
This article has been accepted for publication in IEEE Sensors Journal. This is the author’s version which has not been fully edited and content may change prior to final publication.

Citation information: DOI 10.1109/JSEN.2024.3416847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE SENSORS JOURNAL, ACCEPTED VERSION 1

3D-Printed Piezoelectric PLA-Based Insole for
Event Detection in Gait Analysis

Bastian Latsch , Niklas Schäfer , Martin Grimmer , Omar Ben Dali , Omid Mohseni ,
Niklas Bleichner , Alexander A. Altmann , Stephan Schaumann , Sebastian I. Wolf ,

André Seyfarth , Philipp Beckerle , Senior Member, IEEE , and Mario Kupnik , Senior Member, IEEE

Abstract— Detecting human movement is crucial for the con-
trol of lower limb wearable robotics designed to assist daily
activities or rehabilitation tasks. Sensorized insoles present
a viable option for extracting control inputs, such as gait
events and the corresponding phases, essential for regu-
lating the magnitude and timing of assistance. Given their
highly sensitive piezoelectric response to dynamic loading,
ferroelectrets emerge as a cost-effective solution for cus-
tomizing sensors suitable for these autonomous systems.
Within this study, an insole with four ferroelectret sensors
is 3D-printed monolithically from polylactic acid (PLA) onto
bulk films of the same material through seamless thermal
fusion. Sensor and insole are characterized through a testing machine and by conducting human walking experiments
on an instrumented treadmill. The testing machine results indicate suitable sensor performance for the application in
wearable robotics concerning the sensitivity, minimal detectable change, hysteresis, drift, and repeatability. Walking
experiments reveal the insole’s capability to detect gait events such as heel strikes with minimal variability and on average
16 ms faster compared to the reference of vertical ground reaction forces across all walking speeds above 1 m/s. The peak
sensor outputs strongly relate to the reference while both exhibit a linear (R2 > 95%) increase corresponding to walking
speed. In conclusion, study findings demonstrate the feasibility of PLA-based ferroelectrets as customized insole sensors
for event detection in gait analysis, enabling assessment of human biomechanics with minimal impact on the natural gait
and control of autonomous wearable robotics, such as exoskeletons.

Index Terms— Gait analysis, legged locomotion, gait event detection, 3D-printed piezoelectric sensor, ferroelectret insole

I. INTRODUCTION

GAIT phase detection during human gait holds a piv-
otal position across a spectrum of scientific domains,

encompassing biomechanics and gait analysis, robotics and
control, rehabilitation and assistive devices, as well as sports
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performance evaluation [1]–[4]. Humans utilize cutaneous
receptors located in the foot sole [5] and proprioceptors in the
muscles [6] to perceive tactile and contact information with
the environment to control their movements [1]. In technical
settings, sensors are employed to capture this valuable data
concerning the human gait.

The gait phase, the progress within a stride, serves as a
key information source in analyzing the variety of human
movement tasks, aids in identifying gait characteristics, and
offers effective control of gait patterns in robotic locomo-
tion [7]. In particular, gait phase detection is crucial for
real-time control of exoskeletons, synchronizing their motion
to the wearer’s movements [8]. Other research shows that
exoskeletons, which are capable of responding even faster
than the user’s physiological reaction, improve disturbance
compensation in balance [9], emphasizing the relevance of fast
event detection. Given the importance of gait phase detection,
the capability to identify gait phases in a user-friendly and
portable manner holds immense potential.

Through its direct link to acceleration, the ground reac-
tion force (GRF) offers quick information about impending
changes in motion, which is crucial for providing real-time
feedback control for legged robots [10]. GRF serves as an
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objective, quantifiable measure for optimizing the control of
wearable robotic devices [11]. This capacity has driven the
development of GRF-based controllers for various joints in
robots, exoskeletons, and prostheses, resulting in the gen-
eration of stable gaits and in enhanced human locomotion
assistance [12]–[14].

The terminology of gait phases used throughout this work is
based on the definitions provided by Perry and Burnfield [15].
During the stance phase, the foot is in contact with the ground;
mid-stance describes when it is flat on the ground. The swing
phase is the part when the foot is not on the ground. One stride
represents the entire cycle of a walking motion, starting with
the heel strike event when one foot initially contacts the ground
and ending when the same foot touches the ground again.
One stride of human walking at an average speed of 1.3 m s−1

lasts about 1.1 s [16]. At around 60% of the stride, the toe-
off event takes place as the terminal contact during lift-off of
the foot [15]. Even if the anterior-posterior and medial-lateral
forces on the foot sole are important for a stable gait, the
main component of the appearing forces is the vertical GRF. It
results from the gravitational acceleration and shows dynamic
peaks during walking of around 120% of the still-standing
body weight [16]. Detecting the heel strike and toe-off events
can be achieved by applying a force threshold on the vertical
GRF obtained from sensors, such as in force platforms and
insoles [17].

While wearable gait event detection is possible with inertial
measurement units (IMUs) as well [2], [18], [19], insoles offer
the acquisition of spatial pressure distribution under the foot
sole [20]. Among the most used insoles in clinical studies are
the commercially available systems F-Scan [21], Pedar [22],
Loadsol [23], and Moticon [24]. These are often taken as a
reference for the validation of custom-built insole systems in
research if force measurement plates are not feasible in case
of mobile experimental setups.

By monitoring foot pressure and walking patterns, medical
issues can be pointed out even before any inconvenience is
induced, thus, supporting the prevention of disease condi-
tions [25]. For instance, real-time feedback can be provided
to address concerns such as overpronation or supination,
potentially averting related foot and ankle complications [26].
Furthermore, multi-axial measurements in insoles, including
shear forces, are of interest to achieve the same capabilities of
force measurement plates with mobile solutions. Wang et al.
build 64 inductive sensor elements into their insole to measure
shear forces in addition to the normal component [20]. The
system is perceived to be comfortable by the participants and
plantar normal pressure is measured with an RMS error of
2.1%. The tedious sensor calibration due to the large number
of sensors is described as an inconvenience of the current
system and differences in the insole interface, such as socks
and shoes, cause discrepancies between participants.

The placement and size of the sensors in the insole is
determined by the application needs, with most comprising
a heel sensor. The number of insole sensors ranges from
two [27] up to 64 [20]. While a high spatial resolution may be
beneficial in certain scenarios, a relative pressure measurement
is possible with only three sensors at the forefoot, midfoot, and

hindfoot [28], [29]. Even though the same sensor technolo-
gies are used for plantar pressure measurements as decades
ago [30], creating affordable and resilient sensorized wearable
systems that effectively capture interaction forces continues to
pose a significant challenge [31].

Plantar pressure measurement principles can be classified
into piezoresistive [27], [32]–[35], capacitive [22]–[24], induc-
tive [20], [36], piezoelectric [37]–[40], optical [41], [42], and
other less frequently used emerging sensor technologies [43].

Most of the insoles in the literature use piezoresistive
principles due to their easy availability or capacitive sensors
for their high accuracy. Piezoresistive insoles are often based
on force-sensing resistors (FSRs) [27], [32], which in general
facilitate simple electronic read-out circuits. Other methods
include pressure-sensitive rubbers [44] and polymeric films
impregnated with carbon black, known as Velostat or Lin-
qstat, [45], [46]. Regardless of improvements in the read-
out and the design of piezoresistive sensors [21], [47], [48],
the general quality compared to other sensor technologies
regarding creep, accuracy, and repeatability is low [49]–[51].
In a study that utilizes FSR sensors to trigger functional
electrical stimulation in children with cerebral palsy, 5.5% of
the steps are not detected at all, with 80% of these missed due
to a smaller than expected signal below the detection threshold
programmed [32]. Shu et al. estimate the participant’s body
weight utilizing a piezoresistive strain sensing fabric with an
average deviation of 6.9%, while the sensor’s accuracy and
zero drift are specified with 5%, respectively [34]. Lin et al.
employ a piezoresistive textile, made from yarn coated with a
piezoelectric polymer, to build a matrix insole with 48 sensors
covering 80% of the foot sole area [35]. They calculate the
numerical derivative of the sensor voltage to detect heel strike
and toe-off events independently from the sensor offset and
participant weight.

Because of its dynamic nature, the piezoelectric effect is
frequently utilized in gait analysis, either through hard ceramic
sensors from materials such as lead zirconate titanate (PZT) or
flexible polymer sensors. Piezoelectric polymer sensors, typi-
cally made from polyvinylidene fluoride (PVDF), are superior
to ceramic-based sensors for the application in wearables due
to their flexibility, adaptability to the human foot, and non-
toxic properties [52]. Rajala et al. utilize PVDF sensors with
a charge amplifier to obtain the pressure from eight loca-
tions under the foot [40]. Deng et al. present a piezoelectric
insole based on PVDF pressure sensors with a sensitivity
of 23 pC N−1 and describe it as a self-powered system [37].
They use a 2 kg metal cylinder to simulate a foot roll but
no human experiment is conducted. Simultaneous charging,
measuring, and data transmission seems not to be tested.

Recently, polymers with low inherent piezoelectricity, such
as polypropylene (PP) and polylactic acid (PLA), are used to
3D print structures with well-defined air cavities [53], [54].
After the activation with charging techniques such as corona
or contact charging, the cavities form the sensor based on
the piezoelectric effect, also referred to as ferroelectret [52].
During deformation, the embedded compressible air cavities
enhance the charge displacement within the cellular material
yielding a higher quasi-piezoelectric effect with a comparable
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charge stability sufficing for long-term use and piezoelectric
coefficients of up to 22 000 pC N−1 [52], [55]–[57]. The sensi-
tivity of PLA-based ferroelectrets is exceptional compared to
that of sensors made from inorganic piezoelectric materials,
such as PVDF [52], [58]. In addition, PLA is known as a
bio-compatible and biodegradable polymer [58]–[62]. Further-
more, using PLA for the sensor offers great customizability
through 3D printing and a higher sensitivity than other flexible
materials.

In this work, we introduce a PLA-based ferroelectret sensor
to detect gait events by placing it in a sensorized insole
under the foot. Due to their piezoelectric nature, the sensor
elements can operate without any power supply, thus reduc-
ing the number of wires. The focus of this work is the
characterization and a proof-of-concept application for this
sensor, not a user study. Compared to our previous conference
proceedings publication [63], we utilize eco-friendly PLA that
can be synthesized from renewable resources [59] instead
of PP. Concerning the sensor design, the sensor elements
are completely redesigned to withstand the body weight and
characterized with significantly larger forces of over 800 N,
compared to 10 N in earlier versions [64].

We assess the sensor properties focusing on sensitivity,
measurement range, hysteresis, repeatability, zero drift, and
full-scale drift and deduce the sensor’s electromechanical
behavior with its output in relation to the applied force,
expecting a characteristic that is well-suited for dynamic force
measurements. Subsequently, we validate the applicability
of the sensor for gait event detection in an experiment by
integrating four sensors into an insole, which is worn by one
human participant walking on an instrumented treadmill. The
sensor data is evaluated for the possibility to determine the
gait events heel strike and toe-off by using the vertical GRF
of the treadmill as a reference. We choose not to use motion
capture systems as a reference for comparing our insole’s
detection. Several studies already compared ground reaction
forces with motion capture during human gait [65], [66], and
multi-axial force measurement platforms, as incorporated into
the treadmill, are considered the gold standard for measuring
pressure under the foot. We anticipate good detection of the
heel strike, as it causes an abrupt change in the signal, while
the detection of the toe-off event may be less clear due to
the gradual relief of weight. Altogether, the characterization
of our autonomous insole system will lay the foundation for
its application in gait analysis and wearable robotics control.

II. FERROELECTRET INSOLE SENSOR

We first delineate the sensor design and preparation, fol-
lowed by the description and the test of the acquisition
circuit. Next, we thoroughly examine the sensor output in
static and dynamic test conditions to comprehensively assess
its performance for the intended application. In the insole
application, the absolute sensor outputs will vary from one
person to another as the viscoelastic properties of the foot sole
differ [67] and the sensor itself can depend on the interfacing
material as well [64]. However, in gait analysis, absolute mea-
surements of GRFs may be less relevant compared to distinct

Conductive fabric

Nylon textile

Bulk PLA film

Printed PLA grid

Air cavities1 mm
1.5 mm

2 mm

⌀ 20 mm

⌀ 28 mm

Fig. 1. The sensor consists of two bulk PLA films and a structured 3D-
printed PLA layer, which contains the air cavities for charge trapping.

signal attributes that hold greater significance for identifying
patterns and associated ailments [11]. Therefore, the relative
signal distribution is of greater significance here, which we
investigate in the sensor characterization. Subsequently, we
demonstrate the sensor’s applicability as a proof-of-concept in
an insole walking scenario with ground truth data obtained
from an instrumented treadmill.

A. Sensor Design and Preparation
The sensor structure (Fig. 1) is designed using Fu-

sion 360 (Autodesk, San Rafael, CA, USA). We employ
PrusaSlicer (Prusa Research, Prague, Czech Republic) to pre-
pare the 3D printing process and produce the structure with
a commercially available printer for fused filament fabrica-
tion (i3 MK3S, Prusa Research, Prague, Czech Republic).

The process begins by affixing a bulk PLA film (Maropack,
Andernach, Germany), 0.02 mm thick, onto the print bed,
which is heated up to 60°C to thermally strain the film [64].
We use bulk films and filament of the same material to attain
a seamless thermal fusion during the print process [64]. A
circular PLA structure with a 2-mm-wide outline and 28 mm
outer diameter [64] is printed onto the heated film using stan-
dard settings for the black PLA filament (Redline Filament,
Neuss, Germany). This structure includes a grid of parallel
ridges, each 1 mm wide and 1.5 mm apart. It consists of a
single 0.2-mm-thick layer, printed with a nozzle diameter of
0.4 mm and a print speed of 20 mm s−1. The temperature of the
extruded PLA surpasses the melting point of the film, causing
the materials to fuse upon contact. The bulk film’s thermal
strain is preserved due to the print bed’s heat, pre-stressing
the film. Next, another PLA film on a second pre-heated print
bed (100°C) is thermally bonded (100°C for 30 s) on top
of the printed structure using a manual heat press (1250 W,
Vevor, Paris, France). The printed grid pattern forms the well-
defined air cavities, preserves the distance between the films
as a spacer, and maintains the thermal straining effect after
cooling [55].

We cut electrodes of 20 mm diameter from a self-adhesive
conductive fabric and solder wires to it. The solder point
is placed on the rigid outer part of the sensor, distant from
the cavities, i.e., the actual sensor surface. This prevents
the solder point from interfering with the measurement. The
electrodes are placed on both sides of the sandwich structure.
A high voltage source (HCN 14-12 500, FuG Elektronik,
Germany) applies 4 kV across them for contact charging,
initiating Paschen breakdown in the air voids and creating
dipoles at the PLA to air interfaces, which turns the structure
into a ferroelectret [68]. After short-circuiting the electrodes,
the sensor is neutrally charged to the outside and generates
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outputs through deformation in the extra-low voltage range,
which is harmless to humans. In the last step, we use self-
adhesive nylon textile as cover material on both sides to encase
the ferroelectret and protect it from environmental influences.

B. Data Acquisition
The deformation of the sensor structure by a force causes

a displacement of the trapped charges inside the air cavities
resulting in induced mirror charges on the electrodes. The
sensor output reflects this charge displacement within the
ferroelectret. This behavior is defined as a pseudo-piezoelectric
effect [69]. Therefore, the relation between force F on the
sensor and its charge output Q can be defined using

Q = d33 · F, (1)

with the longitudinal piezoelectric coefficient d33 that relates
between the mechanical and electrical domain in the main
force direction. We measure the voltage that results from the
charge generated when the sensor is stressed as

dQ

dt
= I =

V

Z
, (2)

where I is the current induced during time t, and V is the
voltage drop across the equivalent input impedance Z of the
measurement device. Combining (1) and (2) results into

V (t) = Z · d33 ·
dF

dt
. (3)

Hence, an analytical computation is achievable through mod-
eling the electrical circuit (Z) and the piezoelectric sensor
behavior (d33). The detailed analytical computation is beyond
the scope of this paper. Solely the direct proportionality
between the force derivative and the sensor output V is of
significant relevance for the intended application.

Typically, electrometers or charge amplifiers are utilized
to detect and measure small charges with high accuracy.
Electrometers with their high input impedance are well-suited
for measuring extremely small static charges. However, inte-
grating them into custom circuits involves considerable cost
and requires specific conditions. In contrast, charge amplifiers
feature a low input impedance suitable for the measurement
of moderately small charge flows in dynamic applications. We
demonstrated their exceptional sensitivity with ferroelectret
sensors in our force myography setup, enabling the detection
of volumetric muscle contractions in the human forearm for
gesture recognition [54]. Within walking scenarios, the full
body weight acts on the air cavities and generates a charge
flow resulting in comparatively large amplitudes. Therefore,
in the current scenario, we choose to measure the voltage
across a large value shunt load using a low-cost and less
complex terminal stage to amplify the sensor output voltage
for impedance matching. Accordingly, this results in a less
sensitive circuit than the charge amplifier but with increased
dynamic range and the ability to suppress drift.

We employ shielded twinaxial cables for the connection
between each sensor and the measurement board to ensure
a high signal-to-noise ratio (SNR). The board housing is
3D-printed from PLA and is fit with an elastic strap above

the hip of the participant. This leaves the option to add force
myography sensors to the leg muscles in further studies and
enhances wearer comfort by eliminating any disturbance to the
walking experience caused by devices attached to the ankle.

The output voltage of each sensor is captured using our
battery-powered measurement board, which comprises an ana-
log matching stage for each channel, an analog-to-digital
converter (ADC), and a microcontroller facilitating wireless
connectivity to the acquisition PC. The measurement circuit
is designed to match the analog sensor behavior to the
ADC (MCP3008, Microchip Technology, Chandler, AZ, USA)
input range and adjust the sensor impedance. As the underly-
ing piezoelectric effect primarily induces dynamic responses,
we use capacitors as DC blockers, mitigating offset drift, and
resistors to bias the alternating sensor signal with a constant
offset based on our previous circuit [63]. While the sensor’s ca-
pacity establishes an intrinsic high-pass characteristic with the
load [70], the circuit’s input impedance is adjusted to further
raise the cut-off frequency, thereby, enhancing drift suppres-
sion. The ADC samples the four matched and filtered sensor
signals (500 Hz, 10 bits). A microcontroller ESP32 (HUZ-
ZAH32, Adafruit Industries, New York City, NY, USA) reads
from the ADC through the Serial Peripheral Interface (SPI)
and accumulates this data along with timestamps in packets.

We use the User Datagram Protocol (UDP) with an up-
date rate of 100 Hz to transfer the data chunks between the
multi-threaded ESP32 and the acquisition PC. A dedicated
router (TL-WR902AC, TP-Link, Hong Kong) in infrastructure
mode is set up for the wireless connection to the ESP32
and the wired connection to the PC to overcome connectivity
issues, which happen irregularly if the ESP32 and the PC com-
municate directly. As a result of this setup and configuration,
we achieve zero packet loss throughout all of our experiments.
Essentially, our system is designed as a fully autonomous
platform for gait analysis, enabling the application in daily
life, which is not feasible with stationary equipment such as
an instrumented treadmill.

Our cross-platform software is built on Python 3 with
a Qt graphical user interface and uses a UDP socket to
receive the data stream from the ESP32. A live plot for each
sensor channel provides an intuitive way to initially verify the
incoming sensor data. The data are then saved in text-based
files for further processing.

We conduct a latency characterization of the sensor system
to verify the fast dynamic response of the ferroelectret sen-
sor system. Employing the built electronics, we temporarily
select a maximum sampling rate of 200 kHz for the ADC to
handle the sensor input. Additionally, the microcontroller is
programmed to turn on an LED when the sensor signal crosses
a threshold slightly above the idle state. This setup allows
for visual confirmation of the activation and facilitates the
system’s characterization. A 100 g weight is vertically dropped
five times onto the sensor from a height of 5 cm using a linear
guide. The experiment is recorded using a high-speed cam-
era (Chronos 1.4 model CH14-1.0-32C, Kron Technologies,
Eastlake, BC, Canada) with the maximum available frame rate
of 40.414 kHz to determine the time of initial contact. After
the weight touches the sensor surface, the LED turns on with a
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Upper
compression platen

Silicone rubber

Ferroelectret
sensor

Fig. 2. A single sensor, of which the insole comprises four, is under test
to facilitate a seamless integration into the universal testing machine.
The upper compression platen has a slightly smaller diameter than the
ferroelectret sensor and is positioned with some distance to it before the
trial. With the insert of silicone rubber, we model an interface change
similar to human tissue.

delay of 0.466 ms ± 0.264 ms. The delay is significantly below
the typical sensor acquisition rate, thereby, sufficiently small
for our measurements.

C. Sensor Characterization
We aim to characterize our sensors with a procedure

that is reproducible, automated, and closely resembles the
rapid weight transfers during human locomotion. Therefore,
a universal testing machine (Inspekt table 5 kN, Hegewald &
Peschke, Nossen, Germany) serves as tool for the sensor
characterization (Fig. 2), situated in a laboratory under con-
trolled temperature of 22°C. We employ a loading procedure
in position-control mode to optimize the velocity of the testing
machine and satisfy the dynamic testing capabilities with large
static forces that are required for the insole application. The
forces of up to 800 N on a single sensor exceed the expected
measurement range under the human foot sole at the sensor
area.

Due to the flexibility and larger size of the insole compared
to the platens of the universal testing machine, we employ
several isolated ferroelectret sensors to seamlessly integrate
them into the testing machine setup. One sensor at a time
is affixed to the lower platen of the testing machine with
adhesive tape. A compression platen of diameter 28 mm is
mounted to the upper part of the machine to accommodate
the sensor’s diameter of 28 mm. Each examination begins with
the compression platen slowly (0.01 mm s−1) approaching the
sensor from the top. A force of 0.1 N establishes initial contact
and marks the beginning of the test protocol. One test cycle
comprises a gradual increase in force with a fixed slope up
to the predetermined maximum, a phase of sustained force
application, and a controlled decrease in force returning back
to zero. Multiple cycles with a varying number of repeti-
tions are used to characterize the sensor’s electromechanical
properties including sensitivity, measurement range, hysteresis,
repeatability, and drift. Since the differences between the three
tested sensors are minimal (< 2.5% maximum deviation) and
fall within the expected tolerances of the manual manufactur-
ing process, we present the results for one sensor only in the
following to ease understanding.

1) Sensitivity and Measurement Range: Sensitivity and lin-
earity are fundamental aspects of a sensor’s performance.
Increased sensitivity results in a larger sensor output for the
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Fig. 3. Peak sensor output over the deformation velocity measured
as voltage drop over a large value shunt load, respectively for three
different interfacing materials used for the cyclic loading procedure. The
characteristic demonstrates a highly linear (R2 > 98.80%) response for
all scenarios. Inserting silicone rubber that is of similar viscoelasticity
as human tissue, increases the sensitivity compared to directly loading
the sensor with a metallic compression platen. Moreover, the electronic
circuit causes a clipping for voltages beyond the upper limitation Vmax,
which is adjusted for the expected input signal range, thereby, extending
the measurement range for harder interface materials.

same measured quantity. However, an elevated sensitivity leads
to a reduced measurement range under otherwise constant
configuration. A linear sensor characteristic is desirable to
ensure a constant sensitivity and resolution across the entire
measurement range without requiring an adaptive gain. This
not only reduces the demands on electronics but significantly
simplifies the calibration and facilitates embedded data pro-
cessing. The linearity is compared using the coefficient of
determination R2.

We assess the sensor’s performance using various interfac-
ing materials, including 1-mm-thick silicone rubber disks that
have the same size as the sensor and similar viscoelasticity as
human tissue. The silicone rubber disks of different elasticity
are placed as an insert between the metallic compression
platen and the sensor to model an interface change (Fig. 2).
Considering the dynamic nature of human gait, we regard
the deformation velocity as a significant parameter for gait
measurements. Therefore, we define the sensitivity of the
sensor output with respect to the deformation velocity. The
peak sensor amplitude is acquired over a large value shunt
load using our measurement board while repeating the loading
procedure ten times for each deformation velocity and insert
configuration.

The sensor sensitivity and measurement range highly de-
pend on the viscoelasticity of the interfacing material, thus, the
peak amplitude depends on the deformation velocity (Fig. 3).
The utilization of soft silicone rubber (Ecoflex 00-35, Smooth-
On, Macungie, PA, USA) results in the highest sensitiv-
ity of 6.10 V mm−1 s. With the use of hard silicone rub-
ber (Dragonskin 10, Smooth-On), the sensitivity diminishes
to 3.71 V mm−1 s and further reduces to 1.14 V mm−1 s without
any material between the sensor and the metallic compression
platen. The large viscoelasticity of soft silicone rubber corre-
lates with a large sensor sensitivity. Moreover, the potential
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Fig. 4. The sensor’s minimal detectable change (MDC) in deformation
velocity depends on the significant difference between loaded and
unloaded sensor output. (a) The absolute difference with the corre-
sponding general noise level calculated from the randomized signal
samples. (b) The p-value from an unpaired-sample Student’s t-test with
the decision relevant 5% level over the deformation velocity used during
loading. The MDC lies in-between two of these measured values and is
determined with a piecewise linear regression.

measurement range expands when using harder interface ma-
terials due to the maximum input voltage Vmax clipping all
values above. The upper limit is determined by the electronic
circuit design intended to maximize resolution without causing
signal clipping within the expected input signal range in the
insole application.

The peak sensor output to deformation velocity character-
istic demonstrates a highly linear response across all sce-
narios: with soft silicone rubber (R2 = 99.66%), with hard
silicone rubber (R2 = 99.56%), and without silicone rub-
ber (R2 = 98.80%). As found in our preceding work [64],
the raise in sensitivity is a result of the soft silicone rubber
penetrating the grid spaces within the sensor structure, which
results in a larger deformation and a larger sensor output.
Within the application of the ferroelectret insole, the sensor
interfaces with the human foot sole. Consequently, this results
in a dependency of the absolute sensor amplitude on individual
foot sole stiffness and viscoelastic properties, which can differ
from one person to another [67]. Despite these dependencies,
if necessary, a single linear factor can adequately correct
the absolute sensor output to account for these individual
variations in foot sole properties.

In conclusion, when applied practically, it becomes imper-
ative to tailor the voltage range to align with the anticipated
measurement range for the deformation velocity. Such a cali-
bration can be achieved through walking experiments and can
increase the sensitivity at the cost of a reduced measurement
range. The linear relation of sensor output and deformation
velocity makes the ferroelectret sensor well-suited for practical
use.

2) Minimal Detectable Change: We assume that the minimal
detectable change (MDC) in deformation velocity can be
determined experimentally and is characterized by the point
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Fig. 5. Test machine force over sensor displacement for five specific
load cycles (C1 to C600) during a continuous procedure with 600 load
cycles up to 800 N, each followed by a release back to zero with a cycle
time of about 1.1 s. The hysteresis effect is calculated from the areas
enclosed by the hysteresis threshold to the left and the five cycle plots to
the right, respectively. Below this threshold (0.242 mm), the resolution of
the testing machine force is too low due to the fast loading with no more
than 50 Hz sampling. (a) The hysteresis effect declines with ongoing
cyclic loading and levels out, which is a typical behavior for viscoelastic
materials, such as the PLA polymer used.

where we identify a significant difference between a sensor
in loaded condition and without load. The determination of
MDC uses samples corresponding to the two conditions:
1000 without any load and 1000 with the sensor subject to
a constant velocity. We extract randomized signal samples
of 10 ms from ten cycles lasting up to 15 min. The sample
length of 10 ms complies with an often used controller up-
date rate for exoskeletons [71]. The procedure is repeated
for the selected velocities: 0.0005, 0.002, 0.005, 0.01, and
0.025 mm s−1. We use an unpaired-sample Student’s t-test
for each of the 1000 comparisons to confirm a significant
difference in between loaded condition and without load, after
confirming a normal distribution using the Shapiro-Wilk test.
Subsequently, means and standard deviations of the p-values
are determined. MDC is finally defined as the intersection
between the 0.05 significance level and the piecewise linear
regression connecting the discrete p-values for the measured
deformation velocities (Fig. 4).

For a better interpretation of the results, the general noise
level of our sensor is determined as such that the signal noise
corresponds to the standard deviation of the signal at an equal
deformation velocity. Thereafter, we average the signal noise
of all the ten repetitions with and without load for all the
deformation velocities to determine the general noise level.
The sample noise values are on average slightly larger (3.65%)
for the loaded condition compared to the condition without
load. The resulting general noise level is 40.26 mV ± 3.43 mV.

With a velocity larger than 0.01 mm s−1, the signal level
between with and without load conditions is clearly distin-
guishable (p = 0.0118 ± 0.0527), while the mean of absolute
difference (68.06 mV ± 40.26 mV) exceeds the general noise
level (Fig. 4). With a velocity smaller than 0.005 mm s−1,
we are unable to differentiate with and without load con-
ditions (p = 0.1722 ± 0.2347) and the mean absolute differ-
ence (31.05 mV ± 33.30 mV) drops below the general noise
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Fig. 6. Five selected equidistant load cycles (C1 to C600) from a repetitive loading procedure with similar properties to the human gait regarding
force slope and stride frequency. (a-b) Once the force settles at its maximum (time 0.55 s), the sensor signal levels off but keeps a positive offset of
similar height across all cycles. (c-d) After the last signal drop during C600, the curve decays slowly and eventually levels off at zero 6 s later.

level. The interpolated MDC for the deformation velocity of
0.0088 mm s−1 lies in between these two conditions. Even for
the softest evaluated silicone rubber, this MDC corresponds to
only about 1% of the measurement range adjusted for our
application. We expect that such a small MDC is relevant
for deformation velocities found in more sensitive applications
such as force myography [54]. In conclusion, the MDC of our
sensor does not interfere with our application for detecting
force changes using an insole during human walking.

3) Hysteresis: Ferroelectrets are made from polymers,
which are viscoelastic materials and typically display a sub-
stantial time dependence in their mechanical properties, such
as creep due to static stress and hysteresis within cyclic loading
conditions [72]. We assess the magnitude of the hysteresis
within our sensors and track its temporal evolution across
an increasing number of load cycles. We employ a position-
controlled loading procedure to optimize the testing machine’s
velocity. This approach is crucial for replicating a loading
profile akin to human gait regarding stride frequency and the
large force slope. Our protocol involves 600 loading cycles up
to 800 N each, followed by a release back to zero. Our method-
ology closely simulates the rapid weight transfers during a gait
cycle. The cycle duration of approximately 1.1 s corresponds
to a walking speed of 1.3 m s−1. We employ this identical
protocol for both the full-scale and zero drift assessment. The
hysteresis calculation entails measuring the areas between the
hysteresis threshold set at 0.242 mm and the five selected,
equidistant cycle plots C1 to C600, respectively (Fig. 5). Below
this threshold, the testing machine lacks sufficient resolution
due to the restricted sampling frequency of 50 Hz.

Approximately, loading requires 300 ms, holding force
350 ms, unloading 100 ms, and resting 350 ms. On the loading
path, the force exceeds that of the unloading at equivalent

displacement (Fig. 5). The hysteresis effect demonstrates an
exponential decrease with continuous cyclic loading and even-
tually stabilizes (Fig. 5a). The increased force required during
the loading phase for an equivalent displacement indicates
a viscoelastic deformation that persists within the sensor
material across multiple repetitions, which is a characteristic
of viscoelastic materials such as polymers used in ferroelec-
trets [72]. In conclusion, as the hysteresis diminishes over
the first 200 s, for the application of the insole, especially
absolute values of early load cycles shall be either disregarded
or approached with caution.

4) Zero Drift: If the sensor output varies, even without
a change in the measured variable, a zero drift is present.
This phenomenon influences the performance of prolonged
sensor use, necessitating regular recalibration. We employ the
same five equidistant load cycles (C1 to C600) previously used
for the hysteresis characterization (Fig. 5) to evaluate the
zero drift and synchronize the data from all cycles at the
ferroelectret sensor maxima. Although ferroelectret sensors
commonly display inherent mechanical drift, akin to most
polymers, we anticipate compensation for this drift through our
analog electronics. Our approach involves high-pass filtering
of the sensor signal, effectively eliminating the drift.

Given our use of position-controlled loading, the force am-
plitude during C1 is slightly larger compared to the other evalu-
ated load cycles, while the sensor amplitude exhibits a smaller
yet broader peak (Fig. 6a-b). Once the force stabilizes at its
maximum (time 0.5 s), the sensor signal plateaus, maintaining
a positive offset of approximately 300 mV on average (around
time 0.75 s), which is about 10% of the signal amplitude for
the first loading cycle. This offset remains relatively consistent
across the five selected cycles and reverses upon unloading.
During unloading, the sensor signal experiences negative clip-
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Fig. 7. The peak sensor output during rising load is extracted to
approximate the full-scale drift over 600 cycles up to 800 N with the
same five equidistant load cycles (C1 to C600) highlighted as in Figs. 5
and 6. The exponential drift diminishes over the first 200 s and the
sensor output continues to increase approximately linearly with 0.61 mV
per cycle over the measurement duration.

ping due to the rapid reduction in the testing machine’s force.
Following the final signal drop in C600, the sensor amplitude
gradually diminishes and eventually stabilizes at zero after
approximately 6 s (Fig. 6c-d). We observe a similar evolution
towards zero during the rest phases without any mechanical
load, although a complete reset is unachievable due to the short
break before the subsequent loading begins.

As the measurement is free of any zero drift, we assume
that our analog electronics effectively compensates for the
inherent material drift. Under constant load, the sensor out-
put is expected to remain at zero, due to the absence of
a deformation velocity. However, an offset from zero that
remains for up to 6 s (Fig. 6d) is found. Additionally, the
amplitude of the offset is consistent regardless of the number
of previous cycles underscoring a reliance of the amplitude on
the actual deformation rather than the deformation velocity.
The signal returning to zero after the completion of the final
load cycle C600 can be explained by a mechanical restoring
process, potentially associated with viscoelastic relaxation, as
well as by an electrical discharge process. In conclusion, we
observe a zero offset, when load is applied, rather than a
zero drift (Fig. 6b). The magnitude of the offset is sufficiently
small, ensuring that our system aligns with the requirements
for accurately detecting gait events in the insole application.

5) Full-scale Drift: In contrast to the zero drift, full-scale
drift refers to a shift in the output close to the maximum
amplitude or a modification of the upper measurement limit.
For analysis, the experimental data from the hysteresis evalu-
ation are used. The peaks of the sensor output are extracted
and utilized to estimate the full-scale drift by an exponential
fit. The results indicate the presence of a full-scale drift for
continuous loading cycles (Fig. 7). Although the full-scale drift
diminishes over the first 200 s, the sensor output continues to
increase over the end of our measurement protocol (12 min)
at a rate of approximately 0.61 mV per cycle. However, the
experiments on the repeatability showed complete relaxation
of the full-scale drift if breaks of 60 to 120 s are made in
between loading cycles. The drift primarily arises from the
mechanical creep within the sensor structure. Consequently,
we expect an absolute saturation of the drift over extended
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Fig. 8. The sensor undergoes ten iterations, each comprising ten con-
secutive loading cycles, with a break in between cycles and extended
breaks in between iterations. The peak sensor output from the last
compared to the first cycle of each iteration slightly increases, attributed
to the full-scale drift, whereas both exhibit similar variability. This not only
showcases the overall repeatability of the sensor output but also verifies
its viscoelastic behavior.

measurement times, even though the drift per cycle at the
end of our protocol is already low. Young adults typically
walk about 6500 steps a day [73], which will result in a drift
of approximately 1.8 V at each insole sensor, assuming the
worst-case scenario of continuous walking without a break
and no additional saturation of the drift rate. With the present
amplifier tuning, this still falls well within the available input
range. Thus, an event detection such as in the gait scenario
remains unaffected. Based on this finding, in applications
involving continuous loading cycles without breaks, the design
of the voltage range needs to account for such a drift. In
conclusion, the application of our insole sensors for gait event
detection is possible, assuming proper consideration for the
potential full-scale drift within the layout of the electronics.

6) Repeatability: The analysis of the hysteresis revealed a
characteristic viscoelastic behavior influenced by prior loading
conditions. Based on literature [72], we posit that relaxation
not only relies on prior loading but also on time. Consequently,
we conduct multiple repetitions using the same cyclic loading
procedure to assess the repeatability of the sensor output. The
sensor undergoes ten iterations, each comprising ten loading
cycles up to 700 N with a deformation velocity of 5 mm s−1

and a break of 60 s in between cycles. In between iterations,
we extend the break to 120 s to facilitate the relaxation of the
viscoelastic material. We assess the variability of the first and
last loading cycles using Levene’s test.

On average, the peak voltage output in the last load
cycle (7.47 V) shows a slight increase of 1.8% compared
to the first load cycle (7.31 V), attributed to the full-scale
drift (Fig. 8). While evaluating this sensor characteristic,
the absolute voltage amplitude is found to be larger com-
pared to others due to the correlation with the increased
deformation velocity. Notably, the last and the first cycles
exhibit similar variability (p> 0.05) with standard deviations
of 1.9% (± 0.139 V) and 1.6% (± 0.120 V) of the peak outputs,
respectively. Results show that the first and the last repetition
are quite stable across the ten iterations, which proves sensor
repeatability. However, breaks of 60 s in between loading
cycles are not sufficient to completely relax the viscoelastic
polymer material within each iteration. In contrast, breaks of
120 s in between iterations prove to be effective in achieving
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almost complete relaxation. In conclusion, the ferroelectret
sensors provide a similar output for a similar loading behavior
while breaks will impact the absolute level of voltage output.
Nevertheless, the detection of voltage peaks, which is crucial
for our event detection, remains robust against changes in
absolute magnitude.

III. APPLICATION IN GAIT ANALYSIS

The previously investigated ferroelectret sensors feature a
dynamic sensor principle that reveals a highly linear sensor
characteristic in our statistical evaluation. Accordingly, we
emphasize their application as a proof-of-concept in dynamic
contexts such as walking. Four sensors are arranged in an
insole array to assess their collective performance for event
detection in gait analysis, a crucial aspect of biomechanical
research and wearable robotics control.

A. Insole Design and Preparation

The insole is manufactured similarly to the previously
characterized single sensor element, extending the three main
pressure areas [29] with a toe sensor to detect the last
contact during toe-off. The four sensors increase the spatial
resolution across the entire sole area as a proof-of-concept
while restraining the assembly effort as well as the complexity
of wiring and electronics. We print the insole comprising the
sensors in one piece using the same layer stack as for the
single sensors [64]. In contrast to the single sensors, the insole
features several seamless layers that firmly secure the sensors
in place. In particular, both PLA films and textile covers span
the entire sole area, eventually, forming the foot shape.

Each individual sensor element is separately wired and
treated electrically to turn it into a ferroelectret. The func-
tionality of each individual sensor is confirmed by promptly
lifting a weight via a vertical linear guide away from the sensor
and reviewing its outputs.

B. Experimental Setup

The experimental setup includes our insole with four fer-
roelectret sensors placed under the calcaneus (heel), the fifth
metatarsal head at the lateral forefoot (LF), the first metatarsal
head at the medial forefoot (MF), and the hallux (toe). Further-
more, we employ the built measurement board connected to
the insole and an instrumented treadmill (ADAL 3D, HEF Tec-
machines, Andrézieux-Bouthéon, France) that is typically used
to reliably assess walking GRFs (Fig. 9). The instrumented
treadmill offers trigger outputs at the instrumentation ampli-
fier, which differ in length, indicating the start (2.3 ms) and
end (0.4 ms) of the GRF acquisition. We connect a coaxial
cable from the treadmill’s instrumentation amplifier to our
measurement board and use the hardware interrupts on the
ESP32 to detect the incoming trigger edges. The trigger signal
is used to synchronize the GRF with the insole data in our
software. We place the insole on the treadmill surface and
drop a weight on both to test the synchronization. No delay
of either system beyond the sampling time of the GRF (4 ms)
is observed.

Insole

Trigger

Measurement
board

Access
point

PC

Instrumented
treadmill

Heel

LF MF

Toe

Fig. 9. The autonomous ferroelectret insole system is examined with
one participant on an instrumented treadmill as a reference regarding
gait event detection. A trigger line ensures the synchronization between
both systems for this experiment. Data from the sensors placed under
heel, lateral forefoot (LF), medial forefoot (MF), and big toe are assessed
for on average 100 strides across five different walking speeds.

C. Experimental Protocol

The setup is extensively tested with one participant (male,
31 years, 176 cm, 69 kg) without gait related impairments, who
wears the insole in the right shoe (EU size 43). The study
received approval from the Ethics Committee of Technische
Universität Darmstadt and is conducted in accordance with
the principles outlined in the Declaration of Helsinki. The
participant provided written informed consent. We specify five
different walking speeds (50%, 75%, 100%, 125%, 150%)
derived from the nominal walking speed (100%, 1.3 m s−1),
which are controlled by the treadmill resulting in belt speeds
v50 to v150. We begin with a 200-second preconditioning
phase to stabilize the sensor output (Fig. 7) and continue
with the measurement protocol that consists of a two-minute
walking period at each speed, starting with the slowest speed
v50. Afterwards, we analyze phases of constant speed, which
contain 74 to 124 strides depending on the speed.

D. Data Analyses

The data analyses are carried out in MATLAB (2022b,
MathWorks, Natick, MA, USA). We offer the preprocessed
structured data for free use in HDF5 format along with sample
scripts for MATLAB and Python under license CC-BY [74].
The sensor data from the insole are high-pass filtered with a
cut-off frequency of 0.1 Hz and low-pass filtered with 20 Hz
using a second order Butterworth filter design. The treadmill
data are low-pass filtered using the same parameters. We
linearly interpolate the measurements from the instrumented
treadmill (240 Hz) to match the sensor data sampling fre-
quency (500 Hz) and timestamps. The strides are segmented
using the treadmill data from one heel strike (0% of the stride)
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Fig. 10. Mean of the individual insole sensor outputs, placed on heel, lateral forefoot (LF), medial forefoot (MF), and big toe, along with the vertical
ground reaction force (GRF) from the instrumented treadmill across five different walking speeds ranging from 50% to 150% of the nominal walking
speed (100%, 1.3 m s−1). The strides are segmented from one heel strike (0% of the stride), when the vertical GRF component of the right foot
exceeds 20 N, to the following heel strike (100%) of the same foot in order to normalize the stride time. The stance phase ends with the toe-off
event (around 60%), which coincides with the minimum of the toe sensor signal. A relative shortening of the stance phase with increased walking
speed is extracted from the ferroelectret sensor data as well as from the treadmill data. (a) The heel sensor peak during initial contact (around 5%)
scales linearly with the walking speed. (b) The same applies for the normalized GRF derivative.

to the subsequent heel strike of the same leg (100%) in order
to normalize the stride time. The heel strikes are identified
when the vertical GRF component of the right foot exceeds a
threshold of 20 N. The height of the threshold holds a crucial
role when detecting heel strike and toe-off events during the
gait cycle and is selected to be just above the noise level of the
treadmill data [17]. We calculate the arithmetic mean for each
sensor across all strides at one speed to visualize the average
stride in a comprehensible format. Additionally, we compute
the GRF derivative with respect to the relative stride time and
normalize it to the maximum value to enable the validation of
the electromechanical behavior derived in (3).

Furthermore, we proved a dependency of the sensor output
on the cover material (Fig. 3) and the cover thickness in
a previous publication [64]. As a result, the system signal
relies on the properties of the contact surface, thus, on the
individual’s foot sole. Recognizing that an absolute threshold
overlooks these variations, we establish the threshold for heel
strike detection relative to the peak amplitude of the preceding
stride (at 15%). We select the heel sensor in the insole for the
heel strike detection as it establishes contact to the ground first.
The toe sensor as last foot contact is utilized to detect the foot
lift. A negative deformation velocity on the sensors causes

a negative sensor peak due to the sensor polarity applied.
Therefore, the toe-off event is observed with a negative peak
detection at the toe sensor, after the output falls below an
absolute threshold of 1.75 V to avoid erroneous triggering.

The time difference in gait event detection involves com-
paring the timings of the ferroelectret sensors (heel and toe)
to the GRF of the treadmill across the five different speeds.
The treadmill measurement serves as the ground truth. The
time difference is negative if the ferroelectret sensor based
thresholding results in an earlier detection against the cor-
responding event derived from the treadmill measurement.
A later detection gives positive values. Individually for each
event in time, the time difference is calculated as absolute
value and relative to the mean stride duration to adjust for the
dependence on the walking speed. Separately for each speed,
we determine the statistical significance of the difference in
means between the two data sources for the event detection
from a Wilcoxon signed-rank test, after identifying slight
deviations from a normal distribution. Subsequently, the mean
and standard deviation are derived across all heel strike and
all toe-off events, respectively.
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ground truth (0%). If the ferroelectret sensor based thresholding results
in an earlier detection against the corresponding GRF event, the time
difference is negative; a later detection gives positive values. Walking
speeds are controlled by the treadmill belt from slowest v50 to fastest
v150. The heel strike is recognized significantly earlier with our sensors
compared to the GRF for all walking speeds but v50. Toe-off is detected
with low variation. Note the different axes scaling. Asterisks denote a
statistically significant difference from the ground truth (p < 0.05).

E. Experimental Validation

During the experiment, the mean outputs of the ferroelectret
sensors, positioned under the heel, LF, MF, and toe, change
in amplitude along with the vertical GRF from the treadmill
across the five walking speeds (Fig. 10). All signals show
characteristic peaks within the stride. During the loading
response, we find a strong positive peak for the heel sensor and
small negative peaks for the LF, MF, and toe sensor. During
mid-stance, a small signal increase with minor fluctuations
occurs throughout all sensors. During lift-off, a large negative
peak is found. The derivative of the vertical GRF component,
which directly relates to the ferroelectret’s output according to
the electromechanical behavior derived in (3), shows similar
distinct peaks for loading and lift-off phase. A low average
variability of 192 mV (standard deviation) is found across the
entire stride for all speeds, which corresponds to 7% of the
average peak height during loading response, underscoring the
repeatability of the sensor measurements.

1) Loading Response: The loading response results in a
positive peak of the treadmill’s GRF derivative, which scales
linearly (R2 > 95.80%) with the walking speed (Fig. 10b). The
positive peak of the heel ferroelectret sensor shows a similar
linear (R2 > 97.74%) scaling over the walking speed (Fig. 10a).
Using the positive slope of the heel sensor towards this peak
seems reasonable for the heel strike detection. A threshold of
15% of the preceding peak is selected for triggering the event
detection reliably for all analyzed strides at all speeds. When
comparing the detection based on the ferroelectret sensors
to the GRF, we recognize the heel strike to occur signifi-
cantly (p< 10-5) earlier (16.2 ms ± 9.5 ms) with our sensorized
insole for all walking speeds except the slowest v50 (Fig. 11).

2) Mid-stance: During mid-stance the load shifts from the
heel towards the forefoot [16], which results in negative
amplitudes for the heel and positive amplitudes for the forefoot
sensors (Fig. 10). Before mid-stance (around 10% of the

stride), a zero crossing from negative to positive takes place
for the forefoot sensors LF, MF, and toe, where the timings
align with the placement in the insole. Earlier timings occur
for posterior placement. A similar behavior is found after mid-
stance, where the zero crossing from positive to negative aligns
with the same order. In combination with the distinct peaks
and timing of peaks for the heel and toe sensor, this indicates a
possibility to resemble the pressure distribution and the center
of pressure (CoP) trajectory during the stride. Similar to our
findings, largest pressure amplitudes are found for the heel
and toe sensor, while relatively smaller peaks are found for the
sensors covering the ball of the foot [75]. The trajectory of the
CoP during walking [15] aligns with the shift from posterior to
anterior loading found for our insole. Prior research indicates
that the CoP can be derived from three pressure sensors
employing an anatomical foot model [29]. Furthermore, it will
be beneficial to detect intermediate events such as the flat-foot
and heel-off, similar to the recent progress in IMU-based gait
segmentation [19]. We posit that future investigations consider
an analysis of the pressure distribution along with a similar
CoP calculation using our insole sensors. In line with the
estimation of the CoP, possible further investigations involve
the determination of the vertical GRF by the integration of
a weighted sum of all insole sensor outputs. This can be
accompanied by an increase in spatial resolution using a sensor
matrix with smaller elements, which is easily possible through
the 3D-printed design.

3) Lift-off: During lift-off, while the heel sensor returns from
negative to zero, the forefoot sensors show highly negative
outputs, caused by the decrease in load. This characteristic is
consistent with the negative amplitude of the force deriva-
tive and scales with walking speed. These global minima,
occurring in between 60% to 68% of the stride depending
on walking speed, coincide with the respective toe-off event
timings determined by the GRF. Similar to the zero crossings
before mid-stance, the timing order of the peaks aligns with
the sagittal placement on the insole. Furthermore, the shift of
load from the ball of the foot to the toes is evident through
positive peaks in the toe sensor shortly before toe-off. These
peaks scale with walking speed and reach up to 2 V. Both the
order in timing and the shift in load strengthen the idea of
using insole data to estimate the CoP movement. In addition,
a detection of the toe-off timing in combination with the de-
tected walking speed, extracted from the ferroelectret sensors,
enables the identification of spatio-temporal characteristics,
including stance and swing time, as well as stride length [18].

4) Gait Event Detection: Heel strike and toe-off events are
detected in a reasonable range with a maximum difference of
up to 2% of the stride time (Fig. 11). While heel strike detec-
tion is slightly earlier, toe-off detection is slightly later. Toe-
off detection occurs reliably about 1% of the stride time after
the treadmill signal crosses the threshold with low variation
across all speeds. For reference, a change of 4% in the timing
for peak assistance in a hip exoskeleton did not significantly
impact metabolic cost, whereas a change of 8% did [76]. The
heel strike is detected based on a threshold relative to the
positive peak of the heel sensor of the previous stride. This
threshold can be easily adapted to change the detection timing.
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While the toe-off detection uses the negative peak of the toe
sensor, a similar adaptation to the corresponding threshold, as
done for the heel strike, can further improve the slightly late
timings.

With the current approach, we detect the heel strike ear-
lier (about 16 ms) than the reference from force measurement
plates. In addition, this is faster than the commercial insole
F-scan, which shows a mean delay of 22 ms to the refer-
ence, even with an improved detection method [21] as well
as other custom-built insoles such as GaitShoe (on average
6 ms earlier [33]) with various sensor technologies, such as
piezoelectric and piezoresistive sensors, as well as IMUs.
Accelerometers, as built into IMUs, show similar tendencies
with on average slightly earlier (11 ms) heel strike and slightly
later (19 ms) toe-off events, even though the deviations from
the foot switch reference utilized are not significant [77].
While an earlier detection timing can be of advantage in
wearable robotics to provide an additional buffer time for
the controller, a later timing will be of disadvantage as the
assistance is applied too late [9]. Even though the often used
F-Scan system generates late responses for the heel strike and
early responses for the toe-off events, literature suggests that
an adaptation of the thresholds can improve detection tim-
ings [21]. This holds true for our system, as the threshold based
approach allows, if required, to shift the heel strike timings to
later and the toe-off timings to earlier points to match the GRF-
based timings. Further analysis may also consider advanced
algorithms in the time-frequency domain [78]. Future research
needs to show if the detection approach is applicable to people
with pathological gait and other kind of daily movements, such
as stair ambulation or walking inclines.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we engineered a customized insole with four
ferroelectret sensors, all 3D-printed monolithically from poly-
lactic acid (PLA). We aimed at using the insole for human gait
phase detection based on the events of heel strike and toe-off to
extract control inputs for lower limb wearable robotics, such as
exoskeletons, while walking. The sensor characteristics were
evaluated using a testing machine and walking experiments on
an instrumented treadmill. Using the results from the testing
machine, the sensor proved suitable for use in an insole
application for controlling wearable robotics during human
walking with respect to sensitivity, minimal detectable change,
hysteresis, drift, and repeatability. The evaluation of these sen-
sor characteristics establishes a benchmark for ferroelectret-
based sensors regarding methodology and identified sensor
properties. However, we found that the sensitivity of the sensor
output is affected by the interfacing material. In the case of the
insole application, this material is the wearer’s foot sole, which
has different properties from one person to another. Based on
our proof-of-concept experiment, the impact of this variability
on gait event detection needs to be further investigated in
future studies, incorporating multiple participants.

Walking experiments revealed that heel strike and toe-off
detection is possible with minimal deviation and variability
compared to our reference based on vertical ground reaction

forces. The deviations are below the level of significant
impact on the functionality of lower limb wearable robots
such as exoskeletons. In addition, the detection can be faster
than force measurement plates and other commercial insoles,
which offers enhanced disturbance compensation and addi-
tional buffer time in real-time control. With our evaluation,
we lay the foundations for the extraction of additional biome-
chanical characteristics based on the insole data, while the
customizability through 3D printing allows for an increase of
spatial resolution and potential extension towards multi-axial
measurements. Estimating features, such as the walking speed,
spatio-temporal characteristics, the pressure distribution, and
the center of pressure, not only facilitates their utilization in
robotic control but also enhances the functionality of the insole
as an autonomous biomechanical measurement device, with
minimal impact on the natural gait.
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