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Abstract

Although there are only two building blocks for nuclear matter, protons and neutrons, there are plenty of
nuclear systems and phenomena that emerge from the interaction between these two building blocks. The
great number of systems is manifested in the nuclear chart containing thousands of bound nuclear systems.
This thesis focuses on a special type of exotic nuclear systems, the two-neutron halo nuclei. Halo nuclei are
systems displaying a significant spatial separation between a more tightly bound core and some additional
nucleons which are more loosely bound. The latter are called halo nucleons. Two-neutron halos are those
halo systems that have two neutrons as halo nucleons. Prominent examples are 11Li and 6He. Halo nuclei are
highly non-classical systems requiring a quantum mechanical description. The halo nucleons spend most of
the time outside of the range of interaction.

In this thesis, these nuclei will be investigated using the framework of halo effective field theory (halo EFT).
Halo EFT is an EFT with the core and the halo nucleons as degrees of freedom. It makes use of the separation
of scales and offers a systematic expansion of the results in the low-momentum scale over the high-momentum
scale. Thereby, it also provides robust uncertainty estimates.

The aim of this work is to advance the understanding of these systems by calculating different observables
allowing for comparison with experiments and, thereby, validation of our understanding of these systems.
Concretely, the E1 strength distribution of 11Li is calculated based on a description of the ground state in
the Faddeev formalism and the evaluation of the E1 operator in a partial-wave basis. The role of the core
spin in the description of the ground state is investigated in detail, and results that are also applicable to
other two-neutron halo nuclei with s-wave interactions are derived. In the calculation of the E1 strength,
also final-state interactions (FSIs), interactions subsequent to the breakup distorting the final spectrum, are
taken into account. A perturbative scheme for including multiple different interactions that preserves unitarity
(isometry) is developed. It is based on the Møller distortion operators. It is found that neutron-neutron
FSI is here the most important FSI. The results for the E1 strength are also compared to experimental data
from RIKEN. Agreement within the EFT’s uncertainty bands is found. Also, a detailed comparison with the
calculations from Hongo and Son, who constructed an EFT without an explicit neutron-core interaction and
applied it to 11Li, is done. This comparison confirms the expectation of Hongo and Son that 11Li is not the
ideal playground for their EFT.

Another observable that is experimentally well accessible is the neutron-neutron relative-energy distribution
measured subsequent to the knockout of the halo’s core. In addition to testing the current understanding of
halo nuclei, this observable can also be used to measure the strength of the neutron-neutron interaction since
it is heavily influenced by the neutron-neutron FSI. If this interaction is parameterized in terms of the effective-
range expansion for the real part of the on-shell t-matrix’s denominator, the leading-order parameter is the
neutron-neutron scattering length. In order to extract this scattering length from a measured relative-energy
distribution following a knockout reaction, one needs theoretical predictions for the distribution parameterized
by this scattering length. Then the theory prediction can be fitted to the experimental data. The aim of this
part of this work is to provide the theoretical distribution for the reaction 6He(p, p′α)nn, i.e., the knockout of
the α particle out of 6He. For this purpose, the ground state of 6He is calculated in halo EFT and thoroughly
benchmarked against well-established three-body model calculations. These comparisons show the robustness
of the EFT results and also highlight the EFT’s advantage of providing uncertainty estimates. In the next step,
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the final-state interactions are taken into account. The approximative approach of so-called FSI enhancement
factors is investigated in detail and benchmarked against the exact calculation. The final result shows that
this distribution displays a significant dependence on the scattering length via its shape in the region of
relative energies up to 1MeV. Varying the scattering length by 2 fm results in a change of a characteristic
shape parameter by approximately 10%. The main result was obtained using the most important partial-wave
component. In addition to that, also the contributions from other partial waves are investigated. It is found
that these are not relevant in the low-energy region of this distribution.

The research on neutron-neutron relative-energy distributions is continued by investigating the universality
of the distributions of different two-neutron s-wave halo nuclei. It is found that the distributions of the halo
nuclei 11Li, 14Be, 17B, 19B, and 22C are quite similar if plotted as a function of relative energy over two-neutron
separation energy and if the normalization is adjusted. Moreover, we show that an approximate description
can be obtained by putting the neutron-neutron interaction as well as the neutron-core interaction into the
unitarity limit. The effects of neutron-neutron final-state interactions can be incorporated into this universal
description using enhancement factors. It is found that for the final distribution with neutron-neutron FSI
for these nuclei, the deviation of the actual curve from the universal prediction is typically below 20 % for
relative energies up to four times the two-neutron separation energy of the respective nucleus.

Finally, the formalism and derivations for a computer code that can calculate the ground state of two-neutron
halos in momentum space with arbitrary many separable interactions in arbitrary partial waves are presented.
This computer code might simplify future investigations of other two-neutron halos in halo EFT.
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Zusammenfassung

Auch wenn es nur zwei Bausteine für Kernmaterie, Protonen und Neutronen gibt, extistiert eine Vielzahl
an nuklearen Systemen und Phänomenen, die durch die Wechselwirkung zwischen diesen zwei Bausteinen
entstehen. Die große Anzahl an Systemen manifestiert sich in der Nuklidkarte, die Tausende an gebunde-
nen nuklearen Systemen listet. Diese Thesis konzentriert sich auf einen speziellen Typus von exotischen
Kernsystemen, die Zwei-Neutronen-Halokerne. Halokerne sind Systeme, die eine signifikante räumliche Aus-
dehnung zwischen einem enger gebundenen Kern und mehr lose gebundenen Nukleonen aufweisen. Letzere
werden Halo-Nukleonen genannt. Zwei-Neutron-Halokerne sind diejenigen Kerne, die zwei Neutronen als
Halo-Nukleonen besitzen. Prominente Beispiele sind 11Li und 6He. Halokerne sind hochgradig nicht-klassische
Systeme, die einer quantenmechanischen Beschreibung bedürfen. Die Halo-Nukleonen verbringen die meiste
Zeit außerhalb der Reichweite der Wechselwirkung.

In dieser Thesis werden diese Kerne mit der Methodik der Halo-Effektiven-Feldtheorie (Halo EFT) untersucht.
Bei Halo EFT handelt es sich um eine EFT mit dem Kern und den Halo-Nukleonen als Freiheitsgraden. Die
Theorie nutzt die Separation der Skalen und ermöglicht eine systematische Entwicklung der Ergebnisse in
der Nieder-Impulsskala über der Hoch-Impulsskala. Damit bietet die Theorie auch robuste Unsicherheits-
Abschätzungen.

Das Ziel dieser Arbeit ist es, das Verständnis dieser Systeme durch das Berechnen verschiedener Observablen
weiterzuentwickeln. Die Berechnungen für die Observablen ermöglichen den Vergleich mit experimentellen
Daten und damit die Validierung unseres Verständnisses dieser Systeme. Konkret wird die E1-Stärke von 11Li
basierend auf einer Beschreibung des Grundzustandes in Halo EFT und der Auswertung des E1-Operators in
einer Partialwellenbasis berechnet. Die Rolle des Spins in der Beschreibung des Grundzustandes wird im Detail
untersucht und Ergebnisse, die auch auf andere Zwei-Neutron-Halokerne mit s-Wellen-Wechselwirkungen
anwendbar sind, werden hergeleitet. Bei der Berechnung der E1-Stärke werden auch Endzustandswechselwir-
kungen, das sind Wechselwirkungen, die nach dem Aufbruch stattfinden und das finale Spektrum verzerren,
berücksichtigt. Ein perturbatives Schema für die Berücksichtigung mehrerer, verschiedener Wechselwirkungen,
das Unitarität (Isometrie) erhält, wird entwickelt. Es basiert auf den Møller-Verzerrungs-Operatoren. Es zeigt
sich, dass die Neutron-Neutron-Endzustandswechselwirkung hier die wichtigste Endzustandswechselwirkung
ist. Die Ergebnisse für die E1-Stärke werden auch mit experimentellen Daten von RIKEN verglichen, wobei
eine Übereinstimmung innerhalb der Unsicherheitsbänder der EFT zu beobachten ist. Weitherhin wird ein
detaillierter Vergleich mit den Berechnungen von Hongo und Son, die eine EFT ohne explizite Neutron-Kern-
Wechselwirkung konstruierten und auf 11Li anwandten, durchgführt. Dieser Vergleich bestätigt die Erwartung
von Hongo und Son, dass 11Li nicht der ideale Anwendungsfall für deren EFT ist.

Eine weitere Observable, die experimentell gut zugänglich ist, ist die Neutron-Neutron-Relativenergie-
Verteilung, welche nach dem Knockout des Kerns des Halos gemessen wird. Zusätzlich zum Testen des
gegenwärtigen Verständnisses vonHalokernen kann diese Observable auch zurMessung der Stärke der Neutron-
Neutron-Wechselwirkung genutzt werden, da sie stark durch die Neutron-Neutron-Endzustandswechselwirkung
beeinflusst ist. Wenn diese Wechselwirkung durch die effektive Reichweitenentwicklung für den Realteil des
Zählers der on-shell t-Matrix parameterisiert ist, ist der führende Term die Neutron-Neutron-Streulänge. Um
diese Streulänge aus einer gemessenen Relativenergie-Verteilung nach einer Knockout-Reaktion zu extrahieren,
werden theoretische Vorhersagen parametrisiert durch die Streulänge für die Verteilung benötigt. Dann kann
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die theoreitsche Vorhersage an die experimentellen Daten gefittet werden. Das Ziel dieses Teils dieser Arbeit
besteht darin, eine theoretische Verteilung für die Reaktion 6He(p, p′α)nn, dem Knockout des α-Teilchens aus
6He, zu bestimmen. Zu diesem Zweck wird der Grundzustand von 6He in Halo EFT berechnet und ausführ-
lich mit etablierten Drei-Teilchen-Modellrechnungen verglichen. Diese Vergleiche zeigen die Robustheit der
EFT-Ergebnisse und heben auch den Vorteil der EFT, Unsicherheitsabschätzungen zu ermöglichen, hervor.
Im nächsten Schritt werden Endzustandswechselwirkungen (engl. Abkürzung FSI) berücksichtigt. Die Nähe-
rungsmethodik der sogenannten „FSI enhancement factors“ wird im Detail untersucht und mit der exakten
Rechnung verglichen. Das finale Ergebnis zeigt, dass diese Verteilung eine deutliche Abhängigkeit von der
Streulänge über ihre Form in der Region von Relativenergien bis zu 1MeV hat. Variationen der Streulänge um
2 fm führen zu Änderung in einem charakteristischen Form-Parameter um ungefähr 10 %. Das Hauptergebnis
wurde mit der wichtigsten Partialwellen-Komponente erzielt. Zusätzlich dazu werden die Beiträge durch
weitere Partialwellen untersucht. Es zeigt sich, dass diese in der Niederenergie-Region dieser Verteilung nicht
relevant sind.
Die Forschung zu Neutron-Neutron-Relativenergie-Verteilungen wird mit dem Untersuchen der Univer-

salität von den Verteilungen verschiedener Zwei-Neutronen-Halokerne fortgesetzt. Es zeigt sich, dass die
Verteilungen der Halokerne 11Li, 14Be, 17B, 19B, und 22C sehr ähnlich sind, so sie als Funktion der Relativ-
energie über der Zwei-Neutron-Separationsenergie aufgetragen werden und so die Normierung angepasst
wird. Darüber hinaus wird gezeigt, dass eine approximative Beschreibung durch Versetzen der Neutron-
Neutron- und der Neutron-Kern-Wechselwirkung in den unitären Grenzfall erzielt werden kann. Die Effekte
der Neutron-Neutron-Endzustandswechselwirkung können in dieser universellen Beschreibung durch die
Verwendung der „enhancement factors“ inkludiert werden. Für die finale Verteilung mit Neutron-Neutron-
Endzustandswechselwirkung für diese Kerne ergibt sich eine Abweichung der tatsächlichen Kurve von der
universellen Vorhersage, die für Relativenergien bis zum Vierfachen der Zwei-Neutron-Separationsenergie des
jeweiligen Kerns typischerweise kleiner als 20 % ist.
Letztlich werden noch ein Formalismus und die Herleitungen für ein Computer-Programm zur Berech-

nung des Grundzustandes von Zwei-Neutronen-Halokernen im Impulsraum mit beliebig vielen separablen
Wechselwirkungen in beliebigen Partialwellen vorgestellt. Dieses Computer-Programm könnte künftige Unter-
suchungen von anderen Zwei-Neutronen-Halokernen in Halo-Effektiver-Feldtheorie vereinfachen.
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1. Introduction

Nuclear physics is the playfield of the nuclear force as well as of the electroweak force interacting between
protons and neutrons. Despite having only two basic constituents, protons and neutrons, these forces are
able to produce a large ensemble of phenomena and bring many systems to existence by binding nucleons
together1. More than 3338 nuclei are known as of the end of 2022 [1] and the existence of more than 7700
is estimated, making use of energy-density functionals and Bayesian statistics2 [2]. The nuclear force is an
effective interaction. It is the remainder interaction of the strong interaction, one of the four fundamental
forces of physics.
In the last forty years, many remarkable developments and findings have advanced nuclear physics. Two

important aspects of this are the introduction of effective field theories (EFTs) to nuclear physics and the
discovery of halo nuclei. Prior to and also after the introduction of EFT to nuclear physics, nuclear forces
were constructed in a phenomenological way. It was understood that at short distances, the force behaves
like a hard core, and at longer distances, the force is mediated by the exchange of mesons. At long distances,
it is dominated by the lightest meson, the pion, and at shorter distances also heavier mesons, such as the
rho meson, play a role. Based on the knowledge of the underlying physical processes, terms for the nuclear
potential were introduced, and the parameters were fitted to data. Different two- and three-body interactions
have been constructed in this process and applied with considerable success, see, e.g., Refs. [3–5]. However,
the calculations based on these so-called phenomenological potentials have the deficiency that there are no
rigorous uncertainty estimates for the results. Moreover, they are not systematically improvable.

The introduction of EFTs has put nuclear physics in that regard on more solid ground. EFT itself can be seen
as a generic way to build a field theory for describing the low-energy or equivalently low-momentum physics
of a more fundamental field theory. A high-momentum scale that defines the scale from which onward effects
are not explicitly included is introduced. This high-momentum physics is encoded in effective low-momentum
interactions and their couplings, the so-called low-energy constants (LECs). An EFT provides a simplified,
effective description of a more fundamental theory. The predictions for observables can be systematically
expanded in the low-momentum scale over the high-momentum scale. In this way, systematic improvements
and uncertainty estimates are possible. One of the key ideas of EFTs is that the structure of the effective
Lagrangian arises from the more fundamental Lagrangian of the system under consideration and that, thereby,
the symmetries of the underlying theory have to be respected. In our case, the nuclear force arises as an
effective force from the strong force. In principle, one could calculate the Lagrangian of the nuclear force
directly from the one of the strong force. Until today that is not fully possible as this would require that
one can compute the Quantum Chromodynamics (QCD) processes leading to the nuclear force at sufficient
accuracy. Because of the strong coupling and the thereby non-perturbative nature, it is hard to realize. Lattice
QCD provides a way to do so, although especially due to the large numerical effort required, this is still an
ongoing effort [6]. The alternative way of constructing the EFT is to write down a Lagrangian consistent
with the symmetries of the underlying theory. Parameters can then be fixed from experimental data. The

1Of course, only the nuclear force has attractive components causing the binding. But in the end, the properties of the bound state
are caused by an interplay of attractive and present repulsive forces. Thereby, the bound states are also influenced by the electric
force.

2This estimation was made for the case of up to 119 protons.
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latter approach is the one Weinberg used to systematically construct a Lagrangian and, in this way, also
potentials describing the nucleon-nucleon interaction in a manner consistent with the chiral symmetry of
QCD [7, 8]. In that way, chiral effective field theory was born, which is the state-of-the-art method to obtain
nuclear potentials for many-body calculations. The advantages are that the potential is consistent with the
underlying symmetries of QCD and that the so-called power counting of the EFT provides a scheme to estimate
the contributions of the different terms in powers of the low-momentum scale over the high-momentum
scale representing the omitted physics. Thereby it is possible to obtain the nuclear potential and carry out
calculations at a specific order in the expansion. This enables the already mentioned systematic improvements
and uncertainty estimates. In the past decades, the chiral Lagrangians have been developed up to higher
orders, and many sophisticated efforts have been made to fix the free coefficients of the chiral potentials from
experimental data (see, e.g., Ref. [9] for a review). In this way, the actual potentials that can be used in
many-body calculations to obtain different observables of the nuclei are provided. Also, on the many-body
frontier, tremendous progress has been made so that on the level of single protons and neutrons as degrees
of freedom of the many-body calculation, with so-called ab initio methods, more and more nuclei can be
calculated (see, e.g., Ref. [10] for a review). Moreover, tools from Bayesian statistics have been included to
enhance the uncertainty estimates.

In the last decades, also other EFTs for nuclear physics have been introduced, namely pionless EFT and halo
EFT (see, e.g., Refs. [11, 12] for reviews of nuclear EFTs). Pionless EFT can be seen as an effective field theory
for chiral EFT. While chiral EFT has the nucleons and the pion as explicit degrees of freedom, the degrees of
freedom of pionless EFT are solely the nucleons. An advantage of the pionless EFT is that at leading order,
the neutron-neutron interaction given by an s-wave two-body interaction is parameterized by one coefficient,
whereas chiral EFT has many parameters. This enables calculations of two- or three-body systems, e.g., the
deuteron or the triton, in pionless EFT with a low number of parameters. These can be directly determined
from a few observables related to these systems enabling a transparent study of observables and correlations.
Another nuclear EFT is halo EFT. It is even more effective and aimed at the description of halo nuclei, whereby
the degrees of freedom are given by a more tightly bound nuclear cluster, the so-called core, and more loosely
bound nucleons. Compared to chiral EFT, one advantage is again the lower number of parameters yielding
a transparent understanding of correlations. Another advantage is that, while the description of these halo
nuclei having large spatial extensions with ab initio methods are often computationally expensive, a halo EFT
description of the effective few-body system in a suitable basis is numerically much less expensive3.

The other development of the last decades that is of special relevance to this work is the discovery of halo
nuclei. Halo nuclei are nuclear systems consisting of a more tightly bound core and a few loosely bound valence
nucleons. Characteristic signatures are a significant enlargement of the matter radius and a strong low-energy
E1 strength. The exceptionally large radii were first discovered in experiments measuring the interaction radii
of radioactive isotopes at the Bevalac facility in Berkeley by Tanihata et al. in 1984. These isotopes were
produced in projectile fragmentation reactions. Inter alia, the surprisingly large radii of 11Li and 6He were
measured [13, 14]. Soon after that, in 1987, the large radii were explained by Hansen and Jonson in terms of
small two-neutron separation energies [15]. The small two-neutron separation energies were confirmed in
later experiments. Moreover, Hansen and Jonson predicted a large low-energy Coulomb dissociation cross-
section. In the meantime, the E1 strength distributions that parameterize the nucleus-specific contribution to
that cross-section have become one of the main observables of halo-physics experiments [16]. The low-energy
enlargement of the cross-section also helps in the detection of the events, especially since, depending on the
specific halo nucleus, the production rates for the halo nuclei are low. The progress in experimental halo
nuclear research has been matched by corresponding progress in theory. The two-neutron halo nuclei such
as 11Li and 6He have been studied extensively in three-body cluster models, see, e.g., Refs. [17–22]. Later,
the already discussed halo EFT was developed. It can be seen as an extension of cluster models that makes
3Normally, it can be done on a usual office or home PC.
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1/a0

Figure 1.1.: Typical visualization of three-particle systems in the K-over-1/a0 plane. The green lines are sketches of the
trajectories of the Efimov trimers. The blue line in the lower right quadrant is the line of the two-body bound
states. The drawn particles illustrate the different physical states the quadrants correspond to. In the upper
left quadrant, the three particles are unbound. In the upper right one, they are either unbound or there is one
particle and a bound two-body subsystem. In the upper triangle of the lower right quadrant, there is one particle
and a bound two-body subsystem. Along the green lines in the lower left quadrant and the lower triangle in
the lower right quadrant, the Efimov states exist. A concrete physical system characterized by a fixed scattering
length would be represented by a vertical line in this plot. Intersections of this line with the continuum and the
trajectories indicate the possible physical states of the three particles.

use of the already introduced effective field theory machinery and thereby enables uncertainty estimates
as well as systematic improvements. While halo EFT was first applied to describe the shallow resonance in
the nα system [23, 24], in the meantime, it has been applied to a number of systems and observables. The
matter radii of the so-called s-wave two-neutron halo nuclei have been investigated in halo EFT based on a
three-body description of their ground state [25]. The s-wave two-neutron halo nuclei are two-neutron halo
nuclei, where the dominant part of the neutron-core nc interaction is in the s-wave. Typical examples include
11Li and 14Be. Also, other observables have been studied in halo EFT in the meantime [26]. The E1 strength
of the one-neutron halo nucleus 11Be has been succesfully calculated [27]. Halo EFT has also been applied to
one-neutron halo nuclei with interactions beyond the s-wave [28] as well as to the two-body halo nucleus 6He,
which has the nc interaction in the p-wave [29, 30].

The study of two-neutron halo nuclei is also interesting because of the Efimov effect. This effect predicted
by the theorist Efimov [31] in 1970 describes the existence of a series of bound-states in three-body systems
if the scattering lengths in the two-body subsystems are infinitely large. The ratio between the binding
energies is fixed and depends on the mass ratio between the particles. The accumulation point of that series
is at zero energy. Also, in a certain range of finite scattering lengths a0, Efimov states can still exist. In a
K = sgn(E)

√︁
m |E3| over a−1

0 plane, the trajectory of the Efimov states with energy E3 for mass m particles can
be drawn. A schematical illustration can be found in fig. 1.1. For a negative scattering length, i.e., virtual
states in the two-body subsystems, the trajectory exists as long as the absolute value of scattering length is
still large enough. The smaller the absolute value becomes, the smaller is the interaction until it is too weak
to support the three-body bound state. Also, for positive scattering lengths, the trajectory has an end. The
smaller the scattering length becomes, the deeper the corresponding two-body state is bound until it is deeper
bound than the potential three-body bound state. Then, the latter is no more existent, as it is unstable against
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formation of the two-body bound state. Moreover, the region of existence of Efimov states in that plane is also
influenced by the so-called window of universality. It is the region, where the absolute value of the scattering
length is larger than the range of the interaction. This means that the two-body physics is dominated by
the scattering length and, thereby, this universal description in terms of only one two-body parameter is
applicable. The Efimov effect was first observed in an ultracold gas of Caesium atoms by Grimm et al. in
20064 [32]. Although research on Efimov physics started in the context of nuclear physics, an Efimov state in
nuclear physics is yet to be discovered. In nuclear physics, the systems typically consist of two nucleons and
one heavier cluster leading to larger ratios between the different bound-state energies. Thereby the detection
of Efimov states in terms of energies is more unlikely. For an investigation regarding possible Efimov states in
halo nuclei, see, e.g., the EFT study in Ref. [25]. Reviews of Efimov physics can be found in Refs. [33, 34].

The purpose of this work is to extend the previous research on two-neutron halo nuclei in various directions.
One direction is the calculation of the E1 strength of the halo nuclei 11Li and 6He. The work on the E1 strength
of 11Li has led to the first paper on the E1 strength of 11Li in halo EFT. Particular attention in that study is also
paid to the inclusion of final-state interactions (FSIs). A scheme is developed that allows for the inclusion
of multiple FSIs perturbatively while maintaining unitarity, i.e., conserving probability. Møller scattering
operators have been used for that purpose. This work also contains the first explicit inclusion of the core spin
in a halo EFT calculation of 11Li. The conditions under which the core spin can be neglected were formally
investigated for s-wave two-neutron halo nuclei in general.
Another way in which this works extends previous research is the study of neutron-neutron nn relative-

energy distributions in halo EFT. These are calculated for the case of the sudden knockout of the core and a
fast incoming halo beam so that the final nn distribution is mainly a result of the ground state configuration
distorted by nn FSI. Other FSIs, such as nc FSI, are suppressed due to the sudden knockout and the high initial
velocity. The distributions are obtained for the p-wave two-neutron halo nucleus 6He as well as for a number
of s-wave two-neutron halo nuclei such as 11Li and 14Be.

The nn distribution of 6He is studied in great detail, as the imprint of the nn FSI on the distribution should
be used to determine the nn scattering length. The scattering length is the leading-order parameter of the
effective range expansion, a low-energy expansion for the real part of the denominator of the t-matrix. This
implies that it is a fundamental parameter of the nn interaction. More pictorially, the importance of this
parameter for the t-matrix also implies that it is the leading-order parameter for describing the free scattering
of two neutrons. So, the nn scattering length is useful for understanding this fundamental interaction better.
And by comparing it to the scattering length between a neutron and a proton and the one between two
protons, one can learn more about the manifestation of charge-symmetry breaking in nuclear physics.
Another field for which the nn scattering length is relevant is the topic of few-body systems consisting

purely of neutrons. These systems would form the low-energy counterpart of neutron stars, massive stellar
objects consisting almost only of neutrons. While the neutron star is bound by gravity, in the few-body
systems, gravity is negligible. Until today the nature of three-neutron systems and four-neutron systems is
not fully understood. While in the case of three-neutron systems, low-energy resonances might or might not
exist (see, e.g., the EFT calculations [35, 36]), in the case of four neutrons, there is recent, strong evidence
for a correlated four-neutron system from the experiment by Duer et al. at RIKEN [37]. In advancing the
understanding of these systems, theory calculations play an important role. For those, a better knowledge of
the neutron-neutron two-body interaction is highly beneficial.
In the past multiple measurements of the nn scattering length have been performed. The most recent

ones are based on neutron-induced deuteron disintegration (d+ n→ p+ n+ n) and have produced values of
−18.7(7) fm [38, 39] and −16.5(9) fm [40]. Thereby, there is some tension between the different scattering
length values. The deuteron breakup experiments also have, from a theoretical standpoint, the difficulty that
there is a hadronic three-body final state. An alternative method to measure the scattering length proposed
4Year of the corresponding publication.
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by Aumann et al. [41] is via the nn distribution of 6He after knockout of the core in an inverse kinematics
experiment. The nn distribution is heavily influenced by the scattering length. Therefore, the scattering length
can be extracted by fitting theory data parameterized by the scattering length to the experimentally measured
distribution. This approach has a number of advantages over previous attempts, which will be discussed in
more detail in chapter 6. The purpose of this work is to provide the theoretical distribution parameterized by
the scattering length necessary for this extraction. Halo EFT is the ideal tool for that purpose. Since it provides
uncertainty estimates, the influence of the theory uncertainty on the uncertainty of the extracted scattering
length can be reliably estimated. Moreover, the theoretical calculation can be systematically improved by
going to higher orders in the EFT expansion. While the already discussed chiral EFT is an essential and reliable
tool of modern nuclear theory, for that purpose, halo EFT is more advantageous, as in halo EFT, the relation
between the scattering length and the distribution is more transparent. This is due to the fact that in halo EFT,
the nn interaction is directly parameterized by the scattering length.
In our studies of the nn distribution, we start with an accurate description of the ground state. For that

purpose, we also benchmark ground-state results against cluster model calculations. Moreover, in order to
have a clean description of the reaction, we review the underlying two-potential scattering theory and review
different techniques for including final-state interactions.
The experience in calculating nn distributions will also be used to calculate nn distributions of different

s-wave halo nuclei. There the universality of the distributions is investigated. Universality means that an
observable can be described by the same relation for different systems. It is an important concept as it
simplifies the approximate description of different systems. Moreover, understanding the origins of some
universality can also give additional insights.
This work is structured as follows. In chapter 2, the theoretical background is laid out. A summary of

scattering theory is given, which dedicates particular attention to the time-independent formulation and
the relevant operators. Before effective field theories and halo effective field theory are discussed, a quick
summary of quantum field theory is given. Finally, the Faddeev formalism is discussed. In chapter 3, the basis
for the following investigations is laid by investigating the ground state. First, the used basis in terms of Jacobi
momenta and partial-wave states is reviewed. Then ground-state calculations of s-wave halo nuclei with 11Li
results as examples are discussed. The role of the core spin is investigated in detail, and an analytical study
regarding neglecting it is done. Chapter 4 discusses the treatment of the bound-state structure of 6He. At
the example of ground-state nn relative-momentum distribution, benchmarks of the EFT description using
model calculations are performed. Local coordinate-space cluster models, as well as Yamaguchi models, are
employed. Chapter 5 continues with the calculation of E1 strength distributions of halo nuclei. The formalism
is discussed, and a probability-conserving scheme for including multiple final-state interactions perturbatively
is developed. The results for 11Li are presented for different assumptions about the ground state and for
different orders in the expansion of the FSI calculation. Comparisons with experimental data and a different
variant of halo EFT are performed. Also, results for the E1 strength distribution of 6He are presented. Chapter
6 proceeds with the study of the nn distribution following the core knockout in 6He. Following the analysis
of the ground-state distribution in chapter 4, the theory for handling the sudden knockout and including
FSI is formulated on the basis of the two-potential scattering theory. Different methods for calculating the
FSI effects are compared. Finally, the results are presented, and the sensitivity on the nn scattering length
is discussed. Chapter 7 provides supplementation to that. The effects of higher partial waves on the nn
distribution are reviewed. Moreover, the distribution is computed up to higher energies in order to provide a
benchmark for the calibration of the tetraneutron experiment [37]. Chapter 8 builds on this expertise in the nn
distribution by presenting calculations of this observable for various s-wave halos. This distribution is discussed
as a means to investigate universality. An effort to find a universal parameterization of this distribution is
made. The expertise in the calculation of two-neutron halo nuclei with the nc interaction in different partial
waves is used in chapter 9 to set up the formalism and derive the equations for a computer code that can
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handle two-neutron halos with arbitrary many separable interactions in arbitrary partial waves. Finally, the
main results and possible future research directions are discussed in the last chapter.
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2. Theoretical foundations

In this chapter, important theoretical foundations of the investigations presented in this work are discussed.
First, the quantum-mechanical scattering theory is introduced. Emphasis is put on the time-independent
formulation. The relation between the Lippmann-Schwinger equation and the Schrödinger equation is
discussed, and multiple solution strategies are introduced. On this basis, the t-matrix and the Møller operator
are reviewed. Eventually, the S-matrix is discussed. The second part of this chapter is a short summary
of Quantum Field Theory. An overview of the important concepts of the action, the Lagrange density, the
perturbative expansion of the correlation function in interacting theories, as well as the LSZ formula is given.
The introduction of halo effective field theory at the example of two-neutron halo nuclei builds the third part.
In the last part, the Faddeev formalism, which is instrumental to the calculations of ground states in this work,
is laid out. The spectator formalism, as well as different sorts of Faddeev components, are discussed in detail.

2.1. Quantum-mechanical scattering theory

There are multiple equivalent ways to formulate the quantum-mechanical equation of motion: the Schrödinger
equation in the Schrödinger picture, the Heisenberg equation in the Heisenberg picture, as well the equation of
motion of Dirac’s interaction picture. For this exposition, we choose to work in the Schrödinger picture, where
the operators O are time-independent and the states |Ψ⟩ are time-dependent, i.e., |Ψ(t)⟩. The Schrödinger
equation reads

i∂t |Ψ(t)⟩ = H |Ψ⟩ , (2.1)

where H is the Hamilton operator, consisting of a kinetic part H0 and a potential part V . Often it is desirable to
consider states of definite energy E. In this case, the time evolution of |Ψ(t)⟩ is given by e−iEt |Ψ(0)⟩, whereby
|Ψ(0)⟩ is also written as |Ψ⟩. This state has to fulfill the stationary Schrödinger equation:

H |Ψ⟩ = E |Ψ⟩ . (2.2)

The equation has two types of solutions: solutions at negative energies and solutions at positive energies.
The first kind of solution has a square-integrable basis representation of its state, the so-called wave function
Ψ(x) = ⟨x|Ψ⟩. In contrast to that, the latter type has representations that are not square-integrable. The first
kind of solution represents bound states, while the second kind represents scattering states.
In the case of scattering states, one is interested in fulfilling desired boundary conditions. Typically,

the boundary condition is a requirement for the incoming wave. While one can construct solutions of the
Schrödinger equation and of a boundary condition, it can be advantageous to directly use the Lippmann-
Schwinger equation, which implements a stationary boundary condition of choice automatically. The Lippmann-
Schwinger equation for a state |Ψ⟩, given an incoming wave |Φ⟩ as boundary condition, reads

|Ψ⟩ = |Φ⟩+G0(E)V |Ψ⟩ . (2.3)

The incoming state has to fulfill the free Schrödinger equation

H0 |Φ⟩ = E |Φ⟩ . (2.4)
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Since energy conservation holds, the scattered state |Ψ⟩ and the incoming state |Φ⟩ exist at the same energy
E, although with respect to different Hamiltonians. Note that H0 is the Hamilton operator describing the
motion if the scattering particles are far apart. Typically it is purely kinetical, but if there is, in addition to the
short-ranged scattering interaction V , a very long-ranged interaction, this could be treated as part of H0. The
operator G0(E) used in eq. (2.3) is a resolvent operator called the free Green’s operator. It is given by

G0(E) =
1

E −H0
. (2.5)

The name stems from the fact that its coordinate space matrix elements build the Green’s function1 to the
differential operator stemming from the matrix elements of (H0 − E). If the resolvent operator appearing
in the Lippmann-Schwinger equation is to be evaluated between eigenstates of H0, e.g., states of definite
momentum for a purely kinetical H0, for the p with Ep = E a singularity in the equation appears. This can be
circumvented by making the energy slightly imaginary, i.e., by making the adjustment E → E ± iϵ and adding
the limit limϵ→0+ . By connecting this equation to the time-dependent formulation of scattering, one can see
that the choice of sign in front of the imaginary parts decides whether |Φ⟩ forms a boundary condition for
the distant past or future. Usually, one is interested in setting the boundary condition for the distant past.
This corresponds to having a positive imaginary part. In that way the Lippmann-Schwinger equation can be
written as ⃓⃓⃓

Ψ(+)
⟩︂
=
⃓⃓⃓
Φ
⟩︂
+ lim

ϵ→0+
G0(E + iϵ)V

⃓⃓⃓
Ψ(+)

⟩︂
. (2.7)

Since the following equations can be understood for both types of boundary conditions (past or future as
well), we write them down without explicitly stating the limits. One should keep in mind that, for physical
calculations, such an imaginary part and a corresponding limit can be added where necessary. Moreover,
when we discuss the transition operator as well as the full Green’s operator, it is useful to think of E as a
complex number whose imaginary part can be of arbitrary size.

An important aspect of the Lippmann-Schwinger equation for the scattering state is that the state |Ψ⟩ to be
obtained appears on the left as well as on the right side of the equation. One can solve this equation iteratively
by starting with |Φ⟩ as an ansatz for |Ψ⟩ and inserting this on the right side. The equation then ideally yields
an improved approximation. One can insert this again into the right side and thereby iteratively obtain a
solution. This method gives rise to the Born series for the scattering state given by

|Ψ⟩ =
∞∑︂
i=0

(G0(E)V )
i |Φ⟩ = |Φ⟩+G0(E)V |Φ⟩+O

(︁
V 2
)︁
. (2.8)

As an alternative to the series method, one can try to solve the full equation directly. A momentum space
representation of the equation is given by

⟨p|Ψ⟩ = ⟨p|Φ⟩+
∫︂

d3p′ ⟨p|G0(E)V |p′⟩ ⟨p′|Ψ⟩ (2.9)

or equivalently
Ψ(p) = Φ(p) +

∫︂
d3p′G0(p;E)V (p,p′)Ψ(p′) . (2.10)

This shows that this is an inhomogeneous integral equation of the Fredholm type. It can be solved numerically
by discretizing the momenta, whereby the wave functions are represented as vectors. The integral over the
1In detail, for H0 being the standard two-body kinetic energy operator, the relation(︃

∇2
x

2µ
− E

)︃ ⟨︁
x
⃓⃓
G0(E)

⃓⃓
x′⟩︁ = δ(3)

(︁
x′ − x

)︁
(2.6)

holds. The reduced mass is denoted by µ.
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potential matrix elements times the wave function can be represented as a matrix-vector multiplication. In
that sense, this problem can be turned into a standard linear algebra problem.

There is yet another approach to obtaining a solution to the Lippmann-Schwinger equation for the scattering
state. Since this approach introduces some beneficial concepts, we will take the time to review it briefly. One
can define a transition operator T̃ turning an incoming state |Φ⟩ into the scattering state |Ψ⟩. The main work
of solving the Lippmann-Schwinger equation for the scattering state is replaced by finding that operator.
Of course, one then has also to evaluate the expression ⟨p|T̃ |Φ⟩ (for the example of a momentum basis).
However, one can see this as a further systemization of the formalism, as one does not have to solve the
Lippmann-Schwinger equation in the case of changing boundary conditions over and over again but can
simply solve for the transition operator once and reuse this result for obtaining concrete solutions to different
boundary conditions.
In practice, it turns out to be more useful at this point to define the transition operator not as T̃ |Φ⟩ = |Ψ⟩

but via
T |Φ⟩ = V |Ψ⟩ . (2.11)

By inserting the expression for the scattering state following from that definition into the Lippmann-Schwinger
equation for the scattering state (eq. (2.3)) one obtains the Lippmann-Schwinger equation for the T operator,
which is often also called t-matrix2. It reads

T (E) = V + V G0(E)T (E) . (2.12)

This shows that since G0 is a function of the energy, also the t-matrix is one. Although it is a bit more hidden
in the original definition of the t-matrix, one could have also seen that there, since the states |Φ⟩ and |Ψ⟩
implicitly depend on the energy E. Note that, in principle, the representation of the t-operator is always a
function of three variables or sets of variables. Two sets of variables are given by the variables parameterizing
the Dirac bra and ket state between which the operator is evaluated, while the third variable is the energy E.
In that sense, T can be understood as a function mapping a real (or a complex) number, i.e., E, to an operator
in the Hilbert space. In fact, it is instructive to study the behavior of T (E) as a function of a potentially
complex energy variable E. For that purpose, it is useful that this operator can also be written as

T (E) = V + V G(E)V , (2.13)

where G(E) is the resolvent corresponding to the full Hamilton operator and given by

G(E) =
1

E −H
. (2.14)

It is clear that the spectrum of the Hamilton operator H corresponds to the singularities of this resolvent, also
called full Green’s operator. In eq. (2.13), relating the t-operator and the full Green’s operator, the full Green’s
operator is the only potential source of singularities in the generally complex variable E. As a consequence, the
singularities of the t-operator and those of the full Green’s function are equal. Thereby, the singularities of the
t-operator give the spectrum of the Hamilton operator. Moreover, one can not only obtain the eigenvalues, i.e.,
the energies, from the t-operator but, from the residues of the singularities, one can also obtain the eigenstates
(eigenvectors in less formal language). This follows from eq. (2.13) and from the spectral representation of
the full Green’s operator, which reads

G(E) =

∫︂
dξ

|ξ⟩⟨ξ|
E − Eξ

+
∑︂
n

|n⟩⟨n|
E − En

, (2.15)

2Of course, only the matrix elements of the operator form a matrix or in a continuous basis, a function. Nevertheless, we will in the
following also use this common language.
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where the continuous states are paratemerized by ξ and the discrete ones are counted with n. Typically, Eξ

covers the whole positive real axis, while En is a discrete set on the negative real axis. This highlights that the
complete eigenproblem of H can be solved by analyzing the singularities and the respective residues of T (E).
Of course, obtaining the t-operator is usually not significantly simpler than solving the eigenproblem of H.

So far, we have discussed how the scattering state is defined via the Lippmann-Schwinger equation and how
it can be obtained. In this context, we have discussed the Born series, the integral equation for the concrete
representation of the state, and the t-operator. We have seen that the t-operator does not only provide a
different way to obtain the scattering state but is a powerful tool in general. While we now have a better
understanding of how to calculate scattering wave functions, like bound-state wave functions, scattering
functions themselves are not observable. Accordingly, they are usually not the final results one is interested
in. Therefore, we will discuss transition probabilities from one asymptotic free state in the beginning, the
incoming state, to another asymptotic free state in the future, the outgoing state. These transition probabilities
between the asymptotic states are connected to the measurable cross-sections. The transition probability p
between the asymptotic outgoing state given at t = 0 by |φout⟩ and the asymptotic incoming state given at
t = 0 by |φin⟩ is calculated as

p(φout, φin) =
⃓⃓⃓
lim
t→∞

⟨φout(t)|U †(−t)U(t)|φin(t = −t)⟩
⃓⃓⃓2

(2.16)

=
⃓⃓⃓
lim
t→∞

⟨φout|U †
0 (t)U

†(−t)U(t)U0(−t)|φin⟩
⃓⃓⃓2
. (2.17)

Hereby, U(t) is the time evolution operator given by e−iHt and U0(t) is the free time evolution operator
governing the time evolution of the free states. It is given by e−iH0t. From the first to the second line of the
equation, the transition from the asymptotic states at some time t to the asymptotic states at t = 0 was made
by using the free time evolution operator. If the limit exists, which should usually be the case in physics, we
can write the second line of the equation as

p(φout, φin) =
⃓⃓⃓
⟨φout|

(︂
lim
t→∞

U †
0 (t)U

†(−t)
)︂(︂

lim
t→∞

U(t)U0(−t)
)︂
|φin⟩

⃓⃓⃓2
. (2.18)

To write that expression more compactly, one can introduce the operators

Ω± := lim
t→∞

U(±t)U0(∓t) . (2.19)

The expression for the probability then reads

p(φout, φin) =
⃓⃓⃓
⟨φout|Ω†

−Ω+|φin⟩
⃓⃓⃓2
. (2.20)

The two operators Ω± are the so-called Møller wave distortion operators or short Møller operators (cf. the
original reference [42]). As one can see from our application to the transition probability or also from their
definition via a limit of this expression of time evolution operators, they take an asymptotic incoming (outgoing)
state at t = 0 and transform it into the corresponding scattering state at t = 0.
From the use of the Møller operator as an operator for transforming between different sorts of time-

independent states and from the fact that it is the limit in the t argument of the time evolution operators, we
see that it does not, on its own, depend on time. Therefore, it is not surprising that it can be represented by
the operators of the time-independent scattering theory. One finds

Ω± = 1 + lim
ϵ→0+

∫︂
dξ G(Eξ ± iϵ)V |ξ⟩⟨ξ| (2.21)

= 1 + lim
ϵ→0+

∫︂
dξ G0(Eξ ± iϵ)T (Eξ ± iϵ) |ξ⟩⟨ξ| , (2.22)
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where |ξ⟩ is the generic eigenstate of some H0 with H0 |ξ⟩ = Eξ |ξ⟩. Now, the relation between the sign of the
imaginary part added to the real energy and the nature of the boundary condition (past or future) becomes
apparent. A positive imaginary part corresponds to Ω+, which means that the boundary condition is imposed
via the incoming (past) state.

For describing transition probabilities and also for calculating the related cross sections, it is helpful to
introduce the S-matrix as

S := Ω†
−Ω+ . (2.23)

Similar to the t-matrix, in many cases, the S-matrix is, in fact, an S operator, but we want to stick with the
common language. With this at hand, the transition probability can be written as

p(φout, φin) = | ⟨φout|S|φin⟩|2 . (2.24)

Two essential properties of the S-matrix are that it conserves the energy, i.e., it is zero when evaluated
between states of different energies, and that it conserves probability. Mathematically spoken, it is a linear and
norm-preserving mapping from H to H, where H is the complete Hilbert space of eigenstates of H. The energy
conservation follows from HS = SH, which is a consequence of the so-called intertwining property of the
Møller operators. The unitarity of the S-matrix can be derived based on the isometry of the Møller operators.
The Møller operators are a powerful tool. Some of their properties will be discussed at later points in this
work. We conclude by relating the S-matrix and the t-matrix without the Møller operators as an intermediate
step:

⟨ξ′|S|ξ⟩ = δ(ξ′ − ξ)− 2πiδ(Eξ′ − Eξ) lim
ϵ→0+

⟨ξ′|T (Eξ + iϵ)|ξ⟩ , (2.25)

where the eigenstates of H0 are denoted by |ξ⟩. A typical case would be |ξ⟩ = |p⟩. For additional information
on quantum mechanical scattering theory, we refer the reader to Refs. [43–45].

2.2. Quantum field theories

We proceed with a brief summary of Quantum Field Theory (QFT). More information can be found, e.g., in
Refs. [46, 47].
While quantum mechanics works fine for non-relativistic processes, incorporating relativistic physics in

quantum mechanics, which was tried with the quantum-mechanical Klein-Gordan equation as well as with the
Dirac equation, suffers from serious problems. One is that in a relativistic theory according to the energy-mass
equivalence3 E = mc2 particles can be created, and therefore the particle number is not conserved anymore,
while the energy conservation still holds. The quantum mechanical description has the deficiency that it
is working with fixed particle numbers. The second problem is that despite incorporating the relativistic
energy-momentum conservation, relativistic quantum mechanics produces non-vanishing values for transition
amplitudes that have to vanish due to causality. Causality mandates that information can not travel faster
than with the velocity of light.
The solution to these problems is Quantum Field Theory, which can be obtained by quantizing a classical

field theory. Quantization means that the fields, which are functions of the space-time points, are elevated
to operator-valued functions defined in the space-time, in short operators. Moreover, the Poisson brackets
of the classical field theory are elevated to commutators. The field operators are able to create particles
and antiparticles by acting on the vacuum state. Thereby a description with a variable particle number is
possible. The states created in such a manner are elements of the Fock space, the direct sum of the Hilbert
3Note that at this occasion we wrote c explicitly out, but in general, we work in a unit system with c = 1.
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spaces of different particle numbers. The causality requirement is automatically fulfilled in the QFT, which is
constructed as described. Due to a cancellation between propagation contributions stemming from particles
and those stemming from antiparticles, amplitudes that would violate causality are vanishing.

After having discussed some important basic advantages of QFT, we want to briefly explain how a concrete
QFT is formulated and how calculations can be done. The different degrees of freedom of the physical system
are represented by different field operators. The Lagrangian density describes the free propagation of the
fields as well as their interactions. The equations of motion can be obtained by minimizing the action S, the
space-time integral of the Lagrangian density L:

S[Φi, ∂µΦi] :=

∫︂
dt

∫︂
d3xL(Φi(x), ∂µΦi(x)) (2.26)

With the indices, we indicate that all different fields are arguments to this object, which is a functional because
it maps (operator-valued) functions to a number, the value of the action. It can be shown that the action is
extremal if each field Φi satisfies the Euler-Lagrange equation

∂L
∂Φi

− ∂µ
∂L

∂ (∂µΦi)
= 0 . (2.27)

Note that there is an Einstein sum running over the components of the space-time points counted by µ. This is
the version of the Euler-Lagrange equation that holds if the Lagrange density is a function of the fields and
their first derivatives. If second or higher derivatives appear in the Lagrange density, different, more general
versions of the Euler-Lagrange equation have to be employed.

A central object of QFT are the so-called N -point correlation functions that are given by

C({xi}, {yj}) := ⟨Ω|T ΠiΦ(xi)ΠjΦ(yj)|Ω⟩ , (2.28)

where |Ω⟩ denotes the state of the interacting vacuum and T is the time-ordering operator. While the evaluation
of these correlation functions for a purely free Lagrangian, i.e., without interaction terms, and thereby the
free vacuum as states is straightforward, it is generally very hard for an interacting theory. A central result
for simplifying these calculations is obtained by going from Heisenberg fields as field operators, as in the
example above, to Dirac fields ΦI , also called interaction-picture fields. This transition results in additional time
evolution operators emerging in the expression. Moreover, the interacting vacuum state can be represented
based on the action of the time evolution operator on the free vacuum state |0⟩, since for a slightly imaginary
time, the time evolution operator projects the ground state of its Hamiltonian out of this free vacuum state.
And that ground state is the interacting vacuum state. With these ingredients, one can derive the following
expression for the correlation function

C({xi}, {yj}) = lim
t→(1−iϵ)∞

⟨0|T ΠiΦI(xi)ΠjΦI(yj) exp
{︂(︂

−i
∫︁ t

−t
dt′HI(t

′)
)︂}︂

|0⟩

⟨0|T exp
{︂(︂

−i
∫︁ t

−t
dt′HI(t

′)
)︂}︂

|0⟩
. (2.29)

The advantage of this expression for the correlation function is that the exponential can be expanded in the
couplings of the interactions, and thereby a perturbative expansion can be realized. By pulling out the sum that
emerges in that way of the expectation value and moving the sum in front of the limit, one has decomposed
the single expectation value describing the correlation function into a sum of expectation values representing
different processes, e.g., differing in the number of interactions happening. The evaluation of the time-ordered
products is, in practice, simplified very much by the Wick theorem, which relates the time-ordered product
of field operators to a normal-ordered sum of all possible contractions. These contractions are given by
the Feynman propagators. Therefore, each term in the expansion can be evaluated in terms of Feynman
propagators and the interaction vertices.
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This equation also provides a means to obtain the Feynman rules for interaction vertices. The Feynman rules
are a mapping between a basic irreducible Feynman diagram and the mathematical expression representing
it. The Feynman rule of a diagram representing a specific part of the interaction term in the Lagrangian is
obtained by setting HI to this interaction term and evaluating the first-order contribution of the exponential
solely after expansion. The evaluation of these expressions is simplified by the fact that interaction picture
field operators are nothing else than the Heisenberg picture field operators of the corresponding free theory.
Note that the denominator of eq. (2.29) plays, in practice, not a big role since its contribution gets canceled
by the same factor emerging in the evaluation of the numerator.

So far, we have discussed correlation functions. In practice, one often wants to evaluate S-matrix elements
as they are directly connected to the observable cross-sections. For that purpose, the LSZ reduction formula
named after Lehmann, Symanzik, and Zimmermann can be used. In the language of Feynman diagrams,
it states that the scattering amplitudes are given by the diagram of the corresponding correlation function
with all external lines removed. With this, we have roughly described the way from the Lagrangian to the
scattering amplitudes and thereby closed the summary of QFT.

2.3. Halo effective field theories

Since we have already given a brief overview of the developments and example applications of halo effective
field theory (halo EFT) in the introduction, we want to directly discuss the halo EFT for a s-wave 2n halo
nucleus. The discussion is loosely based on Refs. [25, 26]. By s-wave we mean that not only the nn but also
the nc interaction is in the s-wave. The starting point is the Lagrangian L. At leading order, we have for a halo
with a spinless core and a total spin of zero

L = L1 + L2 + L3 , (2.30)

L1 = n†
(︃
i∂0 +

∇2

2mn

)︃
n+ c†

(︃
i∂0 +

∇2

2mc

)︃
c , (2.31)

L2 = −cnn[nn]†0,0[nn]0,0 − cnc[nc]
†
1/2,m[nc]1/2,m , (2.32)

L3 = −h[nσ]†0,0[nσ]0,0 . (2.33)

The part L1 is the one-body Lagrangian describing the non-relativistic free motion of the neutron field n and
the core field c with masses mn and mc, respectively. In the case of a spinless core, the one-body part is a
scalar and has no indices. Due to its spin-1/2 nature, the neutron field is a spinor with an index indicating the
spin projection. The part L2 is the two-body Lagrangian. It encodes the interaction between the different
fields. The specified Lagrangian contains a contact nn interaction with the coupling cnn for the channel with
an overall nn spin of zero. Moreover, it contains a contact nc interaction with strength cnc, whereby the spin is
given by the neutron spin of 1/2.
Based on the Lagrangian, in the first step, the dressed dimer propagators for the nn and the nc system

can be derived. They describe the motion of the two-particle systems. The Dyson-Schwinger equation is
used to obtain the dressed dimer propagators from the bare ones. It is the field-theoretical analogon to the
Lippmann-Schwinger equation. In that process, a loop integral for the self-energy emerges that has to be
regularized. This can be done by introducing a cutoff, for example. The regularization scale dependence is
then removed by renormalizing the dressed dimer propagators. In the on-shell renormalization scheme, the
dressed dimer propagator is related to the on-shell t-matrix and the effective-range expansion parameters are
employed for renormalization.

Based on the renormalization of the two-body subsystems, the three-body physics can be described in terms
of particle-dimer amplitudes. By using Feynman diagrams, a system of integral equations relating the different
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amplitudes can be set up. It is the field-theoretical version of the equations for the Faddeev amplitudes.
Renormalization is done by introducing a three-body force. For the matching, typically, the binding energy of
the effective three-body system is used.

2.4. Faddeev formalism

While the Faddeev formalism was initially developed for obtaining functions describing the quantum-
mechanical scattering of three particles [48] and is also still used for this, this formalism is also a powerful
tool for describing bound states in a non-relativistic Quantum Field Theory [26] or in Quantum Mechanics
(QM) [49]. That it is applicable to both, non-relativistic QFT and Quantum Mechanics, is not surprising since
both are equivalent. In the following, we will provide an introduction to the Faddeev formalism in regard
to bound states. We begin by describing how the Faddeev formalism can be derived in Quantum Mechanics
and formulate it in the notation and language of Quantum Mechanics. Alternatively, that formalism can be
recovered and formulated in non-relativistic QFT. For further information on the first approach, see Refs. [49,
50]. Additional information on the second approach can be found in Ref. [26].

The starting point for the description of a bound state at energy E given by a state vector |Ψ⟩ in QM is the
stationary Schrödinger equation

H |Ψ⟩ = E |Ψ⟩ , (2.34)

whereby H is the Hamilton operator. The latter can be decomposed into a kinetic part H0 and an interaction
part V . In the beginning, we assume that there are only two-body interactions. At later points, whenever
necessary, we will omit that assumption and also consider many-body forces. In three-body systems, it is
convenient to name the two-body forces not by the involved particles, i.e., as Vij , but by the particle, which is
not participating. In this scheme Vij is called4 Vk. This simplifies the notation, as it reduces the number of
required indices. We end up with

H = H0 +
∑︂
i

Vi . (2.35)

The stationary Schrödinger equation reads(︄
H0 +

∑︂
i

Vi

)︄
|Ψ⟩ = E |Ψ⟩ . (2.36)

It can be recast in the form ∑︂
i

Vi |Ψ⟩ = (E −H0) |Ψ⟩ . (2.37)

Making use of the free Green’s operator5

G0(E) =
1

E −H0
(2.38)

it can be rewritten as ∑︂
i

G0(E)Vi |Ψ⟩ = |Ψ⟩ . (2.39)

4In this example we use the implicit conditions i ̸= j, k ̸= i, and k ̸= j.
5As already in section 2.1, in order to avoid singularities, the energy has to be made slightly complex by adding a small imaginary
part.
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This expression motivates the introduction of the Faddeev wave function components

|ψi⟩ := G0(E)Vi |Ψ⟩ . (2.40)

With this definition, eq. (2.39) reads ∑︂
i

|ψi⟩ = |Ψ⟩ (2.41)

and it is apparent that the |ψi⟩ provide a decomposition of the total state, also called wave function6, into
multiple components, so-called Faddeev wave function components. Note that these components provide a
partition of the state vector and are different from the various components of a wave function representing
projections of a state onto different partial waves.

Until now, we have a definition of the Faddeev state components and a formula for composing the total state
out of them. However, we have not yet an equation of motion on the level of these components. Of course,
one could solve the Schrödinger equation for the overall state and subsequently obtain the components. Still,
here we are interested in an alternative way of obtaining the overall state by first obtaining the components.
Therefore, we have to determine the equation of motion for the components. For that purpose, we rename the
summation index in eq. (2.41) to j, multiply the resulting equation by G0(E)Vi, and apply the definition of
the components given in eq. (2.40). We obtain

|ψi⟩ = G0Vi
∑︂
j

|ψj⟩ . (2.43)

Given some kinetic Hamilton operator H0 and interactions Vi, we are now in the position to solve for the
components and then assemble the full state using eq. (2.41). To do that in practice, we have to choose a
basis and work with representations of the states and the operators in that basis. The representations of the
state are wave functions, and the representations of the operators are the so-called matrix elements7. In the
following, we consider a representation in a momentum-space partial-wave basis for the three-particle system.
The reference state with respect to spectator i parameterized by the momenta p and q as well as a multi-index
Ω collecting quantum numbers reads

|p, q; Ω⟩i . (2.44)

We assume the potentials are separable, meaning that the p- and the p′-dependence factorize. The matrix
elements of the potentials Vi are given by

i⟨p, q; Ω|Vi|p
′, q′; Ω′⟩i = δΩ,Ω′δΩ,Ωi

gli(p)λigli(p
′)
δ(q − q′)

q′2
, (2.45)

where Ωi is the multi-index specifying the partial-wave channel, in that Vi acts, and li is the l quantum number
of that multi-index: li := l(Ωi). The gl(p) are the regulator functions depending on the subsystem orbital
6Although we do not always maintain a strictly formal language within this work, we want to point out that one should be aware
of the distinction between a state |Ψ⟩ and its wave function Ψ(ξ), which is a projection of the state onto a reference state
parameterized by the collection of variables (and possibly also quantum numbers) ξ:

Ψ(ξ) = ⟨ξ|Ψ⟩ . (2.42)

In other words, a wave function is an overlap between a reference state parameterized by the wave function arguments and the
state of the physical system under consideration. Given the multiple choices for the nature of the reference state, it is possible to
describe the same system in terms of different wave functions. E.g., for many systems, it is useful to describe them in momentum
or position space.

7Note that in a continuous basis, the matrix elements are still called by that term, although in a mathematical sense, they become
functions of the parameters of the bra and ket state. In a basis making use of indices and continuous variables, one is left with
matrices containing functions. Depending on the basis and its exact structure, arbitrary nestings of functions and matrices are
possible.

15



quantum number l and the subsystem momentum p. They are also called form factors. Finally, λi is the
strength parameter of the interaction. Note that the given relation for the matrix element of Vi only holds if
the spectator indices at bra and ket are i, as indicated.
The matrix elements of the Green’s function are given by

i⟨p, q; Ω|G0(E)|p′, q′; Ω′⟩i = δΩ,Ω′G
(i)
0 (p, q;E)

δ(p− p′)

p′2
δ(q − q′)

q′2
. (2.46)

On this basis, one can obtain the following representation of eq. (2.43):

ψi(p, q) := i⟨p, q; Ωi|ψi⟩ (2.47)

= G
(i)
0 (p, q;E)

∫︂
dp′ p′2gli(p)λigli(p

′)

×
∑︂
j

∫︂
dp′′ p′′2

∫︂
dq′′ q′′2i⟨p

′, q; Ωi|p′′, q′′; Ωj⟩j ψj(p
′′, q′′) . (2.48)

Note that in the derivation of this equation, we used that due to Vi ∝ δΩ,Ωi
, which we sometimes also call the

projective property of the potential, in combination with eq. (2.40), projections of |ψi⟩ on multi-indices other
than Ωi are zero. This also motivates the definition of ψi(p, q). Due to that projective property, there is no point
in defining this component wave function for multiple partial waves, e.g., as ψi(p, q; Ω).
On a more abstract level, we note that our representation of eq. (2.43) takes the form

ψi(p, q) =
∑︂
j

∫︂
dp′′ p′′2

∫︂
dq′′ q′′2Kij(p, q; p

′′, q′′;E)ψj(p
′′, q′′) , (2.49)

whereby the kernel function relating component i and j in this homogeneous integral equation is given by Kij .
This highlights that this is a set of coupled integral equations determining a set of functions {ψi : i ∈ {1, 2, 3}},
whereby each function is a function of two variables. In most cases, i.e., for most potentials, there are no
analytical solutions, and one has to solve these equations numerically. From a computational perspective, it
would be more desirable to have to solve integral equations where the functions are only functions of one
variable instead of two. It turns out that for the class of separable potentials (cf. eq. (2.45)), this is indeed
achievable by performing additional mathematical manipulations based on eq. (2.43). As we will discuss
later, this different form to be derived has another advantage, which is very interesting from the effective field
theory perspective.
A next step is to reshuffle eq. (2.43) into

(1 −G0(E)Vi) |ψi⟩ = G0(E)Vi
∑︂
j ̸=i

|ψi⟩ . (2.50)

Using the identity 1−G0(E)Vi = t−1
i (E)Vi and the identity V −1

i ti(E)G0(E)Vi = G0(E)ti(E), which can be proven
using the series representation of the t-matrix, we obtain the following equation system

|ψi⟩ = G0(E)ti(E)
∑︂
j ̸=i

|ψj⟩ . (2.51)

This system is equivalent to the original one. From the effective field theory perspective, it has the advantage
that the interactions are here not given in the form of potentials but t-matrices. The latter can be directly
parameterized via the effective range expansion for the real parts of their denominators. The power counting
of the EFT determines which terms of the effective range expansion have to be taken into account in a
calculation at a given order. So the t-matrices have thereby the advantage that they provide an easy way to
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specify the interactions strictly truncated at a given order. From the computational perspective, that new set of
equations still has the disadvantage that its representation takes the form eq. (2.49). Being a set of equations
for functions of two variables, it is more costly than a set of equations for functions of one variable only.

However, eq. (2.51) provides direct indications on how to proceed. If the t-matrix on the right-hand side of
the equation would be evaluated in the same spectator channel as the component appearing there, i.e., in i
instead of j, the second form factor would be evaluated at the same subsystem momentum as the component.
Since the subsystem momenta decouple in the t-matrix, there is an integral over that momentum, and this
might be a possibility to integrate the subsystem momentum out. This would result in a representation of the
component that is only a function of one momentum, the q momentum. Indeed, it is possible to move the
t-matrix inside the sum on the right-hand side. By introducing the definition

|ψi⟩ =: G0(E)ti(E) |Fi⟩ (2.52)

with so-called Faddeev amplitudes |Fi⟩, one can reshape eq. (2.51) into

|Fi⟩ =
∑︂
j ̸=i

G0(E)tj(E) |Fj⟩ (2.53)

yielding the desired form of equations.
At the end of this exposition, we want to show the representation of eq. (2.53) and thereby finally prove

the claim that one can obtain a set of coupled integral equations for functions of only one momentum instead
of two (under the assumption that the potential is separable). As an ingredient, we need the matrix element
of the t-matrix. From the separability of the potential follows the separability of the t-matrix, whereby the
form factors of the t-matrix and the potential are the same. The matrix element is given by

i⟨p, q; Ω|ti(E)|p′, q′; Ω′⟩i = δΩ,Ω′δΩ,Ωi
gli(p)τi(q;E)gli(p

′)
δ(q − q′)

q′2
, (2.54)

whereby τi is the so-called reduced t-matrix element. Note that also this relation only holds if the t-matrix
index and the indices at the bra and the ket are the same. Here we have the embedding of the t-matrix in
the three-body Hilbert space, and the reduced t-matrix given here is also a three-body version based on the
two-body one. The two-body one is evaluated at the energy of the two-body subsystem. In order to evaluate
the two-body reduced t-matrix inside, the correct subsystem energy is calculated by the three-body embedded
version. For that purpose, it needs the overall energy E and the relative momentum of the third particle q as
arguments8. On this basis, one obtains

Fi(p, q) := i⟨p, q; Ωi|Fi⟩ (2.56)

=
∑︂
j ̸=i

∫︂
dp′ p′2

∫︂
dq′ q′2i⟨p, q; Ωi|G0(E)|p′, q′; Ωj⟩j

× glj (p
′)τj(q

′;E)

∫︂
dp′′ p′′2glj (p

′′)Fj(p
′′, q′) . (2.57)

With the definition
Fi(q) :=

∫︂
dp′ p′2gli(p

′)Fi(p
′, q) (2.58)

8In detail, the relation between the three-body embedding of the reduced t-matrix τi and the pure two-body version τjk reads:

τi(q;E) = τjk(E2(E, q)) = τjk

(︃
E − q2

2µi(jk)

)︃
. (2.55)

Hereby, µi(jk) :=
miMjk

mi+Mjk
holds withMjk = mj +mk.
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and by performing some manipulations, one can rewrite eq. (2.56) into

Fi(q) =
∑︂
j ̸=i

∫︂
dq′ q′2

∫︂
dp p2

∫︂
dp′ p′2gli(p)i⟨p, q; Ωi|G0(E)|p′, q′; Ωj⟩j glj (p

′)τj(q
′;E)Fj(q

′) . (2.59)

By introducing the so-called exchange kernel

Xij(q, q
′;E) :=

∫︂
dp p2

∫︂
dp′ p′2gli(p)i⟨p, q; Ωi|G0(E)|p′, q′; Ωj⟩j glj (p

′) (2.60)

the equation takes the compact form

Fi(q) =
∑︂
j ̸=i

∫︂
dq′ q′2Xij(q, q

′;E)τj(q
′;E)Fj(q

′) . (2.61)

As hoped, we now have a set of coupled integral equations for the Faddeev amplitudes as functions of only one
momentum. This reduces the computational cost of solving these integral equations numerically significantly.

So far, we have discussed the case that only two-body interactions are present. How the Faddeev formalism
can be extended for the treatment of three-body forces is described in appendix A.1. The Faddeev formalism
discussed in this section will be used in this work for the descriptions of the ground states. In this exposition,
we focussed on the case that for each spectator, there is only one interaction. Already in chapter 3, we will show
some extension of this. In chapter 9, a generalization to arbitrary many interactions in arbitrary partial-wave
channels is presented.
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3. Structure of s-wave two-neutron halo nuclei

This chapter focuses on the description of the ground state of two-neutron halo nuclei. In later chapters, we
will calculate reaction observables like the E1 strength distribution parameterizing the Coulomb dissociation
cross section and the neutron-neutron relative-energy distribution following a knockout of the halo’s core. For
all these calculations, in principle, an accurate description of the initial state is necessary. This initial state is
(or consists, among others, of) the ground state of the two-neutron halo nuclei. Moreover, the ground state is
also the starting point for obtaining structure observables such as mean-square radii.
Two-neutron halo nuclei can be classified according to the partial-wave nature of their leading-order

interactions. All have the neutron-neutron (nn) interaction in common, whose leading-order contribution is in
the s-wave. They differ in the neutron-core (nc) interactions. From the EFT viewpoint, the dominance of the
s-wave interactions is expected at low energies and thereby assumed to be natural. In fact, there are multiple
halos that can be described at leading order solely by s-wave interactions. These are inter alia 11Li, 14Be, 17B,
and 22C. The properties of these nuclei will be discussed at a later point. Then there are also halo nuclei
where the nc interaction is a higher partial wave. A well-known example is 6He, where there is a low-energy
resonance in the nα system. Consequently, the leading-order nc interaction is in the p-wave. Since we are
interested in reactions involving the s-wave 2n halo nuclei and in the nn relative-energy distribution of 6He,
we have to describe the ground state of both. In this chapter, we will focus on the s-wave halo nuclei. The
discussion of the ground-state of p-wave halos such as 6He is done in the following chapter.

In the case of the s-wave 2n halo nuclei, we can make use of the pioneering work by Canham and Hammer
[25], who described these halos using the Faddeev equations and wave functions in Halo EFT and obtained
matter radii for typical candidates such as 11Li and 14Be. In the approach by Canham and Hammer, the spin
of the halo’s core was not explicitly taken into account. However, with 11Li one of the considered systems
has Jπ of the core being unequal to 0+. In our following investigations, we want to formulate the Faddeev
equations1 with the spin taken into account and investigate its influence on the spatial part of the description.
Moreover, we want to investigate another aspect, the influence of higher partial-wave components of the wave
function. In Ref. [25], only the s-wave component of the overall wave function was taken into account for
calculating the matter form factors and thereby obtaining the radii. In principle, despite having only s-wave
interactions, also higher partial-wave components in the wave function can be generated due to recoupling
between different spectators(see, e.g., Ref. [30]). We investigate the size of these additional partial-wave
components.
The following exposition is structured as follows. We start with a small summary of the most important

results from the bound-state Faddeev formalism, which we use for our description. A more detailed account
was given in section 2.4. Then we focus on the ingredients necessary for obtaining a representation of the
abstract equations formulated in states. For that purpose, we will introduce the Jacobi basis in momentum
space. Moreover, we will discuss different partial-wave bases. Then these three ingredients, equations for
abstract states, a spatial radial2 basis, and a partial-wave basis, are put together, and the formalism for s-wave
nuclei is laid out. Subsequently, the solution structure and the role of the spin are investigated.
1Of course, only the representations are influenced by the core spin. The abstract equations must not be reformulated because of the
inclusion of the core spin.

2Radial is used here in the sense of no angular dependence but not in the sense that it is in the coordinate space. We work mainly in
the momentum space.
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3.1. Central results from the bound-state Faddeev formalism

In section 2.4, we have already introduced the Faddeev formalism. The equations central to the following
discussion as equations for the abstract states are the Faddeev equation for the Faddeev amplitudes

|Fi⟩ =
∑︂
j ̸=i

G0tj |Fj⟩ , (3.1)

the equation relating the Faddeev amplitudes |Fi⟩ to the Faddeev wave function (/state) components

|ψi⟩ = G0ti |Fi⟩ , (3.2)

and the relation between the Faddeev state components and the overall state

|Ψ⟩ =
∑︂
i

|ψi⟩ . (3.3)

In section 2.4, we have also discussed that eq. (3.1) is numerically more favorable than other versions of
the Faddeev equations if the potentials and, thereby, also the t-matrices are separable. In order to explain this
argument, we have already taken a glance at basis representations of the Faddeev equations. As a next step,
we will review the basis states used for obtaining representations in more detail.

3.2. Jacobi coordinates and spectators

We introduce Jacobi momenta as momentum vectors, although later, for building a partial-wave basis, only the
absolute values of the vectors are used. The Jacobi momenta form a basis in the center-of-momentum system
for the three-body system with the particle momenta ki (i ∈ {n, n′, c}) and masses mi. They are given by

pi := µjk

(︃
kj

mj
− kk

mk

)︃
, (3.4)

qi := µi(jk)

(︃
ki

mi
− kj + kk

Mjk

)︃
, (3.5)

where the condition k ̸= i ∧ k ̸= j ∧ j ̸= i is used in this notation. The reduced mass in the subsystem jk is
given by

µjk =
mjmk

mj +mk
(3.6)

and the reduced mass between particle i and subsystem jk is given by

µi(jk) =
miMjk

mi +Mjk
. (3.7)

The overall mass of two particles is denoted by

Mij = mi +mj . (3.8)

The indices at the Jacobi momenta pi and qi denote the spectator with respect to which these are defined. If
the Jacobi momenta are used within the Dirac bra or ket to denote a basis state, we put the spectator label
to the left of the bra or the right of the ket. This procedure has the advantage that it reduces the number of
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spectator indices necessary, especially in the case that there are also quantum numbers in the Dirac bra oder
ket3. A typical basis state then reads

|p, q⟩i . (3.9)

We continue by explaining the meaning of the momenta. The momentum p is the momentum in the
subsystem specified by spectator i. Similar to the notation for the two-body potential in our exposition of the
Faddeev formalism in section 2.4, the index denotes a spectator particle, and thereby also, a subsystem is
given as the remaining particles. The momentum p is then the relative momentum in this subsystem, while
the momentum q is the relative momentum between the center of mass of this subsystem and the spectator
particle.
In three-body calculations, it is often necessary to switch from a basis with one spectator to a basis with

a different spectator. For that purpose, one has to calculate overlaps between states of different spectators.
Expressions of the form i⟨p, q|p′, q′⟩j have to be evaluated. To evaluate these expressions, one can use the
relation

i⟨p, q|kj ,kk,ki⟩ = δ(3)(0− ki − kj − kk)

× δ(3)
(︃
p− µjk

(︃
kj

mj
− kk

mk

)︃)︃
δ(3)
(︃
q − µi(jk)

(︃
ki

mi
− kj + kk

Mjk

)︃)︃
. (3.10)

In order to save work at later transformations between different spectators, it is useful to introduce two
transformation functions calculating the Jacobi momenta p′ and q′ with respect to spectator j from the Jacobi
momenta p and q with respect to spectator i. We use the notation of Göbel et al. from Ref. [30] and denote
them by

p′ = κijp(p, q) , (3.11)
q′ = κijq(p, q) . (3.12)

Formally, these transformation functions are defined via

i⟨p, q|p
′, q′⟩j =: δ

(3)(p′ − κijp(p, q)) δ
(3)(q′ − κijq(p, q)) (3.13)

This definition is also helpful for evaluating the overlaps between different spectators. Sometimes, also
overlaps with the spatial part of the nn permutation operator P(spatial)

nn in between have to be evaluated.
Therefore, it is beneficial to introduce κ′

ijp and κ′
ijq given by

i⟨p, q|P
(spatial)
nn |p′, q′⟩j =: δ

(3)(p′ − κ′
ijp(p, q)) δ

(3)(q′ − κ′
ijq(p, q)) . (3.14)

While for the κijp and the κijq, the case i = j makes only limited sense, as it results in the identity mapping, here,
for κ′

ijp and for κ′
ijq, i = j is a more relevant case. The concrete expressions for the different transformation

functions can be found in appendix B.1.

3.3. Partial-wave states, coupling schemes, and coupled spherical harmonics

Since the main interactions between many particle pairs happen in a few partial-wave channels, it is desirable
to work in a partial-wave basis. The orbital angular momentum quantum number of the relative motion in the
subsystem is given by l, while the one of the motion from the spectator relative to the subsystem is given by λ.
Moreover, one naturally has the spin quantum numbers of the subsystem particles, s1 and s2, coupling to an
3Note that this notation has the additional advantage that also if concrete values for the momenta are inserted, the spectator is still
indicated because the index is not tied to the variables but to the bra or ket.
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overall subsystem spin of s. The spin of the spectator particle is given by σ. We denote the overall spin of the
halo nucleus by J and its projection by M .

One now has different possibilities to couple these spins to the overall J andM . One option is to first couple
the orbital angular momentum quantum numbers and the spins separately. This leads to an overall orbital
angular quantum number L and an overall spin quantum number S, which then couple to J . The other option
is to couple first the subsystem quantum numbers and the spectator quantum numbers4. This results in the
subsystem’s overall angular momentum quantum number j and the spectator’s overall quantum number I.
The first scheme is called LS coupling, and the latter one jI coupling.

For denoting the partial-wave states in jI coupling, we use the following notation:

|(l, [s1, s2]s) j, (λ, σ) I; J,M⟩i , (3.15)

where we again employ an index at the Dirac ket to denote the spectator with respect to which the quantum
numbers are to be interpreted. We sometimes omit the square brackets containing the subsystem spins, as
they might be clear from the context anyway.
In LS coupling the state reads

|(l, λ)L, ([s1, s2]s, σ)S; J,M⟩i . (3.16)

Often it is useful to summarize the quantum numbers specifying the partial-wave state in a multi-index.
Typically, we use for that purpose the symbol Ω. The single quantum numbers in this multi-index can be
accessed with notation like l(Ω), which yields the l quantum number contained in Ω.
Sometimes, one might switch from one coupling scheme to another. The overlap is given by

i⟨(l, [s1, s2]s) j, (λ, σ) I; J,M |(l, λ)L, ([s1, s2]s, σ)S; J,M⟩i =
√︂
ĵÎL̂Ŝ

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭ , (3.17)

where
ĵ := 2j + 1 (3.18)

holds, and the curly brackets denote the Wigner-9j symbol, which can be written in terms of a sum of products
of Clebsch-Gordan coefficients (see, e.g., Ref. [51]). From this identity, one can obtain the following two
recoupling relations:

|(l, [s1, s2]s) j, (λ, σ) I; J,M⟩i =
∑︂
L,S

√︂
ĵÎL̂Ŝ

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭ |(l, λ)L, ([s1, s2]s, σ)S; J,M⟩i , (3.19)

|(l, λ)L, ([s1, s2]s, σ)S; J,M⟩i =
∑︂
j,I

√︂
ĵÎL̂Ŝ

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭ |(l, [s1, s2]s) j, (λ, σ) I; J,M⟩i . (3.20)

For the orbital part, it is sometimes useful to switch from a partial-wave basis to a plane-wave basis. In
the case of a single momentum, the overlap of these kinds of states just yields the usual spherical harmonic
function:

⟨p|p, l,m⟩ = Yl,m(p) . (3.21)
4Note that this phrase is sufficiently unique in its meaning but a bit misleading. With this formulation, we also count the orbital
angular momentum quantum number as a spectator quantum number, although it describes the angular aspect of the relative
motion between the spectator and the subsystem.
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On this basis, one can also obtain an expression for i⟨p, q|p, q; (l, λ)L,ML⟩i by decoupling the partial-wave
state. This yields

i⟨p, q|p, q; (l, λ)L,ML⟩i =
∑︂
m,µ

CL,ML

l,m,λ,µYl,m(p)Yλ,µ(q) , (3.22)

where the C with indices and superscripts denotes a Clebsch-Gordan coefficient. This expression leads to the
introduction of the coupled spherical harmonic function YL,ML

l,λ yielding for the overlap

i⟨p, q|p, q; (l, λ)L,ML⟩i = YL,ML

l,λ (p, q) . (3.23)

From the orthonormality relation of the spherical harmonics and of the Clebsch-Gordan coefficients, one can
derive the orthonormality of the coupled spherical harmonics reading∫︂

dΩp

∫︂
dΩq YL,ML

l,λ (p, q)
(︂
YL′,M ′

L

l′,λ′ (p, q)
)︂∗

= δl,l′δλ,λ′δL,L′δML,M ′
L
. (3.24)

In the case that we have an uncoupled LS basis, we use the following order of quantum numbers:

|(l, λ)L,ML⟩i |([s1, s2] s, σ)S,MS⟩i . (3.25)

If momenta have to be specified, these are typically inserted at the beginning of the first Dirac ket, which
contains the spatial quantum numbers.

3.4. s-wave two-neutron halos in halo EFT

In this section, the description of the ground state of 2n s-wave halos is discussed. It is done for the general
case of a non-vanishing core spin. Since the common candidates for s-wave 2n halo nuclei all have the Jπ

of the core equaling the Jπ of the overall system, we will limit ourselves to this case. First, the spatial and
partial-wave structure of the interactions are discussed. Then a proof is shown that if the spatial part of the nc
interaction is the same in all possible s-wave channels, the calculation is equivalent to one without the core
spin taken into account. However, as one might also be interested in computations with different strengths
in the different nc interaction channels, the formalism to do so is additionally formulated. In the first step,
this is done for the Faddeev amplitudes. In the case that the core spin is non-vanishing, this leads to a more
complicated solution structure, which is discussed. In the next step, the formalism for the wave functions,
which are obtained from the Faddeev amplitudes, is laid out. The implications of the more complicated
solution structure are described. Finally, results are shown for the case of 11Li.
Parts of this section have been published in this or in similar form in Phys. Rev. C 107, 014617 (2023)

[52].

3.4.1. Interactions and their structure

First, we discuss the partial-wave structure of the interactions. We consider 2n halos where the interactions
are in the s-wave and where the Jπ of the core and the overall halo are the same. That implies that the J of
the overall system can solely stem from the core, while the neutron spins couple to zero, and the total L is
also zero. Since all interactions are pure s-wave, we consider L = 0 natural, although through a nonzero λ,
a nonzero L would be possible. Depending on the overall spin of the two neutrons and the value of J , that
would still be consistent with having an overall spin of J while also having a core spin of J . In the case of
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L = 0, which we will consider from now on, the LS coupled state is the same as the product of the orbital
state and the spin state, as the sum over MS and ML has only one iteration, and the coupling coefficient is
one. Because of that, we will work for our discussion of the s-wave halo nuclei in an uncoupled LS basis. This
has the advantage that the states factorize nicely in a spin and an orbital state. In that basis, we will specify
the partial-wave states in the following way

|(l, λ)L = 0,ML = 0, ([s1, s2]s, σ) J,M⟩i , (3.26)

whereby for i = c we have σ = J and for i = n we have s2 = J . We introduce multi-indices ζ and ξ to denote
the collection of spatial and the collection of spin quantum numbers:

|ζ, ξ⟩i = |(l, λ)L = 0,ML = 0, ([s1, s2]s, σ)S = J,MS =M⟩i . (3.27)

With the basis at hand, we continue by determining the interactions at leading order. In this basis, all the
t-matrix elements are given by

i⟨p, q; ζ, ξ|ti(E)|p′, q′; ζ ′, ξ′⟩i = δζ,ζ′δξ,ξ′δζ,ζiδξ,ξigli(p)τi(q;E)gli(p
′)
δ(q − q′)

q2
. (3.28)

This expression is the analogon of eq. (2.54) for this basis. Again, τi is the reduced t-matrix. The multi-index
ζi denotes the spatial partial wave in which the interaction given by spectator i acts. Likewise, the index ξi
specifies the spin quantum numbers in which this interaction takes place. In the case of i = c, which is the nn
interaction, the multi-indices read

ζc = (0, 0) 0, 0 , (3.29)
ξc = (0, J) J,M , (3.30)

where J is the spin of the core as well as of the overall halo nucleus. The nn interaction in the channel 1S0 on
its own implies for the core as a spectator in the first step only l = s = 0. Setting the other quantum numbers
in the specified way is no loss of generality as we want to work in the most probable case of L = 0 anyway.

In the case of the nc channel, i.e., i = n, the situation is a bit more involved. Since we want to formulate the
problem such that the interaction in J − 1/2 and the one in J + 1/2 can be taken into account, we have two
t-matrices, and in the case of the spin multi-index ξ, we need two multi-index constants specifying the two
interaction channels. We obtain

ζ(1)n = ζ(2)n = ζn = (0, 0) 0, 0 , (3.31)
ξ(1)n = (J − 1/2, 1/2) J,M , (3.32)
ξ(2)n = (J + 1/2, 1/2) J,M . (3.33)

We continue by specifying the spatial parts of the interactions, which are given by the position of the
respective low-energy virtual state energy E∗

i or the scattering length of that virtual state. The relation for the
reduced t-matrix reads

τi(q;E) =
1

4π2µjk

1

1/ajk + iki(q;E)
, (3.34)

where ajk is the scattering length of the virtual state (j ̸= i ∧ k ̸= i ∧ j ̸= k). The function ki(E; q) is given by

ki(q;E) =

√︄
2µjk

(︃
E − q2

2µi(jk)

)︃
. (3.35)

The interactions taken into account are listed in table 3.1.
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Table 3.1.: Overview of the different interactions and the corresponding t-matrices. Note that the distinction between the two
neutrons by using the symbols n and n′ is purely artificial and only made to highlight the relation between t(i)n

and t(i)n′ .

interacting particles l j t-matrix relation to other t-matrices

nn′ 0 0 tc

n′c 0 J − 1/2 t
(1)
n

n′c 0 J + 1/2 t
(2)
n

nc 0 J − 1/2 t
(1)
n′ (−Pnn) t

(1)
n (−Pnn)

nc 0 J + 1/2 t
(2)
n′ (−Pnn) t

(2)
n (−Pnn)

Note that due to working in decoupled LS basis in the case of the s-wave halos, we also have the following
identity for the t-matrices

t(1)n = t(spatial;1)n ⊗ P (1)
n , (3.36)

t(2)n = t(spatial;2)n ⊗ P (2)
n , (3.37)

whereby the projection operators are given by

P (1)
n :=

∑︂
M

⃓⃓⃓
ξ(1;M)
n

⟩︂
n n

⟨︂
ξ(1;M)
n

⃓⃓⃓
, (3.38)

P (2)
n :=

∑︂
M

⃓⃓⃓
ξ(2;M)
n

⟩︂
n n

⟨︂
ξ(2;M)
n

⃓⃓⃓
. (3.39)

3.4.2. The case of equal nc interaction in the two spin channels: Statement of equivalence

The aim is to show that, for a general two-neutron halo with a core spin of J and an overall spin of J , there is an
equivalence between a calculation with the core spin included and two nc interaction channels (j = s = J −1/2

and j = s = J + 1/2) and a calculation without spin and thereby only one nc interaction channel.
Definitions

The spin states describing such a system seen from the core as the spectator or a neutron as the spectator are
given by ⃓⃓⃓

ξ(σ;J,M)
c

⟩︂
c
=

⃓⃓⃓⃓(︃
1

2
,
1

2

)︃
σ, J ; J,M

⟩︃
c

σ ∈ {0, 1} , (3.40)⃓⃓⃓
ξ(τ ;J,M)
n

⟩︂
n
=

⃓⃓⃓⃓(︃
1

2
, J

)︃
J + τ

1

2
,
1

2
; J,M

⟩︃
n

τ ∈ {−1,+1} . (3.41)

The corresponding projection operators are

P (σ)
c =

∑︂
M

⃓⃓⃓
ξ(σ;J,M)
c

⟩︂
c c

⟨︂
ξ(σ;J,M)
c

⃓⃓⃓
, (3.42)

P (τ)
n =

∑︂
M

⃓⃓⃓
ξ(τ ;J,M)
n

⟩︂
n n

⟨︂
ξ(τ ;J,M)
n

⃓⃓⃓
. (3.43)

Statement
Having these definitions at hand, we can now state that the mapping can be made if the components of the
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Hamilton operator have the structure

H0 = H
(spatial)
0 ⊗ 1(spin) = H

(spatial)
0 ⊗

(︂
P (0)
c + P (1)

c

)︂
, (3.44)

Vnn = V (spatial)
nn ⊗ P (0)

c , (3.45)

Vnc + Vn′c =
(︂
V (spatial)
nc + V

(spatial)
n′c

)︂
⊗
(︂
P (−)
n + P (+)

n

)︂
(3.46)

and if
P (0)
c + P (1)

c = P (−)
n + P (+)

n (3.47)

holds. Equation (3.46) means that the spatial/momentum-space part of the nc interaction has to be the same
in J − 1/2 and J + 1/2.
More specifically, in this case, the Schrödinger equation can be decoupled into one in the P (0)

c -space and
one in the P (1)

c -space5:

H = H(0) +H(1) = H(spatial;0) ⊗ P (0)
c +H(spatial;1) ⊗ P (1)

c (3.48)

While the P (1)
c -space Schrödinger equation misses an nn interaction, the P (0)

c -space one is equivalent to a
calculation with J = 0. This equivalent equation has the Hamilton operator

H(0) = H(spatial;0) ⊗ P (0)
c , (3.49)

H(spatial;0) = H
(spatial)
0 + V (spatial)

nc + V
(spatial)
n′c + V (spatial)

nn . (3.50)

Proof
First, the relation for the projection operators given in eq. (3.47) is proven. We obtain

P (0)
c + P (1)

c =
1∑︂

σ=0

P (σ)
c =

1∑︂
σ=0

∑︂
M

⃓⃓⃓
ξ(σ;J,M)
c

⟩︂
c c

⟨︂
ξ(σ;J,M)
c

⃓⃓⃓
(3.51)

=
1∑︂

σ=0

∑︂
M

(︂
c
(σ)
1

⃓⃓⃓
ξ(−;J,M)
n

⟩︂
n
+ c

(σ)
2

⃓⃓⃓
ξ(+;J,M)
n

⟩︂
n

)︂(︂
c
(σ)
1

n

⟨︂
ξ(−;J,M)
n

⃓⃓⃓
+ c

(σ)
2

n

⟨︂
ξ(+;J,M)
n

⃓⃓⃓)︂
(3.52)

=
1∑︂

σ=0

∑︂
M

[︃(︂
c
(σ)
1

)︂2 ⃓⃓⃓
ξ(−;J,M)
n

⟩︂
n n

⟨︂
ξ(−;J,M)
n

⃓⃓⃓
+
(︂
c
(σ)
2

)︂2 ⃓⃓⃓
ξ(+;J,M)
n

⟩︂
n n

⟨︂
ξ(+;J,M)
n

⃓⃓⃓
+ c

(σ)
1 c

(σ)
2

(︂⃓⃓⃓
ξ(−;J,M)
n

⟩︂
n n

⟨︂
ξ(+;J,M)
n

⃓⃓⃓
+
⃓⃓⃓
ξ(+;J,M)
n

⟩︂
n n

⟨︂
ξ(−;J,M)
n

⃓⃓⃓)︂ ]︃
, (3.53)

where the recoupling coefficients

c
(σ)
1 :=

c

⟨︂
ξ(σ;J,M)
c

⃓⃓⃓
ξ(−;J,M)
n

⟩︂
n
, (3.54)

c
(σ)
2 :=

c

⟨︂
ξ(σ;J,M)
c

⃓⃓⃓
ξ(+;J,M)
n

⟩︂
n

(3.55)

were employed. Using the relations
1∑︂

σ=0

(︂
c
(σ)
1

)︂2
=

1∑︂
σ=0

(︂
c
(σ)
2

)︂2
= 1 , (3.56)

1∑︂
σ=0

c
(σ)
1 c

(σ)
2 = 0 (3.57)

5This is because Vnc + Vn′c =
(︂
V

(spatial)
nc + V

(spatial)

n′c

)︂
⊗

(︂
P

(0)
c + P

(1)
c

)︂
holds then.
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we obtain for the sum of the projection operators

P (0)
c + P (1)

c = P (−)
n + P (+)

n . (3.58)

To see the exact equivalence of eqs. (3.49) and (3.50) to a calculation with J = 0, we have to check that in
the latter case the analogous relation

H = H(spatial) ⊗ P , (3.59)
H(spatial) = H

(spatial)
0 + V (spatial)

nc + V
(spatial)
n′c + V (spatial)

nn (3.60)

holds with some projection operator P and an unchanged H(spatial)
0 and unchanged potentials. In the case of

J = 0, we have

V (spin)
nn = |ξc⟩c c⟨ξc| , (3.61)
V (spin)
nc = |ξn⟩n n⟨ξn| = (−1)

2 |ξc⟩c c⟨ξc| = |ξc⟩c c⟨ξc| , (3.62)
V

(spin)
n′c = P(spin)

nn |ξn⟩n n⟨ξn| P
(spin)
nn = P(spin)

nn (−1)
2 |ξc⟩c c⟨ξc| P

(spin)
nn = |ξc⟩c c⟨ξc| , (3.63)

and thereby the relation (3.59) is indeed fulfilled6. This is because all spin parts are the same, i.e., |ξc⟩c c⟨ξc| = P .
Remarks

It is worth noting that this statement made here based on the Hamilton operator also applies to the final-state
interactions (FSI) subsequent to E1 breakup to be discussed later. This is because the final and the initial
state are described by the same Hamilton operator but are states at different energies due to the breakup. As
the operator describing the E1 breakup is an identity in spin space, the spin state remains unchanged after
a breakup and still lives in the space given by P (0)

c . Therefore, the possible final-state interactions are not
only described by the same operator but also the same “part”, i.e., H(0). This is the Hamilton operator whose
spatial/momentum-space part is equal to the one of the J = 0 calculation. Therefore, also in the calculation
of the FSI, the approach with the core spin included as well as two nc interaction channels is equivalent to
computation without those spins included.

Note that the discussed equivalence holds under the condition that we are solely interested in the solutions
of H(0), which is only a part of the overall Hamilton operator H = H(0) +H(1).
In order to understand the meaning of this condition better, let us look at what would happen beyond

the loss of the equivalence/mappability if we release this condition. We consider the solution |Ψ⟩ of the full
Hamilton operator:

H |Ψ⟩ = E |Ψ⟩ . (3.64)

By introducing the wave function (/state) components⃓⃓⃓
Ψ(0)

⟩︂
:= P (0)

c |Ψ⟩ , (3.65)⃓⃓⃓
Ψ(1)

⟩︂
:= P (1)

c |Ψ⟩ (3.66)

the Schrödinger equation can be written as

H(0)
⃓⃓⃓
Ψ(0)

⟩︂
+H(1)

⃓⃓⃓
Ψ(1)

⟩︂
= E

(︂⃓⃓⃓
Ψ(0)

⟩︂
+
⃓⃓⃓
Ψ(1)

⟩︂)︂
. (3.67)

6One might wonder here why the nc interaction spin channel is recoupled solely to the nn-spin-0 configuration with no admixtures
of an nn spin of 1. This is because the nc interaction spin channel is chosen such that the overall spin is 0. An nn spin of 1 is, in
this case of zero core spin, not compatible with an overall spin equal to 0. Therefore there is, in this case, no admixture.
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Multiplying with
c

⟨︂
ξ
(0;J,M)
c

⃓⃓⃓
or

c

⟨︂
ξ
(1;J,M)
c

⃓⃓⃓
from the left yields the relations

H(spatial;0)
⃓⃓⃓
Ψ(spatial;0)

⟩︂
= E

⃓⃓⃓
Ψ(spatial;0)

⟩︂
, (3.68)

H(spatial;1)
⃓⃓⃓
Ψ(spatial;1)

⟩︂
= E

⃓⃓⃓
Ψ(spatial;1)

⟩︂
(3.69)

This means that if there is no three-body force, the two solutions
⃓⃓
Ψ(spatial;0)

⟩︁
and

⃓⃓
Ψ(spatial;1)

⟩︁
are solutions of

Hamilton operators differing only in Vnn. In order to have admixtures of both in the overall state, they would
have to exist at the same energy.
If there are three-body forces added to the Hamilton operators, the three-body forces have to be tuned so

that both solutions of Hamilton operators differing in Vnn exist at the same energy. Otherwise, superpositions
of them would not be allowed. It seems probable that, at least, the three-body force’s coupling has to vary
between the channels in order to enable having the two solutions at the same energy.

As a conclusion of this remark, it seems unlikely that there is a solution of the full Hamilton operator, which
has non-vanishing components in the spin space corresponding to P (0)

c and the one corresponding to P (1)
c

simultaneously. Therefore the additional requirement of considering only the space of P (0)
c necessary for the

equivalence statement seems to be no great loss of generality in regard to the physical world.

3.4.3. Faddeev equations for the case with two nc interaction channels

After this analysis, we know that not only the single nc t-matrices but also the overall nc t-matrix has a spin
part, which can be written as a single projection operator. That fuels the question of whether we can stick
with only two Faddeev amplitudes in total in our ground-state calculation by just using t(t)n instead of t(1)n and
t
(2)
n . For obtaining an equation system for the Faddeev amplitudes, the following representation of Faddeev
amplitudes based on the separability of the t-matrices is useful:

Fi(q) :=

∫︂
dp p2gli(p)i⟨p, q; ζi, ξi|Fi⟩ . (3.70)

In the Faddeev equations, terms containing the expression

t(t)n |Fn⟩ (3.71)

will appear. In order to obtain expressions for the representations, one will insert a set of complete states
between this overall t-matrix and the Faddeev amplitude:

t(t)n |Fn⟩ =
∫︂

dp p2
∫︂

dq q2
∑︂
ζ,ξ

t(t)n |p, q; ζ, ξ⟩n n⟨p, q; ζ, ξ|Fn⟩ (3.72)

=

∫︂
dp p2

∫︂
dq q2

∑︂
ξ

t(t)n |p, q; ζn, ξ⟩n n⟨p, q; ζn, ξ|Fn⟩ (3.73)

=

∫︂
dp p2

∫︂
dq q2

∑︂
M

t(t)n

×
(︂ ⃓⃓⃓
p, q; ζn, ξ

(1;M)
n

⟩︂
n n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
+
⃓⃓⃓
p, q; ζn, ξ

(2;M)
n

⟩︂
n n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓ )︂
|Fn⟩ , (3.74)

where we used the property of the t-matrix to project onto certain spatial and spin channels. This result
shows that at least with the n as the spectator and with the coupling scheme used here, we end up with two
representations of |Fn⟩ differing in the spin projection. These two are not trivially related to each other and
therefore are both needed for describing the system. In other words: The fact that the spin part of t(t)n is a
single projection operator does not generally imply that one representation for |Fn⟩ is enough. Instead, this
seems to depend on the used basis.

28



Obtaining the Faddeev equations

Because of these findings, we will not use t(t)n and work with t(1)n and t(2)n instead. In principle, we now have
five t-matrices implying the presence of five Faddeev amplitudes. However, two of these are directly related to
two of the remaining three ones by nn permutation via the operator Pnn. Therefore, one can effectively work
with only three Faddeev amplitudes. The concrete equation system following from eq. (3.1) reads

|Fc⟩ = (1 − Pnn)G0t
(1)
n

⃓⃓⃓
F (1)
n

⟩︂
+ (1 − Pnn)G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
, (3.75)⃓⃓⃓

F (1)
n

⟩︂
= G0tc |Fc⟩ − PnnG0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
+ (1 − Pnn)G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
, (3.76)⃓⃓⃓

F (2)
n

⟩︂
= G0tc |Fc⟩ − PnnG0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
+ (1 − Pnn)G0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
, (3.77)

where we used that
(−Pnn)

⃓⃓⃓
F

(i)
n′

⟩︂
=
⃓⃓⃓
F (i)
n

⟩︂
(3.78)

holds. The next step toward representations for the Faddeev amplitudes is

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓
Fc

⟩︂
=

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓
(1 − Pnn)G0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
+

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓
(1 − Pnn)G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
= 2

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓
G0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
+ 2

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓
G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
, (3.79)

n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
F (1)
n

⟩︂
=

n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
G0tc

⃓⃓⃓
Fc

⟩︂
−

n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
PnnG0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
+

n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
(1 − Pnn)G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
=

n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
G0tc

⃓⃓⃓
Fc

⟩︂
−

n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
PnnG0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
−

n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
PnnG0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
, (3.80)

n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓
F (2)
n

⟩︂
=

n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓
G0tc

⃓⃓⃓
Fc

⟩︂
+

n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓
(1 − Pnn)G0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
−

n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓
PnnG0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
=

n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓
G0tc

⃓⃓⃓
Fc

⟩︂
−

n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓
PnnG0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
−

n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓
PnnG0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
, (3.81)

where we used the projective properties of the t-matrices as well as the orthogonality of
⃓⃓⃓
ξ
(1;M)
n

⟩︂
n
and

⃓⃓⃓
ξ
(2;M)
n

⟩︂
n
.

By inserting identities written in terms of basis states between the operators, we obtain for Fc(q):

Fc(q) =

∫︂
dp p2glc(p)

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓
Fc

⟩︂
(3.82)

= 2

∫︂
dq′ q′2

∫︂
dp p2

∫︂
dp′ p′2glc(p)

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓
p′, q′; ζn, ξ

(1;M)
n

⟩︂
n

×G
(n)
0

(︂
p′, q′;−B(0)

3

)︂
gln(p

′)τ (1)n (q′)F (1)
n (q′)

+ 2

∫︂
dq′ q′2

∫︂
dp p2

∫︂
dp′ p′2glc(p)

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓
p′, q′; ζn, ξ

(2;M)
n

⟩︂
n

×G
(n)
0

(︂
p′, q′;−B(0)

3

)︂
gln(p

′)τ (2)n (q′)F (2)
n (q′) (3.83)

= 2

∫︂
dq′ q′2Xcn(q, q

′)
(︂
c

⟨︂
ξ(M)
c

⃓⃓⃓
ξ(1;M)
n

⟩︂
n
τ (1)n (q′)F (1)

n (q′) +
c

⟨︂
ξ(M)
c

⃓⃓⃓
ξ(2;M)
n

⟩︂
n
τ (2)n (q′)F (2)

n (q′)
)︂
. (3.84)
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The exchange kernel in use is defined as

Xcn(q, q
′) :=

∫︂
dp p2

∫︂
dp′ p′2glc(p)c⟨p, q; ζc|p

′, q′; ζn⟩n gln(p
′)G

(n)
0

(︂
p′, q′;−B(0)

3

)︂
. (3.85)

In the next step, we obtain the equations for the two F (i)
n (q).

F (i)
n (q) =

∫︂
dp p2gln(p)

n

⟨︂
p, q; ζn, ξ

(i;M)
n

⃓⃓⃓
Fn

⟩︂
(3.86)

=
n

⟨︂
ξ(i;M)
n

⃓⃓⃓
ξ(M)
c

⟩︂
c

∫︂
dp p2gln(p)n⟨p, q; ζn| c⟨ξc|G0tc |Fc⟩

−
n

⟨︂
ξ(i;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(1;M)
n

⟩︂
n

∫︂
dp p2gln(p)

n

⟨︂
p, q; ζn, ξ

(1;M)
n

⃓⃓⃓
P(spatial)
nn G0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
−

n

⟨︂
ξ(i;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(2;M)
n

⟩︂
n

∫︂
dp p2gln(p)

n

⟨︂
p, q; ζn, ξ

(2;M)
n

⃓⃓⃓
P(spatial)
nn G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
(3.87)

=
n

⟨︂
ξ(i;M)
n

⃓⃓⃓
ξ(M)
c

⟩︂
c

∫︂
dq′ q′2

∫︂
dp dp′ p2p′2gln(p)n⟨p, q; ζn|p

′, q′; ζc⟩cG
(c)
0 (p′, q′)glc(p

′)τc(q
′)Fc(q

′)

−
n

⟨︂
ξ(i;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(1;M)
n

⟩︂
n

∫︂
dq′ q′2

∫︂
dp dp′ p2p′2gln(p)n⟨p, q; ζn|P

(spatial)
nn |p′, q′; ζn⟩nG

(n)
0 (p′, q′)gln(p

′)

× τ (1)n (q′)F (1)
n (q′)

−
n

⟨︂
ξ(i;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(2;M)
n

⟩︂
n

∫︂
dq′ q′2

∫︂
dp dp′ p2p′2gln(p)n⟨p, q; ζn|P

(spatial)
nn |p′, q′; ζn⟩nG

(n)
0 (p′, q′)gln(p

′)

× τ (2)n (q′)F (2)
n (q′) (3.88)

=
n

⟨︂
ξ(i;M)
n

⃓⃓⃓
ξ(M)
c

⟩︂
c

∫︂
dq′ q′2Xnc(q, q

′)τc(q
′)Fc(q

′)−
n

⟨︂
ξ(i;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(1;M)
n

⟩︂
n

∫︂
dq′ q′2Xnn(q, q

′)τ (1)n (q′)F (1)
n (q′)

−
n

⟨︂
ξ(i;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(2;M)
n

⟩︂
n

∫︂
dq′ q′2Xnn(q, q

′)τ (2)n (q′)F (2)
n (q′) , (3.89)

whereby P(spatial)
nn is the spatial part of Pnn, but we do not distinguish between the pure P(spatial)

nn acting in
the spatial space and its embedding into the full three-body space which is given by P(spatial)

nn ⊗ 1. Note that
we sometimes omit the energy argument of the free Green’s function and the reduced t-matrix elements for
brevity7. They are evaluated at E3 = −B(0)

3 . The exchange kernel Xnn is given by

Xnn(q, q
′) :=

∫︂
dp p2

∫︂
dp′ p′2gln(p)n⟨p, q; ζn|P

(spatial)
nn |p′, q′; ζn⟩n gln(p

′)G
(n)
0

(︂
p′, q′;−B(0)

3

)︂
. (3.92)

The kernel Xnc is related to Xcn via
Xnc(q, q

′) = Xcn(q
′, q) . (3.93)

Note that the representations of the Faddeev amplitudes Fi(q) do not depend on the projection quantum
number M , although the reference states defining them depend on this quantum number. The reason is that
the equations determining the values of the amplitudes could depend on M only via the overlaps, but their
values are independent of M .

The equation system for the representations of the Faddeev amplitudes is solved numerically on a computer.
By using the Gauss-Legendre quadrature, the system of coupled integral equations can be mapped to an
7The following relations hold:

G
(i)
0 (p, q) := G

(i)
0

(︂
p, q;−B(0)

3

)︂
, (3.90)

τi(q) := τi
(︂
q;−B(0)

3

)︂
. (3.91)
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eigenproblem. Let the qi (i ∈ {1, ..., n}) be the mesh points and the wi the corresponding weights. In order to
write the eigenproblem down, we introduce the following matrices:(︂

K(α)
cn

)︂
ij
:= q2jXcn(qi, qj)τ

(α)
n (qj)wj , (3.94)

(Knc)ij := q2jXnc(qi, qj)τc(qj)wj , (3.95)(︂
K(α)

nn

)︂
ij
:= q2jXnn(qi, qj)τ

(α)
n (qj)wj . (3.96)

Furthermore, we introduce the following scalars:

o1 :=
c

⟨︂
ξ(M)
c

⃓⃓⃓
ξ(1;M)
n

⟩︂
n
, (3.97)

o2 :=
c

⟨︂
ξ(M)
c

⃓⃓⃓
ξ(2;M)
n

⟩︂
n
, (3.98)

p1 :=
n

⟨︂
ξ(1;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(1;M)
n

⟩︂
n
, (3.99)

p2 :=
n

⟨︂
ξ(2;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(2;M)
n

⟩︂
n
, (3.100)

p12 :=
n

⟨︂
ξ(1;M)
n

⃓⃓⃓
P(spin)
nn

⃓⃓⃓
ξ(2;M)
n

⟩︂
n
. (3.101)

The Faddeev amplitudes correspond to vectors after discretization of the momenta:

(Fc)i := Fc(qi) , (3.102)(︂
F (1)
n

)︂
i
:= F (1)

n (qi) , (3.103)(︂
F (2)
n

)︂
i
:= F (2)

n (qi) . (3.104)

Based on these definitions, we can write the eigenproblem in block-matrix notation as⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ =

⎛⎜⎝ 0 2o1K
(1)
cn 2o2K

(2)
cn

o1Knc −p1K(1)
nn −p12K(2)

nn

o2Knc −p12K(1)
nn −p2K(2)

nn

⎞⎟⎠
⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ =: K

⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ . (3.105)

As a next step, we will investigate the structure of the equations in the special case that both nc interaction
channels have the same spatial interaction and in the other special case of only one nc interaction channel
and no core spin. We can then check if the equation systems of both cases are equivalent, as the abstract
equivalence statement asserts.

The special case of equal strength of both nc interactions

In the case of equal interaction strength in both nc interaction channels, i.e., for τ (1)n = τ
(2)
n , we obtain⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ =

⎛⎜⎝ 0 2o1Kcn 2o2Kcn

o1Knc −p1Knn −p12Knn

o2Knc −p12Knn −p2Knn

⎞⎟⎠
⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ =: K

⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ . (3.106)

On this basis, we can reduce the Faddeev equations further. For the linear combination o1F (1)
n + o2F

(2)
n , one

can derive an equation that can be expressed solely in terms of this linear combination and of Fc:

o1F
(1)
n + o2F

(2)
n =

(︁
o21 + o22

)︁
KncFc − o1p1KnnF

(1)
n − o1p12KnnF

(2)
n − o2p12KnnF

(1)
n − p2o2KnnF

(2)
n (3.107)

= KncFc + o1KnnF
(1)
n + o2KnnF

(2)
n . (3.108)
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With the definition
Fn := o1F

(1)
n + o2F

(2)
n (3.109)

we can summarize this as
Fn = KncFc +KnnFn . (3.110)

Furthermore, the first line of eq. (3.105) can now be written as

Fc = 2KcnFn . (3.111)

Reduction to the case of one nc interaction channel

As a cross-check, we investigate if we can obtain the equations for the case of a single-nc-channel without core
spin by specialization of the more general equations. In the case of no core spin and only one nc interaction
channel8 the matrix K is replaced by its upper 2× 2-matrix. The replacement rules are

o1 → c⟨ξc|ξn⟩n = −1 , (3.112)
p1 → n⟨ξn|P

(spin)
nn |ξn⟩n = −1 , (3.113)

F (1)
n → Fn , (3.114)
F (2)
n → 0 . (3.115)

The equation system then reads (︄
F̃c

F̃n

)︄
=

(︄
0 −2Kcn

−Knc Knn

)︄(︄
F̃c

F̃n

)︄
, (3.116)

whereby we added tildes in order to distinguish the Faddeev amplitudes of the zero-core-spin case from the
Faddeev amplitudes of our more general calculation. By decoupling the equations, we obtain

F̃n = KnnF̃n + 2KncKcnF̃n , (3.117)
F̃c = −2KcnF̃n . (3.118)

In comparison the analogous equations following from eq. (3.110) and eq. (3.111) read

Fn = KnnFn + 2KncKcnFn , (3.119)
Fc = 2KcnFn . (3.120)

This implies the relations

Fn = F̃n , (3.121)
Fc = −F̃c . (3.122)

In this case, it is worth noting that there are also other versions of the Faddeev equations for 2n systems
without core spin and with one nc interaction channel. These can result in different signs for the Faddeev
amplitudes. At most, these different conventions can lead to a difference in the overall sign of the wave
functions. However, that is experimentally not observable.

In conclusion, the Faddeev equations for Fn = o1F
(1)
n + o2F

(2)
n and Fc are equivalent (up to sign conventions)

to the ones for the case with core spin not included and only one nc interaction channel. This cross-check was
successful. The equivalence statement can be confirmed. Next, we discuss the inclusion of the three-body
force.
8The nn interaction is, of course, also present, but we don’t mention that each time.
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Inclusion of the three-body force

In the case with the core spin not taken into account and only one nc interaction channel, the three-body
force is included by making the replacement

Xnn(qi, qj) → (Xnn(qi, qj) + h) , h(Λ) = H(Λ)/Λ2 . (3.123)

This is the procedure described in Ref. [26]. On the level of the Knn matrix emerging after discretization this
implies the replacement

Knn → ˜︁Knn(h) := Knn + hA , (3.124)

whereby h is the three-body coupling and A is given by

Aij := q2j τn(qj)wj . (3.125)

One might also consider not replacing all Knn appearing in eq. (3.105) by ˜︁Knn(h), but only one, e.g., the
one in the middle of the matrix. This might have the advantage that there is only one solution for h instead
of multiple solutions. The latter scenario will be discussed in the following. However, this scheme has the
disadvantage that the structure of the kernel matrix gets more complicated. One cannot map the equations
onto the ones of the spinless-core case with only one nc interaction channel, at least not for h ̸= 0. Therefore we
use the scheme where all Knn get replaced by ˜︁Knn(h) and proceed with the analysis of the solution structure.

3.4.4. Solution structure for the case with two nc interaction channels

In order to discuss the solution structure, it is useful to decouple the system of linear equations a bit. We note
that the equation for Fc does not contain Fc on the right side. It reads

Fc = 2o1KcnF
(1)
n + 2o2KcnF

(2)
n . (3.126)

Therefore we can insert this expression in the other two equations and remove thereby their Fc-dependence.
In this way, we now have a system of two equations determining F (1)

n and F (2)
n . Once these are solved, one

gets the solution for Fc from eq. (3.126). The system reads(︄
F

(1)
n

F
(2)
n

)︄
=

(︄
−p1 ˜︁Knn(h) + 2o21Knccn −p12 ˜︁Knn(h) + 2o1o2Knccn

−p12 ˜︁Knn(h) + 2o1o2Knccn −p2 ˜︁Knn(h) + 2o22Knccn

)︄(︄
F

(1)
n

F
(2)
n

)︄
=: Kr

(︄
F

(1)
n

F
(2)
n

)︄
, (3.127)

whereby the definition
Knccn := KncKcn (3.128)

holds. This equation system has two solutions, which differ in general in the three-body coupling h.

Solution 1 (h1)
The first solution of this eigenproblem has the form(︄

o1f

o2f

)︄
, (3.129)

which yields the equation

Kr

(︄
o1f

o2f

)︄
=

(︄
(−o1p1 − o2p12) ˜︁Knn(h)f + 2o1Knccnf

(−o1p12 − o2p2) ˜︁Knn(h)f + 2o2Knccnf

)︄
=

⎛⎝o1 (︂ ˜︁Knn(h) + 2Knccn

)︂
f

o2

(︂ ˜︁Knn(h) + 2Knccn

)︂
f

⎞⎠ , (3.130)
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which is fulfilled, if (︂ ˜︁Knn(h) + 2Knccn

)︂
f = f (3.131)

holds. We denote the h for that a vector f fulfilling the relation exists as h1.

Solution 2 (h2)
The second solution is of the form (︄

o2f

−o1f

)︄
. (3.132)

The equation system reads

Kr

(︄
o2f

−o1f

)︄
=

(︄
(−o2p1 + p12o1) ˜︁Knn(h)f

(−o2p12 + p2o1) ˜︁Knn(h)f

)︄
=

(︄
−o2 ˜︁Knn(h)f

o1 ˜︁Knn(h)f

)︄
. (3.133)

It is fulfilled, if ˜︁Knn(h)f = −f (3.134)

holds. We call the h for that a vector f satisfying the relation exists in the following h2. Note that this solution
has the special property that based on eq. (3.126) one obtains a vanishing Fc:

Fc = 0 . (3.135)

In the following, we will review the relations for the wave functions. With these at hand, we will discuss the
wave functions corresponding to these solutions to provide a more concrete interpretation.

If we use the mapping described in section 3.4.3, we obtain in the case of solution 2

Fn = 0 , Fc = 0 . (3.136)

So it corresponds to the trivial solution of the eigenproblem in the case of a spinless core and only one nc
interaction. However, one has to be careful with the interpretation since the calculation of the wave functions
components is based on F (1)

n , F (2)
n , and Fc and not on Fn and Fc. Therefore Fn = 0 and Fc = 0 do not imply a

vanishing wave function in the case of this calculation with two nc interaction channels. The wave function
corresponding to solution 2 will also be discussed.

3.4.5. Wave functions for case with two nc interaction channels

From the numerical results for the Faddeev amplitudes, the wave function can be obtained, which in turn can
be used for calculating observables. The basic ingredient is the relation between the abstract state and the
abstract Faddeev amplitudes, which is given by

|Ψ⟩ =
∑︂
i

G0ti |Fi⟩ (3.137)

= G0tc |Fc⟩+ (1 − Pnn)G0t
(1)
n

⃓⃓⃓
F (1)
n

⟩︂
+ (1 − Pnn)G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
. (3.138)

In the next step, we derive the wave function seen from the core and in the partial-wave state given by the
multi-indices ζ and ξ. The multi-index ζ contains the orbital quantum numbers, whereas ξ contains the spin
quantum numbers. Instead of the core as a spectator, we could also use a neutron as a spectator. However,
both ways to establish the wave function provide the same information, given all partial-wave components of
the wave function are taken into account. It is just a difference in the employed basis.
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We obtain for the wave function seen from the core

Ψc;ζ,ξ(p, q) = c⟨p, q; ζ, ξ|Ψ⟩ (3.139)
= G

(c)
0 (p, q)glc(p)τc(q)Fc(q)δζ,ζcδξ,ξc

+
(︂
1 + (−1)

l−s
)︂(︂

c

⟨︂
p, q; ζ, ξ

⃓⃓⃓
G0t

(1)
n

⃓⃓⃓
F (1)
n

⟩︂
+

c

⟨︂
p, q; ζ, ξ

⃓⃓⃓
G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂)︂
(3.140)

= ψc(p, q)δζ,ζcδξ,ξc +
(︂
1 + (−1)

l−s
)︂

×
∫︂

dp′ p′2
∫︂

dq′ q′2c⟨p, q; ζ|p
′, q′; ζn⟩n

(︂
c

⟨︂
ξ
⃓⃓⃓
ξ(1)n

⟩︂
n
ψ(1)
n (p′, q′) +

c

⟨︂
ξ
⃓⃓⃓
ξ(2)n

⟩︂
n
ψ(2)
n (p′, q′)

)︂
, (3.141)

whereby we used the following definitions for the component wave functions to write the expression more
compactly:

ψc(p, q) := c⟨p, q; ζc, ξc|ψc⟩ = G
(c)
0 (p, q)glc(p)τc(q)Fc(q) , (3.142)

ψ(i)
n (p, q) :=

n

⟨︂
p, q; ζn, ξ

(i)
n

⃓⃓⃓
ψ(i)
n

⟩︂
= G

(n)
0 (p, q)gln(p)τn(q)F

(i)
n (q) . (3.143)

Note that the situation regarding the projection quantum number M is similar to the case of the Faddeev
amplitudes. The wave functions are defined using reference states which depend on M , but the overlaps and
representations of the Faddeev amplitudes emerging in the concrete expressions for the wave functions do
not depend on M . Summing over all M to obtain an overall wave function corresponds in this case to the
multiplication with 2M + 1, a factor that is absorbed in the normalization constant.

In order to evaluate the integral in eq. (3.141), we make an auxiliary calculation:∫︂
dp′ p′2

∫︂
dq′ q′2c⟨p, q; ζ|p

′, q′; ζn⟩n f(p
′, q′)

=

∫︂
dΩp

∫︂
dΩq

∫︂
d3p′

∫︂
d3q′

c⟨p, q; ζ|p, q⟩c c⟨p, q|p
′, q′⟩n n⟨p

′, q′|p′, q′; ζn⟩n f(p
′, q′) (3.144)

=

∫︂
dΩp

∫︂
dΩq

(︂
YL,ML

l,λ (p, q)
)︂∗

YLn,MLn

ln,λn
(κcnp(p, q),κcnq(p, q))f(κcnp(p, q), κcnq(p, q)) (3.145)

=

∫︂
dΩp

∫︂
dΩq

(︂
YL,ML

l,λ (p, q)
)︂∗ 1

4π
f(κcnp(p, q), κcnq(p, q)) (3.146)

=

∫︂
dΩp

∫︂
dΩq

(︂
YL,ML

l,λ (p, q)
)︂∗ 1

2

∑︂
l′

√
2l′ + 1 (−1)

l′ Y0,0
l′,l′(p, q)f̃l′(p, q) (3.147)

=
1

2

√
2l + 1 (−1)

l
f̃l(p, q)δL,0δML,0δλ,l . (3.148)

We used that the interactions are s-wave and the consequences of that ln = λn = 0. Moreover, we made use of
the orthonormality of the coupled spherical harmonics, see eq. (3.24). We employed the definitions given
below:

f̃(p, q, x := cos (θp,q)) := f(κcnp(p, q, x), κcnq(p, q, x)) , (3.149)

f̃l(p, q) :=

∫︂ 1

−1

dxPl(x)f̃(p, q, x) . (3.150)

The l-th Legendre polynomial is denoted by Pl(x). Using these relations, we obtain for the wave function

Ψc;ζ,ξ(p, q) = ψc(p, q)δζ,ζcδξ,ξc +
(︂
1 + (−1)

l−s
)︂
δL,0δML,0δλ,l

√
2l + 1

2
(−1)

l

×
(︂
c

⟨︂
ξ
⃓⃓⃓
ξ(1)n

⟩︂
n

∫︂ 1

−1

dxPl(x)ψ
(1)
n (κcnp(p, q, x), κcnq(p, q, x))

+
c

⟨︂
ξ
⃓⃓⃓
ξ(2)n

⟩︂
n

∫︂ 1

−1

dxPl(x)ψ
(2)
n (κcnp(p, q, x), κcnq(p, q, x))

)︁
.

(3.151)
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This expression nicely shows the fulfillment of the Pauli principle. With the core as spectator, the antisym-
metrization of the nn pair requires (−1)

l−s
= 1. In front of the term stemming from

⃓⃓⃓
ψ
(1)
n

⟩︂
and

⃓⃓⃓
ψ
(2)
n

⟩︂
, there is

a prefactor ensuring that it only contributes if this condition is fulfilled. Since the first term solely is nonzero
for ξ = ξc and ζ = ζc, also that term contributes only for states that are properly antisymmetrized.

Before discussing the implications of the solution structure on the wave function, let us briefly review which
wave function components specified in terms of ζ and ξ are relevant. As already mentioned, we want to limit
ourselves to the case of L = 0. Consequently, we also have ML = 0 and S = J , MS =M . Since we use the core
as a spectator, the subsystem spin s can either be zero or one. The possible basis states ζ and ξ parameterizing
the wave function components are

ζ = (l, l) 0, 0 , (3.152)
ξ = (s, J) J,M . (3.153)

Due to the antisymmetrization, l and s have to be either both even or both odd. As discussed, if that is not
the case, the wave function components vanish automatically. Therefore, the relevant and non-vanishing
wave function components can solely be specified by l. We will use this result, when showing wave function
components and determining which wave function components will be used for calculations.

Implications of the solution structure

In section 3.4.4, the solution structure of the Faddeev equations in the case of two nc interaction channels
with the same strength was investigated. Here want to discuss the implications of the structure of the solution
on the wave function.

Solution 1 (h1)
In the case of solution 1, (h1) the solution vector is given by(︄

F
(1)
n

F
(2)
n

)︄
=

(︄
o1f

o2f

)︄
(3.154)

and Fc follows via eq. (3.126). After interpolation of the solution vector9 , this implies for the Faddeev
amplitudes the relations

F (1)
n (q) = o1f(q) , (3.155)
F (2)
n (q) = o2f(q) . (3.156)

By using eq. (3.143) we can conclude in this case of equal strength in both nc channels the relation

ψ(2)
n (p, q)/ψ(1)

n (p, q) = o2/o1 . (3.157)

In the next step, we discuss the full wave functions, which contain all Faddeev wave function components.
If we look at eq. (3.151), we can see that there are generally contributions for odd l if s is also odd. This
is because the first term does only contribute for l = 0, and the second term only contributes for l%2 = s%2

because of its prefactor. Since only s = 0 or s = 1 are possible, this means that s = 1 holds for odd l. In the
case of odd l the second terms without its prefactors reads then(︃

c

⟨︂
ξ(1)c

⃓⃓⃓
ξ(1)n

⟩︂
n

∫︂ 1

−1

dxPl(x)ψ
(1)
n (κcnp(p, q, x), κcnq(p, q, x)) +

c

⟨︂
ξ(1)c

⃓⃓⃓
ξ(2)n

⟩︂
n

∫︂ 1

−1

dxPl(x)ψ
(2)
n (κcnp(p, q, x), κcnq(p, q, x))

)︃
=

(︃
o1

∫︂ 1

−1

dxPl(x)ψ
(1)
n (κcnp(p, q, x), κcnq(p, q, x))− o2

∫︂ 1

−1

dxPl(x)ψ
(2)
n (κcnp(p, q, x), κcnq(p, q, x))

)︃
, (3.158)

9by, e.g., using Nyström’s method for the interpolation of solutions of discretized integral equations
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where we employed the equations

c

⟨︂
ξ(1)c

⃓⃓⃓
ξ(1)n

⟩︂
n
=

c

⟨︂
ξc

⃓⃓⃓
ξ(1)n

⟩︂
n
= o1 , (3.159)

c

⟨︂
ξ(1)c

⃓⃓⃓
ξ(2)n

⟩︂
n
= −

c

⟨︂
ξc

⃓⃓⃓
ξ(2)n

⟩︂
n
= −o2 , (3.160)

whereby the projection quantum numbers M etc. were omitted. By using the ratio of the wave function
components given in eq. (3.157), this yields that this term vanishes. In combination with the fact that the first
term vanishes for odd l, this implies that the odd l components vanish.

Solution 2 (h2)
In the case of solution 2 (h2) the solution vector is given by(︄

F
(1)
n

F
(2)
n

)︄
=

(︄
o2f

−o1f

)︄
(3.161)

and Fc = 0 holds. After interpolation of the solution vector, this implies for the Faddeev amplitudes the
relations

F (1)
n (q) = o2f(q) , (3.162)
F (2)
n (q) = −o1f(q) . (3.163)

On the level of the ψ(i)
n , this implies, in this case of equal strengths in both nc channels, the relation

ψ(2)
n (p, q)/ψ(1)

n (p, q) = −o1/o2 . (3.164)

In order to investigate the implications for the full wave functions, we look at eq. (3.151). We note that
the first term vanishes, since Fc(q) = 0 and thereby ψc(p, q) = 0 holds. In the case of even l, also the second
term vanishes, as we will describe now. Because of its prefactor for even l, also s has to be even. Then for this
system, only s = 0 is possible. The concrete expression for the second term without its prefactors reads(︃

c

⟨︂
ξc

⃓⃓⃓
ξ(1)n

⟩︂
n

∫︂ 1

−1

dxPl(x)ψ
(1)
n (κcnp(p, q, x), κcnq(p, q, x)) +

c

⟨︂
ξc

⃓⃓⃓
ξ(2)n

⟩︂
n

∫︂ 1

−1

dxPl(x)ψ
(2)
n (κcnp(p, q, x), κcnq(p, q, x))

)︃
=

(︃
o1

∫︂ 1

−1

dxPl(x)ψ
(1)
n (κcnp(p, q, x), κcnq(p, q, x)) + o2

∫︂ 1

−1

dxPl(x)ψ
(2)
n (κcnp(p, q, x), κcnq(p, q, x))

)︃
. (3.165)

Given the ratio of the ψ(i)
n described in eq. (3.164), this implies that also this term vanishes. So, in the case of

solution 2, the wave function Ψc;ζ,ξ(p, q) vanishes for even l.
Finally, it is worth noting that we see the splitting into solutions in different spin subspaces, i.e., nn-spin-0

space and nn-spin-1 space.

3.4.6. Wave functions of 11Li

In the following, we present results for Faddeev amplitudes and wave functions obtained with different
descriptions of 11Li.
The following list gives an overview of these descriptions:

• L0: no core spin taken into account.

• L
(2)
1 : core spin taken into account, one nc interaction channel, which is the j = 2 channel.
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• L2: core spin taken into account, two nc interaction channels with the same Enc virtual state energy:
j = 1 and j = 2.

• L
(w1)
2 : core spin taken into account, two nc interaction channels as in the case of L2. While Enc, which

determines the interaction strength in this LO description, is unchanged in j = 2, a very large Enc is
used in the j = 1 channel. This corresponds to a weak interaction strength in this channel.

In any case, the neutron spins were taken into account.

Results for the Faddeev amplitudes in the L2 case: checking the solution structure

Before looking at the results for the Faddeev amplitudes for L2, L(2)
1 , and L0 in comparison, we check if

the different solutions (solution 1 and solution 2) fulfill the relations given in section 3.4.4. The Faddeev
amplitudes for these two cases are shown in fig. 3.1.
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Figure 3.1.: Plots of the Faddeev amplitudes Fi(q) associated with the two solutions in the case of L2. The bands indicating
the numerical uncertainties are, in some cases, too small to be visible. These uncertainties are estimated by
comparing the calculation with another one having twice as many mesh points and a 50% larger cutoff.

It can be seen that the relations are indeed satisfied. In the case of h1 the equality

F (1)
n (q)/o1 = F (2)

n (q)/o2 (3.166)

holds as expected. For h2 the relation

F (1)
n (q)/o2 = −F (2)

n (q)/o1 (3.167)

is fulfilled as expected. Furthermore, Fc(q) = 0 holds.
Another interesting observation is that in the case of h1, the Faddeev amplitudes show good convergence,

while this is generally not true in the case of h2. Only in the case of Fc, which has to vanish for this solution,
good convergence is observed.

Furthermore, we want to highlight that the calculations show that three-body couplings associated with the
two different solutions are indeed different: h1 ̸= h2. Superpositions of the corresponding wave functions are
therefore not physically meaningful, since the single wave functions correspond to overall Hamilton operators
H = H(0) +H(1) differing in the three-body coupling.
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Results for the Faddeev amplitudes

Figure 3.2 shows the Faddeev amplitudes obtained with L0, L(2)
1 , and with L2 in comparison. If not noted

otherwise, L2 means in the following L2, whereby solution h1 is used.
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Figure 3.2.: Plots of the Faddeev amplitudes Fi(q). The left panel shows the results for the zero-spin calculation (L0) and for
the calculation with spin where the nc interaction happens in the j = 1 as well as in the j = 2 channel (L2).
The right panel shows the results for setting L0 as well as for the calculation with spin but the nc interaction only
in the j = 2 channel (L(2)

1 ). The bands indicating the numerical uncertainties are too small to be visible. These
uncertainties are estimated by comparing the calculation with another one having twice as many mesh points
and a 50% larger cutoff. The amplitudes are normalized such that Fc has a certain value at a certain position.
This determines then also the prefactors of the F (i)

n . (This procedure requires the manual normalization of the
wave function calculated from the amplitudes.)

It can be seen that the Faddeev amplitude Fc of L0 and the one of L2 are equal up to an overall sign, as
expected based on the considerations from section 3.4.3. Furthermore, we can observe that o1F (1)

n + o2F
(2)
n

from L2 is identical to the Faddeev amplitude Fn from L0. Also, in this case, the expectations are fulfilled.
In contrast to these observations, Fc and Fn from the calculation L(2)

1 (with spin but only one nc interaction
channel) deviate more significantly from the corresponding Faddeev amplitudes of the L0 calculation. Especially,
the high momentum behavior is different: in the case of L(2)

1 , there is more strength at higher momenta.
Figure 3.3 shows the Faddeev amplitudes obtained with L(2)

1 and with L(w1)
2 in comparison. These settings

resemble approximately the same physics, i.e., significant nc interaction only in j = 2, but in different
implementations: an implementation with two nc channels (L(w1)

2 ) vs. an implementation with one nc channel
(L(2)

1 ). Because the physics is approximately the same, agreement of the results is expected. Thereby, this
provides a cross-check for the implementation of the Faddeev equations with two nc interaction channels.

The results agree approximately, whereby the Faddeev amplitude F (2)
n from setting L(w1)

2 corresponds to Fn

from L
(2)
1 . One might naively expect that the Faddeev amplitude F (1)

n from setting L(w1)
2 should go to zero

since we are here in the regime of a very weak nc interaction in the j = 1 channel. As can be seen from the
plot, this is not the case. This phenomenon can be understood by revisiting eq. (3.105), which reads⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ =

⎛⎜⎝ 0 2o1K
(1)
cn 2o2K

(2)
cn

o1Knc −p1K(1)
nn −p12K(2)

nn

o2Knc −p12K(1)
nn −p2K(2)

nn

⎞⎟⎠
⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ , (3.168)

whereby K(1)
cn and K(2)

cn follow the definition in eq. (3.94) and differ only in τn(q), which is then either τ (1)n (q)
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Figure 3.3.: Plots of the Faddeev amplitudes Fi(q). Results obtained in settings L(2)
1 (with spin, nc interaction in j = 2) and

obtained in setting L(w1)
2 (with spin, j = 1 and j = 2 interaction channels, weak interaction in j = 1 channel)

are shown. While the numerical uncertainty bands of the L(2)
1 calculation are too small to be visible, some of

the ones for L(w1)
2 are visible. The amplitudes of L(w1)

2 were all multiplied by the ratio of the Fc amplitudes
from L

(2)
1 and L(w1)

2 at q = 1.5 MeV. (This is basically a normalization procedure. As the wave functions will
get normalized again, the concrete factor used here is not important.)

or τ (2)n (q). The same holds for K(1)
nn and K(2)

nn , whose definition is given in eq. (3.96). In the case τ (1)n = 0, the
equation becomes ⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ =

⎛⎜⎝ 0 0 2o2K
(2)
cn

o1Knc 0 −p12K(2)
nn

o2Knc 0 −p2K(2)
nn

⎞⎟⎠
⎛⎜⎝ Fc

F
(1)
n

F
(2)
n

⎞⎟⎠ . (3.169)

The matrix clearly shows that the amplitudes Fc and F (2)
n are in this limit case not influenced by F (1)

n , while
F

(1)
n depends on the other amplitudes and might be nonzero. So, this explains our observation of a non-zero

Faddeev amplitude F (1)
n in the setting L(w1)

2 . Moreover, the structure of the equations is consistent with our
expectation that the other amplitudes should not be influenced by the Faddeev amplitude corresponding
to an interaction channel that is effectively turned off. Finally, we face the question if the observables are
independent of F (1)

n as we would expect. This is indeed the case, as can be seen from the relation

|Ψ⟩ =
∑︂
i

G0ti |Fi⟩ = G0tc |Fc⟩+ (1 − Pnn)G0t
(1)
n

⃓⃓⃓
F (1)
n

⟩︂
+ (1 − Pnn)G0t

(2)
n

⃓⃓⃓
F (2)
n

⟩︂
. (3.170)

Although this is an equation for the abstract states, the structure is invariant under the transition to represen-
tations of the Faddeev amplitudes. Thereby it shows that F (1)

n will not contribute to the wave function, since
τ
(1)
n is effectively zero. The observables are not influenced by F (1)

n .

Results for the wave functions in the L2 case: checking the solution structure

Before looking at the results for the wave functions for L2, L(2)
1 , and L0 in comparison, we check if the different

solutions in the L2 case (solution 1 and solution 2) fulfill the relations given in section 3.4.5. The wave
functions for different partial waves for these two cases are shown in fig. 3.4. We make use of our finding that
the wave function components can be solely counted by l.
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Figure 3.4.: Plots of the normalized wave function Ψ
(l)
c (p, q) obtained with the settings L2 solution 1 (left column) and L2

solution 2 (right column). The wave functions in the right column are multiplied by −1. The wave functions
are normalized such that the l = 0 components are normalized to 1:

∫︁
dp dq p2q2

⃓⃓⃓
Ψ

(0)
c (p, q)

⃓⃓⃓2
= 1. The other

components are multiplied with the normalization factor from the l = 0 component, so that the ratios between
different partial-wave components have the correct physical values.

Note that the plot above has to be interpreted with care. The investigations of the solution structure showed
that in the case of the three-body coupling h1 wave function components with s = 1 (odd l) vanish, while
in the case of h2 those with s = 0 (even l) vanish. The latter seems to be violated, but that is probably not
true. Due to just normalizing the l = 0 (→ s = 0) component and multiplying the other components with
that normalization factor, the numerical residuals in the even-l components get scaled up. That these are
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just numerical residuals can be seen from the fact l = 1 component has a maximum value of the order of 107.
Therefore the l = 0 component in this h2 case is smaller by a factor of roughly 1011. That in this case, the
s = 0, i.e., even l, components are just numerical residuals can also be seen from the noisy structure in the
low-momentum region of the l = 2 plot.

Results for the wave functions

Figure 3.5 shows the results for the wave function

Ψc(p, q) := c⟨p, q; ζc, ξc|Ψ⟩ (3.171)

obtained using the settings L0, L(2)
1 , and L2.
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Figure 3.5.: Plots of the normalized wave function Ψc(p, q) obtained with the settings L0, L(2)
1 , and L2. The wave functions

in the middle and right panels are multiplied by −1.

It can be seen that the results for L0 and for L2 are identical up to an overall sign, while L(2)
1 deviates

significantly. It has less strength at lower momenta. This is in line with the observation for the Faddeev
amplitudes.
It is also interesting to look at additional wave functions, i.e., projections on different partial-wave states.

We investigate wave functions of the form

Ψ(l)
c :=

⎧⎨⎩c

⟨︂
p, q; ζ

(l)
c , ξ

(M)
c

⃓⃓⃓
Ψ
⟩︂
, if l%2 = 0

c

⟨︂
p, q; ζ

(l)
c , ξ

(1;M)
c

⃓⃓⃓
Ψ
⟩︂
, if l%2 = 1

(3.172)

where the spatial state in the partial-wave basis is given by⃓⃓⃓
ζ(l)c

⟩︂
c
:= |(l, l) 0, 0⟩c . (3.173)

We limit ourselves to the case λ = l and L =ML = 0 since only these states contribute in our system, as can be
seen from eq. (3.151). This equation also shows that we need for odd l a total spin of 1 instead of 0 in the nn
subsystem, which is reflected by the spin states in use:⃓⃓⃓

ξ(M)
c

⟩︂
c
:=

⃓⃓⃓⃓(︃[︃
1

2
,
1

2

]︃
0,

3

2

)︃
3

2
,M

⟩︃
c

, (3.174)⃓⃓⃓
ξ(1;M)
c

⟩︂
c
:=

⃓⃓⃓⃓(︃[︃
1

2
,
1

2

]︃
1,

3

2

)︃
3

2
,M

⟩︃
c

. (3.175)
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Finally, note that the already introduced wave function Ψc(p, q) relates according to Ψc(p, q) = Ψ
(0)
c (p, q) to this

complete set of relevant wave functions.
Figure 3.6 shows the results for the setting L0 as well as for the setting L2.
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Figure 3.6.: Plots of the normalized wave function Ψ
(l)
c (p, q) obtained with the settings L0 (left column) and L2 (right

column). The wave functions in the right column are multiplied by −1. The normalization scheme is the scheme
already discussed in the caption of fig. 3.4. In the case of L0, there are no non-vanishing wave functions for odd
l because of the limited spin structure in this case and because of the Pauli principle.

Note that in the case of a core with zero spin, i.e., in setting L0, an overall spin of 1 in the nn subsystem
cannot yield a total spin of 0 for the three-body system. Therefore, there are, in this case, no contributions
from odd l as there is no suitable spin state of the concrete system so that the Pauli principle can be fulfilled.
In the case of L2, the odd l also vanish up to the remaining numerical artifacts. This observation is in line with
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the analysis from section 3.4.5.
Furthermore, we observe that the wave functions with l > 0 are at least suppressed by a factor of more than

100 if one compares the maximum values. This shows that using only the Ψ
(0)
c (p, q) component should lead

already to good approximations for the E1 strength distributions.

3.5. Conclusion and outlook

In this chapter, we extended the EFT description of the structure of 2n halo nuclei from Ref. [25] by taking
the core spin into account. In that case, two nc interaction channels exist. In an analytic investigation, we
found that if the same interaction strength is used in both channels, the spin can be neglected. In numerical
calculations, we confirmed the analytic finding and also investigated specialties related to the three-body force
in systems with two nc interaction channels. Moreover, we computed wave functions, which are an ingredient
for modularized calculations. We analyzed the wave functions in terms of relevant partial-wave components
and found that the s-wave component is by far the most important one. Other ones arising from recoupling
are highly suppressed. In that way, we provide important ingredients and findings for following calculations
of observables of s-wave 2n halo nuclei. In chapter 5, we calculate the E1 strength of 11Li and in chapter 8, the
nn distributions of various s-wave halos are investigated in the context of universality.
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4. Structure of 6He and ground-state neutron-neutron
distributions

After having discussed the description of the ground states of s-wave two-neutron 2n halo nuclei and especially
11Li in the last chapter, we focus in this chapter on the p-wave nucleus 6He. We need an accurate description
of the ground state of 6He to be able to calculate the neutron-neutron relative-energy distribution in chapter 6,
which will be used for the extraction of the neutron-neutron scattering length. Moreover, we need that
description also for the calculation of the E1 strength distribution of 6He in chapter 5. In halo physics, this
strength distribution is a commonly used observable, see, e.g., Refs. [16, 53, 54].
We will outline the formalism used for 6He. In general, this formalism is very similar to the one for the

s-wave halos because it is also based on Faddeev equations. However, due to the more complicated partial-wave
structure in 6He, the details are different. For the Faddeev equations, we build on the pioneering work on 6He
in halo EFT by Ji, Elster, and Phillips [29]. In order to obtain the wave function from the Faddeev amplitudes,
we make use of the results by Göbel, Hammer, Ji, and Phillips [30]. The degrees of freedom of the halo EFT for
6He are, in perfect analogy to the s-wave halos, the core and the two neutrons. The two-body interactions are
given by the nn and the nc interaction. At leading-order, for the nn system the channel 1S0 and for the nc the
channel 2P3/2 contribute. At higher orders, in the nc system also 2S1/2 and 2P1/2 play a role. To renormalize
the three-body system, the three-body force from Ref. [29] is employed. The nc interaction has the additional
specialty that multiple power countings are available. On the one hand, there is the power counting by
Bertulani, Hammer, and van Kolck [23] where the leading effective-range expansion parameter a1 scales like
M−3

lo and the next parameter r1 scales like Mlo. On the other hand, a power counting by Bedaque, Hammer,
and van Kolck [24] where a1 is of the order of MhiM

−2
lo and r1 is of the order of Mhi. While in the first case,

the unitarity term ∝ p3 and therefore of order M3
lo is still part of the leading order, in the second case, this

scaling is already next-to-leading order. The natural expectation in an EFT is that the so-called low-energy
constants (LECs) parameterizing the low-energy physics are of the corresponding power of Mhi. This can be
understood from the perspective that the coefficients have to account for the high-energy physics not explicitly
taken into account. In that sense, the second power counting has fewer “un-natural” scalings of LECs, which
are here given by the ERE parameters. For this reason and because of the successful application of the nα
interaction with this power counting to 6He in Ref. [29], we employ this counting scheme.

Moreover, we will also compare our EFT results to results from a three-body cluster model calculation that
uses coordinate-space local interactions in order to check the robustness of our ground-state description.
Cluster models for describing two-neutron halos that use local coordinate-space potentials are well established
and have been applied to a number of systems, see, e.g., Refs. [17–20]. While the Faddeev code for the EFT
calculations is self-written, for our cluster-model calculations, we use the well-established code FaCE (Faddeev
with core excitation) [55]. As observable for these comparisons, we use the ground-state neutron-neutron
relative-momentum distribution. Since we will work much with the final-state neutron-neutron relative-energy
distribution in chapter 6, we think that its ground-state analogon is a useful object for the comparison1. To
be able to perform these comparisons very fine-grained, we additionally employ a Yamaguchi model. This
model is based on the same formalism as the halo EFT calculations. Only the t-matrices consisting of the
1Of course, we could have also chosen the ground-state relative-energy distribution as an object for the comparison.
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reduced t-matrices and the so-called form factors, which describe the off-shell momentum dependence, are
different. This larger similarity to the halo EFT description is the reason why adding the Yamaguchi model to
the comparison is helpful. The similarity allows for more fine-grained comparisons.
This chapter is structured as follows. First, in section 4.1, the description of 6He in halo EFT is reviewed.

The structure of the interactions is discussed. Moreover, it is described how the wave functions are obtained.
In regard to the benchmarks with model calculations, also the Yamaguchi model is introduced in section 4.2.
In section 4.3, the hyperspherical harmonics formalism, which is used by FaCE, is discussed. On this basis,
section 4.4 introduces multiple variations of the models and discusses the benchmarks. Making use of the
different models, we analyze the distributions in detail. Finally, in section 4.5, we also derive a cross-check for
the relative-momentum distributions of the cluster models and validate our distributions. Note that for the
momentum as well as the partial-wave basis we make use of the quantities and the formalism discussed in
sections 3.2 and 3.3 of the previous chapter. Parts of this chapter have been published in this or in similar
form in Phys. Rev. C 104, 024001 (2021) [56].

4.1. Halo EFT

In the case of 6He, the partial-wave structure is more involved due to the presence of the p-wave nc interactions.
This time, we specify the partial-wave states in jI coupling. We follow the formalism of Ji, Elster, and Phillips
[29], who worked out the Faddeev equations and their renormalization for 6He, and of Göbel et al. [30], who
calculated on the basis of Faddeev wave function components also probability densities.
For the coupling, it is necessary to know the spins. 4He as well as 6He have Jπ = 0+.

4.1.1. Structure of interactions

As in the s-wave case, we introduce multi-index constants for specifying the interaction channels. For the
arrangement of quantum numbers in jI coupling, see eq. (3.15). In the case of the nc interaction, i.e., i = n,
the dominant contribution is in the channel 2P3/2. Correspondingly, we have l = 1, s = 1/2, and j = 3/2.
Moreover, σ is given by one neutron spin and thereby 1/2. Since J = 0 holds, I has to equal j and be 3/2.
These conditions imply for λ either 1 or 2. Since the parity of the overall state has to be positive and the
intrinsic parities of the two neutrons as well as of 4He are positive, the parity stemming from the orbital
motions also has to be positive. Accordingly, l and λ have to be both either even or odd. This yields for the nc
interaction channel λ = 1. This means that with no loss of generality for the 6He state under consideration, the
nc interaction projects not only in the interacting subsystem but in the quantum numbers of the third particle.
The multiindex Ωn of the nc interaction channel reads

Ωn = (1, 1/2) 3/2 (1, 1/2) 3/2; 0, 0 . (4.1)

For the leading-order nn interaction in 1S0, whose partial-wave channel is specified with the core as a
spectator, we have l = s = j = 0. Based on J = 0, this implies also I = 0. Since the spin of 4He is zero, we have
also σ = 0. Under these circumstances, λ = 0 is necessary. In summary, the multi-index Ωc reads

Ωc = (0, 0) 0 (0, 0) 0; 0, 0 . (4.2)

The spatial part of the nn interaction, i.e., the nn reduced t-matrix, is the same as in the s-wave case, see
eq. (3.34). In the case of the nc interaction, the reduced t-matrix is given by

τn(q;E) =
3pp′

4π2µnc

1

γ1 (k2n(q;E)− k2R)
, (4.3)
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whereby γ1 and kR are at leading order given by

γ1 = −r1/2 , (4.4)
kR =

√︁
2/ (a1r1) . (4.5)

They are the first two parameters of the p-wave effective range expansion. The function kn(q;E), whose
square is used here, is the one given in eq. (3.35).

4.1.2. Faddeev equations and wave functions

Since we use this time a purely coupled basis with the multi-indices Ωi and since there is only one nc interaction
channel in contrast to our general s-wave treatment, the Faddeev equations are those that are already given
in section 2.4. The equation system is then given by eq. (2.61), where the exchange kernels are given by
eq. (2.60). The definition of the Faddeev amplitudes is given by eq. (2.58).
In the next step, we consider the wave function components. As already in the s-wave case, we use the

core as a spectator. With that spectator, the nn relative momentum is directly accessible. It is given by p. This
is advantageous for the later calculation of nn relative-momentum and of nn relative-energy distributions.
We first discuss the relevant partial-wave components of the wave functions. The spin quantum number σ is
directly determined from the spin of 4He to be zero. Moreover, we have J =M = 0. From that, we conclude
that j = I holds. If we have an orbital angular momentum of l in the nn subsystem and have a nn spin of
either zero or one, j has to be either l + 1, l, or l − 1. Then I and thereby also λ is directly determined. To
maintain the positive parity of the overall state, only l = λ is an option, which is still compatible with s being
zero or one. In conclusion, the multi-index for reference states producing relevant and non-vanishing results
is solely parameterized by l and s. It reads

Ω(l,s) := (l, s) l, (l, 0) l; 0, 0 , (4.6)

whereby for s = 0 the condition l ≥ 0 holds, while for s = 1 the stricter condition l ≥ 1 has to be fulfilled. This
analysis of contributing partial waves is consistent with earlier calculations, see, e.g., Refs. [17, 18].
The equation for obtaining the overall state from the Faddeev amplitude states reads

|Ψ⟩ =
∑︂
i

G0ti |Fi⟩ (4.7)

= G0tc |Fc⟩+ (1 − Pnn)G0tn |Fn⟩ . (4.8)

On this basis, we obtain for representations of wave functions

Ψ(l,s)
c :=

c

⟨︂
p, q; Ω(l,s)

⃓⃓⃓
Ψ
⟩︂

(4.9)

= c⟨p, q; (l, s) l (l, 0) l; 0, 0|Ψ⟩ (4.10)

= δl,0δs,0ψc(p, q) +

∫︂
dp′ p′2

∫︂
dq′ q′2

c

⟨︂
p, q; Ω(l,s)

⃓⃓⃓
p′, q′; Ωn

⟩︂
n
ψn(p

′, q′)

+

∫︂
dp′ p′2

∫︂
dq′ q′2

c

⟨︂
p, q; Ω(l,s)

⃓⃓⃓
(−Pnn)

⃓⃓⃓
p′, q′; Ωn

⟩︂
n
ψn(p

′, q′) . (4.11)

To evaluate the overlap between different spectators, one can proceed as follows:

1. switch from jI coupling to LS coupling,

2. switch from a (coupled) LS basis to an uncoupled LS basis,
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3. evaluated the spatial overlap by inserting identities in plane waves, one with the initial spectator and
one with the final spectator,

4. express the overlaps between partial-wave states and plane-wave states in terms of coupled spherical
harmonics,

5. express the overlap between different-spectator plane-wave states in terms of Dirac deltas,

6. simplify the coupled spherical harmonics, and

7. evaluate the spin-space overlaps.

For step 1, we can use eq. (3.19). Applying steps 1 to 5 yields

c⟨p, q; Ωc|p′, q′; Ωn⟩n =
c

⟨︃
p, q; (0, 0) 0 (0, 0) 0; 0, 0

⃓⃓⃓⃓
p′, q′;

(︃
1,

1

2

)︃
3

2

(︃
1,

1

2

)︃
3

2
; 0, 0

⟩︃
n

(4.12)

=
∑︂
L′

√︃
2

3

(︃
−1√
2

)︃L′

c

⟨︃
p, q; (0, 0)L = 0 (0, 0)S = 0; 0, 0

⃓⃓⃓⃓
p′, q′; (1, 1)L′

(︃
1

2
,
1

2

)︃
S′ = L′; 0, 0

⟩︃
n

(4.13)

=
∑︂

L′,M ′
L

(−1)
M ′

L

√︄
21−L′

6L+ 3
(c⟨p, q; (0, 0) , L = 0,ML = 0| c⟨(0, 0)S = 0,MS = 0|)

×
(︃
|p′, q′; (1, 1)L′,M ′

L⟩n

⃓⃓⃓⃓(︃
1

2
,
1

2

)︃
S′ = L′,M ′

S = −M ′
L

⟩︃
n

)︃
(4.14)

=
∑︂

L′,M ′
L

(−1)
M ′

L

√︄
21−L′

6L′ + 3 c

⟨︃
(0, 0) 0, 0

⃓⃓⃓⃓(︃
1

2
,
1

2

)︃
L′,−M ′

L

⟩︃
n

×
∫︂

dΩp dΩq

∫︂
dΩp′ dΩq′

c⟨p, q; (0, 0) , 0, 0|p, q⟩c c⟨p, q|p
′, q′⟩n n⟨p

′, q′|p′, q′; (1, 1)L′,M ′
L⟩n (4.15)

=
∑︂

L′,M ′
L

(−1)
M ′

L

√︄
21−L′

6L′ + 3 c

⟨︃
(0, 0) 0, 0

⃓⃓⃓⃓(︃
1

2
,
1

2

)︃
L′,−M ′

L

⟩︃
n

×
∫︂

dΩp dΩq

∫︂
dΩp′ dΩq′

(︂
Y0,0
0,0 (p, q)

)︂∗
YL′,M ′

L
1,1 (p′, q′)c⟨p, q|p

′, q′⟩n (4.16)

=
∑︂

L′,M ′
L

(−1)
M ′

L

√︄
21−L′

6L′ + 3 c

⟨︃
(0, 0) 0, 0

⃓⃓⃓⃓(︃
1

2
,
1

2

)︃
L′,−M ′

L

⟩︃
n

×
∫︂

dΩp dΩq

∫︂
dΩp′ dΩq′

(︂
Y0,0
0,0 (p, q)

)︂∗
YL′,M ′

L
1,1 (p′, q′)δ(3)(p′ − κcnp(p, q))δ

(3)(q′ − κcnq(p, q)) (4.17)

Note that we wrote further specifications in the Dirac brackets like S = only at the first occurrences as a
reading help. In principle, these specifications are not necessary, as for the uncoupled LS basis, we follow the
order of quantum numbers given in eq. (3.25). In this basis, the Dirac bras and kets with the spatial quantum
numbers can be easily distinguished from the ones with the spin quantum numbers because the first type also
contains the momenta. The values of the recoupling coefficients between the different coupling schemes of
the quantum numbers used here can be found in Ref. [29]. Alternatively, they can be directly obtained by
evaluating the Wigner symbols and Clebsch-Gordan coefficients given inter alia in eq. (3.19). By simplifying
the expression further, we obtain

c⟨p, q; Ωc|p′, q′; Ωn⟩n =

√
2

(4π)
2

∫︂
dΩp dΩq

∫︂
dΩp′ dΩq′ cos θp′,q′δ(3)(p′ − κcnp(p, q))δ

(3)(q′ − κcnq(p, q)) (4.18)
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from Ref. [30].
The procedure for evaluating the matrix element c⟨p, q; Ωc|−Pnn|p′, q′; Ωn⟩n is the same. In that process, the

nn permutation operator Pnn is decoupled in its spatial and its spin part: Pnn = P(spatial)
nn ⊗P(spin)

nn . One obtains
[30]

c⟨p, q; Ωc|Pnn|p′, q′; Ωn⟩n = −
√
2

(4π)
2

∫︂
dΩp dΩq

∫︂
dΩp′ dΩq′ cos θp′,q′

× δ(3)
(︁
p′ − κ′

cnp(p, q)
)︁
δ(3)
(︁
q′ − κ′

cnq(p, q)
)︁
. (4.19)

On the basis of these results, the expression for the s-wave component of the wave function reads

Ψc(p, q) = c⟨p, q; Ωc|Ψ⟩ (4.20)
= ψc(p, q)

+

√
2

(4π)
2

∫︂
dΩp dΩq

∫︂
d3p′

∫︂
d3q′ cos θp′,q′ δ(3)(p′ − κcnp(p, q))δ

(3)(q′ − κcnq(p, q))ψn(p
′, q′)

+

√
2

(4π)
2

∫︂
dΩp dΩq

∫︂
d3p′

∫︂
d3q′ cos θp′,q′ δ(3)

(︁
p′ − κ′

cnp(p, q)
)︁
δ(3)
(︁
q′ − κ′

cnq(p, q)
)︁
ψn(p

′, q′) (4.21)

= ψc(p, q)

+

√
2

(4π)
2

∫︂
dΩp dΩq cos θκcnp(p,q),κcnq(p,q) ψn(κcnp(p, q), κcnq(p, q))

+

√
2

(4π)
2

∫︂
dΩp dΩq cos θκ′

cnp(p,q),κ
′
cnq(p,q)

ψn

(︁
κ′cnp(p, q), κ

′
cnq(p, q)

)︁
. (4.22)

All the angular dependence of the integrand can purely expressed in terms of a dependence on the relative
angle between p and q. To discuss this in a bit more detail, we introduce

x := cos (θp,q) . (4.23)

For the absolute value of any κijk(p, q) (i, j ∈ {n, c} ∧ k ∈ {p, q})2 , which we parameterize as

κijk(p, q) =: aijkp+ bijkp , (4.24)

one obtains

κijk(p, q) = |κijk(p, q)| (4.25)

=
√︂
a2ijkp

2 + b2ijkq
2 + 2aijkbijkpqx (4.26)

= κijk(p, q, x) . (4.27)

With that, we have shown that the absolute values of these transformed vectors depend only on the absolute
values of p and q as well as their relative angle, or the cosine of that, i.e., x. By rewriting cos θκijp(p,q),κijq(p,q)

as scalar product and using the same dissection of κijk(p, q), we show that the same statement can be made
about the dependencies of cos θκijp(p,q),κijq(p,q). Therefore, we write

cos θijpq(p, q) := cos θκijp(p,q),κijq(p,q) with i, j ∈ {n, c} (4.28)
= cos θijpq(p, q, x) . (4.29)

2The analysis provided here also holds for the κ′
ijk(p, q).
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Likewise, we have

cos θ′ijpq(p, q) := cos θκ′
ijp(p,q),κ

′
ijq(p,q)

with i, j ∈ {n, c} (4.30)
= cos θ′ijpq(p, q, x) . (4.31)

On this basis, we obtain for the wave function

Ψc(p, q) = ψc(p, q)

+
1√
2

∫︂ 1

−1

dx cos θcnpq(p, q, x)ψn(κcnp(p, q, x), κcnq(p, q, x))

+
1√
2

∫︂ 1

−1

dx cos θ′cnpq(p, q, x)ψn

(︁
κ′cnp(p, q, x), κ

′
cnq(p, q, x)

)︁
. (4.32)

4.2. Yamaguchi model

In addition to the EFT calculations, it is also interesting to perform Yamaguchi model calculations. These can
be used as benchmarks. Moreover, if the Yamaguchi interactions include effects that are of higher order in the
EFT power counting, the calculations can also be used to estimate the size of these higher-order effects. An
advantage of the Yamaguchi model is that the interactions are specified in terms of separable momentum-space
potentials. Therefore, after obtaining the corresponding separable momentum-space t-matrices, we can easily
perform Yamaguchi model calculations using the Faddeev equations. The self-written code for the halo EFT
calculations can therefore be slightly extended so that Yamaguchi model results can be obtained with it.

We review the potentials and corresponding t-matrices of the Yamaguchi model. This discussion is loosely
based on Ref. [29]. In this section, for simplicity, we will review only the two-body potentials since the
embedding in the three-body space is straightforward. Therefore, the potentials will be just denoted by
the orbital angular momentum quantum l̄ of the channel they act in (and not by the spectator index). The
two-body potential of the Yamaguchi interaction in use is given by

⟨p, l|Vl̄|p′, l′⟩ = δl,l′δl,l̄gl(p)λlgl(p
′) . (4.33)

It is based on the Yamguchi form factors

gl(p) := pl
β
2(l+1)
l

(p2 + β2
l )

l+1
. (4.34)

To reproduce a t-matrix with specific effective-range-expansion terms in the denominator, we need an
expression for the t-matrix in dependence of the parameters λl and βl. For this purpose, the Lippmann-
Schwinger equation for separable potentials can be used. It is given by

(τl(E))
−1

= λ−1
l + 8πµ

∫︂
dq q2

(gl(q))
2

q2 − k2 − iϵ
, (4.35)

with k2 = 2µE. The relation between the reduced two-body t-matrix element τl and the two-body t-matrix tl
is

⟨k|tl|k′⟩ = (2l + 1)Pl

(︁
cos θk,k′

)︁
gl(k)τl(E)gl(k

′) . (4.36)

In order to match the denominator of the on-shell t-matrix with the effective range expansion, we have to
calculate the denominator

dl(k) :=

(︃
4π2µ

⟨k|τl(E)|k′⟩
(2l + 1)Pl(cos θ)k2l

)︃−1

. (4.37)
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We start with the matching for the p-wave nc interaction. We obtain for the denominator from the Yamaguchi
interaction

d1(k) =

(︄
4π2µ

(g1(k))
2
τ1(E)

k2

)︄−1

=

(︁
β2
1 + k2

)︁4 (︂ 1
λ1

+
π2β5

1µ
(︁
β2
1−4iβ1k−k2

)︁
4(ik+β1)4

)︂
4π2β8

1µ
. (4.38)

For matching, it is necessary to express the term as a series:

d1(k) =

(︃
β3
1

16
+

1

4π2λ1µ

)︃
+ k2

(︃
1

π2β2
1λ1µ

+
9β1
16

)︃
+ ik3

+ k4
3
(︂

8
π2λ1µ

− 3β3
1

)︂
16β4

1

+ k6
(︃

1

π2β6
1λ1µ

− 1

16β3
1

)︃
+ k8

1

4π2β8
1λ1µ

. (4.39)

Interestingly the series expansion contains only finitely many terms, whereby k8 is the highest order.
Based on this, one can read off the matching conditions

1

16

(︃
β3
1 +

4

π2λ1µ

)︃
=

1

a1
, (4.40)(︃

1

π2β2
1λ1µ

+
9β1
16

)︃
= −r1/2 . (4.41)

If one employs the p-wave Yamaguchi t-matrix with the parameters λ1 and β1 as given by the matching
conditions above, one has an interaction, which is similar to the LO halo EFT interaction but also has some
differences. One difference is that the Yamaguchi t-matrix has the unitarity term ik3, which is an NLO term in
the p-wave halo EFT with the power counting from Ref. [24]. Another difference is the existence of additional
higher-order terms in the Yamaguchi t-matrix.
We proceed with the matching for the s-wave nn interaction. There we have for the denominator

d0(k) =

(︃
1

4π2µλ0
+
β0
2

)︃
+ ik + k2

(︃
2

4π2µλ0β2
0

− 1

2β0

)︃
+ k4

1

4π2µλ0β4
0

. (4.42)

As a consequence, the matching conditions are

1

a0
=
β0
2

+
1

4π2µλ0
, (4.43)

r0
2

=
3

2β0
− 2

β2
0

1

a0
. (4.44)

Also, here, the Yamaguchi interaction has more terms than the LO EFT interaction for 2n halo nuclei. While
the latter has, according to the power counting, only the scattering-length term and the unitarity term, the
Yamaguchi interaction has terms up to k4.

4.3. Hyperspherical harmonics formalism

In addition to comparisons with a Yamaguchi model, we want to also compare with cluster-model calculations
in coordinate space since these are quite common. As discussed, we use for that the well-established code
FaCE. This code solves the Schrödinger equation by using a coordinate-space version of the Faddeev equations.
These are not of the same form as the Faddeev equations we use. They take potentials instead of t-matrices
for the interactions. The commonality is the dissection of the overall state in components, and, of course,
both versions are equivalent. To represent the overall wave function, FaCE uses the hyperspherical harmonic
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formalism. In the following, we describe how the full wave function can be obtained in that formalism from
the FaCE output. We make use of the results from Ref. [17] and Ref. [18].
The output of FaCE is given in the form of a value table for the wave function components χS

K,l(ρ). The
variable ρ denotes the hyperradius, which is related to the coordinate-space Jacobi coordinates x and y by
ρ =

√︁
x2 + y2. The quantum number K is the hypermomentum quantum number, l is the orbital angular

momentum number of the two-body subsystem and S is the overall spin.
Of course, there are more quantum numbers, but for two-neutron halo nuclei with a spin-zero core and

definite parity (in this case positive), l and S are already sufficient. This is in line with the analysis of relevant
wave function components given in section 4.1.2. The only difference is that the wave function component is
not specified in terms of l and the subsystem spin s but in terms of L and the total spin S. Since the α particle
has spin zero, for the core as spectator, s = S holds and both parameterizations are directly identical.

The intermediate step for obtaining the relative-momentum distribution is to obtain the momentum-space
wave function. For that purpose, it is helpful to obtain the hyperspherical wave-function components in
momentum space χS

K,l(P ). These are functions of the so-called hypermomentum P and are given by

χS
K,l(P ) = iKP−2

∫︂ ∞

0

χS
K,l(ρ)JK+2(Pρ)

√
ρdρ , (4.45)

whereby Ji denotes the cylindrical Bessel function of order i. The full wave function, which we want to obtain
next, is given by a projection of the state on momentum-eigenstates. For this three-body system, we want
to use Jacobi momenta, as discussed before. The hypermomentum P is related to a slightly different set of
Jacobi momenta than our usual one given in section 3.2. We, therefore, denote these “new” Jacobi momenta
with a tilde. The relation to the hypermomentum reads

P 2 = p̃2c + q̃2c . (4.46)

The transformations between these Jacobi momenta3 and our standard ones are

pc = p̃c/
√
2 , (4.47)

qc = q̃c/
√︁
(Ac + 2) / (2Ac) , (4.48)

Since the momenta are not within Dirac bras or kets, we explicitly assigned spectator indices to them. The
wave function expressed in terms of these Jacobi momenta is given by

Ψ(cpl)
c (p̃c, q̃c) =

∑︂
K,l

χS=0
K,l (P )Ỹ

l,l
K,L=0,0(p̃c, q̃c) |S = 0,MS = 0⟩

+
∑︂
K,l

χS=1
K,l (P )

[︂
Ỹ l,l
K,L=1,ML

(p̃c, q̃c) |S = 1,MS⟩
]︂
J=0,MJ=0

. (4.49)

In this expression, the basis functions of the hyperspherical harmonics are contained in order to reobtain
the full wave function. These are the hyperspherical harmonics denoted by Ỹ l,λ

K,L,ML
(p̃c, q̃c). The usual orbital

angular momentum quantum numbers are denoted by l, λ, L, and ML. The coupling of the orbital part and
the spin part to a state of fixed J andMJ is denoted by the rectangular bracket. The hyperspherical harmonics
are given by

Ỹ l,λ
K,L,ML

(p̃c, q̃c) := Φl,λ
K (α)YL,ML

l,λ (p̃c, q̃c) , (4.50)

3The nomenclature for K and the momenta may deviate slightly from the one by Zhukov et al.. In Ref. [18] the momentum p̃c is
denoted by p3 and pnn. The momentum q̃c is denoted by q3 and pc.
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where α denotes the hyperangle
α := tan (p̃c/q̃c) (4.51)

and YL,ML

l,λ (p̃c, q̃c) denotes the usual coupled spherical harmonic. The other ingredient, the function Φ, is
defined as

Φl,λ
K (α) := N l,λ

K (sinα)
l
(cosα)

λ
P l+1/2,λ+1/2
n (cos (2α)) , (4.52)

N l,l
K :=

√︁
(2K + 4) (K/2− l)! (K/2 + l + 1)!

Γ((K + 3) /2)
, (4.53)

where the relation n = (K − l − λ) /2 holds and P a,b
n is the Jacobi polynomial.

4.4. Benchmarks with model calculations

After having discussed the capabilities of FaCE and how the relative-momentum distribution can be obtained
from the FaCE output, we proceed now with discussing the interactions used in the FaCE calculation. Afterward,
we will compare this result with the leading-order EFT result.

4.4.1. A first model calculation

For the FaCE calculation, we use interactions similar to the ones provided in the example input files distributed
with the source code. These are local coordinate-space potentials in different partial waves with the radial
dependence given by Gaussian functions. We, therefore, call this model specified in terms of the Hamilton
operator a Local Gaussian Model (LGM). Central as well as spin-orbit potentials are used. The concrete matrix
elements are given by

⟨r; l, s|V (l̃)
c |r′; l′, s′⟩ := δl,l′δl,l̃δs,s′

δ(r′ − r)

r′2
V̄ (l)
c exp

(︁
−r2/

(︁
a2c;l
)︁)︁
, (4.54)

⟨r; l, s|V (l̃)
SO|r

′; l′, s′⟩ := δl,l̃
δ(r′ − r)

r′2
V̄

(l)
SO ⟨l, s|LS|l′, s′⟩ exp

(︁
−r2/

(︁
a2SO;l

)︁)︁
, (4.55)

wherby the depth parameters are V̄ (l)
c and V̄ (l)

SO, while the range parameters are denoted by ac;l and aSO;l.
In the case of the nc interaction, we have a s-, p-, and a d-wave interaction. In the p- and d-wave, there is not

only a central interaction but also a spin-orbit interaction. All nc interactions share the same range. We have
ac;l = aSO;l = 2.3 fm. The depth parameters are V̄c;0 = V̄c;1 = −47.32MeV, V̄SO;1 = V̄SO;2 = −11.71MeV, and
V̄c;2 = −23.0MeV. The parameter values employed here are in line with other calculations. With the exception
of the s-wave parameters, they were among others employed in calculations with an ancestor of FaCE in Ref.
[18] and presumably in Ref. [17] as well as in the more recent work [57]. For the s-wave part, instead of
using the repulsive potential used in Ref. [18], we follow the FaCE sample input file for 6He. An attractive
potential is used, and then the bound states, which are not observed in the nc system in nature, are removed
using the supersymmetric (SUSY) transformation functionalities of the FaCE code. The phase shifts, which are
related to on-shell positive-energy matrix elements of the t-matrix corresponding to the potential, are not
affected by this transform. Therefore, this SUSY-transformed attractive potential still produces a good fit for
the phase shifts reported in Ref. [58].
For the nn interaction a s-wave central potential with the parameters V̄c;0 = −31.0MeV and ac;0 = 1.8 fm is

employed. These parameter values are the same as in previous calculations and were inter alia used in Refs.
[18, 57]. They are taken from Ref. [59].
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Figure 4.1.: LGM result in comparison with the Halo EFT result. The three-body potential in the LGM calculation was
tuned to reproduce B(0)

3 . The settings used for LGM are denoted by LGM1. In order to be independent of the
normalization, the distributions are divided by their value at a certain position, which is indicated by the red
cross. Note the dashed and solid vertical lines in the left panel (a). They indicate relative energies of 1MeV and
3MeV respectively. In the planned experiment, 1MeV will be roughly the upper bound of the measurement
range.

The results for the probability distribution of pnn, i.e., the nn relative-momentum distribution, is shown in
fig. 4.1. The blue curve is the leading-order EFT result, and the shaded area is the leading-order uncertainty
band. The orange dashed curve depicts the result from the Local Gaussian Model. While the left panel shows
this distribution up to momenta of roughly 100MeV, the right panel shows the distribution up to momenta of
30MeV in detail. These momenta correspond approximately to relative nn energies of 1MeV, which is the
region that will be used to extract the nn scattering length.

We observe that the LGM result is within the uncertainty band of the EFT calculation. This shows that the
uncertainty band is robust, as expected. Moreover, especially in the low-momentum region, which will be
used for the experiment, the agreement between EFT and LGM is good. This is what one anticipates since
the EFT works best at low energies, and there the uncertainties are smallest. When comparing the model
calculation with the EFT result, one should not be mislead by the large uncertainty band of the EFT at higher
momenta. One has to keep the following points in mind:

• Relevant for the experiment is the low-momentum region up to 30MeV. That is the region where the
EFT works already at leading order especially well.

• Although in some regions, the EFT uncertainties might be larger at leading order, the advantage of
the EFT is that it provides uncertainty quantification. That is important for assessing the accuracy of
the theory calculations and, thereby, also the accuracy of the overall experiment. Moreover, the EFT
provides a way to systematically reduce the uncertainty of the result. That is done by going to higher
orders in the EFT expansion.

In this context, it is quite instructive to think about what this comparison of EFT and LGM or other models
would look like at higher orders. By going to higher orders in the EFT expansion, the EFT result might change
a bit (within the uncertainty bands of the previous order4) and the uncertainty bands of the EFT result will
become smaller and smaller. The difference between the EFT result and the model calculation result will also
become smaller and smaller. Of course, there might also be some order where the difference increases, but the
overall tendency is clear. But then, at some order, an effect will occur that highlights one of the advantages
4If one takes here the statistical approach seriously, in approximately 68% of the cases, the EFT result of some order should be in
the uncertainty bands of the previous order.
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of the EFT. There will be a discrepancy between the model and the EFT that is not covered by the EFT’s
uncertainty band. And this will not change at even higher orders of the EFT expansion. Measured in terms of
the uncertainty band of the EFT, that effect will become worse with higher orders because the discrepancy
remains, but the uncertainty bands get smaller. What happened is that the error of the model calculation,
which in general can not be systematically lowered, will show up in terms of an insurmountable discrepancy.
The better the model, the higher the order of the EFT at which this happens. However, the crucial problem
here is that one does not know a priori how good the model is. That clearly visualizes one of the advantages
of the EFT. The power counting gives us a method to a priori estimate the accuracy of the calculation at a
given order. Moreover, by going to the next order and comparing the difference to the previous order with the
uncertainty band of the previous order, the estimation can be validated.

4.4.2. Additional model calculations

In the comparison, we have seen that at higher momenta, there are some notable differences between the EFT
and the LGM result, which are still within the EFT’s uncertainty bands. Also, in regard to going to higher
orders in the EFT expansion in the future, we are interested in the concrete effects responsible for these
differences. To investigate this, we carry out a number of model calculations with FaCE on the basis of the LGM
Hamilton operator. We introduce modified versions of the LGM Hamilton to assess the differences. For that
purpose, the modified versions are, in certain aspects, more similar to the EFT Hamilton operator. Concretely,
we use the following sets of interactions while we now call the standard set LGM1.

• LGM2: This differs from LGM1 in the included partial-wave channels of interactions. Only the ones
present in halo EFT at LO are employed. Concretely, the nc interaction is only present in 2P3/2. For that
purpose, it was turned off in the s- and d-wave as well as in 2P1/2.

• LGM3: This is based on LGM2. Additionally, the three-body force is turned off.

• LGM1SR: This differs from LGM1 in a more short-ranged three-body force. The range parameter is
2.5 fm instead of 5.0 fm. The strength is adjusted to reproduce the physical binding energy of the effective
three-body system.

• LGM2SR: This is analogous to LGM1SR, but build on LGM2.

More information on how the nc interaction in 2P1/2 was turned off for LGM2 can be found in appendix C.2.
As mentioned in this list, there exist versions of the calculation where the range of the three-body force is
reduced.
To have another set of model calculations, which is a bit more similar to the EFT calculations and thereby

allows for more fine-grained comparison, we also perform Yamaguchi model calculations. As already discussed,
these are computations in momentum space with potentials having Yamaguchi-type form factors. The
momentum-space three-body forces of the EFT can be used in these calculations. In detail, we also have the
following Yamaguchi models:

• YM1: The standard Yamaguchi model. It has the same interaction channels as the LO EFT description.
The parameters of the nn as well as of the nc interaction are tuned to reproduce the first two effective
range expansion parameters. In order to yield the physical three-body binding energy, a three-body
force of the same form as in the EFT calculation is employed.

• YM2: It is based on YM1. The nc t-matrix is modified to be more similar to the one of the EFT calculation.
The unitarity term, which is of order k3, is removed because in the EFT with the power counting from
Ref. [24] it is an NLO effect.
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• YM3: This is based on YM2 and made more similar to the LO EFT calculation by also removing the
terms of order k4 and k6. The highest term produced by the Yamaguchi interaction in the t-matrix’s
denominator, which is of order k8, is kept. Thereby unphysical poles are prevented in probed region
k2 < −2µncB

(0)
3 .

The left panel of fig. 4.2 shows the different LGM model results for the nn relative-momentum distribution
in comparison with the LO EFT result. The right panel shows results from the versions of LGM1 and LGM2
with more short-ranged three-body forces in comparison with the EFT result.
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Figure 4.2.: LGM results in comparison with the Halo EFT result. The depth parameter of the three-body potential in the
LGM calculations LGM1 and LGM2 was in both cases tuned to reproduce B(0)

3 . LGM1SR and LGM2SR use a
more short-ranged version of this three-body potential, the depth parameter was in both cases readjusted to
the physical binding energy. Again, the distributions are divided by their value at a certain position, which is
indicated by the red cross. The vertical lines indicate relative energies of 1MeV and 3MeV.

In the left panel, we observe that LGM2 agrees better with the LO EFT result, while LGM1 already agrees
with it within the uncertainty bands. This is not surprising, given that LGM2 has only the same partial-wave
interaction channels as the EFT calculation. In contrast to this, in the case of LGM3, which is obtained from
LGM2 by removing the three-body force, the agreement with the EFT result is much worse. In the spirit of
Polyzou and Glöckle [60], one can explain this in terms of a missing three-body force, which can compensate
for the different off-shell behaviors of the different interactions.
In the right panel, we see that there are only small differences between the LGM models and their more

short-ranged versions. As long as the strength of the three-body force is adjusted to reproduce the binding
energy of the three-body systems, the influence of its range seems to be minor.
In this comparison with different versions of the local Gaussian models, most of the difference to the LO

EFT result in the high-momentum region still persisted. In order to find a possible explanation, we include
the aforementioned Yamaguchi models in the comparison. Since they use the same partial-wave interaction
channels as the LO EFT, they are, in that regard, most similar to LGM2. Before we can try to use the Yamaguchi
models to explain the differences between the LGM2 and the EFT, we have to check that there is a Yamaguchi
model that this similar to LGM2. Figure 4.3 shows the LGM2 result, the EFT result, and the first Yamaguchi
model (YM1) in comparison.
Indeed, we observe that YM1 yields results similar to the ones of LGM2. Therefore, we can try to explain

the differences between LGM2 and EFT in terms of comparing them with the already introduced additional
Yamaguchi models. Figure 4.4 shows the Yamaguchi model YM1 and the EFT in comparison with the Yamaguchi
models YM2 and YM3.
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Figure 4.3.: LGM2, a Yamaguchi model calculation with a three-body force (YM1), and the LO EFT calculation in comparison.
In each case, the three-body force is tuned to reproduce the physical binding energy of the system.
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Figure 4.4.: YM results and the LO Halo EFT result in comparison. The distributions are normalized to a certain arbitrary
value at the momentum indicated by the red cross. The vertical lines indicate the momenta corresponding
to relative energies of 1MeV and 3MeV. The uncertainty bands of the YM curves indicate their estimated
numerical uncertainties. The estimations are based on the comparison of the calculation with a three-body
cutoff at momenta of 2250MeV with one with a cutoff of 1500MeV and half as many mesh points. The error
band for the LO Halo EFT result represents the expected size of the NLO correction.

We observe that YM2 and YM3 have significantly smaller deviations, whereby among these, YM3 has the
smallest in the high-momentum region. In terms of physics input, YM2 and YM3 differ from each other
and in comparison with YM1 only in the nc interaction. Both are missing the unitarity term, which is in
the EFT an NLO correction. YM3 additionally omits also other higher-order terms of the effective range
expansion, which are present in YM1 and YM2 but not in the EFT. We conclude that these higher-order terms
of the nc interaction, including the unitarity term, have some significant influence on the result. That means
that at next-to-leading order, we expect some seizable corrections for the relative-momentum distribution at
higher momenta, which stem from the nc interaction. However, these NLO corrections seem to be within the
uncertainty band of the LO prediction. The power counting and the uncertainty estimation are working well.

In summary, we can say that the different model calculations, local Gaussian models as well as Yamaguchi
models, are useful for checking the plausibility of the EFT results. Moreover, they gave a helpful outlook on
important NLO corrections in the EFT. Last but not least, these comparisons have shown that the results for
the region of relative momenta up to approximately 30MeV are quite robust. This is the region relevant to the
proposed experiment.
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4.5. Cross-check for the ground-state pnn-distribution

Althought the comparisons between the LGM and the EFT results are all plausible, to be on the safe side,
we want a cross-check to make sure that the calculation of the nn momentum distributions from the cluster
model results are correct. Since there seem to be no published ρ(pnn) based on the cluster models, we need a
different check.
In this section we derive a formula relating the expectation value

⟨︁
r2nn
⟩︁
to a superposition of the relative-

momentum distribution ρ(pnn) and of its derivatives. As for this expectation value literature values from
cluster model calculations are available, this provides a test case for the relative-momentum distribution. The
FaCE computations and used settings could be also tested by calculating this expectation value directly from
the coordinate-space wave function, but the procedure based on the distributions has the advantage that it
provides a check for our end result. Thereby, it has a better test coverage.

4.5.1. Obtaining the RMS radius in partial wave l from the momentum distribution

Let Ψ be the wave function component in the partial wave l, and jl is the spherical Bessel function of order l.
We obtain for

⟨︁
r2
⟩︁
l
, which is the expectation value of r2 in the partial wave l, the expression

⟨︁
r2
⟩︁
l
=

∫︂
dr r2Ψ∗(r)r2Ψ(r) (4.56)

=

∫︂
dr r2

∫︂
dp′ p′2 (−i)l jl(p′r)Ψ∗(p′)r2

∫︂
dp p2iljl(pr)Ψ(p) (4.57)

=

∫︂
dr r2

∫︂
dp p2r2jl(pr)Ψ(p)

∫︂
dp′ p′2jl(p

′r)Ψ∗(p′) (4.58)

=

∫︂
dp p2Ψ(p)

∫︂
dp′ p′2Ψ∗(p′)

∫︂
dr r2jl(p

′r)r2jl(pr) (4.59)

=

∫︂
dp p2Ψ(p)

∫︂
dp′ p′2Ψ∗(p′)

∫︂
dr r2jl(p

′r)

(︃
−∂2p − 2

p
∂p +

l (l + 1)

p2

)︃
jl(pr) (4.60)

=

∫︂
dp p2Ψ(p)

(︃
−∂2p − 2

p
∂p +

l (l + 1)

p2

)︃∫︂
dp′ p′2Ψ∗(p′)

∫︂
dr r2jl(p

′r)jl(pr) (4.61)

=

∫︂
dp p2Ψ(p)

(︃
−∂2p − 2

p
∂p +

l (l + 1)

p2

)︃∫︂
dp′ p′2Ψ∗(p′)

π

2

δ(p′ − p)

p2
(4.62)

=
π

2

∫︂
dp p2Ψ(p)

(︃
−∂2p − 2

p
∂p +

l (l + 1)

p2

)︃
Ψ∗(p) , (4.63)

where we used auxiliary calculations from appendix C.1. As
⟨︁
r2
⟩︁
l
is expected to be real, also the relation

⟨︁
r2
⟩︁
l
=
π

2

∫︂
dp p2Ψ∗(p)

(︃
−∂2p − 2

p
∂p +

l (l + 1)

p2

)︃
Ψ(p) (4.64)

holds.
Our aim is to calculate the expectation value

⟨︁
r2
⟩︁
l
from the momentum distribution in partial wave l

denoted by ρ(p).5 First, we do an auxiliary calculation, we calculate the second derivative of the momentum

5As we do not have to distinguish different partial waves, we omit the index again.
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distribution:

∂2pρ(p) ≈ ∂2p
(︁
Ψ∗(p)p2Ψ(p)

)︁
− p2Ψ∗′(p)Ψ′(p) (4.65)

= p2Ψ∗′′(p)Ψ(p) + p2Ψ∗(p)Ψ′′(p) + 2pΨ∗′(p)Ψ(p) + 2pΨ∗(p)Ψ′(p) + 2Ψ∗(p)Ψ(p) . (4.66)

If we put this second derivative under the integral over the momenta, we can relate it to the desired expectation
value by using some extra terms:

∫︂
dp ∂2pρ(p) = 2

(︃
− 2

π

⟨︁
r2
⟩︁
l
+ l (l + 1)

∫︂
dp

ρ(p)

p2

)︃
+ 2

∫︂
dp

ρ(p)

p2
. (4.67)

From this equation the relation

⟨︁
r2
⟩︁
l
≈ −π

4

(︃∫︂
dp ∂2pρ(p)− 2 (1 + l (l + 1))

∫︂
dp

ρ(p)

p2

)︃
(4.68)

can be derived. It shows that it is possible to approximately calculate the expectation value of r2 in partial
wave l by integrating over quantities, which can be directly obtained from the momentum distribution.

4.5.2. Estimating the overall RMS radius

We derive the calculation of the overall expectation value for r2 from the expectation values in specific partial
waves. We change the notation to be a bit more explicit regarding the indices. Let |Ψ⟩ be the overall state and
|Ψl⟩ the radial part of the state in the partial wave l. We obtain for the expectation value

⟨︁
r2
⟩︁
= ⟨Ψ|r2|Ψ⟩ =

(︄∑︂
l

⟨l| ⟨Ψl|

)︄
r2

(︄∑︂
l′

|l′⟩ |Ψl′⟩

)︄
=
∑︂
l

∑︂
l′

⟨l|l′⟩ ⟨Ψl|r2|Ψl′⟩ =
∑︂
l

⟨Ψl|r2|Ψl⟩ =
∑︂
l

⟨︁
r2
⟩︁
l
. (4.69)

Note that if we normalize each |Ψl⟩ to 1, which requires “renormalization” at some stage to finally fulfill
⟨Ψ|Ψ⟩ = 1, a different version of this relation holds. For that purpose, we need to supplement the state being
normalized with respect to the overall normalization |Ψl⟩ by the state normalized to 1 denoted as

⃓⃓⃓
Ψ̃l

⟩︂
. While⟨︂

Ψ̃l

⃓⃓⃓
Ψ̃l

⟩︂
= 1, ⟨Ψl|Ψl⟩ is the probability of the partial wave component l, which is less or equal to 1. The

modified relation reads

⟨︁
r2
⟩︁
= ⟨Ψ|r2|Ψ⟩ =

∑︂
l

⟨Ψl|r2|Ψl⟩ =
∑︂
l

⟨Ψl|Ψl⟩
⟨Ψl|r2|Ψl⟩
⟨Ψl|Ψl⟩

=
∑︂
l

⟨Ψl|Ψl⟩
⟨︂
Ψ̃l

⃓⃓⃓
r2
⃓⃓⃓
Ψ̃l

⟩︂
=:
∑︂
l

⟨Ψl|Ψl⟩ ˜︃⟨r2⟩l . (4.70)

4.5.3. Results

In table table 4.1, we show some results for the occupation probabilities for different partial waves. We
compare them to results by Zhukov et al. [18].
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Table 4.1.: Own results for the probabilities of the different partial wave states of the 6He ground state in comparison with
results by Zhukov et al. The own results were obtained with FaCE by using a Gaussian nn potential and the
Gaussian nα potentials by Sack, Biedenharn, and Breit (SBB). It is setting F1 in our setting naming scheme. (hp
and sp denote different accuracy levels of the numerics and the model space.) The listed results by Zhukov et al..
are based on the same nα potential but on different nn potentials (SSC or GPT). Note that in the case of our
calculations, the probabilities of higher partial waves were not calculated. Therefore, the given numbers add up to
100% automatically (up to rounding effects). The results by Zhukov et al. are from page 169 of Ref. [18].

component percentage of the norm
Zhukov et al. own results

SSC & SBB GPT & SBB hp sp

l = 0 S = 0 84.75 84.02 83.86 83.86
l = 1 S = 1 12.91 13.54 13.25 13.34
l = 2 S = 0 1.78 1.93 2.16 2.09
l = 3 S = 1 0.56 0.51 0.73 0.71

It can be seen that our results are almost converged. Furthermore, it can be seen that the differences
between our result and the results by Zhukov et al. are of the same order as the differences among results
from Zhukov et al., which differ in the nn potential. As we use yet another different nn potential, we conclude
that the results behave as expected.

Table 4.2 shows our result for the nn RMS radius based on the s-, p-, d- and f -wave pnn probability densities.
The table also contains the RMS radii of components in the sense of square roots of ˜︃⟨r2⟩l as defined in eq. (4.70).
The results for the single components were obtained from the respective nn relative-momentum distributions
by using eq. (4.68). In order to obtain the overall RMS radius, eq. (4.70) was applied. Partial waves beyond
the f -wave were neglected (also in the calculation of the normalization factors).

Table 4.2.: Own results for the nn RMS radius in different partial waves. The results were obtained by using FaCE in setting
F1 and applying eq. (4.68). (hp and sp denote different accuracy levels of the numerics and the model space.)
The single-component RMS radii are radii calculated from mean square radii in the sense of ˜︁⟨r2⟩l, see eq. (4.70).

component
√︁

⟨r2nn⟩l [fm]
hp sp

l = 0 S = 0 5.31 5.34
l = 1 S = 1 3.66 3.66
l = 2 S = 0 2.44 2.55
l = 3 S = 1 2.49 2.51

overall (l ≤ ltrunc = 3) 5.06 5.09

Our result
√︁
⟨r2nn⟩ ≈ 5.1 fm is in line with the results by Zhukov et al.6. In the setting SSC & SBB, they

obtained 5.03 fm, while for GPT & SBB, they obtained 4.83 fm. Note that we use neither the SSC nor the GPT
nn potential. As a conclusion, we can say that our results for the nn relative-momentum distribution ρ(pnn)
passed the cross-check.

In order to obtain some impressions of the behavior of the integrals behind this calculation, the integrand
as defined in eq. (4.68) is plotted together with the distribution itself in fig. 4.5.

6The results can be found on page 171 of Ref. [18].
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Figure 4.5.: The integrand for calculating
⟨︁
r2nn
⟩︁
l
as defined in eq. (4.68) is plotted together with the nn relative-momentum

distribution and its second derivative. The subplots differ in the quantum number l.

4.6. Conclusion and outlook

In this chapter, we compared the halo EFT results for 6He with results from model calculations at the example
of the ground-state nn relative-momentum distribution. One of the employed models is the so-called local
Gaussian model (LGM), which is a cluster model with local coordinate-space potentials in different partial
waves. We chose it because investigations in this or similar models are well-established for halo nuclei.
We observed agreement between the EFT and the LGM result within the EFT uncertainty bands. In the
momentum region corresponding to relative energies smaller 1MeV, which is the region relevant to the
proposed experiment (see chapter 6), the agreement is especially good. Thereby, the comparison confirmed
the robustness of the EFT results and highlighted the EFT’s advantage of providing uncertainty estimations.
Nevertheless, we were interested in understanding the discrepancies better, which are larger at higher
momenta. This is because NLO corrections in the EFT will likely remove large parts of these differences.
Understanding these differences thereby implies a better understanding of NLO EFT effects in the case of 6He.
To perform more fine-grained comparisons, we introduced additional variants of LGM. Inter alia, one

variant has only the interaction channels that are of leading order in the EFT. As expected, this variant agrees
better with the EFT. Moreover, also cluster models with Yamaguchi interactions were obtained. Since the
corresponding t-matrices are separable momentum-space t-matrices, the self-written code for the halo EFT
calculations could also be used for these investigations. These models employ the same interaction channels
as LO halo EFT and LGM2. In contrast to LGM2, in these, removing terms of the nc t-matrix can be easier
implemented. On this basis, we obtained the distributions based on Yamaguchi models with nc t-matrices
more similar to the one of the LO EFT. Since the standard Yamaguchi model yields a distribution very similar
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to the one of LGM with fewer interaction channels, the Yamaguchi models are suitable for explaining the
remaining difference to LO EFT. These comparisons show that large parts of the difference originate from
the higher-order terms in the nc t-matrix in 2P3/2. Hereby, the unitarity term seems to be the most important
higher-order term.

Furthermore, we developed a cross-check for the LGM nn momentum distribution to ensure the robustness
of this ingredient of our comparisons. We derived a relation between the nn RMS radius in the halo and
the distributions as well as derivatives of it. Thereby, we were able to obtain the nn RMS radius from the
distribution, which could then be compared with literature values from very similar model calculations. This
showed the correctness of the momentum distributions obtained with LGM.

In conclusion, the different comparisons indicated the robustness of the leading-order halo EFT for 6He and
gave us some insights into important NLO corrections. These are helpful for NLO calculations in the future,
which are highly interesting. In regard to providing the theory for the nn scattering-length experiment (see
chapter 6), this chapter confirmed that halo EFT is very well suited to describe 6He and thereby is an ideal
tool.
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5. E1 strength distributions of 2n halo nuclei

An important probe for the structure of halo nuclei is Coulomb dissociation. It is the breakup of the halo due
to the action of a strong electric field. Two-neutron halo nuclei have, because of the significant distance of the
charged core from the center of mass of the three-body system, an increased cross section for this process
at low energy. The contribution to the overall Coulomb dissociation cross section that is specific to a certain
nucleus is the so-called E1 strength. Halo nuclei display a low-energy enhancement in that strength.

Experimentally, the Coulomb dissociation can be investigated by shooting the halo nucleus, which is created
in a rare-isotope beam factory, onto a target with a high number of protons, i.e., a high electric charge. If the
collisions are more peripheral, the short-ranged strong interaction acting on the halo nucleus is quite weak
due to the increased distance, while there is still a strong electric field. Then the breakup is dominated by the
electric interaction, and one can measure the Coulomb dissociation cross section. From that, the E1 strength
can be extracted. For a cleaner extraction of the E1 strength, the breakup experiment can also be carried out
with targets of different proton number.

In the case of a two-neutron halo, the charged core is knocked out and moves away from the electrically
neutral neutrons. As the neutron-neutron system is not bound, one is left with a three-body final state
consisting of the core and the two neutrons.

Separating the Coulomb dissociation cross section into the generic electric physics and the specific nuclear-
structure contribution also simplifies the theory calculation. Only the specific contribution has to be recalculated
for different nuclei. This separation for the differential cross section dσ/dE is given by

dσ

dE
=

16π3

9ℏc
NE1(Eγ)

dB(E1)

dE
, (5.1)

where NE1(Eγ) denotes the photon number giving the electromagnetic strength. The E1 distribution parame-
terizing the nuclear-structure contribution1 is given by dB(E1)/dE. The energy of the final, free three-body
state E and the one of the virtual photons Eγ are related via

Eγ = E + S2n , (5.2)

as the photons need also to break up the halo nucleus into the core plus the two neutrons.
We study the E1 strength at the examples of the two-neutron halo nuclei 11Li and 6He. The calculation of

this observable also needs an accurate description of the ground state. For that, we can make use of our results
from chapter 3. The E1 strength of 11Li has also been obtained in three-body model calculations, see, e.g., Refs.
[61–63]. These have already observed the significant role of final-state interactions (FSIs). Therefore, we pay
special attention to the inclusion of FSIs in our EFT calculation. In addition to including single FSIs, we also
include multiple perturbatively. One approach is to use a truncated version of the multiple-scattering series.
This approach, however, has the problem that it does not conserve probability. We develop an alternative
method for including multiple FSIs perturbatively that conserves probability. It is based on products of Møller
scattering operators. By comparing different orders or schemes, we can obtain an uncertainty estimate for the
FSI treatment in addition to the uncertainty estimate of the EFT. Equipped with that, we then can compare to
1With the wording nuclear-structure contribution, we mean the specific part of this process, but nuclear should here not be understood
in the sense that this is the contribution to the breakup resulting from the strong force.
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the experimental data from RIKEN by Nakamura et al. [54]. In that experiment, 11Li was produced in flight by
shooting 18O on a Be target. A fragment separator was used for selecting only the 11Li ions. The target for the
Coulomb dissociation was Pb. Moreover, we compare our results to the results of Hongo and Son [64], who
constructed a halo EFT for the case of a negligible nc interaction. In their approach, it is not obvious whether
nn FSI is included. We analyze their result in detail to answer this question. For that purpose, we calculate
the wave function of their theory from the corresponding Feynman diagram.

Another research object is the E1 strength distribution of 6He. In experiment [53] as well as in three-body
model calculations (see, e.g., Refs. [57, 65, 66]), it was found that this system has a significant E1 strength
at low energies of the order of MeV. Therefore, we are interested in providing EFT results with uncertainty
estimates for this quantity. In halo EFT, there is the difficulty that the p-wave nc interaction corresponds to
an energy-dependent potential. Inter alia, this causes modifications of the normalization relation. We avoid
these by calculating only the shape of the E1 distribution in halo EFT. As complementation, we perform a
Yamaguchi model calculation, where there is no energy-dependent potential and corresponding difficulties.
To have quantified uncertainties, we also make some steps towards systemizing the Yamaguchi model and
providing EFT-like error bands.

Parts of this chapter have been published in this or in similar form in Phys. Rev. C 107, 014617 (2023) [52].

5.1. Calculating the E1 strength distribution

A general expression for the E1 strength function is given by [67]

dB(E1)

dE
=

1

2Ji + 1

∑︂
Mi

∑︂
µ

∫︂
dτf
⃓⃓
⟨f |M(E1, µ)|i; Ji,Mi⟩

⃓⃓2
δ(Ef − E) , (5.3)

where the index i means initial and f means final. The integral over τf represents the integral over the
momenta parameterizing the final state as well as the sum over the quantum numbers of the final state.
Moreover, it also includes the corresponding phase space factors. With only the core of the halo nucleus being
charged, the relation for the dipole operator within this cluster description reads

M(E1, µ) =

√︃
3

4π
eZc(rc)µ = eZcrcY1µ(rc) , (5.4)

with the elementary charge e and the charge number of the core Zc. The symbol (rc)µ denotes the component
µ of the position vector of the core in spherical tensor notation, while rc is the position vector of the core. The
position of the core is measured relative to the center of mass of the three-body system.
Based on the E1 strength distribution, one can also define the cumulated E1 distribution

B(E1)(E) :=

∫︂ E

0

dE′ dB(E1)

dE′ . (5.5)

According to the non-energy weighted sum rule, the overall strength is related to the RMS radius
√︁
⟨r2c ⟩ by

lim
E→∞

B(E1)(E) =
3

4π
Z2
c e

2
⟨︁
r2c
⟩︁
. (5.6)

This relation can be derived by starting at the left side, inserting the definitions, and using that the energy
integral and the integrals and sums over the final-state parameters build a completeness relation.
Due to the sum rule, E1 strength distributions differing only in the included FSIs should have the same

value when being integrated. However, the shapes are different. This provides a cross-check, which will be
used for our results. In the following, we work on obtaining a concrete expression for the distribution.
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5.1.1. Coordinate-space matrix elements of the E1 operator

In the first step, we calculate the matrix elements of the operator2 Y1µ(yc) in the case of arbitrary states of a
two-body system:

c⟨y, l,m|Y1,µ(yc)|y′, l′,m′⟩c =
∫︂

dΩy c⟨y, l,m|y⟩c Y1,µ(y)c⟨y|y
′, l′,m′⟩c (5.7)

=

∫︂
d3y′

∫︂
d3y′′

c⟨y, l,m|y′⟩c c⟨y
′|Y1,µ(y)|y′′⟩c c⟨y

′′|y′, l′,m′⟩c (5.8)

=

∫︂
dΩy Y

∗
l,m(y)Y1,µ(y)Yl′,m′(y)

δ(y − y′)

y2
(5.9)

=

√︄
(2l′ + 1) (2 + 1)

4π (2l + 1)
Cl,0

l′,0,1,0C
l,m
l′,m′,1,µ

δ(y − y′)

y2
, (5.10)

where we used that the position operator yc is diagonal in position space with this basis3:

c⟨y|Y1,µ(yc)|y′⟩c = δ(3)(y − y′)Y1,µ(y) . (5.11)

To obtain eq. (5.10), we used an identity for the integral over three spherical harmonics functions (eq. (4) of
section 5.9.1, page 148, from Ref. [51]).
In our calculations of 6He as well as of 11Li, the by far most important component of the ground state is

given by the component with l = 0 and λ = 0. Therefore, we limit the following evaluation of the operator’s
matrix element in the three-body space to the case that the initial state is given by

|ζc⟩c = |(0, 0) 0, 0⟩c , (5.12)

whereby the arrangement of the quantum numbers is (l, λ)L,ML, a scheme already used in section 3.4.
According to eq. (5.10), the final state after action of the E1 operator then has to be⃓⃓⃓

ζ(1,µ)c

⟩︂
c
= |(1, 0) 1, µ⟩c . (5.13)

We obtain for the matrix element

c

⟨︂
x′, y′; ζ(1,µ)c

⃓⃓⃓
rcY1,µ(rc)

⃓⃓⃓
x, y; ζc

⟩︂
c
=

2

A+ 2 c

⟨︂
x′, y′; ζ(1,µ)c

⃓⃓⃓
ycY1,µ(yc)

⃓⃓⃓
x, y; ζc

⟩︂
c

(5.14)

=
2

A+ 2 c

⟨︂
x, y; ζ(1,µ)c

⃓⃓⃓
Y1,µ(yc)

⃓⃓⃓
x, y; ζc

⟩︂
c
y
δ(x′ − x)

x2
δ(y′ − y)

y2
(5.15)

=
2

A+ 2
⟨y, 1, µ|Y1,µ(yc)|y, 0, 0⟩ y

δ(x′ − x)

x2
δ(y′ − y)

y2
(5.16)

=
2

A+ 2

1√
4π
C10

0010C
1µ
001µy

δ(x′ − x)

x2
δ(y′ − y)

y2
(5.17)

=
2

A+ 2

1√
4π
y
δ(x′ − x)

x2
δ(y′ − y)

y2
. (5.18)

For that, we used the relation connecting the vector ri of the spectator relative to the center of mass and
the vector yi between the spectator particle and the center of mass of the two-body subsystem. The general
relation reads

yi =
mi

µi(jk)
ri = mi

mi +Mjk

miMjk
ri . (5.19)

For the core as the spectator, it yields
yc =

A+ 2

2
rc . (5.20)

2In contrast to the momenta in the Dirac bras and kets, the operator yc has an index. Otherwise, the spectator would be unclear.
3The indices at the Dirac bras and kets denoting, in this case, only two-body states indicate the two-body subsystem in which these
two-body states live.
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5.1.2. Momentum-space matrix elements of the E1 operator

With the result from eq. (5.18) at hand, we proceed with the calculation of the matrix element in momentum
space. For that purpose, we make use of the transformation relation

|p, q; ζ⟩c = (i)
l+λ 2

π

∫︂
dx dy x2y2jl(px)jλ(qy) |x, y; ζ⟩c , (5.21)

whereby jl is the spherical Bessel function of the first kind of order l. On this basis, we obtain for the
momentum-space matrix elements:

c

⟨︂
p′, q′; ζ(1,µ)c

⃓⃓⃓
rcY1,µ(rc)

⃓⃓⃓
p, q; ζc

⟩︂
c
=

(︃
2

π

)︃2

(−i)
1
(i)

0
∫︂

dx′ dy′ x′2y′2
∫︂

dx dy x2y2j0(p
′x′)j1(q

′y′)j0(px)j0(qy)

×
c

⟨︂
x′, y′; ζ(1,µ)c

⃓⃓⃓
rcY1,µ(rc)

⃓⃓⃓
x, y; ζc

⟩︂
c

(5.22)

= −i
2

A+ 2

(︃
2

π

)︃2
1√
4π

∫︂
dx dy x2y2j0(p

′x)j1(q
′y)j0(px)j0(qy)y (5.23)

= −i
2

A+ 2

2

π
√
4π

δ(p′ − p)

p2

∫︂
dy y3j1(q

′y)j0(qy) (5.24)

The equation ∫︂
dr r2jl(pr)jl(p

′r) =
π

2

δ(p′ − p)

p2
(5.25)

was employed.
Using

j1(x) = −∂xj0(x) (5.26)

we obtain, by using the chain rule for differentiation, the relation

∂q′j0(q
′y) =

∂q′y

∂q′
∂q′yj0(q

′y) = y∂q′yj0(q
′y) = −yj1(q′y) . (5.27)

We continue our previous calculation by applying the identity. This yields

c

⟨︂
p′, q′; ζ(1,µ)c

⃓⃓⃓
rcY1,µ(rc)

⃓⃓⃓
p, q; ζc

⟩︂
c
= i

2

A+ 2

2

π
√
4π

δ(p′ − p)

p2
∂q′

∫︂
dy y2j0(q

′y)j0(qy)

= i
2

A+ 2

1√
4π

δ(p′ − p)

p2
∂q′

δ(q′ − q)

q2
. (5.28)

5.1.3. Overall expression

With these results at hand, we can now derive the overall expression for the E1 strength distribution. As
already mentioned, we take only the most probable initial state into account. For the case of 6He as well as
for 11Li, this is the state with l = 0 and λ = 0. We denote the projection operator on it by PΞc . Based on this
assumption, eq. (5.3) yields

dB(E1)

dE
= e2Z2

c

∑︂
µ,M

∫︂
dp dq p2q2

⃓⃓⃓
c

⟨︂
p, q; ζ(1,µ)c , ξ(M)

c

⃓⃓⃓
rcY1,µ(rc)PΞc

⃓⃓⃓
Ψ
⟩︂⃓⃓⃓2

δ

(︃
E − p2

2µnn
− q2

2µc

)︃
. (5.29)

Making use of our result from the previous subsection, we obtain

dB(E1)

dE
=

3e2Z2
c

4π

(︃
2

A+ 2

)︃2 ∫︂ √
2µcE

0

dq q2
√︁

2µ3
nn

√︄
E − q2

2µc

⃓⃓⃓⃓
⃓∂q′Ψc

(︄√︄
2µnn

(︃
E − q2

2µc

)︃
, q′

)︄⃓⃓⃓
q′=q

⃓⃓⃓⃓
⃓
2

, (5.30)
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whereby µc := µc(nn) holds and Ψc is the initial-state wave function4 (as already defined in eq. (3.171)):

Ψc(p, q) := c⟨ζc, ξc|Ψ⟩ . (5.31)

5.2. Including single final-state interactions

The dipole strength distribution is also calculated with nn final-state interactions taken into account. This is
done by inserting the Møller operator of the nn interaction Ω†

nn right before the final state:

dB(E1)

dE
= e2Z2

c

∑︂
µ,M

∫︂
dp dq p2q2

⃓⃓⃓
c

⟨︂
p, q; ζ(1,µ)c , ξ(M)

c

⃓⃓⃓
Ω†

nnrcY1,µ(rc)PΞc

⃓⃓⃓
Ψ
⟩︂⃓⃓⃓2

δ

(︃
E − p2

2µnn
− q2

2µc

)︃
. (5.32)

The Møller operator Ω†
nn is given by (cf. eq. (2.22))

Ω†
nn = 1 +

∫︂
dp dq p2q2

(︂
|p, q⟩c c⟨p, q| ⊗ 1(orbital) ⊗ 1(spin)

)︂
tnn(Ep)G

(nn)
0 (Ep) . (5.33)

It converts the free state

c

⟨︂
p, q; ζ(1,µ)c , ξc

⃓⃓⃓
(5.34)

into the interacting state (with respect to the nn interaction) at t = 0, characterized by the asymptotic state

lim
t→∞ c

⟨︂
p, q; ζ(1,µ)c , ξc

⃓⃓⃓
eiH0t . (5.35)

The operator makes use of the asymptotic condition, which requires that every state in the Hilbert space H of
solutions of a Schrödinger equation can form the asymptote of some scattering state, see, e.g., Ref. [43].
Thereby the state after the breakup is overlapped with the correct scattering state in order to calculate the E1

distribution.
Since Ω†

nn is an identity in the q-space and the associated parts of the partial wave states, it commutes with
the E1 operator rcY1,µ(rc) and one obtains

dB(E1)

dE
=

3e2Z2
c

4π

(︃
2

A+ 2

)︃2 ∫︂ √
2µcE

0

dq q2
√︁
2µ3

nn

√︄
E − q2

2µc

⃓⃓⃓⃓
⃓∂q′Ψ(wFSI)

c

(︄√︄
2µnn

(︃
E − q2

2µc

)︃
, q′

)︄⃓⃓⃓
q′=q

⃓⃓⃓⃓
⃓
2

. (5.36)

whereby the definition

Ψ(wFSI)
c (p, q) :=

c

⟨︂
p, q; ζc, ξ

(M)
c

⃓⃓⃓(︂
1 + tnn(Ep)G

(nn)
0 (Ep)

)︂⃓⃓⃓
Ψ
⟩︂

(5.37)

holds.
The distribution with nc FSI can be obtained in a similar fashion. The Møller operator Ω†

nn has to be replaced
by Ω†

nc, which is given by

Ω†
nc = 1 +

∫︂
dp dq p2q2

(︂
|p, q⟩n n⟨p, q| 1

(spatial) ⊗ 1(spin)
)︂
tnc(Ep)G

(nc)
0 (Ep) . (5.38)

In this context, one has to take into account that Ω†
nc does not commute with the E1 operator. An implementable

expression for the distribution with nc FSI is given in section 5.8.
A diagrammatic overview of the distributions we have discussed so far is shown in fig. 5.1.

4One should be careful and not confuse it with |ψc⟩ = G0Vc |Ψ⟩.
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Figure 5.1.: Diagrammatic representation of the E1 matrix elements of distributions for up to one included FSI. The bubble
with wiggly line stands for the complete initial state after application of the E1 operator.

5.3. Results with up to one FSI

The results for the E1 distributions of 11Li with no FSI as well with single FSIs are shown in fig. 5.2. Also, the
cumulated distributions defined in eq. (5.5) are plotted. According to the non-energy weighted sum rule (cf.
eq. (5.6)), the overall strength is related to the RMS radius

√︁
⟨r2c ⟩. Therefore, all the different cumulated

distributions should have the same asymptotic value.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
E [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

dB
(E

1)
/d
E 

[e
2  

fm
2  

/ M
eV

]

no FSI
+
nn
+
nc
+
n0c

0 5 10 15 20
E [MeV]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

B(
E1

)(
E)

 [e
2  

fm
2 ]

no FSI
+
nn
+
nc
+
n0c

asymp. value

Figure 5.2.: The left panel shows E1 strength distributions of 11Li with different FSIs included. Note that the green and
red dashed line are on top of each other. The right panel shows the corresponding cumulated E1 strength
distributions. Numerical uncertainties are indicated by bands, which are very narrow here. They were obtained
by comparing the calculations with ones having roughly two thirds as many mesh points and a cutoff of three
fourths of the original one.

It can be seen that the FSIs influence the shape significantly. nn FSI as well as nc FSI (and n′c FSI) increase
the strength at low energies. However, we observe that the influence of nn FSI is much larger than the influence
of nc FSI.

In the case of the cumulated distributions, a common asymptotic value can be observed as anticipated. An
even better agreement is to be expected if one plots this distribution up to higher energies. The asymptotic
values are also in approximate agreement with the overall E1 strength value calculated from

⟨︁
r2c
⟩︁
. This radius

was extracted from the so-called form factor Fc, not to be confused with the form factors of the separable
potentials. Note that also this form factor was approximated in the sense that only the wave function of the
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Ξc partial wave was used. Thereby, the truncation in the initial-state partial waves is consistent.

5.4. Results with nn FSI: One vs. two nc interaction channels

In the next step, we want to compare the calculations having one or two nc interaction channels. The parameter
for the nc interaction Enc is, in both cases, the same. As already discussed in section 3.4, the calculation with
two nc interaction channels can be realized by setting the core spin and the overall spin to zero. The results
are shown in fig. 5.3.
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Figure 5.3.: E1 strength distributions of 11Li based on one nc interaction channel and on two nc interaction channels. For
comparison, we show the curve by Hongo and Son [64]. The left panel shows the theory results themselves,
whereas the right panel shows the folded distributions taking the finite detector resolution into account. In the
right panel, also the experimental data by Nakamura et al. [54] (adjusted to the current S2n value, for details,
see appendix D.3) are shown. Numerical uncertainties are obtained and visualized as explained before.

We observe that the distributions based on the one-channel interaction have much less strength compared
to those with two channels. This holds for the result without any FSI (not shown here) as well as for the result
with nn FSI. In comparison with the experimental data, we see that the description using two nc interaction
channels yields much more realistic results at leading order. Therefore, we will use this approach for the
following investigations.

5.5. Including multiple FSIs perturbatively by using the multiple-scattering
series

In the next step, we will work on including multiple FSIs. For that, we discuss the multiple-scattering series
for the three-body system. In contrast to other parts of this work, |Ψ⟩ denotes in this section a scattering state
and |ψi⟩ as well as |Fi⟩ are quantities related to that scattering state. This discussion is based on the Faddeev
formalism reviewed in section 2.4.

A scattering solution |Ψ⟩ of the Schrödinger equation at an energy E > 0 satisfying the boundary condition
|Φ⟩ is given by

|Ψ⟩ = |Φ⟩+G0(E)
∑︂
i

Vi |Ψ⟩ , (5.39)

which is the Lippmann-Schwinger equation. As already discussed in section 2.1, solving the Lippmann-
Schwinger equation is a way to automatically take the boundary condition into account. We will omit the
argument of G0 from time to time. By letting (E −H0) act on this equation, one can easily verify that the
Schrödinger equation is fulfilled.
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We introduce the Faddeev components of that scattering state

|ψi⟩ := G0Vi |Ψ⟩ , (5.40)

yielding the equation
|Ψ⟩ = |Φ⟩+

∑︂
i

|ψi⟩ . (5.41)

Now we can obtain |Ψ⟩ straightforwardly, if we know the |ψi⟩. These are determined by

|ψi⟩ = G0Vi |Φ⟩+
∑︂
j

G0Vi |ψj⟩ . (5.42)

This set of coupled equations can be obtained from eq. (5.39) by multiplying it with G0Vi and using the
definition from eq. (5.40). We can rewrite eq. (5.42) into(︁

V −1
i G−1

0 − 1
)︁
|ψi⟩ = |Φ⟩+

∑︂
j ̸=i

|ψj⟩ . (5.43)

This can be reshaped into
(G0ti)

−1 |ψi⟩ = |Φ⟩+
∑︂
j ̸=i

|ψj⟩ . (5.44)

It can be useful to introduce a new set of Faddeev components given by

|ψi⟩ =: G0ti |Fi⟩ . (5.45)

Note that the definitions of the |ψi⟩ and of the |Fi⟩ are the same as in the bound state calculations. Employing
this definition the last result can be written as

|Fi⟩ = |Φ⟩+
∑︂
j ̸=i

G0tj |Fj⟩ . (5.46)

Once this set of equations for the |Fi⟩ is solved, one can use the following version of eq. (5.41) in order to
obtain |Ψ⟩:

|Ψ⟩ = |Φ⟩+
∑︂
i

G0ti |Fi⟩ . (5.47)

The goal is to obtain an expansion for |Ψ⟩ in terms of the t-matrices. For that purpose, we slightly rewrite
eq. (5.46). First, we introduce the following vectors containing ket states as well as a matrix containing
operators:

F :=

⎛⎜⎝|F1⟩
...

|Fn⟩

⎞⎟⎠ , Φ :=

⎛⎜⎝|Φ⟩
...

|Φ⟩

⎞⎟⎠ , ω :=

⎛⎜⎝ 0 G0t2 . . . G0tn−1 G0tn
...

G0t1 G0t2 . . . G0tn−1 0

⎞⎟⎠ . (5.48)

Using these we can write eq. (5.46) as
F = Φ+ ωF . (5.49)

We can obtain a formal solution for this equation in the following way:

(1 − ω)F = Φ (5.50)
F = (1 − ω)

−1
Φ (5.51)

F =
(︁
1 + ω + ω2 + . . .

)︁
Φ . (5.52)
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+ + +

Figure 5.4.: Diagrammatic representation of the E1 matrix elements with all FSIs as obtained by expanding the multiple-
scattering-series up to first order.

Using the components of the vectors, which are states, instead of the vectors themselves, the final result reads

|Fi⟩ =

⎛⎝1 +
∑︂
j ̸=i

G0tj +
∑︂
j ̸=i

G0tj
∑︂
k ̸=j

G0tk + . . .

⎞⎠ |Φ⟩ . (5.53)

With that, we now have an expansion for the |Fi⟩ in terms of the t-matrices. We obtain the expansion of |Ψ⟩ by
inserting this result in eq. (5.47). It reads

|Ψ⟩ = |Φ⟩+
∑︂
i

G0ti |Φ⟩+
∑︂
i

G0ti
∑︂
j ̸=i

G0tj |Φ⟩+ . . . . (5.54)

If one wants to include all these FSIs up to first order in the t-matrix, the expression for the scattering wave
function reads

|Ψ⟩ = |Φ⟩+
∑︂
i

G0ti |Φ⟩ . (5.55)

We can use this equation to define an operator ˜︁Ω, which can be used for applying FSI effects in this perturbative
way: ˜︁Ω := 1 +

∑︂
i

G0ti . (5.56)

So that the non-energy-weighted sum rule would be fulfilled for a distribution based on this operator, the
relation ˜︁Ω˜︁Ω† = 1 (5.57)

would have to hold. A unitary operator would fulfill this relation. However, the ˜︁Ω as specified in eq. (5.56)
does not fulfill this property.
Note that the |Ψ⟩, |ψi⟩, and |Fi⟩ in the following parts, in contrast to this section, refer to those of a bound

state and not of a scattering state.

5.6. Review of Møller operators

Since we will use Møller operators more often in the following, we want to extend the discussion of the Møller
operators given in section 2.1 here a bit. More information can be found in Ref. [43].
As already mentioned, the Møller operators are isometric. This means that

Ω†
±Ω± = 1 (5.58)

holds. If additionally,
Ω±Ω

†
± = 1 (5.59)

is true, the Møller operator is not only isometric but also unitary. While this can be the case, this does not
hold in general. It can be understood in the following way. The Møller operator Ω± maps an arbitrary state
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|Φ⟩ to the scattering orbit that has |Φ⟩ as asymptote. If the Hilbert space H of states consists of the subspace of
scattering states S and the subspace of bound states B, then the Møller operator Ω± is a mapping from H to S.
Likewise, Ω†

± is a mapping from S to H. Since there is a unique relation between the asymptote |Φ⟩ and the
corresponding scattering orbit |Ψ⟩, it follows that the mapping from H to H built by Ω†

±Ω± is the identity. In
contrast to this, Ω†

± maps from S to H. Acting with this operator on a state contained in B results in zero.
Accordingly, there is some loss of probability and Ω±Ω

†
± is in general not an identity on H. However, if a

potential has no bound states, then H = S holds, and the corresponding Møller operator is indeed unitary.

5.7. Including multiple FSIs perturbatively by using products of Møller
operators

As discussed in section 5.5, truncating the multiple-scattering series at a fixed order can lead to the non-
conservation of probability. As an alternative approximation method, we propose to use products of Møller
operators of single types of FSI. Each Møller operator in the product then is isometric, or in the absence of
bound states unitary, and as a consequence, the overall product is isometric or unitary, respectively. E.g., one
can use products such as

Ω†
nnΩ

†
nc (5.60)

for a second-order approximation (in the number of Møller operators). A third-order approximation could be

Ω†
nnΩ

†
ncΩ

†
n′c . (5.61)

This scheme has, in the three-body system with one interaction channel per subsystem, a natural limit at three
Møller operators. Using more operators would contain, after multiplying everything out, terms of the form∫︂

dp′ p′2
∫︂

dq′ q′2 |p′, q′; Ωi⟩i i⟨p
′, q′; Ωi| t(jk)(Ep′)G

(jk)
0 (Ep′)

×
∫︂

dp′′ p′′2
∫︂

dq′′ q′′2 |p′′, q′′; Ωi⟩i i⟨p
′′, q′′; Ωi| t(jk)(Ep′′)G

(jk)
0 (Ep′′) . (5.62)

These terms where the same t-matrix is used twice with no other t-matrix in between are unphysical. They
are not contained in the multiple-scattering series, see eq. (5.54).

5.8. Perturbative scheme: Calculation strategy

We will now work out how we can organize the described calculations of E1 distributions with FSIs based on
combinations of Møller operators efficiently. We will identify ingredients that different distributions have in
common and describe the calculation of the different matrix elements on this basis. The procedure to obtain
the final distributions from the matrix elements is then basically independent of the included FSIs. Only the
range of the sum over the final-state quantum numbers can be influenced by the choice of the included FSIs.
We start by specifying the initial state and its partial-wave structure. We use

|i⟩ := M(E1, µ)PΞc
|Ψ⟩ (5.63)

as the initial state. It consists of the E1 operator acting on the Ξc := ζc, ξ
(M)
c partial-wave component of the

ground state. As we have seen in section 3.4, taking only the ζc, ξ(M)
c component of the ground state into

account is a good approximation. This is the same procedure as in sections 5.3 and 5.4.
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After this E1 transition, whereby FSIs are not yet included, the system is in the state⃓⃓⃓
ζ(1,µ)c , ξ(M)

c

⟩︂
c
. (5.64)

In order to compactly specify the final states after FSIs, which can be in various partial waves due to recoupling,
we introduce the multi-index ⃓⃓⃓

ζ
(︁
l̄,λ̄;µ

)︁
f

⟩︂
c
:=
⃓⃓(︁
l̄, λ̄
)︁
1, µ
⟩︁
c

(5.65)

for the spatial part and the multi-index ⃓⃓⃓
ξ
(s̄;M)
f

⟩︂
c
:=

⃓⃓⃓⃓(︃
s̄,

3

2

)︃
3

2
,M

⟩︃
c

(5.66)

for the spin part. For illustrative purposes, we put the multi-indices directly into kets, since they are usually
used with the core as the spectator. The quantum numbers here have bars on top to distinguish them from
the ones characterizing the ground state. While overall spin and orbital angular momentum are conserved,
the subsystem quantum numbers are, in general, not conserved.
In the case of the two nc interaction channels (sc + 1/2 and sc − 1/2), the Hamilton operator decouples

into one with the nn system in spin 0 configuration and one with the nn system in spin 1 configuration (see
section 3.4). Therefore, the initial state with s = 0 will remain in this configuration, and we have s̄ = 0.
On this basis, we define the following “ingredients”:

A(1)

l̄,λ̄;µ;s̄,M
(p, q) :=

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓(︁
Ω†

nc − 1
)︁⃓⃓⃓
i
⟩︂
, (5.67)

A(2)

l̄,λ̄;µ;s̄,M
(p, q) :=

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓(︂
Ω†

n′c − 1
)︂(︂

Ω†
nc − 1

)︂⃓⃓⃓
i
⟩︂
. (5.68)

Note that the initial state |i⟩ also depends on M . In these equations, this dependency is not written out.
We can also define the following matrix elements:

˜︁A(1)

l̄,λ̄;µ;s̄,M
(p, q) :=

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓(︂
Ω†

n′c − 1
)︂⃓⃓⃓
i
⟩︂
, (5.69)

˜︁A(2)

l̄,λ̄;µ;s̄,M
(p, q) :=

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓(︂
Ω†

nc − 1
)︂(︂

Ω†
n′c − 1

)︂⃓⃓⃓
i
⟩︂
. (5.70)

Using the properties of the permutation operators P(spatial)
nn and P(spin)

nn yields the following relations between
the A and ˜︁A functions:

˜︁A(1)

l̄,λ̄;µ;s̄,M
(p, q) = (−1)

l̄
(−1)

−s̄ A(1)

l̄,λ̄;µ;s̄,M
(p, q) , (5.71)˜︁A(2)

l̄,λ̄;µ;s̄,M
(p, q) = (−1)

−l̄
(−1)

−(1−s̄)
(−1)A(2)

l̄,λ̄;µ;s̄,M
(p, q) , (5.72)

i.e., these are related by phase factors stemming from nn permutations.
Another important ingredient is the overlap of the final and the initial state with no "FSI operator" in

between:
A(0)

µ (p, q)δl̄,0δλ̄,1 :=
c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ(M)

c

⃓⃓⃓
i
⟩︂
. (5.73)

This expression has already been evaluated, as it is a part of eq. (5.30). The function depends only on µ but
not on l̄, λ̄ and s̄. The overlap’s dependency on these quantum numbers is simple and is therefore not included
in the definition of A(0)

µ . The overlap on the right is non-vanishing only for l̄ = 0 ∧ λ̄ = 1 ∧ s̄ = 0.
With these ingredients at hand, we can obtain comparatively compact expressions for the matrix elements

of different combinations of Møller operators. In this course, we use the definition

Ω̄ij := Ωij − 1 . (5.74)
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The expression for the matrix element of the nn Møller operator reads

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓
Ω†

nn

⃓⃓⃓
i
⟩︂
=

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓(︄
1 +

∫︂
dp̃ dq̃ p̃2q̃2

∑︂
Ω

|p̃, q̃ ; Ω⟩c c⟨...| tnn(Ep̃)G
(nn)
0 (Ep̃)

)︄⃓⃓⃓
i
⟩︂

(5.75)

= δl̄,0δλ̄,1δs̄,0

(︃
A(0)

µ (p, q) + τ̄c(p)

∫︂
dp′ p′2g0(p

′)
(︁
p2 − p′2 + iϵ

)︁−1 A(0)
µ (p′, q)

)︃
(5.76)

=: Bµ(p, q)δl̄,0δλ̄,1δs̄,0 . (5.77)

We can use this result under the name Bµ(p, q) to write the matrix element of the product of the nn and nc
Møller operators more compactly:

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓
Ω†

nnΩ
†
nc

⃓⃓⃓
i
⟩︂
=

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓(︁
Ω†

nn + Ω̄†
nc + Ω̄†

nnΩ̄
†
nc

)︁⃓⃓⃓
i
⟩︂

(5.78)

= δl̄,0δλ̄,1δs̄,0Bµ(p, q) +A(1)

l̄,λ̄;µ;s̄,M
(p, q)

+ δl̄,0δλ̄,1δs̄,0τ̄c(p)

∫︂
dp′ p′2g0(p

′)
(︁
p2 − p′2 + iϵ

)︁−1 A(1)
0,1;µ;0,M (p′, q) . (5.79)

The expression for FSI only based on Ω†
nc can be obtained by just using the first line of eq. (5.79). Finally, we

obtain for the matrix element of a product of three Møller operators

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ

(s̄;M)
f

⃓⃓⃓
Ω†

nnΩ
†
n′cΩ

†
nc

⃓⃓⃓
i
⟩︂
= δl̄,0δλ̄,1δs̄,0Bµ(p, q) +

(︂
1 + (−1)

l̄+s̄
)︂
A(1)

l̄,λ̄;µ;s̄,M
(p, q)

+ 2δl̄,0δλ̄,1δs̄,0τ̄c(p)

∫︂
dp′ p′2g0(p

′)
(︁
p2 − p′2 + iϵ

)︁−1 A(1)
0,1;µ;0,M (p′, q)

+A(2)

l̄,λ̄;µ;s̄,M
(p, q)

+ δl̄,0δλ̄,1δs̄,0τ̄c(p)

∫︂
dp′ p′2g0(p

′)
(︁
p2 − p′2 + iϵ

)︁−1 A(2)
0,1;µ;0,M (p′, q) , (5.80)

where we also used eq. (5.71). In order to write the expressions more compactly, the quantity5

τ̄i(p) :=
2

π
gli(p)τi(p) (5.81)

was introduced based on the pure two-body τi(p). In the case of eq. (5.80) the relation

Ω†
nnΩ

†
n′cΩ

†
nc =

(︁
1 + Ω̄†

nn

)︁ (︂
1 + Ω̄†

n′c

)︂ (︁
1 + Ω̄†

nc

)︁
(5.82)

= Ω†
nn +

(︂
Ω̄†

n′c + Ω̄†
nc

)︂
+ Ω̄†

nn

(︂
Ω̄†

n′c + Ω̄†
nc

)︂
+ Ω̄†

n′cΩ̄
†
nc + Ω̄†

nnΩ̄
†
n′cΩ̄

†
nc (5.83)

was employed.
An expression for the matrix element of Ω†

n′cΩ
†
nc can be obtained from eq. (5.80) by replacing Bµ(p, q) by

A(0)
µ (p, q) and setting the τ̄c(p) in this formula to zero.
One might also be interested in calculating the expression based on Ω†

n′cΩ
†
ncΩ

†
nn in addition to the expression

based on Ω†
nnΩ

†
n′cΩ

†
nc given in eq. (5.80). For that purpose, one can use eq. (5.80) as in the way described

above for obtaining the result based on Ω†
n′cΩ

†
nc with the difference that the ground-state wave function is

replaced by the wave function with nn FSI included, i.e., Ψ(wFSI)
c from eq. (5.37). This is possible, since the E1

operator and Ω†
nn commute.

5Note that τ , which is the "reduced t-matrix element," sometimes takes a momentum and sometimes an energy as argument in this
work. There is no deeper reason behind this variation, τk(E) can be read as τk

(︁√︁
2µijE

)︁
.
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In each of these expressions, integrals stemming from taking the t-matrix elements have to be evaluated.
Limiting ourselves to the case of sharp-cutoff regulation at Λ in the subsystems, i.e.,

gl(p) := pLΘ(Λ− p) , (5.84)

we can use the relation∫︂
dp′ p′2

g0(p
′)f(p′, q)

p2 − p′2 + iϵ
=

∫︂ Λ

0

dp′
p′2f(p′, q)− p2f(p, q)

p2 − p′2
−
(︃
iπ

2
− 1

2
ln

(︃
Λ + p

Λ− p

)︃)︃
g0(p)pf(p, q) . (5.85)

Diagrammatic representations for two second-order expressions can be found in fig. 5.5. Two third-order
expressions are visualized in figs. 5.6 and 5.7.

+ + +

+ + +

Figure 5.5.: Diagrammatic representation of two E1 matrix elements with FSIs included in the perturbative scheme up to
second order. The first line shows the scheme based on Ω†

nnΩ
†
nc, while the second line is based on Ω†

ncΩ
†
nn.

+ + +

+ + +

+

Figure 5.6.: Diagrammatic representation of an E1 matrix element with FSIs included in the perturbative scheme up to
third order. This matrix element is based on Ω†

nnΩ
†
n′c Ω

†
nc.

5.9. Perturbative scheme: Physical properties

Using these relations, also distributions based on additional combinations of Møller operators can be calculated
easily. The combinations we are interested in are listed in table 5.1. In the columns, some interesting properties
are listed. An important one is the unitarity of the approach because the physical FSI is unitary as long as there
is no “probability flow” into bound states. In our case, any deviation from unitarity is an inaccuracy caused by
the approximation scheme in use. Another relevant symmetry is whether the FSI operator commutes with the
nn permutation operator Pnn. The full FSI operator commutes with Pnn so that the nn antisymmetry is not
broken by FSI. Also, here, potential violations are due to the approximations. Additional characteristics are
the order of the expression in the t-matrices and whether all different two-body interactions are included.
Note that in the table, some abbreviations for the different combinations of operators are introduced.

75



Table 5.1.: Overview of different FSI schemes specified in terms of the used combinations of Møller operators. Especially
interesting combinations are highlighted in color.

operator max. order
in tijG0

commutes
with Pnn

unitary all two-body
interactions
included

1 0 ✓ ✓ ✗(︁
Ω(fo)

)︁† 1 ✓ ✗ ✓

Ω†
nn 1 ✓ ✓ ✗

Ω†
nc 1 ✗ ✓ ✗

Ω†
n̄c :=

1
2

(︂
Ω†

nc +Ω†
n′c

)︂
1 ✓ ✗ ✗

Ω†
nnΩ

†
nc 2 ✗ ✓ ✗

Ω†
nnΩ

†
n̄c 2 ✓ ✗ ✓

Ω†
3 := Ω†

nnΩ
†
n′cΩ

†
nc 3 ✗ ✓ ✓

Ω̄†
3 := 1

2Ω
†
nn

(︂
Ω†

n′cΩ
†
nc +Ω†

ncΩ
†
n′c

)︂
3 ✓ ✗ ✓

(Ω′
3)

† := Ω†
n′cΩ

†
ncΩ

†
nn 3 ✗ ✓ ✓(︁

Ω̄′
3

)︁†
:= 1

2

(︂
Ω†

n′cΩ
†
nc +Ω†

ncΩ
†
n′c

)︂
Ω†

nn 3 ✓ ✗ ✓

The different combinations have different advantages. The expression using all t-matrices up to first order,
i.e., the one based on

(︁
Ω(fo)

)︁†, preserves nn antisymmetry and includes all interactions. However, it is not
necessarily unitary. The combination of all three different Møller operators Ω†

3 has the advantage of taking all
interactions into account and being unitary. The price to pay here is the loss of exact commutation with Pnn.
It is possible to produce a commutative variant of this combination called Ω̄†

3 at the cost of losing guaranteed
unitarity. In terms of this selection of “features” it is thereby on a par with

(︁
Ω(fo)

)︁†. However, on a quantitative
level, there might be significant differences. It might be that the violation of unitarity of Ω̄†

3 is much smaller
than in the case of

(︁
Ω(fo)

)︁†.
Before showing the results, we want to briefly discuss the handling of the final states. From looking at

eqs. (5.77), (5.79) and (5.80) one can see that only those terms directly proportional to A(1)

l̄,λ̄;µ;s̄,M
(p, q) or

A(2)

l̄,λ̄;µ;s̄,M
(p, q) are non-zero for different combinations of final-state quantum numbers l̄, λ̄. The expressions

for these functions in appendices D.4 and D.5 show that these are only non-vanishing if λ̄− 1 ≤ l̄ ≤ λ̄+ 1. This
means that the sum over l̄ for a given λ̄ has only finitely many terms, while the sum over λ̄ is, in principle,
unrestricted. Of course, in principle, one could do this also the other way around. In order to handle the sum
over λ̄, we introduce a truncation so that the sum over λ̄ runs only up to λ̄max (inclusively). We usually use
λ̄max = 5, whereby the relative changes between the results based on λ̄max = 3 and those based on λ̄max = 5

are smaller than 5% measured in terms of the first. In the case of the quantum number µ, the sum runs
from -1 to 1, whereby one can use the fact that the matrix element is independent of µ in order to reduce the
numerical costs. The spin of the nn system in the final state can be, in the case of many terms, either 0 or 1.
Sometimes cancellations emerge for certain values naturally from the nature of the equations. E.g., in the case
of Ω3, the partial wave s = 1 ∧ l = 0 has, in principle, a non-vanishing contribution, as (Ω3 does not commute
with Pnn), while in the case of Ω̄3 this contribution is vanishing due to the nn antisymmetry of the operator.
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Figure 5.7.: Diagrammatic representation of an E1 matrix element with FSIs included in the perturbative scheme up to third
order. This matrix element is based on Ω†

n′c Ω
†
ncΩ

†
nn.

5.10. Results based on perturbative inclusion of multiple FSIs

The E1 distributions based on
(︁
Ω(fo)

)︁†, Ω†
3, Ω̄

†
3, (Ω′

3)
†, and

(︁
Ω̄′

3

)︁† are shown in fig. 5.8. The right panel of that
figure contains the cumulated distributions. For comparison, some of the distributions shown in fig. 5.2 are
also included.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
E [MeV]

0.0

0.5

1.0

1.5

2.0

dB
(E

1)
/d
E 

[e
2  

fm
2  

/ M
eV

]

no FSI
+
nn

( (fo)) +  
+
nn

+
n0c

+
nc

+
nn

+
n0c

+
nc av

+
n0c

+
nc

+
nn

+
n0c

+
nc

+
nn av

0 5 10 15 20
E [MeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B(
E1

)(
E)

 [e
2  

fm
2 ]

no FSI
+
nn

( (fo)) +  
+
nn

+
n0c

+
nc

+
nn

+
n0c

+
nc av

+
n0c

+
nc

+
nn

+
n0c

+
nc

+
nn av

asymp. value

Figure 5.8.: The left panel shows E1 strength distributions of 11Li with different FSIs including higher-order schemes. The
right panel shows the corresponding cumulated E1 strength distributions. Numerical uncertainties are indicated
by bands, which are very narrow here. They were obtained by comparing with calculations having roughly
two thirds as many mesh points and a cutoff of three fourths of the original one. The asymptotic value for the
cumulated E1 strength distribution is the same as before. It is based on

⟨︁
r2c
⟩︁
extracted from Fc. Note that

the results for Ω†
nnΩ

†
n′cΩ

†
nc and for 1

2Ω
†
nn

(︂
Ω†

n′cΩ
†
nc +Ω†

ncΩ
†
n′c

)︂
are on top of each other. The same is true for

Ω†
n′cΩ

†
ncΩ

†
nn and 1

2

(︂
Ω†

n′cΩ
†
nc +Ω†

ncΩ
†
n′c

)︂
Ω†

nn.

While there is no large difference between the distribution using Ω†
3 and the one just having nn FSI, the

distribution using
(︁
Ω(fo)

)︁† differs largely from all other results. The main distinction is that it has much more
strength. A glance at the cumulated strength functions shows that the asymptotic value is roughly twice as
large for the first-order distributions compared to all the other ones. It is the only one that seems to clearly
deviate from the asymptotic value calculated from

⟨︁
r2c
⟩︁
, which was obtained from the so-called form factor Fc.

The deviation is not totally surprising, as its FSI operator only approximates a unitary Møller operator and
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therefore does not need to be unitary. Interestingly, Ω̄†
3, which does not need to be unitary either, seems to

fulfill the sum rule approximately. From the perspective of Ω̄†
3 yielding results similar to those from Ω†

3, this is
not extraordinary, since Ω†

3 needs to fulfill the sum rule. Given the fact that Ω̄†
3 is a modification of Ω†

3 so that
nn antisymmetry is fulfilled, we would conclude that the violation of antisymmetry in Ω†

3 is small.

Another interesting observation is that the distribution with only nn FSI included is already relatively similar
to the one based on Ω†

3. The latter differs from the first a bit in the peak height and a small shift of the
peak position to the left. This indicates that we have a pattern of convergence in our approximations to the
multiple-scattering series. Moreover, the overall strength is restricted anyway by the sum rule. The remaining
uncertainty in the FSI can be estimated by comparing the results based on Ω†

3 with those based on (Ω′
3)

†.
These two combinations of Møller operators just differ in the position of Ω†

nn. While in the case of Ω†
3, it is

the first factor in the product of operators, in the other one, it is the last one. The difference between the
results shows that there is some remaining uncertainty. The approximation of the multiple-scattering series is
not yet fully converged. It would be interesting to investigate the uncertainties of this approximation scheme
further. However, as explained in section 5.7, using products of four or more Møller operators is not an option
here. Aiming at comparisons with experimental data or other theoretical results, we would recommend the
usage Ω†

3 or Ω̄†
3. These are, to a high degree, unitary and nn-antisymmetry preserving. In each case, one

of the properties is exactly fulfilled. Alternatively, one can also use (Ω′
3)

† and
(︁
Ω̄′

3

)︁†, which have the same
characterizing properties but a different sequence of the constituting operators.

5.11. Comparison with theoretical and experimental data

We proceed by comparing our results with experimental data from Ref. [54] and the calculation for universal
2n halo nuclei from Ref. [64] by Hongo and Son. In this context, it is important to note that the universal
curve from Hongo and Son is solely based on the nn interaction and a three-body force. It is thereby intended
for 2n halo nuclei where S2n and ϵn = 1/(2µnna

2
nn) are smaller than all other energy scales. Due to the

near-threshold virtual state in 11Li’s nc system, this is not the case. Hongo and Son say the applicability of
their results to 11Li is “doubtful”. As they apply it themselves to 11Li, a comparison with their results can help
by checking that supposition about the applicability.

In the case of our results, we use different distributions for the comparison. They have in common that nn
FSI, which turned out to be rather important, is taken into account. The distributions are shown in fig. 5.9.
While the left panel directly shows our results, as well as the one by Hongo and Son, the right panel shows
the distributions folded with the finite detector resolution in comparison with the experimental data. More
information on the folding with the detector resolution can be found in appendix D.2. The leading-order EFT
uncertainty bands are shown in the figure. We estimated the uncertainties using

∆

(︃
dB(E1)

dE

)︃
=

dB(E1)

dE

√︄
E

E∗(9Li)
, (5.86)

whereby E∗(︁9Li)︁ is the excitation energy of the 9Li core, which is the lowest scale of omitted physics. It is
approximately 2.7 MeV.
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Figure 5.9.: Our results for E1 strength distributions of 11Li in comparison with the universal curve from Hongo and Son as
well as the experimental data from Nakamura et al. [54] (adjusted to the current S2n value, for details, see
appendix D.3). The uncertainty bands show the estimated uncertainties of the leading-order EFT results. The
uncertainty stemming from approximations of the multiple-scattering series by products of Møller operators can
be estimated by comparing the curve using Ω†

nnΩ
†
n′cΩ

†
nc with the one using Ω†

n′cΩ
†
ncΩ

†
nn.

The comparison shows that the theory by Hongo and Son agrees well with experimental data and our results
at higher energies but has much too less strength at low energies. Thereby, we can confirm the supposition by
Hongo and Son that their EFT might not be ideal for 11Li, since the energy of the nc virtual state is with 26 keV

compared to a two-neutron separation energy of approximately 369 keV too low to be negligible.
Our different distributions, which all take nn FSI into account, show qualitative agreement with the

experimental values. In the case of the height and width of the low-energy peak, there are some discrepancies,
which also depend on the concrete FSI approximation scheme. While the differences between the EFT results
being distinct in the FSI scheme indicate the uncertainties of the FSI approximation, the remaining differences
from the experimental results could be higher-order effects not included in the leading-order calculation. The
expected relative size of the next-to-leading-order corrections is of the order of

√︁
E/E∗(9Li). At the peak, the

EFT uncertainty is about 30%. The FSI uncertainty is approximately 15%. We obtained it by comparing the
results based on the two different orderings of the three Møller operators presented here. The change of
the ordering causes a change by ±15%. It can be seen that at higher energies, the FSI uncertainty decreases,
while the EFT uncertainty increases as we move away from the low-energy region.

Our finding that FSI causes a strong peak around or below energies of 0.5MeV is inline with earlier three-
body model calculations. E.g., see Refs. [61, 62] for three-body model results based on nn FSI, and Ref. [63]
for a three-body calculation with all FSIs included. Compared to these, the EFT approach has the advantage
that it directly comes with uncertainty estimates.
In conclusion, we can say that our leading-order calculation of the E1 strength distribution of 11Li agrees

reasonably well with experimental data and that our computation of the FSI based on products of Møller
operators works well. The convergence pattern of the FSI approximations would be an interesting aspect
for further studies. Our perturbative scheme works much better than a first-order approximation of the
multiple-scattering series, which comes with a large violation of probability preservation.

5.12. Analysis of the EFT by Hongo and Son in regard to FSI

Subsequently to our comparison with the result by Hongo and Son [64] for the E1 strength, we want to
analyze their result in a bit more detail. They obtained the E1 strength distribution by directly drawing the
corresponding Feynman diagram and evaluating it. Due to this approach, it is not clear to us whether nn FSI
is included. Since there is no explicit nc interaction in their EFT, nc FSI is not included. In this section, we
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want to answer the question regarding the inclusion of the nn FSI.
For that, we extract the wave function from the E1 strength function of Hongo and Son. In the second

step, we calculate the ground-state wave function for their EFT by obtaining it from the residue of the Green’s
function at the pole of the three-body bound state. To be consistent, we calculate the Green’s function
according to the Feynman rules for the Hongo and Son theory. If both wave functions agree, then apparently
nn FSI is not taken into account. If they don’t agree, we have to check if applying FSI to the ground-state
wave function obtained from the Green’s function results in the wave function extracted from the E1 strength.

5.12.1. Extracting the wave function from the E1 strength distribution by Hongo and Son

To extract the wave function from the result for the E1 strength distribution, we use the following relation as
the basis.

dB(E1)

dE
=

3e2Z2
c

4π

(︃
2

A+ 2

)︃2 ∫︂ √
2µcE

0

dq q2
√︁
2µ3

nn

√︄
E − q2

2µc

⃓⃓⃓⃓
⃓∂q′Ψ(wFSI)

c

(︄√︄
2µnn

(︃
E − q2

2µc

)︃
, q′

)︄⃓⃓⃓
q′=q

⃓⃓⃓⃓
⃓
2

. (5.87)

This holds for the case that Ψc is the only relevant initial state wave function component6.
First, we express the result for the E1 strength distribution by Hong and Son in our notation. Inter alia, the

following conversion relations hold

mφ → mc , (5.88)
µ→ µc(nn) =: µc , (5.89)
B → S2n , (5.90)
ω → E + S2n . (5.91)

While some conversions are only due to different notations, some complications are necessary in order to take
all masses explicitly into account. For our reconstruction of the wave function, we use the expression resulting
from eq. (27) and eq. (S44) of Ref. [64] and its supplemental material. This is not the final result, but this
form is more useful for our purpose. In our notation, it reads

dB (E1)

dE
=

3

π

1

(E + S2n)
4 (Ze)

2 g2

m2
c

∫︂
d3q

1

(2π)
3 q

2

√︂
E − q2

2µc

E − q2

2µc
− a−2

nn (2µnn)
−1
θ

(︃
E − q2

2µc

)︃
. (5.92)

In the following, we will reshape the expression in the form of eq. (5.87) so that the wave function can be
extracted. We will employ the relation

E =
p2

2µnn
+

q2

2µc
, (5.93)

6If there were multiple relevant initial partial-wave states, in this framework, we would need to use multiple wave functions
corresponding to the projections on the different partial-wave states.
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which holds for the final state after the E1 breakup. For eq. (5.92), we obtain

dBE1

dE
=

3

π

1

(E + S2n)
4 (Ze)

2 g2

m2
c

∫︂ √
2µcE

0

dq

(2π)
3 q

4

√︂
E − q2

2µc

E − q2

2µc
− a−2

nn (2µnn)
−1

(5.94)

=
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π

1
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4 (Ze)

2 g2
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c

∫︂ √
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0

dq
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2µnn

p2
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nn (2µnn)
−1

(5.95)

=
3

π
(Ze)

2 g2

m2
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dq
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)︂4 1
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)︃2

g2
∫︂ √

2µcE
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dq 2µnnpq
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whereby p =
√︃
2µnn

(︂
E − q2

2µc

)︂
and µc := µc(nn) hold. The expression for the wave function then reads

Ψ(wFSI)
c (p, q) =

1

π3/2

1(︂
p2

2µnn
+ q2

2µc
+ S2n

)︂ √
2µnn

p− ia−1
nn

(2µnn)
−3/4

. (5.99)

It can also be written as

Ψ(wFSI)
c (p, q) =

1

π3/2

1(︂
p2

2µnn
+ q2

2µc
+ S2n

)︂ 1

ip+ a−1
nn

(2µnn)
−1/4

, (5.100)

whereby we divided the wave function by i. As phase factors are not observable, this is allowed.

5.12.2. Obtaining the wave function after FSI from the Feynman diagrams

Now, we have to obtain the wave function in that theory directly.

Obtaining the wave function without FSI

In the first step, we calculate the wave function without nn FSI included. The goal is to calculate it in a
non-relativistic field theory from the corresponding Feynman diagram. The basic relation we are using here is
the spectral decomposition of the full Greens operator of the three-body system, which is given by

G(E) =
1

E −H + iϵ
=
∑︂
n

|Ψn⟩ ⟨Ψn|
E − En + iϵ

+
∑︂
i

∑︂
n

∫︂
d3q

⃓⃓⃓
ψ
(i)
n , χ

(i)
q

⟩︂
i i

⟨︂
ψ
(i)
n , χ

(i)
q

⃓⃓⃓
E − E(i)(q)− E

(i)
n − iϵ

+

∫︂
d3p

∫︂
d3q

⃓⃓⃓
Ψ

(c)
p,q

⟩︂ ⟨︂
Ψ

(c)
p,q

⃓⃓⃓
E − E(p, q) + iϵ

. (5.101)

The first term is the contribution from three-body bound states, the second term stems from bound states
in the various two-body subsystems indicated by the spectator index i, and the third term stems from pure
three-body continuum states. The different three-body bound states are given by the |Ψn⟩. Different two-body
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subsystems are counted with a superscript i, and within a subsystem, the two-body bound states are denoted
by
⃓⃓⃓
ψ
(i)
n

⟩︂
. The scattering states between these two-body bound states and the third particle are the

⃓⃓⃓
χ
(i)
q

⟩︂
,

where q is the incoming momentum. The third term contains the three-body scattering states
⃓⃓⃓
Ψ

(c)
p,q

⟩︂
labeled

by the incoming momenta p and q. The superscript c denotes that the incoming momenta are defined with c
as the spectator. Note that E(i)(q) and E(p, q) are the energies of the corresponding scattering states.
Poles of the Green’s operator result from the three-body and the two-body bound states. In the case that

the halo is Borromean, i.e., there are no bound subsystems, the poles of the Green’s operator result purely
from three-body bound states. The wave function c⟨p, q|Ψn⟩ can be extracted from the residue of the Green’s
function at E = En = −Bn. One obtains7

c⟨p, q|Ψn⟩ ⟨Ψn|p, q⟩c = ResE=En
(c⟨p, q|G(E)|p′, q′⟩c) . (5.102)

This residue can be calculated from the Feynman diagram of the first term of the Green’s function as given in
eq. (5.101). For that purpose, it is evaluated at the corresponding energy, and only the parts that contribute
to the residue are taken into account. The diagram is shown in fig. 5.10. In this case, the trimer propagator in
the middle contributes only a wave function renormalization Z3. Its denominator directly builds the pole of
the Green’s function.

Figure 5.10.: Feynman diagram visualizing the extraction of the wave function from the residue of the three-to-three term of
the full Green’s function in a theory with negligible nc interaction.

Instead of calculating the complete residue of this term of the Green’s function, which corresponds to
c⟨p, q|Ψn⟩ ⟨Ψn|p, q⟩c, we can also calculate just one "half" to obtain the wave function instead of its absolute
value squared. This step is indicated in the diagram by the blue dashed vertical line. The trimer propagator
then contributes only

√
Z3. The diagram is shown in fig. 5.11.

p̃

p̃− q

q

q/2 + p

q/2− p

p̃ =

(︄
−S2n−→
0

)︄

Figure 5.11.: Feynman diagram visualizing the calculation of the wave function from one residue factor of the three-to-three
term of the full Green’s function in a theory with negligible nc interaction.

7As it is always done, when physical results are obtained, it is assumed that the limit ϵ→ 0 is taken.
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The evaluation of the Feynman diagram yields

∫︂
dq0
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In the case of the first equal sign, the q0-integration was performed by using the residue theorem closing
the contour in the upper half-plane. The pole at q0 = −S2n − q2

2mc
+ iϵ was picked up. The next step was the

p0-integration which was also done by using the residue theorem closing the contour in the upper half-plane.
The pole at p0 = − 1

2S2n − q2

4mc
−

(︁
1
2q−p

)︁2
2mn

+ iϵ was picked up.
The wave function obtained in that way is not equal to the one extracted from the E1 strength distribution.

A possible reason might be the inclusion of nn FSI in the extracted wave function. To check this, we include
nn FSI in the wave function obtained from the Green’s function.

Applying nn FSI

To take nn FSI exactly into account, we start with an auxiliary calculation related to the integral for including
FSI:

∫︂ Λ
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dp′
p′2f(p′, q)− p2f(p, q)
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On this basis, we obtain for this integral of the full ground-state wave function
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Taking Λ → ∞ yields

I = c
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π

2
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To simplify the expression for the overall wave function after nn FSI, we introduce the following quantities:

S(q) :=

√︄
2µnn

(︃
S2n +

q2

2µc

)︃
, (5.113)

E(p, q) := S2n +
q2

2µc
+

p2

2µnn
. (5.114)

The expression for the wave function reads

Ψ(wFSI)
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= c
1

S(q)− a−1
nn

−1

E(p, q)

[︃
1 +

1

a−1
nn + ip

(−S(q)− ip)

]︃
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= c
1

E(p, q)

1
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nn + ip

. (5.117)

If we write the final expression out, it reads

Ψ(wFSI)
c (p, q) =

2π

µnn
(2π)

2 1

S2n + q2

2µc
+ p2

2µnn

1

a−1
nn + ip

(5.118)

Up to normalization factors, this is the wave function extracted from the E1 strength function calculated by
Hongo and Son. Consequently, the E1 strength distribution by Hongo and Son has nn FSI already included.
Thereby, we improved the understanding of that theory. Moreover, because this FSI is already included, we
expect that for systems, which do not need to be nuclei, directly in the region of applicability of the Hongo
and Son approach the results should yield an accurate description. This even more true since nc FSI should be
negligible in the range of applicability.

In this analysis, we obtained as a byproduct the wave function of the s-wave two-neutron halo according to
this special variant of halo EFT. Since this non-relativistic field theory is equivalent to Quantum Mechanics,
observables can also be directly calculated from this wave function. The wave function, which is of course not
observable, can be seen as way to modularize the calculations. Thereby, the extracted wave function might be
helpful for further computations in this theory and for comparisons.
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5.13. Results for 6He

In the next step, we calculate the E1 strength distribution of another 2n halo nucleus, 6He. In contrast to
11Li, its nc interaction is not in the s-wave but in the p-wave. In halo EFT, the realization of this interaction
comes with the difficulty that the corresponding potential is energy-dependent. Usually, matrix elements
depend only on the variables parameterizing the states between which the potential is evaluated. So, in
momentum-space, the matrix elements of the potentials depend on the momenta and in position space on
the positions. In the case of energy-dependent potentials, the matrix elements also depend on the energy.
This is a deviation from standard Quantum Mechanics, to which our nonrelativistic field theory is usually
equivalent to. For a fully correct treatment and understanding of energy-dependent potentials, an extension
of standard Quantum Mechanics is necessary, see Refs. [68–70] for a discussion. In detail, operators and
also the normalization relation get corrections related to the energy dependence of the potential. Exploratory
studies in the latter direction in halo EFT were made by Göbel et al. in Ref. [30]. However, exactly calculating
these corrections seems to be not straightforward. This study also showed that in the low-energy region,
i.e., below the breakdown scale of the EFT, the corrections to the operators seem to be small. This helps
us when calculating the E1 strength of 6He in halo EFT. However, the overall strength is influenced by the
normalization, which is sensitive to the corrections due to the energy dependence. We avoid this issue by only
calculating the shape of the E1 distribution in halo EFT. As a comparison, we determine the E1 distribution
also in a Yamaguchi model. As described in section 4.2, this Yamaguchi model is similar to the EFT calculation
because it uses only the interaction channels which are present in the EFT at leading order. Nevertheless,
we are interested in not only having uncertainty estimates for the shape calculated in halo EFT but also for
the overall strength provided by the Yamaguchi model. Therefore, we make an attempt to systemize the
Yamaguchi model and make it more EFT-like. We modify the Yamaguchi form factor for the nc interaction so
that it has another regulation scale as a parameter. In this way, we can not only reproduce the leading-order
nc parameters, a1 and r1 but also the shape parameter P1. We are now able to tune a NLO parameter. In
the case of the nn interaction, we can already tune with the standard Yamaguchi potential the r0 parameter,
which is a NLO parameter. With the standard Yamaguchi potential for the nn interaction and the modified
one for the nc interaction, we can tune all the NLO parameters. By varying these, we are able to estimate the
size of the NLO effects and thereby obtain uncertainty estimates for our Yamaguchi model results. We call
the Yamaguchi model obtained in that way systemized Yamguchi model (SYM). In the following, we start by
presenting the results from halo EFT and the standard Yamaguchi model. In the second part, we discuss the
systemized Yamaguchi model and show the results obtained with it.

5.13.1. Halo EFT and Yamaguchi model results

Here, we show results obtained for the shape obtained with LO halo EFT and with the Yamaguchi model. The
distributions with and without nn FSI included are shown in fig. 5.12.
We see that, like in the case of 11Li, nn FSI causes a significant change in the distribution. The low-energy

peak gets much more pronounced. Moreover, we observe that the LO halo EFT result and the Yamaguchi
model result agree well. Given that the Yamaguchi model has the same interaction channels as the halo EFT,
this is not totally surprising. But it shows that the higher-order terms present in the Yamaguchi interactions
have only a minor influence on the results. One can see this as a confirmation of the EFT’s power counting.

5.13.2. Systemizing the Yamaguchi model

As already explained at the beginning of section 5.13, we want to extend the Yamaguchi model in a way
that provides uncertainty estimates for the result. We do this by observing the change in the result when
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Figure 5.12.: The shape of the E1 strength function from halo EFT and from the Yamaguchi model with and without nn FSI.
The bands indicate the numerical uncertainty estimated from comparisons with calculations with a cutoff two
thirds as large and half as many mesh points.

varying the first effective-range expansion parameter beyond LO. For that purpose, we need to be able to
tune this parameter from the potential/t-matrix parameter. In the case of the s-wave nn interaction, we can
already do this. However, in the case of the p-wave nc interaction, we need another parameter in the potential
to be able to tune with P1 a thrid effective-range expansion parameter. Our approach is to introduce an
additional parameter by changing the form factor. Changing the form of the strength of the potential, i.e.,
V (p, p′)/ (gl(p)gl(p

′)), to introduce another parameter, is not an option. This is because we want to keep the
rank of one of the separable potential, and for the known reasons, we do not want to introduce any energy
dependence in the potential. We choose the form factor g1(p) to be

g̃1(p) := p

(︄
β4
1;1(︁

p2 + β2
1;1

)︁2 +
β4
1;2(︁

p2 + β2
1;2

)︁2
)︄
. (5.119)

It might be useful to scale this Yamaguchi form factor by 1/2 so that it is one in the limits p→ 0 or βl;i → ∞.
Nevertheless, here we stick with this variant. Note that the described case can be obtained by doing the
replacements g̃1(p) → g̃1(p)/2 and λ1 → 4λ1. So the expressions for the t-matrix or its denominator as a function
of λ1, β1;1 and β1;2 depend on the chosen convention, whereby the replacement rules relate the expressions in the
different conventions. However, if one expresses the t-matrix as t1(λ1(a1, r1, P1), β1;1(a1, r1, P1), β1;2(a1, r1, P1)) =

t1(a1, r1, P1) the results are independent of the chosen convention as expected. The different conventions are
just different flavors of internal book keeping.
If one is using this convention, it might be useful to multiply the g̃1(p) in the end by 1/2 and the result

for τ1(k) by 4 in order to have form factors which go to 1 for low momenta. These conversion relations
ensure that the matrix elements of V1 and t1 are unchanged (as long as they are not specified in terms of
convention-dependent parameters).
The interaction with the modified form factor yields a rather complicated expression for the t-matrix. As

an example, we give instead expressions for the case that the two terms in the modified form factor are the
square roots of the shown ones and are multiplied instead of added. The results in the following subsections
are based again on the form factor as given in eq. (5.119).

d1(k) =

(︁
β2
1;1 + k2

)︁ (︁
β2
1;2 + k2

)︁ (︂
1
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4
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4π2β2
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2
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. (5.120)
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The expanded expression is given by
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Interestingly, also in this case the series expansion has finitely many terms and the highest term in the
expanded denominator is the term of order k8. This is the same order as the “standard” Yamaguchi potential,
see section 4.2.
A cross-check of this result can be realized by performing the limits β1;2 → 0 or β1;2 → β1;1 in combination

with λ1 → λ1/4. In both cases, the result from the standard Yamaguchi interaction is reproduced as one
expects. If we had used the different convention, where also the modified Yamaguchi form factor goes to one,
the limits would be β1;2 → 0 and λ1 → 4λ1 or β1;2 → β1;1.
When using this modified Yamaguchi interaction, there is a technical aspect one should take note of. The

evaluation of the long expression for the reduced t-matrix element can become numerically unstable. While
in most cases, the evaluation on the reduced t-matrix element itself might be relatively stable, the problem
increases on the level of its derivative. This derivative is implicitly numerically evaluated when the derivative of
the overall wave function in the q variable is calculated for obtaining the action of the E1 operator on the wave
function. The derivative of the wave function is obtained by evaluating the wave function at points near to
each other (∼ 10−7 or ∼ 10−8). Due to |Ψ⟩ =

∑︁
iG0ti |Fi⟩, this also implies an evaluations of the t-matrix with

these distances in between. The difference of the t-matrix at these distances cannot be calculated accurately,
as there is some precision loss in the evaluation of the complicated expression. Finding a numerically more
stable version of the expression for the t-matrix turned out to be complicated. Therefore, we interpolate the
reduced t-matrix using splines using functions. As long as we use enough but not too many mesh points for
constructing the ensemble of splines, we get a relatively accurate reproduction of the t-matrix, which does not
suffer from the numerical instabilities.

5.13.3. Inspecting the systemized Yamaguchi model

Before showing the results obtained for the E1 strength distribution under SYM, we want to take a closer look
at the interactions of SYM. The τ1 functions differing in the reproduced P1 parameter are shown in fig. 5.13.

We can see that in the case of SYM the reduced t-matrix of YM is approximately reproduced as we send P1 to
P

(0)
1 . This is an important cross-check. Note that we go only to P1 values near to P (0)

1 in SYM, but did not use
the value exactly, as the evaluation of the expression for the reduced t-matrix element of SYM would become
numerically unstable. The parameters of the Yamaguchi or of the systemized Yamaguchi model corresponding
to these different curves can be found in table 5.2.

In addition to this check, we are also interested in what happens to the higher-order terms in the effective
range expansion (ERE) as we tune P1 while keeping a1 and r1 constant. As discussed in the previous section,
there are only two higher-order terms, the k6 term and the k8 one. Ideally, these terms stay small as we lower
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Figure 5.13.: The τ1 functions from SYM for different P1 in comparison with the one of the standard Yamaguchi model.

λ1 [MeV−4] β1;1 [MeV] β1;2 [MeV]

YM 296.2 -
SYM P1 = 0.99P

(0)
1 -4.737e-12 269.7 326.6

SYM P1 = 0.9P
(0)
1 -4.047e-12 223.7 404.9

SYM P1 = 0.5P
(0)
1 -2.297e-12 169.3 571.3

SYM P1 = 0.1P
(0)
1 -1.572e-12 147.6 672.1

Table 5.2.: Overview of the parameters of the Yamaguchi or of the systemized Yamaguchi potential for the case of different
p-wave shape parameters obtained with the standard a1 and r1 values of 6He.

P1 in order to avoid significant contamination in our study of the influence of the P1 term. In this context, one
has to define small. It is natural to measure the other terms in terms of quotients where they get divided by
the P1 term with P1 having its standard value P (0)

1 . If these ratios (the k6 one and the k8 one) stay smaller
than 0.1 in the relevant momentum region, we expect no relevant contamination. These ratios are plotted in
fig. 5.14. In order to get a better impression, also the ratios of the lower-order terms are shown.
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Figure 5.14.: The different ERE terms in SYM divided by the P1 term from YM, i.e., the term obtained by using P (0)
1 .

We observe that our condition on the ratios of the higher-order terms is fulfilled, at least up to q = 50 MeV.
For variations only until P1 = 0.5P

(0)
1 this condition is also fulfilled up to q = 100 MeV.
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5.13.4. Systemized Yamaguchi model results

We proceed by looking at the results for the E1 strength distribution obtained with the different P1 values,
which are shown in fig. 5.15.
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Figure 5.15.: E1 strength distributions with and without nn FSI obtained in YM and in SYM with different P1 values in
comparison. The bands, if even visible, show uncertainty estimates stemming from comparisons with results
obtained with two thirds of the original cutoff of 1050MeV and approximately half as many mesh points.

We observe that the value of P1 has some influence on the E1 distribution, especially around the peak
position. Interestingly, the results obtained with P1 = 0.9P

(0)
1 and with P1 = 0.5P

(0)
1 are almost on top of each

other. Therefore, we want to check if the variation of the E1 distribution caused by the variation of P1 is
continuous as one would expect. For this purpose, we plot additional variations in fig. 5.16.
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Figure 5.16.: E1 strength distributions obtained with nn FSI obtained in YM and in SYM with different P1 values in
comparison. In the case of the last curve, also the nn effective range r0 was changed to 10% of the standard
value of 2.73 fm. While the left panel shows the distributions over a larger region, the right panel contains a
close-up.

From the additional P1 value at 0.99P (0)
1 , we can see that the change of the distribution seems indeed to be

continuous.
On this basis, we can plot the E1 distribution for 6He with nn FSI included obtained in the Yamaguchi model

with an uncertainty band shown in fig. 5.17. As uncertainty in each direction, we take the twofold of the
absolute deviation from the result obtained in SYM. In the case of the latter, we use P1 = 0.1P

(0)
1 for the NLO

nc parameter and r0 = 0.1r
(0)
0 . Factor two is just a security factor to avoid underestimations. Since, from the
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EFT perspective, the Yamaguchi model result includes basically NLO effects, this can be seen as an estimation
of the N2LO uncertainties.
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Figure 5.17.: E1 strength distribution with nn FSI obtained in YM. The uncertainty band shows an estimate for the
uncertainty stemming from higher-order effects in the interaction. It is based on the comparison with SYM.

The YM result (with uncertainties from SYM) has a peak position at approximately 1.40(6)MeV and a peak
strength of about 0.26(4) e2fm2/MeV. The estimated numerical uncertainties are 0.02MeV and 0.01 e2fm2/MeV,
respectively. Grigorenko et al. performed a calculation of the strength distribution using the hyperspherical
harmonics formalism and included all FSIs. From their calculation and other papers, they extracted a peak
position of approximately 0.9MeV - 1.25MeV and a peak height of about 0.27 e2fm2/MeV - 0.33 e2fm2/MeV. In
the case of the peak height, we agree, within these estimated uncertainties, while in the case of the peak
position, there is no direct agreement. However, given the large range of peak positions, we are in terms of
that range not far away. We conclude that our results are plausible. The newest available experimental data
from Ref. [53] do not directly support the shape of the distribution obtained in this calculation as well as in
the other theoretical works. Though, the experimental data also come with quite significant uncertainties.
It would be interesting to see if newer experimental data with lower uncertainties tend more toward the
theoretical results or not. A possible direction for future research is to apply the perturbative calculations of
FSIs used for 11Li also to 6He. Adjustments of the derivations are necessary because the nc interaction in 6He
is in the p-wave.

We also plot the cumulated distributions and compare the asymptotic values to the value given by
⟨︁
r2c
⟩︁
via

the sum rule (cf. eq. (5.6)). The value of
⟨︁
r2c
⟩︁
is obtained from the form factor Fc. In order to be consistent

with the calculation of strength distribution also there only the most important wave function component
Ψ

(0,0)
c is used. The results can be seen in fig. 5.18.
It can be seen that the curves with FSI satisfy the overall strength faster. This is due to the more pronounced

peak caused by the FSI. We see that the asymptotic values of all curves approximately agree with the value
given by

⟨︁
r2c
⟩︁
according to the sum rule. The value for the overall E1 strength obtained from the sum rule is

1.51(2) e2fm2/MeV. The uncertainty is based on the comparison with SYM in the setting where P1 and r0 have
only 10 % of the YM value. As before, a security factor of 2 is used. The numerical uncertainty is estimated
to be 0.04 e2fm2/MeV. Ref. [57] reports a total E1 strength of 1.26 e2fm2/MeV - 1.31 e2fm2/MeV, which is a
deviation of roughly 15% from our result. It might be that our uncertainty estimated based on SYM is too
small. One way to investigate the robustness of the estimates would be to construct other variations of the
Yamaguchi potential. Maybe, they allow for tuning P1 with smaller changes of higher-order terms in the
effective range expansion and, thereby better uncertainty estimates.
As a summary, we can say that the investigations of SYM show that this is a well-behaving variation of

the Yamaguchi model, which allows a change of P1 at constant lower-order parameters without too large
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Figure 5.18.: The left panel shows cumulated E1 strength distributions. The uncertainty bands indicate numerical uncer-
tainties estimated by comparing with calculation having two thirds of the cutoff and half as many mesh points.
The right panel shows the cumulated distributions with uncertainty bands in comparison with the asymptotic
values expected according to the sum rule. The estimated ranges of asymptotic values are indicated by dotted
lines for the lower and upper ends. These ranges are based on the numerical uncertainty estimation described
before, plus the uncertainties from approximating the derivative of the form factor.

contaminations from higher-order parameters. In regards to the E1 strength distribution, we see that the
influence of the NLO P1 term is strongest in terms of absolute values around the peak. The change of the
distribution due to variation of P1 is there roughly about 10 %. From the variation of P1 along with the nn
parameter r0, we were able to provide a result for the E1 distribution with uncertainty bands. It approximately
agrees with other theoretical calculations.

5.14. Conclusion and outlook

The E1 strength parameterizes the contribution to the Coulomb cross-section specific to the nucleus under
consideration. In this chapter, we have calculated the E1 strength distributions of the 2n halo nuclei 11Li and
6He. In the case of 11Li, this research led to the first paper on the E1 strength of this nucleus in halo EFT
[52]. We put special emphasis on perturbatively calculating the effects of different FSIs. There are three
subsystems whose interactions can contribute to the overall FSI: the nn one and the two nc ones8. With
our calculations, we showed that approximating the multiple-scattering series to first order does not work
well. This leads to large violations of the conservation of probability. We developed a perturbative scheme
that is strictly isometric and, in the absence of two-body bound states, strictly unitary. It is based on taking
products of Møller operators and thereby resembles the multiple-scattering series in a specific way. The
terms taken into account are not fixed by truncation in the order in the t-matrices but mandated via the
product of Møller operators. We calculated FSI by taking products of up to three Møller operators into account.
We verified the isometry of that approach by comparing the asymptotic values of the cumulated versions of
the distributions with the asymptotic values expected via the non-energy-weighted sum rule. The sum rule
relates the overall E1 strength with the expectation value of the squared distance between the core and the
center of mass

⟨︁
r2c
⟩︁
. For this comparison, we obtained the expectation value of r2c from the corresponding

form factor of 11Li. Though all FSI calculations in that scheme conserve the probability, there is some choice
in the construction, also in the case of the third-order approximations. They differ in the sequence of the
Møller operators. We used this to estimate the uncertainty of our approach. With the leading-order EFT

8We neglected three-body forces for our study of FSIs.
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uncertainty estimate and uncertainty estimate for the FSI calculation at hand, we compared our results with
the experimental data from RIKEN by Nakamura et al. [54]. We found that the theoretical data agree well
with the experimental ones. In accordance with earlier works (see, e.g., Refs. [61–63]), we find that including
FSIs is important to resemble the experimentally determined spectrum. Moreover, we observed that nn FSI is
the most important FSI and yields distributions relatively similar to the distributions based on three Møller
operators. Our leading-order halo EFT result for the E1 distribution has an EFT uncertainty of about 30%
at the peak position. The uncertainty from our perturbative FSI approach at third order is there about 15%.
Taking different orders of the three Møller operators causes variations of ±15%. At higher energies beyond
the peak position, the relative FSI uncertainties are smaller.
We also compared our results to the one by Hongo and Son, who constructed an EFT that neglects the nc

interaction and can thereby obtain analytical results, where otherwise numerical results are obtained. By
comparing our results for the E1 distribution with their result, we find that their distribution has too less
strength. We can confirm their supposition that 11Li is not the ideal playground for their EFT. Moreover, it was
unclear if the effects of nn FSI are included in the calculation of Hongo and Son. We were able to confirm that
nn FSI is, in fact, included by extracting the wave function from their E1 strength distribution and comparing
it with the directly obtained wave function after the application of nn FSI. The direct determination of the
wave function was based on the residue of the three-body Green’s function. This method yielded a Feynman
diagram for the wave function, which we evaluated using the Feynman rules of their theory.

Finally, we calculated also the E1 strength of the 2n halo nucleus 6He. While 11Li has only s-wave interactions,
in the case of 6He, there is a p-wave nc interaction. The interaction has a significant energy dependence. This
induces difficulties with the normalization, see, e.g., Ref. [30]. In our application of halo EFT, we avoided
these by only calculating the shape of the E1 distribution. As a benchmark and also to obtain the overall
value of the E1 strength, we also did a Yamaguchi model calculation. The name refers to the type of the form
factors employed for the interactions. The Yamaguchi model in use is inspired by halo EFT. It has only those
interaction channels that are present in the LO halo EFT. The distribution obtained in that way agrees in shape
well with the LO EFT result. Furthermore, we made some effort to make the Yamaguchi model more EFT-like.
Specifically, we worked on obtaining uncertainty estimates. By modifying the Yamaguchi form factor for the
p-wave nc interaction, we were able to tune the NLO parameter of the nc interaction. We varied that NLO
parameter along with the NLO parameter of the nn interaction to estimate the uncertainty of the E1 strength
distribution of that Yamaguchi model. We call it systemized Yamaguchi model (SYM). In some sense, it is a
hybrid between an EFT and a model. In the case of the E1 distribution of 6He, we included only nn FSI. Based
on our findings for 11Li, this is a resonable approximation. In the future, it might be interesting to adapt the
perturbative FSI method used for 11Li to the case of 6He, where the nc interaction is in the p-wave. This might
yield improved results for the strength distribution of 6He. Our current results are in qualitative agreement
with other theoretical calculations, see, e.g., Ref. [57], where all FSIs are taken into account. Between the
theory calculations in general and the experimental data [53] from more than 20 years ago is some tension.
It might be interesting to have new experimental data to compare the recent theory calculations with.
On the basis of the discussed research in halo EFT, there are multiple directions for future studies. One is

the already mentioned application of the perturbative method tested with 11Li to 6He. Moreover, it would be
interesting to compare our 11Li results with the perturbative inclusion of FSIs to an EFT-based result where all
FSIs are included non-perturbatively by using a calculation of the full three-body scattering state. Another
direction is to extend the description of 11Li to next-to-leading order. This would provide results with lower
uncertainties which then can be again confronted with the experimental data. The difference between the
NLO and the LO results can also be used for checking the LO uncertainty estimate.
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6. nn relative-energy distribution after the
6He(p, pα)nn reaction

Few-neutron systems are a special class of nuclear systems. If there is a bound state or a resonance consisting
of few neutrons, this would be the only example of an electrically neutral nucleus or a short-lived neutral
nuclear state, respectively. It would form the few-body counterpart to another extreme nuclear system, the
neutron star, an astrophysical object consisting almost only of neutrons at extreme densities bound by gravity.
There is long-standing research on three- and four-neutron systems, in experiment as well as in theory, see
Ref. [71] for a review. In the case of the three-neutron system, the theoretical calculations can be roughly
divided into two sections. One section consists of studies making use of state-of-the-art few-body techniques
looking for the resonance itself, whereby Ref. [36] represents a recent EFT-based calculation of this class.
The other section consists of bound-state calculations, where the system is bound by using an external trap
potential. Resonance properties are extracted by lowering the external trap and extrapolating the energy
curve. An EFT-based investigation making use of the latter technique can be found in Ref. [35]. While the
latter find evidence for three- and four-neutron resonances, the investigations described first render these
highly unlikely. On the experimental side, evidence for a four-neutron resonance called tetraneutron has
accumulated with an inverse-kinematics experiment at RIKEN by Duer et al. as the most recent data point
[37]. For that experiment, a 8He beam produced in flight was shot onto a liquid hydrogen target. Compared
to earlier experimental evidence [72, 73], this one observed much more counts for the resonance candidate.
Although, from the theory side, there is discussion if the experimentally measured spectra can be safely pinned
down to a tetraneutron resonance [74].

In order to advance the knowledge about the few-neutron systems, theoretical calculations play an important
role. An essential ingredient for those is the s-wave neutron-neutron scattering length ann. If one expands the
denominator of the t-matrix describing the neutron-neutron nn interaction around zero relative energy, it is
the leading-order parameter. Therefore, a precise knowledge of the scattering length is of high relevance for
the studies of these exotic systems.

Moreover, due to this prominent position in the parameterization of the interaction, this scattering length is
an important part of the nucleon-nucleon interactions. In that way, it is relevant to the construction of the
state-of-the-art chiral EFT potentials (see, e.g., Ref. [75]), which are then used in ab initio calculations to
predict the nuclear landscape. Another research question is the charge-symmetry breaking between neutrons
and protons caused by the difference in masses of the top and the down quark. This symmetry breaking can
be studied at the example of the difference between neutron-neutron and proton-proton scattering length,
whereby in the case of the latter, the electromagnetic contribution has to be removed.

These aspects all highlight the relevance of having an accurate value for the s-wave neutron-neutron
scattering length. However, the currently available data show some tension. The situation is depicted in
fig. 6.1.
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Figure 6.1.: Visualization of recent values for the nn scattering length from Refs. [38–40, 76–80]. The blue band depicts the
accepted value according to Refs. [81, 82]. It is extracted from pion-capture experiments [76, 83–86]. The line
style denotes the type of experiment. Values that stem from the same experiment and differ solely in the analysis
share the symbol for the central value. Magnetic moment effects on the scattering length are not removed, see,
e.g., Ref. [82].

The horizontal blue band shows the accepted value according to Refs. [81, 82]. It is an average value of
d+ π− → n+ n reactions, where the sensitivity on the scattering length emerges through the neutron-neutron
interaction in the final state. The latter is called neutron-neutron final-state interaction (FSI). The scattering
length is obtained from the shape and position of the peak originating from FSI in the γ spectrum. While in
some of the experiments, only the γ was detected, in other also one neutron was measured in coincidence.
The experiments carried out at PSI [83–86] and Los Alamos [76]1 give a world average of −18.6(4) fm. As the
figure shows, these experiments were supplemented by another experiment of this type in 19982. This one is
explicitly contained in the plot. As the figure shows, these pion-capture experiments have been supplemented
by purely hadronic experiments making use of deuteron breakup d+n→ p+n+n. The latter have the difficulty
that the final state contains three nucleons. For a precise extraction of the scattering length, also three-nucleon
forces have to be taken into account in the analysis. A group from TUNL extracted a value consistent with the
pion-capture reactions [38] in a kinematically complete measurement. The later reanalysis of the experiment
[39] yielded a slight change in the uncertainty band, giving −18.7 fm. In contrast to that, measurements by
the Bonn group have produced values in tension with the discussed data. These kinematically incomplete
measurements, one from 2000 [78, 79] and one from 2006 [40], yielded quite different values. The latest
is given by −16.5(9) fm. The theory used for the analysis of all the discussed deuteron breakup experiments
is, however, the same. Faddeev calculations with realistic interactions were employed. These observations
point towards some unresolved experimental uncertainty. There is another experimental data point based on
deuteron-deuteron fusion [80]. An upper bound for the scattering length, which is negative, of −18.3 fm (at
95% confidence level) was obtained.
Due to this tension, the SAMURAI collaboration proposed a new experimental method to measure the

scattering length [41]. It should be deduced from the final neutron-neutron relative-energy spectrum following
a knockout of the α core out of 6He. The knockout reaction on 6He serves basically as a neutron source. The
scattering length can then be inferred by fitting a theoretical prediction for the spectrum parameterized by
that quantity to the experimentally measured spectrum. To provide a clean extraction and to simplify the
reaction, it is desirable to suppress all non-neutron-neutron FSI, which could occur in principle in the four-body
final state. Since 6He is not stable, the reaction has to be carried out in inverse kinematics, anyway. For the

1Also for this experiment, a reanalysis is available in Ref. [77].
2Note that the given dates refer to the publication dates and not to the dates of the experiments themselves.
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knockout, the 6He beam is shot onto a liquid hydrogen target. By using an initial beam of high energy (around
200MeV per nucleon), the knockout can be made suddenly and of a significant momentum transfer. This
implies that the neutrons and the α particle are kinematically well separated, causing the desired suppression
of non-neutron-neutron FSI. Moreover, this methodology has the advantage that the two neutrons each have
high absolute energy, as they continue to travel after the knockout with approximately the same velocity. If
the relative-energy spectrum is measured only for low-energies, this means that both neutrons have almost the
same absolute energy. Thereby, the effects of energy-dependent detection efficiency are largely suppressed.
These properties are important advantages of this experiment. Additionally, it complements the previous
measurements in the sense that it uses a different reaction. Thereby, it has other systematics.
As mentioned, for the extraction of the scattering length from the experimentally measured spectrum, a

theoretical prediction of the spectrum parameterized by the scattering length is necessary. Therefore, we
present in this chapter the calculation of that distribution in halo EFT. In principle, this calculation could also
be made in chiral EFT. However, for that specific purpose halo EFT has the advantage that its nn interaction is
directly parameterized by the scattering length. Thereby it allows for a more transparent investigation of its
influence.

For the calculations presented in this chapter, we make use of the ground-state description of 6He in halo EFT
given in chapter 4. In that chapter, the robustness of the halo EFT predictions for 6He has been demonstrated
in comparisons with different cluster models. In contrast to those, halo EFT has the advantage that it provides
quantified uncertainties.

The structure of this chapter is as follows. First, in section 6.1, the general two-potential scattering theory
is discussed in the context of this specific reaction in order to put the theory description of the reaction on
solid ground. Then, different techniques for taking the nn final-state interactions into account are reviewed as
well as analyzed and supplemented. In section 6.2, the approximative method of FSI enhancement factors is
presented. A new enhancement factor is also developed. Moreover, a formal discussion showing that the
enhancement factors can also be applied in n-body systems is given in section 6.3. Subsequently, section 6.4
discusses the exact calculation of nn FSI. The analysis of the reaction presented in those sections is an effective
three-body description. The interaction with the protons from the liquid hydrogen target causing the breakup
is modeled as external potential. Section 6.5 provides a formal computation showing how one can get from a
complete four-body treatment to the effective three-body treatment with the external potential. Based on
this work, then the results for the final nn distribution are presented in section 6.6. The influence of the
neutron-neutron scattering length as well as of the next quantity in the parameterization of the interaction,
the effective range, are analyzed. The chapter ends with a conclusion in section 6.7.

For a first overview, we recommend reading sections 6.1, 6.4 and 6.6, where two-potential scattering theory
is applied to the reaction, the treatment of FSI based on the t-matrix is presented, and the results are analyzed.
Parts of this chapter have been published in this or in similar form in Phys. Rev. C 104, 024001 (2021) [56].

6.1. Theoretical description of the reaction and two-potential scattering theory

In this section, we review the reaction theory relevant for the calculation of the final nn distribution and
formulate it for this specific reaction. We employ the sudden approximation, i.e., we assume that the α
is directly removed and interactions between neutrons and the α or the proton after the removal can be
neglected. In our analysis, it is sufficient to treat the potential causing the knockout as an external potential.
Because the potential enables the generation of the final state, we will refer to it as production potential V .
The quantitative properties of the final state are influenced by the nn potential so that we face a two-potential
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scattering problem. A comprehensive discussion of these problems can be found in Ref. [87]. In order to use a
similar notation, we denote the potential causing the so-called final state interaction by U .
Before going into the details of two-potential scattering and its application to the knockout reaction with

6He, we discuss some fundamental aspects of this reaction: The initial state is the ground state of 6He denoted
as |Ψ⟩. It fulfills the Schrödinger equation(︁

Knn +K(nn)c + Vnn + Vnc + V3B
)︁
|Ψ⟩ = −B(0)

3 |Ψ⟩ , (6.1)

where the kinetic energy operators are denoted by K.
The final state consists of a free nn state with definite relative momentum to be measured by a detector

setup and a α particle far away. Interactions with the nn pair are highly suppressed. Accordingly, the possible
final states, which are parameterized by the momenta p and q, fulfill the Schrödinger equation(︁

Knn +K(nn)c

)︁
|p, q⟩c =

(︂
−B(0)

3 + EKO

)︂
|p, q⟩c , (6.2)

where the energy transfer from the knockout EKO caused by a proton3 is determined by

−B(0)
3 + EKO =

p2

2µnn
+

q2

2µ(nn)c
. (6.3)

So that the final scattering state exists, the condition EKO > B
(0)
3 has to be fulfilled. In our further treatment,

we assume that the production potential V does not change the relative momentum in the nn pair:

c⟨p, q|V |Ψ⟩ =
∫︂

dp′ p′2
∫︂

dq′ q′2c⟨p, q|V |p′, q′⟩c c⟨p
′, q′|Ψ⟩

=

∫︂
dp′ p′2

∫︂
dq′ q′2 ⟨p|p′⟩ ⟨q|Ṽ |q′⟩ c⟨p

′, q′|Ψ⟩ =
∫︂

dq′ q′2 ⟨q|Ṽ |q′⟩ c⟨p, q
′|Ψ⟩ . (6.4)

In other words, we assume a factorization of the potential into a nn part and a (nn)c part with the nn part
being an identity operator: V = 1⊗ Ṽ . We expect this assumption to be fulfilled to a good degree, as there is a
significant distance between the core and the neutrons due to the halo structure of 6He. Additionally, because
of the high initial velocity of 6He, the neutrons will leave the α particle and proton after their interaction
quickly behind, as they travel in contrast to these charged particles at (almost) the initial velocity.
In our treatment of the reaction, we make use of a helpful identity of two-potential scattering theory for

calculating the probability amplitude of the transition from a state |α⟩ to a state |β⟩ given by

Tβα = ⟨β|T (+)
U+V |α⟩ , (6.5)

where T (+)
U+V is the t-matrix for scattering from U and V . It satisfies the Lippmann-Schwinger equation

T
(+)
U+V = (U + V ) + (U + V )G

(+)
0 T

(+)
U+V . (6.6)

As, e.g., derived in Ref. [87], it is possible to dissect this overall t-matrix to some degree using the Møller
operators corresponding to the potentials. They are given by

Ω
(±)
V = 1 + (E −K − V ± iϵ)

−1
V . (6.7)

3This is a transfer of energy into internal (not center-of-mass) kinetic energy of the three-body system which is part of the complete
four-body system involving the proton. EKO < Ecm,6He holds, where Ecm,6He is the initial kinetic energy of the 6He projectile in
the four-body center-of-mass system.

96



The result reads4

T
(+)
U+V =

(︂
Ω

(−)
U

)︂†
V Ω

(+)
U+V +

(︂
Ω

(−)
U

)︂†
U . (6.8)

If the final state contains particles not present in the initial one, the second term does not contribute. This is
because V , which creates these particles, is missing there. In this case we obtain

Tβα = ⟨β|
(︂
Ω

(−)
U

)︂†
V Ω

(+)
U+V |α⟩ . (6.9)

Now, we have to consider the for our case relevant specialty that the final-state interaction U is part of the
Hamilton operator describing the initial state. We have two approaches to tackling this issue. The first one is
the one described in Ref. [87]. In order to use this one, we have to take a step back and formulate Tβα in
terms of Møller operators. The expression reads

Tβα = ⟨β|
(︂
Ω

(−)
U+V

)︂†
Ω

(+)
U+V |α⟩ , (6.10)

where Ω
(±)
U+V = 1 + (E −K − U − V ± iϵ)

−1
(U + V ) holds. This combination of the Møller operators is actually

the expression for the S-matrix. Nevertheless, this is not in conflict with calculating a t-matrix element, as the
identity operator contained in the S-matrix does not contribute between the orthogonal states. As expected,
also on this basis, eq. (6.9) can be derived. Additionally, expressing the transition probability amplitude using
the Møller operators is a starting point for tackling the case where U is part of the Hamilton operator of the
initial state |α⟩. Goldberger and Watson argue in Ref. [87] that, in this case, the expression reads

Tβα = ⟨β|
(︂
Ω

(−)
U+V

)︂† (︂
1 + (E −K − U − V + iϵ)

−1
V
)︂
|α⟩ , (6.11)

i.e., eq. (6.10) with the right-most U of the Ω
(+)
U+V removed. On this basis they obtain for the first term, again

the only relevant one in our case:

Tβα = ⟨β|
(︂
Ω

(−)
U

)︂†
V
(︂
1 + (E −K − U − V + iϵ)

−1
V
)︂
|α⟩ . (6.12)

That is our previous result from eq. (6.9) with the right-most U of the Ω
(+)
U+V removed.

A result of at least the same form can be obtained from eq. (6.9) with a redefinition of U given by
U → (1 − |α⟩⟨α|)U (1 − |α⟩⟨α|). That is, we inserted a projection operator, which projects onto the orthogonal
complement of the initial state. In order to keep the potential Hermitian, the projection operator was inserted
on both sides.

Now we arrived at the expression we have to evaluate. While we can (and will) evaluate it directly using the
already mentioned assumption about V , there is also the long-known technique of the final-state interaction
(FSI) enhancement factors. We will also test these enhancement factors and compare the results with those of
the direct calculation.

6.2. FSI enhancement factors

The FSI enhancement factors are a technique for approximately calculating the effect of the final-state
interaction on the transition probability. The production potential is not explicitly taken into account. These
enhancement factors were originally introduced without directly using two-potential scattering theory by
4Note that in Ref. [87], this is not done on the level of operators, but for Tβα. However, this dissection already happens at the
operator level and can be already exploited there.
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Watson and Stuart [88] as well as by Migdal [89]. Nevertheless, they can be derived on the basis of eq. (6.9)
or eq. (6.12) respectively, as Watson [90] and in a more comprehensive way Goldberger and Watson [87]
showed. We will briefly sketch this derivation. For the final state, a state of definite momentum is considered:
|β⟩ = |p⟩. The initial state is the bound state |Ψ⟩. The expression for the transition amplitude T based on
eq. (6.12) then reads

T =
⟨︂
Φ(−)

p

⃓⃓⃓
V
(︂
1 + (E −K − U − V + iϵ)

−1
V
)︂⃓⃓⃓
Ψ
⟩︂
, (6.13)

where
⟨︂
Φ

(−)
p

⃓⃓⃓
is the scattering state with a plane wave of momentum p as the incoming wave. If the production

potential V is weak, taking only the lowest order of the modified Møller operator5 on the right is already a good
approximation: T ≈

⟨︂
Φ

(−)
p

⃓⃓⃓
V
⃓⃓⃓
Ψ
⟩︂
. Evaluating this expression for a local production potential in coordinate

space and taking only s-waves into account yields

T ∝
∫︂

dr r2
(︂
Φ(−)

p (r)
)︂∗
V (r)Ψ(r) . (6.14)

For short distances, the scattering wave function Φ
(−)
p (r) can be approximated using the Jost function D(E):

Φ(−)
p (r) ≈ N ((D(E))∗)

−1
sin (pr) / (pr) , (6.15)

where E = p2/(2µ) holds. This approximation becomes exact at r = 0. If the wave function of the initial
state or the production potential is sufficiently short-ranged, this is a good approximation, and the relation
T ∝ ((D(E))∗)

−1 ∫︁
dr r2 sin (pr) / (pr)V (r)Ψ(r) holds. For our further calculation, we switch to momentum

space. By using the definition for the zeroth spherical Bessel function j0(x) := sin (x)/x and the orthogonality
relation for the spherical Bessel functions, we obtain for the momentum-space scattering wave function⟨︂

p′
⃓⃓⃓
Φ(−)

p

⟩︂
=

∫︂
dr r2

⟨︂
p′
⃓⃓⃓
r
⟩︂⟨︂

r
⃓⃓⃓
Φ(−)

p

⟩︂
∝
∫︂

dr r2 ⟨p′|r⟩ 1

(D(E))
∗ j0(pr) (6.16)

∝ 1

(D(E))
∗

∫︂
dr r2j∗0 (p

′r)j0(pr) ∝
1

(D(E))
∗
δ(p′ − p)

p2
. (6.17)

On this basis, we evaluate the expression for the probability amplitude in momentum space:

T ≈
⟨︂
Φ(−)

p

⃓⃓⃓
V
⃓⃓⃓
Ψ
⟩︂
=
⟨︂
Φ(−)

p

⃓⃓⃓
Ψ̃
⟩︂
=

∫︂
dp′p′2

⟨︂
Φ(−)

p

⃓⃓⃓
p′
⟩︂⟨︂

p′
⃓⃓⃓
Ψ̃
⟩︂
∝ 1

(D(E))
∗ Ψ̃(p) , (6.18)

where we summarized V |Ψ⟩ as
⃓⃓⃓
Ψ̃
⟩︂
for simplicity without loss of generality. This yields for the transition

probability the expression
|T |2 ∝ |D(p2/ (2µ))|−2|Ψ̃(p)|2 . (6.19)

The first factor is usually called the FSI enhancement factor. In this case, it is the factor from Ref. [87]:

G1(p) := |D(p2/ (2µ))|−2 . (6.20)

This derivation shows that it is also possible to obtain additional enhancement factors by inserting different
approximations for the scattering wave function. Again we consider first eq. (6.14). If the production potential
or the initial wave function peaks at some r̃, we search for an approximation of the scattering wave function
Φ

(−)
p (r), which is good around this r = r̃. If our approximation fits the pattern

Φ(−)
p (r) ≈ g(pr)|r=r̃

sin (pr)

pr
(6.21)

5We call it modified as the Møller operator itself would have U + V instead of V on the right, see eq. (6.7) with V → U + V .
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with the function g determined by our approximation, one obtains for the transition probability the relation

|T |2 ∝ Gg,r̃(p)|Ψ̃(p)|2 , (6.22)

where the enhancement factor is given by

Gg,r̃(p) = |g(pr̃)|2 . (6.23)

This result simplifies the derivation of additional enhancement factors and also determines how these have to
be used. Our previous derivation of G1 can be seen as a special case of this derivation. Equation (6.22) and
eq. (6.19) are analogous.

If we assume that the production potential V does (almost) not change the momentum p, we can replace Ψ̃

in eq. (6.22) (or eq. (6.19) respectively) by Ψ and obtain

ρ(Gi)(p) ∝ Gi(p)ρ(p) , (6.24)

whereby we write ρ for the probability distributions given by the absolute squares of the wave functions. Note
that this relation determines not the absolute value of the distribution but its momentum dependence, as
we have already neglected normalization factors at some points. To determine absolute values, also a more
detailed input for the production potential would be necessary.
Assuming that the production potential does not significantly change the momentum is not necessarily

contradictory to assuming a short range. The potential Vl̃ with the coordinate-space matrix element ⟨r|Vl̃|r′⟩ =
δ
(︁
r′−r

)︁
r2

2l̃+1
4π Pl̃(r · r′) (and ⟨r, l,m|Vl̃|r′, l′,m′⟩ = δl,l′δl,l̃δm,m′

δ
(︁
r′−r

)︁
r2 in a partial-wave basis) has the momentum-

space matrix element ⟨p, l,m|Vl̃|p′, l′,m′⟩ ∝ δl,l′δl,l̃δm,m′
δ
(︁
p′−p

)︁
p2 meaning that it is diagonal in the momenta6.

Subsequent to the discussion of the derivation, we briefly review different available enhancement factors.
The explicit expression for this Jost-function-based enhancement factor derived in Ref. [87] is given by7

G1(p) =

(︁(︁
p2 + α2

)︁
rnn/2

)︁2(︁
−a−1

nn + rnn

2 p2
)︁2

+ p2
, (6.25)

where α is given by 1/rnn

(︂
1 +

√︁
1− 2rnn/ann

)︂
. As Ref. [87] explains, this result is more elaborate than

Watson’s results in his earlier papers. One advantage of this expression is having the right asymptotic behavior
for p→ ∞. The relation limp→∞G1(p) = 1 is fulfilled, meaning that for infinitely high energies, the effect of
the final state interaction becomes negligible.
There is also another enhancement factor given in Ref. [91], which reads

G2(p) =

(︁
a−1
nn − rnn

2 p2 − r−1
nn

)︁2(︁
a−1
nn − rnn

2 p2
)︁2

+ p2
. (6.26)

It can been seen as a special case of our more general FSI enhancement factor Gr̃, which has a continuous
parameter r̃ describing the scale at which the production potential is assumed to peak sharply. It is also
6One might wonder, whether this potential with its 1/r2 behavior is enough short-ranged to justify the approximation applied to
eq. (6.14), where the radial integral with a measure of r2 is approximated by the value at one point. (The width of the contributing
interval is not relevant, as we are not interested in the normalization.) We would argue that also initial state wave function Ψ
limits the non-negligible range of this integral, and the approximation is therefore justified.

7Note, that in Ref. [87] the enhancement factor has 1/ann instead of −1/ann in the denominator. This is rooted in a different
sign convention for the scattering length. While we use k cot (δ0(k)) = −1/a0 + r0k

2/2 +O
(︁
k4

)︁
, Ref. [87] uses k cot (δ0(k)) =

1/a0 + r0k
2/2 +O

(︁
k4

)︁
.
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assumed, that the potential of the final-state interaction is already almost zero at this scale. This enhancement
factor is given by

Gr̃(p) =

(︁
a−1
nn − rnnp

2/2− r̃−1
)︁2(︁

a−1
nn − rnn

2 p2
)︁2

+ p2
. (6.27)

Its derivation can be found in ??. Note that also Gr̃ and G2 have the correct asymptotic behavior for p→ ∞.
Further note that it is not useful to use Gr̃ in the limit r̃ → 0, as it diverges. Also, the assumption on the
range of the final state interaction used for the derivation of this enhancement factor is not useful in this limit
anymore. If one assumes that the production potential peaks at (almost) zero range, we recommend using G1,
as it is designed for this case: The derivation uses the exact wave function at r = 0, while the derivation of G2

uses the solution outside the potential’s range at r̃.

6.3. FSI enhancement factors for n-body systems

Refs. [87, 90] describe that FSI enhancement factors can also be applied to n-body systems if the FSI happens
in a certain two-body subsystem. However, they focus on the case where the dependence on the momentum
of this subsystem is fully caused by the FSI (and, of course, phase space factors in the case of cross sections).
Contributions to this functional behavior from the initial state are not taken into account. Therefore, we find
it useful to derive how FSI enhancement factors can be used for a n-body system under the condition that the
influence of the initial state is taken into account more comprehensively.
We use the following approximation of the transition amplitude from two-potential scattering theory:

Tβα ≈ ⟨β|
(︂
Ω

(−)
U

)︂†
V |α⟩ . (6.28)

The final state fulfills the Schrödinger equation

H0 |β⟩ = E |β⟩ . (6.29)

We assume that the final state consists of a free state of definite momentum in the subsystem of interest:

|β⟩ = |p,Ω⟩ |b(p)⟩ , (6.30)

where the quantum numbers of the subsystem are given by Ω. This implies the following form of the Hamilton
operator of this state:

H0 = H̄0 + ˜︁H0 =
p2

2µ
+ ˜︁H0 . (6.31)

Hereby, the H0 of the subsystem is given by H̄0, while the H0 of the remaining system is ˜︁H0. The Schrödinger
equation for this final state can be written as

H0 |β⟩ =
(︂
H̄0 + ˜︁H0

)︂
|p,Ω⟩ |b(p)⟩ (6.32)

=

(︃
p2

2µ
+

(︃
E − p2

2µ

)︃)︃
|p,Ω⟩ |b(p)⟩ = E |p,Ω⟩ |b(p)⟩ . (6.33)

We note that the relation ˜︁H0 |b(p)⟩ =
(︃
E − p2

2µ

)︃
|b(p)⟩ (6.34)

100



holds. Hereby, we did not distinguish the non-trivial "core" of this operator from its embedding into the full
n-body Hilbert space. If the potential U of the FSI acts in the subsystem described by p, the Møller operator
corresponding to U can be written as

Ω
(−)
U |β⟩ = 1

E −H0 − U − iϵ
U |p,Ω⟩ |b(p)⟩ (6.35)

=
1

E −H0 − U − iϵ
(U |p,Ω⟩) |b(p)⟩ = 1

E − (E − p2/ (2µ))− H̄0 − U − iϵ
(U |p,Ω⟩) |b(p)⟩ (6.36)

=

(︃
1

p2/ (2µ)− H̄0 − U − iϵ
U |p,Ω⟩

)︃
|b(p)⟩ (6.37)

=:
(︂
Ω̄

(−)
U

(︁
p2/2µ

)︁
|p,Ω⟩

)︂
|b(p)⟩ . (6.38)

Note that we did not explicitly distinguish (e.g., by using different symbols) U and its embedding into
many-body space U ⊗ 1. Hereby we defined the operator

Ω̄
(−)
U =

∫︂
dp p2

1

p2/ (2µ)− H̄0 − U − iϵ
U ⟨p|p⟩ , (6.39)

which is a pure two-body operator.
To introduce an enhancement factor for the n-body system, we proceed by inserting the result into the

transition amplitude

T ≈ ⟨β|
(︂
Ω

(−)
U

)︂†
V |α⟩ =

(︃
⟨p,Ω|

(︂
Ω̄

(−)
U

(︁
p2/2µ

)︁)︂†
⟨b(p)|

)︃
V |α⟩ (6.40)

=
(︂⟨︂

Φ(−)
p

⃓⃓⃓
⟨b(p)|

)︂
V |α⟩ , (6.41)

where the scattering wave function is given by Φ
(−)
p . In the next step, this wave function is approximated

according to
Φ(−)

p (r) ∝ 1

(D(E))
∗ sin (pr)/ (pr) . (6.42)

Hereby the function D(E) can be seen as the Jost function as in the derivation of G1. However, it is also possible
to make other approximations here by using different functions for D(E). Then different enhancement factors
are derived.
By using orthogonality relations for spherical Bessel functions, one obtains8

T ≈
∫︂

dp′ p′2
⟨︂
Φ(−)

p

⃓⃓⃓
p′
⟩︂
⟨p′| ⟨b(p)|V |α⟩ (6.43)

∝ 1

D(p2/ (2µ))
⟨p| ⟨b(p)|V |α⟩ . (6.44)

This yields for the transition probability

|T (p)|2 ∝ G(p) |⟨p| ⟨b(p)|V |α⟩|2 , (6.45)

where the enhancement factor is, as usual, given by

G(p) =

⃓⃓⃓⃓
1

D(p2/ (2µ))

⃓⃓⃓⃓2
. (6.46)

8The expression ⟨p′| ⟨b(p)|V |α⟩ has to be understood in the way that the product of ⟨p′| and of ⟨b(p)| forms a state in the same
Hilbert space as ⟨a|. This expression thereby represents just a usual matrix element, where one of the states is explicitly specified
as a product state.
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As an example, we consider the special case given by the remaining final state of the form

⟨b(p)| = ⟨p2, ..., pn−1, pn(p2, ..., pn−1; p)| , (6.47)

with pn(p2, ..., pn−1; p) such that p2

2µ + E(p2, ..., pn−1, pn(...)) = E holds. The transition probability then reads

|T (p)|2 ∝ G(p) |⟨p, p2, ..., pn−1, pn(p2, ..., pn−1; p)|V |α⟩|2 . (6.48)

The final probability distribution (in a certain partial wave) for p would then read

ρ(p) ∝ G(p)

∫︂
dp2 p

2
2... dpn−1 p

2
n−1

⃓⃓⃓
Ψ̃(p, p2, ..., pn−1, pn(...))

⃓⃓⃓2
, (6.49)

where V |α⟩ was set to
⃓⃓⃓
Ψ̃
⟩︂
without any loss of generality.

This discussion shows that FSI enhancement factors can be also applied not only if the final state is a two-
body state but also if it is a n-body state. It is explicitly shown that also, in the latter case, initial momentum
dependencies can be taken into account. One should keep in mind that a usual FSI enhancement factor only
accounts for the FSI in a single two-body subsystem. So this is a statement about the applicability of the
enhancement factors in n-body systems but not an extension of the factors themselves.

6.4. Explicit calculation of rescattering

After discussing the FSI enhancement factors, we want to describe the direct calculation of the wave function
after FSI. Our starting point is again eq. (6.12). We set the final state ⟨β| to the plane-wave state of the nn
pair and the α particle c⟨p, q|. The initial state |α⟩ is given by the 6He bound state |Ψ⟩. We obtain

T (p, q) =
c
⟨p, q|

(︂
Ω

(−)
U

)︂†
V
(︂
1 + (E −K − U − V + iϵ)

−1
V
)︂
|Ψ⟩ , (6.50)

where U is the nn potential. Ω(−)
U acts only in the nn subsystem, which is described by the momentum p. As

the production potential is assumed to be weak, we use only the lowest order of the operators next to
(︂
Ω

(−)
U

)︂†
,

which is given by V . Furthermore, we assume that V decouples as formulated in eq. (6.4). We express the
Møller-operator via the t-matrix according to

(︂
Ω

(−)
U

)︂†
= 1 +

(︂
G

(−)
0 t

(−)
U

)︂†
. We set Ṽ to 1, which just means that

the momentum q in T (p, q) is the α(nn) relative momentum before the reaction. We calculate the probability
amplitude as a function of the nn relative momentum after the reaction and the α(nn) relative momentum
before the reaction. As we will integrate out the q-dependence later, this is a useful simplification, which uses
no additional assumptions. The probability amplitude T (p, q), which can also be seen as a final-state wave
function, in an arbitrary partial wave Ω after knockout and FSI is given by

Ψ(wFSI;Ω)
c (p, q) =

c
⟨p, q; Ω|

(︂
1 + tnn,(Ω)nn

(Ep)G
(nn)
0 (Ep)

)︂
|Ψ⟩

=

∫︂
dp′ p′2

c
⟨p, q; Ω|

(︂
1 + tnn,(Ω)nn

(Ep)G
(nn)
0 (Ep)

)︂
|p′, q; Ω⟩c c⟨p

′, q; Ω|Ψ⟩ , (6.51)

where the multi-index (Ω)nn is the nn part of the multi-index Ω.
Since other wave functions components are highly suppressed (see chapter 4), we use only the wave

function component Ψc(p, q) = c⟨p, q; Ωc|Ψ⟩ for calculating the wave function after FSI. The nn part of this wave
function’s multi-index is l = 0, s = 0 corresponding to the 1S0 channel. So this is also the channel where nn
interaction is strongest. The weaker nn interaction in the other channels is thereby another reason that using
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only that wave function component is a good approximation. Accordingly, for obtaining results for Ψ(wFSI)
c (p, q)

the following version of eq. (6.51) is used:

Ψ(wFSI)
c (p, q) = Ψc(p, q) +

∫︂
dp′ p′2

4π

4π2µnn
g0(p)

1

a−1
nn − rnn

2 p2 + ip
g0(p

′)

(︃
p2

2µnn
− p′2

2µnn
+ iϵ

)︃−1

Ψc(p
′, q) (6.52)

= Ψc(p, q) +
4π

2π2
g0(p)

1

a−1
nn − rnn

2 p2 + ip

∫︂
dp′ p′2g0(p

′)
(︁
p2 − p′2 + iϵ

)︁−1
Ψc(p

′, q) (6.53)

= Ψc(p, q) +
4π

2π2
g0(p)

1

a−1
nn − rnn

2 p2 + ip
(6.54)

×

[︄∫︂ Λ

0

dp′
p′2Ψc(p

′, q)− p2Ψc(p, q)

p2 − p′2
−
(︃
iπ

2
p− 1

2
ln

(︃
Λ + p

Λ− p

)︃)︃
g0(p)Ψc(p, q)

]︄
, (6.55)

where the definition Ψc(p, q) := c⟨p, q; Ωc|Ψ⟩ is used. The last equality holds in the case of Heaviside functions
as regulators using the cutoff Λ: gl(p) = plΘ(Λ− p). Note that in the case of the nn t-matrix, we also included
the effective range term in order to check its influence. Neglecting it, using the LO Halo EFT result for
the ground-state wave function as basis (what we do anyway) and finally, calculating the distribution from
the wave function after FSI yields a pure LO Halo EFT result for the final relative-energy distribution. Our
calculations show that the differences between the strictly LO result and the one using rnn in the case of FSI
are small.
This procedure for calculating the FSI is common and inter alia used for pion capture reactions with

deuterium, see e.g., Ref. [92].
The FSI enhancement factor G2 from Ref. [91] as written in eq. (6.26) can be also directly derived from

eq. (6.55). For that purpose, the integral in that equation is approximated in the following way:

∫︂
dp′ g0(p

′)
p′2Ψc(p

′, q)− p2Ψc(p, q)

p2 − p′2
≈ −π

2
r−1
nnΨc(p, q) . (6.56)

In this case, the FSI becomes completely independent of the momentum q, and we obtain for the final wave
function

Ψ(G2)
c (p, q) =

(︄
1 +

−r−1
nn − ip

a−1
nn − rnn

2 p2 + ip

)︄
Ψc(p, q) . (6.57)

The corresponding FSI enhancement factor reads

⃓⃓⃓⃓
⃓1 + −r−1

nn − ip

a−1
nn − rnn

2 p2 + ip

⃓⃓⃓⃓
⃓
2

= G2(p) . (6.58)

After applying the FSI, the absolute value of the wave function can be calculated, the integral measure can
be applied, and the q-momentum can be integrated out to obtain the probability density distribution for p
as seen from the core, i.e., the nn relative momentum. The formula for the probability density ρ(t)(p) in this
approach (’t’ for FSI via t-matrix) reads

ρ(t)(p) =

∫︂
dq p2q2

⃓⃓⃓
Ψ(wFSI)

c (p, q)
⃓⃓⃓2
. (6.59)

It fulfills the normalization condition
∫︁
dp ρ(t)(p) = 1.
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6.5. Sketch of a complete four-body treatment of 6He(p, pα)nn

So far, we have used the approach where the production potential acts as an external probe. The proton
and its interaction with the α, which mediates the production, i.e., the knockout of the α, is not explicitly
included. In fact, the proton is not present at all, and the interaction with it is only considered in the form of
an effective interaction / external probe. In this section, we present an explicit four-body treatment of the
reaction on an abstract level that shows in detail how the four-body and the effective three-body description
are related. In contrast to the three-body description, the four-body treatment has the advantage that the
energy conservation holds in the simple sense that the final energy is equal to the initial energy9.
For this discussion, we have to specify our initial state |α⟩ in more detail. It is given by

|α⟩ =
∑︂
M,m

cM,m |ΨM ⟩ |P ;ωm⟩ , (6.60)

where |ΨM ⟩ is the 6He bound state in a three-body halo EFT or cluster-model description with the total angular
momentum projection M . The free state describing the movement between the center of mass of 6He and the
proton at momentum P is denoted by |P ⟩. The quantum numbers describing this partial-wave state between
the 6He and the proton are contained in the multi-index ωm, where m is the angular momentum projection.
The quantum numbers of the relative motion between the proton and 6He are

|ωm⟩ = |(lpr, spr) jpr,m⟩ . (6.61)

The usual abbreviations are used: lpr denotes the relative orbital angular momentum quantum number, while
spr = 1/2 is the proton’s spin quantum number. The coefficient cM,m from eq. (6.60) describes the coupling of
the two quantum number sets. It can be given by

cM,m = CJT ,MT

J,M,jpr,m
, (6.62)

whereby JT is the overall angular momentum quantum number of the four-body system andMT is its projection.
The initial state is an eigenstate of the Hamilton operator(︁

Knn +K(nn)c + Vnn + Vnc + V3B
)︁
+Kpr,6He , (6.63)

where the Hamilton operator of 6He is inside the bracket, and kinetic energy operators are denoted by K.
Kpr,6He is the proton-6He kinetic energy operator. This term is the only difference to the previous three-body
treatment: The energy of this state is given by

Ei = −B(0)
3 +

P 2

2µpr,6He
, (6.64)

with µpr,6He as the reduced mass of the proton-6He system: µpr,6He = mprm6He/ (mpr +m6He).
After the knockout of the α particle, the final state is a completely free state given by

|β⟩ =
∑︂
M,m

cM,m |p, q; ΩM ⟩c |P
′;ω′

m⟩ , (6.65)

where |ω′
m⟩ can look like

|ω′
m⟩ =

⃓⃓(︁
l′pr, spr

)︁
j′pr,m

⟩︁
. (6.66)

9Of course, also the three-body treatment is affected by the energy conservation on the four-body level, but energy is not conserved
in the three-body system itself.
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The overall spin of the nnc system after the reaction is still given by JT due to the conservation of the overall
angular momentum. The final state is an eigenstate of

Knn +K(nn)c +Kpr,6He . (6.67)

Also, in this Hamilton operator, Kpr,6He is the only difference to the previous three-body treatment. The energy
reads

Ef =
p2

2µnn
+

q2

2µ(nn)c
+

P ′2

2µpr,6He
. (6.68)

For fixed final state momenta p and q supplemented by a fixed initial proton-6He relative momentum P , we
can calculate the final proton relative momentum P ′, since energy conservation Ei = Ef =: E holds:

P ′ =

√︄
2µpr,6He

(︃
Ei −

p2

2µnn
− q2

2µ(nn)c

)︃
(6.69)

=

√︄
2µpr,6He

(︃
−B(0)

3 +
P 2

2µpr,6He
− p2

2µnn
− q2

2µ(nn)c

)︃
. (6.70)

As already in the three-body treatment, we are confronted with the special case that the Hamilton operators
of the initial and the final state differ by the FSI potential U . The production potential V and the FSI potential
U are given by

V = Vpr,6He , (6.71)
U = Vnn + Vnc + V3B . (6.72)

In the case of the special kinematics of the 6He(p, pα)nn reaction, we make the following approximation for
the FSI potential:

U = Vnn + Vnc + V3B ≈ Vnn . (6.73)

On this basis, we calculate the transition amplitude. By applying eq. (6.12) to our case, and assuming that V
is weak (as we did before), we obtain

T (p, q) ≈

⎛⎝ ∑︂
M ′,m′

cM ′,m′c⟨p, q; Ω
′
M ′ | ⟨P ′(p, q;Ei);ω

′
m′ |

⎞⎠(︂Ω(−)
U

)︂†
V

⎛⎝∑︂
M,m

cM,m |ΨM ⟩ |P ;ωm⟩

⎞⎠ . (6.74)

We note that of course T (p, q) depends also on Ω, Ω′, ω, ω′, P and Ei. For brevity, we omit these arguments for
T .

The next step is to calculate (c⟨p, q; Ω| ⟨P ′(p, q;Ei);ω
′|)
(︂
Ω

(−)
U

)︂†
in our special case, where U ≈ Vnn holds. First,

we insert the concrete expression for H0 within this calculation into the definition of the Møller operator and
obtain

Ω
(−)
U = 1 +

1

Ei −Knn −K(nn)c −Kpr,6He − Vnn − iϵ
Vnn . (6.75)
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Based on this, we can derive an expression for the action on the final state:

Ω
(−)
U

⎛⎝ ∑︂
M ′,m′

cM ′,m′ |p, q; ΩM ⟩c |P
′(p, q;Ei);ω

′
m′⟩

⎞⎠ (6.76)

=

(︃
1 +

1

Ei −Knn −K(nn)c −Kpr,6He − Vnn − iϵ
Vnn

)︃⎛⎝ ∑︂
M ′,m′

cM ′,m′ |p, q; Ω′
M ⟩c |P

′(p, q;Ei);ω
′
m′⟩

⎞⎠ (6.77)

=

⎛⎝1 +
1

Ei −Knn − q2

2µ(nn)c
− P ′2

2µpr,6He
− Vnn − iϵ

Vnn

⎞⎠⎛⎝ ∑︂
M ′,m′

cM ′,m′ |p, q; Ω′
M ′⟩c |P

′(p, q;Ei);ω
′
m′⟩

⎞⎠ (6.78)

=

(︄
1 +

1
p2

2µnn
−Knn − Vnn − iϵ

Vnn

)︄⎛⎝ ∑︂
M ′,m′

cM ′,m′ |p, q; Ω′
M ′⟩c |P

′(p, q;Ei);ω
′
m′⟩

⎞⎠ . (6.79)

Hereby we used that Vnn leaves the momenta q and P ′, which are not involved in the description of the internal
dynamics of the nn subsystem, unchanged. Additionally, we used

P ′2

2µpr,6He
= Ei −

p2

2µnn
− q2

2µ(nn)c
, (6.80)

which follows from energy conservation.
Using these results, we obtain for the transition amplitude the expression

T (p, q) ≈

⎛⎝ ∑︂
M ′,m′

cM ′,m′c⟨p, q; Ω
′
M ′ | ⟨P ′(p, q;Ei);ω

′
m′ |

⎞⎠(︄1 +
1

p2

2µnn
−Knn − Vnn − iϵ

Vnn

)︄†

V

⎛⎝∑︂
M,m

cM,m |ΨM ⟩ |P ;ωm⟩

⎞⎠
(6.81)

=

∫︂
dp′ p′2 ⟨p|

(︄
1 +

1
p2

2µnn
−Knn − Vnn − iϵ

Vnn

)︄†

|p′⟩

×

⎛⎝ ∑︂
M ′,m′

cM ′,m′c⟨p
′, q; Ω′

M | ⟨P ′(p, q;Ei);ω
′
m′ |

⎞⎠V

⎛⎝∑︂
M,m

cM,m |ΨM ⟩ |P ;ωm⟩

⎞⎠ . (6.82)

We now perform the following auxiliary calculation⎛⎝ ∑︂
M ′,m′

cM ′,m′
c⟨p

′, q; Ω′
M ′ | ⟨P ′(p, q;Ei);ω

′
m′ |

⎞⎠V

⎛⎝∑︂
M,m

cM,m |ΨM ⟩ |P ;ωm⟩

⎞⎠
∑︂

M ′,m′

∑︂
M,m

cM ′,m′cM,mc⟨p
′, q; Ω′

M ′ |( ⟨P ′(p, q;Ei);ω
′
m′ |V |P ;ωm⟩)|ΨM ⟩ (6.83)

=:
∑︂

M ′,m′

∑︂
M,m

cM ′,m′cM,mc⟨p
′, q; Ω′

M ′ |Ṽm′,m|ΨM ⟩ (6.84)

whereby Ṽm′,m is the partially evaluated version of the potential V . By partially evaluated, we mean that it is
already evaluated in the subspace where the proton lives. The indices m′ and m are not indications for the
partial evaluation but stem from the fact that the states used for the partial evaluation are parameterized by
these indices. While V lives in the full four-body space, but of course, acts only in the proton-α subspace, the
potential Ṽm′,m lives only in the three-body space. And while the “lives” is a statement about its domain and
(a superset of) its image , it is also clear that the latter operates non-trivially only on the α particle.
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More mathematically formulated, the partial evaluation of an operator O in a subspace can be defined as
follows via a decomposition of this operator:

⟨a| ⟨b|O |a′⟩ |b′⟩ = ⟨a| ⟨b|
∑︂
i

O1;i ⊗O2;i |a′⟩ |b′⟩ (6.85)

= ⟨a|
∑︂
i

O1;i ⟨b|O2;i|b′⟩ |a′⟩ (6.86)

= ⟨a|Õ|a′⟩ , (6.87)

whereby Õ is now the partially evaluated version of that operator. The partial evaluation was done in the
second subspace with respect to the states ⟨b| and |b′⟩. The operator stemming from the partial evaluation, of
course, depends on the states with respect to whom the evaluation was performed. The operator Õ lives now
only in the subspace 1. Analogously, one can also define an operator living in subspace 2, which originates
from a partial evaluation in subspace 1. In the calculation, the relation for the evaluation of tensor products of
operators was used:

⟨a| ⟨b|O1 ⊗O2 |a′⟩ |b′⟩ = ⟨a|O1|a′⟩ ⟨b|O2|b′⟩ . (6.88)

With the partial evaluation of V in the proton-subspace, we obtain for the transition amplitude on the basis
of eq. (6.82) the result

T (p, q) ≈
∫︂

dp′ p′2 ⟨p|

(︄
1 +

1
p2

2µnn
−Knn − Vnn − iϵ

Vnn

)︄†

|p′⟩
∑︂

M ′,m′

∑︂
M,m

cM ′,m′cM,mc⟨p
′, q; Ω′

M ′ |Ṽm′,m|ΨM ⟩ . (6.89)

If there is, as usual, no dependence on the projection quantum number, we obtain

T (p, q) ≈
∫︂

dp′ p′2 ⟨p|

(︄
1 +

1
p2

2µnn
−Knn − Vnn − iϵ

Vnn

)︄†

|p′⟩ cc⟨p
′, q; Ω|Ṽ |Ψ⟩ (6.90)

with a normalization factor c. And thereby, we have a formal derivation for the three-body treatment from an
abstract investigation of the full four-body system.

6.6. Results

Results for the nn relative energy distribution based on the enhancement factor G1 and based on the t-matrix
are compared for different nn scattering lengths in fig. 6.2. We use the following short-hand notation for the
different nn scattering lengths:

a(+)
nn = −16.7 fm , a(0)nn = −18.7 fm , a(−)

nn = −20.7 fm . (6.91)

As mentioned before, we cannot calculate the absolute values of the distribution, but we can obtain the
shape. Therefore we normalize the distribution to a certain value at a certain position. Typically, a value of 1
at Enn ≈ 0.8 MeV is employed. Not knowing the absolute value is no problem for determining the scattering
length. The distribution would be fitted to the experimental data, and in this way, the scattering length would
be determined via the shape.
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Figure 6.2.: Comparison of nn relative-energy distributions for different nn scattering lengths obtained with different FSI
schemes. Results based on a t-matrix calculation of FSI are labeled as ‘t’. For the FSI, rnn = 2.73 fm is used. All
results are computed using the projection Ψc(p, q) and a cutoff Λ = 1500MeV. Uncertainty bands based on
comparison with calculation with half as many mesh points and Λ = 1000MeV are negligible. The distributions
are normalized to one at the relative energy indicated by the red cross. The solid and dashed vertical lines indicate
the approximate positions of the maxima in the t-matrix-based FSI scheme for a(−) and a(+), respectively.

It can be seen that the scattering length has a significant influence on the distribution. When using
distributions normalized to an arbitrary value at Enn ≈ 0.8MeV, the main effect of the scattering length is
changing the height of the peak located at relative energies of roughly 100 keV. This means that the ratio of
the peak value and the value at the tail is changed. This is a change in the shape. Additionally, one can see
that the two different procedures for including FSI yield curves of similar behavior, which are quantitatively
not in agreement. As the enhancement-factor-based approach is a comparatively simpler approximation, we
trust the results based on the exact inclusion of the t-matrix more.

We also calculated the distribution with the nn subsystem in the 3P1 partial wave by applying eq. (6.51)
to the Ω

(1,1,1)
c ground-state wave function component obtained with FaCE in setting LGM1. We found that

this distribution is suppressed by a factor of at least 30 compared to the 1S0 distribution (in the Enn < 1 MeV
region). We compared the ground-state distributions as well and found that FSI increased the suppression as
anticipated. Details on these investigations can be found in the following chapter.

In order to have a more quantitative impression of the sensitivity on the scattering length, we plot also
ratios of the distributions differing in the scattering length. Also in this case, we do this for the two approaches
to incorporating nn FSI: the more exact method based on the t-matrix and the approximative technique of
enhancement factors. The plots are shown in fig. 6.3.

We observe the clear sensitivity of the distribution on variations of the scattering length in the peak region.
Additionally, the plot shows that at relative energies lower than the peak position, the relative change in the
distribution is even larger. However, due to the smaller absolute values and the other difficulties related to
measuring the very low energies, this region might be experimentally less relevant. Interestingly, we can
observe in this plot that the results for the sensitivity between the different FSI calculation schemes agree
well, despite yielding different absolute results for the distribution.

Moreover, we are interested in the origin of the sensitivity on the nn scattering length. The scattering length
is an input for the calculation of the ground state of 6He as well as for including FSI. To answer this question,
we now plot the ground-state distribution for the different scattering lengths. Figure 6.4 shows it and the
ratios of the distributions differing in the scattering lengths.
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Figure 6.3.: Ratios of nn relative-energy distributions obtained with different scattering lengths are shown. The ratios
are plotted for t-matrix-based FSI as well as for FSI enhancement factors. All results are computed using the
projection Ψc(p, q) and a cutoff Λ = 1500MeV. Uncertainty bands obtained as described in fig. 6.2 are almost
invisible. The distributions are normalized to one at the relative energy indicated by the red cross.
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Figure 6.4.: The left panel shows ground-state nn relative-energy distributions obtained with different scattering lengths.
The right panel shows ratios of the distributions from the left panel. All results are computed using the projection
Ψc(p, q) and a cutoff Λ = 1500MeV. Uncertainty bands based on comparison with calculation with half as
many mesh points and Λ = 1000MeV are only visible in the right panel. The distributions are normalized to
one at the relative energy indicated by the red cross.

This shows that the dependence of the ground-state nn relative-energy distribution is quite weak. While a
variation of the scattering length by 2 fm changes the final distribution around 100 keV by about 10%, the same
variation changes the ground-state distribution in the region by less than 0.5%. This indicates that 6He serves
in the proposed experiment mainly as a neutron source. The sensitivity on the scattering length is almost
purely caused by final-state interactions. Nevertheless, for an accurate prediction of the final distribution
as a function of ann, not only an accurate description of FSI but also an accurate treatment of the ground
state is necessary. This is because the ground state is an important ingredient in the calculation of the final
distribution and influences the shape of the final distribution significantly.
One might be a bit surprised by the quite large uncertainty bands stemming from the variation of the

cutoff and the number of mesh points. However, as one can see, e.g., from the left panel or from fig. 6.2, the
absolute uncertainties are quite small. Only when the very small variations of the distribution are analyzed
by plotting ratios, these uncertainties do get pronounced. Information on how the uncertainty bands were
exactly calculated can be found in appendix E.
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Finally, we want to investigate if the distribution is also sensitive to the next coefficient of the effective-range
expansion parameterizing the s-wave neutron-neutron interaction, the nn effective range rnn. For that purpose,
we vary that parameter around the previously used value of 2.73 fm:

r(+)
nn = 3.0 fm , r(0)nn = 2.73 fm , r(−)

nn = 2.0 fm , (6.92)

which is a rather large variation around the common literature value of 2.73(3) fm [93]. Note that we included
rnn only in the calculation of the FSI but not in the calculation of the ground-state wave function. Since
the influence of the leading-order parameter ann on the ground state is negligible, the influence of this
next-to-leading-order parameter should be even less important.

Ratios of distributions obtained with different values of rnn are shown in fig. 6.5. To get a robust answer, also
for this investigation, results obtained with the full calculation of nn FSI and those obtained with enhancement
factor are shown.
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Figure 6.5.: Ratios of nn relative energy distributions obtained with different effective ranges for different FSI schemes
in comparison. All results are based on Ψc(p, q). Λ = 1500MeV was used. Uncertainty bands based on
comparisons with calculation with half as many mesh points and Λ = 1000MeV are shown. The underlying
distributions are normalized to one at the relative energy indicated by the red cross. The two vertical lines
indicate the peak positions.

It can be seen that the sensitivity on the effective range is less than 0.5% in the peak region and thereby
small. And that is despite the fact that the variation from r

(0)
nn to r(−)

nn is even larger than 20%. In the case of
the scattering length, variations by less than 10% in ann caused variations of the distribution by about 10%.
We conclude that the sensitivity of this distribution on rnn is quite small in the considered region. Thereby,
this does not complicate the analysis of the experiment. A clean extraction of ann is possible.

6.7. Conclusion and outlook

In conclusion, we obtained the nn relative-energy distribution following the inverse-kinematics reaction
6He(p, p′α)nn at leading-order in halo EFT for the kinematical regime where the incoming velocity is high and
the knockout is sudden. Non-neutron-neutron final-state interactions (FSIs) are suppressed.

We based our calculation of the final distribution on a solid description of the ground-state structure given in
chapter 4 and then added the description of the reaction. We applied the formalism of two-potential scattering
theory to our reaction. For including the FSI, we used an exact calculation based on the neutron-neutron
t-matrix as well as the well-known approximative technique of FSI enhancement factors. In the case of
enhancement factors, we reviewed the available factors, and discussed another possibility for an enhancement
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factor. Moreover, we made some theoretical investigations to ensure that the enhancement factor can also be
applied to the three-body system under consideration. We also showed that for our purposes, the effective
three-body treatment of the reaction is exactly equivalent to a full four-body description. In the effective
treatment, the interaction with the fourth particle, the proton, is modeled as an interaction with an external
probe/potential,
On this basis, we were able to calculate the distribution for different values of the s-wave nn scattering

length ann. The following are the main findings.

• The nn relative-energy distribution in the region of relative energies smaller than 1MeV shows a strong
sensitivity on ann. Variations of the scattering length by 2 fm cause changes in the height of the peak
by about 10%. The height of the peak, which is located around roughly 100 keV, is specified relative to
the tail around 800 keV. Variations of 0.2 fm result in changes of about 1%. This strong sensitivity to
the scattering length shows that the experiment is suitable for determining the scattering length and
resolving current tensions in the experimental values.

• In contrast to that, the sensitivity to the s-wave effective range is with less than 0.5% at the peak position
quite low. This means that the extraction of the scattering length is not contaminated by effects of the
effective range.

• The predictions about the sensitivity are quite robust with respect to the employed approach to FSI. The
computation based on the t-matrix and the one based on FSI enhancement factors yield almost the same
result for the sensitivity. Based on our review of these techniques, we think that the t-matrix approach is
better, as it involves fewer approximations.

• The sensitivity on the scattering length is almost entirely caused by FSIs. The ground state is almost
insensitive to it. This implies that in the reaction, 6He serves mainly as a neutron source. However, the
accurate description of the ground-state structure is nevertheless important for a reliable prediction of
the final distribution in dependence on the scattering length. The distribution parameterized in that
way is the theory input for obtaining the scattering length from this knockout reaction.

For the extraction of the scattering length of the experiment, it is desirable to calculate the distribution
at next-to-leading order in the EFT expansion. While in this leading-order description the uncertainty at
Enn = 1MeV is estimated to be 20%, at next-to-leading order (NLO) it would be about 5%. Going to the next
order requires a corresponding description of the ground state as well as of the reaction. In the case of the
ground state, the NLO pieces of the interactions have to be taken into account: the effective-range term in
the nn t-matrix and the unitarity term in the nc interaction in 2P3/2. Moreover, at next-to-leading order, also
other nc interaction channels such as 2S1/2 and 2P1/2 become relevant. Renormalization of the three-body
system might then also require additional three-body forces. On the level of the reaction, at NLO, also the
suppressed FSIs have to be taken into account. These are the nc and the np interaction. The proton stems
from the liquid hydrogen target. In this context, the EFT power counting used for the structure calculation
has to be supplemented by an EFT power counting for the reaction. The latter formalizes the analysis of the
kinematical suppression of certain FSIs. The EFT power counting for the structure is a power counting for
the expansion in the typical structure scales, such as the two-neutron separation energy, over the excitation
energy of the α particle. In contrast, the reaction power counting is a counting for an expansion in the typical
low-momentum scales, either from structure or from the cuts in the experimental analysis, over the high
transfer momentum of the knockout. Since nn FSI is not influenced by the physics related to the core, it is an
effect of zeroth order in the last expansion. However, the momentum in the nc system after the knockout is
strongly influenced by that transfer momentum. The momentum at which the nc t-matrix in an EFT treatment
is typically evaluated is thereby much higher, causing suppression of this FSI in the expansion. Thereby, EFT
provides the tools to calculate the final nn distribution systematically at higher order in the future.
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7. nn relative-energy distribution: higher partial
waves and higher energies

In the last chapter, we have calculated the nn relative-energy distribution of 6He following the sudden
knockout of the α core. We have discussed the underlying scattering theory in detail and investigated different
approaches for taking nn final-state interactions into account. The sensitivity of the final distribution in the
low-energy region (Enn ≤ 1MeV) on the nn scattering length and the nn effective range was analyzed. It
was found that there is significant sensitivity of the shape on the scattering length, while the influence of the
effective range is small. Therefore, this observable is ideal for extracting the scattering length.
In the last chapter, we argued that due to the suppression of the higher partial-wave components of the

wave functions and due to the fact that nn FSI is strongest in the s-wave higher partial-wave contributions to
the final nn distribution can be neglected. In this chapter, we want to analyze this in more detail. For that
purpose, we perform calculations in the local Gaussian model 1 with the computer code FaCE. Thereby we
obtain wave function components in the different partial waves and apply the nn FSI in the corresponding
partial wave. Since nn phase shifts are not available, we use np phase shifts. Of course, we make a small
mistake with this approximation. However, as these calculations are only for estimating the size of higher
partial wave contributions, this is acceptable.

Moreover, we are also interested in the nn distribution for Enn > 1MeV. It is not only interesting on its own,
but it also provides a benchmark for the calibration of another experiment searching for the tetraneutron.
Four neutrons are an exotic nuclear system. Until recently, it was not clear whether four neutrons are bound,
can at least form a resonance, or are totally unbound. There has been a long history of experiments, which
shed many lights on this question, but no full answer. Therefore, the Samurai collaboration proposed to
measure the missing-mass spectrum of four neutrons created in the reaction 8He(p, p′α)4n at RIKEN RIBF. The
experimental method is quite similar to the one of the proposed experiment to measure the nn scattering
length: in both cases, an exotic Helium isotope is produced at a rare-isotope beam factory, and in both cases,
its α core is knocked out in a collision with a liquid-hydrogen target. However, it is harder to detect four
neutrons in coincidence than two. For this and other reasons, this four-neutron experiment is a missing-mass
experiment, while the proposed nn scattering-length experiment will be analyzed in a kinematically complete
way. Part of the experimental campaign to investigate the four neutron system was also a missing-mass
measurement of the reaction 6He(p, p′α)nn. The measured spectrum, together with theory data, was used
as a benchmark for the calibration of the experiment. In the second part of this chapter, we report how the
theoretical data for benchmarking the calibration of the tetraneutron experiment were obtained.

Since in the case of higher relative energies, the suppression of the higher partial-wave components might
not be so strong as at lower energies, in the second part we will build onto the findings of the first one and
calculate also higher partial-wave contributions.

7.1. Influence of the additional partial waves

We perform this study by using again the code FaCE, which is able to perform model calculations using
local potentials. It uses the framework of hyperspherical harmonics. With FaCE, we obtain the ground-state
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wave function components in the higher partial waves. The FSI in the additional partial waves is calculated
using the formula for "t-matrix based FSI". The nn t-matrices in the additional partial waves are based on
effective-range-expansion parameters obtained in fits using np phase shift data from Nijmegen [94]. By using
the np phase shift data, we make a small error since, due to charge-symmetry breaking, the nn interaction is a
bit different. But, as the goal of this study is just to get an estimate of the effects of the higher partial waves,
this is no problem.

In detail, we proceed as follows. First, the formula for t-matrix-based FSI is generalized to arbitrary relative
orbital angular momentum l in the nn subsystem. In this context, also the proper treatment of a Heaviside
regulator is discussed in appendix appendix F.1. Then, fits of np phase shift data are performed to extract the
leading effective-range expansion parameters. In that way, we have a parametrization for the estimated nn
t-matrices in the higher partial waves. Based on this, we perform the FaCE calculations and add nn FSI in the
discussed formalism. We compare the results for the final nn momentum distributions in the different partial
waves. As a comparison, we also show the corresponding ground-state momentum distributions.

7.1.1. t-matrix based FSI for arbitrary orbital angular momentum in the nn subsystem

In case of an arbitrary orbital angular momentum in the nn subsystem parameterized by the quantum number
l the formula for the wave function after FSI reads

Ψ(wFSI,l)
c (p, q) = Ψc(p, q) +

∫︂
dp′ p′2

4π

4π2µnn
gl(p)

1

a−1
nn;l −

rnn;l

2 p2 + ip2l+1
gl(p

′)

(︃
p2

2µnn
− p′2

2µnn
+ iϵ

)︃−1

Ψc(p
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4π

2π2
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∫︂
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2π2
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gl(p)pΨc(p, q)

)︄
. (7.1)

For the derivation and details on the implementation of this equation, see appendix F.1.

7.1.2. Effective-range-expansion parameters for the np interaction in the different partial
waves

The effective range parameters are obtained by fitting the np phase shifts from the PWA93 model1 [94] up to
30 MeV. The difference between the nn and np phase shift is neglected in our analysis. Figure 7.1 shows the
used phase shift data.

In order to obtain the first parameters of the effective range expansion, k2l+1 cot (δl(k)) was calculated from
the phase shifts, and fits for this quantity were performed. Figure 7.2 shows these fits.
The following functions were fitted:

f2(k) := −a−1
l + rlk

2 , (7.2)
f3(k) := −a−1

l + rlk
2 + clk

4 , (7.3)
f4(k) := −a−1

l + rlk
2 + clk

4 + dlk
6 . (7.4)

1The data itself were retrieved from Ref. [95].
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Figure 7.1.: The PWA93 np phase shifts up to E = 30 MeV in different partial waves.

The units of the parameters are listed below:

[al] = [k−(2l+1)] = fm2l+1 , (7.5)
[rl] = [k2l−1] = fm−(2l−1) , (7.6)
[cl] = [k2l−3] = fm−(2l−3) , (7.7)
[dl] = [k2l−5] = fm−(2l−5) . (7.8)

7.1.3. Results

As discussed in section 4.1, the relevant wave function components of 6He can be parameterized by l and
s. The corresponding multiindex collecting all the quantum numbers in jI coupling is given by Ω(l,s), see
eq. (4.6). The possible corresponding states of the nn subsystem are:⃓⃓⃓

Ω(l,0)
⟩︂
c
: 1S0 ,

1D2 , ... (7.9)⃓⃓⃓
Ω(l,1)

⟩︂
c
: 3P1 ,

3F3 , ... (7.10)

Before showing the results based on the calculations of the wave function components and taking the nn
FSIs in different channels according to eq. (7.1), we discuss first the ground-state results.

Ground-state probability densities

Figure 7.3 shows results for the ground-state probability densities (components) calculated from certain wave
function components. The wave functions were calculated by FaCE. The setting LGM1 was used.

From comparing the plots of the components of the probability density with the corresponding uncertainty
plot, we see that the results are well converged. Moreover, we observe that the peak moves in the higher
partial-wave components to higher momenta. The maximum amplitudes decrease with increasing l. Increasing
l by one almost decreases the peak height in the probability density component by one magnitude.
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Figure 7.2.: Plots of k2l+1 cot (δl(k)) in the different partial waves. The values were calculated from the PWA93 np phase
shifts. Fits using f2, f3 and f4 are also shown. The results for the parameters of the fit using f4 are annotated
in the plots. Note the overall factor for the tick labels on the y-axis in the upper left of each plot.
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Figure 7.3.: The left column shows probability density components calculated from wave functions of different partial waves.
The probability densities are given by |Ψ(p, q)|2p2q2, where Ψ is the wave function of the corresponding partial
wave. The densities are not normalized. Ratios of the densities are nevertheless correctly represented. The right
column contains plots of the uncertainty estimates. These estimates are given by the differences between the
results in the left column and numerically less converged results ("hp" - "sp"). The parameters in which these
calculations differ are listed in appendix F.1.3. Note that the overall factor for the ticks of the color bars is
annotated at the top of each color bar.
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Probability densities after FSI

From the ground-state wave functions obtained with FaCE and model LGM1 the wave functions after FSI
are calculated using eq. (7.1). This is done for different partial waves. For the nn t-matrix the first two
effective-range-expansion parameters were used. With the exception of the s-wave the values determined in
the f4 fits in section 7.1.2, were employed In the case of the 1S0 partial wave, the parameters a0 = −18.7 fm
and r0 = 2.73 fm are used. The cutoff Λ appearing explicitly and also implicitly (through the regulators) in
eq. (7.1) is set to pmax (of the p′-integration), see the table in appendix F.1.3. Based on the obtained wave
functions for different partial waves, probability density components were calculated. They are shown in
fig. 7.4. Note that this probability density is plotted as a function of the nn momentum after FSI p and the
c− (nn) momentum before FSI q.
By comparing fig. 7.4 with fig. 7.3, we see that only in 1S0 FSI has significant effects. In that case, the

probability density component is significantly modified, and its maximum becomes larger. Given the clear
“scale separation” between the phase shifts in the different partial waves plotted in fig. 7.1, this is not surprising.
In conclusion, the dominance of the 1S0 component gets even larger.
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Figure 7.4.: The left column shows probability density components calculated from after-FSI wave functions of different
partial waves. The probability densities are given by |Ψ(p, q)|2p2q2, where Ψ is the after-FSI wave function of
the corresponding partial wave. Regarding normalization and uncertainties, the explanations for the previous
figure also apply here. Note that this probability density is plotted as a function of the nn momentum after FSI
p and the c− (nn) momentum before FSI q. Further, note that the overall factor for the ticks of the color bars is
annotated at the top of each color bar.
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Ground-state nn relative-energy distributions

Figure 7.5 shows the ground-state nn relative-energy distributions in the different components, which were
obtained by integrating the q-dependence of the probability density components out and converting from nn

momentum to energy. This is described by the formulas

ρ(pnn) =

∫︂
dq |Ψ(pnn, q)|2 (pnnq)2 , (7.11)

ρ(Enn) = ρ
(︂√︁

2µEnn

)︂√︃ µ

2Enn
, (7.12)

where Ψ is the wave function in the corresponding partial wave.
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Figure 7.5.: Plots of the ground-state nn relative-energy distributions in the different partial waves. The blue and the orange
curves differ in parameters defining the accuracy of the FaCE results, see the table in appendix F.1.3. In the
case of the distributions with higher l, the FaCE results are not yet fully converged. Note the overall factor for
the tick labels on the y-axis in the upper left of each plot.

This shows that for Enn ≤ 1MeV, there is a strong suppression of higher partial-wave components by a factor
of at least one order of magnitude. Again, we looked only at different components of the final distribution.
One might wonder if there are also interference terms between the different partial waves. This is not the
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case, which can be seen in the following calculation for the relative-momentum distribution.

ρc(p) = ⟨Ψ|P (c)
p |Ψ⟩ = ⟨Ψ|

∫︂
dq q2p2 |p, q⟩c c⟨p, q| ⊗ 1|Ψ⟩ (7.13)

=

∫︂
dq q2p2

∑︂
Ω

⟨Ψ|(|p, q; Ω⟩c c⟨p, q; Ω|)|Ψ⟩ (7.14)

=
∑︂
Ω

∫︂
dq q2p2

⃓⃓⃓
Ψ(Ω)

c (p, q)
⃓⃓⃓2

(7.15)

=
∑︂
Ω

ρ(Ω)
c (p) . (7.16)

To highlight the more general nature of this result, we did not list in detail the allowed partial waves but rather
used abstract notation. This shows nicely that the overall probability distribution in p given by ρc(p) = ρ(pnn) is
just the sum of single-partial-wave probability distributions ρ(Ω)

c (p). There are no interference terms containing
products of two wave functions from different partial waves. Also, if FSI is included, this result still holds.

nn relative-energy distributions after FSI

Figure 7.6 shows the nn relative-energy distributions in different partial waves after FSI. They are obtained as
described in section 7.1.3 with the difference that the used wave functions were the ones after FSI.
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Figure 7.6.: Plots of the nn relative-energy distributions in the different partial waves. The blue and the orange curves differ
in parameters defining the accuracy of the FaCE results, see the table in appendix F.1.3. In the case of the
distributions with higher l, the FaCE results are not yet fully converged. Note the overall factor for the tick labels
on the y-axis in the upper left of each plot.

By comparing fig. 7.6 and fig. 7.5, one observes that the dominance of the 1S0 component is increased by
FSI. This is in line with a similar observation from the comparison of the probability densities before and after
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FSI. Moreover, we can conclude that after nn FSI, higher partial-wave components are in the Enn ≤ 1MeV

region suppressed by a factor of more than 30. Details on the numerical uncertainties of the results can be
found in appendix F.2.

7.2. Enn distribution of He-6 up to 70 MeV

As mentioned at the beginning of this chapter, we will now calculate and discuss the Enn distribution also for
higher relative energies. First, knowing the high-energy behavior helps in understanding the distribution on
its own better. And second, this distribution can also be used for benchmarking the calibration of the already
discussed tetraneutron experiment, which uses the reaction 6He(p, p′α)nn for the calibration. Since we obtain
the distribution now also for higher energies, the higher partial wave components could play a more important
role. Accordingly, we also calculate these components. For this, we build on the results of the previous part
of this chapter. We use the formula for including nn FSI via the t-matrix in an arbitrary partial wave. We
employ for the p-, d-, and f -wave the effective-range-expansion parameters obtained by fitting to PWA93 [94]
data. Moreover, we make use of our finding that there are no interferences between the different components.
Consequently, we compare probability distributions for the different components directly.

We use two approaches for our calculation. The one is to employ the model LGM1, whereby the wave
function components are calculated with FaCE. The other approach is to use halo EFT. However, with relative
energies of up to 70MeV, we are well outside the range of validity of halo EFT. The high-energy scale of 6He,
which is given by the resonance energy of the α, is around 20MeV. Nevertheless, we also perform a halo
EFT-based calculation of this distribution. Since halo EFT is applied outside its range of validity, we call this
approach “model inspired by Halo EFT”. Because, as already discussed, the normalization is a difficulty in
halo EFT for 6He, we predict only the shape of the distribution. We normalize it to a specific value at a specific
position.

We start the exposition of the results with the model inspired by Halo EFT and proceed with the LGM1
results. If not noted otherwise, the distributions are based on the l = s = 0 wave function component.

7.2.1. Results from the model inspired by halo EFT

In order to get an impression of the action of FSI, we first plot the ground-state distribution, where no FSI is
taken into account. See fig. 7.7.

Different approaches for taking FSI into account are shown in fig. 7.8. It can be seen that the qualitative
behavior of all curves is similar, as we observed it already in the low-energy region of the distribution. From
the methodological standpoint, we prefer the calculation using the nn t-matrix (labeled with "tmb FSI"), as
this calculation is based on fewer approximations.

We also investigate the influence of the nn scattering length in fig. 7.9. While we used ann = −18.7 fm for
the previous calculations, we compare results obtained with a(−)

nn := −20.7 fm and with a(+)
nn := −16.7 fm.
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Figure 7.7.: Ground-state nn relative-energy distribution obtained with the model inspired by Halo EFT. Note that the
breakdown scale of the EFT is at roughly 20 MeV. (The distribution goes down to 0 at Enn = 0. As there is no
data point near enough to 0, this is not visible.)
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Figure 7.8.: nn relative-energy distributions after nn FSI based on the ground-state wave function obtained in the model
inspired by Halo EFT. Different approaches for taking FSI into account are compared. The approach based on
the nn t-matrix is labeled as "tmb FSI". The left and the right plot differ only in the plotting region (and the
normalization). The small light shaded areas show the numerical uncertainties of the result.
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Figure 7.9.: The left plot shows nn relative-energy distributions after nn FSI obtained with different nn scattering lengths in
comparison. Again, the ground-state wave functions were obtained in the model inspired by Halo EFT. nn FSI
was taken into account by using the nn t-matrix. The right plot shows the quotient of the curves from the left
plot.
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It can be seen that the influence of the nn scattering length is small in the high-energy region.

7.2.2. Results from the cluster model

Results for calculations in a three-body cluster model LGM1 performed with FaCE are presented. FSI within
the neutron pair is included via the t-matrix-based approach discussed in the previous chapter. As explained
at the beginning of this chapter, we want to check whether, also for high energies, the l = s = 0 wave function
component is sufficient for obtaining the distribution after FSI. In fig. 7.10, we show results for the distributions
after nn FSI in the components l = s = 0, l = s = 1 and l = 2, s = 0. These distributions were calculated by
taking the respective ground-state wave function component and applying FSI in the respective partial wave.
The necessary effective range expansion (ERE) parameters for l = 0, l = 1 and l = 2 were approximated by np
ERE parameters obtained in section 7.1.2.
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Figure 7.10.: nn relative-energy distribution components with and without FSI in comparison. The ground-state wave
function was obtained in the cluster model LGM1. For results with nn FSI, the FSI effects were calculated by
using the nn t-matrix (tmb FSI). The partial wave notation in the legend refers to the nn subsystem (2s+1lj).
The overall distribution would be the sum of the single components. However, taking only the l = s = 0
component into account seems to be sufficient. The left and the right plot differ in the plot region. The s = l = 0
distribution component was normalized to an arbitrary value. The other components are normalized relative to
this component so that the ratios of these components are the physical ratios. Small light-shaded areas indicate
uncertainty estimates for numerical and model-space-related uncertainties. These plots are based on a lower
number of data points, which are indicated by the markers.

The plot shows that at higher energies, the higher partial waves become more important. The suppression
relative to the l = s = 0 component gets smaller. Nevertheless, for our calculations, it is sufficient to take only
the l = s = 0 component into account.

7.2.3. Results from the cluster model and the model inspired by halo EFT in comparison

In fig. 7.11, we compare distributions obtained by using the cluster model LGM1 and distributions from the
halo-EFT-inspired model.
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Figure 7.11.: nn relative-energy distribution with FSI in comparison. Different approaches for taking FSI into account are
compared. The approach based on the nn t-matrix is labeled as "tmb FSI". Also, different approaches for
obtaining the ground-state wave function, which is the basis of the calculation, are compared.

It can be seen that in the high-energy region, the relative deviations are large, while the absolute deviations
are small due to the small values of the distributions in this region. It is important to note that the approach
based on Halo EFT is only a model, as we evaluate the Halo EFT outside its region of validity. The controlled
uncertainties are a feature of Halo EFT that is not present in this corresponding model. As the cluster model
uses more interaction channels as the model based on the leading-order Halo EFT2 , its advantage stays, and
it might be preferred over the model based on Halo EFT. However, in principle, also the cluster model is based
on a separation of scales and suffers from the fact that this separation is not guaranteed in the high-energy
region of the Enn distribution.

7.3. Conclusion and outlook

In the first part of this chapter, we analyzed the influence of higher partial-wave components on the nn
relative-energy distribution. For that, we first obtained estimations of effective range parameters for the nn
interaction in the s-, p-, d-, and f -wave by fitting to np phase-shift data. Then we built on our experience with
the FaCE code and obtained different wave function components for the cluster model LGM1. We investigated
these results by looking at the momentum-space probability components before and after the inclusion of
nn FSI. On this basis, we calculated the relative-energy distributions in the different partial waves. Since the
overall distribution is the sum of the distribution in these different partial waves, it makes sense to compare
the single partial wave components directly. A significant influence on the distributions up to relative energies
of 1MeV is only observed in the s-wave. While already with no FSI included, the s-wave component dominated
by more than one order of magnitude over the second-most important component, after the inclusion of
FSI, this dominance got stronger. In that energy region, the s-wave component is stronger than the p-wave
component by at least a factor of 30.
In the second part, we investigated the relative-energy distribution for energies up to 70MeV. We used

for that again the model LGM1 evaluated with FaCE but for comparison, additionally, the halo EFT system
equations. The second calculation is denoted as “model inspired by halo EFT” in order to highlight that halo
EFT is here used outside its domain of validity, which is given by the breakdown scale. For 6He, this is roughly
20MeV. In the computation of the nn in the different partial waves, we could use the formula derived in the
first part and also the effective range expansion parameters of the first part. From these investigations, we
draw the following main observations.
2A model based on a higher-order Halo EFT would also have more channels.
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• If the distribution is normalized to a certain value at an energy Enn > 10 MeV, the distributions obtained
with different nn scattering lengths deviate only by less than 2% in this region. Therefore, the influence
of the exact value of the scattering length can probably get neglected for that purpose.

• The l = s = 0 wave function component is sufficient for obtaining a good approximation to the Enn

distribution after FSI. This is also true for the high-energy part of the distribution.

In conclusion, for high relative energies, we recommend using the distribution based on the cluster model
LGM1 and nn FSI via the nn t-matrix. The influence of the exact value of the scattering length and of higher
partial-wave components is rather small for Enn > 10 MeV. This confirms that for the scattering length
experiment described in the previous chapter, the region of relative energies below 1MeV is, indeed, best
suited. This is not surprising, as from the value of the nn scattering length, one can estimate that roughly
around 100 keV, the effect of nn FSI is strongest. Moreover, the obtained distribution for high relative energies
was also used for benchmarking the calibration of the tetraneutron experiment [37]. This highlights nicely
the synergies, in experiment and theory, of these studies.
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8. Universality of nn relative-energy distributions
after core knockout

Universality, which is an important concept in physics, describes that different systems, which might differ in
the details of the underlying interactions, display common phenomena under certain circumstances. They
even share the quantitative description of the phenomenon. A typical example for universal processes are
phase transitions. E.g., phase transitions in magnetic spin systems have common properties to liquid-gas phase
transitions of chemical substances. This can be understood in terms of the correlations of the systems. Near the
phase transition, long-distance correlations become important. At the phase transition itself, the correlation
length diverges. Due to these large-distance correlations, the details of the interactions at short distances
are less important in this region. Important contributions to the better understanding of phase transitions
and especially their shared features are the Ehrenfest classification of phase transitions, the Ginzburg-Landau
theory, as well as the renormalization group co-developed by Wilson. While Ginzburg-Landau theory can
explain common features in terms of generic properties of the Lagrangian near a phase transition, the
renormalization group provides methods directly exploiting the diverging correlations. A detailed discussion
of phase transitions in the context of the renormalization group can be found, e.g., in Ref. [96].
Also in nuclear physics, universality and the renormalization group play an important role. This is not

only due to the existence of universal phenomena themselves, but has also other reasons. One is the role of
regularization and renormalization in field-theoretic descriptions. The other is related to the use of continuous
unitary transformations, which can be used to soften potentials (similarity- renormalization-group (SRG)
evolved potentials) as well as many-body methods (SRG and in-medium-SRG). Moreover, in halo nuclei,
universality is present. The neutron-neutron nn system has with −18.7 fm a scattering length with a very large
absolute value compared to the effective range of about 2.73 fm. The nn virtual state is thereby a low-energy
and long-distance virtual state, which is not strongly influenced by the details of the interaction. Likewise, in
many two-neutron halos, also the neutron-core nc system displays a largely negative scattering length. Also
there is a universal virtual state. However, these statements are primarily statements about universal aspects
of two-body interactions present in the three-body system of the two-neutron halo nucleus. A relevant aspect
still is where the two-body interactions are probed by the particles of the overall three-body system. Are
they probed at shorter distances? If the non-universal shorter-distance parts of the nc interactions are probed
strongly, then the universality of two-neutron halo nuclei would be limited. Since the two-neutron halo nuclei
are only weakly bound, i.e., the two-neutron separation energy S2n is low, they are indeed long-distance
phenomena. Therefore, we can expect that the nc interaction is mainly probed at long distances, i.e., low
energies. Universality is to be expected. For a detailed dicussion of universality in the context of halo nuclei,
see, e.g., Ref. [26]. Information on the similarity renormalization group in nuclear many-body theory can be
found, e.g., in Ref. [10].

In this chapter, we want to investigate the universality of nn relative-energy distributions of different s-wave
2n halo nuclei. This is done at the examples of the nuclei 11Li, 14Be, 17B, 19B, and 22C. We can build on the
methodology for obtaining the final nn distribution developed in chapter 6. To be able to use that directly and
because of its experimental practicability, we focus on the kinematics where the core is knocked out fast in a
reaction with a beam of high kinetic energy. In that case, final-state interactions (FSI), which are not in the nn
subsystem, are suppressed and can, at leading order, be neglected. The calculation of the final nn distribution
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with nn FSI taken into account, of course, also needs a good description of the halo’s ground state. For this,
we can make use of the findings from chapter 3.

The investigations are structured as follows. First, we work on classifying different sorts of universality in a
bit more mathematical fashion. Then we discuss the results for the nn distributions of the different halo nuclei.
The next step is the analysis of the universality of the ground-state distributions, i.e., the distributions without
FSI taken into account. For that purpose, we try to find a universal parameterization. The starting point is the
ground-state distribution. We try out some approaches and complement that with an analytical investigation
of the universality of the problem. We check how well the distributions of the different nuclei agree with
the universal curve. Moreover, we investigate how one can estimate beforehand for which halo nuclei the
universal curve is a good approximation. Finally, a universal curve for the final distribution by including FSI
effects is constructed. Again, we analyze how well that description works.
For the construction of the universal description of the ground state, we investigate also if the nn and the

nc interactions can be put in the unitarity limit. If this provides an accurate description, then it is a viable
way to decrease the number of relevant parameters and to increase the universality of the prediction. That
aspect is similar to the approach of König et al. to understand nuclear physics as a perturbative expansion
around a leading order, given by two-body interactions in the unitarity limit plus a three-body force [97] .
It was demonstrated that this works exceptionally well in the A ≤ 4 sector and proposed to apply this also
to higher-A systems. In some sense, our investigations can be also seen as an extension of this approach to
clustered systems and to different observables, namely the nn relative-energy distribution. Moreover, this
work is also connected to studies of the 17B-n-n system by Hiyama et al., where it was shown that this system
is near the unitarity limit [98], [99]1.

8.1. Mathematical categorization of different types of universality

Loosely spoken, universality means that different systems display common features. Certain properties of the
different systems can be described at once. In our case, the different systems are the different s-wave 2n halo
nuclei. The observable we are looking at is the 2n relative-energy distribution. More concretely, universality
can mean that some rescaled and/or differently parameterized version of the observable function is almost
the same for the different systems.

Mathematically, this means the following. On the one hand, the observable O(x) is different for the different
systems, i.e., is some O(x;p), where p are the characteristic parameters of the systems. But, on the other hand,
there is the rescaled version O(x;p)/f(p) which is almost independent of p and thereby universal. For the
observable, this universality in the standard sense means

O(x;p) ≈ f(p)Õ(x) (8.1)

with f(p) being not too complicated and ideally only dependent on a part2 of p. Of course, hidden dependencies
of Õ(x) on p are not allowed. Otherwise, this definition would become pointless. Alternatively, also

O(x;p) ≈ f(p)Õ(x/g(p)) (8.2)

would be considered as universality. For g(p) the same demands as for f(p) hold. It should not be too
complicated and should ideally depend only on a subset of the entries of p.
1Note that only in the second reference a three-body force was employed.
2However, even if it is essential to the approximate description that f(p) depends on the complete p, this would be nonetheless a
non-trivial statement about factorization. Only in the case of f being additionally dependent on x, this statement would become
pointless.
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approximation
of O(x;p) by

name of the universality reduction of
#parameters

examples

O(x; s(p)) reduction-of-parameter
univ.

✓ pionless EFT or
halo EFT at LO

f(p)Õ(x) (pure) factorization
univ.

✗

f(s(p))Õ(x) enhanced factorization
univ.

✓

Õ(x/g(p)) (pure) rescaling univ. ✗

Õ(x/g(s(p))) enhanced rescaling
univ.

✓

f(p)Õ(x/g(p)) mix of factorization and
rescaling univ.

✗/ ✓

f(x, s(p))Õ(x/g(p)) generalized univ. ✗/ ✓

Table 8.1.: Table of possible kinds of universality. Note that this list is just a suggestion and not necessarily complete. s(p) is
a function that takes a vector and returns a strict subvector of it, i.e., throws at least one entry away while not
modifying the kept entries. It is a function for formulating the omission of parameters mathematically.

In order to check universality, one can either compare the plots of f(p)Õ(x/g(p)) as function of x with the
same plots of O(x;p) as function of x for different systems. This is basically testing the agreement between
the universal prediction and the actual observable for all the systems. If one has N systems, one would have to
draw 2N curves on this O-over-x plot. Alternatively, one can plot

O(x̃g(p);p)/f(p) , (8.3)

over x̃ = x/g(p). If there is the universality as defined in eq. (8.2), then the relation

O(x̃g(p);p)/f(p) ≈ Õ(x̃) (8.4)

holds, and all the N curves should be approximately on one line. That is a very illustrative way of testing
universality: the curves of the different systems are (almost) the same.
One can also relax the definition of universality given in eq. (8.2) a bit into

O(x;p) ≈ f(x,p)Õ(x/g(p)) . (8.5)

Of course, f(x,p) should be not too complicated. Otherwise, this requirement would get pointless, as any
observable (function) O(x;p) can be rewritten in some other function of the same variables f(x,p) times
another function. In fact, there are infinitely many choices. Pick some Õ(x/g(p)) of your choice and you will
get the necessary f(x,p) by just reshaping eq. (8.5). If you would plot O(x̃g(p);p)/f(x̃g(p),p) all curves would
be exactly on the same line. Of course, this would be trivial universality. One could also call it universality by
construction. If one replaces O(x̃g(p);p)/f(x̃g(p),p) on the y-axis label by its evaluated expression, it might
become less obvious that this is trivial universality. The purpose of discussing this limiting case of eq. (8.5) is
to make us aware of trivial universality as a pointless limit case being distinct from real universality. Different
types of universality are listed in table 8.1.
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8.2. Universality of the leading-order EFT calculation and dimensionless
parameters

The possibility to describe the different halos in halo EFT at leading order is already some form of universality
according to the previous definition since this description significantly reduces the number of relevant
parameters. E.g., the effective range parameters of all the different nc interactions are only next-to-leading-
order corrections. In order to have a clear understanding of our starting point for additional investigations, we
want to analyze the leading-order calculation in terms of specifying the parameters in the form of dimensionless
parameters in the next subsection.

8.2.1. Analytical investigation of the universality of the ground-state distribution

We analyze the universality of the ground-state distribution by investigating if it can be expressed in dimen-
sionless variables only. In the first step, we check if this holds for the Faddeev equations. If yes, we can proceed
with the investigation of the wave function and, finally, of the ground-state nn relative-energy distribution.

We start with the reduced t-matrix elements. The expressions are given by

τc(q;S2n) =
2

−a−1
nn +

√︂
mnS2n + A+2

4A q2
, (8.6)

τn(q;S2n) =
(A+ 1) /A

−a−1
nc +

√︃
A

A+1

(︂
2mnS2n + A+2

A+1q
2
)︂ . (8.7)

The reduced t-matrix τc can be expressed in terms of a dimensionless version of q by rescaling it:

√︁
2µS2nτc(q;S2n) =

2

−a−1
nn

(︁√
2µS2n

)︁−1
+

√︃
mn

2µ + A+2
4A

(︂
q√

2µS2n

)︂2 (8.8)

=
2

−ā−1
nn +

√︂
mn

2µ + A+2
4A q̃2

(8.9)

=: τ̃c(q̃) , (8.10)

whereby we used the definition
q̃ :=

q√
2µS2n

. (8.11)

We can proceed similarily with τn:

√︁
2µS2nτn(q;S2n) =

(A+ 1) /A

−a−1
nc

(︁√
2µS2n

)︁−1
+

√︄
A

A+1

(︃
mn

µ + A+2
A+1

(︂
q√

2µS2n

)︂2)︃ (8.12)

=
(A+ 1) /A

−ā−1
nc +

√︃
A

A+1

(︂
mn

µ + A+2
A+1 q̃

2
)︂ (8.13)

=: τ̃n(q̃) . (8.14)

The dimensionless scattering lengths āij are given by
√
2µS2naij.
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Next, the recoupling functions, which are basically free Green’s functions evaluated between different
spectators, are considered:

Xcn(q, q
′;S2n) =

1

2

∫︂ 1

−1

dx
1

−S2n − (π2(q,q′,x))
2

2µnn
− q′2

2µc(nn)

, (8.15)

Xnn(q, q
′;S2n) =

1

2

∫︂ 1

−1

dx
1

−S2n − (π3(q,q′,x))
2

2µnc
− q′2

2µn(nc)

. (8.16)

Also by multiplying these functions with the appropriate power of the scale
√
2µS2n and reshaping, we can

find the corresponding functions, which are only functions of the dimensionless momenta. For Xcn, we obtain(︂√︁
2µS2n

)︂2
Xcn(q, q

′;S2n) =
1

2

∫︂ 1

−1

dx
1

− 1
2µ − (π2(q̃ ,q̃′,x))

2

2µnn
− q̃′2

2µc(nn)

(8.17)

=: X̃cn(q̃ , q̃
′) . (8.18)

For Xnn, we find (︂√︁
2µS2n

)︂2
Xnn(q, q

′;S2n) =
1

2

∫︂ 1

−1

dx
1

− 1
2µ − (π3(q̃ ,q̃′,x))

2

2µnc
− q̃′2

2µn(nc)

(8.19)

=: X̃nn(q̃ , q̃
′) . (8.20)

Next, we try to express the Faddeev equations in terms of the X̃ij and the τ̃i instead of the standard
recoupling functions and reduced t-matrices. The equation for Fc(q) reads

Fc(q) =
2

π

∫︂
dq′ q′2Xcn(q

′, q;S2n)τn(q
′;S2n)Fn(q

′) . (8.21)

It can be rewritten as follows:

Fc(q) =
2

π

∫︂
dq′ q′2

1(︁√
2µS2n

)︁3 (︂√︁2µS2n

)︂2
Xcn(q

′, q;S2n)
√︁
2µS2nτn(q

′;S2n)Fn(q
′) (8.22)

=
2

π

∫︂
dq̃′ q̃′2X̃cn(q̃

′, q̃)τ̃n(q̃
′)Fn(q

′) . (8.23)

By introducing the modified Faddeev amplitudes

F̃c(q̃) := Fc

(︂
q̃
√︁
2µS2n

)︂
, (8.24)

F̃n(q̃) := Fn

(︂
q̃
√︁
2µS2n

)︂
, (8.25)

the previous Faddeev equation can be written as

F̃c(q̃) =
2

π

∫︂
dq̃′ q̃′2X̃nc(q̃

′, q̃)τ̃n(q̃
′)F̃n(q̃

′) . (8.26)

The other Faddeev equation reads

Fn(q) =
1

π

∫︂
dq′ q′2Xnc(q, q

′;S2n)τc(q
′;S2n)Fc(q

′)

+
1

π

∫︂
dq′ q′2

(︃
Xnn(q

′, q;S2n) +
H(Λ)

Λ2

)︃
τn(q

′;S2n)Fn(q
′) . (8.27)
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It can be rewritten as

Fn(q) =
1

π

∫︂
dq′ q′2

1(︁√
2µS2n

)︁3 (︂√︁2µS2n

)︂2
Xnc(q, q

′;S2n)
√︁
2µS2nτc(q

′;S2n)Fc(q
′)

+
1

π

∫︂
dq′ q′2

1(︁√
2µS2n

)︁3 (︂√︁2µS2n

)︂2(︃
Xnn(q

′, q;S2n) +
H(Λ)

Λ2

)︃√︁
2µS2nτn(q

′;S2n)Fn(q
′) (8.28)

=
1

π

∫︂
dq̃′ q̃′2X̃nc(q̃ , q̃

′)τ̃c(q̃
′)F̃c(q̃

′)

+
1

π

∫︂
dq̃′ q̃′2

⎛⎝X̃nn(q̃
′, q̃) +

H̃
(︂
Λ̃
)︂

Λ̃2

⎞⎠ τ̃n(q̃
′)F̃n(q̃

′) . (8.29)

The Fn(q) on the left can be replaced by F̃n(q̃) and thereby we have also transformed this equation.
After having investigated how the Faddeev equations can be expressed in terms of dimensionless variables,

we study how this can be done on the level of the wave functions.
The abstract relations between the state and the corresponding abstract Faddeev amplitudes reads

|Ψ⟩ =
∑︂
i

|ψi⟩ =
∑︂
i

G0ti |Fi⟩ . (8.30)

Accordingly, the representation3 Ψc(p, q) is given by

Ψc(p, q) = c⟨p, q; Ωc|Ψ⟩ (8.31)

=
∑︂
i

∫︂
dp′ p′2

∫︂
dq′ q′2c⟨p, q; Ωc|p′, q′; Ωi⟩i

× 4πG
(i)
0 (p′, q′;S2n)gli(p

′)τi(q
′;S2n)Fi(q

′) . (8.32)

To check if there is a dimensionless variant in the sense that it only depends on dimensionless quantities (up
to a normalization factor), we evaluate Ψc

(︁
p̃
√
2µS2n, q̃

√
2µS2n

)︁
:

Ψc

(︂
p̃
√︁

2µS2n, q̃
√︁

2µS2n

)︂
=
∑︂
i

∫︂
dp̃′ p̃′2

∫︂
dq̃′ q̃′2

(︂√︁
2µS2n

)︂6
c

⟨︂
p̃
√︁
2µS2n, q̃

√︁
2µS2n; Ωc

⃓⃓⃓
p′, q′;S2n; Ωi

⟩︂
i
4π
(︂√︁

2µS2n

)︂−3

× 1

− 1
2µ − p̃′2

2µjk
− q̃′2

2µi(jk)

Θ
(︂
Λ̃− p̃′

)︂
τ̃i(p̃

′)F̃i(q̃
′) (8.33)

=
∑︂
i

∫︂
dp̃′ p̃′2

∫︂
dq̃′ q̃′2

(︂√︁
2µS2n

)︂3 (︂√︁
2µS2n

)︂−6

c⟨p̃, q̃ ; Ωc|p̃′, q̃′;S2n; Ωi⟩i

× 4πG̃
(i)
0 (p̃′, q̃′)Θ

(︂
Λ̃− p̃′

)︂
τ̃i(q̃

′)F̃i(q̃
′) (8.34)

:=
(︂√︁

2µS2n

)︂−3

Ψ̃c(p̃, q̃) = Ψc

(︂
p̃
√︁

2µS2n, q̃
√︁
2µS2n

)︂
. (8.35)

We assumed that all form factors fullfil gli(p) = Θ(Λ− p), i.e., we assumed s-wave interactions and Heaviside
regulators. Thereby, we can now express the regular wave function Ψc in terms of the dimensionless wave
function Ψ̃c. The latter has the specialty that it is only determined by dimensionless quantities and the
3Note that as discussed in chapter 3, this is usually the most important wave function component. But, in principle, there are also
other components c⟨p, q; Ω|Ψ⟩, which can contribute.
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dimensionless Faddeev amplitudes. In the end, thereby, it depends only on the dimensionless parameters ānn
and ānc. In the calculation above, we used the following relation for the overlap4:

i⟨p, q; Ωi|p′, q′; Ωj⟩j =
∫︂

dΩp

∫︂
dΩq

∫︂
dΩp′

∫︂
dΩq′

×
i
⟨p, q; Ωi|

(︂
|p, q⟩i i⟨p, q|p

′, q′⟩j j⟨p
′, q′| ⊗ 1(spin)

)︂
|p′, q′; Ωj⟩j (8.36)

=
∑︂
α,β

i⟨p, q; ζiα|p, q⟩i i⟨p, q|p
′, q′⟩j j⟨p

′, q′|p′, q′; ζjβ⟩j i⟨ξiα|ξiβ⟩j (8.37)

=
∑︂
α,β

Y∗
ζiα(p, q)δ

(3)(p′ − κijp((p, q)))δ
(3)(q′ − κijq((p, q)))Yζjβ

(p′, q′)i⟨ξiα|ξiβ⟩j (8.38)

=
∑︂
α,β

Y∗
ζiα(p̃, q̃)

(︂√︁
2µS2n

)︂−6

× δ(3)(p̃′ − κ̃ijp(p̃, q̃))δ
(3)(q̃′ − κ̃ijq(p̃, q̃))Yζjβ

(p̃′, q̃′)i⟨ξiα|ξiβ⟩j (8.39)

=
(︂√︁

2µS2n

)︂−6

i⟨p̃, q̃ ; Ωi|p̃′, q̃′; Ωj⟩j . (8.40)

In the next step, we move on to the ground-state nn relative-energy distribution:

ρ(Enn) =

∫︂
dq q2p2nn

√︃
µnn

2Enn

⃓⃓⃓
Ψc

(︂√︁
2µnnEnn, q

)︂⃓⃓⃓2
(8.41)

=

∫︂
dq̃ q̃2

(︂√︁
2µS2n

)︂3√︃ µnn

2Enn

⃓⃓⃓
Ψc

(︂√︁
2µnnEnn, q̃

√︁
2µS2n

)︂⃓⃓⃓2
2µnnEnn (8.42)

=

∫︂
dq̃ q̃2

(︂√︁
2µS2n

)︂3√︃ µnn

2Enn

⃓⃓⃓⃓
⃓Ψc

(︄√︄
2µnnEnn

2µS2n

√︁
2µS2n, q̃

√︁
2µS2n

)︄⃓⃓⃓⃓
⃓
2

2µnnEnn (8.43)

=

∫︂
dq̃ q̃2

(︂√︁
2µS2n
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⃓Ψ̃c

(︄√︄
2µnnEnn

2µS2n
, q̃

)︄⃓⃓⃓⃓
⃓
2

√
µnn

3
√︁

2Enn (8.44)

=
(︂√︁

2µS2n

)︂−2
∫︂

dq̃ q̃2

⃓⃓⃓⃓
⃓Ψ̃c

(︄√︃
2µnn

2µ

√︃
Enn

S2n
, q̃

)︄⃓⃓⃓⃓
⃓
2√︁

2µ3
nn

√︁
Enn/S2n

√︂
(2µ)

−1 (8.45)

=:
(︂√︁

2µS2n

)︂−2

ρ̃

(︃
Enn

S2n

)︃√︁
µ3
nn/µ . (8.46)

Based on these equations, we can draw the following conclusions:

• ρ̃
(︂

Enn

S2n

)︂
depends only on Ψ̃c(p̃, q̃). And since this wave function depends only on A, ānn =

√
2µS2nann,

and ānc =
√
2µS2nanc, Ψ̃ as well as ρ̃ depend only on these dimensionless parameters and not on S2n

itself5. Mathematically more detailedly written, our finding is:

ρ(Enn;S2n, ann, anc, A) = (S2n)
−1
ρ̃

(︃
Enn

S2n
; ānn, ānc, A

)︃√︃
µnn

µ

3
1

2
. (8.47)

• The measured distribution ρ̄(Enn/S2n) = ρ
(︂

Enn

S2n
S2n

)︂
is (S2n)

−1
ρ̃(Enn/S2n)

√︁
µnn/µ

3
/2. Therefore, this dis-

tribution actually has some dependence on S2n itself. However, this dependence on S2n itself contributes
only to the overall normalization.

4In the recoupling, we assumed for brevity and with no loss of generality in this context that the recoupling coefficients are absorbed
in the states of the recoupled basis.

5This holds, at least, if this parameterization is employed.
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8.3. Results for the ground-state distribution and universality from the unitarity
limit

In this section, we look at the actual results for the ground-state distributions themselves. In the second part
of this section, we will also investigate the universality of the ground-state distributions. The parameters used
for the ground-state calculations are listed in table 8.2. Results for the ground-state distributions are shown in
fig. 8.1.

Table 8.2.: Characteristic data of the considered two-neutron halo nuclei. The values for S2n and for the virtual-state energy
E∗

nc are taken from Ref. [100]. The only exception is S2n of 22C, where we use the analysis based on different
experimental data given in Ref. [26]. We employ a value of 100 keV instead of 35 keV.

nucleus A S2n [keV] E∗
nc [keV]

11Li 9 369 26
14Be 12 1266 510
17B 15 1384 83
19B 17 90 5
22C 20 100 68
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Figure 8.1.: The ground-state nn relative-energy distributions of different 2n halo nuclei. The vertical lines indicate the
excitation energies of the core of the respective halo nucleus.

We observe that the distributions all have a low-energy peak, whereby the lower the two-neutron separation
energy S2n of the respective halo nucleus, the lower the energy at which its distribution peaks. Moreover, the
peak height is anti-correlated with S2n. From the analytical investigations in section 8.2.1 and specifically
eq. (8.47), we expect that

S2nρ(Enn;S2n, ann, anc, A)2
√︁
µnn/µ

−3
= ρ̃

(︃
Enn

S2n
; ānn, ānc, A

)︃
(8.48)

might yield a more universal curve. It depends not on Enn itself, but on the ratio Enn/S2n. Similarly, the
dependence on the scattering lengths is replaced by the dependence on their dimensionless versions ājk.
However, since there is, in principle, still a dependence on these nucleus-specific dimensionless scattering
lengths as well as on A, the curves need not to be universal. Even in this parameterization, there might be
significant deviations between different nuclei. Interestingly, the approach of using S2nρ(Enn) could also be

134



obtained from expressing the normalization integral in terms of Enn/S2n instead of Enn. The results for the
distributions are shown in fig. 8.2.
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Figure 8.2.: The ground-state nn relative-energy distributions of different 2n halo nuclei as function of Enn over S2n. The
vertical lines indicate the excitation energies over S2n of the core of the respective halo nucleus, given that it is in
the plot region. The circles indicate the positions of the maxima.

It can be seen that the different distributions are close to each other. There is significant universality, more
than would be necessary according to the results of the analytical analysis. The peak positions are almost the
same. They are around Enn/S2n = 0.5. Moreover, the peak heights are distributed within approximately ±15%

around a central value.

This figure indicates that the dependence on the dimensionless nc scattering length ānc is weak. With their
shallow virtual states in their nc subsystems, i.e., with the large anc, the nc subsystems of the halos might are
near the unitarity limit given by anc → ∞. This corresponds to a virtual state at zero energy.

Inspired by this observation, we try to produce a universal prediction by calculating the distribution for
the respective halo in the limit anc → ∞ ⇔ a−1

nc → 0 (nc UL). Moreover, we are also interested in the case that
additionally a−1

nn → 0 is used (nc and nn UL). That would be an even more universal approximation, as the
number of relevant parameters is lower. The left panel of fig. 8.3 shows the distributions of the halos together
with the distribution based on a−1

nc → 0 and the distribution based on a−1
nc → 0∧ a−1

nn → 0. The right panel shows
the relative deviations from the curve based on the two unitarity limits.

We observe that the A-dependence of the universal predictions is weak. Given that the bands result from a
variation between 9 and 20, this is not self-evident. Moreover, we see that the distributions of the different
halo nuclei are near the two universal predictions. We conclude that the universal predictions work quite well.
In terms of relative deviations, we observe that the accuracy of the universal prediction based on the two
unitarity limits is better than 20% except for 22C, which displays a slightly higher deviation. However, among
the considered nuclei, 22C has the largest E∗

nc measured in terms of S2n.

In terms of universality, this means that we can perform multiple increments in the level of universality. For
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Figure 8.3.: The left panel shows the ground-state nn relative-energy distributions of different 2n halo nuclei as a function
of Enn over S2n in comparison with two universal predictions. One is based on putting the nc interaction in
the unitarity limit. The other is based on putting the nc as well as the nn interaction in the unitarity limit.
Each of these two predictions involves a variation of A in the relevant range of 9 to 20, which is represented
by bands. The right panel shows deviations of ground-state nn relative-energy distributions from the doubly
unitarity-limit ground-state distribution. In both panels, the normalization scheme where the distribution is
normalized to a specific value at a specific point is used.

the shape of the distribution6 ˜︁ρ, these increments can be written as

˜︁ρ(Enn/S2n;Vnn, Vnc, S2n, A)

= ˜︁ρ(︂Enn/S2n;
√︁

2µS2nann,
√︁

2µS2nanc, A
)︂

(8.49)

= ˜︁ρ(︂Enn/S2n;
√︁
2µS2nann, A

)︂
(8.50)

= ˜︁ρ(Enn/S2n;A) (8.51)
= ˜︁ρ(Enn/S2n) . (8.52)

The first equality corresponds to the universality of the leading-order EFT description. By this, we mean that for
the leading-order treatment, the dependence on all the different parameters of the nuclear interactions can be
reduced to the dependence on the few leading-order parameters. The next equality shows the approximation
of the nc interaction by its unitarity limit. The following step is the analogon for the nn interaction. The last
equality corresponds to our finding that also the influence of the mass number can be neglected.

Moreover, in the case of universal prediction, it would be useful to be able to estimate for which systems it
will work well. From our reparameterization of the ground-state equations in terms of dimensionless variables,
we see that the relevant scales are ānn and ānc. The larger each of these rescaled scattering lengths is, the
better the approximation of the corresponding t-matrix by its unitarity limit will work. The ratios between the
reduced t-matrices parameterized by dimensionless variables and their unitarity limit versions are given by

τ̃c/τ̃
(UL)
c =

1

1− ā−1
nn/
√︂

mn

µ + A+2
4A q̃2

, (8.53)

τ̃n/τ̃
(UL)
n =

1

1− ā−1
nc /

√︃
A

A+1

(︂
mn

µ + A+2
A+1 q̃

2
)︂ . (8.54)

6Note that the rescaled distribution given in eq. (8.48) is denoted by ρ̃, while its shape is denoted by ˜︁ρ.
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The interpretation is based on the fact that the nearer the ratio to one, the better works the unitarity-limit
approximation. At q̃ = 0, the ratio is determined by the dimensionless scattering length āij and, in the case
of the nc interaction, also by the mass number A. Thereby, a rule of thumb would be that the larger āij, the
better the universal description should work. However, as mentioned, A also plays a role. Additionally, the
reduced t-matrices are not only probed at q̃ = 0. While q̃ is dimensionless, the different systems might have
different q̃ dependences in their Faddeev amplitudes. Thereby, the reduced t-matrices might be probed in
various ways. Of course, the q̃-dependence of the Faddeev amplitudes is nothing else than a result of the
interplay of the interactions. The interplay between the nn, the nc, and the three-body interaction decides
how the reduced t-matrices are probed. In this context, one should keep in mind that while all halos have τc
parameterized by the same ann, they have τ̃c, which are parameterized by different ānn. The ānn are different
because they also depend on S2n. This interplay has the implication that while for a fictive halo A, the āij have
larger absolute values and thereby the ratios of τ̃i/τ̃ (UL)

i are nearer to one, than for some halo B, the universal
prediction from the doubly unitarity-limit might still work better for halo B. This would require that in the
case of halo B, the Faddeev amplitudes probe typically higher q̃ regions than for halo A. However, to determine
this exactly, one would need to solve the Faddeev equations of the halo nuclei exactly. For understanding the
universality better, that might be a viable procedure. For using the universal prediction as a fast method to
estimate the distribution, this is less desirable. In summary, this discussion points out that comparing āij for
estimating for which nucleus the universal prediction works better is just a rule of thumb.
To test the rule of thumb, we list the ānc values for the different nuclei in table 8.3.

Table 8.3.: Supplemented version of table 8.2. The last column was added. It contains ānc obtained with the choice µ = mn,
where µ is a mass scale to make the quantities dimensionless. As long as it is used consistently, any mass value
can be used. For references for the values, see table 8.2.

nucleus A S2n [keV] E∗
nc [keV] ānc

11Li 9 369 26 -3.97
14Be 12 1266 510 -1.64
17B 15 1384 83 -4.22
19B 17 90 5 -4.37
22C 20 100 68 -1.76

According to the values listed in the table and the rule of thumb, the universal description should work very
well for the two Boron halos and significantly less well for 14Be and 22C. Looking again at fig. 8.3 with this in
mind reveals that the proposed rule of thumb works approximately. Interestingly, while according to the rule
of thumb, the universal curve should work “worst” for 14Be and for 22C slightly better, this is not observed.
While 22C shows the largest deviations, 14Be has the significantly smaller deviations. But they are still the
second-largest ones. In conclusion, the rule of thumb is confirmed. The check already highlighted that it is
just a rule of thumb and does not hold exactly. The relevant effects not included are the value of ānn and the
already discussed interplay of the interactions.

8.4. Results for the final distribution and their universal description

In the next step, we look at the final distributions following the knockout of the core of the respective halo.
These distributions are calculated for the case that non-neutron-neutron FSIs are kinematically suppressed, as
discussed in the case of the α-knockout out of 6He, see chapter 6. For the calculation of the final distributions,
we use the results from that chapter. The distributions are shown in fig. 8.4. For comparison, also the
ground-state distributions from fig. 8.1 are presented in the right panel.
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Figure 8.4.: In the left panel, final nn relative-energy distributions of different 2n halo nuclei obtained with nn FSI are
shown. In the right panel, the ground-state distributions already presented in fig. 8.1 are shown for comparison.
The vertical lines indicate the excitation energies of the core of the respective halo nucleus.

The plot shows that for those nuclei that had in their ground-state distributions peaks at higher energies,
the peaks were moved all to almost the same position given by nn FSI. Moreover, due to FSI, the peak structure
became for all nuclei more pronounced. The original hierarchy of peak heights is still maintained. These two
plots are an illustrative example of the claim made in chapter 6 that for an accurate description of the final
distribution, not only an accurate description of FSIs but also of the ground state is necessary.

In the next step, we want to obtain a universal prediction of the final distribution, making use of our findings
in the case of the ground state. As done in chapter 6, for an exact consideration of nn FSI, it would be necessary
to include it on the wave-function level. To make the universal description more transparent, we want to
include the FSI on the level of the relative-energy distribution. This is possible with the approximative approach
of FSI enhancement factors. We use the factor G1 from Ref. [87], which is also explained in section 6.2. This
factor can be also expressed in the dimensionless parameters ānn =

√
2µS2nann, r̄nn =

√
2µS2nrnn and the

variable p̃nn = pnn/
√
2µS2n. The variable p̃nn is directly related to our plot variable Enn/S2n. However, that

does not mean that a plot directly analogous to fig. 8.3 with Enn/S2n as x-axis and a similar outcome can be
produced. The important specialty is that for the FSI, the nn interaction cannot be put in the unitarity limit
without causing large errors. In this way, a significant sensitivity on ānn emerges. The latter parameter is
different for the different halos. Therefore, one cannot expect that there is one universal curve for the final
distributions in a plot directly analogous to fig. 8.3. Nevertheless, one can obtain a universal prediction for
the final distribution if one is willing to accept ānn and r̄nn as additional relevant parameters. The prediction
is given by ˜︁ρ(wFSI)(Enn/S2n;Vnn, Vnc, S2n, A) = ˜︁ρ(Enn/S2n)G(Enn/S2n; ānn, r̄nn) . (8.55)

If one plots the respective final distribution of a halo divided by this enhancement factor in comparison with
the universal ground-state prediction, one can test how well this new prediction works. This way of plotting it
is equivalent to comparing all the final distributions with the corresponding distribution resulting from the
ground-state curve and each halo’s enhancement factor. However, in the latter case, for N halos, one would
need to draw 2N curves. Therefore, the first method is more illustrative. The plot is shown in fig. 8.5. In the
right panel of the figure, the relative deviations are shown.

It can be seen that this approach leads to good results. The deviations are for all halos almost in the whole
plotted region below 20%. Apparently, in some cases, there is some cancellation of errors of the approximations
from the ground state and those from FSI. In summary, this shows that the universal prediction can be
successfully extended to the level of the final distribution. It would be interesting to compare these theoretical
data with experimental data or other theory results, e.g., from cluster models or ab initio descriptions, to
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Figure 8.5.: In the left panel, final nn relative-energy distributions from LO halo EFT divided by the FSI enhancement
factor G1 are shown. Also, two bands representing the ground-state calculations with the nc interaction in the
unitarity limit and the calculations with the nc and the nn interactions in the unitarity limits are contained.
These calculations are represented by bands, as we varied A between 9 and 20. In the right panel, deviations of
nn relative-energy distributions with nn FSI and divided by G1 from the doubly unitarity-limit ground-state
distribution are plotted. The normalization scheme where the distribution is normalized to a specific value at a
specific point is used in both panels.

assess the accuracy of the universal description in more detail.
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8.5. Conclusion and outlook

In this chapter, we calculated the neutron-neutron (nn) relative-energy distributions of different s-wave
two-neutron halo nuclei. The investigated nuclei are 11Li, 14Be, 17B, 19B, and 22C. We calculated ground-state
distributions as well as the distributions including nn final-state interactions. While for the ground-state
description, we built onto the formalism and the findings of chapter 3, nn FSI was included along the lines of
chapter 6.

We were able to obtain a universal prediction for the shapes of the ground-state distributions by putting the
nn and the nc interactions in the unitarity limit. To be universal, the curves have to be plotted as functions
of the nn relative energy Enn over the two-neutron separation energy S2n. The prediction worked well,
highlighting the role of the unitarity limit for halo nuclei. Interestingly, also the dependence on the mass
number was small. Deviations from the universal curve were for all considered nuclei except 22C below 20%.
A rule of thumb for estimating for which nuclei this approximation works better was discussed.

Moreover, we were able to extend the universal prediction to the level of the final distribution by making use
of FSI enhancement factors. For the calculation of FSI effects, the nn interaction can not be put in the unitarity
limit. Therefore, a dependence on the first two nn effective-range-expansion (ERE) parameters scaled by

√
S2n

is added in the description of the distributions as functions of Enn/S2n. Since these rescaled ERE parameters
are different for the different halos, the universality is lowered a bit. We found that the final distributions of
the considered halos deviated almost everywhere in the investigated energy region by less than 20%.
The studies showed that the halo nuclei are highly universal and that the unitarity limit in all of their

two-body subsystems plays an important role. Moreover, our universal curve can be used for simple estimates
of nn distributions of halo nuclei. For testing the universal description, we used our leading-order halo EFT
calculations. It would be interesting to compare the universal curve also with experimental data or theory
data from cluster models or ab initio calculations.
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9. Faddeev calculations with arbitrary many
interactions in arbitrary partial waves

In this work, we have considered a number of 2n halo nuclei with different partial-wave structures in the
interactions in halo EFT. We have handled s-wave as well as p-wave nc interactions. In the s-wave case, we
have considered a system with one nc interaction as well as a system with two nc interactions. For the s-wave
halos and for the p-wave halos, the concrete formalism, i.e., with representations for the abstract Faddeev
amplitudes and for the overall state, was derived separately. In the future, one might want to calculate 2n

halo nuclei where the nc interaction has yet a different partial-wave structure or where there are more than
two nc interaction channels. Therefore, the aim of this chapter is to formulate a representation of the abstract
Faddeev formalism for 2n halo nuclei that is able to handle arbitrary many two-body interactions in arbitrary
partial waves.

The efforts presented here can be, in some sense, seen as a complement to the publicly available computer
code FaCE [55], which can perform three-body cluster model calculations with interactions in arbitrary partial
waves. While FaCE works with potentials in coordinate space, the methodology presented here aims at the
handling of t-matrices in momentum space. Thereby, the approach presented here is particularly useful for
EFT calculations.
The chapter is structured as follows. First, in section 9.1, the general idea for this formalism is explained.

Then, section 9.2 discusses the limitations of the approach as well as workarounds. In order to be able to
handle interactions in arbitrary partial waves, the exchange kernels have to be derived for that arbitrary
case. That is done in section 9.3. Some auxiliary calculations for that can be found in appendix G.1. For
obtaining the wave functions from the Faddeev amplitudes, also overlaps between arbitrary partial-wave
states of different spectators have to be evaluated. That is done in section 9.4. This section as well as the
previous one (section 9.3) are rather specific. The reader focused on the general idea of this chapter can skip
these two sections. Finally, a conclusion is given in section 9.5.

9.1. General methodology and formalism

The bound state Faddeev formalism, as discussed in section 2.4, is independent of the number of interactions.
Although, in section 2.4, we have denoted the t-matrices of the interactions by ti and thereby have assumed
that for each spectator, there is one interaction in the corresponding subsystem, it is in this formalism no
problem to have multiple interactions in each subsystem. In fact, with the equations for the s-wave 2n halo
nuclei with two nc interactions, we have already extended that formalism. Concretely, this means that we
stick with the equation system for the abstract Faddeev amplitudes |Fi⟩ given by

|Fi⟩ =
∑︂
j ̸=i

G0tj |Fj⟩ , (9.1)
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but i just serves as an index now for all the interactions, their corresponding t-matrices, and the corresponding
Faddeev amplitudes. Moreover, the relations

|ψi⟩ = G0ti |Fi⟩ , (9.2)
|Ψ⟩ =

∑︂
i

|ψi⟩ (9.3)

still hold. Just the number of Faddeev amplitudes |Fi⟩ and Faddeev wave function (/state) components got
bigger.
In other words, the key point is that the notation already in use is extended. The index i is elevated from

being a spectator index to being an index denoting the interactions in their respective partial-wave channels
and the corresponding Faddeev amplitudes. The spectator is then given by S(i). Accordingly, we obtain for
the t-matrices

S(i)⟨p, q; Ω|ti(E)|p′, q′; Ω′⟩S(i) = δΩ,Ω′δΩ,Ωi
gi(p)τi(q;E)gi(p

′)
δ(q − q′)

q2
. (9.4)

In contrast to eq. (2.54), we now have to the left and right of the expression on the left side S(i) instead of i
indicating the spectator. Moreover, the form factors g of the separable interactions are no longer labeled by li,
but by i itself. So, we allow the form factor of the individual interaction not only to depend on the angular
momentum quantum number in the subsystems but also on the interaction itself.

Since we want to compute 2n halo nuclei, the nn subsystem has to be antisymmetrized. If we have for each
ti with a neutron as spectator, i.e., with S(i) = n, another t̃i with S(i) = n fulfilling the relation

t̃i = (−Pnn) ti (−Pnn) , (9.5)

the resulting state is automatically nn-antisymmetric. Pnn denotes the nn permutation operator. A set of
interactions, where this condition is fulfilled for all the interactions with S(i) = n, i.e., for all nc interactions,
can be directly used with the scheme described here. However, if one does so, the number of interactions
with S(i) = n doubles, and also the number of corresponding Faddeev amplitudes does so. Therefore, it
is interesting to include this knowledge about the antisymmetrization in the interactions directly into the
equation system. As a result, one can stick with a lower number of interactions and Faddeev amplitudes. Of
course, there is a price to pay: the structure of the equations becomes more complicated, and we have to be
careful. Equation (9.1) is replaced by the following relation:

|Fi⟩ =
∑︂
j

G0Aijtj |Fj⟩ . (9.6)

It might be a bit surprising that, in contrast to eq. (9.1), the sum over j is now not restricted. However, this
is fixed by Aij. In fact, it was necessary to move that kind of bookkeeping into Aij to allow for a compact
summary of the more complicated situation now. In order to define Aij properly, we need the relation between
|Fĩ⟩ and its corresponding |Fi⟩. Based on the definition of the Faddeev amplitudes (see eq. (2.52)) and on
eq. (9.5), one can show that

|Fĩ⟩ = −Pnn |Fi⟩ (9.7)

holds. Consequently, we define Aij via

Aij :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 for S(j) = c ∧ i = j ,

1 for S(j) = c ∧ i ̸= j ,

1 − Pnn for S(j) = n ∧ i ̸= j ,

−Pnn for S(j) = n ∧ i = j .

(9.8)
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This can be understood in the following way. If i = j and the spectator is c, then we are clearly in the case
where there should be no coupling between the amplitudes. If we still have i = j but the spectator is n, then
we have the coupling between a component and its relative that results from the action of −Pnn. In the original
scheme, this would be the coupling between the components i and ĩ discussed above. Then, there is the case
i ̸= j with the neutron as the spectator. In that case, we have a coupling with the component j and with its
relative j̃. Accordingly, Aij is now 1 − Pnn. Finally, there is the more straightforward case with i ̸= j and the
core as the spectator, where Aij = 1 holds.
After this discussion of the reduction of the number of equations based on antisymmetry on an abstract

level, we show how this can be realized on a concrete level with representations for the Faddeev amplitudes.
The usual way to represent it is via

Fi(q) =
∑︂
j ̸=i

∫︂
dq′ q′2Xij(q, q

′;E)τj(q
′)Fj(q

′) (9.9)

as discussed in section 2.4. We can directly translate the structure introduced with Aij into the concrete form
by modifying the Xij into X̃ij. For the equations themselves, we now have

Fi(q) =
∑︂
j

∫︂
dq′ q′2X̃ij(q, q

′;E)τj(q
′)Fj(q

′) , (9.10)

where in direct analogy to the abstract case, the restriction in the sum was removed. The X̃ij are given by

X̃ij :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 for S(j) = c ∧ i = j ,

Xij for S(j) = c ∧ i ̸= j ,

Xij +X ′
ij for S(j) = n ∧ i ̸= j ,

X ′
ij for S(j) = n ∧ i = j .

(9.11)

The exchange kernel Xij is given by the adaptation of the definition from eq. (2.60) to the more general case
here:

Xij(q, q
′;E) :=

∫︂
dp p2

∫︂
dp′ p′2gi(p)S(i)⟨p, q; Ωi|G0(E)|p′, q′; Ωj⟩S(j) gj(p

′) . (9.12)

As already discussed in the case of the t-matrices, the indices of the g changed because, in this chapter, we
consider the more general case that the form factors of the various interactions can differ arbitrarily. The
exchange kernel X ′

ij differs from the standard one just in the inclusion of −Pnn. We have

X ′
ij(q, q

′;E) :=

∫︂
dp p2

∫︂
dp′ p′2gi(p)S(i)⟨p, q; Ωi|(−Pnn)G0(E)|p′, q′; Ωj⟩S(j) gj(p

′) . (9.13)

It is possible to slightly optimize the expression in eq. (9.11). In the case of i ̸= j, the neutron as the spectator
on the right side, and the core as the spectator on the left side, the nn permutation operator acts in eq. (9.13)
on the left directly on a state with the core as the spectator. This state is an eigenstate of the nn permutation
operator. Using this yields for X̃ij the expression

X̃ij :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for S(j) = c ∧ i = j ,

Xij for S(j) = c ∧ i ̸= j ,(︂
1 + (−1)

l(Ωi)+s(Ωi)
)︂
Xij for S(j) = n ∧ i ̸= j ∧ S(i) = c ,

Xij +X ′
ij for S(j) = n ∧ i ̸= j ∧ S(i) = n ,

X ′
ij for S(j) = n ∧ i = j .

(9.14)
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Now that we have discussed the structure of the Faddeev equations, we have to describe how the wave
function components and the overall wave function can be obtained. The situation is similar to the one with
the Faddeev amplitudes. The abstract equations stay the same, but the number of Faddeev wave function
components is no more three (or two due to using the symmetry from nn-antisymmetrization). The number
of components reflects the overall number of interactions. The abstract equation relating the Faddeev wave
function (/state) components and the Faddeev amplitudes stays the same:

|ψi⟩ = G0ti |Fi⟩ . (9.15)

The overall state is given by, as before,
|Ψ⟩ =

∑︂
i

|ψi⟩ . (9.16)

Also, this time, we want to explicitly use the symmetry induced by nn-antisymmetrization. Therefore we write

|Ψ⟩ =
∑︂
i

G0Biti |Fi⟩ , (9.17)

whereby the definition

Bi =

{︄
1 for S(i) = c ,

1 − Pnn for S(i) = n
(9.18)

holds.
An overall wave function, i.e., a projection of the overall state on a reference state with spectator k, is then

given by

Ψ(k;Ω)(p, q) := k⟨p, q; Ω|Ψ⟩ (9.19)

= G
(k)
0 (p, q;E)

∑︂
i

∫︂
dp′ p′2

∫︂
dq′ q′2k⟨p, q; Ω|Bi|p′, q′; Ωi⟩S(i) gi(p)τi(q

′;E)Fi(q
′) . (9.20)

Results similar to those presented in this section can also be obtained by using only one Faddeev component
per spectator and decomposing each Faddeev component into partial waves.

9.2. Restrictions of the approach and workarounds

In our formulation, we still assume that all the potentials, and thereby also the corresponding t-matrices are
separable and of rank one. This means that the two-body t-matrices fulfill

⟨p, α|tjk(E)|p′, α′⟩ = δα,α′δα,αjk
gjk(p)τjk(E)gjk(p

′) , (9.21)

where α is a multi-index collecting the quantum numbers in the two-body system and αjk is the constant
multi-index specifying the interaction channel. This is opposed to a diagonalized separable two-body t-matrix
of rank n given by

⟨p, α|tjk(E)|p′, α′⟩ = δα,α′δα,αjk

n∑︂
a=1

g
(a)
jk (p)τ

(a)
jk (E)g

(a)
jk (p′) . (9.22)

The three-body embeddings of the two-body t-matrices are obtained in a well-known way. .
These equations show that any diagonalizable separable t-matrix of rank n can be expressed in terms of n

rank-one separable t-matrices. Consequently, our limitation to rank-one separable t-matrices is, in the end, no
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real limitation, as we allow for arbitrary many t-matrices of this type. Nevertheless, one might wonder why
we have this limitation. The reason is that with only rank-one t-matrices, the structure of the equations is
simpler. For instance, imagine how to define (cf. eq. (2.58))

Fi(q) =

∫︂
dp p2gi(p)Fi(p, q) , (9.23)

when each ti has multiple form factors gi, i.e., g(a)i . It seems likely that it is harder. The variant

Fi(q) =

∫︂
dp p2

∑︂
a

g
(a)
i (p)Fi(p, q) (9.24)

would not be a suitable option due to the structure of the equations.
There is another limitation of the approach outlined above that we have to handle. The t-matrix as outlined

in eq. (9.4) is proportional to δΩ,Ωi
. This means that it projects onto a certain set of quantum numbers. So,

it is assumed that all the t-matrices have this projective property, also in the case of the quantum numbers
describing the motion of the third particle, as these are part of Ω. As discussed in section 4.1.1, in the case of
6He, this was no loss of generality due to the partial-wave structure of the system. The same holds for the
s-wave 2n halos if the equivalence statement outlining the circumstances under which the core spin can be
neglected is used. However, we are here interested in developing a methodology and formalism that can be
used for many 2n halos. Therefore, we will investigate how an interaction that projects only in the two-body
subsystem in that it interacts can be expressed as a sum of potentials that project in all quantum numbers.
The latter representation in terms of this sum would then be suitable for use with the developed methodology.
The action of the original potential that projects only in the subsystem on the quantum numbers is given by

|(l, s) j⟩S(i) S(i)⟨(l, s) j| ⊗ 1 . (9.25)

Since we are interested in the description of a state with the overall quantum numbers J and M inserting
projection operators PJ,M in front and after this subsystem projection operator is no loss of generality. We
obtain

PJ,M

(︂
|(l, s) j⟩S(i) S(i)⟨(l, s) j| ⊗ 1

)︂
PJ,M

= PJ,M

∑︂
λ,I

∑︂
m,M

|(l, s) j,m; (λ, σ) I,M⟩S(i) S(i)⟨(l, s) j,m; (λ, σ) I,M|PJ,M (9.26)

=
∑︂
λ,I

∑︂
m,M

CJ,M
j,m,I,M |(l, s) j, (λ, σ) I; J,M⟩S(i) C

J,M
j,m,I,MS(i)⟨(l, s) j, (λ, σ) I; J,M | (9.27)

=
∑︂
λ,I

|(l, s) j (λ, σ) I; J,M⟩S(i) S(i)⟨(l, s) j (λ, σ) I; J,M |
∑︂
m,M

CJ,M
j,m,I,MCJ,M

j,m,I,M (9.28)

=
∑︂
λ,I

|(l, s) j (λ, σ) I; J,M⟩S(i) S(i)⟨(l, s) j (λ, σ) I; J,M | (9.29)

There is no sum over σ since it is the spin of the spectator particle and, thereby, already fixed. Due to the
properties of the underlying Clebsch-Gordan coefficients or Wigner-3j symbols, the sums over I and λ are
not unrestricted. The quantum number I has to obey the relation |J − j| ≤ I ≤ J + j and λ has to obey
|I − σ| ≤ λ ≤ I + σ. So, the projection operator in the subsystem can be expanded as a sum of operators
projecting in all quantum numbers. Accordingly, the t-matrix projecting only in the subsystem can be written
as a sum of t-matrices projecting in all quantum numbers. By “expanding” the t-matrices in that way, the
methodology can also be used for t-matrices projecting only in the subsystem.
The derivations obtained should be suited for the case of interactions in arbitrary partial waves. For that

purpose, we first derive expressions (suitable for implementation in computer code) for the exchange kernel
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Xij for the case of arbitrary partial waves. Then all the ingredients for the Faddeev equations for the amplitudes
as well as the equations themselves, are set up. The second step is to obtain an expression for the overlap
between the different spectators and partial waves, as this overlap is needed for the evaluation of the wave
functions as described in eq. (9.20).

9.3. Generic expressions for the Xij functions

It is useful to obtain the expressions for the Xij in the case of arbitrary partial waves for the different spectator
combinations separately. We start with the case that interaction i has a neutron as the spectator, and interaction
j has the core as the spectator.

9.3.1. The case S(i) = n and S(j) = c

The exchange kernel we want to evaluate has the form

Xij(q, q
′;E) =

∫︂
dp p2

∫︂
dp′ p′2gi(p)G

(n)
0 (p, q;E)gj(p

′)n⟨p, q; Ωi|p′, q′; Ωj⟩c . (9.30)

Note that for the remainder of this subsection, we do not write Ωi and Ωj but Ω and Ω′. The same holds for
the contained quantum numbers. E.g., l should be understood as l(Ωi) and l′ as l(Ωj). This scheme is used to
obtain more easily readable expressions.
The first step in the evaluation is to switch to LS-coupling and to also decouple the spatial and spin parts.

Then the spatial contributions to the overlap and the spin contributions can be evaluated separately. In order
to switch the coupling scheme, we make use of eq. (3.19) and obtain

Xij(q, q
′;E) =

∫︂
dp′ p′2

∫︂
dp′ p′2gi(p)G

(n)
0 (p, q;E)gj(p

′)

×
∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
ML′ ,MS′

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,ML′ ,S′,MS′ n⟨(s, σ)S,MS |(s′, σ′)S′,MS′⟩c
× n⟨p, q; (l, λ)L,ML|p′, q′; (l′, λ′)L′,ML′⟩c (9.31)

=

∫︂
dΩq

∫︂
dΩq′ gi(π1(q

′, q))G
(n)
0 (π1(q

′, q), q;E)gj(π2(q, q
′))

×
∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
ML′ ,MS′

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,ML′ ,S′,MS′ n⟨(s, σ)S,MS |(s′, σ′)S′,MS′⟩c

×
(︂
YL,ML

l,λ (−π1(q
′, q), q)

)︂∗
YL′,ML′
l′,λ′ (π2(q, q

′), q′) . (9.32)

In the expression after the first equality sign, one can clearly recognize the separation of spatial and spin
overlaps. For the second equality, steps towards the evaluation of the second overlap were done. Two
completeness relations of the form

1(spatial) =

∫︂
d3p

∫︂
d3q |p, q⟩k k⟨p, q| (9.33)
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with some spectator k were inserted. One with a neutron as the spectator and one with the core as the
spectator. The overlaps between the partial-wave states and the plane-wave states (with the same spectator)
produced the coupled spherical harmonics according to eq. (3.23). The overlap between the two plane-wave
states with different spectators then caused two Dirac deltas, which were used to eliminate two of the four
integrals stemming from using the completeness relations two times.

The next goal is to evaluate the integrals over the angles of q and q′. In the first step, the coupled spherical
harmonics functions are decoupled, and then the spherical harmonics being functions of combinations of q
and q′ are expanded in terms of coupled spherical harmonics where the two vectors are separate arguments.
These coupled spherical harmonics are then expanded again. In the end, one obtains a sum of spherical
harmonics, where each is only a function of only one of the two vectors. The identity replacing the spherical
harmonics being functions of a combination of the vectors by coupled spherical harmonics with the vectors as
separate arguments is the following:

Yl,m(p+ q) =
∑︂

l1+l2=l

pl1ql2

|p+ q|l

√︄
4πl̂!

l̂1!l̂2!
Y l,m
l1,l2

(p, q) . (9.34)

It can be found in Ref. [49]. By using the described strategy, we obtain(︂
YL,ML

l,λ (−π1(q
′, q), q)

)︂∗
YL′,ML′
l′,λ′ (π2(q, q

′), q′)

=
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′Y

∗
l,m(−π1(q

′, q))Y ∗
λ,µ(q)Yl′,m′(π2(q, q

′))Yλ′,µ′(q′) (9.35)

=
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′Y

∗
λ,µ(q)Yλ′,µ′(q′)

∑︂
l1+l2=l

(−1)
m+l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q)|l

√︄
4πl̂!

l̂1!l̂2!
Y l,−m
l1,l2

(q′, q)

×
∑︂

l′1+l′2=l′

ql
′
1 (q′/2)

l′2

|π2(q, q′)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!
Y l′,m′

l′1,l
′
2
(q, q′) (9.36)

=
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′

∑︂
l1+l2=l

(−1)
m+l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/2)

l′2

|π2(q, q′)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂

m1,m2

∑︂
m′

1,m
′
2

Cl,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
Y ∗
λ,µ(q)Yλ′,µ′(q′)Yl1,m1

(q′)Yl2,m2
(q)Yl′1,m′

1
(q)Yl′2,m′

2
(q′) , (9.37)

where the relation
Y ∗
l,m(−q) = (−1)

m
Yl,−m(−q) = (−1)

m+l
Yl,−m(q) (9.38)

as well as the definitions of the πi given in appendix B.1 were used.
The second step in evaluating the integrals over the angles of q and q′ is to expand all other angular

dependencies from eq. (9.32) (after insertion of eq. (9.37)) in terms of coupled spherical harmonics. For that
purpose, we summarize these dependencies as one function:

f (l,l
′)(q, q′, x) := gi(π1(q

′, q, x))G
(n)
0 (π1(q

′, q, x), q;E)gi(π2(q, q
′, x))

|π1(q′, q, 0)|l

|π1(q′, q, x)|l
|π2(q, q′, 0)|l

′

|π2(q, q′, x)|l
′ , (9.39)

whereby x is given by
x := cos

(︁
θq,q′

)︁
, (9.40)

i.e., it is the cosine of the relative angle between q and q′. Note that there are also not-x-dependent factors
included in the function to make the expression less suppressed at higher momenta and in higher partial
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waves1. As already mentioned, we proceed by expanding this function in Legendre polynomials, which are
written as coupled spherical harmonics:

f (l,l
′)(q, q′, x) =

∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
(︂
Y0,0

l̃,l̃
(q′, q)

)︂∗
f
(l,l′)

l̃
(q, q′) . (9.41)

The single components of this function in this expansion are given by

f
(l,l′)

l̃
(q, q′) =

∫︂
dxPl̃(x)f

(l,l′)(q, q′, x) . (9.42)

Putting the results obtained so far together, we obtain for Xij:

Xij(q, q
′;E) =

∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
ML′ ,MS′

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,ML′ ,S′,MS′ n⟨(s, σ)S,MS |(s′, σ′)S′,MS′⟩c
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′

×
∑︂

l1+l2=l

(−1)
m+l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q, x = 0)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/2)

l′2

|π2(q, q′, x = 0)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
f
(l,l′)

l̃
(q, q′)

∑︂
m1,m2

∑︂
m′

1,m
′
2

∑︂
m̃

Cl,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
C0,0

l̃,m̃,l̃,−m̃

×
∫︂

dΩq

∫︂
dΩq′ Y ∗

λ,µ(q) (−1)
µ′
Y ∗
λ′,−µ′(q′)Yl1,m1

(q′)Yl2,m2
(q)

× Yl′1,m′
1
(q)Yl′2,m′

2
(q′)Y ∗

l̃,m̃
(q′)Y ∗

l̃,−m̃
(q) . (9.43)

Now, we are finally in the discussed situation to do the integral over the four spherical harmonics being
functions of q as well as the integral over the other four spherical harmonics being functions of q′. However,
this is a bit difficult since, in each case, this is an integral over four spherical harmonics.

The equation for the integral over four spherical harmonics can be obtained from the orthonormality relation
of two spherical harmonics by expanding the product of two spherical harmonics in a sum of Clebsch-Gordan
coefficients and a single spherical harmonic. For the latter, the eq. (9) of section 5.6.2 of Ref. [51] is employed.
We obtain ∫︂

dΩq Yl2,m2
Yl′1,m′

1
Y ∗
l̃,−m̃

Y ∗
λ,µ

=

∫︂
dΩq

∑︂
L̃,M̃

√︄
l̂2 l̂′1

4π ˆ̃L
CL̃,0

l′1,0,l2,0
CL̃,M̃

l′1,m
′
1,l2,m2

YL̃,M̃

∑︂
L̃′,M̃ ′

⌜⃓⃓⎷ ˆ̃
lλ̂

4π ˆ̃L
′C

L̃′,0

l̃,0,λ,0
CL̃′,M̃ ′

l̃,−m̃,λ,µ
Y ∗
L̃′,M̃ ′ (9.44)

=
∑︂
L̃,M̃

√︂
l̂2 l̂′1

ˆ̃
lλ̂

4π ˆ̃L
CL̃,0

l′1,0,l2,0
CL̃,0

l̃,0,λ,0
CL̃,M̃

l′1,m
′
1,l2,m2

CL̃,M̃

l̃,−m̃,λ,µ
. (9.45)

We omitted the q argument of the spherical harmonics for brevity.
Applying this relation two times yields for Xij:

Xij(q, q
′;E) =

∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
ML′ ,MS′

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
1While we have not investigated if this is really necessary, this should not do any damage.
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× CJ,M
L,ML,S,MS

CJ,M
L′,ML′ ,S′,MS′ n⟨(s, σ)S,MS |(s′, σ′)S′,MS′⟩c

∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′

×
∑︂

l1+l2=l

(−1)
m+l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q, x = 0)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/2)

l′2

|π2(q, q′, x = 0)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
f
(l,l′)

l̃
(q, q′) (−1)

µ′ ∑︂
L̃,M̃

∑︂
L̃′,M̃ ′

(︃
1

4π

)︃2

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′

ˆ̃L ˆ̃L
′ CL̃,0

l′1,0,l2,0
CL̃,0

l̃,0,λ,0
CL̃′,0

l1,0,l′2,0
CL̃′,0

l̃,0,λ′,0

×
∑︂

m1,m2

∑︂
m′

1,m
′
2

∑︂
m̃

Cl,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
C0,0

l̃,m̃,l̃,−m̃
CL̃,M̃

l′1,m
′
1,l2,m2

CL̃,M̃

l̃,−m̃,λ,µ
CL̃′,M̃ ′

l1,m1,l′2,m
′
2
CL̃′,M̃ ′

l̃,m̃,λ′,−µ′ .

(9.46)

We do some rearrangements to collect some of the Clebsch-Gordan coefficients, whose m-type quantum
numbers are contracted, at the end. We obtain

Xij(q, q
′;E) =

∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
ML′ ,MS′

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,ML′ ,S′,MS′ n⟨(s, σ)S,MS |(s′, σ′)S′,MS′⟩c

×
∑︂

l1+l2=l

(−1)
l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q, x = 0)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/2)

l′2

|π2(q, q′, x = 0)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
f
(l,l′)

l̃
(q, q′)

∑︂
L̃

∑︂
L̃′

(︃
1

4π

)︃2

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′

ˆ̃L ˆ̃L
′ CL̃,0

l′1,0,l2,0
CL̃,0

l̃,0,λ,0
CL̃′,0

l1,0,l′2,0
CL̃′,0

l̃,0,λ′,0

×
∑︂

m1,m2

m′
1,m

′
2

∑︂
m̃

∑︂
m,µ
m′,µ′

∑︂
M̃,M̃ ′

(−1)
m+µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′C

l,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2

× C0,0

l̃,m̃,l̃,−m̃
CL̃,M̃

l′1,m
′
1,l2,m2

CL̃,M̃

l̃,−m̃,λ,µ
CL̃′,M̃ ′

l1,m1,l′2,m
′
2
CL̃′,M̃ ′

l̃,m̃,λ′,−µ′ . (9.47)

Using identities for sums of products of Wigner-3j symbols and results from quantum angular momentum
algebra in general, the expression

A
(L′,ML′ ,L,ML)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)
=∑︂

m1,m2

m′
1,m

′
2

∑︂
m̃

∑︂
m,µ
m′,µ′

∑︂
M̃,M̃ ′

(−1)
m+µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′C

l,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2

× C0,0

l̃,m̃,l̃,−m̃
CL̃,M̃

l′1,m
′
1,l2,m2

CL̃,M̃

l̃,−m̃,λ,µ
CL̃′,M̃ ′

l1,m1,l′2,m
′
2
CL̃′,M̃ ′

l̃,m̃,λ′,−µ′ (9.48)

can be simplified. The result reads

A
(L′,ML′ ,L,ML)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)
=
√︁
l̂′ l̂ ˆ̃L

ˆ̃′
L

1√︂
ˆ̃
l

(−1)
L
δL,L′δML,ML′ (−1)

l1+l′1+l′+λ+l̃

×
∑︂
x

x̂

{︄
L̃′ l x

l2 l′2 l1

}︄{︄
l′ L̃ x

l2 l′2 l′1

}︄⎧⎪⎨⎪⎩
λ′ L l′

l̃ λ L̃

L̃′ l x

⎫⎪⎬⎪⎭ (9.49)
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=
√︁
l̂′ l̂ ˆ̃L

ˆ̃′
L

1√︂
ˆ̃
l

(−1)
L
δL,L′δML,ML′ (−1)

l1+l′1+l′+λ+l̃

×

⎧⎪⎨⎪⎩
l L l′ l′1

λ λ′ l′2 l2
L̃ l̃ L̃′ l1

⎫⎪⎬⎪⎭ (−1)
l′+L̃−L̃′−l (9.50)

=:
√︁
l̂′ l̂ ˆ̃L

ˆ̃′
L

1√︂
ˆ̃
l

(−1)
L
δL,L′δML,ML′ (−1)

l1+l′1+l′+λ+l̃

× Ã
(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)
. (9.51)

When one has to implement this function in a computer program, there might be the difficulty that the
programming library in use does not offer an implementation of Wigner-12j symbols. One can either implement
the Wigner-12j symbol oneself, e.g., as a sum of eight Wigner-3j symbols. Alternatively, one can just implement
the sum over the two Wigner-6j symbols and the Wigner-9j symbol given in eq. (9.49). Using the fact that the
triangle conditions for Wigner-6j symbols hold in j1, j2, j3 as well as in j1, j5, j6, one can restrict the sum over x.
The second statement can be obtained from the invariance of the Wigner-6j symbols under the simultaneous
permutation of upper and lower elements in two of the three columns. While the triangle conditions on x
from the first and the second Wigner-6j symbol provide the same restriction, also in the case of the Wigner-9j
symbol, triangle conditions hold. Two of those are related to x and restrict its range further. Making use of
the triangle conditions, we obtain

A
(L′,ML′ ,L,MLn)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)
=
√︁
l̂′ l̂ ˆ̃L

ˆ̃′
L

1√︂
ˆ̃
l

(−1)
L
δL,L′δML,ML′ (−1)

l1+l′1+l′+λ+l̃

×
min

(︂
L̃′+l,L̃+l′

)︂∑︂
x=max

(︂
|L̃′−l|,|L̃−l′|

)︂ x̂
{︄
L̃′ l x

l2 l′2 l1

}︄{︄
l′ L̃ x

l2 l′2 l′1

}︄⎧⎪⎨⎪⎩
λ′ L l′

l̃ λ L̃

L̃′ l x

⎫⎪⎬⎪⎭ . (9.52)

Now, we use the results obtained so far. First, we write the expression more compactly by making use of the
quantity A and its relation to Ã given in eq. (9.51). Then we make use of the resulting Kronecker symbols to
eliminate the sums over L′ and M ′

L. Moreover, we use properties of the contained Clebsch-Gordan coefficients
to specify the concrete summation boundaries.

Xij(q, q
′;E) =

∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
ML′ ,MS′

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,ML′ ,S′,MS′ n⟨(s, σ)S,MS |(s′, σ′)S′,MS′⟩c

×
∑︂

l1+l2=l

(−1)
l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q, x = 0)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/2)

l′2

|π2(q, q′, x = 0)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂
l̃

2πf
(l,l′)

l̃
(q, q′)

∑︂
L̃

∑︂
L̃′

(︃
1

4π

)︃2√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′ l̂′ l̂CL̃,0

l′1,0,l2,0
CL̃,0

l̃,0,λ,0
CL̃′,0

l1,0,l′2,0
CL̃′,0

l̃,0,λ′,0

× (−1)
L
δL,L′δML,ML′ (−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)
(9.53)

=
∑︂
L,S

∑︂
ML,MS

∑︂
S′

∑︂
MS′

L̂

√︂
ĵÎ Ŝĵ′Î ′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L S′ J

⎫⎪⎬⎪⎭
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× CJ,M
L,ML,S,MS

CJ,M
L,ML,S′,MS′ n⟨(s, σ)S,MS |(s′, σ′)S′,MS′⟩c

×
l∑︂

l1=0

(−1)
l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q, x = 0)|l

√︄
l̂!

l̂1!l̂2!

l′∑︂
l′1=0

ql
′
1 (q′/2)

l′2

|π2(q, q′, x = 0)|l
′

√︄
l̂′!

l̂′1!l̂
′
2!

×
l′1+l2∑︂

L̃=|l′1−l2|

l1+l′2∑︂
L̃′=|l1−l′2|

1

2
CL̃,0

l′1,0,l2,0
CL̃′,0

l1,0,l′2,0

min
(︂
L̃+λ,L̃′+λ′

)︂∑︂
l̃=max

(︂
|L̃−λ|,|L̃′−λ′|

)︂ f (l,l
′)

l̃
(q, q′)

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′ l̂′ l̂CL̃,0

l̃,0,λ,0
CL̃′,0

l̃,0,λ′,0

× (−1)
L
(−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)

⃓⃓⃓⃓
⃓ l2=l−l1
l′2=l′−l′1

(9.54)

We proceed by inserting the result for the spin overlap from appendix G.1.1. Subsequently, we use the
orthonormality of the Clebsch-Gordan coefficients.

Xij(q, q
′;E) =

∑︂
L,S

∑︂
ML,MS

L̂Ŝ

√︂
ĵÎ ĵ′Î ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L S J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L,ML,S,MS
δ
s
(2)
c ,s

(1)
n
δ
σ′,s

(2)
n
δ
s
(1)
c ,σ

(−1)
s(1)n +s(2)n +2σ+s

√
ŝŝ′

{︄
s
(2)
n s

(1)
n s

σ S s′

}︄

×
l∑︂

l1=0

(−1)
l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q, x = 0)|l

√︄
l̂!

l̂1!l̂2!

l′∑︂
l′1=0

ql
′
1 (q′/2)

l′2

|π2(q, q′, x = 0)|l
′

√︄
l̂′!

l̂′1!l̂
′
2!

×
l′1+l2∑︂

L̃=|l′1−l2|

l1+l′2∑︂
L̃′=|l1−l′2|

1

2
CL̃,0

l′1,0,l2,0
CL̃′,0

l1,0,l′2,0

min
(︂
L̃+λ,L̃′+λ′

)︂∑︂
l̃=max

(︂
|L̃−λ|,|L̃′−λ′|

)︂ f (l,l
′)

l̃
(q, q′)

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′ l̂′ l̂CL̃,0

l̃,0,λ,0
CL̃′,0

l̃,0,λ′,0

× (−1)
L
(−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)

⃓⃓⃓⃓
⃓ l2=l−l1
l′2=l′−l′1

(9.55)

=
∑︂
L,S

L̂Ŝ

√︂
ĵÎ ĵ′Î ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L S J

⎫⎪⎬⎪⎭
× δ

s
(2)
c ,s

(1)
n
δ
σ′,s

(2)
n
δ
s
(1)
c ,σ

(−1)
s(1)n +s(2)n +2σ+s

√
ŝŝ′

{︄
s
(2)
n s

(1)
n s

σ S s′

}︄

×
l∑︂

l1=0

(−1)
l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q, x = 0)|l

√︄
l̂!

l̂1!l̂2!

l′∑︂
l′1=0

ql
′
1 (q′/2)

l′2

|π2(q, q′, x = 0)|l
′

√︄
l̂′!

l̂′1!l̂
′
2!

×
l′1+l2∑︂

L̃=|l′1−l2|

l1+l′2∑︂
L̃′=|l1−l′2|

1

2
CL̃,0

l′1,0,l2,0
CL̃′,0

l1,0,l′2,0

min
(︂
L̃+λ,L̃′+λ′

)︂∑︂
l̃=max

(︂
|L̃−λ|,|L̃′−λ′|

)︂ f (l,l
′)

l̃
(q, q′)

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′ l̂′ l̂CL̃,0

l̃,0,λ,0
CL̃′,0

l̃,0,λ′,0

× (−1)
L
(−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)

⃓⃓⃓⃓
⃓ l2=l−l1
l′2=l′−l′1

(9.56)

Note that, due to the orthonormality of the Clebsch-Gordan coefficients, even if we had not started with two
states of the same J and M for the evaluation of the Xij, we would have gotten δJ,J′δM,M ′ lastly.
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Simplifying further yields the final expression

Xij(q, q
′;E) = δ

s
(2)
c ,s

(1)
n
δ
σ′,s

(2)
n
δ
s
(1)
c ,σ

1

2

√︂
ĵÎ ĵ′Î ′

√
ŝŝ′
√︁
l̂′ l̂λ̂λ̂′

×
l∑︂

l1=0

(−1)
l q

′l1 (Aq/(A+ 1))
l2

|π1(q′, q, x = 0)|l

√︄
l̂!

l̂1!l̂2!

l′∑︂
l′1=0

ql
′
1 (q′/2)

l′2

|π2(q, q′, x = 0)|l
′

√︄
l̂′!

l̂′1!l̂
′
2!

×
l′1+l2∑︂

L̃=|l′1−l2|

l1+l′2∑︂
L̃′=|l1−l′2|

CL̃,0
l′1,0,l2,0

CL̃′,0
l1,0,l′2,0

min
(︂
L̃+λ,L̃′+λ′

)︂∑︂
l̃=max

(︂
|L̃−λ|,|L̃′−λ′|

)︂ f (l,l
′)

l̃
(q, q′)

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lCL̃,0

l̃,0,λ,0
CL̃′,0

l̃,0,λ′,0

×
∑︂
L,S

L̂Ŝ

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ s
(2)
n I ′

L S J

⎫⎪⎬⎪⎭
{︄
s
(2)
n s

(1)
n s

σ S s′

}︄

× (−1)
s(1)n +s(2)n +2σ+s

(−1)
L
(−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)

⃓⃓⃓⃓
⃓ l2=l−l1
l′2=l′−l′1

. (9.57)

9.3.2. The case S(i) = c and S(j) = n

This case can be directly obtained from the previous case by deriving that the well-known symmetry relation
for the Xij also holds in this more abstract case. In the following, we derive the symmetry relation in our
generalized formalism:

Xji(q, q
′;E) =

∫︂
dp p2

∫︂
dp′ p′2gj(p)gi(p

′)S(j)⟨p, q; Ωj |G0(E)|p′, q′; Ωi⟩S(i) (9.58)

=

∫︂
dp p2

∫︂
dp′ p′2gj(p)gi(p

′)S(i)⟨p
′, q′; Ωi|G0(E)|p, q; Ωj⟩S(j) (9.59)

=

∫︂
dp p2

∫︂
dp′ p′2gi(p)gj(p

′)S(i)⟨p, q
′; Ωi|G0(E)|p′, q; Ωj⟩S(j) (9.60)

= Xij(q
′, q;E) . (9.61)

The first and the last equality result from using the definitions. In the case of the second equality, we used
that the matrix elements of the free Green’s function are real. The third equality was obtained by renaming
the integral variables.

This means that whenever we have to evaluate Xij(q, q
′;E) with S(i) = c and S(j) = n, we can make use of

Xij(q, q
′;E) = Xji(q

′, q;E). In the sense of calling the left index i and the right one j, the latter has S(i) = n

and S(j) = c. And for that case, we have an expression from the last subsection.

9.3.3. The case X ′
ij with S(i) = n and S(j) = n

In this subsection, we evaluate the X ′
ij with S(i) = n and S(j) = n. The definition given in eq. (9.13) applied

to the current spectators reads

X ′
ij(q, q

′;E) :=

∫︂
dp p2

∫︂
dp′ p′2gi(p)n⟨p, q; Ωi|(−Pnn)G0(E)|p′, q′; Ωj⟩n gj(p

′) . (9.62)

As before, for simplicity, we will use Ω as a synonym for Ωi, Ω′ as a synonym for Ωj , and do the corresponding
with the single quantum numbers.
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As we did in section 9.3.1, we start by recoupling from jI coupling to LS coupling:

−X ′
ij(q, q

′;E) =

∫︂
dp′ p′2

∫︂
dp′ p′2gi(p)G

(n)
0 (p, q;E)gj(p

′)

×
∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
M ′

L,M ′
S

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,M ′
L,S′,M ′

S
n⟨(s, σ)S,MS |P(spin)

nn |(s′, σ′)S′,M ′
S⟩n

× n⟨p, q; (l, λ)L,ML|P(spatial)
nn |p′, q′; (l′, λ′)L′,M ′

L⟩n (9.63)

=

∫︂
dΩq

∫︂
dΩq′ gi(π3(q

′, q))G
(n)
0 (π3(q

′, q), q;E)gj(π3(q, q
′))

×
∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
M ′

L,M ′
S

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,M ′
L,S′,M ′

S
n⟨(s, σ)S,MS |P(spin)

nn |(s′, σ′)S′,M ′
S⟩n

×
(︂
YL,ML

l,λ (π3(q
′, q), q)

)︂∗
YL′,M ′

L

l′,λ′ (π3(q, q
′), q′) . (9.64)

Again, the procedure is analog to the one from section 9.3.1. In the end, we want to evaluate the integral
over spherical harmonics. In the first step, we express the coupled spherical harmonics in terms of single
spherical harmonics. Some of the latter have linear combinations of the vectors over whose angles we integrate
over as arguments. We rewrite the spherical harmonics of linear combinations in terms of coupled spherical
harmonics, whereby each argument is just one of our “integration vectors”. Finally, we rewrite all of the newly
emerged coupled spherical harmonics in terms of spherical harmonics. In this process, new sums emerge:

(︂
YL,ML

l,λ (π3(q
′, q), q)

)︂∗
YL′,ML′
l′,λ′ (π3(q, q

′), q′)

=
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,M ′

L

l′,m′,λ′,µ′Y
∗
l,m(π3(q

′, q))Y ∗
λ,µ(q)Yl′,m′(π3(q, q

′))Yλ′,µ′(q′) (9.65)

=
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,M ′

L

l′,m′,λ′,µ′Y
∗
λ,µ(q)Yλ′,µ′(q′)

∑︂
l1+l2=l

(−1)
m q′l1 (q/(A+ 1))

l2

|π3(q′, q)|l

√︄
4πl̂!

l̂1!l̂2!
Y l,−m
l1,l2

(q′, q)

×
∑︂

l′1+l′2=l′

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!
Y l′,m′

l′1,l
′
2
(q, q′) (9.66)

=
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,M ′

L

l′,m′,λ′,µ′

∑︂
l1+l2=l

(−1)
m q′l1 (q/(A+ 1))

l2

|π3(q′, q)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂

m1,m2

∑︂
m′

1,m
′
2

Cl,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
Y ∗
λ,µ(q)Yλ′,µ′(q′)Yl1,m1

(q′)Yl2,m2
(q)Yl′1,m′

1
(q)Yl′2,m′

2
(q′) , (9.67)

where the relation
Y ∗
l,m(q) = (−1)

m
Yl,−m(q) (9.68)

was used. For reexpressing the spherical harmonics with linear combinations of vectors as arguments, we
used eq. (9.34).
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As before, all terms introducing angular dependencies which are not directly spherical harmonics are
collected in a separate function:

f (l,l
′)(q, q′, x) := gi(π3(q

′, q, x))G
(n)
0 (π3(q

′, q, x), q;E)gj(π3(q, q
′, x))

|π3(q′, q, 0)|l

|π3(q′, q, x)|l
|π3(q, q′, 0)|l

′

|π3(q, q′, x)|l
′ . (9.69)

As done before, not-x-dependent factors are included to make the expression less suppressed at higher
momenta and higher partial waves.
In order to have all angular dependences in the form of (coupled) spherical harmonics, we expand this

expression in terms of Legendre polynomials, which are written as coupled spherical harmonics:

f (l,l
′)(q, q′, x) =

∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
(︂
Y0,0

l̃,l̃
(q′, q)

)︂∗
f
(l,l′)

l̃
(q, q′) . (9.70)

The single components of this function in this expansion are given by

f
(l,l′)

l̃
(q, q′) =

∫︂
dxPl̃(x)f

(l,l′)(q, q′, x) . (9.71)

On this basis, we obtain for X ′
ij:

X ′
ij(q, q

′;E) = −
∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
M ′

L,M ′
S

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,M ′
L,S′,M ′

S
n⟨(s, σ)S,MS |P(spin)

nn |(s′, σ′)S′,MS′⟩n

×
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′

∑︂
l1+l2=l

(−1)
m q′l1 (q/(A+ 1))

l2

|π3(q′, q, x = 0)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′, x = 0)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
f
(l,l′)

l̃
(q, q′)

∑︂
m1,m2

∑︂
m′

1,m
′
2

∑︂
m̃

Cl,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
C0,0

l̃,m̃,l̃,−m̃

×
∫︂

dΩq

∫︂
dΩq′ Y ∗

λ,µ(q) (−1)
µ′
Y ∗
λ′,−µ′(q′)Yl1,m1

(q′)Yl2,m2
(q)Yl′1,m′

1
(q)Yl′2,m′

2
(q′)Y ∗

l̃,m̃
(q′)Y ∗

l̃,−m̃
(q) .

(9.72)

To evaluate each of the two angular integrals, we use eq. (9.45). This yields:

X ′
ij(q, q

′;E) = −
∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
ML′ ,MS′

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,M ′
L,S′,M ′

S
n⟨(s, σ)S,MS |P(spin)

nn |(s′, σ′)S′,M ′
S⟩n

×
∑︂
m,µ

∑︂
m′,µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′

∑︂
l1+l2=l

(−1)
m q′l1 (q/(A+ 1))

l2

|π3(q′, q, x = 0)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′, x = 0)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
f
(l,l′)

l̃
(q, q′) (−1)

µ′ ∑︂
L̃,M̃

∑︂
L̃′,M̃ ′

(︃
1

4π

)︃2

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′

ˆ̃L ˆ̃L
′ CL̃,0

l′1,0,l2,0
CL̃,0

l̃,0,λ,0
CL̃′,0

l1,0,l′2,0
CL̃′,0

l̃,0,λ′,0

×
∑︂

m1,m2

∑︂
m′

1,m
′
2

∑︂
m̃

Cl,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
C0,0

l̃,m̃,l̃,−m̃
CL̃,M̃

l′1,m
′
1,l2,m2

CL̃,M̃

l̃,−m̃,λ,µ
CL̃′,M̃ ′

l1,m1,l′2,m
′
2
CL̃′,M̃ ′

l̃,m̃,λ′,−µ′ .

(9.73)
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As we also did in section 9.3.1, we make some rearrangements to collect the Clebsch-Gordan coefficients
that are contracted via sums over the m quantum numbers.

X ′
ij(q, q

′;E) = −
∑︂
L,S

∑︂
ML,MS

∑︂
L′,S′

∑︂
ML′ ,MS′

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L′,M ′
L,S′,M ′

S
n⟨(s, σ)S,MS |P(spin)

nn |(s′, σ′)S′,MS′⟩n

×
∑︂

l1+l2=l

q′l1 (q/(A+ 1))
l2

|π3(q′, q, x = 0)|l

√︄
4πl̂!

l̂1!l̂2!

∑︂
l′1+l′2=l′

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′, x = 0)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

×
∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
f
(l,l′)

l̃
(q, q′)

∑︂
L̃

∑︂
L̃′

(︃
1

4π

)︃2

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′

ˆ̃L ˆ̃L
′ CL̃,0

l′1,0,l2,0
CL̃,0

l̃,0,λ,0
CL̃′,0

l1,0,l′2,0
CL̃′,0

l̃,0,λ′,0

×
∑︂

m1,m2

m′
1,m

′
2

∑︂
m̃

∑︂
m,µ
m′,µ′

∑︂
M̃,M̃ ′

(−1)
m+µ′

CL,ML

l,m,λ,µC
L′,ML′
l′,m′,λ′,µ′C

l,−m
l1,m1,l2,m2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
C0,0

l̃,m̃,l̃,−m̃

× CL̃,M̃
l′1,m

′
1,l2,m2

CL̃,M̃

l̃,−m̃,λ,µ
CL̃′,M̃ ′

l1,m1,l′2,m
′
2
CL̃′,M̃ ′

l̃,m̃,λ′,−µ′ (9.74)

The last line is just the function A given in eq. (9.52) evaluated at the following position:

A
(L′,M ′

L,L,ML)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)
. (9.75)

Inserting the expression of A in terms of Ã and making use of the of Kronecker deltas yields

−X ′
ij(q, q

′;E) =
∑︂
L,S

∑︂
ML,MS

∑︂
S′

∑︂
MS′

L̂

√︂
ĵÎ Ŝĵ′Î ′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L S′ J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L,ML,S′,MS′ n⟨(s, σ)S,MS |P(spin)
nn |(s′, σ′)S′,MS′⟩n

×
l∑︂

l1=0

q′l1 (q/(A+ 1))
l2

|π3(q′, q, x = 0)|l

√︄
l̂!

l̂1!l̂2!

l′∑︂
l′1=0

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′, x = 0)|l
′

√︄
l̂′!

l̂′1!l̂
′
2!

×
l′1+l2∑︂

L̃=|l′1−l2|

l1+l′2∑︂
L̃′=|l1−l′2|

1

2
CL̃,0

l′1,0,l2,0
CL̃′,0

l1,0,l′2,0

min
(︂
L̃+λ,L̃′+λ′

)︂∑︂
l̃=max

(︂
|L̃−λ|,|L̃′−λ′|

)︂ f (l,l
′)

l̃
(q, q′)

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′ l̂′ l̂CL̃,0

l̃,0,λ,0
CL̃′,0

l̃,0,λ′,0

× (−1)
L
(−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)

⃓⃓⃓⃓
⃓ l2=l−l1
l′2=l′−l′1

. (9.76)

By inserting the result for the spin-space matrix element of the permutation operator from appendix G.1.2,
we obtain:

−X ′
ij(q, q

′;E) =
∑︂
L,S

∑︂
ML,MS

L̂Ŝ

√︂
ĵÎ ĵcÎc

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ I ′

L S J

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ,M

L,ML,S,MS
(−1)

2σ+2s(1)n +2s(2)n
√
ŝŝ′

{︄
s
(1)
n s

(2)
n s

σ S s′

}︄
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×
l∑︂

l1=0

q′l1 (q/(A+ 1))
l2

|π3(q′, q, x = 0)|l

√︄
l̂!

l̂1!l̂2!

l′∑︂
l′1=0

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′, x = 0)|l
′

√︄
l̂′!

l̂′1!l̂
′
2!

×
l′1+l2∑︂

L̃=|l′1−l2|

l1+l′2∑︂
L̃′=|l1−l′2|

1

2
CL̃,0

l′1,0,l2,0
CL̃′,0

l1,0,l′2,0

min
(︂
L̃+λ,L̃′+λ′

)︂∑︂
l̃=max

(︂
|L̃−λ|,|L̃′−λ′|

)︂ f (l,l
′)

nn;l̃
(q, q′)

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′ l̂′ l̂CL̃,0

l̃,0,λ,0
CL̃′,0

l̃,0,λ′,0

× (−1)
L
(−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)

⃓⃓⃓⃓
⃓ l2=l−l1
l′2=l′−l′1

(9.77)

=
∑︂
L,S

L̂Ŝ

√︂
ĵÎ ĵ′Î ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ I ′

L S J

⎫⎪⎬⎪⎭
× (−1)

2σ+2s(1)n +2s(2)n
√
ŝŝ′

{︄
s
(1)
n s

(2)
n s

σ S s′

}︄

×
l∑︂

l1=0

q′l1 (q/(A+ 1))
l2

|π3(q′, q, x = 0)|l

√︄
l̂!

l̂1!l̂2!

l′∑︂
l′1=0

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′, x = 0)|l
′

√︄
l̂′!

l̂′1!l̂
′
2!

×
l′1+l2∑︂

L̃=|l′1−l2|

l1+l′2∑︂
L̃′=|l1−l′2|

1

2
CL̃,0

l′1,0,l2,0
CL̃′,0

l1,0,l′2,0

min
(︂
L̃+λ,L̃′+λ′

)︂∑︂
l̃=max

(︂
|L̃−λ|,|L̃′−λ′|

)︂ f (l,l
′)

l̃
(q, q′)

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lλ̂λ̂′ l̂′ l̂CL̃,0

l̃,0,λ,0
CL̃′,0

l̃,0,λ′,0

× (−1)
L
(−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)

⃓⃓⃓⃓
⃓ l2=l−l1
l′2=l′−l′1

. (9.78)

In the second step, we used an orthonormality relation for Clebsch-Gordan coefficients. Again, even if we
had not started with two states of the same J and M for the evaluation of the X ′

ij, we would have gotten
δJ,J′δM,M ′ .
Simplifying further yields

X ′
ij(q, q

′;E) =
1

2

√︂
ĵÎ ĵ′Î ′

√
ŝŝ′
√︁
l̂′ l̂λ̂λ̂′

×
l∑︂

l1=0

q′l1 (q/(A+ 1))
l2

|π3(q′, q, x = 0)|l

√︄
l̂!

l̂1!l̂2!

l′∑︂
l′1=0

ql
′
1 (q′/(A+ 1))

l′2

|π3(q, q′, x = 0)|l
′

√︄
l̂′!

l̂′1!l̂
′
2!

×
l′1+l2∑︂

L̃=|l′1−l2|

l1+l′2∑︂
L̃′=|l1−l′2|

CL̃,0
l′1,0,l2,0

CL̃′,0
l1,0,l′2,0

min
(︂
L̃+λ,L̃′+λ′

)︂∑︂
l̃=max

(︂
|L̃−λ|,|L̃′−λ′|

)︂ f (l,l
′)

l̃
(q, q′)

√︂
l̂1 l̂′1 l̂2 l̂

′
2
ˆ̃
l
ˆ̃
lCL̃,0

l̃,0,λ,0
CL̃′,0

l̃,0,λ′,0

×
∑︂
L,S

L̂Ŝ

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ I ′

L S J

⎫⎪⎬⎪⎭
{︄
s
(1)
n s

(2)
n s

σ S s′

}︄

× (−1)
2σ+2s(1)n +2s(2)n (−1)

L+1
(−1)

l1+l′1+l′+λ
Ã

(L)

(l1,l2,l′1,l
′
2,l̃,l,λ,l

′,λ′,L̃,L̃′)

⃓⃓⃓⃓
⃓ l2=l−l1
l′2=l′−l′1

. (9.79)
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9.3.4. The case Xij with S(i) = n and S(j) = n

Based on the definition given in eq. (9.12), we obtain in this case

Xij(q, q
′;E) =

∫︂
dp p2

∫︂
dp′ p′2gi(p)n⟨p, q; Ωi|G0(E)|p′, q′; Ωj⟩n gj(p

′) (9.80)

= δΩi,Ωj

δ(q − q′)

q′2

∫︂
dp p2gi(p)gj(p)G

(n)
0 (p, q;E) . (9.81)

The delta distribution in q − q′ might seem problematic. But once this expression is inserted in the Faddeev
equations for the Faddeev amplitudes, there is an integral in q′ so that this delta distribution can be directly
evaluated. The calculation for the case S(i) = S(j) = c works analog.

9.4. Generic expressions for the overlaps

For the calculation of wave functions, we need to evaluate expressions of the following form∫︂
dp′ p′2

∫︂
dq′ q′2S(j)⟨p, q; Ω|p

′, q′; Ω′⟩S(i) f(p
′, q′) , (9.82)

which involve a partial-wave basis overlap between different spectators.
In the first step, we go to LS coupling so that we can dissect this expression in sums over spin and spatial

overlaps, whereby each overlap can then be evaluated separately:∫︂
dp′ p′2

∫︂
dq′ q′2S(j)⟨p, q; Ω|p

′, q′; Ω′⟩S(i) f(p
′, q′)

=
∑︂

L,S,ML,MS

∑︂
L′,S′,M ′

L,M ′
S

√︂
ĵÎL̂Ŝĵ′Î ′L̂′Ŝ′

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J ′

⎫⎪⎬⎪⎭
CJ,M

L,ML,S,MS
CJ′,M ′

L′,M ′
L,S′,M ′

S
S(j)⟨(s, σ)S,MS |(s′, σ′)S′,M ′

S⟩S(i)∫︂
dp′ p′2

∫︂
dq′ q′2S(j)⟨p, q; (l, λ)L,ML|p′, q′; (l′, λ′)L′,M ′

L⟩S(i) f(p
′, q′) . (9.83)

For the purely spatial expression in the last line, we do an auxiliary calculation:

If =

∫︂
dp′ p′2

∫︂
dq′ q′2S(j)⟨p, q; (l, λ)L,ML|p′, q′; (l′, λ′)L′,M ′

L⟩S(i) f(p
′, q′)

=

∫︂
dΩp

∫︂
dΩq

∫︂
d3p′

∫︂
d3q′

(︂
YL,ML

l,λ (p, q)
)︂∗

YL′,M ′
L

l′,λ′ (p′, q′)f(p′, q′)S(j)⟨p, q|p
′, q′⟩S(i) (9.84)

=

∫︂
dΩp

∫︂
dΩq

(︂
YL,ML

l,λ (p, q)
)︂∗

YL′,M ′
L

l′,λ′ (κjip(p, q),κjiq(p, q))f(κjip((p, q)), κjiq((p, q))) (9.85)

=

∫︂
dΩp

∫︂
dΩq

∑︂
m,µ,m′,µ′

CL,ML

l,m,λ,µC
L′,M ′

L

l′,m′,λ′,µ′ (Yl,m(p)Yλ,µ(q))
∗
Yl′,m′(κjip(p, q))Yλ′,µ′(κjiq(p, q))

× f(κjip((p, q)), κjiq((p, q))) (9.86)

=
∑︂

m,µ,m′,µ′

CL,ML

l,m,λ,µC
L′,M ′

L

l′,m′,λ′,µ′

∫︂
dΩp

∫︂
dΩq (Yl,m(p)Yλ,µ(q))

∗

×
∑︂

l′1+l′2=l′

(ajipp)
l′1 (bjipq)

l′2

|κjip(p, q)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!
Y l′,m′

l′1,l
′
2
(p, q)

×
∑︂

λ′
1+λ′

2=λ′

(ajiqp)
λ′
1 (bjiqq)

λ′
2

|κjiq(p, q)|λ
′

√︄
4πλ̂′!

λ̂′1!λ̂
′
2!
Yλ′,µ′

λ′
1,λ

′
2
(p, q)f(κjip((p, q)), κjiq((p, q))) , (9.87)
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whereby the definitions of the coefficients ajik and bjik (with k ∈ {p, q}) are given by

κjip(p, q) =: ajipp + bjipq , (9.88)
κjiq(p, q) =: ajiqp + bjiqq . (9.89)

As in the previous section, we expanded spherical harmonics with linear combinations of vectors as arguments
in terms of coupled spherical harmonics, whereby each argument is just one vector. Next, we introduce the
function

F
(︁
l′1,l

′
2;l

′)︁
jik (p, q) :=

(ajikp)
l′1 (bjikq)

l′2

|κjiq(p, q, x = 0)|l
′

√︄
4πl̂′!

l̂′1!l̂
′
2!

(9.90)

Proceeding with the previous calculation, one obtains

If =
∑︂

m,µ,m′,µ′

CL,ML

l,m,λ,µC
L′,M ′

L

l′,m′,λ′,µ′

∑︂
l′1+l′2=l′

F
(︁
l′1,l

′
2;l

′)︁
jip (p, q)

∑︂
λ′
1+λ′

2=λ′

F
(︁
λ′
1,λ

′
2;λ

′)︁
jiq (p, q)

∑︂
µ′
1,µ

′
2,m

′
1,m

′
2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
Cλ′,µ′

λ′
1,µ

′
1,λ

′
2,µ

′
2

×
∫︂

dΩp

∫︂
dΩq (Yl,m(p)Yλ,µ(q))

∗
Yl′1,m′

1
(p)Yl′2,m′

2
(q)Yλ′

1,µ
′
1
(p)Yλ′

2,µ
′
2
(q)

⃓⃓⃓⃓
κjip(p, q, x = 0)

κjip(p, q)

⃓⃓⃓⃓l′
×
⃓⃓⃓⃓
κjiq(p, q, x = 0)

κjiq(p, q)

⃓⃓⃓⃓λ′

f(κjip((p, q)), κjiq((p, q))) . (9.91)

In order to be able to evaluate the angular integrals, we expand the expression depending on the relative
angle in terms of Legendre polynomials. For that purpose, we first introduce the definition

g
(l′,λ′)
ji (p, q, x) :=

⃓⃓⃓⃓
κjip(p, q, x = 0)

κjip(p, q)

⃓⃓⃓⃓l′ ⃓⃓⃓⃓
κjiq(p, q, x = 0)

κjiq(p, q)

⃓⃓⃓⃓λ′

f(κjip((p, q)), κjiq((p, q))) . (9.92)

The series expansion of this function is given by

g
(l′,λ)
ji (p, q, x) =

∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
(︂
Y0,0

l̃,l̃
(p, q)

)︂∗
g
(l′,λ′)

ji;l̃
(p, q) , (9.93)

g
(l′,λ)

ji;l̃
(p, q) :=

∫︂
dxPl̃(x)g

(l′,λ′)
ji (p, q, x) . (9.94)

Thereby, we obtain for our auxiliary calculation

If =
∑︂

m,µ,m′,µ′

CL,ML

l,m,λ,µC
L′,M ′

L

l′,m′,λ′,µ′

∑︂
l′1+l′2=l′

F
(︁
l′1,l

′
2;l

′)︁
jip (p, q)

∑︂
λ′
1+λ′

2=λ′

F
(︁
λ′
1,λ

′
2;λ

′)︁
jiq (p, q)

∑︂
µ′
1,µ

′
2,m

′
1,m

′
2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
Cλ′,µ′

λ′
1,µ

′
1,λ

′
2,µ

′
2

×
∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
g
(l′,λ)

ji;l̃
(p, q)

∑︂
m̃

C0,0

l̃,m̃,l̃,−m̃

×
∫︂

dΩp

∫︂
dΩq (Yl,m(p))

∗
(︂
Yl̃,m̃(p)

)︂∗
Yl′1,m′

1
(p)Yλ′

1,µ
′
1
(p) (Yλ,µ(q))

∗
(︂
Yl̃,−m̃(q)

)︂∗
Yl′2,m′

2
(q)Yλ′

2,µ
′
2
(q) . (9.95)

Using the techniques explained in the last section, the integrals in the last line yield

∑︂
L̃,M̃

√︂
ˆ̃
ll̂l̂′1λ̂

′
1

4π ˆ̃L
CL̃,0

l,0,l̃,0
CL̃,0

l′1,0,λ
′
1,0
CL̃,M̃

l,m,l̃,m̃
CL̃,M̃

l′1,m
′
1,λ

′
1,µ

′
1

∑︂
L̃′,M̃ ′

√︂
λ̂
ˆ̃
ll̂′2λ̂

′
2

4π ˆ̃L′
CL̃′,0

λ,0,l̃,0
CL̃′,0

l′2,0,λ
′
2,0
CL̃′,M̃ ′

λ,µ,l̃,−m̃
CL̃′,M̃ ′

l′2,m
′
2,λ

′
2,µ

′
2
. (9.96)
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Using this result and performing some rearrangements, we obtain for If the expression

If =
∑︂

l′1+l′2=l′

F
(︁
l′1,l

′
2;l

′)︁
jip (p, q)

∑︂
λ′
1+λ′

2=λ′

F
(︁
λ′
1,λ

′
2;λ

′)︁
jiq (p, q)

∑︂
µ′
1,µ

′
2,m

′
1,m

′
2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
Cλ′,µ′

λ′
1,µ

′
1,λ

′
2,µ

′
2

×
∑︂
l̃

2π

√︂
ˆ̃
l (−1)

l̃
g
(l′,λ)

ji;l̃
(p, q)

∑︂
L̃

√︂
ˆ̃
ll̂l̂′1λ̂

′
1

4π ˆ̃L

∑︂
L̃′

√︂
λ̂
ˆ̃
ll̂′2λ̂

′
2

4π ˆ̃L′
CL̃,0

l,0,l̃,0
CL̃,0

l′1,0,λ
′
1,0
CL̃′,0

λ,0,l̃,0
CL̃′,0

l′2,0,λ
′
2,0

∑︂
m̃

C0,0

l̃,m̃,l̃,−m̃

×
∑︂

M̃,M̃ ′

∑︂
m,µ,m′,µ′

CL,ML

l,m,λ,µC
L′,M ′

L

l′,m′,λ′,µ′C
L̃,M̃

l,m,l̃,m̃
CL̃′,M̃ ′

λ,µ,l̃,−m̃

×
∑︂

µ′
1,µ

′
2,m

′
1,m

′
2

Cl′,m′

l′1,m
′
1,l

′
2,m

′
2
Cλ′,µ′

λ′
1,µ

′
1,λ

′
2,µ

′
2
CL̃,M̃

l′1,m
′
1,λ

′
1,µ

′
1
CL̃′,M̃ ′

l′2,m
′
2,λ

′
2,µ

′
2
. (9.97)

The evaluation of the sums over the m quantum numbers of the Clebsch-Gordan coefficients in the last two
lines results in

δL,L′δML,M ′
L

ˆ̃L
ˆ̃′
L
√︁
l̂′λ̂′

(︂
ˆ̃
l
)︂−1/2

(−1)
l′1+l′2+λ′

1+λ′
2+l+l′+λ′+l̃+L̃′

{︄
L L̃ L̃′

l̃ λ l

}︄⎧⎪⎨⎪⎩
L̃′ l′2 λ′2
L̃ l′1 λ′1
L l′ λ′

⎫⎪⎬⎪⎭ . (9.98)

We insert this into I and obtain

If =
∑︂

l′1+l′2=l′

F
(︁
l′1,l

′
2;l

′)︁
jip (p, q)

∑︂
λ′
1+λ′

2=λ′

F
(︁
λ′
1,λ

′
2;λ

′)︁
jiq (p, q)

×
∑︂
l̃

1

2
g
(l′,λ)

ji;l̃
(p, q)

∑︂
L̃,L̃′

ˆ̃
l

√︂
l̂λ̂l̂′1 l̂

′
2λ̂

′
1λ̂

′
2 l̂

′λ̂′CL̃,0

l,0,l̃,0
CL̃′,0

λ,0,l̃,0
CL̃,0

l′1,0,λ
′
1,0
CL̃′,0

l′2,0,λ
′
2,0

(−1)
l′1+l′2+λ′

1+λ′
2+l+l′+λ′+L̃′

× δL,L′δML,M ′
L

{︄
L L̃ L̃′

l̃ λ l

}︄⎧⎪⎨⎪⎩
L̃′ l′2 λ′2
L̃ l′1 λ′1
L l′ λ′

⎫⎪⎬⎪⎭ . (9.99)
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By inserting this result into eq. (9.83), we obtain∫︂
dp′ p′2

∫︂
dq′ q′2S(j)⟨p, q; Ω|p

′, q′; Ω′⟩S(i) f(p
′, q′)

=
∑︂

L,S,ML,MS

∑︂
S′,M ′

S ,L′,M ′
L

√︂
ĵÎ Ŝĵ′Î ′Ŝ′L̂

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L′ S′ J ′

⎫⎪⎬⎪⎭
× CJ,M

L,ML,S,MS
CJ′,M ′

L′,M ′
L,S′,M ′

S
S(j)⟨(s, σ)S,MS |(s′, σ′)S′,M ′

S⟩S(i)

×
∑︂

l′1+l′2=l′

F
(︁
l′1,l

′
2;l

′)︁
jip (p, q)

∑︂
λ′
1+λ′

2=λ′

F
(︁
λ′
1,λ

′
2;λ

′)︁
jiq (p, q)

×
∑︂
l̃

1

2
g
(l′,λ)

ji;l̃
(p, q)

∑︂
L̃,L̃′

ˆ̃
l

√︂
l̂λ̂l̂′1 l̂

′
2λ̂

′
1λ̂

′
2 l̂

′λ̂′CL̃,0

l,0,l̃,0
CL̃′,0

λ,0,l̃,0
CL̃,0

l′1,0,λ
′
1,0
CL̃′,0

l′2,0,λ
′
2,0

× (−1)
l′1+l′2+λ′

1+λ′
2+l+l′+λ′+L̃′

δL,L′δML,M ′
L

{︄
L L̃ L̃′

l̃ λ l

}︄⎧⎪⎨⎪⎩
L̃′ l′2 λ′2
L̃ l′1 λ′1
L l′ λ′

⎫⎪⎬⎪⎭ (9.100)

= δJ,J′δM,M ′

∑︂
L,S

√︂
ĵÎ ĵ′Î ′ŜL̂

⎧⎪⎨⎪⎩
l s j

λ σ I

L S J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
l′ s′ j′

λ′ σ′ I ′

L S J

⎫⎪⎬⎪⎭
× S(j)⟨(s, σ)S,MS |(s′, σ′)S′,M ′

S⟩S(i)

×
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l′1+l′2=l′

F
(︁
l′1,l

′
2;l

′)︁
jip (p, q)

∑︂
λ′
1+λ′

2=λ′

F
(︁
λ′
1,λ

′
2;λ

′)︁
jiq (p, q)

×
∑︂
l̃

1

2
g
(l′,λ)

ji;l̃
(p, q)

∑︂
L̃,L̃′

ˆ̃
l

√︂
l̂λ̂l̂′1 l̂

′
2λ̂

′
1λ̂

′
2 l̂

′λ̂′CL̃,0

l,0,l̃,0
CL̃′,0

λ,0,l̃,0
CL̃,0

l′1,0,λ
′
1,0
CL̃′,0

l′2,0,λ
′
2,0

× (−1)
l′1+l′2+λ′

1+λ′
2+l+l′+λ′+L̃′

δL,L′δML,M ′
L

{︄
L L̃ L̃′

l̃ λ l

}︄⎧⎪⎨⎪⎩
L̃′ l′2 λ′2
L̃ l′1 λ′1
L l′ λ′

⎫⎪⎬⎪⎭ . (9.101)

For the second equality, we used that the spin overlap is proportional to δS,S′δMS ,M ′
S
and otherwise independent

of MS. The spin overlap can be evaluated by making use of appendix G.1.1. There, the overlap between
neutron and core as spectators is given. The inverse order can be obtained by using ⟨a|b⟩ = (⟨b|a⟩)∗ and the
fact that the overlap is real.

9.5. Conclusion and outlook

In the previous chapters, we have used the Faddeev formalism for obtaining bound states. We had either
one or, in the case of 11Li, up to two interaction channels per spectator. In this chapter, we have discussed
how the Faddeev formalism can be used in the case that there are arbitrarily many interaction channels per
spectator. Our approach is limited to the case that the separable t-matrices are of rank one and that they
project in all quantum numbers. However, we have discussed that instead of one rank-n t-matrix, one can
use n rank-one t-matrices which the proposed methodology is able to handle. For the case that the desired
t-matrix projects only in the subsystem in that it interacts, we have also proposed a workaround. This t-matrix
can be represented as a sum of t-matrices that project in all quantum numbers. Thereby, it can be recast into
a form suitable for this methodology. The code built onto this proposal should be able to handle interactions
in arbitrary interaction channels. We derived expressions for the exchange kernels for the case of arbitrary
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partial waves that are ready for implementation. By expressing four integrals (two over polar angles and
two over azimuthal angles) in terms of sums over recoupling coefficients and only one integral, we are able
to significantly reduce the numerical effort also in this general case. Moreover, we discussed how the wave
function can be obtained. We calculated the necessary partial-wave basis overlap with different spectators,
also for the case of arbitrary partial waves. This adaptation of the Faddeev formalism can be used for future
calculations of two-neutron halo nuclei in halo EFT that have a different partial-wave structure than the typical
s-wave systems or than 6He with its p-wave interaction. It is also useful for the case where there is more than
one interaction channel per spectator. We validated this formalism against the calculations of 11Li (with two
nc interaction channels) and 6He presented in the previous chapters.
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10. Summary and outlook

In this work, we studied observables related to reactions involving two-neutron halo nuclei in halo effective field
theory. We calculated the E1 strength distribution parameterizing the cross-section of Coulomb dissociation
for 11Li and for 6He. Moreover, we obtained the neutron-neutron (nn) relative-energy distribution after the
knockout of the halo’s core out of 6He. In each case, we put special emphasis on the accurate inclusion of
the final-state interactions, which have a significant influence on the final spectrum. While in the case of the
6He(p, p′α)nn reaction, due to kinematical suppressions, only the nn FSI is relevant at leading order, in the
case of the E1 breakup of 11Li also nc FSI is important at leading order (LO). Therefore, for the latter case, we
developed a perturbative scheme for including multiple different final-state interactions while conserving
unitarity. In the case of 6He(p, p′α)nn, the nn final-state interaction enables an important application of this
reaction beyond understanding halo nuclear physics. Through the nn FSI, there is a significant dependence
on the nn scattering length. This allows the deduction of the scattering length by fitting the theoretical
distribution parameterized by this length to experimental data. Moreover, we investigated the nn relative-
energy distribution as an observable for determining the universality of different 2n s-wave halo nuclei. We
found that a universal description of the distributions of these nuclei is possible. For the description of the
ground state, the nn and the nc interactions can even be put in the unitarity limit. In the following, we
summarize the main findings of the different parts and give an outlook.

The starting point for our investigations is an accurate description of the initial states’ main parts for these
reactions, which are given by the halo nuclei. We are confronted with two different types of 2n halo nuclei in
the studies, s-wave as well as p-wave. Since so far in the halo EFT studies of s-wave halo nuclei, the core spin
has not been explicitly included, we worked on a formulation taking it into account. When the core spin is
included, instead of one, there are then two partial-wave channels for the s-wave nc interaction: the channel
where the core spin J and the neutron spin of 1/2 couple to J − 1/2 and the channel where they couple to
J +1/2. While we set up the equations which can handle arbitrary rank-one separable interactions in each case,
we analyzed the special case that the interaction is equal in both channels in detail. Analytically, we could
show that the calculation without the core spin explicitly taken into account is equivalent to a calculation with
the core spin present and equal interactions in both channels. In our numerical studies, we could confirm this
result. Moreover, we investigated the specialties of the solution structure in this case. Finally, we also analyzed
the partial-wave structure of the overall wave function and computed different partial-wave components of
it. Despite the fact that all interactions are only s-wave, different partial-wave components are on that level
contributing due to recoupling effects. We found that in the case of 11Li, higher partial-wave components are
highly suppressed.

While in the case of the s-wave halos, the structure description is used for predictions of observables, which
are then compared to experimental data, our application of the description of 6He is different. For the final
relative-energy distribution of 6He also a prediction is made. But there is the fundamental difference that
this prediction will, at least not directly, be validated (or falsified) in comparison with the experimental data.
Rather, it will be used to extract another quantity from the experimental data, the nn scattering length.
Therefore, we put special effort into assessing the accuracy of the description. For that, we benchmarked
the description of 6He at the example of the ground-state nn relative-momentum distribution using model
calculations. We employed well-established cluster models with local potentials as well as Yamaguchi cluster
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models, which have separable momentum-space interactions. The comparison with the local cluster models
showed agreement within the EFT’s uncertainty band. The ability to provide this uncertainty quantification
is, also in regard to the application to that reaction, one of the important advantages of the EFT. Moreover,
in the momentum region relevant to the experiment, the agreement was especially good. In additional
comparisons, we are able to analyze the differences in detail and to develop a deeper understanding of the
next-to-leading-order corrections of halo EFT for 6He. Also, in regard to the scattering-length experiment, an
next-to-leading-order (NLO) description is highly desirable. Thereby this analysis will be helpful for future
work in that direction.

As a first reaction study, we applied the EFT description of the 2n halo nuclei to the calculation of the
E1 strength distribution parameterizing the Coulomb dissociation cross section. Due to their large spatial
extension, halo nuclei display a characteristic enhancement of the low-energy Coulomb dissociation cross
section. This also improves the experimental measurability of this observable and makes it an ideal testing
ground to analyze the understanding of halo physics. We calculated the strength distribution of 11Li and
investigated the role of final-state interactions, the interactions happening after the breakup. By making
use of the Møller scattering operators, we developed a scheme to include multiple final-state interactions
perturbatively while conserving unitarity. For applying this scheme up to the third order in the t-matrix, we
made analytic investigations and were able to identify common building blocks simplifying the derivation
and implementation of the necessary expressions. By changing the choice of included final-state interactions
and the overall order, we were able to analyze the importance of the different final-state interactions and
the convergence structure. We found that nn FSI is the most important FSI. We folded our results also with
the detector resolution and compared them to experimental data from RIKEN [54]. We observed good
agreement within the leading-order uncertainty bands of the EFT. Finally, we compared our results also
with the EFT of Hongo and Son [64], which is constructed for the special case that the nc interaction can be
neglected. The comparison confirms the expectation of Hongo and Son that their EFT is not ideal for 11Li. In
the formalism employed by Hongo and Son, the inclusion of FSIs is, in our understanding, not as transparent
as in other formalisms. By extracting the wave function from the E1 strength distribution of Hongo and Son
and comparing it with the wave function directly calculated according to the Feynman rules of their theory,
we were able to clarify this. We found that in their E1 strength distribution, the effects of nn FSI are already
included. Moreover, we computed the E1 strength of the p-wave halo nucleus 6He. Since there are difficulties
with the normalization in halo EFT in this case, we calculated solely the shape in the EFT. We also compared
it with a Yamaguchi model and found good agreement. Moreover, we worked on systemizing the Yamaguchi
model so that it comes with EFT-like uncertainties. For that purpose, we adjusted the interactions such that
we were able to tune in the Yamaguchi model the values of the generated NLO terms of the t-matrices. That
enabled a variation of NLO terms and, thereby, uncertainty estimates. In that way, we were able to calculate
also the values of the distribution in addition to the shape with quantified uncertainties. In this case of the E1

distribution of 6He, only nn FSI, which is the most important one, was taken into account.
In the future, it would be interesting to apply the perturbative scheme for FSIs, which was successfully

tested with 11Li, also to 6He. In the case of 6He, there are also multiple theory predictions for the E1 strength
available, while the latest experimental data [53] are more than 20 years old. There is a general tension
between the theory predictions (see, e.g., [57, 65, 66]) and this older experimental data. To confront these
theory distributions with newer experimental data with better detector resolution would be very interesting.
Since the halo EFT description of the E1 distribution of 11Li worked well, we are quite optimistic regarding a
comparison between our 6He results for the E1 distribution and future experimental data. Another research
direction might be a full calculation of all FSIs for 11Li in halo EFT and a comparison with the results from the
perturbative scheme.
In the next step, the nn relative-energy distribution following the reaction 6He(p, p′α)nn was calculated.

To obtain a rigorous treatment, two-potential scattering theory was applied. The two potentials are the
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production potential and the FSI potential. The production potential is given by the interaction with the
proton causing the knockout. The analysis showed that an explicit inclusion of the knockout potential for
the actual calculations of the final distribution is not necessary. Moreover, it was derived that an effective
three-body treatment of this four-body reaction is possible without implying any additional approximations.
The proton causing the knockout does not need to be included explicitly. We also reviewed and analyzed
multiple techniques for calculating nn FSI. We investigated the approximative technique of so-called FSI
enhancement factors and developed another factor. We obtained the final distribution with FSI based on an
enhancement factor as well as with FSI based on an exact calculation. While the latter approach involves
no additional approximations, we also employed the enhancement factor for comparison. In both cases, we
found a significant sensitivity of the shape of the nn distribution for relative energies smaller 1MeV on the
scattering length ann. Changing ann by 2 fm results in a change in the ratio of the peak height around roughly
100 keV and the tail of the distribution in that region by about 10%. Variations of ann by 0.2 fm cause changes
in that ratio parameterizing the shape by circa 1%. Thereby, the distribution is indeed highly sensitive to the
variation of the scattering length. Moreover, we analyzed the dependence on the nn effective range parameter.
The calculations showed that the distribution has only a very low sensitivity to this parameter. This means
that the scattering length can be cleanly extracted. We also showed that the dependence on the scattering
length is almost purely caused by FSI. The sensitivity of the ground-state distribution on the variation of ann
by 2 fm is below 0.5%. In this reaction, 6He mainly serves as a neutron source. Nevertheless, to accurately
predict the shape of the final distribution, an accurate description of the ground state is necessary.
For our main calculations, we used the dominating wave function component in the s-wave. Based on

the cluster model, which has more interaction channels than LO halo EFT, we investigated the influence
of additional partial-wave components. We performed a consistent calculation by including nn FSI in the
corresponding partial wave. The nn interaction parameters in that partial wave were estimated based on np
phase shift data. We found that while already at the ground-state level, the higher partial waves are suppressed,
at the level of the final distribution, the suppression is stronger. This is because the nn interactions in the
higher partial waves are weaker. In the experimentally relevant region, the higher partial wave contributions
to the distribution are suppressed by at least a factor of 30. Furthermore, we calculated the final distribution
in the local cluster model as well as in a halo-EFT-inspired model up to relative energies of 70MeV. We found
that at these high energies still the s-wave component of the distribution is most relevant. Moreover, these
calculations showed that at high energies, the sensitivity on ann is weak. The distribution up to these high
energies also had another application. It was used to benchmark the calibration run based on this 6He-reaction
of the recent tetraneutron experiment at RIKEN [37].

In the future, it would be interesting to develop the power counting for the reaction part in detail. This is a
power counting in the typical low-momentum scales related to the structure or to experimental cuts in the
analysis and the high transfer momentum of the reaction. This would enable NLO calculations of the reaction.
We used the experience with nn distributions from knockout reactions for studying the universality of

the s-wave 2n halo nuclei 11Li, 14Be, 17B, 19B, and 22C. With an analytic investigation, we showed how these
distributions can be expressed in terms of dimensionless variables. Employing this parameterization of the nn
distribution, we found that the ground-state distributions display significant universality. Concretely, if plotted
as a function of the dimensionless parameters, the distributions of the different nuclei are almost on top of each
other. In this parameterization, thereby the distribution obtained for one nucleus can be used as a universal
prediction for the other nuclei. Moreover, we found that a more universal description is possible in terms of a
calculation where the nn, as well as the nc, interaction are put in the unitarity limit. On the ground-state
level, the deviations from this description were below 20% for most of the halo nuclei. We also found a way in
order to a priori estimate for which of the considered halos the universal prediction will work better or worse.
It is based on the values of the two-neutron separation energies and the nc virtual state energies. Based on the
approximative technique of FSI enhancement factors, we extended the universal description to the level of the
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final distribution. Also, here the deviations were mostly below 20%.
In the future, one could compare the universal prediction with NLO halo EFT calculations to get a more

precise impression how well it works. Moreover, it would be very interesting to compare the halo EFT curves
as well as the universal curve with experimental data for the nn distributions of these nuclei. The distributions
of the different nuclei were obtained in the regime where non-neutron-neutron FSIs are suppressed. They
could also be studied in the case where the suppression is absent. One could check if the universality of the
final distribution is still given in the case that multiple FSIs are present. Since also the nc interactions of these
halos are near the unitarity limit, it could be that still a universal description is possible.

Finally, a formalism was developed, and equations were derived for performing Faddeev calculations with
arbitrary many interactions in arbitrary partial waves. In that process, for each partial-wave t-matrix, a
Faddeev component is introduced. Additionally, the limitations of the methodology and possible workarounds
were discussed. Due to the flexibility in the employed interaction, the computer implementation of this
approach might be helpful for future calculations of 2n halo nuclei with different partial-wave structures in
the interaction or NLO descriptions, where more interaction channels are present.
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A. Theoretical foundations

A.1. Faddeev equations with three-body forces

In this appendix, we explain how three-body forces can be included in the quantum mechanical picture of the
Faddeev equations. We loosely follow Refs. [49, 50]. The Schrödinger equation with three-body force reads(︄

H0 +
∑︂
i

Vi +
∑︂
i

V
(i)
3

)︄
|Ψ⟩ = E3 |Ψ⟩ . (A.1)

In order to obtain a decomposition of the full state satisfying

|Ψ⟩ =
∑︂
i

|ψi⟩ (A.2)

with three components, the following definition of the components can be used:

|ψi⟩ := G0

(︂
Vi + V

(i)
3

)︂
|Ψ⟩ . (A.3)

The Faddeev equations are now

|ψi⟩ = G0ti
∑︂
j ̸=i

|ψj⟩+ (1 +G0ti)G0V
(i)
3

∑︂
j

|ψj⟩ . (A.4)

Again, new Faddeev equations can be defined with

G0ti |Fi⟩ =: |ψi⟩ . (A.5)

While the definition is unchanged, the equation system they have to obey changes:

|Fi⟩ =
∑︂
j ̸=i

G0tj |Fj⟩+
(︂
1 + (G0ti)

−1
)︂
G0V

(i)
3

∑︂
j

G0tj |Fj⟩ . (A.6)

An alternative to this approach is the introduction of a new Faddeev wave function component related to
the three-body force.
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B. Ground state of two-neutron halo nuclei

B.1. Transformation functions for Jacobi momenta

We list the transformation functions for Jacobi momenta introduced by Göbel et al. in Ref. [30]. The definition
can be also found in eqs. (3.13) and (3.14).
The expressions for the κijk functions read

κcnp(p, q) = −π1(q,π2(p,−q)) , (B.1)
κcnq(p, q) = π2(p,−q) (B.2)
κncp(p, q) = π2(q,−π1(p, q)) , (B.3)
κncq(p, q) = −π1(p, q) . (B.4)

The κ′
ijk functions are

κ′
cnp(p, q) = −π1(q,−π2(p, q)) , (B.5)

κ′
cnq(p, q) = −π2(p, q) , (B.6)

κ′
nnp(p, q) = π3(q,π3(p,−q)) , (B.7)

κ′
nnq(p, q) = π3(p,−q) . (B.8)

The definitions π1(p, q) = p+ qA/(A+ 1), π2(p, q) = p+ q/2, and π3(p, q) = p+ q/(A+ 1) hold.

B.2. Auxiliary calculations for the equivalence statement

The aim is to prove the relations given in eqs. (3.56) and (3.57). In the first step, the recoupling coefficients
defined in eqs. (3.54) and (3.55) are expressed in terms of Wigner-6j symbols so that the properties of these
can be used:

c
(σ)
1 =

√
2σ + 1

√
2J

{︄
1/2 J J − 1/2

J 1/2 σ

}︄
, (B.9)

c
(σ)
2 =

√
2σ + 1

√
2J + 2

{︄
1/2 J J + 1/2

J 1/2 σ

}︄
. (B.10)
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On this basis we verify a first relation:

(︂
c
(σ)
1

)︂2
+
(︂
c
(σ)
2

)︂2
=

(︄
√
2σ + 1

√
2J

{︄
1/2 J J − 1/2

J 1/2 σ

}︄)︄2

+

(︄
√
2σ + 1

√
2J + 2

{︄
1/2 J J + 1/2

J 1/2 σ

}︄)︄2

(B.11)

=
∑︂
j12

(2σ + 1) (2j12 + 1)

{︄
1/2 J j12
J 1/2 σ

}︄{︄
1/2 J j12
J 1/2 σ

}︄
(B.12)

= 1 , (B.13)

where we used the relation

∑︂
j12

(2j12 + 1) (2j23 + 1)

{︄
j1 j2 j12
j3 j j23

}︄{︄
j1 j2 j12
j3 j j′23

}︄
= δj23,j′23 (B.14)

from Ref. [51].
From the results eq. (B.11) and the fact that the coupling coefficients are real, we conclude the equation⃓⃓⃓

ξ(σ;J,M)
c

⟩︂
c
= c

(σ)
1

⃓⃓⃓
ξ(−;J,M)
n

⟩︂
n
+ c

(σ)
2

⃓⃓⃓
ξ(+;J,M)
n

⟩︂
n
. (B.15)

We proceed by verifying the next identity:

1∑︂
σ=0

(︂
c
(σ)
i

)︂2
=

1∑︂
σ=0

(︄
√
2σ + 1

√︂
2j

(i)
12 + 1

{︄
1/2 J j

(i)
12

J 1/2 σ

}︄)︄2

(B.16)

=

1∑︂
σ=0

(2σ + 1)
(︂
2j

(i)
12 + 1

)︂{︄1/2 J j
(i)
12

J 1/2 σ

}︄{︄
1/2 J j

(i)
12

J 1/2 σ

}︄
(B.17)

= 1 , (B.18)

where the relation

∑︂
j23

(2j12 + 1) (2j23 + 1)

{︄
j1 j2 j12
j3 j j23

}︄{︄
j1 j2 j′12
j3 j j23

}︄
= δj12,j′12 (B.19)

from Ref. [51] was used.
Finally, we obtain

1∑︂
σ=0

(︂
c
(σ)
1 c

(σ)
2

)︂
=

1∑︂
σ=0

√
2σ + 1

√︂
2j

(1)
12 + 1

{︄
1/2 J j

(1)
12

J 1/2 σ

}︄
√
2σ + 1

√︂
2j

(2)
12 + 1

{︄
1/2 J j

(2)
12

J 1/2 σ

}︄
(B.20)

=

√︂
2j

(1)
12 + 1

√︂
2j

(2)
12 + 1

1∑︂
σ=0

(2σ + 1)

{︄
1/2 J j

(1)
12

J 1/2 σ

}︄{︄
1/2 J j

(2)
12

J 1/2 σ

}︄
(B.21)

= 0 , (B.22)

where we employed eq. (B.19) in combination with the fact that j(1)12 ̸= j
(2)
12 holds here.
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C. Structure of 6He and ground-state neutron-neutron
distributions

This appendix contains additional explanations and derivations for chapter 4. Parts of this appendix have
been published in this or in similar form in Phys. Rev. C 104, 024001 (2021) [56].

C.1. Helpful identity for spherical Bessel function

We derive an identity for spherical Bessel functions that is helpful in deriving the relation for obtaining the
expection value

⟨︁
r2nn
⟩︁
from the ground-state distribution ρ(pnn). This identity is applied in section 4.5.

The differential equation fulfilled by the spherical Bessel function jl(x) can be written as

∂2xjl(x) = − 2

x
∂xjl(x)−

(︃
1− l (l + 1)

x2

)︃
jl(x) . (C.1)

By using this identity and the chain rule for differentiation we obtain

∂2pjl(pr) = r2∂2prjl(pr) (C.2)

= −2

p
r∂prjl(pr)−

(︃
r2 − l (l + 1)

p2

)︃
jl(pr) (C.3)

= −2

p
∂pjl(pr)−

(︃
r2 − l (l + 1)

p2

)︃
jl(pr) . (C.4)

That implies
r2jl(pr) = −∂2pjl(pr)−

2

p
∂pjl(pr) +

l (l + 1)

p2
jl(pr) . (C.5)

C.2. Removal of the 2P1/2 nα interaction in FaCE

Wedescribe here how the central and the spin-orbit potential depths are tuned in order to turn the nα interaction
in the 2P1/2 partial wave off while leaving the one in the 2P3/2 partial wave unchanged. We make use of the fact
that the central and spin-orbit potentials have the same range parameter. Using L ·S = 1

2

(︂
(L+ S)

2 −L2 − S2
)︂

we obtain for the combination of central and spin-orbit potential in 2P1/2 and 2P3/2

V (2P3/2)(r) =

(︃
1

2
V̄

(1)
SO + V̄ (1)

c

)︃
exp

(︁
−r2/

(︁
a21
)︁)︁
, (C.6)

V (2P1/2)(r) =
(︂
−V̄ (1)

SO + V̄ (1)
c

)︂
exp

(︁
−r2/

(︁
a21
)︁)︁
, (C.7)

where we omitted the index specifying the potential type in the range parameter, since this parameter is
identical for both types of potentials. These equations make it clear that in order to turn the interaction
in 2P1/2 off, one need only set V̄ (1)

SO = V̄
(1)
c . By adopting V̄ (1)

c = −35.45MeV, one then obtains an unchanged
overall depth in the 2P3/2 channel and zero potential in the 2P1/2 channel.
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C.3. FaCE settings and specialities

C.3.1. Conversion of momenta

As FaCE uses a different momentum convention, we have to convert the momenta to our convention. The
conversion formula between the momenta in our convention, i.e. pc and qc, and the FaCE momenta, i.e. p̃c
and q̃c, is given by

pc = p̃c/
√
2 , (C.8)

qc = q̃c/
√︁
(Ac + 2) / (2Ac) , (C.9)

where Ac is the core-to-neutron mass ratio. We approximate it with 4.

C.3.2. FaCE and postprocessing parameters

When checking the numerical and the model space convergence of the FaCE results, several aspects must
be taken into account. First, there is a parameter Kmax for the FaCE program. It determines the maximum
K for which χS

K,l is calculated. FaCE has also additional numerical parameters such as the step width and
maximum value of the hyperradius for tabulating the χS

K,l(ρ). The calculation of the momentum distribution
from the FaCE results also has model space and numerical integration parameters which have to be checked
in the convergence analysis. One parameter is Ktrunc, that is ≤ Kmax and determines which wave-function
components are used in the calculation of the momentum distribution. The convergence of the FaCE in all
these parameters is checked for each calculation.

Table C.1 lists the used values for the most important computational parameters of FaCE and the subsequent
calculations. Two different parameter sets corresponding to two different accuracy levels were used in order
to estimate the computational uncertainties of the results. The relative deviation between the results obtained
with lower and the higher accuracy level (sp vs. hp) for LGM1, LGM2, LGM3, LGM1SR, and LGM2SR is
smaller than 2%. (Note that not all parameters which were varied are listed in the table.)

172



Table C.1.: This table lists the different values for the parameters which were used to determine whether the results are
numerically converged. These parameters are the ones of FaCE or subsequent calculations for obtaining the
ground-state nn relative-momentum distribution. The one parameter set is labeled as "sp" (standard precision),
the other one is labeled as "hp" (high precision). Integration and interpolation boundaries in momentum space are
generically denoted with pmin and pmax. Note that this table is not complete, but the most important computational
parameters are contained in it.

sp hp

FaCE

Kmax 18 27
lmax 12 18
NJac 40 60
NLag 30 60
rr 0.3 0.225

nbmax 30 60

FaCE output:
table of χ(S)

K,l(ρ)

ρmax [fm] 34.0 51.425
∆ρ [fm] 0.25 0.187

obtaining the wave
function

Ktrunc 16 24

interpolation of
χ

(S)
K,l(p)

pmin [MeV] 0.001 0.0001
pmax [MeV] 710 1057.5
Nmesh points 71 141

obtaining the
distribution:
q-integration

pmin [MeV] 0.001 0.0001
pmax [MeV] 478 829
Nmesh points 192 443
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D. E1 strength distributions of 2n halo nuclei

This appendix provides some supplementary information to chapter 5 related to comparing theoretical E1

distributions with experimental data, which are affected by the finite detector resolution. In order to make
an accurate comparison between theoretical and experimental data, the theoretical data have to be folded
with the detector resolution. How this can be done in the context of the experimental E1 strength data from
Ref. [54] is discussed in appendix D.2. In that process, also virtual photon numbers are relevant. The most
important aspects for that are reviewed in the preceding appendix D.1. Finally, appendix D.3 discusses how
an E1 strength distribution can be adjusted once the value for the two-neutron separation energy S2n changes.
Since the calculation of the E1 strength distribution from the experimental data for the cross-section depends
on S2n, the E1 distribution has to be adjusted in the case of changing S2n.
Moreover, results for matrix elements related to the E1 strength calculations with FSI are given in appen-

dices D.4 and D.5. The derivations are given in appendices D.6 and D.7.

D.1. Virtual photon numbers

In this section, we summarize some important relations in the context of virtual photon numbers following
mainly Ref. [101].
The virtual photon number density as a function of the impact parameter b and the photon energy Eγ is

given by

nE1(b, Eγ) =
Z2α

π2

ζ2

b2

(︂ c
v

)︂2 [︁
K2

1 (ζ) + γ−2K2
0 (ζ)

]︁
, (D.1)

whereby the Ki are the modified Bessel functions of the second kind and

ζ =
Eγb

γv
(D.2)

holds. The charge number of the target emitting the virtual photons is denoted by Z = ZT , α is the fine
structure constant, v the velocity of the nucleus, and γ the corresponding Lorentz factor.
The transition from the number density to the number itself, in the notation of Ref. [101], is given by

NπL(Eγ) = 2π

∫︂ ∞

bmin

db bnπL(Eγ , b) = 2π

∫︂ θmax

0

dθ sin θ
dnπL

dΩ
. (D.3)

The relation between the different densities is

nπL(Eγ , b) =
4

a20ϵ
4

dnπL

dΩ
. (D.4)

If one wants to use the angle θ instead of the impact parameter b as parameterization, one can use the formula

b = a0 cot (θ/2) . (D.5)
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The parameter a0 is given by
a0 =

ZpZT e
2

m0v2
(D.6)

or, more generally, by
a0 =

ZpZT e
2

2Ekin
. (D.7)

A unit system is used where
e =

√
α
√
ℏc (D.8)

holds1.
Moreover,

ϵ =

√︄
1 +

b2

a20
(D.9)

is used.

D.2. Taking finite detector resolution into account

Not only the energy resolution but also the angular resolution of a detector is finite. Since the overall photon
number is already an angular integral, it is already affected by this finite angular resolution, and has to be
recalculated.

ÑE1(Eγ) = 2π

∫︂ θmax

0

dθ sin θ
dñE1

dΩ
= 2π

∫︂ θmax

0

dθ sin θ

∫︂ θmax

0

dθ′
dnE1

dΩ
g(θ − θ′) , (D.10)

whereby g(θ) describes the finite angular resolution and is given by

g(θ) =
1√

2π∆θ
e
−θ2/

(︂√
2∆θ

)︂2

. (D.11)

To determine how the E1 distribution has to be folded with detector resolution, one has to take into account
that experimentally, this distribution is obtained from the measured differential cross section according to

d2σ

dΩdE
=

16π3

9ℏc
dNE1(θ, Eγ)

dΩ

dB(E1)

dE
, (D.12)

whereby the notation of Ref. [54] is used. For brevity, we introduce the constant cσB = 16π3/ (9ℏc).
What can be experimentally measured is the cross-section folded with the detector responses in the energy

and in the angle. It can be described by

d2σ̃

dΩdE
=

∫︂
dθ′
∫︂

dE′ d2σ

dΩ′ dE′ f(E,E
′)g(θ − θ′) (D.13)

where the function g describes the finite angular resolution and the function f the finite energy resolution.
Taking the angular integral of this relation yields

dσ̃

dE
=

∫︂
dΩ

d2σ̃

dΩdE
=

∫︂
dΩ

∫︂
dθ′
∫︂

dE′ d2σ

dΩ′ dE′ f(E,E
′)g(θ − θ′) (D.14)

=

∫︂
dΩ

∫︂
dθ′
∫︂

dE′ cσB
dNE1(θ

′, Eγ)

dΩ′
dB(E1)

dE′ f(E,E′)g(θ − θ′) (D.15)

=

∫︂
dE′ cσBÑE1(Eγ)

dB(E1)

dE′ f(E,E′) (D.16)

1This can be seen from the explanation of eq. (1) of Ref. [101].
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whereby it was possible to absorb the folding with the angular response purely into a folded virtual photon
number function ÑE1. The definitions of the virtual photon number function and the folded version are

NE1(Eγ) =

∫︂
dΩ

dNE1(θ, Eγ)

dΩ
(D.17)

ÑE1(Eγ) =

∫︂
dΩ

∫︂
dθ′

dNE1(θ
′, Eγ)

dΩ
g(θ − θ′) . (D.18)

With eq. (D.16), we now have a relation between the folded differential cross section and the “pure” E1

strength distribution. If we combine this relation with the relation between the folded differential cross section
and the folded E1 strength distribution, we can obtain a closed expression for the calculation of the folded E1

distribution dB̃(E1) / dE from the “pure” one dB(E1) / dE. However, for the latter relation, multiple variants
are thinkable:

dσ̃

dE
= cσBNE1(Eγ)

dB̃(E1)

dE
, (D.19)

dσ̃

dE
= cσBÑE1(Eγ)

dB̃(E1)

dE
, (D.20)

dσ̃

dE
= cσB

dB̃(E1)

dE

∫︂
dE′ ÑE1(Eγ)f(E,E

′) . (D.21)

According to Ref. [54]2, the middle variant is used. This yields for the folded E1 strength distribution

dB̃(E1)

dE
=

1

ÑE1(S2n + E)

∫︂
dE′ ÑE1(S2n + E′)

dB(E1)

dE′ f(E,E′) (D.22)

Regarding the energy resolution, the explanation3 states that the following detector response function is
used:

f(E,E′) =
1√

2π× 0.17
√
MeV

√
E
e−

(︁
E′−E

)︁2/(︁2×0.172MeV×E
)︁
, (D.23)

whereby one can understand E′ as the true energy and E as the measured energy (see, e.g., eq. (D.16)). The
distribution describing the finite resolution is centered around the measured energy.

The ambiguity regarding the choice between eqs. (D.19) to (D.21) could be avoided by directly comparing
differential cross sections. However, the cross-section data shown in Ref. [54] have a larger angular "cutoff"
than the E1 data (5° instead of 1.46°), so that these data might have larger nuclear contributions.

D.3. Reextracting the E1 distribution from the experimental data

As can be seen from eq. (D.20), the extraction of the E1 distribution from the experimental data depends on
the virtual photon number function and due to the relation Eγ = E + S2n also on the two-neutron separation
energy of the halo. As described in Ref. [54] they used for S2n of 11Li a value of 300 keV, while in the meantime
the literature value became 369.3 keV ± 0.6 keV [100].

2The corresponding explanation in that reference reads: “Applying this relation, with the photon number integrated over the selected
angular range, the resulting B(E1) distribution is shown by the solid circles in Fig. 3. In this procedure, the integration included
the experimental angular resolution of 0.44° (1σ).”

3“where the energy resolution (1σ) of ∆E = 0.17
√
ErelMeV in dσ/dErel is taken into consideration.”
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We try to adjust the E1 distribution data for this. The starting point are the relations

dB(old)(E1)

dE
=

dσ̃

dE

[︂
cσBÑE1(E + 300 keV)

]︂−1

, (D.24)

dB(new)(E1)

dE
=

dσ̃

dE

[︂
cσBÑE1(E + 369 keV)

]︂−1

. (D.25)

On this basis, one obtains
dB(new)(E1)

dE
=

dB(old)(E1)

dE

ÑE1(E + 300 keV)

ÑE1(E + 369 keV)
. (D.26)

The result can be seen in fig. D.1.
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Figure D.1.: The original E1 strength distribution of 11Li from Ref. [54] based on S2n = 300 keV in comparison with one
based on S2n = 369 keV.

It can be seen that mainly in the region E < 1MeV, there are significant differences between the E1

distribution based on the older value for S2n and the one based on the newer value. The latter one has a peak
height that is very roughly 10% larger.

In order to understand the differences between the two distributions better, one can also look at the virtual
photon numbers as function of E instead as function of Eγ directly. These functions, as well as their quotient,
are shown in fig. D.2.
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Figure D.2.: In the left panel, the (angularly) folded virtual photon numbers are shown for different S2n. In the right panel,
the quotient of these two functions is shown.
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We observe that, indeed, the quotient, which is directly used in the transformation between the distributions
(see eq. (D.26)), is largest in the low-energy region. Moreover, since in this region, the values of the E1

distribution are the largest, the absolute differences between the distributions will be there the largest.

D.4. Explicit relations for A(1)

In the following we give equations suitable for evaluating A(1), which is defined in eq. (5.67). Parts of this
section have been published in this or in similar form in Phys. Rev. C 107, 014617 (2023) [52].
The expression reads

A(1)

l̄,λ̄;µ;s̄,M
(p, q) = −

√︁
2l̄ + 1

√︁
2λ̄+ 1

(︄
λ̄ 1 l̄

0 0 0

)︄
√
π

(︃
pf̄λ̄(p, q)−

1

2
qf̄l̄(p, q)

)︃
×

c

⟨︃(︃
s̄,

3

2

)︃
3

2
,M

⃓⃓⃓⃓
Pξn

⃓⃓⃓⃓
ξ(M)
c

⟩︃
c

, (D.27)

whereby the round brackets with six arguments denote a Wigner-3j symbol. Equations for f̄ and its ingredients
are given below:

f̄(p, q, x := cos (θp,q)) :=
1

κcnq(p, q, x)

∫︂
dp̃′ p̃′2g0(κcnp(p, q, x))τnc(κcnp(p, q, x))g0(p̃

′)G
(nc)
0

(︁
p̃′;Eκcnp(p,q,x)

)︁
×
√
π

(︃
−p̃′ ˜︁f1(p̃′, q̃′)− A

A+ 1
q̃′ ˜︁f0(p̃′, q̃′))︃ ⃓⃓⃓

q̃′=κcnq(p,q,x)
, (D.28)

˜︁f(︁p̃′, q̃′, x̃′ := cos
(︁
θp̃′,q̃′

)︁)︁
:=

f(κncp(p̃
′, q̃′, x̃′), κncq(p̃

′, q̃′, x̃′))

κncq(p̃′, q̃′, x̃′)
, (D.29)

f(p, q) = i

√︃
1

4π
eZc

2

A+ 2
(∂q̃Ψc(p, q̃))

⃓⃓
q̃=q

, (D.30)

whereby the functions κijk (i, j ∈ {n, c} and k ∈ {p, q}), as introduced in Ref. [30], are defined in eq. (3.13).
The concrete expressions can be found in appendix B.1. Furthermore, we used the following generic definition
of a function fi(p, q) via

fi(p, q) :=

∫︂
dxPi(x)f(p, q, x) . (D.31)

The i-th Legendre polynomial is denoted by Pi.
In order to obtain these expressions, inter alia, the following relations and techniques were employed:

• relation for expressing Yl,m(a+ b) using Yl,m(a) and Yl,m(b) (see, e.g., Ref. [49]),

• relations for recoupling the Jacobi momenta (see, e.g., Ref. [30]),

• expansion of functions in terms of Legendre polynomials and expressing Legendre polynomials in terms
of Y0,0

l,l (see, e.g., Ref. [49]),

• relation for the integral of three spherical harmonics (see, e.g., Ref. [51]).

D.5. Explicit relations for A(2)

We give an expression for A(2), which is defined in eq. (5.68). Parts of this section have been published in this
or in similar form in Phys. Rev. C 107, 014617 (2023) [52].
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The expression reads

A(2)

l̄,λ̄;µ;s̄,M
(p, q) = (−1)

l̄ √
π
√︁
2λ̄+ 1

√︁
2l̄ + 1

(︄
λ̄ 1 l̄

0 0 0

)︄(︃
pf

(2)

λ̄ (p, q)− 1

2
qf

(2)

l̄ (p, q)

)︃
×

c

⟨︃(︃
s̄,

3

2

)︃
3

2
,M

⃓⃓⃓⃓
P(spin)
nn PξnP(spin)

nn

⃓⃓⃓⃓
ξ(M)
c

⟩︃
c

, (D.32)

The function f (2) is given by

f
(2)

(p, q, x := cos θp,q) :=
2π

κcnq(p, q, x)

∫︂
dp̃′ p̃′2˜︁τnc(κcnp(p, q, x))g0(p̃′)G(nc)

0

(︁
p̃′;Eκcnp(p,q,x)

)︁
×
(︃
p̃′f

(2)

1 (p̃′, κcnq(p, q, x))−
κcnq(p, q, x)

A+ 1
f
(2)

0 (p̃′, κcnq(p, q, x))

)︃
, (D.33)

whereby the short-hand notation ˜︁τnc(p) := g0(p)τnc(p) is used. Furthermore the definition

f
(2)

(p, q, x := cos θp,q) := ˜︁τnc(︁κ′nnp(p, q, x))︁ ∫︂ dp̃′′ p̃′′2g0(p̃
′′)G

(nc)
0

(︂
p̃′′, Eκ′

nnp(p,q,x)

)︂
×

√
π

κ′nnq(p, q, x)

(︃
−p̃′′ ˜︁f1(︁p̃′′, κ′nnq(p, q, x))︁− A

A+ 1
κ′nnq(p, q, x)

˜︁f0(︁p̃′′, κ′nnq(p, q, x))︁)︃
(D.34)

holds.
Also, for obtaining these expressions, the relations and techniques listed in appendix D.4 were employed.

D.6. Evaluating A(1)

The overlap we are interested in can be written as

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ̄

⃓⃓⃓∫︂
dp̃ dq̃ p̃2q̃2

∑︂
Ω

|p̃, q̃ ; Ω⟩n n⟨...| tn(Ep̃)G
(nc)
0 (Ep̃)M(E1, µ)PΞc

⃓⃓⃓
Ψ
⟩︂

=

∫︂
dp′ dq′ p′2q′2

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ̄

⃓⃓⃓∫︂
dp̃ dq̃ p̃2q̃2

∑︂
Ω

|p̃, q̃ ; Ω⟩n n⟨...| tn(Ep̃)G
(nc)
0 (Ep̃)

⃓⃓⃓
p′, q′; ζ(1,µ)c , ξ(M)

c

⟩︂
c

×
c

⟨︂
p′, q′; ζ(1,µ)c , ξ(M)

c

⃓⃓⃓
M(E1, µ)PΞc

⃓⃓⃓
Ψ
⟩︂
, (D.35)

where we used a general final spin state ξ̄. In the following, we will use the abbreviating definitions

f(p, q) :=
c

⟨︂
p, q; ζ(1,µ)c , ξ(M)

c

⃓⃓⃓
M(E1, µ)PΞc

⃓⃓⃓
Ψ
⟩︂
. (D.36)

We begin the calculation by evaluating the spin-part of the matrix element of tn(Ep)G
(nc)
0 (Ep):

c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f , ξ̄

⃓⃓⃓∫︂
dp̃ dq̃ p̃2q̃2

∑︂
Ω

|p̃, q̃ ; Ω⟩n n⟨...| tn(Ep̃)G
(nc)
0 (Ep̃)

⃓⃓⃓
p′, q′; ζ(1,µ)c , ξ(M)

c

⟩︂
c

=
c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f

⃓⃓⃓
c

⟨︁
ξ̄
⃓⃓ ∫︂

dp̃ dq̃ p̃2q̃2
∑︂
Ω

|p̃, q̃ ; Ω⟩n n⟨...|
(︂
tn(Ep)G

(nc)
0 (Ep)⊗ Pξn

)︂ ⃓⃓⃓
p′, q′; ζ(1,µ)c

⟩︂
c

⃓⃓⃓
ξ(M)
c

⟩︂
c

(D.37)

=
c

⟨︂
p, q; ζ

(︁
l̄,λ̄;µ

)︁
f

⃓⃓⃓∫︂
d3p̃d3q̃ |p̃, q̃⟩n n⟨...| tn(Ep̃)G

(nc)
0 (Ep̃)

⃓⃓⃓
p′, q′; ζ(1,µ)c

⟩︂
c c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

(D.38)
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where we use the same symbols for the spatial part of tnG0 and the “full operator”.
We proceed with deriving a relation useful for evaluating the spatial part of the t-matrix in momentum

space:

n⟨p, q|tn(Ep̃)|p′, q′⟩n =
∑︂

λ,L,M

n⟨p, q|p, q; (0, λ)L,M⟩n 4πg0(p)τn(p̃)g0(p
′)
δ(q′ − q)

q′2 n⟨p
′, q′; (0, λ)L,M |p′, q′⟩n

(D.39)

=
∑︂

λ,L,M

4πYL,M
0,λ (p, q)g0(p)τn(p̃)g0(p

′)
δ(q′ − q)

q′2

(︂
YL,M
0,λ (p′, q′)

)︂∗
(D.40)

=
∑︂
λ,µ

Yλ,µ(q) (Yλ,µ(q
′))

∗
g0(p)τn(p̃)g0(p

′)
δ(q′ − q)

q′2
(D.41)

= g0(p)τn(p̃)g0(p
′)δ(q′ − q) , (D.42)

where we used that tn acts in the channel with l = 0.
We start computing the overlap of interest by evaluating the t-matrix and the free Green’s function in a

plane-wave basis.

A
(︁
p, q; ζ̄, ξ̄

)︁
:=

∫︂
dp′ p′2

∫︂
dq′ q′2

c

⟨︂
p, q; ζ̄, ξ̄

⃓⃓⃓∫︂
dp̃ dq̃ p̃2q̃2

∑︂
Ω

|p̃, q̃ ; Ω⟩n n⟨...| tn(Ep)G
(nc)
0 (Ep)

⃓⃓⃓
p′, q′; ζ(1,µ)c , ξ(M)

c

⟩︂
c
f(p′, q′)

(D.43)

=

∫︂
dΩp

∫︂
dΩq

∫︂
d3p′

∫︂
d3q′

(︂
Y L̄M̄L

l̄λ̄
(p, q)

)︂∗
×

c

⟨p, q|
∫︂

d3p̃d3q̃ |p̃, q̃⟩n n⟨...| tn(Ep̃)G
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0 (Ep̃)|p′, q′⟩c Y

1µ
01 (p

′, q′)f(p′, q′)
c

⟨︂
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⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

(D.44)

=

∫︂
dΩp

∫︂
dΩq

∫︂
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′)
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⟩︂
c

=

∫︂
dΩp

∫︂
dΩq
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(p, q)

)︂∗ ∫︂
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Eκcnp(p,q)

)︁
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′) (D.45)

×G
(nc)
0

(︁
p̃′;Eκcnp(p,q)

)︁ ∫︂
dΩp̃′ Y1µ

01 (κncp(p̃
′, q̃′),κncq(p̃

′, q̃′))f(κncp(p̃
′, q̃′), κncq(p̃

′, q̃′))
⃓⃓⃓
q̃′=κcnq(p,q)

×
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⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
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⟩︂
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(D.46)

An important part of this calculation, which we will try to simplify, is given by

a(p, q) :=

∫︂
dΩp̃′ Y1µ

01 (κncp(p̃
′, q̃′),κncq(p̃

′, q̃′))f(κncp(p̃
′, q̃′), κncq(p̃

′, q̃′))
⃓⃓
q̃′=κcnq(p,q)

(D.47)

=

∫︂
dΩp̃′

(︂√
4π
)︂−1

(ancq p̃
′Y1,µ(p̃

′) + bncq q̃
′Y1,µ(q̃

′))
f(κncp(p̃

′, q̃′), κncq(p̃
′, q̃′))

κncq(p̃
′, q̃′)

⃓⃓⃓
q̃′=κcnq(p,q)

, (D.48)

where the definitions

ancq = −1 bncq = − A

A+ 1
(D.49)

hold. We can evaluate the angular integral over the direction of p̃′ by introducing the following function and
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expanding it in Legendre polynomials:

f̃
(︁
p̃′, q̃′, x̃′ := cos

(︁
θp̃′,q̃′

)︁)︁
:=

f(κncp(p̃
′, q̃′), κncq(p̃

′, q̃′))

κncq(p̃
′, q̃′)

, (D.50)

f̃l̃(p̃
′, q̃′) :=

∫︂
dxPl̃(x)f̃(p̃

′, q̃′, x) . (D.51)

Based on these definitions, we can write

f̃(p̃′, q̃′, x̃′) =
∑︂
l̃

2π

√︂
2l̃ + 1 (−1)

l̃ (︁Y00
l̃l̃
(p̃′, q̃′)

)︁∗
f̃l̃(p̃

′, q̃′) , (D.52)

where we used the relation
Pl(cos (θp,q)) = (−1)

l 4π√
2l + 1

Y00
ll (p, q) . (D.53)

Inserting eq. (D.52) into eq. (D.48) yields

a(p, q) =

∫︂
dΩp̃′

(︂√
4π
)︂−1

(ancq p̃
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l̃ (︁Y00
l̃l̃
(p̃′, q̃′)

)︁∗
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. (D.54)

We use the relation
Y00
l̃l̃
(p̃′, q̃′) =

∑︂
m̃

C0,0

l̃,m̃,l̃,−m̃
Yl̃,m̃(p̃′)Yl̃,−m̃(q̃′) (D.55)

as well as the relations

C0,0
1,µ,1,−µ =

(−1)
1−µ

√
3

, C0,0
0,0,0,0 = 1 (D.56)

and obtain
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. (D.57)

Inserting our result into eq. (D.46) yields
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=
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, (D.59)

where the relations

acnq = 1 bcnq = −1

2
(D.60)
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hold.
In order to simplify the expression further we introduce the functions

f̄(p, q, x := cos (θp,q)) :=
1

κcnq(p, q)

∫︂
dp̃′ p̃′2g0(κcnp(p, q))τ

(︁
Eκcnp(p,q)

)︁
g0(p̃

′)G
(nc)
0

(︁
p̃′;Eκcnp(p,q)

)︁
×
√
π
(︂
ancq p̃

′f̃1(p̃
′, q̃′) + bncq q̃

′f̃0(p̃
′, q̃′)

)︂ ⃓⃓⃓
q̃′=κcnq(p,q)

, (D.61)

f̄l̄(p, q) :=

∫︂
dxPl̄(x)f̄(p, q, x) . (D.62)

Using these equations together with eq. (D.53) we obtain for A
(︁
p, q; ζ̄, ξ̄

)︁
:

A
(︁
p, q; ζ̄, ξ̄

)︁
=

∫︂
dΩp

∫︂
dΩq

(︂
Y L̄M̄L

l̄λ̄
(p, q)

)︂∗
(acnqpY1,µ(p) + bcnqqY1,µ(q))

×
∑︂
l̃

2π

√︂
2l̃ + 1 (−1)

l̃ Y0,0

l̃,l̃
(p, q)f̄l̃(p, q)

c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

(D.63)

=
c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

[︄∫︂
dΩp

∑︂
m̄,µ̄

CL̄M̄L

l̄m̄λ̄µ̄
Y ∗
l̄,m̄(p)acnqpY1,µ(p)2π

√︁
2λ̄+ 1 (−1)

λ̄
C0,0

λ̄,µ̄,λ̄,−µ̄
Yλ̄,−µ̄(p)f̄λ̄(p, q)

+

∫︂
dΩq

∑︂
m̄,µ̄

CL̄M̄L

l̄m̄λ̄µ̄
Y ∗
λ̄,µ̄(q)bcnqqY1,µ(q)2π

√︁
2l̄ + 1 (−1)

l̄
C0,0

l̄,m̄,l̄,−m̄
Yl̄,−m̄(q)f̄l̄(p, q)

]︄
(D.64)

=
c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c
2π
∑︂
m̄,µ̄

CL̄M̄L

l̄m̄λ̄µ̄

×

[︄∫︂
dΩp (−1)m̄+µ̄Yl̄,−m̄(p)acnqpY1,µ(p)2π

√︁
2λ̄+ 1 (−1)

λ̄
C0,0

λ̄,µ̄,λ̄,−µ̄
Y ∗
λ̄,µ̄(p)f̄λ̄(p, q)

+

∫︂
dΩq (−1)m̄+µ̄Yλ̄,−µ̄(q)bcnqqY1,µ(q)2π

√︁
2l̄ + 1 (−1)

l̄
C0,0

l̄,m̄,l̄,−m̄
Y ∗
l̄,m̄(q)f̄l̄(p, q)

]︄
. (D.65)

In the next step we use the relation∫︂
dΩp Yl1,m1

(p)Yl2,m2
(p) (Yl3,m3

(p))
∗
=

√︄
(2l1 + 1) (2l2 + 1)

4π (2l3 + 1)
Cl3,0

l1,0,l2,0
Cl3,m3

l1,m1,l2,m2
, (D.66)

which can be found in Ref. [51], and obtain

A
(︁
p, q; ζ̄, ξ̄

)︁
=

√
3π
∑︂
m̄,µ̄

CL̄M̄L

l̄m̄λ̄µ̄
(−1)m̄+µ̄

c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

×

(︄
acnqp (−1)

λ̄
C0,0

λ̄,µ̄,λ̄,−µ̄

√︁
2l̄ + 1C λ̄,0

l̄,0,1,0
C λ̄,µ̄

l̄,−m̄,1,µ
f̄λ̄(p, q)

+ bcnqq (−1)
l̄
C0,0

l̄,m̄,l̄,−m̄

√︁
2λ̄+ 1C l̄,0

λ̄,0,1,0
C l̄,m̄

λ̄,−µ̄,1,µ
f̄l̄(p, q)

)︄
(D.67)

=
√
3π
∑︂
m̄,µ̄

√︁
2l̄ + 1

√︁
2λ̄+ 1(−1)m̄+µ̄CL̄M̄L

l̄m̄λ̄µ̄

(︄
λ̄ 1 l̄

0 0 0

)︄(︄
λ̄ 1 l̄

−µ̄ µ −m̄

)︄
×
(︁
acnqpf̄λ̄(p, q) + bcnqqf̄l̄(p, q)

)︁
c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c
. (D.68)

In the last step, we rewrote Clebsch-Gordan coefficients into Wigner-3j symbols using the relation

Cj,m
j1,m1,j2,m2

= (−1)j1−j2+m
√︁

2j + 1

(︄
j1 j2 j

m1 m2 −m

)︄
. (D.69)
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We use the permutation properties of the Wigner-3j symbols, rewrite back into Clebsch-Gordan coefficients,
and arrive at

A
(︁
p, q; ζ̄, ξ̄

)︁
=

√
π (−1)

l̄−λ̄−µ
√︁
2l̄ + 1

√︁
2λ̄+ 1

(︄
λ̄ 1 l̄

0 0 0

)︄
×
∑︂
m̄,µ̄

CL̄M̄L

l̄m̄λ̄µ̄
C1,−µ

l̄m̄λ̄µ̄
(−1)

m̄+µ̄ (︁
acnqpf̄λ̄(p, q) + bcnqqf̄l̄(p, q)

)︁
c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

(D.70)

= −δL̄,1δM̄L,µ

√︁
2l̄ + 1

√︁
2λ̄+ 1

(︄
λ̄ 1 l̄

0 0 0

)︄
√
π
(︁
acnqpf̄λ̄(p, q) + bcnqqf̄l̄(p, q)

)︁
c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

(D.71)

By using our results as well as the relations

M(E1, µ) = eZcr̂cY1µ(r̂c) , (D.72)

c

⟨︂
p′, q′; ζ(1,µ)c

⃓⃓⃓
r̂cY1,µ(r̂c)

⃓⃓⃓
p, q; ζc

⟩︂
c
= i

2

A+ 2

1√
4π

δ(p′ − p)

p′2
∂q′

δ(q′ − q)

q′2
, (D.73)

we obtain

c

⟨︁
p, q; ζ̄, ξ̄

⃓⃓∫︂
dp̃ dq̃ p̃2q̃2

∑︂
Ω

|p̃, q̃ ; Ω⟩n n⟨...| tn(Ep̃)G
(nc)
0 (Ep̃)M(E1, µ)PΞc

⃓⃓
Ψ
⟩︁

(D.74)

=
c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

∫︂
dp′ p′2

∫︂
dq′ q′2

×
c

⟨︂
p, q; ζ̄, ξ̄

⃓⃓⃓∫︂
dp̃ dq̃ p̃2q̃2

∑︂
Ω

|p̃, q̃ ; Ω⟩n n⟨...| tn(Ep̃)G
(nc)
0 (Ep̃)

⃓⃓⃓
p′, q′; ζ(1,µ)c

⟩︂
c
(∂q̄Ψc(p

′, q̄))
⃓⃓
q̄=q′

(D.75)

= −δL̄,1δM̄L,µ

√︁
2l̄ + 1

√︁
2λ̄+ 1

(︄
λ̄ 1 l̄

0 0 0

)︄
√
π
(︁
acnqpf̄λ̄(p, q) + bcnqqf̄l̄(p, q)

)︁
c

⟨︂
ξ̄
⃓⃓⃓
Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c
. (D.76)

In this calculation we see the conservation of the overall angular momentum and its projection explicitly. The
expression for A(1)

l̄,λ̄;µ
(p, q) is closely related but a bit simpler, since it already assumes these conservations:

A(1)

l̄,λ̄;µ;s̄,M
(p, q) = −

√︁
2l̄ + 1

√︁
2λ̄+ 1

(︄
λ̄ 1 l̄

0 0 0

)︄
√
π
(︁
acnqpf̄λ̄(p, q) + bcnqqf̄l̄(p, q)

)︁
×

c

⟨︃(︃
s̄,

3

2

)︃
3

2
,M

⃓⃓⃓⃓
Pξn

⃓⃓⃓⃓
ξ(M)
c

⟩︃
c

. (D.77)

The definitions directly or indirectly used in eq. (D.76) or in eq. (D.77) are summarized below:

D.7. Evaluating A(2)

The analog of eq. (D.38) holds also for tn′G0tnG0:

c

⟨︁
p, q; ζ̄, ξ̄

⃓⃓ (︃ ∫︂
dp̃ dq̃ p̃2q̃2

∑︂
Ω

|p̃, q̃ ; Ω⟩n′ n′⟨...| tn′(Ep̃)G
(nc)
0 (Ep̃)

×
∫︂

dp̃′ dq̃′ p̃′2q̃′2
∑︂
Ω′

|p̃′, q̃′,Ω′⟩n n⟨...| tn(Ep̃′)G
(nc)
0 (Ep̃′)

)︃ ⃓⃓⃓
p′, q′; ζ(1,µ)c , ξ(M)

c

⟩︂
c

=
c

⟨︁
p, q; ζ̄

⃓⃓ (︃ ∫︂
d3p̃d3q̃P(spatial)

nn |p̃, q̃⟩n n⟨...| tn(Ep̃)G
(nc)
0 (Ep̃)P(spatial)

nn

×
∫︂

d3p̃′d3q̃′ |p̃′, q̃′⟩n n⟨...| tn(Ep̃′)G
(nc)
0 (Ep̃′)

)︃ ⃓⃓⃓
p′, q′; ζ(1,µ)c

⟩︂
c c

⟨︂
ξ̄
⃓⃓⃓
P(spin)
nn PξnP(spin)

nn Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c
. (D.78)

184



In this context, we find it useful to introduce the abbreviation

O(2) := P(spatial)
nn

∫︂
d3p̃d3q̃ |p̃, q̃⟩n n⟨...| tn(Ep̃)G

(nc)
0 (Ep̃)P(spatial)

nn

×
∫︂

d3p̃′d3q̃′ |p̃′, q̃′⟩n n⟨...| tn(Ep̃′)G
(nc)
0 (Ep̃′) . (D.79)

Based on eq. (D.39), we obtain for the matrix element of the spatial part of tn′G0tnG0 in a plane-wave basis:∫︂
d3p

∫︂
d3q |p, q⟩n′ n′⟨p, q| tn′c(Ep)G

(nc)
0 (Ep)

∫︂
d3p′′

∫︂
d3q′′ |p′′, q′′⟩n n⟨p

′′, q′′| tnc(Ep′′)G
(nc)
0 (Ep′′) |p′, q′⟩n

=

∫︂
d3p

∫︂
d3qP(spatial)

nn |p, q⟩n n⟨p, q| tnc(Ep)G
(nc)
0 (Ep)P(spatial)

nn

×
∫︂

d3p′′
∫︂

d3q′′ |p′′, q′′⟩n n⟨p
′′, q′′| tnc(Ep′′)G

(nc)
0 (Ep′′) |p′, q′⟩n (D.80)

=

∫︂
d3p

∫︂
d3q

∫︂
d3p̃P(spatial)

nn |p, q⟩n g0(p)τn(Ep)g0(p̃)G
(nc)
0 (p̃;Ep)

× g0
(︁
κ′nnp(p̃, q)

)︁
τn

(︂
Eκ′

nnp(p̃,q)

)︂
g0(p

′)G
(nc)
0

(︂
p′, Eκ′

nnp(p̃,q)

)︂
δ
(︁
q′ − κ′

nnq(p̃, q)
)︁
. (D.81)

With these first simplifications at hand, we start with the evaluation of the overlap itself:

A(2)
(︁
p, q; ζ̄, ξ̄

)︁
:=

∫︂
dp′ p′2

∫︂
dq′ q′2

c

⟨︂
p, q; ζ̄, ξ̄

⃓⃓⃓
O(2) ⊗

(︂
P(spin)
nn PξnP(spin)

nn Pξn

)︂⃓⃓⃓
p′, q′; ζ(1,µ)c , ξ(M)

c

⟩︂
c
f(p′, q′) (D.82)

=

∫︂
dΩp

∫︂
dΩq

∫︂
d3p′

∫︂
d3q′

(︂
Y L̄M̄L

l̄λ̄
(p, q)

)︂∗
c⟨p, q|O

(2)|p′, q′⟩c Y
1µ
01 (p

′, q′)f(p′, q′)

×
c

⟨︂
ξ̄
⃓⃓⃓
P(spin)
nn PξnP(spin)

nn Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c

(D.83)

=

∫︂
dΩp

∫︂
dΩq

∫︂
d3p′

∫︂
d3q′

(︂
Y L̄M̄L

l̄λ̄
(p, q)

)︂∗ ∫︂
dp̃′ p̃′2g0(κcnp(p, q))τ

(︁
Eκcnp(p,q)

)︁
g0(p̃

′)

×G
(nc)
0

(︁
p̃′;Eκcnp(p,q)

)︁ ∫︂
dΩp̃′ g0

(︁
κ′nnp(p̃

′, q̄)
)︁
τn

(︂
Eκ′

nnp

(︁
p̃′,q̄

)︁)︂∫︂ dp̃′′ p̃′′2g0(p̃
′′)G

(nc)
0

(︂
p̃′′, Eκ′

nnp

(︁
p̃′,q̄

)︁)︂
×
∫︂

dΩp̃′′
n

⟨︁
p̃′′,κ′

nnq(p̃
′, q̄)

⃓⃓
p′, q′⟩︁

c
Y1µ
01 (p

′, q′)f(p′, q′)

⃓⃓⃓⃓
q̄=κcnq(p,q)

×
c

⟨︂
ξ̄
⃓⃓⃓
P(spin)
nn PξnP(spin)

nn Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c
(−1)

l̄
. (D.84)

In the first step, we evaluate

∫︂
d3p′

∫︂
d3q′

∫︂
dΩp̃′′

n

⟨︁
p̃′′,κ′

nnq(p̃
′, q̄)

⃓⃓
p′, q′⟩︁

c
Y1µ
01 (p

′, q′)f(p′, q′)

⃓⃓⃓⃓
q̄=κcnq(p,q)

=

∫︂
dΩp̃′′

1√
4π
Y1,µ(κncq(p̃

′′, q̄′))f(κncp(p̃
′′, q̄′), κncq(p̃

′′, q̄′))

⃓⃓⃓⃓
q̄′=κ′

nnq

(︁
p̃′,κcnq(p,q)

)︁ (D.85)

=

∫︂
dΩp̃′′

1√
4π

(︃
−p̃′′Y1,µ(p̃′′)− A

A+ 1
q̄′Y1,µ(q̄

′)

)︃
f(κncp(p̃

′′, q̄′), κncq(p̃
′′, q̄′))

κncq(p̃
′′, q̄′)

⃓⃓⃓⃓
q̄′=κ′

nnq

(︁
p̃′,κcnq(p,q)

)︁ (D.86)

=
√
πY1,µ(q̄

′)

(︃
−p̃′′ ˜︁f (2)1 (p̃′′, q̄′)− A

A+ 1
q̄′ ˜︁f (2)0 (p̃′′, q̄′)

)︃ ⃓⃓⃓⃓
q̄′=κ′

nnq

(︁
p̃′,κcnq(p,q)

)︁ , (D.87)
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where we used the following definitions

˜︁f (2)(p, q, x := cos θp,q) :=
f(κncp(p, q, x), κncq(p, q, x))

κncq(p, q, x)
, (D.88)

˜︁f (2)l (p, q) :=

∫︂
dxPl(x) ˜︁f (2)(p, q, x) (D.89)

as well as the relation ˜︁f (2)(p, q, x) = 2π
∑︂
l

√
2l + 1 (−1)

l
(︂
Y0,0
l,l (p, q)

)︂∗ ˜︁f (2)l (p, q) . (D.90)

Based on this result we evaluate a larger part of A(2):

B(2)(p̃′, q̄) :=

∫︂
dΩp̃′ g0

(︁
κ′nnp(p̃

′, q̄)
)︁
τn

(︂
Eκ′

nnp

(︁
p̃′,q̄

)︁)︂∫︂ dp̃′′ p̃′′2g0(p̃
′′)G

(nc)
0

(︂
p̃′′, Eκ′

nnp

(︁
p̃′,q̄

)︁)︂
×
∫︂

d3p′
∫︂

d3q′
∫︂

dΩp̃′′
n

⟨︁
p̃′′,κ′

nnq(p̃
′, q̄)

⃓⃓
p′, q′⟩︁

c
Y1µ
01 (p

′, q′)f(p′, q′) (D.91)

=

∫︂
dΩp̃′ g0

(︁
κ′nnp(p̃

′, q̄)
)︁
τn

(︂
Eκ′

nnp

(︁
p̃′,q̄

)︁)︂∫︂ dp̃′′ p̃′′2g0(p̃
′′)G

(nc)
0

(︂
p̃′′, Eκ′

nnp

(︁
p̃′,q̄

)︁)︂
×
√
π

(︂
p̃′Y1,µ(p̃

′)− 1
A+1 q̄Y1,µ(q̄)

)︂
κ′nnq(p̃

′, q̄)(︃
−p̃′′ ˜︁f (2)1

(︁
p̃′′, κ′nnq(p̃

′, q̄)
)︁
− A

A+ 1
κ′nnq(p̃

′, q̄) ˜︁f (2)0

(︁
p̃′′, κ′nnq(p̃

′, q̄)
)︁)︃

(D.92)

=

∫︂
dΩp̃′

(︃
p̃′Y1,µ(p̃

′)− 1

A+ 1
q̄Y1,µ(q̄)

)︃
2π
∑︂
l

√
2l + 1 (−1)

l
(︂
Y0,0
l,l ((p̃

′, q̄))
)︂∗

(D.93)

= 2πY1,µ(q̄)

(︃
p̃′f

(2)

1 (p̃′, q̄)− 1

A+ 1
q̄f

(2)

0 (p̃′, q̄)

)︃
. (D.94)

where we employed the definitions given below:

˜︁τn(Ep) := g0(p)τn(Ep) (D.95)

f
(2)

(p, q, x := cos θp,q) := ˜︁τn(︂Eκ′
nnp(p,q,x)

)︂∫︂
dp̃′′ p̃′′2g0(p̃

′′)G
(nc)
0

(︂
p̃′′, Eκ′

nnp(p,q,x)

)︂
×

√
π

κ′nnq(p, q, x)

(︃
−p̃′′ ˜︁f (2)1

(︁
p̃′′, κ′nnq(p, q, x)

)︁
− A

A+ 1
κ′nnq(p, q, x)

˜︁f (2)0

(︁
p̃′′, κ′nnq(p, q, x)

)︁)︃
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f
(2)

l (p, q) :=

∫︂
dxPl(x)f

(2)
(p, q, x) (D.97)

as well as the relation

f
(2)

(p, q, x) = 2π
∑︂
l

√
2l + 1 (−1)

l
(︂
Y0,0
l,l (p, q)

)︂∗
f
(2)

l (p, q) . (D.98)

The implemented version of f
(2)

reads

f
(2)

(p, q, x) =
1

2π2
g0(p̄)

1

a−1
nc + ip̄

×
[︃ ∫︂ Λ

0

dp′
p′2f

(2b)
(p′; p, q, x)− p̄2f

(2b)
(p̄; p, q, x)

p̄2 − p′2

−
(︃
iπ

2
− 1

2
ln

(︃
Λ + p̄

Λ− p̄

)︃)︃
g0(p̄)p̄f

(2b)
(p̄; p, q, x)

]︃⃓⃓⃓⃓
p̄=κ′

nnp(p,q,x)

, (D.99)
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where the definition

f
(2b)

(p̃′′; p, q, x) :=

√
π

κ′nnq(p, q, x)

(︃
−p̃′′ ˜︁f (2)1

(︁
p̃′′, κ′nnq(p, q, x)

)︁
− A

A+ 1
κ′nnq(p, q, x)

˜︁f (2)0

(︁
p̃′′, κ′nnq(p, q, x)

)︁)︃
(D.100)

is employed.
Based on this function B(2), we can write A(2) as

A(2)
(︁
p, q; ζ̄, ξ̄

)︁
= (−1)

l̄
∫︂

dΩp

∫︂
dΩq

(︂
Y L̄M̄L

l̄λ̄
(p, q)

)︂∗ ∫︂
dp̃′ p̃′2g0(κcnp(p, q))τ

(︁
Eκcnp(p,q)

)︁
g0(p̃

′)

×G
(nc)
0

(︁
p̃′;Eκcnp(p,q)

)︁
B(2)(p̃′,κcnq(p, q))

c

⟨︂
ξ̄
⃓⃓⃓
P(spin)
nn PξnP(spin)

nn Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c
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= (−1)
l̄
∫︂

dΩp

∫︂
dΩq KY L̄M̄L

l̄λ̄
(p, q)

∗
∫︂

dp̃′ p̃′2g0(κcnp(p, q))τ
(︁
Eκcnp(p,q)

)︁
g0(p̃

′)

×G
(nc)
0

(︁
p̃′;Eκcnp(p,q)

)︁
2πY1,µ(κcnq(p, q))

(︃
p̃′f

(2)

1 (p̃′, κcnq(p, q))−
1

A+ 1
κcnq(p, q)f

(2)

0 (p̃′, κcnq(p, q))

)︃
×

c

⟨︂
ξ̄
⃓⃓⃓
P(spin)
nn PξnP(spin)

nn Pξn

⃓⃓⃓
ξ(M)
c

⟩︂
c
, (D.102)

where the first equality follows from the definition of B(2) and eq. (D.84). The second equality follows from
eq. (D.94), i.e., the result for B(2).
To simplify this expression, it is again useful to expand the dependence on a relative angle between two

vectors in terms of Legendre polynomials. For that purpose, we introduce the following functions:

f
(2)

(p, q, x := cos θp,q)

:=
2π

κcnq(p, q, x)

∫︂
dp̃′ p̃′2˜︁τ(︁Eκcnp(p,q,x)

)︁
g0(p̃

′)

×G
(nc)
0

(︁
p̃′;Eκcnp(p,q,x)

)︁(︃
p̃′f

(2)

1 (p̃′, κcnq(p, q, x))−
1

A+ 1
κcnq(p, q, x)f

(2)

0 (p̃′, κcnq(p, q, x))

)︃
, (D.103)

f
(2)

l (p, q) :=

∫︂
dxPl(x)f

(2)
(p, q, x) . (D.104)

Hereby, the function f (2) can evaluated as follows:

f
(2b)

(p̃′; p, q, x) :=
2π

κcnq(p, q, x)

(︃
p̃′f

(2)

1 (p̃′, κcnq(p, q, x))−
1

A+ 1
κcnq(p, q, x)f

(2)

0 (p̃′, κcnq(p, q, x))

)︃
, (D.105)

f
(2)

(p, q, x) =
1

2π2
g0(p̄)

1

a−1
nc + ip̄

×
[︃ ∫︂ Λ

0

dp′
p′2f

(2b)
(p′; p, q, x)− p̄2f

(2b)
(p̄; p, q, x)

p̄2 − p′2

−
(︃
iπ

2
− 1

2
ln

(︃
Λ + p̄

Λ− p̄

)︃)︃
g0(p̄)p̄f

(2b)
(p̄; p, q, x)

]︃⃓⃓⃓⃓
p̄=κcnp(p,q,x)

. (D.106)
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On this basis, we obtain for A(2) the expression

A(2)
(︁
p, q; ζ̄, ξ̄

)︁ (︂
(−1)

l̄
)︂−1
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1

2
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∑︂
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√
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=
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m̄,µ̄
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= −
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Finally, we obtain
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and
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whereby the Kronecker deltas are not contained in the latter expression since this function describes by
construction only the non-vanishing overlaps.
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E. nn relative-energy distribution after the
6He(p, pα)nn reaction

In section 6.6, in figs. 6.3 to 6.5 ratios of nn relative-energy distributions obtained with different parameters
are plotted. In this appendix, we describe how these uncertainties were obtained from the uncertainties of
the single distributions. Parts of this appendix have been published in this or in similar form in Phys. Rev. C
104, 024001 (2021) [56].

The numerical uncertainty of the ratio r of distributions ρ(1) and ρ(2) given by

r(Enn) :=
ρ(1)(Enn)

ρ(2)(Enn)
(E.1)

was estimated according to

∆r(Enn) =

⌜⃓⃓⎷(︃∆ρ(1)(Enn)

ρ(2)(Enn)

)︃2

+

(︄
−ρ(1)(Enn)(︁
ρ(2)(Enn)

)︁2∆ρ(2)(Enn)

)︄2

(E.2)

by using the uncertainties of the single distributions ∆ρ(1) and ∆ρ(2). That is the standard formula for the
propagation of uncertainties based on the linearization of the functions under the assumption that the two
distributions are not correlated. If we would assume a correlation of 1 between the distributions for all energies
Enn, the uncertainty bands would get much smaller. While this might be a reasonable approximation, we
chose to draw more pessimistic uncertainty bands by not using it.
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F. nn relative-energy distribution: higher partial waves
and higher energies

F.1. t-matrix based FSI for arbitrary orbital angular momentum in the nn

subsystem

F.1.1. Derivation

Starting point is the following integral:

I(p, q) :=

∫︂
dp′ p′2glc(p

′)
(︁
p2 − p′2 + iϵ

)︁−1
Ψc(p

′, q) . (F.1)

We can rewrite this integral as

I(p, q) =

∫︂
dp′

gl(p
′)p′2Ψc(p

′, q)− gl(p)p
2Ψc(p, q)

p2 − p′2
+

∫︂
dp′

gl(p)p
2Ψc(p, q)

p2 − p′2 + iϵ

=

∫︂
dp′

gl(p
′)p′2Ψc(p

′, q)− gl(p)p
2Ψc(p, q)

p2 − p′2
+ gl(p)p

2Ψc(p, q)

∫︂
dp′

1

p2 − p′2 + iϵ

=

∫︂
dp′

gl(p
′)p′2Ψc(p

′, q)− gl(p)p
2Ψc(p, q)

p2 − p′2
− i

π

2
pgl(p)Ψc(p, q) . (F.2)

However, the first integral, which shall be computed numerically, is not an integral over a finite range, as the
regulator of the second term regulates in p but not in the integration variable p′. This would complicate the
numerical calculation of it. We focus on the case of form factors with Heaviside functions as regulators:

gl(p) = Θ(Λ− p)pl . (F.3)

In this case, we can circumvent this difficulty: We split this first integral into an integral over a finite range,
which can be easily calculated numerically, and an integral over an infinite range. The latter one does not
depend on the wave function, thus it can be computed analytically.

I1(p, q) :=

∫︂
dp′

gl(p
′)p′2Ψc(p

′, q)− gl(p)p
2Ψc(p, q)

p2 − p′2

=

∫︂ Λ

0

dp′
p′2p′lΨc(p

′, q)− p2plΨc(p, q)

p2 − p′2
+

∫︂ ∞

Λ

dp′
−gl(p)p2Ψc(p, q)

p2 − p′2

=

∫︂ Λ

0

dp′
p′2p′lΨc(p

′, q)− p2plΨc(p, q)

p2 − p′2
− gl(p)p

2Ψc(p, q)

∫︂ ∞

Λ

dp′
1

p2 − p′2

=

∫︂ Λ

0

dp′
p′2p′lΨc(p

′, q)− p2plΨc(p, q)

p2 − p′2
+

1

2
gl(p)pΨc(p, q) ln

(︃
Λ + p

Λ− p

)︃
(F.4)

In the previous calculation we assumed that p < Λ holds. This imposes no loss of generality, as the ‘left
regulato” of the t-matrix ensures that the Feynman diagram involving the t-matrix vanishes for p > Λ. Based
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on this result we obtain for I(p, q) the relation

I(p, q) =

∫︂ Λ

0

dp′
p′2p′lΨc(p

′, q)− p2plΨc(p, q)

p2 − p′2
+

(︃
1

2
ln

(︃
Λ + p

Λ− p

)︃
− i

π

2

)︃
gl(p)pΨc(p, q) , (F.5)

which was used to obtain eq. (7.1)

F.1.2. Specialties of the implementation

In case of the integral ∫︂ Λ

0

dp′
p′2p′lΨc(p

′, q)− p2plΨc(p, q)

p2 − p′2
(F.6)

we have to consider one special case when we implement a numeric evaluation of it, which is based on the
evaluation of the integrand at different p′: In the case of p′ = p we have to take the limit p′ → p carefully: In a
naive calculation we would obtain 0

0 indicating that we have to use l’Hospital’s rule:

lim
p′→p

p′2p′lΨc(p
′, q)− p2plΨc(p, q)

p2 − p′2
(F.7)

= lim
p′→p

∂p′
(︁
p′2p′lΨc(p

′, q)− p2plΨc(p, q)
)︁

∂p′ (p2 − p′2)
(F.8)

= lim
p′→p

(l + 2) p′l+1Ψc(p
′, q) + p′l+2Ψ

(′,−)
c (p′, q)

−2p′
(F.9)

=− (l + 2) plΨc(p, q) + pl+1Ψ
(′,−)
c (p, q)

2
, (F.10)

where we introduced the notation Ψ
(′,−)
c (p, q) for denoting the first derivative with respect to the first argument:

Ψ
(′,−)
c (p, q) := (∂p̃Ψc(p̃, q)) |p̃=p.
In case of l = 0 we obtain for the value of the integrand at p′ = p:

−Ψc(p, q)−
p

2
Ψ(′,−)

c (p, q) (F.11)

One might say, that this discussion of the p′ = p case is not necessary, as it can be circumvented by choosing
the integration mesh cleverly. E.g., when plotting the wave function after FSI, this can be easily realized by
using different meshes for plotting and the p′ integration. Probably, one would do this anyway. However, there
are also cases where a circumvention of this problem is less preferable and then this appendix is useful. An
example is the calculation of the norm of the wave function after FSI. It is convient to use in this case for the
p′ and for the p integration the same mesh and then one is affected by this special case. (The results presented
in this document are not affected by this special case.)

F.1.3. FaCE settings

The numerical uncertainties were estimated by comparing calculations obtained with two different parameter
sets. The parameter set which is expected to result in numerically more accurate results is labeled as "hp"
(high precision), the other is labeled as "sp" (standard precision"). Table F.1 lists these parameter sets.
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Table F.1.: This table lists the different values for the parameters which were used to determine whether the results are
numerically converged. The one set is labeled as "sp" (standard precision), the other one is labeled as "hp" (high
precision). Integration and interpolation boundaries in momentum space are denoted with pmin and pmax.

sp hp

FaCE

Kmax 24 36
lmax 12 18
NJac 40 80
NLag 20 60
rr 0.3 0.15

nbmax 20 60

FaCE output:
table of χ(S)

K,l(ρ)

ρmax [fm] 22.50 34.25
∆ρ [fm] 0.25 0.25

obtaining the wave
function

Ktrunc 16 24

interpolation of
χ

(S)
K,l(p)

pmin [MeV] 0.001 0.0001
pmax [MeV] 710 1055
Nmesh points 71 211

applying FSI:
p′-integration

pmin [MeV] 0.001 0.0001
pmax [MeV] 400 600
Nmesh points 50 100

obtaining the
distribution:
q-integration

pmin [MeV] 0.001 0.0001
pmax [MeV] 400 600
Nmesh points 50 100

F.2. Sources of numerical uncertainties

As can be seen from fig. 7.6 the numerical uncertainties of the results in the higher partial waves are quite
large. Nevertheless, the purpose of these notes is to estimate the influence of the other partial waves. The
current numerical accuracy is sufficient for this purpose.

As can be seen from the table in appendix F.1.3, many parameters influencing the numerical accuracy
were variied in order to get a good impression of the overall uncertainty. In addition to knowing the overall
uncertainty, we would like to know the main origins of this uncertainty. These can be found by varying
parameters soley, the results of some variations are shown at the example of the distribution in 1D2 after FSI
in fig. F.1.
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higher max

Figure F.1.: Plots of nn relative-energy distributions after FSI in the 1D2 partial wave differing in parameters influencing the
numerical accuray. “std” is similar to “sp” from the table in appendix F.1.3, the main differences is Kmax = 18.
“higher Kmax” differs from “std” by using Kmax = 27. “higher ρmax” differs from “std” in a roughly 1.5 times
larger ρmax. “cpl hp” is similar to “hp” from the table in appendix F.1.3, the main differences is Kmax = 27.
Note the overall factor for the tick labels on the y-axis in the upper left of each plot.

It can be seen that the FaCE parameter Kmax is the main cause. Therefore, the calculations in all other
subsections were already performed with higher values for this parameter (see table in appendix F.1.3).

In all calculations the strength of the three-body force was tuned to reproduce the physical binding energy
of B(0)

3 = 0.975 MeV. This tuning is automated by using a script which executes FaCE with different strength
parameters until the desired binding energy is reached. This script uses the Newton root-finding algorithm.
A tolerance of 0.001 MeV in case of the target binding energy is used. It is important to know whether this
tolerance is a significant source of uncertainties. Therefore two calculations with binding energies differing by
0.002 MeV (in the target values of the tuning routine) were performed. The results are shown in fig. F.2.

0.0 0.2 0.4 0.6 0.8 1.0
Enn [MeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1e 4 1D2 with FSI

std (B(0)
3 =0.975 MeV)

B(0)
3 =0.977 MeV

Figure F.2.: Plots of nn relative-energy distributions in the 1D2 partial wave differing in the target three-body binding energy
of the tuning routine. Note the overall factor for the tick labels on the y-axis in the upper left of each plot.

It can be seen that such variations of the three-body binding energy have no significant influence. The
tolerance of the tuning routine for the three-body force does not seem to be a significant uncertainty source.
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F.3. Enn distribution of He-6 up to 70 MeV

F.3.1. Numerical / model space parameters for FaCE and subsequent calculations

As before, the numerical uncertainties were estimated by comparing calculations obtained with two different
parameter sets. The parameter set which is expected to result in numerically more accurate results is labeled
as "hp" (high precision), the other is labeled as "sp" (standard precision"). Table F.2 lists these parameter sets.

Table F.2.: This table lists the different values for the parameters which were used to determine whether the results are
numerically converged. The one set is labeled as "sp" (standard precision), the other one is labeled as "hp" (high
precision). Integration and interpolation boundaries in momentum space are denoted with pmin and pmax. Note
that this table is not complete, but the most important parameters for the numerics / model space should be
contained.

sp hp

FaCE

Kmax 18 27
lmax 12 18
NJac 40 60
NLag 30 60
rr 0.3 0.225

nbmax 30 60

FaCE output:
table of χ(S)

K,l(ρ)

ρmax [fm] 34.0 51.425
∆ρ [fm] 0.25 0.187

obtaining the wave
function

Ktrunc 16 24

interpolation of
χ

(S)
K,l(p)

pmin [MeV] 0.001 0.0001
pmax [MeV] 710 1057.5
Nmesh points 71 141

applying FSI:
p′-integration

pmin [MeV] 0.001 0.0001
pmax [MeV] 400 600
Nmesh points 50 100

obtaining the
distribution:
q-integration

pmin [MeV] 0.001 0.0001
pmax [MeV] 400 600
Nmesh points 50 100
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G. Faddeev calculations with arbitrary many
interactions in arbitrary partial waves

G.1. Auxiliary calculations: spin-space overlaps and matrix elements

In this section we present auxiliary calculations for spin-space overlaps and spin-space matrix elements. The
results were used in section 9.3 and are helpful for applying the results of section 9.4 in calculations.

G.1.1. Overlap between n and c as spectator

In this auxiliary calculation, the overlap between coupled spin states with the neutron and the core as
spectators is evaluated.

n⟨(s, σ)S,M |(s′, σ′)S′,M ′⟩c

=

(︄ ∑︂
m1,m2

∑︂
µ

Cs,m
s1,m1,s2,m2

CS,M
s,m,σ,µ |s1,m1, s2,m2, σ, µ⟩n

)︄†

⎛⎝ ∑︂
m′

1,m
′
2

∑︂
µ′

Cs′,m′

s′1,m
′
1,s

′
2,m

′
2
CS′,M ′

s′,m′,σ′,µ′ |s′1,m′
1, s

′
2,m

′
2, σ

′, µ′⟩c

⎞⎠ (G.1)

=
∑︂

m1,m2

∑︂
µ

Cs,m
s1,m1,s2,m2

CS,M
s,m,σ,µC

s′,m′

σ,µ,s1,m1
CS′,M ′

s′,m′,s2,m2
δs′2,s1δσ′,s2δs′1,σ (G.2)

= δs′2,s1δσ′,s2δs′1,σδS,S′δM,M ′ (−1)
s1+s2+2σ+s

√
ŝŝ′

{︄
s2 s1 s

σ S s′

}︄
(G.3)

whereby the relation

n⟨s1,m1, s2,m2, σ, µ|s′1,m′
1, s

′
2,m

′
2, σ

′, µ′⟩c
= n⟨s1,m1, s2,m2, σ, µ|P12P13 (s

′
1,m

′
1, s

′
2,m

′
2, σ

′, µ′)⟩n (G.4)
= n⟨s1,m1, s2,m2, σ, µ|s′2,m′

2, σ
′, µ′, s′1,m

′
1⟩n (G.5)

= δs1,s′2δm1,m′
2
δs2,σ′δm2,µ′δσ,s′1δµ,m′

1
(G.6)

was used. The necessary combination of permutation operators to switch from one spectator to another can
be seen as follows: The starting point is the sequence nn′c (c as spectator) and the desired end point is n′cn
(n as spectator). Note that the order has to be conserved. By applying first P13 one transforms nn′c into
cn′n. And, by applying P12 afterwards, one obtains the desired sequence n′cn. Note that the direct switch
between different spectators is only possible in the uncoupled basis. As was done here, the result for the
different-spectator overlap in the uncoupled basis can be then used to evaluate the different-spectator overlap
in the coupled basis. The involved recoupling manifests itself in the Wigner-6j symbol appearing in the final
expression.
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G.1.2. Matrix element of nn permutation operator with n as spectator

In the standard case, one has only one nc interaction channel. Thereby, one has only one partial wave, which
is typically specified with the neutron as spectator. However, one might also be interested in multiple nc
interaction channels. In that case, one has multiple partial waves which are specified with the neutron as
spectator and might happen that the nn permutation operator might be needed to evaluated between different
n-states. Therefore, we do the following calculation for the general case. However, as the spins of the single
particles are fixed, this means that on the right side of the overlap only a part of the quantum number symbols
get primes.

As before, note that we have to be careful when evaluating spin overlaps, as we deal with quantum numbers
which can be half-integer. That means in general neither (−1)2s is 1 nor (−1)s is the same as (−1)−s.

n⟨(s, σ)S,M |P(spin)
nn |(s′, σ)S′,M ′⟩n

=

(︄ ∑︂
m1,m2,µ

Cs,m
s1,m1,s2,m2

CS,M
s,m,σ,µ |s1,m1, s2,m2, σ, µ⟩n

)︄†

⎛⎝P(spin)
nn

∑︂
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1,m
′
2,µ

′
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1,s2,m

′
2
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′
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2σ+2s1+2s2 δs1,σδS,S′δM,M ′

√
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{︄
s1 s2 s

σ S s′
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(G.11)

In order to simplify the sum over four Clebsch-Gordan coefficients eq. (8) of section 9.1 of Ref. [51] (page
291) was employed.
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