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Abstract

This thesis introduces multiple new approaches to efficiently perform ad-
joint sensitivity analyses for large scale time periodic electric circuits. Firstly,
transient forward harmonic adjoint sensitivity analysis combines an effi-
cient transient simulation with a harmonic solution of the adjoint system.
Secondly, Parareal adjoint sensitivity analysis sticks to transient simulation
for both the forward and the adjoint problem but accelerates those with
the Parareal algorithm. Thirdly, the periodic adjoint sensitivity analysis
uses a periodic solver, such as periodic Parareal with periodic coarse solver,
to efficiently calculate the periodic solution only and uses the solution in
a modified adjoint integral. All proposed methods are applied to several
application examples, including real world circuit applications with a large
number of electrical devices. Most notably, these circuits include a DC-DC
converter, a B6 bridge-motor supply circuit and an active filter.
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Zusammenfassung

Diese Arbeit befasst sich mit der Entwicklung mehrerer neuer Ansätze zur
adjungierten Sensitivitätsanalyse für zeitperiodische elektrische Schaltkreise
großen Maßstabs. Diese umfassen die “transient forward harmonic adjoint
sensitivity analysis”, welche effiziente transiente Löser mit einem harmonis-
chen Löser für das adjungierte System kombiniert. Außerdem die “Parareal
adjoint sensitivity analysis”,welche bei transienter Simulation sowohl für
das Vorwärts- als auch für das adjungierte Problem bleibt, diese jedoch
mithilfe des Parareal-Algorithmus beschleunigt. Und zuletzt die “periodic
adjoint sensitivity analysis”, welche periodische Lösungsverfahren wie den
“periodic Parareal with periodic coarse solver” Algorithmus nutzt um eine
rein periodische Lösung zu berechnen, welche dann in einem modifizierten
adjungierten Integral genutzt werden kann um effizient die Sensitivität für
die periodische Lösung zu bestimmen. Alle genannten Methoden werden
für verschiedene Anwendungbeispiele genutzt, darunter auch Schaltkreise
aus aktiver technischer Entwicklung, welche eine große Anzahl an elek-
trischen Schaltkreiselementen enthalten. Besonders hervorzuheben sind
dabei ein DC-DC-Wandler, eine B6-Brückenmotorversorgungsschaltung und
ein aktives Filter.
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1. Introduction

Due to shrinking sizes and for achieving faster development cycle proce-
dures for electronics and power electronics applications, taking care of
constraints and optimizations at early stages of the design process has
become increasingly important in recent years. This issue rises, since the
prototyping becomes more involved and therefore more expensive the more
complex the applications become.

The Robert Bosch GmbH in cooperation with the TEMF institute at TU
Darmstadt are working on numerical tools and methods that consider
relevant aspects within the design process of given products.

Sensitivity analysis is used for root cause analysis but also for the opti-
mization of specific circuit properties such as losses or power consumption.
This work is devoted to study reliable and efficient algorithms for sensitivity
analysis of time periodic circuits.

1.1. Related Work

In literature, sensitivity analysis is usually classified into two main fields.
Statistical Monte Carlo based methods such as polynomial chaos expansion
(PCE) are widely used to perform sensitivity analysis. These methods
describe the sensitivity by an output variance that is caused by imposing
input or design parameter uncertainties. These statistical methods are also
referred to as global sensitivity analysis (GSA), as the methods provide the
global influence of the uncertainty [70]. One downside of the GSA is the
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necessity of many system simulations, which reduces performance if many
design parameters are considered. Alternatively, the influence of a design
variable or parameter w.r.t. a quantity of interest (QoI) can be described
by a derivative of the QoI w.r.t. the design parameter [54]. This class of
sensitivities is often referred to as gradient or derivative based sensitivity
analysis [70].

1.1.1. Derivative based Sensitivity Analysis using Finite
Differences

In many commercial simulation packages, sensitivity analysis is performed
using finite differences [1, 83]. Finite differences are a black-box method
to numerically approximate the derivative of a function. A finite difference
quotient is derived from the Taylor series expansion that approximates
the function that is to be derived [31]. The Taylor series expansion for a
variable x reads:

x(p+∆p) = x(p) + ∆p
∂x(p)

∂p
+

∆p2

2

∂2x(p)

∂p2
+ · · · (1.1)

The simplest difference quotient is obtained by neglecting all terms higher
than order one. After that, the approximation term is solved for ∂x/∂p.
The first order finite difference approximation of the derivative reads:

dx(p)
dp

≈ x(p+∆p)− x(p)

∆p
. (1.2)

Clearly, the finite difference requires at least two solutions to analyze the
sensitivity w.r.t. each design parameter. Consequently, the finite difference
approach becomes costly for very large parameter spaces. Even more system
simulations are required when the derivative is approximated using higher
order differences. The approximation accuracy is decreased for functions
with an infinite order, such as cosine, sine, exp or 1/x. The approximation
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Figure 1.1.: Error of the difference quotient w.r.t. the analytical solution of
the derivative d sin(x)/dx depending on the step size for different

approximation orders.

accuracy is shown for the numerical derivative of a sine function d sin(x)/dx
in Fig. 1.1.

In costly system simulations with large parameter spaces, the finite dif-
ference approach is cumbersome. This motivates the use of the adjoint
method, which is introduced in detail in chapter 3.

1.1.2. Global Sensitivity Analysis

Global sensitivity analysis (GSA) is a different approach to quantify sensi-
tivities in contrast to the derivative based local sensitivity analysis. As the
methods use the variance of the output w.r.t. input uncertainties, GSA is
also sometimes refered to as variance based sensitivity analysis in literature.
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The sensitivity of a given QoI u w.r.t. the design parameter p is abbreviated
by the variable SEp [70]. For the derivative based sensitivity analysis, this
variable reads

SEp =
du
dp

. (1.3)

For the GSA, the isolated sensitivity w.r.t. a design parameter p is defined
by the quotient

SEp =
(V (E(u|p))

V (u)
, (1.4)

where the variance of the expected value (V (E(u|p)) describes the first
order influence of p on u and V (u) is the variance of the QoI u [70].

Clearly, both quantities require multiple simulations. Consequently, GSA
is often performed using Monte Carlo methods [37]. However, these meth-
ods require a very large number of simulations.

Since large numbers of simulations are not endorsed for most applications,
more advanced methods for GSA were developed over time. One of the
most notable methods for GSA are Sobol indices, named after the Russian
mathematician Ilya M. Sobol [79]. In a similar setting, GSA based on a
PCE to determine the Sobol indices was previously applied to sensitivity
analysis for electric circuits, for example in [93].

While PCE outperforms classical Monte Carlo methods, it is still not
feasible for large scale circuits. In newer developments, PCE was used for
large scale problems, but even in later publications, the number of uncertain
design parameters does not exceed 100 [91]. Considering this current state
of science, GSA was consequently not further considered in this thesis.

Sensitivities are often plotted in a stackplot. This type of plot gives the
relative normalized sensitivity at each time instance or frequency. That
way, the sum of the sensitivities adds up to one in each timestep. Here,
Sensitivities for a half-wave rectifier example, similar to the one depicted
in section 6.2, are calculated. Fig. 1.2 shows the stackplot of sensitivities
for the half-wave rectifier.
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Figure 1.2.: Example of a stackplot depicting the sensitivities of a
half-wave rectifier model with two uncertainties.

1.1.3. Parallel-in-Time Adjoint Sensitivity Approaches

Several approaches combining parallel-in-time (PinT) algorithms with ad-
joint sensitivity analysis (ASA) have been published previously. Firstly,
several publications exist that combine the Paraexp algorithm with ASA,
such as [78, 19]. Paraexp splits the time integration problem into a homo-
geneous and an inhomogeneous term. This approach works well for linear
systems, ideally ones with an analytical representation for the homogeneous
problem [33]. Since a main goal of this thesis aims at methods that are as
universally applicable as possible, this approach was not further considered,
as it highly limits the pool of numerical problems that can be tackled.

Another more recent publication utilizes the parallel full approximation
scheme in space and time (PFASST) in combination with ASA. The PFASST
method is closely related to Parareal, but it also uses a coarsening in space
additional to coarsening in time [23]. Götschel et al. [33] use the PFASST
method to efficiently perform ASA for partial differential equation (PDE)
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problems such as heat transport. The implementation is similar to the
Parareal ASA introducted in section 5.1, but PFASST is not applicable for
circuit simulations.

1.2. Motivation and Research Goals

The goal of this thesis is the development of efficient methods for sensitivity
analysis for large scale nonlinear circuits. Moreover, the methods must be
as universally applicable as possible, as the ultimate goal is the usability in
an industrial setting. Simulating large scale circuits is very challenging due
to their extensive parameter spaces. Moreover, when conducting transient
simulations, especially for nonlinear circuits, the simulation can require a
large number of timesteps in order to simulate the circuit with a required
accuracy. Existing methods for sensitivity analysis are either good for
sensitivity analysis with long transients and multiple quantities of interest
(QoIs) or large parameter spaces [54, 13, 4, 93]. If the circuit employs
both long transients and large parameter spaces, conventional methods are
often not applicable or exhibit a very slow performance.

Commercial simulation packages usually rely on finite difference based
sensitivity analysis, which is very costly [83, 1]. This necessitates further
developments in this field for practical industrial applications.

Adjoint sensitivity in particular is a method that performs strongly in
a many parameter setting. But, to analyze nonlinear time dependent
circuits, a transient circuit simulation is usually required. In the transient
case, adjoint sensitivity analysis requires one individual simulation of the
transient adjoint problem for every time instance that is considered. This is
particularly problematic if time dependent sensitivities are considered, as
these analyses require the solution for many adjoint problems.

The downsides of the existing methods for sensitivity analysis in nonlinear
circuits motivate the work on more efficient approaches. To avoid rising
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simulation wall-clock times, transient sensitivity analysis can be either
avoided by approximating the nonlinear circuit problem in a different way,
or the transient simulation itself can be accelerated. Both of these general
approaches find application within the developed methods in the course of
this thesis.

During this thesis, several new methods were developed to tackle the
downsides of existing methods for sensitivity analysis. This enables sensi-
tivity analysis to also be useful for more complex circuit examples, which
are presented in chapter 6.

1.3. Structure of the Thesis

This thesis is structured in eight chapters. After this introduction, the
second chapter explains the most important fundamentals which are used
for the methods proposed in this thesis. These fundamentals include basic
calculations and solutions for DAEs. Furthermore, the chapter contains
modeling approaches for circuits and also explains how circuit problems are
solved using the modified nodal analysis (MNA). In the last two sections,
harmonic balance (HB) and parallel-in-time (PinT) methods are introduced,
which are utilized to optimize the ASA in the later chapters. The basic
understanding of these fundamentals is required to fully understand the
methods.

The third chapter gives an overview of existing sensitivity analysis meth-
ods, particularly the direct sensitivity analysis (DSA) and the ASA in differ-
ent computational domains.

The fourth chapter introduces the transient forward harmonic ASA (TFHA).
The TFHA is a newly developed method for sensitivity analysis which uses a
forward transient solution in combination with a harmonic adjoint solution
similar to the one that is obtained from HB analysis.

The fifth chapter introduces two PinT methods for sensitivity analysis,
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namely the Parareal and the PP-PC. Furthermore, the periodic ASA extends
transient ASA to be suitable for the analysis of only the steady state solution.

The sixth chapter demonstrates the practicability of the three new sen-
sitivity analysis methods. This is done by applying each of the methods
to different circuit examples to show the advantages and also potential
downsides of the respective methods. Additionally, the chapter contains
two sections that present possible fields of application in research and
development, where the proposed methods can be used.

Finally, the seventh chapter concludes this thesis and gives an outlook
for future work in this field.

After the main part of this thesis, the appendix presents supplemental
information and derivations that were used in this thesis but would decrease
the reading comprehensibility in the main part.
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2. Modeling and System Analysis

This chapter reviews the most important methods and concepts from cir-
cuit theory and mathematics which are used throughout this thesis. The
presented methods help the comprehensive understanding of the concepts
and results that are discussed in the later chapters. For further information,
the reader is encouraged to also consult the cited literature.

The description of electric systems in time domain is commonly based on
differential algebraic equations (DAEs). To understand how to solve the
mathematical system introduced in the later part of this chapter, the theory
for DAEs is introduced to begin with.

2.1. Differential-Algebraic Equations

DAEs are an important subclass of differential equations that appear in
different fields of applications. These fields of applications include different
electrical applications, structural dynamics, thermodynamics, fluid mechan-
ics and many more [17, 92, 55, 80], making DAEs an inabundant tool for
the modeling in engineering applications.

DAEs are defined as a system of ordinary differential equations (ODE)
that require a simultaneous solution of a set of algebraic equations [30]. To
understand the specific properties of DAEs, a standard ODE is considered
first:

f(t,y(t)) = y′(t). (2.1)
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Depending on the stiffness of the ODE, different types of solvers can be
used for the problem solution [90]. While forward differential formulas
(FDF) often perform faster, these methods can encounter stability issues
depending on the system [64]. The simplest FDF is a forward Euler scheme
as a first order FDF:

yn+1 = yn + hf(tn,yn). (2.2)

Since forward differential formulas such as (2.2) approximate the solution
for the next timestep based on the solutions at previous timesteps, these
methods are also referred to as explicit methods. In contrast, stiff ODEs
are typically solved by using backward differential formulas (BDF). BDFs
have the advantage of a larger stability region [64]. Additionally, BDFs can
often be applied to problems in which forward methods are not applicable
at all [61]. The simplest BDF is the backward Euler scheme, which is a first
order BDF [61]. The backward Euler scheme for the solution of a general
ODE f(t,y(t)) reads

yn+1 = yn + hf(tn+1,yn+1). (2.3)

Since the solution for the next timestep is dependent on itself in all backward
schemes, these schemes are also referred to as implicit schemes [10].

To understand the issues along the solution of a DAE problem and the
necessity for the backward scheme, a general form of the DAE problem is
considered

F (t,y(t),y′(t)) = 0. (2.4)

In contrast to ODEs, the DAE problem has special requirements regarding
the equation and solver properties [77]. Firstly, in order to find a continuous
solution for F , the variable y(t) needs to be continuously differentiable.
Secondly, the system can be split into an algebraic part, which only depends
on the solution and the derivatives at the current timestep and a differential
part, which contains only dependencies on time derivatives [77]. The
second property is particularly important to keep in mind, as it can be
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related to the physical properties of the problem setting. If a physical
system simultaneously relates changes both in space and time, the resulting
mathematical problem will often be a DAE. This is the case for example in
circuit problems or quasistatic field simulations.

The general DAE equation (2.4) cannot be solved with a forward scheme,
since the solution itself also depends on the derivative y′(t), which is usually
not initially available [61]. It is however possible to approximate the deriva-
tive y′(t) by a linear combination of the solution y(t) and the respective
solutions at previous timesteps y(t− Ti) [61]. Using a BDF, the derivative
y′(t) is approximated by the backward difference of y(t). Applying first
order backward differences for the derivative y′(t), the approximation reads

F (tn+1,yn+1, (yn+1 − yn)/(tn+1 − tn)) = 0 (2.5)

for the general DAE problem (2.4). The approximation (2.5) corresponds
to the backward Euler scheme.

As mentioned before, circuits are one example for a physical problem
where DAEs are necessary for the mathematical description. Circuits contain
both spatial charge and current distributions as well as time dependencies,
resulting in a DAE system. A DAE system which is for example used for
circuit simulation reads [89]:

Aẋ(t) +Bx(t) = s. (2.6)

Here, A and B are system matrices, x is the solution vector and s is the
right hand side (rhs) source term. In many circuit applications, the matrix
A is singular and therefore not invertible [89]. Resultingly, it is impossible
to solve Eq.(2.6) directly for ẋ(t). Following that, solving problem (2.6)
involves a necessary approximation of the derivative ẋ along the solution
run. Analogously to the general DAE example, the occurring derivative is
approximated using backward differences:

A(xn+1 − xn)/(tn+1 − tn) +Bxn+1 = sn+1. (2.7)
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Moving the terms that correspond with the solution at timestep n to the
rhs and substitution of ∆t = tn+1 − tn gives a solvable equation system:(︃

A

∆t
+B

)︃
xn+1 =

A

∆t
xn + sn+1. (2.8)

In contrast to explicit methods, where A would be required to be nonsin-
gular, for the implicit solver it is sufficient that (A/∆t+B) is nonsingu-
lar [11]. This solution is analogously found when using different BDFs or a
trapezoidal method [11].

Several considerations arising from DAEs must be remembered in the
following chapters. Firstly, matrix B is possibly singular and therefore
not generally invertible. This is particularly important in transient adjoint
sensitivity analysis (ASA), because the structure of the equation system is
required to be mimetic in order to remain solvable. Secondly, all solvers
are constrained to implicit methods. In Parareal approaches, which are
introduced in Sec. 2.5, where efficient explicit methods can normally be
chosen for the coarse solver, this imposes limitations on the possibilities of
optimizations.

2.2. Circuit Fundamentals

The developed methods throughout this thesis are applied to the numerical
analysis and optimization of electric circuits. In general, electrical circuit
models are used as a simplified representation of a real world physical
problem in terms of lumped circuit elements. Lumped circuit elements
include resistors R, capacitors C, self inductors L, mutual inductors M as
well as dependent and independent sources and many special linear and
nonlinear device models.

This section gives an introduction to the most relevant circuit fundamen-
tals. Additionally, important special cases of circuits are explained in order
to better understand the numerical application examples.
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2.2.1. Kirchhoff’s Laws and Incidence Matrices

Kirchhoff’s laws are among the most well known and important theorems in
the field of electrical engineering. Kirchhoff’s laws are based on Maxwell’s
equations and can be seen as a circuit theoretic special version of the
conservation laws. There are two Kirchhoff laws.

The first law is Kirchhoff’s current law (KCL), that states that the sum of
all currents Ik flowing into a node must be equal to all currents that flow
out of the same node. If the currents Ik are defined with a directivity, e.g.
positive if flowing into the node and negative if flowing out of the node,
the law is given by the sum:

n∑︂
k=1

Ik = 0. (2.9)

The second law is Kirchhoff’s voltage law (KVL), that states that the sum of
all voltages Vk in any closed loop in the circuit must be zero. Analogously,
if the voltages in the loop are defined with a directivity, the law can be
expressed as a sum:

n∑︂
k=1

Vk = 0. (2.10)

Kirchhoff’s laws can be expressed in the form of a matrix equation using
the definition of an incidence matrix corresponding to the given circuit
topology. The incidence matrix is a construct from graph theory. If the
circuit is modeled as a directed graph, the incidence matrix can be used to
describe the circuit topology. For a directed graph, the incidence matrix
describes the relation between nodes and edges in the given graph. The
incidence matrix entries are given by:

Bij =

⎧⎨⎩
−1 if edge ej comes out of node ni,
1 if edge ej goes into node ni,
0 otherwise.

(2.11)
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In the context of electric circuits, the incidence matrix of a directed graph
that corresponds to the circuit topology gives the relation between nodal
quantities (imposed currents, node potentials) and edge quantities (cur-
rent flowing along an edge, voltage drops). Using the incidence matrix,
Kirchhoff’s laws can be rewritten as a single matrix equation. Assuming no
imposed external currents, KCL follows as:

BIedges = 0, (2.12)

where Iedge is the vector of all currents in the circuit. KVL follows accordingly
using the transpose of the incidencematrix. Assuming no external potentials
are imposed on nodes in the circuit, KVL is written as:

BTVnodes = 0, (2.13)

in terms of the incidence matrix. Here, Vnodes denotes the vector of node
potentials in the graph that corresponds to the circuit topology. Using
a sub graph, that describes only specific parts of the circuit, incidence
matrices can also be utilized to implement devices in nodal analysis (see
for example [46]) that have no definition in terms of electric admittance Y .
This is used for modified nodal analysis (MNA), which is further described
in section 2.3.

2.2.2. Nonlinear Circuit Theory

Many practical circuit applications are not limited to linear components.
Particularly in electronics, nonlinear devices are necessary for the basic
functionality of the circuits [42]. These devices include functional elements
such as diodes and switches. But also non-functional components can
lead to nonlinear behavior. These nonlinearities can result from material
imperfections or physical effects on the circuit boards such as eddy currents
or stray effects [22, 7]. Consequently, dealing with nonlinear effects is
indispensable for circuit analysis.
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Figure 2.1.: Circuit symbol of a simple diode (left) and its corresponding
incremental model with a controlled current source and a resistance

(right).

One approach for the analysis of nonlinear devices is the incremental
model [89, 62]. Incremental models linearize the devices for a specific
region of operation. The incremental model for a simple diode is shown
in Fig. 2.1. This incremental model is particularly simple to implement.
For the linearization, an equation based model for the nonlinear device is
required. The given nonlinear device is then linearized using a first order
Taylor approximation of the system [89]. For a basic diode model, the
device can be characterized by Shockley’s diode equation:

I = I0(e
kBV −1), (2.14)

where I0 is the reverse threshold current, kB is Boltzmann’s constant and
V is the voltage drop across the diode. The solution of Shockley’s equa-
tion (2.14) is used as the current of the current source in the incremental
model (Fig. 2.1). The admittance of the resistor in the incremental model
(Fig. 2.1) is obtained by solving the derivative of (2.14) w.r.t. the voltage
drop V . The resulting admittance is given as:

YD =
∂I

∂V
= kBI0e

kBV . (2.15)

The incremental model is advantageous if only few different types of non-
linear devices are needed, since it requires a specific model implementation
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for each device. This necessity is also a downside of the incremental model
as this means it cannot be used as a blackbox approach [62]. Another
downside arises from the limitation to weakly nonlinear devices, since the
linearization approach does not work for very narrow linear regions [89].

Alternatively, the solution to the nonlinear equation system can be approx-
imated by Newton’s method or other related methods. Newton’s method is
a numerical black box technique that is used to approximate the root of a
function. This iterative method is widely employed for numerical problems,
where the solutions are not analytically available such as nonlinear differ-
ential equations [61]. The basic idea behind Newton’s method is to start
with an initial guess for the root of the function and iteratively updating
the solution with the update formula

xn+1 = xn − f(xn)

f ′(xn)
, (2.16)

until a root is approximated with a desired accuracy. The steps along
Newton’s method can be described as:

1. Start with an initial guess x0 for the root of the function f(xn).

2. Compute the function value, f(xn), and its derivative, f ′(xn), for the
current iterate xn.

3. Calculate a new estimate, xn+1, using Eq. (2.16).

4. Repeat steps 2 and 3 until the root is approximated with the desired
accuracy.

Note here that it is required that the function f(x) is differentiable in order
to execute step 2 of the Newton iteration. Newton’s method is a very
effective method to find the roots for a wide range of functions. Newton’s
method is particularly efficient when the initial guess is close to the solution
for the root. However, Newton’s method may not converge for all functions.
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Careful consideration of the problem setting and the initial guess is required
to be able to avoid these issues.

Both Newton’s method and the incremental model use a first order lin-
earization method in order to obtain a linearized version of the given
problem. Newton’s method is advantageous if many nonlinear devices
are present in the circuit, as it is not necessary to linearize each element
separately using this approach. Additionally, Newton’s method is a black
box method, which means that it can be applied to other mathematical
problems without any knowledge of the underlying physical model. Result-
ingly, many freely available libraries which implement Newton’s method,
can readily be used to obtain the solution of the nonlinear problem.

Regardless of the linearization method, equation based models for nonlin-
ear devices are required in order to perform the simulation. This can be a
limiting factor, as it implies that any modifications and additional methods
that utilize the equation system of the given circuit problem necessitate
access to these models.

2.2.3. PWM-Switched Circuits

Switched circuits with a pulse width modulation (PWM) pose a very special
case for circuit simulation. Firstly, PWMs require extensive modeling [88].
Secondly, PWMs leads to a simulation result that contains fast transitions at
switching points, whereas the PWM period length can be several magnitudes
larger. This makes PWM switched circuits a very challenging numerical
problem, as the methods to simulate such circuits must be able to resolve
very fast transitions while the dimensions and runtime of the possibly
long simulation periods are limited [39, 50]. In practice, PWM inputs are
commonly found in power converters. Ideally, the time-average of a PWM
signal converges to a reference signal that is to be generated [50]. This
property is utilized in power converters for example to generate a sinusoidal
output within a DC-AC converter. A PWM can be defined by four parameters
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that describe the signal properties:
1. The switching frequency fs, which is the inverse of the switching cycle

Ts for a single pulse window. This pulse window includes both on-
and off-time. There exist constant switching frequency PWM and
varying switching frequency PWM.

2. The duty cycle D quantifies the relative proportion of the on-time ton
w.r.t. the duration of the switching cycle Ts.

3. The amplitude modulation ratio, that gives the ratio of the amplitude
of the modulated signal m(t) w.r.t. the carrier signal s(t).

4. The frequency modulation ratio, that gives the maximum deviation
between the frequency of the modulated signal fm and the switching
frequency fs.

One way to generate a modulated PWM signal m(t) is the mathematical
comparison between the reference signal d(t), which is usually the desired
output signal of the circuit and the carrier signal s(t) through a signum
(sgn) function:

m(t) = sgn(d(t)− s(t)). (2.17)
This modulation is illustrated using a sawtooth carrier and a sinusoidal
reference signal as shown in Fig. 2.2 (a) and (b). The modulated signal
is obtained using Eq. (2.17). The resulting modulated signal is shown in
Fig. 2.2 (c). As expected, the duty cycle D is larger in the parts where
the amplitude of the sinusoidal reference signal is larger, while the duty
cycle is smaller elsewhere. That way, a PWM signal can easily be generated
and controlled. Note here that for the generation, it is important that
the amplitude of the reference signal is smaller than that of the carrier
signal. If this is not ensured, the two signals might not have an intersection
in some switching cycles. Resultingly, the PWM signal will not switch in
the switching cycles without an intersection, which in turn will lead to
information loss.
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Figure 2.2.: A sawtooth carrier signal (upper left) and a sinusoidal
reference signal (upper right) used to generate the PWM modulated signal

(bottom) using Eq. (2.17).

2.2.4. Equivalent Electrical Circuit Methods

Complex devices can pose a difficult task when it comes to their implemen-
tation in terms of lumped circuit elements. In particular, when additional
electromagnetic field effects must be taken into account, the behavior of a
real world device can significantly diverge from its purely functional lumped
element model. Equivalent electrical circuit (EEC) methods can provide
a powerful tool for the implementation of field effects within a circuit
simulation. This tool is particularly valuable when analyzing disturbance
prone electrical systems, such as printed circuit boards (PCBs), integrated
circuits (ICs), and other high-frequency structures. EECs try to model the
electromagnetic behavior within the low-frequency end of the spectrum as
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an electrical circuit. This allows for the analysis of the circuit’s electrical
characteristics, also including electromagnetic compatibility (EMC) effects.

One of the earliest methods to automatically generate EECs from 3D CAD
models was the partial element equivalent circuit (PEEC) method. This
method was introduced by Ruehli in 1974 [68]. For the PEEC method,
integral equations are used to model surface charges and current densities
in a multiconductor system [68]. Integral equation formulations are partic-
ularly advantageous for physical problems where the free space are is large.
This advantage results from the fact that integral equation formulations
only require a discretization of the surface. In contrast, free space differen-
tial equation methods such as 3D finite element method (FEM) require a
discretization of the entire free space area. However, the PEEC method can
also exhibit disadvantages. For more complex physical problems, such as
an near-field control (NFC) antenna, the PEEC formulation will result in
an equation system with a very large number of DoFs [85]. Resultingly, it
becomes very hard for engineers to interpret the analogies of the lumped
elements of the EEC model that is derived from PEEC.

Particularly in EMC applications, an intuitive representation of the physi-
cal processes is a vital task [86]. This requirement arises from the develop-
ment process, where the goal is to model the actual behavior of a circuit,
including parasitic field effects. To identify possible issues with the physical
layout, it is also advantageous to construct the coupled simulation with EEC
elements in a way where lumped elements directly correspond to physical
layout dimensions.

If this formulation is modeled accordingly, the physical processes in
the given problem are given in a very intuitive way [86]. However, the
method proposed by Traub et al. [86] requires a 3D FEM simulation to
obtain the EEC model which also poses the before mentioned issue, that
the simulation performance lacks for large free spaces which contain many
connected nodes to discretize.

Based on the direct correspondence, further analyses such as sensitivity
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analysis can be used to identify and optimize the physical layout automat-
ically [73]. Even though the proposed method of [86] results in much
smaller circuit models than the PEEC method, the resulting circuit mod-
els can still significantly exceed the number of lumped elements of the
functional circuit itself.

Throughout this thesis, several methods to efficiently calculate sensitiv-
ities with respect to many lumped elements as design parameters were
developed. All of these methods were also applied to problems that included
EEC models derived through the method of [86], in order to optimize the
sensitivity analysis w.r.t. geometric variations as described in [73].

2.3. Modified Nodal Analysis

Modified Nodal Analysis (MNA) is a well known method for the numerical
analysis of electric circuits. The MNA was introduced in 1975 by Ho et
al. [16] and has since been implemented in many commercial and noncom-
mercial circuit analysis tools.

2.3.1. Modified Nodal Analysis for DC Circuit Analysis

MNA modifies the classic nodal analysis to include impedance stamps for
specific electric and electronic devices. These devices include inductances
and voltage sources as well as a large variety of controlled sources and
nonlinear devices such as switches [89]. In the simple static case, the MNA
equation system reads:

F (x) = Ax− is = 0. (2.18)

The solution vector x gathers the node potentialsunodes for all nodes and the
edge currents iedges for the impedance devices. The right hand side source
vector is contains all independent source excitations. The MNA matrix A
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contains the nodal admittance matrix Y as well as the edge impedance
matrix Z that gathers the behavior of impedance devices. The incidence
matrices B and BT serve as coupling terms between the admittance and
impedance parts of the equation system. The assembled matrix is structured
as:

A =

⎛⎜⎜⎝ Y BT

B Z

⎞⎟⎟⎠ . (2.19)

The right hand side is of the nodal analysis is modified accordingly, such
that it contains all input nodal currents inodes and edge voltages uedges for
the respective impedance devices:

is =
(︁

inodes uedges
)︁T

. (2.20)

2.3.2. Modified Nodal Analysis for Transient Circuit Analysis

In the original publication by Ho et al [16], the MNA was derived for
transient analysis. The transient MNA is a very common example for a
modeling approach that results in a DAE system. This DAE system reads:

F (x, ẋ, t) = ACẋ(t) +AGx(t)− is(t) = 0, x(t = 0) = 0. (2.21)

The system matrix AC gathers the reactive element contributions which
are used to model devices such as capacitors and inductors. The system
matrix AG gathers contributions from resistors and other resistive elements
as well as specific impedance stamps to voltage sources or dependent
sources. Analogously to the static case, the solution vector x gathers the
nodal voltages as well as the edge currents and the right hand side source
vector is contains all independent source excitations. If the circuit contains
nonlinear devices, a linearization of the system is required. This is usually
implemented with the Newton method or similar related methods for
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nonlinear equations [89]. The linearization along the Newton iteration can
be implemented with the definition of the resistive Jacobian matrix JG:

JG(x(t), t) = AG − ∂inl(x(t), t)

∂x(t)
. (2.22)

Here, inl is the vector that models the node behavior of nonlinear resistive
devices. Resultingly, the vector is zero at all nodes where no nonlinear
devices are attached [89, 48]. Analogously, nonlinear reactive devices, such
as nonlinear capacitors, are linearized with the definition of the reactive
Jacobian matrix JC:

JC(ẋ(t), t) = AC − ∂inl(ẋ(t), t)

∂ẋ(t)
. (2.23)

The resulting differential equation containing nonlinear elements is of a
mimetic structure to the linear case:

F (x, ẋ, t) = JC(ẋ(t), t)ẋ(t) + JG(x(t), t)x(t)− is(t) = 0,

x(t = 0) = 0. (2.24)

The linearization based on Eq. (2.22) and (2.23) is performed in every
timestep for transient analyses.

In many applications, the simulation is not started from a zero state
x(t = 0) = 0 but rather for a specified operation state. A simple example for
this is an amplifier tuned with a DC voltage [42]. To improve convergence
for these situations, a DC operation point (DCOP) analysis is performed
prior to the solution for the first timestep [49]. For a DCOP analysis, the
circuit is reduced to only conductive DC elements. All reactive elements
are replaced with their DC equivalent, i.e. capacitors are replaced with
an open circuit, and inductors are replaced with a short [42]. Based on
the reduced circuit, the DCOP analysis is performed using the static MNA
described in section 2.3.1.
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2.3.3. Modified Nodal Analysis for AC Circuit Analysis

For the harmonic solution of a linear system, the transient MNA DAE sys-
tem (2.21) can easily be collapsed to a DAE system with only one system
matrix in alternating current (AC) domain. For the description in AC do-
main, the system quantities, i.e. the solution vector and the excitation are
written in terms of a complex phasor representation:

x̃(ω, t) = xejωt (2.25)

and
ĩs(ω, t) = ise

jωt (2.26)
with the angular frequency ω = 2πf , the complex number j =

√
−1 and

the amplitudes x and is, respectively.
The ACMNA directly follows by plugging the complex amplitudes from (2.25)

and (2.26) into the transient MNA formulation (2.21):

F (x, ω) = ACjωx+AGx− is = 0. (2.27)

The time derivative is simplified to a multiplication with jω for the complex
phasor representation. Since the multiplication is associative and commu-
tative, the system matrices AC and AG can be added to a single system
matrix A:

A = AG + jωAC. (2.28)
The final MNA equation system for the AC case is followingly mimetic to
the static case such that:

F (x, ω) = Ax− is = 0. (2.29)

In general, the AC MNA is only applicable in the linear case. In many
applications, this is not the case since most electronic circuits contain
nonlinear devices as well. However, with some considerations it is also
possible to calculate nonlinear circuit problems in frequency domain. One
such method is presented in the following section.
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2.4. Harmonic Balance Analysis

Harmonic balance (HB) analysis is a numerical method to approximate
the steady state of a nonlinear problem in frequency domain. The term
harmonic was originally used in music theory. A harmonic is the member
of a harmonic series. A harmonic series consists of an oscillation with
a fundamental frequency and several oscillations whose frequencies are
multiples of the fundamental frequency [34]. A superposition of harmon-
ics can also be used to approximate the time waveform in other dynamic
systems. Throughout the HB analysis, the solution of a nonlinear system
is approximated in frequency domain. Nakla and Vlach [51] introduced
the concept of HB in 1976. In some applications, HB analysis is advan-
tageous compared to transient analysis. A suitable application for HB is
the analysis of nonlinear systems that also contain models which are only
available in frequency domain. These models include transmission lines or
S-parameter multipoles [48]. Another application case is the analysis of
systems that exhibit long transient processes, since the convergence rate
of the HB iterations is quicker than computing the transient processes for
these systems [48].

The HB iteration process is outlined in the flowchart in Fig. 2.3. The
HB method requires an initial estimate for the spectral solution to start
the iteration process. Without prior knowledge of the solution, the initial
guess can be set to zero for every frequency. However, the convergence of
the HB method can be significantly increased if a better initial estimate
is provided [48]. In very simple applications, the initial estimate can be
provided by an educated guess. A popular example for such an application
is the voltage across a diode which is excited by a sinusoidal input, because
a capped sine wave is an obvious choice for the approximation of the
solution [48]. An examplary solution for the voltage across the diode is
shown in Fig. 2.4. For more complex circuits, the initial estimate is often
provided by a DC operating point analysis. This approach is analogous to
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Figure 2.3.: Flowchart to describe the iteration steps along the HB analysis.
Frequency domain operations in purple, time domain operations in green.

the DC operating point analysis prior to a nonlinear transient simulation as
previously described in section 2.3.2. Alternatively, a linear approximation
of the circuit can be used to perform an AC simulation prior to the HB. This
is particularly suitable for circuits with very weak nonlinearities.

The initial estimate is transformed to time domain using inverse Fourier
transform. This transformation must be performed individually for every
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node potential oder edge current. The time domain solution is then used to
approximate the behavior of nonlinear devices based on given equation mod-
els to describe their nonlinear behavior. For a diode model, this equation
model would be based upon a Shockley diode equation [76]. As nonlinear
devices are dependent on the circuit solution x itself, the linearized con-
tributions for the devices are added to the Jacobian. AC analysis requires
the solution to be contained in a single system matrix rather than a time
stepping as in transient simulation. Resultingly, the nonlinear models must
be linearized for all frequencies simultaneously [48, 51]. The Jacobian for
the HB analysis is found analogously to the Jacobian for nonlinear transient
analysis:

J = A− ∂inl(x)

∂x
. (2.30)

The linearization is performed for each nonlinear device using equation

Jdevice =
∂inl,device(x)

∂x
= Γ

∂inl,device(x(t))

∂x(t)
Γ−1. (2.31)
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Here, Γ is the matrix form of the discrete Fourier transform (DFT) operator

Γ = F{In} =
N−1∑︂
k=0

In,ke
− jπ

N
nk, (2.32)

where In is the identity matrix of dimension n× n and In,k is its k-th row.
Conversely, Γ−1 is the matrix form of the inverse discrete Fourier transform
(IDFT) operator [48]

Γ−1 = F−1{In} =
1

N

N−1∑︂
k=0

In,ke
jπ
N
nk. (2.33)

The DFT and IDFT matrices are densely occupied. As a result, the nodes
where nonlinear devices are attached, lead to densely occupied submatrices
in the HB equation system. This is logical, as nonlinear device contributions
interconnect the solution across a spectrum of frequencies. Particularly in
the case of strongly nonlinear devices, this can pose a numerical bottleneck,
as these interactions connect the solution across a very wide spectrum of
frequencies. The result of this is a very large Jacobian, since all frequency
components have to be simulated in a single system matrix, as explained
before. To enable linear devices to be simulated simultaneously for several
frequencies, a linear conversion submatrix

Y conv =

⎛⎜⎜⎜⎜⎜⎝
y(0) 0 0 · · · 0

0 y(ωp) 0 · · · 0

0 0 y(2ωp) · · · 0
...

...
... . . . ...

0 0 0 · · · y(kωp).

⎞⎟⎟⎟⎟⎟⎠ (2.34)

is defined, that matches the dimension of the nonlinear submatrices [48].
Here, k is the maximum number of harmonic frequencies taken into con-
sideration. The name conversion submatrix derives from the conversion of
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Figure 2.5.: Matrix structure of the modified nodal analysis matrix for a
circuit with three nodes approximated with 16 harmonics. Left: linear
circuit, right: circuit with one nonlinear device attached to the second

node.

a scalar quantity to a matrix form for several harmonics. This conversion
matrix is clearly sparse. As a result, many linear contributions will lead to
a sparse HB Jacobian, while many nonlinear contributions lead to a denser
HB Jacobian. For illustration purposes, this is shown for two virtual circuit
problems with 4 DoFs and 16 harmonics where one circuit contains only
linear elements and the other additionally contains one nonlinear device
attached between one node and ground. Fig. 2.5 shows the comparison
of the two system matrices. The more nonlinear devices are present and
the stronger the nonlinearities, the denser the matrix will be. This is a
major issue that has to be taken into account when working with the HB
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method [48, 65]. The final equation system which is used throughout the
Newton iteration within the HB analysis is given analogously to the linear
AC MNA problem:

F (x, ω) = Jx− is = 0. (2.35)

Throughout the HB analysis iteration, the Newton steps and the error
estimation by KCL are executed in frequency domain. After each HB analysis
iteration, the residual is calculated as the norm of vector F :

εHB = ∥F ∥. (2.36)

As per definition in Eq. (2.35), εHB is 0 if the final solution is found. Ac-
cordingly, the HB analysis iteration is repeated until εHB is smaller than a
predefined threshold.

2.5. Parallel-in-Time Methods

The parallelization of ODE or DAE solvers is challenging, as the problem
itself is inherently sequential. Traditional time integration methods, such
as described in section 2.3.2, compute the solution sequentially for each
timestep. This is particularly computationally expensive for very complex
problems or problems with a fine time resolution.

Parallel-in-time (PinT) methods, are computational algorithms that are
used to cut down the wall-clock time of the simulation for time-dependent
problems. A broad overview over a large number of publications related
to PinT methods is gathered in [59]. The shorter simulation times are
achieved by parallel processing. The parallelization happens by simulating
different time subintervals in parallel on different processing cores of a
computer or simulation cluster.

PinT methods can be utilized for these problems and offer a potentially
significant speedup of the wall-clock time for problems that require a large
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number of timesteps. There are different approaches that aim to implement
a PinT method.

This section presents the outline for two specific PinT methods. Both of
the presented methods are based on a multiple shooting approach [53]. At
first, the Parareal is outlined and explained. Secondly, the periodic Parareal
with initial-value coarse problem (pp-ic) and the periodic Parareal with
periodic coarse problem (pp-pc) are explained. These two methods are
periodic extensions to the Parareal algorithm.

2.5.1. Parareal

Parareal is a popular PinT method that aims to cut-down on wall clock time
for time integration. Parareal was first published in 2000 by Maday and
Turinici [47] and is based on multiple shooting methods [53, 28]. One
major advantage of the Parareal is its non-intrusiveness, which enables the
Parareal to be applied to a large variety of time-dependent PDE problems
in principle.

Two different time domain solvers are used throughout the Parareal
iteration. A fast coarse solver G delivers a rough approximation of the
solution X, which is used to perform updates in each Newton iteration.
The fine solvers F , executed for N temporal subintervals in parallel, to
provide an accurate solution inside the subintervals. Since the Parareal is
non-intrusive, the fine and coarse solvers can be chosen freely [47, 28].

The coarse solver is usually a fast but less accurate solver, such as a
transient solver with large time steps. Since the coarse solver is executed
within the serial part of the iteration, it needs to be as efficient as possible
(Amdahl’s law [35]). The fine solver must be more accurate than the coarse
solver for the Parareal to deliver satisfying results. However, the fine solver
can be less efficient, since it is executed in parallel. A more expensive solver
such as a transient solver of higher order with small time steps is suitable as
the fine solver. Non-intrusiveness is also often advantageous when specific
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solver details are not available or modifiable by the user as is often the case
in industrial applications with proprietary solvers.

The individual steps of the Parareal iteration are briefly outlined as a
flowchart in Fig. 2.6. To understand the entire process of the Parareal
algorithm, the steps will be described for a general ODE problem similar
to the one introduced in Eq. (2.1). Consider the general ODE with defined
initial condition:

x′(t) = f(t,x(t)) (2.37)
x(0) = x0, (2.38)

in the time interval
t ∈ (0, T ]. (2.39)

To introduce a time parallelization, the time interval is split into N subin-
tervals

tn ∈ (Tn−1, Tn], (2.40)

where n is the index of the respective subinterval. The number of subin-
tervals N is determined by considerations about the numerical problem
and the number of simulation cores that are available for the simulation.
For each of the subintervals, a different ODE initial value problem (IVP) is
defined:

x′
n(t) = f(tn,xn(t)) (2.41)

xn(tn−1) = xn−1. (2.42)

Each of the N IVPs is solved by the defined fine solver in parallel. Since
Parareal is based on the multiple shooting method, the update equation to
find the final solution can be defined analogously. For that, the fine solver
operator F is used as a so called propagator [28]. The subsequent iteration
for the solution of a numerical problem along the multiple shooting method
is based on Newton’s method. The iteration for the multiple shooting
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method that solves for the approximate solution X to the IVP is then given
as

Xk+1
n = F(Xk

n−1) + JF

[︂
Xk+1

n−1 −Xk
n−1

]︂
, (2.43)

with the iteration index k. The Jacobian JF is defined as

JF =
∂F(Xk

n−1)

∂Xk
n−1

. (2.44)

Since the explicit calculation of the Jacobian is numerically expensive, espe-
cially if several iteration steps are necessary, the derivative is alternatively
obtained by an approximation. Using the coarse solver G as a second prop-
agator, the derivative can be roughly approximated by a finite difference.
This approximation reads:

JF

[︂
Xk+1

n−1 −Xk
n−1

]︂
≈ G(Xk+1

n−1)− G(Xk
n−1). (2.45)

Plugging Eq. (2.45) into the multiple shooting iteration (2.43) leads to the
update equation for the Parareal:

Xk+1
n = F(Xk

n−1) + G(Xk+1
n−1)− G(Xk

n−1). (2.46)

While the fine solver runs are all executed in parallel, the update equation,
and thus, the coarse solver is running sequentially. As a result, it is a major
concern that the coarse solver is as numerically cheap as possible. Since the
iteration of the Parareal is started with inexact initial values Xn−1 at the
subinterval boundaries, the updates have to be performed along multiple
iteration steps. The error is controlled by the maximum discontinuity at
the subinterval boundaries normalized over the vector space of X.

εparareal = max
1≤n≤N−1

∥Xk
n −F(Xk

n−1)∥ (2.47)

The iterative process ends when the error falls below a defined threshold.
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2.5.2. Periodic Parareal Extensions: PP-IC and PP-PC

The PP-IC and the PP-PC pose two approaches that modify the Parareal
in order to tackle time-periodic simulation problems [29]. The necessary
iteration steps along the PP-IC and PP-PC are almost identical to the ones
described above for the Parareal. To illustrate the steps, a periodic IVP is
considered. The general case for an ODE with periodic boundary condition
reads:

x′(t) = f(t,x(t)) (2.48)
x(0) = x(T ), (2.49)

in the time interval
t ∈ (0, T ]. (2.50)

The necessary iteration steps for the PP-IC are derived by introducing an ad-
ditional time-periodic condition in each iteration step. The update equation
for the PP-IC reads:

Xk+1
n = F(Xk

n−1) + G(Xk+1
n−1)− G(Xk

n−1) (2.51)
Xk+1

0 = Xk+1
N . (2.52)

The PP-IC only differs from the standard Parareal in the additional update
of the IC with the end value of the previous iteration. The PP-IC is also
sometimes referred to as a forward-in-time Parareal, since the update of
the initial condition is always propagated over the length of one period.

Resultingly, the PP-IC might result in a slow convergence rate if the
transient process throughout the solution of the analyzed system is very
long. The possible gain lies in the subsequent parallelization of each period
of the solution. Following this, the possible performance gain of the PP-IC
compared to the sequential solution is particularly large if the period length
is long compared to the constants of the problem.
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Another advantage of the PP-IC is its non-intrusiveness. The PP-IC does
not require a further insight in the numerical problem and therefore can be
applied as a black box method in the same manner as the standard Parareal.

Similarly to the termination criterion of the Parareal (2.47), the error
of the PP-IC iteration is quantified by a jump condition. In addition to the
quantification of the maximum jump out of all the subintervals, the jump
between the final solution of the iteration with its initial value is used as a
further termination criterion. When the jump converges to zero, a steady
state is reached. The error quantification for the PP-IC reads:

εPP−IC = max
{︂
εkparareal, ∥X

k
n −F(Xk

n−1)∥
}︂
. (2.53)

The second approach to implement a periodic extension of the Parareal
is the PP-PC. The PP-PC introduces a coupling between the terminal value
of the iteration for one period and its initial value. As opposed to the PP-IC,
this coupling is not based on a loose coupling through a forward iteration,
but rather by introducing an additional implicit update equation for the
initial value. The modified update for the PP-PC reads:

Xk+1
n = F(Xk

n−1) + G(Xk+1
n−1)− G(Xk

n−1) (2.54)
Xk+1

0 = F(Xk
N−1) + G(Xk+1

N−1)− G(Xk
N−1). (2.55)

This update is implicit, as the initial value at Xk+1
0 in each iteration is ob-

tained by the terminal value of the same iteration G(Xk+1
N−1). This implicity

can be relaxed by an additional fixed point iteration [29]. Application of
the fixed point iteration, i.e. to the PP-PC iteration at iteration step k + 1,
reads:

Xk+1,s+1
0 = G(Xk+1,s

N−1 ) + F(Xk
N−1)− G(Xk

N−1), (2.56)

where s is the index of the inner fixed point iteration.
Usually, the Jacobi method is used for the fixed point iteration in the

PP-PC [29, 69]. The Jacobi method is a general iterative algorithm that is
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used to determine the solutions of diagonally dominant systems of linear
equations [69]. Resultingly, Eq. (2.56) must be written in a matrix form
for the Jacobi method to be applicable [27]. Using the abbreviation:

bkn = F(Xk
n−1)− G(Xk

n−1), (2.57)

the matrix form reads:⎡⎢⎢⎢⎢⎣
Xk+1,s+1

0
Xk+1,s+1

1
...

Xk+1,s+1
N−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 G(·)

G(·) 0
. . . . . .

G(·) 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Xk+1,s

N

Xk+1,s
1
...

Xk+1,s
N−1

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
bkN
bk1
...

bkN−1

⎤⎥⎥⎥⎦ . (2.58)

Evidently, in Eq. (2.58), the calculation processed for the discrete solution
values Xk+1,s+1

n for n = 0 to N − 1 are independent. This independence
resolves the previously mentioned implicity and makes the PP-PC problem
solvable as a black box approach. However, it must be noted that this
iteration relaxes the periodicity constraint. As a result, the iteration might
not provide a converged solution instantly but rather requires several Jacobi
iterations to approach a solution, decreasing performance [45].
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3. Sensitivity Analysis for Electric
Circuits

In general, sensitivity analysis calculates the influence of a design parameter
p in the numerical circuit problem on a defined quantity of interest (QoI)
u(x(p)). In circuits, design parameters are the values of the circuit devices
such as resistors R, capacitors C or inductors L. The QoI u(x(p)) is often a
voltage or current in the circuit, but it can also be defined as a derived quan-
tity such as a power loss. The methods developed in this thesis are limited
to gradient based sensitivity analysis methods. This is firstly a result of the
previously implemented sensitivity analysis chain developed in previous
works throughout the project [12, 81, 74]. Secondly, particularly adjoint
based sensitivity analysis methods are more suited for very large parameter
spaces compared to global sensitivity analysis [82]. The parameter space in
the used applications often exceeds several thousand elements, especially
if the circuit problem is extended with EEC elements modeling parasitic
effects.

Obtaining the numerical value of the sensitivity for a QoI w.r.t. a design
parameter du(x(p))/dp from sensitivity of a solution vector dx(p)/dp is
performed through the chain rule:

du(x(p))
dp

=
∂u(x(p))

∂x(p)

dx(p)
dp

. (3.1)

If x consists of the node potentials of a circuit solution, and the QoI u is
an edge voltage within the circuit, this mapping operator is an incidence

39



vector where the value at the corresponding node indices is either 1 or -1,
depending on the defined direction of the edge voltage.

This chapter presents fundamentals of sensitivity analysis methods used
throughout this thesis. These fundamentals are limited to gradient based
sensitivity analysis methods, since variance based sensitivities were not
used in this thesis. The chapter is destinguished between static, transient
and harmonic systems. In each of these three subdomains, different di-
rect sensitivity analysis (DSA) [54] and adjoint sensitivity analysis (ASA)
approaches are presented.

3.1. Sensitivity Analysis for DC Systems

First, the sensitivity analysis for DC systems is introduced. DC systems
are simplest for sensitivity analysis, as the equation system contains no
complex phasors as in AC systems, and as the equation system has a simpler
structure than for transient problems. Static circuits are usually limited
to resistor circuits, since no devices can be present that would involve a
time derivative to relate voltages and currents [20]. This follows from
the property of capacitors and inductors which exhibit transients due to
their energy storage capability. Originally, ASA was published for circuits
and derived using Tellegen’s theorem [8, 84]. Tellegen’s theorem is briefly
introduced and utilized for the adjoint sensitivity analysis in appendix A.2.
Beginning this chapter, the DSA and the ASA are derived based on the
previously introduced equation system for circuits. DSA solves for the
sensitivity by one additional DC solver run for the sensitivity analysis w.r.t.
all design parameters p and calculates the sensitivities for all QoIs in a
post-processing step. In contrast, ASA solves one additional adjoint system
for each QoI that can be utilized to analyze the sensitivities w.r.t. all design
parameters p in a post processing step.
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3.1.1. Direct Sensitivity Analysis

DSA is an approach that uses symbolic differentiation of the equation system
w.r.t. the model parameters p [54]. The DSA is a better choice compared to
conventional numerical differentiation methods, as it does not suffer from
issues with highly dynamic systems and small design parameter values
as explained in sec. 1.1. The QoI does not directly depend on the model
parameters p. But, the QoI u indirectly depends on p through the system
solution u = u(x(p)). Consequently, calculation of the sensitivity du/dp
also involves a previous calculation of the gradient dx/dp [13]. To solve for
the sensitivity information dx/dp through DSA, the entire equation (2.18)
is derived w.r.t. p. The independent source terms is are assumed to be
independent of p. The derived equation then follows as:

A
dx
dp

+
dA
dp

x = 0. (3.2)

Note here that the derivative dA/dp is very sparse, since the design param-
eters p are variables in the entries of matrix A. Resultingly, the derivative
matrix dA/dp is only nonzero on indices corresponding to nodes or edges
where the device for the respective parameter p is attached. Equation (3.2)
can easily be solved for the sensitivity dx/dp. But, especially for the sensi-
tivity analysis w.r.t. many design parameters p, the solution is costly as it
involves one linear system solution for each design parameter p.

3.1.2. Adjoint Sensitivity Analysis

ASA eliminates the necessity for many necessary solutions of Eq. (3.2).
Resultingly, ASA is very efficient for sensitivity analysis in large parameter
spaces. The ASA can be derived from the DSA equation (3.2). First, Eq. (3.2)
is solved for dx/dp

dx
dp

= −A−1dA
dp

x. (3.3)
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In a second step, the equation is modified with the previously defined
mapping operator (3.1) to obtain the sensitivity for the QoI u

du
dp

= −
(︃
∂u

∂x

)︃T
A−1dA

dp
x. (3.4)

Since this analysis still involves a matrix product with the dense inverse
of the system matrix A−1 for every design parameter p to be analyzed,
additional considerations are necessary. Here, the definition of the adjoint
system which requires one additional solver run with the system matrix is
used

ATλ =
∂u

∂x
. (3.5)

The resulting adjoint solution vector λ can be substituted into (3.4), refor-
mulating the matrix-matrix multiplication to a vector-matrix multiplication.
Conveniently, the vector-matrix multiplication with λ involves much fewer
operations than a matrix-matrix multiplication. Namely, using a naive
matrix multiplication approach, the complexity is reduced from O

(︁
n3

)︁
to

O
(︁
n2

)︁
with n×n being the dimension of matrixA [18]. This vector-matrix

multiplication delivers the result for the ASA as:

du
dp

= −λTdA
dp

x. (3.6)

Note here that the adjoint solution can be repurposed for the sensitivity
analysis w.r.t. all design parameters p in Eq. (3.6). However, the adjoint
solution has to be calculated separately for each QoI. This makes the ASA
particularly performant for sensitivity analysis in large parameter spaces
for one or a few QoIs.
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3.2. Sensitivity Analysis for Transient Systems

In transient systems, the sensitivity analysis is not as simple, as the equation
system cannot be represented by only one system matrix. As introduced in
section 2.3.2, transient circuit analysis involves solving a system of DAEs
which describe the time dependent system behavior. Because transient
simulations require the sequential, stepwise solution at every timestep, the
sensitivity analysis must be performed sequentially for each timestep as well.
In contrast to static systems, two different types of QoIs are considered
in transient systems. Firstly, QoIs can be defined as the solution such as a
voltage, current or power loss corresponding to a specific time instance:

u(x(t)), (3.7)

where x(t) is the solution vector at the observed time instance. Secondly,
integrated QoIs are considered, which are obtained as the integral over the
entire observed operation time:

U =

∫︂ tend

t0

u(x(t)) dt. (3.8)

In this section, the DSA is analogously introduced as for static systems.
Based on the DSA, ASA is derived for the transient case.

3.2.1. Transient Direct Sensitivity Analysis

Analogously to the static derivation, DSA for the transient case is obtained
by symbolic derivation of the equation system used for the system solu-
tion (2.24) w.r.t. the respective design parameter p:

dF (t)

dp
= JC(t)

dẋ(t)
dp

+JG(t)
dx(t)
dp

+
dJC(t)

dp
ẋ(t)+

dJG(t)

dp
x(t) = 0. (3.9)
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Eq. (3.9) is the formulation for the DSA of a nonlinear transient circuit
problem. Because the sensitivities for different QoIs can be obtained from
the solution of (3.9) in post processing, the numerical complexity of the
DSA is nearly independent of the number of QoIs. DSA requires the solution
of the transient circuit problem w.r.t. the solution vector x(t) as a first step.
Based on that, the relation:

is,DSA =
dJC(t)

dp
ẋ(t) +

dJG(t)

dp
x(t) (3.10)

can be considered as a source term, because both the transient solution x(t)
is known from the forward transient circuit solution and the derivatives of
the Jacobians dJG/dp and dJC/dpmay be assembled analytically. Following
this, Eq. (3.9) can be analogously solved for dx/dp equivalently to a general
DAE system. As the analysis already involves solving the derivative dẋ/dp
for every time instance, the complexity for the DSA is not larger than for
the circuit problem itself for large numbers of time instances. Throughout
the DSA, individual solutions of Eq. (3.9) are required for each design
parameter. As a result, DSA is numerically expensive if the sensitivity w.r.t.
many design parameters p must be analyzed.

3.2.2. Transient Adjoint Sensitivity Analysis

ASA was originally published for transient circuit analysis by Rohrer and
Director in 1969 [21]. Similarly to the DC case presented in sec. 3.1, the
ASA is derived based on DSA. In transient circuit problems, ASA is not as
advantageous as in the DC case for every application. In particular, if time
dependent sensitivities must be analyzed, the ASA can fall behind DSA
since each time instance has to be handled as a separate QoI. Resultingly,
the trade off involves choosing the appropriate method by weighing the
number of parameters p against the number of QoIs u.

To obtain the ASA from the DSA in the transient case, the differential
equation (3.9) is integrated over time and λ is introduced as a Lagrange
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multiplier:∫︂ tend

t0

λT(t, tend)

(︃
JC(t)

dẋ(t)
dp

+ JG(t)
dx(t)
dp

+
dJC(t)

dp
ẋ(t) +

dJG(t)

dp
x(t)

)︃
dt = 0. (3.11)

With integration by parts, the time derivative dẋ(t)/dp vanishes. The start
and end values of dx(t)/dp have to be given explicitly in the general case:∫︂ tend

t0

(︂
−λ̇

T
(t, tend)JC(t) + λT(t, tend)JG(t)

)︂ dx(t)
dp

dt

= −
∫︂ tend

t0

λT(t, tend)

(︃
dJC(t)

dp
ẋ(t) +

dJG(t)

dp
x(t)

)︃
dt

−
[︃
λT(t, tend)JC(t)

dx(t)
dp

]︃tend
t0

, (3.12)

with boundary conditions

dx
dp

(t = t0) = 0 (3.13)

and
λ(t = tend, tend) = 0. (3.14)

Without loss of generality, the Lagrangemultiplierλ is chosen as the solution
of the adjoint equation system:

JT
C (t)λ̇(t, tend)− JT

G(t)λ(t, tend) =
∂u(x(t))

∂x(t)
. (3.15)

The adjoint solution is found by solving Eq. (3.15) backward in time in
order to enforce the necessary terminal condition (3.14) for tend.

45



When substituting (3.15) into (3.12), we get:

−
∫︂ tend

t0

(︃
∂u(x(t))

∂x(t)

)︃T dx(t)
dp

dt

= −
∫︂ tend

t0

λT(t, tend)

(︃
dJC(t)

dp
ẋ(t) +

dJG(t)

dp
x(t)

)︃
dt. (3.16)

Resubstitution of s and multiplication with -1 yields the integration for the
sensitivity of the QoI u:

dU
dp

=

∫︂ tend

t0

du
dp

(t) dt =
∫︂ tend

t0

λT(t, tend)

(︃
dJC(t)

dp
ẋ(t) +

dJG(t)

dp
x(t)

)︃
dt.

(3.17)
To obtain the sensitivity for the voltage at a certain time step, the general-
ized version of Leibniz integral rule can be applied to the term on the right
hand side [25]. It states that

d
dtend

∫︂ tend

t0

G(x, ẋ, t, tend) dt

= G(x, ẋ, tend)
dtend
dtend

−G(x, ẋ, t0)
dt0
dtend

+

∫︂ tend

t0

∂G(x, ẋ, t, tend)

∂tend
dt

= G(x, ẋ, tend)−G(x, ẋ, t0)
dt0
dtend

+

∫︂ tend

t0

∂G(x, ẋ, t, tend)

∂tend
dt. (3.18)

du/dp does not depend on tend in equation (3.17). Resultingly, the integral
is eliminated by the derivation without application of Leibniz integral rule
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to the left hand side of Eq. (3.17). Applied to equation (3.17), this yields
du
dp

(t = tend) = λT(tend, tend)

(︃
dJC(tend)

dp
ẋ(tend) +

dJG(tend)

dp
x(tend)

)︃
+ λT(t0, tend)

(︃
dJC(t0)

dp
ẋ(t0) +

dJG(t0)

dp
x(t0)

)︃
dt0
dtend

+

∫︂ tend

t0

∂λT(t, tend)

∂tend

(︃
dJC(t)

dp
ẋ(t) +

dJG(t)

dp
x(t)

)︃
dt.

(3.19)

The first term on the right hand side is 0 as the adjoint solution λ is 0 at
time tend per definition. The second term on the right hand side vanishes, as
Eq. (3.13) implies that t0 = 0. The sensitivity for the QoI at time instance
tend is therefore given by

du
dp

(t = tend)

=

∫︂ tend

t0

∂λT(t, tend)

∂tend

(︃
dJC(t)

dp
ẋ(t) +

dJG(t)

dp
x(t)

)︃
dt. (3.20)

Alternatively, the sensitivity at specific time instances can be analyzed
through modification of the QoI. Defining the modified QoI q(t) operator
as:

q(u(x(t)), tend) = δ(t− tend)u(x(t)), (3.21)
where δ(t − tend) is the discrete delta operator. The modified mapping
operator is found analogously to Eq. (3.1) as:

dq
dp

(t) =
∂q(u(x(t)), tend)

∂x(t)

dx(t)
dp

= δ(t− tend)
∂u(x(t))

∂x(t)

dx(t)
dp

. (3.22)

using the mapping operator dq/dx as the rhs for the modified adjoint
problem:

JT
C (t)λ̇δ(t, tend)− JT

G(t)λδ(t, tend) =
∂q(u(x(t)), tend)

∂x(t)
, (3.23)
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using the modified mapping operator as well as the adjoint solution λδ for
the integral evaluation as shown in Eq. (3.17), the sensitivity at the time
instance tend is obtained as:

du
dp

(t = tend) =

∫︂ tend

t0

dq
dp

(t) dt

=

∫︂ tend

t0

λT
δ (t, tend)

(︃
dJC(t)

dp
ẋ(t) +

dJG(t)

dp
x(t)

)︃
dt. (3.24)

The integral on the left hand side in Eq. (3.24) results in the sensitivity of
the unmodified QoI at a single time instance due to the sifting property of
the delta operator [58]. This approach is advantageous if only few time
instances that are scattered over time must be analyzed, since only one
single adjoint solution is required for the sensitivity at one specific time
instance. A possible downside of this approach is the increased stiffness of
the adjoint DAE that results from the delta excitation [32].

3.3. Sensitivity Analysis for Harmonic Systems

Harmonic systems can generally be simulated in frequency domain if only
linear devices are contained. One advantage of using frequency domain
methods is the avoidance of a long transient simulation in which the solution
for each time instance depends on the previous timestep. Analogously to
the AC case, the complex phasor representation is used to indicate the
frequency dependence of the variables. As in section 2.3.3, underscores are
used for the phasor representation.

3.3.1. Direct Sensitivity Analysis in Frequency Domain

Analogously to the static and transient cases, DSA is derived by symbolic
differentiation of the equation system from Eq.(2.27) for the sensitivity
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analysis in AC domain:

dF (x)

dp
=

dA
dp

x+A
dx
dp

= 0. (3.25)

Solving Eq.(3.25) for dx/dp gives the sensitivity in frequency in the same
way as derived for static systems.

Die AC DSA shows identical disadvantages as for the other formulations,
namely, the decreasing performance for the sensitivity analysis w.r.t. many
design parameters p. A way to improve on this is the ASA in frequency
domain.

3.3.2. Adjoint Sensitivity Analysis in Frequency Domain

In order to avoid the solution of a different equation system for each design
parameter p using Eq. (3.25), the sensitivity for QoI u can be obtained
defining the adjoint system for the AC analysis:

AHλ =
∂u

∂x
(3.26)

The system is mimetic to the static case as in Eq. (3.5). The major difference
lies in the complex nature of the equation system, and, resultingly, the
usage of the Hermitian adjoint of the system matrix in the adjoint system as
opposed to the transpose in the static case. The sensitivity of the QoI u w.r.t.
the design parameter p followingly also involves the Hermitian adjoint of
the adjoint solution λ and is given as:

du
dp

= −λHdA
dp

x. (3.27)

The adjoint solution λ can be reused for each design parameter p but is
required to be calculated for every frequency separately. Since both opera-
tions are numerically cheap, especially compared to transient simulations,
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this method is to be preferred for time-periodic linear circuits. But, for
nonlinear systems, the analysis cannot be performed independently for each
frequency and therefore the AC ASA is not naturally applicable. However,
with some considerations the HB method introduced in section 2.4 can be
utilized for sensitivity analysis.

3.3.3. Harmonic Direct Sensitivity Analysis

For nonlinear harmonic systems, the HB method can be utilized for sensitiv-
ity analysis. Analogously to the previously introduced cases, DSA is derived
by symbolic differentiation of the reverse initial condition from Eq.(2.27)
for the HB method. Based on the harmonic balance equation system (2.35),
the symbolic differentiation w.r.t. the design parameters p yields:

dF (x)

dp
=

dJ
dp

x+ J
dx
dp

= 0. (3.28)

The Jacobian in (3.28) is borrowed from the converged solution of the
nominal problem [4]. Here, the DSA requires solving a linear system.

If many design parameters p are analyzed, the numerical efficiency of
HB based DSA decreases, because solution of Eq.(3.28) involves a matrix
multiplication with the dense matrix J−1. This dense matrix multiplication
can be avoided by introducing an HB based ASA.

3.3.4. Harmonic Adjoint Sensitivity Analysis

Adjoint sensititvity analysis in combination with HB was originally pro-
posed by Bandler et al. [4] in 1988. The approach uses an HB analysis to
simulate the circuit problem. The Hermitian adjoint of the Jacobian that
was linearized for the circuit solution is then used as the system matrix for
the adjoint system. The adjoint system for the HB case (3.28) therefore
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dp = λH dA

dp x

HASA

Figure 3.1.: Flowchart for the HB based ASA (HASA)

reads:
JHλ =

∂u

∂x
. (3.29)

As the Jacobian does not depend on the adjoint solution λ, the adjoint
problem is linear. The sensitivity of the QoI u w.r.t. the design parameter p
follows as:

du
dp

= −
(︃
∂u

∂x

)︃H
J−1dJ

dp
x = −λHdJ

dp
x. (3.30)

In frequency domain, the adjoint solution can be reused for all considered
frequencies, which eliminates the issues encountered in the transient analy-
sis but increases the number of DoFs for large frequency spaces. Compared
to the harmonic direct sensitivity analysis, HB based ASA (HASA) does not
contain any dense matrix multiplications, which improves performance.
The procedure is outlined in Fig. 3.1.

The issue that remains is the bad performance for strongly nonlinear
systems. This is particularly problematic when the Jacobian has to be
approximated alongmany convergence steps of the HB iteration (Eq.(2.27)).
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A hybrid time-frequency domain method, that eliminates the issue of many
Newton iteration steps, is proposed in the following section.

52



4. Transient Forward Harmonic
Adjoint Sensitivity Analysis

In this chapter, the TFHA is proposed as a new method to calculate sensitiv-
ities for the steady state in a nonlinear system. Bandler et al [4] proposes a
procedure which uses a forward HB solver in combination with a harmonic
adjoint sensitivity anaylsis. This approach was recapitulated in section 3.3.4.
It is however not compulsory to obtain the forward solution of the given sys-
tem by HB for the sole purpose of sensitivity analysis. This option motivates
the development of the TFHA method [72]. In a first step, the forward
circuit solution x(t) is obtained using a transient solver of choice. The tran-
sient solution has to be performed until a periodic steady state is reached.
Based on the linearization of the transient solver, the adjoint solution is
obtained by a harmonic analysis. This procedure modifies the HB based
ASA by taking the forward solution out of the solver loop and thus making
it variable. The steps along the TFHA are outlined in the flowchart 4.1.
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solution x(t)

Figure 4.1.: Flowchart for the transient forward harmonic ASA (TFHA).
Time domain operations in green, frequency domain operations in purple.

4.1. Harmonic Jacobian Approximation from Transient
Solution

Alternatively to the entire HB iteration described in section 2.4, the Jacobian
can be calculated based on a given steady state solution, improving efficiency.
This approach is advantageous in several cases. Firstly, there are some
cases where the HB might show convergence issues, which may occur for
oscillating systems or systems with strong nonlinearities [48, 65]. Secondly,
in practical applications, the engineers often have available steady state
solutions from previous analyses, which can directly be used in further
analyses.

Once the solution for the steady state is found, the JacobianJ is calculated
through Eq. (2.31) using the Fourier transform x of the periodic solution x.
The Jacobian is then used as the system matrix for the adjoint problem. The
adjoint solution is obtained by solving Eq. (3.30) in the same way described
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in section 2.4. Subsequently, the adjoint solution is combined with the
symbolic derivative of system matrix dJ/dp to calculate the sensitivities.

4.2. Error Estimation

Due to the approximation with a finite number of harmonics, the calculation
is exposed to information loss which results in a residual error. Since the
Newton iteration from the HB analysis is not performed in the same way for
the TFHA, it is initially not known if the number of harmonics is sufficient
for a desired accuracy. However, one approach involves the principle that a
Fourier approximation converges if the number of harmonics approaches
infinity [38]. The residual error can be approximated. It is quantified by
the Euclidean distance of the residual [3]

Eabs =

⃦⃦⃦⃦
⃦
(︃
du
dp

)︃
exact

−
(︃
du
dp

)︃
approx

⃦⃦⃦⃦
⃦
2

. (4.1)

Without prior considerations of the spectral circuit behavior, the sensitiv-
ity is determined by iteratively increasing the number of harmonics. The
Euclidean distance of the solution with fewer harmonics against the so-
lution with more harmonics quantifies the residual. This is analogous to
the Zienkiewicz-Zhu error estimator [95]. The quantification of the rel-
ative error (Eq.(4.2)) is finally used as a termination criterion to assess
convergence

Erel ≈

⃦⃦⃦(︂
du
dp

)︂
fine

−
(︂
du
dp

)︂
coarse

⃦⃦⃦
2⃦⃦⃦(︂

du
dp

)︂
fine

⃦⃦⃦
2

. (4.2)
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4.3. Conclusion

The TFHA can perform ASA for time periodic circuit problems with very
few numerical simulations. If the simulation must employ an error estima-
tion, multiple solutions of the adjoint problem with increasing numbers of
harmonics are required. The dimension of the Jacobian increases with the
number of harmonics.

Particularly strongly nonlinear circuits require a large number of har-
monics for accurate simulation results [66]. Resultingly, the TFHA is not
applicable for these types of circuits. However, the TFHA can be very ad-
vantageous for weakly nonlinear circuits with a long transient. Additionally,
in comparison to transient ASA, the TFHA scales very good for large pa-
rameters spaces. Thus, the TFHA is particularly fast for the ASA in weakly
nonlinear large scale circuits.
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5. Parallel-in-Time Adjoint Sensitivity
Analysis

Parallel-in-time (PinT) methods in combination with adjoint sensitivity anal-
ysis (ASA) were introduced in a couple of publications. These approaches
include the combination of the paraexp method [26] combined with ASA
as introduced in [78]. Apart from that, split time domain methods were
previously used to avoid storage issues in ASA. These methods, where the
adjoint problem is split into subintervals which are then solved sequentially,
are referred to as checkpointing schemes in literature [14]. Particularly
focusing on the Parareal method, adjoint systems have previously been
utilized to improve the Parareal convergence as shown in [63]. Opposed
to that, it is however also advantageous to utilize the Parareal method to
speed up the wall-clock time of the ASA [71], which is presented in the
following section.

5.1. Parareal Adjoint Sensitivity Analysis

As introduced in section 3.2.2, the calculation of time-dependent sensitivi-
ties involves solving multiple adjoint problems, which causes a computa-
tional bottleneck. Parallel algorithms can be utilized to cut down wall-clock
time. The Parareal algorithm was introduced in section 2.5.1. The adjoint
sensitivity analysis finds application only in post-processing after the initial
system simulation. The non-intrusiveness of the Parareal allows it to be
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utilized for solving both the forward system and the adjoint system.
Some considerations are required for the Parareal to be efficient and stable

during the adjoint sensitivity analysis. In particular, the adjoint system
is always linear, but can show sharp jumps, particularly for example in
switched systems. In these cases, a careful consideration of the subintervals
must be taken, because having a subinterval boundary on a sharp jump
may prevent Parareal convergence.

The transient ASA benefits from short observed time intervals with a min-
imal number of analyzed time instances. The complexity of the simulation
increases with a larger number of time instances to analyze, as the adjoint
solution (3.15) requires an individual backwards integration for each time
instance. Nontheless, the use of Parareal accelerates the simulation of each
adjoint solution.

The efficiency of the Parareal method is quantified by the total wall-clock
time for the simulation of one adjoint solution. The solver used for the fine
solution is the same as the sequential solver. The coarse solver is analogous
to the fine solver, but it solves only every 100th timestep, leading to a
faster but less accurate simulation. In this setup, the Parareal algorithm
convergences within two iterations, regardless of the number of subintervals.
The adjoint solution for 19.1 s serves as a reference in the benchmark, as it
lies in the middle of the observed time period. The efficiency of the Parareal
ASA is assessed using two metrics. The first metric, the speedup

Sp = Ts/Tp, (5.1)

compares the total parallel wall-clock time (Tp) to the sequential wall-clock
time (Ts). The second metric, the parallel efficiency

Ep = Sp/N, (5.2)

puts the speedup in relation to the number of processors N .
Especially when large parallelization is available, i.e. many simulation

cores can be used, the speedup of the wall clock time can be significant
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in many examples. The examples are presented in chapter 6. But, the
Parareal itself does not employ any modifications to the ASA by default. In
the following section, a consideration for periodic ASA will be made and
derived.

5.2. Periodic Adjoint Sensitivity Analysis

With existing methods, the ASA for periodic problems is performed by
calculating the difference of the transient ASA for the begin and the end
of the steady state period [56]. This still involves lengthy integrals and
requires the circuit solution to be calculated for the entire transient.

Utilizing the PP-PC, the forward simulation can be reduced to a much
shorter timespan, especially for problems where the transient is much
longer than the steady state period. To utilize that system solution, the
transient ASA first needs to be modified to accommodate periodic systems.
Originally, the transient ASA requires the initial values of the forward
solution x(t) and the adjoint solution λ(t, tend) to be zero at t = 0 or
t = tend, respectively. Therefore, some considerations are required first in
order to be able to employ the PP-PC in combination with the ASA. For the
periodic modification of the transient ASA, the integral for the sensitivity is
modified to cover the duration of one period with the period time Tp:

dU
dp

=

∫︂ tm

(tm−Tp)

du
dp

(t) dt =
∫︂ tm

(tm−Tp)
λT(t, tend)

(︃
dJC
dp

ẋ(t) +
dJG
dp

x(t)

)︃
dt

−
[︃
λT(t, tend)JC(x(t))

dx
dp

(t)

]︃tm
(tm−Tp)

. (5.3)

Consequently, the boundary term on the right hand side can be eliminated
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if

λT(tm, tend)JC(ẋ(tm))
dx
dp

(tm)

= λT(tm − Tp, tend)JC(ẋ(tm − Tp))
dx
dp

(tm − Tp). (5.4)

This condition is fulfilled if the adjoint solution as well as the forward
system solution and the system matrices are periodic. Choosing tm to be
a time instance where both the forward and the adjoint solution are in a
periodic state, Eq. (5.3) reduces to the integral only without any boundary
conditions to consider

dU
dp

=

∫︂ tm

(tm−Tp)

du
dp

(t) dt =∫︂ tm

(tm−Tp)
λT(t, tend)

(︃
dJC
dp

ẋ(t) +
dJG
dp

x(t)

)︃
dt. (5.5)

A downside of this approach is the limitation to integrated QoIs, whereas
time dependent QoIs can be analyzed using the transient ASA as well. To
explain this limitation, the same steps as for the derivation of the time
dependent sensitivity analysis using transient ASA are applied here. Using
Leibniz integral rule (3.18) for the periodic sensitivity integral (5.3) results
in an equation that is similar to the previously derived formulation in (3.19):

du
dp

(tm) = λT(tm, tend)

(︃
dJC
dp

ẋ(tm) +
dJG
dp

x(tm)

)︃
− λT(tm − Tp, tend)

(︃
dJC
dp

ẋ(tm − Tp) +
dJG
dp

x(tm − Tp)

)︃
+

∫︂ tm

(tm−Tp)

∂

∂tm
λT(t, tend)

(︃
dJC
dp

ẋ(t) +
dJG
dp

x(t)

)︃
dt. (5.6)
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In contrast to the transient simulation, the first term on the right hand side
in (5.6) is not zero, as the periodic adjoint solution is not set to zero at
time tend. But, due to the assumption of periodicity in both the adjoint and
the forward system solution, the first terms cancel each other. However,
the derivative ∂/∂tmλ

T(t, tend) is also zero, as λT(t, tend) does not depend
on the period end time tm. Illustratively, this is explained by the property
that the integral over one period of a periodic solution is independent of
the choice of the start and end times as long as these times are one period
apart. As a consequence, the ASA cannot be performed for time dependent
QoIs using the periodic ASA.

5.3. Conclusion

Parareal methods are very suitable to speed up the adjoint sensitivity analy-
sis in many cases. The simulation can be sped up with increasing numbers
of subintervals as long as the parallel efficiency does not decrease for a
given numerical problem. Consequently, the Parareal approach can be
used to greatly speed up simulation times, particularly when significant
parallelization is available, such as with simulation clusters. Due to the
non-intrusiveness of Parareal, the approach can be applied both to the
forward circuit simulation as well as the adjoint simulation.

Periodic methods can be additionally utilized to reduce the transient
simulation time and additionally shorten the required time interval for
the adjoint simulation. With that approach, it is however not possible to
analyze the sensitivity w.r.t. every time instance.

Parareal ASA is particularly suitable for sensitivity analysis of circuit
problems that require a very large number of time steps which also have
very large parameter spaces. Periodic ASA is suitable for the sensitivity
analysis of circuits with a long transient where the QoI is one period of
steady state operation, which is often the case in power converters. Both
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Parareal and PP-PC are applied to different practical examples in chapter 6
to show their advantages.
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6. Applications

This chapter presents applications for the developed sensitivity analysis
methods. In the first five sections of this chapter, different circuit examples
are presented. These circuit examples include an RC-filter and a half-
wave rectifier which are very simple circuits to show the feasibility of
the sensitivity analysis methods. Furthermore, the proposed methods are
used to conduct a sensitivity analysis for a buck converter. This circuit
exhibits a very long transient but is comparably small scale. Additionally,
an active filter is analyzed using the proposed sensitivity analysis methods.
This example has a small bandwidth but a considerable number of design
parameters. Moreover, the proposed methods are applied for the sensitivity
analysis of a B6 bridge-motor control circuit. This circuit exhibits both
broadband behavior and large number of design parameters. In the last
two sections of this chapter, the application of these sensitivity analysis
methods for active research and development problems is shown. A linear
RC-filter circuit will demonstrate the advantages and disadvantages of the
algorithms. This example is particularly suitable to show this, since an
analytical reference solution can be derived.

6.1. RC-Filter

An RC-filter is an academic example that demonstrates the most basic
features of the sensitivity analysis methods. The circuit contains linear
elements only and is not oscillatory. The circuit schematic is shown in
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Figure 6.1.: Schematic of the RC-filter.

Fig. 6.1. This form of an RC-filter shows lowpass characteristics. The
nominal model parameters are:

• Vin = V̂ in sin(ωt) = (1V) sin(ωt)

• R = 20Ω

• C = 10nF

The filtering behavior is given by the QoI of the transfer function Vout/Vin.
As the input amplitude V̂ in is constant, the QoI can be reduced to only Vout
which will still demonstrate the filtering behavior. This section showcases
the most basic functions of the proposed methods in comparison to an
analytically available reference. It is possible to find an analytical solution
for the transfer function Vout/Vin in time and frequency domain, which
serves as the ground truth. Following the analytical solution, the proposed
methods, namely TFHA, Parareal adjoint and PP-PC adjoint sensitivity
analysis will be applied as a validation.

Analytical Solution for the RC-Filter in Frequency Domain

The frequency domain solution for the output voltage of the RC-Filter can
easily be derived using a voltage divider:

V out =
1

1 + jωRC
V in. (6.1)
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The sensitivity can analytically be calculated as the derivative of Eq. (6.1)
w.r.t. a design parameter, here, for example the resistance value R:

dVout

dR
= − jωC

(1 + jωRC)2
Vin. (6.2)

Since the input source is sinusoidal, its signal is represented by the complex
number of j1V in frequency domain. Assuming the excitation frequency of
f = 1MHz, the sensitivity results in:

dVout

dR
= − j2π(1MHz)(10nF)

(1 + j2π(1MHz)(20Ω)(10nF))2
(j1V)

≈ (−5.4703− j23.7395)mVΩ−1. (6.3)

Analytical Solution for the RC-Filter in Time Domain

The output voltage Vout is characterized in time domain by the mesh ODE

dVout
dt

+
1

RC
Vout −

1

RC
Vin = 0. (6.4)

The initial value of Vout is zero as no previous charges in the circuit are
assumed. The analytical solution for the output voltage Vout is (see Ap-
pendix A.3):

Vout =
V̂ in

1 + (ωRC)2

(︂
ωRCe−

1
RC

t − sin(ωt)− ωRC cos(ωt)
)︂
. (6.5)

For the mentioned device values, the transient of the output voltage Vout is
plotted as a function over time in Fig. 6.2. To illustrate the circuit behavior,
two different input frequencies are considered. As expected for an RC-filter
with lowpass characteristics, the amplitude of the output voltage Vout is
reduced for higher frequency for the same Vout.

65



0 1 2 3 4 5

−0.5

0

0.5

time [µs]

vo
lta

ge
[V

]

0 0.1 0.2 0.3 0.4 0.5

0

0.1

time [µs]

vo
lta

ge
[V

]
Figure 6.2.: Output voltage for the RC-filter with two different input

frequencies (1MHz left and 10MHz right ).

To obtain the transient reference solution for the sensitivities, Eq. (6.5)
must be derived w.r.t. the design parameters. As an example we will
perform this for the sensitivity w.r.t. the resistance value of R. Symbolic
derivation w.r.t. the capacitance value C is analogous. The sensitivity for
the output voltage Vout w.r.t. the resistance R is analytically given as the
symbolic derivative:

dVout
dR

=
ωCe−

1
RC

t
(︂(︁

t
RC + 1

)︁ (︂
1 + (ωRC)2

)︂
− 2 (ωRC)2

)︂
(︂
1 + (ωRC)2

)︂2 (6.6)

− 2(ωC)2R sin(ωt)(︂
1 + (ωRC)2

)︂2 −
ωC cos(ωt)

(︁
1− (ωRC)2

)︁(︂
1 + (ωRC)2

)︂2 . (6.7)

A step-by-step derivation is given in appendix A.3. Analogously to the
solution for the output voltage Vout, the analytical solution for the sensitivity
is calculated and plotted for both the 1MHz and the 10MHz case in Fig. 6.3.
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Figure 6.3.: Sensitivity of the output voltage w.r.t. to the parameter R for
the RC-filter with two different input frequencies (1MHz left and 10MHz

right).

Transient Forward Harmonic Adjoint Sensitivity Analysis (TFHA)

Using the TFHA, the sensitivity is calculated using a transient circuit simula-
tion in combination with a harmonic adjoint simulation (see section 3.3.4).
Performing the ASA for the linear RC-filter example with the TFHA is not
involved. Since no nonlinear devices are present in the circuit, the Jacobian
matrix in frequency domain is identical to the MNA system matrix, such
that:

J =

⎛⎝ 1/R −1/R 1
−1/R jωC + 1/R 0

1 0 0

⎞⎠ =

⎛⎝ 0.05Ω−1 −0.05Ω−1 1
−0.05Ω−1 (0.05 + j0.02π)Ω−1 0

1 0 0

⎞⎠ ,

(6.8)
for f = 1MHz. Due to harmonic excitation and the absence of nonlinear
devices, the solution for one period is fully described by the base frequency
component in frequency domain. The base frequency component is obtained
by a Fourier transform of the final period from the transient MNA simulation.
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The circuit solution for the base frequency component reads:

x =

⎛⎝ V in
V out
IVin

⎞⎠ =

⎛⎝ (0.0258− j0.9951)V
(−0.4789− j0.3984)V
(−0.0252 + j0.0298)A

⎞⎠ . (6.9)

For comparison, the analytical solution obtained with a voltage divider and
Ohm’s law results to:

x =

⎛⎝ V in
V out
IVin

⎞⎠ =

⎛⎝ −j1V
(−0.4872− j0.3877)V
(−0.0244 + j0.0306)A

⎞⎠ . (6.10)

The deviation between the numerical (6.10) and the analytical solution (6.9)
mainly originates from three sources.

1. The circuit solution using MNA introduces a time-stepping error that
propagates in the transient solver.

2. The solution is not ideally periodic due to the modeling of the capaci-
tors which will only converge to an ideally periodic solution after an
infinite transient.

3. Following the non-ideal periodicity, the approximation with one base
frequency leads to a truncation error, since more frequencies would
be required to describe the residual transient.

All these error sources have to be taken into account when utilizing the
TFHA for ASA.

The TFHA sensitivity is calculated using the steps described in sec-
tion 3.3.4. Defining V out as QoI the adjoint solution λ is calculated using
Eq. (3.29) yielding:

λ =

⎛⎝ 0
(7.7545 + j9.7446)V
(0.3877 + j0.4872)A

⎞⎠ . (6.11)
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Figure 6.4.: Adjoint solution λ(t, 5µs) corresponding to the last time
instance plotted as a time dependent variable.

The sensitivity value is then calculated through Eq. (3.30), leading to:

dV out
dR

= −λH dJ
dR

x = (−4.7527− j23.8638)mVΩ−1. (6.12)

This equals the analytical solution with an error margin of 3% which arises
from the before mentioned error sources.

Parareal ASA

The second proposed method is the Parareal ASA. Performing this type
of sensitivity analysis is a bit more involved, since an individual adjoint
solution for each time instance is required. The adjoint solution in each
time instance is calculated using Eq. (3.15). For illustration of the general
shape, the adjoint solution λ(t, 5µs) corresponding to the last time instance
is plotted in Fig. 6.4. Since the adjoint rhs is a constant value, the adjoint
variable asymptotically converges to a specific constant value in linear
circuits with stationary inputs. The sensitivity is subsequently obtained
along the integral evaluation of Eq. (3.19) to evaluate the sensitivity value
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Figure 6.5.: Sensitivity of the output voltage w.r.t. to the parameter R for
the RC-filter. Comparison of the Parareal ASA solution with the analytical

reference (bottom) and the residual (top).

in each timestep. As a numerical method, the Parareal ASA is exposed to
different error sources in the same way as the TFHA.

1. As before, the circuit solution using MNA introduces a time-stepping
error that propagates in the transient solver.

2. The solution of the adjoint problem (3.15) introduces an additional
time-stepping error that propagates in the transient solver.

3. The errors of the solutions for each time instance are accumulated
within the integral evaluation in Eq. (3.19).

To quantify the accuracy of the Parareal ASA, the resulting sensitivity is com-
pared to the analytical solution. The comparison is shown in Fig. 6.5. The
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residual deviation is largest for the maximum amplitude of the oscillation.
The relative error is bounded below 5% for each relative value.

PP-PC ASA

The PP-PC ASA can only be utilized to analyze the sensitivity for the integral
over one period of steady state operation, as described in section 5.2. For
the given circuit example, which is linear and has a stationary input, this
sensitivity must be zero. This is also illustrated in Fig. 6.4 and Fig. 6.2.
Using both shown variables in the sensitivity analysis, the sensitivity is
found by the integral over one period of a scaled sinusoidal oscillation with
no offset, which is zero. Consequently, the error of the PP-PC ASA is trivially
quantified by the nonzero result for the sensitivity in this example. In
the first step, the adjoint solution of one period of steady state operation
is found using the PP-PC method described in section 2.5.2. The adjoint
solution is calculated using a threshold of 1µV for the PP-PC convergence.
The periodic adjoint solution is shown in Fig. 6.6.

The adjoint solution results in an exponential curve in each of the subinter-
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20− 25µ
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λ
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]

Figure 6.6.: Periodic adjoint solution λ(t) obtained through PP-PC
simulation.
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vals which converges to 20V as the size of the discontinuities is minimized.
Using the periodic circuit solution, the sensitivity for the integral over one
period is calculated using Eq. (5.3):∫︂ 5 µs

4 µs

dVout
dR

dt = −0.3163nV sΩ−1. (6.13)

This result is around eight magnitudes smaller than the amplitude of the
stepwise sensitivity for each time instance, which can be explained by
the mentioned error sources, particularly the discontinuities of the adjoint
solution.

6.2. Half-Wave Rectifier Circuit

A half-wave rectifier is one of the simplest nonlinear circuits, as it consists
of only one nonlinear component and two linear components. In contrast
to the RC-filter, no analytical reference is available due to the nonlinearity.
However, it is possible to analyze the sensitivities for this circuit with all
the proposed methods nonetheless. The DSA solution performed with the
Xyce simulation software serves as a reference for the sensitivities [43].

This most basic nonlinear circuit serves as an example to validate the
applicability of the proposed sensitivity analysis methods for nonlinear
systems. The circuit structure of the half-wave rectifier is shown in Fig. 6.7.

The nominal device values of the half-wave rectifier are:

• Vin = 5V sin(ωt)

• R = 20Ω

• C = 200nF

To begin the analysis, the QoI is selected as the output voltage of the half-
wave rectifier. The QoI is shown in Fig. 6.8 in comparison with the input
voltage Vin. The sensitivity is analyzed with the different methods.
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Figure 6.7.: Schematic of the half-wave rectifying circuit.
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Figure 6.8.: Input and output voltage of the half-wave rectifier.

TFHA and Parareal ASA

In the first part, the sensitivity analysis is performed using the TFHA and
the Parareal ASA. To compare both methods to the reference, the frequency
domain solution calculated with the TFHA is transformed back to time
domain. This way, the comparison can be plotted over time in a single
graph. The TFHA is executed with the following simulation parameters:

• number of harmonics k: 64
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• base frequency wp: 1MHz

The base frequency is the lowest frequency of the input source. In contrast,
the number of harmonics is a trade-off between accuracy and dimension of
the harmonic Jacobian matrix. While more harmonics would be possible for
this example in theory, the simulation time would significantly fall behind.

The Parareal adjoint uses the simulation parameters and convergence
constraints:

• number of subintervals N : 6

• discontinuity threshold: 10−4

More subintervals would reduce convergence because the number of timesteps
in the coarse solver would get too small otherwise. The discontinuity thresh-
old was chosen arbitrarily.

Even thought the circuit itself is small scale with only one weakly nonlin-
ear device, the numerical properties of the adjoint problem are challenging
for both the Parareal ASA as well as the TFHA. The reason lies in the adjoint
solution itself. To explain this, the adjoint solution is shown in figure 6.9.

In contrast to the circuit solution, the adjoint solution has steep changes.
Therefore, the waveform of the adjoint solution is much more broadband.
As a result, a larger number of harmonics are required to analyze this
circuit example with the desired accuracy using the THFA. Analogously, the
Parareal ASA requires five iterations for the adjoint problem simulated with
the Parareal to converge whereas the circuit solution converges in only one
iteration. Similarly, five Parareal iterations are required for the convergence
of the adjoint problem. In contrast, the circuit solution achieves convergence
in just one Parareal iteration.

After the adjoint solution is found by a method of choice, the sensitivity is
analyzed as described in sec. 3.3.4 and 3.2.2. The results of the sensitivity
analysis w.r.t. the design parameter R are shown in Fig. 6.10. Note here,
that the TFHA only calculates the sensitivity for one period of steady state
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Figure 6.9.: Adjoint solution λ(t, 5µs) at the QoI node for the final time
instance at 5µs.

operation. For the comparison, this periodic solution is repeated for five
periods of operation.

The solutions are in accordance. Particularly the Parareal ASA is ex-
tremely accurate within 2%of error margin when compared to the reference
solution. The TFHA shows spurious oscillations close to steep changes of
the resulting function. These oscillations are a result of Gibbs’ phenomenon,
and convergence occurs only when the number of harmonics approaches
infinity. This indicates that the TFHA is less suitable for this circuit example.

Periodic ASA

Lastly, the periodic ASA is applied to this example. For the periodic solution,
a PP-PC solver as introduced in sec. 2.5.2 is used. The PP-PC converges in
two outer iterations, which can be expected as the transients in this circuit
are weak. The result is the integral over one period of operation for the
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Figure 6.10.: Sensitivity of the output voltage Vout of the half-wave rectifier
w.r.t. the resistor R.

sensitivity of the QoI. Consider the integral QoI:

U =

∫︂
Vout(t) dt. (6.14)

For reference, the Xyce DSA reference from the previous subsection is
integrated over time for one period:

dU
dR

⃓⃓⃓⃓
reference

=

∫︂ 5 µs

4 µs

dVout(t)

dR
dt = −0.3712µV sΩ−1. (6.15)

The periodic solution along the ASA is calculated using the integral Eq. (5.5)
resulting in the integral sensitivity value of:

dU
dR

⃓⃓⃓⃓
periodic

= −0.3643µV sΩ−1, (6.16)

which is in accordance with the reference value. The error compared to the
reference is around 1.86% error for the periodic ASA solution. The PP-PC
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simulation requires two iterations for convergence. As the transient simula-
tion is only five periods in duration, the speedup is marginal in comparison
to the transient ASA for this example. However, it has been shown, that
the periodic ASA is a suitable approach to accurately analyze sensitivities
based only on the periodic solution. This is extremely advantageous for
applications with long transients.

6.3. Buck Converter

Buck converters, also known as step-down converters, are among the most
frequently used circuits in power electronics [24]. Buck converters are a
DC-DC converter that converts a higher DC input voltage to a lower DC
output voltage. The applications include power supplies, chargers, and
controlled power systems such as DC supplied train motors.

The functionality of a buck converter involves the use of a switch, such
as a transistor [36]. This switch connects and disconnects the input voltage
to an inductor in a defined duty cycle. The output voltage is adjusted by
modification of this duty cycle.

Here, an academic example of a buck converter (Fig. 6.11) is analyzed
using the proposed methods for ASA. This buck converter was used and
simulated in literature before, such as in [36].

The numerical simulations are executed for the model parameters shown
in table 6.1. The considered QoI is the buck converters’ output voltage.
The time dependent QoI is a charging curve topped with oscillations that

Table 6.1.: Model parameters used for the circuit simulation and analysis
of the buck converter.

Vin fs L RL C R

100V 500Hz 1mH 10mΩ 100µF 0.8Ω
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Figure 6.11.: Schematic of the DC-DC buck-converter circuit.
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Figure 6.12.: Output voltage Vout of the DC-DC converter plotted as a
function over time.

originate from the charging and discharging of the capacitor. The QoI is
plotted for the transient process in Fig. 6.12. The charging curve converges
to the desired DC value. Since this example has a comparably long transient,
the periodic methods, namely TFHA and PPPC ASA, are well suited for its
sensitivity analysis. This is particularly advantageous when the goal is to
analyze sensitivities associated with steady state operation.
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Figure 6.13.: Sensitivity of the output voltage Vout w.r.t. the parameter R of
the DC-DC-Converter calculated with Xyce DSA for reference plotted as a

function over time.

TFHA

The sensitivity analysis is performed using the TFHA and the PPPC ASA for
the steady state. The TFHA is performed with the simulation parameters:

• number of harmonics k: 50

• base frequency wp: 5 kHz

The base frequency is given by the lowest frequency of the input source.
In contrast, the number of harmonics is a trade-off between accuracy and
dimension of the harmonic Jacobian matrix.

The Xyce DSA solution serves as a ground truth for sensitivity analysis.
The reference sensitivity is plotted over time for the sensitivity analysis
w.r.t. the design parameter R in Fig. 6.13. Resistor R is at the output of
the buck converter. Thus, it is not surprising that its influence is largest
within the transient, i.e. when the capacitor is charging. In the steady
state, the influence of the resistance R is smaller. Nonetheless, it is the
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Figure 6.14.: Output voltage Vout sensitivity w.r.t. the resistance R of the
DC-DC-Converter calculated with the THFA compared to the Xyce DSA

reference solution plotted as a function over time for the last five periods.

most influential design parameter in the steady state, because the cyclic
charging and discharging of the capacitance C is regulated by it.

To compare the TFHA sensitivity with the reference solution, the last
five periods are considered. As in the previous example, the TFHA solution
is copied for five periods to better visualize the comparison. For the first
analysis, the influence of design parameter R is visualized in Fig. 6.14.
Clearly, the amplitude of the TFHA solution is slightly smaller, and lies within
a 3% error margin. This is explained by the truncation of frequencies, which
results in the loss of the higher frequency components and thus, a slight
damping. Nonetheless, the TFHA does not show any spurious oscillations
and is therefore generally well suited to analyze the sensitivities for this
example.

The influence of the resistor R leads to weak oscillations but a rather high
midpoint value. In contrast, the sensitivity w.r.t. the capacitor C is plotted
in Fig. 6.15. Clearly, the capacitor influences the oscillation strongly but has
a very small midpoint value. This will also be discussed with the periodic
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Figure 6.15.: Sensitivity of the output voltage Vout w.r.t. the capacitance C
of the DC-DC converter calculated with the THFA compared to the Xyce
DSA reference solution plotted as a function over time for the last five

periods.

ASA in the next subsection. The error in this example is slightly lower,
at around 2.1%. This smaller error originates from the larger oscillation
component in the base frequency range, which can be accurately described
by the TFHA.

Periodic ASA

In the first step of the periodic ASA, the adjoint solution is simulated using
a PP-PC solver. The solver uses the simulation parameters:

• number of subintervals N : 2

• discontinuity threshold: 10−4

The number of subintervals had to be limited because the period is ex-
tremely small compared to the entire simulation time span. This leads to
convergence issues if the number of timesteps of the coarse solver is too
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Table 6.2.: Sorted list of parameter sensitivities integrated over one period
using equation. Periodic ASA compared with reference Xyce DSA

integrated over one period. Since Xyce does not allow for sensitivity
analysis w.r.t. inductances, the reference is not available for L
device label sensitivity value Xyce DSA reference error

R 116.6009µV s 116.8457µV s 0.2095%
RL −74.2263µV s −74.2264µV s 0.0002%
L 397.5767nV s - -
C 6.358 981nV s 22.762 97nV s 257.96%

small. Alternatively, the number of subintervals could only be increased if
more timesteps where used for the coarse solver, which would contradict
the speedup goal. With the given parameters, the PP-PC adjoint simulation
converges in nine iterations, leading to a significant speedup even for two
subintervals, since the timespan of the steady state is only 1.3% of the
entire simulation duration.

The results in table 6.2 illustrate one downside of the pure integral
observation. The capacitor strongly influences the oscillation but is deemed
negligible when looking only at the integral. Due to the high amplitude and
the small mean value of the oscillation, the integral of the oscillating Xyce
DSA solution and the PPPC ASA solution are very far apart. This means
that depending on the design parameter, the integral of the steady state
might not be sufficient to analyze the circuit behavior. If oscillations must
be minimized, this method is not well suited.

6.4. Active Filter Circuit

This section presents the application of the proposed methods for sensitivity
analysis to an active filter circuit (see 6.16). This circuit is a good example

82



for a medium sized circuit with a limited bandwidth.
The presented circuit contains an additional filtering stage between a

power converter appliance that is connected to a line impedance stabiliza-
tion network (LISN) with a common mode (CM) choke [2, 44]. Particularly,
a voltage sensing current injection (VSCI) filter is used in the given example.
This type of active filter is widely employed in different fields of electrical
engineering, most prominently for active noise cancellation [57]. At this
point, it is not necessary for the analysis to specifically define which type of
power converter produces the noise injection modeled by the current source
signal. Therefore, the noise source characteristic of the power converter is
represented by a random noise current source.

The injected noise Inoise from the current source is discontinuous and
therefore broadband. It is connected to the LISN with a filtering stage.
Ahead of the OPAMP connection, the capacitor C1 provides galvanic de-
coupling for the filter input node OPin. Furthermore, the voltage divider
formed by R1 and R2 reduces the input voltage at node OPin to prevent
damage on the logical devices within the OPAMP. The circuit does not ex-
hibit long transients. Resultingly, the proposed methods TFHA and Parareal
ASA are well suited candidates to perform a sensitivity analysis.

As the noise disturbance originates in a switched power converter, it is
safe to assume that the noise has a specific shape and is also periodic.

For the sensitivity analysis of this example, two different QoIs are consid-
ered. As a first analysis, the voltage at the filter output stage OPout serves
as the QoI. The sensitivities for this QoI indicate which design parameters
can influence the filtered signal, that is ultimately interfering with the LISN.
The time dependent QoI is plotted in figure 6.17.

The second analysis employs the negating filter input voltage at node
OPin as QoI. The sensitivities for this QoI indicate which design parameters
influence the interference before the active filter stage. The QoI at the input
node OPin is expected to be more highly oscillating because of the low-pass
characteristics of the OPAMP. The time dependent QoI for the negating
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Figure 6.16.: Functional schematic for the nonlinear active filter circuit.

filter input voltage is plotted in figure 6.18.

TFHA and Parareal ASA

The sensitivity analysis is performed using the TFHA and the Parareal ASA.
The TFHA is executed with simulation parameters:

• number of harmonics k: 50

• base frequency wp: 10 kHz

The base frequency is the lowest frequency of the noise injection source.
In contrast, the number of harmonics is a trade-off between accuracy and
dimension of the harmonic Jacobian matrix.

The Parareal ASA uses the simulation parameters:

• number of subintervals N : 24

• discontinuity threshold: 10−4

Here, the number of subintervals is chosen as the number of physical
processing cores. The discontinuity threshold is chosen arbitrarily as before.
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Figure 6.17.: The QoI at the output node of the filter stage OPout in
circuit 6.16 plotted over time. Green vertical lines indicate the last period

of operation.

The adjoint variable λ(t, tend) for transient ASA such as the Parareal ASA
can be depicted as a time dependent graph as well. Considering the adjoint
variable λ(t, 300µs) at the node OPout results in the plot Fig. 6.19.

The adjoint variable contains high frequency oscillations as well as some
periodically occuring spikes. The Parareal is not well suited to handle dis-
continuities or fast oscillations [28]. Following this, the Parareal simulation
for λ(t, tend) does not fall below the discontinuity threshold at all time
instances represented by tend. But, for other time instances, the Parareal
cuts down the wall clock time nonetheless. Followingly, the solutions for
non-convergent time instances is replaced by a conventional transient simu-
lation. On average, 10 iterations are required for the adjoint simulation to
converge, leading to a theoretic speedup of 2.4 using the Parareal approach
with the given constraints compared to the purely transient simulation.

In contrast, the TFHA requires around 30 minutes for the assembly of the
harmonic Jacobian matrix. The required assembly time for the harmonic
Jacobian matrix can be severely cut down in future developments, as this
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Figure 6.18.: The QoI at the negating filter input OPin in circuit 6.16 plotted
over time. Green vertical lines indicate the last period, which is

considered as the steady state here.

procedure was not optimized in this work. Subsequent sensitivity analysis
is then executed in around 10 seconds with 20 seconds post-processing in
order to obtain the sensitivities w.r.t. all design parameters. This means,
that the TFHA is particularly quick for the defined setting.

The accuracy of the TFHA simulation is limited by the considered number
of harmonics k. The resulting error can be quantified using the approxima-
tion presented in section 3.3.4. If only one harmonic Jacobian matrix is
assembled, the number of harmonics k is fixed. In this case, the error can
be quantified by comparing the results with a reference solution.

The reference solution is obtained by executing a transient DSA using
Xyce [43]. Both proposed QoIs are compared with the reference solution.

The results of the first sensitivity analysis with the voltage at the filter
output stage OPout serving as QoI, showing the comparison of the proposed
methods with the Xyce DSA reference solution, is plotted in Fig. 6.20.
Clearly, both analysis methods are well suited to deliver accurate results
for this analysis. The Parareal ASA produces a small offset in some interval.

86



50 100 150 200 250 300

−3

−2

−1

0

time [µs]

λ
(t
,3
0
0
µs
)
[V

]

Figure 6.19.: Adjoint variable λ(t, 300µs) at the QoI node OPout plotted
over time.

On the other hand, the TFHA can not account for sharp peaks. The second
sensitivity analysis focuses on the voltage at the negating filter input node
OPin as QoI. This simulation is more challenging due to the faster oscillations
of the signal. The comparison of the proposed methods with the Xyce DSA
reference solution for this second simulaton is plotted in Fig. 6.21. The
TFHA is not able to approximate the shape of this sensitivity in any kind
with the given number of harmonics. This is explained with the larger
oscillations, that would require more harmonics for simulation. Given that
the system matrix is very large for the analysis with 50 harmonics already,
increasing the number of harmonics further would significantly escalate
the storage requirements.

Compared to the TFHA solution, the Parareal ASA solution is closer to the
reference. Since the speedup is not large in comparison with the transient
adjoint sensitivity analysis, the advantages to existing methods for this
applications are not significant.

Conclusively, the TFHA is a superior approach for sensitivity analysis for
this circuit example. However, the results must be evaluated cautiously.
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Figure 6.20.: Stepwise sensitivity in the last period of operation for the
sensitivity of the filter output voltage at node OPout (see Fig. 6.17) of the
active filter circuit 6.16 w.r.t. the most influential design parameter C1

plotted over time.
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Figure 6.21.: Stepwise sensitivity in the last period of operation for the
sensitivity of the filter input voltage at node OPin (see Fig. 6.17) of the
active filter circuit 6.16 w.r.t. the most influential design parameter C1

plotted over time.
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Fast oscillations in some QoIs cannot be represented accurately using the
TFHA. Nonetheless, the approach is well suited indicate the most influential
design parameters even for these QoIs.

6.5. B6 Bridge-Motor Supply Circuit

The most complex circuit with the most components that is used as an
example is a B6 bridge-motor supply circuit. B6 circuits in general are
described detailed in [87]. Fig. 6.22 shows the functional devices of the
circuit. The complete circuit contains more than 4000 devices in total. As
inputs, the circuit is supplied by six PWM sources, which are phase shifted
in order to produce a three-phase current at the output. PWM controlled
circuits are further described in section 2.2.3.

The switching cycle of the PWM is 1ms, whereas the period length of the
entire PWM is 10ms. In contrast, the transition time between the on- and
off-states of the voltage is several magnitudes smaller at 1µs. Resultingly,
in order to resolve the transitions accurately, a transient circuit simulation
requires a very large number of timesteps.

Consequently, this circuit is a very challenging example. It contains a very
large number of design parameters for one point, which would make the
transient ASA a suitable choice. But, on the other hand, the circuit solution
requires a very large number of timesteps, reducing the performance of
the transient ASA. The Parareal ASA, published in [71] aims to tackle this
problem by improving the transient ASA.

In this section, the Parareal ASA is utilized to speed up the analysis in
comparison to the transient ASA and making an analysis possible for this
numerically expensive circuit example. The other proposed methods are
not well suited. The TFHA requires a sufficient number of harmonics to
estimate the circuits behavior accurately. Due to the PWM excitation, the
B6 bridge circuit has a broadband solution, which would require a very
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Figure 6.22.: Functional schematic of a B6 bridge-motor supply circuit
with added parasitic EEC impedances Zpar. Vuh, Vvh, Vwh, Vul, Vvl, Vwl are

PWM gate voltages controlling the switches respectively.

large number of harmonics. Combined with the large scale of the circuit,
the TFHA becomes unfeasible, as it would be impossible to store the system
Jacobian matrix due to its extensive dimensionality.

The PP-PC ASA might look like a well suited approach on the first hand.
However, the number of required timesteps per period is extremely large.
Furthermore, the transient is only in the order of few periods, until the
steady state has been reached, which spoils the advantages of the PP-PC if
it does not converge in the first two iterations. Resultingly, the PP-PC ASA
does not provide any advantages over the Parareal ASA for this example.
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Figure 6.23.: The QoI plotted over time for the first PWM-cycle period of
the switch voltage. The green circle highlights the first oscillation, which

is shown enlarged in Fig. 6.25.

To define the QoI that must be observed, the sensitivity of the voltage at
the upper u-phase switch is considered. The behavior of the other voltages
in the circuit is analogous, as the voltages are largely controlled by the
PWM switches. The QoI over one entire period of operation is shown in
Fig. 6.23. The first oscillation is highlighted by the green circle. Because
the behavior at each switching process is very similar, and the number
of required timesteps for one period is very extensive even when using
Parareal, the performance is demonstrated for only one oscillation. This
first oscillation is shown in Fig. 6.24. This oscillation originates either
from the switching of the u-phase switch itself, or, as in the observed case,
by the switching of one of the neighboring phases. These oscillations are
particularly interesting to analyze, since these can raise the voltage over
the maximum operation limit of the switch for a short period of time. To
avoid any damage to the electronic components, this must be avoided.

In practice, these overshoots can be limited by adding capacitors to the
circuit, that can filter the high frequency oscillations. Consequently, the
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Figure 6.24.: The QoI plotted over time for the first switching oscillation.

sensitivity w.r.t. the most influential capacitor CDS_uh is further observed.
The sensitivity directly follows the shape of the QoI. The result of the ASA
is shown in Fig. 6.25. The Parareal ASA has an average error distance of
0.418% compared to the Xyce DSA reference. This error results from the
Parareal solvers threshold as well as propagated errors from the solution of
the integral equation (3.20).

To compare the influence of different design parameters, a stackplot
representation poses a good representation. This type of plot is often used
to depict Sobol indices as explained in section 1.1. The ten most influential
design parameters are shown in stackplot form in Fig. 6.26. For that, the
sensitivity w.r.t. each respective design parameter is normalized for the
total sensitivity value of all sensitivities contained in the plot. Following this,
the sensitivities can be presented analogously to Sobol indices as shown
in section 1.1. The stackplot shows the sensitivities w.r.t. the ten most
influential design parameters.

In many instances, the interpretation of the results is more straightfor-
ward in the frequency domain. Given the non-periodicity of the signal, the
power spectra for the sensitivities are estimated using Welch’s method, as
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Figure 6.25.: Output voltage sensitivity w.r.t. the switch capacitance of the
upper u-phase dVqoi/dCDS_uh. Parareal ASA solution compared to the

Xyce reference solution.

explained in appendix A.1.2. The frequency domain graph (Fig. 6.27) gives
a clearer depiction of the mentioned properties.

Connecting the sensitivity results to their physical meaning aids the
interpretation and therefore further development. Here, this interpretation
is given for two design parameters: Luh−vh3 and CDS_uh. The inductance
Luh−vh3 is associated with the connection between the high-side switch Uh

in the u-phase and the high-side switch Vh in the v-phase. Consequently,
Luh−vh3 provides a bypass route for the switch voltage.

The influence of Luh−vh3 on the oscillation originates from its interaction
with switch capacitances in the u- and v-phases. Particularly the capacitance
CDSuh influences the QoI before the initial switching event. Afterwards,
its relative influence diminishes, as the oscillation of the QoI is mainly
influenced by the neighboring v-phase. This is explained by the fact that
the oscillation is triggered by the switching event in the v-phase.

The inductor Luh−vh3 exerts strong influence on the relaxation oscillations,
which occur at lower frequencies of 2MHz. This oscillation is also seen in
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Figure 6.26.: Stackplot of the relative normalized sensitivity for the ten
most influential design parameters plotted over time.

Fig. 6.25 after 19.1 s. The capacitance CDS_uh weakly influences the lower
frequency oscillations but significantly influences the high-frequency com-
ponents of the signal. These findings are valuable during the optimization
stage in order to make the operation of the B6 bridge more robust.

The efficiency of the Parareal ASA is quantified using the metrics in-
troduced in section 5.1, namely the speedup (5.1) and the parallel effi-
ciency (5.2). Both metrics are depicted in Fig. 6.28. The speedup (5.1)
exhibits a linear growth, whereas the parallel efficiency (5.2) remains con-
stant with an increasing number of subintervals. This is due to the negligible
share of the coarse solver on the overall serial runtime and the absence of
any noticeable communication overhead. As a result, the algorithm scales
very well with additional computational units (threads, tasks, processors)
as indicated by the linear speedup in Fig. 6.28. Conclusively, the Parareal
ASA is significantly advantageous for the sensitivity analysis of the given
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Figure 6.27.: Power spectrum of the relative normalized sensitivity for the
ten most influential design parameters. The vertical dotted line (· · ·)

indicates the relaxation oscillation frequency.
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Figure 6.28.: Speedup Sp and parallel efficiency Ep for different numbers
of subintervals.
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circuit example. The accuracy compared with the reference is well be-
low a 1%. Additionally, the Parareal ASA results in a linear speedup for
more computational units, substantially reducing the wall-clock time for
simulation.

6.6. Additional Applications for Adjoint Sensitivity Anal-
ysis

In addition to the plain sensitivity analysis that is used in root cause analysis
and optimization, the proposed ASA methods can help in the engineering
process. These applications include the sensitivity based netlist reduction
as a straight forward model order reduction (MOR) approach as well as
utilization of ASA in EMC systems.

6.6.1. Sensitivity Based Netlist Reduction

Netlists describe electric circuits in a form that can be processed by sim-
ulation programs such as SPICE. Netlists may contain several thousand
elements, especially when parasitic elements are contained. A reduction of
the circuit can accelerate subsequent analysis steps.

One way to achieve a netlist reduction is sensitivity based reduction [41,
52]. The sensitivity based reduction approach utilizes the property that
parameters with minimal influence on the Quantity of Interest (QoI) may
be disregarded without strongly altering the simulation outcomes.

A sensor circuit is used as example for the algorithm. The unreduced
circuit in figure 6.29 (a) contains more than 1400 elements total, while the
reduction gives a reduced circuit 6.29 (b) with only 22 elements, while the
deviation of the simulation results remain in a predefined error margin of
less than 5% for the frequency of 1MHz.

To illustrate the effects of the circuit reduction. the potential at the line
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impedance stabilization network (LISN) is considered. In this circuit exam-
ple, the AC sensitivity analysis at specific frequencies is used. However, the
method for sensitivity analysis can be chosen differently if necessary [41].
The reduction is then executed by eliminating elements based on the sensi-
tivity values that are obtained from the AC sensitivity analysis. Depending
on the frequency that is used to calculate the sensitivities, different reduc-
tions are obtained. To illustrate this, the sensitivity analysis is performed
for different frequencies and the resulting reduced circuits are simulated.
The frequencies for sensitivity analysis are 1MHz, which is a frequency in
the middle of the spectrum, and 1.26 kHz, 66 kHz as well as 35MHz, which
are resonance frequencies.

Achieving a reduction while maintaining a 1% error margin is most se-
vere when the sensitivities are calculated for 1.26 kHz. Consequently, this
reduced circuit cannot provide correct results for high frequency compo-
nents of the simulation. For the simulation at higher frequencies, a larger
number of circuit elements is needed to match the results of the original
circuit. Fig. 6.30 shows the simulation results for the respective reduced
circuits. For a better overview, the relative size of the netlists is given as a
percentage in the graph legends.

The lower frequency components of the solution can accurately be de-
scribed with the circuit that contains only 3% of the elements from the
original circuit. Only above 8MHz the solution deviates completely. Result-
ingly, the sensitivity based netlist reduction is a very strong tool to reduce
the size of the netlist, particularly when only a small frequency range must
be simulated.

6.6.2. Sensitivity Analysis for Harmonic Resonance Analysis

The sensitivity analysis for harmonic resonance analysis was originally pub-
lished by Zhenyu Huang, Yu Cui, and Wilsun Xu for the optimization of
power systems in [40]. In the process of harmonic resonance mode analysis,
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(a) Original circuit.⇒

(b) Reduced circuit.

Figure 6.29.: Reduction of a circuit example. The original circuit,
containing 1400 elements is reduced to only 22 elements.
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Figure 6.30.: Comparison for the QoI between the original circuit solution
and several reductions according to different frequencies.

critical resonance modes are identified by calculating the sensitivities for all
the resonance modes w.r.t. the circuit’s design parameters. One important
finding of this analysis is that a harmonic resonance is closely related to the
singularity of a circuit admittance matrix. Thereby, the smallest eigenvalue
of the admittance matrix defines the mode of the harmonic resonance. In
contrast to earlier methods for sensitivity analysis, the combination of har-
monic resonance analysis for power systems with the sensitivity analysis
allow a specific quantification of the influence of design parameters on
harmonic resonance phenomena [40]. This is particularly advantageous
when the bandwidth of the resonances is very small, since existing meth-
ods for sensitivity analysis will overemphasize the influence of the design
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parameters if the resonance is slightly shifted by their uncertainty.
A similar approach was developed based on the adjoint sensitivity analysis

(ASA) presented in this thesis. This approach is mainly focused on the
optimization of the EMC properties of electric sensors [5, 6]. For the
analysis of these sensors, it is advantageous to relate the relative influence
of the design parameters on a given resonance as a QoI. As in [40], this
QoI is found by eigenmode decomposition of the electric circuit system.

6.7. Conclusion

The developed methods for ASA in this thesis were applied to a variety
of circuit examples from different domains of electrical engineering. For
each example, specific properties of the respective methods proved to be
advantageous. While the TFHA is particularly efficient in weakly nonlinear
circuits with a medium scale, such as the active filter example, it fails for
very large scale and broadband circuits. The Parareal ASA and the related
Parareal based methods require the circuit to be damped to be able to
converge [28]. Strong oscillations can lead to convergence issues which
will counteract the simulation speedup of the method. The PPPC ASA is
well suited for the analysis of circuits where the transient is long compared
to the period duration and only the steady state is the target.

Depending on the specific circuit problem, different approaches out of
the proposed methods for sensitivity analysis must be chosen. If chosen
accordingly, the methods hold significant advantages when compared to
existing methods for sensitivity analysis. This holds a large value in fu-
ture development and optimization steps, where strong performance of
sensitivity analysis methods is required.
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7. Conclusion and Outlook

7.1. Conclusion

Based on existing methods for sensitivity analysis, several novel approaches
were developed in the course of this thesis. The transient forward harmonic
adjoint (TFHA) method combines transient circuit simulation with harmonic
adjoint simulation, which circumvents the necessity for a harmonic balance
iteration that could possibly cause stability issues of the solver. The Parareal
adjoint sensitivity analysis (ASA) combines the Parareal solver with the
ASA to speed up both the transient circuit simulation and transient adjoint
simulation. Particularly noteworthy is the periodic ASA, which, in addition
to improving existing methods through combination with improved solvers,
also modifies the transient ASA to incorporate the adjoint integral for
periodic problems.

The developed methods in this thesis were derived mathematically and
numerically applied to a variety of practical circuit examples. These exam-
ples most notably include a DC-DC converter, a B6 bridge-motor supply
circuit and an active filter.

In all of these examples, the newly developed methods avoid performance
issues that arise when using commonly used approaches for sensitivity anal-
ysis. The sensitivity analysis for the DC-DC converter particularly benefits
from the periodic ASA, as the transient is much longer than the period
length. In contrast, the B6 bridge-motor supply circuit has a very long pe-
riod length and benefits from the Parareal ASA since the simulation requires
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a very large number of timesteps. Lastly, the active filter benefits from the
TFHA due to two reasons. Firstly, the circuit has a rather small bandwidth
and can be efficiently approximated in frequency domain. Secondly, the
interpretability of the results is much better in frequency domain when
analyzing filter circuits in general. Consequently, the methods are very
valuable tools when chosen accordingly for the problem setting.

7.2. Outlook

From the developed methods, some additional future developments would
be particularly interesting. Based on the transient forward harmonic adjoint
sensitivity analysis (TFHA), the additional implementation for multitone
excitation can be interesting. For the harmonic balance (HB) analysis, mul-
titone HB analysis means that the impact of multiple input tones and their
harmonics on the circuit’s response is considered. This can be particularly
advantageous if the timescales of the excitation are largely scattered. One
example for a circuit where this occurs is a power electronics circuit that
also incorporates a logic circuit partition. The logic circuit partition con-
tain much higher frequencies in these applications. To apply HB analysis
in these examples, multitone analysis is highly advantageous. The same
approximation can be utilized to calculate the Jacobian for the TFHA. The
multitone Jacobian approximation can be performed by modification of the
DFT operator defined in Eq. (2.32). Approaches for this modification are
presented in literature [48].

Another interesting work revolves around the use of multirate methods
as published in [9, 67] or [60]. These methods split the time integration,
which can be more efficient if the timescales are largely scattered. For
example, Pels et al. [60] use a Galerkin approach to simulate the fine time
resolution, which reduces the actual time integration to a small number of
steps. If this could be intelligently coupled with sensitivity analysis methods
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such as the ASA, this could be utilized to severely reduce the number of
necessary integral solver runs for the sensitivity.

And lastly, the developed methods can be applied to a larger variety of
circuit examples. Ideally, this would be implemented in a tool that can be
used by engineers without deep knowledge of the topic, such that the tool
decides which method is most suited based on the presented advantages and
disadvantages. Particularly the Parareal ASA and the periodic ASA, which
involve parallelization, can also benefit from the simulation on resources
with large parallelization availability.
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A. Appendix

A.1. Spectrum Estimation

Spectrum estimation is a mathematical concept that has its roots in signal
processing. It can be used to analyze the spectral components of a given
time-dependent signal. This analysis is motivated by the fact that a time-
domain representation of a signal can be hard to interpret in some cases.
These cases include electromagnetic filters where specific frequency compo-
nents must be filtered, or detection methods where different periodicities
or frequency bands must be available. While infinite time-series or ideally
periodic signals can be transformed to spectral domain by a simple DFT,
this is not as easy for finite signals that are not ideally periodic. In the
latter case, some considerations must be made to estimate the spectrum.
One common method for spectrum estimation is the periodogram, which is
briefly introduced here.

A.1.1. Periodogram

The periodogram is a widely used method for the estimation of the power
spectral density (PSD) of a discrete-time signal [15]. The steps along the
spectrum estimation using a periodogram are as follows [75]:

1. DFT: As in the ideal case, the first step for the spectrum estimation is
the transformation of the time sequence into the frequency domain

105



using a DFT. The DFT is defined analogously to the definition in
section 2.4 such that:

XN

(︂
ejω

)︂
=

N−1∑︂
n=0

X(n)e−jωn (A.1)

2. PSD: Based on the DFT of the signal, the periodogram is obtained as
an estimate for the PSD. The PSD is the signal’s power distribution
across the spectrum. Mathematically, the periodogram is represented
as:

INXX

(︂
ejω

)︂
=

1

N

⃓⃓⃓
XN

(︂
ejω

)︂⃓⃓⃓2
(A.2)

where N is the length of the signal. Following this definition, the
expected value of the spectral estimate obtained by the periodogram
converges to the real PSD CXX

(︁
ejω

)︁
as N approaches infinity:

CXX

(︂
ejω

)︂
= lim

N→∞
E
[︂
INXX

(︂
ejω

)︂]︂
. (A.3)

3. Plotting the periodogram: In order to identify the signal properties,
the periodogram is usually plotted as a function of frequency.

The periodogram has a major disadvantage that is cured in modified meth-
ods. While the expected value converges towards the real spectrum, the
variance of the periodogram does not converge to zero but rather as [15]:

lim
N→∞

Var
[︂
INXX

(︂
ejω

)︂]︂
= CXX

(︂
ejω

)︂2
. (A.4)

As a result, the periodogram often converges to the correct solution, but
is highly noisy due to the large variance. This is described in more detail
in [15]. A method that tackles this issue is Welch’s method.
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A.1.2. Welch’s Method

Welch’s method modifies the periodogram in a way that reduces the variance
of the spectral estimates. This is done by dividing the signal into overlapping
segments and computing periodograms for each segment. The spectral
estimate is then obtained by averaging the results of the periodogram of
each of the segments respectively. The steps along Welch’s method are as
follows:

1. Segmenting the signal: For Welch’s method, the signal is divided
into overlapping segments. Overlapping signals can capture non-
stationary signal properties. Additionally,spectral leakage effects are
reduced. This makes spectral estimates smoother and reduces its
variance.

2. Windowing: Before computing the periodogram for each of the over-
lapping segments, a window function is applied to smoothen the
spectral estimate. Most commonly used window functions are Ham-
ming, Hanning, or adaptive Kaiser windows.

3. Periodogram: For each of the segments, the PSD is computed using
the. The resulting PSDs are then averaged over all segments, further
reducing the estimates’s variance.

4. Overlapping and averaging: After computing the periodograms, the
resulting PSDs are averaged over all segments, further reducing the
estimates’s variance.

Spectrum estimation is crucial in spectral analysis where signals are not
ideally periodic or include uncertainties. The periodogram is a very sim-
ple and straight forward method for the spectrum estimation. However,
the estimate’s variance does not converge to 0 as the number of samples
increases, leaving a noisy estimate. Welch’s method tackles this issue by
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segmenting, windowing, and averaging, which reduces the variance and
delivers a better estimate for the spectrum.

A.2. Adjoint Sensitivity Analysis using Tellegen’s Theo-
rem

Tellegen’s theorem directly follows from Kirchhoff’s laws and states that
no power can leave or enter the lumped element circuit. In mathematical
terms, this is written as:

n∑︂
k=1

VkIk = 0. (A.5)

In contrast to the general derivation for equation systems, no derivative
of the system matrix is necessary for the implementation of the adjoint
sensitivity analysis. Additionally, the sensitivity analysis based on Tellegen’s
theorem is graphically descriptive as the adjoint problem is represented by
an adjoint circuit problem. Tellegen’s theorem holds equally true not only
for the same circuits, but also for circuits with an identical topology, i.e.
circuits that are described by the same incidence matrix (see section 2.2.1).
Since the adjoint circuit problem is a topologically identical circuit [94], this
property can be utilized. For this, an adjoint circuit is introduced with the
edge voltages V̂ k and the currents Îk. A simple voltage divider serves as an
illustration of a circuit with its corresponding adjoint circuit A.1. Following
this, a modified Tellegen’s theorem relating a given circuit with its adjoint
can be defined such that:

n∑︂
k=1

(︂
ÎkVk − IkV̂ k

)︂
= 0. (A.6)
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Îqoi = 1

Figure A.1.: Voltage divider (left) with its adjoint circuit (right) as an
illustration example.

If small variations of the quantities Vk = Vk,0 +∆Vk and Ik = Ik,0 +∆Ik
are imposed in the original circuit, Tellegen’s theorem reads [8]:

n∑︂
k=1

(︂
Îk (Vk,0 +∆Vk)− (Ik,0 +∆Ik) V̂ k

)︂
= 0. (A.7)

Subtracting the relation (A.6) for the unvaried circuit containing the quan-
tities Vk,0 and Ik,0 from (A.7) yields [94]:

n∑︂
k=1

(︂
Ik̂ (Vk,0 +∆Vk)− (Ik,0 +∆Ik)Vk̂

)︂
−

n∑︂
k=1

(︂
Ik̂Vk − IkVk̂

)︂
=

n∑︂
k=1

(︂
Ik̂∆Vk −∆IkVk̂

)︂
= 0 (A.8)

Using only fundamental theorems, a relation between the solutions of the
topologically identical adjoint circuit and variations of the quantities of the
original circuit is implied. To utilize this relation for sensitivity analysis, the
varied terms ∆Vk or ∆Ik are rewritten using Ohm’s law and the chain rule.
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As an example, it is assumed that the edge k is connected by a resistor R:

∆Vk = Ik∆R+R∆Ik. (A.9)

Plugging (A.9) into (A.8) results in:

n∑︂
k=1

(︂
Îk (Ik∆R+R∆Ik)−∆IkV̂ k

)︂
=

n∑︂
k=1

(︂
∆Ik

(︂
V̂ k − ÎkR

)︂
− ÎkIk∆R

)︂
. (A.10)

Applying sum formula (A.10) to the example circuit shown in Fig. A.1 gives
the relation:

n∑︂
k=1

(︂
∆Ik

(︂
V̂ k − ÎkR

)︂
− ÎkIkR

)︂
= −Î0I0∆R− Î1I1∆Rseries = 0. (A.11)

Mapping the sensitivity to the QoI requires a consideration for the QoI edge
U = Vqoi in the adjoint circuit problem. Using relation:

Îqoi∆U −∆IqoiV̂ qoi = 0. (A.12)

Defining the QoI as an open loop in the original circuit, for example a voltage
parallel to an element, the current Iqoi and therefore also the variation of the
current ∆Iqoi is assumed to be zero. Since the adjoint circuit can be chosen
freely as long as the topology remains the same, the adjoint current at the
QoI is chosen as 1. Without further considerations, the voltage variation at
the QoI is :

∆U = 0, (A.13)

and therefore:
∆U − Î0I0∆R− Î1I1∆Rseries = 0. (A.14)
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Deriving this equation exemplary by ∆R and building the limit for ∆U and
∆R gives the relation for the sensitivity at the QoI w.r.t. the resistance R as
design parameter p:

dU
dR

= ÎRIR. (A.15)

Implementation of the ASA using Tellegen’s theorem is very straight forward
as it is less intrusive because the system matrix is not required to be known.
This is particularly advantageous if the analysis needs to be implemented
using commercial tools, because commercial tools to not generally grant
access to the system matrices and the underlying indexing of the solver
itself. Furthermore, this approach for sensitivity analysis is limited to
linear circuits since relation (A.10) cannot be simplified in the same way if
nonlinear devices are present.

A.3. Analytical Solution for the Output Voltage of the
RC-Filter

The homogeneous part of ODE (6.4) reads:

dVout,h
dt

+
1

RC
Vout,h = 0, (A.16)

with the model homogeneous solution such that:

Vout,h = Ke−
1

RC
t. (A.17)

Since Vin is a sinusoidal time-dependent variable, the particular solution is
found by the Ansatz:

Vout,p = A sinωt+B cosωt, (A.18)

and resultingly:
dVout,p

dt
= Aω cosωt−Bω sinωt. (A.19)
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Substituting (A.19) and (A.18), as well as the definition for Vin into the
original ODE reads:

Aω cosωt−Bω sinωt+
A

RC
sinωt+

A

RC
cosωt− 1V

RC
sin(ωt) = 0

(A.20)

⇒ cosωt
(︃
Aω +

B

RC

)︃
+ sin(ωt)

(︃
A

RC
−Bω − 1V

RC

)︃
= 0.

(A.21)

Using comparison of coefficients, the constants A and B can be derived as:

A =
1V

1 + (ωRC)2
(A.22)

B = − (1V)ωRC

1 + (ωRC)2
. (A.23)

The complete solution is the superposition of homogeneous and particular
solution:

Vout = Vout,p + Vout,h

=
1V

1 + (ωRC)2
(sin(ωt)− ωRC cos(ωt)) +Ke−

1
RC

t. (A.24)

Requiring Vout = 0 for t = 0 gives the constant K as:

K = −B =
(1V)ωRC

1 + (ωRC)2
. (A.25)

Thus, the final solution for Vout reads:

Vout =
1V

1 + (ωRC)2

(︂
ωRCe−

1
RC

t + sin(ωt)− ωRC cos(ωt)
)︂
. (A.26)
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Analytical Sensitivity Using Symbolic Derivation

Eq. (6.5) is derived w.r.t. the design parameter R symbolically using the
quotient rule. The individual derivatives for each summation are as follows.
First, the exponential term is derived:

expdiff =
d
dR

(︃
1V

1 + (ωRC)2
ωRCe−

1
RC

t

)︃
(A.27)

=
ωCe−

1
RC

t
(︁

t
RC + 1

)︁ (︁
1 + (ωRC)2

)︁
− 2(ωC)2R

(︂
e−

1
RC

tωRC
)︂

(1 + (ωRC)2)2
VΩ−1

(A.28)

=
ωCe−

1
RC

t
(︁

t
RC + 1

)︁ (︁
1 + (ωRC)2

)︁
− 2(ωRC)2

(1 + (ωRC)2)2
VΩ−1. (A.29)

Here, the nominator is derived with the product-rule:

d
dR

(︂
e−

1
RC

tωRC
)︂
=

tωC

RC
e−

1
RC

t + ωCe−
1

RC
t (A.30)

= ωCe−
1

RC
t

(︃
t

RC
+ 1

)︃
(A.31)

Secondly, the sine term is derived:

sindiff =
d
dR

(︃
1V

1 + (ωRC)2
sin(ωt)

)︃
= −2(ωC)2R sin(ωt)

(1 + (ωRC)2)2
VΩ−1. (A.32)
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Finally, the cosine term is derived:

cosdiff =
d
dR

(︃
− 1V
1 + (ωRC)2

ωRC cos(ωt)
)︃

(A.33)

= −
ωC cos(ωt)

(︁
1 + (ωRC)2

)︁
− 2(ωC)2RωRC cos(ωt)

(1 + (ωRC)2)2
VΩ−1 (A.34)

= −
ωC cos(ωt)

(︁(︁
1 + (ωRC)2

)︁
− 2(ωRC)2

)︁
(1 + (ωRC)2)2

VΩ−1 (A.35)

(A.36)

The total derivative follows as the superposition of the three terms:

dVout
dR

= expdiff + sindiff+ cosdiff . (A.37)
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DoFs degrees of freedom
DSA direct sensitivity analysis
EEC equivalent electric circuit
EMC electromagnetic compatibility
FDF forward differential formula
FEM finite element method
FFT fast Fourier transform
HASA harmonic adjoint sensitivity analysis
HB harmonic balance
IC initial condition
ICs integrated circuits
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IGBT insulated-gate bipolar transistor
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