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Abstract

This dissertation investigates several research topics on options. The first article explores

the properties of the dividend variance and skewness risk premium and whether dividend

futures excess returns are predictable by them. The second article examines the usefulness

of model-free option implied upside and downside volatilities to enhance the performance

of portfolios consisting of US large cap stocks. The third article shows how an investor

should use options and the forward given that she either thinks the level, slope or convexity

of the respective implied variance curve should be higher or lower than currently priced.
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Kurzzusammenfassung

In dieser Dissertation werden mehrere Forschungsthemen im Bereich Optionen unter-

sucht. Der erste Artikel erforscht die Eigenschaften der Dividenden-Varianz- und Schiefe-

Risikoprämie und ob sie Futures-Überrenditen vorhersagen können. Der zweite Aufsatz

untersucht die Nützlichkeit von modellfreien options-impliziten Aufwärts- und Abwärts-

volatilitäten zur Verbesserung der Performance von Portfolios, die aus US-amerikanischen

Large-Cap-Aktien bestehen. Der dritte Artikel zeigt, wie eine Investorin Optionen und

den Forward nutzen sollte, wenn sie entweder das Niveau, die Steigung oder die Kon-

vexität der jeweiligen impliziten Varianzkurve höher oder niedriger einschätzt als aktuell

eingepreist.
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Chapter 1

Synopsis

1.1 Motivation

This dissertation contains three chapters, each of which contains independent research pa-

pers that examine various topics related to option markets. More specifically, the unifying

element of all three studies is the use of forward-looking option-implied information, ei-

ther for quantifying time-varying risk compensations to predict movements in the options’

underlying, for portfolio optimization or option trading purposes.

Undoubtedly, the Black Merton Scholes (BMS) implied volatility is the most pop-

ular forward-looking measure derived from option prices among practitioners and aca-

demic researchers. Its very concept builds on the BMS European option pricing model

of Black and Scholes (1973) and Merton (1973): it is the unique volatility parameter

that can be obtained inverting the BMS option pricing formula using the observed price

of a European option. The model assumes that the underlying of the option follows a

geometric Brownian motion with constant volatility. This implies that for every (Euro-

pean) option written on the same underlying, regardless of the strike and maturity of

the respective option, the BMS implied volatility should be the same. Rubinstein (1994)

finds that this assumption was approximately true before the crash in October 1987 but

largely changed afterwards with S&P 500 implied volatilities for options with different

strikes and fixed maturities nowadays forming a smirk pattern with a negative slope1,

where out-of-the-money (in-the-money) put (call) options have higher implied volatilities

than in-the-money (out-of-the-money) put (call) options.

Option prices also offer the possibility to obtain the entire (forward-looking) risk-

neutral density (RND) of the respective underlying in a model-free way. Building on the

findings of Ross (1976), Breeden and Litzenberger (1978) famously show that one can ob-

1The same shape is also documented by Foresi and Wu (2005) for implied volatilities of options on
other major world equity indices.
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tain the full RND of the underlying by taking the second partial derivative of the European

call option price function with respect to the strike. To generate a smooth density, their

methodology requires a continuum of options prices. However, since only a limited range of

discrete strikes are available in the real world, authors such as Jackwerth and Rubinstein

(1996), Aı̈t-Sahalia and Lo (1998), Bliss and Panigirtzoglou (2002) each suggest different

approaches to obtain smooth RNDs nevertheless.

Carr and Madan (1998) use the approach of Breeden and Litzenberger (1978) and

demonstrate how to quantify the risk-neutral expected value of future realized variance,

i.e. the fixed variance swap rate, with option prices. In contrast to the BMS implied

variance, they suggest to obtain this implied variance measure in a model-free manner.

Furthermore, the measure is derived from the entire set of option prices with the same

maturity, rather than from the price of a single option. The Chicago Board of Options

Exchange (CBOE) adopted the methodology of Carr and Madan (1998) and changed

the calculation of the CBOE Volatility index (VIX index) accordingly in 2003. From its

introduction in 1993 until 2003, the VIX index was computed on the basis of BMS implied

volatilities of four put and four call options with near-the-money strikes2. After the

new methodology was implemented, the CBOE launched futures and options on the new

VIX index. Building upon the work of Carr and Madan (1998) and Bakshi and Madan

(2000), Bakshi et al. (2003) show how to measure the risk-neutral moments of the RND

while Neuberger (2012) and Kozhan et al. (2013) utilize their results to estimate the risk-

neutral expected value of the future realized third moment, i.e. the fixed skew swap

rate.

I use the results of the mentioned research articles on option-implied information to

formulate the following main research questions relevant for this dissertation:

• Is dividend variance and skewness risk priced and do they predict returns of dividend

futures?

• Can implied upside and downside volatility estimates help to improve the out-of-

sample performance of stock portfolios?

• With just a portfolio of options with three different strikes, how can one trade the

level, slope and convexity of a BMS implied variance curve?

2The CBOE also switched from using options on the S&P 100 to options on the broader S&P 500
index. For a more detailed discussion about the differences of both methodologies, see Carr and Wu
(2006).
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1.2 Dissertation structure

The main part of my dissertation comprises of three articles. Each article aims to answer

one research question formulated in Section 1.1. Two are published articles (Chapter 2

and 4) and one is an unpublished article (Chapter 3).

In Chapter 2, titled Dividend Predictability and Higher Moment Risk Premia, I study

the dividend variance and skewness risk premium, defined as the difference between the

realized variance of returns and the model-free implied variance of returns, and defined as

the difference between the realized third moment returns and the implied third moment of

returns, respectively. To quantify them, I utilize EURO STOXX 50 Dividend Points index

futures and option data and report that both are statistically significant and therefore

priced risk factors. To examine whether they are also unique, I similarly construct the

variables for the EURO STOXX 50 index and find that the dividend variance and skewness

risk premium are only weakly related to them or the Fama-French 5 (Fama and French,

2015) factors (market, size, value, profitability and investment) and the momentum factor.

I also evaluate the prediction quality of both moment risk premia to predict movements

in dividend futures with constant maturities of one to four years in an out-of-sample

setup. Three regression models are used for this purpose. The first two models each

rely on one of the two variables while the third model relies on both variables to create

forecasts of future dividend excess returns. The results demonstrate that these models

mostly outperform a benchmark model that uses only past dividend excess returns data

for contracts with maturities of three and four years. The out-of-sample performance is

almost always improved when both moment risk premia are used jointly.

In Chapter 3, titled Portfolio Optimization with Implied Good and Bad Volatility, I es-

timate option-implied semivolatilities to construct portfolios consisting of S&P 500 stocks.

The two main portfolio strategies proposed there are build by minimizing the risk based

on a semicovariance matrix that is computed with implied upside (downside) volatilities

and historical upside (downside) correlations. The performances of both strategies are

compared to others that instead calculate the respective semicovariance matrix based

on historical data only, strategies that use the symmetric covariance matrix estimated

with historical data, implied data or a combination of both, and the näıve 1/N strategy.

The main out-of-sample results indicate that portfolio optimization with implied down-

side volatilities and historical downside correlations beats the competing strategies by

generating the highest Sharpe and Sortino ratio and lowest upside, downside and sym-

metric portfolio volatility. I then change the estimation window for the historical data

from one year, used for the main results, to two years, and half a year, let each port-

folio strategy select from smaller stock universes consisting of either 100, 200, 300, and
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400 randomly picked stocks, and check whether the results materially differ in crisis and

non-crisis periods and conclude that the portfolio strategy is still successful generating

lower downside and symmetric volatility overall. Can some risk factors help to explain

the excess returns of the portfolio strategy? I use multifactor regressions to examine that

by using innovations in the implied volatility, skewness or kurtosis of the market, as well

as the Fama-French 5 (Fama and French, 2015) plus momentum and betting against beta

(Frazzini and Pedersen, 2014) factors as explanatory variables and find that in each setup,

a sizable portion of the excess returns remains unexplained.

In Chapter 4, titled Vol, Skew and Smile Trading, we investigate how a portfolio

of options can be utilized to trade the (BMS) implied variance curve level, slope and

convexity. We assume that the forward and the implied variance curve are risk-neutral

stochastic processes and show that the mean gain rate of a portfolio consisting of out-of-

the-money put options with strike Kp, at-the-money put and call options with strike Ka

and out-of-the-money call options with strike Kc is driven by the risk-neutral dynamics of

the instantaneous variance of the log forward, the instantaneous variance of the log implied

volatility curve and the instantaneous covariation (between the log forward and the log

implied volatility curve) process. We require that a vol, skew and smile trade isolates the

dependence on two of the three latter process to be considered as such. We demonstrate

how certain positions in long (short) at-the-money puts and calls correspond to a long

(short) vol trade, positions in out-of-the-money short (long) puts and long (short) calls

correspond to a long (short) skew trade and positions in long (short) out-of-the-money

puts and calls combined with short (long) at-the-money puts and calls correspond to

a long (short) smile trade. We show how the positions need to be modified since the

instantaneous gain of the respective option portfolios would still be exposed to delta and

cash vega risks. Our empirical exercise using S&P 500 index and option data reveals that

the average returns of the long vol and smile trade are negative and whereas the average

returns of the long skew trade are positive. We calculate the returns of each trade with

options held for one exchange day and constant maturities ranging from one to twelve

months at the time when an option position is closed and report, among other findings,

that the term structure of Sharpe ratios for short vol, long skew and short smile trades is

downward sloping.
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Chapter 2

Dividend Predictability and Higher

Moment Risk Premia

Chapter 2 has been published as a journal article:

Al-Jaaf, A., 2022. Dividend predictability and higher moment risk premia. Journal of

Asset Management 23, 83-99. © 2021, The Author(s), under exclusive licence to Springer

Nature Limited. https://doi.org/10.1057/s41260-021-00244-y
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Chapter 3

Portfolio Optimization with Implied

Good and Bad Volatility

Chapter 3 is a working paper and has not been published yet.

Abstract

This paper investigates the performance of portfolios constructed using forward-

looking option-implied semivolatilities. Using data from 1996 to 2022, I show that

portfolio optimization with implied bad volatilities generates significantly lower out-

of-sample bad and symmetric portfolio volatilities than comparable portfolio strate-

gies, including 1/N . The results survive a series of robustness checks. I find that the

excess returns of portfolios constructed with either implied good or bad volatility

yield significantly positive Fama-French 5 plus momentum factor model alphas.

3.1 Introduction

Even though the mean-variance portfolio selection framework of Markowitz (1952) is gen-

erally recognized as the cornerstone of modern portfolio theory, determining its two input

parameters, the vector of expected returns and the covariance matrix of returns, remains

a challenging task. However, since covariance estimates are usually more predictable than

expected return estimates (Merton, 1980; Jorion, 1985) and mean-variance efficient port-

folio weights are known to be highly sensitive to changes in the expected return estimates

(Best and Grauer, 1991), growing attention has been paid in the last decades to the only

portfolio on the mean-variance efficient frontier that does not depend on the expected

returns as an input parameter to determine its weights: the minimum variance portfolio.

Instead of following the typical approach and using historical volatilities and correla-

tions to minimize the portfolio variance, in this article, I use implied upside (good) and
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downside (bad) volatilities and historical semicorrelations to construct what I label as

minimum good and bad variance portfolios and examine their out-of-sample performance

against a set of benchmark strategies. To calculate the weights of these portfolios, I apply

the results of Bollerslev et al. (2020) who decompose the covariance matrix into three

semicovariance components: a positive, a negative and a mixed semicovariance matrix. I

show how to integrate good and bad implied volatilities, which are obtained by computing

the risk-neutral price of a contract that pays the realized good and bad variance, into the

positive and negative semicovariance matrix, respectively. The corresponding portfolio

performances are compared against the portfolio performances of a set of other portfolio

strategies: 1/N , minimum variance portfolios based on the sample covariance matrix, a

covariance matrix that uses shrinkage on the sample covariance matrix, a covariance ma-

trix consisting of implied volatilities and historical correlations, and a covariance matrix

consisting of implied volatilities and correlations as well as the minimum good and bad

variance portfolios constructed with historical return data only.

For the empirical exercise I use S&P 500 stock and option data and present evidence

that the minimum bad variance portfolio constructed with implied bad volatilities and

historical semicorrelations produces the lowest out-of-sample portfolio volatility, good

volatility, bad volatility and highest out-of-sample Sharpe and Sortino ratio than the

other strategies. To check for robustness, I vary the default estimation window, produce

random portfolios and conduct a subperiod analysis. In all exercises, the most consistent

results are obtained for the performance in terms of the out-of-sample portfolio’s bad

volatility. The strategy is only outperformed by a tiny margin for the case when 100 (but

not when 200, 300 or 400) stocks are randomly selected every month. Even though the

proposed strategy shows satisfactory out-of-sample properties, outperformance comes at

a price since it is also among the portfolio strategies that generate the highest portfolio

turnover and concentration. However, I show that with reasonable transaction costs, the

Sharpe and Sortino ratio remain comparatively high. To analyze the source of the outper-

formance, I examine each portfolio strategy’s excess return sensitivity towards common

equity risk factors and market moment risk factors and find that the alpha of the strategy

is high and statistically significant. It is also the portfolio strategy that produces the

lowest market beta and the lowest absolute sensitivity towards changes in the markets’

implied volatility.

This paper extends the sparse literature on portfolio optimization with option-implied

data. DeMiguel et al. (2013) find that using a combination of historical correlations and

option-implied volatilities as inputs, helps to significantly reduce the out-of-sample port-

folio volatility of a minimum variance portfolio significantly. The empirical results I

provide are similar in most cases. Furthermore, they document worse results for a min-
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imum variance portfolio constructed with historical volatilities and implied correlations.

Inline with their results, I also find that both, using option-implied rather than historical

estimators of volatility and correlation increases portfolio turnover. Kempf et al. (2014)

report that a minimum variance portfolio constructed with option-implied data beats

other minimum variance portfolios with other estimators, 1/N and a capital weighted

benchmark strategy out-of-sample. Analogous to the findings of DeMiguel et al. (2013),

they show that a minimum variance portfolio based on a combination of implied corre-

lations and historical volatilities underperforms but using implied rather than historical

volatilities decreases out-of-sample portfolio volatilities significantly. In contrast to these

studies, however, I additionally examine the performance of portfolios that are optimized

with implied semivolatility estimates and historical semicorrelations to minimize the out-

of-sample risk on a portfolio level. In this regard, the findings I report indicate that

portfolios that are constructed with implied bad volatilities and historical semicorrela-

tions deliver better and more robust results than portfolios that are build with implied

and historical symmetric volatility and correlation estimates.

This paper also extends the literature on semivolatility and semicovariance.

Feunou et al. (2018) evaluate the predictive power of the difference between the implied

and realized variance (the variance risk premium) and their two components, i.e., the

difference between good and bad implied and realized variance (the good and bad vari-

ance risk premium) of the S&P 500 to predict subsequent excess returns of the index.

Their results suggest that the reported statistically significant predictive power of the

variance risk premium to changes in S&P 500 excess returns by Bollerslev et al. (2009)

mainly results from the bad component of the variance risk premium. In a similar exer-

cise, Kilic and Shaliastovich (2019) find that using the S&P 500 good and bad variance

risk premium jointly as predictor variables in a multivariate setting for S&P 500 excess

returns produces better prediction results than using each variable or the total variance

risk premium individually in a univariate setting. Bollerslev et al. (2022) decompose the

standard market beta into four semibetas utilizing the results of Bollerslev et al. (2020)

and document that the risk premium associated with the semibeta computed with co-

variances of negative stock and negative market returns is higher than the risk premium

associated with the standard market beta. I contribute to this strand of literature by

showing that semivolatilities and semicovariances can also be used beneficially for port-

folio optimization purposes.

The remainder of this paper proceeds as follows. In Section 3.2 I discuss the data used

in the empirical analysis. In Section 3.3, I describe how model-free implied good and bad

volatilities are estimated and used to construct portfolios. In Section 3.4, I assess the

empirical performance of the portfolio strategies and Section 3.5 concludes.
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3.2 Data

For the empirical part of the study, I focus on the S&P 500 Index and its constituents. The

main sample period of interest is January 1996 to October 2022. To calculate the implied

measures of the index and the stocks with a 30-day fixed maturity, I obtain end-of-day

option, forward and discount rate data from the IvyDB OptionMetrics database.

The Volatility Surface file of the database includes kernel regression interpolated im-

plied volatilities of put and call options for fixed maturities from 10 to 730 days and fixed

absolute deltas from 0.1 to 0.9. While S&P 500 Index options are European style, stock

options are American style. OptionMetrics uses a proprietary model that is based on

the Cox-Ross-Rubinstein binomial tree model to account for the early exercise premia

of American style options to create implied volatility surfaces. The implied moment es-

timates in this study are derived using implied volatilities of out-of-the-money (OTM)

call options with strikes above the forward and of OTM put options with strikes below

or equal to the forward with a fixed maturity of 30 days. For the OTM stock options,

the impact of this premia on the implied volatility estimate is known to be negligible, as

reported by Bakshi et al. (2003).

For each stock and the index, I use linear interpolation to estimate the 30-day forward

prices based on data from the Forward Price file. These forward prices are calculated

using projected dividends. I also use the Zero Curve file that contains discount rates that

are derived from LIBOR rates and Eurodollar futures prices, which are used for this study

to compute the target 30-day discount rate through linear interpolation too.

I also rely on constituents and end-of-day underlying price data which are derived

from Bloomberg to compute historical covariances. The beginning of the main sample

aligns with the beginning of the OptionMetrics data. In order to compute the optimal

weights of the portfolio strategies using the historical covariance with estimation windows

of up to 2 years directly at sample start in January 1996, the price data start in January

1994. On average, the number of S&P 500 constituents for which option and price data

are available is 488.

3.3 Methodology

In this section, I first describe how implied good and bad volatilities are derived and then

show how they are used to form minimum variance portfolios. Finally, I introduce the

benchmark strategies against with which they are compared in the empirical part.
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3.3.1 Implied Good and Bad Volatility

This study uses the concept of model-free implied (semi-) variance estimates to form port-

folios. Based on the seminal work of Breeden and Litzenberger (1978), Carr and Madan

(1998) show that an arbitrary twice differentiable payoff function g(FT ) written on the un-

derlying forward price process F that pays at a future time T can be statically replicated

using the underlying F , a continuum of OTM European put P and call options C that

expire at T , and unit face value bonds B that expire at T . They and Bakshi and Madan

(2000) show that under the risk-neutral measure Q, the expectation at current time t < T

for the payoff at maturity T is then given by:

EQ
t [g(FT,T )] = g(Ft,T ) +

1

Bt,T

[∫ Ft,T

0

g′′(K)Pt,T (K)dK +

∫ ∞

Ft,T

g′′(K)Ct,T (K)dK

]
, (3.1)

where K denotes the strike price. The model-free implied variance IV is derived based

on a contract that pays the realized variance RVt,T observed from time t to maturity T

and is defined as:

RVt,T =

∫ T

t

σ2
sds. (3.2)

Based on the relationship in (3.1), Carr and Madan (1998) and

Britten-Jones and Neuberger (2000) show that at time t, the risk-neutral expected value

of such a contract, i.e. IV , can be derived by:

IVt,T = EQ
t [RVt,T ] =

2

Bt,T

[∫ Ft,T

0

Pt,T (K)

K2
dK +

∫ ∞

Ft,T

Ct,T (K)

K2
dK

]
. (3.3)

The calculation of the widely followed VIX Index is based on an annualized, truncated,

and discretized formulation of (3.3).

Using the same logic as shown before, to obtain implied good and bad variance esti-

mates, it is necessary to first define their realized counterparts. Similar to

Barndorff-Nielsen et al. (2010), I decompose RVt,T as follows:

RV b
t,T =

∫ T

t

σ2
sI(Fs,T≤Ft,T )ds, (3.4)

RV g
t,T =

∫ T

t

σ2
sI(Fs,T>Ft,T )ds, (3.5)
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where RV b
t,T (RV g

t,T ) is the realized variance of negative (positive) returns, denoted as

realized bad (good) variance1 and I is the indicator function taking the value of 1 if the

argument in the subscript is true. By construction, the sum of both variance measures

yields RVt,T :

RVt,T = RV b
t,T +RV g

t,T . (3.6)

Following Andersen and Bondarenko (2010) and Feunou et al. (2018), the risk-neutral

estimate of RV b
t,T is calculated with OTM put option prices whereas the risk-neutral

estimate RV g
t,T is calculated using OTM call option prices2:

IV b
t,T = EQ

t [RV b
t,T ] =

2

Bt,T

∫ Ft,T

0

Pt,T (K)

K2
dK, (3.7)

IV g
t,T = EQ

t [RV g
t,T ] =

2

Bt,T

∫ ∞

Ft,T

Ct,T (K)

K2
dK, (3.8)

where analogously to (3.6):

IVt,T = IV b
t,T + IV g

t,T . (3.9)

To evaluate the integrals (3.7) and (3.8), I proceed as follows: First, I obtain, for the

range Fτ±8 times the average implied volatility, 2,000 equidistant strikes by interpolating

linearly the implied volatilities estimates of the Volatility Surface file of OptionMetrics

as a function of strike. Second, for strikes outside of the range of the file, I extrapolate

using the respective left and right boundaries. Third, a total of 2,000 implied volatilities

are then used to calculate a fine grid Black-Scholes-Merton prices for OTM put and call

options. Lastly, the integrals are calculated using the trapezoidal rule. A similar procedure

to calculate the integrals is implemented by, among others, Jiang and Tian (2005) and

Carr and Wu (2009).

3.3.2 Portfolio Strategies

Main Strategy

I consider the minimum variance portfolio optimization strategy to allocate wealth across

risky assets with implied good and bad volatilities. The optimization problem does not

1Some studies refer to both measures as realized downside and upside variance.
2The concept of implied good and bad variance relies on the theoretical foundation of the corridor

variance contract developed by Carr and Madan (1998), which is a generalized version of the variance
contract.
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rely on often noisy expected return estimates. Given a population covariance matrix of

asset returns C with dimension N × N , the short-sale constrained3 minimum variance

portfolio optimization problem is given by:

min
w

w⊤Cw (3.10)

s.t. w ≥ 0, w⊤1 = 1, (3.11)

where w = [w1, w2, ..., wN ]
⊤ denotes the portfolio weights vector and 1 the vector of

ones. To optimize portfolios according to (3.10) subject to (3.11) with good and bad

(implied) volatilities, consider the Bollerslev et al. (2020) decomposition of the realized

covariance matrix Ĉ to three semicovariance matrices. Let rt = [rt,1, rt,2, ..., rt,N ]
⊤ denote

the return vector of N assets, then the corresponding bad and good return vectors, rt
b

and rt
g, are given as

rt
b ≡ rt ⊙ Ibt , rt

g ≡ rt ⊙ Igt (3.12)

where Ibt = [I(rt,1≤0), I(rt,2≤0), ..., I(rt,N≤0)]
⊤ and Igt = [I(rt,1>0), I(rt,2>0), ..., I(rt,N>0)]

⊤. Then,

the authors define the three additive components of Ĉ as:

N̂T ≡
T∑
t=1

rt
brt

b⊤,

P̂T ≡
T∑
t=1

rt
grt

g⊤,

M̂T ≡
T∑
t=1

rt
brt

g⊤ + rt
grt

b⊤,

ĈT = N̂T + P̂T + M̂T .

(3.13)

While Ĉ, N̂ and P̂ are positive semidefinite4, M̂ is indefinite (Bollerslev et al., 2020).

The two main strategies tested in this paper take advantage of the fact that the two

matrices N̂ and P̂ can be decomposed into the following components:

N̂T ≡ Diag( ˆRVb
T)

1/2R̂b
T Diag( ˆRVb

T)
1/2,

P̂T ≡ Diag( ˆRVg
T)

1/2R̂g
T Diag( ˆRVg

T)
1/2

(3.14)

where Diag( ˆRVb
T)

1/2 and Diag( ˆRVg
T)

1/2 are the diagonal matrices with realized bad

3Authors such as Lamont (2012) and Engelberg et al. (2018) document that short selling pro-
duces additional risks such as recall risk and increasing stock loan costs. Frost and Savarino (1988),
Jagannathan and Ma (2003) and Kempf et al. (2014) report that imposing the short-sale constraint on
the minimum variance portfolio enhances the out-of-sample performance.

4This guarantees that w⊤Cw ≥ 0, w⊤Nw ≥ 0 and w⊤Pw ≥ 0 for all w.
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and good volatilities on the diagonal and R̂b
T and R̂b

T are the realized bad and good

semicorrelation matrices, respectively.

Using these insights, the main portfolio strategies for the empirical investigation are

formed as follows. At the last trading day of each month in the sample, the minimum

variance portfolios with S&P 500 stocks are constructed using implied good (bad) volatil-

ities from that day replacing C with N̂ (P̂) in (3.10) and replacing the realized good

(bad) volatilities on the diagonal matrices in (3.14) with implied good (bad) volatilities.

The respective semicorrelations are based on historical daily returns with an estimation

window of 1 year. At each rebalancing date, stocks with no option data at that date

or limited underlying price data in the corresponding estimation window are ignored. I

henceforth denote the portfolio strategy that utilizes good (bad) implied volatility data

as GV-Hybr (BV-Hybr).

Undoubtedly, a strategy that is successful in minimizing out-of-sample bad instead

of good portfolio volatility is more desirable. However, there are two reasons to include

GV-Hybr for the empirical part of this study nonetheless. First, it is unclear which

of those two strategies outperforms the other out-of-sample. Second, the out-of-sample

results for GV-Hybr serve as an additional check with regard to the empirical properties

of implied semivolatilities.

Benchmark Strategies

To evaluate the out-of-sample performance of the main strategies, six benchmark strate-

gies are considered. Apart from the naive 1/N strategy, the other benchmark strategies

obtain their optimal weights as GV-Hybr and BV-Hybr and diverge merely on which

covariance estimator is used to solve (3.10) subject to (3.11).

The first four benchmark strategies use only historical data to build minimum variance

portfolios. I denote V-Hist as the strategy that uses the sample covariance matrix as an

input, while GV-Hist and BV-Hist denote the strategies that use the matrices N̂ and

P̂ as an input, respectively. Furthermore, I consider the shrinkage estimator proposed

by Ledoit and Wolf (2003) which sets the single-factor model of Sharpe (1963) as the

shrinkage target to reduce the estimation error of the sample covariance matrix5. The

strategy that uses the resulting covariance matrix is denoted by V-Shri.

Similar to the main strategies, the next competitor, denoted as V-Hybr, uses histor-

ical data to obtain the sample correlation matrix but uses implied volatilities to obtain

the final (hybrid) covariance estimator.

Finally, I also construct fully-implied covariance matrices based on the methodology

introduced by Chang et al. (2012). Under the assumption of a single-factor model and

5For an excellent review on shrinkage estimators, see Ledoit and Wolf (2020).
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zero skewness of idiosyncratic shocks, they suggest to compute the implied market beta

estimate of a stock as follows:

β∗
i =

(
IS∗

i

IS∗
m

)1/3(
IV ∗

i

IV ∗
m

)1/2

, (3.15)

where IS∗
i (IV ∗

i ) is the implied skewness (variance) of the stock formed according to

the methodology of Bakshi et al. (2003). The subscript m denotes the market, which is

approximated by the S&P 500 in this study. At each rebalancing date I calculate β∗ for all

relevant stocks and fill each off-diagonal element of the fully-implied covariance matrix by

β∗
i β

∗
j IV

∗
m and fill each diagonal element with

√
IV ∗

i . I denote the respective strategy that

uses this matrix as an input as V-Impl. Table 3.1 lists all defined strategies including

their abbrevations used in the following tables and figures.

[Table 3.1 about here.]

3.4 Empirical Analysis

This section examines whether implied good or bad volatility help to improve out-of-

sample performance of the portfolio strategies. I begin with reporting the performance

of each portfolio strategy introduced in the previous section. Then, I run a series of

robustness checks to validate the findings. Lastly, I check whether the out-of-sample

performance of the portfolios can be attributed to their exposure to certain risk factors.

3.4.1 Main Results

Table 3.2 reports the out-of-sample annualized sample/symmetric volatility (σ̂), annu-

alized realized good volatility (σ̂g), annualized realized bad volatility (σ̂b), Sharpe and

Sortino ratio of each portfolio strategy. The volatility measure σ̂g (σ̂b) is calculated as the

annualized sum of absolute positive (negative) daily returns. To test the one-sided null

hypothesis that a given strategy underperforms the benchmark, I generate 10,000 boot-

strapped pairs of daily strategy and benchmark returns via resampling with replacement.

The one-sided p-value is reported for the null that the difference between the portfolio

and benchmark volatility (risk-adjusted return) measure is larger (smaller) than or equal

to zero. Each portfolio strategy is tested against the three benchmarks 1/N , V-Hist and

V-Impl.

[Table 3.2 about here.]
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The lowest out-of-sample symmetric (10.87%), good (8.07%) and bad volatility (7.32%)

is produced by BV-Hybr. All p-values calculated for these measures are smaller than 1%,

except for the comparison relative to V-Hist where the p-value is below 10%. How much

does option-implied (downside) information contribute to this outperformance? This

question can be answered by comparing the strategies that use historical data only (V-

Hist, GV-Hist and BV-Hist) to their hybrid counterparts (V-Hybr, GV-Hybr and

BV-Hybr). While the out-of-sample volatility measures are lower for V-Hybr and BV-

Hybr, the opposite is true for GV-Hybr. Except for V-Impl, all minimum variance

portfolio strategies are able to beat 1/N significantly in each volatility metric6. In par-

ticular, the three out-of-sample volatility measures for the BV-Hybr portfolio are about

50% lower than the corresponding numbers for the 1/N portfolio.

The highest annualized Sharpe ratio (0.93) and Sortino ratio (0.10), the latter being

calculated with a minimum acceptable return of 0%, are both generated by BV-Hybr.

Both are statistically significant at the 1% significance level relative to the three bench-

marks. Similar to the findings of DeMiguel et al. (2009), for example, V-Hist does not

produce significantly higher Sharpe ratios than 1/N . In fact, among all tested strategies

only GV-Hybr and BV-Hybr produce Sharpe and Sortino ratios that are significantly

higher than each benchmark strategy at the 5% level. While high Sharpe and Sortino

ratios are generally desirable, I consider the three out-of-sample volatility measures as

the main performance metrics due to the fact that the respective objective function of

each minimum variance portfolio strategies is to minimize the corresponding portfolio

volatility/variance measure.

3.4.2 Robustness Checks

Estimation Windows

In order to assess the robustness of the main conclusions drawn from Table 3.2, I con-

sider alternative historical estimation windows of 6- and 24-months, which corresponds

to halving and doubling the default historical estimation window size of 12-month. Table

3.3 reports the results with a rolling 6-month estimation window. While the lowest sam-

ple and good volatility are now produced by GV-Hist, the lowest bad volatility is still

generated by BV-Hybr, all significant at the 1% confidence level. In terms of highest

Sharpe and Sortino ratio, BV-Hybr remains at the top. Both are significant at the 5%

level.

6Studies such as DeMiguel et al. (2013) and Kempf et al. (2014) also confirm that minimum variance
portfolios formed with various types of covariance estimators beat the 1/N portfolio in terms of out-of-
sample volatility most of the time.
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[Table 3.3 about here.]

Table 3.4 displays the results with a rolling 24-month estimation window. Overall, the

results are comparable to the base case results shown in Table 3.2 in both absolute and

relative terms.

[Table 3.4 about here.]

Random Portfolio Universes

As a next robustness check, instead of taking the entire set of S&P 500 stocks, I randomly

select 100, 200, 300 and 400 stocks from the S&P 500 universe each month from which the

portfolio strategies can allocate wealth to. Table 3.5 reports the results with 100 randomly

selected stocks. Contrary to the results shown earlier, BV-Hybr does not outperform

the others in this setting. Instead, V-Shri produces the lowest out-of-sample sample,

good and bad portfolio volatilities and, with one exception, significantly lower than the

three benchmarks at the 1% level. However, no strategy is able to produce significantly

higher Sharpe and Sortino ratios against any benchmark at the 5% level.

[Table 3.5 about here.]

Table 3.6, 3.7 and 3.8 report the results for 200, 300 and 400 randomly selected stocks,

respectively. With regard to the three portfolio volatility measures, BV-Hybr produces

the lowest numbers, mostly significant at the 1% level. While no strategy is able to

provide the highest Sharpe and Sortino ratios in all three settings, both metrics increase

for BV-Hybr and the corresponding p-values drop as the number of randomly selected

stocks increases.

[Table 3.6 about here.]

[Table 3.7 about here.]

[Table 3.8 about here.]

Good and bad times

To conduct a further robustness check, I divide the main sample into two subsamples:

good and bad times. The period from April 2000 to March 2003, from May 2007 to

December 2009 and from February 2020 to April 2020 is defined as bad times and the

rest of the main sample as good times. Table 3.9 reports the respective results. Panel A

of Table 3.9 indicates that BV-Hybr produces the best performance in each metric in
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good times, all significant at the 1% level. It is also the portfolio strategy that produces

the lowest, good and bad volatility in bad times, as displayed in Panel B of Table 3.9.

Furthermore, they are statistically significant at the 1% level except when compared to

V-Hist with regard to good volatility. However, regarding Sharpe and Sortino ratios, no

strategy is able to beat any benchmark in bad times significantly. All portfolio volatility

measures are roughly twice as large in bad times as in good times. Nevertheless, with

the exception of V-Impl, all minimum variance portfolio strategies manage to produce

significantly lower volatilities than the 1/N benchmark.

[Table 3.9 about here.]

To shed more light on the consistency of the portfolio volatility results in each sub-

sample, Figure 3.1 depicts the evolution of the three volatility measures with a rolling

window of 12-month over time for the five strategies 1/N , V-Hist, V-Hybr, GV-Hybr

and BV-Hybr. Visual inspection shows that the three rolling volatility metrics of BV-

Hybr are most of the time lower than those of the other strategies in good and in bad

times and that the respective findings in the two subsamples reported in Table 3.9 are not

the result of particular outliers. To sum up, the plots indicate that the minimum variance

portfolio strategies, and in particular BV-Hybr, produce consistently lower sample, good

and bad volatilities than 1/N in good times and in bad times.

[Figure 3.1 about here.]

Transaction costs and weights analysis

In the final robustness check I analyze the portfolio weights and evaluate the impact of

transaction costs on the Sharpe and Sortino ratios reported in Table 3.2. I compute the

turnover of each portfolio strategy as the average sum of absolute changes in weights

of the portfolio from one month to the next to assess the amount of trading needed for

the strategy to be fully implemented. Furthermore, I calculate the transaction cost that

equates the Sharpe or Sortino ratio of the strategy to that of the benchmark and label

it the equivalent transaction cost ETC, following DeMiguel et al. (2009). The degree of

portfolio weight concentration is measured by the Herfindahl index HI and is computed

as the sum of squared portfolio weights for each portfolio strategy. The results are shown

in Table 3.10. The outperformance of the BV-Hybr strategy seems to come at the cost of

high turnover: 114.89% compared to 52.72% turnover produced by V-Hist, for example.

As one would expect, the strategy with the lowest turnover is 1/N with 1.57%. Overall,

it seems that the type of data used to form the portfolios is the main determinant of the

resulting turnover level: among the minimum variance strategies, those who use historical
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data only have the lowest turnover, followed by the hybrid strategies and with V-Impl

at the top, which solely uses implied data. Turnover appears to also increase by using

implied good or bad volatilities instead of implied volatilities to form minimum variance

portfolios, which is observable by comparing the turnover of V-Hybr (94.18%) with GV-

Hybr (120.57%) and BV-Hybr (114.89%). The corresponding semicorrelations that are

used by GV-Hybr and BV-Hybr do not seem to be the reason behind the relatively high

turnover as their counterparts GV-Hist and BV-Hist that use them as well generate

significantly lower turnover (54.61% and 51.16%, respectively).

[Table 3.10 about here.]

Despite the high turnover of BV-Hybr, outperformance in terms of the Sharpe ratio

(Sortino ratio) vs. 1/N and V-Hist is sustained with transaction costs below 32 (35) and

44 (47) bps and vs. V-Impl above 100 (100) bps, respectively. The results are similar

for GV-Hybr and roughly 10 bps smaller for V-Hybr and BV-Hist. These numbers

are higher than the transaction costs reported by Frazzini et al. (2018) who study a large

trade execution database of an institutional investor. From August 1998 to June 2016,

they estimate average transaction costs of 9 bps for US large cap stocks.

The degree of portfolio concentration is also highly dependent on which covariance es-

timator is used for minimum variance optimization. While it is well known that minimum

variance portfolios tend to be relatively concentrated (see, e.g., Clarke et al. (2013)), the

concentration is especially higher for the strategies using semivolatilities and semicorrela-

tions only as the HI ranges for them from 53.23 to 80.43 compared to the other minimum

variance portfolios where the HI ranges from 24.84 to 35.39. Again, the only exception

is V-Impl which produces the highest HI of 92.32.

3.4.3 Risk Factor Sensitivities

Equity Risk Factors

Next, I investigate to which degree the returns of the portfolio strategies are related to

popular equity risk factors. To do so, the excess returns of the strategies are regressed

on the Fama-French 5 factors (Fama and French, 2015) - market MKT , size SMB, value

HML, profitability RMW and investment CMA - extended by the momentum factor

MOM7 and the betting against beta factor BAB of Frazzini and Pedersen (2014)8. The

t-statistics are computed with Newey and West (1987) standard errors. The results of the

7The Fama-French 5 factor and the momentum factor data are obtained from https://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html. The latter is similar to the momen-
tum factor described in Carhart (1997).

8The data can be found at https://www.aqr.com/Insights/Datasets/.
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standard multifactor regressions are based on monthly data and are presented in Table

3.11. The regressions in Panel A of Table 3.11 exclude the BAB factor and show that the

adjusted R2s range between 0.36 and 0.59 for the minimum variance portfolio strategies

and 0.96 for the 1/N strategy. Interestingly, strategies that utilize implied good, bad

or symmetric volatility produce lower adjusted R2s than their counterparts that rely on

historical data only. Given that all strategies examined in this study engage in long-

only investments, it is not surprising that the MKT factor is positively and significantly

related with the (excess) returns of each strategy. The corresponding coefficient is close

to unity for 1/N , and ranges from 0.41 to 0.70 for the minimum variance strategies9. No

portfolio except for 1/N has significant SMB or HML exposure. RMW is significantly

positively related with most strategies while the CMA and UMD coefficients are only in

some cases significant.

[Table 3.11 about here.]

Panel B of Table 3.11 augments the regression by the BAB factor. The results indi-

cate that except for 1/N and V-Impl, all portfolio strategies have a significant positive

exposure to the BAB factor and that the addition of this factor mostly increases the

adjusted R2s to a small degree.

Overall, the regression results for the excess returns of GV-Hybr and BV-Hybr

stand out in several ways. Only these strategies generate positive, highly significant and

economically meaningful alphas of 0.465% and 0.357% per month (0.514% and 0.396%

without the BAB factor), the lowest market betas of 0.47 and 0.41 and the lowest adjusted

R2s of 0.40 and 0.38 (0.39 and 0.36 without the BAB factor), respectively.

Market Moment Risk Factors

Given the limited success of common equity risk factors to explain the excess returns of

all considered portfolio strategies, I now turn to analyze whether market moment risk

factors are better able to do so. Chang et al. (2013) find that excess market returns are

significantly related with innovations in implied market volatility (∆
√
IV ∗

m), skewness

(∆IS∗
m) and kurtosis (∆IK∗

m). As in their original paper, I use S&P 500 index options

data and apply the Bakshi et al. (2003) moment estimation methodology to calculate

the three implied measures
√

IV ∗
m, IS

∗
m and IK∗

m. The corresponding put and call inte-

grals are evaluated applying the methodology described in 3.3.1. Since all three implied

market moments are highly serially correlated, I follow Chang et al. (2013) and obtain

9Chow et al. (2014) investigate the returns of minimum variance, inverse volatility and inverse beta
portfolios and find that among these risk-based portfolio strategies the former produces the lowest market
betas in each of the three datasets (U.S., global and emerging market stocks) considered.
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estimates of ∆
√

IV ∗
m by calculating first differences in

√
IV ∗

m, and obtain estimates of

∆IS∗
m and ∆IK∗

m by using the residuals of a fitted ARMA(1,1) model to IS∗
m and IK∗

m,

respectively10. The monthly excess returns of each portfolio strategy are regressed on the

monthly estimates of the innovations in the three implied market moments. Panel A and

B of Table 3.12 and Panel A of Table 3.13 show the standard regression results obtained

when the excess returns are regressed on ∆
√
IV ∗

m, ∆IS∗
m and ∆IK∗

m, respectively. The

coefficients of ∆
√

IV ∗
m (∆IK∗

m) are all negative (positive) and statistically significant.

The coefficients of ∆IS∗
m are mostly significant and always negative. These coefficient

signs match with those presented in Chang et al. (2013). While the ∆IS∗
m and ∆IK∗

m

regressions reported here produce relative low adjusted adjusted R2s ranging from 0.01

to 0.12, the corresponding numbers for the ∆
√
IV ∗

m regressions are significantly higher

but vary strongly depending on the portfolio strategy: at the lower end between 0.16 and

0.18 for GV-Hist, GV-Hybr and BV-Hybr and at the upper end between 0.31 and

0.56 for V-Hist, V-Shri and 1/N . The intercept coefficient is always positive and highly

statistically significant irrespective of the explanatory variable used.

[Table 3.12 about here.]

[Table 3.13 about here.]

Panel B of Table 3.13 reports the regression results where the excess returns are

regressed on all three implied market moment risk factors simultaneously. The results

emphasize that the only relevant factor overall seems to be ∆
√

IV ∗
m, since the coefficients

remain negative and statistically significant as in Panel A of Table 3.12 and both, the

intercept coefficients and the adjusted R2s remain largely unchanged with the other two

factors included. This is also reflected by the coefficient estimates of ∆IS∗
m and ∆IK∗

m,

since the former is in no setting significant anymore and the latter is only significant for

the 1/N strategy. Compared to the results shown in 3.11, it is fair to conclude that

the (implied) market moment risk factors seem to provide less explanatory power for the

portfolio strategy excess returns.

3.5 Conclusion

In this study I show how forward-looking implied good and bad volatilities can be used

to form minimum good and bad variance portfolios and compare their out-of-sample per-

formance with several other strategies including the 1/N strategy and minimum variance

portfolio strategies that use historical and/or implied data.

10In line with Chang et al. (2013), I find that taking first differences of
√
IV ∗

m is enough to eliminate
autocorrelation in the data, but not for IS∗

m and IK∗
m and that fitted ARMA(1,1) models are able to

remove autocorrelation in both time series.
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I present evidence that a minimum (bad) variance strategy that constructs portfolios

with implied bad volatilities and historical semicorrelations provides the highest out-of-

sample Sharpe and the highest Sortino ratio. Although the use of implied semivolatilities

in particular seems to significantly increase portfolio turnover, the Sharpe and Sortino

ratio remain sufficiently high even after considering transaction costs.

Even more important and more robust is the evidence provided by this article that

the strategy produces consistently lower out-of-sample bad and in most cases symmetric

portfolio volatilities than the other strategies tested.

Only the minimum good and bad variance portfolio strategies that use implied good

and bad volatilities, respectively, produce highly statistically and economically significant

Fama-French 5 plus momentum factor alphas and the lowest market betas. Adding the

betting against beta factor to the factor model do not materially affect this finding.
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Figure 3.1: Rolling portfolio volatilities.
This figure displays the rolling 12-month out-of-sample annualized volatility (σ̂), good
volatility (σ̂g) and bad volatility (σ̂b) of five portfolio strategies. The sample period goes
from January 1996 to October 2022.
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Tables

Table 3.1: List of evaluated portfolio strategies.
This table lists the various portfolio strategies considered for the empirical analysis.

No. Portfolio Strategy Abbreviation
Naive

1 Rebalanced 1/N strategy 1/N
Minimum Variance Portfolio

2 Minimum variance portfolio based on historical data V-Hist
3 Minimum variance portfolio based on shrinkage V-Shri
4 Minimum variance portfolio based on implied and historical data V-Hybr
5 Minimum variance portfolio based on implied data V-Impl
Minimum Good Variance Portfolio

6 Minimum (good) variance portfolio based on historical data GV-Hist
7 Minimum (good) variance portfolio based on implied and historical data GV-Hybr
Minimum Bad Variance Portfolio

8 Minimum (bad) variance portfolio based on historical data BV-Hist
9 Minimum (bad) variance portfolio based on implied and historical data BV-Hybr

Table 3.2: Portfolio performance.
This table provides the out-of-sample performance of the portfolio strategies. σ̂ is the

annualized sample volatility, σ̂g is the annualized good volatility, σ̂b is the annualized bad
volatility, ‘Sharpe’ is the Sharpe ratio and ‘Sortino’ is the Sortino ratio. All volatility
measures are displayed in percentage terms. In each of the first three (last two) columns,
the lowest (highest) number is shown in bold. The parentheses include the bootstrapped
p-values for the null hypothesis that the portfolio strategy performs equally as good as the
respective benchmark (1/N , V-Hist or V-Impl, presented in this order). The sample
period goes from January 1996 to October 2022.

σ̂ σ̂g σ̂b Sharpe Sortino
1/N 20.74 14.74 14.61 0.48 0.06

(N.A./1.00/0.00) (N.A./1.00/0.00) (N.A./1.00/0.08) (N.A./0.61/0.30) (N.A./0.60/0.36)
V-Hist 12.39 8.81 8.73 0.56 0.06

(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.39/N.A./0.26) (0.40/N.A./0.31)
V-Shri 12.38 8.80 8.72 0.56 0.07

(0.00/0.13/0.00) (0.00/0.18/0.00) (0.00/0.30/0.00) (0.36/0.21/0.24) (0.38/0.23/0.30)
V-Hybr 11.38 8.20 7.91 0.72 0.08

(0.00/0.00/0.00) (0.00/0.01/0.00) (0.00/0.00/0.00) (0.07/0.07/0.06) (0.08/0.08/0.09)
V-Impl 22.60 16.58 15.38 0.39 0.05

(1.00/1.00/N.A.) (1.00/1.00/N.A.) (0.92/1.00/N.A.) (0.70/0.74/N.A.) (0.64/0.69/N.A.)
GV-Hist 12.76 9.16 8.90 0.56 0.07

(0.00/0.95/0.00) (0.00/0.95/0.00) (0.00/0.76/0.00) (0.40/0.48/0.27) (0.40/0.46/0.31)
GV-Hybr 14.51 11.00 9.50 0.84 0.09

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/0.76/0.00) (0.04/0.05/0.01) (0.04/0.05/0.02)
BV-Hist 13.37 9.61 9.32 0.59 0.07

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/1.00/0.00) (0.30/0.33/0.20) (0.30/0.31/0.24)
BV-Hybr 10.87 8.07 7.32 0.93 0.10

(0.00/0.00/0.00) (0.00/0.01/0.00) (0.00/0.00/0.00) (0.01/0.01/0.01) (0.01/0.01/0.01)

23



Table 3.3: Portfolio performance: 6-month window.
This table provides the out-of-sample performance of the portfolio strategies. Com-

pared to Table 3.2, historical volatilities and correlations are estimated with a 6-month
window. σ̂ is the annualized sample volatility, σ̂g is the annualized good volatility, σ̂b is the
annualized bad volatility, ‘Sharpe’ is the Sharpe ratio and ‘Sortino’ is the Sortino ratio.
All volatility measures are displayed in percentage terms. In each of the first three (last
two) columns, the lowest (highest) number is shown in bold. The parentheses include the
bootstrapped p-values for the null hypothesis that the portfolio strategy performs equally
as good as the respective benchmark (1/N , V-Hist or V-Impl, presented in this order).
The sample period goes from January 1996 to October 2022.

σ̂ σ̂g σ̂b Sharpe Sortino
1/N 20.73 14.74 14.60 0.48 0.06

(N.A./1.00/0.00) (N.A./1.00/0.00) (N.A./1.00/0.03) (N.A./0.34/0.54) (N.A./0.33/0.59)
V-Hist 12.02 8.47 8.55 0.46 0.06

(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.66/N.A./0.64) (0.67/N.A./0.69)
V-Shri 11.89 8.38 8.45 0.50 0.06

(0.00/0.00/0.00) (0.00/0.00/0.00) (0.00/0.00/0.00) (0.56/0.02/0.57) (0.58/0.03/0.63)
V-Hybr 11.84 8.48 8.28 0.65 0.07

(0.00/0.18/0.00) (0.00/0.52/0.00) (0.00/0.05/0.00) (0.17/0.05/0.27) (0.18/0.05/0.32)
V-Impl 23.08 17.03 15.61 0.49 0.06

(1.00/1.00/N.A.) (1.00/1.00/N.A.) (0.97/1.00/N.A.) (0.46/0.36/N.A.) (0.41/0.31/N.A.)
GV-Hist 11.00 7.81 7.77 0.57 0.07

(0.00/0.00/0.00) (0.00/0.01/0.00) (0.00/0.00/0.00) (0.40/0.20/0.44) (0.41/0.20/0.49)
GV-Hybr 14.56 11.14 9.42 0.92 0.10

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/0.81/0.00) (0.02/0.01/0.02) (0.02/0.01/0.02)
BV-Hist 12.70 9.14 8.85 0.61 0.07

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/0.97/0.00) (0.29/0.09/0.36) (0.29/0.08/0.40)
BV-Hybr 11.09 8.25 7.45 0.94 0.10

(0.00/0.00/0.00) (0.00/0.27/0.00) (0.00/0.00/0.00) (0.01/0.00/0.02) (0.01/0.00/0.04)
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Table 3.4: Portfolio performance: 24-month window.
This table provides the out-of-sample performance of the portfolio strategies. Com-

pared to Table 3.2, historical volatilities and correlations are estimated with a 24-month
window. σ̂ is the annualized sample volatility, σ̂g is the annualized good volatility, σ̂b is the
annualized bad volatility, ‘Sharpe’ is the Sharpe ratio and ‘Sortino’ is the Sortino ratio.
All volatility measures are displayed in percentage terms. In each of the first three (last
two) columns, the lowest (highest) number is shown in bold. The parentheses include the
bootstrapped p-values for the null hypothesis that the portfolio strategy performs equally
as good as the respective benchmark (1/N , V-Hist or V-Impl, presented in this order).
The sample period goes from January 1996 to October 2022.

σ̂ σ̂g σ̂b Sharpe Sortino
1/N 20.73 14.74 14.60 0.48 0.06

(N.A./1.00/0.00) (N.A./1.00/0.00) (N.A./1.00/0.03) (N.A./0.70/0.28) (N.A./0.69/0.32)
V-Hist 12.86 9.17 9.04 0.59 0.07

(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.30/N.A./0.18) (0.31/N.A./0.22)
V-Shri 12.86 9.17 9.03 0.60 0.07

(0.00/0.30/0.00) (0.00/0.51/0.00) (0.00/0.24/0.00) (0.26/0.02/0.16) (0.28/0.03/0.20)
V-Hybr 11.49 8.33 7.95 0.81 0.09

(0.00/0.00/0.00) (0.00/0.00/0.00) (0.00/0.00/0.00) (0.02/0.03/0.02) (0.03/0.03/0.04)
V-Impl 22.52 16.39 15.45 0.37 0.05

(1.00/1.00/N.A.) (1.00/1.00/N.A.) (0.97/1.00/N.A.) (0.72/0.82/N.A.) (0.68/0.78/N.A.)
GV-Hist 13.12 9.40 9.18 0.55 0.06

(0.00/0.97/0.00) (0.00/0.95/0.00) (0.00/0.85/0.00) (0.43/0.67/0.27) (0.42/0.65/0.30)
GV-Hybr 14.63 11.11 9.56 0.81 0.09

(0.00/0.99/0.00) (0.00/0.99/0.00) (0.00/0.66/0.00) (0.05/0.09/0.02) (0.05/0.08/0.02)
BV-Hist 13.76 9.91 9.55 0.58 0.07

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/1.00/0.00) (0.33/0.51/0.19) (0.32/0.47/0.22)
BV-Hybr 10.82 7.99 7.33 0.93 0.10

(0.00/0.00/0.00) (0.00/0.00/0.00) (0.00/0.00/0.00) (0.01/0.01/0.01) (0.01/0.01/0.01)
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Table 3.5: Portfolio performance: 100 random stocks.
This table provides the out-of-sample performance of the portfolio strategies. Compared

to Table 3.2, the investment universe consists of 100 S&P 500 stocks selected at random
each month. σ̂ is the annualized sample volatility, σ̂g is the annualized good volatility, σ̂b is
the annualized bad volatility, ‘Sharpe’ is the Sharpe ratio and ‘Sortino’ is the Sortino ratio.
All volatility measures are displayed in percentage terms. In each of the first three (last
two) columns, the lowest (highest) number is shown in bold. The parentheses include the
bootstrapped p-values for the null hypothesis that the portfolio strategy performs equally
as good as the respective benchmark (1/N , V-Hist or V-Impl, presented in this order).
The sample period goes from January 1996 to October 2022.

σ̂ σ̂g σ̂b Sharpe Sortino
1/N 21.02 15.04 14.72 0.51 0.06

(N.A./1.00/1.00) (N.A./1.00/0.98) (N.A./1.00/1.00) (N.A./0.91/0.71) (N.A./0.90/0.73)
V-Hist 13.73 9.86 9.59 0.73 0.08

(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.09/N.A./0.26) (0.10/N.A./0.31)
V-Shri 13.71 9.84 9.58 0.72 0.08

(0.00/0.01/0.00) (0.00/0.01/0.00) (0.00/0.22/0.00) (0.10/0.81/0.27) (0.11/0.82/0.32)
V-Hybr 14.08 10.20 9.73 0.68 0.08

(0.00/0.94/0.00) (0.00/0.88/0.00) (0.00/0.80/0.00) (0.16/0.68/0.35) (0.16/0.64/0.39)
V-Impl 19.24 14.07 13.15 0.60 0.07

(0.00/1.00/N.A.) (0.02/1.00/N.A.) (0.00/1.00/N.A.) (0.29/0.74/N.A.) (0.27/0.69/N.A.)
GV-Hist 14.42 10.38 10.04 0.69 0.08

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/1.00/0.00) (0.19/0.65/0.35) (0.20/0.63/0.38)
GV-Hybr 14.62 10.67 10.02 0.65 0.07

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/0.99/0.00) (0.25/0.72/0.42) (0.24/0.67/0.44)
BV-Hist 14.69 10.64 10.16 0.77 0.08

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/1.00/0.00) (0.07/0.30/0.19) (0.08/0.27/0.22)
BV-Hybr 14.46 10.82 9.62 0.65 0.08

(0.00/0.97/0.00) (0.00/0.98/0.00) (0.00/0.57/0.00) (0.25/0.72/0.43) (0.21/0.61/0.40)
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Table 3.6: Portfolio performance: 200 random stocks.
This table provides the out-of-sample performance of the portfolio strategies. Compared

to Table 3.2, the investment universe consists of 200 S&P 500 stocks selected at random
each month. σ̂ is the annualized sample volatility, σ̂g is the annualized good volatility, σ̂b is
the annualized bad volatility, ‘Sharpe’ is the Sharpe ratio and ‘Sortino’ is the Sortino ratio.
All volatility measures are displayed in percentage terms. In each of the first three (last
two) columns, the lowest (highest) number is shown in bold. The parentheses include the
bootstrapped p-values for the null hypothesis that the portfolio strategy performs equally
as good as the respective benchmark (1/N , V-Hist or V-Impl, presented in this order).
The sample period goes from January 1996 to October 2022.

σ̂ σ̂g σ̂b Sharpe Sortino
1/N 20.90 14.89 14.68 0.50 0.06

(N.A./1.00/0.99) (N.A./1.00/0.82) (N.A./1.00/1.00) (N.A./0.45/0.38) (N.A./0.44/0.42)
V-Hist 13.31 9.48 9.36 0.51 0.06

(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.55/N.A./0.43) (0.56/N.A./0.47)
V-Shri 13.28 9.44 9.35 0.52 0.06

(0.00/0.01/0.00) (0.00/0.01/0.00) (0.00/0.27/0.00) (0.53/0.12/0.40) (0.53/0.15/0.45)
V-Hybr 13.02 9.32 9.11 0.57 0.07

(0.00/0.11/0.00) (0.00/0.28/0.00) (0.00/0.07/0.00) (0.39/0.30/0.30) (0.40/0.30/0.34)
V-Impl 19.87 14.48 13.62 0.45 0.06

(0.01/1.00/N.A.) (0.18/1.00/N.A.) (0.00/1.00/N.A.) (0.62/0.57/N.A.) (0.58/0.53/N.A.)
GV-Hist 13.75 9.81 9.65 0.44 0.05

(0.00/0.99/0.00) (0.00/0.95/0.00) (0.00/0.96/0.00) (0.70/0.78/0.59) (0.69/0.76/0.61)
GV-Hybr 13.90 10.17 9.50 0.65 0.07

(0.00/0.96/0.00) (0.00/0.95/0.00) (0.00/0.71/0.00) (0.23/0.16/0.17) (0.22/0.15/0.18)
BV-Hist 14.13 10.16 9.84 0.64 0.07

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/1.00/0.00) (0.22/0.07/0.18) (0.23/0.07/0.21)
BV-Hybr 12.62 9.15 8.71 0.56 0.07

(0.00/0.01/0.00) (0.00/0.17/0.00) (0.00/0.00/0.00) (0.43/0.37/0.33) (0.41/0.35/0.35)
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Table 3.7: Portfolio performance: 300 random stocks.
This table provides the out-of-sample performance of the portfolio strategies. Compared

to Table 3.2, the investment universe consists of 300 S&P 500 stocks selected at random
each month. σ̂ is the annualized sample volatility, σ̂g is the annualized good volatility, σ̂b is
the annualized bad volatility, ‘Sharpe’ is the Sharpe ratio and ‘Sortino’ is the Sortino ratio.
All volatility measures are displayed in percentage terms. In each of the first three (last
two) columns, the lowest (highest) number is shown in bold. The parentheses include the
bootstrapped p-values for the null hypothesis that the portfolio strategy performs equally
as good as the respective benchmark (1/N , V-Hist or V-Impl, presented in this order).
The sample period goes from January 1996 to October 2022.

σ̂ σ̂g σ̂b Sharpe Sortino
1/N 20.82 14.81 14.65 0.48 0.06

(N.A./1.00/0.70) (N.A./1.00/0.34) (N.A./1.00/0.88) (N.A./0.44/0.63) (N.A./0.44/0.66)
V-Hist 12.94 9.20 9.11 0.49 0.06

(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.56/N.A./0.66) (0.56/N.A./0.68)
V-Shri 12.90 9.17 9.09 0.51 0.06

(0.00/0.00/0.00) (0.00/0.04/0.00) (0.00/0.00/0.00) (0.53/0.06/0.64) (0.53/0.07/0.66)
V-Hybr 12.32 8.86 8.59 0.62 0.07

(0.00/0.01/0.00) (0.00/0.13/0.00) (0.00/0.00/0.00) (0.23/0.13/0.38) (0.23/0.13/0.42)
V-Impl 20.55 15.03 14.04 0.54 0.06

(0.30/1.00/N.A.) (0.66/1.00/N.A.) (0.12/1.00/N.A.) (0.37/0.34/N.A.) (0.34/0.32/N.A.)
GV-Hist 13.29 9.55 9.25 0.52 0.06

(0.00/0.92/0.00) (0.00/0.90/0.00) (0.00/0.73/0.00) (0.48/0.39/0.59) (0.47/0.37/0.61)
GV-Hybr 15.13 11.49 9.89 0.82 0.09

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/0.79/0.00) (0.05/0.03/0.07) (0.04/0.03/0.06)
BV-Hist 13.81 9.95 9.59 0.67 0.07

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/1.00/0.00) (0.15/0.02/0.28) (0.15/0.02/0.32)
BV-Hybr 11.93 8.77 8.11 0.71 0.08

(0.00/0.00/0.00) (0.00/0.11/0.00) (0.00/0.00/0.00) (0.13/0.08/0.23) (0.12/0.07/0.24)
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Table 3.8: Portfolio performance: 400 random stocks.
This table provides the out-of-sample performance of the portfolio strategies. Compared

to Table 3.2, the investment universe consists of 400 S&P 500 stocks selected at random
each month. σ̂ is the annualized sample volatility, σ̂g is the annualized good volatility, σ̂b is
the annualized bad volatility, ‘Sharpe’ is the Sharpe ratio and ‘Sortino’ is the Sortino ratio.
All volatility measures are displayed in percentage terms. In each of the first three (last
two) columns, the lowest (highest) number is shown in bold. The parentheses include the
bootstrapped p-values for the null hypothesis that the portfolio strategy performs equally
as good as the respective benchmark (1/N , V-Hist or V-Impl, presented in this order).
The sample period goes from January 1996 to October 2022.

σ̂ σ̂g σ̂b Sharpe Sortino
1/N 20.75 14.76 14.61 0.48 0.06

(N.A./1.00/0.00) (N.A./1.00/0.00) (N.A./1.00/0.08) (N.A./0.45/0.22) (N.A./0.45/0.29)
V-Hist 12.56 8.91 8.87 0.50 0.06

(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.55/N.A./0.26) (0.55/N.A./0.33)
V-Shri 12.54 8.90 8.85 0.51 0.06

(0.00/0.05/0.00) (0.00/0.21/0.00) (0.00/0.05/0.00) (0.51/0.10/0.24) (0.52/0.10/0.31)
V-Hybr 11.94 8.56 8.35 0.65 0.07

(0.00/0.00/0.00) (0.00/0.09/0.00) (0.00/0.00/0.00) (0.17/0.09/0.08) (0.18/0.10/0.13)
V-Impl 23.54 17.47 15.78 0.33 0.05

(1.00/1.00/N.A.) (1.00/1.00/N.A.) (0.92/1.00/N.A.) (0.78/0.74/N.A.) (0.71/0.67/N.A.)
GV-Hist 12.94 9.34 8.97 0.53 0.06

(0.00/0.95/0.00) (0.00/0.96/0.00) (0.00/0.69/0.00) (0.47/0.38/0.24) (0.45/0.35/0.28)
GV-Hybr 15.03 11.34 9.89 0.76 0.09

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/0.91/0.00) (0.08/0.06/0.02) (0.08/0.06/0.03)
BV-Hist 13.55 9.76 9.42 0.58 0.07

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/1.00/0.00) (0.33/0.18/0.15) (0.33/0.17/0.21)
BV-Hybr 11.48 8.43 7.82 0.79 0.09

(0.00/0.00/0.00) (0.00/0.06/0.00) (0.00/0.00/0.00) (0.06/0.03/0.02) (0.06/0.03/0.04)
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Table 3.9: Portfolio performance: good and bad times.
This table provides the out-of-sample performance of the portfolio strategies divided

into two subsamples: good and bad times. σ̂ is the annualized sample volatility, σ̂g is
the annualized good volatility, σ̂b is the annualized bad volatility, ‘Sharpe’ is the Sharpe
ratio and ‘Sortino’ is the Sortino ratio. All volatility measures are displayed in percentage
terms. In each of the first three (last two) columns, the lowest (highest) number is shown
in bold. The parentheses include the bootstrapped p-values for the null hypothesis that
the portfolio strategy performs equally as good as the respective benchmark (1/N , V-
Hist or V-Impl, presented in this order). Bad times are defined from April 2000 to
March 2003, from May 2007 to December 2009 and from February 2020 to April 2020.
The rest of the main sample, January 1996 to October 2022, is defined as good times.

σ̂ σ̂g σ̂b Sharpe Sortino
Panel A: Good Times

1/N 15.86 11.44 11.04 0.97 0.10
(N.A./1.00/0.00) (N.A./1.00/0.00) (N.A./1.00/0.00) (N.A./0.29/0.03) (N.A./0.27/0.05)

V-Hist 10.13 7.23 7.13 0.88 0.09
(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.71/N.A./0.11) (0.73/N.A./0.15)

V-Shri 10.10 7.22 7.10 0.90 0.09
(0.00/0.00/0.00) (0.00/0.04/0.00) (0.00/0.01/0.00) (0.69/0.16/0.10) (0.71/0.15/0.13)

V-Hybr 9.29 6.79 6.39 1.27 0.13
(0.00/0.00/0.00) (0.00/0.00/0.00) (0.00/0.00/0.00) (0.04/0.00/0.00) (0.05/0.00/0.00)

V-Impl 17.70 12.82 12.23 0.59 0.07
(1.00/1.00/N.A.) (1.00/1.00/N.A.) (1.00/1.00/N.A.) (0.97/0.89/N.A.) (0.95/0.85/N.A.)

GV-Hist 10.11 7.33 6.99 0.86 0.09
(0.00/0.46/0.00) (0.00/0.84/0.00) (0.00/0.22/0.00) (0.71/0.56/0.16) (0.69/0.51/0.18)

GV-Hybr 10.00 7.55 6.63 1.37 0.14
(0.00/0.23/0.00) (0.00/0.98/0.00) (0.00/0.00/0.00) (0.03/0.00/0.00) (0.02/0.00/0.00)

BV-Hist 10.67 7.80 7.31 0.88 0.09
(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/0.95/0.00) (0.71/0.51/0.12) (0.67/0.43/0.14)

BV-Hybr 8.88 6.67 5.93 1.46 0.15
(0.00/0.00/0.00) (0.00/0.00/0.00) (0.00/0.00/0.00) (0.01/0.00/0.00) (0.01/0.00/0.00)

Panel B: Bad Times
1/N 32.54 22.86 23.15 -0.22 0.00

(N.A./1.00/0.07) (N.A./1.00/0.03) (N.A./1.00/0.49) (N.A./0.72/0.85) (N.A./0.72/0.85)
V-Hist 18.23 12.91 12.87 0.00 0.02

(0.00/N.A./0.00) (0.00/N.A./0.00) (0.00/N.A./0.00) (0.28/N.A./0.69) (0.28/N.A./0.69)
V-Shri 18.25 12.89 12.91 0.00 0.02

(0.00/0.69/0.00) (0.00/0.42/0.00) (0.00/0.98/0.00) (0.27/0.40/0.68) (0.27/0.41/0.69)
V-Hybr 16.76 11.92 11.78 -0.20 0.00

(0.00/0.01/0.00) (0.00/0.09/0.00) (0.00/0.01/0.00) (0.59/0.83/0.85) (0.59/0.83/0.85)
V-Impl 34.74 25.78 23.28 0.09 0.03

(0.93/1.00/N.A.) (0.97/1.00/N.A.) (0.51/1.00/N.A.) (0.15/0.31/N.A.) (0.15/0.31/N.A.)
GV-Hist 19.39 13.78 13.63 0.09 0.03

(0.00/0.97/0.00) (0.00/0.93/0.00) (0.00/0.89/0.00) (0.23/0.30/0.57) (0.23/0.30/0.57)
GV-Hybr 24.48 18.61 15.91 0.29 0.05

(0.00/1.00/0.00) (0.06/1.00/0.00) (0.00/0.93/0.00) (0.12/0.20/0.34) (0.11/0.20/0.32)
BV-Hist 20.19 14.24 14.31 0.14 0.03

(0.00/1.00/0.00) (0.00/1.00/0.00) (0.00/1.00/0.00) (0.14/0.15/0.52) (0.14/0.15/0.53)
BV-Hybr 16.02 11.74 10.89 0.03 0.02

(0.00/0.00/0.00) (0.00/0.09/0.00) (0.00/0.00/0.00) (0.31/0.47/0.66) (0.31/0.47/0.65)
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Table 3.10: Turnover, transaction costs and concentration.
This table provides transaction costs, turnover and concentration statistics for the port-

folio strategies. ETC is the equivalent transaction cost and is calculated as the transaction
cost in bps that equates the Sharpe or Sortino ratio of the portfolio strategy with that
of the respective benchmark (1/N , V-Hist or V-Impl). If the transaction cost adjusted
performance of the portfolio strategy is better (worse) than that of the benchmark for
each transaction cost level from 1 to 100 bps, it is displayed as ‘+’ (‘-’). Turnover is
the average sum of absolute changes in portfolio weights from each monthly rebalancing
date to the next and is displayed in percentage terms. HI is the Herfindahl index and is
calculated as the sum of squared weights. The sample period goes from January 1996 to
October 2022.

ETCSharpe ETCSortino

Turnover vs. 1/N vs. V-Hist vs. V-Impl vs. 1/N vs. V-Hist vs. V-Impl HI
1/N 1.57 N.A. - + N.A. - + 0.67
V-Hist 52.72 14 N.A. + 17 N.A. + 27.35
V-Shri 50.39 16 + + 19 + + 24.84
V-Hybr 94.18 23 32 + 25 34 + 35.39
V-Impl 178.57 - - N.A. - - N.A. 92.32
GV-Hist 54.61 15 + + 18 + + 70.07
GV-Hybr 120.57 32 51 + 37 55 + 64.93
BV-Hist 51.16 22 + + 26 + + 53.23
BV-Hybr 114.89 32 44 + 35 47 + 80.43
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Table 3.11: Equity factor risk loadings.
This table provides standard regression results (coefficient estimates, t-statistics and

adjusted R2s) of out-of-sample returns of each portfolio strategy on the Fama-French 5
(Fama and French, 2015) plus momentum factors and the betting against beta factor of
Frazzini and Pedersen (2014). Panel A excludes the latter factor while Panel B includes
it in the regressions. MKT is the excess return of the market, SMB is the size factor,
HML is the value factor, RMW is the profitability factor, CMA is the investment factor,
UMD is the momentum factor and BAB is the betting against beta factor. The intercept
coefficients α are displayed in percentage terms. The t-statistics are calculated with
Newey and West (1987) standard errors and are reported in parentheses. The sample
period goes from January 1996 to October 2022.

α MKT SMB HML RMW CMA UMD BAB Adj. R2

Panel A: FF5 + UMD
1/N 0.105 1.015 0.086 0.147 0.172 0.134 -0.161 0.96

(1.75) (54.30) (2.43) (4.12) (3.88) (3.02) (-6.21)
V-Hist -0.051 0.572 0.015 -0.047 0.343 0.311 0.025 0.58

(-0.45) (18.32) (0.25) (-0.75) (5.20) (3.84) (0.55)
V-Shri -0.046 0.576 0.015 -0.044 0.344 0.311 0.022 0.59

(-0.42) (19.06) (0.25) (-0.72) (5.24) (3.82) (0.51)
V-Hybr 0.205 0.501 -0.030 -0.012 0.149 0.166 0.028 0.49

(1.85) (13.75) (-0.63) (-0.18) (1.95) (1.74) (0.70)
V-Impl 0.094 0.700 0.183 0.057 0.469 0.203 -0.188 0.50

(0.46) (11.36) (1.64) (0.55) (4.11) (1.37) (-1.94)
GV-Hist -0.001 0.479 -0.024 0.012 0.294 0.371 0.113 0.41

(0.00) (10.77) (-0.41) (0.18) (4.55) (4.71) (2.42)
GV-Hybr 0.514 0.466 0.082 -0.042 0.328 0.252 -0.152 0.39

(3.69) (9.82) (0.78) (-0.43) (2.74) (1.58) (-1.18)
BV-Hist 0.062 0.559 -0.042 0.003 0.344 0.321 -0.015 0.48

(0.45) (15.05) (-0.56) (0.04) (4.98) (3.67) (-0.31)
BV-Hybr 0.396 0.410 -0.094 0.021 0.146 0.171 0.056 0.36

(3.42) (8.57) (-1.80) (0.29) (1.87) (1.61) (1.59)
Panel B: FF5 + UMD + BAB

1/N 0.086 1.016 0.078 0.134 0.133 0.128 -0.175 0.061 0.96
(1.47) (58.04) (2.23) (3.93) (3.16) (2.67) (-7.59) (3.11)

V-Hist -0.114 0.575 -0.008 -0.088 0.217 0.290 -0.021 0.197 0.62
(-0.93) (19.69) (-0.16) (-1.32) (3.61) (3.76) (-0.47) (4.37)

V-Shri -0.110 0.578 -0.009 -0.086 0.217 0.290 -0.023 0.198 0.63
(-0.93) (20.77) (-0.18) (-1.30) (3.70) (3.76) (-0.54) (4.48)

V-Hybr 0.153 0.502 -0.050 -0.046 0.045 0.149 -0.009 0.163 0.52
(1.39) (13.95) (-1.00) (-0.72) (0.55) (1.51) (-0.24) (3.66)

V-Impl 0.059 0.701 0.170 0.034 0.399 0.192 -0.214 0.109 0.50
(0.28) (11.56) (1.51) (0.33) (3.08) (1.22) (-2.38) (1.50)

GV-Hist -0.067 0.481 -0.049 -0.032 0.161 0.349 0.065 0.208 0.46
(-0.45) (11.47) (-0.86) (-0.47) (2.55) (4.65) (1.67) (3.93)

GV-Hybr 0.465 0.468 0.064 -0.075 0.231 0.236 -0.188 0.152 0.40
(3.25) (9.83) (0.59) (-0.90) (1.83) (1.56) (-1.55) (2.69)

BV-Hist -0.002 0.562 -0.065 -0.040 0.216 0.300 -0.061 0.200 0.52
(-0.01) (16.15) (-0.95) (-0.63) (2.79) (3.76) (-1.34) (3.57)

BV-Hybr 0.357 0.412 -0.109 -0.005 0.066 0.158 0.027 0.124 0.38
(2.81) (8.16) (-2.21) (-0.07) (0.84) (1.56) (0.80) (2.31)
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Table 3.12: Market moment factor loadings (1).
This table provides standard regression results (coefficient estimates, t-statistics and ad-

justed R2s) of out-of-sample excess returns of each portfolio strategy on innovations in im-
plied market volatility ∆

√
IV ∗

m (Panel A), and on innovations in implied market skewness
∆IS∗

m (Panel B). These market moments are constructed as suggested by Chang et al.
(2013). The intercept coefficients α are displayed in percentage terms. The t-statistics are
calculated with Newey and West (1987) standard errors and are reported in parentheses.
The sample period goes from January 1996 to October 2022.

α ∆
√
IV ∗

m ∆IS∗
m Adj. R2

Panel A: ∆
√
IV ∗

m

1/N 0.891 -0.751 0.55
(4.54) (-18.17)

V-Hist 0.556 -0.348 0.31
(3.91) (-10.70)

V-Shri 0.562 -0.352 0.32
(3.98) (-10.89)

V-Hybr 0.653 -0.305 0.26
(5.21) (-10.13)

V-Impl 0.776 -0.474 0.22
(3.37) (-7.60)

GV-Hist 0.571 -0.247 0.16
(3.75) (-5.79)

GV-Hybr 0.972 -0.299 0.16
(5.23) (-5.81)

BV-Hist 0.647 -0.375 0.30
(4.19) (-11.72)

BV-Hybr 0.785 -0.233 0.18
(6.28) (-6.28)

Panel B: ∆IS∗
m

1/N 0.842 -0.043 0.03
(3.20) (-3.37)

V-Hist 0.534 -0.018 0.01
(3.41) (-2.07)

V-Shri 0.541 -0.018 0.01
(3.44) (-2.13)

V-Hybr 0.634 -0.017 0.01
(4.59) (-1.80)

V-Impl 0.750 -0.016 0.00
(2.79) (-1.28)

GV-Hist 0.555 -0.014 0.01
(3.58) (-1.66)

GV-Hybr 0.953 -0.017 0.01
(4.75) (-1.44)

BV-Hist 0.624 -0.018 0.01
(3.69) (-2.05)

BV-Hybr 0.769 -0.018 0.01
(6.58) (-2.14)
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Table 3.13: Market moment factor loadings (2).
This table provides standard regression results (coefficient estimates, t-statistics and

adjusted R2s) of out-of-sample excess returns of each portfolio strategy on innovations in
implied market kurtosis ∆IK∗

m (Panel A), and on innovations in implied market volatility
∆
√
IV ∗

m, implied market skewness ∆IS∗
m and ∆IK∗

m together (Panel B). These market
moments are constructed as suggested by Chang et al. (2013). The intercept coefficients α
are displayed in percentage terms. The t-statistics are calculated with Newey and West
(1987) standard errors and are reported in parentheses. The sample period goes from
January 1996 to October 2022.

α ∆
√
IV ∗

m ∆IS∗
m ∆IK∗

m Adj. R2

Panel A: ∆IK∗
m

1/N 0.820 0.025 0.12
(3.26) (5.61)

V-Hist 0.524 0.011 0.06
(3.44) (4.21)

V-Shri 0.530 0.011 0.06
(3.48) (4.36)

V-Hybr 0.624 0.010 0.06
(4.63) (3.60)

V-Impl 0.733 0.014 0.04
(2.82) (4.38)

GV-Hist 0.547 0.009 0.04
(3.58) (4.15)

GV-Hybr 0.943 0.010 0.04
(4.86) (3.70)

BV-Hist 0.613 0.012 0.05
(4.00) (5.25)

BV-Hybr 0.761 0.009 0.05
(6.63) (3.90)

Panel B: ∆
√
IV ∗

m + ∆IS∗
m + ∆IK∗

m

1/N 0.873 -0.690 0.025 0.016 0.56
(4.49) (-15.25) (0.95) (2.04)

V-Hist 0.548 -0.320 0.014 0.007 0.31
(3.77) (-8.22) (0.65) (1.23)

V-Shri 0.555 -0.324 0.014 0.008 0.32
(3.84) (-8.50) (0.66) (1.26)

V-Hybr 0.645 -0.269 0.021 0.010 0.27
(5.04) (-8.16) (0.95) (1.62)

V-Impl 0.764 -0.407 0.059 0.020 0.23
(3.20) (-4.43) (1.68) (1.90)

GV-Hist 0.564 -0.220 0.015 0.007 0.16
(3.78) (-4.89) (0.70) (1.29)

GV-Hybr 0.964 -0.266 0.018 0.009 0.16
(5.32) (-4.05) (0.45) (0.85)

BV-Hist 0.640 -0.345 0.018 0.008 0.30
(4.30) (-9.24) (0.76) (1.30)

BV-Hybr 0.778 -0.209 0.006 0.006 0.18
(6.78) (-4.74) (0.28) (0.97)
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Chapter 4

Vol, Skew, and Smile Trading

Chapter 4 has been published as a journal article:

Al-Jaaf, A., Carr, P., 2023. Vol, Skew, and Smile Trading. Journal of Derivatives 23,

64-95. © 2023 PMR. All rights reserved. https://doi.org/10.3905/jod.2023.1.183
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