenario design, partic-
ularly the reference scenario, and necessitate an explanation of the scenarios themselves.
This requirement stems from scenario analysis’s capability to compare scenarios that affect
entirely different sets of parameters. For example, one scenario may affect the investment
costs of heat pumps, while at the same time, another may impact the efficiency of wind
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power plants, the investment costs for battery storage, and the operational costs for gas
power plants. Comparing such scenarios can be misleading, as they involve different
parameters, varied amounts of parameters, and potentially different magnitudes of effects.
To improve explanations in the case of heterogeneous scenarios, one can increase the
number of scenarios, introducing variations between scenarios to provide a more compre-
hensive picture. However, this comes with a trade-off, as the computational effort required
for scenario-based methods depends on the model’s runtime and the number of scenarios
considered [102]. Typically, a smaller number of well-described scenarios is chosen, as
demonstrated in [73], [74], and the reports by the International Energy Agency (IEA)
[104], [105], [75].

For instance, the authors employ scenario analysis in [73] to explain various technology
deployment paths and identify their most common technologies for an european ESM
implemented in the TIMES framework [106]. They compare eight scenarios, including a
business-as-usual scenario, a scenario with additional CO2 emission restrictions, and six
scenarios based on the second one, each allowing for different technology deployments
or restrictions. The authors use the the scenario with the CO2 emission restriction as
their reference scenario. They show the optimal technology capacities for other scenarios
relative to the reference. Moreover, they conduct a sensitivity analysis to explain the
impact of different price and technical parameters for the business-as-usual scenario,
effectively treating it as a scenario analysis due to the variations introduced.

Similarly, in [74], the authors investigate if a German energy system with 100% renewable
energy generation can meet the energy demand. Further, the authors calculate the
associated costs and determine the cost-optimal combination of technologies in their ESM
[107]. They utilize three selected scenarios that build upon each other to explore and
explain their model’s behavior. The scenarios differ in heat demand reduction, fixed heat
pump share, and limited wind-onshore and wind-offshore capacity, providing a detailed
cost comparison for each technology in the scenarios.

The IEA also uses scenario analysis in their flagship reports such as "World Energy Outlook"
[105], "Energy Technology Perspectives" [75], and "Net Zero by 2050" [104]. These reports
include dedicated chapters explaining the scenario assumptions. The IEA employs three
scenarios:

• a stated policies scenario based on existing or announced government policies

• an announced pledges scenario that includes long-term commitments made by
governments worldwide

• a net-zero emissions scenario aiming for carbon neutrality by 2050
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The stated policies scenario serves as a benchmark, while the announced pledges scenario
highlights the "ambition gap" between commitments and the goal of limiting global
warming to 1.5°C. The net-zero scenario represents a highly ambitious pathway toward
carbon neutrality.

2.2.2. Other Explanation Approaches

Modelling to Generate Alternatives

A technique employed to explore and explain the behavior and flexibility of ESMs, aiming
to find alternative energy system with close to optimal system costs, is known as Modeling
to Generate Alternatives (MGA) [76]. In this approach, an optimal solution of an ESM
serves as a starting point, and potential solutions are sought that exhibit maximum
differences in specific output values, such as technology capacities. To achieve this, MGA
reformulates the ESM. The original target function becomes a relaxed constraint. For
instance, minimizing total system costs becomes a constraint that restricts total system
costs to be not more than the optimal system cost, plus some slack. Simultaneously, MGA
introduces a new optimization target, which maximizes or minimizes a specific aspect of
the ESM output, such as power generation by wind power plants. All other constraints of
the original ESM remain unchanged in the reformulated version. Various extremes can
be found by formulating different optimization functions, allowing the flexibility of the
ESM’s solutions concerning relaxed optimal values to be explained. However, a drawback
of this approach is the need for access to the model formulation and the computational
costs, which increase depending on the number of alternatives to be generated.

In their study [76], the authors apply an iterative MGA approach to an ESM that includes
both the electricity and light-duty transport sectors. The ESM is based on the Temoa
open-source framework [108], using U.S. data. The iterative MGA approach employs an
objective function that minimizes nonzero decision variables from the previous iteration by
assigning them a higher weight and treating previous iterations’ solutions as constraints.
Variables that remain nonzero increase their weight in the objective function with each
iteration, incentivizing their reduction in subsequent iterations. The outcome of this
iterative process is a sequence of potential energy systems, with each new system being as
dissimilar as possible in the decision space from the previous ones. Three scenarios, one
purely cost-minimizing and two with -40% and -80% CO2 emissions, serve as reference
scenarios to compare their MGA results. The authors create variations with the iterative
MGA based on the 40% emission reduction ESM, allowing for different slack levels in the
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objective value (1%, 2%, 5%, or 10%) and performing four iterations, generating a total
of 16 MGA-generated energy systems. In a subsequent analysis, the effect of different
discount rates on the decision space is explored for the 2% objective slack scenario.

A similar iterative MGA approach is employed in [77] to generate alternatives for a
business-as-usual scenario and a 50% emission reduction scenario. The authors use an
ESM based on the TIMES model [7], representing the global energy system across 16
aggregated regions. In contrast to [76], the authors maximize the L1 distance from the
previous solution instead of increasing the weight for individual parameters. The authors
apply their method for a cost slack of 1%, 5%, or 10% of their objective.

The authors [2] use a non-iterative approach to MGA to explore near-optimum energy
systems aiming for an 80% emission reduction in Europe. They introduce an ESM that
minimizes system costs while considering multi-period optimal power flow constraints.
Their ESM is implemented in the PyPSA framework [109], focusing solely on electricity.
Instead of employing an iterative search, the authors use a fixed set of 16 objectives, such
as the minimization or maximization of onshore wind turbines, offshore wind turbines,
both wind turbines at the same time, solar panels, gas turbines, hydrogen storage, battery
storage, and transmission infrastructure. They consider different relaxations of the optimal
value, ranging from 0.5% to 10%, and various greenhouse gas emission reductions of
80%, 95%, and 100%. The authors visualize feasible regions for each technology under
different reduction targets and optimal value slacks. Furthermore, they illustrate their
results to demonstrate no-regret grid extensions, i.e., extensions that are present in all
scenarios. Lastly, the authors utilize their findings to analyze the correlation of technology
capacities in the solution space of their model.

Structured Heuristics

We categorize approaches that solve ESMs not by utilizing optimization algorithms but
by applying heuristics as structured heuristics. While their solutions may not always be
optimal, they are often close to the optimum. The advantage of these structured heuristics
lies in their ease of understanding, which can aid in explaining the results of an ESM.
However, since the heuristic bypasses the optimization model, the explanation does not
directly illuminate the ESM’s behavior.

In the energy system domain, two commonly used structured heuristics are the merit order,
sorted duration curves and, marginal abatement cost curves [80], [110], [111]. The merit
order represents a list of items sorted based on a quantity measure. In energy systems,
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the merit order could refer to potential electric energy suppliers arranged according to
their ascending marginal production costs in an electricity market. It can be visualized as
a merit order curve, depicting the increase in marginal production costs over accumulated
production. While this approach provides a simple model for determining electricity
prices [79], it is not globally optimal as it neglects transmission costs and may require a
re-dispatch to satisfy energy system constraints. A different example for using merit order
curves in the energy system domain is given by [80]. The authors rank CO2 sources by
their marginal environmental impact to identify the most beneficial sources for utilization
in carbon capture and utilization.

Load duration curves, also known as cumulative distribution functions of energy demands,
offer another method for gaining insights about ESMs through structured data [81]. The
ESM’s input and output time series are sorted in descending order and represented as
a graph, creating a load duration curve. This curve provides valuable information, such
as peak load and capacity utilization rates, allowing quick access to critical metrics. By
analyzing the shape of the load duration curve, characteristics of power plants, such as
whether they are mainly used for peak load provision, can be deduced. For example, in
[110], the authors use load duration curves to explain an energy system consisting of
diesel generation and wind power plants.

Marginal abatement cost curves provide insights into the potential greenhouse gas emission
reductions achievable through various measures, visually represented in a sorted bar plot.
Each bar on the curve corresponds to a specific emission reduction measure, with the bar’s
width indicating the potential reduction and its height representing the cost per unit of
emission reduced. These measures are arranged on the curve based on their costs per
unit of emission reduction, facilitating easy identification of the costliest measures, similar
to a merit order curve. However, it’s important to note that while marginal abatement
cost curves offer clarity on costs, they do not provide information on the implementation
duration of chosen measures nor do they reveal potential synergies between measures
[111].

A framework introduced in [82] combines scenario analysis with life cycle assessment
to help DMs understand the environmental impact of different energy system design
scenarios through a structured visualization approach. The framework consists of four
sections: scenario setting, inventory analysis, visual analysis, and decision-making. In the
scenario setting phase, relevant scenarios are selected, determining which technologies
should be considered. The inventory analysis is then conducted to assess the potential
capacity of each selected technology and its environmental impact, such as greenhouse
gas emissions, through life cycle analysis. For the structured visualization the technologies
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are ranked from least to most environmentally harmful, and their environmental impact is
visualized as a curve against a measure of interest, such as the produced energy, to show
the lower bound of environmental harm. Another curve is drawn using the inverse order,
i.e., the most harmful technology first, to demonstrate the upper bound of environmental
harm. The area between the curves depicts all possible combinations of environmental
impact with the selected set of technologies for the scenario. The distance between the
curves indicates the radius of operation for a given desired output value. The framework
then employs linear optimization with a two-dimensional parameterized target function to
conduct a locally focused MGA at the desired output and provide additional visual insights
into possible energy system designs. Using this approach, the authors demonstrate their
structured visualization approach for a case study on the environmental impact of Japan’s
energy system.

Restricting Model Design

We classify approaches that limit the design space of the ESM, either by restricting its
mathematical model or by using alternative types of models to replace ESMs as "Restricting
Model Design". These approaches do not create explanations itself. However, design
principles or substitute models can partially replace the need for an explanation by
reducing model complexity, increasing model transparency, or moving towards a different
type of model that is more familiar to a DM thus increasing their trust in it [112]. For
example, while a model domain change may not make the explanation process easier,
some DMs might be more familiar with economic models, potentially increasing their
trust in their results.

In a study by [83], the authors provide a qualitative guideline for designing ESMs with
a focus on reducing complexity. They emphasize four key design aspects to achieve this.
Firstly, they suggest systematically reducing the model size by using aggregated input data
and lower time resolution or simplifying the grid model, i.e., assuming a copper plate as
the grid. Secondly, they recommend using convex models whenever possible to ensure
a single global optimum. While linear models guarantee convexity, they may sacrifice
accuracy depending on the initial formulation. The third aspect involves quantifying
errors by employing relaxed problem formulations that act as bounds to the original
model. Lastly, they propose decomposing an ESM into sub-problems that can be solved
individually, enabling parallelization and speeding up the solution process.

For optimizing fleets of combined-heat-and-power units (CHPs), [84] presents a more
specific design guideline. They advocate using a base formulation for each CHP in the fleet,
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focusing on power streams and energy quantities while neglecting mass flow rates, pres-
sures, and temperatures without significant accuracy loss. In cases where non-dispatchable
energy generation is part of the energy system, it can be solved independently in advance
and used as an input to the ESM rather than integrated within it.

Furthermore, using well-established ESM frameworks like TIMES [7], OSeMOSYS [113],
or PyPSA [8] can be considered as falling under the category of design guidelines, provided
they are well-established and accepted by the DMs. Many open-source ESM frameworks
offer full data transparency and cater to different use cases related to planning horizon,
regional distribution, and uncertainty, making them suitable for serious applications [114].
However, setting up and configuring ESM frameworks requires domain expert knowl-
edge. Therefore, despite the reduced need for explaining the ESM itself, explaining the
configuration remains relevant, as a misconfiguration could lead to unexpected behavior.

Examples of the use of substitute models to solve problems in the energy system domain
are economic models. In [85], an ESM is combined with an economic model to aid
decision-making for a multi-objective energy system. More specifically, the authors use
Pareto-frontiers identify the best process configurations for power plants with CO2 capture,
considering multiple competing objectives such as cost minimization, emissions reduction,
and efficiency maximization. Similarly, in [115], Pareto-frontiers are utilized to visualize
the cost-optimal decision pathways for reducing CO2 emissions using various technologies.
These frontiers present solutions of the ESM that offer the same value concerning a utility
function determined by the DM.

In contrast, [86] combines an ESM with the Nash-Cournot competition model for power
markets. The Nash-Cournot competition model seeks a Nash equilibrium, i.e., a set of
decisions where no individual DM can improve their gains without changing the decisions
of others. The general idea to split a problem into small agent-driven sub problems, that
is found in some economic models is revisited in Chapter 4.

Interactive Approaches

The last category of explanation methods we explore is explanations by interaction. As
the name suggests, interactive explanations rely on the interaction between the explainee
(target audience) and the ESM itself. This approach aligns with "explanation as a form of
communication," as discussed in the previous section, or more informally, "learning by
doing". Interactive approaches can also enhance other explanation methods. For instance,
in [87], an approach is presented to interact with sensitivity analysis and generate textual
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explanations based on the results. This interactive tool for sensitivity analysis is not limited
to the ESM domain and can be applied to all linear models.

In the domain of ESMs, conversational agents, such as chatbots, have been utilized
in [88] and in our previous work [89] to provide interactive explanations and answer
user questions. In [88], the authors identify design principles for creating a chatbot
focused on energy feedback. Their chatbot should be able to assist users in analyzing their
energy usage and helps them identify ways to adjust their consumption behavior, e.g., to
reduce peak load. The authors evaluate these design principles through expert interviews,
concluding that an effective tool should provide easily accessible and understandable
information through natural language, reduce the user’s effort to learn sustainable energy
usage, provide explanations for specific events, and be engaging for users to interact
with. An implementation of a chatbot for ESM interactions can be found in [89]. This
chatbot serves as a natural language interface for the ESM, enabling users to pose "what-if"
questions that are transformed into input scenarios for the model. Users can interactively
explore answers to their questions from the scenario results visualization.

Another form of interactive explanations comes in the form of serious games [23], which
are games designed for educational purposes, training, or simulation of real-world scenar-
ios. These games employ principles of game design, such as feedback loops, to maintain
an entertaining and engaging user experience [24]. An example of a serious game in the
energy domain is "Watts the deal?" [90], which focuses on peer-to-peer energy trading.
Players assume the role of prosumers equipped with energy storage and rooftop solar
panels. Each player must meet randomized energy demands each round, and they can
generate electricity using their rooftop solar panels, purchase it from the grid, or engage
in peer-to-peer trading with other players. The game offers various versions with different
objectives, such as maximizing personal profit, achieving individually assigned goals, or
cooperating to maximize the community’s self-consumption, ensuring replayability and
varied learning experiences.

2.3. Explainable AI

Much like the domain of energy system modeling, machine learning grapples with the
imperative need for model explainability. While optimization-based ESMs often lack
comprehensibility due to their sheer size and resultant complexity, they maintain trans-
parency since experts meticulously select all model parameters based on data, rendering
them akin to white-box models. In contrast, machine learning models use a different
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approach, wherein parameters are learned from data rather than being presided over
by experts. Consequently, these models introduce an additional opacity layer, making
them black-box models. Even domain experts often need help to discern the meaning of
individual parameters within these models.

Despite their occasional super-human performance, the interpretability or explainability
of machine learning models becomes an important legal factor for their employment
in real-world scenarios, especially in fields such as security, health, and finance [116].
The necessity for interpretability and explainability is important to ensure that their
exceptional performance does not hinge on biases within the training data. This need for
understanding the models can come to the extent that in specific scenarios, models with
explainable behavior may be favored over opaque models with superior performance, as
discussed in [117].

Notably, despite their frequent use in the XAI community, the terms "interpretability" and
"explainability" lack precise definitions, as highlighted by [117]. While some authors
employ these terms interchangeably, we stick with the distinction of the therms drawn by
[118]:

• Interpretable machine learning involves using simpler models that inherently
reveal their function, such as decision trees.

• Explainable machine learning leverages a secondary model to help elucidate the
behavior of black-box machine learning models.

[118] advocates for interpretable machine learning over post-hoc explainable machine
learning for black box models. This preference arises from the inherent difficulty of
ensuring fidelity in post-hoc explanations, i.e., guaranteeing that the explanation aligns
faithfully with the actual behavior of the model explained.

This work aims to transfer knowledge from XAI to elucidate a class of white box models,
namely optimization-based ESMs, which in principle are interpretable but often lose their
interpretability due to their sheer model size and resulting complexity. Consequently, this
section predominantly focuses on explanation rather than interpretability.

The remainder of this section is structured as follows:

1. Desired properties of XAI methods and taxonomies: We begin by discussing the
desired properties of XAI methods and explore various taxonomies for classifying
them.
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2. Examples of XAI methods: Next, we look at five popular XAI methods and classify
them using one of the established taxonomy approaches.

In the following section, we align existing ESM explanation approaches with the XAI
taxonomy and identify open potentials for future explanation approaches.

2.3.1. Desired Properties of XAI Methods and Taxonomies

The list of desirable properties for explanations generated by machine learning methods,
as outlined by [119], can be categorized into two main groups: properties related to the
method itself and properties related to the quality of the explanations produced.

When it comes to the method itself, these properties encompass algorithmic complexity,
the adaptability of the method to various types of models, the level of transparency (i.e.,
whether the method operates with model internals or treats the model as an opaque black
box), and the expressive power, which refers to the type of output generated by the XAI
method.

Regarding the quality of explanations, [119] identifies several desired properties. These
include stability, which entails providing similar explanations for similar instances;
fidelity, ensuring that explanations accurately reflect the actual behavior of the explained
model; and accuracy, meaning that the explanations generalize to other unseen instances.
While an explanation method should create stable explanations for similar instances, it
also should create similar explanations for similar models (consistency). In the context
of complex models, it may be beneficial to break down the model into distinct sub-systems
and explain them individually. Thus, it is essential always to specify which part of the
model is being explained (representativeness). Furthermore, some machine learning
models can quantify their certainty about a prediction. In this regard, it is desirable for
an explanation to convey whether the explained model is confident in its prediction or
not (certainty). Similarly, when explaining instances from regions not well represented
during model training (i.e., novel instances), a statement about the model’s certainty in
such cases becomes crucial (novelty). In situations where explanations involve multiple
elements with varying impacts on the model’s output (e.g., a set of parameters), the
explanation should indicate the importance of each element (degree of importance).
Lastly, comprehensibility is another crucial property. It pertains to the size and readability
of the explanation, ensuring that it is digestible by the intended audience.

As the list of desired properties covers attributes applicable to all XAI methods, additional
properties are required to effectively differentiate between them. In a review of different
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taxonomies for XAI methods provided by [120], four distinct approaches to categorizing
XAI methods are identified:

1. Function-Based Approaches: These taxonomies categorize XAI methods based on
the concepts they employ to extract information for creating explanations. Con-
cepts include perturbations to input data, utilization of structural properties of the
original machine learning model, modifications to the model’s structure, use of
illustrative examples, and meta-explanations that aggregate explanations from other
XAI methods.

2. Result-Based Approaches: Result-based taxonomies differentiate XAI methods
based on their yield result types. These result types may include generating sur-
rogate models that are more comprehensible than the original machine learning
model, ranking the relevance of model features, or providing input-output pairs that
exemplify the model’s behavior.

3. Conceptual Approaches: These taxonomies classify XAI methods based on di-
mensions such as the scope of the explanations generated, the stage of application
(post-hoc or ante-hoc), the type of problem addressed by the machine learning
model, and the format of the output result.

4. Mixed Approaches: Mixed approaches combine elements from the other three tax-
onomic concepts to create a comprehensive taxonomy. An example of such a mixed
taxonomy is illustrated in Figure 2.3, proposed by the authors of [120]. It is grounded
in conceptual approaches and incorporates result-based and function-based tax-
onomies as additional dimensions. Additionally, the output format employed by XAI
methods serves as an extra dimension for classification.

2.3.2. Examples of explainable AI methods

While there exist some XAI approaches for unsupervised learning and reinforcement
learning, such as those presented in [121] and [122], the majority of XAI methods pre-
dominantly concentrate on supervised learning, particularly in the context of classification
tasks. Among the multitude of XAI techniques, we picked five notable examples that have
garnered widespread recognition within the machine learning community, each amassing
over 2,000 citations. We do not aim to give a complete overview of available XAI methods
here, but give a quick overview of some of the most successful XAI methods. For a more
comprehensive review of XAI methods, we refer the reader to [17] or [123].
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Figure 2.3.: Integral taxonomy approach from [120]

We discuss the XAI methods highlighted in the following works:

1. Deconvolutional network [18]: A model-specific XAI approach that utilizes the
machine learning model’s layered structure to highlight each layer’s function.

2. Grad-CAM [21]: Another model-specific approach that explains which regions are
relevant in image classification.

3. LIME [19]: The XAI approach presented in this paper is model-agnostic and can
help understand any classifier by introducing an interpretable feature layer.

4. SHAP [20]: An approach that utilizes other approaches to create feature importance
weights based on a game theory concept.

5. Counterfactual explanations [22]: The authors of this work introduce counterfac-
tual explanations to the domain of machine learning in the XAI approach of this
paper.

Each of the methods presented, we classify them in a figure at the start of each subsection
using the taxonomy presented in Figure 2.3. Additionally, we give a quick overview of
causal models [124]. While not exclusive to XAI, we deem causal models as important
since they encode causal relations between variables of a model, thus allowing to derive
explanations easily from them.
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Deconvoluational network

Stage Scope Output Functioning ResultProblem Type Input Data

Post-Hoc
Model-Specific Local Visual Architecture

Modification
Feature
RelevanceMultiple Images

An innovative approach to visually explain the behavior of individual layers of a Convo-
lutional Neural Network (CNN) is proposed by [18]. CNNs, a class of neural networks
widely employed in tasks such as image classification, object detection, and segmentation,
are comprised of a sequential arrangement of layers, each executing specific operations.
The CNN layer progression unfolds as follows:

1. Convolution: Initially, the network conducts a convolution operation, employing
filters to process either the outputs from the previous layer or, in the case of the first
layer, the model’s inputs.

2. Activation: Subsequently, the convoluted values traverse an activation function,
often a rectified linear function.

3. Pooling and Normalization: Finally, a pooling operation, like max pooling, may be
followed by optional output normalization.

The authors introduce a novel concept termed the "deconvolutional network" to map
each CNN layer’s activation back to an interpretable image. The approach isolates a
single activation within a convolutional layer while setting all other values to zero. This
activation vector serves as input for the deconvolutional network, reversing a convolutional
layer’s steps in a backward sequence, encompassing unpooling, rectification, and image
reconstruction through transposed filters. Ultimately, a transposed version of the filters is
employed to reconstruct an image that faithfully captures the features of the original input
image responsible for eliciting the observed activation within the convolutional layer.

Several challenges are addressed during this process. Since pooling is a non-invertible
operation, the location of relevant values must be recorded during the pooling step in the
convolutional layer. The unpooling operation can effectively approximate the reversal of
the pooling step, armed with this location information. Likewise, the activation function
presents non-invertibility challenges, especially in the case of a rectified linear function,
which discards negative values. However, due to the nature of desired image outputs,
which exclusively comprise positive values representing pixel color values, an approximate
inversion of the activation step becomes feasible.

Figure 2.4 showcases an explanation for an image classification by highlighting the
significance of features that contribute to a specific image’s classification. This explanation
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Figure 2.4.: Explanation generated using deconversational network, taken from [18].

is generated using a deconvolutional network. The successively regions within the image
under investigation are covered by a grey square (a). To unravel the contribution of these
regions, the strongest response in the feature map of the final layer is recorded for various
positions of the grey square (b). Subsequently, a projection of the feature map back
onto the input image is generated (c). By correlating the position of the grey square, the
probability of correct classification is mapped onto relevant areas of the input image (d).
This process allows different areas of the image to be associated with their most probable
class (e).

Grad-CAM

Stage Scope Output Functioning ResultProblem Type Input Data

Post-Hoc
Model-Specific Local Visual Structure

Leveraging
Feature
RelevanceMultiple Images

While methods like the previously mentioned deconvolutional network [18] offer insights
into which features of an image matter to a CNN, they fall short when precisely associating
these features with a particular class. In simpler terms, if, for instance, "fur" is deemed
relevant for identifying a cat in an image, these methods would highlight all furry objects
in the image without distinguishing them by class.

Addressing this limitation, [21] introduces the Gradient-weighted Class Activation Map-
ping (Grad-CAM) technique. Grad-CAM excels at pinpointing the areas within an image
that hold relevance for a predicted class. Moreover, it integrates seamlessly with methods
like the deconvolutional neural network, resulting in visual explanations that discriminate
between classes and focus on the local features pertinent to the model’s decision.

Much like the deconvolutional network approach, the Grad-CAM process begins with
passing an image through the model. Next, the output of the machine learning model is
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Figure 2.5.: Explanation for the result of a visual question answering task given by Grad-
CAM, taken from [21].

transformed into a binary vector, with a value of one for the target class and zeros for
all other classes. This binary output is then back-propagated through the model until it
reaches the last convolutional layer, where the output derivative concerning this layer’s
features is computed. These features are subsequently weighted by their corresponding
gradients, and a rectified linear activation function is employed to retain only those
features that positively influence the target class.

Grad-CAM finds applicability in machine learning approaches that employ a CNN archi-
tecture for image encoding, subsequently feeding this encoded information into various
architectures, such as image classification, image captioning, or visual question answering.
The outcome is a coarse heat map, which can mask irrelevant regions of the input image,
effectively highlighting the image elements that decisively contribute to the model’s classi-
fication decision. Crucially, Grad-CAM leverages the last convolutional layer of the CNN to
extract information about the image regions relevant to a chosen class. The authors deem
this layer the optimal balance between sparse information representation and preserving
high-level concepts that might be lost in subsequent layers.

In Figure 2.5, an exemplary explanation for visual question answering, generated by
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Grad-CAM, is presented. Grad-CAM effectively highlights the specific regions of the image
that correspond to the provided answer. This visual representation allows an observer
to assess whether the identified important areas align with the answers given by the
explained model.

LIME

Stage Scope Output Functioning ResultProblem Type Input Data

Post-Hoc
Model-Agnostic Local Mixed Petubations Surrogate

ModelsClassification Mixed

The XAI technique introduced by [19] is named "Local Interpretable Model-Agnostic
Explanations," abbreviated as LIME. As the name implies, LIME is a model-agnostic
approach to crafting localized explanations. The key to achieving interpretability in
these explanations lies in an abstraction layer that translates model inputs into more
understandable abstract features.

For instance, this abstraction layer can map individual pixels of an image into features,
which can be groups of neighboring pixels that collectively convey a meaningful concept.
LIME then generates explanations based on these abstract features through perturbation,
such as recoloring all pixels belonging to a particular abstract feature with a single color.

LIME’s workflow involves introducing input perturbations around a point of interest, such
as an image to be classified, and observing the corresponding responses from the machine
learning model. These perturbation-response pairs are then used to fit a linear model. To
address potential variations in the characteristics of abstract features (e.g., some features
may be affected by more pixels of the image than others), LIME employs a distance metric.
A penalty term is also introduced to constrain the resulting linear model, promoting the
retention of crucial features and simplifying the resulting explanation.

One of LIME’s notable advantages is its independence from the type of classifier model or
input data it is applied to, as it operates without direct interaction between the machine
learning model and the XAI method. Consequently, it can be seamlessly employed with a
wide range of classifier models, regardless of the input data type. Furthermore, from the
derived linear model, it becomes straightforward to extract feature importance weights,
shedding light on the most influential abstract features that either support or oppose the
classification provided by the examined machine learning model.

In Figure 2.6, an illustrative explanation provided by LIME sheds light on the misclassifi-
cation of an image. Specifically, the image of a husky is erroneously classified as a wolf
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Figure 2.6.: LIME’s explanation for why a classifier wrongly classified a husky as a wolf,
taken from [19].

(a). LIME serves the crucial purpose of identifying the most relevant features influencing
this misclassification. As depicted in (b), the most significant feature for the model’s
classification of a wolf, in this particular instance, was not the showcased animal itself but
rather the presence of snow in the background. If this process is repeated across multiple
examples, a human observer can effectively evaluate whether the model is behaving
appropriately or if it has potentially learned biases present in the training data.

SHAP

Stage Scope Output Functioning ResultProblem Type Input Data

Post-Hoc
Model-Agnostic Local Numerical Meta-

Explanations
Feature
RelevanceClassification Mixed

The SHAP (SHarpley Additive exPlanations) XAI framework, as introduced by [20],
leverages a collection of existing XAI methods to formulate comprehensive explanations.
Notably, SHAP utilizes several precursor XAI methods, including LIME [19], DeepLift
[125], and layer-wise relevance propagation [126]. These methods, which serve as the
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Figure 2.7.: Explanation for the result of a text classifier trained to detect the sentiment
text, taken from [128].

underpinnings of SHAP, share a common approach: generating surrogate models based
on simplified input features to elucidate model behavior.

The authors of SHAP establish a crucial link by demonstrating that these XAI methods
exhibit inherent relationships with one another. Furthermore, they establish that there
exists a theoretically unique solution that fulfills a set of essential criteria. These criteria
include:

1. Local Accuracy: Surrogate models must precisely match the behavior of the ex-
plained machine learning model at a specified point of interest.

2. Missingness: Simplified features absent in the explained instance should bear no
weight in the surrogate model.

3. Consistency: Any alterations in the importance of a feature should be accurately
reflected in the weights of the surrogate model.

While the surrogate models of the earlier XAI methods typically fall short in satisfying all
of these criteria, SHAP adopts a specific class of surrogate models grounded in Shapley
values from game theory [127]. This choice ensures that the desired properties of local
accuracy, missingness, and consistency are met consistently. The authors modify LIME
and DeepLift to align with their respective functionalities and produce explanations that
conform to the stipulated criteria, at the cost of some benefits of the original methods like
the sparseness of the model produced by LIME.

Figure 2.7 illustrates a representative explanation provided by SHAP for a text classifier.
The classifier in question is specifically designed to discern the sentiment conveyed in
textual content. SHAP enables the assignment of Shapley values to each segment of the
classified text, showing their contributions to the overall result. This allocation facilitates
a direct assessment of the significance of individual features, akin to LIME. Neverthe-
less, unlike LIME, SHAP’s feature importance is additive, allowing for a straightforward
prediction of the impact caused by the absence of features.
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Counterfactual explanations

Stage Scope Output Functioning ResultProblem Type Input Data

Post-Hoc
Model-Agnostic Local Mixed Petubations ExamplesClassification Mixed

The introduction of counterfactual explanations to the realm of machine learning is
attributed to [22]. To recap counterfactual explanations briefly, they serve as a means to
provide insights by presenting closely related examples that would result in a different
output from a machine learning model. For instance, consider the question, "Why were
the street lights turned on?" A counterfactual explanation might offer, "If there were still
sunlight outside, the street lights would not have been turned on."

Counterfactual explanations are closely related to a different kind of problem in machine
learning that seeks to make models more robust against adversarial perturbations of input
data. While also seeking to influence model output, these perturbations strive to remain
inconspicuous to human observers. Approaches to creating adversarial variations make
minimal changes to multiple inputs rather than drastically altering a single input to achieve
this inconspicuousness. Importantly, adversarial perturbation methods can be computed
efficiently due to the differentiability of most machine learning models. This feature can
also be harnessed for the efficient generation of counterfactual explanations.

The authors of this approach adopt an optimization-based strategy to compute their
counterfactual explanations. They minimize the distance between a counterfactual input,
denoted as x′, and the original input, denoted as x, while simultaneously maximizing a
penalty term that accounts for any deviation of the model’s output, f (x′), from a desired
target output, y′.

Crucially, the authors underscore the critical role of the choice of distance metric in
shaping the quality of the counterfactual examples generated. Unlike the adversarial
approach, they want to find variations that are interpretable, i.e., do not alter multiple
inputs inconspicuously. They recommend employing an L1-norm, weighted by the inverse
of the median absolute deviation in x, as the distance metric. This choice is motivated by
the L1-norm’s tendency to yield sparse solutions for x. At the same time, the weighting by
the inverse of the median absolute deviations permits more significant deviation in x′ in
areas with substantial variability in x.
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X1 season

X3sprinkler X2 rain

X4 wet

X5 slippery

Figure 2.8.: Exemplary Causal Bayesian Network representing dependencies between
five variables, from [124].

Causal Models

As highlighted in Section 2.1, causality stands out as a fundamental concept in expla-
nations. Consequently, models that encode causal relationships between variables hold
significant potential for generating explanations. These models, aptly named causal mod-
els, encompass various forms such as causal Bayesian Networks, structural causal models,
and causal graphical models [124].

Figure 2.8 provides an illustrative example of a causal Bayesian Network, where each
node in the network graph represents a variable, and the edges denote causal relations.
In this instance, the season causally influences the probability of rain and the activation
of sprinklers. Both the sprinklers and rain, in turn, impact whether the floor is wet, and a
wet floor influences its slipperiness.

While conventional Bayesian Networks capture only conditional independence between
variables, causal Bayesian Networks encode causality, enabling predictions about inter-
ventions. For instance, manually turning on the sprinkler renders it independent of the
seasons, a distinction from selecting only samples where the sprinkler is activated in the
dataset.

Deriving explanations such as "The floor is slippery because it is wet." becomes straightfor-
ward with causal models. The process of learning causal relationships through intervention
is recognized as causal inference [129]. Methods focused on learning causality from data
without intervening are referred to as causal discovery methods [130].
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Despite the prevalence of causal language in machine learning and XAI, our knowledge
suggests the absence of an XAI method utilizing causal models for explanation. However,
we view causal models as a promising avenue for explanation generation and explore their
application in explaining ESM in Chapter 4.

2.4. Alignment of XAI and ESM explanation methods

In the previous sections, we have investigated different possible XAI taxonomies. We used
the integral taxonomy approach from [120] to classify the mentioned XAI examples. In
this section, we use the same taxonomy to align the categories of ESM methods from
Section 2.2 with the XAI domain.

Figure 2.9 shows our classification of ESM explanation categories based on XAI taxonomy
criteria. It is worth noting that specific categories, such as parameter analysis, scenario
analysis, and interactions, may exhibit varying scopes and functionalities depending on
the specific method within each category. Further, some categories of the XAI taxonomy
are skipped, namely input data and problem type. Problem type is neglected since all
methods aim to explain the same problem type (i.e., optimization-based ESMs). The
catagory input data depends on the concrete implementation of the ESM explanation
method and thus can not be determined at the categorical level.

In the following section, we discuss the findings of this chapter and answer our first two
research questions.

2.5. Discussion

In this chapter, we investigated explanations across various domains. We started with a
broad perspective on explanations, as seen through the lenses of psychology and philoso-
phy. The fundamental purpose of explanations lies in their ability to convey knowledge
regarding an event, typically achieved by illustrating the event’s causal history. The pro-
cess of explanation can be dissected into distinct phases: first, the cognitive process of
identifying potential explanations; second, the resulting explanation itself; and finally, the
communication process necessary for transferring the condensed knowledge contained
within the explanation.
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Stage Scope Output Functioning Result

Parameter Analysis

Marginal Analysis

Scenario Analysis

MGA

Structured Heuristics

rest. Model Design
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Post-Hoc
Model-Specific

Post-Hoc1
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Global
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Numerical3
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Numerical3

Model
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Perturbations
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Perturbations
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Architecture
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Meta-Explanation
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Feature Relevance

Feature Relevance
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Examples

Surrogate Models
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Figure 2.9.: Classification of methods for explanation in the energy system domain into
the integral taxonomy approach for XAI from [120].
1: Marginal Analysis can be used model-specifically to access marginals from the optimiza-
tion process of an optimization problem by structure leveraging, or it can be used model-
agnostically by optimizing the model multiple times with small perturbations.
2: These approaches change/ limit the model itself and therefore scope does not apply for
them.
3: Even so the output is purely numerical it is commonly post-processed and a visual or textual
explanation is provided instead, i.e., line charts, time series plots or colored maps.
4: Depending on the design of the interactive approach, multiple outputs, functions, and results
are possible. For example, a language agent could perturb the input, modify its architecture
or extract information from its structure depending on the user’s request.
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During the cognitive phase of uncovering possible causes, multiple explanations often
surface. Explainers employ various factors, such as backgrounding and discounting, to
sift through these potential causes and determine which ones are crucial for the event. It
is noteworthy that, in the process of selecting explanations, implicit default scenarios are
frequently embedded in the question, necessitating consideration.

In the second section, we looked into the current state-of-the-art regarding explanations
for optimization-based ESMs. We examined the advantages and disadvantages of existing
methods in this domain. Our analysis led us to categorize these methods into seven
distinct categories, three of which are a form of sensitivity analysis. These subcategories,
namely parameter, marginal, and scenario analysis, evaluate the ESM’s responsiveness to
input changes. Parameter analysis, although valuable for comprehending the impact of
individual parameters on the model in detail, has limitations, including high computational
costs or applicability primarily to scenarios involving a limited number of parameters
and simpler ESMs. Marginal analysis circumvents the parameter limitation by extracting
marginal sensitivities from the ESM’s solution process. However, it requires access to the
model or its solution process, which may only sometimes be available, and its explanations
have limited local validity. Sensitivity analysis, in contrast, does not necessitate access to
the ESM and is unrestricted in terms of the number of parameters or the magnitude of
variation. Nonetheless, this freedom comes at the expense of explanations being highly
contingent on the design of the scenarios, necessitating the need to justify and clarify the
scenario choices made.

Three ESM explanation methods that are not sensitivity-based are MGA, structured
heuristics, and model design restrictions. MGA is instrumental in exploring alternative
solutions near the optimal solution of an ESM, thus shedding light on the flexibility of the
solution space. However, it mandates comprehensive access to the model’s structure and
strong domain knowledge for effective implementation. Techniques such as structured
heuristics and model design restrictions enhance ESM understandability. They achieve
this by replacing the complex optimization process to find optimal solutions with more
accessible heuristics or constraining ESM complexity during the design phase.

Lastly, interactions constitute another category of ESM explanation methods, focusing on
facilitating communication processes that allow the target audience to engage with the
model. This engagement can be achieved by a conversational agent (e.g., a chatbot) or
even a serious game. While interaction-based approaches hold great promise, as they can
combine and leverage various methods based on user requests, they are also the most
challenging to implement. They require domain expertise, a deep understanding of the
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target audience, access to the model, and proficiency in other domains, such as large
language models or game design.

The second section answers the first part of our first research question RQ 1. For the second
part of the research question, we identified the following shortcomings in the current ESM
explanation methods. A significant limitation in all ESM explanation methods categories
is their handling of high-dimensional input data, mainly structured data like time series.
Time series data holds substantial importance within ESMs, where it finds application
in various contexts, such as solar radiation profiles, electricity demand patterns, or wind
speed fluctuations. The challenge arises when dealing with alterations to individual time
steps within these time series. Often, such changes exert minimal influence on the optimal
solution, whereas modifications to broader patterns can bear significant consequences.
None of the abovementioned approaches effectively address these pattern-level variations,
except for scenario analysis if the pattern change is explicitly formulated as a scenario.
Nevertheless, scenario analysis encounters issues regarding the comparability of scenarios,
given that they may exhibit considerable dissimilarities in nature and characteristics.

Our investigation into XAI methods from the domain of machine learning is motivated by
the shared challenges in achieving explainability faced by both machine learning models
and large optimization-based ESMs and in line with the first half of our second research
question RQ 2. Notably, machine learning models frequently deal with the interpretability
of their outputs, especially when handling high-dimensional and structured input data –
an issue that mirrors the shortcomings identified in ESM explanation methods.

Given the vast landscape of XAI, we initiated our exploration by establishing fundamen-
tal criteria for adequate explanations, along with an overview of different taxonomies
employed to classify XAI approaches. Subsequently, we examine five prominent XAI
methods, outline their functioning, and classify them according to one of the discussed
XAI taxonomies. Specifically, we inspected deconvolutional networks and Grad-CAM,
two techniques geared towards explaining Convolutional Neural Network (CNN)-based
machine learning models frequently employed for image-related tasks such as image clas-
sification and virtual question answering. Additionally, we explored three model-agnostic
XAI methods, namely LIME, SHAP, and "counterfactual explanations." These methods
offer versatile approaches to explain general classification tasks, each distinguished by its
unique methodology and yielding slightly distinct resulting explanations.

Now that we have gained insights into several XAI methods, it is imperative to address an
outstanding second part of our research question RQ 2: can these concepts be applied to
enhance explanations for ESMs? In pursuit of this objective, we can draw valuable lessons
from the XAI taxonomy and the specific XAI methods we explored.
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To begin, we can leverage the XAI taxonomy to generalize and align them with the
categories we have established for ESM explanations as shown in the previous section.
A notable observation from the alignment is that the outputs of most ESM explanation
methods tend to be numerical, often necessitating manual post-processing to enhance
their interpretability. A potential avenue for future research lies thus in automating or
standardizing these post-processing procedures.

Additionally, we can gain insights from the XAI methods themselves for a potential transfer
to the ESM explanation setting. While Deconvolutional Networks and Grad-Cam are
tailored to the nuances of CNNs and their specific structures, rendering them less applicable
to ESM explanations, the model-agnostic nature of LIME, SHAP, and "counterfactual
explanations" offers promise for potential adaptation. For instance, LIME employs the
concept of an abstraction layer to render high-dimensional inputs interpretable for human
observers. LIME is adaptable to different types of input data in the context of different
classification models, i.e., a different abstraction layer is used to make text classification
interpretable then for image classification but all inputs with the model are the same
(letters or pixels). On the other hand, ESMs encompass diverse input data types within a
single model, e.g., financial data, weather time series, or technical parameters of power
plants. An abstraction layer tailored to ESMs would need to be more complex to handle
the combination of various input data types effectively. However, an abstraction layer
could offer a means to explain complex inputs like time series data. Furthermore, LIME
employs a regression with a penalty term favoring sparse explanations. Incorporating a
similar auto-selective regression approach in ESM explanations could reduce complexity
and customize explanations for different target audiences. SHAP, an extension of LIME,
operates on a comparable concept. Although it sacrifices the auto-selective penalty term
in LIME to achieve specific properties, its underlying principles remain similar. Hence, we
are going to explore the use of LIME for ESM explanation in Chapter 3.

Lastly, "counterfactual explanations" aim to generate examples that emphasize why a
model classifies an input as it does rather than as a different class. These examples
closely resemble the original input but lead to a different classification. Exploring a
similar approach in the context of ESMs could be interesting. However, it is essential
to note that "counterfactual explanations" are rooted in adversarial attacks within the
machine learning domain. On the other hand, adversarial attacks on ESMs have not been
extensively explored. Nevertheless, a preliminary exploration of this research area has
been conducted in a student’s work [131].

In the subsequent sections of this work, we narrow our focus to a singular concept from
each domain discussed in this chapter. In the forthcoming chapter, we undertake the task
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of adapting the principles of LIME for application in the context of ESMs. Additionally,
we explore the integration of the concept of causality, a pivotal element in the realm
of explanations, with ESMs in Chapter 4. Lastly, in Chapter 5, we create an interactive
approach rooted in ESMs aimed at elucidating pertinent concepts related to energy
transition for an audience of students.
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3. Local Interpretable Explanations for
Energy System Models

One application of ESMs is extension planning [132]. ESMs allow domain experts to
optimize the energy system design (ESD) with respect to system costs or CO2 emissions.
All such models are based on a multitude of parameter data. Required data include
time series, technical and economic parameters, and legal and physical limitations. For
example, for modeling wind power, historic weather time series for the wind speeds, the
currently installed capacity of wind power plants per model region, the specific costs for
new installations, and the maximum possible capacity allowed by regulation are required.
When no data are available, assumptions have to be made. The computed ESDs are
highly dependent on these data and assumptions, which is problematic since the DMs
may face personal consequences if the ESD they commit to does not perform well. Hence,
explanations are required to help DMs understand the ESDs proposed from ESMs and
decide on the ones best suited for their needs.

As shown in the previous chapter, a tool often used by domain experts to explain ESMs’
results is sensitivity analysis, which creates explanations based on how a system reacts to
individual parameter changes. The term sensitivity analysis is used for methods that vary
the input of a model and observe the change in outputs. We categorise sensitivity analysis
approaches into parameter analysis, marginal analysis and scenario analysis.

A major downside of sensitivity analysis is their inability to give adequate explanations
on high-dimensional input data such as time series, where small changes to individual
parameters have often only minor impact on the ESD. Changes for multiple time steps,
however, can have a significant impact. For example, suppose the renewable energy
potential is increased for a single time step. In that case, it is unlikely that the cost-optimal
storage capacity changes since additional storage capacities are expensive when used only
once. If the renewable increase covers several well-distributed time steps, storage capacity
can be reused and becomes more attractive.
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A similar problem occurs in the domain of machine learning, e.g., in image classification
where changes to individual pixels of the image should have no impact on the classification
result, but changes to a set of pixels may change the result. A popular explainable AI
method to overcome these limitations is “locally interpretable model-agnostic explana-
tions” (LIME) [19]. LIME, designed for application to classification problems, addresses
the shortcoming of traditional sensitivity analysis regarding high input dimensions by
introducing an interpretable abstraction layer for the input features. It then aims to find
the interpretable features whose variations are most relevant for changing the predicted
class label. This feature is then considered most relevant for a given class decision.

In this chapter, we propose to transfer the LIME idea from the machine learning domain
to the ESM community given the parallels between the two described problem settings
to answer our research question RQ 3. While explainable AI methods have been used in
energy and power systems before, explaining machine learning-based models employed in
power grids, the energy sector, or energy management in buildings, see e.g., [133]–[135]
and the review [12], we use explainable AI methods here for optimization-based ESMs,
not for statistical learning-based methods.

We apply the transferred method to two ESMs with different complexities: one for a
building ESD and one for a nationwide ESDmodel in order to tackle RQ 4. By making ESMs
better understandable to non-expert decision-makers, we hope that the work supports
informed decision-making in the transition towards low-carbon energy systems.

The remainder of the chapter is structured as follows: An exemplary ESM for finding the
optimal ESD of a building with a renewable energy supply is presented in Section 3.1. It
serves as a running example throughout this work. We then explain the concept of LIME
and show how the methodology can be transferred from the machine learning domain to
ESMs in Section 3.2. Explanations for the optimal design of the exemplary energy system
are derived and discussed in Section 3.3. Explanations of a more complex model, i.e., a
model of the German energy system, are presented in Section 3.4. A discussion is given in
Section 3.5.

3.1. An Exemplary Building Energy System

This chapter uses a building energy system as a running example. Its structure is shown
in Figure 3.1. The building is characterized by an electric and a thermal demand. Electric
energy is locally generated by a photovoltaic (PV) plant or can be bought from the external
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electricity grid. Electricity can be stored in a battery for later use and converted into heat
using a heat pump. Heat can be stored in heat storage, such as a hot water tank.

Electricity HeatPV

Import from Grid Battery Heat Pump Heat Storage

Heat DemandElectricity Demand

Figure 3.1.: Schematic overview of exemplary energy system model of a building with
photovoltaic (PV) power plant. Energy commodities are displayed as ellipses
and energy conversion processes as rectangles. Arrows of a conversion
process denote which energy commodities can be transformed into each
other, while colors encode different types of energy. Conversion processes
without input or output represent energy demands or energy imports into the
model domain.

The energy system is modeled using a bottom-up approach based on linear programming
[136], extending the model of [10] by a heat sector. The model’s objective is to minimize
the total system costs, including investment and operational contributions. Optimization
variables are the scheduling decisions of all components, e.g., when to charge or discharge
the battery. Furthermore, the system’s design is optimized by model-endogenously choos-
ing cost-optimal capacities for the battery and heat storage. In contrast to [10], the PV
power plant capacity is assumed to be known. The model adheres to a set of constraints.
These include the power balances for electricity and heat at every time step. Other con-
ditions describe the storage level’s dependency on charging and discharging decisions.
Three sets of inequalities limit the available PV energy per time step to an externally
given, weather-dependent time series, ensure feasible storage levels, and constrain the
heat pump’s power output by capacity. The detailed mathematical equations are given in
Appendix A.
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3.2. Proposed Explanation Methodology

In this section, we present our methodology to derive explanations for ESMs that go
beyond the scope of traditional sensitivity analyses. As our approach is based on the LIME
[19] method from the explainable machine learning domain, we first describe LIME in its
original context and then introduce our proposed methodology in parallel.

3.2.1. LIME for Machine Learning

LIME introduces an interpretable abstraction layer for the input dimensions of the machine
learning task and combines it with a modified sensitivity analysis. As the name “local
interpretable model-agnostic explanation” suggests, LIME creates explanations for non-
experts for any classifier f : X → [0, 1]L given a specific point of interest (POI) x̄ ∈ X ,
where X ⊆ Rd is the original input space of the classification problem and L is the
number of class labels f can predict. The created explanations are local, i.e., only valid
for variations close to the POI. To this end, an interpretable feature space Z ⊆ {0, 1}d′

is created for the original, high-dimensional input space of the classification problem
X ⊆ Rd with d′ ≪ d. The vector z̄ ⊆ Z is a binary vector encoding the presence
or absence of interpretable features related to the POI x̄. First, I variations zi in the
interpretable feature set are made around z̄. Second, a function hx̄ : Z → X maps the
interpretable variations zi back to the input space, i.e., xi = hx̄(zi). Each variation xi is
then weighted by πx̄(xi) based on its similarity to x̄. Finally, LIME determines the most
important interpretable features, i.e., the explanation, for a given class label by solving
the regularized least-squared regression

arg min
g∈G

I

∑
i=1

πx̄(xi)( f (xi)− g(zi))
2 + Ω(g), (3.1)

where the model g : Z → R is a model in the class of all linear models G ⊆ RZ and Ω(g)
is a complexity measurement of g ∈ G, for example, the number of non-zero weights
of g. Interpretable features with non-zero weighting are then deemed explanations for
the classifier’s local behavior around the POI x̄. By choosing Ω(g) appropriately, the
complexity of the explanation can be limited as desired.

A visualization of the concept of LIME applied to image classification is found in Figure
3.2a, where an interpretable explanation for the classifier f ’s prediction of the “dog” class
is created by LIME. The original input space X contains vectors with the color values
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of the individual pixels of an image. Clusters of pixels, the so-called super-pixels, are
used to define the interpretable feature space Z. Each interpretable feature encodes the
presence or absence of a super-pixel. Variations zi around the interpretable representation
z̄ = (1, . . . , 1) of the image are made. Those variations are mapped back to the input space
X by replacing all pixels belonging to a non-selected super-pixel with a neutral color, i.e.,
a 50% grey value. The resulting inputs xi are classified by f , and a linear model g is fitted
to the resulting “dog” class probabilities by solving the problem defined in Equation (3.1).
The magnitudes of the weights in g represent the impacts of the super-pixels on f and
can thus be used to explain f locally. The complete explanation is a list of super-pixels
in decreasing order based on their absolute impact on the class label. Shown in green is
the super-pixel with the highest weight for predicting the class “dog”; shown in red is the
super-pixel with the highest weight for not predicting the class “dog”.

3.2.2. Proposed Method for Explaining ESM

We now want to explain to non-experts an output value from the cost-optimal solution of
an ESM. To this end, we propose a method based on the LIME concept, where instead of
a class probability given by the classifier, we explain an output value of a cost-optimizing
ESD. The POI is a vector x̄ in the ESM’s input space X . We then identify interpretable
features Z that may or may not be part of the original model parameters but are assumed
to be potentially relevant for an explanation. Since we are interested in quantitative
explanations and not only qualitative ones, instead of the binary encoding used by LIME
for the interpretable features space, we define Z ⊆ Rd′ . Similar to LIME, variations in
the interpretable features are mapped to the model’s inputs via a mapping hx̄ : Z → X
between the interpretable features space Z and the input space X . The ESM is optimized
for each variation. A linear model g : Z → R is fitted to the results of the ESM’s runs
by minimizing the objective in Equation (3.1). As the complexity measure Ω(g), we
chose the number of non-zero weights of g. The linear model g is finally used as an
interpretable explanation for the ESM: a weight in g corresponding to an interpretable
feature represents that feature’s influence on the optimal ESD.

A visual representation of the methodology proposed for the explanation of an ESM is
shown in Figure 3.2b. The illustration is based on our exemplary building energy system
from Section 3.1. An interpretable explanation for the cost-optimal battery capacity
designed by the ESM is created for a given set of input parameters, the POI x̄. In the
presented case, the POI is a summer day’s solar radiation time series. An interpretable
feature space Z is then created. Interpretable features considered potentially relevant for
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(a) LIME’s explanation methodology for image
classifiers.

(b) Proposed explanation methodology for an
ESM for optimal ESD.

Figure 3.2.: (a): The LIME method: For an image classifier where individual pixels of
an input image x̄ have no explanatory power, an abstraction layer with in-
terpretable features Z (here super-pixels) is created. Variations zi around
the interpretable representation of the input image z̄ are made and mapped
back to the input space X via hx̄, i.e., by replacing each pixel belonging to
a super-pixel with a single neutral color. The classifier f is applied to the
modified inputs. LIME fits a linear model g(z) to the classifier’s outputs and
uses g to explain the behavior of g locally around x̄. (b): Proposed Method:
For a high-dimensional input x̄, e.g., a radiation time series, interpretable
features z̄i that could be relevant for explanation are identified. Variations zi
around z̄ are made and mapped back to the input space X by hx̄. The ESM f
is optimized for each input variation xi. A linear model g(zi) is fitted to the
output of the ESM optimization, e.g., the cost-optimal battery capacity Cb.
The weights of the linear model g represent the relevance of the interpretable
features for the optimal ESD derived from the ESM f locally around x̄.

an explanation are the specific battery investment cost, the number and shape of “fleecy
clouds” occurring during the day, and the existence of “morning mist”. Interpretable
variations zi around the POI are made, and the mapping hx̄ : Z → X maps the inter-
pretable variations to the models’ input space X , resulting, e.g., in variations xi in the
solar radiation time series. The ESM is then optimized for each variation. A linear model
g is fitted to approximate the cost-optimal battery capacity Cb of the ESD model’s results.
The weights of the resulting linear model g are taken as an interpretable explanation for
the ESD model. A weight in g corresponding to an interpretable feature represents that
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feature’s influence on the ESD model’s output. In the given example, the most relevant
interpretable feature for the ESM’s cost-optimal battery capacity is the size/duration of
the “fleecy clouds”.

We show the application of this method to an exemplary building energy system in Section
3.3 and a model of the German energy system in Section 3.4. These examples include the
explicit definition of the interpretable feature space Z and the mapping hx̄.

3.3. Experimental Demonstration: The Exemplary Building Energy
System

In this section, we apply our proposed method to create an explanation of the cost-optimal
battery capacity for our exemplary building energy system introduced in Section 3.1. To
this end, we first define a set of interpretable features that can impact the cost-optimal
battery capacity. They consist of cloud characteristics, the PV surplus with respect to the
load, and the specific battery investment cost. These features are described in Section
3.3.1. Section 3.3.2 describes details of the first implementation of our methodology to the
exemplary building energy system. Section 3.3.3 shows results for our proposed method
on a simplified version of the same exemplary energy system model, which includes only
the electricity sector. We create explanations around two points of interest with different
battery costs and test their robustness towards different feature mappings hx̄. Explanations
for the complete version of the exemplary building model, i.e., including the heat sector,
are then given in Section 3.3.4.

3.3.1. Interpretable Features

The defined interpretable features Z ⊆ Rd′ for this demonstration are shown in Table 3.1b.
They consist of the number of clouds, the size of clouds, the existence of morning mist,
the storable PV surplus, specific battery investment costs, and the specific heat storage
investment costs. The number of clouds nc refers to the number of individual clouds in
a simulation period, i.e., one day here. The cloud size sc describes the duration of an
individual cloud, and it is measured in terms of lost energy, i.e., the cloud clips the PV
power plant’s output to zero until the energy amount sc is lost. The interpretable feature
morning mist mm describes a reduced PV power production in the early hours of the
simulated day, and we implement it by reducing the solar radiation to zero during the mm
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time steps following the first time avPV(t) > 0. The storable PV surplus sPV measures the
energy available for storage. It is defined as the sum over all modeled time steps t ∈ T of
the positive difference between the available PV supply avPV(t) and electricity demand
De(t), i.e.,

sPV =
T

∑
t=0

max(0, avPV(t)− De(t)) + ncsc, (3.2)

ncsc accounts for the lost energy from clouds, and its addition keeps sPV independent
from the interpretable cloud features.

Table 3.1a shows the input space X ⊆ Rd of the exemplary building energy system model.
Note that the specific battery investment costs and specific heat storage investment costs,
which are part of Z , also belong to the input space X and thus do not need to be mapped.
A mapping hx̄ : Z → X is required for the four remaining features, i.e., number of
clouds, size of clouds, morning mist, and storable PV surplus, targeting the solar radiation
availability time series avPV ∈ X . First, hx̄ takes the solar radiation time series and finds
a multiplicator for which ∑T

t=0 max(0, avPV(t)−De(t)) is equal to the desired storable PV
surplus. Then, the starting time step for each one of the nc clouds is calculated. Starting
points can be calculated by assuming clouds to be distributed at equal distances from one
another or uniformly at randomly selected hours where avPV(t) > 0. In our experiments,
clouds either have a fixed sizeor each cloud has its size determined based on a Gaussian
distribution with its mean equal to the interpretable feature and a fixed variance of 0.1
kWh. Mapping the clouds to the solar radiation availability avPV affects the storable PV
surplus sPV . Hence, we calculate the difference of the sPV after the mapping to the desired
sPV and distribute the difference equally to all time steps of avPV where avPV(t) > 0.

3.3.2. ESM Implementation

We solve the exemplary building energy system model for a single day with a time-step
duration of 10 min, resulting in 144 time steps. To prevent unnatural storage depletion
at the end of the optimization horizon, we define the storage levels of t = 0 and t = 144
to be equal. We assume a lifetime of 10 years for all technical components such as the
battery and distribute their investment costs evenly over their lifetime. A constant grid
electricity price pe of 0.25 e/kWh is assumed.

An example of a solar radiation availability time series created by our mapping and
the resulting cost-optimal battery scheduling is shown in Figure 3.3. Three clouds of
randomized size and distribution are added to the original solar radiation availability
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Table 3.1.: (a): Inputs of the exemplary building energy system. Time-dependent parame-
ters are vectors with entries for every modeled time step. This model needs
a total of 2T + 4 values as its input, with T as the number of time steps. (b):
The six interpretable features for explaining the cost-optimal battery capacity
of the exemplary building energy system.

(a)

Input Parameters Symbol Unit Number of Values

Specific battery investment costs pb e/kWh 1
Solar radiation availability avPV(t) kWh T
Demand time series De(t) kWh T
Grid electricity price pe e/kWh 1

Specific heat storage investment costs pHS e/kWh 1
Heat pump, coefficient of performance COP - 1

(b)

Interpretable Feature Symbol Unit Number of Values

specific battery investment costs pb e/kWh 1
cloud size sc kWh 1

number of fleecy clouds nc - 1
morning mist mm - 1

storable PV surplus sPV kWh 1
Specific heat storage investment costs pHS e/kWh 1

time series. The solar radiation availability data correspond to the historical data of
Darmstadt, Germany, obtained at [137] for 2019. Random days within May, June, and
July are selected for our mapping. We assume a constant electricity demand of 1 kW for
the electricity-only model. For model runs with randomized cloud distribution and size,
we solve the ESM fifteen times and take the average of the results.

Standardized load profiles for German households [138], [139] are used for the heat and
electricity demands for the full model in Section 3.3.4. The time series based on those
profiles are scaled to have a total electricity demand equal to the electricity-only model
(24 kWh per day). The total heat demand is twice as large as the electricity demand (48
kWh per day). We assume the heat pump to have a coefficient of performance of 3. The
heat pump’s power rating is large enough to cover the heat demand in every time step,
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making the heat storage optional from a pure heat balancing perspective. We use the
mapping hx̄ as described above with randomly distributed clouds and random cloud size.

Figure 3.3.: Exemplary solar radiation time series (yellow line) created by the mapping for
randomly sized and randomly distributed clouds. The resulting cost-optimal
battery storage levels (red line), which provide for the constant electricity
demand (blue line), are shown.

To deal with the scale heterogeneity of our interpretable features, we normalize them
before applying the regression in Equation (3.1). To normalize the input and interpretable
feature vectors, we group their entries. One group contains, for example, all entries in xi
that describe the solar radiation availability time series. We subtract the smallest value
from each group member and divide by the largest difference within the group. We define
x̃i, z̃i as the normalized versions of xi and zi respectively, and ỹi as the normalized output
values to be explained from the ESM f (xi), in this case, the cost-optimal battery capacities.
We then rewrite Equation (3.1) to create the explanation for the building energy system
as

arg min
g∈G

I

∑
i=1

πx̄(x̃i)(ỹi − g(z̃i))
2 + Ω(g). (3.3)

For the distance metric πx̄(xi), we use an exponential kernel with a radial basis function
on the normalized inputs, i.e.,

πx̄(x̃i) = exp
(︃
∥x̃i − ˜̄x∥2

2σ2

)︃
, (3.4)
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with ˜̄x as the normalized input vector at the POI. The vector σ is the standard deviation of
all normalized input variations in the experiment.

For the complexity measurement Ω(g), we chose the number of non-zero weights of g, al-
lowing only one weight to be non-zero. For the implementation, we choose
Ω(g) = α∥wz∥1, with wz as the weights vector of the linear function g, i.e., g(z̃i) = wzz̃i.
The parameter α is increased until wz has only one non-zero entry. This LASSO path
procedure is described in [140]. We will refer to the feature corresponding to this non-zero
entry as the most relevant interpretable feature.

The python implementation of our experiments can be found on https://github.
com/pe0nd/LIME_for_ESD (accessed on 20 January 2023).

3.3.3. Explanation Results: Electricity Only

We first omit the heat sector of the exemplary building energy system to facilitate the
manual validation of the results. For our exemplary building energy system of a building
with a PV power plant, we create an explanation for the cost-optimal battery capacity for
two points of interest by comparing the most relevant interpretable features determined
by our approach.

The first POI x̄ has low specific battery investment costs pb of 600 e/kWh, a storable PV
surplus of 5 kWh, 5 clouds, and a cloud size of 0.5 kWh. We refer to this POI as cheap
battery. The input vector for the second POI is identical except for a higher specific battery
investment cost of 1200 e/kWh. We refer to this second POI as expensive battery.

Table 3.2 shows that for cheap battery, the last feature that remains non-zero is the cloud
size sc; i.e., sc is the most relevant interpretable feature for explaining the cost-optimal
battery capacity at this POI. Applying our approach to the expensive battery results in the
PV surplus sPV being the most relevant interpretable feature affecting the cost-optimal
battery capacity.

Verifying why the different most relevant interpretable features at each POI is a good
explanation considering the different uses for battery storage. First, suppose that the
specific costs of battery capacity are high. In this case, building a small battery is cost-
optimal to mitigate the fluctuations in electricity production caused by the clouds during
the day. The optimal battery capacity for this purpose corresponds to the energy lost
by a single cloud. In contrast, if the specific battery investment costs are low compared
to the electricity prices, it is cost-optimal to build a large battery. This battery stores
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Table 3.2.: Output of the proposed methodology for the electricity-only ESM. The most
relevant interpretable features for the cost-optimal battery capacity using
different cloud mappings hx̄ are shown. Interpretable features are the cloud
size sc, the number of clouds nc, the storable PV surplus sPV , specific battery
investment costs pb, and morning mist mm.

Point of Interest x̄
Equal Cloud Dist. Random Cloud Dist.

Equal sc Random sc Equal sc Random sc

cheap battery sPV sPV sPV sPV
expensive battery sc sc sc sc

electric energy for nighttime, which otherwise would be curtailed from the PV power
plant production during the daytime. In this case, the storable PV surplus is the dominant
feature for determining the battery capacity.

Table 3.2 also shows the most relevant interpretable features at the points of interest for
different implementations of the mapping function hx̄, i.e., fixed or random cloud size
and equally or randomly distributed clouds. The most relevant interpretable features are
not affected by the different mapping functions. Hence, the explanations for these points
of interest are robust against different implementations of the mapping function.

Figure 3.4 compares our proposed methodology and traditional sensitivity analysis. To
this end, we provide in Figure 3.4a the effect of changes in the solar radiation availability
time series avPV on the cost-optimal battery capacity Cb for the POI cheap battery. The
top plot shows the sensitivity analysis results for a fixed demand and a deterministic
feature mapping with evenly distributed clouds of fixed size. The bottom plot displays the
sensitivity results for a standardized load curve, namely demand and randomized cloud
placement and size. For the deterministic scenario, the period between 7:40 and 16:00
turns out to be crucial for determining the optimal battery capacity. This is plausible since
it is when the PV production exceeds the demand, resulting in surplus PV energy. However,
this explanation is not easily deduced from the sensitivity results in the randomized setting.
On the other hand, the proposed methodology provides clear and interpretable results
as shown in Figure 3.4b. The fitted linear model provides weights for the interpretable
features that are better understandable for both experts and non-experts.
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(a) Sensitivities of Cb towards avPV (b) Proposed Approach

Figure 3.4.: Comparison of sensitivity analysis and the proposed methodology for ex-
plaining the cost-optimal battery capacity Cb at the POI cheap battery. (a):
Sensitivity of Cb towards changes in solar radiation availability avPV . Red
values indicate a positive sensitivity, and blue values indicate a negative
sensitivity. Top: deterministic cloud mapping and constant demand. Bottom:
cloud mapping with random cloud sizes sc, random cloud distribution, and
a standardized load profile. (b): Weights of the fitted linear model. Green
implies positive influence, and red implies negative influence. The features
are ordered by absolute weight magnitude on the right.

3.3.4. Explanation Results: Including the Heat Sector

We now examine the exemplary building energy system, including the heat sector, i.e.,
with a heat demand, a heat storage, and a heat pump, and explain the cost-optimal battery
capacity Cb and the cost-optimal heat storage capacity CHS. The heat storage can offer
temporal flexibility to the system if the heat pump converts excess electricity from the PV
power plant into heat. This additional flexibility might allow part of the battery storage to
be replaced by heat storage.

We investigate four different points of interest x̄ to check if the additional flexibility
provided by the heat storage changes the explanation for the cost-optimal battery capacity.
All points of interest map to interpretable features with a storable PV surplus of 9 kWh,
5 clouds, and a mean cloud size of 0.5 kWh. We consider a larger storable PV surplus
compared to Section 3.3.3 since the additional heat demand has to be provided by the
heat pump, which increases the electricity demand. The examined points of interest differ
in their specific battery investment costs pb and specific heat storage investment costs pHS.
We refer to the points of interest by their specific investment costs for heat storage and the
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battery. The specific heat storage investment costs are either cheap (pHS = 50 e/kWh)
or expensive (pHS = 200 e/kWh). Specific battery investment costs are cheap (pb =
600 e/kWh) or expensive (pb = 1200 e/kWh).

The most relevant interpretable features determined by our methodology for all POIs are
shown in Table 3.3. The storable PV surplus is the most relevant feature for explaining
the cost-optimal heat storage capacity, no matter the specific battery investment cost
if heat storage is cheap. The cost-optimal Cb for the points of interest with cheap heat
storage is mostly explained by the storable PV surplus sPV or the cloud size sc, but not
the specific heat-storage investment costs pHS. One may anticipate that the specific heat
storage investment costs would be the most relevant interpretable feature, as incorporating
heat storage with heat pumps presents a more cost-effective way of utilizing electric
energy generated by PV production, which could potentially replace battery storage in the
exemplary building energy system. However, it is important to note that heat storage is
not a complete substitute for battery storage in the exemplary building energy system, as
heat cannot be converted back into electricity. As a result, battery storage cannot be fully
replaced by heat storage.

Table 3.3.: The most relevant interpretable features for cost-optimal battery capacity Cb
and heat storage capacity CHS. Interpretable features are the cloud size sc, the
number of clouds nc, the storable PV surplus sPV , specific battery investment
costs pb, morning mist mm, and specific heat storage investment costs pHS.

Point of Interest x̄ Cb CHS

cheap heat storage, cheap battery sPV sPV
cheap heat storage, expensive battery sc sPV
expensive heat
storage,

cheap battery pHS pHS

expensive heat
storage,

expensive battery sc sPV

For POI expensive battery and expensive heat storage, Table 3.3 shows that the cloud size sc
is the most relevant interpretable feature for Cb. The storable PV surplus SPV is the most
relevant interpretable feature for CHS. At this POI, expensive heat storage is still relatively
cheap compared to expensive battery storage. Hence it will be used to store most of the
storable PV surplus. Keeping a small battery capacity is cost-optimal for storing electricity
fluctuations caused by clouds. The POI expensive heat storage, cheap battery has the specific
heat storage investment costs pHS as the most relevant interpretable feature for explaining
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Cb and CHS. At this POI, the specific investment costs of heat storage capacity and battery
capacity are close to balance; i.e., a change in relative investment costs shifts between
battery and heat storage.

These examples show that the behavior of even this simple energy system model is not
always intuitive. However, our method is able to create explanations in the form of the
most relevant interpretable features for Cb and CHS.

3.4. Experimental Validation: Country-Wide Model

In this section, we employ our approach to create an explanation for different German
energy system transition paths towards low-carbon-emitting technologies, e.g., heat pumps
and battery electric vehicles (BEVs). Section 3.4.1 introduces the ESM used. Next, we
define interpretable features in Section 3.4.2. Finally, we show the explanation created in
Section 3.4.3.

3.4.1. ESM Implementation

We use the German energy system model presented in [141]. The model is based on
Germany’s 2016 production capacities and energy demands as an initial condition and
takes the heat, electricity, and transport sector into account. The objective function is cost
minimization in a time horizon until 2050. We only simulate even years using a sparse
time step selection of 8 weeks per simulated year to reduce computation time. Due to
linearly decreasing CO2 limits in all feasible solutions, the initial energy system has to
change.

The ESM has the cost-optimal operation and extension plan as its output. We refer to this
cost-optimal extension plan of a technology as its transition path. For comparing different
transition paths by a single value, we explain the aggregated use of a technology cp by its
energetic use as modeled years scp = ∑y ∑t Ecp(t, y), with Ecp(t, y) as the energy output
and t as time and y as years. Note that a technology that is deployed earlier will typically
provide more total energy than one that is deployed later, but this could be offset if the
later-deployed technology is adopted at a faster rate.
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3.4.2. Interpretable Features

We use three interpretable features: the fossil fuel price, the correlation of PV availability
with heat demand, and the correlation of wind availability with heat demand.

The German ESM uses five fuels: coal, gas, oil, lignite, and biomass. We define a change
in fossil fuel price to be the change in prices of all fuels, except biomass; i.e., for a 10%
increase in fossil fuel price, the costs of coal, gas, oil, and lignite increase by 10%. Hence,
we define the mapping hx̄

f uel : R1 → R4Y with Y as the number of years of the optimization
horizon since prices are fixed within a year in this model.

We define hx̄
wind and hx̄

PV to map the correlation to the input availability time series of
wind and PV, i.e., R1 → RT with T being the set of time steps within a modeled year. The
mapping takes the availability time series of wind (or PV) at the POI x̄ and alters them to
increase or decrease their correlation towards the heat demand without changing their
full load hours. First, we determine the correlation of the wind (or PV) availability time
series to the heat demand. If the correlation is below the desired level, the time step with
the highest heat demand is determined, as well as the time steps with the highest wind
(or PV) availability. For the availability time series, the values of those two time steps are
switched. Since the highest wind (or PV) availability is now in the same time step as the
highest heat demand, the correlation of the two time series increases slightly. We continue
this sorting process with the next highest values until the desired correlation, and thus
the simultaneity of demand and production availability is reached. If the correlation of an
availability time series and the heat demand is above the desired correlation, the lowest
heat demand time series is used for the value swapping; i.e., the highest wind (or PV)
availability will appear when the heat demand is at its minimum.

The correlation of the wind’s onshore and offshore availability time series with the heat
demand at x̄ is about 0.2 for both of them. For PV availability at x̄, the correlation with
heat demand is about −0.33. We create two variations of the time series each for wind
onshore, wind offshore, and PV production availability. The first set of time series created
has its correlation increased by 0.2, and the second set of time series has its correlation
decreased by 0.2. For the distance metric, we use an exponential kernel as in Equation
(3.4) on the availability time series and the price vector.
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3.4.3. Explanation Results: Energy Transition Paths

Figure 3.5 shows the cost-optimal heat provision by heat pumps, the cost-optimal transport
provided by BEVs, and the cost-optimal electricity production fromwind power for different
input variations.

Figure 3.5.: Yearly energy output of different technologies for different interpretable
input variations in the German energy system model. Each line is a different
variation with the color encoding the correlation of the PV or wind availability
time series to the heat demand and the line style encoding the fossil fuel
price. On the left is heat output by heat pumps. In the middle is propulsion
output from battery electric vehicles. On the right is electricity output of wind
onshore and offshore power plants.

The most relevant interpretable feature for the transition speed towards heat pumps is
fossil fuel prices. The importance of fossil fuel prices can be seen in the left graph of
Figure 3.5. For variations with expensive fossil fuel prices, heat pumps are used earlier
and to a greater extent than for cheap fossil fuel prices.

This explanation makes sense when considering the available technologies for providing
heat within the model. Heat is produced by burning biomass, gas, or oil, or by using
electricity to power resistive heaters or heat pumps. Resistive heaters have lower investment
costs but are more expensive in the long term compared to heat pumps because of their
lower coefficient of performance. Therefore, when fossil fuel prices rise, the cost-optimal
solution to meet the heat demand is heat pumps. Additionally, electricity produced by wind
power plants can be used more efficiently by heat pumps when wind power production is
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better aligned with heat demand; however, this effect is weaker than the fossil fuel price
change.

The transportation energy provided by BEV for different input variations is shown in
the center graph of Figure 3.5. The most relevant interpretable feature for explaining
the transition towards BEVs is the correlation between wind power availability and heat
demand. If the wind power availability is less correlated with the heat demand, a transition
towards BEV happens earlier. If the wind power availability is correlated more with the
heat demand, the transition happens in later years.

It may seem counterintuitive that less simultaneity between wind power production and
heat demand would impact the transport sector, but it makes sense. When wind power,
the cheapest source of renewable energy in this model, is less able to provide the required
heat, more heat is generated by burning fossil fuels. This leads to an increase in CO2
emissions. The additional CO2 emissions needed for heating require savings in other
sectors, as emissions must be kept below their limit. This explains an earlier transition to
battery-electric vehicles (BEVs) away from combustion vehicles, as the transport sector is
the cheapest option for reducing emissions in this setup. Furthermore, the right graph of
Figure 3.5 shows that large capacities of wind power plants are built in later years of the
model, even when the simultaneity of wind availability with heat demand is low. This
indicates the need for CO2 reduction.

3.5. Discussion

In this chapter we have shown how to transfer the concept of LIME to different ESMs
for optimal ESD (RQ 3). When transferring the concept of LIME to energy systems, two
challenges arise that have to be considered by domain experts: defining interpretable
features and choosing the proper distance metric between different input variations. The
definition of interpretable features is challenging since they have to be independent of
one another. Dependent interpretable features will also be related in an explanation.
For example, consider the exemplary building energy system from Section 3.3.3 and the
POI with low battery investment costs. Instead of the storable PV surplus, we use the
total energy availability ∑T

t=0 avPV(t) of the PV power plant as an interpretable feature.
The explanation for the cost-optimal battery capacity will equally depend on cloud size,
the number of clouds, and the total energy output availability since the energy output is
affected by the number of clouds times the cloud size.

65



The distance metric weights the changes in the interpretable features based on the changes
in the actual model inputs. For machine learning classifiers, model inputs are homoge-
neous; e.g., all inputs of an image classifier are pixels. The distance between interpretable
variations can be determined by summing up the distance between individual input
changes. However, finding an appropriate distance metric remains a challenge, as noted
in [142]. For energy system models, the inputs are heterogeneous, e.g., cost parameters
that are part of the model’s objective function or availability time series in the model’s
constraints. Interpretable features that affect multiple constraints, such as by altering an
availability time series, are considered more distant than those that affect only a single
parameter of the objective because their input distances are simply summed. However, it
should be noted that the objective often has a greater impact on the model’s outcome than
changes in the constraints, which is not considered by the distance metric. Investigating
the effect of different distance metrics on the stability of the explanation could be an
interesting area for future research.

When compared to sensitivity analysis the proposed LIME-based methodology offers
several benefits regarding RQ 4. First, the number of explaining factors is significantly
reduced. This is beneficial for discussions with experts and non-experts. The number
of parameters that will be part of the explanation is based on a hyper-parameter of
the method. Hence, even with a high-dimensional input space, the complexity of the
explanation can be adjusted to the demands of the target audience by changing the hyper
parameter. Second, the sensitivity results for each individual input dimension make it
non-trivial to extract the underlying determining reasons. For example, considering the
setup in Figure 3.4, the color map derived from sensitivity analysis could hardly encode
factors such as cloud size in an obvious fashion.

Another benefit, when comparing the LIME-based approach to sensitivity analysis concerns
computation times and ease of implementation. While sensitivity analysis for linear
programs can be made efficient by exploiting the KKT optimality conditions [143], this is
not implemented or easily accessible in many existing ESM frameworks. If sensitivities for
high-dimensional inputs then have to be computed externally via numeric differentiation,
the effort quickly becomes infeasible. In contrast, for the proposed methodology, the effort
can be adapted by changing the number of selected interpretable features and the number
of parameter variations used.
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4. Causal Graphical Models for Energy
System Models: A Negative Result

In Chapter 2, we presented causality as a pivotal concept in explanations within the
realms of psychology and philosophy. This chapter tries to apply the causality concept
to optimization-based ESMs (RQ 5), specifically to linear programs – a mathematical
optimization model underpinning numerous ESMs. Intuitively it would make sense
to causally argue step-by-step with ESMs. To illustrate, consider a scenario where a
homeowner must determine optimal capacities for a rooftop PV power plant and for
a battery storage unit devoid of optimization tools. In this context, the progression
would probably involve deciding the PV capacity first. External factors such as roof size
and average electricity demand influence the capacity of the rooftop PV power plant.
Subsequently, one would maybe determine the optimal battery capacity based on the
derived PV capacity (or the energy it generates). Conversely, deciding on the battery
capacity before determining the PV power plant’s capacity appears counterintuitive to
the DMs since the optimal PV power plant fitting the derived battery might collide with
external factors such as the roof size. Understanding these causal relationships is crucial
for explaining behavior when model modifications occur. For instance, if constraints on
PV capacity arise due to new building regulations, a causal model would readily reveal
that this change necessitates a corresponding adjustment of the optimal battery storage
capacity.

Causality and causal exploration is a central research topic in statistics for over three
decades [130]. However, deducing causal relations from linear programs poses a novel
challenge. Figure 4.1 illustrates a possible conceptual framework for deriving causal
explanations from linear programs, wherein a causal graphical model is derived from an
ESM or any linear program. This model would then serve as the foundation for extracting
causal information, enabling the creation of explanations that elucidate the behavior of
the ESM.
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Figure 4.1.: Idea: Finding a causal graphical model for an ESM could help explaining its
behaviour since textual explanations can be easily extracted from causal
graphical model.

The two main contributions of this chapter are:

• We demonstrate that learning a directed causal graphical model from a linear
program is not impossible in many important cases.

• We present an approach based on undirected graphical models that allows to split
linear programs into causally independent subparts.

The subsequent sections of this chapter are structured as follows: First, we introduce
directed causal graphical models and the concept of interventions. Section 4.2 explores
the adaptation of the intervention concept to linear programs. In section 4.3, we unveil a
fundamental issue with causality in linear programs – rendering it impossible to represent
them as a directed causal graphical model in important cases. Section 4.4 provides an
initial approach to salvaging the concept of causality for explaining linear programs
through undirected graphical models. Finally, we discuss implications of this chapter and
open challenges in section 4.5.

4.1. Causal Graphical Models & Interventions

A graphical model for a probability distribution can be written as a graph G = (V , E)
with edges E and vertices V [129]. Each vertex i ∈ V holds a random variable Xi. We
denote the vector of all random variables Xi as X. Throughout this chapter we assume,
that probability densities for all involved distributions of X. An edge E connects a pair of
vertices, e.g., vertex i and j which can be written as (i, j). If two vertices are connected
by an edge they are called adjacent. A path in G connects two (not necessarily adjacent)
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vertices and can be written as a sequence of neighbouring vertices. For example, given a
path from vertex i to vertex j passing vertex k this is p = (Vi, . . . , Vk, . . . , Vj).

Causality is a directed relationship between two instances, i.e., flipping a switch causes a
light bulb to glow but the glow of the light bulb does not cause the switch to flip. Therefore,
a directed graph is suited to model such dependencies. A graph is directed if all edges in a
graph are directed. An edge (i, j), is directed if there is no edge (j, i), which we do note as
i→ j. If both edges (i, j) and (j, i) exist the edge is called undirected; if neither exists, the
vertices i and j are referred to as non-adjacent. For a directed edge (i, j), we call vertex i
the parent of j (j the child of i). Additionally, if there is a directed path from i to j, i is
deemed an ancestor of j and j is a descendant of i. A directed graph that lacks cycles –
meaning that for all vertex pairs (k, l), there is no directed path from k to l if there exists
a directed path from l to k – is specifically known as a directed acyclic graph (DAG).

A DAG can serve as a representation for the joint probability distribution of all X as
expressed by the factorization of its probability density function:

p(X) = ∏
i∈V

p(Xi|Xparents(i)). (4.1)

When a variable Xi lacks parents, it is termed exogenous and can be condensed to p(Xi)
utilizing p(·) as an arbitrary probability density function. Conversely, Xi is considered
endogenous when it possesses parents. For a joint distribution represented by a DAG, the
conditional independence of Xj from Xi, given a set of vertices S, can be assessed when
Xj is d-separated [124] from Xi by S. This property, known as the Markov property, is
articulated as:

Xi ⊥⊥G Xj|S =⇒ Xi ⊥⊥ Xj|S. (4.2)

Here, d-separation [124] is denoted as ⊥⊥G. Variables Xi and Xj within a DAG are deemed
d-separated if every path between them is blocked by a set S (which excludes Xi and Xj)
or any subset of S. In order for a path to be blocked by S, S has to contain a node Xk, that
fulfills one of the following properties[129]:

1. Xk ∈ S for paths with the following structures:

• Xk−1 → Xk → Xk+1 or

• Xk−1 ← Xk ← Xk+1 or

• Xk−1 ← Xk → Xk+1

2. neither Xk, nor Xdescendants(k) is in S for paths with the structure:
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• Xk−1 → Xk ← Xk+1

If all causal independencies that can be derived from p(X), can also be derived from G,
then G is considered faithful, expressed as:

Xi ⊥⊥ Xj|S =⇒ Xi ⊥⊥G Xj|S. (4.3)

It is worth noting that a graphical model may exhibit the Markov property while lacking
faithfulness. This mismatch between graphical model and probability density occurs
especially when two effects cancel each other out. To an observer this cancellation implies
independence between two variables where there is none [129].

A Markovian and faithful DAG corresponding to the joint distribution p(X) is a visual
representation of the distributional interdependence among variables in X. However,
this graphical model of the joint distribution is not causal yet. To make the graphical
models capable of supporting causal reasoning, it must be able to predict the effects of
interventions [129].

An intervention is carried out on variable Xi when its value is set externally, independent
of the values of its ancestors. For instance, intervening on Xi and setting it to a value xi
allows the measurement of the effect of this intervention on a second variable, say Xj. The
intervention removes all links to Xi in the graphical model, rendering it an exogenous
variable. The intervention results in a new DAG that is a subgraph of the original model.
Following the definitions of [124], this intervention is denoted as p(Xj|do(Xi = xi)).
Unlike conditioning on Xi (i.e., P(Xj|Xi = xi)), in an intervention, the distribution of Xi
is replaced with a new distribution. The difference in the effect on Xj due to interventions
with different values x′i ̸= x′′i , i.e., p(Xj|do(Xi = x′i))− p(Xj|do(Xi = x′′i )), is termed the
causal effect of Xi on Xj [144].

A question arises: how can a graphical causal model be inferred if the mutual dependencies
of the random variables of X are unknown? A field of research addressing this challenge
is known as causal discovery learning. Various approaches to identify causal relations
from data exist [130]. A practical and straightforward method involves experiments
that intervene on a variable and observe the consequent effects on another [145]. Real-
world experiments often have difficulties in precisely targeting the desired value without
inadvertently affecting or conditioning others [124]. However, in our theoretical setup of
ESMs, all model parameters are accessible. In the next section, we introduce interventions
on linear programs, a prerequisite for conducting experiments in causal discovery.
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4.2. Interventions in Linear Programs

Our objective is to translate the behavior seen in a causal graphical model to linear
programs. In a graphical model, an intervention eliminates the dependence of a variable on
other factors, effectively severing all edges pointing to the node representing that variable.
In a causal graphical model, a distribution like p(Xi|Xparents(i)) is deleted and substituted
with a distribution assigning probability 1 to a specific value, i.e., p(Xi ̸= x′i) = 0 with x′i
as the target value with probability 1. In contrast, within a linear program, the values of Xi
are not probabilistically determined but rather by a feasible set and an objective function.
Unlike a probabilistic distribution, there is generally no single equation in the optimization
model that can be eliminated to render Xi independent of other variables. Nevertheless,
a mechanism exists to impose a specific value on a variable in a linear program, i.e., by
adding a new constraint to enforce the desired value.

Definition 4.2.1 (Interventions on variables of linear programs). Consider the cost vector
c ∈ Rn×1 and a variable vector x ∈ Rn×1 that describe a linear program of the form:

min
x

cTx. (4.4)

s.t. Ax ≤ b. (4.5)
Constraints are described by a matrix A ∈ Rm×n and a vector b ∈ Rm×1. An intervention
do(Xi = x

′
i) on Xi ∈ x in the context of the described linear program is performed by adding

a new constraint to the linear program that enforces Xi to be x
′
i, i.e.,

Xi = x
′
i. (4.6)

Note that interventions must match the constraints, i.e., they should not render the linear
program infeasible. For instance, if the linear program includes a non-negativity constraint,
such as Xi ≥ 0, an intervention setting Xi = −1 would result in infeasibility.

Moreover, the vectors b and c, along with the matrix A, are considered exogenous variables.
Since these exogenous variables are not part of the optimization process, they cannot
have parent nodes within the definition of the graphical model for the linear program
(assuming the absence of hidden cofounders in real-world data within the scope of this
work). When intervening on exogenous variables, the process involves simply changing
their values. However, alterations to b and A potentially introduce infeasibilities, much
like interventions on x.
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4.3. Linear Programs as Directed Causal Graphical Models

Now that we can intervene in the linear program, we can assess variable independence and
gain insights into their causal relationships. However, the following theorem demonstrates
that linear programs do not consistently exhibit causal behavior.

Theorem 4.3.1. The dependencies of linear programs with interventions cannot, in general,
be modeled by a causal graphical model.

Proof via counter-example.

a) D

X1 X2

b) D

X′1 X2

c) D

X1 X′2

Figure 4.2.: Optimization based ESMs (i.e., LPs) cannot be explained causally since
interventions change their behaviour.

Consider the following minimization target with optimization variables X1 and X2:

min
X1,X2

(X1 + 2X2) (4.7)

subject to the constraints:
X1 + X2 = D (4.8)

X1, X2 ≥ 0, (4.9)

where D ≥ 0. The optimal solution to this optimization problem is X∗ = (D, 0). X1
directly depends on D in the optimal solution. Figure 4.2 a illustrates a causal graphical
model, derived from observations of X1 and X2 as D is changed.

If a) would be the accurate causal graphical model reflecting the actual causal relations
of the linear program, then all variables must be independent once we intervene on
X1. Consequently, we introduce an intervention to X1 according to Definition 4.2.1
(e.g., do(X1 = a), with 0 < a < D). This intervention changes the optimal solution to
X∗ = (a, D− a). From this optimal solution, we observe that X1 no longer depends on
its parent D, as intended by the intervention. However, X2 now depends on D and the
intervention value a. We derive the causal graphical model shown in Figure 4.2 b), where
′ denotes the intervention on a variable.
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One could argue that the causal relation from D → X2 was present from the beginning
but was negated by the effect of X1 → X2. To test this hypothesis, we intervene on
X2, which should not affect the causal relation in the model since it is a node with no
children. By removing the intervention on X1 and instead intervening on X2 (e.g., by
adding X2 = b as a constraint and setting 0 < b < D), we observe the optimal solution to
be X∗ = (D− b, b). Figure 4.2 c) shows the resulting causal graphical model.

This last intervention reveals X2 → X1, which contradicts the initial assumption of X1 →
X2. In total, a directed causal graphical model cannot explain the circular dependence
inherent in this linear program, as any graph able to represent the pairwise dependencies
would violate the non-circularity condition of the DAG. □

The example above illustrates a standard structure found in energy system models. The
generic variables X1 and X2 could represent the electricity generated by two power plants.
Equation 4.8 might describe an electric power balance equation, ensuring that the electric
demand D is met by the combined generation of the power plants. This example highlights
that, even if one were to argue that a change in electricity output from the first power
plant (e.g., due to a defect) would cause the second power plant to generate electricity
as a consequential effect, this linear argumentation does not hold at the level of the
actual optimization. The power plants are optimized simultaneously, and their outputs
are interdependent, making directed linear causation not a valid model.

It is essential to clarify that we do not assert that causality in linear programs is impossible
in all cases. However, there is no (or at least no non-circular) causation within the opti-
mization variables. In practice, even though it may not be intuitive for a human to choose
a battery capacity before determining a PV capacity, the solver used to address the linear
program does not rely on this intuition. Instead, the values are derived simultaneously
(the solver internally follow some iterative order).

4.4. Linear Programs as Cyclic Graphical Models

Although we have demonstrated that linear programs cannot always be transformed into
directed causal graphical models due to their cyclic dependencies, we can structure harness
the derived insights about LPs by using cyclic graphical models of probability distribution.
Cyclic graphical models can be beneficial in two ways:
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1. Create cyclic explanations: Instead of the causal explanations we initially sought,
we can develop explanations incorporating cyclic relationships. While these explana-
tions may not be as easy to understand as strictly causal ones since no non-iterative
construction from first principles is possible, they can still be used to create partial
explanations.

2. Utilize the Markov property to segment the graphical model: By leveraging a
concept called Markov blanket [146], we can partition the graphical model into
sections that have minimal dependency on other sections. Segmentation allows for
a more focused analysis of specific aspects of the linear program.

For the first use of circular graphical models, i.e., a direct interpretation, we need a way to
interpret cyclic causality. As emphasized by [147], cyclic causality can be conceptualized
as an equilibrium process or deconstructed into a series of interactions dependent on the
actions of previous steps. An illustrative example of a model featuring circular dependence
is an economic supply and demand model, often approached and comprehended as an
equilibrium process. An explanation within this context might unfold as follows. If the
price of a good is too high, the supply of that good would surpass its demand. This surplus
in supply prompts prices to decrease, subsequently boosting demand. The heightened
demand, in turn, elevates prices again (although to a lesser extent than the prior decrease),
and this cyclical process persists until supply and demand converge at the optimal price.
Similarly, an example of a circular model that can be explained well if transformed into a
time series is the model of a thermostat. In this model, the heat generated by a heater
influences the room temperature, which impacts the thermostat that regulates the heat
generated. When viewed in discrete time steps, the current heat produced depends on
the past room temperature, while the current room temperature depends on both the
past room temperature and the past heat produced by the heater. This transformation
renders the model non-cyclic. Similar chains of reasoning can be applied to explain ESMs.
For instance, a change in the power output of a gas power plant in a preceding time step
could increase the power output of a coal power plant in the current time step to meet
the required power demand.

The second approach to construct explanations using cyclic graphical models involves
the utilization of Markov blankets, as defined by [146]. In a graphical model, a Markov
blanket for a set of nodes X comprises a minimal set of nodes Z necessary to render X
independent of all other variables in the model, corresponding to Equation 4.2.

We introduce a concept parallel to a Markov blanket for a linear program. Consider a
linear program defined by equations 4.4 and 4.5. We can modify this linear program
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AI1,:, bI1 AI2,:, bI2 A¬I,:

X J , cJ X¬J , c¬J
λ∗I2

Figure 4.3.: Structure of the constraint of an optimization problem. The explanation of
X J only requires looking at constraints AI1,: and AI2,: that contain X J. For
AI2,: that also contains variables that are not in J, the dual variables can be
used to locally explain X J without the need of X¬J .

slightly, transforming it into a quadratic program by introducing a quadratic term, as
shown in the following equation:

min
x

cTx + ρ∥x∥2 s.t. Ax ≤ b. (4.10)

By weighting the quadratic term ∥x∥2 with a small ρ > 0, the solution to this problem
remains similar to the original LP solution (if it is unique). However, the quadratic term
ensures strict convexity, guaranteeing a unique solution and continuity of the solution
with respect to changes in A, b, and c. The optimal solution x∗ can be characterized as
the unique solution of [92]:

x∗ = arg min
x

cTx + ρ∥x∥2 + λ∗(Ax− b), (4.11)

where λ∗ ∈ Rm represents the vector of optimal dual variables. For a fixed λ∗ we
can compute the optimal values for (groups of) primal variables with an index set J
independently of the remaining variables. This is

x∗J = arg min
xJ

cT
J xJ + ρ∥xJ∥2 + λ∗,T A:,J xJ . (4.12)

Here, we only require the optimal dual variables connected to J through A:,J. Let I1 encom-
pass all rows of A referring exclusively to variables in J, and let I2 include rows referencing
variables in both J and other variables, as illustrated in Figure 4.3. Consequently, we can
alternatively compute:

x∗J = arg min
xJ

cT
J xJ + ρ∥xJ∥2 + λ∗,TI2

AI2,J xJ s.t. AI1,J xJ ≤ bI1 . (4.13)

This approach allows large linear programs like ESMs to be divided into smaller segments
for explanation. If λ∗,TI2

is known, the set J can be isolated from the rest of the problem,

75



i.e., I2 acts like a Markov blanket. Such segmentation enables goal-oriented explanations
similar to causal explanations; for instance, if the aim is to explain specific components
of the ESM, they can be separated from the rest of the model and mainly explained
independently. Note, the explanations are only locally valid since they are dependent on
λ∗,TI2
, i.e., the explanation is only valid given that the coupling variables are known. Note,

Instead of the optimal dual variables λ∗,TI2
the optimal solution x∗¬J can be used to segment

the LP, by using the duality of the primal and dual problems [92].

Consider a market-based ESM modeling an energy market with participants selling and
buying electricity. Given the coupling variable, such as the price for electricity, each partici-
pant can be treated as an independent optimization problem and explained autonomously
by other participants. Since the optimization problem for a single market participant is
likely much smaller than the entire problem, established methods like sensitivity analysis
can be employed to provide explanations efficiently.

One drawback of the segmentation approach of optimization problems for explanation is
the potential loss of coupling effects. If market participants, for instance, can influence the
electricity price through their behavior, their response to an explanation created through
this method might differ.

Another potential drawback lies in the conversion from a linear to a quadratic program.
However, despite this conversion to a quadratic program, the solution time should be
mostly unaffected, especially when solvers employ interior point methods, which many
solvers do.

A question up for future research is how the segmentation process can be improved to
get smaller explanation-focused segments. Currently, we assume the choice of J to be
predefined. However, selecting J is challenging since adding a variable xJ2 connected to J
via AI2,: may enhance the explanation but also make it more complex.

Consider a scenario where explanations are sought for all variables x of an optimization
problem individually, i.e., Ji := {Xi} for all i ∈ x. In this extreme case, we would end
up with a bipartite graph defined by A, with rows and columns as two distinct sets of
nodes and the values of A representing the edges between nodes. The explanation for
each variable would be trivial since it could be determined by λ∗ of all neighbors of Xi.
Conversely, where all variables are in J, i.e., J := {x}, everything would be included in the
explanation. Striking the right balance regarding the number of clusters and determining
which variables belong to each cluster is a challenge for future work.
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4.5. Discussion

In this Chapter, we discussed causality, a pivotal concept in explanations, and investigated
the application of causal discovery to linear programs. We demonstrated the transferability
of interventions, a vital tool in causality, to linear programs. Nevertheless, linear programs
inherently lack a clear causal direction between optimization variables A and B, as the
optimization aims to discover the optimal mix of A and B. Consequently, a change in A
induces a change in B, and vice versa, which answers our fifth RQ: causal graphical models
cannot be used to explain ESMs because the relations in an ESM violate the acyclicity
required by directed causal graphical models.

Hence, we looked into graphical models with cycles and how they could be beneficial for
explaining ESMs. Grahical models with cyclical causation can sometimes be transformed
into directed graphical causal models. This transformation involves unraveling circular
dependencies by introducing a series of actions or a time dimension. For instance, At
depends on Bt−1 and Bt depends on At−1. Another approach interprets circularity as an
outcome of equilibrium or optimization processes, yielding explanations that, while less
easy to understand than non-cyclic causality, still provide insights.

To this end, we can leverage a concept from directed graphical models – Markov blankets.
These blankets render groups of variables in a directed graphical model independent from
others, given the set of their parents, children, and the parents of their children. Utilizing
the optimal solution of a linear program, we can partition the program into distinct clusters
for explanation. Given the optimal dual variables these clusters are mutually dependent.
This approach proves beneficial in disregarding unimportant variables during explanations
breaking down complex models into smaller, more manageable components. However,
determining the optimal clusters remains an open topic for future research.
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5. Energy System Model Explanation in
Education - an Interactive Approach

In Chapter 2, we presented interactive approaches as one of the methodical categories
for explaining ESMs. These approaches include tools such as chatbots or Serious Games
offering a "hands-on" means to comprehend energy systems. Current approaches within
Serious Games for ESM are rare and the few that exist, focus on singular aspects of ESMs,
such as local energy trading [90] or power grid extensions [148]. In this chapter, we
introduce an interactive approach to a top-down ESM to address RQ 6. Unlike existing
interactive ESM explanations, our approach diverges from specific sectoral or problem-
focused settings within an energy system, providing instead a more comprehensive view
on the energy transition.

Referred to as the Energy Transition Game (ETG), our proposed approach targets college-
level education, serving to educate students about the challenges associated with energy
transition. The primary design objective of the ETG is not to intricately simulate an energy
system but rather to reduce the complex topic of energy transition into fundamental
concepts graspable within a few hours.

The ETG forms part of a three-part interdisciplinary university course for graduate students,
comprising a lecture, seminar, and the ETG. To assess the effectiveness of the ETG in
enhancing students’ understanding of energy transition (RQ 7), we conducted a survey
designed to isolate the learning outcomes attributable to the game from those derived
from the lecture and seminar components of the course.

The ETG is the work of multiple authors with the following contributions: Concept & Game
Design: Jonas Hülsmann, Prof. Dr. Stefan Niessen; Implementation: Jonas Hülsmann,
Alexander Wagner; Supervision: Jonas Hülsmann, Prof. Dr. Stefan Niessen; Evaluation:
Jonas Hülsmann.
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The remainder of this chapter is structured as follows: In Section 5.1, we introduce the
learning objectives of the course that the ETG aims to enhance. Section 5.2 outlines the
game’s rules, an illustrative round, and deliberate constraints imposed to mitigate its
complexity. The implementation of the ETG is expounded upon in Section 5.3. Following
this, Section 5.4 outlines the methodology employed to evaluate the ETG and presents
key findings. Subsequently, in Section 5.5, we discuss the results of this chapter.

5.1. Learning goals

We designed the ETG as an integral component of the university course "Energiewende
gestalten" (designing energy transition), catering to graduate students from the electrical
engineering and political science departments. The course endeavors to achieve four
primary learning objectives:

1. Units and Magnitudes: Students are expected to comprehend the varying orders
of magnitude relevant to energy matters. Additionally, they should distinguish
between energy and power, grasp the scale of CO2 emissions, and develop a rough
understanding of the costs associated with the energy transition.

2. Processes of Power Generation: Students should understand the processes in-
volved in power generation’s operational and expansion planning. Students should
learn about upcoming challenges, such as the uncertainties inherent in renewable
generation, and learn rudimentary strategies for cost-effective power generation
planning.

3. Agents, Institutions, and Potentials: The ETG is supposed to familiarize par-
ticipants with the diverse stakeholders shaping the energy transition landscape.
We emphasize understanding the roles of institutions and other actors impacting
the transition and identifying emission reduction potentials within crucial groups
involved.

4. Conflicts: Recognizing various stakeholders’ divergent interests and interdepen-
dence is important for understanding their behaviour regarding the energy transition.
Students should be equipped to identify and articulate conflicts of interest among
significant sectors involved in the energy transition.

To realize these learning objectives, we structured the course into three distinct parts: a
lecture series, seminars, and the ETG. The lecture segment comprises six interdisciplinary
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sessions covering the energy transition’s technical, economic, and political dimensions.
Seminars expose students to recent research studies, where they collaborate in small
groups to dissect, critically evaluate, and present key findings.

The choice of a Serious Game as the final segment stems from its ability to provide an
immersive learning experience, as noted in the literature [149]. Such games entertain and
engage participants [24], ultimately enhancing learning outcomes compared to traditional
methods [150].

In particular, the ETG is designed to encourage active application and revision of knowledge
across diverse facets of the energy transition. By assuming the roles of crucial agents,
students navigate cooperative or competitive dynamics aiming at realizing a net-zero
energy system by 2050. Each role has distinct goals, and highlights a different energy
transition dimensions and allowing for player immersion.

5.2. An interactive energy transition game

ES

min cost

I

max profits

PH

maxutility

P

max votes

Energy Transition Game

shared goal:
minimize CO2

Figure 5.1.: Explaining the energy transition with a Serious Game. Different players are
assigned a role with individual goals and interact with the other player through
the game, which presents them with a common goal: to achieve a net-zero
energy system.

Figure 5.1 provides an overview of the ETG concept. Players assume one of four roles:
energy sector (ES), industry (I), private household (PH), or politics (P), each with distinct
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objectives. Ideally played by four to six participants, each role is assigned once in a
four-player game, with politics potentially assigned multiple times in larger games.

The primary aim of the ETG is to achieve a net-zero energy system by 2050, spanning six
rounds from 2020 to 2050, i.e., each round symbolizes five years. In addition to this main
goal, players can influence specific parameters within the game, enabling them to pursue
their objectives.This interactive setup aims to give participants a holistic understanding of
energy system dynamics, emphasizing interactions and interdependencies.

Consequently, the game’s design necessitates collaboration and interaction among players
to fulfill their respective goals. The decisions of one player depend on the actions of others.
For instance, the energy sector’s provision of electricity and heat impacts the industry’s
manufacturing choices and profitability.

To mitigate the complexity of the energy transition, we streamlined decision-making by
reducing it into discrete actions, sequenced one at a time. Visual aids and action previews
assist decision-making, while roles are scaled to depict typical units and magnitudes
relevant to each, aligning with course learning goals. For example, the yearly electricity
generation, the emitted CO2 as well as the variables costs of a coal power plant are within
the right magnitude compared to a real world scenario. On the other hand, the sum of
generated energy mirrors the German energy system’s dimensions, where not a single
agent but multiple entities are involved in power generation. To account for individual
roles and the system’s aggregate, actions taken by a player are amplified by a leveraging
factor. For instance, there are 100 million private households in the ETG, players get
to play one private household, to learn important magnitudes of the role. To depict the
influence on the whole ETG, the actions taken are multiplied by 100 million.

A trading system enables resource exchange, allowing participants to focus on their
objectives while engaging in trade and facilitating player interaction. A competitive
election element simulates political dynamics, with elected parties influencing the game
through regulatory adjustments like taxes, subsidies, or constraints.

Subsequent sections detail each role’s objectives, tasks, and CO2 emission management
abilities, followed by an outline of a typical game round. Lastly, we outline limitations of
the ETG design, that are taken to simplify the complex, overwhelming reality to a level
suitable for the audience of graduate student from electrical engineering and political
science.
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5.2.1. Roles

Energy Sector

The primary objective of the energy sector is to supply electricity and heat at minimal
cost. Achieving this goal demands prudent planning, balancing each power plant’s fixed
annual expenses and variable operational costs. Notably, energy cannot be stored between
rounds, necessitating careful resource management to ensure continuous supply with no
or minimal overproduction.

Various energy sources are at the disposal of the energy sector, ranging from fossil fuels
like coal, gas, and uranium to renewable sources such as wind and solar radiation. While
fossil fuels incur distinct costs associated with their respective power plants, renewable
sources are treated as resources in the game, subject to varying availability each round.
Within the game, wind energy is further categorized into on-shore and off-shore, with
both types having a correlated availability. The power plants are designed to resemble
the cost of their real world counterpart and are normalized by their energy output, i.e.,
have all the same output but varying inputs. Renewable energy power plants operate
autonomously, generating electricity without player intervention, whereas conventional
power plants can be controlled by adjusting their used output capacity in increments of
0.5 GW.

At the start of the game, the energy sector inherits a power plant setup resembling Ger-
many’s 2020 infrastructure. Over time, plants age and retire, necessitating the construction
of new facilities to maintain capacity. Players can introduce new power plants into the
system without upfront costs, although each new installation incurs a four-round annuity
payment reflective of its type.

Figure 5.2 depicts the interface of the energy sector role within the ETG. At the top are
the global variables shared by all players. The current availability of renewable energy
sources is displayed on the top left. The top center showcases the CO2 emissions with
a suggested limit for the round, diminishing linearly to zero by 2050 to track emission
reduction progress. The top right corner indicates the current game year. Adjacent to
the year display, an undo button allows players to revert the current round, subject to
unanimous agreement. Below the CO2 display is the role name, "Energy Sector," and a
leveraging factor denoted by the number ten.
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Figure 5.2.: Overview of the game interface for the energy sector. The top row of items
displays global parameters, such as the availability of renewable energy
sources, CO2 emissions, and the current year of the game. Below the global
parameters is the name of the role and its leverage factor. Below the role
name is the actual game board of the role. For the energy sector, the board
shows the stockpiles of different resources on the left, the current power
plants in the middle, a second tab to switch to the building section below the
power plants, a button to start power generation, and a button to access the
trade menu on the right.

The main playing field is divided into the resource stockpile on the left, the power plant
section in the center, and a trade window button on the right. The resource stockpiles
include money, electric energy, CO2 emissions, and heat energy, each represented by a
corresponding symbol and unit of measurement (e.g., [Mil €] for money). A preview to
the left of each stockpile illustrates the potential change resulting from power generation.
The grey section of each stockpile shows any units in store that are finalized, e.g., after
the power generation.

Eight rectangles in the power plant section represent different power plant types, each
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labeled at the top. Below the label, the resource transformation rate indicates how
resources can be converted into energy or emissions. Players can adjust the capacity used
for generation using the grey arrows up to the maximum capacity built for the specific
type of power plant. Renewable power plants operate at maximum capacity based on
available resources. Switching to the "Power Plants" tab reveals the remaining power
plant lifetimes and allows the construction of new facilities. The "Start Production" button
activates the chosen operation plan, locking it in once initiated.

On the right, the trade button provides access to the trade menu, enabling the energy
sector to offer electricity to private households and the industry and heat energy to the
industry.

Industry

The industry’s primary goal is to maximize profitability by supplying goods to private
households. Due to the different product makespans, strategic planning becomes is
necessary. Coordination with private households to forecast demand and collaboration
with the energy sector to secure necessary resources are essential to industry strategy.
Upgrading production facilities not only reduces CO2 emissions but also lowers production
costs, aligning with the industry’s profit-maximization objective.

In the ETG, the industry plays a crucial role in producing three types of goods essential
for private households: consumption goods, investment goods, and transportation. The
industry relies on acquiring electric and heat energy from the energy sector to produce
the required goods. Unlike the energy sector’s power plants, industry production facilities
do not have a fixed lifespan or limitations. However, there is a delay in the production
of consumption and investment goods, occurring one and two rounds after initiation.
Transportation, like electricity and heat energy, is produced immediately and cannot be
stored, but consumption and investment goods can be stored for future use.

The industry can enhance its production capabilities through investment in research,
altering resource intake, and minimizing emission output. Research is facilitated by a
technology tree offering various upgrades, some of which may require prior updates for
implementation. Upgrades applied in the current round affect production facilities from
the subsequent round onward.
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Figure 5.3.: Overview of the Industry interface. At the top of the interface are the global
parameters, the role name, and the leverage factor. To the left of the interface
are your resource supplies. In the middle are the production facilities for the
industry’s three goods, with a button to start production below them. The
right side of the interface shows the goods that will be available in future
rounds. Below the future goods are two buttons. One button takes you to the
research tree, and the other opens the trade window.

Figure 5.3 illustrates the interface of the ETG for the industry role. At the top, global game
parameters are displayed, including currently available renewable energy sources, the CO2
emission counter, the undo button, and the current game year. Below these parameters,
the role name "Industry" and its leveraging factor (set at 1000) are indicated.

On the left side, the industry’s resource stockpiles are depicted, featuring symbols repre-
senting various resources, units, current stock levels, and previews of anticipated changes
resulting from current production settings. Featured resources are from top to bottom and
left to right: money, electric energy, heat energy, consumption goods, investment goods,
transportation, and CO2 emissions.

The center section showcases production facilities, with each rectangle representing a
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facility producing a different type of good. A red banner atop each facility denotes the
produced good. Below, resource intake and outcomes are detailed, alongside production
duration. Players adjust production levels using the gray arrows, with consumption and
transportation adjustable in steps of one and investment goods in steps of 0.25.

The right side displays future goods expectations from previous round production, along-
side buttons to access the research tree and trade window. The industry can purchase
electric and heat energy from the energy sector and sell consumption goods, investment
goods, and transportation to private households.

Private Households

The primary objective for private households is to maximize welfare in the form of
happiness. Happiness is achieved when a set demand is met each round, which is necessary
to provide for their basic needs. This demand encompasses electric energy purchasable
from the energy sector, consumption goods, investment goods, transportation available
from the industry, and heat energy produced by the private households themselves. Private
households receive a fixed income each round to procure these goods from other roles.

Players controlling private households have three options to influence their demand and
mitigate CO2 emissions: implementing building insulation, upgrading heaters to heat
pumps, and altering lifestyle choices. Both building insulation and heater upgrades require
investment goods procured from the industry and feature five and four upgrade steps,
respectively. Insulation steps reduce heat demand incrementally, while heater upgrades
reduce heating costs and CO2 emissions while necessitating additional electric energy for
operation. Lifestyle adjustments, available each round, can slightly decrease demand for
investment goods and transportation at the expense of happiness or increase happiness at
the cost of increased demand for these goods.

Figure 5.4 depicts the interface of the ETG for private households. Like other roles, the
top section displays global parameters such as renewable energy sources, CO2 emissions,
the undo button, and the current game year. Below these parameters, the role name is
shown alongside the leveraging factor, set at 100 million for private households.

The private household stockpiles on the left side of the interface include money, electric
energy, heat energy, CO2 emissions, consumption goods, investment goods, transportation,
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Figure 5.4.: Overview of the private households game interface. At the top of the interface
are the global parameters, the role name, and the leverage factor. To the
left are the Households’ resource supplies. The middle area shows the
Household’s Heater at the top and a selection of different Household options
to either upgrade their Heater, invest in insulation, or adjust their lifestyle.
The right side of the interface shows the demand of the households and a
button to open the trade window.

and happiness. Each stockpile features an icon, unit measurement, current level, and a
preview of the effect of current production settings.

In the central section, the interface features the heater, akin to a power plant, with up
and down arrows allowing selection of production quantity. Unlike the power plants, the
heater does not age but can be upgraded, with options toggling between upgrading the
heater, building insulation, and lifestyle changes.

The right side displays the demand: 30 units of electric energy (3 MWh), five units of heat
energy (5 MWh), two units of consumption goods (2 tons), ten units of transportation
(10,000 kilometers), and four units of investment goods (4 tons). A display indicates the
current change in happiness, with categories turning green when demand is met, and the
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expected decrease in happiness is lowered. Once all demands are fulfilled, the happiness
increases instead of being decreased.

Below the demand display, a button opens the trade window, enabling households to
purchase required goods from the industry and energy sector.

Politics

The role of politics in the ETG is unique in that it can be undertaken by multiple players,
setting it apart from other roles. The goals of politics vary slightly depending on the
number of players involved.

In the scenario where multiple players assume the role, they engage in electoral competi-
tion to secure a position in the government, where they wield the authority to introduce
new regulations in the ETG, such as taxes, subsidies, and limits. Each player’s objective is
to attain governmental participation for as long as possible by maximizing votes, thereby
convincing most other players to support them. The voting process occurs offline, i.e.,
the game interface does not feature the voting process. Competing politicians present
election manifestos outlining the benefits their governance would bring to individual roles.
Following manifesto presentations, other roles cast their votes through preference voting,
with each player having three votes to distribute among the politicians. Coalition building
may be necessary if no politician secures an absolute majority. The government, once
formed, can enact new regulations or modify existing ones to please their voters.

Alternatively, if only one player takes on the role of politics, there is no electoral competition.
Consequently, their individual goal shifts to balancing wealth, represented by resources
like money, among the various roles within the state as effectively as possible. Politics can
achieve this by implementing new game regulations through subsidies and taxes.

Taxes and subsidies impact the state’s financial status, with the government balancing
income and expenses to avoid accruing debt.

Figure 5.5 showcases the interface of the ETG for the role of politics. Like all roles, at
the top of the interface are the global parameters displaying the availability of renewable
energy sources, the CO2 display, the undo button, and the current game year. The role
name and leveraging factor are also indicated.
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Figure 5.5.: Overview of the Politics interface. The top of the interface shows the global
game parameters, the role name, and the leverage factor. The left side of
the interface shows the stockpile with the state’s budget. Below the state’s
budget, a button allows you to open a record of the state’s income and
expenditures for the previous round. The center of the interface displays the
current rules and allows you to edit, delete, or add rules.

Politics in the ETG solely manages money as a resource; hence, only one stockpile is shown
on the left side of the interface. Below the money stockpile, a button opens a window
displaying the role’s income and expenditures from the previous round.

In the center of the interface, current regulations are displayed. This interface offers
a selection of named regulations, including CO2 taxes, EEG levies, production-related
taxes, coal limits, subsidies for renewable power plants, and nuclear power plant capacity.
Additionally, the government can provide general subsidies to specific roles or issue offline
regulations, such as power plant type restrictions. However, specific regulations, like
network charges and value-added tax, are fixed and cannot be altered. The game begins
with the two fixed regulations and three variable rules. Variable rules can be edited using
the pen icon or deleted with the red "X". New regulations can be added via the "New
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Regulation" tab, where they are categorized into subsidies and taxes. The coal limit
regulation is included in the tax section for interface simplicity. When selecting a new
regulation, a brief dialog describes the regulation and prompts for a value input, such as
the level of the CO2 emission tax.

5.2.2. Exemplary round

The following eight steps outline a typical round of the ETG. While this structure is
recommended for early rounds, for later rounds, the energy sector and the industry can
perform steps 4 and 6 concurrently with other players to speed up gameplay.

1. The households determine their required goods and energy for the round. The
demand may change based on lifestyle choices or upgrades to heaters or insulation
from previous rounds. Once determined, households request the required goods
from the industry and energy sector. All politicians begin to draw up their electoral
manifesto which has to be finished before step eight. The current government also
decides what new taxes, subsidies, or laws will come into play in the next round.

2. With knowledge of the private households’ requests, the industry plans its production,
considering that some goods have delayed availability. The industry then requests
the required energy for current production from the energy sector.

3. The energy sector, now aware of the complete demand for electricity and heat,
creates an operational plan and schedules power plants accordingly. Once energy
is available, the energy sector negotiates with households and the industry on the
price of electricity and heat.

4. The energy sector can invest in new power plants or replace old ones that have
reached the end of their lifespan. New power plants become available in the next
round.

5. After receiving the requested electricity and heat, the industry begins production. The
industry adjusts its production plan accordingly if the energy sector can only provide
partial energy. Once goods are produced, the industry offers them to households at
a negotiated price.

6. The industry invests in research, affecting required energy, costs per produced good
and emitted CO2. These upgrades become available in the next round.
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7. With goods from the industry and energy sector, households fulfill their basic re-
quirements, except for heat. The private households can produce the required heat
using their heater. Surplus investment goods may be used to upgrade insulation or
heaters for future rounds. The private households gain or lose happiness depending
on lifestyle and requirement fulfillment.

8. After the energy sector, industry, and households finish their rounds, the election
phase begins if more than one politician is in the game. Each politician presents
their electoral manifesto and may make political pledges. Other roles then vote
for each politician. Politicians may engage in political bargaining to form a new
government if no outright majority is achieved. If only one politician is present, this
phase is skipped, and that politician remains in power.

5.2.3. Limitations of the ETG Concept

Several design limitations were implemented to make the ETG suitable for educating
students about the highly complex topic of energy transition, but without overwhelming
them. Here are some major limitations and the reasons behind them:

• Missing Technologies: Many technologies in the energy sector, such as energy
storage and carbon capture and storage, were omitted to reduce complexity.

• Transmission Grids and Balancing Power: Despite their importance, transmission
grids and balancing power were excluded to prevent further complexity, as the
energy sector is already one of the more complex roles.

• Renewable Energy Source Uncertainties: Uncertainties in renewable power gener-
ation, like complete unavailability during short time frames (dark doldrums), were
not depicted due to mismatching with the game’s yearly time resolution, although
they are potential real-world issues.

• Simplified extension planning: Various simplifications were made, such as assum-
ing all conventional power plants have the same availability of 7000 hours a year,
simplifying building times of one round and simplified lifetimes of eight rounds,
and omitting building limitations for power plants. Further, players can build power
plants by capacity in 0.5 GW steps instead of building individual power plants. The
cost of building new power plants was adjusted to match the normalized lifetime,
i.e., the cost of power plants with shorter lifetimes in a real world scenario were
increased to meet the game lifetime.
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• Transport Sector: The transport sector was integrated into the industry to reduce
complexity.

• Production Facilities and Times: Production ramp-up times were neglected, al-
lowing high production peaks in one round without negative effects, contrary to
real-world scenarios.

• Technological Advancements: The success of research leading to technological
advancements in the industry sector is not guaranteed, unlike in the game, where
costs, effects, and the order of technologies are predefined.

• Fixed Income of Private Households: Private households receive a fixed income
each round, simplifying planning but neglecting real-world effects like inflation and
unemployment.

• Heating: Heating methods were simplified, ignoring technologies like district heat-
ing and solar thermal energy to reduce complexity. Further, the heater has to be
partially upgraded in 25% steps to better reflect the slow transition to different
heating systems in the real world scenario.

• Incomplete Markets: The energy sector and industry act as monopolists in the
game, with no competition or mechanism to prevent abusive pricing. Players are
advised not to abuse this monopoly status and choose fair prices, but no mechanism
inside the game would punish malicious behavior.

• Imports and Exports: Players cannot import or export goods, simplifying the
market dynamics.

• Debts and Interest Rates: There are no limits on debt and interest rates within the
game, simplifying financial calculations.

• Voting System: The voting system in the game does not accurately represent reality,
as it gives equal voting power to all sectors despite differences in size and influence.

• Available Regulations: The game offers only a small set of predefined regulations,
limiting specific regulatory actions. However, players are allowed to agree on offline
regulations.

Additionally, leverage factors were not chosen to represent the actual number of agents
of each sector in Germany but rather to maintain realistic orders of magnitude for the
energy and financial units, thereby facilitate one-to-one unit trading between roles.
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5.3. Implementation

The development of the ETG began in 2019 intending to create a physical board game.
However, the outbreak of the Corona pandemic halted progress on the board game, leading
to a shift towards developing the game as an online game instead. Initially, the ETG was
crafted as a single-player prototype using JavaScript. As the project evolved, this prototype
was transformed into a multiplayer experience employing a client-server architecture to
facilitate data coordination among multiple players. A student assistant implemented the
client-server structure. Opting for a web-based approach was a strategic decision to ensure
student accessibility. This approach accommodates participants with varying hardware
configurations, computing power, and operating systems, enabling a broader audience to
engage with the game seamlessly.

Figure 5.6 illustrates the client-server structure of the ETG implementation. Players utilize
a web browser as their client to connect to a website hosted on the game server. The server
furnishes the client with the game’s frontend, which was developed using JavaScript and
HTML.

A lobby system facilitates player interaction within the frontend, allowing them to assemble
with other participants and commence a game. The progress of each game is saved after
every round and stored within an SQL database. Should players wish to pause an ongoing
game, the lobby system can resume unfinished sessions later.

Moreover, the game data preserved within the database can be visualized and utilized for
in-depth analysis, offering insights into the reasons behind a group’s success or failure in
navigating the energy transition within the game.

client
JavaScript

server
NodeJS

JavaScript
Database

SQL

WebSocket

Figure 5.6.: ETG’s client-server structure. Players access the game through aweb browser.
The game logic is implemented in JavaScript in the frontend and backend.
Game data between different players of a game is transferred using the
WebSocket protocol. A SQL database is used to store game data, either to
continue paused games or to perform data analysis on finished games.
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Communication between the frontend and backend occurs via the WebSocket protocol.
The backend, which operates on a Node.js server [151], is coded in JavaScript, completing
the client-server architecture of the ETG implementation.

5.4. Evaluation: Did the ETG improve the understanding of energy
transition?

To assess the effectiveness of the ETG in meeting the learning objectives (RQ 7), we
conducted a comprehensive survey consisting of three parts. In this section, we outline
the methodology employed in the survey, which entailed an online questionnaire, and
present the key findings. For the English translation of the questionnaire and a detailed
list of all results, please refer to Appendices B and C, respectively.

5.4.1. Methodology

A three-part survey was chosen to evaluate the effectiveness of the ETG, aligning with
the structure of the course "Energiewende gestalten" (designing energy transition), which
comprises three components: a lecture series, a seminar, and the ETG itself. The first
survey was conducted prior to the start of the lecture series to establish a baseline of
participants’ knowledge. Subsequently, the second survey took place after the completion
of the lecture and seminar but before the ETG, aiming to gauge the knowledge acquired
from these instructional components. Finally, the third survey was administered after the
ETG to assess if the learning goals of the ETG (Chapter 5.1) are met.

Each survey entailed an online questionnaire comprising 35 to 39 questions. Four addi-
tional questions were included after the first survey, for which data is only available for
the second and third surveys. These questions were organized into seven thematic blocks.
Five of the blocks correspond to the learning goals (with agents and institutions being
a different block than their emission reduction potentials). One block asks participants
about their opinion on energy transitions and another asks them to answer more complex
questions about specific challenges in energy transition.

Participants were recruited from students enrolled in the "Energiewende gestalten" course,
which targets graduate students from electrical engineering and political sciences de-
partments. The course and the questionnaire were conducted in German. Participation
was voluntary and uncompensated, with participants fully informed about their data
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protection rights and the survey’s purpose. All data collected were anonymized, with
no personal information obtained regarding participants’ field of study or semester. The
ethics review committee of the Technical University of Darmstadt approved the conduct of
the surveys.

Sixty-one valid questionnaires were collected, with validity determined by participants’
completion of the questionnaire and agreement to the data protection and survey informa-
tion. Of these valid questionnaires, 25 were completed in the first, 22 in the second, and
14 in the final survey. Note, that there is probably some kind of sampling bias since only
students interested in the topics of the course tend to stay until the end of the course.

5.4.2. Results

For the presentation of the results, the survey numbers presented in each figure refer to
the surveys as follows:

• Survey No. base = first survey (before start of the course)

• Survey No. qnr2 = second survey (after lecture and seminar, before ETG)

• Survey No. qnr3 = third survey (after ETG)

As part of the general questions in the questionnaire, participants were asked to rate
their own knowledge of the energy transition. Figure 5.7a illustrates the distribution
of self-assessed knowledge across the different surveys. Notably, in the initial survey,
no participant rated their knowledge as "very bad," yet a majority (56%) assessed their
knowledge as "rather bad" or "neither good nor bad." However, this percentage decreased to
32% in the second survey, indicating a 24% increase in participants rating their knowledge
as "rather good" or better. In the third survey, the proportion of participants rating their
knowledge as "rather good" remained consistent at 64% compared to the second survey.
Interestingly, no participants rated their knowledge as "rather bad" in the third survey, and
there was an increase in the share of participants rating their knowledge as "very good." It
is worth noting that, due to the diminishing number of participants in each subsequent
survey, the notable increase from 4% to 14% in "very good" ratings should be interpreted
with caution.

One of the questions asked participants to explain how minimal cost for electricity supply
can be achieved. During the lecture, the concept of merit order was introduced as a
heuristic approach to achieving minimal cost for electricity generation. Figure 5.7b depicts
the percentage of responses containing explicit mentions of the merit order or describing
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(a) Self assessment of participants regarding
their knowledge about energy transition.

(b) Merit order mentioned as a way to heuristi-
cally minimize the electricity price.

Figure 5.7.: Survey results to measure the impact of the ETG on learning objectives.
(a) Relative change in participants’ self-assessment of their knowledge of
the energy transition over the course of the three surveys. The proportion
of participants who rated their own knowledge as "rather good" or better
increased after the lecture and seminar. After the ETG, the proportion of "very
good" participants increased, and no participants rated their knowledge as
"rather bad".
(b) Merit order or a description of it as responses tominimize electricity costs.
While 29% of the participants in the second survey were able to name merit
order as a way to minimize the cost of generating electricity, this percentage
increased to 64% after the ETG.

its principles as a strategy for minimizing electricity generation costs. It is important to
note that this question was introduced after the first survey; hence, no data is available for
the base survey. Despite the merit order concept being explicitly covered in the lecture,
only 29% of participants could name or describe it as a method for cost minimization.
However, after participating in the ETG, 64% of participants referenced the merit order
in their responses. Notably, no other approaches that would result in minimal cost were
mentioned in the responses.
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Figure 5.8.: Change in perceived responsibility. The participants see politics as more
responsible in most fields after they attended the lecture and the seminar.
This trend is continued after playing the ETG.

Figure 5.8 presents the results of a series of questions that asked participants to identify
the sector primarily responsible for various aspects of the energy transition. Beginning
with the plot in the top row on the far left, participants were asked to identify the
primary entity responsible for determining electricity prices. In the initial survey, 44% of
participants attributed the responsibility to the energy sector, while only 24% held politics
accountable. Following the lectures and seminar in the second survey, the percentage
attributing responsibility to politics increased to 40%, with the energy sector’s share rising
to 50%. After participating in the ETG in the final survey, 50% of participants viewed
politics as primarily responsible for electricity prices, while the energy sector’s share
slightly decreased to 43%.
Moving on with the plot to the right, participants were asked about their responsibility
for the speed of decarbonizing electricity generation. The majority identified politics as
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responsible, and this opinion remained consistent across all surveys.
The third plot in the top row illustrates participants’ views on who should be responsible
for deciding which types of power plants to build. Initially, 76% of participants attributed
this responsibility to private households. However, this share decreased to 68% in the
second survey and further to 43% in the final survey, aligning with the energy sector’s
share.
Regarding the responsibility for choosing which power plants to use, approximately 58%
of participants initially assigned this responsibility to the energy sector. This percentage
increased to around 70% in both the second and third surveys.
Questions about the responsibility for decarbonizing the transport and heat sectors were
posed in the bottom row. In both cases, the majority of participants viewed politics as
primarily responsible. This opinion increased from 44% to 71% for the transport sector
and from 40% to 79% for the heat sector across the surveys.

Overall, the trends observed in the third survey align with those seen when comparing the
second survey (after the lectures and seminar) to the first survey (at the beginning of the
course). Therefore, it can be inferred that the ETG amplified ideas taught in the lecture,
leading to changes in the opinions of the majority. However, the responsibilities for the
speed of decarbonizing electricity generation and the heat sector remained the same.
Despite this, politics was consistently viewed as mainly responsible for various aspects
of the energy transition, with the proportion of participants holding this view increasing
throughout the surveys.

Please note that there is no definitive right or wrong answer regarding the primary
responsibilities in the energy transition, as it necessitates collaboration among various
stakeholders. For instance, the decarbonization of the heat sector primarily falls within the
purview of private households, as they predominantly rely on decentralized fossil heating
systems and must transition to alternative options such as heat pumps. However, for
private households to adopt these new heating systems, they must first be made available
by the industry. The industry is responsible for manufacturing and supplying these heating
systems to private households. Moreover, given the high cost of acquiring new heating
systems, private households may only be willing to invest if incentivized or mandated by
governmental policies. Furthermore, municipal heat planning is the responsibility of local
energy suppliers in Germany, as they are tasked with coordinating and implementing
strategies for heat supply within their respective jurisdictions.

Participants were asked to identify three conflicts of interest between different actors
involved in the energy transition. Figure 5.9 displays the conflicts of interest between the
energy sector and politics as word clouds for each survey. A word cloud visually represents
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Figure 5.9.: Major conflicts between policy and the energy sector, according to survey
respondents. Word size is related to the number of mentions. Participants
were limited to 3 responses. The diversity of answers decreased. The an-
swers were more focused on the main conflicts.

words with sizes corresponding to their frequency in the responses. Words with three
letters or fewer were omitted. Since the questionnaire was in German, the word clouds
are also in German.

Observing the word clouds, it is noticeable that the number of words decreases with each
succeeding survey. While this could be attributed to the reduced number of participants,
the content and prominence of more common words also change. In the first survey, the
most common words were "Politik" (politics) and "Energiesektor" (energy sector). However,
in the final survey, prominent words include "Kosten" (cost), "Steuern" (taxes), "Ausbau"
(expansion), and "Subvention" (subsidy). This shift in common words towards slightly
more specific terms suggests a change in participants’ perceptions and priorities regarding
conflicts of interest between the energy sector and politics throughout the surveys.

For measuring the improvement in the participants ability to deal with units and orders of
magnitudes in the context of energy, they were asked to fill in a fill-in-the-blank text. While
participants initially averaged two correct responses out of 8 fill-in-the-blank prompts, the
lecture increased this average to 3.3 correct answers, with a slight further increase to 3.5
after gameplay.
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5.5. Discussion

This chapter introduced our comprehensive approach to explaining energy systems within
the context of energy transition through interactive means. We began by delineating
specific learning goals to enhance players’ understanding of crucial short and long-term
processes within energy systems while also imparting knowledge about various stakehold-
ers, institutions, and their interconnectedness, including conflicts of interest inherent in
energy transition dynamics. With these objectives in mind, we addressed RQ 6 by devising
a Serious Game tailored for four to six players, each assuming one of four distinct roles
with individual objectives and responsibilities pertinent to energy transition. Notably,
the energy sector’s role was crafted to illuminate operational and expansion planning
facets within ESMs. The game was implemented as a web-based application to ensure
accessibility across various devices.

To assess the efficiency of our chosen design in achieving the learning goals (RQ 7), we
conducted a three-part survey involving 25 students who participated in the game as part
of a graduate-level university course. The survey, comprising an online questionnaire, was
administered at different stages of the course. Results indicated a significant enhancement
in participants’ self-assessed knowledge throughout the course. Initially, over 50% of
participants rated their knowledge of energy transition as "neither good, nor bad" or
"rather bad," decreasing to below 30% after the lecture and seminar, and further to 21%
after gameplay, with none rating their knowledge as "rather bad" anymore.

Regarding understanding energy generation processes, the proportion of participants
identifying the merit order as a heuristic for minimizing electricity generation costs surged
from 30% to 70%. Participants also provided insights into the attribution of responsibility
to various actors for specific energy transition aspects and tasks. While perceptions shifted
after the lecture and seminar for most queried fields and tasks, the game served to amplify
these trends in all but one instance. In the sole exception, where participants were asked
about responsibility for operational planning ("...when to use which power plant?"), the
game did not substantially impact participant opinions.

When questioned about the primary conflicts between different stakeholders, the variety of
responses diminished, yet the provided answers became more focused on crucial conflicts,
with commonly cited keywords surfacing more frequently.

However, specific learning goals showed less significant improvement through gameplay.
For instance, the objective of imparting crucial orders of magnitudes and relevant units
within the energy sector saw only marginal advancement.
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Overall, the game garnered positive participant feedback, which was evident in their
enhanced knowledge self-assessment. However, given the relatively small sample size
and the dropout rate among participants, which resulted in a decline in questionnaire
responses in later phases of the survey, the results deserve further evaluation in future
research efforts.
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6. Conclusion & Outlook

The transition toward a renewable energy system presents challenges, necessitating careful
decision-making. Optimization-based ESMs serve as valuable tools to support DMs in
making informed decisions. However, DMs often lack expertise in ESMs and face significant
personal consequences if they make incorrect decisions, which could prevent them from
making risky but necessary decisions. Given the inherent complexity of energy systems
and their corresponding ESMs, explanations are necessary to help DMs comprehend ESM
results and facilitate well-informed decision-making.

To comprehend the creation of explanations, we initially examined the philosophical
and psychological perspectives and recognized causality as a vital concept. For our first
RQ, we identified seven categories of state-of-the-art ESM explanations, three of which
involve some form of sensitivity analysis. One major limitation of all the methods found
is their inability to provide sufficient explanations for non-expert DMs regarding the
relationship between ESM results and large, related input parameter sets, such as time
series. To address this issue, we looked to the field of machine learning, which faces similar
challenges in explaining model behaviors based on high-dimensional input parameter
sets. We examined popular XAI techniques that enhance the interpretability of machine
learning model outcomes and identified concepts that could be beneficial in explaining
ESMs (see RQ 2).

As demonstrated by our analysis of explanations from various perspectives, explainability
is a broad research field with multiple aspects. This thesis focuses on three of these aspects,
which we address through the development of three approaches: a causal approach, an
interactive approach, and an approach based on the XAI domain.

Starting from the XAI approach, we have transferred the concept of an interpretable
abstraction layer to improve the ESM explanation concerning high-dimensional input data
(RQ 3). The developed approach is based on the XAI method LIME [19] and allows to
generate explanations of different complexity that can serve different target audiences
(RQ 4).
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We attempted to learn directed causal graphical models from an ESM for the causal
approach. Having a causal model of the ESM would enable us to create straightforward
causal explanations for the ESM. However, we discovered that it is not always possible
to use a directed causal graphical model to depict ESM behavior for some crucial cases
due to cyclical dependencies (RQ 5). However, we have demonstrated how the Markov
blanket can divide ESMs into smaller sub-problems that can be explained independently
of others, in a circular fashion.

For the interactive approach, we presented the setup of a serious game that we designed
to explain different concepts relevant to the energy transition (RQ 6). We surveyed to
evaluate the game’s ability to improve several learning objectives when used in the context
of a university course for graduate students (RQ 7). We found that after playing the
game, participants felt more confident about their knowledge of the energy transition and
had stronger opinions about the responsibilities for various tasks in the energy transition.
Participants also improved their ability to identify critical conflicts between actors relevant
to the energy transition and to identify merit order as a heuristic for minimizing electricity
generation costs.

While this thesis sheds light on three aspects to improve explanations of optimization-based
ESMs, there are many other aspects and tasks that require further research. For the LIME-
based approach, a challenge that remains open for future research is the optimal choice
of a distance metric to weight input variations. Although directed, causal explanations
are unsuitable for ESMs, breaking down complex ESMs into smaller, less complex parts
that are easier to explain is promising. However, further investigation is necessary. Rather
than creating a Serious Game, exploring the possibility of combining a large language
model with ESM to develop an interactive chatbot may be worthwhile. This chatbot
would enable DMs to interact with ESMs and their explanations, thereby challenging
their understanding or exploring alternative scenarios without relying on domain experts.
Additionally, adversarial attacks, a known issue in the machine learning domain, may
become relevant for ESM in the near future. Adversarial attacks, i.e., changes to the
model’s input space that are not detectable by the human eye, can significantly affect the
model’s outcome. These changes may be hidden within time series data and can convince
decision-makers to make choices that benefit the attacker rather than the decision-maker.
The possibility of adversarial attacks on optimization-based ESMs highlights once again
the importance of explanations in the ESM domain.
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A. An exemplary Energy System Design
Model of a Building

In this supplementary section, we present the technical details of the building energy
system model used as a running example in Chapter 3. Below are the equations for the
simple PV house energy system. The equations are a modified version of the equations
from [10]. Blue variables or equations are only present if the model considers the heat
sector.

The objective of the energy system is to minimize system costs. The system costs consists
of operational costs for buying energy Ee and investment costs for the battery capacity Cb
and heat storage capacity CHS, respectively, at price πe, πb, and πHS.

min
E,Cap

(
T

∑
t=0

πe × Ee(t)) + πb × Cb+πHS × CHS. (A.1)

Note that the PV and heat pump capacity is assumed to be fixed and thus is not part of
the objective function.

A set of constraints restricts the objective. The first constraint is the electric power balance
of the system,

EPV(t) + Eout
b (t) + Ee(t) = De(t) + Ein

b (t)+Ein
HP(t), ∀t. (A.2)

On the left side of the equation is the energy provided by the PV power plant EPV(t), the
energy taken from the battery storage Eout

b (t), and the energy bought from the grid Ee(t).
The on the right side is the energy demand De(t), the energy put into the battery Ein

b (t)
and the electricity consumption of the heat pump Ein

HP(t). Both sides of the equation must
be balanced for every time step t to ensure that the electricity supply equals the demand.
Like the electric power balance, a heat power balance constraint is defined for every time
step t if the energy system considers the heat sector.

Eout
HP(t) + Eout

HS(t) = Dh(t) + Ein
HS(t), ∀t (A.3)
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with Eout
HP(t) as the heat output of the heat pump, Eout

HS(t) as the heat taken from the heat
storage, Dh(t) as the heat demand and Ein

HS(t) as the heat put into the heat storage.

The battery storage level is defined by

ES
b (t) = ES

b (t− 1) + lossb × Ein
b (t)− Eout

b (t), ∀t (A.4)

where the current energy stored in the battery ES
b (t) is given by the energy in the previous

time step ES
b (t− 1) reduced by the energy taken from the battery Eout

b (t) and increased
by the energy added in the current time step Ein

b (t). A power inverter loss is considered
for the battery storage by applying a loss lossb to the energy stored in the battery. We
chose lossb to be 0.95 to represent an inverter loss of 5%. The upper and lower limits of
the battery level are defined as

0 ≤ ES
b (t) ≤ CS

b , ∀t. (A.5)

For heat storage, the same logic is applied to the battery.

ES
HS(t) = lossHS × ES

HS(t− 1) + Ein
HS(t)− Eout

HS(t), ∀t (A.6)

The current Energy stored in the heat storage ES
HS(t) is given by the energy stored at the

previous time step ES
HS(t− 1) decreased by the heat taken from the storage Eout

HS(t) and
increased by the energy added to the storage Ein

HS(t). It is assumed that part of the heat
stored is lost every time step, which is described by lossHS. We chose lossHS to represent a
heat loss of 1% per hour of the energy stored. The heat storage is restricted by its capacity
CS

HS and an additional bound UBHS on the maximum storage size that can be installed.

0 ≤ ES
HS(t) ≤ CS

HS ≤ UBHS, ∀t (A.7)

We chose UBheat_storage to be 46.6 kWh or 1m3 of water with a maximum heat difference
of 40°K. In order to prevent storage depletion of the battery and the heat storage at the
end of the optimized time interval, we define t = T as the time step prior to t = 0 in
Equations A.4 and A.6.

In this energy system, the PV capacity is an input parameter, not part of the optimization.
Hence, the PV energy production EPV(t) can be described with the time series avPV(t). The
time series avPV(t) limits the possible energy output at each time step, i.e., a percentage
of output at each time step times the PV capacity.

0 ≤ EPV(t) ≤ avPV(t), ∀t (A.8)
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The limits of the heat pump are defined as:

0 ≤ Eout
HP(t) ≤ COP× Ein

HP(t) ≤ 2× Dmax
h , ∀t (A.9)

where, Eout
HP(t) is the heat output and Ein

HP(t) the electricity consumption of the heat pump.
The heat output of the heat pump is bound by the electricity consumption times the
coefficient of performance COP of the pump. We chose a COP of 3 in our experiments.
Furthermore, we assume that the heat pump’s power is limited by twice the highest heat
demand value Dmax

h . This limitation was made to prevent production spikes since there
are no costs for the heat pump’s capacity.

Finally, selling energy to the grid is not considered in this model. Hence, the energy
bought is limited to be positive by the following equation.

0 ≤ Ebuy(t), ∀t (A.10)
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B. Questionnaire to Evaluate the Energy
Transition Game

In this appendix the questionnaire which was posed to the participants of the course
"Energiewende gestalten" is described. The original questionnaire is in the German
language since the course is also offered in the German language. We provide the English
translation of the questions here to be inline with the language of this thesis.

The questionnaire starts with some general clarifications about the survey itself and a
declaration of data security. The general clarification contains the type of study at hand
(online questionnaire), the procedure (3 separate questionnaire that should be answered
at three different points in time), the duration (about 20 minutes per questionnaire), the
potential use (measuring of the learning success aiming to aide in improving the quality
of the course) and the potential risks for the participants of the study (non above the risks
of daily life). The declaration of data security contains the necessary formulations to be
in line with the European General Data Protection Regulations (GDPR). The necessary
formulations contain what type of personal data is collected (field of study and semester),
how and where the data is stored (anonymised and not longer then 5 years on university
servers), as well as a clarification of the rights each participant has according to the GDPR.
Further, the participants are sophisticated that their participation is voluntary and that
they can abort the survey at any time without any consequences. Participants have to
declare that the read the general information and the data security declaration before
they can proceed with the study. Finally, participants could opt-in into allowing their free
text answers to be directly cited if they did not contain any sensitive data.

In the next part of the questionnaire, participants were asked to fill in some meta data,
i.e., their field of study and their current semester of studying. Further, they were asked
to generate a manual hash code that can be used to measure individual improvements by
identifying the later questionnaires without breaking their anonymity. This generation of
a manual hash was optional.
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The next part of the questionnaire starts with some general questions about the participants
opinion towards the energy transition:

A01: Is the energy transition reasonable?

□ Yes □ No

A02: Is the energy transition technical feasible?

□ Yes □ No

A03: Do you think that the energy transition will be succeed?

□ Yes □ No

A04: Where do you think is the biggest challenge for energy transition?

□ technical aspects □ economical aspects □ political aspects

A05: How would you rate your own understanding of the energy transition?

□ very bad □ rather bad □ neither bad, nor good □ rather good □ very good

The next block of questions contained some free text questions about different topics
related to energy transition. This block oaf questions were added after the first online
interview, hence, no data is available for the first interview.

B01: Why is the energy transition in the heat sector relevant?

B02: Which measures can help to achieve energy transition in the heat sector?

B03: Which problems can occur if the decarbinization of the industry is done to
hasty?

B04: How should the operation of power plants be chosen to achieve cost optimal
power production?

The free text questions about different parts of energy transition are followed-up by some
fill-in-the-blank-text, a question where items should be put in an increasing order and some
more complicated questions about measures of energy transition that require calculation
or reasioning to be solved. All tasks/questions of this question block are dedicated to
physical units and magnitudes. Participants were asked to fill in physical units into the
following fill-in-the-blank-text:
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C01: An average photovoltaic system for a single-family home has a peak output of about
5 to 10 .

C02: A direct current high-voltage line has a transmission capacity of up to 5 .

C03: The average annual energy consumption of a German household (2 people) is about
3000 .

C04: A AAA battery stores approximately one of energy.

C05: As this power is not consumed throughout the entire duration of the ironing process,
an average energy requirement of about 1.5 is obtained.

C06: An iron has a power rating of 2 to 3 .

C07/C08: Coal-fired power plants typically have a capacity of 100 up to one .

In C09 participants should rank different options in ascending order.

C09: Sort the following means of electric power generation by their CO2 intensity
from lowest intensity to highest:

– German average (as of 2022)

– Power from coal

– Power from lignite

– Power from Gas (60% efficency)

– Power from waste combustion

Questions C10 – C12 each consist of two parts. First the question and a field where the
requested result should be written down and a free text field where participants are asked
to argue or show some calculation how they came to the result they gave. For clarity
reasons, we omit the second part of each question here.

C10: Howmany households can an average wind power plant supply with electricity?

C11: What price do households have to pay for electricity so a wind power plant can
be economic after 10 years?

C12: If every person in Germany would require an additional kWh of energy each
year (distributed evenly throughout the year), how much additional power
plant capacity is needed to provide this energy?
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A small block of regarding the merit order as one of the concepts taught in the course
contains the following two questions.

D01: If possible, please explain the merit order.

D02: What are arguments why the merit order is reasonable?

The participants are asked about all agents that they know that are related to energy
transition.

E01: Name in bullet points all agents/institutions that you know of, that are somehow
involved in the energy transition, respectively can influence it.

Next, participants should name their opinion which sector they deem mainly responsible
for different aspects of the energy transition. Possible answers form which they can choose
are: energy sector, industry, private households, politics, or others.

Who do you think is mainly responsible for...

F01: the electricity price?

F02: the speed of the decarbonization of the electricity generation?

F03: the decision which power plants will be build?(expansion planing)

F04: the decision which power plants are actually used?(operational planning)

F05: the implementation of the energy transition in the transport sector?

F06: the speed of the decarbonization of the transport sector?

F07: the implementation of the energy transition in the heat sector?

F08: the speed of the decarbonization of the heat sector?

Regrading the four explicitly named sectors the questionnaire further asks how CO2
emissions can be reduced in each sector

F09: Name in bullet points all measures/potentials that you can think of, how the
energy sector can reduce its CO2 emissions.

F10: Name in bullet points all measures/potentials that you can think of, how the
industry can reduce their CO2 emissions.
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F11: Name in bullet points all measures/potentials that you can think of, how private
households can reduce their CO2 emissions.

F12: Name in bullet points all measures/potentials that you can think of, how the
politic can directly or indirectly influence CO2 emissions.

The final block of questions of the survey is dedicated to conflict of interests regrading
energy transition. The survey gives the following conflict of interest between private
households and politics, potentially caused by the energy transition, as an example:
Private households want to pay low taxes so they have more money they can spend on other
goods. On the other hand, the government wants to have high income trough taxes to finance
political measures. Participants are asked to name up to three conflicts of interest between
the following parties.

G01: Name the in your opinion most important conflicts of interest regarding the
energy transition between the energy sector and the industry.

G02: Name the in your opinion most important conflicts of interest regarding the
energy transition between the energy sector and politics.

G03: Name the in your opinion most important conflicts of interest regarding the
energy transition between private households and the industry.
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C. Full Questionnaire Results

In this appendix, we show the full results of the questionnaire posed to the participants of
the course "Energiewende gestalten". The course consists of a lecture, and a seminar as
well as the simulation game presented in this thesis. A total of 85 questionnaires were
started by the participants, distributed over three different surveys at three different points
in time. Of the 85 started questionnaires 61 have been completed and are valid, i.e.,
participants have read and agreed on the general clarifications and the declaration of data
security. The first survey has 25 valid questionnaires and was conduced before the start of
the first lecture. A total of 22 valid questionnaires were collected for the second survey
after the lecture and the seminar, but before the first play of the simulation game. The final
survey was conduced after the participants had played the simulation game and contained
14 valid questionnaires. We refer to the three surveys by in the remained of this appendix
and in all figures by their survey number: base (first survey), qnr2 (second survey), and
qnr3 (final survey). We refer the reader to the question numbers from Appendix B and
omit repeating the questions to simplify the text.

All participants have been recruited from the students of the course "Energiewende
gestalten". Their participation was voluntarily and was not rewarded by any means. Of the
valid questionnaires, 34 were answered by participants that studies something in the field
of electrical engineering. The most common field of study from that group was "Energy
Science and Engineering" with 25 questionnaires. A total of 27 valid questionnaires were
finished by participants studying in the field of political sciences. The most common field
of study from the group of politic science students was "Governance and Public Policy" (17
questionnaires). The average semester of the participants was 2.67. No other personal
information, e.g., age or sex, have been collected.

The top part of Figure C.1 shows the answers to questions A01 – A03where the participants
were asked if they think the energy transition is reasonable, technical feasible and if it will
become reality. The results are split by the three surveys conducted. The bottom part of
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Figure C.1.: Answers to questions A01 – A03 (top) and A04 (bottom). Personal opinion
on energy transition and biggest challenge.

Figure C.1 shows the results of question A04. Participants had to rate, where they think
the biggest challenge of energy transition is.

Figure C.2 shows how the participants assessed their own knowledge regarding the energy
transition. While in the first two surveys, some participants assessed their knowledge of
energy transition as "rather bad", none of the participants in the last survey did. Further,
the share of participants who think their knowledge of energy transition is "very good"
increased.

Figure C.3 shows the categorized answers of the open text questions regarding energy
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Figure C.2.: Answers to questions A05. Self Assessment of knowledge about energy
transition.

transition in the heat sector. The answers were manually categorized. Naming multiple
categories was possible. In Figure C.3a, the given answers to question B01 are shown. The
following categories were identified:

The energy transition of the heat sector...

• is important to achieve climate change goals.

• allows for distributed production.

• is important for a stable and prospering economy.
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(a) B01: Relevance of the heat sector. (b) B02: Measures for decarbonizing heat.

Figure C.3.: Results of the open questions regarding the energy transition of the heat
sector.

• helps with the emissions reduction.

• is necessary since the heat sector still has a high share of fossil production.

• is important since the heat sector itself has a high share of the final energy demand

• is important to reduce international dependency, i.e., on gas import.

• is important since it increases sector coupling.

Figure C.3b shows the categorized answers to question B02. The following categories
were identified:

The decarbonization of the heat sector can be achieved by...

• using more district heating.

• applying demand side management, i.e., shifting or reducing heat demand.

• using more hydrogen.

• electrification of the heat production, i.e., using heat pumps.
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• build/using more heat storage.

• better insulation of buildings to reduce the heat demand.

• using more combined heat and power (CHP).

• political measures, i.e., ban new oil heaters or subsidize heat pumps.

• using more renewable energies, like solarthermics.

(a) B03: Hasty industry decarbonization. (b) B04: Cost optimal operation of power plants.

Figure C.4.: Results of the open questions regarding industry decarbonization and cost
optimal operation of power plants.

Figure C.4 shows the answer to to the remaining two open text questions from block B,
i.e., B03 and B04. In Figure C.4a, the categorized answers of question B03 are shown.
Multiple categories per answer were possible and the following categories were identified:

A hasty decarbonization of the industry sector can lead to...

• an economy breakdown.

• a shortage of energy supply.

• high costs for the industry, i.e., is expensive.
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• a high inflation.

• the local industry having a disadvantage in the international competition, e.g.,
due to high energy prices.

• lost opportunities due to better technologies in later stages in development (learning
curve).

• a loss of prosperity, as a consequence of job losses and harm to the economy.

• a migration of industry to other states with less restrictions.

• a loss of political support, e.g., public protests.

• loss of security of supply (of produced goods) and in the process to higher prices.

• to tax losses since the income generated by the CO2 taxes is lower due to lower
emissions.

• no problems since technical feasibility limits the speed of the decarbonization.

Figure C.4b shows the percentage of answers to question B04 that either include the
phrase "merit order" or a description of its functioning. The scheme of categorizing all
answers was omitted for B04 since the question aimed at validating if the participants
learned about the merit order as one of the vital concepts of the lecture.

Figure C.5 shows the results of the fill-in-the-blank-text questions (C01 – C08) and the
task where participants were asked to order different means of electricity generation by
their CO2 intensities. For the fill-in-the-blank-text the average right answers are shown in
Figure C.5a. In the first questionnaire participants were to fill in 2 out of 8 blanks correctly.
The average right answers increase for the later surveys to 3.3 and 3.5 correct answers.
Figure C.5b shows the average of a score for the correct ranking of the CO2 intensities.
The score has a base value of zero and was increased by one if the intensity of the named
method of electricity generation is higher then the intensity of the one named before. I.e.,
a score of two means that twice the successor had a higher intensity then its predecessor.
The best possible score is four, if all fife means of electricity generation are in the right
order.

Figure C.6 shows the results of questions C10 – C12, where participants were asked to
give a numeric answer first and then argue how they had come to the result. The asked
questions did not give any details so it was up to the participants to take some assumptions.
The top part of the figure shows the percentage of correct answers. An answer was deemed
as correct, if it was in the same order of magnitude then the expected answer based on
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(a) C01 – C08. Fill-in-the-blank energy units. (b) C09. Electricity generation by CO2 intensity.

Figure C.5.: Results of questions C01 – C09. Energy units and CO2 intensities.

the assumptions taught in the lecture. The lower part of the figure shows the percentage
of calculations used as arguing for the correctness of the own answer. Note, that only the
presence of a calculation as a justification was tracked, not if the calculation was actually
correct.

Figure C.7 shows a bar plot of the results for question D01 and D02 on the merit order. The
left part of the figure shows the percentage of right answers given to D01. The correctness
was checked manually. An answer was deemed correct if it explained that the generation
is sorted in ascending order by its marginal cost of production. The left part of the figure
shows the percentage of reasonings with valid arguments for the use of the merit order.
Reasons deemed valid are a minimal energy price, the incentives for building power plants
with low variable costs (e.g. renewable) to get accepted, and the highest marginal cost as
income for everybody as a means to finance the investment.

The bar plot in Figure C.8 shows the average number agents and institutions that are
related to the energy transition named by participants in the three different surveys.

Figure C.9 shows several bar plots that show the sector which was perceived as mainly
responsible for the statements F01 – F08. The figure starts with F01 in the top left plot
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Figure C.6.: Results of questions C10 – C12: working with energy units. Answers is
within right order of magnitude (top) and reasoning is based on calculations
(bottom).

and continues with a plot for every question until F08 in the bottom right. Each plot shows
the relative share of the group seen as mainly responsible for the given part of the energy
transition in each question grouped by the different surveys. For F01, energy sector and
politics are perceived as most responsible. The share of politics cannibalizes a small share
of industry and the energy sector and politics end up with roughly the same share in
the last survey. According to the participants, politics is mainly responsible for F02 in all
surveys. A minority of opinions switch from industry as the main contributor to the energy
sector over the course of the studies. Roughly 80% see the private households responsible

134



Figure C.7.: Results of questions D01 and D02. Percentage of right explanations of the
merit order (left) and good arguments for its reasonableness (right).

Figure C.8.: Results of questions E01. Agents and institutions of the energy transition.
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Figure C.9.: Results to questions F01 – F08. Perceived responsibility in the energy transi-
tion grouped by the different surveys.

for F03 in the first survey. The opinion on the role of the private households decreases to
be only about 40% in the last survey with increasing responsibilities seen with the energy
sector. Further, the energy sector is perceived mainly responsible for F04 with shares of
55% – 70%.

In the bottom half of Figure C.9, i.e., questions F05 – F08, politics is seen as mainly
responsible. While the share of participants that see politics as responsible increases over
the course of the different surveys for F05, F06, and F07, it remains about the same for
F08.

Figure C.10 lists the average emission reduction potentials named by the participants for
the different sectors, i.e., questions F09 – F12.

The Figures C.11, C.12, and C.13 show each three word clouds, one for each survey. In
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Figure C.10.: Results for questions F09 – F12. Average emission reduction potentials
named for different sectors.

Figure C.11.: Word cloud of named conflicts of interests between the energy sector and
industry (G01).

the word cloud the size of each word is proportional to the amount it was mentioned in
the named conflicts of interest of the respective question. Words with 3 letters or less
were excluded. The original questionnaires were asked in the German language, hence,
the words in the word clouds are also German. Figure C.11 shows the word clouds of
the conflicts of interest between the energy sector and the industry (G01). Figure C.12
depicts the word clouds of the conflicts of interest between the energy sector and politics.
The word clouds of the conflicts of interest between private households and industry are
shown in Figure C.13.

137



Figure C.12.: Word cloud of named conflicts of interests between the energy sector and
politics (G02).

Figure C.13.: Word cloud of named conflicts of interests between private households and
industry (G03).
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