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If we knew what it was we were doing,
it would not be called research, would it?

— Albert Einstein

If you can look into the seeds of time,
and say which grain will grow and which will not,

speak then to me.

— William Shakespeare, Macbeth

We are tempted to ask how all the effort
we invest in research will shape the future.

Foretelling the future of research efforts is
like observing a number of seeds and predicting

which will take hold and sprout, and which will not.

But we cannot know which seeds of time will grow.
We can only work hopefully, doing our best

to push the boundaries of what we know
that our contributions may become seeds

that grow into lasting benefits.





A B S T R A C T

This dissertation presents findings from problem-driven research
that centers around the design of visualization tools to assist

experts in making data-informed choices.
Identifying the most preferred solution among many alternatives

is a common task in our everyday and professional lives. Pivotal
information is usually hidden in the data and visualization research
has long treated decision-making as a data comprehension task. To
arrive at a decision, however, the understanding of patterns in the
data needs to be synthesized with subjective judgments. Existing
visualization tools do not target this synthesis and many approaches
focus on simplified decisions tasks. As a result, their relevance and
applicability in real-world settings might be limited.

This dissertation promotes field research to investigate the cognitive
processes underlying real-world decisions and to operationalize them
for the design and validation of decision support tools. Being based
on a close collaboration with real decision-makers, it provides an
emphasis on decision processes that problem-driven visualization
research did not have before. By synthesizing the collected real-world
experience with concepts from human science, it also contributes to
making decision models and theories usable for visualization design.

This dissertation refines the existing multi-attribute choice definition
by describing it as a constructive problem where preferences are
incrementally formed at the actual time of choice. It further proposes
a characterization scheme to help visualization researchers concretize
the decision problem to design for. Finally, going into the field revealed
a novel type of constructive decision problem, which this dissertation
defines as co-dependent choices. As theoretical contributions, these
formalizations make the design space of decision tasks more tangible.
A knowledge elicitation method is adapted from cognitive science to
systematically detail the knowledge, experience, and cognitive tasks
underlying current decision-making practices. As a methodological
contribution, this introduces a decision-oriented way of conducting
problem characterizations.

As technical contributions, this dissertation presents two design
studies. Their results demonstrate the relevance and applicability
of the proposed concepts within and beyond the studied decision
contexts. PAVED provides a simple yet effective means for decision-
makers to construct and apply preferences as they learn what level of
performance is achievable. Its extension COMPO*SED is the first tool
that helps decision-makers explore the side effects of co-dependent
choices. Their usefulness has been confirmed with domain experts on
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their day-to-day decision problems. The long-term benefit of PAVED
is indicated by the adoptions recorded after four years.

Through user-centered design, this dissertation addresses the lack of
discourse on validated visualization tools that are dedicated to assist
expert choices in the wild. Its theoretical, methodological, and techni-
cal contributions shape the understanding of decision-related activities
on large data sets and how to support them with visualization. As task
clarity, design guidelines, and real-world experience with decision
support tools evolve, more rigorous claims regarding decision-making
as a core goal of visualization research will be possible. The research
presented in this dissertation is an important step in this direction.
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Z U S A M M E N FA S S U N G

Die vorliegende Arbeit stellt die Ergebnisse anwendungsorientier-
ter Forschung dar, in deren Mittelpunkt die Entwicklung von

Visualisierungswerkzeugen steht, die Expertinnen und Experten bei
datenbasierten Entscheidungen unterstützen.

In unserem alltäglichen und beruflichen Leben müssen wir häufig
eine bevorzugte Option aus einer Menge von Alternativen auswäh-
len. Dabei ist die entscheidende Information oft in einem Datensatz
verborgen. Lange Zeit spielte für die Visualisierungsforschung das
Datenverständnis die zentrale Rolle bei der Entscheidungsfindung.
Um jedoch zu einer Entscheidung zu gelangen, muss das Verständnis
von Mustern in den Daten mit subjektiven Einschätzungen zusammen-
geführt werden. Existierende Visualisierungswerkzeuge zielen nicht
auf dieses Zusammenspiel ab und viele Ansätze konzentrieren sich
auf vereinfachte Entscheidungsaufgaben. Ihre Relevanz und Anwend-
barkeit unter realen Bedingungen sind daher womöglich begrenzt.

Diese Arbeit nutzt die Methodik der Feldforschung, um die zugrun-
de liegenden kognitiven Prozesse von Entscheidungen zu untersuchen
und sie für die Entwicklung von Werkzeugen zur Entscheidungsun-
terstützung zugänglich zu machen. Durch eine enge Zusammenarbeit
mit Entscheidungsträgerinnen und Entscheidungsträgern in der Praxis
und durch den besonderen Fokus auf Entscheidungsprozesse geht die
Arbeit über den bisherigen Stand der anwendungsorientierten Visuali-
sierungsforschung hinaus. Indem die gesammelte Praxiserfahrung mit
Konzepten aus der Humanwissenschaft zusammengeführt wird, trägt
die Arbeit außerdem dazu bei, Entscheidungsmodelle und -theorien
für die Entwicklung von Visualisierungen nutzbar zu machen.

Die bestehende Definition von Multi-Attribute Choices wird in die-
ser Arbeit um eine Einordnung als sogenanntes konstruktives Problem
erweitert, bei dem Präferenzen erst zum Zeitpunkt der tatsächlichen
Entscheidung formiert werden. Außerdem schlägt die Arbeit ein Cha-
rakterisierungsschema vor, mit dem Visualisierungsforscherinnen und
Visualisierungsforscher ein gegebenes Entscheidungsproblem konkre-
ter als bisher beschreiben können. Schließlich brachte die praxisnahe
Forschung ein neuartiges Entscheidungsproblem hervor, das in die-
ser Arbeit als Co-Dependent Choices definiert wird. Als theoretische
Beiträge tragen diese Formalisierungen zu einer Konkretisierung des
Gestaltungsraumes von Entscheidungsaufgaben bei. Eine aus der Ko-
gnitionswissenschaft übertragene Methode zur Wissenserhebung dient
dazu, das Wissen, die Erfahrung und die kognitiven Aufgaben, die
aktuellen Entscheidungspraktiken zugrunde liegen, systematisch zu
erfassen. Als methodologischer Beitrag eröffnet dies eine auf Ent-
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scheidungen ausgerichtete Art und Weise der Charakterisierung eines
gegebenen Problems.

Als technische Beiträge präsentiert diese Arbeit zwei Designstudi-
en, deren Ergebnisse auf die Relevanz und Anwendbarkeit der hier
vorgestellten Konzepte innerhalb sowie außerhalb der untersuchten
Entscheidungskontexte hindeuten. PAVED bietet Entscheidungsträ-
gerinnen und Entscheidungsträgern einen einfachen, aber effektiven,
Weg, ihre Präferenzen zu formen und anzuwenden, basierend auf
der Erkenntnis, welche Leistung unter welchen Bedingungen erreich-
bar ist. Die Erweiterung COMPO*SED ist das erste Werkzeug, das
Entscheidungsträgerinnen und Entscheidungsträgern dabei hilft, die
Wechselwirkungen von abhängigen Entscheidungen zu ergründen.
Die Nützlichkeit beider Werkzeuge wurde von Domänenexpertin-
nen und Domänenexperten im Kontext ihrer alltäglichen beruflichen
Entscheidungen bestätigt. Eine durch die Domänenexpertinnen und
Domänenexperten selbst initiierte Nutzung in ihrem Arbeitsalltag
nach vier Jahren zeigt den Langzeitnutzen von PAVED.

Mittels User-Centered Design begegnet diese Arbeit dem fehlen-
den Diskurs über validierte Visualisierungswerkzeuge zur gezielten
Unterstützung von Expertinnen und Experten bei deren Entscheidun-
gen. Die theoretischen, methodologischen und technischen Beiträge
prägen das allgemeine Verständnis von Entscheidungsaktivitäten auf
großen Datenbeständen und von deren Unterstützungsmöglichkeiten
mittels Visualisierung. Mit dem Fortschreiten von Aufgabenklarheit,
Gestaltungsrichtlinien und praktischen Erfahrungen mit Entschei-
dungsunterstützungswerkzeugen werden immer genauere Aussagen
hinsichtlich der Entscheidungsunterstützung als Hauptziel der Visua-
lisierungsforschung möglich sein. Die hier vorgestellten Forschungsar-
beiten sind ein wichtiger Schritt in diese Richtung.
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Part I

P R E L I M I N A R I E S





Figure 1.1: This comic nicely summarizes the difficulties with making choices,
even in seemingly simple settings. Adapted from "Backpack Deci-
sions" by Randall Munroe, licensed under CC BY-NC 2.5.

1
I N T R O D U C T I O N

We face many choices in our personal and professional lives. Some
of them are trivial, like whether to have coffee or tea in the

morning, others require more intellectual effort. As a tourist, we
choose a hotel for our holiday stay. As a consumer, we decide which
product to buy (Figure 1.1, left). As an engineer, we choose a prototype
to be taken to production. As an investor, we choose stocks that hold
parts of our financial resources. Some choices involve higher stakes
and more careful consideration than others.

1.1 motivation

While the particular settings of these choices might differ, they have
a common ground: an objectively optimal solution does not exist. In-
stead, options meet multiple properties differently well, such that each
option is valid in its own way. To identify the best compromise for
our needs and not overlook a solution, we usually compile ourselves
large sets of options to choose from. Searching for accommodations
in Frankfurt, Germany, on a booking platform yields 287 results1.
Searching for coffee machines on a price comparison portal results in
526 offers2. Simulation in engineering generates thousands of product
variations. Searching for sustainable ETFs on the stock market pro-

1 booking.com as of 30.12.2023

2 geizhals.de as of 30.12.2023

3
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4 introduction

duces 570 results3. These options can be represented as multivariate
data in a data table, where rows are options and columns are the
properties associated with each option.

Choosing an option is difficult for multiple reasons. It is highly
exploratory and involves trade-offs between conflicting aspects. This
requires human judgment. However, human reasoning about the su-
periority of an option is not necessarily consistent with rationality
[41, 63]. The limited cognitive capability of our human brains makes
a full cost-benefit analysis unfeasible. This leaves us with no choice
but to form heuristics and select a satisfactory rather than an optimal
solution. Which option is chosen is inherently subjective. It depends
on individual goals, preferences, and experience. It is subject to knowl-
edge, interpretation, and intuition. These prerequisites also manifest
differently in professional decision-makers, who are trained to repeat-
edly make expert decisions in their field, and casual decision-makers,
who face personal decisions at different points in their lives. In any
case, goals and preferences might even shift as we learn what level of
performance is achievable under different conditions.

To arrive at a choice, we can employ different strategies. We could,
for example, proceed with the first working solution, follow our inter-
nal gut feeling, or focus on selected pieces of information only4. While
such strategies might be valid and helpful in certain contexts, the clos-
est to a factually sound decision basis might be a systematic analysis
of the available data. However, at the other side of the spectrum, an
extensive consideration of data might provoke slowed or even stopped
choice progress due to an overload with options and the tendency to
overthink5 (Figure 1.1, right).

Any choice we make is based on perceiving information in the
data that shifts our tendency in one or the other direction. However,
understanding quantitative information, even in simpler data sets, can
be difficult and might require comprehension of statistical measures.
In such settings that involve many options, conflicting goals, and
subjective judgments, it is all the more important to present the data
in a way that facilitates meaningful interpretation and exploration.
Thus, to handle the challenge of making choices, we need visualization.
Designing effective visualization support benefits from data science,
the study of extracting patterns and meaning from data, but also
from cognitive science, the study of human beings and how they
make decisions. Data visualization can build upon both disciplines to
provide human choice-makers with a means to consume information
effectively without the need for extensive training.

3 justetf.com as of 30.12.2023

4 Making decisions without systematic study and reflection is called extinction by
instinct behavior [140].

5 The inability to make a decision due to information overload or overthinking is called
analysis paralysis [140].



1.2 research challenges and leading questions 5

One might say that decision-making is not a particularly novel
topic in visualization research. This holds true for the broad area of
decision-making that comprises a wide range of scenarios and dis-
ciplines. However, the task of finding the most preferred solution
among a number of alternatives has not yet received specific con-
sideration. While visualization research has presented a number of
decision-making design studies and approaches that help users de-
fine "goodness", the focus is still on helping users analyze data sets
rather than specifically supporting choice tasks that require trade-offs.
Empirical investigation of choices, e.g., cognitive biases or evaluation
metrics, are often based on controlled artificial data and simplified
decision tasks that do not necessarily reflect real-world choices.

In this thesis, we investigate multi-attribute choices in the wild
using well-known design study methodologies, thus moving from
artificial settings towards real-world settings. While functions defining
the importance or aggregation of attribute values simplify the decision
process, dynamically evolving preference information calls for visual-
ization designs that equally support making trade-offs among options
and attributes. This also applies to choices that involve mutual effects
among intermediate decisions. Where existing visualization design
studies mainly address elementary analytic tasks like value retrieval
or correlation analysis as a precondition for informed decisions, we
consider the choice of a preferred alternative as a task on its own [67].
This particularly means to take into account what the human decision-
maker brings to the table, such as prior knowledge, decision strategies,
or irrationality. For this purpose, we borrow from disciplines like cog-
nitive science or decision theory, which offer a long history of studying
how humans think and make decisions. Finally, the effectiveness of
visualizations needs to be studied on real-world choice problems and
on people who are, in fact, decision-makers. Given the significance but
also the difficulties of multi-attribute choices, this dissertation aims
to shed light on what makes a visualization explicitly support choice
tasks rather than analytic tasks.

1.2 research challenges and leading questions

Multi-attribute choice is the task of "finding the best alternative among
a fixed set of alternatives, where alternatives are defined across several at-
tributes" [64]. What exactly is it that makes choices difficult?

We consider multi-attribute choice to belong to the class of construc-
tive [275] or wicked [223] problems. Both center around the idea that
the problem and the solutions to it co-evolve together, with progress
towards constructing one affecting the progress of constructing the
other [223, 275]. For wicked problems, Rittel and Webber identified ten
characteristic properties that hint at the challenges posed by such prob-
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Figure 1.2: What makes choices difficult?

lems. We revisit a selection of these properties against the background
of multi-attribute choice:

• No enumerable set of potential solutions – Solutions to an
ill-defined problem can be manifold. Large sets of options with
slightly varying properties are usually considered (Figure 1.2,
center). Computing has made their generation fairly easy, even
if options come with many properties. As any new idea about
a desired outcome might become a solution candidate, it is a
matter of judgment when to stop enlarging the solution set. In
any case, decision-makers need to work through large amounts
of data to gain insights that shift their choice in one or the
other direction. This process suffers from the well-known issues
associated with large data volumes and complex relationships.

• No true-or-false solutions – Although desired and undesired
outcomes might be partially formulated as preferences, there
is no formal definition of correctness. Consequently, solutions
cannot be meaningfully right or wrong, only satisfying or not.
From cognitive science, we know that many decisions involve
affective and intuitive evaluations rather than pure rationality
[25]. Whether a trade-off is considered a good choice is highly
influenced by the experience, prior knowledge, and intuition of
the decision-maker, which are often difficult to grasp (Figure 1.2,
right). They might even shift as decision-makers learn what level
of performance is achievable under which conditions. Interactive
visualizations could serve as an environment for decision-makers
to discover what is important to their choice and to "leave traces
that serve as self-cues" [127].

• No stopping rules – As there is no single optimal solution, it
is difficult to tell when a choice problem is (sufficiently) solved.
Decision-makers can always invest additional effort to find a
better solution. Choice problems are ill-defined in the sense that
desired outcomes cannot be described by definitive conditions
(Figure 1.2, left). Decision-makers might not know what they are
looking for at the start of their search. Demands on a solution can
be incomplete, contradictory, and evolving. When choosing a car
to buy, decision-makers might be willing to increase the budget,
once they realize that there are better warranties or gas mileage
available than they had previously supposed. Often, solving
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Figure 1.3: Research challenges (left) that are addressed by the contributions
presented in this thesis (right). The overarching challenges CSUB
and CHCD generally influenced the concepts and techniques.

one aspect of the problem (e.g., improving in one criterion)
introduces another problem (e.g., impairing another criterion).

• No transferability – There can always be a property that over-
rides a choice’s commonalities with choices already made, such
that no two choices are identical. Despite their resemblance, so-
lutions, requirements, or even the decision-maker’s world view
might have changed. Consider replacing an old digital camera
with a new model after a few years. The range of available
cameras might be different now and prices or materials of a cam-
era might have changed. The decision-maker might now prefer
a light-weight compact camera over a fully-equipped profes-
sional camera, shifting the choice into an entirely new direction.
Choices can only be understood in the context of their mak-
ing and dedicated visualization support needs to be carefully
developed and adopted on a case-by-case basis.

What impacts for visualization research emerge from these characteris-
tics? Visualization research aiming to support data-informed decision-
making faces the following challenges (Figure 1.3, left):

CSUB Subjective judgment of satisfaction rather than objective cor-
rectness is the basis of any decision. Subjective judgment is
constructed from a decision-maker’s intuition, tacit knowledge,
and (domain) experience. It shapes the interpretation of the
data. In turn, it typically evolves by iterating over the data as
decision-makers incrementally learn about the problem, e.g.,
what level of performance is achievable under different condi-
tions. Data comprehension and preference construction thus
influence each other. To consider this interplay in a visualization
approach, human-centered design is needed.
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CCHA Characterization of decision-making activities is essential to
inform the design of effective visualizations. The understanding
and description of a targeted decision problem guides all subse-
quent steps in visualization design and validation. It also con-
tributes to generalizing lessons learned beyond individual cases.
We do know that real-world decision-making goes beyond data
comprehension. But visualization research has made few dedi-
cated efforts to define decision problems [195]. It lacks a struc-
tured overview of what does (not) make a decision task. As
long as decision tasks are not well understood, research claims
in the direction of decision support are likely to remain vague.

CVIS Visual design and interaction need to provide simple means for
decision-makers to investigate relationships among attributes
and options, incrementally construct preferences, filter options
into acceptable and unacceptable regions, or compare the gains
and losses associated with a trade-off. Visualization research
has rarely provided tools that are designed to compare decision
alternatives and make a final choice [195]. Simplicity and direct
retrieval of decision elements might be difficult to reconcile
with the need for scalability that can result from many options
to navigate or many attributes to balance.

CEVL Evaluation of decision support should aim for feedback about
a tool’s usefulness for decision tasks in the wild. Case studies
should ask target users to make their own real-world decisions
rather than work through a protocol prescribed by the visualiza-
tion researchers. Methods and approaches to evaluating a visual-
ization’s ability to support decision tasks are still in their infancy
[67]. Ideally, evaluations study the long-term, self-initiated use
of the tool in the targeted domain. Such an endeavor, however,
heavily relies on an appropriate setting within a collaboration
with target users (time, willingness, confidentiality, etc.).

CHCD Collaboration with decision-makers is needed to meet the sub-
jective nature of any decision and to ensure that visualizations
are designed for problems that real decision-makers actually
face. Decision-making has mainly been studied on binary tasks
or decisions of narrow complexity in artificial settings. Decision
tasks taken from real-world settings typically come with higher
complexity [67]. Visual designs need to be developed in constant
consultation of decision-makers to meet the targeted problems
and users where they are. Still, visualization research rarely
pays attention to decision-makers and tasks early in the process.

The challenges outlined above are detailed as research gaps in Sec-
tion 3.3, where we review related works. They touch different aspects
of decision-making that have not yet been definitively answered by
visualization research. This gives rise to four research questions that
guide the concepts, methods, and visualization techniques presented
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in this thesis. The central research question is: How can we design
and validate interactive visualizations to effectively assist experts in
making real-world choices among many multi-attribute alternatives?

This involves the following leading questions:

RQ1 What decision strategies do experts apply in the wild? What is
the role of cognition, domain knowledge, and experience?

RQ2 Can approaches from other disciplines be adopted in studying
decision problems from a visualization perspective?

RQ3 How can options and consequences be effectively represented,
explored, and balanced? How to support decision-makers in
constructing their preferences as they learn about the problem?

RQ4 How can we assess a visualization’s ability to effectively support
experts in making their own real-world choices?

Experts, in this context, are characterized by specialist knowledge as
well as implicit experience from repeated decisions in their field. They
can also be held liable for their choices, which implies the need for
justification. We provide details on these characteristics in Section 2.3.
For these reasons, we focus on experts as our primary target group.

Through a detailed investigation of the above research questions,
this dissertation aims to address the gap between multi-attribute
choices being a common task among domain experts on the one hand
and the lack of discourse on information visualizations explicitly
serving decision-specific information needs on the other hand. All
four research questions contribute to a better understanding of how
information visualization can assist expert decisions in the wild.

1.3 contributions

We address the aforementioned leading questions with user-centered
research at the intersection of data-informed decision-making and
information visualization. For this purpose, we consult real decision-
makers on their real-world data and decision tasks. We have access to
this real-world setting within a long-term collaboration with domain
experts from engineering design.

In this section, we summarize the results of our research at two
levels of granularity. We first highlight the significance of our work by
describing how we expect our results to affect the way visualization
research addresses decision-making at a high level. We then describe
our individual contributions in more detail.

We expect the following high-level implications to result from the
findings presented in this thesis:

• From a theoretical point of view, we expect to broaden the
current visualization theory by a characterization of decision-
making activities in general and multi-attribute choice tasks in



10 introduction

particular. We anticipate that synthesizing our experience in
studying real-world decisions with decision models and theories
from human science will help us carve out the subjective, context-
based, and constructive nature of expert decisions. By providing
a concise yet descriptive vocabulary, we expect to make the
design space of decision tasks more tangible for researchers who
aim to define their decision support in distinction to other works.

• From a methodological point of view, we expect findings from
other disciplines to help us refine the design study methodology
for decision problems. In particular, we intend to adopt meth-
ods from human science to establish a decision-focused way of
conducting problem characterizations. More concretely, we ex-
pect to provide methodological prescriptions for eliciting expert
knowledge underlying decision-making. Through applying the
design study methodology, we anticipate to gain experience with
effective ways of decision-focused visualization design. This also
includes the collaborative aspects of user-centered design. We
hope that our lessons learned from working with real decision-
makers will transfer to other domains and provide guidance for
future advances in problem-driven visualization research.

• From a technical point of view, we expect to develop visual-
ization tools in close collaboration with domain experts that
help them solve their application-specific decision problems. The
design artifacts will contribute to the ongoing discourse on how
decision-making is a major goal of visualization research. They
will add to the body of visual encodings and interaction tech-
niques that advance decision-related activities on large data sets,
such as incrementally constructing preferences, comparing gains
and losses, and reconciling conflicting information for a final
choice. From observational and interview studies in real-world
decision settings, also studying adoption, we expect to obtain
useful evidence regarding how well visualization idioms sup-
port decision-making activities in particular contexts, and how
broadly they might apply.

We show that the consideration of prior knowledge, experience,
and decision strategies of a decision-maker plays an important role
in assisting real-world decisions with visualizations. In summary,
this dissertation advances the state of the art through the following
scientific contributions (Figure 1.3, right):

• Theoretical considerations help visualization researchers pre-
cise their decision support claims (RQ1). We contextualize multi-
attribute choice as a constructive decision problem that is situ-
ated in the scope of data science, human science, and information
visualization. We also propose a characterization scheme that
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abstracts the diversity of decision tasks using pairs of data, user,
and task properties. We instantiate this scheme to provide an
operational definition of the choice task targeted in this thesis.
Finally, with co-dependent choices, we propose a novel type of
constructive decision problem.

• Methodological guidance supports eliciting the role of deci-
sion strategies, domain knowledge, and expertise in real-world
choices (RQ1). We adopt an interview technique from cogni-
tive science to systematically study these cognitive foundations
(RQ2). Our main contribution is a feasibility study that indi-
cates its applicability also in decision contexts involving large
data and technology artifacts. This marks the first step towards
learning from other disciplines to establish prescriptions for
decision-focused problem characterizations in design studies.

• Technical visualization artifacts support experts in making in-
dividual as well as co-dependent multi-attribute choices (RQ3).
PAVED is an interactive parallel coordinates visualization to
ease cost-benefit trade-offs. It is the first design study dedicated
to multi-attribute choice. A lossless yet compact overview of
alternatives and simple interaction enable decision-makers to
construct preferences as they learn what level of performance is
achievable. We extended the design principle to COMPO*SED, a
novel technique that, for the first time, enables decision-makers
to extend their trade-off analysis to choices that affect each
other. It explicitly visualizes side effects as the bottleneck of
co-dependent choices. Three cascading interaction mechanisms
help decision-makers subordinate individual goals in favor of
those of the overall decision. The domain usefulness of both tools
has been confirmed in observational studies and usage scenarios
on real-world decision tasks (RQ4). Besides that, we surveyed
the long-term usage of PAVED for decision support in the ex-
perts’ work environment after four years. Four out of ten domain
experts still use PAVED on their own initiative for its compact
overview and reduced yet effective filtering mechanisms.

1.4 structure of the thesis

The remainder of this thesis is organized as follows.

Part II Part II provides an overview of discourses in human science,
real-world applications, and information visualization.

Chapter 2 (Multi-Attribute Choice) summarizes understandings
of tasks and models from decision theory, characterizes decision-
makers as users, and introduces engineering design as an exem-
plary application for professional decision-making.
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Chapter 3 (State of the Art) reviews background work in informa-
tion visualization, covering methodologies for problem-driven
visualization research and visualizations relevant in the context
of decision-making. Finally, it outlines the derived research gaps.

Part III Part III provides the concept of this thesis and demonstrates
its application to different visualization challenges raised by
multi-attribute choice.

Chapter 4 (Concept) provides the research scope, goals, and
targeted multi-attribute choice task. On this basis, it presents the
research design of this thesis.

Chapter 5 (Knowledge Elicitation) proposes an interview tech-
nique from cognitive science to address the lack of prescriptive
steps for eliciting domain knowledge in visualization research.

Chapter 6 (PAVED) presents the results of a design study in the
field of engineering design to address the lack of visualization
solutions for real-world multi-attribute choices.

Chapter 7 (COMPO*SED) proposes a novel visualization tech-
nique to address the lack of support for co-dependent multi-
attribute choices.

Chapter 8 (Long-Term Adoption) investigates the adoption of a
visualization solution in the wild after four years to address the
lack of longitudinal studies of decision support.

Part IV Part IV summarizes the lessons learned of this thesis and sug-
gests directions for future research.

Chapter 9 (Summary) distills the main findings, limitations, and
contributions of this thesis.

Chapter 10 (Outlook) discusses research topics that are out of
the scope of this work but are relevant to pursue in the future.



Part II

B A C K G R O U N D





Figure 2.1: This chapter views multi-attribute choice through the lens of
related disciplines to inform the research of visualization support.

2
M U LT I - AT T R I B U T E C H O I C E

We cannot escape making choices in our personal and profes-
sional lives. Sometimes choices are ordinary, like whether to

have coffee or tea in the morning. Others are more critical and re-
quire more careful balancing of consequences. Decision problems have
been studied for a long time in various disciplines that take differ-
ent perspectives. We reflect on which of their concepts could help us
understand and research multi-attribute choices from a visualization
perspective (Figure 2.1). While the findings from these disciplines are
likely useful for visualization research, at some point, we will need
to leave that track to study decisions in the context of large data and
technology artefacts [67].

What the reader can expect from this chapter:

• A review of decision definitions, which identifies four recurring
components that hint at a cross-domain understanding (Sec. 2.1).

• A review of decision theory branches, showing that constructive
models are most compatible with our targeted task (Sec. 2.1).

• A review of multi-criteria decision-making concepts, which
frames multi-attribute choice as an a posteriori problem relying
on a trade-off analysis among Pareto-optimal options (Sec. 2.2).

• A summary of the information needs of expert decision-makers
as opposed to casual decision-makers and analysts (Sec. 2.3).

• A characterization of engineering design as a decision-centered
application domain and a literature review of domain-specific
yet inspiring visualizations (Sec. 2.4).

15
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2.1 decision theory

Decision theory is an interdisciplinary topic that is concerned with
the reasoning underlying people’s choices. Researchers from, e.g,
economics, behavioral science, management, consumer research, psy-
chology, or cognitive science, contribute to a rich history of studying
decision-making among individuals. As such, the topic involves many
views and concepts. After presenting an overview of different un-
derstandings of decision tasks (Section 2.1.1), we will focus on three
branches: normative decision theory, which attributes full (economic)
rationality to the decision-maker (Section 2.1.2), descriptive decision
theory, which assumes bounded rationality (Section 2.1.3) and thus
builds upon an observation of real decision-makers (Section 2.1.4),
and constructive decision theory, which emphasizes the continuous
adjustment of heuristics during the decision process (Section 2.1.5).

2.1.1 Decision Task

Throughout the progression of visualization research, making a deci-
sion has been considered the ultimate goal of a visual analysis session
[30, 267, 289, 290]. Existing abstractions of visualization tasks [38],
cognitive biases [65], and knowledge generation models [229] con-
nect to decision-making as a high-level process, but do not provide
a characterization of the decision task itself. In general, there is no
universally agreed definition for decision as a task, and the term is
used in various contexts and meanings. One reason might be that
decisions are studied across a variety of disciplines and establishing a
unifying foundation that fits all fields is highly challenging [1]. The
lack of a clear definition can make it difficult to design or evaluate
visualizations aiming at decision support. In particular, it complicates
ambitions to abstract the problem-driven research beyond isolated
studies to develop guidance on how to design for choice tasks, which
could help operationalize experience gained through design studies.
Dimara and Stasko have made a first move towards leveraging guid-
ance from decision theory by investigating to what extent decision
tasks are evident in visualization research [67]. While they elaborate
on what makes a decision a user task in the context of visualization,
they do not expose the individual notions of decision tasks as they
have been expressed in other disciplines.

How decisions or similar problems are understood in other disci-
plines could help understand and refine the characteristics of decision
tasks for visualization. In this section, we contribute a collection of
definitions from different disciplines that maps the landscape of ex-
isting high-level understandings of decision-related tasks (Table 2.1).
We aim to carve out their shared understanding and distill the major
ingredients. The overall goal is to gain an overview of the spectrum
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of decision tasks, indicate their relationship to analytic visualization
tasks, and ultimately pave the way for an understanding that can serve
as a foundation for our visualization design goals.

Ingredients of A Decision Task
Exploring the commonalities among the definitions, we identified four
recurring components: decision activities, alternatives, attributes, and
goodness indicators (Table 2.1, color-coding). The definitions reveal
mandatory components, namely a decision activity (Table 2.1, blue)
and the alternatives among which the decision has to be made (Table
2.1, yellow). Activity-wise, the definitions refer to choosing (7 out of
14 definitions), selecting (4 out of 14), or finding (3 out of 14) an entity
as the primary responsibility of the decision-maker. Choose and select
have an almost identical meaning and can be used interchangeably in
most situations. Find carries a slightly different notion, namely that
of a search task. According to Brehmer’s and Munzner’s typology
of abstract visualization tasks, searching for targets with particular
characteristics, like a compromise, entails browse or explore tasks [38].

While the presence of alternatives to choose from is always men-
tioned in the definitions, some characteristics are under-specified: the
targeted size of the alternative set and whether it is fixed and known
in advance. The set of options to choose from can vary in size from
one definition to the next – if explicitly specified at all. 10 out of 14

definitions do not specify the magnitude of the alternative set. In the
remaining definitions, the specifications range from two or more [59]
over more than two [41] and several [220] to a larger set of alternatives
[211]. Although these specifications mainly imply smallish numbers
and none of the presented definitions names many alternatives as
the targeted magnitude, the size of the alternative set is theoretically
unbound. An explanation for the missing size specifications might
be the general perception that a choice naturally involves multiple
alternatives. Although Luce observes that most choice theories assume
a well-defined set of alternatives [154], only three definitions explicitly
state that the set of available alternatives is fixed [64, 196] or known
in advance [79, 196]. Such problems fall into the category of multi-
attribute decision-making, whereas in multi-objective optimization,
the alternatives are not necessarily finite or known in advance [175].

Some components of a decision task are not always made explicit
in the definitions: attributes that represent properties of the choice
alternatives (Table 2.1, purple) and goodness indicators that help
evaluate and compare the desirability of alternatives (Table 2.1, green).
Only half of the definitions (6 out of 14) mention the attributes across
which alternatives are defined (Table 2.1, purple). Referring to multiple
[79, 120, 202], several [64], and a set of attributes [256], the descriptions
use variations of two or more [41] to specify the number of attributes
that characterize each alternative. Again, an explanation for this being
an optional detail in a definition might be the general perception that
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Table 2.1: Definitions from different fields to establish a cross-disciplinary un-
derstanding of decision tasks by comparing the mentioned decision
activity, alternatives, attributes, and goodness indicators. The defi-
nitions are grouped by their tag coverage, with the richest descrip-
tions at the end of the list.

Year Definition Discipline Ref.

- "the cognitive process of choosing between two
or more alternatives"

Psychology [59]

2015 "an individual selects one option from a larger
set of alternatives"

Psychology [211]

2001 "choose among a set of multiattribute alterna-
tives"

Psychology [202]

2019 "choose among more than two options that are
characterized by two or more attributes"

Cognitive
Science

[41]

1976 "select that alternative, among those available,
which will lead to the most complete achieve-
ment of your goals”

Economics [253]

1993 "the decision maker [...] surveys a known and
fixed set of alternatives, weighs the likely
consequences of choosing each, and makes
a choice"

Psychology [196]

1997 "finding the most attractive stocks [...] in a
portfolio, which is essentially a matter of arbi-
tration between the risk and the return"

Finance [106]

1998 "choosing alternatives based on the values and
preferences of the decision maker"

[90]

2006 "selecting the best option out of a set of alter-
natives"

Human-
Computer
Interaction

[24]

2019 "choice from several alternatives on the basis
of a subjective value"

Cognitive
Science

[220]

2001 "Given a collection of objects, each described
by the values associated with a set of attributes,
find the most acceptable such object"

Information
Visualization

[256]

2014 "selection of the best alternative from pre-speci-
fied alternatives described in terms of multiple
attributes"

Computer
Science

[79]

2017 "finding the best alternative among a fixed set
of alternatives, where alternatives are defined
across several attributes"

Information
Visualization

[64]

2023 "the choice of a subset of projects [...] with the
aim of maximizing the value of the portfolio
with regard to multiple [...] criteria"

Operations
Research

[120]
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a choice naturally involves multiple, sometimes conflicting, properties
that need to be balanced.

With two or more attributes influencing the decision among alterna-
tives, a single optimal solution does typically not exist. The majority
of definitions (10 out of 14) mention in what respect the alternatives
are evaluated (Table 2.1, green). However, the indication of goodness
remains fairly vague for many of them, i.e., referring to the conse-
quences [196] of a choice or the best [24, 64, 79] or most acceptable [256]
solution to be chosen. Other definitions provide slightly more details
on the underlying goodness indicators, e.g., subjective value [220], most
complete achievement of one’s goals [253], values and preferences of the
decision-maker [90], or, in the case of operations and finance, the value
of the portfolio [120] or arbitration between the risk and the return [106].
All of these notions align with the general understanding that, with
multiple attributes to consider, goodness cannot be uniquely defined
and depends on the context of the decision task.

To summarize, although different views on decision-making exist
among several disciplines, we realize that these differences mainly
refer to how humans should, could, or do make decisions (we will
detail this in Section 2.1). In contrast, a cross-domain understanding
of a decision task itself appears to be feasible. While our collection of
definitions is not meant to be exhaustive and might be subject to selec-
tion bias, the comparison indicates that the range of interpretations is
not as wide as one might think.

Relation To Analytic Tasks
Knowing the user task to design for is essential for visualization re-
searchers in choosing or building visual representations that help
humans solve problems [235]. Problems and user tasks can be de-
scribed in the terminology of the target domain or mapped to a
generic, domain-agnostic description (often based on a task taxonomy)
[185]. Dimara and Stasko found that, while decision-making is empha-
sized as a core goal, visualization research currently centers around
analytic tasks [67]. Visualizations typically serve one of three major
goals: a) search for patterns and trends that feed hypotheses in an
exploratory analysis, b) confirm or reject hypotheses in a confirmatory
analysis, or c) communicate confirmed results for presentation purposes
[235]. Further high-level tasks discussed in information visualization
include sense-making [210], insight generation [267], or the identifica-
tion of cause-effect relationships [7]. In the process of pursuing these
high-level tasks, a user might engage in basic activities like retrieving a
value, filtering, finding extrema or ranges, sorting, finding anomalies,
clustering, identifying correlations [8], or comparing [38]. These are
called low-level analytic tasks [8].

Data comprehension fostered by elementary analytic tasks is likely
an important precondition for making decisions, because informed de-
cisions require a good understanding of the alternatives and attributes
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involved [64]. However, there is more to making a good decision than
performing well on elementary analytic tasks. Making data-based de-
cisions differs from data analysis in that it serves different user goals
and is subject to different conditions. The goal of a decision task is not
to retrieve values, determine extrema, or find anomalies. Rather, it is
to combine relevant information in a meaningful way so as to finally
choose the most preferred option among several possible alternatives
[67]. Decisions require an understanding of patterns in the data to
be synthesized with subjective judgments of decision-makers. Which
options are preferred or why is difficult to capture in well-defined
goodness metrics (e.g., weights), which would be necessary to process
them from a purely analytic perspective. Despite a proper understand-
ing of the relevant data, people might still make irrational decisions as
a result of limits in human reasoning (compare Section 2.1.3) or biases
in decision tasks [65]. Consequently, Dimara and Stasko advocate for
a visualization-focused formalization of relevant high-level tasks such
as decision-making and a better understanding of their relationships,
overlaps, and differences [67].

With their research at the intersection of multi-objective optimiza-
tion and visual analytics, Hakanen et al. take a first step towards such a
clarification of tasks [88]. From the general workflow of multi-objective
optimization, they extracted seven high-level tasks contributing to a
decision task. The authors then selected low-level analytic tasks from
three taxonomies in visualization literature [94, 124, 303] that facil-
itate each of these high-level tasks (Figure 2.2). A follow-up work
generalized the high-level tasks and further derived requirements to
inform the design of a visual analytics system that has been validated
in comparison with an interactive multi-objective optimization frame-
work [89]. While these task analyses target interactive decision-making
approaches, where preference articulation and generation of solutions
alternate (details are given in Section 2.2.1), it can still provide inspira-
tion for similar endeavors that address the characterization of tasks
for other types of decision-making processes.

2.1.2 Normative Decision Models

Early decision-making models traditionally assumed a rational eco-
nomic decision-maker who processed information in a computer-like
way [157]. This branch of decision theory is called normative because
it describes how people should make decisions with ideal economic
behavior. Normative models postulate that decision-makers have a set
of well-defined preferences and, on this basis, that they are skilled to
calculate with accuracy which option maximizes their subjective value,
i.e., satisfaction. In processing the available information, decision-
makers are assumed to follow formal rules that, according to the
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Figure 2.2: Low-level tasks facilitating high-level tasks in interactive opti-
mization processes as introduced by Hakanen et al. [88].

theory, embody rational decision behavior. In this way, they form
preference of one or the other option to arrive at a final decision.

This view manifests in one of the most well-known normative deci-
sion models: the expected utility theory [189]. It measures the goodness
of an option with a metric, called expected utility, that is valid also
under conditions of uncertainty. The model boils down to the decision
rule of choosing the option with the highest expected utility. The
expected utility of an option is made up of the utilities of its possible
outcomes (i.e., how much they are preferred) and the probabilities
that these outcomes occur (i.e., how certain they are). It is defined
as the sum of the utilities of all possible outcomes weighted by their
probability. Decision-makers strive to maximize their individually de-
fined expected utility. Still, the theory implies that the preferences of
all decision-makers satisfy the same principles of rationality. These
include completeness, where decision-makers prefer option A over B or
prefer B over A or are indifferent, transitivity, where preferring option
A over B and B over C means to prefer A over C, dominance, where
options that are better on at least one attribute and at least as good on
all other attributes are preferred, and invariance, where preferences are
not affected by the way options are ordered or presented. In reality,
however, people have been observed to violate these principles in their
actual decision-making [278].

2.1.3 Bounded Rationality

In the 1950s, the rationality of decision-makers as assumed by nor-
mative models was challenged by the theory of bounded rationality by
Herbert A. Simon [251]. This theory deals with the idea that reasoning
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Figure 2.3: Three-stage decision process according to Herbert Simon [252].

of humans is not necessarily consistent with rationality due to limits
on their knowledge and computational capabilities. Simon argues
that fully rational decisions are often not feasible in practice, because
the vast amount of information needed for an exhaustive cost-benefit
analysis of all possible alternatives collides with the limited time,
knowledge, and cognitive resources of humans. He proposed to re-
place the assumption of a perfectly rational economic decision-maker
with a conception of rational behavior that is compatible with the
cognitive limitations of decision-makers [250]. Consequently, decision-
makers are understood as humans who, in the presence of cognitive
limitations, satisfice rather than maximize, i.e., they seek a satisfactory
rather than the optimal decision [251].

To describe how humans actually make choices, Simon came up
with a model in 1960 (Figure 2.3), which continues to influence various
disciplines like computer science, economics, and psychology [252].
This model describes decision-making as a process with three stages:

• Intelligence – A decision problem or opportunity, i.e., an occa-
sion that calls for a decision, is identified.

• Design – Possible courses of action are invented and their suit-
ability as solutions is analyzed.

• Choice – The alternatives are compared and a particular course
is selected. This stage is closely related to our targeted task of
multi-attribute choice.

Sometimes, Simon’s model is extended by a fourth stage, in which
past choices are reviewed. Simon clarifies that his model is a simplified
abstraction of real-world decision-making and that addressing com-
plex decisions might involve going back and forth between the stages
in view of unsatisfactory solutions or insufficient information. Still,
he claims that basically any real-world decision can be characterized
with the three stages.

2.1.4 Descriptive Decision Models

Simon’s satisficing principle and three-stage model are examples for
descriptive decision theory, which studies how people make decisions
under natural conditions. As such, descriptive decision models are
informed by empirical observations of real-world behavior. These ob-
servations have shown that, contrary to the assumption of humans
possessing full rationality, in reality people might process information
in unexpected ways. Tversky and Kahnemann have demonstrated
that people evaluate the same options differently depending on the
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formulation of the decision problem [278]. Their experiments showed
that decision-makers behave risk-averse when possible outcomes are
framed as gains (i.e., they choose the certain gain over a risky prospect
of the same expected value) and risk-taking when options are framed
as losses. This pattern is incompatible with the principles of ratio-
nality that underlie normative decision models, in particular with
the invariance of preferences to how alternatives are presented. In
response, Tversky and Kahnemann formulated their prospect theory,
which describes how human decision-makers evaluate their gain and
loss perspectives in an asymmetric manner (because the impact of a
loss is felt more strongly than that of a comparable gain).

While the prospect theory centers around how people judge utility
relative to a certain reference point, Payne et al. propose a framework
to describe how people flexibly use a variety of strategies in response
to different preferential choice tasks among multi-attribute alternatives
[203]. A prior study already revealed that the same decision-maker
switched to a different choice strategy as a result of varied task com-
plexity (i.e., a varied number of alternatives or attributes) [201]. Simi-
larly, Sunstein and Thaler suggested that the environment in which a
choice is presented, e.g., the way of presenting options, attributes, and
defaults, can have a significant impact on the decision made [265].

Decision Strategies
Various decision strategies have been identified and described in a
number of disciplines. Each strategy basically illustrates a certain way
of searching through the solution space of a decision problem. We
provide a brief overview of decision strategies and their properties.

A common decision strategy is the weighted additive rule (WADD),
where all attributes are weighted by their importance and the alter-
native with the highest weighted value sum is chosen [203]. This
strategy is compensatory in the sense that the superior value of one
attribute can compensate for an inferior value of another attribute.
Compensatory strategies thus involve explicit trade-offs. WADD is
one of the most demanding strategies, because it is based on a high
amount of processing: the decision-maker needs to explicitly evaluate
all alternatives and consider all relevant information (i.e., attribute
values and importance). Due to its substantial processing of informa-
tion and compensatory characteristic, this strategy is often viewed as
a normative choice procedure. A simplified variant of the weighted
additive rule strategy is the equal weight strategy (EQW), which sums
the attribute values of an option without considering weights of im-
portance [203]. Alternatively to the (weighted) value sum, the utility of
an alternative can also be framed as its frequency of good and bad features
(FRQ) [203]. The decision-maker assigns thresholds to divide attribute
values into good and bad features and then counts how many of these
features each alternative exhibits. Depending on the comparison of
good, bad, or both features, different alternatives might be preferred.
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Table 2.2: Properties of decision strategies [203] and their spread in current
visualization tools [269].
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• Yes

◦ No

• Yes

◦ No

• By altern.

◦ By attrib.

• Yes

◦ No

• Quantit.

◦ Qualitat.

WADD • ◦ • • • • 3

EBA ◦ • ◦ ◦ ◦ ◦ 4

SAT ◦ • ◦ • ◦ ◦ 0

LEX ◦ • ◦ ◦ ◦ ◦ 5

MCD • • • ◦ • • 2

FRQ • • • • • • 1

WADD = weighted additive, EBA = elimination by aspects, SAT = satisficing, LEX = lexico-
graphic, MCD = majority of confirming dimensions, FRQ = frequency of good and bad features

Like EQW involving sums and WADD involving multiplications, the
count underlying the FRQ strategy represents quantitative reasoning.
Rather than a simultaneous evaluation of all alternatives, the majority
of confirming dimensions strategy (MCD) compares alternatives in a
pairwise manner [203]. The values of two alternatives are compared
attribute for attribute and the alternative with a majority of better
attribute values is retained. It is then compared to the next alternative,
until all alternatives have been evaluated and a final choice remains.

Compensatory strategies confront conflicts among decision criteria,
whereas non-compensatory strategies avoid them. One of the oldest
non-compensatory strategy is satisficing (SAT) [250]: Alternatives are
considered by order of appearance and the first alternative to satisfy
predefined thresholds for all of its attribute values is chosen. If no alter-
native passes all thresholds, the process can be repeated with relaxed
thresholds or an alternative is chosen randomly [203]. The lexicographic
strategy (LEX) is also non-compensatory in that a decision-maker
identifies the most important attribute and chooses the alternative
with the best value on this attribute [203]. If two or more alternatives
are on par, the procedure is repeated with the next most important
attribute. The core elements of SAT and LEX are combined in the
elimination by aspects strategy (EBA) [277]: Attributes are considered by
order of importance (like in LEX) and all alternatives that do not meet
the threshold on the current attribute are eliminated (like in SAT) until
one alternative is left [203]. As this involves only simple comparisons
of values, this strategy is based on qualitative reasoning.

Table 2.2 summarizes how the strategies compare to each other with
respect to their properties. Whether alternatives are evaluated across
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or within attributes (4th column) differs among the compensatory and
non-compensatory strategies. Attribute-based strategies are assumed
to be cognitively easier to perform [228]. Non-compensatory strategies
do not require decision-makers to engage in explicit trade-offs (1st
column), which might help avoid emotional discomfort [102]. They
can also be said to be less demanding, because they use only part
of the information available (2nd and 3rd column), do not require
the formation of a utility score for each alternative (5th column), and
involve simple value comparisons rather than mathematical operations
(6th column). On the other hand, they might overlook information
that is relevant to the decision-maker. One solution is to use them for
initial elimination of poor alternatives in combination with a more
detailed evaluation of the remaining small number of alternatives.

The decision strategies described above have also inspired visual-
ization research. In an attempt to understand how these strategies are
supported by visualization tools, Torsney-Weir and colleagues classi-
fied 21 design study papers according to the main strategy described
in the task analysis, user characterization, or case study [269]. 15 of
the papers involved some sort of strategy, with the compensatory fre-
quency of good and bad features strategy and the non-compensatory
lexicographic strategy being the most common ones, followed by elim-
ination by aspects, weighted additive rule, and majority of confirming
dimensions (Table 2.2, right). Their review suggests that the satisficing
strategy does not play a role in visualization research. Most of those
strategies supported by visualization tools involved a consideration of
one attribute at a time and a filtering of alternatives.

2.1.5 Constructive Decision Models

Normative (Section 2.1.2) and descriptive (Section 2.1.4) decision mod-
els aim to describe how people should or do make decisions in general,
independently from the individual decision-maker. How individual
decision-makers approach a choice problem can be distinguished by
the way they use choice heuristics. There are basically two branches
emphasizing the decision-maker’s subjectivity: the prescriptive mech-
anism, which assumes a set of rules stored in memory that can be
retrieved and applied when needed, and the constructive mechanism,
which assumes that heuristics are developed at the actual time of
choice [61]. The notions of bounded rationality and limited processing
capacity addressed by descriptive decision models align with the idea
that preferences for alternatives are not merely applied but in fact
constructed during decision-making [31].

Constructive decision models are based on the idea that, in reality,
decision problems are not well-defined right from the beginning but
only unfold on the spot as available information are structured or
restructured. In particular, this means that decision-makers, instead of
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having a repertoire of complete and well-defined preferences, develop
them on the fly when they need to make a choice. Preferences are
constructed from fragments that can represent beliefs about alterna-
tives, previous evaluations, rules of thumb, rules for assigning weights
(e.g., "if performances are comparable, price weighs heavier") [32].
These fragments depend on what is available in the particular choice
situation and how easy various pieces of information are to process
[32]. The notion of constructive preferences thus rejects the assump-
tion that decision-makers simply recall preferences from a master
list in memory [31]. This also links back to the idea of people using
different decision strategies in response to varying task complexity
[203] or, in this case, in response to gaining new insights about the
problem structure during the course of making a decision [31]. An
extensive learning process is thus inherent to constructive decision
theory [275]. In other words, constructive decision problems are char-
acterized by the need to "construct at the same time the problem and its
solution" [275]. Similarly, wicked problems have been characterized as
problems where "the process of formulating the problem and of conceiving
a solution [...] are identical" [223].

Constructive mechanisms tend to be used when decision-makers
are unexperienced with a particular choice, or when a choice is par-
ticularly difficult [32]. One reason for which people might construct
preferences is that they lack the cognitive resources to form well-
defined preferences for any eventuality. Another reason might be
external factors that, e.g., lead people to prefer chocolate ice cream
on one day but choose a different flavor on another day. Constructive
preferences might also include meta goals related to a decision, such
as minimizing the required cognitive effort, minimizing the experi-
ence of negative emotion (compare the discomfort associated with
the need to make explicit trade-offs [102]), or maximizing the ease
of justifying the decision [31]. As an implication of the constructive
nature of preferences, choices among options are generally considered
to be dependent on 1) the (meta) goals of the decision-maker, 2) the
difficulty of the decision task, 3) the context, i.e., the utility of an
alternative depends not only on its own properties but also on the
properties of the remaining alternatives, 4) the way of eliciting the
decision-maker’s preferences, and 5) the presentation of alternatives
(compare the asymmetric perception of gains and losses [278]) [31].

2.1.6 Important Terms

Multi-attribute choice overlaps with diverse disciplines like multi-
criteria decision-making, cognitive sciences, modeling, or optimization.
Each discipline prefers its own terms. To prevent ambiguities, we
briefly define the terms as they are used throughout this thesis.
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• A decision problem is the subject under investigation, about
which the choice is made, e.g., the camera in the scenario of a
photographer intending to buy a new camera.

• Alternatives are specific solutions to a decision problem, among
which the choice is made. For a photographer, the alternatives
might include different camera models, e.g., a Canon EOS 50 or
a Nikon Z50. Alternatives can also be called options, candidates,
or, in the field of genetic optimization, individuals.

• Attributes describe the properties that an alternative might ex-
hibit, e.g., release year, focal length, mount type, price, weight, or
resolution. In making a choice, one typically aims at alternatives
with preferred properties.

• Design parameters are those attributes that define how each
alternative is implemented in practice. For example, the appear-
ance of a camera can be described by release year, focal length,
or mount type. In principle, the values for these attributes can
be freely chosen. In the domain of modeling, these attributes are
typically called input or independent dimensions. In the domain
of optimization, they are called decision variables and the space
that they span is called the decision space.

• Criteria are those attributes that are considered in evaluating
and comparing the goodness of alternatives. A photographer
might consider the price, weight, or resolution of a camera model.
All criteria values of an alternative make up its performance. In
the domain of modeling, these attributes are typically called out-
put, dependent, or target dimensions. In the domain of genetic
optimization, the criteria are typically called objectives.

• Preferences express the decision-maker’s priorities regarding
attributes or alternatives. They can manifest in filters or weights
that are assigned accordingly. Preferences are highly subjective
and context-dependent. The preferences of the photographer
might depend on her degree of professionalism, budget con-
straints, or usage scenarios (e.g., outdoor settings).

Problem-driven research also requires a certain flexibility regarding
the use of terms. To bridge the knowledge gap [296], it might make
sense to adapt to the terminology used in the targeted domain when
talking to experts. For example, the engineering experts providing
the application problems targeted in Chapters 6 and 7 adopted the
terms "individuals" and "objectives" from genetic optimization the-
ory. When presenting our research to the visualization community,
however, we decided to use the terms "alternatives" and "attributes"
for two reasons. First, these terms are more neutral, e.g., they are
used in literature across domains (compare Table 2.1). Second, which
attributes actually constitute criteria in a decision task depends on the
subjective judgment of the decision-maker and might be unknown to
the visualization researcher at the time of visualization design.
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2.1.7 Summary

Early normative decision models attributed ideal rational-economic
behavior to human decision-makers. Studies later showed that human
rationality is bounded [251] and people in actual choice situations sys-
tematically violate the normative principles [278]. Descriptive models
have been introduced to describe how people make decisions un-
der natural conditions. They view human choice as an "adaptive and
constructive process rather than one of expressing existing well-defined prefer-
ences" [266]. The shift from normative over descriptive to constructive
decision models has a number of implications for (visual) decision
support tools (compare Section 1.2):

• Decision-makers might need to learn what level of performance
is achievable under different conditions before being able to
construct preferences [266]. They tend to dive deep into an ex-
ploration of relevant information. A tool should make contextual
knowledge accessible [217] and involve representations that have
been carefully chosen with relevant analysis tasks in mind.

• As preferences are not readily available from the beginning,
decision-makers need a flexible means to state or refine their pref-
erences at any point during the decision process. With construc-
tive preferences, the circumstances will have a greater impact
on the resulting choice [32]. A tool should support incremental
specification of preferences [217].

• The construction of preferences might be guided by relevant
information raising the attention of the decision-maker at any
point in the decision process. A tool should not require decision-
makers to express their preferences in a rigid order [217].

• Compromises are central to the construction of preferences. A
tool should hint at criteria conflicts and partial fulfillments to
help decision-makers engage in trade-off analyses [217].

• Decision-makers might not be able to fully anticipate the conse-
quences of their preferences. A tool should provide immediate
feedback about the effects of their expressed preferences at any
time point [266].

2.2 multi-criteria decision-making

While Section 2.1 on decision theory focused on human aspects of
decision-making, this section looks at decision-making from a data
perspective. At their core, most real-world decisions involve mul-
tiple conflicting properties to be considered simultaneously. In this
sense, multi-attribute choice is closely related to multi-criteria decision-
making (MCDM). The discipline of MCDM, however, covers a broader
spectrum of decision tasks (e.g., infinite or varying alternative sets,
ordering rather than selecting alternatives) and often involves imposed
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decision procedures [64]. Still, some of its underlying concepts also
apply to multi-attribute choice. In the following, we highlight relevant
concepts and discuss how they relate to choice tasks.

2.2.1 Multi-Criteria Decision-Making Approaches

As Horn points out, multi-criteria decision problems can be separated
into two distinct tasks: the search for solutions and the multi-criteria
decision [103]. According to Ishizaka and Nemery, different goals can
be pursued by addressing the decision task [114]: 1) a single most
preferred option or a small subset of incomparably good options, 2)
an assignment of options to predefined groups or a ranking from best
to worst, or 3) a description of the characteristics for each option. We
do not focus on the latter tasks of grouping, ranking, or characterizing
options, because they can be considered secondary tasks involved in
making a choice. Generally, approaches to a decision problem can be
classified according to the role of the decision-maker [103].

In a priori approaches, decision-makers articulate some preferences
for the different attributes prior to the search for potential solutions
(decide → search). Based on these preferences, the attributes are ag-
gregated into a fitness function (most commonly a weighted sum).
Well-known examples for visualization systems addressing this cat-
egory are LineUp [85] and WeightLifter [198]. While fitness functions
can simplify the decision process, establishing appropriate attribute
preferences up front is often challenging. They may be vague at the
beginning or evolve over time, especially if decisions are made on
behalf of other stakeholders.

Thus, in a posteriori approaches, decision-makers articulate their
preferences after the search (search → decide). Without an objective
function, search algorithms can only compute a set of mathematically
equally good trade-offs (known as the Pareto front, see Section 2.2.2).
Determining the most preferred option among this reduced set of solu-
tions is then left to the decision-maker’s judgment. While the search is
independent of the decision-maker’s preferences, the approach heavily
relies on the search algorithm identifying an appropriate distribution
of solutions along the Pareto front.

Thus, in interactive approaches, decision-makers articulate their
preferences progressively; search and decision tasks are performed in
alternation (search ↔ decide). A preliminary search conveys an initial
idea of what trade-offs are possible. Decision-makers then express
preferences to reduce the search space, such that the following search is
restricted to this particular region of interest. An example for decision-
makers guiding a search algorithm towards preferred regions with
the help of a heatmap visualization is provided by Hettenhausen et
al. [98]. While decision-makers can interactively steer the process by
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Figure 2.4: Example of a Pareto front regarding two criteria to be maximized.
Point B is dominated by points A and C. Points A and C are not
dominated by any other point and thus belong to the Pareto front.

providing preference information, interactive approaches have not yet
found their way into real-world applications [88].

Multi-attribute choice falls into the category of a posteriori decision
problems. To be more precise, the search task can be considered
already solved. The resulting set of solutions, where no criterion can
be improved without sacrificing at least one other criterion, forms
a fixed set of alternatives among which the best alternative is to be
found (compare Section 2.1.1). Multi-attribute choice can therefore be
considered the decision task in an a posteriori decision problem.

2.2.2 Pareto Optimality

Section 2.2.1 concluded that multi-attribute choice can be considered
an a posteriori decision problem, where the search has already taken
place. As options are defined across multiple attributes, a unique
option that simultaneously optimizes each attribute does generally
not exist. When attributes cannot be optimized simultaneously, they
are said to be in conflict. A well-known conflict in economics is that
between time, cost, and quality as modeled in the project management
triangle [15]. Where multiple attributes need to be considered in
a decision, comparing the quality of options becomes challenging
(while options can be easily ranked by how they score on individual
attributes). Without any tendency regarding which attributes might be
more important, such that solutions scoring better on these attributes
gain superiority, we cannot generally tell whether one solution is better
than another solution. However, the importance of attributes cannot
be deduced from the data themselves but requires the subjective
judgment of the human decision-maker.

There is only one multi-attribute case, in which we can rate the
superiority of an option without any prior knowledge or judgment.
If an option A does not score worse than another option B on any
attribute and there is at least one attribute for which A scores strictly
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better than B, we know that option A is generally superior to option B.
This concept is called Pareto dominance [58], i.e., option A dominates
option B (Figure 2.4).

As we are usually dealing with large sets of options to choose
from, it does not help much to know that one option dominates
another option. Instead, it makes sense to restrict our choice to all
those options that are not dominated at all (Figure 2.4). Let’s define
a multi-attribute option as a tuple y⃗ = (y1, ..., yn) of values yi ∈ Yi
for attributes Y = {Y1, ..., Yn}. An option y⃗∗ is called Pareto optimal, or
non-dominated, if there does not exist another y⃗ that dominates it.
In other words, no attribute of y⃗∗ can be improved in value without
impairing at least one other attribute value. The entirety of all Pareto
optimal options is called the Pareto front [58]. Without prior knowledge,
no option in the Pareto front can be considered superior to another
one. Thus, the Pareto front contains all options that can be considered
equally good. From here, superiority of options solely depends on
subjective preference information. Note that, as we are taking an a
posteriori approach, the following multi-attribute choice can only be
as good as the Pareto front computation (compare Section 2.2.1).

2.2.3 Trade-Off Analysis

Section 2.2.2 concluded that subjective judgment is needed to make a
final choice among a set of non-dominated options. Thus, a trade-off
analysis is at the core of making a multi-attribute choice. A trade-off
analysis is conducted by decision-makers, who systematically explore
the advantages and disadvantages of each (non-dominated) option.
Another notion of trade-off analysis is the ambition to understand
what trade-offs decision-makers value in certain situations, e.g., in
consumer research where analysts observe consumers’ choices among
products whose characteristics are varied in systematic ways [118].
While the elicitation of attribute weights and trade-offs is also relevant
and has been addressed in visualization research [198], we focus on
the former understanding where decision-makers take the active part.
Of the different strategies to search through the solution space of
a decision problem (Section 2.1.4), only the compensatory strategies
allow for explicit trade-offs. Trade-off analysis takes a closer look at the
gains and losses associated with deciding between individual options.

When moving from one non-dominated option to another non-
dominated option, attributes can be independent, harmonious, or
conflicting [219]. Independent attributes do not exhibit a particular
relationship (Figure 2.5a) and are equally considered in an analysis.
When two attributes are in harmony, the performance of one attribute
increases, too, as the other attribute is improved (Figure 2.5b). Due to
this redundancy, one of them can be neglected in the following consid-
erations. With conflicting attributes, a gain in one attribute comes with
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(a) Independent (b) Harmonious (c) Conflicting

Figure 2.5: When comparing the advantages and disadvantages of decision
options, attributes can be independent, harmonious, or conflicting.
In these examples, larger values are preferred to smaller ones.

a sacrifice in at least one other attribute [58] (Figure 2.5c). Sacrificing
one attribute in return for a gain in another attribute is called a trade-
off. Different options produce trade-offs among different attributes.
In particular, an option that optimizes one attribute requires compro-
mises in other attributes. Multi-attribute choice, however, requires
decision-makers to decide for only one trade-off.

Which of the given options should they choose? To make a choice,
decision-makers need to think about which sacrifice in one attribute
they are willing to accept for a certain gain in another attribute: they ap-
ply subjective preferences to arrive at a compromise solution. It means
to compare and balance the costs and benefits of each option by explor-
ing the impact of certain improvements on the remaining attributes.
This fosters an understanding of the interdependencies between the
attributes and the feasibility of one’s preferences. As a consequence,
preferences might also evolve dynamically as decision-makers learn
which option quality is achievable under which conditions. All of this
aims at making the conflicting nature of the involved attributes more
transparent. As a result, the choice is made with full comprehension
of the advantages and disadvantages of each option in the context of
a concrete application, i.e., it is an informed choice.

Depending on the number of options and attributes available, a
full trade-off analysis will not be feasible, mainly due to the limited
cognitive capability of our brains (Section 2.1.3). With the increas-
ing size and complexity of solution spaces, many decision-makers
turn towards visualization tools to help them understand the data on
which their decisions are based. Tušar et al. found that requirements
of trade-off analysis typically go beyond what traditional multivariate
visualizations have to offer [276]. Based on a star plot, Trinkaus and
Hanne enable trade-off analysis by allowing decision-makers to drag
criterion vertices towards smaller or larger values, making the visual-
ization update to the next closest matching option [274]. A visualized
decision horizon, logging of navigation paths, and storing favorite
options additionally facilitate trade-off analysis. Similar to the deci-
sion horizon, Berger et al. predict combined criteria changes in a local
neighborhood when increasing or decreasing design parameter values
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[28]. Still, in a study with organizational decision-makers, Dimara
and colleagues identified the need for dedicated visualization support
for trade-off analysis: despite the availability of visualizations, the
decision-makers reported difficulties in dealing with trade-offs [68].
To help decision-makers keep track of trade-offs, Chakhchoukh et al.
suggest to extend visualizations with provenance functionality [47]. In
an observational study with domain experts, they investigated trade-
off tasks, provenance purposes, the usage of provenance functionality,
and future opportunities for in-visualization provenance.

2.3 experts , novices , and analysts

Section 2.1.1 revealed that decision tasks cannot be put on a level with
analytic tasks. Besides an understanding of what particular task is
to be achieved, assessing the appropriateness of a visualization also
requires a consideration of the user [176]. People working with data
typically fall into one of three categories: professional decision-makers,
casual decision-makers, or analysts. Similar to the tasks, users who are
decision-makers cannot be treated the same as users who are analysts.
In the following, we review the discourse on what it means to target
professional decision-makers as opposed to the needs and objectives
of casual decision-makers and analysts.

We refer to professional decision-makers as experts, whose job it is to
repeatedly make decisions within their field and who are trained to
do so. Casual decision-makers are novices, who make data-informed
decisions at some points in their personal lives. We adopt the under-
standing of analysts as people whose primary work task it is to answer
questions with data [68]. Both data analysts and decision-makers need
to gain an understanding of the data to perform their tasks. However,
information understanding can take various forms depending on the
overall aim [195]. Decision-makers differ from data analysts in that
they use data to make decisions, not answer questions [67].

Visualization research has a long tradition of aiming to support
professional analysts as the target user [68]. Works on casual [214] or
personal [104] visualization seek to make the power of visualization
accessible also to novices, who aim to obtain insights from data for
personal interests or needs. As part of their research agenda, Dimara
and Stasko suggest to broaden the profiles of target users from data
analysts to decision-makers in both professional and casual contexts
[67]. Due to their distinct goals, however, visualizations that work
well for data analysts are not necessarily effective for decision-makers.
To tailor a visualization design to the unique information processing
requirements of decision-makers, we need to know under which
conditions they make a choice. For example, Alves et al. found the
personality trait of conscientiousness, i.e., the tendency to follow goals
and prioritize tasks, to affect visualization-based decision-making
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[6]. Similarly, Conati et al. found different user characteristics like
cognitive abilities as well as visualization or domain expertise to
affect performance regarding decision tasks [57]. Further conditions
include the decision-makers’ physical or mental environment, their
preferences and goals, their knowledge and experience, their decision
strategy as well as external specifications, constraints, or stakeholders.

How Are Decision-Makers Similar to Analysts?

The lowest common denominator of decision-makers and analysts
is that both of them have an information need that requires them
to work with data. As a result, they will start exploring the data,
aiming to discover interesting trends and patterns. A decision-maker
and an analyst working with data on the same topic might consider
similar aspects of the problem [195]. Both might also engage in syn-
thesizing their findings and drawing connections between patterns
or insights [195]. For organizational contexts, Dimara and colleagues
have found a significant overlap between both roles: decision-makers
also engaged in data analyses and analysts were also involved in
decision-making beyond micro-decisions in their own workflow [68].
The authors conclude from this finding that aiding decision-makers
might also (partially) support analysts as a side effect.

Both decision-makers and analyst might need to report their data
exploration (procedure and results) at some point [68]. This includes
identifying the best way to present the data to downstream consumers
(e.g., other stakeholders in the case of decision-makers or decision-
makers in the case of analysts) and relating the data or findings to what
one cares about [5]. Generally, both user groups value transparency
in the sense of being able to explain the steps they followed to arrive
at a conclusion [68]. Decision-makers rely on it to communicate and
justify their decisions, while analysts rely on it to provide actionable
results for their downstream users, e.g., decision-makers.

How Are Decision-Makers Different From Analysts?

Although decision-makers and analysts share some commonalities
in working with data, their analysis contexts and underlying goals can
largely differ. First, the different (educational) backgrounds of both
user groups might affect their information processing workflows [68].
Decision-makers are specialists in their field1, which allows them to
identify domain-specific patterns in the data, focus on those that are
important, and interpret them in the light of their domain-specific
semantics and goals. Analysts typically have a statistical or informat-
ics background, which qualifies them to efficiently digest whatever
information seems relevant from structured or unstructured data but
might not go beyond such general, domain-agnostic findings.

1 Casual decision-makers can also be considered specialists in their field, with their
field being their personal environment.
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Given their different backgrounds, decision-makers and analysts
take different roles in a data exploration workflow. Although one
group can perform its tasks without the other, there might be a transfer
of results from the group of analysts to that of decision-makers. The
findings that analysts generate during their data exploration might or
might not be taken up by decision-makers [68]. In this sense, analysts
could be seen as recommending findings that might be actionable to
potential decision-makers. These roles are tightly coupled with their
overall goals. Analyses of decision-makers, at least in organizations,
have been found to be driven by a well-defined question (i.e., neither
a hypothesis nor an exploration task) [67]. In some sense, this conveys
the notion of an analysis following a directed search for some insight
that might make a difference for the question. In contrast, analysts
mainly aim at an undirected search, detecting unexpected relationships
in the data, which might or might not be relevant to the question of
a decision-maker. To summarize: decision-makers work with data to
collect evidence for their following decision, while analysts do it to
highlight interesting patterns [67].

Given their backgrounds and overall goals, decision-makers and
analysts have different requirements for information processing. An
interview study on organizational decision-making has found infor-
mation overload to be an issue for decision-makers, while analysts
engaged in detailed data analyses and produced verbose reports [68].
The same study found differences in the interests regarding the type
of represented information, where analysts mainly dealt with the
quantitative aspects of a topic, while decision-makers also relied on
qualitative (sometimes informal) information, which can be difficult
to integrate. Different requirements might also result from the gap
between the (perceived) responsibilities of decision-makers and ana-
lysts, as reported by a participant of an online survey: "A decision maker
has to live with their decision where an analyst can just say what the best
thing is and walk away!" [68]. This could be why decision-makers might
have a stronger need for uncertainty awareness, which is sometimes
interpreted by analysts as if decision-makers ignore analysis results
unless they depict oversimplified information [68]. The different ap-
proaches to data analyses generally hold the potential to provoke
misunderstandings when decision-makers and analysts work together.

Oral et al. compare decision-makers and analysts with respect to
different aspects of information processing [195]. Decision-makers
often need to direct their attention and focus towards information that
shift their decision in one or the other direction. In contrast, analysts
may engage in an exploratory search, diving into various aspects of
the data without being constrained by the need to prioritize so as
to arrive at a decision. Decision-makers benefit from simplification
of the information they base their decisions on, e.g., by eliminating
less relevant information or breaking down complex information into
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categories and meaningful patterns. In contrast, analysts aim to under-
stand the data in their full complexity to reveal hidden relationships. A
core task of decision-makers is to determine the utility of a solution by
weighing its risks and benefits in comparison to alternative solutions.
Instead of such trade-offs, the focus of analysts is more on the data
quality and the overall relevance of their findings to the broader topic.
Finally, while decision-makers balance conflicting demands to arrive
at a compromise solution, analysts are more interested in synthesizing
findings to contribute to a broader body of knowledge.

How Are Expert Decision-Makers Different From Casual Ones?
We previously outlined differences between decision-makers and

analysts regarding their approaches to information processing. To
further carve out the characteristics of professional decision-makers,
who repeatedly make decisions within their field, we compare them
to casual decision-makers, who make decisions related to their own
personal lives (e.g., the choice of a university, a place to live, a car
to buy, etc.). Most problem-oriented works in visualization research
target professional data analysts. Some design studies report on collab-
orations with expert decision-makers [35, 85, 254], but do not prioritize
decision mechanisms over analytic tasks. Visualization tools specifi-
cally meant to support multi-attribute choices made by non-experts are
detailed in Section 3.2.2. While they provide simple visual encodings,
dynamic filtering, and mundane data sets, they do not explicitly state
what distinguishes casual decision-makers from experts. As opposed
to problem-driven visualization research, surveys on casual [214] or
personal [104] visualization that aim to enable novices analyze data
relevant to their personal lives. In the field of decision theory, expert
decision-makers are contrasted with the public (referring to society)
[119], which does not completely align with the idea of comparing
expert and casual decision-makers. Unlike decision-makers versus
analysts [195], no attempt has been made yet to explicitly contrast
expert decision-makers with casual decision-makers.

The common baseline of both expert and casual decision-makers is
that they process data to obtain information that shift their decision in
one or the other direction. To choose alternatives over others, experts
and non-experts need a means to express and apply their preferences
towards (un-)desired options or properties. In professional choices, the
preferences are mostly shaped by specialist knowledge and experience,
while casual decisions might also involve personal taste. Generally,
expert decisions have been described as large decisions in the sense of
"important [...], collaborative, or high-stakes decisions", whereas personal
decisions have been described as micro decisions [67].

Chester Barnard explicitly differentiated between decisions an indi-
vidual makes as a member of an organization (we consider these as
professional decisions here) and decisions the same individual makes
in his personal life [19]. Herbert Simon continued this thought by con-
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trasting decisions related to "personal needs and results" with decisions
made "in an impersonal sense as part of the organizational intent" [253].
Pousman et al. note differences between visualizations targeting ex-
pert users and those targeting casual users regarding usage, data type,
and insight [214]. As opposed to professional decision-makers, casual
decision-makers do not have a specialist background and are not
necessarily familiar with analytic thinking or reading visualizations.
With casual users, the decision problems extend to life areas other
than one’s profession. The data underlying decisions is no longer
work-motivated only but carry personal meaning such that casual
users might bind more tightly to them. The type of insight generated
during decision-making might also be different. While professional
decision-making mostly generates analytic insights, personal decision-
making might also foster reflective insights about oneself, e.g., one’s
beliefs and personal way of thinking.

Casual decision-makers mostly explore data about themselves [104].
As a consequence, they might be more attached to their choices, be-
cause the choices are likely associated with a long-term effect on the
decision-makers life, e.g., a university that is attended over years. Emo-
tions may generally play a greater role for casual decision-makers,
potentially leading to phenomena like trade-off avoidance [153]. Pro-
fessional decision-makers might be less sensitive to this bias, because
they are not as closely involved. Professional choices are typically
made on behalf of other stakeholders. These might be customers who
do not have the required expertise themselves, or it might also be the
decision-maker’s employer, in whose intent a decision is made (see
Simon’s comparison above). Professional decision-makers might not
be affected by the decision themselves (e.g., pay for the chosen item).
As it is not the expert decision-makers but their stakeholders, who are
affected by the choice’s consequences, values like trust, transparency,
and involvement are crucial.

Summary
To answer the information need of a decision-maker with visualiza-

tions, we need to understand how professional and casual decision-
makers approach information processing (differently). This involves
factors like educational background, evaluation criteria, (emotional) at-
tachment, responsibility, or a guiding question. These findings provide
a starting point for visualization researchers aiming to characterize
the target decision-maker to design for.

Designing for expert decision-makers means to help them collect
domain-specific evidence for an impersonal decision that might need
to be justified in front of affected stakeholders. Expert decision-makers
aim to interpret patterns in the data with respect to their domain-
specific semantics and goals, which might also include qualitative
information. Applying domain knowledge requires sufficient oppor-
tunities to interact with the visual representations. Decision-makers
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are often driven by a well-defined question. Rather than digging into
all available details of the data, they prioritize those information that
make a difference for the decision by eliminating less relevant infor-
mation. This requires a simplification of the presented information as
well as effective filtering capabilities. To arrive at a final compromise,
they need to balance the (conflicting) costs and benefits of options,
which places demands on their visual comparison. Expert decision-
makers take an impersonal perspective on such trade-offs and act
in their organization’s or customer’s intent. They also need to take
responsibility for their actions, which often affect others. This places
high demands on uncertainty awareness and transparency of the steps
taken, which are essential for communicating a decision.

2.4 multi-attribute choice in engineering design

As an example for professional decision-making, this section intro-
duces the field of engineering design. The abstraction from domain-
specific details of (systems) engineering design to (co-dependent)
multi-attribute choices is provided in Chapters 6 and 7.

2.4.1 Engineering Design

The world we live in today would be inconceivable without the out-
comes of engineering. It is at the basis of systems, machines, and
processes that drive diverse areas of our society. Engineering design
is the ”process of devising a system, component, or process to meet desired
needs and specifications within constraints” [74]. At their core, most real-
world decisions pose a conflict between several criteria. Engineering
design is no exception. Designs need to satisfy conflicting require-
ments: efficiency costs money, safety adds to complexity, durability
increases material demands. Added to these requirements are various
performance indicators like stress, deformation, or heat dissipation.
Given a performance specification, we want to know what set of input
parameter values is needed. Unfortunately, there is no direct way of
computing these parameter values from a desired performance speci-
fication. The absence of a direct mapping from performance to input
parameters is the inherent challenge of engineering design [255, 279].

Computing has made it easy to generate large amounts of solution
candidates by simulating the subject under investigation with varying
design parameters. A unique optimal solution does generally not exist.
Instead, engineers must find a trade-off in a typically large solution
space. Rather than the perfect solution, engineers search for a solution
that is optimal for a given application. Where single components are
targeted, decision-makers thus face a multi-attribute choice problem.



2.4 multi-attribute choice in engineering design 39

(a) Deciding for a component variant rules out variants of other components.

(b) Individual goals are subordinated in favor of those of the overall system.

Figure 2.6: Systems engineering design means to choose multiple compo-
nents such that their interplay achieves a desired performance.

2.4.2 Systems Engineering Design

Instead of single components, many subjects to decide upon are actu-
ally systems. Many notions of what a system is have been expressed
in the literature [137]. Most of them describe a system as a collection
of components that jointly perform a function to achieve a common
objective. Each component is typically designed by dedicated special-
ists who focus on optimizing its individual characteristics [137]. A
central task in systems design is, therefore, to establish a balance or
even a symbiosis [307] among the various components. With the term
systems design, we denote the process of determining a combination
of interacting components that optimizes the emergent system per-
formance with respect to a number of objectives. Carlson-Skalak et
al. introduced the term catalog design [44] for a two-stage process that
consists of 1) specifying a system configuration [179], i.e., an arrange-
ment of generic components, and 2) instantiating this configuration
by selecting particular component variants from catalogs. We refer to
the second stage, where the generic components are instantiated in a
way that optimizes the system performance while the configuration
does not change.

As an example, let us consider the design of a magnetic-geared mo-
tor, where motor and gear are arranged side-by-side within a common
housing [161]. These motors are suited for industrial applications that
require high power densities, e.g., wind energy or ship propulsion.
Engineers need to decide on a motor and a gear variant such that
their interplay achieves the desired outcome. For this decision, they
need to be aware of two aspects: 1) deciding for a motor restricts their
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gear choice due to different mounting point geometries, and 2) the
superiority of a motor variant depends on its interplay with the gear
variants, i.e., can only be judged based on their joint performance.
Similarly, deciding for a camera body restricts the lens choice due to
different mount types (Figure 2.6a) and the quality of a camera body
only shows in its joint performance with a lens (Figure 2.6b).

When targeted at a system rather than a single unit, deciding on
suitable trade-offs among conflicting criteria thus becomes even more
challenging. With a single unit, best solely depends on an alternative’s
Pareto dominance and the decision-maker’s subjective preferences.
When dealing with a system, the superiority of a component variant
additionally depends on its interplay with the rest of the system.
Making trade-offs thus extends beyond one single unit.

When facing such a task, deciding on each component indepen-
dently is not an option because the chosen parts might not be inter-
operable. Even if they were, component-wise optimality would not
guarantee a globally optimized system performance due to emergent
effects. Both problems could be solved by using a multi-component
model to represent the entire system. However, this means increased
model complexity and computational efforts because unchanged par-
tial simulation results cannot be reused [44]. To strike a balance be-
tween these two ends of the spectrum, an approach taking into account
both 1) the variants of individual components (component level) as
well as 2) their linking according to interoperability and joint perfor-
mance (system level) is needed.

One approach considering both levels is an iterative optimization,
where the decision-maker observes one system component at a time.
However, iterative multi-attribute exploration of a system can become
a tedious and, at times, frustrating trial-and-error process. In each
iteration, the most preferred variant for the component under investi-
gation is chosen (component level). Its properties are then considered
in the subsequent iterations to evaluate the interoperability and overall
performance (system level) when deciding on the remaining compo-
nents. With an iterative optimization, decision-makers need to make
their way through many back-and-forth iterations until they reach
a desired system design. As the components are visited one after
the other, decision-makers also need to think multiple steps ahead
to anticipate the implications of their current choice in the following
iterations. As a consequence, analysts might tend to proceed with the
first working solution rather than striving to find better designs [44]. A
simultaneous exploration across individually modeled but dependent
components is needed to make system design more efficient.

With a system, the decision task turns into a series of multi-attribute
choices, one for each component involved. Each of these choices might
have side effects on the system’s operability and performance.
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2.4.3 Engineering Design Properties

Since the late 1990s, decisions have been increasingly recognized as a
fundamental construct at the core of the engineering design process
[93]. Ullman even claims that ”design is decision-making” [281]. Differ-
ent models have been proposed to describe the engineering design
process. Commonly involved steps are to 1) identify the problem, 2)
gather information, 3) generate alternative solutions, 4) evaluate the
alternatives and decide, and 5) communicate the results [62]. Steps
one, three, and four correspond to the stages of intelligence, design,
and choice according to Simon’s model (Section 2.1.3). Some works
also reduce the process to the steps of alternative generation and alter-
native selection [93]. As decisions in engineering design are targeted at
real-world objects, they should be directly applicable to the domain’s
practice. They are also of high consequence, i.e., they may have critical
impacts on their surroundings. As such, engineering design requires
a careful management of data, models, and knowledge to inform a
judgment, on which the decision is based.

Whether targeted at a system, component, or process, engineering
design can be characterized by four properties [108]. First, it is pur-
poseful, i.e., guided by an explicit goal. This refers to some functions
or properties that the subject to be designed should perform or have.
Second, designs are shaped by specifications and complex constraints
that incorporate a lot of engineering domain knowledge. Specifica-
tions tell what the designed subject is intended to accomplish, while
constraints are limitations that the decision-maker must stay within.
Some are absolute hard constraints, but many are relative and must
be balanced against each other and against how well a design satisfies
the specifications. Third, the process of engineering design is system-
atic and iterative. Although there are no imposed instructions, we can
observe recurring characteristic steps, which are repeated as necessary
(e.g., the steps listed above). Otherwise, decision-makers would most
probably get lost in an endless search for the optimal solution (com-
pare analysis paralysis in Chapter 1). Finally, engineering design is
a social and collaborative undertaking, e.g., as commissioned work (an
example case is detailed in Chapter 6) or as group decisions. In any
case, interdisciplinary work and communication with stakeholders are
crucial. In the course of this thesis, it will become apparent that these
properties largely hold true also for multi-attribute choice in general.

2.4.4 Potential for Visualization Support

The characteristics described above clearly indicate the potential of
using visualizations to support engineering design. Although (evolu-
tionary) multi-objective optimization algorithms are commonly used,
Hazelrigg claims that engineering design "can never be reduced to a
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(a) VizCraft, 1999 [80]

(b) Obayashi et al., 2003 [192] (c) Marsaw et al., 2007 [160]

(d) Kipouros et al., 2013 [126] (e) Piotrowski et al., 2019 [208]

Figure 2.7: Examples of visualizations for design in aerospace engineering.

prescriptive procedure exclusive of human input" [93]. Human input can
include relevant relationships to be considered, an appropriate good-
ness metric, or judgment regarding which options to consider in detail.
According to Hazelrigg, decisions in engineering design should be
based on information obtained from a variety of sources [93]. Visu-
alization can make these information accessible to decision-makers
and serve as an interface to human input. It can help make informed
decisions by highlighting relationships and trade-offs, conveying their
nature, and making the effects of applied constraints and preferences
visible. The value of visualization has been recognized in engineering
disciplines, where researchers have come up with different interactive
visualization solutions themselves. Even if these solutions do not orig-
inate from the field of visualization research, they can be a valuable
source to inform our problem-oriented methodology.

Early works published at the IEEE Visualization conferences in
the late 1990s offer a compelling mixture of practical experience and
trend-setting outlooks regarding the role of visualization in engineer-
ing design. Spence et al. highlight the absence of a direct mapping
from design performance to design parameters [255]. They propose
the Influence Explorer, which overloads interactive histograms on par-
allel attribute axes to reveal the relationship between the design and
objective space. Brushing and linking helps solve design-specific tasks
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such as inspecting individual options, revealing harmony or con-
flicts among attributes, specifying performance requirements, and
considering manufacturing tolerances. Shaffer et al. highlight the im-
practicability of a complete search in the design space of an aircraft
design problem [244]. They claim that visualization can serve multiple
purposes in engineering design: provide insights into a design prob-
lem by provoking new interpretations, provide a means to effectively
search the design space, and provide a means for engineers to apply
their design expertise to a problem. They also propose a number of
requirements for a visualization system to support aircraft design.
These requirements might also generalize to other engineering design
problems. Based on these initial thoughts, Goel et al. propose VizCraft
to optimize aircraft designs towards minimal take-off gross weight
[80]. It combines parallel coordinates for an overview of the design
space with a detail view of the geometry, design constraints, and
performance indicator of a selected option (Figure 2.7a).

Design spaces in aerospace engineering are often spanned by tens
or hundreds of (geometric) design parameters. One way to reduce
this dimensionality for analysis is a projection to two-dimensional
visual space, for example using a self-organizing map (SOM) [132].
Obayashi and Sasaki use a SOM to project a 72-dimensional design
space of supersonic aircraft wings to two visual dimensions, resulting
in seven clusters which are overlayed with their representative wing
shapes [192] (Figure 2.7b). A side-by-side comparison of this SOM
color-coded by each of the four criteria allows engineers to investigate
the criteria-wise performance of wing shapes but also to identify rela-
tions among criteria in certain regions of the design space. Marsaw
et al. decided for a lossless projection using a scatter plot matrix to
study three design parameters of an aircraft engine with respect to five
criteria [160] (Figure 2.7c). They target an early design phase, where
a long-term decision about the basic engine architecture for future
parametric studies is made. Color-coding of the points in the scatter
plot matrix is used to distinguish four possible architectures. Kipouros
et al. employ parallel coordinates for a lossless overview of the rela-
tion between tens of design parameters and two to three criteria [126]
(Figure 2.7d). They particularly appreciate this visualization technique
for its manifold interaction possibilities that facilitate to center engi-
neering design processes around the human decision-maker. Range
selection is used to identify design parameter values leading to de-
sired performances. Piotrowski et al. extend the interactive capabilities
of parallel coordinates by introducing proportion-preserving simul-
taneous manipulation of multiple range brushes or superimposed
composite brushes to represent different sets of constraints [208]. They
also link the parallel coordinates to scatter plots of any pair of axes,
where free-form polygonal brushes can be specified (Figure 2.7e).



44 multi-attribute choice

(a) Müller et al., 2008 [183] (b) structureFIT, 2015 [180]

(c) Brown and Mueller, 2017 [40] (d) Design Explorer, 2019 [312]

Figure 2.8: Examples of visualizations that depict quantitative attributes
alongside qualitative aspects like shape or geometry.

Composite brushes across visualizations either represent intersections
or unions of the individual brushes.

In engineering design, quantitative attributes often need to be con-
sidered alongside qualitative aspects like shape or geometry. Many
tools therefore employ multiple views that allow decision-makers to
simultaneously view the solution space from different perspectives:
the abstract design space, the resulting three-dimensional geometry,
and the abstract objective space. Müller et al. highlight the importance
of a joint exploration of these spaces for gaining insights into the char-
acteristics of an optimization problem and choosing a final solution
[183]. They showcase the application of well-established visualizations
like parallel coordinates or scatter plots on the optimization of a five-
axis milling process (Figure 2.8a) and the design of cooling layouts
for molding. In the domain of electric motor design, most commercial
tools provide only two-dimensional Pareto front visualizations that
are not suited for optimization with multiple attributes. An exception
is SyMSpace, where motor designs are explored in the objective space
in a scatterplot matrix that conveys all pairs of attributes to be op-
timized [248]. Relevant options can be brushed and observed in the
design space using linked histograms. Still, the analysis in SyMSpace
is limited to two-dimensional projections of the Pareto front.

While optimization approaches have settled in fields like aerospace
and mechanical engineering, computationally methods also increas-
ingly enhance design processes in more creative fields like architecture.
structureFIT depicts the generation-wise evolution of candidate designs
for a truss roof by arranging their structural geometries together with
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a unidimensional performance indicator in a matrix [180]. By selecting
one or more designs in the overview and adapting the mutation rate
and generation size, the decision-maker can steer an optimization
algorithm towards higher performing versions of a selected design
or more distant regions of the design space (Figure 2.8b). Brown and
Mueller survey ambitions towards data-driven architectural design,
where computational methods and human decision-makers tightly
collaborate to explore the relation between design and objective space
[40]. These include scatter plots to visualize clusters of structurally
similar designs (Figure 2.8c) or small multiples of parallel coordinates
to visualize selected design parameters of similarly performing op-
tions. An increasing interest in the field of data visualization has given
rise to dashboard tools like the Design Explorer, which links views
of the structural geometries to parallel coordinates and scatter plots
depicting the abstract design and objective spaces [312] (Figure 2.8d).

The visualizations emerging out of the field of engineering design
offer important insights into the way engineers think about decision-
making in design. Still, as they are not visualization researchers, en-
gineers might not be aware of the breadth of approaches proposed
in visualization literature. However, a solid knowledge of the visu-
alization literature could significantly help "broaden the consideration
space of possible solutions, and [to] select good solutions over bad ones" [243].
Additional potential might thus be unlocked by visualization and
engineering researchers joining forces. However, while researchers in
engineering design frequently employ visualizations to make choices,
problem-driven research in the visualization domain has not yet been
dedicated to this field.





Figure 3.1: This chapter derives research gaps that remain from the research
challenges (Section 1.2) after reviewing prior works on design
study methodologies and visualizations for decision support.

3
S TAT E O F T H E A RT I N I N F O R M AT I O N
V I S UA L I Z AT I O N

This chapter provides the scientific foundation in information vi-
sualization, forming the basis for the research presented in this

thesis. It complements the theoretical principles of multi-attribute
choice tasks introduced in Chapter 2 by providing methodological and
technical context necessary to research visualization-based choices.

What the reader can expect from this chapter:

• A literature review of design study methodologies revealing that
guidance on how to elicit expert knowledge and assess long-term
usefulness remains vague (Sec. 3.1).

• A literature review on multivariate visualizations with varying
decision support claims showing that although they support
basic analytic and decision-making activities, they do not meet
the information needs of expert decision-makers yet (Sec. 3.2).

• A research agenda comprising seven research gaps regarding
decision support visualizations (Sec. 3.3).

3.1 problem-driven visualization research

Aiming to design visualizations for solving real-world choice prob-
lems means to conduct problem-driven visualization research, most
commonly represented by design studies. A design study is a project
where visualization researchers analyze a real-world problem in a
target domain, design a validated visualization solution for it, and re-
flect on lessons learned to refine guidelines [243]. For this, researchers
engage closely with data expert users who have deep knowledge in
the target domain [296].

47
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3.1.1 Design Study Methodology

Since the first call for design study papers [187], we have seen an in-
creasing interest in systematic problem-driven visualization research.
A first definition of the building blocks of a design study has been
proposed with the four levels in Munzner’s nested model, which de-
scribe a tight coupling between the creation of visualization designs
and their evaluation [185]. The nested model was later refined by
dividing each level into descriptive blocks and introducing guidelines
that connect blocks within and across levels [171]. Marai expanded
the domain characterization stage of the nested model by functional
specifications [158]. The design activity framework links four design
activities (understand, ideate, make, and deploy) to the levels of the
nested model [164]. Sedlmair et al. provide methodological and practi-
cal guidance on how to systematically conduct a design study. They
propose the nine-stage framework to describe the entire process ranging
from selecting promising collaborations to publishing a design study
paper [243]. It was adapted by Syeda et al. to make the process fit
the duration of one semester for use in visualization pedagogy [261].
Meyer and Dykes provide guidelines to ensure rigor in conducting
design studies [168]. Arbesser et al. provide a high-level view on chal-
lenges, strategies, and lessons learned from distributing visualization
tools to domain experts in different application areas [13].

A design study typically builds upon existing visualization de-
sign models and evaluation methods. Regarding visualization design,
Lloyd and Dykes report on long-term experience with human-centered
design methods [151]. Tory and Möller review human factors research
in the context of visualization design [270]. Other works focus on the
interplay between data, users, and tasks [176] or gaps and knowledge
precepts underlying visualization design [7]. A variety of approaches
has also been established for evaluation. Carpendale provides an
overview of relevant methods to evaluate information visualizations
[45], while Isenberg et al. review their actual use in visualization re-
search [113]. Lam et al. describe the use of evaluation methods for
different purposes in seven guiding scenarios and identify realism in
tasks, data, and users as critical for validity [138]. Aiming to evalu-
ate visualization designs in open-ended real-world settings generally
suggests the use of qualitative methods, such as case studies [246],
insight-based evaluations [231], grounded evaluation [112], or expert
reviews [271]. Contributions achieved through a design study can take
various forms, from learnings about the problem domain (see Section
3.1.2) over validated visualization designs to a refinement of method-
ological guidelines [168, 236]. An overarching goal of design studies is
generalizability, i.e., the potential of the outcome being transferred to
other contexts. Generating these forms of contributions from design
practice is commonly achieved through the process of reflection [167].
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3.1.2 Domain Characterization Methods

Section 3.1.1 provides an overview of design study methodologies
and implementations thereof in the context of visualization-based
decision-making. This section details the very first step of a design
study, the domain characterization. It is also referred to as context of use
[107], task elicitation [194], or domain problem characterization [185]. In
this stage, visualization researchers aim to understand the data, tasks,
goals, and experiences of the domain experts as well as the conditions
and constraints that will frame the visualization use [243]. Domain
characterization is conducted before the design stage. Its outcome is
often implicitly defined and includes data-user-task definitions [176],
dominant concepts as a result of coding [272], or design implications
[138]. Translated to domain-agnostic abstractions, they guide the visual
encoding decisions in the subsequent steps of the design study [185].

Such guidelines depend on the quality of the domain characteri-
zation activities performed by visualization researchers. Thus, if re-
searchers want to design useful problem-driven visualizations, they
need to know how to conduct domain characterization effectively.
Visualization researchers typically read about the domain [54, 151, 169,
239], gain experience with domain tools and data themselves [23, 166,
242], or perform a variation of "talking with and observing domain
experts" [243]. Engaging with domain experts includes interviews
and real-world observations [29, 139], contextual inquiries [151, 239,
241], focus groups [239, 241], or workshops [82]. To understand more
concretely what those activities entail, we reviewed around 30 papers
on problem-driven visualization research (including the design studies
reviewed by Sedlmair et al. [243]).

Most domain characterization reports focus on the outcome of
the activities, i.e., data and task abstractions, rather than how they
arrived there. Descriptions of the process remain fairly high-level. They
range from "interviews with application experts" [209] over having
"interviewed experienced assay developers" [215] to having observed
"real model developers" [29], "the domain expert on a real-world
use case" [54], or "daily work practices" [237]. Some reports are even
limited to having collaborated with domain experts over a certain time
period [35, 170, 172]. Reports sometimes include the type of interviews
(e.g., guided [242], semi-structured [139, 239], or unstructured [282]) as
well as the researchers’ topics of interest (e.g., workflows [20, 54], data
and analysis methods [169], or tools [166, 242]). Few works explain the
interview contents, goals, and subsequent data analysis steps in detail
[68, 139, 151, 241]. Few also provide rich reports of the observation
procedures they followed and the qualitative insights they gained [239,
241, 242]. Still, it often remains unclear whether these descriptions
reflect the individual choices of the researchers in that specific context
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or an established methodological protocol, which could be re-used
beyond the specific design study.

This limited methodological justification, or under-reporting, of the
domain characterization stage can be attributed to the lack of struc-
tured guidance on how to study an application domain in the context
of visualization design studies. Munzner observed that "hardly any pa-
pers devoted solely to analysis at this level [domain characterization]
have been published in venues explicitly devoted to visualization"
[185]. Marai states that "although visualization design models exist
[...], these models do not present a clear methodological prescription
for the domain characterization step" [158]. She proposed an action-
able framework for domain characterization, which centers around
activities and tasks. Yet, we still lack explicit guidance on how to
extract the expertise and experience involved with problem-solving.

Current practices are grounded on the diversity of methodologies
used to study people, cultures, and habits in ethnography [185]. How-
ever, these methodologies have not been developed against the back-
ground of data analysis. To convey the intended message with a
visualization, we need to trace how an expert applies domain knowl-
edge to interpret the depicted information [48]. This understanding is
difficult to obtain. Domain expertise and experience rely heavily on
personal tacit knowledge [212, 287], which involves contextual implica-
tions, analogies, or judgments of typicality. Unlike explicit knowledge
that has been verbalized, written down, or stored in a database, tacit
knowledge is hidden in users’ minds. It cannot be derived from ob-
servable behavior and users find it hard to articulate how they do
something that is based on expertise [212]. Thus, tacit knowledge
can only be acquired from humans through their cognitive processes
[75]. Despite recent advances in ethnographic methodologies, task
taxonomies [38], and analytic question sets [138], we identify a lack of
prescriptive steps for visualization researchers to follow in a design
study in order to elicit domain knowledge and derive task abstractions.

3.1.3 Long-Term Evaluation Methods

As design studies aim to solve a real-world problem in a target do-
main, one form of success is the long-term adoption of the designed
visualization. The domain threat in problem-driven visualization re-
search is that users do not in fact have the targeted problem, while the
abstraction threat is that the chosen generic data types and analysis
tasks do not solve the identified problem [185]. As a downstream
validation to both threats, Munzner proposes to observe the adoption
rate and document long-term use of the deployed visualization design
[185]. This helps to assess factors that influence how a tool is adopted
in the intended work environment [138]. For example, it helps to find
out whether the barrier to regular day-to-day usage is an integration
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issue, or an indication that the tool failed to address the true needs of
the target users [37]. If domain experts repeatedly and on their own
initiative use the tool in their daily work, this strongly suggests that
they indeed face the targeted problem and that it lastingly benefits
from the visualization support.

Longitudinal studies also account for the fact that tool usage might
be different between the summative evaluation at the end of a design
study and the expert’s day-to-day work that follows the design study
(publication). A summative evaluation often implicitly or explicitly
asks domain experts to use the tool as opposed to the self-initiated use
at the experts’ workplaces whenever they consider it beneficial [185].
As with other newly introduced tools, it takes a certain time for target
users to adjust to a visualization support, such that it is operated in
their workflow under stable and normal conditions [91]. Collecting
anecdotal or empirical evidence of a tool’s short-term usefulness might
not generate insights about its routine use and long-lasting limitations
or benefits. For example, this might be the case for the reflection on
benefits, challenges, and potential improvements of WeightLifter one
month after deployment [198]. Anecdotic evidence suggests that, de-
spite promising initial acceptance, visualization use typically decreases
after a while [37] – most design studies do not follow up upon that.

An exception is the work by Gonzales and Kobsa, who conducted
a longitudinal study to clarify the true adoption of their tool after
preceding empirical studies had shown promising results [81]. They
found that domain experts gradually lost interest in integrating the
tool into their current work routines, which they attributed to a mis-
understanding of the experts’ workflow as a potential factor. Similarly,
Kang and Stasko complemented an earlier lab study by interviewing
analysts with different real-world tasks who they knew had used their
tool on their own initiative for two to 14 months [121]. Studying the
adoption of Overview effectively helped Brehmer et al. refine their
understanding of why and how domain experts used their tool, ul-
timately leading to revised task abstractions and design rationales
[37]. Their design study involved multiple deployments and analyses
of user adoption over a period of two years. Kincaid et al. collected
user feedback from different research labs that had employed their
visualization tool for scientific studies, one of them having used the
tool for more than a year [125]. McKeon observed the activities of gen-
eral web users on a public deployment of their wiki-like visualization
dashboard system over half a year (including a beta phase) [165].

Longitudinal field studies have also been conducted without a
particular focus on adoption. Shneiderman and Plaisant advocate for
measuring the utility of a visualization by the success it helps domain
experts achieve in carrying out leading work in their fields [246]. To
this end, they propose guidelines to evaluate the prolonged use of
information visualizations over several weeks or months. In line with
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their guidelines, many longitudinal studies collect diverse data, from
audio and notes over screen captured interaction sessions to logging
data. They have studied insight generation [231], task abstractions
[166], the integration of statistics with visualization for exploratory
data analysis [205], and early stages of geovisualization design [151].

The nature of longitudinal studies fosters incremental tool improve-
ments and learnings. Still, except for the work by Brehmer et al. [37],
studies spend little effort on reflecting how feedback evolved across
different post-deployment stages and how this might relate to changes
made to the tool, e.g., whether a change has actually solved a problem.
Most post-deployment studies also suffer from survivorship bias (a
particular type of selection bias), i.e., the studies solely focus on partic-
ipants who had used the tool [37, 125, 165]. Instead, we can also learn
from following up on unsuccessful cases, in which experts at some
point lost interest in using a tool.

To summarize, visualization tools are typically evaluated with re-
spect to their short-term usage only. Although a few works on long-
term post-deployment evaluation exist, they are still remarkably rare
[37, 185, 246] given that a core goal of design studies is to develop last-
ing solutions to problems in a target domain. Although an appropriate
timing is critical [91], existing longitudinal studies rarely quantify the
evaluation period or the tool usage period preceding the evaluation.
Still framing their research as long-term studies, this makes it impos-
sible to know what time period the authors refer to. They also do not
yet exploit the full potential of learning from why adoption failed and
how tool usage evolved over multiple post-deployment stages.

3.2 visualization for decision support

Without prior knowledge, the closest we can get to solving a multi-
attribute choice problem is to restrict the choice to incomparably good
alternatives. This is typically the Pareto front, i.e., those alternatives
that cannot be improved in one attribute without impairing at least
one other attribute (Section 2.2.2). In most cases, the information can
be structured in the form of a multivariate data table, where the rows
are alternatives and the columns represent the attributes. The final
decision depends on the decision-makers’ interpretation of the data
to determine the most preferred alternative. The interpretation of the
data, in turn, heavily depends on their subjective prior knowledge.

The number of alternatives to be considered can be very large. To
support a decision-maker in finding the most preferred compromise,
the alternatives can be visualized [175]. Korhonen and Wallenius
differentiate between visualizing a single alternative, a finite set of
alternatives, or an infinite set of alternatives [135]. Because the num-
ber of decision criteria is often lower than that of design parameters,
special attention is usually paid to visualizing the alternatives’ perfor-
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mances [173]. Visual aids can also convey the relative importance of
attributes, the relationship between attribute weights and alternative
utility, and immediate changes of the above to observe the dynamics
of the decision process [134]. Providing a holistic view of alternatives
requires visualization methods that effectively map large multivariate
data to two-dimensional visual space [152]. Their design might be
informed by findings from the cross-domain review conducted by
Padilla and colleagues [197]. They studied the role of working mem-
ory in decision-making with (static) two-dimensional visualizations
and how it interacted with fast, light-weight decision-making versus
contemplative, effortful decision-making.

In this section, we review interactive visualizations that are relevant
in the context of decision-making. Following the data-user-task design
triangle [176], the review covers the following scope.

Data-wise, we focus on decision problems where the set of multi-
attribute options is finite and known in advance. Interactive opti-
mization approaches where decision-makers steer the refinement of
solution sets are investigated in a different research area [88, 89]. The
targeted decision problems are largely based on multivariate or multi-
run data. While the data might be spatio-temporal in that it contains
information about space or time associated with an option, we exclude
dynamic data that changes over time [4]. We consider the attribute
values of options certain. Uncertainty associated with the data largely
affects decision-making and requires special consideration in visual-
ization support [28, 34]. We further exclude multi-modal data, where
the same subject of interest is sampled at different temporal or spatial
resolutions, and multi-model data, where different but related subjects
of interest are sampled or computed [122].

Task-wise, we focus on multi-attribute choice tasks, i.e., the task of
selecting the best among a number of options. We thus exclude works
that target only the intelligence and/or design stage of the decision-
making process (see Section 2.1.3). Visualization tools supporting these
stages have been covered elsewhere [195]. We also exclude works that
investigate the dynamics of evolutionary processes leading towards a
solution set [105].

User-wise, we focus on single decision-makers as opposed to groups
of decision-makers. Group decision-making raises particular demands
regarding consensus-building, which has inspired the design of ded-
icated visualization tools [17, 99]. Section 2.3 has pointed out the
differences between single target users being analysts, casual decision-
makers, or expert decision-makers. Following these categories, we
distinguish between general multivariate visualization approaches
without a claim to support decision-making (Section 3.2.1), visualiza-
tions that have been illustrated with common multi-attribute choice
tasks like buying a car (Section 3.2.2), and visualizations explicitly
designed to support expert decisions (Section 3.2.3).
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3.2.1 Multivariate Visualizations

As explained above, the finite set of alternatives underlying a multi-
attribute choice can be considered a multivariate data set. Here, we
review general information visualization approaches that are meant
to help understand this type of data set. As most of them have not
been exclusively developed against the background of decision tasks,
we also discuss their relation to multi-attribute choice. Multivariate
visualization approaches related to decision-making can be grouped
into dimension reduction techniques and lossless geometric projection
[135]. We exclude non-geometric approaches, e.g., icon-based or pixel-
oriented visualization techniques, for their disadvantages pointed out
by Dimara et al. [64]. We also summarize how multivariate visualiza-
tions for parameter space analysis can help decision-making.

Multivariate Visualizations Using Dimensionality Reduction

Dimension reductions provide a dense representation of virtually
any number of dimensions. A popular approach to dimension reduc-
tion is the self-organizing map (SOM) [132]. In engineering design,
the SOM has been employed for criteria-wise design space explo-
ration in the context of aerodynamic optimization [191]. In SOMMOS,
Chen et al. semantically enhance a SOM with criteria anchors on a
regular convex polygon as well as radial bar charts depicting individ-
ual alternatives [49]. This is similar to the RadViz approach, where
the mapping of alternatives is defined by attribute anchors acting as
springs that exert forces on the alternatives [100]. In Dust & Magnet,
the attribute anchors can be freely positioned and act as magnets,
where alternatives with high attribute values are attracted faster to a
magnet than alternatives with lower attribute values [304]. The Data
Context Map also contains arbitrarily positioned attribute anchors and
overlays semi-transparent regions in the projection that satisfy differ-
ent (desired) attribute ranges [50]. Zhao et al. use t-SNE as a projection
method for their system SkyLens and, like SOMMOS, employ radial
glyphs to represent individual alternatives [309]. These tools will be
revisited in the context of decision scenarios in a later section. While
dimension reduction is useful for navigating Pareto fronts, the result-
ing dimensions and visual layout are often hard to interpret [238] and
raw attribute values of alternatives cannot be read directly. However,
the personal judgment and choice of alternatives generally requires
users to be able to retrieve attribute values by looking at the visual-
ization. Dimension reduction also helps perceive groups of similar
or dissimilar alternatives. However, having filtered the alternatives
into acceptable regions, decision-makers are often more interested in
a direct comparison and trade-off between alternatives. For these rea-
sons, we do not primarily consider dimension reduction approaches
for multi-attribute choice.



3.2 visualization for decision support 55

Figure 3.2: Parallel coordinates (left), scatterplot matrices (center), and tab-
ular visualizations (right) are common visualization techniques
that allow decision-makers to retrieve any attribute value of any
alternative without interaction. Image from Dimara et al. [64].

Multivariate Visualizations Using Lossless Projection

In contrast to dimension reduction, a lossless projection enables
decision-makers to visually retrieve any attribute value of any al-
ternative without interaction [64]. This category includes common
multivariate visualizations that use rather simple visual encodings to
represent raw attribute values in a single plot. One example are scat-
terplots. Mühlbacher et al. use scatterplots to visualize the trade-off
between accuracy and complexity of decision trees [181]. For extension
to multivariate data, scatterplots for every pair of attributes can be ar-
ranged in a scatterplot matrix (Figure 3.2, center). Scatterplot matrices
have been employed, e.g., for the design of an aircraft engine [160].
Elmqvist et al. propose animated rotations in 3D space to navigate
through the multi-dimensional space by transitioning between the
two-dimensional projections of neighboring scatterplots [73]. Scatter-
plot matrices effectively convey correlations and comparisons between
selected attributes. However, their complexity rapidly grows with
increasing number of attributes and the perception of multi-attribute
alternatives is limited to pair-wise projections.

Another example are tabular visualizations. Cell values are encoded
visually, with a popular encoding being length (i.e., bars) [206]. The
resulting layout is related to stacked bar charts, except that bars are
aligned to a separate baseline for each attribute rather than stacked.
While some tools allow to switch between these layout strategies [84],
stacked bars make it difficult to compare individual attribute values
across multiple options. Tables with aligned bars have been found to
perform well for multi-attribute choice tasks in terms of completion
time and technique preference [64] (Figure 3.2, right). Cells that are
shaded by hue or luminous intensity make the tabular visualization a
heatmap [216]. Tabular visualizations provide an overview of multiple
alternatives and attributes simultaneously. Dedicated table layouts
also exist for hierarchical data [145], although this might remain a
boundary case in multi-attribute choice.

The predominant technique to visualize Pareto fronts are parallel
coordinates [16]. Attributes are mapped to parallel axes and alterna-
tives are represented by polylines that intersect the axes according to
the respective attribute values [109] (Figure 3.2, left). Parallel coordi-
nates are particularly suited to convey the characteristics of attributes
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and the nature of their relation, e.g., "it seems that low power loss
inevitably means high price". Andrienko and Andrienko propose axis
modifications regarding orientation, scaling, alignment, and ranking
of alternatives [10]. Other variations propose different layouts of axes
(e.g., circular, hierarchical) or polylines (e.g., curved or bundled) [117].
Parallel coordinates present a compact two-dimensional visual repre-
sentation that allows for a perception of alternatives across all design
parameters and decision criteria. They are also a popular choice by
domain experts, e.g., in engineering, who are not necessarily visualiza-
tion researchers or designers. Among others, parallel coordinates have
been applied to decision problems in automotive engineering [28, 163],
aerospace engineering [80, 244], and aerodynamic engineering [126],
also in virtual reality settings [262]. Fleming et al. reflect on the use of
parallel coordinates from the perspective of multi-criteria optimization
in real-world engineering design [77]. The horizontal line up of vertical
axes in parallel coordinates allows for many attributes being shown
next to each other. In addition, parallel coordinates particularly expose
conflicting attributes in the form of crossing line sections between the
adjacent axes.

Once a few promising alternatives have been identified, star plots
are often used for their detailed comparison [309]. Their visual encod-
ing is equivalent to that of parallel coordinates except that the axes
are arranged radially. Unlike parallel coordinates, which are suited
to identify relations between attributes, star plots are better suited
for comparing specific options [256]. Star plots have also been used
to depict alternatives resulting from an evolution of the same system
over time [207]. To include the relative importance of attributes in the
display, the axes of a star plot can also be shortened and stretched ac-
cording to weights [263]. A similar strategy has also been proposed for
radial bar charts, where the angular size of a bar can be proportional
to the weight of the respective attribute [263]. Due to the compact
circular arrangement of axes and segments in a radial layout, the
number of attributes that can be effectively perceived is limited.

Visual Parameter Space Analysis
Section 2.4.1 pointed out that a direct mapping from a desired

performance to a design option does not exist. Gaining insight into the
correspondence between design options and performance is thus an
important aspect of multi-attribute choice [244]. How does choosing
one design option over another influence the performance? Which
performances are generated by which kinds of design options? Similar
questions are addressed with parameter space analyses [240]. These
analyses are motivated by the use of input-output models, which map
a set of input parameters to a set of outputs, most often resulting
in multirun data [122]. One goal of parameter space analysis might
be model validation, e.g., to determine how well a regression-based
model approximates the output of a more detailed simulation [182,
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(a) Matković et al., 2005 [163] (b) Berger et al., 2011 [28]

Figure 3.3: Examples of tools that help explore the relation between input
parameter settings and the corresponding output behavior.

209]. Another goal that relates more closely to multi-attribute choice
is to choose an input parameter setting that results in a preferred
output. This typically requires an understanding of the relationship
between input parameters and outputs in both directions. Derived
from a meta analysis of 21 design studies, Sedlmair et al. provide a
conceptual framework for parameter space analysis that includes a
data flow model, navigation strategies, and analysis tasks [240].

The current body of work in visual exploration of parameter spaces
mainly comprises problem-driven investigation of complex systems in
different application domains like meteorology [213] or parametrized
image analysis [215, 268]. The Influence Explorer showcases an early
overloading of histograms on parallel coordinates to support interac-
tive exploration of computed performance values for different variants
of a product in engineering design [279]. Another early work has
been presented by Shaffer et al., who accurately characterize the role
of visualization in analyzing the high-dimensional parameter space
related to aircraft design [244]. Some of the characteristics expressed
in their work were taken up in later works related to parameter space
analysis. Matković et al. link multiple basic information visualization
techniques for exploring the parameter spaces of fuel injection systems
[163] (Figure 3.3a). Informed by three distinct application domains,
ParaGlide proposes to interactively divide the input parameter space
into partitions that represent distinct output behaviors [29]. In this
way, users can identify input regions producing desirable outputs as a
starting point for detailed trade-off analyses.

Parameter space analysis aims at an option with a set of design
parameter values that meet desired performance requirements. Where
this option does not exist physically in the real world yet (e.g., choos-
ing a prototype to be built as opposed to choosing from existing
universities), it is constructed from these design parameter values. In
this case, decision-makers need to be aware of tolerances. They intro-
duce uncertainty because they permit small deviations between the
nominal design parameter values and the product’s actual properties
after construction. How such a variation might affect the product’s
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functioning needs to be kept in mind already during decision-making.
Studying how the performance of an option changes in response to
perturbations or uncertainty in its design parameter setting is called
sensitivity analysis [230]. For multi-attribute choice, approaches where
derivations in the design parameters are investigated within a small
neighborhood of the chosen option are most relevant. At the inter-
section between sensitivity analysis and decision-making, Berger et
al. enable users to navigate a continuous multivariate design space
towards preferred parameter regions with respect to multiple criteria
[28]. Originating from a focal design, star sampling in the design space
is performed to observe criteria ranges that are within reach, eventu-
ally hinting at potential improvements or necessary trade-offs (Figure
3.3b). The sensitivity of criteria to changes of the focal point is con-
veyed by neighborhoods in the criteria space being mapped back into
the design space. Focusing on the neighborhood of a focal design for
sensitivity analysis, this approach does not provide a comprehensive
overview of the entire parameter space.

Parameter space analysis and sensitivity analysis play an important
role in informing a multi-attribute choice. However, many approaches
build upon interactive steering of the parameter space sampling dur-
ing analysis. This is rarely applicable in multi-attribute choices, which
aim at deciding among a predefined set of options. Furthermore, an
understanding of the relationship between inputs and outputs alone
is not sufficient to make a final choice. The patterns, hypotheses, and
insights generated through analyses need to be viewed against the
decision-maker’s preferences to become actionable and to move from
a desired parameter region to a final decision. While research around
parameter space analysis and sensitivity analysis can be a valuable
source of inspiration and lessons learned, the approaches are not
directly transferable to the task of making a multi-attribute choice.

Summary

Given the large body of visualization techniques for multivariate
data, not all of them are useful for visualizing alternatives in the con-
text of decision-making [175]. Well-designed tools for analytic tasks
like identifying outliers or patterns in multivariate data can serve as an
important foundation for decision support. But their conception might
not take into account the psychological effects or cognitive biases that
might affect the final choice in an irrational way [60, 197]. A solid
knowledge of general multivariate visualization techniques is impor-
tant for researchers targeting decision tasks. Still, the diverse subjective
prerequisites that take effect in choice situations require decision sup-
port tools that result from dedicated considerations regarding visual
encoding, navigation, and filter strategies.



3.2 visualization for decision support 59

(a) Dust & Magnet, 2005 [304] (b) Data Context Map, 2015 [50]

Figure 3.4: General-purpose visualization tools for casual decision-makers
that make use of dimension reduction remain an exception.

3.2.2 Casual Decision-Makers: General-Purpose Tools

From the general techniques of visualizing multivariate data, we move
to visualization tools specifically meant to support multi-attribute
choices made by non-experts. These are personal decisions that many
of us face at some points in our lives. For example, as consumers,
we often need to decide for a product from an online catalog, such
as which film to watch or which camera to purchase. In contrast
to such micro-decisions, personal decisions can also take the form
of permanent life decisions, such as which house to buy or which
university to attend.

Visualizations for a general audience of non-experts need to be
simple and clear, with reduced complexity regarding visual elements
and interactions. We organize our review of casual visualizations for
common choice tasks roughly along the lines of the previous review
of general multivariate visualizations, i.e., considering dimensionality
reduction and lossless projection but also approaches to utility scoring.

Casual Decision Tools Using Dimensionality Reduction

We will soon see that visualizations supporting common multi-
attribute choice tasks typically employ lossless projections. One ex-
ception to this strategy is Dust & Magnet [304]. Multivariate options
are projected to 2D space and magnet anchors are placed and moved
in the same space to separate desired from undesired options, e.g.,
to choose cereals based on their dietary composition. If magnets for
protein and vitamin are placed far away from magnets for sugar and
fat, they will attract healthy cereals with high protein and vitamin
and low sugar and fat (Figure 3.4a). Another exception is the Data
Context Map, which additionally visualizes regions of desired attribute
ranges in the projection [50]. This allows decision-makers to identify
overlaps where, e.g., universities or cars provide the best trade-off
among preferences regarding multiple attributes (Figure 3.4b). Still,
these representations are lossy projections, such that raw attribute
values of options can only be retrieved via details-on-demand.
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Table 3.1: The reviewed lossless projection visualizations for decision sup-
port of casual users organized by year and primary visualization.
Tools marked with 5 build upon utility scoring as opposed to
incremental querying. Arrows indicate tools inspiring one another.

Year
Tabular

Visualization
Scatter Plot Parallel Axes

2020

ConfigurationFinder
[222]

2018 5 PODIUM [284] 5 ReACH [295] TOP-Slider [142]

2013 5 LineUp [85]

2012 ManyLists [149]
Product Explorer

[221]

2008 5 VDM [302] ScatterDice [73]

2007 5 VMAP [266]

2006

5 ValueCharts+
[24]

2004 5 ValueCharts [43]

2001 EZChooser [298]

2000 SmartClient [218] MultiNav [141]

1996 FOCUS [257]

1994 FilmFinder [2]
Attribute Explorer

[280]

1992 HomeFinder [297]

Casual Decision Tools Using Lossless Projection

In contrast, retrieving raw product properties from a catalog rep-
resented as a lossless projection, e.g., based on scatter plots, tabular
visualizations, or parallel coordinates, does not require interaction. The
reviewed lossless projection visualizations targeting casual decision-
makers are summarized in Table 3.1.

An early scatterplot-based approach that has inspired many works
is HomeFinder [297]. Hundreds of homes for sale are represented as
dots on a 2D geographical map and can be filtered based on attributes
using sliders in a control panel (Figure 3.5a). Reachability can be con-
sidered by marking locations on the map and defining queries on
the linear distances to these points of interest. The reachability esti-
mation has later been refined in ReACH (Figure 3.5b) by considering
traffic conditions as well as more fine-grained constraints representing
daily routines [295]. FilmFinder generalizes HomeFinder to the task
of choosing a movie to watch by transforming the geographical map
into a scatter plot with a popularity metric and release year on the
axes [2] (Figure 3.5c). An additional type of slider allows the selection
of movies from an alphanumeric list of, e.g., directors. SmartClient
uses a scatter plot to display a subset of options regarding predefined
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(a) HomeFinder, 1992 [297] (b) ReACH, 2018 [295]

(c) FilmFinder, 1994 [2], as
depicted by [156]

(d) ScatterDice, 2008 [73]

Figure 3.5: Examples for scatterplot-based visualizations to support multi-
attribute choices made by non-experts.

(a) FOCUS, 1996 [257] (b) ManyLists, 2012 [149]

Figure 3.6: Tabular visualizations that support generic decisions among prod-
ucts with dynamic querying rather than a weighting approach.

attributes, e.g., flights according to price and total travel time [218].
Constraints on additional attributes can be applied in a tabular or
parallel coordinates view. Favorite options can be bookmarked for
detailed comparison. For scatter plots to represent more than two
original attributes, they have to be arranged in a scatterplot matrix.
ScatterDice facilitates the navigation of over thousand digital cameras
by providing freeform queries in individual scatter plots as well as an-
imated 3D transitions of data and query shapes between neighboring
scatter plots [73] (Figure 3.5d). Still, even scatterplot matrices provide
a limited perception of complete multi-attribute options.

The house-buying scenario addressed by HomeFinder has also been
targeted by an early tabular visualization called FOCUS [257]. In an-
other scenario, close to a hundred laser printers and tens of attributes
are compressed into a compact table for selection and comparison
where products are depicted in columns and attributes in rows. It
can be explored by selecting options to be rendered with increased



62 state of the art in information visualization

(a) VMAP, 2007 [266] (b) ValueCharts, 2004 [43]

(c) VDM, 2008 [302] (d) PODIUM, 2018 [284]

Figure 3.7: Most approaches that handle decision-makers’ preferences in the
form of weight-based scoring are tabular visualizations.

width, expanding and collapsing groups of attributes, and performing
queries by clicking on desired attribute values in the table (Figure
3.6a). While FOCUS visualized many options and attributes at once
in a compact overview, ManyLists aims at an in-depth comparison
of up to ten options [149] (Figure 3.6b). Choice scenarios regarding
food products and technical products have guided its design. Starting
from a table layout similar to FOCUS, attributes are reordered using
animated transitions as follows: attributes with identical values across
all options are merged in the top row, attributes only available for one
option slide down to the bottom of their column, and the remaining
attributes are vertically aligned in between.

Besides filter queries, some approaches apply decision-makers’ pref-
erences in the form of a weight-based scoring. VMAP assigns utility
scores to options, laptops in this case, based on the decision-maker’s
incrementally expressed preferences regarding attribute importance
and desirability of attribute values [266] (Figure 3.7a). Many weight-
based approaches build upon tabular visualizations (compare Table
3.1). Tabular visualizations are particularly suited to be extended by
weight-based rankings because they depict options in an inherent
order. A popular example is ValueCharts where attribute importance
is expressed by resizing the respective column [43] (Figure 3.7b). Col-
lapsed into a stacked bar chart, the columns convey the total utility
score of each option as their weighted additive sum. ValueCharts
has been applied in the real estate domain or for ranking countries
according to their human development index. It has been extended
with editors for capturing the desirability of attribute values, which
required a rotation of the visualization [24]. Conati et al. empirically
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(a) Attribute Explorer, 1994

[280]
(b) MultiNav, 2000 [141] (c) EZChooser, 2001 [298]

(d) TOP-Slider, 2018 [142] (e) ConfigurationFinder, 2020 [222]

Figure 3.8: Examples for decision support visualizations based on parallel
axes, which provide support for interactive querying and filtering.

compared both layouts on a hotel choice scenario and found the lay-
outs to perform differently depending on the decision-makers’ visual
working memory and visualization literacy [57]. LineUp provides more
flexible interactions to combine heterogeneous attributes into aggre-
gate scores than ValueCharts [85]. The effects of different weightings
can be compared side-by-side using slope graphs connecting the result-
ing rankings. HomeFinder and ValueCharts also inspired the Decision
Map and Decision Table (Figure 3.7c) components of the VDM frame-
work for choosing nursing homes [302]. An additional component
allows for a weight-based side-by-side comparison of two nursing
homes. Weight-based approaches work well for navigating large prod-
uct catalogs. However, representing preferences by assigning exact
weights to each attribute is challenging. To help users better under-
stand the effects of different weights, Weightlifter has been introduced
[198]. A recent observational user study compared eight interaction
widgets for distributing weights to three criteria [116]. Still, the success
of weight-based ranking might be threatened by preferences often
being "fuzzy, unstable, and inconsistent" [60]. PODIUM addresses this
challenge by asking users about their preferences regarding items
rather than attributes [284] (Figure 3.7d). Still, it remains questionable
to what extent decision-makers can be enabled to accurately express
their vague and evolving preferences. In view of conflicting attributes,
Imma Sort provides an alternative to utility-based ranking by sorting
options such that multiple attributes exhibit approximate monotonic
trends [155]. This helps users predict the values of multiple attributes
as they navigate through a sorted list. Its usefulness is demonstrated
on scenarios involving the choice of a hotel, movie, and food dish.

Rather than a scoring approach, visualizations that employ parallel
axes of different kinds often pursue incremental query construction.
Choosing a house to buy has been a common scenario originally
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addressed by HomeFinder. A more general work took a different
approach using linked histograms: the Attribute Explorer represents
attributes as horizontal histograms that are arranged next to each
other [280]. Brushing houses in a certain value range on one histogram
axis reveals where these houses appear on the remaining axes (Figure
3.8a). This adds immediate feedback to the to the sliders themselves
as opposed to the indirect controls provided by HomeFinder. Per-
ceiving the relationships between attributes has also been the aim
of interaction provided in MultiNav [141]. It allows users to slide a
horizontal attribute axis from left to right, thereby causing the re-
maining attribute axes to move as well to keep the focused option in
the center of the screen (Figure 3.8b). Relationships can be observed
from the axes’ tendency to move in the same or different directions
and at which speed. In EZChooser, the horizontal attribute axes are
composed of bars representing ranges of attribute values, where the
relative count in a bar is reflected in the bar’s width [298] (Figure 3.8c).
The data set, in this example cars, can be queried by clicking on the
value bars in each attribute axis. Among others, the query widgets
used in MultiNav and EZChooser have been systematically revisited
and informed the design of the TOP-Slider [142]. Similar to parallel
coordinates without polylines, it uses interlinked parallel attribute
sliders to support non-experts in perceiving optimal trade-offs. When
a slider handle is selected and moved, the handle is linked to pairs
of dashed lines that convey the boundaries of the optimal ranges
of the remaining sliders (Figure 3.8d). The Product Explorer aims to
make standard parallel coordinates accessible to casual users [221].
The authors propose a number of enhancements to increase their us-
ability, including facilitated tracing of product attributes, visualizing
gaps in the product data set, and a decision bar that stores exclusive
intermediate decisions to free screen space. The most recent interactive
visualization for product selection by casual users is a follow-up of
the Product Explorer. ConfigurationFinder optimizes the parallel coor-
dinates for screen space efficiency by reducing the number of visual
elements [222]. It switches from line-based connections to ribbons
where applicable (Figure 3.8e), introduces proxy axes to represent
groups of semantically related axes and fusion axes to represent com-
bined attribute values of two attributes. The comparison to a popular
webshop interface revealed that ConfigurationFinder was perceived as
less confusing and easy to use despite its unfamiliar interface. Dimara
et al. studied three elementary lossless projection visualizations for
their ability to support casual users in making multi-attribute choices:
parallel coordinates, a scatterplot matrix, and a tabular visualization
[64]. They found no conclusive difference in the decision accuracy
between the visualizations. Subjective participant ratings weakly sug-
gest that the tabular visualization, which did not employ any type
of utility scoring, is preferred over parallel coordinates. Analyzing
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the time-on-task revealed some evidence that decisions were made
faster with tabular visualizations. A tool that links all three elementary
visualization techniques to a map and also supports weighted scoring
is CommonGIS [12]. It explicitly supports the choice stage (Figure 2.3)
of decisions within a geographical context, e.g., choosing counties to
receive funding [12] or choosing a skiing resort for vacation [11].

Summary

The commonalities that make multivariate visualization tools par-
ticularly accessible to casual decision-makers are 1) the use of well-
known visualization techniques like scatter plots, tabular views, par-
allel coordinates, or maps and 2) the interactive queries and filters,
which are often executed via direct manipulation rather than indirect
interaction with widgets. Most of the techniques aim at offering a
clear overview of the available options, with a few exceptions focus-
ing on in-depth comparisons between a handful of options. Some
tools, mostly tabular visualizations, support multi-attribute choice
more explicitly by implementing a weighted-sum approach to rank
options. While the simple visual encodings help generalize to a range
of multi-attribute choice tasks (e.g., different consumer choices), we
have observed a decrease of decision tools for the general audience in
recent years. We found this observation confirmed by a survey where
most tools supporting the choice stage assumed expert users [195]. Our
observation might be attributed to the increasing attention received by
problem-driven visualization research that often targets expert users.
Many of the findings related to tools for casual decision-makers might
be helpful for designing visualization tools for professional decision-
makers. Still, professional settings might entail different motivations,
priorities, environments, or time budgets [104], such that a careful
domain characterization and task analysis are needed.

3.2.3 Professional Decision-Makers: Design Studies

Professional decision-makers are trained to make decisions as part of
their job. Section 3.1.1 has summarized design study methodologies to
conduct problem-driven visualization research. While these method-
ologies can in principle be applied to any user group, design studies
are often carried out for domain experts. They have investigated vi-
sualization tools meant to support professional decision-making in
different contexts. Existing surveys have investigated how and why
humans come to conclusions with static visual information [197], how
interactive visualization tools assist decision tasks [195], and how such
visualizations can be evaluated [64, 71]. While focusing on theory/em-
pirical and design (technique or system) papers, no particular focus
has been dedicated to design study aspects. We summarize works on
visualization techniques for decision support that present themselves
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(a) SOMMOS, 2013 [49] (b) SkyLens, 2017 [309]

(c) LineUp, 2013 [85] (d) WeightLifter, 2016 [198]

Figure 3.9: Examples of design studies that focus on general-purpose
decision-making as a high-level goal.

as a design study or report on a collaboration with domain experts
including a detailed data and task analysis or evaluation.

SOMMOS [49], SkyLens [309], LineUp [85], and WeightLifter [198]
focused on general-purpose decision-making as a high-level goal. Still,
we present them alongside tools for professional decision-makers be-
cause they are grounded in literature reviews of scientific domains or
collaborations with domain experts. Their extensive capabilities also
come with a certain operational and visual complexity, which does
not match the requirements of general-purpose tools for casual users.
Following Munzner’s nested model [185], these works first provide
a characterization of decision data, tasks, and requirements, where
they focus on commonalities across application domains. On this ba-
sis, SOMMOS was designed as an interactive self-organizing map for
visualizing a Pareto front, with anchor points corresponding to crite-
ria and radial bar chart glyphs representing individual options [49]
(Figure 3.9a). As criteria are considered equally important, the anchor
points address the requirement for their objective representation. The
glyphs address the requirement for detailed inspection of individual
alternatives. Similarly, Zhao et al. use t-SNE for a projection-based
overview in their system SkyLens [309] (Figure 3.9b). In addition, they
dedicate views to the design goals of understanding why an option is
Pareto-optimal and what trade-offs are associated with choosing one
option over another. Based on a tabular visualization with embedded
bars, LineUp allows to create and compare multiple rankings, a re-
quirement they derived from the scenario of investigating changes in
university rankings over time [85] (Figure 3.9c). While the parameter-
ization corresponds to a point-wise exploration of the weight space,
WeightLifter proposes a global weight space exploration to particu-
larly address the identified mismatch between the need for precise
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(a) Cupid, 2014 [27] (b) Dream Lens, 2018 [162]

Figure 3.10: Examples of design studies that aim to aid multi-attribute choice
by relating the options’ design parameters to their outcomes.

weights and the vague intuition about the relative importance of crite-
ria [198] (Figure 3.9d). The domain-agnostic problem characterizations
make SOMMOS, SkyLens, WeightLifter, and LineUp applicable in
different applications. This is demonstrated by different usage scenar-
ios, some of them targeting casual decision-makers. Still, additional
potential might be unlocked by adapting to domain-specific tasks
and requirements. Furthermore, a central projection-based overview
like in the case of SOMMOS and SkyLens requires additional rep-
resentations to ensure full visibility for multi-attribute choices that
require (all) attribute values to be directly retrieved [64]. In addition,
ranking approaches like LineUp and WeightLifter, which combine
attribute values into weighted scores, require significant cognitive
effort from decision-makers, who need to capture their vague and at
times interacting preferences by single precise weights.

Vismon was introduced as a trade-off analysis tool for policy-making
[35]. In contrast to the works before, the design of Vismon built upon a
characterization of domain-specific data and tasks, namely in fisheries
management. At its core, contour plots are used to depict the value
distribution for each criterion as a function of the two design parame-
ters. A few selected options can then be compared in a trade-off view,
where bar charts by default show each criterion across the options in
focus. Still, Vismon does not provide an overview of alternatives with
all their properties. Tools to visualize and explore alternatives in the
context of generative design allow for considering qualitative aspects
such as geometry along with quantitative criteria. Cupid makes use
of superimposition to allow users to relate the abstract parameters of
a geometry generator to the resulting three-dimensional shapes [27]
(Figure 3.10a). In contrast, Dream Lens juxtaposes views for the shapes
and parameters of the designs [162] (Figure 3.10b). The above design
studies approach decision-making by navigating through given design
options and asking about their outcome. Multi-attribute choices often
require the reverse: given a desired outcome, what does the design
option need to look like?

As there exists no direct inverse mapping from outcome to design
parameters, an interactive exploration of varying design parameter
settings and their outcomes is needed (Section 3.2.1). Matković et
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(a) Weng et al., 2020 [294] (b) LiteVis, 2015 [254]

(c) Urbane, 2015 [76] (d) STRATOS, 2015 [14]

Figure 3.11: Examples of visualization support for decision problems that
involve information about temporal and/or spatial aspects.

al. combine scatter plot, histogram, and parallel coordinates to as-
sist engineers in analyzing and understanding the parameter space
of fuel injection systems [163] (Figure 3.3a). Their basic information
visualization techniques have proven valuable for gaining a broad
understanding of the system behavior. However, the case study only
covers the identification of desirable regions in the parameter space
and does not ultimately proceed until a final choice remains. Grounded
in the same use case, Berger et al. extend the inspection of a limited
number of sample points to a continuous navigation of the design
space while observing the behavior of multiple decision criteria [28].
Experts particularly appreciated the prediction of combined criteria
changes in a local neighborhood when increasing or decreasing design
parameter values (Figure 3.3b), which significantly helps the identifi-
cation of potential for improvement or, where necessary, for trade-offs.
However, their approach centers around additional sampling. It thus
falls into the category of interactive approaches, while we consider
multi-attribute choice as an a posteriori decision problem where all
options are known in advance (Section 2.2.1).

Besides strictly multivariate options, design studies have also in-
vestigated decision support in spatial scenarios. RelEx resulted from
a design study on optimizing the traffic flow in communication net-
works [239]. The visual network analysis tool supports engineers in
modifying an existing communication network such that physical con-
straints are met and costs for signal routing are optimized. Similarly,
Weng et al. study the generation and evaluation of bus route candi-
dates in a complex bus network to meet constantly changing travel
demands [294] (Figure 3.11a). With LiteVis, Sorger et al. propose a
visualization that helps simulate and evaluate different lighting setups
for buildings or open spaces [254] (Figure 3.11b). Similarly based on
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a three-dimensional scene, ManyPlans allows for the generation and
evaluation of response plans with protective measures for different
flooding scenarios [291]. In both cases, decision criteria can be both
multivariate, e.g., investment cost, and spatial, e.g., illumination or
water level at different locations in a scene. Like LineUp [84] and
WeightLifter [198], the approaches use a weighting approach to com-
pute a ranking of the generated solutions, which is visualized as a
stacked bar chart. While ranking computation is a valid approach to
handling options in multi-attribute choices, it relies on the challenging
task of establishing a meaningful weighting of decision criteria in
advance. Urbane also targets a three-dimensional scene, but exposes
urban development options in a parallel coordinates plot instead of a
ranking approach [76] (Figure 3.11c).

Besides spatial data, decision-making might also involve an analysis
of temporal or spatio-temporal data. STRATOS allows for deciding
among a handful of software release plans, depicting stakeholder sat-
isfaction and feature coverage alongside the flow of resources through
a hierarchy of software releases and features [14] (Figure 3.11d). In
clinical environments, visual assistance tools support decisions for
diagnosis or treatment planning, e.g., based on event sequences [148,
184] or blood flow data [204]. To help choose among possible mar-
keting activities, Guo et al. visualize event sequence predictions of
likely customer behaviors following a certain action like sending an
email [87]. Due to the complexity of individual options introduced by
the temporal and spatio-temporal dimensions, these approaches only
allow for a comparison among a handful of options.

3.2.4 Interaction

Like decision-making can be a goal of visualizing data, it can also
be a goal of interacting with a visualization. Interaction is essential
for visual exploration tasks and likely also for decision tasks [64]. It
occurs at all stages of the visualization pipeline (i.e., data transforma-
tion, visual mapping, and view transformation) [42], where it serves
different data-oriented intents [66]. On a high level, interactive ma-
nipulation allows decision-makers to acquire multiple perspectives on
the data and form insight. On a low-level, it allows decision-makers to
control (the representation of) the solution space. Interaction generally
encourages decision-makers to engage into thinking and reflecting on
the data being explored.

We briefly summarize interaction techniques according to their key
role in a visualization-based decision process. We take a task-centric
approach where we loosely group the interaction techniques by why
they are used and describe within each group how an interaction mech-
anism helps the respective task. Note that this is neither an exhaustive
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collection of interaction mechanisms nor an exclusive assignment of
mechanisms to tasks.

Being confronted with a (large) number of alternatives and at-
tributes, decision-makers benefit from an initial overview of the entire
data set to get a feeling for the extent of the design space and the range
of achievable performances. Interacting with such an overview marks
the beginning of an explore task where decision-makers search for
alternatives with particular (desired) characteristics [38]. This might
involve changing how the information is represented [66], such as
adjusting the color-coding of alternatives to observe the distribution
of decision criteria values or derived attributes like a computed utility
score [38]. Mouseover highlighting is useful to gain a first impression
of the characteristics of alternatives or of the frequency and distribu-
tion of attribute values. It can also reveal details of aggregations [38]
that might have been introduced to roughly depict the characteristics
of the solution space using a manageable number of representatives.
Interaction at this stage might also involve navigating the information
[66], for example via zooming, panning, or scrolling, which manipulate
the visible viewport but leave the visualized data unchanged.

Multi-attribute choices center around conflicting attributes that need
to be balanced. Recognizing relationships between attributes or alterna-
tives that hint at required trade-offs is thus essential. Many interaction
mechanisms support this task by changing the layout of a visual-
ization [66], e.g., by re-arranging the representations of attributes or
alternatives. For example, attributes might be re-ordered to perform
side-by-side comparisons, or sorted to express their relevance to the
choice task [64]. Some visual encodings, e.g., tabular views, also allow
for re-ordering of alternatives. Sorting according to ascending/de-
scending attribute values, derived utility scores, or similarities is a
simplified variant of alternative reordering [64]. Scanning through
the values of a sorted attribute via mouseover and simultaneously
observing the highlighted values of another attribute might also help
in discovering attribute relationships. Similarly, brushes can be created
(and moved) to highlight a subset of alternatives with respect to one
or more attributes and observe their distribution on the remaining
attributes [26]. This is also one application of the focus-and-context
technique, where those parts of the data, which are currently in focus,
are visually discriminated from all the rest (the context) [92]. When
used in conjunction with linking, brushing elements in one view
consistently highlights the same (brushed) alternatives in all other
views, thus allowing users to understand relationships across different
perspectives [225]. Where attributes in fact exhibit relationships that
introduce redundancy to the choice task (e.g., a positive correlation
where two attributes can be optimized simultaneously), one of them
might be hidden.
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Section 2.1.4 showed that decision strategies, in particular the elimi-
nation by aspects strategy, involve filtering alternatives into acceptable
and unacceptable regions to narrow the solution space. Again, this is
an explore task in the sense of searching for targets with matching
particular (acceptable) characteristics [38]. Filtering is performed by
creating brushes that represent desired attribute values, where unde-
sired alternatives not satisfying the constraints are filtered out and
hidden from the display [26]. As a choice typically needs to satisfy
multiple constraints and preferences, several brushes can be combined
to a composite brush using the logical AND operation [288]. This puts
alternatives relevant to the choice into focus and simplifies their dis-
tinction from those that are less desired. Unlike multivariate analysis
problems, decision problems usually involve additional information
about whether certain attributes should be minimized or maximized.
This knowledge could be incorporated into the design of brushing
mechanisms to reduce the set of operations needed.

Once decision-makers have reduced their choice to a manageable
number of multi-attribute options, making a final decision requires a
careful consideration of their detailed characteristics. This corresponds
to the query tasks of identifying the characteristics of one alternative
and comparing it to those of another alternative [38]. For this pur-
pose, mouseover highlighting of an alternative can be extended by
tooltips depicting the raw attribute values of the hovered alternative
as details-on-demand [64]. However, these information disappear once
the mouse leaves the alternative. In contrast, bookmarked options are
persistently visible, even if they are not part of any other selection
[38]. This enables a direct comparison with respect to each of their
attribute values. To help the in-depth comparison among multiple
favorites, alternatives might also be annotated with labels storing, e.g.,
their most remarkable characteristics. Similarly, to keep track of the
decision process, intermediate decisions might be annotated with, e.g.,
the reasons for exclusion of an alternative.

3.3 research gaps

In Section 1.2, we identified research challenges for assisting data-
informed decision-making with visualizations. Here, we conclude
with a summary of research gaps that remain from the challenges
after reviewing the state of the art in Sections 3.1 and 3.2 (Figure
3.1). In the course of this thesis, we will transform these gaps into
research goals, describe our concept to address them, and demonstrate
its applicability in different use cases related to multi-attribute choice.

Prior works on how visualizations can support decision-making
are highly valuable. Still, despite decision-making being researched
as a central goal of visualization, important gaps remain to be filled,
which we list below. We refer to the research challenges that each
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gap emerges from (i.e., which are not yet solved) in brackets. A main
observation from our literature review is that there are few works that:

• Systematically elicit tacit knowledge and strategies (CCHA) –
Although an effective decision support requires an integration of
explicit data with implicit knowledge [226], few works report on
the procedures they followed to extract the expertise and experi-
ence involved with their users’ problem-solving. No prescriptive
steps are available yet to guide visualization researchers in elicit-
ing the tacit knowledge involved with decision-making. Instead,
most domain characterization reports focus on the outcome, i.e.,
data and task abstractions. While ethnographic methodologies
provide systematic approaches to knowledge elicitation, the dif-
ficulty is to transfer the practices from their limited scope to
contexts that involve large data and technical artifacts.

• Explicitly distinguish decisions from analytic tasks (CCHA) –
Although decision tasks are different from traditional analytic
tasks [195], most works that are meant to support decision-
making actually center around analytic tasks. Little experience
has been gathered with developing a meaningful outline of a
decision problem. Raising awareness for what can or cannot be
considered a decision task could help conduct more rigorous
research of visualization-based decision support. The difficulty is
to establish a clear terminology and abstraction concept around
decision tasks in order to disambiguate research claims and
move the focus of visualization research from analysis tasks to
decision-making activities.

• Tailor visualizations to constructive preferences (CSUB, CVIS) –
Although multi-attribute choices are ill-defined problems and do
not have an optimal solution, few visualization designs explicitly
target tasks like constructing and validating preferences, compar-
ing the gains and losses of options, and reconciling conflicting
information to make a final choice. Multivariate visualizations
serve as a solid foundation for basic analytic activities but fall
short of determining an alternative’s value to a decision. The sim-
plified functionality of tools that target casual decision-makers
might not meet the flexibility needs of experts. Tools designed
to support expert decisions miss different core aspects of the
targeted choice problem. In particular, approaches proposing
(weighted) scores to establish an order among alternatives can-
not fully represent the preferences and requirements of decision-
makers, e.g., by single weights. The difficulty is to fuse the tacit
knowledge and preferences of decision-makers with the explicit
data to provide an environment, in which decision-makers can
discover what is important to their choice.

• Target decisions where trade-offs affect each other (CVIS) –
Although most decisions taken will influence their surround-
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ings, dependencies between decisions have not been addressed
so far. To date, no work exists that helps decision-makers per-
ceive multiple alternative sets associated with such problems.
Visualization approaches have already linked data sets stemming
from different acquisition modalities or simulation models [122].
However, such data compositions have not yet been viewed in
the context of decision-making. The difficulty is to generate a
coherent representation of such data, to navigate the large num-
ber of possible outcome combinations, and to judge the overall
goodness as an emergent property that the individual choices
do not exhibit when viewed separately.

• Are validated on expert choices in real-world settings (CEVL) –
Although many works mention decision-making as a main goal,
they rarely report on case studies that assess whether domain
experts have been indeed helped in making their choices. Several
tools are validated with hypothetical experts or on simplified
decision tasks. Increased speed is also often considered as a
quality indicator for task performance. But in decision-making,
it is more important that decision-makers obtain a differentiated,
and therefore trustworthy, understanding of their options rather
than to quickly jump to conclusions. The difficulty is that im-
proved decision quality is more difficult to grasp due to a lack
of ground truth (compared to low-level analytic tasks) and that
domain experts who were not involved in the design process
might be rare. Furthermore, conducting and analyzing observa-
tional studies demand a significant amount of resources, both
from domain experts as well as visualization researchers.

• Observe long-term benefits based on self-initiated use (CEVL) –
Visualization tools are typically evaluated with respect to their
short-term usefulness only. Few works (whether or not targeted
at decision-making) follow-up on their tools’ long-term usage, let
alone adoption, in the target domain after a certain time period.
Besides the general challenges associated with case studies, the
difficulties of studying adoption can mostly be attributed to
logistics: the tool needs to be promoted among target users, self-
initiated use needs to be noticed by the researchers, and checking
back after some time might rely on a continued collaboration.

• Focus on design studies for multi-attribute choice (CHCD) –
Although decisions are highly subjective, few works ground the
design of their visualization tools in close collaborations with
professional decision-makers. Many visualization papers focus
on decision tasks of narrow complexity that involve small data
sets [67], often studied in (controlled) artificial settings. When
designing for real-world settings, the difficulty is to perform
an accurate domain characterization and abstraction against the
background of an ill-defined decision problem.
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M A I N C O N T R I B U T I O N S





Figure 4.1: Grounded in real-world applications, research on making choices
with visualizations touches both data science and human science.

4
C O N C E P T F O R V I S UA L A N A LY S I S S U P P O RT F O R
M U LT I - AT T R I B U T E C H O I C E

The central research question targeted in this dissertation is how we
can design and validate interactive visualizations to effectively as-

sist experts in making real-world choices among many multi-attribute
alternatives. To this end, we need to bridge the gap between decision
theory focusing on controlled settings of narrow complexity and vi-
sualization research focusing on real-world exploratory settings by
analysts instead of decision-makers. In this chapter, we describe the
conceptual approach taken in this thesis, i.e., the relevant ideas and
rationales that guided our research.

What the reader can expect from this chapter:

• A contextualization of multi-attribute choice in the scope of data
science, human science, and visualization (Sec. 4.1).

• An outline of the research goals we address (Sec. 4.2).
• A characterization scheme to abstract a given choice task using

pairs of data, user, and task properties to help visualization
researchers precise their decision-support claims (Sec. 4.3).

• An instantiation of the characterization scheme that results in an
operational definition of our targeted choice task (Sec. 4.3).

• A qualitative research design for the visual analysis for multi-
attribute choice. The concept considers the researchers’ visualiza-
tion design process and the users’ decision process as orthogonal
dimensions (Sec. 4.4).

77
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4.1 research scope

Assisting multi-attribute choices with interactive visualizations is
multi-faceted and thus requires a multidisciplinary approach. We
provide a contextualization of the topic by relating it to three research
areas (Figure 4.1): (1) the research problem is about making data-
driven choices, (2) the data analysis requires judgments of a human
decision-maker, and (3) the presented solutions make use of information
visualization. Real-world applications from different target domains
serve as information sources.

When making a choice between options, we are dealing with multi-
variate data items that can be organized in a data table [193]. In this
data table, the rows represent options in the form of data items and
the columns represent attributes [64]. It thus makes sense to consider
known ways to extract patterns and meaning from such data. Such
approaches are researched in the field of data science (Figure 4.1, left).

At the same time, deciding between options involves human judg-
ment. This includes, among others, the role of prior knowledge, cog-
nition, (rational) reasoning, and decision strategies. In an attempt to
understand and build upon how humans make choices, we can borrow
from the domain of human science, in particular from the fields of
decision theory and cognitive science (Figure 4.1, right).

Finally, understanding the information that is hidden in the data to
make subjective judgments relies on visual representations that facili-
tate interpretation. We propose information visualization approaches
that build upon both disciplines to provide human decision-makers
with an effective means to make informed choices (Figure 4.1, center).
These choices arise from their personal or professional lives. The visu-
alization research presented in this thesis highly values the work with
real users to solve their real-world problems. In this way, the needs,
tasks, and goals framing the decision-making in a particular domain
can be carefully considered (Figure 4.1, bottom).

4.2 research goals

Surveying existing works against the background of the research
challenges outlined in the introduction (Section 1.2) revealed a number
of research gaps (Section 3.3), which we will address in the course of
this thesis. From the fundamental research challenges and identified
gaps, we derive a number of research goals (Figure 4.2) to motivate
the conceptual framework and contributions:

• Characterize multi-attribute choice – The related works pre-
sented in Section 2.1.1 showed that the task of making a decision
is described differently among research disciplines. The wide
spread of decision-related tasks is a strong motivation for our
research on multi-attribute choice. We identified a number of
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Figure 4.2: How can interactive visualization assist and inform choices? Aim-
ing to connect multivariate data to insights that are relevant for a
choice raises a number of research goals for analysis support.

commonalities that can be considered a basic cross-disciplinary
understanding of decision tasks. Still, they remain high-level and
mainly refer to the information base (i.e., alternatives, attributes,
and goodness indicators). Further environmental influences rele-
vant to the design and evaluation of visualization support are
not covered. A characterization of multi-attribute choice to in-
form visualization design in this work should include not only
the data aspect but also the perspectives of users and tasks [176].

• Learn from other disciplines how to study decision tasks – The
background on decision theory (Section 2.1) showed that the
field has devoted a long history to studying decision-making
and its cognitive foundations. Its findings are likely useful for
studying decision tasks in visualization research. Yet, they are
rarely considered [67]. Models and concepts from such disci-
plines could serve as a starting point in moving towards general
abstractions of decision tasks and decision-makers, upon which
visualization design and evaluation can build. Domain charac-
terization, requirements specification, and task analyses should
thus be viewed from a multidisciplinary perspective.

• Apply and report on user-centered design – Visualization de-
signers may choose from a variety of visualizations and designs.
Some create incorrect conclusions, most do not really help, and
only some of them are useful for the task at hand [186]. We thus
need to choose visualizations depending on the specific purpose
they are meant to serve. With the subjective contexts of decision
tasks in particular, approaches to visualization design need to be
user-centered. Similarly, Section 2.1 showed that decision theory
has moved from rational models and controlled experiments
to empirical models and observational methodology. Still, Sec-
tion 3.2.3 showed that research from a design study perspective
providing a contribution towards solving a real-world decision
problem is rare. Moreover, professional decision makers have
found to be under-supported by visualization research [195].
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Future efforts in designing visualization support would bene-
fit from targeting professional decision-makers and from being
grounded in a close collaboration with domain experts.

• Consider constructive preferences in visualization design –
Designing effective visualizations for choice tasks requires a
trade-off between information volume, simplicity and visibility
[71]. This trade-off needs to be made against the background
of decision-makers constructing their preferences on the spot,
rather than drawing from well-defined pre-existing preferences.
In doing so, they utilize a variety of approaches that they might
adapt depending on the varying context and task demands dur-
ing the course of making a decision. Visual representations and
interaction mechanisms need to be carefully designed, not only
to be well understood, but also to provide a flexible environment
for the incremental construction of subjective judgments.

• Support co-dependent choices – Many decisions are made
among options that refer to single units like an apartment to rent
or a mechatronic component to take to production. However,
other decisions involve multiple choices that affect each other, be
it mechatronic components that are operated together [161] or
life partners searching for jobs within a reasonable commuting
distance from each other. The core challenge of making trade-offs
extends beyond one single choice. Visual representations need
to make these side effects visible to support decision-makers in
subordinating individual choice goals in favor of those of the
overall decision. Given the general significance of such decision
problems, visualization research would benefit from broadening
the profile of targeted tasks towards such co-dependent choices.

• Validate visualization designs in the wild – Any visualization
design needs to be validated with evidence that it does indeed
help solve the targeted decision problem. This requires study
conditions that are closest to the real-world practice of a domain
expert. It can be achieved with field studies, where free tool
use by domain experts in a real-world setting is observed. Lab
studies with domain experts tend to provide less rich findings
[243]. In line with the call for more user studies that contain
decision tasks [67], Section 3.2.3 found that few works report on
their tool’s usefulness in case studies with domain experts. Even
fewer works report on self-initiated long-term use or adoption.
Problem-driven visualization research would benefit from an
assessment of decision support tools in the wild, both in the
short-term and in the long-term.
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4.3 characterization of multi-attribute choice

Before we can frame a concept to approach the research goals, we need
to precise our understanding of the targeted decision problem. Table
2.1 revealed significant commonalities regarding the decision activity,
alternatives, attributes, and goodness indicators of decision tasks
across disciplines. Most tasks deal with a variation of choosing among
a set of multi-attribute alternatives, aiming to maximize some value.
The most recent definition in the field of information visualization
refers to multi-attribute choice as the task of "finding the best alternative
among a finite set of alternatives, where alternatives are defined across several
attributes" [64]. We opt for "most preferred" over "best" to indicate that
some subjective or preferential value that is not necessarily consistent
with rationality is to be maximized.

Section 1.2 illustrated that multi-attribute choice is an ill-defined
problem involving manifold alternatives, conflicting demands, shifting
goals, implicit knowledge, and potentially high stakes (Figure 4.3).
The same section identified the need to take a closer look at real-world
decisions made by real users. In this section, we detail the properties
of multi-attribute choice to clarify the different guises in which such a
task might come. The ultimate goal is a clearer understanding of the
task as it is targeted in this thesis.

4.3.1 Properties of Multi-Attribute Choice

By reading through literature and talking to domain experts over mul-
tiple years, we gained an overview of the wide range of situations and
disciplines, in which choices are made. Based on this experience, we
categorize the properties of the examples we encountered to develop
a systematic view on the diversity of real-world choices. The goal is
to identify characteristics that help describe the multi-attribute choice
task to design for more explicitly.

Our characterization is grounded in three practical questions:

• What data inform a decision?
• Who are the users making a decision?
• What conditions frame the decision task?

These questions correspond to data, users, and task as the three main
aspects to consider when designing visualizations [176]. In the follow-
ing, we will provide detailed explanations of each aspect, including
characteristics, examples, and their implications for visualization de-
sign. Multi-attribute choice preserves the following properties:

Data

• Number of options: few vs. many – The fewest options would
be a binary decision, e.g., whether to go for a walk or not. A
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Figure 4.3: Choices in natural settings are difficult. In this work, high stakes,
dynamic settings, uncertainty, and vague goals are particularly
relevant. Image reprinted with permission from Klein et al. [130].
Permission for reuse must be obtained from the copyright owner.

typical example for the availability of many options are consumer
choices, e.g., which of the hundreds of hotels in a city to book
for a vacation. Visualizing many options can require advanced
aggregation or focus-and-context techniques to address visual
clutter and support user navigation through the solution space.

• Number of attributes: few vs. multiple – A decision involving
few yet conflicting criteria might be an investor balancing risk
and return indicators of stocks to buy. In an architectural context,
the variety of attributes might range from geometric and material
parameters over mechanical stresses to energy efficiency. The
number of attributes that can be effectively displayed depends
on the chosen visual encoding.

• Availability: known vs. progressive – Decisions are often made
among a fixed set of solutions, e.g., from a product catalog or
pre-computed simulations. For other decisions, new solutions
in a region of interest can be generated progressively during
the decision process, e.g., an operator steering the optimization
of wastewater treatment. With a progressive steering, the focus
shifts from multivariate visualization of options to the interaction
between the decision-maker and an optimization algorithm.

• Alternatives: comparable vs. non-comparable – Many decisions
are among comparable alternatives that share the same attribute
space. Still, one can also face a choice, in which the attributes
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defining the options differ, such as deciding whether to buy a
new camera body or a camera lens. Non-comparable data points
with partially disjoint attribute sets significantly complicate the
visual mapping.

• Consequences: certain vs. uncertain – Choices are often made
based on expected consequences. As an example, a decision-
maker might be certain about the horsepower of a car, while
other properties might be subject to uncertainty, e.g., its relia-
bility if the car has been launched only recently. Visualizations
meant to serve as a decision-making tool need to communicate
uncertainty information to avoid bias.

Users

• Decision-maker: casual vs. professional – Casual decision-
makers face smaller or larger decisions at some points in their
personal lives. Professional decision-makers are experts, whose
job it is to repeatedly make decisions within their field and who
are trained to do so. Understanding the motivation, priorities,
environments, and cognitive processes of the decision-maker
helps derive appropriate requirements for visualization design.

• Authority: oneself vs. others – Personal decisions are usually
made on behalf of oneself and do not require justification beyond
that. Expert decisions are typically made on behalf of other stake-
holders, e.g., mechatronic scientists who design electric drives
for their customers. As expert decision-makers are answerable
for their decision, visualizations can help them articulate the
rationales of their choice and verify the choice together with the
additional stakeholder.

• Social setting: individual vs. group – Individual choices involve
only the knowledge, intuition, and judgment of the decision-
maker. Collaborative decisions are often made in organizations
and require consensus among stakeholders, e.g., politicians from
different parties deciding about a policy to be implemented,
researchers choosing a best paper award recipient, or multidis-
ciplinary tumor boards planning patient treatment. In a group
setting, all relevant stakeholders should have been heard. Vi-
sually comparing the individual stakeholder’s preferences can
support consensus building.

• Involvement: high vs. low – Decisions that are based on ill-
defined, incomplete, competing, or evolving goals require greater
involvement and thought by a decision-maker to exploit the avail-
able room for trade-offs. This motivates the use of visualization
for a human-in-the-loop approach that enables decision-makers
to apply their knowledge and experience. Where goals are clear
and stable from the beginning, decisions can be based on rules
or on automation, e.g., assigning teachers to school lessons.
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Decision Task

• Stakes: low vs. high – Stakes refer to the severity of a decision’s
consequences. An example for a choice where the stakes are low
is which book to borrow from a library, where a bad decision
can be easily reverted. High stakes are associated with many
decisions in medical treatment planning, e.g., which patient
should receive an organ. In the most critical case, the health
or even survival of a human depends on such decisions. Low-
stakes decisions in a casual setting require usable rather than
sophisticated visualizations. High-stakes decisions likely require
a high level of data comprehension and application of domain
expertise, posing significant demands on the analytic features
and visual encodings of a decision support tool.

• Time frame: critical vs. not critical – Some decisions need to
be made under time pressure, such as a fireground commander
being called to an emergency and having to decide whether
to initiate search and rescue. In other cases, the available time
frame matches or even exceeds the time required to make a
decision, e.g., an urban planner tasked with the reduction of
traffic bottlenecks. Accordingly, the time and incentive decision-
makers bring to the table to take advantage of visual encodings
might vary as does the required level of amplified cognition.

• Frequency: routine vs. ad hoc – Routine decisions are choices
that we make repeatedly under similar conditions, e.g., whether
to have coffee or tea in the morning. In contrast, many life choices
are non-routine, ad hoc decisions that pose individual cases,
such as buying a house or choosing a university to attend. The
decision frequency likely influences the amount of time decision-
makers devote to a data analysis. Again, few time resources
require a visualization support to be easy to learn while one
might assume a familiarity for routine decisions repeatedly made
with the same decision support tool.

• Procedure: prescriptive vs. spontaneous – Some clinical deci-
sions prescribe particular steps, e.g., a decision tree that queries
the (non-)occurrence of symptoms. Spontaneous decisions do
not involve imposed instructions but might rely on characteris-
tic steps that are repeated as necessary. Decisions without any
imposed strategy benefit from visualization support for an ex-
ploratory analysis that helps decision-makers understand on
which information they base their decision.

4.3.2 Targeted Choice Task

We use the above characterization scheme to define the multi-attribute
choice task that is targeted in this thesis (Table 4.1).
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Table 4.1: Overview of the characterization scheme for multi-attribute choice
tasks. The highlighted properties mark the characteristics of the
choice task as targeted in this thesis.

Data

Number of options few vs. many

Number of attributes few vs. multiple

Availability known vs. progressive

Alternatives comparable vs. non-comparable

Consequences certain vs. uncertain

Users

Decision-maker casual vs. professional

Authority oneself vs. others

Social setting individual vs. group

Involvement high vs. low

Decision Task

Stakes low vs. high

Time frame critical vs. not critical

Frequency routine vs. ad hoc

Procedure prescriptive vs. spontaneous

The data underlying our targeted choice task involves many, i.e.,
multiple tens to hundreds, alternatives. Each alternative is defined
across a set of multiple attributes. We expect some of these attributes to
constitute conflicting decision criteria, but which attributes this actu-
ally applies to is not necessarily known beforehand. The attribute set
might or might not include additional design parameters describing
the configuration of an alternative. We assume the set of alternatives to
be fixed and known in advance, without caring about how it comes to
be defined or how it might change with experience [154]. We use the
term "fixed" over "finite" to indicate that the set of alternatives is not
only bounded in size but also immutable. The immutability extends
across all alternatives, meaning that the attribute set is the same, i.e.,
comparable, for all alternatives (although we will also come across a
new type of choices that will involve non-comparable alternatives). We
expect all attribute values for all alternatives to be available. We further
assume that the consequences represented by attribute values can be
considered certain.

Our research targets professional decision-makers who are interested
in applying their domain knowledge, experience, and expertise in
choosing the most preferred course of action. In most application
domains, professional decisions are made on behalf of others, meaning
decision-makers are answerable for their decision and must be able to
articulate the rationale of their choice. We address individual decision-
making rather than making decisions collaboratively in groups. Expert
decisions are likely to come with a high involvement where vague
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Figure 4.4: A core part of our qualitative research approach is the close
collaboration with domain experts.

goals and dynamic environments are met with thoughtful trade-offs
that exploit the room for criteria improvement.

Another consequence of our focus on expert decisions is the ten-
dency of decision tasks towards high or medium stakes that require
careful compromises. We consider decision tasks that are not time-
critical, i.e., where decision-makers can and do devote enough time to
making a decision. In line with this, we focus on supporting ad hoc
decisions on a case-by-case basis. Accordingly, we research how visu-
alizations can assist spontaneous decision-making that might involve
but does not prescribe a particular procedure.

4.4 research design

Given our research goals (Section 4.2) and targeted decision task (Sec-
tion 4.3.2), this section details the strategy for studying the assistance
of expert choices by interactive visualizations. Our research approach
will involve an analysis of real-world choices made by experts, the
design and validation of visualization artifacts to help them select the
most preferred option, and reflections on how our lessons learned
might affect visualization research.

Decisions are inherently subjective. We assume that preferences
and decision rules are context-dependent and therefore developed
at the very moment they are needed during the course of making
a choice. In other words, decision-makers learn what they want or
need as they explore the available options. This conception means to
consider multi-attribute choice as a constructive problem (compare
Section 2.1.5). To design and validate effective visualizations that assist
decision-making, we need to understand how humans in a particular
real-world setting make choices with (and without) visualizations.
Aiming to understand people and their experiences in open-ended
real-world settings suggests the use of a qualitative approach. This
also shows in decision theory, where approaches have moved from
rational models and controlled experiments to empirical models and
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observational methodology (Section 2.1). In line with other disciplines
studying human behavior, we therefore engage in qualitative field work.
This approach offers insights into people’s perspectives on decision-
making practice on the basis of data gathered through observations
and interviews (Figure 4.4).

A wide-spread methodology involving qualitative field work in
applied visualization research are design studies. Their focus on de-
signing visualizations for real-world problems and on engaging with
domain experts (Section 3.1.1) aligns closely with our research goals
(Section 4.2). We therefore approach the topic of visual analysis for
multi-attribute choice from a design study perspective. Some researchers
might question the scientific validity of this perspective for not be-
ing reliable, replicable, or generalizable due to missing objectivity. In
contrast, we refer to the argumentation by Meyer and Dykes about
scientific rigor in visualization design studies [168] and suggest to
embrace subjectivity as a strength for constructing new knowledge
through interpretation of qualitative data.

Information gathering in a design study can tap different sources:
1) reading domain literature, 2) asking domain experts about tasks,
practices, and challenges, and 3) observing them on real-world deci-
sions in a think-aloud manner. Abstractions of the decision problem
and data are needed to assemble individual design study results into
a big picture. The technical contributions of this thesis will be inter-
active visualizations to be used by expert decision-makers to choose
among large numbers of multi-attribute alternatives. While novelty is
considered important, the focus will be on leveraging existing visual-
ization and interaction techniques to provide an effective solution for
the given real-world decision. Validation with real decision-makers
is needed to assess how well a visualization assists their professional
decisions. It should help understand how visualization supports the
generation of actionable insight and how decision-makers interact
with it in a real-world setting. Following commonly used methods
in qualitative research, our validation will build upon observational
methods as well as interviews and case studies.

Generally, design studies that target real-world decision problems
involve two perspectives (Figure 4.5): the perspective of the decision-
maker who works through a decision process and that of the visualiza-
tion researcher who works through the visualization design process.

The decision process refers to the steps that decision-makers follow
when approaching a decision problem (Figure 4.5a). From decision
theory, we know how humans make decisions. Section 2.1.3 introduced
an influential three-stage decision process model by Herbert Simon
[252] (Figure 4.5a, bottom). Given our conception of multi-attribute
choice as a constructive problem, we refine the decision process axis
by aligning Simon’s model with a process highlighting the role of
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(a) Decision Process

(b) Design Process

Figure 4.5: Two perspectives are relevant for our concept: (a) the decision
process of a decision-maker, for which we align the three-stage
model [252] with the idea of constructive preferences [32] and
(b) the design process of a visualization researcher, which we
instantiate with the core phase of the nine-stage framework [243].

implicit constructive preferences [32] that are applied to the explicit
alternatives set (Figure 4.5a, top).

The design process refers to the steps that visualization researchers
follow when designing and validating visualizations that help solve
real-world problems (Figure 4.5b). From research on design studies,
we know how to approach problem-driven visualization design. Sec-
tion 3.1.1 presented different models that provide guidance on how
to systematically conduct a design study. For our purpose, we need a
model that is grounded in experience with real users and their prob-
lems and that offers practical advice on this basis. As a representative
for the design process, we therefore consider the nine-stage framework
that originated from recurring steps across many design studies [243].
More precisely, we focus on its four-stage core phase that covers the
actual execution of a design study.

Section 4.2 emphasized the relevance of decision tasks as a subject
to be studied by problem-driven visualization design. For visual de-
cision support to be effective, the decision-maker’s decision process
needs to be considered by the visualization researcher’s design pro-
cess. Our concept targeting visual analysis for multi-attribute choice
thus combines both processes, design process and decision process,
as orthogonal dimensions. Figure 4.6 shows the concept making use
of two display axes. The axes span a two-dimensional conceptual
space, suggesting that different contributions to visual analysis for
multi-attribute choice might come with different characteristics. As
we are focusing on known alternative sets, this space only covers the
second half of the decision process axis, where available alternatives
are explored and compared. Rather than selective sample points, con-
tributions to assisting decision-making with interactive visualizations
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Figure 4.6: Our concept for the visual analysis for multi-attribute choice
combines the design process (vertical) and decision process (hori-
zontal) as orthogonal dimensions. Chapters 4, 5, and 8 focus on
individual design process stages. Also covering the entire decision
process, Chapters 6 and 7 propose complete design studies.

are most likely represented by a path through the space, spanning one
or both dimensions. As an example, a contribution might focus on one
stage of the design process while being agnostic to the decision process
(horizontal path) or it might cover all stages of both the design process
as well as the decision process (space-filling area). Note that the axes
do not prescribe the exact appearance of specific solutions (e.g., visual-
ization designs, abstractions, etc.). Rather, they are intended to provide
a way to think and reason about what problem-driven visualization
research has to offer to assist humans in decision processes.

The following chapters instantiate different paths throughout the
proposed conceptual space (Figure 4.6). Chapters 4 and 5 improve the
characterization of decision problems in the first stage of the design
process. Chapters 6 and 7 apply the entire design process to develop
visualization artifacts that support experts throughout their decision
process. Finally, Chapter 8 assesses the long-term decision support of
one of the deployed artifacts to conclude a completed design study.





Figure 5.1: This chapter investigates how to reveal the domain expertise and
cognitive processes underlying real-world choices.

5
K N O W L E D G E E L I C I TAT I O N F O R C H O I C E TA S K S

This chapter investigates a knowledge elicitation method from cog-
nitive science for its ability to facilitate learning about real-world

choice tasks in an application domain (Figure 5.1). We are particu-
larly interested in revealing what cues and reasoning strategies are
involved and what types of domain knowledge and experience are
used. Section 3.1.2 showed that, while domain characterization has be-
come an integral part of visualization design studies, domain expertise
can only be acquired from humans through their cognitive processes
and methodological prescriptions are rare. We take inspiration from
cognitive science, where knowledge elicitation techniques are studied.

In this chapter, we propose one of them, the Critical Decision Method
(CDM), to the visualization domain in order to contribute to the
transition from existing high-level advice towards descriptive steps
for domain characterization. Our aims are two-fold: to obtain some
initial findings on the use of domain knowledge and experience in
choice situations and, equally important, to analyze the applicability
of the interview technique for exploring these aspects as part of a task
analysis in problem-oriented visualization research. Most parts of this
chapter were previously published [51, 97].

What the reader can expect from this chapter:

• A literature review on knowledge elicitation in human science
showing that Cognitive Task Analysis captures mental processes
but has rarely been applied in data analysis settings (Sec. 5.1).

• An introduction to the Critical Decision Method procedure as
prescriptive steps for eliciting expert judgment (Sec. 5.2).

• A case study on three domain problems suggesting the method’s
applicability in problem-driven visualization research (Sec. 5.3).

91
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• A reflection on practicability, implications, and directions to
prepare the ground for knowledge elicitation to foster decision-
focused problem characterization in design studies (Sec. 5.4).

5.1 background on knowledge elicitation

What makes a domain expert is the experience and expertise she brings
to a particular field of application. This domain knowledge largely
consists of concepts, contextual information, typicalities, personal
beliefs, learnings, and insights that have been internalized over years
of working practice: it is tacit knowledge [212].

Different fields of research have evolved around studying tacit
knowledge. Knowledge externalization [287] aims to convert internal-
ized knowledge to explicit representations, e.g., protocols, that can
be reused or shared. Common applications are collaborative sense-
making [308] or knowledge-assisted guidance [177]. Articulation is
achieved through direct creation of narratives and diagrams, like
causal flow charts [301], or indirect inference from user interaction
with tools [75]. Among others, externalized knowledge can take the
form of labels or annotations [72] or rules from representative decision
trees [181]. However, coming from the visualization domain, these
approaches either focus on capturing gained knowledge from expert
analyses or rely on a user interface to interact with.

Psychologists summarize techniques to capture the unobservable
knowledge, mental processes, and goals underlying task performance
under the term Cognitive Task Analysis (CTA) [178]. Visualization re-
searchers have applied CTA for studying larger groups of domain
experts, but not in the context of a design study. Dimara et al. used the
critical incident technique to survey the software needs of decision-
makers in organizations [68]. Parsons et al. asked participants to retell
a past design process to survey the situated knowledge applied by
data visualization practitioners [200].

However, it remains unclear how these methods can be applied
to domain characterization, because they have been developed for a
different context. Knowledge externalization targets tacit knowledge
that results from working with data rather than from domain expertise.
Cognitive Task Analysis methods center around domain knowledge
and naturalistic decision-making but have not been applied in data
analysis settings. To make them actionable for domain characterization,
CTA methods need to be translated to the domain of visualization
research. Beyond a first step in the human factors domain [97], the
suitability of CTA techniques for domain characterization has not
yet been investigated. For this purpose, we explore the methodolog-
ical issues of applying the Critical Decision Method (CDM) [129] as a
representative of CTA.
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The Critical Decision Method is a technique to elicit tacit knowledge
underlying expert task performance in complex situations [131]. The
method grew out of efforts to capture the "knowledge and experience
involved in real-world [...] problem-solving" [101]. It has proven use-
ful to investigate dynamic non-routine situations in diverse domains,
such as fire fighting or emergency service. Its effectiveness has been
demonstrated for a variety of goals, e.g., to develop support systems,
design training material, or establish communication strategies [129].
Although these undertakings did not specifically involve visualization,
their variability suggests the CDM’s applicability also for domain
characterization in visualization research. By providing a step-by-step
data collection procedure as well as examples for output represen-
tations, the CDM carries the potential to address the lack of formal
scripts how to conduct domain characterization and how to represent
domain characterization results. We consider it particularly valuable
for domain problems where the experts’ reasoning about data is of
particular relevance, like in choice tasks. While the CDM assumes that
expertise emerges most clearly during non-routine events, we also see
its value to characterize expert reasoning during routine analyses.

The Critical Decision Method uses semi-structured interviews that
are often augmented with observations [129]. Thus, it can be consid-
ered a variant of "talking with and observing domain experts" [243].
In contrast to previous domain characterization practices, however,
it offers more prescriptive guidance. The method aims at a system-
atic retrospection of a situation that involved the participant’s expert
judgment. The CDM is not meant to replace prospective visualization
design. Rather, its retrospective nature is well-suited to understand
the vocabulary of the target domain [185] without anticipating future
design choices. Traditional approaches to domain characterization ask
about current problems or envisioned changes or request users to
perform artificial tasks. In contrast, the CDM walks through a past
real-world situation, which reveals cognitive aspects of the current
problem-solving strategies. It thus helps assess if and how visualiza-
tion can involve human expertise to better solve the domain problem.
The investigated situation, thus, needs to come from the participant’s
real-world experience. Different targets like cues, knowledge, options,
or experience are then probed to understand the expert’s reasoning
during the situation (see Table 5.1) .

5.2 the critical decision method procedure

In this section, we detail the CDM procedure that is used in an inter-
view session to elicit expert knowledge.
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Figure 5.2: Our CDM procedure for domain characterization. To complete a
design study, the data analysis results need to be translated into
domain-agnostic abstractions to inform the visualization design.

Figure 5.3: Visiting an incident multiple times, the Critical Decision Method
gradually elicits the underlying domain knowledge and cognition.

5.2.1 Five-Stage Data Collection

Like with other interview techniques, the CDM procedure cannot
start until participants have been recruited, ethics approval has been
granted, and a questionnaire has been drafted (Figure 5.2, blue). Then,
the data collection strategy is to gradually focus on critical cognitive
points by sweeping a situation multiple times (Figure 5.2, green) [129].
For this, the CDM procedure provides five stages (Figure 5.3).
1. Incident Selection The goal of the Incident Selection stage is to
select a task involving competences beyond routine knowledge. The
participant should be the primary decision-maker in the situation. To
extract true expertise, the task should pose a unique challenge for the
participant’s competence, i.e., one can expect a difference between the
decisions of an expert and those of a novice. It is a pitfall to select a
case where participants can rely on formalized procedures.
2. Unstructured Incident Recall The goal of the Unstructured Incident
Recall stage is to activate the participants’ memory and to get a first
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Table 5.1: Excerpt of sample questions proposed by Klein et al. [129].

Type Content

Cues What were you seeing, hearing, smelling ...?

Knowledge What information did you use in making this decision, and
how was it obtained?

Options What other courses of action were considered by or available
to you?

Experience What specific training or experience was necessary or helpful
[...]?

Basis How was this option selected [...]? What rule was being fol-
lowed?

Goals What were your specific goals at this time?

impression of the scenario. The participant is asked to describe the
situation from beginning to end. For example, this might range from
loading a data set until an interesting correlation has been found.
Interviewers should focus on understanding the story. Interruption
for other than minor clarifications is a pitfall.
3. Timeline Construction The goal of the Timeline Construction stage
is to establish a common understanding among interviewers and
participant. From what they heard, the interviewers reconstruct the
situation in the form of a timeline. It contains the sequence and
duration of events. An event can be an occurrence (like a data point
becoming highlighted or a view being switched) or subjective thoughts
reported by the participant (e.g., "I would consider this point an
outlier"). The timeline is then retold to the participant to identify
inconsistencies, add clarifications, and fill in missing details.
4. Decision Point Identification The goal of the Decision Point Identifi-
cation stage is to select relevant decision points in the timeline for a
detailed investigation. The interviewers extract those moments where
different ways to understand the situation existed or multiple courses
of action were possible. Some are obvious from verbal cues (e.g., "I
had to decide whether to include this predictor in the selection"). Oth-
ers involve taking one of multiple courses of action (e.g., looking at
one part of the data first), making a judgment that affects the action
(e.g., "this shape looks like an anomaly but we can safely ignore it"),
or making a choice that a novice might have made differently. The
granularity of decision points can be adapted.
5. Decision Point Probing The goal of the Decision Point Probing stage
is to better understand the meaning of information for the partici-
pant’s assessment of the situation. The interviewers work through
the decision points and ask for elaboration. Different probes can be
applied for this purpose based on the interviewers’ research interest.
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Table 5.1 lists example questions about how cues, prior knowledge, or
different options influenced the participant’s course of action.

Previous stages can be revisited to gradually refine the timeline
and decision points. An interview is expected to last about two hours.
This can vary depending on the application (e.g., replace timeline
construction by observation or conduct decision point probing during
breaks). Klein et al. recommend to share the interviewing responsibili-
ties among two interviewers and to record the sessions [129].

5.2.2 Data Analysis and Output

The Critical Decision Method does not prescribe a data analysis ap-
proach (Figure 5.2, orange) because it depends on the research ques-
tions motivating the undertaking. In general, coding is used to prepare
the ground for converting the interview data to different representa-
tions that describe domain knowledge, reasoning, and task activity
[101]. Hoffman et al. recommend to tag cognitive functionality like
perceptual cues, decision points, and situation assessments [101]. Klein
et al. present representations that worked well for their applications
[129]. We highlight two of these artifacts that we found to particularly
match the purpose of domain characterization.

A situation assessment record (SAR) reflects the expert’s understand-
ing of the dynamic evolution of an incident. It specifies the turning
points of a situation together with underlying cues, experience, knowl-
edge, goals, and actions. Klein et al. propose different formats for
SARs [129]. Table 5.2 shows an SAR for water turbine design: an ex-
isting turbine is analyzed to derive potential directions for improved
running behavior. The granularity of entries can be adapted to the
researchers’ needs. New events or insights cause the expert to abandon
prior goals and prioritize new goals (shift). For example, identifying
the cavitation on the turbine blade as the major problem changes the
engineer’s goal from analyzing the existing turbine towards optimiz-
ing the blade geometry (Table 5.2, SA 3). Sometimes the goals are
maintained but new information enhances what was originally known
(elaboration). For example, the cavitation happens at the leading edge
of the blade (Table 5.2, SA 4).

A decision requirements table contains details on the judgments that
were involved in performing the observed task. The columns specify
what particular decisions were made, why they were difficult to make,
how they were made, and what supporting information was used.
The rows correspond to the decision points identified in the situation
assessment record. In this way, the decision requirements complement
the experience, goals, etc. in the SAR. For example, the difficulty to
investigate multiple operating points (Table 5.3, 2nd row) effectively
extends the description of SA 2 in the SAR. The prescribed structure
of Table 5.3 allows for a comparison even across situations.
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Table 5.2: Situation assessment record (SAR) for water turbine design.

Situation Assessment 1 Plausibility check

Cues Deviation from onsite or testbed measurements

Goals Validate simulation model

Decision Point 1 If invalid, calibrate, otherwise proceed

Situation Assessment 2 Analysis of current setup (shift)

Cues Pressure distribution on blades (heatmap), perfor-
mance indicators (e.g., torque and power output)

Knowledge Challenges/trade-offs associated with design

Experience Problems in previous operation of the turbine
(e.g., cavitation at leading edge)

Goals Understand strengths/weaknesses of existing tur-
bine, identify potential directions of improvement

Decision Point 2 Address cavitation on current turbine blades
while keeping its strengths

Situation Assessment 3 Optimize blade geometry (shift)

Cues High curvature in pressure line

Knowledge Correlates with high blade angle change

Experience Avoid by shifting camber towards leading edge

Options Change blade angles or meridional length

Goals Achieve constant pressure change

Decision Point 3 Shift leading edge towards inlet

Situation Assessment 4 Further optimization (elaboration)

Cues Pressure/velocity distribution (heatmap, stream-
lines, sweeping plane), performance indicators,
pressure/angle across blade length (line chart)

Basis Trial-and-error exploration of design space, per
step analyze what went right and how to improve

Knowledge Flow behavior, how parameters relate to side ef-
fects, constraints (e.g., construction volume)

Experience Dependencies known from previous projects, op-
erating permit requires trading 2-3% less effi-
ciency for fish-friendliness, operating conditions
might change during the project

Goals Understand how geometry affects water flow,
trade off efficiency and fish-friendliness

Decision Point 4 Proceed with most preferred turbine design

Situation Assessment 5 Improvement potential (shift)

Cues Efficiency curves new design vs. existing turbine

Experience Desired flow and pressure lead to high efficiency

Goals Predict savings/earnings for customer

Decision Point 5 Implement chosen design
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5.3 applying the critical decision method in practice

This section will present the CDM steps that we followed in conducting
three domain characterizations to understand how engineers approach
optimization problems that are based on simulation data. Some aspects
of the CDM study have already been published in a conference paper
[97]; however, the data analysis covered a different purpose. The
previous work investigated the feasibility of the CDM from a human
factors point of view. Here, we reflect on the methodology from a
visualization design study perspective. Besides a summary of the
elicitation procedure, we discuss the method’s applicability for the
purpose of domain characterization.

5.3.1 Application Background

We studied the domain practices in three different applications from
the field of engineering design: optimizing a water turbine, an electric
drive, and the operation modes of a power plant. The expectations
regarding engineered systems are constantly rising: customers ask for
high-quality products that are available at little cost and in a short time
frame. Environmental requirements play another important role. As
such, all three applications deal with multi-attribute decision-making,
a core goal of visualization [67]. It is challenging because rationality is
often complemented with intuition [128, 200]. We were interested in
the experts’ mental processes and domain knowledge involved with
trading off multiple criteria when choosing the most preferred design
and operation mode of the system. The gained insights might inform
the design of a visualization that supports the experts in navigating
the design space and applying their expertise for trade-off strategies.

In the following, we provide context for each application. All three
optimization scenarios involved interactive visualizations previously
grown in the target domain. Note that our main purpose was not to
evaluate the visualization designs but to assess in what sense they do
(not) help achieve the experts’ goal.
Water Turbine Design A water turbine converts water flow into electric
energy. In the context of modernization, an existing turbine is to be
optimized regarding its running behavior given dynamic operating
conditions like water throughput. A typical problem is cavitation
on the turbine blades that is caused by low water pressure and can
lead to serious mechanical damage. The optimization is characterised
by repeated geometry changes followed by an exploration of their
effects until the engineer is satisfied. This process largely relies on
the experience of the designer regarding how the turbine geometry
interacts with the water flow. A typical criteria conflict faced by turbine
designers is that between turbine efficiency and fish-friendliness.
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Power Plant Optimization A thermal power plant burns fuel to con-
vert the heat energy into electric energy. Changing the fuel type with-
out further adjustments might lead to fuel remaining unburned. Op-
erators thus perform an iterative design space exploration to find an
operation mode (e.g., input temperature, valve and damper positions)
that reduces the amount of unburned fuel while maintaining opera-
tional characteristics like nitrogen oxide emissions and exit tempera-
ture. A challenge are coupled physical effects such that eliminating
one problem might cause an unexpected problem elsewhere.
Electric Drive Design Electric drives convert electric energy into linear
or rotational motion. They are at the core of many applications, from
electric toothbrushes over ship propulsion to transportation systems.
Optimizing electric drives means to specify their geometry, material,
winding patterns, etc. such that their performance optimizes given
requirements like cost-efficiency, durability, or construction volume.
For this, the operational behaviors of many different electric drive
designs are simulated and genetically optimized. This gives a set of
objectively equal solutions, where no criterion can be further improved
without sacrificing another criterion. Among the resulting set of solu-
tions, it is the responsibility of the design engineer to choose the most
preferred compromise. This is challenging, because the number of
Pareto-optimal solutions is often quite large and optimization criteria
are typically conflicting. A detailed description of this use case can be
found in Chapter 6.

5.3.2 Implementation of the CDM Procedure

In this section, we detail our realization of the CDM. Explanations
applying to all three studies are accumulated. Where relevant, we
explicitly differentiate the studies.

Following the recommendation by Klein et al. [129], we recorded
a 90-minute remote session for each application. A pair of elicitors,
one visualization expert and one human factors expert, shared the
responsibilities for asking questions, taking notes, and analyzing the
protocols afterwards. Due to the spatial distance of the elicitors and
participants, the interviews were conducted remotely. Ethics approval
was obtained from the Faculty of Engineering at the University of Not-
tingham prior to conducting the studies. The participants’ involvement
in the study was voluntary and we offered a compensation for their
time. They were free to withdraw at any time. In case of withdrawal,
we did not keep any of their data. A participant information sheet
including these information was distributed to the participants prior
to the interviews.

In preparation for the semi-structured interviews, we compiled a set
of open questions to give us a general overview of important decision
characteristics to cover. The questions were grouped according to the
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stages in the CDM procedure. We used these probes as an aid to keep
our elicitation focus, while also probing upcoming aspects on the
fly. We began each session by introducing its goal: to investigate the
cognitive aspects involved in trading off multiple criteria with the help
of interactive visualizations. We then collected the demographics and
asked the participants about their general way of dealing with design
optimization in their daily work. From there, we worked through
the CDM stages as described below. Together with the participant
information sheet, the complete questionnaire can be found in the
supplemental materials1 of our previous publication [51].
1. Incident Selection All three applications required expertise be-
yond the general routine knowledge of a competent individual. The
participants were full-time employed engineers and performed multi-
attribute decision-making with visualization support as part of their
daily work. They had ten to fifteen years experience in engineering
design. This qualified them as experts [129]. An obvious but criti-
cal prerequisite was that participants were willing to share material
related to the optimization during the interview. We completed the
incident selection stage via e-mail in advance to spend the interview
time on the actual knowledge elicitation.
2. Unstructured Incident Recall As specified in the original method
[129], we requested the participants in all three studies to verbally
provide a brief overview of their application. We did not interrupt
them and focused on understanding the story. The recounts covered
the purpose of the engineered system to be designed (e.g., convert
water flow into electric energy), the parameters of a design option (e.g.,
geometry and water throughput as design parameters and efficiency,
power output, fish-friendliness, and mechanical robustness as objec-
tives), and the approach taken to arrive at a preferred design. All three
applications involved four to six optimization criteria whose coupled
effects raise the challenge of improving on one criterion without reduc-
ing the performance in another criterion. Generally, we observed two
different types of approaches: 1) an iterative trial-and-error exploration
with alternating parameter variation and inspection of the results and
2) a genetic optimization approach with automatic variation of param-
eter settings to compute hundreds of solution candidates to inspect.
Going beyond the original CDM method, we classified the reported
approaches as a priori, a posteriori, or interactive optimization [174],
depending on when in the optimization process the participants artic-
ulated their preferences. This helped us anticipate the chronology of
the timeline in the next stage. In the water turbine study, the expert
made use of her expertise in each iteration of exploring the effects of
geometry modification. Thus, it belonged to the interactive methods.
3. Timeline Construction + 4. Decision Point Identification The CDM
procedure provides that both stages are performed in parallel [129].

1 https://ieeexplore.ieee.org/abstract/document/9990992/media#media

https://ieeexplore.ieee.org/abstract/document/9990992/media#media
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In all three studies, we reconstructed the process of deciding for a
preferred design option by having the participants walk us through
material related to their applications in sequential order. This slightly
deviated from the original method, where the timeline construction is
based on the Unstructured Incident Recall. The timelines were similar
across all three studies. They included an initial plausibility check of
the simulation model, an iterative exploration and optimization phase,
and a confirmation of the final choice. The water turbine design and
power plant optimization started off from an existing case that served
as a reference to be improved. The electric drive design focused on
applying customer specifications and technical expertise to select the
most preferred compromise from a large set of candidates. Table 5.2
shows the evolution of the water turbine design. It included modeling
an existing turbine (SA 1), analyzing its performance (SA 2), iteratively
modifying the blade geometry and observing its effects (SA 3 + SA
4), and comparing the optimized geometry to the initial one (SA 5).
The decision points are also highlighted. Some were obvious from
verbalization, e.g., "now we [...] want to start the simulation" or "I can
now change the operating point". Others included subjective assessments
of the simulation results, e.g., "I see that the flow below the runner is
good". While the CDM recommends to capture both the sequence
and duration of events, we omitted the duration in all three studies,
because the optimizations were not time-critical.
5. Decision Point Probing In line with the CDM method, we asked for
additional details on some decision points. We selected those turning
points where the participants seemed to have particularly relied on
their expertise to steer the optimization direction. Which decision
points are selected for deeper investigation and what details are carved
out depends on the purpose of the study. In all studies, we browsed
the sample questions [129] for inspiration (see also Table 5.1). Given
our focus on choosing the most preferred design, we particularly asked
about available options and how an option was selected, e.g., "Based
on what constraints did you exclude these options?". We also probed
for visual cues, e.g., "Where do you see that in the visualization?", and
prior knowledge, e.g., "How do you know what parameter to adjust
next?", that helped the experts gain insights at each optimization step.
For the water turbine study, Table 5.2 contains the utilized question
types for each decision point.
Data Analysis and Output Upon completion of all three interview
sessions, we analyzed our protocols and recordings. While the CDM
does not prescribe a concrete analysis method, it recommends any
form of coding to get started [101]. In the Decision Point Identifica-
tion and Decision Point Probing stages, we already tagged the decision
points with their underlying cues, experience, goals, etc. After all ses-
sions had been completed, we used a qualitative coding methodology
[260] to identify meaningful recurring topics in the data. Given our
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study purpose, we particularly watched out for common goals, needs,
approaches, and difficulties that emerged from the responses of the
participants. Still, we followed an inductive, data-driven approach
that did not assume a set of pre-established codes. From the proto-
cols, recordings, and code set, each interviewer further derived two of
the proposed CDM outputs [129] per session: a situation assessment
record describing the situation as a series of decision points and a
decision requirements table specifying the what, how, why, and aid
of the particular decision points. We exemplary depict the situation
assessment record (Table 5.2) and decision requirements table (Table
5.3) for the water turbine study. The results for the remaining two
use cases can be found in Appendix A. We performed the coding
and artifact generation independently. We then discussed the results
and jointly refined the codes and artifact representations. The result-
ing themes included aspects ranging from intuition and subjective
judgment over stakeholders to post-decision workflows.

5.3.3 Practical Considerations

This section presents the methodological issues we observed when
applying the CDM for the purpose of domain characterization for
real-world decision problems. We illustrate method properties we
recognized, domain characteristics that the method helped elicit, and
things that worked (less) well.

Capturing the cognitive aspects associated with real-world decision-
making requires a careful consideration of the decision-maker’s sub-
jective conditions as well as environmental conditions (e.g., the com-
plexity of options to consider or time pressure). This involves char-
acteristics and dependencies that cannot be easily quantified. Thus,
a qualitative method like the CDM is beneficial to elicit and abstract
meaningful information that can inform visualization designs across
application domains.

However, qualitative methods are time-consuming and the CDM
is no exception. The 90-minute sessions with the experts were fol-
lowed by a time-intensive data analysis by us as interviewers. In
design studies, however, the outcome of the elicitation is critical for
all subsequent layers [185]. Given the contextual richness of the CDM
responses, we thus consider the efforts justified. Our impression is
that domain problems that are expected to be cognition-sensitive and
could only be described by a series of low-level tasks benefit most
from a characterization using the CDM.

We originally performed another CDM session on a signal filter
optimization. It failed, because the optimization relied on a routine
weighting strategy rather than expertise. We did not realize this until
the Unstructured Incident Recall stage. The participant was also in an
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early PhD stage and thus did not have enough expertise. We eventually
decided to discard this session from our collection.

In each of the remaining studies, the Unstructured Incident Recall
stage conveyed an initial idea of the domain problem as intended.
The participants could give an overview of their situations on an
appropriate level of abstraction, which kept the entry barrier for the
subsequent stages low without too many details. Where needed, we
adjusted the level of abstraction by asking clarifying questions.

The Timeline Construction walk-through, in contrast, contained a lot
of meaningful details. Remembering a past situation in detail is diffi-
cult and may provoke a mismatch between user recollections and their
actual actions [243]. While we did not evaluate this, our participants
did not seem to have difficulties with remembering the past incidents.
It might have helped their memory that we, aside from the original
CDM method, encouraged them to bring documentation material. The
water turbine study, in particular, involved technical details, e.g., "this
is a hand-coded mesh generator", that sometimes distracted us from the
actual reasoning process.

The CDM centers around an incident from the real-world practice of
experts. In contrast to other approaches, where the participants might
be confronted with unfamiliar tasks, the CDM allows the experts, not
the interviewers, to choose a meaningful situation that they know well
and feel comfortable with as the subject of investigation. This enables
participants to provide a comprehensive review of the situation and
their reports are not biased by unfamiliarity with the task. All of this
helps avoid the domain threat of mischaracterizing the problem (cf.
the top level of the nested model [185]). An immediate validation
of that threat is naturally incorporated in the Timeline Construction
stage of the CDM procedure: retelling the constructed timeline to
the participant. Deviating from the original procedure, we skipped
this step, thus missing the chance to validate the constructed timeline
and decision points during the interview. In retrospect, we should
have followed the original procedure or included a post-interview
validation of our results.

How much the CDM can teach researchers about a target domain
might depend on the knowledge gap commonly associated with
application-driven visualization research [296]. Considering an in-
cident from the participants’ experience leaves the interviewers fairly
naïve about the discussed scenarios. It is not necessarily a drawback:
interviewers who know little about a domain tend to probe more. Still,
we underestimated the mental effort for decision point identification
and probing without much prior knowledge about an incident. In
the Incident Selection stage, we only requested as much information
as needed to assess a participant’s suitability for the study. We found
it difficult to reconstruct the timeline and choose appropriate probes
on the fly during the interview session. Thus, we largely relied on
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questions that we prepared beforehand without knowing the incidents
in detail. We also put together the sequence of decision points in retro-
spective, i.e., upon completion of all three sessions. In retrospect, once
the participants were found to be suitable, we should have asked for
further material to familiarize ourselves with the particular incident
prior to the interviews. While this might help, it still remains an open
question how to succeed in spontaneous timeline construction.

Our independent data analysis results showed a broad consensus
regarding the content, especially with respect to those moments of an
observed situation that we considered decision points. This concurs
with Klein et al., who found that inter-observer variability refers to
the significance of a decision point rather than its presence [129].
For a subsequent task abstraction this suggests that disagreements
between visualization researchers might mainly relate to why a task is
performed [38]. Although both interviewers based their analysis on the
same situation assessment example, we found the resulting records to
significantly deviate in their format, i.e. the mapping between decision
points and situation assessments as well as their granularity. These
deviations propagated to the decision requirements table, because we
transferred the decision points from the situation assessment record
to the table rows. Explicitly agreeing on a template beforehand might
further reduce the risk of discrepancies.

The systematic CDM procedure revealed what types of domain
knowledge and expertise the users carry, e.g., "the designer knows about
the parameter options and side effects" or "operators usually trade 2% to 3%
less efficiency for fish-friendliness". We further learned what cues steer
their attention, e.g., "co-occurrence of high oxygen and high temperature"
or "too much curvature in the pressure lines" (compare Table 5.2, SA 3,
Cues). The CDM also made explicit how the experts’ goals varied
with the situation focus, e.g., from understanding the status quo over
reducing unburned fuel to maintaining a reasonable cost-benefit ratio.
To conclude, by revealing the role of user expertise in task performance,
the CDM has the potential to effectively foster the appropriateness of a
visualization [176], i.e., its benefit for supporting a given task.

5.4 implications for visualization research

This section reflects on our experiences with the Critical Decision
Method more generically against the background of visualization re-
search. For this purpose, we indicate how the method aligns with
existing approaches from visualization research. We also highlight
questions that remain unanswered and how future research can ad-
dress these open issues.
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5.4.1 Reflections on Domain Characterization

Explicitly describing tacit knowledge has been an ongoing challenge.
We experienced that the CDM comes quite close by producing arte-
facts that explicitly describe applied expertise, subjective judgments,
and contextual effects. This is particularly relevant for visualizations,
because they are highly dependent on the goal, task, and context of
their usage. The decision points in the situation assessment record
(Table 5.2) translate to individual contexts that might require different
design choices. The extracted goals hint at what the participants want
to do (rather than see in a visualization), i.e., the analysis tasks they
need to work through. The timeline might inspire narratives for down-
stream validation of a visualization. For example, in a field experiment
[45], where realism is manipulated by asking participants to perform
specific tasks, the timeline can frame a particular setting.

We experienced that probes like "what rules did you follow to
make this decision?", or "what were your specific goals at this time?"
helped experts concentrate on what they want to do rather than
what a visualization solution might look like. On the other hand, we
identified probes for perceptual cues, i.e., "what were you seeing?"
or "what caught your attention?", as one possible starting point for
deriving design requirements. They revealed characteristics in the
data to be emphasized by a future visualization design. Answers to
the role of (visual) aids in the decision requirements table (Table 5.3)
also pointed towards potential entry points for visualization support.
Similarly, responses to experience and knowledge probes could help
design interaction techniques. In combination with perceptual cues,
they might also inform the integration of guidance into a visualization
system [46]. We did not use probes for hypotheticals (e.g., "what
difference would it make if ...?") ourselves but we expect them to
help anticipate the consequences of different design choices and raise
particular awareness for potential pitfalls.

In prior projects where we did not apply the CDM, we conducted
think-aloud walkthroughs where we asked experts about a visualiza-
tion’s rather general context of use. In contrast, the comprehensive, yet
systematic, procedure of the CDM helped us stay focused on decision
points that notably revealed expert knowledge. Its output can pave
the way for turning incidents into abstractions and subsequent design
choices. More precisely, the CDM helped us identify and describe
critical decision points that can be used in subsequent layers of the
design process.

Rather than a strict recipe, the CDM can be seen as a framework
where implementations can be chosen according to the research ob-
jective. It is open to being combined with dedicated requirements
engineering techniques from visualization research. Up to now, do-
main characterization focuses on tasks [185], but less on domain
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knowledge elicitation. Complementing existing approaches with the
CDM allows for a complete picture of the target domain, including
both the task-based and the knowledge-based perspectives.

For example, the CDM is one of many ways to implement the
discover stage of the nine-stage framework [243]. It contributes to pre-
venting pitfalls PF-15 ("ignoring successful aspects") and PF-17 ("focus-
ing on visualization solutions"). The Unstructured Incident Recall with
passive interviewers provokes PF-16 ("expecting talking and passive
observation alone to work") at first sight, but additional think-aloud
sweeps of the incident compensate this. As a qualitative approach, the
CDM also seems to provoke PF-5 ("insufficient time from collabora-
tors"), but it actually makes efficient use of expert time, leaving the
time-consuming part to the researchers.

The CDM builds upon a holistic consideration of probe types like
cues, goals, or knowledge. They convey a comprehensive picture of
cognitive turning points in a domain problem. Although targeted at
decision points in the first place, insights gained through these probe
types also hold the potential to advance existing task descriptions.
Furthermore, in analogy to the multi-level typology of abstract visual-
ization tasks [38], the what, how, and why classification in the decision
requirements table (Table 5.3) can inform a visualization-oriented
characterization scheme for decision points. The CDM can then serve
as a systematic data collection method to inform the creation of a
taxonomy of decision tasks. In a similar way, it could help identify
different domain knowledge types and their representations to inform
endeavors in knowledge-assisted visualization.

To conclude, any domain characterization technique will highlight
some aspects of the problem domain and de-emphasize others. De-
pending on the research objectives, multiple methods can be combined
to arrive at a concise understanding of a target domain. In this sense,
the CDM is a valuable addition to the portfolio. Its output in the form
of open coding, situation assessment record and decision requirements
table provides a good basis for a) discussions and reflections among
visualization researchers and domain experts and b) the subsequent
definition of abstract tasks, requirements, and mental models to inform
the visualization and interaction design.

5.4.2 Current Limitations and Future Research Paths

This work is a first step towards integrating knowledge elicitation from
cognitive science into visualization research. Further investigation is
needed to back up our experiences and turn the Critical Decision
Method into an actionable model for visualization researchers. We
discuss current limitations and highlight the future research paths that
emerge from our work.
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A major limitation is that, while we applied the interview technique
on real-world use cases for domain characterization activities (Section
5.3), it has not been embedded in a complete application of the design
study methodology. We need to further investigate how the CDM
can be concretely applied to problem-driven visualization design.
This includes an adaptation of the terminology (e.g., from incident to
analysis), particular probing of aspects related to analysis (e.g., data
quality or correlations) and visualization (e.g., correlation or visual
representations), and more concrete dedication of each CDM step to
the goals of domain characterization. To arrive at a complete domain
characterization model, the CDM procedure also needs to be linked
more tightly to the subsequent layers of visualization design. Up to
now, the technique’s findings have not been used as a basis for the
design of visualization tools. While we reflected on its conceptual
interfaces to other methods that are commonly used in design studies
(Section 5.4.1), practical experience with the integration in a design
study workflow is not yet available.

The previous point is also connected to finding the best approach
to evaluate the effectiveness of the CDM framework. Among others,
Marai and Möller propose significance and pragmatic adequacy as eval-
uation criteria for theoretic contributions to visualization research
[159]. We hope to have motivated the significance of the CDM to
the visualization field. Yet, it is to be confirmed, whether the expert
knowledge elicited by the interview technique indeed contributes
to better visualization practice, i.e., improved results of the subse-
quent visualization design layers. Reporting on a complete design
study clarifies whether the knowledge elicited by the CDM actually
helps improve the results of subsequent visualization design layers.
This might also target professional practitioners as opposed to design
studies conducted in visualization research [199]. With a number of
observations collected, we might also be able to identify meaningful
practices that can serve as guidelines on how to design visualizations
that foster the exploitation of human cognition and knowledge for
analytic tasks. Validating practical experiences with the CDM should
also include data analyses with different high-level tasks. This can
even be extended to a set of real-world case studies from different
domains that discuss the CDM procedure step by step and compare
it to alternative approaches. By replicating domain characterizations
from existing design study papers, the previous approaches could
be compared to a CDM domain characterization, highlighting the
differences that stem from using the CDM. We note that this would
mean to compare empirical methodologies rather than techniques,
which is not commonly done in the visualization community.
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5.5 conclusion

This chapter examined the feasibility and significance of the Critical
Decision Method for eliciting expert knowledge involved with profes-
sional decision-making. To develop visualisation techniques that are
effective, we need to better understand the cognitive processes that are
at the core of decision-making with visualizations [197]. This chapter
considered ways of capturing such cognitive aspects by reviewing
knowledge elicitation methods that have proven successful in cogni-
tive science, but have not yet received much attention in visualization
research. One of them, an interview technique called Critical Decision
Method (CDM), was found to combine multiple properties that are
relevant for learning about a target domain in visualization design
studies. It employs a systematic five-stage procedure that revisits a
domain problem multiple times to gradually elicit expert knowledge.
Despite its significant effort for data acquisition and analysis, applying
the procedure to study three applications from engineering design
showed its potential to compile rich collections of cues, subjective
judgments, and contextual effects involved in decision-making.

The CDM provides an alternative way of learning about domain
experts and the conditions that frame their task performance. Its focus
on real-world incidents aligns well with the required realism in tasks,
data, and users for understanding work practices [138]. The CDM
particularly encourages participants to reflect on their own cognitive
processes. It suggests a novel perspective on domain characterization
by favoring decision points over tasks. While it is grounded in the
context of professional decision-making, we also see its potential for
casual decision-making. To summarize, we found it to be a promising
way to emphasize cognitive aspects in decision-making scenarios.

Our experience is a first hint towards general suitability of the
method. However, further investigation is needed to arrive at an
actionable method to inform problem-driven visualization design.
This includes a more concrete dedication of the procedure to the needs
of visualization research as well as studies to evaluate its effectiveness.
From there, we could derive methodological guidelines that guide the
consideration of cognitive aspects identified by the CDM to improve
decision support visualizations.
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Figure 6.1: An overview of our design process, inspired by storyline visu-
alizations [264]. A mechatronics scientist (green) accompanied
us (blue) during the domain characterization and visual design
stage. The process involved two intermediate prototypes (a, b).
The final prototype (c) was qualitatively evaluated by a group of
five engineers (orange). For the usability testing, three additional
engineers (yellow) were considered. A shortcut in the design
phase (d) could have been taken if we had listened more carefully
to the primary expert’s feedback.

6
PAV E D : PA R E T O F R O N T V I S UA L I Z AT I O N I N
E N G I N E E R I N G D E S I G N

This chapter presents a design study on the role of multivariate
visualization to support multi-attribute choices in engineering

design applications.
Chapter 3 raised the need to study the effectiveness of visualizations

on real-world multi-attribute choices made by real users. It showed
that, although design studies have become increasingly popular in
visualization research, no design study targeting choice over analytic
tasks has been presented yet (Section 3.1.1). This calls for a systematic
visualization design study on multi-attribute choice. Section 2.4 iden-
tified the potential of visualizations to support choices in engineering
design but reveals a lack of dedicated visualization research.

This chapter describes a 1.5-year collaboration with mechatronic
scientists on supporting the design and optimization of electric motors
with visualizations. The engineers’ choice task is to select the most
preferred electric motor design from a large set of Pareto optimal
solutions (for details on Pareto optimality, we refer to Section 2.2.2).

A primary goal in this chapter is to accurately characterize the
domain-specific data and choice task and to develop a validated
visualization design that effectively supports the engineers in solving
their task. Familiarizing with the design and optimization of electric

111



112 paved : pareto front visualization in engineering design

motors lays the foundation for an abstraction of the involved data
and tasks, ultimately leading to a set of design requirements. These in
turn motivate our visual design decisions, which we implement and
validate in a case study with motor designers.

A secondary goal in this chapter is to share our experience with the
user-centered design process, in particular regarding the collaborative
aspects. We took methodological inspiration from Sedlmair et al.’s
nine-stage framework [243] and Munzner’s nested model [185]. A
number of design studies have already reflected on their implementa-
tion, but we particularly view our findings in the context of the opti-
mization of electric motors as an instantiation of multi-attribute choice.
This includes repeated observations of the mechatronics engineers’
expectations and acceptance regarding the visualization support.

From two different perspectives, these goals contribute to a better
understanding of how multi-attribute choices in real-world applica-
tions can be effectively supported with visualizations. Our lessons
learned offer guidance to other visualization researchers targeting
choice problems in engineering design or alternative domains. The
design study presented in this chapter has been previously published
in a scientific journal [54] and a technical journal [53].

What the reader can expect from this chapter:

• The first design study dedicated to multi-attribute choice show-
ing the potential of working closely with real expert decision-
makers to support their ill-defined decision problems.

• A careful characterization and abstraction of the data, tasks, and
requirements related to decisions in drive design (Sec. 6.1).

• A description of the collaboration and design process (Sec. 6.2).
• Four design rationales for visually assisting decision-making

with the potential to generalize across applications (Sec. 6.3).
• The design of PAVED, an interactive parallel coordinates visual-

ization that offers a compact overview of alternatives and simple
interactions for incremental preference construction (Sec. 6.3).

• An observational study to assess the tool’s domain usefulness
showing that PAVED helps decision-makers learn what level of
performance is achievable under different conditions (Sec. 6.4).

• Reflections on visualization needs in electric drive design as
well as visualization design and methodological guidelines to
provide orientation for other visualization researchers (Sec. 6.5).

6.1 domain characterization and abstraction

Section 2.4.1 described how multi-attribute choice generally manifests
in applications within the field of engineering design. As one of these
applications, we develop a detailed characterization of the targeted
problem regarding the design and optimization of electric motors.
Based on an introduction to the design of electric motors (Section
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6.1.1), we provide an abstraction of the data and tasks that engineers
face when searching for the most preferred design (Sections 6.1.2 and
6.1.3). From these abstractions, we derive design requirements to be
addressed by the visual design (Section 6.1.4).

6.1.1 Background on Electric Motor Design

Electric motors have become an indispensable part of many industrial
and domestic applications, from microdrives in electric toothbrushes
to high-performance motors in transportation systems. In 2013, about
70% of the electrical energy in industry was consumed by electric
motors [306]. Their performance thus affects key indicators like en-
ergy consumption or productivity of the driven process. Additional
requirements can involve fault tolerance, good controllability, com-
pactness, and cost-efficiency. This places high demands on the design
and optimization of electric motors.

Design engineers specify the geometry, material, winding patterns,
etc. of an electric motor such that its performance and overall prop-
erties optimize given requirements. Up to a dozen of these design
parameters are usually considered in the optimization process [70].
The evaluation of a motor’s operational behavior is realized using
simulation. An optimization algorithm, typically population-based
methods like genetic algorithms, then computes a set of Pareto-optimal
solutions [306]. After validation of the results, the engineer chooses the
most preferred compromise. This selection is usually verified by addi-
tional simulations or experimental validation before the corresponding
motor is taken to production.

Commercial tools for the design of electric motors provide only
two-dimensional Pareto front visualizations that are not suited for op-
timization with multiple criteria. Therefore, our collaborators use their
own optimization tool called SyMSpace [248] (formerly MagOpt [247]).
Visual inspection of the Pareto front is performed using an interactive
scatterplot matrix conveying pairs of the criteria to be optimized. The
motor experts are quite familiar with concepts like brushing and link-
ing. A selection of alternatives can be created, refined, and observed
in linked histograms showing the related design parameters. Still, the
analysis in SyMSpace is limited to two-dimensional projections of the
Pareto front.

One challenge for the choice of a solution is the large number
of available options, as a Pareto front can easily contain 100 to 200

multidimensional alternatives. Another challenge is the handling of
conflicts between criteria, in particular when applying constraints. Due
to the manufacturing tolerances to be expected during production,
the selected solution also needs to be tolerant towards slight design
parameter changes. The engineer’s primary needs can be summarized
as: a simultaneous overview of both criteria and alternatives together
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(a) Neodymium,
20 magnets

(b) Neodymium,
12 magnets

(c) Ferrite,
20 magnets

(d) Ferrite,
12 magnets

Figure 6.2: Four topologies of an internal rotor design resulting from combi-
nations of magnet material and number of magnets. Variation of
geometry, winding patterns etc. yields the actual design options.

with an efficient drill down, perception of redundancies and conflicts
among criteria, and sensitivity analysis.

The design and optimization of motors is mostly conducted as
commissioned work. This introduces a second type of stakeholders:
the engineers’ customers. Not all customers are experts in motor
development themselves. Depending on their level of experience,
either high trust is put in the choice made or the engineer is asked for
clarification about design decisions. Our primary target users are the
engineers responsible for the design of electric motors. The support of
a joint decision-making between engineers and their customers will
be addressed in future research.

6.1.2 Data Abstraction

We first provide information on the simulation and optimization
approach that is used by the domain experts to generate the set of
motor designs to choose from. We then move from the domain-specific
details to the data abstraction.

PMSM Simulation Model

The simulation considered as a running example throughout this
work describes the operational behavior of a permanent magnet syn-
chronous motor (PMSM). PMSMs are increasingly used for applica-
tions where high efficiency and power density are crucial. They can be
found in the automotive sector, home appliances, or medical devices
but continue to expand into all other areas of use of electric motors.
In this case, the motor’s intended function is to drive a fan that cools
the engine of a vehicle. The order made by an automotive supplier
contains several specifications to be met: a rated power of 700 watt,
a rated torque of 2.6 Newton meters, an outer diameter smaller than
136 millimeters, and an internal rotor. The motor should also fit the
existing system setup in terms of size and shape. The customer’s major
interests are power and cost efficiency, small length, smooth running,
and simple power electronics.
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The design engineer has narrowed down the design space to either
ferrite or neodymium for the magnet material as well as 12 or 20 for the
number of magnets. All four combinations make up the available motor
topologies (Figure 6.2). Within each topology, between eight and ten
parameters related to geometrical dimensions, winding patterns, or
material properties are varied stepwise. Any combination of param-
eters is called a design option. For each design option, the simulation
evaluates the motor’s operational behavior in terms of the criteria
stator length, costs, power loss, maximum current, and torque ripple.
The optimization returns 359 design options that are Pareto-optimal
with respect to each topology considered separately. Options that are
geometrically invalid or do not meet specified hard constraints are
excluded during this process.

Abstraction

Simulation models are basically input-output models that approximate
a function X → Y mapping some input dimensions X = {X1, ..., Xn}
to a number of output dimensions Y = {Y1, ..., Ym}. In line with
the terminology introduced in Section 2.1.6, we refer to the input
dimensions X as design parameters. The dependent output dimensions
Y are known as criteria. For the exemplary PMSM model, n ∈ {8, 9, 10}
and m = 5. Each criterion needs to be either minimized or maximized.
The information about the desired direction of change is given as
metadata. The union (x, y) of a design option x = (x1, ..., xn); xi ∈
Xi and its performance y = (y1, ..., ym); yi ∈ Yi as provided by a
simulation run is called alternative.

Section 2.4.1 highlighted that the challenge of engineering design
lies in the absence of a direct inverse relation Y → X. Different Pareto-
optimal design options thus need to be explored, which are computed
by an optimization algorithm based on regular sampling of the input
space. The sampling range and step size is specified separately for
each design parameter. The final Pareto front contains a few hundred
alternatives where no criterion can be improved without sacrificing
at least one other criterion. Our collaborators do not expect to need
more than ten criteria to reflect their customers’ interests.

6.1.3 Task Abstraction

As Ullman states: "[engineering] design is decision-making" [281]. Section
2.4.1 discusses characteristic properties of the engineering design
domain. To summarize, the engineer’s goal is to identify the solution
that best matches their customers’ interests within the specified hard
constraints. Given the previous data abstraction, this goal refers to the
task of multi-attribute choice as defined in Section 4.3.2.

A variety of strategies for multi-attribute choice have been studied
in decision theory (Section 2.1.4). In their position paper, Torsney-
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Figure 6.3: An abstraction of the analysis tasks for multi-attribute choice in
engineering design. T1 to T3 reflect the tasks that the engineer
faces. T4 and T5 involve the customer as additional stakeholder.
Derived design requirements R1 to R13 are assigned to the tasks.

Weir and colleagues propose to consider such strategies for visual
tool design [269]. We therefore began the task characterization by
classifying the decision strategy of our primary domain expert. Ac-
cording to the framework described by Payne et al. [203], the expert’s
decision-making process is most similar to the elimination by aspects
strategy. This strategy is about filtering options into acceptable and
unacceptable regions until a final choice remains.

Our task abstraction (Figure 6.3) is based on selected tasks from 11

taxonomies that we found in the visualization literature. Details on the
task extraction and analysis questions underlying the selected tasks
can be found in Appendix B. Although our task abstraction aligns
with commonly employed engineering design steps (Section 2.4.1), it
is not specific to this domain and can be mapped to any multi-criteria
decision-making scenario.

The decision process starts with the inform task (T1). It includes an
inspection of the optimization results for their validity to answer ques-
tions like "Does the simulation produce plausible results?". The task is
also about gaining a first overview of the design space, i.e. "What is
the shape of the Pareto front? How diverse are the alternatives?", as
well as the criteria space, i.e. "What is the distribution of alternatives?
What is the nature of conflicts?".

Next, the actual decision-making takes place: the decision-maker
needs to identify the most preferred alternative (T2). Ullman states
that two thirds of activity spent on engineering design tasks is related
to searching the design space [281]. The search task (T2.1) includes
sub-tasks like browsing through the alternatives (T2.1.1), developing
preferences as relations between criteria become apparent (T2.1.2), and
using these preferences to judge and filter alternatives (T2.1.3). The
search phase typically results in a subset of interest and is followed
by a comparison phase. The compare task (T2.2) is primarily about
judging the superiority of alternatives with respect to the preferences
developed throughout the search phase. Of course, the identification
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of the most preferred alternative might involve going back and forth
between the sub-tasks. In working through these subtasks, the decision-
maker basically conducts a trade-off analysis (Section 2.2.3).

As the decision-making is characterized by conflicting criteria, an-
alysts need to confirm (T3) their decisions to increase confidence in
their choice. Confirmation includes reviewing the perceived quality of
the chosen design, revisiting its superiority compared to other favorite
designs, and checking its sensitivity with respect to minor changes of
the design parameters.

Once the decision has been confirmed by the engineer, it needs to be
presented to the customer. It is highly important that engineers verify
(T4) the chosen design with their customers and communicate (T5) on
what insights the decision is based. One domain expert summarized
why this is so important: "The decision-making process should be compre-
hensible for the customer to prove its plausibility" (A3). This might also
include general recommendations with respect to why certain options
should be considered or avoided.

Comparing these tasks to Simon’s decision process model (Section
2.1.4), we notice that our identified tasks loosely map to the stages
he proposes: inform (T1) maps to the intelligence activity, identify
(T2) to the choice activity, and confirm (T3) to the review activity. The
communication need we identified (T4 and T5), however, does not
appear as such in Simon’s model.

6.1.4 Design Requirements

From the aforementioned data and task abstractions, we have derived
the following design requirements to guide the visual design:

R1 Validation – Show criteria ranges for simulation steering
R2 Overview – Provide an overview of complete options such that

any attribute value of any option can be retrieved
R3 Criteria Relations – Highlight redundant or conflicting criteria
R4 Trade-offs – Support subjective perception of superiority
R5 Filter – Support perception of the effect of constraints
R6 User Interaction – Support simple and effective selection
R7 Provenance – Store favorite options for future comparison
R8 Comparison – Support criterion-wise comparison of options
R9 Details – Enable direct reading of raw criterion values

R10 Sensitivity – Show design parameter values of options
R11 Transparency – Support awareness of intermediate decisions
R12 Accessibility – Make the choice accessible to customers
R13 Export – Provide the data of the chosen design for production
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6.2 iterative design process

Our user-centered design process was organized in three stages: 1)
characterization of the problem domain, 2) visual design, and 3) sum-
mative evaluation. An overview of the design process is presented in
Figure 6.1. A mechatronics scientist at Linz Center of Mechatronics1,
who had about ten years of experience in the design and optimization
of electric motors, was our primary domain expert. He accompanied
the first two stages of the design process with constant insights into
the domain on the one hand and feedback to our visual design on
the other hand. The exchange took place in the form of 1) scheduled
meetings in person, where fundamental characterization and design
aspects were discussed, 2) phone calls for instant clarification of open
issues, and 3) e-mail communication for summary feedback as well as
confirmation of our documented insights. The primary outcomes of
this process are the prototypes.

The understanding of the problem domain that led to its charac-
terization was informed by different sources. We started by reading
about the target domain background, in particular literature suggested
by the domain expert. Asking the expert about tasks, tools, practices,
and challenges in multiple sessions and discussing a scenario of use
provided us with a fundamental understanding of the domain. A
pre-design field study, where we observed the domain expert on a
real-world use case, made sure that we did not run into the threat of
mischaracterizing the problem [185]. By having the primary expert
constantly review the identified key tasks and their abstractions we
ensured a common understanding of the use case and additionally
contributed to an immediate validation.

The design stage mainly involved in-person meetings where we
sketched and discussed visual encodings using the same pen and
paper. To minimize the learning effort, we decided to start the de-
velopment of our visual design from the interactive scatterplots that
the domain experts already used for pairwise trade-offs. In multiple
iterations, we implemented and refined an initial prototype, shown in
Figure 6.1a. At its core, it contained an augmented scatterplot, where
points were interactively shown as radial bar charts [49] to encode
additional criteria. Solutions of interest could be cached and used for
a detailed, criteria-wise comparison.

However, the expert’s criticism of this visual encoding discour-
aged us from following up on the glyph-based scatterplot. It made
us realize that we did not prioritize the criteria-wise overview high
enough in our initial task abstraction. As a consequence, we discussed
other visualization designs regarding the ability to convey both an
alternative-wise and a criteria-wise overview. We then developed a
second prototype that made use of parallel coordinates (Figure 6.1b)

1 www.lcm.at

www.lcm.at
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and iteratively developed it towards a parallel coordinates visual-
ization, whose interactions better reflect the optimization operations
performed by the engineer (Figure 6.1c). In retrospect, the detour via
the first glyph-based prototype would not have been necessary, if
we had listened more carefully to the domain expert, who already
expressed his interest in parallel coordinates early in the domain
characterization process (Figure 6.1d).

We performed a downstream validation against the threats of prob-
lem mischaracterization and wrong abstractions [185]. For this, we
evaluated the usefulness of the final tool with a qualitative field study
and a quantitative usability scale. Both were conducted with five do-
main experts other than the primary domain expert. The usability
study was extended by an additional group of three domain experts.
The evaluation details are discussed in Section 6.4. We also validated
the domain characterization by following up on the experts adoption
of the tool for their daily work. The details of the adoption study are
discussed in Chapter 8.

6.3 paved design

Motivated by the domain characterization and abstraction, we de-
signed the visual encodings and interactions of PAVED, a parallel
coordinates visualization that supports analysts in exploring Pareto-
optimal designs to make an informed preferential choice. PAVED
is publicly available at paved.iva.igd.fraunhofer.de. While it has
been designed for engineers, our approach generalizes to any multi-
attribute choice where the preferences cannot be quantified in advance.
It is our ambition to provide the simplest solution that works well
for the described multi-criteria decision problem. Our visualization
is designed to be intuitive, easy to learn and seamlessly integrated
into the engineers’ workflow. Simplicity is achieved by a one-view
approach and a reduced yet effective user interaction for drill-down.
To not neglect potentially relevant information, the focus is on simul-
taneously depicting all design options with all associated criteria (R2

Overview). Raw data can be accessed at any time in a tabular view
(R9 Details, R13 Export).

6.3.1 Design Rationales

Before we present the actual visual encodings, we describe high-level
design rationales that result from the design requirements.

Prefer simple over flexible user interaction

As elimination-by-aspects is the prevalent strategy, the decision pro-
cess is all about eliminating undesired options (R6 User Interaction)
to move towards a small subset of favorites, from which the final

paved.iva.igd.fraunhofer.de
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choice is made. Thus, interaction should not demand more effort than
absolutely necessary to achieve an intended selection. This means
to reduce the interaction to the minimal set of operations needed
for the fundamental optimization tasks. ’Simple’ also includes that a
selection is easy to describe, e.g., by means of a range, to effectively
communicate decision points (R11 Transparency).

Prefer web-based over desktop applications

Accessibility (R12 Accessibility) is a key factor for a visualization that
is designed to be adapted by domain experts. In our case, accessibility
is even more important as our target users need to share their results
with their own customers. We therefore provide our visualization tool
as a web application. It can be easily accessed without having to worry
about installation or set-up times. A web application also lays the
foundation for communicating analysis results and recommendations
that goes beyond the currently used presentation slides.

Prefer objectivity over biased perception of criteria

In the context of multi-attribute choice, the importance of criteria
can hardly be deduced from the data themselves, as this requires
the subjective judgment of the decision-maker. Each criterion is thus
meaningful for the evaluation of options and for the interpretation of
trade-offs. In the absence of prior importance information, a visual-
ization should make use of the same visual mapping for all criteria,
unless the user explicitly requested a visual distortion.

Prefer lossless mapping over dimension reduction

Dimension reduction approaches to Pareto front visualization sacrifice
informativeness for the purpose of intuitive exploration and naviga-
tion. However, Oral et al. found that a commonality among many
decision-making applications is the need for transparency in the sense
of being able to directly retrieve decision criteria and options [195]. To
make a multi-attribute choice, users need to be able to visually retrieve
any criteria value from any option without interaction (R2 Overview,
R9 Details). We therefore prefer a lossless mapping over dimension
reduction. Our design target is a dozen design parameters and up to
ten criteria. It is thus possible to depict all options and criteria without
the need for aggregation or selection of a data subset to view.

6.3.2 Parallel Coordinates View

PAVED’s primary view shows a parallel coordinates visualization (Fig-
ure 6.4). Though the initial prototype, the scatterplot matrix, provided
a lossless mapping of the Pareto front, it depicted multi-criteria trade-
offs only via glyph overlay and pairwise trade-offs otherwise. How-
ever, engineers need to view alternatives as a whole (R2 Overview). In
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Figure 6.4: This image shows different interaction modes that drive the deci-
sion process. Standard brushes include a line brush for open ex-
ploration (a) and range brushes at the parameter axes (b). For cri-
terion axes, we propose preference brushes (c), which are locked
at the desired end of the axis and dragged via the labeled han-
dle at their other end. The gradient color brush (d) is applied
to Motor.Pv, revealing its correlation with both Masses.Cost and
Model.lfe. Favorite options (blue) can be stored independently of
the brushes. At any time, they represent the current search result,
which might also be presented to the customer. The preferred
choice is the hovered alternative (orange).

addition, the glyph-based scatterplots did not meet the objectivity re-
quirement, because the two criteria mapped to position are considered
most important. To meet both requirements, we decided for parallel
coordinates [110] as our final visual encoding.

Parallel coordinates present a compact and lossless two-dimensional
visual representation for multi-dimensional options. Different axis lay-
outs have been proposed, e.g., many-to-many, force-directed, and three-
dimensional layouts [117]. As parallel coordinates were unknown to
the engineers, we stuck to the standard two-dimensional layout. For
the same reason, we decided in favor of the more common vertically
laid out axes (R1 Validation). To maintain an unbiased perception of
the criteria, we chose to neither invert nor scale the axes like suggested
by some works [10]. Instead, we mark the desired direction of change
by a triangular indicator at the respective end of the axis [198].

Motivated by the need to scale with hundreds of depicted options,
our focus was on enhancing the perception of trade-offs and individ-
ual options. For this purpose, we took advantage of standard visual
encoding and interaction techniques known from literature. These
techniques modify either the polylines or the axes.

Parallel coordinates are well-known for being sensitive to visual
clutter, which might hide patterns and options of interest. Techniques
that render aggregates only are not an option, because they violate
our design choice of a lossless projection. Instead, we render each
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individual polyline with a constant line transparency. Still, lossless pro-
jections are not scalable beyond a certain point. With a large number
of polylines being depicted, two or more lines might intersect an axis
at nearly the same position. In such a case, it is difficult to trace the
individual lines. To resolve ambiguities, the user can activate curve
smoothing, which replaces the polylines by cubic splines that interpo-
late the original values at the axes [83]. Finally, each motor design
is associated with a topology as categorical metadata. An effective
technique to support the perception of nominal data is color-coding
[96]. Categorical dimensions can also be used for filtering.

Gaining an overview of a Pareto front also benefits from observing
the relationships between criteria (R3 Criteria Relations). The axis
order affects the pairwise relations between adjacent axes that are
revealed by parallel coordinates. As axis ordering is a complex research
problem on its own, we arrange axes by attribute order and enable
users to explicitly reorder the axes according to their needs. We imple-
mented an animated translation guided by a drag-and-drop operation,
where a uniform axis spacing is reconstructed after releasing an axis
[96]. To adjust the complexity of the parallel coordinates depending
on the decision stage, the axis visibility can be controlled individually
for design parameter and criteria axes (R10 Sensitivity). Design param-
eters are hidden by default, as large parts of an engineer’s decision
focus on the criteria.

6.3.3 Interaction Patterns

Interaction is essential for an effective use of parallel coordinates.
Selecting a subset of favorite options for detailed analysis (R4 Trade-
offs) is complemented with filtering options according to performance
constraints and preferences (R5 Filter). From a technical point of view,
this corresponds to a selection by items versus a selection by attribute
values. Available interactions are indicated by a transformation of the
mouse cursor.

Selecting Favorite Alternatives

To support the user in scanning through the options, we provide
hovering as the most basic interaction (Figure 6.4, orange). From the
label to the right end of the hovered polyline, users can retrieve the
option ID. This allows them to join insights about the alternative in
focus with, e.g., offline data. To select a group of options, we provide
a line brush (Figure 6.4a), which makes it easy to isolate options with
particular characteristics (R6 User Interaction).

Users can flag alternatives by clicking on a polyline. Flagged options
are permanently visible, even if they are not part of any other selection
(Figure 6.4, blue). This enables a direct comparison with respect to
each of their attribute values (R8 Comparison). They can also be
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(a) Standard Range
Brush

(b) Preference
Brush

(c) Gradient Color
Brush

Figure 6.5: Parameters are filtered using a range brush (a). For criteria,
brushes are locked to the high-quality end of the axis indicated
by a triangle (b) and can be augmented with a color gradient (c).

considered the current result of the exploration. While exploring the
Pareto front, the engineers flagged options to cache a small number
of favorites for later in-depth comparison (R7 Provenance). This set of
superior compromises can also be kept in case the customer questions
the first choice (R11 Transparency).

Eliminating Undesired Alternatives

We provide filtering of options in the form of range brushes applied
to criteria and design parameters axes (Figure 6.5a). As a choice in en-
gineering design needs to satisfy multiple constraints and preferences,
several of these brushes are combined to a composite brush using the
logical AND operation (Figure 6.4b) .

On a criterion axis, the desired direction of change is known, i.e.
whether low or high values are preferred. In any case, it does not
make sense to exclude options that are located on the desired end of
an axis. We deliberately limit the interaction on the range brush in
this regard to match the set of filtering operations actually needed for
optimization (R6 User Interaction). We propose the preference brush, a
range brush that is locked at the high-quality end of the respective axis
(Figure 6.5b). Only the low-quality end of the brush can be dragged for
filtering (Figure 6.4c). Regarding the observed criterion, this ensures
that a preference brush always includes the best solutions, while the
interaction complexity is significantly reduced. A value label at the
draggable end of the brush makes the current constraint settings
readable for the engineer.

Each criterion axis is equipped with a preference brush, which
initially covers the full axis range. Its expressiveness can be enhanced
by applying a red-green color gradient to its range that triggers a
corresponding color-coding of the brushed polylines (Figure 6.5c).
The gradient color brush was first introduced by Matković et al. [163].
They mapped red to the lower and green to the upper end of the
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brush range to explore the influence of parameter changes on the
output of an investigated system. We introduce slight modifications
to help users explore where trade-offs between criteria need to be
made by observing how value changes in one criterion manifest in
the remaining criteria (R3 Criteria Relations). First, we adjust the color
scale such that green encodes desired and red encodes undesired
criteria values. Second, the start and end colors are not assigned to
the ends of the brush range, but to the ends of the axis. The meaning
of colors then does not change when the brush is modified. With
these modifications, desired and undesired values of a criterion can be
traced across axes more easily, allowing users to observe one-to-many
trade-offs (Figure 6.4d).

6.3.4 Implementation

The prototype presented in Figure 6.4 is a single-page web application
written in TypeScript using the JavaScript framework React. The parallel
coordinates view is based on the visualization library D3.js [36]. The
web application, including the data management, runs on the client-
side. The tabular data containing options and attributes is represented
as an array of objects, with optimization direction and unit as optional
meta data of attributes. Data can either be read from a JSON file or
an external server. The data volumes provided by our experts can be
processed with interactive response on average hardware, involving
only a few seconds of initial data fetching.

6.4 evaluation

The goal of this evaluation is to validate the domain usefulness of the
proposed visualization in terms of effectiveness and problem-solving
characteristics for experts doing their own work. By dealing with
decision-making, we address a high-level cognitive task, which is
difficult to measure objectively and quantitatively [271]. As realism in
tasks, data, and users is important, we performed a qualitative field
study. This study combined qualitative coding of user feedback with a
quantitative usability scale. The results suggest that the tool supports
the identified analysis tasks for making a multi-attribute choice from
simulated design options. They also provide indications where there
is potential for improvement.

6.4.1 Methodology

The field study was performed with motor engineers in applied re-
search using real-world data from one of their design optimization use
cases. We wanted to observe how the target users interact with the de-
ployed visualization in their own working environment to see whether
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the tool met their needs. The study was conducted in the form of
one-hour think-aloud sessions with one observer who was also taking
notes. Each session involved a prescribed walk-through of the tool,
open-ended questions about its usage, and a usability questionnaire.
Five male experts other than our primary domain expert participated
in the study: the major contributor of the tool currently used by the
engineers in his role as a team manager as well as one simulation
expert and three experienced motor designers in their roles of research
and development engineers. The participants were aged between 30

and 50 with a working experience in their current or a similar role of
five to eleven years. They reported to use visualizations quite often
for exploring drive designs (average: 4/5, range: 3-5), with an average
experience in developing interactive visualizations of 3.6/5 (range:
3-4) and an average familiarity with parallel coordinates of 3/5 (range:
2-4). A rapport was established during a preceding introduction in
information visualization where all participants were present.

The notes taken during the think-aloud sessions were analyzed
using a qualitative coding methodology [260]. Repeated statements,
ideas, or topics in the collected feedback and observations were labeled
with codes extracted from the data. These codes were then grouped
into more abstract categories to summarize the results of the think-
aloud sessions. The categorization is aligned to a set of questions that
was proposed by Lam et al. for evaluating user experience [138]. In
addition to that, we quantitatively assessed the usability of our tool
using the System Usability Scale (SUS), which is composed of ten
statements that are rated on a Likert scale [232]. On top of the five
experts who already took part in our field study, we acquired a second
group of three experts from another engineering field. The qualitative
coding scheme together with the quantitative usability scores convey
a comprehensive picture of our tool’s deployment readiness level.

6.4.2 Results

After coding and sorting the participants’ comments and our observa-
tions, we ended up with five categories: usability, useful features, miss-
ing features, limitations, and the perceived potential of visualization.
The usability category includes codes that indicate the understandibil-
ity and learnability of the tool. The dynamic brushing (preference
brush as well as gradient color brush) and flagging of interesting
solutions were highlighted as particularly useful. This feedback was
supplemented by feature suggestions like details-on-demand, auto-
matic warnings about critical brushes, or documentation support. Hot
topics regarding the potential of visualization were decision-making
transparency and revisiting decisions with customers. Talking to the
domain experts also revealed features that were irrelevant to them.
They indicate that we over-prioritized the underlying task abstrac-



126 paved : pareto front visualization in engineering design

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total

A1 7.5 10 10 7.5 10 10 7.5 10 7.5 10 90

A2 10 10 10 10 7.5 10 10 10 7.5 10 95

A3 10 10 10 7.5 7.5 10 10 10 10 7.5 92.5

A4 7.5 7.5 10 10 7.5 7.5 7.5 10 7.5 10 85

A5 10 7.5 10 7.5 7.5 7.5 10 10 10 10 90

B1 5 10 10 10 7.5 5 10 10 10 10 87.5

B2 5 10 10 10 7.5 7.5 10 10 7.5 10 87.5

B3 7.5 10 7.5 7.5 10 7.5 10 10 7.5 10 87.5

Avg 7.8 9.4 9.7 8.8 8.1 8.1 9.4 10 8.4 9.7 89.4

Table 6.1: Results of the System Usability Scale [232] with two groups A and
B of domain experts. The tool achieved a total score of 89.4 out of
100. Interest in frequent use (Q1) received the lowest score, while
ease of use (Q8) was rated particularly high.

tions in the domain characterization stage. We provide more detailed
reflections in Sections 6.5.1 and 6.5.2.

The qualitative feedback of the target users also uncovered a com-
prehensibility issue. Three of five participants were confused by the
brushes being locked to one end of the axes. Most of the selection
rectangles that they encounter in their daily or working life can be
modified with respect to all directions. However, explaining the rea-
soning behind the proposed preference brushes led the participants
to reconsider their initial expectation and to confirm our underlying
abstraction: "you’re right, I cannot think of any situation, where I would
want to move the other side, too" (A5).

According to the experts, the scatterplots in their current tool are
well-suited for observing the progress of genetic optimization and
steering it. However, they like our visualization tool for making the
actual preferential choice on the resulting Pareto front. Two of them
stated that our tool provides them with a more intuitive and flexible
brushing functionality. Another one preferred scatterplots for pair-
wise trade-offs, because they convey how a Pareto front is bent. Still,
he agreed that higher-dimensional trade-offs require techniques like
parallel coordinates. When comparing both tools, the experts became
particularly aware of how different visualizations support different
kinds of tasks. Consequently, one of them suggested to combine the
strengths of both, i.e. to simultaneously observe scatterplots and par-
allel coordinates without having to switch views.

The quantitative results of the usability survey suggest that our ex-
ploration tool provides an excellent usability, according to the adjective
equivalent of the achieved SUS score [18]. With a score of 89.4, we
found the usability of our tool to be highly above average, which is
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reflected by a score of 68 out of 100 [232]. We present the individual
scores broken down by question in Table 6.1. We noticed that our
tool scored highest on ease of use (Q8), where all participants agreed
on the strongest possible approval. In contrast, the statement about
the participants’ prognosis of using the tool frequently (Q1) received
the lowest ratings (which were still agreeing in total). Here, the two
groups’ ratings differed significantly (9 versus 5.8 out of 10). A pos-
sible explanation might be the different visualization and domain
background of either group, which affects the tool’s perceived benefit
for their daily work.

6.5 reflections

As Sedlmair et al. point out, contributions that make design studies
useful for other visualization researchers focus on various aspects of
the problem domain, a validated visualization tool, or reflections on
design guidelines [236]. Meyer and Dykes particularly stress that the
knowledge acquired through a design study is highly subjective and
needs to be viewed in the context of its generation [168]. Inspired
by their proposed subdivision of contributions into three topics, we
provide our reflections on 1) the problem domain, 2) visualization
idioms, and 3) methodological guidelines.

6.5.1 Problem Domain

While being strongly interested in the potential of visualization, design
engineers are rarely visualization experts themselves. Research on
multi-criteria optimization in engineering design mainly focuses on
advancing simulation and optimization algorithms. As the ability
to simulate even larger design spaces increases, the importance of
visualization to make sense out of the growing Pareto fronts raises
to the same extent. In line with the insight "simpler dashboards are
better" of Arbesser et al. [13], we realized that our simple interactive
visualization provided a clear benefit for the domain experts, although
these techniques are considered a standard in our domain. We thus
argue for a greater consideration of well-known visualizations like
parallel coordinates under careful consideration of their practicability
in new industry applications.

We found the most important design requirements to be 1) the
ability to retrieve any criterion value of any design from the visual en-
coding (R2 Overview) and 2) the transparency of the decision process
(R11 Transparency). The latter is important because a comprehensi-
ble decision process "helps to prove plausibility and justify the decision"
(A3). This is related to the need to communicate and collaboratively
revisit a decision. Engineers need to explain how they arrived at their
design decision, because "an understanding of the optimization problem
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and selection process is highly important to customers" (A4). From their
experience, an interactive exploration of options is highly beneficial
for such explanations. The interactive visualization even offers the
potential to involve customers in the decision-making (A3).

The engineers did not consider guidance relevant for an exploration.
We suggested an automatic highlighting of the next best solution to
guide them towards interesting regions of the solution space. However,
they prefer to explore the available alternatives by themselves using
the brushing mechanism. This might originate from their awareness
that the simulation model itself can contain inaccuracies that a fully
automated optimization would overlook.

Our collaboration and discussions made the domain experts think
differently about their tasks and workflow. Interacting with the dy-
namic brush led them to realize why they perceived the interaction
in their current tool as not very straightforward: because it involved
quite a few mouse clicks and its effects were not instantly visible. The
brushing mechanism also made the simulation expert think about
applying fuzzy logic to the brushes: "maybe vague preferences are better
represented by a fuzzy selection" (A3). In our domain, this is known as
smooth brushing [69]. We were also pointed towards optimization
scenarios involving interdependent components. We address this type
of decision problem in Chapter 7.

We have also been approached by a party from the rail supply
industry, who is interested in using our tool for optimizing the pro-
duction process of transportation pallets. Their interest confirms that
our abstraction seems to be at the right level, because our visualization
can adapt to optimization problems from different domains. However,
this is subject to a formal evaluation. Also, parallel coordinates rarely
scale well with the number of data items. This issue is partly mitigated
by the fact that the number of items in focus is reduced very early
during exploration via filtering.

6.5.2 Visualization Idioms

Motivated by the recommendation that "studies [of parallel coordinates]
in new application areas should be encouraged" [117], we discuss aspects of
our visual encoding, interaction techniques, and envisioned analysis
workflow regarding their acceptance by design engineers. We also
comment on visualization design guidelines.

Johansson and Forsell have found parallel coordinates to be "advan-
tageous to state-of-the-art techniques when introduced in a new application
area" [117]. Our findings align with this. The domain experts quickly
became familiar with the visual encoding. Due to the lossless projec-
tion, they had no difficulties in gaining an overview of the available
multi-attribute options. They particularly appreciated the brushing
mechanism and observing its direct effect on the selection of options.
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This even seemed to have outweighed the well-known issue of par-
allel coordinates being sensitive to visual clutter. For optimization,
we would like to promote the preference brush as a simplification
of composite brushes. Still, it might not be effective for categorical
decision criteria in its current form.

The existing analysis tool for the design and optimization of electric
motors is built around an interactive scatterplot matrix depicting
pairwise trade-offs. Scatterplots are known to convey correlations
more effectively than parallel coordinates [146]. Our experts also stated
that they prefer to observe pairwise trade-offs in a scatterplot, because
it allows them to "observe how much the Pareto front is bent" (A5). Still,
due to their ability to convey an overview, parallel coordinates were
rated high as a complement to the traditional scatterplots. This aligns
with Yuan’s et al. combination of scatterplots and parallel coordinates
to exploit the strengths of both [305]. In their study, Dimara et al.
found that tabular layouts were preferred over parallel coordinates
for decision tasks [64]. However, tabular layouts often require users
to explicitly express their preferences for ranking purposes [85]. Still,
some experts confirmed the relevance of tabular visualizations: they
would appreciate a linked brushing functionality for the table view.

Some visual encodings were not effective in this domain. Although
the radial bar charts provide a compact representation of individual
alternatives, the engineers were not satisfied with the overview of
the criteria space. The curve smoothing that should support users
in tracing lines that intersect the axes in common points was not
considered relevant for the perception of options. The interactive
translation of axes was initially discussed controversially, but some
engineers quickly adapted to using this feature. For one-to-many
correlations the experts commonly appreciated the gradient color
brush as "intuitive" (A4) and "practical" (A5). In particular, the experts
used this brush to observe how changing values in one criterion
affected the remaining criteria.

Further investigation is needed to prove the applicability of PAVED
in a wider context. A comparison of PAVED to other visualization tech-
niques on different data sets, e.g., regular parallel coordinates, would
add to the evidence of its impact beyond the individual use case. Our
motivation behind not including this comparison was that the domain
usefulness of PAVED needed to be validated before investigating its
generalizability to other applications.

6.5.3 Methodological Guidelines

Real data being available from the very beginning of the project helped
a lot in developing an understanding of the problem statement and
identifying valid abstractions that shaped the design of our tool early
in the process. Our domain experts committed a lot of time for problem
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analysis and design discussions. This commitment was in large parts
based on an exceptional intrinsic motivation that stemmed from their
personal interest in visualization as well as enjoying problem and
design discussions through a positive rapport between researchers
and domain experts.

Apart from that, our collaboration was effective for two more rea-
sons. First, both parties were willing to familiarize themselves with
the subjects of the other party. The domain experts already knew basic
visualization and interaction concepts, which significantly reduced the
initial knowledge gap. Second, we encouraged meetings in person for
joint sketching on the same whiteboard or piece of paper to generate
and evaluate ideas. This led to results more efficiently than having one
party prepare content that is reviewed by the other. By constantly pro-
viding prototypes, we were able to reinforce the experts’ engagement
and keep their attention. In the end, our discussions with the domain
experts were so inspiring that we even identified an entirely new
problem that poses an interesting research question in both domains.
We investigate this problem in Chapter 7.

We should have listened more carefully when the domain experts
encouraged the use of parallel coordinates shortly after our collabora-
tion started. We initially missed this suggestion due to a blind spot
that grew from our assumption that building upon familiar visualiza-
tions would 1) avoid the pitfall of ignoring practices that work well
and 2) keep the tool easy to learn. However, from this detour, we had
to acknowledge that, despite their limited visualization background,
our domain experts had a meaningful understanding of their visual-
ization needs. Consequently, when performing user-centered design,
we learned to consider the users’ suggestions more strongly, even if
we might feel our expertise being underrated.

6.6 conclusion

This chapter presented a design study on Pareto front visualization
supporting engineers who are tasked with the parametric design
of electric motors. Visualization research often targets data analysts,
i.e., people who are interested in understanding the data, not make
decisions with data [68]. To the best of our knowledge, this design
study was the first to explicitly address decision-makers and multi-
attribute choice over analytic tasks at the time of implementation.

In close collaboration with the domain experts, we studied their
needs, tasks, and goals related to choosing the most preferred motor
design. The identified requirements guided our iterative development
of PAVED, an interactive parallel coordinates visualization for explo-
ration of design options. The multi-attribute options are characterized
by about a dozen design parameters and up to ten criteria. The vi-
sualization supports engineers in applying both formal constraints
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and informal preferences as they learn what level of performance is
achievable under different conditions. This increases transparency of
the trade-offs involved, which is essential, not only for justifying the
final choice to their customers (Section 2.2.3).

A qualitative field study suggests the effectiveness of our visual-
ization as part of a real-world engineering design workflow. This is
also reflected in the results of a quantitative usability testing, which
resulted in a usability well above average. This outcome adds evidence
to the benefit of introducing a well-known visualization like paral-
lel coordinates in industry applications [117]. Finally, we reflect on
the domain-specific problem characteristics, visualization design, and
methodological considerations, which adds to the body of real-world
experience with studying multi-attribute choices. In realizing that we
had missed a shortcut, we particularly learned to value the domain
experts’ understanding of their own visualization needs. This, again,
confirms the need to study visualization support in real-world settings
with users who are, in fact, decision-makers [68].

Although designed for engineers, our visualization generalizes to
any multi-attribute choice where the preferences cannot be quantified
in advance. Thus, it can also be used by other decision-makers like
consumers or professional buyers, policy makers, or event managers.
Different perspectives on the decision space could help align with a
decision-maker’s mental model, for example extending the abstract
parallel coordinates view with 3D model views of the subject to decide
upon [195]. Chapter 7 will investigate how the parallel coordinates
visualization can be further adapted to also support decisions where
multiple choices affect each other.





Figure 7.1: Composite Parallel Coordinates help users make decisions about
multi-component systems, e.g., choose one of the 392 combina-
tions of gear (top) and motor (bottom) alternatives for an electric
drive. Axes can be merged to represent shared properties like the
gear ratio (a) or to compute system performance indicators from
component criteria (b). Filters can be applied to single compo-
nents (c) or to the entire system (d). Hovering a gear alternative
highlights it together with the compatible motor alternative (e).

7
C O M P O * S E D : C O M P O S I T E PA R A L L E L
C O O R D I N AT E S F O R C O - D E P E N D E N T
M U LT I - AT T R I B U T E C H O I C E S

This chapter proposes a novel parallel coordinates technique to
effectively represent the interplay of two or more multi-attribute

choices that affect each other. For a single multi-attribute choice, in-
teractive visualizations have been proposed around helping decision-
makers deal with sets of alternatives, conflicting attributes, and infor-
mal subjective preferences [175]. With the parallel coordinates plot
[109] being an important representative, Chapter 6 presented a design
study on its use in engineering design as an important application
area. While the design study demonstrated the usefulness of parallel
coordinates for motor design, its evaluation unveiled that what the do-
main experts typically need to decide upon are not single but multiple
interacting mechatronic components (Section 6.5.1). This task had also
been identified in a previous design study on car engine design [28].
Where multiple components are operated together, decision-makers
face the task to work through a series of choices. They can affect each
other in two ways. First, making one choice might rule out options of
another choice (e.g., deciding for a camera body rules out lenses that
have a different mount type). Second, the overall performance can only

133
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be judged with all intermediate choices together, because it is an emer-
gent property of their composition and cannot simply be computed
from individual performances. The challenge for visualization design
is to allow for trade-offs regarding both the individual choice goals
as well as those of the overall decision and to allow decision-makers
to flexibly move between these two perspectives. This is complicated
by the attribute sets, on which alternatives of the different choices are
defined, not necessarily being comparable (see Section 4.3). Grounded
in but not limited to a continued collaboration with the domain ex-
perts from the design study in Chapter 6, this chapter therefore turns
towards the problem of making co-dependent multi-attribute choices.

Section 2.4.2 concluded that systems engineering design requires
a simultaneous exploration across individually modeled but depen-
dent components. This chapter investigates how parallel coordinates
can be adapted to move from single multi-attribute choices to co-
dependent choices. As co-dependent choices have not been addressed
by visualization researchers before, we develop a characterization of
the targeted problem. From there, we investigate layout strategies to
depict both individual options at the component level as well as the
dependencies between options of different components at the system
level. The investigation also includes dedicated interaction patterns
to strengthen the perception of component relationships and sup-
port efficient navigation through the large solution space. As a result,
we present Composite Parallel Coordinates to help decision-makers
choose the most preferred design alternative of a multi-component
system. Unlike commonly employed multi-component models or iter-
ative trial-and-error processes, it supports a simultaneous exploration
of the components involved. The visualization technique presented in
this chapter has been previously published [52].

What the reader can expect from this chapter:

• A characterization and abstraction of a new type of decision task
called co-dependent multi-attribute choices (Sec. 7.1).

• A review of visualization works on analyzing related data sets,
suggesting that a simultaneous analysis of individual items and
their conditional combinations is not yet supported (Sec. 7.2).

• The design of COMPO*SED, a parallel coordinates technique to
explore co-dependent choices for the first time (Sec. 7.3).

• Two usage scenarios and a case study that prove the applicabil-
ity of COMPO*SED for investigating the side effects between
intermediate decisions when making trade-offs (Sec. 7.4).

• An observational study based on a natural conversation of two
experts jointly using COMPO*SED suggesting that it is suitable
as an alternative to artificial think-aloud monologues (Sec. 7.4).
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7.1 problem characterization and abstraction

Section 2.4.2 described the task of devising a system that meets desired
properties within given constraints. The essential – and challenging
– characteristics of a system are its combinatorial nature and the in-
teractions between its components that lead to emergent properties.
Emergent properties are properties of the system that the individ-
ual components do not possess when acting separately [249]. The
characteristics pose three major challenges for systems design:

CH1 Combinatorial optimization typically entails a huge solution
space, even if restrictions apply. This prohibits an assessment of
all possible system designs.

CH2 Interoperability constraints restrict how components can be
connected in a system. Consequently, individually optimal com-
ponent alternatives might not be interoperable.

CH3 Emergent properties make the system performance difficult to
derive from individual component performances. In particular,
local optimality might not yield a global system optimum.

This section develops a detailed characterization of the targeted
problem. We abstract the interaction of subjects to decide upon in the
form of a data model (Section 7.1.1). From the common difficulties
and needs associated with system design problems, we then extract
analysis tasks that make up the decision process (Section 7.1.2).

7.1.1 Data

The subject under investigation is a fixed set C = {C1, ..., Ck} of com-
ponents that together form a system. Each component is optimized
individually based on multi-run simulation, which describes the per-
formance of the component under different design parameter settings.
This results in one simulation ensemble per component. Each mem-
ber of a component ensemble V is an alternative of this component.
The previous design study provided an abstraction for alternatives
as resulting from a multi-run simulation model (Section 6.1.2). As
a reminder, a component alternative can be formally described as the
union v = (x, y) ∈ V of a design option x ∈ X and its simulated
performance y ∈ Y with design parameters X and criteria Y.

Although the components seem independent at first, they need to
be integrated to achieve the purpose of the system. Thus, the compo-
nent ensembles cannot be analyzed separately. Instead, an optimal
combination of component alternatives requires a consideration of
two levels: the component and the system level (Figure 7.2).

At the system level, the alternatives available for each component are
put into the system context to account for their interoperability (CH2),
i.e., components can only be combined under certain conditions, and
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Figure 7.2: The system-oriented data model, going from the component level
(bottom) to the system level (top). Only interoperable component
alternatives (right) can be combined. The resulting system alter-
natives are augmented with global criteria approximating their
emergent performance.

emergent properties (CH3), i.e., system performance is a synergy of
component performances. The following formal description reflects
these two dependencies in the data model.

Interoperability

To form a smoothly operating system, each individual component
needs to fit its neighbors, physically and functionally. Mittal and Fray-
man use the idea of ports to describe such intercomponent boundaries
[179]. A port is where a component connects to other components.
Since we do not assume arbitrary connectivity, a port is also associated
with constraints. For example, a lens can only be mounted on a camera
body with a fitting mount type.

To represent ports and their constraints in our data model, we
looked at how data sets are joined in relational databases [56]. A join
condition specifies whether items from different data sets can be com-
bined into a single type. In our case, items are alternatives of different
components that are combined into a system alternative based on an
interoperability condition. A system alternative is valid if it contains
exactly one alternative of each component in the configuration. To
avoid potentially incomplete system alternatives, we use inner joins
to model the interoperability of components. Inner joins consider a
tuple of component alternatives as a system alternative, if and only if
all alternatives match the given condition.

Consider two components Ci and Cj with alternative ensembles
VCi and VCj . The inner join computes an ensemble VS of system alter-
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natives, i.e., an ensemble containing combinations of interoperable
alternatives from Ci and Cj (Figure 7.2):

VS = {(vi, vj) ∈ VCi × VCj | I(vi, vj) = true} (7.1)

The interoperability condition is represented by a generic predicate
function I. As interoperability is concerned with design space restric-
tions, I is evaluated on the components’ design parameters. We detail
the definition of I based on the following assumptions:

• Interoperability might be constrained by more than one port. We
distinguish the involved ports by an index p. All defined port
constraints must be met for I to yield true.

• Each port constraint is described by a boolean predicate Ip that is
defined on two design parameters: one parameter of Ci and one
parameter of Cj. We write Sp(vi) and Sp(vj) to select the values
of the two design parameters from the respective component
alternatives vi and vj.

• The predicate Ip of each port is selected from a class of boolean
functions during the specification of the system configuration.

Given the first two assumptions, we define the predicate function I as
the logical AND operation (

∧
) of all individual port predicates Ip:

I(vi, vj) =
∧
p

Ip
(
Sp(vi), Sp(vj)

)
(7.2)

By specifying the predicates Ip and the design parameters they operate
on, I can be chosen to account for a variety of interoperability condi-
tions in various domains. The possible functions for Ip can take two
different forms: the two design parameter values are either directly
compared or they are aggregated and compared to a constant c.

Ip(x, y) =

x G# y, (direct comparison)

x ⊙ y G# c, (comparison with constant)
(7.3)

Above, G# ∈ {=, ̸=,>,≥,<,≤} and ⊙ ∈ {+,−, ∗, /}. Thus, Equa-
tion 7.3 describes 30 functions that can be used to define the most
common port constraints during the system configuration. A natural
join or a theta-join [56] is implemented through a direct comparison
(natural join) or a comparison with a constant (theta-join) on the rele-
vant design parameters. For example, for the natural join of camera
bodies and lenses, we can choose Ip to operate on the components’
design parameters mount type using "=" as the comparison operator
G#. Depending on the interoperability conditions for a system design
problem, the definition can be extended with custom predicates if they
are using exactly one design parameter of each component. In this
way, our technique generalizes to a wide variety of applications.
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Emergent Properties

This dependency between components refers to the system perfor-
mance as an emergent property of a combination of component alter-
natives. We distinguish between local criteria capturing the individual
component performances and global criteria capturing the emergent
system performance of valid system alternatives. Following the formal
characterization of Weidele [293], this can be described as conditional
data: if component alternatives meet the interoperability predicate, the
resulting system alternative can be augmented with details about the
system performance. Instead of costly simulations, we approximate
the system performance by computing global criteria from selected lo-
cal criteria. A computation based on semantically related local criteria
may involve simple mathematical operations, like adding up individ-
ual component costs to a system price but may also use more complex
functions to address non-trivial compositions. However, the global
criteria can also be computed by a conventional weighting approach
to aggregate local criteria without any semantic relationship.

7.1.2 Tasks

The design of engineered systems is relevant in a variety of do-
mains, each providing different environments regarding specifications,
domain knowledge, and existing workflows. Wang and colleagues
present six analytic tasks related to inferring meaningful informa-
tion from ensemble data [285]. Their compilation does not cover the
main task of system design, which lies in an informed combination of
members of different ensembles. The primary goal of the analyst is to
determine the most preferred combination of component alternatives,
such that the resulting system’s performance is optimized with respect
to a number of attributes. As there is no inverted simulation model
that tells analysts how to choose the design parameters to achieve
the desired performance, the available combinations need to be ex-
plored [255]. The exploratory choice involves multiple co-dependent
multi-attribute choices: for each component involved in the system
configuration, analysts need to select the best option among a finite
number of alternatives, such that their interplay is optimized. Herein
lies the main challenge of system design. In fact, a central aspect of
system design is the "subordination of individual goals and attributes in
favor of those of the overall system" [137]. Such mutual dependencies
significantly intensify the decision-making process. Deciding for the
best combination turns into a series of choices, whose potential side
effects need to be considered when making trade-offs. An exploration
across ensembles is thus guided by the following questions:

T1 Overview – What are the value distributions of attributes at the
component level and at the system level?
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T2 Competition – What is the nature of conflicts among criteria? How
important are component performances and system performance?

T3 Filter – What is the effect of system and component constraints?
T4 Subjective Evaluation – Is an alternative feasible? Does it balance

the criteria according to the stakeholder’s preferences, tolerances,
domain knowledge, and experience? Which alternative is superior?

T5 Connectivity – Given a (set of) component alternative(s) of interest,
which alternatives of the remaining components are interoperable?

T6 Navigation – How does deciding for a component alternative
affect the availability of remaining alternatives and the system
performance in reach? Which alternative improves the emergent
system properties?

T7 Key Component Alternatives – Which component alternatives
yield a good performance, while being interoperable with many
other alternatives?

T8 Partial Choice – Does a partial component choice, i.e., selecting
a set of possible component alternatives, leave enough room for
balancing the properties of the remaining components?

T9 Alternative Replacement – How does a component alternative
contribute to the system performance? What is the effect of re-
placing the component alternative? Which replacement increases
component or system performance?

7.2 visualization of multi-model data

For depicting multi-attribute variants of a single component, we can
draw from existing works on multivariate Pareto front visualization
(Section 3.2.1). Jointly analyzing variant ensembles of more than one
component relates to visualization approaches addressing a simultane-
ous investigation of different but related data sets (Section 7.2.1). Since
we use parallel coordinates, we also investigate related approaches for
organizing parallel coordinates axes (Section 7.2.2).

7.2.1 Visualization of Multiple Related Data Sets

System design requires an investigation of related data sets repre-
senting components and their interactions. Konyha and colleagues
conclude that single table approaches are insufficient to describe such
data and its dependencies [133]. This view is shared by Kehrer and
Hauser, who identify multi-model scenarios resulting in two or more
interacting data parts as a promising direction of visualization re-
search [122]. A central question in such cases is how to investigate
patterns across data sets.

Coordinated multiple views may link multiple tables via primary
and foreign keys as done, e.g., in Snap-Together [190]. Liu et al. con-
sider the relationships between data items as a graph and propose
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the system Ploceus for a network-based visual analysis [150]. With
Domino, Gratzl et al. propose a meta-visualization technique allowing
users to create explicitly linked views to represent data subsets and
four degrees of relationships between them [84]. Working with multi-
resolution models, Spletchna et al. address the complication of only
partially overlapping parameter spaces as a key challenge [259].

The links between our component data sets are not defined by
shared identifiers but by value predicates. Kehrer et al. propose a
similar abstraction of the relation between two data sets, which they
call interface [123]. Their abstraction addresses multi-model data in a
spatial domain, which can be exploited to describe the relations via co-
location. Closest to our approach is the work by Splechtna et al., who
propose to relate items of different data sets based on their properties
regarding one or multiple (common) attributes [258]. While we build
upon such conditions to represent the interoperability of components
in a system, their approach cannot handle emergent properties.

The analysis of emergent properties plays a significant role for the
optimization of complex engineered systems. Basole et al. propose a
network-based visual analytics tool for system design that explicitly
considers how intermediate decisions influence system-level proper-
ties [22]. While their approach focuses on an iterative reconfiguration
of the system, our approach is based on systematic sampling of the
design space upfront to gain a broad overview early in the process.
Closest to our work, Marth et al. use scatter plots to evaluate the joint
performance of a motor and a gear in a side-by-side arrangement [161].
They provide performance criteria for individual motor and gear vari-
ants as well as for their combinations by summing up the individual
criteria (e.g., the sum of losses or lengths). We generalize the specifi-
cation of interoperability and joint performance and visualize these
system-level properties together with component-level properties. So
far, no multi-ensemble approach has been proposed that allows for
a simultaneous exploration and optimization of individual ensemble
members as well as conditional combinations of ensemble members.

7.2.2 Axis Configurations for Parallel Coordinates

In their survey, Heinrich and Weiskopf define a composite parallel
coordinates plot as a composition of several visualization layers, e.g.,
axes and brushes [96]. In contrast, we propose a side-by-side compo-
sition of multiple parallel coordinates plots, which emphasizes the
dependencies and emergent properties in multi-component systems.

The core challenge of our parallel coordinates composition is the
arrangement of axes. In the conventional layout, every dimension
has two direct neighbors. A strategy to overcome this limitation for
visualizing many pair-wise relations is to replicate axes of individual
dimensions. Lind et al. combine multiple axis orderings in a many-
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to-many parallel coordinates plot [147]. Replicated axes depicting the
same dimension are arranged in polygons to communicate all pair-
wise relations of dimensions in a non-overlapping way. Claessen and
van Wijk propose a generalization where axes can be positioned freely
and linked via scatter plots (orthogonal axes) or parallel coordinates
(parallel axes) [55]. We did not consider such an approach because it
results in a complex visualization layout, even for single components.

We want particular relations across components to stand out. Multi-
ple strategies have been proposed to visually aggregate dimensions
with similar semantic meanings. Andrews et al. introduce aggregate
axes that replace related dimensions by substituting the dimension
values with their mean [9]. Axes can be interactively collapsed and
expanded. Bhattarai and colleagues use the sum to merge dimension
axes for an exploration of material compositions [33]. Garrison et al.
aggregate dimensions that contribute similarly to the variance of a
data set by mapping parallel coordinates axes to the first and second
principal components of the dimensions [78]. In their product com-
parison tool ConfigurationFinder, Riehmann and colleagues organize
semantically related dimensions in groups that are represented by an
expandable proxy axis [222]. The approaches mainly differ in how the
related dimensions are identified (domain knowledge or automated
analysis) and how the aggregations are calculated and presented. In
our case, related dimensions of different components are derived from
the analyst’s knowledge. Their axes can be merged using different
functions to depict system-level properties. A primary challenge with
our approach is to represent the interoperability conditions.

Conditional parallel coordinates by Weidele use predicates to insert
nested axes for conditional dimensions that apply only to data sets
satisfying specific properties [293]. While this approach allows for
representing items of different types in one view (e.g., cameras and
lenses), it does not enable a combination of items of two or more types.
In our approach, all dimensions can be shown from the beginning
because the predicates imply combinatorial constraints, leaving the
dimension schema unchanged. In particular, axes unique to one type
(i.e., component) are shown at the same level of detail as shared axes.

Regarding the ambition to visualize multiple ensembles, most simi-
lar to our approach are the nested parallel coordinates proposed by
Wang et al. [286]. They use nested axes to compare data distributions
from multiple ensembles that originate from climate simulation at
different resolutions. Our Composite Parallel Coordinates are inspired
by their approach, i.e., to assemble juxtaposition and superimposition
for analysis within and between different ensembles. However, while
their ensembles provide different resolutions of the same subject, the
components represented by our ensembles are different subjects.
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7.3 design of composite parallel coordinates

Based on our preceding characterization of co-dependent choice data
and tasks, we propose COMPO*SED, a novel variant of parallel coordi-
nates for their visualization. COMPO*SED allows analysts to explore
the possible combinations of component alternatives while taking into
account both the individual component properties as well as their
emergent system properties. Parallel coordinates offer a compact and
lossless two-dimensional visual representation for multi-dimensional
observations. We made them the basis of our visualization design
primarily for their lossless mapping and flexible axis arrangements
[55] but also for their simple applicability and wide-spread use in
multivariate data exploration. From the results of our previous design
study (Chapter 6), we were confident that parallel coordinates are
accessible for analysts performing single multi-attribute choices.

System design requires an observation of design options at the
component level and the system level. This leads to three conflicting
design goals (G1, G2, G3) and one independent goal (G4):

G1 Component-level analysis requires a stand-alone observation
of individual properties per component. Without prior relevance
information, all components and properties are considered equally
meaningful for analysis.

G2 Context awareness requires to relate observed component proper-
ties to semantically similar properties of other components.

G3 System-level analysis needs an observation of similar proper-
ties across components. The evaluation of interoperability and
emergent performance benefits from explicit system properties.

G4 Layout stability is an overarching design goal. In contrast to
open data exploration scenarios, where no analysis strategy is
imposed, system design relies on a clear mental model of the
system structure and properties to investigate. A stable overview
layout allows analysts to focus on trade-offs instead of adapting
to varying positions of components and their properties.

Conventional parallel coordinates lack the ability to depict the de-
pendencies between individual ensemble members (Section 7.3.1).
We therefore propose Composite Parallel Coordinates (Section 7.3.2),
whose axis layout (Sections 7.3.3 and 7.3.4) and interaction patterns
(Section 7.3.5) reflect the notion of a system being a composition of
interacting components.

7.3.1 Reviewing Conventional Parallel Coordinates

A conventional parallel coordinates plot depicts a single multi-dimen-
sional data set, where all items are defined in the same variable space.
To visualize multiple component ensembles, their variable spaces
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(a) Conventional Parallel Coordinates

(b) Composite Parallel Coordinates

Figure 7.3: Two-component systems depicted by (a) standard parallel coordi-
nates (PC) vs. (b) the proposed Composite Parallel Coordinates
(ComPC). PC display the combinations over their joint variable
space, while ComPC partially juxtapose the components. In con-
trast to PC, they explicitly depict the combinatorial problem.

need to be merged during the data transformation step. This can be
achieved by joining the component alternatives according to their
interoperability. Due to the combinatorial nature, the number of items
and variables to visualize increases drastically (upper bound n ∗ m
for items or n + m for variables). Conventional parallel coordinates
then result in a plot with many side-by-side axes, where the polylines
represent the ensemble VS of system alternatives (Figure 7.3a).

In this plot, the subdivision of system alternatives into individual
component alternatives is not obvious. This makes it difficult to per-
ceive how the properties of the system originate from the interactions
between the individual components. It complicates the central aspect
of system design, i.e., the subordination of component-specific char-
acteristics in favor of the system performance [137]. The root of this
problem is the axis layout being restricted to the horizontal direction.

On the one hand, the success of a choice at the component level
is determined by the component properties (G1). The evaluation is
facilitated if all axes of the same component Ci are placed directly next
to each other, such that each component alternative v is represented as
a self-contained polyline. This axis order supports tasks like gaining an
overview of component alternatives (T1), determining key component
alternatives (T7), or replacing a component alternative (T9).
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On the other hand, determining the success of an intermediate
choice builds upon an evaluation of emergent system properties (G2

and G3). This can only be achieved by placing the axes belonging to
different components Ci and Cj directly next to each other. Such an axis
order supports tasks like determining interoperability (T5), evaluating
the system performance (T4), or navigating the combinatorial design
space (T6). However, it contradicts the component-wise adjacency of
axes required for evaluating the choice at the component level.

Using conventional parallel coordinates, G1, G2 and G3 can only
be achieved if we allow the axis order to be interactively adjusted to
the varying analysis focus. However, this would mean violating the
requirement for layout stability (G4).

To summarize, conventional parallel coordinates are not suited
to meaningfully represent both component membership (CH1) as
well as interoperability (CH2) and system performance (CH3). This
boils down to them being restricted to depicting a single ensemble
of system alternatives using a one-directional axis layout. Parallel
coordinates cannot communicate the dual role of component variables
that contribute to both component-specific properties as well as system-
wide properties.

7.3.2 General Visualization Design

As explained previously, conventional parallel coordinates do not
allow for an understanding of how the components work together.
This issue can be solved by visualizing the components individually
instead while paying particular attention to the interfaces between
them. We map the component ensembles to distinct parallel coordi-
nates plots. Depicting their interfaces poses an inherent challenge
when visualizing a system as a composition of components. It requires
careful integration of the different parallel coordinates plots into the
same view. Javed and Elmqvist define this approach as composite visu-
alization [115]. We make use of their design space to convey the idea of
Composite Parallel Coordinates. Our visualization design was guided
by the following question: how to make component properties (G1),
their context (G2), and system properties (G3) equally accessible in a
stable layout (G4)?

A composite visualization is a natural choice for depicting a system
of interacting components. In contrast to the concept of coordinated
multiple views [224], where different visualizations depict different
aspects of the same data items, our composition involves multiple
instances of the same visualization to depict different but related data
items. The reason is that the primary task of making a multi-attribute
choice is the same for each component in the system to be designed.
Each system component ensemble VCi is depicted by one parallel
coordinates plot.
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How do these views become part of a composite visualization?
Data-wise, they are independent because the variable spaces X ∪ Y
are different for each component. The views’ dependency originates
from the domain-specific semantics regarding interoperability and
emergent properties (see Section 7.1.1). The visual design task is to
communicate these implicit dependencies as explicitly as possible.

The design space of composite visualizations proposes two symmet-
ric and two asymmetric composition strategies [115]. The asymmetric
strategies, namely overloading and nesting, impose an imbalance
between views, which does not match the inherent symmetry of
the system design problem, where all components are considered
equally important. Thus, we turn toward the two symmetric strategies:
juxtaposition and superimposition (Figure 7.3b). Juxtaposed paral-
lel coordinates plots address the component level by depicting the
largely different variable spaces. Superimposed axes of different plots
address the system level by communicating emergent properties like
interoperability conditions and overall system performance.

Our strategy accounts for the pairwise relations between the k vari-
able spaces of the components. It involves different visual mappings
to communicate the parts of a relation between variable spaces:

• Shared – Two variable spaces share parts where they exhibit com-
mon variables. Typically, these variables are design parameters
considered for interoperability modeling, e.g., gear ratio.

• Related – The related parts of two variable spaces contain those
non-common variables that contribute to interoperability and
emergent properties. Related variables can be design parameters
or criteria, such as motor price and gear price.

• Unique – Those parts of a variable space that neither involve
common nor related variables are unique, e.g., motor iron loss.

Below, we describe our design choices regarding the visual mappings.

7.3.3 Juxtaposition for Component Level

At the component level, the decision-maker focuses on the individual
properties of one component at a time (G1). Besides context awareness,
considerations that involve other components, like interoperability and
system performance, are of secondary importance. The simplest way of
presenting an overview of all component ensembles is a juxtaposition
of separate visualizations. Due to their independence, they allow
analysts to focus on individual components without interference or
distraction. As all components are considered to be equally important,
we symmetrically divide the available visual space.

Juxtaposed views are generally highly flexible regarding their ar-
rangement. However, in our case, the layout quality particularly de-
pends on its ability to display semantically related properties of dif-
ferent components spatially close to each other in order to maintain
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(a) Horizontal Layout (b) Circular Layout

(c) Vertical Layout (d) Vertical Layout + Superimposition

Figure 7.4: Different layout strategies to represent two components and their
dependencies. Related properties of different components should
be depicted close to each other. (a) Concatenated PCPs allow for
adjacency of one pair of related properties. (b) Bending them to
a circle adds another adjacent pair of related properties. (c) A
vertical arrangement allows for more than two pairs of proper-
ties with similar semantics to be placed close to each other. (d)
Where applicable, shared and related component properties can
be merged to explicitly reflect system properties.

the system context (G2). The value of juxtaposition then stems from
the boundary between two views conveying shared semantics. In the
following, we discuss different layout options in light of this aspect.

Let us consider the composite visualization of two component en-
sembles VCi and VCj . A naïve approach would be to horizontally
concatenate the two parallel coordinates plots (Figure 7.4a). Perceiving
the system context requires the related properties of both components
to be depicted close together. To achieve adjacency, the respective axes
are placed at the inner ends of the plots. However, only a single pair of
design parameters or criteria is adjacent, i.e., only one interoperability
condition Ip or emergent property can be communicated.

The second option is a circular layout (Figure 7.4b). The related de-
sign parameters are placed at the inner boundary of the concatenated
plots and the criteria contributing to emergent properties at their outer
ends. The plots are then bent to a circle, such that the criteria, too, are
adjacent. The result resembles a radar chart. Still, this layout conveys
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only one interoperability condition Ip together with one emergent
property and cannot be extended to more than two components.

A third option is to arrange the parallel coordinates plots vertically
(Figure 7.4c). The vertical distribution clearly separates the visual
representations of individual components, thus enabling an efficient
perception of the component level. The horizontal direction can then
be exploited to position variables with similar semantic meanings but
belonging to different components one below the other. In this way, the
boundary between two views conveys shared semantics via multiple
interoperability conditions and emergent properties and properly
accounts for context awareness. In addition to that, the layout offers
the potential to be extended to more than two components.

Based on the requirements imposed by the component-level anal-
ysis (G1) and context awareness (G2) together with the overarching
layout stability (G4), the juxtaposition with vertical layout is the most
promising option to proceed with. While the boundary between views
conveys the system context via shared variable semantics, any link-
ing between data items of different views is revealed only upon user
interaction. Relations between alternatives vi ∈ VCi and vj ∈ VCj of
different components are difficult to perceive. These relations describe
the interoperability of component alternatives as well as their joint per-
formance. They refer to a system-level analysis (G3), which is detailed
in the following section.

7.3.4 Superimposition for System Level

Dependencies at the system level manifest in parts of the variable
spaces being shared (common variables) or related (variables con-
tributing to interoperability conditions or emergent properties). Su-
perimposition means to overlay two plots in a single view [115]. We
implement it by allowing the user to merge those axes that are as-
sociated with shared or related parts of the variable spaces (Figure
7.4d). As a result, the interface of two components is depicted by those
polyline sections that intersect the superimposed axes and thus share
the same visual space at the boundary between the juxtaposed plots.
Unlike any other layout that we considered, this strategy solves the
component-level analysis (G1) with context awareness (G2) and the
system-level analysis (G3) while providing a stable layout (G4).

The design parameters and criteria that are unique to individual
components are not affected by superimposition. They are represented
by the juxtaposed atomic axes of the individual parallel coordinates
plots because they do not semantically relate to another component’s
properties. An example is the property focal length of a camera lens,
which remains unaffected no matter which camera body is chosen to
be combined with it.
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(a) (b) (c)

Figure 7.5: Composite axes represent interfaces between components. (a)
Shared design parameters can contribute to interoperability (e.g.,
mount types should be equal). (b) Related design parameters
specify interoperability via inequality (e.g., radii of components
should differ by one unit at most). (c) Related criteria are added
up to a system criterion.

For the shared and related parts of the variable spaces, we introduce
composite axes. These axes can take different forms, depending on the
represented type of dependency and the current analysis focus. What
they have in common is that atomic axes of different plots might be
collapsed into a derived axis. It is placed vertically in between the
involved juxtaposed views and acts as an independent variable itself.

We distinguish three types of dependencies between components,
which are represented by slight variations of composite axes:

• Shared design parameters are depicted using a permanently
collapsed axis (Figure 7.5a). They are not expandable, as this
would mean to duplicate the axis and thus add redundancy.

• Related design parameters are depicted using separate axes
initially, but can be collapsed by applying a predicate function
describing the interoperability condition Ip (Figure 7.5b).

• Related criteria are also depicted using separate component
axes, but can be collapsed via a mathematical operation that
maps the component criteria to a system criterion (Figure 7.5c).

Composite axes have a button located beneath them to collapse and
expand the associated component variables. When two component
axes are collapsed, the derived axis is inserted vertically centered
between the two original axes, replacing them. The polylines of both
involved plots are updated to intersect the collapsed axis. Where
non-identical parameters are merged, this requires the creation of
combinations. To keep complexity low, the range of the collapsed
axis is computed naïvely from the extreme values of the original axes.
When the collapsed axis is expanded again, the component axes are
inserted at their original position in the plot, replacing the collapsed
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axis (G4). The polylines are updated again to intersect the separate
component axes.

The dependencies, i.e., which parameters can be collapsed and how,
are prescribed by the application domain. The axis pairs and collapse
functions are specified a priori by users in the form of metadata of
the data set to be analyzed. Up to now, the users have managed to
do so without a dedicated user interface. Still, whenever needed, only
development efforts would be required to provide a user interface to
not only specify but also adjust the axis pairs and collapse functions.

Value Mapping
The value mapping of a composite axis depends on its type and col-
lapse function. Composite axes displaying shared design parameters
do not require a dedicated value mapping. The permanently collapsed
axis simply displays the original parameter values of the alternatives
across both components (Figure 7.5a).

In contrast to shared parameters, related parameters have the same
semantic meaning but are not identical. They are initially observed
individually using separate component axes. Based on their semantic
relationship, these axes can be collapsed to reflect properties at the
system level. This requires the combination of component alternatives
using a dedicated value mapping that derives an aggregated system
value from the two original component values. These aggregated val-
ues are displayed on the collapsed axis. To specify the exact mapping,
we need to distinguish related design parameters and related criteria.

For related design parameters, the collapse function is taken from
the pool of interoperability predicates (Section 7.1.1). As an example,
the outer radius of a motor rotor is related to the inner radius of the
surrounding stator according to an inequality constraint. A predicate
Ip is applied in two steps. First, the aggregate of the two component
values is computed using the ⊙ operator. In case of a direct compar-
ison, where no operator is involved, the predicate is rewritten to a
comparison with constant 0, e.g., x < y → x − y < 0. For the rotor
and stator, ⊙ might be defined as subtraction such that rinner − router

describes the clearance between both mechanical parts. This aggregate
value is displayed on the collapsed axis. Its range is derived from the
aggregate values across all combinations of rotor and stator alterna-
tives. In a second step, the comparison operator G# is applied as a filter.
In this case, the clearance should not exceed the value one, so G# is ≤
and any aggregate value less than or equal to one is brushed on the
axis (Figure 7.5b).

As an example for related criteria, the individual prices of a camera
body and a lens might be added up to reflect the system price. Criteria
can only be collapsed if they are 1) both to be minimized or both to be
maximized and 2) associated with the same or relatable units. Upon
collapse, any meaningful mathematical operation might be applied
to the original values of the two involved component criteria. The
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(a) Hourglass Shape (b) Wristwatch Shape

Figure 7.6: The axis order follows the input to output mapping. It mini-
mizes alternation between separate and collapsed axes. Unlike
the wristwatch shape (b), the hourglass shape explicitly depicts
the bottleneck (a).

collapsed axis then depicts for example the total system costs as the
sum of the two component prices (Figure 7.5c). Its range is computed
by applying the same operation to the original minima and maxima
of the component axes. This range covers all potential combinations
of component alternatives but is not necessarily exploited.

Axis Order

The initial order of composite axes is generated by mapping the input-
output order of the data model to the reading direction from left to
right. The design parameters (input) are placed on the left side of
the visualization, while the criteria (output) go on the right side. We
can further divide the input and output into unique and shared or
related variables. It should be noted, however, that strong alternation
between separate and collapsable composite axes is not desired due
to the turbulent polyline courses this generates.

Considering this, we can place the separate design parameters left,
then the collapsable design parameters and collapsable criteria in
the middle, and the separate criteria to the right (Figure 7.6a). The
resulting shape resembles an hourglass. Alternatively, we can place
the collapsable design parameters to the left, then the separate design
parameters and separate criteria in the middle and the collapsable
criteria to the right (Figure 7.6b). This shape looks more like a wrist-
watch. Within these constraints, the axes are initialized according to
their order of occurrence in the data sets. We decide for the hourglass
shape, because it explicitly communicates that the bottleneck of system
design is the interaction between components.

Handling Line Overlaps

The fusion of component polylines at collapsed composite axes pro-
vokes line crossings that can make the course of individual lines hard
to trace (Figure 7.7a). We developed two strategies to cope with this.
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(a) Problem: Line Overlap (b) Solution: Triangle (c) Solution: Parallel Sets

Figure 7.7: Line crossings occur where separated polylines merge into one
(a). Redirecting the polylines via duplicates of the collapsed axis
using a triangle (b) or parallelograms (c) mitigates the overlaps.

The first strategy is inspired by the many-to-many parallel coor-
dinates proposed by Lind et al. [147]. They arrange replicated axes
of the same variable in a triangular shape to visualize a one-to-three
relationship. We implement this concept to handle line crossings by
replicating the collapsed axis, arranging the three identical axes in a
triangle, and redirecting the polylines from the original collapsed axes
via the two replicated axes to the adjacent separate axes (Figure 7.7b).

The second strategy resembles the parallel sets originally introduced
for categorical data [136]. We use parallelograms to show the connec-
tion between the original and replicated axes (Figure 7.7c). The vertical
orientation of the replicated axes matches well with the general layout.
It explicitly communicates that the polylines split up into the two
component levels. The values are easier to read from the axes, and
the match between incoming polyline sections at the collapsed axis
and outgoing sections at the replicated axes is easier to make. We thus
opt for the parallel sets strategy to bypass the line crossings where
separate and collapsable composite axes are adjacent.

7.3.5 Interaction Patterns

Interaction is essential for effective use of Composite Parallel Coordi-
nates. It allows analysts to filter the available alternatives according
to constraints and preferences as well as emphasize alternatives of
interest. Our interaction mechanism involves three cascading selectors
to gradually refine a selection of alternatives under focus.

The selectors are hierarchically structured: filters take precedence
over locks, which in turn have priority over mouseover interactions. The
outcome of any selector is a set of alternatives. Each selector operates
on the outcome of the precedent selector: hovered alternatives are a
subset of locked alternatives, which in turn are a subset of filtered
alternatives. Note that this structure does not prescribe the order in
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Figure 7.8: Selectors are applied at three precedence levels: filter, lock, and
mouseover. The resulting selections range from many-to-many
over one-to-many to one-to-one combinations. (a) A filter results
in a set of alternatives that is refined by (b) a mouseover selecting
system alternatives with a particular diameter and gear ratio. (c)
Locking them allows for (d) mouseover exploration of the in-
volved component alternatives. (e) One gear alternative is locked
to explore the compatible motor alternatives. (f) One of them is
finally chosen as the best fit.

which selectors have to be applied. Selectors are optional: if a selector
is not active, the outcome of its precedent selector remains unchanged.
At any time, the selection resulting from the cascade of currently active
selectors is highlighted, while the remaining alternatives are depicted
in grey for context. In the following, we describe the three selectors in
the order of their precedence.

Eliminating Undesired Alternatives Via Filters

We provide filters in the form of range brushes that can be applied
to any design parameter or criterion axis in the Composite Parallel
Coordinates. As alternatives need to be evaluated regarding multiple
constraints and preferences, multiple brushes can be combined into
a composite brush using the logical AND operation. Where brushes
represent interoperability conditions Ip, their composite brush cor-
responds to the overall interoperability I. Because it does not make
sense to exclude alternatives with desired criterion values, brushes on
criteria axes are tied to the high-quality end of an axis [54].
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In large parts, filtering works in a standard way: alternatives cov-
ered by a brush are included in the selection. Eliminating undesired
alternatives in this way results in a subset of acceptable options to
proceed with (Figure 7.8a). However, the combinatorial nature of the
optimization gives rise to some special considerations:

• A component alternative is selected either if it is brushed itself
or if it can be combined with at least one brushed alternative of
another component.

• A component alternative can be brushed itself on a unique axis
or as part of a combination on a collapsed axis.

• When two axes are collapsed, the new brush position is deter-
mined by applying the collapse function to the original slider
values. Upon expansion, the original slider values are restored.

Highlighting Desired Alternatives Via Locks and Mouseover

With a potentially large number of acceptable combinations remaining
after filtering, users need support in scanning through the filtered
alternatives to further refine the selection.

We provide locks and mouseover selection on polyline segments
to convey interesting valid combinations of component alternatives.
The atomic unit of an interaction is a system alternative (vi, vj) ∈
VCi × VCj , i.e., a one-to-one combination of component alternatives.
Any interaction taking place on one part of a system alternative also
applies to the rest of the system alternative. Due to the combinatorial
nature, multiple system alternatives might pass through the same
polyline segment, in particular where shared axes are adjacent. An
interaction with a polyline segment can thus lead to more than one
system alternative being hit.

To specify the second selector, a filtered polyline segment can be
clicked to lock the associated set of combinations, updating the selec-
tion to the respective subset of the filtered alternatives (Figure 7.8c).
Only one segment can be locked at a time. A lock is active until it is
unlocked (by clicking again) or moved to another polyline segment
(by clicking the respective segment, see Figure 7.8e). Unlocking a lock
makes the selection fall back to the superset of filtered alternatives.

To specify the third selector, the selection resulting from the lock
can be refined via mouseover (Figure 7.8d). If there is no active lock,
the mouseover operates on the set of filtered alternatives (Figure 7.8b).
The mouseover interaction is temporary: when the cursor leaves the
hovered polyline segment, the selection falls back to the set of locked
alternatives or to the set of filtered alternatives if no lock is active.

Anything that remains in the selection after applying the current
cascade of filters, lock, and mouseover is highlighted. At the end
of an analysis, this is usually a unique combination of component
alternatives, i.e., the final system choice (Figure 7.8f).
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7.4 validation

Composite Parallel Coordinates provide a novel approach to a simul-
taneous exploration and analysis of multiple interacting data sets. To
validate its domain usefulness in terms of problem-solving charac-
teristics, we report on two usage scenarios and one case study [113]
from distinct application domains. In the case study, we particularly
reflect on observing an analysis conversation between two engineering
experts. The results suggest that our technique supports the identified
analysis tasks for making co-dependent multi-attribute choices.

These three real-world scenarios showcase how COMPO*SED helps
users simultaneously explore linked component ensembles for the
analysis of complex systems. The data sets exhibit different properties
regarding unique, shared, and related design parameters and criteria.
In all three scenarios, the visualization enabled users to apply con-
straints and observe their combined effects on both the component
and the system level. In particular, it supported decision-makers in
investigating how a component-specific choice affects the system per-
formance and the availability of interoperable component alternatives.

7.4.1 Usage Scenario I: Power Plant Operation

District heating describes a method for delivering space heating or hot
water to buildings via insulated pipe systems. Power plants that serve
as heat suppliers mostly fire fossil fuel, biomass, or waste. This usage
scenario stems from a long-term collaboration with engineers who are
responsible for the operation of a district heating power plant. The
power plant is located in Austria, and the data has been anonymized
to not reveal ownership. The power plant consists of two neighboring
blocks to burn different types of combustion material. One block uses
water, while the other block uses air as a cooling material.

Rather than interoperability, it is the joint production of heat that
prohibits an optimization of the blocks in an isolated manner. Op-
erators of the power plant can use Composite Parallel Coordinates
to decide which block to use to which extent in order to jointly pro-
duce a certain amount of heat requested by the operation plan. If the
outcome of one block decreases, the outcome of the other block has
to be increased. This is typically based on the domain knowledge of
operation engineers. Using data analysis for power plant operation
is still a novel approach. The engineers only have basic experience
in data analysis and data visualization. With the Composite Parallel
Coordinates, they can, for the first time, study 1) how environmental
conditions influence the possible operation modes of the power plant
and 2) how the parameters of one block influence the operation of the
second block. The data was generated using a simulation model.
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Figure 7.9: Power plant operation: a certain amount of heat is to be produced
by a combination of blocks (top and bottom) that share the same
environment (center). High temperature and low air pressure lead
to a high overall consumption of combustion material (right).

The heat produced by each block depends on various factors. Block-
specific design parameters include combustion material, cooling pa-
rameters, and the number of active valves. Environmental conditions
like temperature, humidity, and air pressure are shared by both blocks
because the blocks are equally affected by their changes. The different
consumptions and efficiencies associated with the produced heat in
each block are related and can be composed into system criteria.

Engineers need to constantly regulate the operation of the blocks
during the day. The main trade-off lies in producing a maximum
outcome while consuming the least possible amount of combustion
material. The goal is to distribute the production of the requested heat
to both blocks such that the yield, i.e., the difference between the price
for heat on the market and the operating costs, is maximized.

Every polyline in the plot corresponds to one possible operation
mode of the power plant (Figure 7.9). The two blocks are shown as
separate pathways. First, engineers can study the influence of the
shared environmental parameters on the operation of the power plant.
Merging the blocks’ individual consumptions via addition, they can
observe that high outside temperatures and low air pressure both lead
to higher overall consumption of combustion material and therefore
high costs. At the component level, only a low number of valves is
needed for the air-cooled block to reach a high outcome when outside
temperatures are high. An analysis of the separated variable spaces of
both blocks shows how the number of valves of one block influences
the operation of the other block. With two active valves for the water-
cooled block (since this ensures a low consumption of combustion
material), a similar combustion-saving setting for the air-cooled block
relies on high air pressure and high air humidity – thus, it highly
depends on non-controllable environmental conditions.
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The Composite Parallel Coordinates enable operators to see all
involved parameters at a glance (T1 Overview) and to understand
the dependencies between parameter settings of different blocks (T6

Navigation). With the novel representation, engineers are able to study
the effect of outside temperatures on the needs of combustion material
simultaneously for different blocks (T5 Connectivity). They are also
able to see how a block-specific decision for a number of valves affects
the energy production in the other block (T8 Partial Choice). In this
sense, Composite Parallel Coordinates open up new possibilities for
investigating multi-block power plants.

7.4.2 Case Study: Magnetic-Geared Motor Design

Magnetic-geared motors (MGM) are suited for industrial applications
that require high power densities, e.g., wind energy or ship propulsion.
To achieve the desired outcome, the driving motor and gear need to
interact effectively. This case study was informed by an observational
study, where two engineers collaboratively worked with the tool. We
report on their qualitative feedback at the end of this section. The
one-and-a-half-hour remote study was recorded. Both engineers have
a background in mechatronics and years of experience in electric drive
design. Their daily work involves complex simulations and optimiza-
tions of geometries, magnetics, thermal conditions, and their interplay.
They are familiar with basic visualizations and brushing techniques, in-
cluding standard parallel coordinates. We primarily wanted to identify
aspects of our technique that are particularly relevant to the engineers’
decision-making. Thus, we did not impose a pre-defined setting but
emphasized free discussions on one of their real-world design opti-
mization use cases. We only prescribed the high-level task to analyze
the data and choose the most preferred motor-gear combination. Af-
ter a brief introduction to the functionality of the tool, the engineers
explored the Composite Parallel Coordinates on their own.

Data Analysis

Our domain experts used COMPO*SED to analyze 392 combinations
of motor and gear alternatives. The data result from optimizations
they conducted to investigate a side-by-side arrangement of motor and
gear [161]. The design parameters in each data set represent geometric
properties and operating conditions. The gear ratio (G12) and output
specifications (N2, P2, T2) are common to both data sets (Figure
7.1a). Related criteria that might be assembled into system criteria are
component lengths (LFE), power losses (PV), and efficiencies (ETA).

The experts aim at parameter settings of motor and gear that lead
to a high overall efficiency with a low construction volume and torque
ripple. First, the experts observe how the motor and gear alternatives
distribute along the unique and connected parts of the system (T1
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Overview). Viewing the separate pathways, they notice a motor outlier
with drastically lower efficiency (ETA_MOT) than all other motor
alternatives. They also recognize two clusters of gear alternatives that
significantly differ with respect to efficiency (ETA_MG) and torque
ripple (T1_RIPPLE).

The primary objective is the efficiency of the entire system. At
the motor level, they filter out the outlier with low efficiency (T3

Filter). Next, they merge the efficiencies of motor and gear using
multiplication (Figure 7.1b, ETA_MG * ETA_MOT). On the collapsed
axis, they restrict the overall efficiency to high values (T3 Filter, Figure
7.1d). From the separate pathways, the experts notice that, to their
favor, motors with high current density (JS) and high copper losses
(PCU) are excluded.

The secondary objective is the length as an approximation of the
construction volume. It needs to be filtered at the component level.
Otherwise, the engineers could not recognize undesired combinations
where the total length is acceptable, but motor and gear lengths differ
significantly. Restricting the motor and gear alternatives to small
lengths each (T3 Filter, Figure 7.1c, LFE_MOT and LFE_MG), the
experts notice that gear alternatives with preferred low torque ripple
are not in the selection anymore. Undoing the previous filter actions
one by one reveals that the previous system efficiency maximization
excluded them. This correlation was not known before. The engineers
expect it to originate from problem-specific boundary conditions of
the optimization.

The experts now face a conflict between a system-level criterion
and a gear criterion (T2 Competition). They decide to not sacrifice the
gear criterion too early and rather investigate the trade-off from the
reverse perspective. Brushing the cluster of gear alternatives with low
values for their unique parameter torque ripple (T3 Filter, Figure 7.1c,
T1_RIPPLE) leaves the engineers with about 50 MGMs still offering
acceptable system efficiencies (T6 Navigation, T8 Partial Choice).

The current selection is associated with short gears. From their
experience, the engineers anticipate that this could induce less output
power (P2) of the system (T2 Competition). However, the output power
should not be too low. Brushing the upper half of the respective shared
axis results in a dozen motor-gear combinations (T3 Filter). Merging
the components’ length axes via addition (LFE_MG + LFE_MOT)
reveals that the selection still contains short MGMs (T6 Navigation).
Other properties offer potential for further drill-down.

Two clusters of gear alternatives can be observed for the unique
parameter flux density (OBS_AIR): one with higher flux density and
one with low flux density. Brushing the latter results in six selected
MGMs, which still cover a wide range of system efficiencies (T8 Partial
Choice). One outlier with significantly higher total length is excluded.
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The remaining five magnetic-geared motors are on par with respect
to their performance. Manufacturing benefits are thus pivotal. If gear
magnets are nearly squared, their mounting direction might get mixed
up, leading to wrong magnetization. If their distance is too low, they
are difficult to mount. After a detailed comparison (T4 Subjective Eval-
uation), the MGM design with the largest gear magnet rectangularity
(D_BM_HM) and distance (D_PM3) is chosen (Figure 7.1e).

COMPO*SED allowed for constant switching between the compo-
nent level and system level and between overview and detail. Unlike
before, the experts did not have to go back and forth between indi-
vidual component optimizations. Instead, the component alternatives
and their dependencies could be explored simultaneously. At both
levels, design parameters and criteria could be equivalently used for
real-time filtering. This helped the engineers directly take into account
the effects of each component decision on the system operation. Rather
than choosing the first working solution, the engineers could learn
which combinations and what level of performance were achievable
under which conditions.

Expert Conversation
Although field observations and think-aloud walkthroughs are com-
mon evaluation methods, performing them with pairs of domain
experts (E1 and E2) is rather rare [138]. Our motives were slightly
different from those of studies in computer-supported cooperative
work [188] and collaborative visualization [111], which primarily aim
to assess teamwork. First, the conversation resembled the day-to-day
practice of our experts, who analyze and discuss complex optimiza-
tion problems collaboratively. Second, we hypothesized that a natural
conversation between like-minded colleagues yields more valuable
insights than an artificial monologue of a single expert.

We found that the overview of all involved design parameters and
criteria – in particular their different roles – is the primary advantage
of Composite Parallel Coordinates: "A lot of information is presented in
a clear and compact way" (E1). They also adequately support filtering
both at the component level and the system level: "If you drag the
slider slowly, you can easily trace which alternatives drop out and at which
point they join back in" (E2). In fact, the ability to view and constrain
individual components while also observing system-level properties
was perceived as a significant advantage: "If you would restrict the system
length, e.g., to 70 mm, you might end up with a 60 mm motor and a 10 mm
gear, which would simply be useless" (E1). Although their routine involves
making complex decisions collaboratively, multiple users interacting
in realtime with the same visualization is not desired, as they can no
longer understand what has led to the final outcome: "The collaborative
decision-making is about considering the next steps together, not about
speeding up the interaction" (E1). COMPO*SED did not directly reduce
the time required for a choice, but the experts reported that it helps
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Figure 7.10: A photographer can choose from combinations of three cameras
(purple) and 13 lenses (green). Only components with the same
mount type are compatible (third from left). Component prices,
weights, and lengths are added up to system criteria (center).

avoid optimization iterations. With existing tools, their choice is based
on a subset of the most important parameters. If inconsistencies arise
during validation, they enter an additional iteration. Such iterations
and the additional time are avoided by the more comprehensive
picture our technique offers: "With COMPO*SED, we can keep an eye on
all parameters right from the beginning" (E1).

The collaborative analysis session was highly similar to pair-pro-
gramming: one expert, the driver, interacted with the visualization,
while the other, the navigator, kept an eye on effects and hinted at as-
pects to address. The conversation was free-flowing, interrupted only
by considerations of what to look at next. The engineers communi-
cated by agreeing upon next steps, refining each other’s explanations,
and at times even correcting each other. They also drew the other’s
attention toward interesting regions in the visualization. Watching
the engineers learn not only from the data but also from each other
provided us with insights that we might not have gained otherwise.

7.4.3 Usage Scenario II: Camera-Lens Purchase

The previous scenarios dealt with systems where one component al-
ternative was exclusively compatible with exactly one alternative of
another component. However, some system design problems might
require the component alternatives to be combined more freely. An
example are cameras and lenses, where one camera body can be
equipped with different lenses and one lens can be mounted on multi-
ple camera bodies. Aiming at optimized equipment, a photographer
might use COMPO*SED to decide whether to buy a lens to mount
on her semi-professional camera body or upgrade to a professional
camera body requiring new lenses due to a different mount type.
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The former case requires the analysis of a one-to-many relationship.
Brushing her existing camera body, the photographer compares the
five compatible lenses (T5 Connectivity). They cover a wide range of
prices, weights, and lengths (T8 Partial Choice) while exhibiting similar
ratings. The photographer excludes two lenses that are located towards
the upper ends of the price, weight, and length ranges while not
performing exclusively better in the remaining criteria. The remaining
three lenses have similar prices. The final choice for one of them cannot
be made at the component level. Instead, the photographer needs to
consider how their characteristics like sharpness, distortion, etc. work
together with the existing camera’s resolution, framerate, and so on.

To further improve the performance, it might be beneficial to replace
the camera body with a professional one (T9 Alternative Replacement).
This requires the analysis of a many-to-many relationship. Brushing
the professional camera bodies, the photographer is left with combina-
tions of three camera bodies and 13 compatible lenses (Figure 7.10). To
not miss a preferable combination, the photographer first looks for al-
ternatives that yield a good performance while being compatible with
many other alternatives (T7 Key Component Alternatives). Applying
her total budget as a constraint, the camera body with the highest
rating and a high resolution remains. It is still compatible with six of
the 14 lenses, leaving enough room to further exploit the optimization
potential at the lens level.

7.5 discussion and limitations

Parallel coordinates are certainly one of the more complex visualiza-
tion techniques. In the previous design study (Chapter 6), we learned
that conventional parallel coordinates are accessible for analysts per-
forming single multi-attribute choices. Nevertheless, the question re-
mains whether the added complexity of the novel parallel coordinates
variant matches its increased usage value.

Composite Parallel Coordinates are not merely two linked visualiza-
tions. A distinctive contribution of our technique is the possibility to
jointly explore the alternatives of multiple components, their combina-
tions, and constraints. The relations between system and component
properties can be perceived from the side-by-side layout and the
interaction with composite axes. In particular, our approach shows
one-to-many and many-to-many combinations of matching alterna-
tives explicitly by extending the idea of linked axes across components.
Our strategy follows the recommendation to integrate views with an
explicit linking when relations between items of different data sets are
of particular importance [115]. The cost of added visual complexity
is mitigated by filters, which our experts perceived as a powerful
tool. In contrast, the scenarios did not require the parallelogram strat-
egy to avoid line crossings. The numbers of polylines seem to have
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Figure 7.11: A sample case with three components where A interacts with B
and C. On the left, the collapsable axes are dotted. In the center,
all composite axes are collapsed. On the right, three complete
system alternatives shown.

been manageable, which leaves us with the open question at which
point the strategy develops its full potential. A number of techniques
have been proposed to address different issues associated with dense
line charts, including density estimation [95], edge bundling [310],
and importance-driven blending order [273]. These techniques can be
transferred to Composite Parallel Coordinates, potentially involving
a particular treatment of component connections. To what extent the
explicit but visually complex depiction of many-to-many relations
simplifies the analysis is yet to be examined.

We have demonstrated the working principle for two components.
A major limitation of the composite layout is that it does not effort-
lessly scale to an arbitrary number of data sets. While the layout is
generally open to stacking multiple parallel coordinates plots, any
plot can only be directly connected to two neighbors above and below
(see Figure 7.11). The vertical positioning according to component
links is remarkably similar to the axis-ordering problem of conven-
tional parallel coordinates. We hypothesize that existing solutions
(e.g., linearization of node-link representations, interactive reorder-
ing, or aggregation) can be adapted to overcome this limitation on
the vertical axis. Stacking more than two components leads to more
complex branching of the polylines, requiring dedicated rendering
and interaction techniques to trace individual polylines. To what ex-
tent high polyline density can be mitigated by filtering is yet to be
examined. Showing relations between non-adjacent components will
likely introduce additional visual clutter. Additional ranges on the
horizontal axes are needed to depict related attributes of non-adjacent
components (see the second gray area in Figure 7.11, where parame-
ters of all three components are totalized). With a certain number of
components making up the system structure, a dedicated navigation
strategy (e.g., using a minimap) might generally be required.

Another limitation is that composite axes represent only one-to-one
mappings of related properties from different components, with rather
simple predicates and aggregations. Where other constellations are
required, e.g., one-to-many mappings of related properties, a more
flexible representation of composite axes is needed.
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The validation scenarios showcase different relations between com-
ponents that can be explored using COMPO*SED. Two of three appli-
cations have only been illustrated through a usage scenario rather than
being verified with a case study. Still, all three validation scenarios
indicate that our technique adapts to different types of data and tasks,
providing an effective means for co-dependent multi-attribute choices.

7.6 conclusion

This chapter investigated the demands that are posed on a visual-
ization technique to effectively move from supporting single multi-
attribute choices to supporting two or more choices that are co-
dependent. Co-dependent choices introduce unprecedented challenges.
The essential challenges are 1) the huge combinatorial solution space,
2) side-effects that prevent decisions from going well together, and 3)
emergent properties that the individual choices do not possess when
made separately. Visualizations need to provide an exploration of op-
tions associated with the same choice but also reveal the performance
of option combinations across choices.

This chapter presented COMPO*SED, a novel parallel coordinates
variant for the visualization of distinct but related data sets to help
humans make decisions where choices affect each other. Each data
set contains the options belonging to the same choice. Side-effects in
choosing the most preferred combination of options require trade-offs
beyond one single choice. Parallel coordinates plots depicting each
data set are juxtaposed. A vertical stacking of the plots has turned out
to be the most suitable layout for communicating dependencies be-
tween the choices. Where attributes of different choices share a similar
semantic meaning, the associated axes can be merged. This effectively
visualizes the side-effects between intermediate decisions as the bot-
tleneck of co-dependent choices. Three cascading interaction patterns
enable analysts to explore option combinations under consideration
of individual option properties and combined system properties. In
particular, temporarily locking a subset of options is needed to inter-
actively refine the selection in a juxtaposed plot. Qualitative feedback
from three real-world scenarios and an observed expert conversation
underlines the need for co-dependent choice support and suggests the
effectiveness of our visualization technique for this purpose.

An obvious limitation of the composite layout is that it does not
effortlessly scale to an arbitrary number of choices involved. While the
vertical layout is open to stacking more than two parallel coordinates
plots, future layout and interaction considerations primarily need to
address the relations between non-adjacent plots. While the qualitative
feedback was positive, the trade-off between visual complexity and
usefulness should be investigated in more detail, in particular when
targeting more than two co-dependent choices.
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Figure 8.1: RQ1 Adoption Rate: (a) 60% of the study participants tried out
PAVED on their own initiative. (b) If all potential target users are
taken as a reference, the rate of known adopters is 40%.

8
L O N G - T E R M E VA L UAT I O N O F D E C I S I O N S U P P O RT

In Chapter 6, we described the development of PAVED, an interac-
tive parallel coordinates visualization to support choice-making in

motor design. At the end of our design study [54], PAVED’s short-
term usefulness was positively evaluated in a field study. The domain
experts then decided to integrate PAVED into their daily motor design
workflows. More precisely, PAVED was made accessible from the in-
terface of their in-house tool to explore the results of an optimization
project. This can be considered a first success.

However, the decision was made during a period of intense collabo-
ration and Brehmer et al. observed that tool use typically decreases
after such a period [37]. Consequently, our research question was:
after four years, is PAVED still being used in the experts’ daily work?
A permanent adoption in the sense of repeated, self-initiated use for
the engineers’ daily activities would provide evidence that PAVED
in fact addresses the true needs of the target users. In the domain of
motor design, studying adoption might be particularly meaningful,
because motor designers are free to choose any tool they consider
useful in a project. Despite the importance and meaningfulness of
long-term adoption, Section 3.1.3 showed that few visualization (de-
sign study) papers follow up and report on the long-term usage of
their proposed tools. In fact, no publication reported to have repeated
the same questionnaire after a certain period of time.

For our design study, we close this gap by revisiting the usefulness
of our tool in the targeted application domain four years after the
initial summative evaluation. The results provide a comprehensive
picture of our tool’s adoption readiness level. They revealed a small
number of satisfied power-users, who regularly benefit from PAVED

163
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in their daily work and "would not want to miss it" (A2). These users
also reconfirmed the high usability of PAVED. Only one target user
purposefully abandoned PAVED due to an integration issue. The
responses of 10 participants in total suggest a general adoption rate of
60% in the four years, where domain experts independently tried out
PAVED for their day-to-day tasks in motor design (Figure 8.1).

What the reader can expect from this chapter:

• The first long-term study of decision support that investigates
the self-initiated use of PAVED after four years (Sec. 8.1 and 8.2).

• An analysis and discussion of the data showing that the experts
still routinely use the tool for its lossless overview of all options
and reduced interaction mechanisms (Sec. 8.3 and 8.4).

8.1 aim of the study

Our objective is to evaluate the day-to-day usage of PAVED and derive
insights about its long-term benefits for the engineers’ tasks. For this
purpose, we set up a post-deployment study using an online ques-
tionnaire. Again, we collected data for a qualitative analysis, which is
augmented with a quantitative usability scale where applicable. Con-
trary to the previous short-term evaluation, however, the researcher
did not engage in an observation or interview.

The goal is to validate the domain usefulness of PAVED with a
particular focus on adoption and routine use. Of the adopters, we
wanted to know for which tasks they used PAVED, what functionality
was (not) useful, what challenges they faced, and how well the tool
is integrated with their existing workflows. We also aimed at a quan-
titative assessment of the long-term usability. Of those who had not
adopted PAVED, we wanted to learn about the reasons. If their tasks
did not require to use PAVED, the failed adoption was not about the
tool itself. But if they actively decided against its use, we wanted to
know why.

Our research questions can be summarized as follows:

RQ1 Adoption Rate – What portion of target users did adopt PAVED
for regular use as part of their daily work? Who are they?

RQ2 Usage Context – What are the circumstances, under which
PAVED is still used in the application domain? Did they change?

RQ3 Usability – How does the perceived usability compare to that
four years ago?

RQ4 Reasons for Refusal – Why did some target users not adopt
PAVED?
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8.2 methodology

In the context of our collaboration, the target users of PAVED are
mechatronic engineers who are involved in the design of electric
motors using their in-house optimization tool SyMSpace [248]. From
our primary domain expert, we received a list of 15 engineers to whom
this applies. Some of them have already participated in the evaluation
four years ago (Section 6.4). Among this group, we are interested in
the adoption rate following our design study and in the circumstances,
under which PAVED is (not) used.

For this purpose, we collected the engineers’ experiences with
PAVED based on their voluntary, self-initiated use since the deploy-
ment four years ago. With the approval of our primary domain expert
but without any further announcement, we invited the target users
via e-mail. The invitation briefly described the research objective and
provided a non-personalized link to the online questionnaire, which
we hosted on a local installation of SoSci Survey at TU Darmstadt. The
questionnaire was open over a time period of two weeks. Sending out
a friendly reminder after one week and again on the last day of the
survey period was quite effective. By inviting all potential target users
regardless of their actual usage behavior, we avoided survivorship bias
and retained the opportunity to derive insights also from supposedly
failed adoption cases.

The aim of our study was purely academic and did not involve any
expected consequences for the target users that could be framed as
an incentive to participate. To minimize the refusal rate, it was thus
important to develop a practical and time-effective yet meaningful
questionnaire. We aimed at a time commitment of 10 to 15 minutes
and closed-ended questions wherever appropriate. We compiled the
questionnaire by drawing inspiration from sample questions provided
by other visualization researchers to assess the adoption of a visual-
ization. Lam et al. propose sample questions addressing two different
perspectives: 1) focusing on the intended work environment by study-
ing the workflows and practices with a visualization and 2) focusing
on the specific visualization by studying users’ personal (long-term)
experience with it [138]. In assessing the adoption of their tool Jigsaw,
Kang and Stasko focus on usage purpose, comparison to traditional
methods, (not) useful and missing features, and barriers [121]. Their
sample questions largely overlap with those provided by Lam and
colleagues. Brehmer et al. conclude their design study of Overview
with an assessment of who adopted their tool, how it had been used,
whether it is still in use, and what problems users reported [37].

On this collection of sample questions, we performed a thematic
analysis to compile a set of important aspects to cover in our ques-
tionnaire. In an inductive coding manner, we labeled the topics in the
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sample questions and grouped recurring codes into five themes that
relate to our research questions:

• Demography – What responsibilities (non-)adopters have and
for how long they have been employed in their job role (RQ1)

• Usage Behavior – For what daily activities and data PAVED has
been used, whether it is still in use, and how important and
recommendable it is for the daily work (RQ2)

• Features – What functionalities did (not) work well or were
missing, what challenges were encountered, and how PAVED
compares to existing methods (RQ2)

• Integration – How well PAVED blended into the domain ex-
perts’ existing workflows in terms of access, data handover, and
functionality coordination (RQ2)

• Hindering Barriers – What limitations hindered the adoption of
PAVED (RQ4)

To assess how the perceived usability has evolved in the past four years
(RQ3), we additionally included System Usability as a theme. We
replicated the use of the System Usability Scale (SUS) from our design
study, where ten statements are rated on a 5-point Likert scale [232].
For the five remaining themes, we selected a handful of representative
questions each.

We started the questionnaire by asking the participants whether
they were aware of the possibility to use PAVED before taking part
in the questionnaire and, if yes, how regularly they used PAVED.
Only those who reported to have used PAVED at least rarely were
asked in detail about their experience by working through the above
themes. Figure 8.2 depicts how participants are directed along different
paths in the questionnaire depending on their answers. We closed the
questionnaire by asking the participants whether there was anything
else they would like to tell us about the role of PAVED for their daily
work. In total, we ended up with 31 questions, of which 21 were closed-
ended (yes/no and rating scales). The ten open-ended questions were
text inputs, either as multi-line input fields or as free mentions where
each answer is stored individually. Four open-ended questions were
optional. Assuming an average of 25 seconds completion time per
question [143], this matches our initial ambition to require a maximum
of 10 to 15 minutes time commitment.

The wording and obligation of questions as well as the questionnaire
navigation have been validated by a small-scale preliminary study, for
which five research fellows were recruited. The collected comments
addressed the clarification of intentions and the scope of questions as
well as layout issues like the placement of consent and contact details
or the labeling of rating scales. Subject to a detailed discussion have
been the questions whether participants should be informed that a
particular answer will finish the questionnaire and whether questions
should include examples of what kind of answers is expected.
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Figure 8.2: Flow chart of the logic that directs participants along different
routes within the questionnaire. Four adopters traversed the out-
ermost loop covering details of the usage behavior as well as
perception of features, integration aspects, and system usability.
Three participants were guided via a shorter route because they
reported to have not used PAVED. Another three participants
dropped out in the middle of the questionnaire ⃝×.

8.3 results

Out of the 15 engineers in our target group, 10 responded to our
invitation to participate in the study. This is above the average online
survey response rate of 44.1% [299]. Figure 8.2 depicts the flow of
respondents through the different branches of the questionnaire de-
pending on their answers. Their completion times varied accordingly.
They ranged from 30 seconds to five minutes for participants who
were guided via the short route, while participants who answered
the detailed theme blocks spent 10:30 minutes over 10:50 and 22:30 to
51:30 minutes. In the following, we analyze the collected data with
respect to our four research questions.
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RQ1 Adoption Rate

We define adoption as "Did a [user] freely choose the tool for their own
investigation, rather than trying out the tool in response to direct solicitation
by the researchers?" [37]. According to this definition, adoption occurred
in six of the ten response cases that we report here (Figure 8.1a). These
six participants reported to have used PAVED rarely to often but not
daily in the last four years. The remaining four participants reported
to have never used PAVED. The reasons for this will be presented in
the respective paragraph.

Of the six adopters, three are still using PAVED for their work today.
Two of them left the questionnaire immediately after they stated how
often they used PAVED such that we do not know about their on-going
use. Finally, one of them reported to not currently use the tool as part
of the day-to-day work. The reason for this might be found in the
participant’s job responsibilities as a manager. In this position, the role
of PAVED is to demonstrate the high-level potential of optimization
software in technical customer discussions rather than being used for
the actual motor design.

Five, or one third, of the invited target users did not participate in
the study, such that we cannot make any reliable statements about
their adoption of PAVED (Figure 8.1b). From their auto-replies, we
learned that two of these five invitees were on parental leave at the
time of the study. We know that one of them has in fact used PAVED
one and a half years after the deployment based on questions and
feedback we received via e-mail.

RQ2 Usage Context

Those four adopters of PAVED who did not drop out of the ques-
tionnaire answered the questions that detail the circumstances, under
which PAVED is still used in the application domain: usage behavior,
features, and integration. Of the four participants, three reported to
have used PAVED often in their daily work, while the remaining par-
ticipant used it rarely. We characterize the current usage context of
PAVED based on the participants’ ratings of the closed-ended ques-
tions (Table 8.1) as well as a coding and sorting of their responses
to the open-ended questions. In the following, we will describe our
insights with respect to each of the themes.

In line with the task it was designed for (Section 6.1.3), PAVED was
mainly used for exploring motor designs and choosing an optimal
design (A1, A2, A3). An integral part of this was to analyze the rela-
tions between the different properties (A2) and to communicate what
performance is achievable under which conditions to the customer
(A3). Revisiting decisions with customers was already identified as a
hot topic in the first evaluation (Section 6.4.2). Rather than using it for
choice-making in an actual motor design project, one participant used
PAVED with a demo data set in customer meetings to showcase the
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Usage Behavior Features Integration
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A1 • • • • ◦ • • • • • • ◦ • • • • ◦ • • • • ◦ • • • • ◦ • • ◦ ◦ ◦

A2 • • • • • • • • • • • • • • • ◦ ◦ • • • • ◦ • • • • ◦ • • • • •

A3 • • • • • • • • • • ◦ ◦ • • • • • • • • • ◦ • • • • • • • • • •

A4 • • • ◦ ◦ ◦ • • • • • ◦ • • • • ◦ • • • • • • • • • • • • • • ◦

Table 8.1: RQ2 Usage Context: ratings of the closed-ended questions tar-
geting the usage context grouped by themes. Together with the
qualitative feedback, the responses indicate that PAVED addresses
the true needs of the target users.

general potential of visualization and optimization for the design of
electric motors (A4). The other three participants, who still use PAVED
today, expressed that the tool is "very important" for their daily work
(Table 8.1, Usage Behavior, average: 4.25/5, range: 3-5). Unfortunately,
the participants did not understand what we meant when asking for
the characteristics and semantics of the explored data sets, such that
we cannot draw conclusions about the diversity regarding the num-
ber of attributes and alternatives or the subject to be decided upon.
All four participants, however, would recommend the tool to a new
colleague in a similar job role (Table 8.1, Usage Behavior). This aligns
with the high usability we observed, where tools with a score above
80.3 are more likely to be recommended [232].

PAVED’s primary view, the parallel coordinates visualization, was
mentioned as most useful (A4), especially for exploring the dependen-
cies and potential conflicts between attributes (A2). One participant
also appreciated the list of options with their raw attribute values
shown in the table view (A2) and thereby, once again, confirmed the
relevance of tabular visualizations for decision-making (Section 6.5.2).
The participants proposed to extend the parallel coordinates visual-
ization to view additional result sets (A3), for example to compare
multiple Pareto fronts (A1). Being able to show and hide axes flexibly
was perceived as particularly helpful (A2). This feedback was sup-
plemented with the suggestion to introduce a semantic grouping of
available attributes to facilitate multi-selection (A2). Also, the tool was
experienced to run "quite slow" when many attributes are shown (A1).
In line with our view that interaction is essential for an effective use
of parallel coordinates (Section 6.3.3), the participants also highlighted
the dynamic filtering as particularly useful (A2, A4). Contrary to the
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first evaluation (Section 6.4.2), our proposed preference brushes for
optimization criteria do not seem to have provoked comprehensibility
issues this time. Instead, one participant found the restriction of design
parameters "not very intuitive" (A1). As this slightly conflicts with our
assumption (and learning from the first evaluation) that the target
users were familiar with standard range brushes, this issue would
be interesting to further investigate. Overall, the participants rated
PAVED as "somewhat more" helpful for their work than traditional
approaches (Table 8.1, Features, average: 4/5, range: 3-5).

Given the participants’ ratings (Table 8.1, Integration), integration
issues between PAVED and the engineers’ in-house tool SyMSpace
are not likely a potential reason for failed adoption. The responses
to the four integration aspects indicate that PAVED is used in a well-
functioning symbiosis with SyMSpace. The participants found the
PAVED interface "easy" to open from within a SyMSpace workflow
(average: 4/5, range: 3-5) and were "very satisfied" with the handover
of data and selections between both tools (average: 4.25/5, range: 4-5).
They also agreed that PAVED and SyMSpace are "complementing"
each other in terms of functionalities (average: 4.5/5, range: 4-5). The
strongest disagreement among participants occurred on how well
PAVED blends into the SyMSpace analysis workflows (average: 4/5,
range: 2-5), where one participant said "poorly" (A1) and two said
"very well" (A2, A3).

RQ3 Usability
The same four adopters filled out the quantitative System Usability

Scale, which we used to compare the perceived usability of PAVED
to the previous assessment from our design study. While we hoped
to confirm the previously high usability, we hypothesized that the
self-initiated usage might reveal usability issues that did not occur
in the observed walk-through sessions four years ago. Although the
scores of individual SUS dimensions are not meaningful on their own
[39], we were also interested whether the responses to the individual
statements differ from those we received four years ago.

The adopters’ ratings suggest that PAVED still provides an excellent
usability, according to the adjective equivalent of the achieved SUS
score [18]. Based on four participants, it achieved a score of 86.9 out of
100, which is highly above the average score of 68 [232]. We present the
individual scores broken down by question in Table 8.2. We noticed
that PAVED scored highest on consistency (Q6), where all participants
agreed on the strongest possible approval. The dimension ease of
use presents a particularly interesting case. While it also received the
highest possible score for the negatively formulated statement (Q8,
i.e., "I found PAVED very cumbersome to use."), its positively formulated
complement (Q3, i.e., "I thought PAVED was easy to use.") scored lower.
Four years ago, the average ratings of both statements differed only
marginally (9.7 versus 10 out of 10). In the present case, the average
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total

A1 10 7.5 7.5 7.5 7.5 10 7.5 10 7.5 10 85

A2 7.5 7.5 7.5 7.5 7.5 10 7.5 10 7.5 7.5 80

A3 10 10 10 10 10 10 10 10 10 10 100

A4 7.5 10 5 7.5 7.5 10 10 10 7.5 7.5 82.5

Avg 2023 8.8 8.8 7.5 8.1 8.1 10 8.8 10 8.1 8.8 86.9

Avg 2019 7.8 9.4 9.7 8.8 8.1 8.1 9.4 10 8.4 9.7 89.4

Table 8.2: RQ3 Usability: results of the long-term System Usability Scale [232].
The tool achieved a total score of 86.9 out of 100 (n = 4) compared
to 89.4 (n = 8) four years ago (Section 6.4.2). Back then, interest
in frequent use (Q1) received the lowest score, while ease of use
(Q8) was rated particularly high. Four years later, consistency (Q6)
scored highest, while the ratings for ease of use diverged (Q3, Q8).

values are strongly influenced by participant A4, who took a neutral
position for the positive formulation but fully rejected the negative
formulation. Another possible explanation for a general discrepancy
in the ease of use dimension is that strongly disagreeing with a tool’s
suggested cumbersome nature might generally be easier than strongly
agreeing to its suggested easiness to use.

With an overall score of 86.9 out of 100 (n = 4), the self-initiated and
undirected use of PAVED during the adoption phase scored similarly
to the requested and prescribed use directly after the tool’s deployment
four years ago, which received an overall score of 89.4 (n = 8). This
indicates that the perceived usability of PAVED does not depend
on the setting, in which it was obtained, i.e., a test-then-measure
scenario with prior completion of tasks (after deployment) versus a
retrospective evaluation without preceding tasks (adoption phase) [86].
Given the generally high level of scores received (i.e., within the range
of 7.5 to 10 out of 10 for both assessments), the differences pointed
out in the following comparison with the previous SUS assessment
remain comparatively small. The interest in frequent use (Q1) initially
received the lowest ratings with an agreement of 7.8 out of 10. This
initial interest could be confirmed by a rate of 40% of the respondents
who reported to have used PAVED sometimes or often. The interest
in frequent use furthermore increased to a strong agreement score of
8.8 in the second evaluation. This indicates a generally positive trend
among those who adopted PAVED. The dimensions that have received
slightly decreased ratings compared to the first evaluation include tool
complexity (Q2) and learnability, both for oneself (Q4 and Q10) and
for others (Q7) [144]. In contrast, the consistency rating (Q6) raised
from 8.1 in the first evaluation to the highest possible score of 10 in
the present case. This might be attributed to our implementations of
some suggestions that we received in the first evaluation.
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RQ4 Reasons for Refusal

Out of the ten study participants, four had never used PAVED in the
last four years. Two of them reported that, prior to taking part in the
study, they had not known of the existence of PAVED to explore the
optimization results of their in-house tool SyMSpace. One of them did
not use the in-house tool for motor design where PAVED is integrated,
which is an obvious reason to have never been in contact with PAVED.
Technically, as a control design developer, this participant does not
belong to our group of target users. The other unaware participant
dropped out of the questionnaire immediately after saying so, such
that we cannot know whether a similar reason applies here.

The remaining two participants reported that they were aware of
PAVED but did not use it. One of them stated to not have considered its
use at all. Only one out of four participants, a senior researcher with 18

years of experience, stated to have decided against using PAVED. The
barrier in this case was an integration issue. The participant reported
that it was unclear how to use PAVED within the user interface of
the in-house optimization tool, from which PAVED could be accessed.
To some extent, this contradicts our finding above, where integration
issues were not existent among adopters.

8.4 summary and discussion

In this section, we describe and discuss the results and logistics of
conducting a post-deployment evaluation as a follow-up to a design
study that was conducted four years ago.

We can report a final adoption rate of 60%, i.e., we know about six
out of ten target users, who tried out PAVED on their own initiative.
The reasons for an unsuccessful adoption of PAVED were three-fold.
They ranged from not being aware of the possibility to use it over
being aware but not having considered its use to actively deciding
against its use for missing clarity regarding how to use it within
the in-house software environment. Among those who regularly use
PAVED for motor design, it is perceived as a "very useful tool, especially
for presentations" (A3), which is well integrated with the surrounding
domain software. In line with our primary design requirement (Section
6.5.1), the adopters agreed that the parallel coordinates provide a "very
fast overview of an optimization" (A3) with dynamic filtering playing
an important role. They applied the tool in the way we envisioned it
to be used, suggesting that our domain characterization successfully
informed the visual design. Further research could investigate to what
extent our identified analysis tasks and decision process (Section 6.1.3)
also hold true in other application scenarios. The high overall usability
found in the initial assessment based on requested use (Section 6.4)
could be reconfirmed based on self-initiated use four years later. The
differences in the individual dimensions were not significant enough



8.4 summary and discussion 173

to suggest a severe need to take action in the short term, especially
not in view of the few participants.

The low number of participants stems from the limited set of specific
target users that we identified in advance, i.e., the motor designers at
Linz Center of Mechatronics. While this helped us mitigate a selection
bias that is inherent to many case studies [37], we could only analyze
the responses of ten participants due to a refusal rate of 33% in an
initially small group of 15 target users. Consequently, the absolute
number of known PAVED adopters at this point remains fairly low.

A limitation of our study is the choice of an indirect online sur-
vey over direct observational methods for data collection. Contrary
to previous works [37, 121], we sent out a questionnaire to collect
the target users’ experience with PAVED since the deployment. Our
motivation was to reduce the time effort for both researchers and
domain experts as we assumed the commitment to have decreased
four years after collaboration. Given the moderate number of fifteen
target users, observations and interviews would have been a feasible
methodological choice and might have resulted in richer feedback.
Another (additional) possibility for data collection would have been
to include a usage tracking with the deployment. Independent of the
actual research method, the comparability between the short-term and
long-term evaluations is limited. Although both are conducted on
choice tasks from the users’ day-to-day work, the initial evaluation re-
quested the tool use whereas the post-deployment evaluation involved
voluntary, self-initiated use.

Although designed for motor design, PAVED is generalizable to
choice tasks outside of the original target domain (Section 6.6). Fur-
ther work is, however, needed to study the adoption of PAVED in
a broader engineering context or even in other application domains
where decision-making is essential. This requires promotion within
the respective communities, such that potential users know of PAVED
as a tool for making cost-benefit trade-offs.

The preliminary study raised the issue whether questions should
include exemplary responses to ensure that participants understand
what kind of answers the question is aiming for. On the other hand,
participants might not describe their own (potentially different) ex-
perience but stick to the few given examples. For this reason, we
moved from "What data did you explore with PAVED (e.g., number of
individuals, number of objectives, number of design parameters, ...)?" to
"What are characteristics and semantics of the data sets you explored with
PAVED?" regarding the usage behavior. However, we received rather
uniform and high-level answers in the direction of "motor designs".
One participant even apologized for not being more precise due to a
lack of understanding where the question is heading. In retrospect,
we should have decided to include exemplary answers or to more
precisely outline expected details.
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One potential reason for failed adoption is a mismatch between a
participant’s needs and those that the tool addresses. While this might
be a result of misled task abstraction, it might also be a result of the
participant not belonging to the targeted user group. The responses
to our online survey were not rich enough to verify the correctness
of our task abstractions, such that we need to rely on our previous
confirmation (Section 6.4) in this respect. Instead, to obtain meaning-
ful insights and a reliable adoption rate, it is important to determine
whether a participant actually belongs to the identified group of target
users. When designing the survey, researchers should carefully think
about what exact information are needed to discriminate target users
from other participants – and have the questions query all of these
information. As we invited supposed target users (prefiltered by our
primary domain expert), the questionnaire only discriminated partic-
ipants based on their awareness and consideration of the possibility
to use PAVED (see Figure 8.2). However, we have missed to query
whether they were target users in the sense of SyMSpace users and
motor designers at all. We noticed that this was not the case for all par-
ticipants only from their self-reports. Because we could not ultimately
determine the target users, we computed the adoption rate based on
all valid responses, potentially resulting in an underestimation.

Similarly, statements about the regularity of tool usage need to be
put in relation to the regularity with which participants face a task
for which the tool was built. While rare tool usage might be a result
of misled task abstraction, it might also be a result of the participant
not facing a relevant task more often. We only verified this in the case
of reported non-usage. For all other cases, we assumed the frame of
reference to be daily confrontation with a relevant task. This might
have resulted in an underestimation of the usage regularity.

8.5 conclusion

Design studies that include an observation of their work’s adoption
and long-term usefulness in the target domain are rare. In this work,
we add to the small number of longitudinal investigations by extend-
ing our design study (Chapter 6) on Pareto front visualization with a
post-deployment study. Four years after the initial summative evalua-
tion, we conducted an online survey with ten engineers to follow up
on the role of PAVED for choice tasks in engineering design. We asked
the participants about their usage behavior with PAVED, how they
rate its usability, and for what reasons they possibly abandoned it.
The aim of our study was to validate the long-term domain usefulness
of PAVED against the background of its adoption and routine use.

The insights about how PAVED is used in practice are based on
the valuable feedback of four participants who routinely used it to
make or demonstrate choices about motor designs. Their qualitative
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responses show that, in their day-to-day practice, the participants
appreciate PAVED for nothing less than it was designed for: a compact
overview of all available options and attributes with reduced yet
effective interaction mechanisms that help learn what performance
is achievable under which conditions. Although our study focused
on choices in engineering design, these findings can also inform the
design of visualization tools targeting different decision tasks. For
example, they add evidence to the successful application of parallel
coordinates for the visualization of design options in various domains.
They also support voices calling for thoroughly designed simple visual
encodings rather than making design choices for novelty’s sake.

Identifying factors that influence whether and how a tool is adopted
in the intended work environment could help visualization researchers
adjust their designs and collaborations accordingly. From our experi-
ence, we hypothesize that there is more to designing for permanent
adoption than addressing the true needs of target users. Collaboration
factors might include involving gatekeepers in the collaboration, dis-
cussing integration possibilities from early on, or raising awareness
for the tool’s existence through promotion activities. Understanding
how domain experts earn praise for their work and aiming to support
them in being successful might be another strategy towards adoption.
In the case of our study, one aspect of this was that PAVED facilitated
the communication with customers. Despite their benefits, interacting
with visualizations requires time and cognitive effort. For a visualiza-
tion to find its way into routine use, these costs should be minimized.
For decision tasks, this can be achieved by considering proven de-
sign rationales like an efficient overview through lossless mapping or
simple yet effective interaction mechanisms (Section 6.3.1).

A growing number of design studies propose visualization tools to
support domain experts in their routine practice. Allowing some time
for target users to adjust to a visualization support before assessing
the usefulness and value of a tool in real-world working environ-
ments is advisable in this regard. It helps carve out the true needs
of users, which might even require multiple iterations of design and
deployment [37]. We thus argue that studying the self-initiated use of
a proposed tool should be considered as a source of information in
visualization design studies whenever applicable.
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Figure 9.1: Research challenges addressed in this thesis (left). The answers to
the challenges CCHA, CVIS, and CEVL are provided in the respec-
tive chapters (right). The overarching challenges CSUB and CHCD
generally influenced the concepts and techniques presented.

9
C O N C L U S I O N

This chapter summarizes the findings, limitations, and contributions
of this dissertation.

9.1 summary of findings

Part II provided foundations from human science, real-world applica-
tions, and information visualization.

Chapter 2 (Multi-Attribute Choice) reviewed the discourse on de-
cision-making in human science as well as engineering design as an
exemplary real-world application. We found that human scientists
agree on the basic ingredients of a decision task. The view on how
people make decisions, however, has shifted: from normative decision
theory, which attributes ideal rational-economic behavior to decision-
makers, to descriptive decision theory, which attributes subjective and
potentially irrational behavior to decision-makers. We classify multi-
attribute choice as a constructive problem, where decision-makers
make judgments on the fly rather than drawing from existing well-
defined preferences. While both user groups engage in data explo-
ration, decision-makers differ from analysts in that they collect evi-
dence for their decision rather than highlight (any) interesting trends
and patterns. Finally, we realized that engineering design as an appli-
cation domain shares a lot with constructive decision models. With
interacting components in systems, the domain even introduces a

179



180 conclusion

new type of decision problem. We also found a significant number of
interactive visualizations for expert decision support to originate from
the field of engineering design.

Chapter 3 (State of the Art) carved out the research gaps associ-
ated with visually assisting multi-attribute choice by contrasting the
identified research challenges with existing works in information vi-
sualization. Our review of design study methodologies revealed a
lack of guidance on how to systematically elicit expert knowledge
and strategies involved with decision-making and how to validate the
(long-term) usefulness of a visualization tool in real-world decision
settings. We found multivariate visualizations without dedication to
decision support to be effective for basic analytic activities but to fall
short on trade-off analyses needed for decision-making. Visualizations
meant for general-purpose decision support address decision-specific
requirements but might not meet expert decision-makers’ needs for op-
erational and visual flexibility. Visualization design studies on expert
decisions typically lack a dedicated consideration of multi-attribute
choice tasks. Some rely on disadvantageous dimension reduction or
weighting approaches, while others do not depict complete alterna-
tives or find a desirable region rather than a single option. Most do not
support advanced decision-specific activities like incrementally con-
structing preferences and reconciling conflicting information to make
a final choice. No design study targets decisions where choices affect
each other. Finally, interaction mechanisms provide effective support
of visualization-based decisions but could benefit from integrating
specific knowledge about the decision problem.

Part III built upon the theoretical and empirical foundations sum-
marized in Part II to provide a concept for visual analysis for multi-
attribute choice and demonstrate its application to different visualiza-
tion challenges raised by choice problems (Figure 9.1).

Chapter 4 (Concept) presented the research goals, targeted decision
problem, and research design of this thesis by considering previous
findings from data science, human science, and information visualiza-
tion. Properties of multi-attribute choice regarding data, users, and
tasks were structured in a characterization scheme to untangle the
diversity of finding the best among a finite set of multi-attribute op-
tions in personal and professional contexts. On this basis, the targeted
decision problem for this thesis has been defined. Studying such prob-
lems in real-world settings calls for a qualitative research approach. It
connects the visualization researcher’s design process to the decision-
maker’s constructive decision process. As orthogonal dimensions,
both processes span our conceptual space, which also characterizes
the range of contributions to visual analysis for multi-attribute choice.

Chapter 5 (Critical Decision Method) addressed the lack of method-
ological prescriptions for eliciting domain knowledge in real-world
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situations (as identified in Section 3.1.2) by investigating an interview
technique from cognitive science. The five interview steps of the Crit-
ical Decision Method provide a systematic way of learning about the
conditions framing multi-attribute choice performance. This opens
up a novel perspective on characterizing multi-attribute choices by
favoring decision points over tasks. The focus on real-world incidents
aligns well with the required realism in understanding work prac-
tices. Still subject to validation, the technique also makes it easier for
decision-makers to reflect on and narrate their cognitive processes.

Chapter 6 (PAVED) addressed the lack of visualization solutions
for real-world multi-attribute choices (as identified in Section 3.2.3)
by presenting a visualization design study in the field of engineering
design. It confirmed previous findings that parallel coordinates are
advantageous when introduced in a new application area. A careful
domain characterization resulted in a decision process model fed by
multiple visualization task taxonomies. The observed decision pro-
cess followed an elimination-by-aspects strategy. We concluded that
the visual design should prefer simple over flexible interaction and
a lossless projection over dimension reduction. These rationales in-
formed the development of PAVED, an interactive parallel coordinates
visualization that supports multi-attribute choices with hundreds of
options and tens of attributes. For simplified interaction where the
optimization direction is known, we proposed preference brushes,
which are tied to the high-quality end of an axis. As confirmed by a
qualitative field study, the visualization helped engineers learn what
level of performance is achievable under different conditions. Reflec-
tions on the design process revealed that the domain experts valued
overview and transparency more than guidance and that visualization
researchers should take the experts’ suggestions seriously, even if they
feel that their visualization expertise is underrated. Although designed
for professional decision-makers, we assume the visualization to also
work for casual decision-makers, e.g., consumers, due to its intended
simplicity. Finally, the design study revealed that visualization support
is needed for making decisions where choices affect each other.

Chapter 7 (COMPO*SED) addressed the lack of visualization sup-
port for co-dependent choices (as identified in Chapter 6) by introduc-
ing a novel visualization technique. Conventional parallel coordinates
cannot serve the dual role of attributes that represent individual
subject properties and contribute to interoperability or overall perfor-
mance at the same time. To address this challenge, the chapter pre-
sented Composite Parallel Coordinates. They help decision-makers work
through a series of co-dependent multi-attribute choices to choose
the combination of variants that optimizes the overall performance.
Variants of single components are depicted in juxtaposed parallel
coordinates plots. A vertical layout has shown to be superior to hori-
zontal or circular layout. Where design parameters or criteria refer to
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multiple components, the associated axes can be superimposed. The
option selectors are extended by dedicated interaction patterns, such
as locks, to allow for simultaneous exploration of unique component
properties and emergent system properties. Two usage scenarios and
one case study illustrated how COMPO*SED can be used to make
co-dependent choices. Unlike common practice, we performed the
case study with a pair of experts. Watching the experts learn not only
from the data set but also from each other provided insights that we
would not have gained otherwise.

Chapter 8 (Long-Term Adoption) addressed the lack of works ob-
serving the long-term domain usefulness of a decision support tool in
terms of adoption and routine use. Four years after having completed
our design study on Pareto front visualization (Chapter 6), we wanted
to know whether the resulting tool is still used in the experts’ daily
workflows without our involvement. In our online survey, four out of
ten target users reported to have used PAVED routinely and on their
own initiative to make or demonstrate choices about motor designs.
The adopters’ qualitative feedback and usability ratings confirmed
our design rationales regarding a lossless overview of all options and
reduced yet effective interaction mechanisms. The main reasons for
unsuccessful adoption were missing awareness or need of the tool.
Only one participant actively refused the use due to an integration is-
sue. Despite the limited group of domain experts in our collaboration,
their repeated, self-initiated use adds evidence that our visualization
in fact addresses their true needs. It also supports our design approach
of preferring simple visual designs to address a domain problem over
complex encodings for novelty’s sake.

9.2 discussion of limitations

The purpose of this section is to briefly comment on the general
limitations of the work presented in this thesis that go beyond the
more particular limitations discussed in the respective chapters above.

Objectivity We do not view subjectivity as a general threat to va-
lidity. Still, our practice carries the risk of subjective bias in certain
situations. One example is the survey of background works in infor-
mation visualization (Chapter 3). Our literature review was informed
by recent visualization surveys on decision-making, readings, and
discussions with fellow researchers. The final selection of relevant
works was based on the subjective judgment of a single researcher (the
author). Without a clear understanding of decision tasks among visu-
alization researchers, there are many ways to synthesize the selected
works. We largely built upon structures applied in previous surveys.
While this favors objectivity and coherence across literature reviews,
we might have overlooked newly emerging topics. Another example
is the characterization scheme for multi-attribute choice (Chapter 4).
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Its main limitation is that it is not grounded in a systematic literature
review but evolved from our experience gained throughout the years.
As such, it might involve a subjective bias. Further examples from
literature and an independent thematic coding of the properties are
needed to validate the characterization scheme. In the remaining chap-
ters (Chapters 5 to 8), subjectivity has been addressed by reflecting on
the findings with respect to the context of their construction. Despite
these aspects, we agree that personal involvement of the researcher is
central and desired in design study methodology [243].

Interdisciplinarity Visualization research offers technologies that
can be applied to problems in a different (scientific) domain. In the
context of this thesis, visualization research intersects with the topic
of decision-making. Combining the specialized knowledge from both
subjects offers considerable potential to solve complex real-world
problems. Learning from a discipline that has devoted a long his-
tory to studying decision-making prevents visualization research from
re-inventing the wheel [67]. Still, the ability to assess the relevance
and implications of concepts from a foreign discipline requires vi-
sualization researchers to understand the way of thinking and the
terminology that are common in that discipline. Despite our effort to
identify and present findings on how humans make decisions in an
accurate manner, a cross-disciplinary picture of the collective evidence
in decision-making is out of the scope of this thesis. In choosing ap-
propriate decision-related concepts for our visualization research, the
significance of models and methods was sometimes difficult to judge
without a profound background in psychology or economics. Transfer-
ring concepts from decision theory to our visualization applications
generally carries the risk of loosing nuances of the original under-
standing. Still, we embrace our interdisciplinary research approach as
a valuable source of knowledge.

Generalizability Applied visualization research is receiving in-
creased attention. The strength of this thesis is its major limitation at
the same time: our findings have been generated using a qualitative
research approach on real users, data, and tasks in an application
domain. Lessons learned are only reliable in this specific context
and need to be treated as assumptions beyond that. In contrast to
quantitative research, where testing hypotheses in experiments pro-
duces inherently generalizable results, qualitative research is about
developing an in-depth understanding of a topic based on interviews,
observations, and literature reviews. Investigating how information
visualization can assist decision tasks on a case-by-case basis pro-
duces rich yet potentially isolated insights. Moving from individual
observations to a contribution that provides value to the visualization
community can be achieved in different ways [168, 236]. In general, ab-
straction, reflection, and a synthesis of results with existing knowledge
help obtain results that transfer beyond individual design studies.
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Novelty As is the case with many design studies, our technical
contributions mainly resulted from a meaningful combination of ex-
isting building blocks into solutions that are tailored to real-world
decision problems. We explained in our conceptual approach (Chapter
4) that, while we consider the novelty and innovative character of an
approach important, our focus is on leveraging existing visualization
and interaction techniques to offer effective solutions for given real-
world decisions. This involves careful problem abstractions including
typical data characteristics and tasks that also advance the general
understanding of decision-making as a sub-field of visualization. As
such, our works can significantly contribute to visualization research.
For example, they can adapt proven methods from other disciplines to
help visualization design practice as in the case of the Critical Decision
Method (Chapter 5). They might also solve a more general problem
underlying the domain-specific task as in the case of PAVED (Chapter
6). Finally, they might solve a problem that is relevant but has not
been addressed before as in the case of COMPO*SED (Chapter 7).

9.3 thesis conclusion

Decision-making is an ambiguous subfield of visualization. On the
one hand, researchers have named it a core goal of visualization
from the earliest days. On the other hand, despite their consensus on
its importance, decision-making is underspecified in the sense that
references in visualization theory and practice often remain at an
introductory or overview level. Although some researchers have been
working on an explicit tie to visualization research, there is a lack of
experience how visualization and decision-making activities interact
in real-world situations.

The research presented in this thesis provides answers regarding
how interactive visualizations can effectively assist experts in mak-
ing real-world choices among multi-attribute alternatives. Previous
works rarely dedicated field work to study this question. We found
application-oriented visualization research to generally lack an empha-
sis on decision processes. To approach this gap, our research design
provides for a joint consideration of the visualization researcher’s
design process and the decision-maker’s decision process. For this
purpose, we built upon a close collaboration with real decision-makers.

Previous definitions and characterizations of decision tasks for visu-
alization were not grounded in real-world settings (RQ1). As a result,
they were barely operationalizable. Every decision is as unique as the
person who makes it and a universal definition is out of our reach.
Still, this thesis provides precise characterizations and abstractions
of expert choices in different domains that draw a picture of the in-
formation needs of real decision-makers. Connecting our experience
in the wild to a review of models from decision theory, we have ex-
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tended the existing multi-attribute choice definition by classifying it
as a constructive problem, where the preferences of decision-makers
unfold throughout their decision process. Despite an understanding
of the task to be designed for, the lack of a clear, decision-focused ter-
minology made it difficult to precisely claim the value of visualization
for decision support. To make it easier for visualization researchers to
define their design target, we have distilled a compact vocabulary com-
prising pairs of data-user-task properties that can be used to describe
a targeted decision problem. Finally, we proposed a formalization of
co-dependent choices as a novel type of decision that had not been
defined before.

While visualization research has embraced the approach of char-
acterizing a domain problem to inform visual encoding decisions,
problem characterizations lacked a dedicated consideration of decision-
making activities (RQ2). In particular, methods to access the cognition,
domain knowledge, and experience of expert decision-makers were
rare. The domain characterization method proposed in this disser-
tation offers a decision-oriented approach by adopting an interview
technique originally developed to elicit expert knowledge in natural-
istic decision-making. Its procedure does not only provide concrete
steps to capture the knowledge and experience underlying real-world
decision-making. It also offers general prescriptive guidance that do-
main characterizations in design study methodology have lacked so far.
By investigating the conditions of the technique’s applicability in visu-
alization research, we further contribute to connecting the disciplines
of decision theory and information visualization.

Given the task of selecting the most preferred option among multi-
attribute alternatives, not many decision tools (RQ3) and their eval-
uations (RQ4) have found their way into real-world application. On
the basis of our rationales around visual analysis for multi-attribute
choice, we introduced two interactive parallel coordinates visualiza-
tions serving as decision support tools for real-world expert decisions.
They resulted from applying our concepts in two design study projects
that we conducted on increasingly complex choices in the field of en-
gineering design. While the use of parallel coordinates is not novel for
decision support, PAVED provides a simple yet effective means for
engineers to construct and apply preferences as they learn what level
of performance is achievable under which conditions. Its extension
COMPO*SED is the first tool to help decision-makers explore the side
effects of co-dependent decisions. Its design principles generally apply
to the visual analysis of increasingly important multi-model data, e.g.,
originating from simulating interacting phenomena. Both tools have
been evaluated with domain experts on their day-to-day professional
decision problems, providing useful evidence regarding the validity of
visualization idioms within and beyond particular decision contexts.
Besides their contributions to the body of visualizations that advance
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Table 9.1: By comparing the research challenges (Sec. 1.2) to prior works, we
identified research gaps (Sec. 3.3), from which we derived research
goals (Sec. 4.2) that informed our concept and contributions.

Challenges Research Gaps Goals Contributions

Subjective
judgment

Lack of consideration
of constructive prefer-
ences

Design for con-
structive pref-
erences

Overarching

Characteriza-
tion of deci-
sion-making
activities

Lack of systematic
elicitation of tacit
knowledge and deci-
sion strategies, lack
of explicit distinction
between decision and
analytic tasks

Characterize
multi-attribute
choice, learn
from other
disciplines
how to study
decision tasks

Characterization
scheme (Ch. 4),
knowledge elic-
itation method
(Ch. 5)

Visual design
and interac-
tion

Lack of visualization
designs tailored to
constructive prefer-
ences, lack of designs
for decision problems
where trade-offs af-
fect each other

Tailor visual-
ization designs
to constructive
preferences,
support co-
dependent
choices

Decision
tools PAVED
(Ch. 6) and
COMPO*SED
(Ch. 7)

Evaluation of
decision sup-
port

Lack of validation
on expert decisions
in real-world settings,
lack of observation of
long-term usefulness

Validate visual-
ization designs
in the wild

Short-term field
studies (Ch. 6

and 7), adoption
study (Ch. 8)

Collaboration
with decision-
makers

Lack of design stud-
ies on multi-attribute
choice

Apply user-
centered
design

Overarching

decision-making activities on large data sets, e.g., constructing prefer-
ences or reconciling conflicting information, the tools demonstrate the
general applicability of our concepts for multi-attribute choice.

Table 9.1 summarizes the presented contributions in response to our
research goals that emerged from the identified challenges and gaps.
By conducting the research presented in this thesis, we have learned

• what real-world decisions look like and how we can describe
them for the purpose of visualization design,

• how we can elicit the cognition, domain knowledge, and experi-
ence underlying these decisions,

• what is important when collaborating with domain experts and
designing visualization tools for decision support, and

• how to assess their usefulness under real-world conditions.



9.4 summary of benefit 187

9.4 summary of benefit

We anticipate that a wide range of readers who are involved with
decision-making or visualization will find this dissertation useful.
Researchers in decision-related disciplines might get a sense of how
their scientific concepts impact research in other fields. It might also
provide them with a new perspective on their own research, poten-
tially helping them break new ground in their field. Visualization
researchers addressing decision problems will find groundwork on
assisting real-world decisions with visualizations. Our lessons learned
provide guidance regarding how user-centered design can inform the
development of meaningful visualization tools, with a focus on but not
limited to decision problems. Visualization research might generally
benefit from increased awareness of decision tasks, potentially leading
to more rigorous decision support claims. Decision-makers themselves,
whether they are facing scientific, industrial, or personal decisions,
will find solutions to decision tasks they might know in this or similar
forms. They might also develop an idea of how application-oriented
visualization research can help solve their problems, effectively nar-
rowing the knowledge gap between visualization researchers and
target users. Finally, we anticipate that this thesis might also serve as
a general source of inspiration for other PhD candidates.
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O U T L O O K

Decision support is a traditional and at the same time emerging
topic in visualization. In this thesis, we conducted research on

concepts, methodologies, and techniques to assist expert decision-
makers with interactive visualizations. We believe that academic re-
search initiates as many questions as it answers. This chapter high-
lights opportunities for further practice that emerge from the presented
contributions. Future research directions regarding the individual
methods and techniques have been discussed in Chapters 5 to 8.

The characterization scheme for multi-attribute choice tasks that we
introduced in Section 4.3 provides a first starting point for exploring
future work directions. New opportunities and challenges arise from
addressing varied properties of the targeted choice task (Table 4.1).
For example, researchers could aim at supporting groups instead of
individual decision-makers, exploring progressively generated rather
than previously known alternatives, or dealing with decisions where
outcomes might be uncertain rather than certain. Besides targeting
variations of the choice task, further research could also provide
additional contributions throughout the range spanned by the design
study and decision process axes (Figure 4.6). Based on our learnings
from this thesis, we provide selected recommendations in this regard.

Adopt more models and methods from decision theory In this
thesis, we have connected to findings from decision theory in two ways.
First, we have learned from applying the Critical Decision Method
that favoring decision points over analysis tasks opens up a novel
perspective on decision-focused problem characterization (Chapter
5). Second, by classifying the decision strategy of our domain expert
based on the framework proposed by Payne et al. (see Section 2.1.4), we
realized the relevance of filtering for choices in engineering design and
chose our main design rationale accordingly (Chapter 6). We believe
that visualization research will benefit from investing further efforts
in investigating whether (and which) existing models and methods in
decision theory are indeed appropriate for serving the data analysis
and visualization needs present in our field [67]. One way to achieve
such appropriation is to collect further evidence by reflecting on the
application of carefully selected Cognitive Task Analysis methods [178]
to elicit domain knowledge for the purpose of informing visualization
designs for various data analysis settings. Another way is to further
investigate the role and potential of known decision strategies (Section
2.1.4) in visualization research. Visualization researchers could classify
their domain experts’ approaches according to these strategies as part

189
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of their problem characterization. This also facilitates future meta
studies that might investigate what decision strategies are supported
by current visualization tools for decision-making. Torsney-Weir et
al. proposed an exemplary meta study on 21 visual parameter space
analysis approaches [269]. Synthesizing the findings of these efforts
could ultimately contribute to the integration of decision tasks into
visualization theory, e.g., task taxonomies, to improve the information
base for rigorous visualization design decisions.

Engage in adaptive decision support This future work direction
partly relates to the above. Decision theory has provided evidence that
people switch among a variety of decision strategies in response to
varying task context and complexity [201, 203]. Adaptive visualizations
dynamically change the visual presentation of data in response to
varying characteristics or needs collected about the user [3]. This
information can be explicitly provided (by the user) or inferred from
the trace of user actions. We consider decision-makers switching their
strategy during a choice task as a symptom of changed information
needs. Profiling the decision-makers personality might additionally
allow for conclusions about how to interpret these symptoms. We
hypothesize that meeting the varying needs by adaptive visualization
holds the potential to improve the overall choice task performance.
These thoughts have several implications for visualization research.
First, problem characterization needs to consider decision-making as
an adaptive process rather than a linear (even if iterative) sequence
of low-level tasks. Again, findings from decision theory can help get
started with this. Second, visual designs need to carefully integrate
the adaptation needs carved out in the problem characterization with
(explicit or implicit) user feedback during analysis to adapt visual
representations and interactions accordingly. Adaptation targets could
be, for example, visual encodings, navigation strategies, levels of detail,
or color mappings. Provenance approaches can help keep track of user
actions and gained insights on which a decision is based [300]. Third,
evaluations need to ensure that unexpected results do not stem from
participants changing strategies differently from what researchers
expected based on the problem characterization.

Develop dual-use decision support Visualizations typically serve
one of three major goals: exploratory analysis, confirmatory analy-
sis, or presentation [235]. Like most visualization research related to
decision-making, our work investigated problems in the context of
an exploratory analysis. However, from our design study on PAVED
(Chapter 6), we learned about the importance of being able to transpar-
ently communicate how one arrived at a certain decision. This holds
especially true if decisions are made on behalf of others who, e.g.,
do not have the required expertise. Whether these parties approve
the decision or wish to refine it is likely associated with uncertainty.
Preparing the essential information to replay and revisit a decision pro-
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cess together with an affected stakeholder makes the visualization goal
turn from exploratory analysis into presentation. Depending on the in-
volvement of the stakeholder, a presentation might also carry a notion
of group decision-making. For a seamless transition, future research
might investigate visual representations and interactions as "dual-use"
techniques, in the sense of techniques that can be used in the different
contexts of exploratory analysis and presentation. Depending on the
prior knowledge of the stakeholder and the level of explanation by the
decision-maker, simplified representation and functionality is likely
needed for presentation. For example, simplification could mean to
reduce the number of depicted alternatives, specify certain presets
or filters that can otherwise be interactively modified, or freeze at a
certain level of detail where further in-depth comparison would other-
wise be possible. In this sense, dual-use visualizations could also be
considered a form of adaptive decision support, where visualizations
adapt to the changing needs of decision-makers and stakeholders as
the task changes from exploratory analysis to presentation.

Develop decision quality metrics for evaluation From the appli-
cation of qualitative evaluation methods in the context of our design
study perspective, we have collected rich and meaningful insights
into how experts approach decision-making and how they experience
the use of a visualization to assist their day-to-day choice tasks. Still,
accurately evaluating visualizations for their ability to support choice
tasks is generally difficult because these tasks typically have no clear
ground truth. Objective metrics for decision quality are rare. Dimara
et al. proposed an accuracy metric that captures the consistency be-
tween the choice made and self-reported preferences regarding the
importance and optimization direction of attributes [64]. However,
they found no clear difference in decision accuracy between three
studied visualization techniques (parallel coordinates, scatterplot ma-
trix, and tabular visualization). They hypothesized that the accuracy
metric might suffer from noise, which causes it to overlook subtle but
meaningful differences between the techniques. For example, partici-
pants might not have been able to perfectly express their preferences
by specifying attribute importance and optimization direction only.
It would therefore be valuable to investigate how the sensitivity of
decision accuracy metrics can be increased. The experiment could be
repeated with a preference elicitation method that is assumed to be
more accurate. In the context of human-centered ranking creation,
we studied the application of attribute scoring functions [233], which
offer a more fine-grained specification of preferences on attribute
values [234]. Compared to the original preference elicitation using
optimization direction, we expect findings of the repeated experiment
to hint at an increased ability of the decision accuracy metric to cap-
ture subtle differences between the visualization techniques. Such a
sensitive objective decision accuracy metric would greatly complement
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the qualitative feedback in a mixed methods approach to validating
visualizations for their ability to assist choices in the wild. Once we
know how to accurately measure decision quality, we could also study
its relation with the diversity of exploration activities, in which a
decision-maker engages during the decision process. People might
make more accurate and trustworthy decisions when they develop
a differentiated understanding by taking different perspectives, i.e.,
engaging in numerous and diverse exploration activities, rather than
quickly jumping to conclusions. A first step towards such studies has
been made by identifying behavioral variables for ranking tasks [21].

Synthesize findings from future design studies This final research
direction is a call to holistically reflect on collaborations with expert
decision-makers to improve visualization guidelines. We successfully
applied our complete design study approach to two increasingly
complex decision problems in the field of engineering design, each
involving a careful problem characterization and a (long-term) val-
idated visualization design. As indicated above, other users, data,
and decision tasks yield additional promising configurations for fu-
ture visualization support. Beyond engineering design, a variety of
other application fields can benefit from the solutions presented, like
consumer research, finance, or automotive supply. Other visualiza-
tion researchers can benefit from our work in applying the design
study methodology to develop useful visualizations that assist expert
decision-makers from such domains in choosing among large sets
of multi-attribute alternatives. Since decision tasks have not received
much dedicated attention in visualization theory and research, it will
be interesting to investigate the generalizability and adaptability of
our approach. Similar to the meta studies of general design studies
[243] or design studies on parameter space analysis [240], further
design studies on decision-making yield the potential to reflect on
and synthesize the experience and lessons learned across use cases to
move towards more systematic and rigorous designs and evaluations
of decision-focused visualizations.
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a.1 electric drive design

Table A.1: Situation assessment record (SAR) for electric drive design.

Situation Assessment 1 Plausibility check

Cues Invalid solutions, deviation from specifications

Experience Acceptable proportion of invalid/valid solutions

Goals Ensure valid solutions and achievable targets

Decision Point 1 If targets out of reach, adjust input parameters

Situation Assessment 2 Adjust input parameters (elaboration)

Cues Input parameter ranges of undesired solutions

Goals Generate more valid solutions in the next run

Decision Point 2 Refine input parameter setting

Situation Assessment 3 Convergence check (shift)

Cues Hypervolume stable over several generations

Goals Determine whether evolution has come to a halt

Decision Point 3 If optimization converged, proceed

Situation Assessment 4 Satisfaction of hard constraints (shift)

Cues Well-defined limits specified by customer

Knowledge Customers typically want good efficiency, i.e. low
losses, magnet mass and price correlate

Experience Expectable power loss under different conditions

Goals Meet non-negotiable customer requirements

Decision Point 4 Exclude individuals not meeting requirements

Situation Assessment 5 Further trade-offs and final choice (elaboration)

Cues Important criteria, criteria correlations, individu-
als becoming (de-)selected upon filtering

Basis Apply well-defined constraints followed by un-
derspecified constraints, observe effects of filters

Knowledge Operational characteristics suggest to restrict har-
monic distortion and cogging torque

Experience Underspecified criteria, desired trade-offs from
technical perspective, flexibility of specifications

Goals Optimize performance within customer specifica-
tions

Decision Point 5 Proceed with most preferred drive design

195
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a.2 thermal power plant operation

Table A.3: Situation assessment record (SAR) for power plant operation.

Situation Assessment 1 Plausibility check

Cues Deviation from on-site measurements

Goals Validate simulation model

Decision Point 1 If model is valid, proceed

Situation Assessment 2 Exploration of reference case (shift)

Cues Distributions of velocity, temperature, oxygen,
NOx, and CO across boiler, co-occurrence of high
oxygen and high temperature, peaks in CO con-
centration

Knowledge NOx forms at high oxygen and temperature, oxy-
gen distribution influences NOx distribution, CO
indicates where fuel does not burn correctly

Experience Most interesting indicators are velocity, tempera-
ture, and oxygen, simulation carries uncertainty

Goals Understand strengths and weaknesses and how
to modify operation mode to achieve targets

Decision Point 2 If optimization potential is understood, proceed

Situation Assessment 3 Optimization of reference case (elaboration)

Cues Temperature (oxygen, NOx) distributions for ref-
erence case and operation modes, total CO and
NOx emissions

Knowledge Hard constraints: NOx emissions and exit tem-
perature should remain the same

Experience Insights from SA 2, variation of local tempera-
tures can be tolerated as long as exit temperature
is met, trade slightly increased NOx emissions
for significant decrease of unburned fuel

Goals Determine most preferred operation mode: re-
duce unburned fuel, maintain transferred heat,
NOx emissions, and exit temperature

Decision Point 3 Collect preferred operation modes

Situation Assessment 4 Final decision and confirmation (elaboration)

Cues Local optimum, robust to small changes of opera-
tional parameters, approaching deadline, budget

Goals Maintain reasonable cost-benefit ratio, provide
recommendations for on-site adjustments

Decision Point 4 Present two selected configurations to customer
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TA S K A B S T R A C T I O N F O R T H E D E S I G N O F PAV E D

We provide additional information on the task abstraction of the
design study on PAVED (Chapter 6). We detail the process of

identifying relevant visualization tasks and provide a comprehensive
list of possible analysis questions related to each task.

b.1 methodology

We considered two sources of information: 1) elicited domain-specific
decision tasks involved with electric drive design and 2) existing task
taxonomies that have been proposed in visualization literature.

We performed a literature review of 11 papers published between
1990 and 2013 (Table B.1) that provide different perspectives on visual-
ization tasks. From these works, we collected the proposed high-level
and low-level visualization tasks, initially without paying attention
to duplicates or their applicability to our topic. We then excluded
duplicates (including synonyms), resulting in a collection of 54 unique
visualization tasks. These were further filtered according to their rele-
vance for our domain characterization, resulting in a final collection
of 10 tasks. We mapped these tasks to the domain-specific decision
process by arranging them along two orthogonal axes: abstraction
level and stage in the decision process. The resulting task abstraction
is shown in Figure 6.3.

Table B.1: 11 taxonomies serving as a baseline for the task abstraction.

Year Authors Abbreviation Ref.

2013 Brehmer and Munzner Topology of Abstract Tasks [38]

2013 Schulz et al. Design Space of Tasks [235]

2009 Munzner Nested Model [185]

2006 Valiati et al. Taxonomy of Tasks [283]

2005 Card and Pirolli Sensemaking Process [210]

2005 Amar and Stasko Knowledge Precepts [7]

2005 Amar et al. Low-Level Components [8]

1999 Card et al. Knowledge Crystallization [42]

1998 Zhou and Feiner Visual Accomplishments [311]

1996 Shneiderman Task by Data Type Taxonomy [245]

1990 Wehrend and Lewis User Cognitive Tasks [292]

1990 Roth and Mattis Display Functions [227]

199



200 task abstraction for the design of paved

b.2 selected tasks and underlying analysis questions

T1 Inform

• Validation of the simulation
– Does the simulation model produce plausible results?

• Overview of the solution space
– How diverse are the solutions?
– Are there clusters of similar solutions?
– Are there outliers?

• Overview of the objective space
– What is the distribution of solutions within each objective

range?
– What is the nature of conflicts between objectives?

T2 Identify > T2.1 Search > T2.1.1 Browse

• Region of interest
– What are combinations of desired objective ranges (e.g., that

include a known successful solution)?
– What types of trade-offs between objective values are avail-

able?
– What is the ranking of solutions for each objective?
– Which topology provides the majority of Pareto-optimal

solutions?
– How do the objective values change when moving through

the solution space/region of interest?
• Navigation based on a focal solution

– What are the absolute values of a solution?
– Which alternative can be selected should a gain in a certain

objective be desired?
– What are options of gain and with what losses do they

come?
– How do other solutions differ from the focal solution?

• Navigation through the preferences space
– What is the effect of preference variations on the best choice

of the solution?
– For how long does a solution stay in the region of interest?
– For how long does a topology stay the most preferable?

T2 Identify > T2.1 Search > T2.1.2 Relate

• With respect to objectives
– How are good or bad values of objective X related to good

or bad values of the remaining objectives?
– How do changes in objective X affect the remaining objec-

tives?
– How much can I gain in objective X when accepting wors-

ening in objective Y?
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• With respect to solutions
– On what (combinations of) objectives is a solution superi-

or/dominated?
– What is the relation between two subsets of solutions?
– Where is the focal solution located within a subset of solu-

tions (e.g., with respect to each objective)?
– How are design parameters related to a subset of solutions

of interest?
• With respect to topologies

– What is the relation between two topologies?
– Which topologies perform well for which objectives?

T2 Identify > T2.1 Search > T2.1.3 Filter

• Objectives of interest
– Which objectives can be excluded to reduce complexity?
– Which pairs of objectives exhibit the most critical conflicts?

• Region of interest according to trade-offs
– Which solutions implement known or desired trade-offs?
– Which solutions are superior w.r.t. a global quality score?

• Region of interest according to preferences
– Which solutions lie within desired value ranges?
– Which solutions satisfy the joint preferences of different

stakeholders?
• Undesired regions of the solution space

– Which solutions are considered undesired (e.g., infeasible,
extremal values, or too expensive) and can be eliminated?

T2 Identify > T2.2 Compare

• Compare solutions based on their objective values
– What is the trade-off between two solutions?
– Which solution has better values on most objectives?
– Which improvements/deteriorations in individual objec-

tives cancel each other out?
– How are solutions different w.r.t. metrics like sensitivity?

• Compare similar solutions or different sets of solutions
– How do solutions that are similar w.r.t. a subset of objectives

perform in the remaining objectives?
– What is the performance difference between two topologies?
– How are similar solutions different in their sizes of the

dominated areas in the objective space?

T3 Confirm

• Quality
– Does the selected solution satisfy the desired constraints in

the most important objectives?
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– What are the solution’s values for objectives that were not
considered for the decision?

– How well does the selected solution perform compared to
other favorite solutions?

• Sensitivity
– How does the quality of a solution change as design param-

eters are slightly varied?
• Confidence

– What is the confidence in the selected solution?
– What additional analyses (e.g., simulations) should be per-

formed?
– What consequences (e.g., manufacturing costs, etc.) might

arise from choosing the selected solution?
– What will the physical instantiation of a solution look like?

T4 Verify + T5 Communicate

• Decision
– How did the decision evolve?
– On what insights is the decision based?
– What alternative solutions to the one provided were en-

countered during the search?
– Why is the suggested solution superior to the alternatives?

• Decision refinement
– What alternatives are reasonable w.r.t. refined preferences

of other stakeholders after having observed the decision
made by the decision-maker?

– What alternatives fulfill additional qualitative conditions
(e.g., required post-processing, the accessibility of a sur-
rounding environment, etc.)?

– How does a reduction in budget affect the achievable per-
formance?

• General recommendations
– Why should certain solutions be avoided?
– What is the decision-making scope given required hard

constraints and an available budget?
– Which topology can be used for which type of intended

use?
– Which budget should be made available at least to reach a

satisfying performance?
– What are utopian visions of what is possible?
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