
Leakage and Fault Resilience of

Cryptographic Implementations

Vom Fachbereich Informatik der TU Darmstadt genehmigte

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

von

Maximilian Orlt

Darmstadt, 2024

Gutachter: Prof. Sebastian Faust, Ph.D.

Prof. François-Xavier Standaert, Ph.D.

Datum der Einreichung: 21.12.2023

Author: Maximilian Orlt

Title: Leakage and Fault Resilience of Cryptographic Implementations

Ort: Darmstadt, Technische Universität Darmstadt

Datum der mündlichen Prüfung: 05.02.2024

Veröffentlichungsjahr der Dissertation auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,

E-Publishing-Service der TU Darmstadt

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als:

URN: urn:nbn:de:tuda-tuprints-277948

URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/27794

Urheberrechtlich geschützt / In Copyright (https://rightsstatements.org/page/

InC/1.0/).

http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
urn:nbn:de:tuda-tuprints-277948
https://tuprints.ulb.tu-darmstadt.de/id/eprint/27794
https://rightsstatements.org/page/InC/1.0/
https://rightsstatements.org/page/InC/1.0/

Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den

angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus

Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat

in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Maximilian Orlt

iii

Acknowledgments

Studying is like a journey. While the initial phase may resemble a well-organized

expedition, pursuing a Ph.D. transforms into an unpredictable adventure. I am

infinitely grateful for the support and friendship I received from the community

along this way. I would like to take this opportunity and simply say: Thank you!

I am very grateful to my supervisor, Sebastian Faust, for believing in me and

always supporting me throughout my Ph.D. adventure. Thank you for all the

good advice during the countless enjoyable discussions! Besides my supervisor, I

would like to thank my further committee members: Amir Moradi, Ahmad-Reza

Sadeghi, Thomas Schneider, and François-Xavier Standaert.

On my way to the Ph.D. I had the pleasure to meet many great researchers.

I would like to thank my co-authors, including all researchers not mentioned in

the thesis, as our research was separate from this thesis. Further, I want to thank

Sebastian Berndt, Sebastian Faust, Julia Hesse, François-Xavier Standaert for

their mentoring support in the beginning of my Ph.D studies when I was sometimes

a bit lost and did not immediately see the next research steps. Apart from the

mentoring support, I thank Dorothee Nikolaus and Jacqueline Wacker, for guiding

me so many times in the bureaucracy jungle at TU Darmstadt. Especially, the

retreat you organized in Sardinia was amazing! Luckily, I was able to travel to

many conferences, and I enjoyed any of these travels primarily because of all the

wonderful company. Apart from our many fruitful research discussions, I also have

many great memories, such as the bicycle trip over the Golden Gate Bridge, the

trip to Santa Barbara, the walks in Lyon, and the hiking in Malta and Amalfi.

Thank you, Abdel, Alex, Benni, David, Elena, Löıc, Marc, Olga, Patrick, Paula,

Poulami, Rune, Siavash! I especially want to thank Andreas for the many after-

work dinners and the unconditional support “im Büro an der Forschungsfront.”

My Ph.D. journey became much more pleasant with you, Danke LiKo!

There are people in my life that I have always been able to count on: My family

has supported me unconditionally my whole life. Danke, dass ihr schon immer für

mich da seid! Last but not least, I want to thank someone very special in my live.

Thank you, Céline, for your never-ending support, infinite understanding, and for

having an “Owlways Monkey Place” for me!

qp p pp p Danke! p p p p
iv

List of Own Publications

Publications of this Thesis

[36] S. Berndt, T. Eisenbarth, S. Faust, M. Gourjon, M. Orlt, and O. Seker. “Com-

bined Fault and Leakage Resilience: Composability, Constructions and Com-

piler”. In: Advances in Cryptology - CRYPTO 2023 - 43rd Annual International

Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,

2023, Proceedings, Part III. 2023, pp. 377–409.

[39] F. Berti, S. Faust, and M. Orlt. “Provable Secure Parallel Gadgets”. In: IACR

Trans. Cryptogr. Hardw. Embed. Syst. 4 (2023), pp. 420–459.

[57] G. Cassiers, S. Faust, M. Orlt, and F. Standaert. “Towards Tight Random Prob-

ing Security”. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual Inter-

national Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,

2021, Proceedings, Part III. 2021, pp. 185–214.

[90] A. Erwig, J. Hesse, M. Orlt, and S. Riahi. “Fuzzy Asymmetric Password-Authenticated

Key Exchange”. In: Advances in Cryptology - ASIACRYPT 2020 - 26th Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II. 2020,

pp. 761–784.

[94] S. Faust, J. Krämer, M. Orlt, and P. Struck. “On the Related-Key Attack Se-

curity of Authenticated Encryption Schemes”. In: Security and Cryptography for

Networks - 13th International Conference, SCN 2022, Amalfi, Italy, September

12-14, 2022, Proceedings. 2022, pp. 362–386.

Further Publications

[2] A. Abromeit, F. Bache, L. A. Becker, M. Gourjon, T. Güneysu, S. Jorn, A.

Moradi, M. Orlt, and F. Schellenberg. “Automated Masking of Software Imple-

mentations on Industrial Microcontrollers”. In: Design, Automation & Test in

Europe Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5,

2021. 2021, pp. 1006–1011.

[19] G. Barthe, M. Gourjon, B. Grégoire, M. Orlt, C. Paglialonga, and L. Porth.

“Masking in Fine-Grained Leakage Models: Construction, Implementation and

Verification”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2 (2021), pp. 189–

228.

v

[95] S. Faust, L. Masure, E. Micheli, M. Orlt, and F. Standaert. “Connecting Leakage-

Resilient Secret Sharing to Practice: Scaling Trends and Physical Dependencies

of Prime Field Masking”. In: Advances in Cryptology - EUROCRYPT 2024 -

43rd Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part

IV. 2024, pp. 316–344.

vi

Abstract

Modern cryptography is the science to develop cryptographic primitives for secure

communication in the presence of an adversary. The security of these primitives

is usually proven in the black box model, which restricts the adversary to manip-

ulate only the inputs of the primitives and to observe their outputs. However,

Paul Kocher demonstrated at CRYPTO’96 that real-world implementations of

such primitives can be attacked not only via their input-output behavior but also

via so-called side-channels. The latter allow the adversary to learn information

about inner computations, e.g., by measuring the runtime or power consumption

of the device that executes the primitive. Shortly after, at EUROCRYPT’97,

Boneh et al. even advanced the research on implementation attacks by injecting

faults, manipulating inner computations using methods such as laser beams or

electromagnetic pulses. Their attacks illustrate the vulnerability of implementa-

tions that are provable secure in the black box model. As a consequence, Ishai

et al. formalized those attacks and investigated provably secure countermeasures

for side-channel and fault attacks at CRYPTO’03 and EUROCRYPT’06, respec-

tively. Following their new research direction, this thesis addresses leakage and

fault resilience of cryptographic implementations.

As a first step, this thesis presents methods to protect arbitrary computations

against side-channel attacks, focusing on masked circuits in the random probing

model. We propose two different approaches to prove security, namely the so called

Probe Distribution Table (PDT) and Dependency Graph (DG). While the PDT

significantly improves concrete security results of state-of-the-art constructions,

the DG allows for an asymptotic security analysis which is particularly efficient

for affine circuits.

As a second step, this thesis introduces two fault-resilient cryptographic prim-

itives to address faults in secret values such as keys and passwords. The first

primitive, fuzzy asymmetric password-authenticated key exchange (faPAKE), deals

with typos in passwords, allowing two parties to generate a common key based on

partial password knowledge. The second primitive is a deterministic authenticated

encryption scheme which is provably secure against fault attacks, and which allows

for secure communication in the presence of malicious faults on the secret key.

Finally, the thesis presents two secure compilers that combine fault and leakage

vii

resilience, addressing scenarios where an adversary can simultaneously probe and

fault the internal computation. Given that standalone fault and leakage resilience

is not sufficient to ensure combined resilience, we introduce a new security prop-

erty, the so-called fault-invariance, that allows proofs to ensure security against

combined attacks.

viii

My Contribution

This thesis is based on five scientific publications co-authored with my super-

visor Sebastian Faust, and many other excellent researchers: Sebastian Berndt,

Francesco Berti, Gaëtan Cassiers, Thomas Eisenbarth, Andreas Erwig, Marc Gour-

jon, Julia Hesse, Juliane Krämer, Siavash Riahi, Okan Seker, François-Xavier Stan-

daert, and Patrick Struck. I am deeply grateful to all of my co-authors for

their invaluable contributions and stimulating research discussions. Often it be-

comes rather difficult to segregate the contributions of individual researchers, and

our papers are no exception. Nonetheless, to fulfill the formal requirements of the

thesis, I have outlined my specific contributions to each of the five papers below.

Chapter 3. The paper [57] introduces a new tool to verify the leakage resilience of

circuits in the random probing model. Sebastian Faust and François-Xavier Stan-

daert supervised this work, when we discussed the requirements for tighter security

verifications in this leakage model. Gaëtan Cassiers contributed the Monte-Carlo

technique for efficient security bounds and the work-intensive implementation part

of the tool. I mainly contributed the new security notion, the so-called Probe

Distribution Table (PDT), which allows us to compute the security of composed

circuits. More precisely, I proved that one can analyze the security of a large

circuit using the PDTs of its subcircuits.

Further, the chapter presents the results of [39]. Most of the observations of this

paper result from countless discussions with Francesco Berti and Sebastian Faust.

Francesco Berti focused on the algebraic background, and the security analysis

of the multiplication gadget. My focus was the dependency graph that allows to

describe the dependencies of intermediate values of circuits. The graph allows for

a simpler security analysis and provides generic security results for any number

of shares. Further, I gave a composition technique that allows to construct the

dependency graph of circuits from the dependency graphs of its subcircuits.

Chapter 4. In [90], Julia Hesse has supervised Andreas Erwig, Siavash Riahi,

and me in our first research project. As a team, Andreas Erwig, Siavash Riahi,

and I investigated password-authenticated key exchange protocols that are fuzzy

ix

(allowing small password deviation) and asymmetric (avoiding clear password files

on server side.) We formulated our new notion in the Universal Composability

framework (UC), and constructed two secure protocols. In addition, Andreas

Erwig, Siavash Riahi and I did the UC security proofs under the guidance of Julia

Hesse.

Moreover, [94] analyzes authenticated encryption schemes against related-key at-

tacks (RKA). Sebastian Faust and Juliane Krämer jointly supervised this project

and we went through several research discussions to find the right security require-

ments to correctly define the security model for authenticated encryption schemes

secure against related-key attacks. The initial project idea was contributed by

Patrick. Together, Patrick and I analyzed generic constructions for authenticated

encryption schemes, giving positive and negative security results. First, we investi-

gated the RKA security of the encryption scheme and the message authentication

code. Then, we analyzed how the security of the authenticated encryption re-

duces to the related-key attack security of the underlying encryption and message

authentication code. Moreover, I constructed the N-Star scheme, proving that it

satisfies our strongest security notion.

Chapter 5 This chapter is based on [36], a joint work with Sebastian Berndt,

Marc Gourjon, Okan Seker, Thomas Eisenbarth, and Sebastian Faust. Initially, we

started this project to improve the multiplication gadget for polynomial sharing.

We developed a multiplication gadget that is optimal in the number of shares.

In addition, Sebastian Berndt, Sebastian Faust, and I continued to research

combined security where the adversary can do both, faults and probes simulta-

neously. Sebastian Berndt mainly contributed to the fault resilience of internal

computations, and together we investigated a formal property that ensures fault

detection. Further, I defined an adapted (S)NI property called fault resilient (S)NI

which allows for leakage resilient compositions even in the presence of faults. For

the security proof, I extracted a new property, called shift-invariance, that implies

probing security in the presence of faults.

Each chapter of this thesis includes parts taken verbatim from the corresponding

papers listed above with some adjustments.

x

Contents

1. Introduction 1
1.1. Overview . 5

2. Preliminaries 9
2.1. Leakage Models and Masking . 11

2.2. Combined Model and Error Detection 17

2.3. Universal Composability and Generic Algorithms 20

3. Leakage Resilience 22
3.1. Contribution . 23

3.1.1. Probe Distribution Table . 23

3.1.2. Dependency Graph . 25

3.2. Related Work . 28

4. Fault Resilient Implementations 30
4.1. Fuzzy Asymmetric Password-Authenticated Key Exchange 30

4.2. On the Related-Key Attack Security of Authenticated Encryption

Schemes . 35

4.3. Related Work . 39

5. Combined Resilience 41
5.1. Contribution . 41

5.2. Related Work . 44

6. Conclusion 46

7. Bibliography 49

Appendix A. Towards Tight Random Probing Security 70

Appendix B. Provable Secure Parallel Gadgets 95

Appendix C. Fuzzy Asymmetric Password-Authenticated Key Exchange 129

xi

Contents

Appendix D. On the Related-Key Attack Security of Authenticated En-
cryption Schemes 149

Appendix E. Combined Fault and Leakage Resilience: Composability,
Constructions and Compiler 168

xii

1. Introduction

Cryptography (Ancient Greek kryptós, “hidden”; and graphein, “to write”) is

the science of secure communication in an adversarial environment. In this con-

text, an adversarial environment refers to the scenario where an attacker tries to

undermine the communication between two or more parties. The most apparent

strategy of such an attacker is to simply eavesdrop on the information exchanged

between the parties. However, various other malicious attacks are also noteworthy,

with prominent examples being an adversary who actively alters another party’s

message or sends a message in its name. The overarching objective of cryptog-

raphy is to enhance security by reducing an attacker’s opportunities to sabotage

such communication.

When two parties securely exchange messages, they usually transform the mes-

sage using cryptographic primitives to hide the actual message (confidentiality),

to know the sender (authenticity), and to be convinced that the message was

not changed by an attacker (integrity). Auguste Kerckhoffs, a Dutch linguist and

cryptographer [55], gave the following fundamental principle for such cryptographic

primitives.

“It should not require secrecy,

and it should not be a problem if it falls into enemy hands.”

-Auguste Kerckhoffs, [134]

This approach is well known as Kerckhoffs’ principle, and it is interpreted in such

a way that “it”, i.e., the cryptographic primitive, must be secure even if the “en-

emy”, i.e., the adversary, knows the functionality of the used primitive (e.g., [131],

Chap. 1). Following this principle, it was generally assumed that an adversary is

familiar with the design of a cryptographic primitive and the security argumenta-

tion of a primitive was typically only based on the absence of known vulnerabilities.

Classical cryptography therefore relied mostly on artistic creativity to thwart po-

tential vulnerabilities, fostering a dynamic competition between designing of secure

primitives and breaking existing ones. However, this strategy was lacking a fun-

damental theoretical security analysis of a primitive, as security relied only on the

assumption that the adversary has not yet broken the used primitive. While in

the beginning cryptography was only used by small groups, e.g., the government

1

1. Introduction

or secret organizations, it became more important than ever with the digitization

in the 20th century. Rapidly, it became an integral part of everyone’s life, which

is exemplified by its role in enabling contactless payments, online shopping, or

smart devices in general. Motivated by its importance in today’s world, the field

of cryptography started to receive wide attention by academics and practitioners,

which eventually resulted in it being introduced as a formal scientific discipline,

e.g., [76]. In contrast to classical cryptography, this new scientific discipline, often

referred to as modern cryptography, no longer relies on the absence of discovered

vulnerabilities to establish security; instead, it is based on rigorous mathematical

theory, often described as provable security.

Provable Security. The formal treatment of security requires the following im-

portant ingredients: An adversarial model, that precisely defines the security needs

for the adversarial environment, a carefully chosen cryptographic primitive to en-

able a secure communication method, and a security proof which shows that break-

ing the security of the cryptographic primitive is “hard”. The typical hardness

assumptions for such security proofs are well-known mathematical problems such

as the complexity of factoring large integers (e.g., [131], Chap. 8). According to

Kerckhoffs’ principle, the cryptographic primitive is publicly known but initiated

with a secret key. Its security is then based on the secrecy of this key and on an

underlying hard problem.

Here, a generally accepted security model within modern cryptography is the

black box model. It grants the adversary access to the inputs and outputs of a

cryptographic primitive without disclosing the primitive’s secret key, and a se-

curity proof typically shows that a scheme is secure as long as the underlying

mathematical problem cannot be solved. While the black box model has signifi-

cantly contributed to the formal investigation of security in modern cryptography,

it has gradually become apparent that this model may be overly idealized. In

the black box model, the adversary manipulates the inputs and observes the out-

puts of a cryptographic primitive, assuming that the algorithm operates within a

fully trusted environment [173]. This interpretation of Kerckhoffs’ principle takes

an optimistic view, as it implies that the adversary only gains knowledge of the

input-output behavior of a cryptographic implementation “if it falls into enemy

hands.” Unfortunately, this assumption turned out to be too naive, because the

model does not consider the case where the adversary attacks the inner working

of the implementation.

2

1. Introduction

Implementation Attacks. Since the late 1990’s, it has been known that real-

world cryptographic implementations are not only attacked via their input-output

behavior as modeled by the black box model, but also via implementation attacks.

A prominent example of an implementation attack was presented in a pivotal work

by Paul Kocher [138], at CRYPTO 1996. In his work, Kocher demonstrated an

attack that exploits the fact that the running time of a device depends on the

underlying secret key. This physical effect leaks enough information about the key

to break schemes that were previously proven secure in the idealized black box

model. Kocher’s attack is a prominent example of a so-called side-channel attack.

Following Kocher’s work, a diverse range of side-channel attacks were developed in

the subsequent years, exploiting physical leakages such as power consumption [139],

electromagnetic radiation [104], cache accesses [48], or acoustic signals [107].

Almost one year later at EUROCRYPT 1997, Boneh, Demillo, and Lipton [47]

presented a new cryptanalytic attack that also bypassed the security of the black

box model. Their attack essentially exploited computational errors, which allowed

to recover the cryptographic keys. Due to Kerckhoff’s principle, security depends

only on the secrecy of the key, and therefore, key recovery attacks are the worst-

case scenario. Shortly after, at CRYPTO 1997, Biham and Shamir [43] enhanced

this attack to encompass a larger class of cryptographic primitives, showing that

implementation attacks can be more than only passive side-channel attacks. The

adversary can also perform active fault attacks to manipulate internal calculations

through techniques such as clock glitches [77], voltage glitches [176], electromag-

netic pulses [73, 79], and laser beams [43, 167].

These results highlight that active and passive implementation attacks can lead

to catastrophic security flaws in supposedly secure implementations. The critical

observation is that those attacks only exploit the physical behavior of the devices

on which the cryptographic schemes are implemented and as the famous cryp-

tographer Adi Shamir said at the Turing Award Lecture 2002 “Cryptography is

typically bypassed, not penetrated.” [165]

Beyond the Black Box. Roughly three years after Kocher presented his side-

channel attack at CRYPTO 1996, Daemen and Rijmen proposed a countermeasure

against side-channel attacks where a secret bit value is transformed into two values,

one carrying the original bit value and the other its complement [72]. It started

a creative art of various ad-hoc countermeasures, e.g., [112, 147], and led to a

competition of designing unbroken methods and breaking existing ones [60, 67].

Similar to the beginnings of cryptography as a science in general, it took some

time before implementation attacks were formalized, establishing a novel scientific

subfield of modern cryptography.

3

1. Introduction

Concretely, seven years later at CRYPTO 2003, Ishai, Sahai, and Wagner (ISW:

Private Circuit I) [126] introduced the first adversarial model aimed at capturing

side-channel attacks. They modeled the implementation of cryptographic primi-

tives as a circuit, where every operation, such as addition and multiplication, was

represented as a gate, interconnected by wires to assess the primitive’s function-

ality. This computational model, unlike the black box model, offered insights into

the internal computation of an implementation and proved valuable for modeling

implementation attacks.

For instance, the t-threshold probing model also introduced in the Private Cir-

cuit I paper allowed adversaries to gain knowledge of t different wires’ values.

This model represents the first step towards the formalization of implementation

attacks, and describes an idealized side-channel attack, where the adversary can

measure up to t different intermediate values of an implementation.

During EUROCRYPT 2006, Ishai, Prabhakaran, Sahai, and Wagner (IPSW:

Private Circuit II) [125] additionally demonstrated that the circuit model could

also serve as a basis for modeling fault attacks. Their adversary had the capabil-

ity to manipulate the values of an unlimited number of wires within the circuit.

However, they constrained the adversary to specific fault attacks, initially permit-

ting the manipulation of wire values to zero. Similar to the probing model, the

adversary’s actions were bounded by the number of faults often referred to as the

e-threshold fault model, permitting a broader range of fault types, also called fault

class. Such a fault class typically consists of functions to add a constant to the

wire’s value or fix it by a constant. For further details about the probing and fault

models, we refer to Chapter 2.1 Both models initiated a new scientific branch of

modern cryptography and there are various model adaptions to describe implemen-

tation attacks more realistically. One prominent example is the p-random probing

model [126] also used in our work. In this model, each wire probabilistically re-

veals its value with a given probability p, and with a complementary probability

of 1− p, it leaks nothing about the value. Both models, the probing and the fault

model enabled the study of leakage and fault-resistant constructions.

Leakage and Fault Resilience. A prevalent approach involves the use of a com-

piler that takes an unprotected circuit as input and produces a protected version

as output. Such protected circuits do not use the plain secrets for internal com-

putations, and instead, they transform the secrets via so-called encodings. For

example, in a leakage-resilient circuit, sensitive data s is encoded via a function

1Numerous other fascinating research findings exist. Due to space constraints, we provide a
concise introduction here and provide a detailed discussion about the extensive work in the
respective chapters.

4

1. Introduction

Leakage Resilience (Chap. 3) Fault Resilience (Chap. 4)

Combined Resilience (Chap. 5)

Figure 1.1.: Content overview of this thesis

Enc to share the value s into n > t shares s0, . . . sn−1 ← Enc(s), ensuring that learn-

ing t shares si does not reveal any information about the secret s. This procedure

is often called masking [147], and circuits using such encodings are often known

as masked circuits. Similarly to masking, a circuit can be protected against faults

using an encoding s0, . . . sn−1 ← Enc(s) such that e faulted values si in s0, . . . sn−1

can be detected or even corrected. Such an encoding is often referred to as error

detection/correction codes, e.g. [151, 156]. While the emerging research branch

explored compilers designed to be secure against both types of attacks, counter-

measures against combined attacks have only recently gained attention. On the

one hand this fact is surprising as combined attacks give the attacker much more

power than the sum total of both individual attacks. The idea of such attacks is,

for example, that the adversary can explicitly fault the countermeasures against

side-channel attacks, and therefore increase vulnerabilities to gain efficient side-

channel leakage. On the other hand it turned out that countermeasures against

those combined attacks are rather challenging for the same reason. Following the

groundbreaking work of Ishai et al. [125, 126], this thesis focuses on resilience

against implementation attacks, and we overview our contribution in the following

section.

1.1. Overview

After providing a concise overview of the historical evolution of cryptography in the

context of implementation attacks, we now outline the core objectives of this thesis:

Leakage and Fault Resilience of Cryptographic Implementations. This work yields

a threefold contribution, encompassing leakage resilience, fault resilience, and their

intricate combination. First, it considers side-channel attacks (Chapter 3), exam-

ining masking as a countermeasure in the random probing model. Subsequently,

in Chapter 4, the thesis explores fault attacks, investigating effective strategies for

secure key generation and encryption in the presence of faulted secrets such as pass-

words and keys. Finally, Chapter 5 combines both side-channel and fault attacks,

5

1. Introduction

considering them concurrently to provide a comprehensive proof technique and a

provably secure compiler which enhances the security of cryptographic primitives

against combined attacks.

Leakage Resilience. Chapter 3 proposes and analyzes general methods to protect

arbitrary computations against side-channel attacks. Therefore, we present two

alternative approaches to prove the security of masked circuits in the random

probing model, and a secure compiler to transform any circuit into a masked one.

More precisely, the first proof technique (Section 3.1.1) is based on the findings

in [57] and proposes a novel method for proofs that significantly improved the

latest security results in the random probing model but is limited by its runtime

complexity. In particular, this technique allowed us to prove that the masking

countermeasures proposed by the very first paper ISW: Private Circuit I [126]

with n = 6 shares and a realistic leakage probability of p ≥ 10−4 ensures about

the same security as the latest securely proven construction in 2021 of Beläıd et

al. [26] using n = 27 shares.

The second approach (Section 3.1.2) is based on the results in [39] and allows us

to prove the security of masked circuits with an arbitrarily large number of shares

n. We used this method to prove the random probing security of our proposed

compiler. Our compiler is particularly efficient for affine circuits, that only use

linear operations such as additions. Here, our compiler allows a constant leakage

probability p = O(1). In detail, our countermeasure for affine circuits achieves

O(pn)-security with linear complexity O(n). This improves the compiler of Beläıd

et al. [26] using a complexity O(n2.4), and Dziembowski et al. [85] only achieving

O(
√
pn). Affine circuits are particularly noteworthy because many new primitives

minimize the use of non-linear operations while significantly increasing affine op-

erations. Nevertheless, we also give security results for more general circuits.

Disclaimer: At CHES 2023 [39], we argued that we achieve security for leakage

probability p = O(1/
√
n). It turned out that this is not the case for arbitrary

circuits. For this reason, we updated our paper on the IACR Cryptology ePrint

Archive [38] with a more fine grained analysis that proves our result for p =

O(1/n2) in general, and p = O(1) for affine circuits.

Fault Resilience. Chapter 4 proposes two fault-resilient cryptographic primi-

tives designed to tolerate specific fault types. These faults can be categorized

into two groups: passive faults, resulting from faulty interactions between users

and devices, and active faults, where adversaries intentionally introduce faults to

compromise cryptographic primitives. As a first step, this chapter only focuses

6

1. Introduction

on faults in secrets, such as keys and passwords, in a black-box manner, with

Chapter 5 extending the consideration to internal computation using a circuit as

a computational model.

The first primitive, fuzzy asymmetric password-authenticated key exchange

(faPAKE, Section 4.1), addresses passive faults in passwords. It allows for key

generation between two parties based on an asymmetrically used password, where

one party must know the complete password, while the other only needs partial in-

formation. The asymmetric approach protects against attacks targeting data theft

from servers and the fault-resilience of this protocol ensures a correctly generated

key up to a specified fault threshold of the password. The latter property is espe-

cially relevant in scenarios involving biometric-based passwords because biometric

measurements usually have a certain degree of inaccuracy.

The second primitive, (Section 4.2) based on [94], addresses secure communica-

tion in the presence of active faults on the secret key of a cryptographic primitive.

Assuming a secure key has already been generated (e.g., with faPAKE), the next

step involves ensuring secure communication using this key. A crucial primitive

for this is authenticated encryption as it fulfills the three main security require-

ments discussed in the introduction: confidentiality, authenticity, and integrity.

For this reason, the chapter’s focus is on the fault resilience of deterministic au-

thenticated encryption schemes proposed by [149] following the three well-known

paradigms Encrypt-and-MAC (E&M), Encrypt-then-MAC (EtM), and MAC-then-

Encrypt (MtE). These schemes consist of two underlying primitives, namely a

simple encryption to hide the message and massage authentication code (MAC)

to authenticate the sender. Consequently, such schemes use two cryptographic

keys Ke and Km for the underlying encryption and MAC, respectively. For the

fault attack, we distinguish two different scenarios. In the first case, we assume

imprecise faults where the adversary can only fault both underlying keys simulta-

neously and cannot revert a change, whereas in the second case the adversary can

do precise faults, that might change only one of the underlying keys. For imprecise

faults, we show that all three constructions, i.e., E&M, EtM, and MtE, are fault

resilient if both underlying primitives (MAC and encryption) are fault resilient.

For the precise faults, we first show that E&M and EtM are generally insecure by

presenting two attacks. Then we can show that although the MtE paradigm is also

insecure for some specific choices of underlying primitives, for other instantiations

it is provably secure against precise faults.

Combined Resilience. Finally, Chapter 5 considers fault and leakage resilience

simultaneously. In this section, we introduce two novel compilers that allow for

security against both faults and probes, effectively addressing a scenario in which

7

1. Introduction

an adversary can simultaneously tamper with and probe the internal values of a

computation. Given that our work rigorously demonstrates that standalone fault

and leakage resilience does not suffice to ensure combined resilience, we introduce

security properties specifically tailored to prove the combined resilience of our two

proposed compilers. These compilers are provably secure against up to e faults

in the t-probing and t/2-region probing model [10, 126] only using n = d + e + 1

shares.

The latter model is a slightly adapted threshold probing model, where the circuit

is divided into multiple regions and in each region the adversary can probe up to t/2

wires. This model has a better security implication on the random probing model,

and therefore on the real-world security as the number of probes in the region

probing model increases with the circuit size. In particular, our second compiler is

also secure against combined attacks in the random probing model with O((n2p)n)

security in general and for affine circuits the compiler even achieves O((np)n).

Conclusion. Our work is an important step to bridge the gap between theoreti-

cally secure cryptographic primitives and the practical security of their real-world

implementations. Nevertheless, our contribution is still from a theoretical point

of view, and based on our findings Chapter 6 proposes some exciting future direc-

tions to improve the results of this thesis. In the following (Chapter 2), we give

the required basics needed in this work.

8

2. Preliminaries

Modern cryptography relies on mathematical proofs using probability theory, al-

gebra and number theory. While a detailed introduction to these concepts, such as

finite fields [102]1, matrices [122], random variables [124], and polynomials [15], is

beyond the scope of this thesis, we will selectively give the notions frequently used

in our work. Subsequently, we introduce the foundational principles for private

circuits such as their computational models, leakage models, and fault models.

Further, we describe the Universal Composability model used in Section 4.1.

Notations. Let X and Y be two random variables defined over a set F . We

distinguish between two cases: (i) they are independent [101], with Pr[X = x, Y =

y] = Pr[X = x] · Pr[Y = y] for all x, y ∈ F , or they are dependent, with Pr[X =

x, Y = y] ̸= Pr[X = x]Pr[Y = y] for at least one x, y ∈ F . The statistical distance

(or statistical difference [110]) between two random variablesX and Y is a measure

of how close their distributions are:

∆(X;Y) :=
1

2

∑

x∈F

|Pr[X = x]− Pr[Y = x]|

This metric satisfies 0 ≤ ∆(X;Y) ≤ 1, and ∆(X;Y) = 0 implies that X and Y

have the same distribution.

Matrix operations are used to compose two real matrices A = (ai,j)i∈[m],j∈[n]
and B = (bi,j)i∈[k],j∈[l] with index set [n] := {0, 1, . . . , n − 1}. Specifically, we use

matrix transposition [142] (ai,j)
T
i∈[m],j∈[n] := (aj,i)i∈[m],j∈[n], matrix multiplication

A ·B = (ci,j)i∈[m],j∈[n] with k = n such that ci,j =
∑n

l=0 ai,l · bl,j, and the Kronecker

product [174]2 A⊗B = (ai,jB)i∈[m],j∈[n].

An important matrix is the Vandermonde matrix [4]3. Its ith row has the form

(α0
i , α

1
i , α

2
i , ..., α

d
i) with pairwise different αi, i.e., αi = αj ⇒ i = j. This matrix,

denoted as Vn,d := Vn,d[α0, . . . , αn−1], performs a matrix-vector multiplication with

1In honor of its discoverer Évariste Galois, it is sometimes referred to as the Galois field.
2The operation is named after the German mathematician Leopold Kronecker (1823–1891)
3It is a special class of matrices [130], named after Alexandre-Théophile Vandermonde (1735-
1796), a french mathematician.

9

2. Preliminaries

f(·)
(a, b)

f(a, b)

(a) Black box model

(a, b)

f(a, b)

C

+

(b) Computational model

(a, b)

f(a, b)
p

p

p

p

p
C

+

(c) Leakage model

Figure 2.1.: Function f(a, b) = (a, a+ b) described in the different models

(v0, v1 . . . vd), representing n function values of the polynomial f(x) =
∑d

i=0 vix
i:

Vn,d · (v0, v1, . . . , vd)T = (f(α0), f(α2), ..., f(αn−1))
T

It is well-known that this matrix is a bijection [171] when d = n−1, and the inverse

Vandermonde matrix V −1 can interpolate the coefficients vi of the polynomial

from a linear transformation of the function values f(αi). We write Enc and

Dec to refer to encoding and decoding algorithms. Namely, Enc is an algorithm

that encodes a value x with x̃ ← Enc(x), and Dec is the decoding such that it

holds x = Dec(x̃). Similarly, Ẽnc and D̃ec refer to a decryption algorithm. At a

high-level the difference between encryption and encoding algorithms is that an

encryption uses a secret key to hide a message. For more details we refer to the

book of Katz and Lindell “Introduction to Modern Cryptography” [131]. Encoding

algorithms do not use keys to hide a message and provide other properties, e.g.,

error detection [156]. This chapter presents to example encodings frequently used

in this work. In the next section, we provide a concise explanation of the circuit

concept briefly mentioned in the introduction.

Computational Model. To describe the potential leakage of a cryptographic

primitive, Ishai, Sahai, and Wagner [126] modeled the implementation of a primi-

tive as a circuit. The advantage of the representation as a circuit is that it defines

all possible intermediate values explicitly because each intermediate value is car-

ried by at least one wire. More precisely, the circuit is a labeled and directed

acyclic graph, where each node describes a gate that can have input and output

wires represented as incoming and outgoing edges. With fan-in and fan-out we

refer to the number of input and output wires of gates, respectively. The gates

10

2. Preliminaries

Gate Name Fan-in Fan-out Functionality
+ Addition 2 1(∗) Adds two input variables.
− Subtraction 2 1(∗) Subtracts the values.
. Multiplication 2 1(∗) Multiplies two input variables.
a Constant 0 1(∗) Outputs the constant value a.
R Random 0 1(∗) Outputs a uniform random variable.
C Copy 1 2(∗) Copies the input variable.

Table 2.1.: Example gates of a circuit. (∗) Sometimes gates are defined with arbi-
trary fan-out to avoid copy gates

describe operations such as addition and multiplication4, and Table 2.1 provides

all relevant gates for this work. If an output of a gate is the input of the follow-

ing gate, both gates are connected with a directed edge describing the wire that

transmits the output value to the next gate. The labels of edges represent the

values carried by the wires, and the circuit defines all intermediate values that

might occur during the computation.

In Figure 2.1b, we give an example circuit computing the functionality

(a, a+ b)← f(a, b)

of the black box depicted in Figure 2.1a. Using the circuit as the underlying com-

putational model, Ishai et al. proposed multiple leakage models. In the following

we describe the model used in this work and discuss some alternative models.

2.1. Leakage Models and Masking5

As the leakage is heavily influenced by the inner workings of cryptographic imple-

mentations and the black box model only describes the input-output behavior, it

is crucial to use a computational model beyond the black box model depicted in

Figure 2.1a. For this reason, we use the circuit in Figure 2.1b as a computational

model to define the leakage model shown in Figure 2.1c.

Leakage Model. In the literature leakage models bound the leakage to restrict

the attacker. Without such limitations, the attacker would have unrestricted access

to the circuit, and there would be no chance to prevent the attacker from simply

4These operations are defined over a finite field (+, ·, F) [102].
5This section is based on our works [36, 39] (cf. App B&E) and parts of this section were taken
verbatim.

11

2. Preliminaries

learning all intermediate values in the circuit. This, in turn, would break the

scheme’s security as the adversary could learn all secrets.[14, 126].

As described by Chari et al. [60], such restrictions are appropriate for two rea-

sons. Firstly, it is reasonable to hope that side-channel measurements incorporate

a degree of noise induced by environmental factors, such as fluctuations in tem-

perature and voltage within the laboratory setting. Secondly, the computational

processes of an implementation may generate additional noise caused by the char-

acteristics of the device itself, including the material and structural composition of

the chip. Such factors can lead to noise sources, such as coupling effects between

calculations in physical proximity.

The most famous leakage model is the t-threshold probing model [126]. In this

model the adversary can probe up to t wires of the circuit to learn their values

during the computation. This model was found not to cover the inherent char-

acteristics of leakage resulting from calculations on the hardware, such as those

caused by physical defaults [91]6. That is why several approaches adapt the thresh-

old model[45, 91] to model the leakage more realistically. They considered natural

hardware effects such as glitches [144, 145], transitions [13, 66] and couplings [64],

and modeled them as extended-probes. It turned out that the physical effect of

leakage with all their natural behavior is strongly related to its hardware and might

differ a lot with the choice of the device. Therefore, [19] analyzed the leakage that

a single probe can measure in a real-world setup. According to their observations,

they extended the probes in the threshold model.

Although these models are handy for initial security analyses, it has been found

that they do not model scenarios in which an adversary exploits the fact that the

leakage increases with the circuit size. For example, horizontal attacks [63, 169]

combine the information of multiple leakages to reduce the noise of the implemen-

tations.

Prouff and Rivain [153] modeled the environmental and computational noise de-

scribed above with the so-called noisy leakage model. Literally, they assume that

every wire leaks, but the leakage is only a noisy version of the values carried by

the wires. For example, the noise could be sampled from a random distribution

such as the Gaussian distribution. Their model defines the noise as a probabilistic

leakage function restricted with the Euclidean Norm (or statistical distance used

by Duc, Dziembowski, and Faust in [78]). The model was accepted as a theoretical

benchmark to define leakage as close to reality as possible. The advantage is that

the noisy leakage model describes large classes of known side-channel attacks, but

6As mentioned in [91], there are several attacks exploiting defaults, such as glitches, transition-
based leakages, and potential couplings.

12

2. Preliminaries

the disadvantage is that the security proofs become rather complex. There is usu-

ally a trade-off between modeling leakage as naturally as possible and simplifying

it for security proofs.

That is why Duc et al. [78] compared the noisy leakage model with the t-region

probing model and p-random probing model, both initially introduced by Ishai et

al. [126]. In the t-region probing model, the circuit is split into multiple regions,

and the adversary can learn the values of up to t wires in each region of the circuit.

The favorable aspect of this model is that it is convenient to manipulate in proofs

and it implies security in the noisy leakage model with only a loss of the field7

and region size. Due to the model’s simplicity, we adapted it to analyze security

against combined attacks where the adversary can simultaneously fault and probe

the circuit (Section 2.2 and 5). Given the expected noise in real-world leakage,

adversaries cannot consistently attain precise probes, as modeled in the optimistic

region probing model.

Consequently, we consider the p-random probing model in Chapter 3 to analyze

our leakage resilient constructions (without faults). This model takes into consid-

eration an “all-or-nothing” distribution, where each wire leaks with probability p,

and the adversary learns nothing of the wire’s value with probability 1 − p. In

Figure 2.1c, we give an example circuit leaking each wire with probability p. The

research community followed Duc et al. and explored the security in the random

probing model [10, 24, 26, 85] and our work follows their approach as well.

Duc et al. [78] prove that security in the random probing model also implies

security in the noisy model but with a security loss of the field size. Since the noisy

model is considered as the most realistic one, the research community investigated

many related leakage models that are easy to handle for security proofs but still

relatively close to the noisy model.

To get a better security implication to the noisy model, and to get rid of the

security loss of the field size in particular, Dziembowski, Faust, and Skorski [83]

proposed the p-average random probing model. This model is a modified version of

the random probing model and allows a more powerful class of leakage functions.

For example, the adversary is allowed to choose leakage functions where only the

average leakage probability is p. In other words, for all n possible values xi carried

by the wire, their leakage probability pi can be different as long as it is on average

p = 1
n

∑n
i=1 pi. This model allows a much larger class of leakage function in con-

trast to the random probing model where pi is the same for each xi. Additionally,

the leakage function of the average random probing model always outputs the in-

ternal randomness used to decide whether a value leaks. This function does not

7It refers to the field of the circuit defined in the computational model.

13

2. Preliminaries

follow the all-or-nothing paradigm in the random probing model, as the adversary

even learns information about the inner computation when the leakage function

does not leak the wire’s value. Prest et al. [152] alternatively address the field

size issue by introducing an alternative metric for the noisy model. Rather than

modifying the probing model, where the actual proof takes place, they adjust the

metric within the noisy model to establish a strong correlation between security

in the random probing model and their new noisy model. This novel metric, the

(Average) Related Error, represents a worst-case scenario that better suits the

all-or-nothing paradigm observed in the random probing model. Following the

findings of Prest et al. and Duc et al., the research community has dedicated

significant attention to exploring security in the random probing model [10, 24,

26, 85]. Alternatively, Masure et al. [146] and Cassiers et al. [58] recently started

investigating low-noise scenarios for specific leakage functions such as the Ham-

ming weight. This research direction is particularly interesting for low-end devices

with low noise levels (e.g., [95, 146]). However, our work assumes some noise, as

discussed by Chari et al. [60], and also analyzes the security in the random prob-

ing model. We provide the basic idea for leakage countermeasures in the following

paragraph.

Masking. An important countermeasure against side-channel attacks is masking,

introduced by Thomas S. Messerges [147]. The basic idea of a masking scheme

is to encode the computation such that leakage from the encoded values does not

reveal relevant information: A value, e.g., a secret s, is encoded by n random

values so-called shares

(si)i∈[n] ← Enc(s)

such that any strict subset of the shares is uniformly random and independent of

the secret s. There are two widely used masking schemes: Polynomial masking [33,

154, 166] and additive masking [147]8. The first one is also called Shamir’s secret

sharing [166]9 or Reed-Solomon code [156]10. To encode a secret s, we construct a

random polynomial f with degree n− 1 such that f(0) = s is the secret. For the

shares (si)i∈[n] we need n pairwise different support points α0, . . . , αn−1 ̸= 0, and

8Due to space constraints, we omit Inner Product masking. For more details we refer to [82].
9In 1979, Adi Shamir [166] originally proposed the encoding as (k, n)-threshold scheme. After-
wards, [33] applied the encoding to multi-party computation, and consequentially, [154] to
private circuits.

10In 1960, Irving S. Reed und Gustave Solomon have already developed a similar encoding.
More precisely, Shamir’s secret sharing is a special sub class of Reed-Solomon codes [136].
However, they considered error correction and not the privacy property proven by Shamir.
In Section 2.2, we also use this error correction property for polynomial masking.

14

2. Preliminaries

the ith share si is defined as f(αi). As discussed at the beginning of this chapter,

the inverse Vandermonde matrix and the n shares si = f(αi) can be used to

compute the polynomial f , and therefore decode the secret value s = f(0) as well.

For privacy, Shamir [166] proved that any strict subset of n− 1 shares is uniform

random and independent of the secret. For more details we refer to Section 2.2 of

this chapter. The maximum sharing number of polynomial masking is limited by

the field size |F |, due to the pairwise different support points αi ∈ F .

Alternatively, the maximum sharing number of additive masking is not limited

by algebraic restrictions. This encoding generates the shares s0, . . . , sn−2 uniformly

at random and sets sn−1 = s − (
∑n−2

i=0 si). This encoding is called arithmetic

masking [147], if the sum above is an arithmetic sum, and if the sum is a bit-wise

xor, the masking is called Boolean masking [147]. The decoding is well defined

with

Dec((si)i∈[n]) =
n−1∑

i=0

si = s ,

but any strict subset of the shares is uniformly random and independent of s.

Masked Circuits. Instead of directly computing on the secrets, sensitive com-

putation can be protected with masked circuits [126] that only compute on the

shares to make the leakage of a circuit (almost) independent of its decoded secrets.

Ishai et al. [126] provide a generic solution to transform a circuit into a masked

one. Initially, they only considered Boolean masking but Rivain and Prouff [159]

observed that their security proofs only use the field structure and no specific

properties of Boolean masking. Consequently, the results of Ishai et al. [126] hold

for computation over any finite field. Their basic idea is a compiler that takes

as input an unprotected circuit, and replaces each gate with sub circuits called

gadgets. Let f be a gate (e.g., Table 2.1) with l inputs and k outputs then f is

replaced by a gadget Gf with the same functionality ((y0i)i∈[n], . . . , (y
k−1
i)i∈[n]) ←

Gf (Enc(x
0), . . . ,Enc(xl−1)) such that

f(x0, ..., xl−1) = (Dec(y0i)i∈[n], . . . ,Dec(y
k−1
i)i∈[n])

for all (x0, ..., xl−1) ∈ F l.

Ishai et al. [126] provide gadgets for the addition and the multiplication. Their

addition gadget adds share-wise two input sharings (ai)i∈[n] ← Enc(a), (bi)i∈[n] ←
Enc(b), and outputs (ci)i∈[n] with ci = ai+bi. Thanks to the linearity of the encod-

ing, correctness follows immediately as Dec((ci)i∈[n]) = a + b. The multiplication

gadget of two inputs, (ai)i∈[n], (bi)i∈[n], is more complex. First, it computes the

15

2. Preliminaries

C

+

C

+

(a) Masked Circuit

G1G0

C = G1 ◦ G0

(b) Sequential Composition

G1

G0

C = G1||G0

(c) Parallel Composition

Figure 2.2.: Sequential C = G1 ◦ G0 and parallel composition C = G1||G0..

Kronecker product ai · bj of all shares. This operation results in n2 intermediate

values aibj with
∑n−1

i,j=0 aibj = a · b. To get a valid masking with n additive shares

instead of n2, the gadget compresses the intermediate values to a random encod-

ing by appropriately adding up these values. For security reasons the intermediate

sums are blinded by injecting fresh randomness. Formally, the gadget outputs

(ci)i∈[n] with ci = aibi +
∑n−1

j∈[n]\{i}(aibj + ri,j) and uniform random values ri,j with

ri,j = −rj,i. Note that the condition ri,j = −rj,i is required for correctness and it

follows
n−1∑

i=0

ci =
n−1∑

i,j=0

aibj = a · b .

Both gadgets are widely used, and a compiler that uses both gadgets is called

ISW-based compiler. As pointed out in [159] and [69], the security of the multipli-

cation gadgets is based on the assumption that the randomness of the encodings

of both inputs are independent. This is realized using refresh gadgets that take

as input a masked value and re-randomizes the encoding such that its decoding

is the same. Such a refresh gadget can be the ISW multiplication gadget with a

fixed encoding of one as the first input (ai)i∈[n] = (1, 0 . . . , 0) [18]. Then, for any

second input (bi)i∈[n], the multiplication gadget outputs an encoding (ci)i∈[n] such

that Enc((ci)i∈[n]) = Enc((bi)i∈[n]). Hence, a compiler additionally inserts further

randomness to ensure secure composition of multiplication gadgets that get depen-

dent inputs. Barthe et al. [18] present such a compiler which is provably secure in

the threshold probing model. In our work, we present an alternative ISW-based

compiler secure in the random probing model.

Leakage resilience. A masked circuit is leakage resilient if its leakage reveals al-

most11 nothing about its inputs and outputs. Often, this is following a simulation-

11With “almost” we refer to the leakage simulator of the following security experiment that is
only statistical close to the leakage.

16

2. Preliminaries

based strategy, where a so-called simulator S creates a leakage distribution that is

statistically close to the leakage from the real execution of the circuit evaluation.

The simulated leakage is independent of the secrets if S does not need the decoding

of the circuit’s inputs. Formally, we can define the leakage resilience in the random

probing model with a security experiment Leak [85]: Let C be a masked circuit

with k input encodings (xi)
j
i∈[n] ← Enc(xj) for j ∈ [k] with secret values x1, . . . , xk

such that for each secret xj any subset of t < n shares (xi)
j
i∈[n] is uniform random

and independent of its secret. Then, the leakage experiment Leak(C,x, p) with

leakage probability p ∈ [0, 1] is defined as follows:

• Each wire of C is added to a set, noted as Lp(C), with probability p.

• Each secret xj is encoded (xi)
j
i∈[n] ← Enc(xj).

• Output: (Lp(C), A|Lp(C)), where A is the set of the values carried by the wires

Lp(C) of C with inputs (xi)
1
i∈[n], . . . , (xi)

k
i∈[n].

The circuit C is (p, ϵ)-private if there is a simulation algorithm S that outputs a

random variable without knowing the secrets xj such that the random variable is

ϵ-close to the actual output Leak(C,x, p). Alternatively, the circuit has a security

level p′ defining the success probability for an attack to reconstruct one of the

secrets xj with (Lp(C), A|Lp(C)). If we have two different security proofs for the

same circuit, the proof with better security claims (i.e. smaller statistical distance)

is called tighter. Further, a proof is tight if there is no proof with a smaller distance.

2.2. Combined Model and Error Detection12

Active faults can be categorized into two distinct types: memory and computa-

tional ones. Memory faults alone are sufficient for key recovery attacks. That is

why, Chapter 4 investigates such attacks by using the black box approach. More-

over, Chapter 5 extends our analysis to encompass computational faults. As in

Private Circuit II [125], we use the circuit as the underlying computational model.

If the faults in this model are additionally considered as probes, their model also

provides results for a combined model where the adversary can fault and probe

simultaneously, cf. [75]. However, for our combined model, we allow significantly

more probes.

12This section is based on our work [36] (cf. App E) and parts of this section were taken verbatim.

17

2. Preliminaries

Combined Model. We consider each gadget as a region and adapt the region-

probing model (cf. Section 2.1) such that the adversary can probe t wires in each

gadget and fault e wires of the circuit. We model such faults as functions. An

adversary with a set of fault functions, also called fault class F , and access to

wires of a circuit can change the wire’s value during the computation according to

faults f ∈ F . More precisely, a faulted wire gets a value x from its output gate

and transforms the value with a function f such that the following gate gets as

input the faulted value f(x, u). The fault f is in the fault class f ∈ F and u are

the values already revealed by probes up to this computational step [36]. We call

such a fault adaptive as it depends on the observed leakage u. For the combined

attack, we modified the security game of Dhooghe and Nikova [75] to allow for

adaptive faults and region probes. Formally, a (t, e)-attacker A with respect to a

fault class F and a target circuit C does the following [36]: A is given as input the

circuit C and outputs

(1) e wires in C to fault with fault functions in F ,

(2) t wires of each gadget in C to probe its value, and

(3) two possible circuit inputs x0, x1.

Then, the experiment chooses b
$←− {0, 1} uniformly at random, and runs y′b ←

C′(xb) where C′ represents the circuit C with the e faults chosen by the attacker.

Finally, upon receiving the t wire values that A requested to probe, the attacker

outputs a bit b′. The circuit C is ϵ-secure if for any (t, e)-attacker A, it holds

Pr[b = b′] = 1/2 and Pr[y′b ∈ {⊥, yb}] ≥ 1− ϵ ,

where yb ← C(xb) is the output of a non-faulted run of C on xb.

Error Correction. Additionally to the leakage resilience of polynomial masking

shown by Shamir [166], Reed and Salomon [156] proved that this encoding has also

error detection and correction properties. As briefly explained in Section 2.1, a se-

cret s is shared with a random polynomial f ∈ F [x] of degree d and f(0) = s. Now,

the i-th share is si = f(αi) with pairwise different support points α0, . . . , αn−1 ̸= 0.

The secret can be determined with any subset of d + 1 shares due to polynomial

interpolation with the Vandermonde matrix, and further shares are redundant

points and allow error detection or correction [156]. Consequently, if an attacker

modifies less than (n−d)/2 shares, more than half of all possible subsets with d+1

different shares are correct, and therefore decode to the correct key. Furthermore,

18

2. Preliminaries

error detection is possible if at least d + 1 shares are correct and still decode to

the correct value. This does not allow error correction, but detection up to n− d

faults by the attacker. Section 5.2 gives a detailed discussion about alternative

error correction codes such as duplication. Next we show how to protect circuits

with polynomial masking.

Countermeasure. As polynomial masking with degree d polynomials provides

fault resilience due to redundancy, and leakage resilience due to their d-wise in-

dependence, it is a good candidate to protect a circuit against combined attacks.

Furthermore, polynomial masking has the same linearity property as the additive

masking presented in Section 2.1. Similarly to additive masking, this property

allows to construct gadgets for polynomial masking to refresh, add, and multiply

encodings [33, 154, 166]. More precisely, polynomial masking hides a secret a in

a random polynomial f with f(0) = a and degree d. Because of its linearity, the

addition of two polynomials f, g with degree d and f(0) = a, g(0) = b results

again in a degree t polynomial h = g + h with h(0) = a + b. Therefore, the ad-

dition gadget of two polynomial sharings (ai)i∈[n], (bi)i∈[n] is a simple share-wise

addition. To re-randomize polynomial sharings (ai)i∈[n], the refresh gadget simply

generates an encoding of zero (ei)i∈[n]
$←− Enc(0), and share-wise adds both encod-

ings. The multiplication, on the other hand, is slightly more complex. That is,

because the product of two polynomials f, g with degree d and f(0) = a, g(0) = b

indeed yields a polynomial h = g · h with h(0) = a · b, however, the degree of h is

2t instead of t. Therefore, after computing the polynomial h, the multiplication

gadget, e.g.[154], must reduce its degree from 2d to d (Figure 5.1b). This de-

gree reduction can be done by using the inverse Vandermonde matrix, which leads

to similar re-randomization challenges as in the multiplication gadget of additive

masking. In summary, multiplication proceeds in two steps: (1) computation of

a share-wise multiplication SWMult, and (2) degree reduction of polynomial h

via a sub gadget d-Red. Due to the intermediate degree 2d polynomial h, the

method requires n = 2d+ e+ 1 shares to protect the gadget against d probes and

e faults. The above techniques allow to construct gadgets for polynomial masking

and indeed, polynomial masking has become a well-known countermeasure against

side-channel attacks [70, 111, 160]. Furthermore, it is also an error detection code

and provides simple protection against faults as shown in Chapter 4.

For our combined resilience, we use polynomial masking to construct a compiler

that is simultaneously secure against faults and leakage.

19

2. Preliminaries

2.3. Universal Composability and Generic Algorithms

Section 4.1 proves the security in the Universal Composability model (UC).

Universal Composability. The security analysis of password-based key exchange

protocols (PAKE) [32], e.g., [34, 53, 54, 108, 133], are performed within Canetti’s

Universal Composability (UC) framework [52], This is because of its powerful com-

posability theorem that ensures protocol resilience across diverse environments,

including scenarios involving arbitrary parallel executions. In this framework, the

protocol operates in the presence of two entities [123]: the environment and the

adversary.13 In PAKE, the environment provides inputs to the involved parties

(client, server, and adversary) and monitors their outputs. Then, the adversary

may corrupt the client or server to obtain complete control over a party and ac-

cess its internal state. And in some cases the adversary can even compromise the

server, gaining insight into the servers internal state, often referred to as asym-

metric PAKE (aPAKE), e.g., [31, 50, 109, 128].

The UCmodel covers the required security properties as ideal functionalities,

defining the desired behavior of the protocol, encompassing both client and server

actions, and specifying the adversary’s capabilities. To assess security, we compare

the real protocol, namely the actual implemented one, with the ideal protocol exe-

cuting the ideal functionality with dummy parties, i.e., client and server, directly

forwarding inputs and outputs. Therefore, the dummy parties forward inputs from

the environment to the ideal functionality, and vice versa.

Now, a protocol achieves UC security if it realizes the ideal protocol, meaning no

environment can distinguish between the two protocols in polynomial time with

noticable success probability. Formally, they are indistinguishable except with

negligible probability (e.g., [131], Chap. 3). Notably, this holds true even when the

environment has complete control over the adversary, running all attacks defined

by the ideal functionality. For instance, the Canetti et al. definition of the ideal

functionality for PAKE [54] gets the client’s and server’s secret passwords as inputs

and generates two random keys as outputs. The functionality ensures the equality

of both keys if and only if the passwords match.

When considering protocol extensions, two alternative investigations were con-

sidered. Firstly, assuming an adversary can steal data from the server (aPAKE),

e.g., [31, 50, 109, 128], requires extending the functionality with properties en-

abling the environment to select an adversary for querying additional server in-

formation. Alternatively, allowing clients to use passwords with a defined fault

13The following text describes both parties only for our specific setting. For a more general
explanation we would like to refer to more formal explanations, e.g., [123].

20

2. Preliminaries

threshold (fPAKE). e.g., [81], requires a corresponding extension of the functional-

ity to include this aspect. In Section 4.1, we combine both properties to develop a

protocol that provides both features simultaneously. Such UC poofs often require

idealized assumptions, e.g., generic algorithms such as used in the random oracle

model, generic group model, and ideal cipher model [121]. Our work in Section 4.1

is not an exception.

Generic Algorithms. A famous idealization is the random oracle [30]. This or-

acle describes a theoretical black box that outputs a value chosen uniformly at

random from its output set for each unique query. This idealization is frequently

employed to model hash functions in cryptographic proofs.14. A similar model,

that additionally preserves a group structure, is the Generic Group Model (GGM).

This oracle executes the group operations for all parties of the protocol, and conse-

quently, even the adversary has to query the oracle to compute a group operation.

Formally, the GGM outputs a random group element identifier ida for any queried

exponent a. Further, it also answers group operation queries ida · idb. If there were
queries (a, ida), (b, idb), (c, idc) with c = a + b, it outputs idc, otherwise idc is

an independent random value. The same holds for queries (ida)
b with idc if there

exist entries (a, ida), (c, idc) with c = ab. In contrast to a specifically initiated

group structure, the advantage of the generic group model is that a simulator, e.g.

the one used in the UC framework, is in charge of all group operations. For exam-

ple, this allows the simulator to generate an output of a group operation before

knowing the operation’s input. Another idealized primitive used in Section 4.1 is

an ideal cipher [29]. This oracle is a random permutation for each key. In other

words it outputs an uniform random value cm,k for each encryption query (k,m)

with key k and plaintext m by ensuring injectivity over m for each key k. Conse-

quently, it also outputs the correct plaintext m for the corresponding decryption

query (k, cc,m). The idealized cipher supports the same advantage as mentioned

for the GGM, i.e., the simulator is in charge of the cipher’s input-output behavior.

For example, it could generate a ciphertext before it knows its plaintext.

14This assumption contradicts a bit the definition of hash functions as they are deterministic
but as Bellare and Rogaway wrote: “Although standard hash functions are too structured to
make good random oracles [...], one doesn’t have to look much further[...]” [30].

21

3. Leakage Resilience

In the context of masked circuits, the general idea of leakage resilience is to show

that the circuit’s leakage is independent of the internal secrets, i.e., the leakage

is independent of the decodings s of the masked circuit’s inputs. As described in

Section 2.1, the security level and the (p, ϵ)-privacy are two established notions to

describe this resilience. It is easy to compute the security level of a circuit with n

wires carrying a single additive masking (si)i∈[n] ← Enc(s), i.e., it is easy to analyze

the experiment Leak described in Section 2.1. In the random probing model, each

wire of the circuit leaks its carried value with probability p. As mentioned in

Section 2.1, any strict subset of the shares (si)i∈[n] is independent of the secret

s. Hence, the probability that the leakage is independent of the secret is easy to

compute in the p-random probing model: if at least one wire does not leak its

carried share, the leakage is independent of the decoding, and this happens with

probability 1− pn. Said differently, the circuit has a security level pn.

This analysis becomes more complex if we consider gadgets or even larger cir-

cuits, such as the compiler’s outputs described in Section 2.1. If the simulator can

always simulate the circuit’s leakage, the simulator is perfect, and the circuit has

perfect security. Most of the time, however, the circuits are not perfectly secure,

and we are interested in the security level or the (p, ϵ)-privacy of such a circuit. A

good upper bound for the security level of a gadget is a simulator that only simu-

lates the leakage if it can simulate the leakage perfectly; otherwise, the simulator

aborts with some probability p′. Consequently, this abort probability p′ is a good

upper bound for the security level, as the leakage is independent of the encodings

with probability 1 − p′. A meaningless simulator is one that continuously aborts

(p′ = 1), and this gives the trivial upper bound 1 for the security level. Usually,

masked circuits have a security level in p′ ∈ [pn, 1] as the lower bound is the simple

probability that a single encoding leaks its decoding, namely pn.

Challenges. The main objectives of our work in [57] and [39] are to design effi-

cient circuits with small security level, and to develop proof techniques that are

simple and as tight as possible. Efficiency in terms of circuit complexity and

randomness cost is crucial to ensure practicality of the gadgets application, as

randomness is costly, and a low circuit complexity leads to fast and efficient im-

22

3. Leakage Resilience

plementations. We propose an optimized ISW-based compiler in Section 3.1.2, and

additionally suggest two different proof techniques to examine its leakage resilience

in Section 3.1.1 and Section 3.1.2. Those proofs are used to prove the security level

or (p, ϵ)-privacy of masked circuits, and in particular the masked circuits gener-

ated by a compiler described in Section 2.1. As those masked circuits consist of

composed gadgets, e.g., multiplication, addition, and refresh gadgets, the initial

step in the proof involves examining the security of each individual gadget. Given

the fact that the composition of provably secure gadgets does not imply security of

the resulting circuit e.g. [18, 69], such a proof approach requires security theorems

as well. The idea of such theorems is to guarantee secure compositions of multiple

securely masked sub-circuits. For instance, those theorems, combined with the

security proofs of the individual gadgets, allow us to prove the overall security of

its composition, e.g., the outputs of our compiler. Another goal of such theorems

is tightness to accurately determine the security, and efficiency to verify larger

classes of gadgets and circuits. Especially in contrast to the threshold probing

model, the straightforward security analysis of a circuit in the random probing

model requires checking the leakages of all possible wire combinations, and hence,

the proof complexity is 2n for a circuit of size n.1

3.1. Contribution

This chapter introduces two approaches for analyzing the random probing security

of masked circuits, and specifically those generated by the widely used ISW-based

compilers. Therefore, Section 3.1.2 presents the Probe Distribution Table (PDT)

of [57], which allows us to investigate circuits with up to six shares. We conducted a

case study on a masked AES S-box. Section 3.1.2 gives the alternative technique,

which helps to study the security of circuits with any number of shares. For

this purpose, the leakage analysis is reduced to a graph problem, the so-called

Dependency Graph (DG) of [39]. This technique allows us to study an adapted

ISW-based compiler that we designed to have low latency and randomness cost.

3.1.1. Probe Distribution Table

The Probe Distribution Table (PDT) of [57] defines a matrix for analyzing com-

posed circuits’ leakage resilience, e.g., security level. Concretely, we give composi-

1For example, a circuit with n wires has 2n different leakage combinations if each wire indepen-
dently leaks its value with probability p > 0. Contrarily to the random model, the t threshold
model only considers n!/(n− t)! different leakage combinations as it only consideres leakages
of at most t wires.

23

3. Leakage Resilience

tion theorems that allow us to analyze the leakage resilience of composed circuits

computing a simple matrix multiplication or the Kronecker product of the sub-

circuits’ PDTs. As discussed in the beginning of this chapter, this feature enables

a gadget-wise proof of masked circuits. This section shows that this composition

technique results in almost tight security results, and allows us to analyze larger

circuits such as the masked AES S-box with up to six shares.

Concrete Results. Figure 3.1 shows the security level of a masked circuit com-

puting x3 for an input sharing (xi)i∈[n]. In particular, this computation is done by

a share-wise2 squaring zi ← x2
i . Then, we refresh (zi)i∈[n] and multiply it again

with (xi)i∈[n] using the ISW multiplication. The first plot uses the PDT compo-

sition approach, and the second one evaluates the complete circuit without any

composition techniques. It is easy to see that the tightness loss of our composition

method is relative low. The benefit of the PDT is that the verification is only

exponential in the gadget size and linear in the number of gadgets used by the

masked circuit. This allows us to also verify larger circuits such as the full AES

S-box, also depicted in Figure 3.1.

Proof Idea. For the PDT, the wires of a gadget G are grouped by output wires

O, input wires I, and intermediate wires W that are neither input nor output

wires. The PDT definition uses perfect leakage simulators simulating the leakage

of O and I with the help of input shares I ′ ⊂ I. This also means that the

simulator does not abort and also perfectly simulates the leakage if it needs all

shares. Since we analyze the security in the p-random probing model, we assume

that each value of the intermediate wires of the gadget leaks with probability

p, noted as Lp(G) ⊂ W . Consequently, its leakage simulator requires different

input shares for each possible leakage combination Lp(G), and hence, the set of

required input shares I ′ is randomized by the internal leakage Lp(G). For a better

understanding let O′ ⊂ O be an arbitrary subset of leaked output wires. Then, the

probe distribution of the gadget G with respect to O′ gives the probabilities that

the simulator needs exactly I ′ to simulate the internal leakage Lp(G) randomized

by p and O′. Only considering the individual gadget security we can compute its

security level by adding all probabilities of the probe distribution where I ′ includes

at least one input sharing that allows to compute its secret decoding.

However, we are interested in composition results as well, and this is where the

PDT comes into account. Considering a sequential composition of two gadget G1

2We have considered characteristic two fields for our example, and in those fields the square
operation is linear. Hence, the gadget is a share-wise operation as well. Note that this is only
an example and the tightness of the proof does not depend on the field characteristic.

24

3. Leakage Resilience

and G2, such that the output of G1 becomes the input of G2, we can simulate

the leakage of both with the individual gadgets leakage simulator S1 and S2, re-

spectively. Starting with S2, the leakage simulator needs some input shares for a

perfect simulation, and since the input sharings are the output sharings of G1 we

can simulate the required shares of S2 using the simulator S1. In other words, we

the simulators are composed similarly to the gadgets. This strategy illustrates that

the simulation of the set of simulated output wires depends on the next gadget,

and not on the actual one. In other words we need the probe distribution for all

possible output wire sets O′, and this is why we the PDT is a matrix where each

column represents a probe distribution with respect to an O′ such that all possi-

ble output combinations are represented O′ ⊂ O. In particular, for each possible

leakage of output wires O′, we compute the probability for each subset of input

wires I ′ that the leakage simulator exactly needs this set for a perfect simulation.

Since we compute the distribution for each possible leakage of output values, we

can use the PDTs to compute the security of composed gadgets. In [57], we have

proven that the PDT of parallel-composed gadgets is a simple Kronecker prod-

uct of the PDTs of the underlying gadgets, and the approximated PDT of two

sequentially-composed gadgets is a simple matrix multiplication of the gadgets’

PDTs.

Theorem (Informal). The leakage resilience of gadgets can be defined as a ma-

trix, and the resilience of composed gadgets results from simple matrix operations.

- [57], Theorems 1 & 2.

The theorem allows for a verification of the full circuit that is not exponential in

the circuit size but only exponential in the gadget size. Although this is already a

huge improvement, we further improved the verification complexity with statistical

approximations. Therefore, the paper provides the tool Sampled Testing of the

RAndom Probing Security (STRAPS) to analyze the gadgets using Monte-Carlo

approximations. Considering our composition results, we can see that the parallel

composition is yet to be made tight. In the next section, we evaluate an alternative

approach that allows also to analyze circuits with a larger number of shares, and

that is tight in terms of parallel composed refresh gadgets, and almost tight for

affine circuits.

3.1.2. Dependency Graph3

Similar to the PDT approach in Section 3.1.1, the Dependency Graph (DG) of [39]

describes the independence of leakage and secret values. In contrast to the first

3Parts of this section were taken verbatim from our work [39] (cf. App B).

25

3. Leakage Resilience

10−3 10−2 10−1 100
2−43

2−35

2−27

2−19

2−11

2−3

p

S
ec
u
ri
ty

le
v
el

PDT evaluation x3

n = 1

n = 2

n = 3

n = 4

n = 5

10−3 10−2 10−1 100

p

Direct evaluation x3

n = 1

n = 2

n = 3

n = 4

n = 5

10−3 10−2 10−1 100

p

PDT evaluation AES S-box

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Figure 3.1.: The security upper bounds of masked circuits. The first two plots
give the security of a cubing operation. The left plot comes from PDT
composition while the middle plot is a direct security evaluation of the
full circuit. The right plot shows the security of the full AES S-Box.
(Figures of [57])

approach, the DG reduces the gadget-wise simulation of parallel compositions,

leading to non-tight approximations for the security. The DG enables a security

proof without the need of simulators for the refresh gadgets. A further feature is

that the DG allows security proofs for an arbitrary large number of shares and can

verify the security of our optimized ISW-based compiler.

Concrete Results. We propose a slightly modified ISW-based compiler C [39]

to reduce the latency of the multiplication from O(n) to O(log(n)). Our compiler

inserts randomness between each multiplication and addition by essentially using a

simple refresh gadget. This refresh gadget takes as an input (xi)i∈[n] and generates

n random values r0, . . . , rn−1 and adds them to the input in two steps. First, it

computes bi ← xi+ri, then, it subtracts ri−1 from bi such that yi ← bi−r(i−1 mod n)

for all i ∈ [n], and finally it outputs (yi)i∈[n]. With the dependency graph, we were

able to asses the leakage resilience of this compiler.

Theorem (Informal). Circuits masked with our compiler Ĉ ← C(C) are (p, ϵ)-

private with ϵ = |C|(12p)n if C is affine; otherwise, ϵ = |C|8[1− (1−√3p)8n]n).
- [39], Theorem 4.

This allows a leakage probability of p = O(1) for affine Circuits and p = O(n−2)

for general circuits (Fixed Theorem 5, [38]). Here, we refer to the fixed version in

Chapter B or on eprint [38] as it differs from the original claim for general circuits

with p = O(
√
n) ([39], Flawed Theorem 5).

26

3. Leakage Resilience

Disclaimer: As underlined in Section 1.1 our general claim of Theorem 5 at

CHES 2023 [39] had to be updated on the IACR Cryptology ePrint Archive [38].

First, we had a bug in the proof that achieved a optimistic security for leakage

probability p = O(1/
√
n). Then fixing the bug, it turned out that this is not the

case for arbitrary circuits. Consequently, we updated our paper with a more fine

grained analysis that proves our result for p = O(1/n2) in general, and p = O(1)

for affine circuits.

In the following paragraph we give the proof idea of the compiler and a high

level definition of the DG used in the proof.

Proof Idea. As already mentioned before, the intermediate values of a circuit can

be defined as a set of random variables T . Due to the intermediate computations,

there are mutual dependencies between the random variables. The dependency

graph represents those dependencies of the random variables in T caused by the

intermediate computation of a masked circuit. Each edge is labeled with interme-

diate values of the circuit such that if any subset S of intermediate variables build

a subgraph with no loops, the set S ⊂ T consists of random variables that are

independent of the decoding of the circuit’s input and output. Hence, we only need

to compute the probability that a sub graph of the dependency graph generates

such loops if S is the randomized set of leakage.

We constructed dependency graphs for each gadget used by the compiler given

above, and gave two properties that allow compositions of dependency graphs:

gluing and hollow. Gluing defines how to compose the dependency graphs of two

gadgets if the gadgets are composed. If an input and output wire become the

same wire because of its composition, we merge the corresponding two edges of

both dependency graphs to become one edge. The hollow structure further defines

how the edges of a dependency graph are structured such that gluing, is always

possible, and the composed graph is always a dependency graph. Formally, hollow

indicates that the edges of the input and output shares are arranged in a circle

with the same structure. Due to the unified structure, we can always glue the

corresponding edges together without changing the arrangements of the edges. A

further property of the hollow structure is that the edges are arranged in such a

way that even after the composition of two graphs it holds that secret dependent

random values always describe a loop in the graph. The graph composition is

useful for two reasons. First, we get dependency graphs for any masked circuit

generated by our compiler C. Second, we can reduce the security proof of leakage

resilience to problems in graph theory. In particular, we only need to compute the

probability that the leakage describe loops in the graph.

27

3. Leakage Resilience

Theorem (Informal). The leakage resilience of gadgets can be defined as a graph,

so-called dependency graph, and the resilience of composed gadgets results from

gluing their dependency graphs, a common construction in topology (adjunction

space).

- [39], Definition 4, Proposition 8 & 10.

Both composition results, the PDT and the DG are suitable for security proofs

of ISW-based constructions in the random probing model. In the following we

discuss alternative approaches, and discuss how they are related to our work.

3.2. Related Work4

The work gives security results for the random probing model and proposes a

provable secure compiler with low randomness cost and latency. In addition to

our results, this area also considers many other interesting research directions to

develop proof techniques and compilers.

Related Proof Techniques. There are many different approaches [10, 24, 25,

26, 46] for analyzing security in the random probing model. They also investigate

composability based on gadget-wise simulations. In particular, they introduce

definitions based on counting the number of input and output wires of gadgets

that are required to simulate the leakage.

Similar to the DGs, the work of [24, 25, 26] analyze compilers for generic number

of shares. Their approach is suitable for special gadget following the modular

approach originally proposed by Ananth et al. [9]. However, their approach leads to

circuits with a costly randomness complexity of at least O(n2.4) for affine gadgets.

Related Compiler. Our compiler improves the compiler [85] presented at Asi-

acrypt 2019. We modified their compiler such that the multiplication has a la-

tency O(log(n)) and the latency of the refresh gadget is constant instead of O(n).

Their compiler is leakage resilient for a leakage probability p = O(1/n2) while our

compiler tolerates p = O(1) for affine circuits, and only requires p = O(1/n2) in

the non-affine areas.

At EUROCRYPT 2016, Andrychowicz et al. [10] presented a first compiler with

constant leakage probability p = O(1) using expander graphs. This is more of

a feasibility result since expander graphs require a high number of shares. Two

years later, Goudarzi et al. [113] gave a compiler for polynomial masking requiring

4Parts of this section were taken verbatim from our work [39] (cf. App B).

28

3. Leakage Resilience

noise p = O(1/ log(n)). They presented an NTT-based secure multiplication with

complexity O(n log(n)). The compiler was further improved in [114] to allow

more general fields F and complexity Θ(n log(n)). They use the additive FFT

algorithm proposed by Gao and Mateer in 2010 [105] to avoid the limitations of

the classical NTT. Despite the benefits of polynomial masking, the field size still

restricts the number of shares n < |F| due to the share-wise different support

points of polynomial masking. Especially for affine circuits, our compiler is more

efficient. For example, our refresh gadget has linear complexity and does not use

multiplication gates, while [114] requires n log(n)/2 multiplications. Although our

general compiler requires more noise O(1/n2), it is more secure for affine circuits.

It tolerates a noise of O(1) instead of O(1/ log(n)). Regarding non-affine circuits,

[114] has better complexities with respect to efficiency and security owing to their

NTT-based multiplication. However, our compiler uses a slightly modified ISW

multiplication such that it has a latency O(log(n)).

To allow security for a constant leakage probability p, Ananth et al. [9] proposed

a modular approach how to compose a secure compiler multiple times. Instead of

providing gadgets for an arbitrary number of shares n, they use gadgets for a fix

number of shares x. Then they show, how the security increases if they use the

compiler recursively such that they take the output of the compiler and compile it

again. Applying this method arbitrarily k times, the resulting circuit masked into

n = xk shares. Finally, this approach was further improved in several follow up

works [24, 25, 26], but nonetheless this approach leads to relatively costly circuits

with randomness complexity of at least O(n2.4) for affine and non-affine circuits,

while our compiler only requires O(n) and O(n2), respectively. In detail, our

countermeasure for affine circuits achieves O(pn)-security with linear complexity

O(n). This also improves the compiler of Dziembowski et al. [85] only achieving

O(
√
pn)-security. The use of an ISW-based compiler was motivated by our other

work. This work also used the widely used ISW multiplication for reasonable share

number (2 ≥ n ≥ 32) and noise parameters p ≥ 10−4 [57]. It shows that the AES

S-box masked with an ISW-based compiler using n = 6 shares and a realistic

leakage probability of p ≥ 10−4 ensures about the same security as the securely

proven construction of Beläıd et al. [26] using n = 27 shares.

29

4. Fault Resilient Implementations

This chapter is based on two publications [90, 94]. Section 4.1 focuses on fuzzy

passwords caused by faulty interactions between user and device [90]. This work

considers protocols that allows to establish a cryptographic key between a user,

so-called client, and a server from a client-provided low-entropy password. These

protocols should even work if the client inputs a fuzzy password, i.e., a password

that is faulty up to a certain extent. The fuzzy password could be a client’s iris scan

or fingerprint that may differ slightly each time due to inaccurate scans. Section 4.2

focuses on key faults stored at the device (active faults in the storage) [94]. In

more detail, we analyze authenticated communication where the adversary can get

multiple ciphertext/plaintext pairs with different related-keys caused by key faults.

For more general faults where the adversary can fault intermediate computational

values, we refer to Chapter 5.

4.1. Fuzzy Asymmetric Password-Authenticated Key

Exchange

Password-Authenticated Key Exchange (PAKE) protocols [29, 32, 34, 49, 53, 108,

132, 133] provide secure communication channels using low-entropy passwords.

In particular, Fuzzy Asymmetric Password-Authenticated Key Exchange (faPAKE)

combines the properties of Asymmetric Password-Authenticated Key Exchange

(aPAKE) [31, 50, 109, 128] and Fuzzy Password-Authenticated Key Exchange (fPAKE)

[81].

More precisely, fPAKE allows clients and (trusted) servers to securely generate a

common key even if the password of the client is faulty. With trusted, we mean that

we allow the server to know the password to verify whether the client uses a valid

password. Alternatively, aPAKE allows clients and untrusted servers to securely

generate a common key if the client has the correct (non faulty) password. With

asymmetric we mean that we also protect the client’s password, even if the secret

data of the server is stolen – the server is untrusted. For this reason, the server

does not store the entire password but partial information that is sufficient to verify

whether the client has the correct password or not but does not immediately reveal

30

4. Fault Resilient Implementations

the password. In the non-fuzzy case this is often done via hash functions. Both

classes of protocols are well studied in the literature. Despite that, our work is

the first one that combines both concepts and constructs a framework faPAKE to

allow the client to also use fuzzy passwords without storing the full password on

the server side. In the fuzzy setting, however, it is not sufficient to store a single

hash of the password on server side, as the hash value is not sufficient to verify

fuzzy passwords.

Challenges. Our constructions are provably secure in the Universal Composabil-

ity (UC) model [52]. As mentioned in Chapter 2, this model is used to prove the

security of modular compositions to build provable secure systems out of multiple

UC-secure protocols. In order to prove the security of a cryptographic primi-

tive in the UC model we typically proceed as follows: We first describe the ideal

functionality of a cryptographic primitive, representing the ideal behavior that

the primitive aims to achieve in the real world. The ideal behavior includes the

input-output behavior and, if required, the attacks an adversary might execute

on the primitive. Then, to prove the actual security of a concrete cryptographic

implementation, we must show that the behavior of the implementation is compu-

tationally indistinguishable from the ideal functionality. Since our construction is

the first provable UC-secure faPAKE primitive, our contribution was twofold. First,

we had to define the ideal functionality for such primitives to provide provable se-

curity, and second, we had to construct a protocol that fulfills the challenging

combination of being asymmetric to hide password information on server’s side,

and similarly being fuzzy to allow the server also accept fuzzy passwords. Next,

we give the basic idea to combine both properties.

Password Correction. The high-level idea of our PAKE protocol is to generate

a secret sharing that decodes to a random key, and for each correct password

bit, the client receives a correct share of the key. As in Chapter 3, we could

use additive masking to hide the random key such that each bit of the password

has a corresponding share. Now, for each correct bit of the password, the server

outputs the corresponding share. Otherwise, the server outputs a uniform random

value. Due to the properties of additive masking, it is easy to see that the client

can decode the correct key if the password is valid, but if at least one bit is

wrong, the server’s output is independent of the secret shared key. The high-level

idea of our protocol employs the same strategy to conceal the key. Additionally,

we permit the client to discover the key if a certain threshold, denoted as t, of

incorrect bits is not exceeded. We avoid this with polynomial masking (Chapter 2)

31

4. Fault Resilient Implementations

Client Server

K

K ′

ECC.Encode
+ random shares

5x 1-out-of-2-OT

ECC.Decode

rerandomize shares
to encode K ′

Figure 4.1.: faPAKE Protocol (Figure of [90])

that combines the privacy property of Shamir’s secret sharing [166] and the error

correction property of Reed-Salomon codes [156]. Again, a value v is shared with

a random polynomial f ∈ F [x] of degree d such that the i-th share vi is f(αi)

with pairwise different support points α0, . . . , αn−1 ̸= 0, and the secret is the

constant term of the polynomial f(0) = v. The secret can be determined with any

subset of d+ 1 shares due to polynomial interpolation. If an adversary faults less

than (n− d)/2 shares, the redundant function values allow for an error correction.

Hence, if we use polynomial masking, the shares are independent of the key if

the password is wrong (more than n− d bits are wrong), otherwise the client can

reconstruct the key if the fuzzy password is close to the correct one (less than

(n− d)/2 bits of the password are wrong).

Concrete Results. Our contribution is twofold, we give formal security require-

ments and secure faPAKE protocols. The security requirements are defined via an

ideal functionality that combines the functionalities of fPAKE [81] and aPAKE [109].

The functionality defines the input-output behaviour, and outputs the same ran-

dom key for the server and the client if the fuzzy password of the client is close

to the correct one. Further, the functionality has additional interfaces to cover

adversarial scenarios, such as a adversary simply guessing passwords or stealing

data of the server. The second szenario is often referred to as untrusted server.

Our functionality covers multiple realistic attacks. For example, we cover password-

32

4. Fault Resilient Implementations

guessing ‘TestPWD’, where the adversary is bound to one guess per protocol run.

Since we assume an untrusted server, we cover similar security requirements as in

aPAKE. We also allows the adversary to compromise the server and to run dic-

tionary attacks on the password file. This attack is covered by an interface of the

functionality named StealPwdFile. The interface allows an attacker an unbounded

number of password guesses via the OfflineTestPwd interface. Alternatively, the

adversary can simulate the server once the password file is stolen. This issue is

defined via the Impersonate interface. Compared to the functionality of the non-

fuzzy version, our interfaces above also allow fuzzy matching, i.e., a password guess

is considered valid not only upon an exact match but also if the guess is sufficiently

close. In particular, the functionality is parametrized with a success threshold t

that enables a successful key exchange with up to t faults in the password, and a

security threshold s that does not allow the attacker to exchange a key successfully

with more than s faults in the password. For example, polynomial masking with

degree d and n = d + 2t + 1 allows t faults in the passwords, and still allows for

a secure error correction. However, it only allows the adversary to learn up to

d shares without learning the secret. Hence, it has a security parameter s = 2t.

However, we need at least n = d + 2t + 1 shares to correct up to t faults. This

gives the distance of the thresholds for correctness and security s− t = t.1 Having

defined the ideal functionality, we propose two secure constructions. The first one

uses existing aPAKE protocols and the second one uses error correcting codes as

discussed above.

The first construction is a trivial construction, where the servers store all hashes

of valid but fuzzy versions of the password. Then faPAKE runs an aPAKE protocol

multiple times with all possible hashes. If the fuzzy password of the client is close

to the correct one, one of the multiple aPAKE runs gets the correct match of the

fuzzy password and its hash and generates a correct key that the client and server

can agree on. Unfortunately, this protocol is problematic for three reasons. First,

it requires extremely huge password files as the file grows asymptotically. Second,

the communication overhead strongly depends on the size of the password. Third,

we can show that the protocol has weaker security properties. Notwithstanding

the previous points, it is practical for applications where it is sufficient to allow

only a few faults in the password. For example, it can correct the capitalization of

1The specified distance corresponds precisely to the discrepancy arising from successful error
correction and detection. Our protocol needs the correction property for ensuring correctness,
yet error detection can be accomplished with a smaller number of shares. While detection
alone may not suffice for decoding to the correct value, it has the potential to get partial
information about the value. Consequently, we cannot guarantee security if the adversary
learns more than d+ t shares.

33

4. Fault Resilient Implementations

the first letter of passwords as done in Facebook’s authentication protocol [148].

Our second protocol circumvents such problems with the error correcting prop-

erty of Shamir’s secret sharing. The fuzziness of passwords is measured with

respect to their Hamming distance and the protocol runs for each password bit a

1-out-of-2 Oblivious Transfer (OT) [62]. For each correct password bit the client

learns a correct share, and otherwise, it only gets an independent random value

which is indistinguishable from the correct share. The protocol is inspired by a

fuzzy symmetric PAKE protocol [81]. The oblivious transfer prevents the server

from learning the client’s password, and the error correction allows the client to

get the correct cryptographic key even if it uses a slightly faulted password. The

high-level idea is depicted in Figure 4.1: During the initial registration of its n

bit password (bi)i∈[n] password, the client chooses a uniform random key K and

secret shares it with Shamir’s secret sharing (ki)i∈[n] ← Enc(K). Then, the server

generates a table with two rows and n columns

(s0,0, s1,0), (s0,1, s1,1), . . . (s0,l−1, s1,l−1)

such that sbi,i = ki for all i ∈ [n], and the other entries are independent random val-

ues indistinguishable from the shares. Afterwards, the server deletes the password,

and hence, it does not know which entry is a share and which is only a random

value. The table and the key constitute the password file of the server, and during

the Key Exchange phase, the client only learns sbi,i if the bit of his password was

correct. Otherwise, it only learns s1−bi,i, i.e., the independently chosen share for

this bit position. To avoid that the server leaks the full password file by only two

queries (e.g., pw = 0n and 1n), the shares have to be re-randomized after each

query, or in other words, the server only uses randomized versions of the shares for

each password query. This is analyzed in the Generic Group Model (GGM) which

ensures that a share and an independent random value are indistinguishable. The

reason for this is that a simple output of the GGM is uniform random. The only

dependence between the oracle requests appear when the outputs are related via

the internal group structure. In detail, the shares are hidden in the exponent of a

group generator g, and for each key exchange all shares are randomized by a uni-

form random exponent k′. Due to the linearity of polynomial masking, the shares

decode to the new randomized key K ′ = Kk′ . Hence, the server can randomize

the password file without knowing the password but still knows the new resulting

random key K ′. However, we must ensure that the server does not learn the pass-

word during the key exchange. With this in mind we initiated the protocol with

1-out-of-2 oblivious transfer. At a high level, 1-out-of-2 oblivious transfer enables

the server to send one of both secrets for one password position, while the client

34

4. Fault Resilient Implementations

can choose which secret it wants to receive. OT guarantees two security properties.

First, the server does not learn the client’s choice, and second, the client does not

learn the other secret. The first property prevents the server from learning the

password choice of the client, and the second prevents the client from learning the

password file of the server.

Further, the protocol uses the ideal cipher model, to encrypt the randomized

shares in the beginning of the key exchange. This allows the client to check whether

the server really has the password file, since it commits to it with the encryption.

This protects the protocol from an attacker that simulates the server without

knowing the password file.

Theorem (Informal). There is a UC secure faPAKE protocol using an UC secure

cipher, an UC secure oblivious transfer, and a generic group.

- [90], Theorem 4.1.

4.2. On the Related-Key Attack Security of

Authenticated Encryption Schemes

In the preceding section, we demonstrated a method for generating secret keys in

the presence of faulty inputs. In contrast to the previous section which focused

on the secure generation of a secret key via faPAKE, this section focuses on secure

communication in the presence of key-related faults. To achieve this, authenti-

cated encryption plays a pivotal role as it combines the three security properties

mentioned in the introduction: (1) confidentiality to hide the actual message, (2)

authenticity to be sure of the sender’s identity, and (3) integrity to be convinced

that the message was not changed by an attacker.

Authenticated encryption, particularly in the form of Authenticated Encryption

with Associated Data (AEAD), is an important primitive that is widely used today,

e.g., in internet protocols like TLS 1.3 [157]. This significance was underscored

by its inclusion in the CAESAR competition [37] and the NIST standardization

process on lightweight cryptography [150]. Notably, the NIST standardization

process prioritizes nonce-based schemes [161], which offer a balance of security

and efficiency.

Nonce-based schemes dispense with the need for costly randomness and, instead,

utilize a simple nonce, like a straightforward counter. To ensure security, these

schemes require only that nonces are not reused with the same key [161]. Con-

sequently, in our work, we are interested to examine the fault resilience of such

35

4. Fault Resilient Implementations

schemes, and in particular, assessing the security of the N1 scheme (Encrypt-and-

MAC), N2 scheme (Encrypt-then-MAC), and N3 scheme (MAC-then-Encrypt),

initially proposed by Namprempre, Rogaway, and Shrimpton [149] at EURO-

CRYPT’14.

All three schemes are given in Figure 4.2. They consist of an encryption compo-

nent and a MAC (Message Authentication Code), each initialized with a randomly

generated key (Ke and Km, respectively). Subsequently, they receive a nonce (N),

associated data (A), and a message (M) as input and transform this information

into a ciphertext (C). Namprempre et al. [149] basically show that all three schemes

are secure nonce-based AEAD schemes if the underlying encryption and MAC are

secure, and the MAC algorithm is additionally a pseudo random function (PRF).

To evaluate their security in the context of an adversary tampering with the key,

we model this scenario using a black-box approach, often referred to as Related

Key Attacks.

Related Key Attacks describe an adversary actively tampering with the key2. In

a seminal work by Bellare and Kohno [28], these attacks were formally defined to

analyze the resilience of PRFs against key tampering, also referred to as Related-

Key Attack (RKA) security. Their model considers a set of fault functions Φ such

that the adversary can arbitrarily fault the key K to K ′ ← ϕ(K) for any ϕ ∈ Φ.

In essence, they require that key tampering on a cryptographic primitive, such

as a PRF, is indistinguishable from selecting a new key uniformly at random. In

other words, a fault in the key provides the same advantage as obtaining a new

primitive with an entirely random key. Further, they also show the limitations

of RKA security and prove that it is impossible to achieve RKA security with-

out limiting the function set Φ. Building on their security requirements, several

additional primitives were developed to ensure RKA security including RKA se-

cure encryption schemes [11, 16], and MACs [42, 172]. The practical relevance

of RKA secure cryptographic primitives has been demonstrated through various

attacks documented in the literature [44, 80, 127, 140]. Surprisingly, despite this,

RKA security has not been explored for authenticated encryption schemes with

associated data. As a result, the initial challenge we encountered was to establish

security notions that satisfy all the necessary requirements.

Security Model. As described above, the security of nonce-based schemes relies

on the fact that each decryption query with the same key uses a fresh nonce.

Since we consider key faults we must expect that the adversary might fault the

2Another prominent example of related key attacks involves badly randomized keys leading to
the generation of multiple cryptographic primitives using different yet strongly dependent
keys.

36

4. Fault Resilient Implementations

key and the nonce simultaneously, e.g., set the counter of the nonce always to

zero when it faults the key. To model this scenario, we adapted the RKA security

notion for nonce-based schemes and allow the adversary to use the same nonce for

differently faulted keys. Then, our work [94] proposes two RKA security notions

for nonce-based AEAD schemes.

First, a weaker notion, denoted by rka-AE, is suitable for nonce-based AEAD

schemes that are constructed out of an encryption and a MAC just like the N

schemes [149]. This notion exploits the special key structure K = (Ke, Km) of

the AEAD scheme consisting of two subkeys Ke and Km for the encryption and

MAC, respectively. The weaker notion assumes that faults onK always affect both

underlying keys Ke and Km, and that the adversary can never make a precise fault

to make a previous fault undo. In other words, the adversary is not allowed to

produce differently faulted keys K ′ = (K ′
e, K

′
m) and K ′′ = (K ′′

e , K
′′
m) such that one

of the underlying subkeys is the same, i.e., it has to hold K ′
e ̸= K ′′

e and K ′
m ̸= K ′′

m.

This weaker notion considers the fact that faults are not always accurate. A fault

in the key can lead to additional, unexpected faults, making it unlikely that two

faulted subkeys would be identical or one of the underlying keys is not affected by

a fault.

Second, our stronger security notion, denoted by s-rka-AE, applies for all nonce-

based AEAD schemes. The essential difference to the previous notion is that the

weaker makes an assumption on the key structure, whereas the stronger notion does

not make such an assumption This more robust security notion can assume precise

faults affecting only a single area of the key. Hence in our case, it also considers

faults where only one underlying key Ke, Km of K = (Ke, Km) is faulted, e.g.,

K ′ = (K ′
e, K

′
m) and K ′′ = (K ′′

e , K
′′
m) with K ′

e = K ′′
e and K ′

m ̸= K ′′
m.

N

M

A

C

T

Ẽnc

Mac

(a) N1 scheme.

N

M

A

C

T

Ẽnc

Mac

(b) N2 scheme.

N

M

A

CẼnc

Mac

(c) N3 scheme.

Figure 4.2.: The AEAD schemes of [149]. (Figures of [94])

Concrete Results. Our work [94] investigates the nonce-based N schemes (Fig-

ure 4.2) to construct RKA secure AEAD from encryption schemes and MACs.

Essentially, we analyze the question whether RKA security of the underlying en-

cryption and MAC scheme implies RKA security of the N schemes as well. In

37

4. Fault Resilient Implementations

other words, let the encryption scheme be secure against the class of fault func-

tions Φe and the MAC be secure against Φm, then we examine whether the N

schemes are fault resilient against fault functions resulting from the Cartesian

product Φe × Φm. The result of our security analysis strongly depends on our

security model. First, we consider the weaker model rka-AE and prove that RKA

security of the underlying primitives implies security of the N schemes.

Theorem (Informal). The N schemes depicted in Figure 4.2 are rka-AE-secure

against fault functions Φe × Φm if Mac and Ẽnc are RKA secure against fault

functions Φe and Φm, respectively.

- [94], Theorems 8, 10 & 12.

As Namprempre et al. [149] proved the general security of the N schemes under

the additional condition that Mac is a PRF, our theorem requires Mac to be

an RKA secure PRF and an RKA secure MAC. Further, we also show that the

schemes are not secure if we drop the restrictions in rka-AE by presenting concrete

attacks in the stronger model s-rka-AE ([94], Thm. 9, 11&13). However, we were

able to construct an alternative scheme that fulfills even the stronger security

requirements. For this reason we adapt the N3 scheme such that its underlying

encryption is a pseudorandom permutation. In contrast to the N3 scheme the

underlying encryption scheme does not use the nonce, and only encrypts the output

of the MAC scheme and the message. The resulting scheme N ∗ is depicted in

Figure 4.3 using a RKA secure PRP Ẽnc
′
.

N

M

A

CẼnc
′

Mac

Figure 4.3.: The AEAD scheme N ∗. (Figure of [94])

Theorem (Informal). The N ∗ scheme depicted in Figure 4.3 is s-rka-AE-secure

against fault functions Φe × Φm if Mac and Ẽnc
′
are RKA secure against fault

functions Φe and Φm, respectively.

- [94], Theorems 14.

Hence, the theorem shows that additionally requiring an RKA secure PRP im-

plies RKA security for the MAC-then-Encrypt paradigm. At a high-level, the

attack on the N3 scheme exploited the vulnerability where two ciphertexts of the

same message have partial equality when encrypted with the same Ke but different

38

4. Fault Resilient Implementations

Km. Thankfully, a RKA secure PRP ensures RKA security for the MAC-then-

Encrypt paradigm. Here, the vulnerability of the N3 scheme is contradicted by

the PRP property, as the outputs of the PRP are uniformly random even when

the inputs are partially equal.

4.3. Related Work

Chapter 4 is about fuzzy passwords and related-key attacks. We first give a detailed

overview of the state of the art of PAKE protocols. Then, we give an overview about

related-key attacks.

Fuzzy Asymmetric Password Authenticated Key Exchange. As stated before,

the security requirements defined in our work are inspired by [81] and [109]. Our

protocol is the first faPAKE protocol combining both properties of aPAKE [31, 50,

109, 128] and fPAKE [81]. Since our publication in 2020, there were several follow-

up works. The UC security in [88] was weakened such that only the client has to

authenticate. This assumption allows the client to generate the key much faster but

with the disadvantage that the identity of the server is not authenticated. Further,

biometric based asymmetric protocols were proposed and implemented [21, 22].

For example, [170] proposes an asymmetric fuzzy encapsulation mechanism, that

has less overhead and does not require that both parties are online at the same

time. This protocol has a speed up of factor 2000 compared to ours.

Related-Key Attacks. Knudsen and Biham, both worked on countermeasures

against such attacks. About 10 years later Bellare and Kohno [28] gave the first

formalization of RKA security to provide provable secure pseudorandom functions

and pseudorandom permutations. Further, they also show the limitations of RKA

security and proved that it is impossible to achieve RKA security without limiting

the function set. Bellare and Cash [27], and Abdalla et al. [1] designed RKA-secure

pseudorandom functions for a relatively large class of RKA functions. Following

this work, the RKA security was intensively studied by the research community,

e.g., Feistel networks [16], encryption schemes [11], and MACs [42, 172]. The for-

malisim in [28], was further investigated by Harris [120] and Albrecht et al. [5].

They gave a generic attack against encryption schemes with related-key deriving

functions that can depend on the cryptographic primitive, and Vaudenay [168]

analyzed the practical relevance of those attacks. However, the analyzes of RKA

security for authenticated encryption schemes is rather rare. Lu et al. [143] stud-

ied probabilistic authenticated encryption schemes for affine related-key deriving

39

4. Fault Resilient Implementations

functions. Unfortunately, Han et al. [119] shows that their security proof does

not fulfill their security assumptions where they claim that the adversary cannot

generate a forged cipher text for a related-key. Their essential observation is that

their reduction proof does not allow to solve the DDH problem (the mathematical

hard problem) using the adversary of their scheme. Consequently, its primitives

security is not provable secure under the assumption of a hard problem Further, in

contrast to their construction, our primitive is more general, and does not require

expensive randomness.

Non-malleable Codes. While Section 4.2 introduces fault-resilient primitives,

an alternative strategy involves taking an unprotected primitive and employing

a “fault-resilient encoding” only on the key. Non-malleable codes, introduced by

Dziembowski, Pietrzak, and Wichs [87], are one such encoding method. Their

encoding ensures that faults on the encoded key do not compromise the key itself.

In detail, Dziembowski et al. propose an encoding where the impact of bit-wise

independent faults on the decoding is independent of the underlying decoded value,

e.g. the key. Further, the faulted encoding decodes either to the correct value

again (error correction), an invalid value (error detection), or is uniform random

(secret independent). Giving the fact that they show that this property requires

a restriction of fault functions, they provide a non malleable encoding secure only

against bit-wise independent tampering. Subsequently, extensions were introduced

to accommodate more substantial fault functions such as linear tampering [59],

poly space tampering [97], split-state tapering [61] bounded-depth tampering [51],

space-bounded tampering [92].

In our context, we have to assume that the attacker repeatedly tampers with

the device, i.e. the key. This is described with continuous non-malleable codes [96]

that are secure even if the adversary has multiple rounds to fault the key.

While non-malleable codes effectively protect against key faults, they introduce

distinctive security considerations. Notably, the encoding of the key requires de-

coding each time the cryptographic primitive needs the key. This introduces a

potential vulnerability, as an attacker may attempt to fault the key after the de-

coding process. Additionally, it may result in increased space complexity, as the

decoding might need more space, and extended runtime, as the key must be de-

coded for each operation that uses the key.3

3In contrast to non-malleable codes, RKA security allows for more use cases such as bad ran-
domized key. For more details we refer to our work [94].

40

5. Combined Resilience

This part is based on [36] and analyzes masked circuits in the context of combined

resilience, namely the simultanous resilence against leakage and faults. To be more

specific, this section allows the adversary to simultaneously fault and probe the

wires of a masked circuit. In contrast to Chapter 4, which only considers faulted

inputs such as keys and passwords, this chapter also takes faults on intermediate

values into account. That is why we use the circuit model as the underlying com-

putational model again as we did in Chapter 3. However, as defined in Section 2.2,

we additionally allow the adversary insert some faults into the computation. In

simpler terms, the adversary can change the output value of a gate in the circuit

such that the following gate gets a faulted value as input.

Challenges. The security verification of combined attacks often leads to exten-

sive proofs with many case distinctions, since such proofs typically verify the probe

security of all possible fault combinations. We need composability results, espe-

cially for verifying large circuits as in Chapter 3. Another challenge is the trade-off

between the redundant computation for error detection and the increasing leak-

age caused by redundancy. A low number of redundant shares is significant for

resilience against advanced leakage attacks such as horizontal attacks.

5.1. Contribution

This chapter presents the results of [36] which targets two main challenges. First,

it gives two compilers provably secure against up to e faults in the t-probing and

t/2-region probing models, respectively. Second, the paper defines fault-invariance

that implies leakage resilience if the adversary can additionally inject faults. This

property simplifies the previously tedious proof techniques by avoiding a brute-

force analysis that investigates the resilience for all possible fault combinations.

Concrete Results. Our first compiler is simultaneously provable secure in the t-

probing model and fault resilient against up to e faults using the optimal number of

shares n = t+e+1. In order to achieve this, we replaced the multiplication gadget

41

5. Combined Resilience

SplitRed

SplitRed

SWMult1

SWMult2

SWMult3

SWMult4

Comp

f

g

f ′

f ′

f ′′

f ′′

g′

g′

g′′

g′′

h0

h1

h2

h3

q

(a) Our multiplication gadget [36]

SWMult d-Red

f

g
h h′

(b) Multiplication gadget [163].

Figure 5.1.: Structures of our multiplication gadget defined in [36] and the multi-
plication gadget used in [163]. (Figure of [36])

described above (Figure 5.1b), by a gadget that only requires n = t+ e+1 shares

instead of n = 2t + e + 1. For this reason, our new multiplication transforms

the polynomials f and g of the input encodings in such a way that the degree

reduction is not necessary after the share-wise multiplication Figure 5.1a. First,

the gadget shares the polynomial f (and g) with secret f(0) = a (or g(0) = b) and

degree t into two polynomials f ′, f ′′ (or g′, g′′) with degree n− 1 via sub gadgets

SplitRed such that f ′ + f ′′ (or g′ + g′′) has degree t/2 and f ′(0) + f ′′(0) = a (or

g′(0) + g′′(0) = b). Then, it computes four share-wise multiplications h0 = f ′ · g′,
h1 = f ′ · g′′, h2 = f ′′ · g′′, and h3 = f ′′ · g′ via the sub gadgets SWMult. Finally, it

generates an encoding of zero, i.e., a polynomial x with x(0) = 0, and share wise

adds x+ h0 + h1 + h2 + h3 via Comp. The final output q is a sharing of a degree

t polynomial with constant term q(0) = a · b because q = x + (f ′ + f ′′)(g′ + g′′),

and q(0) = x(0) + (f ′(0) + f ′′(0))(g′(0) + g′′(0)) = 0 + a · b. With this gadget we

get a secure compiler against additive faults with an optimal number of shares.

Theorem (Informal). There is a leakage and fault resilient compiler secure

against t probes and e additive faults using a minimum number of shares n =

t+ e+ 1.

- [36], Theorem 8, 9 & 10.

The compiler also provides security against an adversary using arbitrary faults

if the faults are additionally counted as probes. This means that our compiler is

also secure against e arbitrary wire faults and t− e probes. This follows from the

fact that a fault where a wire value is set to a constant value is worse than a simple

probe because the adversary does not only “learn” the value of the wire, but also

chooses its value. The same results hold for our second compiler. The second

42

5. Combined Resilience

compiler is extended to be secure in the t/2-region probing model by injecting

additional refresh gadgets between each gadget.

Theorem (Informal). There is a leakage and fault resilient compiler secure

against t/2 probes in each gadget and e additive faults using an n sharing with

n = t+ e+ 1.

- [36], Theorem 8 & 9.

In the following step, this chapter introduces a new property, called fault invari-

ance, which allows for efficient proof techniques for resilience against combined

attacks.

Proof Idea. In contrast to leakage resilience, where we consider the inputs re-

quired to simulate the leakage, fault resilience analyses the outputs of a faulty

circuit. For this reason, we define fault robustness, which describes how faults are

forwarded to the gadgets’ outputs so that they can be detected. If fault-robust

gadgets are faulted and get faulted inputs, their outputs will either be a valid en-

coding of the correct values or an invalid encoding. Since fault robustness considers

faulted inputs that might come from previous computations, the composition of

fault-robust gadgets is again fault-robust. Hence, we can prove fault resilience

by proving the fault robustness of each gadget. Our paper also shows that it is

not sufficient to separately investigate leakage and fault resilience to prove secu-

rity against combined attacks: Faults might increase the leakage of a circuit so

that the leakage of a faulted circuit reveals more secret information then the one

without faults [36]. The basic idea are, specifically-targeted faults, which have the

potential to compromise the essential randomness required to hide the internal

secret. In our work, we illustrated this vulnerability through an example where a

single fault disrupted the internal randomness of a masked circuit. Consequently,

the circuit became deterministic and did not hide the internal computation any-

more. To address this problem, we provide a property called fault invariance that

combines fault and leakage resilience. This property shows that the leakage simu-

lator does not need more input values for the simulation if the simulated circuit is

additionally faulted. More precisely, a gadget is fault invariant if all intermediate

faults can be expressed as faults on the inputs or outputs of the gadgets. For ex-

ample, let f(x0, x1, · · ·) be an arbitrary intermediate value of an unfaulted gadget

with input values x0, x1 · · · and f ′ the corresponding value of an arbitrarily faulted

version of the gadget with fault functions in F . If the gadget is fault invariant

with respect to F , we can describe the intermediate value f ′ with fault function

43

5. Combined Resilience

f, f0, f1, · · · ∈ F such that it holds

f ′ = f(f(f0(x0), f1(x1), · · ·)) .

5.2. Related Work

Computational Faults. Section 5.1 combined the leakage and fault resilience.

The leakage resilience of circuits was already addressed in Chapter 3. Since Chap-

ter 4 only considered faults on secrets, such as keys and passwords, we first briefly

summarize the fault resilience of intermediate faults in the computation. Then,

we discuss the work of combined security in more detail. In [125], Ishai et al.

considered fault attacks and proposed gadgets secure against attacks where the

adversary can set the values to zero via faults. By introducing a fault thresh-

old t, they have extended this approach and effectively allowed the adversary to

arbitrarily fault up to t wires. An alternative restriction to allow arbitrary adap-

tive wire independent faults was introduced by Faust, Pietrzak, and Venturi [98].

They proposed a fault model where each wire can be faulted but only with a

given success probability δ. They give a compiler that transforms a circuit into a

tamper-resistant circuit, given that the original circuit can tolerate a logarithmic

amount of leakage. Kiayias and Tselekounis [135] proposed a model where the

adversary can fault the gates instead of the wires. They show that this model is

strictly stronger as the gate tampering can be simulated by wire tampering but

not vice versa. Additionally they give some impossibility results for both models.

Alternatively, Genkin et al. [106] protect circuits against an adversary that can

inject arbitrarily many additive faults. Similarly, Dachman-Soled and Kalai [71]

protect circuits from faults affecting up to a 1/poly(k) fraction of the wires, where

k is a security parameter that is independent of the size of the (unprotected) cir-

cuit. Other interesting approaches are Impeccable Circuits [3, 155, 164] that allow

for error detection or correction, and Trojan resilient and Testable Circuits [12,

84] that protect the computation against malicious hardware.

Combined Resilience As a first step, Gammel and Mangard [103] investigated

linear encodings that are secure against an adversary simultaneously running prob-

ing and fault attacks. Liu and Lysyanskaya [141] protected circuits against split-

state leakage and tampering attacks that independently attacks separate parts

of the hardware. Later, Schneider, Moradi, and Güneysu [162] and De Cnudde

and Nikova [65] combined error-detection codes with leakage-resilient circuits. As

highlighted in Chapter 4, polynomial sharing is a reasonable error detection code

44

5. Combined Resilience

because it provides both fault and leakage resilience. The use of polynomial shar-

ings was originally inspired by the multiparty computation protocol of Ben-Or,

Goldwasser, and Wigderson [33]. Seker et al. [163]. Their construction is secure

against additive faults and requires 2d + e + 1 shares. Dhooghe and Nikova [74]1

used the same error detection code and proposed a construction only requiring

d+ e+1 shares. However, their construction has randomness complexity of O(n3)

instead of O(n2).

Duplicated Masking.2 In order to protect against combined attacks, an alterna-

tive approach is duplicated masking [75, 99, 100]. Duplicated masking replicates

the masked computation proposed in Chapter 3. In particular, the computation

of the masked circuit is executed e + 1 times in parallel to detect up to e faults,

and the duplicated outputs of the computation are checked for equality to detect

faults. Consequently, the duplication approach is vulnerable to so-called horizontal

attacks [20] where the adversary can exploit the fact that multiple computations

share the same randomness or secret key material due to the duplicated compu-

tation. Further, many modern primitives, e.g., [6, 7, 8, 41, 116, 117, 118] have

a low number of non-linear operations at a cost of a significant number of affine

operations. Here, it is noteworthy that affine operations that can be masked tradi-

tionally with a linear complexity, the overhead become significantly more expensive

as the duplication leads to an quadratic overhead.

1This result is only in version 20190603:070457 on IACR Cryptol. ePrint Arch. https://

eprint.iacr.org
2Parts of this paragraph were taken verbatim from our work [36] (cf. App E).

45

https://eprint.iacr.org
https://eprint.iacr.org

6. Conclusion

This thesis has addressed the crucial issue of protecting cryptographic primitives

against implementation attacks, encompassing both side-channel and fault attacks.

In Chapter 3, we introduced methods to protect computation against side-channel

attacks, including a secure compiler, and two different proof techniques to analyze

the security of cryptographic implementations. While the first approach demon-

strated almost tight security results, it faced limitations due to its proof complex-

ity. In contrast, the second proof method eliminated the complexity constraints

and allows for security proofs for an arbitrary number of shares n, and yields

asymptomatic security results which are particularly practical for affine circuits.

Chapter 4 presented two fault-resilient cryptographic primitives. The first primi-

tive generates secret keys from a password, ensuring correctness up to a specified

fault threshold in the password. This fault tolerance is particularly important for

biometric-based passwords, as these are inherently inaccurate. The second primi-

tive offers authenticated encryption that is resilient against key faults. Its security

property prevents the attacker from gaining any knowledge about the secret key,

even if the adversary can additionally fault the key. In Chapter 5, we combined

fault and leakage resilience to develop a secure compiler that simultaneously with-

stands fault and probing attacks. Given that individual fault and leakage resilience

does not guarantee combined resilience, we introduced new security properties that

provide this combined security. Finally, we present a compiler to transform un-

protected computation into those resilient against combined attacks.

This work contributes to bridging the gap between theoretically secure crypto-

graphic primitives and the practical security of their real-world implementations.

However, it is essential to acknowledge that our contribution remains theoretical.

For example, in our work, security is generally defined independently of the specific

hardware a primitive is executed on. Barthe et al. [19], shows that the hardware

heavily influences the amount of leakage, and from this standpoint, there exist nu-

merous exciting directions to enhance and extend our findings. Next, we discuss

the following primary directions: (1) bridging theory and practice, (2) improving

the theoretical claims presented in this thesis, and exploring more practical direc-

tions such as (3) implementing verification tools for polynomial masking, or (4) a

general practical exploration in the context of combined resilience.

46

6. Conclusion

(1) Bridging Theory And Practice. A hardware-specific analysis of our designs

would be an obvious next step towards enhancing the relation between theoretical

frameworks and practical applications. This includes two interesting first steps,

namely investigating an implemented compiler to automatically generate prov-

ably secure implementations of cryptographic primitives, and its investigation in

a real laboratory to examine the implementation’s actual resilience against imple-

mentation attacks. This approach would require intensive research with multiple

iterations, where the security model used to prove the security of the implemented

compiler has to be adapted each time a security flaw in the generated implementa-

tion was detected in the laboratory. Especially for combined resilience, this leads

to exciting research directions, that have recently started. For example considering

only leakage, we could adapt the leakage models used in this thesis accordingly

and tailor the countermeasures to specific hardware. We have already introduced

a preliminary step in [2], which proposes a customized compiler for Arm Cortex

M0+ microcontrollers, and in [19], which proposes a customized verification tool

for those microcontrollers. Following this approach, further improvements were

given by generalizing such leakages [175].

(2) Theoretical Improvements. Our findings also raise interesting theoretical

questions. For example, a first step for future exploration would involve improving

the randomness and computational complexity of our compiler. This is important

on a theoretical level, as it helps to establish lower bounds on the efficiency of

countermeasures, but it is also important on a practical level, as it improves the

applicability of these countermeasures. Initial steps in this direction have been

taken, particularly in the threshold model for ISW-based compilers, as demon-

strated in [23], where it was shown that there is a multiplication gadget with

complexity of O(n log(n)). An alternative approach in [68] demonstrated that

randomness complexity can be reduced through intelligent reuse of randomness in

this model. Additionally, [115] revealed that achieving quasi-constant randomness

complexity in relation to circuit size is possible. Nonetheless, further investigation

is imperative to also determine the lower bounds in the random probing model,

or ideally, in the combined model. Since these bounds are currently applicable

only to standalone leakage resilience, an even more interesting research question

is to investigate the required bounds for combined resilience. For example, given

that a tight number of shares is already used in our compiler [36], extending such

a bound to include results on runtime and randomness complexity is an exciting

research question.

47

6. Conclusion

(3) Combined Verification Tools. The security proofs of our gadgets, especially

the ones for combined resilience, often follow similar techniques. Unfortunately,

these techniques are currently done only by expensive manual handwritten meth-

ods. Additionally, the verification tools recently developed to analyze the security

of duplicated masking [75, 99, 100] are not suitable for our gadgets using polyno-

mial masking. This limitation arises from a dual challenge. On the one hand, the

fault resilience definition in the existing tool VERICA [158] is tailored to the du-

plication approach and requires adaptation to polynomial masking, as elaborated

in [36]. On the other hand, prevalent leakage verification tools [24, 25, 57] incor-

porate a specific proof approximation, the so-called optimistic sampling rule [17].

The idea of this rule is that a probe is independent of the secrets if it consists of

an added random value that does not affect the other probes. Adhering strictly

to this rule predominantly results in false positives when applied to gadgets using

polynomial masking, which would incorrectly identify a secure gadget as insecure.

As suggested in [25], the application of Gaussian elimination methods can address

this issue. Alternatively, SILVER’s approach [137] mitigates these false positives

at the expense of complex statistical independence tests, limiting its applicability

in the context of random probing security and the combined attack model.

(4) Practical Exploration. A next possible step involves improving our com-

piler’s security against real-world leakage and faults, mirroring the approach taken

for standalone leakage as demonstrated in our work [2]. The initial phase re-

quires the concrete implementation of our compiler and the execution of security

experiments under laboratory conditions. This task also includes the develop-

ment and implementation of cryptographic primitives explicitly designed to effi-

ciently resist combined attacks (e.g., [40, 86, 129]). Especially in the context of

post-quantum cryptography, many new primitives are worth investigating for their

security against real-world attacks.

48

7. Bibliography

This thesis was linguistically revised with the help of ChatGPT1, Grammarly2,

and DeepL3.

[1] M. Abdalla, F. Benhamouda, A. Passelègue, and K. G. Paterson. “Related-Key

Security for Pseudorandom Functions Beyond the Linear Barrier”. In: J. Cryptol.

4 (2018), pp. 917–964.

[2] A. Abromeit, F. Bache, L. A. Becker, M. Gourjon, T. Güneysu, S. Jorn, A.

Moradi, M. Orlt, and F. Schellenberg. “Automated Masking of Software Imple-

mentations on Industrial Microcontrollers”. In: Design, Automation & Test in

Europe Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5,

2021. 2021, pp. 1006–1011.

[3] A. Aghaie, A. Moradi, S. Rasoolzadeh, A. R. Shahmirzadi, F. Schellenberg, and T.

Schneider. “Impeccable Circuits”. In: IEEE Trans. Computers 3 (2020), pp. 361–

376.

[4] C. Aitken. Determinants and Matrices. 9. 1956.

[5] M. R. Albrecht, P. Farshim, K. G. Paterson, and G. J. Watson. “On Cipher-

Dependent Related-Key Attacks in the Ideal-Cipher Model”. In: Fast Software

Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark, Febru-

ary 13-16, 2011, Revised Selected Papers. 2011, pp. 128–145.

[6] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. “MiMC: Effi-

cient Encryption and Cryptographic Hashing with Minimal Multiplicative Com-

plexity”. In: Advances in Cryptology - ASIACRYPT 2016 - 22nd International

Conference on the Theory and Application of Cryptology and Information Secu-

rity, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I. 2016, pp. 191–

219.

1https://chat.openai.com
2https://www.grammarly.com/
3https://www.deepl.com

49

https://chat.openai.com
https://www.grammarly.com/
https://www.deepl.com

7. Bibliography

[7] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. “Ci-

phers for MPC and FHE”. In: Advances in Cryptology - EUROCRYPT 2015 -

34th Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. 2015,

pp. 430–454.

[8] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. “Design of

Symmetric-Key Primitives for Advanced Cryptographic Protocols”. In: IACR

Trans. Symmetric Cryptol. 3 (2020), pp. 1–45.

[9] P. Ananth, Y. Ishai, and A. Sahai. “Private Circuits: A Modular Approach”. In:

Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III.

2018, pp. 427–455.

[10] M. Andrychowicz, S. Dziembowski, and S. Faust. “Circuit Compilers with

O(1/\log (n)) Leakage Rate”. In: Advances in Cryptology - EUROCRYPT 2016

- 35th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part

II. 2016, pp. 586–615.

[11] B. Applebaum, D. Harnik, and Y. Ishai. “Semantic Security under Related-Key

Attacks and Applications”. In: Innovations in Computer Science - ICS 2011, Ts-

inghua University, Beijing, China, January 7-9, 2011. Proceedings. 2011, pp. 45–

60.

[12] M. A. Baig, S. Chakraborty, S. Dziembowski, M. Galazka, T. Lizurej, and

K. Pietrzak. “Efficiently Testable Circuits”. In: 14th Innovations in Theoretical

Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT,

Cambridge, Massachusetts, USA. 2023, 10:1–10:23.

[13] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert. “On the

Cost of Lazy Engineering for Masked Software Implementations”. In: Smart Card

Research and Advanced Applications - 13th International Conference, CARDIS

2014, Paris, France, November 5-7, 2014. Revised Selected Papers. 2014, pp. 64–

81.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and

K. Yang. “On the (im)possibility of obfuscating programs”. In: J. ACM 2 (2012),

6:1–6:48.

[15] E. J Barbeau. Polynomials. 1989.

[16] M. Barbosa and P. Farshim. “The Related-Key Analysis of Feistel Constructions”.

In: Fast Software Encryption - 21st International Workshop, FSE 2014, London,

UK, March 3-5, 2014. Revised Selected Papers. 2014, pp. 265–284.

50

7. Bibliography

[17] G. Barthe, S. Beläıd, G. Cassiers, P. Fouque, B. Grégoire, and F. Standaert.

“maskVerif: Automated Verification of Higher-Order Masking in Presence of

Physical Defaults”. In: Computer Security - ESORICS 2019 - 24th European

Symposium on Research in Computer Security, Luxembourg, September 23-27,

2019, Proceedings, Part I. 2019, pp. 300–318.

[18] G. Barthe, S. Beläıd, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and R.

Zucchini. “Strong Non-Interference and Type-Directed Higher-Order Masking”.

In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-

munications Security, Vienna, Austria, October 24-28, 2016. 2016, pp. 116–129.

[19] G. Barthe, M. Gourjon, B. Grégoire, M. Orlt, C. Paglialonga, and L. Porth.

“Masking in Fine-Grained Leakage Models: Construction, Implementation and

Verification”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2 (2021), pp. 189–

228.

[20] A. Battistello, J. Coron, E. Prouff, and R. Zeitoun. “Horizontal Side-Channel

Attacks and Countermeasures on the ISW Masking Scheme”. In: Cryptographic

Hardware and Embedded Systems - CHES 2016 - 18th International Conference,

Santa Barbara, CA, USA, August 17-19, 2016, Proceedings. 2016, pp. 23–39.

[21] P. Bauspieß, T. Silde, A. Tullot, A. Costache, C. Rathgeb, J. Kolberg, and C.

Busch. “Improved Biometrics-Authenticated Key Exchange”. In: IACR Cryptol.

ePrint Arch. (2022), p. 1408.

[22] P. Bauspieß, T. Silde, M. Poljuha, A. Tullot, A. Costache, C. Rathgeb, J. Kol-

berg, and C. Busch. BRAKE: Biometric Resilient Authenticated Key Exchange.

Cryptology ePrint Archive, Paper 2022/1408. https://eprint.iacr.org/2022/

1408. 2022.

[23] S. Beläıd, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard, and

D. Vergnaud. “Randomness Complexity of Private Circuits for Multiplication”.

In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International

Conference on the Theory and Applications of Cryptographic Techniques,

Vienna, Austria, May 8-12, 2016, Proceedings, Part II. 2016, pp. 616–648.

[24] S. Beläıd, J. Coron, E. Prouff, M. Rivain, and A. R. Taleb. “Random Prob-

ing Security: Verification, Composition, Expansion and New Constructions”. In:

Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptol-

ogy Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020,

Proceedings, Part I. 2020, pp. 339–368.

[25] S. Beläıd, D. Mercadier, M. Rivain, and A. R. Taleb. “IronMask: Versatile Verifi-

cation of Masking Security”. In: 43rd IEEE Symposium on Security and Privacy,

SP 2022, San Francisco, CA, USA, May 22-26, 2022. 2022, pp. 142–160.

51

https://eprint.iacr.org/2022/1408
https://eprint.iacr.org/2022/1408

7. Bibliography

[26] S. Beläıd, M. Rivain, and A. R. Taleb. “On the Power of Expansion: More Effi-

cient Constructions in the Random Probing Model”. In: Advances in Cryptology

- EUROCRYPT 2021 - 40th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,

Proceedings, Part II. 2021, pp. 313–343.

[27] M. Bellare and D. Cash. “Pseudorandom Functions and Permutations Provably

Secure against Related-Key Attacks”. In: Advances in Cryptology - CRYPTO

2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-

19, 2010. Proceedings. 2010, pp. 666–684.

[28] M. Bellare and T. Kohno. “A Theoretical Treatment of Related-Key Attacks:

RKA-PRPs, RKA-PRFs, and Applications”. In: Advances in Cryptology - EU-

ROCRYPT 2003, International Conference on the Theory and Applications of

Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings. 2003,

pp. 491–506.

[29] M. Bellare, D. Pointcheval, and P. Rogaway. “Authenticated Key Exchange Se-

cure against Dictionary Attacks”. In: Advances in Cryptology - EUROCRYPT

2000, International Conference on the Theory and Application of Cryptographic

Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. 2000, pp. 139–155.

[30] M. Bellare and P. Rogaway. “Random Oracles are Practical: A Paradigm for De-

signing Efficient Protocols”. In: CCS ’93, Proceedings of the 1st ACM Conference

on Computer and Communications Security, Fairfax, Virginia, USA, November

3-5, 1993. 1993, pp. 62–73.

[31] S. M. Bellovin and M. Merritt. “Augmented Encrypted Key Exchange: A

Password-Based Protocol Secure against Dictionary Attacks and Password

File Compromise”. In: CCS ’93, Proceedings of the 1st ACM Conference on

Computer and Communications Security, Fairfax, Virginia, USA, November

3-5, 1993. 1993, pp. 244–250.

[32] S. M. Bellovin and M. Merritt. “Encrypted key exchange: password-based proto-

cols secure against dictionary attacks”. In: 1992 IEEE Computer Society Sympo-

sium on Research in Security and Privacy, Oakland, CA, USA, May 4-6, 1992.

1992, pp. 72–84.

[33] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness Theorems for Non-

Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract)”.

In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing,

May 2-4, 1988, Chicago, Illinois, USA. 1988, pp. 1–10.

[34] F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. “New

Techniques for SPHFs and Efficient One-Round PAKE Protocols”. In: Advances

in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Bar-

bara, CA, USA, August 18-22, 2013. Proceedings, Part I. 2013, pp. 449–475.

52

7. Bibliography

[35] S. Berndt, T. Eisenbarth, S. Faust, M. Gourjon, M. Orlt, and O. Seker. “Com-

bined Fault and Leakage Resilience: Composability, Constructions and Com-

piler”. In: IACR Cryptol. ePrint Arch. (2023), p. 1143.

[36] S. Berndt, T. Eisenbarth, S. Faust, M. Gourjon, M. Orlt, and O. Seker. “Com-

bined Fault and Leakage Resilience: Composability, Constructions and Com-

piler”. In: Advances in Cryptology - CRYPTO 2023 - 43rd Annual International

Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,

2023, Proceedings, Part III. 2023, pp. 377–409.

[37] D. J. Bernstein. CAESAR: Competition for Authenticated Encryption: Security,

Applicability, and Robustness. 2004.

[38] F. Berti, S. Faust, and M. Orlt. “Long Paper: Provable Secure Parallel Gadgets”.

In: IACR Cryptol. ePrint Arch. (2023), p. 1182.

[39] F. Berti, S. Faust, and M. Orlt. “Provable Secure Parallel Gadgets”. In: IACR

Trans. Cryptogr. Hardw. Embed. Syst. 4 (2023), pp. 420–459.

[40] F. Berti, C. Guo, T. Peters, Y. Shen, and F. Standaert. “Secure Message Au-

thentication in the Presence of Leakage and Faults”. In: IACR Trans. Symmetric

Cryptol. 1 (2023), pp. 288–315.

[41] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. “Keccak”. In: Advances

in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Athens, Greece, May

26-30, 2013. Proceedings. 2013, pp. 313–314.

[42] R. Bhattacharyya and A. Roy. “Secure Message Authentication Against Related-

Key Attack”. In: Fast Software Encryption - 20th International Workshop, FSE

2013, Singapore, March 11-13, 2013. Revised Selected Papers. 2013, pp. 305–324.

[43] E. Biham and A. Shamir. “Differential Fault Analysis of Secret Key Cryptosys-

tems”. In: Advances in Cryptology - CRYPTO ’97, 17th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,

Proceedings. 1997, pp. 513–525.

[44] A. Biryukov, D. Khovratovich, and I. Nikolic. “Distinguisher and Related-Key

Attack on the Full AES-256”. In: Advances in Cryptology - CRYPTO 2009, 29th

Annual International Cryptology Conference, Santa Barbara, CA, USA, August

16-20, 2009. Proceedings. 2009, pp. 231–249.

[45] R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter.

“Formal Verification of Masked Hardware Implementations in the Presence of

Glitches”. In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,

Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II. 2018, pp. 321–353.

53

7. Bibliography

[46] A. Bogdanov, Y. Ishai, and A. Srinivasan. “Unconditionally Secure Computation

Against Low-Complexity Leakage”. In: Advances in Cryptology - CRYPTO 2019

- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,

August 18-22, 2019, Proceedings, Part II. 2019, pp. 387–416.

[47] D. Boneh, R. A. DeMillo, and R. J. Lipton. “On the Importance of Checking

Cryptographic Protocols for Faults (Extended Abstract)”. In: Advances in Cryp-

tology - EUROCRYPT ’97, International Conference on the Theory and Ap-

plication of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,

Proceeding. 1997, pp. 37–51.

[48] J. Bonneau and I. Mironov. “Cache-Collision Timing Attacks Against AES”. In:

Cryptographic Hardware and Embedded Systems - CHES 2006, 8th International

Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings. 2006, pp. 201–

215.

[49] V. Boyko, P. D. MacKenzie, and S. Patel. “Provably Secure Password-

Authenticated Key Exchange Using Diffie-Hellman”. In: Advances in Cryptology

- EUROCRYPT 2000, International Conference on the Theory and Application

of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding.

2000, pp. 156–171.

[50] T. Bradley, S. Jarecki, and J. Xu. “Strong Asymmetric PAKE Based on Trap-

door CKEM”. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual Inter-

national Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,

Proceedings, Part III. 2019, pp. 798–825.

[51] G. Brian, S. Faust, E. Micheli, and D. Venturi. “Continuously Non-malleable

Codes Against Bounded-Depth Tampering”. In: Advances in Cryptology - ASI-

ACRYPT 2022 - 28th International Conference on the Theory and Application

of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022,

Proceedings, Part IV. 2022, pp. 384–413.

[52] R. Canetti. “Universally Composable Security: A New Paradigm for

Cryptographic Protocols”. In: 42nd Annual Symposium on Foundations of

Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA.

2001, pp. 136–145.

[53] R. Canetti, D. Dachman-Soled, V. Vaikuntanathan, and H. Wee. “Efficient Pass-

word Authenticated Key Exchange via Oblivious Transfer”. In: Public Key Cryp-

tography - PKC 2012 - 15th International Conference on Practice and Theory in

Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings.

2012, pp. 449–466.

54

7. Bibliography

[54] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. “Universally

Composable Password-Based Key Exchange”. In: Advances in Cryptology - EU-

ROCRYPT 2005, 24th Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Pro-

ceedings. 2005, pp. 404–421.

[55] J. Caraco, R. Géraud-Stewart, and D. Naccache. “Kerckhoffs’ Legacy”. In: IACR

Cryptol. ePrint Arch. (2020), p. 556.

[56] G. Cassiers, S. Faust, M. Orlt, and F. Standaert. “Towards Tight Random Prob-

ing Security”. In: IACR Cryptol. ePrint Arch. (2021), p. 880.

[57] G. Cassiers, S. Faust, M. Orlt, and F. Standaert. “Towards Tight Random Prob-

ing Security”. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual Inter-

national Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,

2021, Proceedings, Part III. 2021, pp. 185–214.

[58] G. Cassiers, L. Masure, C. Momin, T. Moos, and F. Standaert. “Prime-Field

Masking in Hardware and its Soundness against Low-Noise SCA Attacks”. In:

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2 (2023), pp. 482–518.

[59] H. Chabanne, G. D. Cohen, and A. Patey. “Secure network coding and non-

malleable codes: Protection against linear tampering”. In: Proceedings of the 2012

IEEE International Symposium on Information Theory, ISIT 2012, Cambridge,

MA, USA, July 1-6, 2012. 2012, pp. 2546–2550.

[60] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. “Towards Sound Approaches

to Counteract Power-Analysis Attacks”. In: Advances in Cryptology - CRYPTO

’99, 19th Annual International Cryptology Conference, Santa Barbara, Califor-

nia, USA, August 15-19, 1999, Proceedings. 1999, pp. 398–412.

[61] E. Chattopadhyay and D. Zuckerman. “Non-malleable Codes against Constant

Split-State Tampering”. In: 55th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014.

2014, pp. 306–315.

[62] T. Chou and C. Orlandi. “The Simplest Protocol for Oblivious Transfer”. In:

Progress in Cryptology - LATINCRYPT 2015 - 4th International Conference on

Cryptology and Information Security in Latin America, Guadalajara, Mexico,

August 23-26, 2015, Proceedings. 2015, pp. 40–58.

[63] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. “Horizontal

Correlation Analysis on Exponentiation”. In: Information and Communications

Security - 12th International Conference, ICICS 2010, Barcelona, Spain, Decem-

ber 15-17, 2010. Proceedings. 2010, pp. 46–61.

55

7. Bibliography

[64] T. D. Cnudde, B. Bilgin, B. Gierlichs, V. Nikov, S. Nikova, and V. Rijmen. “Does

Coupling Affect the Security of Masked Implementations?” In: Constructive Side-

Channel Analysis and Secure Design - 8th International Workshop, COSADE

2017, Paris, France, April 13-14, 2017, Revised Selected Papers. 2017, pp. 1–18.

[65] T. D. Cnudde and S. Nikova. “More Efficient Private Circuits II through Thresh-

old Implementations”. In: 2016 Workshop on Fault Diagnosis and Tolerance in

Cryptography, FDTC 2016, Santa Barbara, CA, USA, August 16, 2016. 2016,

pp. 114–124.

[66] J. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K. Vadnala. “Con-

version of Security Proofs from One Leakage Model to Another: A New Issue”.

In: Constructive Side-Channel Analysis and Secure Design - Third International

Workshop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings.

2012, pp. 69–81.

[67] J. Coron and L. Goubin. “On Boolean and Arithmetic Masking against Differen-

tial Power Analysis”. In: Cryptographic Hardware and Embedded Systems - CHES

2000, Second International Workshop, Worcester, MA, USA, August 17-18, 2000,

Proceedings. 2000, pp. 231–237.

[68] J. Coron, A. Greuet, and R. Zeitoun. “Side-Channel Masking with Pseudo-

Random Generator”. In: Advances in Cryptology - EUROCRYPT 2020 - 39th

Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III.

2020, pp. 342–375.

[69] J. Coron, E. Prouff, M. Rivain, and T. Roche. “Higher-Order Side Channel Se-

curity and Mask Refreshing”. In: Fast Software Encryption - 20th International

Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers.

2013, pp. 410–424.

[70] J. Coron, E. Prouff, and T. Roche. “On the Use of Shamir’s Secret Sharing against

Side-Channel Analysis”. In: Smart Card Research and Advanced Applications -

11th International Conference, CARDIS 2012, Graz, Austria, November 28-30,

2012, Revised Selected Papers. 2012, pp. 77–90.

[71] D. Dachman-Soled and Y. T. Kalai. “Securing Circuits and Protocols against

1/poly(k) Tampering Rate”. In: Theory of Cryptography - 11th Theory of Cryp-

tography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.

Proceedings. 2014, pp. 540–565.

[72] J. Daemen and V. Rijmen. “Resistance against implementation attacks: A com-

parative study of the AES proposals”. In: Proceedings of the Second Advanced

Encryption Standard (AES) Candidate Conference. 1999.

56

7. Bibliography

[73] A. Dehbaoui, J. Dutertre, B. Robisson, and A. Tria. “Electromagnetic Transient

Faults Injection on a Hardware and a Software Implementations of AES”. In: 2012

Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium,

September 9, 2012. 2012, pp. 7–15.

[74] S. Dhooghe and S. Nikova. “My Gadget Just Cares For Me - How NINA Can

Prove Security Against Combined Attacks”. In: IACR Cryptol. ePrint Arch.

(2019), p. 615.

[75] S. Dhooghe and S. Nikova. “My Gadget Just Cares for Me - How NINA Can

Prove Security Against Combined Attacks”. In: Topics in Cryptology - CT-RSA

2020 - The Cryptographers’ Track at the RSA Conference 2020, San Francisco,

CA, USA, February 24-28, 2020, Proceedings. 2020, pp. 35–55.

[76] W. Diffie and M. E. Hellman. “New directions in cryptography”. In: IEEE Trans.

Inf. Theory 6 (1976), pp. 644–654.

[77] C. Dobraunig, M. Eichlseder, H. Groß, S. Mangard, F. Mendel, and R. Primas.

“Statistical Ineffective Fault Attacks on Masked AES with Fault Countermea-

sures”. In: Advances in Cryptology - ASIACRYPT 2018 - 24th International

Conference on the Theory and Application of Cryptology and Information Secu-

rity, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II. 2018,

pp. 315–342.

[78] A. Duc, S. Dziembowski, and S. Faust. “Unifying Leakage Models: From Probing

Attacks to Noisy Leakage”. In: J. Cryptol. 1 (2019), pp. 151–177.

[79] M. Dumont, M. Lisart, and P. Maurine. “Electromagnetic Fault Injection : How

Faults Occur”. In: 2019 Workshop on Fault Diagnosis and Tolerance in Cryptog-

raphy, FDTC 2019, Atlanta, GA, USA, August 24, 2019. 2019, pp. 9–16.

[80] O. Dunkelman, N. Keller, and J. Kim. “Related-Key Rectangle Attack on the Full

SHACAL-1”. In: Selected Areas in Cryptography, 13th International Workshop,

SAC 2006, Montreal, Canada, August 17-18, 2006 Revised Selected Papers. 2006,

pp. 28–44.

[81] P. Dupont, J. Hesse, D. Pointcheval, L. Reyzin, and S. Yakoubov. “Fuzzy

Password-Authenticated Key Exchange”. In: Advances in Cryptology -

EUROCRYPT 2018 - 37th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,

2018 Proceedings, Part III. 2018, pp. 393–424.

[82] S. Dziembowski and S. Faust. “Leakage-Resilient Circuits without Computational

Assumptions”. In: Theory of Cryptography - 9th Theory of Cryptography Confer-

ence, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings. 2012,

pp. 230–247.

57

7. Bibliography

[83] S. Dziembowski, S. Faust, and M. Skorski. “Noisy Leakage Revisited”. In: Ad-

vances in Cryptology - EUROCRYPT 2015 - 34th Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques, Sofia, Bul-

garia, April 26-30, 2015, Proceedings, Part II. 2015, pp. 159–188.

[84] S. Dziembowski, S. Faust, and F. Standaert. “Private Circuits III: Hardware

Trojan-Resilience via Testing Amplification”. In: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, Vienna, Aus-

tria, October 24-28, 2016. 2016, pp. 142–153.

[85] S. Dziembowski, S. Faust, and K. Zebrowski. “Simple Refreshing in the Noisy

Leakage Model”. In: Advances in Cryptology - ASIACRYPT 2019 - 25th Inter-

national Conference on the Theory and Application of Cryptology and Informa-

tion Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III. 2019,

pp. 315–344.

[86] S. Dziembowski and K. Pietrzak. “Leakage-Resilient Cryptography in the Stan-

dard Model”. In: IACR Cryptol. ePrint Arch. (2008), p. 240.

[87] S. Dziembowski, K. Pietrzak, and D. Wichs. “Non-Malleable Codes”. In: Inno-

vations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,

January 5-7, 2010. Proceedings. 2010, pp. 434–452.

[88] J. Ernst and A. Mitrokotsa. “A Framework for UC Secure Privacy Preserving

Biometric Authentication Using Efficient Functional Encryption”. In: Applied

Cryptography and Network Security - 21st International Conference, ACNS 2023,

Kyoto, Japan, June 19-22, 2023, Proceedings, Part II. 2023, pp. 167–196.

[89] A. Erwig, J. Hesse, M. Orlt, and S. Riahi. “Fuzzy Asymmetric

Password-Authenticated Key Exchange”. In: IACR Cryptol. ePrint Arch.

(2020), p. 987.

[90] A. Erwig, J. Hesse, M. Orlt, and S. Riahi. “Fuzzy Asymmetric Password-

Authenticated Key Exchange”. In: Advances in Cryptology - ASIACRYPT 2020

- 26th International Conference on the Theory and Application of Cryptology

and Information Security, Daejeon, South Korea, December 7-11, 2020,

Proceedings, Part II. 2020, pp. 761–784.

[91] S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Standaert. “Compos-

able Masking Schemes in the Presence of Physical Defaults & the Robust Probing

Model”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 3 (2018), pp. 89–120.

[92] S. Faust, K. Hostáková, P. Mukherjee, and D. Venturi. “Non-Malleable Codes for

Space-Bounded Tampering”. In: Advances in Cryptology - CRYPTO 2017 - 37th

Annual International Cryptology Conference, Santa Barbara, CA, USA, August

20-24, 2017, Proceedings, Part II. 2017, pp. 95–126.

58

7. Bibliography

[93] S. Faust, J. Krämer, M. Orlt, and P. Struck. “On the Related-Key Attack Security

of Authenticated Encryption Schemes”. In: IACR Cryptol. ePrint Arch. (2022),

p. 140.

[94] S. Faust, J. Krämer, M. Orlt, and P. Struck. “On the Related-Key Attack Se-

curity of Authenticated Encryption Schemes”. In: Security and Cryptography for

Networks - 13th International Conference, SCN 2022, Amalfi, Italy, September

12-14, 2022, Proceedings. 2022, pp. 362–386.

[95] S. Faust, L. Masure, E. Micheli, M. Orlt, and F. Standaert. “Connecting Leakage-

Resilient Secret Sharing to Practice: Scaling Trends and Physical Dependencies

of Prime Field Masking”. In: Advances in Cryptology - EUROCRYPT 2024 -

43rd Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part

IV. 2024, pp. 316–344.

[96] S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi. “Continuous

Non-malleable Codes”. In: Theory of Cryptography - 11th Theory of

Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26,

2014. Proceedings. 2014, pp. 465–488.

[97] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. “Efficient Non-malleable Codes

and Key-Derivation for Poly-size Tampering Circuits”. In: Advances in Cryptology

- EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,

2014. Proceedings. 2014, pp. 111–128.

[98] S. Faust, K. Pietrzak, and D. Venturi. “Tamper-Proof Circuits: How to Trade

Leakage for Tamper-Resilience”. In: Automata, Languages and Programming -

38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011,

Proceedings, Part I. 2011, pp. 391–402.

[99] J. Feldtkeller, T. Güneysu, T. Moos, J. Richter-Brockmann, S. Saha, P. Sasdrich,

and F. Standaert. “Combined Private Circuits - Combined Security Refurbished”.

In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023.

2023, pp. 990–1004.

[100] J. Feldtkeller, J. Richter-Brockmann, P. Sasdrich, and T. Güneysu. “CINI MI-

NIS: Domain Isolation for Fault and Combined Security”. In: Proceedings of the

2022 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2022, Los Angeles, CA, USA, November 7-11, 2022. 2022, pp. 1023–1036.

[101] I. Florescu. Probability and Stochastic Processes. 2014.

[102] E. Galois. Sur la théorie des nombres. Bulletin des Sciences Mathématiques XIII:

428. 1830.

59

7. Bibliography

[103] B. M. Gammel and S. Mangard. “On the Duality of Probing and Fault Attacks”.

In: J. Electron. Test. 4 (2010), pp. 483–493.

[104] K. Gandolfi, C. Mourtel, and F. Olivier. “Electromagnetic Analysis: Concrete Re-

sults”. In: Cryptographic Hardware and Embedded Systems - CHES 2001, Third

International Workshop, Paris, France, May 14-16, 2001, Proceedings. 2001,

pp. 251–261.

[105] S. Gao and T. D. Mateer. “Additive Fast Fourier Transforms Over Finite Fields”.

In: IEEE Trans. Inf. Theory 12 (2010), pp. 6265–6272.

[106] D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, and E. Tromer. “Circuits resilient

to additive attacks with applications to secure computation”. In: Symposium on

Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,

2014. 2014, pp. 495–504.

[107] D. Genkin, A. Shamir, and E. Tromer. “RSA Key Extraction via Low-Bandwidth

Acoustic Cryptanalysis”. In: Advances in Cryptology - CRYPTO 2014 - 34th

Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,

Proceedings, Part I. 2014, pp. 444–461.

[108] R. Gennaro and Y. Lindell. “A Framework for Password-Based Authenticated

Key Exchange”. In: Advances in Cryptology - EUROCRYPT 2003, International

Conference on the Theory and Applications of Cryptographic Techniques, War-

saw, Poland, May 4-8, 2003, Proceedings. 2003, pp. 524–543.

[109] C. Gentry, P. D. MacKenzie, and Z. Ramzan. “A Method for Making Password-

Based Key Exchange Resilient to Server Compromise”. In: Advances in Cryptol-

ogy - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 20-24, 2006, Proceedings. 2006, pp. 142–159.

[110] O. Goldreich. Foundations of Cryptography: Basic Tools. USA, 2000.

[111] L. Goubin and A. Martinelli. “Protecting AES with Shamir’s Secret Sharing

Scheme”. In: Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th

International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceed-

ings. 2011, pp. 79–94.

[112] L. Goubin and J. Patarin. “DES and differential power analysis the “Duplication”

method”. In: Cryptographic Hardware and Embedded Systems: First Internation-

alWorkshop, CHES’99 Worcester, MA, USA, August 12–13, 1999 Proceedings 1.

Springer. 1999, pp. 158–172.

[113] D. Goudarzi, A. Joux, and M. Rivain. “How to Securely Compute with Noisy

Leakage in Quasilinear Complexity”. In: Advances in Cryptology - ASIACRYPT

2018 - 24th International Conference on the Theory and Application of Cryptol-

ogy and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,

Proceedings, Part II. 2018, pp. 547–574.

60

7. Bibliography

[114] D. Goudarzi, T. Prest, M. Rivain, and D. Vergnaud. “Probing Security through

Input-Output Separation and Revisited Quasilinear Masking”. In: IACR Trans.

Cryptogr. Hardw. Embed. Syst. 3 (2021), pp. 599–640.

[115] V. Goyal, Y. Ishai, and Y. Song. “Private Circuits with Quasilinear Random-

ness”. In: Advances in Cryptology - EUROCRYPT 2022 - 41st Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part III. 2022, pp. 192–

221.

[116] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. “Posei-

don: A New Hash Function for Zero-Knowledge Proof Systems”. In: 30th USENIX

Security Symposium, USENIX Security 2021, August 11-13, 2021. 2021, pp. 519–

535.

[117] L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger. “On a

Generalization of Substitution-Permutation Networks: The HADES Design Strat-

egy”. In: Advances in Cryptology - EUROCRYPT 2020 - 39th Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II. 2020, pp. 674–704.

[118] J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. “Rubato: Noisy Ciphers for Approx-

imate Homomorphic Encryption”. In: Advances in Cryptology - EUROCRYPT

2022 - 41st Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceed-

ings, Part I. 2022, pp. 581–610.

[119] S. Han, S. Liu, and L. Lyu. “Efficient KDM-CCA Secure Public-Key Encryption

for Polynomial Functions”. In: Advances in Cryptology - ASIACRYPT 2016 -

22nd International Conference on the Theory and Application of Cryptology and

Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part

II. 2016, pp. 307–338.

[120] D. G. Harris. “Critique of the related-key attack concept”. In: Des. Codes Cryp-

togr. 1-3 (2011), pp. 159–168.

[121] J. Hesse. “Separating Symmetric and Asymmetric Password-Authenticated Key

Exchange”. In: Security and Cryptography for Networks - 12th International

Conference, SCN 2020, Amalfi, Italy, September 14-16, 2020, Proceedings. 2020,

pp. 579–599.

[122] R. Horn and C. Johnson. Topics in Matrix Analysis. 1994.

[123] K. Hostáková. “Foundations of Generalized State Channel Networks”. PhD the-

sis. Technical University of Darmstadt, Germany, 2021.

[124] J. B. J. Hwang. Introduction to Probability. 2014.

61

7. Bibliography

[125] Y. Ishai, M. Prabhakaran, A. Sahai, and D. A. Wagner. “Private Circuits II:

Keeping Secrets in Tamperable Circuits”. In: Advances in Cryptology - EURO-

CRYPT 2006, 25th Annual International Conference on the Theory and Appli-

cations of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1,

2006, Proceedings. 2006, pp. 308–327.

[126] Y. Ishai, A. Sahai, and D. A. Wagner. “Private Circuits: Securing Hardware

against Probing Attacks”. In: Advances in Cryptology - CRYPTO 2003, 23rd

Annual International Cryptology Conference, Santa Barbara, California, USA,

August 17-21, 2003, Proceedings. 2003, pp. 463–481.

[127] T. Isobe. “A Single-Key Attack on the Full GOST Block Cipher”. In: J. Cryptol.

1 (2013), pp. 172–189.

[128] S. Jarecki, H. Krawczyk, and J. Xu. “OPAQUE: An Asymmetric PAKE Pro-

tocol Secure Against Pre-computation Attacks”. In: Advances in Cryptology -

EUROCRYPT 2018 - 37th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,

2018 Proceedings, Part III. 2018, pp. 456–486.

[129] Y. T. Kalai, B. Kanukurthi, and A. Sahai. “Cryptography with Tamperable and

Leaky Memory”. In: Advances in Cryptology - CRYPTO 2011 - 31st Annual

Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceed-

ings. 2011, pp. 373–390.

[130] D. Kalman. “The Generalized Vandermonde Matrix”. In: Mathematics Magazine

1 (1984), pp. 15–21. (Visited on 11/23/2023).

[131] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.

2nd. 2014.

[132] J. Katz, R. Ostrovsky, and M. Yung. “Efficient Password-Authenticated Key

Exchange Using Human-Memorable Passwords”. In: Advances in Cryptology -

EUROCRYPT 2001, International Conference on the Theory and Application of

Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding. 2001,

pp. 475–494.

[133] J. Katz and V. Vaikuntanathan. “Round-Optimal Password-Based Authenticated

Key Exchange”. In: J. Cryptol. 4 (2013), pp. 714–743.

[134] A. Kerckhoffs. “La cryptographie militaire”. In: Journal des sciences militaires,

vol. IX, Paris. 1883, pp. 5–38.

[135] A. Kiayias and Y. Tselekounis. “Tamper Resilient Circuits: The Adversary at

the Gates”. In: Advances in Cryptology - ASIACRYPT 2013 - 19th International

Conference on the Theory and Application of Cryptology and Information Secu-

rity, Bengaluru, India, December 1-5, 2013, Proceedings, Part II. 2013, pp. 161–

180.

62

7. Bibliography

[136] S. Kiyoshima. “Round-Efficient Black-Box Construction of Composable Multi-

Party Computation”. In: J. Cryptol. 1 (2019), pp. 178–238.

[137] D. Knichel, P. Sasdrich, and A. Moradi. “SILVER - Statistical Independence

and Leakage Verification”. In: Advances in Cryptology - ASIACRYPT 2020 -

26th International Conference on the Theory and Application of Cryptology and

Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings,

Part I. 2020, pp. 787–816.

[138] P. C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems”. In: Advances in Cryptology - CRYPTO ’96, 16th Annual

International Cryptology Conference, Santa Barbara, California, USA, August

18-22, 1996, Proceedings. 1996, pp. 104–113.

[139] P. C. Kocher, J. Jaffe, and B. Jun. “Differential Power Analysis”. In: Advances

in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,

Santa Barbara, California, USA, August 15-19, 1999, Proceedings. 1999, pp. 388–

397.

[140] B. Koo, D. Hong, and D. Kwon. “Related-Key Attack on the Full HIGHT”. In:

Information Security and Cryptology - ICISC 2010 - 13th International Confer-

ence, Seoul, Korea, December 1-3, 2010, Revised Selected Papers. 2010, pp. 49–

67.

[141] F. Liu and A. Lysyanskaya. “Tamper and Leakage Resilience in the Split-State

Model”. In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology

Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. 2012,

pp. 517–532.

[142] R. S. (London). Philosophical Transactions of the Royal Society of London: Giv-

ing Some Accounts of the Present Undertakings, Studies, and Labours, of the

Ingenious, in Many Considerable Parts of the World. Bd. 148, pp. 17–37.

[143] X. Lu, B. Li, and D. Jia. “KDM-CCA Security from RKA Secure Authenticated

Encryption”. In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. 2015, pp. 559–

583.

[144] S. Mangard, T. Popp, and B. M. Gammel. “Side-Channel Leakage of Masked

CMOS Gates”. In: Topics in Cryptology - CT-RSA 2005, The Cryptographers’

Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18,

2005, Proceedings. 2005, pp. 351–365.

[145] S. Mangard, N. Pramstaller, and E. Oswald. “Successfully Attacking Masked AES

Hardware Implementations”. In: Cryptographic Hardware and Embedded Systems

- CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 - Septem-

ber 1, 2005, Proceedings. 2005, pp. 157–171.

63

7. Bibliography

[146] L. Masure, P. Méaux, T. Moos, and F. Standaert. “Effective and Efficient Masking

with Low Noise Using Small-Mersenne-Prime Ciphers”. In: Advances in Cryptol-

ogy - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023,

Proceedings, Part IV. 2023, pp. 596–627.

[147] T. S. Messerges. “Securing the AES Finalists Against Power Analysis Attacks”.

In: Fast Software Encryption, 7th International Workshop, FSE 2000, New York,

NY, USA, April 10-12, 2000, Proceedings. 2000, pp. 150–164.

[148] A. Muffet. “Facebook: Password hashing & authentication”. In: Real World

Crypto. 2015.

[149] C. Namprempre, P. Rogaway, and T. Shrimpton. “Reconsidering Generic Compo-

sition”. In: Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Copenhagen, Denmark, May 11-15, 2014. Proceedings. 2014, pp. 257–274.

[150] National Institute of Standards and Technology. Lightweight cryptography stan-

dardization process. 2015.

[151] N. Pippenger. “On Networks of Noisy Gates”. In: 26th Annual Symposium on

Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985.

1985, pp. 30–38.

[152] T. Prest, D. Goudarzi, A. Martinelli, and A. Passelègue. “Unifying Leakage Mod-

els on a Rényi Day”. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,

2019, Proceedings, Part I. 2019, pp. 683–712.

[153] E. Prouff and M. Rivain. “Masking against Side-Channel Attacks: A Formal Se-

curity Proof”. In: Advances in Cryptology - EUROCRYPT 2013, 32nd Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Athens, Greece, May 26-30, 2013. Proceedings. 2013, pp. 142–159.

[154] E. Prouff and T. Roche. “Higher-Order Glitches Free Implementation of the

AES Using Secure Multi-party Computation Protocols”. In: Cryptographic Hard-

ware and Embedded Systems - CHES 2011 - 13th International Workshop, Nara,

Japan, September 28 - October 1, 2011. Proceedings. 2011, pp. 63–78.

[155] S. Rasoolzadeh, A. R. Shahmirzadi, and A. Moradi. “Impeccable Circuits III”.

In: IEEE International Test Conference, ITC 2021, Anaheim, CA, USA, October

10-15, 2021. 2021, pp. 163–169.

[156] I. S. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields”. In:

Journal of the Society for Industrial and Applied Mathematics 2 (1960), pp. 300–

304. eprint: https://doi.org/10.1137/0108018.

64

https://doi.org/10.1137/0108018

7. Bibliography

[157] E. Rescorla. “The Transport Layer Security (TLS) Protocol Version 1.3”. In:

RFC (2018), pp. 1–160.

[158] J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich, and T. Güneysu. “VERICA

- Verification of Combined Attacks Automated formal verification of security

against simultaneous information leakage and tampering”. In: IACR Trans. Cryp-

togr. Hardw. Embed. Syst. 4 (2022), pp. 255–284.

[159] M. Rivain and E. Prouff. “Provably Secure Higher-Order Masking of AES”. In:

Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International

Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings. 2010,

pp. 413–427.

[160] T. Roche and E. Prouff. “Higher-order glitch free implementation of the AES us-

ing Secure Multi-Party Computation protocols - Extended version”. In: J. Cryp-

togr. Eng. 2 (2012), pp. 111–127.

[161] P. Rogaway. “Nonce-Based Symmetric Encryption”. In: Fast Software Encryp-

tion, 11th International Workshop, FSE 2004, Delhi, India, February 5-7, 2004,

Revised Papers. 2004, pp. 348–359.

[162] T. Schneider, A. Moradi, and T. Güneysu. “ParTI - Towards Combined Hard-

ware Countermeasures Against Side-Channel and Fault-Injection Attacks”. In:

Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II.

2016, pp. 302–332.

[163] O. Seker, A. Fernandez-Rubio, T. Eisenbarth, and R. Steinwandt. “Extending

Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks”. In: IACR

Trans. Cryptogr. Hardw. Embed. Syst. 3 (2018), pp. 394–430.

[164] A. R. Shahmirzadi, S. Rasoolzadeh, and A. Moradi. “Impeccable Circuits II”.

In: 57th ACM/IEEE Design Automation Conference, DAC 2020, San Francisco,

CA, USA, July 20-24, 2020. 2020, pp. 1–6.

[165] A. Shamir. “Cryptography: State of the Science”. In: ACM A.M. Turing Award

Lecture. 2002.

[166] A. Shamir. “How to Share a Secret”. In: Commun. ACM 11 (1979), pp. 612–613.

[167] S. P. Skorobogatov and R. J. Anderson. “Optical Fault Induction Attacks”. In:

Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International

Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. 2002,

pp. 2–12.

[168] S. Vaudenay. “Clever Arbiters Versus Malicious Adversaries - On the Gap Be-

tween Known-Input Security and Chosen-Input Security”. In: The New Code-

breakers - Essays Dedicated to David Kahn on the Occasion of His 85th Birthday.

2016, pp. 497–517.

65

7. Bibliography

[169] C. D. Walter. “Sliding Windows Succumbs to Big Mac Attack”. In: Cryptographic

Hardware and Embedded Systems - CHES 2001, Third International Workshop,

Paris, France, May 14-16, 2001, Proceedings. 2001, pp. 286–299.

[170] M. Wang, K. He, J. Chen, Z. Li, W. Zhao, and R. Du. “Biometrics-Authenticated

Key Exchange for Secure Messaging”. In: CCS ’21: 2021 ACM SIGSAC Con-

ference on Computer and Communications Security, Virtual Event, Republic of

Korea, November 15 - 19, 2021. 2021, pp. 2618–2631.

[171] E. Waring. “Problems concerning interpolations”. In: Philosophical Transactions

of the Royal Society, pp. 59–67.

[172] K. Xagawa. “Message Authentication Codes Secure against Additively Related-

Key Attacks”. In: IACR Cryptol. ePrint Arch. (2013), p. 111.

[173] A. L. Young and M. Yung. “The Dark Side of ”Black-Box” Cryptography, or:

Should We Trust Capstone?” In: Advances in Cryptology - CRYPTO ’96, 16th

Annual International Cryptology Conference, Santa Barbara, California, USA,

August 18-22, 1996, Proceedings. 1996, pp. 89–103.

[174] J. G. Zehfuss. “Ueber eine gewisse Determinante”. In: Zeitschrift für Mathematik

und Physik. 1858, pp. 298–301.

[175] J. Zeitschner, N. Müller, and A. Moradi. “PROLEAD SW Probing-Based Soft-

ware Leakage Detection for ARM Binaries”. In: IACR Trans. Cryptogr. Hardw.

Embed. Syst. 3 (2023), pp. 391–421.

[176] L. Zussa, J. Dutertre, J. Clédière, and A. Tria. “Power supply glitch induced

faults on FPGA: An in-depth analysis of the injection mechanism”. In: 2013

IEEE 19th International On-Line Testing Symposium (IOLTS), Chania, Crete,

Greece, July 8-10, 2013. 2013, pp. 110–115.

66

List of Figures

1.1. Content overview of this thesis . 5

2.1. Function f(a, b) = (a, a+ b) described in the different models 10

2.2. Sequential C = G1 ◦ G0 and parallel composition C = G1||G0.. 16

3.1. The security upper bounds of masked circuits. The first two plots

give the security of a cubing operation. The left plot comes from

PDT composition while the middle plot is a direct security evalua-

tion of the full circuit. The right plot shows the security of the full

AES S-Box. (Figures of [57]) . 26

4.1. faPAKE Protocol (Figure of [90]) . 32

4.2. The AEAD schemes of [149]. (Figures of [94]) 37

4.3. The AEAD scheme N ∗. (Figure of [94]) 38

5.1. Structures of our multiplication gadget defined in [36] and the mul-

tiplication gadget used in [163]. (Figure of [36]) 42

67

List of Tables

2.1. Example gates of a circuit. (∗) Sometimes gates are defined with

arbitrary fan-out to avoid copy gates 11

68

List of Abbreviations

PDT Probe Distribution Table

DG Dependency Graph

faPAKE Fuzzy Asymmetric Password-Authenticated Key Exchange

aPAKE Asymmetric Password-Authenticated Key Exchange

fPAKE Fuzzy Password-Authenticated Key Exchange

PAKE Password-Authenticated Key Exchange

UC Universal Composability

E&M Encrypt-and-MAC

EtM Encrypt-then-MAC

MtE MAC-then-Encrypt

GGM Generic Group Model

STRAPS Sampled Testing of the RAndom Probing Security

RKA Related-Key Attack

OT Oblivious Transfer

AEAD Authenticated Encryption with Associated Data

69

A. Towards Tight Random Probing
Security

This chapter corresponds to our published article at CRYPTO 2021 [57], with

minor edits. Our full version can be found in [56].

70

Towards Tight Random Probing Security

Gaëtan Cassiers1, Sebastian Faust2,
Maximilian Orlt2, François-Xavier Standaert1

1 Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
2 TU Darmstadt, Darmstadt, Germany

Abstract. Proving the security of masked implementations in theoretical models that are relevant to
practice and match the best known attacks of the side-channel literature is a notoriously hard problem.
The random probing model is a promising candidate to contribute to this challenge, due to its ability
to capture the continuous nature of physical leakage (contrary to the threshold probing model), while
also being convenient to manipulate in proofs and to automate with verification tools. Yet, despite
recent progress in the design of masked circuits with good asymptotic security guarantees in this
model, existing results still fall short when it comes to analyze the security of concretely useful circuits
under realistic noise levels and with low number of shares. In this paper, we contribute to this issue by
introducing a new composability notion, the Probe Distribution Table (PDT), and a new tool (called
STRAPS, for the Sampled Testing of the RAndom Probing Security). Their combination allows us to
significantly improve the tightness of existing analyses in the most practical (low noise, low number of
shares) region of the design space. We illustrate these improvements by quantifying the random probing
security of an AES S-box circuit, masked with the popular multiplication gadget of Ishai, Sahai and
Wagner from Crypto 2003, with up to six shares.

1 Introduction

Context. Modern cryptography primarily analyzes the security of algorithms or protocols in a black-box
model where the adversary has only access to their inputs and outputs. Since the late nineties, it is known
that real-world implementations suffer from so-called side-channel leakage, which gives adversaries some
information about intermediate computation states that are supposedly hidden. In this work, we focus on
an important class of side-channel attacks against embedded devices, which exploits physical leakage such
as their power consumption [26] or electro-magnetic radiation [22]. We are in particular concerned with
the masking countermeasure [14], which is one of the most investigated solutions to mitigate side-channel
attacks. In this context, the main scientific challenge we tackle is to find out security arguments that are at
the same time practically relevant and theoretically sound.

Two separated worlds. In view of the difficulty to model side-channel attacks, their practical and theoret-
ical investigations have first followed quite independent paths. On the practical side, the analysis of masked
implementations as currently performed by evaluation laboratories is mostly based on statistical testing.
Approaches for this purpose range from detection-based testing, which aims at identifying leakage indepen-
dently of whether it can be exploited [32], to attack-based testing under various adversarial assumptions,
which aims at approximating (if possible bounding) the concrete security level of the implementation with
actual (profiled or non-profiled) attacks such as [15,11] and their numerous follow ups. On the theoretical
side, the first model introduced to capture the security of masked implementations is the t-threshold probing
model introduced by Ishai, Sahai and Wagner (ISW) [24]. In this model, leaky computation is captured as
the evaluation of an arithmetic circuit, and the adversary may choose t wires of the circuit for which she
receives the value they carry. The adversary succeeds if she recovers a secret input variable of the circuit.

The pros and cons of both approaches are easy to spot. On the one hand, statistical testing provides
quantitative evaluations against concrete adversaries, but the guarantees it offers are inherently heuristic
and limited to the specific setting used for the evaluations. On the other hand, theoretical models enable
more general conclusions while also having a good potential for automation [5], but they may imperfectly
abstract physical leakage. For some imperfections, tweaking the model appeared to be feasible. For example,

ISW’s threshold probing model initially failed to capture physical defaults such as glitches that can make
masking ineffective [27,28]. Such glitches were then integrated in the model [21] and automated [10,4,6].
Yet, it remained that the threshold probing model is inherently unable to capture the continuous nature
of physical leakage, and therefore the guarantees it provides can only be qualitative, as reflected by the
notion of probing security order (i.e., the number of shares that the adversary can observe without learning
any sensitive information). This also implies that so-called horizontal attacks taking advantage of multiple
leakage points to reduce the noise of the implementations cannot be captured by this model [7].

An untight unifying approach. As a result of this limitation, the noisy leakage model was introduced
by Prouff and Rivain [30]. In this model, each wire in the circuit leaks independently a noisy (i.e., partially
randomized) value to the adversary. In an important piece of work, Duc et al. then proved that security
in the threshold probing model implies security in the noisy leakage model, for some values of the model
parameters [17]. This result created new bridges between the practical and theoretical analyzes of masked
implementations. In particular, it made explicit that the security of this countermeasure depends both on
a security order (which, under an independence assumption, depends on the number of shares) and on the
noise level of the shares’ leakage. So conceptually, it implies that it is sound to first evaluate the probing
security order of an implementation, next to verify that this security order is maintained in concrete leakages
(e.g., using detection-based statistical testing) and finally to assess the noise level. Yet, and as discussed
in [18], such an analysis is still not tight: choosing security parameters based on this combination of models
and the reductions connecting them would lead to overly expensive implementations compared to a choice
based on the best known (profiled) side-channel attacks.

A tighter middle-ground. Incidentally, the reduction of Duc et al. also considered an intermediate level
of abstraction denoted as the random probing model. In this model, each wire in the circuit independently
leaks its value with probability p (and leaks no information with probability 1− p). Technically, it turns out
that the aforementioned tightness issue is mostly due to the reduction from the threshold probing model to
the random probing model, while there is a closer relationship between the random probing model and the
noisy leakage model [19,29]. Since the random probing model remains relatively easy to manipulate (and
automate) in circuit-level proofs, it therefore appears as an interesting candidate to analyze masking schemes
with tight security guarantees.

Like the noisy leakage model, the random probing model captures the concept of “noise rate”, which
specifies how the noise level of an implementation must evolve with the number of shares in order to remain
secure against horizontal attacks. As a result, different papers focused on the design and analysis of gadgets
with good (ideally constant) noise rate [1,3,2,23,20]. While these papers provide important steps in the
direction of asymptotically efficient masking schemes, the actual number of shares they need to guarantee a
given security level and/or the noise level they require to be secure remain far from practical. To the best
of our knowledge, the most concrete contribution in this direction is the one of Beläıd et al. [8,9], which
introduced a compiler that can generate random probing secure circuits from small gadgets satisfying a
notion of “random probing expandability”, together with a tool (called VRAPS) that quantifies the random
probing security of a circuit from its leakage probability. With this tool, they reduce the level of noise required
for security to practically acceptable values, but the number of shares required in order to reach a given
security level for their (specialized) constructions is still significantly higher than expected from practical
security evaluations – we give an example below.

Our contributions. In this paper, we improve the tightness of masking security proofs in the most practical
(low noise, low number of shares) region of the design space, focusing on practical ISW-like multiplication
gadgets, integrated in an AES S-box design for illustration purposes. More precisely:

We first introduce STRAPS, a tool for the Sampled Testing of the RAndom Probing Security of small
circuits, which uses the Monte-Carlo technique for probability bounding and is released under an open source
license.1

Since this tool is limited to the analysis of small circuits and/or small security orders due to computational
reasons, we next combine it with a new compositional strategy that exploits a new security property for

1 https://github.com/cassiersg/STRAPS

2

masked gadgets, the Probe Distribution Table (PDT), which gives tighter security bounds for composed
circuits and is integrated in the STRAPS tool. This combination of tool and compositional strategy allows
us analyzing significantly larger circuits and security orders than an exhaustive approach, while also being
able to analyze any circuit (i.e., it does not rely on an expansion strategy [2]).

We finally confirm the practical relevance of our findings by applying them to a masked AES S-box using
ISW gadgets. We show how to use them in order to discuss the trade-off between the security order and the
noise level (i.e., leakage probability) of concrete masked implementations on formal bases. As an illustration,
we use our tools to compare the impact of different refreshing strategies for the AES S-box (e.g., no refresh,
simple refreshes or SNI refreshes) in function of the noise level. We can also claim provable security levels for
useful circuits that are close to the worst-case attacks discussed in [18] which is in contrast to previous works.
Precisely, we are able to prove the same statistical security order (i.e., the highest statistical moment of the
leakage distribution that is independent of any sensitive information) as in this reference, for realistic leakage
probabilities in the range [10−1; 10−4]. For example, our AES S-box with 6 shares and leakage probability of
≈ 10−3 ensures security against an adversary with up to one billion measurements. Beläıd et al. would need
27 shares to reach the same security.

Open problems and related works.While providing tight results for a masked AES S-box implementation
with up to 6 shares, therefore opening the way towards tight random probing security in general, we note
that our composition results are not completely tight in certain contexts which (we discuss in the paper
and) could pop up in other circuits than the AES S-box. Hence, generalizing our results to be tight for any
circuit is an interesting open problem and the same holds for optimizing the complexity of our verification
techniques in order to scale with even larger circuits and number of shares.

Besides, we illustrated our results with the popular ISWmultiplications in order to show their applicability
to non-specialized gadgets, which are concretely relevant for the number of shares and noise levels we consider.
Yet, since one of the motivations to use the random probing model is to capture horizontal attacks, it would
also be interesting to analyze multiplication algorithms that provide improved guarantees against such attacks
thanks to a logarithmic or even constant noise rate and could not be proven so far (e.g., [7,13]).

2 Background

Notations. In this work, we consider Boolean or arithmetic circuits over finite fields F2m and refer to the
underlying additive and multiplicative operations as ⊕ and ⊙, respectively. For the sake of simplicity we also
use these operations for a share-wise composition of vectors (vi)i∈[n] and (wi)i∈[n] with [n] = {0, 1, . . . , n−1}
such that (vi)i∈[n] ⊙ (wi)i∈[n] := (vi ⊙ wi)i∈[n] and (vi)i∈[n] ⊕ (wi)i∈[n] := (vi ⊕ wi)i∈[n]. Furthermore, we
use the Kronecker product to compose two real matrices A = (ai,j)i∈[m],j∈[n], B = (bi,j)i∈[k],j∈[l] such that

A ⊗ B = (ai,jB)i∈[m],j∈[n]. We also denote x
$←− X as choosing x uniformly at random from the set X , and

X (k) as the set of subsets of X of size k.

Masking. Masking is a well known countermeasure against side-channel attacks. With an encoding scheme
(Enc(·),Dec(·)), sensitive data x is split into n shares (represented as a vector) (xi)i∈[n] ← Enc(x), and the
decoding function takes as input the n shares and recovers the unshared value x, i.e., x← Dec((xi)i∈[n]). For
security we require that any subset of n− 1 shares does not reveal any information about the sensitive data
x. In this work, we focus on additive sharing Dec((xi)i∈[n]) =

⊕n−1
i=0 xi, which is the most studied scheme.

Circuit model. As common in masking scheme literature, we model computation as arithmetic circuits
operating over a finite field F2m . The circuit is represented by a directed acyclic graph, where each node is a
gate that has a fixed number of input and output wires (incoming and outgoing edges) that carry arithmetic
values. We consider the following types of gates in our circuits: addition + and multiplication · gates
have two input wires and one output wire, and perform the corresponding arithmetic operation. The copy
gate C has one input and two outputs, and is used to duplicate a value. Finally, the random gate R has no
input and one output, which carries a uniformly distributed value. The constant gate a outputs a constant
value a.

3

In a masked circuit the gates are represented by subcircuits called gadgets G. These gadgets operate
on encoded inputs and produce encoded outputs. The gadgets contain: (1) A set of gates; (2) The set of
wires that connect the inputs and outputs of those gates named internal wires (W); (3) The set of wires
only connected with those gates’ input named input wires (I); (4) The set of output gates Ô (which is the
subset of its gates that output wires that are not connected to another gate of the gadget). The gadgets,
however, contain no output wires, such that each wire in a circuit composed of multiple gadgets belongs
to only one of its composing gadgets. For convenience, we also write O for the set of output wires of the
gates in Ô, although these wires are not part of the gadget but are the next gadgets input wires. We denote
A =W∪I the set of all wires in the gadget. The inputs and outputs of a gadget are partitioned in (ordered)
sets of n elements named sharings (and each element is a share). A gadget Gf that implements the function
f : Fl 7→ Fk with n shares has l input sharings and k output sharings. Let (y0i)i∈[n], . . . , (y

k−1
i)i∈[n] be the

values of the output sharings when the input sharings have the values (x0
i)i∈[n], . . . , (x

l−1
i)i∈[n]. It must hold

that
f(Dec((x0

i)i∈[n]), . . . ,Dec((x
l−1
i)i∈[n])) = (Dec((y0i)i∈[n]), . . . ,Dec((y

k−1
i)i∈[n])).

In this work, we use various gadgets. First, gadgets that implement linear operations (addition G⊕, copy
G C , squaring G·2), which we implement share-wise. Next, we use the ISW multiplication gadget [24]. Finally,

we use refresh gadgets G R which re-randomize a sharing (xi)i∈[n] to (yi)i∈[n] such that Dec((xi)i∈[n]) =

Dec((yi)i∈[n]). We consider two refresh gadget implementations: the simple refresh and the SNI, randomness-
optimized refresh gadgets from [12]. Their algorithmic description is given in the extended version of the
paper .

Leakage model. In this work we consider the p-random probing model as originally introduced by Ishai,
Sahai and Wagner [24]. This model defines the following random probing experiment. Let W be a set
of wires in a circuit, Lp(W) is a random variable with Lp(W) ⊆ W, such that each wire w ∈ W is in
Lp(W) with probability p (independently for each wire). Following this notation, for a gadget G, we denote
by Lp(G) := Lp(W, I) := (Lp(W),Lp(I)), where W and I are the set of internal and input wires of G,
respectively.

For a gadget G, a set of probes is a successful attack for an input sharing (xi)i∈[n] if the joint distribution
of the values carried by the probes depends on Dec((xi)i∈[n]) (assuming that the other input sharings are
public). The security level of G in the p-random probing model (or p-random probing security) with respect
to an input sharing (xi)i∈[n] is the probability (over the randomness in Lp) that a set of probes Lp(G) is
a successful attack. As a result, the security of a gadget in bits is worth − log2(security level). We omit to
mention the attacked input sharing when the gadget has only one input sharing.

3 Random probing security of small circuits

In this section, we show how to efficiently compute an upper bound on the random probing security level of
relatively small gadgets, and we illustrate the results on well-known masked gadgets. We also describe the
high-level ideas that will lead to the STRAPS tool that we describe in Section 5.3.

3.1 Derivation of a random probing security bound

We first derive a way to compute the security level of a gadget for various values of p, using some compu-
tationally heavy pre-processing. Next, we explain a way to use statistical confidence intervals to reduce the
cost of the pre-processing. Finally, we detail how these techniques are implemented in a practical algorithm.

A simple bound. We can obtain the security level of a small circuit by computing first the statistical dis-
tribution of Lp(G) (i.e., Pr[Lp(A) = A′] for each subset A′ ⊂ A). Then, for each possible set of probes A′,
we do a dependency test in order to determine if the set is a successful attack, denoted as δA′ = 1, while
δA′ = 0 otherwise [8]. There exist various tools that can be used to carry out such a dependency test, such

4

as maskVerif [4] or SILVER [25] (while such tools are designed to prove threshold probing security, they
perform dependency tests as a sub-routine). A first naive algorithm to compute the security level ϵ is thus
given by the equation

ϵ =
∑

A′⊂A
s.t. δA′=1

Pr[Lp(A) = A′]. (1)

The computational cost of iterating over all possible probe sets grows exponentially with |A|: for a circuit
with |A| internal wires, one has to do 2|A| dependency tests, for each value of p (e.g., we have |A| = 57
for the ISW multiplication with three shares). To efficiently cover multiple values of p, we introduce a first
improvement to the naive algorithm given by Equation (1). For each i ∈ {0, . . . , |A|}, we compute the number
ci of sets of probes of size i that are successful attacks ci =

∣∣{A′ ∈ A(i) s.t. δA′ = 1
}∣∣. Then, we can compute

ϵ =

|A|∑

i=0

pi(1− p)|A|−ici, (2)

which gives us a more efficient algorithm to compute random probing security, since it re-uses the costly
computation of ci for multiple values of p.

The VRAPS tool [8] computes ci for small values of i by computing δA′ for all A′ ∈ A(i). This is however
computationally intractable for larger i values, hence they use the bound ci ≤

(|A|
i

)
in such cases.

A statistical bound. Let us now show how to improve the bound ci ≤
(|A|

i

)
while keeping a practical

computational cost. At a high level, we achieve this by using a Monte-Carlo method whose idea is as follows:
instead of computing directly ϵ, we run a randomized computation that gives us information about ϵ (but not
its exact value). More precisely, the result of our Monte-Carlo method is a random variable ϵU that satisfies
ϵU ≥ ϵ with probability at least 1−α (the confidence level), where α is a parameter of the computation. That
is, PrMC

[
ϵU ≥ ϵ

]
≥ 1−α, where PrMC means the probability over the randomness used in the Monte-Carlo

method.2 In the rest of this work, we use α = 10−6 since we consider that it corresponds to a sufficient
confidence level.3

Let us now detail the method. First, let ri = ci/
∣∣A(i)

∣∣. We remark that ri can be interpreted as a
probability: ri = Pr

A′ $←−A(i)
[δA′ = 1]. The Monte-Carlo method actually computes rUi such that rUi ≥ ri

with probability at least 1− α/ (|A|+ 1). Once the rUi are computed, the result is

ϵU =

|A|∑

i=0

pi(1− p)|A|−i
(
|A|
i

)
rUi , (3)

which ensures that ϵU ≥ ϵ for any p with confidence level 1 − α, thanks to the union bound. Next, rUi

is computed by running the following experiment: take ti samples A′ $←− A(i) uniformly at random (this
sampling is the random part of the Monte-Carlo method) and compute the number si of samples for which
δA′ = 1. By definition, si is a random variable that follows a binomial distribution B(ti, ri): the total number
of samples is ti and the “success” probability is ri. We can thus use the bound derived in [33]. If rUi satisfies
CDFbinom(si; ti, r

U
i) = α/ (|A|+ 1), then Pr[rUi ≥ ri] = 1− α/ (|A|+ 1), which gives

rUi =

{
1 if si = ti,

x s.t. Ix(si + 1, ti − si) = 1− α/ (|A|+ 1) otherwise,
(4)

2 In other words, [0, ϵU] is a conservative confidence interval for ϵ with nominal coverage probability of 1− α.
3 This parameter is not critical: we can obtain a similar value for ϵU with higher confidence level by increasing the
amount of computation: requiring α = 10−12 would roughly double the computational cost of the Monte-Carlo
method.

5

where Ix(a, b) is the regularized incomplete beta function. We can similarly compute a lower bound ϵL such
that ϵL ≤ ϵ with confidence coefficient 1 − α, which we compute by replacing rUi with rLi in Equation (3),
where:

rLi =

{
0 if si = 0,

x s.t. Ix(si, ti − si + 1) = α/ (|A|+ 1) otherwise.
(5)

A hybrid algorithm. Our Monte-Carlo method has a main limitation: when ri = 0 the bound rUi will not
be null (it will be proportional to 1/ti). This means that we cannot prove tightly the security of interesting
gadgets when p is small. For instance, let us take a fourth-order secure gadget (that is, r0 = r1 = r2 = r3 =
r4 = 0). If rU1 ̸= 1, then ϵU scales like rU1 p as p becomes small (other, higher degree, terms become negligible).
A solution to this problem would be to set ti to a large number, such that, in our example, rU1 would be
small enough to guarantee that rU1 p ≪ r5p

5 for all considered values of p. If we care about p = 10−3, this
means rU1 ≪ 10−12 · r5 ≤ 10−12. This is however practically infeasible since the number of samples t1 is of
the order of magnitude 1/rU1 > 1012.

There exist another solution, which we call the hybrid algorithm: perform a full exploration of A(i) (i.e.,
use the algorithm based on Equation (2)) when it is not computationally too expensive (i.e., when

∣∣A(i)
∣∣

is below some limit Nmax), and otherwise use the Monte-Carlo method. The goal of this hybrid algorithm
is to perform a full exploration when ri = 0 (in order to avoid the limitation discussed above), which can
be achieved for gadgets with a small number n of shares. Indeed, ri can be null only for i < n (otherwise
there can be probes on all the shares of the considered input sharing), and the number of cases for the full

exploration is therefore
∣∣A(i)

∣∣ =
(|A|

i

)
≤
(
|A|
n−1

)
, which is smaller than Nmax if n and |A| are sufficiently

small. The latter inequality holds if |A| ≥ 2(n− 1), which holds for all non-trivial gadgets.

Algorithm 1 Random probing security algorithm: compute rUi , r
L
i for a given A and i. The parameters are

Nmax and Nt.

Require Nt ≤ Nmax

Nsets =
(|A|

i

)

ti ← 1, si ← 0 ▷ ti: total number of samples, si: successful attacks
while ti ≤ Nmax ∧ si < Nt do ▷ First Monte-Carlo sampling loop

A′ $←− A(i)

if δA′ = 1 then
si ← si + 1.

ti ← ti + 1

if Nsets ≤ ti then ▷ Enumerate A(i) if it is cheaper than Monte-Carlo.
si ← 0
for all A′ ∈ A(i) do

if δA′ = 1 then
si ← si + 1

rUi ← si/Nsets, r
L
i ← si/Nsets

else ▷ Re-run Monte-Carlo to avoid bias due to Nt early stopping.
si ← 0
Repeat ti times

A′ $←− A(i)

if δA′ = 1 then
si ← si + 1

Compute rUi and rLi using Equations (4) and (5).

Algorithm 1 describes how we choose between full enumeration and Monte-Carlo sampling, which is the
basis of our STRAPS tool (see Section 5.3 for more details). The algorithm adds a refinement on top of the

6

above explanation: if we can cheaply show that ri is far from zero, we do not perform full exploration even
if it would not be too expensive. It accelerates the tool, while keeping a good bound. This optimization is
implemented by always starting with a Monte-Carlo sampling loop that takes at most Nmax samples, with an
early stop if si goes above the value of a parameter Nt (we typically use parameters such that Nmax ≫ Nt).
The parameter Nt determines the relative accuracy of the bound we achieve when we do the early stop: in
the final sampling, we will have si ≈ Nt, which means that the uncertainty on ri decreases as Nt increases.
The parameter Nmax has an impact when ri is small and we do not reach Nt successful attacks: it limits
both the maximum size of A(i) for which full exploration is performed, and the number of samples used for
the Monte-Carlo method.

Remark. The Monte-Carlo method is limited to the random probing model and cannot be used to prove
security in the threshold probing model since proving security in this model means proving that ri = 0,
which it cannot do. Our hybrid algorithm, however, can prove threshold probing security for the numbers of
probes i where it does full enumeration of A(j) for all j ∈ {0, . . . , i}.

Dependency test. We use the dependency test algorithm from maskVerif [4], as it offers two important
characteristics: (i) it gives the set of input shares on which the probes depend, not only if there is a dependency
to the unshared variable (the reason for this appears in Section 5.1), and (ii) it is quite efficient. One drawback
of the maskVerif dependency test is that in some cases, it wrongly reports that the adversary succeeds, which
implies that the statistical lower bound is not anymore a lower bound for the security level, and the statistical
upper bound is not completely tight (but it is still an upper bound for the true security level). In this case,
we refer to the statistical lower bound as the stat-only lower bound. While the stat-only lower bound is
not indicative of the security level, it remains useful to quantify the statistical uncertainty and therefore to
assess whether one could improve the tightness of the upper bound by increasing the number of samples in
the Monte Carlo method.

3.2 Security of some simple gadgets

We now present the results of random probing security evaluations using the previously described tools.
First, we discuss the sharewise XOR gadget and the ISW multiplication gadget with n shares. Next, we
discuss the impact of the two parameters of our algorithm (Nmax and Nt) on the tightness of the results and
on the computational complexity (i.e., the execution time) of the tool.

In Figure 1 (left), we show the security level (with respect to one of the inputs) of the addition gadget
for n = 1, . . . , 6 shares. We can see that the security level of the gadget is proportional to pn, which is
expected. Indeed, the graph of this share-wise gadget is made of n connected components (so-called “circuit
shares” [12]) such that each share of a given input sharing belongs to a distinct component, and the adversary
needs at least one probe in each of them to succeed. This trend can also be linked with the security order in
the threshold probing model. Since the gadget is n−1-threshold probing secure, a successful attack contains
at least n probes, hence has probability proportional to pn.

We can observe a similar trend for the ISW multiplication gadget (Figure 1, right). Since the gadget is
n− 1-threshold probing secure, the security level scales proportionally to pn for small values of p. For larger
values of p, the security level of this gadget is worse than pn, which is due to the larger number of wires, and
the increased connectivity compared to the addition gadgets. It implies that there are many sets of probes
of sizes n + 1, n + 2, . . . that are successful attacks (which is usually referred to as horizontal attacks in
the practical side-channel literature [7]). These sets make up for a large part of the success probability when
p > 0.05 due to their large number, even though they individually have a lower probability of occurring than
a set of size n (for p < 0.5).

Next, we discuss the impact of parameters Nmax and Nt in Algorithm 1 on the tightness of the bounds
we can compute. We first focus on the impact of Nt, which is shown on Figure 2. For Nt = 10, we have
a significant distance between the statistical upper and lower bounds, while the gap becomes small for
Nt = 100 and Nt = 1000. This gap appears as a bounded factor between the upper and lower bounds which,
as discussed previously, is related to the accuracy of the estimate of a proportion when we have about Nt

positive samples.

7

10−3 10−2 10−1 100
2−49

2−42

2−35

2−28

2−21

2−14

2−7

20

p

S
e
c
u
ri
ty

le
v
e
l

Sharewise XOR

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

10−3 10−2 10−1 100

p

ISW multiplication

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Fig. 1: Security of masked gadgets (with respect to the input sharing x, assuming the input sharing y
is public). The continuous line is an upper bound, while the dashed line is the stat-only lower bound.
Nmax = 107, Nt = 1000.

10−3 10−2 10−1 100
2−49

2−42

2−35

2−28

2−21

2−14

2−7

20

p

S
e
c
u
ri
ty

le
v
e
l

Nt = 10

n = 1

n = 2

n = 3

n = 4

n = 5

10−3 10−2 10−1 100

p

Nt = 100

n = 1

n = 2

n = 3

n = 4

n = 5

10−3 10−2 10−1 100

p

Nt = 1000

n = 1

n = 2

n = 3

n = 4

n = 5

Fig. 2: Impact of the parameter Nt of Algorithm 1 on the security bounds of masked ISW multiplication
gadgets (w.r.t. the input sharing x). Nmax = 107.

8

We also look at the impact of Nmax on Figure 3. We observe a gap between the bounds for too low Nmax

values, which gets worse as the number of shares increases. Indeed, when Nmax is too small, we cannot do
an enumeration of all the sets of n− 1 probes, hence we cannot prove that the security order of the gadget
is at least n− 1, which means that the upper bound is asymptotically proportional to pn

′
, with n′ < n− 1.

We finally observed that the computational cost is primarily dependent on Nmax and the circuit size,
while Nt has a lower impact (for the values considered). For instance, the execution time of the tool for the
ISW multiplication with n = 6, Nmax = 108 and Nt = 100 is about 33 h on a 24-core computer.

10−3 10−2 10−1 100
2−49

2−42

2−35

2−28

2−21

2−14

2−7

20

p

S
e
c
u
ri
ty

le
v
e
l

Nmax = 103

n = 1

n = 2

n = 3

n = 4

n = 5

10−3 10−2 10−1 100

p

Nmax = 105

n = 1

n = 2

n = 3

n = 4

n = 5

10−3 10−2 10−1 100

p

Nmax = 107

n = 1

n = 2

n = 3

n = 4

n = 5

Fig. 3: Impact of the parameter Nmax of Algorithm 1 on the security bounds of masked ISW multiplication
gadgets (w.r.t. the input sharing x). Nt = 1000.

4 New composition results

In the previous section, it became clear that the tool is limited if it directly computes the security of
complex circuits. This leads to the need to investigate composition properties. The existing definitions of
random probing composability and random probing expandability in [8] are based on counting probes at the
inputs and outputs of gadgets which are needed to simulate the leakage. We have recognized that ignoring
the concrete random distribution over the needed input/output wires, and only counting the wires leads to a
significant loss of tightness. Therefore we introduce our new security notion, the PDT. Before we define the
PDT in Section 4.3 and present the composition results in Section 4.4, we recall the idea of simulatability in
the leakage setting. Refining the dependency test of Section 3, we analyze the information a simulator needs
to simulate a gadget’s leakage in Section 4.2. In contrast to the previous section, we take into account the
output gates, which is needed for composition. Further, we recall the definitions of parallel and sequential
composition in Section 4.1, and present formal definitions adapted for our PDTs.

4.1 Definitions

Given two gadgets G0 and G1 with n shares, we define in this section the gadgets formed by their sequential
composition written G = G1 ◦ G0 or their parallel composition written G = G1||G0.

We first introduce notations that allows us to keep track of input wires, output gates and internal wires
in gadget compositions. We work with ordered finite sets. That is, given a finite set A (e.g., one of the sets
W, I or Ô of a gadget G), we assign to each element of A a unique index in [|A|] = {0, 1, . . . , |A|}. Then,
given disjoint finite sets A and B, we denote by C = A||(k)B the union of A and B ordered such that a wire
with index i in A has index i in C, and a wire with index i in B has index k + i in B. The ||(·) operator is
right-associative, which means that A2||(k1)A1||(k0)A0 = A2||(k1)

(
A1||(k0)A0

)
.

9

The sequential composition of gadgets allows implementing compositions of functions and is formally
defined next.

Definition 1 (Sequential composition). Let G0 and G1 two gadgets with n shares, input wires Ii, output
gates Ôi, and internal wires Wi, respectively, such that |I1| = |Ô0|. The sequential composition of G0 and G1

is the gadget G denoted as G1 ◦G0 whose set of input wires is I = I0 and set of output gates is Ô = Ô1. The
set of internal wires of G is W =W1||(k1)I1||(k0)W0 with k1 = |W0|+ |I1| and k0 = |W0|. The input wires of
G1 are connected to the output gates of G0 such that for all i the input wire with index i is the output wire
of the ith output gate. If G0 (resp. G1) implements f0 (resp. f1), then G implements f1 ◦ f0.

The parallel composition of gadgets allows implementing a gadget for the function f(x, y) = (f0(x), f1(y)),
using gadgets implementing f0 and f1.

Definition 2 (Parallel composition). Let G0 and G1 two gadgets with n shares, input wires Ii, output
gates Ôi, and internal wires Wi, respectively. The parallel composition of G0 and G1 is the gadget G denoted
as G1||G0 whose set of input wires is I = I1||(|I0|)I0, set of output gates is Ô = Ô1||(|Ô0|)Ô0, and set of

internal wires is W =W1||(|W0|)W0.

Figure 4 illustrates how to renumber the input wires and output gates in the case of gadgets with three
inputs wires and three output gates. Figure 4a describes the sequential composition defined in Definition 1
and Figure 4b describes the parallel composition defined in Definition 2. For example, the input wire set
of G′ is I = {i5, i4, . . . , i0} which is the wire union I = I1||(|I0|)I0 of the input wires I0 = {i02, i01, i00} and
I1 = {i12, i11, i10} of the gadgets G0 and G1.

We emphasize that both compositions are a basis for dividing a circuit into an arbitrary set of subcircuits.
Therefore, if we have a masked gadget implementation of each gate type that appears in a circuit, we can
build a masking compiler for that circuit: first decompose the circuit in sequential and parallel compositions
down to subcircuits containing a single gate, then replace each gate with the corresponding masked gadget,
and finally compose those gadgets according to the initial decomposition. As a case study, we depict a
masked AES S-box implementation in Figure 6. The gadgets G0-G10 are a parallel composition of the basis
gadgets and GS-box is a sequential composition of the gadgets G0-G10. The formal description of the S-box
composition is given in Table 1.

G1G0

G = G1 ◦ G0

i02i2
i01i1
i00i0

i12o02
i11o01
i10o00

o12 o2
o11 o1
o10 o0

(a) Sequential Composition

G1

G0

G′ = G1||G0

i02i2
i01i1
i00i0

i12i5
i11i4
i10i3

o02 o2
o01 o1
o00 o0

o12 o5
o11 o4
o10 o3

(b) Parallel Composition

Fig. 4: Examples of sequential composition (4a) and parallel composition (4b).

4.2 Simulatability

So far, we described how to measure the amount of information leaked by a circuit by analyzing it directly.
As observed in previous works, the complexity of such an approach rapidly turns out to be unrealistic. We
now formalize simulatability-based definitions following the ideas outlined in [5], which are useful to analyze
large circuits thanks to compositional reasoning.

Definition 3 (Simulatability). A set of wires W in a gadget G is simulatable by a subset I ′ ⊂ I of its
inputs if there exists a probabilistic simulator function taking as input the values of the inputs I ′, and outputs
a distribution of values on wires. Conditioned on the values of the wires in I the distribution output by the
simulator is identical to the leakage from wires in W when the gadget is evaluated (conditioned on I).

10

The simulatability of small circuits, and particularly gadgets, is well studied and can be proven with tools
such as maskVerif [4] and SILVER [25]. In this work we use the distribution of the smallest set of input wires
such that there exists a simulator whose output has the same distribution as the leakage. More precisely, let
W ′ be a subset of input and internal wires of a gadget G and O′ an arbitrary subset of output wires, then
we write I ′ = SG(W ′,O′) to define the smallest subset I ′ of input wires of G by which (W ′,O′) is perfectly
simulatable.

Definition 4 (Simulatability set). Let G be a gadget with input wire, internal wire and output gate sets
I, W, and Ô. Further, let O be the set of output wires of Ô. The simulatability set of a subset W ′ ⊆ (W, I)
and O′ ⊆ O, denoted SG(W ′,O′), is the smallest subset of I by which W ′ and O′ can be simulated.

In the random probing model, W ′ = Lp(G) is a random variable, hence the simulatability set SG (Lp(G),O′)
is itself a random variable.

We now introduce rules for simulatability of parallel and sequential gadget compositions. Indeed, it is
not enough to give a simulator for each gadget, but we also have to ensure that each individual simulator is
consistent with the distribution generated by the other simulators, and that each simulator is provided with
correct values for the input shares.

Claim 1 For any parallel gadget composition G = G1||G0 with output gates Ô = Ô1||(|Ô1|)Ô0 an its output

wires O. It holds that

SG(Lp(G),O′) = SG1(Lp(G1),O′1) ||(|I0|) SG0(Lp(G0),O′0)

for any subset of output wires O′ = O′1||(|O0|)O′0 ⊆ O.

The proof is given in the extended version of the paper.

Claim 2 For any sequential gadget composition G = G1 ◦ G0 with output gates Ô and its output wires O, it
holds that

SG(Lp(G),O′) ⊆ SG0
(
Lp(G0),SG1(Lp(G1),O′)

)

for any subset of output wires O′ ⊆ O.

The proof is given in the extended version of the paper.

ŜGi
SGi(Lp(Gi),O′

i)
O′

iLp(Gi)

(a) Tight Simulator for Gadget Gi used in the
proof of Claim 1 and 2

ŜG1

ŜG0

ŜG

||I′

O′

Lp(G)

(b) Simulator for a serial gadget compositions.

ŜG1

ŜG0

ŜG′

||

||

||I′

O′

Lp(G)

(c) Simulator for a parallel gadget composi-
tions.

Fig. 5: Simulators for the gadgets depicted in Figure 4 to prove Claims 1 and 2.

11

4.3 Probe distributions

In this section, we introduce our new security properties, the PD (Probe Distribution) and the PDT (Probe
Distribution Table). Intuitively, given a set of wires W and a leakage process L (hence L(W) ⊆ W), the
PD of L(W) is a vector of size 2|W| that represents the statistical distribution of L(W). In more detail, for
each subset W ′ ⊆ W, there is a corresponding element of the PD with value Pr [L(W) =W ′]. The PDT
notion extends the idea in a way that makes it useful for analyzing gadget compositions: it links the set of
output probes on the gadget to the distribution of the simulatability set of the gadget (i.e., to the inputs
needed to simulate the leakage). More precisely, for a gadget G, the PDT is a matrix in [0, 1]|I|×|O|, such
that each column is associated to a subset of the outputs O′ ⊆ O. Each column is a PD that represents the
distribution of SG(L(G),O′) (viewed as a subset of the set of inputs I). The two main results (Theorems 1
and 2) of the next section relate the PDT of a sequential (resp., parallel) gadget composition to the matrix
(resp., tensor) product of the PDTs of the composing gadgets. We first formalize the mapping between
subsets of wires and indices in vectors/matrices.

Definition 5 (Index representation of subsets of wires). For any set of wiresW of which each element
has a unique index in [|W|], we associate to each subset W ′ of W the index

W̃ ′ =
∑

i∈[|W|]
bi2

i with

{
bi = 1 if element i of W belongs to W ′,
bi = 0 otherwise.

For example, the wire set W = {ω0, ω1} has 4 subsets W ′, that we represent with their index below:

W ′ ∅ {ω0} {ω1} {ω0, ω1}
W̃ ′ 0 1 2 3

Let use now give the formal definition of the PD.

Definition 6 (Probe Distribution PD). Let L be a probabilistic process that outputs subsets of a set of

wires W. The probe distribution (PD) of L with respect to W is p ∈ [0, 1]2
|W|

such that for all W ′ ⊂ W,
pW̃′ = Pr [L(W) =W ′].
The PD of Lp(W) in the previous example is p =

(
(1− p)2, p(1− p), p(1− p), p2

)
.

We next give the definition of the PDT, which can be seen as the PDs of SG(Lp(G),O′) conditioned on
the set of output probes O′.
Definition 7 (Probe Distribution Table (PDT)). Let G be a gadget with input wires I and output wires

O. For any O′ ⊆ O, let pÕ′ be the PD of SG(Lp(G),O′). The PDT of G (PDTG) is a [0, 1]2
|I|×2|O|

matrix
with all the pÕ′ as columns, that is

PDTG = (pj)j∈[2|O|] ,

with j = Õ′ for all subsets O′ ⊆ O. The notation PDTG(Ĩ ′, Õ′) refers to the element of pÕ′ associated to
I ′.
PDTG(Ĩ ′, Õ′) = Pr

[
SG(Lp(G),O′) = I ′

]
. Furthermore, the PDT of a gadget is independent of its environ-

ment (i.e., of the PD of its output wires).

A first example of PDT is the one of the + and · gates (when viewed as gadgets with one share). In
the first column, no output has to be simulated, and thus the only leakage comes from the two input wires.
For the second column, knowledge of both inputs is needed to simulate the output. This gives:

PDT + = PDT · =

PDT O′
= ∅ O′

= {0}
I′ = ∅ (1− p

2
) 0

I′ = {0} p(1− p) 0
I′ = {1} p(1− p) 0

I′ = {0, 1} p
2

1

12

The second example is the simple refresh gadget Gr with two shares where a random value is added to two
different wires. The random value leaks three times with probability p (one time in the C and two times in
the +). Thus the leakage probability of the random value is q = 1− (1− p)3, and we get:

PDTGr =

PDT O′
= ∅ O′

= {0} O′
= {1} O′

= {1, 0}
I′ = ∅ (1− p)

2
(1− q)(1− p)

2
(1− q)(1− p)

2
0

I′ = {0} p(1− p) (q + qp)(1− p) (1− q)p(1− p) 0
I′ = {1} p(1− p) (1− q)p(1− p) (q + (1− q)p)(1− p) 0

I′ = {0, 1} p
2

qp + (1− q)p
2

qp + (1− q)p
2

1

The PDT is related to the security level in the random probing model.

Claim 3 (Security level from PDT) Let G be a gadget and PDTG its Probe Distribution Table. Let s
be the the security level of G with respect to an input sharing. If the set of shares of the considered input
sharing is I ′, then

eT ·PDTG · p∅ =
∑

I′′⊇I′
PDTG(Ĩ ′′, 0) ≥ s,

where p∅ = (1, 0, . . . , 0) is the PD corresponding to no output leakage and ei = 1 for all i = Ĩ ′′ with I ′′ ⊇ I ′,
while ei = 0 otherwise.

Proof. Let A′ be a set of wires that is an attack, that is, that depends on the considered unshared value
which we denote Simulating A′ therefore requires at least all the shares in I ′, hence

s ≤ Pr
A′←Lp(G)

[
SG(A′, ∅) ⊆ I ′

]
.

Then, by definition of Lp(G) and of the PDT,

s ≤ Pr
[
SG(Lp(G), ∅) ⊆ I ′

]
=
∑

I′′⊇I′
Pr
[
SG(Lp(G), ∅) = I ′′

]
=
∑

I′′⊇I′
PDTG(Ĩ ′′, 0).

This proves the inequality. The equality claim holds by construction of e. ⊓⊔

We now give a few results that constitute the basis for the composition theorems of the next section. A
first result links the PD of the input wires needed to simulate the leakage of the gadget and some of its
outputs to the PDT of the gadget and the PD of its outputs. This claim is the foundation for the analysis
of sequential gadget composition.

Claim 4 (PDT and PD) Let G be a gadget with output wire set O and input wire set I. If a probabilistic
process L′(O) has a PD p with respect to O, then PDTG · p is the PD of SG(Lp(G),L′(O)) with respect to
input wires I.

Proof. The solution can be directly derived from the definitions: Let (vi)i∈2|I| = PDTG ·p. For any I ′ ⊆ I,
it holds that

vĨ′ =
∑

O′⊆O
PDTG(Ĩ ′, Õ′) · pÕ′

=
∑

O′⊆O
Pr
[
SG(Lp(G),O′) = I ′

]
· Pr [L′(O) = O′]

=
∑

O′⊆O
Pr
[
SG(Lp(G),O′) = I ′,L′(O) = O′

]

= Pr
[
SG(Lp(G),L′(O)) = I ′

]
.

The final equation gives the claim since it is exactly the ith entry of the PD of SG(Lp(G),L′(O)) with

i = Ĩ ′. ⊓⊔

13

We next want to compare two probe distributions p, p′ to describe a partial order for distributions “≤̇”.
The high-level idea is that p is “larger” than p′ (denoted p≥̇p′) if L gives more information than L′. In other
words, p is “larger” than p′ if we can simulate L′(W) with L(W), where L (resp., L′) is the probabilistic
process associated to p (resp., p′).

Definition 8 (Partial order for distributions). For a set of wires W, let L and L′ be probabilistic
processes with PDs p and p′. We say that p is larger than p′ and write p≥̇p′ iff the L′ is simulatable by L,
that is, if there exists a probabilistic algorithm S that satisfies S(X) ⊂ X such that the distribution of L′(W)
and S(L(W)) are equal.

On the one hand, it is clear that the definition is reflexive, antisymmetric, and transitive. Let p, p′, p′′ three
PDs, it holds:

– p≥̇p, since we can always use the identity as simulator.
– If we know p≥̇p′ and p≤̇p′, both PDs describe processes with the same distribution, and we know

p = p′.
– If it holds that p≥̇p′ and p′≥̇p′′, it exists a simulator S′ that simulates the process defined by p′ with

the process defined by p, and a simulator S′′ that does the same for p′′ and p′. Hence, S := S′(S′′(·))
simulates the process defined by p′′ with the process of p and it follows p≥̇p′′.

On the other hand, the order is only partial since it can happen that we have two probabilistic processes
such that for both processes there exist no simulator to simulate the other.

The partial order for PDs is respected by linear combinations:

Claim 5 Let (pi)i∈[k], (p
′
i)i∈[k] be PDs such that pi≥̇p′i for all i. let (αi)i∈[k] be such that 0 ≤ αi ≤ 1 for

all i and
∑

i∈[k] αi = 1. If we denote p =
∑

i∈[k] αipi and p′ =
∑

i∈[k] αip
′
i, then p and p′ are PDs and

furthermore, p≥̇p′.

Proof. Let W be a set of wires such that the random processes (Li)i∈[k] (resp. (L′i)i∈[k]) have (pi)i∈[k] (resp.

(p′i)i∈[k]) as PDs. Further, let Si be such that Si(Li(W)) has the same distribution as L′i. Let L be such
that

Pr [L(W) =W ′] =
∑

i∈[k]
αi Pr [Li(W) =W ′] ,

and similarly for L′. Firstly, L and L′ are well-defined: the probabilities given above are non-negative and
sum to 1. Next, the PD of L (resp. L′) is p (resp. p′). Finally, we build the simulator S. Let L′′ be a random
process that, on inputW, selects randomly i ∈ [k] (such that the probability of taking the value i is αi), and
outputs Si(Li(W)). Then, let S be a random process such that Pr[S(W ′′) = W ′] = Pr[L′′ = W ′|L = W ′′]
for all W ′,W ′′ ⊆ W. We observe that for all W ′ ⊆ W,

Pr[S(L) =W ′] =
∑

W′′⊆W
Pr[S(W ′′) =W ′] ∗ Pr[L =W ′′]

=
∑

W′′⊆W
Pr[L′′ =W ′|L =W ′′] ∗ Pr[L =W ′′]

= Pr[L′′ =W ′].

Since L′′ has the same distribution as L′, this means that Pr[S(L) =W ′] = Pr[L′ =W ′]. ⊓⊔

ThePDT has a partial structure. As described above each column i of thePDT is thePD of SG(Lp(G),O′)
with Õ′ = i. Since we know that the input set required by a leakage simulator can only grow (or stay constant)
if it has to simulate additional (output) leakage, we get:

Claim 6 For any gadget with output wires O, the columns p· of the PDT have the following property:
pÕ′≥̇pÕ′′ for all O′′ ⊆ O′ ⊆ O.

14

Proof. It follows directly from claim 4. It holds that SG(Lp(G),O′′) ⊆ SG(Lp(G),O′) and thus Pr
[
SG(Lp(G),O′′) ⊆ SG(Lp(G),O′)

]
=

1. The last equation is the claim pÕ′≥̇pÕ′′ . ⊓⊔

Finally, we want to extend the partial order of PDs to the whole PDT, with the same meaning: if
PDTG0

≤̇PDTG1
, the amount of information leaked in G0 is less than the information leaked in G1:

Definition 9 (Partial order for PDT’s). Let A,B ∈ [0, 1]2
|I|×2|O|

be two PDTs, we write

A≤̇B

if for any PD p ∈ [0, 1]2
|O|

it holds A · p≤̇B · p.

As shown in Claim 4, A · p and B · p are PDs, therefore the partial order of PDTs is well defined.

Corollary 1 (PDT order is column-wise). Let PDT and PDT′ be PDTs, with columns (pi)i∈[|O|] and

(p′i)i∈[|O|] respectively. Then, PDT≥̇PDT′ iff pi≥̇p′i for all i ∈ [|O|.

Proof. If PDT≥̇PDT′, then for any i ∈ [|O|, let e be such that ej = 1 if i = j and ej = 0 otherwise. Since
e is a PD, we have pi = PDT · e≥̇PDT′ · e = p′i.

In the other way, let use assume that pi≥̇p′i, for all i. Then for any PD α (whose elements are denoted
αi), PDT · α is a linear combination of pi with coefficients αi, for which Claim 5 applies. Therefore PDT ·
α≥̇PDT′ · α. ⊓⊔

Another useful property is that we can merge the order of PDs and PDTs:

Claim 7 Let A,B ∈ [0, 1]2
|I|×2|O|

be two PDTs, and p,p′ ∈ [0, 1]2
|O|

be two PDs. If A≤̇B and p≤̇p′, then
A · p≤̇B · p′.

Proof. We prove the claim A · p≤̇B · p′ in two steps. First we show (i) A · p≤̇A · p′, and then we show (ii)
A · p′≤̇B · p′.

(i) By Definition 8, there exists W, L and L′ associated to p, p′, respectively, with Pr[L(W) ⊂ L′(W)] = 1.
Further, it holds Pr[AL(W)≤̇AL′(W)] = 1 with Claim 6. Hence, A · p≤̇A · p′.

(ii) A · p′≤̇B · p′ follows from Definition 9 and A≤̇B. ⊓⊔

This leads to the preservation of PDT ordering through matrix product.

Corollary 2. Let A, B, C, D be PDTs. If A≤̇B and C≤̇D, then A ·C≤̇B ·D.

Proof. Let us denote by X∗,i the (i+1)-th column of a matrix X. Then, for all i ∈ [|O|], (A ·C)∗,i = A ·C∗,i
and (B ·D)∗,i = B ·D∗,i. Hence, by Corollary 1, A ·C≤̇B ·D iff C∗,i≤̇D∗,i for all i. Using the same Corollary,

we have C∗,i≤̇D∗,i. Finally, using Claim 7, we get A ·C∗,i≤̇B ·D∗,i for all i. ⊓⊔

Finally, we relate the partial order for PDs and PDTs to the security level.

Claim 8 (Security level bound from PDT bound) Let s be the security level of a gadget G with respect
to a set of input shares I ′. Let PDT be the PDT of G and let PDT′ be a PDT. If PDT′≥̇PDT, then
eT ·PDT′ · p∅ ≥ s, where e is defined as in Claim 3.

Proof. Using Claim 3, we know that eT ·PDT ·p∅ ≥ s. With Claim 7, we know that PDT′ ·p∅≥̇PDT ·p∅.
Let L (resp. L′) be the random process associated to PDT′ ·p∅ (resp. PDT ·p∅), and let S be the simulator
that simulates L from L′. We have S (L′(I)) ⊆ L′(I), hence Pr [I ′ ⊆ S (L′(I))] ≤ Pr [I ′ ⊆ L′(I)]. Since
S simulates L(I), Pr [I ′ ⊆ S (L′(I))] = Pr [I ′ ⊆ L(I)], which leads to eT · PDT · p∅ = Pr [I ′ ⊆ L(I)] ≤
Pr [I ′ ⊆ L′(I)] = eT ·PDT′ · p∅. ⊓⊔

15

4.4 Composition rules

In this section, we give the two main composition theorems for the PDT of parallel and sequential gadget
compositions. Next, we show how the compositions theorems can be used to compute PDTs for larger
composite gadgets and illustrate our results on the AES S-box example.

Theorem 1 (parallel composition). Let G1 and G2 be two gadgets with PDTG0
and PDTG1

. Further let
G = G1||G0 with PDTG. It holds that

PDTG = PDTG1
⊗PDTG0

.

Proof. Let I0, I1, O0, and O1 the input and output wires of G0 and G1, respectively. Hence, I = I1||(n)I0,
O = O1||(m)O0 are the input and output wires of G with n = |I0| and m = |O0|. From Definition 2 follows

for any I ′ = I ′1||(n)I ′0 ⊆ I and O′ = O′1||(m)O′0 ⊆ O that Pr [S(Lp(G) ∪ O′) = I ′] is the matrix entry (Ĩ ′, Õ′)
of PDTG. Considering Claim 1, we get

PDTG(Ĩ ′, Õ′) = Pr
[
SG(Lp(G),O′) = I ′

]

= Pr
[
SG1 (Lp(G1) ∪ O′1) ||(n)SG0 (Lp(G0),O′0) = I ′1||(n)I ′0

]

= Pr
[
SG1 (Lp(G0),O′0) = I ′0,SG0 (Lp(G1),O′1) = I ′1

]

= Pr
[
SG1(Lp(G0),O′0) = I ′0

]
· Pr

[
SG0(Lp(G1),O′1) = I ′1

]

= PDTG0
(Ĩ ′0, Õ′0) ·PDTG1

(Ĩ ′1, Õ′1).

The last transformation of the formula uses the fact that the set of probes of both gadgets are independent,
and the resulting term is exactly the matrix entry (Ĩ ′, Õ′) of PDTG1 ⊗PDTG0 . ⊓⊔

Remark. Theorem 1 can be generalized to any parallel composition of sub-circuits, even if those sub-circuits
are not gadgets. For instance, a share-wise gadget with n shares is the parallel composition of n identical
sub-circuits (a single addition gate for the addition gadget). The PDT of the addition gate PDT⊕ is given
in Section 4.3, therefore PDTG⊕,n can be computed as

PDTG⊕,n = P

(
n−1⊗

i=0

PDT⊕

)
,

where P reorders the index of the input wires from (x0
0, x

1
0, x

0
1, x

1
1, . . . x

0
n−1, x

1
n−1) to (x

0
0, . . . , x

0
n−1, x

1
0, . . . , x

1
n−1)

where x0
i and x1

i are the first and second input wires of the ith addition gate, respectively.

Theorem 2 (sequential composition). Let G0 and G1 be two gadgets with PDTG0
, PDTG1

, and with
ni input wires and mi output wires, respectively such that m0 = n1. Further let G = G1 ◦ G0 with PDTG. It
holds that

PDTG≤̇PDTG0 ·PDTG1 .

Proof. Let PDT = PDTG0
· PDTG1

and I0, I1, O0, O1 the input and output wire sets of G0 and G1,
respectively. It also means that I0 and O1 are the input and output wire sets of G. Considering the fact that
PDT is the result of a matrix multiplication of PDTG0 and PDTG1 , we get for any I ′ ⊆ I0 and O′ ⊆ O1

PDT(Ĩ ′′, Õ′) =
∑

O′′⊆O0

Pr
[
SG0(Lp(G0),O′′) = I ′

]
· Pr

[
SG1(Lp(G1),O′) = O′′

]

=
∑

O′′⊆O0

Pr
[
SG0(Lp(G0),O′′) = I ′,SG1(Lp(G1),O′) = O′′

]

= Pr
[
SG0

(
Lp(G0),SG1(Lp(G1),O′)

)
= I ′

]
.

16

Further, PDTG(Ĩ ′, Õ′) = Pr
[
SG(Lp(G),O′) = I ′

]
, and thus for any O′ ⊆ O1 the columns PDTG(Õ′)

and PDT(Õ′) are the PDs of SG(Lp(G),O′) and of SG0
(
Lp(G0),SG1(Lp(G1),O′)

)
, respectively. Because of

Claim 2, it holds that

Pr
[
SG(Lp(G),O′) ⊆ SG0

(
Lp(G0),SG1(Lp(G1),O′)

)]
= 1.

The last equation proves that it exists a simulator that simulates the simulatability set SG(Lp(G),O′) with
SG0

(
Lp(G0),SG1(Lp(G1),O′)

)
. Hence, it holds that PDTG(Õ′)≤̇PDT(Õ′) for any column with O′ ⊆ O1.

Since the inequality holds for any column, the inequality is independent from the distribution of the output
wires O1. It follows that PDTGp≤̇PDTG0

·PDTG1
p for all PDs p. This results in the claim of the theorem

PDTG≤̇PDTG0 ·PDTG1 . ⊓⊔

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Gc

Gr

G·2
Gc

G⊗ Gc

G·4

Gr

Gc

G⊗ G·16
G⊗

G⊗

Fig. 6: AES S-box circuit (using the implementation from [31]) as a serial composition of gadgets. The
symbols Gc, Gr, G⊗ and G·x are respectively copy, refresh and exponentiation to the power of x gadgets.

Corollary 3. Let (Gi)i∈[k] be gadgets that can be sequentially composed to form G = Gk−1 ◦ · · · ◦G0. It holds
that

PDTG≤̇PDTG0
· . . . ·PDTGk−1

.

Proof. This is a direct consequence of Theorem 2 and Corollary 2. ⊓⊔

The PDT of the AES S-box depicted in Figure 6 is bounded by PDTS-box defined in Table 1. We
compute the S-box with the gadgets G·2 , G⊗, Gr, and Gc. In addition, we also use a identity gadget Gl

id as
a placeholder for composition results (this gadget does not leak and has as many inputs as outputs), whose
PDT is the identity matrix. As described in Table 1, the gadgets G0-G10 are a parallel composition of the
gadgets G·2 , G·4 , G·16 , G⊗, Gr, Gc, and Gl

id (we can compute their PDTs using Theorem 1). Thus, GS-box is
a sequential composition of G0-G10. We can compute its PDT using Corollary 3, as shown in Table 1.

G0 Gc PDTG0 = PDTGc

G1 Gr||G·2 PDTG1 = PDTGr ⊗PDTG·2
G2 Gid||Gc PDTG2 = PDTGid ⊗PDTGc

G3 G⊗||Gid PDTG3 = PDTG⊗ ⊗PDTGid

G4 Gc||Gid PDTG4 = PDTGc ⊗PDTGid

G5 G·4 ||Gr||Gid PDTG5 = PDTG·4 ⊗PDTGr ⊗PDTGid

G6 Gc||Gid||Gid PDTG6 = PDTGc ⊗PDTGid ⊗PDTGid

G7 Gid||G⊗||Gid PDTG7 = PDTGid ⊗PDTG⊗ ⊗PDTGid

G8 Gid||G·16 ||Gid PDTG8 = PDTGid ⊗PDTG·16 ⊗PDTGid

G9 G⊗||Gid PDTG9 = PDTG⊗ ⊗PDTGid

G10 G⊗ PDTG10 = PDTG⊗

GS-box G10 ◦ G9 ◦ . . . ◦ G0 PDTS-box≤̇PDTG0 ·PDTG1 · . . . ·PDTG10

Table 1: Composition of the AES S-box and its approximated PDT.

17

We conclude by noting that some well-known matrix product and tensor product distributive and asso-
ciative properties mirror the properties of the gadget compositions (when the operations are well-defined):

(A ·B) ·C = A · (B ·C) (G0 ◦ G1) ◦ G2 = G0 ◦ (G1 ◦ G2)

(A⊗B)⊗C = A⊗ (B⊗C) (G0||G1) ||G2 = G0|| (G1||G2)

(A ·B)⊗ (C ·D) = (A⊗C) · (B⊗D) (G0 ◦ G1) || (G2 ◦ G3) = (G0||G2) ◦ (G1||G3)

This means that our composition theorems give the same result independently of the way we decompose a
composite gadget. This gives us freedom to choose, e.g., the most efficient way when we deal with relatively
large computations.

5 Practical security of composite circuits

In this section, we adapt the method of Section 3 to compute bounds for PDTs. We then show how to turn
those bounds into gadget security levels using the PDT properties and composition theorems. We finally
describe the tool that implements our methodology and discuss its result for well-known gadgets.

5.1 Bounding PDTs

We first describe how to adapt the method of Section 3 to bound PDTs. That is, given a gadget G, we
want to generate an upper bound PDTU such that PDTU ≥ PDT with probability at least 1 − α (e.g.,
1− 10−6), and the ≥ operator defined for matrices and vectors as element-wise. We note that PDTU is not
a PDT: the sum of the elements in one of its columns may be ≥ 1.

There are two main differences with the bound of Section 3: (1) we have to handle all possible cases for
the probes on the output shares of the gadgets (i.e., all the columns of the PDT), and (2) we care about
the full distribution of the input probes, not only the probability of successful attack.

The upper bound PDTU can be computed by grouping probe sets by size (similarly to Equation (3)):

PDTU (Ĩ ′, Õ′) =
|W|∑

i=0

pi(1− p)|W|−i ·
∣∣∣W(i)

∣∣∣ ·RU
i (Ĩ ′, Õ′)

satisfies PDTU (Ĩ ′, Õ′) ≥ PDT(Ĩ ′, Õ′) if

RU
i (Ĩ ′, Õ′) ≥

∣∣{W ′ ⊆ W(i) s.t. SG(Lp(G),O′) = I ′
}∣∣

∣∣W(i)
∣∣ (6)

for all i ∈ {0, . . . , |W|}. Therefore, if Equation (6) is satisfied for each (I ′,O′, i) tuple with probability at
least 1− α/

(
(|W|+ 1) 2|I|·|O|

)
, then PDTU ≥ PDT with probability at least 1− α (by the union bound).

The computation of all the elements PU
i (Ĩ ′, Õ′) can be performed identically to the computation of rUi in

Section 3.1, except for changing the criterion for a Monte-Carlo sampleW ′ to be counted as positive (i.e., be
counted in si): S(W ′,O′) = I ′ (instead of δW′ = 1). Furthermore, the algorithm can be optimized by running
only one sampling for each (i,O′) pair: we take ti,O′ samples, and we classify each sample W ′ according to
S(W ′,O′). This gives sample counts si,O′,I′ for all I ′ ⊆ I, and from there we can use Equation (4).4

Finally, we use the hybrid strategy of Algorithm 1, with the aforementioned modifications.5 The com-
putation of a statistical-only lower bound PDTL is done in the same way, except that Equation (5) is used
instead of Equation (4).

4 The random variables si,O′,I′ for all I′ ⊆ I are not mutually independent, hence the derived bounds are not
independent from each other, but this is not an issue since the union bound does not require independent variables.

5 And additionally the change of the condition si < Nt by si,O′I < Nt. The rationale for this condition is that,
intuitively, if we have many “worst-case” samples, then we should have a sufficient knowledge of the distribution(
Pi(Ĩ′, Õ′)

)
I′⊆I

.

18

5.2 From PDT bound to security level bound.

Let us take positive matrices AU ≥ A and BU ≥ B. It always holds that AU⊗BU ≥ A⊗B and AU ·BU ≥ A·B.
Therefore, if we use PDT bounds in composition Theorem 1 (resp., Corollary 3), we get as a result – denoted

PDT
U

and computed as AU · BU (resp., AU ⊗ BU) – a corresponding bound for the composite PDT –

denoted PDT and computed as A ·B (resp., A⊗B): PDT
U ≥ PDT≥̇PDT. Then, if we use PDT

U
in the

formula for the computation of the security level (Claim 8) instead of PDT, we get

sU = eT ·PDT
U · p∅ ≥ eT ·PDT · p∅ ≥ s.

We compute the statistical-only lower bound sL in a similar manner. One should however keep in mind that
sL ≤ s does not hold in general, since Claim 8 and the sequential composition theorem only guarantee an
upper bound (in addition to the non-tightness coming from the maskVerif algorithm). Again, the statistical-
only lower bound is however useful for estimating the uncertainty on the security level that comes from the
Monte-Carlo method: if there is a large gap between sL and sU , increasing the number of samples in the
Monte-Carlo sampling can result in a better sU (on the other hand, sL gives a limit on how much we can
hope to reduce sU by increasing the number of samples).

5.3 Tool

We implemented the computation of the above bounds in the open-source tool STRAPS (Sampled Testing
of the RAndom Probing Security). This tool contains a few additional algorithmic optimizations that do not
change the results but significantly reduce the execution time (e.g., we exploit the fact that, in some circuits,
many wires carry the same value, and we avoid to explicitly compute PDTs of large composite gadgets
to reduce memory usage). Regarding performance, for the computation of the security of the AES S-box
(see Figure 10), almost all of the execution time goes into computing the PDT of the ISW multiplication
gadgets. Computing the PDTs of the other gadgets is much faster as they are smaller, and computing the
composition takes a negligible amount of time (less than 1 %). The total running time for the AES S-box
is less than 5 s for 1, 2 and 3 shares, 30 s for 4 shares, 3min for 5 shares, and 33 h for 6 shares on a 24-core
computer (dual 2.3GHz Intel(R) Xeon(R) CPU E5-2670 v3).

STRAPS presents a few similarities with VRAPS [8]. While STRAPS mainly computes PDT bounds and
VRAPS computes random probing expandability bounds, both metrics relate to the random probing security
of a gadget, and both tools are based on the maskVerif dependency test algorithm. The main differences
between these tools are twofold. First, STRAPS uses a mix of Monte-Carlo sampling and full exploration
of the sets of probes, whereas VRAPS does only full exploration. Second, STRAPS computes and uses the
simulatability set for a given set of internal and output probes, while VRAPS only stores whether the size
of the simulatability set exceeds a given threshold. Thanks to this weaker requirement, VRAPS is able to
exploit the set exploration algorithm of maskVerif, which accelerates the full exploration of the sets of probes
by avoiding an exhaustive enumeration of all subsets [4].

5.4 Experiments & SOTA comparison

In this final section, we illustrate how to use our PDT bounding tool and the PDT composition theorems
in order to bound the security of larger circuits, and to extract useful intuitions about the trade-off between
the number of shares and level of noise required to reach a given security level. We also compare our results
with previous works by Dziembowski et al. [20] and Beläıd et al. [8,9].

We begin by evaluating the impact of using composition theorems instead of a direct security evaluation.
In Section 3.2, we concluded that directly analyzing the security of even a single multiplication gadget in the
random probing model tightly is computationally intensive. On Figure 7, we show the security of a slightly
more complex ISW(x,SNI-Ref(x2)) gadget evaluated as either the composition of four gadgets (a split gadget,
a squaring, an SNI refresh and an ISW multiplication), or as a single gadget (we call it integrated evaluation).
We can see that when the gadget becomes large (n = 5) and for a similar computational complexity, the

19

results for the PDT composition are statistically tighter thanks to the lower size of its sub-gadgets. We also
observe that, when upper and lower bounds converge, the security level computed from PDT composition
is close to the one computed by the integrated evaluation, although the latter one is slightly better. We
conclude that the PDT composition technique can provide useful results in practically relevant contexts
where we build gadget compositions for which the integrated evaluation is not satisfying.

10−3 10−2 10−1 100
2−43

2−35

2−27

2−19

2−11

2−3

p

S
e
c
u
ri
ty

le
v
e
l

PDT composition

n = 1

n = 2

n = 3

n = 4

n = 5

10−3 10−2 10−1 100

p

Direct evaluation

n = 1

n = 2

n = 3

n = 4

n = 5

Fig. 7: Security of a cubing gadget ISW(x,SNI-Ref(x2)). The left plot comes from PDT composition while
the right plot is a direct security evaluation of the full circuit as a single gadget. The continuous line is an
upper bound, while the dashed line is the stat-only lower bound. Nmax = 2× 106, Nt = 1000.

Next, we investigate different refreshing strategies when computing the x3 operation with an ISW multi-
plication gadget. Namely, we compare the situation with no refreshing which is known to be insecure in the
threshold probing model [16], the simple refreshing with linear randomness complexity which does not offer
strong composability guarantees, and an SNI refresh gadget from [12]. The results are illustrated in Figure 8.
In the first case (with no refreshing), we observe the well-known division by two of the statistical security
order (reflected by the slope of the security curves in the asymptotic region where the noise is sufficient and
curves become linear): the security level is asymptotically proportional to p⌈(n−1)/2⌉. On the other side of
the spectrum, the composition with an SNI refresh guarantees a statistical security order of n − 1. Finally,
the most interesting case is the one of the simple refresh gadget, for which we observe a statistical security
order reduction for n ≥ 3, of which the impact may remain small for low noise levels. For instance, we can
see that for p ≥ 2× 10−3, the curves for the simple and the SNI refresh gadgets are almost the same, with
the security order reduction becoming more and more apparent only for lower values of p. So this analysis
provides us with a formal quantitative understanding of a gadget’s security level which, for example, suggests
that depending on the noise levels, using SNI gadgets may not always be needed.

We extend this analysis of a simple gadget to the case of a complete AES S-box in Figure 9. All the
previous observations remain valid in this case as well. Furthermore, this figure confirms that our results
get close to the ones reported for concrete worst-case attacks in [18]. Namely, already for the (low) number
of shares and (practical) levels of noise we consider, we observe a statistical security order of n − 1 for a
practically relevant (AES S-box) circuit.6

Eventually, we compare our bounds with state-of-the-art results for the non-linear part of the AES S-
box in Figure 10, in order to highlight that such tight results were not available with existing solutions.
Precisely, we compare our results with the works that provide the best bounds in the low-noise region that
we consider: the Simple Refreshing (SR) strategy of Dziembowski et al. [20], and the first (RPE1) [8] and

6 To make the results more easily comparable, one can just assume connect the leakage probability with the mutual
information of [18] by just assuming that the mutual information per bit (i.e., when the unit is the field element)
equals p.

20

10−3 10−2 10−1 100
2−46

2−37

2−28

2−19

2−10

2−1

p

S
e
c
u
ri
ty

le
v
e
l

No refresh

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

10−3 10−2 10−1 100

p

Simple-Ref

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

10−3 10−2 10−1 100

p

SNI-Ref

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Fig. 8: Security of the cubing ISW(x,Ref(x2)), where Ref is identity (no refreshing), Simple-Ref, or SNI-Ref
gadget. The continuous line is an upper bound, while the dashed line is the stat-only lower bound. Nmax =
108, Nt = 100.

10−3 10−2 10−1 100
2−36

2−31

2−26

2−21

2−16

2−11

2−6

2−1

p

S
e
c
u
ri
ty

le
v
e
l

No refresh

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

10−3 10−2 10−1 100

p

Simple-Ref

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

10−3 10−2 10−1 100

p

SNI-Ref

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Fig. 9: Security of the non-linear part of an AES S-box in F256, where Ref is either an identity (no refreshing),
the Simple-Ref gadget, or the SNI-Ref gadget. The continuous line is an upper bound, while the dashed line
is the stat-only lower bound. Nmax = 108, Nt = 100.

21

second (RPE2) [9] sets of gadgets from the Random Probing Expansion strategy of Beläıd et al. We see that
amongst the previous works we consider here, RPE2 with 27 shares achieves the best maximum tolerated
leakage probability and statistical security order. Our PDT-based analysis of the SNI-refreshed AES S-box
with the ISW multiplication achieves a similar security level with only 6 shares. In this last experiment,
the number of shares n is an indicator for the circuit size since all schemes have a circuit size in O(n2). So
we conclude that our results enable a significant improvement of the provable security claims of practical
masked circuits in the random probing model.

2−36

2−31

2−26

2−21

2−16

2−11

2−6

2−1

S
e
c
u
ri
ty

le
v
e
l

SR

n = 3

n = 9

n = 27

RPE1

n = 3

n = 9

n = 27

10−4 10−3 10−2 10−1 100
2−36

2−31

2−26

2−21

2−16

2−11

2−6

2−1

p

S
e
c
u
ri
ty

le
v
e
l

RPE2

n = 3

n = 5

n = 9

n = 25

n = 27

10−4 10−3 10−2 10−1 100

p

PDT

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Fig. 10: Security of the non-linear part of an AES S-box in F256, based on the best result of each paper. For
the PDT, we take use a SNI refresh gadget. All the circuits have a size O(n2).

Acknowledgments. Gaëtan Cassiers and François-Xavier Standaert are resp. Research Fellow and and
Senior Associate Researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.). Sebastian Faust and
Maximilan Orlt are founded by the Emmy Noether Program FA 1320/1-1 of the German Research Foundation
(DFG). This work has been funded in part by the ERC project 724725 and by Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - SFB 1119 - 236615297 (Project S7).

References

1. M. Ajtai. Secure computation with information leaking to an adversary. In STOC, pages 715–724. ACM, 2011.

22

2. P. Ananth, Y. Ishai, and A. Sahai. Private circuits: A modular approach. In CRYPTO (3), volume 10993 of
Lecture Notes in Computer Science, pages 427–455. Springer, 2018.

3. M. Andrychowicz, S. Dziembowski, and S. Faust. Circuit compilers with o(1/\log (n)) leakage rate. In EURO-
CRYPT (2), volume 9666 of Lecture Notes in Computer Science, pages 586–615. Springer, 2016.

4. G. Barthe, S. Beläıd, G. Cassiers, P. Fouque, B. Grégoire, and F. Standaert. maskverif: Automated verification
of higher-order masking in presence of physical defaults. In ESORICS (1), volume 11735 of Lecture Notes in
Computer Science, pages 300–318. Springer, 2019.

5. G. Barthe, S. Beläıd, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and R. Zucchini. Strong non-interference
and type-directed higher-order masking. In CCS, pages 116–129. ACM, 2016.

6. G. Barthe, M. Gourjon, B. Grégoire, M. Orlt, C. Paglialonga, and L. Porth. Masking in fine-grained leakage mod-
els: Construction, implementation and verification. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):189–228,
2021.

7. A. Battistello, J. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel attacks and countermeasures on the
ISW masking scheme. In CHES, volume 9813 of Lecture Notes in Computer Science, pages 23–39. Springer, 2016.

8. S. Beläıd, J. Coron, E. Prouff, M. Rivain, and A. R. Taleb. Random probing security: Verification, composition,
expansion and new constructions. In CRYPTO (1), volume 12170 of Lecture Notes in Computer Science, pages
339–368. Springer, 2020.

9. S. Beläıd, M. Rivain, and A. R. Taleb. On the power of expansion: More efficient constructions in the random
probing model. IACR Cryptol. ePrint Arch., 2021:434, 2021.

10. R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. Formal verification of masked
hardware implementations in the presence of glitches. In EUROCRYPT (2), volume 10821 of Lecture Notes in
Computer Science, pages 321–353. Springer, 2018.

11. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model. In CHES, volume 3156 of
Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

12. G. Cassiers, B. Gregoire, I. Levi, and F. X. Standaert. Hardware private circuits: From trivial composition to
full verification. IEEE Transactions on Computers, pages 1–1, 2020.

13. G. Cassiers and F. Standaert. Towards globally optimized masking: From low randomness to low noise rate or
probe isolating multiplications with reduced randomness and security against horizontal attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2019(2):162–198, 2019.

14. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-analysis attacks.
In CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

15. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In CHES, volume 2523 of Lecture Notes in Computer
Science, pages 13–28. Springer, 2002.

16. J. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security and mask refreshing. In FSE,
volume 8424 of Lecture Notes in Computer Science, pages 410–424. Springer, 2013.

17. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing attacks to noisy leakage. J.
Cryptol., 32(1):151–177, 2019.

18. A. Duc, S. Faust, and F. Standaert. Making masking security proofs concrete (or how to evaluate the security of
any leaking device), extended version. J. Cryptol., 32(4):1263–1297, 2019.

19. S. Dziembowski, S. Faust, and M. Skorski. Noisy leakage revisited. In EUROCRYPT (2), volume 9057 of Lecture
Notes in Computer Science, pages 159–188. Springer, 2015.

20. S. Dziembowski, S. Faust, and K. Zebrowski. Simple refreshing in the noisy leakage model. In ASIACRYPT (3),
volume 11923 of Lecture Notes in Computer Science, pages 315–344. Springer, 2019.

21. S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Standaert. Composable masking schemes in the pres-
ence of physical defaults & the robust probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):89–
120, 2018.

22. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results. In CHES, volume 2162 of
Lecture Notes in Computer Science, pages 251–261. Springer, 2001.

23. D. Goudarzi, A. Joux, and M. Rivain. How to securely compute with noisy leakage in quasilinear complexity. In
ASIACRYPT (2), volume 11273 of Lecture Notes in Computer Science, pages 547–574. Springer, 2018.

24. Y. Ishai, A. Sahai, and D. A. Wagner. Private circuits: Securing hardware against probing attacks. In CRYPTO,
volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

25. D. Knichel, P. Sasdrich, and A. Moradi. SILVER - statistical independence and leakage verification. In ASI-
ACRYPT (1), volume 12491 of Lecture Notes in Computer Science, pages 787–816. Springer, 2020.

26. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer, 1999.

23

27. S. Mangard, T. Popp, and B. M. Gammel. Side-channel leakage of masked CMOS gates. In CT-RSA, volume
3376 of Lecture Notes in Computer Science, pages 351–365. Springer, 2005.

28. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of nonlinear functions in the presence
of glitches. J. Cryptol., 24(2):292–321, 2011.

29. T. Prest, D. Goudarzi, A. Martinelli, and A. Passelègue. Unifying leakage models on a rényi day. In CRYPTO
(1), volume 11692 of Lecture Notes in Computer Science, pages 683–712. Springer, 2019.

30. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security proof. In EUROCRYPT,
volume 7881 of Lecture Notes in Computer Science, pages 142–159. Springer, 2013.

31. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In CHES, volume 6225 of Lecture Notes
in Computer Science, pages 413–427. Springer, 2010.

32. T. Schneider and A. Moradi. Leakage assessment methodology - extended version. J. Cryptogr. Eng., 6(2):85–99,
2016.

33. F. Scholz. Confidence bounds & intervals for parameters relating to the binomial, negative binomial, poisson and
hypergeometric distributions with applications to rare events, 2008.

24

B. Provable Secure Parallel Gadgets

This chapter corresponds to our published article at TCHES 2022 [39], with major

edits: At CHES 2023 [39], we argued that we achieve security for leakage probabil-

ity p = O(1/
√
n). It turned out that this is not the case for arbitrary circuits. For

this reason, we updated our paper on the IACR Cryptology ePrint Archive [38]

with a more fine grained analysis that proves our result for p = O(1/n2) in general,

and p = O(1) for affine circuits. In the following, we highlight the changes in red.

95

Provable Secure Parallel Gadgets

Francesco Berti1, Sebastian Faust2 and Maximilian Orlt2

1 Bar-Ilan University, Ramat-Gan 529002, Israel francesco.berti@biu.ac.il
2 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{sebastian.faust,maximilian.orlt}@tu-darmstadt.de

Abstract. Side-channel attacks are a fundamental threat to the security of cryptographic implementations. One of
the most prominent countermeasures against side-channel attacks is masking, where each intermediate value of the
computation is secret shared, thereby concealing the computation’s sensitive information. An important security
model to study the security of masking schemes is the random probing model, in which the adversary obtains
each intermediate value of the computation with some probability p. To construct secure masking schemes, an
important building block is the refreshing gadget, which updates the randomness of the secret shared intermediate
values. Recently, Dziembowski, Faust, and Zebrowski (ASIACRYPT’19) analyzed the security of a simple
refreshing gadget by using a new technique called the leakage diagram. In this work, we follow the approach
of Dziembowski et al. and significantly improve its methodology. Concretely, we refine the notion of a leakage
diagram via so-called dependency graphs, and show how to use this technique for arbitrary complex circuits via
composition results and approximation techniques. To illustrate the power of our new techniques, as a case study,
we designed provably secure parallel gadgets for the random probing model, and adapted the ISW multiplication
such that all gadgets can be parallelized. Finally, we evaluate concrete security levels, and show how our new
methodology can further improve the concrete security level of masking schemes. This results in a compiler
provable secure up to a noise level of O(1) for affine circuits and O(1/n2) in general.

Keywords: Random Probing Model · Masking · Composability · Leakage Diagram

1 Introduction

Context. Proving the security of cryptographic schemes is the de-facto standard of modern cryptography. The
most widely used security model is the black-box model, where the adversary has access to the inputs and outputs
but has no knowledge or control over the algorithm’s inner workings. It is well known, however, that real-world
implementations may reveal information about the inner workings, and in particular about the secret key of a
cryptographic scheme. Multiple side-channel attacks exploit physical phenomena such as power consumption [23],
cache accesses [10], acoustic signals [18], or timing [22].

Masking schemes. A popular countermeasure against power analysis attacks is masking. At a high-level, the
idea is to conceal sensitive intermediate values through secret sharing. A masking scheme relies on an encoding
function that takes as input a value on a wire x and shares it over multiple wires that carry the shares x0, . . . , xn−1.
The encoding function we consider in this work samples x0, . . . , xn−1 uniformly at random such that x =

∑
i xi,

where n is called the order of the masking scheme. If x ∈ F2, then such masking schemes are called Boolean
masking. The main challenge in designing secure masking schemes is to develop operations – often called gadgets
– that securely compute on shared values. Security here means that even if the adversary learns information on the
internals of the gadget, such information does not reveal sensitive information. In addition, we need a method to
compose gadgets without violating security. This is often done via the refreshing algorithm, which takes as input
a sharing x0, . . . , xn−1 that encodes x, and outputs a fresh sharing x′0, . . . , x

′
n−1 of the same secret value. Here, for

security, we have to guarantee that even given leakage from the refreshing procedure, the output x′0, . . . , x
′
n−1 is a

fresh encoding of x.

Security analysis of masking countermeasure. As the design of the masking scheme is complex, we analyze
their security using security proofs. To this end, we require a leakage model to describe the leakage emitting
from a masked device formally. The most widely used leakage model is the t-threshold probing model originally
introduced in the seminal work of Ishai, Sahai, and Wagner (ISW) [21]. In this model, cryptographic computation

is described as a Boolean (sometimes arithmetic) circuit, where the adversary is allowed to probe up to t wires and
learn the values carried on these wires during the computation.

Although a security analysis in the threshold probing model provides the first evidence of the soundness of a
masking scheme, it does not accurately model the quantitative nature of leakage, thereby excluding important types
of attacks [31, 12]. To address this problem, Prouff and Rivain introduced the noisy leakage model [27]. In this
model, the adversary obtains a noisy version of each wire, where the noise is sampled from a certain distribution
(e.g., the Gaussian distribution). Noisy leakages accurately model physical leakage from power consumption
and, in particular, allow for quantitative statements about the noise required to conceal sensitive information –
crucial information for cryptographic engineers. In detail, they define the noise as a set of probabilistic leakage
functions that are restricted by an upper bound using the Euclidean Norm (or statistical distance) as a metric. An
important shortcoming of the noisy leakage model, however, is that it is very hard to work with. Concretely, in
comparison to the threshold probing model, security proofs are highly cumbersome, and proving the security of
natural constructions often requires to rely on unrealistic assumptions (e.g., the use of leak-free gates). To resolve
these problems, somewhat surprisingly, Duc et al. [14] showed that noisy leakages and the seemingly much weaker
threshold probing model of ISW are related. For their proof, they considered an intermediate model – the p-random
probing model – and showed that security in this model directly implies security against noisy leakages. The
p-random probing model considers a particular noise distribution, where each wire leaks with probability p, while
the adversary obtains no knowledge of the wire’s value with probability 1 − p. The security in the random probing
model only implies security in the noisy model with a loss of the field size. There are two approaches to avoiding
the security loss. The first approach was presented by Dziembowski et al.[15] who proposed the average random
probing model, a modified version of the random probing model. However, security proofs in this model are
still rather complex for two reasons. First, they assume a more powerful class of leakage functions because the
adversary can choose leakage functions where only the average leakage probability is p. In other words, for any
possible input value, the leakage probability p can be different (up to p times the field size). Second, the adversary
also learns the internal randomness used by the leakage function to decide whether a value leaks or not. Hence,
the adversary even learns something about the values when the leakage function does not output the value. An
alternative approach is given by Goudarzi et al. [26]. They eliminate the field size by using an alternative metric
for the noisy model. In other words, they do not modify the probing model where the actual proof is done, but
the noisy model that should model the natural leakage. In detail, they use a worst-case metric called (Average)
Related Error and show that security in the random probing model tightly implies security in the modified noisy
model. Since the result of Goudarzi et al. and Duc et al., security in the random probing model has been studied
intensively by the research community [2, 4, 7, 11, 16]. There are two important goals in this research area. First,
we aim to design masking schemes that obtain security for values of p independent of the order n of the masking
scheme and are, in particular, close to 1. This is important as it implies that the masked computation remains secure
in the presence of larger amounts of leakage. Second, the masking schemes that we design need to be efficient,
where efficiency is typically measured in terms of circuit and randomness complexity. In particular, since all of our
gadgets have low depth, the latency of the compiled circuits is significantly improved. Our main contribution is to
improve on both of these goals for certain classes of masked computation.

1.1 Contribution

Improved analysis of refreshing gadgets. As discussed above, the main ingredient of any masked computation
is a secure refreshing gadget. It is typically placed throughout the masked computation to ensure composition.
In addition, refreshing gadgets also have applications for key refreshing, e.g., as part of a masked AES, where
the secret key has to be refreshed periodically to ensure security. There is a large body of literature on designing
secure refreshing schemes. For our work, the most important is the work of Dziembowski et al. [16], who gave a
security analysis of a very simple and efficient refreshing. Their scheme essentially uses only n randomness and n
operations, which is optimal for a refreshing gadget of order n masking. Dziembowski et al. show that this simple
refreshing gadget surprisingly is O(

√
pn)-secure. Our first contribution is to improve their construction and show

that it achieves asymptotically better security of O(pn).

Improved analysis of affine masked computation. As a second contribution, we extend our analysis of the
refreshing gadget to protect affine computation. Affine computation (i.e., addition and multiplication by a constant)
is frequently used in cryptographic schemes since it is less costly than non-linear operations. This is the reason why,
for instance, many symmetric cryptographic schemes make massive use of affine computation. In our work, we give

2

an improved analysis for simple masked affine computation. In particular, we consider a very simple addition gadget,
which computes the addition of two sharings a0, . . . , an−1 and b0, . . . , bn−1 by adding the shares component-wise,
i.e., ci = ai + bi followed by a refreshing of c0, . . . , cn−1. We can show that this gadget remains O(pn)-secure, where
earlier works either require significantly more randomness (namely, [4] with O(n2.4)-randomness required, while
ours needs O(n)-randomness to refresh the inputs) or require more noise (namely [16], O(

√
pn)).

We also show how to extend our results to the masked computation of non-linear operations. Our multiplication
gadget is essentially the widely used and analyzed ISW multiplication. While it is known that asymptotically,
there are more advanced constructions that achieve security for a constant p, we improve the analysis of the ISW
multiplication for small share numbers. Concretely, we can prove the security up to

[18p + 2(1 − (1 − p)8n + 1 − (1 −
√

3p)n−1)]n ≤ 8[1 − (1 −
√

3p)8n] ,

instead of (32np + 4n
√

3p)n) as in [16]. Interestingly, this illustrates that the security for larger share number
n is much better than previously assumed [16]. We believe that this is a worthwhile goal due to the following
two reasons. First, it was shown [11] that the ISW-multiplication achieves better security than more advanced
constructions for small values of n. Second, the ISW multiplication is widely used in many masking schemes, and
hence it is important to better understand its security in the random probing model.

Parallel computation. Finally, we note that all our constructions are highly parallelizable. Parallel gadgets [13, 3]
are particularly interesting for masked circuits as they are faster due to executing many operations at the same time.
In addition, it is also more challenging to perform a side-channel attack against a parallel implementation than
against a serial one. The basic idea is that parallel computations can increase the noise in the attacks, as shown
in [24].

1.2 Related Work

Proof techniques. Analyzing leakage resilience of circuits via graphs was already proposed in [28] at Crypto
2015. They described a transformation of circuits based on graphs to generalize the ISW Multiplication and showed
that it is closely related to Threshold Implementations [25] and the Trichina gate [30]. In particular, they give a
generalized graph for the multiplication gadget using different layers, such as linear and non-linear layers, and
compare the security of the different multiplication gadgets. In contrast to the work in [28], the work of [16] did
not use the graph to analyze a gadget but a full circuit in the random probing model. They also use a graph based
approach that is in particular useful to analyze the linear layers of circuits. We formalized the approach of [16],
and give tighter security proves in the random probing model. Further, we propose gadgets with lower latency.
Alternative approaches to analyze the security in the random probing model were proposed in [2, 4, 7, 9]. They
introduce definitions for random probing composability based on counting the number of probes at the inputs and
outputs of gadgets that are needed to simulate the leakage. To improve this approach, we could follow the recent
work of Cassiers et al. [11] and tighten the analysis. Concretely, in [11], the authors use a definition, which they
call the Probe Distribution Table (PDT). The PDT allows a tighter analysis since it considers the concrete wires
that the simulator needs. The drawback of the PDT approach is that the table grows exponentially with the number
of shares of the gadgets, and thus a generic analysis is not possible. The work of [4, 7, 5] allows analysis for generic
order, but it only provides security proofs for circuits with special structures. For this reason, the constructions are
typically less efficient, as discussed above.

Compiler. As mentioned in Section 1.1, many compilers produce masked circuits with provable security in
the random probing model. At Eurocrypt 2016, Andrychowicz et al. [2] presented a compiler with constant
leakage probability using expander graphs. This rather is a feasibility result since expander graphs require a high
number of shares. Two years later, Goudarzi et al. [19] gave a compiler for polynomial sharing requiring noise
p = O(1/ log(n)). Here, they presented an NTT-based secure multiplication with complexity O(n log(n)). The
compiler was further improved in [20] to allow more general fields F and complexity Θ(n log(n)). They use the
additive FFT algorithm proposed by Gao and Mateerin 2010 [17] to avoid the limitations of the classical NTT. With
self-folding bases, a generalization of Cantor bases, they further optimized the gadget. However, the field size still
restricts the number of shares n < |F| due to the share-wise different support points of poly sharings. Considering
affine circuits, our compiler is more efficient. For example, our refresh gadget has linear complexity and does
not use multiplication gates, while the one in [20] uses n log(n)/2 multiplications. Further, our compiler allows a
leakage rate of O(1) for affine circuits instead of O(1/ log(n)). Regarding non-affine circuits, their construction has

3

better complexities with respect to efficiency and security due to their NTT-based multiplication. However, for our
compiler, we slightly modified the ISW multiplication such that it is parallelizable.

To allow security for a constant leakage probability p, Ananth et al. [1] proposed a modular approach how to
compose a secure compiler multiple times. Finally, several follow-up works further improved this approach [4, 8, 6].
However, as described in Section 1.1, this approach leads to relatively costly circuits with randomness complexity
of at least O(n2.4) for affine and non-affine circuits, while our compiler only requires O(n) and O(n2), respectively.
In particular, our work analyzes the widely used ISW multiplication that is still promising for reasonable share
number (2 ≥ n ≥ 32) and noise parameters [11]. For this reason, we try to close the gap between practice and
theory and give a tighter security analysis in the random probing model.

2 Background

Notations. Let [n] := {0, 1, . . . n − 1}. Let (F,+, ·) be a finite field with its addition and multiplication (and let
− be its subtraction). We denote with x and (xi)i∈[n] vectors with coefficients in the field xi ∈ F. Let X0, X1 be
two random variables over a set X. Their statistical distance is: ∆(X0; X1) := 1

2
∑

x∈X
|Pr[X0 = x] − Pr[X1 = x]| . If

∆(X0; X1) ≤ ϵ, we say that X0 and X1 are ϵ-close.

Directed graphs. A directed graph is a pair G = (V, E) with a set of vertices/nodes V and a set of edges
E ⊆ {(x, y)|(x, y) ∈ V2 and x , y}, which are ordered tuples of vertices. Further, we write (x, y) to refer to such
edges. We call x its source node and y its destination node. When we draw our graphs, we represent the edge
(x, y) with an arrow from x pointing to y. We write −(x, y) := (y, x) to exchange destination and source. A
sub-graph G′ ⊂ G is a graph G′ = (V, E′) with E′ ⊂ E. This allows us to define unions of sub-graphs G′ = (V, E′),
G′′ = (V, E′′) with G′∪G′′ := (V, E′∪E′′). Note that all sub-graphs also have all nodes V . In our work, we are only
interested in the edges and assume that each sub-graph still consists of all nodes. Further, if we consider graphs
G′ = (V ′, E′), G′′ = (V ′′, E′′) with different nodes V ′ , V ′′, we also write G = G′ ∪G′′ := (V ′ ∪ V ′′, E′ ∪ E′′).
Hence, G is a graph consisting of two (sometimes unconnected) sub-graphs G′ and G′′. Let G be a graph. A path is
the image of continuous functions f : [0, 1] ⊂ R→ G. A loop is a path s.t. f (0) = f (1). We consider only loops s.t.
f|(0,1) is injective to avoid loops of type (x, y),−(x, y) or containing it as a sub-loop.

Circuits. An arithmetic circuit over a finite field F is a labeled acyclic graph. Its edges are the wires, and its
vertices are the gates. The edges pointing to a gate are the input wires of the gate, while those coming from it are the
output wires. We use the following gates: addition + : with fan-in 2 and fan-out 1, outputting the addition of the 2
input variables; subtraction − : as the addition one, outputting the subtraction; multiplication . as the addition,
outputting the multiplication; constant a : with fan-in 0 and fan-out 1, outputting the constant value a; random
R : with fan-in 0 and fan-out 1 outputting a uniform random variable; copy C : with fan-in 1 and fan-out 2,
outputting 2 copies of the input variable ; input I: with fan-in 1 and fan-out 1, outputting the input variable; output
O: with fan-in 1 and fan-out 1, outputting the output variable. The last two gates (I and O) are added for syntactic
reasons. A complete circuit is a circuit where there is an I gate at every input wire of the circuit and an O gate at
every output wire; otherwise, the circuit is incomplete. The completion of an incomplete circuit is the addition of I
and O whenever needed to make the circuit complete. An affine circuit is a circuit without multiplication gates. We
denote withW(C) the set of wires of the circuit C.
A wire carries a variable. We say that two variables, x and y, are the same variable if the wires carrying x and y are
connected only via copy gates. The value of a variable x is the value that is carried on the wire carrying x during an
execution with fixed inputs and randomness.

Masking. One of the most common countermeasures against side-channel attacks is masking. The idea is to
split the sensitive variables into n shares and then perform the computations on these shares and finally recover the
output. We use an encoding scheme (Enc, Dec) to encode variables, gadgets to perform computations on encoded
variables, and a refreshing gadget to securely compose multiple gadgets. We discuss these individual components
below in more detail.

Encoding/decoding schemes. An encoding scheme Enc is a probabilistic algorithm that takes as input x ∈ F
and outputs an n-tuple (x0, ..., xn−1) = Enc(x), where n is the masking order. The decoding scheme Dec takes as
input an n-tuple (x0, ..., xn−1) and outputs x = Dec(x0, ..., xn−1). For correctness, we want that for any x ∈ F it holds

4

that Dec(Enc(x)) = x. For security, we need that any subset of n − 1 shares of Enc(x) are independent of x. We use

arithmetic encoding. Enc(x) provides a randomized n-tuple x0, ..., xn−1 s.t.
n−1∑
i=0

xi = x , and Dec(x0, ..., xn−1) =
n−1∑
i=0

xi.

In the following, we will often denote an encoding of x by (xi)i∈[n].

Gadgets. To perform computations on encoded variables, we construct gadgets. Gadgets are made out of simple
gates such that even if the internals of the gadgets leak, the adversary will not learn any “useful” information.
Suppose we have a gate implementing the function f : Fl → Fk (e.g.,l = 2 and k = 1, for +). The corresponding
gadget G f is composed of many gates and performs the same operation where the input wires hold l encodings and
the output wires carry k encodings of the outputs. We require soundness from the gadgets, i.e., gadgets that perform
the same operation as the underlying gate, just in the encoded domain. Formally, we have ∀x = (x0, ..., xl−1) ∈ Fl,

f (x0, ..., xl−1) = (Dec(y0
i)i∈[n], . . . , Dec(yk−1

i)i∈[n])

with ((y0
i)i∈[n], . . . , (yk−1

i)i∈[n])← G f (Enc(x0), . . . , Enc(xl−1)).

Refreshing schemes. Refreshing schemes (or refreshing gadgets) are gadgets G f where f is the identity.1 The
scheme takes as input an encoding (xi)i∈[n], and outputs a re-randomized encoding (yi)i∈[n], such that Dec((xi)i∈[n]) =
Dec((yi)i∈[n]). In this work, we consider refreshing schemes using a linear number of random gates R .

In Figure 1a the simple refresh sRef of [16] is depicted, initially introduced in [29]. The gadget adds a
random value to each input yi ← xi + ri with i = 0, . . . n − 2 and subtracts each random value from the last input
yn−1 ← xn−1 − (r0 + · · · + rn−2).

This work considers an alternative to sRef that we call pRef; see Figure 1b. This gadget was initially introduced
in [3] and has the key feature that it is highly parallelizable. pRef takes as an input (xi)i∈[n] with n random values
ri and processes them in two parallel steps. In the first step, it computes bi ← xi + ri, and in the second step, it
subtracts ri−1 from bi such that yi ← bi − ri−1 (mod n) for all i ∈ [n], obtaining (yi)i∈[n].

Circuit compilers. Given the components from above, we can transform circuit C into a masked circuit Ĉ. This
is done via the concept of a circuit compiler CC. CC works as follows: First, CC replaces each wire carrying x with a
bundle of n-wires carrying an encoding of x, (xi)i∈[n]. Next, it replaces all gates in C with the corresponding sound
gadgets, input I gates with Î input encoders (which encodes the input), and output O gates with Ô output decoders.
Finally, between every two gadgets, the compiler CC adds a refreshing gadget to ensure secure composition. The
masked transformation Ĉ of a complete circuit C is sound if Ĉ(x) = C(x) for every possible input x of C. For an
incomplete circuit C, we say that the transformation Ĉ is sound if the transformation of its completion is sound. A
compiler CC is sound if for all circuits C the transformation Ĉ = CC(C) is sound.

Random probing model. As discussed in the introduction, we use the p-random probing model, originally
introduced in [21] to model side-channel leakage of the transformed circuit Ĉ. In the p-random probing model,
each wire leaks the value that it carries with probability p. Following [21], we assume that the wires of the input
encoders Î and output decoders Ô do not leak. Notice that, as in [21], this is without loss of generality when we
move from stateless to stateful circuits. To make it explicit what wires leak, we will denote in the following with
W′(Ĉ) ⊂ W(Ĉ) the set of wires of the circuit Ĉ that can leak. The definition below formalizes security in the
p-random probing model.

The transformed circuit is private if its leakage reveals nothing about its inputs and outputs. We can define this
with a security experiment.

Definition 1 (Privacy [16]). Let C be a circuit with fan-in k with input x = (x1, ..., xk). Further, let Ĉ be a sound
transformation of C and p ∈ [0, 1] its leakage probability. The leakage experiment Leak(Ĉ, x, p) is defined as
follows:
• We fed x to Ĉ resulting in some assignments of the wires of Ĉ. If C is incomplete, the input bundle

corresponding to the input wire containing x is fed with an encoding (xi)i∈[n] of x.
• Each wire w ofW′(Ĉ) is added to Lp(Ĉ) with probability p.

1We emphasize that this does not imply that G f is also the identity. Since the gadget can be probabilistic, the encoding of the outputs can be
re-randomized.

5

sRef((xi)i∈[n])

for j ∈ {0 . . . n − 2}
r j ←$ F

c0 ← 0

for j ∈ {0 . . . n − 2}
c j+1 ← c j + r j

y j ← x j + r j

yn−1 ← xn−1 − cn−1

return (yi)i∈[n]

(a) Simple refresh gadget [29].

pRef((xi)i∈[n])

for j ∈ {0 . . . n − 1}
r j ←$ F

for j ∈ {0 . . . n − 1}
b j ← x j + r j

y j ← b j − r j−1 (mod n)

return (yi)i∈[n]

(b) Parallel refresh gadget [3].

Figure 1: Refresh gadgets with linear random complexity.

• Output: (Lp(Ĉ), A|Lp(Ĉ)), where A is the set of the values carried by the wires of W during the circuit

evaluation of Ĉ on input x.
Ĉ is (p, ϵ)-private if there is a simulation algorithm that, not knowing x, outputs a random variable that is ϵ-close to
the actual output of Leak(Ĉ, x, p)

In other words, the masked circuit Ĉ is (p, ϵ)-private if the leakage in experiment Leak(Ĉ, x, p) can be simulated
independently from the inputs up to ϵ statistical distance. More precisely, if for any two inputs x, x’ of the circuit,
the distributions Leak(Ĉ, x, p) and Leak(Ĉ, x’, p) are ϵ-close, then Ĉ is (p, ϵ)-private. This observation was used
to prove security in [16]. Therefore, they defined Extended Leakage Shiftability to describe when the leakage is
independent of the input. In particular, shiftability accurately describes the fact that we can change the input of a
circuit so that the observed leakage does not contradict the new input.

Definition 2 (Leakage Shiftability [16]). Let Ĉ be a sound transformation of a circuit C. We say that an output L of
the experiment Leak(Ĉ, x, p) is shiftable to x’ if it can be output of the experiment Leak(Ĉ, x’, p).

In other words, let L← Leak(Ĉ, x, p) be the leakage with L = A|Lp(Ĉ), where A is the set of the values carried

by the wires during the circuit evaluation of Ĉ on input x. Then, L is shiftable if there is an assignment A′ with
the same probability during the circuit evaluation of Ĉ on input x’ s.t. it still holds for both leakages L = A′|Lp(Ĉ)

.

In this case, we can shift the values of the variables from A to A′ without modifying the values of the variables
leaked. This technique allows more fine-grained security analyzes than simulatability since we show where we
can modify the input encodings of each gadget (without ignoring where exactly, as done for simulatability). So, if
the leakage is shiftable and the leakage of the shifted encoding has the same distribution as the unshifted one, the
leakage is independent of the encoding. Hence, the leakage can be simulated without knowing the encoded value.
This property was also used in [16] to prove their compiler security.

Corollary 1 ([16]). Let Ĉ be the sound transformation of a circuit C via Dziembowski et al.’s compiler [16]. If

Pr[Leak(Ĉ, x, p) is not shiftable to x’, for any x’] ≤ ϵ,

for any input x, x’ then Ĉ is (p, ϵ)-secure.

To compute the shift probability, the authors give a new technique to transform this problem into a graph path
problem. Next, we present the class of graphs they consider.

Original leakage diagram. Dziembowski et al. [16] introduced the concept of leakage diagrams. They represent
all the variables on a graph and those variables whose values are leaked in a sub-graph called the leakage diagram.
For example, they represent multiple consecutive executions of sRef (depicted in Figure 2a) with the diagram
depicted in Figure 2b. The edges of the diagram represent the intermediate values that are computed during the
execution of this circuit. The intermediate values of each sRef execution are represented by two consecutive rows
and by the vertical edges between these two rows. On the lower row, there are n edges that represent the input

6

sRef0

sRef1

sRef2

x0
0 x0

1 x0
2 x0

3 x0
4

x1
0 x1

1 x1
2 x1

3 x1
4

x2
0 x2

1 x2
2 x2

3 x2
4

x3
0 x3

1 x3
2 x3

3 x3
4

(a) Simple refresh gadget [16].

x0
0 x0

1 x0
2 x0

3 x0
4

c0
0 c0

1 c0
2 c0

3 c0
4 c0

5

x1
0 x1

1 x1
2 x1

3 x1
4

c1
0 c1

1 c1
2 c1

3 c1
4 c1

5

x2
0 x2

1 x2
2 x2

3 x2
4

c2
0 c2

1 c2
2 c2

3 c2
4 c2

5

x3
0 x3

1 x3
2 x3

3 x3
4

(b) The graph of the simple refresh used for the leakage dia-
gram [16].

Figure 2: Refresh gadgets with linear random complexity.

shares (one edge per share), while on the upper row, there are n edges representing the output shares of a refreshing
gadget. The vertical edges between two rows represent the partial sum ci

j of the random values used during that
execution. Since ci

j+1 = ci
j + ri

j, the variable ri
j is represented by both the edges ci

j and ci
j+1. They also add the edges

corresponding to the variable ci
n. These ci

n are defined similarly to the others as follows ci
n = ci

n−1 + xi
n−1 − xi−1

n−1.
Thus, it always holds ci

n = 0 because ci
n = ci

n−1 + xi
n−1 − xi−1

n−1 = ci
n−1 + (xi−1

n−1 − ci
n−1) − xi−1

n−1 = 0.
During k executions of sRef the adversary receives a leakage Lp (see Def. 1). The leakage diagram corre-

sponding to Lp is the subgraph of Fig. 2b composed by all the edges corresponding to the variables belonging to Lp

(and all ci
0 and ci

n since they are always equal to 0. Thus their values are always known by the adversary). Further,
Dziembowski et al. [16] proved that the leakage can be simulated independently from the input x = Dec((x0

i)i∈[n])
if there is no path from the left to the right of the leakage diagram. The technique was extended to analyze more
complex masked circuits where each gadget’s output is refreshed with the sRef gadget. Further, they show that the
security can be bounded with the probability that there is such a path.

3 Parallel Compiler

The circuit compiler we present in this paper has the key feature that its operations are highly parallelizable. It uses
the standard gadgets for addition (cf. Fig. 3a), copy (cf. Fig. 3b), random (cf. Fig. 3d), and constant (cf. Fig. 3c)
operations. When considering their circuit representation, the gadgets have a low depth; hence, they can be executed
highly parallelly. The more interesting gadgets are the ones for the multiplication of two encoded inputs (cf. Fig. 3e)
and for refreshing an encoding (cf. Fig. 1b). The multiplication gadgets with input encodings (ai)i∈[n] and (bi)i∈[n]
computes the tensor product aib j of all shares. As in the ISW multiplication, this results in n2 products aib j that
we need to compress to a random encoding of the output by appropriately adding up these values and blinding
the intermediate results by injecting fresh randomness. In contrast to the ISW multiplication that has depth n, we
change the way in which this final addition is done to reduce the depth to log(n). This significantly reduces the
latency of the gadget from n to log(n). The refresh gadget re-randomizes an encoding such that it still decodes to
the same value. The refresh gadget of our compiler has the key feature that it only has depth 2 in contrast to the
simple refreshing from [16], which has an asymptotic depth of n.

Compiler CCp. The parallel compiler CCp takes as input an arbitrary circuit C using the gates + , − , . , a ,
R and C and replaces each gate with the corresponding gadget from Figure 3 in Ĉ. Note that the gadget for
− works by slightly modifying the Add gadget such that the second input is first share-wise transformed to its

additive inverse, i.e., by setting −bi ← bi. At the high level, the topology of C and Ĉ is the same, i.e., if two
gates are connected by wires in C, then the corresponding gadgets are connected in the same way through wire
bundles in Ĉ. These wire bundles carry the encodings of the variables corresponding to the wires in C. Finally, to
guarantee composability, the compiler CCp inserts refresh gadgets between each computational gadget to inject
further randomness. By applying the compiler to a circuit C, we get a parallelizable masked circuit that we denote
with Ĉ← CCp(C). We start by showing the soundness of the compiler CCp in the following corollary.

7

Add((ai)i∈[n], (bi)i∈[n])

for i ∈ {0 . . . n − 1}
ci = ai + bi

return (ci)i∈[n]

(a) The addition gadget Add for + and − with
bi ← −bi.

Copy((ai)i∈[n])

for i ∈ {0 . . . n − 1}
bi = ai

ci = ai

return (bi)i∈[n], (ci)i∈[n]

(b) The copy gadget Copy for C .

Consta

return (ai)i∈[n]

(c) The constant gadget Consta for a with
(ai)i∈[n] ← Enc(a).

Rand()

for i ∈ {0 . . . n − 1}
r j ←$ F

return (ri)i∈[n]

(d) The random gadget Rand for R .

Mult((ai)i∈[n], (bi)i∈[n])

for i ∈ {1, ..., n − 1}
for j ∈ {0, ..., i − 1}

z0,i, j ←$ F

for i ∈ {0 . . . n − 1}
for j ∈ {i + 1, ..., n − 1}

wi, j = ai · b j − z0, j,i

z0,i, j = wi, j + a j · bi

for i ∈ {0, ..., n − 1}
z0,i,i = ai · bi

L = log2(n + 1)

for i ∈ {0, n − 1}
for l ∈ {1, ..., L}

for j ∈ {0, ..., 2L−l − 1}
zl,i, j = zl−1,i,2 j + zl−1,i,2 j+1

for i ∈ {0, ..., n − 1}
ci = zL,i,0

return (ci)i∈[n]

(e) The multiplication gadget Mult for . .

Figure 3: Parallel gadgets.

Corollary 2. Let C : Fs → Ft be an arbitrary circuit and Ĉ← CCp(C). For any x0, . . . , xs−1 ∈ F, we have:

((y0
i)i∈[n], . . . (yt−1

i)i∈[n])← Ĉ(Enc(x0), . . . , Enc(xs−1))

with C(x0, . . . , xs−1) = (Dec((y0
i)i∈[n]), . . . , Dec((yt−1

i)i∈[n])).

Proof. The proof of the corollary immediately follows from the soundness of the gadgets depicted in Figure 3. □

Our compiler has similar features to the compiler of [16]. More precisely, we can show that Corollary 1 also
holds for our compiler.

Corollary 3. Let Ĉ be the sound transformation of a circuit C via our compiler, CCp. If

Pr[Leak(Ĉ, x, p) is not shiftable to x’, for any x’] ≤ ϵ,

for any input x, x’ then Ĉ is (p, ϵ)-secure.

Proof. This proof is similar to the one in [16]. According to Definition 1, we need to simulate Leak(Ĉ, x, p) inde-
pendently from the input x up to ϵ statistical distance. Therefore, we prove that the distribution of Leak(Ĉ, x’, p)-
experiment is ϵ-close to Leak(Ĉ, x, p)-experiment for any x, x’ if it is shiftable. This immediately gives the required
simulator2. So, we are left with the proof that shiftability for any x, x’ implies that the outputs of the experiments
Leak(Ĉ, x, p) and Leak(Ĉ, x’, p) are ϵ-close. Let n be the number of shares used by Ĉ. We will follow a sequence

2The simulator takes a random input x’ and outputs Leak(Ĉ, x’, p).

8

Input: (x0, ..., xn), (y0, ..., xi+1
n)

rn−1 ←$ F
for j = 1, ..., n − 1
r j = x j − y j − r j−1
endfor
Return (r0, ..., rn)

Figure 4: The Randomness Reconstructor Rand(pRef) for (yi)i∈[n] ← pRef((xi)i∈[n]).

of Games where the first game represents the circuit with input x and the last one with input x’:

Game 0: The leakage experiment Leak(Ĉ, x, p).

Game 1: The modified Game 0, where we have modified how pRef gadgets pick the randomness. Instead of
picking the randomness uniformly at random, pRef picks uniformly at random a new encoding of x, (x∗0, ..., x

∗
n),

then, via the randomness reconstructor RandR(pRef) (described in Fig. 4), it computes the internal randomness.
Hence, the output shares (xi

0, ..., x
i
n) are the random encoding (x∗0, ..., x

∗
n).

Transition between Game 0 and Game 1: We show that the randomness reconstructor RandR(pRef) outputs
randomness indistinguishable from that used by pRef of Game 0. In both cases, r0 is picked uniformly at random,
and hence, r0 is picked in the same way. Since it holds r j = x j − y j − r j−1 and all y j are picked uniformly at random,
all r j have the same distribution as if they are picked uniformly at random. Since Game 0 and Game 1 only differ in
how the randomness is used, and the randomness in Game 0 and Game 1 is indistinguishable. Hence, both games
are indistinguishable.

Game 2: It is the modified Game 1, where we have replaced the non-leaked intermediate values of the variables in
such a way that Ĉ has the input x’. Note that this is possible due to the shiftablity assumption, and hence, we can
apply shiftabilty without giving further details.
Transition from Game 1 to Game 2: Since an outcome of the Leak(Ĉ, x, p)-experiment can be shifted to an outcome
of the Leak(Ĉ, x’, p)-experiment except with probability ϵ, we can do this shift with probability 1 − ϵ. Due to the ϵ,
this is the only game hop in the proof with a loss.

Game 3: Game 3 is the modified Game 2, where we have replaced the input and output encodings of all gadgets
with random encodings of the same value as we did in Game 1. In other words, every input/output encoding is
again replaced with a random encoding that still decodes to the same value (the one that we got in Game 2).
Transition between Game 2 and Game 3: Since the inputs and outputs of both games are still random encodings,
we cannot distinguish Games 2 and 3. Note that the encodings in Game 2 are still random because the shiftability
depends only on the leaked variables and not on the values that this variable assumes.

Game 4: The leakage experiment Leak(Ĉ, x’, p).
Transition between Game 3 and Game 4: It is the inverse of the transition between Game 0 and Game 1. Thus,
using RandR(pRef), we can prove that these two games are indistinguishable.

As mentioned in the transition from Game 1 to Game 2, this is the only step with a security loss of ϵ. This
proves the claim since it immediately flows that Game 0 and Game 4 are ϵ-close. □

3.1 Dependency Graph for our Gadgets

The values carried by the wires of a masked circuit can be considered as a set of random variables randomized
by the random input encodings and the internal random gates. When we analyze such random variables X and Y
representing intermediate wires, they can carry values x, y ∈ F with Pr[X = x] ≥ 0 and Pr[Y = y] ≥ 0. When we
analyze the leakage resilience of circuits, we can distinguish two cases (i) intermediate values are independent
Pr[X = x,Y = y] = Pr[X = x] · Pr[Y = y] or (ii) they are dependent Pr[X = x,Y = y] , Pr[X = x] · Pr[Y = y].
To describe the dependencies of such a set of random variables T occurring as intermediate values during the

9

computation of a masked circuit, we use a dependency graph (DG), represented as a directed labeled graph where
all edges have a source and destination node. Further, each edge has a label containing at least one variable x ∈ T .
For any subset of random variables S ⊂ T , we get a subgraph consisting of all edges whose labels contain at least a
variable in S . Further, the edges of the dependency graph are linked so that any subset S of variables describes a
subgraph with no loops (a loop is a path with the same starting and ending point) if the set S consists of random
variables that are independent of the decoded inputs or outputs of the circuit.

Definition 3. Let C be a masked circuit C with intermediate values T , and G a labeled graph with k edges
e0, e1, . . . , ek−1 each labeled with Ti such that

⋃
i∈[k] Ti = T . G is a dependency graph if for each sub graph G′ ⊂ G

with edges ei i ∈ I ⊂ [k], it holds

G′ has no loop⇒⋃
i∈I Ti is independent of the unmasked inputs.

Dependency graphs are helpful for three reasons: First, when we consider the leakage as a subset S of
the random variables T , we can represent the leakage as a subgraph, the so-called leakage diagram, LD (see
Definition 5). Second, using the graph property that all subsets with elements dependent on the decoding of the
inputs are structured as loops; we can classify leakage diagrams as “good” or “bad” (see Section 4.1). All “good”
leakage diagrams correspond to leakages that can be simulated without knowing sensitive values. Third, with the
classification, we can upper bound the probability that the leakage corresponds to a “bad” leakage diagram if all
wires leak their values with probability p. Hence, we can analyze the leakage resilience of a circuit (Sec. 5). In
the following, we describe the dependency graphs of a simple encoding and for each gadget used by our compiler.
Then, we show how to compose the dependency graphs of our gadgets to get the dependency graph for any output
of our compiler.

Dependency graphs of masked values. Let us consider an encoding of a secret x, with (xi)i∈[n] ← Enc(x).
The corresponding set of random variables is

T = {x0, x1, . . . , xn−1} .

We represent this with the dependency graph depicted in Figure 5a with Ti = {xi}. There are n edges, each labeled
with one of the variables of T . For simplicity, we call the edge labeled with {xi} the xi-edge. All n edges form a
loop, which we can see as a “circle” 3. It is easy to see that this “circle” is the only loop in the graph, and any
strict subset of the n edges does not form a loop. This describes the abovementioned property that dependent
random variables form a loop. The variables x0, x1, . . . , xn−1 describe a loop because they depend on the secret with
Dec((xi)i∈[n]) = x. However, any strict subset S ⊂ T is a set of independent random variables due to the security
property of the secret sharing, and that is why they do not form a loop in the dependency graph.

Further, the dependency graph is a directed graph, and the xi-edge connects the destination node of the xi−1-edge
with the source node of the xi+1-edges.4 The direction of an edge represents the sign of the edges labels. Thus, we
can also think that there is an edge labeled −xi which connects the source node of the xi+1-edge with the destination
node of the xi−1-edge. In detail, the path ove rall xi’s can be considered as the sum over all xi’s. If the path also
consists of edges with opposite directions, we subtract the variables represented as an edge with the opposite
direction instead of adding them. Since the random variables of the Rand and Const gadget only consist of output
variables, their dependency graphs are simple dependency graphs of maskings. Next, we give the dependency graph
of pRef.

Dependency graph for pRef. Let pRef refresh an input (xi)i∈[n] with random values (ri)i∈[n]. As intermediate
variables it computes (bi)i∈[n] with bi = xi + ri and outputs (yi)i∈[n] with yi = bi − ri−1. This leads to the set of random
variables

TpRef = {x0, x1, . . . , xn−1, r0, r1, . . . , rn−1, b0, b1, . . . , bn−1, y0, y1, . . . , yn−1}.
The dependency graph of pRef is depicted in Figure 5b. Each edge is labeled by a single value of TpRef. Thus, we
can use the same convention as before, and the edge labeled with {x} is the x-edge for all x ∈ TpRef. The dependency
graph (Fig. 5b) forms a skeleton of a cylinder. The x0, ..., xn−1-edges form a loop, which is the bottom circle of
the cylinder, while the y0, ..., yn−1-edges form a loop, which is the top circle of the cylinder. These two loops are

3In the following, when we use circles and rectangles for the elemental geometrical shapes, while loops for the graph loops defined before.
Clearly, “circles” and “rectangles” are loops if they are defined only with the edges of a graph.

4To simplify the notion, we omit the (mod n) in all the operations with the index of variables, as for i − 1.

10

identical to the dependency graph of masked values described in the previous paragraph. The remaining edges
form the lateral surface of the cylinder. More precisely, this lateral surface consists of n rectangles defined by the
xi, ri, yi, ri−1-edges. The loops defined by those rectangles describe the subset {xi, ri, yi, ri−1} of dependent random
variables because xi + ri − ri−1 = yi. Here it becomes clear why the dependency graph is a directed graph because
the ri−i has the opposite direction when we consider the alternative path ri−1, xi ri that connects the same nodes as
yi. Hence we only add xi and ri but subtract ri−1 to compute yi. Further, the n rectangles each have a diagonal edge:
the bi-edges that describe the remaining intermediate values bi. We add them to the graph such that they fulfill the
same additive properties as the n rectangles. In detail, an alternative path for the edge bi is ri−1, yi or xi, ri because
it holds bi = ri−1 + yi and bi = xi + ri. This construction fulfills the property again that all subsets S ⊂ TpRef that
depend on the decoding of the input (or output) form a loop in the graph. More precisely, they form a loop that
orbits the lateral surface of the cylinder structure of the graph. In Proposition 6 (Sec. 4.2), we give the formal proof.

Dependency graph for Copy. The copy gadget Copy (Fig. 3b) takes as input an encoding (ai)i∈[n] and outputs
two encodings (bi)i∈[n] and (ci)i∈[n] with ai = bi = ci for all i. Note that the dependency graph only considers the
random variables carried by the wires, and ai, bi, and ci represent the same variable. Thus,

TCopy = {a0, ..., an−1, b0, ..., bn−1, c0, ..., cn−1} = {a0, . . . , an−1}

results in the same dependency graph as the usual masking described above. The dependency graph is the graph
depicted in Figure 5a, with Ti = {ai, bi, ci} = {ai}. Again, it is clear that the graph is a dependency graph because
any set of possible leaked values is a set of independent values if the set does not describe a subgraph with a loop.

Dependency graph for Add. The addition gadget Add (Fig. 3a) is a share-wise addition. It takes as input two
encodings (ai)i∈[n] and (bi)i∈[n] and outputs an encoding (ci)i∈[n] with ci = ai + bi for all i ∈ [n]. This leads to

TAdd = {a0, ..., an−1, b0, ..., bn−1, c0, ..., cn−1}.

A possible dependency graph is depicted in Figure 5a with Ti = {ai, bi, ci}. Compared with the graphs presented
before, the difference is that each edge represents multiple different variables. More precisely, we map all values of
each share-wise computation to a single edge. However, it holds again that any strict sub-graph has no loop and
describes a subset that is independent of the decoded input or output (see Sec. 4.2 Prop. 5). Note that this fact
immediately follows with the same argument as the one for dependency graphs of usual masking when we consider
the approximation that an adversary learns all variables ai, bi, ci if at least one is leaked.

Dependency graph for Mult. The Mult gadget takes as input two encodings (ai)i∈[n], and (bi)i∈[n], and outputs
an encoding (ci)i∈[n] with

Dec((ci)i∈[n]) = Dec((ai)i∈[n]) · Dec((bi)i∈[n]) .

Therefore, the gadget computes the intermediate values zl,i, j, and wi, j, as defined in Figure 3e. This leads to the set
of random variables generated by the circuit

TMult = {a0, ..., an−1, b0, ..., bn−1, ai · b j, zl,i, j,wi, j and i, j ∈ [n], l ∈ [L + 1]},

with L = log2(n + 1). Considering Figure 3e, it turns out that wi, j and zl,i, j are not defined for all j and l. For the
sake of simplicity, we omit the precise treatment and assume that all the variables ŵi,̂ j not defined by the algorithm
are zero. We see them as not elements in TMult. A possible dependency graph is depicted in Figure 5a with

Ti = {ai, bi, ci, ai · bi, ai · b j, a j · bi,wi, j,w j,i, zl,i, j and j ∈ [n], l ∈ [L + 1]} .

It is very similar to the graph used for Add. The idea is to label the Ti-edge with the ith share of the inputs and
outputs ai, bi, ci. The difference to Add is that Mult also has intermediate values that we still have to add to the
graph. Therefore, we add to Ti all the monomials aib j and a jbi, j ∈ [n]. Note the monomial aib j (and a jbi) belongs
to both labels Ti and T j. Finally, we add all intermediate addends wi, js and the zl,i, j of the ith output share to Ti.
This is inspired by [21, 16]. In Section 4.2 (Proposition 5), we prove that the variables S ⊂ TMult that do not
describe a sub-graph with a loop are independent of the decoding of (ai)i∈[n], (bi)i∈[n], and (ci)i∈[n]. Next, we give the
composition results to construct the dependency graph of any output of our compiler.

11

3.2 Composition of Dependency Graphs

In the previous section, we introduced the dependency graphs for our gadgets. Since our compiler always outputs a
composition of those gadgets, we are interested in how to get the dependency graphs for the composition of those
gadgets. Therefore, we give composition results to obtain the dependency graphs of composed gadgets G1 and
G2 with dependency graphs DG1 and DG2, respectively. In [11], they distinguish two different compositions, the
sequential composition written G = G1 ◦G2 where G1 gets as input the output of G2, or the parallel composition
written G = G1||G2 where both gadgets compute parallel and independently of each other. When we consider
parallel compositions of two gadgets where both gadgets run independently (with no shared inputs), it is easy to see
that the dependency graphs of both gadgets do not affect each other. Hence, the dependency graph of DGG1 ||G2 can
be seen as a union of sets DG1∪DG2 where both graphs are considered as one graph but there is no edge connecting
DG1 and DG2 because there is no further dependency generated by the parallel composition. To compute the
dependency graph of the sequential composed gadgets G1 ◦G2 out of DG1 and DG2 we use a modified union of
both dependency graphs. When we consider sequential compositions, an output wire becomes an input wire of
another gadget. Hence, two wires merge to only one wire, and a modified union is required where the two edges of
such connected wires become the same. For this reason, we define a function f (so-called attaching function) that
maps the edges of the G2’s output wires to the according edges of the G1’s input wires. The result is a union of
both graphs where f defines which edges of DG1 and DG2 are the same, and we can write

DGG1◦G2 = DGG1 ∪ f DGG2

For example, let G1 = pRef and G2 = Add, then the output (ci)i∈[n] is the input of pRef. This can be described with
the attaching function f that maps the edge of ci in DGpRef to the edge of Ti in DGAdd, and the resulting dependency
graph DGpRef◦Add = DGpRef ∪ f DGAdd is depicted in Figure 6a where Ti is labeled with the inputs and outputs of the
addition gadget {ai, bi, ci} as the dependency graph of Add (Fig. 5a). Further, due to the composition, the function f
merges the edges related to the output of the addition with the edges related to the input of the refresh. For this
reason, the edge labeled with Ti is also the edge that represents the input edge of the dependency graph of pRef
(Fig. 5b).

Additionally, we can also refresh the inputs of the addition. Let G be an addition or multiplication gadget with
(ci)i∈[n] ← G((ai)i∈[n], (bi)i∈[n]) where (ai)i∈[n] and (bi)i∈[n] are refreshed outputs (ai)i∈[n] ← pRef((xi)i∈[n]), (bi)i∈[n] ←
pRef((yi)i∈[n]), respectively, and (ci)i∈[n] is refreshed afterwards (zi)i∈[n] ← pRef((ci)i∈[n]). This composition can be
written as pRef ◦ G ◦ (pRef||pRef) because the refresh of (ai)i∈[n] and (bi)i∈[n] is a parallel composition, and the
remaining ones are sequential. This results in a dependency graph

DGpRef(G(pRef(·),pRef(·))) = DGpRef ∪ f1 DGG ∪ f2 (DGpRef ∪ DGpRef)

depicted in Figure 6b with f1 mapping the input edges DGpRef((ci)i∈[n]) to the output edges of DGG, and f2 input
edges DGG to the output edges DGpRef((xi)i∈[n]) and DGpRef((yi)i∈[n]). Note that Ti is determined by the choice of G, and
in case of Add it is {ai, bi, ci}. Formally, the operation defined by DG1 ∪ f DG2 is a topological definition called
adjunction space and can be formalized as follows.

Definition 4 (Attaching). Let DG1 and DG2 two disjoint dependency graphs, and f a function as described above
mapping some edges of DG1 to edges in DG2. The composed graph is

DG1 ∪ f DG2 = (DG1 ∪ DG2)/ ∼,
where ∼ is the smallest equivalence relation with x ∼ f (x).

The adjunction space of two dependency graphs preserves the properties of the underlying dependency graphs
and merges them in such a way that the resulting graph describes the dependencies from both dependency graphs
simultaneously. For the sake of simplicity, we can consider the composition as described above, where we merge
the edges of two dependency graphs if the according wires become one due to the circuit composition. More
formally, we will prove in Propositions 5, 6, 8, and Theorem 10 that the variables contained only in the labels of
the edges of a sub-graph that does not contain a loop are independent of the inputs or outputs.

The key observation is that the dependency graphs for all our gadgets are either the loop depicted in Figure 5a
or the skeleton of a cylinder, as shown in Figure 5. Further, the compiler places a refresh gadget between every
gadget that is not a refresh gadget. This means that the resulting dependency graph can be seen as a composition of
cylinders (defined by the refresh gadgets), where the bottom and the top of the cylinder are labeled with the Ti’s
defined of the gadgets between the refresh gadgets.

12

Tn−1
Tn−2

Tn−3

Tn−4

T1
T0

(a) Dependency graph of Enc, Dec, Copy, Add, or Mult
with labels Ti defined in Section 3.1.

1

0xn−1

xn−2 x1

x0

yn−1
yn−2

yn−3

yn−4

y1

y0

r1

r0
rn−1

rn−2

rn−3
b1

b0bn−1

bn−2

(b) The dependency graph for (yi)i∈[n] ← pRef((xi)i∈[n]).

Figure 5: Dependency graphs of the gadgets.

1

0Tn−1

Tn−2 T1

T0

yn−1
yn−2

yn−3

yn−4

y1

y0

r1

r0
rn−1

rn−2

rn−3
b1

b0bn−1

bn−2

(a) Dependency graph of pRef ◦ G,
with (yi)i∈[n] ← pRef((xi)i∈[n]) taking
as input the output of G. The DGG is
described in Figure 5a while DGpRef is
described in Figure 5b. Note that the
label Ti contains xi.

T0

Tn−1 T2

T1

y′0

y′n−1

y′n−2

y′n−3

y′2

y′1x′0

x′n−1

x′n−2

x′n−3

x′2

x′1

z′0
z′n−1

z′n−2

z′n−3

z′2
z′1

(b) The dependency graph of the composition of (xi)i∈[n] = pRef((x′i)i∈[n]) with (yi)i∈[n] =

pRef((y′i)i∈[n]), (zi)i∈[n] = G((xi)i∈[n], (yi)i∈[n]) (thus, G is either the Add or the Mult
gadget) and (z′i)i∈[n] = pRef((zi)i∈[n]). (For simplicity, we have omitted the edges of bis
and ris.)

Figure 6: Dependency graphs of composed gadgets.

13

4 Security Analyzes of the Gadgets

Before we analyze the privacy of our compiler’s output in Section 5, we first give the privacy of our gadgets in
this section. First, in Section 4.1, we formally show how to describe the leakage with sub-graphs of the gadgets’
dependency graphs presented in the previous chapter (Sec. 3.1). Then, in Section 4.2, we give all leakages that
are not shiftable using the sub-graphs of our dependency graph, and finally, we compute the probabilities of such
sub-graphs under the condition that each wire leaks its value with probability p.

4.1 Leakage Diagram

Using Corollary 3, it is enough to show shiftability for the privacy proof. To characterize which outputs Leak(Ĉ, x, p)
of the experiment in Definition 1 are shiftable, we start representing the leakage as a subgraph of the dependency
graph. As already discussed in the random probing model, the adversary receives via leakage the values carried by
some of the wires, Lp(Ĉ) ⊆ W′(Ĉ) (Def. 1). We can represent these variables as a subgraph of the dependency
graph.

Definition 5 (Leakage diagram). Let DG be the dependency graph of the circuit Ĉ and Lp(Ĉ) be the set of wires
that leak in the experiment Leak(Ĉ, x, p).The leakage diagram, LD(Lp(Ĉ),C), corresponding to the leakage Lp(Ĉ)
is the subgraph of DG composed by all edges whose label contains at least one of the variables carried by the wires
in Lp(Ĉ).

Since Lp(Ĉ) is randomized by the leakage probability p, it is a random variable over all possible subsets of the
wiresW′(Ĉ) that may leak during the computation of Ĉ. Hence, also LD(Lp(Ĉ), Ĉ) is a random variable over
all possible sub-graphs of the dependency graph. Next, we give some examples of leakage diagrams LDi with
Pr[LD(Lp(Ĉ), Ĉ) = LDi] > 0. They are also represented in the full version. For this reason, we consider the pRef
gadget refreshing an encoding (xi)i∈[n] ← Enc(x) of a secret x ∈ F

(yi)i∈[n] ← pRef((xi)i∈[n])

with random values ri, and intermediate values yi = bi − ri+1 and bi = xi + ri defined in Figure 1b.

1) LD1 = (x0, ..., , xn−1) reveals the secret because Dec((xi)i∈[n]) = x

2) LD2 = (y0, ..., , yn−1) reveals the secret because Dec((yi)i∈[n]) = Dec((xi)i∈[n]) = x

3) Let LD3 = (x0, ..., xi−1, ri−1, yi, ri, xi+1, ..., xn−1). Since yi = xi + ri − ri+1, we have that these values reveal x.
In fact, 

∑

j∈[n], j,i

x j

 + ri + yi + ri+1 =


∑

j∈[n], j,i

x j

 + xi = Dec((xi)i∈[n]) = x.

4) Let LD4 = (x0, ..., xi, ri, yi+1, ..., yn−1). We observe that if instead of rn−1, we have r′n−1 = rn−1 + x′ − x, these
values come from a refreshing of x′. In fact


i−1∑

j=0

x j

 + ri +


n−1∑

j=i

y j

 =


n−1∑

j=0

x j

 − rn−1 = x − rn−1

since r j−1 + y j = x j + r j. Thus, LD4 does not reveal x because the leakage is shiftable to x′.

Note that, LD′4 = LD4 ∪ {rn−1} would reveal x similarly to B3).

5) Now, consider LD5 = {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1, r0, ..., rn−1}. LD5 does not reveal x
since LD5∪{xi} comes fromL(pRef((xi)i∈[n], r), p), while LD5∪{xi+x′−x} comes fromL(pRef((x′i)i∈[n], r), p),
where (x′i)i∈[n] is defined as x′j = x j if j , i and x′i = x + i + x′ − x, r = (r + 0, ..., rn−1). We prove this in
Section 4.2, Proposition 6.

6) Finally, consider LD6 = (x1, b1, r1), which clearly does not reveal the secret, as we will prove in the next
section.

14

1

0xn−1

xn−2

x0

yn−3

yn−4

y1

r0

rn−3

(a) Leakage diagram of (yi)i∈[n] ← pRef((xi)i∈[n]) with an
orbiting loop.

1

0xn−1

xn−2

x0

yn−1
yn−2 y0

r0

rn−3

(b) Leakage diagram of (yi)i∈[n] ← pRef((xi)i∈[n]) with a
not orbiting loop.

Figure 7: Dependency graphs of the gadgets.

Considering the examples above, we observe that if the leakage diagram reveals information about the secret,
the leakage diagram also consists of at least one loop. This is not surprising because this is exactly the property that
we presented in Section 3, and immediately follows from the dependency graph property described in Section 3.1.
However, the presence of a loop does not always prevent shiftability, e.g., LD4, LD5, ad LD6 have a loop and are
still shiftable. For tightness reasons, we want to distinguish loops that reveal the secret from loops that do not reveal
the secret. For this reason, we remember that the dependency graphs of the gadgets (Fig. 5) are either a circle or
the skeleton of a cylinder. Hence, its compositions are composed hollow cylinders, as depicted in Figure 6. We
observe all loops revealing the secret orbit around this hollow cylinder structure. Further, the loops that do not
reveal the secret do not orbit the hollow structure. Figure 7 illustrates the differences between such loops. The first
loop is an example of a loop that does orbit the skeleton, while the second one gives an example of a loop that does
not orbit the skeleton. In the following, we say that a leakage diagram orbits if it contains such an orbiting loop.
Similarly to the adjunction space used to compose the dependency graphs, also the property of hollow and orbit are
well-known in Topology and can be described with the topological definitions simply connected and homotopically
equivalent: Hollow means that all the loops carrying the shares of a value are not simply connected, and orbiting
means that the loop is homotopically equivalent to a loop containing all xi-edges of a sharing (xi)i∈[n]. Roughly
speaking, two paths are homotopically equivalent (Defined in the full version) if we can put an infinitely elastic
rope over the first path, and we can slide it to cover the second path. For this, we assume that the DG of pRef
contains the lateral surface of the cylinder, and the rope, as in LD3, can slide over it. With this, it is easy to see
that LD3 is homotopically equivalent to LD1 and LD2. Thus, the Topology allows us to distinguish between “bad”
leakage diagrams from good, and all not orbiting leakage diagrams represent shiftable leakages. This intuition will
be proved in the following subsection (Sec. 4.2). In the following, we will also call “good” diagrams shiftable
diagrams.

4.2 Security Analysis for our Gadgets

To avoid that, we have to prove the security of any possible leakage diagram. So we start with a useful observation.

Proposition 1. If a leakage diagram LD is shiftable, all sub graphs LD′ with LD′ ⊂ LD are also shiftable.

Hence, when we prove shiftability for a given leakage diagram, it immediately follows shiftability for any
subgraph.

Proof. A leakage diagram LD is shiftable if all the outcomes L of the Leak(Ĉ, x, p) which are represented by
the leakage diagram LD are shiftable to x’ for any x’ , x. That is, (Def. 2) L can be also an outcome of the
Leak(Ĉ, x’, p)-experiment.

Now, consider the leakage diagram LD′ with LD′ ⊂ LD. Let L′ be an outcome of the Leak(Ĉ, x, p), which can
be represented by the leakage diagram LD′. Since LD′ ⊂ LD, there exists an outcome L of the Leak experiment
represented by LD s.t. L|var ∈LD′ = L′, where with var ∈ LD′, we mean the variables carried only by the labels
of the edges in LD′. Since LD is shiftable, then L can be an outcome of the Leak(Ĉ, x’, p)-experiment. Thus,
L′ = L|var ∈LD′ can be an outcome of the Leak(Ĉ, x’, p)-experiment. Thus, all outcomes of the Leak-experiment
represented by LD′ are shiftable to x’. Thus, the leakage diagram LD′ is shiftable. □

15

For simplicity, we use this result and introduce the concept of maximal diagramMAX(LD) for any leakage
diagram LD of our gadgets. MAX(LD) is a subgraph of the dependency graph, which contains LD

LD ⊆ MAX(LD) ⊂ DG

and is maximal in the sense that if we add any further edge, it orbits as depicted in Figure 7a. Due to Proposition 1
we only need to consider all possible maximal diagrams for the security proofs of our gadgets when we want to
show that leakage diagrams are shiftable if they do not orbit. The existence of maximal diagrams is proved in the
following Proposition.

Proposition 2. Let LD be a leakage diagram that does not orbit. Then, there exists a maximal diagram LD′

containing it.

Proof. Let LD be a subgraph of DG, which does not orbit. Suppose that ∀ edge e ∈ DG \ LD, LD ∪ {e} orbits.
Then, LD is a maximal simply connected subgraph containing LD.

Otherwise, there is an e ∈ DG \ LD s.t LD1 = LD ∪ {e} that does not orbit. Then, we iterate with LD1 until
there is no such an e left. Since there is only a finite number of edges that can be added, this sequence of subgraphs
must end after at most I step (with I ≤ |{e ∈ DG \ LD}|). Hence, the final LD j is a maximal diagram. □

In general, there are many different maximal diagrams, as we will see in the next section.

Maximal diagrams. Since we use the maximal diagrams in most of the following proofs, we characterize them
for all of our gadgets. The dependency graphs of Enc, Dec, Copy, Add, Mult (Fig. 5a) are a circle with n edges, all
subgraphs containing all edges except one are maximal, that is, we have n different maximal diagrams Mi defined
as follows

Mi = {T0, ...Ti−1,Ti+1, ...,Tn−1} = DG \ {Ti}
where with T j ∈ Mi, we mean thatMi contains the edge labeled with T j as depicted in Figure 8b and 8b. We
formally prove this in the following Proposition.

Proposition 3. Let DG be the dependency graph of one of the Enc, Dec, Copy, Add, and Mult gadget. Then,
there are n different maximals (Sec. 3.1)

Mi = {T0, ...,Tn−1} = DG \ {Ti}
for i = 0, ..., n − 1.

Proof. Mi is a line starting from nodei+1, the starting node of the Ti+1-edge, to nodei, the arriving node of the
Ti−1-edge (and the starting node of the Ti-edge). Thus, it is simply connected. Moreover,Mi ∪ {Ti} = DG, where
Ti is the only edge in DG and not inMi. Since DG orbits,Mi is maximal. In fact, any other subset LD that does
not orbit and is composed of less than n − 1 edges is a subset of one of theseMi. Hence, there is no other maximal
apart from theMi’s. □

Further, note thatMAX(LD) is not always unique. As an example, suppose that LD = ∅, then, there are n
different maximal simply connected subgraphMAXi containing LD, with

MAXi = {e0, ..., ei−1, ei+1, ..., en−1},
that is, MAXi contains all edges except ei. All the MAXis contain LD, do not orbit, and, adding the only
remaining edge (ei), they orbit.

The dependency graph of pRef describes the skeleton of a cylinder (Fig. 5b). There are two families of maximal
diagrams (both depicted in Figure 9): The first family is calledMright since there is a gap of missing edges turning
right, which we call RGap (Fig. 9a).

Mright
i, j := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., y j−1, y j+1, ..., yn−1, r j, ..., ri−1, b j, ..., bi},

RGapi, j = {xi, y j, ri, ..., r j−1, bi+1, ..., b j−1}
for i, j ∈ [n] withMright

i, j = DG \ RGapi, j. Note that r j, ..., ri−1 is a short way to write: if i < j r0, ...ri−1, r j, ..., rn−1;
if i = j ∅; if i > j r j+1, ..., ri−1. The same holds for the bi′s. The second family is calledMleft since there is a gap,
LGap (Fig. 9b), which turns left (or stays straight for LGapi,i)

Mleft
i, j := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., y j−1, y j+1, ..., yn−1, ri, ..., r j−1, bi+1, ..., b j−1},

16

Tn−3

T0

(a) A possible leakage diagram LD
only consisting of two edges (solid).

Tn−1
Tn−2

Tn−3

Tn−4

T1
T0

(b) Maximal leakage diagram
MAX(LD) = Mn−2 (solid, black
edges).

Tn−1
Tn−2

Tn−3

Tn−4

T1
T0

(c) Maximal leakage diagram
MAX(LD) = M1 (solid, black
edges).

Figure 8: Two possible maximal leakage diagrams (Fig. 8b and 8b) of a possible leakage diagram LD (Fig. 8a).
The blue dashed edge is the missing one so that the diagram does not orbit.

LGapi, j = {xi, y j, r j, ..., ri−1, b j, ..., bi}
for i, j ∈ [n] withMleft

i, j = DG \ LGapi, j. The proof that these are maximal diagrams and that the classification is
complete can be found in the following Proposition:

Proposition 4. The maximal diagrams of DGpRef are either of the typeMright
i, j orMleft

i, j with i, j ∈ [n]

Proof. In other words, if LD is a maximal diagram of DGpRef, there are i, j ∈ [n] s.t. either LD = Mright
i, j or

LD =Mleft
i, j .

First, we start observing that if LD is a maximal diagram, then it must be connected. Otherwise, since it does
not orbit, thus all connected components are simply connected (since the fundamental group of DGpRef is Z). Thus,
we can deform them homotopically to be points. Now adding a single edge to a set of points, it cannot make it not
simply connected (and, thus, orbiting).

Second, in any maximal diagram, there exists one and only one i ∈ [n] s.t. xi < LD, and one and only one
j ∈ [n] s.t. y j < LD. In fact, let us suppose that there exist two edges xi and xi′ not in LD. Let nodei and the nodei′

be the source nodes of the edge xi, and xi′ , respectively, nodei+1 and nodei′+1 be their respective destination nodes.
Now, look at LD. Suppose that i , i′ + 1, i′ − 1. Since LD is maximal, there is a path path from nodei+1 to nodei s.t.
path ∪ {xi orbits. Similarly, there is a path path′ from nodei′+1 to nodei′ s.t. path′ ∪ {xi′ orbits. For the structure of
DGpRef path and path′ meet in two points. Thus, taking a part of path and a part path′, we have a path that orbits.
Therefore LD is not maximal since it orbits. Now, we observe that if xi < LD then {bi, ri} ⊈ LD, otherwise, the path

x0, ..., xi−1, bi, ri, xi+1, ..., xn−1

is a loop in LD orbiting around the hollow graph, thus, LD would orbit. Thus, either ri ∈ LD or bi ∈ LD. Similarly,
if y j < LD then {b j, r j} ⊈ LD, otherwise, the path

y0, ..., y j, r j, b j, y j, ..., yn−1

is a loop in LD orbiting around the hollow graph. Here, we consider the case i = j. It depends if either bi or ri

belongs to LD
• Case ri ∈ LD. (Mleft

i,i) Since we cannot have both bi and ri in a maximal simply connected subgraph containing
{xi, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1}, the natural maximal diagram is

LD′ = {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1,

r0, ..., rn−1, b0, ..., bi−1, bi+1, ..., bn−1}.

We observe that it does not orbit since there is no loop turning around the hollow graph since the square
defined by xi, ri, yi and ri−1 is never crossed. Moreover, if we add only the edge in DG \ LD, that is, bi, we
have a not simply connected subgraph since it is DG. Thus, LD′ is a maximal simply connected subgraph.
• Case bi ∈ LD. (CaseMright

i,i) We observe that

LD′ := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1, bi}

does not orbit since there is no non-trivial loop. In fact,

xi+1, ..., xn−1, x0, ..., xi−1, bi, yi+1, ..., yn−1, y0, ..., yi−1

17

xk−1 xk xk+1 xl−1 xl xl+1

yk−1 yk yk+1 yl−1 yl yl+1

r k
−2

r k
−1 r k r k
+

1

r l−
1

r l r l+
1b k−1 b k b k+

1
b l−1 b l b l+

1

(a) Edges in RGapk,l (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n]) experiment.

xk−1 xk xk+1 xl−1 xl xl+1

yk−1 yk yk+1 yl−1 yl yl+1

r k
−2

r k
−1 r k r k
+

1

r l−
1

r l r l+
1b k−1 b k b k+

1
b l−1 b l b l+

1

(b) Edges in LGapk,l (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n]) experiment.

Figure 9: Example of maximal leakage diagrams of pRef. The blue dashed edges represent RGapk,l and LGapk,l,
respectively. The remaining solid edges are the maximal leakage diagramsMright

k,l = DG \ RGapk,l andMleft
k,l =

DG \ LGapk,l.

is a line which is not a loop.
Moreover, if we add rl to LD′, we have that

y0, ..., yl, rl, xl+1, ..., xi−1, bi, yi+1, ..., yn−1 for l < i, or

x0, ..., xi−1, bi, yi+1, ..., yl, rl, xl+1, ..., xn+1, ..., xn−1 for l > i, or

is a loop in LD′ ∪ {rl} which orbits 5. Similarly, if we add bl to LD, we have that

y0, ..., yl, bl, xl, ..., xi−1, bi, yi+1, ..., yn−1 for l < i, or

x0, ..., xi−1, bi, yi+1, ..., yl, bl, xl, ..., xn+1, ..., xn−1 for l > i

is a loop in LD′ ∪ {bl} which orbits. Thus LD′ is a maximal simply connected subgraph.
The other cases (which are done in a similar way) can be found in the full version. □

Using the maximal diagrams, we can prove the security of our gadgets with the help of Proposition 1.

Security for Enc, Dec, Copy, Add, Mult. Now, for all gadgets except pRef, we prove the condition mentioned in
Section 4.1. In other words, we prove any leakage diagram that does not orbit implies that the leakage is shiftable
to another input. Formally,

Proposition 5. Let G be the gadget Add, Mult, or Copy defined in Figure 3. An outcome L of the Leak(G, x, p)
experiment is shiftable to any x’, if the leakage diagram corresponding to L, does not orbit the dependency graph.

We first give a high-level proof idea.

Proof sketch. The proof is substantially the same for all gadgets: we consider the maximalMi and the values of
the variables it contains, and we show that we can modify the values carried by the Ti label. Hence we can shift the
ith share of each input and output encoding such, and prove that this modification does not change the distribution
of the values in Mi. Hence, the distribution of the values in Mi is the same for Leak(G, x, p) experiment and the
shifted one Leak(G, x’, p). □

Next, we give the formal proof.

Proof. We prove the claim for all maximal graphs. Thus, using Proposition 1, we have that the claim holds for all
not orbiting leakage diagrams. The high-level idea is that we can shift change the inputs and outputs of the edge
that are not part of the maximal graph because they are uniformly distributed and not revealed due to the leakage.
We start with the simplest case, (i) the masking of Enc, Dec and dependency graphs of Copy, then we prove the
claim for (ii) Add, and (iii) Mult.

5The inequalities regarding l, i as all the inequalities in the remaining in the proof are done considering l, i ∈ Z (and not in Zn)].

18

(i) The masking of Enc, Dec and dependency graphs of Copy since the edges of the dependency graph are
labeled with a single variable. Thus, the input is x, and the variables leaked are those in the labels of
the edges of Mi for an i ∈ [n]. Mi contains all x j with j , i. If we modify the not leaked value xi to
x′i = xi + x′ − x, we have shifted the output Leak(G, x, p) to the output of the experiment Leak(G, x′, p),
since x0, ..., xi−1, x′i , xi+1, ..., xn−1 is an encoding of x′. Hence,Mi has the same distribution for x and x′, and
thereforeMi is shiftable for any i ∈ [n].

(ii) The dependency graph’s edges of Add are labeled with multiple variables. Let us suppose that Add takes
as input (ai)i∈[n] and (bi)i∈[n], and outputs (ci)i∈[n], then each edge is labeled with Ti = {ai, bi, ci}. Thus, the
leaked variable of the maximal graphMi are all a j, b j, and c j with j , i. If we modify the values ai, bi, and
ci which are not leaked in a′i = ai + a′ − a, b′i = bi + b′ − b, and c′i = ci + a′ + b′ − a − b, we have shifted the
output Leak(Add, (a, b), p) to the output Leak(Add, (a′, b′), p). This hold because d0, ..., di−1, d′i , di+1, ..., dn−1
is an encoding of d for d = a, b, c, and a j + b j = c j ∀ j , i, and a′i + b′i = c′i . Note that the input sharings are
uniformly distributed, and therefore the modified shares are also uniformly distributed.

(iii) Mult: let us suppose that Mult takes as input (ai)i∈[n] and (bi)i∈[n], and outputs (ci)i∈[n]. Thus, the variables
leaked are those only in the labels of the edges ofMi (Def. 5), that is, ai′ , bi′ , ci′ , ai′bi′ , ai′b j, a jbi′ ,wi′, j,w j,i′ , zl,i′, j
for i′ , i, and j ∈ [n] and l ∈ [0, ..., L] with L = log2(n + 1). Let δ1 = a′ − a and δ2 = b′ − b. We replace
the values of the variable in Mi as follows: a′i = a′ + δ1, b′i = bi + δ2, (aibi)′ := aibi + δ1bi + δ2ai + δ1δ2,
(aib j)′ := aib j + δ1b j, (a jbi)′ := a jbi + a jδ2, (wi, j)′ := wi, j + δ1b j, and (w j,i)′ := w j,i + δ2a j. For c′i and
zl,i, j, since they are the sum of many wi, js and a j′bi, the modification is done according to the previous
modifications. This can be seen as an output of the Leak(Mult, (a′, b′), p) as we now prove, modifying the
proof of [16]:

In [16] is the proof for all values except for the zl,i, js. The only difference from our Mult from that in [16], is
that the final addition is done sequentially thew (Figure 3e, while we do it parallel). But, we can observe that
∀l = 1, ..., log(n) and ∀i, j

zl,i, j = aibi +

2l(j+1)−1∑

I=2l j

z0,i,I = aibi +

2l(j+1)−1∑

I=0

z0,i,I −
2l j−1∑

I=0

z0,i,I

Hence, all
2l(j+1)−1∑

I=0
z0,i,I ,

2l(j+1)−1∑
z0,i, j −

2l(j+1)−1∑
z0,i, j are partial sums of the serial sum of the multiplication of

Dziembowski et al. [16], and all these values are mapped on the ith edge. Thus, since their modifications
cannot be detected, ours cannot be detected too.

In this way, we have shifted the output of the Leak(Mult, (a, b), p) to an output of the experiment Leak(Mult, (a′, b′), p).

The results of (i),(ii), and (iii) conclude the proof. □

The proposition gives us the following privacy result for our gadgets.

Theorem 1. Let Add, Mult and Copy be the gadgets defined in Figure 3. Then, Add and Copy are (p, (3p)n)-private,
for p ≤ 1/3, and Mult is (p, p̃)-private with

p̃ = 1 − (1 − p)8n + 1 − (1 −
√

3p)n−1 ≤ 2(1 − (1 −
√

3p)8n).

Proof. Using Proposition 5 and the classification of maximal diagrams, the only problems happen if all edges are
leaked. Thus, these gadgets are secure if the leakage diagram does not contain all edges. In other words, they are
secure with probability 1 − Pr[LD = {T0, ...,Tn}] and thus, they are

(p,Pr[LD = {T0, ...,Tn}])-private.

We first bound Pr[LD = {T0, ...,Tn}] for (i) Add and Copy, and then for (ii) Mult.

(i) For Add and Copy, all edges are added independently with probability 1 − (1 − p)3 ≤ 3p since there are three
variables mapped to each edge: For Add there are 3 variables on the label Ti = {ai, bi, ci} (Section 3.1); For
Copy there are 3 variables on the label Ti = {ai, bi, ci} (Section 3.1) with ai = bi = ci. In both cases, each
variable is carried by a single edge. Thus, the probability that all edges belong to the leakage diagram is
1 − (1 − 3p)n ≤ (3p)n which concludes the proof.

19

(ii) For Mult, as in [16], we can prove that if we add each edge independently with probability p′ = 2(1 −
(1 − √

3p)8n), the leakage diagrams obtained in this way contain the leakage diagrams obtained in the
Leak(Mult, (x, y), p)-experiment.

We prove this fact by doing a proof very similar to the one in [16] (which is inspired by the original proof
in [21]). The two differences are the fact that our Mult is slightly different from theirs and, more substantially,
a different analytical treatment of the bound. We start observing that there are at most 8n wires which carry at
least one variable present in the label Ti of the Ti-edge. ai is used in n multiplication. Thus, there are n wires
carrying it. Similarly, bi is carried by n wires. There are 2n different zl,i, j for l > 1. There n different aib j and
a jbi (for j ∈ [n]). Finally, there are at most n between z0,i, j and wi, j wires and at n different w j,i wires.

Thus, we add the edge Ti with probability at most 1 − (1 − p)8n and the edges Ti and T j with probability at
most 1 − 3p.

It is easier to work with independent variables, but in the previous situation, the edges Tis are not indepen-
dently added to LD. Thus, we try to add all the Ti edges to LD independently. To do this, we add Ti with the
probability

1 − (1 − p)8n + 1 − (1 −
√

3p)n−1.

The proof is the same as in [16], where we have not used the approximation 1 − (1 − p)8n ≤ 8np. A detailed
discussion is given in the full version.

Thus, the probability that all edges belong to LD is bounded by [2(1 − (1 − √
3p)8n)]n.

This proves the claim of the theorem. □

Note that we do not use the approximation 2(1 − (1 − √
3p)8n) ≤ 16n

√
3p because it is not tight and makes the

security much worse.

Security for pRef. With the same technique, we can analyze pRef. The only difference is the more complex
dependency graph since it forms the skeleton of a cylinder and not a simple loop. Formally:

Proposition 6. An outcome L of the Leak(pRef, x, p) experiment, is shiftable to x′, if the corresponding leakage
diagram, does not orbit.

Proof. Again due to Proposition 1, we only prove the claim for maximal diagrams. We have two types of maximal
diagramsMright

i, j andMleft
i, j . For the proof, we show how to shift/modify the variables in (i) RGapi, j = DG \Mright

i, j

and (ii) LGapi, j = DG \Mleft
i, j . It consists of xi, y j, and some bls and rls.

(i) Mright
i, j : we shift an output of Leak(pRef, x, p) to an output of Leak(pRef, x′, p) as follows: xi is modified in

x′i = xi + x′ − x, y j is modified in y′j = x j + x′ − x, rl is modified in r′l = rl − (x′ − x), for the rls in RGapi, j,
and bl is modified in b′l = bl − (x′ − x), for the bls in RGapi, j. Note that the modified shares and intermediate
values are all uniformly random, and the modification is done in such a way that they are still uniformly
random and the intermediate dependencies are consistent.

(ii) With the same technique, we can modify Mleft
i, j : we shift an output of Leak(pRef, x, p) to an output of

Leak(pRef, x′, p) as follows: xi is modified in x′i = xi+ x′− x, y j is modified in y′j = x j+ x′− x, rl is modified
in r′l = rl + (x′ − x), for the rls in LGapi, j, and bl is modified in b′l = bl + (x′ − x), for the bls in LGapi, j.

We have to prove that every shift results in an outcome of the Leak(pRef, x′, p) experiment. We prove one case
and refer to the full version for the other cases.

Let δ = x′ − x. Let A be the values carried by the variables of pRef during the Leak(pRef, x, r, p)-experiment,
where r = r0, ..., rn−1 is the randomness used.

The maximal is of typeMright
i,i . The values carried in A′ are

{x0, ..., xi−1, xi + δ, xi+1, ..., xn−1, y0, ..., y j−1, yi + δ, yi+1, ..., yn−1,

r0 − δ, ..., rn−1 − δ, b0 − δ, ..., bi−1 − δ, bi, bi+1 − δ, ..., bn−1 − δ}.

First, we observe that

x0 + ... + xi−1 + (xi + δ) + xi+1 + ... + xn−1 = x0 + ... + xn−1 + δ = x + (x′ − x) = x′.

20

x′k−1 = xk−1 x′k = xk + δ x′k+1 = xk+1 x′l−1 = xl−1 x′l = xl x′l+1 = xl+1

y′0 = y0 y′1 = y1 y′2 = y2 y′l−1 = yl−1 y′l = yl + δ y′l+1 = yl+1

r′ k−
2
=

r k
−2

r′ k−
1
=

r k
−1

r′ k
=

r k
−δ

r′ k+
1
=

r k
+

1
−δ

r′ l−
1
=

r l−
1
−δ

r′ l
=

r l

r′ l+
1
=

r l+
1

b
′

k−1
=

b k−1

b
′

k
=

b k

b
′

k+
1
=

b k+
1
− δ

b
′

l−1
=

b l−1
− δ

b
′

l
=

b l

b
′

l+
1
=

b l+
1

(a) Values of the variables in RGapk,l in the Leak(pRef, x′, p) experiment. δ = x′ − x.

x′k−1 = xk−1 x′k = xk x′k+1 = xk+1 x′l−1 = xl−1 x′l = xl + δ x′l+1 = xl+1

y′k−1 = yk−1 y′k = yk + δ y′k+1 = yk+1 y′l−1 = yl−1 y′l = yl y′l+1 = yl+1

r′ k−
2
=

r k
−2

r k
−1

r′ k
=

r k
+
δ

r′ k+
1
=

r k
+

1
+
δ

r′ l−
1
=

r l−
1
+
δ

r′ l
=

r l

r′ l+
1
=

r l+
1

b
′

k−1
=

b k−1

b
′

k
=

b k
+
δ

b
′

k+
1
=

b k+
1
+
δ

b
′

l−1
=

b l−1
+
δ

b
′

l
=

b l
+
δ

b
′

l+
1
=

b l+
1

(b) Values of the variables in LGapk,l in the Leak(pRef, x′, p) experiment. δ = x′ − x.

Figure 10: Example of the shifting depicted in Proposition 5. The solid edges are in LD. The maximal is of type
Mright

k,l and RGapk,l = DG \Mright
k,l (10a), andMleft

k,l and LGapk,l = DG \Mleft
k,l (10b).

The same holds for the shares of y.
Now, let us consider pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and randomness r0 − δ, ..., rn−1 − δ. For i′ , i,
bi′ −δ = xi′ + (ri′ −δ) and yi′ = (bi′ −δ)− (ri′−1−δ). In stead, for i, bi = (xi+δ)+ (ri−δ), and yi+δ = (bi)− (ri−1−δ).
Thus, the values carried by A′ are those of an honest evaluation of pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1
and randomness r0 − δ, ..., rn−1 − δ.

□

As already discussed before (Section 3.1), the security of the Const and Rand gadgets is given by the security
of the gadgets where their output wires are used. This gives us the following privacy result for pRef.

Theorem 2. Let pRef be the refreshing gadget defined in Figure 1b. Then, pRef is (p, p̃))-private, with p̃ =
2 · [(1 + 2(3p))3p]n. If p ≤ 1/6 we can approximate p̃ ≤ 2 · (6p)n.

Proof. As in the security proof of the other gadgets, with Corollary 3 and Proposition 6, we only need to compute
Pr[LD orbits] because it holds

pRef is (p,Pr[LD orbits])-private.

First, we observe that every edge of DG(pRef) (Figure 5b) has a label containing a single variable. We refer to
Figure 5b for the notations. All variables are carried by a single wire except the ri’s, which are carried by three
wires (Figure 1b). Thus, we can assume that each edge is added to LD independently with probability at most
1 − (1 − p)3 ≤ 3p. With the result of Proposition 6, we know that the circuit is private if there is no loop that orbit.
Moreover, any orbit must contain at least one of the source nodes of the edges x0 or y0. Next, we approximate the
probability that in LD there is an orbit containing the source node of x0 called node0

0. (event E0). Since such an
orbit is at least n edges-long, we can upper-bound Pr[E0] with the probability that the leakage diagram contains
a path starting from node0 with n edges. Since each node is connected with at most 4 other nodes, we have 3n

different n long paths6 and the probability for each path is (3p)n. This results in

Pr[E0] ≤ (9p)n.

But, we can refine the bound of E0 as follows. We observe that we are trying to bound the probability of an orbiting
path starting from node0

0. Before, we observed that every path between these two nodes is at least n edges long.
However, it is easy to see that there is only one n-edges long path that describes a path from node0

0 and arriving to it,
2(n− 1) paths that are n+ 1-edges long, and so on. We observe that given a node y, the paths from y to node0

0 which
have the minimal length7 keeping the direction of the orbit 8, takes as the first edge from y at most two different
edges.

6We omit paths where an edge is crossed more than once. In fact, this possibility does not give anything to the adversary.
7minimal means with the least number of edges.
8That is, making the loop node0

0, ..., y, node0
0 orbit.

21

To prove this, it is enough to observe that if the node y is on the x0
i -edges orbits, thus, it is node node0

j for a
j ∈ [n], the source node of the x0

j -edge. Thus, if the path to node0
0 keeping the direction of the orbit, has to turn

left, the shortest path consists of the path x0
j−1, ..., x

0
0; otherwise, if it turns right, the shortest path is taking the path

x0
j , ..., x

0
n−1. They are the shortest path because every time a path leaves the x0

i orbits, it needs an additional edge to
rejoin it. Moreover, it is not possible to have paths that skip the ith edge (that is, do not contain any edge indexed
with i) for i = 0, ..., j − 1 if it turns left, or with i = j, ..., n − 1 if it turns right.

Instead, if y is on the x1
i -edges orbits, thus, it is node node1

j for a j ∈ [n], the source node of the x1
j -edge. Thus,

if the path to node0
0 keeping the direction of the orbit has to turn right, it must take either the edge x1

j or r j−1. In
fact, the first path needs 1 + n − j edges (see above), while the shortest paths using the-x1

j can take as well at most
1 + n − j edges. The proof that the shortest path needs 1 + n − j edges can be easily done by induction. We iterate
the previous argument until we arrive at node1

0 for which the shortest path to node0
0 is clearly rn−1.

Finally, if the path to node0
0 keeping the direction of the orbit has to turn left, it must take either the edge b j−1 or

x1
j−1 (for j = 1, it must take b0). In fact, the first path needs j − 1 edges (see above, the case for y as node node0

j),
while the shortest paths using the-x1

j−1 can take as well at most j − 1 edges. The proof that the shortest path needs
j − 1 edges can be easily done by induction. We iterate the previous argument until we arrive at node1

1 for which
the shortest path to node0

0 is clearly b0. For j = 0, since we have to turn left (the case where you have to go down
via rn−1 has already been treated in turning right, we must take x1

n−1 or bn−1.
Finally, we have to explain why

Pr[E0] ≤ [(1 + 2(3p))3p]n.

This happens because if we consider a loop starting from node0
0, which orbits, and we do not take the shortest path,

which is x0
0, ..., x

0
n−1, and we take the e-th edge to deviate. In this case, we need to take one of the other two edges

connected to the node we have arrived after we have taken the e-edge. But, this happens with probability at most
3p. From there, we need at most n − i edges to end our loop, where is the number of edges taken on the x0

0, ..., x
0
n−1

before deviating via the e-edge.
Thus, if a path from y to node0

0 does not pass through one of these two edges, it is at least l+ 1 edges long. Thus,
the probability that it belongs to LD is at most (3p)l+1. Thus, we can upper-bound

Pr[E0] ≤ [(1 + 2(3p))3p]n.

Further, if 6p < 1 it holds
[(1 + 2(3p))3p]n ≤ (6p)n.

Clearly, the same holds for E1, which is the event that there is an orbiting loop starting from the source node of the
edge y0. Thus, Pr[LD orbits] ≤ Pr[E0] + Pr[E1] = 2[(1 + 2(3p))3p]n for p ≤ 1/3 and 2(6p)n for p ≤ 1/6. □

With Theorem 1 and 2, we have proven the security of the gadgets used by our compiler. However, it is well
known that it is insufficient to prove their compositions’ security. Next, we examine the security of compositions to
argue about the security of the compiler used in the paper.

5 Security Analyzes for Circuits

In Section 4, we have investigated the privacy of the gadgets used by our compiler. In this section, we analyze
the security of their compositions. Hence, we compute the privacy of our compiler’s output. We start with the
composition of pRef gadgets (Sec. 5.1), and then, we give a more general composition result for all gadgets used
by our compiler (Sec.5.2)

5.1 Security Analysis for the Composition of pRef

In this section, we consider k sequential compositions of pRef gadgets (kpRef). Let (x0
i)i∈[n] be the input of the first

refresh gadget, then the jth pRef, denoted with pRef j computes (x j
i)i∈[n] ← pRef j((x j−1

i)i∈[n]). Further, the internal
variables used by pRef j are defined as r j

i and b j
i . Thus, the final output is (xk

i)i∈[n] ← kpRef((x0
i)i∈[n]). In Figure 11a,

we depicted the dependency graph of two composed refresh gadgets. Compared to the more general compositions
with multiple input and output sharings, as depicted in Figure 6, the dependency graph of the composed refresh
gadgets is relatively simple. More precisely, it is still the skeleton of a cylinder. This cylinder is given by putting the

22

1

0xn−1

xn−2 x1

x0

yn−1
yn−2

yn−3

yn−4

y1

y0

r1

r0
rn−1

rn−2

rn−3
b1

b0bn−1

bn−2

zn−1
zn−2

zn−3

zn−4

z1

z0

r′1

r′0r′n−1

r′n−2

r′n−3
b′1

b′0b′n−1

b′n−2

(a) The dependency graph for
(zi)i∈[n] ← pRef(pRef((xi)i∈[n])).

1

0xn−1

xn−2

x0

r0

rn−3

zn−3

zn−4

z1

r′0

r′n−3

(b) The dependency graph for
(zi)i∈[n] ← pRef(pRef((xi)i∈[n])).

Figure 11: Dependency graphs of two composed refresh gadgets.

cylinder of the dependency graph of pRef j (denoted with DG j) over the cylinder of pRef j−1 (denoted with DG j−1).
In other words, the only difference with the security proof of the single refresh gadget is the length of the cylinder.
The dependency graph of the composition of k refresh gadgets is a cylinder constructed out of the k cylinders (DG j)
of the dependency graph of pRef. As mentioned in the previous section, it is not sufficient to analyze the security
of each gadget. This is easy to see when we remember that we have shown in Section 4.2 that pRef is secure if the
leakage diagram does not orbit the cylinder. Here, it might be the case that the leakage diagram of its composition
orbits the cylinder, but if we consider each leakage diagram of the composed refresh gadgets separately, it does
not orbit each subcylinder. For example, Figure 11b illustrates such a case. Next, we use the same technique as in
Section 4.2 to prove the security of the composition.

First, we classify the maximal diagrams of kpRef. One way to describe the gap in the cylinder is to use the
multiple subgraphs RGap and LGap as defined in the proof of pRef and compose them in such a way that they
describe such a gap from the bottom to the top of the cylinder. However, such a gap can also have some detours
such that the gap goes partly in the opposite direction. To cover all such cases, we have to consider four more “gap
sets” than RGap and LGap:

(i) BLGapi,i′ := {x j−1
i , x

j−1
i′ , r

j
i′ , ..., r

j
i−1, b

j
i′+1, ..., b

j
i } describes a gap that starts from the bottom circle of DG j,

then turns left, and, finally, ends in the bottom circle.

(ii) BRGapi,i′ := {x j−1
i , x

j−1
i′ , r

j
i , ..., r

j
i′−1, b

j
i+1, ..., b

j
i′ } describes a gap that starts from the bottom circle of DG j,

then turns right, and, finally, it ends in the bottom circle.

(iii) ULGapi,i′ := {x j
i , x

j
i′ , r

j
i′ , ..., r

j
i−1, b

j
i′ , ..., b

j
i−1} describes a gap that starts from the top circle of DG j, then turns

left, and, finally, it ends in the top circle.

(iv) URGapi,i′ := {x j
i , x

j
i′ , r

j
i , ..., r

j
i′−1, b

j
i , ..., b

j
i′−1} describes a gap that starts from the top circle of DG j, then turns

right, and, finally, it ends in the top circle.

We can use these gaps to classify maximal diagrams for kpRef. The next claim describes the structure of such
maximal graphs if we consider each sub-graph of each pRef separately.

Proposition 7. Let (x0
i)i∈[n] be the input of kpRef and (x j

i)i∈[n] ← pRef((x j−1
i)i∈[n]) the jth pRef of kpRef. Further,

let DG j be the sub-graph of DGpRef containing the variables used in pRef j andMAX a maximal diagram of
kpRef. It holds

MAX∩ DG j = DG j \
[(
∪

I∈I1

RGapiI ,i′I

)
∪

(
∪

I∈I2

LGapiI ,i′I

)
∪

(
∪

I∈I3

BLGapiI ,i′I

)
∪

(
∪

I∈I4

BRGapiI ,i′I

)
∪

(
∪

I∈I5

ULGapiI ,i′I

)
∪

(
∪

I∈I6

URGapiI ,i′I

)]

For all LD j :=MAX∩ DG j, we get |I1| + |I2| is odd and all gaps are pairwise disjoint. Moreover, for LD1 and
LDk it holds |I1| + |I2| = 1, for LD1 we get |I3| = |I4| = 0, while for LDk we get |I5| = |I6| = 0. Each gap RGap

23

and LGap of DG j is connected to one and only one gap of DG j+1, and to one and only one gap of DG j−1. Each gap
BLGap and BRGap is connected to two distinct gaps of DG j−1, and each gap ULGap and URGap is connected to
two distinct gaps of DG j+1.

Proof sketch. Even when the claim looks relatively complex, it only formalizes how the maximal graphMAX of
kpRef looks when we cut it into the sub-graphs LD j describing the individual (x j

i)i∈[n] ← pRef((x j−1
i)i∈[n]). The

proof idea is that the composition of all LD j together still describes a gap that avoids a path around the dependency
graph of kpRef. In other words, we can see it as construction where we can construct and compose such LD j so
that there is still a gap, and each further added edge would close the gap. Next, we give the formalized proof for
this claim.

Proof. First, we prove that all the gaps are connected as described, that is, each gap RGap and LGap of DG j is
connected to at least one gap of DG j+1, and at least one gap of DG j−1; each gap BLGap and BRGap is connected
to two distinct gaps of DG j−1; and each gap ULGap and URGap is connected to two distinct gaps of DG j+1. If
this is not the case, we simply consider the perimeter of the gap, which is not connected. It is easy to see that this
perimeter is homotopically equivalent to the gap on the (x j

i)i∈[n]-orbit or (x j−1
i)i∈[n]-orbit where it starts. Thus, we

can add the edge missing on that orbit without makingMAX orbiting. Thus,MAX is not maximal, which is
absurd by hypothesis.

We proceed by induction over k. For k = 1, the proof has already been done in Proposition 7.
Using the same argument as in the proof of Proposition 4, there is only one edge missing in the orbit defined

by the (x0
i)i∈[n]-edges. Let j be this missing edge. Thus, there must be a gap either RGap j, j′ or LGap j, j′ in DG1.

Otherwise, taking the perimeter of the gap starting from x0
j , we have a path in LD which is homotopically equivalent

to x0
j . Thus, LD orbits since it contains the path x0

j+1, ..., x
0
j−1 and a path homotopically equivalent to x0

j . All the
remaining gaps are of type ULGap and URGap since they cannot go out. We have only to prove that all these gaps
are disconnected. If one of these gaps is connected to the LGap gap or the RGap gap, then we have a problem. In
fact, it means that from x0

j , we can go out of the DG1 either from x1
i or x1

i′ . But going out from these two gaps, we
must arrive at the (xk

i)i∈[n]-orbit. (Otherwise, we can use the same argument to prove that the gaps are connected, to
prove thatMAX is not maximal). Thus, we can have two possibilities: 1) these two gaps do not reconnect. Thus
there are two missing edges in (xk

i)i∈[n], which is absurd due to the argument that we have explained in the proof
of Proposition 4. 2)these two gaps reconnect. ThusMAX is disconnected, which is absurd due to an argument
presented in the proof of Proposition 4. Similarly, we can prove that two gaps that start and ends on the top circle
of DG1, that is, the (x1

i)i∈[n]-one cannot intersect between each other.
Again we do the same analysis for DGk ∩MAX. Using the same argument as for DG1, we can prove that there

must be a gap of type RGap or LGap and some gaps of type BLGap and BRGap.
Now we considerMAX∩ DG2−>k−1, where with DG2−>k−1 we denote DG of the composition of pRef2 until

pRefk−1. There are I holes in (x1
i)i∈[n], that is, I missing edges, I′ missing edges in (xk−1

i)i∈[n].
Each of these holes must be connected via a gap in DG2−>k−1 to one and only one other hole. Otherwise, we

have the argument against splitting or terminating at a dead end.
Now we can use the induction. Since each of these gaps is contained there, we can use the induction hypothesis

to prove that each of these gaps has the desired shape.
Finally, we have to prove that |I1| + |I2|. We observe that we have proved that there is a “snake” of gaps that

starts from x0
j the missing edge in the (x0

i)i∈[n]-orbit), to xk
j′ (the missing edge in the (xk

i)i∈[n]-orbit). Each time we
cross from the top to the bottom, the (xl

i)i∈[n]-orbit, we must cross from the bottom to the top in the same orbit.
Moreover, one additional time we must cross from the top to the bottom. This concludes the proof. □

In other words, a maximal diagram can be described as a dependency graph with a gap from the bottom to the
top consisting of the six subgraphs defined above. We can use this classification to prove the security for kpRef.

Proposition 8. An outcome L of the experiment Leak(kpRef, x, p) is shiftable if its leakage diagram does not orbit
the dependency graph.

Proof sketch. The high-level idea is similar to Proposition 6. We have shown that a single refresh is shiftable if the
leakage diagram does not orbit the cylinder structure of its dependency graph. In detail, we have proven that a not
orbiting graph of a single refresh is a sub-graph of RGapi, j = DG \Mright

i, j or LGapi, j = DG \Mleft
i, j . Further, this

implies that the input share xi can be set to an arbitrary value, and we can compute the according share y j without
changing the distribution of the leaked values. Hence, xi and y j are shiftable. It is easy to see that this also holds
for composed gadgets with (yi)i∈[n] ← pRef1((xi)i∈[n]), and (zi)i∈[n] ← pRef2((yi)i∈[n]). If xi and y j are shiftable in

24

pRef1, and y j and zk are shiftable in pRef2, it follows that xi and zk are shiftable in pRef2(pRef1(·)). In detail,
we can set xi to an arbitrary value and compute accordingly y j. Since y j and zk are shiftable as well, we can also
compute the according zk for any y j. For the formal proof, we also show the shiftability for the four additional types
of gaps we have introduced above and extend the technique to an arbitrary number of compositions.

Proof. Similar to the security proofs of the gadgets, we use Proposition 1, and only prove the claim for maximal
diagrams. We use the same approach as for the maximal diagram of a single refresh. Hence, using Proposition 1,
we have to prove the claim for all maximal diagrams. Therefore, we want to show how to modify the values in the
gaps LGap j

i,i′ ,RGap j
i,i′ , BLGap j

i,i′ , BRGap j
i,i′ , ULGap j

i,i′ , and URGap j
i,i′ shifting an output of Leak(pRef, x, p) in

another one without being detected. For LGap j
i,i′ and RGap j

i,i′ the proof was already done in Proposition 6. Hence
it remains to prove it for the other four constructions:

(i) BLGap j
i,i′ : xi is modified in x′i = xi + γ, xi′ is modified in x′i′ = xi′ − γ, rl is modified in r′l = rl + γ, for the rls

in BLGapi, j, and bl is modified in b′l = bl + γ, for the bls in BLGapi, j. for any γ. Note that x′i + x′i′ = xi + xi′ .

(ii) BRGapi,i′ : xi is modified in x′i = xi + γ, xi′ is modified in x′i′ = xi′ − γ, rl is modified in r′l = rl − γ, for the rls
in BRGapi, j, and bl is modified in b′l = bl − γ, for the bls in BRGapi, j. Here, as well, x′i + x′i′ = xi + xi′ .

(iii) ULGapi,i′ : yi is modified in y′i = yi + γ, yi′ is modified in y′i′ = yi′ − γ, rl is modified in r′l = rl − γ, for the rls
in ULGapi, j, and bl is modified in b′l = bl − γ, for the bls in ULGapi, j. Similarly to before y′i + y′i′ = yi + yi′ .

(iv) URGapi,i′ : yi is modified in y′i = yi + γ, yi′ is modified in y′i′ = yi′ − γ, rl is modified in r′l = rl + γ, for the rls
in URGapi, j, and bl is modified in b′l = bl + γ, for the bls in URGapi, j. Here, as well, y′i + y′i′ = yi + yi′ .

Hence, we have modified an outcome Leak(pRef, x, p) to another Leak(pRef, x, p). Here, we do the proof for one
case and refer to the full version for the other cases.

The gap is of type BLGapi,i′ with i < i′ 9. The values carried in A′ are

{x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1, y0, ..., yn−1, r0 + γ, ..., ri−1 + γ,

ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ, b0 + γ, ..., bi + γ, bi+1, ..., bi′ , bi′+1 + γ, ..., bn−1 + γ}.

First, we observe that

x0 + ... + xi−1 + (xi + γ) + xi+1 + ... + xi′−1 + (xi′ − γ), xi′+1, ..., xn−1 = x0 + ... + xn−1 + γ − γ = x.

Since we have not touched the shares of y, they carry an encoding of y which is equal to x.
Now, let us consider pRef with input x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1 and randomness r0 +

γ, ..., ri−1 + γ, ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ. For 0 ≤ j < i, b j + γ = x j + (r j + γ), and y j = (b j + γ)− (r j−1 + γ). For i,
bi+γ = (xi+γ)+ri, and yi = (bi+γ)−(ri−1+γ). For i < j < i′ b j = x j+r j, and y j = b j−r j. For i′, bi′ = (xi′−γ)+(ri′+γ),
and yi′ = bi′ − ri′ . For i′ < j ≤ n − 1, b j + γ = x j + (r j + γ), and y j = (b j + γ) − (r j−1 + γ). Thus, the values carried
by A′ are those of an honest evaluation of pRef with input x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1 and
randomness r0 + γ, ..., ri−1 + γ, ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ. For all the other gaps, we proceed in a similar way.
For more details we refer to the full version. It remains to explain how we can use the modifications just described
to do the shift in the maximal diagram of kpRef. Therefore, we start with DG1. Using the classification of the
maximal of kpRef there is a single gap starting from its bottom circle. We modify its values according to the proof
of Proposition 6. Then, there is another gap in DG2 that starts from the edge just modified before. We can modify it
coherently starting from this modified value. Iterating, due to our classification, there is always a gap in another
DG j′ which starts from the final edge of the gap just modified before. Finally, we arrive at the single gap of DGk

which ends in the top circle.
Formally, we have proved the results for all the additional gaps introduced in Proposition 7. Every gap is

connected only to two other gaps (except for the first and the last.) Now, we start observing that there are

k∑

j=0

|I j
3| +

k∑

j=0

|I j
4| =

k∑

j=0

|I j
5| +

k∑

j=0

|I j
6|,

where with Il
6, we denote the set I j

6 in the classification ofMAX∩ DG j (Proposition 7).

9For simplicity, when we use i < i′, we assume that i, i′ ∈ [n] ⊂ Z and not in Zn.

25

Since every time when we follow a RGapi,i′ or a LGapi,i′ gap, we keep the same modifications for xi and yi′ ,
while when we follow BLGap, or BRGap, ULGap, or URGap, we modify xi and yi′ with two opposite values, and
we follow an even number of BLGap, BRGap, ULGap, and URGap, we have that xk

j is modified with +δ = x′ − x,
where xk

j is the single edge missing in the (xk
i)i∈[n]-orbit. Thus, we have modified the values of the variable carried

by DG \ MAX to modify an outcome of Leak(kpRef, x, p) in one of Leak(kpRef, x′, p). We give the formal
description in the full version. □

An example of a maximal for kpRef is depicted in the full version. The proposition gives the following privacy
result for our compositions. It only remains to compute the probability that a leakage diagram does not orbit the
cylinder described by the dependency graph of kpRef.

Theorem 3. Let kpRef be the composition of k refreshing gadget, defined in Figure 1b. Let n be the number of
shares used. Then, kpRef is (p, (k + 1) · [(2 + 3(3p))3p]n))-private, for p ≤ 1/3 and (p, 2 · (9p)n)).

Proof. Let kpRef takes as input (x0
0, ..., x

0
n−1) and outputs (xk

0, ..., x
k
n−1), with the ith pRef gadget, denoted with

pRefi does (xi
0, ..., x

i
n−1)← pRef(xi−1

0 , ..., x
i−1
n−1). The proof is completely similar to the one of Theorem 2 with the

following differences: 1) We consider the events Ei, for i = 0, ..., k (instead of i = 0, 1), which consists in the event
that there is an orbit containing the source node of the edge xi

0 (denoted with nodei
0). 2) Each node is connected

with 6 other nodes (and not 4). Thus, there are at most 5n different paths. 3) There exists a single n-edges long
loop orbiting from nodei

0, 4(n − 1) n + 1-edges long, and so on. From 1) and 2), we obtain that we can bound
Pr[Ei] ≤ (15p)n. Moreover, we can use the same argument to obtain, for p ≤ 1/9 that

Pr[Ei] ≤ [(2 + 3(3p))3p]n ≤ (9p)n.

To prove this, we can reuse the same arguments as in the proof of Theorem 2. We must add also the argument
that no edge connects the (x j

i)i∈[n]-orbit and the (x j′
i)i∈[n]-orbit if j′ , j − 1, j, j + 1. Moreover, if node y belongs to

the (xl
i)i∈[n]-orbit, the shortest path to node j

0 can never cross and edge to go from the (xL
i)i∈[n]-orbit to a node in the

(xL′
i)i∈[n]-orbit if |L′ − j| > |L − j| (because we cannot skip orbits).

Finally, we explain why it holds
Pr[E0] ≤ [(2 + 3(3p))3p]n.

This is due to the fact that not all edges directly give the shortest path and require further edges that are also added
with probability p, and this happens with probability at most 3p. □

5.2 Security Analysis for the Composition of Gadgets

Now, we analyze the security of an arbitrary output of our compiler Ĉ ← CC(C), where C can be any circuit
described in the background. In Figure 6b, we depicted the dependency graph of Add (or Mult) gadgets composed
with pRef gadgets to refresh its inputs and outputs. Since our compiler puts refresh gadgets after every output of
Add, Mult, and Copy gadget, the dependency graph of our compiler’s output is always a composition of dependency
graphs depicted in Figure 6a. As mentioned, this leads to slightly more complex dependency graphs than the one
described in the previous section (Sec. 5.1.) However, the main idea is the same. We have multiple dependency
graphs, as depicted in Figure 6a, sharing the same upper or lower circle as already described in the previous section
(Figure 11a.) The only difference is that gadgets can also have two input (or output) sharings. Therefore the
cylinder does not only share the bottom (or top) of the cylinder with one but two further cylinders, as depicted in
Figure 6b. Hence, the dependency graph of Ĉ is still a composition of multiple cylinders. Since the dependency
graph describes multiple cylinders connected by shared upper and lower circles, we can distinguish orbiting loops
from not orbiting loops again. For this reason, we can use the same technique as in Proposition 8 to prove the
security of the composition. Again, we start classifying the maximals of Ĉ.

Proposition 9. LetMAX be a maximal diagram

(i) For each circuit-input encoding and circuit-output encoding, there is only one edge of the encoding that does
not belong toMAX.

(ii) The intersection of the DG of all pRef with MAX has an odd number of components which have the
characterization described in Proposition 8.

26

(iii) Each of these “gap sets” is connected to others to form gaps from each circuit input encoding to any output
encoding of the circuit.

Proof. i) We exploit the same argument as presented in the proof of Proposition 7 to prove that this holds.
Substantially, if there is more than one hole in the input/output orbit edge, the graph is either not maximal
or it orbits. If there are more than two holes on the input (xi)i∈[n]-orbit, we must have a gap starting from
each. These two gaps either intersect or do not intersect. If they intersect, then we can show that the maximal
diagram orbit with an argument similar to the one introduced in the proof of Proposition 7. In the second
case,MAX is not connected. If they do not connect, we cannot assume that they go to two different other
input/output orbits. Because otherwise, we can homotopically reduce these two input sharings to the copy
where the gaps split. Thus we have non-connection.

ii) The idea is the same as in the proof of Proposition 7. It comes from the fact that the gap cannot split or have
a dead end in the DGpRef with the same idea as in Proposition 7.

iii) This happens because if these gaps are not connected to each other, we can homotopically take them away as
done in the proof of Proposition 7.

□

As before, our classification allows us to prove the security of not orbiting leakage diagrams.

Proposition 10. Let Ĉ be a masked circuit obtained from our compiler. An outcome L of the Leak(Ĉ, x, p)
experiment, is shiftable to x′ if its leakage diagram does not orbit the dependency graph.

Proof sketch. The only difference to the proof in Section 5.1 is that we have gadgets with multiple input and output
sharing. Hence we do not have only one bottom and top. (E.g. Figure 6b has two bottom circles). However, the
high-level idea is the same.

Proof. When we have such dependency graphs, a leakage diagram does not orbit when gaps exist (as defined in
the proof of Proposition 8) from every bottom and top circle. We have described the maximals above. Using this
classification, we can modify the values of the variables carried by the edges in DGĈ \MAX as in the proof of
Proposition 8. We start with an arbitrary input encoding, then we modify the values on the subgraphs RGap, LGap,
BRGap, BLGap, ULGap, and URGap as in the previous example (and as described in the Proposition 5, 6, and 8).
Iterating, we arrive at modifying all the values of DG \ MAX. With this technique, we can modify all inputs.
Hence, L from Leak(Ĉ, x, p) is shiftable if its leakage diagram is not orbiting. The details that this modification
gives the same output of Leak(Ĉ, x, p) is given now.10

We start with the input orbit sharings. From there, we can change the gaps until we arrive to a gap that arrives in
a gap where two different inputs are modified. There using Proposition 5, we wait until we have arrived to modify
the other input with gaps. We can go on, and we can arrive that at least we can modify one of the gaps with multiple
inputs. [This happens due to the structure of the gasp inMAX.]

This operation is correct because even here, every time that we go up, we add the shift, while every time we go
down, we subtract the shift. This works as in the proof of Proposition 8.

□

Using Corollary 3 and Proposition 10, we can bound the actual security of the circuits obtained via our compiler.

Theorem 4. Let Ĉ be a circuit obtained via our compiler, Ĉ ← CCp(C), and |C| be the number of gates of the
circuit C, I the number of input gates and O the number of output gates. Then, Ĉ is (p, (|C|+ I +O)p̂n)-private, with

p̂ = 8[1 − (1 −
√

3p)8n],

or even tighter: p̂ = 18p + 2(1 − (1 − p)8n + 1 − (1 −
√

3p)n−1)

If C is affine, then, Ĉ is (p, (|C| + I + O)(12p)n). If circuit C is complete, then Ĉ is (p, (|C| p̂n)-private, or Ĉ is
(p, |C|(12p)n)-private.

10In the proof of Proposition 8 this step is easier because each gap set meets at its end a single another gap set.

27

Proof. The proof is similar to the proof of Theorem 3 with the following differences: 1) We have at most |C|+ I +O
different sharings (orbits) containing the shares of an input, intermediate, or output encoding. If the circuit is
complete, the number of such orbits is at most |C|. Thus we have |C| + I +O events Ei to consider. 2) For each node
of DG, there are at most 8 edges. 3) Each edge is added to LD with probability at most p′ = 2(1 − (1 − √

3p)8n) for
general circuits (or p′ = 3p) for affine circuits,see Proposition 5 and 6. Thus, we can prove that Pr[Ei] ≤ (7p′)n.
Doing a more detailed analysis (full version), similar to the one done in Theorem 2 and 3, we obtain that
Pr[Ei] ≤ (4p′)n. Putting everything together, we obtain the claim. □

With Theorem 4, we can discuss the security results for our compiler.

5.3 Compiler Security

In the previous section, we have proven that any complete circuit Ĉ obtained via our compiler, Ĉ ← CCp(C) is
(p, (|C|)p̂n)-private, with p̂ = 8[1−(1− √

3p)8n]. Further, if C is affine, then, Ĉ is (p, (|C|+I+O)(12p)n)-private. This
section discusses the results and demonstrates the improvements compared to the state-of-the-art. As in [21, 16] the
condition p̂ < 1 requires an upper-bound for the leakage probability p. In detail, Theorem 4 requires the following.

Proposition 11. Let p ∈ [0, 1
3] be the leakage probability and α ∈ (0, 1]. It holds p̂n = 8n(1 − (1 − √

3p)8n)n ≤ α if

p ≤

(
1 − 8n

√
1 − α 1

n

8

)2

3
< 1

Proof. If p is smaller than 1/3 we get 8n(1 − (1 − √
3p)8n)n ≤ α for an alpha α ∈ (0, 1]. The claim is a simple

transformation.

8n(1 − (1 −
√

3p)8n)n ≤ α⇔ p ≤

(
1 − 8n

√
1 − α 1

n

8

)2

3
< 1

For more details, we refer to the full version. □

Further, Proposition 11 gives us the required asymptotic behavior of p for our compiler.

Theorem 5. The compiler is secure for any leakage probability p with p = O(1
n2).

Proof. We can define the upper-bound p with

Fα(n) :=

√
1 − 8n

√
1 − α 1

n

8

3
.

To prove the claim, we will show that there exists a constant C s.t.

lim
n→∞

Fα(n)
1√
n

= C.

Note: Consequently, the claim of Proposition 11 follows with

lim
n→∞

(
1 − 8n

√
1 − α 1

n

8

)2

3n−2 = lim
n→∞


Fα(n)

1√
n


4

= C4

as C4 is a constant as well. The following is the original proof again.
We can transform the term to

lim
n→∞

Fα(n)
1√
n

= lim
n→∞

√
n

√
1 − 8n

√
1 − α 1

n

8

3
= lim

n→∞
1
3

√√√√√
n

1 −
8n

√

1 − α
1
n

8

.

28

It remains to study

8n

√

1 − α
1
n

8
= e

1
8n log

(
1− α

1
n
8

)

.

The previous equivalence is true since 0 < α
1
n

8 ≤ 7
8 . Now, if α , 0, then limn→∞ 1

8n log
(
1 − α 1

n

8

)
= 0, thus, using

standard analysis techniques, we have that

e
1
8n log

(
1− α

1
n
8

)

∼ 1
8n

log
1 − α

1
n

8

 + 1.

(two functions are asymptotically equivalent if they have the same limit). Thus,

lim
n→∞

1
3

√√√√√
n

1 −
8n

√

1 − α
1
n

8

 = lim
n→∞

1
3

√

n
1 − 1 − 1

8n
log

1 − α
1
n

8




= lim
n→∞

1
3

√
n

8n
log

1 − α
1
n

8

 = lim
n→∞

1
3

√
1
8

log
(
1 − 1

8

)
= C

where in the second to last equality, we have used the fact that if α > 0, then limn→∞ α
1
n = 1. Since C is a constant,

this proves the claim of the theorem. □

6 Comparison with Dziemobwski et al. [16]

Our work is inspired by Dziembowski et al. [16]. Thus, we want to summarize the differences between their work
and ours. Our compiler provides gadgets that work parallelly. In particular, our refresh gadget, pRef, works in 3
clock cycles, while their sRef works in O(n) cycles. Moreover, our multiplication gadget, Mult works in O(log(n))
cycles, while theirs, the ISW [21] works with O(n) cycles. The other gadgets, which are the same in both compilers,
need a constant number of cycles. Thus, our compiler is significantly faster than theirs for affine and general
circuits.

Proof technique. Their proof technique is a particular case of our generalized one. In fact, it is enough to
consider the graph depicted in Figure 2b. Since the values of the variables ci

0 and ci
n are always 0, we can consider

them as equal and glue the edge carrying ci
0 with ci

n ∀i. In this way, we obtain a cylinder (the formal proof is in the
full version.) In other words, the encodings of a value can also be considered like an orbit. Since cn

i = 0 is fixed
and not secret, we must assume that the adversary knows cn

i . Thus, we consider the edges carrying cn
i as always

“leaked; hence, it always belongs to the leakage diagram. This condition means that our property of not orbiting
becomes the property in which the leakage diagram’s left, and right sides are not connected. Finally, their way to
modify (that is, choosing the so-called modifications vectors) is a way to select a maximal containing the leakage
diagram as we did in our proofs. Further, we show in the full version why we cannot use their technique for our
gadgets. Informally, their technique does not work for our LD because choosing the so-called modification vectors
would have been challenging (since there are no edges that must belong to the leakage diagrams).

Bound differences. Since every edge of DGpRef (Figure 5b) contains a single variable, while the ci
j-edges

contain two variables (Figure 2b), we have that our affine compiled circuits are (O([9p]n), p)-private, while theirs
is (O([8

√
3p]n), p)-private. Thus, we have gained an order of magnitude. Second, by doing a more detailed

analysis, we have proved that for the Mult gadgets and, thus, for the general compiled circuits, the security
is [18p + 2(1 − (1 − p)8n + 1 − (1 − √

3p)n−1)]n ≤ (8[1 − (1 − √
3p)8n])n, instead of (32np + 4n

√
3p)n. This

observation proves better security gains as depicted in the full version.

7 Conclusion

In this paper, we have started from the graphs introduced by Dziemboswki et al. [16]. Then, we showed how to use
a broader class of graphs. Our graphs are more general than [16], and we used them to prove the security in the

29

random probing model of our parallel compiler. Using this, we have proved that our compiler has O(pn)-security for
the affine case and O((n2 p)n)-security for the general case. Besides being parallel, our compiler has the advantage
that it is one of the simplest possible. This graph technique is interesting and could be applied to other compilers.
Moreover, we believe the same technique can be applied to other probing models, such as the t-threshold probing
model or the average-random probing model, or considering leakage models where glitches are considered, or
also considering security in the presence of faults. We also believe that our technique can be applied to gadgets
corresponding to bigger circuits, as those used to mask public-key encryption scheme. Finding dependency graphs
which can be useful is still an interesting challenge. Finally, it might be interesting to improve the security bounds
of our Mult and Add-gadget using improved graphs.

Acknowledgment

This work was partly supported by the German Research Foundation (DFG) via the DFG CRC 1119 CROSSING
(project S7), by the German Federal Ministry of Education and Research and the Hessen State Ministry for Higher
Education, Research and the Arts within their joint support of the National Research Center for Applied Cybersecu-
rity ATHENE, and by the European Commission(ERCEA), ERC Grant Agreement 101044770 CRYPTOLAYER.
F. Berti was funded by Israel Science Foundation, ISF grant 2569/21.

We would like to thank Stefan Dziembowski and Karol Zebrowski for helpful discussions on earlier versions of
this work. Further, we thank our reviewers for the many helpful comments to improve the paper.

References

[1] Ananth, P., Ishai, Y., Sahai, A.: Private circuits: A modular approach. In: Shacham, H., Boldyreva, A. (eds.)
Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part III. Lecture Notes in Computer Science, vol. 10993, pp.
427–455. Springer (2018). https://doi.org/10.1007/978-3-319-96878-0_15, https://doi.org/10.1007/
978-3-319-96878-0_15

[2] Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with o(1/\log (n)) leakage rate. In: Fischlin,
M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 9666, pp. 586–615. Springer (2016). https://doi.org/10.1007/978-
3-662-49896-5_21, https://doi.org/10.1007/978-3-662-49896-5_21

[3] Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F., Strub, P.: Parallel implementations of
masking schemes and the bounded moment leakage model. In: Coron, J., Nielsen, J.B. (eds.) Advances in
Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10210, pp. 535–566 (2017). https://doi.org/10.1007/978-3-319-56620-7_19, https:
//doi.org/10.1007/978-3-319-56620-7_19

[4] Belaïd, S., Coron, J., Prouff, E., Rivain, M., Taleb, A.R.: Random probing security: Verification, composition,
expansion and new constructions. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12170, pp. 339–368. Springer (2020).
https://doi.org/10.1007/978-3-030-56784-2_12, https://doi.org/10.1007/978-3-030-56784-2_12

[5] Belaïd, S., Mercadier, D., Rivain, M., Taleb, A.R.: Ironmask: Versatile verification of masking security.
In: 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022.
pp. 142–160. IEEE (2022). https://doi.org/10.1109/SP46214.2022.9833600, https://doi.org/10.1109/
SP46214.2022.9833600

[6] Belaïd, S., Mercadier, D., Rivain, M., Taleb, A.R.: Ironmask: Versatile verification of masking security.
In: 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022.
pp. 142–160. IEEE (2022). https://doi.org/10.1109/SP46214.2022.9833600, https://doi.org/10.1109/
SP46214.2022.9833600

30

[7] Belaïd, S., Rivain, M., Taleb, A.R.: On the power of expansion: More efficient constructions in the random
probing model 12697, 313–343 (2021). https://doi.org/10.1007/978-3-030-77886-6_11, https://doi.org/
10.1007/978-3-030-77886-6_11

[8] Belaïd, S., Rivain, M., Taleb, A.R.: On the power of expansion: More efficient constructions in the random
probing model. In: Canteaut, A., Standaert, F. (eds.) Advances in Cryptology - EUROCRYPT 2021 - 40th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12697, pp.
313–343. Springer (2021). https://doi.org/10.1007/978-3-030-77886-6_11, https://doi.org/10.1007/
978-3-030-77886-6_11

[9] Bogdanov, A., Ishai, Y., Srinivasan, A.: Unconditionally secure computation against low-complexity leakage.
In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 11693, pp. 387–416. Springer (2019). https://doi.org/10.1007/978-3-030-26951-7_14,
https://doi.org/10.1007/978-3-030-26951-7_14

[10] Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin, L., Matsui, M. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4249, pp. 201–215.
Springer (2006). https://doi.org/10.1007/11894063_16, https://doi.org/10.1007/11894063_16

[11] Cassiers, G., Faust, S., Orlt, M., Standaert, F.: Towards tight random probing security. In: Malkin, T., Peikert,
C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 12827, pp. 185–214. Springer (2021). https://doi.org/10.1007/978-3-030-84252-9_7, https:
//doi.org/10.1007/978-3-030-84252-9_7

[12] Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on expo-
nentiation. In: Soriano, M., Qing, S., López, J. (eds.) Information and Communications Security - 12th
International Conference, ICICS 2010, Barcelona, Spain, December 15-17, 2010. Proceedings. Lecture Notes
in Computer Science, vol. 6476, pp. 46–61. Springer (2010). https://doi.org/10.1007/978-3-642-17650-0_5,
https://doi.org/10.1007/978-3-642-17650-0_5

[13] Coron, J., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask refreshing. In:
Moriai, S. (ed.) Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers. Lecture Notes in Computer Science, vol. 8424, pp. 410–424. Springer (2013).
https://doi.org/10.1007/978-3-662-43933-3_21, https://doi.org/10.1007/978-3-662-43933-3_21

[14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks to noisy leakage. J.
Cryptol. 32(1), 151–177 (2019). https://doi.org/10.1007/s00145-018-9284-1, https://doi.org/10.1007/
s00145-018-9284-1

[15] Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9057, pp. 159–188. Springer (2015). https://doi.org/10.1007/978-3-662-46803-6_6,
https://doi.org/10.1007/978-3-662-46803-6_6

[16] Dziembowski, S., Faust, S., Zebrowski, K.: Simple refreshing in the noisy leakage model. In: Galbraith, S.D.,
Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 11923, pp. 315–344. Springer (2019). https://doi.org/10.1007/978-
3-030-34618-8_11, https://doi.org/10.1007/978-3-030-34618-8_11

[17] Gao, S., Mateer, T.D.: Additive fast fourier transforms over finite fields. IEEE Trans. Inf. Theory 56(12),
6265–6272 (2010). https://doi.org/10.1109/TIT.2010.2079016, https://doi.org/10.1109/TIT.2010.
2079016

31

[18] Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acoustic cryptanalysis. In: Garay,
J.A., Gennaro, R. (eds.) Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 8616, pp. 444–461. Springer (2014). https://doi.org/10.1007/978-3-662-44371-2_25, https://doi.
org/10.1007/978-3-662-44371-2_25

[19] Goudarzi, D., Joux, A., Rivain, M.: How to securely compute with noisy leakage in quasilinear complexity. In:
Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference
on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December
2-6, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11273, pp. 547–574. Springer (2018).
https://doi.org/10.1007/978-3-030-03329-3_19, https://doi.org/10.1007/978-3-030-03329-3_19

[20] Goudarzi, D., Prest, T., Rivain, M., Vergnaud, D.: Probing security through input-output separa-
tion and revisited quasilinear masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 599–640
(2021). https://doi.org/10.46586/tches.v2021.i3.599-640, https://doi.org/10.46586/tches.v2021.i3.
599-640

[21] Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against probing attacks. In: Boneh,
D. (ed.) Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings. Lecture Notes in Computer Science,
vol. 2729, pp. 463–481. Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_27, https://doi.
org/10.1007/978-3-540-45146-4_27

[22] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In:
Koblitz, N. (ed.) Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings. Lecture Notes in Com-
puter Science, vol. 1109, pp. 104–113. Springer (1996). https://doi.org/10.1007/3-540-68697-5_9, https:
//doi.org/10.1007/3-540-68697-5_9

[23] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.) Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1_25, https://doi.org/10.1007/3-540-48405-1_25

[24] Medwed, M., Standaert, F., Joux, A.: Towards super-exponential side-channel security with efficient leakage-
resilient prfs. In: Prouff, E., Schaumont, P. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings. Lecture Notes in
Computer Science, vol. 7428, pp. 193–212. Springer (2012). https://doi.org/10.1007/978-3-642-33027-8_12,
https://doi.org/10.1007/978-3-642-33027-8_12

[25] Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches.
In: Ning, P., Qing, S., Li, N. (eds.) Information and Communications Security, 8th International Conference,
ICICS 2006, Raleigh, NC, USA, December 4-7, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4307, pp. 529–545. Springer (2006). https://doi.org/10.1007/11935308_38, https://doi.org/10.
1007/11935308_38

[26] Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying leakage models on a rényi day. In: Boldyreva,
A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 11692, pp. 683–712. Springer (2019). https://doi.org/10.1007/978-3-030-26948-7_24, https:
//doi.org/10.1007/978-3-030-26948-7_24

[27] Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security proof. In: Johansson, T.,
Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7881, pp. 142–159. Springer (2013). https://doi.org/10.1007/978-3-
642-38348-9_9, https://doi.org/10.1007/978-3-642-38348-9_9

32

[28] Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In:
Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 9215, pp. 764–783. Springer (2015). https://doi.org/10.1007/978-3-662-47989-6_37, https:
//doi.org/10.1007/978-3-662-47989-6_37

[29] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.
(eds.) Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6225, pp.
413–427. Springer (2010). https://doi.org/10.1007/978-3-642-15031-9_28, https://doi.org/10.1007/
978-3-642-15031-9_28

[30] Trichina, E.: Combinational logic design for AES subbyte transformation on masked data. IACR Cryptol.
ePrint Arch. p. 236 (2003), http://eprint.iacr.org/2003/236

[31] Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2001, Third International Workshop, Paris, France,
May 14-16, 2001, Proceedings. Lecture Notes in Computer Science, vol. 2162, pp. 286–299. Springer (2001).
https://doi.org/10.1007/3-540-44709-1_24, https://doi.org/10.1007/3-540-44709-1_24

33

C. Fuzzy Asymmetric
Password-Authenticated Key
Exchange

This chapter corresponds to our published article at ASIACRYPT 2020 [90], with

minor edits. Our full version can be found in [89].

129

Fuzzy Asymmetric
Password-Authenticated Key Exchange

Andreas Erwig1, Julia Hesse2, Maximilian Orlt1, and Siavash Riahi1

1 Technische Universität Darmstadt, Germany
{andreas.erwig, maximilian.orlt, siavash.riahi}@tu-darmstadt.de

2 IBM Research - Zurich, Switzerland
jhs@zurich.ibm.com

Abstract. Password-Authenticated Key Exchange (PAKE) lets users with passwords exchange a cryp-
tographic key. There have been two variants of PAKE which make it more applicable to real-world
scenarios:
– Asymmetric PAKE (aPAKE), which aims at protecting a client’s password even if the authentica-

tion server is untrusted, and
– Fuzzy PAKE (fPAKE), which enables key agreement even if passwords of users are noisy, but “close

enough”.
Supporting fuzzy password matches eases the use of higher entropy passwords and enables using bio-
metrics and environmental readings (both of which are naturally noisy).
Until now, both variants of PAKE have been considered only in separation. In this paper, we consider
both of them simultaneously. We introduce the notion of Fuzzy Asymmetric PAKE (fuzzy aPAKE),
which protects against untrusted servers and supports noisy passwords. We formulate our new notion
in the Universal Composability framework of Canetti (FOCS’01), which is the preferred model for
password-based primitives. We then show that fuzzy aPAKE can be obtained from oblivious transfer
and some variant of robust secret sharing (Cramer et al, EC’15). We achieve security against malicious
parties while avoiding expensive tools such as non-interactive zero-knowledge proofs. Our construction
is round-optimal, with message and password file sizes that are independent of the schemes error
tolerance.

1 Introduction

In a world of watches interacting with smartphones and our water kettle negotiating with the blinds in
our house, communicating devices are ubiquitous. Developments in user-centric technology are rapid, and
they call for authentication methods that conveniently work with, e.g., biometric scans, human-memorable
passwords or fingerprints derived from environmental readings.

Password-authenticated Key Exchange (PAKE) protocols [BM92,BPR00,BMP00,KOY01,GL03,KV11,
CDVW12,BBC+13] are the cryptographic answer to this need. They solve the problem of establishing a secure
communication channel between two users who share nothing but a low-entropy string, often simply called
password. Two interesting variants of PAKE protocols that are known from the literature are asymmetric
PAKE [BM93, GMR06, JKX18, BJX19] which aims at protecting the user’s password even if his password
file at some server is stolen, and fuzzy PAKE [DHP+18] which can tolerate some errors in the password.
The former is useful in settings where authentication servers store thousands of user accounts and the server
cannot be fully trusted. The latter introduces a usability aspect to PAKE protocols used by humans trying to
remember passwords exactly. Furthermore, fuzzy PAKE broadens applicability of PAKE to the fuzzy setting
and thereby allows using environmental readings or biometrics as passwords.

This work is the first to consider a combination of both PAKE variants. Namely, we introduce the notion
of fuzzy asymmetric PAKE (fuzzy aPAKE). This new primitive allows a client and an untrusted server to
authenticate to each other using a password, and both parties are guaranteed to derive the same cryptographic
key as long as their passwords are within some predefined distance (in some predefined metric). Consider
a client authenticating to a server using his fingerprint scan. In this setting, asymmetric PAKE protocols

would not work since subsequent scans do not match exactly. Fuzzy PAKE, on the other hand, would require
the server to store the fingerprint (or at least some template of it that uniquely identifies the person) in the
clear, which is unacceptable for sensitive and ephemeral personal data that is biometrics. Fuzzy asymmetric
PAKE, as introduced in this paper, is the only known cryptographic solution that applies to this setting: it
works with fuzzy authentication data and does not reveal this authentication data to the server.

Why is this hard? Given that there is a lot of literature about both asymmetric PAKE and fuzzy cryp-
tography, one could ask whether existing techniques could be used to obtain fuzzy aPAKE. As explained
already in [DHP+18], techniques from fuzzy cryptography such as information reconciliation [BBR88] or
fuzzy extractors [DRS04] cannot be used with passwords of low entropy. Essentially, these techniques lose
several bits of their inputs, which is acceptable when inputs have high entropy, but devastating in case of
passwords.

Looking at techniques for asymmetric PAKE, all of them require some kind of password hardening such
as hashing [GMR06,HL19,PW17], applying a PRF [JKX18] or a hash proof system [BJX19]. Unfortunately,
such functions destroy all notions of closeness of their inputs by design. Further, it is unclear how to define
a fuzzy version of, e.g., an oblivious PRF as used in [JKX18] that is not simply a constant function. While
such definitions exist for “fuzzy” cryptographic hashing (e.g., robust property-preserving hashing [BLV19]),
these functions either do not provide useful error correction or already their description leaks too much
information about the password of the client. Overall, there seems to be no candidate asymmetric PAKE
which can be made fuzzy.

Regarding more naive approaches, it is tempting to try to apply generic techniques for multi-party
computation to obtain a fuzzy PAKE such as garbled circuits [Yao86]. The circuit would be created w.r.t
some function of the password h← H(pw). The user’s input would be pw′. Now the circuit finds all passwords
close enough to pw′ and outputs the shared key if one of these passwords yield h. Despite the inefficiency of
this approach, it is unclear how to actually write down the circuit. As shown in [Hes19], h needs to be the
output of some idealized assumption such as a programmable random oracle, and thus has no representation
as a circuit.

Our contributions In this paper, we give the first formal definition of fuzzy asymmetric PAKE. Our definition
is in the Universal Composability framework of Canetti [Can01], which is the preferred model for PAKE
protocols (cf., e.g., [JKX18] for reasons). Essentially, we take the aPAKE functionality from [GMR06] (in
a revised version due to [Hes19]) and equip it with fuzzy password matching (taken from the fuzzy PAKE
functionality FfPAKE from [DHP+18]). Our resulting functionality FfaPAKE is flexible in two ways: it can
be optionally equipped with a mutual key confirmation (often called explicit authentication), and, just as
FfPAKE, FfaPAKE can be parametrized with arbitrary metrics for distance, arbitrary thresholds and arbitrary
adversarial leakage. Thus, our model is suitable to analyze protocols for a wide range of applications, from
tolerating only few language-specific typos in passwords [CWP+17] to usage of noisy biometric scans of few
thousand bits length.

We then give two constructions for fuzzy asymmetric PAKE. Our first construction ΠfaPAKE uses error-
correcting codes (ECC)3 and oblivious transfer (OT) as efficient building blocks. ΠfaPAKE works for Hamming
distance and can correct O(log(n)) errors in n-bit passwords. Let us now give more details on ΠfaPAKE.

The idea of our protocol is to first encode a cryptographic key and store it at the server, in a file together
with random values to hide the codeword. The exact position of the codeword in the file is dictated by the
password. A client holding a close enough password is thus able to retrieve almost the whole codeword cor-
rectly and can thus decode the session key given the error correction capabilities of the encoding. An attacker
stealing the password file, however, cannot simply decode since the file contains too much randomness. To
remove this randomness, he is bound to decode subsets of the file until he finds two subsets which decode to
the same session key. Since decoding can be assumed to be as expensive as hashing, the effort of an off-line

3 More precisely, we use a variant of Robust Secret Sharing, which can be instantiated with some class of error-
correcting codes. However, since most readers are presumably more familiar with the latter, we describe our
constructions in terms of codes.

2

dictionary attack on the password file follows from a purely combinatorial argument on the parameters of
the scheme (i.e., password size and error correction threshold).

To bound the client to one password guess per run of the protocol (which is the common security
requirement for PAKE), we employ an n-times 1-out-of-2 OT scheme. Each OT lets the client choose either
the true or the random part of the codeword for each of the n password bits (here we assume that the
codeword is from Fn for some large field F). Further, we apply randomization techniques to keep a client
from collecting parts of the password file over several runs of the protocol.

A plus of our protocol is that it elegantly circumvents usage of expensive techniques such as non-interactive
zero-knowledge proofs to ensure security against a malicious server. Indeed, a malicious server could make the
client reconstruct the session key regardless of her password by entering only the true codeword in the OT.
Such attacks would be devastating in applications where the client uses the session key to encrypt her secrets
and sends them to the bogus server. Thus, the client needs a means to check correct behavior of the server.
We achieve this by letting the server send his transcript of the current protocol run (e.g., the full password
file) to the client, symmetrically encrypted with the session key. The client decrypts and checks whether the
server executed the protocol with a password close enough to his own. Crucially, a corrupted client can only
decrypt (and thus learn the server’s secrets) if he holds a close enough password, since otherwise he will not
know the encryption key.

Our proof of security is in the UC model and thus our protocol features composability guarantees and
security even in the presence of adversarially-chosen passwords. As shown in [Hes19], strong idealized as-
sumptions are necessary in order to achieve security in the UC model in case of asymmetric PAKE protocols.
The reason lies in the adaptive nature of a server compromise attack (an adversary stealing the password
file), against which our fuzzy version of asymmetric PAKE should also provide some protection. And indeed,
our proof is in the generic group model and additionally requires encryption to be modeled as an ideal cipher.
Both assumptions provide our simulator with the power to monitor off-line password guesses (observability)
of the environment as well as to adjust a password file to contain a specific password even after having
revealed the file (programmability)4. As a technicality, usage of the generic group model requires the client
to perform decoding in the exponent. We give an example of a code that is decodable in the exponent.

Our second construction Πtransf is a “naive” approach of building fuzzy aPAKE from aPAKE. Namely,
for a given pw, a server could simply store a list of, say, k hashes H(pw′) for all pw′ close enough to pw.
Then, client and server execute k times an aPAKE protocol, with the client entering the same password
every time and the server entering all hashes one by one. The fully secure protocol would need to protect
against malicious behavior, e.g., by having both parties prove correct behavior. Unfortunately, this approach
has two drawbacks. First, it does not scale asymptotically and has huge password files and communication
overhead depending not only on the fuzziness threshold but also on the size of the password. Second, we
show that Πtransf cannot be considered a secure fuzzy aPAKE, but has slightly weaker security guarantees.

On the plus side, Πtransf is already practical (and sufficiently secure) for applications where only few
passwords should let the client pass. Facebook’s authentication protocol, for example, is reported to correct
capitalization of the first letter [Ale15], resulting in only two hashes to be stored in the password file. As
analyzed in [CAA+16, CWP+17], correcting few common typographical mistakes as, e.g., accidental caps
lock, increases usability significantly more than it decreases security. For such applications, our protocol
Πtransf is a good choice.

1.1 Roadmap

In Section 2 we give a definition of our main building blocks, error-correcting codes which are decodable in
the exponent. In Section 3, we provide the formal definition of fuzzy aPAKE and discuss the design of our
functionality. Our fuzzy aPAKE protocol can be found in Section 4. Our naive approach of building faPAKE
from aPAKE can be found in Section 5. Efficiency is considered in Section 6.
4 We mention that already the fuzzy PAKE construction for Hamming distance from [DHP+18] relies on both the

ideal cipher and random oracle model. Usage of the generic group model (together with a random oracle) has been
recently shown useful in constructing strongly secure aPAKEs [BJX19].

3

2 Preliminaries

2.1 Robust Secret Sharing in the exponent

An l-out-of-n secret sharing scheme allows to share a secret value s into n shares (s1, · · · , sn) in such a way
that given at least l of these shares, the secret can be reconstructed. Simultaneously, any tuple of shares
smaller than l is distributed independently of s. Robust secret sharing (RSS) [CDD+15] improves upon secret
sharing schemes in the presence of malicious shares. Intuitively, an (n, l − 1, r)q-RSS is an l-out-of-n secret
sharing scheme which allows the presence of up to n− r corrupted shares. In detail the reconstruction of the
secret is reliable for an n-tuple input (ŝ1, · · · , ŝn) of r different secret shares si and n− r random values ai
even if the positions of the correct shares are unknown.

We recall the definition of RSS as stated in [DHP+18]. For a vector c ∈ Fn
q and a set A ⊆ [n], we denote

with cA the projection Fn
q → F|A|q , i.e., the sub-vector (ci)i∈A.

Definition 1. Let λ ∈ N, q a λ-bit prime, Fq a finite field and n, l, r ∈ N with l < r ≤ n. An (n, l, r)q robust
secret sharing scheme (RSS) consists of two probabilistic algorithms Share : Fq → Fn

q and Rec : Fn
q → Fq with

the following properties:

– l-privacy: for any s, s′ ∈ Fq, A ⊂ [n] with |A| ≤ l, the projections cA of c
$← Share(s) and c′A of

c′ $← Share(s′) are identically distributed.
– r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s), and any c̃ such that cA = c̃A,

it holds that Rec(c̃) = s.

We now introduce a variant of RSS which produces shares that are hidden in the exponent of some group
G, and which features a reconstruction algorithm that can handle shares in the exponent. At the same time
we sacrifice absolute correctness of Rec and allow for a negligible error in the definition of robustness.

Definition 2 (Robust Secret Sharing in the Exponent). Let λ ∈ N, q a λ-bit prime, Fq a finite field
and n, l, r ∈ N with l < r ≤ n. Let RSS = (Share′,Rec′) be a (n, l, r)q robust secret sharing scheme and
let G = ⟨g⟩ be a cyclic group of prime order q. An (n, l, r)q robust secret sharing scheme in the exponent
(RSSExp) with respect to G consists of two probabilistic algorithms Share : Fq → Gn and Rec : Gn → G
which are defined as follows:

– Share(s) : On input a secret value s ← Fq, obtain secret shares (s1, · · · , sn) ← Share′(s) and output
(gs1 , · · · , gsn).

– Rec(gŝ1 , · · · , gŝn) : On input n group elements, this algorithm outputs gŝ, where ŝ← Rec′(ŝ1, · · · , ŝn).

Further, an (n, l, r)-RSSExp scheme fulfills the following properties:

– l-privacy: as in Definition 1.
– r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s), and any c̃ such that cA = c̃A,

it holds that Rec(c̃) = gs with overwhelming probability in n.

Note that any (n, l, r)-RSSExp scheme trivially fulfills the l-privacy property. In the next part of this
section we show how to achieve r-robustness.

Instantiations of RSSExp In [DHP+18], it is shown how to construct an RSS scheme from any maximum
distance separable (MDS) code. An (n+1, k)q MDS code is a linear q-ary code of length n and rank k, which
can correct up to ⌊(n−k+1)/2⌋ errors. We refer to [Rot06] for a more in depth introduction to linear codes.

Concretely, [DHP+18] propose to use Reed-Solomon codes, which are closely related to Shamir’s secret
sharing scheme [MS81]. In general, we are not aware of any RSS scheme that is not also an MDS code. For
this reason, we focus now on decoding algorithms of linear codes.

4

Which decoding alorithm works also in the exponent? In the following Lemma we show that it is possible to
build an (n, l − 1, l + t, g)-RSSExp scheme from an l-out-of-(l + 2t) Shamir’s secret sharing scheme.

Lemma 1. Let n, l ∈ N and (Share′,Rec′) be an l-out-of-n Shamir’s secret sharing scheme with n = l + 2t
for some t and t · l = O(n log n), G = ⟨g⟩ a cyclic group of order q. Further let Share be the algorithm that
outputs gShare

′(s) on input s ∈ Fq. Then there exists an algorithm Rec using poly(n)·O(log q) group operations
such that (Share,Rec) is an (n, l − 1, l + t)-RSSExp scheme with respect to G.

Proof. (l−1)-privacy of l-out-of-n Shamir’s secret sharing scheme is shown in [DHP+18], Lemma 5, and can
be directly applied to the case where shares are lifted to the exponent of some group. Let Rec be the “unique
decoding by randomized enumeration” algorithm defined by Canetti and Goldwasser [CG99] (essentially, the
algorithm decodes random subsets of shares until it finds redundancy), but applied to shares in the exponent
using, e.g., Lagrange interpolation. Peikert [Pei06] shows in his Proposition 2.1 that, if t < (n+1− l)/2 (i.e.,
the number of errors allows for unique decoding) and t · l = O(n log n), then Rec succeeds with overwhelming
probability in n and requires poly(n)·O(log q) group operations. Since n = l+2t, it holds that t < (n+1−l)/2
and hence (l + t)-robustness is achieved.

3 Security Model

We now present our security definition for asymmetric fuzzy password authenticated key exchange (ΠfaPAKE).
Our functionality combines the fuzzy PAKE functionality FfPAKE from [DHP+18] with the asymmetric PAKE
functionality FapwKE [GMR06] (with revisions due to [Hes19]). In order to capture the notion of fuzziness in
our model, we say that a key exchange using passwords pw and pw′ is successful if d(pw, pw′) ≤ δ, where d is
an arbitrary distance function and δ a fixed threshold. FfPAKE can be parametrized with arbitrary functions
hdist() such as Hamming distance or edit distance.

Roles: In this work we consider an asymmetric setting, namely a client PC and a server PS . Each party
executes different code. In this setting PC uses a password pw while PS has access to some value denoted
by file, which is generated from a password pw′ but does not immediately reveal pw′. The goal of PC is
convincing PS that d(pw, pw′) ≤ δ, while PS only has access to file (and does not have access to pw′).

Modeling Adversarial Capabilities: The standard security requirement for PAKE is that an attacker is bound
to one password guessing attempt per run of the protocol. This resistance to off-line dictionary attacks is
also featured by our functionality FfaPAKE via the TestPwd interface that can be called by the adversary
only once per session. Since we are in the setting of asymmetric PAKE, however, the adversary can also gain
access to the password file file by compromising the server. Such a compromise is essentially a corruption
query with the effect that a part of the internal state of the server is leaked to the adversary. However,
opposed to standard corruption, the adversary is not allowed to control the party or modify its internal
state. FfaPAKE provides an interface for server compromise named StealPwdFile. As a consequence of
such a query (which, as natural for corruption queries, can only be asked by the adversary upon getting
instructions from the environment), a dictionary attack becomes possible. Such an attack is reflected in
FfaPAKE by the OfflineTestPwd interface, which allows an unbounded number of password guesses. Ac-
counting for protocols that allow precomputation of, e.g., hash tables of the form H(pw), FfaPAKE accepts
OfflineTestPwd queries already before StealPwdFile was issued. FfaPAKE silently stores these guesses
in the form of (offline, pw) records. Upon StealPwdFile, FfaPAKE sends the client’s pwC to the adversary
in case a record (offline, pwC) exists. This models the fact that the adversary learns the client’s password
from his precomputated values only upon learning the password file, i.e., compromising the server5. Besides
offline password guesses, the adversary can use file of the compromised server to run a key exchange session
with the user. This is captured within the Impersonate interface.
5 Recent PAKE protocols [JKX18,BJX19] have offered resistance against so-called precomputation attacks, where

an attacker should not be able to pre-compute any values that can be used in the dictionary attack. Our protocols
do not offer such guarantees.

5

All these interfaces were already present in aPAKE functionalities in the literature. The key difference of
FfaPAKE is now that all these interfaces apply fuzzy matching when it comes to comparing passwords. Namely,
FfaPAKE is parametrized with two thresholds δ and γ. δ is the “success threshold”, for which it is guaranteed
that passwords within distance δ enable a successful key exchange. On the other hand, γ can be seen as
the “security threshold”, with γ ≥ δ. Guessing a password within range γ does not enable the adversary
to successfully exchange a key, but it might provide him with more information than just “wrong guess”.
Following [DHP+18], we enable weakenings of FfaPAKE in terms of leakage from adversarial interfaces (cf.
Figure 2). Here, the adversary, in addition to learning whether or not his password guess was close enough, is
provided with the output of different leakage functions Lc, Lm and Lf . Essentially, he learns Lc(pw, pw

′) if his
guess was within range δ of the other password, Lm if it was within range γ > δ and Lf if it was further away
than γ. FfaPAKE can be instantiated with any thresholds γ, δ and arbitrary functions Lc, Lm, Lf . Looking
ahead, the additional threshold γ enables us to prove security of constructions using building blocks such
as error-correcting codes, which come with a “gray zone” where reliable error correction is not possible, but
also the encoded secret is not information-theoretically hidden. While guessing a password in this gray zone
does not enable an attacker to reliably compute the same password as the client, security is still considered
to be compromised since some information about the honest party’s password (and thus her key) might be
leaked. To keep the notion flexible, we allow describing the amount of leakage with Lm(·, ·) and mark the
record compromised to model partial leakage of the key.

Naturally, one would aim for δ and γ to be close, where δ = γ offers optimal security guarantees in terms
of no special adversarial leakage if passwords are only δ + 1 apart (an equivalent formulation would be to
set Lm = Lf). FfaPAKE is strongest if Lf = Lm = Lc = ⊥. Below we provide examples of nontrivial leakage
functions, verbatim taken from [DHP+18].

Since in a fuzzy aPAKE protocol the password file stored at the server needs to allow for fuzzy matching,
files are required to store the password in a structured or algebraic form. An adversary stealing the file
could now attempt to alter the file to contain a different (still unknown) password. This kind of attack does
not seem to constitute a real threat, since the attacker basically just destroyed the file and cannot use it
anymore to impersonate the server towards the corresponding client. To allow for efficient protocols, we
therefore choose to incorporate malleability of password files into our functionality FfaPAKE by allowing the
adversary to present a function f within an Impersonate query. The impersonation attack is then carried
out with f(pw) instead of pw, where pw denotes the server’s password.

Figure 1 depicts FfaPAKE with the set of leakage functions from the second example below, namely leaking
whether the password is close enough to derive a common cryptographic key.

Examples of leakage functions.

1. No leakage. The strongest option is to provide no feedback at all to the adversary. We define FN
faPAKE to

be the functionality described in Figure 1, except that TestPwd, Impersonate, OfflineTestPwd
and StealPwdFile use the check depicted in Figure 2 with

LN
c (pw, pw′) = LN

m(pw, pw′) = LN
f (pw, pw′) = ⊥ .

2. Correctness of guess. The basic functionality FfaPAKE, described in Figure 1, leaks the correctness of the
adversary’s guess. That is, in the language of Figure 2,

Lc(pw, pw
′) = “correct guess” ,

and Lm(pw, pw′) = Lf (pw, pw
′) = “wrong guess” .

3. Matching positions (“mask”). Assume the two passwords are strings of length n over some finite alphabet,
with the jth character of the string pw denoted by pw[j]. We define FM

faPAKE to be the functionality
described in Figure 1, except that TestPwd, Impersonate, OfflineTestPwd and StealPwdFile
use the check depicted in Figure 2, with Lc and Lm that leak the indices at which the guessed password
differs from the actual one when the guess is close enough (we will call this leakage the mask of the

6

The functionality FfaPAKE is parameterized by a security parameter λ and tolerances δ ≤ γ. It interacts with an
adversary S and a client and a server party P ∈ {PC ,PS} via the following queries:
Password Registration

– On (StorePwdFile, sid,PC , pw) from PS , if this is the first StorePwdFile message, record (file,PC ,PS , pw)
and mark it uncompromised.

Stealing Password Data

– On (StealPwdFile, sid) from S, if there is no record (file,PC ,PS , pw), return “no password file” to S.
Otherwise, if the record is marked uncompromised, mark it compromised; regardless, for all records (offline, pw′)
set d← d(pw, pw′) and do:
• If d ≤ δ, send (“correct guess” , pw′) to S;

If no such pw′ is recorded, return “password file stolen” to S.
– On (OfflineTestPwd, sid, pw′) from S, do:
• If there is a record (file,PC ,PS , pw) marked compromised, then set d← d(pw, pw′) and do:

∗ If d ≤ δ, mark record compromised and send “correct guess” to S;
∗ If d > δ, mark record interrupted and send “wrong guess” to S.

• Else, record (offline, pw′)

Password Authentication

– On (UsrSession, sid, ssid,PS , pw
′) from PC , send (UsrSession, sid, ssid,PC ,PS) to S. Also, if this is the first

UsrSession message for ssid, record (ssid,PC ,PS , pw
′) and mark it fresh.

– On (SrvSession, sid, ssid) from PS , retrieve (file,PC ,PS , pw) and send (SrvSession, sid, ssid,PC ,PS) to S.
Also, if this is the first SrvSession message for ssid, record (ssid,PS ,PC , pw) and mark it fresh.

Active Session Attacks

– On (TestPwd, sid, ssid,P, pw′) from S, if there is a record (ssid,P,P ′, pw) marked fresh, then set d← d(pw, pw′)
and do:
• If d ≤ δ, mark record compromised and send “correct guess” to S;
• If d > δ, mark record interrupted and send “wrong guess” to S.

– On (Impersonate, sid, ssid, f) from S, if there is a record (ssid,PC ,PS , pw) marked fresh and a record
(file,PC ,PS , pw

′) marked compromised, then set d← d(pw, f(pw′)) and do:
• If d ≤ δ, mark record compromised and send “correct guess” to S;
• If d > δ, mark record interrupted and send “wrong guess” to S.

Key Generation and Implicit Authentication

– On (NewKey, sid, ssid,P, k) from S where |k| = λ or k = ⊥, if there is a record (ssid,P,P ′, pw) not marked
completed, do:
• If the record is marked compromised, or either P or P ′ is corrupted, send (sid, ssid, k) to P.
• Else if the record is marked fresh, (sid, ssid, k′) was sent to P ′, and at that time there was a record

(ssid,P ′,P, pw) with d(pw, pw′) ≤ δ marked fresh, send (sid, ssid, k′) to P.
• Else if k ̸= ⊥, the record is marked fresh, (sid, ssid, k′) was sent to P ′, and at that time there was a record

(ssid,P ′,P, pw) with d(pw, pw′) ≤ δ marked fresh, send (sid, ssid, k′) to P.
• Else, pick k′′ $← {0, 1}λ and send (sid, ssid, k′′) to P.

Finally, mark (ssid,P,P ′, pw) completed.

Fig. 1: Ideal functionality FfaPAKE. Framed queries can only be asked upon getting instructions from Z.

7

– If d ≤ δ, mark the record compromised and reply to S with Lc(pw, pw
′);

– If δ < d ≤ γ, mark the record compromised and reply to S with Lm(pw, pw′);
– If γ < d, mark the record interrupted and reply to S with Lf (pw, pw

′).

Fig. 2: Modified distance checks to allow for different leakage to be used in TestPwd, OfflineTestPwd,
Impersonate and StealPwdFile. In StealPwdFile, record marking is skipped.

passwords). That is,

LM
c (pw, pw′) = ({j s.t. pw[j] = pw′[j]}, “correct guess”),

LM
m (pw, pw′) = ({j s.t. pw[j] = pw′[j]}, “wrong guess”)

and LM
f (pw, pw′) = “wrong guess” .

4. Full password. The weakest definition — or the strongest leakage — reveals the entire actual password to
the adversary if the password guess is close enough. We define FP

faPAKE to be the functionality described
in Figure 1, except that TestPwd, Impersonate, OfflineTestPwd and StealPwdFile use the
check depicted in Figure 2, with

LP
c (pw, pw

′) = LP
m(pw, pw′) = pw and LP

f (pw, pw
′) = “wrong guess” .

4 Fuzzy aPAKE from Secret Sharing

We now describe our protocol for fuzzy aPAKE with Hamming distance as metric for closeness of passwords.
The very basic structure of our protocol is as follows: we let the server encode a cryptographic key K using
an error-correcting code6. The resulting codeword (different parts of codeword are depicted as white circles
in the illustration below) is then transmitted to the client, who decodes to obtain the key.

Client Server

K

K

ECC.Encode

ECC.Decode

To make the retrieval of the cryptographic key password-dependent, the server stores the codeword
together with randomness (depicted as grey circles below) in a password file. The position of the true
codeword values in the file are dictated by the password bits. For example, in the illustration below, the
server uses the password 01110. For this, we require the encoding algorithm to output codewords whose
6 Formally, we will define our scheme using the more general concept of robust secret sharing. However, for this

overview it will be convenient to use the terminology of error-correcting codes.

8

dimension matches the number of password bits. Now instead of getting the full password file, the client
can choose to see only one value per column (either a part of the codeword or a random value). Technically,
this is realized by employing a n-time 1-out-of-2 oblivious transfer (OT) protocol 7, where n = 5 is the
password size of our toy example. The oblivious part is crucial to keep the server from learning the client’s
password. With this approach, passwords within the error correction threshold of the password used by the
server are sufficient to let the client decode the cryptographic key. In the illustration below, the client uses
password 11110, letting him obtain 4/5 of the codeword correctly. Furthermore, an adversary stealing the
password file is now faced with the computationally expensive task of finding the codeword within the file.
Generalized to an (n − 2t)-out-of-n RSS, the naive approach of finding n − 2t shares of the codeword by
taking random subsets succeeds with probability 1/2n−2t (as there are

(
n
2t

)
“good” choices containing shares

only, and
(
n
2t

)
· 2n−2t choices overall). Here, n is the password size and t the number of errors that the fuzzy

aPAKE protocol allows in passwords.

Client Server

K

K

ECC.Encode
+ random shares

5x 1-out-of-2-OT

ECC.Decode

The above protocol can only be used to derive a single cryptographic key. Further, it is prone to a
malicious client who could send pw and pw ⊕ 1n in two subsequent runs and obtain the full password file.
The solution is randomization of the password file in each run of the protocol. This is straightforward for
linear secret sharing.

7 The protocol is not restricted by 1-out-of-2 OT, but can use 1-out-of-n OT for any n ∈ N. In this work we consider
n = 2, but in practice n > 2 might be useful to reduce the number of wrong shares (e.g. n = 27 in case of ASCII
encoding).

9

Client Server

K

K ′

ECC.Encode
+ random shares

5x 1-out-of-2-OT

ECC.Decode

rerandomize shares
to encode K ′

Unfortunately, the above protocol cannot be proven UC secure. As already mentioned before, UC-secure
asymmetric PAKE protocols require an idealized assumption to reveal password guesses against the file to
the adversary [Hes19]. Furthermore, we need to require that a password file does not fix the password that is
contained in it, in order to prove security in the presence of adaptive server compromise attacks. To remedy
the situation, we let the server store the password file in the exponent of a publicly known large group and
prove security of our construction in the generic group model [Sho97]. As a consequence, the client now needs
to perform decoding in the exponent. We summarize in Section 2 which known decoding techniqes work also
in the exponent, and detail in Section 6 how this affects the parameter choices of our scheme.

To complete our high-level protocol description, we now consider malicious behavior of client and server
in the above protocol. Firstly, we observe that the client cannot cheat apart from using a different password
in the OT (which does not constitute an attack) or outputting a wrong cryptographic key (which also does
not constitute an attack). Things look differently when we consider a malicious server. The server could,
e.g., deviate from the protocol by entering only correct codeword parts in the OT, making the key exchange
succeed regardless of the password the client is using. To prevent such attacks, we let the server prove correct
behavior by encrypting his view of the protocol run under the symmetric key K ′. The view consists of the
randomized password file as well as gpw. A client being able to derive K ′ can now check whether the server
indeed holds a password pw close enough to his own, and whether the transmitted password file parts match
the password file created with pw. The formal description of our protocol can be found in Figure 3.

It is worth noting the similarity of our protocol to the fuzzy PAKE from RSS/ECC of [DHP+18]. Namely,
the overall idea is the same (server choosing and encoding K, sending it to the client who can decode if and
only if his password is close enough). Essentially, both protocols transmit the codeword encrypted with
the password, using a symmetric cipher that tolerates errors in the password - let us call this a fuzzy
symmetric cipher. [DHP+18] uses the following fuzzy symmetric cipher: XOR the codeword (the message)
with cryptographic keys derived from the individual password bits. These cryptographic keys are exchanged
using PAKE on individual password bits. Unfortunately, this approach does not work in the asymmetric
setting, since the server would have to store the password in the clear to access its individual bits. For the
asymmetric case, one has to come up with a fuzzy cipher that works with a key that is some function of
the password. This function needs to have two properties: hide the password sufficiently, and still allow to
evaluate distance of its input.

10

User(p̃w, g) Server(pw, t, q, g)

parse p̃w =: p̃w1|| . . . ||p̃wn parse pw =: pw1|| . . . ||pwn

n← |pw|, l← n− 2t, k
$←− Zq

K ← gk, P ← gpw

(s1, . . . , sn)← Sharenl (k), (r1, . . . , rn)
$←− Zn

q

File Registration Phase apwi,i ← gsi , i ∈ [n], apwi⊕1,i ← gri , i ∈ [n]
store file← ((a0,i, a1,i)i∈[n], P,K)

delete pw, k, (si)i∈[n], (ri)i∈[n]

Key Exchange Phase k′ $←− Zq,K
′ ← Kk′

A← (ak′
0,i, a

k′
1,i)i∈[n]

�(Enc,K′, (A, P))

FIC
-c

� c

-(Rec, (p̃wi)i∈[n]) �(Send,A)

Fn
OT Ks ← PRG(K′)

K̃ ← Rec(b̃1, . . . , b̃n) � (b̃i)i∈[n] output Ks

-(Dec, K̃, c)

FIC
� (Ã, P̃)

parse (ã′
0,i, ã

′
1,i)i∈[n] ← Ã

If ∃i s.t. b̃i ̸= ãp̃wi,i
or

�∃ pw s.t. d(pw, p̃w) < t ∧ gpw = P̃

then set x
$←− Zq, else set x← K̃

Kc ← PRG(x)
output Kc

Fig. 3: Protocol ΠfaPAKE for asymmetric fuzzy PAKE using an n times 1-out-of-2 Oblivious Transfer.

11

4.1 Security

Theorem 1. Let n, l, t ∈ N with n = l + 2t and (Share,Rec) be an (n, l − 1, l + t)-RSSExp scheme with
respect to a generic group G. Then the protocol depicted in Figure 3 UC-emulates FP

faPAKE in the FIC,Fn
OT-

hybrid model, with γ = 2t, δ = t, Hamming distance d() and with respect to static byzantine corruptions and
adaptive server compromise.

We now provide a proof sketch for Theorem 1. The detailed proof can be found in the full version of this
paper [EHOR20].

Proof sketch: The overall proof strategy is to give a simulated transcript and output of the protocol that
is indistinguishable from a real protocol execution and runs independently of the parties’ passwords. The
simulator is allowed to make one password guess per execution (in case of compromised server the simulator
can run several offline password guesses). In the following, we describe the different cases of corruption that
have to be considered.

– Honest session: Apart from the interaction between client and server through the UC-secure OT, the
only message that needs to be simulated is one ideal cipher output which is sent from the server to the
client and serves as a commitment to the servers values. Since the ideal cipher generates a uniformly
random ciphertext from the ciphertext space, the simulator can replace the FIC output by a random
value as long as the key is unknown. Hence, the simulator runs independently from the passwords of the
parties.

– Corrupted client: In case of corrupted client, it is crucial to bind the client to submitting all n password
bits at once such that the client is not able to adaptively change the password bits based on previous
OT outputs. We achieve this by using non-adaptive n times 1-out-of-2 OT executions. Hence, S is able
to query TestPwd on the submitted password bits before it needs to simulate the OT outputs for the
client. In case TestPwd returns the server’s password, S can simulate valid OT outputs. Otherwise, S
chooses random outputs which is indistinguishable from the real execution due to the privacy property
of the RSSExp scheme.

– Corrupted server: Whenever the corrupted server sends the ciphertext that contains the OT inputs and
gpw, S reconstructs pw from the inputs to the ideal cipher and the generic group operations requestes
by the environment. S then checks whether pw is close to the client’s password using the TestPwd
interface. If so the simulator gets the client’s password and can simulate the client. Otherwise the client’s
behavior is independent of its password. Hence, S can simulate the client with an arbitrary password
that is not close to the server’s.

– Server compromise: (1) Simulating the password file. S assembles a table with random group element
handles as password file, and a random handle corresponding to gk. As soon as Z starts decoding with
some subset of these elements by querying the GGM, S learns these queries. As soon as this subset of
elements corresponds to a password, the simulator submits this password to OfflineTestPwd. If the
answer includes the server’s password, then S programs the GGM such that the decoding results in the
handle of gk.
(2) Impersonation attacks. The environment could use a file (e.g., the one obtained from S or a random-
ized variant of it) to impersonate the server. For this, the environment has to modify the ciphertext c
to encrypt the file. Upon the environment sending an encryption query to FIC including an element P
at the end of the message to be encrypted, the simulator checks if the GGM contains a tuple (pw, P). If
so, S runs a TestPwd query on pw and learns the client’s password p̃w in case pw and p̃w are close8. If
there is no tuple (pw, P) in the GGM, S checks whether P was computed from the file (A′, P ′) by the
environment sending f(P ′) to the GGM (and the simulator replying with P). If such a query happened,
S issues an Impersonate query using the same function f .

– MITM attack on honest session: Apart from the interaction between client and server through the
UC-secure OT, the only message that is sent is one ideal cipher output from the server to the client. Any
attempt by Z to tamper with this message can be detected and hence S can simulate accordingly.

8 We could alternatively let S issue an Impersonate query, but since the password is known issueing TestPwd
works just as well.

12

Password Salting. In the UC modeling each protocol session has access to a fresh instantiation of the ideal
functionalities. Consequently each protocol session invokes a fresh instantiation of RO or GGM, which return
different values when queried on the same input in different sessions. Therefore the password files generated
for two users with the same password are different. In practice however the passwords must be salted, i.e.
instead of storing the gpw, the server stores g(sid||pw) where sid is the respective session identifier. By applying
this standard technique of salting in practice, the password files for two clients who use the same password
would be different.

Use Cases for Hamming Distance metric. Although hamming distance is not the most optimal way to
measure the distance of two passwords, it is quite suitable for biometric applications. As an example, a
server can derive the password file from a client’s iris scan or fingerprint such that the client can use
this biometric data for authentication. Another example would be wearable or IoT devices. Such devices
can measure unique characteristics of the user or environment, such as heart beat patterns and use these
measurements for authentication. Our next construction is more suitable for password matching applications
where users authenticate themselves with a human memorable password, but might input some characters
of the password incorrectly.

5 Fuzzy aPAKE from standard aPAKE

We now show how to construct a fuzzy aPAKE from asymmetric PAKE. Essentially, the idea is to let the
server run an aPAKE protocol with the client multiple times, entering all the passwords that are close to
the password he originally registered. For formally defining the protocol, it will be convenient to assume a
(possibly probabilistic) function close(pw) := {pwi|d(pw, pwi) < δ} that produces a set of all authenticating
passwords. For example, for d(), δ accepting passwords where the first letter’s case should be ignored, we
would get close(holy–moly!) = {Holy–moly!, holy–moly!}. When asking to register a password file containing
pw, the server stores file := {H(pwi)|pwi ∈ close(pw) ∀i = 1, ..., |close(pw)|} as arbitrarily ordered list of
hash values of all authenticating passwords. Let k := |file| be the number of such passwords. Now client
and server execute the aPAKE protocol k times, where the client always enters his password, and the server
enters all values from the password file (in an order determined by a random permutation τ). Then, similar
to our protocol ΠfaPAKE, the server proves honest behavior by encrypting the (permuted) password file under
all k keys generated by the aPAKE protocol. The client decrypts and looks for a password file that was
generated from a password that is close to his own password. If he finds such a file, he uses the corresponding
decryption key (generated from aPAKE) to perform an explicit authentication step with the server. Note
that this extra round of explicit authentication cannot be skipped, since otherwise the server would not know
which key to output. While the computation on the client side sounds heavy at first sight, if both parties
follow the protocol, all but one decryption attempts on the client side will fail. The client can efficiently
recognized a failed decryption attempt by searching the decrypted message for the hash of his own password.
The protocol is depicted in Figure 4.

Πtransf does not scale asymptotically, neither in the size of the password nor the number of errors. As
an example, for correcting only one arbitrary error in an n-bit password, the password file size is already
k = n + 1. For correcting up to t errors, we get k := 1 +

∑t
i=1

(
n
i

)
. Note that k determines not only the

size of the password file but also the number of aPAKE executions. On the plus side, the construction works
with arbitrary metric and distances, does not have a “security gap” between δ and γ and has reasonable
computational complexity on both the client and server side.

Unfortunately Πtransf cannot be proven secure given the original ideal functionality FfaPAKE, or rather
its variant with explicit authentication (see the full version of this paper [EHOR20] for more details). In
a nutshell, an attacker tampering with the single aPAKE executions can issue k password guesses using
arbitrary passwords from the dictionary. A fuzzy aPAKE as defined within FfaPAKE, however, needs to bound
the attacker to use k close passwords. To remedy the situation we modify the TestPwd interface of our
FfaPAKE functionality such that it allows n single password guesses. By single guess we mean that, instead of
comparing a guess to all passwords within some threshold of the password of the attacked party (as it is done

13

by FfaPAKE), it is compared to just one password. In case the client is attacked, the functionality compares
with the client’s password (and allows k such comparisons). In case the server is attacked, comparison is
against a randomly chosen password close to the server’s password9. Overall, the amount of information that
the attacker obtains from both TestPwd interfaces is comparable: they both allow the attacker to exclude
k passwords from being “close enough” to authenticate towards an honest party. Stated differently, to go
through the whole dictionary D of passwords, with both TestPwd interfaces an attacker would need to
tamper with |D|/k key exchange sessions. We refer the reader to the full version of this paper [EHOR20] for
more details regarding the modified functionalities.

We let F ′faPAKE denote the ideal functionality FP
faPAKE with interfaces TestPwd and NewKey.

Theorem 2. Protocol Πtransf UC-emulates F ′faPAKE with arbitrary distance function d() and arbitrary thresh-
old δ = γ in the (FaPAKE,FRO,FIC)-hybrid model w.r.t static corruptions and adaptive server compromise
and H() denoting calls to FRO.

We now provide a proof sketch for Theorem 2. The detailed proof can be found in the full version of this
paper [EHOR20].

Proof sketch. We need to consider the following attack scenarios:

– Passive attacks: The environment Z tries to distinguish uncorrupted real and ideal execution by merely
observing transcript and outputs of the protocol, while providing the inputs of both honest parties. Since
the outputs of the protocol are random oracle outputs and the transcript consists of a random ciphertext
vector −→e output by the ideal cipher, Z cannot distinguish real outputs from simulated random values
unless it queries either the ideal cipher functionality FIC or the random oracle FRO with the corresponding
inputs. This can be excluded with overwhelming probability since these inputs are uniformly random
values of high entropy chosen by honest parties.

– Active message tampering : We consider Z injecting a message into a protocol execution between two
honest parties. The only messages being sent in unauthenticated channels are the encryption vector −→e
and the explicit authentication message h. Replacing the message h would simply result in two different
keys as output for the parties, simulatable by sending ⊥ via NewKey. Tampering with −→e is a bit more
tricky. Namely, we have to consider Z modifying only single components of −→e . Tampering with each
element of the vector −→e lowers the probability for the parties to output the same key. Hence, the simulator
needs to adjust the probability for the parties to output the same key by forcing the functionality to
only output the same session key with this exact probability, i.e., the simulator sends ⊥ via NewKey
with the inverse probability.

– (Static) Byzantine corruption: We consider the case where Z corrupts one of the parties.
• In case of corrupted server, given an adversarially computed −→e , the simulator extracts all k passwords

used by Z from the server’s inputs to FIC and FRO and submits them as password guess to F ′faPAKE
(via TestPwd). S then uses the answers (either “wrong guess” or the client’s true password) to
continue the simulation faithfully. In case the corrupted server deviates from the protocol (e.g., −→e
does not encrypt a set of passwords generated by close(), or sends garbage to the FaPAKE instance
in which the server uses the client’s password), the simulator sends ⊥ via the NewKey interface to
simulate failure of the key exchange.

• The case of a corrupted client is handled similarly using the freedom of k individual TestPwd
queries.

– Server compromise: The password file is simulated without knowledge of the password by sampling
random hash values. The simulator now exploits observability and programmability of the random oracle
(that models the hash function) as follows: as soon as Z wants to compute H(pw), S submits pw to its
OfflineTestPwd interface. Upon learning the server’s true password, S programs the random oracle
such that the password file contains hash values of all passwords close to pw.

9 Programming this randomized behavior into the functionality greatly simplifies proving security of Πtransf and does
not seem to weaken the functionality compared to one using non-randomized equality checks.

14

– Attacking FaPAKE: While using FaPAKE as hybrid functionality helps the parties to exchange the key, it
gives us a hard time when simulating. Essentially, the simulator has to simulate answers to all adversarial
interfaces of each instance of FaPAKE since Z is allowed to query them. And FaPAKE has a lot of them:
StealPwdFile, TestPwd, OfflineTestPwd and Impersonate. In a nutshell, OfflineTestPwd
queries can be answered by querying the corresponding interface at F ′faPAKE. The same holds for StealP-
wdFile and Impersonate, only that they can be queried only once in F ′faPAKE. Our proof thus needs
to argue that the one answer provided by FfaPAKE includes already enough information to simulate an-
swers to all k. The most annoying interface, namely TestPwd is handled by forwarding each individual
TestPwd guess to F ′faPAKE. This explains why F ′faPAKE needs to allow k individual password guesses
instead of one fuzzy one (as provided by FfaPAKE).

Client(pw) Server(pw′)

{pw′
1, ..., pw

′
k} ← close(pw′)

File Registration Phase file := (H1, ..., Hk), Hi := H(pw′
i)

τ ← Πk

fileτ ← (Hτ(1), . . . , Hτ(n))

for i = 1, . . . , k -pw � Hτ(i) for i = 1, . . . , k

FaPAKE
� kC,i -kS,i

�(Enc, kS,i, fileτ)

Key Exchange Phase FIC
-ei

�
−→e

for i = 1, · · · , k -(Dec, kC,i, ei)

FIC
� e′i

x
$←− K; parse e′i to a set Mi of hash values

if ∃1pw′ ∈ close(pw) s.t. Mi = {H(x1), ..., H(xk)}
where {x1, ..., xk} ← close(pw′)
then KC ← H(kC,i) and x← kC,i

else KC ← ⊥

h = H(x||0) -h for i = 1, . . . , k
if H(kS,i||0) = h

KS ← H(kS,i)
Explicit Authentication Phase else

KS ← ⊥
Output KC Output KS

Fig. 4: Protocol Πtransf for fuzzy asymmetric PAKE. The parties participate in k executions of the aPAKE
protocol. Afterwards they verify if at least one of the produced k keys match and agree on it. We denote
Πn := perm(1, ..., k) the set of permutations [k] → [k]. close(pw) is a function outputting a list of all
authenticating passwords (see text for a formal description).

15

6 Efficiency

Efficiency of ΠfaPAKE. When instantiated with the statically secure OT from [BDD+17], ΠfaPAKE is round-
optimal and requires each party to send only one message. While 2 consecutive messages are in any case
required for the OT, we can conveniently merge the ciphertext sent by the server with his message sent within
the OT. In order to compute the total message size, let us first give more details on the OT instantiations that
are compatible with ΠfaPAKE and their communication complexity. ΠfaPAKE can use any UC-secure protocol
for 1-out-of-2 OT with the slight modification that the sender only continues the protocol after having
received n input-dependent messages of the client (in UC-secure protocol, the client is usually committed
to his input when sending his first message). E.g., one could modify the round-efficient statically secure OT
protocol from [BDD+17], Figure 3, to let the sender Alice wait for receiver Bob to complete the first step
of the protocol n times. The protocol requires one round of communication. In total, 3 strings, 1 public key
and 2 ciphertexts are send around per 1-out-of-2 OT. For sender inputs from F2

q and security parameter λ

with q = 2λ, the communication complexity of the n-fold 1-out-of-2 OT is then 8λn bits. This results in
a total message size of 8λn + |c| = 8λn + (2n + 1)λ ≈ 10λn bits. For each login attempt of a client, the
server needs to perform 2n + 1 group exponentiations in order to refresh the values in the password file,
as well as an encryption of 2n + 1 group elements. Finally, the server has to perform one PRG execution.
Note that the server has to do some additional computations during the initial setup phase of the protocol,
however since this phase is only run once, we do not consider its complexity in this section. The client’s
computation is where our protocol lacks efficiency. Namely, with the naive decoding technique from [CG99],
client’s computation is only polynomial in |pw| if the error correction capability δ is not larger than log |pw|.
And still for such δ, going beyond password sizes of, say, 40 bits does not seem feasible.

Efficiency of Πtransf. In order to achieve the fuzzy password matching in Πtransf, the server is required to
store one hash value for each password that lies within distance δ of the original password. As a consequence,
the password file size is highly dependent on these threshold parameters. If we consider Hamming distance
as done in our first construction, for δ = 1 the password file is of size O(n). However for δ = 2 it grows to
O(n2) and for δ = 3 to O(n3). Hence, such error tolerance can only be achieved in Πtransf at the cost of
huge password files. The same correlation to the error tolerance holds for the amount of aPAKE executions
in Πtransf.

In order to determine the computational complexity of Πtransf in terms of required group operations, we
chose an instantiation of an aPAKE protocol, OPAQUE [JKX18], that requires a constant number of group
exponentiations. As previously discussed, Πtransf requires k aPAKE executions with k being the size of the
password file.

Despite its shortcomings when used with Hamming distance, Πtransf serves as a good illustration for
how to construct a general purpose faPAKE protocol that already has practical relevance. Instantiated with
distance and threshold suitable to correct, e.g., capitalization of first letters or transposition of certain digits,
we obtain an efficient "almost secure" fuzzy aPAKE scheme.

We present a comparison of the two schemes in Table 1. Πtransf is listed twice. First it is compared to
ΠfaPAKE when using Hamming distance. The last row indicates its efficiency for parameters resulting in k
authenticating passwords, where k can be as small as 2.

7 Conclusion

In this paper, we initiated the study of fuzzy asymmetric PAKE. Our security notion in the UC framework
results from a natural combination of existing functionalities. Protocols fulfilling our definition enjoy strong
security guarantees common to all UC-secure PAKE protocols such as protection against off-line attacks and
simulatability even when run with adversarially-chosen passwords.

We demonstrate that UC-secure fuzzy aPAKE can be build from OT and Error-Correcting Codes, where
fuzziness of passwords is measured in terms of their Hamming distance. Our protocol is inspired by the
ideas of [DHP+18] for building a fuzzy symmetric PAKE. We also show how to build a (mildly less secure)

16

File size Message size Thresholds Metric Client Server Assumption
ΠfaPAKE (2n+ 2)λ 10λn 2δ = γ Hamming poly(n) · O(log q) O(n log q) IC, GGM
Πtransf O(nδ) O(nδ) δ = γ Hamming O(nδ log q) O(nδ log q) IC, ROM
Πtransf λk O(k) δ = γ arbitrary O(k) O(k) IC, ROM

Table 1: Comparison of ΠfaPAKE and Πtransf. We assume n-bit passwords in case of Hamming distance. File
size and communication complexity are in bits. The Client and Server column indicate the number of group
operations.

fuzzy aPAKE from (non-fuzzy) aPAKE. Our construction allows for arbitrary notions of fuzziness and yields
efficient, strongly secure and practical protocols for use cases such as, e.g., correction of typical orthographic
errors in typed passwords.

Our two constructions nicely show the trade-offs that one can have for fuzzy aPAKE. The “naive” con-
struction from aPAKE has large password file size when used with Hamming distance, but also works for
arbitrary closeness notions possibly leading to small password files and practical efficiency. The construction
using Error-Correcting Codes is restricted to Hamming distance and log(|pw|) error correction threshold. I
comes with a computational overhead on the client side, but has only little communication and small pass-
word file size. It is worth noting that, for this construction, all efficiency drawbacks could be remedied by
finding a more efficient decoding method that works in the exponent. We leave this as well as finding more
fuzzy aPAKE constructions as future work. Specifically, no fuzzy aPAKE scheme with strong compromise
security (as defined in [JKX18]) is known.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) Emmy Noether Program FA
1320/1-1, by the DFG CRC 1119 CROSSING (project S7), by the German Federal Ministry of Education and
Research (BMBF) iBlockchain project (grant nr. 16KIS0902), by the German Federal Ministry of Education
and Research and the Hessen State Ministry for Higher Education, Research and the Arts within their
joint support of the National Research Center for Applied Cybersecurity ATHENE, by the VeriSec project
16KIS0634 from the Federal Ministry of Education and Research (BMBF), and by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 786725 – OLYMPUS.

We would like to thank Sophia Yakoubov for helpful discussions on earlier versions of this work.

17

References

[Ale15] Alec Muffet. Facebook: Password hashing & authentication, presentation at real world crypto,
2015.

[BBC+13] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
New techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475. Springer, Heidel-
berg, August 2013.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM J. Comput., 17(2):210–229, 1988.

[BDD+17] Paulo S. L. M. Barreto, Bernardo David, Rafael Dowsley, Kirill Morozov, and Anderson C. A.
Nascimento. A framework for efficient adaptively secure composable oblivious transfer in the
ROM. CoRR, abs/1710.08256, 2017.

[BJX19] Tatiana Bradley, Stanislaw Jarecki, and Jiayu Xu. Strong asymmetric PAKE based on trapdoor
CKEM. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 798–825. Springer, Heidelberg, August 2019.

[BLV19] Elette Boyle, Rio LaVigne, and Vinod Vaikuntanathan. Adversarially robust property-preserving
hash functions. In Avrim Blum, editor, ITCS 2019, volume 124, pages 16:1–16:20. LIPIcs,
January 2019.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages
72–84. IEEE Computer Society Press, May 1992.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: A password-based
protocol secure against dictionary attacks and password file compromise. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages
244–250. ACM Press, November 1993.

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807
of LNCS, pages 156–171. Springer, Heidelberg, May 2000.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 139–155. Springer, Heidelberg, May 2000.

[CAA+16] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and Thomas Ristenpart. pASS-
WORD tYPOS and how to correct them securely. In 2016 IEEE Symposium on Security and
Privacy, pages 799–818. IEEE Computer Society Press, May 2016.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CDD+15] Ronald Cramer, Ivan Bjerre Damgård, Nico Döttling, Serge Fehr, and Gabriele Spini. Linear
secret sharing schemes from error correcting codes and universal hash functions. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
313–336. Springer, Heidelberg, April 2015.

[CDVW12] Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee. Efficient pass-
word authenticated key exchange via oblivious transfer. In Marc Fischlin, Johannes Buchmann,
and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 449–466. Springer, Heidel-
berg, May 2012.

[CG99] Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 90–106. Springer, Heidelberg, May 1999.

[CWP+17] Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and Thomas Ristenpart.
The TypTop system: Personalized typo-tolerant password checking. In Bhavani M. Thuraising-

ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 329–346. ACM
Press, October / November 2017.

[DHP+18] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia Yakoubov.
Fuzzy password-authenticated key exchange. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 393–424. Springer, Heidelberg,
April / May 2018.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, Heidelberg, May 2004.

[EHOR20] Andreas Erwig, Julia Hesse, Maximilian Orlt, and Siavash Riahi. Fuzzy asymmetric password-
authenticated key exchange. Cryptology ePrint Archive, Report 2020/987, 2020. https://
eprint.iacr.org/2020/987.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key
exchange. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543.
Springer, Heidelberg, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based
key exchange resilient to server compromise. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 142–159. Springer, Heidelberg, August 2006.

[Hes19] Julia Hesse. Separating standard and asymmetric password-authenticated key exchange. Cryp-
tology ePrint Archive, Report 2019/1064, 2019. https://eprint.iacr.org/2019/1064.

[HL19] Björn Haase and Benoît Labrique. Aucpace: Efficient verifier-based PAKE protocol tailored for
the iiot. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):1–48, 2019.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 456–486. Springer, Heidelberg,
April / May 2018.

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange
using human-memorable passwords. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 475–494. Springer, Heidelberg, May 2001.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key
exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 293–310. Springer,
Heidelberg, March 2011.

[MS81] Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and Reed-Solomon codes. Commun.
ACM, 24(9):583–584, 1981.

[Pei06] Chris Peikert. On error correction in the exponent. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 167–183. Springer, Heidelberg, March 2006.

[PW17] David Pointcheval and Guilin Wang. VTBPEKE: Verifier-based two-basis password exponential
key exchange. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi, editors,
ASIACCS 17, pages 301–312. ACM Press, April 2017.

[Rot06] Ron Roth. Introduction to Coding Theory. Cambridge University Press, New York, NY, USA,
2006.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

19

D. On the Related-Key Attack
Security of Authenticated
Encryption Schemes

This chapter corresponds to our published article at SCN 2022 [94], with minor

edits. Our full version can be found in [93].

149

On the Related-Key Attack Security of Authenticated Encryption
Schemes

Sebastian Faust1, Juliane Krämer2, Maximilian Orlt1, and Patrick Struck2

1 Technische Universität Darmstadt, Germany
{sebastian.faust,maximilian.orlt}@tu-darmstadt.de

2 Universität Regensburg, Germany
{juliane.kraemer,patrick.struck}@ur.de

Abstract. Related-key attacks (RKA) are powerful cryptanalytic attacks, where the adversary can
tamper with the secret key of a cryptographic scheme. Since their invention, RKA security has been an
important design goal in cryptography, and various works aim at designing cryptographic primitives
that offer protection against related-key attacks. At EUROCRYPT’03, Bellare and Kohno introduced
the first formal treatment of related-key attacks focusing on pseudorandom functions and permutations.
This was later extended to cover other primitives such as signatures and public key encryption schemes,
but until now, a comprehensive formal security analysis of authenticated encryption schemes with
associated data (AEAD) in the RKA setting has been missing. The main contribution of our work is
to close this gap for the relevant class of nonce-based AEAD schemes.
To this end, we revisit the common approach to construct AEAD from encryption and message au-
thentication. We extend the traditional security notion of AEAD to the RKA setting and consider
an adversary that can tamper with the key Ke and Km of the underlying encryption and MAC, re-
spectively. We study two security models. In our weak setting, we require that tampering will change
both Ke and Km, while in our strong setting, tampering can be arbitrary, i.e., only one key might
be affected. We then study the security of the standard composition methods by analysing the nonce-
based AEAD schemes N1 (Encrypt-and-MAC), N2 (Encrypt-then-MAC), and N3 (MAC-then-Encrypt)
due to Namprempre, Rogaway, and Shrimpton (EUROCRYPT’14). We show that these schemes are
weakly RKA secure, while they can be broken under a strong related-key attack. Finally, based on the
N3 construction, we give a novel AEAD scheme that achieves our stronger notion.

1 Introduction

The security of cryptographic schemes fundamentally relies on the secrecy of its keys. In particular, the secret
key used by cryptographic algorithms must neither be revealed to the adversary nor must the adversary be
able to change it. Unfortunately, countless advanced cryptanalytical attacks illustrate that the assumption
on the secrecy of a key ceases to hold in practice. Prominent examples include side-channel attacks such
as power analysis or timing attacks that partially reveal the secret key [26, 27]; or tampering and fault
attacks [17], where the adversary can change the secret key and observe the effect of this change via the
outputs. The latter type of attack often is referred to as a related-key attack (RKA), and has been intensively
studied by the research community over the last years [1,4–6,8,12,13,16,19,21,23,24,28,29,37]. But related
keys may not only appear when the adversary actively tampers with the key. Another important setting
where we have to deal with related keys is key updates. In this setting related-key cryptanalysis may exploit
the relation of keys caused by bad key updates [14–16, 25]. Another scenario are devices with related keys.
As a simple example consider a manufacturer that has some master key K . Rather than generating a fresh
key for each device, it derives the key from the master key and some device id – for instance XORing the
two.

The first work that provided a formal model for related-key attacks is the seminal work of Bellare
and Kohno [8]. In this model, the related-key attacker can specify a related-key-deriving (RKD) function
φ (from some set Φ) together with each black-box query to the cryptographic primitive, and observe the
input/output behaviour for the primitive under the related key φ(K). For instance, consider a PRF F(K , ·),

that the adversary can query on some input X . As a result of a related-key attack the adversary receives
F(φ(K),X), where φ is the RKD function. Starting with [8], several works extend the notion of RKA security
to a wide range of cryptographic primitives. This includes pseudorandom functions [1, 6], pseudorandom
permutations [5], encryption schemes [4], and MACs [12,37].

Somewhat surprisingly, RKA security has not been considered for the important case of authenticated
encryption schemes with associated data3 (AEAD). AEAD is a fundamental cryptographic primitive used,
e.g., to secure communication in the Internet and is therefore ubiquitously deployed, especially in TLS 1.3 [32].
Lately, AEAD has received a lot of attention, for instance through the CAESAR competition [11] and
the ongoing NIST standardization process on lightweight cryptography [31]. An important type of AEAD
schemes, and simultaneously the focus of the NIST standardization process [31], are so-called nonce-based
schemes [33]. These schemes have the advantage that they are deterministic, and hence their security does
not rely on good quality randomness during encryption. Instead, they use nonces (e.g., a simple counter)
and require that these nonces are never repeated to guarantee security [33].

1.1 Our Contribution

The main contribution of our work is to extend the notion of RKA security to nonce-based AEAD schemes.
We study the common generic composition paradigms to construct AEAD from encryption schemes and
MACs, and explore if RKA security of the underlying primitives carries over to the AEAD scheme. More
concretely, let Ke and Km be the keys of the encryption and MAC, respectively. Assuming that the encryption
scheme is secure against the class Φe of related-key deriving functions and the MAC is secure against Φm,
then we ask if the AEAD scheme is secure with respect to related-key derivation functions from the Cartesian
product Φe×Φm.4 In particular, we show that under certain restrictions of Φe×Φm the schemes N1, N2, and
N3 by Namprempre et al. [30], falling into the composition paradigms E&M, EtM, and MtE, respectively,
are secure under related-key attacks. By giving concrete attacks against all schemes in case the restrictions
are dropped, we show further that these restrictions are necessary. Finally, on the positive side, we give a
new construction for AEAD that is secure for the general case of functions from Φe × Φm, i.e., without the
aforementioned restrictions. We provide more details on our contribution below.

RKA Security Notions for Nonce-based AEAD Schemes. We give two RKA security notions
s-RKA-AE and RKA-AE for nonce-based AEAD schemes. In our weaker notion (RKA-AE), we assume
that the key is updated such that each underlying primitive never uses the same key twice.5 This is modelled
by imposing an additional restriction on the adversary, where the adversary is not allowed to make queries
with RKD functions that would result in keys that have already appeared during earlier RKA queries. More
precisely, let K i

e and K i
m the result of the i-th RKA query. We require that for all i, j, we have K i

e = K j
e if and

only if K i
m = K j

m. In our stronger notion (s-RKA-AE), the above restriction is not imposed on the adversary,
i.e., it is allowed to make queries i, j such that K i

e = K j
e and K i

m ̸= K j
m. Note that any adversary can trivially

make such queries by repeating the RKD function for key Ke while using two different RKD functions for
Km. One may object that our weaker security notion looks rather artificial for modelling tampering attacks.
We believe however that it is interesting to study for what key relations state-of-the-art AEAD constructions
that are widely deployed remain secure under related-key attacks. Moreover, we emphasize another setting
where such weak key relations may occur naturally – so-called bad key updates. In this setting the RKA
adversary may observe ciphertexts for different related keys, where the relation stems from the key updates
described by the RKD functions. Since the users update the keys, the relation between the keys is in fact
not chosen by the adversary. Hence, the weaker notion guarantees security if the users ensure that, after
each update, both keys Ke and Km are fresh. In contrast, the stronger notion guarantees security even in

3 Associated data corresponds to header information that has to be authenticated but does not need to be confidential.
4 A similar question using the Cartesian product of the related-key deriving functions from the underlying primitives
is answered in [5] for Feistel constructions.

5 Note that the adversary can still ask for several encryptions under each key.

2

the case when the users might only update one of the keys. Further details on these two notions are given
in Section 3.

RKA Security of the N1, N2, and N3 Construction. We study the security of the N1, N2, and N3
constructions for nonce-based AEAD schemes [30], which follow the Encrypt-and-MAC (E&M), Encrypt-
then-MAC (EtM), and MAC-then-Encrypt (MtE) paradigm [9], respectively. These constructions build a
nonce-based AEAD scheme from a nonce-based encryption scheme and a MAC. We show that all schemes
achieve our weaker security notion, i.e., when it is ensured that both keys are updated properly. The overall
proof approach is similar to the classical setting. The challenge lies in the analysis that all queries by the
reduction are permitted due to the related keys. Regarding our stronger security notion, we show that all
schemes have limitations. We show that N1 and N2 are insecure, irrespective of the underlying primitive, by
giving concrete attacks. For N3, we show that the security crucially depends on the underlying encryption
scheme, by giving an attack against any instantiation using a stream cipher. These results appear in Section 4.

RKA-secure AEAD Scheme. Finally, we give a new construction, called N*, of an AEAD scheme
which is based on the N3 construction, and follows the MAC-then-Encrypt (MtE) paradigm. The underlying
encryption scheme relies on an RKA-secure block cipher and a MAC. The resulting AEAD scheme achieves
our stronger security notion s-RKA-AE, in fact, even in the case of nonce misuse. For simplicity we omit
details regarding the nonce here, and discuss this setting more detail in Section 3. The construction and the
proof is shown in Section 5.

RKA-secure Encryption and MAC from Pseudorandom Functions. We show that RKA-secure
nonce-based encryption schemes and MACs can be built from RKA-secure pseudorandom functions. Com-
bined with the results for the N1, N2, and N3 constructions, this reduces the task of constructing RKA-secure
nonce-based AEAD schemes to the task of constructing RKA-secure pseudorandom functions which is a gen-
eral goal in the RKA literature. More precisely, we show that the nonce-based encryption scheme and the
MAC proposed by Degabriele et al. [18] in the setting of leakage-resilient cryptography achieve RKA secu-
rity if the underlying pseudorandom function is RKA-secure. This is shown in the extended version of the
paper [20].

1.2 Related Work

Based on the initial work by Biham [13] and Knudsen [24], the first formalisation of RKA security has been
given by Bellare and Kohno [8]. They studied pseudorandom functions as well as pseudorandom permutations
and showed an inherent limitation on the set of allowed RKD functions. Bellare and Cash [6] proposed RKA-
secure pseudorandom functions based on the DDH assumption, which allowed a large class of RKD functions.
Abdalla et al. [1] further increased the allowed class of RKD functions. Several other works study the
RKA security for various primitives, e.g., pseudorandom permutations from Feistel networks [5], encryption
schemes [4], and MACs [12, 37]. Harris [22], and later Albrecht et al. [3], showed inherent limitations of
the Bellare-Kohno formalism by giving a generic attack against encryption schemes if the set of related-key
deriving functions can depend on the primitive in question. The practical relevance of the alternative model
by Harris has been questioned by Vaudenay [36].

Closer to our setting is the work by Lu et al. [29], who also study RKA security for authenticated encryp-
tion schemes. However, instead of nonce-based authenticated encryption schemes, they analyse probabilistic
authenticated encryption schemes and only for the specific case of affine functions. Moreover, Han et al. [21]
found their proof to be flawed, invalidating the results. To the best of our knowledge, these are the only
works that consider RKA security for authenticated encryption schemes.

The practical relevance of RKA security has been shown by a number of works [16, 19, 23, 28] which
present attacks against concrete primitives.

3

2 Preliminaries

In Section 2.1 we recall the used notation. The syntax of the cryptographic primitives and existing RKA
security notions are given in Section 2.2 and Section 2.3, respectively. Additional background on security
notions in the classical setting is given in the extended version of the paper [20].

2.1 Notation

By {0, 1}∗ and {0, 1}x we denote the set of bit strings with arbitrary length and length x, respectively.
We refer to probabilistic polynomial-time algorithms as adversaries if not otherwise specified, and use the
code-based game-playing framework by Bellare and Rogaway [10]. For a game G and adversary A, we write
GA ⇒ y to indicate that the output of the game, when played by A, is y. Likewise, AG ⇒ y indicates that A
outputs y when playing game G. In case A has access to an oracle O we write AO. We only use distinguishing
games in which an adversary A tries to guess a secret bit b. The advantage of A in such a distinguishing
game G is defined as AdvG(A) := |2 Pr[GA ⇒ true] − 1|. Equivalent notions using adversarial advantages
are |Pr[AG ⇒ 0 | b = 0]− Pr[AG ⇒ 0 | b = 1]| and |Pr[AG ⇒ 1 | b = 1]− Pr[AG ⇒ 1 | b = 0]|. For sets X and
Y, the set of all functions mapping from X to Y is denoted by Func(X ,Y) and the set of permutations over
X by Perm(X). We write Func(K,X ,Y) and Perm(K,X) for keyed functions in Func(X ,Y) and Perm(X),
respectively, where K denotes the key space. Tables f are initialised with ⊥ if not mentioned differently. For
sets S and T , we write S ←∪ T instead of S ← S ∪ T . Our main focus lies in the RKA setting and we use
the term classical setting whenever we refer to the setting which does not consider related-key attacks.

2.2 Primitives

A nonce-based authenticated encryption scheme with associated data (AEAD), is a tuple of two deterministic
algorithms (Enc, Dec). The encryption algorithm Enc : K × N × A ×M → C maps a key K , a nonce N ,
associated data A, and a message M , to a ciphertext C . The decryption algorithm Dec : K ×N ×A× C →
M∪{⊥}maps a key K , a nonce N , associated data A, and a ciphertext C , to either a message or ⊥ indicating
an invalid ciphertext. The sets K, N , A,M, and C, denote the key space, nonce space, associated data space,
message space, and ciphertext space, respectively. An AEAD scheme is called correct if for any K ∈ K, any
N ∈ N , any associated data A ∈ A, and any M ∈M, it holds that Dec(K ,N ,A, Enc(K ,N ,M ,A)) = M . It
is called tidy if for any K ∈ K, any N ∈ N , any associated data A ∈ A, any M ∈ M, and any C ∈ C with
Dec(K ,N ,A,C) = M , it holds that Enc(K ,N ,A,M) = C .

A nonce-based symmetric key encryption is similarly defined. The difference is that neither algorithm
permits associated data as an input and only rejects ciphertext, i.e., outputs ⊥, if computed on values outside
the corresponding sets. For both primitives, we let c denote the length of a ciphertext.

A message authentication code (MAC) is a tuple of two deterministic algorithms (Tag, Ver). The tagging
algorithm Tag : K × X → {0, 1}t maps a key K and message X to a tag T . The verification algorithm
Ver : K × X × {0, 1}t → {⊤,⊥} takes as input a key K , a message M , and a tag T , and outputs either ⊤,
indicating a valid tag, or ⊥, indicating an invalid tag. Correctness requires that Ver(K ,X , Tag(K ,X)) = ⊤,
for any K ∈ K and X ∈ X . We denote the length of tags by t .

2.3 Security Notions against Related-Key Attacks

We recall some of the existing RKA security notions. All notions follow the style introduced by Bellare and
Kohno [8]. That is, the set of admissible RKD functions is fixed at the start of the game. All our results,
however, also apply to the alternative definition given by Harris [22], where the adversary first picks the
set of RKD functions before the concrete scheme (from a family of primitives) is chosen by the game. This
prevents an inherent limitation of the Bellare-Kohno formalism as the RKD function can not depend on the
primitive.6

6 It is questionable whether RKD functions that depend on the actual primitive are relevant in practice.

4

Φ-restricted Adversaries. For RKA security notions, the adversary is typically restricted to a set of functions
that it can query to its oracles. This restriction is necessary, as Bellare and Kohno [8] showed that RKA
security is unachievable without such restrictions. Let K be the key space of some primitive, then the set of
permitted RKD functions is Φ ⊂ Func(K,K). We call an adversary that only queries functions from the set
Φ to its oracles, a Φ-restricted adversary.

Repeating Queries. To avoid trivial wins certain queries must be excluded from the security games. In case
of a MAC, we must forbid the adversary to query its challenge verification oracle on a tag it obtained from
its tagging oracle. To do this, one can either adapt the game by keeping a list of such queries and let the
verification oracle check for such forbidden queries. The other option, would be to simply exclude adversaries
that do such queries in the security definition. For ease of exposition, we use the latter approach.

Game rkaSUF

b←$ {0, 1}
K ←$K
b′ ← AVer,Tag()

return (b′ = b)

Ver(M ,T , φ)

if b = 0

return Ver(φ(K),M ,T)

else

return ⊥

Tag(M , φ)

T ← Tag(φ(K),M)

return T

Fig. 1: Security game rkaSUF.

RKA Security for MACs and Pseudorandom Functions/Permutations. We give the definition of related-key
attack security of MACs. Existing notions define it as an unforgeability game where the adversary finally
outputs a forgery attempt [12, 37]. In this work, we define unforgeability of a MAC against RKA as a
distinguishing game. Here the adversary aims to distinguish whether its challenge oracle implements the real
verification algorithm or simply rejects any queried tag.

Definition 1 (RKA-SUF Security). Let Γ = (Tag, Ver) be a MAC and Φ ⊂ Func(K,K). Let the game
rkaSUF be defined as in Fig. 1. For a Φ-restricted RKA adversary A, that never forwards a query from its
oracle Tag, we define its RKA-SUF advantage as

AdvrkaSUF
Γ (A, Φ) = 2 Pr[rkaSUFA ⇒ true]− 1 .

Games rkaPRF, rkaPRP

b←$ {0, 1}
K ←$K
F
′ ←$ Func(K,X ,Y)
P
′ ←$ Perm(K,X)

b′ ← AF()

return (b′ = b)

F(X , φ) in rkaPRF

if b = 0

y ← F (φ(K),X)

else

y ←$ F
′(φ(K),X)

return y

F(X , φ) in rkaPRP

if b = 0

y ← F (φ(K),X)

else

y ← P
′(φ(K),X)

return y

Fig. 2: Security games rkaPRF and rkaPRP.

RKA-Security for pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) have been
studied in many works, e.g., [3, 6–8], and are defined as the advantage in distinguishing the real func-
tion/permutation from a random function/permutation when having access to an oracle implementing either
of these.

5

Definition 2 (RKA-PRF Security). Let F : K × X → Y and Φ ⊂ Func(K,K). Let the game rkaPRF be
defined as in Fig. 2. For a Φ-restricted RKA adversary A, that never repeats a query, we define its RKA-PRF
advantage as

AdvrkaPRF
F (A, Φ) = 2 Pr[rkaPRFA ⇒ true]− 1 .

Definition 3 (RKA-PRP Security). Let F : K × X → X and Φ ⊂ Func(K,K). Let the game rkaPRP be
defined as in Fig. 2. For a Φ-restricted RKA adversary A, that never repeats a query, we define its RKA-PRP
advantage as

AdvrkaPRP
F (A, Φ) = 2 Pr[rkaPRPA ⇒ true]− 1 .

3 RKA Security Notions for Nonce-based AEAD

In this section, we define security for nonce-based encryption schemes and nonce-based AEAD schemes
under related-key attacks. RKA security notions for encryption and authenticated encryption schemes have
been proposed by Bellare et al. [7] and Lu et al. [29], respectively. However, neither notion considers nonce-
based primitives and instead considers the case of probabilistic primitives. Furthermore, both works define
indistinguishability in a left-or-right sense, while we follow the stronger IND$ (indistinguishability from
random bits) approach put forth by Rogaway [34]. For this notion, the adversary has to distinguish the
encryption of a message from randomly chosen bits. We discuss how the classical property of nonce-respecting
adversaries is extended to the RKA setting in Section 3.1 and provide two RKA security notions for nonce-
based AEAD schemes in Section 3.2. In Section 3.3, we extend the notion to the nonce misuse case and
Section 3.4 provides the RKA security notion for nonce-based encryption schemes.

3.1 Nonce Selection

Security notions in the classical setting are often restricted to adversaries which are nonce-respecting. These
are adversaries that never repeat a nonce across their encryption queries. Hence, security proven against
nonce-respecting adversaries guarantees security as long as the encrypting party never repeats a nonce.
Below we argue why this adversarial restriction needs to be updated in the RKA setting.

Consider the following scenario. Alice and Bob communicate using an AEAD scheme across several
sessions. In each session, Alice will send several encrypted messages to Bob, each time using a fresh nonce
implemented as a counter. Instead of exchanging a fresh secret key for each session, they exchange a key for
the first session and between two consecutive sessions, they update the key using some update function F.
There is no guarantee that Alice does not reuse a nonce in different sessions. In fact, due to using a simple
counter which might be reset between the sessions, this is likely to happen. This means that an adversary
can observe encryptions using the same nonce under related keys, where the relation is given by the update
function F.

The same applies to the scenario where different devices have related keys. Every user would only ensure
unique nonces for the own device while there will be colliding nonces across related devices.

If we declare an RKA adversary to be nonce-respecting if and only if it never repeats a nonce, then a proof
of security does not tell us anything for the scenarios depicted above. Instead, we define an RKA adversary
to be RKA-nonce-respecting if it never repeats the pair of nonce and RKD function. An interpretation of this
definition is that nonce-respecting is defined with respect to individual keys. Since in the classical setting
there is only ever one key, this interpretation reflects this.

3.2 RKA-Security Notions for AEAD Schemes

We extend security for AEAD schemes to the RKA setting. Instead of the approach used in [29], which
defines two separate RKA security notions for confidentiality and authenticity, we follow the unified security

6

notion by Rogaway and Shrimpton [35]. That is, the adversary has access to two oracles Enc and Dec.
The goal of the adversary is to distinguish the real world, in which the oracles implement the encryption
and decryption algorithm, from the ideal world, where the first oracle returns random bits while the latter
rejects any ciphertext. The adversary wins the game if it can distinguish in which world it is. To make our
new RKA security notion achievable, we impose standard restrictions on the adversary. That is, first, the
adversary is not allowed to forward the response of an encryption query to the decryption query and, second,
the adversary must not repeat a query to its encryption oracle.7 More precisely, we say that an adversary
forwards a query from its encryption oracle, if it queries its decryption oracle on a ciphertext C that it has
obtained as a response from its encryption oracle, while the other queried values N ,A, φ are the same for
both queries. We call the resulting notion s-RKA-AE, the “s” indicating strong. The reason for that is that
we introduce a weaker notion below.

Game s-rka-AE

b←$ {0, 1}
K ←$K
b′ ← AEnc,Dec()

return (b′ = b)

Enc(N ,A,M , φ)

if b = 0

C ← Enc(φ(K),N ,A,M)

else

C ←$ {0, 1}c

return C

Dec(N ,A,C , φ)

if b = 0

M ← Dec(φ(K),N ,A,C)

else

M ← ⊥
return M

Fig. 3: Security game s-rka-AE.

Definition 4 (s-RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD scheme and Φ ⊂ Func(K,K). Let
the game s-rka-AE be defined as in Fig. 3. For an RKA-nonce-respecting and Φ-restricted RKA adversary A,
that never repeats/forwards a query to/from Enc, we define its RKA-AE advantage as

Advs-rka-AE
Σ (A, Φ) = 2 Pr[s-rka-AEA ⇒ true]− 1 .

The above definition treats the AEAD scheme to have a single key K . Such schemes, however, are often
constructed from smaller building blocks which have individual keys. This encompasses the N construc-
tions [30], on which we focus in the next section, but also all other constructions combining an encryption
scheme and a MAC into an AEAD schemes. In this case, the set of RKD functions of the AEAD scheme
is the Cartesian product of the set of RKD functions for the individual primitives. More precisely, let E
and M be the underlying primitives and Φe and Φm be the respective sets of RKD functions. Then for the
combined primitive AE, the set of RKD functions is Φae = Φe × Φm. Thus the s-RKA-AE security game
above allows the adversary to query the encryption oracle on (N , φe, φm) ∈ N ×Φe×Φm and later querying
it on (N , φe, φ

′
m) ∈ N × Φe × Φm, where φm ̸= φ′m. This essentially allows the adversary to bypass the

nonce-respecting property of the underlying primitive.
Recall the key-update scenario described above. Allowing the adversary to query the same nonce while

the queried RKD functions agree in exactly one part, models a scenario in which the key update either does
not update one of the keys or later updates a key to a previously used key. We introduce a weaker security
notion, in which these queries are forbidden. Security according to this notion then reflects security as long
as the pair of keys is updated appropriately.

Definition 5 (RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD scheme and Φ = Φe × Φm ⊂
Func(K,K). Let the game rka-AE be defined as in Fig. 4. For an RKA-nonce-respecting and Φ-restricted
RKA adversary A, that never repeats/forwards a query to/from Enc, we define its RKA-AE advantage as

Advrka-AE
Σ (A, Φ) = 2 Pr[rka-AEA ⇒ true]− 1 .

7 The latter restriction can also be handled by letting the encryption oracle return the same response as it did
when the query was made the first time. For ease of exposition, we simply forbid such queries to avoid additional
bookkeeping in the security games.

7

Game rka-AE

b←$ {0, 1}
(Ke ∥ Km)←$K
S ← ∅
b′ ← AEnc,Dec()

return (b′ = b)

Enc(N ,A,M , φe, φm)

if ∃φ′
e ̸= φe st (N , φ′

e, φm) ∈ S
return ⊥

if ∃φ′
m ̸= φm st (N , φe, φ

′
m) ∈ S

return ⊥
S ←∪ {(N , φe, φm)}
if b = 0

C ← Enc(φe(Ke) ∥ φm(Km),N ,A,M)

else

C ←$ {0, 1}c

return C

Dec(N ,A,C , φe, φm)

if ∃φ′
e ̸= φe st (N , φ′

e, φm) ∈ S
return ⊥

if ∃φ′
m ̸= φm st (N , φe, φ

′
m) ∈ S

return ⊥
S ←∪ {(N , φe, φm)}
if b = 0

M ← Dec(φe(Ke) ∥ φm(Km),N ,A,M)

else

M ← ⊥
return M

Fig. 4: Security game rka-AE. The set S is used to detect forbidden queries, that is, queries where the triple
of nonce and the two RKD functions differ in exactly one of the functions. Both oracles reject such queries
by returning ⊥.

The weaker security notion bears similarities to split-state non-malleable codes [2]. Here, the secret is encoded
in such a way that it is secure against fault attacks as long as the left and right half of the code are tampered
independently. In more detail, the decoding of such tampered codes is independent from the original secret
and might be invalid. However, if we consider key-related devices or bad-key updates, non-malleable codes
are not helpful any more since they are used for faults and not bad randomised keys. The reason for this is
that after each key update we need to take care that the resulting key is still valid. Further, we do not want
to update the keys independently but simultaneously such that all keys are fresh after the key update. So
the requirement to the weaker notion is the opposite of that of non malleable codes. For key updates, it is a
reasonable assumption to say that all underlying keys have to be updated for a new session.

3.3 RKA-Security against Nonce Misuse

Similar to the classical setting, we extend security to nonce-misuse resistance. In this case, the adversary
is allowed to repeat nonces to the encryption oracle. Below we define security in this stronger sense for
s-RKA-AE security. Note that the game is the same as in Definition 4 (cf. Fig. 3), the sole difference is that
the adversary is no longer restricted to be RKA-nonce-respecting.

Definition 6 (mr-s-RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD scheme and Φ ⊂ Func(K,K).
Let the game s-rka-AE be defined as in Fig. 3. For an RKA-respecting and Φ-restricted RKA adversary A,
that never repeats/forwards a query to/from Enc, we define its mr-s-RKA-AE advantage as

Advmr-s-rka-AE
Σ (A, Φ) = 2 Pr[s-rka-AEA ⇒ true]− 1 .

In the same way, we can extend RKA-AE security to the nonce misuse scenario. However, we believe this
notion not to be meaningful. The RKA-AE security notion already requires that keys are updated properly,
i.e., they do not repeat. Since this task is way more complex than ensuring that nonces do not repeat, it
seems strange to require this one while simultaneously dropping the simple requirement of unique nonces.

8

3.4 RKA-Security Notions for Encryption

The following definition extends the classical IND-CPA security notion for nonce-based encryption schemes
to the RKA setting. The adversary has to tell apart the real encryption oracle from an idealised encryption
oracle which returns random bits. The main distinction lies in the nonce selection of the adversary as it is
allowed to repeat a nonce if the RKD functions are different.

Game rkaIND

b←$ {0, 1}
K ←$K
b′ ← AEnc()

return (b′ = b)

Enc(N ,M , φ)

if b = 0

C ← Enc(φ(K),N ,M)

else

C ←$ {0, 1}c

return C

Fig. 5: Security game rkaIND.

Definition 7 (RKA-IND Security). Let Σ = (Enc, Dec) be an encryption scheme and Φ ⊂ Func(K,K).
Let the game rkaIND be defined as in Fig. 5. For an RKA-nonce-respecting and Φ-restricted RKA adversary
A, that never repeats a query, we define its RKA-IND advantage as

AdvrkaIND
Σ (A, Φ) = 2 Pr[rkaINDA ⇒ true]− 1 .

4 RKA Security of the N1, N2, and N3 Constructions

In this section we study the security of the nonce-based AEAD schemes N1, N2, and N3 [30], which fall
into the generic composition paradigms Encrypt-and-MAC (E&M), Encrypt-then-MAC (EtM), MAC-then-
Encrypt (MtE) [9]. We analyse each scheme with respect to the two security notions RKA-AE and s-RKA-AE
defined above. The analysis reveals that all schemes achieve RKA-AE security if the underlying primitives
are RKA-secure. Regarding the stronger s-RKA-AE security, the situation is more involved. We show that
both N1 and N2 are insecure irrespective of the underlying primitives. For N3, we provide a concrete attack
exploiting any instantiation using a stream cipher for the underlying encryption scheme.

Section 4.1 covers the analysis of the N1 construction. The N2 construction is analysed in Section 4.2
while we analyse the N3 construction in Section 4.3.

N

M

A

C

T

Enc

Tag

N

M

A

C

T

Enc

Tag

N

M

A

CEnc

Tag

Fig. 6: The AEAD schemes N1 (left), N2 (middle), and N3 (right) [30].

4.1 N1 - Instantiation of Encrypt-and-MAC

The N1 construction composes a nonce-based encryption scheme and a MAC into an AEAD scheme. It
follows the E&M paradigm. The encryption algorithm is used to encrypt the message as is the MAC to
compute a tag for the message. The ciphertext of the AEAD scheme consists of the ciphertext and the tag.

9

The following theorem shows that the N1 construction achieves RKA-AE security if the underlying
primitives are RKA-secure. The overall proof approach is similar to the classical setting but needs some
extra treatment when analysing that all queries of the reductions are permitted. The full proof is given in
the extended version of the paper [20].

Theorem 8. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver) be a MAC with RKA function
sets Φe and Φm, respectively. Further, let N1 be the AEAD scheme built from Σ and Γ using the N1
construction with RKA function set Φae = Φe×Φm. Then for any RKA-nonce-respecting and Φae-restricted
RKA adversary A against N1, that never repeats/forwards a query to/from Enc, there exists an RKA-nonce-
respecting and Φe-restricted RKA adversary Ase, a Φm-restricted RKA adversary Amac, and a Φm-restricted
RKA adversary Aprf such that

Advrka-AE
N1 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) +AdvrkaSUF
Γ (Amac, Φm)

+AdvrkaPRF
Tag (Aprf , Φm) . ⊓⊔

Proof (Sketch). The proof consists of multiple game hops. In the first game hop, the decryption oracle is
replaced by ⊥ which is bound by the RKA security of Γ . In the subsequent game hops, first the tag and then
the ciphertext are replaced by random values which is bound by the RKA security of Tag and Σ, respectively.

The following theorem shows that the N1 construction does not achieve the stronger s-RKA-AE security. The
reason is that a ciphertext is the concatenation of a ciphertext from the underlying encryption scheme and
tag from the underlying MAC. By making two queries which solely differ in one of the RKD functions, the
adversary can easily distinguishing between the real and the ideal case. The proof appears in the extended
version of the paper [20].

Theorem 9. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver) be a MAC with RKA function
sets Φe and Φm, respectively. Further, let N1 be the AEAD scheme built from Σ and Γ using the N1
construction with RKA function set Φae = Φe × Φm. Then N1 is not s-RKA-AE-secure. There exists an
RKA-nonce-respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N1 (A) = 1 .

4.2 N2 - Instantiation of Encrypt-then-MAC

The N2 construction composes a nonce-based encryption scheme and a MAC into an AEAD scheme. It follows
the EtM paradigm and is displayed in Fig. 6. The scheme first encrypts the message using the encryption
scheme. Subsequently, the MAC is used to compute a tag for the ciphertext. The ciphertext of the AEAD
scheme consists of both the ciphertext and the tag.

The theorem below shows that the N2 construction achieves RKA-AE security if the underlying primitives
are sound. The overall proof follows the classical one, except for a more complex analysis regarding the
permitted queries. The full proof is given in the extended version of the paper [20].

Theorem 10. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver) be a MAC with RKA
function sets Φe and Φm, respectively. Further, let N2 be the AEAD scheme built from Σ and Γ using
the N2 construction with RKA function set Φae = Φe × Φm. Then for any RKA-nonce-respecting and Φae-
restricted RKA adversary A against N2, that never repeats/forwards a query to/from Enc, there exists an
RKA-nonce-respecting and Φe-restricted RKA adversary Ase, a Φm-restricted RKA adversary Amac, and a
Φm-restricted RKA adversary Aprf such that

Advrka-AE
N2 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) +AdvrkaSUF
Γ (Amac, Φm)

+AdvrkaPRF
Tag (Aprf , Φm) .

Proof (Sketch). In the first game hop, the decryption oracle is replaced by ⊥ which is bound by the RKA
security of Γ . In the subsequent game hops, first the tag and then the ciphertext are replaced by random
values which is bound by the RKA security of Tag and Σ, respectively. ⊓⊔

10

Below we show that the N2 construction does not achieve s-RKA-AE security. It exhibits the same structure
as the N1 construction, that is, a concatenation of a ciphertext and a tag from the underlying primitives.
The difference is the tag is computed on the ciphertext rather than the message. While we give two attacks
against the N1 construction, only one attack also applies against the N2 construction. The proof is given in
the extended version of the paper [20].

Theorem 11. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver) be a MAC with RKA
function sets Φe and Φm, respectively. Further, let N2 be the AEAD scheme built from Σ and Γ using the
N2 construction with RKA function set Φae = Φe ×Φm. Then N2 is not s-RKA-AE-secure. There exists an
RKA-nonce-respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N2 (A) = 1 .

4.3 N3 - Instantiation of MAC-then-Encrypt

The N3 construction composes a nonce-based encryption scheme and a MAC into an AEAD scheme. It
follows the MtE paradigm and is displayed in Fig. 6. The message is first used as an input to the MAC and
then both the message and the tag are encrypted. In contrast to the other compositions, the ciphertext of
the AEAD scheme consists only of the ciphertext from the underlying encryption scheme.

In the theorem below, we show that the N3 construction is RKA-AE secure if both of the underlying
primitives are secure. The overall proof follows the classical setting, except for the analysis that all queries
by the reductions are indeed valid queries.

Theorem 12. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver) be a MAC with RKA
function sets Φe and Φm, respectively. Further, let N3 be the AEAD scheme built from Σ and Γ using
the N3 construction with RKA function set Φae = Φe × Φm. Then for any RKA-nonce-respecting and Φae-
restricted RKA adversary A against N3, that never repeats/forwards a query to/from Enc, there exists an
RKA-nonce-respecting and Φe-restricted RKA adversary Ase, a Φm-restricted RKA adversary Amac, and a
Φm-restricted RKA adversary Aprf such that

Advrka-AE
N3 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) +AdvrkaSUF
Γ (Amac, Φm)

+AdvrkaPRF
Tag (Aprf , Φm) .

Game Gi

(Ke,Km)←$K
b′ ← AEnc,Dec()

Dec(N ,A,C , (φe, φm)) in G0

M ∥ T ← Dec(φe(Ke),N ,C)

if Ver(φm(Km),N ,A,M ,T) = ⊤
return M

return ⊥

Dec(N ,A,C , (φe, φm)) in G1, G2, G3

return ⊥

Enc(N ,A,M , (φe, φm)) in G0, G1

T ← Tag(φm(Km),N ,A,M)

C ← Enc(φe(Ke),N ,M ∥ T)

return C

Enc(N ,A,M , (φe, φm)) in G2

T ←$ {0, 1}t

C ← Enc(φe(Ke),N ,M ∥ T)

return C

Enc(N ,A,M , (φe, φm)) in G3

C ←$ {0, 1}c

return C

Fig. 7: Hybrid games Gi used to prove Theorem 12 (RKA-AE security of N3).

Proof. We prove the theorem using the hybrid games G0, G1, G2, and G3 displayed in Fig. 7. For sake of
simplicity, the games do not contain the set S to detect invalid queries. Instead, we assume that the adversary

11

does not make such queries, which the reduction can simply answer with ⊥. Game G0 is rka-AE instantiated
with N3 and secret bit b fixed to 0. In G1, the decryption oracle is modified to reject any ciphertext. In
G2, encryption oracle computes a random tag which is then encrypted along with the message. Game G3

equals rka-AE with secret bit b fixed to 1, where the encryption oracle outputs random ciphertexts and the
decryption oracle rejects any ciphertext. We have

Advrka-AE
N3 (A) =Pr[Arka-AE ⇒ 0 | b = 0]− Pr[Arka-AE ⇒ 0 | b = 1]

=Pr[AG0 ⇒ 0]− Pr[AG3 ⇒ 0]

=
3∑

i=1

Pr[AGi−1 ⇒ 0]− Pr[AGi ⇒ 0] .

To bound the term Pr[AG0 ⇒ 0] − Pr[AG1 ⇒ 0] we construct the following adversary Amac against the
RKA-SUF security of Γ . It chooses a random key Ke for the encryption scheme Σ and then runs A. When A
makes a query (N ,A,M , (φe, φm)) to Enc,Amac proceeds as follows. It queries its oracle Tag on (N ,A,M , φm)
to obtain a tag T . Then it locally computes C ← Enc(φe(Ke),N ,M ∥ T) and sends C back to A. For
queries (N ,A,C , (φe, φm)) to Dec by A, Amac locally computes M ∥ T ← Dec(φe(Ke),N ,C) and queries
(N ,A,M ,T , φm) to its challenge oracle Ver. If the response is ⊥, it forwards it to A, otherwise, it sends M
to A. When A outputs a bit b′, Amac outputs the same bit.

Ir remains to argue that Amac never makes a forbidden query (forwarding from Tag to Ver) condi-
tioned on A making only permitted queries. Assume, for sake of contradiction, that A makes a valid
query (N ,A,C , φe, φm) to Dec for which Amac makes a forbidden query. By construction Amac computes
M ∥ T ← Dec(φe(Ke),N ,C) and queries Ver on (N ,A,M ,T , φm). This query is forbidden if Amac has
queried (N ,A,M , φm) to Tag which resulted in T . This happens if A has made a query (N ,A,M , φ′e, φm)
to Enc. We need to distinguish between the case φ′e = φe and φ′e ̸= φe. The former is forbidden as this
means that A forwards a query from Enc to Dec. The latter is forbidden since game rka-AE forbids queries
that agree on the nonce and exactly one of the RKD functions while disagreeing on the other RKD function.
Hence Amac only makes permitted queries.

By construction, Amac simulates either G0 or G1 for A, depending on its secret bit b from game rkaSUF.
More precisely, it simulates G0 and G1 if its own challenge is 0 and 1, respectively. This gives us

Pr[AG0 ⇒ 0]− Pr[AG1 ⇒ 0] ≤Pr[ArkaSUF
mac ⇒ 0 | b = 0]− Pr[ArkaSUF

mac ⇒ 0 | b = 1]

≤AdvrkaSUF
Γ (Amac, Φm) .

For the term Pr[AG1 ⇒ 0] − Pr[AG2 ⇒ 0], we construct an adversary Aprf against the RKA-PRF security
of the tagging algorithm Tag. First, Aprf chooses a random key Ke to simulate all encryption related
functionalities. Queries to Dec by A are answered with ⊥. Queries (N ,A,M , (φe, φm)) to Enc, are processed
as follows. The reduction Aprf invokes its own oracle F on (N ,A,M , φm) to obtain T , locally computes
C ← Enc(φe(Ke),N ,M ∥ T), and sends C back to A. When A terminates, Aprf also terminates and
outputs whatever A does.

We briefly argue that Aprf never repeats a query to F. By construction, every query (N ,A,M , φm) by
Aprf stems from a query (N ,A,M , φe, φm) by A. The only cases that result in a repeating query are (1)
A repeats a query and (2) A makes two queries which only differ in φe. However, both cases are forbidden
queries for A. This yields that every output of Tag is a random value.

The adversary Aprf simulates game G1 for A if its own challenge bit b equals 0, while it simulates G2 for
A if b equals 1. Thus it holds that

Pr[AG1 ⇒ 0]− Pr[AG2 ⇒ 0] ≤ Pr[ArkaPRF
prf ⇒ 0 | b = 0]− Pr[ArkaPRF

prf ⇒ 0 | b = 1]

≤ AdvrkaPRF
Γ (Aprf , Φm) .

We bound the final term Pr[AG2 ⇒ 0]−Pr[AG3 ⇒ 0] by constructing an adversary Ase against the RKA-IND
security of the underlying encryption scheme Σ. At the start, Ase chooses a random key Km. Any query to

12

Dec is answered with ⊥. When A queries its oracle Enc on (N ,A,M , (φe, φm)), Ase chooses a random tag
T of length t , invokes its oracle Enc on (N ,M ∥ T , φe) to obtain C , and sends C to A. At the end, Ase

outputs whatever A outputs.
It holds thatAse is RKA-nonce-respecting as any query (N ,M ∥ T , φe) stems from a query (N ,A,M , φe, φm)

by A. This means that Ase repeats a pair of nonce N and RKD function φe if A makes two queries using
(N , φe, φm) and (N , φe, φ

′
m). We can distinguish between the cases (1) φm = φ′m and (2) φm ̸= φ′m. Case (1)

does not occur, as A is RKA-nonce-respecting and case (2) is forbidden in game rka-AE. The other option
would be that A makes two queries differing only in the associated data A. This turns out not to be an issue,
as the tag T that Ase queries along with the message depends on A, i.e., different A results in a different
message queries by Ase.

The adversary Ase perfectly simulates games G2 or G3 for A depending on its own challenge from rkaIND.
Hence we have

Pr[AG2 ⇒ 0]− Pr[AG3 ⇒ 0] ≤ Pr[ArkaIND
se ⇒ 0 | b = 0]− Pr[ArkaIND

se ⇒ 0 | b = 1]

≤ AdvrkaIND
Γ (Ase, Φe) .

Collecting the bounds above proves the claim. ⊓⊔

Unlike for the N1 and N2 construction, the s-RKA-AE security of the N3 construction is more subtle. The
difference is that the tag is appended to the ciphertext for both the N1 and N2 construction while it is
encrypted alongside the message for the N3 construction. The attacks against the N1 and N2 construction
rely on the property that the ciphertext consists of two parts which can be manipulated separately. Due to
the construction such attacks do not work against the N3 construction.

It turns out that the s-RKA-AE security of the N3 construction crucially depend on the used encryp-
tion scheme. Namely, if the underlying encryption scheme is a stream cipher, then the N3 construction is
s-RKA-AE insecure. Below we show an attack against any instantiation using a stream cipher. For such
ciphers the ciphertext is the XOR of the message and a keystream derived from the key and the nonce.

Theorem 13. Let Σ = (Enc, Dec) be a stream cipher and Γ = (Tag, Ver) be a MAC with RKA function sets
Φe and Φm, respectively. Further, let N3 be the AEAD scheme built from Σ and Γ using the N2 construction
with RKA function set Φae = Φe × Φm. Then N3 is not s-RKA-AE-secure. There exists an RKA-nonce-
respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N3 (A) = 1 .

Proof. Adversary A chooses a nonce N , associated data A, a message M , RKD functions φe, φm, and φ′m
from the respective sets such that φm ̸= φ′m. Then it queries its encryption oracle Enc on (N ,A,M , (φe, φm))
and (N ,A,M , (φe, φ

′
m)) to obtain ciphertext C1 and C2. If the first |M | bits of C1 and C2 are equal,A outputs

0, otherwise, it outputs 1.
In case b = 0, we have C1 = Enc(φe(Ke),N ,M ∥ Tag(φm(Km),N ,A,M)) and C2 = Enc(φe(Ke),N ,M ∥

Tag(φ′m(Km), N ,A,M)). Since the encryption uses the same nonce and the same key, the same keystream
for the stream cipher will be used. Together with the fact that the first |M | bits are identical as the same
message is encrypted, this yields that C1 and C2 agree on the first bits. In case b = 1, both C1 and C2 are
chosen at random, hence they will not agree on the first |M | bits.8 ⊓⊔

In the attack above, the RKA-nonce-respecting adversary essentially bypasses the nonce-respecting property
of the underlying encryption scheme by repeating the nonce N and the RKD function φe for the encryption
scheme. Then it exploits the fact that the underlying stream cipher is secure only against nonce-respecting
adversaries. We conjecture that any instantiation using an encryption scheme that can be broken in the
nonce-misuse case results in an s-RKA-AE insecure instantiation of the N3 construction. The problematic
part is that both the message and the tag are encrypted. While the adversary has full control over the

8 Note that there is a negligible chance that the ciphertexts will agree on their first |M | bits which we drop here for
simplicity.

13

former, it can not choose the latter at will. This seems to thwart a simple proof showing that any nonce-
misuse adversary against the underlying encryption scheme can be turned into an s-RKA-AE adversary
against N3.

5 RKA Nonce-Misuse-Resistant AEAD

As described in Section 4, N1, N2, and N3 are not secure in the strong RKA setting.9 In this section
we give a new AE scheme, N*, that achieves mr-s-RKA-AE security and hence also s-RKA-AE security.
The construction, following the N3 construction, is displayed in Fig. 8. The message, nonce, and associated
data are first used as an input to the MAC, and then both the message and the tag are encrypted. The
difference to the N3 construction is that the encryption scheme no longer takes the nonce as input. Instead,
the (pseudorandom) tag ensures that the encryption is randomised.

N

M

A

CEnc

Tag

Fig. 8: The AEAD scheme N* [This work].

The theorem below shows that the new construction achieves our strong RKA security notion conditioned
on the encryption scheme being an RKA-secure block cipher (pseudorandom permutation).

Theorem 14. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver) be a MAC with RKA
function sets Φe and Φm, respectively. Further, let N* be the AEAD scheme built from Σ and Γ using
the N* construction with RKA function set Φae = Φe × Φm. Then for any Φae-restricted RKA adversary
A against N* with q queries to the encryption and decryption oracle, that never repeats/forwards a query
to/from Enc, there exists Φe-restricted RKA adversaries Aprp, and Φm-restricted RKA adversaries Amac and
Aprf such that

Advmr-s-rka-AE
N* (A, Φae) ≤ AdvrkaSUF

Γ (Amac, Φm) +AdvrkaPRP
Σ (Aprp, Φe)

+AdvrkaPRF
Tag (Aprf , Φm) +

2q2

2c
.

Proof. Game G0 in Fig. 9 is the mr-s-rka-AE security game instantiated with N* and secret bit b = 0 and
game G5 is the mr-s-rka-AE security game with b = 1. To estimate the security of N*, four additional games
G1, G2, G3, and G4 are needed. Starting with mr-s-rka-AE with b = 0 (G0), we modify the intermediate
games as follows: In game G1 the decryption always outputs ⊥ except if the resulting message was sent
to the encryption oracle with the same N , A, and φm before. In G2, the underlying encryption scheme is
replaced by a random permutation. In G3, the decryption oracle always outputs ⊥. In G4, the Tag algorithm
is replaced by a random function. Finally, in game G5, the encryption oracle ignores the input, and outputs
a uniform random cipher C as in mr-s-rka-AE with b = 1. With Advmr-s-rka-AE

N* (A, Φae) ≤ Adv(AG0 ,AG5)

and Adv(AG0 ,AG5) ≤∑4
i=0 Adv(AGi ,AGi+1), Claim 15 - 19 conclude the proof. ⊓⊔

Claim 15 For any Φae-restricted RKA distinguisher A between game G0 and G1 defined in Fig. 9, there
exists a Φm-restricted RKA adversary Amac such that

Adv(AG0 ,AG1) ≤ AdvrkaSUF
Γ (Amac, Φm) .

9 One solution would be to use the key derivation technique proposed in [7]. However, this requires the usage of an
additional PRF on top of the existing AE scheme.

14

Game Gi

(Ke,Km)←$K
T ← ∅
F←$ Func(Km,N ×A×M, {0, 1}t)
P←$ Perm(Ke, {0, 1}c)
b′ ← AEnc,Dec()

Enc(N ,A,M , (φe, φm)) in G0, G1

T ← Tag(φm(Km),N ,A,M)

C ← Enc(φe(Ke),M ∥ T)

T ←∪ {(N ,A,C , (φe, φm))}
return C

Enc(N ,A,M , (φe, φm)) in G2, G3

T ← Tag(φm(Km),N ,A,M)

f [N ,A, φm]←∪ {(M ,T)}
C ← P(φe(Ke),M ∥ T)

T ←∪ {(N ,A,C , (φe, φm))}
return C

Enc(N ,A,M , (φe, φm)) in G4

T ← F(φm(Km),N ,A,M)

return C ← P(φe(Ke),M ∥ T)

Enc(N ,A,M , (φe, φm)) in G5

return C ←$ {0, 1}c

Dec(N ,A,C , (φe, φm)) in G0

if (N ,A,C , (φe, φm)) ∈ T
return ⊥

M ∥ T ← Dec(φe(Ke),C)

V ← Ver(φm(Km),N ,A,M ,T)

if V = ⊥
return ⊥

return M

Dec(N ,A,C , (φe, φm)) in G1

if (N ,A,C ′, (φ′
e, φm)) ∈ T with φe ̸= φ′

e

if Dec(φe(Ke),C) = Dec(φ′
e(Ke),C

′)

(M ∥ T)← Dec(φ′
e(Ke),C

′)

return M

return ⊥

Dec(N ,A,C , (φe, φm)) in G2

if (N ,A,C ′, (φ′
e, φm)) ∈ T with φe ̸= φ′

e

for (M ,T) ∈ f [N ,A, φm]

if C = P(φe(Ke),M ∥ T))

return M

return ⊥

Dec(N ,A,C , (φe, φm)) in G3, G4, G5

return ⊥

Fig. 9: Hybrid games Gi used to prove Theorem 14.

15

Proof. In the following, an adversary Amac is given that wins the game with the advantage of A. Amac

simulates the game by using the oracles of the security game rkaSUF to get the tags T for the encryption
and to verify T for the decryption of the N* scheme. Further, Amac computes the encryption scheme Σ
locally with a key Ke chosen uniform at random to simulate the encryption oracle of game G0 and G1. Amac

simulates both games perfectly and A can only distinguish both games if it requests a decryption of a valid
ciphertext (N ,A,C , (φe, φm)) with (M ∥ T) = Dec(φe(Ke),N ,C), such that (N ,A,M ,T , φm) is new and
the Tag T is valid. Hence, (N ,A,M , φm) was not forwarded to the Tag oracle of rkaSUF andAmac can use this
request to win the game rkaSUF by forwarding (N ,A,M ,T , φm) to the verification oracle Ver of rkaSUF, since
it was not sent to the oracle Tag of rkaSUF before. Hence, Amac is a Φm-restricted RKA adversary because A
is Φae-restricted, and it holds Pr[AG0 ⇒ 0]−Pr[AG1 ⇒ 0] ≤ Pr[ArkaSUF

mac ⇒ 0 | b = 0]−Pr[ArkaSUF
mac ⇒ 0 | b = 1],

and therefore Adv(AG0 ,AG1) ≤ AdvrkaSUF
Γ (Amac, Φm). ⊓⊔

Claim 16 For any Φae-restricted RKA distinguisher A between game G1 and G2 defined in Fig. 9, there
exists an Φe-restricted RKA adversary Aprp such that

Adv(AG1 ,AG2) ≤ AdvrkaPRP
Σ (Aprp, Φe) .

Proof. Before we describe the simulator, we transform G1 to G′1 to avoid that we need to query the inverse
of the oracle F in rkaPRP. In G′1

10 we replace the underling decryption function with the encryption function
in such a way that the input/output behaviour of G1 and G′1 is still the same.

Dec(N ,A,C , (φe, φm)) in G′1

if (N ,A,C ′, (φ′
e, φm)) ∈ T with φe ̸= φ′

e

for (M ,T) ∈ f [N ,A, φm]

if C = Enc(φ′
e(Ke),N ,M ∥ T)

return M

return ⊥

Enc(N ,A,M , (φe, φm)) in G′1

T ← Tag(φm(Km),N ,A,M)

C ← Enc(φe(Ke),N ,M ∥ T)

f [N ,A, φm]←∪ {(M ,T)}
T ←∪ {(N ,A,C , (φe, φm))}
return C

In G1 the decryption oracle only returns the decrypted message M if M was sent to the encryption oracle
before. Since the underlying Enc is deterministic, we can also save the queries to the encryption oracles in
f and test if it encrypts to C as we do in the decryption oracle of G′1. Hence, it holds that the games are
identical and it is enough to show that Adv(AG′

1 ,AG2) ≤ AdvrkaPRP
Σ (Aprp, Φe). We construct an adversary

Aprp simulating G′1 and G2 by computing the MAC locally with a uniform random key Km and using oracle
F of rkaPRP for the encryption. Aprp is Φe-restricted because A is Φae-restricted. Hence, Aprp perfectly
simulates G′1 if the challenge bit of rkaPRP is 0, and G2 if the challenge bit is 1. It holds Adv(AG1 ,AG2) =
Adv(AG′

1 ,AG2) ≤ AdvrkaPRP
Σ (Aprp, Φe) . ⊓⊔

Claim 17 For any Φae-restricted RKA distinguisher A with q queries between game G2 and G3 defined in
Fig. 9, it holds

Adv(AG2 ,AG3) ≤ q2

2c
.

Proof. Both games only differ if A asks for a decryption of a cipher text C which maps to a message which
was already encrypted with the same (N ,A, φm). Since the underlying encryption is a random permutation

this collision happens with probability less then q2−q
2c . In detail A makes qe queries to the encryption oracle,

and qd queries to the decryption oracle with qe + qd = q . The collision probability is less then qe
2c for each

query to the decryption oracle. Hence, the probability to get at least one collision is less then qeqd
2c with qd

queries to the decryption oracle. Hence, Adv(AG1 ,AG2) ≤ q2

2c . ⊓⊔

Claim 18 For any Φae-restricted RKA distinguisher A between game G3 and G4 defined in Fig. 9, there
exists a Φm-restricted RKA adversary Aprf such that

Adv(AG3 ,AG4) ≤ AdvrkaPRF
Tag (Aprf , Φm) .

10 This transformation allows us to use a normal PRP for the simulation, and not a strong PRP.

16

Proof. Aprf simulates G3 and G4 for A with the oracles of the security game rkaPRF. For any request
(N ,M ,A, (φe, φm)) to the oracle Enc, Aprf forwards (N ,A,M , φm) to the rkaPRF game’s oracle F to get
the tag T , computes the ciphertext C ← Enc(φe(Ke),N ,M ∥ T) locally with a random key Ke, and sends
the ciphertext C to A. Since A is Φae-restricted, Aprf is Φm-restricted and Aprf perfectly simulates Gb+3

where b is the challenge bit of game rkaPRF and outputs b′ if A does. It holds that Pr[AG3 ⇒ 0]−Pr[AG4 ⇒
0] ≤ Pr[ArkaPRF

prf ⇒ 0 | b = 0]− Pr[ArkaPRF
prf ⇒ 0 | b = 1]. Hence, Adv(AG3 ,AG4) ≤ AdvrkaPRF

Tag (Aprf , Φm). ⊓⊔

Claim 19 For any Φae-restricted RKA distinguisher A between game G4 and G5 with q queries to the
encryption oracle defined in Fig. 9, it holds

Adv(AG4 ,AG5) ≤ q2

2c
.

Proof. Both games only differ from the choice of the underlying encryption. Game G4 uses a random permu-
tation and G5 generates randomly chosen ciphertexts. Since the adversary is not allowed to query the same
tuple (N ,A,M , (φe, φm)) and F is a real random function, it follows T is fresh and uniform distributed or
φe is fresh. In case of a fresh φe, it follows directly that C is chosen uniformly at random. If φe was already
used, an adversary can only distinguish both games if it finds a collision in G5 since G4 uses a permutation
it is not possible to get the same C twice with the same φe. The probability for such a collision is less then
q2−q
2c . In detail we know that the probability to get a collision for the ith query is less then i−1

2c and hence

Adv(AG4 ,AG5) ≤∑q
i=1

i−1
2c ≤

q2

2c . This proves the claim. ⊓⊔

Similar to the N* construction, we can also use a block cipher (PRP) in the N3 construction to achieve
security in the stronger security model. As discussed in the previous section this only works for N3 since the
attack on N1 and N2 work independent of the underlying encryption scheme. Further, the security proof for
N3 is similar to the proof of Theorem 14, we only have to adapt the block cipher that it also takes the nonce
as input. We emphasize that the new construction N* is more efficient then N3, since the block cipher does
not receive the nonce as an input. For the instantiation of the block cipher we refer to [5], where the authors
construct an RKA-secure PRP using a three-round Feistel construction. The construction contains three
RKA-secure PRFs, where the last two PRFs are initialized with the same key. Hence, with Theorem 14, we
can build an mr-s-RKA-AE-secure AE scheme out of four RKA-secure PRFs, three to instantiate the block
cipher and one for the MAC.

Acknowledgements

This work was funded by the German Research Foundation (DFG) – SFB 1119 – 236615297 and the Emmy
Noether Program FA 1320/1-1 of the German Research Foundation (DFG).

References

1. Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. Related-key security for
pseudorandom functions beyond the linear barrier. Journal of Cryptology, (4), 2018.

2. Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Optimal computational split-state non-malleable codes. In TCC 2016-A, Part II, 2016.

3. Martin R. Albrecht, Pooya Farshim, Kenneth G. Paterson, and Gaven J. Watson. On cipher-dependent related-
key attacks in the ideal-cipher model. In FSE 2011, 2011.

4. Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under related-key attacks and applications.
In ICS 2011.

5. Manuel Barbosa and Pooya Farshim. The related-key analysis of Feistel constructions. In FSE 2014, 2015.
6. Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure against related-key

attacks. In CRYPTO 2010, 2010.
7. Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks and tampering.

In ASIACRYPT 2011, 2011.

17

8. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs,
and applications. In EUROCRYPT 2003, 2003.

9. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. In ASIACRYPT 2000, 2000.

10. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In EUROCRYPT 2006, 2006.

11. Daniel J. Bernstein. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness, 2014.

12. Rishiraj Bhattacharyya and Arnab Roy. Secure message authentication against related-key attack. In FSE 2013,
2014.

13. Eli Biham. New types of cryptanalytic attacks using related keys (extended abstract). In EUROCRYPT’93,
1994.

14. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rectangle attacks. In EURO-
CRYPT 2005, 2005.

15. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-192 and AES-256. In
ASIACRYPT 2009, 2009.

16. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and related-key attack on the full AES-256.
In CRYPTO 2009, 2009.

17. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking cryptographic protocols
for faults (extended abstract). In EUROCRYPT’97, 1997.

18. Jean Paul Degabriele, Christian Janson, and Patrick Struck. Sponges resist leakage: The case of authenticated
encryption. In ASIACRYPT 2019, Part II, 2019.

19. Orr Dunkelman, Nathan Keller, and Jongsung Kim. Related-key rectangle attack on the full SHACAL-1. In
SAC 2006, 2007.

20. Sebastian Faust, Juliane Krämer, Maximilian Orlt, and Patrick Struck. On the related-key attack security of
authenticated encryption schemes. Cryptology ePrint Archive, Paper 2022/140, 2022.

21. Shuai Han, Shengli Liu, and Lin Lyu. Efficient KDM-CCA secure public-key encryption for polynomial functions.
In ASIACRYPT 2016, Part II, 2016.

22. David G. Harris. Critique of the related-key attack concept. Des. Codes Cryptogr., 2011.
23. Takanori Isobe. A single-key attack on the full GOST block cipher. In FSE 2011, 2011.
24. Lars R. Knudsen. Cryptanalysis of LOKI91. In AUSCRYPT’92, 1993.
25. Lars R. Knudsen and Tadayoshi Kohno. Analysis of RMAC. In FSE 2003, 2003.
26. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In

CRYPTO’96, 1996.
27. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO’99, 1999.
28. Bonwook Koo, Deukjo Hong, and Daesung Kwon. Related-key attack on the full HIGHT. In ICISC 10, 2011.
29. Xianhui Lu, Bao Li, and Dingding Jia. KDM-CCA security from RKA secure authenticated encryption. In

EUROCRYPT 2015, Part I, 2015.
30. Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering generic composition. In

EUROCRYPT 2014, 2014.
31. National Institute of Standards and Technology. Lightweight cryptography standardization process, 2015.
32. Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, 2018.
33. Phillip Rogaway. Authenticated-encryption with associated-data. In ACM CCS 2002, 2002.
34. Phillip Rogaway. Nonce-based symmetric encryption. In FSE 2004, 2004.
35. Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem. In EURO-

CRYPT 2006, 2006.
36. Serge Vaudenay. Clever arbiters versus malicious adversaries - on the gap between known-input security and

chosen-input security. In The New Codebreakers, Lecture Notes in Computer Science. Springer, 2016.
37. Keita Xagawa. Message authentication codes secure against additively related-key attacks. Cryptology ePrint

Archive, Report 2013/111, 2013.

18

E. Combined Fault and Leakage
Resilience: Composability,
Constructions and Compiler

This chapter corresponds to our published article at CRYPTO 2023 [36], with

minor edits. Our full version can be found in [35].

168

Combined Fault and Leakage Resilience: Composability,
Constructions and Compiler

Sebastian Berndt1, Thomas Eisenbarth2, Sebastian Faust3, Marc Gourjon4,5, Maximilian Orlt3, and
Okan Seker5

1 Institute for Theoretical Computer Science, University of Lübeck, Germany s.berndt@uni-luebeck.de
2 Institute for IT Security, University of Lübeck, Germany thomas.eisenbarth@uni-luebeck.de

3 TU Darmstadt, Germany, firstname.lastname@tu-darmstadt.de
4 Hamburg University of Technology, Germany, firstname.lastname@tuhh.de

5 NXP Semiconductors, Germany

Abstract. Real-world cryptographic implementations nowadays are not only attacked via classical
cryptanalysis but also via implementation attacks, including passive attacks (observing side-channel
information about the inner computation) and active attacks (inserting faults into the computation).
While countermeasures exist for each type of attack, countermeasures against combined attacks have only
been considered recently. Masking is a standard technique for protecting against passive side-channel
attacks, but protecting against active attacks with additive masking is challenging. Previous approaches
include running multiple copies of a masked computation, requiring a large amount of randomness
or being vulnerable to horizontal attacks. An alternative approach is polynomial masking, which is
inherently fault-resistant.
This work presents a compiler based on polynomial masking that achieves linear computational complexity
for affine functions and cubic complexity for non-linear functions. The resulting compiler is secure
against attackers using region probes and adaptive faults. In addition, the notion of fault-invariance is
introduced to improve security against combined attacks without the need to consider all possible fault
combinations. Our approach has the best-known asymptotic efficiency among all known approaches.

1 Introduction

In classical cryptography, the security of cryptographic primitives is often analyzed in the black-box model.
In this model, the adversary attacks the cryptographic algorithm via access to inputs and outputs but has
no knowledge and no control over the inner workings of the algorithms. In particular, sensitive information
such as the secret key is hidden from and out of the control of the adversary. Unfortunately, when running
cryptographic algorithms on real-world devices countless attacks demonstrate that the black-box model is
far too optimistic. Examples include passive attacks, where the adversary exploits physical phenomena such
as the power consumption or running time of a device to extract sensitive information; or active attacks,
where the adversary modifies temporary values via a laser or via heating up the device to introduce faulty
computation.

Masking schemes. Masking schemes are a classical countermeasure to protect against passive side-channel
attacks. Masking conceals sensitive information by secret sharing each value v from some finite field F into
shares v0, . . . , vn−1 such that d + 1 shares are required to reconstruct the secret, while ≤ d shares reveal
nothing about the sensitive value v. The most common sharing scheme is additive masking. Here, we choose
v0, . . . , vn−2 randomly from F and define vn−1 such that v = v0 ⊕ v2 . . .⊕ vn−1, where ⊕ is the addition of
the underlying field F. The main challenge in designing masking schemes is to securely compute on the shared
values. To this end, we design masked subcircuits, called gadgets, that securely compute on sharings and
devise methods for securely composing such gadgets without violating overall security.

The security of a masking scheme is typically analyzed in the so-called probing model originally introduced
by Ishai, Sahai and Wagner [ISW03]. In this model, the adversary can learn up to d values that are produced
during the computation. The security proof is typically done by analyzing the d-probing security of the

gadgets and then extending it towards security of an entire masked circuit via composition. To argue secure
composition in the probing model, an important property is (strong) non-interference (SNI). Intuitively, this
property guarantees that all information gained by the attacker by probing d internal values of a gadget can
also be obtained by probing at most d shares of the masked input. Furthermore, probes on the output sharing
can be simulated from scratch in the case of the stronger notion.

Beyond passive security. As mentioned above, passive side-channel attacks are not the only threat to
cryptographic implementations. In practice, an adversary may also be able to induce faults into the computation
thereby breaking the cryptographic implementation. Even worse, a physical adversary may launch combined
attacks, where the adversary both passively observes side-channel leakage and introduces faults to break the
cryptographic implementation. While a masking scheme can be used to protect against the passive adversary,
it is easy to see that it fails to offer security against faults. For instance, if an adversary succeeds in adding an
offset c ∈ F to only one of the shares, the result of the computation is faulty, which may have catastrophic
consequences for security [BS97]. Hence, we need to extend probing security to also include fault attacks,
where in addition to placing d probes, the adversary is allowed to induce ϵ faults. In this work, we consider
arbitrary adaptive faults that might even depend on the information obtained via previous probes.

With adaptive faults, we cover attacks where the adversary uses information from previous leakage to
insert faults. While such attackers seem unrealistically strong, they are possible in the context of side-channel
attacks: Firstly, the adversary has access to the device and could stop or slow down regions of the devices
similar as in cold boot attacks. Secondly, the adversary could use the leaked information not immediately
but in the next cycle of a circuit that uses multiple cycles, such as AES and Present. Finally, we note that
adaptive adversaries are a stronger adversarial model. Thus, from a theoretical point of view it is interesting
to explore what security can be achieved in this model.

In order to protect against combined attacks, two main approaches have been considered in the literature
– duplicated masking and polynomial masking. The most common one is duplicated masking to replicate the
masked computation [DN20b,FRSG22].

Duplicated Approach. In this setting, the masked circuit Ĉ is executed ϵ+ 1 times in parallel. After each
gate, the masked outputs of the computation are checked for equality to detect faults. This requires that
the ϵ + 1 copies use the same randomness internally. Otherwise, the output sharings would not be equal.
Moreover, re-using the randomness has an additional advantage. As generating randomness is costly, by
re-using randomness in all ϵ+ 1 copies, the overall randomness used can be reduced by a factor of O(ϵ).

The duplication approach described above has two important shortcomings. First, affine operations that
traditionally can be masked at very low cost (typically at an O(n) complexity overhead for n = ϵ+ d) get
significantly more expensive as each such masked affine operation is now computed ϵ + 1 times. This is
especially problematic, as many modern primitives, e.g., [BDPA13,GLR+20,ARS+15,AGR+16,AAB+20,
HKL+22,GKR+21] aim to reduce the number of non-linear operations by increasing the number of affine
operations significantly. Even worse, in terms of security, the duplication approach is very vulnerable to
so-called horizontal attacks [BCPZ16].

Horizontal Attacks. Horizontal attacks are attacks in which an adversary exploits the fact that multiple
computations share the same randomness or secret key material. In the context of side-channel attacks,
horizontal attacks can be particularly devastating as the attacker can amplify the leaked information and thus
recover sensitive information more easily [CFG+10,ORSW12,VGS14,BS21]. To protect against horizontal
attacks, it is essential to ensure that different instances of computation use independent and fresh randomness
or secret key material.

Clearly, the duplication method is particularly vulnerable to horizontal attacks, as all copies share the same
randomness to ensure fault detection. This drawback was already observed and explicitly stated in [FRSG22].
To illustrate this issue more clearly, the full version contains calculations describing the influence of the
duplication on attacks in the random probing model. The random probing model is the standard method
to analyze security of the masking countermeasure against horizontal attacks. In this model, the adversary
can choose an unbounded number of wires and receives the value on each chosen wire with probability p.

2

Alternatively, such attacks can be modeled in the region probing model, also introduced in [ISW03]. Here, the
threshold model is extended so that the threshold of probes applies to each gadget (or regions) in the circuit.
In other words, the total number of probes increases with the number of gadgets. It has been shown by
Duc et.al. [DDF14] that security in this model also implies security in the random probing model. Recently,
this property has been used to construct secure compilers e.g. [ADF16,GPRV21]. In this work, we also allow
up to t probes in each gadget to model horizontal attacks. One possible way to improve security against
horizontal attacks is to use fresh randomness in each copy, but (a) it is not straightforward to detect faults in
such randomized computation, and (b) the randomness complexity increases to O(|C|n3).

An alternative approach to executing the masked computation multiple times is to use an different sharing
scheme. Recall that additive secret sharing is highly vulnerable to fault attacks as already a single fault is
undetectable. Hence, using an additive sharing intuitively requires a large number of independent copies of the
same computation to avoid these faults. To tackle this problem, an obvious idea is to resort to error detection
codes, where one of the most promising candidates are Reed Solomon codes (often also called Shamir’s secret
sharing), which in addition to error detection also offer linearity. The latter is particularly useful for carrying
out computation with sharings. In the literature, masking schemes based on Shamir’s secret sharing are often
called polynomial masking.

Polynomial Masking. Here, we need |F| ≥ n+1 and choose pairwise different support points α0, . . . , αd−1 ̸= 0.
To share a value v, we construct a polynomial f ∈ F[x] of degree d such that f(0) = v. The i-th share vi is
now defined as f(αi). Polynomial masking [CPR12,GM11,RP12] is a well-known countermeasure against
side-channel attacks, which offers advantages over additive secret sharing based schemes due to its higher
algebraic complexity. Moreover, they allow for a simple protection against faults: We can add redundant
points αd, αd+1, . . . αn−1 and corresponding shares vd+1, vd+2, . . . , vn−1, but will still use a polynomial of
degree d. Due to the error-correcting properties of these polynomial codes, valid codewords, i.e., those sharings
describing a polynomial of degree d, will differ in at least n− d positions. If an attacker modifies less than
n− d shares, the underlying polynomial (which can be interpolated from the shares vi) will have degree at
least d+ 1 due to the fundamental theorem of algebra. Hence, modification of only n− d shares results in an
invalid sharing.

The idea of using polynomial sharing was already used in the context of multiparty computations in the
now classical work of Ben-Or, Goldwasser, and Wigderson [BGW88]. Using a more complicated scheme, called
verifiable secret sharing, they show how to achieve perfect security if the number of corrupted parties is strictly
less than n/3. Inspired by this, Seker, Fernandez-Rubio, Eisenbarth, and Steinwandt [SFRES18] adapted the
BGW scheme to protect against combined attackers. Their main idea is to simplify the BGW multiplication
to avoid using verifiable secret sharing in such a way that faulted inputs will lead to a faulted output with
high probability. This allowed them to show that n = 2d+ ϵ+ 1 shares are sufficient to protect against d
probes and ϵ additive faults, i.e., faults where the attacker can add an arbitrary value to a wire (independently
from the actual value on that wire). Both the randomness requirement and the computational complexity of
their multiplication gadgets are asymptotical identical to those using the duplication approach, i.e., O(n2)
and O(n3) respectively. But, due to their linear number of shares, they can compute affine operations in
linear time. In this work, we show that n = d+ ϵ+ 1 are both sufficient and necessary to protect against
combined attacks. In particular, in contrast to earlier works [SFRES18,DN20b,FRSG22,RFSG22], we show
security in a stronger adversarial model where the adversary can induce adaptive faults into the computation
and security holds in the region probing model.

Our approach has the same asymptotical complexities for multiplication as both the duplicated approach
and the approach of [SFRES18] and a linear complexity for affine operations. Furthermore, in contrast to the
duplicated approach, our solution is provably resistant against horizontal attacks.

1.1 Contribution.

Our contributions are threefold. First, we present combined security notions suitable for polynomial masking.
Second, we propose the notion of fault-invariance, that allows us to transform gadgets secure against probing
attacks into ones that are secure against combined attacks. Third, we propose two new compilers which use

3

the optimal (linear) number of n = e+ d+1 shares and show security against horizontal attacks in the region
probing model.

Combined Security Notions for Polynomial Sharing. In previous works [SFRES18,DN20b,FRSG22,RFSG22],
an (d, ϵ)-attacker was able to choose d wires for probes and ϵ wires for faults (and corresponding fault
operations from a class of possible faults). Then, the circuit was faulted according to these faults and the
values of the d chosen wires were given to the attacker aiming to extract some sensitive information from
these values. We strengthen the attackers significantly with regard to both probes and faults by allowing
region probes and adaptive faults. Informally, region probes allow to perform d probes per gadget, in contrast
to d probes in total. Furthermore, our attacker can choose the fault applied to a wire based on the already
observed probes adaptively. A formal description about the attacker model is presented in Section 3.

A careful analysis of the differences between additive masking and polynomial masking reveals that the
previously used security definitions do not transfer easily. In additive masking, we want to give an upper
bound on the number of faulty outputs, while in polynomial masking we want to give a lower bound on the
degree of the polynomial described by the sharing. We present new definitions adapted to this difference
that allow to argue the composability of two secure gadgets. Here, composability means if gadgets satisfy
certain security properties, these properties also hold for more complex computation that is composed of
such gadgets.

Simplification of combined security analyzes. The previous approach to prove the security against combined
attackers was to verify probing security of these gadget for all possible fault combinations [RFSG22]. This
often leads to very complicated proofs with many case distinctions and many optimizations developed cannot
be reused. We introduce the notion of fault-invariance of a gadget that allows us to lift probing-secure gadgets
to also be secure against combined attacks without the need to consider all possible fault combinations. A
fault-invariant gadget that is (S)NI stays (S)NI even in the presence of faults and thus allows us to reuse
existing probing-secure gadgets.

A new countermeasure for combined attacks. Finally, we present two new compilers secure against combined
attackers using adaptive faults in the region probing model. These are the first such compilers as the existing
countermeasures using additive masking are very vulnerable to such attacks. Compared to [SFRES18], we
significantly reduce the number of needed shares from 2e+ d+ 1 down to n = e+ d+ 1 (which we also show
as optimal). Along the way, we also show how to fix their approach by presenting an SNI-secure refresh.
Compared to [DN19], we significantly reduce the number of needed random values down to O(n2) and
the computational complexity down to O(n3). Finally, we also show that our compilers are secure against
horizontal attacks, a feature explicitly not shared by [DN20b,FRSG22]. All of the approaches using duplicated
sharing [DN20b,FRSG22] need a quadratic number of shares, hence their complexity will always be suboptimal
for affine circuits or circuits with a very large number of affine gates, a feature of many modern blockciphers,
e.g., [AGR+16,AAB+20,HKL+22,GKR+21].

For a comparison of our work to other works protecting against combined attacks, we refer to Table 1.
Analysing the cryptographic primitives Keccak [BDPA13], LowMC [ARS+15] or HadesMiMc [GLR+20]
yields complexity estimations shown in Table 2. These estimations show that our approach outperforms the
duplication approach due to the large number of linear operations.

1.2 Related Work.

The study of private circuits was initiated by the work of Ishai, Sahai, and Wagner who presented a
generic compiler to protect against probing attacks [ISW03]. In a follow-up work, Ishai, Prabhakaran, Sahai,
and Wagner also considered fault attacks and presented a corresponding compiler [IPSW06]. Note that a
combination of two protection mechanisms against probing attacks and fault attacks might actually lower
the security of the protection mechanisms [REB+08,LFZD14]. Similar to the work of Ishai, Prabhakaran,
6 This result is only present in the version 20190603:070457 of the eprint paper.

4

Table 1: A comparison of the complexity of the addition, multiplication and refresh gadgets with regard to
n = e+ d.

Shares Multiplication Addition Refresh Horizontal Att.
Rand Compl Compl Rand Compl Security

[DN20b,FRSG22] O(n2) O(n2) O(n3) O(n2) O(n2) O(n3) é
[SFRES18] O(n) O(n2) O(n3) O(n) insecure é
[DN19]6 O(n) O(n3) O(n5) O(n) O(n3) O(n5) é

This Work O(n) O(n2) O(n3) O(n) O(n2) O(n3) O(n−2)

Table 2: A rough estimation of the number of operations of our approach compared to the duplication
approach of [DN20b,FRSG22] for n = 8 for Keccack [BDPA13], LowMC (R = 55,m = 20) [ARS+15], and
HadesMiMc (RF = 10) [GLR+20]. The numbers given here depend on estimations given in the corresponding
works.

#Add #Mult #Ops [DN20b,FRSG22] #Ops This Work

Keccak 422 400 38 400 46 694 400 23 040 000
LowMC 28 894 643 3 300 1 850 946 752 232 846 744
HadesMiMc 1 820 150 193 280 91 360

Sahai, and Wagner, the use of error-detection codes together with threshold implementations was studied by
Schneider, Moradi, and Güneysu [SMG16] and by De Cnudde and Nikova [CN16]. Recently, the use of explicit
multi-party computation protocols as protection mechanisms was studied by Reparaz, De Meyer, Bilgin,
Arribas, Nikova, Nikov, and Smart [RDB+18] and by Dhooghe and Nikova [DN20a]. Closest to this paper is
the work of Seker, Fernandez-Rubio, Eisenbarth, and Steinwandt that introduced the model of statistical
security against fault attacks [SFRES18]7. They also showed that the classical multi-party protocol of Ben-Or,
Goldwasser, and Wigderson [BGW88] can be adapted to this scenario and reduced the number of shares need
from n ≥ 3d+ 1 down to 2d+ e+ 1.

Previous security notion. The most common security notions against probing-only attacks are non-interference
(NI) and its stronger counterpart SNI. The stronger security notion provides very useful composition results.
Namely, it guarantees that the composition of d-SNI gadgets is d-SNI again. Now, using d-SNI gadgets
prevents a probing-only attacker (where e = 0) from obtaining any information, but faults might still be used
to obtain information. Security notions against probing-only attackers have been studied intensively and it
was shown that the non-interference notions indeed prevent realistic attacks (see also Duc, Dziembowski, and
Faust [DDF14]). An alternative approach, called probe-isolating non-interference (PINI) was introduced by
Cassiers and Standaert [CS20] and also allows composability.

For fault attacks, the situation is not as easy, as different strategies might lead to different properties
that are non-comparable. The simplest behavior, fault detection, aims to detect possible faults. Now, one can
regularly check for the existence of these faults and abort the computation to prevent information leakage. In
a more complex setting, fault correction, the computation would try to correct possible faults. While fault
correction is a very useful property, it usually comes at prohibitive cost. We thus only focus on the detection
of faults. Adding fault checks after every gate would detect the presence of faults as early as possible, but
would increase the cost of the computation severely. Our first goal is thus to minimize the number of fault
checks. The existence of multiple successive gates where no fault detection is used opens up the danger of
ineffective faults, i.e., faults that only change some parts of the computation, but do not change the output.
More informally, these faults cancel out at some point in the computation. As shown, e.g., by Clavier [Cla07]
or Dobraunig, Eichlseder, Korak, Mangard, Mendel, and Primas [DEK+18] these (statistical) ineffective faults

7 In the full version we show that the construction has a bug.

5

can be used by attackers in a devastating way. To protect against such faults, we design fault-robust gadgets:
If these gadgets are given faulted inputs, their outputs will also contain faults.

As described earlier, Dhooghe and Nikova [DN20b] introduced the notion of (S)NINA, a combination
of (strong) non-interference and non-accumulation, to protect against combined attackers using d probes
and ϵ faults. They showed that a duplicate additive sharing is sufficient to obtain security by presenting
a multiplication gadget and a refresh gadget that provided security against combined attacks. Richter-
Brockmann, Feldtkeller, Sasdrich, and Güneysu [RFSG22] extended the (S)NINA notion to provide accurate
definitions for the hardware context and constructed a tool, VERICA, to analyze gadgets with regard to
(S)NINA. Finally, Feldtkeller, Richter-Brockmann, Sasdrich, and Güneysu [FRSG22] adapted the related
notion of probe-isolating non-interference (PINI) presented by Cassiers and Standaert [CS20] to fault attacks
and combined attacks. Similar to the work of Dhooghe and Nikova, they also used duplicate additive sharing
and designed corresponding multiplication and refresh gadgets for these sharings that are secure against
combined attacks. In contrast to our work, they only allowed static non-adaptive faults and a total number
of d probes (i.e., their attacker only worked in the classical threshold probing model and not in the region
probing model). Furthermore, as each copy of the computation uses the same randomness, their approach is
very vulnerable to horizontal attacks, as shown in the full version. We summarize the efficiency with regard
to n = e+ d of the constructions of the previous works in Table 1.

2 Background

In this section, we fix the notation used throughout this paper and give the needed background on polynomials
and circuits.

Notation. We denote the set of the numbers between 0 and n− 1 by [n], i.e., [n] = {0, . . . , n− 1}. We write
r ←$S to denote that r is a random, uniformly distributed element from the finite set S. To simplify notation,
if we are given a vector (v0, . . . , vn−1), we write (vi)i∈I to denote a vector only consisting of the elements vi
with i ∈ I for I ⊆ [n] and thus also (vi)i∈[n] instead of (v0, . . . , vn−1). If D and D′ are probability distribution
over domain X, we write D ≡ D′, if D(x) = D′(x) for all x ∈ X, i.e., if the distributions agree at each
point. Random variables X0, X1, . . . Xn−1 over a set F are independent if it holds for any a0, a1, . . . an−1 ∈ F
that Pr[X0 = a0, X1 = a1, . . . Xn−1 = an−1] =

∏
i∈[n] Pr[Xi = ai]. We write that X0, X1, . . . Xn−1 are k-wise

independent if for any subset I ⊂ [n] with |I| ≤ k, the random variables (Xi)i∈I are independent. For a matrix
A, its rank is denoted by rank(A) and its kernel by ker(A). The dimension of a linear subspace H is denoted by
dim(H). The weight of a vector (ai)i∈[n] is the number of non-zero elements weight((ai)i∈[n]) = |{ai : ai ̸= 0}|.
Further, we use polynomials in F[x] that are functions f : F → F with f(x) =

∑k
i=0 fix

i for a natural
number k and for all fi ∈ F. The degree deg(f) of f is the highest index of the non-zero fi’s. In detail,
deg(f) = maxi{i : with fi ̸= 0}.

We say that a probability distribution D is perfectly simulatable from a set S, if there exists a simulator
Sim such that the output of Sim(S) has the same distribution as D. In detail, it holds for any possible x in
the domain of D that Pr[Sim(S) = x] = Pr[D = x] . In the following we denote this with Sim(S) ≡ D.

Polynomial sharing. Throughout this work, we will fix a finite field (F,⊕,⊙) with addition ⊕ and multiplication
⊙ such that |F| ≥ n + 1, where n will be clear from the application. For the sake of simplicity, we will
often also write · instead of ⊙ and + instead of ⊕. Throughout this paper, we fix n pairwise different
support points α0, . . . , αn−1 ∈ F with αi ̸= 0. We will often represent a polynomial f ∈ F[x] via the shares
(Fi)i∈[n] with Fi = f(αi) and say that (Fi)i∈[n] is a degree d sharing. To see that (Fi)i∈[n] is indeed a valid
representation of f , consider the Vandermonde matrix Vn,d := Vn,d[α0, . . . , αn−1], where the i-th row has
the form (1, αi, α

2
i , . . . , α

d
i). It is now easy to see that Vn,d · (f0, . . . , fd)T = (f(α0), f(α2), . . . , f(αn−1))T =

(F0, . . . , Fn−1)T , i.e., the Vandermonde matrix can be used to evaluate the polynomial on the public support
points αi. Furthermore, it is well known that det(Vn,d) =

∏
0≤i<j≤n−1(αi − αj). As the αi are pairwise

different and belong to a field F (which is free of nonzero zero divisors), this determinant is non-zero. Hence,
Vn,d is regular and the inverse matrix V −1n,d thus exists. As Vn,d · (f0, . . . , fd)T = (F0, . . . , Fn−1)T , we have

6

(f0, . . . , fd)
T = V −1n,d · (F0, . . . , Fn−1)T . Hence, the inverse Vandermonde matrix can interpolate the coefficients

fi from the shares Fi via a linear operator.
To share a sensitive value s ∈ F into n shares, we will construct a polynomial f with f(x) =

∑n−1
i=0 fix

i of
degree n− 1 where the coefficients f1, f2, . . . , fn−1 are chosen randomly and f0 is equal to the sensitive value
s. Then, the value Fi = f(αi) is the ith share. We denote this randomized procedure that outputs (Fi)i∈[n]
from s by (si)i∈[n] ← Enc(s) with si = f(αi). To recover the sensitive value f0 = s, we only need the first row
of V −1n,d . We denote the i-th element of the first row of V −1n,d by λ

(0)
i . To reconstruct the shared value, we use

the well-known interpolation lemma.

Lemma 1 (Interpolation Lemma). Let f ∈ F[x] be a polynomial of degree d ≤ n, let α0, . . . , αn−1
be pairwise different support points in F \ {0}, and let λ

(0)
i be the entries of the first row of the inverse

Vandermonde matrix Vn,d[α0, . . . , αn−1]. Then (λ
(0)
1 , . . . , λ

(0)
n) · (f(α0), . . . , f(αn−1)) = f(0).

To simplify notation, we also write v ← Dec((vi)i∈[n]) with vi = f(αi) for this. Since f is of degree d, the
sensitive value v can be reconstructed from (vi)i∈I with any subset I ⊂ [n] with |I| > d and (vi)i∈I is
independent of v if |I| ≤ d.

An important fact that we will make use of throughout this paper is the fact that a sharing (Fi)i∈[n] of a
non-zero polynomial with many zero entries corresponds to a polynomial of high degree, as captured by the
following well-known fact.

Lemma 2 (Fundamental Lemma). Let f ∈ F[x] be a polynomial of non-zero degree. If f has k distinct
roots, deg(f) ≥ k.

Circuit model. We represent the computation via a circuit on the field (F,⊕,⊙), i.e., we consider directed
acyclic graphs G where each node is labeled as (i) input gate, (ii) output gate, (iii) random gate, (iv) addition
gate, (v) multiplication gate, or (vi) constant (transformation) gate. To compute the circuit on given inputs
x1, x2, . . . we first initialize the input gates with the according inputs. Then, at each time step, we evaluate
all gates that only have parents that are already evaluated. Random gates are evaluated by sampling an
element uniformly at random from F. Constant transformation gates have two constants a and b and evaluate
a · x+ b on input x. For a = 0 it is the usual constant gate initialized with b. We denote the resulting output
distribution y1, y2, . . . of circuit C with inputs x1, x2, . . . by (y1, y2, . . .)← C(x1, x2, . . .). In order to simplify
notation, we also write CR(x1, x2, . . .) for the output of C if the samples from the random gates are taken
according to the random values R. A gadget is simply a subgraph of a circuit. We stress that our definition
allows for an arbitrary out-degree of a gate. Hence, there is no need for copy gates or similar. Instead of
outputting the result of the computation, a circuit can also abort the computation by returning the abort
signal ⊥.

Compiler. A compiler C is a function transforming a circuit C into another circuit C′. We are interested
in compilers that output fault- and leakage-resilient circuits C′. This can be done with polynomial sharing
(Enc(·),Dec(·)) described above such that the circuit C′ only computes on encoded values. Therefore, each
gate is transformed into a sub-circuit, a so-called gadget, that takes as input the encoded inputs of the gate
and outputs encodings such that the decoded output represents the outputs of the gate. For security reasons,
additional randomness can be injected by so-called refresh gadgets that take as input an encoding and outputs
a randomized encoding in such a way that the decoded value of the input and output is the same. For any
circuit C : Fn → Fm with n inputs and m outputs, the resulting compiler C generates C′ ← C(C) such that
for any input x0, x1, . . . xn−1 and (y0i)i∈[n], (y

1
i)i∈[n], . . . (y

m−1
i)i∈[n] ← C′(Enc(x0),Enc(x0), . . .Enc(xn−1)) it

holds that Dec((y0i)i∈[n]),Dec((y
1
i)i∈[n]), . . .Dec((y

m−1
i)i∈[n]) = C(x0, x1, . . . xn−1). In this case we also write

that C and C′ are arithmetic circuits over F and Fn, respectively to highlight the fact that C′ is working on
the shared representation. Further, we say that C′ is a masked circuit and has the same functionality as C.
Section 4 gives a more detailed construction of the compiler and defines all the required gadgets.

7

Security Notions. When the adversary has access to a device to perform side-channel and fault attacks, we
assume that the adversary can run the device and probe up to d intermediate values. The first and simplest
security definition, d-probing security requires that the observation of up to d intermediate values in a masked
circuit does not reveal anything about the unmasked variables.

Definition 1. A masked circuit C with k inputs (xj
i)i∈[n] ← Enc(xj) and j ∈ [k] is d-probing secure if for

any set L of d probes in
C((x0

i)i∈[n], (x
1
i)i∈[n], . . . , (x

k−1
i)i∈[n]))

there is a simulator Sim only having access to C(·) without the k secrets xj such that L ≡ Sim(C(·)) for any
secret x0, x1, . . . xk−1.

Note that Sim has only access to the circuit C but not to the secrets x0, x1, . . . xk−1. In other words, the
probes L are independent of the unmasked values. A stronger security definition is the d-region-probing model
that also takes the circuit size into account. In detail it allows d-probes in each gadget of the masked circuit.

Definition 2. A masked circuit C with k inputs (xj
i)i∈[n] ← Enc(xj) and j ∈ [k] is d-region-probing secure

if for any set L of d probes in each gadget of

C((x0
i)i∈[n], (x

1
i)i∈[n], . . . , (x

k−1
i)i∈[n]))

there is a simulator Sim only having access to C(·) without the k secrets xj such that L ≡ Sim(C(·)) for any
secret x0, x1, . . . xk−1.

It turned out that probing security of two circuits does not always imply probing security of its composition.
Since composition results are very useful and allow the construction of compilers that work on a gate-by-gate
basis, stronger definitions were subsequently developed. In the following, we give some stronger security
definitions, well suited to masked circuits (or gadgets). To simplify presentation, we consider only gadgets
having a single output sharing (yi)i∈[n]. We refer to Cassiers and Standaert for discussion of gadgets with
multiple outputs [CS20]. An important notion to achieve composability in the presence of probing attacks is
the notion of d-Non-Interference (d-NI) and d-Strong-Non-Interference (d-SNI) [BBD+16]. Both definitions
guarantee that the leakage of up to d probes is independent of the shared secret.

Definition 3 (d-NI [BBD+15,BBD+16]). A gadget G with one output sharing is d-non-interfering (d-NI)
if and only if every set of d′ ≤ d internal probes can be (perfectly) simulated with at most d′ shares of each
input sharing.

The stronger d-SNI notion requires to distinguish between intermediate and output probes and guarantees
that only the number of intermediate probes affects the number of inputs required by the simulator, easing
the compilation of circuits.

Definition 4 (d-SNI [BBD+16]). A gadget with one output sharing is d-strong-non-interfering (d-SNI) if
and only if for every set I of d1 internal probes and every set O of d2 output probes such that d1 + d2 ≤ d,
the set of probes I ∪O can be (perfectly) simulated with d1 shares of each input sharing.

Note PINI is another useful security notion for compositions in the threshold model. We omit this definition
in the main body since it is vulnerable to horizontal attacks, and thus does not provide good properties for
proofs in the region probing model. A detailed analysis is given in the full version.

3 Combined Security Model

As mentioned in the introduction, many countermeasures defending against fault attacks or probing attacks
have been studied in the literature, but the task to protect against both attacks at the same time has only
received more attention in the last few years. In this section we analyze the combined security of both fault
resilience and probe resilience. To understand the influence of different kind of faults, we will model these
faults as set of functions. An adversary with access to the class of faults F is able to change the value x

8

to ζ(x) for ζ ∈ F during the computation. For the sake of simplicity, we always assume that the identity
function id is part of every class F . A fault attack now applies several of these faults to different wires of
CR : Fk → Fl. More formally, if the wires of the circuit CR are numbered by 1, . . . ,W , a fault attack T is a
tuple of functions T = (ζ1, . . . , ζW) with ζi ∈ F for all i = 1 . . .W that describes how the value of each wire i
is faulted. This means that such a wire i gets a value zi from its output gate, but the following gate gets as
input the faulted value ζi(zi,ui), where ζi is the ith function in T = (ζ1, . . . , ζW) and ui are the values already
revealed by probes. We write A(F) to refer to the set of all possible fault attacks using the fault-functions F .
To simplify notation, we will often only use the ordering of the wires implicitly. If we tamper the circuit CR

with a fault attack T ∈ A(F) we write T [CR]. Due to physical constraints, a typical attacker cannot fault
arbitrary many wires and is thus restricted (for example, [SFRES18] considers at most 3 faults and [RDB+18]
at most 8 faults). For a fault attack T ∈ A(F), we write |T | for the number of non-identity faults used, i.e.,
|T | = |{i ∈ {1, . . . ,W} | ζi ≠ id}| with T = (ζ1, . . . , ζW). In the following we often consider different types of
fault sets. In the most general case, we use wire independent faults F ind := {all functions ζ : F× F∗ → F} to
show that the attacker can fault arbitrarily. We stress here that our model implies that the faults performed
on different wires are somewhat independent, as they each only consider a single wire. An often studied
restriction are additive faults F+ := {ζ : ζ(x,u) = x+ a for all a ∈ F} that fault the wires value by adding
an arbitrary value. We give a detailed discussion about the fault sets in the full version.

Security Experiment We are now ready to give a formal description of the underlying security experiment
where an attacker is able to perform combined attacks. Therefore, we adjusted the security game of Dhooge
and Nikova [DN20b] to allow adaptive faults and region probes. Let C : Fk → Fl be a circuit with wires
W = {wi}i that is split into regions R1, . . . , Rr with wires W1, . . . ,Wr. An (d, e)-attacker A with respect to
a fault class F takes part in the following experiment:

– The experiment chooses b←$ {0, 1} uniformly at random
– A is given input C and outputs the following:
• a fault-attack T ∈ A(F) with |T | ≤ e

• for each region Rj , a subset W ′j ⊆Wj of wires with |W ′j | ≤ d

• two possible circuit inputs x0, x1 ∈ Fk

– The experiment runs ỹb ← T [C](xb) and the wire values corresponding to W ′ =
⋃r

j=1 W
′
j are given to A.

The attacker outputs a bit b′.

We say that C is ϵ-secure if Pr[b = b′] = 1/2 and Pr[ỹb ∈ {⊥, yb}] ≥ 1 − ϵ for any (d, e)-attacker A, where
yb ← C(xb) is the output of a non-faulted run of C on xb. In other words, the circuit is ϵ-secure if it is
information-theoretic secure against leakage and detects erroneous values with probability at least 1− ϵ.

In this work, we assume leakage-free encoding and decoding gadgets as defined in Definition 1. As a
consequence, it is sufficient to prove that the probes can be simulated with less than d values of each masked
input, if the circuit is masked with a degree d masking. The existence of such gadgets is commonly used and
goes back to Ishai, Sahai, and Wagner [ISW03].

3.1 Privacy

First, we give a property that guarantees the (S)NI property of a gadget even in the presence of fault attacks.
We emphasize that this property only gives probing security in the presence of faults, but ignores fault security
notions such as error preservation and detection. For the general fault resilience we refer to Section 3.2. Next,
we extend the probing security by requiring that a gadget is d-(S)NI even if the adversary inserts faults into
the computation.

Definition 5 (fault resilient SNI). A gadget G is d fault resilient (strong-) non-interfering (d-fr(S)NI)
with respect to F if T [G] is d-(S)NI for any fault attack T ∈ A(F).

9

Note that an (S)NI gadget is not always (S)NI in the presence of faults. In the full version, we give a detailed
discussion and some examples. fr(S)NI is a relative strong property and in some cases it might be sufficient
(or needed) to slightly weaken this notion. To do so, we will consider the situation introduced before where (a)
the number of faults are bounded and, furthermore, (b) we will treat these faults additionally as probes. This
is justified, e.g., in the context of constant fault functions (also called stuck faults) that might set a random
value to a fixed value known by the adversary, as this can easily be seen to be strictly stronger than a probe
on this random value. If a circuit is fault resilient under these restrictions, we say that the circuit is wfr(S)NI.

Definition 6 (weak fault resilient NI). A gadget G is d weak fault resilient non-interfering (d-wfrNI)
with respect to F if every set of d′ probes in T [G] can be (perfectly) simulated with d′ + |T | shares of each
input sharing for any fault attack T ∈ A(F) with |T |+ d′ ≤ d.

Definition 7 (weak fault resilient SNI). A gadget G is d weak fault resilient strong-non-interfering
(d-wfrSNI) with respect to F if every set of d1 internal probes and d2 output probes in T [G] can be (perfectly)
simulated with d1 + ϵ1 shares of each input sharing for any fault attack T ∈ A(F) with ϵ1 internal faults and
ϵ2 output faults such that d1 + d2 + ϵ1 + ϵ2 ≤ d.

Note that this weaker notion does not imply that the faulted gadget T [G] is (d− ϵ)− (S)NI with ϵ = |T |, as
our d-wfr(S)NI definition gives ϵ more input values to the simulator for the simulation. This new security
notions allows us to use the same composition results as the standard (S)NI gadgets even in the presence of
faults. For example, the composition of two d-frSNI gadgets is easily seen to be d-frSNI again.

Theorem 1. The composition of two d-frSNI (or d-wfrSNI) gadgets with respect to F is d-frSNI (or d-wfrSNI)
with respect to F if F ⊆ F ind.

We write adaptive if the security still holds under the assumption that the adversary can choose the function
with the knowledge of the probes (before). Theorem 1 implies that the composition of an arbitrary number
of SNI gadgets is SNI again. This easily follows by the fact that composed SNI gadgets can be seen as SNI
gadgets again, and we can compose step-by-step arbitrary many gadgets together. Theorem 1 is only an
example composition for SNI. Next, we give a general proof that also implies this theorem8 and shows that
all d-(S)NI composition rules apply as well to the d-frSNI and d-wfrSNI.

Theorem 2. The composition rules for (S)NI also apply to d-fr(S)NI and d-wfr(S)NI.

Proof. We start with the proof for the stronger security notion. The faults F ⊆ F ind only allow independent
faults on each wire, and this allows us to split the adversary in multiple adversaries that tamper each gadget
independently. So let C be an arbitrary composed circuit only using d-fr(S)NI gadgets G0, G1, . . . , Gm with
respect to F and let T be any fault attack T ∈ A(F). Since we keep the proof as general as possible we
just assume that C has some security properties (e.g. SNI) that follow from the (S)NI properties of G0, G1.
Now we show that the property also holds for any T . Since we can split the circuit attack T to gadget-wise
attacks T0, T1, . . . , Tm it holds that T [C] can be also described as the composition of the (independently)
faulted gadgets T0[G0], T1[G1], . . . , Tm[Gm]. The fr(S)NI properties still guarantees that each faulted gadget
Tj [Gj] has the same (S)NI property as its unfaulted version Gj . Hence, the faulted gadgets T0[G0], T1[G1],
. . . , Tm[Gm] have the same composition properties as the unfaulted (S)NI gadgets G0, G1, . . . , Gm and the
faulted circuit T [C] has the same (S)NI properties as the original one C. Note that this holds for any fault
attack T ∈ A(F), and it follows that the same composition rules apply for fr(S)NI as for (S)NI. The proof for
the weaker notion is similar, only the fault attack is limited and the faults are counted as probes. ⊓⊔
Remember that d-(S)NI gadgets are also d-probing secure as defined in Definition 1. Similarly to Theorem 2
it easily follows that any d-frSNI circuit C with respect to F is also d-probing secure for any fault attack
T ∈ A(F). More formally, T [C] is d-probing secure for any T ∈ A(F). The probing security of d-wfrSNI
circuits is slightly weaker. Since the number of allowed probes in d-wfrSNI circuits is reduced by the number
of faults, a d-wfrSNI circuit C with respect to F is only (d− e)-probing secure for any fault attack T ∈ A(F)
with |T | = e ≤ d.
8 Alternatively, we give a straight forward proof of Theorem 1 in the full version

10

Privacy analyzes. Analysing the (S)NI property in itself is often tedious and to study the (w)f-(S)NI notion
means we also need to consider all possible fault attacks. To avoid the combinatorial explosion, we present an
additional property such that the classical (S)NI property directly implies the faulty one. This property is
called fault-invariance, as the amount of information that a probe gives is independent of the faults. As the
internal values zi of a circuit only depend on the internal randomness R and the inputs x0, xi, . . . , xl−1 we
can also write them as functions zi = fR

i (x0, x1, . . . xk−1).

Definition 8 (fault-invariance). A circuit C is fault-invariant with respect to a fault set F if for any
T ∈ A(F), any intermediate value f in CR and the according value f̃ in T [CR] there are ζ, ζ0, ζ1, . . . ζk−1 ∈ F
such that it holds

f̃R(x0, x1, . . . xm−1) = ζ(fR(ζ0(x0), ζ1(x1), . . . ζm−1(xm−1)))

for any input (x0, x1, . . . xm−1) and randomness R.

In other words, Definition 8 says that all faults in F applied to a gadget can be pushed to the input or the
output of the gadget.

Gadgets that are (S)NI and also have this property are directly (S)NI in the presence of faults.

Corollary 1. If a gadget is d-(S)NI and fault-invariant with respect to F ⊆ F ind, the gadget is d-fr(S)NI
with respect to F .

Proof. We will prove that we can take the classical leakage simulator of the non-faulted gadget and transform it
according to the faults due to the fault invariance. Fix a gadget G and some probed values (p0, p1, . . . , pd−1)T .
Due to the d-(S)NI property there is a simulator S(a0, a1, . . .) that perfectly simulates the leakage with some
input values (a0, a1, . . .). This means it holds that

S(a0, a1, . . .) = (S0(a0, a1, . . .), S1(a0, a1, . . .), . . . Sd−1(a0, a1, . . .))
T

has the same distribution as (p0, p1, . . . , pd−1)T , where Si(a0, a1, . . .) is the projection of the output of S to
the wire indexed by probe pi. Further, let any T ∈ A(F) be a fault-attack and (p′0, p

′
1, . . . , p

′
d−1)

T be the
according probes on the same wires in T [G]. Due to the fault-invariance we know that there exist functions
ζi,j , ζ

′
i ∈ F such that the values

S′(a0, a1, . . .) =




ζ ′0(S0(ζ0,0(a0), ζ0,1(a1), . . .))
ζ ′1(S1(ζ1,0(a0), ζ1,1(a1), . . .)),

...
ζ ′p−1(Sp−1(ζp−1,0(a0), ζp−1,1(a1), . . .))




have the same distribution as (p′0, p
′
1, . . . , p

′
d−1)

T . Hence, the simulator S′ can simulate the faulted gadget
and with the same inputs as the simulator S of the unfaulted (S)NI gadget. This proves that T [G] is also
(S)NI for any T ∈ A(F). ⊓⊔

In the following, we show that the stronger definition with regard to the additive faultset F+ directly
implies the weaker definition for the more general independent F ind, if we consider fault-invariant gadgets.

Corollary 2. If a gadget is d-fr(S)NI and fault-invariant with respect to F+, it is adaptively d-wfr(S)NI
with respect to F ind.

Proof. Let C be an d-fr(S)NI and fault-invariant circuit with respect to F+. We give a reduction and prove
that any simulator Sim for d-wfr(S)NI with respect to F ind can be simulated by a simulator S̃im for d-fr(S)NI
with respect to F+ if the according gadget is fault-invariant with respect to F+.

So let Sim simulate a fault attack T ∈ A(F ind) with |T | = s and d− s probes. Now we show that Sim can
be simulated with a Simulator S̃im with fault attack T̃ ∈ A(F+) with |T̃ | = s and d probes. Here, we use the
fact that S̃im can simulate d values, and we can also simulate the faulted values to transform all faults into

11

additive faults. In detail, let v1, v2,. . . vs the values faulted by the fault functions ζ1, ζ2, . . . , ζs ∈ F ind due
to T and vs+1, vs+2, . . . , vd the d− s values simulated by Sim in T [C]. Now S̃im can simulate the according
values ṽ1, ṽ2, . . . , ṽd in the unfaulted C. Next, it computes for all fault functions ζj with aj = ζj(vj)− vj and
constructs the new additive fault function ζ̃j(x) = x+ aj . It follows that for all faults it holds ζj(vj) = ζ̃j(vj).

Due to the invariance S̃im can move all additive faults to the inputs and outputs. In other words S̃im can
compute how the additive faults affect the simulated probes ṽ1, ṽ2, . . . , ṽd, and can compute the according
probes v′1, v′2, . . . , v′d in the circuit faulted with the fault functions ζ̃j(x). Since the faults are the same as ζj(x),
the values v′s+1, v

′
s+2, . . . , v

′
d and vs+1, vs+2, . . . , vd have the same distribution. This implies the claim of the

corollary because it shows that if we have S̃im, we also have Sim. In other words if the gadget is d-fr(S)NI
and fault-invariant with respect to F+, it is d-wfr(S)NI with respect to F ind.

Note that the simulator can choose the fault function with the knowledge of the probes. This also means
that if the adversary chooses the function adaptively, it does not affect the simulator. Hence the adversary
can be adaptive. ⊓⊔

3.2 Error Preservation and Detection

As described before, a general way to understand the countermeasures against passive and active attacks,
can be viewed as encodings. For a concrete (randomized) encoding scheme Enc : F→ Fn, a value y ∈ Fn is
a valid encoding if there is an x ∈ F and some randomness such that Enc(x; r) = y. Similar to the fr(S)NI
property we are interested in a property that guarantees that errors can be detected even when we compose
multiple gadgets. In our case, we want to guarantee that errors are detected by the fact that the resulting
encodings are invalid. More concretely, if y and y′ are valid encodings, we want to increase their Hamming
distance, denoted by d(y, y′). To argue about the behavior of a gadget in the presence of faults that can
introduce computation errors, we need to guarantee that errors already present in the computation (a) stay
present in the computation (to detect them) and (b) that these errors cannot accumulate over time to lead
to a valid encoding of an incorrect value. To model this, we assume that the inputs (xi)i∈[n] of our gadgets
might already be faulted by a fault vector (vi)i∈[n], i.e., the inputs will always be (xi)i∈[n] + (vi)i∈[n], where
(xi)i∈[n] is a valid encoding. In a first approach, one might require that the input of an invalid encoding, i.e.,
one where (vi)i∈[n] ̸= 0, always leads to an invalid output encoding. But this is a very strict requirement that
is nearly impossible to fulfill if we consider an addition gadget: The attacker might add (vi)i∈[n] to one of the
inputs and then later add −(vi)i∈[n] to the output. Clearly, this gives a valid encoding although the input
was invalid. We thus also allow that our gadget on input (xi)i∈[n] + (vi)i∈[n] with (vi)i∈[n] ̸= 0 can produce a
valid encoding of the correct value but this effect has to be independent of input (xi)i∈[n].

Definition 9 (e-f-robust). A gadget G with one output sharing and two input sharings is e-fault-robust with
respect to F , if for any valid encoding (x

(0)
i)i∈[n] and (x

(1)
i)i∈[n], the output (yi)i∈[n] ← G((x

(0)
i)i∈[n], (x

(1)
i)i∈[n])

is also valid. Further, it holds for any fault vectors (v
(0)
i)i∈[n], (v

(1)
i)i∈[n], and T ∈ A(F) with (yi)i∈[n] +

(w
(1)
i)i∈[n] + (w

(2)
i)i∈[n] ← T [G]((x(0) + v

(0)
i)i∈[n], (x(1) + v

(1)
i)i∈[n]), that there are numbers t1 and t2 with

t1 + t2 ≤ |T | such that

(i) weight(w′) ≤ t1 with (w′i)i∈[n] = (v
(0)
i)i∈[n] + (v

(1)
i)i∈[n] − (w

(1)
i)i∈[n];

(ii) and (w
(2)
i)i∈[n] is the zero vector or produced by the following random experiment: A polynomial pw ∈ F[x]

is chosen such that the coefficients xd+1, xd+2, . . . , xn−t2 are drawn uniformly at random from F. Then,
w

(2)
i = pw(αi).

Note that any valid encoding (yi)i∈[n] and any fault vector (wi)i∈[n] with weight(w) ≤ e cannot result in a
valid encoding with (yi)i∈[n] + (wi)i∈[n] in our setting, as we use d+ 1 + e shares of a polynomial of degree d.
Hence, weight((yi)i∈[n] − (y′i)i∈[n]) ≥ e+ 1 for all valid sharings y and y′. Next we give a useful composition
result for e-f-robustness.

Theorem 3. The composition of two e-fault-robust gadgets with respect to F is e-fault-robust with respect to
F if F ⊆ F ind.

12

Proof. Let G and G′ be two gadgets such that G is given inputs (x(0)
i)i∈[n] and (x

(1)
i)i∈[n] and produces output

(y
(0)
i)i∈[n]. Furthermore, let G′ have the inputs (y

(0)
i)i∈[n] (i.e., the output of G) and (y

(1)
i)i∈[n] and output

(zi)i∈[n]. Let G̃ be the complete construction and vx(0) , vx(1) , vy(0) , vy(1) , vz be the fault vectors.
Fix any T̃ ∈ A(F). Due to the independence of these faults, we can split them into two parts T and T ′,

where T corresponds to the faults introduced in G and T ′ corresponds to the faults introduced in G′.
As G is e-fault-robust, its output fault vector vy(0) is of the form vy(0) = vx(0) + vx(1) + w(1) + w(2) where

weight(w(1)) ≤ t1 and w(2) is the zero vector or drawn randomly with highest coefficient xn−t2 for some
numbers t1 and t2 with t1+t2 ≤ |T |. Furthermore, as G′ is e-fault-robust, its output fault vector vz is of the form
vz = vy(0) + vy(1) +w′(1) +w′(2) where weight(w′(1) ≤ t′1 and w′(2) is drawn randomly with highest coefficient
xn−t′2 for some numbers t′1 and t′2 with t′1+t′2 ≤ |T ′|. Hence, vz = vx(0)+vx(1)+w(1)+w(2)+vy(1)+w′(1)+w′(2),
where weight(w(1) + w′(1)) ≤ t1 + t′1 and w(2) + w′(2) corresponds to a random polynomial with highest
coefficient xn−min{t2,t′2}. ⊓⊔
The definition of e-fault-robustness can be simplified for non-adaptive attackers: We can then guarantee that
either w(1) or w(2) are zero. The proof of composability is similar, but uses the fact that the sum of a random
polynomial and a deterministic, independent polynomial is again a random polynomial.

The notion of e-fault-robustness now directly allows us to give a bound on the probability that a valid
encoding of an invalid value is generated by a circuit.

Theorem 4. If a circuit is e-fault-robust, the probability that s ≤ e faults can produce a valid encoding of an
invalid value is at most qs−e−1 in the case of non-adaptive attackers and qs−e · (d+ e+ 1)t1 for all t1 ≤ s in
the case of adaptive attackers.

Proof. Let w(1) and w(2) be as in the definition of e-fault-robustness and let p(1) and p(2) be the corresponding
polynomials. Lemma 2 implies that the fault polynomial p(1) has degree at least n − t1. Hence, if p(2) is
identical to zero, the attacker can not produce a valid encoding of an invalid value. Furthermore, if p(1) is
identical to zero, the sharing is valid if and only if all coefficients of xd+1, xd+2, . . . , xn−s of p(1) are zero,
which happens with probability qs−e−1.

If p(2) is not identical to zero, the polynomial p = p(1) + p(2) corresponding to w = w(1) + w(2) needs
to have degree at most d. As p(2) has degree at most n− t2, this is only possible if n− t1 ≤ n− t2, i.e., if
t1 ≥ t2 holds. We will now show that the number of different polynomials p(1) and p(2) such that p has degree
at most d is very small. Clearly, the number of different polynomials possible for p(2) is qe−t2 due to the
fact that p(2) is randomly generated. Furthermore, the number of different polynomials possible for p(1) is(
n
t1

)
· qt1 ≤ nt1 · qt1 . Hence, the probability that there is a vector w(1) matching to the random vector w(2) is

at most
qt1

qe−t2
· nt1 = qt1+t2−e · nt1 .

Hence, the probability that s ≤ e faults can produce a valid encoding of an invalid value is at most
qs−e · (d+ e+ 1)t1 . ⊓⊔

3.3 Combined Security

Equipped with our new notions of d-fr(S)NI and e-fault-robustness, it is easy to see that the combination of
these notions directly implies security against (d, e)-attackers.

Theorem 5. If the circuit C is d-frSNI (or d-wfr(S)NI) and e-fault-robust, it is qs−e−1-secure against any
non-adaptive (d, s)-attacker (or (d− s, s)-attacker) with s ≤ e. Furthermore, it is qs−e · (d+ e+ 1)t1-secure
against any adaptive (d, s)-attacker (or (d− s, s)-attacker) with t1 ≤ s ≤ e.

Proof. The perfect security with regard to the leakage (i.e., that the attacker is not able to determine the
challenge bit b) directly follows from the fact that the circuit is d-SNI even in the presence of at most e faults.
Furthermore, Theorem 4 directly implies that the probability that a valid encoding of an invalid value is ever
output is at most qs−e−1 in the non-adaptive case and qs−e · (d+ e+ 1)t1 in the adaptive case. ⊓⊔

13

4 Compiler

This section gives a compiler transforming an unprotected circuit into a fault and probe resilient circuit
using a polynomial sharing with an optimal number of shares. As described in the previous section, the
sensitive data v is masked with a d+ 1-out-of-n polynomial sharing. Therefore, a polynomial f with degree
d such that f(0) = v is generated, and the shares are given by f(αi) for pairwise different non-zero inputs
α0, . . . , αn−1. The main goal of the compiler is now to take an ordinary circuit and transform it into a circuit
operating on shares such that d probes and e faults do not reveal any sensitive data, i.e., into a circuit that is
ϵ-secure against (d, e)-attackers. As usual, this is done by replacing gates of the original circuit with gadgets.
For security reasons, refresh gadgets are also inserted that guarantee that intermediate sharings become
independent. Refresh gadgets take as input an encoded secret and output a re-randomized encoding of the
same secret. This procedure reduces the dependencies that might occur when one value is used as input for
multiple gadgets.

In the following, let n = d+ e+1. Unary gates (such as addition or multiplication with a constant) taking
only a single input can be handled easily, as these operations are linear and can thus be computed locally on
the shares. We thus only need to focus on binary gates, i.e., addition and multiplication gates that take two
inputs. Let us consider two d+1-out-of-n sharings (Fi)i∈[n] and (Gi)i∈[n] of secrets f0, respectively g0. Similar
to the unary gates, Algorithm 1 computes a share-wise addition such that its output (Qi)i∈[n] represents the
addition f0 + g0. This algorithm is a gadget computing an addition since it outputs a d+ 1-out-of-n sharing
again, as the addition of two degree d polynomials also has degree d.

Algorithm 1 (n, d)-SWAdd for n = d+ ϵ+ 1

Input: Shares of f0 as (Fi)i∈[n] and g0 as (Gi)i∈[n] with degree d
Output: Shares of f0 + g0 as (Qi)i∈[n] with degree d.

1: for i = 0 to n− 1 do
2: Qi ← Fi +Gi

3: return (Qi)i∈[n]

Due to our attack model, all faults added to the input of any such share-wise (linear) gadget can also be
added to the output without any change in the computation. Furthermore, as n ≥ d, these gadgets are secure
against d probes, as d values of a d+ 1-out-of-n sharing do not reveal any information. We can thus state the
following fact.

Theorem 6. Share-wise affine gadgets are d-frNI with respect to F+ (or d-wfrNI with respect to F ind) and
e-fault-robust with respect to F ind.

Proof. The e-fault-robustness immediately follows from Definition 9(i). Next, we prove the frNI property. It
is sufficient to show that a share-wise linear gadget is NI and fault invariant with respect to F+ because
Corollary 1 shows that this implies d-frNI with respect to F+. Further, Corollary 2 shows that this also
implies d-wfrNI with respect to F ind. Hence, it remains to prove that a share-wise linear gadget is (i) NI and
(ii) fault invariant with respect to F+.

(i) It is well known that any share-wise gadget is NI, as all output (and intermediate) values only depend on
input shares with the same index. For example, the share-wise addition with ci ← ai + bi only depends
on the ith share ai and bi for any i ∈ [n]. It follows that any d probes can be simulated by at most d
shares of each input sharing because we never need more than one share of each input sharing for each
probe. This implies the NI property.

(ii) The shift invariance w.r.t F+ follows from the linearity. Since an additive fault ζ only adds a constant
value x on a wire, we can move the addition x to the output or input due to the linearity. For example it

14

holds for the share-wise addition ci ← ai + bi that (ai + bi) + x = ai + (bi + x) = (ai + x) + bi. In the
first term, the fault is moved to the output ζ(ci) = ci + x and in the second two terms it is moved to the
inputs ζ(bi), and ζ(ai), respectively. This is the property required for fault invariance. We give a more
general proof in the full version. With (i) and (ii) we can conclude the proof. ⊓⊔

As usual, the remaining gate, the binary multiplication gate is the most complicated gate, as it does not
behave linearly. Nevertheless, Algorithm 2 computes a share-wise multiplication such that its output (Qi)i∈[n]
represents the multiplication f0 · g0. Unfortunately, the multiplication of two polynomials of degree d results
in a polynomial of degree 2d. Therefore, Algorithm 2 outputs a 2d degree polynomial. For n < 2d, this means
that the shares can not represent this polynomial properly and we thus lose the information about the shared
value. Furthermore, even if n > 2d, the next multiplication gadget in the circuit could possibly lead to a
polynomial of degree 4d and so on. Hence, Algorithm 2 can not be used as a multiplication gadget alone
and further work is required. The classical approach due to Ben-Or, Goldwasser, and Wigderson [BGW88]
performs a degree reduction to reduce the polynomial to degree d after the share-wise multiplication to prevent
the exponential blowup of the degrees. Nevertheless, the polynomial of degree 2d needs to be stored and their
approach thus requires at least 2d shares.

Algorithm 2 (n, d)-SWMult for n = d+ ϵ+ 1

Input: Shares of f0 as (Fi)i∈[n] and g0 as (Gi)i∈[n] with degree d
Output: Shares of f0g0 as (Q′

i)i∈[n] with degree 2d.

1: for i = 0 to n− 1 do
2: Q′

i ← Fi ·Gi

3: return (Q′
i)i∈[n]

To construct a multiplication gadget, the state-of-the-art gadget due to Seker, Fernandez-Rubio, Eisenbarth,
and Steinwandt [SFRES18] also follows the general approach of Ben-Or, Goldwasser, and Wigderson: They
first apply the share-wise multiplication (Alg. 2) to compute sharing of degree 2d and then reduce the degree
back to d afterwards such that subsequent operations can be performed. However, the degree reduction
is relatively expensive and complex. We will discuss this strategy in more depth in the following section,
Section 4.1. But due to the need to store a polynomial of degree 2d, their approach can not need less than 2d
shares. Furthermore, they also need an additional e shares to handle faults. Our solution circumvents the
need for this large number of shares. Section 4.2 presents a new compiler that needs at most d+ e+ 1 shares.

4.1 Fixed State-of-the-Art

Here, we give a more thorough explanation of the binary multiplication gadget construction due to Seker,
Fernandez-Rubio, Eisenbarth, and Steinwandt [SFRES18]. We note here that this gadget can only handle
additive faults.

Figure 1b illustrates the high-level idea of the gadget. It first performs the share-wise multiplication
which outputs sharing (Q′i)i∈[n] of degree 2d that encodes the product of the secrets of (Fi)i∈[n] and (Gi)i∈[n]
and then reduces the degree of (Q′i)i∈[n] such that (Qi)i∈[n] carries the same secret as (Q′i)i∈[n] but has
degree d. This construction was proven to be d-SNI secure. As mentioned above, this multiplication leads
to the intermediate 2d degree sharing (Q′i)i∈[n] that requires n = 2d + e + 1 shares. To handle faults, the
following idea is used: Any attacker that can add e additive faults to the shares adds a polynomial of degree
at least n− e = d+1 to the sharing. As a valid sharing has degree at most d, this means that the higher-order
monomial d + 1 is set to a non-zero value iff a fault was added. These higher-order monomials are kept
unchanged by share-wise additions and by careful design, are also kept unchanged with probability at least
1− (1/q) in the multiplication gadget (or, more generally 1− q−e+s−1 for s ≤ e faults). Unfortunately, their

15

refresh gadget is not (S)NI, as shown in the full version, and an alternative refresh is required. We remark
that such a refresh gadget can be seen as multiplication with a fresh sharing of the value 1. It is thus sufficient
to focus on addition and multiplication gadgets here. We refer to [BBD+16] for more detailed explanations.
The result by Seker, Fernandez-Rubio, Eisenbarth, and Steinwandt [SFRES18] can thus be summed up via
the following informal theorem:

Theorem 7 (Fixed SotA). For any d, e ∈ N there is a compiler that is given an arithmetic circuit C over
F and outputs an arithmetic circuit C′ on Fn where n = 2d+ e+ 1 with

– C′ has the same functionality as C
– C′ is d-probing-secure,
– C′ is e-fault-robust with respect to F+.

The proof follows from [SFRES18] with the multiplication use as SNI refresh, and the compiler presented
in [BBD+16]. The idea is that the multiplication and refresh gadgets are error preserving and d-SNI and the
addition gadget is error preserving and d-NI. Applying the compiler of [BBD+16] results in a d-probing secure
circuit with error preserving gadgets and, consequently, the compiler outputs an error preserving circuit that
is information-theoretic secure against d probes.

4.2 laOla Compiler

We improve our compiler in two steps. We first improve the (fr)SNI refresh, and we give a new multiplication
gadget to reduce the number of shares from 2d+ e+ 1 to d+ e+ 1.

Refresh. We construct a new SNI refresh gadget only using d2 random values. Therefore, we transform this
problem to a gadget that generates a zero encoding. Assuming a “secure” zero encoding (ei)i∈[n] ← Enc(0) it
is easy to see that the refreshed output (yi)i∈[n] of a sharing (xi)i∈[n] with yi = xi + ei is SNI. Any probe yi
is uniform random, and only the (additional) internal probe ei requires the input xi for a perfect simulation.
However, we still ignored the internal probes in (ei)i∈[n] ← Enc(0) to generate the zero encoding. sZEnc
depicted in Algorithm 4 is such a gadget that is SNI secure even in the presence of internal probes and faults
(Theorem 11).

Further, we can show that the resulting refresh gadget even gives region probing security (Theorem 12).
Using our new refresh gadget we can improve the compiler of [SFRES18]. The improved compiler (Imp. SotA,
listed in Table 3) requires less randomness and guarantees higher security due to region probing security.

Multiplication. In order to avoid the dependency on 2d, a trivial (insecure) approach is to switch the order
of operations: I.e., we first reduce the degree of the input shares (Gi)i∈[n], (Fi)i∈[n] to sharings (G′i)i∈[n],
(F ′i)i∈[n] of degree d/2. The output of the share-wise multiplication SWMult((G′i)i∈[n], (F ′i)i∈[n]) then has
the right degree d again. However, it is easy to see that (G′i)i∈[n], (F ′i)i∈[n] would reveal their secrets with
d/2 + 1 ≤ d probes. Hence, this approach does not guarantee privacy against d probes.

While a naive implementation of this idea is insecure, our new construction depicted in Figure 1a still
guarantees security. Instead of performing a simple degree reduction, our gadget SplitRed simultaneously
constructs an additive sharing of the polynomials. Hence, an application of SplitRed on an input sharing
described by the polynomial f produces two polynomials f ′ and f ′′ both of degree d such that the polynomial
f ′ + f ′′ has only degree d/2. In other words, we produce two polynomials f ′ and f ′′ where the coefficients of
the monomials x0, x1, . . . xd/2 are additive sharings of the corresponding coefficients of f and the coefficients
of the monomials xd/2+1, . . . , xd are additive sharings of the all-zero vector. We compute g′ and g′′ similarly
such that each polynomial f ′, f ′′, g′, and g′′ considered individually is still a polynomial of degree d. Now we
can apply the share-wise multiplication four times to compute f ′ · g′, f ′ · g′′, f ′′ · g′, and f ′′ · g′′ and sum all
four outputs with our gadget Comp. It follows that the output (Hi)i∈[n] describes a polynomial h of degree
d again because f ′ · g′ + f ′ · g′′ + f ′′ · g′ + f ′′ · g′′ = (f ′ + f ′′) · (g′ + g′′) is again a polynomial of degree d.
The formal description of the algorithm is given in Section 6 and the full version provides a detailed security
analysis against probes and faults.

16

SplitRed

SplitRed

SWMult1

SWMult2

SWMult3

SWMult4

Comp

f

g

f ′

f ′

f ′′

f ′′

g′

g′

g′′

g′′

h0

h1

h2

h3

q

(a) Structure of the n, d-Multiplication defined in Algo-
rithm 6

SWMult d-Red

(Fi)i∈[n]

(Gi)i∈[n]

(Q′
i)i∈[n] (Qi)i∈[n]

(b) Structure of the n, d-Multiplication used
in [SFRES18].

Fig. 1: Our n, d-Multiplication and the multiplication in [SFRES18]

Compiler The multiplication, and refresh, together with the share-wise addition, lead to a compiler using
only n = d+ e+ 1 shares against additive faults.

Theorem 8 (laOla (additive)). For any d, e ∈ N there is a circuit compiler that is given an arithmetic
circuit C over F and outputs an arithmetic circuit C′ over Fn where n = d+ e+ 1 with

– C′ has the same functionality as C,
– T [C′] is probing secure for any T ∈ A(F+) and
(i) up to d probes in T [C′] (threshold probing security), or
(ii) up to d/2 probes in every gadget of T [C′] (region probing security).

– C′ is e-fault-robust with respect to F+.

Furthermore, we also show that our approach can handle more general faults, although this comes at the cost
of needing more shares.

Theorem 9 (laOla-Compiler (general)). For any d, e ∈ N there is a circuit compiler that is given an
arithmetic circuit C over F and outputs an arithmetic circuit C′ over Fn where n = d+ e+ 1 with

– C′ has the same functionality as C,
– T [C′] is probing secure for any T ∈ A(F+) with |T | ≤ e and

(i) up to d− e probes in T [C′] (threshold probing security), or
(ii) with up to d/2 probes in every gadget of T [C′] when the faults are counted as probes (region probing

security).
– T [C′] is d− e probing secure for any T ∈ A(F ind) with |T | ≤ e,
– C′ is e-fault-robust with respect to F ind.

In both cases, Theorem 5 implies qs−e−1-security against (d, s)-attackers.
In the full version, we also prove that our compiler is optimal for affine circuits and it is inherently

impossible to use a lower number of shares.

Theorem 10. The number of shares n of any sharing procedure that protects against d probes and e faults is
at least n ≥ d+ e+ 1.

5 Refresh Gadget

To construct a refresh gadget with input sharing (xi)i∈[n] it is sufficient to generate a zero encoding (ei)i∈[n]
and output its sum (yi)i∈[n] = (xi)i∈[n] + (ei)i∈[n]. In this section we give two different gadgets to generate
zero encodings. The first one is sufficient to inject randomness in our multiplication gadget. The latter gadget
uses the weaker one and results in a d-SNI refresh gadget. Further we show that the gadget is even stronger,
and we can use it to transform our d-probing secure circuit into a d/2-region-probing secure circuit.

17

Table 3: A concrete comparison with the compiler [SFRES18] fixed in this work, the constuction in [DN19],
and our new compiler.

Compiler # Shares Randomness Cost Comb. Sec. Opt. for
in the Reg. affine

Mult. Gadget SNI Refresh Prob. Model Circuits

[DN19] d+ e+ 1 Θ(n3) Θ(n3) é Ë
Fixed SotA [SFRES18] 2d+ e+ 1 2d2 + d(e+ 1) 2d2 + d(e+ 1) é é
Imp. SotA[This Work] 2d+ e+ 1 2d2 + d(e+ 1) d2 (Ë) é
laOla [This Work] d+ e+ 1 3d2 + 2d(e+ 1) d2 Ë Ë

ZEnc Gadget. The gadget ZEnc depicted in Algorithm 3 generates a random zero encoding. We use the
polynomial representation to describe the high level idea of the gadget. Since g is a random polynomial
with g(0) = 0, it holds g(x) =

∑d
i=1 rjx

j with r1, r2, . . . rd ∈ F. Our gadget generates such polynomials by
choosing each ri uniform at random and outputs g. More precisely, we use the polynomial masking where
each polynomial is described by n points g(α0), g(α1), . . . g(αn−1). Therefore, the algorithm does not compute
g(x) but each g(αi) =

∑d
i=1 rjαi, separately. Hence, the final output of Algorithm 3 represent an encoding of

zero with (gi)i∈[n] := (g(αi))i∈[n].

Algorithm 3 ZEncdn
Output: A randomized (n, d)-Encoding of zero (gi)i∈[n].
1: for j = 1 to d do
2: rj ←$ F
3: for i = 0 to n− 1 do
4: gi+1 ← gi ⊕ rjα

j
i

5: return (gi)i∈[n]

In the full version, we show that this encoding does not suffice for an SNI refresh. However, next we show
how to use ZEnc to construct an SNI secure refresh.

sZEnc Gadget. The gadget sZEnc depicted in Algorithm 4 generates a zero encoding because the sum of
zero encodings is a zero encoding again.

Algorithm 4 sZEncdn
Output: A randomized (n, d)-Encoding of zero (gi)i∈[n].
1: for j = 0 to d do
2: (gi)i∈[n] ← ZEncd

n

3: (yi)i∈[n] ← (yi)i∈[n] + (gi)i∈[n]

4: return (yi)i∈[n]

Lemma 3 (Probing security). For any set P with d′ ≤ d probes it holds for (ei)i∈[n] ← sZEncdn: There
is a sub set A ⊂ [n] with |A| = n− d′ such that

(i) (ei)i∈A are still (d− d′)-wise independent, independent from P and (ei)i∈[n]\A,
(ii) P can be perfectly simulated with (ei)i∈[n]\A

18

The proof is given in the full version. It is easy to see that a gadget with input sharing (xi)i∈[n] and output
sharing (xi + ei)i∈[n] with (ei)i∈[n] ← sZEncdn is an SNI refresh:

Theorem 11 (Refresh). The gadget G′G (Alg. 5) with identity G is a d-frSNI w.r.t. F+ (or d-wfrSNI w.r.t.
F ind) and e-fault-robust w.r.t. F ind refresh gadget

Proof. In the full version we give a detailed proof for fault-robustness, SNI and fault-invariance w.r.t. F+.
With Theorem 1 we get frSNI, and with Theorem 2 follows wfrSNI. ⊓⊔

Algorithm 5 G′G with n ≥ d+ e+ 1

Input: The same input sharings as G. E.g., (xi)i∈[n] and (x′
i)i∈[n], or only (xi)i∈[n].

Output: A randomized output of G((xi)i∈[n], (x
′
i)i∈[n]) (or G((xi)i∈[n])).

1: (ei)i∈[n] ← sZEncd
n

2: (y′
i)i∈[n] ← G((xi)i∈[n], (x

′
i)i∈[n]) (or (y′

i)i∈[n] ← G((xi)i∈[n]))
3: (yi)i∈[n] ← (yi)i∈[n] + (ei)i∈[n]

4: return (yi)i∈[n]

However, this refresh gadget is even more secure. Next, we show how to construct a region-probing secure
compiler with the gadget depicted in Algorithm 5.

Theorem 12. A d probing secure composition with d-NI and d-SNI secure gadgets Gi is d/2 region probing
secure if each gadget is transformed into G′G (Alg. 5), and outputs refreshed sharings.

It immediately follows from Lemma 3, and the detailed proof is given in the full version. Assuming a (w)frSNI
and error preserving multiplication, this theorem directly implies both Theorem 8 and Theorem 9. Using
Theorem 5 then implies qs−e−1-security against (d, s)-attackers. Next, we give our frSNI and error preserving
multiplication gadget only using n = d+ e+ 1 shares.

6 Multiplication Gadget

In this section we introduce our new improved gadget which securely performs a masked multiplication on a
polynomial sharing with just n = d+ e+ 1 shares, whereas the state-of-the-art requires 2d+ e+ 1 shares.

6.1 Concept and Overview

In the following we formally introduce the new multiplication gadget depicted in Figure 1a, its formal
description is given in Algorithm 6.

For a better intuition of the gadget Mult with inputs (Fi)i∈[n] and (Gi)i∈[n], we use the polynomial
representation f and g such that f(αi) = Fi and g(αi) = Gi. As depicted in Figure 1a, the gadget SplitRed
first splits the inputs g and f with secrets f(0) = f0 and g(0) = g0 into polynomials f ′, f ′′, g′, and g′′ such
that each polynomial is uniform random with degree d but f ′ + f ′ and g′ + g′′ have degree d

2 each and,
furthermore, f ′(0) + f ′(0) = f0 and g′(0) + g′(0) = g0. This allows to avoid the intermediate polynomials that
require 2d shares. Furthermore, we can use SWMulti to compute the four polynomials h0(x) = f ′(x)g′(x),
h1(x) = f ′(x)g′′(x), h2(x) = f ′′(x)g′(x), and h3(x) = f ′′(x)g′′(x). The last gadget Comp refreshes the
polynomials and sums them up into

f ′(x)g′(x) + f ′(x)g′′(x) + f ′′(x)g′(x) + f ′′(x)g′′(x).

The sum results in a polynomial q(x) with (Qi)i∈[n] = q(αi) which encodes the correct value q(0) = f0 · g0, as

q(0) = f ′(0) · g′(0) + f ′(0) · g′′(0) + f ′′(0) · g′(0) + f ′′(0) · g′′(0)
= (f ′(0) + f ′′(0)) · (g′(0) + g′′(0)) = g(0) · f(0).

19

The next sections introduce the sub-gadgets SplitRed (Sec. 6.2), SWMult, and Comp (Sec.6.3) needed
for our multiplication gadget.

Algorithm 6 (n, d)−Mult
Input: Shares of f0 as (Fi)0≤i<n and shares of g0 as (Gi)0≤i<n.
Output: Shares of f0g0 as (Qi)0≤i<n.

1:
(
(F ′

i)i∈[n], (F
′′
i)i∈[n]

)
← SplitRed((Fi)i∈[n])

2:
(
(G′

i)i∈[n], (G
′′
i)i∈[n]

)
← SplitRed((Gi)i∈[n])

3: (H0
i)i∈[n] ← SWMult((F ′

i)i∈[n], (G
′
i)i∈[n])

4: (H1
i)i∈[n] ← SWMult((F ′

i)i∈[n], (G
′′
i)i∈[n])

5: (H2
i)i∈[n] ← SWMult((F ′′

i)i∈[n], (G
′
i)i∈[n])

6: (H3
i)i∈[n] ← SWMult((F ′′

i)i∈[n], (G
′′
i)i∈[n])

7: (Qi)i∈[n] ← Comp((H0
i)i∈[n], (H

1
i)i∈[n], (H

2
i)i∈[n], (H

3
i)i∈[n])

8: return (Qi)i∈[n]

6.2 SplitRedGadget

The general idea of SplitRed-LAOLA is best understood in the polynomial representation, on which we
focus here. We are given a sharing (Fi)i∈[n] of a polynomial f =

∑
i fix

i, where f0 encodes the sensitive
information. We now want to split f into two polynomials f ′ and f ′′. To understand the general idea behind
the algorithm, we will first focus on the case that no faults are present and later show how to adapt to faults.
In this scenario, we aim for the following two properties.

(*) The sum of the sensitive information of f ′ and f ′′ is an additive sharing of the sensitive information of f ,
i.e., (f ′ + f ′′)0 = f0 (which is the split part of the gadget).

(**) The degrees of both f ′ and f ′′ are equal to d = deg(f), but the degree of the sum f ′ + f ′′ is only equal
to d

2 (which is the reduce part of the gadget).

To obtain these properties, we proceed roughly as follows:
(i) We generate a random polynomial g =

∑
i gix

i of degree d with g0 = 0, i.e., all coefficients gi are
drawn uniformly at random for i > 0.

(ii) We generate another polynomial g′ =
∑

i g
′
ix

i of degree d with g′0 = 0. For i ∈ [1, d
2], the coefficients

g′i are drawn uniformly at random. For i > d
2 , we set g′i = −gi. This means that deg(g) = deg(g′) = d, but

deg(g + g′) = d
2 .

(iii) Now, the second property (**) is fulfilled, but we still need to share the sensitive information of f
into g and g′. Now, remember that share j holds the value f(αj). We now set g0 =

∑
j<n/2 λ

(0)
j f(αj) and

g′0 =
∑

j≥n/2 λ
(0)
j f(αj). The interpolation lemma then implies the correctness, as g0 + g′0 =

∑
j λ

(0)
j f(αj) =

f(0) = f0.
While the correctness of this idea directly follows from the interpolation lemma, we need to be careful

to secure the algorithm against both probes and faults. To obtain probing security, we simply need to
generate more random polynomials and include the values λ(0)

j f(αj) more carefully over time. More concretely,
for j = 1, . . . , n/2, we first generate random polynomials ĝ(j) of degree d (with absolute term 0), and for
j = 1, . . . , n, we first generate random polynomials g̃(j) of degree d

2 (with absolute term 0). For j < n/2, we
compute g(j) = g̃(j) + ĝ(j) and for j ≥ n/2, we compute g(j) = g̃(j) − ĝ(j−n/2). Then, for j = 1, . . . , n, we set
g(j) = g(j) + λ

(0)
j f(αj) and finally, obtain f ′ =

∑
j<n/2 g

(j) and f ′′ =
∑

j≥n/2 g
(j). A careful inspection of

the construction shows that the sensitive information is always sufficiently hidden against up to d probes.

20

To handle faults, we need to make sure that the error coefficients of f are also preserved. To do so, we do
not only incorporate the terms λ(0)

j f(αj), but the term
(
λ
(0)
j +

∑
k>d λ

(k)
j αk

i

)
f(αj), which we will denote by

λ̂
(i)
j ·f(αj) in the following. Note that the interpolation lemma implies that

∑
j

∑
i λ̂

(i)
j f(αj) = f0+

∑
k>d fkx

k.
We show in the full version that SplitRed is d-NI and transfers faults from its inputs to the output.

Algorithm 7 (n, d)-SplitRed for n = d+ ϵ+ 1.
Input: Shares of f0 as (Fi)i∈[n].
Output: Shares of f ′

0 as (F ′
i)i∈[n] and shares of f ′′

0 as (F ′′
i)i∈[n] , such that f0 = f ′

0 + f ′′
0 .

1: for j ∈ [n
2
] do

2: (ĝji)i∈[n] ← ZEncd
n

3: for j ∈ [n
2
] do

4: (g̃ji)i∈[n] ← ZEnc
d
2
n

5: (gji)i∈[n] ← (g̃ji)i∈[n] + (ĝji)i∈[n]

6: for j ∈ [n
2
] do

7: for i ∈ [n] do
8: F ′j

i ← λ̂i
j · Fj

9: for j ∈ [n
2
] do

10: (Fj
i)i∈[n] ← (F ′j

i)i∈[n] + (gji)i∈[n]

11: for j ∈ [n
2
] do

12: (F ′
i)i∈[n] ← (F ′

i)i∈[n] + (Fj
i)i∈[n]

13: for j ∈ [n
2
] do

14: (g̃
j+n

2
i)i∈[n] ← ZEnc

d
2
n

15: (g
j+n

2
i)i∈[n] ← (g̃ji)i∈[n] − (ĝji)i∈[n]

16: for j ∈ [n
2
] do

17: for i ∈ [n] do
18: F ′j+n

2
i ← λ̂i

j+n
2
· Fj+n

2

19: for j ∈ [n
2
] do

20: (Fj+n
2

i)i∈[n] ← (F ′j+n
2

i)i∈[n] + (g
j+n

2
i)i∈[n]

21: for j ∈ [n
2
] do

22: (F ′′
i)i∈[n] ← (F ′′

i)i∈[n] + (Fj+n
2

i)i∈[n]

23: return (F ′
i)i∈[n], (F

′′
i)i∈[n]

6.3 Share-wise Multiplication and Compression Gadgets

The share-wise multiplication SWMult (Alg. 2) works similar to the addition. Remember that SplitRed
shares two polynomials f(x) and g(x) into f ′(x), f ′′(x), g′(x), and g′′(x) such that for f̃(x) = f ′(x) + f ′′(x)
and g̃(x) = g′(x) + g′′(x) it holds f̃(x) and g̃(x) have degree d

2 and f(0) = f̃(0), g(0) = g̃(0). The share-
wise multiplication now might lead to degrees larger than d when they compute h0(x) = f ′(x) · g′(x),
h1(x) = f ′(x) · g′′(x), h2(x) = f ′′(x) · g′(x), h3(x) = f ′′(x) · g′′(x), but the final gadget Comp sums up all hi

and this results into a polynomial
∑3

i=0 h
i with degree d. This follows from the fact that we can alternatively

write
∑3

i=0 h
i(x) = (f ′(x) + f ′′(x)) · (g′(x) + g′′(x)) = f̃(x) · g̃(x). Since f̃(x) and g̃(x) have degree d

2 , the
product f̃(x) · g̃(x) has degree d. Hence the sum of the hi results in a degree d polynomial with secret f0 · g0.
Note that we also add an encoding of zero in Comp to re-randomize the values, but this does not change the

21

correctness of the gadget. We show in the full version that all values of Comp can be simulated from a few
inputs and both SWMult and Comp transfer faults from their inputs to their outputs.

Algorithm 8 Comp for n = d+ ϵ+ 1

Input: 4 Sharings (Hj
i)i∈[n] of hj

Output: Sharing (Qi)i∈[n] with h0 + h1 + h2 + h3

1: (Qi)i∈[n] ← sZEncd
n

2: (Qi)i∈[n] ← [[[(Qi)i∈[n] + (H0
i)i∈[n]] + (H1

i)i∈[n]] + (H2
i)i∈[n]] + (H3

i)i∈[n]

3: return (Qi)i∈[n]

6.4 Security Analysis of the Multiplication Gadget

In this section we show that the multiplication Mult is frSNI and e-fault-robust. Corollary 1 shows that
SNI and fault-invariance implies frSNI. Due to space constraints, all security proofs can be found in the full
version.

Theorem 13. The multiplication gadget Mult depicted in Algorithm 6 is d-fr(S)NI with respect to F+ or
(d-wfr(S)NI with respect to F ind) and e-fault-robust with respect to F ind.

Proof (sketch). In the full version we prove e-fault-robustness with respect to F ind. It remains to prove the
frSNI property. Due to Corollary 1, it is sufficient to show that the multiplication gadget is SNI and fault
invariant with respect to F+ because this implies d-frSNI with respect to F+. Further, Corollary 2 shows
that this also implies d-wfrSNI with respect to F ind. Hence, it remains to prove that the gadget Mult is (i)
SNI and (ii) fault invariant with respect to F+.

(i) In the full version we first analyze the different subroutines of Mult separately. Combining these results
shows that the complete gadget is t-SNI.

(ii) The proof is similar to the fault-invariance proof of linear gadgets. The only difference is that the gadget
has (only) one non-linear layer – the share-wise multiplication. The idea is that all faults before the
non-linear layer can be moved to the inputs, and the faults after the non-liner layer can be moved to the
outputs.

Acknowledgment

This work was partly supported by the German Research Foundation (DFG) via the DFG CRC 1119
CROSSING (project S7), by the German Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts within their joint support of the National
Research Center for Applied Cybersecurity ATHENE, and by the European Commission(ERCEA), ERC
Grant Agreement 101044770 CRYPTOLAYER. This work has been partially supported by BMBF through
the VE-Jupiter project grants 16ME0231K and 14ME0234.

References

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45,
2020.

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with O(1/ log(n))
leakage rate. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 586–615. Springer, Heidelberg, May 2016.

22

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219. Springer,
Heidelberg, December 2016.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-
Yves Strub. Verified proofs of higher-order masking. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 457–485. Springer, Heidelberg, April 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves
Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 116–129. ACM Press, October 2016.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizontal side-channel
attacks and countermeasures on the ISW masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann,
editors, CHES 2016, volume 9813 of LNCS, pages 23–39. Springer, Heidelberg, August 2016.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 313–314. Springer,
Heidelberg, May 2013.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press,
May 1988.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Burton S. Kaliski
Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 513–525. Springer, Heidelberg, August 1997.

[BS21] Olivier Bronchain and François-Xavier Standaert. Breaking masked implementations with many shares on
32-bit software platforms. IACR TCHES, 2021(3):202–234, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/8973.

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vincent Verneuil. Horizontal
correlation analysis on exponentiation. In Miguel Soriano, Sihan Qing, and Javier López, editors, ICICS
10, volume 6476 of LNCS, pages 46–61. Springer, Heidelberg, December 2010.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault analysis. In Pascal Paillier
and Ingrid Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 181–194. Springer, Heidelberg,
September 2007.

[CN16] Thomas De Cnudde and Svetla Nikova. More efficient private circuits II through threshold implementations.
In FDTC 2016, pages 114–124. IEEE Computer Society, 2016.

[CPR12] Jean-Sébastien Coron, Emmanuel Prouff, and Thomas Roche. On the use of shamir’s secret sharing
against side-channel analysis. In CARDIS, volume 7771 of Lecture Notes in Computer Science, pages
77–90. Springer, 2012.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently composing masked gadgets with
probe isolating non-interference. IEEE Trans. Inf. Forensics Secur., 15:2542–2555, 2020.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing attacks
to noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 423–440. Springer, Heidelberg, May 2014.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Florian Mendel, and Robert Pri-
mas. SIFA: Exploiting ineffective fault inductions on symmetric cryptography. IACR TCHES, 2018(3):547–
572, 2018. https://tches.iacr.org/index.php/TCHES/article/view/7286.

[DN19] Siemen Dhooghe and Svetla Nikova. My gadget just cares for me - how NINA can prove security against
combined attacks. Cryptology ePrint Archive, Report 2019/615, 2019. https://eprint.iacr.org/2019/
615.

[DN20a] Siemen Dhooghe and Svetla Nikova. Let’s tessellate: Tiling for security against advanced probe and fault
adversaries. In Pierre-Yvan Liardet and Nele Mentens, editors, CARDIS 2020, volume 12609 of Lecture
Notes in Computer Science, pages 181–195. Springer, 2020.

[DN20b] Siemen Dhooghe and Svetla Nikova. My gadget just cares for me - how NINA can prove security against
combined attacks. In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages 35–55.
Springer, Heidelberg, February 2020.

23

[FRSG22] Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. CINI MINIS: domain
isolation for fault and combined security. In CCS, pages 1023–1036. ACM, 2022.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. Poseidon:
A new hash function for zero-knowledge proof systems. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 519–535. USENIX Association, August 2021.

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru, and Markus Schofnegger.
On a generalization of substitution-permutation networks: The HADES design strategy. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 674–704. Springer,
Heidelberg, May 2020.

[GM11] Louis Goubin and Ange Martinelli. Protecting AES with Shamir’s secret sharing scheme. In Bart Preneel
and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS, pages 79–94. Springer, Heidelberg,
September / October 2011.

[GPRV21] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud. Probing security through
input-output separation and revisited quasilinear masking. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(3):599–640, 2021.

[HKL+22] Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Jooyoung Lee, and Mincheol Son. Rubato: Noisy
ciphers for approximate homomorphic encryption. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 581–610. Springer, Heidelberg, May / June
2022.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keeping secrets in
tamperable circuits. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 308–327.
Springer, Heidelberg, May / June 2006.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August
2003.

[LFZD14] Pei Luo, Yunsi Fei, Liwei Zhang, and A. Adam Ding. Side-channel power analysis of different protection
schemes against fault attacks on AES. In ReConFig 2014, pages 1–6. IEEE, 2014.

[ORSW12] Yossef Oren, Mathieu Renauld, François-Xavier Standaert, and Avishai Wool. Algebraic side-channel
attacks beyond the hamming weight leakage model. In Emmanuel Prouff and Patrick Schaumont, editors,
CHES 2012, volume 7428 of LNCS, pages 140–154. Springer, Heidelberg, September 2012.

[RDB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and
Nigel P. Smart. CAPA: The spirit of beaver against physical attacks. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 121–151. Springer, Heidelberg,
August 2018.

[REB+08] Francesco Regazzoni, Thomas Eisenbarth, Luca Breveglieri, Paolo Ienne, and Israel Koren. Can knowledge
regarding the presence of countermeasures against fault attacks simplify power attacks on cryptographic
devices? In Cristiana Bolchini, Yong-Bin Kim, Dimitris Gizopoulos, and Mohammad Tehranipoor, editors,
DFT 2008, pages 202–210. IEEE Computer Society, 2008.

[RFSG22] Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim Güneysu. VERICA - verification of
combined attacks automated formal verification of security against simultaneous information leakage and
tampering. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):255–284, 2022.

[RP12] Thomas Roche and Emmanuel Prouff. Higher-order glitch free implementation of the AES using secure
multi-party computation protocols - extended version. Journal of Cryptographic Engineering, 2(2):111–127,
September 2012.

[SFRES18] Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth, and Rainer Steinwandt. Extending glitch-
free multiparty protocols to resist fault injection attacks. IACR TCHES, 2018(3):394–430, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/7281.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI – towards combined hardware countermeasures
against side-channel and fault-injection attacks. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 302–332. Springer, Heidelberg, August 2016.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft analytical side-channel
attacks. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 282–296. Springer, Heidelberg, December 2014.

24

	Introduction
	Overview

	Preliminaries
	Leakage Models and Masking
	Combined Model and Error Detection
	Universal Composability and Generic Algorithms

	Leakage Resilience
	Contribution
	Probe Distribution Table
	Dependency Graph

	Related Work

	Fault Resilient Implementations
	Fuzzy Asymmetric Password-Authenticated Key Exchange
	On the Related-Key Attack Security of Authenticated Encryption Schemes
	Related Work

	Combined Resilience
	Contribution
	Related Work

	Conclusion
	Bibliography
	Appendix Towards Tight Random Probing Security
	Appendix Provable Secure Parallel Gadgets
	Appendix Fuzzy Asymmetric Password-Authenticated Key Exchange
	Appendix On the Related-Key Attack Security of Authenticated Encryption Schemes
	Appendix Combined Fault and Leakage Resilience: Composability, Constructions and Compiler

