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Abstract

Systems with strangeness, such as hypernuclei, offer a unique window into the dynamics of
the strong force beyond traditional nucleonic systems. Building on recent developments of the
hypernuclear no-core shell model with realistic baryonic interactions from chiral effective field
theory, this work presents advancements on the three major frontiers of ab initio hypernuclear
structure theory: the refinement of the hyperon-nucleon interaction, precision calculations
with quantified uncertainties, and the push to medium-mass hypernuclei.

Firstly, we present a novel extrapolation tool supplementing the no-core shell model that
is based on artificial neural networks. Due to their pattern recognition abilities, they hold
great promise in enhancing precision and uncertainty estimation in (hyper)nuclear many-
body calculations, giving access to extrapolation procedures and meaningful many-body
uncertainties for observables beyond ground-state energies. Moreover, they demonstrate the
universality of observable-specific convergence patterns through applications across nucleonic
and hyperonic systems.

Secondly, we address the chiral hyperon-nucleon interaction, which is poorly constrained
due to the scarce experimental scattering data available. Based on precise many-body cal-
culations we demonstrate the potential of ground-state and spectroscopic data for p-shell
hypernuclei as additional constraints for the hyperon-nucleon interaction. We present an
optimized interaction at leading order, which is then applied across a range of p-shell hyper-
nuclei. Through only minor adjustments of the low-energy constants we alleviate the previous
overbinding of the hyperon and significantly improve the agreement with experimental data
in light hypernuclei.

Lastly, we present pioneering work on ab initio calculations of medium-mass hypernuclei.
In a first step, we extend the concept of natural orbitals as an optimized single-particle basis to
hypernuclei. We find that the associated wavefunctions yield great insight into the structure
of hypernuclei, allowing us to identify 5

ΛHe as a candidate for a hyperon halo. From there we
develop a hyperon-attached in-medium no-core shell model framework and present the first
ever ab initio calculation of 41

ΛCa.
By addressing these challenges, this work contributes to a deeper understanding of the

strong force in hypernuclear systems and lays the groundwork for future investigations.
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Zusammenfassung

Ab Initio Theorie und Maschinelles Lernen für Hyperkerne

Hyperkerne und andere Systeme mit Strangeness bieten einen einzigartigen Einblick in die
Eigenschaften der starken Wechselwirkung jenseits herkömmlicher Atomkerne. Aufbauend
auf vorangegangenen Entwicklungen des No-Core Schalenmodells für Hyperkerne zusam-
men mit realistischen baryonischen Wechselwirkungen aus der chiralen effektiven Feldtheorie
präsentiert diese Arbeit neue Entwicklungen in drei der wichtigsten Gebiete der ab initio Hy-
perkernstrukturtheorie: die Modellierung der Hyperon-Nukleon-Wechselwirkung, Präzision-
srechnungen mit quantifizierten Unsicherheiten und der Vorstoß zu schwereren Hyperkernen.

Zunächst präsentieren wir eine neuartige Extrapolationsmethode für Rechnungen mit
dem No-Core Schalenmodell basierend auf künstlichen neuronalen Netzwerken. Dank ihrer
Qualitäten im Bereich der Mustererkennung sind Methoden basierend auf maschinellem
Lernen vielversprechende Ansätze um sowohl die Präzison von Vielteilchenmethoden als
auch die Quantifizierung von Unsicherheiten zu verbessern. Insbesondere ermöglichen sie
die Extrapolation von anderen Observablen als der Grundzustandsenergie und erlauben die
Abschätzung realistischer Unsicherheiten. Darüber hinaus zeigen diese Methoden, dass das
Konvergenzverhalten von Observablen über verschiedene Kerne und Hyperkerne hinweg
universell ist.

Danach wenden wir uns der Hyperon-Nukleon Wechselwirkung zu, deren freie Parame-
ter aufgrund der knappen Verfügbarkeit von experimentellen Streudaten nur unzureichend
genau bestimmt werden können. Basierend auf präzisen Vielteilchenrechnungen demonstri-
eren wir das Potential von grundzustands und spektroskopischen Daten für Hyperkerne in
der p-Schale als zusätzliche Randbedingung für die Hyperon-Nukleon-Wechselwirkung und
präsentieren eine optimierte Wechselwirkung in erster chiraler Ordnung, die anschließend für
die Untersuchung einer Auswahl an leichten Hyperkernen verwendet wird. Mit nur kleinen
Anpassungen der Niedrigenergiekonstanten erreichen wir so eine Reduktion der vorherigen
Überbindung des Hyperons, was zu einer deutlich besseren Übereinstimmung mit den experi-
mentellen Daten insbesondere in leichten Hyperkernen führt.

Abschließend präsentieren wir wegweisende Entwicklungen hin zu einer ab initio Beschrei-
bung mittelschwerer Hyperkerne. Dafür übertragen wir zunächst das Konzept der natürlichen
Orbitale als optimierte Einteilchenbasis auf Hyperkerne. Die Wellenfunktionen der natürlichen
Orbitale eigenen sich hervorragend als Diagnosewerkzeug für strukturelle Eigenschaften von
Hyperkernen, was uns ermöglicht 5

ΛHe als potentiellen Kandidaten für einen Hyperon-Halo
zu identifizieren. Darauf aufbauend entwickeln wir ein Framework für das Hyperon-Attached
In-Medium No-Core Schalenmodell und präsentieren erstmals ab initio Berechnungen von
41
ΛCa.

Durch diese Entwicklungen trägt diese Arbeit zu einem tieferen Verständnis der starken
Wechselwirkung in Hyperkernen bei und bereitet den Weg für zukünftige Entwicklungen.
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Introduction

Theoretical nuclear physics is the branch of physics that aims for an understanding of atomic
nuclei. In particular, nuclear structure theory is concerned with the description of the prop-
erties of such nuclei, which are self-bound systems that emerge from the strong interaction.
Being one of the three fundamental forces governed by the standard model of particle physics,
the strong interaction itself is captured in the theory of quantum chromodynamics (QCD). It
describes the interaction between quarks and gluons as fundamental particles that make up
baryons and mesons including nucleons as the constituents of atomic nuclei. However, these
particles exhibit confinement giving QCD its non-perturbative character in the low-energy
regime. This is what what poses a major challenge for direct calculations of nuclei or the
interaction between their constituents from QCD.

Throughout the past decades, chiral effective field theory (EFT) has become the most
successful approach for bridging the gap between QCD and nuclear theory [1, 2]. As the
name suggests, it allows to construct an effective interaction on a low-energy scale featuring
nucleons and pions as effective degrees of freedom, while being rooted in the fundamental
symmetries of QCD. It resembles a low-momentum expansion for the nuclear interaction that
comes with free parameters, which need to be fit to experimental scattering data.

In contrast to e.g. the electromagnetic interaction, the strong interaction features a strong
repulsive short-range behavior along with strong tensor interactions, making calculations of
systems that are bound by the strong force extremely challenging. Here, unitary transforma-
tions of the interaction within the similarity renormalization group (SRG) have proven to be
a powerful asset that allows to soften the interaction [3–5]. Therefore, they have become a
standard tool complementing interactions from chiral EFT.

Naturally, nuclear structure theory has mostly been concerned with nucleonic systems
as they make up the matter around us. However, the standard model, and with it QCD,
features a total of six quark flavors that give rise to the formation of baryons and mesons
beyond nucleons and pions, which consist of up and down quarks only. Substituting one of
the quarks in nucleons with a strange quark yields a class of particles called hyperons, in
particular, the Λ and Σ baryons. According to their quark content they are assigned with a,
historically negative, strangeness quantum number S = −1. Introducing a second strange
quark results in the Ξ baryons with S = −2 respectively. Correspondingly, kaons arise as
the strange counterparts of the pions. Due to the short lifetime of hyperons in the order of
10−10 s they rapidly decay into nucleons and pions. However, if created in the presence of
other fermions such as nucleons they can form bound systems known as hypernuclei. Since
electromagnetic and strong processes occur on even shorter timescales, hypernuclei are well-
defined and measurable systems, yielding great potential to deepen our understanding of the
strong force beyond purely nucleonic systems.

Experimentally, hypernuclei have first been observed in the early 1950s created by cosmic
rays in an emulsion stack [6]. Their existence has later been confirmed in other emulsion
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experiments [7, 8] and, with the rise of particle accelerators, hypernuclei have been produced
with kaon, pion, or electron beams, where they were measured with, e.g., high resolution
spectrometers [9–12]. Still, measuring hypernuclei with good precision remains challenging
due to their short lifetime. Nevertheless, there has been an increasing interest in hypernuclei
very recently, which has led to a wave of proposals for new hypernuclear experiments in the
near future [13–15].

Besides nuclear and particle physics this interest is also driven by the field of nuclear astro-
physics, where the potential existence of hyperons in the extreme conditions inside neutron
stars has led to the so-called hyperon puzzle [16–18] whose solution requires a more general
understanding of the strong interaction. From a theoretical point of view this calls for models
for the interaction between hyperons and nucleons or amongst hyperons themselves. The
framework of chiral EFT has successfully been extended to include hyperons [19–22]. Though,
the determination of the free parameters in the hyperonic channels is far more difficult due to
a lack of hyperon scattering data. Therefore, hypernuclei are the most promising candidates
for providing a deeper insight into the strange aspects of the strong interaction.

This leads us back to nuclear structure theory or, more precisely, hypernuclear structure
theory. In the nucleonic regime, a variety of ab initio methods such as the no-core shell
model (NCSM) [23–26], the coupled-cluster (CC) method [27], the self-consistent Green’s
function (SCGF) approach [28], the in-medium similarity renormalization group (IM-SRG)
[29, 30], and quantum Monte Carlo (QMC) methods [31], as well as hybrid methods like the
in-medium no-core shell model (IM-NCSM) [32] have become state-of-the-art and successfully
operate in different different areas of the nuclear chart. They all share essential properties
encapsulated in the term “ab initio”, in particular controlled and quantified uncertainties
and systematic improvability. Together with increasingly sophisticated uncertainty estimates
based on Bayesian statistics [33–35], nuclear structure physics has entered a precision era.

The picture in the hypernuclear regime, however, is somewhat different as the inclusion
of hyperons requires major extensions of the established many-body methods. Until recently,
ab initio calculations for hypernuclei were only feasible for few-body systems via methods
like Faddeev-Yakubovski (FY) [36, 37], Gaussian expansion methods (GEM) [38], or QMC
approaches [39, 40]. But lately, generalized NCSM implementations and nuclear lattice EFT
methods have been developed, that give access to observables in (singly-strange) p-shell
hypernuclei [41–45]. These observables, in turn, foster our understanding of the strong
interaction. However, besides these exciting advances, ab initio hypernuclear structure theory
still exhibits deficiencies and limitations that essentially yield three major challenges that we
will explore in this work:

The first and most difficult challenge lies with the construction of the interaction. The
hypernuclear Hamiltonian features terms that account for interactions of hyperons with nucle-
ons and other hyperons. For the hyperon-nucleon interaction, these terms have been worked
out up to the fourth order of the chiral expansion [22], however, the emerging free parame-
ters are poorly constrained due to a lack of hyperon-nucleon scattering data. This contributes
to deficiencies like a systematic overbinding of the hyperons in hypernuclei [42]. Moreover,
all these interactions have so far been limited to two-body forces, though different studies
indicate that the inclusion of three-body forces might play an important role in the description
of hypernuclei and neutron stars [18]. Obtaining additional scattering data is challenging
due to the short lifetime of hyperons. Hence, other means have to be developed to better
constrain hypernuclear interactions.
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The strive for precision calculations of hypernuclei poses a second challenge that is tightly
connected to uncertainty quantification. While ab initio methods feature controlled uncertain-
ties by construction, accurately quantifying them remains a major problem in, both, nuclear
and hypernuclear theory. Consequently, uncertainty quantification has been the focus of vari-
ous developments in the past decade [34, 46–49]. For most ab initio many-body methods, in
particular configuration interaction (CI) methods like the NCSM, the main uncertainty arises
from the limited model-space size that can be handled. Even with high-performance comput-
ing (HPC) facilities, which have enabled the development of large-scale numerical ab initio
methods in the first place, exact results can only be obtained for the smallest of nuclei. This
has opened up the question on how to extract meaningful predictions of observables along
with reasonable uncertainties from calculations in finite model spaces. Such postprocessing
procedures are mostly based on phenomenological and semi-empirical schemes [50–53]. This
is starting to change as the rise of machine learning (ML) has also impacted nuclear theory [54,
55]. Being an ideal and very adaptable tool for data processing it yields promising Ansätze
for procedures supplemental to ab initio many-body calculations [56, 57]. Hence, ML meth-
ods carry the potential to significantly improve the precision of (hyper)nuclear many-body
calculations, which is not only essential for a detailed understanding of the strong interaction
but also plays a crucial role in the design of future experiments.

The third and final challenge is the everlasting push to heavier systems. As of now, ab initio
methods for hypernuclei can only reach up to p-shell systems, after which the capabilities
of the NCSM are exhausted. While calculations of medium-mass hypernuclei have been
performed with mean-field and perturbative approaches like many-body perturbation theory
(MBPT) and Brueckner-Hartree-Fock (BHF) [42, 58], ab initio calculations in this mass regime
are highly desirable. Since the ab initio description of nuclei has made tremendous progress in
recent years reaching all the way up to 208Pb and pushing to exotic and deformed systems [59–
63], these methods provide an ideal starting point for extensions to hypernuclei.

The goal of this work is to address these challenges one by one, to investigate and discuss
them in detail, and to present advances on all three frontiers.

This thesis is structured as follows: The first part is focused on the basic premise of the
nuclear many-body problem, including the modeling of the Hamiltonian and the NCSM as
our many-body method of choice. Next, we introduce the basic concepts of ML and artificial
neural networks in part two and discuss their potential as a supplemental tool for the NCSM.
Part three is then focused on ab initio theory for p-shell hypernuclei, where we explicitly
address the problems of the chiral hyperon-nucleon interaction and demonstrate a way to
improve it based on p-shell hypernuclear structure data. Finally, in part four we discuss how
ab initio theory for hypernuclei can be extended to the medium-mass regime and present the
first ab initio calculations of medium-mass hypernuclei in the IM-NCSM framework.





Part I

The Nuclear Many-Body Problem
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1
The Nuclear Hamiltonian

At the core of nuclear structure theory is the non-relativistic nuclear many-body problem
given by the stationary Schrödinger equation

Ĥ|Ψn⟩ = En|Ψn⟩ (1.1)

with the nuclear Hamiltonian Ĥ, its eigenvalues En, and corresponding eigenstates |Ψn⟩.
The difficulty of solving this equation strongly depends on the complexity of the employed
Hamiltonian. Since nuclei are self-bound systems we consider a translationally invariant
intrinsic Hamiltonian

Ĥint = T̂ − T̂cm + V̂ = T̂int + V̂ (1.2)

which, in general, consists of one term for the intrinsic kinetic energy T̂int = T̂ − T̂cm and one
for the potential V̂ , where the latter takes account for the interactions among nucleons. The
operator for the intrinsic kinetic energy of an A-body system can be written down explicitly
as

T̂int = T̂ − T̂cm =
A∑
i=1

p̂2i
2m̂i

− P̂ 2
cm

2M̂
, (1.3)

where m̂i and p̂i are the mass and momentum operators for the i-th particle and M̂ and P̂cm

are the total mass and the center-of-mass momentum which can again be expressed in terms
of single-particle operators

M̂ =
A∑
i=1

m̂i , P̂cm =
A∑
i=1

p̂i. (1.4)

Note that we intentionally keep track of the masses of the individual particles via the in-
troduced mass operators. While this is often disregarded for nucleonic systems under the
assumption of equal nucleon masses mN ≡ mp = mn, we choose a more general formulation
here in foresight of the extension to hypernuclei in part III, where we need to account for the
different masses of nucleons and hyperons explicitly.

Conveniently, the kinetic energy can be rewritten in terms of relative momenta between
two particles q̂ij = µ̂ij(p̂j/m̂j − p̂i/m̂i) and the reduced mass µ̂ij = (m̂im̂j)/(m̂i + m̂j)

7



8 CHAPTER 1 – THE NUCLEAR HAMILTONIAN

yielding

T̂int =

A∑
i=1

p̂2i
2m̂i

− 1

2M̂

A∑
i,j=1

m̂im̂j
p̂i · p̂j

m̂im̂j

=
A∑
i=1

p̂2i
2m̂i

− 1

2

A∑
i=1

(
p̂2i
2m̂i

+
p̂2i
2m̂i

)
+

1

2M̂

A∑
i,j=1

m̂im̂j

q̂2ij
2µ̂ij

(1.5)

=

A∑
i<j

m̂i + m̂j

M̂

q̂2ij
2µ̂ij

,

where we have used

p̂i · p̂j

m̂im̂j
=

p̂2i
2m̂2

i

+
p̂2j
2m̂2

j

− 1

2

(
p̂2j
m̂j

− p̂2i
m̂i

)2

=
p̂2i
2m̂2

i

+
p̂2j
2m̂2

j

−
q̂2ij
2µ̂2

ij

. (1.6)

For nucleonic systems the assumption of equal nucleon masses holds and the kinetic
energy can further be simplified to

T̂int =
2

A

A∑
i<j

q̂2ij
mN

. (1.7)

Constructing the nuclear potential V̂ poses a far more complicated challenge as the strong
force, which describes the interaction between nucleons, is not yet fully understood. In order
to allow for a more conceptual approach it is commonly decomposed into terms sorted by
particle rank

V̂ = V̂NN + V̂3N + . . .+ V̂AN. (1.8)

Due to computational limitations and limited availability of interactions it is commonly trun-
cated at the three-body level. However, contributions from higher particle ranks are expected
to be rather small [64] 1. While there have been successful phenomenological parametriza-
tions of nuclear interactions based on symmetry considerations [67–69], most ab initio meth-
ods nowadays resort to interactions constructed from chiral EFT.

1.1 Chiral Effective Field Theory

Nucleons or, more general, baryons consist of quarks and gluons. Hence, their interaction
is governed by QCD. In particular, it is the low-energy regime of QCD that is of interest
for nuclear structure theory. In this regime quarks and gluons exhibit confinement, thus,
preventing a perturbative description of the interaction in terms of its fundamental particles.

Chiral EFT presents an approach to construct baryon-baryon interactions from the most
general Lagrangian that obeys the symmetries of QCD. It takes advantage of the comparably

1Note that the exclusion of higher-body forces results in major deficits in the description of some specific cases
such as the Hoyle state in 12C, which is understood as an α-clustering phenomenon and, therefore, dominated by
many-body effects beyond the three-body level [65, 66].
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Figure 1.1: Diagrammatic representation of the Weinberg power counting in chiral EFT with multi-
nucleon forces emerging at different chiral orders.

large gap between the pion mass and heavier mesons, featuring only nucleons and pions as
active degrees of freedom. Since a detailed discussion of chiral EFT would go far beyond the
scope of this work and has been extensively provided in other work, we refer to [1, 2, 70, 71]
for further reading and focus on the conceptual characteristics of chiral EFT that are of major
importance for nuclear structure calculations.

First and foremost, chiral EFT features an expansion around a small parameter Q = P/Λχ

where P is the typical momentum scale of a nucleus and Λχ is the so-called breakdown
scale that ensures the separation of the aforementioned mass regimes. The individual terms
of the interaction can then be organized in powers of Q giving rise to a power counting
scheme as depicted in Fig. 1.1, which was first introduced by Weinberg [72–75]. This power
counting not only leads to a gradual emergence of multi-nucleon forces, which aligns with the
previously mentioned decomposition of the nuclear potential, but, more importantly, allows
for systematic order-by-order improvement of the interaction – a key aspect of ab initio theory.
The latter further enables the estimation of uncertainties that arise from the truncation of
the chiral expansion, which we will come back to later. Looking at the individual orders
we find that the leading order (LO) and next-to-leading order (NLO) contributions consist of
nucleon-nucleon (NN) diagrams only while three-nucleon (3N) and 4N forces enter at next-to-
next-to-leading order (N2LO) and next-to-next-to-next-to-leading order (N3LO) respectively.

When working with these potentials one encounters infinities. These can be avoided
through different regularization schemes, most commonly through cutoff functions in mo-
mentum space, coordinate space, or both. These functions additionally require the definition
of a cutoff scale ΛC < Λχ. Finally, being an effective theory, free parameters called low-energy
constants (LECs) enter at every chiral order. These parameters, which correspond to the
occurring contact terms, have to be constrained through fits to experimental data or by other
means.
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Apparently, the construction of an interaction within the chiral EFT framework is certainly
not unique. Even if we limit ourselves to a Weinberg power counting with a fixed breakdown
scale, the choice of regularization scheme gives rise to what is considered a family of inter-
actions. Within these families interactions can still differ by the chiral order, regularization
cutoff, and the fitting strategy for the LECs. Moreover, one could raise aspects such as the
inclusion of ∆ particles as additional degrees of freedom. The works in [52, 76–84] resemble
an incomplete list of the widely accepted families used in modern calculations.

As of today, the chiral expansion in a nucleonic setting has been worked out up to N4LO
and beyond in the NN sector [85] and up to N3LO for 3N and 4N forces [78]. However, this
is not the case for all families of interactions.

1.2 Similarity Renormalization Group

A pronounced feature of realistic nuclear Hamiltonians are a strong short-range repulsion
and strong tensor forces. On the level of matrix elements, these appear as strong couplings
of high- and low-momentum states. When solving the nuclear many-body problem for such
a Hamiltonian these features become the bottleneck for most many-body methods as they
induce correlations in the many-body states, which are computationally costly as very large
model spaces are required to capture them. Converged calculations are, therefore, not feasible
for systems beyond the few-body sector.

In order to address this issue, the Hamiltonian can be preconditioned such that the con-
vergence of observables w.r.t. model-space size is accelerated, while their values remain
unchanged. This can be achieved through unitary transformations, which guarantee the
invariance of the observables. Thus, for most modern nuclear structure calculations, the
Hamiltonian is pre-processed via a SRG transformation [86–89], i.e., a continuous unitary
transformation

Ĥ(α) = Û †(α)ĤÛ(α) (1.9)

parametrized through a so-called flow parameter α with Û(0) = 1̂. Thanks to the unitarity
Û(α)Û †(α) = 1̂ of the transformation it can easily be shown that the eigenvalues of the
Hamiltonian and, thus, of the many-body system of interest remain unchanged

Ĥ|Ψn⟩ = En|Ψn⟩
⇔ Û †(α)ĤÛ(α)Û †(α)|Ψn⟩ = Û †(α)En|Ψn⟩ (1.10)

⇔ Ĥ(α)|Ψ̃n⟩ = En|Ψ̃n⟩

It is important to note that the corresponding eigenstates do change under the transformation
|Ψn⟩ → |Ψ̃n⟩ ≡ Û(α)|Ψn⟩. As a consequence, operators for observables other than energy
need to be transformed consistently

Ô(α) = Û †(α)ÔÛ(α) (1.11)
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in order to recover the correct expectation values

On =
⟨Ψn|Ô|Ψn⟩
⟨Ψn|Ψn⟩

=
⟨Ψn|Û(α)Û †(α)ÔÛ(α)Û †(α)|Ψn⟩

⟨Ψn|Û(α)Û †(α)|Ψn⟩
=

⟨Ψ̃n|Ô(α)|Ψ̃n⟩
⟨Ψ̃n|Ψ̃n⟩

. (1.12)

So far we have not explicitly specified the transformation operator Û . Instead, we define
it implicitly by looking at the derivation of Eq. (1.9) w.r.t. α

d

dα
Ĥ(α) =

(
d

dα
Û †(α)

)
ĤÛ(α) + Û †(α)Ĥ

(
d

dα
Û(α)

)
=

(
d

dα
Û †(α)

)
Û(α)Ĥ(α) + Ĥ(α)Û †(α)

(
d

dα
Û(α)

)
(1.13)

=
[
η̂(α), Ĥ(α)

]
,

where we have introduced the so-called generator of the SRG transformation

η̂(α) ≡ −Û †(α)
(

d

dα
Û(α)

)
(1.14)

and made use of its anti-hermiticity, which can be derived from the derivative of the unitarity
condition Û †(α)Û(α) = 1̂ w.r.t. α

d

dα
Û †(α)Û(α) = 0

⇔ −Û †(α)
(

d

dα
Û(α)

)
=

(
d

dα
Û †(α)

)
Û(α) (1.15)

⇔ η̂(α) = −η̂†(α).

The relation derived in Eq. (1.13) is known as the flow equation of the SRG and describes
how the Hamiltonian is transformed based on a given generator. Hence, instead of con-
structing a unitary operator Û(α) we now need to find an expression for η̂(α) such that the
evaluation of Eq. (1.13) yields an evolved Hamiltonian with the properties we are aiming for.
Up to this point the derivations are completely general and different generators are chosen
depending on the application.

The simplest ansatz to construct a generator as originally introduced by Wegner [4] is
given by

η̂(α) =
[
Ĥd(α), Ĥod(α)

]
, (1.16)

where Ĥd(α) and Ĥod(α) = Ĥ(α)− Ĥd(α) represent the diagonal and off-diagonal parts of
the Hamiltonian w.r.t. a specific basis representation. The flow equation Eq. (1.13) will then
suppress the off-diagonal part as it approaches its fix point at Ĥod = 0. This allows for a very
flexible construction of generators as the choice of basis and the partitioning into diagonal
and off-diagonal parts can easily be adapted to different kinds of decoupling.

While we will look at other applications of SRG transformations in Sec. 12.2, let us recall
that, for now, the goal is to pre-process or, as it is often referred to, soften the Hamiltonian
in a manner that reduces the contributions that couple high and low-momentum states in
order to improve the convergence rate of observables. When illustrated in momentum space
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Figure 1.2: Matrix representation of the 3S1 channel of the NN interaction by Entem, Machleidt
and Nosyk [85] at N3LO with cutoff ΛC = 500 MeV in HO representation. The matrix elements are
presented bare (left) and SRG evolved to flow parameter α = 0.16 fm4 (right).

or in harmonic oscillator (HO) representation, as done in Fig. 1.2, this becomes equivalent to
suppressing the off-diagonal parts of the Hamiltonian.

In order to achieve this, we employ what is called free-space SRG, which is independent of
the chosen matrix representation, with the goal of suppressing off-diagonal matrix elements
in momentum space. Hence, we need to choose a Ĥd(α) accordingly. The simplest choice of
a generator in free-space SRG is

η̂(α) =
m2

ℏ4
[
T̂int, Ĥ(α)

]
, (1.17)

as T̂int is diagonal in momentum space. This will drive the Hamiltonian to a band-diagonal
form and can, therefore, also be understood as a pre-diagonalization.

Note that the evaluation of the flow equation and the occurring commutators lead to
so-called induced many-body forces, which are terms that contribute at higher particle ranks
up to the A-body level. While the exact observables are in theory recovered when including
all of these terms, in practice they need to be truncated, commonly at the three-body level.
Hence, the eigenvalues of the evolved Hamiltonian will slightly differ from the ones of the
unevolved or bare Hamiltonian.

The big advantage of the free-space SRG is its flexibility. Since it is independent of a
many-body basis representation, any evolved operators including the Hamiltonian can be
used in a variety of many-body methods. Hence, all Hamiltonians employed in this work are
SRG evolved to α = 0.08 fm4.



2
The No-Core Shell Model

The NCSM [23, 24, 26] is a conceptually simple yet powerful ab initio method that is capable
of delivering a numerical solution to the nuclear many-body problem. It is a member of
the class of so-called CI methods, which share the idea of expanding the eigenstates of the
Hamiltonian in a complete many-body basis {|Φj⟩}

|Ψn⟩ =
∑
j

|Φj⟩⟨Φj |Ψn⟩. (2.1)

In this way the Schrödinger equation Eq. (1.1) can be transformed into a matrix eigenvalue
problem ∑

j

⟨Φi|Ĥ|Φj⟩⟨Φj |Ψn⟩ = En⟨Φi|Ψn⟩ ∀i. (2.2)

Since we are trying to solve this for a system of A nucleons, which are fermions, our problem
is embedded into an A-body antisymmetric Hilbert space HA. Hence, antisymmetrized A-
body product states, also known as Slater determinants, provide a simple way of constructing
a many-body basis that spans HA. The basis states are constructed from a complete single-
particle basis {|ai⟩}

|Φj⟩ ≡ |{a1, a2, . . . , aA}j⟩a =
1√
A!

∑
π

sgn(π)P̂π {|a1⟩ ⊗ |a2⟩ ⊗ . . .⊗ |aA⟩}j (2.3)

with permutation operator P̂π and the signum sgn(π) of a given permutation π. While the
single-particle basis can be chosen freely, the standard choice is a spherical HO basis, because
the wavefunctions are known analytically and the basis has multiple beneficial properties that
will enter in the following considerations. Note that the HO basis is not unique either as the
wavefunctions depend on the frequency ℏΩ of the underlying HO potential. We will take
advantage of this dependence later in this work.

While the choice of ℏΩ affects the whole basis, an individual HO single-particle state

|ai⟩ = {|n(ls)jmj⟩ ⊗ |tmt⟩}i (2.4)

is characterized by radial n, orbital angular momentum l, spin s, total angular momentum j,
and total angular momentum projection mj quantum numbers as well as isospin t with its

13
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projection mt that indicate the particle species. The corresponding single-particle energy of
such a state is given by ϵ = (2n+ l + 3

2)ℏΩ.
A key feature of the HO basis is the separation of intrinsic and center-of-mass degrees of

freedom such that the eigenstates of the Hamiltonian factorize

|Ψn⟩ = {|Ψint⟩ ⊗ |Ψcm⟩}n. (2.5)

This allows for the removal of spurious center-of-mass excitations from the low-lying excita-
tion spectrum through a suitable modification of the Hamiltonian in the manner

Ĥ = Ĥint + λcmĤcm, (2.6)

where λcm controls the strength of the added HO center-of-mass Hamiltonian, which is given
by

Ĥcm =
P̂2

cm

2M̂
+

1

2
M̂Ω2R̂2

cm − 3

2
Ω , R̂cm =

1

M̂

A∑
i=1

m̂ir̂i. (2.7)

Here, R̂cm denotes the center-of-mass coordinate obtained from the single-particle coordi-
nates r̂i and frequency Ω is the same as for the employed HO basis.

The solution of the eigenvalue problem further gives access to other observables such as
radii or electromagnetic properties through the computed eigenstates. For any operator Ô the
expectation value w.r.t. a given NCSM eigenstate can be calculated as

⟨Ψn|Ô|Ψn⟩ =
∑
ij

⟨Ψn|Φi⟩⟨Φi|Ô|Φj⟩⟨Φj |Ψn⟩. (2.8)

In the context of this work, mean-square mass radii are of particular interest for which the
corresponding operator is given by

R̂2
ms =

1

A

A∑
i=1

(r̂i − R̂cm)
2 =

1

M̂

A∑
i<j

(
m̂i + m̂j

A
− m̂im̂j

M̂2

)
r̂2ij (2.9)

with relative coordinate r̂ij = r̂j − r̂i. Under the assumption of equal nucleon masses this can
further be simplified to

R̂2
ms =

1

A2

A∑
i<j

r̂2ij . (2.10)

2.1 Model Space and Symmetries

With the matrix eigenvalue problem set up, we can address the issue of the dimensionality of
the matrix being infinite. In order to render the problem finite, and computationally feasible,
a truncation needs to be employed. It is the choice of truncation that distinguishes the NCSM
from other CI methods. We employ a truncation on the many-body level by limiting the sum
over all single-particle HO excitation quanta w.r.t. the lowest Pauli-allowed state |Φ0⟩ to Nmax
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Figure 2.1: NCSM calculations for the ground-state energy of 4He with the NN+3N interaction by
Hüther et al. [78] that has been SRG evolved to α = 0.08 fm4.

such that

Nmax ≥ N|Φ⟩ =
A∑
i=1

ei,|Φ⟩ − E0. (2.11)

Here, ei,|Φ⟩ is the principle quantum number e = 2n + l of the i-th HO state in |Φ⟩ and E0

resembles the sum over all e in |Φ0⟩, which is chosen to be a Slater determinant with the lowest
sum of single-particle energies. Hence, the model space contains all Slater determinants that
obey this truncation

MNCSM =
{

all |Φ⟩ for which N|Φ⟩ ≤ Nmax

}
. (2.12)

Since the model space for Nmax → ∞ corresponds to the full Hilbert space the energies
converge towards the exact solution with increasing Nmax. Moreover, the calculation obeys a
variational principle and we, therefore, find a monotonously decreasing convergence behavior
as illustrated in Fig. 2.1. We, further, observe that the rate of convergence depends on the
chosen ℏΩ and we can find an optimum that is often referred to as the variational minimum.
While the Nmax truncation yields systematics that allow for a controlled convergence towards
the exact solution, model spaces still grow rapidly with Nmax and factorially w.r.t. particle
number A. Thus, achieving convergence is, in practice, impossible for all but the lightest
nuclei. One can think of two ways to further reduce the model-space size.

First, symmetries of the system can be exploited. Charge conservation yields that the
number of neutrons and protons and, thus, the projection of the total isospin MT =

∑A
i=1mti

is conserved. Hence, only Slater determinants with the correct MT enter the model space.
We can further make use of the rotational invariance of our system. This implies that the
projection of the total angular momentum MJ =

∑A
i=1mji is conserved and the energy

spectrum is degenerate with respect to it. Therefore, we can fix MJ to a certain value und
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Figure 2.2: Growth of NCSM model-space size with Nmax for different nuclei with increasing particle
number A.

exclude all Slater determinants with other MJ from the model space. Also, the Hamiltonian
preserves parity, which again transfers to the Slater determinants, yielding another restriction
on the size of the model space.

Second, additional truncations, e.g., on the single-particle level can be introduced. The
simplest truncation is an upper limit to the number of excitations of a single particle, where
the principle quantum number is limited to emax. Analogously, other quantum numbers such
as the orbital angular momentum can be truncated individually.

Unfortunately, even with all these truncations, the model space dimensions easily grow
to 107 and above (see Fig. 2.2) if we want to get anywhere close to convergence. Hence,
high-performance computing and highly sophisticated numerical algorithms, like the Lanczos
algorithm [90], are needed to make the extraction of the lowest-lying eigenstates computa-
tionally feasible.

The Jacobi No-Core Shell Model. Instead of using Slater determinants one can alternatively
construct a many-body basis in terms of generalized relative and center-of-mass coordinates,
so-called Jacobi coordinates, giving rise to the Jacobi NCSM [91]. This makes extended use
of the separation of relative and center-of-mass degrees of freedom in the HO basis, where
the latter can be eliminated completely, thus, effectively reducing the size of the Hilbert space
by the equivalence of a single particle. In addition, the Jacobi many-body states are fully
coupled in terms of angular momenta, carrying a good total A-body angular momentum J .
Hence, the model-space size can further be reduced to a single choice of J .

Note that none of these preselections affect the model-space truncation scheme and, there-
fore, NCSM and Jacobi NCSM calculations at the same Nmax are equivalent. Consequently, the
Jacobi NCSM allows for very efficient computation of small systems up to A ≲ 6. Beyond that
the construction of the coupled basis becomes increasingly complicated and time consuming.
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2.2 Importance Truncation

So far we have discussed truncations that act as upper limits to single-particle quantum
numbers or sums of those. While they provide an efficient framework which allows for
systematic improvability, model spaces still grow intractably large, especially for increasing
particle number, and the truncations will eventually cut off too much of the relevant physics.

Here, importance truncation (IT) [25] provides an alternative or rather complementary
truncation scheme, based on a physics-informed estimate of the relevance of a single Slater
determinate. It allows for a selective removal of insignificant many-body states from the
model-space. In order to provide such an estimate we need to construct an importance
measure that yields information for the individual basis states. To ensure that this information
is physically meaningful, we start from a set of reference states |Ψref

m ⟩ that resemble a good
approximation to the states we aim to describe. A good candidate for such a set of reference
states is the solution of a CI calculation in a smaller model space also called reference space
Mref . These states can then also be expressed through an expansion in Slater determinants

|Ψref
m ⟩ =

∑
µ∈Mref

|Φµ⟩⟨Φµ|Ψref
m ⟩. (2.13)

With this we can make use of multi-configurational perturbation theory for which the first-
order correction κν for a given state |Φν⟩ reads

κmν = −⟨Φν |Ĥ|Ψref
m ⟩

∆Eν
= −

∑
µ∈Mref

⟨Φν |Ĥ|Φµ⟩⟨Φµ|Ψref
m ⟩

∆Eν
for |Φν⟩ /∈ Mref , (2.14)

with ∆Eν being the HO excitation energy of the corresponding state. This quantity κmν yields
enough information about the relevance of a state since higher values imply larger contribu-
tions to the energy of the system. Thus, it can directly be used as the importance measure we
are looking for. The truncation is employed by introducing a lower limit κmin, below which
the states are being discarded. The resulting model space for a so-called importance-truncated
no-core shell model (IT-NCSM) calculation is then given by

MIT-NCSM = Mref ∪ {all |Φν⟩ /∈ Mref for which |κmν | ≥ κmin for any m}, (2.15)

where the full NCSM model space is recovered for κmin = 0. As with every truncation we
need to be aware that an additional error is introduced which needs to be taken into account.
Typically, IT-NCSM calculations are performed for a sequence of different κmin, which can then
be extrapolated to the limit of vanishing threshold. The extrapolation is generally performed
through fits of second- or third-order polynomial functions, where polynomials of neighboring
orders serve as uncertainty estimates. The extrapolation procedure is illustrated in Fig. 2.3. In
most applications the IT errors are much smaller than errors induced from other truncations
such as the Nmax truncation and are, therefore, being neglected.



18 CHAPTER 2 – THE NO-CORE SHELL MODEL

−31.0

−30.5

−30.0

−29.5

E
g
s

[M
eV

]

Nmax = 10 Nmax = 12

0 2 4 6 8 10

κmin [10−5]

2.05

2.10

2.15

2.20

R
rm

s
[f

m
]

0 2 4 6 8 10

κmin [10−5]

Figure 2.3: IT extrapolations based on κmin sequences for ground-state energy and rms radius of 6Li
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3
Model-Space Extrapolation and
Uncertainty Quantification

In the previous chapters we have discussed various truncation schemes that are required to
convert the nuclear many-body problem into a computable form. However, the benefits of
these truncations come at the cost of induced errors as we are not able to retain the exact
solution of the problem. This naturally raises questions on how to estimate converged results
or, at least, provide realistic uncertainties for the obtained results. But, a correct quantification
of all uncertainties is extremely challenging. Fortunately, ab initio theory and its inherent
systematics allow for promising conceptual approaches.

In principle we need to address uncertainties from multiple sources:

• the choice of the parameters in chiral EFT,

• the truncation of the chiral expansion,

• the Nmax truncation of the model space,

• and other model-space truncations such as IT,

which are usually separated into two major groups: interaction uncertainties that are com-
prised of all aspects regarding the construction of an interaction from chiral EFT, and many-
body uncertainties that include all errors and truncations related to the solution of the many-
body problem. While the assessment of individual sources of uncertainty can be very chal-
lenging depending on the truncation scheme, combining different uncertainties that are not
completely unrelated is even more so. We will, therefore, focus on the individual uncertainties
and will not attempt a combined uncertainty quantification.

3.1 Interaction Uncertainties

Let us first consider interaction uncertainties. There a two different methods which are
commonly employed in order to construct uncertainty estimates at an interaction level. Both
are built on different sources of errors, on one hand the truncation of the chiral expansion
and on the other hand the choice of cutoff and LECs.

19
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Truncation Error of the Chiral Expansion. We start with the former as it is considered to
yield the largest uncertainties. This is due to the fact that chiral interactions, especially with
3N forces included, are only available up to N2LO or N3LO depending on the family. Hence,
the uncertainty needs to be constructed from a maximum of four data points. However,
one can exploit the systematics of the power counting as proposed in [92]. It resembles an
expansion in a small parameter Q, which roughly equals 1/3 for most applications. As a
consequence, one would expect the contribution for a given observable at a given chiral order
to also be about a third of the previous order, corresponding to the associated power of Q.
Under this assumption the chiral expansion of an observable X at n-th order X(n) can be
written as

X(n) = X(0) +∆X(2) + . . .+∆X(n), (3.1)

where ∆X(i) = X(i) − X(i−1) with the exception of ∆X(2) = X(2) − X(0) since there is no
contribution at Q1. Following the previous reasoning, each correction at order i should then
approximately equal the correction at order j scaled by the correct power of Q yielding

∆X(i) = O(Qi−j∆X(j)). (3.2)

The uncertainty δX(i) for a result at a given order i is then conservatively estimated to be

δX(i) = max
2≤j≤i

(
Qi+1

∣∣∣X(0)
∣∣∣, Qi−j+1

∣∣∣∆X(j)
∣∣∣). (3.3)

While this algorithm is straightforward and easy to implement due to its simplicity, there also
is a more sophisticated estimation of the truncation uncertainty developed by the BUQEYE
collaboration [34]. It is based on Bayesian statistics with the goal to find a probability
distribution for the exact observable based on calculations at the first orders. The ansatz
differs from the previous one by expressing Eq. (3.1) as a power-series

X(n) = Xref

n∑
i=0

ciQ
i (3.4)

in terms of coefficients ci, which are to be understood relative to a reference scale Xref . Note
that we can account for the missing contribution at Q1 by requiring c1 = 0. This reference
scale is typically chosen to be either the experimental value or any other reasonable estimate.
A strong dependence on it is not expected as long as the resulting coefficients are of natural
size, i.e., O(1). We now aim for a prediction of the ci for higher orders based on the known
coefficients. In a Bayesian framework the first step is choosing priors. The choice of priors
only has a minor impact on the final result and can, therefore, be chosen to have beneficial
analytical properties. Hence, we assume that the conditional probability distribution pr for
the coefficients ci is given by a normal distribution N with marginal variance c̄2

pr(ci|c̄2) ∝ N (0, c̄2) , pr(c̄2) ∝ χ−2(ν0, τ
2
0 ), (3.5)

where the latter has been chosen to be from an inverse χ2 distribution with the number of
degrees of freedom ν0 and the scale τ0 for the prior. The prior belief about the uncertainty of
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an observable at order n then takes the form

pr(δX(n)|c̄2, Q) ∝ N
(
0, X2

ref

Q2(n+1)

1−Q2
c̄2

)
. (3.6)

In order to update this with the information we have about the known coefficients cj =

{c0, c1, . . . , cj} we first need to update c̄2 through

pr(c̄2|cj) ∝ pr(cj |c̄2)pr(c̄2) = pr(c̄2)
∏
i≤j

pr(ci|c̄2) (3.7)

making use of Bayes’ theorem. This, again, results in a scaled inverse χ2 distribution with
updated parameters

pr(c̄2|cj) ∝ χ−2(ν, τ2) with ν = ν0 + nc, τ
2 = (ν0τ

2
0 + c2j )/ν, (3.8)

where nc is the number of non-zero coefficients in cj . By marginalizing over c̄2 we can obtain
the posterior distribution for the truncation error given by a Student-t distribution

pr(δX(n)|c̄2, Q) ∝ tν

(
0, X2

ref

Q2(n+1)

1−Q2
τ2

)
, (3.9)

from which we can extract an uncertainty by integrating over it up to a certain degree of belief,
which is usually chosen to be 68% or 95%. For more details on the concept and derivation
we refer to [33, 34, 47, 93].

Choice of Parameters in Chiral EFT. Let us further discuss how to estimate an interaction
uncertainty from the parameter dependencies, in particular cutoff ΛC and LECs. As already
mentioned, LECs occur at different orders of the chiral interaction and correspond to different
diagrams in the chiral expansion. In the purely nucleonic sector there is an abundance of NN
scattering data that can be used to very tightly constrain all LECs associated with two-body
terms. However, at the currently available N2LO and N3LO interactions one is left with two
three-body LECs called cD and cE . There are various strategies on how to fit these to 3N or
many-body observables resulting in different predictions for observables [76, 78, 84, 94].

In order to estimate an uncertainty from the choice of such parameters, the straight-
forward method is to sample the space of all predictions for a given observable p(ΛC ,LECs)

multiple times and turn to statistical methods to quantify the spread of the resulting dis-
tribution and from that an uncertainty [35]. This can for example be done by performing
calculations for Hamiltonians obtained with various combinations of parameters as discussed
in [95]. While this is very costly with conventional many-body methods, the recent rise of
emulators, in particular eigenvector continuation (EC), has given access to millions of samples
with minimal computational effort [96, 97].

One should also consider looking at the dependence on the regulator scheme, however, it
has only recently, with sufficient precision of the many-body calculations, become apparent,
that calculations with interactions based on different regulator schemes do not necessarily
agree with each other. Therefore, this is a rather new discussion and, while it is of major
importance, there are no established uncertainty estimates we could discuss here.



22 CHAPTER 3 – MODEL-SPACE EXTRAPOLATION AND UNCERTAINTY QUANTIFICATION

3.2 Many-Body Uncertainties

With the interaction uncertainties covered, we will now turn to the estimation of many-body
uncertainties. While most of these schemes can be applied to different many-body methods,
we will focus on the NCSM as our many-body method of choice. Since the NCSM is an ab
initio method, we can exploit the systematics of the model-space truncation scheme similar to
the truncation error of the chiral expansion. Besides estimating uncertainties for the obtained
results, our goal is also to extrapolate results from finite model spaces to the full infinite
Hilbert space. In order to do so, we will exploit that the convergence behavior for NCSM
calculations is controlled by two parameters, the model space truncation Nmax and the HO
frequency of the underlying single-particle basis ℏΩ. As the convergence patterns for different
observables differ drastically and can show very different characteristics, as illustrated in
Fig. 3.1, we limit ourselves to energies and radii and discuss them separately.

Extrapolation of Energies. Bound-state energies are naturally the first observable to look
at, as they are directly obtained as solutions of the Schrödinger equation. Being a variational
method, energies in the NCSM exhibit a monotonously decreasing convergence. A typical set
of such converging series is shown in the left-hand panel of Fig. 3.1. The different sequences
emerge from different choices of ℏΩ. By construction, they all converge to the same limit. At
first glance these sequences seem to resemble an exponential decay. Thus, the convergence
behavior is typically modeled with some kind of exponential function [50–52]

EℏΩ(Nmax) = a · e−bNmax + EℏΩ
∞ , (3.10)

where the converged energy EℏΩ
∞ as well as a, b > 0 are fit parameters. The superscript ℏΩ

indicates the dependence on the HO frequency. In the simplest application this fitted limit
and its fit uncertainty can directly be interpreted as an extrapolation with estimated error.
However, when doing this for different ℏΩ it becomes apparent that the different limits can
be inconsistent with each other, clearly a deficiency of the extrapolation method. In order to
include information from multiple ℏΩ one could either simultaneously fit multiple exponential
functions that share the same limit or, as more commonly done, construct a more reasonable
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Figure 3.1: NCSM calculations for the ground-state energy (left) and rms radius (right) of 4He.
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uncertainty measure from exponential extrapolations of single sequences. For our applications
we stick to the procedure described in [52], which we will refer to as classical extrapolation
from now on. Here, exponentials of the form Eq. (3.10) are fitted to single sequences for
multiple different ℏΩ around the variational minimum. The best estimate of the extrapolation
is then defined as

E∞ = EℏΩ
∞ for which |EℏΩ

∞ − EℏΩ(Nmax)| is minimal. (3.11)

Here, Nmax indicates the highest Nmax available in the fit data. The corresponding uncertainty
is assumed to be the maximum of the following three estimates:

• the difference of two extrapolations at consecutive Nmax

|EℏΩ
∞ [Nmax]− EℏΩ

∞ [Nmax − 2]|;

• half the variation in EℏΩ
∞ over a 8-MeV interval in ℏΩ around the variational minimum;

• 20% of |EℏΩ
∞ − EℏΩ(Nmax)|.

While this procedure is practical and phenomenologically motivated, there is another, more
elaborate method called infrared (IR) extrapolation, which also builds on an exponential
modeling [98–100]. Conceptually, this is an attempt to capture the convergence behavior in
dependence on the IR and ultraviolet (UV) cutoffs L and Λ. The UV convergence is understood
to be much faster than the IR convergence in suitable model spaces, i.e., for suitable choices
of ℏΩ. It further has been shown, that the IR convergence is exponential in L, however, the
exact determination of L remains challenging [49, 53]. Hence, the resulting fit function is

EIR(L) = a · e−2κ∞L + E∞, (3.12)

where a, κ∞ and E∞ are fit parameters. Additional information on the nucleus under consider-
ation enters in L ≡ L(Nmax, ℏΩ). Uncertainties can, again, be obtained from the uncertainties
of the fit or statistically from fits to multiple subsets of the data. For a more detailed discussion
of the method we refer to [49]. The downside of this approach is, that it imposes additional
requirements and constraints on the many-body calculations. This results in rather exotic
choices of ℏΩ. While this is unproblematic for the standard formulation of the NCSM, the
cost for IT-NCSM calculations varies strongly with ℏΩ and and increases rapidly for choices of
ℏΩ far from the variational minimum. For most realistic Hamiltonians it further requires suffi-
ciently large Nmax that tend to be outside the current reach of many-body methods especially
if 3N forces are taken into account. It is, therefore, not feasible for our applications.

Extrapolation of Radii. Contrary to energies, radii do not obey any kind of principle that
would constrain the convergence behavior, which, therefore, takes a much more complicated
form as shown in the right-hand panel of Fig. 3.1. In practice, some extrapolation methods
that work in single cases are employed manually but, to our knowledge, there exists no
generalized extrapolation scheme that would allow a straightforward extrapolation of radii.
One advantage of radii over energies is the strong correlation and, therefore, dependence on
ℏΩ. Hence, fine-tuning the single-particle basis can lead to rapid convergence, but it is not
guaranteed. We will, therefore, refrain from any kind of classical extrapolation for radii.

It should further be mentioned that the IR extrapolation scheme can also be extended to
radii [53, 98]. However, this comes with the same limitations as for energies.
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4
Machine Learning

Throughout the past two decades, ML algorithms have experienced major computational and
methodological advances leading to a major impact in all areas related to data science and
artificial intelligence. With their exceptional performance in a variety of computational tasks,
such as optimization, interpolation, classification, or pattern recognition, they have quickly
entered not only our everyday life but also a wide range of scientific fields including nuclear
physics. Neural-network quantum states [101, 102], Bayesian ML [103–105], extrapolation
tools [56, 57], and other data-driven approaches [106, 107] are only a few examples of
ML applications in nuclear structure theory. The interested reader can find a comprehensive
overview of most ongoing developments in [54, 55].

In the context of this work we will focus on ML applications that are supplemental to
nuclear many-body methods and the NCSM in particular. The main bottleneck of all of these
methods are rapidly growing model spaces. We have already discussed some schemes that at-
tempt to quantify, or at least approximate, the model-space dependence of observables within
these methods but, besides some successes with bound-state energies, the exact functional
dependence remains a mystery. Fortunately, ML applications have proven very powerful in
situations where this is the case as they are designed to emulate complex correlations without
requiring initial knowledge of the problem under consideration. Hence, we will discuss how
ML can extend the reach of nuclear structure calculations and build a tool that is capable of
performing model-space extrapolations for observables beyond bound-state energies.

But, before we turn to specific applications let us first discuss some of the most important
basics of ML.

4.1 Basic Concepts

The main idea behind ML is to construct generalized algorithms that are able to (iteratively)
adapt to data in order to capture any relationship between variables. They can also be
understood as universal function approximators [108]. It is the generalization that makes
ML such a useful tool, as it can adapt to various problems that would either take too long to
compute or where insufficient knowledge about the problem is available. The most common
categories of ML algorithms are
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• supervised learning: the algorithm is informed with labeled data, i.e., the desired
output for every input is known;

• unsupervised learning: the algorithm is informed with unlabeled data, i.e., it is con-
structed to find unknown patterns in the data;

• reinforcement learning: the algorithm is build to solve a problem by maximizing a
defined measure also known as reward.

All ML applications discussed in this work rely on supervised learning. In order to get a basic
understanding of supervised learning let us first look at linear regression, which is one of the
most basic ML algorithms that still contains all relevant aspects of ML we need to introduce.
In its simplest form linear regression can be understood as the best fit of a straight line to a
set of data points, the so called training data. For simplicity we will limit these considerations
to two dimensions. The training data then consists of labeled training samples Si = (xi, y

t
i ),

meaning that we have assigned a target value yti to every value xi. Hence, the function we
want to fit to this data is a line

y(x) = wx+ b. (4.1)

In foresight of the subsequent discussion of more complex ML models we need to introduce
some terminology. Thus, we will call y the output for a given input x and w, b are free
parameters where we make a distinction between weight w and bias b. We now want an
algorithm that automatically adjusts the free parameters in such a way that we end up with
an optimal description of the training data, i.e., the best fit. In order to define what optimal
means in this context, we further need a measure that accounts for the difference of the
output y and the target output yt across the whole training set. A common choice is the
mean-square error (MSE)

LMSE(yi, y
t
i ) =

1

N

N∑
i=1

(yi − yti )
2, (4.2)

where N is the number of outputs. This measure is referred to as loss or loss function
respectively. We are now left with a minimization problem w.r.t. this loss. Linear regression
is special in the sense that this minimization problem can be solved analytically, however, we
will instead discuss a numerical algorithm called gradient descend as it can also be employed
in ML algorithms beyond linear regression.

Gradient descend is an iterative algorithm used to find a minimum of a function. It
requires an initial choice of the free parameters w = w0, b = b0, which are updated iteratively
in the direction of the steepest descend or, in mathematical terms, the gradient

wj+1 = wj − η
∂L
∂w

, bj+1 = bj − η
∂L
∂b

. (4.3)

Here we have introduced the so-called learning rate η that controls the step size of the itera-
tion. The optimization step can then be repeated until the loss levels out and the minimum
is reached. Note that the choice of learning rate is of particular importance for more com-
plicated loss functions with multiple minima since the step size controls which minimum
the optimization will end up in. Overall, this example resembles a simple but complete ML
algorithm that we can now adapt to more complicated applications.
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4.2 Artificial Neural Networks

The ML model we employ in this work is an artificial neural network (ANN), which is at the
core of the ML discipline called deep learning [109–111]. As the name suggests it is loosely
modeled after biological neural networks and does, therefore, consist of artificial neurons.
An illustration of such a neuron is given in Fig. 4.1a. Similar to our previous example these
neurons take an input x from which they generate an output y based on other parameters
again called weights w and bias b such that

y = σ

∑
j

xjwj + b

. (4.4)

The major difference to the linear case is the activation function σ, which is also known as
nonlinearity as it usually is some kind of non-linear function. These neurons can then be
combined to arbitrarily complicated structures, the ANNs. In a standard fully-connected feed-
forward (FCFF) network the neurons are organized in layers (see Fig. 4.1b). Every neuron
takes the outputs of all neurons in the preceding layer as input and passes its output on to all
neurons in the subsequent layer. Hence we can modify the previous equation such that the
output of the i-th neuron in the l-th layer is given by

y
[l]
i = σ

∑
j

x
[l−1]
j w

[l]
ji + b

[l]
i

. (4.5)

Here, the weights can be understood as the strengths of the respective connection between
neurons and the biases resemble internal thresholds.

Depending on the problem, ANNs occur in different shapes and sizes and their modularity
allows, and also requires, thorough adaption to the given task. Most commonly employed
architectures besides FCFF networks are convolutional neural networks (CNN) for image

(a) (b)

Figure 4.1: Schematic representation of an artificial neuron (a) and a feed-forward ANN constructed
from such neurons (b).
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processing [112, 113], recurrent neural networks (RNN) for time-series prediction such as
natural language processing [114], or even more sophisticated generic algorithms such as
neuroevolution of augmented topologies (NEAT) that allow for automatic iterative adaption
of the network structure itself [115]. What all of these architectures have in common is that
they resemble high-dimensional functions with up to hundreds of billions of free parameters
[116] that need to be determined from training data.

Mathematically the ANN resembles a set of nested functions and matrix multiplications.
Assume that we have L layers in our network and that

f [l] : Rdim(l−1) 7−→ Rdim(l)

y[l−1] 7−→ y[l] = σ
(
w[l]y[l−1] + b[l]

)
(4.6)

describes how the the outputs of the l-th layer y[l] are obtained from those in the (l − 1)-th
layer y[l−1] respectively. Here, dim(l), b[l], and w[l] are the size of layer l, the vector of biases
in layer l, and the matrix of weights connecting layers l and l− 1. The corresponding function
representing the whole network can then be denoted as

F : Rdim(1) 7−→ Rdim(L)

x 7−→ y[L] =
(
f [L] ◦ . . . ◦ f [1]

)
(x). (4.7)

Training an ANN basically resembles a high-dimensional fit of F to a set of training data.
In order to do so, we start by taking one of the training samples Si = (xi,y

t
i) and pass its

input component xi through the ANN. This is known as forward pass. We can then assess
the deviation of the prediction from the target value via the loss function. Sticking to our
previous example of MSE this is given by

LMSE(xi,y
t
i) =

1

dim(L)
(F(xi)− yt

i)
2. (4.8)

Now, all free parameters in the ANN, i.e., all weights and biases are updated based on the
obtained loss, starting with the last layer all the way towards the first layer. This process
known as backpropagation [117] is key to large-scale ML applications as it allows for a
systematic optimization of all parameters with the goal of minimizing the loss. It requires
the partial derivative of the loss function with respect to every single free parameter in the
network which is then iteratively updated according to Eq. (4.3). Fortunately, the nested
structure of FCFF networks allows for computationally efficient layer-by-layer calculations
using the chain rule. The partial derivative of L with respect to the weights w[l] or biases b[l]

in layer l is given by

∂L
∂w[l]

=
∂L
∂z[l]

·
[
y[l−1]

]T
,

∂L
∂b[l]

=
∂L
∂z[l]

(4.9)

with
∂L
∂z[l]

=
[
w[l+1]

]T
· ∂L
∂z[l+1]

σ[l]′(z[l]), (4.10)

where z[l] = w[l]y[l−1]+b[l]. While we have limited our discussion here to the simplest case we
want to emphasize that there are modern, more sophisticated backpropagation algorithms that
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Figure 4.2: Schematic depiction of an ANN describing data well (left), one that suffers from underfit-
ting (center), and one that clearly overfits the data (right).

introduce modifications of the above equations [118–121]. We further note that in practice
backpropagation is not carried out with individual samples but in a stochastic manner with
batches of samples. This improves the training process significantly and the above derivation
can easily be adapted to batches. A full iteration through the whole training set is called an
epoch and successful training usually requires multiple epochs. The training of an ANN is
finished when the loss does not decrease anymore.

While at first glance this seems like a straight-forward procedure to fit any function, there
are some potential pitfalls and bottlenecks that should be mentioned. First of all, fixing
many free parameters requires a lot of data. Hence, a sufficiently large set of training data is
required and a rule of thumb is that more training data is always better. However, the data
needs to be of good quality, which brings us to the second problem: any biases in the training
data will affect the performance of the ANN. The only way to circumvent this is to train on
a well balanced set of data, which resembles the unseen data, for which predictions should
be made, in every aspect. In this regard preprocessing the data, e.g., via normalization can
facilitate the training process and improve predictions.

Another potential issue that is related to the number of free parameters is under- or
overfitting. Ideally, if the size of the ANN is selected accordingly, the overall functional
dependence of the data is described properly as depicted in the left-hand panel of Fig. 4.2
and is expected to yield accurate predictions on unseen data. If the ANN is too small, i.e., the
number of free parameters is insufficient to describe the data, one ends up with a network that
is unable to capture any correlations in the data (center panel). On the other hand, if the size
of the ANN greatly exceeds the complexity required to describe the functional dependence
of the data one might obtain an ANN that perfectly describes the training data but is unable
to make reliable predictions for unseen data as it has not captured the overall functional
dependence (right-hand panel). Reasoning along the same lines, it is not guaranteed that
the ANN will provide reasonable predictions for data outside of the range of training data,
even if the network structure was chosen properly. In other terms, ANNs tend to excel in
interpolation tasks but extrapolation remains very challenging.

Finally, one is not guaranteed to find the global minimum of the loss function during
training. In practice the loss function can become arbitrarily complicated with plenty of local
minima or even multiple global minima. If the learning rate is comparably small the training
is likely to end up in a local minimum, while a rather large learning rate might not allow to
find a proper minimum at all. In early stages of the training process it can be advantageous to
start with a rather high learning rate. This will prevent getting stuck in a small local minimum.
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At later times one wants to reduce the step size of the optimization in order to achieve better
accuracy. Hence, algorithms called learning rate schedulers can be employed that adapt the
learning rate under specific circumstances.

Apparently there is a lot more to training an ANN than simply fitting a function. All of
the additional adjustments we discussed come with their own parameters. These so-called
hyperparameters need to be tuned carefully in order to achieve high quality results.



5
Artificial Neural Networks for the
NCSM

As already mentioned, our goal is to construct an ANN that can extend the reach of modern
many-body methods in particular the NCSM. We want to emphasize that, if employed in a
“blackbox manner” as done here, extracting information from an ANN about the underlying
physics is extremely challenging if not impossible. Therefore, all applications discussed
here are solely focused on pushing computational boundaries and are to be understood as
supplemental to actual physics-driven models. The particular limitation we want to tackle
is the model-space truncation required to render the problem computationally feasible and
the resulting error induced by it. Ideally, we would like to construct a tool that provides
reliable predictions for the solution in the full Hilbert space based on calculations in small
model spaces. In Sec. 3.2 we have discussed some established methods and their deficiencies
including the lack of extrapolation methods beyond bound-state energies. We, therefore, aim
to build an ANN that replaces phenomenological extrapolation functions and is capable of
predicting converged values from the first few steps of a converging series. In particular, it
should be constructed in such a way that it can be generalized to arbitrary observables.

In recent years there have been first applications of ANNs in this regard, which have
demonstrated the potential of ANNs for this task and also some shortcomings [56, 57]. But,
before we go into details, let us first take a closer look at the problem and motivate the use of
ANNs.

Figure 5.1 shows a set of NCSM calculations for the ground-state energy of 3H. For every
ℏΩ one finds a sequence of results obtained in successively increasing model-space truncations
Nmax. By construction, all of these sequences converge towards the same limit for Nmax → ∞.
We emphasize that the results and, therefore, the convergence patterns depend on, both,
the truncation parameter Nmax and the HO frequency ℏΩ. The left-hand panel of the figure
further shows classical extrapolations at Nmax = 8, 10 and 12 using the procedure described in
Sec. 3.2. Here, the model-space dependence is modeled by an exponential function Eq. (3.10)
which is fitted for each ℏΩ separately. Clearly, the actual convergence pattern is not exactly
given by an exponential decay. This results in inconsistent predictions at different Nmax and
also for different ℏΩ. It further indicates that we are looking for a more complicated function
to fit to the data. However, the structure of this function is unknown. Hence, ANNs seem to
be the ideal tool to use as they can approximate any function without prior information on
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Figure 5.1: Typical set of sequences of NCSM calculations for the ground-state energy of 3H at different
ℏΩ = 14, 16, 20, 24, 28, 32 MeV. In the left-hand panel classical extrapolations are added including data
up to Nmax = 8, 10 and 12 respectively. These extrapolations are going to be replaced by an ANN
(right-hand panel).

its form, as long as sufficient amounts of training data are available. The conceptual idea is
sketched in the right-hand panel of Fig. 5.1.

We, finally, mention some general aspects of the problem, which will become important
for the subsequent discussion. The model spaces grow factorially with particle number A, this
is of particular importance when it comes to availability of potential training data for heavier
nuclei for which calculations are rarely accessible above Nmax = 10 in the case of realistic
NN+3N Hamiltonians. Moreover, while sequences for any ℏΩ converge to the same limit,
they do so at drastically different rates. For all considerations here, we will assume that we
deal with values of ℏΩ that are in the vicinity of, or ideally centered around, the variational
minimum for the ground-state energy of the system.

The work presented in this chapter and the following one has led to these publica-
tions [122, 123].

5.1 Network Design

To begin with, it should be noted that there is no unique way to approach the model-space
extrapolation for NCSM calculations. Different approaches are conceptually different and
require ANNs that are adapted to the specific features or requirements of the respective
approach.

When it comes to designing an ANN the first thing that needs to be addressed is the
network topology along with the structure of the data samples, as they define the size of the
input layer and the output layer. The model-space extrapolation with ANNs has first been
proposed by Negoita et al. [56], where they have used an ANN to approximate the function
O(ℏΩ, Nmax) for any observable O, hence they have emulated a mapping that attempts to
predict the result of an NCSM calculation for a given input of ℏΩ and Nmax. This can already
be achieved with a fairly small ANN consisting of an input layer with two neurons, one for
ℏΩ and one for Nmax, one hidden layer with eight neurons and one output neuron yielding
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Figure 5.2: Topology of an ANN as employed in [56].

the prediction for the observable under investigation (see Fig. 5.2). Together with a Sigmoid
activation function it can be proven that a single hidden layer is sufficient to approximate
any continuous function [124]. Such a network can directly be trained on available NCSM
data without requiring any preprocessing. A prediction for the converged value can then be
obtained from predictions of the ANN for very large values of Nmax. By training multiple
ANNs one can extract a statistical uncertainty from the multitude of predictions. They were
able to obtain good results for ground-state energies and proton root-mean-square (rms)
radii for 6Li based on NCSM data up to Nmax = 18 with the predictions at different Nmax

being approximately in agreement with each other. However, some deficits and potential
bottlenecks of this ANN topology are forseeable. On one hand, the ANNs can only be trained
for one specific combination of nucleus, interaction, and state and have to be retrained for
every new case. Especially in heavier nuclei this can easily result in a shortage of training data
due to the aforementioned scaling of model-space size with particle number. In addition, this
approach seems to require calculations in rather large model spaces in order to provide precise
and consistent predictions, which become computationally unfeasible as soon as a realistic
Hamiltonian with 3N force is employed. On the other hand, the distribution of predictions
exhibits a multimodal structure in some cases resulting in multiple predictions or unclear
uncertainties (see Fig. 5 in [57]). While the latter can be remedied through a balancing
of the training data and the inclusion of additional correlations as discussed in [57], issues
regarding insufficient training data and, thus, limited applicability remain. Moreover, this
application of ANNs resembles a true extrapolation beyond the training data, a task which is
known to be extremely challenging for ML applications [125].

We, therefore, propose a different ansatz published in [122, 123] that essentially converts
the extrapolation problem into an interpolation problem, thus facilitating the task for an
ANN. The ansatz further exhibits a certain universality as ANNs are not trained for specific
cases but can be applied to any combination of p-shell nuclei and realistic interactions. The
idea is to directly predict the actual converged value for a given observable from a set of
NCSM calculations in different finite model spaces instead of predicting the result for a given
model space characterized by Nmax and ℏΩ. This eliminates the need to explicitly model
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Figure 5.3: Set of NCSM calculations for the ground-state energy of 3H (a) and a visualization of an
FCFF ANN topology with three hidden layers (b). The colored data and neurons indicate input and
output of the ANN in ABS mode (see text for details).

the convergence behavior and instead allows the ANN to treat the problem as a pattern
recognition task, thus, predicting the converged value from the convergence pattern spanned
by the available data. The data used as input for a prediction consists of F sequences of
NCSM calculations for different ℏΩ with length L, i.e., L consecutive values of Nmax. Note
that L significantly limits the applicability to heavier p-shell nuclei as calculations can only
be performed for very few values of Nmax. The topology of the ANN is then given by an
input layer that has F · L neurons and an output layer that is a single neuron providing the
prediction for the converged value. The number and size of the hidden layers can be chosen
arbitrarily and we will discuss different topologies later on. A schematic representation of an
ANN with F = 3 and L = 4 with three hidden layers is shown in Fig. 5.3b. Complementary,
Fig. 5.3a indicates how the data is piped into the ANN, as the colored sample corresponds to
a possible input to the first layer of the network. In the following, we will discuss different
types of data formatting, i.e., different ways to pipe the data into the ANN, which we refer to
as input modes.

The ABS Mode. The intuitive choice is feeding the raw NCSM output into the network,
which is called ABS mode. Hence, the ANN effectively resembles a mapping

MABS : SABS 7−→ O∞, (5.1)

where O∞ is the converged value for observable O and SABS is an input sample of the shape

SNmax
ABS =

(
O

Nmax−2(L−1)
ℏΩ1

, . . . , ONmax−2
ℏΩ1

, ONmax
ℏΩ1

,

O
Nmax−2(L−1)
ℏΩ2

, . . . , ONmax−2
ℏΩ2

, ONmax
ℏΩ2

, (5.2)
...

...
...

O
Nmax−2(L−1)
ℏΩF

, . . . , ONmax−2
ℏΩF

, ONmax
ℏΩF

)
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with Nmax being the largest Nmax in the sample while ONmax
ℏΩ is the observable obtained for

HO frequency ℏΩ and model-space truncation Nmax. This input mode holds the advantage
that the data does not require any preprocessing and the ANN directly predicts the converged
observable. However, especially binding energies cover a wide range of values which can
become problematic for the ANN.

The DIFF Mode. This input mode is designed to reduce the dependence on the absolute
value compared to the ABS mode. Instead of looking at the raw NCSM output, the differences
between two consecutive Nmax steps are used as inputs for the ANN. Hence, we refer to this
mode as DIFF mode. Note that the network does not carry information on the absolute value
of the observable anymore. Therefore, it cannot predict the converged value directly. Instead,
we will have it predict the difference between the mean of all input values at Nmax and the
converged value, i.e.,

∆∞
O = O∞ −mean(ONmax

ℏΩ ) , ∆∞
E = E∞ −min(ENmax

ℏΩ ). (5.3)

such that the converged value can be recovered from the output by O∞ = mean(ONmax
ℏΩ )+∆∞.

For energies this difference is obtained with the minimum instead of mean as they obey a
variational principle. We end up with a mapping

MDIFF : SDIFF 7−→ ∆∞
O (5.4)

with input sample

SNmax
DIFF =

(
∆

Nmax−2(L−2)
ℏΩ1

, . . . ,∆Nmax−2
ℏΩ1

,∆Nmax
ℏΩ1

,

∆
Nmax−2(L−2)
ℏΩ2

, . . . ,∆Nmax−2
ℏΩ2

,∆Nmax
ℏΩ2

, (5.5)
...

...
...

∆
Nmax−2(L−2)
ℏΩF

, . . . ,∆Nmax−2
ℏΩF

,∆Nmax
ℏΩF

)
,

where we have defined ∆Nmax
ℏΩ := ONmax

ℏΩ − ONmax−2
ℏΩ . Note that compared to the ABS mode

the effective length of the input sequences decreases such that LDIFF = L− 1 and the size of
the input layer shrinks accordingly.

The MINMAX Mode. In order to reduce the scale dependence of the data even further and
facilitate the training of the ANN, we introduce a third input mode referred to as MINMAX
mode. This mode is based on the minmax normalization technique that is commonly em-
ployed in ML applications. In general, the input data is scaled to the interval [a, b]. We choose
this interval such that the data is normalized to [0, 1]. A given sample in the ABS mode SNmax

ABS

can then be normalized via

SNmax
MINMAX =

SNmax
ABS −min

(
SNmax
ABS

)
max

(
SNmax
ABS

)
−min

(
SNmax
ABS

) . (5.6)
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Similar to the DIFF mode we can recover the converged value O∞ from the networks output
O∞

MINMAX through the inverse transformation

O∞ = O∞
MINMAX

(
max

(
SNmax
ABS

)
−min

(
SNmax
ABS

))
+min

(
SNmax
ABS

)
. (5.7)

As the input to the ANN is always in the defined range no degrees of freedom in the network
need to be used for an adjustment or scaling of the input data and the ANN will focus on
learning the detailed features of the convergence pattern.

5.2 Training Data

Key to any good ML application is high-quality training data. As we aim to directly train on
the converged value we rely on fully converged data sets of NCSM calculations. Unfortunately,
those are only available for nuclei up to A = 4. Hence, our training set will be limited to the
few-body systems 2H, 3H, and 4He. One can question whether such a training set is suitable
for predictions of other, in particular heavier, p-shell nuclei. Experience has shown that the
convergence pattern for a given observable in nuclei with A > 4 is very much alike the one in
the aforementioned few-body systems. This assumption is at the heart of this method and we
will investigate its validity in more detail. However, there are some further arguments that
solidify this assumption. First, the nuclei in the training set cover a broad range of convergence
rates from rather slow (2H) to very fast (4He). This is in favor of the method due to the
outstanding interpolation capabilities of ANNs. Following the same line of reasoning, one can
further increase the quantity and quality of the training data by performing calculations of
the training nuclei for multiple realistic interactions, which are additionally SRG evolved to
multiple different flow parameters, as they also exhibit different convergence patterns. Here,
the universality of this ANN method w.r.t. interaction can be exploited. However, we will
only employ the Entem-Machleidt-Nosyk (EMN) family of interactions [85] in order to strictly
separate training and evaluation data where the latter will be obtained with a different family.

In particular, the full set of training data consists of Jacobi-NCSM calculations for 2H,
3H, and 4He up to Nmax = 50, 40, and 24 respectively, for seven HO frequencies ℏΩ =

12, 14, 16, 20, 24, 28, and 32 MeV. These calculations are performed with non-local chiral
NN+3N interactions from Hüther et al. [78] at N2LO, N3LO, and N4LO each with three
different cutoffs ΛC = 450, 500, and 550 MeV. All nine interactions are employed bare and
SRG evolved to different flow parameters α = 0.02, 0.04, and 0.08 fm4 resulting in a total of
36 different interactions or 756 converging sequences with different convergence patterns.

However, we exclude some of the data based on unphysical behavior or incomplete con-
vergence. We, therefore, discard all results obtained at Nmax = 0 and exclude all sequences
that are not converged within 5% of the limit at the largest available Nmax.

Since we use supervised learning we need to extract labels, i.e., the actual converged
values, for the training data. As the data is basically fully converged to the accuracy we aim
for, we extract the label for the ground-state energy from the lowest value at the highest Nmax,
thus, always considering the optimal ℏΩ. For other observables we consider the exponential
extrapolation of the flattest sequence regarding the six highest Nmax.

Next, the data needs to be converted into input samples. For each combination of nucleus
and interaction we construct all subsets of F frequencies and L consecutive Nmax values. We,
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Figure 5.4: Distributions of target values in the training samples for ground-state energies (upper
panels) and rms mass radii (lower panels) for all three input modes. The different colors indicate
contributions from the different training nuclei 2H (green), 3H (orange), and 4He (blue).

Nucleus Samples Egs Samples Rrms

2H 166320 166320
3H 126990 126990

04He 060642 062262

Table 5.1: Numbers of training samples per nucleus for ground-state energy and rms radius. Differ-
ences arise from the different Nmax ranges for the individual nuclei.

further, consider all permutations of the HO frequencies in order to become independent
of the order in which they are piped into the ANN. Finally, the samples themselves can be
formatted according to the input mode.

As a result we obtain 353,952 (355,572) energy (radius) samples and the distributions
of their target values are shown in Fig. 5.4. Table 5.1 shows the corresponding numbers
of samples per training nucleus. For the ABS mode we see three peaks emerge, which
correspond to the three training nuclei. The distributions for the DIFF and MINMAX modes
appear much smoother and more widely spread. Moreover, the distributions for the individual
nuclei show strong overlap and very similar shape, which indicates nucleus-independent
features. For the ground-state energies the MINMAX distribution is more evenly spread over
the interval, which is expected to be beneficial over the high peak structure we find for DIFF.
Both exhibit a sharp edge at 0 which is due to the variational principle. For the radii, on
the other hand, we find rather different distributions for DIFF and MINMAX. In the DIFF
case there is again a single peak structure around 0 from the almost fully converged samples.
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Other than that most targets are above 0 and only very few below, which indicates that the
training set continues much more upward converging sequences for radii than downward
converging ones. For MINMAX we have a double-peak structure with peaks at the boundaries
of the interval we are scaling the data to, i.e. 0 and 1. The targets above 1 again resemble
mostly upward converging samples (mostly 2H and 3H) and the few values below 0 reflect the
imbalance compared to downward converging ones (4He). Moreover, with the MINMAX mode
we can also resolve samples with mixed convergence given by the part of the distribution
between 0 and 1.

Let us reconsider the training set for the ABS mode. The structure of the distributions
indicate that the ANN either has to learn how to deal with possible input values that span a
range of values in the training and an even wider range in subsequent applications to p-shell
nuclei or, in the worst case, it will end up learning to reproduce three specific values for the
training nuclei which would resemble a certain kind of overfitting w.r.t. the nucleus. We can
try to facilitate this task for the ANN by artificially spreading the training set over a wider
range of values. This is done by randomly scaling the samples. Our target nuclei are p-shell
nuclei which exhibit a range of about 0 to −150 MeV in binding energy. We, therefore, ideally
spread the training set over the same interval. As the DIFF samples also exhibit a certain
range dependence we scale the samples for both ABS and DIFF such that

a · SNmax
ABS + b and c · SNmax

DIFF , (5.8)

where a ∈ (0.25, 4), b ∈ (−20, 20), and c ∈ (0.5, 2) are random numbers drawn from a uniform
distribution over the given intervals. This way we can obtain an arbitrary number of samples
that span a wider energy range and slightly differ in their convergence pattern. We can
apply the same scaling for radii. However, they exhibit a different range and we, therefore,
choose b ∈ (−1, 1) as negative or very large radii are unphysical. Figure 5.5 shows the new
distributions of the target values after scaling. We find that the target values in the ABS mode
now spread the desired energy range and similarly a wider range of radii is covered. The DIFF
distributions appear rather unchanged, however they now also include samples that cover
much larger values.

While this concludes the construction of the sets of training data used in the following
applications, we have not yet discussed, whether the initial assumption about the training
data resembling actual use cases holds. Figure 5.6 shows a comparison of evaluation samples
constructed from NCSM data for 16O with a small subset of the training samples. For better
comparability we look at the normalized MINMAX samples that serve as direct input to the
ANNs. We find for both, ground-state energies and rms radii, that the 16O samples lie well
within the training data. Most importantly the overall trend of the sequences matches and
one is not to be concerned by minor derivations due to the excellent interpolation qualities of
ANNs. For clarity, this is only presented for one sample each, however, this holds for most if
not all samples for other p-shell nuclei as well. Hence, we can conclude that the convergence
pattern in p-shell nuclei appears to be universal and the few-body systems considered for
training are, therefore, sufficient to provide training data of good quality.
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Figure 5.5: Same as Fig. 5.4 but for the scaled samples.
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Figure 5.6: Evaluation sample for 16O (red) embedded in the 50 nearest training samples (gray)
for ground-state energies (left-hand panel) and rms radii (right-hand panel) in MINMAX mode. The
samples are of similar shape, hence, the convergence patterns in heavier p-shell nuclei are very much
alike the ones in the training data.
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5.3 Training

With the training data prepared, we can turn to the actual training of the ANNs. For that,
we divide the available data into three disjoint subsets, i.e., a training set, which is used for
the actual training and consists of 1,000,000 samples, a development set made from 10,000
samples, which is evaluated multiple times during the training in order to adjust parameters
such as the learning rate, and finally a validation set consisting of 50,000 samples on which
the quality of the fully trained ANN will be evaluated. Note that the given numbers of samples
are obtained through random scaling for ABS and DIFF, while the samples for MINMAX are
randomly drawn from the original set of samples, which results in the same samples occurring
multiple times.

The overall procedure for the training is given as follows:

1. Iterate through the whole training set in batches of size Nbatch.
Such an iteration is called an epoch.

2. Evaluate the development set and adjust the learning rate.

3. Repeat 1. and 2. for a given number of epochs.

4. Evaluate the validation set and keep or discard the ANN.

Since each of these steps contains hyperparameters that need to be chosen in advance or
adapted during the training, we will discuss them in more detail. Note that the adjustment
of hyperparameters is an extensive iterative process that mostly builds on experience. We
will, therefore, not go through the whole process, which would require the discussion of
hundreds of combinations of those hyperparameters, but instead start with the configuration
that worked best in applications and show how a variation of the individual hyperparameters
affects the training process.

We define the following as the starting point for our investigations and will refer to it as
the standard configuration: For the ANN topology we first of all choose an input of three
sequences (F = 3) with four consecutive Nmax values each (L = 4), which results in an input
layer with 12 neurons. We further choose three hidden layers with 4 ·F ·L, 4 ·F ·L, and 8 ·F
neurons respectively. The size of the output layer remains at one single neuron. As activation
function we employ a rectified linear unit (ReLU) [126] and for backpropagation we use the
AdamW algorithm [127]. Our loss function of choice is the MSE loss function as given in
Eq. (4.2). For the training process we start with an initial learning rate of η = 0.001, which is
adapted by a learning rate scheduler that reduces the learning rate by 50% if the change in
loss after a training epoch is less than 10% compared to the previous epoch. The training is
performed with a batch size of 512, i.e., the ANN is trained on 512 samples simultaneously.

Let us first take a look at the training performance for the standard configuration. In
Fig. 5.7 the average loss for 10 ANNs over a period of 50 epochs is shown for all input modes.
Apparently, the DIFF and MINMAX trainings converge faster than the ABS mode, which aligns
with our assumption of facilitating the training through normalization of the data. Since we
want to avoid the risk of overfitting the data, we stop the training after 20 epochs, indicated
by the gray dashed line, just before the loss is converged. Training a single ANN then takes
approximately 80 seconds on a desktop computer.



5.3 TRAINING 43

5 10 15 20 25 30 35 40 45 50

Epochs

1

10

M
S

E

×10−1 ABS

5 10 15 20 25 30 35 40 45 50

Epochs

1

10

×10−2 DIFF

5 10 15 20 25 30 35 40 45 50

Epochs

2

3

4

5
×10−2 MINMAX

Figure 5.7: Change of loss on the development data set during the training process for the standard
configuration for ground-state energies averaged over 10 ANNs. The dashed grey line at 20 epochs is
chosen as the stopping point for the training in actual applications. The different panels correspond to
different input modes.
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We can further investigate the dependence on the initial learning rate η, which is shown
in the upper left panel of Fig. 5.8. Again, the average loss for 10 ANNs in ABS mode is shown,
this time for initial learning rates at various orders of magnitude. We find that both η = 0.01

and η = 0.001 converge toward a similar level of accuracy on the development set, however,
η = 0.001 converges faster and performs much better at epoch 20 in particular. If the learning
rate is increased even further the step size in the optimization process becomes too large
to be meaningful and the exhibits almost random behavior before approaching a high-lying
local minimum eventually, probably due to the learning rate scheduler. Going to significantly
smaller learning rates the training is slower and the ANNs also end up in local minima due to
the small step size.

The upper right panel of Fig. 5.8 shows variations of the batch size, i.e., the number of
samples that are piped into the network simultaneously. We find the best training for a batch
size of 512. For a batch size of 32 the loss converges toward a similar limit however it does so
much slower and the training time increases to around 280 seconds. Any larger batch sizes
seem to end up in local minima or converge far more slowly while the training time remains
at around 80 to 90 seconds.

Regarding the activation function (lower left panel of Fig. 5.8), we find superior con-
vergence for ReLU over a Sigmoid. Finally, the lower right panel shows that the Adam
optimization algorithms perform far better than stochastic gradient descent (SGD). Note that
for the latter the learning rate had to be adjusted to η = 0.00001 which we have found to be
optimal for this algorithm.

All of the hyperparameters above have been optimized for the network topology that we
have found to work best in our applications. However, all of these may or may not change if
the number of hidden layers or their size is changed. Finding the right topology can be time
consuming as it is an iterative and rather experimental process. We will, therefore, refrain
from a detailed discussion but want to mention that the performance of the ANNs discussed
here is quite robust against changes of the topology and under-(over-)fitting only occurs for
drastically smaller (bigger) numbers of nodes. Between these two extremes the topology will
have a significant impact on the performance of the training, however, the final predictions
remain of similar quality.

As a last step in the training process, we need to address the validation of an ANN once it
is trained. The decision whether to keep or discard an ANN is based on two criteria. One one
hand, we define a validation threshold, i.e., a target accuracy for the ANN on the validation
data. This threshold varies based on observable and input mode. The validation thresholds
employed in this work are given in Tab. 5.2. On the other hand, we can look for indicators of
overfitting by comparing the ANNs performance on the training set and the validation set. A
significantly smaller loss on the training data is a strong sign of overfitting.

Mode Egs Rrms

ABS 0.05 0.01
DIFF 0.01 00.001

MINMAX 0.05 0.10

Table 5.2: Validation thresholds for the ANN training for different observables and input modes.
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5.4 Statistical Evaluation

The remaining questions are how to employ trained ANNs to unseen data, which we will
refer to as evaluation data from now on, and how to extract a robust prediction along with a
reliable uncertainty estimate. Again, we first need to format the evaluation data into samples
that match the design of the input layer of the ANN. This can be done analogously to the
preparation of the training data discussed beforehand and results in a multitude of evaluation
samples that all yield different, equally plausible predictions when passed through the ANN.
We can sort those by Nmax in order to assess predictions for different model-space sizes
separately, yet this still leaves us with multiple predictions at a given Nmax. Moreover, it
is difficult to quantify the quality and associated uncertainty for the prediction of a single
network. We will, therefore, train multiple ANNs and turn to a statistical evaluation process.
In particular, we employ up to 1000 valid ANNs that have all been initialized randomly, train
them individually, and evaluate them with all possible evaluation samples. As shown in
Fig. 5.9, the resulting distributions of predictions are reminiscent of a normal distribution,
hence, we can extract the final prediction and statistical uncertainty by fitting a Gaussian to
the distribution of predictions and extracting the mean and standard deviation. Thus, the
estimated uncertainty can be interpreted as a 68% or 1σ degree of believe interval. We can
further see how the number of ANNs contributes to the stability of the statistical evaluation.
The leftmost panel shows the predictions obtained from a single ANN, hence, the spread of
predictions arises from the different evaluation samples that can be constructed from the
evaluation data. It also serves as a rough estimate on how large the uncertainty from this
source is. Looking at the other panels that show the same distribution for an increasing
number of ANNs we find that the prediction and uncertainty remain very stable, which means
that the ANNs are in very good agreement with each other and the main uncertainty arises
from the different evaluation samples. Yet, the distributions become smoother and grow closer
to a normal distribution, which results in a more robust fit. Overall we see some fluctuations
of the predictions for small numbers of ANNs which eventually saturate at around 100 ANNs.
To ensure minimal dependence on statistical errors we will employ 1000 ANNs for actual
predictions.

In some cases the distribution of predictions does not resemble a normal distribution but
exhibits multimodality to different extends, as illustrated in Fig. 5.10. Consequently, this leads
to a breakdown of the Gaussian fit method. As already discussed in [57], the occurrence of
such multi-peak structures can be attributed to an imbalance in the evaluation data, which
can be avoided through a thorough selection or rebalancing of the data. Either way, it serves
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Figure 5.9: Distributions of predictions for the ground-state energy of 6Li at Nmax = 8 along with
fitted Gaussian, obtained from different numbers of ANNs in ABS mode.
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Figure 5.10: Distributions of predictions for imbalanced evaluation data for the rms radius of 16O at
Nmax = 10 along with fitted Gaussian, obtained from 1000 ANNs in MINMAX mode.

as a strong indicator for unwanted biases in the data. In our case, such structures only occur
for very sparse sets of evaluation data.



6
Predictions of Energies and Spectra

In the previous chapters we have discussed how to construct and train ANNs for NCSM
model-space extrapolation. With the trained networks on hand we can now investigate their
performance and predictive power. Results presented here have led to publication [122]. If
not stated otherwise, all predictions shown here are obtained from 1000 ANNs.

In order to avoid the reproduction of training data and ensure that the evaluation data is
truly unseen by the ANNs, we strictly separate the evaluation data from the training data by
using another family of interactions. In addition, this will automatically proof the universal
applicability of the developed ANN topology. The interaction family for evaluation is the
semi-local momentum space regularized set of chiral NN + 3N interactions developed by the
LENPIC collaboration [128, 129]. Those are available up to N4LO on the two-body level and
N2LO on the three-body level and will be employed for the cutoff values ΛC = 450, 500 MeV.

6.1 Benchmark in Few-Body Systems

Before we look at actual applications of the ANNs we first quantify the performance of the
ANNs on data for which we know the converged values, in order to compare different ANN
setups. This requires a set of benchmark data along with a metric that determines the accuracy
across multiple predictions. The benchmark data consists of Jacobi-NCSM calculations for 2H,
3H, and 4He with semi-local interactions at N2LO and N3LO in the NN sector accompanied
by a 3N interaction at N2LO [52], each for both cutoff values ΛC = 450, 500 MeV and SRG
evolved to α = 0.04, 0.08 fm4, resulting in 8 different interactions. For every interaction, data
for ℏΩ = 12, 14, 16, 20, 24, 28, and 32 MeV is available and we will look at the performance of
the ANNs at Nmax = 8, 10 and 12.

Since the different nuclei exhibit very different binding energies, we estimate the total
accuracy a on a relative measure given by

a = 1−

√√√√ 1

N

N∑
i=1

(yi − yti )
2

(yti )
2

, (6.1)

where yi and yti are the predicted value and the target value respectively and the sum runs
over all samples.

47
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Figure 6.1: Predictions of the ground-state energy of 3H at Nmax = 10 for different number of input
sequences F for 100 ANNs in ABS mode each.

Nucleus Nmax F = 1 F = 2 F = 3 F = 4 F = 5

8 0.9259 0.9750 0.9752 0.9802 0.9819
2H 10 0.9667 0.9821 0.9907 0.9902 0.9844

12 0.9915 0.9954 0.9956 0.9962 0.9982

8 0.9943 0.9994 0.9978 0.9959 0.9946
3H 10 0.9889 0.9916 0.9928 0.9918 0.9904

12 0.9969 0.9974 0.9969 0.9969 0.9960

8 0.9944 0.9981 0.9977 0.9981 0.9976
04He 10 0.9958 0.9978 0.9978 0.9983 0.9978

12 0.9984 0.9986 0.9985 0.9988 0.9983

8 0.9570 0.9855 0.9856 0.9883 0.9890
Total 10 0.9796 0.9885 0.9931 0.9926 0.9893

12 0.9947 0.9969 0.9968 0.9971 0.9973

Table 6.1: Accuracy of 100 ANNs in ABS mode on the benchmark set for different numbers of input
sequences F .

Durning the previous discussion of hyperparameters we have chosen L = 4, since we
want the ANNs to be able to predict a wide range of p-shell nuclei for which we are often
limited to Nmax = 8. The choice of the number of input sequences, however, is not constraint
by such considerations, as the computational cost only scales linearly with the number of
frequencies. To get an idea of the dependence of the predictions on F , we can discuss Fig. 6.1,
which shows predictions for the 3H ground-state energy for different F . While this is only an
example, we already see that a single input sequence significantly reduces the stability of the
statistical evaluation. The shape of the histogram and the extracted prediction improves with
increasing F up to F = 3 and remains stable after. In order to avoid any bias from a single
case, we can additionally consider Tab. 6.1, which shows the accuracy on the benchmark set
for the different ANN topologies at Nmax = 8, 10, and 12. Similar to the previous example
we find overall increasing accuracy up to F = 3. For higher numbers of input sequences the
accuracy at Nmax = 8 keeps improving at the cost of the Nmax = 10 accuracy. We, therefore,
choose F = 3 to be optimal as it allows high quality predictions with a rather small amount
of input data. Moreover, it should be noted that we reach an accuracy on the benchmark set
above 99%.
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Figure 6.2: Evaluation data (left) and ANN predictions (right) for the ground-state energies of 2H,
3H, and 4He at N2LO with ΛC = 450 MeV and α = 0.08 fm4. The evaluation data consists of NCSM
calculations for ℏΩ = 12, 14, 16, 20, 24, 28, and 32 MeV (gray to red) while the predictions are grouped
in three sections corresponding to the respective Nmax = 8, 10 or 12. The colored histograms with
Gaussian fits correspond to the different input modes ABS (green), DIFF (orange), and MINMAX
(green). The darker green horizontal lines indicate the converged value for the respective nucleus.
Classical extrapolations according to the procedure described in Sec. 3.2 are given in red with red
error bands.

With the topology set, we can now investigate how the ANNs perform on the selected
few-body systems. Figure 6.2 shows the predictions of the ground-state energies for the three
nuclei but with the semi-local interaction at N2LO with ΛC = 450 MeV and SRG evolved
to α = 0.08 fm4. The left-hand panels show the NCSM calculations used as evaluation
data, while the right-hand side depicts histograms of predictions for the ABS (green), DIFF
(orange), and MINMAX (green) modes at different Nmax. The darker green lines additionally
indicate the actual converged ground-state energies for the respective nucleus and interaction.
Classical extrapolations according to the procedure described in Sec. 3.2 are given in red with
red error bands.

First of all, we notice that all predictions are in the vicinity of the respective target val-
ues. Hence, the ANNs are able to capture the convergence pattern and produce reasonable
predictions in the first place. We, further, find that especially for 2H and 3H the predictions
are more accurate and in the case of the DIFF and MINMAX mode also more precise than
the classical extrapolations. Comparing the different input modes we see that DIFF comes
with the smallest uncertainties while being very accurate. MINMAX has a similar level of
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Nucleus Nmax ABS DIFF MINMAX

8 0.9775 0.9887 0.9852
2H 10 0.9900 0.9909 0.9937

12 0.9962 0.9926 0.9953

8 0.9972 0.9984 0.9988
3H 10 0.9927 0.9986 0.9953

12 0.9970 0.9993 0.9990

8 0.9976 0.9999 0.9961
04He 10 0.9977 0.9996 0.9977

12 0.9985 0.9997 0.9991

8 0.9869 0.9934 0.9911
Total 10 0.9927 0.9947 0.9953

12 0.9971 0.9957 0.9972

Table 6.2: Accuracy of 1000 ANNs on the ground-state energy benchmark set for the different input
modes.

accuracy but larger uncertainties for smaller Nmax. The ABS mode lacks both accuracy and
precision compared to the other modes which was expected from the previous discussion of
the input modes. We can verify these findings based on the accuracy on the benchmark set
given in Tab. 6.2, for which MINMAX seems slightly superior. Note that the accuracy measure
does not take the uncertainties into account and might, therefore, be misleading. However,
the uncertainties are intentionally omitted in the measure as we do not know whether larger
uncertainties are more realistic.

6.2 Application to p-Shell Nuclei

So far, we have demonstrated that the ANNs are able to capture the convergence pattern
for the systems they are trained on, even for a different family of interactions. We can now
extend these investigations to unseen p-shell nuclei, which resemble actual applications and
allow us to validate the assumption of universality as discussed previously. Figure 6.3 shows
ANN predictions for the p-shell nuclei 6Li, 7Li, 8Li, 9Be, and 12C across a wider mass range
than the few-body systems. Again, all three input modes have been evaluated and classical
extrapolations are given for comparison. First of all, the ANNs in all modes produce reasonable
predictions comparable to intuitive expectations or classical extrapolations. Compared to the
latter, the ANN predictions yield uncertainties of similar or even smaller size depending on the
input mode. Considering how well the classical extrapolation works for ground-state energies
this proofs that the ANN extrapolation does work at least equally well.

When comparing the different input modes in Fig. 6.3, we observe indications of an energy
dependence for the ABS or DIFF mode. For 6Li, 7Li, 8Li, and 9Be we find that the MINMAX
predictions are very consistent across different Nmax while the results for ABS and DIFF, just
like the classical extrapolations, exhibit a downward trend. In the DIFF case, which yields
the smallest uncertainty estimates, this downward trend comes with partially inconsistent
predictions. Further, this downward trend is a potential indicator for an energy dependence,
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Figure 6.3: Same as Fig. 6.2 but for selected p-shell nuclei 6Li, 7Li, 8Li, 9Be, and 12C.
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which is expected to manifest as a shift towards the energy regime covered in the training.
Besides normalization schemes this energy dependence should also be significantly lowered
by looking at the binding energy per nucleon E/A instead, which is rather consistent across
the whole nuclear chart. Since this does not require any conceptual change to the ABS mode,
we will refer to this as ABS’ meaning ANNs that are trained on E/A. A comparison of these
two modes is shown in Fig. 6.4, where we find that the energy dependence is indeed reduced
but at the cost of significantly larger uncertainties. The latter can most likely be attributed
to the rescaling required to obtain the full ground-state energy. Overall, ABS’ performs very
much like the MINMAX mode.

Note that we have limited our discussion to 6Li, 7Li, 8Li, and 9Be so far. Surprisingly, the
situation is quite opposite for 12C, where predictions for all modes exhibit an upward trend
resulting in very inconsistent results for the MINMAX mode and rather stable predictions for
ABS and DIFF. Upon closer inspection, we have found that this is potentially an artifact of
the strong importance truncation staggered across multiple Nmax steps, which is required to
render the 12C model space at Nmax = 10 tractable. However, to confirm this a more detailed
investigation is required.
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Figure 6.4: Same as Fig. 6.3 but comparing ABS and ABS’ input modes (see text for details).
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6.3 Extension to Excitation Energies

The previous investigations in this chapter have proven the universality of the ANNs extrapo-
lation capabilities w.r.t. the binding energy of the nucleus and the employed interaction. This
leaves us with one final step towards the prediction of full energy spectra, which is the exten-
sion to excitation energies. The developments of this extension have led to the publication
[123].

Studying the convergence pattern for energies of excited states, we find that they are very
much like those for ground-state energies, at least for bound states, which we are interested
in. Hence, we can start by simply using the previous ANNs to predict the converged energies
of excited states. Due to their interpolation capabilities, we find that the ANNs work equally
well for excited states as they did for ground states, as can be seen in the upper panels of
Fig. 6.5. Both, the ground-state energy and the energy of the first 3+ excited state of 6Li

have been predicted with the ANNs in MINMAX mode. While this adds to the universality
aspect of the ANNs, the observable we are actually interested in is the excitation energy
Eex. The straight-forward way to obtain those is a simple subtraction of the extrapolated
energies for ground state and excited state. However, providing a meaningful uncertainty is
complicated as the uncertainty estimates of the individual energies are strongly correlated. If
we recede to the false assumption that both uncertainties are uncorrelated an estimate can be
obtained through standard uncertainty propagation. In the given example, this would yield
an excitation energy of Eex = 2.391(82) for Nmax = 12. Alternatively, we can extend the idea
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Figure 6.5: Upper panels: NCSM calculations for ℏΩ = 14, 16, 20, 24, and 28 MeV and extracted
predictions of the ground-state energy (dashed) and first 3+ excited state energy (dotted) of 6Li from
ANNs in MINMAX mode at Nmax = 8, 10, and 12. Lower panels: Corresponding excitation energy
with prediction obtained through sample-wise subtraction of the individual predictions (see text for
details).
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Figure 6.6: NCSM calculations of ground-state and excitation energies for the low-lying natural parity
states of 6Li, 7Li, and 8Li along with ANN predictions in MINMAX mode and classical extrapolations.

of the statistical evaluation by constructing a distribution of predictions for the excitation
energy, from which we can then extract a more meaningful uncertainty. Such a histogram can
be obtained through a sample-wise subtraction of the predictions for the absolute energies of
both states. The idea is to construct pairs of evaluation samples for the two different states,
which consist of data for the same set of Nmax and ℏΩ. We can then have each ANN predict
a converged value for both samples and subtract them obtaining a single estimate for the
excitation energy. Doing this for all possible evaluation samples and all ANNs we end up with
a distribution as depicted in the lower panels of Fig. 6.5. The predictions are remarkably
consistent and for the final prediction at Nmax = 12 we find Eex = 2.397(36), which is
about twice as precise than the standard uncertainty propagation while the predictions are in
agreement even though the extracted prediction is slightly shifted.

We now have the toolbox to study predictions of energy spectra. Figure 6.6 shows pre-
dictions for the ground-state energy and the excitation energies of low-lying natural parity
states for 6Li, 7Li, and 8Li along with ANN predictions starting at Nmax = 8 together with
classical extrapolations for comparison. The latter are obtained through the difference of the
extrapolations for the two individual states, where the larger uncertainty is chosen. Across
all nuclei and states we find that the ANNs produce very consistent extrapolations with the
exception of the 7

2

− state in 7Li. Moreover, the predictions of excitation energies are much
more accurate that those from classical extrapolations and different convergence patterns are
handled well.
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Overall, we have shown that ANNs constructed and trained as discussed in the previous
chapter feature a great degree of universality regarding different nuclei, states and interac-
tions and can easily compete with classical extrapolation methods. Since they are rather small
and only have to be trained once, they provide an efficient tool for postprocessing NCSM
calculations.

A collection of the numerical values for all results shown in this chapter can be found in
Appendix A.1.



7
Predictions of Radii

In this chapter we will investigate to what extend the properties of the ANNs, which work
exceptionally well for energies, can be transferred to another observable, e.g., rms radii. The
results presented here have also entered the publication [123].

As we have already discussed, the main challenge here is the less constrained and, there-
fore, much more complicated convergence pattern that includes upwards and downwards
converging as well as non-monotonic sequences. In addition, there are no established extrap-
olation methods for radii, hence, robust ANN predictions would be very beneficial for future
investigations and precision calculations of nuclear radii.

For the following applications we have trained 1000 ANNs analogously to the energy case.
Training and evaluation data are obtained with different families of interactions in order to be
strictly separated. In particular, the evaluation data for radii is calculated with the semi-local
momentum space regularized chiral NN + 3N interaction [128, 129].

7.1 Benchmark in Few-Body Systems

We start our investigations by studying the ANNs performance on few-body nuclei. In order
to do so, we construct a set of benchmark data for the same chiral orders, cutoffs, SRG
flow parameters and ℏΩ as for the ground-state energies in Sec. 6.1. The accuracy of the
predictions is, again, estimated by the measure defined in Eq. (6.1).

The performance on the benchmark nuclei for the semi-local interaction at N2LO with
ΛC = 450 MeV and α = 0.08 fm4 is illustrated in Fig. 7.1. Again, the evaluation data is
displayed in the left-hand panels while the right-hand panels show predictions from 1000
ANNs for ABS (green), DIFF (orange), and MINMAX (blue) grouped by Nmax. The darker
green lines indicate the converged values for the respective nuclei.

One notices right away that the performance of the ANNs is worse and far less consistent
across the different input modes compared to the ground-state energies (see Fig. 6.2). This
can, in general, be attributed to the more complex convergence behavior. However, looking at
the individual input modes we see remarkable differences in the accuracy of the predictions.
Starting with ABS we find that 4He as the simplest case is described reasonably well, while
2H and 3H are clearly under- or overestimated. This is even worse for the DIFF mode, where
all three nuclei are strongly overestimated. The normalization in the MINMAX mode seems to
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Figure 7.1: Evaluation data (left) and ANN predictions (right) for the mass rms-radii of 2H, 3H, and
4He at N2LO with ΛC = 450 MeV and α = 0.08 fm4. The evaluation data consists of NCSM calculations
for ℏΩ = 12, 14, 16, 20, 24, 28, and 32 MeV (gray to red) while the predictions are grouped in three
sections corresponding to the respective Nmax = 8, 10 or 12. The colored histograms with Gaussian
fits correspond to the different input modes ABS (green), DIFF (orange), and MINMAX (green). The
darker green horizontal lines indicate the converged value for the respective nucleus.

Nucleus Nmax ABS DIFF MINMAX

8 0.9743 0.9305 0.9937
2H 10 0.9811 0.9399 0.9923

12 0.9691 0.9521 0.9918

8 0.9803 0.9418 0.9799
3H 10 0.9696 0.9492 0.9897

12 0.9826 0.9755 0.9966

8 0.9916 0.9734 0.9967
04He 10 0.9958 0.9872 0.9976

12 0.9980 0.9922 0.9987

8 0.9807 0.9454 0.9877
Total 10 0.9792 0.9540 0.9925

12 0.9795 0.9686 0.9948

Table 7.1: Accuracy of 1000 ANNs on the mass radius benchmark set for the different input modes.
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remedy these issues, describing 2H and 4He almost perfectly from small Nmax on, while only
exhibiting minor deviations for 3H. Apparently, normalizing the data facilitates the learning
process of the convergence patterns, allowing the ANNs to capture more complex patterns.
We further notice that the predictions seem to benefit from input data converging from both
directions, which is reasonable as it provides an additional constraint on the converged value.

These observations are supported by the accuracy measures on the benchmark set given
in Tab. 7.1. We find that all input modes perform best on 4He. Both, ABS and DIFF, show
deficits in the description of 2H and 3H, whereas MINMAX is consistent and comes with the
highest overall accuracy. From this we conclude that the normalization of the data is not only
beneficial but necessary and we will, therefore, continue our investigations with the MINMAX
mode only.

7.2 Application to p-Shell Nuclei

While the ANNs succeed in describing the light nuclei, the question remains whether the
learned convergence patterns transfer to heavier p-shell nuclei. Figure 7.2 shows predictions
of mass rms-radii for 6Li, 7Li, 8Li, and 9Be, which resemble prime examples of interesting
p-shell nuclei. In all cases we find robust predictions that are fairly consistent across multiple
Nmax. On closer inspection, one notices a slight upward trend in the predictions of 6Li and
7Li, which correspond to similar trends in the input data. However, this mainly results in
deficiencies in the smallest model spaces and predictions beyond those are consistent again.
Alternatively, we would expect this effect to decrease when more calculations at smaller ℏΩ
are taken into account, as they should result in downward converging series, thus, adding
additional information akin to the previous 4He convergence pattern.

Overall, we can conclude that the ANNs can indeed be extended to radii and provide
robust predictions with reasonable uncertainty estimates. This allows for precise calculations
of radii across the p-shell. Moreover, the universality of the ANNs does not only yield good
predictions for mass radii but also other radii, e.g., point-proton radii. We can further extend
the difference-based framework for excitation energies and look at differences of radii, which
is subject to ongoing developments, as they directly relate to experimental efforts.

In principle, the ANN extrapolation tool can also be applied to other observables such as
electromagnetic moments or transitions, but the few-body systems we have trained on exhibit
little to none electromagnetic moments. Hence, other means of obtaining training data or the
exploitation of correlations between observables are required for future applications along
those lines.

A collection of the numerical values for all results shown in this chapter can be found in
Appendix A.2.
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Figure 7.2: Evaluation data along with predictions from ANNs in MINMAX mode at accessible Nmax

for the mass rms-radii of selected p-shell nuclei 6Li, 7Li, 8Li, and 9Be at N2LO with ΛC = 450 MeV and
α = 0.08 fm4 for ℏΩ = 14, 16, 20, 24, and 28 MeV (gray to red). Evaluation data has been provided
from [48].
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8
The Hypernuclear Hamiltonian

Since the advent of ab initio methods in nuclear structure theory together with HPC facilities,
the nuclear chart has been explored up to the medium-mass regime and the quantitative
understanding of nuclear structure and insights into nuclear interactions have enabled the
field to enter a precision era. However, there is one aspect that has lately gained increasingly
more attention in a strive to understand the fundamental aspects of the strong force. It is
the field of hypernuclei and other systems with strangeness that are governed by the strong
force [18].

Experimentally, hypernuclei have been known and successfully measured since the 1950s
[6]. The theoretical description of these systems requires the shift from purely nucleonic
approaches to a more general baryonic picture, introducing strangeness S as an additional
degree of freedom. Consequently, hyperons (see Tab. 8.1), i.e., baryons with S ≠ 0, enter the
particle content of the theoretical models. Hence, the Hamiltonian defining the hypernuclear
many-body problem needs to be extended in order to describe these new particle species. In
its general form

Ĥint = ∆M̂ + T̂int + V̂N + V̂Y (8.1)

the intrinsic kinetic energy T̂int and the nucleonic potential V̂N remain unchanged and it
mainly deviates from the nuclear Hamiltonian Eq. (1.2) by the addition of a potential term
V̂Y that covers the interaction among hyperons and nucleons. The additional mass term
∆M̂ = M̂ −M0 accounts for the different rest masses of the particles due to the comparably
large mass of the hyperons. Here, M0 ≡ Zmp + Nmn − SmΛ is the reference point for the
energy that corresponds to the rest mass of the constituents of the system under consideration.
Note that the previous expression for T̂int in equation Eq. (1.5) remains valid, however, it
cannot be simplified further as the equal mass assumption for nucleons does not hold for the
heavier hyperons.

The hyperonic interaction

V̂Y = V̂YN + V̂YY + V̂YNN + V̂YYN + V̂YYY + . . . , (8.2)

can again be decomposed by particle rank and species up to A-baryon interactions. Analo-
gously to the nucleonic case we truncate this at the three-body level and omit terms with
higher particle rank. We, further, limit our investigations to singly-strange hypernuclei, which
leaves us with hyperon-nucleon (YN) and hyperon-nucleon-nucleon (YNN) contributions.
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Particle Mass m [MeV] Charge Q [e] Isospin t Isospin Projection mt Strangeness S
+-n 1939.565 +0 1/2 −1/2 +0
+-p 1938.272 +1 1/2 +1/2 +0
+-Λ 1115.683 +0 0 +0 −1
+-Σ− 1197.449 −1 1 −1 −1
+-Σ0 1192.642 +0 1 +0 −1
+-Σ+ 1189.370 +1 1 +1 −1

Table 8.1: Properties of nucleons and singly-strange hyperons that are constituents of the systems
discussed in this work.

8.1 Baryonic Interactions

Analogously to the nucleonic case, the YN and YNN interactions required for the calculation of
hypernuclei are rooted in QCD. While there have been some approaches to directly calculate
hypernuclear observables via lattice QCD [130–132], mostly phenomenological interactions
based on meson-exchange models such as the Nijmegen [133–135] and the Jülich [136,
137] potentials have been employed in structure calculations. In recent years, hyperonic
interactions from chiral EFT have entered the field and allow for ab initio calculations of
hypernuclei on the same footing as nucleonic interactions [19–22].

Constructing a baryon-baryon interaction, however, is all but simple. The concept of
isospin that arises from the SU(2) symmetry in nucleonic chiral EFT has to be adapted to the
SU(3) flavor symmetry required for the baryonic case. Hence, the nucleon and pion degrees
of freedom are extended to the full octet baryons and the pseudoscalar mesons which are
depicted in Fig. 8.1. We do not go into the details of the derivation of the interactions but
some general remarks are in order. The SU(3) flavor symmetry clearly is broken by the mass
of the strange quark, but it provides a good starting point for the chiral expansion and reduces
the free parameters in the theory. Nevertheless, more LECs than in the nucleonic sector occur
and need to be constrained on scattering data. Due to the short lifetime of the Λ hyperon of
approx. 260 ps, scattering experiments are extremely challenging. Thus, there is very little
scattering data available. We will address this issue in much more detail in Ch. 10. Further,
the inclusion of baryon-baryon coupling terms, in particular terms that account for the Λ-Σ
mixing, has proven to be crucial for the description of the spectra of singly-strange s-shell
hypernuclei [138–141].

Figure 8.1: Octet baryons (left) and pseudoscalar mesons (right) that resemble the degrees of freedom
in baryonic chiral EFT sorted by strangeness S and charge Q.
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To date, YN interactions from chiral EFT have been derived up to N2LO [22]. Initial YNN
forces, which enter at N2LO, have been derived partially [142], but a full description is not
available for now. In this work we limit ourselves to LO YN interactions. At this order no YNN
terms contribute. However, induced YNN terms enter again when nucleonic and hyperonic
interactions are consistently SRG evolved [143]. The inclusion of these induced YNN terms
has been found to be crucial for an accurate description of hypernuclei and hints to a potential
solution of the hyperon puzzle in neutron stars [16, 17]. All calculations of systems with
strangeness in this work are performed with induced YNN forces.





9
Hypernuclei in the No-Core Shell
Model

In an attempt to solve the hypernuclear many-body problem, extensions of conventional ab
initio methods are of particular interest. Throughout the past two decades, successes in
the s-shell regime have been achieved with Faddeev-Yakubovsky calculations [36, 37], and
Gaussian expansion methods [38]. More recently, p-shell hypernuclei have become accessible
through extensions of the NCSM [42, 44], Quantum Monte Carlo approaches [39, 40], and
nuclear lattice EFT calculations [45].

Our method of choice remains the NCSM and we will discuss the differences to the
nucleonic case, following the work of Wirth et al. [41–43, 143–145]. The general setup of
the method is the same as discussed in Ch. 2. The starting point is an expansion of the many-
body state in Slater determinants that consist of HO single-particle states. The essential step
when extending to systems with strangeness is conceptually simple, but has severe practical
implications. It is sufficient to allow hyperons as constituents of the single-particle basis by
introducing strangeness S ∈ {−1, 0} as an additional quantum number. Hence, compared to
Eq. (2.4) a single-particle state is now characterized by

|ai⟩ = {|nlm⟩ ⊗ |sms⟩ ⊗ |Stmt⟩}i. (9.1)

Note that isospin t and its projection mt can now take on more values as before according to
Tab. 8.1. Due to these additional degrees of freedom, the model-space dimensions grow even
more rapidly than before as shown in Fig. 9.1. We find that the model spaces for hypernuclei
are about an order of magnitude larger compared to nucleonic systems with the same number
of particles and nearly two orders of magnitude compared to their nucleonic parents.

When it comes to the application of intrinsic operators such as T̂int, which we have
already discussed in the context of the hypernuclear Hamiltonian, the equal mass assumption
becomes invalid. Hence, we need to explicitly keep track of the single-particle masses, and the
expressions for Ĥcm or R̂2

ms cannot be simplified beyond Eq. (2.7) and Eq. (2.9) respectively.
Other than that, the truncation scheme remains unchanged and we can exploit the same

symmetries as in the nucleonic case in order to reduce the model-space sizes. Similarily, the
idea of importance truncation can be transferred to the hypernuclear sector. This, however,
requires an adjustment of the perturbative importance measure, again, to account for the dif-
ferent rest masses of the nucleons and hyperons. In particular, we need to redefine Eq. (2.14)
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Figure 9.1: Comparison of the growth of NCSM model-space size with Nmax between hypernuclei,
their nucleonic parents and nuclei with same particle number A.

which now reads

κmν = − ⟨Φν |Ĥ|Ψref
m ⟩

∆Eν +∆Mν
= −

∑
µ∈Mref

⟨Φν |Ĥ|Φµ⟩⟨Φµ|Ψref
m ⟩

∆Eν +∆Mν
for ν /∈ Mref , (9.2)

where ∆Mν resembles the difference between the mass associated with |Φν⟩ and the reference
rest mass M0. Analogously to the nucleonic case, we define a truncation κmin to limit the size
of the IT-NCSM model space and the extrapolation to κmin → 0 is obtained from polynomial
fits at different orders.

With these extensions in place, we can study an example calculation of the ground-state
and excited state energies of 7

ΛLi with a LO YN interaction presented in Fig. 9.2. In the left-
hand panel we find that the overall convergence behavior is very similar to the nucleonic case.
We further find that the spectroscopic data, i.e., the lowest-lying natural parity states are well
described considering that these calculations are performed with a LO YN interaction.

For a more detailed discussion of the method we refer to [42].
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Figure 9.2: IT-NCSM calculations of 7
ΛLi with a chiral non-local NN+3N interaction at N3LO with

ΛC = 500 MeV and α = 0.08 fm4 accompanied by a LO YN interaction with ΛC = 700 MeV consistently
evolved to α = 0.08 fm4. Shown are ground-state energies for different ℏΩ = 14, 16, and 20 MeV
(left-hand panel) and bound-state energies of the lowest-lying natural parity states at ℏΩ = 16 MeV
along with experimental values taken from [7, 146] (right-hand panel). Vertical lines indicate IT
uncertainties.

9.1 Revisiting Artificial Neural Networks

The main bottleneck of the hypernuclear NCSM remains the rapid growth of model-space
dimensions and with that the limited reach w.r.t. Nmax and particle number A. As we have
shown, this growth is significantly faster than in purely nucleonic systems making the resulting
limitation even more severe. In Ch. 5 we have demonstrated that ANNs can provide a robust
tool for model-space extrapolations along with meaningful uncertainty estimates. The ANNs
have been constructed to learn and adapt to various different convergence patterns resulting
in a universality that enables the application across several p-shell nuclei, interactions and
states.

It is this universality that suggests the direct transfer of the ANNs to hypernuclear NCSM
calculations. From Fig. 9.2 we know that the convergence patterns in hypernuclei are very
much alike those we find in nucleonic calculations. Hence, we can assume that, due to their
interpolation capabilities, the ANNs, though only trained on purely nucleonic systems, can
directly be applied to the convergence patterns found in calculations of hypernucei.

Figure 9.3 shows the predictions from the exact same ANNs employed in Ch. 6 for the
ground-state energies of selected hypernuclei. The evaluation data is depicted in the left-hand
panels and the corresponding distributions of predictions in the right-hand panels. For both
systems we find very robust predictions for the ground-state energies that are in very good
agreement across all accessible Nmax. This is remarkable considering that these predictions
are obtained from three ℏΩ only and the ANNs have never been informed with data for
hypernuclei.

Another observable of particular interest for hypernuclei is the hyperon separation en-
ergy BΛ, which is defined as the difference of the binding energy of the hypernucleus and
the binding energy of its nucleonic parent. As it is very sensitive to the YN interaction, it
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Figure 9.3: Evaluation data (left-hand panels) along with predictions of ground-state energies at
different Nmax (right-hand panels) for selected hypernuclei from the same 1000 ANNs in MINMAX
mode as employed in Ch. 6. Calculations have been performed for ℏΩ = 14, 16, and 20 MeV and
horizontal dashed lines indicate the variational boundaries.

provides an ideal tool for studying it. Hence, being able to provide reliable predictions and
uncertainty estimates for BΛ is a crucial aspect for future investigations. The problem is that
the constraints on the convergence behavior of bound-state energies do not transfer to BΛ

and training ANNs specifically for the prediction of it is not desirable since we already have
ANNs that provide good extrapolations of energies. We can, therefore, make use of it being
a difference-based observable and treat it analogously to the excitation energies in Sec. 6.3,
i.e., we construct pairs of evaluation samples for a hypernucleus and its nucleonic parent for
the same values of ℏΩ and Nmax, which we then use as input for the ANNs and the difference
of the ANN outputs yields a single prediction of BΛ. When we do so for all possible pairs of
samples we obtain distributions of predictions from which we can deduce a final prediction
along with an uncertainty by statistical means.

An example for the prediction of BΛ for 7
ΛLi is provided in Fig. 9.4. The upper panels

depict the evaluation data and predictions for the ground-state energy of 7
ΛLi and its nucleonic

parent 6Li. By sample-wise subtraction of these distributions we find the predictions for BΛ

as shown in the lower panels. For the unconstrained convergence behavior of BΛ we find
monotonously increasing sequences up to Nmax = 8 before the larger frequencies exhibit a
kink and decrease again. When data from sufficiently large model spaces, here Nmax ≥ 10,
is available the predictions are in good agreement and match the expectations. Smaller
model spaces on the other hand result in incompatible predictions. However, when looking
at the convergence behavior of BΛ in the lower left panel and considering the monotonously
increasing behavior up to Nmax = 8 the predictions again match the expectations.

Overall, the ANNs provide a good method for the extrapolation of hyperon separation
energies and will, therefore, be valuable for the precision study of hypernuclei in the following
chapter.
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Figure 9.4: Evaluation data along with predictions of ground-state energies (upper panels) and
hyperon separation energies (lower panels) of 7

ΛLi and its parent nucleus 6Li using the same 1000
ANNs in MINMAX mode as employed in Ch. 6. Calculations have been performed for ℏΩ = 14, 16, and
20 MeV. See text for details.





10
Hyperon-Nucleon Interaction
Constrained on p-Shell Hypernuclei

The construction of a realistic YN interaction is crucial for an accurate description of hypernu-
clei. As discussed in Ch. 8, the extension of chiral EFT from nucleons to hyperons allows for a
systematic construction of such an interaction in analogy to the purely nucleonic sector. By
design, these interactions come with a set of LECs that needs to be constrained on experimen-
tal data, typically two-baryon scattering data. However, the very limited availability of such
scattering data, i.e., a total of 35 YN scattering data in S-wave channels [147–150], presents
a major bottleneck for fitting procedures of these LECs 1. In particular, the YN interactions
derived in [19–22] come with 5 LECs at LO and 23 LECs at NLO and N2LO. While the number
of LECs in the latter can be reduced to 10 by imposing additional symmetries, which are
known to be broken, the lack of P-wave data remains and one has to resort to NN data in
order to fit these LECs. Given the poor quality of the data, even constraining the 5 LECs at LO
is challenging and consequently results in a rather ill-constraint interaction, which exhibits
deficits in the description of hypernuclei, overbinding the hyperon [42]. Hence, additional
constraints on those LECs would provide a significant improvement of YN interaction models.

In recent generations of nucleonic interactions, many-body observables, such as ground-
state energies or spectroscopic data of p-shell nuclei, have been employed as additional
constraints supplementing the scattering data and yielding a considerably improved descrip-
tion of ground-state energies and radii up to the medium-mass regime [78, 94]. Furthermore,
the aforementioned YN interactions already include the hyperon separation energy of the
hypertriton in the LEC fitting strategy. Along the same lines we can make use of experimen-
tal data for selected p-shell hypernuclei, which is far more precise than the scattering data,
aiming to construct a YN interaction that is optimized for hypernuclear structure calculations.
In order to keep the number of LECs low, we concentrate our investigations on the LO YN
interaction.

The optimization procedure as well as some of the results presented in this chapter have
been published in [155].

1As of today, a few more YN scattering data have become available [151–154], however, the interactions
employed in this work were only fitted to the aforementioned 35 data.
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LEC
ΛYN
C [MeV]

550 600 650 700

CΛΛ
1S0

−0.0466 −0.0403 −0.0322 −0.0304

CΛΛ
3S1

−0.0222 −0.0163 −0.0097 −0.0022

CΣΣ
1S0

−0.0766 −0.0763 −0.0757 −0.0744

CΣΣ
3S1

−0.2336 −0.2391 −0.2392 −0.2501

CΛΣ
3S1

−0.0016 −0.0019 −0.0000 −0.0035

Table 10.1: Values of the LECs occurring in the LO chiral YN interaction for different cutoffs ΛYN
C

as presented in [19]. The values are obtained through fits to 35 YN scattering data and are given in
104 GeV−2.

10.1 The Leading-Order YN Interaction

Starting point for our investigations is the LO YN interaction from chiral EFT as derived by
Polinder et al. in [19], which we will denote as YNP, that is SRG evolved to flow parameter
α = 0.08 fm4. As already mentioned, it comes with 5 LECs associated with particle species
and partial waves as given in Tab. 10.1. By construction of the interaction, ΛYN

C resembles an
additional free parameter which subsequent calculations will be sensitive to. Hence, the LECs
are given for different cutoffs ΛYN

C = 550, 600, 650, and 700 MeV. The corresponding values of
the LECs are then obtained through fits of calculated scattering cross sections to the 35 YN
scattering data available. Note that these fits are of similar quality for all cutoffs.

In a first step towards a YN interaction optimized for calculations of many-body systems,
we want to understand how calculations for p-shell hypernuclei depend on ΛYN

C and the
corresponding LECs. We, therefore, start by studying calculations of 5

ΛHe,
7
ΛLi, and 9

ΛBe for
different cutoff values ΛYN

C = 600, 700 MeV as shown in Fig. 10.1. All three hypernuclei are
overbound and this overbinding is far more pronounced for ΛYN

C = 600 MeV (dashed lines)
than for ΛYN

C = 700 MeV (solid lines). Hence, there is a strong cutoff dependence and one
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Figure 10.1: IT-NCSM calculations of 5
ΛHe,

7
ΛLi, and 9

ΛBe with ℏΩ = 16 MeV for YNP with ΛYN
C =

600 MeV (dashed lines) and ΛYN
C = 700 MeV (solid lines). Experimental values taken from [7, 146].
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Figure 10.2: Values for the 5 LECs in the LO YN interaction for different cutoffs ΛYN
C = 550, 600, 650,

and 700 MeV as given in Tab. 10.1 along with linear extrapolations to ΛYN
C = 800 MeV.

would expect the many-body calculations to further improve when the cutoff is increased.
Following these findings in a simple and rather heuristic manner we construct an interaction
at ΛYN

C = 800 MeV and adjust the LECs by a linear extrapolation as shown in Fig. 10.2.
Depicted are the values for all 5 LECs at different cutoffs ΛYN

C = 550, 600, 650, and 700 MeV.
The LECs roughly increase linearly with cutoff, which is indicated by the colored lines that
have been fitted to the available data. From this we can extract the extrapolated values at
ΛYN
C = 800 MeV:

CΛΛ
1S0

= −0.0175,

CΛΛ
3S1

= −0.0107,

CΛΣ
3S1

= −0.0060, (10.1)

CΣΣ
1S0

= −0.0732,

CΣΣ
3S1

= −0.2579.

With this new set of LECs we again perform calculations for 7
ΛLi presented in Fig. 10.3 and

compare the results for ΛYN
C = 700 MeV (solid lines) and ΛYN

C = 800 MeV (dotted lines).
Contrary to our expectations, we find that this extrapolated interaction yields a stronger
overbinding. Moreover, the hyperon induced splittings of the angular momentum partner
states, i.e., ground state and first excited state as well as second and third excited state,
become too large, which leads to an overall decreased accuracy.

Clearly, such simple adjustments of the YN interactions are insufficient for an accurate
description of p-shell hypernuclei and a more sophisticated optimization procedure is required.
We will, therefore, construct an improved interaction based on the adjustment of individual
LECs in analogy to the procedure employed in [78].
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Figure 10.3: IT-NCSM calculations of 7
ΛLi with ℏΩ = 16 MeV for ΛYN

C = 700 MeV (solid lines) and the
extrapolated interaction at ΛYN

C = 800 MeV (dotted lines). Experimental values taken from [7, 146].

10.2 LEC Sensitivity Analysis

Before we attempt an optimization of the LO YN interaction at the level of individual LECs, we
first need to investigate how changes of the LECs manifest in structure calculations of p-shell
hypernuclei. We conduct this sensitivity analysis on 7

ΛLi as it is the most precisely measured
hypernucleus that additionally features bound excited states. In particular, we take a closer
look at the hyperon separation energy BΛ and the excitation energy of the first excited 3

2

+

state.

We further need to specify how to vary the LECs on a reasonable scale. In order to identify
a variation that we consider to be of natural scale, we again take a look at the change of
the LECs for different cutoffs as done in Fig. 10.2. This will prevent unnaturally large or
insignificantly small adjustments to the LECs, which is crucial as we aim to maintain a good
description of the scattering data to which the LECs have been fitted to initially. Since the
previous extrapolation to ΛYN

C = 800 MeV already resembles a variation that is representative
for the average change of the LECs over the given cutoffs we can understand the values
in Eq. (10.1) as natural variations. Hence, we study the sensitivity of the aforementioned
observables on the LECs by changing them, one by one, to the values in Eq. (10.1) while
keeping the others unchanged w.r.t. the YN interaction at ΛYN

C = 700 MeV, which resembles
the starting point for our optimization.

The results of the sensitivity analysis are shown in Fig. 10.4. Note that the results for
varied LECs (red) need to be assessed in comparison to the result of the original interaction
(green). The experimental results (black) give an orientation for how much adjustment of
a given LEC is needed for a subsequent optimization procedure. We find that both, BΛ and
∆E∗

1 , are by far most sensitive to CΛΛ
3S1

followed by CΛΛ
1S0

. This matches the naïve expectation
that the ΛΛ channels are dominant, since the Σ-content of the Λ-Σ mixing to the low-lying
states are usually very small. We further find that an increase of CΛΛ

3S1
also corrects the result

in the direction of the experimental values. The other LECs associated with Σ hyperons have
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Figure 10.4: IT-NCSM calculations for the hyperon separation energy and fist excitation energy of 7
ΛLi

at Nmax =10 with ℏΩ = 16 MeV for the original YN interaction with ΛYN
C = 700 MeV (green) and with

individually adjusted LECs (red). Experimental values (black) from [7, 146] are given for comparison.

much smaller or even negligible effects.
Based on this analysis we choose CΛΛ

1S0
and CΛΛ

3S1
as degrees of freedom for our optimization

procedure. Because of the small Σ admixtures these are the dominant interaction channels.
Adjusting the Σ-channels could easily lead to an unphysical amplification of Σ-related effects.
Moreover, the limitation to only two LECs holds the advantage that stronger constraints can be
achieved with less data, which allows us to focus on the most precisely measured hypernuclei.

10.3 Optimization Procedure

For the optimization we first select a set of experimental data for well-known p-shell hypernu-
clei, which we want to constrain the interaction on. As we are focusing on the YN interaction,
we choose observables that are predominantly controlled by the YN interaction, i.e., hyperon
separation energies and energy differences between spin-orbit partner states in excitation
spectra. In particular we consider BΛ for 3

ΛH, 5
ΛHe,

7
ΛLi, and 9

ΛBe along with ∆E for the 1
2

+

and 3
2

+ states and the 5
2

+ and 7
2

+ states in 7
ΛLi as well as the 3

2

+ and 5
2

+ states in 9
ΛBe. Note

that, while these are amongst the best-studied hypernuclei, the experimental values for the
above observables scatter significantly and different experiments are not necessarily consis-
tent with one another. Hence, the selection of experimental values will affect the optimization
procedure. The selection of values used in this work is listed in Tab. 10.2. A more complete
overview of the current experimental situation can be found in [156].

In addition to the data, a metric is required. We choose to perform the optimization w.r.t.
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Obs Exp [MeV] Obs Exp [MeV]

BΛ

(
3
ΛH
)

0.41(23) ∆E
(
7
ΛLi
)

1
2

+→ 3
2

+ 0.692(2)

BΛ

(
5
ΛHe

)
3.12(2)0 ∆E

(
7
ΛLi
)

5
2

+→ 7
2

+ 0.471(2)

BΛ

(
7
ΛLi
)

5.58(3)0 ∆E
(
9
ΛBe

)
3
2

+→ 5
2

+ 0.043(2)

BΛ

(
9
ΛBe

)
6.59(15)

Table 10.2: Experimental values for hyperon separation energies BΛ and energy differences of spin-
orbit partner states ∆E used as constraints for the YN interaction [7, 146].

a χ2 metric

χ2 =
∑ (o− oexp)

2

σ2
exp + σ2

theo

(10.2)

in which we include experimental and theoretical uncertainties.
In order to find the optimal values for the two selected LECs, our strategy is to construct

a grid in the CΛΛ
1S0

- CΛΛ
3S1

plane, perform IT-NCSM calculations for the fit observables at the
grid points, and interpolate the results. Since the computational cost for calculating a SRG
evolved YN interaction along with multiple subsequent IT-NCSM calculations is high, we limit
ourselves to a single HO frequency of ℏΩ = 16 MeV. Note that this prohibits the application
of the ANN extrapolation tool discussed in Ch. 5. We will, therefore, use the results at the
largest model space accessible, which is Nmax = 14, 12, 8 for 5

ΛHe,
7
ΛLi, and 9

ΛBe, respectively.
For the theoretical uncertainties, however, we perform calculations for three HO frequencies
ℏΩ = 14, 16, and 20 MeV for the original YN interaction. From this we can estimate many-
body uncertainties via the ANN tool, which we assume to be the same at all grid points. This
allows us to provide realistic many-body uncertainties, while keeping the computational costs
at a minimum. Results for 3

ΛH are obtained with Jacobi-NCSM calculations at Nmax = 40

and extrapolated by fitting an exponential function. From the fit we can extract the final
prediction along with a fit uncertainty that serves as theoretical error.

Once we have calculated all observables at the grid points, we interpolate them individu-
ally, using the LinearNDInterpolator function provided by the scipy Python package 2, before
evaluating the metric.

The combined results of this analysis are presented in Fig. 10.5, which shows the χ2 metric
as a contour plot constructed from the interpolation between the grid points marked as black
crosses. The original LEC values are indicated by a blue circle in the lower left corner. We find
that this metric shows one pronounced minimum within the considered range. It is indicated
by the purple star and located at

CΛΛ
1S0

= −0.0146, CΛΛ
3S1

= 0.0004 (10.3)

with χ2 = 96. While this change of 48% in CΛΛ
1S0

and 118% in CΛΛ
3S1

compared to the original
values might seem large, it is well within the previously considered natural range of the

2The interpolation has additionally been performed using the interp2d and CloughTocher2DInterpolator
functions from the same package in order to check for robustness. All three methods have resulted in identical
values at the level of precision we are aiming for.
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Figure 10.5: Contour plot of the χ2 metric in the LEC plane spanned by CΛΛ
1S0

and CΛΛ
3S1

. The black
crosses mark the grid points for the actual calculations, the blue circle indicates the original values of
the LECs and the point for the minimal χ2 is given by the purple star. The colored area is obtained
through interpolation between the black crosses.

parameters. Yet, we emphasize that CΛΛ
3S1

changes its sign. The optimization further retains
a reasonably good description of the scattering data with only minor deviations from results
obtained with the original LECs. This is illustrated in Fig. 10.6 which shows results for the
Λp elastic scattering cross sections for the original and the adjusted YN interaction obtained
from solving the Lippmann-Schwinger equation given in [19], which have been performed
and kindly provided by J. Haidenbauer [157]. We find that the overall shape of the cross
sections does not change, but features a minor shift to smaller values. Generally speaking,
the optimization results in a slightly weakened ΛN interaction, which is compatible with the
systematic overbinding of the hyperon we found with the original YN interaction.

Indeed, looking at hypernuclear structure calculations for the observables included in
the fit, which are shown in Fig. 10.7 we find that, except for 3

ΛH, the hyperon separation
energies are in much better agreement with experiment, while the energy differences in the
spin-orbit partner states change very little. The hypertriton, however, becomes unbound.
While this is unwanted it does not indicate a major deficiency of the interaction. Note
that we are only considering a LO YN interaction, for which the appropriate interaction
uncertainties are much larger than the difference between the two results we find with the
different interactions. Hence, taking all sources of uncertainty into account, the hypertriton
can easily be shifted back to a bound system through a NLO or N2LO correction. We further
find a tension between the hyperon separation energies for 5

ΛHe and 7
ΛLi, which are slightly

over- and underbound. Apparently, this cannot be resolved by an adjustment of the dominant
LECs in the LO interaction. However, these deviations are, again, well within the expected
interaction uncertainties. Overall, we can conclude that the optimized YN interaction provides
a significantly improved description of the considered hypernuclei.

As already mentioned, the optimization result depends on the chosen experimental val-
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Figure 10.6: Λp elastic scattering cross sections for different momenta plab obtained from solving a
Lippmann-Schwinger equation as given in [19] for the original YN interaction ( ) and the optimized
interaction ( ). Black markers denote experimental data taken from [147, 148, 158, 159].
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Figure 10.7: IT-NCSM calculations for the observables used as constraints for the LEC optimization
along with many-body uncertainties obtained with the ANN tool based on calculations for ℏΩ = 14, 16,
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from [7, 146, 156], where the black markers resemble the values chosen for the optimization according
to Tab. 10.2.
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ues. It turns out that the chosen value for the hyperon separation energy of 3
ΛH is disputed

amongst experimentalist. We, therefore, investigate the dependence on this particular datum
by repeating the optimization with a value of BΛ

(
3
ΛH
)
= 0.148(40) MeV which is currently

recommended by [156]. This results in a minimum at

CΛΛ
1S0

= −0.0153, CΛΛ
3S1

= 0.0004 (10.4)

with χ2 = 132.5. The deviation of CΛΛ
1S0

from the previously obtained result is very small
compared to the change of the LEC w.r.t. the original YN interaction. Hence, any effects on
the many-body calculations are expected to remain within our uncertainties.

We will, therefore, stick with the LECs as given in Eq. (10.4) and refer to the optimized
YN interaction as YNopt from now on.

10.4 Results for p-Shell Hypernuclei

In order to investigate the quality of the optimized interaction we conduct a study across
various p-shell hypernuclei beyond the ones that the interaction has been constrained with.
For that we first study a selection of well-known hypernuclei up into the mid-p-shell, followed
by closer investigations of the ΛHe and ΛLi isotopic chains up to neutron-rich isotopes. The
results for the first two have been published in Ref. [155] and are supplemented by new ΛLi

calculations. We provide an overview over calculations of excitation spectra for the hyper-
nuclei and their nucleonic parents along with hyperon separation energies for the original
YN interaction by Polinder et al. [19] with ΛYN

C = 700 MeV (YNP) and YNopt. Both are
accompanied by the non-local chiral NN+3N interactions from Hüther et al. [78] at N3LO
with ΛC = 500 MeV (NNEMN + 3NH). We further employ the ANN extrapolation to obtain
predictions for the converged values with many-body uncertainties. Figures illustrating the
quality of the ANN extrapolation are provided in Appendix B.1. In addition we compare our
calculations to previous calculations by Wirth et al. [42, 43, 145], which are obtained with
a non-local NN interaction at N3LO by Entem and Machleidt [160] together with a local 3N
interaction at N2LO by Navrátil [161] both with ΛC = 500 MeV (NNEM + 3NN) and the YNP

interaction in the hyperonic sector. The error bands for these results resemble importance
truncation uncertainties. All interactions are consistently SRG evolved to α = 0.08 fm4 and
induced forces are included up to the three-body level.

The results are presented in Figs. 10.8 to 10.10, which are structured as follows: The
center and upper panels show the ground-state energies and lowest-lying excited states of
the hypernuclei and the nucleonic parents, where different (hyper-)nuclei are separated
by vertical gray lines. In the lower panel the resulting hyperon-separation energies are
given. For each (hyper-)nucleus the different columns correspond to different interactions,
i.e., NNEM + 3NN + YNP (left-hand column), NNEMN + 3NH + YNP (center column), and
NNEMN +3NH +YNopt (right-hand column) and are supplemented with experimental values
indicated by diamonds.

Again, different experimental results exhibit a significant spread beyond their associated
uncertainties, particularly for hyperon separation energies. This disagreement makes a direct
comparison to experiment rather challenging. Hence, we depict all reasonable experimental
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results in gray in addition to a selected value given in black 3.
We start our discussion by assessing the results for 5

ΛHe,
7
ΛLi,

9
ΛBe, and 13

ΛC shown in
Fig. 10.8. Here, we expect an improvement of the optimized interaction compared to YNP

as all of those hypernuclei except for 13
ΛC are part of the data set that YNopt has been

optimized on. First of all, we find that the spectra for both, the hypernuclei and their nucleonic
parents are in overall good agreement with experiment and, moreover, discrepancies in the
hypernuclear spectra correspond to analogous discrepancies in the nuclear spectra and can,
therefore, be attributed to the nucleonic interaction. This holds for all interactions and the
dependence on the interaction itself is rather small in general. This changes drastically for
the hyperon separation energies, which validates our initial assumption that this observable
is far more sensitive to changes in the YN sector. Studying the center and right-hand columns
that only differ by the YN interaction, we find an overall reduction of the hyperon separation
energy leading to significantly better agreement with experiment except for 13

ΛC, which also
exhibits the widest spread of experimental values. We further find, that the dependence on
the nucleonic interaction, which has also been found in other applications [95, 166], increases
drastically with increasing particle number, which can be seen from the comparison of the
left-hand and center columns that share the same YN interaction. As a consequence, 13

ΛC does
not provide additional insight on the quality of YNopt compared to YNP as the choice of the
nucleonic interaction might easily favor one over the other.

We, therefore, turn our investigations to the ΛHe isotopic chain depicted in Fig. 10.9.
An assessment of the hypernuclear spectra w.r.t. experiment is not possible here since there
is no experimental data available beyond 4

ΛHe, for which the agreement is very good. We
further find a stronger interaction dependence of the spectra compared to the previous set of
hypernuclei, though they are more sensitive to the nucleonic interaction than the hyperonic
one, as the center and right-hand columns agree within their uncertainties. Additionally, the
changes in the spectra of hypernuclei for the different nucleonic interactions do not always
correspond to the shifts of the excited states in the parent nuclei. For the latter, the results
up to 6He are in good agreement with experiment, while they deviate for heavier isotopes,
which hints at deficiencies of the employed nucleonic interactions. Note that the odd isotopes
above 4He are particle unstable and for the more neutron-rich isotopes a description in NCSM
calculations becomes increasingly difficult. This difficulty might translate to the hyperonic
sector. The same reasoning applies to 9

ΛHe and 10
ΛHe, which are themselves particle unstable

and neutron rich. For the hyperon separation energies, we find an overall decrease for
YNopt. This results in a remarkably accurate description of the light isotopes, while the
heavier isotopes tend to be underbound. However, we also find the dependence on the
nucleonic interaction as well as the spread of experimental results to increase again with
particle number.

Let us finally take a closer look at the ΛLi isotopic chain shown in Fig. 10.10. Similar to
the ΛHe chain there is very little experimental data for the spectra available. However, shifts
in the spectra can again be attributed to the nucleonic interaction as they correspond to the
shifts in the nucleonic spectra. Other than that there is very little variation with interaction
especially for the lowest excited states. When studying the hyperon separation energies the
picture is consistent with the previous figures, yielding a significantly improved description

3We emphasize that this illustration might be misleading as the lack of grey markers does not necessarily
indicate very consistent and accurate experimental results but can also stem from the lack of more than the one
experimental value shown.
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Figure 10.8: ANN extrapolated excitation spectra and hyperon separation energies of the low-lying
natural-parity states for selected well-known hypernuclei (center and lower panel) and their nucleonic
parents (upper panel) along with many-body uncertainties based on IT-NCSM calculations for ℏΩ =

14, 16, and 20 MeV. The different columns for each nucleus indicate different combinations of NN+3N
and YN interactions (see text for details) while the right-hand column shows experimental results,
where available. Experimental results given in black are selected from [7, 146, 162–165] while the
gray markers indicate alternative experimental results taken from [156].
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Figure 10.9: Same as Fig. 10.8 but for the ΛHe isotopic chain. Experimental results given in black are
selected from [7, 11, 146, 162–164].
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Figure 10.10: Same as Fig. 10.8 but for the ΛLi isotopic chain. Experimental results given in black
are selected from [7, 146, 162–164, 167].
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of the lighter isotopes for the optimized YN interaction, while more neutron-rich isotopes are
being underbound. But, contrarily to the previous figures, the dependence on the nucleonic
interaction does not increase with particle number.

Overall, we can conclude that the optimization of the LO YN interaction provides more
accurate results in particular for light hypernuclei. This is remarkable considering that this
was achieved with the adjustment of only two LECs in a LO interaction. Hence, we have
demonstrated that nuclear structure data for p-shell hypernuclei provides very valuable ad-
ditional constraints on hypernuclear interactions that are otherwise poorly constrained from
the very limited scattering data available. However, we have also seen that a simultaneous
description of light p-shell hypernuclei and more neutron-rich isotopes appears to be difficult.
Recalling the tension between the 5

ΛHe and 7
ΛLi results for the hyperon separation energies we

find that a LO YN interaction is insufficient to capture all relevant physics and higher chiral
orders are required to alleviate this.

Considering the difficult experimental situation, calculations with YNopt along with rea-
sonable many-body uncertainties obtained via the ANN extrapolation tool are a great asset to
hypernuclear structure theory and can provide important insights into baryonic interactions
beyond the nucleonic sector. Moreover, they enable predictions of observables which are
essential for the design of future experiments. Nevertheless, the significant dependence on
the nucleonic interaction as well as the lack of interaction uncertainties need to be considered
and should be main subjects of future investigations and developments. Here, the optimized
interaction or future optimization procedures could tie in with other efforts towards a mean-
ingful uncertainty estimation based on chiral order-by-order calculations [166] or Bayesian
parameter estimation [95].

A complete collection of the numerical values for the results shown in this chapter can be
found in Appendix B.2.



11
Natural Orbitals for Hypernuclei

In the previous chapters we have demonstrated that the IT-NCSM is a powerful method
for ab initio structure calculations for, both, nuclei and hypernuclei. However, even when
combined with sophisticated extrapolation methods like the ANN extrapolation tool, its reach
is severely limited by the combinatorial growth of the many-body basis that spans the model
space. This is partially due to the rather slow convergence of the HO single-particle basis
w.r.t. Nmax. As discussed in Ch. 2 this choice of basis is reasonable based on the analytical
properties of the HO basis, but it is certainly not the ideal single-particle basis in terms of
convergence. In recent years, the search for a better-suited single-particle basis has led to so-
called natural orbitals (NAT) which provide a computationally efficient yet powerful basis that
has successfully been employed in various many-body methods [168, 169]. It is constructed
from a one-body density matrix obtained with Hartree-Fock many-body perturbation theory
(HF-MBPT) [170–172] and its most prominent features are the rapid convergence and the
independence of the underlying HO frequency.

In the following we construct natural orbitals for hypernuclei in order to transfer the
features of this improved basis to the hypernuclear regime.

11.1 Conceptual Basics

Before we can derive the hypernuclear natural orbitals we first need to introduce some
mathematical basics and notation.

Second Quantization. Second quantization is a useful formalism when working in an anti-
symmetric Fock space. At its core are creation and annihilation operators that are constructed
to change the particle number of the system and are defined by their action on a Slater
determinant. According to their names the creation operator â†a creates a particle in state
|a⟩, while its annihilation counterpart âa removes such a particle from a given state. Put in
mathematical terms their action is described by

â†a|a1, . . . , aA⟩a =

{
|a, a1, . . . , aA⟩a if a /∈ {a1, . . . , aA}
0 else

, (11.1)

87
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âa|a1, . . . , aA⟩a =

{
(−1)k−1|a1, . . . , ak−1, ak+1, . . . , aA⟩a if a = ak

0 if a /∈ {a1, . . . , aA}
. (11.2)

In addition they fulfill the anti-commutator relations

[â†a, â
†
b]+ = [âa, âb]+ = 0, (11.3)

[â†a, âb]+ = δab. (11.4)

Furthermore, any A-body operator Ô[A] can be expressed in second quantization via

Ô[A] =
1

(A!)2

∑
a1...aA
a′1...a

′
A

O
[A]
a1...aAa′1...a

′
A
â†a1 . . . â

†
aA

âa′A . . . âa′1 , (11.5)

where O
[A]
a1...aAa′1...a

′
A
≡ a⟨a1 . . . aA|Ô|a′1 . . . a′A⟩a denotes an A-body matrix element of Ô.

Particle-Hole Formalism. A Slater determinant can be constructed by applying a sequence
of creation operators to the vacuum state |0⟩

|Φ⟩ = |a1 . . . aA⟩a = â†a1 . . . â
†
aA

|0⟩, (11.6)

which is convenient when constructing, e.g., a NCSM model space. However, several other
many-body methods are formulated w.r.t. a reference Slater determinant |Φref⟩ instead. In
this case a model space can be constructed by applying one or multiple pairs of creation and
annihilation operators to the reference state

|Φp
q⟩ = âpq |Φref⟩ ≡ â†qâp|Φref⟩,

|Φpq
rs⟩ = âpqrs|Φref⟩ ≡ â†râ

†
sâqâp|Φref⟩, (11.7)

...

which again yields Slater determinants that are characterized by lower indices (upper indices)
referring to the creation (annihilation) operators. In the particle-hole picture the single-
particle states that are occupied in |Φref⟩ are called hole-states and the unoccupied ones are
called particle-states respectively. For a better distinction in the subsequent derivations we
will use the following index convention

Holes : (i, j, k, . . . )

Particles : (a, b, c, . . . )

General : (p, q, r, . . . )

whenever we switch to particle-hole notation.
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11.2 The Hartree-Fock Method

The state which the one-body density for the natural orbitals is constructed from is based
on the Hartree-Fock (HF) solution for the (hyper)nucleus of interest. The HF method is a
variational mean-field method build on the equivalence of the solution of the Schrödinger
equation to the stationary point of the energy functional

δE[|Ψ⟩] = 0, (11.8)

where the latter is given by

E[|Ψ⟩] = ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ . (11.9)

We approximate this solution by requiring our trial state |Ψ⟩ to be equal to a single Slater
determinant |ΦHF⟩. According to the Ritz variational principle this approximation yields an
upper bound to the exact ground-state energy of the system.

In a next step, the HF state can be expressed in a HF single-particle basis {bi} and using
second quantization we can write

|ΦHF⟩ = |b1, b2, . . . , bA⟩ =
A∏

p=1

b̂†p|0⟩ (11.10)

with {b̂†p} being the creation operators corresponding to the HF basis. These can be related to
a known reference basis {|ap⟩}, typically the HO basis, with corresponding creation operators
{â†p} via

b̂†p =
∑
q

Cpqâ
†
q, (11.11)

where Cpq denotes the matrix elements of the unitary transformation that connects both bases.
We can further express the energy functional in second quantization w.r.t. the same reference
basis, which yields

E[|ΦHF⟩] = H [0] +
∑
pq

H [1]
p,q⟨ΦHF|â†pâq|ΦHF⟩+

1

4

∑
pqrs

H [2]
pq,rs⟨ΦHF|â†pâ†qâsâr|ΦHF⟩ (11.12)

+
1

36

∑
pqrstu

H
[3]
pqr,stu⟨ΦHF|â†pâ†qâ†râuâsât|ΦHF⟩,

where we have assumed a Hamiltonian with up to three-body forces. The remaining expec-
tation values are one-body, two-body, and three-body density matrices ρ[i]. Since |ΦHF⟩ is a
single Slater determinant the higher-body densities can be decomposed into one-body density
matrices

ρ[2]pq,rs = ρ[1]p,rρ
[1]
q,s − ρ[1]p,sρ

[1]
qr, (11.13)

ρ
[3]
pqr,stu = ρ[1]p,uρ

[1]
q,tρ

[1]
r,s ± permutations (11.14)
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and we can, therefore, express the energy functional in terms of one-body density matrices

E[ρ[1]] = H [0] +
∑
pq

H [1]
p,qρ

[1]
p,q +

1

2

∑
pqrs

H [2]
pq,rsρ

[1]
prρ

[1]
qs +

1

6

∑
pqrstu

H
[3]
pqr,stuρ

[1]
p,sρ

[1]
q,tρ

[1]
r,u, (11.15)

where we have exploited the antisymmetry of the Hamilton matrix elements. Performing the
variation of this energy functional and neglecting quadratic and higher orders in δρ[1] we find

δE[ρ[1]] =
∑
pq

(
H [1]

p,q +
∑
rs

H [2]
pr,qsρ

[1]
rs +

1

2

∑
rstu

H
[3]
psr,qtuρ

[1]
s,tρ

[1]
r,u

)
δρ[1]p,q = 0 (11.16)

for the stationary condition. By introducing an auxiliary mean-field Hamiltonian

hp,q[ρ
[1]] = H [1]

p,q +
∑
rs

H [2]
pr,qsρ

[1]
r,s +

1

2

∑
rstu

H
[3]
psr,qtuρ

[1]
s,tρ

[1]
r,u (11.17)

the previous expression can be simplified to∑
pq

hp,q[ρ
[1]]δρ[1]p,q = 0. (11.18)

Since this must hold for an arbitrary variation δρ[1] that is consistent with the constraints from
idempotence and hermiticity, we can immediately conclude that

hp,q[ρ
[1]] = 0, (11.19)

which is equivalent to the statement that the commutator of the corresponding operators
ĥ[ρ[1]], the so-called Fock operator, and ρ̂ vanishes. Hence, we can find a common eigenbasis
for which we can construct the eigenvalue problem

ĥ[ρ[1]]|bp⟩ = ϵp|bp⟩. (11.20)

Here, the ϵp emerge as eigenvalues of the single-particle basis. They are interpreted as the HF
single-particles energies to the corresponding HF basis states |bp⟩. The eigenvalue problem
can be solved by transforming it to the reference basis∑

r

hq,r[ρ
[1]]Cpq = ϵpCpq (11.21)

yielding the so-called HF equation, a non-linear equation that can be solved iteratively. Note
that this equation separates into blocks with distinct particles species. Thus, the extension
to hypernuclei does not require additional adjustments. The HF ground state |ΦHF⟩ is then
constructed from the eigenstates that correspond to the lowest energy eigenvalues w.r.t. the
particle content of the system under consideration. For the corresponding HF ground-state
energy we find

EHF ≡ E[|ΦHF⟩] = ⟨ΦHF|Ĥ|ΦHF⟩ =
∑
p

ϵp −
1

2

∑
pq

H [2]
pq,pq, (11.22)

which is clearly distinct from a simple sum over the single-particle energies.
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Equal-Filling Approximation. The HF method we have discussed so far is only applicable to
closed shell nuclei since the HF ground-state is given by a single Slater determinant. But, in the
case of singly-strange hypernuclei we are inevitably dealing with open-shell systems. Hence,
we need to employ an extension of the HF method called equal-filling approximation [173].
It assumes fractional occupation numbers in the open shells such that all single-particle states
within an open shell are fractionally filled. Here, we follow the derivation in [42].

Conceptually, we make a general ansatz for the density operator ρ̂ such that the energy
functional in terms of the calculation basis becomes

E[ρ̂] = H [0] +
∑
pq

H [1]
p,qtr(ρ̂â

†
pâq) +

1

4

∑
pqrs

H [2]
pq,rstr(ρ̂â

†
pâ

†
qâsâr) (11.23)

+
1

36

∑
pqrstu

H
[3]
pqr,stutr(ρ̂â

†
pâ

†
qâ

†
râuâtâs).

In order to relate this to an energy functional of the same form as in Eq. (11.15) we need to
constrain the density operator and require that all higher-body density matrices factorize into
one-body density matrices, which requires some occupation numbers to become fractional.

When constructing the general ansatz for the density operator we distinguish between a
core |core⟩ of fully-occupied orbitals with occupation number n = 1 for all included states,
unoccupied orbitals with n = 0, and partially-occupied valence orbitals v with total orbital
angular momentum jv that contain 2jv + 1 states with non-negative fractional occupation
numbers n(v)

k . Hence, ρ̂ exhibits an equivalent partitioning and is given by

ρ̂ = pcore|core⟩⟨core|+
2jv+1∑
n=1

∑
v1<···<vn

p{v1···vn}b̂
†
v1 · · · b̂†vn |core⟩⟨core|b̂vn · · · b̂v1 (11.24)

≡
∑
µ

pµ|Φµ⟩⟨Φµ|,

where p{v1···vn} ≥ 0 are symmetric under the exchange of any two indices. In analogy to
Eq. (11.13) and Eq. (11.14) the density matrices can be re-expressed in terms of occupation
number operators

n̂p = b̂†pb̂p with n̂p|Φµ⟩ = n(µ)
p |Φµ⟩ (11.25)

such that

γ[1]p,q =
∑
µ

pµ⟨Φµ|b̂†pb̂q|Φµ⟩ = tr(ρ̂n̂p)δpq, (11.26)

γ[2]pq,rs =
∑
µ

pµ⟨Φµ|b̂†pb̂†q b̂sb̂r|Φµ⟩ = tr(ρ̂n̂pn̂q)(δprδqs − δpsδqr), (11.27)

γ
[3]
pqr,stu =

∑
µ

pµ⟨Φµ|b̂†pb̂†q b̂†r b̂ub̂tb̂s|Φµ⟩ = tr(ρ̂n̂pn̂qn̂r)(δpsδqtδru ± permutations), (11.28)

where we have named them γ[i] to emphasize the formulation w.r.t. the HF single particle basis.
Density matrices containing occupied or unoccupied states factorize due to the eigenvalue
relation of the corresponding occupation number operator, while those with all indices in



92 CHAPTER 11 – NATURAL ORBITALS FOR HYPERNUCLEI

valence orbitals remain nontrivial. The requirement that all higher-order density matrices
need to factorize yields a set of constraints on the diagonal matrix elements

tr(ρ̂) = pcore +

2jv+1∑
n=1

∑
v1<···<vn

p{v1···vn}
!
= 1, (11.29)

γ[1]q,q = pq +

2jv+1∑
n=2

∑
v2<···<vn

p{v2···vn}
!
=

Nv

2jv + 1
, (11.30)

γ[2]qr,qr = pqr +

2jv+1∑
n=3

∑
v3<···<vn

p{v3···vn}
!
=

(
Nv

2jv + 1

)2

(1− δqr), (11.31)

γ[2]qrs,qrs = pqrs +

2jv+1∑
n=4

∑
v4<···<vn

p{v4···vn}
!
=

(
Nv

2jv + 1

)3

(1− δqr − δqs − δrs + 2δqrδrs),

(11.32)
...

with 0 < Nv < 2jv + 1 being the number of particles in the valence orbital, that allow to
uniquely determine the pcore and p{v1···vn} coefficients in Eq. (11.23). Solving this set of
equations we obtain

pcore = (1 + x)−(2jv+1), (11.33)

p{v1···vn} =
xn

(1 + x)2jv+1
[v1 · · · vn], [v1 · · · vn] =

{
1 if vk ’s are pairwise distinct

0 else
(11.34)

with x = Nv/(2jv +1−Nv). Note that this solution correctly collapses to the closed-shell case
for Nv → 0 and Nv → 2jv + 1.

This concludes the generalized ansatz for the energy functional that allows us to construct
a HF ground state for an open-shell system and, in particular, singly-strange hypernuclei.
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11.3 Many-Body Perturbation Theory

The MBPT is a conceptually simple yet powerful method to calculate perturbative correc-
tions to the known solution of an unperturbed problem [171, 174, 175]. Starting point for
the MBPT is once more the many-body Schrödinger equation as given in Eq. (1.1). The
Hamiltonian

Ĥ = Ĥ0 + λŴ (11.35)

is partitioned into an unperturbed part Ĥ0, for which the solution of the many-body problem
is given by

Ĥ0|Ψ(0)
n ⟩ = E(0)

n |Ψ(0)
n ⟩ with ⟨Ψ(0)

n |Ψ(0)
m ⟩ = δnm, (11.36)

and a perturbation Ŵ . The auxiliary parameter λ controls the perturbation and allows
to organize the perturbative corrections by orders of λ. For the energy eigenvalues and
eigenstates we, therefore, employ an expansion in a power series in terms of λ such that

En(λ) =
∞∑
p=0

λpE(p)
n , (11.37)

|Ψn⟩ =
∞∑
p=0

λp|Ψ(p)
n ⟩. (11.38)

Substituting this into the Schrödinger equation and separating by orders of λ leads to

Ĥ0|Ψ(0)
n ⟩ = E(0)

n |Ψ(0)
n ⟩, (11.39)

Ĥ0|Ψ(p)
n ⟩+ Ŵ |Ψ(p−1)

n ⟩ =
p∑

j=0

E(j)
n |Ψ(p−j)

n ⟩, (11.40)

where the 0-th order correctly reproduces the eigenvalue relation for the unperturbed Hamil-
tonian. From the second equation we can derive a general expression for the p-th order
energy correction by projecting it onto a reference state, i.e., a non-degenerate eigenstate of
the unperturbed Hamiltonian |Ψ(0)

n ⟩ and require intermediate normalization

⟨Ψ(0)
n |Ψ(p)

m ⟩ =
{
δnm if p = 0

0 else
, (11.41)

such that

E(p)
n = ⟨Ψ(0)

n |Ŵ |Ψ(p−1)
n ⟩. (11.42)

In order to evaluate this, an expression for the state corrections is required. They can be
expended in terms of the basis of the unperturbed Hamiltonian

|Ψ(p)
n ⟩ =

∑
m

|Ψ(0)
m ⟩⟨Ψ(0)

m |Ψ(p)
n ⟩ ≡

∑
m

|Ψ(0)
m ⟩C(p)

nm (11.43)



94 CHAPTER 11 – NATURAL ORBITALS FOR HYPERNUCLEI

such that the evaluation of both, the energy and state corrections, is reduced to the deter-
mination of the expansion coefficients C

(p)
nm. Projecting Eq. (11.40) once more onto |Ψ(0)

m ̸=n⟩
yields

C(p)
nm =

1

E
(0)
n − E

(0)
m

∑
l ̸=m

⟨Ψ(0)
m |Ŵ |Ψ(0)

l ⟩C(p−1)
nl −

p∑
j=1

E(j)
n C(p−j)

nm

. (11.44)

With this we have a recursive set of equations that allows us to compute perturbative correc-
tions up to an arbitrary order.

Hartree-Fock Many-Body Perturbation Theory. Up to this point the derivation has been
completely general. In order to construct the perturbation series required for the calculation
of the natural orbitals the Hamiltonian and its partitioning need to be specified. Since we
want to construct the MBPT on top of a HF state, we consider a two-body Hamiltonian in HF
basis 1. For the partitioning we employ a Møller-Plesset ansatz

Ĥ0 = EHF +
∑
pq

hp,q b̂
†
pb̂q, (11.45)

Ŵ =
1

4

∑
pqrs

H [2]
pq,rsb̂

†
pb̂

†
q b̂sb̂r, (11.46)

where EHF and h are the previously derived HF energy and mean-field Hamiltonian. We
further denote the eigenbasis of the unperturbed Hamiltonian as {|Φi⟩} with corresponding
eigenvalues Ei and choose |Φ0⟩ ≡ |Φref⟩ as reference state with E0 ≡ Eref . With this we can
evaluate the first-order state corrections and find

|Ψ(1)
HF⟩ =

∑
m ̸=n

|Φm⟩⟨Φm|Ŵ |Φref⟩
Eref − Em

=
∑
i<j
a<b

|Φab
ij ⟩

H
[2]
ij,ab

ϵi + ϵj − ϵa − ϵb
, (11.47)

where we have switched to particle-hole formalism in order to simplify the expressions.
Analogously we can derive the second-order correction

|Ψ(2)
HF⟩ =

∑
m̸=n
l ̸=m

|Φm⟩⟨Φm|Ŵ |Φl⟩⟨Φl|Ŵ |Φref⟩
(Eref − Em)(Eref − El)

=
1

4

∑
i<j
a<b

∑
k<l
c<d

∑
pq
rs

|Φcd
kl ⟩

H
[2]
pq,rsH

[2]
ij,ab

(ϵk + ϵl − ϵc − ϵd)(ϵi + ϵj − ϵa − ϵb)
⟨Φcd

kl |b̂†pb̂†q b̂sb̂r|Φab
ij ⟩. (11.48)

1Note that these consideration can be generalized to include three-body or higher forces, but a two-body
Hamiltonian is sufficient for our applications.
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11.4 Hypernuclear Natural Orbitals

Starting point for our derivation of the natural orbitals is the one-body density matrix in terms
of HF creation and annihilation operators

ρp,q = ⟨Ψ|b̂†pb̂q|Ψ⟩ (11.49)

with hypernuclear many-body state |Ψ⟩, which is approximated as the second-order corrected
HF ground state using HF-MBPT

|Ψ⟩ ≈ |ΦHF⟩+ λ|Ψ(1)
HF⟩+ λ2|Ψ(2)

HF⟩. (11.50)

In this approximation the perturbatively corrected density becomes

ρp,q ≈ ⟨ΦHF|b̂†pb̂q|ΦHF⟩+ ⟨Ψ(1)
HF|b̂†pb̂q|ΦHF⟩+ ⟨ΦHF|b̂†pb̂q|Ψ(1)

HF⟩

+ ⟨Ψ(1)
HF|b̂†pb̂q|Ψ

(1)
HF⟩+ ⟨Ψ(2)

HF|b̂†pb̂q|ΦHF⟩+ ⟨ΦHF|b̂†pb̂q|Ψ(2)
HF⟩+O(λ3) (11.51)

≡ ρHF
p,q + ρ(10)p,q + ρ(01)p,q + ρ(11)p,q + ρ(20)p,q + ρ(02)p,q ,

where we have neglected any third- or higher-order terms in λ. Apparently, the corrected den-
sity decomposes into the unperturbed HF density and corrections corresponding to different
orders, which we can address individually.

Since we are working in a HF-MBPT framework we can employ Brillouin’s theorem that
prevents the direct mixing of singly-excited HF Slater determinants with the HF ground
state 2. Hence, the corrections at λ = 1, i.e., ρ(10) and ρ(01) vanish. We can further exploit the
symmetry of ρ which holds

ρ(02)p,q = ρ(20)q,p . (11.52)

Thus, we are left with the determination of ρ(11) and ρ(02). Starting with the former, we can
plug in the expression for the first-order state correction from Eq. (11.47) and find

ρ(11)p,q =
∑
i<j
a<b

∑
i′<j′

a′<b′

⟨Φa′b′
i′j′ |b̂†pb̂q|Φab

ij ⟩
H

[2]
i′j′,a′b′H

[2]
ij,ab

(ϵi′ + ϵj′ − ϵa′ − ϵb′)(ϵi + ϵj − ϵa − ϵb)
(11.53)

and analogously under the use of Eq. (11.48) the second correction yields

ρ(02)p,q =
1

4

∑
i<j
a<b

∑
k<l
c<d

∑
rs
tu

⟨ΦHF|b̂†pb̂q|Φcd
kl ⟩

H
[2]
rs,tuH

[2]
ij,ab

(ϵk + ϵl − ϵc − ϵd)(ϵi + ϵj − ϵa − ϵb)
⟨Φcd

kl |b̂†r b̂†sb̂ub̂t|Φab
ij ⟩

=
1

4

∑
i<j
a<b

∑
k
c

∑
rs
tu

⟨ΦHF|b̂†r b̂s|Φc
k⟩

H
[2]
rs,tuH

[2]
ij,ab

(ϵk − ϵc)(ϵi + ϵj − ϵa − ϵb)
⟨Φc

k|b̂†r b̂†sb̂ub̂t|Φab
ij ⟩, (11.54)

2Note that indirect mixing can and does still occur in higher orders of the perturbation.
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where we have used that a single pair of creation and annihilation operators can only connect
the ground state to singly-excited Slater determinants. Conveniently, these terms can be
further simplified by separating certain particle-hole terms as done in [168] and take the form

ρ(02) = D(A) +D(B), (11.55)

ρ(11) = D(C) +D(D), (11.56)

where

D
(A)
ia = −1

2

∑
jbc

H
[2]
ij,abH

[2]
bc,aj

(ϵi − ϵa)(ϵi + ϵj − ϵa − ϵb)
, (11.57)

D
(B)
ia = −1

2

∑
jkb

H
[2]
ia,jkH

[2]
jk,ab

(ϵi − ϵa)(ϵj + ϵk − ϵa − ϵb)
, (11.58)

D
(C)
ij = −1

2

∑
abk

H
[2]
ik,abH

[2]
ab,jk

(ϵi + ϵk − ϵa − ϵb)(ϵj + ϵk − ϵa − ϵb)
, (11.59)

D
(D)
ab = −1

2

∑
cij

H
[2]
ac,ijH

[2]
ij,bc

(ϵi + ϵj − ϵa − ϵc)(ϵi + ϵj − ϵb − ϵc)
. (11.60)

By diagonalizing the resulting corrected density matrix we obtain a new single-particle basis
{|cp⟩}, which are the natural orbitals we are looking for. They can directly be calculated from
the HF basis {|bp⟩}

|cp⟩ =
∑
q

C̃pq|bq⟩, (11.61)

or from the HO basis {|ba⟩}

|cp⟩ =
∑
qr

C̃pqCqr|ar⟩ ≡
∑
r

C̃ ′
pr|ar⟩ (11.62)

respectively. Due to the symmetries of the Hamiltonian the density matrix is block-diagonal
in l, j,mj ,S, t, and mt. In particular, there is no particle mixing and the derivation does,
therefore, not require any adjustments when considering hyperons as additional constituents.
Hence, it can directly by applied to hypernuclei.

Note that in actual calculations we include 3N forces in the initial Hamiltonian for the HF
calculation in order to obtain a realistic HF ground-state. For simplicity and computational
efficiency, however, we limit the subsequent calculation of perturbative corrections to a two-
body Hamiltonian, which we obtain by normal ordering the Hamiltonian and truncating at
the two-body rank, known as the normal-ordered two-body (NO2B) approximation, which
we will discuss in detail in the context of in-medium methods in the final part of this work.
Technically, this does not only truncate the Hamiltonian but additionally induces one-body
terms in Eq. (11.46), which arise from the normal-ordering and complicate the derivation of
the state corrections (see Ch. 6 in [42]). We, therefore, choose to neglect these one-body
terms, as we assume the error to be very small. This does not effect the completeness of the
resulting NAT basis, which remains a valid choice of single-particle basis.
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Figure 11.1: Squared radial wavefunctions for the Λ particle in selected single-particle orbitals (top
to bottom) in the HO, HF, and NAT bases (left to right) for 5

ΛHe. Different colors indicate different
HO frequencies with ℏΩ = 14 ( ), 16 ( ), 20 ( ), 24 ( ), 28 ( ), and 32 MeV ( ). Blue
background marks occupied orbitals.

Single-Particle Wavefunctions. In order to investigate the different single-particle bases,
and the natural orbitals in particular, we study the squared radial wavefunctions |u(r)|2
for a given particle species and orbital. The following calculations have been performed
with the NNEMN + 3NH + YNopt combination of interactions consistently SRG evolved to
α = 0.08 fm4. We further employ single-particle truncations emax = 12 and lmax = 8 and
three-body truncations E3max = 14 in the 3N interaction and E3max = 12 for the induced
YNN forces. Figure 11.1 shows wavefunctions for the Λ particle for the HO, HF, and NAT
bases in selected orbitals. Moreover, wavefunctions for six different HO frequencies are given.
Since the HF and NAT bases are obtained from a HO basis the choice of ℏΩ transfers to those
bases as well. For the occupied 0s1/2 orbital we find that the strong frequency dependence in
the HO basis, which arises from the direct correspondence of ℏΩ to the width of the radial
wavefunction, vanishes in the HF and NAT bases. They further do not differ much from the
HO wavefunctions in shape or spatial extend. For the higher-lying unoccupied orbitals the
picture is very different. The shape of the wavefunction changes drastically in the HF and NAT
bases and the HF wavefunctions retain a very strong ℏΩ dependence. The natural orbitals,
however, are again independent of the HO frequency, which is one of their key features. Any
remaining ℏΩ dependencies, which mostly occur at longer ranges can be attributed to the
initial truncation of the HO basis since wider HO wavefunctions are cut from the basis. Hence,
they are not available for the expansion of the NAT states in the HO basis, which results in the
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Figure 11.2: Squared NAT radial wavefunctions for the Λ particle in the 0p1/2 orbital in 5
ΛHe for

different model-space truncations emax and lmax. Same color scheme for HO frequencies as in Fig. 11.1.

residual frequency dependence at longer distances. Based on calculations in different model
spaces shown in Fig. 11.2 we can confirm that this is a truncation issue as the ℏΩ dependencies
are smoothed out successively with increasing model-space size. We can, therefore, conclude
that the concept of natural orbitals can easily be transferred to hypernuclei and the benefit of
frequency independence carries over to hyperons. While we have limited our discussion to Λ

orbitals so far, we can also look at all six particle species that are active in our calculations. In
Fig. 11.3 the 1p3/2 wavefunctions for 5

ΛHe are depicted for the six particle species. Regardless
of the particular shape of the wavefunction we find that the results for neutron and proton
look very much alike, which is to be expected as they mainly differ by the Coulomb interaction.
The same holds for the three Σ wavefunctions, which are again nearly identical. We should
also note that there are no Σ hyperons present in the HF ground state. Hence, they only enter
perturbatively through the Λ-Σ mixing, which typically causes effects at a percentage level
and is, thus, very weak. We, therefore, expect the NAT wavefunctions for the Σ particles to
be at least partially dominated by the orthogonality constraints on the basis.

Now that we have studied the systematic behavior of the NAT single-particle basis, we can
investigate different hypernuclei and use the wavefunctions to learn about the structure of
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Figure 11.3: Squared NAT radial wavefunctions for all particle species in the 1p3/2 orbital in 5
ΛHe.

Same color scheme for HO frequencies as in Fig. 11.1.
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those. Since the effect of the Coulomb interaction on the radial wavefunctions is negligible,
we limit the discussion to the three neutral particles n, Λ, and Σ0. One of the most interesting
cases is 5

ΛHe for which a complete overview of the five lowest-lying orbitals up to the 1s1/2
orbital is shown in Fig. 11.4. The occupied orbitals are highlighted with a blue background.
For the Λ wavefunctions in the center column we find that they are stretched to larger radii,
especially in contrast to the nucleonic wavefunctions in the left-hand column. This stretching
is particularly pronounced in the 1s1/2 orbital, where the suppression of the short-range part
even results in a strong HO frequencies of the wavefunctions due to the lack of long-range
states in the HO basis. Apparently, the Λ particle tends to sit at larger distances, which is
contrary to the naïve expectation that it would sit in the center of the nucleus as it is not
restrained by the Pauli principle 3. Given that the hyperon separation energy of 5

ΛHe with
BΛ = 3.12(2) MeV [7] is much smaller than the neutron separation energy of Sn = 20.578 MeV
[176] it seems likely that 5

ΛHe can be understood as a hyperon coupled to an α particle, maybe
even hinting at a Λ halo. The Σ0 wavefunctions, however, show no anomalies and appear to
be slightly less extended compared to the neutron orbitals.

When studying heavier nuclei such as 17
ΛO, for which the wavefunctions are depicted in

Fig. 11.5 we find that the Λ orbitals are much less extended compared to 5
ΛHe and even favor

shorter distances than the neutron orbitals. This is more compatible with the Pauli picture
and is additionally supported by the fact that the mass radius of 17

ΛO is smaller than the mass
radius of 16O. It further results in a reduction of the ℏΩ dependence, which only remains
visible for the long-range part of the 1s1/2 orbital. The shape of the Σ0 orbitals remains about
the same as before. These trends continue for the radial wavefunctions of 41

ΛCa, which are
shown in Fig. 11.6. Again, the Λ orbitals favor shorter radii compared to the neutron orbitals
and even higher-lying orbitals like the 1s1/2 are dominated by the short-range component. We
now find some minor ℏΩ dependence across all orbitals and particles. This can most likely
also be attributed to the limited model space, which seems to be insufficient to fully describe
this significantly larger system.

Overall the natural orbitals provide a computationally efficient yet powerful method to
optimize the single-particle basis not only for nucleonic systems but also hypernuclei. While
the most striking feature is the independence of the HO frequency, they also serve as a great
diagnostic tool to study the radial extend of different particle species, giving inside into basic
structural aspects of the respective hypernuclei.

3This only holds for the singly-strange hypernuclei under consideration. Since hyperons are fermions they
clearly must obey the Pauli principle as soon as there are more than one present.
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Figure 11.4: Squared NAT radial wavefunctions for neutrons, Λ, and Σ0 particles in the lowest-lying
orbitals for 5

ΛHe. Blue background indicates occupied orbitals. Same color scheme for HO frequencies
as in Fig. 11.1.
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Figure 11.5: Squared NAT radial wavefunctions for neutrons, Λ, and Σ0 particles in the lowest-lying
orbitals for 17

ΛO. Blue background indicates occupied orbitals. Same color scheme for HO frequencies
as in Fig. 11.1.
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Figure 11.6: Squared NAT radial wavefunctions for neutrons, Λ, and Σ0 particles in the lowest-lying
orbitals for 41

ΛCa. Blue background indicates occupied orbitals. Same color scheme for HO frequencies
as in Fig. 11.1.
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11.5 Natural Orbitals in the Hypernuclear NCSM

While the NAT basis and the associated single-particle wavefunctions yield interesting physics
insights themselves, our initial goal was to employ them as an optimized single-particle basis
in many-body calculations. We keep the previous choice of interaction and truncation, i.e.,
the NNEMN + 3NH + YNopt combination with emax = 12 and lmax = 8. In the NAT basis we
limit ourselves to calculations with NO2B approximation, which reduces the computational
effort and allows us to access larger model spaces since we do not have to deal with explicit
three-body forces. It further permits us to reuse the matrix elements in other applications
discussed in part IV.

Before we can employ the NAT basis in NCSM calculations we have to reconsider the
aspects of the NCSM that exploit properties of the HO basis, since some of them are not
valid for the NAT basis anymore. In particular, the removal of center-of-mass contributions
was based on the separation of intrinsic and center-of-mass parts in the HO many-body
wavefunctions. This separation is not given in the NAT basis, however, we can adapt the
concept of shifting the spurious center-of-mass excitations to higher parts of the spectrum in a
similar manner as for the HO basis. Thus, we again modify our Hamiltonian the same way as
given in Eqs. (2.6) and (2.7) keeping in mind that this is not exact and the obtained states will
contain residual center-of-mass contributions. In order to keep the latter minimal we have to
choose small values of λcm. We, therefore, use λcm = 0.3 in the subsequent calculations.

We start our investigations by comparing NCSM calculations for 5
ΛHe in, both, HO and

NAT basis as shown in Fig. 11.7. We immediately find that the independence of ℏΩ in the
NAT wavefunctions carries over to the many-body calculations, which is in strong contrast to
the HO calculations.

Furthermore, we find that the convergence rate in the NAT basis is significantly increased
even compared to the optimal HO frequency. This goes beyond the expectations from calcula-
tions for nucleonic systems, where the convergence rate in the NAT basis is commonly found
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Figure 11.7: NCSM calculations for 5
ΛHe in HO basis (left-hand panel) and in NAT basis with NO2B

approximation (right-hand panel). The calculations in HO basis contain 3N and YNN forces explicitly.
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Figure 11.8: NCSM calculations for 17
ΛO in NAT basis with NO2B approximation. Same color coding

as in Fig. 11.7.

to be equal to the convergence rate for the optimal HO frequency. Finally, we notice that the
limits of the HO and NAT calculations differ by about 500 keV, which is contrarily to what
would be expected for two complete bases. This is due to the NO2B approximation employed
for the NAT basis, and should vanish if the 3N and YNN forces are consistently transformed
and fully taken into account.

The systematics we have found for 5
ΛHe are not limited to light hypernuclei but do also

apply to heavier p-shell hypernuclei such as 17
ΛO as shown in Fig. 11.8. While we, again, find

frequency independent results and a systematic convergence pattern, the convergence rate is
not fast enough to obtain converged results. This marks a limit to the reach of the IT-NCSM
for hypernuclei and demonstrates the need for developments towards ab initio medium-mass
methods for hypernuclei once more.

Overall, we conclude that both the ℏΩ independence and the improved convergence rate
are beneficial properties making the NAT basis the ideal choice of basis for hypernuclear
many-body calculations. However, besides these beneficial features, the NAT basis conflicts
with the application of our ANN tool, which is designed to explicitly take advantage of the ℏΩ
dependence. Hence, the application within the NAT basis would effectively boil down to the
F = 1 case in Fig. 6.1, that is deficient in accuracy and precision compared to higher numbers
of F .

A Hyperon Halo? There is one other aspect that has sparked our interest and that we
can investigate further using the natural orbitals. From our study of the NAT single-particle
wavefunctions we have found that the Λ orbitals in 5

ΛHe shown in Fig. 11.4 exhibit long-
range tails. Together with the previously discussed gap between the hyperon separation
energy of 5

ΛHe and its neutron separation energy, this suggests that the 5
ΛHe hypernucleus

can be interpreted as a hyperon loosely bound to an α core, which is known as a halo
structure. The occurrence of this phenomenon has already been proposed and studied for
other hypernuclei [177–182].
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Figure 11.9: One-body densities normalized to one (left-hand panel) and point-particle rms-radii
(right-hand panel) for neutrons (blue), protons (orange) and Λ hyperons (green) in 5

ΛHe. The densities
are obtained from a NCSM calculation in NAT basis with NO2B approximation for ℏΩ = 14 MeV at
Nmax = 12.

In order to investigate this more closely we study the one-body densities in 5
ΛHe shown in

the left-hand panel of Fig. 11.9, which are calculated with many-body wavefunctions obtained
from NCSM calculations at Nmax = 12. All densities shown here are normalized to 1 instead
of the respective particle number to facilitate comparison. As already indicated by the NAT
wavefunctions, the Λ density extends significantly beyond the nucleon densities, featuring a
long hyperon tail.

In addition to the densities we calculate the point-Λ radius, which should also extend
significantly beyond the point-particle radii for the nucleons in the system. According to [42]
the operator corresponding to the mean-square radius for any particle species χ is given by

R̂2
χ,ms =

1

⟨n̂χ⟩
A∑
i=1

P̂χ
i (r̂i − R̂cm)

2

=
1

M̂⟨n̂χ⟩
∑
i<j

(
m̂iP̂

χ
j + m̂jP̂

χ
i − nχ

m̂im̂j

M̂

)
r̂2ij , (11.63)

where we have introduced a particle projection operator along with a corresponding particle
number operator

P̂χ
i =

{
1 if particle i is of species χ,

0 else
, (11.64)

n̂χ =

A∑
i=1

P̂χ
i . (11.65)

With this, we can calculate the point-χ rms-radii for the constituents of the 5
ΛHe nucleus, which

are shown in the right-hand panel of Fig. 11.9. Again, we find that the point-Λ rms-radius is
much larger than the point-proton and point-neutron radii. Moreover, it requires significantly
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larger model spaces to converge, which is typical for halo nuclei as highly-excited long-range
basis states are required to account for the long-range contributions to such extended radii.

Overall, we find a very consistent picture that exhibits strong long-range components in
the hyperon channel, which indicate that 5

ΛHe is a candidate for a hyperon halo.
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12
In-Medium No-Core Shell Model

The IM-NCSM is a powerful ab initio many-body method for medium-mass nuclei [32, 183,
184]. It merges the NCSM with the IM-SRG into a hybrid approach that combines the strengths
of both methods, as they complement each other regarding included correlations and trunca-
tion schemes. Conceptually, the underlying notion is to pre-diagonalize the Hamiltonian via
the IM-SRG to boost the convergence in a subsequent NCSM calculation, thus, extending the
reach of the NCSM beyond the p-shell into the medium-mass regime.

Being an “in-medium” method the IM-NCSM is constructed w.r.t. a reference state. For
closed-shell systems a single Slater determinant is sufficient, while the application to open-
shell nuclei requires more sophisticated reference states. Since we are mainly interested in
the extension to hypernuclei, we limit the following discussion to the single-reference IM-SRG
for the sake of simplicity. However, the extension to a multi-reference framework has been
worked out and we refer the interested reader to [184] for further reading.

12.1 Normal Ordering

The concept of normal ordering is fundamental for the IM-SRG. It is based on the idea of
formulating an operator w.r.t. a reference state instead of the vacuum and span the config-
uration space through particle-hole excitations acting on this state. Consequently, certain
parts of many-body operators are reassigned to lower particle ranks. This allows to truncate
operators at a given particle rank, while still retaining most of the information from the initial
higher-body contributions. In our applications, we will approximate all many-body operators
by their normal-ordered counterpart truncated at the two-body level, which is commonly
referred to as NO2B approximation.

Since we are focussing on closed-shell systems the reference state |Ψref⟩ that defines
the normal-ordering is given by a single Slater determinant |Φref⟩. Hence, we are working
in a particle-hole picture where the states occupied (unoccupied) in |Φref⟩ resemble holes
(particles). A product of creation and annihilation operators X̂1 . . . X̂n is then considered to
be in normal order if its expectation value w.r.t. |Φref⟩ vanishes

⟨Φref |{X̂1 . . . X̂n}|Φref⟩ = 0, (12.1)

109
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where the normal ordering is denoted with curly brackets. This property in itself is already
very useful in many applications, however, in general we are interested in expressing a product
of operators in terms of normal-ordered products. This is accomplished via Wick’s theorem,
which states that any product of operators is equal to its normal-ordered product plus all
possible normal-ordered contractions

X̂1 . . . X̂n = {X̂1 . . . X̂n}+
∑
all

contractions

{X̂1 . . . X̂i . . . X̂j . . . X̂n}, (12.2)

where a contraction is defined as

{X̂1 . . . X̂i . . . X̂j . . . X̂n} = sgn(π)X̂iX̂j{X̂1 . . . X̂i−1X̂i+1 . . . X̂j−1X̂j+1 . . . X̂n}. (12.3)

Here, π refers to the permutation required to move X̂i and X̂j next to each other without
changing the order of the other operators. We can further evaluate such a contraction, which
generally is a complex number, using the product of two operators and applying Wick’s
theorem, which yields

ϱij ≡ ⟨Φref |X̂iX̂j |Φref⟩ = ⟨Φref |
(
{X̂iX̂j}+ X̂iX̂j

)
|Φref⟩ = X̂iX̂j , (12.4)

where we have introduced ϱij as a shorthand notation as it resembles a one-body density w.r.t.
the reference state.

Moreover, Wick’s theorem can be generalized to provide insights in products of normal-
ordered operator products. It then holds

{X̂1 . . . X̂n}{Ŷ1 . . . Ŷm} ={X̂1 . . . X̂nŶ1 . . . Ŷm}

+
∑

external
contractions

{X̂1 . . . X̂i . . . X̂nŶ1 . . . Ŷj . . . Ŷm}, (12.5)

where external contractions only include contractions across the two normal-ordered operator
products.

One of the most common applications of normal ordering is the aforementioned NO2B
approximation, which we have already employed in the context of the natural orbitals in
Ch. 11. We will, therefore, discuss the normal ordering of a Hamiltonian with up to three-
body contributions as an example. When written in second quantization such a Hamiltonian
contains products of creation and annihilation operators up to the 3p3h level (see Eq. (11.12)
for comparison), which need to be expressed in terms of their normal-ordered products.
Applying Wick’s theorem we find

âpq = {âpq}+ ϱpq , (12.6)

âpqrs = {âpqrs}+ ϱpr{âqs} − ϱps{âqr}+ ϱqr{âps} − ϱqs{âpr}+ ϱprϱ
q
s − ϱpsϱ

q
r, (12.7)

âpqrstu = {âpqrstu}+ ϱps{âqrtu} ± O(ϱ) + ϱpsϱ
q
t{âru} ± O(ϱ2) + ϱpsϱ

q
tϱ

r
u ±O(ϱ3), (12.8)
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such that the normal-ordered Hamiltonian takes the shape

ĤNO = H̃ [0] +
∑
pq

H̃ [1]
p,q{âpq}+

∑
pqrs

H̃ [2]
pq,rs{âpqrs}+

∑
pqrstu

H̃
[3]
pqr,stu{âpqrstu} (12.9)

with

H̃ [0] = H [0] +
∑
pq

H [1]
p,qϱ

p
q +

1

2

∑
pqrs

H [2]
pq,rsϱ

p
rϱ

q
s +

1

6

∑
pqrstu

H
[3]
pqr,stuϱ

p
sϱ

q
tϱ

r
u, (12.10)

H̃ [1]
p,q = H [1]

p,q +
∑
rs

H [2]
pr,qsϱ

r
s +

1

2

∑
rstu

H
[3]
prs,qtuϱ

r
sϱ

t
u, (12.11)

H̃ [2]
pq,rs = H [2]

pq,rs +
∑
tu

H
[3]
pqt,rsuϱ

t
u, (12.12)

H̃
[3]
pqr,stu = H

[3]
pqr,stu. (12.13)

Evidently, at a given n-body level, information from all higher-body contributions enters,
while the highest rank remains unchanged. We can employ the aforementioned NO2B approx-
imation by dropping the explicit three-body terms in Eq. (12.9). The NO2B approximated
Hamiltonian in its original form, i.e., normal ordered w.r.t. the vacuum state |0⟩ is then
obtained via the inverse relations for the normal-ordered operators and one arrives at

ĤNO2B =

(
H [0] +

1

6

∑
pqrstu

H
[3]
pqr,stuϱ

p
sϱ

q
tϱ

r
u

)
(zero-body)

+
∑
pq

(
H [1]

p,q −
1

2

∑
rstu

H
[3]
prs,qtuϱ

r
tϱ

s
u

)
âpq (one-body) (12.14)

+
1

4

∑
pqrs

(
H [2]

pq,rs +
∑
ct

H
[3]
pqt,rsuϱ

t
u

)
âpqrs, (two-body)

where residual three-body terms enter at every level.

12.2 In-Medium Similarity Renormalization Group

The IM-SRG [29] is at the heart of the IM-NCSM. In general, it is constructed to drive
the Hamiltonian towards a block-diagonal structure w.r.t. a given many-body basis. This is
achieved by partitioning the Hamiltonian into diagonal and off-diagonal parts

Ĥ = Ĥd + Ĥod (12.15)

with the goal of suppressing the latter via a unitary transformation. The ansatz for this
transformation is the same as for the free-space SRG discussed in Sec. 1.2. Yet, we will recall
some of the relations here for completeness and to point out some differences in the notation.

Starting point for our discussion of the IM-SRG is a continuous unitary transformation of
the Hamiltonian

Ĥ(s) = Û †(s)Ĥ(0)Û(s), Ĥ(0) ≡ Ĥ (12.16)
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Figure 12.1: Schematic representation of the Hamiltonian before and after the single-reference IM-
SRG. For s → ∞ the reference state |Φref⟩ is decoupled from its particle-hole excitations |Φp...

s...⟩.

controlled by the flow parameter s. Alternatively, this can be written as a flow equation

d

ds
Ĥ(s) =

[
η̂(s), Ĥ(s)

]
, (12.17)

with generator η̂(s). Note that this is purely an operator equation which holds the great
advantage that, unlike in the NCSM, the many-body basis never needs to be constructed
explicitly. Yet, a matrix-element representation is required in order to solve it numerically.
Further, any other operators Ô can be transformed analogously

d

ds
Ô(s) =

[
η̂(s), Ô(s)

]
, Ô(0) ≡ Ô. (12.18)

The key aspect of the IM-SRG is that it is formulated “in medium”, i.e., with regard to a
reference state, which in our case is a single Slater determinant in natural orbital basis |Φref⟩.
Therefore, all operators are normal ordered w.r.t. this reference state. For our applications
we have chosen the imaginary-time generator [29]. The transformation can, thus, be inter-
preted as a decoupling of the reference state from its particle-hole excitations as illustrated
in Fig. 12.1. This is the main difference to the free-space SRG, where the decoupling is
performed for matrix elements in momentum space and not on the level of many-body states.

The computational complexity of the IM-SRG arises during the iterative solution of the
flow equation and scales rapidly with higher particle ranks 1. This is controlled by imposing a
truncation on the particle rank and neglecting all higher-body orders. In our case, we employ
what is known as IM-SRG(2), hence, we use the NO2B truncation for all operators, either
initial or induced during the transformation. With this the right side of the flow equation
Eq. (12.17) reduces to the evaluation of commutators between normal-ordered products
of creation and annihilation operators which is given by the generalized Wick’s theorem
Eq. (12.5). Note that, in analogy to the induced many body forces in free-space SRG, these
commutators also contain many-body terms beyond the two-body level. In order to stay within
the IM-SRG(2) scheme, this requires intermediate truncations to the two-body level, adding to
the overall truncation error. Finally, we end up with a system of coupled ordinary differential
equations for the matrix elements of the Hamiltonian, which can be solved numerically.

1First implementations of the IM-SRG with a complete treatment of three-body contributions are on the
fore-front of current developments [185].
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Magnus Formalism. So far, we have assumed a general continuous unitary transformation
represented by the operator Û(s) and have concluded that the flow equation has to be solved
separately for each observable of interest. Clearly, this is undesirable as it increases the
computational effort. We circumvent this by making use of the Magnus formalism [186, 187],
where the unitary transformation operator is written as the exponential of an anti-Hermitian
operator Ω̂(s) called Magnus operator

Û(s) = exp
(
−Ω̂(s)

)
, Ω(0) ≡ 0. (12.19)

It can be shown [187] that this operator obeys the following differential equation

d

ds
Ω̂(s) =

∞∑
k=0

Bk

k!

[
Ω̂(s), η̂(s)

]
k
, (12.20)

where Bk are Bernoulli numbers and [. . . , . . .]k denotes k nested commutators, which can be
defined recursively via [

X̂, Ŷ
]
k
=
[
X̂,
[
X̂, Ŷ

]]
k−1

,
[
X̂, Ŷ

]
0
= Ŷ . (12.21)

In order to maintain computability, we, again, apply the NO2B truncation to the Magnus
operator.

For the computation of Ω̂ we exploit the recursive nature of the nested commutators,
where the k-th commutator only depends on the (k − 1)-th[

Ω̂(s), η̂(s)
]
k
=

[
Ω̂(s),

[
Ω̂(s), η̂(s)

]
k−1

]
, (12.22)

such that the right-hand side of Eq. (12.20) can be evaluated order by order until a conver-
gence criterion

||Ω̂′
n(s)− Ω̂′

n−1(s)||
||Ω̂′

n(s)||
< ϵMagnus , Ω̂′

n(s) :=
n∑

k=0

Bk

k!

[
Ω̂(s), η̂(s)

]
k

(12.23)

is matched. The big advantage of this formalism is that once Ω̂(s) is known, any other
observable can be transformed via a Baker-Campbell-Hausdorff (BCH) series

Ô(s) =
∞∑
k=0

1

k!

[
Ω̂(s), Ô(0)

]
k
, (12.24)

which directly provides the full transformation up to flow parameter s. Again, the evaluation
is carried out until it matches the convergence criterion

|| 1n! [Ω̂n(s), Ô(0)]n||
||∑n

k=0
1
k! [Ω̂n(s), Ô(0)]k||

< ϵBCH. (12.25)

The BCH series will become essential, when we discuss extensions to hypernuclei in Ch. 13.
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Commutator Evaluation. The computationally most demanding part is the evaluation of
commutators. This has been worked out in much detail in various other works (see e.g.
[29, 30]). We will, therefore, not provide the full derivation but only present the resulting
expressions.

Within the IM-SRG(2) a commutator Ĉ of two scalar operators Â and B̂ has the form

Ĉ = [Â, B̂] ≈ C [0] +
∑
ar

C [1]
pq {âpq}+

1

4

∑
pqrs

C [2]
pq,rs{âpqrs}, (12.26)

where the last step resembles an approximation due to the truncation to the NO2B level. With
occupation numbers

np = ⟨Ψref |â†pâp|Ψref⟩ =
{
1 if |p⟩ is occupied

0 if |p⟩ is unoccupied
, (12.27)

n̄p = 1− np (12.28)

the expressions for the many-body matrix elements according to [29] are given by

C [0] =
∑
pq

A[1]
p,qB

[1]
q,p(np − nq)

+
1

4

∑
pqrs

(A[2]
pq,rsB

[2]
rs,pq −B[2]

pq,rsA
[2]
rs,pq)npnqn̄rn̄s, (12.29)

C [1]
p,q = Ξ̂[1]

pq

[
2
∑
r

A[1]
p,rB

[1]
r,q

+
∑
rs

(
A[1]

r,sB
[2]
pr,qs −B[1]

r,sA
[2]
ps,qr

)
(nr − ns)

+
∑
rst

A
[2]
pr,stB

[2]
st,qr(nrn̄sn̄t + n̄rnsnt)

]
, (12.30)

C [2]
pq,rs = Ξ̂[2]

pqrs

[
4
∑
t

(
A

[1]
p,tB

[2]
tq,rs −B

[1]
p,tA

[2]
tq,rs

)
+
∑
tu

(
A

[2]
pq,tuB

[2]
tu,rs(1− nt − nu) + 4A

[2]
pt,ruB

[2]
qu,st(nt − nu)

)]
, (12.31)

where Ξ̂
[1]
pq and Ξ̂

[2]
pqrs are index symmetrizers that read

Ξ̂[1]
pq =

1

2
(1± Ppq), (12.32)

Ξ̂[2]
pqrs =

1

8
(1− Ppq)(1− Prs)(1± PprPqs). (12.33)

Here, “+” is used for a Hermitian and “−” for an anti-Hermitian Ĉ. If Â and B̂ are both
hermitian or anti-hermitian Ĉ is anti-hermitian, otherwise Ĉ is hermitian. In an actual
implementation one resorts to an angular-momentum-coupled versions of these expressions
as they allow for a more efficient computation. These spherical results can be found in, e.g.,
[183, 184].
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12.3 In-Medium No-Core Shell Model

Throughout the Chs. 2, 11, and 12 we have discussed all ingredients that enter an IM-NCSM
calculation and can now combine them into a hybrid method. The IM-NCSM is a four step
process (five steps in the multi-reference framework) as schematically depicted in Fig. 12.2.

The starting point is the construction of an optimized reference state, which is a first ap-
proximation for the state of the system we are interested in. For single-reference applications
the HF Slater determinant provides such a reference state that can further be optimized via
natural orbitals. As we have seen, this holds the additional advantage of being independent of
the underlying HO oscillator frequency. For the construction of the reference state we employ
a nuclear Hamiltonian containing realistic NN and 3N interactions.

In a next step all operators need to be normal ordered w.r.t. the reference state. In
preparation for the subsequent IM-SRG calculation they are truncated at the two-body level
and higher orders are discarded.

We then perform an IM-SRG(2) calculation in Magnus formalism, during which the ref-
erence state is decoupled from its particle-hole excitations. We end up with a transformed
Hamiltonian that is optimized through the inclusion of many-body correlations. All other
operators are transformed consistently via the BCH series.

As a final step, a subsequent NCSM calculation is performed with the evolved Hamiltonian.
For a fully decoupled reference state (s → ∞) the NCSM calculation will yield converged
results for the ground-state in Nmax = 0 already. The IM-SRG can, therefore, be understood as
a convergence accelerator for the subsequent NCSM calculation, enabling the computation of
nuclei that are beyond the reach of the standard (IT-)NCSM. The subsequent NCSM calculation
further gives access to excited states that are structurally similar to the ground state, thus,
overcoming the limitation of the IM-SRG to a single state.

For completeness, we note that the IM-NCSM can be extended to open-shell nuclei [32].
The equal-filling approximation allows for the construction of natural orbitals for open-shell
systems and a meaningful reference state |Ψref⟩, resembled by a superposition of Slater deter-
minants, is obtained through a NCSM calculation in a small, e.g., Nmax = 0, 2 model space.
In a multi-reference IM-SRG calculation the whole subspace spanned by the configurations
in |Ψref⟩ is being decoupled from its particle-hole excitations. A subsequent NCSM calcula-
tion in this subspace provides the ground-state energy along with the excitation energies for
structurally similar excited states. However, the IM-SRG is typically restricted to a scalar flow
equation, which transfers to a limitation of the IM-NCSM to even-A nuclei.

Figure 12.2: Schematic representation of the multi-step process in the IM-NCSM. The intermediate
NCSM calculation depicted in gray only applies to the multi-reference case. See text for details.
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12.4 Particle-Attached/-Removed Extension

The particle-attached/particle-removed extension introduced in [183, 184] is designed to
tackle the limitation to closed-shell nuclei imposed by the single-reference IM-SRG. It is based
on the assumption that the reference state constructed for a closed-shell nucleus provides
a reasonably good approximation of a structurally similar reference state for its isotopic or
isobaric neighbor, which we will refer to as target nucleus. In particular, the idea is to construct
the reference state and perform the IM-SRG calculation for the closed-shell nucleus, while
the subsequent NCSM calculation is carried out for the open-shell target nucleus. Hence, the
decoupling of the closed-shell reference state is assumed to yield a partial decoupling of the
respective state in the target system, thus, accelerating the convergence in the subsequent
NCSM calculation, which also accounts for the missing correlations.

However, there is one more adjustment required. The NCSM calculation is performed for
the target nucleus for which

Atarget =

{
Aclosed-shell + 1 (particle-attached)

Aclosed-shell − 1 (particle-removed)
. (12.34)

Hence, all inital operators entering the IM-NCSM calculation should be constructed w.r.t.
Atarget. This affects the kinetic energy given in Eq. (1.7), which, with emphasis on the target
nucleus, reads

T̂int =
2

Atarget

A∑
i<j

q̂2ij
mN

. (12.35)

As a final remark we point out that the particle-attached/-removed approach can also lift
the limitation to even-A nuclei in the multi-reference framework. Considering results for
multiple different neighbors then allows for a consistency check and potentially an uncertainty
estimation of this extension (see e.g. Fig. 6.14 in [184]).



13
Hypernuclei in the IM-NCSM

To date, medium-mass and heavier systems with strangeness have only been computed within
phenomenological approaches [188] along with some first applications of HF-MBPT and
Brueckner-Hartree-Fock [42]. In the nucleonic sector, however, developments of medium-
mass methods have made impressive progress in both reach and precision of ab initio calcu-
lations. Clearly, our understanding of hypernuclear structure and the underlying baryonic
interaction would greatly benefit from these methodological advances, if these ab initio meth-
ods could be transferred to the hypernuclear domain.

In the previous chapter we have discussed the IM-NCSM as a powerful ab initio tool for
the description of medium-mass nuclei. Since we already have an implementation of the
hypernuclear NCSM at hand, it provides the ideal starting point for developments towards
ab initio calculations of hypernuclei in the medium-mass sector. A direct expansion of the
IM-SRG to hypernuclei is challenging as, both, the analytical expressions for the commutator
evaluation as well as their implementation, require major revisions. In addition, singly-strange
hypernuclei naturally are open-shell systems, hence, they require a multi-reference treatment,
which further complicates the implementation.

Considering that the binding of the hyperon to the other nucleons is governed by a rela-
tively weak YN interaction, it seems reasonable to start exploring the hypernuclear medium-
mass sector in a simplified manner, where we consider a purely nucleonic parent nucleus, to
which we introduce a hyperon. Right away, this is akin to the particle-attached concept we
have discussed in Sec. 12.4.

In the following, we implement this in form of a hyperon-attached formalism as a first
step towards a hypernuclear IM-NCSM.

13.1 Hyperon-Attached IM-NCSM

As we have already mentioned, the hyperon-attached formalism is a straight-forward exten-
sion of the particle-attached IM-NCSM concept. A schematic representation of the different
steps is shown in Fig. 13.1.

We start out by constructing the nuclear Hamiltonian for the nucleonic parent of the
hypernucleus we are interested in. While the initial nucleonic Hamiltonian in the particle-
attached formalism had to be adapted to the target nucleus, this is not required here, since the
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Figure 13.1: Schematic representation of the single-reference hyperon-attached IM-NCSM. The hy-
pernucleus and its nucleonic parent are initially treated separately before the information from the
nucleonic parent enters the calculation of the hypernucleus in form of the Magnus operator. See text
for details.

nucleonic Hamiltonian will never enter the final NCSM calculation. Still, one might expect a
better approximation of the target system, if the initial nucleonic Hamiltonian already carries
the proper kinetic energy. This, however, is not as straight-forward as in the nucleonic case
due to the hyperon mass being larger than the nucleon mass. Alternatively Eq. (1.5) can be
approximated by choosing the total mass operator to evaluate to Atarget− 1 times the nucleon
mass mN plus the mass of a Λ hyperon as the Λ-Σ mixing is comparably small. With this, one
can write

T̂int ≈
4

Atarget +
mΛ−mN

mN

A∑
i<j

q̂2ij
2mN

, (13.1)

where we have used the assumption of equal nucleon masses.

In a next step the nuclear Hamiltonian is converted to natural orbitals and normal ordered
before it enters an IM-SRG calculation. Since the latter is performed in the Magnus formalism
we obtain a Magnus operator Ω̂nucl.(s) that carries the information about the decoupled state
in the nucleonic parent. Note that this allows us to perform a standard IM-SRG calculation
for non-strange nuclei, which renders further changes of the implementation obsolete.

Key to the hyperon-attached formalism is now to embed Ω̂nucl.(s) in the hypernuclear
Hilbert space of the target hypernucleus and use the BCH series to transform the hypernuclear
Hamiltonian Ĥhyp. and any other operators for hypernuclear observables Ôhyp. accordingly,
such that

Ôhyp.(s) =

∞∑
k=0

1

k!

[
Ω̂nucl.(s), Ôhyp.(0)

]
k
. (13.2)

This can be understood as an inclusion of many-body correlations into the nucleonic com-
ponents of Ĥhyp., while the hyperonic components remain unchanged. For this embedding
we complement the Magnus operator by a unity operator in the hyperonic parts. The trans-
formed operators then enter a hypernuclear NCSM calculation that accounts for the missing
YN correlations. Note that these NCSM application apply the same center-of-mass treatment
as discussed for the NAT basis with λcm = 0.3.

Before we look at applications to medium-mass hypernuclei, which the hyperon-attached
IM-NCSM is meant for, we will first discuss results for 5

ΛHe as it allows for a comparison of
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Figure 13.2: Ground-state energies (upper panels) and hyperon separation energies (lower panels)
of 5

ΛHe in HO basis with ℏΩ = 20 MeV including full three-body forces ( ), in NAT basis with
NO2B approximation ( ), and from the hyperon-attached IM-NCSM ( ). IM-NCSM results for the
nucleonic parent 4He (– –) are given for comparison. The left-hand panels show the convergence with
Nmax, while the right-hand panels illustrate the s dependence for the IM-NCSM calculations.

different methods and calculations can be converged w.r.t. Nmax. Figure 13.2 shows such
NCSM calculations of the ground-state energy and hyperon separation energy of 5

ΛHe for the
same Hamiltonian in HO basis, in NAT basis with NO2B truncation, and IM-SRG transformed
(left-hand panels). As anticipated, we find that the IM-NCSM calculations converge even
faster than for the HO or NAT bases. However, we find that the converged results do not agree
with each other. These discrepancies arise from the different approximations that have been
introduced. The difference between the HO and NAT calculations are, as discussed previously,
a result of the NO2B approximation used for the NAT calculations, while the HO calculations
are performed with full NN+3N interactions. The cause for the larger deviations for the IM-
NCSM result is less evident. Studying results for different flow parameters s as shown in the
right-hand panels of Fig. 13.2 this deviation seems to increase continuously with increasing
s except for some non-monotonous behavior for very small flow parameters. The occurring
peak is most likely an artifact of the employed generator and since it is remedied for larger s
it is of little concern for our applications. For the IM-SRG(2) it is known that the repetitive
NO2B approximation accumulates to an error of about 1-2% [189, 190]. This, however, does
not fully translate to the Magnus formalism we are employing here, as the exponentiation
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Figure 13.3: NAT squared radial wavefunctions for the neutron in 4He( ) and 5
ΛHe ( ).

ensures unitarity of the transformation independent of the quality of the Magnus operator.
But, the hypernuclear Hamiltonian and the subsequent transformation of via the BCH series
are also truncated at an NO2B level. It is, therefore, likely that this accounts for the major
part of the deviation.

Another potential source of error again lies within the choice of |Φref⟩ since the Magnus
operator and the hypernuclear Hamiltonian are normal ordered w.r.t. different reference states.
In particular, the Magnus operator is normal ordered w.r.t. a NAT Slater determinant for 4He,
while the reference state for the hypernuclear Hamiltonian is a NAT Slater determinant for
5
ΛHe. As demonstrated in Fig. 13.3, the NAT wavefunctions for the nucleons in 4He and 5

ΛHe

are nearly identical across all orbitals with only minor deviation in the 0p3/2 orbital. Thus, in
good approximation, the hypernuclear reference Slater determinant |Φhyp

ref ⟩ and the reference
state of the nucleonic parent |Φnuc

ref ⟩ relate like

|Φnuc
ref ⟩ ≈ ĉ†Λ|Φ

hyp
ref ⟩, (13.3)

where ĉ†Λ is the annihilation operator corresponding to the Λ single-particle state in |Φhyp
ref ⟩.

Since the Magnus operator is already normal ordered w.r.t. |Φnuc
ref ⟩ we can write

⟨Φhyp
ref |Ω̂(s)|Φ

hyp
ref ⟩ = ⟨Φhyp

ref |ĉ
†
Λĉ

†
ΛΩ̂(s)|Φ

hyp
ref ⟩

= ⟨Φhyp
ref |ĉ

†
ΛΩ̂(s)ĉ

†
Λ|Φ

hyp
ref ⟩ (13.4)

≈ ⟨Φnuc
ref |Ω̂(s)|Φnuc

ref ⟩
= 0,

from which we can conclude that the Magnus operator is also normal ordered w.r.t. the
hypernuclear reference state. Hence, we expect the resulting error to be negligible.
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13.2 Application to Medium-Mass Hypernuclei

Finally, we investigate calculations of hypernuclei that are out of range for the NCSM. Let us
first discuss 17

ΛO, which is still light enough so that we can provide NCSM calculations with
natural orbitals as comparison. Both, the results for the hyperon-attached IM-NCSM and the
NCSM calculations for the ground-state energy and hyperon separation energy for 17

ΛO are
shown in Fig. 13.4. For the ground-state energy we find a significantly increased convergence
rate for the IM-NCSM calculation, which converges to a precision better than 1% at Nmax = 8.
Turning to the hyperon separation energy we observe an overbinding of the hyperon in the IM-
NCSM relative to the NCSM analogously to our findings for 5

ΛHe. Moreover, the convergence
of BΛ is significantly slower than for the NCSM calculations due to the rapid convergence
of the nucleonic parent as indicated by the black dashed lines. For, both, 4He and 16O the
IM-NCSM calculations are essentially converged at Nmax = 2, thus, the convergence rate of
BΛ in the corresponding hypernuclei is the same as for the ground-state energy. Therefore,
quantifying the overbinding of the hyperon in 17

ΛO is difficult but we estimate it to be of
similar size as for 5

ΛHe.

With the hyperon-attached IM-NCSM we are able to access even larger hypernuclei pro-
viding the first ab initio results for 41

ΛCa, which are presented in Fig. 13.5. A comparison
with IT-NCSM calculations is hardly possible as calculations above Nmax = 4 require excessive
amounts of computational resources or unphysical IT truncations. Nevertheless, we find that
the ground-state energy converges even faster than for 17

ΛO, yielding nearly converged results
at Nmax = 4 already. Moreover, the convergence rate for the hyperon-separation energy is
comparable to the NCSM calculation with natural orbitals, yet it still suffers from the rapid
convergence of the nucleonic parent and seems to exhibit a similar overbinding as we have
found for 5

ΛHe and 17
ΛO.

Overall, we find that the hyperon-attached IM-NCSM increases the reach of the NCSM
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Figure 13.4: Ground-state energies (left panel) and hyperon separation energies (right panel) of
17
ΛO in NAT basis with NO2B approximation ( ) and from the hyperon-attached IM-NCSM ( ).

IM-NCSM results for the nucleonic parent 16O (– –) are given for comparison.
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Figure 13.5: Same as Fig. 13.4 but for 41

ΛCa and 40Ca.

into the medium-mass regime and provides a great starting point for extensions to open-shell
hypernuclei and further development of hypernuclear in-medium methods.

On a final note, we emphasize that with the current single-reference implementation
we are only able to study hypernuclei that exhibit a closed-shell nucleonic parent. As we
have shown, these tend to show a rapid convergence in the IM-NCSM. Open-shell nuclei,
on the other hand, exhibit a slower convergence, which would benefit the convergence
rate of the hyperon separation energy as it is a difference-based observable. However, a
quantitative investigation of this is not possible until the multi-reference extension for the
hyperon-attached IM-NCSM is implemented.



Summary and Outlook

In this work we have presented progress on different frontiers of hypernuclear structure
theory. Building on recent extensions of the NCSM to hypernuclei together with realistic YN
interactions from chiral EFT we were able to identify and address three important challenges
for ab initio hypernuclear theory: the poorly constrained YN interaction, precision calculations
of p-shell hypernuclei with many-body uncertainty estimation, and the push to ab initio
calculations for medium-mass hypernuclei.

Precision with ANN Extrapolations

We have started out by developing a machine-learning tool supplemental to NCSM calcula-
tions, for both nuclei and hypernuclei, with the goal of overcoming the limitation to finite
model spaces and the lack of realistic uncertainty estimates on the many-body level. Inspired
by previous work along these lines, we have constructed ANNs that are capable of predicting
observables in the infinite Hilbert space based on sequences of NCSM calculations in accessi-
ble model spaces. By learning the observable-specific convergence patterns from calculations
in few-body systems without being tied to a single nucleus, interaction, or state, we were able
to convert this extrapolation problem into an interpolation problem, for which ML methods
are known to excel. We also showed that the convergence patterns are universal across a
wide range of nuclei. It is this universality that allows the direct application of the ANNs to
hypernuclei, which is remarkable considering that the networks have never been informed
with hypernuclear data. Moreover, through a statistical evaluation of multiple ANNs and
systematic data sampling we can extract meaningful many-body uncertainties that are crucial
for precision calculations of (hyper)nuclear properties.

We have demonstrated that these ANNs can reliably predict ground-state energies and
mass rms-radii for various p-shell (hyper)nuclei, exceeding the capabilities of classical ex-
trapolation schemes. Through an extension to difference-based observables the ANNs for
ground-state energies can also be used to precisely predict excitation energies as well as
hyperon separation energies, again building on the universality of the networks. Clearly, this
ANN tool is a powerful asset that extends the reach and precision of the NCSM and its design
allows for a straight-forward adaption to other observables or even many-body methods, thus,
providing a great foundation for future developments of extrapolation schemes and many-
body uncertainty estimates. Work on extensions to electromagnetic observables is already in
progress.

YN Interaction Constrained on p-Shell Hypernuclei

With this extended NCSM framework at hand, we have turned to the YN interaction, which
is poorly constrained by the few experimental hypernuclear scattering data available. After
identifying the most relevant degrees of freedom in the LO interaction we constructed an
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optimized YN interaction using ground-state spectroscopic data for p-shell hypernuclei as
additional constraints for the LECs. We have shown that these adjustments alleviate the previ-
ously found systematic overbinding of the hyperon in p-shell hypernuclei, while maintaining
a good description of the available scattering data. Especially for light hypernuclei we have
shown exceptional agreement with experimental data. Yet, we have also observed that the
hyperon separation energies show an increasing dependence on the nucleonic interactions for
larger particle numbers A, which needs to be taken into account for future optimizations of
YN interactions.

Considering that these improvements have been possible with a LO interaction, this demon-
strates the great potential of ground-state and spectroscopic data as additional constraints on
hypernuclear interactions. However, the restriction to a LO interaction comes with its limita-
tions and some remaining tensions cannot be resolved by the identified degrees of freedom.
This and the lack of uncertainty estimations for a LO interaction necessitate the extension of
this optimization scheme to NLO and N2LO, where an analogous optimization procedure is
possible, which would perfectly complement other efforts on the uncertainty estimation for
YN interactions [95, 166]. Due to the increasing number of LECs in higher chiral orders, this
becomes high-dimensional optimization problem. Hence, emulators based on eigenvector
continuation can be used to reduce the computational effort [191, 192].

Natural Orbitals – Optimized Basis and Diagnostic Tool

After addressing both, the deficiencies of the YN interaction and the limitations of the NCSM
as a many-body method for p-shell hypernuclei, we have shifted our focus to extending the
reach to heavier systems. In a first step we have adapted the concept of natural orbitals
to the hypernuclear sector and have been able to show that its outstanding properties, i.e.,
the independence on the underlying HO frequency and the increased convergence rate can
directly be transferred to hypernuclei. The improved convergence rate extends the reach of
the NCSM.

Moreover, we have found that the radial wavefunctions of the natural orbitals themselves
can provide great insight into the structure of hypernuclei. By looking at their radial extend
we have been able to identify 5

ΛHe as a promising candidate for a hyperon halo, which has
previously been unnoticed. This finding is supported by a long tail in the Λ density distribution,
a Λ rms-radius that exceeds the nucleon radius by at least 30%, and a strong separation of
scales for the hyperon and nucleon separation energies. Hence, natural orbital wavefunctions
are a valuable diagnostic tool especially when it comes to different particle species.

IM-NCSM for Medium-Mass Hypernuclei

In addition to its applications and benefits within the NCSM, natural orbitals as an opti-
mized single-particle basis mark an ideal starting point for in-medium methods as they allow
for the construction of optimized reference states. This brings us to the final part of this
work, which is centered around the ab initio description of medium-mass hypernuclei. Con-
necting to the great advances of IM-SRG based methods in the nucleonic regime, we have
developed a hyperon-attached IM-NCSM that allows for a partially separate treatment of
the nucleonic parent and the additional hyperon. Akin to previously developed particle-
attached/particle-removed approaches, we have shown that it is possible to incorporate all
nucleonic correlations in an IM-SRG calculation and include the hyperon and the missing
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hyperon-nucleon correlations in a subsequent NCSM calculation. This has led to a greatly
improved convergence rate for ground-state energies of hypernuclei allowing us to report the
first ab initio calculation for 41

ΛCa, which marks a major step towards an ab initio framework
for medium-mass hypernuclei.

As for all novel methods there remain some discrepancies that require further investigation
and improvement. For now, applications of the hyperon-attached IM-NCSM are limited to
hypernuclei with closed-shell nucleonic parents, however, extensions to open-shell systems
are conceptually straight-forward, since they have been worked out in detail in the nucleonic
regime.

What’s next?

In the near future, hypernuclear structure theory will follow its nucleonic counterpart into
a precision era. Accessing additional sources of hypernuclear data such as data for p-shell
hypernuclei will remain a vital aspect of further developments of realistic YN interactions,
especially when incorporating higher chiral orders. The work presented here has shown the
great potential that lies within this additional data. Furthermore, ML applications like our
ANN tool resemble a major step towards precision calculations as many-body uncertainties
for not just ground-state energies but also hyperon separation energies, excitation energies
and radii are now well under control and can be quantified. As a next step, a full uncertainty
quantification including, both, many-body and interaction uncertainties should be the focus of
future work. However, with the achievements of this work calculations of p-shell hypernuclei
are already precise enough to provide guidance for experimental efforts that are planned for
the near future.

Beyond precision calculations of p-shell hypernuclei, ab initio calculations have entered
the regime of medium-mass hypernuclei. Our developments on hypernuclear natural orbitals
and the hyperon-attached IM-NCSM provide a great foundation for future developments of IM
methods with strangeness. A natural next step is the extension to a multi-reference framework
which will then give access to hypernuclei with open-shell nucleonic parents. From there, one
will eventually want to incorporate the strangeness degree of freedom into the flow equations
of the IM-SRG to gain access to the full medium-mass regime of the hypernuclear chart.

Finally, systematic extensions of ab initio methods to multi-strange systems and hypernu-
clear matter are on the horizon. These, however, require major efforts on both, the many-
body and interaction side, where the latter further requires sufficient experimental data in
the hyperon-hyperon sector, which will be difficult to obtain for another while.
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A
Numerical Values for ANN
Predictions

A.1 Ground-State Energies and Spectra

Egs [MeV]
Nmax Nmax

8 10 12 8 10 12
2H 3H

ABS −2.164(69) −2.225(49) −2.194(28) −8.518(70) −8.539(47) −8.504(29)
DIFF −2.218(32) −2.226(27) −2.199(13) −8.498(45) −8.500(22) −8.488(11)
MINMAX −2.195(47) −2.223(27) −2.195(14) −8.482(65) −8.509(33) −8.487(12)
class. extrap. 0−2.013(106) −2.147(*)0 0−2.183(106) 0−8.434(110) 0−8.480(109) −8.473(24)
conv. result −2.200000. −2.200000. −2.200000. −8.481000. −8.481000. −8.481000.

4He 6Li

ABS −28.604(75) −28.580(56) −28.558(45) −31.649(271) −31.822(158) −31.994(100)
DIFF −28.527(26) −28.526(13) −28.527(7)0 −31.625(126) −31.824(84)0 −32.011(45)0
MINMAX −28.513(71) −28.526(25) −28.526(8)0 −31.951(198) −32.026(122) −32.143(96)0
class. extrap. −28.503(48) −28.528(24) −28.523(9)0 −31.718(271) −31.906(189) −32.008(362)
conv. result −28.524000. −28.524000. −28.524000. – – –

7Li 8Li

MINMAX −39.460(192) −39.392(106) −39.397(58) −41.348(206) −41.358(137) –
class. extrap. −39.118(336) −39.236(133) −39.392(68) −41.138(474) −41.227(156) –

9Be 12C

ABS −58.210(308) −58.498(207) – −98.038(245) −97.693(156) –
DIFF −58.371(256) −58.624(108) – −98.139(229) −97.757(62)0 –
MINMAX −58.911(259) −58.951(130) – −98.987(313) −97.917(130) –
class. extrap. −58.743(517) −58.815(209) – −97.78(116)0 −97.639(578) –

Table A.1: Numerical values for ground-state energies for various p-shell nuclei obtained with the
ANN tool corresponding to Figs. 6.2, 6.3, and 6.6. Classical extrapolations according to Sec. 3.2 and
the converged values, where available, are given for comparison. Uncertainties denoted as (*) mark
unreasonably large values due to a breakdown of the extrapolation method.
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Eex [MeV]
Nmax Nmax

8 10 12 8 10 12
6Li class. extrap.

3+ 2.435(115) 2.421(50) 2.397(36) 2.381(354) 2.414(189) 2.342(362)
0+ 3.910(99)0 3.863(62) 3.786(58) 3.918(346) 3.758(189) 3.652(362)
2+ 4.741(145) 4.562(96) 4.458(68) 4.673(593) 4.384(189) 4.435(473)

7Li class. extrap.
1
2

−
0.367(52)0 0.332(29) 0.323(14) 0.344(336) 0.334(152) 0.323(68)0

5
2

−
5.013(129) 4.927(47) 4.881(32) 4.864(462) 4.910(133) 4.959(106)

5
2

−
6.947(133) 06.807(101) 6.708(69) 6.933(554) 6.805(245) 6.650(118)

7
2

−
8.135(28)0 7.951(59) 7.879(32) 8.046(525) 7.938(225) 7.843(108)

8Li class. extrap.

1+ 1.215(91) 1.102(69)0 – 1.175(504) 1.107(194) –
3+ 2.530(75) 2.544(4)00 – 2.511(522) 2.538(156) –
4+ 07.051(173) 6.794(152) – 6.856(879) 6.796(242) –

Table A.2: Numerical values for excitation energies for the lowest-lying natural parity states in 6
ΛLi,

7
ΛLi, and 8

ΛLi obtained with the ANN tool corresponding to Fig. 6.6. Classical extrapolations according
to Sec. 3.2 and the converged values, where available, are given for comparison.

A.2 Radii

Rrms [MeV]
Nmax Nmax

8 10 12 8 10 12
2H 3H

ABS 1.935(31) 1.953(38) 1.931(32) 1.739(47) 1.754(19) 1.732(17)
DIFF 2.128(45) 2.104(35) 2.075(38) 1.794(31) 1.766(27) 1.733(15)
MINMAX 1.995(46) 1.966(23) 1.979(25) 1.726(20) 1.712(14) 1.703(08)
conv. result 1.979 1.979 1.979 1.696 1.696 1.696

4He

ABS 1.440(25) 1.462(13) 1.462(9)
DIFF 1.492(15) 1.472(10) 1.466(5)
MINMAX 1.461(10) 1.461(4)0 1.460(2)
conv. result 1.460 1.460 1.460

6Li 7Li

MINMAX 2.235(18) 2.284(22) 2.291(18) 2.285(15) 2.307(15) 2.325(14)

8Li 9Be

MINMAX 2.308(16) 2.327(17) – 2.308(16) 2.327(17) –

Table A.3: Numerical values for mass rms-radii for various p-shell nuclei obtained with the ANN tool
corresponding to Figs. 7.1 and 7.2. Converged values, where available, are given for comparison.



B
ANN Predictions for Hypernuclear
Observables with YNopt

This appendix provides supplemental material to Ch. 10 consisting of figures that give insight
in the quality of the employed ANN predictions and a collection of numerical values for the
results shown in Figs. 10.8 to 10.10. Figures of the ANN predictions are only shown for the
NNEMN + 3NH +YNopt interaction.

Note that an assessment of the predictions becomes more difficult with increasing particle
number A due to the limited Nmax reach. Therefore, the main criteria for a good, plausi-
ble prediction are the consistency of predictions over multiple Nmax and whether a human
practitioner would make a similar estimation.

B.1 Predictions for Hyperon Separation Energies
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Figure B.1: Evaluation data along with predictions of ground-state energies (upper panels) and
hyperon separation energies (lower panels) of the two showcase hypernuclei 5

ΛHe and 7
ΛLi obtained

with the same 1000 ANNs in MINMAX mode as discussed in Ch. 6.
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Figure B.2: Same as Fig. B.1 but for 4
ΛHe, 6

ΛHe, 7
ΛHe, 8

ΛHe, 9
ΛHe, and 10

ΛHe.
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B.2 Numerical Values

Obs NNEM + 3NN NNEMN + 3NH Exp
NNEM + 3NN NNEMN + 3NH

Exp
YNP YNP YNopt

3He 4
ΛHe

Egs −7.72 −7.74(1) −7.72 −10.15(6) −10.38(1) −9.68(2) −10.11(3)
Eex(0

+) – – – 2.31 −01.38(2) −1.21(2) 1.15
BΛ – – – −02.43(6) −02.64(1) −1.94(2) −02.39(3)

4He 5
ΛHe

Egs −28.49 −28.07(1) −28.30 −32.91(1) −32.79(1) −31.41(1) −31.42(2)
BΛ – – – −04.42(4) −04.73(1) −03.35(1) −03.12(2)

5He 6
ΛHe

Egs −26.83(8) −26.50(4) −27.56(1) −32.2(1) −32.01(3) −30.65(4) −31.74(10)

Eex(
1
2

−|2−) −001.96(23) −001.23(19) 1.27 00.15 −00.15(1) −00.17(1) –
Eex(0

−) – – – −0002.41(17) −001.82(21) −001.72(21) –
Eex(1

−) – – – −0002.70(18) −001.90(26) −001.90(21) –
BΛ – – – −005.43(4) −05.51(3) −04.15(2) −04.18(10)

5Li 6
ΛLi

Egs – −25.79(8) −26.330 – −31.12(4) −29.74(4) −30.83(50)

Eex(
1
2

−|2−) – −000.95(21) – – −00.13(1) −00.14(1) –
Eex(

3
2

−|0−) – −005.01(37) – – −001.49(25) −001.44(23) –
Eex(

1
2

−|1−) – −007.04(36) – – −001.61(26) −001.58(23) –
BΛ – – – – −05.32(7) −03.95(6) −04.50(50)

6He 7
ΛHe

Egs −28.96(13) −28.49(8) −29.27(5) −35.33(6) −34.59(4) −33.19(4) −34.95(25)

Eex(2
+|32

+
) −02.21(26) −002.03(12) −01.80(1) −02.20(7) −02.20(2) −02.20(2) –

Eex(2
+|52

+
) – −004.36(20) – −02.28(7) −02.27(2) −02.27(2) –

Eex(1
+|32

+
) – −004.74(20) – −005.63(15) −005.05(15) −004.88(18) –

BΛ – – – −006.24(11) −06.13(8) −04.70(7) −05.68(25)

6Li 7
ΛLi

Egs −32.36(4) −31.52(4) −31.99 −39.25(4) −37.97(3) −36.56(3) −37.57(3)

Eex(3
+|32

+
) −02.60(4) −02.72(1) −02.14 −00.59(1) −00.57(1) −00.58(1) 0.69

Eex(0
+|52

+
) −04.12(3) −03.87(9) −03.51 −02.45(5) −02.57(1) −02.63(1) 2.05

Eex(2
+|72

+
) – −04.25(16) −04.26 −02.93(4) −03.03(1) −03.09(1) 2.52

BΛ – – – −06.89(6) −06.51(4) −05.05(4) −05.58(3)

7He 8
ΛHe

Egs −27.97(11) −27.81(44) −28.86(1) −35.43(1) −34.35(12) −32.82(20) −36.02(70)

Eex(
1
2

−|1−) −02.19(26) −02.40(44) – 0.02 −0.02(1) −0.02(2) –
Eex(

5
2

−|0−) – −03.69(43) −02.92(9) −002.85(14) −01.74(39) −01.96(30) –
Eex(

3
2

−|1−) – −04.17(47) – −003.29(16) −02.35(37) −02.53(27) –
BΛ – – – −007.46(10) −06.69(41) −05.07(38) −07.16(70)

Table B.1: Numerical values for ground-state energies, excitation energies, and hyperon separation en-
ergies for various p-shell hypernuclei and their nucleonic parents corresponding to Figs. 10.8 to 10.10.
All values are given in MeV and errors are many-body errors obtained with the ANN extrapolation tool.
Experimental values are taken from [7, 11, 146, 162–165, 167] and correspond to the black markers
for the hyperon separation energies in the aforementioned figures.
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Obs NNEM + 3NN NNEMN + 3NH Exp
NNEM + 3NN NNEMN + 3NH

Exp
YNP YNP YNopt

7Li 8
ΛLi

Egs −39.61(24) −38.23(5) −39.245 −47.27(25) −45.46(4) −43.80(4) −46.02(5)

Eex(
1
2

−|0−) −0.31(1) −00.07(1) −0.48 −0.44(1) −00.38(1) −00.36(1) –
Eex(

7
2

−|2−) −4.93(1) −05.08(2) 00004.63(1) −0.59(1) −00.46(1) −00.46(1) –
Eex(

5
2

−|1−) −7.09(8) −006.17(13) 00006.68(5) −0.90(1) −00.71(1) −00.67(1) –
BΛ – – – −07.67(16) −07.23(5) −05.57(5) −06.77(5)

8He 9
ΛHe

Egs −30.23(8) −29.37(42) −31.40(9) −39.01(2) −37.19(18) −35.72(30) –
Eex(2

+|32
+
) −004.15(26) −04.13(43) −3.1(5) −004.82(16) −03.99(30) −04.29(27) –

Eex(1
+|52

+
) – −05.43(46) – −005.17(19) −04.40(27) −04.64(29) –

BΛ – – – −08.78(9) −07.89(38) −06.41(29) –
8Li 9

ΛLi

Egs −41.72(35) −39.72(16) −41.28 −50.56(35) −48.02(9) −46.25(9) −49.65(7)

Eex(1
+|52

+
) −0.94(3) −00.54(17) −00.98 −0.55(1) −00.48(1) −00.49(1) −000.57(12)

Eex(−|32
+
) – – – −1.40(2) −01.07(3) −01.05(3) −01.49(9)

Eex(−|12
+
) – – – −1.73(3) −01.34(4) −01.28(5) –

BΛ – – – −08.29(21) −008.29(17) −006.53(16) −08.37(7)

8Be 9
ΛBe

Egs −56.24(29) −57.11(114) −56.50 −64.70(40) −64.00(65) −62.62(88) −63.09(15)

Eex(2
+|32

+
) −3.27(5) −3.45(11) −03.03 −3.10(5) −03.35(15) −03.42(17) −3.02(1)

Eex(4
+|52

+
) – .11.90(34) −11.35 −3.30(5) −03.44(14) −03.49(16) −3.07(1)

Eex(2
+|72

+
) – .16.68(29) −16.63 – – – –

BΛ – – – −08.50(50) −07.11(77) −05.69(49) −06.59(15)

9He 10
ΛHe

Egs −28.21(22) −26.40(22) −28.91(11) −37.67(12) −35.70(36) −33.70(26) –
Eex(

3
2

−|1−) −03.66(43) −02.94(20) −01.99(10) −00.63(17) −00.70(10) −0.65(7) –
Eex(−|1−) – – – −05.39(41) −04.87(34) −04.28(25) –
Eex(−|2−) – – – −05.46(39) −04.89(35) −04.32(25) –
BΛ – – – −8.78(9) −07.89(38) −06.41(29) –

9Li 10
ΛLi

Egs −45.45(35) −42.24(18) −45.34 −55.83(45) −51.83(10) −49.91(10) –
Eex(

1
2

−|2−) −1.87(4) −00.89(15) 000002.69(1) −0.42(1) −0.37(1) −0.38(1) –
Eex(−|0−) – – – −1.84(1) −0.91(2) −0.88(2) –
Eex(−|1−) – – – −2.85(1) −1.70(4) −1.62(5) –
BΛ – – – −10.37(21) −09.59(19) −07.67(18) –

12C 13
ΛC

Egs −98.7, 0.80 −90.61(152) −92.16 −113.10(80) −102.02(91) −100.34(117) −103.85(12)

Eex(2
+|32

+
) −3.97(5) −3.29(18) −04.44 −03.95(6) −003.71(20) −03.61(21) −04.85(7)

Eex(1
+|52

+
) – −10.08(127) 000012.71(1) −04.62(6) −004.16(24) −04.03(26) –

Eex(4
+|32

+
) – .11.38(66) 0000013.30(20) – −008.51(78) −008.98(101) –

BΛ – – – −0014.50(110) −0012.08(102) −09.95(72) −011.69(12)

Table B.2: Continuation of Tab. B.1.





List of Acronyms

3N three-nucleon.

ANN artificial neural network.

BCH Baker-Campbell-Hausdorff.

BHF Brueckner-Hartree-Fock.

CC coupled-cluster.

CI configuration interaction.

CNN convolutional neural networks.

EC eigenvector continuation.

EFT effective field theory.

EMN Entem-Machleidt-Nosyk.

FCFF fully-connected feed-forward.

FY Faddeev-Yakubovski.

GEM Gaussian expansion methods.

HF Hartree-Fock.

HF-MBPT Hartree-Fock many-body perturbation theory.

HO harmonic oscillator.

HPC high-performance computing.

IM-NCSM in-medium no-core shell model.

IM-SRG in-medium similarity renormalization group.

IR infrared.

IT importance truncation.

IT-NCSM importance-truncated no-core shell model.
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LECs low-energy constants.

LO leading order.

MBPT many-body perturbation theory.

ML machine learning.

MSE mean-square error.

N2LO next-to-next-to-leading order.

N3LO next-to-next-to-next-to-leading order.

NAT natural orbitals.

NCSM no-core shell model.

NEAT neuroevolution of augmented topologies.

NLO next-to-leading order.

NN nucleon-nucleon.

NO2B normal-ordered two-body.

QCD quantum chromodynamics.

QMC quantum Monte Carlo.

ReLU rectified linear unit.

rms root-mean-square.

RNN recurrent neural networks.

SCGF self-consistent Green’s function.

SGD stochastic gradient descent.

SRG similarity renormalization group.

UV ultraviolet.

YN hyperon-nucleon.

YNN hyperon-nucleon-nucleon.
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