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Abstract

Massive stars end their life in violent explosive events that are triggered by the collapse
of the iron core, the so-called core-collapse supernovae (CCSNe). CCSNe host a large
variety of thermodynamic conditions, from cold low-density regions in the external
layers of the collapsing star to the hot and very dense nascent proto-neutron star
(PNS). Nuclear physics is a key ingredient to determine the evolution of CCSNe. At
high densities, the strong interaction governs the equation of state (EOS), which
has large impact on the dynamics. Nevertheless, the EOS of dense matter is not
fully understood. Numerical simulations are crucial to understand, and explore, the
mechanisms involved in the explosion. Thus, we use CCSNe simulations as laboratories
to study the impact of several nuclear matter properties on the dynamics of the PNS
and the explosion. At low densities, nuclear reactions describe the nucleosynthesis
that takes place in the events, which play an essential role in the chemical evolution
of the universe. Unfortunately, CCSN simulations are very computationally expensive
and, therefore, they need to employ approximations. At low densities, they often
consider a very simplified nuclear composition.
In the first part of the thesis, we investigate the impact of the composition and

the energy released by nuclear reactions at low temperatures. We implement two
reduced nuclear reactions networks and study their impact in the simulation. The
largest evolves the main species synthesized during the explosion. We perform one-
and two-dimensional simulations where we test the networks and study the e�ects on
the dynamics of the explosion and the nucleosynthesis. We find that su�ciently large
reduced nuclear networks are necessary for more accurate feedback of the nuclear
energy generation, neutrino absorption, and nucleosynthesis.

In the second part of the thesis, we study the e�ects of nuclear matter properties in
CCSNe. We perform one-dimensional models using several EOSs that systematically
vary the slope parameter, symmetry energy, incompressibility, and the density expo-
nent of the energy density functional. We find that a higher slope parameter produces
a slower PNS contraction, a less energetic shock, and a less compact remnant. In
addition, our results suggest that a low incompressibilty causes a faster collapse, much
higher central densities at bounce, and is less likely to revive the shock.

Finally, we show the early evolution stage of a state-of-the-art 3D CCSN simulation
including a reduced nuclear reaction network, that will become a benchmark for future
sytematic studies in one and two dimensions. We describe its main characteristics
and conclude that it will produce a successful explosion.
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Zusammenfassung

Massereiche Sterne beenden ihr Leben in gewaltigen explosiven Ereignissen, die
durch den Kollaps des Eisenkerns ausgelöst werden, den so genannten Kernkollaps-
Supernovae (CCSNe). CCSNe weisen eine große Vielfalt an thermodynamischen
Bedingungen auf, von kalten Regionen mit geringer Dichte in den äußeren Schich-
ten des kollabierenden Sterns bis hin zum heißen und sehr dichten entstehenden
Proto-Neutronenstern (PNS). Die Kernphysik ist ein Schlüsselelement zur Bestimmung
der Entwicklung von CCSNe. Bei hohen Dichten bestimmt die starke Wechselwir-
kung die Zustandsgleichung (EOS), die einen großen Einfluss auf die Dynamik hat.
Dennoch ist die EOS von dichter Materie nicht vollständig verstanden. Numerische
Simulationen sind entscheidend für das Verständnis und die Erforschung der an der
Explosion beteiligten Mechanismen. Daher verwenden wir CCSNe-Simulationen als
Laboratorien, um die Auswirkungen verschiedener Kernmaterieeigenschaften auf die
Dynamik des PNS und der Explosion zu untersuchen. Bei niedrigen Dichten beschrei-
ben Kernreaktionen die Nukleosynthese, die in den Ereignissen stattfindet und die
eine wesentliche Rolle bei der chemischen Entwicklung des Universums spielt. Leider
sind CCSN-Simulationen sehr rechenintensiv, weshalb sie auf Näherungen zurück-
greifen müssen. Bei niedrigen Dichten gehen sie oft von einer sehr vereinfachten
Kernzusammensetzung aus.

Im ersten Teil der Arbeit untersuchen wir die Auswirkungen der Zusammensetzung
und der durch Kernreaktionen bei niedrigen Temperaturen freigesetzten Energie. Wir
implementieren zwei reduzierte Kernreaktionsnetzwerke und untersuchen ihre Aus-
wirkungen in der Simulation. Das größte entwickelt die wichtigsten nuklearen Spezies,
die während der Explosion synthetisiert werden. Wir führen ein- und zweidimensiona-
le Simulationen durch, in denen wir die Netzwerke testen und die Auswirkungen auf
die Dynamik der Explosion und die Nukleosynthese untersuchen. Wir stellen fest, dass
ausreichend große reduzierte Kernnetzwerke für eine genauere Rückkopplung der
Kernenergieerzeugung, der Neutrinoabsorption und der Nukleosynthese erforderlich
sind.

Im zweiten Teil der Arbeit untersuchen wir die Auswirkungen der Eigenschaften der
Kernmaterie in CCSNe. Wir führen eindimensionale Modelle mit verschiedenen EOS
durch, die systematisch den Steigungsparameter, die Symmetrieenergie, die Inkom-
pressibilität und den Dichteexponenten des Energiedichtefunktionals variieren. Wir
stellen fest, dass ein höherer Steigungsparameter eine langsamere PNS-Kontraktion,
einen weniger energiereichen Schock und einen weniger kompakten Überrest erzeugt.
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Darüber hinaus deuten unsere Ergebnisse darauf hin, dass eine niedrige Inkompressi-
bilität einen schnelleren Kollaps, viel höhere zentrale Dichten beim Kollaps und eine
geringere Wahrscheinlichkeit der Wiederbelebung des Schocks verursacht.
Schließlich zeigen wir das frühe Entwicklungsstadium einer hochmodernen 3D-

CCSN-Simulation mit einem reduzierten Kernreaktionsnetzwerk, das als Maßstab für
zukünftige sytematische Studien in einer und zwei Dimensionen dienen wird. Wir
beschreiben die Hauptmerkmale dieser Simulation und kommen zu dem Schluss, dass
sie eine erfolgreiche Explosion hervorbringen wird.
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1 Introduction

The concept nova comes from Latin and was coined by the astronomer Tycho Brahe
in the sixteenth century when a supposedly new star appeared in the sky. However,
it was not until 1931 when Walter Baade and Fritz Zwicky came up with the term
Supernova (SN) during their lectures (Baade & Zwicky, 1934), in order to distinguish
especially bright transients and di�erentiate them from fainter novae. As many other
topics in science, SNe aroused the interest of scientist from ancient civilizations with
the first observations at naked eye. Nevertheless, it has not been until more recent
days, with the development of new physics and techniques, that we started to draw a
more complete picture of SNe beyond they being bright transients that appear in our
sky.
The first confirmed record of a SN date back from the year 185 CE. A group

of Chinese astronomers observed a very bright star appeared in the sky that was
visible eight months at naked eye (e.g., Clark & Stephenson, 1982). The brightest
SN event ever recorded took place in the year 1006 CE, which was recorded by
astronomers from across Asia and Europe (Murdin & Murdin, 1985). They noted
that its brightness was one-quarter the brightness of the Moon. In 1573, Tycho Brahe
published his observations and showed that SNe were stationary, i.e., they had a
constant parallax, and, therefore, were formed far beyond the Moon. This was a very
important breakthrough since it was against the Aristotelian tradition, which thought
that the celestial vault was invariant, and, therefore, that SN were produced somehow
in the atmosphere. Later, the invention of the telescope increased the number of
observations since it made possible the detection of SNe from other galaxies. However,
it has been more than 300 years without directly detecting an event taking place in
the Milky Way. Despite this, there are evidences that Cassiopea A was actually the
remnant of an explosion that was probably not noticed due to the high amount of
dust (e.g., Fabian et al., 1980). Currently, it is the brightest radio source beyond the
solar system (see Figure 1.1).
More recently, in the early 1930s, Walter Baade and Fritz Zwicky postulated that

the SN were the result of an explosion triggered by the gravitational collapse of
ordinary stars (Baade & Zwicky, 1934). Nowadays, we know this sub-type of SN as
the so-called core-collapse SN (CCSN). In addition, after the discovery of the neutron
(Chadwick, 1932), they suggested neutron stars (NS) to be the remnants of such
events. With Burbidge et al. (1957), the community focused in the origin of the
elements in the universe. The fusion in stars produce species up to the iron group,
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1 Introduction

Figure 1.1: Mid-infrared image of Cassiopea A obtained with the James Webb Telescope
(NASA et al., 2023).

where the binding energy per particle is minimum. Thus, heavier elements cannot be
produced in stars, and CCSNe were postulated as possible candidates to host heavier
element nucleosynthesis and became a hot topic.

In order to study the nucleosynthesis that takes place in CCSNe, it is key first to
understand the mechanisms involved in the explosion. Thus, the first hydrodynamic
simulations were performed in the 1960s considering spherical symmetry (Colgate
& Johnson, 1960; Colgate et al., 1961). They observed that after the collapse of the
core, in a timescale of less than a second, nuclear densities are reached and a shock
wave was produced that started to propagate outwards. However, the shock was
losing part of its energy and eventually stalled, failing to produce an explosion. Years
later, Bethe & Wilson (1985a) postulated the neutrino-delayed mechanism based on
Colgate & White (1966), where they introduced the idea that the neutrinos deposit
the missing energy to the shock to revive. The observation of the SN1987A event
provided evidences that neutrinos were playing a key role to revive the explosion
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(e.g., see review Arnett et al., 1989). In addition, it unveiled that the explosion
was not spherically symmetric, which led to the first multi-dimensional simulations
(e.g., Herant et al., 1994; Burrows et al., 1995; Janka & Mueller, 1995). They shed
light into the explosion mechanism, showing that multidimensional e�ects like, e.g.,
convection and hydrodynamic instabilities, are key for the shock expansion.
Over the years, simulations have become more reliable with the inclusion of new

developments from theory, experiments, and observations. However, the puzzle is far
from being completed due to the large amount of ingredients (i.e., physics) involved.
Some of them are, e.g., neutrino transport (e.g., Mezzacappa et al., 2020a), general
relativistic gravity treatment (e.g., Kuroda et al., 2012), multidimensionality (e.g.,
Burrows et al., 2020), or nuclear physics inputs such the equation of state (EOS)
of dense matter (e.g., Yasin et al., 2020). In this thesis, we perform state-of-the-art
simulations of the first 1.5 ≠ 2 s of evolution, which are the key for the engine to set
the explosion. We focus on two di�erent density and temperature regimes in the
simulation. At low temperatures and densities, we investigate the treatment of nuclear
reactions and composition. At high densities, we study the impact of di�erent nuclear
matter properties.
One of the aims of this work is to show the impact nuclear reactions have on the

dynamics of the explosion and its nucleosynthesis. To do so, we first improve the
treatment of the composition in the state-of-the-art A����-A���� code (Just et al.,
2015; Obergaulinger & Aloy, 2017) at low temperatures by implementing a nuclear
reaction network to track the species within the hydrodynamic simulation. We show
the results from a total of 16 one- and two-dimensional models. In addition, we
explore the first milliseconds of evolution of a 3D simulation with this new feature.

CCSNe are considered laboratories where we can perform experiments at conditions
that are not reproducible in the Earth. In this thesis, we explore the impact of di�erent
nuclear matter properties on the explosion mechanism and its remnant. We carried
out the study employing new EOSs of dense matter that consider up-to-date nuclear
physics constraints (Huth et al., 2021).
This thesis is structured as follows. In Chapter 2, we begin with the theoretical

overview of CCSNe . In Chapter 3, we introduce the simulation framework in which
we perform our study. We explain the implementation of the reduced network module
in A����-A���� in Chapter 4, and study the e�ect of the composition treatment in
Chapter 5. In Chapter 6, we show the impact of di�erent nuclear matter properties in
the explosion. Finally, we show the first stages of evolution of the state-of-the-art 3D
model in Chapter 7.
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2 Core-collapse supernovae

Massive stars (M & 8 M§) usually end their life in core-collapse supernovae (CCSN),
explosive events that are triggered by the collapse of the iron core. They release
several solar masses of products synthesized during the stellar evolution and the
explosion itself into the interstellar medium (ISM). Thus, they play a critical role in
the chemical history of the universe and have been matter of study for many decades.
In order to investigate the mechanisms involved, radiation-hydrodynamic simula-

tions have been performed, following di�erent evolutionary stages from collapse to
shock breakout. In addition, observations have helped to constrain the characteristics
of the stellar evolution prior the explosion, the explosion itself, as well as its remnants.
However, the whole puzzle is still far from being completed.
In this section, we introduce the main mechanisms involved from the late stellar

evolution stages to the remnant of the explosion, following Burrows (1990); Carroll
& Ostlie (2007); Janka et al. (2007); Janka (2012, 2017); Müller (2020); Burrows &
Vartanyan (2021).

2.1 Final stage of a massive star

The fate of stars depends on how massive they are. They spend most of their lives burn-
ing hydrogen, on the so-called main sequence. At this stage, stars are in hydrostatic
equilibrium, where the gas thermal pressure is in balance with the gravitational pull.
In the main sequence, massive stars burn the hydrogen into helium in convective cores
through the CNO cycle, which employs carbon, nitrogen, and oxygen as catalysts.
After ≥ 10 Myr, the hydrogen fuel in the core is near to be consumed1. However,

the core is not hot enough for helium to ignite (T ≥ 0.03 GK). Therefore, the rate
at which nuclear energy is released decreases and the hydrostatic equilibrium is
temporarily broken. This leads the total energy of the star to decrease as well, since
energy is being emitted from the surface. The gravitational energy becomes more
negative and the star contracts. In addition, from the virial theorem, half of the
gravitational energy variation is transformed into thermal energy, i.e. an increase in
temperature. The contraction halts when the temperature is high enough for helium
burning (T ≥ 0.2 GK).

1The precise value depends on the mass the star has at the beginning of the main sequence.
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2 Core-collapse supernovae

Figure 2.1: Schematic view of the onion-like structure of a massive star at the end of its
life. In the left, an illustrative diagram showing the burning reactants and
products at each shell. Figure from Peters & Hirschi (2013)

The accumulated helium in the core burns into carbon and oxygen, mostly via
triple-– reactions. The helium core is surrounded by a hydrogen-burning envelope.
Each burning sequence is preceded and followed by a contraction of the core, which
further increases the temperature. When the next core burning starts, the contraction
ceases because of the new source of energy. In addition, the time scale shortens
progressively, since the energy per baryon released by the nuclear reactions decreases
when approaching the iron peak. After ≥ 1 Myr, the helium core is exhausted.
Subsequently, when the temperatures reach T ≥ 0.8 GK, the core ignites carbon
burning, leading within ≥ 2000 yr to an oxygen-neon core. This ongoing sequence of
nuclear reactions produce an onion-layered shell of elements that undergo fusion (see
Figure 2.1). Finally, at temperatures of T ≥ 3 · 109 K, silicon burning produces an
iron-group core, with species such 54Fe, 56Fe, and 56Ni. This takes place in a timescale
of several days.

At this point, nuclear reactions are not e�cient anymore because the maximum
binding energy per baryon is reached. Hence, the core grows by accumulating the
adjacent iron-group products of the silicon burning taking place in the surrounding
layer. Meanwhile, in absence of burning in the core, the hydrostatic equilibrium is
maintained thanks to the electron degeneracy pressure. When the core reaches the
Chandrasekhar limit, Mch ≥ 1.45 M§, the degeneracy pressure of electrons cannot
hold the gravitational pull and collapses.
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2.2 Collapse, bounce, and shock formation

When the core of a massive star reaches MCh, the degeneracy pressure of electrons
cannot keep the hydrodynamic balance with gravity. At this point, the matter collapses
supersonically. The densities progressively increase, which causes the electrons to
reach higher Fermi energies. Because of this, electron captures by nuclei and protons
become important and make the matter more neutron rich,

e
≠ + (A, Z + 1) æ ‹e + (A, Z), (2.1)

e
≠ + p æ ‹e + n. (2.2)

The neutrinos released stream o� freely and carry away a significant amount of energy
from the collapsing star, which accelerates the contraction (left panel of Figure 2.2).
Furthermore, this neutrino loss leads to a decrease of the total lepton number of the
system, the so-called deleptonization.

It also reduces the electron fraction, defined as the electron to baryons ratio2:

Ye ©
ne

np + nn
= np

np + nn
, (2.3)

where ne, np, and nn are the number densities of electrons, protons, and neutrons
present in the matter. Electron capture decreases the degeneracy pressure and,
together with photodisintegrations and —-decays in the Fe-group, results in an accel-
eration of the collapse. The further collapse contracts the core to several hundreds
of kilometers within less than half a second. As a consequence, the density and
temperature in the center keep increasing. At densities of fl ≥ 1012 g cm≠3, neutrinos
cannot escape anymore because of coherent scattering on nuclei,

‹ + (A, Z) æ ‹ + (A, Z). (2.4)

The time between collisions with matter decreases below the time of the infall and,
therefore, neutrinos get trapped, stopping the deleptonization. At this point, the
collapse becomes homologous, i.e., the velocity increases linearly with radius (see
right panel of Figure 2.2 for a schematic representation).

Eventually, the contracting core reaches nuclear saturation density, fl0 ≥ 1014 g cm≠3,
at which there is a phase transition from inhomogenous (nucleons, alphas, and nuclei)
to homogenous (pure nucleons) nuclear matter. This increases the pressure drastically
and consequently, reduces the infall velocity of the homologous core. Nucleons are so
densely packed that the strong interaction, repulsive in short-range, halts the collapse
in the so-called bounce. At this point, a sound wave is formed (shock) surrounding
the homologous core. Meanwhile, matter is still supersonically infalling into it. In the
center, the proto-neutron star (PNS) starts to form (left panel of Figure 2.3).
2it can interchangeably be defined as the ratio of protons to baryons because of charge neutrality
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Figure 2.2: Schematic representation of the collapsing phases in a CCSN. Vertical axis
depicts radial distance and horizontal axis mass coordinate. The upper half
of the panels show the dynamic conditions. Arrows represent the velocity
field. The lower half show the nuclear processes involved. Figures 2.3 and 2.4
follow the same schematic representation at later times. Figure adapted from
Janka et al. (2007)

Figure 2.3: Schematic representation of the bounce, the shock formation and propagation,
and the neutrino burst. Figure adapted from Janka et al. (2007)
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Figure 2.4: The left panel shows an schematic representation of dynamical and nuclear
processes when the shock is stalled. The right panel depicts the processes
when the explosion is already triggered. Figure obtained from Janka et al.
(2007)

2.3 Neutrino-driven delayed explosion

After the bounce, the freshly formed shock starts to propagates outwards. It loses part
of its energy dissociating the nuclei, from the outer infalling layers, into free neutrons
and protons. In addition, in a timescale of several milliseconds, electron captures by
free protons produce a vast amount of neutrinos. When the shock breaks out o� the
neutrinosphere (R‹ , the radius at which neutrinos are able to stream away), these
thermally decouple and are set free in the so-called neutrino burst (see right panel of
Figure 2.3), with very high luminosities L‹ ≥ 1053 erg s≠1. As pointed out previously,
this reduces the Ye as a result of the high neutrino emission. The shock eventually
loses enough energy to prevent it from propagating further and stagnates at radius
R ≥ 200 km (see left panel of Figure 2.4).
Meanwhile, the PNS keeps accreting the surrounding material and contracting to

RPNS ≥ 50 km. The inner part of the PNS has densities beyond fl0. As mentioned
above, at such densities neutrinos are trapped since their mean free path is smaller
than the radius of the PNS. On the other hand, the PNS mantle has lower densities
(≥ 1011 g cm≠3) and is rich in free nucleons from the nuclei dissociated by the shock.
While it shrinks, part of its internal energy is radiated via neutrinos. It cools mainly
through electron captures on free nucleons (Equation (2.2)), as well as pair processes,

e
≠ + e

+
æ ‹ + ‹̄. (2.5)

The radiated neutrinos carry away energy from the PNS and cool it down. As shown
in the left panel of Figure 2.4, at this point the neutrinosphere is located close to the
PNS surface. In addition, the neutrino emission leads to lepton number gradients in

9



2 Core-collapse supernovae

the PNS mantle, causing convection.
Since neutrinos have small cross-sections, they barely interact with baryonic matter,

i.e., outside the PNS at low densities. However, part of the neutrinos emitted by the
PNS (1 %) are absorbed by free nucleons,

‹e + n æ e
≠ + p, (2.6)

‹̄e + p æ e
+ + n, (2.7)

behind the shock, in the so-called gain region, which inner boundary is defined as the
gain radius (Rg). The energy deposited, ≥ 1050

≠ 1051 erg s≠1, increases the pressure
in the gain region and eventually causes the shock to revive. This is the so-called
delayed neutrino-heating mechanism, first proposed by Bethe & Wilson (1985b) and
based on the idea that neutrinos should provide energy for the explosion, suggested
by Colgate & White (1966).
The successful revival of the shock depends on competition between the neutrino

heating and advection timescales in the gain layer (e.g., Burrows & Goshy, 1993).
The former is defined as the time that it takes neutrinos to unbind the matter in the
gain region,

theat = |E
gain
tot |

Q
gain
‹

, (2.8)

where E
gain
tot is the total energy, (i.e., including gravitational, internal, and kinetic) and

Q
gain
‹ the net neutrino energy deposition in the gain layer. The advection timescale is

defined as the time that takes the flow to accrete from Rshock to Rg,

tadv ≥
Mgain

Ṁ
, (2.9)

where Mgain is the mass encompassed in the gain region and Ṁ is the accretion
rate through the shock. The necessary, but not su�cient, condition for the shock to
revive is that the heating timescale is shorter than the advection one, i.e., theat < tadv.
Otherwise, the shock is not revived and the core eventually collapses to a black
hole (BH) (see Section 2.5). In addition, due to the neutrino heating, the gain
region develops profiles that are unstable against non-radial flows such convection,
the standing accretion shock instability (SASI) (e.g., Blondin et al., 2003; Blondin
& Mezzacappa, 2007), and high entropy plumes due to buoyant Rayleigh-Taylor
instability (e.g., Kifonidis et al., 2003). These enhance the neutrino heating, providing
the necessary energy to expand the shock at velocities of v ≥ 109cm s≠1 in fractions of
a second and trigger the explosion. After ≥ 1 day, the shock reaches the most external
hydrogen layer and breaks out (e.g., Wongwathanarat et al., 2017; Sandoval et al.,
2021).

The PNS cools by emitting neutrinos while contracting. At the same time, it
continues accreting shocked matter that has not been gravitationally unbound. The
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random dynamics of these convection and accretion streams in the vicinity of the
PNS can lead to relatively late (t ≥ 1 s), low-Ye, outflows (e.g., Navó et al., 2023).
Eventually, the region above the PNS reaches very low densities (see Figures 2.4
and 2.5). At this point, neutrino energy deposition into the accreting matter can lead
to high entropy, supersonic, laminar outflows, so-called neutrino driven winds that
can last several seconds (Duncan et al., 1986).

2.4 CCSN Nucleosynthesis

CCSNe play an important role in the galactic chemical evolution. These events eject
a large amount of material into the ISM. Part of the ejecta has been synthesized in
the course of millions of years in the di�erent stages of the stellar burning. However,
a significant amount of the isotopes present in the ejecta is produced during the
explosion. In this section, we present the basics of CCSN nucleosynthesis that is
necessary to understand this work. We follow the recent reviews Martínez-Pinedo
et al. (2016); Wanajo et al. (2018); Arcones & Thielemann (2023); Wanajo (2023).

Neutrinos and electron fraction

The electron fraction is changed by weak reactions, i.e., positron captures, —
≠, and

electron neutrino absorption on neutrons (Equation (2.6)) as well as electron captures
(Equation (2.2)), —

+, and electron antineutrino absorption on protons (Equation (2.7))
(e.g., Arcones et al., 2010). Within CCSNe, especially neutrino properties are of
importance. To get a deeper understanding of their influence, it is interesting to
look at the equilibrium value of the electron fraction caused by neutrino absorption
only, which is achieved if matter is long enough a�ected by (anti-)neutrinos. In this
case, Ye reaches an equilibrium which can be approximately expressed in terms of
the luminosity of both neutrino flavors (L‹e , L‹̄e), and their average energy (Á‹e , Á‹̄e)
(e.g., Qian & Woosley, 1996; Arcones & Thielemann, 2012; Just et al., 2021),

Ye,eq ƒ

C

1 + L‹̄e(Á‹̄e ≠ 2� + 1.2�2
/Á‹̄e)

L‹e(Á‹e + 2� + 1.2�2/Á‹e)

D≠1
, (2.10)

where � = mn ≠mp = 1.293 MeV is the mass di�erence between neutron and proton.
If neutrino and antineutrino energies are similar, the electron fraction increases since
the neutron-proton mass di�erence favors neutrino absorption reaction. Thus, to have
neutron-rich conditions in the ejecta, neutrino and antineutrino energies must fulfill
(Qian & Woosley, 1996; Martínez-Pinedo et al., 2016; Arcones & Thielemann, 2023):

Á‹̄e ≠ Á‹e & 4� ≠

5
L‹̄e

L‹e

≠ 1
6

(Á‹̄e ≠ 2�) ≥ 5 MeV. (2.11)

Otherwise, if this condition is not fulfilled, Ye in the ejecta increases. Notice that,
the majority of the CCSN ejecta may never reach the previously shown equilibrium
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value. Nevertheless, it shows the influence of electron (anti-)neutrinos on the neutron-
richness and it is a therefore interesting quantity to trace.

Nucleosynthesis evolution

After bounce, post-shock matter is neutron-rich (Ye ≥ 0.4) as electron captures domi-
nate in these high-density conditions (e.g., Arcones et al., 2010; Martin et al., 2018).
Within the first hundreds of milliseconds after bounce (t ≥ 300 ms in Figure 2.5),
the shock is very hot (Tshock > 10 GK) and photodissociates the nuclei into neutrons,
protons, and –-particles.
At T & 6 GK, fusion reactions and photodisintegrations are in so-called nuclear

statistical equilibrium (NSE). In NSE, all strong forward and reverse reactions are in
equilibrium. This state is often expressed in terms of a chemical equilibrium between
all nuclei and the composition for a thermodynamic state is therefore fully determined
by using charge neutrality, mass conservation, and the so-called Saha equation (for
more details, see Section 3.4.1 and, e.g., Hix & Thielemann 1999; Iliadis 2015, or, for
an alternative approach using reaction equilibria see Clayton 1968).

The shocked region expands and cools down, eventually leaving NSE conditions in
a short time-scale (see Figure 2.5). When matter drops out of NSE (T ≥ 6 GK), for
typical densities, the most abundant heavy isotope is the one with the highest binding
energy at a given Ye, e.g., the double magic number nuclei 48Ca for Ye ≥ 0.4 and 56Ni
when Ye ≥ 0.5. When the system leaves NSE, it enters the regime of quasi-statistical
equilibrium (QSE). When this happens, three-body reactions are slower than two-body
reactions. This leads to the formation of several nuclei sub-clusters that are not in
equilibrium anymore. Often, at least three clusters are assumed: light nuclei, Si-group,
and Fe-group (Hix et al., 2007; Parete-Koon et al., 2008).

The final composition at the end of the QSE stage strongly depends on the neutron-
richness of the ejected matter. This is highly influenced by neutrinos. Usually, neutrino
and antineutrino luminosity, as well as their average energies, are quite similar. Thus,
Equation (2.11) is not fulfilled, and electron neutrino absorption dominates over
antineutrino absorption. The high number of neutrinos in the gain layer are absorbed
by free neutrons and hence, for typical neutrino properties found in modern CCSN
simulations, increase the electron fraction to Ye ≥ 0.4 ≠ 0.6 (see Equation (2.10) and
Wanajo et al. (2018)), depending on the Á‹̄e ≠ Á‹e that has been subjected.

Therefore, most of the ejected matter hosts symmetric conditions (Ye ≥ 0.5).
As a consequence, alpha-particles are the most abundant species (see Figure 2.5).
This is the so-called –-rich freeze out (Woosley & Ho�man, 1992). The abundant
–-particles synthesize significant fractions of –-elements from the uncompleted Si-
burning, such as 32S, 36Ar, 40Ca, and 44Ti. This process is commonly referred to as
the –-process (Woosley & Ho�man, 1992). The heaviest nucleus synthesized by the
involved sequence of – captures lies around 56Ni, since the Coulomb barrier increases
with Z. The creation of heavier nuclei requires more neutron-rich conditions as neutron
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Figure 2.5: Characteristic mass shell evolution of a representative CCSN model. Grey
lines correspond to trajectories of mass shells from 1.45 M§ to 1.70 M§. The
red line depicts the shock radius, the black line shows the proto-neutron
star radius, and the green line the temperature at which matter leaves NSE
conditions. The di�erent colors depict the most abundant specie in the region
which is not in NSE.

captures are not a�ected by the Coulomb barrier. Hence, for slightly neutron-rich
conditions, neutron-captures allow the formation of trans-iron species up to A ≥ 90.

If the electron fraction at the end of QSE is Ye > 0.5, free protons become also more
abundant than heavy nuclei. Furthermore, antineutrino absorption on free protons
release neutrons that are captured by neutron-deficient species. The succession of
these reactions makes possible the production of A > 64 isotopes, e.g., 92,94Mo and
96,98Ru. This process is the so-called ‹p-process (e.g., Fröhlich et al., 2006; Pruet
et al., 2006; Wanajo, 2006). However, although it can be the main production channel
for some light p-rich species, it is a subdominant process in neutrino-heated ejecta.

After t ≥ 1 s, the shock has lost part of its energy and cooled to T ≥ 2 GK. At these
radii, explosive oxygen burning takes place, and (–, “) on 16O, 20Ne, and 24Mg are
the dominant reactions in the 16O rich layer. After several seconds, the shock reaches
the outermost mass shells (He and H). They are essentially ejected without significant
changes in their composition.

Finally, there is also mass ejection from the vicinity of the PNS, through the outflows
coming from accretion and convection streams and the aforementioned ‹-driven
winds. Since the matter surrounding the PNS is neutron-rich (Ye & 0.3), literature in
the past considered ‹-driven winds candidates for r-process nucleosynthesis due to
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Figure 2.6: We schematically depict the paths that the main nucleosynthesis processes
follow in CCSNe. Stable isotopes in black. We add part of the r-process path
for completeness. Courtesy of Max Jacobi.

the high entropy that they involved (e.g., Woosley & Ho�man, 1992; Woosley et al.,
1994).

The rapid neutron-capture process or r-process is the mechanism that synthesizes
half of the heaviest isotopes in the universe. It takes place in environments with
large neutron fluxes, where the timescales of neutron-captures are shorter than that
of —-decays, allowing to synthesize very neutron rich species far from stability (see
Figure 2.6). Therefore, it involves high neutron-to-seed ratio of Yn/Yseed & 100 (e.g.,
Freiburghaus et al., 1999).

Standard CCSN events, which we describe in this chapter, do not fulfill this condition
(for a review see, e.g., Arcones & Thielemann, 2012). Neutrinos di�using from the
PNS are absorbed by neutrons and increase the Ye of the matter, and hence avoid a
full r-process signature (Wang & Burrows, 2023). However, in the presence of strong
magnetic fields and rotation, the conditions necessary for the r-process to operate can
be reached (e.g., Reichert et al., 2021). In these events, the magnetic pressure play
an important role on driving the explosion (e.g., Obergaulinger & Aloy, 2020), and,
thus, matter is not so exposed to neutrino fluxes that break neutron-rich conditions
(see Obergaulinger & Reichert, 2023, for a recent review). In the aforementioned
innermost regions, standard CCSNe present Yn/Yseed . 1 (e.g., Arcones & Bliss, 2014;
Bliss et al., 2018). Although, as mentioned, these conditions do not reproduce a full
r-process signature, it allows for the production of first r-process peak nuclei such, e.g.,
84Se, and lighter heavy species up to A ≥ 90 ≠ 100 (e.g., Eichler et al., 2017; Wanajo,
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2023). Thus, standard CCSNe host the so-called weak r-process (e.g., Arcones & Bliss,
2014), depicted in Figure 2.6.

2.5 Remnants

When the explosion sets in, a PNS is left behind, which continues cooling by di�using
neutrinos during several seconds until the neutron star (NS) is born (e.g., Pons et al.,
1999). These are very compact objects of RNS ≥ 12 km and MNS ≥ 1.4 M§. The
maximum mass of a PNS/NS before collapsing to a BH highly depends on the equation
of state (EOS) of nuclear matter (see Section 3.3), which essentially relates pressure,
density, temperature, and Ye from the di�erent nuclear physics inputs. Hence, due to
the high densities and pressures involved, these astrophysical sites also provide a great
laboratory to test the nuclear matter properties. This soon captured the attention
from the nuclear physics community and contributed to interest in the topic (e.g.,
Lattimer & Swesty, 1991; Shen et al., 1998; Hempel et al., 2012; Steiner et al., 2013;
Schneider et al., 2017).
If the shock fails to revive, the supernova explosion does not take place. The

shock continues stalled and the PNS keeps accreting matter. Eventually, it reaches its
maximum mass and collapses to a BH (e.g., O’Connor & Ott, 2011). These events can
be characterized by the absence of electromagnetic counterpart. Moreover, not always
a NS is born after a successful revival of the shock. In case of a very weak explosion,
shocked matter can fall back and accrete to the PNS after several seconds. If the
PNS overcomes the maximum mass, it collapses to a BH. In rotating massive stars
(M & 30 M§), the central BH can accrete matter with enough angular momentum
to form an accretion disk, forming a so-called collapsar. The geometry arising from
the accretion disk leads to the formation of jets along the rotational axis, which are
suggested to be sources of “-ray bursts (GRBs) (see, e.g., Woosley, 1993; MacFadyen &
Woosley, 1999), energetic flashes of & 100 keV that can last from fractions of seconds
(short GRBs) to seconds (long GRBs).

2.6 Observables

CCSNe explosions are multi-messenger astronomical sites that can be observed through
their electromagnetic (EM) counterpart, their neutrino signal, and potentially by their
gravitational wave (GW) emission. As in any other field, observations constrain theory
and help to develop more accurate theoretical models.

The EM counterpart is the most important evidence from CCSN that we can observe
from Earth. It can constrain multiple properties of the event such, e.g., the distance,
the explosion energy, the yields, or the progenitor structure (e.g., Barker et al., 2022).
The time evolution of luminosity emitted by the photosphere of the ejecta is the
so-called light curve (LC). When the shock reaches the outermost layers of the star,
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Figure 2.7: The left panel shows an example of a synthesized CCSN LC, courtesy of Finia
Jost. The plateau phase is powered by H recombination in the ejecta. After
≥ 90 days, the recombination ends and the LC is powered by radioactive
decays. Right panel shows an example of the emitted neutrino luminosity
from a 1D CCSN model. 1 B = 1051 erg s≠1.

the ejecta expand and start to cool down. When the temperature drops enough,
recombination in the H shell takes place and powers the first ≥ 100 days after shock
breakout (e.g., Morozova et al., 2015; Curtis et al., 2021). The photosphere recedes
in mass coordinates and cools down slowly. In this phase, the LC forms a plateau
(see left panel of Figure 2.7). After that, the photosphere hits the He layer and the
recombination ceases since He recombines at much higher temperature. At this point,
the decay of 56Ni towards 56Fe becomes the main contribution to the LC (e.g., Arnett,
1980). Some stars experience strong winds during their evolution that release a big
part of the outermost H- and He-rich layer (e.g., Woosley et al., 2002). In this case,
recombination does not contribute and the LC is fully dominated by the decay of the
radioactive isotopes (e.g., Morozova et al., 2015).
The successful observation of a CCSN LC depends on numerous factors, such as,

e.g., the intrinsic luminosity of the event, the presence of dust, or the sensitivity of the
telescope. Most of the observed LCs come from events that take place at a distance of
10≠100 Mpc, and usually are detectable for, at least, ≥ 100≠150 days (e.g., Barbarino
et al., 2015; Zampieri, 2017; Szalai et al., 2019).
As stated in the previous sections, neutrinos play a key role in the explosion. In

contrast to the LC, neutrino emission is dominant at much earlier times, and their
luminosity decays in a timescale of seconds. Short after the bounce, neutrinos become
transparent and the neutrino burst is produced. A large amount of ‹e are emitted with
an energy of ‘‹ ≥ 10≠20 MeV and produce a very bright peak luminosity, of the order
of several 1053 erg s≠1 (right panel in Figure 2.7). After that, accretion streams onto
the hot PNS produce a significant number of ‹e and ‹̄e in charged current reactions.
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Nevertheless, L‹e decreases an order of magnitude and, thus, a detection in this
phase is more challenging. After ≥ 1 s, the luminosity is powered mainly by di�usion
from the PNS and becomes much fainter. Despite the large amount of neutrinos
released in the explosion, there has only been one detection of neutrinos from CCSNe
that dates back to 1987 (e.g., Arnett et al., 1989). Kamiokande II (Hirata et al.,
1987), IMB (Bionta et al., 1987), and Baksan (Alekseev et al., 1987) registered a
total of 25 neutrinos from SN1987A, which took place in the Large Magellanic Cloud,
≥ 55 kpc away. In the near future, new generation neutrino detectors such, e.g.,
HyperKamiokande (Abe et al., 2021), and DUNE (Abi et al., 2021), should be able to
observe more accurately any signal coming from a galactic CCSN. It is expected that
they will be able to detect of the order of several thousands of neutrinos in a galactic
event and infer the luminosity evolution and, perhaps, even the spectra.

GWs in CCSNe are generated by non-spherical matter motions like, e.g., convection
and the SASI in the post-shocked region, and buoyancy in the PNS interior (for
reviews see, e.g., Kotake & Kuroda, 2017; Abdikamalov et al., 2021). Thus, they
can provide useful information of the PNS structure. Unfortunately, there has not
been any confirmed detection of GWs coming from CCSNe (Abbott et al., 2020;
Szczepa˝czyk et al., 2023), since the current GW detectors have sensitivity to only
detect an uncommon galactic event (Abbott et al., 2016).

The community is eager to witness a galactic CCSN event that would trigger a very
important multimessenger observation and will be a milestone in the field. Hopefully,
it will be soon.
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CCSNe simulations are of vital importance for understanding the mechanisms of
the explosion. Simulations follow the evolution from the collapsing iron core until
several seconds after bounce. To do so, they evolve the hydrodynamic equations in
a discretized grid, and include all of the physics involved in the event as faithfully
as possible, e.g., neutrino transport and interactions, (general relativistic) gravity, or
EOS of dense matter.

The first hydrodynamical simulations were performed in spherical symmetry by
Colgate & Johnson (1960); Colgate et al. (1961). In recent years, significant advances
have been reported in multidimensional simulations (e.g., Lentz et al., 2015; Janka
et al., 2016; Roberts et al., 2016; O’Connor & Couch, 2018; Obergaulinger & Aloy,
2020; Burrows et al., 2020; Kuroda et al., 2020; Sandoval et al., 2021; Nakamura
et al., 2022), impact of magnetic fields (e.g., Mösta et al., 2015; Obergaulinger et al.,
2018; Bugli et al., 2021; Varma et al., 2022), pre-supernova models (e.g., Müller et al.,
2017; Fields & Couch, 2021; Yoshida et al., 2021; Vartanyan et al., 2021), neutrino
transport (for an extended review, see Mezzacappa et al., 2020a) and reactions (e.g.,
Balasi et al., 2015, and references therein), high-density equations of state (EOS)
(e.g., Schneider et al., 2019; Yasin et al., 2020) or nucleosynthesis calculations (e.g.,
Eichler et al., 2017; Wanajo et al., 2018; Curtis et al., 2019; Sieverding et al., 2020;
Witt et al., 2021; Reichert et al., 2021). 3D state-of-the-art CCSN models are very
computationally expensive and take months to simulate hundreds of milliseconds.
Thus, CCSN simulations often consider simplified or approximated treatments to
make them faster, e.g., one- and two-dimensional simulations, simplified neutrino
treatment, simplified gravity, or simplified nuclear reactions treatment.

In this chapter we introduce the main aspects necessary to lay the groundwork
for performing state-of-the-art CCSNe simulations in the absence of magnetic fields.
We employ the A����-A���� code (Just et al., 2015; Obergaulinger & Aloy, 2017)
to perform the simulations. Therefore, we review its main characteristics that are
important for this study. In Section 3.1, we derive the hydrodynamic equations and
present how they are numerically modeled. In Section 3.2, we introduce the neutrino
treatment and focus on the two-moment approach. We derive the Helmholtz EOS,
and introduce the EOSs of dense matter in Section 3.3. Finally, present the treatment
of the composition in Section 3.4.
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3.1 Hydrodynamics

3.1.1 Euler equations

In this section, we derive the Euler equations of hydrodynamics following Weinberg
(2007); Ryden (2011).

We start from the distribution function f(x̨, v̨, t), which is the probability of finding
a particle of gas at a time t at the position x̨ with the velocity v̨. Integrating over
phase space, we obtain the total number of particles N ,

⁄ ⁄
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Applying vi = xi˙ and gi = vi̇, we obtain the Boltzmann equation,
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where the RHS is the so-called collision term that accounts for the forces between
particles. We can multiply Equation (3.3) both sides by the mass m and integrate
over d3
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mfvid3

v + m

⁄ ÿ

i

ˆ

ˆvi
(gif)d3

v =
⁄

m

3df

dt

4

c
d3

v (3.4)

The first term is ˆfl
ˆt , the second term

q
i

ˆ
ˆxi

(flÈviÍ) © Ǫ̀ · (flų) and the third term
vanishes following the divergence theorem and assuming f = 0 when v æ Œ. Local
mass conservation prevents particles from being created or destroyed at a given place,
only shifting them in velocity space, which is why the RHS disappears. Hence, we
finally obtain:

ˆfl

ˆt
+ Ǫ̀ · (flų) = 0, (3.5)

which is the mass continuity equation. Analogously, one can follow a similar procedure
to obtain the continuous equations for all conserved quantities in the system, such
the momentum (p̨ = mv̨), the energy (e = mv

2), the electron fraction (flYe), and the
partial densities of the di�erent species (flXk):

ˆp̨

ˆt
+ Ǫ̀ ·

1
p̨ų + P

Ωæ
I ≠

Ωæ
fi

2
= QM˛ , (3.6)

ˆe

ˆt
+ Ǫ̀ · ((e + P )v̨ ≠

Ωæ
fi v̨) = v̨QM˛ + QE, (3.7)
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3.1 Hydrodynamics

ˆflYe
ˆt

+ Ǫ̀ · (flYeų) = QN, (3.8)

ˆ(flXk)
ˆt

+ Ǫ̀ · (flXkv̨) = flSXk , (3.9)

where P is the gas pressure,
Ωæ
I is the identity matrix, and Ωæ

fi is the viscous stress
tensor, which for ideal hydrodynamics vanishes. QM˛ and QE are the hydrodynamic
source terms responsible for the change of fluid momentum and gas internal energy,
respectively. QN is the source term due to weak reactions, see Section 3.2.1. SXk is
the source that takes into consideration changes from one species to another. Gravity
(f̨G = ≠flǪ̀Ï) is the most relevant external force, i.e. the main contribution to QM.
The gravitational potential (Ï) is obtained applying the Poisson’s law from the density,

Ǫ̀
2
Ï = 4fifl. (3.10)

In A����-A����, the potential has some corrections terms following Marek et al.
(2006) to approximately mimic the e�ects of general relativity. The main contribution
to QE is the energy deposited by neutrinos, which are the responsible to trigger the
explosion. In addition, as we will see in Chapter 5, at lower densities and temperatures
the energy released in nuclear reactions is also significant.

Equations (3.5) to (3.9) constitute a system of partial di�erential equations that is
closed applying an extra equation, the equation of state (EOS), which relates pressure
and density (see Section 3.3).

3.1.2 Numerical modeling

The Euler equations introduced in the previous section constitute an hyperbolic system
that is solved under the so-called finite volume (FV) approach (see, e.g., LeVeque,
2002). For simplicity, in this section we briefly describe the method for the 1D case. A
generalization to multi-D by dimensional splitting is, in principle, straightforward. It
consist on discretize the spatial domain into N cells, and evolving in time the integral
of the conserved variables over these volumes. These values are updated in small
timesteps (�t) by computing the advection flux at the grid intercells.

For simplicity, the grids are usually ortogonal, e.g, cartesian, spherical or cylindrical.
In each grid zone i, at t

n = n�t, the integral mean value of the conserved variable u
n
i

is computed and assigned to the center of the cell (xi),

u
n
i = 1

Vi

⁄

Vi

u(x̨, t
n) dV , (3.11)

where Vi is the volume of the i≠th cell. Since u is a conserved variable, the integral
mean value u

n
i can only change the next timestep (tn+1) due to fluxes at the cell

boundaries (i ≠ 1/2 and i + 1/2) with a form similar to

u
n+1
i = u

n
i ≠

�t

�x
(F n

i+1/2 ≠ F
n
i≠1/2), (3.12)
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3 CCSNe simulations in Aenus-Alcar

xixi-1 xi+1

ui-1

ui

ui+1

Solution

Figure 3.1: Representation of the reconstruction and the Riemann problem. The integral
mean values, e.g., ui, and ui+1, need to be reconstructed at the cell interface
xi + �xi/2. Then, an approximate Riemann solver is applied to obtain the
solution at this point (green) and to mimic the desired physical quantity
(black solid line).

where F
n
i+1/2 is the flux at the intercell i + 1/2 at t

n. This leads to a piecewise
constant system which, of course, is not physically accurate (as seen in Figure 3.1).
Therefore, hydrodynamic codes need first to reconstruct the conserved variables in the
intercells through polynomials, in order to obtain the fluxes for both coinciding grid
zones. The reconstruction has to fulfill consistency, accuracy and stability constrains
(as detailed in, e.g, LeVeque, 2002) to capture shocks and strong gradients as well
as obtaining a good approximation in smooth regions. Commonly, state-of-the-art
CCSNe codes employ higher-order reconstruction methods such WENO (see, e.g.,
Shu, 1998) or MP (Suresh & Huynh, 1997). Once the fluxes from both coinciding
cells are reconstructed, we encounter a discontinuity separating them in the intercell.
This defines the Riemann problem,

F
n
i+1/2 =

Y
]

[
F

n
i+1/2(ui) if x < xi + �xi/2

F
n
i+1/2(ui+1) if x > xi + �xi/2

, (3.13)

which solution consists of a finite sets of waves travelling at constant speeds that
provide the resulting advection flux. Ideally, at each cell edge, an exact Riemann solver
is applied (Godunov, 1959), which takes into account all of the resulting shock and
rarefaction waves from a shock tube problem in order to find the resulting advection
flux. However, an exact Riemann solver is computationally tough to implement.
Therefore, approximate solvers are used instead, e.g. HLL (Harten et al., 1983), Lax-
Friedrichs (see, e.g, LeVeque, 1992), which only consider a small portion of the full
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3.2 Neutrino scheme

characteristic information, i.e., a reduced set of characteristic waves. These methods
must fulfill consistency with the integral conservation and the entropy condition
(�s Ø 0). Therefore, to guarantee stability, they need to add some di�usion (e.g,
LeVeque, 1992, 2002).
When the advection flux is finally computed, the hydrodynamic system is solved

using an ordinary di�erential equation (ODE) integrator and evolved to the next
timestep t

n+1. The flux calculation requires a constant state at the intercells. Therefore,
the fastest wave resulting from the solution of the Riemann problem cannot propagate
more than one cell within one timestep. This is the CFL condition (Courant et al.,
1928), which is necessary to ensure consistency and convergency. Thus, the timestep
�t is limited by,

�ti = CFL�xi

ci
, (3.14)

where CFL Æ 1, �xi is the cell width, and ci is the velocity of the fastest wave.

3.2 Neutrino scheme

3.2.1 Two-moment neutrino transport

Neutrinos are a key input for core-collapse supernovae simulations, since they transport
the energy from the hot PNS to the shock and, therefore, trigger the explosion. The
evolution of neutrinos it is determined by solving the relativistic Boltzmann transport
equation for their particle distribution function (f(xµ

, p
–)), from Equation (3.1), F in

the coming equations. Following Lindquist (1966); Cernohorsky & van Weert (1992),

p
–

C
ˆF‹

ˆx–
≠ �—

–“p
“ ˆF‹

ˆp—

D

= C[F‹ ]. (3.15)

The left hand side of the equation is the directional derivative of f along the phase flow.
The right hand side corresponds to the collision term, which describes the change in
N due to scattering, emission, or absorption. It can be expressed in the form,

‘
≠1

C(F) = Ÿ–(F (0)
≠ F) + Ÿs

C⁄ d2�Õ

4fi
�(cos �Õ)F Õ

≠ F

D

+ Cpair + Cnon≠iso (3.16)

where Ÿa is the absorption opacity, Ÿs corresponds to the isoenergetic scattering opac-
ity, F

(0) is the Fermi-Dirac distribution function at local thermodynamic equilibrium
and

s d2�Õ

4fi �(cos �Õ) = 1. Cpair and Cnon≠iso are the collision terms that account for
pair-processes and non-isoenergetic scattering, respectively. They are built employing
the so-called angular kernel approximations (e.g., Bruenn, 1985; Rampp & Janka,
2002; Just et al., 2018), which use Legendre polynomial expansion in the scattering
angle. For simplicity, in the following derivation we consider only the two first terms
from Equation (3.16).
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3 CCSNe simulations in Aenus-Alcar

As one may notice, Equation (3.15) lives in the seven-dimensional space, which
makes it very costly to evolve. Hence, approximations are often made in order to
reduce the dimensionality of the system without compromising the accuracy in excess
(for an extended review, see Mezzacappa et al., 2020b). A����-A���� neutrino
transport scheme (introduced in Just et al., 2015) employs a two-moment neutrino
transport (e.g., see Cernohorsky & vanWeert, 1992) with an algebraic Eddington factor
closure (e.g., the so-called M1 closure, first introduced by Levermore, 1984; Dubroca
& Feugeas, 1999). This method takes advantadge of the Eddington approximation
to obtain the first moments of the monochromatic intensity I, which relates to the
neutrino distribution function through

I(x̨, n̨, ‘, t) =
3

‘

hc

43
cF(x̨, p̨, ‘, t). (3.17)

where ‘ © |p̨|c and n̨ © p̨/|p̨| indicate the momentum coordinates.
The zeroth, first, and second moment, i.e., the monochromatic energy density

(E(‘)), flux density (F i(‘)) and pressure tensor (P ij(‘)), read

cE(‘) =
⁄

d� I, (3.18)

F
i(‘) =

⁄
d� I n

i
, (3.19)

cP
ij(‘) =

⁄
d� I n

i
n

j
, (3.20)

By using these moments, the full angular dependence of the system is removed
and hence, the radiation evolution equations are simpler to solve numerically. The
source terms of the transport equation, C

(0) and C
(1),i are the zeroth and first angular

moments, respectively, of the collision term (Equation (3.16)),

C
(0) = cŸa(Eeq

≠ E) (3.21)

C
(1),i = ≠c(Ÿa + Ÿs)F i

, (3.22)

where E
eq is the equilibrium energy density associated with the Fermi-Dirac distribu-

tion. When energy integrated, they relate to the source terms for the hydrodynamic
equations:

QE = ≠

ÿ

species

⁄ Œ

0
C

(0) d‘, (3.23)

Q
i
M = ≠

1
c2

ÿ

species

⁄ Œ

0
C

(1),i d‘, (3.24)

QN = ≠mB

⁄ Œ

0

CA
C

(0)

‘

B

‹e

≠

A
C

(0)

‘

B

‹ē

D

d‘ (3.25)
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3.2 Neutrino scheme

The two-moment approximation implies that the series of angular moments to which
the transport equation is developed, is truncated at the second moment. Therefore, it
needs to be given by some approximation. A����-A���� includes several algebraic
Eddington factor (‰ij

© P
ij

/E) closures which consider di�erent approximations: the
Minerbo closure (Minerbo, 1978), its generalized version by Cernohorsky & Bludman
(1994), the aforementioned M1, and the obtained by Janka (1991). All of them
have to fulfil the boundary cases of the di�usion limit and free-streaming limit. In
the first case, the neutrino-matter interactions are significant and I(x̨, n̨, ‘, t) can be
considered isotropic. For the second case, neutrino-matter interactions are negligible
and, therefore, I(x̨, n̨, ‘, t) is maximally anisotropic and neutrinos propagate in one
direction, i.e., without scattering.

3.2.2 Neutrino-matter interactions in Aenus-Alcar

A����-A���� includes the most important neutrino-matter interactions (Just et al.,
2015; Obergaulinger & Aloy, 2020):

(i) Electron flavor neutrino absorption by free nucleons and nuclei

‹e + n æ e
≠ + p (3.26)

‹̄e + p æ e
+ + n (3.27)

‹e + (A, Z) æ e
≠ + (A, Z + 1) (3.28)

(ii) Electron and positron captures by free nucleons and nuclei

p + e
≠

æ n + ‹e (3.29)

n + e
+

æ p + ‹̄e (3.30)

(A, Z + 1) + e
≠

æ (A, Z) + ‹e (3.31)

(iii) Isoenergetic scattering of neutrinos and antineutrinos o� free nucleons and
nuclei

‹ + n, p æ ‹ + n, p (3.32)

‹ + (A, Z) æ ‹ + (A, Z) (3.33)

(iv) Inelastic scattering of neutrinos and antineutrinos o� electrons and positrons

‹ + e æ ‹ + e

(v) Pair processes production
e

≠ + e
+

æ ‹ + ‹̄ (3.34)

N + N æ N + N + ‹ + ‹̄. (3.35)
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3 CCSNe simulations in Aenus-Alcar

The source terms of the transport equation (see Equations (3.21) and (3.22)) in-
corporate absorption, emission, and scattering through the respective opacities, Ÿa

and Ÿs, as well as the approximate expansions that include (iv) and (v) (Just et al.,
2018). In this work, the absorption of neutrinos by free nucleons and nuclei will be
of particular relevance because these processes are the only ones that change the
electron fraction of the matter. Therefore, we briefly describe the absorption opacities
treatment in A����-A����, which is based on Cernohorsky & van Weert (1992). We
can decompose Ÿa among the di�erent contribution from each absorption processes
(Equations (3.26) to (3.28)),

Ÿa = Ÿa,‹n + Ÿa,‹̄p + Ÿa,‹A. (3.36)

The absorption opacity from neutrino absorption by free neutrons is

Ÿa,‹n = nn‡‹n(‘)◊(Eeq
e≠ , E

eq
‹ ). (3.37)

where nn is the free neutron particle density, ‡‹n(‘) is the ‹e ≠ n cross section and ◊

is a blocking factor for stimulated absorption and emission, which depends on the
equilibrium energy density associated with the electron and neutrino distribution
functions. Analogously, the absorption opacity from antineutrino absorption by free
protons reads

Ÿa,‹̄p = np‡‹̄p(‘)◊(Eeq
e+ , E

eq
‹̄ ). (3.38)

The term accounting for the neutrino absorption by nuclei is subdominant with respect
the former two. Following Bruenn (1985), it gets a similar form as Equations (3.37)
and (3.38),

Ÿa,‹A Ã nA‡‹A(‘, NZ , NN )◊(Eeq
e≠ , E

eq
‹ ), (3.39)

for each nucleus A included in the composition. Under the aforementioned approach,
the cross-sections are proportional to the number of neutrons (Nn) and protons (Np)
the nuclei (Z, N) have,

‡‹A Ã Np(Z), Nn(N), (3.40)

Np(Z) =

Y
__]

__[

0, if Z < 20
Z ≠ 20, if 20 < Z < 28
8, if Z > 28

(3.41)

Nn(N) =

Y
__]

__[

6, if N < 34
40 ≠ N, if 34 < N < 40
0, if N > 40

(3.42)

The system is discretized into the Nv finite volume cells described in Section 3.1.2,
and a grid in the energy space composed by N‘ energy bins. The set of moment
equations is solved for each energy bin and for each species since the source terms
depend on the energy and species of neutrinos. Therefore, the multidimensional
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3.2 Neutrino scheme

(Ndim), multi-group radiation transport scheme solves a total of Nspecies ◊ N‘ ◊

(Ndim + 1) equations.
Finally, A����-A���� solves the transport equations in the co-moving frame, i.e.,

co-moving with the fluid and at a speed v with respect to the lab frame. As stated in
Just et al. (2015), the collision part of Equation (3.15) is less challenging to compute
in this frame. However, sometimes, one may need to transform to lab frame. This
is the case, for example, when the neutrino luminosity needs to be provided. The
transformation between frames is easier for the frequency-integrated than the spectral
moments. They are defined as,

{Ē, F̄
i
, P̄

ij
} =

⁄
d‘{E, F

i
, P

ij
}. (3.43)

Thus, the transformation, at O(v/c), reads

Ēlab = Ē + 2
c2 vjF̄

j
, (3.44)

F̄
i
lab = F̄

i + v
i
Ē + vjP̄

ij
, (3.45)

P̄
ij
lab = P̄

ij + 1
c2 (vi

F̄
j
v

j
F̄

i). (3.46)

3.2.3 Heating factor

One-dimensional (1D) simulations, i.e., assuming spherical symmetry, lack of non-
radial deformations that enhance the neutrino energy deposition in the gain layer.
Therefore, the neutrino energy heating in the gain region is not enough to revive
the shock and the explosion is not triggered. Hence, 1D CCSNe simulations usually
employ an artificial term to reproduce successful explosions (see, e.g., Woosley &
Weaver, 1995; Thielemann et al., 1996; Perego et al., 2015; Couch et al., 2020).

A����-A���� includes a heating factor (HF) that enhances the neutrino heating
in the gain layer (see e.g., Witt, 2020, for a similar approach):

Q
gain,HF

‹ = HF · Q
gain
‹ , (3.47)

where Q
gain
‹ is the neutrino energy deposition QE (see Equation (3.23)) in the gain

region. Hence, the neutrino heating is applied to the energy source term of the
hydrodynamic equations (Equation (3.7)).
The fact that the heating factor does not modify any of the source terms of the

neutrino transport equations (C(0) and C
(1),i) is a strength of the method, in addition

to its simplicity. Because of this, it does not modify QN (see Equation (3.23)), which
is the source term for the Ye conservation equation (Equation (3.8)). Thus, the
heating factor does not a�ect the Ye, which would lead to unphysical changes in the
nucleosynthesis.
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3 CCSNe simulations in Aenus-Alcar

3.3 Equation of State in CCSNe

As stated in Section 3.1, the EOS provides the closure to the hydrodynamic equations
relating the conserved variables (e.g., density or total energy density) with thermody-
namic quantities such pressure or thermal energy. Furthermore, the EOS describes
the relation between macroscopic thermodynamic quantities such pressure, density,
and temperature from the fundamental interaction between particles (Section 3.3.1).
CCSNe include a broad range of thermodynamic conditions (see Section 3.3.2). Below
nuclear saturation densities, the physics are well known and a Helmholtz EOS can be
used (see Section 3.3.3). However, beyond fl0, the strong interaction dominates and
the many-body problem arises (e.g., Oertel & Providência, 2018). Thus, CCSNe are of
great interest for the nuclear physics community since they are laboratories to test
the properties of dense matter (see Section 3.3.4).

3.3.1 Statistical mechanics

Statistical mechanics studies the possiblemicrostates of the system, known as ensemble.
In the canonical ensemble, one fixes the number of particles N , the volume V , and
the temperature T . The energy E is variable, i.e., the system can exchange heat with
a reservoir in thermal equilibrium. The probability Pn for a microstate n with energy
En is:

Pn = �R(ET ≠ En)
�T (ET ) , (3.48)

where �R is the number of eigenstates of the reservoir with energy ER, ET = En +ER

is the total energy, and �T is the total number of microstates. Assuming ET ∫ En,

ln Pn ¥ ln �R(ET ) ≠ En
ˆ

ˆET
ln �R(ET ) ≠ ln �T (ET ). (3.49)

From the relation
— = 1

kBT
= ˆ

ˆET
ln �R(ET ), (3.50)

where kB is the Boltzmann constant, we obtain the probability for the system to be in
the microstate n:

Pn = 1
Z

e
≠—En . (3.51)

Z is the sum of all possible microstates of the system, the so-called partition function,

Z(—) =
ÿ

n

e
≠—En . (3.52)

The derivative of its logarithm over — relates with the internal energy, i.e. average
energy:

U = ÈHÍ = 1
Z

ÿ

n

Èn|H|nÍe
≠—En = 1

Z

ÿ

n

Ene
≠—En = ≠

3
ˆ

ˆ—
ln Z

4

V,N
. (3.53)
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3.3 Equation of State in CCSNe

Figure 3.2: Thermodynamic conditions reached in a representative CCSN simulation.
Colorcoded the Ye at a given fl ≠ T condition.

Using the thermodynamic identity
3

ˆ(—F )
ˆ—

4

V,N
= U, (3.54)

we obtain a relation with the Helmholtz free energy F , from which all thermodynamic
quantities can be derived,

F (—, V, N) = ≠
1
—

ln Z(—). (3.55)

For example, the pressure P , the entropy S, and the chemical potential µ read

P = ≠

3
ˆF

ˆV

4

T,N
S = ≠

3
ˆF

ˆT

4

V,N
µ = ≠

3
ˆF

ˆN

4

T,V
. (3.56)

3.3.2 Thermodynamic conditions in CCSNe

The thermodynamic conditions in CCSNe are very diverse (see Figure 3.2). As men-
tioned in Section 2.2, the inner part of the core eventually reaches fl0 and the matter
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3 CCSNe simulations in Aenus-Alcar

experiences a phase transition from inhomogeneous to homogeneous matter. In this
region, the PNS is formed and achieves very high densities, up to fl ≥ 1015 g cm≠3,
and temperatures, T > 100 GK. On the outskirts, the matter gets heated by the shock
and the densities tend to decrease. Overall, we observe temperatures and densities
that encompass several orders of magnitude. Thus, to build EOSs that are suitable for
all these conditions simultaneously is very challenging, since the di�erent EOSs are
usually devoted to a specific regime and only employ the most relevant physics.
The EOS considers baryons, leptons, and radiation in local thermal equilibrium.

Neutrinos are only trapped inside the PNS, and, therefore, EOS do not include them.
This is one of the reasons why CCSN simulations employ a neutrino transport scheme
(see Section 3.2).

3.3.3 Helmholtz EOS

At low densities, i.e., fl . 1011 g cm≠3, the system consists of inhomogeneous matter
and the strong interaction can be neglected. In this regime, matter can be described
by a so-called Helmholz EOS (see, e.g., Timmes & Arnett, 1999; Timmes & Swesty,
2000), which considers a plasma made of ions, electrons, positrons, and radiation:

F = Fion + Fe≠ + Fe+ + Frad, (3.57)

The ion contribution is treated as an ideal gas:

Pion = NionkBT, Eion = 3
2

Pion
fl

, (3.58)

where Nion is the ion number density.
The radiation contribution considers blackbody emission in local thermodynamic

equilibrium:

Prad = 4
3

‡T
4

c
, Erad = 3Prad

fl
. (3.59)

Finally, the free electron and positron contributions are considered as a non-interacting
Fermi gas. For a complete derivation see, e.g., Timmes & Arnett (1999); Timmes &
Swesty (2000). For example, Pe≠ and Ee≠ take the form

Pe≠ Ã (kBT )5/2
5
F3/2(µ, T ) ≠

1
2kBTF5/2(µ, T )

6
,

Ee≠ Ã
(kBT )5/2

fl

Ë
F3/2(µ, T ) ≠ kBTF5/2(µ, T )

È
. (3.60)

F3/2(µ, T ) and F5/2(µ, T ) are Fermi-Dirac integrals, which are costly to solve. Thus,
CCSNe simulations use tables in which these contributions are already provided.

A����-A���� used to employ a Helmholtz EOS at densities fl Æ flth ≥ 107≠8 g/cm3.
In Section 4.3.3, we introduce a novel, and more complex, transition that substitutes
the density criterion for a temperature one.
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3.3 Equation of State in CCSNe

3.3.4 EOS of dense matter

Beyond nuclear saturation density, the matter is homogeneous or uniform, i.e., it is
made of neutrons and protons, and electrons. In this density regime, the density is
defined as the sum of neutrons and protons, n = nn + np. We can expand the energy
per particle E/A in terms of an assymetry parameter —. Following, e.g., Huth et al.
(2021):

— = nn ≠ np

n
, (3.61)

E

A
(n, —) = E

A
(n, 0) + S(n)—2 + O(—3) (3.62)

— = 0 corresponds to symmetric nuclear matter (SNM), and — = 1 to pure neutron
matter (PNM). S(n) is the symmetry energy, which is defined as

S(n) ©
E

A
(n, 1) ≠

E

A
(n, 0) (3.63)

In addition, we can further expand E/A around the nuclear saturation density (n0):

÷ = n ≠ n0
3n

, (3.64)

E

A
(÷, —) = ≠B + 1

2K÷
2 + (Esym + L÷)—2 + O(÷3) + O(—3). (3.65)

B is the binding energy of SNM. Esym is the symmetry energy coe�cient (see Fig-
ure 3.3). L is the slope parameter, and K the incompressibility:

L = 3n0
ˆS

ˆn

----
n0

= 3
n0

P (n0, — = 1), K = 9n
2
0

ˆ
2
E/A

ˆn2

-----
n0,—=0

= 9 ˆP

ˆn

----
n0,—=0

(3.66)

The parameters introduced above characterize nuclear matter properties. They can
be constrained by theoretical calculations based on chiral e�ective field theory (EFT)
(e.g., Hebeler et al., 2013; Tews et al., 2013), nuclear experiments such measuring the
neutron skin of the lead (Reed et al., 2021) or heavy ion collision experiments (e.g.,
Le Fèvre et al., 2016), and observations of astrophysical processes such gravitational
waves (GW) (Abbott et al., 2017) or pulsars (Antoniadis et al., 2013; Miller et al.,
2019; Raaijmakers et al., 2020).

However, they are not able to characterize the full range of thermodynamic con-
ditions discussed in Section 3.3.2. Hence, EOS devoted to astrophysical processes
are based on phenomenological models. In the following we briefly introduce two
of the most widely used in the community. They are provided in tables where the
quantities are tabulated as a function of fl, T , and Ye. A����-A����, in particular,
employs these EOS tables for matter at high densities (fl > flth).
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Figure 3.3: Schematic decomposition of E/A on PNM and SNM. In addition, The nuclear
matter parameters are represented. Courtesy of Sabrina Huth.

Skyrme models

Skyrme models are based on a non-relativistic, self-consistent mean-field approxi-
mation (Skyrme, 1956, 1958). The most popular is the Lattimer-Swesty (LS) EOS
(Lattimer & Swesty, 1991). Under this assumption, matter contains free nucleons,
electrons, positrons, photons, alpha particles, and commonly a characteristic nucleus,
in the so-called single nucleus approximation (SNA). In SNA, the distribution of nuclei
in the system is approximated by a single representative nucleus with mass number
A and atomic number Z. In addition, the nucleus is described by the liquid drop
model first proposed by Gamow (1930). It approaches the nucleus as a drop of an
uniformly charged incompressible fluid where the strong interaction keeps its protons
and neutrons together.

The energy-density functional (EDF) relates the energy per nucleon of homogeneous
nuclear matter to the particle density n and the proton fraction x = np/n . In the LS
EOS, it reads (Lattimer & Swesty, 1991):

E(n, x, T ) =
ÿ

t

~2
·t(n, x, T )

2m
ú
t

+ [a + 4bx(1 ≠ x)]n2 + cn
1+”

≠ x�, (3.67)

where the index t indicates the isospin (p or n), ·t is the nucleon kinetic energy density,
and a, b, c, and ” are the Skyrme parameters, which values are fit applying the nuclear
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3.4 Composition treatment

matter properties introduced above. The second term in Equation (3.67) contains
the two-body interactions, the third takes into account many-body e�ects, and the
last term considers the mass di�erence between neutrons and protons. The first
term corresponds to the non-relativistic kinetic energy, which includes the thermal
contribution to the EOS at finite temperatures. This is well depicted by the thermal
index, �th. It has been shown that it can be determined by the density dependent
nucleon e�ective mass m

ú (see, e.g., Constantinou et al., 2015a; Yasin et al., 2020).

�th = 5
3 ≠

n

mú
ˆm

ú

ˆn
. (3.68)

The nucleon e�ective mass m
ú is defined as

~2

2m
ú
t

= ~2

2mt
+ –1np + –2nn, (3.69)

where –1 and –2 are fit at saturation density n0.
In Chapter 6 we show the impact of new EOSs in CCSNe, built with the new e�ective

mass parameterization and the new EDF based on Huth et al. (2021).

Relativistic mean field models

Relativistic mean field (RMF) models are also widely used in the community. They
consider the nucleon interaction via mesons exchange (Yukawa, 1935). There are
many RMF EOS, which adopt di�erent parameterizations of the RMF Lagrangian
(Serot &Walecka, 1986). They include the same constituents as the Skyrme based EOS
and also commonly use the SNA approximation. However, they use the Thomas Fermi
approximation to describe inhomogeneous matter (Oyamatsu, 1993) . A common
used one is the HShen EOS (Shen et al., 1998), which is based on TM1 parameter set
(Sugahara & Toki, 1994). In Chapter 5, we perform our simulations with the SFHo
EOS (Steiner et al., 2013), whose parameters are constrained by NS mass and radius
observations.

3.4 Composition treatment

In the hydrodynamic equations, the partial densities (flXk) are conserved variables of
the system (Equation (3.9)). In addition, the composition is an input for the opacities
(Section 3.2.2) and the EOS (see Section 3.3), while the neutron richness in the
environment determines the Ye of the system. Thus, the composition is an important
ingredient for the simulations.
If the temperature is high ( T & 0.5 MeV ƒ 5.8 GK), the matter is in chemical

equilibrium, i.e., the rate of production and destruction of nuclei is equal, and, there-
fore, the matter is in NSE and the composition is usually calculated in the EOS table
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3 CCSNe simulations in Aenus-Alcar

(Section 3.4.1). In contrast, if the temperature drops T ≥ 0.5 MeV, matter cannot
be considered in NSE and the nuclear reactions become important. Their impact,
as well as their treatment, in CCSNe simulations is studied in Chapter 5. However,
as we will show in Chapter 4, taking into account nuclear reactions properly in the
simulations is computationally very expensive. Therefore, CCSNe simulations usually
employ simplified treatments that take them into account in an approximate way.
This was the case in A����-A���� that, prior to the inclusion of the network module
(Chapter 4), used the so-called flashing scheme (Rampp & Janka, 2002). We briefly
introduce it in Section 3.4.2.

3.4.1 NSE

If temperatures are high enough (T & 5 ≠ 6 GK), fusion reactions and photodisin-
tegrations are in so called NSE (see, e.g., Hix & Thielemann, 1999; Arcones et al.,
2010). Within this equilibrium, the production rate of a specific nuclear species equals
its destruction rate and for constant thermodynamic conditions the composition is
also constant over time (neglecting weak reactions):

(A ≠ Z)N · n + Z · p ⌦ X(N, Z) + “, (3.70)

Where A is the mass number and Z the atomic number of the nucleus X(Z, A). In
terms of chemical potentials, it reads

µ(Z,A) = Zµp + (A ≠ Z)µn. (3.71)

Assuming Maxwell-Boltzmann statistics, the chemical potential of a nucleus i is

µi = mic
2 + kBT ln

Q

aflNAYi

Gi

A
2fi~2

kBTmi

B3/2R

b. (3.72)

mi is the mass of the nucleus and Gi is the partition function. Yi is the abundance,
which relates with the mass fraction Xi as

Xi = fli

fl
= ni

flNA
miNA = YiAi, (3.73)

where ni is the number density.
From Equations (3.71) and (3.72), we obtain the composition in NSE:

Yi = Gi(T )
3

fl

mu

4Ai≠1
A

3/2
i

2Ai

A
2fi~2

kBTmu

B3(Ai≠1)/2
Y

Ni
n Y

Zi
p e

Bi/kBT
e

Ziµc,p≠µC,(Zi,Ai)

(3.74)
In addition, mass and charge must be conserved:

ÿ

i

Xi = 1
ÿ

i

Yi · Zi = Ye. (3.75)
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3.4 Composition treatment

Therefore, from Equation (3.74), in NSE the abundances are direct functions of the
density, temperature, and electron fraction (Ye),

Y = Y (fl, T, Ye). (3.76)

Thus, the NSE composition in the simulation is usually provided in a tabulated form.
It is often included within the EOS table (see Section 3.3.4), to replace the much
more accurate SNA composition. Hence, in Chapter 5, we employ the SFHo EOS
determined in NSE.

3.4.2 Flashing scheme

For the matter that is not in NSE, A����-A���� uses a version of the so-called flashing
scheme to compute the composition. It is used at fl Æ flth and provides the input for
the ionic contribution of Helmholtz EOS.
The flashing scheme, introduced in Rampp & Janka (2002), takes into account

neutrons, protons, alpha particles (not included in the implementation in A����-
A����), and a characteristic nucleus. The latter is either 28Si or 56Ni, depending on
the thermodynamic conditions, and considering instantaneous burning. When silicon
burning occurs at T ≥ 4.5 GK, the silicon mass fraction (X(28Si)) is immediately
transformed to 56Ni and set to X(28Si) = 0.

While the composition assumed by the flashing scheme is only a rough approxima-
tion, this scheme implicitly accounts for the generation or consumption of nuclear
energy by the instantaneous burning between the nuclei that is assumed to happen at
the threshold temperature.

In Chapter 4, we have included a nuclear reaction network module to describe the
composition outside of the NSE regime more accurately.
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4 Reduced network implementation in
Aenus-Alcar

Nuclear reaction networks (Section 4.1) evolve the abundances of a set of N species
by a system of N coupled ordinary di�erential equations including all the reactions
between the species. In CCSNe, it can include of the order of several hundred nuclei
(e.g., Woosley &Weaver, 1995; Rauscher et al., 2002). Thus, including nuclear reaction
networks in multidimensional CCSNe simulations is very challenging because of the
computational cost of evolving them together with the hydrodynamics. Therefore,
hydrodynamic simulations usually employ a simple treatment of the composition. A
detailed nucleosynthesis can be obtained by post-processing using Lagrangian tracer
particles that follow the thermodynamic record of the fluid.
Out of NSE, then, simplified treatments are used. An alternative to the flashing

scheme (Section 3.4.2) is to use reduced reaction networks (e.g., Müller, 1986; Hix
& Thielemann, 1999; Timmes et al., 2000) in order to track a small set of nuclei
together with the hydrodynamics. The nuclei considered are chosen to involve the
main reactions that release or consume internal energy and to represent the main
contributions to the baryonic part of the pressure and neutrino opacities (Cernohorsky
& van Weert, 1992). In practice, –-chains are the most commonly used for this
purpose.
In this chapter, we derive the network equations (Section 4.1), and introduce the

reduced network code developed by M. Reichert (Reichert, 2016) (Section 4.2). In
(Section 4.3), we describe its implementation in A����-A����. This part is partially
adapted from Navó et al. (2023). We start by introducing the networks that we
included (Section 4.3.1), and showing their strengths and weaknesses (Section 4.3.2).
In Section 4.3.3, we focus on the coupling to the hydrodynamics, and, in Section 4.3.4,
we demonstrate its proper performance.

4.1 Nuclear Reaction Network

A nuclear reaction network evolves abundances,and it size depends on the nature of
the environment.
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4 Reduced network implementation in Aenus-Alcar

4.1.1 Equations

In the following, we derive the set of di�erential equations that we need to solve
to take into account the nuclear reactions present in the medium, which has been
extensively discussed in the literature (e.g., Clayton, 1968; Hix & Thielemann, 1999;
Hix & Meyer, 2006; Lippuner & Roberts, 2017; Reichert et al., 2023).

We start with the reaction rate r, which is the number of reactions per volume and
time. For the reaction i + j æ k + l, it reads

ri,j = 1
1 + ”i,j

ninjÈ‡‹Íi,j . (4.1)

È‡‹Íi,j is the velocity averaged cross section, which can be seen as the probability the
interaction between i and j has to occur. The term 1 + ”i,j in the denominator is the
correction factor to avoid double counting when i = j. Analogously, for a three-body
interaction, the reaction rate is

ri,j,k = 1
1 + �i,j,k

ninjnkÈ‡‹Íi,j,k. (4.2)

The reaction rates can be also defined as the time variation of the number densities.
For the i + j æ k + l reaction:

ri,j = ≠

3
ˆni

ˆt

4

fl
= ≠

3
ˆnj

ˆt

4

fl
=

3
ˆnk

ˆt

4

fl
=

3
ˆnl

ˆt

4

fl
. (4.3)

Therefore, the time derivative of the number density of a certain specie i is given by
the sum of all reactions that contribute to its production or destruction:

3
ˆni

ˆt

4

fl
=

ÿ

j

N
i
jrj +

ÿ

j,k

N
i
j,k

1 + ”j,k
rj,k +

ÿ

j,k,l

N
i
j,k,l

1 + �j,k,l
rj,k,l, (4.4)

where the first term corresponds to photodisintegrations and decays, the second term
to two-body reactions and the third term to three-body reactions. Finally, introducing
the time derivative of the abundance Yi,

Ẏ i = ṅi

flNA
≠

ni

flNA

fl̇

fl
, (4.5)

we get the set of ordinary di�erential equations:

Ẏ i =
ÿ

j

N
i
j⁄jYj +

ÿ

j,k

N
i
j,k

1 + ”j,k
flNAÈ‡‹Íj,kYjYk +

ÿ

j,k,l

N
i
j,k,l

1 + �j,k,l
fl

2
N

2
AÈ‡‹Íj,k,lYjYkYl.

(4.6)
In addition, we can obtain the energy released by the nuclear reactions making use

of E = mc
2. The total mass of the system is m = V

q
i nimi, so the energy released is

Ė = ≠V

ÿ
miṅi. (4.7)
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4.1 Nuclear Reaction Network

Applying Equation (3.73) we get the expression in terms of the abundance variation.
It is usually given per unit of volume,

Á̇nuc = ≠NAfl

ÿ

i

mic
2
Ẏ i, (4.8)

or per unit of matter,
Á̇nuc = ≠NA

ÿ

i

mic
2
Ẏ i. (4.9)

In Chapter 5 we study the impact of the nuclear energy generation on the CCSNe
evolution.

4.1.2 Numeric integration

If we consider a system with N species, Equation (4.6) constitutes a set of N coupled
ordinary di�erential equations including all the reactions between the species,

dy
dt

= f(t, y). (4.10)

It is an initial value problem, which means that y(t0) = y0 must be known. In our
case, y0 correspond to the initial abundances.

The reaction rates included in Equation (4.6) encompass many orders of magnitude,
as well as the abundances (e.g., Hix & Thielemann, 1999). Hence, it is common that
parts of the system change rapidly in time while others do it in comparison orders
of magnitude slower. This broad range of timescales makes the system sti� (e.g.,
Hix & Thielemann, 1999). Sti� systems are limited by numerical stability rather
than accuracy and have to be solved implicitly (for an overview, e.g., see Butcher,
2003; Rapp, 2017). In the following we present the implicit Euler method, one of the
simplest yet numerical stable methods.

We can express the change in any function f(x) when x is infinitesimally increased
by �x with a Taylor expansion:

f(x ≠ �x) =
nmaxÿ

n=0
(≠1)n 1

n!
dn

f

dxn
(�x)n + On,max+1. (4.11)

The Euler method is a first-order method, i.e. nmax = 1. Hence,

f(x ≠ �x) ¥ f(x) ≠ �x
df

dx
(x). (4.12)

We can evaluate Equation (4.12) at xi+1 = xi + �x,

f(xi ≠ �x + �x) = f(xi + �x) ≠ �x
df

dx
(xi + �x),
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4 Reduced network implementation in Aenus-Alcar

f(xi) = f(xi+1) ≠ �x
df

dx
(xi+1), (4.13)

and translate it to our case of interest:

yn+1 = yn + h
dyn+1

dt
= yn + hf(tn+1, yn+1), (4.14)

where, tn+1 and tn are two consecutive timesteps tn+1 = tn + h. Note that implicit
methods imply that the solution in the future timestep yn+1 is present in both sides
of Equation (4.14). To solve it, we can put all terms in the same side of the equation,

yn+1 ≠ yn

h
≠ f(tn+1, yn+1) = 0, (4.15)

and apply a Newton-Raphson solver to find the root (e.g., Butcher, 2003):

ym+1
n+1 = ym

n+1 ≠ J≠1
·

3ym
n+1 ≠ yn

h
≠ ẏm

n+1

4
, (4.16)

where the super-indices m and m + 1 indicate the Newton-Raphson iteration, ẏ = dy
dt ,

and J≠1 is the invert of Jacobian of the system,

Jij = 1
h

≠
ˆẏ

m
i,n+1

ˆy
m
j,n+1

, (4.17)

which is the most computationally expensive part. This method iterates until a
convergence criterion is fulfilled. For example, when the mass conservation is satisfied,

| 1 ≠

ÿ

i

Xi |< ‘ ≥ 10≠5
≠ 10≠6

. (4.18)

4.2 ReNet

R�N�� (Reichert, 2016) is an adaptable nuclear reaction network code that performs
abundance flow calculations for networks of various sizes and complexity levels.
This section is based on Reichert (2016); Navó et al. (2023), where R�N�� is

introduced.
R�N�� implicitly solves the set of di�erential equations in a similar way of previous

works in the literature (e.g., Müller, 1986; Hix & Thielemann, 1999; Timmes et al.,
2000). It employs a first order implicit Euler method as integration scheme (as
described in e.g., Hix & Thielemann, 1999; Lippuner & Roberts, 2017). Identically to
Lippuner & Roberts (2017), the iterative Newton-Raphson scheme converges when
mass conservation is fulfilled (Equation (4.18)). The thermodynamic quantities in the
next time step are unknown in in-situ reaction networks, in contrast to post-processing
ones. As a result, R�N�� computes the composition at a constant temperature and
density at the current time step. R�N�� includes the option of using sparse matrices
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4.2 ReNet

that help minimise the computing cost of nuclear networks with more than ≥ 300
nuclei (e.g., Hix & Thielemann, 1999; Lippuner & Roberts, 2017; Reichert, 2016).
Nevertheless, for the reduced reaction networks that will be discussed in this work,
solvers for dense matrices are best suited (LAPACK, Anderson et al. (1999)).

R�N�� is able to assume species in steady state,

dYi

dt
= 0, (4.19)

which allows to neglect the di�erential equation involving these nuclei. This strategy
was already applied in other reduced networks such as, e.g., the aprox13 (Timmes,
1999), aprox19 (Weaver et al., 1978), and aprox21 (Paxton et al., 2011). As an
example of this approximation, we consider (p, “) reactions among three nuclei 54Fe,
55Co, and 56Ni (see Figure 4.1 for a schematic representation). The reaction equations
are

dY (54Fe)
dt

= ≠Y (54Fe)Y (p)⁄1 + Y (55Co)⁄2 (4.20)

dY (55Co)
dt

= Y (54Fe)Y (p)⁄1 ≠ Y (55Co)⁄2 ≠ Y (55Co)Y (p)⁄3 + Y (56Ni)⁄4 (4.21)

dY (56Ni)
dt

= Y (55Co)Y (p)⁄3 ≠ Y (56Ni)⁄4, (4.22)

If now we assume 55Co in steady state, i.e.,

dY (55Co)
dt

= 0, (4.23)

we obtain

Y (55Co) = Y (54Fe)Y (p)⁄1 + Y (56Ni)⁄4
⁄2 + Y (p)⁄3

(4.24)

Y (54Fe)Y (p)⁄1 = Y (55Co)⁄2 + Y (55Co)Y (p)⁄3 ≠ Y (56Ni)⁄4. (4.25)

Inserting Equation (4.25) to Equation (4.20), we get

dY (54Fe)
dt

= ≠ Y (55Co)Y (p)⁄3 + Y (56Ni)⁄4 (4.26)

= ≠Y (p)⁄3
Y (54Fe)Y (p)⁄1 + Y (56Ni)⁄4

⁄2 + Y (p)⁄3
+ Y (56Ni)⁄4

= ≠Y (p)Y (p)Y (54Fe) ⁄3⁄1
⁄2 + Y (p)⁄3

≠ Y (p)Y (56Ni) ⁄3⁄4
⁄2 + Y (p)⁄3

+ Y (56Ni)⁄4

= ≠Y (p)Y (p)Y (54Fe) ⁄3⁄1
⁄2 + Y (p)⁄3

+ Y (56Ni) ⁄2⁄4
⁄2 + Y (p)⁄3

,

and analogously for Equation (4.22)

dY (56Ni)
dt

= Y (p)Y (p)Y (54Fe) ⁄3⁄1
⁄2 + Y (p)⁄3

≠ Y (56Ni) ⁄2⁄4
⁄2 + Y (p)⁄3

. (4.27)
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4 Reduced network implementation in Aenus-Alcar

Figure 4.1: Conceptual view of the steady state approximation. The arrows illustrate the
di�erent rates (⁄1,⁄2,⁄3,⁄4) involving 54Fe, 55Co and 56Ni. The rates ⁄5
and ⁄6 are obtained the steady state assumption. (Reichert, 2016)

Equations (4.26) and (4.27) constitute the equations for the 54Fe(2p, “)56Ni reac-
tion, which implicitly accounts for 54Fe(p, “)55Co and 55Co(p, “)56Ni and eliminates
the necessary time evolution of Y55Co. The resulting rates can be deduced from
Equations (4.26) and (4.27),

⁄5 = ⁄2⁄4
⁄2 + Y (p)⁄3

, (4.28)

⁄6 = ⁄3⁄1
⁄2 + Y (p)⁄3

(4.29)

We applied this procedure to a series of nuclei using the S���� Python package to
derive the equations and the Jacobian analytically. The latter is necessary because
proton or neutron abundances can end up in the denominator when we include all
reactions that go through the steady-state nucleus. In this way, we are able to evolve
a large region of the nuclear chart without explicitly evolving the abundance of all
nuclei.

4.3 ReNet implementation in Aenus-Alcar

4.3.1 Networks included

We implemented two reaction network configurations into A����-A����: a 16-–
chain (RN16) and a 94-species network (RN94). RN16 is similar to the widely used
19 isotope approximation network from Weaver et al. (1978), which approximately
reproduces the nuclear energy generation within CCSNe simulations and therefore
provides feedback to the total energy of the system. RN94 is able to track the main
species synthesized in the CCSNe (c.f., Eichler et al., 2017; Harris et al., 2017), with
Ye between 0.4 and 0.6. Hence, it allows us to track slightly neutron and proton rich
trajectories along stability up to 92Mo. In addition, 148 species are considered in
steady state, reproducing a network consisting of 242 nuclei. Therefore, we present,
at the time of writing, the most complete network evolved in CCSN simulations with
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4.3 ReNet implementation in Aenus-Alcar

n 1H 4He 12C 16O 20Ne 24Mg 27Al† 28Si 31P† 32S
35Cl† 36Ar 39K† 40Ca 43Sc† 44Ti 47V† 48Cr 51Mn† 52Fe
53Fe† 54Fe 55Co† 56Ni

Table 4.1: RN16 Network. List of RN16 nuclei . Steady state nuclei are marked with a
dagger.

n 1H 4He 12C 16O 20Ne
23Mg† 24Mg 27Al† 28,30Si 27,29Si† 29,31P†

30≠34S 31,33S† 33,35Cl† 34≠38Ar 35,37Ar† 37,39K†

38≠42,48≠52Ca 39,41,49,51Ca† 41,43,49≠55Sc† 42≠56Ti 43≠55Ti† 45≠57V†

46≠58Cr 47≠57Cr† 49≠61Mn† 50≠64Fe 51≠63Fe† 53≠67Co†

54≠70Ni 55≠69Ni† 61≠73Cu† 60≠74Zn 59≠73Zn† 63≠77Ga†

64≠80Ge 65≠79Ge† 67≠83As† 68≠84Se 69≠83Se† 75≠85Br†

76≠86Kr 77≠85Kr† 79≠87Rb† 80≠88Sr 81≠87Sr† 85≠89Y†

86≠90Zr 87,89Zr† 91Nb† 92Mo

Table 4.2: RN94 Network. List of RN94 nuclei . We use the i≠j
X notation to account

for the species in {
i
X,

i+2
X, ...,

j
X}.

state-of-the-art M1 neutrino transport. The species included in both networks are
listed in Table 4.1 and Table 4.2.

4.3.2 RN16 and RN94 performance

In this section we prove the reliability of R�N��. It is based on the Appendix of Navó
et al. (2023).

We test RN16 and RN94 in three characteristic CCSNe explosive trajectories: One
slightly neutron-rich (Ye,5.8 GK ≥ 0.48), one is symmetric (Ye,5.8 GK ≥ 0.50), and one
slightly proton-rich (Ye,5.8 GK ≥ 0.51). We compare them with other two networks.
On the one hand, we built a network of ≥ 800 species with R�N��, which includes
all relevant nuclei up to Ge. Nevertheless, it does not include weak reactions, since
in CCSNe the nuclear flow evolves relatively close to stability and —-decays are slow.
In the following, we refer to it as the “full network” R�N��. On the other hand, we
employ the also full reaction network W��N�� (Winteler et al., 2012; Reichert et al.,
2023), which is used in many works in the literature (e.g., Winteler et al., 2012;
Korobkin et al., 2012; Martin et al., 2015; Eichler et al., 2019; Bliss et al., 2020;
Reichert et al., 2021; Ristic et al., 2022).
As expected, W��N�� and R�N�� show an excellent agreement in the nuclear

energy generated and the final abundance pattern (Figure 4.3). In Figure 4.3 we
compare the nuclear energy generation for the three di�erent trajectories. For the
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4 Reduced network implementation in Aenus-Alcar

Figure 4.2: Nuclear chart diagram with the species included in RN16 and RN94. High-
lighted in black the stable nuclei.

slightly proton rich and the symmetric trajectories, the energy generation of all nuclear
reaction networks is in a great agreement. We observe some times where the total
nuclear energy released is negative in the full network and in W��N��. However
this behavior is not captured at all by RN16, and very roughly by RN94, which only
reproduces one of these episodes. This negative released energy comes from a strong
contribution of (“, p) reactions, which are not included in RN16. In RN94 there
are (“, p) reactions included, but restricted to the nuclei considered. Therefore, the
di�erences come from (“, p) reactions on species that are not included in RN94.
Finally, we observe a larger discrepancy of the energy generation of RN16 with respect
to the other networks in the slightly neutron rich trajectory, since RN16 forces the
nuclear flow to stay in symmetric nuclei. In contrast, the nuclear energy generation in
RN94 fully agrees with the full networks, even in the negative energy episodes. This
is due the inclusion of the iron group nuclei responsible of it in RN94.

44



4.3 ReNet implementation in Aenus-Alcar

1018
1017
1016

0
1016
1017
1018
1019 Trajectory 1

(p-rich)

WinNet
ReNet
RN94
RN16

1018
1017
1016

0
1016
1017
1018
1019 Trajectory 2

(Symmetric)

10 2 10 1 100

Time [s]

1018
1017
1016

0
1016
1017
1018
1019 Trajectory 3

(n-rich)

En
er

gy
 [

er
g 

g
1

s
1 ]

Figure 4.3: Energy generation for two di�erent trajectories. Shown is the generated
nuclear energy for four di�erent network architectures. The upper panel shows
the energy generation for a slightly proton-rich trajectory (Ye,5.8 GK ≥ 0.51),
the middle panel a trajectory with symmetric conditions and the lower panel a
slightly neutron-rich one (Ye,5.8 GK ≥ 0.48). The time is relative to the start
of the network calculation (i.e., T = 5.8 GK). Courtesy of Moritz Reichert.

On the other hand, in Figure 4.4 we can observe the final mass fractions obtained
with the di�erent networks for the three trajectories. For the slightly proton rich
trajectory, the di�erences in 28 < A < 52 between RN16 and RN94 arise from the
larger amount of nuclei included in the latter, which accounts for the nuclei o� the
diagonal (see Figure 4.2) such as 30Si or 30S that turn to be quite abundant in this
trajectory. Since in RN16 they are not included, the nuclear flow evolves towards
more massive symmetric nuclei. This leads to an overproduction of 44Ti of around
three orders of magnitude with respect to the full networks. Nevertheless, the final
mass fraction of 44Ti in RN94 agrees with a full network within an impressive 0.9%.
For this trajectory, the 56Ni produced in the four networks is very similar and below a
3.5% discrepancy.

In the symmetric trajectory RN16 performs better, since the nuclear flow tends to
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Figure 4.4: Mass fractions versus mass numbers at the end of the simulation for three
di�erent trajectories and four di�erent networks. The top panel shows the
result for a slightly proton-rich trajectory (Ye,5.8 GK ≥ 0.51), the middle panel
a trajectory with symmetric conditions, and the lower panel the result for a
slightly neutron-rich one (Ye,5.8 GK ≥ 0.48). Courtesy of Moritz Reichert.

evolve throughout the diagonal. Under these circumstances, 44Ti di�ers a 3% and 56Ni
a 10% in comparison to the full networks. Meanwhile, RN94 show a discrepancy of
35% regarding the final abundances of 44Ti a 22% and 56Ni. The amount of nucleons
is well depicted in RN94, while in RN16 is underestimated. As we introduced in
Section 3.2, this is relevant for the neutrino opacities.
For the slightly neutron rich trajectory we find a very good agreement of RN94

compared toW��N�� and the full network R�N��, which reproduces the peak around
A ≥ 60, which includes the most abundant nucleus synthesized in this trajectory, 60Ni.
However, we observe how RN94 overproduces nuclei with A & 75. The exclusion of
uneven species in the network probably elude some bottlenecks that would inhibit the
further progress of the nuclear flow. Finally, RN94 shows a deviation of 41% in 56Ni
and a factor 5 in 44Ti. In contrast, RN16 leads to larger di�erences due to its reduced
amount of species included (factor 8 in 44Ti and 88% in 56Ni). In addition, it shows a
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Figure 4.5: Evolution of neutrons, protons, alphas, 44Ti, and 56Ni for a neutron-rich
trajectory. Shown are the results for four di�erent reaction networks. Courtesy
of Moritz Reichert.

large discrepancy in the neutron mass fraction. Since it basically includes symmetric
nuclei, the only way the network can achieve a lower Ye is by overproducing neutrons.
This di�erences also arise in the NSE composition (Figure 4.5). In the literature, this
is partially solved by implementing an extra neutron rich nucleus in the network (e.g.,
56Cr in aprox21, Paxton et al. (2011)).
To sum up, RN16 and RN94 are good approximations to a full nuclear network.

While they both agree quite well in the energy released in nuclear reactions for slightly
proton rich and symmetric matter, RN94 is much more accurate to characterize a
slightly neutron rich trajectory since it includes the main relevant species in CCSNe.
For the same reason, it produces a more precise nucleosynthesis than RN16, especially
in more extreme conditions where matter is not symmetric.

4.3.3 Transition and density-temperature regime

As mentioned in Chapter 3, previous versions of A����-A���� distinguish between
two di�erent density regimes. At high densities (fl > flth) it employs the EOS of
dense matter, and assumes the composition in NSE. At low densities (fl Æ flth), it
considers the Helmoltz EOS. In this density region, the composition is computed with
the approximated flashing scheme (introduced in Section 3.4.2).

When implementing a more sophisticated composition treatment, we observed that
the density criteria to distinguish between the EOS (and composition) regimes is far
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Figure 4.6: Density and temperature achieved in a characteristic CCSN simulation. It
focuses on the region of the fl-T plane close to the transition between the
two EOS. The color depicts the amount of mass that fulfilled each (fl, T )
condition in the run. The dashed line indicates the temperature threshold
criterion introduced in this work. Finally, the dotted line corresponds to the
density threshold criterion present in previous versions of Aenus-Alcar.

from ideal. Substituting the flashing scheme with the network at low densities does
not guarantee that matter is out of NSE. As we show in Figure 4.6, a large number of
grid zones that fulfill fl Æ flth are still at high temperatures, and, therefore, the matter
there must be considered in NSE. This led to numerical artifacts since the network is
not able to perform properly at these temperatures.
To avoid such an inconsistency, we introduced a temperature criteria. Above a

certain temperature threshold (Tth), T > Tth ≥ 5 ≠ 6 GK, we assume the composition
in NSE and employ the EOS of dense matter. Otherwise, we call the network together
with the subnuclear EOS. Though in principle, the latter case would also apply to very
cold zones with densities up to and beyond the nuclear saturation density, in practice
this regime (bottom right part of the figure) is not achieved in CCSN and thus of no
concern.
In order to prevent discontinuities in the thermodynamic quantities such as the

pressure or the internal energy, we interpolate them linearly between the two EOSs
in the temperature regime Tth > T > Tinter , where Tinter is defined as the lower limit
temperature for the interpolation between EOSs (for a schematic representation, see
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Figure 5.1). Furthermore, at T = Tth, the initial values for the network need to be
given. Such seeds are provided by an NSE solver which considers the same nuclei as
the nuclear reaction network. Once the temperature in a grid cell drops below Tth,
the network module evolves the composition further until the end of the simulation
or until the conditions for NSE are reached again.

The energy from the nuclear reactions (Equation (4.8)) is coupled as a source term to
the hydrodynamics energy equation, Equation (3.7). In order to avoid thermodynamic
inconsistencies, it is done for temperatures T Æ Tinter. We consider two di�erent ways
to include it. On the one hand, the feedback of the nuclear energy from the reaction
network is considered at every cell with T Æ Tinter (regions II and III in Figure 5.1).
On the other hand, the nuclear energy generation is taken into account only after the
shock has passed the cell, i.e., in the post-shocked gas (region III). For that purpose,
we use a simple shock-detection algorithm. We additionally consider the case with no
feedback of the nuclear energy generation from the nuclear reaction network.

4.3.4 Performance of the implementation

In this section, we demonstrate the good functioning of R�N�� in A����-A���� by
checking the evolution of the nuclear energy generation and the composition in a 1D
model we performed.

We used the 20 M§ progenitor fromWoosley &Heger (2007), and ran the simulation
for 1 s after the bounce (Figure 4.7). At high temperatures (T > Tth = 5.8 GK) we
employed the LS220 EOS, and consider matter in NSE. For T Æ 5.8 GK, we applied the
network module. For testing purposes, we used a simplified version of RN92 that used
a subgroup of 52 isotopes up to Ge (RN52). Furthermore, we considered the nuclear
energy generation when the post-shock region cooled below T Æ Tinter = 5 GK, in
order to test the e�ectiveness of our shock detector. Figure 4.7 demonstrates it works
properly, since the nuclear energy generation is activated only in the shocked region
when its temperature drops T Æ Tinter.

In order to check whether the composition and the nuclear energy generation are
properly calculated in the simulation (in situ), we compare their evolution to the
values obtained in post-processing with Lagrangian trajectories (ex situ). In magenta,
we depict the mass shell that we focus on. It first collapses and gets heated by the
shock. After that, it expands ,and eventually cools down and leaves NSE. We selected
it since most of the unbound matter within the first second follow a similar evolution,
and hence it was a very representative example.
We follow the evolution of the nuclear energy generation and the composition

when the trajectory leaves NSE (T Æ 5.8 GK). We show the results of the former in
Figure 4.8. We obtain a very similar nuclear energy generation in situ and ex situ.
As we have mentioned in the previous section, the transition from NSE to network is
specially delicate. We gladly confirm the absence of numerical artifacts and oscillations
present in the energy generation.
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Figure 4.7: Test model where we demonstrate our implementation. Grey lines show mass
shell evolution. The red solid line depicts the position of the shock. The
coloured region shows the energy released by nuclear reactions. In magenta,
the representative trajectory that we focus on to discuss the good performance
of ReNet in Aenus-Alcar.
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Figure 4.8: Comparison of in situ nuclear energy generation to ex situ.
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In Figure 4.9, we show the evolution of the abundances of several species. For
comparison, we in addition calculated them with a much more complete network in
post-processing, RN789p. Here, t = 0 s corresponds to the time when the trajectory
leaves NSE. We show the general good agreement between the in situ and the ex
situ calculations. In addition, we do not observe numerical artifacts when leaving
NSE. However, at late times, in some cases the in situ abundances start to di�er a bit.
We attribute these di�erences to the lack of mixing in Lagrangian trajectories and
additional numerical di�usion in the simulation.
We conclude that R�N�� behaves properly in A����-A����, and, thus, consider

that the implementation has been successful.
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Figure 4.9: Comparison of in situ to ex situ abundances obtained with the same reduced
network.
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5 CCSNe simulations with reduced
nuclear networks

Several groups have employed reduced networks in their works (e.g., Bruenn et al.,
2016, 2020; Nakamura et al., 2014; Couch et al., 2015; Harris et al., 2017; Wong-
wathanarat et al., 2017; Sandoval et al., 2021). Bruenn et al. (2006) mentioned that
when including a 14 –-chain in the hydrodynamics, nuclear burning in the oxygen
layer deposited extra pressure in the vicinity of the shock and assisted its expansion.
Nakamura et al. (2014) performed simulations with a simplified light-bulb neutrino
treatment using a 13 isotope –-network to study how the energy released by nuclear
reactions a�ect the dynamics of the explosion. They conclude that energy produced by
the infalling material behind the shock could aid the explosion, especially in models
with marginal explosions. A large network was included for the first time by Harris
et al. (2017) in 2D simulations with accurate ‹-transport. They used a 14 –-chain and
a 150 isotope network in axisymmetric (2D) models and studied the uncertainties
derived from post-processing nucleosynthesis. Their results showed the limitations
of using post-processing Lagrangian tracer particles and support including reaction
networks in the simulations.
In this chapter, the aforementioned studies motivated us to investigate in detail,

in a state-of-the-art CCSN code, how the di�erent treatments of the composition
employed in the simulations at low temperatures have an impact in the dynamics
of the explosion and the nucleosynthesis outcomes. This chapter is adapted from
Navó et al. (2023). In Section 5.1, we introduce the models we have performed. In
Section 5.2, we show the impact of the composition treatment in the dynamics of the
explosion. In Section 5.3, we study the e�ects on the nucleosynthesis.

5.1 Models

We have performed simulations (tf = 1.5 s) using the solar metallicity 20 M§ mass
progenitor from Woosley & Heger (2007). We map its pre-collapse composition to
those of our two networks. We consider the EOS transition at Tth = 5.8 GK1, given
that NSE breaks down around this temperature, and Tinter = 5.0 GK. Since this work is
1We tested several transition temperatures. A higher transition temperature ( Tth = 6.5 GK) does not
change the dynamics significantly. When decreasing it (Tth = 5 GK), the alpha-rich freeze out is not
well characterized.
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5 CCSNe simulations with reduced nuclear networks

Figure 5.1: Schematic representation of the di�erent regions of interest in this chapter. It
shows the mass shell evolution (grey) of a characteristic 1D model. The red
line shows the shock evolution. The temperatures involved in the transition
between the NSE and the network regimes are depicted in green. The purple
line shows the evolution of fl

LD
‹ , the density at which we switch o� the

neutrino absorption in the toy models described in Section 5.1.

focused on the impact of the composition treatment at T < Tth, all of the models have
the same configuration at high temperatures (areas I and IV in Figure 5.1). We apply
the SFHo EOS (Steiner et al., 2013) and assume the composition provided by it in NSE.
We consider the main neutrino-matter interactions (Just et al., 2015; Just et al., 2018)
contributing to the neutrino energy deposition, Q‹ , which is critical for triggering the
explosion. As mentioned in Section 3.2.3, spherically symmetric simulations do not
explode due to the lack of convection and hydrodynamical instabilities (e.g., Janka,
2012). Therefore, we add an extra heating factor, HF = 2.8, in the gain region to
launch explosions in all of the 1D. In 2D models we set HF = 1 and do not add any
additional neutrino heating.

In order to understand the impact of nuclear reaction networks coupled to the
hydrodynamics, we have varied the treatment of the composition and nuclear energy
generation at T Æ Tth. Four approaches have been used to describe the composition
at low temperatures and densities, where a network is necessary.
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5.1 Models

• The most crude description is to keep using the high-density (or nuclear) EOS
table also at low temperatures. This is commonly done in many supernova
simulations that focus on the early explosion phase (e.g., O’Connor & Couch,
2018). The composition in EOS tables consist usually of neutrons, protons, alpha
particles, and a representative nucleus. This nucleus is obtained from assuming
NSE or from SNA (single nucleus approximation) (see Schneider et al., 2017, for
a discussion of the impact of these two treatments). These models are marked
as “SFHo” and their composition correspond to NSE.

• The flashing scheme was the improved composition treatment that has been
used in the previous studies with ALCAR. In this set of models, for comparison
purposes, the version of the flashing scheme employed does not include the
nuclear energy implicitly. Therefore, to distinguish it from the original version
(Rampp & Janka, 2002), we reference to it as flashing† and the models are
labeled _flsh.

• We use the two reduced networks described in Section 4.3.1. The model names
are RN16 and RN94.

The composition obtained with the four approaches is di�erent and influences the
final abundances, but also the dynamics. Variations of the abundances of nuclei
heavier than alphas have a minor contribution to the pressure since it is dominated
by radiation and electrons rather than ions. However, the changes in the amount
of neutrons and protons can impact the energy deposited by neutrinos. Therefore,
we have also run a few comparison models without the neutrino absorption at low
densities, fl < 1.2 · 108 g cm≠3 (models with no Q

LD
‹ ), i.e, Q‹ = 0 in regions II, III and

IV of Figure 5.1.
Finally, we include also various models to explore the impact of the energy gen-

eration by nuclear reactions when using the two reduced networks in 1D and 2D.
We consider Ėnuc in the two ways introduced in Section 4.3: in all regions with with
T < Tinter (region II and III in Figure 5.1) where the composition is determined
by the reduced networks (models labeled with “E”) and alternatively only between
T < Tinter and the shock, i.e., only region III (models labeled with “p.s.”). We employ
these two di�erent Ėnuc configuration in order to distinguish between the impact in
the infalling layers and in the post-shock region. In addition, we run a model with the
flashing scheme including its nuclear energy generation (1D_flshE) for comparison.
We perform the 1D simulations using a grid with nr = 408 zones that are loga-

rithmically spaced in radial direction with a central grid width of �r = 400 m and a
maximum radius of Rout ƒ 9.05 ·105 km. The 2D simulations run on a grid of nr = 400
zones in the radial direction and n◊ = 128 in the angular direction. We consider the
employed resolution su�cient to adequately resolve the hydrodynamic quantities
(e.g., Obergaulinger & Aloy, 2017). The models computed are listed in Table 5.1. In
following sections, we discuss the impact of the composition and nuclear reactions on
the dynamics and final abundances.
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Model Comp Ėnuc Q
LD
‹ Dim

1D_flsh_noQLD
‹ flashing† no no 1D

1D_RN16_noQLD
‹ RN16 no no 1D

1D_RN94_noQLD
‹ RN94 no no 1D

1D_SFHo_noQLD
‹ NSE no no 1D

1D_flsh flashing† no yes 1D
1D_RN16 RN16 no yes 1D
1D_RN94 RN94 no yes 1D
1D_SFHo NSE no yes 1D
1D_RN16E RN16 yes yes 1D
1D_RN16e RN16 p.s yes 1D
1D_RN94E RN94 yes yes 1D
1D_RN94e RN94 p.s yes 1D
1D_flshE flashing yes yes 1D
2D_flsh flashing† no yes 2D
2D_RN16E RN16 yes yes 2D
2D_RN94E RN94 yes yes 2D

Table 5.1: List of models . The second column shows the treatment of the composition.
The third column specifies whether the energy generation from the nuclear
reactions is taken into account. p.s indicates that is switched on only in
the post-shock region. The fourth column indicates whether the neutrino
interactions are taken into account at fl < 1.2 · 108 g cm≠3. Finally, the last
column states for the dimensionality of the simulations.

5.2 Impact on the dynamics

In this section we study the e�ects that reduced networks have on the dynamics of the
explosion. We show how the di�erent treatments of the composition lead to changes
in the neutrino absorption that modify the dynamics (Section 5.2.1) and the impact
of the energy released by nuclear reactions on the dynamics of the explosion in 1D
(Section 5.2.2) and 2D (Section 5.2.3)

5.2.1 Composition

First, we detail the impact that the di�erent composition treatments have on the
dynamics of the explosion in the models introduced in Section 5.1.
We start comparing 1D models with di�erent composition treatment, no Q

LD
‹ ,

and no Ėnuc at T < Tth: 1D_SFHo_noQLD
‹ , 1D_flsh_noQLD

‹ , 1D_RN16_noQLD
‹ , and

1D_RN94_noQLD
‹ . Figure 5.2 shows the evolution of the shock radius for these models

(dotted lines). Without energy transfer between neutrinos and matter at low densities
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Figure 5.2: Shock evolution of the 1D models with no energy feedback from the nuclear
reactions. The di�erent colors represent each treatment of the composition.
For consistency, the same color scheme is used in the next Figures. Solid lines
stand for 1D models without Ėnuc, e.g. 1D_RN16. Dotted lines correspond
to models with no Ėnuc nor Q

LD
‹ , e.g. 1D_RN16_noQLD

‹ .

and temperatures, the main variation among the non-SFHo models is the composition,
which is an input for the Helmholtz EOS. We note that in the relevant temperature
regime the baryonic contribution is negligible and thus the way the nuclear composition
is treated has no dynamical e�ect. Thus, the composition di�erences between the
non-NSE models do not a�ect the evolution of the shock. However, 1D_SFHo_noQLD

‹

uses a di�erent table for the leptonic contribution than the other three runs. Its slightly
di�erent pressure and internal energy modifies the evolution of the shock.
In case that Q‹ is taken into account in the entire simulation domain (models

1D_flsh, 1D_SFHo, 1D_RN16, and 1D_RN94, solid lines in Figure 5.2), the di�erent
evolution of the shock is now mainly influenced by this additional energy source term,
which is dominant over the changes between di�erent EOS. 1D_flsh and 1D_SFHo
have almost identical behavior due to their very similar composition, which consists
of nucleons, alphas (in case of 1D_SFHo), and a representative nucleus. This leads to
a comparable amount of nucleons and, thus, similar neutrino opacities and neutrino
heating. Note that Q‹ Ã Ÿa Ã nN‡‹N, where Ÿa is the absorption opacity, nN is the
free nucleon density, and ‡‹N is the neutrino-nucleon cross section.
Models 1D_RN16 and 1D_RN94 show changes in the evolution due to the di�er-

ent species included in the simulation, which changes the amount of nucleons and,
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Figure 5.3: Evolution of the ram pressure for the 1D_RN94, 1D_RN16, and 1D_RN16E
models in the first 350 ms post-bounce. Bottom panel shows the relative
di�erences in the integrated neutrino energy deposition at T < Tth, Q

T<Tth
‹ =s

T<Tth
Q‹ dV , (solid line) and shock radius (dotted) of 1D_RN94 and

1D_RN16.

therefore, the neutrino absorption. The nuclei mapped into simulations employing
the RN94 are di�erent than the ones that are considered in the original progenitor2,
which provides the “aprox19" composition. For this reason, RN94 performs a read-
justment where (–, p) reactions are dominant in the oxygen rich layers. This leads to
a di�erence in the mass fractions of the neutrons of �n © log10 (XRN94

n
XRN16n

) = 0.3 and
�p = 2.3 for protons3, which results in an increase of the opacity in the vicinity of the
shock. This translates into di�erences of up to 15 % in the neutrino heating in the low
density regime (Figure 5.3) and in a decrease of the ram pressure in the shock, which,
although small, is su�cient to modify its balance, allowing for an easier expansion in
1D_RN94.

5.2.2 Nuclear energy generation in 1D

The energy from nuclear reactions significantly changes the dynamics. Figure 5.4
shows the shock evolution for simulations performed with the RN16 and RN94 net-
works taking into account the three di�erent configurations for Ėnuc. The impact of
Ėnuc on the dynamics depends on whether the energy is released in the progenitor
shells or the post-shock region. To show it in a clear manner, we first focus on the

2obtained from https://2sn.org/nucleosynthesis/WH2007.shtml
3For more di�erences on nucleons, for a characteristic trajectory, see Figure 4.5 in Section 4.3.2
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di�erent evolution among the models with RN16. The absence of Ėnuc in the pro-
genitor infalling shells in 1D_RN16 and 1D_RN16e lead to a very similar evolution
of the shock and the mass shells. The shock is revived after experiencing a fall back
at t ≥ 300 ms and gaining enough energy from the system to expand. Nevertheless,
in 1D_RN16e, it expands slightly faster once the nuclear reactions are starting to
feed the system with energy. This is better depicted in Figure 5.5, where the ex-
plosion energy shows that model 1D_RN16e is more than 15 % more energetic than
1D_RN16 after 500 ms post-bounce due to the nuclear energy released in the explosive
nucleosynthesis. 1D models with nuclear energy generation also in the progenitor
shells (1D_RN16E, 1D_RN94E, and 1D_flshE) experience an early expansion with
no fall-back and less layers are accreted to the PNS. Initially, the Fe group rich layers
absorb energy mainly through (“, –), (n, –), and (“, n) reactions, accelerating slightly
the collapse (e.g., Couch, 2017). The energy released in outer mass shells, i.e. oxygen
and silicon layers, is dominated by (–, “) and (p, “) reactions which produce Ėnuc > 0.
This heats up the infalling matter substantially (see Figure 5.6). The contribution of
the nuclear reactions is larger than the one of neutrino absorption, for T Æ Tth, from
t = 0.1 s on. Therefore, nuclear reactions supply a significant amount of energy to the
infalling layers, more than 1050 erg s≠1, which is comparable to the change in internal
energy (≥ 1050

≠ 1051 erg s≠1) in the region. This becomes the dominant heating
source for T Æ Tth, increasing further the explosion energy. The additional energy
source leads to a decrease of the ram pressure on the shock and allows it to expand
easier (Figure 5.3), in agreement with Nakamura et al. (2014); Bruenn et al. (2006).
We note that in terms of the shock radius and explosion energy the evolution of

model 1D_flshE proceeds similarly to models 1D_RN16E and 1D_RN94E for the first
≥ 300 ms. During this period, the nuclear energy generation of the flashing scheme
with its approximate composition of 28Si and 56Ni is not too di�erent from that in
the network models. At later times, reactions that cannot be represented by these
two nuclei become more important and, consequently, the explosion energy of the
flashing model starts to deviate from that of the network models (see Figure 5.5). This
behavior seems to indicate that a flashing scheme with more nuclei might reproduce
the evolution of the network more closely.

Despite the similar overall evolution for 1D_RN16E and 1D_RN94E, we encounter
some di�erences in the nuclear energy production. Before the bounce, as pointed out
previously, the photodisintegration reactions in the iron group absorb energy from the
environment. The RN16 is not able to track e�ciently these nuclei due to its simplicity.
Because of that, we observe a spike of Ėnuc > 0, where (–, “) reactions in the oxygen
and silicon rich shells are able to release more energy than photodisintegrations
absorb in the iron and nickel rich layer. In contrast, the RN94 has a broader set
of nuclei in the relevant region of the nuclear chart and therefore includes a more
complete set of reactions such as e.g., additional (n, “) reactions. This leads to the
observed di�erences. At intermediate times, between the bounce and t ≥ 500 ms,
24Mg(–, “), 27Al(p, “), 28Si(–, “), and 54Fe(p, “) are the main contributors to the
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Figure 5.4: Shock evolution for the remaining 1D models, which include Ėnuc. For
comparison, we keep the models without it, i.e., 1D_RN16 and 1D_RN94
(solid). Dashed lines indicate the 1D_RN16e and the 1D_RN94e models.
Dash-dotted lines correspond to the 1D_RN16E, the 1D_RN94E, and the
1D_flshE.

energy generation in the accreted layers. At these times, since all these reactions are
included in RN16 and RN94, the energy production in both networks is comparable
as shown by the fluctuations of �Ėnuc in Figure 5.6. Finally, from t ≥ 500 ms on, the
nuclear energy is mostly produced in the post-shocked region. We observe how �Ėnuc
stabilise around 50 %. Part of this di�erence is due to the slightly di�erent shock
evolution, which evolves slightly faster in 1D_RN16E. The remaining discrepancy
cannot be easily broken down to an individual reaction, but rather to an overall
slightly di�erent nucleosynthetic path. The di�erent amount of included nuclei in the
calculation causes the di�erences. While most of the main reactions contributing to
Ėnuc in this region are included in both networks, e.g,16O(–, “), 28Si(–, “), 54Fe(p, “),
or 55Co(p, “), additional available paths in RN94 allow for the inclusion of several
secondary reactions which provide additional energy to the system, e.g, 58Ni(p, “)
and 59Cu(p, “). Furthermore, a di�erence in the amount of nucleons and – can lead
to an additional deviation of the nuclear energy.
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Figure 5.5: Explosion energy corresponding to the same models depicted in Figure 5.4

5.2.3 Nuclear energy generation in 2D

All of the two-dimensional models show typical supernova explosions, with explosion
energies (Figure 5.7) of several 1050 erg and the characteristic prolate shape due to
axisymmetry (Bruenn et al., 2016; Summa et al., 2016; Vartanyan et al., 2018). The
nuclear energy generation also leads to changes in the morphology of the explosion in
the 2D models (Figures 5.8 and 5.9). However, Ėnuc is less determinant for the onset
of the explosion than in 1D, since relaxing spherical symmetry allows for non-radial
deformations and convection which enhance the neutrino heating in the gain layer
and trigger an easier shock expansion.
The long-term evolution, in particular the growth of the explosion energy, can

di�er quite significantly even between otherwise similar models. The shock waves of
models 2D_flsh and 2D_RN16E expand anisotropically with a moderate north-south
asymmetry at early times (Figures 5.8a and 5.8c). The comparable weakness of the
shocks in one of the hemispheres allows for important accretion streams towards the
PNS. These lead to a significant increase in the neutrino emission (and, therefore, in
Eexp) which trigger an –-rich ‹-driven outflow towards the southern pole (the cone
filled with high-entropy, high-velocity gas in Figure 5.8d) in 2D_RN16E and an axial
outflow in 2D_flsh. In 2D_RN16E, the e�ect of Ėnuc on Rshock is small and contributes
to accelerating it around t ≥ 800 ms after bounce. The rate at which nuclear reactions
deposit energy in the wind and post-shock region is significant, comparable to the
growth rate of Eexp (upper panel of Figure 5.7). This supports the outflows and leads
to a more energetic explosion.
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Figure 5.6: The upper panel shows the evolution of the integrated energy source terms in
the T < Tth region (Q) for the models 1D_RN94E and 1D_RN16E in red and
yellow, respectively. Q

T<Tth
‹ =

s
T<Tth

Q‹ dV and Ėnuc =
s

T<Tth
Ėnuc dV .

The lower panel shows the relative di�erence in the energy released by nuclear
reactions in the low density region.

The shock in 2D_RN94E, in contrast, expands more symmetrically towards higher
radii initially, which we attribute to the higher amount of energy generated by nuclear
reactions around t = 100 ms. This reduces the accretion inflows towards the PNS as a
comparison of the masses indicates: MPNS = 1.67, 1.72, and 1.71 M§ for 2D_RN94E,
2D_flsh, and 2D_RN16E, respectively. Therefore, the amount of neutrinos emitted
after t ≥ 500 ms is significantly lower, which explains the absence of ‹≠driven winds
in 2D_RN94E and the stagnation of Eexp, in contrast to 2D_RN16E and 2D_flsh.

At later times, downflows accreting onto the PNS squeeze its polar region, launching
high velocity, neutron-rich outflows (Ye ≥ 0.35) ejected from the vicinity of the PNS.
This is shown for model 2D_RN94E in Figure 5.10, where we observe a neutron-rich
bubble (indicated by the circle A) which moves from the center (upper left panel) to
z ≥ ≠6000 km in only 150 ms (bottom panel), and continues evolving towards higher
latitudes mixing with the surrounding material (panel c). The high vr, up to ≥ 0.16 c,
avoid excessive neutrino absorption that would, for the conditions prevailing here,
increase the electron fraction. These outflows tend to be amplified by the nuclear
energy generation in the already shocked areas. The predominantly polar direction
of this bubble may be at least partly due to the assumed axisymmetry rather than
being a general feature of such neutron-rich clumps. In fact, the presence of another
such bubble (circle B in Figure 5.10) shows that they can be formed at any latitude
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5.3 Impact on the nucleosynthesis

Figure 5.7: Shock and explosion energy evolution of the 2D models.

as a consequence of the random dynamics of convection and accretion streams in
the vicinity of the PNS. The lower radial velocity of the equatorial outflow (≥ 0.07 c)
and the accretion of the upper layer prevent it from evolving towards a larger radius.
Heating by nuclear energy reactions at rates around Ėnuc ≥ 1020 erg g≠1s≠1 plays
an important role in sustaining the clump. As we show in the next section, this
mechanism allows for the production of more neutron rich species.
To sum up, in this section we have studied the impact of reduced networks on

the dynamics of the explosion. The di�erent nuclei included can modify the amount
of nucleons and hence the neutrino absorption at T < Tth. This di�erent heating
in the infalling progenitor shells has an impact on the ram pressure and therefore
can change the shock evolution. Analogously, the nuclear energy released in that
region allows for a decrease of the ram pressure on the shock and favors an easier
expansion. In addition, nuclear reactions in the shocked region are able to increase
substantially the explosion energy. The 2D_RN94 model suggests that the important
nuclear energy generation in this region helps to sustain late low-Ye outflows in the
equatorial direction. Finally, RN16 and RN94 show small di�erences in Ėnuc.

5.3 Impact on the nucleosynthesis

In this section we study the e�ects that reduced networks have on the composition of
the ejecta at the end of the simulation, i.e., t = 1.5 s, in 1D and 2D models.
For comparison, the nucleosynthesis is additionally computed in post-processing

with the full nuclear reaction networkW��N�� (Reichert et al., 2023) and the reduced
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5 CCSNe simulations with reduced nuclear networks

(a) 2D_flsh. t = 500 ms (b) 2D_flsh. t = 1000 ms

(c) 2D_RN16E. t = 500 ms (d) 2D_RN16E. t = 1000 ms

Figure 5.8: Slices of entropy and radial velocity of the 2D_flsh and the 2D_RN16E
models at 500 ms and 1000 ms of simulation.
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5.3 Impact on the nucleosynthesis

(a) 2D_RN94E. t = 500 ms (b) 2D_RN94E. t = 1000 ms

Figure 5.9: Slices of entropy and radial velocity of the 2D_RN94E model at 500 ms and
1000 ms of simulation.

networks RN16 and RN94. We consider the unbound matter, i.e., matter with positive
total energy and positive radial velocity, at the final time of the simulation (tf = 1.5 s).
The evolution of the ejecta is followed by Lagrangian tracer particles calculated
backwards in time as described in Reichert et al. (2022) (see also Sieverding et al.
(2023) for an in-depth analysis of the uncertainties that can arise with this method).
At the final simulation time, we place them at random positions in all cells flagged as
unbound. The total mass contained in a cell is distributed equally among its tracers.
Their number is set such that they have a maximum mass, M = 10≠4 M§, and each
cell contains at least 4 tracers. At the end, the nucleosynthesis of each tracer particle
is weighted with its corresponding mass.

5.3.1 Post-processing with WinNet

First, we show the impact on abundances by computing them with the post-processing
nucleosynthesis network W��N��. We compare the abundances obtained in models
that include nuclear energy generation (1D_RN16E, 1D_RN94E, 2D_RN16E and
2D_RN94E) with the ones from models that do not take Ėnuc into account (1D_flsh
and 2D_flsh), in 1D and 2D respectively.

In spherically symmetric models, Ye is very close to 0.5. Therefore, species beyond
the iron group are not synthesized (Figure 5.11). This also explains the only minor
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5 CCSNe simulations with reduced nuclear networks

Figure 5.10: Snapshots of the magnitude of Ėnuc, and Ye of model 2D_RN94E at
t = 1100 ms, t = 1250 ms, and t = 1400 ms. We highlight the di�erent
evolution of two low-Ye clumps (A and B) ejected from the vicinity of the
PNS. While A is ejected in the polar direction and eventually mixing up with
external layers, B cannot overcome the accretion in the equatorial region
and stagnates. Nevertheless, the high nuclear energy released in that region
helps to sustain this outflow in time.
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5.3 Impact on the nucleosynthesis

di�erences in the post-processing final composition with W��N�� for the 1D_flsh, the
1D_RN16E, and 1D_RN94E models, despite the di�erent dynamic evolution when
the energy generation from the nuclear reactions is taken into account.

In the two-dimensional models (Figure 5.12) a larger amount of nuclei are involved
due to the broader range of Ye. The 2D_flsh and 2D_RN16E model show standard
CCSN nucleosynthesis, where mainly iron group elements are formed together with
lighter heavy species around A ≥ 90 (see e.g., Eichler et al., 2017; Harris et al.,
2017; Wanajo et al., 2018; Witt et al., 2021). In contrast, model 2D_RN94E produces
larger amounts of heavier species. The composition obtained with W��N�� shows a
significant enhancement around the first r-process peak, A ≥ 80, particularly 84Ge.
Also, a small amount is observed up to the second r-process peak, A ≥ 130. This
larger production of heavier species takes place in the late low-Ye outflows, which
are supported by the nuclear energy release as outlined in Section 5.2. We observe an
agreement between the post-processing RN94 (ex situ) and W��N�� abundances in
the 2D_RN94E model until A ≥ 90, showing that RN94 is able to reproduce the main
nuclei synthesized in CCSN. There is a di�erence in 92Mo that can be explained by
the fact that it acts as a bottle neck for heavier species in RN94.

5.3.2 Ex situ vs in situ calculations

In this section we show the di�erences of computing the nucleosynthesis in the
simulation (in situ) and in post-processing (ex situ). For the comparison, we calculate
the latter with the same network employed in the hydro (RN16 or RN94, depending
on the model).
In Figures 5.11 and 5.12, we also show the composition obtained in situ in the

models with the networks and its respective post-processing, ex situ calculation. The
goal is to analyse which di�erences come from evolving the network together with
the hydro. The 1D_RN16E and 1D_RN94E models show very good agreement in the
most abundant species, like 56Ni. However, there are some discrepancies on 30S, 34Ar,
40Ca, 44Ti, 52Cr, and 62Zn with log10(�X) © log10 ( Xin

Xex
) ¥ 0.5 ≠ 1. Both Lagrangian

and Eulerian methods can su�er from numerical errors, though in di�erent ways.
Lagrangian tracer particles, used to compute the composition in post-processing,
are more uncertain when tracking low density ejecta and especially the products
of the –-rich freeze out, as shown in Harris et al. (2017). Furthermore, accurately
representing features varying on short length and time scales such as the ones arising
from multi-dimensional, potentially turbulent, flows can be di�cult and require an
exceedingly large number of tracers. The numerical di�usivity that Eulerian methods
require for stability can lead to artificial mixing of species across the grid. While its
importance decreases with increasing grid resolution, much finer grids than feasible
are necessary to suppress this e�ect. This is the origin of the systematic disagreement
between in situ and ex situ calculations in our models.
In 1D, the representation of the trajectories is much more simple, and accurate,
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5 CCSNe simulations with reduced nuclear networks

(a) 1D_RN16E

(b) 1D_RN94E

Figure 5.11: Integrated final ejecta composition of the 1D models. Red lines correspond to
the composition obtained in post-processing with the full network WinNet
in the 1D_RN16E (a) and 1D_RN94E (b). The post-processing results
for the 1D_flsh are displayed in grey for comparison. Green dots stand for
the values obtained from the network in situ, i.e. evolved in the simulation.
The values obtained with the same reduced network in post-processing are
depicted by orange diamonds.
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(a) 2D_RN16E

(b) 2D_RN94E

Figure 5.12: Integrated final composition of the 2D models. Analogously from Figure 5.11,
the grey line corresponds to the post-processing calculation of model 2D_flsh.
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5 CCSNe simulations with reduced nuclear networks

Figure 5.13: Chart with the RN94 isotopes in boxes. Orange edges indicate unstable
nuclei and black stable ones. Bottom half of boxes depict in situ integrated
mass fractions for 2D_RN94E at the end of the simulation. Upper half show
the di�erences with respect to ex situ mass fraction, defined as �X = Xin

Xex
,

for species with Xi > 10≠5.

reducing the uncertainty to that arising mainly from the aforementioned numerical
di�usion. We therefore tested its impact based on the 1D_RN94E model by recalcu-
lating it with di�erent resolutions of 500, 600, 700, and 1000 radial zones. While the
ex situ abundances for all models were almost identical with maximum deviations
of the order of ≥ 40% for 42Ti and 54Ni, some elements (i.e., 30S, 34Ar, and 62Zn)
showed variations in the order of ≥ 60 ≠ 75% for the in-situ abundances. All other
elements were converged also within the in-situ networks. The impact of numerical
di�usion could be decreased in further studies by modifying the advection scheme of
the composition (Plewa & Müller, 1999).

The 2D_RN16E model has di�erences of the same order as the previous ones in
40Ca, 44Ti, 48Cr, and 52Fe. The overproduction of such isotopes in situ is consistent
with the explosion morphology seen in Figure 5.8. It is characterized by an extended
high entropy and velocity shocked region where mainly –-rich freeze out takes place.
The in situ and ex situ discrepancies in 2D_RN94E are depicted in Figure 5.13.
Some di�erences in the overall nucleosynthesis trend can be observed by looking
at the most neutron rich and deficient isotopes of Zn, Ge, Se, Kr, Sr, and Zr. The
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post-processing underproduction of 44Ti, 46Ti, 48Ti, 48Cr, 50Cr, 52Cr, 54Fe, and 56Fe
leads predominantly to a more neutron rich path with bottle necks in 80Ge and
84Se. In situ abundances show a tendency of being more neutron-deficient, starting
from the aforementioned isotopes of Ti, Cr, and Fe. Figure 5.13 shows that matter
accumulates at the proton-rich isotopes 72Se, 74Se, and 76Se, suggesting that even
the highly extended RN94 network still has some bottlenecks that could be better
represented with an even more extended network. Finally, this more neutron-deficient
path ends up producing more 92Mo, log10(�X92Mo) = 1.35.

5.4 Summary & Conclusions

We have presented a detailed study of how the treatment of the composition within
CCSN simulations impacts the explosion dynamics and nucleosynthesis.

We performed 1D and 2D CCSN simulations using the neutrino-hydrodynamics
code A����-A���� (Just et al., 2015; Just et al., 2018; Obergaulinger & Aloy, 2020).
So far, this code included the nuclear reactions outside the NSE regime only via
the simplified flashing scheme (Rampp & Janka, 2002), which assumes that the gas
consists only of nucleons and a representative nucleus, for which, depending on the
temperature, we use 28Si or 56Ni. We used the reduced network module R�N�� (see
Section 4.2) to replace the flashing scheme by a 16 –-chain (RN16) and a 94 isotopes
network (RN94). The latter is able to reproduce the main nucleosynthesis yields in
standard CCSN explosions (e.g, Eichler et al., 2017). In addition, thanks to the 148
nuclei considered in steady state approximation, RN94 is the most extended network
in the nuclear chart ever employed 4 in state-of-the-art hydrodynamic simulations.
Both in-situ networks return the composition of the gas and the rate at which nuclear
reactions generate or consume internal energy.

The di�erent composition in the low-density region have an impact on the amount
of nucleons, which can change the neutrino heating in the vicinity of the shock. This
modifies the ram pressure outside of it and, therefore, its evolution.
We have demonstrated how the energy released in the nuclear reactions impacts

the dynamics of the explosion. The energy generation in the pre-shocked collapsing
matter decreases, again, the ram pressure outside the shock and allows it to expand
easier, in agreement with Bruenn et al. (2006) & Nakamura et al. (2014). The nuclear
energy released in the shocked region has a significant contribution, up to 20 %, to
the total explosion energy. The flashing scheme with 28Si and 56Ni is not able to
reproduce the nuclear energy generation in this region, which leads 1D_flshE to a
smaller explosion energy than 1D_RN16E and 1D_RN94E. Nevertheless, their overall
evolution is similar. Di�erences between RN16 and RN94 are small regarding the
nuclear energy generation, where (–, “) and (p, “) are the main production channels.

4To date of submission of the thesis. It should also be noted that in terms of the number of isotopes,
the one of the Oak Ridge group (e.g., Bruenn et al., 2020) is larger, including 160 species.
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5 CCSNe simulations with reduced nuclear networks

While the models presented are not very energetic, we explored more energetic
explosions, Eexp ≥ 1 B, and obtained similar impact.

Finally, we obtained the detailed nuclear yields of the models by applying the nuclear
network W��N�� with 6545 isotopes in an ex-situ, post-processing step to Lagrangian
tracer particles tracking the fluid flow. We compared the post-processing results
among di�erent models and to the in-situ networks. In 1D, the di�erences are small
since the Ye involved are very similar among the models and close to 0.5. In 2D, the
variation in abundances among di�erent models get larger (Figure 5.12). The energy
released in the nuclear reactions helps to sustain late neutron-rich outflows ejected
from the vicinity of the PNS. The model 2D_RN94E shows how this mechanism allows
weak r-process to take place. Moreover, we have compared the final composition
obtained in situ and ex situ making use of RN16 and RN94. In agreement with
Harris et al. (2017), we find significant discrepancies mainly in products of the –-rich
freeze out, since Lagrangian tracer particles involve larger uncertainties when tracking
such regions. For the in situ results, we identify the resolution-dependent numerical
di�usion of species with low abundances as a factor contributing to the discrepancies.
Also, we demonstrate how these uncertainties propagate, leading to variations on the
nucleosynthesis path which alter the final yields.
What are the advantages and disadvantages of evolving a network in the simula-

tions? While Lagrangian tracer methods and the ex situ results based on them are
well suited for dense regions (e.g., Price & Federrath, 2010) and avoid the excess
numerical di�usion that may beset grid-based Eulerian schemes and, consequently, in
situ abundances, they lack mixing and are more uncertain in tracking low-density
regions and their nucleosynthesis, e.g. products of the –≠rich freeze-out. This work
suggests that it is necessary to employ in situ realistic networks in CCSN simulations
with a fine grid resolution, or with a less numerically di�usive advection scheme, to
obtain a realistic feedback of the energy generation, the neutrino opacities, and a more
accurate ejecta composition. Thus, this study showed the strengths and weaknesses of
employing networks in CCSN simulations and, hopefully, can help future simulations
to decide depending on the goal of the study.
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Observations of GWs (e.g., Abbott et al., 2017, 2020) and NICER (e.g., Miller et al.,
2019; Riley et al., 2019; Raaijmakers et al., 2020) triggered even more interest of
the community for the description of matter at high density, which has been hot
for decades. Numerous constraints have been obtained from nuclear theory (for
reviews see, e.g., Drischler et al., 2021; Kumar et al., 2023), experiments (e.g., Le
Fèvre et al. 2016; Russotto et al. 2016; Reed et al. 2021, or, for a recent review,
Kumar et al. 2023), and astrophysical observations (see, e.g., Özel & Freire, 2016;
Watts et al., 2016; Baiotti, 2019, for reviews in the topic). However, there are still
many uncertainties involved. Astrophysical sites like CCSNe or NSM reach extreme
conditions that cannot be reproduced on earth. The dynamics and final observables
of these events are critically impacted by the nuclear physics input, and hence, as
already stated in previous chapters, they are considered laboratories to explore new
physics.
In this chapter, we focus on the impact of di�erent nuclear matter properties on

CCSN simulations. In Section 6.1, we introduce the EOSs that we employ for our
CCSN simulations, following Huth et al. (2021). In Section 6.2, we study the e�ects
of several nuclear matter properties in CCSNe and show the preliminary results.

6.1 New EOSs

In this section we introduce the representative set of EOSs that we employ in this study.
They were first presented in Huth (2023), and are built with the new parameterization
of the e�ective mass and the EDF introduced in Huth et al. (2021).

6.1.1 E�ective mass

Ab initio calculations from chiral EFT are able to compute the nuclear interaction
up to ≥ 2n0 (for a review see, e.g., Machleidt & Entem, 2011). Carbone & Schwenk
(2019) considered two- and three-body interactions from chiral EFT and employed
finite-temperature self-consistent Green’s function method (e.g., Dickho� & Barbieri,
2004) to calculate the thermal e�ects on the EOS of dense matter. As mentioned in
Section 3.3.4, the e�ective mass m

ú (Equation (3.69)) is directly related to the thermal
index �th (see Equation (3.68)), that takes into account the thermal contribution to
the EOS.
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Huth et al. (2021) introduced a new parameterization of the e�ective mass, in order
to reproduce the thermal e�ects from Carbone & Schwenk (2019) and to explore
di�erent scenarios at densities which ab initio calculations do not reach (i.e., beyond
≥ 2n0):

m
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t

m
= 1 +

1
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1 + e≠5(n≠no�) , (6.1)

where m
ú
t is the e�ective mass, and t indicates the isospin (p or n). The parameters

–i, —i œ (1, 3) are fit to reproduce the results of Carbone & Schwenk (2019) for PNM
and SNM. They consider ‘t = ‘≠t = ‘ in order for the e�ective mass to have the same
high-density limit in PNM and SNM, and no� = 0.7 fm≠3. As mentioned previously,
one of the goals of such parameterization is to investigate the thermal e�ects above
≥ 2n0. Hence, they employ three representative values in the high-density limit,
‘ œ {0.7, 1.0, 1.3}, to encompass a wide range of possible behaviors at high densities,
as shown in Figure 6.1. Notice that below 2n0 the behavior is the same for the three
cases.

6.1.2 New energy per particle functional

In the Skyrme EDF (Equation (3.67)), the interaction part consists of a polynomial
which is function of powers of the density and involves a high degree of fine-tuning.
Hence, Huth et al. (2021) presented a new EDF in order to reduce the fine-tuning
and to systematically produce EOSs that are constrained by nuclear physics, QCD
calculations, and observations:

a
E

V
(n, x, T ) =

ÿ

t

·t(n, x, T )
2m

ú
t (n, x) ≠ xn� +

ÿ

i

5
ai

da + n(”i≠2)/3 + 4bix(1 ≠ x)
db + n(”i≠2)/3

6
n
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,

(6.2)
with i œ (1, 4). Two di�erent sets of density exponents ”i are chosen:

”kF = (3, 4, 5, 6), ”n = (3, 6, 9, 12). (6.3)

The set of ”kF exponents in the numerator correspond to integer powers of the Fermi
momentum kF at zero temperature (1, 4/3, 5/3, 2). With ”n, the exponent in the
numerator gets integer powers of n. The form of the denominator is chosen in order
for the interaction part to be proportional to n

5/3 in the high-density limit to ensure
the thermal index at this limit �th æ

5
3 (e.g., Constantinou et al., 2015b). da and db

are o�set parameters to fit the EDF. Huth et al. (2021) considered da = db = d, and
four di�erent values that di�er depending on the ”i used:

dkF œ {1, 3, 5, 7}, dn œ {0.2, 0.4, 0.6, 0.8}. (6.4)

Finally, ai and bi are fit parameters to reproduce:
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Figure 6.1: E�ective mass in terms of the density for PNM and SNM. Grey solid line
shows the case in which m

ú
/m æ 1.0 in the high-density limit. Grey dash-

dotted line corresponds to m
ú
/m æ 1.3 case and dashed to m

ú
/m æ 0.7

case. The blue and red bands depict the region in the m
ú
/m ≠ n/n0 plan

that the three scenarios span for PNM and SNM respectively. Blue and
red solid lines show the results from Carbone & Schwenk (2019) up to 2n0.
Figure from Huth et al. (2021)

1. Saturation density, binding energy, incompressibility, symmetry energy, and
slope parameter: (n0, B, K, Esym, L).

2. PNM E/A(n = 0.05 fm≠3) = 2.1 MeV (Gezerlis & Carlson, 2010).

3. P
PNM at n ¥ 8n0.

4. P
SNM at n ¥ 8n0.

The nuclear matter properties are varied within their uncertainties, and 3. and 4. are
consistent with NS observations and 4. agrees with functional renormalization group
(fRG) calculations (e.g., Leonhardt et al., 2020).

6.1.3 Representative set of EOSs

Huth et al. (2021) obtained a set of 16128 EOSs by combining the two di�erent ”i,
the four di�erent d, 12 variations of nuclear matter properties, the three di�erent
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e�ective mass cases, and 56 high-density fits for the pressure of PNM and SNM. Then,
additional constraints were applied:

• EOS must be consistent with the theoretical PNM uncertainty band and the
unitary gas bound for the energy per particle up to 0.2 fm≠3

• It provides maximum NS masses of M & 1.965 M§, which is the combined lower
limit from the pulsar observations Antoniadis et al. (2013) and within 2‡ from
Cromartie et al. (2019).

• EOS must be within the 95% confidence interval of Raaijmakers et al. (2020),
which constrained EOS properties with a joint analysis of NICER and LIGO/Virgo
measurements.

A total of 4333 EOSs fulfilled the constrains. Among them, Huth (2023) selected only
a representative set of EOSs in order to perform systematic studies by changing the
nuclear matter properties individually and, therefore, allowing to study the impact of
each of them on, e.g., CCSNe (see Section 6.2). The representative EOSs encompass
the mass-radius (M-R) uncertainty band obtained by employing all 4333 physically
motivated EOSs (see right panel of Figure 6.2). The boundary cases correspond to
the soft and sti� EOS models, which produce the smallest and largest NS, respectively,
among all of the EOSs, since they present the lowest and highest pressure over internal
energy density (see left panel of Figure 6.2). The radii of the remaining EOS models
lie between them in the M-R relation. In addition, fRG constraints to SNM have been
applied to the extreme cases, resulting in the fRG soft and fRG sti� models.
In this thesis, we focus on a total of ten EOSs that can be catalogued in three

di�erent subsets, depending on the nuclear matter property that is systematically
varied. All of them consider the new e�ective mass parametrization introduced in
Section 6.1.1, and employ m

ú
1.0. In a future work, we plan to study the e�ect of its

variation.
First, we study the impact of the slope parameter L and the symmetry energy

Esym on the explosion and the PNS evolution. We include four di�erent (Esym, L)
configurations to study the PNM characteristics (e.g. PNM_30/35):

• (Esym, L)/ MeV œ
)
(30, 35), (31, 55), (33, 65), (34, 55)

*
.

Furthermore, we check two di�erent (K, n0, B) configurations to explore SNM prop-
erties:

• min ‚= (Kmin, (n0, B)max) = (175 MeV, 0.171 fm≠3
, 16.43 MeV).

• central ‚= (K, n0, B)mean = (215 MeV, 0.164 fm≠3
, 15.86 MeV).

We name them SNM_min and SNM_central respectively. Finally, we explore four
di�erent combinations of the density exponents ”i and the o�set parameter d (e.g.,
”i_”kF_d3). The EOS models are summarized in Table 6.1. The name of the EOS
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Figure 6.2: Left panel shows pressure as a function of the internal energy density for the
representative EOS models. Right panel shows the M-R relation by employing
each of them. In grey, the 4333 EOSs that fulfilled all constrains. Figure
extracted from Huth (2023).

model indicates the nuclear property that is varied, i.e., PNM, SNM, or ”i, and its
value. For comparison, a version of the LS220 is included. All EOS tables were built
by Yeunham Lim (Lim, 2012).

6.2 Impact on CCSN

In this section we study the impact of the new EOSs, introduced in Section 6.1.3, on
CCSN.

We performed 1D CCSN simulations with A����-A���� for a total of 2 s in order
to simulate beyond 1.5 s postbounce and the PNS to reach densities beyond 2n0. As
in Chapter 5, we consider the transition from the high-density to the low-density
regime at Tth = 5.8 GK, and Tinter = 5.0 GK. In the latter, we use the R�N��
module presented in Chapter 4. In contrast to Chapter 5, in this chapter we use the
same configuration at low temperatures and densities for all models. We employ
the Helmholtz EOS with the RN16 network to take into account the main nuclear
reactions involved and an approximate composition out of NSE. At high temperatures
(T > Tth) and densities, we vary the EOS table employed (see Table 6.1):

• To study the variation of PNM, we performed four simulations with the di�erent
EOSs: 1D_PNM_30/35, 1D_PNM_31/55, 1D_PNM_33/65, and 1D_PNM_34/55.

• We explore the impact of SNM properties with the models that include the
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EOS ”i d n0 B K Esym L P
SNM
8n0 P

PNM
8n0 R1.4

PNM_30/35 ”n 0.4 0.164 15.86 215 30 35 600 800 12.38

PNM_31/55 ”n 0.4 0.164 15.86 215 31 55 600 800 13.05

PNM_33/65 ”n 0.4 0.164 15.86 215 33 65 600 800 13.21

PNM_34/55 ”n 0.4 0.164 15.86 215 34 55 600 800 12.69

SNM_min ”kF 3 0.171 16.43 175 34 55 800 1050 11.86

SNM_centr ”kF 3 0.164 15.86 215 34 55 800 1050 12.00

”i_”kF_d3 ”kF 3 0.164 15.86 215 34 55 800 1000 11.72

”i_”kF_d5 ”kF 5 0.164 15.86 215 34 55 800 1000 11.70

”i_”n_d.4 ”n 0.4 0.164 15.86 215 34 55 800 1000 12.7

”i_”n_d.6 ”n 0.6 0.164 15.86 215 34 55 800 1000 12.41

LS220 - - 0.155 16.0 220 29.6 73.7 - - 12.8

Table 6.1: EOS parameters for the set of representative EOS. The units are fm(2≠”i) for
d, fm≠3 for n0, MeV for B, K, Esym, L, MeV fm≠3 for the pressure of SNM
and PNM at 8n0. The last column shows the radius, in km, obtained for a
cold NS of 1.4 M§ by employing each EOS. All EOSs, except LS220, employ
the new e�ective mass parametrization with m

ú
1.0.

di�erent (K, n0, B) configuration: 1D_SNM_min, and 1D_SNM_centr.

• We performed four simulations to explore the impact of ”i and d variation:
1D_”i_”kF_d3, 1D_”i_”kF_d5, 1D_”i_”n_d.4, 1D_”i_”n_d.6.

• Finally, we include a model with the LS220 for comparison, 1D_LS220.

The composition at T > Tth is provided by the EOS table in the SNA approximation,
which considers neutrons, protons, alpha particles and a characteristic nucleus in
equilibrium. We chose a heating factor of HF = 2.8 to trigger the explosion, at least,
for the 1D_LS220 model.
In this chapter we focus on the high-density regime of the simulation at relatively

long times. Therefore, we need to resolve very well the PNS in order to avoid numerical
instabilities originated in the steep density gradient present on its surface. Thus,
we employ a high-resolution grid with nr = 1000 cells logarithmically spaced in the
radial direction and a central width of �r = 200 m.

In Table 6.2, we list the 1D CCSN models with several explosion properties.
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Model RPNS MPNS Eexpl 56Ni 44Ti

1D_PNM_30/35 17.9 1.663 1.63 2.33 4.21

1D_PNM_31/55 18.5 1.659 0.98 2.28 2.61

1D_PNM_33/65 18.7 1.658 0.96 2.43 2.20

1D_PNM_34/55 18.5 1.660 1.02 2.21 2.70

1D_SNM_min 15.7 1.813 - - -

1D_SNM_centr 17.7 1.625 1.83 3.82 3.92

1D_”i_”kF_d3 17.5 1.625 1.83 3.81 3.92

1D_”i_”kF_d5 17.5 1.623 1.88 3.81 4.21

1D_”i_”n_d.4 18.9 1.668 3.55 4.11 7.40

1D_”i_”n_d.6 18.5 1.651 1.71 2.92 4.23

1D_LS220 17.7 1.621 2.32 3.81 5.18

Table 6.2: Radius (km) and mass (M§) of the PNS, explosion energy (1050 erg), and
56Ni and 44Ti ejected masses (10≠2 M§ and 10≠5 M§, respectively) at the
end of the simulation.

6.2.1 Variation of PNM properties

We first focus on the impact of the slope parameter L on the dynamics of the explosion.
In Figure 6.3, we observe the behavior of the pressure as a function of the density.
The pressure follows the L hierarchy. That is the expected outcome, since the PNS
interior is neutron rich, and from Equation (3.66) we know that P (— = 1) Ã L. A
smaller L produces a lower pressure that favors a faster contraction of the PNS (see
Figure 6.4). The faster contraction increases the temperature of the PNS. Because
of this, and due to R‹e ≥ RPNS, the neutrinos decouple at higher temperatures and
therefore are more energetic (Figure 6.5). As a consequence, the energy deposited
by neutrinos in the gain layer is larger, which leads the shock to revive and expand
faster (see Figure 6.6). One may notice that the PNS contraction and, therefore, the
shock expansion for the model 1D_LS220 is significantly di�erent. It is because of
the di�erent parametrization of the e�ective mass, and hence, a di�erent thermal
contribution (Schneider et al., 2019; Yasin et al., 2020).
Furthermore, the lower central pressure allows more matter to accrete onto the

PNS, and, thus, the PNS to reach a higher central density (upper panel of Figure 6.7).
This forms a more compact and massive remnant (see Table 6.2), which is correlated
with the diagnostic explosion energy and the amount of 44Ti synthesized during the
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Figure 6.3: Central pressure evolution over central density reached in the simulation.

first ≥ 1.5 s. As pointed out previously, the faster contraction increases Tc. Since the
models that vary PNM properties consider the same e�ective masses, they have the
same thermal contribution (Equation (3.68)) (e.g., Yasin et al., 2020). Therefore, the
evolution of Tc is governed by the dynamic evolution of the PNS (i.e. its contraction),
and, thus, it scales like flc.
The central entropy, up to ≥ 0.8s postbounce, depends mostly on the symmetry

energy, in agreement with Bethe et al. (1979); Mazurek et al. (1979); Yasin et al.
(2020). At later times, the entropy can be approximated to Sc ≥ m

ú
Tc/fl

2/3
c by

considering Fermi liquid theory (Baym & Pethick, 1991). Therefore, the entropy
follows a similar trend as the temperature.
At high densities, i.e., above n0, a higher slope parameter L leads to a larger

di�erence between the energy per particle of PNM and SNM. Therefore, for larger
L, the system has to overcome a larger energy to become more asymmetric. As a
consequence, Yec follows the L hierarchy as we show in Figure 6.7. In addition,
neutrinos in the PNS interior are trapped, so the Yec does not change significantly due
to them.
At fixed L, the pressure is decreased by a larger Esym, since the slope of E/A

decreases to fit at the same high-density limit. We show this by comparing the
central pressure of 1D_PNM_34/55 to 1D_PNM_31/55. The lower pressure leads, as
discussed above, to a faster PNS contraction, a more energetic explosion and a more
compact object. However, the impact of the variation of Esym is much smaller than
the change in L.
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Figure 6.4: Evolution of the PNS radii.

Finally, the variation in PNM properties is also reflected in GW frequencies. We
use the universal relations from Sotani & Sumiyoshi (2019); Sotani et al. (2021) and
Torres-Forné et al. (2019) to compute them. The 2

f , 2
p1, 2

p2, and 2
p3 modes depend

on the local sound speed, that is given by the derivative of the pressure with respect
to the energy density, and density inside the shock. However, the simple formulae of
these relations do not consider that, and employ RPNS, MPNS, Rshock, and Mshock to
mimic the frequency behavior. In the case of 2

f (Sotani & Sumiyoshi, 2019; Sotani
et al., 2021):

ff (kHz) = 0.9733 ≠ 2.7171x + 13.7809x
2
, (6.5)

where x ©

1
MPNS
1.4 M§

21/2 1
RPNS
10 km

2≠3/2
. As a consequence, the frequency evolution is

directly related with the contraction of the PNS and its final compactness. Hence, even
though the frequencies of the 2

f modes in the four models are very similar, they follow
the inverse L hierarchy (see bottom left panel of Figure 6.7). On the other hand, 2

g1
and 2

g2 modes are produced in the PNS interior due to buoyancy, and depend mainly
on the PNS surface gravity (e.g., Torres-Forné et al., 2019; Jakobus et al., 2023). For
2
g1 modes, we use the following expression (Torres-Forné et al., 2019):

fg1(Hz) = 8.67 · 105
x ≠ 51.9 · 106

x
2
, (6.6)

with x © MPNS/R
2
PNS. As expected, the

2
g1 modes present higher frequencies for

smaller L (see bottom right panel of Figure 6.7). Consistently, the e�ect of Esym is
subdominant and only noticeable at fixed L: model 1D_PNM_34/55 present higher
2
g mode frequencies than model 1D_PNM_31/55.
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Figure 6.5: Electron flavor neutrinos mean energy (left) and luminosity (right).

Figure 6.6: Shock evolution of the di�erent models.
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6.2 Impact on CCSN

Figure 6.7: Evolution of the central density and the central temperature. Central entropy
and Ye evolution of all models. In the left panel we show the 2

f mode
frequency. It is calculated employing Sotani & Sumiyoshi (2019); Sotani
et al. (2021). The right panel shows the frequency evolution of the 2

g1 mode,
computed with Torres-Forné et al. (2019).
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To summarize, the postbounce explosion dynamics are quite sensitive to the slope
parameter, since it is proportional to the pressure of PNM and, therefore, play a key
role in the contraction of the PNS, and to the evolution of the shock.

6.2.2 Variation of SNM properties

Now we focus on the impact SNM has on CCSNe. For this purpose, we explore
the two di�erent configurations of (K, n0, B) with the models 1D_SNM_min and
1D_SNM_centr. As we show in the following, the onset of the explosion is extremely
sensitive to these properties.
SNM_min shows the lowest E/A, since it has the lowest K and the largest B. In

addition, it presents the lowest pressure over density (Figure 6.3). The lowest E/A

and pressure produce the fastest collapse among all models and allow for the highest
central densities at bounce (Figure 6.7). The densest PNS results in a less dense gain
region. Consequently, the gain region shows a lower pressure that is determinant for
the non-revival of the shock. As we show in the left panel of Figure 6.8, the neutrino
energy deposition in the gain layer of models 1D_SNM_centr and 1D_SNM_min is very
similar, and they only start to di�er when their shock evolution already significantly
di�ers, short before t ≥ 0.3 s. The neutrino energy deposition in model 1D_SNM_centr
drops drastically since the shock revives and expands, while in model 1D_SNM_min
the heating stays at the same order of magnitude because of the stagnation of the
shock. However, the pressures and internal energies are significantly di�erent. The
right panel of Figure 6.8 shows the pressure di�erences, defined as:

�P ©
P

1D_SNM_min
≠ P

1D_SNM_centr

P 1D_SNM_min · 100 (6.7)

The pressures (and hence the internal energy of the fluid) in the gain region of
1D_SNM_min are ≥ 30% lower, and a comparable neutrino energy deposition is not
enough to revive the shock.
The failed explosion in 1D_SNM_min allows the central densities to grow up to

flc ≥ 3.8 n0 and the central temperatures up to Tc ≥ 28 MeV at the end of the
simulation. Thus, model 1D_SNM_min produces the most compact remnant of our
study. This is consistent with the fact that it presents the lowest K, which translates
into lower pressures when increasing the density, i.e. a softer EOS. The higher B

and lower K leads to a larger energy di�erence between PNM and SNM in the min
configuration than in the central. Therefore, the system needs a higher energy to
become more asymmetric and, thus, 1D_SNM_min shows higher central Ye.

Finally, this model shows the highest GW frequencies. As we showed in Section 6.2.1,
the evolution 2

f and 2
g modes of the GWs depends mainly on the PNS contraction,

its compactness, and its surface gravity (see Equation (6.6)).
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Figure 6.8: Left panel shows the integrated neutrino heating in the gain region for
the 1D_SNM_min and the 1D_SNM_centr models. Right panel shows
the di�erences in pressure of both models (defined in Equation (6.7)).
Grey lines depict the mass shell evolution of 1D_SNM_centr (solid) and
1D_SNM_min (dashed). Red lines show the shock evolution. Isodensities
fl = {109

, 1011
} g cm≠3 are shown in purple. Finally, green lines correspond

to T = 5 GK.

6.2.3 Variation of the density exponents

In this section, we focus on the impact of the choice of the di�erent density exponent
set in the EOS parametrization, ”kF and ”n, and the choice of di�erent o�set parameter
d.
All of the models considered in this section produce successful explosions (Fig-

ure 6.6). In 1D_”i_”kF_d3 and 1D_”i_”kF_d5, the shock expands shortly after stalling,
after t ≥ 0.3 s. Although both 1D_”i_”n_d.4 and 1D_”i_”n_d.6 models experience a
fallback, the shock evolution of the former is quite di�erent. It almost stalls during
≥ 200 ms, when starts to expand linearly. After ≥ 800 ms, the explosion is finally
triggered. The late shock revival allows for a higher neutrino energy deposition in the
gain layer, and, as a consequence, this model produces the most energetic explosion
and the largest production of 56Ni (Table 6.2). Moreover, the latest onset of the
explosion allows the 2

g modes to grow in frequency since the densities involved in
the gain region increase. The shock evolution of all models is consistent with the
contraction of the PNS (Figure 6.4). As mentioned previously, a faster contraction
leads to an emission of more energetic neutrinos that are absorbed in the gain layer
and revive the shock.
The models that include the ”n set show higher central pressures over densities

than the models with ”kF (Figure 6.3), which is consistent with the shock evolution of
all of them. Furthermore, the former show to be sti�er. The impact of the o�set choice
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is di�erent in the two sets of ”i. The ”i_”n_d.4 EOS leads to higher pressures than
1D_”i_”n_d.6, while ”i_”kF_d3 and ”i_”kF_d5 show very similar ones, slightly higher
in the latter. The evolution of the central densities and temperatures follow inversely
the pressure hierarchy (Figure 6.7). However, in the preliminary results shown in this
section, the model 1D_”i_”n_d.6 presents an unusual Tc and Sc evolution, where the
PNS seem to experience a fast cooling. A further, more detailed, study of this case
will be necessary. As expected, the higher pressures in the EOSs that include ”n lead
to larger remnants. Model 1D_”i_”n_d.4 shows the largest RPNS at the end of the
simulation.
We notice that EOSs ”i_”n_d.4 and PNM_34/55 are very similar, since they only

di�er in the pressure of SNM and PNM they are fit at 8n0. ”i_”n_d.4 is fit to higher
pressures. This leads 1D_”i_”n_d.4 to higher pressures, and, hence, lower densities.
The central Ye in both models is identical, which is consistent with the same energy
they have to employ to make the system more (or less) asymmetric. Again, the larger
pressure in ”i_”n_d.4 produces a larger remnant.

Finally, SNM_centr has almost the exact same parametrization as ”i_”kF_d3, so all
of the explosion properties of the CCSN models that include them are very similar.
However, the former has a slightly higher pressure of PNM at 8n0, while the SNM
part is identical. This leads to a slightly larger PNS and a slightly higher Ye for the
model 1D_SNM_centr.

6.3 Summary & Outlook

In this chapter, we have employed the state-of-the-art EOSs tables from Huth (2023)
to perform a systematic study of the e�ects of several nuclear matter properties on
CCSNe. In particular, we have explored the variation of the slope parameter L, the
symmetry energy Esym, the incompressibility K, and the density exponent of the EDF
introduced in Huth et al. (2021).

Our CCSN models are consistent with the characteristics of the di�erent EOS, that
were selected to encompass a broad range in the M-R uncertainty band. Models that
present a higher pressure per density lead to lower central densities (e.g., Sumiyoshi
et al., 2005; Marek et al., 2009), since it counterbalance the gravity, and, therefore,
produce a slower collapse and lower central densities at bounce. In addition, they
exhibit a slower contraction of the PNS that leads to a later shock revival, since the
neutrinos are less energetic because they decouple at lower temperatures. In contrast,
softer EOSs allow for higher central densities due to the smaller pressures. These
models present a faster contraction and, therefore, a faster shock expansion that
usually involve a more energetic explosion and, therefore, a larger amount of 56Ni
and 44Ti yields. At latest times, the high densities achieved due to soft EOSs produce
a more compact object, as expected. In Table 6.2 we show that the mass and radius
of the PNSs at the end of the simulation present the same exact hierarchy as the one
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followed by the radius of a cold NS of 1.4 M§.
We find that the slope parameter L has a significant impact on the explosion

dynamics and the final remnant. The higher pressure per density involved for larger L

leads to slower PNS contraction and shock expansion. Therefore, a smaller L leads to
a more compact PNS. In addition, the Ye follows the L hierarchy since the di�erence
between PNM and SNM increases. The impact of Esym is subdominant with respect
to L.
The dynamic evolution is quite sensitive to SNM properties. The two di�erent

(K, n0, B) values explored lead to very di�erent evolution, in contrast to previous
works that suggest that the incompressibility does not have a big impact in the shock
dynamics (e.g., Swesty et al., 1994; Thompson et al., 2003). The model 1D_SNM_min
presented a fast collapse that produced the densest PNS from bounce. This resulted
in a less dense gain region and, therefore, lower pressures below the shock. Since the
neutrino energy deposition was similar, the system did not have enough energy to
revive the shock and, thus, the model showed no explosion.

Our results suggest that the impact of PNM matter properties could be subdominant
with respect to the e�ective mass, since the evolution of the PNS contraction, the
central quantities, and the GW frequency are highly impacted by it. Moreover, the
1D_LS220 model behaved significantly di�erent from the others due to its di�erent
m

ú parametrization that accounts for a di�erent thermal contribution. This would
agree with previous studies (e.g., Schneider et al., 2019; Yasin et al., 2020), that
showed that these e�ects are dominant. Thus, in a future work, we plan to extend our
study to the complete set of EOSs presented in Huth (2023), and to study the impact
of the e�ective mass in the dynamics of the explosion with the parametrization from
Huth et al. (2021); Carbone & Schwenk (2019).
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7 Three-dimensional CCSN simulation

In the last decade, the first 3D CCSN simulations including state-of-the-art neutrino
transport became feasible thanks to the new computational facilities (for reviews in the
topic see, e.g., Janka et al., 2016; Müller, 2020; Burrows & Vartanyan, 2021). However,
3D simulations still need to employ approximations to tackle the huge computational
cost. The di�erent groups consider various approaches to compromise accuracy for
performance. In Figure 7.1, we depict the strengths and weaknesses of several state-
of-the-art models. With the implementation of R�N�� in A����-A����, our goal is
to “expand” the nucleosynthesis branch keeping the M1 neutrino treatment for the
first second post-bounce. This is an important feature for a consistent nucleosynthesis
calculation, since neutrinos are key to set the electron fraction of the ejecta. The
Oak Ridge group, as mentioned in Chapter 5, evolve a large nuclear network in their
simulations (Bruenn et al., 2020). However, Sandoval et al. (2021) only evolve the
first ≥ 280 ms post-bounce including a sophisticated neutrino scheme and after that
evolve the system substituting the PNS for an inner boundary condition. Thus, we
consider that our ongoing and planned 3D models will suppose an advancement in
the field.

As stated in previous chapters, non-radial deformations such convection, turbulence,
and SASI are key to trigger the explosion. As a first approach 2D models allow to
include these e�ects at a reasonable computational cost. However, the behavior of a
fluid is di�erent in 2D with respect to 3D. First, the axisymmetry imposed in such
simulations drives the explosion towards the poles, as we observed in Chapter 5. 3D
models, in contrast, do not have any preferred axis and hence the global expansion
of the shock resembles more spherical (e.g., O’Connor & Couch, 2018), since it is
dominated by asymmetries at intermediate and small scales rather than the dipolar or
quadropolar morphology in 2D. Furthermore, some dynamical features of 2D models
may very well be artifacts of axisymmetry. For example, 3D could presumably avoid
the late-, fast-, low-Ye outflows that we observed1 in our 2D models in Chapter 5,
consequence of the strong inflows that squeeze the polar region of the PNS.
In addition, there are e�ects that make 3D models harder to explode2 than 2D

(Hanke et al., 2012; Couch, 2013; Couch & O’Connor, 2014). In 3D, the (kinetic)
energy in the turbulent post-shock region is transported towards smaller scales (Kol-
mogorov, 1941), the so-called direct energy cascade. Oppositely, in 2D, the energy is

1Other groups also noticed this behavior in 2D.
2This question is still being debated nowadays.
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Figure 7.1: Overview of the physics included in several state-of-the art, multi-dimensional,
neutrino-driven CCSN simulations. We consider the following works Nagakura
et al. (2018); O’Connor & Couch (2018); Burrows et al. (2020); Sandoval
et al. (2021); Kuroda et al. (2022); Navó et al. (2023). In addition, we add
the ongoing 3D_s24_RN16 and the future 3D_s24_RN94 introduced in this
chapter. Figure inspired and adapted from Obergaulinger & Reichert (2023).

carried from small to larger structures (inverse energy cascade (Kraichnan, 1967)),
and thus, 2D models are more e�ective at reviving the shock. In summary, the full
multi-dimensional nature of the explosion can only be captured in 3D.

In this chapter, we perform the first 3D CCSN simulation with A����-A���� that
includes the reduced nuclear network module, introduced in Chapter 4. The aim of
this chapter is to obtain a more realistic model which, at the same time, can provide
a benchmark for studies based on computationally cheaper one- and two-dimensional
models. It is the natural continuation of Chapter 5. Thus, we extend our study
performed in 1D and 2D to more realistic 3D CCSN models.

In Section 7.1, we introduce the model, and in Section 7.2 we present the prelimi-
nary results of the first tpb = 241 ms of evolution.
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7.1 Model

3D simulations are extremely computationally expensive due to, mostly, the neutrino
transport and the high sound speeds in the PNS. The RN94 network, although im-
proving the treatment of the composition, it is su�ciently large to slow down the
simulation substantially. In contrast, the RN16 network does not show significant run
time di�erences with the flashing scheme. Therefore, due to the limited computational
resources, we employ the simpler RN16 network. Nevertheless, as shown in Chapter 5,
we take into account the reactions responsible for most of the nuclear energy released
in the explosion.

As in Chapter 5, we consider Tth = 5.8 GK and Tinter = 5.0 GK. For T > 5.8 GK, we
employ the SFHo EOS and consider NSE.When T Æ 5.8 GK, we evolve the composition
with RN16. We consider the nuclear energy generation for temperatures below
Tinter Æ 5.0 GK. We employ a grid of 400 ◊ 64 ◊ 128 zones in radial (logarithmically
spaced), ◊, and „ direction, and 12 energy bins for the neutrinos. The radial component
has a central width of � = 400 m and encompasses the star up to an out radius
Rout ƒ 9 ·104 km. This time, we choose the s24 progenitor from Woosley et al. (2002),
since, in 1D, it produces especially energetic explosions (Jost, 2022) that captured our
attention, and motivated us to produce a self-consistent 3D model from it. Therefore,
we do not apply any artificial heating and set HF = 1. We do not consider rotation
nor magnetic fields. We name this model 3D_s24_RN16.

We evolved the initial progenitor collapse in 1D until 16 ms post-bounce. Then, we
mapped it to our 3D set up. In order to obtain the nucleosynthesis from this model,
we plan to run them, at least, up to 1 s post bounce. For now, we are able to show the
first 241 ms of evolution.
The scheduled model with the RN94 (3D_s24_RN94) will allow us to evolve the

composition with an unprecedented accuracy in a 3D model. However, we have not
been able to perform this simulation yet due to limited computational resources.

7.2 Early post-shock evolution

In this section, we show the preliminary results of the first 241 ms of evolution of
3D_s24_RN16.

In Chapter 2, we have already introduced the importance of heating and advective
timescales in the gain region (see Equations (2.8) and (2.9)). When the heating
timescale is shorter than the advective, the shock is more likely to successfully revive.
In this chapter, we use them to predict if our model produces an explosion. Here, we
employ an alternative definition of the advective timescale (e.g., Scheck et al., 2007),
which essentially considers the accretion of matter into the cooling region:

·adv ©
ÈRshockÍ ≠ ÈRgainÍ

Èv
gain
r Í

. (7.1)
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Figure 7.2: Top left panel shows the maximum (dashed), average (solid), and minimum
(dotted) position of the shock. Top right panel displays the ratio of advection
over heating timescales in the gain layer. Middle panels show the diagnostic
(left) and turbulent (right) energy. In the bottom panels, we depict PNS
mass (left) and radius (right) evolution. All panels show the evolution from
the time of starting the 3D run, i.e., t = 16 ms
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ÈRshockÍ is the angle averaged shock radius, ÈRgainÍ the angle averaged gain radius,
and Èv

gain
r Í is the mean radial velocity in the gain region.

As we show in Figure 7.2, ·adv/·heat > 1 short after t = 100 ms. At this point,
the diagnostic explosion energy Ediag start to increase, and the maximum shock
radius expands linearly. At the end of the simulation, Ediag and R

max
shock are growing

rapidly. The former reaches Ediag ƒ 0.55 · 1050 erg, which is 25 ≠ 50% of the typical
explosion energies obtained in 3D models (e.g., Burrows et al., 2020). The maximum
shock radius, at the end of the simulation, is pretty developed and achieves R

max
shock ƒ

500 km. Thus, the evolution of all of these quantities suggest that 3D_s24_RN16 will
produce a successful explosion. Obviously, the accretion into the PNS, which is rapidly
contracting, is still large due to the very early stage of the event. Hence, despite
the hints that make us suspect that this model will explode, it is precipitate to make
a strong prediction yet. In the following, we have a closer look at the morphology
evolution of the model. As we show below, it is consistent with a likely successful
explosion.
In Figures 7.3 and 7.4, we highlight the evolution of the flow in the post-shock

region of the model, which has a very standard CCSNe characteristics that many works
have described in the literature (e.g., Müller et al., 2012). During the first t ≥ 80 ms
the shape of the shock is quasi-spherical and the shock is stalled. The neutrino heating
produces an entropy gradient that produces a convective layer between the PNS and
the shock (e.g., Burrows & Vartanyan, 2021; Bollig et al., 2021), as the formation of
plumes indicate (e.g., Murphy et al., 2013).

The post-shocked region is mostly convective up to t ≥ 80≠100 ms, when we observe
the development of large buoyant plumes due to the strong neutrino heating, which
present a relatively high entropy of s ≥ 14 kB baryon≠1, that start to dominate the
maximum expansion of the shock, and triggers a large deformation. The growth of such
big buoyant plumes is especially of interest, since 3D models are less favorable to form
them due to the aforementioned energy cascade (Janka et al., 2016). Nevertheless, it
is consistent with results obtained in the literature (e.g., Murphy et al., 2013; Couch
& O’Connor, 2014). Simultaneously, turbulence starts to play an important role in
reviving the shock (Burrows et al., 1995; Dolence et al., 2013; Couch & Ott, 2015,
e.g.,). In Figure 7.2, we show the evolution of the kinetic turbulent energy of the flow.
We employ Couch & Ott (2015) to compute it in the gain region:

Eturb =
⁄

gain

1
2fl[(vr ≠ ÈvrÍ)2 + v

2
◊ + v

2
„], (7.2)

where vr, v◊, and v„ are the three components of the velocity, and ÈvrÍ is the angle
averaged radial velocity. Note that Eturb gives information about how disordered the
flow is, and it is not a diagnostic of the explosion. The turbulent motion adds an extra
pressure that drives the shock further outwards, reducing the ram pressure on it.
Furthermore, the turbulence causes the matter to follow non-radial trajectories, and
thus it is exposed to neutrino heating for longer times. We demonstrate this e�ect
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7 Three-dimensional CCSN simulation

Figure 7.3: Snapshots at x = 0 (left) and z = 0 (right) of the entropy at displayed times.
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7.2 Early post-shock evolution

Figure 7.4: Snapshots at x = 0 (left) and z = 0 (right) of the entropy at displayed times.
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by comparing the evolution of Eturb and ·adv/·heat in Figure 7.2. The presence of
turbulence in the flow significantly increases at t ≥ 80 ms, and favors the timescale
of the heating to be shorter than the advection timescale. The increased time that
matter experiences neutrino heating plays an important role for the development of
the aforementioned big high-entropy plumes.

The plumes expand and deviate the infalling matter that is not normal to the shock
towards regions where the shock is weaker, in low-entropy accretion streams (e.g.,
Bruenn et al., 2006; Lentz et al., 2015). The growth of the plumes drives these
downflows towards more lateral directions with respect to their radial expansion,
which generally prevents them from stalling. Thus, the maximum position of the
shock is pushed outwards, being even more asymmetric, and increasing the amount
of mass in the gain layer that eventually gets unbound, which causes Ediag to rapidly
increase. Comparing the snapshots at t ≥ 197 ms and t ≥ 241 ms, we notice how
several big plumes eventually dissipate into smaller structures due to the already
mentioned direct energy cascade. They turn into a convective, turbulent region (see
bottom-left area of the x ≠ y plane in the bottom right panel in Figure 7.4), that
well-mixes heterogeneous matter with di�erent Ye. This is well depicted in Figure 7.5,
where we show volume renderings of the entropy and electron fraction at t ≥ 241 ms.
Very similarly to Lentz et al. (2015), the two large plumes present in 3D_s24_RN16
will likely drive shock revival.

Interestingly, the high-entropy plumes show proton-rich conditions. In Figure 7.6
we show the evolution of the Ye and the entropy of the unbound material. Initially, the
post-shock region is mainly neutron-rich due to electron captures during the collapse,
with Ye ≥ 0.35 ≠ 0.4. This favours positron captures and neutrino absorption on
free neutrons (e.g., Perego et al., 2014), which cause Ye to increase. The luminosity
of electron neutrinos and antineutrinos is similar, and Á‹̄e ≠ Á‹e < 5 MeV, which
increases the Ye (see Equation (2.11)). Furthermore, the neutrino-heating increases
the entropy of the material. The large high-entropy plumes that we observe at the end
of the simulation experienced an extreme example of this process. They are born in
neutron-rich conditions (Ye ≥ 0.4). The turbulent nature of the flow makes the region
stay longer under a strong neutrino heating, that sets a high entropy in comparison
to the surrounding material, s ≥ 14 kB baryon≠1. Then, the plumes expand outwards
while strong electron neutrino absorption on free neutrons increase their entropy, up
to s ≥ 25 kB baryon≠1, and their Ye, ending up with Ye ≥ 0.55. Finally, the tail of low-
entropy and Ye ≥ 0.5 matter that we observe in Figure 7.6 corresponds to the matter
that has been accreted by the shock. Overall, at t = 241 ms, the neutrino-heated
unbound material presents Ye & 0.45 (e.g., Arcones & Thielemann, 2023; Wanajo,
2023).

The nuclear energy generation in the accreted progenitor layers is not very dy-
namically relevant yet. The spherical symmetry from the 1D progenitor is mainly
preserved, with the exception of a small region in the Fe-rich shell that experiences
some mixing (see left panel of Figure 7.7). In this model, we are interested in the
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Figure 7.5: Volume rendering of entropy (left) and electron fraction (right) at the end
of the simulation, i.e., t = 241 ms. Neutron-rich conditions are depicted in
brown, and proton-rich in blue. Grey contour shows the shock.

Figure 7.6: Evolution of entropy and electron fraction of unbound matter at t =
108, 152, 197, and 241 ms.
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7 Three-dimensional CCSN simulation

Figure 7.7: Snapshot of the nuclear energy generation at the end of the simulation,
t = 241 ms. Left panel shows the y = 0 plane and right panel z = 0. Green
contours correspond to Tth = 5.8 GK and Tinter = 5.0 GK. The former is
deformed by the shock.

impact the accreted heated progenitor shells have on the shock expansion. We expect,
accordingly to Chapter 5, that the ram pressure on the shock is reduced and facilitates
the expansion. In a future work, it will be interesting to study the e�ects of following a
detailed composition with RN94 from a 3D progenitor. Several works have computed
the last minutes of burning in the Si-O shells (e.g., Müller et al., 2017; Fields & Couch,
2021; Yoshida et al., 2021; Vartanyan et al., 2021). They have shown that convective
burning in these shells sets in Rayleigh-Taylor instabilities that produce extra turbu-
lence in the shock when they are accreted (e.g., Kifonidis et al., 2003), and, hence,
also add deformations to the shock and favour its revival. However, only in Sandoval
et al. (2021) the composition is evolved in a detailed manner in 3D simulations, but
employing 1D progenitors.

Finally, at the end of the simulation, i.e., t = 241 ms, the shock is hot and, therefore,
the post-shock region is still in NSE. Thus, unfortunately, we have not had the oppor-
tunity yet to follow the composition in the shocked region with the network, nor to
study the impact of the nuclear energy generation in the shocked material. When the
simulation reaches longer times, we will be able track the spatial distribution of 56Ni
and 44Ti, and to study the e�ects of the nuclear energy generation released in the
explosive nucleosynthesis.
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CCSN events span a large variety of thermodynamic conditions, from cold low-density
regions in the accreted O- and Si-rich layers (T ≥ 2 GK, fl ≥ 105 g cm≠3) to the hot
and very dense PNS (T ≥ 400 GK, fl ≥ 1014 g cm≠3). In this thesis, we explored the
impact of micro-physics in both density-temperature regimes.
In the first part, we had a closer look at the low-density and temperature regime,

and studied the impact of the composition on the dynamics of the explosion and the
nucleosynthesis (Navó et al., 2023). We implemented the nuclear reaction network
R�N�� (Reichert, 2016) in the state-of-the-art neutrino-hydrodynamics code A����-
A���� (Just et al., 2015; Obergaulinger & Aloy, 2017). This is an improvement with
respect to the previously included adaptation of the approximate flashing scheme
(Rampp & Janka, 2002), which only considers neutrons, protons, and a characteristic
nucleus. We considered two reduced networks: a 16 –-chain (RN16) and a larger one
that evolved 94 species and considered 148 in steady-state approximation (RN94).
The latter, is the most extended nuclear network in the nuclear chart ever employed
in a state-of-the-art, multi-dimensional, CCSN simulation, and is able to evolve the
composition of the main species synthesized in the event (Navó et al., 2023).
Dealing with the transition between NSE and non-NSE regime was very delicate,

since we had to deal with the interface that divided the two EOS regimes and the
interface between NSE and the network. While the former considered a density
criterion, the latter employed a temperature threshold. This led to undesired numerical
artifacts and instabilities in the interfaces. In order to guarantee consistency and
continuity across them, we unified the criteria and consider a high-density and
temperature regime, where NSE is employed, and a low-density and temperature
regime, in which the Helmholtz EOS is used together with the network. Finally, we
apply a linear interpolation on the internal energy between the high-density EOS and
the Helmholtz to ensure a smooth transition.

We performed a total of 13 one-dimensional and 3 two-dimensional simulations and
conducted a systematic study. We showed that a variation of composition treatment
leads to a di�erent production of free nucleons that change the neutrino absorption
in the vicinity of the shock, and modify the ram pressure outside of it. We also
demonstrated the impact of the nuclear energy generation on the dynamics of the
explosion. In the accreted progenitor mass shells, this heating term decreases the
ram pressure of the shock, and allows it to expand easier, in agreement with Bruenn
et al. (2006); Nakamura et al. (2014). In the post-shock region, the nuclear energy
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released contributes significantly to the explosion energy, increasing it up to a 20%.
The di�erences between RN16 and RN94 are small regarding the nuclear energy
generation, since the reactions that mostly contribute to it are included in both
networks. In addition, we showed how these e�ects on the dynamics impact on
the nucleosynthesis. First, we compared the final composition by applying the full-
network W��N�� (Reichert et al., 2023) in post-processing. The significant amount
of nuclear energy released in the post-shock region helps to sustain late outflows,
and allow for weak r-process production. Finally, we have shown the strengths and
weaknesses of evolving the composition in-situ or in post-processing with Lagrangian
tracer particles, by comparing the results obtained in-situ and ex-situ with the same
network. In agreement with Harris et al. (2017), we found large discrepancies in the
alpha-rich freeze out products, since Lagrangian tracer particles are more uncertain
when tracking low density regions. In contrast, the latter are more e�cient to track
high-density regions (Price & Federrath, 2010), and avoid the excess of numerical
di�usion that Eulerian codes need to ensure stability (Plewa & Müller, 1999). The
intrinsic di�erences between both methods lead to di�erent nucleosynthesis paths
that impact on the final composition of the ejecta. Thus, we concluded that employing
large in-situ nuclear networks, with a less di�ussive numerical scheme, are necessary
to obtain a more realistic feedback of the energy generation, the neutrino absorption,
and a more accurate nucleosynthesis.

At high densities, we explored the impact of di�erent nuclear matter properties on
the explosion. We performed 11 one-dimensional simulations where the explosion
was artificially triggered with a heating factor. We fixed the set up for all of them
and only varied the EOS of dense matter. We employed the EOSs from Huth et al.
(2021), who introduced a new EDF, and performed a systematic study of the e�ects of
the slope parameter L, the symmetry energy Esym, the incompressibility K, and the
density exponent of the EDF. In agreement with the literature (e.g., Sumiyoshi et al.,
2005; Marek et al., 2009), models that show a lower pressure per density lead to a
faster collapse and higher central densities at bounce. In addition, they show a faster
RPNS contraction that produces faster shock revivals and more compact remnants.

The e�ects of the slope parameter L are consistent with the fact that the pressure
follows its hierarchy, i.e., higher pressures for higher L. Therefore, the models that
present a smaller L lead to a faster contraction of the PNS and to a more energetic
explosion. In addition, the Ye also follows the L hierarchy, since the di�erence between
the energy per particle of PNM and SNM increases and, therefore, the system needs
to invest more energy to become more asymmetric. In contrast to previous works
(e.g., Swesty et al., 1994; Thompson et al., 2003), our preliminary results suggest
that the incompressibility K has a significant impact on the dynamics of the explosion.
The model that considered a substantially lower K produced the fastest collapse and
the highest central densities. This led to a less dense gain region and, thus, to lower
pressures below the shock that were not able to push the shock outwards, resulting in
a failed shock revival.
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In a next step, we plan to study the e�ects of the variation in the e�ective mass m
ú

with its new parametrization (Carbone & Schwenk, 2019). Our results show notable
di�erences between 1D_LS220 and the other models because of their distinct m

ú

parametrization. As demonstrated by Schneider et al. (2017); Yasin et al. (2020), the
thermal contribution to the EOS are included in m

ú, and have a dominant impact in
the PNS contraction.
Finally, we showed the first 241 ms of a 3D CCSN simulation that includes RN16

and, therefore, takes into account the main reactions responsible for the nuclear
energy generation. We employ the 24 M§ from Woosley et al. (2002), since it is
susceptible to produce an especially energetic explosion (Jost, 2022). We consider
no rotation and neglect the e�ect of magnetic fields. We plan to evolve the first 1 s
in order to perform a realistic model to provide a benchmark for systematic studies
employing cheaper one- and two-dimensional simulations. Our results are consistent
with numerous works in the literature (e.g., Müller et al., 2012; Murphy et al., 2013;
Couch & O’Connor, 2014; Lentz et al., 2015), and show that the model will likely
produce an explosion. The first ≥ 80ms, the shock is stalled and quasi-spherical. The
post-shock region is mainly convective due to the negative entropy gradient caused
by the neutrino heating. After that, the flow becomes more turbulent, i.e., follows
non-radial trajectories, and, hence, matter is exposed to neutrinos longer times. This
leads large relatively high-entropy plumes to develop and that expand outwards. At
the end of the simulation, two large plumes have become very prominent, dominate
shock expansion, and are likely triggering the explosion (e.g., Lentz et al., 2015).

We are eager to study the e�ects of the nuclear energy generation in 3D. We expect
that the shock will be a�ected by the nuclear energy generation in a similar way as
our results in 1D and 2D predict. In addition, evolving the composition in the accreted
progenitor layers allows us to take into account mixing e�ects and perturbations that
can provide extra deformations to the shock when they are accreted (e.g., Kifonidis
et al., 2003). Actually, our results already showed the formation of some anisotropies
in the accreted Fe-rich layer. At longer times, we will be able to track the spatial
distribution of 56Ni and 44Ti ( as in e.g., Stockinger et al., 2020; Sandoval et al., 2021),
which is key for observations.

For the future, we have already scheduled a 3D simulation with the RN94. The
computational costs of this model are very high, but the simulation will evolve the
composition with an unprecedented accuracy in a self-consistent 3D model with state-
of-the-art neutrino transport, which is important for a consistent nucleosynthesis. In
order to provide an even more consistent model, it will be very interesting to employ
a 3D progenitor that includes the last minutes of the O-Si convective burning (e.g.,
Müller et al., 2017; Fields & Couch, 2021; Yoshida et al., 2021; Vartanyan et al.,
2021).

As stated many times in this thesis, the CCSN puzzle is still far from being completed.
Nevertheless, an upcoming galactic event will trigger a multi-messenger signal that
will provide powerful additional constraints to many open questions such as, e.g,

101



8 Summary and Outlook

neutrino properties, the EOS of dense matter, explosion energy, nucleosynthesis, etc.
Moreover, the development of exascale computing facilities and improvements in the
physics and numerics of the models will entail a breakthrough for the production of a
large amount and more accurate 3D CCSN models that will bring us the opportunity
to study the mechanisms involved in the explosion and the nucleosynthesis with an
unprecedented accuracy.

102



Bibliography

Abbott, B., Abbott, R., Abbott, T., et al. 2016, PhRvD, 94

—. 2017, PhRvL, 119

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2020, PhRvD, 101, 084002

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2020, ApJL, 892, L3

Abdikamalov, E., Pagliaroli, G., & Radice, D. 2021, in Handbook of Gravitational Wave
Astronomy (Springer Singapore), 1–37

Abe, K., Adrich, P., Aihara, H., et al. 2021, ApJ, 916, 15

Abi, B., Acciarri, R., Acero, M. A., et al. 2021, EPJC, 81

Alekseev, E. N., Alekseeva, L. N., Volchenko, V. I., & Krivosheina, I. V. 1987, JETPL,
45, 589

Anderson, E., Bai, Z., Bischof, C., et al. 1999, LAPACK Users’ Guide, 3rd edn. (Philadel-
phia, PA: Society for Industrial and Applied Mathematics)

Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Sci, 340, 1233232

Arcones, A., & Bliss, J. 2014, JPhG, 41, 044005

Arcones, A., Martí nez-Pinedo, G., Roberts, L. F., & Woosley, S. E. 2010, A&A, 522,
A25

Arcones, A., & Thielemann, F.-K. 2012, JPhG, 40, 013201

—. 2023, A&A Rv, 31, 1

Arnett, W. D. 1980, ApJ, 237, 541

Arnett, W. D., Bahcall, J. N., Kirshner, R. P., & Woosley, S. E. 1989, ARA&A, 27, 629

Baade, W., & Zwicky, F. 1934, PhRv, 46, 76

Baiotti, L. 2019, PrPNP, 109, 103714

Balasi, K., Langanke, K., & Martínez-Pinedo, G. 2015, PrPNP, 85, 33

103



Bibliography

Barbarino, C., Dall’Ora, M., Botticella, M. T., et al. 2015, MNRAS, 448, 2312

Barker, B. L., Harris, C. E., Warren, M. L., O’Connor, E. P., & Couch, S. M. 2022, ApJ,
934, 67

Baym, G., & Pethick, C. 1991, Landau Fermi-Liquid Theory, Wiley

Bethe, H., Brown, G., Applegate, J., & Lattimer, J. 1979, NuPhA, 324, 487

Bethe, H. A., & Wilson, J. R. 1985a, ApJ, 295, 14

—. 1985b, ApJ, 295, 14

Bionta, R. M., Blewitt, G., Bratton, C. B., et al. 1987, PhRvL, 58, 1494

Bliss, J., Arcones, A., Montes, F., & Pereira, J. 2020, PhRvC, 101, 055807

Bliss, J., Arcones, A., & Qian, Y.-Z. 2018, ApJ, 866, 105

Blondin, J. M., & Mezzacappa, A. 2007, Nature, 445, 58

Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971

Bollig, R., Yadav, N., Kresse, D., et al. 2021, ApJ, 915, 28

Bruenn, S. W. 1985, ApJS, 58, 771

Bruenn, S. W., Dirk, C. J., Mezzacappa, A., et al. 2006, in JPhCS, Vol. 46, 393–402

Bruenn, S. W., Lentz, E. J., Hix, W. R., et al. 2016, ApJ, 818, 123

Bruenn, S. W., Blondin, J. M., Hix, W. R., et al. 2020, ApJS, 248, 11

Bugli, M., Guilet, J., & Obergaulinger, M. 2021, MNRAS, 507, 443

Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. 1957, RvMP, 29, 547

Burrows, A. 1990, ARNPS, 40, 181

Burrows, A., & Goshy, J. 1993, ApJL, 416, L75

Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830

Burrows, A., Radice, D., Vartanyan, D., et al. 2020, MNRAS, 491, 2715

Burrows, A., & Vartanyan, D. 2021, Nature, 589, 29

Butcher, J. C. 2003, Numerical Di�erential Equation Methods (John Wiley & Sons,
Ltd), 45–121

Carbone, A., & Schwenk, A. 2019, PhRvC, 100, 025805

104



Bibliography

Carroll, B. W., & Ostlie, D. A. 2007, An Introduction to Modern Astrophysics, 2nd
edn., ed. S. F. P. Addison-Wesley

Cernohorsky, J., & Bludman, S. A. 1994, ApJ, 433, 250

Cernohorsky, J., & van Weert, C. G. 1992, ApJ, 398, 190

Chadwick, J. 1932, Nature, 129, 312

Clark, D. H., & Stephenson, F. R. 1982, in NATO ASIC, Vol. 90, Supernovae: A Survey
of Current Research, ed. M. J. Rees & R. J. Stoneham, 355–370

Clayton, D. 1968, Principles of stellar evolution and nucleosynthesis: with a new
preface (University of Chicago Press)

Colgate, S. A., Grasberger, W. H., & White, R. H. 1961, AJ, 66, 280

Colgate, S. A., & Johnson, M. H. 1960, PhRvL, 5, 235

Colgate, S. A., & White, R. H. 1966, ApJ, 143, 626

Constantinou, C., Muccioli, B., Prakash, M., & Lattimer, J. M. 2015a, PhRvC, 92,
025801

—. 2015b, PhRvC, 92, 025801

Couch, S. M. 2013, ApJ, 775, 35

—. 2017, PTRSLA, 375, 20160271

Couch, S. M., Chatzopoulos, E., Arnett, W. D., & Timmes, F. X. 2015, ApJL, 808, L21

Couch, S. M., & O’Connor, E. P. 2014, ApJ, 785, 123

Couch, S. M., & Ott, C. D. 2015, ApJ, 799, 5

Couch, S. M., Warren, M. L., & O’Connor, E. P. 2020, ApJ, 890, 127

Courant, R., Friedrichs, K., & Lewy, H. 1928, Math. Ann., 100, 32

Cromartie, H. T., Fonseca, E., Ransom, S. M., et al. 2019, NatAs, 4, 72

Curtis, S., Ebinger, K., Fröhlich, C., et al. 2019, ApJ, 870, 2

Curtis, S., Wolfe, N., Fröhlich, C., et al. 2021, ApJ, 921, 143

Dickho�, W., & Barbieri, C. 2004, PrPNP, 52, 377

Dolence, J. C., Burrows, A., Murphy, J. W., & Nordhaus, J. 2013, ApJ, 765, 110

105



Bibliography

Drischler, C., Holt, J., & Wellenhofer, C. 2021, ARNPS, 71, 403

Dubroca, B., & Feugeas, J. 1999, CRASM, 329, 915

Duncan, R. C., Shapiro, S. L., & Wasserman, I. 1986, ApJ, 309, 141

Eichler, M., Sayar, W., Arcones, A., & Rauscher, T. 2019, ApJ, 879, 47

Eichler, M., Nakamura, K., Takiwaki, T., et al. 2017, JPhG, 45, 014001

Fabian, A. C., Willingale, R., Pye, J. P., Murray, S. S., & Fabbiano, G. 1980, MNRAS,
193, 175

Fields, C. E., & Couch, S. M. 2021, ApJ, 921, 28

Freiburghaus, C., Rembges, J. F., Rauscher, T., et al. 1999, ApJ, 516, 381

Fröhlich, C., Martí nez-Pinedo, G., Liebendörfer, M., et al. 2006, PhRvL, 96

Gamow, G. 1930, PRSLSA, 126, 632

Gezerlis, A., & Carlson, J. 2010, PhRvC, 81, 025803

Godunov, S. K. 1959, Mat. Sb., 47(89), 271

Hanke, F., Marek, A., Müller, B., & Janka, H.-T. 2012, ApJ, 755, 138

Harris, J. A., Hix, W. R., Chertkow, M. A., et al. 2017, ApJ, 843, 2

Harten, A., Lax, P. D., & Leer, B. v. 1983, SIAMRv, 25, 35

Hebeler, K., Lattimer, J. M., Pethick, C. J., & Schwenk, A. 2013, ApJ, 773, 11

Hempel, M., Fischer, T., Scha�ner-Bielich, J., & Liebendörfer, M. 2012, ApJ, 748, 70

Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ, 435, 339

Hirata, K., Kajita, T., Koshiba, M., et al. 1987, PhRvL, 58, 1490

Hix, W. R., & Meyer, B. S. 2006, NuPhA, 777, 188

Hix, W. R., Parete-Koon, S. T., Freiburghaus, C., & Thielemann, F.-K. 2007, ApJ, 667,
476

Hix, W. R., & Thielemann, F. K. 1999, JCoAM, 109, 321

Huth, S. 2023, PhD thesis, Technische Universität Darmstadt, Darmstadt

Huth, S., Wellenhofer, C., & Schwenk, A. 2021, PhRvC, 103, 025803

Iliadis, C. 2015, Nuclear Physics of Stars, Physics textbook (Wiley)

106



Bibliography

Jakobus, P., Müller, B., Heger, A., et al. 2023, arXiv e-prints, arXiv:2301.06515

Janka, H.-T. 2012, ARNPS, 62, 407

Janka, H.-T. 2017, Neutrino-Driven Explosions, ed. A. W. Alsabti & P. Murdin (Cham:
Springer International Publishing), 1095–1150

Janka, H.-T., Langanke, K., Marek, A., Martínez-Pinedo, G., & Müller, B. 2007, PhR,
442, 38

Janka, H.-T., Melson, T., & Summa, A. 2016, ARNPS, 66, 341

Janka, H. T., & Mueller, E. 1995, ApJL, 448, L109

Janka, H.-T. T. 1991, PhD thesis, Munich University of Technology, Germany

Jost, F. 2022, Master’s thesis, Technische Universität Darmstadt

Just, O., Bollig, R., Janka, H.-T., et al. 2018, MNRAS, 481, 4786

Just, O., Goriely, S., Janka, H.-T., Nagataki, S., & Bauswein, A. 2021, MNRAS, 509,
1377

Just, O., Obergaulinger, M., & Janka, H. T. 2015, MNRAS, 453, 3386

Kifonidis, K., Plewa, T., Janka, H. T., & Müller, E. 2003, A&A, 408, 621

Kolmogorov, A. 1941, Akademiia Nauk SSSR Doklady, 30, 301

Korobkin, O., Rosswog, S., Arcones, A., & Winteler, C. 2012, MNRAS, 426, 1940

Kotake, K., & Kuroda, T. 2017, in Handbook of Supernovae, ed. A. W. Alsabti &
P. Murdin, 1671

Kraichnan, R. H. 1967, Phys. Fluids, 10, 1417

Kumar, R., Dexheimer, V., Jahan, J., et al. 2023, arXiv e-prints, arXiv:2303.17021

Kuroda, T., Arcones, A., Takiwaki, T., & Kotake, K. 2020, ApJ, 896, 102

Kuroda, T., Fischer, T., Takiwaki, T., & Kotake, K. 2022, ApJ, 924, 38

Kuroda, T., Kotake, K., & Takiwaki, T. 2012, ApJ, 755, 11

Lattimer, J. M., & Swesty, D. F. 1991, NuPhA, 535, 331

Le Fèvre, A., Leifels, Y., Reisdorf, W., Aichelin, J., & Hartnack, C. 2016, NuPhA, 945,
112

Lentz, E. J., Bruenn, S. W., Hix, W. R., et al. 2015, ApJL, 807, L31

107



Bibliography

Leonhardt, M., Pospiech, M., Schallmo, B., et al. 2020, PhRvL, 125

LeVeque, R. J. 1992, Numerical methods for conservation laws (2. ed.)., Lectures in
mathematics (Birkhäuser), 1–214

—. 2002, Finite VolumeMethods for Hyperbolic Problems, Cambridge Texts in Applied
Mathematics (Cambridge University Press)

Levermore, C. D. 1984, JQSRT, 31, 149

Lim, Y. 2012, PhD thesis, Stony Brook U.

Lindquist, R. W. 1966, AP, 37, 487

Lippuner, J., & Roberts, L. F. 2017, ApJS, 233, 18

MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262

Machleidt, R., & Entem, D. 2011, PhR, 503, 1

Marek, A., Dimmelmeier, H., Janka, H. T., Müller, E., & Buras, R. 2006, A&A, 445,
273

Marek, A., Janka, H. T., & Müller, E. 2009, A&A, 496, 475

Martin, D., Perego, A., Arcones, A., et al. 2015, ApJ, 813, 2

Martin, D., Perego, A., Kastaun, W., & Arcones, A. 2018, CQGra, 35, 034001

Martínez-Pinedo, G., Fischer, T., Langanke, K., et al. 2016, Neutrinos and Their Impact
on Core-Collapse Supernova Nucleosynthesis, ed. A. W. Alsabti & P. Murdin (Cham:
Springer International Publishing), 1–37

Mazurek, T. J., Brown, G. E., & Lattimer, J. M. 1979, ApJ, 229, 713

Mezzacappa, A., Endeve, E., Messer, O. E. B., & Bruenn, S. W. 2020a, LRCA, 6, 4

—. 2020b, LRCA, 6, 4

Miller, M. C., Lamb, F. K., Dittmann, A. J., et al. 2019, ApJ, 887, L24

Minerbo, G. N. 1978, JQSRT, 20, 541

Morozova, V., Piro, A. L., Renzo, M., et al. 2015, ApJ, 814, 63

Mösta, P., Ott, C. D., Radice, D., et al. 2015, Nature, 528, 376

Müller, B. 2020, LRCA, 6, 3

Müller, B., Melson, T., Heger, A., & Janka, H.-T. 2017, MNRAS, 472, 491

108



Bibliography

Müller, E. 1986, A&A, 162, 103

Müller, E., Janka, H. T., & Wongwathanarat, A. 2012, A&A, 537, A63

Murdin, P., & Murdin, L. 1985, Supernovae (Cambridge University Press)

Murphy, J. W., Dolence, J. C., & Burrows, A. 2013, ApJ, 771, 52

Nagakura, H., Iwakami, W., Furusawa, S., et al. 2018, ApJ, 854, 136

Nakamura, K., Takiwaki, T., & Kotake, K. 2022, MNRAS, 514, 3941

Nakamura, K., Takiwaki, T., Kotake, K., & Nishimura, N. 2014, ApJ, 782, 91

NASA, ESA, CSA, et al. 2023. https://webbtelescope.org/contents/media/

images/2023/121/01GWQBBY77MHGFV3M3N63KDCEJ

Navó, G., Reichert, M., Obergaulinger, M., & Arcones, A. 2023, ApJ, 951, 112

Obergaulinger, M., & Aloy, M. Á. 2017, MNRAS, 469, L43

—. 2020, MNRAS, 492, 4613

Obergaulinger, M., Just, O., & Aloy, M. A. 2018, JPhG, 45, 084001

Obergaulinger, M., & Reichert, M. 2023, Nucleosynthesis in Jet-Driven and Jet-
Associated Supernovae, ed. I. Tanihata, H. Toki, & T. Kajino, 1–38

O’Connor, E., & Ott, C. D. 2011, ApJ, 730, 70

O’Connor, E. P., & Couch, S. M. 2018, ApJ, 865, 81

Oertel, M., & Providência, C. 2018, AIP Conference Proceedings, 1947, 020007

Oyamatsu, K. 1993, NuPhA, 561, 431

Özel, F., & Freire, P. 2016, ARA&A, 54, 401

Parete-Koon, S., Hix, W., & Thielemann, F. 2008, AAS Meeting Abstracts, 211, 162.10

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3

Perego, A., Hempel, M., Fröhlich, C., et al. 2015, ApJ, 806, 275

Perego, A., Rosswog, S., Cabezón, R. M., et al. 2014, MNRAS, 443, 3134

Peters, G. J., & Hirschi, R. 2013, The Evolution of High-Mass Stars, ed. T. D. Oswalt &
M. A. Barstow (Dordrecht: Springer Netherlands), 447–484

Plewa, T., & Müller, E. 1999, A&A, 342, 179

109



Bibliography

Pons, J. A., Reddy, S., Prakash, M., Lattimer, J. M., & Miralles, J. A. 1999, ApJ, 513,
780

Price, D. J., & Federrath, C. 2010, MNRAS, 406, 1659

Pruet, J., Ho�man, R. D., Woosley, S. E., Janka, H. T., & Buras, R. 2006, ApJ, 644,
1028

Qian, Y. Z., & Woosley, S. E. 1996, ApJ, 471, 331

Raaijmakers, G., Greif, S. K., Riley, T. E., et al. 2020, ApJ, 893, L21

Rampp, M., & Janka, H. T. 2002, A&A, 396, 361

Rapp, B. E. 2017, in Microfluidics: Modelling, Mechanics and Mathematics, ed. B. E.
Rapp, Micro and Nano Technologies (Oxford: Elsevier), 549–593

Rauscher, T., Heger, A., Ho�man, R. D., & Woosley, S. E. 2002, ApJ, 576, 323

Reed, B. T., Fattoyev, F., Horowitz, C., & Piekarewicz, J. 2021, PhRvL, 126

Reichert, M. 2016, Master’s thesis, Technische Universität Darmstadt

Reichert, M., Obergaulinger, M., Aloy, M. Á., et al. 2022, MNRAS, 518, 1557

Reichert, M., Obergaulinger, M., Eichler, M., Aloy, M. Á., & Arcones, A. 2021, MNRAS,
501, 5733

Reichert, M., Winteler, C., Korobkin, O., et al. 2023, ApJS, 268, 66

Riley, T. E., Watts, A. L., Bogdanov, S., et al. 2019, ApJ, 887, L21

Ristic, M., Holmbeck, E. M., Wollaeger, R., et al. 2022, arXiv e-prints,
arXiv:2206.02273

Roberts, L. F., Ott, C. D., Haas, R., et al. 2016, ApJ, 831, 98

Russotto, P., Gannon, S., Kupny, S., et al. 2016, PhRvC, 94

Ryden, B. 2011, Radiative Gas Dynamics (Lecture notes, Ohio State University).
http://www.astronomy.ohio-state.edu/~ryden/ast825/ch1-3.pdf

Sandoval, M. A., Hix, W. R., Messer, O. E. B., Lentz, E. J., & Harris, J. A. 2021, ApJ,
921, 113

Scheck, L., Janka, H.-T., Foglizzo, T., & Kifonidis, K. 2007, A&A, 477, 931

Schneider, A. S., Roberts, L. F., & Ott, C. D. 2017, PhRvC, 96, 065802

Schneider, A. S., Roberts, L. F., Ott, C. D., & O'Connor, E. 2019, PhRvC, 100

110



Bibliography

Serot, B. D., & Walecka, J. D. 1986, ANuPh., 16, 1

Shen, H., Toki, H., Oyamatsu, K., & Sumiyoshi, K. 1998, NuPhA, 637, 435

Shu, C.-W. 1998, Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws, ed. A. Quarteroni (Berlin, Heidelberg:
Springer Berlin Heidelberg), 325–432

Sieverding, A., Müller, B., & Qian, Y. Z. 2020, ApJ, 904, 163

Sieverding, A., Waldrop, P. G., Harris, J. A., et al. 2023, ApJ, 950, 34

Skyrme, T. 1958, NuPh, 9, 615

Skyrme, T. H. R. 1956, PMag, 1, 1043

Sotani, H., & Sumiyoshi, K. 2019, PhRvD, 100, 083008

Sotani, H., Takiwaki, T., & Togashi, H. 2021, PhRvD, 104, 123009

Steiner, A. W., Hempel, M., & Fischer, T. 2013, ApJ, 774, 17

Stockinger, G., Janka, H.-T., Kresse, D., et al. 2020, MNRAS, 496, 2039

Sugahara, Y., & Toki, H. 1994, NuPhA, 579, 557

Sumiyoshi, K., Yamada, S., Suzuki, H., et al. 2005, ApJ, 629, 922

Summa, A., Hanke, F., Janka, H.-T., et al. 2016, ApJ, 825, 6

Suresh, A., & Huynh, H. 1997, JCoP, 136, 83

Swesty, F. D., Lattimer, J. M., & Myra, E. S. 1994, ApJ, 425, 195

Szalai, T., Zsíros, S., Fox, O. D., Pejcha, O., & Müller, T. 2019, ApJ, 241, 38

Szczepa˝czyk, M. J., Zheng, Y., Antelis, J. M., et al. 2023, arXiv e-prints,
arXiv:2305.16146

Tews, I., Krüger, T., Hebeler, K., & Schwenk, A. 2013, PhRvL, 110, 032504

Thielemann, F.-K., Nomoto, K., & Hashimoto, M.-A. 1996, ApJ, 460, 408

Thompson, T. A., Burrows, A., & Pinto, P. A. 2003, ApJ, 592, 434

Timmes, F. X. 1999, ApJS, 124, 241

Timmes, F. X., & Arnett, D. 1999, ApJS, 125, 277

Timmes, F. X., Ho�man, R. D., & Woosley, S. E. 2000, ApJS, 129, 377

111



Bibliography

Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501

Torres-Forné, A., Cerdá-Durán, P., Obergaulinger, M., Müller, B., & Font, J. A. 2019,
PhRvL, 123, 051102

Varma, V., Müller, B., & Schneider, F. R. N. 2022, MNRAS, 518, 3622

Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A., & Dolence, J. 2018, MNRAS,
477, 3091

Vartanyan, D., Coleman, M. S. B., & Burrows, A. 2021, MNRAS, 510, 4689

Wanajo, S. 2006, ApJ, 647, 1323

Wanajo, S. 2023, arXiv e-prints, arXiv:2303.09442

Wanajo, S., Müller, B., Janka, H.-T., & Heger, A. 2018, ApJ, 852, 40

Wang, T., & Burrows, A. 2023, ApJ, 954, 114

Watts, A. L., Andersson, N., Chakrabarty, D., et al. 2016, RvMP, 88

Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978, ApJ, 225, 1021

Weinberg, D. H. 2007, Radiative Gas Dynamics (Lecture notes, Ohio State University).
https://www.astronomy.ohio-state.edu/weinberg.21/A825/a825.html

Winteler, C., Käppeli, R., Perego, A., et al. 2012, ApJL, 750, L22

Witt, M., Psaltis, A., Yasin, H., et al. 2021, ApJ, 921, 19

Witt, M. R. 2020, PhD thesis, Technische Universität Darmstadt, Darmstadt

Wongwathanarat, A., Janka, H.-T., Müller, E., Pllumbi, E., & Wanajo, S. 2017, ApJ,
842, 13

Woosley, S. E. 1993, ApJ, 405, 273

Woosley, S. E., & Heger, A. 2007, PhR, 442, 269

Woosley, S. E., Heger, A., & Weaver, T. A. 2002, RvMP, 74, 1015

Woosley, S. E., & Ho�man, R. D. 1992, ApJ, 395, 202

Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181

Woosley, S. E., Wilson, J. R., Mathews, G. J., Ho�man, R. D., & Meyer, B. S. 1994,
ApJ, 433, 229

Yasin, H., Schäfer, S., Arcones, A., & Schwenk, A. 2020, PhRvL, 124, 092701

112



Bibliography

Yoshida, T., Takiwaki, T., Kotake, K., et al. 2021, ApJ, 908, 44

Yukawa, H. 1935, Proc. Phys. Math. Soc. Jpn., 17, 48

Zampieri, L. 2017, Light Curves of Type II Supernovae, ed. A. W. Alsabti & P. Murdin
(Cham: Springer International Publishing), 1–32

113





Acknowledgements

I would like to thank all people who have supported me during these years. First,
thank you Almudena Arcones for believing in me and giving me the opportunity to
get into this wonderful topic, for teaching me and supervising me, and for being so
supportive during some hard times.
Thank you Miguel Ángel Aloy for agreeing to be my second reviewer. Especial

thanks to Martin Obergaulinger, I have learnt a lot from you. Thank you for teaching
me so much, introducing me to the code, and for all the time you have spent explaining
me things. Thank you Moritz Reichert for lending me your “child” and the many
hours invested in me. In addition, I would like to thank my collaborators Sabrina
Huth, Finia Jost, Yeunhwan Lim, and Achim Schwenk for all their work and so many
discussions. I really learn a lot from you.

This thesis significantly improved thanks to the comments from Almudena, Martin,
Moritz, Max, and Finia. Thank you!
I have spent great years in Darmstadt. Thanks to all the people from the group

with whom we have shared time, co�ees and discussions: Almudena, Federico, Finia,
Giacomo, Jan, Marius, Martin, Max(s), Moritz, Takami, and Thanasis. From the begin-
ning, I felt very welcomed, despite the global pandemic. Especial thanks to all good
friends I have made here: Daniel, Giacomo, Jorge, Kevin, Max and Tatjana, Moritz,
Thanasis, and Uriel. For the great evenings in Ratskeller, the chill nights in Tropical,
the table tennis matches, the bike tours, etc. Danke an den SV Blau-Gelb Darmstadt
für die Integration von Menschen aus so vielen verschiedenen Ländern in dieser Stadt.
Danke an alle meine Mannschaftskameraden für die schönen gemeinsamen Trainings-
und Spielabende.

No em voldria oblidar de donar les gràcies a Josep Maria Solanes, Josep Tous, Marc
Ribó, Daniel Del Ser i Octavi Fors. Gràcies per donar-me l’oportunitat d’introduir-me
en la ciència i per tot el suport durant la cerca d’un doctorat.
Moltes gràcies als meus amics i amigues Dani(s), David, Edu, Estefi, Facu, Ferri,

Martí, Nico, Pablo, Paula, Sara i Valen per seguir-me fent sentir com si mai hagués
marxat del poble.
Gràcies a tota la meva família. En especial, a la meva tieta Pilar, als meus tiets

Josep Maria i Maria Jesús, i al Paco i la Mari Carmen per cuidar de la gent que més
estimo. Gràcies als meus cosins Xavi (i Ester), David i Roger (i Laura) per estar a prop
meu.
Moltes gràcies Maria per acompanyar-me en aquesta aventura. Brindem per que

115



Bibliography

siguin moltes més.
Deixo pel final a les persones a qui més agraeixo tot els esforços què han fet per mi

desde que vaig néixer i que m’han donat tot. Moltes gràcies papa! Muchas gracias
mama!

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - Project-ID 279384907 - SFB 1245 and the European Research
Council under grant EUROPIUM-667912. The author gratefully acknowledges the
computing time provided by the high-performance computer Lichtenberg at the
NHR Centers NHR4CES at TU Darmstadt (Project-IDs 01527 and 01860). This is
funded by the Federal Ministry of Education and Research, and the state governments
participating.

116



Curriculum Vitae

Gerard Navó Pérez

2020 – 2023 Doctoral studies and member of the scientific sta�,
TU Darmstadt, Germany

2018 – 2019 Master’s degree in high energy physics, astrophysics,
and cosmology, Universitat Autònoma de Barcelona, Spain

2013 – 2018 Bachelor’s degree in physics, Universitat de Barcelona, Spain

117





Bibliography

Erklärungen laut Promotionsordnung

§ 8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der
schriftlichen Version übereinstimmt.

§ 8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion
versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule,
Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

§ 9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§ 9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 16. Oktober 2023
G. Navó Perez

119


