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Zusammenfassung

All-Atom-Molekulardynamiksimulationen liefern detaillierte Einblicke in molekulare Strukturen und Verhal-
tensweisen. Das Simulieren großer Systeme oder langer Zeitskalen bleibt jedoch mit einer hohen Rechenin-
tensität behaftet. Vergröberte Modelle reduzieren die Komplexität, indem sie mehrere Atome zu einzelnen
Einheiten, sogenannten Beads, zusammenfassen und sich auf die wichtigsten Aspekte des Systems konzentri-
eren, während unnötige Freiheitsgrade entfernt werden. Dieser Ansatz ermöglicht es, größere Systeme über
längere Zeiten zu betrachten, beschleunigt jedoch auch die dynamischen Eigenschaften im Vergleich zu ihrem
atomistischen Referenzmodell. Diese Beschleunigung der Dynamik, beispielsweise gemessen als das Verhältnis
der Selbstdiffusionskoeffizienten beider Modelle, kann zwischen einer und drei Größenordnungen variieren
und macht daher den Einsatz vergröberter Modelle zur Bestimmung genauer dynamischer Eigenschaften
praktisch unmöglich.

Diese Dissertation präsentiert einen neuartigen Ansatz zur Vorhersage der beobachteten Beschleunigung
dynamischer Eigenschaften in vergröberten Modellen im Vergleich zu ihren atomistischen Gegenstücken,
indem die bei der Vergröberung verlorene geometrische Information quantifiziert wird. Mehrere Atome
verschmelzen in die kugelförmige Oberfläche eines Beads, wodurch die Oberfläche geglättet und Reibung
reduziert wird. Die verringerte Rauheit ermöglicht es den Molekülen, müheloser aneinander vorbeizugleiten
— und damit schneller. Der Schlüsselparameter der Methode ist die molekulare Rauheitsdifferenz (engl.
molecular roughness difference), eine Metrik, die aus einem numerischen Vergleich zwischen den molekularen
Oberflächen des atomistischen und des vergröberten Modells abgeleitet wird. Diese Metrik wird durch
vier Rauheitsvolumen ergänzt, die Bereiche beschreiben, in denen sich die Rauheit ändert und Bereiche, in
denen dies nicht der Fall ist. Der Anwendungsbereich der RoughMob Methode (Roughness=Rauheit und
Mobility=Beweglichkeit) wird systematisch ausgeweitet. Ursprünglich entwickelt mit einer kleinen Gruppe von
sieben einfachen Kohlenwasserstoffflüssigkeiten, die sechs bis acht Kohlenstoffatome pro Molekül enthalten
und jeweils durch ein einzelnes vergröbertes Bead repräsentiert werden, wird die Methode erweitert, um
Moleküle im Bereich von fünf bis 13 Kohlenstoffatomen einzuschließen. Diese breitere Palette umfasst auch
asphärischere atomistische Modelle und führt verschiedene Mapping-Schemata ein. Der verfeinerte Ansatz
wird anschließend auf binäre Mischungen bei verschiedenen Zusammensetzungen und Konzentrationen von
Molekülen innerhalb dieses erweiterten Größenbereichs angewendet und angepasst.

Die einfachen vergröberten Modelle mit einem Bead pro Molekül werden mithilfe der strukturbasierten
iterativen Boltzmann-Inversion entwickelt, die die radialen Verteilungsfunktionen des vergröberten Modells
an das atomistische Modell durch iterative Anpassungen angleicht. Die geometrischen Informationen werden
aus der strukturell äquilibrierten atomistischen Trajektorie und den Nichtbindungspotentialen der Modelle
abgeleitet. Die festgestellte Korrelation zwischen den Rauheitsparametern und dem Beschleunigungsfaktor
ermöglicht eine a priori Vorhersage des Beschleunigungsfaktors. Dies ermöglicht es, dynamische Eigenschaften,
wie den Selbstdiffusionskoeffizienten, aus der kostengünstigen vergröberten Simulation zu berechnen und
diesen anschließend so zu skalieren, dass er dem atomistischen Diffusionskoeffizienten entspricht. Für binäre
Mischungen kann die Beschleunigung vorhergesagt werden, indem die Rauheitsparameter aus denen der
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reinen Komponentenmithilfe einfacherMittelungsregeln berechnet werden, ergänzt durch einen quadratischen
Korrekturterm in der Konzentration, ohne dass zusätzliche Berechnungen an den Trajektorien der Mischungen
selbst erforderlich sind.

Die Studie ist derzeit auf kleine, unpolare Kohlenwasserstoffflüssigkeiten beschränkt, die bei einem Zustand-
spunkt simuliert werden. Die Ergebnisse sind jedoch vielversprechend für eine weitere Entwicklung. Von
besonderem Interesse ist die Erweiterung auf Polymersysteme, bei denen typischerweise eine Monomereinheit
einem oder zwei Beads entspricht — passend zum Grad der Vergröberung, der für die Kohlenwasserstoffe in
dieser Forschung verwendet wurde.
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Abstract

All-atom molecular dynamics simulations provide detailed insights into molecular structures and behaviors.
However, simulating large systems or long processes remains computationally intense. Coarse-grained models
reduce the complexity by combining multiple atoms into single units called beads, focusing on the most
crucial aspects of the system and removing unnecessary degrees of freedom. This approach enables studying
bigger systems over longer times but also accelerates the dynamics when compared to their all-atom reference
model. This acceleration of dynamics, e.g. measured as the ratio between the self-diffusion coefficients in
both representations, can vary between one and three orders of magnitude and thus practically precludes the
use of coarse-grained models for determining accurate dynamical properties.

This thesis presents a novel approach designed to predict the dynamical acceleration observed in coarse-
grained models relative to their atomistic counterparts by quantifying the lost geometric information upon
coarse-graining. Several atoms merge into the spherical surface of one bead, thereby smoothening the surface
and reducing the friction. The reduced roughness allows the molecules to glide past each other more effortlessly,
thus faster. The key parameter of the method is the molecular roughness difference, a metric derived from a
numerical comparison between the all-atom and coarse-grained molecular surfaces. This metric is expanded
upon with four roughness volumes, which introduce the concept of specific areas where roughness changes
occur and areas where they do not. The application scope of the RoughMob (Roughness and Mobility) method
is systematically expanded. Starting from the development with a small set of seven simple hydrocarbon
liquids containing six to eight carbon atoms, each represented by a single coarse-grained bead, the method is
extended to include molecules ranging from five to 13 carbon atoms. This broader range also includes more
aspherical all-atom models and introduces different mapping schemes. The refined approach is subsequently
applied and adapted to binary mixtures at various compositions and concentrations of molecules within
this expanded size range. The simple one-bead coarse-grained models are developed using structure-based
iterative Boltzmann inversion, which matches the radial distribution functions of the coarse-grained model
to the all-atom model through iterative adjustments. The geometrical information used for calculating the
changes in roughness is derived from the structurally equilibrated atomistic trajectory and the nonbonded
potentials of the models. The found connection between the roughness parameters and the acceleration
factor enables an a priori prediction of the acceleration factor. Dynamical properties, such as the self-diffusion
coefficient, can then be calculated from the cost-effective coarse-grained simulation and scaled to match
the atomistic diffusion coefficient. For binary mixtures, the acceleration can be predicted by calculating
the roughness parameters from those of pure components using simple averaging rules, supplemented by
a correction term quadratic in the concentration, without the need for any additional calculations on the
trajectories of the mixtures themselves.

The study is currently limited to small, nonpolar hydrocarbon liquids simulated at a single state point. However,
the results are promising for further development. Of particular interest is the expansion to polymeric systems,
where typically one monomer unit corresponds to one or two coarse-grained beads — matching the degree of
coarse-graining employed for hydrocarbons in this research.
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1 Introduction

All atoms are moving. Whether they are bonded or not — they interact with their surroundings, resulting in a
change of their movements and positions and ultimately causing manifold different macroscopic properties.
This simple interplay is exploited by molecular dynamics (MD) simulations. “All” that is needed, is a model
describing the interactions and the configuration of a system with initial positions and velocities. Once a
system is initialized, forces acting on each atom or particle are calculated and Newton’s equation of motion
is solved for each atom or particle simultaneously. Thereupon, positions and velocities of each particle are
updated and saved in a trajectory. This capturing and storing of the positions and velocities of each particle at
every point in a certain time interval is hardly ever possible in experiments, and it enables to obtain detailed
information on a molecular level of both structure and dynamics. This makes MD simulations an indispensable
tool when experiments are expensive, difficult or hazardous. Molecular dynamics calculations thereby not
only allow the detailed analysis of phenomena and properties observed in nature or laboratories but also the
investigation of materials not yet synthesized. Furthermore, the conditions under which a simulation takes
place are precisely controllable. [1]
Thus, the use of MD simulations has continuously grown over the past decades across a diverse array of
fields ranging from material science and chemistry to nanotechnology, biology and neuroscience. [2–9]
Increased computational power and improved software enables MD simulations to span longer timeframes and
larger length scales on a fully atomistic detail level. [10, 11] Despite these advancements, limitations persist,
confining all-atom (AA) MD simulations to system sizes of hundreds of nanometers and timescales of only a
few microseconds. [12] This is a notable disadvantage when large or complex systems such as biological cells
or polymer melts or other soft matter systems are to be studied. [13–15] In these cases, some relaxation times
can exceed the accessible simulation durations. [16–18] This prevents the use of such simulation methods for
studying self-assembly or phase transition phenomena in large systems or simply calculating the diffusion
coefficient in polymer melts or solutions.
Coarse-grained (CG) approaches try to find a balance between computational efficiency and accuracy. Coarse-
graining simplifies molecular systems by keeping only the details that are needed to simulate certain target
properties. Instead of simulating each atom individually, several atoms are grouped together in a so-called CG
bead. They are then presented as a single interaction site. The number of atoms grouped into one bead can
vary significantly. In united-atom models, hydrogen atoms are grouped together with their directly bonded
carbon atom. In simulations involving water, each water molecule might be represented by one CG bead [19],
or alternatively, several water molecules can be grouped into a single CG bead [20, 21] to further simplify the
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model. At the more extreme end of coarse-graining, entire polymer chains may be represented by a single
CG bead. [22] The simple hydrocarbons presented in this work range from 5 to 13 carbon atoms that are
coarse-grained into one bead per molecule. This fits to a degree of coarse-graining, where a polymer would
be represented with one or two CG beads per monomer. [23–26]

When systems are coarse-grained systematically from a more detailed (e.g. all-atom) reference system, a
set of target properties is selected that the CG model should reproduce. Depending on the target properties
and the choice and parameterization of the CG model, the capability of the CG model to represent different
properties can differ widely. [12–14, 27] Properties targeted by different methods include structural properties
[28], forces acting on the sites [29, 30], free energies [31, 32], or entropies [33]. Some thermodynamic
properties, such as pressure or compressibility, can be added. [28, 34–37] Degrees of freedom (DOFs) which
are assumed to be unnecessary for the desired analysis or target properties are averaged out. This reduction of
DOFs greatly increases the size and time range that is accessible. [38, 39] The reduced number of interaction
sites that have to be simulated already directly decreases the computational load. Additionally, the potential
energy surface is smoothed, allowing larger integration time steps to be used within the simulation[14]. The
smoother potential energy surface also removes molecular friction between the molecules, which leads to
faster dynamics and thus faster equilibration. [22, 26, 40] This acceleration of dynamics upon coarse-graining
further increases the computational efficiency. It, however, prevents the use of coarse-grained simulations for
the quantitative analysis of dynamical and transport properties. This is especially problematic when polymer
melts and other soft matter materials are considered. Here, the artificial acceleration of dynamics upon
coarse-graining practically excludes MD simulations from capturing quantitative material-specific dynamical
properties. All-atom simulations are computationally too insufficient to even calculate e.g. the diffusion
coefficient in a polymer melt. Coarse-grained simulations are technically able to access the dynamics. They
are, however, accelerated unpredictably between one and three orders of magnitude. [22, 41]
A robust approach for an a priori prediction of the expected dynamical acceleration factor α is therefore highly
desirable. A common definition of the acceleration (or scaling) factor α is the ratio of the all-atom (DAA) and
the coarse-grained (DCG) self-diffusion coefficients. [22, 42–44]

α =
DCG

DAA
(1.1)

When the acceleration factor is known or experimental or atomistic dynamical properties are available, the
dynamics can be included in the coarse-graining process. This approach aims to directly reproduce the
correct dynamics with CG models and account for the physical reasons behind the acceleration. [45–58]
This, however, poses the risk of worsening other structural and thermodynamic properties and to some extent
reducing the computational gain. A second approach, which is followed in this study, starts posterior to the CG
simulation. It aims to either directly rescale the dynamical properties (e.g. DAA = DCG/α) or to rescale the
time (∆tAA = α∆tCG). [22–26, 38, 59–62] This implies the assumption, that the same acceleration factor is
valid for different dynamical properties as has been shown for systems of moderate size. [63, 64] Several
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methods for the a priori estimation of the acceleration upon coarse-graining have been proposed. These range
from using relative entropy or excess entropy scaling [33, 65–67], over solving memory functions [68, 69] to
using big databases and automated decomposition of molecules into CG beads [70]. More examples are given
at the beginning of the result sections 4.1, 4.2 and 4.3 and in Ref. [71].

1.1 A mechanical approach

The studies that are part of this work focus on the development of an entirely new scheme to predict the
acceleration of dynamics upon coarse-graining. The loss of friction that results from the smoother potential
energy surface is interpreted as a “mechanical” friction. Molecules are considered to have actual hard surfaces.
Upon coarse-graining, the surface of the all-atom molecule loses some of its roughness as several atoms are
merged into one smoother CG bead. Figure 1.1 shows the cross-section of three molecules (2,3-dimethylbutane)
in the AA representation (a) and in the CG representation (b) as a single bead. In the CG model, the smoother
beads glide past each other more effortlessly than the rougher AA molecules. Throughout this research, this
fundamental concept has been developed into a comprehensive framework we called RoughMob (Roughness
and Mobility) method.

(a) (b)

Figure 1.1: Cross-section of three molecules in their all-atom representation (a) with a rough surface and their coarse-
grained representation (b) with a smoother surface.

The RoughMob method is developed starting from a set of seven neat aliphatic and aromatic liquid systems
with six (C6) or eight (C8) carbon atoms that are coarse-grained into one CG bead per molecule. [41] The
application range is further extended to a different mapping scheme and an enlarged size and shape range
with five (C5) to 13 (C13) carbon atoms per molecule [72], before binary mixtures are considered [73].
Starting the method development with simple hydocarbons has several advantages:

• The dynamical properties are accessible in the AA and CG representation and with that the acceleration
factor. This is essential for the validation of the developed quantities.
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• Factors that can interfere with the dynamical acceleration are limited. This includes the use of ambient
conditions for all simulations, absence of polar interactions, and minimizing overlapping relaxation
processes (e.g., no bond relaxations).

• The single CG bead represents an easy geometrical structure — a sphere — simplifying any related
numerical calculations.

• Previous studies have shown that the acceleration factor varies with the molar mass [43] and the degree
of coarse-graining [25, 74]. In this work, we find that the acceleration factors for two different C8
isomers can vary by as much as a factor of three, illustrating a much more nuanced differentiation in the
method.

• The selected size and shape range is intended to match the degree of coarse-graining used in polymers.
Ethylbenzene and Benzene, which can be considered as basic structures for polystyrene, are part of the
first test set.

• This approach allows for a systematic development of the RoughMob method: Start as simple as possible
— add complexity where it is needed.

The key quantity, we called the molecular roughness difference, is calculated through a numerical comparison
of the molecular surfaces in both the all-atom and coarse-grained representations. To accommodate a broader
range of sizes and shapes, the method is augmented by adding the concept of where the roughness acts (and
where not). Four so-called roughness volumes are introduced, each derived based on the molecular roughness
difference. Attending to binary mixtures of hydrocarbons with six to 13 carbon atoms, the same roughness
volumes prove effective as basis for predicting the acceleration of both self-diffusion coefficients and mutual
diffusion coefficients in these mixtures.

1.2 Structure of this thesis

The thesis is structured as follows: Chapter 2 reviews the most relevant methods employed for the MD
simulations and analysis of dynamics. Chapter 3 gives an overview over the most important quantities
and stages in the development of the RoughMob method. The main results are presented in Chapter 4
in form of the published journal articles. Here, specifics on the numerical definitions and calculations are
provided and the method is tested and validated empirically for the respective ranges of application. The last
Chapter (5) provides, besides the summarized conclusion of the studies presented in Chapter 4, an outlook on
future investigations. This includes considerations for algorithmic refinements and expanding the method’s
application scope.

4



2 Methods

This chapter outlines the methodologies used in this thesis. The first section introduces MD simulations and
force fields, with a focus on AA and CG types essential to this work, including the specific coarse-graining
processes employed. The second section provides a brief introduction on the dynamical acceleration upon
coarse-graining.

2.1 Molecular Dynamics Simulation

Molecular dynamics simulations require a set of initial positions rN = {r1, r2, ..., rN}, a set of initial velocities
vN = {v1,v2, ...,vN} (or momenta p = mv, with the mass m) and a model describing the interactions. The
latter provides the potential energy U = U(rN ) of the system which is dependent on the positions rN . The set
of parameters and/or the functional form that defines the potential energy in MD simulations is commonly
referred to as force field. With that at hand, Newton’s equation of motion

Fi = −∂U

∂ri
= mi

∂2ri
∂t2

(2.1)

with the mass mi of particle i and the force acting on that particle Fi is integrated step-wise for each particle
simultaneously to derive the positions and velocities at time t. [75] This is often achieved via a numerical
step-by-step integration with Verlet’s algorithm. [76] For systems with small molecules, the initial positions
can e.g. be generated by evenly distributing the molecules on a cubic lattice and including a randomization
step into the simulation protocol. Initial velocities can be assigned to each particle e.g. via an uniform
distribution or more commonly via a Maxwell-Boltzmann distribution. [77] They are usually chosen so that
they correspond to the desired simulation temperature T according to the average kinetic energy Ekin

Ekin =
⟨︁1
2

∑︂

i

miv2i
⟩︁
=

3

2
NkBT (2.2)

with the number of atoms or particles N and the Boltzmann constant kB. The potential energy U is separated
into nonbonded and bonded interactions. [1]
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U = Ubonded + Unonbonded (2.3)

The nonbonded interactions act between different molecules (intermolecular) or within a molecule (intramole-
cular) provided the particles are not close neighbors in the same molecule. Many-body potentials can be used
or added [78–80], but can make the simulation computationally impractical. Nonbonded interactions may
be short- or long-ranged. Ideally, the potentials decay to zero as the distance increases and start with a very
repulsive character (high potential) at short distances, effectively ensuring that the particles cannot cross.
Bonded interactions only consist of intramolecular interactions. They conserve the molecular geometry and
include 2-body (bonds), 3-body (angles) and 4-body (dihedral torsion, improper angles) terms. Depending
on the model and its resolution, not all interaction terms are required. The coarse-grained models employed
in this work only use nonbonded interactions.

2.1.1 All-atom representation

The most common all-atom force fields, like the OPLS-AA force field [81] that is used in this work, split the
nonbonded interactions into short- and long-ranged contributions. The short-range van der Waals interactions
are thereby modelled with an 12-6 Lennard-Jones potential

ULJ,ij = 4ϵij

(︄(︃
σij
rij

)︃12

−
(︃
σij
rij

)︃6
)︄

(2.4)

with the interaction parameters σij and ϵij and the distance rij between two particles i and j. The parameter
ϵij describes the depth of the potential, thus takes the negative value at the minimum of the potential and is
also referred to as energy parameter. The parameter σij is the distance at which the positive potential changes
into a negative potential and can thus be interpreted as the size (diameter) of the particle. The nonbonded
size σij and energy ϵij parameters are derived by combination rules for interactions between different species
— in the case of OPLS-AA geometric combination rules are used for both parameters.

σij =
√
σiσj , ϵij =

√
ϵiϵj (2.5)

When (partial) charges are present, the long-ranged electrostatics are modelled with a Coulomb potential.

A basic example for the modelling of a bonded interaction is shown in Eq. 2.6. The bond stretching between
the directly connected particles i and j is described by a harmonic potential with the equilibration bond length
req and the force constant Kr,ij that determines the stiffness of the bond.

Ubond,ij = Kr,ij(rij − req)
2 (2.6)
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2.1.2 Coarse-grained representation

The CG molecules in this work consist of one CG bead. Consequently, only nonbonded interactions are needed.
Contrary to the all-atom representation, the interactions are not described by a set of functions and parameters.
Instead, the nonbonded CG potentials are tabulated. Here, the potential energies (and usually forces) are listed
in a file as a function of the distance. Potentials for distances that are not listed in the table are interpolated. In
this work, a linear interpolation between the two closest surrounding values is used. If the potential possesses
an attractive part, the distance where U(r) = 0 for the first time can by interpreted as the size of the CG
bead and is also referred to as effective hard-sphere diameter. This is similar to the interpretation of the size
parameter σ in the AA representation and illustrated in Fig. 2.1.

(a) (b) (c)

Figure 2.1: Illustration of a Lennard-Jones potential with the size parameter σ (a), and two examples of tabulated
nonbonded coarse-grained potentials with their effective hard-sphere diameters: 2,3-dimethylbutane (b)
and ethylbenzene (c).

2.1.3 Coarse-graining

A tabulated force-field as described above is usually the result of a bottom-up coarse-graining approach.
The CG potentials are derived systematically in order to match target properties of the underlying reference
AA simulations (or any more detailed representation). [36, 82] Top-down approaches use function based
force-fields that are parameterized so that the CG model matches macroscopic, often experimental observables,
or are able to study phenomenological problems. [30, 83] However, compared to bottom-up approaches, they
lack information on chemical specificity which is needed in the scope of this work. In accordance with the
geometric approach of the RoughMob method, a structure-based bottom-up method, the iterative Boltzmann
inversion, is applied. Structure-based methods use, as the name suggests, structural information of the AA
system as target properties. For nonbonded interactions this target property is commonly the radial distribution
function (RDF ). The CG potential is thus constructed so that the RDF of the CG model matches the RDF

of the mapped target AA system.
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Radial distribution function

The radial distribution function (RDF ) describes the local structure of a liquid and is a measurement of the
packing or organization of the molecules or particles around one another. It is defined as the average local
number density ρ(r) of particles at a distance r from a central particle in ratio to the bulk (number) density
ρ = N/V . [84]

Practically, the RDF is calculated by counting the number of particles N(r,∆r) in a small spherical shell at
radius r and of the thickness ∆r divided by the approximated spherical shell volume ∆Vr ≈ 4πr2∆r, the
particle number N and the bulk density ρ.

RDF (r) =
N(r,∆r)

4πr2∆rNρ
(2.7)

Figure 2.2 illustrates the RDF. The first and second solvation shells are highlighted in blue and green. In those
areas, the local density ρ(r) is higher than the average bulk density ρ, the RDF thus has a value larger than 1.

(a) (b)

Figure 2.2: Illustration of (a) the radial distribution of particles around a central particle (purple) in two dimensions
with (b) the resulting radial distribution function; the first and second solvation shell and the corresponding
peaks are highlighted in blue and green.

Iterative Boltzmann inversion

The iterative Boltzmann inversion is one of the most commonly used structure-based coarse-graining methods.
It follows a simple scheme that updates the CG potential iteratively until the radial distribution function of the
CG model matches the target distribution function of the more detailed (all-atom) model. [35] The steps are
described below and illustrated in Figure 2.3.
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Figure 2.3: Illustration of the radial distribution functions (RDF) of the target all-atom and the coarse-grained simulation
(upper row) and the coarse-grained potential (lower row) at different steps in the iterative Boltzmann
inversion scheme. The first column illustrates the target RDF and the initial guess (steps 1. and 2.), the
second column illustrates the comparison of RDFs and update of CG potentials (steps 3. and 4.) which
are repeated iteratively until convergence is reached (last column).

1. A short AA production run is needed to calculate the target RDF . The target RDF is calculated from
the mapped AA trajectory. In most cases, a center of mass mapping is applied. This means, the distance
from particle i to particle j is measured according to the distances of their respective centers of mass.
However, the mapping scheme is mostly decided intuitively by the researchers. Other options are e.g.
the geometric center of the molecule or one specific atom of the molecule or monomer.

2. An initial CG potential is needed. This initial guess is usually derived by a simple Boltzmann inversion
of the target distribution RDFtgt.

U0 = −kBT lnRDFtgt(r) (2.8)

3. The CG potential is used for a short equilibration and production run. TheRDFk of the kth CG simulation
is calculated and RDFk is compared to RDFtgt.

4. If RDFk matches RDFtgt within a given tolerance, convergence is reached. Otherwise, the the CG po-
tential is updated with a correction term calculated based on the mismatch between the two distribution
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functions.
Uk+1(r) = Uk(r) + λkBT ln

(︃
RDFk(r)

RDFtgt(r)

)︃
(2.9)

If RDFk(r) is larger than RDFtgt(r), the logarithm returns a positive value and the value of U(r) is
increased for the next iteration. The numerical factor λ is a positive value ≤ 1 that prevents the scheme
from oscillating around the target RDF when large correction terms are needed.

5. Steps 3 and 4 are repeated iteratively, until convergence is reached. Convergence is reached when RDFk

matches RDFtgt, which can be assessed e.g. by an error function [39] or visually.

2.2 Acceleration of dynamics upon coarse-graining

To quantify the acceleration of dynamics upon coarse-graining, we use the ratio of self-diffusion coefficients
in the AA and the CG representation (Eq. 1.1) in all presented studies. For the mixtures used in Section 4.1, a
binary diffusion coefficient is calculated additionally to the two self-diffusion coefficients of both components.
The introduction here is limited to the self-diffusion coefficient as a general means to illustrate the acceleration
of dynamics. As MD simulations track the movement of each particle at every time step, the self-diffusion
coefficient can easily be calculated according to Einstein’s equation from the slope of the mean squared
displacement (MSD):

D = lim
t→∞

1

6t

⟨︄
1

N

N∑︂

i=1

|rCOM,i(t)− rCOM,i(0)|2
⟩︄

(2.10)

with the center of mass position rCOM, i of molecule i. The calculation requires a linear scaling of the MSD
with the time. The simple fluids used in the presented studies reach this diffusive regime very fast after ten
to 100 picoseconds. The MSD of the atoms in the diffusive regime would provide the same self-diffusion
coefficient as the MSD of the molecules’ centers of mass in the diffusive regime. The mapped AA trajectory is
used to enable the direct comparison between coarse-grained and all-atom representations.

Plotting the MSD against the time (Figure 2.4) illustrates the importance of proper equilibration and sufficiently
long simulation times for the extraction of dynamical properties. The Figure shows a comparison of the all-
atom-MSD and the coarse-grained-MSD of 2,3-dimethylbutane plotted against the time in a logarithmic scale.
The inset shows the time of the CG simulation scaled with the acceleration factor (tscaled = αtCG).

For a very short time (in the femtosecond scale), the MSD is identical for the mapped AA and the unscaled
CG system. Here, the systems are in the ballistic regime, where the movement of the particles is unhindered
by the surrounding particles and thus only depends on the kinetic energy in the system (Eq. 2.2). In other
words, their MSD scales with the time as t2 since the molecule’s ability to travel only depends on its velocity.
Differences start, as soon as the particles start to interact with their surroundings.
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Figure 2.4: Logarithmic mean squared displacement of 2,3-diemthylbutane plotted against the logarithmic time of
a all-atom simulation (black line) an unscaled coarse-grained simulation (blue line) and a scaled coarse-
grained simulation (blue dashed line, inset).

A simple time scaling of the CG simulation (as shown in the inset of Figure 2.4) can therefore not yield a
match of the MSDs at all times.
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3 Roughness and Mobility

This chapter aims to provide a comprehensive overview of the key quantities and stages in the development
of the RoughMob method. The first section introduces the key quantities of the RoughMob method: the
molecular roughness difference and the roughness volumes derived from it. This chapter primarily focuses on the
conceptual definitions of these terms. Details on their numerical determination are provided in Chapter 4. The
second section offers a walkthrough of the development stages of the RoughMob method. It explains which
key quantities introduced in Section 3.1 and augmentations to the method were required by each targeted
application range.

3.1 Molecular Roughness Difference and Roughness Volumes

Figure 3.1: Scheme of the molecular roughness difference
∆R: All-atom (grey solid) and coarse-grained (blue
dashed) surface; black line segments: deviation
between AA and CG surface, the average is ∆R.

The use of a geometrical or rather mechanical ap-
proach requires for all molecules — in both AA and
CG representation — the definition of an actual
hard surface. Ideally, this definition can be applied
analogously in both representations. The definition
used here has already been introduced in the Sec-
tions 2.1.1 and 2.1.2. We use the size parameter of
the AA force field σ and the effective hard-sphere
diameter (or radius) of the tabulated CG potentials
(cf. Figure 2.1). Other definitions have not yet been
tested but are possible and valid and might even
be necessary e.g. if the CG potential does not have
a negative range. The molecular surfaces are de-
scribed as numerical grids with ngrid points. Each
grid point i on the CG surface has a counterpart
on the AA surface. Their distances to the center of
the molecule are of the length r(i)CG and r

(i)
AA.
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Molecular roughness difference The key parameter used in the RoughMobmethod is themolecular roughness
difference ∆R (denoted as ∆Ra in Section 4.1). It only exists as a comparative quantity between the AA
representation and the CG representation. Its calculation is illustrated in Figure 3.1. As indicated in its name
(“difference”), the deviation between the AA and the CG surface is determined via a simple subtraction. The
absolute distance between the AA and the CG surface is calculated at evenly distributed points on the surfaces
and averaged over all points on the molecule.

∆R =
1

ngrid

ngrid∑︂

i=1

|r(i)AA − r
(i)
CG| (3.1)

No difference is made between peaks, where the AA surface overtowers the CG surface, and valleys, where
the CG surface overtowers the AA surface. The size of the surface has no direct impact on the value of ∆R

which is an average over all points that describe the surfaces. In consequence ∆R only slowly increases with
the size of a molecule as a result of e.g. more possibilities for more pronounced peaks and valleys if more (or
less) branches in the molecule are present.

Figure 3.2: Scheme of the shell volume (purple); All-atom
(grey solid) and coarse-grained (blue dashed)
surface; thickness of the shell is twice the
molecular roughness difference.

Shell volume The shell volume Vshell defines the vol-
ume where most of the change of the roughness takes
place. It is illustrated in Figure 3.2. The thickness of
the shell is directly related to themolecular roughness
difference. The thickness takes twice the value of ∆R.
Contrary to the molecular roughness difference, the
size of the surface directly impacts the value of Vshell

as a larger molecule will have a larger surface on
which the change of roughness takes place. The shell
volume is thus a quantity, that takes the space needed
for the change of roughness into account. The con-
cept of volumes instead of a simple difference also
takes into account the positioning of the molecules
within the system. We consider not only how much
space the change requires but also where it takes
place — and where not. This leads to the definition
of four so-called roughness volumes.

Roughness volumes— active and passive The roughness volumes are divided into active and passive volumes.
The shell volume is the basis of what we called active volumes — the region where the change acts. It is
only augmented by the overlap volume — the area where the shell volumes of different molecules overlap
(Figure 3.3 (a)). We found that the size of the regions that are not directly affected by the change of the
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surface roughness can be equally important. They are characterized in so-called passive volumes, which are
further divided into the inner passive volume (Figure 3.3 (b)) and outer passive volume (Figure 3.3 (c)). A
large shell volume, a large overlap volume and a large inner passive volume all increase the acceleration
factor. The first two are similar to the molecular roughness difference in their interpretation: A large change
in roughness results in a large change in mobility. The latter accounts for an increasing size (or degree of
coarse-graining) that is not yet properly accounted for by the shell volume. A larger outer passive volume
decreases the acceleration factor. Molecules with more space between one another are less affected when the
surface roughness changes.

(a) (b) (c)

Figure 3.3: Schematic of active roughness volumes (purple) and passive roughness volumes (white with patterns).
Highlighted in green (a) overlap volume, (b) inner passive volume, and (c) outer passive volume.

Form of the prediction equations Although establishing a functional form that combines the key quantities
to predict the acceleration factor is crucial, details are omitted here for two reasons. First, this information
is quite detailed, not suited for a brief and still comprehensive overview and will be revisited in Chapter 4
containing the results. Second, the fit functions employed are phenomenological descriptions of observed
behaviors and should be treated as such. These functions are designed around a concept, that has shown
success in its application. Their validation is carried out through testing — an important part of this research.
As the application range expands, the method will need further adjustments, refinements and augmentation
as it already did during the development outlined in the next section.

3.2 Application range

The studies in Sections 4.1 and 4.2 deal with single component systems and show the evolution from using
∆R to the augmentation of the RoughMob method with roughness volumes. The first test set, the “original
set”, contains seven aliphatic and aromatic neat liquids with six or eight carbon atoms. The acceleration
factor of the original set scales linearly with the molecular roughness difference as illustrated in Figure 3.4
(a). The relation remains valid, when a different mapping for coarse-graining some of the same systems is
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added, as can be seen in Figure 3.4 (b) (purple triangles). Here the extended application range from a center
of mass mapping to a mapping scheme based on a specific atom of the AA structure does not require any
methodological enhancements. Systems represented by purple circles are from the same application range as
the original set and fit well. The systems represented by the blue diamonds extend the application range by
adding a very aspherical molecule and three system of an extended size range (C5, C11 and C13).
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Figure 3.4: Predicted acceleration factor α plotted against the acceleration factor as calculated from the diffusion
coefficients of the simulations; grey dashed line represents a perfect prediction; grey area illustrates a 10 %
error margin.

This extension requires the introduction of the concept of the roughness volumes. Once three fitting parameters
have been determined via least square fit and with a training set of acceleration factors α and roughness
volumes, all systems can be predicted using the same equation (Figure 3.4 (c)). It, however, has to be noted,
that the precision is slightly decreased. The grey area illustrates a 10 % error margin. For molecules with a
low acceleration factor, it is harder to match this precision.

The study in Section 4.3 expands the application range to binary mixtures of the same liquids that have been
used in the previous studies. For simplicity, here, only the mixture average acceleration of the self-diffusion
coefficients is shown. Both the determination of the individual acceleration factors of the two self-diffusion
coefficients and the acceleration factor of the binary diffusion coefficient use this number-weighted averaged
acceleration factor as basis. Figure 3.5 (a) shows the quality of prediction using exactly the same equation and
fitting parameters as derived for the previously discussed application on neat liquids within a range of five to
13 carbon atoms. The roughness volumes for the mixtures are estimated as a simple number-weighted average
of the neat components’ roughness volumes. The mixtures that are only composed of molecules that did not
rely on roughness volumes (grey circles) are already predicted very well without the need for any adjustment.
As soon as the mixture includes a molecule from the extended range (blue diamonds) that relies on the use of
roughness volumes, a refinement of the method is needed. This can be achieved by adding a correction in form
of a cross-term quadratic in the concentration (Figure 3.5 (b)). However, this cross-term purely uses quantities
from the neat components. No additional calculations or fittings are required. More refinements introduced
for the differentiation between the two self-diffusion coefficients and the binary diffusion coefficient will be
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discussed in Section 4.3.
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Figure 3.5: Predicted acceleration factorα (average of themixture) plotted against the acceleration factor as calculated
from the diffusion coefficients of the simulations; grey dashed line represents a perfect prediction; grey
area illustrates a 10 % error margin.
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4 Results

4.1 Loss of Molecular Roughness upon Coarse-Graining Predicts the Artificially
Accelerated Mobility of Coarse-Grained Molecular Simulation Models

Reprinted with permission from Meinel et al., J. Chem. Theory Comput. 2020, 16, 1411-1419. Copyright 2020
American Chemical Society.

Correction The subsection 3.5 states:

The offset in ∆Ra by 0.43 Å means that no significant acceleration of dynamics upon coarse-
graining should occur for small molecules with a ∆Ra below 0.43 Å.

and refers to Equation 19. This is not true. A value of ∆Ra = 0.43 Å would, based on the provided Equation
19, result in α = 0 which is not a physically realistic value. No significant acceleration is observed, when
α = 1 which would occur for ∆Ra = 0.46 Å.
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ABSTRACT: Coarse-grained models include only the most important degrees of freedom to
match certain target properties and thus reduce the computational costs. The dynamics of
these models is usually accelerated compared to those of the parent atomistic models. We
propose a new approach to predict this acceleration on the basis of the loss of geometric
information upon coarse-graining. To this end, the molecular roughness difference is
calculated by a numerical comparison of the molecular surfaces of both the atomistic and the
coarse-grained systems. Seven homogeneous hydrocarbon liquids are coarse-grained using the
structure-based iterative Boltzmann inversion. An acceleration factor is calculated as the ratio
of diffusion coefficients of the coarse-grained and atomistic simulation. The molecular
roughness difference and the acceleration factor of the seven test systems reach a very good
linear correlation.

1. INTRODUCTION

All-atom (AA)molecular dynamics (MD) simulations represent
each atom as a single point particle and provide reliable
information about molecular and intermolecular structure,
transport, and movement. Even though computational power
increases, MD simulations of large systems or on long time
scales, such as simulations of a variety of polymers,1,2

surfactants3,4 and proteins,5,6 can be too demanding to be
carried out by atomistic simulations. One way to reduce the
computational cost is to use coarse-grained (CG) models,7−12

which include in the computation only the most important
degrees of freedom (DOFs) that are necessary tomatch a certain
target property or a set of target properties. These CG models
combine several atoms into one group, hereafter called a CG
bead. Fewer particles, short-range or simpler potentials, and the
possibility to use larger integration time steps signiûcantly
reduce the computational cost.13

In the top-down approach, interaction forces or potentials of
the CG beads are modeled with functional forms that are
parameterized tomatchmacroscopic thermodynamic properties
or other experimental observables.7,8 In the bottom-up
approach, the target properties are derived from underlying
reference AA or united-atom (UA) simulations.9,10,14 Hybrid
models that combine both the bottom-up and the top-down
approaches11 as well as the AA-CG hybrid models have also
been developed.12

Depending on the choice of the approach and the CG model,
the model’s ability to represent the structural, thermodynamic,
and dynamic properties of the studied system can differ widely.
Generally, the reduction of the number of degrees of freedom by
coarse-graining results in faster dynamics compared to that of

atomistic models. This acceleration upon coarse-graining has
been observed quite universally,15−19 and different concepts
have been used to explain it. In this contribution, we follow a
“mechanical” picture: on the outside, a molecule composed of
several atoms presents itself as an aggregate of overlapping
spheres, causing the surface to become rough, which, in turn,
causes friction. When the same molecule is coarse-grained into a
single spherical CG bead, some of the surface structure is lost
and the friction is concomitantly reduced.
Some effort has been directed toward the development of

dynamic CG models20−29 that accurately describe dynamical
properties, such as the diffusion coefficient, by including them as
targets in the parametrization, thus enforcing correct dynamical
behavior within the coarse-graining process. Our own
experience shows that, very often, this has the undesirable side
effect of worsening the reproduction of other structural or
thermodynamic properties.
This work focuses on the prediction of the acceleration factor

of the dynamics. As a deûnition of the time scaling or
acceleration factor α, we use the ratio of diffusion coefficients
of the CG and AA simulation.
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While the calculation, and ultimately the prediction, of an
acceleration factor does not explain the physical reasons of the
dynamical differences, it opens up the possibility to simulate on
longer time scales and thereby sample a larger portion of the
conformational space. The acceleration of the dynamics thus
plays a crucial role in increasing computational efficiency.18,30

The acceleration factor α can be calculated from the diffusion
coefficients or other dynamic properties such as viscosities,
reorientation times, etc. of both the coarse-grained and the
atomistic models. For systems, which (unlike the small
molecules of this contribution) show slow dynamics, the
necessary atomistic MD calculation can be computationally
extremely challenging or even completely infeasible. It would,
therefore, bemuchmore useful to a priori predict α at the time of
coarse-graining. This would open a way to estimate, say, the
atomistic diffusion coefficient DAA using only the much more
affordable coarse-grained calculations as DAA = 1/α·DCG.
Efforts have beenmade to predict α via relative entropy14,31 or

a bias potential.15,32 These methods take the pair potential
functions into account by combining them with a weighting
function and integrating the resulting functions over their
domain or a subset. Following an energy renormalization
strategy, the CG dynamics is rescaled by correcting the
activation free energy of the CG model.33−35 Moreover, an
approximate analytical solution of the rescaling formalism is
derived by solving the memory functions of the CG and
atomistic representation to derive expressions for the friction
coefficients.16,36 Various studies suggest that the acceleration
factor can be correlated with the molar mass (in the case of
alkanes),37 the degree of coarse-graining,19,38 or the monomeric
friction coefficient of unentangled polymers according to the
Rouse model.2,39,40 Besides the efforts that have been made to
derive α from or correlate it to physical properties, there are also
approaches based on big databases and automated decom-
position of molecules into the CG beads.41,42

However, α has been shown to be independent of the chain
length of polyethylene19,38 and to some degree of highly coarse-
grained polymers, where one polymer chain is represented by
one to ten CGbeads.30 It does depend on themapping scheme43

and the temperature. The acceleration factor typically decreases
as the temperature increases since the roughness of the free-
energy landscape loses importance when kBT rises.19,26,44 As a
consequence, the recalibration of CG potential models is a
known requirement as one changes the state point.45−47

In this work, an entirely different scheme for the prediction of
the acceleration upon coarse-graining is presented and applied
to systems at, for the time being, one state point deûned by the
temperature and pressure. Contrary to the available methods for
the prediction of the acceleration factor,17 ours is motivated by
mechanical considerations. It is based on the correlation of the
loss of geometrical information upon coarse-graining and the
acceleration of dynamics. The parameter that we found to be
suitable for this purpose has some analogy with the surface
roughness of solids often analyzed in materials science.48−57

Therefore, hardmolecular surfaces are deûned. The difference in
molecular roughness is calculated numerically by comparing the
AA and CG molecular surfaces. The correlation between this
change and the acceleration factor is examined for several üuids
of C6 and C8 molecules as a ûrst step.
This is the typical number of atoms collected into one coarse-

grained bead by bottom-up coarse-graining procedures such as
iterative Boltzmann inversion.1,58 Since the present study is
done with the view of applying it to polymer simulations, we opt

for this level of coarse-graining. In this contribution, we also
restrict the study to uncharged, nonpolar species.

2. METHODS

2.1. Simulation Details. Seven homogeneous hydrocarbon
liquids, ûve of them branched alkanes and two of them aromatic
molecules, are simulated (see Figure 1) at ambient conditions.

Molecular dynamics simulations are performed using the
large-scale atomic/molecular massively parallel simulator
(LAMMPS).59 The initial AA conûgurations are created using
the following protocol: using Moltemplate,60 1000 molecules
are distributed in a cubic simulation box with a side length of 100
Å. The system is energy-minimized using a conjugate gradient
algorithm. Molecular orientations and conformations are
randomized by Brownian dynamics at 900 K for 0.2 ns, followed
by NVT dynamics with a Nose−́Hoover thermostat for 0.5 ns
(coupling time τt = 50 fs). Using two simulations of 0.5 ns each
underNPT conditions with a Nose−́Hoover thermostat (τt = 50
fs) and Nose−́Hoover barostat (τp = 500 fs), the system is
cooled down to 298.15 K at 500 atm and the pressure is
decreased to 1 atm.
All AA-MD and CG-MD equilibration and production

simulations are carried out under isothermal−isobaric (NPT)
conditions at 1 atm and 298.18 K with both the Nose−́Hoover
thermostat (τt = 50 fs) and the barostat (τp = 500 fs) and a
velocity-Verlet integrator. Periodic boundary conditions are
applied in all three dimensions. All of the systems are
equilibrated (self-diffusion coefficients of two successive 2 ns
time intervals differ by less than 10%) for 10 ns with a time step
of Δt = 0.5 fs, followed by production runs of 10 ns using the
same time step.

2.2. All-Atom Model. All-atom (AA) interactions are
modeled with the fully üexible OPLS-AA force ûeld. The
nonbonded parameters are given in Table 1. The bondedOPLS-
AA parameters are given in the Supporting Information. Both

Figure 1. Simulated molecules, their abbreviated names, chemical type,
and the number of carbon atoms: black dashed: C6 aromatic; black
dotted: C6 alkane; blue dashed: C8 aromatic; blue dotted: C8 alkane.

Table 1. OPLS-AA Force-Field Nonbonded Energy
Parameters62

atom
type description ϵ/kcal mol−1 σ/Å q/e

CTCH3 aliphatic carbon (CH3) 0.066 3.5 −0.18

CTCH2 aliphatic carbon (CH2) 0.066 3.5 −0.12

CTCH aliphatic carbon (CH) 0.066 3.5 −0.06

CTCA aliphatic carbon bonded to
aromatic carbon

0.066 3.5 −0.005

HC aliphatic hydrogen 0.030 2.5 0.06

CA aromatic carbon 0.070 3.55 −0.115

HA aromatic hydrogen 0.030 2.42 0.115
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the nonbonded size σ and the nonbonded energy ϵ parameters
are described with geometric combination rules for interactions
between different species.

ij i jσ σσ= (2)

ij i jϵ = ϵ ϵ (3)

Standard long-range van der Waals corrections are added to the
energy and pressure during the simulations.61 All nonbonded
interactions are treated with a spherical cutoff with a cutoff
distance of 11 Å. Intramolecular nonbonded interactions are
evaluated for atom pairs separated by three or more bonds with
the normal nonbonded potentials; for 1,4-intramolecular
interactions, the potential is scaled down by half.
2.3. Coarse-GrainedModel. Eachmolecule is mapped into

a single CG bead positioned at the center of mass of the AA
molecule. Only nonbonded interactions are needed for the CG
simulation. The tabulated numerical CG potential is derived by
iterative Boltzmann inversion, where the CG-pair potential
functions UCG(r) are updated iteratively until the radial
distribution function of the CG model gi

CG(r) matches the
target radial distribution function gtarget(r), which is calculated
from the atomistic reference simulation.1,58 An initial guess
U0

CG(r) is derived by Boltzmann-inverting gtarget(r). A pressure
correction58 is applied during the iterative process. The cutoff
radii rcut used for the iterative Boltzmann inversion and the CG
simulation, as well as CG-pair potentials UCG(r), are shown in
Table 2 and Figure 2, respectively. The cutoff radius is chosen to

satisfy the condition gtarget(rcut) = 1 between the second
minimum and the third maximum of gtarget(r). The resulting
numerical CG potentials are represented as tables (Δr = 1 ×

10−3 Å) with linear interpolations between the points. The
tabulated potentials are provided in the Supporting Information.
The CG simulations run, on average, about 50 times faster than
the parent AA simulations.
2.4. Molecular Surfaces. Our method uses the difference

between the molecular surface of the parent atomistic model
(AA) and the coarse-grained (CG) model derived from it by
iterative Boltzmann inversion. Therefore, the molecular surface
must be deûned and then evaluated. To simplify the analysis,
description, and calculation of each atomistic molecule’s surface,
two steps are required. First, the center of mass of each molecule
is placed at the origin of the coordinate system. Second, the
unweighted atomic positions of both C and H atoms are used to
calculate the molecular gyration tensor. The principal axis
belonging to its largest eigenvalue is aligned with the x-axis.
Molecular surfaces for both AA and CGmodels are described as
numerical point grids on the basis of the spherical Fibonacci grid
that provides approximately evenly distributed points on a
sphere. The spherical Fibonacci grid uses the golden ratio

Φ = (1 + 5 )/2 to generate a spherical grid evenly spaced in
sin(θ) with the latitude θ and the longitude φ.63

l2
l

1φ π= Φ−
(4)

l

n
sin( )

2
l

grid

θ =
(5)

The integer l ranges from−n to n and ngrid = 2n + 1 is the number
of grid points. The elevation angle θ ranges from −Ã/2 to +Ã/2
as the latitudes on earth. This affects the transformation from the
spherical to the Cartesian coordinate system ((θ, φ, r)→ (x, y,
z):(r cos(θ) sin(φ), r cos(θ) cos(φ), r sin(θ))).
Both AA and CG molecular surfaces use the same ray

directions dir generated with the spherical Fibonacci grid
algorithm with ngrid = 2501 and r = 1.

i n( , , 1) 1, ...,i idir
3

gridθ φ= { ∈ | = } (6)

For the AA molecular surfaces, the set of ray−sphere
intersections p is calculated between all rays and all-atom
spheres. An atom sphere Srk(ak) = Sk of an atom k is placed at the

position of the atom ak and has the radius rk.

S rx x ak k k
3

2= { ∈ | − = } (7)

The radius is chosen to be half its nonbonded Lennard-Jones
size parameter rk = 0.5σk.

S r k rp ;k dir = { ∈ ∩ · | ∀ ∈ }+
(8)

Since each ray can intersect more than one atom sphere and each
one up to two times, the AA molecular surface AA is the set of
all intersection points with the highest radius for each ray.

rv v max
r M

i n

AA
3

2
( , , )

1,...,
i i

grid

= { ∈ |∥ ∥ = }
θ φ ∈
= (9)

The principal axis with the largest eigenvalue of themolecule has
been aligned with the x-axis using unweighted positions of
atoms. The length along the x-axis, considering the molecular
surface, is deûned as follows

Table 2. Cutoff Radii for the Iterative Boltzmann Inversion
and CG Simulations

rcut/Å

benzene 14.3

3-methylpentane 15.3

2,3-dimethylbutane 15.5

ethylbenzene 14.9

2,3,4-trimethylpentane 16.5

3-ethylhexane 15.1

2,5-dimethylhexane 15.2

Figure 2. Nonbonded pair potentials between beads of the coarse-
grained model obtained from iterative Boltzmann inversion. The
coarse-grained bead is positioned at the center of mass of the atomistic
model.
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L x xmax ( ) min ( )x
x y z x y z( , , ) ( , , )AA AA

= + | |
∈ ∈ (10)

For the CG model, the calculation of the surface is simpler, as
there is only one bead, i.e., only one sphere. The radius of the
sphere is chosen to be half of the radius where UCG = 0 (Figure
2), thus the effective hard-sphere radius of the CG beads (see
Table 3). This is done in analogy to the AA atom radius, which is

taken as half of the value where the Lennard-Jones potential is
zero.

r r r U r
1

2
min 0, ( ) 0CG cut

CG= { ∈ [ ]| = }
(11)

The CGmolecular surface grid CG uses the same ray directions
as the AA surface.

rCG CG dir= · (12)

2.5. Molecular Roughness Difference. Surface roughness
is deûned as the deviation of a surface proûle from a reference
surface. Positive deviations are denoted as peaks, with Rp being
the maximum peak height, and negative deviations as valleys
(Figure 3). To describe the loss in surface roughness upon

coarse-graining, the surface proûle is taken to be the AA
molecular surface and the reference surface as the surface of the
(spherical) CG bead. The arithmetic mean of the absolute
surface proûle height h is, therefore, a comparative quantity that
describes the molecular roughness difference ΔRa.

h r r

r

r

( , , )

( , , )

i
i i

i i
i

i i
i

AA
( )

CG
( )

AA
( )

AA

CG
( )

CG

φ θ

φ θ

= −
∀ ∈

∈ (13)

R
n

h
1

i

n

ia
grid 1

grid∑Δ = | |
= (14)

For a more detailed analysis, we also calculate the higher
moments of the distribution of hi. The skewness Rsk measures
the asymmetry of the density curve of peaks and valleys, with a
positive value meaning that peaks dominate the roughness
difference, while a negative value indicates that the contribution
of the valleys to the roughness difference is higher.

R
n R

h
1

i

n

isk
grid q

3
1

3
grid∑=
= (15)

R
n

h
1

i

n

iq
grid 1

2
grid∑=
= (16)

The kurtosis Rku expresses the sharpness of the density curve,
with a low value indicating that there are fewer but higher peaks
and/or fewer but deeper valleys.

R
n R

h
1

i

n

iku
grid q

4
1

4
grid∑=
= (17)

As a fully üexible AA model is used, the molecular roughness
difference is different for each molecule within a system. Thus,
for each system, the parameters ΔRa, Rsk, and Rku are averaged
over 200 molecules. Atomic positions are taken from the last
frame of the production run. Error bars are determined by the
standard deviation.

3. RESULTS AND DISCUSSION

3.1. Coarse-Grained Potentials and Bead Radius. The
nonbonded CG pair potentials are displayed in Figure 2. Not all
of the potentials have a global minimum that directly follows the
monotonic decrease of the repulsive part. Since all of the
potentials exhibit a repulsive and an attractive part, they allow
the determination of the effective hard-sphere radius of the CG
bead rCG as one half of its ûrst pass through zero. We note that
for a longer Lx, the radius of the CG bead becomes larger (Table
3).

3.2. Liquid Structure. The structure is characterized by the
radial distribution function g(r). To make the radial distribution
functions of the CG model and the AA model comparable, the
distribution functions of the center of mass are used (Figure 4).
For the calculation of g(r), the conûguration of every 1000th
time step (every 0.5 ps) is used and averaged over 10 ns. All of
the molecules show a difference of less than 1% between gCG(r)
and gAA(r) as characterized by the error function26

g
g r g r r

g r r

( ) ( ) d

( )d

r

r
0

CG AA

0

AA

cut

cut

∫
∫δ =

| − |
(18)

where rcut is the cutoff radius used in the CG model. This is no
surprise, as the CG potentials are constructed to reproduce the
atomistic g(r). The mass densities Ä of the CG and AA
simulations are in good agreement (Table 4). They differ by at
most 3% from the experimental values. This agreement is of no
relevance to the present paper, which makes comparisons only
between coarse-grained models and their parent atomistic
models, but it reüects the quality of the AA model.

3.3. Dynamic Properties.The dynamics is characterized by
the center-of-mass self-diffusion coefficient of the molecules D.
It is calculated from their center-of-mass mean square
displacement (MSD) according to the Einstein relation. The
averaged center-of-mass MSD is calculated using every 1000th

Table 3. Lx (Equation 10) and the Effective Hard-Sphere
Radius of CG Beads

Lx/Å rCG/Å

2,3-dimethylbutane 7.96 2.77

benzene 7.20 2.45

3-methylpentane 8.73 2.84

2,3,4-trimethylpentane 9.06 3.19

3-ethylhexane 9.78 3.37

ethylbenzene 9.65 3.28

2,5-dimethylhexane 10.36 3.54

Figure 3. Schematic view of a surface proûle (solid) and its reference
line (dashed) with the maximum peak height (Rp) and maximum valley
depth (Rv).
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time step from a 10 ns trajectory (Figure 5). Diffusion
coefficients are calculated by ûtting the MSD versus time, with
a linear function up to 7.5 ns. Table 5 lists the self-diffusion
coefficients and the acceleration factor α = DCG/DAA. Figure 6
uses 2,5-dimethylhexane as an example to show that the MSD of
the all-atom and scaled coarse-grained simulation coincide
above 0.15 ns and are in the diffusive regime. Only in the
picosecond time scale, the scaled diffusion lies behind the
atomistic diffusion. This might be due to the molecular
rotational and conformational freedom, which only the AA
model possesses.
3.4. Coarse-Graining and the Molecular Roughness

Difference. The molecular roughness difference ΔRa of the
molecules ranges from 0.512 Å (Bz) to 0.969 Å (25DiMeHx).
Aliphatic and aromatic molecules follow the same trend. The
surfaces of 2,3-dimethylbutane and 2,5-dimethylhexane are

shown as examples in Figure 7. They show similarities in their
structural formulas, with isopropyl structures on both sides, yet
their ΔRa values (0.515 Å for 23DiMeBu) differ by a factor of
almost 1.9. The difference is that 2,5-dimethylhexane shows
both a high x-elongation and low y- and z-values close to the
center of mass of the molecule, which increases the roughness
difference, while 2,3-dimethylbutane is rather spherical (Table
6).

Figure 4. Comparison of center-of-mass radial distribution function
obtained from atomistic (solid lines) and coarse-grained (dashed lines)
simulations.

Table 4. Deviation between Atomistic and Coarse-Grained
Radial Distribution Functions, Densities of All-Atom
Simulation, Coarse-Grained Simulation and Experimental
Densities

δg/% ÄAA/g cm
−3 ÄCG/g cm

−3 Äexp./g cm
−3

benzene 0.35 0.874 0.874 0.873a

3-methylpentane 0.57 0.665 0.664 0.660a

2,3-dimethylbutane 0.50 0.680 0.675 0.658a

ethylbenzene 0.37 0.869 0.869 0.864b

2,3,4-trimethylpentane 0.34 0.730 0.730 0.716a

3-ethylhexane 0.57 0.705 0.704 0.710a

2,5-dimethylhexane 0.71 0.705 0.704 0.690a

aValue from ref 64. bValue from ref 65.

Figure 5.Comparison of the center-of-mass mean square displacement
of all-atom (solid lines) and coarse-grained (dashed lines) simulations.

Table 5. Self-Diffusion Coefficients in 10−9 m2 s−1 and
Acceleration Factor αa

DAA DCG α

2,3-dimethylbutane 1.96 (0.04) 5.46 (0.08) 2.78 (0.09)

benzene 1.12 (0.08) 3.77 (0.16) 3.37 (0.38)

3-methylpentane 2.74 (0.18) 11.21 (0.63) 4.10 (0.49)

2,3,4-trimethylpentane 1.20 (0.05) 7.29 (0.09) 6.09 (0.34)

3-ethylhexane 1.72 (0.12) 17.79 (1.01) 10.33 (1.32)

ethylbenzene 0.90 (0.03) 9.47 (0.35) 10.49 (0.72)

2,5-dimethylhexane 1.35 (0.02) 23.82 (1.24) 17.67 (1.23)
aStandard deviations between the individual Cartesian components
are shown in parentheses.

Figure 6. Comparison of center-of-mass mean square displacement of
all-atom (solid line) and the scaled coarse-grained (dashed line)
simulations of 2,5-dimethylhexane.
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This inüuence of the molecular shape on ΔRa is illustrated in
Figure 8. The CG bead is a sphere, and hence the reference
surface is a sphere, too. This geometry necessarily leads to
certain features of the molecular roughness difference. The
principal axis belonging to the largest eigenvalue is aligned with
the x-axis. The remaining two principal axes thus point in the
direction of y- and z-axis. Under the condition that Lx/2 > rCG,
which is true for all molecules analyzed, there will always be
peaks in the directions of the x-component. Two structural
characteristics, that highly inüuence ΔRa can be identiûed:

1. x-Elongation: The elongation of the surface proûle, the
AA molecular surface, increases ΔRa (Figure 8a→b).

2. yz-Arrangement: Assuming that the structure of the
molecule is approximately determined by the arrange-
ment of volume elements of a ûxed size, the atoms, an
arrangement with the lowest y- and z-values close to x = 0
leads to higher ΔRa (Figure 8a→c).

We have also studied how the size of the reference sphere would
change the roughness difference. It is noticeable in the change of
sign of Rsk. An increase of rCG can both increase and decrease
ΔRa. If the number of proûle height points hiwith a negative sign
is larger than the number of positive proûle height points,ΔRa is
increased. However, an increase of rCG always lowers Rsk as the
distribution is shifted toward the valleys (Figure 8a→d). For all
C6molecules, the distribution is skewed toward the peaks; for all
C8 molecules, it is skewed toward the valleys. Two alternative
ways of deûning the reference geometry, showing the sensitivity
toward the choice of rCG, are given in the Supporting
Information.
The kurtosis of a normal distribution is 3. Thus, all of the

molecules are platykurtic. 25DiMeHx has a lower kurtosis, with
Rku = 1.77, than that of all other molecules, with Rku = 2.32 ±

0.15. The kurtosis is affected by small deviations, caused by the
H atoms, and large peaks and valleys due to different atomic
arrangements caused by different bonding patterns and different
number of atoms. While the small deviations are similar for all
molecules, 2,5-dimethylhexane, being the molecule with the
highest ΔRa, has a very distinct valley (yz-Arrangement; Figure
7b), causing the reduction of Rku.

3.5. Smoothening of the Molecular Surface and
Mobility Acceleration upon Coarse-Graining. We now
have the data in place to investigate the relation between the
molecular roughness difference ΔRa and the acceleration of the
molecular mobility α, both introduced by coarse-graining. For
the set of small hydrocarbon solvents of similar sizes but varied
shapes, the relation between α and ΔRa is close to being linear
(correlation coefficient R2 = 0.996; Figure 9).

R32 Å ( 0.43 Å)1
aα = Δ −−

(19)

Generally, C6 molecules have lower ΔRa and α values than C8
molecules, even though the values of 2,3,4-trimethylpentane are
closer to those of 3-methylpentane than to those of other C8
molecules. It is to be expected that different C7 molecules can
have both lower α than C6 molecules and higher α than C8
molecules. Even though ΔRa does not even double, when the
lowest and highest values are compared, α more than sextupled
from a value of 2.78 (23DiMeBu) to 17.67 (25DiMeHx),
showing that the acceleration factor is very sensitive to small
changes in the roughness difference. The offset inΔRa by 0.43 Å
means that no signiûcant acceleration of dynamics upon coarse-
graining should occur for small molecules with aΔRa below 0.43
Å. Unfortunately, we have not been able to ûnd such a molecule.
The roughness differences between fully atomistic (all-atom)
and united-atom models, however, often fall into this range, and
the self-diffusion coefficients for liquids are often very similar
when simulated by both models.
As there is no physical observable “molecular surface”, it must

be subjectively deûned. Different choices are possible and valid,
and hence also the roughness difference can be quantiûed by
different measures. We have experimented with a few other
measures but have found ΔRa, the average absolute surface
deviation, to provide the best correlation with the acceleration of
dynamics α. Other surface measures are included in the
Supporting Information for reference but are not further
discussed here.

4. CONCLUSIONS

In this work, a method to link the acceleration of the dynamics of
a liquid system, as one moves from an atomistic to a coarse-

Figure 7. Grid of the all-atom molecular surface of 2,3-dimethylbutane
(a) and 2,5-dimethylhexane (b) with 2501 grid points; the x-axis is
horizontal and the y-axis is vertical; blue: peaks; red: valleys.

Table 6. Molecular Roughness Difference, Skewness, and
Kurtosis Averaged over 200 Molecules for Each Systema

ΔRa/Å Rsk Rku

2,3-dimethylbutane 0.515 (0.031) 0.54 (0.12) 2.17 (0.15)

benzene 0.512 (0.006) 0.64 (0.02) 2.25 (0.01)

3-methylpentane 0.578 (0.031) 0.40 (0.12) 2.46 (0.19)

2,3,4-trimethylpentane 0.608 (0.031) −0.20 (0.08) 2.31 (0.15)

3-ethylhexane 0.757 (0.036) −0.46 (0.10) 2.19 (0.12)

ethylbenzene 0.767 (0.015) −1.00 (0.06) 2.21 (0.11)

2,5-dimethylhexane 0.969 (0.042) −0.87 (0.06) 1.77 (0.13)
aStandard deviations are shown in parentheses.
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grained model, to geometrical differences between the two
models is developed. We found that the acceleration α, deûned
as the ratio of the self-diffusion coefficients of both models, is
linearly related to the molecular roughness difference ΔRa,
which we deûne as the average absolute deviation between the

molecular surfaces of the two models. The linear relation has
been established using a test set of seven C6 and C8
hydrocarbons, and it shows a high correlation. The atomistic
and coarse-grained molecular surfaces can be calculated as soon
as the models are equilibrated in their structural properties. This
means that the acceleration factor can be predicted solely from
the geometry of themolecules in both resolutions if the observed
correlation holds for other systems. Predictiveness is not
relevant in the present study of low-molecular-weight liquids,
for which the calculation of diffusion coefficients in both
resolutions is not an issue. In many systems, however, dynamic
quantities can only be calculated at the coarse-grained level, for
example, in polymer melts. Here, the atomistic (and thus
hopefully “true”)mobility remains computationally inaccessible.
In such cases, a reliable a priori estimate of the acceleration
would make predictions of realistic dynamic properties possible,
as dynamic quantities obtained in the coarse-grained simulation
would be rescaled to achieve numbers, which can be compared
to the experimental values. While being optimistic, we should
also point at the untested aspects of our novel method. First, in
this ûrst step, it has only been tested on nonpolar small-molecule
liquids. Applications to other chemical structures and other
molecular sizes need to be tried. Second, we have used only
ambient conditions. Recalibration of potential models is a
known necessity as one changes the temperature45 or,
particularly, the density.66
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Figure 8. Schematic of the inüuence of molecular shape on molecular roughness descriptors: (a) solid: atomistic surface proûle, dashed: reference
(coarse-grained) surface, hatched: area of interest for molecular roughness calculation. (b) Effect of elongation: roughness difference increases. (c)
Effect of increasing valley depths in directions orthogonal to the longest component: roughness difference increases, kurtosis decreases. (d) Effect of
increasing radius of reference sphere: skewness decreases.

Figure 9. Acceleration factor against molecular roughness difference;
error bars for the molecular roughness difference represent the standard
deviation from averaging over the conformation of 200 molecules for
each system; error bars for the acceleration factor are added up relative
standard deviations between the individual Cartesian components. The
line is the linear ût of eq 19.
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Tabulated coarse-grained potentials (ZIP)
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4.2 Roughness Volumes: An Improved RoughMob Concept for Predicting the
Increase of Molecular Mobility upon Coarse-Graining

Reprinted with permission from Meinel et al. J. Phys. Chem. B 2022, 126, 3737-3747. Copyright 2022
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ABSTRACT: The reduced number of degrees of freedom in a coarse-grained
molecular model compared to its parent atomistic model not only makes it possible
to simulate larger systems for longer time scales but also results in an artificial
mobility increase. The RoughMob method [Meinel, M. K. and Müller-Plathe, F. J.
Chem. Theory Comput. 2020, 16, 1411.] linked the acceleration factor of the
dynamics to the loss of geometric information upon coarse-graining. Our hypothesis
is that coarse-graining a multiatom molecule or group into a single spherical bead
smooths the molecular surface and, thus, leads to reduced intermolecular friction. A
key parameter is the molecular roughness difference, which is calculated via a
numerical comparison of the molecular surfaces of both the atomistic and coarse-
grained models. Augmenting the RoughMob method, we add the concept of the
region where the roughness acts. This information is contained in four so-called
roughness volumes. For 17 systems of homogeneous hydrocarbon ûuids, simple
one-bead coarse-grained models are derived by the structure-based iterative Boltzmann inversion. They include 13 different
homogeneous aliphatic and aromatic molecules and two different mapping schemes. We present a simple way to correlate the
roughness volumes to the acceleration factor. The resulting relation is able to a priori predict the acceleration factors for an extended
size and shape range of hydrocarbon molecules, with different mapping schemes and different densities.

■ INTRODUCTION

All-atom (AA) molecular dynamics (MD) simulations provide
detailed information about different properties such as
molecular structures and thermodynamic or transport proper-
ties. However, simulations of large systems or on long time scales
can be too demanding to be carried out atomistically. Bottom-up
coarse-grained models are derived systematically to match
certain target properties of the parent all-atom system, often
structural properties.1 Several atoms are thereby coarse-grained
into one super atom, in the following called a coarse-grained
(CG) bead. The reduced number of degrees of freedom and the
smaller number of simulated sites per molecule reduce the
computational costs. Compared to its parent atomistic model,
the dynamics of a coarse-grained model is usually accelerated:
The mobility of the CG beads is higher than that of the chemical
groups they represent.2−7 This acceleration allows the
simulation of longer time scales and, thereby, increases the
computational eüciency further. However, it precludes the
calculation of dynamical and transport quantities. In order to
enable predictive calculations of, say, diffusion coeücients or
shear viscosities, a timemapping is needed, preferably one which
can be determined a priori at the time of coarse-graining and
which does not require long atomistic reference simulations.
Based on the assumption that different dynamical properties are
accelerated by the same factor, we focus in this work on the

rescaling of the diffusion coeücient with the scaling or
acceleration factor α. It is defined as the ratio of the diffusion
coeücients of the CG and the parent AA models.

D D
1

AA CGα
=

(1)

Common explanations of acceleration are the smoother
coarse-grained potential and the elimination of degrees of
freedom, which provide the ”friction” that restricts the mobility
in the atomistic model.8While the qualitative reasons behind the
acceleration are well understood, the improvement of methods
to quantitatively account for the acceleration is still an ongoing
issue. A variety of solutions have been proposed to determine
the acceleration factor a priori without having to run the
expensive all-atom simulation long enough to calculate the
dynamics of the all-atom system. These efforts target relative
entropy9,10 or excess entropy scaling11−13 or derive an
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expression for the monomeric friction coeücient by a first-
principle analytical approach starting from the Ornstein−
Zernike equation3,14 or use a biasing potential.7,15

As an alternative to rescaling approaches, dynamic properties
such as the diffusion coeücients can be included in the set of
target properties to be reproduced by the coarse-grained model.
This aims at accounting for the physical reasons behind the
speed-up and thereby generating a CG model with correct
dynamics.16−23 In our experience, this approach can lead to
other structural or thermodynamic properties actually becoming
worse, and in some cases, the increase in computational
eüciency is diminished or destroyed.
In ref 24, we proposed a method, in the following referred to

as the RoughMob method, that connects the change in a
molecular surface roughness (Rough) to the change in the
mobility (Mob). The friction is interpreted as an actual
mechanical friction that changes upon the change of the
molecular surface. The parameter we called molecular roughness
dif ference is calculated by a numerical comparison of the hard
molecular surfaces (excluded-volumes) of the AA and CG
surfaces. The surfaces of both models are represented as
numerical grids. The molecular roughness difference is then
calculated as the average absolute deviation of the molecular all-
atom surface from the molecular coarse-grained surface. It solely
exists as a comparative quantity, and no connection between the
diffusion coeücient and a roughness of a single system is
established. The method has been developed using seven
uncharged, apolar, and homogeneous systems of aliphatic and
aromatic molecules and has proven capable of estimating the
acceleration of spherical hydrocarbons in the range of six (C6)
to eight (C8) carbon atoms that are coarse-grained into a single
CGbead per molecule. However, the addition of a broader range
of hydrocarbons reveals weaknesses, especially when larger
molecules are added. Various studies suggest that the
acceleration factor is dependent on the molar mass25 or on
the degree of coarse-graining.26,27 So far, the RoughMob
method has been limited to a small size range. In this paper,
we investigate hydrocarbons with five (C5) to 13 (C13) carbon
atoms and thereby broaden the molecular size and asphericity
range of the investigatedmolecules. We analyze them in terms of
four roughness volumes that all depend on the molecular
roughness difference. This allows for including not only the
change of the molecular roughness itself but also the volume in
which this change takes place (active volumes) and, even more
importantly, where it does not (passive volume). The scaling
factor also changes between mapping schemes.28 Therefore, we

test two different mapping schemes for four of the original C6
and C8 hydrocarbons.
All systems are simulated under ambient conditions.

Recalibration of the CG potentials for different simulated state
points is a known requirement,29−33 although some efforts are
directed toward the development of temperature-transferable
CG models.34−37 However, being a geometrical parameter the
molecular roughness difference is not expected to change much
with the temperature, while the acceleration factor is known to
decrease with an increasing temperature.19,26,38 This provides
additional motivation to include not only the value of the
molecular roughness difference in the RoughMob method but
also differences in its impact, e.g., due to different densities and
molecular sizes. With an increasing temperature, the density
usually decreases and with it, likely, the impact of the molecular
roughness difference, as the molecules are further apart.
Prediction of the acceleration factor will become especially

relevant for large or complex systems, such as polymers,1,8

surfactants,39 and proteins.40 In this method development, we
focus on low-molecular-weight liquids that are coarse-grained
into one bead per molecule in order to distinguish between the
impact of active and passive volumes.We do not yet consider the
contribution of, for example, overlapping neighboring CG beads
in polymermolecules. However, the degree of coarse-graining (5
to 13 C atoms) is chosen with the application of the method to
polymer melts in mind, where one monomer is represented by
one or two CG beads, which typically fit this number of atoms
collected into one CG bead.

■ SIMULATION DETAILS AND MODELS

The RoughMobmethod has been developed using a set of seven
hydrocarbon liquids, five of them alkanes and two of them
aromatic molecules, with six or eight carbon atoms. They are
listed in Table 2, together with the newly added liquids. For their
structure, see ref 24. Figure 1 shows the structure of the
molecules added to the set in this article. 2-Methylhexane and
2,3-dimethylpentane are not symmetrical along the longest
chain. Neopentane, mesitylene, 3,3-diethyl-2,4-dimethylpen-
tane, and 3,3-diisopropyl-2,4-dimethylpentane extend the
simulated systems to a range of smaller and larger molecules.
Both AA and CG MD simulations are performed with the

LAMMPS simulation tool41 under periodic boundary con-
ditions in three dimensions. To generate the AA configurations,
512 to 1000 molecules are placed in a cubic simulation box with
a side length of 100 Å using Moltemplate.42 The orientations
and conformations of the molecules are randomized by
Brownian dynamics at 900 K for 0.2 ns, followed by canonical

Figure 1. Simulated molecules, their abbreviated name, and the number of carbon atoms.
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(NVT) molecular dynamics for 0.5 ns. Using two simulations of
0.5 ns each underNPT conditions, the system is cooled down to
298.15 K at 500 atm, and the pressure is decreased to 1 atm.
Equilibration and production runs are carried out under

isothermal−isobaric (NPT) conditions at 1 atm and 298.18 K
using a velocity-Verlet integrator. Constant temperature and
pressure are maintained with both a Nose−́Hoover thermostat
(τT = 50 fs) and a barostat (τp = 500 fs). All systems are
equilibrated (self-diffusion coeücients of two successive 2 ns
time intervals differ by less than 10%) for 10 ns with a time step
of Δt = 0.5 fs, followed by production runs of 10 ns using the
same time step.
All-Atom Model. All-atom (AA) interactions are modeled

with the fully ûexible OPLS-AA force field. The nonbonded
parameters are given in Table 1. Nonbonded interactions are

treated with a spherical cutoff distance of 11 Å. A scaling factor
of 0.5 is applied to nonbonded 1,4-intramolecular interactions,
and geometric combination rules are applied for interactions
between different species. Standard long-range van der Waals
corrections are added to the energy and pressure during the

simulations.43 The bonded force-field parameters are given in
the Supporting Information.

Coarse-GrainedModel. In the CGmodel, each molecule is
represented by a single CG bead. Thus, no bonded parameters
are needed. The tabulated nonbondedCG potentials are derived
by the iterative Boltzmann inversion1,45 using VOTCA46 and
provided in the Supporting Information. The initial coordinates
of the CG systems are generated from a single frame of the AA
production run. Two different mapping schemes are used. All
systems are coarse-grained with the CG bead positioned at the
center of mass of the parent AA molecule (“COM-mapping”).
Four systems are additionally simulated with the CG bead
positioned on the third carbon atom of the pentane chain
(234TriMePe, 3MePe, 23DiMePe, for short-hand notation, see
Table 2) or the second carbon atom of the butane chain
(23DiMeBu), respectively, which carry a methyl group (“methyl
C-mapping”). The initial potential guess is derived by simple
Boltzmann inversion. The potential is then updated iteratively
until the CG radial distribution function (RDF) matches the
RDF of the target AA system. The cutoff radii rcut used for the
CG potentials are given in the Supporting Information. The
error between the CG-RDF gCG(r) and target RDF gAA(r) (eq
219) is less than 1% for all systems. During the iterative
Boltzmann inversion a pressure correction is applied.45

g
g r g r r

g r r

( ) ( ) d

( ) d

r

r
0

CG AA

0

AA

cut

cut

∫
∫δ =

| − |
(2)

Dynamic Properties. The self-diffusion coeücients of the
molecules D are determined from their center-of-mass mean
square displacement (MSD) using the Einstein relation. The
averaged center-of-mass MSD is calculated using every 1000th
time step from a 10 ns trajectory, and diffusion coeücients are
calculated from the linear fit function of the MSD against the
time up to 7.5 ns. The acceleration of dynamics α is

Table 1. OPLS-AA Force-Field Nonbonded Energy
Parameters44

atom
type description

ϵ

(kcal mol−1) σ (Å) q (e)

CTCH3 aliphatic carbon (CH3) 0.066 3.5 −0.18

CTCH2 aliphatic carbon (CH2) 0.066 3.5 −0.12

CTCH aliphatic carbon (CH) 0.066 3.5 −0.06

CTCA aliphatic carbon bonded to
aromatic carbon

0.066 3.5 −0.005

HC aliphatic hydrogen 0.030 2.5 0.06

CA aromatic carbon 0.070 3.55 −0.115

HA aromatic hydrogen 0.030 2.42 0.115

Table 2. Names of the Molecules, Their Abbreviations, and Numbers as Used in the Figurea

molecule name abbreviation DAA DCG α

Alkanes, COM-Mapped

1 *neopentane Neo 1.64 (0.05) 2.69 (0.12) 1.64 (0.13)

2 2,3-dimethylbutane 23DiMeBu 1.96 (0.04) 5.46 (0.08) 2.78 (0.09)

3 3-methylpentane 3MePe 2.74 (0.18) 11.21 (0.63) 4.10 (0.49)

4 *2,3-dimethylpentane 23DiMePe 2.22 (0.11) 10.56 (0.50) 4.75 (0.46)

5 2,3,4-trimethylpentane 234TriMePe 1.20 (0.05) 7.29 (0.09) 6.09 (0.34)

6 3-ethylhexane 3EtHx 1.72 (0.12) 17.79 (1.01) 10.33 (1.32)

7 *3,3-diethyl-2,4-dimethylpentane 33DE24DMP 0.31 (0.02) 3.54 (0.17) 11.40 (1.21)

8 *2-methylhexane 2MeHx 2.18 (0.02) 25.39 (0.32) 11.66 (0.25)

9 2,5-dimethylhexane 25DiMeHx 1.35 (0.02) 23.82 (1.24) 17.67 (1.23)

10 *3,3-diisopropyl-2,4-dimethylpentane 33DIP24DMP 0.076 (0.01) 1.64 (0.07) 21.67 (3.84)

Aromatic Molecules, COM-Mapped

11 benzene Bz 1.12 (0.08) 3.77 (0.16) 3.37 (0.38)

12 ethylbenzene EtBz 0.90 (0.03) 9.47 (0.35) 10.49 (0.72)

13 *mesitylene Mesi 0.52 (0.04) 8.92 (0.31) 17.17 (1.90)

Alkanes, Methyl C-Mapped

3c *3-methylpentane 3MePe 2.74 (0.14) 14.09 (0.57) 5.15 (0.48)

4c *2,3-dimethylpentane 23DiMePe 2.22 (0.11) 13.75 (0.32) 6.19 (0.45)

2c *2,3-dimethylbutane 23DiMeBu 1.96 (0.03) 12.50 (0.22) 6.37 (0.20)

5c *2,3,4-trimethylpentane 234TriMePe 1.20 (0.04) 9.94 (0.21) 8.30 (0.47)

aSelf-diffusion coeücients are in 10−9 m2 s−1, and the acceleration factor is represented as α; standard deviations between the individual Cartesian
components are shown in parentheses. The asterisked molecules with their respective mapping scheme have been added in this contribution; the
others were part of the test set of ref 24 previously.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c00944
J. Phys. Chem. B 2022, 126, 3737−3747

3739

32



characterized as the ratio of diffusion coeücients of the CG and
AA models. The diffusion coeücients of the AA models range
from 0.076× 10−9m2 s−1 (33DIP25DMP) to 2.74× 10−9m2 s−1

(3MePe). The scaling factor ranges from 1.64 (Neo) to 21.67
(33DIP25DMP) (Table 2). The methyl C-mapped alkanes
show a larger acceleration than their COM-mapped equivalents.

■ ROUGHMOB METHOD

To determine the molecular roughness difference ΔR, hard
molecular surfaces of the AA and the CG molecules are defined
based on the nonbonded interactions. For the all-atom system,
the radius of an atom is defined as half the size of its Lennard-
Jones size parameter σ. The radius of the CG bead is taken from
the tabulated CG potentials (Supporting Information) as half
the radius where the potential first equals zero, thus as the
effective hard sphere radius. A Fibonnaci grid of ngrid = 2501 rays
is superposed on both the AA and the CG molecules. The
Fibonacci method provides for an almost uniform distribution of
ray directions. The molecular CG surface is thus described by
vectors of equal length rCG, and the surface of the AA surface is
described by vectors or different length rAA. The molecular
roughness difference is then calculated according to eq 3 as the
average absolute deviation of the AA surface from the CG
surface.24

R
n

r r
1

grid i

n

i

1

AA
( )

CG

grid∑Δ = | − |
= (3)

Figure 2 shows the acceleration of dynamics plotted against
the molecular roughness difference for both the seven
hydrocarbon systems used originally to develop the RoughMob
method24 and the newly added molecules, broadening the size

range from C5 to C13 molecules and including different
mapping schemes. 2,3-Dimethylpentane (4), mesitylene (13),
and the methyl-C mapped alkanes (2c,3c,4c,5c)−all shown in
green−could be predicted with the linear fit function derived in
ref 24. The predicted acceleration factor of 2MeHx (blue, 8) is
too high, and the predicted acceleration factors of Neo (1),
33DE24DMP (7), and 33DIP24DMP (10) are too low.
Especially for larger near-spherical molecules like
33DE24DMP and 33DIP24DMP, and under the assumption
that the radius of the coarse-grained bead is at least as large as the
narrowest part of the AA surface, the value of the molecular
roughness difference is mainly limited by the ups and downs on
the AA surface caused by H atoms. The molecular roughness
difference thus does not properly account for the increasing size
of the molecule, while it is known from different studies, that an
increasing molar mass or number of atoms that are coarse-
grained into one CG bead increases the acceleration of dynamics
upon coarse-graining.25−27 In the following, a means to include
the effects of an increasing size or a larger asphericity into the
RoughMob method is presented by changing from the
molecular roughness difference ΔR as key descriptor to the
prediction of the acceleration factor α with volumes that are
derived using the molecular roughness difference.

Roughness Volumes. The molecular roughness difference
is a comparative quantity, which quantifies the deviation
between the CG molecular surfaces and the AA molecular
surface in absolute terms. The calculation uses vectors, resulting
in one length parameter, that carries the information on how
much the roughness changes upon coarse-graining. In order to
extend the method to a broader range of sizes and/or densities,
the calculation framework is expanded from rays to volumes.
This includes the information on where the change in molecular
roughness takes place.
The volume is divided in

(i) Active volume, including the shell volume Vshell and the
overlap volume Voverlap: The volume in which the change
in molecular roughnessΔR takes place. This is a spherical
shell whose thickness is defined by ΔR.

(ii) Passive volume, composed of the inner Vin and the outer
passive volume Vout: The volume that is not directly
affected by the change in molecular roughness but has an
inûuence on its impact on the acceleration.

The shell volumeVshell is described by a spherical shell with the
thickness of 2ΔR. The change of the molecular roughness
happens on the surface of themolecules. To describe this surface
and determine the inner and outer radii of the shell, the average
radius of the AA model rA̅A is calculated as the arithmetic mean
of rAA

(i) . The spherical shell of the active volume is then defined as

V r R r R
4

3
(( ) ( ) )shell AA

3
AA

3π= ̅ + Δ − ̅ − Δ
(4)

whereΔR is the molecular roughness difference from above (eq
3).
Both an rCG higher and lower than rA̅A can result in the same

ΔR and, thus, thickness of the shell of the active volume. This
behavior is preserved by making the middle radius of the shell
purely dependent on the AA model, while the thickness of the
shell is dependent on both the CGmodel and the AAmodel. For
both the COM and the methyl C-mapping schemes, rA̅A is
calculated with the center of the rays being at the center of mass
of the molecule. The double of the outer radius of the shell 2(rA̅A
+ ΔR) is often larger than the average distance between the

Figure 2. Acceleration factor against molecular roughness difference;
gray: original seven, green: absolute deviation of predicted α equal to or
less than 1 from calculated α; red: predicted α lower than calculated α;
blue: predicted α higher than calculated α; diamond: alkane; circle:
aromatic molecule; triangle: methyl C-mapped alkane; numbers see
Table 2.
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centers of mass of two molecules. Their shell volumes then
overlap. This is quantified in the overlap volume Voverlap. The
RoughMob method is based on the idea that a larger roughness
decreases the mobility of the molecules. The shell volume is the
volume in which the molecular roughness is localized. In the
overlap volume, the molecules can be pictured as interlocking
gears. A loss in the molecular roughness in this region should be
especially dominant for the acceleration of dynamics here. The
overlap volume is thus added to the shell volume.
As can be seen in Figure 3, the passive volume is split further

into the inner passive volume Vin and the outer passive volume

Vout. Within the RoughMob method, the roughness is
interpreted as providing an actual mechanical friction which is
reduced as a result of coarse-graining. Staying in the mechanical
picture, more space between the molecules should weaken this
effect. Thus, a larger outer volume is expected to lower the
impact of the change in molecular roughness and the scaling
factor of dynamics α. The inner passive volume can be
interpreted as the excluded volume that has to be moved
geometrically unchanged in both the AA model and CG the
model. It provides a means for including the increasing sizes of
the molecules that is not covered in a change in the surface. The
accelerations are expected to increase with an increasing inner
volume. All volumes are calculated on a per-molecule basis.
Thus, the different volumes add up to the total volume per
molecule, as shown in eq 5.

V

n
V V V V

mol
in shell overlap out= + − +

(5)

All volumes depend on ΔR, which is determined numerically
from the molecular geometry and without any simulation. For
the calculation of Vshell, see eq 4. The inner volume is calculated
analytically as

V r R
4

3
( )in AA

3π= ̅ − Δ
(6)

The outer volume is determined numerically using a Monte
Carlo algorithm. A mesh of 5000 random points npoints is
imposed over a (8 Å)3 cubic cell with at least a 10 Å distance to
the simulation box boundaries. For each point, the shortest
distance to a nearby center of a molecule is calculated. If the
distance is larger than rA̅A + ΔR, the point is associated with Vout

and counted to nout. The outer volume per molecule can then be

calculated from the volume of the simulation box and the
number of molecules simulated as shown in eq 7. The
calculation is repeated with random points until the average of
n

n

out

points

changes by less than 0.001 Å3 but for at least 10 times.

V
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n

V

n
out

out

points

box

mols

= ·
(7)

Then, the overlap volume per molecule can be calculated
using eq 8.

V r R
V

n
V

4

3
( )overlap

mol
outAA

3
ikjjjjj y{zzzzzπ= ̅ + Δ − −

(8)

Prediction of the Scaling Factor. Different combinations
to predict the scaling factor from the active and passive volumes
have been tried. Details on different combinations are included
in the Supporting Information. The most suitable proved to be
the one shown in eq 9. In this approach, the volumes are
separated in an active termA · (Vshell +Voverlap) and a passive term

( )B exp
V

V

in

out

· . The passive term resembles the free volume

theory,47−49 where a moving or so-called jumping unit and the
free volume are related to the diffusion coeücient. However, like
the molecular roughness difference, the passive volume exists
purely as a comparative parameter between a CG and a parent
model and is thus not correlated to the diffusion coeücient of
one of the models but to the acceleration factor.

A V V B
V

V
C( ) exppred shell overlap

in

out

ikjjjjj y{zzzzzα = · + + · +
(9)

The parametersA, B, andC are determined simultaneously via
a least-squares fit using the scaling factor α, the shell volume
Vshell, the overlap volume Voverlap, the inner passive volume Vin,
and the outer passive volume Vout as calculated from the AA and
CG simulations.

■ RESULTS AND DISCUSSION

Figure 4 shows the predicted scaling factor αpred plotted against
the scaling factorα calculated as the ratio of diffusion coeücients
from the CG and the AA simulations (eq 1). The dashed line
indicates ideal prediction. The acceleration factors αpred are
predicted with eq 10, which is determined via a least-squares fit
using all the systems presented in this work. All tested sizes and
mapping schemes as well as both aliphatic and aromatic
molecules are included and reach a good linear correlation with a
correlation coeücient of R2 = 0.96. Table 3 shows α and αpred as
determined from eq 10, as well as the absolute and the relative
error.

V V
V

V

1

11.51 Å
( ) 0.837 exp 10.61pred shell overlap

in

out
3

ikjjjjj y{zzzzzα = · + + · −
(10)

To understand the contributions of the different roughness
volumes, Figures 5−8 show the acceleration factor plotted
against different volume terms. Changing from the raw
molecular roughness difference to using the active volumes
(Vshell + Voverlap) already accounts for some part for the larger size
of 33DE24DMP (7) and 33DIP24DMP (10) as can be seen
when comparing Figure 2 and Figure 5. The fitting of 2-
methylhexane (blue, 8), a more asymmetrical molecule, is
improved. The alkanes in the C6 to C8 range show a good linear

Figure 3. Scheme of two molecules and their shell volume, overlap
volume, inner passive volume, and outer passive volume; the dashed
line is the average radius of the molecular all-atom surface rA̅A; the solid
lines are the outer shell radius rA̅A +ΔR and the inner shell radius rA̅A−
ΔR.
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correlation. However, the aromatic molecules (circles, 11, 12,
13) are more separated from the alkanes (diamonds).
The passive inner volume further increases the contribution of

the larger sizes of 33DE24DMP (7) and 33DIP24DMP (10)
(Figure 6).
The passive outer volume is especially low for the aromatic

molecules (11,12,13), decreasing the effect of the separation of

the two species introduced by the active volume (Figure 7). Its
effect is the least systematic.
The differences within the inner passive volume are larger

than the ones within the outer passive volume, and they have a

larger impact on the passive volume term ( )B exp
V

V

in

out

· .

Figure 4. Predicted acceleration factor against simulated acceleration
factor; gray, diamond: C6 and C8 alkanes; gray, circle: C6 and C8
aromatics; blue: 2-methylhexane; green, diamond: 2,3-dimethylpentane;
green, circle: mesitylene; red: C5, C11, and C13 alkanes; triangle, green:
methyl C-mapped alkane; gray, dashed: scaling factor as calculated from
the diffusion coeücients.

Table 3. Acceleration Factor, Predicted Acceleration Factor,
and Absolute and Relative Error of Predicted Acceleration
Factor

system α αpred abs error rel error (%)

alkanes, COM-mapped

Neo 1.64 0.08 1.56 94.9

23DiMeBu 2.78 3.17 0.38 13.8

3MePe 4.10 3.81 0.29 7.1

23DiMePe 4.75 5.57 0.82 17.2

234TriMePe 6.09 7.98 1.89 31.1

3EtHx 10.33 10.42 0.09 0.8

33DE24DMP 11.40 13.11 1.71 15.0

2MeHx 11.66 12.45 0.79 6.8

25DiMeHx 17.65 15.71 1.94 11.0

33DIP24DMP 21.67 20.82 0.85 3.9

aromatic molecules, COM-mapped

Bz 3.37 2.11 1.26 37.4

EtBz 10.49 9.24 1.25 11.9

Mesi 17.17 16.32 0.85 4.9

alkanes, methyl C-mapped

3MePe 5.15 4.81 0.33 6.4

23DiMePe 6.19 7.16 0.97 15.7

23DiMeBu 6.37 6.14 0.22 3.5

234TriMePe 8.30 10.18 1.89 22.7

Figure 5. Acceleration factor against active volumes; gray, diamond: C6
and C8 alkanes; gray, circle: C6 and C8 aromatics; blue: 2-
methylhexane; green, diamond: 2,3-dimethylpentane; green, circle:
mesitylene; red: C5, C11, and C13 alkanes.

Figure 6. Acceleration factor against inner passive volume; gray,
diamond: C6 and C8 alkanes; gray, circle: C6 and C8 aromatics; blue: 2-
methylhexane; green, diamond: 2,3-dimethylpentane; green, circle:
mesitylene; red: C5, C11, and C13 alkanes.

Figure 7. Acceleration factor against outer passive volume; gray,
diamond: C6 and C8 alkanes; gray, circle: C6 and C8 aromatics; blue: 2-
methylhexane; green, diamond: 2,3-dimethylpentane; green, circle:
mesitylene; red: C5, C11, and C13 alkanes.
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Combining the inner and outer volume keeps the necessary large
inûuence of the size of the molecules (7 and 10) but decreases
the loss of precision for the C6 to C8 alkanes that is caused by
the introduction of the inner passive volume.

Table 4 shows the values of the active and passive volumes, as
well as the active volume termA · (Vshell +Voverlap) and the passive

volume term ( )B exp
V

V

in

out

· . The active volume term is at least 1.81

times (33DIP24DMP) up to 13.8 times (25DiMeHx) larger
than the passive term, emphasizing the interpretation of the
passive volume term as a correction term needed to account for
different impacts of the molecular roughness on the acceleration
of dynamics upon coarse-graining.

Different Mapping Schemes. Both the predicted scaling
factor αpred and the calculated scaling factor α are always higher
for the methyl C-mapped model (Table 5). Especially
234TriMePe and 3MePe show very close values for the
differences of the acceleration factors. Since rA̅A does not change
with a different mapping scheme, all changes in the values of the
volumes can be traced back to the difference in the molecular
roughness differenceΔR. The increase inΔR can be caused by a
different radius of CG bead rCG and by different placing of its
center at the methyl carbon atom and the center of mass of the
AA molecule, respectively. The radius of the CG bead is
determined from the tabulated CG potential as the effective hard
sphere radius. The potential is derived via the iterative
Boltzmann inversion where the potential is updated iteratively
until the RDF of the CG model matches the RDF of the parent
atomistic model. For differentmapping schemes, the RDFs differ
and thus the radii of the CG beads. However, 23DiMeBu has the
lowest change in rCG but the highest change in the scaling factor.
This indicates that the change in the acceleration factor is mainly
caused by the different centers of the CG bead, thus the distance
between the center of mass and the mapped carbon atom, used
for the calculation of ΔR. For a given density, both Vshell and
Voverlap increase withΔR, increasing the total active volume. The
inner volume and the outer passive volume both decrease with
an increasing ΔR. However, while a smaller Vout actually
increases the passive volume term, a smaller Vin decreases it. The
main part of the difference in the acceleration factor is due to the
increase in the active volume. The highest increase in both ΔR
and α is observed for 23DiMeBu, which has both the smallest
scaling factor and the smallest molecular roughness difference in
the COM-mapped model (Tables 4 and 2). It is the only
molecule (out of the four coarse-grained with two mapping
schemes) with a butane chain as the main chain, while the other
three systems have a pentane chain as the longest chain. The
placement of the CG bead on the second carbon chain atom,

Figure 8. Acceleration factor against the exponential function of the
ratio of inner and outer passive volumes; gray, diamond: C6 and C8
alkanes; gray, circle: C6 and C8 aromatics; blue: 2-methylhexane; green,
diamond: 2,3-dimethylpentane; green, circle: mesitylene; red: C5, C11,
and C13 alkanes.

Table 4. Systems, Molecular Roughness Difference, Active Volume Term, Passive Volume Term, Active Roughness Volume,
Overlap Volume, Inner Passive Volume, and Outer Passive Volumea

system ΔR A(Vshell + Voverlap)
B

V

V
exp in

out

ikjjjjj y{zzzzz·
Vshell Voverlap Vin Vout

alkanes, COM-mapped

Neo 0.42 7.80 2.90 85.3 4.4 58.1 46.8

23DiMeBu 0.52 11.01 2.77 113.7 13.0 59.9 50.0

3MePe 0.58 12.35 2.07 123.4 18.7 52.4 57.9

23DiMePe 0.59 13.88 2.30 140.6 19.1 62.0 61.3

234TriMePe 0.61 15.49 3.10 156.4 21.9 71.1 54.3

3EtHx 0.75 18.92 2.11 186.4 31.2 54.7 59.0

33DE24DMP 0.55 17.28 6.45 176.0 22.8 115.7 56.7

2MeHx 0.92 21.38 1.68 203.9 42.1 34.3 49.2

25DiMeHx 0.97 24.54 1.78 232.1 50.3 37.6 49.7

33DIP24DMP 0.56 20.25 11.19 202.9 30.0 139.8 53.9

aromatic molecules, COM-mapped

Bz 0.51 9.12 3.61 91.8 13.1 41.3 28.3

EtBz 0.77 17.10 2.75 163.5 33.3 39.4 33.1

Mesi 0.97 23.95 2.99 221.7 53.9 33.6 26.4

alkanes, methyl C-mapped

3MePe 0.62 13.34 2.09 132.2 21.3 49.8 54.5

23DiMePe 0.65 15.38 2.39 154.5 22.4 57.8 55.0

23DiMeBu 0.62 13.68 3.07 137.7 19.8 52.4 40.3

234TriMePe 0.67 17.49 3.30 173.7 27.6 65.8 47.9

aVolumes are in Å3.
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compared to the third for pentane chains, thus causes a larger
deviation from the center of mass.
Testing of Predictiveness. To test the quality of the

prediction

(i) the distribution of the regression parameters A, B, andC is
estimated with a residuals-resampling bootstrap

(ii) nine out of 17 models are randomly picked to fit the
regression model and predict the scaling factors of the
remaining eight models

(iii) the 12 models with the smallest acceleration factors are
used to predict the scaling factor of the five models with
the highest acceleration factor.

To estimate the distribution of the regression parametersA, B,
and C, a residuals-resampling bootstrap method is used.50,51

From the least-squares fit of active volumes and the passive
volumes to α according to eq 9, the predicted values αpred and the
residuals (Ri) are saved. Then, 5000 sets of synthetic data are
generated by adding residuals Rrandom randomly drawn from Ri to
the fitted values αboot = αpred + Rrandom. The volumes are refitted
onto αboot to generate new sets of the regression parameters.
From the distributions, for each parameter, a confidence interval
is determined as the two values between which the parameter
lies with a 90% probability. Figure 9 shows the predicted
acceleration factors with the error estimates resulting from the
confidence interval of each parameter separately. Both A and B
are prefactors within the active and passive terms, respectively,
while C is an added constant. For the latter, the absolute error is
thus independent of the roughness volumes, thus causing large
relative errors for models with a small acceleration such as Neo
(Table 3 and Figure 9(c)). The uncertainty caused by the
distribution of the prefactors A and B increases with an
increasing active volume and an increasing passive volume ratio,
respectively. The uncertainty of A mostly causes larger errors in

αpred than B. The estimated distribution of B only causes small
error bars with the exception of 33DE24DMP and 33DE24DIP,
both shown in red, that have the largest passive terms

( )B exp
V

V

in

out

· .

In the first test, nine systems are picked randomly and used to
predict the acceleration factor of the remaining eight systems.
This is repeated 5000 times. Table 6 shows the average absolute
deviation of the so predicted αpred from the calculated α, the
relative deviation, and the average deviation including the sign of
the deviation with a positive sign stating that the predicted
acceleration is too high. The highest average absolute deviation
can be observed for 33DIP24DMP with 4.84, while the smallest
molecule Neo has the highest relative deviation with 123.4%.
Here, the average absolute deviation (2.03) is equal to the value
of the average deviation (−2.03), meaning, in all samples, the
predicted acceleration for Neo is too low. Since the absolute
deviation is larger than the calculatedα, inmany cases, a negative
acceleration factor was predicted for Neo. This is physically
impossible. The methyl C-mapped 23DiMeBu has the lowest
average error (0.40), and 3EtHx has the lowest relative error
with 4.8%. Out of the 17 systems, only four, namely Neo,
33DIP24DMP, 25DeMeHx, and 33DE24DMP, do have an
average deviation greater than 2. The latter three all have a
calculated α larger than 10. The overall average error of all
predictions is 1.52, and the overall relative deviation is 22.9%.
Out of the 17 systems, six show a deviation larger than 20%,
while the remaining 11 are below 20%.
In a second test, the 12 systems with the lowest α, ranging

from 1.64 to 10.49, are used to generate the linear fit according
to eq 9. The linear fit function with A = (14.35 Å3)−1, B = 0.55,
and C = −7.03 is then used to predict αpred for the remaining 5
systems which show scaling factors from 11.4 to 21.67 in the

Table 5. Differences between the Methyl C-Mapped Minus the COM-Mapped Models of the Calculated and Predicted
Acceleration Factor, the Molecular Roughness Difference, the Active Volume Term, the Passive Volume Term, the Center of the
Two Mapping Schemes (Bead Center), and the Radius of the Coarse-Grained Beada

system α αpred ΔR active term passive term bead center rCG

234TriMePe 2.21 2.20 0.066 2.00 0.20 0.55 0.09

23DiMeBu 3.58 2.97 0.106 2.68 0.30 0.84 0.02

23DiMePe 1.44 1.59 0.057 1.50 0.09 0.58 0.24

3MePe 1.05 1.01 0.040 0.99 0.02 0.44 0.10
aDistances are in Å.

Figure 9. Predicted acceleration factor against the simulated acceleration factor; gray, diamond: C6 and C8 alkanes; gray, circle: C6 and C8 aromatics;
blue: 2-methylhexane; green, diamond: 2,3-dimethylpentane; green, circle: mesitylene; red: C5, C11, and C13 alkanes; triangle, green: methyl C-mapped
alkane; gray, dashed: simulated scaling factor; (a) error with Amin = (10.4 Å3)−1 and Amax = (12.9 Å3)−1; (b) error with Bmin = 0.66 and Bmax = 1.02; (c)
error with Cmin = −12.3 and Cmax = −8.8.
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simulations. As can be seen in Figure 10, the prediction generally
underestimates the actual scaling factor by 3 to 24%. The values

of the predicted acceleration factors depend on the model
parameters A, B, and C and thus on the set used for the least-
squares fit. The low α set used for generating the linear fit neither
includes 33DE24DMP (7) nor 33DIP24DMP (10), the
molecules providing the motivation to look for a means to
include different sizes and density effects. These C11- and C13-
molecules are the systems that most strongly differ from a linear
behavior ofΔR against α (Figure 2), that also differ from a linear
behavior of the active volume against α (Figure 6), and that
show the largest difference in the value of the passive term
compared to the other systems (Figure 8). Even without

including these molecules, the RoughMob method provides a
reasonable prediction for a broad range of hydrocarbons with
different sizes and shapes. It is also important to note that
2MeHx (8) and 33DE24DMP (10) have very close predicted
scaling factors, besides having very different molecular rough-
ness differences and not being included in the set for the least-
squares fit.

■ CONCLUSION

We demonstrated that the RoughMob method, when extended
by the concept of the region where roughness actually acts, can
be used to get a good estimate of the acceleration factor of
dynamics upon coarse-graining for a broad range of hydro-
carbons. We are able to describe quantitatively hydrocarbon
ûuids with 5 to 13 carbon atoms, whose coarse-graining into a
single bead results in an artificial mobility increase by factors
between 1.64 and 21.7. The absolute average error of the
predicted acceleration is 1.00 with a maximum of 1.94 for 2,5-
dimethylhexane. The average relative error of the predicted
acceleration is 17.9% with a maximum of 94.9% for the molecule
with the lowest α neopentane. Due to the large relative error, the
method is not recommended for the quantitative determination
of diffusion coeücients in a low αpred range.
The prediction of the acceleration factor is done by a

numerical comparison of the geometrical information on the all-
atom and coarse-grained systems. Once the ûuid structure of the
atomistic system is equilibrated, the model can be coarse-
grained by, e.g., the iterative Boltzmann inversion, and the
geometrical information can be derived from a single frame of
the atomistic trajectory and the nonbonded potentials of the
models. Most information is already derived from single-
molecule geometries, i.e., without any simulation. A short
simulation run is only needed to determine the outer passive
volume. Changing the geometric descriptor, which is correlated
with the acceleration upon coarse-graining, from the previous
used roughness difference24 to different parts of the molecular
volume, allows us to broaden the range of molecular sizes and
shapes. The method now reûects that larger more spherical
molecules (for example, 33DE24DMP) and smaller aspherical
molecules (for example, 2MeHx) can show the same
acceleration factor. While the accuracy of the prediction within
the original C6 to C8 range for hydrocarbons is slightly
decreased, both aliphatic and aromatic molecules can still be
fitted jointly. All systems have been simulated under ambient
conditions. The recalibration of CG models for different state
points is a known requirement. However, it is to be expected,
that the effective (hard-core) radius of a coarse-grained bead will
not change significantly, and thus, the shell volume will not
change either. In contrast, the acceleration factor is known to
decrease at higher temperatures. The lower density will likely
increase the outer passive volume and thereby the predicted
scaling factor. It has yet to be tested if this accounts for the
change in the acceleration factor with temperature at constant
pressure. A side result is that most of the difference of the
acceleration and its prediction for different mapping schemes is
not caused by a change in the size of the coarse-grained bead but
by the change of its location within the molecule.
We are optimistic that the simplicity of the RoughMob

method allows the application to a broad range of chemical
materials as the needed geometrical parameters can be derived
independent of the chemical nature. The RoughMob method
relies on the comparability of the surfaces of the all-atom and the
coarse-grained models. To define the molecular surfaces, we

Table 6. Average Absolute Deviation, Average Deviation, and
Relative Deviation of the Predicted Acceleration Factor αpred

from α out of 5000 Samples with Random Test Sets of Nine
Systems to Predict the Remaining Eight

system abs deviation av deviation rel deviation (%)

alkanes, COM-mapped

Neo 2.03 −2.03 123.4

23DiMeBu 0.61 0.40 21.9

3MePe 0.46 −0.29 11.3

23DiMePe 0.91 0.90 19.2

234TriMePe 1.94 1.94 31.8

3EtHx 0.50 0.02 4.8

33DE24DMP 2.13 1.54 18.7

2MeHx 1.17 0.87 10.0

25DiMeHx 2.87 −2.87 16.3

33DIP24DMP 4.84 −3.71 22.3

aromatic molecules, COM-mapped

Bz 1.71 −1.70 50.7

EtBz 1.45 −1.45 13.8

Mesi 1.55 −1.51 9.0

alkanes, methyl C-mapped

3MePe 0.44 −0.33 8.6

23DiMePe 1.04 1.03 16.7

23DiMeBu 0.40 −0.33 6.3

234TriMePe 1.93 1.93 23.3

Figure 10. Predicted acceleration factor against the simulated
acceleration factor; gray, diamond: C6 and C8 alkanes; gray, circle: C6
and C8 aromatics; blue: 2-methylhexane; green, diamond: 2,3-
dimethylpentane; green, circle: mesitylene; red: C5, C11, and C13
alkanes; triangle, green: methyl C-mapped alkane; gray line: simulated
acceleration factor; unf illed: systems used for fit of eq 9; f illed: predicted
systems.
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used the effective (hard-core) radii derived from the nonbonded
potentials. A consistency between the models provided other
definitions of the molecular surfaces based on the potentials or
energies are possible and valid or may even be necessary. Of
particular interest for future work will be the inûuence of
structural properties beyond the monomeric level, including
polar molecules and mixtures of beads with different roughness
parameters. Using the iterative Boltzmann inversion with
pressure correction for coarse-graining ensures matching
distribution functions and densities and thereby matching
average distances between the beads and matching coordination
numbers. Further investigation is needed to test, if all or only one
of these structural characteristics has to be matched to allow the
usage of our method. The latter would ease the transferability of
the method to other, possibly even not structure based, bottom-
up coarse-graining methods.
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4.3 Predicting the artificial dynamical acceleration of binary hydrocarbon
mixtures upon coarse-graining with roughness volumes and simple
averaging rules
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ABSTRACT

Coarse-grained (CG) molecular models greatly reduce the computational cost of simulations allowing for longer and larger simulations, but
come with an artificially increased acceleration of the dynamics when compared to the parent atomistic (AA) simulation. This impedes their
use for the quantitative study of dynamical properties. During coarse-graining, grouping several atoms into one CG bead not only reduces
the number of degrees of freedom but also reduces the roughness on the molecular surfaces, leading to the acceleration of dynamics. The
RoughMob approach [M. K. Meinel and F. Müller-Plathe, J. Phys. Chem. B 126(20), 3737–3747 (2022)] quantifies this change in geometry
and correlates it to the acceleration by making use of four so-called roughness volumes. This method was developed using simple one-bead
CG models of a set of hydrocarbon liquids. Potentials for pure components are derived by the structure-based iterative Boltzmann inversion.
In this paper, we find that, for binary mixtures of simple hydrocarbons, it is sufficient to use simple averaging rules to calculate the roughness
volumes in mixtures from the roughness volumes of pure components and add a correction term quadratic in the concentration without the
need to perform any calculation on AA or CG trajectories of the mixtures themselves. The acceleration factors of binary diffusion coefficients
and both self-diffusion coefficients show a large dependence on the overall acceleration of the system and can be predicted a prioriwithout the
need for any AA simulations within a percentage error margin, which is comparable to routine measurement accuracies. Only if a qualitatively
accurate description of the concentration dependence of the binary diffusion coefficient is desired, very few additional simulations of the pure
components and the equimolar mixture are required.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0200790

I. INTRODUCTION

A. Context
Fluidmixtures are present in industrial and biological processes

and in our daily life. They range from mixtures of small molecules,
e.g., as solvents/matrix, to polymer solutions and blends or mem-
branes and proteins in a solvent. When experiments are difficult or
expensive or simply time-consuming to perform, molecular dynam-
ics (MD) simulations are a powerful and widely used tool to enable
or accelerate the study of mixtures.1–8 However, already a binary
mixture of, e.g., hydrocarbons requires a large amount of simulation

to test different possible compositions, which increases drastically if
there are more different components to choose from. To decrease
the computational costs required and thus further quicken the study
of mixtures, coarse-grained (CG) simulations can be and already
have been widely used for them.9–20 Molecular mobilities and all
ensuing dynamical properties, however, are usually too fast when
compared to the reference (atomistic system or experiment).21–24

This limits the applicability of coarse-grained models since the
knowledge of transport properties, such as the diffusion coefficient
in fluid mixtures, can be a prerequisite for the design of efficient
industrial process plants or the comprehension of biological pro-

J. Chem. Phys. 160, 174108 (2024); doi: 10.1063/5.0200790 160, 174108-1
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cesses, such as transport through membranes.25–30 Therefore, the
role of the dynamical acceleration upon coarse-graining of sim-
ple hydrocarbon mixtures is not only of interest for understanding
these molecules and systems themselves but also allows us to gain
insights and methodologies that can be potentially scaled up and
applied to more complex systems. Hydrocarbon mixtures are used
as chemical feedstock for industrial processes, as solvents, or in fuel
blends,31,32 and simple hydrocarbons are the basic building blocks
of more complex organic compounds, such as polymers. The size
of the hydrocarbons coarse-grained into one bead per molecule,
as used within this work, reflects the typical size of a polymer
bead.

Several methods aimed at coarse-grained models with accurate
dynamics have been proposed, such as using data-driven approaches
or adding correction terms to the simulation trying to account for
the factors behind the artificial acceleration.33–36 Instead of aim-
ing to include the dynamical properties into the target properties
during coarse-graining, which may worsen structural and thermo-
dynamic properties and the computational efficiency, one may try
to predict the acceleration and rescale the dynamics (or time) of
the coarse-grained simulation to match that of the all-atom simula-
tion or experiment.22,37–41 One common way to express the change
of dynamics is the scaling or acceleration factor α calculated as the
ratio of the all-atom (DAA) and coarse-grained (DCG) diffusion
coefficients,22,37,40

α = DCG/DAA. (1)

Predicting this acceleration factor a priori would make it possi-
ble to estimate the atomistic (and thus hopefully “true”) diffusion
coefficients using only the computationally much more feasible
coarse-grained simulation. In our previous work, we have con-
nected the change of the mobility of simple hydrocarbons upon
coarse-graining an AA model into one CG bead per molecule to
the geometrical change of the roughness upon coarse-graining. The
RoughMob (roughness and mobility) method was originally devel-
oped for single component hydrocarbon liquids with 5–13 carbon
atoms that were coarse-grained via Iterative Boltzmann Inversion
(IBI) into one bead per molecule.22,42

This paper extends RoughMob to liquid mixtures and ana-
lyzes the acceleration of dynamical properties, specifically of the
self-diffusion coefficients and the binary diffusion coefficient, in
binary alkane mixtures at varying compositions. It explores the pre-
diction of AA diffusion coefficients from CG simulations, using
as few AA simulations, coarse-graining processes, and numerical
calculations as possible. Therefore, it is crucial to analyze the behav-
ior of the different alkanes in mixture in both the AA and CG
representations.

B. Scope of the present investigation
Iterative Boltzmann inversion is a structure-based coarse-

graining approach, where the nonbonded potential is constructed
iteratively to match the radial distribution function (RDF) of the CG
simulation to the corresponding atomistic reference function. Thus,
while some structural properties are preserved (the RDF and ideally
the density), on a smaller scale, some geometrical information is lost.
The molecular surface of a polyatomic (AA) molecule loses some of
its roughness upon coarse-graining. This loss can be expressed as a

FIG. 1. Simulated molecules, their names, chemical structure, abbreviation, and
color; colors from left to right: green, orange, blue, purple, and red; grayscale:
from light to dark gray.

numerically determined quantity, which we called molecular rough-
ness difference �R. For a small size range of spherical hydrocarbons
with six (C6) to eight (C8) carbon atoms, the acceleration scaled
linear with the molecular roughness difference �R.22 Broadening the
molecular size and asphericity range required the introduction of
four roughness volumes that, e.g., account for an increasing size of the
molecules, which affect the acceleration of dynamics upon coarse-
graining.42 Details on the definition and purpose of the individual
roughness volumes are given in Sec. II F 3. The roughness volumes are
correlated with the acceleration factor by a fitting function, which
allows us to predict an estimate of the acceleration αpred. The present
study uses five alkanes that have been part of the development pro-
cess of the RoughMob method for pure, apolar liquids. They are
illustrated in Fig. 1.

The four alkanes 2,3-dimethylbutane, 2,3,4-trimethylpentane,
3-ethylhexane, and 2,5-dimethylhexane are simulated in every
possible binary combination (six combinations) and form mix-
ture group A (see Table I). They cover a size range of six to
eight carbon atoms (86.18–114.23 g/mol) with atomistic diffu-
sion coefficients between 1.15 ×10−9 and 1.91 × 10−9 m2 s−1 and
acceleration factors α from 2.80 to 17.53 (Table II). We addi-
tionally simulate 2,3-dimethylbutane with a heavier version of

TABLE I. Components 1 and 2 of the different mixtures and the total number of
molecules in each simulation.

Mixture group A

DiMeBu TrMePe 1000 molecules
DiMeBu EtHx 1000 molecules
DiMeBu DiMeHx 1000 molecules
TriMePe EtHx 1000 molecules
TriMePe DiMeHx 1000 molecules
EtHx DiMeHx 1000 molecules

Mixture group B

DiMeBu DIPDMP 500 molecules
DiMeHx DIPDMP 500 molecules

J. Chem. Phys. 160, 174108 (2024); doi: 10.1063/5.0200790 160, 174108-2
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TABLE II. Self-diffusion coefficients in 10−9 m2 s−1 and the acceleration factor α of
the pure components as determined from simulations of Refs. 22 and 42; standard
deviations between the individual Cartesian components are shown in parentheses.

System DAA DCG α

DiMeBu 1.91 (0.03) 5.37 (0.05) 2.80 (0.07)
TrMePe 1.15 (0.01) 7.23 (0.09) 6.28 (0.12)
EtHx 1.72 (0.01) 18.43 (0.22) 10.74 (0.22)
DiMeHx 1.37 (0.02) 23.97 (0.31) 17.53 (0.46)
DIPDMP 0.075 (0.004) 1.63 (0.04) 21.83 (1.64)

3-ethylhexane (210.32 g/mol), where the mass of all C-atoms
is doubled. The fifth alkane, 3,3-diisopropyl-2,4-dimethylpentane
(DIPDMP), heavily relies on the use of roughness volumes to
yield a reasonable prediction of α. Compared to the other four
molecules, DIPDMP is larger (C13, 184.36 g/mol), its atomistic
and coarse-grained diffusion is slower, and the acceleration upon
coarse-graining is larger (α = 21.83). It is simulated in mixture
with DiMeBu and DiMeHx, the molecules that exhibit the slow-
est and largest acceleration out of the four small hydrocarbon
molecules. All concentrations of these two mixtures form mixture
group B.

Nonbonded potentials and roughness volumes of the five pure
components have already been determined in Refs. 22 and 42. If
binary mixtures are to be simulated at different concentrations, one
does not want to reparameterize the mixed potential for each of
them, which, in the case of IBI, would require at least a short AA
simulation to obtain target RDFs. Ideally, one would either use the
potentials of the pure components plus some mixing rules or, at
least, minimize the number of AA simulations needed. We therefore
first test using a simple combination rule to form themixed potential
for the mixtures. Second, we create onemixed potential more expen-
sively by applying IBI to an equimolar mixture, which is then used
for all other concentrations.

II. METHODS
A. Simulation details

The alkanes 2,3-dimethylbutane, 2,3,4-trimethylpentane,
3-ethylhexane, and 2,5-dimethylhexane are simulated in every
possible binary combination (six combinations). Additionally,
3,3-diisopropyl-2,4-dimethylpentane is simulated in mixture with
2,3-dimethylhexane and 2,5-dimethylhexane. Each of the eight
combinations is simulated at ambient conditions and in 11 different
compositions with mole fractions between x = 0.01 and x = 0.99
(Table III). Thus, 92 (88 mixtures, 5 pure) systems are simulated,
each composed of 1000 (500 for mixtures with DIPDMP) molecules
in total.

Molecular dynamics simulations (AA and CG) are performed
with the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS).43,44 To generate the initial AA configurations, the
molecules are distributed in a cubic simulation box (side length= 100 Å) using Moltemplate.45 After an energy-minimization with
a conjugated gradient algorithm, the molecular conformations and
orientations are randomized by Brownian dynamics at 900 K for
0.2 ns and with NVT dynamics with a Nosé–Hoover thermostat

TABLE III. Lengths of production runs in ns for all-atom and coarse-grained
simulations of different compositions (mole fractions x1).

x1 AA CG

0.01 and 0.99 40 100
0.02 and 0.98 40 100
0.05 and 0.95 40 100
0.10 and 0.90 30 50
0.25 and 0.75 20 50
0.50 20 50

for 0.5 ns (coupling time τt = 50 fs). The system is cooled down
to 298.18 K at 500 atm for 0.5 ns with NPT dynamics using a
Nosé–Hoover thermostat (τt = 50 fs) and Nosé–Hoover barostat
(τp = 500 fs). The pressure is decreased to 1 atm using the same
thermostat and barostat conditions for 0.5 ns.

Production and equilibration runs for both AA-MD and CG-
MD systems are carried out under isothermal–isobaric (NPT) con-
ditions at 1 atm and 298.18 K with both the Nosé–Hoover thermo-
stat (τt = 50 fs) and barostat (τp = 500 fs). Some CG-MD simulations
are additionally performed under NVT-conditions. Integration is
accomplished with a velocity-Verlet algorithm with time steps of
0.5 fs for both AA and CG simulations.

Periodic boundary conditions are applied in all three dimen-
sions. All systems are equilibrated for 10 ns with a time step of
�t = 0.5 fs, followed by production runs of at least 20 ns using
the same time step. The lengths of the production runs for the
AA and CG simulation and different compositions can be found in
Table III.

B. All-atom model
The fully flexible OPLS-AA force field is used to model AA

interactions.46 Nonbonded and bonded parameters are given in the
supplementary material. Both the atomistic nonbonded size σ and
nonbonded energy ε parameters are obtained by geometric com-
bination rules for interactions between unlike atoms. During the
simulations, energy and pressure are corrected by adding standard
long-range van der Waals corrections. Intramolecular nonbonded
interactions are evaluated for atoms separated by more than two
bonds. The potential is scaled down by 0.5 for the 1,4-intramolecular
interactions. Nonbonded interactions are calculated up to a cut-
off radius of 11 Å. The atomistic models contain no electrostatic
terms.

C. Coarse-grained model
Each molecule is mapped into one single CG bead positioned

at the center of mass of the AA molecule. The tabulated potentials
of the pure components have been derived by Iterative Boltzmann
Inversion (IBI) as part of the work in Refs. 22 and 42. They are tab-
ulated in the supplementary material. To simulate binary mixtures
of various compositions without the need to re-coarse-grain each
concentration via IBI, two approaches are tested. In the first, the
mixed potentials of all mixtures in mixture group A are modeled
by arithmetic combination rules [Eq. (2)] with the fitting parameter
c ranging from 0.1 to 0.9 in steps of 0.1 for each composition,47
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UA−B = c ⋅UA−A + (1 − c) ⋅UB−B. (2)

In the second approach, the mixed potential is directly derived
via IBI using VOTCA48 from an AA simulation of a 1:1 mixture, i.e.,
500 (250) molecules of either type. This potential is then used for
every concentration. The second potential overall matches the densi-
ties and radial distribution functions of all mixtures better compared
to the first (see Sec. III A and the supplementary material). Con-
sequently, we used the IBI approach in this work and recommend
its adoption for similar studies. This approach, while slightly more
expensive than the first, remains efficient, requiring only a short AA
simulation of a single composition to yield improved results across
all concentrations. Some additional information on the effects of dif-
ferent potentials on the dynamics is provided in the supplementary
material, adding insights into the potential magnitude of error when
other potentials are used. All mixtures in mixture group A (i.e., not

FIG. 2. Coarse-grained potentials for (a) pure 2,3-dimethylbutane (green line), pure
3-ethylhexane (blue line), and their mixed potentials (black line) and (b) pure 2,3,4-
trimethylpentane (orange line), pure 2,5-dimethylhexane (purple line), and their
mixed potentials (black line); mixed potentials generated by iterative Boltzmann
inversion for a 1:1 mixture solid and via combination rules according to Eq. (2)
with c ranging from 0.1 to 0.9 (dashed-dotted curves).

containing DIPDMP) with x1 equal to 0.25, 0.5, and 0.75 are addi-
tionally simulated under NVT conditions using the mixed potentials
generated with the combination rules. The CG potentials of the neat
alkanes and their mixed potentials for two combinations of mix-
ture group A are shown in Fig. 2, and the others are shown in
the supplementary material. During IBI, a simple pressure correc-
tion is applied,49 with an exception of the generation of the mixed
DiMeHx–DIPDMP, where correcting the pressure worsened the
mixing ability. The pure potentials and IBI generated potentials of
mixture group B are displayed in Fig. 3.

D. Dynamical properties
The dynamics of the individual species are characterized using

self-diffusion coefficients D1 and D2 (also referred to as tracer or
intradiffusion coefficient) according to Einstein’s equation from the
mean squared displacement (MSD) of the centers of mass of the
molecules. Minority components with low mole fractions suffer

FIG. 3. Coarse-grained potentials for (a) pure 2,3-dimethylbutane (green line),
pure 3,3-diisopropyl-2,4-dimethylpentane (red line), and their mixed potentials
(black line) and (b) pure 2,5-dimethylhexane (purple line), pure 3,3-diisopropyl-2,4-
dimethylpentane (red line), and their mixed potentials (black line); mixed potentials
generated by iterative Boltzmann inversion for a 1:1 mixture.
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from poor sampling as, e.g., for the 1:99 mixtures only ten molecules
(five molecules for mixtures with DIPDMP) of one component are
present. Therefore, the MSDs are calculated over the whole produc-
tion run, but the self-diffusion coefficients are only calculated from
the linear fit of the MSD against the time between 50 and 150 ps for
AA simulations and 100 and 300 ps for CG simulations.

In addition to the two self-diffusion coefficients of the compo-
nents, the mixtures can be characterized by a single system-specific
so-called binary diffusion coefficient D12 (also referred to as mutual
diffusion coefficient or interdiffusion coefficient). For binary mix-
tures, it can easily be calculated from MD simulations with Eq. (3)
using the mean squared displacement of the center of mass of
all molecules of one species rcomi . The binary diffusion coefficient as
calculated from species i requires an additional prefactor,

D
i
12 = lim

t→∞(xiMi)2( 1
x1M1

+ 1
x2M2

)2Nx1x2

6t
⟨(�rcomi )2⟩, (3)

with the total number of molecules N and the molecular
weights M1 and M2.50 The so-calculated diffusion coefficients are
Maxwell–Stefan diffusion coefficients. Fick diffusion coefficients can
be calculated from MS diffusion coefficients using the thermody-
namic factor. Details on the calculation of the binary (MS) diffusion
coefficient in MD simulations can be found in the supplementary
material. As momentum is conserved, calculations for species 1 and
2 yield the same binary diffusion coefficientD1

12 = D2
12 = D12. For the

calculation of D12, each time step only provides one rcom. The collec-
tive MSD can thus only be averaged over multiple time origins but
not over molecules, leading to a larger statistical uncertainty. The
binary diffusion coefficients are calculated in the range of 10–50 ps
(AA, 75–125 ps for mixture group B) or 20–100 ps (CG), respec-
tively. For AA simulations, the long production run is supplemented
by 15 runs of 2 ns with different random start velocities, while for the
CG simulations, four different production runs of 50 ns and 10 runs
of 10 ns are used. The center of mass position of the entire system is
subtracted in each time step to allow the linear fit in this short time
regime with only small MSD of the center of mass of the whole set
of molecules of one type.

The self-diffusion coefficient describes the motion of one
molecule of a specific type among all other molecules, including
the molecules of the same type. The binary diffusion coefficient
describes the collective motion of one type of molecules vs that
of the other species. At infinite dilution, when one molecule is
surrounded only by the other species, the self-diffusion coefficient
of this molecule and the binary diffusion coefficient are identi-
cal. Acceleration factors may be determined from both the self-
diffusion coefficients, αself ,1 = DCG

1 /DAA
1 , and the binary diffusion

coefficients, αbinary = DCG
12 /DAA

12 .

E. Structural properties
The potentials of the pure components have been generated

using IBI, a structure-based coarse-graining method, that iteratively
matches the radial distribution function (RDF or g) of the CGmodel
to the target distribution of the AA model. Thus, structural proper-
ties, the RDF and the density or volume per molecule, are used to
determine the quality of a CG model. For a comparison between the
CG model and the AA model, the radial distribution function of the

TABLE IV. All-atom radii and effective hard-sphere radii of CG beads in Å.

Atom/bead name Radius

C 1.75
H 1.25
DiMeBu 2.77
TrMePe 3.19
EtHx 3.37
DiMeHx 3.54
DIPDMP 3.46

centers of mass is used. An error function51 is calculated using the
following equation:

δg = ∫ rcut
0 ∣gCG(r) − gAA(r)∣ dr
∫ rcut
0 gAA(r) dr . (4)

We use rcut = 10 Å for all systems. This value always includes
the first solvation shell of the RDF, but is below the maximum posi-
tion of the second shell to emphasize the importance of the direct
neighbors within the RoughMobmethod. Including the second shell
usually lowers the error of the RDF. For binary mixtures, three
different δg can be calculated—two same species errors δg11 and
δg22 and onemixed species error δg12. To enable the simple compar-
ison of the systems regarding the quality of the structural properties,
we define a total error of RDF δgtotal as the average of the three
δg weighted based on the mole fraction present in the mixture,

δgtotal = x21 δg11 + x1x2 δg12 + x22 δg22

x21 + x1x2 + x22 . (5)

F. RoughMob method
1. Basics

The RoughMob method connects the change in the molec-
ular surface roughness (“Rough”) to the change in the mobility
(“Mob”) upon coarse-graining. The geometries of the molecules are
defined by the positions of the atoms or beads and their radii. We
define the radius of an atom as half its nonbonded size parameter
rAA = 0.5σii and the radius of a CG bead as half of the distance where
the tabulated CG potential first is equal to or below zero and thus the
effective hard-sphere radius. The values are listed in Table IV.

2. Molecular roughness difference

The molecular roughness difference �R is a comparative quan-
tity that is defined as the deviation between the molecular surface
of the all atom molecule and the molecular surface of the coarse-
grained molecule. The molecular surfaces are represented as spher-
ical numerical grids with the same number of points ngrid of a
Fibonacci grid that is superposed on both the AA and the CG sur-
face. When the center of mass of the molecule is placed at the origin
of a spherical coordinate system, �R can be calculated according to
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FIG. 4. Illustration of all shell volumes (part of active volumes) in a binary mixture;
different molecule types are represented by different colors.

Eq. (6) with r
(i)
AA and r

(i)
CG being the radial distance of the AA surface

points. Details of the calculation can be found in Refs. 22 and 42,

�R = 1
ngrid

ngrid∑
i=1 ∣r(i)AA − r(i)CG∣. (6)

The radial distance r
(i)
CG is always equal to the radius of the

spherical CG bead rCG. From the radial distances of the AA surface,
an average radius of the AA molecule rAA can be calculated.

3. Roughness volumes

Using the molecular roughness difference, we defined active
and passive volumes. All volumes of the model are illustrated in
Figs. 4–7. Active volumes are volumes in which the difference
between the molecular surfaces in the two resolutions manifests
itself. Based on the spherical structure of the CG beads, themain part
of the active volume is called shell volume V shell. The shell volume
has a thickness of twice the molecular roughness difference [Eq. (6)]
and is illustrated in Fig. 4. As highlighted in Fig. 5, the shell vol-
umes can overlap. The active volume is thus expanded by adding
the overlap volume Voverlap to V shell. In this region, the change of the
roughness should be especially noticeable, increasing the impact on
the acceleration of dynamics.

The passive volumes are those volumes within the simulation
box that are not affected by the difference of the molecular sur-
faces between the atomistic and the coarse-grained model. They are
divided into the inner and outer passive volume. The inner vol-
ume V in lies within the molecule as illustrated in Fig. 6. It accounts
for the basic size of the beads, which is not sufficiently represented
in the shell volume. A larger inner volume increases the acceler-
ation of dynamics. The opposite is the case for the outer volume
Vout , the passive volume outside of the molecule, or, more pre-
cisely, outside of V shell (see Fig. 7). A large outer volume should
decrease the acceleration of dynamics as the molecules are less able
to feel the change of the roughness on the surface of the surround-
ingmolecules. Details on the numerical calculations of themolecular
roughness difference and the roughness volumes can be found in
Refs. 22 and 42. Example calculations can be found on GitHub.

Equation (7) emerged as useful for predicting the acceleration
factor αpred. Given a training set of acceleration factors α and rough-
ness volumes, the fitting parameters A, B, and C are determined
simultaneously via a least squares fit,

αpred = A ⋅ (Vshell +Voverlap) + B ⋅ exp( Vin

Vout
) + C,

with A = 1

11.51 Å
3

and B = 0.837

and C = −10.61.
(7)

The above equation can then be used to predict the accelera-
tion factor of other molecules. In Ref. 42, we used 17 systems of
pure hydrocarbons for the least squares fit resulting in the given
parameters. The five molecules of interest in this work were part of
the training set used to determine this fitting equation. The rough-
ness volumes of the pure components as determined in our previous
work are listed in Table V. The summand containing the active vol-
umes is also referred to as active volume term (A(V shell +Voverlap)),
and the summand containing the passive volumes is also referred to

as passive volume term (B exp( Vin

Vout
)).

In a mixture, one can not only look at the roughness volumes
present in the whole system but also differentiate between the dif-
ferent species. Figure 8 already shows two possible ways to look
at the local contribution of the shell volume for a single molecule.
It is unknown whether the acceleration of the molecule is purely
connected to the loss of roughness of the molecule itself (a) or
only results from the interaction of the molecule with its direct
neighbors that likewise suffer from a smoothened molecular surface
(b). Similar considerations can be made for all roughness volumes
of the different species as well as their possible interaction with
the surroundings. The equations presented in Sec. III C are phe-
nomenological descriptions of the observed behavior that allow for
a future adjustment or refinement. All data (dynamical and geomet-
rical properties) are provided in the supplementary material. Codes
for the calculation of the roughness volumes and examples for fitting
procedures can be found on GitHub.

FIG. 5. Illustration of all overlap volumes (part of active volumes) in a binary
mixture.
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TABLE V. Systems (pure components), molecular roughness difference, active volume term, passive volume term, shell
volume, overlap volume, inner passive volume, and outer passive volume as determined in Refs. 22 and 42; molecular
roughness difference is in Å; volumes are in Å3.

System �R A(V shell +Voverlap) B exp( Vin

Vout
) V shell Voverlap V in Vout Vmol

DiMeBu 0.52 11.01 2.77 113.7 13.0 59.9 50.0 210.6
TrMePe 0.61 15.49 3.10 156.4 21.9 71.1 54.3 259.8
EtHx 0.75 18.92 2.11 186.4 31.2 54.7 59.0 268.9
DiMeHx 0.97 24.54 1.78 232.1 50.3 37.6 49.7 269.1
DIPDMP 0.56 20.25 11.19 202.9 30.0 139.8 53.9 366.6

FIG. 6. Illustration of inner passive volumes in a binary mixture.

III. RESULTS AND DISCUSSION
A. Change of the structural properties upon mixing
and coarse-graining

The AA densities of the pure components range from 0.680 g
mol−1 for DiMeBu over 0.705 for both EtHx and DiMeHx and 0.73
for TrMePe to 0.835 g mol−1 for DIPDMP. The densities of the

FIG. 7. Illustration of outer passive volume in a binary mixture.

FIG. 8. Illustration of shell volume for a specific molecule in a binary mixture; (a)
excluding and (b) including a possible influence of the neighboring molecules.

mixtures are between those of the pure components, e.g., the den-
sity of the DiMeBu–TrMePe mixtures increases when more TrMePe
is present. Alternatively, one can look at the molecular volume,
which ranges from 211 Å3 for DiMeBu over 260 Å3 for TrMePe and
269 Å3 for both EtHx and DiMeHx to 366 Å3 for DIPDMP.Mixing a
component with a low molecular volume with a second component
with a higher molecular volume increases the molecular volume of
the system. All values are provided in the supplementary material.
All AA simulations exhibit a close to linear relation with the mole
fraction so that Vmol = x1Vmol,1 + x2Vmol,2 as they should for ideal
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mixtures.52 The deviation between so-calculated Vmol and simu-
lated Vmol,AA is always equal to or less than 0.4% and on average
only 0.05%. Mixtures of group A and the DiMeBu–DIPDMP mix-
tures from group B show a good match between the CG densities
calculated from simulations with the IBI generated mixed poten-
tials with an averaged deviation of only 0.29%. During IBI of the
equimolar DiMeHx–DIPDMP mixture, pressure correction could
not be achieved resulting in large differences in the densities between
AA and CG simulations under NPT conditions for most composi-
tions of this mixture. As the RoughMob method required matching
densities, all DiMeHx–DIPDMP coarse-grained models are simu-
lated under NVT conditions. Mixtures simulated (CG) under NVT
conditions use a volume that is calculated from the molecular vol-
umes of the pure components. This is done instead of using Vmol,AA,
as ideally there should be no need for any AA simulations with the
different compositions. Using combination rules for the generation
of themixed IBI potential overall worsened the structural properties,
while sometimes yielding similar structural and dynamical results to
the mixed IBI potential. A short discussion on the influence of CG

FIG. 9. Radial distribution functions of the atomistic (solid) and coarse-grained
(dashed) simulations with x1 = 0.1 for (a) TrMePe in DiMeBx and (b) DiMeBu in
EtHx.

potentials with their different densities (and RDFs) on the dynamical
results can be found in the supplementary material.

As an example, Fig. 9 shows the radial distribution functions
of a TrMePe–DiMeHx mixture and DiMeBu–EtHx mixture with
x1 = 0.1 for AA and CG simulations with IBI generated potential
from equimolar mixtures. For the mixtures, the lesser component
exhibits poor structural matching, while the majority component
matches well. While the RDF error for same species contacts can get
up to 42% (for DiMeBu with x1 = 0.01 in DiMeHx), the total RDF
error δgtotal [Eq. (5)] of mixture group A remains below a maximum
of 9% with an average of 1.8%. Group B suffers from poor matching
of the RDFs especially for x1 = 0.25, 0.5, and 0.75 with high total RDF
errors of up to 22%. The average δgtotal for the DiMeBu–DIPDMP
and DiMeHx–DIPDMP mixtures is 6.9% and 8.1%, respectively.
All values of the RDF errors and plots of the RDFs for the differ-
ent compositions can be found in the supplementary material. For
most mixtures, the RDF varies little when the mole fraction is small.
Exceptions are the CG simulations of mixtures in group B and the
RDF of DiMeBu in the AA simulations of DiMeBu–DIPDMP mix-
tures. Here, the height of the first peak significantly changes with the
mole fraction.

B. Change of molecular mobility upon mixing
Figures 10 and 11 display the self-diffusion coefficients and

single-species acceleration factors αself ,1 of one component in dif-
ferent mixtures plotted against the mole fraction of the second
component for the first component being DiMeBu (a) and DiMeHx
(b). The plots for EtHx, TrMePe, and DIPDMP are shown in the
supplementary material. The color indicates the second component

FIG. 10. Self-diffusion coefficients and acceleration factors of 2,3-dimethylbutane
in binary mixtures against the mole fraction of the second component according to
color; the error bars of diffusion coefficients are standard deviations between the
independent Cartesian components.
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FIG. 11. Self-diffusion coefficients and acceleration factors of 2,5-dimethylhexane
in binary mixtures against the mole fraction of the second component according to
color; the error bars of diffusion coefficients are standard deviations between the
independent Cartesian components.

the primary component is mixed with. Mixtures with low mole frac-
tions of one component suffer from a poorer sampling as, e.g., for the
1:99 mixtures only ten molecules (5 for mixtures with DIPDMP) of
component 1 are present. This shows up in the larger errors, which
are calculated as standard deviations between independent Cartesian
components of the diffusion coefficients. When a slow compo-
nent is mixed with a faster second component, its self-diffusion
coefficient increases and vice versa. For example, the blue mark-
ers in Fig. 10 (middle) represent DCG of DiMeBu (component 1)
mixed with EtHx (component 2). The self-diffusion coefficient of
DiMeBu increases with the amount of EtHx as DCG of a pure
DiMeBu is lower than DCG of EtHx. The opposite is the case for the
CG simulations (Fig. 11, middle, blue curve) of DiMeHx mixed with
EtHx. Here, DCG of DiMeHx decreases with an increasing amount
of EtHx. While the self-diffusion coefficients are known to depend
on the mass of the molecules, the acceleration factor of DiMeBu
and EtHx in the mixture did not change when a heavier version of
EtHx was used [e.g., αself ,DiMeBu = 5.07 vs 5.12 (heavier EtHx) and
αself ,EtHx = 7.19 vs 7.18 (heavier EtHx) in a 1:1 mixture]. It is inter-
esting to see that the concentration dependence of a self-diffusion
coefficient can be reversed between atomistic and coarse-grained
models. An example is DiMeBu in mixture with DiMeHx (Fig. 10,
top and bottom, purple curve), and a counter-example is DiMeHx in
mixture with TrMePe (Fig. 11, top and bottom, orange curve). For
mixture group A, overall, the trend of the self-diffusion coefficients
and acceleration factors appears to be close to linear in themole frac-
tion. However, mixture group B (red curves, the second component
is DIPDMP) clearly differs from a linear trend. For all AA and CG

FIG. 12. Self- and binary-diffusion coefficients and acceleration factors in a
2,3-dimethylbutane and 2,5-dimethlyhexane mixture against the mole fraction;
the error bars of diffusion coefficients are standard deviations between the
independent Cartesian components.

simulations, the self-diffusion coefficient of DiMeBu or DiMeHx,
respectively, decreases with an increasing amount of DIPDMP. The
acceleration factor of DiMeBu in DIPDMP, however, increases with
an increasing amount of DIPDMP as the decrease of the diffusion

FIG. 13. Self- and binary-diffusion coefficients and acceleration factors in a 2,3,4-
trimethylpentane and 3-ethylhexane mixture against the mole fraction; the error
bars of diffusion coefficients are standard deviations between the independent
Cartesian components.
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FIG. 14. Self- and binary-diffusion coefficients and acceleration factors in a 2,5-
dimethylhexane and 3,3-diisopropyl-2,4-dimethylpentane mixture against the mole
fraction; the error bars of diffusion coefficients are standard deviations between the
independent Cartesian components.

coefficient is less pronounced in the CG simulation. For DiMeHx,
this even results in a minimum of the acceleration factor (Fig. 11,
bottom, red) around xDIPDMP ≈ 0.25. The acceleration factor αself ,1 is
highly dependent on the other component. While αself ,1 of DiMeBu
only gets up to around 5.3 in a DiMeBu–TrMePe mixture with
x1 = 0.01, it gets up to around 12 in a DiMeBu–DiMeHx mix-
ture. The acceleration of the individual components is thus strongly
affected by the overall acceleration of the system.

Figures 12–14 show how both the self- and the binary-diffusion
coefficients and acceleration factors within one mixture change
with the mole fraction. They further illustrate the variance in the
dynamical behavior of different mixtures when AA and CG simula-
tions are compared. In a DiMeBu–DiMeHx mixture, the all-atom
self-diffusion coefficients increase with xDiMeHx but decrease with
xDiMeHx in the CG representation (Fig. 12). For a TrMePe–EtHxmix-
ture, the AA self-diffusion coefficients are almost identical, but they
differ by a factor of around 0.8 in all CG simulations (Fig. 13). The
diffusion coefficients of the DiMeHx–DIPDMP mixture increase
with xDiMeHx in both AA and CG simulations, while the acceleration
factor initially decreases with an increasing xDiMeHx (Fig. 14). Inter-
estingly, even though DiMeHx has a lower acceleration factor than
DIPDMP (as a pure component), the acceleration of DiMeHx in the
mixture is in fact larger than the acceleration of DIPDMP. The accel-
eration factors of the remaining mixtures are shown in Figs. 15 and
16.

Within one mixture, the ratio αself ,2/αself ,1 stays approxi-
mately constant with the highest value for the DiMeBu–DiMeHx
mixture (Fig. 12, around 1.55) and the lowest value for the
DiMeHx–DIPDMP mixture (Fig. 14, around 0.72). The largest

FIG. 15. Acceleration factor of the self-diffusion coefficients and binary diffusion
coefficient in a (a) DiMeBu–TrMePe, (b) DiMeBu–EtHx, and (c) DiMeBu–DIPDMP
mixture.

variation is found for DiMeBu–DIPDMP (Fig. 15) where the ratio
changes between 1.06 (for xDiMeBu = 0.01) to 1.53 (xDiMeBu = 0.99).
For an easy discussion, we use the convention that component
1 always refers to the component that has the lower acceleration
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FIG. 16. Acceleration factor of the self-diffusion coefficients and binary diffusion
coefficient in a (a) TrMePe–DiMeHx and (b) EtHx–DiMeHx mixture.

factor as a pure liquid. The acceleration factors of the binary dif-
fusion coefficients have larger error bars than those of self-diffusion
coefficients due to poorer sampling (see above). Furthermore, while
the acceleration factor of the binary diffusion coefficient is always
close to the acceleration factor of the self-diffusion coefficient of
the minority component for mole fraction of or below x = 0.05, the
behavior of αbinary differs greatly in the x range between 0.25 and
0.75 between different mixtures. The binary diffusion acceleration
factor of the 1:1 DiMeBu–TrMePe mixture is close to the accelera-
tion factor of the self-diffusion coefficient of DiMeBu [Fig. 15(a)],
while it is close to αi of DiMeHx in a 1:1 DiMeBu–DiMeHx mix-
ture (Fig. 12, bottom). What causes the different behavior is as yet
unknown.

C. RoughMob method
1. Prediction of the overall acceleration

Each binary mixture has three acceleration factors of interest:
the acceleration of self-diffusion coefficients of both components
(αself ,1 and αself ,2) and the binary acceleration factor (αbinary). The

observation that the acceleration of the individual components is
strongly affected by the overall acceleration in a mixture leads us
to the definition of an auxiliary acceleration factor that represents
this overall acceleration and can be calculated from the simulations
using the following equation:

αmix = x1 ⋅ αself ,1 + x2 ⋅ αself ,2. (8)

In order to reduce the discussion, we analyze how this overall
acceleration αmix can be predicted in the this section and proceed
to use the findings to the prediction of the acceleration of the self-
diffusion coefficients (Sec. III C 2) and the acceleration of the binary
diffusion coefficients (Sec. III C 3).

In mixtures, the different roughness volumes must be assem-
bled into “mixed” variants. Ideally, one could simply use the arith-
metic mixing rules for calculating average roughness volumes, for
example,

Vshell,mix = x1 ⋅Vshell,1 + x2 ⋅Vshell,2, (9)

and analogous for the other volumes and use the same fitting para-
meters as determined for the single component systems to predict
the acceleration present in the mixture. We thus define the predic-
tion of an “ideal” or arithmetic mixing acceleration factor according
to

α
∗
mix,pred = 1

11.51 Å
3 (Vshell,mix +Voverlap,mix)

+ 0.837 ⋅ exp( Vin,mix

Vout,mix
) − 10.61. (10)

Note that the numerical coefficients [cf. Eq. (7)] are those
determined previously for neat fluid hydrocarbons and that no repa-
rameterization formixtures has been done up to this point. Figure 17
shows the prediction of this arithmetic acceleration factor [α∗mix,pred,
Eq. (10)], as calculated with averaged roughness volumes, plotted
against the “true” overall acceleration factor (αmix) determined from
the actual simulations according to Eq. (8). The agreement for mix-
ture group A (all markers except squares) is overall good, while
group B (squares) deviates significantly.

To understand the nature of this difference in the behavior
between the two groups, we distinguish between the active vol-
ume term (A(Vshell,mix +Voverlap,mix)) and the passive volume term

(B ⋅ exp( Vin,mix

Vout,mix
)). This differentiation allows for a more nuanced

understanding of their respective impacts within the studied system.
Figure 18 displays how the active volume term (dashed lines) and
the passive volume term (dotted lines) of the acceleration change in
themixtures with themole fraction of component 1. Component 1 is
always the component with the lower pure component acceleration
factor.

As in the case of single component systems (Table V), the active
term always exceeds the passive term. The active volume term greatly
differs between the mixtures, and it changes almost linear with
the concentration. Linearity (“ideality”) is evident for both mixture
groups, despite the inherently different slopes. The active volume
term does, therefore, not allow for a distinction between mixture
group A and mixture group B that explains the difference in the
behavior between the two groups. Mixture groups A and B, how-
ever, differ widely and qualitatively in the composition dependence
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FIG. 17. “Ideal” arithmetic mixing prediction of the overall acceleration [Eq. (10)] against the “true” overall acceleration as calculated from the simulations [Eq. (8)]; marker
colors represent component 1, markers represent component 2; black markers represent pure components; and the gray dashed line represents α∗

mix,pred
= αmix .

FIG. 18. Active volume term (dashed lines) and passive volume term (dotted lines)
of the mixture against the mole fraction of component 1; marker colors represent
component 1, markers represent component 2; and black markers represent active
Aand passive P correction terms (passive correction term scaled by 1/ω).

of the passive volume terms. The variations of the passive volume
terms of mixture group A are almost negligible regarding both the
differences between different mixtures within that group and the
change of the passive volume term with the concentrations. Mix-
ture group B, however, behaves significantly different. The passive
term reaches higher absolute values; it shows a larger variation with
the concentration, and the variations are non-linear. Based on these
observations, we propose a methodology wherein a correction term
is added to the arithmetically predicted acceleration factor of the

mixture (α∗mix,pred) that utilizes the passive volumes as an indicator
to ascertain the necessity of incorporating a correction term,

αmix,pred = α
∗
mix,pred + x1x2(1 −P)A, (11)

withPbeing the passive correction term calculated from the passive
volumes in a mixture at x1 = 0.5 in the form of Eq. (12) andAbeing
the active correction term calculated from active volumes [Eq. (13)]
in an equimolar mixture. The prefactor x1x2 arises from the phe-
nomenon that the deviation of α∗mix,pred from αmix is higher for mole
fractions that are close to an equimolar distribution and lower for
low mole fractions of one component,

P = ωB exp(0.5 ⋅Vin,1 + 0.5 ⋅Vin,2

Vout,mix
)

= ωB√exp( Vin,1

Vout,mix
) ⋅ exp( Vin,2

Vout,mix
), (12)

A= A(0.5(Vshell,1 +Vshell,2) + 0.5(Voverlap,1 +Voverlap,2))= 0.5 ⋅ A(Vshell,1 +Voverlap,1) + 0.5 ⋅ A(Vshell,2 +Voverlap,2), (13)

with A = 1
11.51 Å3 and B = 0.837 as in Eq. (7). Note that all rough-

ness volumes are single-component quantities determined previ-
ously; Vout,mix is assembled from pure-component volumes, too
[Eq. (9)]. For mixtures in group A, the term (1 −P) should be close
to zero as only little to no correction is required. Thus, P should
be close to one. Since the passive volume term of mixture group
A ranges from 1.78 to 3.10, a weighting factor ω is needed. Equa-
tion (12) shows that taking the passive contribution to the correction
at x1 = 0.5 also allows for the interpretation as a geometric average
of the contributions of the individual molecules. While the inner
passive volume of the individual molecules does not change upon
mixing, the outer passive volume only exists as a system property of
the mixture (Fig. 7). Similarly, the active contribution to the correc-
tion is equal to the arithmetic mean of the active volume terms for
the individual molecules.

We tested both fitting ω individually for the different mix-
tures and fixing ω at 0.5. The results of the fitting are shown in
Table VI.
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TABLE VI. System and, for Eq. (11), fitted ω using roughness volumes and simulated
αmix as training sets.

System ω

DiMeBu–TrMePe 0.55
DiMeBu–EtHx 0.50
DiMeBu–DiMeHx 0.56
TrMePe–EtHx 0.47
TrMePe–DiMeHx 0.45
EtHx–DiMeHx 0.39
DiMeBu–DIPDMP 0.48
DiMeHx–DIPDMP 0.53

When ω is derived from fitting αmix,pred, the values predom-
inantly converge around 0.5. The lower ω value observed in the
EtHx–DiMeHx mixture may stem from the prediction error in the
pure components. Both EtHx and DiMeHx show a slight underpre-
diction of the acceleration of the pure components (3% for EtHx and
10% for DiMeHx). This lower ω value, and consequently a higher
value of (1 −P), might compensate for an inadequately low passive
or active volume term of the pure components (and consequently
their volume terms in a mixture). The average error of αmix,pred only
slightly increases from 10.3% to 10.5% when ω = 0.5 is used instead
of the fitted value. Figure 19 shows good agreement between αmix,pred

and αmix. When the passive volume terms of the pure components
are low—as it is the case for all components in mixture group A, pre-
dicting the overall acceleration purely based on an “ideal” arithmetic
mixing of the roughness volumes yields good results. Adding a com-
ponent with a passive volume term that significantly influences the
acceleration of the pure component (as it is the case for DIPDMP)
to the mixture requires the addition of an correction term. Incor-
porating the magnitude of the passive volume into the correction
term allows for the usage of the same prediction formula for all mix-
tures. The overall acceleration in a mixture can thus be predicted
purely based on the roughness volumes as calculated from the pure

components using simple averaging rules omitting the need for any
additional fitting.

2. Prediction of the acceleration of the individual
self-diffusion coefficients

The acceleration of the self-diffusion coefficient of the minor
component is always strongly affected by the acceleration of the self-
diffusion coefficient of the major component. We therefore aim to
define the acceleration of self-diffusion coefficients in relation to
the overall acceleration present in the system. The overall acceler-
ation can be predicted purely based on the roughness volumes of
the pure components. This requires the introduction of an auxil-
iary quantity F1, which we define as the ratio of the two acceleration
factors of the self-diffusion coefficients αself ,2/αself ,1. This quantity
can thereby be interpreted as a measurement for the distribution
of acceleration between the individual components. Component
2 refers thereby to the component that has a higher pure-component
acceleration factor. Using this ratio and the definition of the over-
all acceleration [Eq. (8)], the acceleration factor of component 1 is
expressed as

αself ,1 = αmix

x1 + x2F1 . (14)

The ratio of self-diffusion acceleration factors F1 can techni-
cally be determined individually for each composition. However,
using the observation that the ratio is approximately constant
(Figs. 15 and 16), F1 is treated as a system specific constant within
this work. Furthermore, to predict αself ,1,pred for all compositions, the
need to actually calculate the acceleration factors from simulations
in both representations has to be avoided. Hence, an estimation of
F1 is required. The mixture of DiMeHx and DIPDMP is a unique
case as it exhibits an F1 value below 1 because the self-diffusion
acceleration factor of the component with a lower pure acceleration
factor is actually higher in mixture when compared to the second
component. This phenomenon coupled with the observation that in
this specific mixture the active volume term is lower for the compo-
nent with a higher acceleration factor leads to the hypothesis that the
distribution of acceleration among different components is linked to

FIG. 19. Plot of the predicted overall acceleration factor with Eq. (11) and ω = 0.5 against the overall acceleration in the mixture as calculated from the simulations [Eq. (8)];
marker colors represent component 1, markers represent component 2; black markers represent pure components; and the gray dashed line represents αmix,pred = αmix .
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TABLE VII. System, ratio of the self-diffusion acceleration of the different components
as calculated from simulations (averaged over all concentration and for equimolar
mixtures) and estimated via Eq. (15) using shell and molecular volumes.

System αself ,2

αself ,1
(av.) αself ,2

αself ,1
(1:1) Estimate of F1

DiMeBu–TrMePe 1.15 1.17 1.20
DiMeBu–EtHx 1.39 1.42 1.39
DiMeBu–DiMeHx 1.57 1.57 1.73
TrMePe–EtHx 1.25 1.24 1.17
TrMePe–DiMeHx 1.39 1.37 1.45
EtHx–DiMeHx 1.11 1.11 1.24
DiMeBu–DIPDMP 1.21 1.19 1.23
DiMeHx–DIPDMP 0.72 0.74 0.71

their active volumes. In other words, a higher active volume (ormore
precisely, shell volume) of one component appears to augment the
acceleration of this component relative to the second component.
The approximation of F1 we found most suitable is shown in the
following equation:

F1 ≈ Vshell,2

Vshell,1
⋅ (Vmol,1

Vmol,2
)2/3. (15)

The sole use of shell volumes did not allow for a reasonable pre-
diction; we therefore set the shell volume in relation to the molecular
volume. This means that a higher shell volume relative to the vol-
ume it occupies in the mixture (expressed through Vmol) increases
the acceleration of this component relative to the second compo-
nent. The exponent of 2

3 found empirically might be a consequence
of the different scaling of V shell and Vmol with an increasing size
of the molecules. While V shell roughly scales with r2, Vmol roughly
scales with r3. The actual (averaged) ratio of self-diffusion coeffi-
cients and the estimates via Eq. (15) are listed in Table VII. The
results of the predicted self-diffusion acceleration factors with F1

estimated according to Eq. (15) are plotted in Fig. 20. Table VIII
shows the average absolute and relative error of the predicted values
for the individual components. For the averages, absolute values are
used, omitting the information whether the prediction is too high
or too low, as, e.g., αself ,pred of DiMeHx in DiMeBu can be too high
for low concentrations of DiMeHx and too low for high mole frac-
tions of DiMeHx. Detailed tables of all prediction errors, including
the direction of the deviation, can be found in the supplementary
material. Despite the approximation of F1 as a constant value that is
estimated from the shell andmolar volumes of the pure components,
the overall agreement of the prediction of self-diffusion acceleration
factors in mixture is good. The average absolute and relative errors
of 1.00% and 11.5%, respectively, are within the range of the errors
that were already present in the prediction of the acceleration of pure
components.

FIG. 20. Predicted self-diffusion acceleration factor with Eq. (14) and a F1 parameter estimated according to Eq. (15) against the “true” self-diffusion acceleration as calculated
from the simulations; marker colors represent component 1, markers represent component 2; black markers represent pure components; and the gray dashed line represents
αself ,pred = αself .

TABLE VIII. Overall concentration averaged errors of the absolute values and relative errors (in brackets and %) of the
predicted acceleration factors of self-diffusion coefficients of component 1 αself ,1,pred ; rows are component 1 and columns
represent component 2.

In DiMeBu In TrMePe In EtHx In DiMeHx In DIPDMP

DiMeBu 0.37 (13.08) 0.55 (12.20) 0.35 (7.10) 1.13 (14.85) 1.18 (20.08)
TrMePe 0.78 (15.87) 1.70 (27.01) 0.71 (10.36) 1.59 (16.75) ⋅ ⋅ ⋅
EtHx 0.32 (4.95) 0.76 (8.11) 0.32 (2.97) 1.70 (11.62) ⋅ ⋅ ⋅
DiMeHx 1.19 (14.14) 1.69 (14.02) 1.06 (7.04) 1.82 (10.40) 1.08 (5.63)
DIPDMP 0.97 (17.06) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.65 (5.10) 1.00 (4.60)
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FIG. 21. Binary diffusion acceleration factor predicted with Eq. (16) and a F1 parameter estimated according to Eq. (15) against the actual binary diffusion acceleration as
calculated from the simulations; marker colors represent component 1, markers represent component 2; and the gray dashed line represents αbinary,pred = αbinary .

FIG. 22. Simulated binary acceleration factors, predicted binary acceleration as
calculated with ω = 0.5 and F1 estimated via Eq. (15) (black dashed line), and
improved predicted binary acceleration from equimolar simulation as calculated
with ω and F1 as listed in Tables IX and VII and with overall acceleration according
to Eq. (17) (gray dotted line); in TrMePe–DiMeHx (a) and DiMeBu–DiMeHx (b)
mixtures.

3. Prediction of the acceleration
of binary-diffusion coefficients

To estimate the binary-diffusion acceleration factor, we use the
fact that the binary diffusion coefficient (and thus the acceleration
factor) converges to the self-diffusion coefficient of the minority
component at infinite dilution. This means for a very low mole frac-
tion of component 1, αself ,1 = αbinary. This limitary behavior is met
by the following equation that uses the same parameters as used
for the prediction of the self-diffusion acceleration and the overall
acceleration:

αbinary,pred = α
∗
mix,pred + x1x2 ⋅ (1 −P)A

x2F1 + x1 1
F1

. (16)

While the deviation averaged over all mixtures of αbinary,pred
from αbinary seems acceptable with 14.8%, Fig. 21 shows difficulties in
accurately predicting the binary acceleration for different composi-
tions. For example, the binary acceleration of the TrMePe–DiMeHx
mixture (orange triangles down) appears to be systematically under-
predicted at many compositions. In comparison, αmix,pred has an
average deviation of 18.8% from αbinary.

This means that Eq. (16) predicts the order of αbinary quite
well. It does, however, not capture all details of its concentration
dependence (Fig. 22, black markers). With default settings of ω = 0.5
TABLE IX. System from equimolar simulations calculated ω parameters for binary
acceleration factors with a predicted overall acceleration according to Eq. (17).

System Calculated ω

DiMeBu–TrMePe 0.399
DiMeBu–EtHx 0.426
DiMeBu–DiMeHx 0.467
TrMePe–EtHx 0.286
TrMePe–DiMeHx 0.150
EtHx–DiMeHx 0.543
DiMeBu–DIPDMP 0.529
DiMeHx–DIPDMP 0.638
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and F1 estimated with Eq. (15), it deviates from the true binary
acceleration by up to 68%. The larger discrepancy observed in the
predicted binary diffusion acceleration (when compared to self-
diffusion acceleration) could be attributed to two primary factors.
First, αbinary,pred may exhibit an enhanced sensitivity to pre-existing
deviations in the pure components. Second, it is conceivable that,
despite the general suitability of the functional form in describing
the behavior of binary diffusion acceleration, the passive and active
correction terms may have to be adjusted for a more accurate rep-
resentation of binary diffusion. Both factors can be addressed with
additional simulations of the pure AA systems and AA systems at
equimolar concentration. The extraction of AA diffusion coefficients
of neat hydrocarbon liquids is cost-effective, when compared to the
expensive calculation of binary diffusion coefficients due to their
worse statistics (see above). The “ideal” overall acceleration factor
α
∗
mix,pred is then predicted from the actual self-diffusion acceleration

factor of the pure components [Eq. (17)] instead of using arithmetic
means of the roughness volumes [Eq. (10)].

α
∗
mix,pred = x1 ⋅ αself ,1,pure + x2 ⋅ αself ,2,pure. (17)

Simulations of equimolar mixtures are used to calculate
F1 from the self-diffusion acceleration factors (Table VII) and
ω from Eqs. (16) and (12) solved for ω (Table IX). The agreement
between predicted binary acceleration factor and the actual binary
acceleration factor over all concentration improves drastically to an
average deviation of 6.6%, and it manages to capture the details of
the concentration dependence (Fig. 22).

IV. CONCLUSION

This paper extends the RoughMob method22,42 for the predic-
tion of the artificial acceleration, when the description of a system
is changed from atomistic to coarse-grained, from pure (single-
component) molecular liquids to their binarymixtures. Acceleration
is measured for the two self-diffusion coefficients αself ,1 and αself ,2,
as well as for the binary diffusion (interdiffusion, mutual diffusion)
coefficient αbinary. As all diffusion coefficients are concentration-
dependent, so are these acceleration factors. In particular, the ansatz
of roughness volumes has been followed here. The roughness vol-
umes are parameters that are derived a priori from the geometries of
the constituting molecules, i.e., almost entirely without doing sim-
ulations. The only exception is the so-called outer passive volume,
which is akin to a free volume and must be sampled from a short
simulation. The molecular dynamics calculations that are needed
anyway in the iterative-Boltzmann-inversion coarse-graining pro-
cess can be re-used for this purpose. The different roughness
volumes enter a predictive equation for the acceleration factor.
Predicting the acceleration factor for neat liquids has been very
successful.42

The chosen strategy for the generalization to liquid mixtures
has been to keep the formalism, the prediction equation, and its
parameterization [Eqs. (7) and (10)], but to find ways of estimating
the roughness volumes for mixtures, which then enter the predic-
tion equation. It turns out that the roughness volumes for the binary
mixtures can be obtained as number-weighted averages of those of
the two separate components [Eq. (9)]. In addition, the mixtures
require a cross-term quadratic in the concentration [Eq. (11)], whose
coefficients, however, can be assembled from roughness volumes

already known [Eqs. (13), (12), and (15)] so that no extra simu-
lations are needed at this point either. With this simple approach,
acceleration factors for the self-diffusion coefficients αself ,1 and αself ,2
are predicted that are on average within ±1 (absolute) and 11.9%
(relative) of the actual acceleration factors obtained as references
by direct molecular-dynamics simulations. The largest deviation
found has been 60% (DiMeBu) and 55% (DIPDMP) relative for
a DiMeBu–DIPDMP mixture with xDiMeBu = 0.75 with all other
below 30% and 3.6 absolute for EtHx in a mixture with DiMeHx
with xDiMeBu = 0.01. It should be noted that the acceleration of self-
diffusion in our set of binary mixtures spans a range from 2.7 to
30.6. Therefore, this paper shows that it is quite possible to calculate
self-diffusion coefficients of binary fluid mixtures using inexpensive
coarse-grained models and then rescaling them using the acceler-
ation factors predicted by the RoughMob approach. The rescaling
should bring them close to the diffusion coefficients of the parent
atomistic model, which in turn should be close to the experimen-
tal ones. The average error introduced by the RoughMob procedure
is of the same order as that of the typical disagreement between
the more costly atomistic simulations and the experiment. The
usefulness of this approach is commented below.

The situation changes to some degree when the acceleration of
the binary diffusion coefficient αbinary is investigated. While being
of the same order as the self-diffusion coefficients, the binary dif-
fusion coefficient is notorious for having a much lower accuracy in
molecular-dynamics simulations. Its order is well predicted by the
approach outlined above (on average 14.8%); however, the details
of its concentration-dependence are not predicted always. For some
systems and at some compositions, the deviation of the predicted
acceleration from the MD-simulated value can be as large as 68%.
If one is willing to perform an extra set of simulations for the
neat components and at x = 0.5 and use it to calculate, rather
than predict, two parameters [F1 = αself ,2/αself ,1 and the weight
of the passive-volume term ω, Eq. (12)], the deviation of αbinary
can be pushed down to an average of 6.6% for all systems at all
concentrations.

We have shown in this paper that the RoughMobmethod in the
roughness volumes formalism can be extended from neat molecular
liquids to their mixtures. In its simple form, all auxiliary quantities
needed to predict the artificial acceleration upon coarse graining can
be calculated a priori for the individual molecules. Accelerations in
the mixtures can then be predicted from the single-species quanti-
ties. The CGmodel development requires only short AA trajectories
of the pure components and of the 1:1 mixture to generate the same
and mixed species radial distribution functions and thus the CG
potentials via Iterative Boltzmann Inversion (IBI). Themixed poten-
tial can then be used for all concentrations. Using mixed potentials
generated via IBI from equimolar mixtures instead of combination
rules improves the agreement between the AA and CG densities
or molecular volumes and radial distribution functions (RDFs) at
all compositions and is therefore advised as the safe approach for
the applicability of the RoughMob method. With this approach, the
mobility of individual molecules, i.e., the self-diffusion, can be esti-
mated from coarse-grained simulations with an error that is smaller
than the typical deviation between atomistic and experimental dif-
fusion coefficients (20%) or among different experimental values
(10%–50%). If a different marker of acceleration is selected, namely,
binary diffusion, and not only the same accuracy but also the cap-
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turing of mixture-specific details of the concentration dependencies
is required, one may have to supplement the approach by one more
calculation of one mixed system and simulations of the neat com-
ponents to gauge the auxiliary quantities for the mixtures. The
scalability of the approach to mixtures with more than two com-
ponents will be of interest in future works. First tests indicate a
similar behavior of the ratios of the self-diffusion acceleration fac-
tors F1 as observed in the binary mixtures and a need to adjust the
cross-correction-terms.

Is this useful? Not for a few mixtures of molecular liquids.
While coarse-grained simulations of a large variety of mixtures
at several concentrations and combinations certainly quicken the
study, they can generally be simulated long enough at the full atom-
istic level, and they have been in this contribution to provide the
“true” reference values of the acceleration. The situation is, however,
very different for polymers and other soft matter, for which atom-
istic simulations are often prohibitive, and for which coarse-grained
simulations produce mobilities accelerated by an unpredictable fac-
tor. This practically precludes the use of coarse-grained models for
quantitative dynamical and transport properties. The calculation on
fluid mixtures presented here is a necessary stepping stone toward
the application of RoughMob to polymers. The coarse-grained poly-
mer models obtained by, say, iterative Boltzmann inversion typically
collect about 5–10 carbon atoms into one bead. The beads have, thus,
the same size and the same level of coarse graining as the molecules
studied here. It is expected that the smoothing of their surfaces by
coarse-graining produces similar artificial accelerations and that a
rescaling of the coarse-grained dynamics with an acceleration factor
estimated a priori from the loss of monomer roughness can repro-
duce the true bead mobility. This expectation is supported by the
fact that dynamical properties of polymers can often be formulated
like D = C ⋅ Lν, i.e., a universal power-law scaling with the polymer
length L, multiplied with a prefactor C, which contains the system-
specific monomeric friction and which would be the target of the
RoughMob scheme. The extension from single-component systems
to binary systems has beenmotivated not only by an interest in poly-
mer solutions or polymer mixtures but also especially because many
coarse-grained polymer models simultaneously contain two or more
different beads to map different chemical moieties. The success of
the RoughMob for binary systems, as well as for neat liquids, is
therefore encouraging for the development of coarse-grained mod-
els for polymers, which can ultimately, by way of rescaling, predict
transport properties, such as melt viscosities.

SUPPLEMENTARY MATERIAL

A supplementary material is available as PDF containing the
OPLS-AA bonded parameters of the all-atom force-field, addi-
tional figures as referred to throughout the text and tables (with
errors) of RDFs, densities, molecular volumes, and predicted accel-
eration factors for all simulations. Furthermore, the PDF includes
additional explanations on the mutual/binary Maxwell–Stefan dif-
fusion coefficient and on the relation between coarse-grained
potential, structure, and mobility. Coarse-grained potentials via
IBI for all pure components and mixtures are available and tab-
ulated. Dynamical and geometrical properties are provided as
ASCII tables.
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5 Conclusion and Outlook

This work presents the development of a new approach to predict the acceleration of dynamics upon coarse-
graining. The RoughMob method connects the change of a molecular surface roughness to the change in
mobility. It has been tested on and applied to single component systems and binary mixtures of aliphatic
and aromatic molecules in a size range between five to 13 carbon atoms that where coarse-grained into one
bead per molecule. The acceleration factor, measured as ratio between the self-diffusion coefficients in the
all-atom (AA) and coarse-grained (CG) simulation, spans a range from 1.6 to 30.6. Only short AA simulation
runs of the neat components, and in case of the binary mixture, of the 1:1 mixtures, are needed to equilibrate
the structural properties. Then, the coarse-grained (CG) model can be derived by the iterative Boltzmann
inversion. No additional simulation is needed to extract any geometrical information used to calculate the
changes of molecular roughness. Detailed results were presented in the previous chapter and are briefly
summarized here.

1. The acceleration of dynamics can directly be correlated with the molecular roughness difference for
simple hydrocarbon liquids, both aliphatic and aromatic systems, of similar size and shape with six to
eight carbon atoms per molecule. The molecular roughness difference shows a remarkably good linear
correlation with the acceleration factor (R2=0.996). This even holds up when a different mapping
scheme is added.

2. The concept of four so-called roughness volumes separates the system into regions that take part in the
change of roughness (active volumes) and regions that do not take part (passive volumes). This enables
the prediction of acceleration factors for pure liquids in the size range between five and 13 carbon atoms.
The prediction uses a fit function with three fitting parameters that are derived via a least squared fit.
The absolute average error of the predicted acceleration factor is 1.0 and the average relative error is
17.9 %. Molecules with a smaller acceleration factor tend to have a higher relative error.

3. Binary liquid mixtures can use the same roughness volumes and fit parameters as derived for neat
liquids. Some mixtures require the addition of a cross-term quadratic in the concentration to account for
deviations from a prediction based on an arithmetic mixing of the volumes. The need for this cross-term
is determined by the passive volumes, the size of the cross-term by the active volumes. The distribution of
acceleration between the self-diffusion coefficients can be estimated with the ratio of shell volumes and
molecular volumes of the two components. This allows the prediction of both self-diffusion coefficients
with an average accuracy of 1.0 (absolute) and 11.9 % (relative).
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The outcomes presented here are promising and allow for an optimistic outlook on the method’s potential for
expansion. The easy to use framework for an a priori prediction of the acceleration factor enables the use
of computationally significantly less expensive CG simulations for the calculation of dynamical properties
that can then be scaled back to the atomistic and thus hopefully true values. However, the study is still in
its infancy. While quickening the study of various simple systems is beneficial, the ultimate aim is to enable
quantitative dynamical analysis of complex systems, such as polymer melts, which are currently beyond the
reach of molecular dynamics simulations. Therefore, a brief outline of future work is provided below.

Different state points Our own experiences and other studies [85, 86] show, that the pressure is of minor
importance for the acceleration factor of a system. In contrast, the acceleration factor is highly dependent on
the temperature. While usually self-diffusion coefficients increase with an increasing temperature in both
all-atom and coarse-grained representation, the acceleration factor is known to decrease. [39, 42, 74, 85] Even
though the CG potentials are known to require recalibaration for different state points, it is to expect, that the
effective hard-sphere radius (used as the size of the CG bead) will not change significantly, and thus, neither
will the molecular roughness difference nor the shell volume. The outer passive volume and overlap volume
are, however, dependent on the density. With an increasing temperature at constant pressure, the density
decreases, increasing the separation between molecules. Consequently, the importance of roughness changes
for the dynamics should decrease, as wider separations between molecules diminish the influence of surface
roughness on their interactions. This is reflected in an increasing outer passive volume and a decreasing
overlap volume — both factors that decrease the predicted acceleration factor. However, first tests show, that
this does not fully account for the change in the acceleration factor with the temperature at constant pressure.
Possible approaches include e.g. modeling of one or more of the fitting parameters of the prediction equation
as temperature dependent parameters. Another option is to consider a temperature dependent definition of
the particle sizes. As of now, the radii are defined as half the value where the nonbonded interaction potential
first takes the value of zero. Instead of using zero, one could change the definition to kBT . This would lead to
smaller particles with an increasing temperature which could amplify the changes in the roughness volumes.

Polar molecules and ionic liquids Polar molecules add some electrostatic forces and are locally more ordered
than nonpolar molecules. The basic assumption would be, that the nature of the forces is irrelevant as long as
the structural properties (radial distribution function and density) are maintained. However, the increased
ordering among polar molecules could alter how the importance of roughness changes is distributed across
the molecular surface. For nonpolar molecules (coarse-grained into a single bead), roughness contributions
are uniform across the surface. For polar molecules, this uniformity may need adjustment, e.g. in form of a
weighted distribution of the roughness contributions. High viscosities and structuring processes at long length
and time scales can make ionic liquids expensive to simulate atomistically [87, 88] and thus an interesting
target for the application of the RoughMob method. Here, the ratio of diffusion of the anionic and cationic
moieties relative to each other can be of special importance. [71] The RoughMob method has proven capable
to distinguish between self-diffusion coefficients of different components in a binary fluid mixture. This is
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a first promising step towards the application for anions and cations. However, both anions and cations are
often represented by several beads. Together with the complexity added through present charges and thus
additional structuring, this is an application range that should be targeted after the framework has been
expanded to multiple CG beads per molecule.

Multiple coarse-grained beads Developing the RoughMob method is strongly motivated by the limitations of
molecular dynamics simulations in accurately quantifying the dynamical properties of polymer melts and other
soft matter systems. Studies have shown that the acceleration factor for polymers remains constant regardless
of chain length once the polymer exceeds a certain chain length, typically between 50 to 90 monomers. [25,
59, 85] This suggests that it may be feasible to determine an acceleration factor specific to a monomer or CG
bead rather than for the entire polymer chain. However, adapting the RoughMob method to such complex
systems entails addressing several challenges:

1. Geometric complexity in multi-bead models: When the reference geometry within the RoughMob
framework shifts from a simple sphere to configurations involving multiple intersecting spheres, the
technical aspects of calculating relevant quantities become more difficult. Particularly, the ray-based
method used to calculate the molecular roughness difference encounters difficulties because not every
point on a coarse-grained surface has a direct counterpart on the all-atom surface. A potential solution
is to adopt a Monte Carlo algorithm that can concurrently evaluate the space that is:

• Not occupied by either the AA or CG models.
• Occupied by both the AA and CG models.
• Exclusively occupied by the AA model.
• Exclusively occupied by the CG model.

2. Region specific importance of roughness changes: Determining which changes in roughness significantly
affect the dynamics poses another challenge. For instance, are the grooves formed at the intersections of
two spheres more critical to dynamics than other areas? One argument might be that these grooves are
not fully accessible to surrounding nonbonded beads, rendering them less crucial. Conversely, since a
configuration of intersecting spheres could introduce its own form of roughness, this area might require
special consideration.

3. Complexity of motion: In more complex CG models, different types of molecular motion may interact,
such as diffusion processes overlapping with bond relaxations. [16, 89] Each type of motion might
require a distinct treatment due to their inherent differences in dynamics and influence on the system’s
overall behavior.

The challenges outlined above can be systematically addressed by initially focusing on nonpolar liquids that
are coarse-grained into two beads per molecule. This enables first adjustments to the RoughMob framework
to calculations on multiple beads, while keeping the bonded interactions limited to one bond in the CG
representation. Progressing to models with three sequential beads allows for distinguishing between end and
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middle beads, establishing the basis for longer chains. The two CG bead molecules can also be used as a basis
for introducing polarities. Using polar molecules with similar structures facilitates a direct analysis of the
additional effects added by the stronger interactions and increased order.

64



Bibliography

[1] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Second
Edition), Academic Press, San Diego, 2002.

[2] A. Rahman, “Correlations in the Motion of Atoms in Liquid Argon”, Physical Review 1964, 136, A405–
A411.

[3] G. D. Harp, B. J. Berne, “Time-Correlation Functions, Memory Functions, and Molecular Dynamics”,
Physical Review A 1970, 2, 975–996.

[4] M. Bishop, M. H. Kalos, H. L. Frisch, “Molecular dynamics of polymeric systems”, The Journal of Chemical
Physics 1979, 70, 1299–1304.

[5] S. A. Hollingsworth, R. O. Dror, “Molecular Dynamics Simulation for All”, Neuron 2018, 99, 1129–1143.
[6] M. Karplus, J. A. McCammon, “Molecular dynamics simulations of biomolecules”, Nature Structural

Biology 2002, 9, 646–652.
[7] O. M. H. Salo-Ahen, I. Alanko, R. Bhadane, A. M. J. J. Bonvin, R. V. Honorato, S. Hossain, A. H. Juffer,

A. Kabedev, M. Lahtela-Kakkonen, A. S. Larsen, E. Lescrinier, P. Marimuthu, M. U. Mirza, G. Mustafa, A.
Nunes-Alves, T. Pantsar, A. Saadabadi, K. Singaravelu, M. Vanmeert, “Molecular Dynamics Simulations
in Drug Discovery and Pharmaceutical Development”, Processes 2021, 9, 71.

[8] D. J. L. Prak, B. H. Morrow, S. Maskey, J. A. Harrison, J. S. Cowart, P. C. Trulove, “Densities, Speeds of
Sound, and Viscosities of Binary Mixtures of an n-Alkylcyclohexane (n-Propyl-, n-Pentyl-, n-Hexyl-,
n-Heptyl, n-Octyl-, n-Nonyl-, n-Decyl-, and n-Dodecyl-) with n-Hexadecane”, Journal of Chemical &
Engineering Data 2018, 63, 4632–4648.

[9] B. H. Morrow, S. Maskey, M. Z. Gustafson, D. J. Luning Prak, J. A. Harrison, “Impact of Molecular
Structure on Properties of n-Hexadecane and Alkylbenzene Binary Mixtures”, The Journal of Physical
Chemistry B 2018, 122, 6595–6603.

[10] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, D. S. Butler W. Lampson, T. B. Schardl,
“There’s plenty of room at the Top: What will drive computer performance after Moore’s law?”, Science
2020, 368, eaam9744.

[11] T. E. I. Gartner, A. Jayaraman, “Modeling and Simulations of Polymers: A Roadmap”, Macromolecules
2019, 52, 755–786.

65



[12] C. Peter, K. Kremer, “Multiscale simulation of soft matter systems – from the atomistic to the coarse-
grained level and back”, Soft Matter 2009, 5, 4357–4366.

[13] W. G. Noid, “Perspective: Coarse-grained models for biomolecular systems”, The Journal of Chemical
Physics 2013, 139, 090901.

[14] E. Brini, E. A. Algaer, P. Ganguly, C. Li, F. Rodríguez-Ropero, N. F. A. van der Vegt, “Systematic
coarse-graining methods for soft matter simulations – a review”, Soft Matter 2013, 9, 2108–2119.

[15] M. Feig, Y. Sugita, “Whole-Cell Models and Simulations in Molecular Detail”, Annual Review of Cell and
Developmental Biology 2019, 35, 191–211.

[16] V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt, K. Kremer, “Hierarchical Modeling of Polystyrene:
From Atomistic to Coarse-Grained Simulations”, Macromolecules 2006, 39, 6708–6719.

[17] C. Peter, K. Kremer, “Multiscale simulation of soft matter systems”, Faraday Discuss. 2010, 144, 9–24.
[18] T. Murtola, A. Bunker, I. Vattulainen, M. Deserno, M. Karttunen, “Multiscale modeling of emergent

materials: biological and soft matter”, Physical Chemistry Chemical Physics 2009, 11, 1869–1892.
[19] J. A. Armstrong, C. Chakravarty, P. Ballone, “Statistical mechanics of coarse graining: Estimating

dynamical speedups from excess entropies”, The Journal of Chemical Physics 2012, 136, 124503.
[20] K. R. Hadley, C. McCabe, “On the Investigation of Coarse-Grained Models for Water: Balancing Com-

putational Efficiency and the Retention of Structural Properties”, The Journal of Physical Chemistry B
2010, 114, 4590–4599.

[21] S. Riniker, W. F. van Gunsteren, “Mixing coarse-grained and fine-grained water in molecular dynamics
simulations of a single system”, The Journal of Chemical Physics 2012, 137, 044120.

[22] M. Dinpajooh, M. G. Guenza, “Coarse-Graining Simulation Approaches for Polymer Melts: the Effect of
Potential Range on Computational Efficiency”, Soft Matter 2018, 14, 7126–7144.

[23] C. Chen, P. Depa, J. K. Maranas, V. G. Sakai, “Comparison of Explicit Atom, United Atom, and Coarse-
Grained Simulations of poly(methyl methacrylate)”, The Journal of Chemical Physics 2008, 128, 124906.

[24] P. K. Depa, J. K. Maranas, “Speed Up of Dynamic Observables in Coarse-Grained Molecular-Dynamics
Simulations of Unentangled Polymers”, The Journal of Chemical Physics 2005, 123, 094901.

[25] P. K. Depa, J. K. Maranas, “Dynamic Evolution in Coarse-Grained Molecular Dynamics Simulations of
Polyethylene Melts”, The Journal of Chemical Physics 2007, 126, 054903.

[26] P. Depa, C. Chen, J. K. Maranas, “Why Are Coarse-Grained Force Fields Too Fast? a Look At Dynamics
of Four Coarse-Grained Polymers”, The Journal of Chemical Physics 2011, 134, 014903.

[27] R. Potestio, C. Peter, K. Kremer, “Computer Simulations of Soft Matter: Linking the Scales”, Entropy
2014, 16, 4199–4245.

[28] F. Müller-Plathe, “Coarse-Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale
and Back”, Chemphyschem 2002, 3, 755–69.

66



[29] W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, H. C. Andersen, “The
Multiscale Coarse-Graining Method. I. a Rigorous Bridge Between Atomistic and Coarse-Grained
Models”, The Journal of Chemical Physics 2008, 128, 244114.

[30] S. Trément, B. Schnell, L. Petitjean, M. Couty, B. Rousseau, “Conservative and Dissipative Force Field
for Simulation of Coarse-Grained Alkane Molecules: a Bottom-Up Approach”, The Journal of Chemical
Physics 2014, 140, 134113.

[31] S. T. John, G. Csányi, “Many-Body Coarse-Grained Interactions Using Gaussian Approximation Poten-
tials”, The Journal of Physical Chemistry B 2017, 121, 10934–10949.

[32] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries, “The MARTINI Force Field:
Coarse Grained Model for Biomolecular Simulations”, The Journal of Physical Chemistry B 2007, 111,
7812–7824.

[33] M. S. Shell, “The relative entropy is fundamental to multiscale and inverse thermodynamic problems”,
The Journal of Chemical Physics 2008, 129, 144108.

[34] D. Reith, H. Meyer, F. Müller-Plathe, “Mapping Atomistic to Coarse-Grained Polymer Models Using
Automatic Simplex Optimization To Fit Structural Properties”, Macromolecules 2001, 34, 2335–2345.

[35] D. Reith, M. Pütz, F. Müller-Plathe, “Deriving effective mesoscale potentials from atomistic simulations”,
Journal of Computational Chemistry 2003, 24, 1624–1636.

[36] N. J. H. Dunn, W. G. Noid, “Bottom-up coarse-grained models that accurately describe the structure,
pressure, and compressibility of molecular liquids”, The Journal of Chemical Physics 2015, 143, 243148.

[37] P. Ganguly, N. F. A. van der Vegt, “Representability and Transferability of Kirkwood–Buff Iterative
Boltzmann Inversion Models for Multicomponent Aqueous Systems”, Journal of Chemical Theory and
Computation 2013, 9, 5247–5256.

[38] D. Fritz, K. Koschke, V. A. Harmandaris, N. F. A. van der Vegt, K. Kremer, “Multiscale Modeling of Soft
Matter: Scaling of Dynamics”, Physical Chemistry Chemical Physics 2011, 13, 10412.

[39] C.-C. Fu, P. M. Kulkarni, M. S. Shell, L. G. Leal, “A test of systematic coarse-graining of molecular
dynamics simulations: Transport properties”, The Journal of Chemical Physics 2013, 139, 094107.

[40] M. Guenza, “Thermodynamic consistency and other challenges in coarse-grainingmodels”, The European
Physical Journal Special Topics 2015, 224, 2177–2191.

[41] M. K. Meinel, F. Müller-Plathe, “Loss of Molecular Roughness upon Coarse-Graining Predicts the
Artificially Accelerated Mobility of Coarse-Grained Molecular Simulation Models”, Journal of Chemical
Theory and Computation 2020, 16, 1411–1419.

[42] D. Fritz, C. R. Herbers, K. Kremer, N. F. A. van der Vegt, “Hierarchical modeling of polymer permeation”,
Soft Matter 2009, 5, 4556–4563.

[43] S. O. Nielsen, C. F. Lopez, G. Srinivas, M. L. Klein, “Coarse Grain Models and the Computer Simulation
of Soft Materials”, Journal of Physics: Condensed Matter 2004, 16, R481–R512.

67



[44] Z. Wu, F. Müller-Plathe, “Slip-Spring Hybrid Particle-Field Molecular Dynamics for Coarse-Graining
Branched Polymer Melts: Polystyrene Melts as an Example”, Journal of Chemical Theory and Computation
2022, 18, 3814–3828.

[45] V. Klippenstein, N. F. A. van der Vegt, “Bottom-Up Informed and Iteratively Optimized Coarse-Grained
Non-Markovian Water Models with Accurate Dynamics”, Journal of Chemical Theory and Computation
2023, 19, 1099–1110.

[46] S. Bag, M. K. Meinel, F. Müller-Plathe, “Toward a Mobility-Preserving Coarse-Grained Model: A Data-
Driven Approach”, Journal of Chemical Theory and Computation 2022, 18, 7108–7120.

[47] S. Bag, M. K. Meinel, F. Müller-Plathe, “Synthetic Force-Field Database for Training Machine Learning
Models to Predict Mobility-Preserving Coarse-Grained Molecular-Simulation Potentials”, Journal of
Chemical Theory and Computation 2024, 20, 3046–3060.

[48] A. Davtyan, J. F. Dama, G. A. Voth, H. C. Andersen, “Dynamic force matching: A method for constructing
dynamical coarse-grained models with realistic time dependence”, The Journal of Chemical Physics
2015, 142, 154104.

[49] A. Davtyan, G. A. Voth, H. C. Andersen, “Dynamic force matching: Construction of dynamic coarse-
grained models with realistic short time dynamics and accurate long time dynamics”, The Journal of
Chemical Physics 2016, 145, 224107.

[50] M. Tripathy, V. Klippenstein, N. F. A. van der Vegt, “Dynamical coarse-grained models of molecular
liquids and their ideal and non-ideal mixtures”, The Journal of Chemical Physics 2023, 159, 094904.

[51] F. Knoch, K. Schäfer, G. Diezemann, T. Speck, “Dynamic coarse-graining fills the gap between atomistic
simulations and experimental investigations of mechanical unfolding”, The Journal of Chemical Physics
2018, 148, 044109.

[52] J. T. Padding, W. J. Briels, “Time and Length Scales of Polymer Melts Studied By Coarse-Grained
Molecular Dynamics Simulations”, The Journal of Chemical Physics 2002, 117, 925–943.

[53] R. L. C. Akkermans, W. J. Briels, “Coarse-grained dynamics of one chain in a polymer melt”, The Journal
of Chemical Physics 2000, 113, 6409–6422.

[54] S. Izvekov, G. A. Voth, “Modeling real dynamics in the coarse-grained representation of condensed
phase systems”, The Journal of Chemical Physics 2006, 125, 151101.

[55] S. Markutsya, M. H. Lamm, “A Coarse-Graining Approach for Molecular Simulation That Retains the
Dynamics of the All-Atom Reference System By Implementing Hydrodynamic Interactions”, The Journal
of Chemical Physics 2014, 141, 174107.

[56] H.-J. Qian, C. C. Liew, F. Müller-Plathe, “Effective control of the transport coefficients of a coarse-grained
liquid and polymer models using the dissipative particle dynamics and Lowe-Andersen equations of
motion”, Physical Chemistry Chemical Physics 2009, 11, 1962–1969.

[57] C. A. Lemarchand, M. Couty, B. Rousseau, “Coarse-Grained Simulations of Cis- and Trans-Polybutadiene:
a Bottom-Up Approach”, The Journal of Chemical Physics 2017, 146, 074904.

68



[58] M. Palma Banos, A. V. Popov, R. Hernandez, “Representability and Dynamical Consistency in Coarse-
Grained Models”, The Journal of Physical Chemistry B 2024, 128, 1506–1514.

[59] V. A. Harmandaris, K. Kremer, “Predicting polymer dynamics at multiple length and time scales”, Soft
Matter 2009, 5, 3920–3926.

[60] J. B. Accary, V. Teboul, “Time versus temperature rescaling for coarse grain molecular dynamics
simulations”, The Journal of Chemical Physics 2012, 136, 094502.

[61] J. Jin, K. S. Schweizer, G. A. Voth, “Understanding dynamics in coarse-grained models. I. Universal
excess entropy scaling relationship”, Chemical Physics 2023, 158, 034103.

[62] A. F. Behbahani, L. Schneider, A. Rissanou, A. Chazirakis, P. Bačová, P. K. Jana, W. Li, M. Doxastakis,
P. Polińska, C. Burkhart, M. Müller, V. A. Harmandaris, “Dynamics and Rheology of Polymer Melts
via Hierarchical Atomistic, Coarse-Grained, and Slip-Spring Simulations”, Macromolecules 2021, 54,
2740–2762.

[63] G. Milano, F. Müller-Plathe, “Mapping Atomistic Simulations to Mesoscopic Models: A Systematic
Coarse-Graining Procedure for Vinyl Polymer Chains”, The Journal of Physical Chemistry B 2005, 109,
18609–18619.

[64] V. A. Harmandaris, K. Kremer, “Dynamics of Polystyrene Melts through Hierarchical Multiscale Simula-
tions”, Macromolecules 2009, 42, 791–802.

[65] M. S. Shell, “Systematic coarse-graining of potential energy landscapes and dynamics in liquids”, The
Journal of Chemical Physics 2012, 137, 084503.

[66] G. G. Rondina, M. C. Böhm, F. Müller-Plathe, “Predicting the Mobility Increase of Coarse-Grained
Polymer Models from Excess Entropy Differences”, Journal of Chemical Theory and Computation 2020,
16, 1431–1447.

[67] A. Chaimovich, M. S. Shell, “Coarse-graining errors and numerical optimization using a relative entropy
framework”, The Journal of Chemical Physics 2011, 134, 094112.

[68] I. Lyubimov, M. G. Guenza, “First-principle approach to rescale the dynamics of simulated coarse-grained
macromolecular liquids”, Physical Review E 2011, 84, 031801.

[69] I. Y. Lyubimov, M. G. Guenza, “Theoretical reconstruction of realistic dynamics of highly coarse-grained
cis-1,4-polybutadiene melts”, The Journal of Chemical Physics. 2013, 138, 12A546.

[70] J. G. E. M. Fraaije, J. van Male, P. Becherer, R. S. Gracià, “Calculation of Diffusion Coefficients Through
Coarse-Grained Simulations Using the Automated-Fragmentation-Parametrization Method and the
Recovery of Wilke-Chang Statistical Correlation”, Journal of Chemical Theory and Computation 2018,
14, 479–485.

[71] J. F. Rudzinski, S. Kloth, S. Wörner, T. Pal, K. Kremer, T. Bereau, M. Vogel, “Dynamical properties
across different coarse-grained models for ionic liquids”, Journal of Physics: Condensed Matter 2021, 33,
224001.

69



[72] M. K. Meinel, F. Müller-Plathe, “Roughness Volumes: An Improved RoughMob Concept for Predicting
the Increase of Molecular Mobility upon Coarse-Graining”, The Journal of Physical Chemistry B 2022,
126, 3737–3747.

[73] M. K. Meinel, F. Müller-Plathe, “Predicting the artificial dynamical acceleration of binary hydrocarbon
mixtures upon coarse-graining with roughness volumes and simple averaging rules”, The Journal of
Chemical Physics 2024, 160, 174108.

[74] P. Carbone, H. A. K. Varzaneh, X. Chen, F. Müller-Plathe, “Transferability of coarse-grained force fields:
The polymer case”, The Journal of Chemical Physics 2008, 128, 064904.

[75] B. J. Alder, T. E. Wainwright, “Studies in Molecular Dynamics. I. General Method”, The Journal of
Chemical Physics 1959, 31, 459–466.

[76] L. Verlet, “Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones
Molecules”, Physical Review 1967, 159, 98–103.

[77] M. S. Shell, Thermodynamics and Statistical Mechanics: An Integrated Approach, Cambridge University
Press, 2015.

[78] A. P. Sutton, J. Chen, “Long-range Finnis–Sinclair potentials”, Philosophical Magazine Letters 1990, 61,
139–146.

[79] Y. Mishin, D. Farkas, M. J. Mehl, D. A. Papaconstantopoulos, “Interatomic potentials for monoatomic
metals from experimental data and ab initio calculations”, Physical Review B 1999, 59, 3393–3407.

[80] J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Physical
Review B 1989, 39, 5566–5568.

[81] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, “Development and Testing of the OPLS All-Atom Force
Field on Conformational Energetics and Properties of Organic Liquids”, Journal of the American Chemical
Society 1996, 118, 11225–11236.

[82] J. F. Rudzinski, W. G. Noid, “Coarse-Graining Entropy, Forces, and Structures”, The Journal of Chemical
Physics 2011, 135, 214101.

[83] J. W. Wagner, J. F. Dama, A. E. P. Durumeric, G. A. Voth, “On the Representability Problem and the
Physical Meaning of Coarse-Grained Models”, The Journal of Chemical Physics 2016, 145, 044108.

[84] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 2017.
[85] B. L. Peters, K. M. Salerno, A. Agrawal, D. Perahia, G. S. Grest, “Coarse-GrainedModeling of Polyethylene

Melts: Effect on Dynamics”, Journal of Chemical Theory and Computation 2017, 13, 2890–2896.
[86] V. K. Michalis, O. A. Moultos, I. N. Tsimpanogiannis, I. G. Economou, “Molecular dynamics simulations

of the diffusion coefficients of light n-alkanes in water over a wide range of temperature and pressure”,
Fluid Phase Equilibria 2016, 407, 236–242.

[87] Y.-L. Wang, B. Li, A. Laaksonen, “Coarse-grained simulations of ionic liquid materials: from monomeric
ionic liquids to ionic liquid crystals and polymeric ionic liquids”, Physical Chemistry Chemical Physics
2021, 23, 19435–19456.

70



[88] T. D. Stoffel, J. B. Haskins, J. W. Lawson, S. Markutsya, “Coarse-Grained Dynamically Accurate Simula-
tions of Ionic Liquids: [pyr14][TFSI] and [EMIM][BF4]”, The Journal of Physical Chemistry B 2022,
126, 1819–1829.

[89] F. Schmid, “Understanding and Modeling Polymers: The Challenge of Multiple Scales”, ACS Polymers
Au 2023, 3, 28–58.

71



Supporting Information:

Loss of molecular roughness upon

coarse-graining predicts the artificially

accelerated mobility of coarse-grained

molecular simulation models

Melissa K. Meinel∗ and Florian Müller-Plathe∗

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area

Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8,

D-64287 Darmstadt, Germany

E-mail: m.meinel@theo.chemie.tu-darmstadt.de; f.mueller-plathe@theo.chemie.tu-darmstadt.de

1

xii



All-atom potentials

Table 1: Atomistic Force Field Potential Energy Bonded Parameters with sp3 aliphatic car-
bon atoms (CT), aliphatic hydrogen atoms (HC), aromatic carbon atoms (CA) and aromatic
hydrogen atoms (HA).

bonds Ebond = Kr(r − req)2

type Kr /kcal mol−1Å−2 req /Å

CT–CTd 268 1.529
CT–HCd 340 1.090
CT–CAa 317 1.510
CA–CAa 469 1.400
CA–HAa 367 1.080

angles Eangle = Kθ(θ − θeq)2

type Kθ /kcal mol−1rad−2 θeq /deg

CT–CT–CTd 58.35 112.7
CT–CT–HCd 37.5 110.7
HC–CT–HCd 33 107.8
CT–CT–CAa 63 114
CT–CA–CAa 70 120
HC–CT–CA 35 109.5
CA–CA–CAa 63 120
CA–CA–HAa 35 120

dihedrals Etorsion = 1
2 [V1 (1 + cos(ϕ)) + V2 (1− cos(2ϕ)) + V3 (1 + cos(3ϕ))]

type V1/kcal mol−1 V2/kcal mol−1 V3/kcal mol−1

CT–CT–CT–CTc 1.3 -0.05 0.2
CT–CT–CT–HCc 0.0 0.0 0.3
HC–CT–CT–HCc 0.0 0.0 0.3
CT–CT–CA–CAb 0.0 0.0 0.0
CT–CA–CA–CAd 0.0 7.25 0.0
CT–CA–CA–HAd 0.0 7.25 0.0
HC–CT–CT–CAb 0.0 0.0 0.462
HC–CT–CA–CAb 0.0 0.0 0.0
CA–CA–CA–CAd 0.0 7.25 0.0
CA–CA–CA–HAd 0.0 7.25 0.0
HA–CA–CA–HAd 0.0 7.25 0.0
a Values from Ref. 1 ; b values from Ref. 2 ; c values from Ref. 3 ; d values from Ref. 4 .
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Reference surfaces

Two alternative ways of defining the reference surface for the molecular roughness calculation

have been tested. Both arise purely from the geometry of the all-atom molecule, assuming

that the roughness of the CG bead is zero, and yield lower correlations with the acceleration

factor.

Average atomistic surface radius

A sphere with the average radius of the AA surface grid RAA is used as reference geometry.

The radii rAA of the spheres, (thus, the equivalent to rCG) can be found in Table 2.

rAA = 1
ngrid

∑

(θ,ϕ,rAA)∈RAA

rAA (1)

Rref = rAA · Rdir (2)

Table 2: Molecular roughness difference, skewness and kurtosis averaged over 200 molecules
for each system.

∆Ra /Å rAA /Å Rsk Rku

23DiMeBu 0.495 2.94 -0.28 2.37
Bz 0.461 2.66 -0.37 2.61
3MePe 0.576 2.90 0.15 2.41
234TriMePe 0.608 3.18 -0.16 2.31
3EtHx 0.708 3.10 0.42 2.56
EtBz 0.695 2.88 0.2 2.3
25DiMeHx 0.847 3.04 0.43 2.07

The correlation coefficient of the linear relation between α and ∆Ra is R2 = 0.97.

α = 39 Å−1(∆Ra − 0.43 Å)

3
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Convex hull

Instead of using a sphere as reference surface, the reference surface follows the shape of

the convex hull of the AA molecule and is scaled so that the average radius equals the

average atomistic surface radius. The surface of the AA molecule is generated numerically

using the Shrake-Rupley Algorithm5 with a probe radius of 0. The convex hull of a point

cloud is the smallest convex set that contains all its points which means that every line

segment connecting two points lies completely within the hull. The convex hull of this point

grid is described by a triangulated surface with Ti being the ith triangle. RcH is the set of

ray-triangle intersection points of all rays Rdir and all triangles of the convex hull.

RcH =
{
p ∈ Ti ∩ r · Rdir|i = 1, ..., ntriangles; r ∈ R+} (3)

rcH = 1
ngrid

∑

(θ,ϕ,rcH)∈RcH

rcH (4)

The radius component of each point in RcH is scaled so that the average radius equals

the average atomistic surface radius rAA.

Rref = rAA

rcH
· RcH (5)

Table 3: Molecular roughness difference, skewness and kurtosis averaged over 200 molecules
for each system.

∆Ra /Å rAA /Å Rsk Rku

23DiMeBu 0.291 3.24 -1.14 3.61
Bz 0.114 2.76 -1.29 4.18
3MePe 0.315 3.23 -0.96 3.14
234TriMePe 0.352 3.55 -1.05 3.36
3EtHx 0.393 3.56 -0.72 2.79
EtBz 0.297 3.19 -1.03 3.36
25DiMeHx 0.439 3.56 -0.45 2.28
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All-atom potentials

Table S1: Atomistic Force Field Potential Energy Bonded Parameters with sp3

aliphatic carbon atoms (CT), aliphatic hydrogen atoms (HC), aromatic carbon
atoms (CA) and aromatic hydrogen atoms (HA).

bonds Ebond = Kr(r − req)2

type Kr /kcal mol−1Å−2 req /Å

CT–CTd 268 1.529
CT–HCd 340 1.090
CT–CAa 317 1.510
CA–CAa 469 1.400
CA–HAa 367 1.080

angles Eangle = Kθ(θ − θeq)2

type Kθ /kcal mol−1rad−2 θeq /deg

CT–CT–CTd 58.35 112.7
CT–CT–HCd 37.5 110.7
HC–CT–HCd 33 107.8
CT–CT–CAa 63 114
CT–CA–CAa 70 120
HC–CT–CA 35 109.5
CA–CA–CAa 63 120
CA–CA–HAa 35 120

dihedrals Etorsion = 1
2 [V1 (1 + cos(ϕ)) + V2 (1 − cos(2ϕ)) + V3 (1 + cos(3ϕ))]

type V1/kcal mol−1 V2/kcal mol−1 V3/kcal mol−1

CT–CT–CT–CTc 1.3 -0.05 0.2
CT–CT–CT–HCc 0.0 0.0 0.3
HC–CT–CT–HCc 0.0 0.0 0.3
CT–CT–CA–CAb 0.0 0.0 0.0
CT–CA–CA–CAd 0.0 7.25 0.0
CT–CA–CA–HAd 0.0 7.25 0.0
HC–CT–CT–CAb 0.0 0.0 0.462
HC–CT–CA–CAb 0.0 0.0 0.0
CA–CA–CA–CAd 0.0 7.25 0.0
CA–CA–CA–HAd 0.0 7.25 0.0
HA–CA–CA–HAd 0.0 7.25 0.0
a Values from Ref. 1 ; b values from Ref. 2 ; c values from Ref. 3 ; d values from Ref. 4 .

S2

xviii



Cut off-radii for Iterative Boltzmann Inversion

Table S2: Cut of-radii used for coarse-graining via Iterative Boltzmann Inversion
in Å.

system rcut

alkanes, COM-mapped
Neo 14.9
23DiMeBu 15.5
3MePe 15.3
23DiMePe 15.95
234TriMePe 16.5
3EtHx 15.1
33DE24DMP 15.5
2MeHx 14.9
25DiMeHx 15.2
33DIP24DMP 16.1
aromatic molecules, COM-mapped
Bz 14.3
EtBz 14.9
Mesi 15.35

alkanes, methyl C-mapped
3MePe 15.3
23DiMePe 16.0
23DiMeBu 15.5
234TriMePe 16.6

Predicted acceleration factor

Instead of using

αpred = A · (Vshell + Voverlap) +B · exp
(
Vin
Vout

)
+ C (1)

as fitted equation to predict the scaling factor, other combinations of the roughness volumes

have been tested. Some of them are shown here. Figure S1 and S2 show the fits for two

alternative ways of defining the passive volume term (equations above the figures). Figure

S3 and S4 show fits with active volume terms without adding the overlap volume or with

S3
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subtracting it (to use only the volumes summing up to the molecular volume). Generally, the

fit with all systems results in acceptable agreements between the predicted acceleration and

the calculated acceleration factor (Figures (a)), while the prediction of higher acceleration

factors from lower acceleration factors (Figures (b)) worsens. Adding different factors, such

as the coordination number CN or the ratio of the molecular surfaces to the fitted parameter

has been tested as well (see Figure S5). However, since no significant improvements were

reached, they were left out for simplicity.

αpred = A · (Vshell + Voverlap) +B · (Vin − Vout) + C (2)

(a) (b)

Figure S1: Predicted acceleration factor against simulated acceleration factor; gray,
diamond : C6 and C8 alkane; gray, circle: C6 and C8 aromatic; blue: 2-methylhexane;
green, diamond : 2,3-dimethylpentane; green, circle: mesitylene; red : C5, C11 and C13
alkane; triangle, green: methyl C-mapped alkane; gray, dashed : simulated scaling factor;
(a) all systems used for fit of Eq. 2; (b) unfilled : systems used for fit; filled : predicted

systems

αpred = A · (Vshell + Voverlap) +B ·
(
Vin
Vout

)
+ C (3)

S4
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(a) (b)

Figure S2: Predicted acceleration factor against simulated acceleration factor; gray,
diamond : C6 and C8 alkane; gray, circle: C6 and C8 aromatic; blue: 2-methylhexane;
green, diamond : 2,3-dimethylpentane; green, circle: mesitylene; red : C5, C11 and C13
alkane; triangle, green: methyl C-mapped alkane; gray, dashed : simulated scaling factor;
(a) all systems used for fit of Eq. 3; (b) unfilled : systems used for fit; filled : predicted

systems

αpred = A · (Vshell) +B · exp
(
Vin
Vout

)
+ C (4)

(a) (b)

Figure S3: Predicted acceleration factor against simulated acceleration factor; gray,
diamond : C6 and C8 alkane; gray, circle: C6 and C8 aromatic; blue: 2-methylhexane;
green, diamond : 2,3-dimethylpentane; green, circle: mesitylene; red : C5, C11 and C13
alkane; triangle, green: methyl C-mapped alkane; gray, dashed : simulated scaling factor;
(a) all systems used for fit of Eq. 4; (b) unfilled : systems used for fit; filled : predicted

systems
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αpred = A · (Vshell − Voverlap) +B · exp
(
Vin
Vout

)
+ C (5)

(a) (b)

Figure S4: Predicted acceleration factor against simulated acceleration factor; gray,
diamond : C6 and C8 alkane; gray, circle: C6 and C8 aromatic; blue: 2-methylhexane;
green, diamond : 2,3-dimethylpentane; green, circle: mesitylene; red : C5, C11 and C13
alkane; triangle, green: methyl C-mapped alkane; gray, dashed : simulated scaling factor;
(a) all systems used for fit of Eq. 5; (b) unfilled : systems used for fit; filled : predicted

systems

While not adding the overlap volume provides comparable results to the ones presented

in the paper, subtracting it (to use only the volumes summing up to the molecular volume)

significantly worsens it.

αpred = A · CN · (Vshell − Voverlap) +B · exp
(
Vin
Vout

)
+ C (6)
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(a) (b)

Figure S5: Predicted acceleration factor against simulated acceleration factor; gray,
diamond : C6 and C8 alkane; gray, circle: C6 and C8 aromatic; blue: 2-methylhexane;
green, diamond : 2,3-dimethylpentane; green, circle: mesitylene; red : C5, C11 and C13
alkane; triangle, green: methyl C-mapped alkane; gray, dashed : simulated scaling factor;

(a) all systems used for fit Eq. 6; (b) unfilled : systems used for fit; filled : predicted systems
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All-atom potentials

Table S1: Atomistic Force Field Potential Energy Bonded Parameters with sp3 aliphatic
carbon atoms (CT), aliphatic hydrogen atoms (HC), aromatic carbon atoms (CA) and aro-
matic hydrogen atoms (HA).

bonds Ebond = Kr(r − req)2

type Kr /kcal mol−1Å−2 req /Å

CT–CTd 268 1.529
CT–HCd 340 1.090
CT–CAa 317 1.510
CA–CAa 469 1.400
CA–HAa 367 1.080

angles Eangle = Kθ(θ − θeq)2

type Kθ /kcal mol−1rad−2 θeq /deg

CT–CT–CTd 58.35 112.7
CT–CT–HCd 37.5 110.7
HC–CT–HCd 33 107.8
CT–CT–CAa 63 114
CT–CA–CAa 70 120
HC–CT–CA 35 109.5
CA–CA–CAa 63 120
CA–CA–HAa 35 120

dihedrals Etorsion = 1
2 [V1 (1 + cos(ϕ)) + V2 (1− cos(2ϕ)) + V3 (1 + cos(3ϕ))]

type V1/kcal mol−1 V2/kcal mol−1 V3/kcal mol−1

CT–CT–CT–CTc 1.3 -0.05 0.2
CT–CT–CT–HCc 0.0 0.0 0.3
HC–CT–CT–HCc 0.0 0.0 0.3
CT–CT–CA–CAb 0.0 0.0 0.0
CT–CA–CA–CAd 0.0 7.25 0.0
CT–CA–CA–HAd 0.0 7.25 0.0
HC–CT–CT–CAb 0.0 0.0 0.462
HC–CT–CA–CAb 0.0 0.0 0.0
CA–CA–CA–CAd 0.0 7.25 0.0
CA–CA–CA–HAd 0.0 7.25 0.0
HA–CA–CA–HAd 0.0 7.25 0.0
a Values from Ref. 1 ; b values from Ref. 2 ; c values from Ref. 3 ; d values from Ref. 4 .
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Coarse-grained potentials
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Figure S1: Coarse-grained potentials for (a) pure 2,3-dimethylbutane (green), pure
2,5-dimehthylhexane (purple) and their mixed potentials (black); (b) pure

2,3-dimethylbutane (green), pure 2,3,4-trimethylpentane (orange) and their mixed
potentials (black);(c) pure 3-ethylhexane (blue), pure 2,5-dimehthylhexane (purple) and

their mixed potentials (black) and (d) pure 3-ethylhexane (blue), pure
2,3,4-trimethylpentane (orange) and their mixed potentials (black); mixed potential

generated by Iterative Boltzmann Inversion for a 1:1 mixture solid and via combination
rules with c ranging from 0.1 to 0.9 dashed-dotted.
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Structural properties

RDFs
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Figure S2: Radial distribution function of 2,3-dimethylbutane (green) and
2,5-dimethylhexane (purple) and their mixed species interaction (gray); left : all-atom;

right : coarse-grained; solid: xDiMeBu=0.01; dashed: xDiMeHx=0.01.
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Figure S3: Radial distribution function of 2,3-dimethylbutane (green) and 3-ethylhexane
(blue) and their mixed species interaction (gray); left : all-atom; right : coarse-grained;

solid: xDiMeBu=0.01; dashed: xEtHx=0.01.
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Figure S4: Radial distribution function of 2,3-dimethylbutane (green) and
2,3,4-trimethylpentane (orange) and their mixed species interaction (gray); left : all-atom;

right : coarse-grained; solid: xDiMeBu=0.01; dashed: xTrMePe=0.01.
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Figure S5: Radial distribution function of 3-ethylhexane (blue) and 2,5-dimethylhexane
(purple) and their mixed species interaction (gray); left : all-atom; right : coarse-grained;

solid: xEtHx=0.01; dashed: xDiMeHx=0.01.
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Figure S6: Radial distribution function of 2,3,4-trimethylpentane (orange) and
2,5-dimethylhexane (purple) and their mixed species interaction (gray); left : all-atom;

right : coarse-grained; solid: xTrMePe=0.01; dashed: xDiMeHx=0.01.
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RD
F(

r)

(e)

4 6 8 10 12 14
r /Å
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Figure S7: Radial distribution function of 2,3,4-trimethylpentane (orange) and
3-ethylhexane (blue) and their mixed species interaction (gray); left : all-atom; right :

coarse-grained; solid: xTrMePe=0.01; dashed: xEtHx=0.01.
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Figure S8: Radial distribution function of 2,3-dimethylbutane (green) and
3,3-diisopropyl-2,4-dimethylpentane (red) and their mixed species interaction (gray); left :

all-atom; right : coarse-grained; solid: xDiMeBu=0.01; dashed: xDIPDMP=0.01.
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Figure S9: Radial distribution function of 2,5-dimethylhexane (purple) and
3,3-diisopropyl-2,4-dimethylpentane (red) and their mixed species interaction (gray); left :

all-atom; right : coarse-grained; solid: xDiMeBu=0.01; dashed: xDIPDMP=0.01.
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RDF errors

δgtotal = x2
1 δg11 + x1x2 δg12 + x2

2 δg22

x2
1 + x1x2 + x2

2
(1)

δg1 = x2
1 δg11 + x1x2 δg12 (2)

δg2 = x2
2 δg22 + x1x2 δg12 (3)

Table S2: RDF errors of all simulations with IBI generated mixed potentials in %, x1 refers
to component first in the mixture name

DiMeBu-DiMeHx-mixture

x1 δg11 δg22 δg12 δg1 δg2 δgtotal

0.01 41.82 0.96 5.69 6.05 1.01 1.01

0.02 27.21 0.91 5.6 6.04 1.01 1.02

0.05 22.21 0.78 5.15 6.0 1.0 1.05

0.1 18.63 0.98 4.52 5.93 1.33 1.52

0.25 13.36 1.85 2.68 5.35 2.06 2.93

0.5 7.84 2.99 0.38 4.11 1.68 3.74

0.75 3.46 3.71 1.82 3.05 2.29 3.1

0.9 1.42 4.78 2.16 1.5 2.42 1.53

0.95 0.9 5.67 2.39 0.98 2.55 0.99

0.98 0.74 4.36 2.36 0.77 2.4 0.77

0.99 0.73 7.83 2.46 0.75 2.52 0.75

DiMeBu-TrMePe-mixture

x1 δg11 δg22 δg12 δg1 δg2 δgtotal

0.01 17.7 0.53 5.61 5.73 0.58 0.58
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0.02 15.6 0.49 5.59 5.79 0.59 0.6

0.05 14.73 0.41 5.36 5.83 0.66 0.69

0.1 14.51 0.46 4.96 5.91 0.91 1.06

0.25 12.94 1.58 3.69 6.0 2.11 2.94

0.5 9.45 4.69 2.01 5.73 3.35 5.38

0.75 5.86 8.78 3.94 5.38 5.15 5.64

0.9 2.93 12.67 6.66 3.3 7.26 3.41

0.95 1.86 13.21 7.68 2.15 7.96 2.18

0.98 1.21 15.38 8.41 1.35 8.55 1.36

0.99 0.96 17.11 8.74 1.04 8.82 1.04

TrMePe-DiMeHx-mixture

x1 δg11 δg22 δg12 δg1 δg2 δgtotal

0.01 33.57 1.0 9.48 9.72 1.08 1.09

0.02 32.69 0.99 9.08 9.55 1.15 1.16

0.05 29.26 1.03 8.6 9.64 1.41 1.48

0.1 25.89 1.55 7.48 9.33 2.14 2.4

0.25 21.25 3.76 4.86 8.96 4.03 5.36

0.5 12.27 8.47 4.33 8.3 6.4 8.35

0.75 5.62 14.75 5.52 5.59 7.83 6.3

0.9 2.22 18.31 8.71 2.87 9.67 3.04

0.95 1.1 18.58 9.89 1.54 10.33 1.59

0.98 0.62 19.41 10.57 0.82 10.75 0.83

0.99 0.58 20.06 10.81 0.68 10.9 0.68

DiMeBu-EtHx-mixture

x1 δg11 δg22 δg12 δg1 δg2 δgtotal
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0.01 8.32 0.91 5.05 5.08 0.95 0.96

0.02 22.77 0.87 4.77 5.13 0.95 0.96

0.05 13.6 0.73 4.6 5.05 0.93 0.96

0.1 13.0 0.71 4.09 4.98 1.05 1.18

0.25 10.07 1.23 2.7 4.54 1.6 2.25

0.5 6.28 2.11 0.8 3.54 1.46 3.07

0.75 3.2 3.59 1.26 2.71 1.84 2.78

0.9 1.65 3.42 2.41 1.73 2.51 1.74

0.95 1.17 4.87 2.61 1.24 2.73 1.25

0.98 0.9 10.69 2.72 0.93 2.88 0.94

0.99 0.81 5.6 2.99 0.83 3.01 0.83

EtHx-DiMeHx-mixture

x1 δg11 δg22 δg12 δg1 δg2 δgtotal

0.01 6.08 1.01 3.31 3.34 1.03 1.03

0.02 6.44 0.99 3.42 4.64 1.04 1.07

0.05 6.61 0.98 3.07 3.25 1.08 1.09

0.1 6.66 0.99 2.67 3.06 1.16 1.22

0.25 4.62 1.71 1.91 2.58 1.76 1.98

0.5 3.21 3.17 0.51 1.86 1.84 2.29

0.75 1.7 4.85 1.44 1.63 2.29 1.88

0.9 1.13 5.99 2.34 1.25 2.71 1.3

0.95 1.03 5.74 2.79 1.12 2.94 1.13

0.98 0.99 52.2 2.97 1.03 3.96 1.05

0.99 0.98 11.02 3.09 1.0 3.17 1.0

DiMeBu-DIPDMP-mixture
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x1 δg11 δg22 δg12 δg1 δg2 δgtotal

0.01 44.13 0.74 19.04 19.29 0.92 0.93

0.02 49.12 0.6 18.14 18.76 0.95 0.97

0.05 44.48 1.17 17.81 19.15 2.0 2.11

0.1 41.17 2.44 16.42 18.89 3.83 4.24

0.25 37.8 8.07 11.03 17.73 8.81 11.04

0.5 28.55 20.04 2.55 15.55 11.29 17.05

0.75 17.38 35.65 14.72 16.71 19.95 18.17

0.9 8.36 44.85 25.92 10.12 27.81 10.5

0.95 4.78 47.63 29.94 6.04 30.82 6.15

0.98 2.4 51.43 32.1 3.0 32.48 3.02

0.99 1.6 50.23 33.02 1.91 33.19 1.92

DiMeHx-DIPDMP-mixture

x1 δg11 δg22 δg12 δg1 δg2 δgtotal

0.01 25.86 0.86 36.14 36.03 1.22 1.22

0.02 38.95 1.47 36.21 36.26 2.16 2.18

0.05 38.15 3.87 34.5 34.68 5.4 5.49

0.1 38.61 8.02 31.73 32.42 10.39 10.7

0.25 38.28 20.68 20.78 25.15 20.71 22.06

0.5 26.64 35.71 0.66 13.65 18.18 21.0

0.75 10.12 48.62 7.79 9.54 18.0 12.54

0.9 4.63 74.79 16.69 5.83 22.5 6.59

0.95 2.57 87.14 22.02 3.55 25.27 3.77

0.98 1.28 88.87 25.52 1.77 26.79 1.8

0.99 0.98 74.26 26.29 1.23 26.77 1.24

S15

xxxviii



Table S3: Total RDF error in % for all simulations with combination rule generated CG
potentials with c=0.1 to 0.9, x1 refers to component first in the mixture name

DiMeBu-DiMeHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 1.04 0.94 0.89 0.88 0.90 0.92 0.94 0.96 1.02

0.02 1.49 1.31 1.18 1.10 1.10 1.10 1.16 1.24 1.30

0.05 3.58 2.88 2.37 1.99 1.81 1.75 1.79 1.96 2.18

0.10 7.53 6.43 5.05 4.05 3.33 2.93 2.91 3.23 3.90

0.25 20.24 18.21 14.64 11.39 8.42 6.27 6.41 8.89 11.33

0.50 28.32 28.32 23.97 18.56 13.09 8.90 10.36 15.05 19.30

0.75 19.96 18.99 15.66 12.04 8.64 6.19 6.27 8.90 11.43

0.90 7.63 7.08 5.54 4.32 3.39 2.88 2.78 3.05 3.69

0.95 3.92 3.19 2.57 2.10 1.83 1.71 1.71 1.85 2.04

0.98 1.61 1.40 1.24 1.13 1.10 1.08 1.13 1.19 1.24

0.99 1.08 0.98 0.92 0.90 0.91 0.92 0.93 0.94 1.00

DiMeBu-TrMePe-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 1.34 1.23 1.11 1.06 1.05 1.02 0.99 0.98 0.97

0.02 2.04 1.80 1.57 1.44 1.38 1.34 1.31 1.27 1.23

0.05 4.17 3.49 2.85 2.46 2.26 2.14 2.06 2.05 2.04

0.10 7.89 6.50 5.20 4.16 3.69 3.40 3.34 3.45 3.63

0.25 18.29 15.20 12.08 8.98 7.12 6.19 6.33 7.75 9.77

0.50 26.35 22.17 17.83 13.34 8.72 6.85 7.43 12.27 18.18

0.75 19.56 16.44 13.27 10.05 6.97 4.77 4.89 6.57 8.94

0.90 8.98 7.59 6.25 4.90 3.64 2.63 2.40 2.57 2.87
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0.95 4.85 4.17 3.50 2.86 2.25 1.76 1.55 1.57 1.62

0.98 2.36 2.11 1.86 1.61 1.39 1.20 1.09 1.06 1.05

0.99 1.52 1.41 1.27 1.16 1.06 0.96 0.89 0.89 0.89

TrMePe-DiMeHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.70 0.68 0.69 0.71 0.74 0.77 0.82 0.86 0.90

0.02 0.88 0.83 0.82 0.87 0.93 0.99 1.07 1.16 1.30

0.05 1.73 1.47 1.31 1.34 1.43 1.57 1.80 2.13 2.53

0.10 4.08 3.05 2.47 2.18 2.15 2.44 2.95 3.78 4.66

0.25 13.97 9.50 6.41 4.76 3.99 4.16 5.68 7.86 10.07

0.50 23.78 16.00 10.29 6.90 5.17 4.59 7.09 10.36 13.63

0.75 14.04 9.92 6.85 4.82 3.58 3.73 5.19 7.30 9.46

0.90 4.70 3.57 2.76 2.12 1.78 2.02 2.51 3.30 4.17

0.95 2.14 1.75 1.44 1.26 1.17 1.28 1.51 1.83 2.22

0.98 1.05 0.94 0.87 0.82 0.81 0.85 0.93 1.02 1.16

0.99 0.79 0.74 0.71 0.69 0.68 0.70 0.75 0.79 0.83

DiMeBu-EtHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 1.02 0.95 0.89 0.86 0.88 0.90 0.90 0.91 0.95

0.02 1.47 1.28 1.13 1.06 1.06 1.08 1.11 1.14 1.19

0.05 3.10 2.50 1.99 1.70 1.61 1.58 1.62 1.73 1.86

0.10 6.47 5.25 3.96 2.99 2.59 2.41 2.44 2.75 3.13

0.25 17.30 14.62 11.46 8.05 5.62 4.49 4.54 6.93 9.24

0.50 26.10 22.88 18.80 13.76 8.53 5.89 7.18 12.46 16.97

0.75 18.01 15.44 12.43 9.16 5.76 4.01 4.25 6.92 9.43
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0.90 7.13 5.95 4.71 3.55 2.58 2.13 2.16 2.48 2.86

0.95 3.47 2.91 2.37 1.91 1.57 1.45 1.46 1.56 1.67

0.98 1.63 1.42 1.26 1.11 1.05 1.03 1.04 1.06 1.11

0.99 1.11 1.02 0.95 0.89 0.88 0.88 0.87 0.88 0.91

TrMePe-EtHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.63 0.61 0.61 0.63 0.66 0.69 0.73 0.77 0.82

0.02 0.71 0.70 0.69 0.72 0.78 0.86 0.95 1.05 1.19

0.05 1.20 0.97 0.88 0.96 1.05 1.25 1.56 1.87 2.23

0.10 2.60 1.86 1.38 1.27 1.44 1.80 2.40 3.10 3.85

0.25 8.12 5.60 3.57 2.20 1.98 2.69 4.19 5.83 7.44

0.50 14.36 9.90 6.83 4.37 2.82 2.67 4.80 6.98 9.20

0.75 8.91 6.66 4.78 3.25 2.49 2.80 4.02 5.47 6.96

0.90 3.41 2.67 2.06 1.66 1.45 1.58 2.03 2.64 3.33

0.95 1.66 1.38 1.19 1.09 0.99 1.06 1.28 1.55 1.89

0.98 0.91 0.86 0.81 0.76 0.73 0.77 0.81 0.90 1.02

0.99 0.73 0.70 0.67 0.65 0.64 0.64 0.67 0.70 0.74

EtHx-DiMeHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 1.10 1.13 1.17 1.20 1.25 1.30 1.35 1.43 1.53

0.02 1.25 1.32 1.41 1.55 1.75 1.94 2.13 2.37 2.58

0.05 1.68 2.02 2.50 3.02 3.56 4.12 4.68 5.27 5.84

0.10 2.60 3.50 4.54 5.58 6.64 7.66 8.74 9.81 10.86

0.25 4.61 3.85 3.18 2.66 2.43 2.38 2.55 2.82 3.22

0.50 7.36 5.97 4.70 3.70 3.11 2.92 3.01 3.65 4.70
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0.75 4.86 4.00 3.24 2.57 2.10 1.98 2.06 2.27 2.65

0.90 2.37 3.31 4.35 5.39 6.46 7.48 8.57 9.64 10.70

0.95 1.54 1.90 2.37 2.90 3.44 4.00 4.57 5.15 5.73

0.98 1.19 1.26 1.35 1.50 1.69 1.89 2.08 2.31 2.52

0.99 1.08 1.12 1.16 1.19 1.23 1.28 1.34 1.41 1.52

Densities and volumes

Table S4: Densities and volumes (in Å3) per molecule of all simulations with IBI generated
mixed potentials

DiMeBu-DiMeHx-mixture

x1 ρAA ρCG rel. ρ error Vmol,AA Vmol,CG rel. Vmol error

0.01 0.705 0.704 0.13 % 268.5 269.0 0.19 %

0.02 0.705 0.704 0.08 % 267.9 268.3 0.14 %

0.05 0.704 0.704 0.04 % 266.2 266.2 0.01 %

0.10 0.703 0.704 0.18 % 263.1 262.8 0.13 %

0.25 0.700 0.703 0.37 % 254.3 253.4 0.33 %

0.50 0.695 0.695 0.07 % 239.5 239.4 0.04 %

0.75 0.688 0.686 0.36 % 224.9 225.7 0.38 %

0.90 0.683 0.679 0.57 % 216.2 217.5 0.58 %

0.95 0.682 0.677 0.65 % 213.4 214.8 0.67 %

0.98 0.680 0.676 0.71 % 211.7 213.2 0.73 %

0.99 0.680 0.675 0.72 % 211.1 212.7 0.73 %

DiMeBu-TrMePe-mixture

x1 ρAA ρCG rel. ρ error Vmol,AA Vmol,CG rel. Vmol error
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0.01 0.730 0.730 0.06 % 259.3 259.2 0.04 %

0.02 0.729 0.730 0.09 % 258.9 258.7 0.07 %

0.05 0.728 0.729 0.16 % 257.3 257.0 0.14 %

0.10 0.726 0.728 0.25 % 254.8 254.2 0.24 %

0.25 0.720 0.723 0.45 % 247.4 246.4 0.43 %

0.50 0.710 0.710 0.06 % 234.4 234.3 0.05 %

0.75 0.695 0.694 0.05 % 222.8 223.0 0.07 %

0.90 0.686 0.683 0.47 % 215.4 216.4 0.49 %

0.95 0.683 0.679 0.61 % 212.9 214.3 0.62 %

0.98 0.681 0.676 0.67 % 211.6 213.0 0.69 %

0.99 0.680 0.676 0.72 % 211.0 212.6 0.74 %

TrMePe-DiMeHx-mixture

x1 ρAA ρCG rel. ρ error Vmol,AA Vmol,CG rel. Vmol error

0.01 0.705 0.703 0.26 % 269.0 269.9 0.32 %

0.02 0.706 0.703 0.33 % 268.8 269.9 0.39 %

0.05 0.706 0.703 0.47 % 268.5 269.9 0.52 %

0.10 0.708 0.704 0.59 % 268.0 269.7 0.65 %

0.25 0.712 0.708 0.57 % 266.3 268.0 0.61 %

0.50 0.719 0.719 0.06 % 263.9 263.8 0.03 %

0.75 0.725 0.728 0.48 % 261.7 260.5 0.45 %

0.90 0.728 0.731 0.36 % 260.6 259.7 0.34 %

0.95 0.729 0.731 0.21 % 260.2 259.7 0.20 %

0.98 0.730 0.730 0.09 % 259.9 259.8 0.07 %

0.99 0.730 0.730 0.08 % 259.9 259.8 0.07 %

DiMeBu-EtHx-mixture

S20

xliii



x1 ρAA ρCG rel. ρ error Vmol,AA Vmol,CG rel. Vmol error

0.01 0.705 0.704 0.16 % 268.3 268.8 0.20 %

0.02 0.705 0.704 0.11 % 267.8 268.2 0.15 %

0.05 0.704 0.704 0.05 % 266.0 266.3 0.09 %

0.10 0.703 0.703 0.02 % 263.1 263.2 0.02 %

0.25 0.700 0.701 0.12 % 254.5 254.2 0.09 %

0.50 0.693 0.693 0.07 % 240.0 240.2 0.09 %

0.75 0.687 0.684 0.49 % 225.3 226.4 0.51 %

0.90 0.682 0.678 0.63 % 216.5 218.0 0.65 %

0.95 0.681 0.676 0.72 % 213.5 215.1 0.74 %

0.98 0.680 0.675 0.74 % 211.7 213.3 0.76 %

0.99 0.680 0.675 0.75 % 211.1 212.7 0.77 %

TrMePe-EtHx-mixture

x1 ρAA ρCG rel. ρ error Vmol,AA Vmol,CG rel. Vmol error

0.01 0.706 0.704 0.20 % 268.8 269.4 0.24 %

0.02 0.706 0.705 0.21 % 268.7 269.3 0.25 %

0.05 0.707 0.705 0.24 % 268.4 269.2 0.28 %

0.10 0.708 0.706 0.28 % 268.0 268.8 0.32 %

0.25 0.712 0.709 0.32 % 266.6 267.5 0.35 %

0.50 0.718 0.717 0.12 % 264.3 264.7 0.15 %

0.75 0.724 0.724 0.05 % 262.0 261.9 0.03 %

0.90 0.728 0.728 0.07 % 260.7 260.5 0.05 %

0.95 0.729 0.729 0.09 % 260.3 260.1 0.08 %

0.98 0.730 0.730 0.05 % 260.0 259.9 0.03 %

0.99 0.730 0.730 0.04 % 259.9 259.9 0.02 %
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EtHx-DiMeHx-mixture

x1 ρAA ρCG rel. ρ error Vmol,AA Vmol,CG rel. Vmol error

0.01 0.705 0.703 0.21 % 269.1 269.8 0.27 %

0.02 0.705 0.703 0.19 % 269.1 269.8 0.25 %

0.05 0.705 0.703 0.19 % 269.1 269.8 0.25 %

0.10 0.705 0.703 0.21 % 269.1 269.8 0.26 %

0.25 0.705 0.704 0.21 % 269.1 269.8 0.26 %

0.50 0.705 0.704 0.15 % 269.1 269.6 0.20 %

0.75 0.705 0.704 0.15 % 269.0 269.5 0.20 %

0.90 0.705 0.704 0.18 % 268.9 269.5 0.22 %

0.95 0.705 0.704 0.15 % 268.9 269.4 0.19 %

0.98 0.705 0.704 0.18 % 268.9 269.5 0.22 %

0.99 0.705 0.704 0.18 % 268.9 269.5 0.22 %

Table S5: The deviation of CG densities from AA densities for all simulations with combi-
nation rule generated CG potentials with c=0.1 to 0.9

DiMeBu-DiMeHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.29 % 0.23 % 0.16 % 0.16 % 0.01 % 0.07 % 0.18 % 0.29 % 0.36 %

0.02 0.34 % 0.28 % 0.18 % 0.05 % 0.19 % 0.37 % 0.49 % 0.70 % 0.87 %

0.05 0.04 % 0.08 % 0.05 % 0.22 % 0.56 % 1.00 % 1.45 % 1.92 % 2.41 %

0.10 1.53 % 0.70 % 0.36 % 0.52 % 1.03 % 1.82 % 2.63 % 3.61 % 4.66 %

0.25 5.20 % 2.88 % 1.39 % 0.96 % 1.52 % 2.88 % 4.69 % 6.90 % 9.34 %

0.50 4.17 % 2.10 % 0.63 % 0.06 % 0.67 % 2.38 % 4.74 % 7.33 % 9.70 %

0.75 0.57 % 1.15 % 1.39 % 1.15 % 0.38 % 0.98 % 2.54 % 4.02 % 5.34 %
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0.90 2.18 % 1.98 % 1.70 % 1.22 % 0.66 % 0.00 % 0.63 % 1.17 % 1.68 %

0.95 1.92 % 1.69 % 1.37 % 1.05 % 0.70 % 0.37 % 0.08 % 0.20 % 0.42 %

0.98 1.35 % 1.21 % 1.04 % 0.88 % 0.73 % 0.60 % 0.50 % 0.36 % 0.29 %

0.99 1.07 % 0.99 % 0.88 % 0.80 % 0.72 % 0.65 % 0.60 % 0.55 % 0.50 %

DiMeBu-TrMePe-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.01 % 0.03 % 0.06 % 0.08 % 0.10 % 0.09 % 0.12 % 0.12 % 0.15 %

0.02 0.02 % 0.06 % 0.11 % 0.16 % 0.19 % 0.21 % 0.21 % 0.25 % 0.24 %

0.05 0.12 % 0.15 % 0.21 % 0.26 % 0.34 % 0.42 % 0.48 % 0.54 % 0.62 %

0.10 0.45 % 0.41 % 0.45 % 0.51 % 0.62 % 0.78 % 0.93 % 1.09 % 1.21 %

0.25 1.88 % 1.41 % 1.12 % 1.06 % 1.19 % 1.53 % 2.11 % 2.77 % 3.52 %

0.50 2.04 % 1.38 % 0.96 % 0.77 % 0.93 % 1.59 % 2.74 % 4.39 % 6.39 %

0.75 0.26 % 0.08 % 0.03 % 0.13 % 0.49 % 1.10 % 2.07 % 3.34 % 4.84 %

0.90 1.10 % 0.97 % 0.80 % 0.57 % 0.27 % 0.08 % 0.53 % 0.99 % 1.45 %

0.95 1.14 % 1.03 % 0.88 % 0.72 % 0.52 % 0.30 % 0.10 % 0.12 % 0.31 %

0.98 0.95 % 0.87 % 0.79 % 0.73 % 0.63 % 0.54 % 0.44 % 0.38 % 0.31 %

0.99 0.90 % 0.84 % 0.80 % 0.75 % 0.69 % 0.65 % 0.62 % 0.59 % 0.54 %

TrMePe-DiMeHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.13 % 0.00 % 0.12 % 0.30 % 0.53 % 0.73 % 1.04 % 1.24 % 1.54 %

0.02 0.11 % 0.08 % 0.38 % 0.71 % 1.15 % 1.61 % 2.07 % 2.62 % 3.13 %

0.05 0.16 % 0.59 % 1.26 % 1.98 % 2.95 % 3.88 % 4.96 % 6.11 % 7.25 %

0.10 0.79 % 1.44 % 2.45 % 3.64 % 5.11 % 6.72 % 8.38 % 10.18 % 12.11 %

0.25 2.75 % 3.42 % 4.51 % 6.13 % 8.00 % 10.03 % 12.20 % 14.53 % 16.87 %

0.50 4.00 % 4.28 % 4.94 % 5.85 % 7.02 % 8.34 % 9.84 % 11.40 % 13.13 %
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0.75 3.28 % 3.07 % 3.12 % 3.31 % 3.67 % 4.14 % 4.75 % 5.46 % 6.25 %

0.90 1.82 % 1.57 % 1.40 % 1.40 % 1.47 % 1.59 % 1.81 % 2.06 % 2.35 %

0.95 1.00 % 0.84 % 0.74 % 0.72 % 0.76 % 0.79 % 0.91 % 1.01 % 1.15 %

0.98 0.42 % 0.33 % 0.32 % 0.28 % 0.30 % 0.31 % 0.35 % 0.40 % 0.47 %

0.99 0.26 % 0.19 % 0.17 % 0.19 % 0.18 % 0.18 % 0.20 % 0.22 % 0.25 %

DiMeBu-EtHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.30 % 0.23 % 0.17 % 0.08 % 0.09 % 0.01 % 0.05 % 0.07 % 0.12 %

0.02 0.33 % 0.26 % 0.11 % 0.03 % 0.07 % 0.20 % 0.28 % 0.34 % 0.42 %

0.05 0.34 % 0.19 % 0.04 % 0.20 % 0.40 % 0.65 % 0.85 % 1.07 % 1.28 %

0.10 0.12 % 0.06 % 0.20 % 0.47 % 0.84 % 1.28 % 1.74 % 2.20 % 2.70 %

0.25 2.22 % 1.40 % 1.03 % 1.06 % 1.68 % 2.61 % 3.70 % 5.00 % 6.38 %

0.50 2.35 % 1.41 % 0.85 % 0.86 % 1.51 % 2.85 % 4.70 % 6.81 % 8.86 %

0.75 0.74 % 0.83 % 0.76 % 0.31 % 0.50 % 1.62 % 3.03 % 4.51 % 5.87 %

0.90 1.93 % 1.64 % 1.25 % 0.78 % 0.23 % 0.33 % 0.95 % 1.51 % 1.98 %

0.95 1.77 % 1.47 % 1.16 % 0.84 % 0.48 % 0.19 % 0.10 % 0.37 % 0.56 %

0.98 1.30 % 1.14 % 0.95 % 0.80 % 0.67 % 0.53 % 0.41 % 0.32 % 0.22 %

0.99 1.06 % 0.98 % 0.87 % 0.79 % 0.73 % 0.63 % 0.60 % 0.56 % 0.49 %

TrMePe-EtHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.14 % 0.08 % 0.03 % 0.12 % 0.22 % 0.36 % 0.44 % 0.56 % 0.67 %

0.02 0.08 % 0.06 % 0.23 % 0.42 % 0.61 % 0.82 % 1.05 % 1.26 % 1.50 %

0.05 0.08 % 0.44 % 0.86 % 1.24 % 1.74 % 2.17 % 2.63 % 3.14 % 3.69 %

0.10 0.37 % 1.01 % 1.70 % 2.41 % 3.19 % 4.00 % 4.84 % 5.69 % 6.54 %

0.25 1.26 % 2.32 % 3.49 % 4.71 % 5.92 % 7.18 % 8.39 % 9.62 % 10.84 %
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0.50 2.10 % 3.16 % 4.20 % 5.26 % 6.31 % 7.34 % 8.38 % 9.41 % 10.45 %

0.75 1.84 % 2.33 % 2.81 % 3.30 % 3.83 % 4.40 % 4.94 % 5.54 % 6.11 %

0.90 0.99 % 1.10 % 1.28 % 1.46 % 1.67 % 1.89 % 2.11 % 2.37 % 2.66 %

0.95 0.57 % 0.63 % 0.70 % 0.80 % 0.88 % 0.99 % 1.12 % 1.25 % 1.39 %

0.98 0.23 % 0.28 % 0.30 % 0.32 % 0.36 % 0.43 % 0.45 % 0.50 % 0.59 %

0.99 0.14 % 0.15 % 0.17 % 0.18 % 0.21 % 0.21 % 0.25 % 0.28 % 0.31 %

EtHx-DiMeHx-mixture

x1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.13 % 0.27 % 0.47 % 0.69 % 0.88 % 1.15 % 1.38 % 1.57 % 1.83 %

0.02 0.40 % 0.77 % 1.12 % 1.54 % 1.97 % 2.37 % 2.81 % 3.25 % 3.69 %

0.05 1.12 % 1.99 % 2.87 % 3.75 % 4.71 % 5.69 % 6.64 % 7.62 % 8.63 %

0.10 2.14 % 3.65 % 5.14 % 6.71 % 8.30 % 9.90 % 11.42 % 13.08 % 14.72 %

0.25 0.79 % 0.94 % 0.96 % 0.90 % 0.71 % 0.44 % 0.08 % 0.36 % 0.86 %

0.50 0.43 % 0.74 % 0.89 % 0.92 % 0.80 % 0.58 % 0.27 % 0.14 % 0.62 %

0.75 0.11 % 0.37 % 0.52 % 0.63 % 0.61 % 0.55 % 0.42 % 0.24 % 0.02 %

0.90 0.60 % 1.37 % 2.18 % 2.99 % 3.85 % 4.74 % 5.65 % 6.61 % 7.54 %

0.95 0.21 % 0.59 % 1.02 % 1.50 % 1.96 % 2.45 % 2.95 % 3.47 % 4.00 %

0.98 0.03 % 0.15 % 0.31 % 0.51 % 0.70 % 0.92 % 1.11 % 1.34 % 1.55 %

0.99 0.12 % 0.01 % 0.10 % 0.18 % 0.28 % 0.36 % 0.47 % 0.60 % 0.71 %

Dynamics

Maxwell-Stefan-Diffusion Coefficient in MD Simulations

In the Maxwell-Stefan formalism, the driving force for diffusion is the chemical potential

gradient which is balanced by friction forces expressed as the inversion friction coefficient or
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MS-diffusion coefficient DMS
ij

− 1
RT
5 µi =

n∑

j=1,j 6=i

xj(νi − νj)
DMS
ij

(4)

with the difference between the average velocities (νi − νj).

Onsager relations between diffusive Fluxes Ji and the gradients of the chemical potentials

µj
5 are given by

Ji = −
n∑

j=1
Λij 5 µj (5)

with the Onsager coefficients Λij. For a binary mixture, the Maxwell-Stefan diffusion

coefficient can be expressed from the three Onsager coefficients.6,7

DMS
12 = x2

x1
Λ11 + x1

x2
Λ22 − 2Λ12 (6)

To calculate the Onsager coefficients the temporally correlated net velocity or collective

displacements of all individual molecules are analyzed.8,9

Λij = lim
t→∞

1
6Nt

〈(
Ni∑

k=1
(rk,i(t)− rk,i(0))

)
×




Nj∑

l=1
(rl,j(t)− rl,j(0))



〉

(7)

using COM instead yields Eq. 8 or for i = j Eq. 9

Λij = lim
t→∞

xixjN

6t
〈
(rcomi (t)− rcomi (0))×

(
rcomj (t)− rcomj (0)

)〉
(8)

Λii = lim
t→∞

x2
iN

6t
〈
(∆rcomi )2〉 (9)

The Onsager coefficients are symmetric (Λij = Λji) and they are defined in a reference

frame, where the velocities of the center of mass is zero (
∑n

i=1 ωiνi = 0) and all mass fluxes

sum to zero. This leads to the constrain
∑n

i=1 MiΛij = 0.6,10,11

For a binary system this results in
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0 = M1Λ12 +M2Λ22 → Λ12 = − M2

M1
Λ22 (10)

0 = M1Λ11 +M2Λ21 → Λ21 = − M1

M2
Λ11 (11)

with Λij = Λji → Λ22 =
(
M1

M2

)2

Λ11 (12)

The combination of 10 and 12 with equation 6

DMS
12 = x2

x2
Λ11 + x1

x2

M2
1

M2
2

Λ11 + 2M1

M2
Λ11 = Λ11

(
x2

2M
2
2 + x2

1M
2
1 + 2x1x2M1M2

x1x2M2
2

)

= Λ11
(x1M1 + x2M2)2

x1x2M2
2

(13)

Replacing Λ11 with Eq. 9 yields the Equation for D12 as used within this work and shown

in Ref.12

D12 = lim
t→∞

1
6tx

2
1N

(x1M1 + x2M2)2

x1x2M2
2

= lim
t→∞

1
6tx1x2N(x1M1)2 (x1M1 + x2M2)2

(x1x2M1M2)2

= lim
t→∞

1
6t

(
1

x1M1
+ 1
x2M2

)2

(x1M1)2N x1x2

(14)

While the MS diffusion coefficient is easily accessible via simulations, experimentally,

usually Fick diffusion coefficients are measured. They are related via a thermodynamic

factor Γ which can be obtained form experiments and simulations.13

DFick = ΓDMS (15)
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Acceleration factor and self diffusion coefficients
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Figure S10: Self diffusion coefficients and acceleration factor of (a) 2,3,4-trimethylpentane
(b) 3-ethylhexane and (c) 3,3-diisopropyl-2,4-dimethylpentane in binary mixtures against
the mole fraction of the second component; second component according to color: green:

DiMeBu, orange: TrMePe,blue: EtHx,purple: DiMeHx. The error bars of diffusion
coefficients are standard deviations between the three individual cartesian components.

Relation between coarse-grained potential, structure and mobility

This section analyzes the effect of different mixed-bead coarse-grained potentials on the

CG dynamics and thereby on the usage within the RoughMob framework. The dynamics

are characterized by the diffusion coefficients DCG. The structure is characterized by the

molecular volume of the CG simulations Vmol,CG and RDF. As quantities to characterize the

mixed potentials we use the "mixed hard sphere radius" and both the value and the position

of the minimal potential εmix. The "mixed hard sphere radius" rmix is calculated similar

to the CG bead radius as half the value where the CG potential first reaches zero. The

minimal potential is taken as positive value, so that a large value means a deeper potential.

Since these three characteristics strongly simplify the classification of the CG potentials and

their influences on the dynamics is always an interaction of all characteristic, they allow an

easy comparison of the CG potentials. The RoughMob method was developed using IBI
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for coarse-graining, which ensures matching RDFs for the pure components. Using IBI with

a pressure correction additionally ensures matching densities. Furthermore, by definition,

Vout can only be calculated for systems that have the same density in both the AA and the

CG representation. These requirements are met for all CG simulation with IBI generated

mixed potentials of Mixture Group A (i.e. not containing DIPDMP). We thus use the CG

simulations of Mixture Group A with the IBI generated mixed potentials as reference points

that represent the CG simulations working within the RoughMob framework. All quantities

that are calculated from the simulations with IBI generated potentials are named with IBI

as subscript, e.g. DCG,IBI and εmix,IBI .

The quality of the dynamics for CG simulations with potentials generated from mixing

rules is characterized as the ratio of the diffusion coefficients DCG/DCG,IBI. We investigate

first whether there is a correlation between the error in dynamics of the mixing rule based

potential and their errors in structural quantities. The quality of the description of structure

is characterized by the (absolute) deviation of the molecular volume δVmol = Vmol,CG −

Vmol,CG,IBI (as the RoughMob method generally relies on volumes) and by the total error

of the RDF (Eq. 1) with the RDF from the IBI-CG simulation as reference. For NVT

simulations, additionally, the absolute deviation of the pressure from 1 bar is calculated.

The plots of the quality of the dynamics against the different structural errors are shown

in Figure S11. As to expect, the diffusion coefficient is correlated to the molecular volume

(Fig. S11 (a)). A lower molecular volume (negative value of δVmol) decreases the diffusion

coefficient, as the molecules are closer to each other in the system. While for smaller absolute

values of δVmol, between a range of around -3 and 12 Å3, there are many simulations with a

diffusion coefficient ratio between 0.9 and 1.1, for a larger deviation with −20 3 or more, the

ratio of diffusion coefficients is always below 0.9. Figure S11 (c) shows that a high error of

the RDF does not necessarily increase the deviation from DCG,IBI. The size of the markers

indicated the error of the molecular volume. There is a clear regime with values of δgtotal of

up to 25 where the ratio of diffusion coefficients remains between around 0.9 and 1.1. The
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diffusion coefficients that strongly correlate with the error of RDF generally have a high error

of the molecular volume. Using NVT simulations (Fig. S11 (b) and (d)) overall improves

the average deviation from DCG,IBI, while for individual cases the deviation can worsen.

The error of the pressure is indicated by the size of the markers. The relative deviation

of the diffusion coefficients still reaches values up to -45 % (ratio of diffusion coefficients of

0.55) and using NVT conditions might worsen other properties of the simulation such as

the pressure as shown in Fig. S11 (b). While a high difference in the density or molecular

volume always results in a large dynamical deviation, larger deviations in the RDF or a high

error of the pressure can still result in a reasonable representation of the dynamics as it is

the case for DiMeBu-TrMePe mixtures (green-orange markers). We note an overall tendency

of the diffusion coefficient falling below the IBI reference.

The influence of the value and position difference of ε on the dynamics is shown in Fig.

S12. A shallower potential (when compared to the IBI generated potential; negative value

of εmix − εmix,IBI) can result in both faster and slower dynamics, while a deeper potential

(positive value of εmix− εmix,IBI) in all cases slowed down the dynamics. However, potential

depths close to εmix,IBI can already have large deviations in the dynamics.

Small differences in both the position of εmix (Fig. S12 (b)) and in the mixed hard sphere

radii rmix (Fig. S13) show only small deviations from DCG,IBI.

The plot of the dynamical deviation against the difference between the mixed hard sphere

radius rmix from the combination-rule-generated potentials and from the IBI-generated po-

tential rmix,IBI shows that the smallest deviation from DCG,IBI is reached when rmix is close

to or little larger than rmix,IBI. However, ideally one does not want to actually perform IBI

in order to calculate rmix,IBI as a reference to check other potentials against. The all-atom

force-field used for the simulations uses geometric combination rules to calculate the non-

bonded interactions between particles of different types. Similarly, the "ideal" mixed hard

sphere radius can be estimated using geometric combination rules. As can be seen in Table

S6, rmix,IBI and r12 are close to each other.
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Figure S11: Ratio between coarse-grained self-diffusion coefficient determined with
combination rule generated CG potentials from diffusion coefficient of simulation with the
IBI generated mixed potential plotted against the error of the molecular volume (a) the

radial distribution function (b) and (c) the latter using NVT simulations (otherwise NpT);
size (area) of markers indicates error of radial distribution function (a) molecular volume

(b) and pressure (c).
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Figure S12: Deviation of self-diffusion coefficients from DCG,IBI as determined with the IBI
generated mixed potential plotted against the difference between the value (a) and the

position (b) of the minimal potential; green: 2,3-dimethylbutane; orange:
2,3,4-trimethylpentane; blue: 3-ethylhexane and purple: 2,5-dimethylhexane; size (area) of

markers indicates error of pressure.

If both the error of the RDF and of Vmol (or the pressure) are small, as it is the case for

the simulations with IBI generated mixed potentials, the determination of αself,1 and αself,2

works well within the RoughMob method. While a larger error of Vmol always impedes the

applicability of the method, simulations with a larger δg1 and δgtotal may still yield good

dynamical results. The simple comparison of different CG potentials via their mixed hard

sphere radius appears to be an easy tool to gauge the predictive capability of the potential.

Choosing only CG potentials with mixed hard sphere radii that are close to or little larger

than an "ideal" radius should allow for the determination of reasonable CG dynamics despite

some deviations in the pressure and RDFs. Such a consistent size logic between the AA and

the CG simulation fits well to the geometrical approach of the RoughMob method.
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Figure S13: Deviation of self-diffusion coefficients from DCG,IBI as determined with the IBI
generated mixed potential plotted against the difference between the mixed hard sphere
radii; green: 2,3-dimethylbutane; orange: 2,3,4-trimethylpentane; blue: 3-ethylhexane and
purple: 2,5-dimethylhexane; size (area) of markers indicates error of pressure.

Table S6: Mixed hard sphere radius and minimal potential as calculated from the IBI gen-
erated potentials rmix,IBI and εmix,IBI and as ideal radius from geometric combination rules
of the potentials of pure components r12 and ε12 in Å and kcal mol−1.

rmix,IBI r12 εmix,IBI ε12
DiMeBu-TrMePe 2.98 2.97 0.85 0.88
DiMeBu-EtHx 3.00 3.06 0.58 0.66
DiMeBu-DiMeHx 3.11 3.13 0.55 0.59
TrMePe-EtHx 3.26 3.28 0.69 0.71
TrMePe-DiMeHx 3.40 3.36 0.62 0.64
EtHx-DiMeHx 3.49 3.45 0.46 0.48
DiMeBu-DIPDMP 3.20 3.10 1.43 1.48
DiMeHx-DIPDMP 3.39 3.50 1.29 1.07

Mixture Group B generally suffered from poorer matching of the RDFs. However, for

DiMeBu-DIPDMP, the molecular volumes show a very good agreement and rmix,IBI is little

higher than r12. This constellation should therefore yield a good results within the RoughMob
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framework. A deeper potential, as for DiMeHx-DIPDMP, when εmix,IBI is compared to ε12

will likely result in a lower (negative) pressure for NVT simulations and might decreases the

dynamics. The total error of RDF exceeds 10 % for xDiMeHx = 0.1, 0.25, 0.5 and 0.75 to a

maximum of 22 %. Paired with an rmix,IBI that is lower than r12 by 0.11 Å, this means that

the CG diffusion coefficients of those compositions may be lowered by up to 30 %. This is,

however, a pessimistic approximation. Using the same functions for Group A and B with no

need to adjust for a lower pressure worked fine for the given mixtures as shown in the paper.

Error of prediction of acceleration factors

Table S7: Absolute and relative (in percent and brackets) error of prediction for accelera-
tion factors of both self-diffusion coefficients, the binary diffusion coefficient and the overall
averaged system acceleration (αmix,pred)

DiMeBu-DiMeHx-mixture

x1 comp 1 comp 2 overall binary

0.01 0.7 (6.31) -1.81 (-10.37) -1.78 (-10.28) -0.37 (-3.12)

0.02 0.1 (0.91) -1.53 (-8.99) -1.51 (-8.91) -0.12 (-1.01)

0.05 -0.1 (-0.89) -1.48 (-8.85) -1.42 (-8.66) -0.08 (-0.67)

0.1 0.13 (1.27) -1.12 (-7.08) -0.98 (-6.44) -0.19 (-1.68)

0.25 0.0 (0.02) -0.12 (-0.9) 0.1 (0.8) 0.51 (5.15)

0.5 -0.06 (-0.95) 0.51 (5.07) 0.9 (11.31) -0.24 (-2.66)

0.75 -0.1 (-2.26) 0.4 (5.7) 0.88 (17.67) -0.03 (-0.43)

0.9 0.15 (4.47) -0.11 (-2.09) 0.66 (18.5) -0.09 (-1.59)

0.95 0.24 (7.86) -0.3 (-6.08) 0.52 (16.37) 0.17 (3.57)

0.98 0.3 (10.14) -0.68 (-13.96) 0.41 (13.83) -0.08 (-1.83)

0.99 0.35 (12.09) -0.75 (-15.55) 0.4 (14.01) -0.25 (-5.29)
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DiMeBu-TrMePe-mixture

x1 comp 1 comp 2 overall binary

0.01 -0.42 (-7.39) 1.63 (26.21) 1.65 (26.44) 0.97 (19.79)

0.02 -0.08 (-1.43) 1.54 (24.87) 1.58 (25.49) 0.48 (9.0)

0.05 0.1 (2.02) 1.35 (22.29) 1.44 (24.06) 0.45 (8.78)

0.1 -0.06 (-1.25) 1.11 (19.35) 1.27 (22.34) 0.34 (6.74)

0.25 -0.03 (-0.69) 0.26 (5.0) 0.63 (12.61) -0.23 (-4.95)

0.5 -0.12 (-3.1) -0.55 (-12.45) -0.03 (-0.73) -0.39 (-9.91)

0.75 0.02 (0.55) -0.35 (-9.92) -0.06 (-1.98) 0.04 (1.22)

0.9 0.15 (5.01) -0.03 (-0.76) 0.08 (2.59) 0.43 (13.17)

0.95 0.26 (9.05) 0.14 (4.04) 0.22 (7.46) 0.54 (16.03)

0.98 0.31 (11.04) 0.45 (14.33) 0.3 (10.47) 1.07 (35.22)

0.99 0.33 (11.59) 0.71 (23.86) 0.32 (11.37) 1.1 (35.73)

TrMePe-DiMeHx-mixture

x1 comp 1 comp 2 overall binary

0.01 0.39 (2.92) -1.61 (-9.32) -1.69 (-9.76) 0.18 (1.31)

0.02 0.73 (5.73) -1.68 (-9.66) -1.81 (-10.47) 0.02 (0.16)

0.05 0.63 (5.04) -1.53 (-8.9) -1.83 (-10.8) 0.8 (6.08)

0.1 -0.45 (-3.47) -1.34 (-7.88) -1.97 (-11.93) -0.07 (-0.5)

0.25 -0.24 (-2.13) -0.33 (-2.09) -1.36 (-9.44) -0.19 (-1.3)

0.5 -0.52 (-5.44) 0.81 (6.21) -0.34 (-3.04) -0.49 (-3.41)

0.75 0.17 (2.23) 0.46 (4.12) 0.63 (7.4) 0.41 (3.44)

0.9 0.9 (12.91) -0.22 (-2.21) 1.19 (16.5) 0.29 (2.77)

0.95 1.28 (19.35) -0.37 (-4.0) 1.45 (21.51) 0.32 (3.3)

0.98 1.51 (23.47) -0.91 (-9.61) 1.58 (24.32) 0.11 (1.16)
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0.99 1.67 (26.52) -0.66 (-7.35) 1.7 (26.99) -0.16 (-1.7)

DiMeBu-EtHx-mixture

x1 comp 1 comp 2 overall binary

0.01 -0.26 (-3.14) -0.51 (-4.67) -0.51 (-4.75) -0.44 (-5.21)

0.02 0.09 (1.13) -0.54 (-5.03) -0.55 (-5.09) 0.08 (1.07)

0.05 -0.08 (-1.01) -0.36 (-3.41) -0.38 (-3.71) -0.22 (-2.77)

0.1 -0.02 (-0.23) -0.25 (-2.48) -0.29 (-2.94) 0.23 (3.08)

0.25 0.25 (4.06) 0.21 (2.42) 0.17 (2.16) 0.05 (0.72)

0.5 -0.21 (-4.13) -0.06 (-0.87) -0.03 (-0.47) -0.09 (-1.4)

0.75 -0.07 (-1.7) 0.08 (1.48) 0.19 (4.59) 0.06 (1.2)

0.9 0.14 (4.48) 0.01 (0.3) 0.28 (8.57) -0.11 (-2.37)

0.95 0.23 (7.55) -0.05 (-1.2) 0.3 (9.89) 0.07 (1.62)

0.98 0.31 (10.55) 0.04 (1.08) 0.34 (11.63) 0.12 (2.95)

0.99 0.33 (11.48) 0.15 (3.79) 0.35 (12.07) -0.05 (-1.11)

TrMePe-EtHx-mixture

x1 comp 1 comp 2 overall binary

0.01 0.54 (6.09) -0.48 (-4.39) -0.53 (-4.86) 0.4 (4.33)

0.02 0.3 (3.27) -0.5 (-4.58) -0.6 (-5.55) 0.53 (5.79)

0.05 0.37 (4.2) -0.49 (-4.5) -0.72 (-6.69) 0.57 (6.33)

0.1 -0.04 (-0.44) -0.34 (-3.17) -0.8 (-7.56) 0.13 (1.32)

0.25 -0.46 (-5.47) -0.04 (-0.43) -0.92 (-9.39) -0.5 (-4.9)

0.5 -0.46 (-6.02) 0.23 (2.43) -0.59 (-6.91) 0.07 (0.77)

0.75 0.15 (2.2) 0.05 (0.61) 0.2 (2.67) 0.01 (0.13)

0.9 1.0 (15.21) -0.03 (-0.35) 1.05 (15.67) 0.22 (2.49)

0.95 1.31 (20.33) -0.07 (-0.88) 1.35 (20.64) 0.25 (2.9)
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0.98 1.52 (23.82) -0.08 (-0.99) 1.53 (23.97) 0.99 (12.86)

0.99 1.66 (26.42) -0.5 (-5.85) 1.66 (26.42) 0.76 (9.63)

EtHx-DiMeHx-mixture

x1 comp 1 comp 2 overall binary

0.01 -0.42 (-2.61) -1.78 (-10.16) -1.82 (-10.43) -0.15 (-0.98)

0.02 -0.36 (-2.25) -1.76 (-10.05) -1.85 (-10.57) -0.73 (-4.72)

0.05 -0.14 (-0.88) -1.51 (-8.77) -1.72 (-10.0) -0.61 (-3.9)

0.1 0.01 (0.06) -1.18 (-6.95) -1.55 (-9.25) -0.22 (-1.42)

0.25 0.17 (1.17) -0.17 (-1.05) -0.95 (-6.17) -0.33 (-2.11)

0.5 0.14 (1.12) 0.75 (5.26) -0.36 (-2.65) 0.95 (6.91)

0.75 -0.11 (-0.91) 0.16 (1.18) -0.36 (-2.94) -0.34 (-2.5)

0.9 -0.26 (-2.36) -0.03 (-0.27) -0.31 (-2.78) -0.29 (-2.34)

0.95 -0.37 (-3.38) -0.28 (-2.28) -0.39 (-3.54) -0.77 (-6.19)

0.98 -0.42 (-3.81) -0.09 (-0.78) -0.42 (-3.81) -0.95 (-7.74)

0.99 -0.54 (-4.91) -0.83 (-6.71) -0.55 (-4.95) -0.64 (-5.38)

DiMeBu-DIPDMP-mixture

x1 comp 1 comp 2 overall binary

0.01 -3.58 (-21.73) -1.26 (-5.89) -0.99 (-4.67) -1.68 (-11.85)

0.02 -1.23 (-8.84) -0.1 (-0.53) 0.41 (2.14) -1.96 (-13.73)

0.05 -0.72 (-5.64) 0.22 (1.29) 1.26 (7.39) 0.45 (3.96)

0.1 0.2 (1.84) 0.31 (2.13) 1.78 (12.59) -0.76 (-6.64)

0.25 1.07 (15.71) 0.79 (9.01) 1.66 (20.07) 0.99 (14.53)

0.5 -0.02 (-0.52) -0.02 (-0.36) -1.08 (-23.72) -0.2 (-4.65)

0.75 -0.66 (-21.91) -0.87 (-26.34) -1.8 (-58.79) -0.75 (-23.09)

0.9 -0.21 (-8.0) -1.46 (-50.47) -0.77 (-28.57) 0.28 (9.3)

0.95 0.02 (0.61) -1.83 (-61.44) -0.27 (-9.96) 0.93 (29.78)
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0.98 0.22 (8.08) -1.98 (-66.74) 0.11 (3.84) 1.87 (66.36)

0.99 0.33 (12.17) -1.99 (-68.06) 0.27 (10.03) 1.82 (58.47)

DiMeHx-DIPDMP-mixture

x1 comp 1 comp 2 overall binary

0.01 -5.11 (-16.69) -1.51 (-6.91) -1.48 (-6.76) -3.1 (-10.93)

0.02 -3.31 (-11.73) -0.84 (-4.08) -0.77 (-3.72) -0.22 (-0.88)

0.05 -0.19 (-0.8) 0.27 (1.48) 0.49 (2.7) -0.3 (-1.29)

0.1 0.14 (0.68) 0.55 (3.58) 0.92 (5.81) 0.72 (3.81)

0.25 0.29 (1.97) 0.54 (5.14) 1.06 (9.29) 0.1 (0.74)

0.5 -0.5 (-4.6) -0.77 (-9.67) -0.23 (-2.53) -0.28 (-3.42)

0.75 0.19 (1.79) 0.02 (0.31) 0.42 (4.26) -0.21 (-2.47)

0.9 0.48 (3.74) 0.1 (1.08) 0.59 (4.72) 0.08 (0.74)

0.95 -0.24 (-1.66) -0.13 (-1.3) -0.15 (-1.02) 0.52 (4.72)

0.98 -1.02 (-6.28) -0.89 (-7.95) -0.98 (-6.07) -0.83 (-6.38)

0.99 -1.26 (-7.57) -1.33 (-11.31) -1.25 (-7.48) -0.98 (-7.31)
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